Quality of Service in Multiservice IP Networks: Second International Workshop, QoS-IP 2003, Milano, Italy, February 24-26, 2003, Proceedings (Lecture Notes in Computer Science, 2601) 3540006044, 9783540006046

This book constitutes the refereed proceedings of the Second International Workshop on Quality of Service in Multiservic

124 14

English Pages 780 [773] Year 2003

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Quality of Service in Multiservice IP Networks: Second International Workshop, QoS-IP 2003, Milano, Italy, February 24-26, 2003, Proceedings (Lecture Notes in Computer Science, 2601)
 3540006044, 9783540006046

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Lecture Notes in Computer Science Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

2601

3

Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Tokyo

Marco Ajmone Marsan Giorgio Corazza Marco Listanti Aldo Roveri (Eds.)

Quality of Service in Multiservice IP Networks Second International Workshop, QoS-IP 2003 Milano, Italy, February 24-26, 2003 Proceedings

13

Series Editors Gerhard Goos, Karlsruhe University, Germany Juris Hartmanis, Cornell University, NY, USA Jan van Leeuwen, Utrecht University, The Netherlands Volume Editors Marco Ajmone Marsan Politecnico di Torino, Dipartimento di Elettronica Corso Duca degli Abruzzi 24, 10129 Torino, Italy E-mail: [email protected] Giorgio Corazza Universit`a di Bologna, DEIS Viale Risorgimento 2, 40136 Bologna, Italy E-mail: [email protected] Marco Listanti Aldo Roveri Universit`a di Roma "La Sapienza", Dipartimento di INFOCOM Via Eudossiana, 18, 00184 Roma, Italy E-mail: {marco/roveri}@infocom.ing.uniroma1.it Cataloging-in-Publication Data applied for A catalog record for this book is available from the Library of Congress Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at .

CR Subject Classification (1998): C.2, D.2, H.4.3, K.6 ISSN 0302-9743 ISBN 3-540-00604-4 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH http://www.springer.de © Springer-Verlag Berlin Heidelberg 2003 Printed in Germany Typesetting: Camera-ready by author, data conversion by Boller Mediendesign Printed on acid-free paper SPIN 10872718 06/3142 543210

Preface

IP has become the dominant paradigm for all sorts of networking environments, from traditional wired networks to innovative networks exploiting WDM links and/or wireless accesses. Key to the success of IP is its flexibility that allows the integration within one network of a number of systems which at lower layers may have different characteristics, as well as the transport over a common infrastructure of the traffic flows generated by a variety of applications (web browsing, email, telephony, audio and video distribution, multimedia multicasting, financial transactions, etc.) whose performance requirements may be extremely different. This situation has generated a great interest in the development of techniques for the provision of quality-of-service guarantees in IP networks offering a variety of services through a range of different user interfaces (wired and wireless, of different nature). In 2001 and 2002, the Italian Ministry of Education, Universities and Research funded four research programmes on these topics, named IPPO (IP packet optical networks), NEBULA IP (techniques for end-to-end quality-of-service control in multidomain IP networks), PLANET-IP (planning IP networks), and RAMON (reconfigurable access module for mobile computing applications). At the end of their activity, these four programmes organized in Milan, Italy in February 2003 the (QoS-IP 2003), for the presentation of high-quality recent research results on QoS in IP networks, and for the dissemination of the most relevant research results obtained within the four programmes. This volume of the LNCS series contains the proceedings of QoS-IP 2003, including 1 invited paper as well as 53 papers selected from an open call. These very high quality papers provide a clear view of the state of the art of the research in the field of quality-of-service provisioning in multiservice IP networks, and we hope that these proceedings will be a valuable reference for years to come. This volume benefitted from the hard work of many people: the researchers of IPPO, NEBULA, PLANET-IP, and RAMON, the paper authors, the reviewers, and the LNCS staff, Alfred Hofmann in particular. We wish to thank all of them for their cooperation. Special thanks are due to Luigi Fratta and Gian Paolo Rossi for taking care of the conference organization in Milan, and to Michela Meo, Claudio Casetti, and Maurizio Munaf` o for their help in the preparation of the technical program of QoS-IP 2003.

December 2002

Marco Ajmone Marsan Giorgio Corazza Marco Listanti Aldo Roveri

Organization

Program Committee Program Committee Cochairs Marco Ajmone Marsan (Politecnico di Torino) Giorgio Corazza (Universit`a di Bologna) Marco Listanti (Universit`a di Roma, La Sapienza) Aldo Roveri (Universit` a di Roma, La Sapienza) Program Committee Members Anthony Acampora Ian F. Akyildiz Mohammed Atiquzzaman Tulin Atmaca Andrea Baiocchi Mario Baldi Albert Banchs Roberto Battiti Giuseppe Bianchi Nicola Blefari-Melazzi Chris Blondia Franco Callegati Pietro Camarda Andrew T. Campbell Augusto Casaca Olga Casals Claudio Casetti Carla-Fabiana Chiasserini Franco Davoli Edmundo A. de Souza e Silva Christophe Diot Lars Dittman Jos`e Enr`ıquez-Gabeiras Serge Fdida Enrica Filippi Viktoria Fodor Andrea Fumagalli Rossano Gaeta Richard Gail Giorgio Gallassi

Stefano Giordano Weibo Gong Enrico Gregori Ibrahim Habib Mounir Hamdi Boudewijn Haverkort Sundar Iyer Bijan Jabbari Laszlo Jereb Denis A. Khotimsky Daniel Kofman Udo Krieger Santosh Krishnan Anurag Kumar T.V. Lakshman Jean-Yves Le Boudec Luciano Lenzini Emilio Leonardi Christoph Lindemann Alfio Lombardo Saverio Mascolo Marco Mellia Michela Meo Sandor Molnar Masayuki Murata Michele Pagano Sergio Palazzo Krzysztof Pawlikowski George C. Polyzos Ramon Puigjaner

VIII

Organization

Carla Raffaelli Roberto Sabella Stefano Salsano Fausto Saluta Andreas Schrader Matteo Sereno Dimitris Serpanos Rajeev Shorey Aleksandra Smiljanic Josep Sol`e-Pareta

Organizing Committee Organizing Committee Cochairs Luigi Fratta (Politecnico di Milano) Gian Paolo Rossi (Universit` a di Milano) Organizing Committee Members Antonio Capone (Politecnico di Milano) Fiorella Moneta (Politecnico di Milano) Elena Pagani (Universit` a di Milano)

Sponsoring Institution Ericsson Lab Italy

Tatsuya Suda Guillaume Urvoy-Keller Yutaka Takahashi Tetsuya Takine Asser Tantawi Phuoc Tran-Gia Sergio Treves Adam Wolisz

Table of Contents

Analytical Models I On Evaluating Loss Performance Deviation: A Simple Tool and Its Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Extending the Network Calculus Pay Bursts Only Once Principle to Aggregate Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

Modelling the Arrival Process for Packet Audio . . . . . . . . . . . . . . . . . . . . . . .

35

On Packet Delays and Segmentation Methods in IP Based UMTS Radio Access Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

QoS Routing On Performance Objective Functions for Optimising Routed Networks for Best QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

An Adaptive QoS-routing Algorithm for IP Networks Using Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

A QoS Routing Mechanism for Reducing the Routing Inaccuracy Effects .

90

Stability and Scalability Issues in Hop-by-Hop Class-Based Routing . . . . . 103

X

Table of Contents

Measurements and Experimental Results Network Independent Available Bandwidth Sampling and Measurement . . 117

Less than Best Effort: Application Scenarios and Experimental Results . . 131

TStat: TCP STatistic and Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

End-to-End QoS Supported on a Bandwidth Broker . . . . . . . . . . . . . . . . . . . 158 Multidomain End to End IP QoS and SLA . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

QoS Below IP Dimensioning Models of Shared Resources in Optical Packet Switching Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Efficient Usage of Capacity Resources in Survivable MPλS Networks . . . . 204

Performance Evaluation of a Distributed Scheme for Protection against Single and Double Faults for MPLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Edge Distributed Admission Control for Performance Improvement in Traffic Engineered Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Table of Contents

XI

End-to-End QoS in IP Networks Bandwidth Estimation for TCP Sources and Its Application . . . . . . . . . . . . 247

Best-Effort and Guaranteed Performance Services in Telecommunications Networks: Pricing and Call Admission Control Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

TCP Smart Framing: A Segmentation Algorithm to Improve TCP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Live Admission Control for Video Streaming . . . . . . . . . . . . . . . . . . . . . . . . . 292

QoS Multicast : An Overlay Scheme for Quality of Service Differentiation in Source Specific Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Directed Trees in Multicast Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

A Proposal for a Multicast Protocol for Live Media . . . . . . . . . . . . . . . . . . . 334

On the Use of Sender Adaptation to Improve Stability and Fairness for Layered Video Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

XII

Table of Contents

Analytical Models II A New Fluid-Based Methodology to Model AQM Techniques with Markov Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Stochastic Petri Nets Models for the Performance Analysis of TCP Connections Supporting Finite Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . 372

A Queueing Network Model of Short-Lived TCP Flows with Mixed Wired and Wireless Access Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

TCP-SACK Analysis and Improvement through OMQN Models . . . . . . . . 405

Optical Networks QoS Provision in Optical Networks by Shared Protection: An Exact Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Design of WDM Networks Exploiting OTDM and Light-Splitters . . . . . . . 433

DWDM for QoS Management in Optical Packet Switches . . . . . . . . . . . . . . 447

Space Division Architectures for Crosstalk Reduction in Optical Interconnection Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Table of Contents

XIII

Reconfigurable Protocols and Networks The RAMON Module: Architecture Framework and Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Reconfigurable Packet Scheduling for Radio Access Jointly Adaptive to Traffic and Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Mobility Management in a Reconfigurable Environment: The RAMON Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Improving End-to-End Performance in Reconfigurable Networks through Dynamic Setting of TCP Parameters . . . . . . . . . . . . . . . . . . . . . . . . 513

Provision of Multimedia Services Adaptive MPEG-4 Video Streaming with Bandwidth Estimation . . . . . . . . 525

Dynamic Quality Adaptation Mechanisms for TCP-friendly MPEG-4 Video Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Traffic Sensitive Active Queue Management for Improved Multimedia Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

XIV

Table of Contents

A QoS Providing Multimedia Ad Hoc Wireless LAN with Granular OFDM-CDMA Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

QoS in Multidomain Networks SIP Originated Dynamic Resource Configuration in Diffserv Networks: SIP / COPS / Traffic Control Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

Virtual Flow Deviation: Dynamic Routing of Bandwidth Guaranteed Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Design and Implementation of a Test Bed for QoS Trials . . . . . . . . . . . . . . . 606

A Linux-Based Testbed for Multicast Sessions Set-Up in Diff-Serv Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Invited Paper Light-Trails: A Solution to IP Centric Communication in the Optical Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Congestion and Admission Control End-to-End Bandwidth Estimation for Congestion Control in Packet Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

Table of Contents

XV

Priority-Based Internet Access Control for Fairness Improvement and Abuse Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

A Probing Approach for Effective Distributed Resource Reservation . . . . . 672

Dynamic Adaptation of Virtual Network Capacity for Deterministic Service Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Architectures and Protocols for QoS Provision Towards RSVP Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

Analysis of SIP, RSVP, and COPS Interoperability . . . . . . . . . . . . . . . . . . . . 717

Simulation Study of Aggregate Flow Control to Improve QoS in a Differentiated Services Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Quality of Service Multicasting over Differentiated Services Networks . . . 742

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

On Evaluating Loss Performance Deviation: A Simple Tool and Its Practical Implications Ying Xu and Roch Gu´erin Department of Electrical and Systems Engineering, University of Pennsylvania (yingx,guerin)@ee.upenn.edu

Abstract. The focus of this paper is on developing and evaluating a practical methodology for determining if and when different types of traffic can be safely multiplexed within the same service class. The use of class rather than individual service guarantees offers many advantages in terms of scalability, but raises the concern that not all users within a class see the same performance. Understanding when and why a user will experience performance that differs significantly from that of other users in its class is, therefore, of importance. Our approach relies on an analytical model developed under a number of simplifying assumptions, which we test using several real traffic traces corresponding to different types of users. This testing is carried out primarily by means of simulation, to allow a comprehensive coverage of different configurations. Our findings establish that although the simplistic model does not accurately predict the absolute performance that individual users experience, it is quite successful and robust when it comes to identifying situations that can give rise to substantial performance deviations within a service class. As a result, it provides a simple and practical tool for rapidly characterizing real traffic profiles that can be safely multiplexed.

1

Introduction

To design a successful QoS service model, it is often necessary to trade-off the performance guarantees that the service model can provide the associated operational and management complexity so that the QoS guarantees needed by end users can be provided while the service model is kept simple enough to meet deployment constraints. Most recently, there has been a renewed interest in investigating aggregate QoS solutions, due to the fact that they can greatly improve scalability, and therefore reduce the associated operational and management complexity. In a typical aggregate QoS service model, individual flows are multiplexed into a common service class and treated as a single stream when it comes to QoS guarantees, which eliminates the need for per-flow based state and processing. Such an approach is reflected in recent proposals such as the IETF Diff-Serv model [3]. By coarsening the different levels of QoS that the network offers into a small number of service classes, the Diff-Serv model is expected to 

This work was supported in part through NSF grant ITR00-85930.

M. Ajmone Marsan et al. (Eds.): QoS-IP 2003, LNCS 2601, pp. 1–18, 2003. c Springer-Verlag Berlin Heidelberg 2003 

2

Ying Xu and Roch Gu´erin

scale well. However, this gain in scalability through aggregation comes at the cost of losing awareness of the exact level of performance that an individual user experiences. More specifically, because performance is now monitored and enforced only at the aggregate class level, it is not clear whether performance guarantees extend to all individual users in the service class. In particular, it is possible that a given user experiences poor performance without this being noticed at the class level. This issue was explored in an earlier work [9], which focused on the loss probability as the relevant metric. [9] developed a number of models to evaluate the individual loss probabilities and the overall loss probability, in which user traffic are represented by either Markov ON-OFF sources or periodic sources. Using these analytical models, the deviation between individual loss probabilities and the overall loss probability was evaluated for a broad range of configurations. The major conclusion was that there are indeed cases where significant performance deviations can exist, and that user traffic parameters can have a major influence on whether this is the case or not. In this paper, we go beyond the work of [9] by developing a simple methodology capable of evaluating loss performance deviations in realistic settings. Specifically, we concentrate on the ability to predict performance deviations when aggregating traffic sources such as voice and video, which may not be accurately captured by the simplified source models introduced in [9]. In contrast to the existing body of work on call admission control, which is aimed at dynamically deciding whether or not to accept a flow-level request, our methodology is aimed at providing decisions about whether or not to assign different types of traffic streams to the same service class, given their source statistics. Our investigation starts with mapping real traffic sources onto “equivalent” Markovian sources. This mapping is, however, limited to matching first order statistics. Our rationale for using such an approach is, as is discussed later in the paper, based on our expectation that performance deviations are less sensitive to source modeling inaccuracies than absolute performance measures. The efficacy of this simple approach is then evaluated by means of simulations for a broad range of scenarios where multiple real-time traffic sources, i.e., voice and/or video sources, are aggregated, which we believe can also help gain a better understanding of whether and when an aggregate service model is suitable for supporting real-time applications. The reliability and robustness of the approach are further analyzed in Section 6, where we use worst case analysis to explicitly evaluate its intrinsic limitations in predicting performance deviations using only first order statistics. The rest of the paper is structured as follows: Section 2 describes our model and methodology for loss deviation prediction. Sections 3 and 4 report experimental results for two different boundary configurations, while results for the intermediate configuration are reported in Section 5. In Section 6, we conduct a worst case analysis of the performance of our solution. We concentrate on the main results, and most of the derivations are relegated to a technical report [10]. Finally, Section 7 summarizes the findings and implications of the paper.

On Evaluating Loss Performance Deviation

2

3

Model and Methodology

The system we consider consists of multiple users that belong to a common service class, each of which is connected through its access link to an aggregation point, which is modeled as a single server, finite buffer, FIFO queue. In this section, we review the different configurations that we consider and the performance measures that we use to evaluate loss performance deviation. The voice and video traffic sources and their characteristics are then described together with the method we use for mapping them to sources that our analytical model can deal with. The simulation environment that we use is also briefly presented at the end of the section. Due to space constraints, we omit detailed descriptions of the analytical models used, as they were presented in [9]. 2.1

System Parameters and Loss Deviation Evaluation

System Parameters. The first parameter we vary is the number of users aggregated in the same service class, i.e., the number of traffic sources multiplexed in the FIFO queue. In particular, we focus on two cases: a two-source configuration and a “many-source” one, which correspond to two different boundary conditions, i.e., an environment where few large bandwidth connections share resources, and one where many “small” flows are multiplexed into the same queue. Another system parameter we consider is the size of the FIFO queue into which flows are multiplexed. In our simulations, we consider both a system with a relative small buffer size and another system with a relative large buffer size. In most cases, the qualitative behavior of the two systems is similar, and thus typically only results corresponding to one of them are reported. Evaluation Methodology. In a system with N users, let PL denote the overN all loss probability, PLi the loss probability of user i, and Pmax the maximum loss probability experienced by an individual user (without loss of generality, it is usually assumed to be user N ) among all the users. We first evaluate the amount of bandwidth C needed to ensure an overall loss probability PL ≤ Pmax , where Pmax corresponds to the target loss probability of the service N /PL . class. We then compute the loss probability ratio P LR = Pmax In addition, we also evaluate, the percentage by which the bandwidth N ≤ Pmax . allocated to the service class needs to be increased to ensure that Pmax In other words, if CN denotes the minimum amount of bandwidth needed so N that Pmax ≤ Pmax , we evaluate the quantity (CN − C)/C. The (maximum) loss probability ratio reflects the magnitude of the loss deviation when service guarantees are only provided at the aggregate level, and is therefore the metric we use to assess whether traffic aggregation is safe or not. Conversely, the additional bandwidth needed measures the cost of eliminating deviations for a given traffic mix. In addition to these two metrics, we also introduce a “consistency test” that measures the ability of our model to successfully predict scenarios where severe performance deviations will arise. The test relies

4

Ying Xu and Roch Gu´erin

on a “threshold” region, [P LRmin , P LRmax ], that is used to separate risky traffic mixes, i.e., mixes that give rise to large deviations, from safe ones. Specifically, if the loss probability ratio is less than P LRmin , the traffic mix is considered “definitely safe”, if it is greater than P LRmax , the traffic mix is deemed “definitely dangerous”, and if it falls between those two values, i.e., inside the threshold region, the traffic mix is flagged as potentially risky and requiring additional investigations. Ideally, the threshold region should be as narrow as possible, but depending on the accuracy of the model, too narrow a region may either yield a large number of false alarms or fail to properly identify harmful configurations. A wider threshold region reduces those problems at the cost of some imprecision in terms of classifying certain scenarios. We believe that introducing such a “grey” region provides greater flexibility, and can help minimize the impact of inaccuracies inherent in our evaluation methodology. Our hope is that a reasonably narrow threshold region is sufficient to flag the various traffic mixes for which the model might provide inaccurate answers. 2.2

Real-Time Traffic Traces and Mapping Methodology

Source Traces. The video traces we use to conduct our study are obtained from an online video trace library [2]. We chose this public library because of the diversity of the traces it provides. The library contains traces of 26 different hourlong video sequences, each encoded using two different standards (the MPEG4 and the H.263 standard), and under three different quality indices (low, medium and high). For each recorded trace, statistics reflecting its characteristics are also available. We refer to [4] for a detailed description of the trace collection procedure and the methodology used to extract the trace statistics. Table 1. Video Trace Statistics Trace Name Mean Frame Mean Bit Frame Size Frame Size Size (Bytes) Rate (Kb/sec) (Peak/Mean) (Covariance) Jurassic (low) 768.6 153.7 10.6 1.4 Jurassic (high) 3831.5 766.3 4.4 0.6 Lecture (low) 211.7 42.3 16.2 2.3

In our study, we rely mainly on 3 different sequences encoded using the MPEG4 codec with a frame rate of 25 frames/sec. These include the low quality and high quality traces of the movie Jurassic Park I and the low quality trace of a lecture video. The high quality trace of Jurassic Park I (Jurassic high) represents a video source that requires high transmission rate due to its quality requirement. The low quality trace of Jurassic Park I (Jurassic low) represents a lower rate source encoded from the same movie scene. At last, due to its scene characteristics, the low quality lecture trace (Lecture low) is selected because it has the lowest mean rate among all the traces in the video library. Several important statistics of the three video sources are given in Table 1.

On Evaluating Loss Performance Deviation

5

Table 2. Voice Trace Statistics Trace Name Mean Spurt Mean Gap Peak Rate Utilization Length (ms) Length (ms) (Kb/sec) Voice 326 442 64 0.425

We also use voice traces from [7] in our investigation. In particular, the voice source that we choose corresponds to Fig. 4b in [7] and was generated using the NeVoT Silence Detector(SD) [8]. We refer to [7] for a complete description of the codec configuration and trace collection procedure. In Table 2 important statistics of the voice source are given. Converting to Markov ON-OFF Sources. Due to the nature of voice and video traffic generation, both the voice traffic and the video traffic inherit builtin ON-OFF patterns, which facilitates the usage of a Markov ON-OFF source to model them. A Markov ON-OFF source can be represented by a 3-tuple < R, b, ρ >, where R is the transmission (peak) rate when the source is active, b is the average duration of an active or ON period, and ρ represents the fraction of time that the source is active, or its utilization. Our task, is thus to capture a real traffic source using the above 3-tuple, based on its characteristics reflected by statistics given in Table 1 and 2. The raw video traffic consists of variable size frames that arrive at regular time intervals (40ms for the traces we use). In our study, we assume that a frame arrives instantaneously, so that the access link serves as a shaper, bounding the maximum rate of the output traffic by its own transmission speed. Assuming a fluid model, the output traffic can be thought of as a distorted version of the input traffic, where the frame transmission (ON period) extends over a time interval that is a function of the frame size and the input link speed. If the link speed is too slow to transmit a frame in 40ms, consecutive frames will be concatenated and form an extended burst. In the experiments that we conduct, we deliberately eliminate such frame concatenation by setting the link speed larger than the peak frame-level bit rate 1 . The shaped traffic emanated by the access link can thus be modeled by an equivalent ON-OFF source, with: R = Rlink ; b =

Favg b ; ρ= . Rlink 40 · 10−3

(1)

where Rlink is the access link speed and Favg is the average frame size of the video trace. We do not expect that such a simple source model will fully capture all the complex traffic characteristics of a video source. Specifically, although the mean of the burst duration is accurately captured, its distribution does not have to 1

We found that if the access link speed is less than the peak frame-level bit rate, then several extremely long bursts may occur and the delay at the access link could be quite large.

6

Ying Xu and Roch Gu´erin

be exponential. This may affect the accuracy of estimating the absolute loss probability. However, we believe this is still a reasonable approach based on the experience obtained from [9], where we saw that deviations were to a large extent a function of the first order statistics of a source, e.g., the peak rate, the utilization, and the average burst duration, among which the first two parameters usually played a dominant role. Furthermore, as discussed in Section 6, there are actually many cases for which the differences between the model’s prediction and the actual deviation can be shown to be small, and most important, independent of the burst duration distribution. As with video sources, the traffic of voice sources can be divided into “ON” and “OFF” periods, corresponding to the talk spurt and silence period in human speech. Again, while those periods need not always be exponentially distributed, our expectation is that this will only minimally impact our ability to predict loss probability ratios when mixing voice and other traffic sources. Hence, the mapping of voice sources onto ON-OFF sources is carried out using the values shown in Table 2, i.e., R = 64Kb/sec; b = 326ms and ρ = 0.425. Note that since voice traffic is reasonably smooth, i.e., during a burst period the voice source generates multiple packets of 80 Bytes with an equal spacing of 10ms, the peak rate of the equivalent ON-OFF voice source is fixed at 64Kb instead of equal to the link capacity2 . As we shall see later, this smoothness enables the voice source to avoid major performance degradation when aggregated with video sources, in spite of its small traffic contribution. Once video and voice sources have been mapped onto Markov ON-OFF sources, we can apply the analytical models developed in [9] to evaluate both individual and overall loss probabilities. Specifically, in the cases where only two sources are aggregated, we use Equations (1) and (2) in [9] to calculate both the individual and the overall loss probabilities. As in the many-source case, Equations (6) and (7) of [9] are applied. 2.3

Simulation Environment and Experimental Configuration

In order to assess the accuracy of our simplified model, we rely on simulations to evaluate the true loss probabilities and loss probability ratios. Moreover, in order to examine the cost associated with the aggregation process, we also conduct simulations to evaluate the amount of additional bandwidth needed. We use the NS2[1] simulator, as it can accurately model packet level behaviors. In all of our simulations, the packet size of the voice traffic is fixed at 80Bytes while the packet size of the video traffic is fixed at 100Bytes, so that a video frame larger than 100Bytes is fragmented into multiple packets. Throughout the paper, the threshold region is set as [3, 5] and the target loss probability Pmax , when fixed, is set to 10−4 . For simplicity, most of our experiments consider only two different types of sources, where one of the two types of sources is selected and has its parameters varied so that it experiences the larger loss probability. The parameters of the other type of sources are always fixed. 2

The peak rate will be equal to the access link speed only when it is less than 64Kb/sec, which is lower than the values assumed in this paper.

On Evaluating Loss Performance Deviation

3

7

Loss Deviation Prediction when Aggregating Two Sources

This section is devoted to scenarios with only two sources aggregated. This basic configuration, despite or rather because of its simplicity, provides useful insight in capturing the complex behavior of loss deviation. From [9], we know that a user experiences losses that differ significantly from the overall losses, if it both contributes significantly to the onset of congestion when active, and does it in a way that is undetected by resource allocation mechanism. When applied to two (few) sources, this rule indicates that the utilization of an individual source plays a dominant role in determining any loss deviation it experiences. Specifically, when multiplexing two sources, if one of them has a much smaller utilization than the other but a comparable peak rate, its total traffic contribution will be minor and unlikely to trigger the allocation of significant resources, yet its impact on congestion, and therefore losses, when active can be substantial. This observation was quantified in [9] using analytical models, and as we will see in this paper, also apply to the real-life traffic sources we consider. More important, we will establish that the simple methodology we have developed, is indeed capable of accurately capturing this qualitative behavior. 3.1

Aggregating Two Video Sources

In this sub-section, we consider scenarios consisting of aggregating two video sources. The first case involves multiplexing Jurassic low and Jurassic high, which corresponds to two video streams of similar characteristics but different quality and, therefore, bit rate. A second scenario considers the case of two video streams, Lecture low and Jurassic high, which differ in both characteristics and quality (bit rate). In each case, we increase the access speed of the lower bit rate sequence so that it has a larger peak rate and lower utilization than the higher bit rate sequence, and thus is expected to experience a larger loss probability. The buffer size is set to 5000 Bytes and to 2000 Bytes3 in the first and second scenarios, respectively. The loss probability ratio of each scenario is shown in Figure 1. From Figure 1(a), we see that when Jurassic low and Jurassic high are multiplexed, performance deviations can arise, as the loss probability ratio approaches a value of about 6. More important, the simple model we propose can be seen to accurately capture the trend and magnitude of this deviation. The relatively limited range of the loss probability ratio (it never exceeds 6) can be explained by the fact that although the two sources differ in utilization, the low bit rate source, Jurassic low, is not a negligible contributor to the overall traffic. This in turn limits the extent to which the performance experienced by the Jurassic low stream can deviate for the overall performance. In general, the impact of the relative traffic contribution of the two sources being multiplexed can be captured through an 3

We also explore different buffer size (200Bytes) but didn’t find significantly different results from the data here.

8

Ying Xu and Roch Gu´erin

upper bound on the loss probability ratio that only involves the mean rate of the two sources. Specifically, in a configuration with N sources being multiplexed, where, without loss of generality, the N -th source is the one experiencing the larger loss probability, the loss probability ratio satisfies: P LR =

N /rSN rN /rN 1 rL ≤ LN S = N . rL /rS rL /rS rS /rS

(2)

N and rSN correspond to the long term loss speed, i.e., the amount of where rL data lost per unit of time, and transmission speed of source N , and rL and rS correspond to the overall long term loss speed and transmission speed, respectively. Equation (2) states that the loss probability ratio P LR can never exceed a value that is inversely proportional to the fraction of traffic contributed by the worst performer in a service class. The smaller the fraction this user contributes, the larger the maximum loss probability ratio it may experience. In this example, Jurassic low is the source that loses more and from Table 1, we see that rS2 = 153.7Kb/sec, which is about 16.7% of the total traffic, resulting in a loss probability ratio satisfying P LR ≤ 6. As can be seen from Figure 1(a), as the access link speed of Jurassic low increases, the loss probability ratio will indeed approach (and never exceed) this value. Equation 2 indicates that when multiplexing two (or a small number of) sources, the more likely candidate for experiencing significant loss deviation is the source with the smallest bit rate. Furthermore, Equation 2, also shows that in the case of two sources, the higher bit rate source can never experience a loss probability of more than twice the overall loss probability.

6

2 0

5 .5

1 8 1 6

lo s s p r o b a b ility r a tio

lo s s p r o b a b ility r a tio

5 4 .5 4 3 .5

1 4 1 2 1 0 8

3 2 .5 2

6

s im u la tio n m o d e l 0

0 .5

1 lin k s p e e d ( b its /s e c )

s im u la tio n m o d e l 4

1 .5

2 x 1 0

(a) Aggregating Jurassic Low and Jurassic High

8

2 0

0 .5

1 lin k s p e e d

1 .5 ( b its /s e c )

2 x 1 0

8

(b) Aggregating Lecture Low and Jurassic High

Fig. 1. Loss Probability Ratio When Aggregating Video Sources

Figure 1(b) displays the loss probability ratio when multiplexing Lecture low and Jurassic high, for which a maximum value even greater than that of the first scenario can be attained. In particular, we see that the Lecture low source

On Evaluating Loss Performance Deviation

9

can experience losses that are up to 20 times larger than the overall losses. This is primarily due to the lower (relative) rate of Lecture low, which only contributes about 5.2% of the total traffic. From equation (2), this implies that the loss probability ratio should satisfy P LR ≤ 19.1. From Figure 1(b), we see that as the link speed increases, the loss probability ratio indeed approaches this upper bound. The loss probability ratio predicted by the model is, however, not as accurate as in the case of Figure 1(a), as it consistently underestimates the actual loss probability ratio. This is because high order statistics of the traffic generated by both sources still influence the magnitude of the loss probability ratio. This impact notwithstanding, the model still generates a value that in most cases is sufficiently high to at least trigger a warning regarding to the potential danger of multiplexing these two sources. In particular, except for the lowest link speed, the loss probability ratio predicted by the model is always within or above the selected threshold region of [3, 5].

6 5

a d d itio n a l b w n e e d e d ( in p e r c e n ta g e )

a d d itio n a l b w n e e d e d ( in p e r c e n ta g e )

3 5 3 0 2 5 2 0 1 5 1 0 5 0

0 .5

1 lin k s p e e d ( b its /s e c )

1 .5

2 x 1 0

(a) Aggregating Jurassic Low and Jurassic High

8

6 0 5 5 5 0 4 5 4 0 3 5 3 0 2 5 2 0 0

0 .5

1 lin k s p e e d

1 .5 ( b its /s e c )

2 x 1 0

8

(b) Aggregating Lecture Low and Jurassic High

Fig. 2. Additional Bandwidth Needed When Aggregating Video Sources Figure 2 provides a different view on the differences in performance between the two sources. It shows the additional bandwidth (in percentage) needed in order to ensure the desired loss probability for even the poorer performer of the two sources. As can be seen, this amount can be quite large (30% for the more benign case of Jurassic low and Jurassic high, and up to 60% for the more severe case of Lecture low and Jurassic high). This means that the observed differences in performance cannot be easily fixed through standard over-provisioning, and identifying such potentially dangerous scenarios is, therefore, important. 3.2

Aggregating One Video Source and One Voice Source

In this section, we study scenarios where one video source and one voice source are multiplexed. From Table 1 and Table 2, we can see that the voice source has a mean transmission rate that is much lower than that of the video source, for

10

Ying Xu and Roch Gu´erin

both the Jurassic low and Jurassic high sources. When used in equation (2) this translates into a relatively large upper bound for P LR, which could, therefore, indicate a potentially dangerous traffic mix. This turns out not to be the case because of the reasonably smooth nature of the voice source, which makes it mostly immune to performance deterioration when multiplexed with either the Jurassic low or the Jurassic high video sources. Instead, it is the video source that experiences somewhat poorer performance. The magnitude of this performance deviation is, however, limited, because the video source is the major contributor to the overall transmission rate (equation (2) gives an upper bound of 1.04 and 1.18 for the P LR for Jurassic low and Jurassic high, respectively). As a result, our main concern in these scenarios is whether the model will generate a false alarm, i.e., falsely predict that mixing a voice and a video sources is potentially dangerous.

1 .0 4 2

1 .1 8 5 s im u la tio n m o d e l

s im u la tio n m o d e l

1 .0 4

lo s s p r o b a b ility r a tio

lo s s p r o b a b ility r a tio

1 .1 8

1 .1 7 5

1 .1 7

1 .0 3 8 1 .0 3 6 1 .0 3 4 1 .0 3 2

1 .1 6 5

1 .0 3 1 .1 6 0

0 .5

1 lin k s p e e d ( b its /s e c )

1 .5

2 x 1 0

(a) Aggregating Voice Source and Jurassic Low

8

1 .0 2 8 0

0 .5

1 lin k s p e e d ( b its /s e c )

1 .5

2 x 1 0

8

(b) Aggregating Voice Source and Jurassic High

Fig. 3. Loss Probability Ratio When Aggregating One Video and One Voice The corresponding results are shown in Figure 3. From the graphs, we see that for both Jurassic low and Jurassic high, the model tracks the actual loss probability ratio reasonably accurately. More important, it will not generate any false alarm and will consistently identify the traffic mixes as safe. As an aside, the amount of additional bandwidth needed to ensure that both the voice and video sources experience the desired loss probability target can also be found to be small (less than 3%), which further confirms that mixing a voice and a video source should be fine in practice.

4

Loss Deviation Prediction when Aggregating Many Sources

The previous section dealt with the special case of only two sources, which while interesting in its own right, is clearly not the only or even most common scenario

On Evaluating Loss Performance Deviation

11

one would expect to encounter in practice. In this section, we consider another set of possibly more realistic scenarios consisting of mixing many voice and video sources. As before, our goal is to determine whether the model is capable of accurately distinguishing between safe and unsafe traffic mixes. For sake of simplicity and in order to limit the number of combinations to consider, we limit ourselves to multiplexing two different types of sources. According to the discussion of Section 3, for one or more sources to experience substantially worse losses than other sources, the peak rate of the source should typically be high while its contribution to the total rate should be small enough to ensure that the losses experienced by itself only have a small impact on the overall loss probability. The latter typically implies a combination of a low average transmission rate and a small number of its peers. We therefore concentrate on such scenarios and evaluate the model’s ability to properly identify cases when severe loss deviations can occur. 4.1

A First Many-Source Example

In this first example, the dominant traffic contributors consist of 500 voice sources that are multiplexed with a , Jurassic low video source4 . The loss performance deviation is examined for a system where the buffer size is set to 5000 Bytes and for configurations where the access link speed of the video source increases from 5Mbps to 200Mbps, while the access link speed of the voice sources is fixed at 5Mbps. Given that the Jurassic low source has a reasonably high peak rate but only contributes a small amount to the total bit rate, we expect this scenario to be a prime candidate for generating significant differences in the loss probabilities that the voice and video sources experience. The resulting loss probability ratio is shown in Figure 4(a). As seen in Figure 4(a), as the video source’s access link speed grows, so does the loss probability ratio, and this evolution is accurately captured by the model even if it slightly over-estimates the actual value. This over-estimation does, however, not affect the model’s ability to correctly identify cases where significant deviations occur. The figure also shows that for the configurations considered, the range of possible deviations is substantially larger than that of the two-source scenarios of Section 3. This is not unexpected, as the traffic contributed by the video source is much smaller (only 1.12%) in comparison to the total traffic volume than was the case in the two-source scenarios. This very small contribution to the overall traffic translates into an upper bound of 89.5, when using Equation 2, and we can again see that this value is essentially achieved at high link speeds. As with the two-source case, we also investigate by simulation the amount of additional bandwidth needed to ensure that all sources experience at least the 4

We have conducted another set of experiments in which 500 voice sources and a single Jurassic high video source are aggregated. Since the results are similar to those reported in this section, both qualitatively and quantitatively, we omit reporting it here.

12

Ying Xu and Roch Gu´erin 2 5 0

a d d itio n a l b w n e e d e d ( in p e r c e n ta g e )

9 0 8 0

lo s s p r o b a b ility r a tio

7 0 6 0 5 0 4 0 3 0 s im u la tio n m o d e l

2 0 1 0 0

0 .5

1 lin k s p e e d

1 .5 ( b its /s e c )

(a) Loss Probability Ratio

2 x 1 0

8

2 0 0

1 5 0

1 0 0

5 0

0 0

0 .5

1 lin k s p e e d ( b its /s e c )

1 .5

2 x 1 0

8

(b) Additional Bandwidth in Percentage

Fig. 4. Aggregating 500 voice sources and one video source (Jurassic low) target performance of 10−4 . The results are shown in Figure 4(b), where we can again see that over-allocation is not an option in the cases where substantial performance deviations exist. In particular, when the link speed is high, more than twice the allocated bandwidth is required to guarantee adequate performance for the video sources. Based on the earlier discussion, significant performance deviation arises in the many-source case only when sources have both a high peak rate (high enough to trigger the onset of congestion when the source becomes active) and represent a small contribution to the overall bit rate (their higher losses do not contribute much to the overall loss probability). The one video source, many voice sources scenario is a perfect illustration of such an “unsafe” configuration. In contrast, a scenario with a small number of voice sources and many video sources would not result in any significant deviations and would be very close to what was observed in the previous section for a one voice source and one video source configuration. In the next section, we investigate the behavior of the system when it transits from an “unsafe” region to a “safe” one. 4.2

Transiting from Unsafe to Safe Traffic Mixes

In this section, we consider a number of scenarios consisting of a mixture of voice and video sources, and where the fraction of traffic contributed by each type of sources varies. Specifically, we start with a configuration consisting of 500 voice sources and one video source (Jurassic low). The access link speed of voice sources is taken to be 5 Mbps, while it is set to 200 Mbps for the video source. We then increase the number of video sources while keeping the total traffic rate fixed. As a result, the number of voice sources decreases and the total traffic contribution of video sources increases, which affects the possibility for performance deviations. In particular, as the traffic contribution from video sources becomes dominant, performance deviations are all but eliminated.

On Evaluating Loss Performance Deviation 2 5 0 s im u la tio n m o d e l

lo s s p r o b a b ility r a tio

8 0

6 0

4 0

2 0

1 0

a d d itio n a l b w n e e d e d ( in p e r c e n ta g e )

1 0 0

13

2 0 0

1 5 0

1 0 0

5 0

0

2 0 4 0 6 0 8 0 L o a d o f v id e o s o u r c e s in b a c k g r o u n d ( in p e r c e n ta g e )

(a) Loss Probability Ratio

0

2 0 4 0 6 0 8 0 L o a d o f v id e o s o u r c e s in b a c k g r o u n d ( in p e r c e n ta g e )

(b) Additional Bandwidth in Percentage

Fig. 5. A Variable Traffic Mix Scenario

The results are shown in Figure 5(a), which illustrates that as the traffic contribution from the video sources first increases, the loss probability ratio experiences a sharp initial drop. This is followed by a slower decrease towards a level where performance deviations are essentially negligible. Specifically, when video sources contribute about 20% of the total traffic, the loss probability ratio has dropped to 4.6, down from 80 for a single video source. The loss probability ratio drops further to 2.3 for a video traffic contribution of 40%, and to 1.7 for a video traffic contribution of 60%. As illustrated in Figure 5(b), this general behavior is mirrored in the amount of additional bandwidth needed to eliminate the performance penalty incurred by video sources. More important from the perspective of assessing the ability of our model to accurately predict whether it is safe or not to mix traffic, the model consistently tracks the actual loss probability ratios across the range of scenarios. From a practical standpoint, this section provides an important guideline for determining when it is safe to mix traffic sources that differ significantly in both their peak and mean rates. Specifically, although there are a number of configurations for which it is safe to mix such sources, transiting from unsafe to safe configurations is not a well demarcated process. As a result, a generally safe practice is to altogether avoid multiplexing sources that differ too much in both their peak and mean rates.

5

Intermediate Configurations

As is seen in Section 3 and Section 4, the behavior of loss performance deviation differs significantly between the two-source and the many-source cases. Specifically, in the two-source case, source utilization alone can result in significant performance deviations, while in the many-source case both peak rate and utilization are involved. In this section, we study a few intermediate configurations that can help shed some light on the transition between the two-source

14

Ying Xu and Roch Gu´erin

and the many-source behaviors. Our goal is to ensure that this understanding is adequately incorporated into the simple methodology we propose to determine whether it is safe to multiplex different traffic sources.

1 0 0

2 5 0

a d d itio n a l b w n e e d e d ( in p e r c e n ta g e )

s im u la tio n m o d e l

lo s s p r o b a b ility r a tio

8 0

6 0

4 0

2 0

1 1

1 0 0

2 0 0 3 0 0 N u m b e r o f V o ic e S o u r c e s

4 0 0

(a) Loss Probability Ratio

5 0 0

2 0 0

1 5 0

1 0 0

5 0

0 1

1 0 0

2 0 0 3 0 0 N u m b e r o f V o ic e S o u r c e s

4 0 0

5 0 0

(b) Additional Bandwidth in Percentage

Fig. 6. Increasing the Number of Voice Sources The configuration we use for our investigation consists of multiplexing a variable (from 1 to 500) number of voice sources with one video source (Jurassic low). This allows us to explore the evolution from a safe, two-source traffic mix to an unsafe, many-source mix. The loss probability ratios and the additional bandwidth required (in percentage) are plotted for this range of scenarios in Figure 6(a) and Figure 6(b) respectively. As can be seen from the figure, the model is quite accurate in predicting the loss probability ratio across all scenarios. In addition, the transition from safe to unsafe regions is shown to be progressive, roughly following a linear function, but with a fairly steep slope. Specifically, mixing the video source with just 50 voice sources already yields a loss probability ratio close to 10, and it would take 50% more bandwidth to fix the problem. This is quite significant, especially in light of the fact that the traffic contribution of the video source is about one tenth of the total traffic, i.e., not an insignificant amount. This again highlights the fact that it is better to err on the side of caution when considering mixing traffic sources with rather disparate peak and mean rates.

6

Discussions of Prediction Errors

One of the main assumptions behind the approach used in this paper, is that while the underlying analytical model may be too simplistic to accurately compute it is capable of robust predictions when it comes to The obvious question that this assumption raises is “why would two wrongs make a right?” This section is an attempt at answering part of this question.

On Evaluating Loss Performance Deviation

6.1

15

Prediction Error in the Two-Source Case

The error in computing loss probabilities and, therefore, the loss probability ratio, originates from mapping the actual distribution of the burst duration into an exponential distribution. Specifically, the peak rate and the utilization (mean rate) of a source can usually be captured reasonably accurately, and the burst duration is the main parameter whose estimation in problematic. As a result, modeling a traffic source using a Markov ON-OFF source involves selecting a   burst duration chosen triplet of the form < R, b , ρ >, where b is an to yield the same loss probability as the one experienced by the actual source.  Because the choice of b is very much source dependent (see [5] for details on  a method for deriving estimates for b ) and although its value is often different from the average burst duration b, we nevertheless make the assumption that  b = b in our evaluation. This therefore represents the major source of error, when it comes to computing loss probabilities and the loss probability ratio. Our goal in this section is thus to provide a worst case analysis of the magnitude of this error. Consider a system consisting of two sources multiplexed onto the same link and where, without loss of generality, source 2 is the one that contributes the smallest amount of traffic. Denote P LRest as the loss probability ratio obtained from the approach proposed in this paper, and let EP LR be the possible difference between P LRest and the actual loss probability ratio P LR. possible value The determination of EP LR is based on evaluating the of |P LRest − P LR| as a function of the system parameters. Specifically, we first derive bounds (intervals) for both P LR and P LRest , and then derive the expression of EP LR based on the maximum distance between the boudaries of these intervals. Due to space constrain, we refer to [10](Appendix I) for details of the derivation, and only present the main results here. In [10], it is found that one can distinguish three main regions for which different bounds can be derived for P LR (and P LRest ): – Case 1: R1 ≤ C, R2 ≤ C – Case 2: R1 (R2 ) < C < R2 (R1 ) – Case 3: C ≤ R1 , C ≤ R2 where Case 2 can be further divided into two sub-regions depending on whether R1 is larger than R2 or not. In addition, because the allocated bandwidth C in actual system might be different from that estimated by the model (more precisely, it should be denoted as Cest ) 5 , the total number of regions need to be considered is actually nine (all possible combinations). In [10], the expression of EP LR is derived for all the nine cases, and the results are given in Table 3: From the table, we can infer that in many cases the value of EP LR will be reasonably small. The only cases where a potentially large estimation error can 5

This is because the capacity allocated in the model is based on the assumption that the ON period is exponentially distributed with mean b, while the actual capacity allocated incorporate the effect of the real source statistics.

16

Ying Xu and Roch Gu´erin

Table 3. Worst Case Prediction Error: EP LR

Actual Situation

Model Prediction

Case 1

Case 2

R 2)

1 1 * ] -1 (r 1 /R > r 2 /R , R >R ) S 1 S 2 1 2 r /rS 1 + R 1/R 2 2 S

R /R 1 *( 1 2 ) rS2 /rS 1 + R 1 /R 2 r 2 /R , R >R ) S 1 S 2 1 2 rS /rS 1 + R 1/R 2

1 1 max[2, 2 * ] -1 (r 1 /R > r 2 /R , R >R ) S 1 S 2 1 2 rS /rS 1 + R 1/R 2

R /R 1 *( 1 2 ) rS2 /rS 1 + R 1 /R 2

1 R /R *( 1 2 ) rS2 /rS 1 + R 1 /R 2

(R 1 PL2 , and since it is then the major traffic contributor (source 1) that loses more, P LR = PL1 /PL . This implies that P LR can never exceed rS /rS1 , which is less than 2. This then yields EP LR ≤ 1. In other scenarios, as long as neither system falls into Case 3, it is possible to show that EP LR will be a decreasing function of both the fraction of traffic contributed by source 2 and  the difference between  R1 and R2 . This is reflected in the expressions R1 /R2 1 max 1, r2 1/rS · 1+R11 /R2 − 1 and r2 /r · 1+R for the cases R1 > R2 and 1 /R2 S S S R1 < R2 , respectively. In those cases, EP LR will be large only when both the value of rS2 /rS is small (the traffic contribution of source 2 is much smaller than that of source 1) and R1 /R2 is close to 1. The only other cases where we commit it is possible for EP LR to be large is, as mentioned earlier, when either the modeled or the actual system correspond to Case 3. In this case, either P LR or P LRest can be anywhere in the range 1 to rS /rS2 , so that EP LR = rS /rS2 − 1, which can be arbitrarily large if the traffic contribution of source 2 is very small. The question is then to determine how common this configuration is. A brief and arguably limited review of the many different configurations we tested found that this scenario occurred only when multiplexing video sources with rather different rates, e.g., Lecture low and Jurassic high. In those cases, the modeled system fell (erroneously) in Case

On Evaluating Loss Performance Deviation

17

3 while the actual system is in Case 2. This indeed translated into substantial differences between the loss probability ratio predicted by the model and the value of P LR obtained in the simulations, as is seen in Figure 1. However, it is worth noting that in spite of those differences, the tests performed using the model to determine if it was safe or not to multiplex the sources, still provided a correct answer in most cases. In other words, the methodology based on the average burst duration still successfully captured the trend in loss probability ratio and thus, was able to correctly identify the potential danger of mixing the traffic sources. 6.2

Prediction Error in the Many-Source Case

In the many-source case, the equations used to predict the loss probability ratio, i.e., Equation (6) and (7) of [9], are derived assuming a bufferless model. For such a system, the loss probability ratio is only affected by the peak rate and the utilization [6]. This is because data losses occur when the arrival rate is greater than the link capacity, and thus are determined only by their difference. As a result, the loss probability ratio does not depend on the statistics of burst duration. Instead, the model’s accuracy depends only on how good a fit a bufferless model is for the real system. This is a function of both the buffer size and the relative burstiness of the source(s). When the number of sources is large, the ability of a buffer, even a large one, to accommodate many large bursts is very limited, so that a bufferless model is often quite accurate. From the simulations of Section 4 and Section 5, we have indeed seen that a buffer size of 5000 Bytes gives results that are barely distinguishable from those of a bufferless system, even in cases where the number of sources is moderate. In other simulations that are not included in the paper due to lack of space, similar observations were made for systems with much larger buffers, i.e., 100 KBytes. In those cases, although there were instances where the absolute prediction was not entirely accurate, it always remained sufficient to clearly identify when it was dangerous to multiplex sources of different types. As a result, we believe that the performance of an approach based on a bufferless model should remain robust across a wide range of buffer sizes, as long as the number of sources being multiplexed is large enough.

7

Conclusions

This paper is concerned with the problem of deciding when it is possible to multiplex different traffic sources into a common service class, when both resource allocation and performance monitoring is done at the class level. Our goal is to develop a reasonably simple methodology for identifying traffic mixes that can generate significant performance deviations. The methodology we propose is based on a set of analytical tools developed in [9], and which are used together with a simple method for mapping real traffic sources onto source models that the analysis is capable of handling.

18

Ying Xu and Roch Gu´erin

The effectiveness of the methodology is evaluated through simulations by exploring its prediction ability across a number of scenarios involving real traffic sources. The paper establishes that the methodology, though simple, is quite successful and robust in identifying traffic mixes that can result in severe loss performance deviations. In particular, it reliably identifies cases where large deviations would occur and mostly avoids false alarms. In addition, the region for which it gives somewhat inconclusive results, its so-called threshold region, is relatively narrow. Furthermore, the paper also shows that in most cases where large performance deviations are observed, the amount of additional bandwidth needed to provide all users in the service class with the desired performance, can often be quite large. This indicates that simply over-provisioning the bandwidth allocated to the service class cannot easily eliminate loss performance deviations, when present. As a result, providing a simple yet accurate method for identifying potentially dangerous traffic mixes is important when contemplating deploying class-based services.

8

Acknowledgement

The authors would like to acknowledge Wenyu Jiang from Columbia University for providing the voice traffic traces, and Frank Fitzek from the Technical University of Berlin, Germany, for providing the video traffic traces.

References [1] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/. [2] Video trace library. http://www-tkn.ee.tu-berlin.de/research/trace/trace.html. [3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services. Request For Comments (Proposed Standard) RFC 2475, IETF, December 1998. [4] F. Frank and R. Martin. MPEG-4 and H.263 video traces for network performance evaluation. IEEE Network Magazine, 15(6):40–54, November 2001. [5] L. G¨ un. An approximation method for capturing complex traffic behavior in high speed networks. Performance Evaluation, 19(1):5–23, January 1994. [6] U. Mocci J. W. Roberts and J. Virtamo, editors. Broadband Network teletraffic Final Report of Action COST 242, volume 1155. Springer-Verlag, 1996. [7] W. Jiang and H. Schulzrinne. Analysis of on-off patterns in voip and their effect on voice traffic aggregation. In The 9th IEEE International Conference on Computer Communication Networks, 2000. [8] H. Schulzrinne. Voice communication across the Internet: a network voice terminal. Technical Report 92–50, Department of Computer Science, University of Massachusetts, Amherst, MA, USA, 1992. [9] Y. Xu and R. Gu´erin. Individual QoS versus aggregate QoS: A loss performance study. In Proceedings of the IEEE Infocom, NYC, USA, June 2002. [10] Y. Xu and R. Gu´erin. On evaluating loss performance deviation: A simple tool and its practical implications. Technical report, University of Pennsylvania, September 2002. (Available at http://einstein.seas.upenn.edu/mnlab/publications.html).

Extending the Network Calculus Pay Bursts Only Once Principle to Aggregate Scheduling Markus Fidler Department of Computer Science, Aachen University Ahornstr. 55, 52074 Aachen, Germany [email protected]

Abstract. The Differentiated Services framework allows to provide scalable network Quality of Service by aggregate scheduling. Services, like a Premium class, can be defined to offer a bounded end-to-end delay. For such services, the methodology of Network Calculus has been applied successfully in Integrated Services networks to derive upper bounds on the delay of individual flows. Recent extensions allow an application of Network Calculus even to aggregate scheduling networks. Nevertheless, computations are significantly complicated due to the multiplexing and de-multiplexing of micro-flows to aggregates. Here problems concerning the tightness of delay bounds may be encountered. A phenomenon called Pay Bursts Only Once is known to give a closer upper estimate on the delay, when an end-to-end service curve is derived prior to delay computations. Doing so accounts for bursts of the flow of interest only once end-to-end instead of at each link independently. This principle also holds in aggregate scheduling networks. However, it can be extended in that bursts of interfering flows are paid only once, too. In this paper we show the existence of such a complementing Pay Bursts Only Once phenomenon for interfering flows. We derive the end-to-end service curve for a flow of interest in an arbitrary aggregate scheduling feed forward network for rate-latency service curves, and leaky bucket constraint arrival curves, which conforms to both of the above principles. We give simulation results to show the utility of the derived forms.

1

Introduction

The Differentiated Services (DS) architecture [2] is the most recent approach of the Internet Engineering Task Force (IETF) towards network Quality of Service (QoS). DS addresses the scalability problems of the former Integrated Services approach by an aggregation of micro-flows to a small number of different traffic classes, for which service differentiation is provided. Packets are identified by simple markings that indicate the respective class. In the core of the network, routers do not need to determine to which flow a packet belongs, only which aggregate behavior has to be applied. Edge routers mark packets and indicate whether they are within profile or, if they are out of profile, in which case they might even be discarded by a dropper at the edge router. A particular marking on M. Ajmone Marsan et al. (Eds.): QoS-IP 2003, LNCS 2601, pp. 19–34, 2003. c Springer-Verlag Berlin Heidelberg 2003 

20

Markus Fidler

a packet indicates a so-called Per Hop Behavior (PHB) that has to be applied for forwarding of the packet. Currently, the Expedited Forwarding (EF) PHB [9], and the Assured Forwarding (AF) PHB group are specified. The EF PHB is intended for building a service that offers low loss, low delay, and low delay jitter, namely a Premium service. The specification of the EF PHB was recently redefined to allow for a more exact and quantifiable definition [5]. Especially the derivation of delay bounds is of interest, when providing a Premium service. In [4] such bounds are derived for a general topology and a maximum load. However, these bounds can be improved, when additional information concerning the current load, and the special topology of a certain DS domain is available. In [15] a central resource management for DS domains called a Bandwidth Broker (BB) is presented. A BB is a middleware service which controls and facilitates the dynamic access to network services of a particular administrative domain [10]. The task of a BB in a DS domain is to perform a careful admission control, and to set up the appropriate configuration of the domain’s edge routers, whereas the configuration of core routers is intended to remain static to allow for scalability. While doing so, the BB knows about all requests for capacity of certain QoS classes. Besides it can easily learn about the DS domains topology, either statically, or by implementing a listener for the domains routing protocol. Thus, a BB can have access to all information that is required, to apply the mathematical methodology of Network Calculus [3,13], in order to base its admission control on delay boundaries that are derived for the current load, and the special topology of the administrated domain [19]. In this paper we address the derivation of end-to-end delay guarantees based on Network Calculus. We derive a closed form solution for the end-to-end delay in feed forward First In First Out (FIFO) networks, for links that have a ratelatency property, and flows that are leaky bucket constraint. In particular this form accounts for bursts of interfering flows only once, and thus implements a principle for aggregate scheduling that is similar to the Network Calculus Pay Bursts Only Once principle [13]. The derived boundaries can be applied as a decision criterion to perform the admission control of a DS domain by a BB. The remainder of this paper is organized as follows: In Section 2 the required background on Network Calculus, and the notation that is applied in the sequel are given. Section 3 introduces two examples, which show how bursts of interfering flows worsen the derived delay bounds and, which prove the existence of a counterpart to the Pay Bursts Only Once phenomenon for interfering flows in aggregate scheduling networks. The first example can be satisfactorily solved by direct application of current Network Calculus, whereas to our knowledge for the second example a tight solution is missing in current literature. This missing piece is addressed in Section 4, where a tight closed form solution for arbitrary feed forward networks with FIFO rate-latency service curves and leaky bucket constraint arrival curves is derived. In Section 5 we describe the implementation of the admission control in a DS BB that is based on worst-case delay bounds. Numerical results on the performance gain that is achieved by applying the previously derived terms are given. Section 6 concludes the paper.

Extending the Network Calculus Pay Bursts Only Once Principle

2

21

Network Calculus Background and Notation

Network Calculus is a theory of deterministic queuing systems that is based on the early work on the calculus for network delay in [6,7], and on the work on Generalized Processor Sharing (GPS) presented in [16,17]. Further extensions, and a comprehensive overview on current Network Calculus are given in [12,13], and from the perspective of filtering theory in [3]. Here only a few concepts are covered briefly, to give the required background, and to introduce the notation that is mainly taken over from [13]. In addition since networks consisting of several links n that are used by a flow of interest, and a number of interfering flows m are investigated, upper indices j indicate links, and lower indices i indicate flows in the sequel. The scheduler on an outgoing link can be characterized by the concept of a service curve, denoted by β(t). A special characteristic of a service curve is the rate-latency type that is given by βR,T (t) = R · [t − T ]+ with a rate R and a latency T . The term [x]+ is equal to x, if x ≥ 0, and zero otherwise. Service curves of the rate-latency type are implemented for example by Priority Queuing (PQ), or Weighted Fair Queuing (WFQ). The latency of a PQ scheduler is given in [5] for variable length packet networks with a Maximum Transmission Unit (MTU) according to T = MTU/R. Nevertheless, routers can implement additional nonpreemptive layer 2 queues on their outgoing interfaces for a smooth operation, which can add further delay to a layer 3 QoS implementation [20]. Thus T = (l2 + 1) · MTU/R might have to be applied, whereby l2 gives the layer 2 queuing capacity in units of the MTU. Flows are defined either by their arrival functions denoted by F (t), or by their arrival curves α(t), whereas α(t2 − t1 ) ≥ F (t2 ) − F (t1 ) for all t2 ≥ t1 . In DS networks, a typical characteristic for incoming flows can be given by the leaky bucket constraint αr,b (t) = b + r · t that is also known as sigma-rho leaky bucket in [3]. Usually the ingress router of a DS domain meters incoming flows against a leaky bucket algorithm, and either shapes, or drops non-conforming traffic, which justifies the application of leaky bucket constraint arrival curves. If a link j is traversed by a flow i, the arrival function of the output flow Fij+1 , which is the input arrival function for an existing, or an imaginary subsequent link j + 1, can be given according to (1) for t ≥ s ≥ 0 [12]. Fij+1 (t) ≥ Fij (t − s) + β j (s)

(1)

From (1) the term in (2) follows. The operator ⊗ denotes the convolution under the min-plus algebra that is applied by Network Calculus. Fij+1 (t) ≥ (Fij ⊗ β j )(t) = inf [Fij (t − s) + β j (s)] t≥s≥0

(2)

that Further on, the output flow is upper constrained by an arrival curve αj+1 i is given according to (3), with  denoting the min-plus de-convolution. (t) = (αji  β j )(t) = sup[αji (t + s) − β j (s)] αj+1 i s≥0

(3)

22

Markus Fidler

If the path of a flow i consists of two or more links, the formulation of the concatenation of links can be derived based on (4). ≥ β j+1 (t − s) Fij+2 (u) − Fij+1 (u − (t − s)) j+1 j β j (s) Fi (u − (t − s)) −Fi (u − t) ≥ j+2 j j+1 Fi (u) −Fi (u − t) ≥ β (t − s) + β j (s)

(4)

The end-to-end service curve is then given in (5), which covers the case of two links, whereas the direct application of (5) also holds for n links. β j+1,j (t) = (β j+1 ⊗ β j )(t) = inf [β j+1 (t − s) + β j (s)] t≥s≥0

(5)

The maximal virtual delay d for a system that offers a service curve of β(t) with an input flow that is constraint by α(t), is given as the supremum of the horizontal deviation according to (6).   (6) d ≤ sup inf[τ ≥ 0 : α(s) ≤ β(s + τ )] s≥0

For the special case of service curves of the rate-latency type, and sigma-rho leaky bucket constraint arrival curves, simplified solutions exist for the above equations. The arrival curve of the output flow according to (3) is given in (7) for this case, whereas the burst size of the output flow bi + ri · T j is equal to the maximum backlog at the scheduler of the outgoing link. αj+1 (t) = bi + ri · T j + ri · t i

(7)

The concatenation of two rate-latency service curves can be reduced to (8). β j+1,j (t) = min[Rj+1 , Rj ] · [t − (T j+1 + T j )]+

(8)

Finally, (9) gives the worst case delay for the combination of a rate-latency service curve, and a leaky bucket constraint arrival curve. d ≤ T j + bi /Rj

(9)

If a flow i traverses two links j and j + 1, two options for the derivation of the end-to-end delay exist. For simplicity, the service curves are assumed here to be of the rate-latency type, and the arrival curve is chosen to be leaky bucket constraint. At first the input arrival curve of flow i at link j + 1 can be computed as in (7). Then the virtual end-to-end delay is derived to be the sum of the virtual delays at link j and j + 1 according to (9). Doing so results in d ≤ T j + bi /Rj + T j+1 + (bi + ri · T j )/Rj+1 . The second option is to derive the end-to-end service curve as is done in (8), and compute the delay according to (9) afterwards, resulting in d ≤ T j + T j+1 + bi / min[Rj+1 , Rj ]. Obviously, the second form gives a closer bound, since it accounts for the burst size bi only once. This property is known as the Pay Bursts Only Once phenomenon from [13]. Until now only networks that perform a per-flow based scheduling, for example Integrated Services networks, have been considered. The aggregation or

Extending the Network Calculus Pay Bursts Only Once Principle

23

the multiplexing of flows can be given by the addition of the arrival functions F1,2 (t) = F1 (t) + F2 (t), or arrival curves α1,2 (t) = α1 (t) + α2 (t). For aggregate scheduling networks with FIFO service curves, families of per-flow service curves βθ (t) according to (10) with an arbitrary parameter θ ≥ 0 are derived in [8,13]. βθj (t) gives a family of service curves for a flow 1 that is scheduled in an aggregate manner in conjunction with a flow 2 on a link j. 1t>θ is zero for t ≤ θ. βθj (t) = [β j (t) − α2 (t − θ)]+ 1t>θ

(10)

The parameter θ has to be set to zero in case of blind multiplexing. In FIFO j j+1 (v) ≤ F1,2 (t)], the conditions F j (u) ≤ F j+1 (t), networks for u = sup[v : F1,2 j + j+1 + (t) with u = u+,  > 0 hold for the sum of both flows, and and F (u ) ≥ F for the individual flows, too. These additional constraints allow to derive (10) for an arbitrary θ > 0. The complete derivation is missed out here. It can be found in [13]. From (10) it cannot be concluded that supθ [βθj ], or inf θ [βθj ] is a service j j curve, but for the output flow αj+1 1 (t) = inf θ≥0 [(α1  βθ )(t)] can be given [13]. For the special case of rate-latency service curves, and leaky bucket constraint arrival curves, (11) can be derived from (10) to be a service curve for flow 1 for r1 + r2 < Rj . (11) β j (t) = (Rj − r2 ) · [t − (T j + b2 /Rj )]+ The methodology that is shown up to here already allows to implement the algorithmic derivation of delay bounds in a DS domain by a BB, with the restriction that the domain has to be a feed forward network. In non feed forward networks analytical methods like time stopping [3,13] can be applied. Nevertheless, for an algorithmic implementation, it is simpler to prevent from aggregate cycles, and transform the domains topology into a feed forward network, to allow for the direct application of Network Calculus. Such a conversion of the network topology can be made by means of breaking up loops by forbidding certain links, for example by turn prohibition as presented in [21] for networks that consist of bidirectional links. Doing so, the BB can inductively derive the arrival curves of micro-flows at each outgoing link, then compute the service curve of each link from the point of view of each micro-flow, and concatenate these to end-to-end service curves, to give upper bounds on the worst case delay for individual flows.

3

Extended Pay Bursts Only Once Principle

Though Section 2 gives the required background to derive per micro-flow based end-to-end delay bounds in aggregate scheduling networks, these bounds are likely to be unnecessarily loose. Figure 1 gives a motivating example of a simple network consisting of two outgoing links that are traversed by two flows. This example is given to introduce a similar concept to the Pay Bursts Only Once principle [13] for aggregate scheduling. Flow 1 is the flow of interest, for which the end-to-end delay needs to be derived. According to the Pay Bursts Only Once principle, at first the end-to-end service curve for flow 1 has to be derived, and then the delay is computed, instead of computing the delay at each link

24

Markus Fidler I

II

1 2

Fig. 1. Two Flows Share Two Consecutive Links

independently, and summing these delays up. A similar decision has to be made, when deriving the service curve for flow 1 by subtracting the arrival curve of flow 2 from the aggregate service curves. Either this subtraction is made at each link independently before concatenating service curves, or the subtraction is made after service curves have been concatenated. To illustrate the difference the two possible derivations of the end-to-end service curve for flow 1 are given here for rate-latency service curves, and leaky bucket constraint arrival curves. For the first option, which is already drafted at the end of Section 2, the service curve of link I from the point of view of flow 2 can be derived to be of the rate-latency type with a rate RI − r1 and a latency T I + b1 /RI . Then, the arrival curve of flow 2 at link II can be given to be leaky bucket constraint with the rate r2 and the burst size b2 + r2 · (T I + b1 /RI ). The service curves at link I and II from the point of view of flow 1 can be given to be rate-latency service curves with the rates RI − r2 , respective RII − r2 , and the latencies T I + b2 /RI , respective T II + (b2 + r2 · (T I + b1 /RI ))/RII . The concatenation of these two service curves yields the rate-latency service curve for flow 1 given in (12). β I,II (t) = min[RI − r2 , RII − r2 ] · [t − (T I + b2 /RI ) − (T II + (b2 + r2 · (T I + b1 /RI ))/RII )]+

(12)

The second option requires that the service curves of link I and II are convoluted prior to subtraction of the flow 2 arrival curve [19]. The concatenation yields a service curve of the rate-latency type with a rate of min[RI , RII ] and a latency of T I + T II . After subtracting the arrival curve of flow 2 from the concatenation of the service curves of link I, and II, (13) can be given for flow 1. β I,II (t) = (min[RI , RII ] − r2 ) · [t − (T I + T II + b2 / min[RI , RII ])]+

(13)

Obviously, the form in (13) offers a lower latency than the one in (12), which accounts for the burst size of the interfering flow 2 twice, once with the size b2 at link I, and then with b2 + r2 · (T I + b1 /RI ) at link II. The increase of the burst size of flow 2 at link II is due to the aggregate scheduling of flow 2 with flow 1 at link I. Thus, based on (12), and (13) a counterpart to the Pay Burst Only Once phenomenon has been shown for interfering flows in aggregate scheduling networks. However, most problems of interest cannot be solved as simple as the one in Figure 1. One such example is shown in Figure 2. Flow 2 is the flow of interest, for which the end-to-end service curve needs to be derived. Links I and II can

Extending the Network Calculus Pay Bursts Only Once Principle I

II

25

III

1 2 3

Fig. 2. Three Flows Share Three Consecutive Links

be concatenated after the arrival curve of flow 3 is subtracted from the service curve of link II. Then the arrival curve of flow 1 can be subtracted from the concatenation of the service curves of link I and II. Unfortunately the direct application of the Network Calculus terms given in Section 2 then requires that the arrival curve of flow 3 at link III is subtracted from the service curve of link III independently, which violates the extended Pay Bursts Only Once principle. An alternative derivation is possible, if the arrival curve of flow 1 is subtracted from the service curve of link II before links II and III are concatenated. Doing so does unfortunately encounter the same problem.

4

Closed Form Solution for Feed Forward Networks

Consider an end-to-end path of a flow of interest i in an arbitrary aggregate scheduling feed forward network with FIFO service curve elements. Further on, assume that a concatenation of consecutive links offers a FIFO characteristic, too. The path consists of n links that are indexed by j in ascending order from the source to the destination of the flow of interest i. These links are given in the set Ji . Further on, the links of the path of flow i are used in an aggregate manner by an additional number of flows m that are indexed by k. The paths of the flows k are given by the sets Jk . For each link j a set Kj is defined to hold all other flows k that traverse the link, not including flow i. Note that flows may exist that share a part of the path of the flow of interest i, then follow a different path, and afterwards again share a part of the path of flow i. These flows are split up in advance into as many individual flows as such multiplexing points exist. Thus, all resulting flows do have only one multiplexing point with flow i. In [13] the term Route Interference Number (RIN)  is defined to hold the quantity of such multiplexing points. Then, the set Ki = j∈Ji Kj is defined to hold all m flows that use thecomplete path or some part of the path of flow i. Further on, the set Ji,k = Ji Jk holds all links of a sub-path that are used by both flow i and a flow k. Based on these definitions, on the terms in (4), and on the rules for multiplexing, (14) can be given for time pairs tj+1 − tj ≥ 0 for all j ∈ Ji . The time indices are chosen here to match link indices, since arrival functions are observed at these time instances at the belonging links.    Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ β j (tj+1 − tj ) − (Fkj+1 (tj+1 ) − Fkj (tj )) (14) j∈Ji

k∈Ki j∈Ji,k

26

Markus Fidler

Now, the arrival functions of the interfering flows can be easily split up and subtracted from the relevant links. Like for the derivation of (10) in [13], FIFO conditions can be defined on a per-link basis. Doing so, pairs of arrival functions Fkj+1 (tj+1 ) − Fkj (tj ) can be replaced by their arrival curves αjk (tj+1 − tj − θj ) for tj+1 −tj > θj , with the arbitrary per link parameters θj ≥ 0. Nevertheless, doing so results in paying the bursts of all interfering flows at each link independently. However, FIFO conditions can in addition to per link be derived per subpath Ji,k . With j∈Ji,k (Fkj+1 (tj+1 ) − Fkj (tj )) = Fkjmax +1 (tjmax +1 ) − Fkjmin (tjmin ), whereby jmax = max[j ∈ Ji,k ], and jmin = min[j ∈ Ji,k ], (15) can be derived for tjmax +1 − tjmin > θk , based on (10).   j β j (tj+1 − tj ) − αkmin (tjmax +1 − tjmin − θk ) (15) Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ j∈Ji

k∈Ki

To motivate the step from (14) to (15), the FIFO conditions that are applied, are shown exemplarily for the small network in Figure 2. The derivation, is a direct application of the one given in [13] for the form in (10). Define an u1 , and u3 for flow 1, respective flow 3 according to (16), and (17). u1 = sup{v : F1I (v) + F2I (v) ≤ F1III (t3 ) + F2III (t3 )}

(16)

u3 = sup{v : F2II (v) + F3II (v) ≤ F2IV (t4 ) + F3IV (t4 )}

(17)

I I Now, from (16), and with u+ 1 = inf{v : v > u1 }, t1 ≤ u1 ≤ t3 , F1 (u1 ) + F2 (u1 ) ≤ III III I + I + III III F1 (t3 ) + F2 (t3 ), and F1 (u1 ) + F2 (u1 ) ≥ F1 (t3 ) + F2 (t3 ) can be given. Due to the per sub-path FIFO conditions, the above terms also hold for the III individual flows 1, and 2, for example F1I (u1 ) ≤ F1III (t3 ), and F1I (u+ 1 ) ≥ F1 (t3 ). Similar conditions can be derived for flows 2, and 3 from (17). The following term in (18) can be set up based on (4).

F2IV (t4 ) − F2I (t1 ) ≥ β III (t4 − t3 ) + β II (t3 − t2 ) + β I (t2 − t1 ) − (F3IV (t4 ) − F3II (t2 )) − (F1III (t3 ) − F1I (t1 ))

(18)

III II + IV With F1I (u+ 1 ) ≥ F1 (t3 ), and F3 (u3 ) ≥ F3 (t4 ), (19) can be derived.

F2IV (t4 ) − F2I (t1 ) ≥ β III (t4 − t3 ) + β II (t3 − t2 ) + β I (t2 − t1 ) II I + I − (F3II (u+ 3 ) − F3 (t2 )) − (F1 (u1 ) − F1 (t1 ))

(19)

Choose two arbitrary parameters θ1 ≥ 0, and θ3 ≥ 0. If u1 < t3 − θ1 , F1I (u+ 1) ≤ F1I (t3 − θ1 ) holds. Further on, t3 − t1 > θ1 can be given in this case, since u1 ≥ t1 . With a similar condition for flow 3, the form in (20) is derived. F2IV (t4 ) − F2I (t1 ) ≥ β III (t4 − t3 ) + β II (t3 − t2 ) + β I (t2 − t1 ) − α3 (t4 − t2 − θ3 ) − α1 (t3 − t1 − θ1 )

(20)

Else, for u1 ≥ t3 − θ1 , the FIFO condition F2III (t3 ) ≥ F2I (u1 ) is applied. Further on, the term F2III (t3 ) − F2I (t1 ) ≥ β I,II (t3 − t1 ) can be set up, with β I,II denoting

Extending the Network Calculus Pay Bursts Only Once Principle

27

the service curve for flow 2 that is offered by link I, and II. Substitution of t1 by u1 , yields F2III (t3 ) ≥ F2I (u1 ) + β I,II (t3 − u1 ). Hence, β I,II (t3 − t1 ) = 0 is a trivial service curve for u1 ≥ t3 − θ1 . Similar forms can be derived for u3 ≥ t4 − θ3 . In the following the form in (15) is solved for the simple case of rate-latency service curves, and leaky bucket constraint arrival curves. Proposition 1 (End-to-End Service Curve) i βR,T αr,b

 

 βi (t) = min Rj − rk · t − Tj − j∈Ji

k∈Kj

j∈Ji

k∈Ki

bjkmin

+

minj∈Ji,k [Rj ]

(21)

The form in (21) gives an intuitive result. The end-to-end service curve for flow i has a rate R, which is the minimum of the remaining rates at the traversed links, after subtracting the rates of interfering flows that share the individual links. The latency T is given as the sum of all latencies along the path, plus the burst size of interfering flows at their multiplexing points indicated by jmin , divided by the minimum rate along the common sub-path with the flow of interest i. Thus, bursts of interfering flows account only once with the maximal latency that can be evoked by such bursts along the shared sub-paths. Proof 1 In (22) the form in (15) is given for rate-latency service curves, and leaky bucket constraint arrival curves for tjmax +1 − tjmin > θk . 

Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ Rj · [tj+1 − tj − T j ]+ j∈Ji





bjkmin + rk · (tjmax +1 − tjmin − θk )

(22)

k∈Ki

Here, we apply a definition of the per flow θk by per link θj according to (23). Now the failure of any of the conditions tjmax +1 − tjmin > θk requires the failure of at least one of the conditions tj+1 − tj > θj for any j with jmax ≥ j ≥ jmin .  θk = θj (23) j∈Ji,k

Reformulation of (22) yields (24) for tj+1 − tj > θj , with j ∈ Ji,k . 

Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ Rj · [tj+1 − tj − T j ]+ j∈Ji





k∈Ki

bjkmin + rk ·



 (tj+1 − tj − θj )

(24)

j∈Ji,k

Next, the fact that (10) gives a service curve for any setting of the parameter θ with θ ≥ 0 is used. Thus, the per-flow θk can be set arbitrarily with θk ≥

28

Markus Fidler

0, whereas this condition can according to (23) be fulfilled by any θj ≥ 0. Hence, (24) gives a service curve for any θj ≥ 0. We define an initial setting of the parameters θj , for which an end-to-end service curve for flow i is derived for all tj+1 −tj > θj . Then, for the special cases in which tj+1 −tj > θj does not hold for one or several links j, θj is redefined. We show for these cases by means of the redefined θj that the end-to-end service curve that is derived before still holds true. Thus, we prove that this service curve is valid for all tj+1 − tj ≥ 0. The definition of different settings of the parameters θj is not generally allowed to derive a service curve. As already stated in Section 2, it cannot be concluded that for example inf θ βθ (t) is a service curve [13]. Nevertheless, there is a difference between doing so, and the derivation that is shown in the following. Here, a service curve βθj is derived for fixed θj for all tj+1 − tj > θj . This service curve is not modified later on, but only proven to hold for any tj+1 −tj ≥ 0 by applying different settings of the θj . The initially applied setting of the θj is given in (25). The θj are defined to be the latency of the scheduler on the outgoing link j plus the burst size of interfering flows k, if j is the multiplexing point of the flow k with flow i, divided by the minimum rate along the common sub-path of flow k and i.  bjkmin (25) θj = T j + minj  ∈Ji,k [Rj  ] j k∈K

|j=jmin

With (25) the term in (24) can be rewritten according to (26) for all tj+1 −tj > θj . Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ −





Rj · [tj+1 − tj − T j ]+



j∈Ji

bjkmin

 tj+1 − tj − T j − + rk ·

bjkmin  minj  ∈Ji,k

j k ∈K |j=jmin

j∈Ji,k

k∈Ki



 (26)

[Rj  ]

+ Some reordering, while up the subtrahends by adding [. . . ] conditions, scaling and a replacement of k∈Ki j∈Ji,k by j∈Ji k∈Kj yields (27).

Fin+1 (tn+1 ) − Fi1 (t1 ) ≥

    Rj − rk · [tj+1 − tj − T j ]+ k∈Kj

j∈Ji

 j  bkmin − rk · −

Fin+1 (tn+1 ) − Fi1 (t1 ) ≥  k∈Ki

j∈Ji,k

by





j∈Ji

 (27)

j

minj  ∈Ji,k [R ]

k∈Kj ,

(28) can be derived.

    Rj − rk · [tj+1 − tj − T j ]+ j∈Ji





k∈Ki

bjkmin 

j∈Ji,k k ∈Kj|j=jmin

k∈Ki

With the replacement of



bjkmin +

k∈Kj

  j∈Ji k∈Kj

rk ·

 j k ∈K |j=jmin

bjkmin 

minj  ∈Ji,k [Rj  ]

 (28)

Extending the Network Calculus Pay Bursts Only Once Principle

Further on

k∈Ki

bjkmin =

Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ −







j∈Ji

j|j=j min

k ∈K

29

bjkmin yields (29). 

    rk · [tj+1 − tj − T j ]+ Rj − k∈Kj

j∈Ji





bjkmin − 

j∈Ji k ∈Kj|j=j

min

rk ·

k∈Kj



bjkmin 

 (29)

j

minj  ∈Ji,k [R ]

j|j=j min

k ∈K

Applying the common denominator, while scaling up the subtrahend, and with  j ∈ Ji,k and thereby Rj ≥ minj  ∈Ji,k [Rj ] with k  ∈ Kj , (30) can be derived. Fin+1 (tn+1 ) − Fi1 (t1 ) ≥

    Rj − rk · [tj+1 − tj − T j ]+ j∈Ji

k∈Kj

    Rj − − rk · k∈Kj

j∈Ji



bjkmin 

j k ∈K |j=jmin



minj  ∈Ji,k [Rj  ]

(30)

Then, (30) can be reformulated according to (31), still for tj+1 − tj > θj .    Fin+1 (tn+1 ) − Fi1 (t1 ) ≥ Rj − rk j∈Ji

k∈Kj

 · [tj+1 − tj − T j ]+ −

 j k ∈K |j=jmin

bjkmin  minj  ∈Ji,k

 [Rj  ]

(31)

The inf (tj+1 −tj >θj )|j∈Ji of (31) can be derived to be the form that is given in (21). Thus, the service curve in (21) is approved for all tj+1 − tj > θj with the parameter settings of θj according to (25). Now, if some of the conditions tj+1 − tj > θj fail, the θj that are given in (25) can be redefined according to (32), based on the arbitrary parameters δkj ≥ 0 with j∈Ji,k δkj = 1.  δkj · bjkmin θj = T j + (32) minj  ∈Ji,k [Rj  ] k∈Kj

bjkmin

The burst size of interfering flows is arbitrarily accounted for by θj in (25), whereas, if an interfering flow k traverses more than one link, the burst size bjkmin could be part of any θj , with j ∈ Ji,k . For such redefined θj , it can be shown that the same derivation as above holds, resulting in (33). Again, applying the inf (tj+1 −tj >θj )|j∈Ji leads to the same form (21), as shown for (31) before. Fin+1 (tn+1 ) − Fi1 (t1 ) ≥

   rk Rj − j∈Ji

k∈Kj

  · [tj+1 − tj − T j ]+ −

 δkj  · bjkmin  (33)  minj  ∈Ji,k [Rj ]

k ∈Kj

30

Markus Fidler

However, there can be pairs of tj+1 − tj ≥ 0, for which no setting of the parameters δkj according to (32) allows a redefinition of θj , for which tj+1 − tj > θj for all j ∈ Ji can be achieved. A condition tj+1 − tj > θj can fail for δkj = 0 for all k ∈ Kj , if tj+1 − tj ≤ T j , without violating any of the per-flow conditions tjmax +1 − tjmin > θk . In this case the terms that are related to link j in (33) are nullified immediately by the [. . . ]+ condition. Nevertheless, if some of the per flow conditions tjmax +1 − tjmin > θk  are violated for a number of flows k ∈ Li , the service curves of the sub-paths k∈Li Ji,k have according to the derivation of (10) to be set to zero. However, setting the service curves of sub-paths to zero is the same as setting the service curves of all links along these paths to zero. Regarding (33), it can be seen that any links for which the service curve is set to zero possibly increase the resulting rate of the service curve, compared to (21), whereas the resulting maximum latency is not influenced. This holds true for any θj according to (32), respective for any δkj with j∈Ji,k δkj = 1. Thus, also the case  of δkj = 0 for all k ∈ Ki \{Li }, and j ∈ k∈Li Ji,k is covered. The latter setting ensures that bursts of flows that share part of the sub-paths that are set to zero, but that also traverse further links, are accounted for at these links. Then by scaling down the term minj∈Ji \{Ji,k|k∈L } [Rj − k∈Kj rk ] to minj∈Ji [Rj − k∈Kj rk ], (21) i

is also a service curve for cases in which tj+1 − tj ≤ θj , and finally holds for any  tj+1 − tj ≥ 0 with j ∈ Ji . Finally, (34) gives a tight end-to-end service curve for flow 2 in Figure 2. As intended, the bursts of the interfering flows 1, and 3 are accounted for only once, with their initial burst size at the multiplexing, or route interference point. β2 (t) = min[RI − r1 , RII − r1 − r3 , RIII − r3 ] +

b3 b1 − · t − T I − T II − T III − I II II III min[R , R ] min[R , R ]

5

(34)

Numerical Results

In this section we give numerical results on the derivation of edge-to-edge delay bounds in a DS domain, which can be efficiently applied for the definition of socalled Per Domain Behaviors (PDBs) [14]. We compare the options of applying either the Extended Pay Burst Only Once principle, the Pay Bursts Only Once principle, or none of the two principles. We implemented an admission control for an application as a BB in a DS domain. The BB currently knows about the topology of its domain statically, whereas a routing protocol listener can be added. Requests for Premium capacity are sent via socket communication to the BB. The requests consist of a start, and an end time to allow for both immediate, and advance reservation, a Committed Information Rate (CIR), a Committed Burst Size (CBS), and a target maximum delay. Whenever the BB receives a new request, it computes the edge-to-edge delay for all requests that are active during the period of time of the new request, as described in Section 2. If none of the target maximum per-flow delays is violated, the new request is accepted, which otherwise is rejected.

Extending the Network Calculus Pay Bursts Only Once Principle

31

For performance evaluation we implemented a simulator that generates such Premium resource requests. Sources and sinks are chosen uniformly from a predefined set. Start, and end times are modelled as negative exponentially distributed with a mean λ, respective μ, that is a mean of ρ = μ/λ requests are active concurrently. This modelling has been found to be appropriate for user sessions, for example File Transfer Protocol (FTP) sessions in [18]. The target delay, CIR, and CBS are used as uniformly distributed parameters for the simulations. The topology that is used is shown in Figure 3. It consists of the level one, and level two nodes of the German Research Network (DFN) [1]. The level one nodes are core nodes. End systems are connected to the level two nodes that are edge nodes. In detail, we connect up to five sources and sinks to each of the level two nodes. Links are either Synchronous Transfer Mode (STM) 4, STM 16, or STM 64 connections. The link transmission delay is assumed to be 2 ms. Shortest Path First (SPF) routing is applied to minimize the number of hops along the paths. Further on, Turn Prohibition (TP) [21] is used, to ensure the required feed forward property of the network. Figure 3 shows how loops are broken within the level one mesh of the DFN topology by the TP algorithm. The nodes have been processed by TP in the order of their numbering. For example the turn (8; 7; 9) that is the turn from node 8 via node 7 to node 9 is prohibited, whereas for instance the turn (8; 7; 6), or simply the use of the link (8; 7) is permitted. For the DFN topology the SPF TP algorithm does only increase the length of one of the paths by one hop compared to SPF routing. Further on, the TP algorithm can be configured to prohibit turns that include links with a comparably low capacity with priority [21], as is shown in Figure 3, and applied by our BB. The Premium service is implemented based on PQ. Thus, service curves are of the rate-latency type with a latency set to the time it takes to transmit 3 MTU of 9.6 kB, to account for non-preemptive scheduling, due to packetization, and a router internal buffer for 2 Jumbo frames [20]. The performance measure that we apply is the ratio of accepted requests divided by the overall number of requests, and as an alternative the distribution of the derived delay bounds. Simulations have been run, until the 0.95 confidence interval of the acceptance ratio was smaller than 0.01. Initial-data deletion [11] has been applied to capture only the steady-state behavior, and the replication and deletion approach for means, that is for example shown in [11], was used. The results are given for different settings of the requested maximum delay, CBS, and CIR, and for a varying load ρ = μ/λ in Figure 4, and 5. In addition Figure 6 shows the fraction of flows for which a delay bound that is smaller than the delay given on the abscissa was derived. As one of our main results we find a significant performance gain, when accounting for the Extended Pay Bursts Only Once phenomenon. The Pay Bursts Only Once principle alone allows to derive noticeable tighter delay bounds, based on edge-to-edge service curves, compared to an incremental delay computation, as described already in Section 2. The advantage can further on be seen in terms of the acceptance ratio in Figure 4, and 5, whereas the importance of the Pay Bursts Only Once phenomenon increases, if a larger CBS is used. In addition

32

Markus Fidler

7

7

5

6

5 6

0 9

0

8

9

4 4

8

3

2

2 1 3

1 Level 1 Prohibited Turns:

Level 1 Site STM 64 Connection STM 16 Connection STM 4 Connection

Level 2 Site 2 STM 16 Connections 2 STM 4 Connections

not on any shortest path alternative path with the same length exists prohibits a shortest path

Fig. 3. DFN Topology and Example Level 1 Prohibited Turns

the Extended Pay Bursts Only Once principle is of major relevance, if the load on the network is high, and if large bursts are permitted. In case of a high load, flows are likely to share common sub-paths, and the interference of such flows with each other is much more accurately described by the Extended Pay Bursts Only Once principle. Thus, the form presented in (21), allows to derive tighter delay bounds, and thus to increase the acceptance ratio. In particular, as Figure 6 shows, the delay bound for the 99-percentile of the flows is reduced from above 112 ms to 81 ms in case of the Pay Bursts Only Once principle, and than to 59 ms in case of the extended principle for aggregate scheduling. For the 95-percentile, 85 ms, 63 ms, and 49 ms can be given. Further on, the load, up to which an acceptance ratio of for example 0.95 can be achieved, can be multiplied, when accounting for the Extended Pay Bursts Only Once phenomenon.

6

Conclusions

In this paper we have shown that a counterpart to the Pay Bursts Only Once phenomenon exists for interfering flows in aggregate scheduling networks. We then have derived a closed form solution for the end-to-end per-flow service curve in arbitrary feed forward aggregate scheduling networks, where links are of the rate-latency type, and flows are sigma-rho leaky bucket constraint. Our solution accounts for the known Pay Bursts Only Once principle, and extends it to aggregate scheduling in that bursts of interfering flows are paid only once, too. Thus, our form allows to give significantly closer bounds on the delay, while the intuitive form reduces computational complexity, if for example applied as a decision criterion for a Differentiated Services admission control in a Bandwidth Broker. A significant performance gain has been shown by simulation results.

Extending the Network Calculus Pay Bursts Only Once Principle 1

0,9

0,8

0,7

0,6

0,5

0,4

0,3 CIR = uniform random[10...80] Mb/s CBS = uniform random[1...8] Mb delay = uniform random[40...80] ms

0,2

Extended Pay Bursts Only Once Principle Pay Bursts Only Once Principle Incremental Delay Computation

0,1

0 0

10

20

30

40

50 Offered Load

60

70

80

90

100

9

10

Fig. 4. Acceptance Ratio versus Load 1

0,9

0,8

0,7

0,6

0,5

0,4

0,3 CIR = uniform random[10...80] Mb/s delay = uniform random[40...80] ms load = 50

0,2

Extended Pay Bursts Only Once Principle Pay Bursts Only Once Principle Incremental Delay Computation

0,1

0 0

1

2

3

4 5 6 Committed Burst Size (Mb)

7

8

Fig. 5. Acceptance Ratio versus Committed Burst Size 1

0,9

0,8

0,7

0,6

0,5

0,4

0,3 CIR = uniform random[10...80] Mb/s CBS = uniform random[1...8] Mb load = 50

0,2

Extended Pay Bursts Only Once Principle Pay Bursts Only Once Principle Incremental Delay Computation

0,1

0 0

20

40

60 Delay (ms)

80

100

Fig. 6. Fraction of Flows with a smaller Delay Bound

120

33

34

Markus Fidler

Acknowledgements This work was supported by the German Research Community (DFG) under grant graduate school (GRK) 643 ”Software for Communication Systems”.

References 1. Adler, H.-M., 10 Gigabit/s Plattform f¨ ur das G-WiN betriebsbereit, DFN Mitteilungen, Heft 60, November 2002. 2. Blake, S., et al., An Architecture for Differentiated Services RFC 2475, 1998. 3. Chang, C.-S., Performance Guarantees in Communication Networks, Springer, TNCS, 2000. 4. Charny, A., and Le Boudec, J.-Y., Delay Bounds in a Network with Aggregate Scheduling, Springer, LNCS 1922, Proceedings of QofIS, 2000. 5. Charny, A., et al., Supplemental Information for the New Definition of EF PHB (Expedited Forwarding Per-Hop-Behavior) RFC 3247, 2002. 6. Cruz, R. L., A Calculus for Network Delay, Part I: Network Elements in Isolation, IEEE Transactions on Information Theory, vol. 37, no. 1, pp 114-131, 1991. 7. Cruz, R. L., A Calculus for Network Delay, Part II: Network Analysis, IEEE Transactions on Information Theory, vol. 37, no. 1, pp 132-141, 1991. 8. Cruz, R. L., SCED+: Efficient Management of Quality of Service Guarantees, IEEE Infocom, 1998. 9. Davie, B., et al., An Expedited Forwarding PHB RFC 3246, 2002. 10. Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L., End-to-End Quality of Service for High-End Applications Elsevier Computer Communications Journal, in press, 2003. 11. Law, A. M., and Kelton, W. D., Simulation, Modeling, and Analysis McGraw-Hill, 3rd edition, 2000. 12. Le Boudec, J.-Y., and Thiran, P., Network Calculus Made Easy, Technical Report EPFL-DI 96/218. Ecole Polytechnique Federale, Lausanne (EPFL), 1996. 13. Le Boudec, J.-Y., and Thiran, P., Network Calculus A Theory of Deterministic Queuing Systems for the Internet, Springer, LNCS 2050, Version July 6, 2002. 14. Nichols, K., and Carpenter, B., Definition of Differentiated Services Per Domain Behaviors and Rules for their Specification, RFC 3086, 2001. 15. Nichols, K., Jacobson, V., and Zhang, L., A Two-bit Differentiated Services Architecture for the Internet, RFC 2638, 1999. 16. Pareck, A. K., and Gallager, R. G., A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case, IEEE/ACM Transactions on Networking, vol. 1, no. 3, pp. 344-357, 1993. 17. Pareck, A. K., and Gallager, R. G., A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Multiple-Node Case, IEEE/ACM Transactions on Networking, vol. 2, no. 2, pp. 137-150, 1994. 18. Paxson, V., and Floyd, S., Wide Area Traffic: The Failure of Poisson Modeling IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226-244, 1995. 19. Sander, V., Design and Evaluation of a Bandwidth Broker that Provides Network Quality of Service for Grid Applications, Ph.D. Thesis, Aachen University, 2002. 20. Sander, V., and Fidler, M., Evaluation of a Differentiated Services based Implementation of a Premium and an Olympic Service, Springer, LNCS 2511, Proceedings of QofIS, 2002. 21. Starobinski, D., Karpovsky, M., and Zakrevski, L., Application of Network Calculus to General Topologies using Turn-Prohibition, Proceedings of IEEE Infocom, 2002.

Mod elli n g th e Ar r i v a l P r oces s f or P a ck et Au d i o In g e m a r K a j1a n d Ia n M a rs h 1

2

D e p t . o f M a t h e m a t i c s , U p p s a l a U n i v e r s i t y , Sw e d e n i k a j @ m a th.u u .s e 2 I a n M a r s h , C N A L a b , SI C S, Sw e d e n i a n m @ s i cs .s e

Ab s tr a ct. P a c k e t s i n a n a u d i o s t r e a m c a n b e d i s t o r t e d r e l a t i v e t o o n e a n o t h e r d u rin g th e tra v e rs a l o f a p a c k e t s w itc h e d n e tw o rk . T h is d is to rtio n c a n b e m a in ly a ttrib u te d to q u e u e s in ro u te rs b e tw e e n th e s o u rc e a n d th e d e s tin a tio n . T h e q u e u e s c a n c o n s is t o f p a c k e ts e ith e r fro m o u r o w n fl o w , o r fro m o th e r fl o w s . T h e c o n trib u tio n o f th is w o rk is a M a rk o v m o d e l fo r th e tim e d e la y v a ria tio n o f p a c k e t a u d i o i n t h i s s c e n a r i o . O u r m o d e l i s e xt e n s i b l e , a n d s h o w t h i s b y i n c l u d i n g s e n d e r s ile n c e s u p p re s s io n a n d p a c k e t lo s s in to th e m o d e l. B y c o m p a rin g th e m o d e l to w id e a r e a tr a ffi c tr a c e s w e s h o w th e p o s s ib ility to g e n e r a te a n a u d io a r r iv a l p r o c e s s s im ila r to th o s e c re a te d b y re a l c o n d itio n s . T h is is d o n e b y c o m p a rin g th e p ro b a b ility d e n s ity fu n c tio n s o f o u r m o d e l to th e re a l c a p tu re d d a ta .

1

K ey w or d s : P a c k e t d e l a y , V o I P , M a r k o v c h a i n , St e a d y s t a t e

I n tr od u cti on M o d e llin g th e a r r iv a l p r o c e s s f o r a u d io p a c k e ts th a t h a v e p a s s e d th r o u g h a s e r ie s o f ro u te rs is th e p ro b le m w e w ill a d d re s s . F ig u re 1illu s tra te s th is s itu a tio n : P a c k e ts c o n ta in in g a u d io s a m p le s a re s e n t a t a c o n s ta n t ra te fro m a s e n d e r, s h o w n in s te p o n e . T h e

Se n d e r

R e c e iv e r 3 . J itte r b u ffe r

1. O r i g i n a l s p a c in g c ro s s tra ffic

R o u te r

R o u te r

2. D i s t o r t a t i o n d u e t o q u e u e i n g F ig . 1 . T h e n e tw o rk s e ffe c t o n p a c k e t a u d io s p a c in g

M . A j m o n e M a r s a n e t a l . (E d s . ): Q o S-I P 20 0 3 , L N C S 26 0 1, p p . 3 5 – 4 9 , 20 0 3 . c Sp r i n g e r -V e r l a g B e r l i n H e i d e l b e r g 20 0 3 

4 . R e s to re d s p a c in g

3 6

In g e m a r K a j a n d Ia n M a rsh

s p a c in g b e tw e e n p a c k e ts is c o m p r e s s e d a n d e lo n g a te d r e la tiv e to e a c h o th e r. T h is is d u e t o t h e b u f f e r i n g i n i n t e r m e d i a t e r o u t e r s a n d m i xi n g w i t h c r o s s -t r a f fi c , s h o w n i n s t e p tw o . In o rd e r to re p la y th e p a c k e ts w ith th e ir o rig in a l s p a c in g , a b u ffe r is in tro d u c e d a t th e r e c e iv e r, c o m m o n ly r e f e r r e d to a s a jitte r b u ff e r s h o w n in s te p th r e e . T h e o b je c tiv e o f t h e b u f f e r i s t o a b s o r b t h e v a r i a n c e i n t h e i n t e r -p a c k e t s p a c i n g i n t r o d u c e d b y t h e d e l a y s d u e t o c r o s s t r a f fi c , a n d (p o t e n t i a l l y ) i t s o w n d a t a . I n s t e p f o u r , u s i n g i n f o r m a t i o n c o d e d in to th e h e a d e r o f e a c h p a c k e t, th e p a c k e ts a re re p la y e d w ith th e ir o rig in a l tim in g re s to re d . T h e m o tiv a tio n f o r th is w o r k d e r iv e s f r o m th e in a b ility o f u s in g k n o w n a r r iv a l p r o c e s s e s t o a p p r o xi m a t e t h e p a c k e t a r r i v a l p r o c e s s a t t h e r e c e i v e r . U s i n g a k n o w n a r r i v a l p r o c e s s , e v e n a c o m p l e xo n e , i s n o t a lw a y s r e a l i s t i c a s t h e m o d e l d o e s n o t i n c l u d e c h a r a c t e r i s t i c s t h a t r e a l a u d i o s t r e a m s e xp e r i e n c e . F o r e xa m p l e t h e u s e o f s i l e n c e s u p p r e s s i o n o r t h e d e l a y /j i t t e r c o n t r i b u t i o n o f c r o s s t r a f fi c . O n e a l t e r n a t i v e i s t o u s e r e a l t r a f fi c tr a c e s . A lth o u g h th e y p r o d u c e a c c u r a te a n d r e p r e s e n ta tiv e a r r iv a l p r o c e s s e s , th e y a r e i n h e r e n t l y s t a t i c a n d d o n o t o f f e r m u c h i n t h e w a y o f fl e xi b i l i t y . F o r e xa m p l e , o b s e r v i n g t h e a f f e c t o f d i f f e r e n t p a c k e t s i z e s w i t h o u t r e -r u n n i n g t h e e xp e r i m e n t s . W h e n t e s t i n g t h e p e r f o r m a n c e o f j i t t e r b u f f e r p l a y o u t a l g o r i t h m s , f o r e xa m p l e , t h i s i n fl e xi b i l i t y i s u n d e s ira b le . T h u s , a n im p o rta n t c o n trib u tio n o f th is p a p e r is to a d d re s s th e d e fi c ie n c ie s o f th e s e a p p ro a c h e s b y c o m b in in g th e a d v a n ta g e s o f b o th a m o d e l o f th e p ro c e s s , w ith d a ta fro m re a l tra c e s . T h is p a p e r p r e s e n ts in a d e s c r ip tiv e m a n n e r, a p a c k e t d e la y m o d e l, b a s e d o n th e m a in a s s u m p tio n th a t p a c k e ts a re s u b je c te d to in d e p e n d e n t tra n s m is s io n d e la y s . It is in te n d e d th a t re a d e rs n o t c o m p le te ly fa m ilia r w ith M a rk o v ia n th e o ry c a n fo llo w th e d e s c rip tio n . W e a s s u m e n o p rio r k n o w le d g e o f th e m o d e l a s it is b u ilt fro m fi rs t p rin c ip le s s ta rtin g in s e c t i o n 2. W e g i v e r e s u l t s f o r t h e m e a n a r r i v a l a n d i n t e r a r r i v a l t i m e s o f a u d i o p a c k e t s i n th is s e c tio n . W e a d d s ile n c e s u p p re s s io n to th e m o d e l in s e c tio n 3 a n d p a c k e t lo s s in th e n e xt s e c t i o n , 4 . R e a l d a t a i s i n c o r p o r a t e d i n s e c t i o n 5 , r e l a t e d w o r k f o l l o w s i n s e c t i o n 6 a n d w e c u s to m a rily ro u n d o ff w ith s o m e c o n c lu s io n s in s e c tio n 7 .

2

T h e P a ck et D ela y Mod el T h e re a re tw o c a u s e s o f d e la y fo r p a c k e t a u d io s tre a m s . F irs tly , th e d e la y c a u s e d b y o u r o w n tr a ffi c , i.e . p a c k e ts q u e u e d u p b e h in d o n e s f r o m th e s a m e fl o w , th is w e r e f e r t o a s t h e s e q u e n t i a l d e l a y . Se c o n d l y , t h e d e l a y c o n t r i b u t e d b y c r o s s t r a f fi c , u s u a l l y T C P W e b tra ffi c , w h ic h w e c a ll tra n s m is s io n d e la y in th is p a p e r. It is im p o rta n t to s ta te w e c o n s id e r th e s e tw o d e la y s a s s e p a ra te , b u t s tu d y th e ir c o m b in e d in te ra c tio n o n th e o b s e r v e d d e la y s a n d in te r a r r iv a ls . P r o p a g a tio n a n d s c h e d u lin g d e la y a r e n o t m o d e lle d a s p a rt o f th is w o rk . I n t h i s m o d e l p a c k e t s a r e t r a n s m i t t e d p e r i o d i c a l l y u s i n g a p a c k e t i s a t i o n t i m e o f 20 m illis e c o n d s . F o r c o n v e n ie n c e , th e p a c k e tis a tio n in te rv a l is u s e d a s th e tim e u n it fo r th e m o d e l . Sa y i n g t h a t a p a c k e t i s s e n t a t t i m e k s i g n i fi e s t h a t t h i s p a r t i c u l a r p a c k e t i s s e n t a t c l o c k t i m e 20k m s i n t o t h e d a t a s t r e a m . T h e fi r s t p a c k e t i s s e n t a t t i m e 0. W e b e g i n w i t h t h e t r a n s m i s s i o n d e l a y o f a p a c k e t . Su p p o s e t h a t p a c k e t k c o u l d b e s e n t is o la te d fro m th e re s t o f th e a u d io s tre a m a n d le t Yk = t r a n s m i s s i o n d e l a y o f p a c k e t k (n o . o f 20 m s p e r i o d s ).

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

3 7

T o s e e th e im p a c t o f th e s e q u e n tia l d e la y , le t k ≥ 1.

Tk = t h e a r r i v a l t i m e o f p a c k e t k a t t h e j i t t e r b u f f e r ,

T h e m o d e l u s e d i n t h i s p a p e r i s s h o w n i n F i g u r e 2. T h e fi g u r e s h o w s p a c k e t s b e i n g t r a n s -

0

k + 1 k

k − 1

Se n d e r

T im e T ra n s m itte d P a c k e ts

R e c e iv e d P a c k e ts Tk R e c e iv e r

V k

T k + 1 U k

F i g . 2 . Tk a r r i v a l t i m e s b e f o r e p l a y o u t , Vk o b s e r v e d d e l a y s , Uk o b s e r v e d i n t e r a r r i v a l tim e s m th fe w

itte e ir re n e d

d fro m a s e n d e r a t re g u la r in te rv a ls . T h e y tra v e rs e th e n e tw o rk , w h e re a s s ta te d , o r i g i n a l s p a c i n g i s d i s t o r t e d . P a c k e t k a r r i v e s a t t i m e Tk a t t h e r e c e i v e r . T h e d i f c e in tim e b e tw e e n w h e n it d e p a r te d a n d a r r iv e d w e c a ll th e o b s e r v e d d e la y , w h ic h e n o te Vk = a r r i v a l t i m e − d e p a r t u r e t i m e = Tk − k + 1 k ≥ 1.

T h e t i m e w h e n t h e n e xt p a c k e t (n u m b e r e d k + 1) a r r i v e s i s Tk+1 a n d s o t h e o b s e r v e d i n t e r a r r i v a l t i m e s a r e o b t a i n e d a s t h e d i f f e r e n c e s b e t w e e n Tk+1 a n d Tk , d e n o t e d Uk = Tk+1 − Tk . A p a c k e t k, s e n t a t t i m e k−1, r e q u i r e s t i m e Yk t o p r o p a g a t e t h a r r i v e s t h e r e f o r e a t Tk = k − 1 + Yk , a s l o n g a s i t i s n o t d e l a y e d p a c k e t s (w h i c h w e c a l l s e q u e n t i a l d e l a y s ). I t m a y h o w e v e r c a t c t r a n s m i t t e d e a r l i e r (1 → k − 1). T h i s p a c k e t i s f o r c e d t o w a i t b e f p la y o u t b u ff e r. T h is s h o w s th a t th e a c tu a l a r r iv a l tim e s s a tis f y : T1 = Y1 Tk = max(Tk−1 , k − 1 + Yk ),

ro u g h th e n fu rth e r b y h u p to a u o re b e in g s

k ≥ 2.

e tw o o th e r d io p to re d

rk a n d a u d io a c k e ts in th e

(1)

Si n c e Tk−1 a n d Yk a r e i n d e p e n d e n t , w e c o n c l u d e f r o m t h e r e l a t i o n a b o v e (1) t h a t Tk f o r m s a t r a n s i e n t M a r k o v c h a i n . M o r e o v e r , t h e i n t e r a r r i v a l t i m e s s a t i s f y Uk = Tk − Tk−1 = max(0, k − 1 + Yk − Tk−1 ) k ≥ 2.

(2)

3 8

In g e m a r K a j a n d Ia n M a rsh

T h e a r r i v a l t i m e s (Tk ), i n t e r a r r i v a l t i m e s (Uk ) a n d o b s e r v e d d e l a y s (Vk ) c a n b e e a s i l y o b s e r v e d f r o m t r a f fi c t r a c e s . A s a n e xa m p l e , F i g u r e 3 s h o w s t h e h i s t o g r a m f o r a n 2 5 0

2 0 0

fre q u e n c y

1 5 0

1 0 0

5 0

0 0

2 0

4 0

F ig . 3 . H is to g ra m

6 0 in te r a r r iv a l tim e s , m s

8 0

1 0 0

1 2 0

o f t h e i n t e r a r r i v a l t i m e s (Uk )

e m p ir ic a l s e q u e n c e o f in te r a r r iv a l tim e s . T h e d a ta is f r o m a r e c o r d in g o f a V o ic e o v e r I P s e s s i o n b e t w e e n A r g e n t i n a a n d Sw e d e n , m o r e d e t a i l s o f t h e t r a f fi c t r a c e s a r e g i v e n i n s e c t i o n 5 . 1. T h e t r a n s m i s s i o n d e l a y s e q u e n c e (Yk ) s h o u l d b e o n t h e o t h e r h a n d c o n s i d e r e d a s n o n -o b s e r v a b l e . T h e a p p r o a c h i n t h i s s t u d y i s t o c o n s i d e r (Yk ) h a v i n g a g e n e r a l (u n k n o w n ) d i s t r i b u t i o n a n d i n v e s t i g a t e t h e r e s u l t i n g p r o p e r t i e s o f t h e o b s e r v e d d e l a y (Vk ) a n d i n t e r a r r i v a l t i m e s (Uk ). Si n c e t h e l a t t e r s e q u e n c e s c a n b e e m p i r i c a l l y o b s e rv e d , th is le a d s to th e q u e s tio n to w h e th e r th e tra n s m is s io n d e la y d is trib u tio n c a n b e re c o n s tru c te d u s in g s ta tis tic a l in fe re n c e . In th is d ire c tio n w e w ill in d ic a te s o m e m e th o d s th a t c o u ld b e u s e d to c o m p a re th e th e o re tic a l re s u lts w ith th e g a th e re d e m p iric a l d a ta . T o c a r r y o u t t h e s t u d y , w e a s s u m e f r o m t h i s p o i n t t h e s e q u e n c e (Yk ) i s i n d e p e n d e n t a n d id e n tic a lly d is trib u te d , w ith d is trib u tio n fu n c tio n

a n d fi n ite s tu d y , ty p ju s tifi e d f to a llo w d 2 .1

m e a n ic a l v o r th e e p e n d

F (x) = P (Yk ≤ x), k ≥ 1, ∞ t r a n s m i s s i o n d e l a y ν = 0 (1 − F (x)) dx < ∞. F o r t h e d a t a i n o u r a l u e s o f ν a r e 20 -4 0 , i . e . 4 0 0 -8 0 0 m s . W e c o n s i d e r t h e s e a s s u m p t i o n s p u rp o s e o f s tu d y in g a re fe re n c e m o d e l, o b v io u s ly it w o u ld b e d e s ira b le e n c e o v e r tim e .

Mea n Ar r i v a l a n d I n ter a r r i v a l T i m es

I t i s i n t u i t i v e l y c l e a r t h a t i n t h e l o n g r u n E(Uk ) ≈ 1 a s o n a v e r a g e p a c k e t s a r r i v e w i t h 20 m s s p a c i n g , w h i c h w e w i l l n o w v e r i f y f o r t h e m o d e l . T h e r e p r e s e n t a t i o n (1) f o r Tk c a n b e w ritte n

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

3 9

Tk = max(Y1 , 1 + Y2 , . . . , k − 1 + Yk ) k ≥ 1, w h ic h g iv e s th e a lte r n a tiv e r e p r e s e n ta tio n  ), Tk = max(Y1 , 1 + Tk−1

k≥2

(3 )

w h e re o n th e rig h t s id e  = max(Y2 , 1 + Y3 , . . . , k − 2 + Yk ) Tk−1

h a s t h e s a m e m a r g i n a l d i s t r i b u t i o n a s Tk−1 b u t i s i n d e p e n d e n t o f Y1 . F r o m t h a t w e c a n w r i t e {Tk > t} a s a u n i o n o f t w o d i s j o i n t e v e n t s , a s

(3 ) f o l l o w s

  > t} ∪ {Y1 > t, 1 + Tk−1 ≤ t}. {Tk > t} = {1 + Tk−1  H e n c e , u s i n g t h e i n d e p e n d e n c e o f Tk−1 a n d Y1 ,   > t) + P (Y1 > t, 1 + Tk−1 ≤ t) P (Tk > t) = P (1 + Tk−1 = P (1 + Tk−1 > t) + P (Y1 > t)P (1 + Tk−1 ≤ t)

a n d so





E(Tk ) =

P (Tk > t) dt  ∞ P (Y1 > t)P (Tk−1 ≤ t − 1) dt. = E(1 + Tk−1 ) + 0

(4 )

1

T h e re fo re

 E(Uk ) = 1 +



P (Y1 > t)P (Tk−1 ≤ t − 1) dt → 1,

k→∞

(5 )

1

∞ (s i n c e ν = 0 P (Y1 > t) dt < ∞ a n d Tk → ∞, t h e d o m i n a t e d c o n v e r g e n c e t h e o r e m a p p l i e s f o r c i n g t h e i n t e g r a l t o v a n i s h i n t h e l i m i t ). A f u r t h e r c o n s e q u e n c e o f (4 ) i s o b t a i n e d b y i t e r a t i o n ,  ∞ k−1  E(Tk ) = k − 1 + E(Y1 ) + P (Y1 > t) P (Ti ≤ t − 1) dt. 1

i=1

If w e in tro d u c e N (t) = t h e n u m b e r o f a r r i v i n g p a c k e t s i n t h e t i m e i n t e r v a l (0, t], s o t h a t {N (t) ≥ n} = {Tn ≤ t}, t h i s c a n b e w r i t t e n 



E(Vk ) = E(Y1 ) +

P (Y1 > t) 1

k−1 

P (N (t − 1) ≥ i) dt,

(6 )

i=1

w h i c h , a s k → ∞, g i v e s a n a s y m p t o t i c r e p r e s e n t a t i o n f o r t h e a v e r a g e o b s e r v e d d e l a y a s  ∞ E(Vk ) → ν + P (Y1 > t)E(N (t − 1))) dt. (7 ) 1

4 0

2 .2

In g e m a r K a j a n d Ia n M a rsh

S tea d y S ta te D i s tr i b u ti on s

B y (1), P (Tk ≤ x) =

k 

P (i + Yi ≤ x + 1) =

i=1

k−1 

F (x − i),

i=0

a n d t h e r e f o r e t h e s e q u e n c e (Vk ), w h i c h w e d e fi n e d b y Vk = Tk − k + 1, k ≥ 1, s a t i s fi e s P (Vk ≤ x) =

k−1 

F (x + k − 1 − i) =

i=0

k−1 

F (x + i) x ≥ 0.

i=0

T h i s s h o w s t h a t (Vk ) i s a M a r k o v c h a i n w i t h s t a t e s p a c e t h e p o s i t i v e r e a l l i n e a n d a s y m p to tic d is tr ib u tio n g iv e n b y P (V∞ ≤ x) =

∞ 

F (x + i) x ≥ 0.

(8 )

i=0

F u rth e rm o re , fo r x≥0 P (Uk ≥ x) = P (k − 1 + Yk − Tk−1 ≥ x) = P (Vk−1 ≤ Yk + 1 − x)  ∞ = P (Vk−1 ≤ y + 1 − x) dF (y), 0

w h e r e i n t h e s t e p o f c o n d i t i o n i n g o v e r Yk w e u s e t h e i n d e p e n d e n c e o f Yk a n d Vk−1 . T h e r e f o r e t h e s e q u e n c e (Uk ) h a s t h e a s y m p t o t i c d i s t r i b u t i o n  ∞ ∞ P (U∞ ≤ x) = 1 − F (y − x + i) dF (y) x ≥ 0, (9 ) 0

i=1

in p a rtic u la r a p o in t m a s s in z e ro o f s iz e  P (U∞ = 0) = 1 − 0

∞ ∞

F (y + i) dF (y).

(10 )

i=1

T h i s d i s t r i b u t i o n h a s t h e p r o p e r t y t h a t E(U∞ ) = 1 f o r a n y g i v e n d i s t r i b u t i o n F o f Y w i t h ν = E(Y ) < ∞. I n f a c t , t h i s f o l l o w s f r o m 5 u n d e r a s l i g h t l y s t r o n g e r a s s u m p t i o n o n Y (u n i f o r m i n t e g r a b i l i t y ), b u t c a n a l s o b e v e r i fi e d d i r e c t l y b y i n t e g r a t i n g (9 ). F i g u r e d P (U∞ ≤ 4 s h o w s n u m e r i c a p p r o xi m a t i o n s o f t h e (n o n -n o r m a l i s e d ) d e n s i t y f u n c t i o n dx x) o f (9 ) f o r t h r e e c h o i c e s o f F . A l l t h r e e d i s t r i b u t i o n s s h o w a c h a r a c t e r i s t i c p e a k c l o s e t o t i m e 1c o r r e s p o n d i n g t o t h e b u l k o f p a c k e t s a r r iv i n g w i t h m o r e o r l e s s c o r r e c t s p a c i n g o f 20 m s . A f r a c t i o n o f t h e p r o b a b i l i t y m a s s i s fi xe d a t x = 0 i n a c c o r d a n c e w i t h (10 ), b u t n o t s h o w n e xp l i c i t l y i n t h e fi g u r e . T h e s e f e a t u r e s o f t h e d e n s i t y f u n c t i o n s c a n b e c o m p a r e d w i t h t h e s h a p e o f t h e h i s t o g r a m i n F i g u r e 3 w i t h i t s p e a k a t t h e 20 m s s p a c i n g . A l s o , c l o s e t o t h e o r i g i n i s a s m a l l p e a k w h i c h c o r r e s p o n d s t o p a c k e t s a r r i v i n g b a c k -t o b a c k u s u a lly a r r iv in g a s a b u r s t, p r o b a b ly d u e to a d e la y e d p a c k e t a h e a d o f th e m . I n F ig u re 4 th e d e n s ity fu n c tio n w ith th e h ig h e s t p e a k c lo s e to 1tim e u n it is a G a u s s ia n d i s t r i b u t i o n w i t h a r b i t r a r i l y s e l e c t e d p a r a m e t e r s m e a n 5 a n d v a r i a n c e 0 . 2. O f t h e t w o e xp o n e n t i a l d i s t r i b u t i o n s , t h e o n e w i t h t h e h i g h e r v a r i a n c e (E xp (3 )) h a s a l o w e r p e a k a n d m o r e m a s s a t z e r o c o m p a r e d w i t h a n e xp o n e n t i a l w i t h s m a l l e r v a r i a n c e (E xp (2)).

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

4 1

1 .5

1

0 .5

0 0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

F i g . 4 . D e n s i t y f u n c t i o n s o f U f o r N (5 , 0 . 2), E xp (2) a n d E xp (3 )

3

S i len ce S u p p r es s i on Mech a n i s m

In th is su p p re tra n s m a c c o u n o n th e

s e c tio n w e s s io n in to th it p a c k e ts w ts fo r a b o u t n e tw o rk . A s

in c o e m o h e n h a lf s ig n

rp o ra te a n d e l . Si l e n c th e re is n o o f th e to ta to p a c k e t n

a d d itio n a l s o u rc e o f ra n d o m e s u p p re s s io n is e m p lo y e d a t s p e e c h a c tiv ity . D u r in g a n o l n u m b e r o f p a c k e ts , c o n s id e r u m b e r kth e q u a n tity

d e la th e s rm a l a b ly

y s d u e to s e n d e r so a s c o n v e rs a tio re d u c in g th

ile n c e n o t to n th is e lo a d

Xk = d u r a t i o n o f s i l e n t p e r i o d b e t w e e n p a c k e t s k − 1 a n d k. A s ile n t p e rio d is th e tim e in te rv a l d u rin g w h ic h th e s ile n c e s u p p re s s io n m e c h a n is m is i n e f f e c t . W e a s s u m e t h a t t h e s i l e n c e s u p p r e s s i o n i n t e r v a l s a r e i n d e p e n d e n t o f (Yk )k≥1 a n d a r e g i v e n b y a s e q u e n c e o f i n d e p e n d e n t r a n d o m v a r i a b l e s X1 , X2 , . . ., s u c h t h a t G(x) = P (Xk ≤ x),

1 − α = G(0) = P (Xk = 0) > 0,

μ = E(Xk ) < ∞.

T h e (s m a l l ) p r o b a b i l i t y α = P (Xk > 0) r e p r e s e n t s t h e c a s e w h e r e s i l e n c e s u p p r e s s i o n is a c tiv a te d ju s t a f te r p a c k e t k−1is tr a n s m itte d f r o m th e s e n d e r. N o te th a t Sk =

k 

Xi = t o t a l t i m e o f s i l e n c e s u p p r e s s i o n a f f e c t i n g p a c k e t k,

i=1

w h ic h im p lie s th a t th e d e liv e r y o f p a c k e t k f r o m k − 1 + Sk . T h e r e p r e s e n t a t i o n (1) t a k e s t h e f o r m T1 = S1 + Y1 ,

th e s e n d in g u n it n o w

Tk = max(Tk−1 , k − 1 + Sk + Yk ),

s ta rts a t tim e

k ≥ 2,

(11)

4 2

In g e m a r K a j a n d Ia n M a rsh

h e n c e Uk = Tk − Tk−1 = max(0, k − 1 + Sk + Yk − Tk−1 ) k ≥ 2.

(12)

Si m i l a r l y , Vk = a r r i v a l t i m e − d e p a r t u r e t i m e = Tk − k + 1 − Sk

k ≥ 1.

T h e a l t e r n a t i v e r e p r e s e n t a t i o n (3 ) i s  ), Tk = X1 + max(Y1 , 1 + Tk−1

(13 )

w h e re  Tk−1 = max(Y2 + S2 − X1 , 1 + Y2 + S2 − X1 , . . . , k − 2 + Yk + Sk − X1 )

h a s t h e s a m e m a r g i n a l d i s t r i b u t i o n a s Tk−1 b u t i s i n d e p e n d e n t o f X1 a n d Y1 . I n a n a l o g y w i t h t h e c a l c u l a t i o n o f t h e p r e v i o u s s e c t i o n l e a d i n g u p t o (4 ), t h i s r e l a t i o n g i v e s  ∞  E(Tk ) = E(X1 + 1 + Tk−1 ) + P (X1 + Y1 > t, X1 + Tk−1 ≤ t − 1) dt. (14 ) 1

E xc h a n g i n g t h e o p e r a t i o n s o f i n t e g r a t i o n a n d e xp e c t a t i o n s h o w s t h a t t h e l a s t i n t e g r a l c a n b e w ritte n  ∞   E 1{Y1 > t − X1 , Tk−1 > t − X1 − 1} dt 1+X1

w h e r e w e h a v e a l s o u s e d t h a t t h e i n t e g r a n d v a n i s h e s o n t h e s e t {t ≤ 1 + X1 }.  A p p l y ∞  t h e c h a n g e -o f -v a r i a b l e s t → t − X1 t o g e t E 1 1{Y1 > t, Tk−1 > t − 1} dt . T h e n s h i f t i n t e g r a t i o n a n d e xp e c t a t i o n a g a i n t o o b t a i n f r o m (14 ) t h e r e l a t i o n s  ∞ P (Y1 > t)P (Tk−1 ≤ t − 1) dt E(Tk ) = 1 + E(X1 ) + E(Tk−1 ) + 0



a n d E(Uk ) = 1 + E(X1 ) +



P (Y1 > t)P (Tk−1 ≤ t − 1) dt.

1

H e n c e w i t h s i l e n c e s u p p r e s s i o n , a s k → ∞,  E(Uk ) → 1 + μ,

E(Vk ) → ν +



P (Y1 > t)E(N (t − 1)) dt,

(15 )

1

u s in g th e s a m e a rg u m e n ts a s in th e s im p le r c a s e o f th e p re v io u s s e c tio n .

4

I n clu d i n g P a ck et L os s i n th e Mod el W e re tu rn to th e o rig in a l m o d e l w ith o u t s ile n c e s u p p re s s io n b u t c o n s id e r in s te a d th e e f f e c t o f l o s t p a c k e t s . Su p p o s e t h a t e a c h I P p a c k e t i s s u b j e c t t o l o s s w i t h p r o b a b i l i t y p, in d e p e n d e n tly o f o th e r p a c k e t lo s s e s a n d o f th e tra n s m is s io n d e la y s . L o s t p a c k e ts a re

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

4 3

u n a c c o u n t e d f o r a t t h e r e c e i v e r a n d h e n c e , i n t h i s s e c t i o n , t h e s e q u e n c e (Tk ) r e c o r d s a r r i v a l t i m e s o f n o n -l o s t p a c k e t s o n l y . T o k e e p t r a c k o f t h e i r d e l i v e r y t i m e s f r o m t h e s e n d e r in tro d u c e Kk = n u m b e r o f a t t e m p t s r e q u i r e d b e t w e e n s u c c e s s f u l p a c k e t s k − 1 a n d k,

k ≥ 1,

w h i c h g i v e s a s e q u e n c e (Kk )k≥1 o f i n d e p e n d e n t , i d e n t i c a l l y d i s t r i b u t e d r a n d o m a b le s w ith th e g e o m e tric d is trib u tio n P (Kk = j) = (1 − p)pj ,

v a ri-

j ≥ 0.

M o re o v e r, Lk = K1 + . . . + Kk =n u m b e r o f a tte m p ts re q u ire d fo r ks u c c e s s fu l p a c k e ts is a s e q u e n c e o f r a n d o m v a r ia b le s w ith a n e g a tiv e b in o m ia l d is tr ib u tio n . T h e a r r iv a l tim e s o f p a c k e ts a r e n o w g iv e n b y T1 = K1 − 1 + YK1 ,

Tk = max(Tk−1 , Lk − 1 + YLk ),

k ≥ 2.

D u e t o t h e i n d e p e n d e n c e w e m a y r e -i n d e x t h e s e q u e n c e o f YLk ’ s t o o b t a i n T1 = K1 − 1 + Y1 , a n d th u s

Tk = max(Tk−1 , Lk − 1 + Yk ),

 ), Tk = K1 − 1 + max(Y1 , 1 + Tk−1  Tk−1

w i t h K1 , Y1 a n d a ll in d e p e n d e n t, T h i s i s t h e s a m e r e l a t i o n a s (13 ) w i t h 1 E(Uk ) → 1 + E(K1 − 1) = 1−p , e s tim a te p a c k e t lo s s b a s e d o n o b s e rv e d s u p p re s s io n a n d p a c k e t lo s s ,

a n d a g a i n Tk−1 a X1 r e p l a c e d b y k → ∞, w h i c h in te r a r r iv a l tim e

E(Uk ) → 1 + E(X) + E(K1 − 1) = μ +

5

k ≥ 2.

k≥2  Tk−1

n d id e n K1 − 1 a n d p ro v id e s a s . Si m i l a r l y , 1 , 1−p

(16 ) tic a h e n s im c o m

lly d is trib u te d . c e , a s i n (15 ), p le m e th o d to b in in g s ile n c e

k → ∞,

(17 )

I n cor p or a ti n g R ea l D a ta 5 .1

T r a ce D a ta

W e g iv e a b r ie f d fo r th e p a ra m e te w e re se n t fro m a o f w e e k s 1. T h e im p lie s th e p a c k s i t e i s a p p r o xi m

e s c rip tio n o f rs in th e m o s ite in B u e n s tre a m s a re e ts le a v e th e a t e l y 12, 0 0 0

t h e e xp e r i m e n t s w e p e r f o r m e d i n o r d e r t o o b t a i n e s t i m a t e s d e l . P u l s e C o d e M o d u l a t e d (P C M ) p a c k e t a u d i o s t r e a m s o s A i r e s , A r g e n t i n a t o St o c k h o l m , Sw e d e n o v e r a n u m b e r s e n t w i t h a 6 4 k b i t s /s e c r a t e i n 16 0 b y t e p a y l o a d s . T h i s s e n d e r w i t h a i n t e r -p a c k e t s p a c i n g o f 20 m s . T h e r e m o t e k i l o m e t r e s , 25 I n t e r n e t h o p s a n d f o u r t i m e z o n e s f r o m

4 4

In g e m a r K a j a n d Ia n M a rsh

o b s e r v e d d e la y s , m s

6 8 0

6 6 0

6 4 0

6 2 0

6 0 0 1 7 0 0

1 7 2 0

1 7 4 0

1 7 6 0

1 7 8 0 1 8 0 0 1 8 2 0 p a c k e t s e q u e n c e n u m b e r

1 8 4 0

1 8 6 0

1 8 8 0

1 9 0 0

1 7 2 0

1 7 4 0

1 7 6 0

1 7 8 0 1 8 0 0 1 8 2 0 p a c k e t s e q u e n c e n u m b e r

1 8 4 0

1 8 6 0

1 8 8 0

1 9 0 0

in te r in te r v a l tim e s , m s

8 0

6 0

4 0

2 0

0 1 7 0 0

F i g . 5 . F o u r s e c o n d a u d i o p a c k e t t r a c e s : a )d e l a y s b )i n t e r a r r i v a l t i m e s o u r re w h e n se c o n le a v e se q u e

c e th d s th n c

iv e r. e sp e a n d e se n e

T h e to o l is a k e r is s ile n w ith s u p p re d e r a n d th e

c a p t. W s s io a b s

a b le o f s ile n c e s u p ith o u t s ile n c e s u p p n 20 6 4 a r e s e n t . W o lu te a r r iv a l tim e s

p re s s io n , in w h ic re s s io n , 3 5 6 3 p a c e re c o rd th e a b s o a t th e r e c e iv e r. T

h p a c k e k e ts a re lu te tim h is g iv e

ts se e s s

a re n o t se n t n t d u rin g 7 0 th e p a c k e ts a n o b se rv e d

vk = a r r i v a l t i m e n o k − d e p a r t u r e t i m e n o k o f t h e M a r k o v c h a i n (Vk ). I n p a r t i c u l a r , t h e s a m p l e m e a n v¯ i s a n e s t i m a t e o f t h e o n e -w a y d e l a y . Si m i l a r l y , uk = a r r i v a l t i m e n o k − a r r i v a l t i m e n o (k − 1) i s a s a m p l e o f t h e i n t e r a r r i v a l t i m e s e q u e n c e (Uk ). A ty p ic a l s e q u e n c e o f tra c e d a ta u s e d in th is s tu d y w ith o u t s ile n c e s u p p re s s io n is s h o w n i n F i g u r e 5 , w h i c h s h o w s (vk ) a n d (uk ) f o r a s m a l l s e q u e n c e o f 20 0 p a c k e t s (1700 ≤ k < 1900), c o r r e s p o n d i n g t o f o u r s e c o n d s o f a u d i o . T o f u r t h e r i l l u s t r a t e s u c h t r a c e d a t a , F i g u r e 6 s h o w s a h i s t o g r a m o f t h e d e l a y s (vk ) a n d F i g u r e 3 a h i s t o g r a m f o r t h e i n t e r a r r i v a l t i m e s (uk ). I t c a n b e n o t e d t h a t l a r g e v a l u e s o f i n t e r a r r i v a l t i m e s a re s o m e tim e s fo llo w e d b y v e ry s m a ll o n e s , m a n ife s tin g th a t a s e v e re ly d e la y e d p a c k e t f o r c e s s u b s e q u e n t p a c k e t s t o a r r i v e b a c k -t o -b a c k . T h e f r a c t i o n o f p a c k e t s a r r i v i n g i n th is m a n n e r c o rre s p o n d s to th e h e ig h t o f th e le ftm o s t p e a k in th e h is to g ra m o f F ig u re 3 . R e tu r n in g to tr a c e s w ith s ile n c e s u p p r e s s io n , F ig u r e 7 g iv e s th e s ta tis tic s o f th e re c o rd e d v o ic e s ig n a l u s e d . T h e u p p e r p a rt s h o w s a h is to g ra m o f th e ta lk s p u rts a n d th e l o w e r p a r t t h e c o r r e s p o n d i n g h i s t o g r a m f o r t h e n o n -z e r o p a r t o f t h e d i s t r i b u t i o n G o f 1

A v a ila b le fro m

h t t p : //w w w . s i c s . s e /˜ i a n m /C O ST 26 3 /c o s t 26 3 . h t m l

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

4 5

3 0 0

2 5 0

fre q u e n c y

2 0 0

1 5 0

1 0 0

5 0

0

5 0 0

5 5 0

6 0 0

6 5 0 o b s e r v e d d e la y tim e s , m s

7 0 0

7 5 0

8 0 0

o f t h e o b s e r v e d d e l a y s (Vk )

F ig . 6 . H is to g ra m

t h e s i l e n c e i n t e r v a l s X d i s c u s s e d i n s e c t i o n 3 . T h e p r o b a b i l i t y α = P (X = 0) a n d t h e e xp e c t e d v a l u e μ = E(X) w e r e e s t i m a t e d t o α∗ = 0.0456

5 .2

μ∗ = 25.7171.

N u m er i ca l E s ti m a tes

In m c a sa

th is s e c tio n w e in d ic a te a fe w s im p le n u m e ric a l te c h n iq a te s b a s e d o n tra c e d a ta . In p rin c ip le s u c h m e th o d s b a s e d n b e u s e d fo r s y s te m a tic s tu d ie s o f th e d e la y s a n d lo s s e s m p le d in d iffe re n t e n v iro n m e n ts . C o n s id e rin g fi rs t th e c a s e o f n o s ile n c e s u p p re s s io n , it t h a t g i v e n a n o b s e r v e d r e a l i z a t i o n (uk )nk=1 o f (Uk ), a p o i n p r o b a b i l i t y p i s o b t a i n e d f r o m (17 ) (w i t h μ = 0), u s i n g 20 p =1− , u ¯ ∗

O u r m e a s u re m e n ts g a v e c o n s is te n tly b i l i t i e s o f t h e o r d e r 10−4 . N e xt w e l o o k a t a n e xp e r i m e n t w d iffe re n t tim e s u s in g s ile n c e s u p p re s c e iv e r d u r in g e a c h tr a n s m is s io n . T a b th e e s tim a te d μfro m th e tra c e fi le s . o f t h e o r d e r 0.5 m i l l i s e c o n d s i n t h e

u e s th a t g iv e p a r a m e te r e s tio n th e m o d e l p re s e n te d h e re a n d fo r c o m p a ris o n o f tra c e s w a s p o in te d o u t in s e c tio n 4 t e s tim a te o f th e p a c k e t lo s s

1 u ¯= uk m s . n n

k=1

u ¯ ≈ 20.002 − 20.005 m s , i n d i c a t i n g l o s s p r o b a h e r e t h e p r e -r e c o r d e d v o i c e s io n , a n d th e in te r a r r iv a l tim l e 1 s h o w s t h e e xp e c t e d s i l e T h e o b ta in e d e s tim a te s in d m e a n v a lu e s o f th e s ile n c e

is tra n s m e s m e a su n c e in te rv ic a te a s y su p p re ss

itte d a t s e v e n re d a t th e re a l E(X) a n d s te m a tic b ia s io n in te rv a ls .

4 6

In g e m a r K a j a n d Ia n M a rsh

N o o f o b s e r v a tio n s

4 0

3 0

2 0

1 0

0 0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 2 5 0 0 3 0 0 0 L e n g th o f ta lk s p u r ts , m s

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0 2 5 0 0 3 0 0 0 L e n g th o f s ile n t in te r v a ls , m s

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

N o o f o b s e r v a tio n s

4 0

3 0

2 0

1 0

0

F ig . 7 . L e n g th s o f ta lk s p u rts a n d s ile n c e p e rio d s T a b le 1 . Si l e n c e I n t e r v a l P a r a m e t e r s T tra tra tra tra tra tra tra

P a c k e t lo s s e s d o n o t s e e m to s iv e s ta tis tic a l a n a ly s is m ig h p re lim in a ry in v e s tig a tio n w e W e n o w c o n s id e r th e p ro g i v e n a fi xe d l e n g t h s a m p l e d e la y s . O n e m e th o d fo r th is I n d e e d , r e w r i t i n g (8 ) a s t h e s

ra c e c e c e c e c e c e c e

c e 1 2 3 4 5 6 7

25 26 26 26 26 26 26

E (X ) .7 4 9 2 . 220 4 . 228 4 . 216 4 . 218 6 . 2124 . 220 9

E (X 0 .0 0 .4 0 .5 0 .4 0 .5 0 .4 0 .5

) - μ∗ 3 21 6 3 9 113 9 9 3 0 15 9 5 3 0 3 8

e xp l a i n f u l l y t h e o b s e r v e d d e v i a t i o n . A m o r e c o m p r e h e n t re v e a l th e s o u rc e o f th is s lig h t m is m a tc h . F o r th e p re s e n t fi n d th e n u m e ric a l e s tim a te s s a tis fa c to ry . b le m o f e s tim a tin g th e d is trib u tio n F o f p a c k e t d e la y s Y o b s e r v a t i o n (vk ) o f t h e M a r k o v c h a i n (Vk ) f o r o b s e r v e d c a n b e b a s e d o n t h e s t e a d y s t a t e a n a l y s i s i n s e c t i o n 2. 2. im p le re la tio n

P (V∞ ≤ x) = F (x)

∞ 

F (x + i) = F (x) P (V∞ ≤ x + 1)

i=1

s h o w s t h a t i f w e l e t F¯V d e n o t e a n e m p i r i c a l d i s t r i b u t i o n f u n c t i o n o f V , t h e n w e o b t a i n a n e s t i m a t e F¯ o f F b y t a k i n g F¯V (x) F¯ (x) = ¯ FV (x + 1)

x ≥ 0,

(18 )

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io

4 7

w h e r e w e r e c a l l t h a t t h e v a r i a b l e x i s m e a s u r e d i n u n i t s o f 20 m s i n t e r v a l s . A n a p p l i c a t i o n o f t h i s n u m e r i c a l a l g o r i t h m t o t h e t r a c e d a t a o f t h e p r e v i o u s fi g u r e s (5 a n d 6 ) y i e l d s a n e s tim a te d d e n s ity f u n c tio n f o r Y a s in F ig u r e 8 . T h e n u m e r ic a l s c h e m e is s e n s itiv e 1 .2

1

e s tim a te d fr e q u e n c y

0 .8

0 .6

0 .4

0 .2

0

5 0 0

5 5 0

6 0 0

6 5 0 d e la y tim e s , m s

7 0 0

7 5 0

8 0 0

F ig . 8 . E s tim a te d d e n s ity o f Y fo th la in th th

6

r s m a ll c h a n g e s in th e d a ta , s o it is d iffi c u lt to e d i s t r i b u t i o n o f F . A s e xp e c t e d t h e g r a p h i s y s , F ig u re 6 , b u t w ith c e rta in d iffe re n c e s d u e t h e s e q u e n c e (Vk ) a s o p p o s e d t o t h e i n d e p e e s h ift to w a rd s s m a lle r v a lu e s fo r Y in c o m p a e i n e q u a l i t y F¯ (x) ≥ F¯V (x) v a l i d f o r a l l x, w

d ra w v e ry to th n d e n ris o n h ic h

c o n c lu s io n s o n th e fi n e r d e ta s im ila r to th a t o f th e o b s e rv e e M a rk o v ia n d e p e n d e n c e s tru c e i n (Yk ). T h e m a i n d i f f e r e n to th o s e o f V. T h is c o r r e s p o n i s o b v i o u s f r o m (18 ).

ils d d c tu c e d s

o f e re is to

R ela ted W or k

M a n y re s e a rc h e rs h a v e lo o k e d a t th e n e e d s in te rm s o f b u ffe r s iz e fo r p a c k e t s tre a m s c h a r a c t e r i s e d b y M a r k o v (s e m i o r m o d u l a t e d ) b e h a v i o u r e s p e c i a l l y i n t h e c a s e o f m u l t i p l e xe d s o u r c e s . T h e i r g o a l w a s t o d e r i v e t h e w a i t i n g t i m e o f p a c k e t s s p e n t i n t h e b u f f e r s h o w n a s p r o b a b ility d e n s ity f u n c tio n o f th e w a itin g tim e s . R e la tiv e ly f e w , h o w e v e r, h a v e lo o k e d a t th e a r r iv a l p r o c e s s u s in g a s ta g e o f b u ff e r s a n d id e n tif y in g e m b e d d e d M a rk o v c h a in s fro m a s in g le s o u rc e . A d d itio n a lly w e c o n c e n tra te o n th is s c e n a rio , in c lu d in g b o th s tre a m s w ith a n d w ith o u t s ile n c e s u p p re s s io n . A d d itio n a lly a s fa r a s w e k n o w , n o -o n e h a s u s e d r e a l t r a c e d a t a t o e n h a n c e a n d v e r i f y t h e i r m o d e l s t o t h e l e v e l w e sh o w . So m e e a r l y a n a l y t i c a l w o r k o n t h e b u f f e r s i z e r e q u i r e m e n t s f o r p a c k e t i s e d v o i c e i s s u m m a r i s e d b y G o p a l e t a l . [1]. O n e o f t e n c i t e d p i e c e o f w o r k i s B a r b e r i s [2]. A s p a r t o f t h i s w o r k h e a s s u m e s t h e d e l a y s e xp e r i e n c e d b y p a c k e t s o f t h e s a m e t a l k s p u r t a r e i . i . d a c c o r d i n g t o a n e xp o n e n t i a l d i s t r i b u t i o n p(t) = λe−λT w h e r e 1/λ i s t h e a v e r a g e

4 8

In g e m a r K a j a n d Ia n M a rsh

tra n s m is s io n d e la y a n d s ta n d a rd d e v ia tio n . b u f f e r r e q u i r e m e n t s [3 ] m o d e l t h e a r r i v a l p r [1 − F (j, n − j + 1)] o f t h e e v e n t “ n o a r r i v a o u tc o m e o f th e tria l is re p re s e n te d b y th e ra n  1if p a c k e t j h a s k(j, n) = 0o th e rw is e .

M o c l y d o

.K . e ss e t” m v

M a s a t a r

e h m e a B e e a c h ia b le

t A li e t a l. in th e ir w o rk o f rn o u lli tria l w ith p ro b a b ility in te r v a l u p to its a r r iv a l. T h e k(j, n):

a r r iv e d a t o r b e f o r e tim e n

F e r r a n d i z a n d L a z a r i n [4 ] l o o k a t t h e a n a l y s i s o f a r e a s in g le c h a n n e l n o d e a n d c o m p u te its p e rfo rm a n c e p a ra m m o d e l p r im itiv e s . T h e y d o n o t u s e a n y M a r k o v ia n a s s u m w h i c h u s e s a s e r i e s o f o v e r l o a d a n d u n d e r -l o a d p e r i o d s . D d is c a r d e d . T h e y d e r iv e a n a d m is s io n c o n tr o l s c h e m e b a s e d a r r iv a l r a te . V a n D e r W a l e t a l. d e r iv e a m o d e l f o r th e e n d to i n l a r g e s c a l e I P n e t w o r k s [5 ]. T h e i r m o d e l i n c l u d e s d i f f e th e d e la y b u t n o t th e a r r iv a l p r o c e s s o f a u d io p a c k e ts p e r s d e s c r i b e d h e r e i s a l s o d i s c u s s e d i n t h e b o o k [6 ].

7

a l tim e p a c k e t s e s s io n o v e r e te rs a s a fu n c tio n o f th e ir p tio n s , ra th e r a n a p p ro a c h u rin g o v e rlo a d p a c k e ts a re o n a n a v e ra g e o f th e p a c k e t e n d d e la y fo r v o ic e p a c k e ts re n t fa c to rs c o n trib u tin g to e . T h e m a th e m a tic a l m o d e l

C on clu s i on s

W e h a v e a d d r e s s e d th e p r o b le m o f m o d e llin g th e a r r iv a l p r o c e s s o f a s in g le p a c k e t a u d io s tre a m . T h e m o d e l c a n b e u s e d to p ro d u c e p a c k e t a u d io s tre a m s w ith c h a ra c te ris tic s , a t le a s t, q u ite s im ila r to th e p a rtic u la r tra c e s w e h a v e o b ta in e d . T h e m o d e l is s u ita b le fo r g e n e ra tin g s tre a m s b o th w ith a n d w ith o u t s ile n c e s u p p re s s io n a p p lie d a t th e s o u rc e , in a d d itio n th e c a s e w h e re p a c k e ts a re lo s t h a s b e e n in c lu d e d . T h e w o r k c a n b e g e n e r a lly a p p lie d to r e s e a r c h w h e r e m o d e llin g a r r iv in g p a c k e t a u d i o s t r e a m s n e e d s t o b e p e r f o r m e d . A n a t u r a l n e xt s t e p i s t o u s e t h e a r r i v a l m o d e l p re s e n te d h e re fo r e v a lu a tio n o f jitte r b u ffe r p e rfo rm a n c e , s u c h a s in v e s tig a tin g w a itin g tim e s a n d p o s s ib le p a c k e t lo s s in th e jitte r b u ffe r. W e o b s e rv e d fro m o u r m o d e l th a t th e i n t e r a r r i v a l t i m e s a r e n e g a t i v e l y c o r r e l a t e d (a s m e n t i o n e d Se c t i o n 5 . 1). T h i s w i l l h a v e a n im p a c t o n th e d y n a m ic s a n d p e rfo rm a n c e o f a jitte r b u ffe r. W ith a n a c c u ra te m o d e l, b a s e d o n re a l d a ta m e a s u re m e n ts , a re a lis tic tra ffi c g e n e ra to r c a n b e w ritte n . In s e p a ra te w o r k w e h a v e g a t h e r e d n e a r l y 25 , 0 0 0 V o I P t r a c e s f r o m t e n g l o b a l l y d i s p e r s e d s i t e s w h ic h w e c a n u tilis e fo r ’p a ra m e te ris in g ’ th e m o d e l, d e p e n d in g o n th e d e s ire d s c e n a rio .

R ef er en ces [1] P r a b a n d h a m M . G o p a l , J . W . W o n g , a n d J . C . M a j i t h i a , “ A n a l y s i s o v o i c e t r a n s m i s s i o n u s i n g p a c k e t s w i t c h i n g t e c h n i q u e s ,” P e r f o r m a n c e 1, p p . 11– 18 , F e b . 19 8 4 . [2] G i u l i o B a r b e r i s , “ B u f f e r s i z i n g o f a p a c k e t -v o i c e r e c e i v e r , ” I E E E T r n i c a t i o n s , v o l . C O M -29 , n o . 2, p p . 15 2– 15 6 , F e b . 19 8 1. [3 ] M e h m e t M . K . A l i a n d C . M . W o o d s i d e , “ A n a l y s i s o f r e -a s s e m b l y a p a c k e t v o i c e n e t w o r k ,” i n P r o c e e d i n g s o f t h e C o n f e r e n c e o n C o m ( I E E E I n f o c o m ) , B a l H a r b o u r (M i a m i ), F l o r i d a , A p r . 19 8 6 , I E E E , p p

f p la y o u t s tra te g ie s fo r E v a lu a tio n , v o l. 4 , n o . a n s a c tio n s o n C o m m u b u ffe r re q u ire m e n ts in p u te r C o m m u n ic a tio n s . 23 3 – 23 8 .

M o d e llin g th e A r r iv a l P r o c e s s f o r P a c k e t A u d io [4 ] J o s e p M . F e r r a n t r a f fi c ,” T e c h n i c tio n s R e s e a rc h , [5 ] W a l m v a n d e r W tiv e s e r v ic e s o n [6 ] I n g e m a r K a j , S In d u s tria l a n d A

d iz a n d A u re l A . L a z a r, “ M o d e lin g a n d a a l R e p o r t T e c h n i c a l R e p o r t N u m b e r 119 C o l u m b i a U n i v e r s i t y , N e w Y o r k 10 0 27 , a l, M a n d je s M ic h e l, a n d R o b K o o ij, “ E a l a r g e -s c a l e I P n e t w o r k , ” i n I F I P , J u n e to c h a s tic M o d e lin g fo r B ro a d b a n d C o m p p lie d M a th e m a tic s , P h ila d e lp h ia , P A , U

d m is s io n c o n tro l o f re a l tim e p a -8 8 -4 7 , C e n t e r f o r T e l e c o m m u n 19 8 8 . n d -t o -e n d d e l a y m o d e l s f o r i n t e 19 9 9 . m u n i c a t i o n s S y s t e m s , So c i e t y SA , 20 0 2, P r e p a r e d w i t h L A T E X

4 9 c k e t ic a ra c fo r .

On Packet Delays and Segmentation Methods in IP Based UMTS Radio Access Networks G´ abor T´ oth and Csaba Antal Traffic Analysis and Network Performance Laboratory, Ericsson Research Laborc u. 1, Budapest, H-1037, Hungary {gabor.toth,csaba.antal}@eth.ericsson.se

Abstract. In UMTS radio access networks (UTRAN), the delay requirement - bandwidth product of real-time classes is small, therefore large packets need to be segmented. Furthermore, low priority segmented packets may also have real-time requirements. Assuming that UTRAN traffic is characterized as the superposition of periodic sources with random offset, we propose analytic results and we show simulation results for the delay distribution of real-time classes in a priority system. We then compare segmentation methods considering the delay requirements of all real-time classes.

1

Introduction

UMTS Terrestrial Radio Access Networks (UTRAN) [1] will be based on packet switched technologies to utilize the gain of multiplexing services with various QoS requirements. First UTRAN networks will be deployed with ATM infrastructure, IP based UTRAN networks will be introduced in later releases. As opposed to generic multiservice networks, most traffic types in UTRAN have real-time requirements. It is well-known that voice traffic, which is expected to be the dominant traffic type at first UMTS systems, has inherent real-time requirements. In addition to that, applications used at mobile terminals also have real-time requirements [2] in the access network due to the timing requirements of the Radio Link Control (RLC) protocol and the support of soft handover. The end-to-end delay requirement of real-time data packets, however, is less stringent (15-40 ms) than that of voice (5-7 ms) [3]. Other traffic types that do not span to the air interface are synchronization of base stations, which has the most stringent delay requirement, and the non-real-time operation and maintenance and non-UTRAN traffic in IP based UTRAN. RLC protocol provides reliable transmission between mobile terminals and the corresponding radio network controller via a retransmission mechanism to overcome packet losses at the air interface. Therefore, it tolerates packet losses in the transport network. Accordingly, both voice and data applications have in the radio access network. A special property of real-time traffic types over the transport network is periodicity; that is, mobile terminals and RNCs emit RLC-blocks periodically. M. Ajmone Marsan et al. (Eds.): QoS-IP 2003, LNCS 2601, pp. 50–63, 2003. c Springer-Verlag Berlin Heidelberg 2003 

On Packet Delays and Segmentation Methods

51

The initial phase of periodic flows is random, hence the traffic can be modeled as a superposition of independent periodic streams with a random initial offset. In the general case, periodic streams are modulated with an on-off process due to Discontinuous Transmission (DTX) for voice sources and higher layer protocols for data applications. Packet size of real-time flows is heterogeneous. Synchronization and voice packet are small (30-50 bytes), while the size of data packets might be large. For example if the transmission time interval of data packets, i.e. period length, is 20 ms and the bitrate of the bearer is 384 kbps then the packet size is larger than 1000 bytes. The exact packet size including all protocol overheads depends on the applied technologies. The above characteristics of UTRAN networks indicate that to assure optimal operation for real-time traffic with the most stringent delay requirements, small packets (such as voice, some signalling and synchronization) should be differentiated from real-time data traffic in routers and switches. It is also apparent that real-time data traffic has to have preference over maintanence and best effort non-UTRAN traffic. Therefore, in IP based UTRAN, which will be based on the DiffServ concept [4], multiple real-time classes should be distinguished in the routers. Furthermore, even if voice has absolute priority over real-time data traffic, the delay of voice packets is significantly increases due to data packets (a 1000 byte long data packet may increase the voice delay by 4 ms at an E1 link). To minimize this effect, large data packets are segmented. In ATM based UTRAN ATM does this task, while in IP UTRAN layer 2 segmentation is applied based on the PPP Multilink Protocol (MP) [5]. If multiple QoS classes are needed at layer 2 then multi-class extension of MP [6] should also be supported. Segmentation of real-time data packets, however, has an effect on the delay of data packets themselves. Therefore, all real-time classes should be included in the delay analysis of the system. The aim of this paper is to derive new analytical results that allow the evaluation of the effect of segment size and segmentation methods on the delay of all real-time classes. Therefore, we analyze the packet delay distribution in a two-class strict-priority system, where traffic sources generate packets periodically with random initial offset and packets are segmented at the entry of the queues. Thus, results presented in this paper are based on a constant bitrate source model. Approximation for the delay distribution of on-off sources is also possible based on the presented results if the methods presented in [2] are applied. The rest of the paper is structured as follows. In Section 2, we propose analytic results for the exact packet delay distribution for high priority packets in a priority system. We derive then the low priority packet delay distribution for the case of a single low priority source in Section 3. In Section 4, we verify the analytic results by simulations. We propose new segmentation methods in Section 5 and we evaluate their performance in Section 6. Finally, we draw the conclusions in Section 7.

52

2 2.1

G´ abor T´ oth and Csaba Antal

Analytic Evaluation of High Priority Packet Delay Prior Work

The delay distribution of high priority constant bit-rate traffic has been analyzed since the idea of transmitting real-time traffic over packet switched networks emerged. The N*D/D/1 system, which means that deterministic periodic sources are served by a single deterministic server, received dedicated attention at the beginning of the 90s. The exact virtual waiting time distribution was expressed first in [7] and in [8]. These results were extended to more general cases and a closed form approximation was also proposed in several papers including [9], [10] and [11]. For a detailed review of the work on N*D/D/1 systems see [12] and [13]. Denoting the number of voice sources by NH and assuming that they generate a bH long packet in each T long time period, the CDF of the queuing delay of a voice packet can be expressed based on equation 3.2.2 in [12] as 

FDq (t) = 1 − tC b

0, otherwise it is 0. The first term In the second term of (2), Pr(A|B) si Pr(si ) can be expressed by using that Pr(A|BC) = min(1, tC , ¯ si ), Pr(C|B) = S NL bL and Pr(B) = T C−NH bH . After substituting these formulae into (2) we get the CDF that yields the probability density function by derivation, which has the following form:  Cki fDs (t) = p0 δ(t) + (3) T C − NH b H ∀i:si >tC

where p0 = 1 − and δ(x) is the Dirac delta function. The PDF of the total voice delay, fD (t), then is obtained by convolving the d FDq (t), and that density functions of the preemptive voice delay, fDt (t) = dt of the residual transmission time of data segments, fDs (t). Accomplishing the necessary calculations, the PDF is obtained:    si  ci FDt (t) − FDt (t − ) − ci FDt (t) (4) fD (t) = −p0 fDt (t) + C NL bL T C−NH bH

∀i:si 0 : t0 ∈ (t − τm , t − τm + dt] : ν(t0 , td ) = m : Vt = 0.

Using the new notations PC can be expressed as  Pr(Z|X, Y, W ) Pr(W |X, Y ) Pr(Y |X) Pr(X) PC = l

(11)

m

The rightmost probability is the probability that the length of a randomly chosen burst is l, multiplied with the probability that the arrival of the data packet occurs when a voice packet is being served. Pr(X) = Pr(B0 = l|V0 > 0) Pr(V0 > 0) =

lbH Pr(B = l) N bH E(B) TC

(12)

where the distribution of busy period length P r(B = l) and the mean busy period length E(B) is expressed based on [16]. The probability of event X has the form of:    l  N −l−1 N bH lbH N lbH Pr(X) = 1− 1− (13) l TC TC TC The next probability to be calculated is the probability that the service of the data packet starts in a specific dt long time interval given that the length of the served voice busy period is l. As the arrival time of the packet is distributed evenly over the time-interval of the served voice burst, the second probability is Pr(Y |X) = if l >

tC−bL bH

− m and 0 otherwise.

C dt lbH

(14)

56

G´ abor T´ oth and Csaba Antal

To calculate the Pr(W |X, Y ) probability, we remove the l packet long voice busy period from the high priority system, and we take only the reduced N*D/D/1 system into account where T  = T − lbCH and N  = N − l. In this system, we determine the probability that m arrivals occur in a τm long time interval, given that the system is empty at the beginning of the interval. We use parameters with apostrophe for the truncated system. Applying the Bayesformula, the wanted probability can be formalized as Pr(W |X, Y ) = Pr(ν  (t , t + τm ) = m|Vt = 0) = Pr(Vt = 0|ν  (t , t + τm ) = m) Pr(ν  (t , t + τm ) = m) Pr(Vt = 0)

(15)

The probability Pr(Vt = 0|ν  (t , t + τm ) = m) can be divided into two parts depending on whether the virtual waiting time at t + τm reaches the threshold Vˆ = T C−NCbH −bL or not. If the virtual waiting time exceeds Vˆ at t + τm then the system can not empty until t + T  , so Pr(Vt = 0|ν  (t , t + τm ) = m, Vt +τm > Vˆ ) = 0. That is, Pr(Vt = 0|ν  (t , t + τm ) = m) can be expressed as the product of two probabilities: Pa = Pr(Vt = 0|ν  (t , t + τm ) = m, Vt +τm < Vˆ ) and Pb = Pr(Vt +τm < Vˆ |ν  (t , t + τm ) = m). < Vˆ , so it can be There is some idle period in (t + τm , t + T  ) if V  t +τm

T C−N bH −bL handled as an individual N*D/D/1, which yields Pa = T C−(l+m)b . For the H −bL calculation of probability Pb , the virtual waiting time distribution of a system with m users and τm long period can be used as an approximation. Pb is the value of this distribution at Vˆ .

Pb = 1 −



n m    m 1 − NTbCH R(N + n) − 1 R(m)−m

n+1−m n 1 − R(N + n) + R(m) n=n

(16)

0

L where n0 = TbHC (1 − R(N )) and R(x) = xbHT +b C . Probability Pb is independent of l, so it will be referred to as Km in the following. The next two unknown probabilities of (15) are Pr(ν  (t , t + τm ) = m) =   N −l−m  N −l mb +b m mbH +bL bH H L and Pr(Vt = 0) = TTC−N 1 − T C−lbH T C−lbH C−lbH .Therefore, m

the final form of Pr(W |X, Y ) is T C−N b −b mbH +bL m   N − l Km T C−NHbH L T C−lb H Pr(W |X, Y ) ≈ T C−(m+l)bH −bL l+m+1−N m

(17)

T C−lbH

To express the last probability we use that ν(t0 , td ) = m and td = t0 + This is the empty probability at an arbitrarily chosen time instant in such an N*D/D/1 system where there are m sources with period length of mbH +bL : Pr(Z|X, Y, W ) = mbHbL+bL C mbH +bL . C

On Packet Delays and Segmentation Methods

57

Composing the product of the conditional probabilities calculated above and substituting l + m with k we obtain N N −m

m−1   1 − R(N ) dt m k−m Km R(0)R(m) PC ≈ (18)

k+1−N T R(k − m)m+1−k 1 − R(k) tC−b ∀m k>

bH

L

The next step is to calculate the probability PD , which is for the case when the low priority packet arrives into an empty system. It follows from the preemptive operation, that the service time in this case can only take such a value that exactly equals to mbHC+bL , where m is a non-negative integer that is less than or equal to N . Therefore, the probability that the delay of the low priority packet is in a certain dt period equals to the sum (over all m) of the probabilities that m high priority packets arrive during the service time of the low priority packet. That is, the mbHC+bL value falls in the given dt long time interval. m max  

(19) Pr V0 = 0, Vt = 0, ν 0, τm = m PD = m=mmin L L and mmax = (t+dt)C−b . Following the same train of where mmin = tC−b bH bH thoughts as in the continuous case we can get the following expression for the PD probability

  m max  N R(0) 1 − R(N ) R(m)m−1 PD ≈ Km (20)

m+1−N m 1 − R(m) m=m min

Applying that Pr(t < D ≤ t + dt) = PC + PD , and substituting this into (5) we get the formula of N N −m

m−1 1 − R(N ) 1  m k−m Km R(0)R(m) fD (t) ≈ (21)

k+1−N T R(k − m)m+1−k 1 − R(k) tC−b ∀m k>

+

 m

3.2

bH

L



  mbH + bL N R(0) 1 − R(N ) R(m)m−1 ) Km δ(t −

m+1−N C m 1 − R(m)

Non-preemptive System with Segmentation

In this section we show how the analytic results obtained for the preemptive system can be applied to the non-preemptive case. Fig. 2 illustrates the preemptive and non-preemptive systems with the same arrival process. In the non-preemptive case, the data packet is segmented according to the method depicted in the upper-left corner of the figure. In the preemptive case, it does not matter whether the data packet is segmented or not (if we neglect segmentation overhead), so for the sake of comparability we assumed that the packet is segmented according to the same method. In Fig.

58

G´ abor T´ oth and Csaba Antal

Fig. 2. Timeline of serving packets in preemptive and non-preemptive systems 2 it can be observed that the service of the data segment is started in such a time instant in the non-preemptive case when the voice queue is empty and all data segments preceding the observed one have already been served. Thus, if the stability criteria for the system are met, the start times of the segments in the non-preemptive system are the same as in the preemptive case. Since the service of a segment can not be interrupted in the non-preemptive system, the total service time of the data packet can be calculated as the sum of two components. One is the delay that a bˆL = bL − Sl long low priority packet suffers in a preemptive system, the other is the transmission time of a Sl long segment at full service rate. Thus the CDF of the delay of a single bL long data packet in a preemptive system with segmentation is   Sl (22) FD (t) = FˆD t − |ˆ C bL =bL −Sl where Sl is the length of the last segment, FˆD (t) is the CDF of the delay of a ˆbL long data packet in a preemptive system and C is the server rate.

4

Verification

We have carried out simulations to verify the analytic results for various scenarios. Here we present results for a router with a 1920 kbps (E1) link, which carries the multiplexed traffic of 1 data and 80 voice sources. The length of the voice and data packets are 44 and 1013 bytes, respectively, and the period is 20 ms for each sources. The comparison was done for two different segmentation sizes. The data packets are divided into two segments in both cases. In the first case, the sizes of the first and second segment are 800 and 213 bytes, in the second case, they are 506 and 507 bytes. Fig. 3(b) and Fig. 3(a) show the complement of the normalized cumulative histograms and the cumulative density functions of the delays for both cases. In

On Packet Delays and Segmentation Methods 10

10

10

− 1

10

− 2

10

0

− 1

− 2

10

10

10

1− F

1− F

D

D

(t)

(t)

10

0

59

− 3

10 Ca Ca Ca Ca

− 4

s e− s e− s e− s e−

1s 1a 2s 2a

im n im n

u l a t ed a ly tic u l a t ed a ly tic

10

− 5

0

2

4

6

8

10 12 D el a y [ m s ]

14

16

18

20

(a) Complementary distribution functions of the data delay

10

− 3

Ca Ca Ca Ca

− 4

s e− s e− s e− s e−

1s 1a 2s 2a

im n im n

u a ly u a ly

l a t ed tic l a t ed tic

− 5

0

0 .5

1

1. 5

2

2. 5 D el a y [ m s ]

3

3 .5

4

4 .5

5

(b) Complementary distribution functions of the voice delay

Fig. 3. Verification of the analytic formulae the figures it is apparent that the simulated and the analytical results are hardly distinguishable.

5

Segmentation Methods

In this section we investigate how the segmentation affects the delay of high and low priority packets. We also show that the simplest segmentation method, which is widely applied in current equipments, is suboptimal in this sense. First consider the voice traffic. As it was shown in Section 2, the voice delay is the sum of two independent random variables of which only fDs depends on the segmentation of the data packet. The quantiles of the total delay are minimized via proper segmentation in practical cases if the quantiles of the segmentationdependent component are also minimized. This can be reached by setting the size of the . Now let us consider how segmentation effects data delay. We have shown in this paper that the delay distribution of the data traffic in a non-preemptive system is determined by the size of the last segment of the segmented data packet. How the former part of the packet is segmented does not play an important role in forming the distribution. Since the service of the last data segment in the non-preemptive system can not be interrupted once it is started, that the data packet suffers given that the total packet size is fixed. 5.1

Basic Segmentation Algorithm

The simplest method for segmenting packets cuts the packet into MSS (maximum segment size) long segments until the remaining part is shorter than the MSS. Thus, the last segment contains the remaining bytes only. This relatively simple procedure is suboptimal for both voice and data delay because the largest data segment could be smaller and the last segment could be smaller.

60

G´ abor T´ oth and Csaba Antal

Two alternative modifications can be applied to the basic segmentation algorithm as follows. 5.2

Segmentation Method 1

This method ensures that the largest segment of a packet is as small as possible given that the number of segments (n) is the same as it is in the basic method P at a given MSS setting: n = MSS

where P is the total packet size and M SS is the maximum segment size. This is to avoid the segmentation of packets into arbitrarily small pieces, which would result in too large header overhead. At these constraints voice delay is optimal when data packets are segmented such that the size of segments is set as even as possible. The algorithm produces two types of segments with sizes of S1 and S2 that can be calculated as S1 = Pn and S2 =  Pn . The number of the S1 -size segments is n1 = mod (P, n) and the number of S2 -size segments is n2 = n − n1 . Segments can be sent in an arbitrary sequence because one byte difference does not have a noticeable effect on data delay. Even though, the main purpose of this algorithm is to further reduce the tail distribution of the voice delay, it can be seen that this algorithm never produces shorter last segment than the basic algorithm does, thus this algorithm may also increase the performance of the data traffic. 5.3

Segmentation Method 2

The largest last segment provides the best performance for data traffic. For not to increase the delay of the voice packets, the algorithm keeps the original maximum segment size (MSS) as a parameter. The size of the segment to be sent at last is set to the largest possible value i.e. MSS, while the remaining part of the packet is segmented into n − 1 pieces that are equal in size to the extent possible. The method used to calculate the size of these n − 1 pieces of segments is identical to the one described at . It can be seen that this algorithm never produces more MSS sized segments than the basic algorithm does, thus the quantile of the segmentation-dependent part of the voice delay may decrease. Therefore, besides decreasing the tail distribution of the data delay, the algorithm might also increase the performance of the voice traffic.

6

Comparison of Segmentation Methods

To illustrate how the described algorithms reduce delays when two different traffic classes are carried over the same link, a simple network scenario was investigated using the analytical results obtianed in Section 2. The investigated system includes a 1920 kbps link (E1) that carries the multiplexed periodic voice and data traffic. Each high priority voice source transmits one 44-byte packet every 20 milliseconds, and each low priority data source transmits one 1013byte long packet every 20 milliseconds, which corresponds to a 384 kbps bearer in IP UTRAN. The traffic mix includes the traffic of 80 voice sources and one

On Packet Delays and Segmentation Methods

61

data source. The header overhead introduced by the segmentation was neglected during the investigation because it does not influence the comparison.

q u a n t i l e o f t h e v o i c e d el a y [ m s ]

18 17 16 15 B a s ic M et h o d 1 M et h o d 2

14

− 3

13

10

10

− 3

q u a n t i l e o f t h e d a t a d el a y [ m s ]

19

12 0

20 0

4 0 0 M a x im u m

6 0 0 8 0 0 S eg m en t a t i o n S i z e

10 0 0

(a) Quantiles of the data delay

120 0

5 .5 5 4 .5 4 3 .5 3 B a s ic M et h o d 1 M et h o d 2

2. 5 2 1. 5 0

20 0

4 0 0 M a x im u m

6 0 0 8 0 0 S eg m en t a t i o n S i z e

10 0 0

120 0

(b) Quantiles of the voice delay

Fig. 4. 10−3 quantiles of the delays in the case of 80 voice and 1 data flows

Fig.4(a) shows the resulted 10−3 quantile of the data delay as a function of the maximum segmentation size. Fig.4(b) shows the 10−3 quantile of the voice delay as the function of the MSS. The difference between the shapes of curves can be attributed to the way segment sizes depend on MSS at the studied methods. Data delay curve at the basic algorithm is monotonously increasing if the number of segments (n) does not change because then the size of the last segment decreases at increasing MSS. However, if the number of segments is decremented (due to the increased MSS) then the size of the last segment has a jump (from 0 to MSS), which results in a jump in the data delay curve as well. Segmentation Method 1 also has jumps in the data delay curve when the number of segments changes. It is constant otherwise because S1 and S2 depends only on n and not on M SS. At Segmentation Method 2, the size of the last segment is always equal to M SS, so the data delay curve is continuous. Regarding voice delay we can observe that the Basic Method and Method 2 have continuous curves because the size of the largest segment is equal to M SS. At Method 1, the largest segment size is Pn , so the voice delay is constant if n is constant. It can be observed that using either Segmentation Method 1 or Segmentation Method 2, the 10−3 quantile of both voice and data delays are always smaller than or equal to that of the basic segmentation method. No improvement achieved at all regarding voice delay when Method 2 is used with such an MSS where the data packet is divided into two pieces. In this case, the length of the produced data segments are the same as the basic algorithm would produce, but in reverse order. Therefore, the PDFs of the segmentation-dependent part of the voice delays, and thus the PDFs of the total voice delays are the same in the two cases. It can be concluded from Fig.4(b) that the quantile of voice delay

62

G´ abor T´ oth and Csaba Antal

is reduced the most if Method 1 is used. Regarding data delay, however, Method 2 significantly overperforms Method 1. We do not have analytical formulae to calculate the delay distributions for the case when more than one data source generate traffic in the system. Therefore, we made simulations to show that the segmentation algorithms improve the performance of both classes in these cases too. The simulated systems are identical to the one we had before, only the number of voice and data users is changed to 36 and 3, respectively. Fig.5(b) and Fig.5(a) show the output of the simulations. It can be realized, that the curves are very similar to those of the analytical results for one data source, which means that Method 1 and Method 2 provides the best performance regarding voice and data delay, respectively.

5 q u a n t i l e o f t h e v o i c e d el a y [ m s ]

18

17 . 5 B a s ic M et h o d 1 M et h o d 2

17

4 .5 4 3 .5 3 2. 5 2 1. 5

B a s ic M et h o d 1 M et h o d 2

10

10

− 3

− 3

q u a n t i l e o f t h e d a t a d el a y [ m s ]

18 . 5

16 . 5 0

20 0

4 0 0 M a x im u m

6 0 0 8 0 0 S eg m en t a t i o n S i z e

10 0 0

120 0

1 0 .5 0

(a) Quantiles of the data delay

20 0

4 0 0 M a x im u m

6 0 0 8 0 0 S eg m en t a t i o n S i z e

10 0 0

120 0

(b) Quantiles of the voice delay

Fig. 5. 10−3 quantiles of the delays in the case of 36 voice and 3 data flows

7

Conclusions and Future Work

We have shown that the delay quantile of voice and real-time data packets depends significantly on the segmentation method applied for large data packets. We proposed two methods that decrease the delay of both data and voice packets compared to conventional segmentation methods. We have concluded based on analytic and simulation results that the best segmentation method regarding data delay is if the size of the data segment that is sent last has the maximum size allowed by the MSS parameter. On the other hand, voice performance is optimal when data segments are as even as possible. As applying these methods makes it possible to admit more connections from both traffic classes without violating their delay constraints, the bandwidth efficiency of small links in IP UTRAN networks can be increased. For the performance evaluation of the proposed methods, we have also derived analytic results for a two-class single server strict priority system where both high priority and low priority traffic are superpositions of periodic constant bit-rate sources with real-time requirements. We have derived the exact delay distribution of voice packets assuming that the low

On Packet Delays and Segmentation Methods

63

priority buffer is not saturated. We have also expressed the low priority delay distribution for the case when there is a single low priority session in the system. Extending the analytic results to cases of many low priority sources and for more traffic classes is in progress. The investigation of the sources modulated with an on-off process is also planned in the future.

References 1. 3GPP ”UTRAN overall description,” Technical Specification, TS 25.401. 2. Sz. Malomsoky, S. Racz, Sz. Nadas, ”Connection admission control in UMTS radio access networks,” Computer Communications - Special Issue on 3G Wireless and Beyond, Fall, 2002 3. 3GPP, ”Delay budget within the access stratum,” Technical Report, TR 25.853, V4.0.0, May 2001 4. 3GPP, ”IP Transport in UTRAN,” Work Task Technical Report, TR 25.933 V1.0.0, March 2001 5. K. Sklower, B. Lloyd, G. McGregor, D. Carr, T. Coradetti, ”The multilink PPP protocol,” RFC 1990, August 1996 6. C. Bormann, ”The multi-class extension to multi-link PPP,” RFC 2686, Sept. 1999 7. A. Bhargava, P. Humblet and H. Hluchyj, ”Queuing analysis of continuous bit stream transport in packet networks,” Globecom ’89, Dallas, TX, October 1989. 8. I. Norros, J. W. Roberts, A. Simonian and J. Virtamo, ”The superposition of variable bitrate sources in ATM multiplexers,” IEEE Journal on Selected Areas in Communications, 9(3):378-387, April 1991. 9. B. Hajek, ”Heavy traffic limit theorems for queues with periodic arrivals,” In ORSA/TIMS Special Interest Conference on Applied Probability in the Engineering, Informational and Natural Sciences, pp. 44, January 1991 10. B. Sengupta, ”A queue with superposition of arrival streams with an application to packet voice technology,” Performance’90, pp. 53-60, North-Holland 1990. 11. J. Roberts and J. Virtamo, ”The superposition of periodic cell arrival streams in an ATM multiplexer,” IEEE Trans. Commun., vol. 39, pp. 298-303 12. COST 242 Management Committee, ”Methods for the performance evaluation and design of broadband multiservice networks,” The COST 242 Final Report, Part III., June 1996 13. J. He, K. Sohraby, ”On the Queueing Analysis of Dispersed Periodic Messages,” IEEE Infocom 2000, March 26-30, Tel-Aviv, Israel 14. K. Iida, T. Takine, H. Sunahara, Y. Oie, ”Delay analysis of CBR traffic under static-priority scheduling,” IEEE/ACM Trans. On Networking, Vol. 9, No. 2, pp.177-185 15. M. J. Karam, F. A. Tobagi, ”Analysis of the Delay and Jitter of Voice Traffic over the Internet,” IEEE Infocom 2001, April 22-26, Anchorage, Alaska, USA 16. J.T. Virtamo, ”Idle and busy period distribution of an infinite capacity N*D/D/1 queue,” 14th International Teletraffic Congress - ITC 14, Antibes Juan-les-Pins, France, June 1994.



On Performance Objective Functions for Optimising Routed Networks for Best QoS +XDQ3KDP%LOO/DYHU\ 6FKRRORI,QIRUPDWLRQ7HFKQRORJ\ -DPHV&RRN8QLYHUVLW\4/'$XVWUDOLD {huan, bill}@cs.jcu.edu.au

Abstract. 7KLV SDSHU FRQWULEXWHV WR XQGHUVWDQGLQJ RI KRZ 4XDOLW\ RI 6HUYLFH 4R6  FDQ EH RSWLPLVHG LQ $XWRQRPRXV 6\VWHP $6  QHWZRUNV XVLQJ 2SHQ 6KRUWHVW3DWK)LUVW 263) URXWLQJ:HDVVXPHWKDWDOWKRXJKJXDUDQWHHG4R6 FDQQRWEHSURYLGHGQHWZRUNZLGHSHUIRUPDQFHFDQEHRSWLPLVHGLQDPDQQHU ZKLFKVLJQLILFDQWO\LPSURYHV4R6:HSDUWLFXODUO\IRFXVRQGHYLVLQJDQHWZRUN SHUIRUPDQFH REMHFWLYH ZKLFK LV FRQYHQLHQW IRU WKH QHWZRUN RSWLPL]DWLRQ SURFHVV ZKLOH FORVHO\ UHSUHVHQWLQJ 4R6 H[SHULHQFH IRU HQG XVHUV 2XU UHVXOWV VKRZWKDWILUVWO\QHWZRUNZLGHSHUIRUPDQFHFDQEHVLJQLILFDQWO\LPSURYHGE\ RSWLPL]LQJ 263) ZHLJKWV 6HFRQGO\ WKH UHVXOWLQJ RSWLPDO VHW RI ZHLJKWV DQG QHWZRUNSHUIRUPDQFHGHSHQGVYHU\PXFKRQWKHGHILQLWLRQRIWKHRSWLPL]DWLRQ REMHFWLYHIXQFWLRQ:HDUJXHWKDWPLQPD[XWLOLVDWLRQLVDQDSSURSULDWHIXQFWLRQ IRU KHDYLO\ ORDGHG QHWZRUN ZKLOH HQG WR HQG GHOD\ LV PRUH DSSURSULDWH RSWLPL]DWLRQ REMHFWLYH IRU OLJKWO\ ORDGHG FRQGLWLRQ DW ZKLFK PRVW RI WKH EDFNERQHVDUHRSHUDWLQJ

1

Introduction

7KH,QWHUQHWFRQWLQXHVWRH[SHULHQFHUHPDUNDEOHJURZWK,WFDUULHVQRWRQO\QRQUHDO WLPHWUDIILF VXFKDV:HE(PDLODQG)73h EXWDOVRRWKHUWLPHVHQVLWLYHWUDIILF VXFKDV9R,3DXGLRDQGYLGHRRQGHPDQG ,QWKHYHU\FRPSHWLWLYH,QWHUQHW6HUYLFH 3URYLGHU ,63 PDUNHWHYHQIRUWKHDSSOLFDWLRQVWUDGLWLRQDOO\FRQVLGHUHGDVQRQUHDO WLPHWUDIILF,63VWKDWSURYLGHDZRUOGZLGHZDLWVHUYLFHZLOOORRVHRXWWRWKRVH,63V WKDWFDQSURYLGHDKLJKHUOHYHORI4R6WRWKHLUFXVWRPHUV7\SLFDOO\DORZHUUHVSRQVH WLPHDQGDKLJKHUGRZQORDGVSHHGUHVXOWLQDKLJKHU4R6IRUWKHHQGXVHU 7R JXDUDQWHH DQ H[SOLFLW 4R6 HJ JXDUDQWHHG GHOD\ SDFNHW ORVVh  QHZ WHFKQRORJLHVVXFKDV,QW6HUY>@'LII6HUY>@03/6>@DUHUHTXLUHGWRSURYLGHWKH QHFHVVDU\WUDIILFSROLFLQJDQGUHVRXUFHUHVHUYDWLRQIHDWXUHV7KLVPHDQVKDUGZDUH DQGVRIWZDUHXSJUDGHVIRUWKHH[LVWLQJ$6QHWZRUN)RUWKHWLPHEHLQJ PRVWRIWKH ,63QHWZRUNVGRQRWVXSSRUWWKHVHH[SOLFLW4R6IHDWXUHVDQGZRXOGZDQWWRSURYLGH WKHLU EHVW SRVVLEOH OHYHO RI QRQJXDUDQWHHG 4R6 XVLQJ 7UDIILF (QJLQHHULQJ SULQFLSOHV 7KHHIIHFWLYHQHVVRIWUDIILFHQJLQHHULQJLQ,3URXWHGQHWZRUNVLVGLUHFWO\JRYHUQHG E\ WKH URXWLQJ SURFHVVHV 5RXWLQJ GHWHUPLQHV WKH SDWKV WDNHQ E\ WKH WUDIILF IORZV WKURXJKDQHWZRUNDQGWKHUHIRUHWKHURXWHU VHWWLQJVFRQWUROKRZPXFKWUDIILFWUDYHOV WKURXJK HDFK OLQN LQ WKH QHWZRUN 7KH PRVW SRSXODU SODLQ ,3 URXWLQJ SURWRFRO LV 0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

263)DQGLWURXWHVWUDIILFDORQJWKHVKRUWHVWSDWK V VXEMHFWWRWKHOLQNZHLJKWVHWWLQJ $VDUHVXOWWUDIILFHQJLQHHULQJIRU,3QHWZRUNVXVLQJ263)UHGXFHVWRDGMXVWLQJWKH VHWRIOLQNZHLJKWVVRDVWRRSWLPLVHVRPHSHUIRUPDQFHREMHFWLYHIXQFWLRQ 6HYHUDO UHFHQW SXEOLFDWLRQV KDYH DGGUHVVHG UHODWHG LVVXHV ,Q >@ WKH DXWKRUV SUHVHQW D PRGHOLQJ WRRO LQFRUSRUDWLQJ WKH QHWZRUN WRSRORJ\ WUDIILF GHPDQGV DQG URXWLQJPRGHOVZKLFKOHWVRSHUDWRUVFKDQJHWKHOLQNZHLJKWVWRVHHWKHWUDIILFSDWWHUQV EHIRUHDFWXDOO\LPSOHPHQWLQJLWLQDUHDOQHWZRUN7KLVLVDYHU\XVHIXOWRROKHOSLQJ QHWZRUNRSHUDWRUVWRPDQXDOO\HQJLQHHUWUDIILF+RZHYHUIRUODUJHQHWZRUNVPDQXDO RSHUDWLRQ FDQ EHFRPH VR FRPSOH[ DQG XQSUHGLFWDEOH WKDW QHWZRUN RSHUDWRUV FDQ QRW FRSH,WLVWKHUHIRUHSUHIHUDEOHWKDWRSWLPL]DWLRQEHGRQHDXWRPDWLFDOO\ )RUW] DQG 7KRUXS >@ GHVFULEHG D ORFDO VHDUFK KHXULVWLF IRU RSWLPL]LQJ 263) ZHLJKWV7KHLUUHVXOWVVKRZHGWKDWDOWKRXJKPDQ\FODLP263)LVQRWIOH[LEOHHQRXJK IRUHIIHFWLYHWUDIILFHQJLQHHULQJWKHLUKHXULVWLFFRXOGXVXDOO\ILQGDVHWRIZHLJKWVWKDW ZRXOGJUHDWO\LPSURYHWKHQHWZRUNSHUIRUPDQFH+RZHYHUWKHLUZRUNKDVOLPLWDWLRQV UHVXOWLQJIURPWKHLUIRUPXODWLRQRIWKHREMHFWLYHIXQFWLRQ ZHFDOOLW)7IXQFWLRQ  7KHLU REMHFWLYH IXQFWLRQ LV QRW EDVHG RQ WKH TXDOLW\ RI VHUYLFH IURP XVHUV  SRLQW RI YLHZEXWEDVHGRQDQDUELWUDU\FRQYH[IXQFWLRQRIOLQNXWLOL]DWLRQ 2XU ZRUN H[WHQGV WKH ZRUN RI >@ DQG >@ ,Q DGGLWLRQ ZH GHYLVH DQ DOWHUQDWLYH REMHFWLYHIXQFWLRQWKDWEHWWHUUHSUHVHQWVWKHQHWZRUNSHUIRUPDQFHZKLFKLVGLVFXVVHG LQ VHFWLRQ  7KHQ LQ VHFWLRQ  WKH RSWLPL]DWLRQ SUREOHP LV IRUPDOL]HG DQG VROYHG 6HFWLRQ  SUHVHQWV UHVXOWV IRU DQ DUELWUDU\ QHWZRUN DQG VHFWLRQ  GLVFXVVHV WKHLU VLJQLILFDQFH

2

Optimization Objective Function

7KH QHWZRUN RSWLPL]DWLRQ FDQ EH YLHZHG IURP FXVWRPHUV  SHUVSHFWLYH DQG QHWZRUN RSHUDWRU V SHUVSHFWLYH LH WUDIILF RULHQWHG SHUIRUPDQFH RU UHVRXUFH RULHQWHG SHUIRUPDQFH REMHFWLYHV >@ 5HVRXUFH RULHQWHG SHUIRUPDQFH REMHFWLYHV UHODWH WR WKH RSWLPL]DWLRQ RI WKH XWLOLVDWLRQ RI QHWZRUN DVVHWV 2Q WKH RWKHU KDQG WUDIILF RULHQWHG SHUIRUPDQFH REMHFWLYHV UHODWH WR WKH LPSURYHPHQW RI WKH 4R6 SURYLVLRQHG WR WKH WUDIILF 2IWHQ ,63 QHWZRUNV KDYH OLQNV ZLWK IL[HG FDSDFLWLHV DQG IL[HG PRQWKO\ FRVWV LQGHSHQGHQWRIWKHOLQNXWLOL]DWLRQ,WLVRQO\ZKHQDOLQNLVVRRYHUORDGHGWKDWLWPXVW EH DXJPHQWHG WKDW WKH ,63 H[SHULHQFHV LQFUHDVHG FRVW ,Q VXFK VLWXDWLRQV ZKLOH QR OLQNV PXVW EH XSJUDGHG WR KLJKHU FDSDFLWLHV WKH REMHFWLYH RI WUDIILF HQJLQHHULQJ VKRXOGSXUHO\EHEDVHGRQWUDIILFRULHQWHGSHUIRUPDQFHREMHFWLYH7KHVHDUHWKH4R6 SDUDPHWHUV DV H[SHULHQFHG E\ WKH FXVWRPHUV XVLQJ WKH QHWZRUN SDFNHW ORVV HQGWR HQGSDFNHWGHOD\DQGWKURXJKSXW 8QIRUWXQDWHO\WKRVH4R6PHWULFVDUHGLIILFXOWWREHGHWHUPLQHGDQDO\WLFDOO\IRUDQ\ JLYHQ OLQN FDSDFLWLHV DQG WUDIILF ORDGV ,Q DGGLWLRQ GLIIHUHQW DSSOLFDWLRQV DOVR KDYH GLIIHUHQW LQWHUSUHWDWLRQ RI WKRVH 4R6 PHWULFV IRU H[DPSOH ILOH WUDQVIHUV DUH PRUH GHSHQGHQW RQ WKH WKURXJKSXW LQWHUDFWLYH DSSOLFDWLRQV DUH PRUH VHQVLWLYH WR WKH DYHUDJH HQGWRHQG GHOD\ ZKLOH YLGHRDXGLR VWUHDPLQJ DSSOLFDWLRQV DUH PRUH VHQVLWLYHWRWKHSDFNHWORVVUDWH 2QWKHRWKHUKDQGIRUWKHVDNHRIFRPSXWDWLRQDOWUDFWDELOLW\WUDIILFHQJLQHHULQJE\ RSWLPL]LQJ263)ZHLJKWVXVLQJORFDOVHDUFKKHXULVWLFVVXFKDVWKHRQHGHVFULEHGLQ

+XDQ3KDPDQG%LOO/DYHU\

>@UHTXLUHVDVLQJOHSHUIRUPDQFHFULWHULRQ,WVKRXOGRQO\EHEDVHGRQWKHWUDIILFORDG RQHDFKOLQNDQGOLQNFDSDFLWLHVEXWLQGHSHQGHQWRIWKHQHWZRUNWRSRORJ\ ,WLVYHU\FRPPRQWRWXUQWRPD[LPXPOLQNXWLOL]DWLRQDVWKHSHUIRUPDQFHPHDVXUH WRGULYHWKHRSWLPL]DWLRQSURFHVVVXFKDVSURSRVHGLQ>@DQG>@+RZHYHUWKLVPLQ PD[REMHFWLYHIXQFWLRQSUHIHUVDVROXWLRQWKDWPD\LQYROYHYHU\ORQJURXWHVWRDYRLG WKHKHDYLHVWOLQNUHVXOWLQJLQDYHU\ORQJGHOD\,QDGGLWLRQVLQFHLWGRHVQRWWDNHLQWR DFFRXQW SHUIRUPDQFH RI ORZHU ORDGHG OLQNV VXFK DQ RSWLPL]DWLRQ SURFHVV PD\ JHW VWXFNRQFHWKHPD[LPXPXWLOL]DWLRQFDQQRWEHIXUWKHUGHFUHDVHGDOWKRXJKRWKHUOHVV FRQJHVWHGSDUWV FDQ VWLOO EH IXUWKHURSWLPL]HG(YHQ LI WKH DYHUDJH OLQNXWLOL]DWLRQ LV XVHGDVDVHFRQGDU\RSWLPL]LQJREMHFWLYHWKLVPD\QRWKHOSEHFDXVHLQVRPHFDVHV ZH KDYH WR LQFUHDVH WKH DYHUDJH OLQN XWLOL]DWLRQ WR KHOS UHGXFH QHWZRUN FRQJHVWLRQ )RUH[DPSOHVHH)LJXUHZKHUHDOOWKHOLQNVKDYHDFDSDFLW\RI0ELWVDQGWKHUHLV D GHPDQG RI 0ELWV EHWZHHQ 5RXWHU DQG 5RXWHU 7KH ORDG EDODQFHG VLWXDWLRQ VKRZQ KDV DYHUDJH XWLOLVDWLRQ RI  DQG LV OHVV FRQJHVWHG WKDQ ZRXOG EH WKH FDVHZKHUHDOOWUDIILFZHUHURXWHGYLD555ZKHUHDYHUDJHXWLOLVDWLRQZRXOGEH EXW55ZRXOGEHRSHUDWLQJDWXQGHVLUDEO\KLJKXWLOLVDWLRQ

Router2

2M/ 10M

2M/ 10M 6M/ 10M

2M/ 10M Router4

Router1 2M/ 10M

Router5

2M/ 10M

Router3

Fig. 1. /RDGEDODQFLQJUHGXFHVFRQJHVWLRQZKLOH LQFUHDVLQJDYHUDJHXWLOLVDWLRQ

*LYHQWKHGUDZEDFNRIXVLQJPD[LPXPOLQNXWLOLVDWLRQDVWKHREMHFWLYHIXQFWLRQLW ZRXOG EH UHDVRQDEOH WR PLQLPLVH WKH QHWZRUNZLGH VXP RI DQ LQFUHDVLQJ FRQYH[ IXQFWLRQ RI WKH ORDG DQG WKH FDSDFLW\  )RU HDFK OLQN D SHUIRUPDQFH REMHFWLYH IXQFWLRQ aLVWREHGHILQHGDQGWKHQHWZRUNZLGHSHUIRUPDQFH LVWKHQVXPPHG RYHUDOOOLQNVLH 

    a l a  C a  aA



 

7KHFRQYH[LQFUHDVLQJVKDSHRIWKHREMHFWLYHIXQFWLRQ  a l a  C a HQVXUHVWKDWWKH PRUH KHDYLO\ ORDGHG OLQNV KDYH PRUH QHJDWLYH LQIOXHQFH RQ WKH RYHUDOO QHWZRUN SHUIRUPDQFHWKDQOLJKWO\ORDGHGOLQNVGR:HQH[WDWWHPSWWRLGHQWLI\ZKLFKDUHWKH

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

SHUIRUPDQFH SDUDPHWHUV ZKLFK PRVW LPSDFW RQ HQG XVHU 4R6 DW ERWK ORZ ORDG DQG KLJKORDG When Network Is Lightly Loaded $W ORZ ORDG DQG KHQFH DW ORZ XWLOLVDWLRQ JLYHQ WKH VWRFKDVWLF QDWXUH RI ,QWHUQHW WUDIILFTXHXHVDWQRGHVZLOOUDUHO\RYHUIORZLHWKHUHZLOOEHQHJOLJLEOHSDFNHWORVV ,QWKLVVLWXDWLRQWKHHQGXVHU VH[SHULHQFHRISHUIRUPDQFHLVDOPRVWVROHO\LQWHUPVRI GHOD\LHLVGHWHUPLQHGE\KRZORQJSDFNHWVWDNHRQDYHUDJHWREHGHOLYHUHG7KXV ZHXVHDQDYHUDJHHQGWRHQGSDFNHWGHOD\DVWKHSHUIRUPDQFHREMHFWLYHIXQFWLRQ $YHUDJHTXHXLQJGHOD\KDVEHHQVWXGLHGIRUORQJWLPHLQWUDIILFTXHXLQJWKHRU\>@ +RZHYHULWDVVXPHVWKDWWKHSDFNHWDUULYDOLVLQGHSHQGHQWRIRQHDQRWKHUDQGIROORZV WKH 3RLVVRQ GLVWULEXWLRQ ,W KDV EHHQ VKRZQ UHFHQWO\ WKDW IRU WKH ,QWHUQHW WUDIILF WKLV DVVXPSWLRQLVQRORQJHUYDOLG>@7KHVHUHFHQWVWXGLHVVKRZWKDWWKH,QWHUQHW WUDIILFV KDYH VKRZQ VRPH OHYHO RI VHOIVLPLODULW\ 7KH VHOIVLPLODULW\ OHYHO RI WKH WUDIILFLVFKDUDFWHUL]HGE\+XUVWSDUDPHWHU H EHWZHHQ>@ $V D UHVXOW RI WKH VHOIVLPLODULW\ FKDUDFWHULVWLFV LW LV YHU\ GLIILFXOW WR GHYLVH D SUHFLVHDYHUDJHSDFNHWGHOD\JLYHQDQDYHUDJHWUDIILFGHPDQGDQGDOLQNFDSDFLW\:H XVHWKHDSSUR[LPDWLRQRIWKHWKHRUHWLFDODYHUDJHTXHXHOHQJWKqJLYHQLQ>@IRUDQ LQILQLWHEXIIHUWKDWLVQRWRYHUIORZLQJ

q

     H     H   H

 

ZKHUH  LV WKH OLQN XWLOL]DWLRQ DQG H LV WKH +XUVW SDUDPHWHU 7KLV SDUDPHWHU YDULHV GHSHQGLQJRQWKHFKDUDFWHULVWLFVRIWKHVRXUFHWUDIILF7\SLFDOO\IRU,QWHUQHWWUDIILFH LVEHWZHHQ  >@ 7KH SDFNHW GHOD\ d RQ DQ\ OLQN LV WKH VXP RI WKH WUDQVPLVVLRQ GHOD\ DQG WKH TXHXLQJGHOD\ZKLFKLV

d

 q        H       C C C    H   H

 

ZKHUHCLVWKHOLQNFDSDFLW\LQSDFNHWVSHUVHFRQG,IZHXVHH ZHKDYH

d

        C    

 

7KHDYHUDJHHQGWRHQGSDFNHWGHOD\LV

 f d d  r a

a A

i j

a



 

i j

ZKHUHfaLVWKHWUDIILFORDGLQSDFNHWVSHUVHFRQGRQOLQNadaLVWKHDYHUDJHSDFNHW GHOD\RQOLQNari,jLVWKHWUDIILFGHPDQGEHWZHHQVRXUFHQRGHiDQGGHVWLQDWLRQQRGHj

+XDQ3KDPDQG%LOO/DYHU\

)RUDQ\JLYHQVHWRIWUDIILFGHPDQGri,jWKHVXP

r s t

i j

LVIL[HGWKHQZHFDQXVH

WKHWRWDOSDFNHWGHOD\DVWKHREMHFWLYHIXQFWLRQLQVWHDG7KHREMHFWLYHIXQFWLRQFDQEH ZULWWHQDVIROORZV

    a 

 

a

ZLWK

 a      a 

20

20

15

15

Cost

Performance Objective

a  fa  da  a 

10

5

 

10

5

0

0

0

0.2

0.4

0.6

0.8

Utilisation

Fig. 2. 3HUIRUPDQFHYV8WLOLVDWLRQ

1

0

0.2

0.4

0.6

0.8

1

1.2

Load

Fig. 3. )7&RVWIXQFWLRQLQ>@

)LJXUHVKRZVWKHUHODWLRQVKLSEHWZHHQWKHREMHFWLYHIXQFWLRQaDSSOLHGIRURQH OLQN DV D IXQFWLRQ RI OLQN XWLOLVDWLRQ a 7KLV REMHFWLYH IXQFWLRQ NHHSV RQ LQFUHDVLQJ PRQRWRQLFDOO\DQGLQFUHDVHVUDSLGO\DWKLJKXWLOLVDWLRQ6XFKDIXQFWLRQFRQYHQLHQWO\ EHKDYHVLQDYHU\GHVLUDEOHZD\IRUWUDIILFHQJLQHHULQJRSWLPL]DWLRQIRUWKHQHWZRUN RSWLPL]DWLRQZLOOEHPRVWVHQVLWLYHWRWKHKHDYLO\XWLOL]HGOLQNV When Traffic Load on Some Links Exceed the "Saturation" Level :KHQ WUDIILF GHPDQGV DUH VR ELJ WKDW UHVXOW LQ VRPH XQDYRLGDEOH VDWXUDWHG OLQNV QHWZRUN FDSDFLWLHV VKRXOG EH XSJUDGHG WR DFFRPPRGDWH WKH WUDIILF GHPDQGV ZKLFK FDQQRWEHVHUYHGE\WKHFXUUHQWQHWZRUNFDSDFLWLHV:KLFKOLQNVVKRXOGEHXSJUDGHG DQG WKH QHZ URXWLQJ VFKHPH IRU WKH XSJUDGHG QHWZRUNV LV D GLIIHUHQW UHVRXUFH RULHQWHG QHWZRUN RSWLPL]DWLRQ SUREOHP ZKHUH WKH ILQDQFLDO DQG DGPLQLVWUDWLYH FRQVWUDLQWVSOD\PRVWLPSRUWDQWUROHV

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

+RZHYHU SULRU WR DQ\ VXFK XSJUDGHV WKH ,63 ZLOO VWLOO UHTXLUH D URXWLQJ VFKHPH WKDW DWWHPSW WR SURYLGH DV JRRG SHUIRUPDQFH IRU HQG XVHUV DV SRVVLEOH ,Q WKLV FRQJHVWLRQ FDVH WKH GRPLQDQW 4R6 LV WKH WKURXJKSXW H[SHULHQFHG E\ HQG XVHUV RU PRUHSUHFLVHO\WKHEDQGZLGWKVKDUHDOORFDWHGIRUHDFKIORZLQSURJUHVV 7RHYDOXDWHWKHSHUIRUPDQFHRIDURXWLQJVFKHPH JLYHQDVHWRIOLQNZHLJKWV WKH RIIHUHG WUDIILF RQ HDFK OLQN LV ILUVW FDOFXODWHG ZLWKRXW FDSDFLW\ FRQVWUDLQWV LH WKH OLQN XWLOLVDWLRQ FDQ EH JUHDWHU WKDQ  $VVXPLQJ D IDLU EDQGZLGWK VKDULQJ VFKHPH>@EHWZHHQIORZVDQGWKHQXPEHURIIORZVLQSURJUHVVSURSRUWLRQDOWRWKH DPRXQW RI RIIHU WUDIILF WKH DFWXDO EDQGZLGWK VKDUH RI HDFK IORZ LV LQYHUVHO\ SURSRUWLRQDOWRWKHRIIHUWUDIILFRQWKHOLQNRUWKHOLQNXWLOLVDWLRQ)ORZVWKDWKDYH WKH ORZHVW EDQGZLGWK VKDUH DUH WKRVH WUDYHOOLQJ YLD WKH OLQN ZLWK WKH KLJKHVW OLQN XWLOLVDWLRQ $V D UHVXOW WKH RSWLPL]DWLRQ REMHFWLYH LQ WKH RYHUORDG FDVH UHGXFH WR PLQLPL]LQJ WKH PD[LPXP OLQN XWLOL]DWLRQ KHUH WKH OLQN XWLOL]DWLRQ LV FDOFXODWHG IRUDJLYHQURXWLQJVFKHPHZLWKRXWOLQNFDSDFLW\FRQVWUDLQWVDQGFDQEHJUHDWHUWKDQ  :H FDQ DFKLHYH WKLV PLQ PD[ XWLOL]DWLRQ RSWLPL]DWLRQ REMHFWLYH E\ VKDSLQJ WKH REMHFWLYH IXQFWLRQ EDVHG RQ WKH GHOD\   VR WKDW LW NHHSV LQFUHDVLQJ VWHDGLO\ DV WKH RIIHUWUDIILFH[FHHGWKHOLQNFDSDFLW\ ,I ZH GHQRWH max DV WKH VDWXUDWLRQ XWLOLVDWLRQ OHYHO RXU REMHFWLYH LV GHYLVHG DV IROORZV

a  fa  da  a 

a     a 

  IRUamax

 a  fa da _ f

a

  PD[ C a

 f a   PD[ C a  k

 

  PD[   f a   PD[ C a  k     PD[ 

  PD[ 

IRUmax

 ZKHUHҏ

k

 a  fa

,IZHFKRVHmax ZHKDYH

f a   PD[ C a



 Ca

    PD[           PD[ 

  a f  for  a  a   a   a    Ca    a      for    a a 

 

+XDQ3KDPDQG%LOO/DYHU\

3

Modeling and Solving

7KHJHQHUDOQHWZRUNRSWLPL]DWLRQRUWUDIILFHQJLQHHULQJSUREOHPFDQEHIRUPDOLVHGDV IROORZLQJ *LYHQ D QHWZRUN RI QRGHV DQG GLUHFWHG OLQNV * 1 $  ZLWK WKH OLQN FDSDFLW\RICaIRUOLQNaDQGDVHWRIGHPDQGri,jILQGDVHWRIOLQNIORZVWKDWPLQLPLVH WKHQHWZRUNSHUIRUPDQFHREMHFWLYH

    a 

PLQLPLVH

a

ZKHUH   a f  for  a  a   a   a    Ca    a      for    a a 

VXEMHFWWR

f j

f i j  

i j

 j

 ri  j  f j i   ri  j   

if node i  source if node i  destination  otherwise

i j 

fi,jRUfaLVWKHWUDIILFORDGRQOLQNaIURPQRGHiWRQRGHj f   a LVWKHOLQNXWLOLVDWLRQRIOLQNa a

Ca

7R EH DEOH WR IXUWKHU FRPSDUH WKH SHUIRUPDQFH REMHFWLYH EHWZHHQ QHWZRUNV RI GLIIHUHQWVL]HVDQGFDSDFLW\ZHLQWURGXFHDVFDOLQJIDFWRU TZKLFKLVWKHPLQLPXP WRWDOSDFNHWWUDQVPLVVLRQGHOD\6LQFHWKHUHLVQRTXHXLQJGHOD\LQWKHVFDOLQJIDFWRU SDFNHWVZLOOIROORZVKRUWHVWSDWKVJLYHQWKHOHQJWKRIDOLQNHTXDOWRWKHWUDQVPLVVLRQ WLPH RI RQH SDFNHW RQ WKDW OLQN RU LQYHUVH OLQN FDSDFLW\ )RU WKH VDPH UHDVRQ  LV DOZD\VJUHDWHURUHTXDOWRTWKHUHIRUHDIWHUEHLQJVFDOHG* = /T  1.7KHKLJKHU YDOXHRI*WKHPRUHFRQJHVWHGWKHQHWZRUNLV )RU SODLQ ,3 263) WUDIILF HQJLQHHULQJ SUREOHP LQ DGGLWLRQ WR WKH FRQGLWLRQV RI JHQHUDO WUDIILF HQJLQHHULQJ IORZ FRQVHUYDWLRQ  WKHUH LV DOVR RWKHU UHTXLUHPHQW WKDW WUDIILFIURPVRXUFHVWRGHVWLQDWLRQVFDQQRWWUDYHODUELWUDULO\EXWIROORZVKRUWHVWSDWKV 7KH VKRUWHVW SDWKV IURP VRXUFHV WR GHVWLQDWLRQV DUH FDOFXODWHG EDVHG RQ WKH FRQILJXUDEOHOLQNZHLJKWSDUDPHWHUVDVVLJQHGIRUHDFKOLQN$VDUHVXOWWKH,3WUDIILF HQJLQHHULQJSUREOHPEHFRPHVWKHSUREOHPRIILQGLQJDVHWRIOLQNZHLJKWVVRWKDWLW UHVXOWVLQWKHPLQLPXPYDOXHRI :HZLOOUHXVHWKHORFDOVHDUFKKHXULVWLF XVLQJD KDVKLQJWDEOHDVDJXLGH WRGHWHUPLQHWKHOLQNZHLJKWVHWWLQJVDVSURSRVHGLQ>@ %HFDXVHRIWKHUHVWULFWLRQVLQSODLQ,3URXWLQJLWVSHUIRUPDQFHREMHFWLYHLVDOZD\V JRLQJWREHJUHDWHURUHTXDOWRWKDWIRXQGE\RSWLPDOJHQHUDOURXWLQJ7KHUHIRUHZH FDQXVHWKHSHUIRUPDQFHREMHFWLYHYDOXH oIRXQGE\WKHJHQHUDORSWLPDOURXWLQJDV D ORZHU ERXQG WR WKH YDOXH RI  IRXQG E\ SODLQ ,3 URXWLQJ +HUH JHQHUDO RSWLPDO URXWLQJ LV WKH LGHDOLVHG FDVH ZKHUH WUDIILF VWUHDPV FDQ EH URXWHG DW ZLOO WKLV LV RI FRXUVH QRW SUDFWLFDO IRU 263) URXWLQJ EXW LW JLYHV D ORZHU ERXQG E\ ZKLFK ZH FDQ MXGJHKRZJRRGRXUVROXWLRQ LV

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

7R VROYH WKH RSWLPDO URXWLQJ SUREOHP ZH XVH )ORZ 'HYLDWLRQ DOJRULWKP )'  DV SURSRVHG LQ >@ 7KH IORZ GHYLDWLRQ DOJRULWKP LV EDVHG RQ WKH REVHUYDWLRQ WKDW LI D VPDOO DPRXQW RI WUDIILF LV PRYHG IURP D SDWK ZLWK D KLJKHU LQFUHPHQWDO GHOD\ WR D VKRUWHURQHWKHQWKHWRWDOGHOD\ZLOOGHFUHDVH,QFUHPHQWDOGHOD\RQDSDWKIaLVWKH GLIIHUHQFHLQWKHGHOD\VXIIHUHGE\WKHIORZRQWKDWOLQNLIDVPDOODPRXQWRIIORZLV DGGHGWRWKHSDWK:KHQFRPELQHGZLWK  IaEHFRPHV     a d  a     for  a "   Ia   C    a 

d fa  a for  a !     Ca

4

 

Results

7R VWXG\ KRZ ,3 WUDIILF HQJLQHHULQJ SHUIRUPV VXEMHFW WR GLIIHUHQW SHUIRUPDQFH REMHFWLYHIXQFWLRQVZHFUHDWHGDQDUELWUDU\QHWZRUNRIDUFVDQGQRGHV ILJXUH  /LQNFDSDFLWLHVZHUHUDQGRPO\VHOHFWHGIURPWKHYDOXHVRIRU LQ SDFNHWV SHU VHFRQGV  GHIDXOW OLQN ZHLJKWV DUH VHW WR LQYHUVH OLQN FDSDFLW\ DV SHU UHFRPPHQGDWLRQRI&LVFR>@7UDIILFGHPDQGVEHWZHHQQRGHVDUHUDQGRPEHWZHHQ DQGDSDUDPHWHUMaxDemandDOVRZLWKXQLWVRISDFNHWVSHUVHFRQG:HYDULHGWKLV MaxDemandYDOXHWRVHHKRZWKH7UDIILF(QJLQHHULQJEHKDYHVZLWKGLIIHUHQWWUDIILF ORDGVIURPORZXWLOLVDWLRQWRRYHUORDGVFHQDULRV :HUDQWKHORFDOVHDUFKKHXULVWLFSURSRVHGLQ>@WRILQGWKHEHVWVHWRIOLQNZHLJKWV VXEMHFWWRWKHLUFRVWIXQFWLRQDQGWKHQVXEMHFWWRRXUQHWZRUNSHUIRUPDQFHREMHFWLYH 7KHUHVXOWLQJPD[LPXPXWLOLVDWLRQDQGRXUQHWZRUNSHUIRUPDQFHREMHFWLYHDUHVKRZQ IRUGLIIHUHQWWUDIILFORDGVLQ)LJXUHVDQG When the Network Is Lightly Loaded (Max Demand @

+XDQ3KDPDQG%LOO/DYHU\

7KLVREVHUYDWLRQLVDOVRVKRZQLQ)LJXUHVDQGIURPZKLFKZHFDQVHHWKDWWKH REMHFWLYHIXQFWLRQDVZHOODVWKHPD[LPXPOLQNXWLOLVDWLRQRIRXUVROXWLRQV 263)3/  LVRQO\RIWKHFRUUHVSRQGLQJFRXQWHUSDUWVRI263))77KLVJDSPD\EHZLGHULI WKHOLQNFDSDFLWLHVRIWKHQHWZRUNGLIIHUZLGHO\ When the Network Starts to Experience Congestion (Max Demand > 1000) :KHQ WKH WUDIILF GHPDQGV LQFUHDVH WKH GHIDXOW &LVFR UHFRPPHQGHG ZHLJKW VHWWLQJ UHVXOWV LQ VRPH RYHUORDGHG OLQNV 7KH ORFDO VHDUFK KHXULVWLF XVLQJ RXU SHUIRUPDQFH REMHFWLYH DQG )7 ERWK FDQ DYRLG WKH ORFDO ERWWOHQHFNV ,Q DYHUDJH WKH PD[LPXP OLQNXWLOLVDWLRQRI263))7XVLQJWKHFRVWIXQFWLRQ)7LVDERXWKLJKHUWKDQ RXU PD[LPXP XWLOLVDWLRQ JLYHQ WKH VDPH XQOLPLWHG ZHLJKW FKDQJHV +RZHYHU IURP WKHDYHUDJHSDFNHWGHOD\SRLQWRIYLHZRXUVROXWLRQV263)3/SHUIRUPVPXFKEHWWHU WKDQ263))7WKHODWWHUEHLQJDERXWZRUVHWKDQRXUVROXWLRQ 7KLVPD\UHVXOWSDUWO\IURPWKHIDFWWKDW)7KDVDSLHFHZLVHOLQHDUVKDSHZKLFK JLYHVWKHVDPHSHQDOW\WROLQNVZLWKXWLOLVDWLRQVLQWKHVDPHEORFNVXFKDVIURPWR LQRWKHUZRUGVVXFKOLQNVDUHFRQVLGHUHGDVDWVDPHOHYHORIFRQJHVWLRQ &RPSDUHG ZLWK WKH RSWLPDO JHQHUDO URXWLQJ RXU 263)3/ JLYHV D VLPLODU SHUIRUPDQFH ZLWKLQ DERXW  LQ WHUPV RI GHOD\ DQG PD[ XWLOLVDWLRQ LI WKH 0D[ 'HPDQGLVOHVVWKDQ ,WLVVWDWHGLQ>@WKDWWKHDFWXDOGHILQLWLRQRIWKHSHUIRUPDQFHREMHFWLYHIXQFWLRQLV QRW VR LPSRUWDQW WR WKH ORFDO VHDUFK KHXULVWLF DV ORQJ DV LW LV D SLHFHZLVH FRQYH[ IXQFWLRQ ,Q FRQWUDVW ZH KDYH IRXQG WKDW DOWKRXJK WKH DFWXDO GHILQLWLRQ RI WKH REMHFWLYH IXQFWLRQ GRHV QRW FKDQJH WKH ZD\ WKHLU ORFDO VHDUFK KHXULVWLF RSHUDWHV LW GRHVFKDQJHWKHUHVXOWLQJVHWRIZHLJKWVDQGURXWHV7KRVHURXWHVFDQEHYHU\GLIIHUHQW IURP WKDW IRXQG E\ >@ 7KDW LV WKH SHUIRUPDQFH REMHFWLYH IXQFWLRQ FKRVHQ DQG LWV VKDSHDUHLPSRUWDQWLQILQGLQJWKHVROXWLRQVWKDWLVRSWLPDOIURPXVHU4R6SHUVSHFWLYH 2XU REMHFWLYH IXQFWLRQ LV EDVHG RQ WKH GHOD\ ZKLFK WDNH LQWR DFFRXQW WKH +XUVW SDUDPHWHU H )URP HTXDWLRQ   ZH FDQ VHH WKDW DV H JHWV FORVH WR  WKH GHOD\ IXQFWLRQ LQFUHDVHV VKDUSO\ HYHQ DW YHU\ ORZ XWLOLVDWLRQ 7KLV PHDQV WKH KLJKHU WKH YDOXHRI+WKHPRUHVHQVLWLYHWRPD[LPXPXWLOLVDWLRQWKHREMHFWLYHIXQFWLRQLV

Fig. 4. 1HWZRUN'LDJUDP

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

Performance Objective

5

4 Cisco OSPF-FT OSPF-PL Optimal

3

2

1 0

500

1000

1500

2000

Max Traffic Demand

Fig. 5. 3HUIRUPDQFH2EMHFWLYHXQGHUQRUPDOORDGLQJ FRQGLWLRQ 2

Max Utilisation

1.5

Cisco

OSPF-FT 1

OSPF-PL Optimal

0.5

0 0

1000

2000

3000

4000

5000

Max Traffic Demand

Fig. 6. 0D[8WLOLVDWLRQYV0D[7UDIILF'HPDQG



5

Conclusion

7KLVVWXG\LQYHVWLJDWHVWKHHIIHFWLYHQHVVRIWUDIILFHQJLQHHULQJLQ$XWRQRPRXV6\VWHP ,3 QHWZRUNV XVLQJ 263) URXWLQJ 7KH DLP LV WR GHWHUPLQH WKH RSWLPXP OLQN ZHLJKW VHWWLQJV WKDW WKH 263) URXWLQJ DOJRULWKP UHOLHV RQ WR GLUHFW WUDIILF IORZV WKURXJK QHWZRUNVDQGLQVRGRLQJWRRSWLPLVHQHWZRUNSHUIRUPDQFH 2XUUHVXOWVLQGLFDWHWKDWZHFDQDFKLHYHPXFKEHWWHUQHWZRUNSHUIRUPDQFHWKDQLI WKH GHIDXOW &LVFR VHWWLQJ LV XVHG E\ RSWLPLVLQJ WKH 263) OLQN ZHLJKWV +RZHYHU ZKLOH RSWLPLVLQJ WKH ZHLJKW VHWWLQJ WKH GHILQLWLRQ RI DQ DSSURSULDWH QHWZRUN

+XDQ3KDPDQG%LOO/DYHU\

SHUIRUPDQFHREMHFWLYHIXQFWLRQLVFUXFLDOWRDFKLHYLQJSHUIRUPDQFHZKLFKRSWLPL]HV HQGXVHUH[SHULHQFH $FFRUGLQJO\ ZH XVHG D QHWZRUN SHUIRUPDQFH WKDW PRVW LPSDFW RQ XVHUV  WKH QHWZRUNHQGWRHQGSDFNHWGHOD\DQGWKURXJKSXW,QWHUHVWLQJO\WKH$6RSHUDWRUZLOO W\SLFDOO\ RSHUDWH WKHLU QHWZRUNV DW OLJKW ORDG >@ DQG WKH HQG XVHUV H[SHULHQFH LV ODUJHO\ GHWHUPLQHGE\ HQG WR HQGSDFNHW GHOD\ :KHQ WKH QHWZRUN LV FRQJHVWHG WKH SHUIRUPDQFHREMHFWLYHVKRXOGUHIOHFWWKHWKURXJKSXWVKDUHGE\IORZVLQSURJUHVV HQG XVHUV  DSSOLFDWLRQV  7KLV WKURXJKSXW LV JHQHUDOO\ LQYHUVHO\ SURSRUWLRQDO WR WKH RIIHU WUDIILFRUOLQNXWLOLVDWLRQ 2QWKLVEDVLVRXUQHWZRUNSHUIRUPDQFHREMHFWLYHIXQFWLRQUHGXFHGWRILQGLQJOLQN ZHLJKWVHWWLQJVZKLFK # PLQLPLVHWRWDOHQGWRHQGSDFNHWGHOD\RIDOOOLQNDFURVVDQHWZRUNDQG # PLQLPLVHPD[LPXPOLQNXWLOL]DWLRQXQGHUFRQJHVWHGVLWXDWLRQ :H WKHQ VWXGLHG QHWZRUN SHUIRUPDQFH RI DUELWUDU\ $6 ,3 QHWZRUNV XVLQJ RXU REMHFWLYH IXQFWLRQ DQG FRPSDUHG WKH UHVXOWV WR WKRVH DFKLHYHG XVLQJ D SUHYLRXVO\ SXEOLVKHGREMHFWLYHIXQFWLRQ :HIRXQGWKHIROORZLQJ # $W OLJKW WUDIILF ORDGV ZKLFK LV WKH QRUPDO $6 RSHUDWLQJ VFHQDULR RXU SHUIRUPDQFH REMHFWLYH IXQFWLRQ UHVXOWV LQ VHWWLQJV ZKLFK FRUUHVSRQG WR WKH &LVFR UHFRPPHQGHG VHWWLQJV $OWHUQDWLYHO\ WKH )7 REMHFWLYH IXQFWLRQ UHVXOWVLQPLQKRSVHWWLQJZKLFKGRHVQRWPLQLPLVHDYHUDJHELWGHOD\7KXVDW OLJKW WUDIILF ORDGV WKH )7 REMHFWLYH IXQFWLRQ UHVXOWV LQ VXERSWLPDO SHUIRUPDQFHIURPHQGXVHU VYLHZ # $W PLG UDQJH DQG KLJK WUDIILF ORDGV RXU VROXWLRQ UHVXOWV LQ PXFK EHWWHU SHUIRUPDQFH WKDQ WKH GHIDXOW OLQN ZHLJKW VHWWLQJ UHFRPPHQGHG E\ &LVFR ,Q DGGLWLRQ RXU PLQLPXP GHOD\ REMHFWLYH IXQFWLRQ SHUIRUPV EHWWHU WKDQ WKH )7 REMHFWLYH IXQFWLRQ ZLWK UHVSHFW WR ERWK PD[ XWLOLVDWLRQ DQG DYHUDJH SDFNHWGHOD\WKHUHIRUHEHWWHU4R6SHUIRUPDQFHIURPWKHHQGXVHU VYLHZ ,Q VXPPDU\ XVLQJ WKH QHZ QHWZRUN SHUIRUPDQFH REMHFWLYH IXQFWLRQ IRU ORFDO VHDUFK WR RSWLPLVH OLQN ZHLJKWV UHVXOWV LQ VROXWLRQV WKDW DSSHDUV WR EH PXFK EHWWHU WKDQ GHIDXOW URXWHUV VHWWLQJ VSHFLILHG E\ &LVFR DQG WKRVH UHVXOWLQJ IURP WKH XVH RI REMHFWLYHIXQFWLRQSURSRVHGE\>@7KHUHVXOWLQJVHWRI263)ZHLJKWVIRXQGXVLQJWKH KHXULVWLF SURSRVHG LQ >@ DQG RXU QHZ REMHFWLYH IXQFWLRQ KHOSV WKH $6 RSHUDWRU WR LQFUHDVHWKHLUQHWZRUNSHUIRUPDQFHH[SHULHQFHGE\HQGXVHUVZLWKRXWXSJUDGLQJWKHLU QHWZRUNFDSDFLW\ )RU IXUWKHU ZRUN ZH ZLOO LQYHVWLJDWH WKH UHVXOWV RI WKH RSWLPL]DWLRQ SURFHVV WR D UDQJHRIQHWZRUNVDQGWKHLUVHQVLWLYLW\WRWKH+XUVWSDUDPHWHUHZKLFKFKDUDFWHUL]HV WKHVHOIVLPLODULW\OHYHORIWKH,QWHUQHWWUDIILF

Acknowledgement :H ZRXOG OLNH WR WKDQN $3URI *UHJ $OOHQ IRU KLV FRPPHQWV 7KLV ZRUN KDV EHHQ VXSSRUWHGE\-DPHV&RRN8QLYHUVLW\WKURXJKDQ,QWHUQDWLRQDO3RVW*UDGXDWH5HVHDUFK 6FKRODUVKLS

2Q3HUIRUPDQFH2EMHFWLYH)XQFWLRQVIRU2SWLPLVLQJ5RXWHG1HWZRUNVIRU%HVW4R6

References   %UDGHQ 5 HW DO ,QWHJUDWHG 6HUYLFHV LQ WKH ,QWHUQHW $UFKLWHFWXUH DQ 2YHUYLHZ ,(7)

5)&KWWSLHWIRUJUIFUIFW[W

  %ODNH 6 HW DO $Q $UFKLWHFWXUH IRU 'LIIHUHQWLDWHG 6HUYLFHV ,(7) 5)&

KWWSLHWIRUJUIFUIFW[W

  5RVHQ ( HW DO 0XOWLSURWRFRO /DEHO 6ZLWFKLQJ $UFKLWHFWXUH ,(7) 5)&

KWWSLHWIRUJUIFUIFW[W

  )HOGPDQQ $ HW DO 1HW6FRSH 7UDIILF (QJLQHHULQJ IRU ,3 1HWZRUNV ,((( 1HWZRUN

0DUFK$SULO

  )RUW] % 7KRUXS 0  ,QWHUQHW WUDIILF HQJLQHHULQJ E\ RSWLPL]LQJ 263) ZHLJKWV 3URF

,(((,1)2&200DUFK

  $ZGXFKH'203/6DQG7UDIILF(QJLQHHULQJLQ,3QHWZRUNV,(((&RPPXQLFDWLRQV

0DJD]LQH'HFHPEHU

  :DQJ @FDOODQGGDWDURXWLQJ>@,QWKLVFRQWH[WWKHSUREOHPRIGDWDURXWLQJ LQ ,3 QHWZRUNV LV FRQVLGHUHG LQ WKLV SDSHU E\ XVLQJ *HQHWLF $OJRULWKPV *$ V  DV WRROVRIVHDUFKRSWLPLVDWLRQDQGGHFLVLRQLQRUGHUWRREWDLQDGHTXDWHURXWHV 7KLVSDSHULVSUHVHQWHGDVIROORZWKHQH[WVHFWLRQLQWURGXFHVWKHLQWHUFRQQHFWLRQLQ QHWZRUNVDQGWKH4R6EDVHGURXWLQJ6HFWLRQSUHVHQWVWKHVWUXFWXUHRIWKHSURSRVHG JHQHWLFEDVHGURXWLQJDOJRULWKPDQGVHFWLRQFRQVLGHUVWKHVLPXODWLRQRIGLIIHUHQWLD WLRQRIVHUYLFHV 'LII6HUY $FRQFOXVLRQFORVHVWKHSDSHU

2 Networks Interconnection 7KHFRQFHSWRILQWHUFRQQHFWLRQLVEDVHGRQWKHLPSOHPHQWDWLRQRIDQHWZRUNOD\HUWR KLGHSK\VLFDOFRPPXQLFDWLRQGHWDLOVRIWKHYDULRXVQHWZRUNVDQGVHSDUDWLQJWKHDSSOL FDWLRQOD\HUIURPGDWDURXWLQJSUREOHPV>@$FHQWUDOLVHGDUFKLWHFWXUHEDVHGRQDVLQ JOHQRGHPDQDJHU 5RXWHU LVDVLPSOHVROXWLRQIRUGDWDURXWLQJQHWZRUNV+RZHYHULW 0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS $6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

$Q$GDSWLYH4R6URXWLQJ$OJRULWKPIRU,31HWZRUNV8VLQJ*HQHWLF$OJRULWKPV

EHFRPHV DQRQ VFDODEOH DUFKLWHFWXUHVSHFLDOO\ ZKHQ WKHWUDQVSRUWHG WUDIILFKDV DG\ QDPLF EHKDYLRXU OHDGLQJ WR DQ LQFUHDVH LQ WKH RYHUIORZ GXH WR WKH DFFHVVLELOLW\ LQ IRUPDWLRQ H[FKDQJH DQG WKH QHFHVVDU\ WLPH IRU URXWLQJ GHFLVLRQV 7R WU\ WR UHVROYH WKHVHSUREOHPVRQHFDQDGRSWHLWKHUDQHWZRUNVHJPHQWDWLRQLQWRHQWLUHO\LQGHSHQG HQW DXWRQRPRXV V\VWHPV WKDW DUH FRQQHFWHG E\ D %DFN%RQH 1HWZRUN RU D WRSRORJ\ DJJUHJDWLRQWRLQFUHDVHWKHVFDODELOLW\ 2.1 QoS-based Routing 7KHPDMRULW\RIURXWLQJSURFHVVHVFDQEHFDWHJRULVHGLQWRIRXUSULQFLSDOW\SHVIL[HG URXWLQJ )5 URXWLQJDFFRUGLQJWRWLPH 7'5 URXWLQJDFFRUGLQJWRWKHVWDWH 6'5  DQGURXWLQJDFFRUGLQJWRHYHQWV ('5 >@7KHVHSURFHVVHVDUHEDVHGRQvector distanceRUlink stateSURWRFROVWKDWXVHYDULDQWVRI%HOOPDQ)RUGDQG'LMVNWUDDOJRULWKPV LQRUGHUWRILQGWKHSDWKZLWKWKHOHDVWFRVW>@%DVHGRQWKHQHWZRUNWRSRORJ\vector distanceDQGlink stateDOJRULWKPVWU\WRWUDQVIHUHDFK SDFNHWDORQJWKHVKRUWHVWSDWK IURPWKHVRXUFHWRWKHGHVWLQDWLRQQRGH,QDGGLWLRQWRDVORZQHVVFRQYHUJHQFHDQGWKH SUREDEOHORRSVFUHDWLRQDvector distanceDOJRULWKPXVHVWKHQXPEHURIKRSVDVDVLQ JOHPHWULFWRPDNHDURXWHGHFLVLRQDQGLWGRHVQRWWDNHLQWRDFFRXQW4R6SDUDPHWHUV 7RRYHUFRPHWKHVHOLPLWDWLRQVWKHlink stateDOJRULWKPDVVLJQVDZHLJKWLQJFRHIILFLHQW WRHDFKOLQNVHSDUDWLQJWZRQRGHV7KHFRVWRIHDFKFRQQHFWLRQLVFRQGLWLRQHGE\SULQ FLSDOPHWULFVOLNHWUDQVPLVVLRQGHOD\EDQGZLGWKEORFNLQJSUREDELOLW\ORVVUDWLRMLW WHU  7KHFRQVWUDLQWVRID4R6EDVHGURXWLQJLQFOXGHWKHQHWZRUNWRSRORJ\WKHLQIRUPD WLRQ DERXW QHWZRUN DYDLODELOLW\ UHVRXUFHV WKH WUDIILF 4R6 UHTXLUHPHQWV DQG SROLF\ FRQVWUDLQWV 4R6EDVHG URXWLQJ FDQ WKHQ KHOS WR SURYLGH EHWWHU SHUIRUPDQFHV DQG WR LPSURYH WKH QHWZRUN XWLOLVDWLRQ +RZHYHU LW LV PXFK PRUH FRPSOH[ DQG PD\ FRQ VXPHQHWZRUNUHVRXUFHVOHDGLQJWRDSRWHQWLDOURXWLQJLQVWDELOLW\0RUHRYHUWKHYRO XPH RI H[FKDQJHG DFFHVVLELOLW\ LQIRUPDWLRQ DQG WKH IUHTXHQF\ RI XSGDWH PHVVDJHV UHSUHVHQWDFRPSURPLVHEHWZHHQWKHDFFXUDF\RIWKH4R6SDUDPHWHUVDQGWKHQHWZRUN RYHUORDG>@ 2.2 Routes Computation ,Q 4R6URXWLQJ WKH URXWHV FRPSXWDWLRQ LV FRQVWUDLQHG E\ PXOWLSOH 4R6 SDUDPHWHUV WKDWDUHUHODWLYHWRFODVVHVRIVHUYLFHVDQGWUDIILFSURILOHV>@$URXWLQJPHWKRGRORJ\ WKDW WDNHV LQWR DFFRXQW WKH 4R6QHHGV IRU WKHYDULRXV WUDQVSRUWHG DSSOLFDWLRQV PXVW WKHQEHGHILQHG>@7KHSULQFLSDOGLIILFXOW\LVWKXVWRGHILQHPHWULFVWRXVHDQGWRHV WDEOLVKWKHFRUUHODWLRQEHWZHHQWKHP)RULQVWDQFHWKHHQGWRHQGGHOD\WUDQVPLVVLRQ GHSHQGV RQ VHYHUDO IDFWRUV VXFK DV EDQGZLGWK KDUGZDUH DQG VRIWZDUH URXWHUV UH VRXUFHV WKH EORFNLQJ SUREDELOLW\ WKH ORVV SUREDELOLW\ DQG WKH SURILOH RI WKH WUDQV SRUWHGWUDIILF &KRRVLQJEHWZHHQDVLQJOHRUPXOWLSOHPHWULFVLVGHFLVLYHIRUDURXWLQJDOJRULWKP FRQFHSWLRQ7KHVLQJOHPHWULFLVXVHGZKHQWKHUHLVQRFRUUHODWLRQEHWZHHQWKHRWKHU PHWULFV,QWKHFDVHZKHQPXOWLSOHPHWULFVDUHFRQVLGHUHGWKHURXWLQJDOJRULWKPEH FRPHV KRZHYHU PRUH FRPSOH[ DQG KHDY\ WR LPSOHPHQW 7KH DOJRULWKP SURSRVHG LQ

+LFKDP-XLGHWWH1RXUHGGLQH,GERXINHUDQG$EGHOJKIRXU%HUUDLVVRXO

WKLVSDSHUFRQVLGHUVDGLVWULEXWHGURXWLQJFRPSXWDWLRQZLWKDPL[HGPHWULFWKDWWDNHV LQWRDFFRXQWGLIIHUHQW4R6SDUDPHWHUV

3 QORGA Algorithm 7KHXVHRI*HQHWLF$OJRULWKPVLQRUGHUWRVROYHDURXWLQJSUREOHPLVMXVWLILHGE\WKH IDFWWKDWWKHVHDUFKRIDEHVWURXWHOLQNLQJWZRQRGHVLQDQHWZRUNLVDQRSWLPLVDWLRQ SUREOHP%HVLGHVIXQGDPHQWDOGLIILFXOWLHVUHODWLYHWRWKHGDWDURXWLQJSUREOHPFDQEH UHVROYHGXVLQJ*$ V7KHVHGLIILFXOWLHVFRXOGEHVXPPDULVHGE\WKHQHWZRUNODWHQF\ WLPHZKLFKFDXVHVXQFHUWDLQW\LQWKHREVHUYDWLRQDQGWKHGHWHUPLQDWLRQRIWKHQHWZRUN VWDWHDVZHOODVWKHRYHUIORZGXHWRWKHH[FKDQJHRIURXWLQJLQIRUPDWLRQ*$ VSHUPLW DGLVWULEXWHGSURFHVVLQZKLFKHDFKLQGLYLGXDODFWHGLQGHSHQGHQWO\LQRUGHUWRDGDSWWR WKHVXUURXQGLQJHQYLURQPHQWHYHQZLWKOHVVLQIRUPDWLRQWKDQQHFHVVDU\OHDGLQJWRD RYHUIORZUHGXFWLRQ,WLVDOVRFRQVLGHUHGUREXVWWRWKHIDVWDQGIUHTXHQWFKDQJHRIWKH QHWZRUN VWDWH 7KH SURSRVHG DOJRULWKP QDPHG 4R6 5RXWLQJ *HQHWLF $OJRULWKP  425*$ SHUPLWVWRREWDLQRSWLPDOSDWKVLQ,3QHWZRUNV,WLVD4R65RXWLQJDOJR ULWKP VLQFH LW SHUPLWV WR REWDLQ IHDVLEOH SDWKV WDNLQJ LQWR DFFRXQW 4R6 SDUDPHWHUV ZKLOHRSWLPLVLQJWKHXVHRIQHWZRUNUHVRXUFHV 3.1 Description of the Problem 7KH 425*$ VWUXFWXUH KHOSV WR EXLOG DQ LQWHOOLJHQW SDWK RSWLPLVDWLRQ V\VWHP WKDW LV DEOHWRDGDSWFRQWLQXDOO\WRWKHUDQGRPQHVVRID,3QHWZRUN7KHUHVHDUFKHGSDWKVDUH PRGHOOHGDVFKURPRVRPHVZLWKGLIIHUHQWOHQJWKV$SDWKLVDIROORZLQJRIOLQNVFRQ QHFWLQJGLIIHUHQWQRGHV )LJ $OLQNLVWKXVUHSUHVHQWHGE\DJHQHDQGWKLVODVWLV GHVFULEHGE\WKHH[WUHPLW\QRGHVDQGWKHOLQNZHLJKW )LJ $VSHFLILFVHTXHQFHRI JHQHV IRUPV D FKURPRVRPH )LJ   DQG D VHW RI FKURPRVRPHV IRUPV D SRSXODWLRQ 7KHZHLJKWDFFXPXODWHGRYHUOLQNVFRPSRVLQJDSDWKFRQVWLWXWHVLWVHYDOXDWLRQ7KH OLQNZHLJKW FRXOGGHSHQGRQ VHYHUDO SDUDPHWHUV DQG LWVYDOXH LV YDU\LQJ LQ WLPH DF FRUGLQJWRWKHQHWZRUNG\QDPLFVWDWH7KHZHLJKWRIDOLQN/MRLQLQJQRGHVDQG LV QRWHG 3 ,Q )LJ  QRGHV   DQG  DUH WKH GHVWLQDWLRQ QRGHV FRUUHVSRQGLQJ WR QRGH/LQNV//DQG/DUHWKHQIHDVLEOHDQGKDYHDILQLWHZHLJKW3 % 3%DQG3%      3   





 Fig. 1.([DPSOHRIQRGHVLQWHUFRQQHFWLRQ 

Fig. 2.$JHQHUHSUHVHQWLQJOLQN/ / /

£

/@

Bn p l    w  Bn  p l  w  Bn p l  LQ ZKLFK B n p l  DQG Bn  p l  DUH UHVSHFWLYHO\ WKH DYHUDJH EDQGZLGWK YDOXHV

REWDLQHG LQ WKH n th  DQG n    VDPSOLQJ ZLQGRZV 7KH ZHLJKW w LV FDOFXODWHG E\ th

w    e T  ' >@

7KHFKRLFHRIWKHWLPHFRQVWDQW ' LVYHU\LPSRUWDQWVLQFHDWLPHFRQVWDQWWRRVKRUW GRHV QRW WDNH LQWR DFFRXQW DGHTXDWHO\ SDVW EDQGZLGWK YDOXHV WKDW KDYH WR EH WDNHQ LQWRDFFRXQWIRUDFRUUHFWDGPLVVLRQFRQWUROSROLF\,IWKHWLPHFRQVWDQWLVWRRODUJH RQWKHRWKHUVLGHVWURQJEDQGZLGWKYDULDWLRQVGXHWRDQRWKHUDFFHSWHGIORZDUHWDNHQ LQWRDFFRXQWORQJDIWHUWKH\HIIHFWLYHO\RFFXU th ,I WKHUH LV D IXUWKHU EDQGZLGWK UHTXHVW RI WKH F    IORZ LW LV VXSSRVHG WKDW WKLV IORZLVDGPLWWHGLQWKHQHWZRUNLIDQGRQO\LIWKHVXPRIWKHSHDNUDWHRIWKHQHZIORZ



3LHWUR&DPDUGDDQG'RPHQLFR6WULFFROL

rFPD[   DQG WKH HVWLPDWHG EDQGZLGWK B n p l  LQ WKH VSHFLILHG VDPSOLQJ ZLQGRZ 7 LV OHVVWKDQFKDQQHOFDSDFLW\CWKDWLV Bn p l  rFPD[   C 

,I WKH QHZ IORZ LV DGPLWWHG WKH DOJRULWKP HVWLPDWHV WKH EDQGZLGWK RFFXSLHG E\ WKH DJJUHJDWLRQRI)IORZVLQWKHVXEVHTXHQWVDPSOLQJZLQGRZVFRQVLGHULQJWKHVDPH YDOXHRI p l 

3 Numerical Results ,QWKLVVHFWLRQVRPHQXPHULFDOUHVXOWVDUHSUHVHQWHGLQRUGHUWRWHVWWKHHIIHFWLYHQHVV RIWKHDGPLVVLRQFRQWUROSROLF\EDVHGRQWKHSURSRVHGDOJRULWKP7KHREWDLQHGUHVXOWV DUH FRPSDUHG ZLWK VLPXODWLRQ DQG RWKHU DOWHUQDWLYH DOJRULWKPV WKDW HVWLPDWH WKH DJJUHJDWH EDQGZLGWK XWLOL]LQJ WKH +RHIIGLQJ ERXQGV >@ WKH 1RUPDO GLVWULEXWLRQ >@DQGWKH&KHUQRIIERXQG>@IRUHDFKWLPHZLQGRZ (OHYHQGLIIHUHQW03(*HQFRGHGYLGHRVWUHDPVKDYHEHHQFRQVLGHUHGWKHv $VWHUL[w  v -DPHV%RQG*ROGILQJHUw DQGv -XUDVVLF3DUNw PRYLHVv 7KH6LPSVRQVw FDUWRRQDQ $73WHQQLVILQDOWZRGLIIHUHQWVRFFHUPDWFKHVD)RUPXODUDFHDVXSHUERZOILQDO DQG WZR GLIIHUHQW WDON VKRZV (DFK YLGHR VWUHDP KDV D OHQJWK RI  IUDPHV DSSUR[LPDWHO\ KDOI DQ KRXU ZLWK D WUDQVPLVVLRQUDWH RI IUDPHVV 7KH *URXS RI 3LFWXUHV *23 SDWWHUQLV,%%3%%3%%3%%LHHDFK*23LVFRPSRVHGE\YLGHR IUDPHV$OOYLGHRVWUHDPVKDYHEHHQVPRRWKHGH[SORLWLQJWKH)$5RQOLQHVPRRWKLQJ DOJRULWKP >@ ZLWK D VPRRWKLQJ ZLQGRZ RI DSSUR[LPDWHO\  VHFRQGV DQG D FOLHQW VPRRWKLQJEXIIHUVL]HRI.E\WHV ,Q WKH SURSRVHG VFHQDULR LW LV VXSSRVHG WKDW  GLIIHUHQW W\SHV RI YLGHR VWUHDPV DUH DJJUHJDWHGLQDVKDUHGQHWZRUNOLQN7KHLUVWDUWLQJSRLQWVKDYHEHHQUDQGRPO\FKRVHQ DORQJWKHHQWLUHGXUDWLRQRIWKHYLGHRVWUHDPV7RJXDUDQWHHWKHWRWDOVXSHULPSRVLWLRQ RIDOOVWUHDPVLQHDFKIUDPHLWLVVXSSRVHGWKDWZKHQDVWUHDPILQLVKHVLWVWDUWVDJDLQ IURPWKHEHJLQQLQJ7KHQDIXUWKHUEDQGZLGWKUHTXHVWPDGHE\WKHHOHYHQWKVWUHDP FKRVHQ DV v 7KH 6LPSVRQVw  FDUWRRQ LV VXSSRVHG WR KDSSHQ LQ D VDPSOLQJ ZLQGRZ UDQGRPO\FKRVHQDPRQJDOO(DFKRIWKHIRXUPHQWLRQHGDGPLVVLRQFRQWURODOJRULWKPV HVWDEOLVKHVLIWKHHOHYHQWKIORZFDQEHDGPLWWHGLQWKHQHWZRUNEDVHGRQWKHVSHFLILHG 4R6SDUDPHWHU LHWKHFKRVHQORVVSUREDELOLW\ LQHDFKRIWKHVDPSOLQJZLQGRZVLQ ZKLFK WKH DOJRULWKP LV DSSOLHG,QSDUWLFXODU WKHQHZ VWUHDP LV DGPLWWHG RQO\ LI WKH VXPRILWVSHDNUDWHDQGWKHHVWLPDWHGEDQGZLGWKRIWKHDJJUHJDWLRQRIVWUHDPVLVOHVV WKDQ FKDQQHO FDSDFLW\ ,Q RXU H[SHULPHQWV D VDPSOLQJ ZLQGRZ RI  *23 KDV EHHQ XVHG VR WKDW WKH WRWDO QXPEHU RI DJJUHJDWH EDQGZLGWK VDPSOHV LV  7KHQ WKH H[SRQHQWLDOZHLJKWHG PRYLQJ DYHUDJH ILOWHU DV UHSRUWHG LQ 6HFWLRQ ,, KDV EHHQ DSSOLHG IRU EDQGZLGWK HVWLPDWLRQ ZLWK D FKRVHQ WLPH FRQVWDQW '  RI  PLQXWH ,Q )LJXUH  D FRPSDULVRQ DPRQJ WKH GLIIHUHQW DOJRULWKPV IRU WKH DJJUHJDWH EDQGZLGWK HVWLPDWLRQLVLOOXVWUDWHGVXSSRVLQJWRKDYHWHQGLIIHUHQWW\SHVRIYLGHRVWUHDPVLQWKH QHWZRUN OLQN DOO WKH W\SHVPHQWLRQHG DERYHLQ WKLV VHFWLRQ H[FHSW v 7KH 6LPSVRQVw  YLGHRVWUHDP DQGDVVXPLQJDORVVSUREDELOLW\RI   



/LYH$GPLVVLRQ&RQWUROIRU9LGHR6WUHDPLQJ 16

Aggregate bandwidth (Mbit/s)

14 12 10 8 6 Hoeffding Normal Algorithm Chernoff Simulated peak rate

4 2 0 0

10

20

30 40 Sampling window

50

60



Fig. 3. &RPSDULVRQ DPRQJ GLIIHUHQW EDQGZLGWK HVWLPDWLRQ PHWKRGV ZLWK ORVV SUREDELOLW\   DQGVDPSOLQJZLQGRZRI*23

 7KHv 6LPXODWHGSHDNUDWHw FXUYHUHSUHVHQWVWKHSHDNUDWHUHDFKHGE\WKHDJJUHJDWLRQ RI VWUHDPV DORQJ WKH HQWLUH GXUDWLRQ RI WKH VLPXODWLRQ IRU WKLV UHDVRQ WKH SHDN UDWH YDOXHLVFRQVWDQWIRUHDFKWHPSRUDOZLQGRZ ,WFDQEHQRWHGWKDWLQWKHFRQVLGHUHGVFHQDULRWKHEDQGZLGWKHVWLPDWLRQREWDLQHGZLWK WKH+RHIIGLQJERXQGDOZD\VRYHUHVWLPDWHVWKHVLPXODWHGSHDNUDWHFXUYHUHVXOWLQJLQ WKLV ZD\ LQ DQ H[FHVVLYHO\ FRQVHUYDWLYH EDQGZLGWK HVWLPDWLRQ :KLOH HVWLPDWLRQ SHUIRUPHGZLWKWKHWKUHHRWKHUDOJRULWKPVLQVWHDGUHPDLQXQGHUWKHSHDNUDWHFXUYH SURYLGLQJ LQ WKLV ZD\ D EHWWHU HVWLPDWLRQ 1HYHUWKHOHVV WKH EDQGZLGWK YDOXHV HVWLPDWHGZLWKWKHSURSRVHGDOJRULWKPDUHRQDYHUDJHORZHUWKDQEDQGZLGWKYDOXHV REWDLQHG ZLWK WKH WKUHH RWKHU DOJRULWKPV 7KLV DQDO\VLV LV FRQILUPHG E\ WKH UHVXOWV LOOXVWUDWHG LQ )LJXUH  ZKHUH D GLIIHUHQW FRPSDULVRQ DPRQJ WKH IRXU DGPLVVLRQ FRQWURODOJRULWKPVLVUHSRUWHG ,Q )LJXUH  LV UHSUHVHQWHG D FRPSDULVRQ DPRQJ DJJUHJDWH EDQGZLGWK HVWLPDWLRQV SHUIRUPHG ZLWK WKH IRXU PHQWLRQHG DGPLVVLRQ FRQWURO DOJRULWKPV IRU GLIIHUHQW ORVV SUREDELOLW\ YDOXHV 5HIHUULQJ WR HDFK RI WKH IRXU DOJRULWKPV HDFK RI WKH EDQGZLGWK YDOXHVKDVEHHQGHULYHGDVIROORZV7HQGLIIHUHQWW\SHVRIYLGHRVWUHDPVDOORIOHQJWK  IUDPHV KDYH EHHQ DJJUHJDWHG UDQGRPO\ FKRRVLQJ WKHLU VWDUWLQJ SRLQW XQLIRUPO\ DORQJ WKH HQWLUH GXUDWLRQ RI WKH VWUHDPV DQG F\FOLFDOO\ UHSHDWLQJ HDFK VWUHDPWRJXDUDQWHHWKHWRWDOVXSHULPSRVLWLRQRIDOOWKHVWUHDPVLQHDFKIUDPH7KHQ WKHDJJUHJDWLRQRIVWUHDPVKDVEHHQGLYLGHGLQWRWHPSRUDOZLQGRZVRIOHQJWK *23V IUDPHV DQGWKHODVWRIOHQJWKIUDPHV,QHDFKRIWKHVHZLQGRZV WKH DJJUHJDWH  EDQGZLGWK KDV EHHQ HVWLPDWHG LQ FRUUHVSRQGHQFH RI D IL[HG YDOXH RI p l  $OO WKH EDQGZLGWK YDOXHV KDYH WKHQ EHHQ DYHUDJHG RQ WKH WRWDO QXPEHU RI WHPSRUDO ZLQGRZV 7KLV NLQG RI VLPXODWLRQ KDV WKHQ EHHQ UHSHDWHG  WLPHV HDFK 

3LHWUR&DPDUGDDQG'RPHQLFR6WULFFROL

WLPHUDQGRPO\FKDQJLQJWKHVWDUWLQJSRLQWVRIDOOVWUHDPVDQGWKHREWDLQHGYDOXHV RIWKHHVWLPDWHGEDQGZLGWKKDYHEHHQDYHUDJHGDJDLQ 16

Estimated bandwidth (Mbit/s)

14 12 10 8 6 4

Hoeffding Chernoff Normal Algorithm

2 0 1.0E-04

2.0E-04

5.0E-04 1.0E-03 2.0E-03 Loss probability

5.0E-03

1.0E-02



Fig. 4. $YHUDJHEDQGZLGWKHVWLPDWLRQYVORVVSUREDELOLW\ZLWKGLIIHUHQWDOJRULWKPV

)URP )LJXUH  LW FDQ EH QRWHG WKDW DV H[SHFWHG EDQGZLGWK HVWLPDWLRQ SHUIRUPHG ZLWKHDFKRIWKHDOJRULWKPVJURZVLIORVVSUREDELOLW\GHFUHDVHV7KLVLVGXHWRWKHIDFW WKDWPRUHEDQGZLGWKUHVRXUFHVKDYHWREHDOORFDWHGWRREWDLQORZHUORVVHV$JDLQLW FDQ EH QRWHG WKDW WKH DYHUDJH EDQGZLGWK HVWLPDWLRQ SHUIRUPHG ZLWK WKH +RHIIGLQJ ERXQG LV FRQVLGHUDEO\ KLJKHU WKDQ WKH WKUHH RWKHU DOJRULWKPV ZKLOH WKH SURSRVHG DOJRULWKPSUHVHQWVRQDYHUDJHWKHORZHVWYDOXHVRIHVWLPDWHGEDQGZLGWK 1HYHUWKHOHVV D ORZHU EDQGZLGWK HVWLPDWLRQ FDQ UHVXOW LQ DQ XQGHUHVWLPDWLRQ RI DYDLODEOH EDQGZLGWK UHVRXUFHV WKDW ZRXOG EULQJ WR DFFHSW QHZ VWUHDPV ZLWK PRUH ORVVHV WKDQ WKH VSHFLILHG ORVV SUREDELOLW\ SDUDPHWHU 7R WHVW WKH HIIHFWLYHQHVV RI WKH SURSRVHG DOJRULWKP DQ DGPLVVLRQ FRQWURO WHVW KDV EHHQ SHUIRUPHG FRPSDULQJ WKH SURSRVHG DOJRULWKP ZLWK WKH v &KHUQRII ERXQGw  DQG WKH v 1RUPDO GLVWULEXWLRQw  DOJRULWKPVDQGZLWKVLPXODWLRQUHVXOWVDVFDQEHVHHQLQ)LJXUH7KHFRPSDULVRQ ZLWK WKH +RHIIGLQJ ERXQG KDV EHHQ RPLWWHG EHFDXVH LW RYHUHVWLPDWHV DJJUHJDWH EDQGZLGWKDVFDQEHFOHDUO\VHHQLQ)LJXUH$VUHJDUGVDOJRULWKPUHVXOWVLQHDFKRI WKHWHPSRUDOZLQGRZVWKHDJJUHJDWHEDQGZLGWKKDVEHHQHVWLPDWHGWKHQWKHSHDNUDWH RIWKHQHZIORZ v 6LPSVRQVw KDVEHHQDGGHGDQGWKHFKDQQHOFDSDFLW\QHFHVVDU\WR DFFHSWWKHQHZIORZKDVEHHQGHULYHGIRUHDFKORVVSUREDELOLW\YDOXH7KHVRIRXQG FKDQQHOFDSDFLW\YDOXHVKDYHWKHQEHHQDYHUDJHGRQWKHWRWDOQXPEHURIWKHWHPSRUDO ZLQGRZV RI LQWHUHVW 7KLV SURFHGXUH KDV EHHQ UHSHDWHG  WLPHV DQG WKH  FRUUHVSRQGLQJFKDQQHOFDSDFLW\YDOXHVKDYHEHHQDYHUDJHGIRUHDFKORVVSUREDELOLW\



/LYH$GPLVVLRQ&RQWUROIRU9LGHR6WUHDPLQJ 11

Channel capacity (Mbit/s)

10 9 8 7 Chernoff Normal Algorithm Simulation

6 5 1.0E-04

2.0E-04

5.0E-04 1.0E-03 2.0E-03 Loss probability

5.0E-03

1.0E-02



Fig. 5. $YHUDJHFKDQQHOFDSDFLW\YVORVVSUREDELOLW\ZLWKGLIIHUHQWDOJRULWKPVDQGFRPSDULVRQ ZLWKVLPXODWLRQ

6LPXODWLRQUHVXOWVKDYHEHHQGHULYHGDVIROORZVGLIIHUHQWH[SHULPHQWVKDYHEHHQ FDUULHGRXW,QHDFKRIWKHPLQFRUUHVSRQGHQFHRIDIL[HGYDOXHRIORVVSUREDELOLW\LW KDV EHHQ VXSSRVHG WR DFFHSW D UHTXHVW RI WKH QHZ VWUHDP ZKLFK UDQGRPO\ VWDUWV LQ HDFKRIWKHWHPSRUDOZLQGRZVLQZKLFKWKHDJJUHJDWLRQRIVWUHDPVLVVXEGLYLGHG 7KHQHZIORZLVWKHQDJJUHJDWHGZLWKWKHH[LVWLQJIORZLQDFLUFXODUZD\WRHQVXUH WKHWRWDOVXSHULPSRVLWLRQRIDOOVWUHDPVDVUHSRUWHGDWWKHEHJLQQLQJRIWKLVVHFWLRQ$ EDQGZLGWKYDOXHLVWKHQDSSURSULDWHO\FKRVHQLQVXFKDZD\WKDWWKHQXPEHURIIUDPHV LQZKLFKWKHDJJUHJDWHEDQGZLGWKLVKLJKHUWKDQWKHFKRVHQEDQGZLGWKGLYLGHGE\WKH WRWDO QXPEHU RI IUDPHV FRQVLGHUHG LQ WKH VLPXODWLRQ JLYHV XV WKH ORVV SUREDELOLW\ IL[HG SUHYLRXVO\ $OO WKH  EDQGZLGWK YDOXHV KDYH EHHQ DYHUDJHG DQG D IXUWKHU DYHUDJH KDV EHHQ PDGH RQ WKH  SHUIRUPHG VLPXODWLRQV OLNH WKH FRPSDULVRQ LQ )LJXUH )URP )LJXUH  LW FDQ EH QRWHG WKDW RQ DYHUDJH WKH SURSRVHG DOJRULWKP SHUIRUPV EHWWHU WKDQ WKH &KHUQRII ERXQG DQG 1RUPDO GLVWULEXWLRQ DOJRULWKPV VLQFH WKH HVWLPDWHG FKDQQHO FDSDFLW\ FXUYH LV FORVHU WR WKH VLPXODWLRQ FXUYH HVSHFLDOO\ IRU ORZHUORVVSUREDELOLW\YDOXHV

4 Conclusions ,QWKLVSDSHUDQRYHORQOLQHDOJRULWKPWRSHUIRUPDQ$GPLVVLRQ&RQWUROIRUVPRRWKHG YLGHR VWUHDPV KDV EHHQ GHYHORSHG 7KH SURSRVHG PHWKRG HVWLPDWHV WKH DJJUHJDWH EDQGZLGWK LQWR WHPSRUDO ZLQGRZV RI VSHFLILHG VL]H UHTXLULQJ RQO\ DV LQSXW GDWD LQ WKHVSHFLILHGWLPHVORWDOOEDQGZLGWKOHYHOVRIWKHGLIIHUHQWW\SHVRIYLGHRVWUHDPVDQG WKHORVVSUREDELOLW\VSHFLILFDWLRQ7KHVHGDWDFDQEHGLUHFWO\GHULYHGIURPYLGHRWUDFHV 

3LHWUR&DPDUGDDQG'RPHQLFR6WULFFROL

GXULQJ WUDQVPLVVLRQ 7KH HVWLPDWLRQ RI WKH DJJUHJDWH EDQGZLGWK LV TXLWH VLPSOH WR SHUIRUP WKDQNV WR WKH ))7 DOJRULWKP DQG WKH DJJUHJDWH EDQGZLGWK YDOXHV FDQ EH HDVLO\GHULYHGLQHDFKRIWKHWLPHVORWVLQZKLFKWKH$GPLVVLRQ&RQWURODOJRULWKPLV DSSOLHG 7KH SURSRVHG PHWKRG KDV EHHQ FRPSDUHG ZLWK WKUHH RWKHU 0%$& DOJRULWKPV NQRZQ IURP OLWHUDWXUH DQG ZLWK VRPH VLPXODWLRQ UHVXOWV GLVFXVVLQJ WKH HIIHFWLYHQHVV RI WKH SURSRVHG PHWKRG 7KH QXPHULFDO UHVXOWV VKRZ WKDW LQ DOO WKH SURSRVHGFDVHVRIORVVSUREDELOLW\RXUDOJRULWKPSHUIRUPVEHWWHURQDYHUDJHWKDQWKH RWKHUDGPLVVLRQFRQWURODOJRULWKPVUHVXOWLQJOHVVFRQVHUYDWLYHWKDQWKHRWKHUPHWKRGV DQGDWWKHVDPHWLPHEHWWHUDSSUR[LPDWLQJWKHVLPXODWLRQFKDQQHOFDSDFLW\FXUYH

References  7DQHQEDXP$&RPSXWHU1HWZRUNV3UHQWLFH+DOO7KLUG(GLWLRQ    .XURVH-5RVV.&RPSXWHU1HWZRUNLQJ$7RS'RZQ$SSURDFK)HDWXULQJWKH,QWHUQHW $GGLVRQ:HVOH\/RQJPDQ    5H[IRUG - 6HQ 6 'H\ - )HQJ : .XURVH - 6WDQNRYLF - 7RZVOH\ ' 2QOLQH 6PRRWKLQJ RI /LYH 9DULDEOH%LW5DWH 9LGHR :RUNVKRS RQ 1HWZRUN DQG 2SHUDWLQJ 6\VWHPV6XSSRUWIRU'LJLWDO$XGLRDQG9LGHR6W/RXLV0LVVRXUL    5H[IRUG-6HQ6%DVVR$$6PRRWKLQJ3UR[\6HUYLFHIRU9DULDEOH%LW5DWH6WUHDPLQJ 9LGHR,(((*OREDO,QWHUQHW6\PSRVLXP5LRGH-DQHLUR    )HQJ:5H[IRUG-3HUIRUPDQFH(YDOXDWLRQRI6PRRWKLQJ$OJRULWKPVIRU7UDQVPLWWLQJ 3UHUHFRUGHG9DULDEOH%LW5DWH9LGHR,(((7UDQVDFWLRQVRQ0XOWLPHGLD    )HQJ : 6HFKUHVW 6 &ULWLFDO %DQGZLGWK $OORFDWLRQ IRU 'HOLYHU\ RI &RPSUHVVHG 9LGHR&RPSXWHU&RPPXQLFDWLRQV9RO    )HQJ:-DKDQLDQ)6HFKUHVW62SWLPDO%XIIHULQJIRU'HOLYHU\RI&RPSUHVVHG 3UHUHFRUGHG9LGHR,$67(',600,QWHUQDWLRQDO&RQIHUHQFHRQ1HWZRUNV    )HQJ : 5H[IRUG - $ &RPSDULVRQ RI %DQGZLGWK 6PRRWKLQJ 7HFKQLTXHV IRU WKH 7UDQVPLVVLRQ RI 3UHUHFRUGHG &RPSUHVVHG 9LGHR ,((( ,1)2&20 .REH -DSDQ    0F0DQXV -0 5RVV .: 9LGHR RQ 'HPDQG 2YHU $70 &RQVWDQW5DWH 7UDQVPLVVLRQDQG7UDQVSRUW,(((,1)2&20   =KDQJ=/.XURVH-6DOHKL-'7RZVOH\'6PRRWKLQJ6WDWLVWLFDO0XOWLSOH[LQJDQG &DOO $GPLVVLRQ &RQWURO IRU 6WRUHG 9LGHR ,((( -RXUQDO RQ 6HOHFWHG $UHDV LQ &RPPXQLFDWLRQV9RO1R   6DOHKL-'=KDQJ=/.XURVH-7RZVOH\'6XSSRUWLQJ6WRUHG9LGHR5HGXFLQJ5DWH 9DULDELOLW\ DQG (QGWR(QG 5HVRXUFH 5HTXLUHPHQWV 7KURXJK 2SWLPDO 6PRRWKLQJ ,((($&07UDQVDFWLRQV2Q1HWZRUNLQJ9RO1R   .QLJKWO\(:6KURII1%$GPLVVLRQ&RQWUROIRU6WDWLVWLFDO4R67KHRU\DQG3UDFWLFH ,(((1HWZRUN9RO1R   /L6&KRQJ 6+ZDQJ&//LQN&DSDFLW\$OORFDWLRQDQG1HWZRUN&RQWUROE\)LOWHUHG ,QSXW5DWHLQ+LJK6SHHG1HWZRUNV,((($&07UDQVDFWLRQVRQ1HWZRUNLQJ9RO1R   5HLVVOHLQ 0 5RVV .: &DOO $GPLVVLRQ IRU 3UHUHFRUGHG 6RXUFHV ZLWK 3DFNHW /RVV ,(((-RXUQDORQ6HOHFWHG$UHDLQ&RPPXQLFDWLRQV   +HV]EHUJHU = = WRQ\L -% U  - +HQN 7 (IILFLHQW %RXQGV IRU %XIIHUOHVV 6WDWLVWLFDO 0XOWLSOH[LQJ,(((*/2%(&20  6DQ)UDQFLVFR&$ +ZDQJ &/ /L 6 2Q ,QSXW 6WDWH 6SDFH 5HGXFWLRQ DQG %XIIHU 1RQHIIHFWLYH 5HJLRQ ,(((,1)2&20   .OHLQURFN/4XHXHLQJ6\VWHPV9ROXPH7KHRU\-RKQ:LOH\ 6RQV1HZ-RUN  



/LYH$GPLVVLRQ&RQWUROIRU9LGHR6WUHDPLQJ %DVNHWW ) 0DQL &KDQG\ . 0XQW] 55 3DODFLRV )* 2SHQ &ORVHG DQG 0L[HG 1HWZRUNV RI 4XHXHV ZLWK 'LIIHUHQW &ODVVHV RI &XVWRPHUV -RXUQDO RI WKH $VVRFLDWLRQ IRU &RPSXWLQJ0DFKLQHU\9RO1R   %UHVODX/-DPLQ66KHQNHU6&RPPHQWVRQWKH3HUIRUPDQFHRI0HDVXUHPHQWEDVHG $GPLVVLRQ&RQWURO$OJRULWKPV,(((,QIRFRP  7HO$YLY,VUDHO )OR\G 6 &RPPHQWV RQ 0HDVXUHPHQWEDVHG $GPLVVLRQ &RQWURO IRU &RQWUROOHG/RDG 6HUYLFHV7HFKQLFDOUHSRUW/DXUHQFH%HUNHOH\/DERUDWRU\   *URVVJODXVHU 0 7VH ' $ )UDPHZRUN IRU 5REXVW 0HDVXUHPHQW%DVHG $GPLVVLRQ &RQWURO,((($&07UDQVDFWLRQVRQ1HWZRUNLQJ9RO1R   *URVV ' +DUULV &0 )XQGDPHQWDOV RI 4XHXHLQJ 7KHRU\ -RKQ :LOH\  6RQV 7KLUG (GLWLRQ   &DPDUGD36WULFFROL'7URWWD/$Q$GPLVVLRQ&RQWURO$OJRULWKPEDVHGRQ4XHXHLQJ 1HWZRUNV IRU 0XOWLPHGLD 6WUHDPLQJ ,QWHUQDWLRQDO &RQIHUHQFH RQ 7HOHFRPPXQLFDWLRQ 6\VWHPVy 0RGHOLQJDQG$QDO\VLV0RQWHUH\&$   =KDQJ=/.XURVH-6DOHKL-'7RZVOH\'6PRRWKLQJ6WDWLVWLFDO0XOWLSOH[LQJDQG &DOO $GPLVVLRQ &RQWURO IRU 6WRUHG 9LGHR ,((( -RXUQDO RQ 6HOHFWHG $UHDV LQ &RPPXQLFDWLRQV9RO1R   &DPDUGD 3 6WULFFROL ' $GPLVVLRQ &RQWURO LQ 9LGHR 'LVWULEXWLRQ 6\VWHPV ([SORLWLQJ &RUUHODWLRQ $PRQJ 6WUHDPV 6RIW&20  6SOLW 'XEURYQLN &URDWLD  $QFRQD %DUL ,WDO\    0DQMXQDWK'6LNGDU%,QWHJUDO([SUHVVLRQVIRU1XPHULFDO(YDOXDWLRQRI3URGXFW)RUP ([SUHVVLRQV 2YHU ,UUHJXODU 0XOWLGLPHQVLRQDO ,QWHJHU 6WDWH 6SDFHV 6\PSRVLXP RQ 3HUIRUPDQFH (YDOXDWLRQ RI &RPSXWHU DQG 7HOHFRPPXQLFDWLRQ 6\VWHPV &KLFDJR ,OOLQRLV  





DQM: An Overlay Scheme for Quality of Service Differentiation in Source Specific Multicast 1LQJ:DQJ*HRUJH3DYORX 

&HQWUHIRU&RPPXQLFDWLRQ6\VWHPV5HVHDUFK8QLYHUVLW\RI6XUUH\ *XLOGIRUG8QLWHG.LQJGRP  !"     

Abstract. ,Q WKLV SDSHU ZH SURSRVH D QHZ VFKHPH QDPHG DQM 'LIIHUHQWLDWHGQoS0XOWLFDVW EDVHGRQWKH6RXUFH6SHFLILF0XOWLFDVW SSM  >@PRGHOLQRUGHUWRSURYLGHOLPLWHGDQGTXDOLWDWLYHQoSFKDQQHOVWRVXSSRUW KHWHURJHQHRXV HQG XVHUV 6LPLODU WR WKH 'LII6HUY SDUDGLJP LQ DQM WKH QHWZRUN LV FRQILJXUHG WR SURYLGH ILQLWH QoS VHUYLFH OHYHOV WR ERWK FRQWHQW SURYLGHU DQG UHFHLYHUV %DVHG RQ WKH 6HUYLFH /HYHO $JUHHPHQW ERWK WKH FRQWHQW SURYLGHU DQG JURXS PHPEHUV VKRXOG VHOHFW D VSHFLILF QoS FKDQQHO DYDLODEOH IURP WKH QHWZRUN IRUGDWD WUDQVPLVVLRQ DQG LQWKLV FDVH DUELWUDULO\ TXDQWLWDWLYHQoSVWDWHVDUHHOLPLQDWHG0RUHRYHUZHXVHWKHJURXSDGGUHVVG FRQWDLQHGLQWKH S, G WXSOHLQSSMVHUYLFHPRGHOWRHQFRGHQoSFKDQQHOV DQGGDWDSDFNHWVWKDWEHORQJWRWKHVDPHQoSFKDQQHOLGHQWLILHGE\DFRPPRQ FODVV D DGGUHVV FDQ EH WUHDWHG DJJUHJDWHO\ DQG WKLV FDQ EH UHJDUGHG DV DQ RYHUOD\ VROXWLRQ WR 'LIIHUHQWLDWHG 6HUYLFHV VSHFLILFDOO\ IRU VRXUFH VSHFLILF PXOWLFDVWDSSOLFDWLRQV

1 

Introduction

,Q FRQWUDVW WR WKH FXUUHQW ,QWHUQHW DSSOLFDWLRQV ZLWK 4XDOLW\RI6HUYLFH QoS  UHTXLUHPHQWV ZLOO EH DQ LPSRUWDQW DVSHFW LQ WKH QH[W JHQHUDWLRQ RI WKH ,QWHUQHW ,Q DGGLWLRQ DSSOLFDWLRQV EDVHG RQ JURXS FRPPXQLFDWLRQ ZLOO DOVR EHFRPH ZLGHVSUHDG *LYHQ WKLV H[SHFWHG HYROXWLRQ WKH VLWXDWLRQ LQ ZKLFK WKH ,QWHUQHW LV XQLTXHO\ GRPLQDWHGE\SRLQWWRSRLQWDSSOLFDWLRQVEDVHGRQWKH%HVW(IIRUW BE VHUYLFHOHYHO ZLOOFKDQJHLQWKHIXWXUH 0XOWLFDVWLQJ LV DQ HIILFLHQW DSSURDFK IRU JURXS FRPPXQLFDWLRQV DQG WKH UHFHQWO\ SURSRVHG 6RXUFH 6SHFLILF 0XOWLFDVW SSM >@  PRGHO KDV EHHQ FRQVLGHUHG WR EH D SURPLVLQJVROXWLRQIRUWKHGHYHORSPHQWRIRQHWRPDQ\DSSOLFDWLRQVLQDODUJHVFDOH ,QSSMHDFKJURXSLVLGHQWLILHGE\DQDGGUHVVWXSOH SG ZKHUHSLVWKHXQLTXHIP DGGUHVVRIWKHLQIRUPDWLRQVRXUFHDQGGLVWKHGHVWLQDWLRQFKDQQHODGGUHVV'LUHFWMRLQ UHTXHVWVIURPLQGLYLGXDOVXEVFULEHUVFUHDWHDXQLTXHPXOWLFDVWWUHHURRWHGDWWKHZHOO NQRZQLQIRUPDWLRQVRXUFHLHSSMGHILQHV S, G FKDQQHOVRQSHUVRXUFHEDVLV,Q WKLV PRGHO WKH VFDODELOLW\ SUREOHPV RI IP PXOWLFDVW VXFK DV DGGUHVV DOORFDWLRQ DQG LQWHUGRPDLQ VRXUFH GLVFRYHU\ DUH QRW GHSOR\PHQW REVWDFOHV DQ\ PRUH 'XH WR LWV VLPSOLFLW\ DQG VFDODELOLW\ SSM LV H[SHFWHG WR VHH VLJQLILFDQW GHSOR\PHQW RQ WKH ,QWHUQHWLQWKHQHDUIXWXUHHVSHFLDOO\IRUVLQJOHVRXUFHDSSOLFDWLRQV 2Q WKH RWKHU KDQG WKH SURYLVLRQLQJ RI QoS UHTXLUHPHQWV LQ D VFDODEOH PDQQHU LV DQRWKHU PDMRU UHVHDUFK GLPHQVLRQ WRZDUGV WKH QH[W JHQHUDWLRQ RI WKH ,QWHUQHW $Q 0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS $6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

HIILFLHQWVROXWLRQLVWRFODVVLI\WUDIILFLQWRILQLWHVHUYLFHOHYHOVDQGWUHDWSDFNHWVWKDW EHORQJWRWKHVDPHQoSVHUYLFHOHYHOLQDQDJJUHJDWHPDQQHU'LIIHUHQWLDWHG6HUYLFHV DiffServ  >@ LV D W\SLFDO H[DPSOH RI WKLV DSSURDFK DQG LV FRQVLGHUHG D VFDODEOH VFKHPHIRUGHSOR\LQJQoSZLGHO\5HVHDUFKHIIRUWVKDYHDOVRDGGUHVVHGWKHSUREOHP RI DSSOLFDWLRQV ZLWK KHWHURJHQHRXV QoS UHTXLUHPHQWV JLYHQ WKH SRWHQWLDOO\ GLIIHUHQW FDSDFLW\ RI LQGLYLGXDO UHFHLYHUV ' @ DV DQ LQWHJUDWHG PHFKDQLVP ZLWK WKH FRQVLGHUDWLRQ RI QoS URXWLQJ UHVRXUFH UHVHUYDWLRQ DQG XVHU KHWHURJHQHLW\ 7KLV JHQXLQH UHFHLYHULQLWLDWHG DSSURDFK LQKHULWV VRPH EDVLF FKDUDFWHULVWLFV RI RSVP >@ VXFK DV TXDQWLWDWLYH QoS JXDUDQWHH DQG UHVRXUFH UHVHUYDWLRQ PHUJLQJ IURP KHWHURJHQHRXV HQG XVHUV ,W VKRXOG EH QRWHG WKDW MQDOVRUHTXLUHVWKDWRQWUHHURXWHUVPDLQWDLQVWDWHRQDSHUIORZEDVLVIRUHQGWRHQG QoSJXDUDQWHHVDQGWKLVDVSHFWVWLOOOHDYHVWKHVFDODELOLW\LVVXHSUREOHPDWLF ,Q WKLV SDSHU ZH SURSRVH D QHZ IUDPHZRUN FDOOHG 'LIIHUHQWLDWHG QoS 0XOWLFDVW DQM  WR VXSSRUW qualitative VHUYLFH OHYHOV HJ 2O\PSLF 6HUYLFHV  EDVHG RQ WKH 6RXUFH6SHFLILF0XOWLFDVWPRGHO7KHEDVLFFKDUDFWHULVWLFRIDQMLVDVIROORZV)LUVW TXDOLWDWLYH QoS VWDWHV DUH GLUHFWO\ HQFRGHG LQ WKH FODVV ' DGGUHVV DQG LV FHQWUDOO\ PDQDJHGE\WKHISPVRWKDWFRUHURXWHUVLQVLGHWKHQHWZRUNUHPDLQVWDWHOHVVUHJDUGLQJ QoS VHUYLFH FODVVHV 6HFRQG GLIIHUHQWLDWHG OHYHO RI QoS GHPDQGV IRU WKH VSHFLILF LQIRUPDWLRQVRXUFHLVPHUJHGLQWKHGLVWULEXWLRQWUHHDQGGDWDSDFNHWVIURPGLIIHUHQW VRXUFHVEXWEHORQJHGWRWKHVDPHQoSVHUYLFHOHYHOLGHQWLILHGE\DFRPPRQPXOWLFDVW JURXSDGGUHVVFDQEHWUHDWHGDJJUHJDWHO\0RUHRYHUDSUHGHILQHGQXPEHURIFODVVHV RI VHUYLFHV E\ WKH ISP PDNH LW HDVLHU WR SURYLVLRQ QHWZRUN UHVRXUFHV IRU HDFK QoS DJJUHJDWHDQGWKLVLVLQWKHVDPHIODYRURIWKHFODVVLFDO'LIIHUHQWLDWHG6HUYLFHV)URP WKLVSRLQWRIYLHZWKHSURSRVHGDQMPRGHOFDQEHUHJDUGHGDVDQRYHUOD\VROXWLRQ RI'LII6HUYVSHFLILFDOO\IRUVRXUFHVSHFLILFPXOWLFDVWDSSOLFDWLRQV  

2

Supporting Applications with QoS Heterogeneity

 2.1 The MQ Approach  %HLQJDQLQWHJUDWHGVROXWLRQMQ VHWVXSDPXOWLFDVWGLVWULEXWLRQWUHHZLWKTXDQWLWDWLYH QoSUHTXLUHPHQWVDQGPDNHVH[SOLFLWEDQGZLGWKUHVHUYDWLRQIRUHDFKJURXSPHPEHU GXULQJ WKH SKDVH RI WUHH FRQVWUXFWLRQ :KHQ WKHUH H[LVW KHWHURJHQHRXV UHFHLYHUV UHVRXUFHVDUHUHVHUYHGXSWRWKHSRLQWZKHUHWKHSDWKVWRGLIIHUHQWUHFHLYHUVGLYHUJH :KHQ D MRLQ UHTXHVW SURSDJDWHV XSVWUHDP WRZDUGV WKH VRXUFH LW VWRSV DW WKH SRLQW ZKHUHWKHUHLVDOUHDG\DQH[LVWLQJQoSUHVHUYDWLRQWKDWLVHTXDOWRRUJUHDWHUWKDQWKDW EHLQJ UHTXHVWHG )LJ  EDVLFDOO\ LOOXVWUDWHV KRZ GLIIHUHQW UHVRXUFH UHVHUYDWLRQV DUH PHUJHGDORQJWKHPXOWLFDVWMRLQSURFHGXUH6XSSRVHWKHUHTXHVWVIURPUHFHLYHUAB DQG C GHPDQGV 0ESV NESV DQG NESV EDQGZLGWK UHVSHFWLYHO\ WKHLU UHVHUYDWLRQVDUHPHUJHGWRWKHKLJKHVWUHTXHVWDWHDFKKRSDVVKRZQLQWKHILJXUHMQ FDQ DOVR DGDSW WR UHVRXUFH FRQVXPSWLRQ ZLWK G\QDPLF JURXS PHPEHUVKLS )RU H[DPSOH LI DQ RQWUHH URXWHU GHWHFWV WKDW WKH GHSDUWLQJ UHFHLYHU RULJLQDOO\ UHTXHVWHG WKH KLJKHVW QoS LW ZLOO DXWRPDWLFDOO\ VKULQN LWV UHVHUYDWLRQ RU HYHQ UHVKDSH WKH GLVWULEXWLRQWUHHWRH[DFWO\VDWLVI\WKHUHPDLQLQJSDUWLFLSDQWV,Q)LJ E ZHFDQILQG WKDWZKHQUHFHLYHUAZLWKWKHEDQGZLGWKUHTXLUHPHQWRI0ESVZDQWVWROHDYHWKH PXOWLFDVW VHVVLRQ WKH UHPDLQLQJ UHFHLYHU B ZLWK NESV UHTXLUHPHQW ZLOO VZLWFK

1LQJ:DQJDQG*HRUJH3DYORX

IURPWKHRULJLQDO VKDUH G S DWK 6Æ5Æ5Æ5 ZLWKWKHFDSDFLW\RI0ESVWRD VKRUWHU RQH 6Æ5Æ5  ZKLFK VWLOO VDWLVILHV LWV QoS GHPDQG IRU EDQGZLGWK RSWLPL]DWLRQSXUSRVH 2Q WKH RWKHU KDQG WKH PHFKDQLVP IRU QHWZRUN UHVRXUFH DOORFDWLRQ LV LQ DQ DFFXPXODWLYH IDVKLRQ LH EDQGZLGWK LV UHVHUYHG LQ VHTXHQFH IRU YDULRXV LQFRPLQJ QoSUHTXHVWVXQWLOWKHOLQNEHFRPHVVDWXUDWHG7KLVDSSURDFKLVVLPSOHEXWPLJKWQRW EH HIILFLHQW LQ EDQGZLGWK DOORFDWLRQ HVSHFLDOO\ LQ FDVH RI KLJKO\ G\QDPLF JURXS PHPEHUVKLS )URP WKH GHSOR\PHQW SRLQW RI YLHZ HDFK RQWUHH URXWHU QHHGV WR PDLQWDLQ QRW RQO\ JURXS VWDWHV EXW DOVR WKH TXDQWLWDWLYH QoS GHPDQGV IRU LWV GRZQVWUHDPUHFHLYHUVDQGWKLVLPSRVHVKHDY\RYHUKHDGLQDVLPLODUIDVKLRQWRRSVP

6

ES

V

V ES N 

5  N ES V

0ESV

$

% NESV

5



&

$

5 N ES V

V ES N  

5

% NESV

NESV

D

2.2

0ESV

0ESV 5

6

5  NE SV



V ES 0

V ES 0 

0ESV

0 

E



Fig. 1MQJURXSMRLQDQGWUHHUHVKDSLQJ  Layered Transmission

7KLVDSSURDFKLVSDUWLFXODUO\XVHIXOIRU,QWHUQHWTVDSSOLFDWLRQVVLQFHLWUHOLHVRQWKH DELOLW\ RI PDQ\ YLGHR FRPSUHVVLRQ WHFKQRORJLHV WR GLYLGH WKHLU RXWSXW VWUHDP LQWR OD\HUV D base layer DV ZHOO DV RQH RU PRUH enhancement layers 7KH EDVH OD\HU LV LQGHSHQGHQWO\ GHFRGHG DQG LW SURYLGHV D EDVLF OHYHO RI TXDOLW\ 7KH HQKDQFHPHQW OD\HUVFDQRQO\EHGHFRGHGWRJHWKHUZLWKWKHEDVHOD\HUWRLPSURYHWKHYLGHRTXDOLW\ 7KHVRXUFHFDQVHQGLQGLYLGXDOOD\HUVWRGLIIHUHQWPXOWLFDVWJURXSVDQGDUHFHLYHUFDQ MRLQWKHJURXSDVVRFLDWHGZLWKWKHEDVHOD\HUDQGDVPDQ\OD\HUVIRUHQKDQFHPHQWDV LWV FDSDELOLW\ DOORZV 5HFHLYHU'ULYHQ /D\HUHG 0XOWLFDVW RLM  >@ LV D W\SLFDO H[DPSOH IRU OD\HUHG YLGHR WUDQVPLVVLRQ )LJ  LOOXVWUDWHV WKH ZRUNLQJ VFHQDULR RI RLM DQG )LJ  E  GHVFULEHV KRZ UHFHLYHU R2 SUREHV  WR VXEVFULEH WR DGGLWLRQDO HQKDQFHGOD\HUV %DVH/D\HU (QKDQFHPHQW /D\HU (QKDQFHPHQW /D\HU

5

5

FRQJHVWLRQ GHWHFWHG

/D\HUVXEVFULEHG

6

HQKDQFHPHQW HQKDQFHPHQW EDVH

5

D /D\HUHGPXOWFDVWWUHH

WLPH E /D\HUSURELQJIRU5

Fig. 2/D\HUHGWUDQVPLVVLRQ RLM 



DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

2.3

Replicated Transmission

,WVKRXOGEHQRWHGWKDWQRWDOOW\SHVRIPXOWLPHGLDVWUHDPVFDQEHHQFRGHGLQWROD\HUV DV GHVFULEHG DERYH $Q DOWHUQDWLYH DSSURDFK LV UHSOLFDWHG WUDQVPLVVLRQ WKDW LV DSSOLFDEOH WR JHQHUDOL]HG W\SH RI PXOWLPHGLD DSSOLFDWLRQV ,Q WKLV DSSURDFK WKH LQIRUPDWLRQ VRXUFH NHHSV D ILQLWH QXPEHU RI VWUHDPV FDUU\LQJ WKH VDPH FRQWHQW EXW HDFK WDUJHWHG DW UHFHLYHUV ZLWK GLIIHUHQW FDSDELOLWLHV ,Q D VLPLODU IDVKLRQ WR OD\HUHG WUDQVPLVVLRQ WKH GDWD VRXUFH DVVLJQV GLIIHUHQW PXOWLFDVW JURXSV WR HDFK RI WKH PDLQWDLQHG VWUHDPV DQG UHFHLYHUV PD\ PRYH DPRQJ WKHP E\ VXEVFULELQJ WR WKH FRUUHVSRQGLQJ JURXS DGGUHVV $ W\SLFDO H[DPSOH RI UHSOLFDWHG WUDQVPLVVLRQ LV 'HVWLQDWLRQ 6HW *URXSLQJ DSG  >@ )LJ  GHVFULEHV KRZ DSG ZRUNV LQ D KHWHURJHQHRXVHQYLURQPHQW  6

4R6 KLJKHVW

FRQJHVWLRQ GHWHFWHG

4R6 PHGLXP

5

5

5

D 5HSOLFDWHGPXOWFDVWWUHH

KLJK

4R6UHTXHVWHG

4R6 ORZHVW

1R 1R 1R ORZ

WLPH E 4R6SURELQJIRU5



Fig. 35HSOLFDWHGWUDQVPLVVLRQ DSG

3

Basic DQM Framework

 )URP WKH SUHYLRXV VHFWLRQ ZH FDQ ILQG WKDW MQ SURYLGHV D W\SH RI DUELWUDU\ EDQGZLGWKJXDUDQWHHGVHUYLFHZKLOHDSGDQGRLMDGRSWVGLIIHUHQWLDWHGVHUYLFHVWR KHWHURJHQHRXVHQGXVHUV)URPWKHYLHZSRLQWRIVFDODELOLW\WKHODWWHUWZRDSSURDFKHV LQFXUOLJKWHUJURXSVWDWHRYHUKHDGLQVLGHWKHQHWZRUN2QWKHRWKHUKDQGLQERWKRLM DQG DSG LW LV H[WHUQDO VRXUFHV WKDW GHFLGH LQGLYLGXDO QoS FODVVHV DQG WKXV LW LV GLIILFXOWWRSHUIRUPDJJUHJDWHGGDWDWUHDWPHQWIRUPXOWLSOHVRXUFHVLQVLGHWKHQHWZRUN VLQFHWKHQoSGHILQLWLRQDQGFRQILJXUDWLRQRIHDFKVRXUFHJURXSVHVVLRQLVGLIIHUHQW ,Q WKLV SDSHU ZH SURSRVH D QHZ WUDQVPLVVLRQ VFKHPH FDOOHG 'LIIHUHQWLDWHG QoS 0XOWLFDVW DQM  ZKLFK FDQ EH UHJDUGHG DV WKH LQWHJUDWLRQ RI 6RXUFH 6SHFLILF 0XOWLFDVW SSM DQGWKH2O\PSLF6HUYLFHPRGHOLQ'LII6HUY)URPDYLHZSRLQWRIWKH ISP LW SURYLGHV H[WHUQDO VRXUFHUHFHLYHUV ZLWK D ILQLWH FODVV RI VHUYLFHV HJ JROG VHUYLFHVLOYHUVHUYLFHDQGEURQ]HVHUYLFH HDFKRIZKLFKLVXQLTXHO\HQFRGHGLQWRD FODVV D DGGUHVV ZLWKLQ VXEVHW RI   LQ WKH SSM PRGHO ,Q VXFK D VLWXDWLRQ WKH LQWHUSUHWDWLRQ RI SSM DGGUHVV WXSOH S, G  EHFRPHV VWUDLJKWIRUZDUG S LGHQWLILHV WKH DGGUHVVRIWKHLQIRUPDWLRQVRXUFHDQGGVWDQGVIRUWKHQoSVHUYLFHOHYHO ZHQDPHLW QoSFKDQQHO WKDWLVDYDLODEOHIURPS2QFHUHFHLYHUVKDYHGHFLGHGWKHVRXUFHDGGUHVV SDQGWKHFODVVDGGUHVVGWKH\ZLOOGLUHFWO\VHQG S, G MRLQUHTXHVWVWRWKHVRXUFH

1LQJ:DQJDQG*HRUJH3DYORX

6LQFH WKH SURYLGHG VHUYLFH OHYHOV DUH FHQWUDOO\ PDQDJHG E\ WKH ISP LQVWHDG RI LQGLYLGXDOVRXUFHVWKLVW\SHRIPDSSLQJEHWZHHQQoSFODVVDQGJURXSDGGUHVVGRHV QRWLQWURGXFHDQ\VFDODELOLW\SUREOHPZKHQWKHQXPEHURIH[WHUQDOVRXUFHVLQFUHDVHV LHWRWDOQXPEHURIQoSFKDQQHOVLVLQGHSHQGHQWRIWKHQXPEHURIH[WHUQDOVRXUFHV  7KH %DQGZLGWK %URNHU BB  LQ WKH QHWZRUN LV UHVSRQVLEOH IRU FRPSXWLQJ DYDLODEOH EDQGZLGWKUHVRXUFH DQG GHFLGLQJ ZKHWKHU RUQRW WR DFFHSW QHZGDWD LQMHFWLRQV IURP VRXUFHVDVZHOODVMRLQUHTXHVWVIURPJURXSPHPEHUV:KHQDQHZVXEVFULEHUZDQWV WR UHFHLYH GDWD IURP WKH VRXUFH S LW ZLOO ILUVW QHJRWLDWH ZLWK BB RQ QoS FKDQQHO VHOHFWLRQ,IWKHBBLVDEOHWRDOORFDWHVXIILFLHQWEDQGZLGWKWRJUDIWWKHVXEVFULEHUWR WKH H[LVWLQJ VRXUFH VSHFLILF WUHH LQ WKH UHTXHVWHG FKDQQHO WKH S, G  MRLQ UHTXHVW LV DFFHSWHG ,I WKH BB FDQQRW DOORFDWH WKH UHTXLUHG EDQGZLGWK IRU LQFOXGLQJ WKH QHZ VXEVFULEHULQWRWKHQoSFKDQQHOWKHMRLQUHTXHVWZLOOEHUHMHFWHGDQGWKHVXEVFULEHUV PD\VXEVFULEHWRRWKHUQoSFKDQQHOVE\VHQGLQJGLIIHUHQW S, G∞ MRLQUHTXHVWV7KH UHODWLRQVKLSEHWZHHQVRXUFHVVXEVFULEHUVDQGWKHISPQHWZRUNLVGHVFULEHGLQ)LJ  &RQWHQW 3URYLGHUV 6 6   6i

,63QHWZRUN

6/$ %DQGZLGWK %URNHU

$GPLVVLRQ FRQWURO

4R6 PDSSLQJ *URXS FODVV DGGUHVV

4R6FKDQQHO * 4R6FKDQQHO *

6/$ 6i*j -RLQUHTXHVW -RLQ$&. 1$&.

......

GDWD

4R6FKDQQHOj *j GDWD

6XEVFULEHUV 5 5   5n  



Fig. 4DQM )UDPHZRUN  :KHQWKHMRLQUHTXHVWKDVEHHQDSSURYHGWKHQHZVXEVFULEHUZLOOFRPELQHWKHIP DGGUHVVRI S DQG JURXS DGGUHVV G LGHQWLI\LQJ WKHGHVLUHG QoS FKDQQHOLQWR D S, G  WXSOHDQGVHQGWKLVMRLQUHTXHVWWRZDUGVWKHVRXUFHS,IWKLV S, G MRLQUHDFKHVDQRQ WUHHURXWHUZLWKJURXSVWDWH S, G∞ ZKHUHG∞LGHQWLILHVDKLJKHUQoSFKDQQHOWKHQWKLV MRLQUHTXHVWLVWHUPLQDWHGDWWKLVURXWHU,QWKLVFDVHDQHZIORZLVEUDQFKHGIURPWKH H[LVWLQJVRXUFHVSHFLILFWUHHDQGOHDGVWRWKHQHZVXEVFULEHU$VHQGHUVLPSO\QHHGVWR LQMHFWDVLQJOHGDWDVWUHDPLQWRWKHQHWZRUNZLWKWKHKLJKHVWQoSFKDQQHOUHTXHVWHG )LJ  SUHVHQWV WKH EDVLF GHVFULSWLRQ RI WKH SURSRVHG QoS PHUJLQJ LQ SSM VHUYLFH PRGHO,WLVZRUWKPHQWLRQLQJWKDWWKLVW\SHRIQoSPHUJLQJLVVLJQLILFDQWO\GLIIHUHQW IURPERWKMQ DQG RSVPH[SOLFLWUHVHUYDWLRQMQDQGRSVPWDUJHWWRDFKLHYHHQGWR HQG QoS JXDUDQWHH ZLWK TXDQWLWDWLYH UHVHUYDWLRQ VW\OH DQG KHQFH WKH UHOHYDQW VWDWH QHHGVWREHPDLQWDLQHGIRUHDFKIORZZLWKYDULRXVQoSGHPDQGV,QWKHVFHQDULRRI GLIIHUHQWLDWHGQoSFODVVHVQRWRQO\JURXSPHPEHUVKDYHWRVHOHFWRQHRIWKHDYDLODEOH FKDQQHOV SURYLGHG E\ WKH ISP EXW DOVR LQIRUPDWLRQ VRXUFHV VKRXOG FRQIRUP WR WKH ISP∞s FKDQQHO FRQILJXUDWLRQ SURILOH ,Q WKLV FDVH JURXS VWDWHV VFDODELOLW\ LQVLGH WKH QHWZRUNLVDFKLHYHGVLQFHH[WHUQDOVRXUFHVDUHQRWDOORZHGWRSURYLGHWKHLURZQQoS FKDQQHO FRQILJXUDWLRQ DV WKH\ GR LQ DSG DQG RLM $OVR QRWH WKDW GDWD WUHDWPHQW LQVLGHWKHQHWZRUNLVGHFLGHGE\WKHFODVVDDGGUHVVGLHZLWKLQHDFKURXWHUGDWD

DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

SDFNHWVIURPGLIIHUHQWVRXUFHVSEXWZLWKFRPPRQFODVVDDGGUHVVGFDQEHWUHDWHG DJJUHJDWHO\,QWKLVVHQVHWKHJURXSDGGUHVVGWDNHVDGGLWLRQDOUROHVLPLODUWRWKDWRI WKH'LIIHUHQWLDWHG6HUYLFHV&RGH3RLQW DSCP LQ'LII6HUYQHWZRUNV  6

*ROGVHUYLFH 6*

6*

6LOYHUVHUYLFH 6* %URQ]HVHUYLFH 6*

6*

6*

5

5

5

6*

6*

6*



Fig. 5DQMJURXSVWDWHPDLQWHQDQFH  7KHDGYDQWDJHVRIWKHSURSRVHGDQMVFKHPHDUHDVIROORZV0RVWLPSRUWDQWO\LW VROYHVWKHIXQGDPHQWDOFRQIOLFWLRQEHWZHHQVWDWHOHVV'LII6HUYVHUYLFHPRGHODQGVWDWH EDVHG ,3 PXOWLFDVW VHPDQWLFV ,Q 'LII6HUY PRGHO FRUH URXWHUV GR QRW PDLQWDLQ DQ\ QoS VWDWHV IRU LQGLYLGXDO DSSOLFDWLRQVIORZV DQG GDWD WUHDWPHQW LV LQGLFDWHG LQVLGH HDFKSDFNHWKHDGHU2QWKHRWKHUKDQGWKHEDVLFPHFKDQLVPRI,3PXOWLFDVWLVWRNHHS JURXS VWDWHV LQVLGH WKH QHWZRUN VR DV WR HQURXWH GDWD WR DFWLYH JURXS PHPEHUV ,Q DQM QoS VWDWHV DUH GLUHFWO\ HQFRGHG LQWR PXOWLFDVW DGGUHVV DQG PDLQWDLQHG LQVLGH WKHQHWZRUNDVRULJLQDOO\QHHGHGLQ,3PXOWLFDVWDQGKHQFHQRRWKHUQoSLQIRUPDWLRQ QHHGWREHNHSWDWFRUHURXWHUV2WKHUZLVHLIZHGRQ’ WXVHJURXSDGGUHVVWRLGHQWLI\ QoSFKDQQHOVLQWKHMRLQUHTXHVWWKLVLQIRUPDWLRQVKRXOGEHFRQWDLQHGHOVHZKHUHIRU LQVWDQFH LQ WKH RSWLRQ ILHOG RI WKH MRLQ UHTXHVW SDFNHW :KHQ WKLV MRLQ UHTXHVW LV KHDGLQJIRUWKHLQIRUPDWLRQVRXUFHHDFKRIWKHURXWHUVLWKDVSDVVHGWKURXJKVKRXOG UHFRUG WKH QoS UHTXLUHPHQWV LQIRUPDWLRQ DQG DVVRFLDWH LW ZLWK WKH GRZQVWUHDP LQWHUIDFH IURP ZKLFK WKH MRLQ UHTXHVW KDV EHHQ UHFHLYHG 7KLV LV QHFHVVDU\ EHFDXVH RWKHUZLVH DSCP FRQWDLQHG LQ WKH GDWD SDFNHW FDQQRW EH PRGLILHG ZKHQ WKH SDFNHW UHDFKHV WKH EUDQFKLQJ SRLQW RI WKH VRXUFH VSHFLILF WUHH ZKHUH KHWHURJHQHRXV QoS FODVVHVPHHWHDFKRWKHU%\UHFRUGLQJWKHQoSFODVVLQIRUPDWLRQDWFRUHURXWHUVZKHQ WKH JURXS GDWD FRPHV IURP WKH XSVWUHDP LQWHUIDFH WKH RQWUHH URXWHU H[DFWO\ NQRZV WKURXJK ZKLFK QoS FODVV LW VKRXOG IRUZDUG WKH SDFNHWV RQ LWV GLIIHUHQW GRZQVWUHDP LQWHUIDFHV 1R GRXEW WKLV DSSURDFK UHTXLUHV WKDW FRUH URXWHUV PDLQWDLQ QoS LQIRUPDWLRQDWLWVGRZQVWUHDPLQWHUIDFHVLQDGGLWLRQWRWKHSODLQ S, G VWDWHEXWWKLV GRHV QRW FRQIRUP WR WKH EDVLF QoS VWDWHOHVV UHTXLUHPHQW RI'LII6HUY VHUYLFH PRGHO 6HFRQGVHUYLFHGLIIHUHQWLDWLRQLVFHQWUDOO\GHILQHGDQGPDQDJHGE\WKHISPLQVWHDGRI LQGLYLGXDOVRXUFHVDVLWLVGRQHLQDSGDQGRLMWUDIILFIURPGLIIHUHQWVRXUFHVEXW ZLWKLGHQWLFDOQoSFODVVFDQEHWUHDWHGLQDQDJJUHJDWHGIDVKLRQLQVLGHWKHQHWZRUN )LQDOO\LQFRQWUDVWZLWKWKH FRPHDQGXVH VWUDWHJ\RIEDQGZLGWKDOORFDWLRQLQMQ DQM DOORZV DQ ISP WR DOORFDWH QHWZRUN UHVRXUFHV VSHFLILFDOO\ WR LQGLYLGXDO QoS FKDQQHOV DFFRUGLQJ WR WKHIRUHFDVWHG WUDIILFGHPDQGV IURP HDFKRI WKHP VR WKDW WKH WUDIILF ORDGLQJ FDQ EH LPSURYHG E\ WKH PRUH IOH[LEOH EDQGZLGWK FRQILJXUDWLRQ

1LQJ:DQJDQG*HRUJH3DYORX

+RZHYHU WKHUH LV D UHVWULFWLRQ UHJDUGLQJ WKLV DSSURDFK 6LQFH WKH QoS FKDQQHO LV VRXUFHVSHFLILFLWLVLPSRVVLEOHIRUDVLQJOHVRXUFHZLWKDXQLTXHIPDGGUHVVSWRVHQG PXOWLSOH GDWD VWUHDPV ZLWK GLIIHUHQW FRQWHQWV ,Q WKH FODVVLF SSM PRGHO DQ LQIRUPDWLRQ VRXUFH FDQ EH VLPXOWDQHRXVO\ LQYROYHG LQ PXOWLSOH JURXSV EHFDXVH S, G1 DQG S, G2 DUHFRPSOHWHO\LQGHSHQGHQWZLWKHDFKRWKHU$VKRUWWHUPVROXWLRQWR WKLVUHVWULFWLRQLVWRXVHGLIIHUHQWXQLFDVW,3VRXUFHDGGUHVVIRUHDFKJURXSVHVVLRQ  

4

DQM QoS Channel Maintenance

4.1

Data Forwarding

&XUUHQW URXWHU LPSOHPHQWDWLRQ IRU VHUYLFH GLIIHUHQWLDWLRQ DGRSWV SULRULW\ TXHXLQJ WHFKQRORJLHVVXFKDV&ODVV%DVHG4XHXH CBQ DQG:HLJKWHG)DLUHG4XHXH WFQ  )RU H[DPSOH LQ 'LII6HUY QHWZRUNV GDWD SDFNHWV PDUNHG ZLWK GLIIHUHQW DSCP YDOXH DUH WUHDWHG LQ TXHXHV ZLWK GLIIHUHQW SULRULW\ IRU VFKHGXOLQJ 6LPLODUO\ LQ DQM FRUH QHWZRUN EDQGZLGWK LV GLYLGHG VSHFLILFDOO\ IRU HDFK QoS FKDQQHO DQG GDWD SDFNHWV IURP GLIIHUHQW FKDQQHOV GLVWLQJXLVKHG E\ FODVV ' DGGUHVV  DUH VFKHGXOHG LQ WKH FRUUHVSRQGLQJ SULRULW\ TXHXHV ,Q WKLV VHFWLRQ ZH EDVLFDOO\ GHVFULEH WKH ZRUNLQJ PHFKDQLVP RI URXWHUV WKDW FDQ VXSSRUW WKH UHOHYDQW IXQFWLRQDOLW\ RI QoS FKDQQHO GLIIHUHQWLDWLRQ 2QFH D URXWHU UHFHLYHV S, G  MRLQ UHTXHVWV ZLWK GLIIHUHQW YDOXHV RI G WKDW DUH DVVRFLDWHGZLWKYDULRXVQoSFKDQQHOVIURPVXEVFULEHUVLWZLOOPHUJHDOORIWKHPDQG RQO\VHQGDVLQJOH S, Gm MRLQUHTXHVWWRZDUGVSZKHUHGmLVWKHFODVVDDGGUHVV DVVRFLDWHGZLWKWKHKLJKHVWQoS FKDQQHOEHLQJUHTXHVWHG+HUHZHGHILQHWKHLQWHUIDFH IURPZKLFKDMRLQUHTXHVWLVUHFHLYHGDVWKHdownstream interfaceDQGWKHRQHXVHGWR GHOLYHUXQLFDVWGDWDWRWKHVRXUFHDVWKHupstream interface:KHQWKHURXWHUUHFHLYHV JURXSGDWDIURPLWVXSVWUHDPLQWHUIDFHLWZLOOWDNHWKHIROORZLQJDFWLRQVWRIRUZDUGWKH SDFNHWV DOVRVKRZQLQ)LJ D VXSSRVHQoS G !QoS G’   /RRN XS WKH JURXS VWDWH V  DVVRFLDWHG ZLWK WKH VRXUFH S RQ HDFK GRZQVWUHDP LQWHUIDFHDQGGXSOLFDWHWKHSDFNHWZKHUHQHFHVVDU\  &RS\WKHYDOXHRIGFRQWDLQHGLQWKH S, G VWDWHDWHDFKGRZQVWUHDPLQWHUIDFHWR WKHIPGHVWLQDWLRQILHOGLQWKHGXSOLFDWHGSDFNHW LIWKHWZRDUHQRWFRQVLVWHQW   $VVLJQWKHGDWDSDFNHWWRWKHSULRULW\TXHXHDVVRFLDWHGZLWKUHOHYDQWQoSFKDQQHO DWWKHGRZQVWUHDPLQWHUIDFHEDVHGRQWKH S, G FKDQQHOVWDWH 6WHS  LVQHFHVVDU\VLQFHWKHYDOXHRIGFRQWDLQHGLQWKHSDFNHWLQGLFDWHVKRZWKLV SDFNHW ZLOO EH WUHDWHG LQ WKH QH[W KRS RI RQWUHH URXWHU 5HPHPEHU WKDW WKH JURXS VWDWHVDUHFUHDWHGE\ S, G MRLQUHTXHVWVIRUGLIIHUHQWQoSFKDQQHOVDQGWKHZD\GDWD SDFNHWVDUHWUHDWHGDWHDFKURXWHULVXQLTXHO\LGHQWLILHGE\WKHYDOXHRIGFRQWDLQHGLQ WKH S, G VWDWHDQGLQWKLVZD\GDWDFDQEHIRUZDUGHGDFFRUGLQJWRWKHQoSUHTXHVWV IURP LQGLYLGXDO XVHUV 2Q WKH RWKHU KDQG GDWD SDFNHWV IURP GLIIHUHQW VRXUFHV S EXW ZLWKWKHVDPHFODVVDDGGUHVVLQWKHLU S, G DGGUHVVWXSOHVDUHWUHDWHGDJJUHJDWHO\LQ WKHFRUUHVSRQGLQJTXHXHV7RDFKLHYHWKLVWKHISPVKRXOGDOVRPDNHWKHFRQILJXUDWLRQ VXFK WKDW HDFK SULRULW\ TXHXH LV DVVRFLDWHG ZLWK D JURXS DGGUHVV RQ GRZQVWUHDP LQWHUIDFHV VKRZQ LQ )LJ  E  7KLV ILJXUH DOVR LOOXVWUDWHV KRZ GDWD IURP GLIIHUHQW VRXUFHVEXWZLWKDFRPPRQJURXSDGGUHVVLVWUHDWHGDJJUHJDWLYHO\LQDVSHFLILFTXHXH RIDFRUHURXWHU

DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ 4 *

XSVWUHDP LQWHUIDFH 'XSOLFDWH SDFNHW

6

5

 6*

XSVWUHDP LQWHUIDFH 6*

XSVWUHDP LQWHUIDFH 6*

6

6

4 *

&KDQJH 6* WR 6*  6*

4 *

5

5

D 'DWDGXSOLFDWLRQ

6* PHPEHU







5 6* PHPEHU



E 'DWDDJJUHJDWLRQ

Fig. 6DQM)RUZDUGLQJEHKDYLRXUDWFRUHURXWHUV

4.2

Dynamic Group Membership

,Q PRVW PXOWLFDVW DSSOLFDWLRQV VXEVFULEHUV MRLQ DQG OHDYH IUHTXHQWO\ WKURXJKRXW D VHVVLRQ,QWKLVVHFWLRQZHZLOOGLVFXVVRQKRZQoSFKDQQHOPHUJLQJIRUDFRPPRQ VRXUFHLVSHUIRUPHGZLWKG\QDPLFJURXSPHPEHUVKLS2QWKHRWKHUKDQGLQGLYLGXDO SULRULW\TXHXHVKRXOGEHLPSOHPHQWHGZLWKSURSHUEDQGZLGWKDOORFDWLRQIRUHDFKQoS FKDQQHOWKXVWKHMRLQLQJSDWKRIVDPHVRXUFHGHVWLQDWLRQSDLUPLJKWQRWEHH[DFWO\WKH VDPH IRU DOO S, G  FKDQQHOV 3DWK FRPSXWDWLRQ VKRXOG DOVR FRQVLGHU WKH VSHFLILF EDQGZLGWKDYDLODELOLW\RIWKHVXEVFULEHGQoSFKDQQHODQGZHQDPHWKLV3HU&KDQQHO QoSURXWLQJLQDQM  QoSFKDQQHOVXEVFULSWLRQ :KHQD S, Gi MRLQUHTXHVWUHDFKHVDURXWHUWKDW L KDVDOUHDG\UHFHLYHGWUDIILFIURP WKHVRXUFHSZLWKWKHVDPHRUDKLJKHUQoS FKDQQHOLHZLWKJURXSVWDWHRI S, Gj  ZKHUH Gi”Gj DQG LL  WKH FRUUHVSRQGLQJ SULRULW\ TXHXH DW WKH LQWHUIDFH IURP ZKLFK WKH MRLQ UHTXHVW LV UHFHLYHG KDV VXIILFLHQW EDQGZLGWK WKHQ WKH MRLQ SURFHGXUH WHUPLQDWHVDQGWKLVLQWHUIDFHREWDLQVJURXSVWDWH S, Gi 7KHUHDIWHUGDWDSDFNHWVIURP SDUHGXSOLFDWHGDQGIRUZDUGHGWRWKLVLQWHUIDFHZLWKWKHFODVVDDGGUHVVRIWKHQHZ SDFNHWV PRGLILHG IURP Gj WR Gi ,Q WKLV ZD\ D QHZ WUHH EUDQFK LV JUDIWHG WR WKH FXUUHQWQoSFKDQQHOWKDWKDVHTXDORUKLJKHUVHUYLFHOHYHO ,IWKH S, Gi MRLQUHTXHVWUHDFKHVDURXWHUZLWKWKHKLJKHVWDYDLODEOHQoSFKDQQHO S, Gj  ZKHUH Gi!Gj LH D URXWHU ZLWK ORZHU QoS FKDQQHO IRU S  WKH MRLQ ZLOO FRQWLQXH WR H[SORUH D QHZ SDWK WKDW VDWLVILHV WKH UHTXLUHPHQW RI WKH S, Gi  FKDQQHO VXEVFULSWLRQ2QFHDSDWKZLWKGHVLUHGQoSFKDQQHOKDVEHHQVHWXSDQGWKLVSDUWLFXODU URXWHU KDV UHFHLYHG WKH WUDIILF IURP S, Gi  FKDQQHO LW ZLOO WHDU GRZQ WKH S, Gj  FKDQQHO RQ WKH RULJLQDO SDWK ZLWK ORZHU QoS OHYHO ,W VKRXOG DOVR EH QRWHG WKDW WKH



,QWKLVSDSHUZHDVVXPHWKDWKLJKHUFODVVDDGGUHVVLVDVVRFLDWHGZLWKKLJKHUQoSFKDQQHO

LHGi!GjÅÆQoS Gi !QoS Gj 

1LQJ:DQJDQG*HRUJH3DYORX

SURFHGXUHRIWHDULQJGRZQ S, Gj FKDQQHOPLJKWLQYRNHDQRWKHUMRLQUHTXHVWIURPDQ RQWUHHURXWHUZKHUH S, Gj LVWKHKLJKHVWORFDOFKDQQHOLW PDLQWDLQVDQGWKHUHH[LVW RWKHUFKDQQHOVZLWKORZHUQoSFKDQQHO ,Q )LJ  ZH DVVXPH WKDW LQLWLDOO\ WKHUH DOUHDG\ H[LVWV D VLQJOH QoS FKDQQHO FRQVWUXFWHGE\ S, G2 VXEVFULSWLRQVIURPERWKUHFHLYHUVR1DQGR2 )LJD $IWHU VRPH WLPH URXWHU D UHFHLYHV D S, G1  VXEVFULSWLRQ IURP R3 ZKHUH G1G2 LH D VXEVFULSWLRQ ZLWK ORZHU QoS FKDQQHO LV UHFHLYHG ,Q WKLV FDVH D ZLOO VHQG D MRLQ UHTXHVW WRZDUGV S DQG WKLV MRLQ UHTXHVW ZLOO WHUPLQDWH DW URXWHU B WKDW KDV DOUHDG\ UHFHLYHGJURXSGDWDIURPSLQDKLJKHUFKDQQHO VKRZQLQ)LJE ,Q)LJFZH DVVXPH WKDW URXWHU EUHFHLYHV D S, G3 MRLQ UHTXHVW IURP R4 ZKHUH G3!G2 ,Q WKLV FDVHDQHZSDWKZLWKDKLJKHUQoSFKDQQHOLVFRQVWUXFWHGDVVKRZQZLWKWKHVROLGOLQH LQWKHILJXUH:KHQURXWHUE UHFHLYHVGDWDWUDIILFIURPSLQ S, G3 FKDQQHOLWZLOOWHDU GRZQWKHRULJLQDO S, G2 FKDQQHOEDFNWRS:KHQURXWHUBKDVGHWHFWHGWKHSUXQLQJ LW ILQGV WKDW LW KDV DOVR PDLQWDLQHG D ORZHU QoS FKDQQHO IRU R3 QDPHO\ S, G1  7KHUHIRUH URXWHU B ZLOO ILUVW VHQG D S, G1  MRLQ UHTXHVW EDFN WR S :KHQ GHWHFWLQJ WKDWJURXSGDWDIURPSFRPHVLQWKHQHZFKDQQHO S, G1 URXWHUBZLOOWHDUGRZQWKH RULJLQDO S, G2 FKDQQHORQOLQNABDVVKRZQLQ)LJ G 0RUHGHWDLORQKRZQoS FKDQQHOVDUHWRUQGRZQLVSUHVHQWHGEHORZ  6

6

$

$ 5 6*

5 6*

%

%

&

(

'

&

(

' 5 6* 5 6*

5 6*

D 6

E 6

$

$ 5 6*

5 6* -RLQ 6*

%

%

&

(

' 5 6*

(

' 5 6*

5 6*

5 6*

5 6*

F 6* FKDQQHO

&

5 6*

G 6* FKDQQHO

6* FKDQQHO

Fig. 7'\QDPLFQoSFKDQQHOVXEVFULSWLRQ 



DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

 QoSFKDQQHOXQVXEVFULSWLRQ 6XSSRVHWKDWDSDUWLFXODUURXWHULVFXUUHQWO\UHFHLYLQJWUDIILFIURPVRXUFHSZLWKQoS FKDQQHO S, Gi :KHQLWGHWHFWVQR S, Gi VXEVFULEHUVDWWDFKHGDQGZDQWVWROHDYHWKH FKDQQHOLWZLOOVWRSVHQGLQJ(S, Gi MRLQUHTXHVWVWRZDUGVWKHVRXUFHS:KHQWKH S, Gi  VWDWH WLPHV RXW WKH RQWUHH URXWHU ZLOO FKHFN DOO LWV GRZQVWUHDP LQWHUIDFHV ZLWK QoS FKDQQHOV DVVRFLDWHG ZLWK S 7KHUH H[LVW WKUHH SRVVLEOH FDVHV DV IROORZV LOOXVWUDWHGLQ)LJ  D 7KHUH H[LVWV DW OHDVW RQH S, Gj  VWDWH ZKHUH Gj•Gi WKH URXWHU VLPSO\ VWRSV IRUZDUGLQJWUDIILFRQ S, Gi FKDQQHODWWKHFRUUHVSRQGLQJGRZQVWUHDPLQWHUIDFHDQG LWQHHGVQRWWRWDNHDQ\IXUWKHUSUXQLQJDFWLRQV E 7KHUHGRHVQRWH[LVWDQ\ S, Gj VWDWHZKHUH*j!*iWKHURXWHUZLOOFKHFNWKHVWDWXV RIDOOWKHUHPDLQHGQoSFKDQQHOVDVVRFLDWHGZLWKSDQGVHOHFWFODVVDDGGUHVVGmWKDW LV PDSSHG WR WKH KLJKHVW QoS FKDQQHO EHLQJ FXUUHQWO\ UHTXHVWHG DQG VHQG S, Gm  MRLQUHTXHVWWRZDUGVWKHVRXUFHS2QFHWKLVURXWHUKDVUHFHLYHGGDWDWUDIILFIURPWKH S, Gm FKDQQHOLWZLOOVWRSVHQGLQJ S, Gi MRLQUHTXHVWVRQLWVXSVWUHDPLQWHUIDFH F ,IWKLVLVWKHODVWVXEVFULEHUDWWDFKHGRQWKHURXWHUWKHURXWHUVLPSO\VWRSVHQGLQJ DQ\ S, G MRLQUHTXHVWVWRZDUGVWKHVRXUFHDQGKHQFHLWEUHDNVIURPWKHWUHH 6*j

6*j

6*i

D

MRLQ 6*m

6*i

6*m

6*i E

6*i

6*i F



Fig. 8'\QDPLFQoSFKDQQHOXQVXEVFULSWLRQ  )LQDOO\LWVKRXOGEHQRWHGWKDWDERXQGDU\URXWHULVVXHVMRLQOHDYLQJUHTXHVWVRQO\ ZKHQWKHILUVWUHFHLYHUIRUDQHZ S, G VHVVLRQLVMRLQHGRUWKHODVWPHPEHUOHDYHVWKH JURXS 7KLV VWUDWHJ\ RI SXVKLQJ JURXS PDQDJHPHQW WR WKH HGJH RI WKH QHWZRUN VLJQLILFDQWO\UHGXFHVWKHIUHTXHQF\RIUHVKDSLQJGHOLYHU\WUHHVLQVLGHRIWKHGRPDLQ

 

5

Simulation Results

5.1 Simulation Model  ,Q WKLV VHFWLRQ ZH HYDOXDWH WKH SURSRVHG VFKHPH WKURXJK VLPXODWLRQ :H DGRSW WKH FRPPRQO\ XVHG :D[PDQ’ V UDQGRP JUDSK JHQHUDWLRQ DOJRULWKP >@ WKDW KDV EHHQ LPSOHPHQWHG LQ GT-ITM IRU FRQVWUXFWLQJ RXU QHWZRUN PRGHOV 7KLV DSSURDFK GLVWULEXWHVWKHQRGHVUDQGRPO\RQWKHUHFWDQJXODUJULGDQGQRGHVDUHFRQQHFWHGZLWK WKHSUREDELOLW\IXQFWLRQ

1LQJ:DQJDQG*HRUJH3DYORX

P u  v > H[S

( d u  v  'L

ZKHUH d u  v LVWKHGLVWDQFHEHWZHHQQRGHuDQGvDQGLLVWKHPD[LPXPSRVVLEOH GLVWDQFHEHWZHHQDQ\SDLURIQRGHVLQWKHQHWZRUN7KHSDUDPHWHUVȜDQGȡUDQJLQJ  @ FDQ EH PRGLILHG WR FUHDWH WKH GHVLUHG QHWZRUN PRGHO $ ODUJHU YDOXH RI Ȝ JLYHV QRGHZLWKDKLJKDYHUDJHGHJUHHDQGDVPDOOYDOXHRI ȡLQFUHDVHWKHGHQVLW\RIVKRUWHU OLQNVUHODWLYHWRORQJHURQHV,QRXUVLPXODWLRQZHVHWWKHYDOXHVRIȜDQG ȡWREH DQGUHVSHFWLYHO\DQGJHQHUDWHDUDQGRPQHWZRUNZLWKQRGHVZLWKWKHVRXUFH QRGHEHLQJUDQGRPO\VHOHFWHG ,Q RUGHU WR JHQHUDWH JURXS G\QDPLFV D VHTXHQFH RI HYHQWV IRU QoS VXEVFULSWLRQXQVXEVFULSWLRQDUHDOVRFUHDWHG$SUREDELOLW\PRGHOLVXVHGWRGHWHUPLQH ZKHWKHUDUHTXHVWLVIRUQoSVXEVFULSWLRQRUXQVXEVFULSWLRQ7KHIXQFWLRQ C N ( m  Pc C N ( m /  ( C m LV GHILQHG IRU WKLV SXUSRVH >@ 7KH IXQFWLRQ Pc  LV WKH SUREDELOLW\ WKDW D QoS VXEVFULSWLRQLVLVVXHG,QWKHIXQFWLRQmLQGLFDWHVWKHFXUUHQWQXPEHURIVXEVFULEHUV ZKLOHNLGHQWLILHVWKHQHWZRUNVL]HĮUDQJLQJ  LVWKHSDUDPHWHUWKDWFRQWUROVWKH GHQVLW\RIWKHJURXS LHDYHUDJHQXPEHURIVXEVFULEHUV :KHQDQoSVXEVFULSWLRQLV LVVXHGDQRGHWKDWLVQRWLQWKHPXOWLFDVWJURXSLVUDQGRPO\VHOHFWHGIRUMRLQLQJWKH VHVVLRQ6LPLODUO\DQRGHLVUDQGRPO\UHPRYHGIURPWKHFXUUHQWJURXSZKHQDQoS XQVXEVFULSWLRQUHTXHVWLVWULJJHUHG ,QRXUVLPXODWLRQWKHDYHUDJHQXPEHURIVXEVFULEHUVYDULHVIURPWRLQVWHSV RI  E\ VHWWLQJ WKH YDOXH RI Į  )RU VLPSOLFLW\ ZH DVVXPH WKDW WKHUH LV DW PRVW RQH VXEVFULEHUDWWDFKHGDWHDFKURXWHU,QDGGLWLRQZHDOVRDVVXPHWKDWWKHISPSURYLGHV WKUHHTXDOLWDWLYHQoSFKDQQHOVQDPHO\*ROG&KDQQHO GC 6LOYHU&KDQQHO SC DQG %URQ]H&KDQQHO BC DQGWKDWWKHVXEVFULSWLRQEDQGZLGWKVIRUWKHVHWKUHHFKDQQHOV DUH 0ESV 0ESV DQG 0ESV SHU UHFHLYHU UHVSHFWLYHO\ ,QVLGH WKH QHWZRUN WKH EDQGZLGWKFDSDFLW\RIHDFKOLQNYDULHVIURP0ESVWR0ESVLQHYHQGLVWULEXWLRQ 7KH EDQGZLGWK FDSDFLW\ RI HDFK OLQN LV FRQILJXUHG DFFRUGLQJ WR WKH IROORZLQJ SURSRUWLRQ  IRU GC  IRU SC DQG  IRU BC UHVSHFWLYHO\ $PRQJ DOO WKH UHFHLYHUVZHVXSSRVHWKDWRIWKHPVXEVFULEHWRGCWRSCDQGWRBC ,Q RXU VLPXODWLRQ ZH DGRSW QOSPF IRU UHFHLYHULQLWLDWHG PXOWLFDVW URXWLQJ WKDW LV LQWURGXFHG LQ >@ DV WKH XQGHUO\LQJ URXWLQJ SURWRFRO IRU HDFK QoS FKDQQHO $FFRUGLQJ WR >@ QOSPF EDVHG PXOWLFDVW URXWLQJ GRHV QRW VXSSRUW XVHU KHWHURJHQHLW\ZLWKLQDSDUWLFXODUJURXSEXWLQDQMVXFKW\SHRIQoSKHWHURJHQHLW\ LV UHIOHFWHG E\ GLIIHUHQW S, G  JURXS LGHQWLILFDWLRQ ,Q WKLV VHQVH QOSPF FDQ VWLOO DSSO\WRSHUQoSFKDQQHOURXWLQJLQDQMDQGGLIIHUHQWWUHHEUDQFKHVFDQEHPHUJHG LIWKHVDPHVRXUFHDGGUHVVSLVGLVFRYHUHG  5.2 Performance Analysis  )LUVWRIDOOZHLQYHVWLJDWHEDQGZLGWKFRQVHUYDWLRQSHUIRUPDQFHDQGFRPSDULVRQVDUH PDGHEHWZHHQDQMDQGWKDWRIEXLOGLQJLQGHSHQGHQWWUHHVIRUHDFKVHUYLFHOHYHOZLWK GLVMRLQHGQoSFKDQQHOV HJDSG >@LQZKLFKWKHVRXUFHPDLQWDLQVLQGHSHQGHQWGDWD VWUHDPV IRU KHWHURJHQHRXV XVHUV VLPXOWDQHRXVO\  )ROORZLQJ WKDW ZH IRFXV RQ WKH FDSDELOLW\ RI WUDIILF HQJLQHHULQJ LQ WHUPV RI ORDG EDODQFLQJ EHWZHHQ DQM DQG MQ

DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

DSSURDFKHV 7KH VLPXODWLRQ UHVXOWV UHJDUGLQJ QHWZRUN XWLOL]DWLRQ DUH DOVR FRPSDUHG EHWZHHQ DQM DQG MQ EXW RYHUKHDG IRU JURXS VWDWHV PDLQWHQDQFH LV LQFRPSDUDEOH VLQFHWKHODWWHULQYROYHVTXDQWLWDWLYHVWDWHVIRUXVHUKHWHURJHQHLW\ ,Q RUGHU WR HYDOXDWH WKH QHWZRUN XWLOL]DWLRQ ZH GHILQH WKH EDQGZLGWK VDYLQJ RYHUKHDGIRUDSDUWLFXODUFKDQQHOC CFRXOGEHJROGVLOYHUDQGEURQ]HVHUYLFHHWF  DVIROORZV OC

(

C U DQoM  C U DSG

c

c

ZKHUH U DQoM LVWKHEDQGZLGWKXWLOL]DWLRQRIFKDQQHOCE\DQMDQG U DSG LVWKDW E\XVLQJQRQK\EULGWUHHVFKHPHVVXFKDVDSG6LPLODUO\ZHGHILQHWKHRYHUKHDGIRU DOOFKDQQHOVDV OT

(

U DQoM  U DSG

ZKHUH U DQoM LVWKHRYHUDOOOLQNXWLOL]DWLRQE\DQMDQG U DSG LVWKDWE\DSG )LJ  LOOXVWUDWHV WKH RYHUKHDG SHUIRUPDQFH IRU ERWK LQGLYLGXDO QoS FKDQQHOV DQG RYHUDOOEDQGZLGWKFRQVHUYDWLRQ)URPWKHILJXUHZHFDQILQGWKDWLQDQMEDQGZLGWK IRU QRQJROG FKDQQHOV FDQ DOZD\V EH VDYHG DQG WKH FRUUHVSRQGLQJ RYHUKHDG YDULHV IURPWR+RZHYHUEDQGZLGWKIRUJROGFKDQQHOLVQRWFRQVHUYHGDWDQ\WLPH VLQFH LW FDQQRW EH PHUJHG LQWR DQ\ RWKHU QoS FKDQQHO 5HJDUGLQJ WKH RYHUDOO EDQGZLGWK FRQVHUYDWLRQ IURP WKH ILJXUH ZH QRWLFH WKDW WKH DJJUHJDWHG RYHUKHDG YDULHV IURP  WR  LH E\ XVLQJ QoS FKDQQHO PHUJLQJ LQ DQM WKH DYHUDJH EDQGZLGWKFRQVXPSWLRQLVWRWKDWRIQRQQoSPHUJLQJDSSURDFKHV 

2YHUKHDG

 

2YHUDOO

*ROG



6LOYHU

%URQ]H

   











$YHUDJHQXPEHURIVXEVFULEHUV







Fig. 92YHUKHDGRIEDQGZLGWKFRQVHUYDWLRQ  $QRWKHU LQWHUHVWLQJ HPSLULFDO VWXG\ LV WKH WUDIILF HQJLQHHULQJ FDSDELOLW\ RI DQM DQGMQ,QDQMQHWZRUNEDQGZLGWKLVSUHDOORFDWHGWRVSHFLILFWUDIILFDJJUHJDWHVRI LQGLYLGXDO QoS FKDQQHOV DQG WKLV LV YHU\ VLPLODU WR WKH VWUDWHJ\ RI 'LII6HUY ,Q FRQWUDVWMQDQGRSVPDOORZVWKHRYHUDOOEDQGZLGWKWREHDFFXPXODWLYHO\UHVHUYHG E\ YDULRXV TXDQWLWLHV RI QoS GHPDQGV XQWLO WKH OLQN KDV EHFRPH VDWXUDWHG ,Q WKH IROORZLQJVLPXODWLRQZHZLOOH[DPLQHWKHSHUIRUPDQFHRIORDGEDODQFLQJVHPDQWLFV

1LQJ:DQJDQG*HRUJH3DYORX

RIDQM DQGMQ/RSVP %DVLQJRQEDQGZLGWKXWLOL]DWLRQ ZH FODVVLI\QHWZRUN OLQNV LQWRWKHIROORZLQJWKUHHFDWHJRULHV  +LJKORDGOLQNZLWKRYHUDOOXWLOL]DWLRQDERYH    0HGLXP ORDG OLQN ZLWK RYHUDOO XWLOL]DWLRQ EHWZHHQ  DQG  DQG   /RZORDGOLQNZLWKRYHUDOOXWLOL]DWLRQEHORZ7DEOHSUHVHQWVWKHSURSRUWLRQRI WKHVHWKUHHW\SHVRIOLQNVLQVLGHWKHQHWZRUNZLWKWKHDYHUDJHQXPEHURIVXEVFULEHUV YDU\LQJ IURP  WR  )URP WKH WDEOH ZH FDQ ILQG WKDW DQM SHUIRUPV EHWWHU FDSDELOLW\ RI WUDIILF HQJLQHHULQJ LQ WKDW GDWD WUDIILF LV PRUH HYHQO\ GLVWULEXWHG )RU H[DPSOHZKHQWKHDYHUDJHQXPEHURIVXEVFULEHUVLVEHORZQRQHRIWKHQHWZRUN OLQNVEHFRPHKLJKO\ORDGHGE\XVLQJDQM,QFRQWUDVWMQDOZD\VUHVXOWVLQKRWVSRWV ZLWKXWLOL]DWLRQDERYHHYHQZKHQWKHDYHUDJHQXPEHURIVXEVFULEHUVLV)URP WKHWDEOHZHFDQDOVRVHHWKDWWKHSURSRUWLRQRIORZORDGOLQNLQDQMLVFRQVLVWHQWO\ KLJKHUWKDQWKDWLQMQ Table 1.7UDIILFGLVWULEXWLRQFRPSDULVRQZLWKMQ

DQM

MQ

 +LJKORDGOLQN 0HGLXPORDGOLQN /RZORDGOLQN +LJKORDGOLQN 0HGLXPORDGOLQN /RZORDGOLQN

      

      

      

      

      

:HDOVRLQYHVWLJDWHWKHRYHUDOOOLQNXWLOL]DWLRQRIDQMDQGMQDQGWKHVLPXODWLRQ UHVXOWV DUH SUHVHQWHG LQ )LJ  )URP WKH ILJXUH ZH QRWLFH WKDW WKH DYHUDJH OLQN XWLOL]DWLRQRIDQMLVFRQVLVWHQWO\KLJKHUWKDQWKDWRIMQWRDYHU\VPDOOVFDOHHJ ZKHQWKHDYHUDJHQXPEHURIVXEVFULEHUVLVIL[HGDWWKHOLQNXWLOL]DWLRQRIDQMLV KLJKHUWKDQWKDWRIMQ)URPWKHHPSLULFDOUHVXOWVLQWDEOHDQG)LJLWFDQ EH LQIHUUHG WKDW DQM∞s EHWWHU SHUIRUPDQFH RI ORDG EDODQFLQJ LV LQ HIIHFW DW WKH H[SHQVHRIKLJKHUEDQGZLGWKFRQVXPSWLRQEXWWKHUHOHYDQWFRVWLVYHU\VPDOO 

8WLOL]DWLRQ 

   

DQM



MQ

  









$YHUDJHQXPEHURIVXEVFULEHUV

Fig. 102YHUDOOOLQNXWLOL]DWLRQFRPSDULVRQZLWKMQ



DQM$Q2YHUOD\6FKHPHIRU4XDOLW\RI6HUYLFH'LIIHUHQWLDWLRQ

6 

Summary

,Q WKLV SDSHU ZH SURSRVHG D QRYHO VFKHPH FDOOHG DQM WKDW SURYLGHV GLIIHUHQWLDWHG QoS FKDQQHOV EDVHG RQ WKH 6RXUFH 6SHFLILF 0XOWLFDVW SSM  VHUYLFH PRGHO 7KLV DSSURDFK HIILFLHQWO\ VXSSRUWV KHWHURJHQHRXV QoS UHTXLUHPHQWV DSSOLFDWLRQV RQ D TXDOLWDWLYHEDVLV%\PHDQVRI3HUFKDQQHOQoSURXWLQJDQGPHUJLQJPHFKDQLVPQRW RQO\ URXWHU RYHUKHDG IRU PDLQWDLQLQJ JURXS VWDWHV LV DOOHYLDWHG EXW DOVR QHWZRUN EDQGZLGWK FRQVXPSWLRQ LV UHGXFHG FRPSDUHG ZLWK WUDGLWLRQDO VROXWLRQV VXFK DV PXOWLFDVW OD\HUHG WUDQVPLVVLRQ DQG UHSOLFDWHG WUDQVPLVVLRQ 0RUHRYHU SHU QoS FKDQQHOEDVHGEDQGZLGWKPDQDJHPHQWDOVRFRQWULEXWHVWRLPSURYHPHQWVLQWHUPVRI WUDIILFORDGGLVWULEXWLRQFRPSDUHGZLWKWKHMQ/RSVPDSSURDFKHV 2XU IXWXUH ZRUN ZLOO DGGUHVV G\QDPLF FRQILJXUDWLRQ DQG PDQDJHPHQW RI QHWZRUN UHVRXUFHV HJ EDQGZLGWK SUHHPSWLRQ EHWZHHQ QoS FKDQQHOV  EDVHG RQ IRUHFDVWHG WUDIILFFRQGLWLRQRIQoSDJJUHJDWHVDQGDOVRDOJRULWKPVIRU'LIIVHUYDZDUHPXOWLFDVW WUDIILFHQJLQHHULQJDVZHOO

References %ODNH6et al$Q$UFKLWHFWXUHIRU'LIIHUHQWLDWHG6HUYLFHVRFC  %OHVV 5 :HKUOH . *URXS &RPPXQLFDWLRQ LQ 'LIIHUHQWLDWHG 6HUYLFHV 1HWZRUNV 3URF IQ2001SS  %UDGHQ 5 et al Resource 5H6HU9DWLRQ 3URWRFRO 5693   9HUVLRQ  )XQFWLRQDO 6SHFLILFDWLRQ5)&6HSW &KHXQJ6et al2QWKH8VHRI'HVWLQDWLRQ6HW*URXSLQJWR,PSURYH)DLUQHVVLQ0XOWLFDVW 9LGHR'LVWULEXWLRQ3URFIEEEINFOCOM∞96SS  'LRW & et al 'HSOR\PHQW ,VVXHV IRU WKH ,3 0XOWLFDVW 6HUYLFH DQG $UFKLWHFWXUH IEEE 1HWZRUN-DQ)HESS +ROEURRN+:&KHULWRQ'5,30XOWLFDVW&KDQQHOV(;35(666XSSRUWIRU/DUJHVFDOH 6LQJOHVRXUFH$SSOLFDWLRQV3URFACMSIGCOMM∞99 +ROEURRN+:&DLQ%6RXUFH6SHFLILF0XOWLFDVWIRU,3,QWHUQHW'UDIWGUDIWKROEURRN VVPDUFK W[W0DUZRUNLQSURJUHVV 0F&DQQH6et al5HFHLYHU'ULYHQ/D\HUHG0XOWLFDVW3URFRIACMSIGCOMM∞ 6WULHJHO$0DQLPDUDQ*$6FDODEOH$SSURDFKIRU'LII6HUY0XOWLFDVWLQJ3URF. ICC∞2001  :DQJ % +RX - 4R6%DVHG 0XOWLFDVW 5RXWLQJ IRU 'LVWULEXWLQJ /D\HUHG 9LGHR WR +HWHURJHQHRXV5HFHLYHUVLQ5DWHEDVHG1HWZRUNV3URFINFOCOM :D[PDQ%05RXWLQJRIPXOWLSRLQWFRQQHFWLRQVIEEEJSAC  SS @,QWKLVDSSURDFK WKHUDZYLGHRLVILUVWHQFRGHGLQWRDEDVHOD\HUUHSUHVHQWLQJDEDVLFTXDOLW\DWDORZ UDWH LW ZLOO WKHQ EH FRPSUHVVHG LQWR VHYHUDO HQKDQFHPHQW OD\HUV WKDW DUH FRPELQHG ZLWKWKHEDVHOD\HUWRLPSURYHWKHRYHUDOOSHUFHLYHGTXDOLW\+HWHURJHQHRXVUHFHLYHUV WKXVFDQREWDLQDTXDOLW\RIYLGHRFRPPHQVXUDWHZLWKWKHLUDYDLODEOHEDQGZLGWKV +RZHYHU PXOWLOD\HUHG HQFRGLQJ RI YLGHR LWVHOI LV QRW VXIILFLHQW WR SURYLGH LGHDO YLGHRTXDOLW\DQGHIIHFWLYHEDQGZLGWKXWLOL]DWLRQ$VEDQGZLGWKFKDQJHVRYHUWLPHDQ  7KLVUHVHDUFKZDVVXSSRUWHGLQSDUWE\JUDQWVIURP5HVHDUFK*UDQW&RXQFLO 5*& XQGHUFRQ



WUDFWV$R((+.867(DQG1B+.867 -/LX VZRUNLVSDUWLDOO\VXSSRUWHGE\D0LFURVRIWIHOORZVKLS -=KDQJ VZRUNLVSDUWLDOO\VXSSRUWHGE\D0LFURVRIWIHOORZVKLS

0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

3LQJ:XHWDO

DGDSWDWLRQDOJRULWKPLVQHFHVVDU\WRDGDSWWRWKHG\QDPLFQHWZRUNFRQGLWLRQVLQSDU WLFXODUWKHEDQGZLGWKIOXFWXDWLRQV5HFHLYHUGULYHQ/D\HUHG0XOWLFDVW 5/0 LVRIWHQ UHFRPPHQGHG DV D SURPLVLQJ VROXWLRQ >@ ,Q 5/0 OD\HUV DUH PDSSHG WR PXOWLFDVW JURXSV DQG UHFHLYHUV SHUIRUP DGDSWDWLRQ E\ MRLQLQJ DQG OHDYLQJ JURXSV OD\HUV  $V GHFLVLRQVDUHPDGHE\UHFHLYHUVLWFDQEHVFDOHGWRODUJHPXOWLFDVWVHVVLRQV 1RWH WKDW MRLQLQJ DQG OHDYLQJ PXOWLFDVW JURXSV DUH WLPHFRQVXPLQJ RSHUDWLRQV $GGLQJRUGURSSLQJOD\HUVWRUHDFWWRFKDQJHVLQDQHWZRUNu VORDGFDQUHVXOWLQVXGGHQ FKDQJHV LQ YLGHR TXDOLW\ >@ 0RUHRYHU LQ 5/0 WKH OD\HU UDWHV DUH IL[HG $V WKH QXPEHURIOD\HUVLVOLPLWHGLQSUDFWLFDOFRGHUVWKHDGDSWDWLRQJUDQXODULW\IRUUHFHLYHUV LV YHU\ FRDUVH 7KHUH FDQ EH VLJQLILFDQW PLVPDWFKHV EHWZHHQ WKH IL[HG WUDQVPLVVLRQ UDWHVDQGWKHG\QDPLFDQGKHWHURJHQHRXVEDQGZLGWKUHTXLUHPHQWVIURPWKHUHFHLYHUV ([LVWLQJVWXGLHVVKRZWKDWWKHXVHRISULRULW\GURSSLQJFDQLPSURYHWKHVWDELOLW\RI OD\HUHG PXOWLFDVW >@ ,W LV KRZHYHU QRW VXLWDEOH IRU WKH FXUUHQW EHVWHIIRUW ,QWHUQHW ZKHUH),)2GURSWDLOURXWHUVDUHZLGHO\XVHG,QWKLVSDSHUZHSURSRVHDQDGDSWDWLRQ IUDPHZRUN WKDW LPSURYHV VWDELOLW\ DQG IDLUQHVV RI UHFHLYHUV E\ HPSOR\LQJ G\QDPLF OD\HUUDWHDOORFDWLRQRQWKHVHQGHUu VVLGH2XUIUDPHZRUNFDOOHG6HQGHU$VVLVWHG5H FHLYHUGULYHQ /D\HU 0XOWLFDVW 6$5/0  RQO\ UHTXLUHV EHVWHIIRUW VHUYLFH :H ILUVW SURSRVHDQRYHOPHWULFFDOOHG6WDELOLW\DZDUH)DLUQHVV,QGH[ 6), ZKLFKFDQUHSUH VHQWWKHV\VWHPu VVWDELOLW\DVZHOODVIDLUQHVV:HWKHQIRUPXODWHWKHRSWLPDOOD\HUUDWH DOORFDWLRQSUREOHPZLWKWKHREMHFWLYHRIPLQLPL]LQJWKHH[SHFWHG6),IRUDOOWKHUH FHLYHUVLQDPXOWLFDVWVHVVLRQDQGGHULYHDQHIILFLHQWDOJRULWKPWRVROYHWKHSUREOHP 6LPXODWLRQUHVXOWVGHPRQVWUDWHWKDWRXUVFKHPHFDQVLJQLILFDQWO\LPSURYHWKHGHJUHH RIVWDELOLW\DQGIDLUQHVVFRPSDUHGWRVWDWLFDOORFDWLRQEDVHGVFKHPHV 7KHUHPDLQGHURIWKLVSDSHULVRUJDQL]HGDVIROORZV6HFWLRQ,,GHVFULEHVWKHV\VWHP PRGHORI6$5/06HFWLRQ,,,IRUPXODWHVWKHRSWLPDODOORFDWLRQSUREOHPDQGSUHVHQWV HIILFLHQW DOORFDWLRQ DOJRULWKPV 6LPXODWLRQ UHVXOWV DUH VKRZQ LQ 6HFWLRQ ,9 )LQDOO\ 6HFWLRQ9FRQFOXGHVRXUVWXG\DQGGLVFXVVHVVRPHSRVVLEOHIXWXUHGLUHFWLRQV

2 System Model 6$5/0ZRUNVRQWRSRIWKHH[LVWLQJ,3PXOWLFDVWPRGHO,WXVHVSXUHHQGWRHQGFRQ WURO ZKHUH DOO IXQFWLRQDOLWLHV DUH LPSOHPHQWHG DW HQG V\VWHPV VHQGHU RU UHFHLYHU  7KHUHIRUHLWLVIXOO\FRPSDWLEOHZLWKWKHFXUUHQWEHVWHIIRUW,QWHUQHWLQIUDVWUXFWXUH 6$5/0 SHUIRUPV DGDSWDWLRQV RQ WKH VHQGHUu V VLGH DV ZHOO DV WKH UHFHLYHUu V VLGH $VLOOXVWUDWHGLQ)LJXUHDVHQGHUHQFRGHVWKHUDZYLGHRLQWRlFXPXODWLYHOD\HUVXV LQJDOD\HUHGFRGHUZKHUHOD\HULVWKHEDVHOD\HUDQGOD\HUlLVWKHOHDVWLPSRUWDQW HQKDQFHPHQW OD\HU 7KH OD\HUV DUH WKHQ GLVWULEXWHG WR WKH UHFHLYHUV XVLQJ VHSDUDWH PXOWLFDVWFKDQQHOV (DFKUHFHLYHUFRQWLQXRXVO\PRQLWRUVLWVDYDLODEOHEDQGZLGWKDQGSHUIRUPVDQDGDS WDWLRQE\MRLQLQJDQGOHDYLQJOD\HUV PXOWLFDVWJURXSV $VVXPHWKHVHVVLRQVL]HLV1 DQGWKHUHFHLYHUVu H[SHFWHGEDQGZLGWKDWWLPHtDUH^r1 t r2 t h rN t ` 7KHUHFHLY HUVDOVRSHULRGLFDOO\UHSRUWWKHVHEDQGZLGWKVWRWKHVHQGHU$VVXPHDWWLPHtWKHOD\HU UDWHV DUH JLYHQ E\ bi t  i h  l /HW cj(t) GHQRWH WKH FXPXODWLYH OD\HU UDWH XS WR OD\HUjDWWLPHtWKDWLVcj t  ™ji bi t j h l,DQGȡl (t)GHQRWHWKHUDWHYHFWRU DW WLPH t ȡl t  c1 t  c2 t h  cl t  :LWK WKH FXPXODWLYH VXEVFULSWLRQ SROLF\ WKLV GLVFUHWHVHWRIIHUVDOOSRVVLEOHYLGHRUDWHVWKDWDUHFHLYHULQDVHVVLRQFRXOGUHFHLYH,Q

2QWKH8VHRI6HQGHU$GDSWDWLRQWR,PSURYH6WDELOLW\DQG)DLUQHVV

SDUWLFXODUWKHPD[LPXPUDWHWKDWDUHFHLYHUZLWKDQH[SHFWHGEDQGZLGWKr FDQUHFHLYH LVJLYHQE\  r  l  PD[^c  c  r  c l ` 7RLPSURYHVWDELOLW\DQGPLQLPL]HEDQG ZLGWK PLVPDWFK WKH VHQGHU ZLOO DOORFDWH WKHVH OD\HU UDWHV EDVHG RQ WKH UHFHLYHUVu  EDQGZLGWKUHSRUWV 7KHUH KDV EHHQ PXFK ZRUN RQ UHFHLYHUEDVHG EDQGZLGWK HVWLPDWLRQ >@ DQG VFDODEOHUHSRUW IHHGEDFN >@LQDPXOWLFDVWQHWZRUN,QWKLVSDSHUZHDVVXPHWKH EDQGZLGWKUHSRUWVDUHDYDLODEOHWRWKHVHQGHUXVLQJVRPHH[LVWLQJIHHGEDFNDOJRULWKP DQGWKXVIRFXVRQWKHRSWLPDOOD\HUUDWHDOORFDWLRQPHFKDQLVP   6HQGHU   5RXWHU   5HFHLYHU   'DWDSDWK   %DQGZLGWKUHSRUW   Fig. 1.6\VWHPGLDJUDPRI6$5/0

3 Problem Formulation and Solution ,QWKLVVHFWLRQZHFRQVLGHUWKHOD\HUUDWHDOORFDWLRQVWUDWHJ\RQWKHVHQGHUu VVLGH7ZR IXQGDPHQWDOLVVXHVDUHDGGUHVVHG)LUVWZKDWLVDQRSWLPDODOORFDWLRQ"6HFRQGKRZLV WKH RSWLPDO DOORFDWLRQ DFKLHYHG" :H SUHVHQW D 6WDELOLW\DZDUH )DLUQHVV ,QGH[ 6),  WKDWLVVXLWDEOHIRUHYDOXDWLQJWKHVWDELOLW\DQGIDLUQHVVRIUHFHLYHUVLQDKHWHURJHQHRXV HQYLURQPHQW :H WKHQ IRUPXODWH WKH SUREOHP RI PLQLPL]LQJ WKH H[SHFWHG 6), DQG SURYLGHHIILFLHQWDOJRULWKPVWRVROYHWKLVSUREOHP 3.1 Optimization Criteria ([LVWLQJ VWXGLHV VXJJHVW D QRUPDOL]HG IDLUQHVV LQGH[ FDQ EH XVHG WR HYDOXDWH WKH EDQGZLGWK PLVPDWFK IRU D UHFHLYHU ,Q >@ D IDLUQHVV LQGH[ IRU D UHFHLYHU ZLWK H[ SHFWHGEDQGZLGWKrLVGHILQHGDV F r   l 

 r   l  r

1 

 F r   l LVHVVHQWLDOO\WKHEDQGZLGWKPLVPDWFKRIWKHUHFHLYHUQRUPDOL]HGE\LWV H[SHFWHGEDQGZLGWK 6RPH DOJRULWKPV WKDW PD[LPL]H WKH H[SHFWHG IDLUQHVV LQGH[ KDYH EHHQ SUHVHQWHG >@+RZHYHUWKHVHDOJRULWKPVVLPSO\SHUIRUPDILUVWRUGHURSWLPL]DWLRQWKDWLV

3LQJ:XHWDO

GHWHUPLQLQJWKHOD\HUUDWHVDFFRUGLQJWRWKHLQVWDQWEDQGZLGWKGLVWULEXWLRQRIUHFHLY HUV 7KH\ GRQRW FRQVLGHU WKH LPSDFW RIVXFK G\QDPLF VRXUFH UDWH DOORFDWLRQV WR WKH IUHTXHQF\RIMRLQLQJOHDYLQJDFWLRQV$OWKRXJKWKHVSHFLILFFKDQJHLQSHUFHLYHGTXDO LW\GHSHQGVRQWKHHQFRGLQJVFKHPHEHLQJXVHGDGGLQJGURSSLQJDOD\HUW\SLFDOO\UH VXOWVLQDQRWLFHDEOHIOXFWXDWLRQLQYLGHRTXDOLW\>@7KHUHIRUHLWLVQHFHVVDU\WRFRQ VLGHU WKH VWDELOLW\ RI D V\VWHP LQ RSWLPL]DWLRQ $V LQ SUHYLRXV VWXGLHV ZH XVH WKH DYHUDJHQXPEHURIOD\HUVEHLQJDGGHGGURSSHGSHUXQLWWLPHIRUDOO1UHFHLYHUVDVWKH VWDELOLW\PHDVXUH :LWKDFXPXODWLYHVXEVFULSWLRQSROLF\WKHWRWDOQXPEHURIVXEVFULEHGOD\HUVRID UHFHLYHUUHOLHVRQLWVH[SHFWHGEDQGZLGWKDQGWKHVHWRIFXPXODWLYHOD\HUUDWHV7KHUH IRUHOHWX(.)GHQRWHWKHWRWDOQXPEHURIVXEVFULEHGOD\HUVIRUDUHFHLYHUDWWLPHtWKDW LV 2 

X r t   l t  PD[^ j _ r t  c j t  j   l` 

:HGHILQHD6WDELOLW\,QGH[S(.)IRUDUHFHLYHUZLWKH[SHFWHGEDQGZLGWKr(t)DVIRO ORZV S r t   l t  X r t   l t X r t    l t  

3 

,GHDOO\ZHZDQWDSURWRFROWRSURYLGHERWKIDLUDQGVWDEOHYLGHRTXDOLW\+RZHYHU WKHVHSURSHUWLHVDUHLQGHSHQGHQWDQGDVLQJOHPHWULFFDQEHKDUGO\IRXQGWRVXEVFULEH ERWKWKHVHWZRSURSHUWLHV,QRXUSDSHUZHXVHDOLQHDUFRPELQDWLRQRIWKHWZRLQGLFHV IRU RSWLPDO DOORFDWLRQ :H FDOO WKLV PHWULF WKH 6WDELOLW\DZDUH )DLUQHVV ,QGH[ 6),  ZKLFKLVGHILQHGDV SFI r t  l t   S r t  l t    F r t  l t 

4 

ZKHUH Į DQG ȕ DUH WKH ZHLJKWV IRU WKH 6WDELOLW\ ,QGH[ DQG )DLUQHVV ,QGH[ LQGHSHQG HQWO\ 3.2

Optimal Allocation Problem

)RUDPXOWLFDVWVHVVLRQDQDWXUDORSWLPL]DWLRQREMHFWLYHLVWRPLQLPL]HWKHH[SHFWHG FRPSRXQGPHWULF SFI r t  l t IRUDOOWKHUHFHLYHUVLQWKHVHVVLRQE\FKRRVLQJDQ RSWLPDOUDWHYHFWRU:HVWDWHWKHRSWLPL]DWLRQSUREOHPDVIROORZV

Minimize

SFI r t  l t 

 N

5 

N



SFI ri t  l t

i 

Subject to l  L   ci  t  ci t  i   l



7KHFRPSOH[LW\RIWKLVRSWLPL]DWLRQSUREOHPFDQEHIXUWKHUUHGXFHGE\FRQVLGHULQJ VRPHFKDUDFWHULVWLFVRIDSUDFWLFDOOD\HUHGFRGHU)LUVWLWLVDIDFWWKDWHYHU\ORVV\GDWD FRPSUHVVLRQ VFKHPH KDV RQO\ D ILQLWH VHW RI DGPLVVLEOH TXDQWL]HUV 7KHUHIRUH WKHUH DUHRQO\DILQLWHQXPEHURISRVVLEOHUDWHVIRUDQ\JLYHQVRXUFH7KHVHUDWHVFDOOHGRS HUDWLRQDOUDWHV>@GHSHQGRQO\RQWKHFRPSUHVVLRQDOJRULWKPDQGVRXUFHFKDUDFWHULV

2QWKH8VHRI6HQGHU$GDSWDWLRQWR,PSURYH6WDELOLW\DQG)DLUQHVV

WLFV6HFRQGWRDYRLGWKHXQGHVLUDEOHVLWXDWLRQZKHUHDUHFHLYHUFDQQRWMRLQDQ\OD\HU WKH EDVH OD\HU VKRXOG DGDSW WR WKH PLQLPXP H[SHFWHG EDQGZLGWK +RZHYHU WKH G\ QDPLFUDQJHRIDOD\HUHGFRGHULVOLPLWHGDQGXVXDOO\WKHUHLVDORZHUERXQGRIWKH EDVHOD\HUUDWH>@7DNLQJWKHVHWZRFKDUDFWHULVWLFVLQWRDFFRXQWZHDVVXPHWKHUHDUH 0 RSHUDWLRQDO SRLQWV 7KH VHW RI RSHUDWLRQDO UDWHV LV JLYHQ E\   ^R  R  RM  Ri  Ri  `  DQG R1 LV WKH ORZHU ERXQG RI WKH EDVH OD\HU UDWH :H FDQWKHQUHIRUPXODWHWKHRSWLPL]DWLRQSUREOHPDVIROORZV SFI r t  l t 

Minimize

 N

 SFI r t   t  i

l

i 

Subject to l  L c t  PD[^R j  R j  PLQ^ri t  R`` j

6 

N



i

ci t   ci  t  ci t  i   l

3.3 Optimal Allocation Algorithms

1RWHWKDWWKHUHFHLYHUVFDQEHGLYLGHGLQWRlVHWVDFFRUGLQJWRWKHLUVXEVFULSWLRQOHYHOV LQHDFKVHWWKHUHFHLYHUVKDYHWKHVDPHVXEVFULSWLRQOHYHORUFXPXODWLYHOD\HUUDWH$V VXPH cl    WKHQWKHH[SHFWHGFRPSRXQGPHWULFFDQEHFDOFXODWHGDVIROORZV  7 

SFI r t   l t  

 N  N

  N 

 N

l

  j 

SFI ri t   l t

c j t  ri t  c j  t

l

  j  l

  j 

c j t  ri t  c j 

l

  j 

>  S ri t   l t    F ri t   l t @



c j t  ri t  c j  t

c j t  ri t  c j 

  X ri t   l t X ri t    l t          ri t   l t  t   ri t   c j t >  j X ri t    l t     @ ri t t

/HW  m l  PLQ SFI r t  l t  LH WKH PLQLPXP H[SHFWHG 6), ZKHQ cl t  cl t  Rm

LV VHW WR WKH m-WK RSHUDWLRQDO SRLQW Rm  ,I l  WKLV LV WULYLDO VLQFH WKH EDVH OD\HU UDWH c t  PD[^R j  R j  PLQ^ri t  R`` DQG WKH IDLUQHVV SDUW LV j

i

3LQJ:XHWDO

WKXV

 N





ri t  Rm

Rm ZKHUH Rm  c t EXWLQRUGHUWRFDOFXODWHWKHVWDELOLW\SDUW ri t

ZHQHHGWRFODULI\WKUHHVLWXDWLRQVDVIROORZV   )RUHDFKUHFHLYHUZKRVHVXEVFULSWLRQOHYHOLVDERYHWZRDWWLPHtLILWVUDWH LV ri t  Rm Rm  c t  LW ZLOO GURS WR WKH EDVH OD\HU DV QRZ WKHUH LV RQO\ RQHOD\HU7KHOHYHOFKDQJHLV  X ri t    L t   

)RU HDFK UHFHLYHU WKDW KDV EHHQ LQ WKH VHVVLRQ DW WLPH t LI LWV UDWH LV ri t  Rm Rm  c t LWZLOOOHDYHWKHVHVVLRQDWWLPHt7KHOHYHOFKDQJHLV  X ri t    L t  



)RU HDFK UHFHLYHU WKDW KDV QRW EHHQ LQ WKHVHVVLRQ DV ri t   c t   LILWV UDWH LV ri t  Rm Rm  c t  LW ZLOO MRLQ WKH VHVVLRQ DW WLPH t 7KH OHYHO FKDQJHLV   

,Il!WKLVFDQEHYLHZHGDVDGGLQJDQHZOD\HUWRWKHFDVHZKHUHRQO\lOD\HUV DUHXVHG &RQVLGHULQJDOOWKHVLWXDWLRQVZHKDYHWKHIROORZLQJUHFXUUHQFHUHODWLRQ  m  l 

8 

l   ^  >  X ri t    L t   N j   ri t  R m  l   X ri t    L t     @  ri t   c  t  ri t  R m  j   ri t  R m  Rm    `  LI l   R m  c t  r  i t ri t  R m      P LQ ^ j  l    > N r t  R X r t    t   l   j  m i m i L    @  N ri t  R m X ri t    L t   l   Rj Rm  @`  >   LI l  m    t N r r i i t  ri t  R m  2 W K H U Z L V H    !

 

 



















ZKHUHLLVWKHPD[LPXPQXPEHURIOD\HUVWKDWWKHVHQGHUKDVEHIRUHZHGRWKLVDGDS WDWLRQLHDWWLPHt$OVRZHGRWKHLQLWLDOL]DWLRQRIWKHOD\HUUDWHVYHFWRUDWWLPH LHZHJLYHWKHYDOXHRI  L  %HORZZHVKRZDSVHXGRFRGHRIWKHDOJRULWKP A lg or i thm

for

Op ti m a l A lloca ti on

In p u t: the n u m b er of the s u b s cr i b ed la y er s for r ecei v er i a t ti m e t - 1: X(ri(t-1),ȡL(t-1)), the s et of op er a ti on a l

2QWKH8VHRI6HQGHU$GDSWDWLRQWR,PSURYH6WDELOLW\DQG)DLUQHVV

r a tes p ected

ʌ ={R1,R2,...,R M :Ri < Ri+1} a n d the r ecei v er s ’ b a n d w i d ths a t ti m e t {r1(t),r2(t),...,rN(t)}.

Ou tp u t: the op ti m a l la y er ȡL(c1(t),c2(t),...,cL(t))

r a te v ector

ex -

a t ti m e t:

B eg i n 1. Let c1(t)= max{Rj:Rj  min{ri(t) R1}}, l = 1 a n d i j 2. Let (m0,1) b e the v a lu e a ccor d i n g (Thi s i s the i n i ti a li za ti on .)

R m =c1(t). 0

to eq u a ti on

(1).

3 . Let l = 2 4. Rep ea t a s

lon g

lL :

m0  m  M , a ccor d i n g to eq u a ti on (1), com p u te r ecor d the cor r es p on d i n g v a lu e of j .

4.1 F or (m,l)a n d 4.2

a s

S et i = i + 1

5. Id en ti fy

a

v a lu e of m

w i th the lea s t (m,l).

6 . Let cL(t)= R m 7. Let l = L - 1 8 . Rep ea t a s

lon g

a s

l>1

8 .1 A ccor d i n g to the v a lu e of m , fi n d the cor r es p on d i n g v a lu e of j r ecor d ed i n s tep 4.1. 8 .2

Let cl(t)= Rj

8 .3

S et m = j

8 .4

S et l = l - 1

E n d

4 Simulation Results ,QWKLVVHFWLRQZHFRQGXFWVLPXODWLRQVWRH[DPLQHWKHSHUIRUPDQFHRI6$5/0:H DOVRFRPSDUHLWZLWKH[LVWLQJVWDWLFDOORFDWLRQEDVHG5/0 4.1 Simulation Setting

6$5/0 WDUJHWV YLGHR PXOWLFDVW IRU ODUJH JURXSV ,W LV KDUG WR XVH H[LVWLQJ QHWZRUN VLPXODWRUVVXFKDVQVWRVLPXODWHLWVEHKDYLRU,QRXUVWXG\ZHXVHQHWZRUNWRSRO RJ\JHQHUDWRUVWRJHQHUDWHDODUJHVFDOHQHWZRUNDQGDSSO\QHWZRUNWUDIILFPRGHOVWR

3LQJ:XHWDO

SURGXFHFURVVWUDIILFRYHUGLIIHUHQWOLQNV6SHFLILFDOO\ZHXVHDSRSXODUQHWZRUNWR SRORJ\ JHQHUDWRU *7,70 WR JHQHUDWH D QRGH QHWZRUN ZLWK GHIDXOW VHWWLQJV DV VKRZQ LQ >@ :H WKHQ SODFH RQH 212)) VRXUFH DW HDFK OLQN WR UHSUHVHQW WKH G\ QDPLFFURVVWUDIILF7KHDYHUDJH21DQG2))SHULRGVDUHERWKVHFRQG,QRXUVWXG\ WKH UHFHLYHUVu  DYDLODEOH EDQGZLGWKV DUH IURP .ESV WR 0ESV 7KLV UDQJH FRYHUV WKHEDQGZLGWKRIPDQ\DYDLODEOHQHWZRUNDFFHVVHVDQGYLGHRFRPSUHVVLRQVWDQGDUGV ,WLVDOVRDW\SLFDOG\QDPLFUDQJHRIH[LVWLQJOD\HUHGFRGHUVVXFKDV03(*3)*6 FRGHU>@ )RU 6$5/0 ZH DVVXPH WKHUH DUH  XQLIRUPO\ VSDFHG RSHUDWLRQDO SRLQWV 7KH PD[LPXPQXPEHURIOD\HUV/LVVHWWRDQGWKHFXPXODWLYHOD\HUUDWHVRIDVHQGHU DUHLQLWLDOL]HGWR^.ESV`ZKLFKLVDOVRWKHFXPXODWLYHOD\HUUDWHV RIWKHVWDWLFDOORFDWLRQEDVHG5/0 $OORIRXUVLPXODWLRQVZHUHUXQIRUVHFRQGVZKLFKLVORQJHQRXJKIRUREVHUY LQJWUDQVLHQWDQGVWHDG\VWDWHEHKDYLRUV7KHUDWHRIVWDWHWUDQVLWLRQLQD0DUNRYFKDLQ LVVHWWRWLPHSHUVHFRQG:HUXQWKHDGDSWDWLRQHYHU\VHFRQGV 4.2 Results and Explanations

,Q)LJXUHZHVKRZWKHHIIHFWVRIWKHYDOXHRIZHLJKWVĮ DQGȕLQWKUHHGLIIHUHQWVHW WLQJV D       E       F      ,QDOOWKUHHVHW WLQJVWKHRSWLPDODOORFDWLRQLQ6$5/0H[KLELWVPXFKEHWWHUSHUIRUPDQFHDQGRIWHQ RXWSHUIRUPVWKHVWDWLFVFKHPHE\LQWHUPVRIWKHH[SHFWHG6),7KLVLVEH FDXVH WKH RSWLPDO DOORFDWLRQ DOJRULWKP DOORFDWHV WKH OD\HU UDWHV DFFRUGLQJ WR WKH UH FHLYHUVu  H[SHFWDWLRQV ,Q FRQWUDVW WKH VWDWLF VFKHPH PD\ VHW WKH OD\HU UDWHV QDLYHO\ HJVHWWRDSRLQWZLWKIHZUHFHLYHUV 

expected SFI

Į=0.5, ȕ=0.5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0

SARLM RLM

0

50

100 time

D 

150

200



2QWKH8VHRI6HQGHU$GDSWDWLRQWR,PSURYH6WDELOLW\DQG)DLUQHVV

Į=1.0, ȕ=0.0

expected SFI

0,5 0,4 SARLM 0,3

RLM

0,2 0,1 0 0

50

100

150

200

time

 E 

Į=0.0ȕ=1.0 0,4

expected SFI

0,35 0,3 0,25 0,2 0,15

SARLM

0,1

RLM

0,05 0 0

50

100

150

200

time

 F  Fig. 2. $YHUDJH 6), RI GLIIHUHQW ZHLJKW VHWWLQJV D  Į ȕ  E  Į ȕ  F  Į ȕ 

7RJDLQDEHWWHUXQGHUVWDQGLQJRIRXUHIIRUWWRPDNHWKHVFKHPH PRUHVWDEOHDQG IDLUZHDOVRH[DPLQHRQHVSHFLDOUHFHLYHU)LJXUHVKRZVKRZWKHVXEVFULSWLRQOHYHO FKDQJHV RYHU WLPH IRU RQH UHFHLYHU ,Q WKH VWDWLF DOORFDWLRQ VFKHPH WKH UHFHLYHU H[ SHULHQFHVPDQ\OD\HUFKDQJHVWKURXJKRXWWKHVLPXODWLRQ)RU6$5/0WKHYDULDQFHV LQ WKH VXEVFULSWLRQ OHYHO DUH UHGXFHG EHFDXVH RXU RSWLPDO DOJRULWKP DOZD\V WULHV WR PDNHWKHVXEVFULSWLRQOHYHOFKDQJHVFORVHWRWKHPLQLPXPYDOXH

3LQJ:XHWDO

subsription level

4 3 2 SARLM

1

RLM 0 0

50

100

150

200

time

 Fig. 3. 7KH VXEVFULSWLRQ OHYHO RI D UHFHLYHU 7KH WRWDO QXPEHU RI OD\HUV /   DQG ZHLJKWV Į ȕ 

5 Conclusions and Future Work ,QWKLVSDSHUZHKDYHSURSRVHGDK\EULGDGDSWDWLRQIUDPHZRUNIRUOD\HUHGYLGHRPXO WLFDVWRYHUWKH,QWHUQHW7KLVIUDPHZRUNFDOOHG6HQGHU$VVLVWHG5HFHLYHUGULYHQ/D\ HUHG 0XOWLFDVW 6$5/0  SHUIRUPV DGDSWDWLRQ RQ ERWK WKH VHQGHUu V DQG UHFHLYHUVu  VLGHV 6SHFLILFDOO\ ZH KDYH VWXGLHG WKH XVH RI G\QDPLF OD\HU UDWH DOORFDWLRQ WR LP SURYHVWDELOLW\DQGIDLUQHVVIRUWKHUHFHLYHUV:HKDYHLQWURGXFHGWKH6WDELOLW\DZDUH )DLUQHVV,QGH[ 6), WRHYDOXDWHWKHVWDELOLW\DVZHOODVIDLUQHVVRIDOD\HUHGPXOWLFDVW V\VWHP:HKDYHIRUPXODWHGWKHRSWLPDOUDWHDOORFDWLRQSUREOHPZLWKWKHREMHFWLYHRI PLQLPL]LQJWKH6),RIDVHVVLRQ$QGDQHIILFLHQWDOJRULWKPKDVEHHQSURSRVHG6LPX ODWLRQ UHVXOWV KDYH LQGLFDWHG WKDW 6$5/0 LV PRUH VWDEOH DQG IDLU WKDQ WKH UHFHLYHU GULYHQDGDSWDWLRQVFKHPHVZKLFKWUDQVPLWYLGHROD\HUVDWIL[HGUDWHV :H GR QRW DGGUHVV WKH LVVXHV RI EDQGZLGWK HVWLPDWLRQ DQG UHSRUW LQ WKLV SDSHU 7KHUH KDYH EHHQ PDQ\ SURSRVDOV IRU EDQGZLGWK HVWLPDWLRQ LQ SDUWLFXODU WKH 7&3 IULHQGO\ EDQGZLGWK 0DQ\ RI WKHP FDQ EH XVHG LQ 6$5/0 )RU EDQGZLGWK UHSRUW QRWHWKDW6$5/0WULHVWRPLQLPL]HWKHH[SHFWHG6),IRUDOOUHFHLYHUVLWUHOLHVRQWKH EDQGZLGWKGLVWULEXWLRQRIDOOUHFHLYHUVUDWKHUWKDQWKHEDQGZLGWKRILQGLYLGXDOUHFHLY HUV$ORWRIVDPSOLQJEDVHGVFDODEOHIHHGEDFNDOJRULWKPVIRUPXOWLFDVWVHVVLRQVFDQ WKXVEHDSSOLHG:HDUHFXUUHQWO\FRQGXFWLQJH[SHULPHQWVRYHUWKH,QWHUQHWWRLQYHVWL JDWHWKHSHUIRUPDQFHRI6$5/0LQSDUWLFXODUWKHLQWHUDFWLRQVZLWK7&3WUDIILF7R REVHUYHWKHLPSURYHPHQWIURPWKHYLHZSRLQWRIVXEMHFWLYHYLGHRTXDOLW\ZHZLOODOVR HPEHGDGYDQFHGOD\HUHGYLGHRFRGHUVWKDWVXSSRUWUHDOWLPHUDWHDOORFDWLRQHJWKH 03*(3)*6YLGHRFRGHU>@

2QWKH8VHRI6HQGHU$GDSWDWLRQWR,PSURYH6WDELOLW\DQG)DLUQHVV

References         



60F&DQQH9-DFREVRQDQG09HWWHUOLv 5HFHLYHUGULYHQ/D\HUHG0XOWLFDVWw LQ3UR FHHGLQJRI$&06,*&200SS$XJXVW 5 *RSDODNULVKQDQ - *ULIILRHQ * +MDOPW\VVRQ DQG &6UHHQDQ v 6WDELOLW\ DQG )DLUQHVV ,VVXHVLQ/D\HUHG0XOWLFDVWw LQ3URFHHGLQJRI1266'$9-XQH /9LFLVDQR/5L]]RDQG-&URZFURIWv 7&3OLNHFRQJHVWLRQFRQWUROIRUOD\HUHGPXOWL FDVWGDWDWUDQVIHUw LQ3URFHHGLQJRIWKH&RQIHUHQFHRQ&RPSXWHU&RPPXQLFDWLRQV ,((( ,QIRFRP 6DQ5DQFLVFR86$0DU -/LX%/LDQG@ :KHQ SDFNHW VZLWFKLQJ LV FRQVLGHUHG DQG LW ZRXOG EHXVHIXO WR VZLWFKRSWLFDO SDFNHWVRURSWLFDO EXUVWV GLUHFWO\ VRPH DGGLWLRQDO SUREOHPV DULVH HVSHFLDOO\ ZKHQ VHOIURXWLQJ IXQFWLRQDOLW\ LV UHTXHVWHG 6WURQJ UHVHDUFK HIIRUWV DUH GHYRWHG WR UHDOL]H WUXH SKRWRQLF SDFNHW VZLWFKHV ZKHUH SKRWRQ LQWHUDFWLRQVLQVXLWDEOHRSWLFDOPDWHULDOVDUHDEOHWRGHYLDWHWKHRSWLFDOEHDPLQRUGHU WRUHDFKRQHRIWZR RUPRUHWKDQWZR RXWSXWSRUWV $PRQJ WKHP DQ LQWHUHVWLQJ GHYLFH FDOOHG :56 :DYHOHQJWK 5RXWLQJ 6ZLWFK  KDV EHHQ UHFHQWO\ SURSRVHG >@ 7KLV LV D  SKRWRQLF JDWH H[SORLWLQJ WKH QRQOLQHDU IRXUZDYHPL[LQJ HIIHFW ZLWKLQ D EURDGDUHD 62$ 6HPLFRQGXFWRU 2SWLFDO $PSOLILHU  ,WV IXQGDPHQWDO UROH FRQFHUQV WKH URXWLQJ RI DQ LQFRPLQJ :'0 VLJQDO WRZDUGV WKH VHOHFWHG RXWSXW LQWHUSUHWLQJ WKH SUHVHQFH RU DEVHQFH RI VSHFLILF URXWLQJ ZDYHOHQJKWV LQVLGH WKH VSHFWUXP RI WKH VDPH VLJQDO 7KH URXWLQJ SURFHVV LV IXOO\ H[HFXWHGZLWKRXWUHTXLULQJDQ\RSWRHOHFWULFFRQYHUVLRQ

0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

6SDFH'LYLVLRQ$UFKLWHFWXUHVIRU&URVVWDON5HGXFWLRQ

,Q D SUHYLRXV SDSHU >@ ZH IRFXVHG WKH DWWHQWLRQ RQ 2PHJD QHWZRUNV GHYHORSLQJ D SRVVLEOHDUFKLWHFWXUHXVLQJ:56VZLWFKLQJHOHPHQWV 6(V 7KHSULQFLSDOJRDORIRXU VWXG\KDVEHHQWKHVROXWLRQRIFURVVWDONSUREOHP 7KH SURFHGXUHV GHYHORSHG IRU IDFLQJ LW RSWLPL]LQJ URXWLQJ SURFHVVHV DQG WUDIILF HQJLQHHULQJDUHQRWOLPLWHGWRWKHFKRLFHRIZDYHOHQJWKURXWLQJ2QWKHFRQWUDU\WKH\ DUHJHQHUDOHQRXJKWRFRYHUDOVRRWKHUSRVVLEOHVLJQDOGRPDLQV)RUH[DPSOH036LV D SDUWLFXODU PHWKRG RI IRUZDUGLQJ SDFNHWV DW D KLJK UDWH RI VSHHG ,W FRPELQHV WKH SHUIRUPDQFH DQG VSHHG RI :'0 SK\VLFDO OD\HU ZLWK WKH IOH[LELOLW\ RI ,3 OD\HU ,Q 036 ZDYHOHQJWKVZLWFKHG FKDQQHOV FDQ EH HVWDEOLVKHG LQVWHDG RI ODEHOVZLWFKHG SDWKV 2QO\ WKH ODEHO QHHGV WR EH SURFHVVHG LQ WKH QHWZRUN QRGH WKH SDFNHWV FDQ E\SDVVWKHHOHFWURQLFFRQYHUVLRQDQGSURFHVVLQJDQGWKXVWKHQHWZRUNSHUIRUPDQFH FDQEHLQFUHDVHGVLJQLILFDQWO\ $UHFHQWO\SURSRVHGRSWLFDO&'0 &RGH'LYLVLRQ0XOWLSOH[LQJ WUDQVPLVVLRQIRUPDW >@ ZKLFK FDQ EH UHDOL]HG E\ PHDQV RI UHFRQILJXUDEOH DUUD\HGZDYHJXLGH JUDWLQJV DOWKRXJKFRPSOHWHO\GLIIHUHQWIURPWKHSK\VLFDOSRLQWRIYLHZFRXOGUHSODFH:'0DW DOO &'0 DVVXUHV D WZRGLPHQVLRQDO GRPDLQ XVLQJ WLPH DQG ZDYHOHQJWK VLPXOWDQHRXVO\ WR EH H[SORLWHG IRU FURVVWDON UHGXFWLRQ DQG FRQIOLFW DYRLGDQFH HIILFLHQWO\ +RZHYHU ERWK VROXWLRQV GHVFULEHG DERYH UHTXLUH VHOIURXWLQJ HOHPHQWV IRU EXUVW RSWLFDOVZLWFKLQJ 7KLV ZRUN LV RUJDQL]HG DV IROORZV ,Q 6HFWLRQ  2PHJD QHWZRUNV DUH GHVFULEHG IRFXVLQJ WKH DWWHQWLRQ RQ RSWLFDO FURVVWDON UHGXFWLRQ $ VSDFH GLYLVLRQ DSSURDFK LV SURSRVHG WR VROYH WKLV SUREOHP VR WKDW 4R6 LQ RSWLFDO QHWZRUNV LV LPSURYHG ,Q 6HFWLRQ  D PRUH FRPSOH[ VWUXFWXUH EDVHG RQ WKH XWLOL]DWLRQ RIELSDUWLWLRQ DQG WZR FRORUDELOLW\DOJRULWKPVLVSUHVHQWHG+HUHZHVKRZWKHUHVXOWVRIWKHVLPXODWLRQDERXW WKHSHUIRUPDQFHVRIWKHWZRPHWKRGV)LQDOO\6HFWLRQFRQFOXGHVWKHSDSHU

2 Crosstalk in Omega Networks $PRQJ WKH YDULRXV PXOWLVWDJH QHWZRUNV SURSRVHG DQG VWXGLHG DV RSWLFDO VZLWFKLQJ WRSRORJLHV ZH KDYH IRFXVHG RXU DWWHQWLRQ RQ WKH VWUXFWXUH RI WKH 2PHJD QHWZRUNV ZKLFKEHORQJWRWKHJURXSRIPXOWLVWDJHFXEHW\SHQHWZRUNV 0&71 +RZHYHUWKLV FKRLFHGRHVQRWDIIHFWWKHJHQHUDOLW\RIRXUVWXG\VLQFHDOO0&71VDUHWRSRORJLFDOO\ HTXLYDOHQW>@ $Q 11 2PHJD QHWZRUN ZLWK 1 Q LV FRPSRVHG E\ Q VWDJHV FROXPQV  HDFK RI WKHP LQFOXGLQJ D QXPEHU RI VZLWFKLQJ HOHPHQWV 6(V  HTXDO WR 1 VR WKDW WKH VWUXFWXUHLQFOXGHVDQXPEHURI6(VHTXDOWR 1 ORJ17KHLQWHUQDOSDWWHUQVIROORZ GLIIHUHQW UXOHV ZKLFK GHSHQG RQ WKH FRQVLGHUHG VWDJH ,Q IDFW WKH LQWHUVWDJH FRQQHFWLRQVDGRSWWKHVKXIIOHH[FKDQJHVFKHPH>@DQGVLPLODUO\WKHLQSXWSRUWVRI WKH QHWZRUN DUH DOVR VKXIIOHG EHIRUH UHDFKLQJ WKH ILUVW VWDJH 2Q WKH FRQWUDU\ WKH RXWSXW SRUWV RI WKH ODVW VWDJH DUH GLUHFWO\ FRQQHFWHG WR WKH QHWZRUN RXWSXWV $Q H[DPSOH RI D  WRSRORJ\ LV UHSRUWHG LQ )LJ  ZKHUH LQSXWV RXWSXWV DQG 6(V DUH QXPEHUHGLQDELQDU\IRUPDW 2PHJD QHWZRUNV DUH IXOO\ DFFHVVLEOH WKDW LV HYHU\ RXWSXW FDQ EH UHDFKHG IURP DQ\ LQSXWDQGE\DGRSWLQJWKHDGGUHVVELWVRIVXFKRXWSXWDVURXWLQJWDJVDVHOIURXWLQJ

$QGUHD%RUHOOD*LRYDQQL&DQFHOOLHULDQG'DQWH0DQWLQL

IXQFWLRQDOLW\FDQEHREWDLQHG,QIDFWWKHNWKELW NQ RIWKHDGGUHVVLVXVHGWR VZLWFKWKH6(DWWKHNWKVWDJHIROORZLQJWKHUXOHWKDWWKHXSSHUSRUWRIWKH6(KDVWR EHVHOHFWHGLIWKHELWHTXDOVDQGWKHORZHUSRUWRWKHUZLVH)RUH[DPSOHLQ)LJLV UHSRUWHGLQGDVKHGOLQHVWKHSDWKFRQQHFWLQJLQSXWWRRXWSXW$FFRUGLQJWRWKH ODWWHUELQDU\VHTXHQFHWKH6(DWWKHILUVWVWDJHVZLWFKHVWRLWVORZHUSRUWZKHUHDVWKH RWKHUWZR6(VVZLWFKWKHSDWKWRZDUGVWKHLUXSSHURQH 



 









 













 

 

 

 











 Fig. 12PHJDQHWZRUN

 $ 1SHUPXWDWLRQ LV FRPSRVHG E\ 1 GLIIHUHQW LM  LQSXWRXWSXW SDLUV ZLWK L1 DQG M1 VR WKDW HYHU\ LQSXW RU RXWSXW SRUW LV FRQWDLQHG ZLWKLQ RQO\ RQH RI WKH DERYHPHQWLRQHGSDLUV,QSUDFWLFHLWUHSUHVHQWVWKHLQWHUQDOURXWLQJUHTXHVWVWREHVHW ZLWKLQ WKH VZLWFKLQJ QHWZRUN RQFH KDYLQJ DYRLGHG PXOWLSOH FRQQHFWLRQV DGGUHVVHG WRZDUGVWKHVDPHRXWSXWSRUW&OHDUO\WKHQXPEHURISRVVLEOHSHUPXWDWLRQVHTXDOV1 2PHJD LV D EORFNLQJ QHWZRUN VLQFH WKHUH DUH VRPH SHUPXWDWLRQV ZKLFK LPSO\ D FRQIOLFWZLWKLQD6(/HWXVFRQVLGHUIRUH[DPSOHDJLYHQSHUPXWDWLRQLQFOXGLQJWKH WZRLQSXWRXWSXWSDLUV  DQG  (YHQWKRXJKWKH\DUHDGGUHVVHG WRZDUGVGLIIHUHQWRXWSXWVERWKRIWKHPFRPSHWHIRUWKHORZHUSRUWZLWKLQ6(DWWKH ILUVW VWDJH 2Q WKH FRQWUDU\ D JLYHQ SHUPXWDWLRQ LV VDLG DGPLVVLEOH LI LW LPSOLHV 1 FRQIOLFWIUHHSDWKVZLWKLQWKHVZLWFKLQJIDEULFWKDWLVWRVD\LILWGRHVQRWJHQHUDWHD EORFNFRQILJXUDWLRQRIWKHVZLWFK &DOOLQJ WKHVHWLQFOXGLQJDOOWKHDGPLVVLEOHSHUPXWDWLRQVWKHUDWLR1 1HTXDOVWKH SUREDELOLW\WKDWDJLYHQSHUPXWDWLRQLQDQ112PHJDQHWZRUNLVDGPLVVLEOH,WFDQ EHXQGHUOLQHGWKDW FRQWDLQVPDQ\SHUPXWDWLRQVZKLFKDUHQRWFURVVWDONIUHH &)  VLQFH LQ PDQ\ FDVHV GLIIHUHQW FRQIOLFWIUHH SDWKV DUH IRUFHG WR FURVV WKH VDPH 6( ZKHUHFURVVWDONRFFXUV 2SWLFDO FURVVWDON HIIHFW LV RQH RI WKH PDLQ FRQFHUQV DV UHJDUGV 4R6 LQ RSWLFDO WUDQVSRUW QHWZRUNV ,Q WKH FRQWH[W FRQVLGHUHG KHUH VSHFLILF DOJRULWKPV GHYRWHG WR

6SDFH'LYLVLRQ$UFKLWHFWXUHVIRU&URVVWDON5HGXFWLRQ

LGHQWLI\ VXLWDEOH FURVVWDONIUHH SHUPXWDWLRQV WR EH VHW LQ WKH 2PHJD LQWHUFRQQHFWLRQ QHWZRUNFDQFRQWUROVXFKHIIHFW 7KH57'0 5HFRQILJXUDWLRQZLWK7LPH'LYLVLRQ0XOWLSOH[LQJ DSSURDFK>@VROYHV WKLVSUREOHPE\SDUWLWLRQLQJDSHUPXWDWLRQDPRQJGLIIHUHQWWLPHVORWVVRWKDWLQHDFK VORWWKHVXEVHWRIWKHFRQVLGHUHGSDUWLWLRQGRHVQRWLPSO\DQ\VLPXOWDQHRXVFURVVLQJRI DJLYHQ6(E\WZRGLIIHUHQWSDWKV8QIRUWXQDWHO\57'0XVLQJDWLPHPXOWLSOH[LQJ QHHGV RSWLFDO EXIIHULQJ RI GDWD ZDLWLQJ IRU VZLWFKLQJ LQ VXEVHTXHQW VORWV $W WKH SUHVHQWVWDWHRIWKHDUWWKLVLVQRWDOZD\VDSUDFWLFDOVROXWLRQHVSHFLDOO\FRQVLGHULQJ WKHOHQJWKRIWKHQHFHVVDU\SKRWRQLFPHPRULHVLQDQRSWLFDOEXUVWVZLWFKLQJFRQWH[W >@ 1HYHUWKHOHVVDVLPLODUPHWKRGFDQEHXVHGWRKDQGOH&)SHUPXWDWLRQVE\DGRSWLQJD UHFRQILJXUDWLRQWHFKQLTXHRSHUDWLQJDFFRUGLQJWRVSDFHGLYLVLRQPXOWLSOH[LQJ,QWKLV ZD\ WKURXJK YHUWLFDO UHSOLFDWLRQ RI WKH FRQVLGHUHG 2PHJD QHWZRUN WKH RULJLQDO VZLWFKLQJ JUDSK DVVXPHV D PXOWLOD\HUHG DUFKLWHFWXUH ZKHUH WKH GLODWHG WRSRORJ\ LV HTXDODWHYHU\RYHUODSSHGOHYHORIWKHIDEULF>@7KHDERYHPHQWLRQHGSHUPXWDWLRQ VXEVHWV DUH WKHQ DOORFDWHG DW GLIIHUHQW OD\HUV VR WKDW RQFH DJDLQ DQ\ 6( LV QRW VLPXOWDQHRXVO\ FURVVHG E\ PRUH WKDQ RQH SDWK $Q H[DPSOH RI VXFK VWUXFWXUH LV UHSRUWHGLQ)LJZKHUHDWZROD\HUHG2PHJDQHWZRUNLVGHSLFWHG

2*















6

&



 Fig. 2. 9HUWLFDO H[SDQVLRQ RQ WZR OHYHOV RI  2PHJD QHWZRUN 2* RSWLFDO JDWH 6  VSOLWWHU&FRPELQHU 

(YHQWKRXJKWKHODWWHUVROXWLRQLVFKDUDFWHUL]HGE\DUHGXQGDQWVWUXFWXUH VHH7DE  LW DOORZV D QRGH FURVVLQJ ZLWKRXW GHOD\V GXH WR WHPSRUDULO\ EXIIHULQJ DQG FRQVHTXHQWO\DYRLGVWKHQHFHVVLW\RIRSWLFDOGHOD\OLQHV  Tab. 1.&RPSDULVRQEHWZHHQKDUGZDUHUHTXLUHPHQWVDQGWKURXJKSXWSHUIRUPDQFHRI WLPHDQGVSDWLDOUHSOLFDWLRQRIDWZROD\HUHG2PHJDQHWZRUNV 



DUFKLWHFWXUH

VZLWFK

VSOLWWHU

FRPELQHU

JDWH

EXIIHU

WKURXJKSXW

57'0

1 ORJ1







1



YHUWLFDO H[SDQVLRQ

1ORJ1

1

1

1





$QGUHD%RUHOOD*LRYDQQL&DQFHOOLHULDQG'DQWH0DQWLQL

)RFXVLQJ RXU DWWHQWLRQ RQ D WZROD\HUV DUFKLWHFWXUH OHW XV GHILQH  DV WKH VHW RI 1 SHUPXWDWLRQVUHDOL]DEOHZLWKDWZR&)PDSSLQJRIDQ112PHJDQHWZRUN,WFDQEH GHPRQVWUDWHGWKDWIRULWVVL]H1 ZHKDYH1 !1 EXW ZKLFKPHDQVWKDWPRUH &)SHUPXWDWLRQVFDQEHREWDLQHGDWWKHH[SHQVHRIKLJKHUFRVWV0RUHRYHU1 1  >@ ZKHUH FODVV  GHWHUPLQHV WKH VHW RI DGPLVVLEOH SHUPXWDWLRQV RI DQ ([WUD 6WDJH 2PHJD QHWZRUN >@ WKDW LV REWDLQHG E\ DGGLQJ RQH PRUH VWDJH RI VKXIIOH LQ IURQW RI DQ 2PHJD 6LQFH D VLQJOH 6( DGPLWV RQO\ WZR SRVVLEOH SHUPXWDWLRQV LW

IROORZV WKDW DQ 11 2PHJD QHWZRUN LV FKDUDFWHUL]HG E\ 1 ORJ1 VWDWHV )XUWKHUPRUHLWFDQEHREVHUYHGWKDW2PHJDQHWZRUNVDGPLWDXQLTXHSDWKIURPHYHU\ LQSXW WHUPLQDO WR HYHU\ RXWSXW SRUW &RQVHTXHQWO\ HYHU\ VWDWH RI WKH QHWZRUN

FRUUHVSRQGV WR D GLIIHUHQW SHUPXWDWLRQ VR WKDW 1 1 ORJ1 11 7KLV LV QRW WUXH IRU WKH ([WUD6WDJH 2PHJD QHWZRUN VLQFH LW SURYLGHV WZR GLIIHUHQW SDWKV IRU HYHU\ VRXUFHGHVWLQDWLRQ SDLU )RU WKLV UHDVRQ LQ WKLV FDVH WKH YDOXH RI 1  FDQQRW EH FRPSXWHG DQDORJRXVO\ :H LQGLFDWH 3 1 1 DV WKH SUREDELOLW\ WKDW D JLYHQ SHUPXWDWLRQ LV &) LQ D WZROD\HUV 11 2PHJD QHWZRUN 6XFK SUREDELOLW\ FDQ EH HVWLPDWHGE\VLPXODWLRQYHULI\LQJWKHSHUFHQWDJHRIUDQGRPO\JHQHUDWHGSHUPXWDWLRQV EHORQJLQJ WR  ,W LV LQGLFDWHG LQ )LJ  FDVH $ DV D IXQFWLRQ RI 1 7KH QXPHULFDO UHVXOWVVKRZWKDWDOOWKHSHUPXWDWLRQVDUH&)ZKHQ1 1HYHUWKHOHVVWKLVLVDWULYLDO VLWXDWLRQWKDWLVQRWUHSUHVHQWDWLYHRIWKHSHUIRUPDQFHRIJUHDWHUQHWZRUNV,QIDFWWKH JUHDWHU1WKHORZHU3 DQGIRU1 LQSUDFWLFHDQ\SHUPXWDWLRQLVQRW&)7KLV PHDQVWKDWDOOWKHVLJQDOVFURVVLQJWKHQRGHZLOOEHDIIHFWHGE\FURVVWDON  















( ( (

3

( ( ( (

FDVH$ FDVH%

(

1 Fig. 3. 3UREDELOLW\ RI D &) SHUPXWDWLRQ LQ DQ WZROD\HUHG 11 2PHJD QHWZRUN FDVH $  QR GHIOHFWLRQVFDVH% GHIOHFWLRQURXWLQJ

,Q >@ ZH WULHG WR UHFRYHU SDUWLDO &) SHUPXWDWLRQV E\ D SURJUHVVLYH HUDVLQJ RI FRQIOLFWLQJSDWKVZLWKLQDQRQ&)FRQILJXUDWLRQ:HLQWURGXFHGDVLPSOHPHFKDQLVP ZKLFK RQFH KDYLQJ YHULILHG WKDW D JLYHQ SHUPXWDWLRQ FRQWDLQV FRQIOLFWV DV UHJDUGV

6SDFH'LYLVLRQ$UFKLWHFWXUHVIRU&URVVWDON5HGXFWLRQ

FURVVWDON  WULHV WR WUDQVIRUP LW LQ D &) SHUPXWDWLRQ 5HURXWLQJ KDV EHHQ REWDLQHG WKURXJK D VLPSOH H[FKDQJH RI WKH RXWSXW SRUWV DPRQJ FRQIOLFWLQJ SDWKV ,Q RWKHU ZRUGV DGRSWLQJ WKH SKLORVRSK\ RIGHIOHFWLRQ URXWLQJ >@ WKRVH SDWKV DUH UHDUUDQJHG DQGGLUHFWHGWRZDUGVGLIIHUHQWRXWSXWV ZLWKUHVSHFWWRWKRVHLGHQWLILHGE\WKHURXWLQJ WDEOHV  WR REWDLQ D QHZ &) VHWXS $VVXPLQJ DQ HIIHFWLYH LQWHUDFWLRQ DPRQJ WKH SURWRFROV RI WKH 036 VWDFN >@ D SULRULWL]HG PDQDJHPHQW RI WKH WUDIILF FDQ EH GHYHORSHGLQRUGHUWRIRUFHWKHGHIOHFWLRQRIORZHVWVHUYLFHFODVVHVILUVW(YHQWKRXJK WKLV RSHUDWLRQ GRHV QRW UHVSHFW WKH URXWLQJ UHTXHVWV DQG FDXVHV D GHIOHFWLRQ RI WKH FRQVLGHUHG SDWKV WRZDUGV GLIIHUHQW RXWSXW SRUWV LWV HIIHFW LQ WHUPV RI FURVVWDON UHGXFWLRQLVHYLGHQWLQ)LJFDVH%7KHUH3 LVJUHDWO\LQFUHDVHGZLWKUHVSHFWWR WKHVLWXDWLRQLQZKLFKWKHSDWKVDUHQRWPRGLILHG +RZHYHUWKLVZDVRQO\DILUVWVLPSOHDSSURDFKZKLFKLPSOLHVDPLQLPXPDGGLWLRQDO SURFHVVLQJWLPHEXWJHQHUDWHVDQRWQHJOLJLEOHHIIHFWRQWKHQRGHSHUIRUPDQFH+HUH ZHSURSRVHDPRUHLQYROYHGDOJRULWKPLFVROXWLRQGHWDLOHGLQWKHVHTXHO

3 Bipartite and Two-Colorable Omega Networks ,QWKLVSDUDJUDSKZHSUHVHQWWKHUHVXOWVREWDLQHGDQDO\]LQJWKHSHUIRUPDQFHRIDPRUH FRPSOH[ VWUXFWXUH ZKHUH WKH FRQVLGHUHG WRSRORJ\ LV GLODWHG RQ IRXU VSDFH OD\HUV 2EYLRXVO\ WKLV VROXWLRQ LQFUHDVHV FRPSOH[LW\ DQG FRVW EXW WKURXJK VXLWDEOH URXWLQJ DOJRULWKPV UHGXFHV FURVVWDON FRQIOLFWV DV ZHOO +HUH ZH DGRSW D FRPELQHG VROXWLRQ ZKLFKLVEDVHGRQWKHLQWHJUDWHGXWLOL]DWLRQRIWZRDOJRULWKPV 7KHILUVWDSSURDFKLVGHULYHGIURP>@ZKHUHDPHPEHUVKLSDOJRULWKPIRU FODVVLV SUHVHQWHG7KURXJKWKLVWHFKQLTXHLWLVSRVVLEOHWRYHULI\LIDJLYHQ1SHUPXWDWLRQ  EHORQJVWR VRWKDWLWLV&)LQDWZROD\HUHG2PHJDQHWZRUN,WZRUNVDVH[SODLQHG LQWKHVHTXHO $ WUDQVLWLRQ VHTXHQFH DVVRFLDWHG WR WKH SDLU L L  IRU L1 LV WKH ELQDU\ UHSUHVHQWDWLRQ RI WKH LWK QRGH IROORZHG E\ LWV GHVWLQDWLRQ DFFRUGLQJ SHUPXWDWLRQ  )RUH[DPSOHLILQWKHSHUPXWDWLRQ LQSXWKDVWREHFRQQHFWHGWRRXWSXWZHKDYH L L 7KXVLWLVHYLGHQWWKDWDJLYHQSHUPXWDWLRQFDQEHUHSUHVHQWHGDVD WUDQVLWLRQ PDWUL[ 7 ZKHUH HYHU\ URZ LV UHODWLYH WR D JLYHQ LQSXWRXWSXW SDLU )RU H[DPSOHWKHSHUPXWDWLRQ  RID 2PHJDLQWHUFRQQHFWLRQQHWZRUNLPSOLHVWKHPDWUL[RI)LJ ,Q )LJ  ZH KDYH LGHQWLILHG WKH VR FDOOHG RSWLFDO ZLQGRZV WRR (DFK RI WKHP LV D VHTXHQFH RI Q DGMDFHQW FROXPQV DQG LQ SDUWLFXODU WKH NWK RQH 2:N NQ  LQFOXGHV WKH FROXPQV 7>N h  QN@ ,Q WKH FRQVLGHUHG H[DPSOH ZKHUH Q  ZH KDYHWKDWHYHU\ZLQGRZFRQWDLQVRQO\WZRFROXPQV$VWULQJRIELWV2:N L SODFHGRQ WKHVDPHLWKURZ L1 RI7DQGLQFOXGHGLQWKHVDPH2:NLQGLYLGXDWHVWKHNWK 6(FURVVHGE\WKHSDWKFRQQHFWLQJLQSXWLZLWKLWVGHVWLQDWLRQSRUW6HHIRUH[DPSOH IRUL WKHURZUHODWLYHWR   7KHWKUHHVWULQJVVKDGRZHGLQ)LJDUH 2:  2:  2:  ZKLFKDUHH[DFWO\WKHWKUHH6(VWKDWKDYHWREH FURVVHGWRFRQQHFWLQSXWZLWKRXWSXW GDVKHGOLQHLQ)LJ   

$QGUHD%RUHOOD*LRYDQQL&DQFHOOLHULDQG'DQWH0DQWLQL





 

















































































































2:

2:

2:



Fig. 4.$QH[DPSOHRIWUDQVLWLRQPDWUL[IRUDQ2PHJDQHWZRUN 2:RSWLFDOZLQGRZ 

)RU D JLYHQ SHUPXWDWLRQ UHSUHVHQWHG WKURXJK LWV UHODWLYH PDWUL[ 7 D FRQIOLFW JUDSK * 9(  LQFOXGHV WKH YHUWLFHV 9 Y Yh  Y1 WKDW FRLQFLGH ZLWK WKH HTXDOO\ QXPEHUHG LQSXW SRUWV DQG WKH HGJHV ( WKDW FRQQHFW SDLUV RI YHUWLFHV Y[ Y\  IRU ZKLFKZHKDYH2:N [  2:N \ EHLQJNQDQG[\17KHUHIRUHLQVXFK JUDSK WZR YHUWLFHV DUH DGMDFHQW DQG FRQQHFWHG ZKHQ WKH\ VKDUH D JLYHQ6( RQ WKHLU SDWK+DYLQJDVVLJQHGDFRORUEODFNRUZKLWHWRHYHU\YHUWH[RIWKHFRQIOLFWJUDSK WKHODWWHULVWZRFRORUDEOHZKHQDGMDFHQWYHUWLFHVDUHQRWRIWKHVDPHFRORU1RZDQ LPSRUWDQWIHDWXUHKDVWREHVWUHVVHGIRUDJLYHQ1SHUPXWDWLRQ ZHKDYH  LIDQG RQO\LIWKHFRQIOLFWJUDSK* 9( LVWZRFRORUDEOH>@7KLVPHDQVWKDWLQWKLVFDVH ZHFDQSDUWLWLRQWKHSHUPXWDWLRQRQWZRGLIIHUHQW&)2PHJDOD\HUV)URPDJLYHQ  WKH DERYH PHQWLRQHG JUDSK YHULILHV LI WKH SHUPXWDWLRQ EHORQJV WR FODVV  DQG LI VR FUHDWHVWKHWZRJURXSVRILQSXWRXWSXWSDLUVWREHVZLWFKHGWRZDUGVWKHWZRGLIIHUHQW OD\HUV6HHIRUH[DPSOHWKHVLWXDWLRQRI)LJ$SSO\LQJWKHLQGLFDWHGSURFHGXUHZH REWDLQWKHFRQIOLFWJUDSKRI)LJ,WLVWZRFRORUDEOHDQGLGHQWLILHVWKHJURXSVY

Y

Y

Y

Y

Y

Y

Y

Y

Fig. 5.&RQIOLFWJUDSKUHODWLYHWRWKHWUDQVLWLRQPDWUL[RI)LJ

6SDFH'LYLVLRQ$UFKLWHFWXUHVIRU&URVVWDON5HGXFWLRQ

YYYDQGYYYY7KLVPHDQVWKDWDWRQHOD\HURIWKH2PHJDZHZLOO DOORFDWHWKHFRQQHFWLRQV  ZKHUHDVDWWKHRWKHUOD\HUZLOOEH SODFHGWKHFRQQHFWLRQV   7KH FRUUHFWQHVV RI WKLV PHWKRG LV LOOXVWUDWHG LQ )LJ  ZKHUH WKH VZLWFKLQJ FRQILJXUDWLRQV DUH UHSRUWHG HYLGHQFLQJ WKH DFWLYH HGJHV RQO\ ,Q ERWK FDVHV D JLYHQ 6( LV FURVVHG E\ RQO\ RQH FRQQHFWLRQ 7KXV HYHU\ OD\HU PDQDJHV 11 SHUPXWDWLRQVRQO\  



 

 



          

/D\HU  



 

 

 

/D\HU Fig. 66ZLWFKLQJFRQILJXUDWLRQVIRUWKHWZRFRORUDEOHSHUPXWDWLRQRI)LJ

8VLQJ WKH LOOXVWUDWHG SURFHGXUH ZH FDQ EXLOG D GLODWHG 2PHJD QHWZRUN ZKHUH WKH SUREDELOLW\RIREWDLQLQJD&)SHUPXWDWLRQLVLQFUHDVHG1HYHUWKHOHVVDVVWDWHGDERYH RXUJRDOLVWKHHPSKDVL]LQJRIWKLVDSSURDFKH[SDQGLQJWKHLQWHUFRQQHFWLRQQHWZRUN RQ D PXOWLOD\HUHG WRSRORJ\ WR DFKLHYH KLJKHU &) SHUIRUPDQFH )RU WKLV UHDVRQ EHIRUHDSSO\LQJWKHWZRFRORUDEOHDOJRULWKPDELSDUWLWHJUDSKDOJRULWKPLVXVHG)RU EUHYLW\VDNHZHUHSRUWKHUHMXVWDGHVFULSWLRQRILWVSHFXOLDUFKDUDFWHULVWLFV 7KHELSDUWLWLRQRIWKHRULJLQDO112PHJDWRSRORJ\KDVEHHQREWDLQHGKHUHXVLQJDQ DOJRULWKPZKLFKJXDUDQWHHV&)FRQGLWLRQVDWWKHILUVWDQGWKHODVWVWDJHRIWKHQHWZRUN RQO\7KDWLVWRVD\DGRSWLQJWKHSURFHGXUHSURSRVHGLQ>@ZHVSOLWWKHLQFRPLQJ VLJQDOEHIRUHWKH\UHDFKWKHILUVWVWDJHVRWKDWDWVXFKVWDJHQRPRUHWKDQRQHSRUWSHU 6( LV DFWLYH ,Q DGGLWLRQ WKH VSOLWWLQJ RSHUDWLRQ LV H[HFXWHG WDNLQJ LQWR DFFRXQW WKH VDPHSUREOHPIRUWKHODVWVWDJH,QSUDFWLFHWKHRSWLFDOVLJQDOVDUHDGGUHVVHGWRZDUGV WZR RYHUODSSHG 11 LQWHUFRQQHFWLRQ QHWZRUNV HDFK RI WKHP PDQLSXODWLQJ 1

$QGUHD%RUHOOD*LRYDQQL&DQFHOOLHULDQG'DQWH0DQWLQL

SHUPXWDWLRQV 7KH ORJLFDO WRSRORJ\ GHULYHV IURP WKH ILUVW VWHS RI WKH ELSDUWLWH GHFRPSRVLWLRQWHFKQLTXHZKLFKDVVLJQVDQRXWJRLQJ LQFRPLQJ GHJUHHHTXDOWRWR WKHLQSXWV RXWSXWV DQGSDLUVWKHPLQWRE\EXWWHUIOLHVDVVKRZQLQ)LJ  11VXEQHWZRUN 1SHUPXWDWLRQV

11VXEQHWZRUN 1SHUPXWDWLRQV  Fig. 7.3DUWLDOELSDUWLWHGHFRPSRVLWLRQRI11QHWZRUN

 ,QSULQFLSOHWKLVSURFHGXUHFRXOGEHLWHUDWHGDSSO\LQJLWWRWKHVXEQHWZRUNVLGHQWLILHG VWHS E\ VWHS 2Q WKH FRQWUDU\ KHUH ZH VWRS WKH ELSDUWLWH DOJRULWKP WR UXQ WKH WZR FRORUDEOH RQH H[HFXWHG RQ HDFK VXEQHWZRUN $V SUHYLRXVO\ LQGLFDWHG WKH ODWWHU DOJRULWKPQHHGVWKHDYDLODELOLW\RIDVHFRQGQHWZRUNVUHSOLFDWKDWFRQVLGHULQJWKHWZR RQHV UHTXHVWHG DW WKH SUHYLRXV VWHS PDNHV WKH WRSRORJ\ IRXUOD\HUHG 7KH UHVXOWLQJ SK\VLFDOWRSRORJ\LVUHSRUWHGLQ)LJZKHUHVSOLWWHUVDQGFRPELQHUVUHVSRQVLEOHIRU VLJQDOSDUWLWLRQDQGUHFRPSRVLWLRQDUHGUDZQ

2*  

 

 

 

 

 

 

  6SOLWWHU



&RPELQHU

Fig. 8.)RXUOD\HUHGELSDUWLWHDQGWZRFRORUDEOH2PHJDQHWZRUN 2*RSWLFDOJDWH 

6SDFH'LYLVLRQ$UFKLWHFWXUHVIRU&URVVWDON5HGXFWLRQ

1RZZHFDQHYDOXDWHKRZWKLVVWUDWHJ\LVHIIHFWLYH,Q)LJWKHUHVXOWVREWDLQHGYLD VLPXODWLRQ DUH SORWWHG KDYLQJ ODEHOHG E\ 3 &)  WKH SUREDELOLW\ WKDW D JLYHQ SHUPXWDWLRQLV&)LQDWZRRUIRXUOD\HUHGQHWZRUN,QIDFWWZRFXUYHVUHODWHWRWKH FDVHRIWZROD\HUHG112PHJDQHWZRUNVZKHUHWKHWZRFRORUDEOHDOJRULWKPKDYH EHHQ XVHG ZLWK RU ZLWKRXW GHIOHFWLRQV RI FRQIOLFWLQJ SDWKV ZKHUHDV WKH WKLUG FXUYH UHSUHVHQWVWKHSHUIRUPDQFHRIWKHFRPELQHGELSDUWLWHDQGWZRFRORUDEOHDOJRULWKP$V DFRXQWHUSDUWRIDQLQFUHDVHGVWUXFWXUDOFRPSOH[LW\DQHZLPSURYHPHQWLVDFKLHYHG ,QIDFWWKHWKLUGFXUYHLVDOZD\VRYHUWKHSUHYLRXVRQHVDQGWKHQHWZRUNLV&)XQWLO 1  







( ( ( (

3 &)

( ( (

WZRFRORUDEOH WZRFRORUDEOH GHIOHFWLRQV ELSDUWLWH WZRFRORUDEOH

(

1 Fig. 9.3UREDELOLW\RID&)SHUPXWDWLRQLQDGLODWHG112PHJDQHWZRUN

 )RU D GHHS FRPSUHKHQVLRQ RI WKH SURSRVHG URXWLQJ DOJRULWKP ZH DUH GHYHORSLQJ D QHZ DQG H[WHQGHG YHUVLRQ RI WKH WZRFRORUDEOH RQH SUHVHQWHG DERYH ,W ZLOO ZRUNV GHHSO\LQVSDFHGLYLVLRQDVDPHPEHUVKLSDOJRULWKPIRUDSK\VLFDOWRSRORJ\GLODWHG RQ IRXU OHYHOV ZKRVH DUFKLWHFWXUH ZLOO EH FRPSDUDEOH ZLWK WKH VROXWLRQ SUHVHQWHG KHUH7KLVZLOOEHWKHVXEMHFWRIWKHQH[WSDSHU

4 Conclusions 2PHJDQHWZRUNVKDYHEHHQLQYHVWLJDWHGIURPWKHSRLQWRIYLHZRIFURVVWDONUHGXFWLRQ DQG FRQIOLFW DYRLGDQFH %LSDUWLWH DQG WZRFRORUDEOH QHWZRUNV H[KLELW YHU\ JRRG SHUIRUPDQFHDFWLQJLQSUDFWLFHDVDOD\HUHGQHWZRUN 7KH VWXG\ KDV EHHQ GHYHORSHG IRU VHOIURXWLQJ :'0 WUDQVPLVVLRQ DYHU SKRWRQLF VZLWFK HOHPHQWV EXW WKH VDPH PRGHO FDQ EH DGRSWHG DOVR IRU D &'0 WUDQVPLVVLRQ 7KH LPSURYHPHQW RI D FRPELQHG WLPH DQG ZDYHOHQJWK GRPDLQ JLYHV XV WKH RSSRUWXQLW\RIGHVLJQLQJYHU\LQQRYDWLYHDUFKLWHFWXUHV

$QGUHD%RUHOOD*LRYDQQL&DQFHOOLHULDQG'DQWH0DQWLQL

References >@ %DUWKHO-&KXK72SWLFDOVZLWFKHVHQDEOHG\QDPLFRSWLFDODGGGURSPRGXOHV:'0 6ROXWLRQV   >@ *UXVN\ 9 6WDURGXERY ' )HLQEHUJ - :DYHOHQJWKVHOHFWLYH FRXSOHU DQG DGGGURS PXOWLSOH[HU XVLQJ ORQJSHULRG ILEHU JUDWLQJV 3URF RI 2SWLFDO )LEHU &RPPXQLFDWLRQ &RQIHUHQFH%DOWLPRUD 0DUFK  >@ =KX '; HW DO $ QRYHO DOORSWLFDO VZLWFK WKH ZDYHOHQJWK UHFRJQL]LQJ VZLWFK ,((( 3KRWRQLFV7HFKQRORJ\/HWWHUV   >@ %RUHOOD $ &DQFHOOLHUL * 2SWLFDO EXUVW VZLWFKLQJ LQ D :56 DOORSWLFDO DUFKLWHFWXUH 3URFRIWK(XURSHDQ&RQIHUHQFHRQ1HWZRUNV 2SWLFDO&RPPXQLFDWLRQV'DUPVWDGW -XQH  >@ @ 4LDR & /DEHOHG RSWLFDO EXUVW VZLWFKLQJ IRU ,3RYHU:'0 LQWHJUDWLRQ ,((( &RPPXQLFDWLRQV0DJD]LQH   >@ 3DGPDQDEKDQ . 1HWUDYDOL $ 'LODWHG QHWZRUNV IRU SKRWRQLF VZLWFKLQJ ,((( 7UDQVDFWLRQVRQ&RPPXQLFDWLRQV   >@ 6KHQ ; @ $ZGXFKH ' 8WLOL]LQJ PXOWLSURWRFRO ODPEGD VZLWFKLQJ 03/DPEGD6  WR RSWLPL]H RSWLFDOFRQQHFWLRQPDQDJHPHQW3URFRI106:DVKLQJWRQ   >@ /HD &7 %LSDUWLWH JUDSK GHVLJQ SULQFLSOH IRU SKRWRQLF VZLWFKLQJ V\VWHPV ,((( 7UDQVDFWLRQVRQ&RPPXQLFDWLRQV  

The RAMON Module: Architecture Framework and Performance Results Aldo Roveri1, Carla-Fabiana Chiasserini2 , Mauro Femminella3 , Tommaso Melodia1 , Giacomo Morabito4 , Michele Rossi5 , and Ilenia Tinnirello6 1

University of Rome La Sapienza; 2 Polytechnic of Turin 3 University of Perugia 4 University of Catania 5 University of Ferrara 6 University of Palermo

Abstract. A design study of a Re-configurable Access Module for Mobile Computing Applications is described. After a presentation of its cross-layered architecture, Control Parameters (CPs) of the module are introduced. The set of CPs both describes the functional state of the communication process in relation to the time-varying transport facilities and provides, as input of suitable Algorithms, the control information to re-configure the whole protocol stack for facing modified working conditions. The paper also presents the structure of the simulator realized to demonstrate the feasibility of the design guidelines and to evaluate reconfigurability performances.

1

Introduction

This paper presents a first insight in the design of a Re-configurable Access module for MObile computiNg applications (called RAMON in the sequel) and discusses some preliminary results of a feasibility study of this module which is being carried out within an Italian research program1, with the participation of six academic research groups2. The framework of RAMON is given by mobile users in a TCP/IP environment ( ). The mobility is allowed in different communication environments ( ). These REs are identified in a WAN cellular system (e.g., UMTS or GPRS) and in a local area access system (e.g., IEEE 802.11 or Bluetooth). In wireless communications, much effort will have to be put in the ability to re-configure all layers of the communication process to the time-varying transport facilities, in order to assure the respect of QoS requirements. The adaptability to different communication environments led us to overtake the OSI layered approach and to adopt the idea of 1 2

The RAMON project was partially funded by MIUR (Italian Ministry of Research). The address of the reference Author is: [email protected]

M. Ajmone Marsan et al. (Eds.): QoS-IP 2003, LNCS 2601, pp. 471–484, 2003. c Springer-Verlag Berlin Heidelberg 2003 

472

Aldo Roveri et al.

, which appears to be particularly appealing to enable dynamic optimization among all layers of the communication process. The idea has already been presented in [1], [2] as a design methodology for adaptive and multimedia networks. RAMON provides a first example of use of this methodology. The remaining of the paper is organized as follows. In Section 2 we describe the RAMON Functional Architecture. Section 3 defines the relevant that constitute the basis of the re-configuration action and the main algorithms which perform it. Section 4 presents the overall RAMON simulator developed in the ns-2 framework [3] to demonstrate the feasibility of the design guidelines and to evaluate the reconfigurability performances, while Section 5 contains some samples of performance results.

2

The Architecture

RAMON allows the deployment of control algorithms which are independent of the specific RE considered. A (MS), equipped with RAMON, becomes a , i.e. an MS which supports common to all the REs. Such functionalities are obtained from the of each RE, by means of , as described below. Figure 1 shows the RAMON functional architecture. It includes a plane ( ) and an plane ( ), which is divided in as many parts ( ) as the number of different REs involved. In the case of Figure 1 the number of different REs is let equal to two for the sake of simplicity. Below the A-plane, functionalities ( ) for each RE (denoted as for the i-th RE) are located. An RE-independent service development ( ) is offered to the overlying Application layer. CC-plane functions, which are also RE-independent, are grouped in three , according to the classical model adopted for wireless communications: i) ( ); ii) ( ); iii) ( ).

Fig. 1. Overall system architecture.

The RAMON Module: Architecture Framework and Performance Results

473

The A-plane translates: 1) exchanged between the CC-plane and the NC-plane for each RE; 2) (CP) data passed from the plane ( ) to the CC-plane. Two different types of interfaces can be identified: i) the α , between the CC-plane and the A-plane; ii) the β , between the A-plane and the NC-plane of each RE. Figure 2 completes Figure 1. In its right part the CCplane and the A-plane are depicted, with the relevant α and β interfaces. In its left part, which is concerned with two generic REs, the relevant NC-planes and NU-planes are shown. Figure 2 helps us showing the way the SC-c, MM-c and RRC-c functionalities interact with the corresponding , and (i=1,2) of the two REs through the translation performed by the A planes (A/RE-1, A/RE-2). The relations between the NC-planes and NU-planes are highlighted and particularly how the SC-i, MM-i and RRC-i functionalities are related with (PHYi), (MAC-i) and (RLC-i) functions is shown. Finally, , and layers, which are part of the NU-plane, directly interact with the CC-plane.

Fig. 2. Basic interactions among Control and User planes.

3

Reconfigurability Parameters

The main idea is to dynamically adapt the whole stack to the perceived QoS by means of adequate control actions. QoS measurements are passed to the RAMON entity by means of CP data.

474

Aldo Roveri et al.

Cross-layer interaction requires control information sharing among all layers of the protocol stack in order to achieve dynamic resource management. It may be performed in two directions: i) : upper layers parameters may be configured to adapt to the variable RE characteristics; ii) : MAC, RLC and PHY layer parameters can adapt to the state of Transport and Application layer parameters. Thus, e.g., the behavior of the TCP congestion window may be forced to adapt to the timevarying physical channel characteristics (upward), while lower layer parameters may be re-configured, with the aim of serving distinct applications with different QoS requirements (downward). As shown in Figure 3, CP data flow from all layers of the NU-plane of each RE and are processed by running in the CC-plane. The output of the Algorithms consists of , which are passed to all layers of the protocol stack. For lower layers, which are RE-dependent, these primitives have to be interpreted by the pertinent A-plane; for higher layers, which are typical of the Internet stack, the primitives can act without any mediation.

Fig. 3. Information flows in RAMON.

The effect of the Command Primitives, in concurrence with the variations of the RE transport characteristics, gives rise to modifications in the perceived QoS. These modifications cause corresponding change of the CP data. The CC-plane performs re-configuration actions only if they entail appreciable improvements in the QoS perceived. The most important Algorithms adopted in the RAMON design are: – –

Algorithm; Algorithm;

The RAMON Module: Architecture Framework and Performance Results

475

– Algorithm; – RRC Algorithm for – RRC Algorithm for The first two algorithms will be analyzed respectively in Sections 3.1 and 3.2; the other three will be briefly described in the following. QoS and MM capabilities are carried out by means of the Mobile IP protocol, improved with an function. This last is called ( ), is described in [7] and operates in a framework. In addition, we assumed that a [8] is adopted within the wireless domain: the scope is to hide local handoffs from Home Agent/Correspondent Nodes, thus reducing handoff latency. To preserve information integrity of packet transmission over the radio channel while meeting the desired QoS and energy constraints, an algorithm for Error Control has been developed within the RRC functional set, which is suitable for a UMTS environment: it provides optimal operational conditions and parameter setting at the RLC layer. The performance results of the application of the algorithm to the UMTS RE are being published [10] and a module which implements it in the RAMON overall simulator has been developed. An open, re-configurable scheduling algorithm called CHAOS (CHannel Adaptive Open Scheduling) has been defined, which is part of the RRC-c functional set. The Algorithm defines a scheduling strategy for efficient resource sharing control. It is adaptive to and . Different CPs may be chosen to represent both variables. Traffic conditions may be represented by transmission buffer occupancy or queue age associated to packets in the transmission buffers; physical channel conditions may be expressed by averaged (SIR) and/or . The basic CHAOS principles can be applied in a RAMON module residing in a VBS managing radio resources of different REs. The specific adaptations studied for UTRA-TDD and Bluetooth (whose description can be found in [11]) correspond to A-plane entities of the RAMON architecture. 3.1

Handover Algorithm

RAMON includes an abstract handover algorithm, running at the Virtual MS (VMS), based on the virtualization of the functions necessary for Mobility Management. This operation allows making handover services programmable and independent of the underlying technologies. In a re-configurable wireless scenario, the selection of the “best” access point at any moment is not simply related to the physical channel quality, but implies also a technology choice as a trade-off between performance, cost, power consumptions, etc. Moreover, the roaming across different systems requires solving addressing and authentication problems, maintaining a low latency to prevent the adverse effects of TCP congestion control. In order to develop a platform-independent handover algorithm, similarly to [4], [5] we have decoupled these problems. By hiding the implementation details

476

Aldo Roveri et al.

of the MM algorithms from handover control systems, the handover decision can be managed separately from handover execution, so that the same detection mechanisms can interface with many different access networks. The algorithm is based on a generic (MCHO) style: handover decisions and operations are all done at the VMS. RAMON keeps track of a list of (VBS) in its coverage area. The rationale is that some REs do not provide MCHO capabilities. Therefore, the entire RE is considered as a unique VBS. Conversely, for MCHO systems, a VBS coincides with a BS. Periodically, for each VBS, the VMS collects CPs as QoS measures (possibly querying the VBS) and estimates cell load condition. According to the definition criterion of the best VBS, if the best serving VBS is not the one in use for a given period of time, the VMS hand-offs to it. We can identify three main logical functional blocks: i) the , which re-configures the decision metrics, according to the user requirements; ii) the , based on system-dependent available functions and signaling; iii) the , which compares abstract performance metrics computed on the basis of the measurements and of the user profile. The cost of using a BSn at a given time is function of the available Bn , the related Pn , the Cn of the network the BSn belongs to. While the last two parameters are easy to compute (mobile host battery life and service type cost), the bandwidth parameter is more complex. In order to account for the real available bandwidth, channel quality perceived by the MS and cell occupancy status have to be considered. The cost function of the BSn is then evaluated as: fn = wb · N (1/Bn ) + wp · N (Pn ) + wc · N (Cn )

(1)

where wb , wp and wc are the weights of each parameter, which sum to 1, and N (x) is the normalized version of the parameter x. The reciprocal of the bandwidth is considered in order to minimize the cost function of the best access BS. Weights can be modified by the user at run-time, and can be set to zero for those parameters that are not of concern to the user: e.g., if high performance has to be pursued, we can assign wb = 1, wp = 0 and wc = 0. Thus, by minimizing the cost function, we achieve load balancing across different REs. 3.2

Session Control Algorithm

Due to the low Mobile IP performance, the MS migrating from a RE to another may be unreacheable for time periods of the order of seconds, which considerably impacts the TCP operation. In particular, several consecutive RTOs (Retransmission Time Out) occur. This results in a very low value of the which, upon each RTO expiration, is updated as follows: ssthresh = max(cwnd/2, 2 · M SS)

(2)

The RAMON Module: Architecture Framework and Performance Results

477

where cwnd denotes the current . Therefore, as the inter-RE handover is successfully completed, the sender immediately enters the phase and cwnd increases slowly. This causes low throughput performance. In order to solve this problem, the TCP sender implementation has been modified, still maintaining compatibility with standard TCP implementations. We observe that, after an inter-RE handover, the connection path may change dramatically. Consequently, what the TCP sender learned in terms of available bandwidth and estimations of the RTT (Round Trip Time) and RTO is not valid anymore. Based on the above observation, after the inter-RE handover is completed, the TCP sender resets its internal parameters (i.e., , , and ), and enters into the so-called phase during which it rapidly estimates the available bandwidth and the RTT characterizing the connection in the new RE. Moreover, in order to avoid useless segment transmissions which would only result in power consumption, the TCP sender transmitting any data as the handover begins and as the handover is successfully completed. The information about the beginning and the end of handovers is provided by command primitives. The above Algorithm [6], which will be referred to as TCP-RAMON in the sequel, has been integrated in the overall RAMON simulator, and is effective when the MS, acting as a mobile host, is the TCP sender. Otherwise, a similar behavior can be obtained as follows. Before initiating the handover, the MS generates an ACK which informs the TCP sender that the ( ) is equal to 0. This results in a of the TCP sender and avoids consecutive RTO expirations. When the handover is completed, the TCP receiver generates a new ACK with the original value of : this occurrence resumes the communication.

4

The Simulative Approach

In this section the RAMON simulator (Figure 4) is described with reference to UMTS-TDD and Bluetooth REs. An 802.11 implementation has also been developed. The simulator is based on the ns package [3] (ver. 2.1b7a). Specifically, modifications have been carried out to the Wireless Node object ( class). One protocol stack for every simulated RE is created in the same MobileNode object. The RAMON module and the A-plane modules are interposed between Agents (RTAgent, MIP Agent, etc.) and radio access layers (LL, MAC, etc.). On the left part of Figure 4 the UMTS-TDD protocol stack is shown with its specific Adaptation plane ( in figure), where as the Bluetooth stack is on the right side with its A-plane ( ). On top of the stacks the RAMON module is directly linked to the TCP (or UDP) layer, to the MIP layer ( ) and to the routing Agent (NOn AdHoc routing agent [13]). The UMTS-TDD protocol stack has been developed for this project. The Bluetooth protocol stack is derived from the ns simulator [12] and modified to

478

Aldo Roveri et al.

Fig. 4. Overall simulator architecture.

adapt the Bluetooth node object to the ns MobileNode object. The α interface in Figure 4 defines the messages exchanged between CC-plane and A-planes. The functions of the α interface can be related to the Command Primitives and the parameters they exploit to the CPs. A list of the most important of these functions follows: – get(parameters name): gets the parameters name parameter value. – attach(): is used to create an and to register the node to the ( ). – detach() deletes registration from the FA. – monitor(RE): returns a quality metric for the requested RE. – set(parameters name,value): sets the value value to parameters name parameter. – send(packet,options) – receive(options) In particular, the “get” function is used to read the CPs from the A-planes for optimization purposes. CPs originated at different layers can be associated to different optimization tasks: i) physical layer CPs are related to power control and battery life saving; ii) link layer CPs are directly connected to link reliability and packet delay; iii) transport layer CPs are directly related to the QoS perceived from the user application in terms of packet delay and throughput. The “set” function is needed to pass some values to the A/RE-i modules: in fact, with this primitive, some CPs can be modified by the CC-plane. Both the “set” and the “get” functions are also defined for the interactions between the CCplane and RE-independent upper layers protocols. The other functions defined above are Command Primitives (for the α interface).

The RAMON Module: Architecture Framework and Performance Results

479

Two more primitives (named respectively start handover notification() and end handover notification()) are defined for interaction between the CCplane and the transport layer. The first one notifies the TCP about the beginning of the handover while the second one notifies the end of it. The most important CPs passing through the α interface are briefly discussed in the following for the main layers interacting with RAMON. . CPs detectable at such layer are strongly dependent on the considered RE. A very useful CP is the (BAT LEVEL), used to maximize the MS life, e.g., by attaching the MS to the less power demanding RE. Moreover, (TX POWER) and (SIR) measurements, if available, are used to detect temporary link failures or high interference conditions: e.g., if the physical channel in a given instant is detected to be in an interference prone situation, the Link layer can be set in a “wait” status to avoid energy wastage. . A description of the at such layer is significant in order to characterize the packet error process affecting the Application layer. Such a description can be achieved by translating the Link layer packet success/failure transfer process into a simple [14], which is analytically tractable and RE independent; hence RE independent algorithms can easily be deployed which exploit such model. The CPs for the models are: at the link layer (P LOSS LINK), at link (LINK PACKET SIZE), layer (BURST ERR) and (ERR PR). Other useful CPs are the allowed in the link layer (MAX LINK RETR) and the (AVG LINK RETR); the last one is related to the energy spent per useful information bit, i.e., the amount of energy wasted due to Link layer retransmissions. . At this layer, the MS should be able to collect information regarding the packet process. When the TCP protocol is considered, in addition to the packet error rate, it communicates to RAMON the average and instantaneous value (AVG TH and ACT TH), the estimated (RTT) and the actual RTO. These CPs are used to control the behavior of TCP state variables and to avoid their incorrect setting as packet errors occur. In particular, it is well known that TCP reacts to packet losses as if a congestion had occurred, i.e., by reducing the maximum flow that the sender is allowed to put into the network at a time. However, in a wireless environment this is not the correct way to proceed because errors affecting a wireless link are very often transient and do not represent at all a measure of network congestion. On the contrary they are a measure of the temporary link QoS. Moreover, performance measured at this level is directly related with the QoS perceived by the user, so it can be weighted in a cost function in order to derive an estimate of the actual QoS. Such an estimate is then compared against the required QoS and used by RAMON algorithms in their decisional tasks.

480

5

Aldo Roveri et al.

Performance Issues

The most meaningful simulated situations are: 1) Forced inter-RE Handover. 2) User-driven inter-RE Handover; These scenarios are relevant in the RAMON context because they easily show how a Common Control Plane (RE-independent) can react to variations in the REs it handles, perceived by means of Control Parameters, for optimization purposes. In the first scenario the VMS loses connectivity and is forced to attach to another RE to maintain session continuity. In the second one the VMS is in the coverage area of two different REs (UMTS and 802.11) at the same time and chooses the best RE evaluating a cost function as described in Section 3.1. 5.1

Forced Handover

In this Section some simulation results relevant to an inter-RE forced handover are presented. The scenario involves a UMTS BS, which is the MIP (HA), and a Bluetooth BS, which has the role of (FA). A Forced Handover between the former and the latter is simulated. Figure 5 shows the temporal behaviour of the TCP sender when TCP NewReno is used and when the modified TCP-RAMON is used. When TCP NewReno is used, multiple RTOs expire during the handover and lead to the ssthresh to its minimum value. Thus, when the handover ends, the TCP enters in the phase and thus its cwnd increases slowly. When TCP-RAMON is used, as soon as the CC-plane detects a loss of connectivity, a start handover notification() primitive is issued to the TCP layer. This freezes the value of ssthresh to the one determined by the last congestion event occured. Accordingly, timeouts expiring during the handover do not impact the value of ssthresh. Once the end handover notification() is received the value of sstresh is set equal to the one determined by the last congestion event. Thus, TCP enters the slow start phase (it does not enter the congestion avoidance phase until cwnd reaches the ssthresh value). In these simulations, buffers are considered to be infinite and the initial ssthresh value has been set to 20 which is a typical value in several TCP implementations. 5.2

Handover Customization

In this Section we present some simulation results relevant to user-driven handovers. Our purpose is to demonstrate how user profile specifications affect handover trigger and detection phases. In fact, the optimization of different performance figures requires different choices in terms of RE attachment/detachment policy. For example, if user main goal is cost saving, connections to low-price access points have to be maintained as long as possible, even if better transmission

The RAMON Module: Architecture Framework and Performance Results

481

Fig. 5. UMTS-Bluetooth Forced Handover.

conditions (in terms of bandwidth or channel quality) towards other stations are available. In our simulations we consider an area in which heterogeneous radio access technologies (namely UMTS and 802.11), experiencing different traffic conditions, overlap. In particular, we have considered a simple network topology: four 802.11 BSs (referred to as BS2 , BS3 , BS4 , BS5 ) are placed at the vertices of a square and a UMTS BS (BS1 ) is placed in the centre. The side of the square is set to 600m, while the coverage areas of the 802.11 and UMTS BSs are set respectively to 200m and 1000m. Channel rate in 802.11 cells is set to 2 Mb/s. 802.11 BSs have a different number of attached users: four mobile nodes are connected to BS2 and BS4 , while nine mobile users are connected to BS3 and BS5 . In the simulation run, a RAMON mobile node, involved in a 6 Mbytes file transfer from the fixed network, moves clock-wise at 6m/s along the square starting from a vertex, for example from BS2 . Although during the simulation time RAMON node is covered by BS1 , handover to 802.11 BSs can be performed in order to save power or reduce cost. Nevertheless, an handover towards 802.11 BSs implies a lower amount of available bandwidth because of their load conditions. The required user trade-off is expressed by the decision metric (Section 3.1) settings. We compute such a metric considering distance, price and bandwidth offered by each BS. In order to make different system parameteres comparable, we normalize each parameter as follows: distance is expressed as the ratio between actual distance and maximum coverage radius, price and bandwidth are

482

Aldo Roveri et al.

normalized with respect to the maximum inter-RE values. In particular, we assume that the cost to transfer 1 kbyte of data is 1 for UMTS, 0.5 for 802.11. In our simulations, we set the metric distance weight to 0.5 and we observe

Fig. 6. Selected BS vs simulation time.

performance results varying the cost and bandwidth weights according to the relation: wb = 0.5 − wc . Consider preliminarly the extreme situations in which we want to minimize the file transfer-cost regardless of the transfer-time (wb = 0) or, conversely, we want to minimize the transfer-time regardless of the cost (wc = 0). Figure 6 shows the handover trigger and decision policies adopted in the cosidered extreme cases. We report the identifier of the selected BS versus the simulation time. In the wb situation, connection to WLAN is kept as long as possible, since this access technology is the cheapest (handovers are triggered only when the RAMON node moves outside the coverage area of an 802.11 BS). In the wc case, the RAMON node remains connected to UMTS for a greater time (switch to WLAN occurs only when the distance from the relevant BS is very small). Note that, since our metric accounts for both distance and load, the permanence time in 802.11 BSs is not constant and depends on the BS considered. The time and the cost resulting for the considered 6 Mbytes file transfer is reported in Figure 7 versus the wc setting. This figure shows that, by changing the weights of the cost function, the RAMON user can effectively configure its optimal cost/performance trade-off.

The RAMON Module: Architecture Framework and Performance Results

483

Fig. 7. Time and Cost Trade Off.

6

Conclusions

In this paper the guidelines adopted for the design of a module able to reconfigure different mobile communication environments for computing applications are introduced. The paper mostly concentrates on architectural issues and on control information flows. In particular, the Algorithms that constitute the processing core of the module are briefly described. The integrated RAMON simulator is described and some performance results are finally shown.

7

Acknowledgments

The authors would like to thank all the researchers of the Polytechnic of Turin and of the Universities of Catania, Ferrara, Palermo, Perugia and Rome “La Sapienza” who participated to the RAMON project and, notwithstanding their important contribution, do not appear as authors of this work.

References 1. Z.J. Haas, “Design Methodologies for Adaptive and Multimedia Networks,” IEEE Communications Magazine., Vol. 39, no. 11, November 2001, pp 106-07. 2. T.S. Rappaport, A. Annamalai, R.M. Buehrer, W.H. Tranter, “Wireless Communications: Past Events and a future Perspective,” IEEE Commun. Mag., Vol 39, no. 11, May 2002, pp 106-07.

484

Aldo Roveri et al.

3. Network Simulator http://www.isi.edu/nsnam/ns/. 4. M. Stemm, R. H. Katz, “Vertical Handoffs in Wireless Overlay Networks,” ACM Mobile Networking (MONET) Vol 3, n 4, 1998, pp 335-350. 5. M.E. Kounavis, A. T. Campbell, G. Ito, G. Bianchi, “Design, Implementation and Evaluation of Programmable Handoff in Mobile networks,” ACM Mobile Networking (MONET), Vol. 6, Sept. 2001, pp. 443-461. 6. G. Morabito, S. Palazzo, M. Rossi, M. Zorzi, “Improving End-To-End Performance in Reconfigurable Networks through Dynamic Setting of TCP Parameters,” published in these Proceedings. 7. G. Bianchi, N. Blefari-Melazzi, M. Femminella, F. Pugini, “Joint support of QoS and mobility in a stateless IP environment,” IEEE GLOBECOM 2001, San Antonio, USA, November 2001. 8. A.T. Campbell et al., “Comparison of IP micromobility protocols,” IEEE Wireless Communications, February 2002. 9. M. Femminella, L. Piacentini, “Mobility Management in a Reconfigurable Environment: the RAMON Approach,” published in these Proceedings. 10. C. F. Chiasserini and M. Meo, “A Re-configurable Protocol Setting to Improve TCP over Wireless,” IEEE Transactions on Vehicular Technology (to appear). 11. A. Baiocchi, F. Cuomo, T. Melodia, A. Todini, F. Vacirca, “Reconfigurable packet scheduling for radio access jointly adaptive to traffic and channel,” published in these Proceedings. 12. Bluehoc Simulator http://www-124.ibm.com/developerworks/opensource/bluehoc/. 13. J Widmer, “Network Simulations for a Mobile Network Architecture for Vehicles,” http://www.icsi.berkeley.edu/˜widmer/mnav/ns-extension/. 14. M. Zorzi, R.R. Rao, “Perspectives on the Impact of Error Statistics on Protocols for Wireless Networks,” IEEE Personal Communications, vol. 6, Oct. 1999.

R econ fi g u r a b le P a ck et S ch ed u li n g f or R a d i o Acces s J oi n tly Ad a p ti v e to T r a f fi c a n d C h a n n el Andrea Baiocchi, Francesca Cuomo, Tommaso Melodia, Alfredo Todini, and Francesco Vacirca University of Roma “La Sapienza”, INFOCOM Dept., Via Eudossiana 18, 00184, Rome, Italy

1

Ab s tr a ct. Adaptive packet scheduling for wireless data access systems, including channel state information based algorithms, is a quite well established topic. We develop here an original framework to define such an algorithm in a reconfigurable context, i.e. with the ability to exploit heterogeneous communication environments. The focus is to define platform independent algorithms that can be “adapted”, by a specific software, to different environments, so that the core communication functions can be defined, modified and improved once for all. The specific communication function addressed in this work is packet scheduling. For better performance the packet scheduling design exploits the cross-layering approach, i.e. information and functions from different communication layers are used. The concept is proved with reference to the UMTS and Bluetooth technologies, as representatives of a cellular system and a local access one respectively.

I n tr od u cti on The importance of reconfigurability in wireless access interfaces (at least at the physical layer, e.g. software radio) is due to existence of various technologies spanning from personal area networks and wireless local area networks (e.g. IEEE 802.11, Bluetooth, Hiperlan/2) to cellular systems (e.g. GSM, GPRS, CDMA2000, UMTS, etc.). The common meaning of reconfigurability [1] is the capability to provide a network element with different sets of communication functions and with the ability to switch among them so as to exploit any of a number of different wireless access environments that might be available at a given time and place. In the following we adopt a somewhat broader point of view: a system is reconfigurable if some communication functions and relevant algorithms are defined and implemented by abstracting from a specific wireless access. The specific wireless access is represented by models able to express the traffic load, the channel conditions and other communication parameters from a high level point of view. It becomes possible to design algorithms (e.g. packet scheduling) according to some general criteria independent of the specific technology. A strictly related approach to high performance wireless access system is crosslayering [2] [3]. Optimization of data transfer and quality of service is best achieved by jointly considering functions and parameters traditionally belonging to different architectural layers (e.g. error control by means of hybrid ARQ/FEC techniques, power control, packet scheduling and radio resource sharing) M. Ajmone Marsan et al. (Eds.): QoS-IP 2003, LNCS 2601, pp. 485–498, 2003. c Springer-Verlag Berlin Heidelberg 2003 

486

Andrea Baiocchi et al.

The conception of communication algorithms and specifically of radio resource management algorithms is therefore “generalized” along two directions: reconfigurability, in order to exploit different wireless communication systems, and cross-layer design, to achieve a better efficiency and exploitation of the time-varying communication environment. This work fits in a comprehensive effort to specify a reconfigurable wireless communication architecture for mobile computing applications, named R e - c o n fi g u r a b l e A c c e s s m o d u l e f o r M O b i l e c o m p u t i N g a p p l i c a t i o n s (RAMON in the sequel [1]). The framework of RAMON is a mobile computing environment adopting the TCP/IP protocol suite. Different communication environments (R e f e r e n c e E n v i r o n m e n t , RE) are provided to the mobile host; in the following, we consider as example network environments UMTS-TDD [4] and Bluetooth [5]. This paper focuses on the radio resource management functions, specifically on packet scheduling and resource sharing. There are some works on these subjects with specific reference to the wireless access. Papers [6]-[8] address wireless packet scheduling with emphasis on the fairness issue arising primarily from reuse of channel state information and the short term variability of channel condition that bring about unfairness at least in the short term if a high efficiency is targeted. Adaptation of the classic Weighted Fair Queuing schemes are investigated in [6] and [7]. Papers [9]-[12] deal with radio resource sharing for wireless packet access in a CDMA based air interface with mutual interference. Finally, papers [13] and [14] consider using channel state information for resource sharing in wireless packet access. Some of these works take what can be viewed as a cross-layer approach, in that radio resource assignment is based on radio channel state for the competing links. This is also the approach considered in our research [15]. The novel points with respect to previous works are the reconfigurability framework and the specific scheduling algorithm with its adaptation to the considered REs (UMTS and Bluetooth). The first point has a conceptual value: from a large number of studies developed with reference to specific technologies, we abstract the major common ideas to define a general framework for wireless access thus simplify the design of efficient algorithms. The second point is the development of a packet scheduling scheme that is jointly adaptive to channel and traffic conditions. This scheme, named C H a n n e l A d a p t i v e O p e n S c h e d u l i n g (CHAOS) fully exploits the abstract and general model available in the RAMON platform. The rest of the work contains a brief description of the overall RAMON architecture (Section 2), aimed at stating our original context for the radio resource management algorithms. Section 3 defines the general, platform independent radio resource assignment algorithm, by exploiting RLC, MAC and physical layer information (cross-layer design). Section 4 describes in detail the adaptation modules to fit the general algorithm onto two specific REs, UMTS and Bluetooth. Section 5 shows some performance results. Final remarks and further work are addressed in Section 6.

Reconfigurable Packet Scheduling for Radio Access

2

487

F u n cti on a l Ar ch i tectu r e RAMON allows the deployment of control algorithms independent of the considered RE. A M o b i l e S t a t i o n (MS) or a B a s e S t a t i o n (BS), equipped with the RAMON software module, supports abstract functionalities common to all the REs. Such functionalities are obtained from the specific operations of each RE, by means of translation entities, as described below.

F i g . 1 . Overall system architecture.

Figure 1 shows the RAMON functional architecture. It includes a C o m m o n C o n t r o l p l a n e (CC-plane) and an A d a p t a t i o n p l a n e (A-plane). N a t i v e C o n t r o l functionalities (NC-plane) for each RE (denoted as NC/RE-i for the i -th RE) are located below the A-plane. A service development RE-independent API (A p p l i c a t i o n P r o g r a m m i n g I n t e r f a c e ) is offered to the overlying A p p l i c a t i o n L a y e r . CC-plane functions, which are defined independently of the underlying RE, are grouped in three functional sets, according to the classical model adopted for wireless communications: i) R a d i o R e s o u r c e C o n t r o l (RRC-c); ii) S e s s i o n C o n t r o l (SC-c); iii) M o b i l i t y M a n a g e m e n t (MM-c) 1 ; The A-plane, which is divided into as many parts (A/RE-i ) as the number of different REs involved, translates: 1) Primitives exchanged between the CC-plane and the NC-plane for each RE; 2) C o n t r o l P a r a m e t e r s (CP) data passed from the N a t i v e U s e r p l a n e (NU-plane) and the CC-plane. Two different types of interfaces can be identified: i) the α interface, between the CC-plane and the A-plane; ii) the β interface, between the A-plane and the NC-plane of each RE. Figure 2 completes Figure 1. The CC-plane and the A-plane with the relevant α and β interfaces are depicted on the right. The NCplanes and NU-planes are shown on the left. Figure 2 clarifies how the SC-c, MM-c and RRC-c functionalities interact with the corresponding SC-i , MM-i and RRC-i (i =1,2) of the two REs through the translation performed by the A planes (A/RE-1, A/RE-2). The relations between the NC-planes and NU-planes are highlighted and particularly how the SC-i , MM-i and RRC-i functionalities are related with Physical (PHY-i ), M e d i u m A c c e s s C o n t r o l (MAC-i ) and R a d i o L i n k C o n t r o l (RLC-i ) functions is shown. Finally, Applications, TCP/UDP and IP layers, which are part of the NU-plane, directly interact with the CC-plane. The main idea is to dynamically adapt the whole stack to the perceived link quality by means of adequate control actions. Quality measurements are passed to the RAMON entity by means of CP data. 1

-c means in the common control plane.

488

Andrea Baiocchi et al.

F i g . 2 . Basic interactions among Control and User planes.

Cross-layer interaction requires control information sharing among all layers of the protocol stack in order to achieve dynamic resource management. It may be performed in two directions: i) u p w a r d i n f o r m a t i o n s h a r i n g : upper layers parameters may be configured to adapt to the variable RE characteristics; ii) d o w n w a r d i n f o r m a t i o n s h a r i n g : MAC, RLC and PHY layer parameters can adapt to the state of Transport and Application layer parameters.

3

C om m on C on tr ol P la n e a n d R econ fi g u r a b le Alg or i th m This Section is dedicated to describe the general CHAOS scheme in the framework of the RAMON architecture. CHAOS is part of the RRC functional set of the CC-plane of the RAMON architecture. Thus it is defined independently of the underlying REs. The scheme sets a framework for designing scheduling strategies for efficient resource sharing control in a scenario constituted by a single cell served by a BS, based on an “abstract” representation of i) physical channel state; ii) traffic condition for each MS involved in the communication process. This representation is expressed by means of abstract quantized parameters, C H A N N E L S T A T E and T R A F F I C C O N D I T I O N respectively. The system state can be described by four vectors of length N (where N is the number of MSs in the scenario): 1. 2. 3. 4.

CHANNEL STATE for each MS (downlink); CHANNEL STATE for each MS (uplink); TRAFFIC CONDITION for each MS (downlink); TRAFFIC CONDITION for each MS (uplink).

Figure 3 shows the basic information flow, i.e., how the CHAOS entity running in the CC-plane gathers information about system state. For every MS, in both directions, the RRC-i (relative to the i -th RE) entity in the NC-plane of the BS collects information that will be used for the evaluation of the abstract parameters by the A-plane. The RRC-i

Reconfigurable Packet Scheduling for Radio Access

489

F i g . 3 . Description of Information Flow from U-plane to CC-plane.

entity on the BS gets the BS-related information directly from the different layers of the NU-plane (i.e. the RLC-i , MAC-i and PHY-i layers). Information lying in the MS has to be exchanged between the two RRC peer entities (MS RRC-i and BS RRC-i ) by means of the transport facilities offered by lower layers. As soon as new information describing the system state is acquired by the BS RRC-i , a C P U P D A T E i n d i c a t i o n p r i m i t i v e (1), which is RE-dependent, is issued to the A-plane. The mapping of these RE-dependent parameters into abstract parameters (CHANNEL STATE and TRAFFIC CONDITION), that can be used by the CHAOS algorithm, is up to the A-plane, which asynchronously communicates the abstract parameters to the CC-plane entity as soon as they are available, by means of an RE-independent C P U P D A T E p r i m i t i v e (2). The A/RE-i entity asynchronously issues RE-independent C A P A C I T Y A S S I G N M E N T R E Q U E S T p r i m i t i v e s (4) to the CHAOS entity in the CC-plane. These abstract requests are formulated by the A/RE-i plane on the basis of the RE-dependent explicit request coming from the RRC-i (RE-Dependent C A P A C I T Y R E Q U E S T p r i m i t i v e (3)) or on the basis of the CPs gathered when no explicit requests are issued by native system control mechanisms. These primitives contain the overall amount of capacity to be assigned. The CHAOS entity processes this request and returns an ordered vector of length NT (NT ≤ N ) whose element contains the MS i d and the amount of capacity assigned to it through the RE-independent C A P A C I T Y A S S I G N M E N T p r i m i t i v e (5). The last step (6) consists in the A/RE-i entity translating the assignment into an RE-dependent C A P A C I T Y A S S I G N M E N T p r i m i t i v e command that can be issued to the BS NC-plane. This will result in the actual assignment with NC-plane specific mechanisms. As a matter of example, the channel state could be a normalized measure of the distance between the target S i g n a l t o N o i s e R a t i o (SNR) of the link and its actual SNR; or it could be derived from B i t E r r o r R a t e measurements. For instance, we could have

490

Andrea Baiocchi et al.

three channel states (good, fair, bad). Analogously, traffic condition could be a normalized measure of the age of the packets or backlog.

F i g . 4 . The CHAOS matrix. Examples of matrix scanning methods We will finish this section by describing how the CHAOS entity uses system state information to assign capacity to the different MSs. As soon as C A P A C I T Y R E Q U E S T p r i m i t i v e s arrive from the A/RE-i plane, this information is arranged in a matrix. In Figure 4 the CHAOS matrix is shown with three different scanning methods. The horizontal dimension represents the channel state, and thus requests with a different value of CHANNEL STATE occupy different positions in the matrix. The vertical dimension is associated with traffic condition, thus requests with different values of TRAFFIC CONDITION are put in different vertical positions in the matrix. What the CHAOS entity obtains is thus a two-dimensionally ordered description of the requests coming from different MSs. User requests are served in the order defined by a predefined rule (scanning method). Each different rule results in a different scheduling discipline. In Figure 4(a) the matrix is scanned by column by giving priority to traffic state conditions; in Figure 4(b) it is scanned by row by giving priority to channel state conditions; a combination of the first two methods is shown in Figure 4(c). Thus, CHAOS can be better understood as a class of algorithms, each qualified by a different service discipline, which is somehow computed on the basis of the matrix.

4

Ad a p ta ti on P la n es a n d R ef er en ce E n v i r on m en ts In this Section the RE-dependent A-planes for the UMTS and Bluetooth systems are described. Native mechanisms and procedures are introduced and some design choices are explained. After a brief description of the capacity allocation procedures of the two REs (Subsections 4.1 and 4.3), we illustrate how to adapt these mechanisms to uniform them to the CHAOS paradigm (Subsections 4.2 and 4.4)). 4 .1

U MT S - T D D

In UMTS-TDD air interface the time axis is slotted into T i m e S l o t s (TSs) and 15 TSs are grouped into a 10 ms frame. Within each time slot a set of variable spreading factor

Reconfigurable Packet Scheduling for Radio Access

491

orthogonal codes are defined to spread QPSK modulated data symbols of up to 16 different users. The overall capacity of the radio interface is shared by common channels and data channels. In our study the R a n d o m A c c e s s C H a n n e l (RACH) is allocated to the first TS of every frame and the F o r w a r d A c c e s s C H a n n e l (FACH) and B r o a d c a s t C H a n n e l (BCH) are allocated to the last one. We assume that transport blocks are 320 bit long, (including MAC/RLC overhead); a T r a n s m i s s i o n T i m e I n t e r v a l (TTI) of 10 ms and a convolutional coding with rate 1/2 are used. This implies that four codes with spreading factor 16 are required to carry the coded transport block; the choice of this transport format implies that the minimum assignable capacity is 32 kbit/s which will be referenced to in the sequel as R e s o u r c e U n i t (RU). From a modeling point of view, the entire transport resource of the radio interface (i.e. 60 RUs) is divided into common channels (8 RUs) and shared channels (52 RUs) for data transfer. Each slot can carry up to four data (plus associated signaling) transport blocks in each frame, if we require that the four RUs used by a transport block be all in the same time slot. Different kind of logical channels are available for data transfer. The choice depends on the traffic type and on traffic volume. D e d i c a t e d C H a n n e l s (DCH) are well suited for R e a l T i m e services (RT), whereas common channels (RACH and FACH) or shared channels (U p l i n k S h a r e d C H a n n e l (USCH) and D o w n l i n k S h a r e d C H a n n e l (DSCH)) are suited for N o n R e a l T i m e services (NRT). For mobile computing purposes (weblike and file transfer applications) the DSCH and the USCH are the most appropriate choices. These channels are allocated for a limited time and are released automatically. Figure 5 shows the data transfer procedure on USCH [16]. After scanning the RLC buffer, the MS sends a C a p a c i t y R e q u e s t message to the UTRAN; this message contains a traffic measure (the RLC buffer length) and it is sent on the SHCCH (S H a r e d C o n t r o l C H a n n e l ), mapped on the RACH channel or on a USCH (if there is one already allocated to the MS). When the UTRAN RRC layer runs the S c h e d u l i n g A l g o r i t h m , a resource allocation message (P h y s i c a l S h a r e d C h a n n e l A l l o c a t i o n ) is sent to the MS on the SHCCH, which is mapped on the FACH or on the DSCH. At this point the MS can start data transfer. The allocation message allocates a number of RUs for a number t of frames (with 1 ≤ t ≤ tmax ). For this reason, it is not necessary to acknowledge the message. A similar procedure is employed for DSCH allocation. 4 .2

U MT S - T D D Ad a p ta ti on P la n e

In this Section the interactions of the A/UMTS-plane with the UMTS-RRC entity and with RRC-c entity are described. On the one hand the UMTS-TDD Adaptation plane reads informations about channel and traffic conditions of MSs from the RRC-UMTS layer, processes these informations and informs the RRC-c plane about these updates, on the other hand it requests RRC-c plane for the resource allocation, maps it in a UMTS native language and passes it to the RRC-UMTS. To perform all these operations the plane must be aware of the UMTS resource allocation procedures (exchanged messages, parameters, etc.) and must interact with the RRC-UMTS entity to get all needed informations and to replace the RRC allocation algorithm. There are two basic procedures which can be better explained with two examples. – C P - U P D A T E . When the RRC-UMTS layer receives a new allocation request from a MS (see Figure 3 (3)), or when it receives new packets directed to a MS, it sends a

492

Andrea Baiocchi et al.

F i g . 5 . USCH channel allocation procedure.

CP-UPDATE command to the RRC-c plane with the direction link (UL or DL), the mobile identity and the channel quality. The queue length indicated in the request is sent in a CAPACITY REQUEST (see Figure 3(4)). The RRC-c functional entity updates the matrix. – C A P A C I T Y R E Q U E S T . Every 10 ms the A-plane sends a CAPACITY ASSIGNMENT REQUEST to the RRC-c entity indicating the unallocated capacity of the frame; the RRC-c scans the matrix and creates a vector with the MS identities, the capacity to allocate in one frame and the duration of the allocation. The A-plane translates it into the UMTS-TDD language (i.e. TSs, codes to assign and number of frames) and sends new allocations to the RRC-UMTS that will inform the involved MSs. As seen in the second example, the CAPACITY ASSIGNMENT REQUEST indication primitive is sent one time per frame and lets the RAMON module synchronize with the UMTS frame. The UPDATE messages, instead, are totally asynchronous and can be transmitted at every instant. From the RAMON point of view the whole UMTS-TDD system can be seen as shared capacity that varies in time but remains fixed in the frame. 4 .3

B lu etooth MAC

In this paragraph the basic issues related to the MAC technique adopted in the Bluetooth (BT) technology are presented. Devices are organized into piconets, i.e., small networks which include up to 8 nodes. Different piconets share the same channel (2.4 GHz ISM band) by exploiting the FHSS (Frequency Hopping Spread Spectrum) technique, i.e., by following different hopping sequences. In a piconet, one device has the role of master, all the other devices are slave. Time is slotted (625μs), the master controls the traffic and takes care of the centralized access control. Only master-slave communications are allowed. Odd slots in the TDD slotted structure are reserved for master transmission. The slave that receives a packet from the master is implicitly polled for the following even slot. Thus, the master controls the

Reconfigurable Packet Scheduling for Radio Access

493

medium access by sending data to different slaves in even slots and implicitly authorizing the slave to transmit starting from the following slot. If the master has no data to send, it can authorize slaves transmission with an explicit POLL packet. Three data packet sizes are allowed: one slot, three slot, and five slot length. 4 .4

B lu etooth Ad a p ta ti on L a y er

While the RRC-UMTS provides much information that can be easily adapted for the CHAOS scheduling, Bluetooth lacks mechanisms to retrieve physical layer (both in the UL and DL directions) and traffic state informations (for the UL direction). A great effort has been done to define a suitable A-plane2 that would make up for the lack of native system informations. Moreover, due to the particular polling mechanism adopted in Bluetooth, master-slave pairs have to be jointly represented in a CHAOS matrix, since a slot assigned in the downlink direction implies at least a slot being assigned in the uplink. For every Master-Slave pair, the master keeps memory of the average Packet Error Rate (PER) on the link, by mediating on the last Ntx transmissions. This information is passed to the A-Plane which classifies the slaves into different classes of CHANNEL STATE according to their PER values. Traffic condition for each link can be expressed by the amount of data to be transmitted in the L2CAP queue [17]. However, although the master node exactly knows queue-length for any of its slaves in the downlink direction (DLQi ), uplink queue state must be somehow signaled by the slaves. We propose, as in [17], to use the flow bit in the Baseband packet header, which was intended in the Bluetooth Specifications [5] to convey flow information at the L2CAP level. In a way similar to [17], we use this bit to estimate the queue length of the slaves for the uplink direction, (U LQi ). The masterslave pair, in the scheduling process, will be then represented by its V i r t u a l Q u e u e , defined as V Qi = U LQi + DLQi . This parameter is then quantized by the A-plane and passed as TRAFFIC CONDITION parameter to the CHAOS RRC-c entity. Due to the particular polling mechanism adopted in Bluetooth, the resource to be shared among the different M-S couples can not be easily described as capacity. The scheduler only decides which M-S couple has the right to transmit on the next available slot, but the amount of capacity assigned to each couple strongly depends also on other factors, such as the SAR (Segmentation & Reassembly), since choosing different packet sizes leads to different capacities being assigned. An additional variable is defined in the A/BT-plane for each M-S couple, namely V i r t u a l T i m e , to adapt the CHAOS framework to the polling mechanism. The Virtual Time assigned to the i-th M-S couple at step t is defined as: i + Vti = Vt−1

lt−1 rti

(1)

where rti represents the abstract capacity assigned by CHAOS to the i-th couple at step t and lt−1 is the duration of the last transmission of the M-S couple (which ranges from 625 · 2μs if a 1 slot packets is used in both directions to 625 · 10μs if both transmitters 2

The authors would like to thank M. D. Marini for his precious work in adapting CHAOS to Bluetooth and for the simulation results presented in Section 5.2.

494

Andrea Baiocchi et al.

use a 5 slot packet). Thus, when CHAOS assigns high values of capacity, the V i r t u a l T i m e increases slowly after each transmission, where as when it assigns high values of capacity it increases in a faster way. After one couple’s transmission, the scheduler gives the right to transmit to the M-S couple with the minimum value of Virtual Time. This results in a higher number of chances to transmit being given to M-S couples CHAOS has assigned high capacity. CHAOS assigns capacity on the basis of functions that can be computed on the matrix representing the system state, which somehow represent the scheduling discipline chosen. For the simulations presented in the following paragraph, a 5x5 matrix has been used to describe the system state. CHANNEL STATE (CS ) and TRAFFIC CONDITION (TC ) assume discrete values ranging from 1 to 5. The capacity assigned to the i-th couple is then calculated as: rti =

TC2 CS3

(2)

which results in high capacity being assigned to couples with low values of CHANNEL STATE (good channel) and high values of TRAFFIC CONDITION (high traffic). However, channel state is given a higher exponent because the main target is avoiding potentially power-wasting transmissions when the state of the channel is bad.

5

R es u lts In this Section results about improvements that can be achieved with the CHAOS strategies are shown for the UMTS and for Bluetooth. Results have been obtained using an UMTS module for the n s network simulator [18] and extending the B l u e h o c [19] functionalities. As said before it is important to notice that CHAOS constitutes a large class of algorithms and by modifying the matrix scanning methods different service disciplines (with different targets) can be easily achieved. This can be simply obtained by different scanning methods. 5 .1

U MT S

In the simulated scenario N mobiles in a single cell send data through a gateway to N wired nodes. The entire data traffic is in the uplink direction. In the UMTS frame 9 time-slots have been statically allocated to the uplink (1 for the RACH and 8 for the USCHs), and the remaining 6 have been allocated to the downlink (1 for the FACH and BCH and 5 for the DSCH); thus, the maximum attainable throughput in the uplink direction is 1024 kbit/s. The traffic is generated by FTP traffic sources (one FTP agent per node) on a TCP transport layer. Three matrix scanning methods have been used in simulations; the first one, named Random, scans the matrix randomly; the second one, named CHAOS1 , scans the matrix by giving priority to the oldest requests (see Figure 4(b)), and the last one, CHAOS2 , gives priority to the requests from users with better channel quality (see Figure 4(a)). In Figure 6 we can see that throughput is maximized by giving priority to

Reconfigurable Packet Scheduling for Radio Access

495

1 1 0 0 1 0 0 0 9 0 0 8 0 0

T h r o u g h p u t ( k b it/s )

7 0 0 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 R a n d o m C H A O S 1 C H A O S 2

1 0 0 0 0

5

1 0

1 5 2 0 N u m b e r o f m o b ile s

2 5

3 0

F i g . 6 . FTP throughput vs. number of MSs varying matrix scanning methods.

“best channel” requests. This throughput gain is due to more efficient use of the radio interface: the adoption of a channel adaptive scheduling decreases the RLC-PDU error probability, leading to a better exploitation of the radio resource. This in turn reduces the need for packet retransmissions, as can be seen from Table 1. Figure 7 illustrates

R etr a n s m i s s i on s 0 1 2 3 4 5 ≥6

Alg or R a n d om 95.676 2.765 0.98 0.363 0.128 0.05 0.068

i th m C H AO S 99.888 0.1 0.011 0.00099 0.00013 0 0

T a b le 1 . Percentual distribution of RLC PDU retransmissions

the gain in energy efficiency brought about by the use of a channel-adaptive packet scheduling algorithm. This result can be explained by observing that, with the CHAOS algorithm, mobiles tend to transmit more during the intervals in which they experience a high channel quality, when the transmitted power is reduced by the power control algorithm. Moreover, the decrease in the number of retransmissions also contributes to the increase in efficiency.

496

Andrea Baiocchi et al. x 1 0

6 .5

− 8

R a n d o m C H A O S 1 C H A O S 2 6

5 .5

E n e r g y p e r b it ( J /b it)

5

4 .5

4

3 .5

3

2 .5

2 0

5

1 0

1 5 2 0 N u m b e r o f m o b ile s

2 5

3 0

F i g . 7 . Energy per bit vs. number of MSs varying matrix scanning methods.

5 .2

B lu etooth

6

The simulation scenario involves a piconet with one master and two slaves. Two different CBR connections are supported in the downlink direction (from master to slave), and transport and network layer protocols are respectively UDP and IP. The channel is modeled as a two-state Markov Chain: in the BAD state the P a c k e t E r r o r R a t e PER is very high (90%) where as in the GOOD state no errors occur on the channel. Residence time in each state is exponentially distributed with mean residence time equal to 5 seconds in the BAD state and 20 seconds in the GOOD state. This model tries to account for interference from co-located 802.11b devices. Figure 8 shows the throughput of the piconet with respect to the load offered to the piconet, normalized to the capacity of the piconet itself. CHAOS is shown to reach a better throughput with respect to a Deficit Round Robin (DDR) scheduler, especially as the load increases. Figure 9 shows the number of information bits received with respect to information bits transmitted obtained by varying the offered load to the piconet. This value can be interpreted as a measure of power efficiency since for low power devices (CLASS 2) no power control is used. It can be observed that while CHAOS constantly outperforms the DRR scheduler, higher values of power efficiency are obtained when offered load increases. This mainly happens because when much free capacity is available (which happens for lower values of offered load) useless retransmissions occur, which fail because the channel is in the BAD state.

F i n a l R em a r k s a n d F u r th er W or k In this paper a scheme for developing reconfigurable scheduling disciplines was presented. A modular architectural paradigm was introduced, which allows the deployment

Reconfigurable Packet Scheduling for Radio Access

497

F i g . 8 . Throughput vs Offered Load with different scheduling disciplines.

of general algorithms based on simple modules that abstract functionalities common to the wireless systems in use today. We exploited this architecture to develop scheduling algorithms adaptive to both traffic and channel quality; these algorithms are then applied to two different Reference Environments (Bluetooth and UMTS), and they are shown to achieve an efficient utilization of the radio interface. This occurs because the adoption of a cross layered architecture enhances native system functionalities. The adaptation plane algorithms for the two reference environments have been specified in detail. Results for each RE show how scheduling algorithms manage to reap the best from different REs.

R ef er en ces 1. Roveri A., Chiasserini C.F., Femminella M., Melodia T., Morabito G., Rossi M., Tinnirello I.: “The RAMON module: architecture framework and performance results,“ published in these Proceedings. 2. Haas Z.J.: “Design Methodologies for Adaptive and Multimedia Networks,” IEEE Communications Magazine., Vol. 39, no. 11, November 2001. 3. Rappaport T.S., Annamalai A., Buehrer R.M., Tranter W.H.: “Wireless Communications: Past Events and a future Perspective,” IEEE Commun. Mag., Vol 39, no. 11, May 2002. 4. Haardt M., Klein A., Kohen R., Oestreich S., Purat M., Sommer V., Ulrich T.: “The TDCDMA Based UTRA TDD Mode,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 8, August 2000. 5. Bluetooth Special Interest Group: “Specifications of the Bluetooth System, Volume 1, Core. Version 1.1, February 22 2001. 6. Bharghavan V., Lu S., Nandagopal T.: “Fair Queuing in Wireless Networks: Issues and Approaches,” IEEE Personal Communications, vol. 6, no. 1, February 1999. 7. Lu S., Bharghavan V., Srikant R.: “Fair Scheduling in Wireless Packet Networks,” IEEE/ACM Trans. on Networking, vol. 7, no. 4, August 1999.

498

Andrea Baiocchi et al.

F i g . 9 . Received Bits/Transmitted Bits vs Offered Load with different scheduling disciplines.

8. Nandagopal T., Kim T. E., Gao X., Bharghavan V.: “Achieving MAC Layer Fairness in Wireless Packet Networks,” Proc. of ACM MOBICOM 2000, August 6-11 2000, Boston, Massachussets. 9. Liu Z., Karol M.J., El Zarki M., Eng K.Y.: “Channel access and interference issues in multicode DS-CDMA wireless packet (ATM) networks,” ACM Wireless Networks, 2, 1996. 10. Alonso L., Agust R., Sallent O.: “A Near-Optimum MAC Protocol Based on the Distributed Queueing Random Access Protocol (DQRAP) for a CDMA Mobile Communication System,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 9, September 2000. 11. Elaoud M., Ramanathan P.: “Adaptive Allocation of CDMA Resources for Network-level QoS Assurances,” Proc. of ACM MOBICOM 2000, August 6-11 2000, Boston, Massachussets. 12. Lee S. J., Lee H. W., Sung D. K.: “Capacity of Single-Code and Multicode DS-CDMA System Accommodating Multiclass Services,” IEEE Transactions on Vehicular Technology, vol. 48, no. 7, March 1999. 13. Bhagwat P., Bhattacharya P., Krishna A., Tripathi S.K.: “Enhancing throughput over wireless LANs using channel state dependent packet scheduling,” Proc. of IEEE INFOCOM 96, April 2-6 1996, San Francisco, California. 14. Fragouli C., Sivaraman V., Srivastava M.B.: “Controlled multimedia wireless link sharing via enhanced class-based queuing with channel state dependent packet scheduling,” Proc. INFOCOM 98, April 1998, San Francisco, California. 15. Baiocchi A., Cuomo F., Martello C.: “Optimizing the radio resource utilization of multiaccess systems with a traffic-transmission quality adaptive packet scheduling,” Computer Networks (Elsevier), Vol. 38, n. 2, February 2002. 16. 3GPP Technical Specification TS 25.331, V3.8.0 Release 99, “RRC Protocol Specification,” September 2001. 17. Das A., Ghose A., Razdan A., Saran H., and Shorey R.: “Enhancing Performance of Asynchronous Data Traffic over the Bluetooth Wireless Ad-hoc Network,”IEEE INFOCOM 2001, Alaska, USA, April 2001. 18. n s - Network Simulator, UC Berkeley. Internet Site: http://www.isi.edu/nsnam/ns. 19. Bluehoc Simulator Site: http://www-124.ibm.com/developerworks/opensource/bluehoc/.



Mobility Management in a Reconfigurable Environment: The RAMON Approach 0DXUR)HPPLQHOOD/HRQDUGR3LDFHQWLQL ',(,8QLYHUVLW\RI3HUXJLD9LD*'XUDQWL3HUXJLDy ,WDO\ {femminella, piacentini}@diei.unipg.it

Abstract. 5HFRQILJXUDELOLW\ LV H[SHFWHG WR SOD\ D FULWLFDO UROH LQ WKH UHVHDUFK DUHD RI :LUHOHVV0RELOH &RPPXQLFDWLRQV E\ LQFUHDVLQJ IOH[LELOLW\ UHGXFLQJ GHSOR\PHQWDVZHOODVRSHUDWLRQDQGPDLQWHQDQFHFRVWVFUHDWLQJQHZEXVLQHVV RSSRUWXQLWLHVIDFLOLWDWLQJHQKDQFHPHQWVWRH[LVWLQJWHFKQRORJ\VHUYLFHSHUVRQ DOL]DWLRQHWF2QWKHORQJZD\OHDGLQJWRDFRPSOHWH6RIWZDUH'HILQHG5DGLR WHUPLQDOLQZKLFKDXQLTXHSURJUDPPDEOHKDUGZDUHLVRQWKHIO\FRQILJXUHGYLD VRIWZDUH GRZQORDG WKH 5$021 SURMHFW SODFHV LWVHOI ZLWKLQ D VKRUWPHGLXP WHUPWLPHKRUL]RQ,QWKLVYLVLRQDGXDOPRGHWHUPLQDOHQKDQFHGZLWKDFRP PRQ VRIWZDUH PRGXOH LV FRQVLGHUHG ZLWK D PDVVLYH XVH RI &RPPRQ &RQWURO )XQFWLRQVOLPLWLQJWKHXVHRIV\VWHPVSHFLILFIXQFWLRQDOLWLHV7KHIRFXVRIWKH SDSHULVWRGHVFULEHWKHPRELOLW\PDQDJHPHQWGHYHORSHGLQWKLVSURMHFWSURYLG LQJGHWDLOVIRUERWKLQWHUDQGLQWUDUHIHUHQFHHQYLURQPHQWVPRELOLW\

1

Introduction

7KH GHSOR\PHQW RI * DUFKLWHFWXUHV KDV JLYHQ D JUHDW LPSXOVH WR ZLUHOHVV QHW ZRUNLQJ,QDGGLWLRQWRFODVVLFDOV\VWHPVDEOHWRSURYLGHZLUHOHVVFRPPXQLFDWLRQVE\ PHDQV RI FHOOXODU DUFKLWHFWXUHV LH *60 *356 DQG LQ WKH QH[W IXWXUH 8076  VHYHUDOWHFKQRORJLHVDUHHPHUJLQJIRUWKHSURYLVLRQRIZLUHOHVVFRPPXQLFDWLRQVLQD ORFDO DUHD VXFK DV  DQG +,3(5/$1 ,Q WKLV IUDPHZRUN WKH %OXHWRRWK %7  WHFKQRORJ\>@>@KDVWKHSRWHQWLDOWRSURYLGHDFFHVVWR,QWHUQHWVHUYLFHVE\H[WHQGLQJ WKHIL[HGQHWZRUNYLDWKH:LUHOHVV3HUVRQDO$UHD1HWZRUN :3$1 SDUDGLJP 7KH ZRUN KDV EHHQ FDUULHG RXW LQ WKH IUDPHZRUN RI D UHVHDUFK SURMHFW QDPHG 5$021 5HFRQILJXUDEOH $FFHVV PRGXOH IRU 02ELOH FRPSXWL1J $SSOLFDWLRQV  >@ 2QHRIWKHDLPVRIWKHSURMHFWLVWRGHILQHDUHFRQILJXUDEOHUDGLRWHUPLQDODEOHWRSUR YLGHDFFHVVWR,QWHUQHWVHUYLFHVLQSULYDWHRUSXEOLFHQYLURQPHQWVE\PHDQVRIWKHFD SDELOLW\ WR PRYH VHDPOHVVO\ EHWZHHQ D ZLGH DUHD ZLUHOHVV QHWZRUN 8076  DQG D :3$1 %7  7KH UROH RI WKH %7 3$1 LV WR FRPSOHPHQW WKH FRYHUDJH SURYLGHG E\ 8076IRULQVWDQFHDWKRPHRULQVSHFLILFSXEOLFDUHDVVXFKDVDLUSRUWVVKRSVRURI ILFHVZKHUHIRULQVWDQFHFKHDSHURUJUDWXLWRXVDFFHVVFRXOGEHDYDLODEOH,QVXFKD VFHQDULR WKH HPSKDVLV LV RQ WKH VXSSRUW RI PRELOH FRPSXWLQJ DSSOLFDWLRQV ,Q WKLV VFHQDULR WKH WHUPLQDO GRHV QRW PDNH XVH RI FODVVLFDO 6RIWZDUH 'HILQHG 5DGLR FRQ FHSWV>@>@EXWDVKRUWPHGLXPWHUPVROXWLRQIRUUHFRQILJXUDELOLW\LVFRQVLGHUHGLH DGXDOPRGHPRELOHQRGHLQZKLFKDVHWRI&RPPRQ&RQWURO)XQFWLRQV &&) LVGH ILQHGLQGHSHQGHQWIURPWKHXQGHUO\LQJV\VWHP )LJ 7KHV\VWHPRSWLPL]DWLRQLV FDUULHG RXW WU\LQJ WR PD[LPL]H WKH XVH RI &&) UDWKHU WKDQ VSHFLILF IXQFWLRQDOLWLHV FKDUDFWHULVWLFRIHDFK5HIHUHQFH(QYLURQPHQWV 5(  0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

0DXUR)HPPLQHOODDQG/HRQDUGR3LDFHQWLQL

7KHIRFXVRIWKLVSDSHULVGHVFULELQJWKHPRELOLW\PDQDJHPHQWDSSURDFKGHYHORSHG LQ5$021ZKHUH,3DVFRPPRQWUDQVSRUWSURWRFROKDVEHHQFKRVHQIRULWVLQWULQVLF FDSDELOLW\ RI GHFRXSOLQJ IURP XQGHUO\LQJ WHFKQRORJ\ ,Q WKLV ZD\ LQWHJUDWLRQ DQG URDPLQJ EHWZHHQ GLIIHUHQW DFFHVV WHFKQRORJ\ LV JUHDWO\ VLPSOLILHG 0RUHRYHU WKH DGRSWLRQ RI DOO,3 DUFKLWHFWXUHV HDVHV WKH GHVLJQ GHYHORSPHQW DQG IUXLWLRQ E\ HQG XVHUVRIQHZVHUYLFHVRIWHQRIIHUHGE\WKLUGSDUWLHVDFFHVVLQJWKHQHWZRUNLQIUDVWUXF WXUH,QWKLVVFHQDULRWKHQDWXUDOFKRLFHKDVEHHQWRDGRSW0RELOH,3 0,3 DVFRP PRQSODWIRUPWRVXSSRUWPRELOLW\ERWKLQWHUDQGLQWUD5(6LQFH8076LVDFRPSOH[ DQG FRPSOHWH V\VWHP LW KDV LWV RZQ VSHFLILF PRELOLW\ PDQDJHPHQW SURFHGXUHV >@>@ +RZHYHU LQ WKH SHUVSHFWLYH RI D PLJUDWLRQ WRZDUGV DQ DOO,3 DUFKLWHFWXUH >@>@>@>@>@>@>@ZHSURYLGHDSURPLVLQJVFHQDULRLQZKLFKWKH,3SURWR FROLVXVHGLQWKH8076V\VWHPERWKLQFRUHDQGDFFHVVVHFWLRQPDQDJLQJWKHPRELO LW\ DFFRUGLQJ WR 0RELOH ,3 FRXSOHG ZLWK VRPH PLFURPRELOLW\ VWUDWHJ\ >@ 2Q WKH RWKHUVLGHWKH%7V\VWHPGRHVQRWKDYHWKHVDPHDGYDQFHGSURFHGXUHVRIWKH8076 5( DQG FDQ QRW RIIHU WKH VDPH VRSKLVWLFDWHG IXQFWLRQDOLWLHV WR PDQDJH GLUHFWO\ WKH PRELOLW\IURPWKH5$021PRGXOHZLWKv JRRGw SHUIRUPDQFH7KLVLPSOLHVWKDWLIWKH 80765(FDQSURYLGHWKHQHHGHGIXQFWLRQDOLWLHVWRWKH5$021PRGXOHZLWKDYHU\ VLPSOH $GDSWDWLRQ /D\HU $/  LH WKH $GDSW8 LQ )LJ  WKH %7 5( QHHGV D PRUH FRPSOH[RQH WKH$GDSW%LQ)LJ LQRUGHUWRILOOWKHJDSLQWHUPVRIIXQFWLRQDOLWLHV +HUHZHSURSRVHDPHFKDQLVPRSHUDWLQJDW%7OLQNOD\HUWRLPSURYHWKHRYHUDOOSHU IRUPDQFHLQFDVHRIPRELOLW\   LQWHUIDFH

$SSOLFDWLRQV 7&3 8'3 ,3

 LQWHUIDFH

RAMON AdaptU RRC

AdaptB

 LQWHUIDFH  LQWHUIDFH

BTHost L2CAP

RLC

LMP

MAC

Baseband

Physical

Radio

Wireless Channel

%OXHWRRWK5(

80765(

 LQWHUIDFH



Fig. 1.5$021SURWRFROVWDFN

7KH SDSHU LV RUJDQL]HG DV IROORZV ,Q 6HFWLRQ  ZH UHSRUW WKH GHVFULSWLRQ RI WKH DSSURDFK XVHG WR PDQDJH ORJLFDO PRELOLW\ LQ WKH 5$021 ORJLF EHWZHHQ GLIIHUHQW 5(V,Q6HFWLRQZHDQDO\]HDSRVVLEOHHYROXWLRQDU\VFHQDULRRIWKH8076V\VWHP WRZDUGV DQ DOO,3 QHWZRUN 6HFWLRQ  LV GHGLFDWHG WR WKH GHVFULSWLRQ RI D QRYHO DS SURDFKWRKDQGOHPRELOLW\DWOD\HULQWKH%7V\VWHPLQRUGHUWRLPSURYHWKHGHOD\ SHUIRUPDQFHLQFDVHRILQWUD5(KDQGRIIV)LQDOO\6HFWLRQUHSRUWVRXUFRQFOXVLRQV DQGIXWXUHUHVHDUFKGLUHFWLRQV

0RELOLW\0DQDJHPHQWLQD5HFRQILJXUDEOH(QYLURQPHQW7KH5$021$SSURDFK

2

The Mobility Management RAMON Logic

5$021V\VWHPDUFKLWHFWXUHLOOXVWUDWHGLQ)LJLVORFDWHGXSRQWKHSURWRFROVWDFNRI WKHGLIIHUHQW5(VRIDPRELOHQRGH5$021FDQFRPPXQLFDWHZLWKRQO\RQH5(DW WLPHFKRVHQIROORZLQJDORJLFEDVHGRQWKH4R6SDUDPHWHUVFRQILJXUHGE\WKHXVHU 7KHV\VWHPLVHVVHQWLDOO\GLYLGHGLQWRWZRSDUWV DEDVLFOD\HUWKDWFRQWDLQVWKHORJLFLPSOHPHQWLQJ5$021IXQFWLRQDOLWLHV WZR $/V WKDW DUH VSHFLILF IRU HDFK 5( DQG SUHVHQW WR WKH 5$021 OD\HU D FRPPRQLQWHUIDFHPDVTXHUDGLQJWKHGLIIHUHQFHVEHWZHHQWKH5(V 5$021DQGWKH$/VDUHVHWVRIFRQWUROHQWLWLHVWKDWFRPPXQLFDWHEHWZHHQWKHP LQWHUIDFH   ,Q DGGLWLRQ WKH\ FRPPXQLFDWH ZLWK SURWRFRO OD\HUV RI WKH XQGHUO\LQJ 5(V LQWHUIDFH ZLWKWKH7&3DJHQW LQWHUIDFH DQG0,3DJHQW LQWHUIDFH )URP DQREMHFWRULHQWHGSRLQWRIYLHZ5$021DUFKLWHFWXUHFDQEHVKRZQXVLQJDQ80/ GLDJUDPDVGHSLFWHGLQ)LJ 0,3$JHQW

5DPRQ

7&3$JHQW

h  send_solicitation() h   LQWHUIDFH

h  warning() ready() h   LQWHUIDFH

h  start_handoff_notification() end_handoff_notification() set()/get() h   LQWHUIDFH

$GDSW8

$OSKD DEVWUDFW

$GDSW%

h  attach()/detach() monitor() set()/get() send()/receive() h   LQWHUIDFH RYHUULGLQJYLUWXDOPHWKRGV

h  attach()/detach() monitor() set()/get() send()/receive() h   LQWHUIDFHYLUWXDOPHWKRGV

h  attach()/detach() monitor() set()/get() send()/receive() h   LQWHUIDFH RYHUULGLQJYLUWXDOPHWKRGV

80765(

%OXHWRRWK5(

h  test() load() h   LQWHUIDFH

h  test() load() h   LQWHUIDFH

Fig. 2.80/GLDJUDPRIWKH5$021DUFKLWHFWXUH

7KHȕȖDQGįLQWHUIDFHDUHHVVHQWLDOO\VHWVRISXEOLFPHWKRGVZKLOHĮLVDQDE VWUDFWW\SHFRQWDLQLQJ5(FRPPRQPHWKRGVXVHGE\5$021OD\HU LHE\WKH&&)  ZKLFKDUHLQKHULWHGDQGRYHUULGGHQE\WKH$/VVREHFRPLQJ5(VSHFLILF%HVLGHVWKH ĮLQWHUIDFHLVXVHGIRUVHWWLQJRUJHWWLQJWKHYDOXHDVVXPHGE\VHYHUDOSDUDPHWHUVEH ORQJLQJ WR 5( VSHFLILF SURWRFROV PDNLQJ 5$021 DEOH WR FKRVH WKH EHVW 5( WR PDLQWDLQ4R6UHTXLUHPHQWVRULIQHFHVVDU\WRSHUIRUPDYHUWLFDOKDQGRII>@,WLV ZRUWKQRWLQJWRGLVWLQJXLVK5$021GULYHQKDQGRIIIURPKRUL]RQWDOKDQGRIIZKLFK LVSHUIRUPHGE\$/H[SORLWLQJ5(IXQFWLRQDOLWLHVDQGLVWUDQVSDUHQWWRWKH5$021 ORJLF,QIDFWLQGHSHQGHQWO\IURPWKHPHWULFDGRSWHGE\WKH5(WKH4R6SDUDPHWHUV DUH RSSRUWXQHO\ PDQLSXODWHG LQRUGHU WRSURYLGH DQKRPRJHQHRXV VFDOH WR 5$021 WKDQNV WR WKH  LQWHUIDFH $V VKRZQ LQ )LJ  WKH XVHU FRQILJXUHV DQ RSWLPDO DQG D

0DXUR)HPPLQHOODDQG/HRQDUGR3LDFHQWLQL

PLQLPDOWKUHVKROGIRUHDFKTXDOLW\SDUDPHWHU7KHPHWULFDGRSWHGE\5$021WR ZHLJKWKHJRRGQHVVRIHDFK5(LVVXFKWKDWWKH5(JOREDOTXDOLW\UHIOHFWVWKDWRIWKH ZRUVWSDUDPHWHU   3$5$0(7(51$0(

optimal threshold

A zone (best) B zone (warning) C zone (worse) minimal threshold

'(6&5,37,21

COST

3ULFLQJ

SEC

VHFXULW\OHYHO

PW

UHFHLYHGSRZHU

BW

EDQGZLGWK

delay

GHOD\

P_loss_link

OLQNSDFNHWORVWSUREDELOLW\

link_packet_size

OLQNSDFNHWVL]H

b

OLQNDYHUDJHEXUVWOHQJWK

e

DYHUDJHOLQNSDFNHWHUURUSUREDELOLW\

L

OLQNPD[LPXPQXPEHURIUHWUDQVPLVVLRQ

SIR

VLJQDOWRLQWHUIHUHQFHUDWLR



Fig. 3.SDUDPHWHUVFKDUDFWHUL]DWLRQ

7KHVWDWHGLDJUDPVIRU5$021%7 $GDSW% DQG8076 $GDSW8 $/VDUHSUH VHQWHGLQ)LJ D DQG)LJ E :KHQWKHPRELOHQRGHSRZHUVRQ5$021LVLQ WKH67$57VWDWHDFFRUGLQJWRWKHXVHUUHTXLUHPHQWV5$021VHQGVD4R6UHTXHVW E\WKHs et(< p a r a m eter > )PHWKRGWRERWKWKH$/VVWDUWLQJWKHP(DFK$/JRHV WRWKH021,725VWDWHVHDUFKLQJIRUWKHEHVW5(VSHFLILF%DVH6WDWLRQ %6 LQUDQJH ILWWLQJWKH4R6VSHFLILFDWLRQV:KHQVXFKD%6LVIRXQGWKH$/JRHVWRWKH5($' ) PHWKRG ZKLFK EHORQJV WR WKH  LQWHUIDFH DV ZHOO DV VHW 5$021FKRRVHVWKHEHVW5(LIRQHH[LVWVLHWKH5(WKDWH[FHHGVWKH4R6RSWLPDO WKUHVKROGRWKHUZLVHLWJRHVVOHHSLQWKH',6&$5'VWDWHIURPZKLFKLWFDQH[LWRQO\ LIWKHXVHUUHVWDUWVWKHV\VWHP :KHQ 5$021 GHFLGHV WRXVH D SDUWLFXODU 5( LW VHQGV WKH a tta ch() FRP PDQG WR WKH FRUUHVSRQGHQW $/ FKDQJHV LWV VWDWH WR &211(&7(' DQG LQ RUGHU WR VSHHGXS0,3UHJLVWUDWLRQSURFHGXUHVHQGVD0,3VROLFLWDWLRQ 0,362/ WRWKHDW WDFKHG5(XVLQJWKHLQWHUIDFH$IWHUUHFHLYLQJWKHa tta ch()FRPPDQGWKH$/ FKDQJHVLWVVWDWHWR&211(&7('DQGSDVVHVGDWDDQGVLJQDOLQJSDFNHWVWR5$021 OD\HUDQ\ZD\WKHDSSOLFDWLRQVWDUWVVHQGLQJGDWDSDFNHWVRQO\DIWHU5$021KDVLQ WHUFHSWHG D 0,3 UHJLVWUDWLRQ UHSO\ 0,35(*5(3/<  SDFNHW FRPLQJ IURP WKH DW WDFKHG5($WWKLVSRLQWWKHQRQFRQQHFWHG$/ 1&$/ FRQWLQXRXVO\WULHVWRUHPDLQ LQWKH5($'@ ,WLVZRUWKQRWK LQJ WKDW WKH SUHVHQFH RI WKH *(5$1 *60 ('*( 5DGLR $FFHVV 1HWZRUN  LPSOLHV WKDW,3LVQRWIXOO\GHSOR\HGLQWKHDFFHVVQHWZRUN )LQDOO\LQ)LJ E WKHDOO,380767HUUHVWULDO5DGLR$FFHVV1HWZRUN 875$1  LV VNHWFKHG ,Q WKLV PRGHO LW LV IRUHVHHQ WKDW 51&V DQG 1RGH % DUH FRQQHFWHG EH WZHHQDQ,3EDFNERQHOLNHO\EDVHGRQWKH'LII6HUYSDUDGLJP>@ *LYHQWKHVFHQDULRRIDQDOO,38076QHWZRUNOHWXVIRFXVRQWKHPRELOLW\PDQ DJHPHQW EDVHG RQ WKH 0,3 VXLWH 0,3 GHILQHV WZR HQWLWLHV WR SURYLGH PRELOLW\ VXS SRUWD+RPH$JHQW +$ DQGD)RUHLJQ$JHQW )$ 7KHPRELOHKRVWKDVDSHUPD QHQW,3DGGUHVVUHJLVWHUHGDWWKH+$UHVLGHQWLQLWVKRPHQHWZRUNZKLOHLWLVDVVLJQHG WRD)$RQWKHEDVLVRILWVFXUUHQWORFDWLRQ7KH)$KDVDVVRFLDWHGZLWKLWDQ,3DG GUHVVFDOOHGFDUHRIDGGUHVV &R$ 3DFNHWVGHVWLQHGIRUDPRELOHKRVWDUHLQWHUFHSWHG E\WKH+$DQGWXQQHOHGXVLQJ,3LQVLGH,3WRWKH)$XVLQJWKH&R$7KH)$GHFDS VXODWHVWKHSDFNHWVDQGIRUZDUGVWKHPGLUHFWO\WRWKHPRELOHKRVW7KHUHIRUHWKH)$LV WKH ,3 HQWLW\ FORVHVW WR WKH PRELOH KRVW LH WKH URXWHU GLUHFWO\ DWWDFKHG WR WKH %6 1RGH% ,PSURYHPHQWVKDVEHHQSURYLGHGWRWKLVEDVLFYHUVLRQRI0,3LQLWVLPSOH PHQWDWLRQLQ,3Y>@WKDWLVVXSSRVHGWREHHPSOR\HGLQWKH8076QHWZRUN +RZHYHUHYHQLI0,3SURYLGHVDJRRGIUDPHZRUNIRUDOORZLQJXVHUVWRURDPRXW VLGHWKHLUKRPHQHWZRUNZLWKRXWVHYHUHGLVUXSWLRQRIWKHUXQQLQJDSSOLFDWLRQVLWZDV QRWGHVLJQHGVSHFLILFDOO\WRVXSSRUWZLGHDUHDZLUHOHVVQHWZRUNLQJ,QIDFWLWWUHDWVDOO KDQGRIIV XQLIRUPO\ DOVR WKRVH LQYROYLQJ WZR FORVH )$V  FDXVLQJ HDFK WLPH D QHZ UHJLVWUDWLRQ ZLWK WKH +$ ZLWK WKH FRQVHTXHQW RYHUKHDG RIWHQ LPSO\LQJ GHOD\ DQG VHUYLFHGLVUXSWLRQ,QDGGLWLRQLWGRHVQRWVXSSRUWSDJLQJUHVXOWLQJLQDQQRWHIILFLHQW SRZHUPDQDJHPHQWDWWKHPRELOHKRVW7RVROYHWKHVHSUREOHPVDQXPEHURIVFKHPHV NQRZQDVPLFURPRELOLW\VWUDWHJLHVKDYHEHHQSURSRVHGLQOLWHUDWXUH IRUDQH[FHOOHQW VXUYH\VHH>@ 7KHVHDSSURDFKFDQEHFODVVLILHGLQWRWZRGLVWLQFWFDWHJRULHVKLHU DUFKLFDOWXQQHODQGURXWLQJXSGDWHDSSURDFKHV7KHIRUPHURQHV HJ5HJLRQDO7XQ QHO0DQDJHPHQWDQG+LHUDUFKLFDO0RELOH,3 DUHFKDUDFWHUL]HGE\DWUHHOLNHVWUXFWXUH RI)$VLQZKLFKWKHWUDIILFLVHQFDSVXODWHGDQGWKHQGHFDSVXODWHGDWHDFK)$RQWKH WUHHXQWLOUHDFKLQJWKH)$HIIHFWLYHO\KDQGOLQJWKHPRELOHKRVW,QWKLVZD\GXHWRWKH PDLQWHQDQFHRIORFDWLRQXSGDWHGZLWKLQWKHORFDOQHWZRUNVLJQDOLQJGHOD\GXHWRXS GDWHV DW WKH +$ DUH PRVWO\ UHGXFHG 7KH ODWWHU RQHV GRHV QRW PDNH XVH RI WXQQHOV ZLWKLQWKHORFDOQHWZRUNEXWPDLQWDLQVGHGLFDWHGILHOGLQURXWLQJWDEOHVWRURXWHWUDI ILFWRWKHPRELOHKRVWXVLQJGLUHFWO\LWV,3KRPHDGGUHVV &HOOXODU,3&,3>@ RUWKH &R$ +DZDLL ([WUDVLJQDOLQJJHQHUDWHGE\WKHPRELOHKRVWLVLQWURGXFHGRQO\LQWKH ORFDOQHWZRUNLQRUGHUWRXSGDWHURXWLQJWDEOHVSHULRGLFDOO\RUDIWHUKDQGRIIV

0DXUR)HPPLQHOODDQG/HRQDUGR3LDFHQWLQL RNC

Node B

lub interface

Home environment

SCP

IP edge router IP edge router

HSS RNC

PSTN

MGCF

GERAN

IP router

Media gateway

lur interface

IP backbone Node B MSC

IP edge router

Server CSCF

IP edge router

Multimedia call server

RNC UTRAN

External IP network SGSN Signaling

IP router

IP backbone

Node B RNC

GGSN

Data

(a)

(b)



Fig. 7.(a)$VLPSOLILHGDOO,38076FRUHQHWZRUN(b),3EDVHG8076DFFHVVQHWZRUN

,WLVZRUWKQRWLQJWKDWXVLQJWKLVDOO,3DSSURDFKERWKLQFRUHDQGDFFHVVQHWZRUN IURP D SXUH PRELOLW\ PDQDJHPHQW SRLQW RIYLHZ 6*61V DUH VLPSO\ WUHDWHG DV FRUH URXWHUV**61VDVHGJHURXWHUVZKLOH51&V RUPRUHSUHFLVHO\WKHURXWHUVGLUHFWO\ FRQQHFWHGWR1RGH% DFWDVDFFHVVURXWHUV7KXVWKH8076QHWZRUNFDQEHVHHQDV DQ ,3 GRPDLQ HPSOR\LQJ DQ HQKDQFHG 0,3 DSSURDFK IRU KDQGOLQJ XVHU PRELOLW\ DW OD\HUZLWKDVSHFLILFHIILFLHQWOD\HUWHFKQRORJ\>@ZKRVHGHWDLOHGRSHUDWLRQV DUHKLGGHQWRWKH5$021ORJLFE\$GDSW8

4

The Bluetooth Mobility Management

7KH %7 DUFKLWHFWXUDO PRGHO KDV EHHQ HQULFKHG E\ WKH %OXHWRRWK 3XEOLF $FFHVV ,3 %/8(3$&,3 VROXWLRQZKLFKHQGRZV%7ZLWKKDQGRIIFDSDELOLW\DQGOD\HUPR ELOLW\ PDQDJHPHQW >@>@ %/8(3$& ,3 H[SORLWV 0,3 >@ WR PDQDJH WKH VRFDOOHG v PDFURPRELOLW\w  LH WKH PRELOLW\ DPRQJ GLIIHUHQW GRPDLQV DQG&,3 >@>@  WR SURYLGHKDQGRIIVLQDORFDO DUHD7KLVVROXWLRQHYHQLIHOHJDQWLQLWVGHILQLWLRQSUH VHQWV VRPH GLVDGYDQWDJHV LQ FDVH RI IUHTXHQW KDQGRIIV GXH WR WKH WLPH FRQVXPLQJ SURFHGXUHVWKDWDUDGLRGHYLFHXVHVWRORFDWHDQGWRDWWDFKWRDQHZ%65HLWHUDWLRQVRI KDQGRIIVUHGXFHWKHRYHUDOOQHWZRUNSHUIRUPDQFHVLQFHDVRUWRIv EODFNRXWw RIDFWLYH WUDQVPLVVLRQVRFFXUVIRUHDFKKDQGRII ,QWKLV6HFWLRQZHSURSRVHDQDSSURDFKIRUWKHPRELOLW\PDQDJHPHQWEDVHGRQWKH LQWULQVLF%7FDSDELOLW\WRIRUPDQXPEHURISLFRQHWV,QDSLFRQHWDGHYLFHDVVXPHV WKHUROHRIPDVWHUZKLOHXSWRVHYHQGHYLFHVDFWDVVODYHV$GHYLFHFDQSDUWLFLSDWHWR PXOWLSOHSLFRQHWVDVVODYHZKLOHLWFDQEHPDVWHURQO\LQRQHSLFRQHW0XOWLSOHSLFRQ HWV FDQ FRH[LVW DQG RYHUODS D PD[LPXP RI WHQ FRORFDWHG SLFRQHWV KDV EHHQ VXJ JHVWHGLQRUGHUWRDVVXUHDORZOHYHORILQWHUIHUHQFH)L[HG%7GHYLFHVQDPHG$FFHVV 3RLQWVDVVXUHWKHLQWHUZRUNLQJZLWKIL[HGQHWZRUNV HJ/$1DQG:$1  $%7GHYLFHFDQEHORQJWRGLIIHUHQWSLFRQHWVDOVRE\NHHSLQJVRPHRIWKHPLQWKH VRFDOOHGv ORZSRZHUPRGHVw ,QVXFKDPRGDOLW\LWGRHVQRWSDUWLFLSDWHDFWLYHO\ LH LWGRHVQRWWUDQVIHUXVHUGDWD LQDOOWKHLQYROYHGSLFRQHWVDVDFRQVHTXHQFHLWFRQ VXPHVORZSRZHUDQGEDQGZLGWKEXWDWWKHVDPHWLPHLWLVDEOHWRPDLQWDLQV\QFKUR QL]DWLRQZLWKWKHPDVWHUV2XULGHDLVWRXVHORZSRZHUPRGHV>@WRPDLQWDLQDVRUW

0RELOLW\0DQDJHPHQWLQD5HFRQILJXUDEOH(QYLURQPHQW7KH5$021$SSURDFK

RIv EDFNXSOLQNVw WKDWFDQEHXVHGWRVSHHGXSWKHKDQGRIIV:LWKWKLVDSSURDFKD GHYLFH PDLQWDLQV WZR OD\HU  FRQQHFWLRQV RSHQHG RQH DFWLYH LQ ZKLFK LW VHQGVUHFHLYHVGDWD DQGRQH LQ D ORZSRZHU PRGH %\XVLQJ ORZ OHYHO LQIRUPDWLRQ VXFKDVILHOGVWUHQJWKPHDVXUHPHQWVWKHGHYLFHPRQLWRUVWKHVWDWXVRILWVFRQQHFWLRQV DQG LW LV DEOH WR VHOHFW WKH PRVW VXLWDEOH RQH DW $/ OHYHO SHUIRUPLQJ D FRQQHFWLRQ VZLWFKZKHQQHHGHG 7KH WLPH UHTXLUHG WR H[HFXWH WKLV RSHUDWLRQ LV VLJQLILFDQWO\ UH GXFHGZKHQFRPSDUHGWRD%/8(3$&,3KDQGRII0RUHRYHUWKHQXPEHURIWLPHVD %7GHYLFHKDVWRSHUIRUPWKHFODVVLF%/8(3$&,3KDQGRIILVKLJKO\UHGXFHGLQIDFW WKLV SURFHGXUH VKDOO EH H[HFXWHG RQO\ ZKHQ ERWK WKH HVWDEOLVKHG OLQNV DUH XQDEOH WR IXUQLVKDJRRGOHYHORIFRQQHFWLYLW\ /HWXVFRQVLGHUWKHVWDWHPDFKLQHDVVRFLDWHGWRD%7GHYLFH VHH>@ ,Q6WDQGE\ PRGH WKH %7 GHYLFH LV ZDLWLQJ WR MRLQ DSLFRQHW,QRUGHU WR HVWDEOLVK QHZ FRQQHF WLRQV,QTXLU\DQG3DJHSURFHGXUHVDUHXVHG WKH,QTXLU\SURFHGXUHHQDEOHVDGHYLFHWRGLVFRYHUZKLFKRWKHUGHYLFHVDUHLQ LWVUDGLRUDQJHDQGWKHUHOHYDQW%7DGGUHVVHVDQGFORFNV WKH3DJLQJSURFHGXUHLVXVHGWRHVWDEOLVKDQHZFRQQHFWLRQ $GHYLFHWKDWHVWDEOLVKHVDFRQQHFWLRQE\PHDQVRIWKH3DJHSURFHGXUHEHFRPHV DXWRPDWLFDOO\WKHPDVWHURIWKHFRQQHFWLRQODWHURQWKHGHYLFHVFDQH[FKDQJHUROHV 7KHSDJHGGHYLFHPXVWEHLQVFDQ PRGHLQRUGHUWREHIRXQGDQGPXVWDQVZHUWRWKH LQTXLU\ PHVVDJHVZLWK )UHTXHQF\+RSSLQJ 6\QFKURQL]DWLRQ )+6  SDFNHWV ,QRUGHU WRVSHHGXSWKHGLVFRYHU\SURFHVVZHSURSRVHXVLQJDGHGLFDWHGLQTXLU\DFFHVVFRGH WRILQGRXW$FFHVV3RLQWV $3V LQVWHDGRID*HQHULF,QTXLU\$FFHVV&RGH *,$&  %\ DVVXPLQJ DQ HUURU IUHH HQYLURQPHQW DQG QHJOHFWLQJ 6\QFKURQRXV &RQQHF WLRQ2ULHQWHG 6&2 FKDQQHOVVLQFHZHIRFXVRQPRELOHFRPSXWLQJDSSOLFDWLRQVLQ TXLU\DQGSDJHSURFHGXUHVODVWDWPRVWVDQGVUHVSHFWLYHO\7KH LQTXLU\ SURFHGXUHFDQEHIDVWHUIRULQVWDQFHZKHQWKHLQTXLU\VXEVWDWHLVSUHPDWXUHO\OHIW LHWKH%7/LQN0DQDJHUKDVUHFHLYHGDVXIILFLHQWQXPEHURIDQVZHUVIURPWKH$3V $VUHJDUGVWKHpageSURFHGXUHLWVGXUDWLRQLVDUDQGRPYDULDEOHXQLIRUPO\GLVWULEXWHG EHWZHHQDQGVVLQFHD%7UDGLRWUDQVFHLYHUVKRSVIURPRQHFKDQQHOWRDQRWKHU LQ D SVHXGRUDQGRP IDVKLRQ 7KXV WKH H[SHFWHG PHDQ YDOXH RI WKH SDJLQJ GHOD\ LV V %HIRUHHQWHULQJLQGHWDLOVZLWKRXU%7OD\HUHQKDQFHPHQWSURSRVDOLWLVQHFHV VDU\WREULHIO\GHVFULEHWKH%/8(3$&,3DSSURDFK %/8(3$&,3LVDQRYHOVROXWLRQSURSRVHGE\8QLYHUVLW\RI%RQQLQRUGHUWRSUR YLGHPRELOLW\VXSSRUWDW,3OHYHOLQSXEOLFHQYLURQPHQWVEDVHGRQDQLQIUDVWUXFWXUHG QHWZRUNDUFKLWHFWXUH$%/8(3$&QHWZRUNDFWVDVDGRPDLQLPSOHPHQWLQJ0,3LQ ZKLFKD%7GHYLFHFDQPRYHLQDWUDQVSDUHQWZD\ZLWKUHVSHFWWRWKHH[WHUQZRUOGE\ XVLQJ&,3,QDW\SLFDOWRSRORJ\RID%/8(3$&,3QHWZRUNWKHUHLVRQHPDLQJDWH ZD\ WKDW VKLHOGV WKH LQWHUQDO QHWZRUN IURP WKH RXWHU ZRUOG D QXPEHU RI LQWHUQDO URXWHUVVXSSRUWLQJ&,3DQGWKHLUOHDYHVUHSUHVHQWHGE\%7%6V:KLOHIRUDGHWDLOHG SUHVHQWDWLRQRIWKH%/8(3$&,3ZHUHIHUWR>@KHUHZHDUHLQWHUHVWHGLQLQGLYLGXDW LQJLWVSURDQGFRQVDVUHJDUGVWKHPRELOLW\PDQDJHPHQWLQ%7LQRUGHUWRIXOO\MXV WLI\DQGXQGHUVWDQGWKHVROXWLRQZHSURSRVH :LWK %/8(3$& ,3 WKHXVHU SURILOH LV GHULYHG E\ D PRGLILFDWLRQRI WKH SURWRFRO VWDFNRIWKHVRFDOOHG/$1SURILOH VHH>@ 0RELOLW\LVPDQDJHGDW,3OD\HUE\XVLQJ WKH0,3&,3DSSURDFKDQGDWOD\HUE\XVLQJWKH/LQN6XSHUYLVLRQ7LPH /67 7KH ODWWHUDSSURDFKLVEDVHGRQv KDUGw GHFLVLRQVLHRQO\ZKHQWKHOD\HUFRQQHFWLRQLV

0DXUR)HPPLQHOODDQG/HRQDUGR3LDFHQWLQL

ORVW DQG WKH UHOHYDQW WLPHU LV H[SLUHG DQRWKHU FRQQHFWLRQ LV VHDUFKHG DQG VHWXS E\ PHDQVRIDQinquiryDQGDpageSURFHGXUH$VVKRZQLQ>@E\PHDQVRIVLPXODWLRQV WKHVHDUFKSURFHGXUHFRXOGEHTXLWHORQJ XSWRV DQGLWVHIIHFWVDW7&3OHYHO FDQ EH UHDOO\ GLVUXSWLYH IRU DSSOLFDWLRQV XS WR  V RI VLOHQFH GXH WR WKH EDFNRII PHFKDQLVPRI7&3  $VDFRQVHTXHQFHWKHKDQGRIISHUIRUPDQFHRIWKLVDSSURDFKPD\EHSRRU7KHDX WKRUVVXJJHVWWRXVHVPRRWKKDQGRIIWHFKQLTXHVLQRUGHUWRIXOO\H[SORLWWKHFDSDELOLW\ RIWKHUHOLDEOHOLQNOD\HURI%7DEOHWROLPLWWKHQXPEHURIGXSOLFDWHGSDFNHWVRQWKH ZLUHOHVV OLQN +RZHYHU HYHQ LI VPRRWK KDQGRIIV FDQ VXUHO\ LPSURYH %/8(3$& ,3 SHUIRUPDQFHRXUIHHOLQJLVWKDWOD\HUIXQFWLRQDOLW\VKRXOGEHH[SORLWHGLIWKHKDQG RII GHOD\ KDV WR EH DSSUHFLDEO\ UHGXFHG 2Q WKH RWKHU KDQG WKH DSSURDFK WR XVH 0,3&,3WHFKQLTXHVDWOD\HUVHHPVWREHWKHULJKWFKRLFHWRHQDEOHDIXOO\FRPSDWL ELOLW\ ZLWK WKH ,QWHUQHW ZRUOG ,Q FRQFOXVLRQ LW VHHPV WKDW DQ LQWHJUDWHG DSSURDFK EDVHGRQERWKOD\HUDQGFRXOGEHWKHULJKWFKRLFH 4.1

The Layer 2 Handoff Procedure

$VGHVFULEHGLQWKHSUHYLRXV6HFWLRQGXHWRWKHinquiryDQGpagingSURFHGXUHVWRWKH KDQGRIIGHWHFWLRQGHOD\DQGWRWKH7&3EDFNRIIDOJRULWKPWKHRYHUDOOKDQGRIISUR FHGXUHRI%/8(3$&,3PD\ODVWDORQJWLPH2XUVROXWLRQLVDQLQWHJUDWHGRQHZLWK 0,3DQG&,3WKDWPDQDJHPDFURDQGPLFURPRELOLW\DQGZLWKVXLWDEOHHQKDQFHPHQWV DWOD\HUWRUHGXFHWKHRYHUDOOKDQGRIIGHOD\ :HDVVXPHD/$1$FFHVV8VDJH0RGHODQGPXOWLSOH%7GHYLFHVWKDWH[SORLWDQ $3 WR FRQQHFW WR D ZLUHG &,3 QHWZRUN :H DOVR DVVXPH WKDW $3V KDYH RYHUODSSLQJ FRYHUDJH DUHDV :H UHFDOO WKDW WKH KDQGRII GHOD\ DW OD\HU  UHVXOWV IURP WKH VXP RI WKHVHFRQWULEXWLRQV KDQGRIIGHWHFWLRQGHOD\ VHDUFKSURFHGXUHGHOD\ DWWDFKSURFHGXUHGHOD\ 7RUHGXFHWKHKDQGRIIGHWHFWLRQGHOD\ZHPD\H[SORLWWKHIROORZLQJOD\HUFRQ QHFWLRQJRRGQHVVLQGLFDWRUV 5HFHLYHU6LJQDO6WUHQJWK,QGLFDWRU 566, &ODVVRI'H YLFH &R' PHDVXULQJ WKH UHVRXUFH XWLOL]DWLRQ RQ WKH OLQN DQG /LQNB4XDOLW\ >@ +RZHYHU WKH ODVW SDUDPHWHU LV YHQGRUGHSHQGHQW VR ZH QHJOHFW LW DQG XVH RQO\ WKH IRUPHUWZR ,QRXUVROXWLRQWKH%7GHYLFHXVHVWZROD\HUFRQQHFWLRQVWRZDUGVWZRGLIIHUHQW $3V D SULPDU\ FRQQHFWLRQ 3&  LQ DFWLYH PRGH ZKLFK LV DFWXDOO\ XVHG WR WUDQVIHU GDWD DQG D VHFRQGDU\ FRQQHFWLRQ 6&  LQ ORZ SRZHU PRGH  :KHQ WKH %7 GHYLFH ORVHVWKH3&LWFDQVZLWFKWRWKH6&ZKLFKLVOLNHO\VWLOODYDLODEOHE\VLPSO\UHDFWL YDWLQJ LW IURP ORZ SRZHU PRGH 7KH 6&EHFRPHV D 3& DQG DQRWKHU 6& LV VHDUFKHG IRU:KHQDQHZ$3LVIRXQGWKH%7GHYLFHVHWXSWKH6&ZLWKVXFK$3DWWKLVSRLQW WKH%7GHYLFHLVDPDVWHUWKXVLWFKDQJHVUROHSHUIRUPLQJDPDVWHUVODYHVZLWFKEH FRPLQJDVODYH2EYLRXVO\WKLVDSSURDFKWDNHVPXFKOHVVWLPH LHPV WKDQORRN LQJIRUDQRWKHU$3WKURXJKLQTXLU\DQGSDJLQJSURFHGXUHV  ,WLVZRUWKQRWLQJWKDWWKH$GDSW%KLGHVWKLVEHKDYLRUWRWKH5$021OD\HUZKLFKVHHVRQO\

WKH 3& 7KH WHUP v FRQQHFWLRQw  PHDQV WKDW WKH WHUPLQDO LV DWWDFKHG WR WKH :3$1 EXW 5$021DQG$GDSW%DUHQRWQHFHVVDULO\LQWKHVWDWH&211(&7('DVPHDQWLQ)LJ

0RELOLW\0DQDJHPHQWLQD5HFRQILJXUDEOH(QYLURQPHQW7KH5$021$SSURDFK

,QDGGLWLRQWRIXUWKHUGHFUHDVHKDQGRIIGHOD\WKH%7GHYLFHPD\WUDQVPLWLQTXLU\ PHVVDJHVWR$3VLQUDQJH6XFK$3VPD\DQVZHUZLWKDQ)+6SDFNHWFRQWDLQLQJLQ IRUPDWLRQDERXWWKHLUKRSSLQJVHTXHQFHWKHLUFORFNDQGWKHLUORDGVWDWXV7KH%7GH YLFHFRXOGVWRUHWKLVLQIRUPDWLRQLQDGDWDEDVH '% LQRUGHUWRFKRRVHWKHEHVW$3LQ LWVUDQJH LHWKHRQHZLWKWKHVPDOOHUYDOXHLQWKH&R'ILHOG 7KLVZD\RIRSHUDWLRQ LPSOLHVWKDWVXFFHVVLYHKDQGRIIVQHHGRQO\DSDJLQJSURFHGXUHLQVWHDGRIERWKLQTXLU\ DQGSDJLQJRQHV WRFRQQHFWWRDQ$3ZKRVHGDWDDUHLQWKH'%DQGZKLFKLVQRWDFWX DOO\VXSSRUWLQJFRQQHFWLRQVZLWKWKH%7GHYLFH 7KH'%LQIRUPDWLRQLVKDQGOHGYLD VRIWVWDWHVLHLWPXVWEHSHULRGLFDOO\UHIUHVKHGYLDDQLQTXLU\SURFHGXUH1RWHWKDW E\XVLQJWKH&R'ILHOGDVRUWRIORDGEDODQFLQJFDQEHDWWDLQHG 4.2

State Diagram

7KHVWDWHGLDJUDPLQ)LJGHVFULEHVWKHDFWLRQVSHUIRUPHGE\D%7GHYLFHUHODWHGWR DKDQGRIISURFHGXUH,QWKHIROORZLQJZHZLOOGHVFULEHLQGHWDLOVRQO\WKHPDLQVWDWH WUDQVLWLRQV2QFHLQD:3$1FRYHUDJHDUHDWKH%7GHYLFHFDQFRQQHFWWRDQ$3,ILW KDV QR GDWD WR WUDQVIHU LW FDQ VOHHS LQ 3DUN PRGH UHIUHVKLQJ WKH &,3 SDJLQJ FDFKH HYHU\7%VHFRQGV2WKHUZLVHWRFRQQHFWWRDQ$3WKH%7GHYLFHXVHVDQLQTXLU\DQG SDJLQJSURFHGXUH7KHDGGUHVVFORFNDQG&R'LQIRUPDWLRQDERXWGLVFRYHUHG$3VUH FHLYHGWKURXJK)+6SDFNHWVGXULQJLQTXLU\SURFHGXUHDUHVWRUHGLQD'%IRUIXWXUH XVH$VGHVFULEHGEHIRUHXVLQJWKH'%WKH%7GHYLFHQHHGRQO\WKHSDJHSURFHGXUH WRFRQQHFWWRVHOHFWHG$3V,IWKH%7GHYLFHQHHGVWRWUDQVPLWGDWDRUUHFHLYHDFRQ QHFWLRQUHTXHVWLWFDQDFWLYDWHLWVSDUNHGFRQQHFWLRQRUGHFLGHWRFRQQHFWWRDQRWKHU $3 /HWXVGHILQHWKHDPRQR&RQQHFWHGVWDWHDVDVWDWHLQZKLFKWKH%7GHYLFHLVFRQ QHFWHGWRDVLQJOH$3RQO\6LPLODUO\DEL&RQQHFWHGVWDWHLVUHOHYDQWWRD%7GHYLFH FRQQHFWHGZLWKWZR$3VDQGDWKUHH&RQQHFWHGVWDWHLGHQWLILHVD%7GHYLFHZLWKWKUHH VLPXOWDQHRXVFRQQHFWLRQV7RHQWHUWKHPRQR&RQQHFWHGVWDWHWKH%7GHYLFHKDVWR SHUIRUP WKH IROORZLQJ DFWLRQV   $&/ OLQN VHWXS   /&$3 FRQQHFWLRQ RULHQWHG FKDQQHOVHWXSDQGFRQILJXUDWLRQ &,3URXWLQJFDFKH &,35& XSGDWH 0,3UHJ LVWUDWLRQZLWKWKHIRUHLJQDJHQW2IFRXUVHDFWLRQV DQG RFFXURQO\LIWKH$GDSW% LVDWWHPSWLQJWREHFRQQHFWHG2QFHLQWKHPRQR&RQQHFWHGVWDWHWKH%7GHYLFHGH FLGHVLIXVLQJMXVWRQHFRQQHFWLRQWKXVPDQDJLQJPRELOLW\DVLQWKH%/8(3$&,3VR OXWLRQRUFRQQHFWLQJWRDQRWKHU$3FUHDWLQJD6& ,QWKHEL&RQQHFWHGVWDWHWKH6&LVVHWLQ6QLIIPRGHDQGWKH%7GHYLFHPHDVXUHV WKH566, 566,B RIWKLVFRQQHFWLRQZLWKDSHULRGRI7VQLII7KH3&PRQLWRUVLWVUH FHLYHGSRZHUWRR 566,B DQGLI566,B566,BWKHQDVZLWFKEHWZHHQWKHWZR FRQQHFWLRQVRFFXUVE\PHDQVRIWKHVRIW+DQGRIIVWDWH7KLVSURFHGXUHJXDUDQWHHVWKDW WKH 3& KDV DOZD\V D 566, JUHDWHU WKDQ WKH 6& 7KH %7 GHYLFH SHUIRUP WKLV FRQWURO RQO\ZKHQWKH6&JRHVXQGHUWKH*ROGHQ5HFHLYH3RZHU5DQJH,IWKLVKDSSHQVWKH %7GHYLFHKDVWRSDVVWKURXJKDWKUHH&RQQHFWHGVWDWHZLWKWKH3&DQG6&LQ+ROG PRGHLQRUGHUWRHQDEOHWKHSDJLQJSURFHGXUH WKHLQTXLU\SURFHGXUHKDVWREHSHU IRUPHGWRRLIWKHLQIRUPDWLRQLQWKH'%LVQRWUHIUHVKHGDQGWKXVLVQRWUHOLDEOHDQ\ PRUH  7KHQ WKH %7 GHYLFH ORRNV IRU DQ$3 ZLWK D EHWWHU 566, LH LQWKH *ROGHQ 5HFHLYH3RZHU5DQJH,IWKH%7GHYLFHILQGVVXFKDQ$3LWGLVFDUGVWKHSUHYLRXV6& DQGUHWXUQVLQWKHEL&RQQHFWHGVWDWHSDVVLQJWKURXJKWKHVRIW+DQGRIIVWDWH,IWKH%7 GHYLFH GRHV QRW ILQG VXFK DQ $3 LW UHPDLQV LQ WKH FXUUHQW VWDWH 2I FRXUVH LI WKH

0DXUR)HPPLQHOODDQG/HRQDUGR3LDFHQWLQL

566,BWKH3&LVFKDQJHGLQWZRVWHSV WKH6&UHSODFHVWKH3& DQDOWHUQD WLYH6&LVVHDUFKHGIRU)LQDOO\LIWKH%7GHYLFHVXGGHQO\ORVHVLWV3&LWKDVWRDFWL YDWHWKH6&DQGUHWXUQLQWKHPRQR&RQQHFWHGVWDWHSDVVLQJWKURXJKWKHKDUG+DQGRII VWDWH  Read_RSSI Loss 1

hard Handoff

bi-Connected

RSSI_2R SI_ RS

RSSI_2@ZKLFKGHDOV ZLWKWKHLQWHUDFWLRQEHWZHHQ6,3DQGUHVRXUFHPDQDJHPHQWIRU4R6 2XUJRDOLVWRHQDEOHVHDPOHVVLQWHURSHUDWLRQEHWZHHQWKHDSSOLFDWLRQOHYHOSURWR FROWKHSROLF\UHVRXUFHPDQDJHPHQWSURWRFRODQGWKHURXWHUFRQILJXUDWLRQ 7RDFFRPPRGDWHWKLVDLPZHSURSRVHLQWKLVZRUNDYHU\VLPSOHVROXWLRQWKDWLV EDVHGRQDQHQKDQFHPHQWRIWKH6,3SURWRFROWRFRQYH\4R6UHODWHGLQIRUPDWLRQ7KH VROXWLRQ SUHVHUYHV EDFNZDUG FRPSDWLELOLW\ ZLWK FXUUHQW 6,3 DSSOLFDWLRQV DQG LW GH FRXSOHVDVPXFKDVSRVVLEOHWKH6,3VLJQDOLQJIURPWKHKDQGOLQJRI4R60RUHRYHU WKHVROXWLRQIRUHVHHVWKHXVHRI&236 H[WHQGHGZLWK4R6KDQGOHUIHDWXUHV SURWRFRO DV SROLF\EDQGZLGWK FRQWURO DQG WKH XVH RI /LQX[ 7UDIILF &RQWURO 7&  WR EXLOG WKH 4R6PHFKDQLVPV

6,32ULJLQDWHG'\QDPLF5HVRXUFH&RQILJXUDWLRQLQ'LII6HUY1HWZRUNV

7KHUHVWRIWKHSDSHULVRUJDQL]HGDVIROORZV6HFWLRQJLYHVDQRYHUYLHZRIWKH SURSRVHG PHFKDQLVPV IRU G\QDPLF UHVRXUFH DOORFDWLRQ H[SODLQLQJ WKH UDWLRQDOH DQG RYHUDOOUHTXLUHPHQWV7KRVHPHFKDQLVPVDUHGHWDLOHGLQ6HFWLRQDQG0RUHRYHU 6HFWLRQGHDOVZLWKWKHVRIWZDUHPRGXOHVDQGWKHWHVWEHGDVZHLPSOHPHQWHGLQWKH IUDPHZRUNRIWKH1HEXODSURMHFW)LQDOO\ZHJLYHRXUFRQFOXVLRQV

2 Dynamic Resource Configuration: Mechanisms Overview 7KLV VHFWLRQ LQWURGXFHV WKH RYHUYLHZ RI RXU SURSRVHG VROXWLRQ LQ RUGHU WR PDNH WKH UHDGHUDEOHWRIXOO\XQGHUVWDQGWKHUDWLRQDOHRIWKHSURSRVHGVROXWLRQ ,QRUGHUWRQRWGHOHJDWHWKHXVHUWHUPLQDOWREHDZDUHRIWKHQHWZRUN4R6PRGHOLW VKRXOGQRWRULJLQDWHWKHUHVRXUFHUHVHUYDWLRQZLWKDQv DGKRFw SURWRFRO HJ5693 5HVRXUFH5HVHU9DWLRQ3URWRFRO LQRXUEHOLHIVXFKDVROXWLRQOLPLWVWKHVFDODELOLW\RI WKHDUFKLWHFWXUHDQGQHHGVDFDSLOODU\FRQWURORQHYHU\XVHUWHUPLQDO +RZHYHUWULJJHULQJWKHUHVRXUFHUHVHUYDWLRQLVPDQGDWRU\LQRUGHUWRWDNHDGYDQ WDJHIURPWKHIOH[LELOLW\RIDG\QDPLF6HUYLFH/HYHO$JUHHPHQW 6/$ VFKHPH,QRXU ZRUN ZH SURSRVH WR XVH WKH 6,3 SURWRFRO LWVHOI DV UHVRXUFH UHVHUYDWLRQ WULJJHULQJ SURWRFRO +HQFHLQWKHIROORZLQJVHFWLRQVZHGHILQHWKHJHQHULFPHFKDQLVPLQWKH6,3SURWR FRODQGZHSUHVHQWRXULPSOHPHQWHGLQWHUDFWLRQZLWKDVSHFLILF4R6PHFKDQLVPEDVHG RQ &236 &RPPRQ 2SHQ 3ROLF\ 6HUYLFH  >@ IRU DGPLVVLRQ FRQWURO LQ D 'LII6HUY QHWZRUN 7KH EDVLF LGHD LV WKDW $GPLVVLRQ &RQWURO HQWLWLHV UXQQLQJ RQ WKH QHWZRUN ERUGHUV HJLQWKH(GJH5RXWHUV(5 GLDORJXHVZLWKH[WHUQDO4R6FOLHQWV WKH46,3 VHUYHUV  DQG ZLWK %DQGZLGWK %URNHU %%  LQ WKH v     QHWZRUN 7KH $G PLVVLRQ &RQWURO HQWLWLHV XVH D YDULDQW RI WKH &236 SURWRFRO FDOOHG &236'5$ &236'LII6HUY5HVRXUFH$OORFDWLRQ WRGLDORJXHZLWKWKH4R6FOLHQWVDQGZLWKWKH %% 7KHVROXWLRQIRUHVHHVWKHHQKDQFHPHQWRIWKH6,3SUR[\VHUYHUWRKDQGOH4R6DV SHFWV ,Q WKH IROORZLQJ WKH HQKDQFHG 6,3 VHUYHU ZLOO EH FDOOHG 46,3 VHUYHU 4R6 HQDEOHG6,3VHUYHU $OOWKH4R6DVSHFWVFDQEHFRYHUHGE\WKH46,3VHUYHUVLQWKH RULJLQDWLQJDQGWHUPLQDWLQJVLGHV7KLVLVDOVRMXVWLILHGE\WKHIDFWWKDWLQD'LII6HUY 4R6VFHQDULRWKHUHZLOOEHVHUYHUVGHGLFDWHGWRSROLF\FRQWURODFFRXQWLQJDQGELOOLQJ DVSHFWV+HQFHDVROXWLRQEDVHGRQ6,3VHUYHUVLVUHDOO\VXLWHGWRWKLV4R6VFHQDULR 7KH 6,3 VLJQDOOLQJ SURWRFRORSSRUWXQHO\H[WHQGHGLQRUGHUWRVXSSRUWD4R6HQ DEOHGUHVRXUFHUHVHUYDWLRQLVPDQDJHGE\6,3SUR[\VHUYHUVZKLFKLQWXUQRULJLQDWH E\ PHDQV RI &236'5$ SURWRFRO WKH UHVRXUFH UHVHUYDWLRQ UHTXHVW WR WKH 'LII6HUY QHWZRUN WRWKHORFDORUWRWKHUHPRWH%DQGZLGWK%URNHUDVQHHGHG 7KHPDQDJLQJRI VXFKLQIRUPDWLRQLVGRQHDWDSSOLFDWLRQOHYHOE\PHDQVRI6,3&236FRRSHUDWLRQ,Q RUGHUWRKDYHWKHFRUUHFWUHVRXUFHUHVHUYDWLRQDQGFRQILJXUDWLRQWKH4R6HQDEOHG6,3 VHUYHUVKDYHWRFRRSHUDWHZLWKD&236'5$FOLHQW7KHILUVW&236'5$FOLHQWHQ FRXQWHUHG LQ WKH UHVRXUFH UHVHUYDWLRQ SURFHVV LV ORFDWHG LQ WKH VDPH PDFKLQH DV WKH 6,3SUR[\VHUYHU7KH&236'5$FOLHQWDVNVWRD&236'5$VHUYHUORFDWHGLQWKH (GJH5RXWHU (5 RIWKH'LII6HUYQHWZRUNIRUWKHUHVRXUFHUHVHUYDWLRQ7KHGHFLVLRQ WR DVN IRU UHVRXUFHV WR WKH UHPRWH %% LV WDNHQ ZLWK DWWHQWLRQ WR WKH ORFDO UHVRXUFH DYDLODELOLW\ D PL[ RI WKH VRFDOOHG &236 FRQILJXUDWLRQ DQG RXWVRXUFLQJ PRGHO LV

6WHIDQR*LRUGDQRHWDO

SUHIHUUHG LQ RUGHU WR WDNH DGYDQWDJH IURP WKH VFDODELOLW\ RI WKH IRUPHU DQG WKH KLJK FRQWUROSURYLGHGE\WKHODWWHU 2QFH WKH UHVRXUFH UHVHUYDWLRQ LV DFFHSWHG WKH FRQILJXUDWLRQ SKDVH WDNHV SODFH E\ PHDQVRINHUQHOFRQILJXUDWLRQ,QRXUVROXWLRQD7UDIILF&RQWURO6HUYHULVXVHGFRQ ILJXUHWKH/LQX[NHUQHOLWWDNHVWKHLQSXWIURPWKH&236FOLHQWORFDWHGLQWKH(5DQG FRQILJXUHVWKH'LII6HUYFODVVHV2QFHWKHUHVHUYDWLRQSURFHVVHQGVWKH/LQX[3&VDUH SURSHUO\FRQILJXUHGLQRUGHUWRIRUZDUGWKHXVHUSDFNHWVZLWKWKHUHTXHVWHG4R6 WKH QHFHVVDU\ SDUDPHWHUV DUH H[WUDFWHG IURP WKH 6HVVLRQ 'HVFULSWLRQ 3URWRFRO 6'3 LQ WKH6,3PHVVDJHV 

3 Q-SIP Signaling Mechanism 7KLV VHFWLRQ GHVFULEHV WKH VLJQDOLQJ PHFKDQLVPV XVHG E\ WKH SURSRVHG 6,3 EDVHG UHVHUYDWLRQDUFKLWHFWXUH 46,3 IXUWKHUGHWDLOVDUHJLYHQLQ>@ 7KH SURSRVHG VROXWLRQ PDNHV SRVVLEOH WR XVH H[LVWLQJ 6,3 FOLHQWV ZLWK QR HQ KDQFHPHQWV RU PRGLILFDWLRQV ,W LV SRVVLEOH WR LQWHUDFW ZLWK QR SUREOHP ZLWK RWKHU SDUWLHVWKDWGRQRWLQWHQGRUDUHQRWDEOHWRXVH4R60RUHRYHUEDFNZDUGFRPSDWLELO LW\ZLWKVWDQGDUGL]HG6,3SURWRFROLVSUHVHUYHG 7KH ,3SKRQHVWHUPLQDOVDUHORFDWHGRQWKHDFFHVVQHWZRUNVVWDQGDUG6,3FOLHQWV FDQ EH XVHG VHW ZLWK DQ H[SOLFLW 6,3 SUR[\LQJ FRQILJXUDWLRQ :KHQ D FDOO VHWXS LV LQLWLDWHGWKHFDOOHU6,3FOLHQWVWDUWVD6,3FDOOVHVVLRQWKURXJKWKH6,3SUR[\VHUYHU,I D46,3VHUYHULVHQFRXQWHUHGWKLVFDQVWDUWD4R6VHVVLRQLQWHUDFWLQJZLWKDUHPRWH 46,3 VHUYHU DQG ZLWK WKH 4R6 SURYLGHUV IRU WKH EDFNERQH QHWZRUN LH WKH DFFHVV (5V )LJVKRZVWKHUHIHUHQFHDUFKLWHFWXUH $FFRUGLQJWRWKHGLUHFWLRQRIWKHFDOOWKHWZR46,3VHUYHUVDUHQDPHGFDOOHUVLGH 46,3VHUYHUDQGFDOOHHVLGH46,3VHUYHU $VIDUDVWKHUHVHUYDWLRQSURFHGXUHLVFRQFHUQHGWZRGLIIHUHQWPRGHOVDUHSRVVL EOH L  XQLGLUHFWLRQDO UHVHUYDWLRQV DQG LL  ELGLUHFWLRQDO UHVHUYDWLRQV 7KH FKRLFH EH WZHHQWKHWZRPRGHOVFDQEHGRQHRQWKHEDVLVRIDSUHFRQILJXUHGPRGHRUWKURXJK WKHH[FKDQJHRIVSHFLILFSDUDPHWHUV  SDUDPHWHUV EHWZHHQWKH46,3VHUY HUVGXULQJWKHFDOOVHWXSSKDVH:HDUHQRZJRLQJWRGHWDLOWKHXQLGLUHFWLRQDOPRGHO EHFDXVHWKHELGLUHFWLRQDORQHLVHDVLO\HYLQFHGIURPWKHSUHYLRXV :LWKUHIHUHQFHWR)LJ VHHDOVR)LJ WKHFDOOVHWXSVWDUWVZLWKDVWDQGDUG6,3  PHVVDJH VHQW E\ WKH FDOOHU WR WKH ORFDO 46,3 VHUYHU LH FDOOHUVLGH 46,3 VHUYHU 7KHPHVVDJHFDUULHVWKHFDOOHH85,LQWKH6,3KHDGHUDQGWKHVHVVLRQVSHFLIL FDWLRQ ZLWKLQ WKH ERG\ 6HVVLRQ 'HVFULSWLRQ 3URWRFRO 6'3  PHGLD FRGHFV VRXUFH SRUWVHFF 7KH46,3VHUYHULVVHHQE\WKHFDOOHUDVDVWDQGDUG6,3SUR[\VHUYHU7KH 46,3 VHUYHU EDVHG RQ WKH FDOOHU LG DQG RQ VHVVLRQ LQIRUPDWLRQ GHFLGHV ZKHWKHU D 4R6 VHVVLRQ KDV WR EH VWDUWHG RU QRW ,I D 4R6 VHVVLRQ LV UHTXLUHGRSSRUWXQH WKH VHUYHU LQVHUWV WKH QHFHVVDU\ GHVFULSWRUV ZLWKLQ WKH  PHVVDJH DQG IRUZDUGV LW WRZDUGVWKHFDOOHH7KHPHVVDJHVFDQEHUHOD\HGE\ERWKVWDQGDUG6,3SUR[\ VHUYHUVDQG46,3VHUYHUVXQWLOWKH\UHDFKWKHFDOOHHVLGH46,3VHUYHUDQGWKHQ WKHLQYLWHG

6,32ULJLQDWHG'\QDPLF5HVRXUFH&RQILJXUDWLRQLQ'LII6HUY1HWZRUNV



QoS Signaling (COPS)

Edge Router

COPS DRA



Access network

Bandwidth Broker

BB

COPS DRA



QoS enabled network

Edge Router

SIP



Access network

COPS DRA

SIP

Q-SIP



Q-SIP server





Q-SIP server

Application Signaling (SIP)



Fig. 15HIHUHQFHVFHQDULRIRUWKHSURSRVHG4R6DUFKLWHFWXUH



Caller Q-SIP Server

Callee Q-SIP Server

Bandwidth Broker

BB Diffserv network SIP Terminal

Caller Edge Router

INVITE

SIP Terminal

Callee Edge Router

INVITE

INVITE

180 ringing

180 ringing 180 ringing

200 OK

Cops REQ Cops DEC

Cops REQ Cops DEC 200 OK

Cops REQ Cops DEC 200 OK ACK

Cops REQ

Interaction with Traffic Control

Cops DEC

Interaction with Traffic Control

ACK



ACK 



Fig. 246,3FDOOVLJQDOLQJIORZ4R6HQDEOHGPRGHO

FDOOHH :KHQ WKH FDOOHH UHVSRQGV ZLWK D   PHVVDJH LW LV SDVVHG EDFN WR WKH FDOOHHVLGH46,3VHUYHU$WWKLVSRLQWWKHFDOOHHVLGH46,3VHUYHUFDQUHTXHVWD4R6 UHVHUYDWLRQ WR WKH (5 RQ WKH FDOOHH DFFHVV QHWZRUN LH WKH 4R6 SURYLGHU IRU WKH FDOOHH 6XEVHTXHQWO\WKHUHVSRQVHRSSRUWXQHO\H[WHQGHGE\WKHFDOOHHVLGH 46,3 VHUYHU LV IRUZDUGHG EDFN WR WKH FDOOHU YLD VWDQGDUG 6,3 VHUYHUV DQG YLD WKH FDOOHUVLGH 46,3 VHUYHU :KHQ WKH FDOOHUVLGH 46,3 VHUYHU UHFHLYHV WKH   PHVVDJHLWSHUIRUPV4R6UHVHUYDWLRQZLWKWKH(5RQWKHFDOOHUDFFHVVQHWZRUN LH WKH4R6SURYLGHUIRUWKHFDOOHU  ,WLVLPSRUWDQWWRQRWHWKDWWKHSURSRVHGDUFKLWHFWXUHNHHSVWKHFRPSDWLELOLW\ZLWK VWDQGDUG6,3FOLHQWVDQGVWDQGDUG6,3VHUYHUV$OOWKHLQIRUPDWLRQQHHGHGE\WKH4 6,3VHUYHUVWRSHUIRUPWKH4R6VHVVLRQVHWXSLVLQVHUWHGZLWKLQWKH6,3PHVVDJHVLQ VXFKDZD\WKDWQRQ46,3DZDUHDJHQWVFDQWUDQVSDUHQWO\PDQDJHWKHPHVVDJHV

6WHIDQR*LRUGDQRHWDO

4 COPS-DRA Signaling Mechanism 7KH&236 &RPPRQ2SHQ3ROLF\6HUYLFH SURWRFROLVDVLPSOHTXHU\DQGUHVSRQVH SURWRFRO WKDW DOORZV SROLF\ VHUYHUV 3'3V 3ROLF\ 'HFLVLRQ 3RLQWV  WR FRPPXQLFDWH SROLF\ GHFLVLRQV WR QHWZRUN GHYLFHV 3(3 3ROLF\ (QIRUFHPHQW 3RLQW  v 5HTXHVWw  PHVVDJHV  DUHVHQWE\WKH3(3WRWKH3'3DQGv 'HFLVLRQw   PHVVDJHVDUH VHQWE\WKH3'3WRWKH3(3,QRUGHUWREHIOH[LEOHWKH&236SURWRFROKDVEHHQGH VLJQHGWRVXSSRUWPXOWLSOHW\SHVRISROLF\FOLHQWV:HKDYHGHILQHGWKH&236'5$ FOLHQWW\SHWRVXSSRUWG\QDPLFUHVRXUFHDOORFDWLRQLQD'LII6HUYQHWZRUN 



Bandwidth Broke

QoSclient (H323 gatekeeper, SIP server...)

PDP

BB

COPS DRA

PEP

PDP PEP COPS DRA

QoS enabled network

Edge Router



Fig. 3.&236VXSSRUWWRG\QDPLF'LIIVHUYEDVHG,34R6

$VDJHQHULFH[DPSOHZHLQWURGXFHLQ)LJDUHSUHVHQWDWLRQRIWKHSURSRVHGDUFKL WHFWXUHIRUG\QDPLF'LII6HUY4R67KH&236SURWRFROLVXVHGRQERWKWKHLQWHUIDFH EHWZHHQ WKH (GJH 5RXWHU DQG WKH ORJLFDOO\ FHQWUDOL]HG DGPLVVLRQ  SROLF\ FRQWURO VHUYHUDQGWKHLQWHUIDFHEHWZHHQWKH4R6FOLHQWDQGWKHQHWZRUN,Q)LJWKH4R6 FOLHQWLVUHSUHVHQWHGE\DVHUYHUIRU,3WHOHSKRQ\DQGWKHOHIWPRVWLQWHUIDFHLVD8VHU WR1HWZRUN LQWHUIDFH 7KH DUFKLWHFWXUH FDQ HDVLO\ VXSSRUW RWKHU VFHQDULRV ZKHUH WKH 4R6FOLHQWEHORQJVWRWKHSURYLGHUQHWZRUN IRUH[DPSOHD6,3VHUYHULQDUGJHQHUD WLRQPRELOHQHWZRUN  :LWKUHVSHFWWRWKHJHQHULFH[DPSOHLQ)LJWKH&236'5$SURWRFROLVXVHGRQ WZRGLIIHUHQWLQWHUIDFHV )LUVWLWLVXVHGDVDJHQHULFVLJQDOLQJPHFKDQLVPEHWZHHQWKHXVHURIDv   QHWZRUNDQGWKH4R6SURYLGHU,QRXUFDVHWKH46,3SUR[\VHUYHUSOD\VWKH UROH RI 4R6 XVHU DQG ZLOO LPSOHPHQW D &236'5$ FOLHQW ZKLOH WKH (GJH 5RXWHU SOD\V WKH UROH RI 4R6 SURYLGHU DQG ZLOO LPSOHPHQW D &236'5$ VHUYHU 2Q WKLV LQWHUIDFH&236'5$SURYLGHVWKHPHDQVWRWUDQVSRUWWKHVFRSHDQGDPRXQWRIUHV HUYDWLRQWKHW\SHRIUHTXHVWHGVHUYLFHDQGWKHIORZLGHQWLILFDWLRQ7KHVHFRQGLQWHU IDFHZKHUHWKH&236'5$LVDSSOLHGLVEHWZHHQWKH(GJH5RXWHUDQGWKH%DQGZLGWK %URNHU LQ RUGHU WR SHUIRUP WKH UHVRXUFH DOORFDWLRQ SURFHGXUHV $ IOH[LEOH DQG VFDO DEOHPRGHOIRUUHVRXUFHDOORFDWLRQLVLPSOHPHQWHG$VHWRIUHVRXUFHVFDQEHDOORFDWHG LQ DGYDQFH E\ WKH %DQGZLGWK %URNHU WR WKH (GJH 5RXWHU LQ RUGHU WR DFFRPPRGDWH IXWXUHUHTXHVW DFFRUGLQJWRWKHVRFDOOHG&236!"$$$&PRGHO 7KHDPRXQWRI WKLV v DJJUHJDWHGw  DOORFDWLRQ FDQ DOVR EH PRGLILHG ZLWK WLPH 0RUHRYHU VSHFLILF UH TXHVWVFDQEHVHQWE\WKH(GJH5RXWHUWRDOORFDWHUHVRXUFHVIRUDJLYHQIORZ DFFRUG

6,32ULJLQDWHG'\QDPLF5HVRXUFH&RQILJXUDWLRQLQ'LII6HUY1HWZRUNV

LQJ WR WKH VRFDOOHG &236 ?@?!Z$& PRGHO  7KH VHW RI (GJH 5RXWHUV DQG WKH %DQGZLGWK %URNHU UHDOL]H D VRUW RI GLVWULEXWHG EDQGZLGWK EURNHU LQ D 'LII6HUY QHW ZRUN 7KHJHQHULF&236'5$DUFKLWHFWXUHLVEHWWHUGHVFULEHGLQ>@WKHSURWRFROGHWDLOV FDQ EH IRXQG LQ >@ ,Q )LJ  ZH SURYLGH DQ H[DPSOH RI WKH PHVVDJH H[FKDQJH EH WZHHQ46,3VHUYHU(5DQG%%7KHILUVW&236PHVVDJHLVRULJLQDWHGE\WKH&236 &OLHQWFRORFDWHGZLWK&DOOHH46,36HUYHURQFHLWUHFHLYHVWKHPHVVDJHIURP WKH &DOOHH6,37HUPLQDO7KHGRWWHGOLQHVLQ)LJDUHRSWLRQDOPHVVDJHVQHHGHGLI WKHRXWVRXUFLQJPRGHOLVDGRSWHGDQGDQRXWVRXUFHGPHVVDJHLVVHQWWRWKH%% 2QFHWKHPHVVDJHDUULYHVWRWKH&DOOHU46,36HUYHUDQDQDORJRXVPHVVDJH H[FKDQJH  LVSHUIRUPHG VLQFHZHDUHGHWDLOLQJDQXQLGLUHFWLRQDOPRGHO 

5 Traffic Control and COPS DRA Interaction Mechanism ,QWKLVVHFWLRQZHGHWDLOKRZZHSHUIRUPWKHUHVRXUFHDOORFDWLRQRQURXWHUV5RXWHUV KDYH EHHQ LPSOHPHQWHG RQ /LQX[ 3&V ZKHUH WKH NHUQHO SURYLGHV WKH WUDIILF FRQWURO VRIWZDUHIXQFWLRQVDOORZLQJWKHEXLOGLQJRID'LII6HUYURXWHU 7KH /LQX[ RSHUDWLQJ V\VWHP SDUW UHVSRQVLEOH IRU ERWK EDQGZLGWK VKDULQJ DQG SDFNHWVFKHGXOLQJLVFDOOHG7UDIILF&RQWURO 7& >@7KHPDLQJRDORIWKH7&LVWR PDQDJHSDFNHWVTXHXHGRQWKHRXWJRLQJLQWHUIDFHZLWKUHVSHFWWRWKHFRQILJXUHGUXOHV IRUWKHRXWJRLQJWUDIILF7RDFKLHYHWKLVJRDOWKHFRPSRQHQWVXVHGDUHTXHXLQJGLVFL SOLQHVFODVVHVILOWHUVDQGSROLFLQJIXQFWLRQV )LOWHUVDUHQHHGHGWRPDUNSDFNHWVRQWKHLQJUHVVLQWHUIDFHZLWKD@Z$ \YDOXH D NHUQHOOHYHOSDFNHWVSHFLILFYDOXH LWLVXVHGWRIRUZDUGWKHSDFNHWVSURSHUO\RQWKH HJUHVV LQWHUIDFH )LOWHULQJ UXOHV FRXOG EH SHUIRUPHG RQ WKH IROORZLQJ ILHOGV RI WKH 7&3,3 KHDGHU ,3 VRXUFH DGGUHVV ,3 GHVWLQDWLRQ DGGUHVV VRXUFH SRUW GHVWLQDWLRQ SRUWSURWRFROW\SHRIVHUYLFH 3ROLFLQJIXQFWLRQVDUHXVHGLQRUGHUWRNHHSWKHWUDIILFSURILOHXQGHUWKHQHJRWLDWHG 6/$OHYHO 4XHXLQJGLVFLSOLQHVDQGFODVVHVDOORZWRLPSOHPHQW3+%VLQWKH'LII6HUYQHWZRUN 7KHPRGXOHUHVSRQVLEOHIRUUHVRXUFHDOORFDWLRQLVQDPHG7&VHUYHUDQGLVORFDWHG LQWKH(57KH&236'5$FOLHQWORFDWHGLQWKH(5LWVHOIDFWLQJDVD7&FOLHQWLV VXHVFRPPDQGVRQWKH7&6HUYHUE\PHDQVRIv DGKRFw PHVVDJHVGHWDLOHGODWHURQ 7&VHUYHUKDVEHHQEXLOWDVDGLVWLQFWPRGXOHWRSUHVHUYHWKHPRGXODULW\RIWKHDU FKLWHFWXUH DQG WR UHDOL]H D IOH[LEOH HOHPHQW WKDW FRXOG ZRUN DOVR ZLWK GLIIHUHQW UH VRXUFHDOORFDWLRQSURWRFRO HJ6103HWF  &RPPXQLFDWLRQVEHWZHHQ7&VHUYHUDQGFOLHQWXVHDVLPSOHSURSULHWDU\SURWRFRO 7KHPHVVDJHVVHQWDUH7/9 7\SH/HQJWK9DOXH PHVVDJHV7KHGHVLJQIRUHVHHVILYH PHVVDJHW\SHV   ^ WRVHWXSILOWHUDQGEDQGZLGWKDOORFDWLRQIRUDJLYHQIORZ   `| WRGHOHWHVWUXFWXUHVVHWE\WKH^PHVVDJH   ~€ WRPRGLI\WKHEDQGZLGWKDOORFDWLRQIRUDVSHFLILFIORZ 

6WHIDQR*LRUGDQRHWDO

 

| WRQRWLI\WKHFRUUHFWUHFHSWLRQRIWKHPHVVDJH  | WRQRWLI\DQHUURULQWKHUHFHSWLRQ 

 ^ PHVVDJHV EULQJV LQIRUPDWLRQ DERXW  WKH IORZ LGHQWLILHU WKH VHUYLFH FODVVWKHDPRXQWRIUHVHUYDWLRQDQGWKHILOWHUVHWXSLQIRUPDWLRQ 7KHRSHUDWLRQDOPRGHORIWKLVPHVVDJHH[FKDQJHLVWKHIROORZLQJZKHQWKH&236 FOLHQW UHFHLYHV IURP WKH &236 VHUYHU UXQQLQJ RQ WKH %DQGZLGWK %URNHU D VSHFLILF UHTXHVWIRUDJLYHQIORZLWLQWXUQVHQGVD^PHVVDJHWRWKH7&VHUYHUWR FRQILJXUHWKHNHUQHOSDUDPHWHUVQHJRWLDWHGE\PHDQVRI&236'5$SURWRFRO7KHQ 7&VHUYHUUHSOLHVWRWKH7&FOLHQWZLWKDQ|RU|PHVVDJHWRQRWLI\ZKHWKHU WKH PHVVDJH LV UHFHLYHG FRUUHFWO\ RU QRW 7KH RSHUDWLRQDO PRGHO LV WKH VDPH IRU WKH `|DQGWKH~€PHVVDJHV

6 Q-SIP / COPS-DRA / Traffic Control Testbed 7KHSURSRVHGDUFKLWHFWXUHKDVEHHQLPSOHPHQWHGLQDWHVWEHGFRPSRVHGRIDVHWRI /LQX[3&V7KH'LII6HUYFRPSRQHQWVRIWKHWHVWEHGKDYHDOUHDG\EHHQGLVFXVVHGLQ >@7KHRYHUDOOSLFWXUHRIWKHWHVWEHGLVGHVFULEHGLQ)LJ 7KH 46,3 SUR[\ VHUYHUV KDYH EHHQ LPSOHPHQWHG RQ D /LQX[ 3&V EDVHG RQ 5HG+DWGLVWULEXWLRQ7KH46,3VHUYHULVGHYHORSHGLQ-DYD UXQQLQJRQ6XQ-'. YLUWXDOPDFKLQH ZKLOHWKH&236'5$DQG7&FOLHQWVVHUYHUVDUHGHYHORSHGLQ & 7KH 7& PRGXOHVDUHEDVHGRQWKH7&$3,>@DOLEUDU\WKDWDOORZVWKHG\QDPLF FRQILJXUDWLRQ RI ILOWHUV DQG VFKHGXOLQJ PHFKDQLVPV 7KH LQWHUQDO DUFKLWHFWXUH RI WKH WHVWEHGHOHPHQWVLVVKRZQLQ)LJ7KHVRXUFHFRGHRIWKH46,3VHUYHULVDYDLODEOH XQGHU WKH *18 OLFHQVH DW WKH 85/ LQ >@ 1RWH WKDW DOVR WKH &236'5$ DQG 7& VHUYHUVRXUFHFRGHLVDYDLODEOHXQGHUWKH*18OLFHQVH7KHSXEOLFO\DYDLODEOHv 8ELT XLW\6,38VHU$JHQWw YHUVLRQ>@KDVEHHQXVHGDV6,3WHUPLQDOVUXQQLQJRQ :LQ3&V  Bandwidth Broker (COPS DRA Server)

BB Edge Router

COPS DRA

COPS DRA

DiffServ COPS DRA

COPS DRA

DiffServ

Interaction with Traffic Control SIP

SIP

DiffServ SIP Client

Q-SIP Proxy Server

Q-SIP

Fig. 4.2YHUDOOWHVWEHGVFHQDULR



Q-SIP Proxy Server

DiffServ SIP Client



6,32ULJLQDWHG'\QDPLF5HVRXUFH&RQILJXUDWLRQLQ'LII6HUY1HWZRUNV

7KH46,3VHUYHUKDVDPRGXODUDUFKLWHFWXUHLQRUGHUWREHDEOHWRKDQGOHGLIIHUHQW 4R6PHFKDQLVPV$VVKRZQLQ)LJWKHUHLVD-$9$PRGXOHFDOOHG*HQHULF46,3 3URWRFRO+DQGOHUZKLFKLVLQGHSHQGHQWRIWKHXQGHUO\LQJ4R6PHFKDQLVP7KLVPRG XOHGLDORJXHVWKURXJKD-$9$LQWHUIDFHZLWKD4R6VSHFLILF,QWHUIDFHPRGXOH UHDO L]HGLQ-$9$DVZHOO ZKLFKLVVSHFLILFRIWKHXQGHUO\LQJ4R6PRGHO,QWKHSLFWXUH WKH&236'5$VSHFLILFPRGXOHLVVKRZQZKLFKLQWHUDFWVWKURXJKDVRFNHWLQWHUIDFH WR WKH &236'5$ FOLHQW SURFHVV UHDOL]HG LQ & 7KH (GJH 5RXWHUV WKDW DFW DV 4R6 $FFHVV3RLQWVLQFOXGHD&236'5$VHUYHUWKDWFRPPXQLFDWHWKURXJKDVRFNHWLQWHU IDFH ZLWK D SURFHVV LPSOHPHQWLQJ WKH /RFDO 'HFLVLRQ 6HUYHU DQG WKH &236 '5$ FOLHQW7KLVSURFHVVFRPPXQLFDWHVWKURXJKDQRWKHUVRFNHWLQWHUIDFHWRWKH7&VHUYHU WKDWLVDEOHWRFRQILJXUHWKHWUDIILFFRQWUROPHFKDQLVPVSURYLGHGE\WKH/LQX[NHUQHO &RPPXQLFDWLRQV EHWZHHQ 7& VHUYHU DQG /LQX[ NHUQHO DUH PDGH WKURXJK D QHWOLQN VRFNHW7KH3'3%%LVFRPSRVHGE\D&236'5$VHUYHUDQGD'HFLVLRQ6HUYHUWKDW LQWHUDFWWKURXJKDVRFNHWEDVHGLQWHUIDFH Decision Server

Bandwidth Broker

socket

COPS DRA server SIP messages

SIP messages COPS messages

COPS DRA client

SIP server

Local Decision server TC client

API

JAVA

socket

C API

socket

TC server TCAPI netlink socket

socket COPS messages

COPS DRA client

Q-SIP server

TCAPI COPS DRA server

Linux kernel

Edge Router (QoS Access Point)



Fig. 5.46,3VHUYHU(5DQG%%LQWHUQDODUFKLWHFWXUHV

6.1 Testbed in the NEBULA Project 7KHWHVWEHGGHYHORSHGLQWKH1HEXODSURMHFW>@KDVEHHQVKRZQv XSDQGUXQQLQJw  GXULQJ WKH *77, >@ DQQXDO PHHWLQJ LQ 7ULHVWH LQ -XQH 7KH RYHUDOO SLFWXUH RI WKH WHVWEHGLVGHVFULEHGLQ)LJ 6RPH WHVWV KDYH EHHQ SHUIRUPHG RQ WKLV WHVWEHG WR YHULI\ WKH VSHHFK TXDOLW\ UH FHLYHG DW DSSOLFDWLRQ OHYHO LQ ERWK v w  DQG v    w  VFHQDULRV ,Q WKH v w WHVWZHKDYHREVHUYHGWKDWWKHTXDOLW\SHUFHLYHGLVJRRGLQFRQGLWLRQRIORZ WUDIILFEXWGHJUDGHVTXLFNO\ZKHQWKHEDFNJURXQGWUDIILFFDXVHVWKHOLQNFRQJHVWLRQ

6WHIDQR*LRUGDQRHWDO

,QWKHv   w WHVWHYHQLIDQKHDY\EDFNJURXQGWUDIILFLVSUHVHQWWKHTXDOLW\ SHUFHLYHGLVJRRGDQGQRWDIIHFWHGE\WKHWUDIILFYROXPHLWVHOI 7KHDFFHVVQHWZRUN$LVFRQVWLWXWHGE\D:LQ3&WKDWSOD\VWKHUROHRIWKHFDOOHU 6,3&OLHQWDQGE\WZR/LQX[3&V/LQX[3&$DFWVDVWKHEDFNJURXQGWUDIILFJHQHUD WRU LQ ERWK VFHQDULRV DQG LQWKHv   w RQHDVWKH46,3VHUYHUWRR/LQX[ 3&%LVDURXWHUWKDWFRQQHFWVWKHDFFHVVQHWZRUNWRWKHEDFNERQHOLQNLQERWKVFHQDU LRVDQGLQWKHv   w RQHSOD\VWKHUROHRIWKH&236FOLHQWWRR7KHDFFHVV QHWZRUN % LV FRQVWLWXWHG E\ WZR FRPSXWHUV D :LQ 3& DQG D /LQX[ RQH GLUHFWO\ FRQQHFWHG WR D URXWHU RQ WKH EDFNERQH OLQN 7KH :LQ3&LVWKH6,3FDOOHGFOLHQW ZKLOH WKH /LQX[ 3& DFWV DV WKH EDFNJURXQG WUDIILF UHFHLYHU DQG DV LW FRQFHUQV WKH v   w VFHQDULRDVERWK46,3VHUYHUDQG&236FOLHQW7KHURXWHU$DQG% DUHWZR/LQX[3&VRQZKLFKZHKDYHLPSOHPHQWHGWKH7&PHFKDQLVPV,QRUGHUWR UHGXFH WKH WRSRORJ\ FRPSOH[LW\ ZH KDYH GHFLGHG WR PDNH WKH 5RXWHU $SOD\LQJWKH UROHRIWKH%%WRR7KHEDFNERQHOLQNLVHPXODWHGE\PHDQVRIDQ$70FRQQHFWLRQ XVLQJD1HZ%ULGJH&6$706ZLWFK7KHQH[WVWHSZRXOGEHWRUHSODFHLWZLWK WKH UHDO ,QWHUQHW DQG LQ WKLV FDVH WKH HQKDQFHPHQW RI WKH SURWRFRO LQWHUZRUNLQJ VKRXOG EH FRQVLGHUHG LQ RUGHU WR PDNH WKH %% FRQILJXUH WKH FRUH URXWHUV ZKHQ WKH UHVRXUFHDOORFDWLRQUHTXHVWLVDFFHSWHG )XUWKHU VWXGLHV KDYH EHHQ SODQQHG WR HVWLPDWH WKH SDFNHWu V HQGWRHQG GHOD\ DQG MLWWHUZKHQWKH4R6PHFKDQLVPVKDYHEHHQVHWXS0RUHRYHUDWRROIRUDQREMHFWLYH HYDOXDWLRQRIWKHYRLFHVSHHFKTXDOLW\SHUFHLYHGDWXVHUOHYHOLVDQRQJRLQJZRUN 



Access network B

Access network A

Switch



RouterA



RouterB

 

WinPC

WinPC



LinuxPC B



LinuxPC



LinuxPC A

ATMSwitch



MMF Etherne



Fig. 6.2YHUDOO1HEXODWHVWEHG

7 Conclusions ,QWKLVSDSHUZHKDYHSURSRVHGDQDUFKLWHFWXUHIRUWKHLQWHUDFWLRQRI6,3SURWRFROZLWK 4R6PHFKDQLVPVLQD   QHWZRUNDQGIRUWKHLQWHUDFWLRQRIWKRVHPHFKD QLVPVZLWKWKH/LQX[7UDIILF&RQWUROLQRUGHUWRREWDLQD'\QDPLF5HVRXUFH$OORFD WLRQ  &RQILJXUDWLRQ LQ D 'LII6HUY QHWZRUN 7KH HQKDQFHPHQWV WR 6,3 SURWRFRO WKDW

6,32ULJLQDWHG'\QDPLF5HVRXUFH&RQILJXUDWLRQLQ'LII6HUY1HWZRUNV

WKDW KDYH EHHQ JLYHQ DUH EDVLFDOO\ LQGHSHQGHQW RI WKH VSHFLILF v     QHW ZRUN2EYLRXVO\WKHPHFKDQLVPVKRXOGEHVSHFLDOL]HGIRUHDFKVSHFLILFFDVH,QSDU WLFXODU WKH LQWHUDFWLRQ ZLWK D 'LIIVHUY QHWZRUN XVLQJ D UHILQHG YHUVLRQ RI &236 &236'5$  IRU DGPLVVLRQ FRQWURO KDV EHHQ GHVFULEHG LQ WKLV SDSHU 7KH 'LII6HUY LPSOHPHQWDWLRQ ZDV DFKLHYHG E\ PHDQV RI /LQX[ 3&V G\QDPLFDOO\ FRQILJXUHG E\ PHDQVRI7UDIILF&RQWURODQG7&$3,IXQFWLRQDOLWLHV$SRVVLEOHGHSOR\PHQWVFHQDULR EDVHGRQD46,3SUR[\VHUYHULVSURSRVHGKDYLQJWKHDGYDQWDJHWKDWv OHJDF\w 6,3 XVHUDSSOLFDWLRQFDQEHIXOO\UHXVHG:HQRWHDOVRWKDWWKHVROXWLRQLVIXOO\EDFNZDUG FRPSDWLEOHZLWKFXUUHQW6,3EDVHGHTXLSPHQWWKDWGRHVQRWVXSSRUW4R6DOORZLQJD VPRRWKPLJUDWLRQ7KHWHVWEHGLPSOHPHQWDWLRQRIWKHSURSRVHGVROXWLRQDQGWKHWHVWV GHWDLOLQJ LQFOXGLQJ WKH LQWHUQDO DUFKLWHFWXUH RI WKH VRIWZDUH PRGXOHV KDV EHHQ GH VFULEHG

Acknowledgements 7KHDXWKRUVZRXOGOLNHWRWKDQN'RQDOG3DSDOLORDQG(Q]R6DQJUHJRULRIRUWKHLUZRUN LQVXSSRUWRIWKHVSHFLILFDWLRQVDQGRIWKHWHVWEHGLPSOHPHQWDWLRQ

References  -5RVHQEHUJ+6FKXO]ULQQH*&DPDULOOR$-RKQVWRQ-3HWHUVRQ56SDUNV0+DQG OH\(6FKRROHUv 6,36HVVLRQ,QLWLDWLRQ3URWRFROw ,(7)5)&-XQH  ;;LDR/01Lv ,QWHUQHW4R6$%LJ3LFWXUHw ,(((1HWZRUNV0DUFK  : =KDR ' 2OVKHIVNL DQG + 6FKXO]ULQQH v ,QWHUQHW 4XDOLW\ RI 6HUYLFH DQ 2YHUYLHZw  &ROXPELD8QLYHUVLW\1HZ@ UHSUHVHQWHG WKHILUVWPDMRUPHWKRGIRURSWLFDOFRPPXQLFDWLRQDQGKDYHWRGD\KDYHJUDGXDWHGLQWR SUDFWLFDO FLUFXLW EDVHG VROXWLRQV  7KH OLJKWSDWK JUDQXODULW\ EHWZHHQ D VRXUFH DQG GHVWLQDWLRQQRGHSDLULVDZKROHZDYHOHQJWKDQGQRZDYHOHQJWKPXOWLSOH[LQJEHWZHHQ PXOWLSOHQRGHVDORQJWKHOLJKWSDWKLVDOORZHG7KXVXQOHVVWKHOLJKWSDWKSLSHFDQEH ILOOHG XS E\ HIILFLHQW DJJUHJDWLRQ DQG WUDIILF HQJLQHHULQJ LWV XWLOL]DWLRQ ZLOO EH ORZ DQG QR PXOWLFDVWLQJ LV SRVVLEOH ,Q FRQWUDVW ,3 WUDIILF LV FKDUDFWHUL]HG E\ EXUVWLQHVV DQG KLJK YDULDELOLW\ UHTXLULQJ EDQGZLGWK RQ GHPDQG DQG VXEODPEGD ZDYHOHQJWKV DOORFDWLRQ  &XUUHQWO\ WKHUH LV QR RSWLFDO VROXWLRQ ZKLFK XWLOL]HV HIILFLHQWO\ WKH EDQGZLGWK RIIHUHG E\ D VLQJOH ZDYHOHQJWK EHWZHHQ PXOWLSOH XVHUV 2SWRHOHFWURQLF VROXWLRQV VXFK DV *LJDELW (WKHUQHW DQG 5HVLOLHQW 3DFNHW 5LQJV 535  KDYH EHHQ SURSRVHG IRU SURYLGLQJ RSWLFDO DQG RSWRHOHFWURQLF VXEODPEGD JUDQXODULW\ UHVSHFWLYHO\ $FFHVV DQG PHWUR *LJDELW (WKHUQHW LV DQ HQGWRHQG VROXWLRQ RQ D OLJKWSDWK FUHDWLQJ DQ LQIRUPDWLRQ KLJKZD\ EHWZHHQ D VRXUFH DQG GHVWLQDWLRQ QRGH *LJDELW (WKHUQHW VROXWLRQ GRHV QRW SURYLGH IRU VXEODPEGD W\SH WUDIILF EHWZHHQ D VWUHDP RI XVHUV DV LW FUHDWHV GDWD IORZV WKDW DUH LQDFFHVVLEOH WR LQWHUPHGLDWH QRGHV 535 RQ WKH RWKHU KDQG DOORZV D VWUHDP RI FRQVHFXWLYH QRGHV WR FRPPXQLFDWH LQ D GRZQVWUHDP GLUHFWLRQ E\ VKDULQJ WKH FDSDFLW\ RI DQ RSWLFDO ZDYHOHQJWK E\ GURSSLQJ 0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

/LJKW7UDLOV$6ROXWLRQWR,3&HQWULF&RPPXQLFDWLRQLQWKH2SWLFDO'RPDLQ

DQG HOHFWURQLFDOO\ SURFHVVLQJ WKH RSWLFDO VLJQDO DW HDFK QRGH $V D UHVXOW 535 IDFHV VHYHUDO OLPLWDWLRQV 7KH GURSSLQJ RI RSWLFDO VLJQDO DW HYHU\ QRGH FUHDWHV D QHHG IRU KLJKFRVWDQGKLJKSHUIRUPDQFHHOHFWURQLFVDWHDFKQHWZRUNHOHPHQW)XUWKHU535LVD VORWWHG VROXWLRQ LQYROYLQJ QRQ WULYLDO LVVXHV RI V\QFKURQL]DWLRQ IXUWKHU OLPLWLQJ VFDODELOLW\DVZHOODVFODVVLFDOEDQGZLGWKXWLOL]DWLRQSUREOHPVDVIL[HGVL]HVORWVDUH QRWDJRRGPDWFKIRUWKHGHPDQGVRIYDULDEOHOHQJWK(WKHUQHWW\SHSDFNHWVLQEXUVWVRI ,3WUDIILF&XUUHQWYHUVLRQVRI535KDYHDVSHHGUHVWULFWLRQRI*ESV 2SWLFDO EXUVW VZLWFKLQJ 2%6  LV D UHFHQW SDUDGLJP SURSRVHG IRU FUHDWLQJ EXUVW OHYHO FRPPXQLFDWLRQ DW WKH RSWLFDO OD\HU 2%6 LV WKHUHIRUH LQ SULQFLSOH D QDWXUDO VROXWLRQ IRU SURYLGLQJ VXSSRUW WR ,3 FHQWULF FRPPXQLFDWLRQ RSWLFDOO\ LQ LWV QDWLYH PRGH +RZHYHU FXUUHQW 2%6 VROXWLRQV UHTXLUH KLJK VSHHG VZLWFKHV WR FUHDWH D SUDFWLFDOO\ DOORZDEOH UDWLR RI EXUVW OHQJWK WR VHWXS WLPH DQG KHQFH UHDVRQDEOH XWLOL]DWLRQ0RUHRYHU2%6VROXWLRQVDUHEDVHGRQSUHDOORFDWLRQRIUHVRXUFHVWRDYRLG FRQWHQWLRQEHWZHHQFRPSHWLQJEXUVWV)URPWKHWLPHDUHVRXUFHLVUHTXHVWHGDQGXQWLO LW LV DOORFDWHG UHVRXUFHV VXFK DV ZDYHOHQJWKV DUH EORFNHG *LYHQ WKH ODUJH UDWLR EHWZHHQSURSDJDWLRQGHOD\VDQGVZLWFKLQJUHODWLYHWRWKHGXUDWLRQRI,3EXUVWSDFNHWV WKH QHWZRUN PD\ EHFRPH VHYHUHO\ XQGHUXWLOL]HG  ,QGLYLGXDO ZDYHOHQJWKV UHPDLQ XQGHUXWLOL]HG GXH WR JDSV EHWZHHQ LQGLYLGXDO SDFNHWV RI D EXUVW 7KDW PHDQV FRQYHQWLRQDO 2%6 ZKLOH SURYLGLQJ EXUVW OHYHO JUDQXODULW\ FDQQRW VXVWDLQ WKLV JUDQXODULW\ DW UHDVRQDEOH ORDGV /DVWO\ WKHUH LV DQ DEVHQFH RI D VROXWLRQ DOORZLQJ PXOWLFDVWLQJ IRU OLJKWSDWK RU EXUVWV D FHQWHUSLHFH IRU PRVW RI WKH v EDQGZLGWK NLOOHU DSSOLFDWLRQVw  DV HQYLVLRQHG WRGD\ 7KH SURSRVHG OLJKWWUDLO DUFKLWHFWXUH FRPHV WR UHVROYH WKHVH YDULRXV SUREOHPV WKURXJK D FRPELQDWLRQ RI D QHZ QRGH DUFKLWHFWXUH EDVHGRQH[LVWHQWRSWLFDOWHFKQRORJ\DQGDQHIIHFWLYHQRYHOSURYLVLRQLQJSURWRFRO

II

Light-Trails

7KH FRQFHSW RI OLJKWWUDLOV LV SURSRVHG WR HQDEOH ,3 FHQWULF FRPPXQLFDWLRQ DW WKH RSWLFDO OD\HU 7KLV FRQFHSW FRQVLVWV RI DQ DUFKLWHFWXUH DQG D SURWRFRO WKDW DOORZV G\QDPLF WKH RSHQLQJ RI DQ RSWLFDO SDWK RU v WUDLOw  RI OHQJWK W EHWZHHQ DQ\ FKRVHQ VRXUFHDQGGHVWLQDWLRQQRGHZKLOHDOORZLQJRSWLFDOFRPPXQLFDWLRQ DFFHVV WRDOOWKH QRGHVHQURXWHWRWKHGHVWLQDWLRQZLWKRXWWKHQHHGIRURSWLFDOVZLWFKUHFRQILJXUDWLRQDW LQGLYLGXDOQRGHV:LWKWKHSULQFLSOHRIDFFHVVWRWKHDOORSWLFDOSDWKE\DQ\QRGHRQ

t WKH WUDLO D OLJKWWUDLO VROXWLRQ RIIHUV IXOO RSWLFDO FRQQHFWLYLW\ EHWZHHQ XS WR      

QXPEHU RI FRQQHFWLRQV ZKLFK FDQ VKDUH WKH ZDYHOHQJWK LQ WLPH GRPDLQ OHDGLQJ WR G\QDPLF DQG VHOI UHJXODWLQJ ZDYHOHQJWK PXOWLSOH[LQJ 7KXV WKH OLJKWWUDLOV DUFKLWHFWXUHFDQSURYLGHKLJKXWLOL]DWLRQORZDFFHVVGHOD\VDQGPXOWLFDVWLQJZLWKRXW WKHQHHGIRUIDVWRSWLFDOVZLWFKLQJ ,QRUGHUWRGHPRQVWUDWHWKHOLJKWWUDLOVFRQFHSWLQLWVVLPSOHVWIRUPZHFRQVLGHUD XQLGLUHFWLRQDOILEHUULQJVRI1QRGHV$OLJKWWUDLORIt Wu QRGHVLVDVHTXHQFHRIQRGHV XVLQJDZDYHOHQJWKȜL,QDOLJKWWUDLO 11W QRGHZHFDOOWKHILUVWQRGH1WKH convener nodeDQGWKHODVWQRGH1WWKHend node. $OLJKWWUDLOFDQEHYLHZHGDVDQ RSWLFDO EXV EHWZHHQ WKH FRQYHQHU DQG HQG QRGHV ZLWK WKH FKDUDFWHULVWLF WKDW

,PULFK&KODPWDFDQG$VKZLQ*XPDVWH

LQWHUPHGLDWHQRGHVFDQDOVRDFFHVVWKLVEXVFRQWUDU\WROLJKWSDWKRUEXUVWOHYHOSDWK SURYLVLRQHGXQGHUFRQYHQWLRQDODUFKLWHFWXUHV 6KRZQLQ)LJLVDSURSRVHGQRGHFRQILJXUDWLRQIRUUHDOL]LQJOLJKWWUDLOV2QHDFK RI WKH WZR XQLGLUHFWLRQDO ILEHUV WKHUH LV D IXOO GHPXOWLSOH[ VHFWLRQ WKDW GH PXOWLSOH[HV D FRPSRVLWH ':'0 VLJQDO DQG IHHGV LQGLYLGXDO FKDQQHOV WR D ORFDO DFFHVV VHFWLRQ 7KH ORFDO DFFHVV VHFWLRQ IRU HDFK ZDYHOHQJWK FKDQQHO  )LJ   FRQVLVWVRIWZRSDVVLYHFRXSOHUVVHSDUDWHGE\DQRSWLFDOVKXWWHU7KHILUVWFRXSOHULV FDOOHG WKH GURS FRXSOHU '&  IRU GURSSLQJ WKH VLJQDO  ZKLOH WKH VHFRQG FRXSOHU LV FDOOHG WKH DGGFRXSOHU $&  IRU DGGLQJ D ORFDO VLJQDO  7KH RSWLFDO VKXWWHU LV D IDVW 212))RSWLFDO VZLWFK W\SLFDOO\ XVLQJ 0DFK =HKQGHU ,QWHUIHURPHWHU WHFKQRORJ\ RQ /LWKLXP 1LREDWH VXEVWUDWHV >@ $ OLJKWWUDLO LV VHW XS EHWZHHQ WZR QRGHV E\ FRQILJXULQJ WKH RSWLFDO VKXWWHUV RQ WKH GHVLUHG ZDYHOHQJWK DW WKH FRQYHQHU DQG HQG QRGHV LQWKH2))SRVLWLRQ DVZHOODVE\FRQILJXULQJWKHRSWLFDOVKXWWHUV LQWKH21 SRVLWLRQ  DW HDFK RI WKH LQWHUPHGLDWH QRGHV :LWKLQ D OLJKWWUDLO ZH WKXV REWDLQ D XQLGLUHFWLRQDOFRPPXQLFDWLRQLQWKHGLUHFWLRQRIFRQYHQHUQRGHWRHQGQRGH   Drop coupler

Add coupler

Optical Shutter

Local Access section

De-multiplex Section





Fig.1/LJKWWUDLOQRGHFRQILJXUDWLRQ 

Drop Coupler (DC)

Add Coupler (AC) Optical Shutter

 Fig. 2. /RFDO DFFHVV VHFWLRQ RI WKH /LJKWWUDLO DUFKLWHFWXUH 7KH WRS DUURZ UHSUHVHQWV WKH GLUHFWLRQRIFRPPXQLFDWLRQ



/LJKW7UDLOV$6ROXWLRQWR,3&HQWULF&RPPXQLFDWLRQLQWKH2SWLFDO'RPDLQ

,W LV HDV\ WR VHH WKDW LQ WKLV FRQILJXUDWLRQ LQ D OLJKWWUDLO RI t Wu  QRGHV FRQQHFWLRQ EHWZHHQDQ\VRXUFHGHVWLQDWLRQSDLUZLWKLQWKHOLJKWWUDLOFDQEHHVWDEOLVKHGZLWKRXW UHTXLULQJ 212)) VZLWFKLQJ 7KHUHIRUH G\QDPLF DQG IDVW OLJKWSDWKV RU EXUVWV SURYLVLRQLQJFDQRFFXUZLWKRXWWKHQHHGIRUIDVW212))VZLWFKHV6SHFLILFDOO\LIWKH RSWLFDO VKXWWHU VHSDUDWLQJ WKH WZR FRXSOHUV LV 21 WKHQ WKH V\VWHP UHSUHVHQWV D GURS DQG FRQWLQXH IXQFWLRQ 2Q WKH RWKHU KDQG LI WKH RSWLFDO VKXWWHU LV 2)) ZDYHOHQJWK UHXVH LV REWDLQHG E\ YLUWXH RI VSDWLDO GLYHUVLW\ 7KH VDPH VWUXFWXUH WKHUHIRUH DOVR VXSSRUWVRSWLFDOPXOWLFDVWLQJ/DVWO\DVVSHFLILHGDERYHWKHQHWZRUNHOHPHQWVFDQEH EXLOWIURPDYDLODEOHRQWKHVKHOIWHFKQRORJ\   Node 1

Node 2

Switch OFF

Switch ON

Node 3

Switch OFF

 Fig. 3.7KUHHQRGHVLQDOLJKWWUDLODUFKLWHFWXUH



  7KHSURSRVHGFRQILJXUDWLRQRIWKHQRGHVKRZQLQ)LJVXSSRUWVDELGLUHFWLRQDO OLJKWWUDLOVEDVHGULQJ The Protocol 7R HVWDEOLVK OLJKWWUDLOV DQG WR SURYLGH RSWLFDO FRQQHFWLRQV ZLWKLQ OLJKWWUDLOV ZH GHILQH WKH IROORZLQJ SURWRFRO )RU REWDLQLQJ WKH VLJQDOLQJ UHTXLUHG WR VHW XS OLJKW WUDLOV DQG IRU RSWLFDO FRQQHFWLRQV PDQDJHPHQW ZLWKLQ OLJKWWUDLOV ZH DVVXPH WKHUH H[LVWV DQ RXW RI EDQG FRPPXQLFDWLRQ FKDQQHO FDOOHG RSWLFDO VHUYLFH FKDQQHO 26&  ZKLFKLVGURSSHGDQGSURFHVVHGDWHDFKQRGH7KH26&FDUULHVLQIRUPDWLRQDERXWDOO WKHOLJKWWUDLOVLQWKHQHWZRUNDQGLVUHVSRQVLEOHIRUSURYLVLRQLQJFRQQHFWLRQVZLWKLQ OLJKWWUDLOVE\SURYLGLQJDPHWKRGIRUVLJQDOLQJ ,QOLJKWWUDLOFRPPXQLFDWLRQ26&FRQWUROSDFNHWVDUHVHQWDKHDGRIWKHGDWDXVLQJ DQRIIVHWZKLFKLVDIXQFWLRQRISURSDJDWLRQGHOD\IURPLQJUHVVWRHJUHVVQRGHDVZHOO DVWKHFRQWUROSDFNHWSURFHVVLQJWLPHDWHDFKQRGH  )LYHW\SHVRIFRQWUROSDFNHWVDUHGHILQHG Setup packets(SP)$UHFRQWUROSDFNHWVXVHGWRVHWXSOLJKWWUDLOV7KH\FRQWDLQWKH LQJUHVVHJUHVVQRGHLQIRUPDWLRQDVZHOODVWKHZDYHOHQJWKRQZKLFKWKHOLJKWWUDLOLV WR EH HVWDEOLVKHG 6HWXS SDFNHWV DUH GHFLSKHUHG DW HDFK LQWHUPHGLDWH QRGH HQ URXWH DGGLQJWKHLQWHUPHGLDWHQRGHWRWKHOLJKWWUDLO Communication control packets (CCP) $UH XVHG WR VHW XS FRQQHFWLRQV ZLWKLQ D OLJKWWUDLO &&3V FDUU\ LQIRUPDWLRQ DERXW WKH LQJUHVV QRGHHJUHVV QRGH V  OLJKWWUDLO QXPEHU DXQLTXHQXPEHUZKLFKLGHQWLILHVWKHOLJKWWUDLOEDVHGRQFRQYHQHUQRGHHQG QRGHDQGZDYHOHQJWKXVHG 

,PULFK&KODPWDFDQG$VKZLQ*XPDVWH

Dimensioning packets (DP): $UH XVHG E\ WKH FRQYHQHU QRGH WR GLPHQVLRQ OLJKW WUDLOVLHDOORZLQJQHZQRGHVWREHFRPHPHPEHUVRUHOLPLQDWLQJQRGHVWKDWDUHQR ORQJHUDFWLYHSDUWLFLSDQWVLQWKHOLJKWWUDLO Global Broadcast Packets (GBP)$WUHJXODULQWHUYDOVRQWKH26&HDFKOLJKWWUDLO VHQGV *%3V WKURXJKRXW WKH QHWZRUN DSSUDLVLQJ DOO WKH QRGHV DQG KHQFH (06u V  RI H[LVWHQFHRIWKHPVHOYHVDQGPHPEHUQRGHV ACK packets$UHXVHGZKHQDOLJKWWUDLOLVVHWXSVHQWE\WKHHQGQRGHDQGUDWLILHG E\LQWHUPHGLDWHQRGHVWRWKHFRQYHQHUQRGHLQGLFDWLQJWKHDFFHSWDQFHRIWKHUHTXHVW WRVHWXSDOLJKWWUDLO /LJKWWUDLO GDWDEDVH 7KH QHWZRUN PDQDJHPHQW V\VWHP 106  IRU OLJKWWUDLOV FRQWDLQV WKH QHFHVVDU\ LQIRUPDWLRQ UHJDUGLQJ WKH SUHVHQW OLJKWWUDLOV LQ WKH QHWZRUN 7KLVGDWDEDVHLVXSGDWHGE\*%3VDQGWKHGDWDEDVHLVDVVXPHGWREHDYDLODEOHWRHDFK QRGHHLWKHUORFDOO\RUWKURXJKDUHTXHVWVFKHPH /RFDO FRPPXQLFDWLRQ GDWDEDVH D VLQJOH WLPH VHQVLWLYH SRLQWHU DW HDFK QRGH LQGLFDWLQJ ZKHWKHU WKH OLJKWWUDLO LV RFFXSLHG RU QRW DW WKDW SRLQW WKURXJK WKH QRGHu V ORFDOPXOWLSOH[VHFWLRQ 'HWHUPLQHVLIGDWDLVIORZLQJWKURXJKWKHWUDLO  A. Setting up Light-trails: )RUFUHDWLQJDOLJKWWUDLOEHWZHHQQRGHV1WR1WGRZQVWUHDPRI1QRGH1VHOHFWV DQDYDLODEOHZDYHOHQJWKȜW EDVHGRQWKHOLJKWWUDLOVGDWDEDVHLQIRUPDWLRQ1RGH1 VHQGV D FRQWURO SDFNHW 63  WKURXJK WKH 26& UHTXHVWLQJ RSHQLQJ RI WKLV RSWLFDO FRQQHFWLRQ WR 1W WKURXJK WKH LQWHUPHGLDWH QRGHV 1 1  1W 1RGH 1W XSRQ UHFHLYLQJ WKH 63 IURP 1 UHSOLHV WKURXJK WKH 26& LQ WKH ILEHU LQ WKH RSSRVLWH GLUHFWLRQ ZLWKDQ$&.7KLV$&.LVYDOLGDWHGE\LQWHUPHGLDWHQRGHVDOVR,IQRGH1W FDQQRW DOORZ WKH OLJKWWUDLO WR EH HVWDEOLVKHG  LW LQGLFDWHV VR 1RGHV 1 1  1W XSRQ UHFHLYLQJ WKH FRQWURO SDFNHW 63  VZLWFK WKHLU RSWLFDO VKXWWHUV RQ WKH VHOHFWHG ZDYHOHQJWKLQ21SRVLWLRQZKLOHQRGHV1DQG1WNHHSWKHVKXWWHULQ2))SRVLWLRQ,Q WKLV ZD\ D OLJKWWUDLO LV FUHDWHG ZKRVH PHPEHU QRGHV DUH 1 1  1W HQDEOLQJ GRZQVWUHDPFRPPXQLFDWLRQEHWZHHQWKHP B. Communication within Light-trails: Setting up optical connections ,IQRGH1MGHVLUHVWRVHQGGDWD WRVHWXSG\QDPLFOLJKWSDWKRUEXUVW WRGRZQVWUHDP QRGH1NERWKQRGHVRIWKHVDPHOLJKWWUDLOLWSURFHHGVDVIROORZV7RDYRLGFRQIOLFW RIXVDJHRIVDPHOLJKWWUDLOE\DQXSVWUHDPQRGHZLWKLQWKHVDPHWUDLOWKHLQLWLDWLQJ QRGH 1M GHWHUPLQHV DYDLODELOLW\ RI WKH OLJKWWUDLO E\ H[DPLQLQJ WKH v ORFDO FRPPXQLFDWLRQ GDWDEDVHw  DQG ILQGV RXW WKH RFFXSDQF\ RI WKH OLJKWWUDLO DW LWV RZQ SRUW PXOWLSOH[ VHFWLRQ  ,I QR XSVWUHDP QRGH LV XVLQJ WKLV OLJKWWUDLO IRU FRPPXQLFDWLRQ WKHQ 1M FDQ LQLWLDWH FRPPXQLFDWLRQ WR QRGH 1N E\ VHQGLQJ D FRQWURO SDFNHW &&3 WREHIROORZHGE\WKHGDWDDIWHUDQRIIVHWLQWHUYDO.1RGHV1M1N 1WQRZEHFRPHDZDUHRIWKLVFRPPXQLFDWLRQ1RWHWKDWDIWHUVHQGLQJDFRQQHFWLRQ VHW XS FRQWURO SDFNHW QRGH 1M LV JXDUDQWHHG VXFFHVVIXO FRQQHFWLRQ WR GRZQVWUHDP QRGH RU  PXOWLSOH GHVWLQDWLRQ QRGHV DV LQ FDVH RI PXOWLFDVWLQJ  VLQFH DOO WKH GHVWLQDWLRQQRGHVFDQGHWHFWWKHGDWDDVDSDUWRIWKHRSWLFDOSRZHULVVSOLWWKURXJKWKH PXOWLSOH[VHFWLRQRIHDFKQRGHORFDOO\ ,I D FRQQHFWLRQ LQ D OLJKWWUDLO LV LQ SURJUHVV DQG DQ XSVWUHDP QRGHZDQWV WR VWDUW DQRWKHU FRQQHFWLRQ 7KHQ WKH SUHYLRXV FRQQHFWLRQ DVVXPH VWDUWHG E\ D GRZQVWUHDP QRGH  KDV WR EH FDOOHG RII WR IDFLOLWDWH WKH QHZ FRQQHFWLRQ LQLWLDWHG E\ WKH XSVWUHDP QRGH 6XFK NLQG RI FRQQHFWLRQ RYHUODSSLQJ FDQ KDSSHQ LQ OLJKWWUDLOV DQG VHYHUDO VROXWLRQV DUH SRVVLEOH WR GHDO ZLWK v RYHUODSSLQJw  FRQQHFWLRQV 1RGH 1M ZKLFK LV XSVWUHDP RI QRGH 1T FDQ DFFHVV WKH RSWLFDO SDWK HYHQ ZKHQ 1T LV WUDQVPLWWLQJ

/LJKW7UDLOV$6ROXWLRQWR,3&HQWULF&RPPXQLFDWLRQLQWKH2SWLFDO'RPDLQ

LQIRUPDWLRQ ,I VXFK GRHV KDSSHQ WKHQ 1M UHTXHVWV IRU RSHQLQJ RI DQ RSWLFDO FRQQHFWLRQLQWKHOLJKWWUDLO1RGH1TXSRQUHDOL]LQJWKHSRVVLELOLW\RIFRQIOLFWLQKLELWV LWV GDWD DQG DOORZV WKH GDWD IURP QRGH 1M WR SDVV WKURXJK ,Q WKLV HYHQW WKH GRZQVWUHDP QRGH 1T  PD\ HLWKHU VHQG LWV GDWD DIWHU WKH XSVWUHDP QRGH 1M  KDV ILQLVKHG LWV GDWD WUDQVPLVVLRQ RU VHQG WKH GDWD RQ DQRWKHU OLJKWWUDLO +RZHYHU IRU GHOD\VHQVLWLYH DSSOLFDWLRQV LW PD\ QRW DOZD\V EH SRVVLEOH WR LQKLELW WKH ORFDO WUDQVPLVVLRQ ,Q WKDW FDVH WKH GRZQVWUHDP QRGH 1T  PD\ VZLWFK LWV RSWLFDO VKXWWHU IRUWKDWOLJKWWUDLO LQWKH2))SRVLWLRQDQGFROOHFWWKHGDWDIURPWKHXSVWUHDPQRGH 1M  WKURXJKLWVGURSFRXSOHU ,WPD\WKHQHLWKHUEXIIHUWKLVGDWDRUVHQGLWRQDQRWKHU OLJKWWUDLOXVXDOO\LQYROYLQJ2(2IURPWKHLQLWLDOOLJKWWUDLOWRWKHQHZOLJKWWUDLO,Q WKLV SURFHVV RI UHWUDQVPLVVLRQ HLWKHU RYHU WLPH RU RYHU GLIIHUHQW OLJKWWUDLO  WKH LQFXPEHQWQRGHGRHVQRWUHVWUDLQWLWVGDWDIORZLQWRWKHOLJKWWUDLO C. Dimensioning light-trails: Expanding and Contracting $VVHHQHDUOLHUOLJKWWUDLOVFDQHIILFLHQWO\VXSSRUWG\QDPLFRSWLFDOFRPPXQLFDWLRQ VXFKDVEXUVW\,3FHQWULFWUDIILFDVWKH\GRQRWUHTXLUHWKHUHVHWWLQJRIRSWLFDOVZLWFKHV DORQJ WKH OLJKWWUDLO IRU FRQQHFWLRQV ZLWKLQ WKH WUDLO ,I D FRQQHFWLRQ FDQQRW XVH DQ H[LVWLQJ OLJKWWUDLO D QHZ WUDLO QHHGV WR EH HVWDEOLVKHG D SURFHGXUH ZKLFK WDNHV DGGLWLRQDOWLPH,WLVWKHUHIRUHGHVLUDEOHIURPWKLVSRLQWRIYLHZWRKDYHWKHORQJHVW OLJKWWUDLO SRVVLEOH +RZHYHU VLQFHRQO\ RQH FRQQHFWLRQ LV DFWLYHSHU WUDLO DW D WLPH OLJKWWUDLOVWKDWDUHWRRORQJZRXOGOHDGWRXQGHUXWLOL]DWLRQ,IOLJKWWUDLOVDUHWRRVKRUW RSWLFDO FRPPXQLFDWLRQ GHWHULRUDWHV WR WKDW RI D VWDQGDUG RSWLFDO DUFKLWHFWXUH 7KHUHIRUH OLJKWWUDLOV PD\ UHTXLUH GLPHQVLRQLQJ H[SDQGLQJ RU FRQWUDFWLQJ  WR RSWLPL]HSHUIRUPDQFHLQWHUPVRIXWLOL]DWLRQVHWXSWLPHVHWF7KHPRVWHIILFLHQWZD\ RIPDQDJLQJWKHOLJKWWUDLOOHQJWKLVQDWXUDOO\DVHOIUHJXODWLQJSURFHGXUHLQZKLFKD OLJKWWUDLOLVH[WHQGHGRUVKRUWHQHGVRLWFRYHUVDOODFWLYHFRQQHFWLRQV EXUVWV WKDWXVH WKH WUDLO DW DQ\ JLYHQ WLPH. 6SHFLILFDOO\ WKH OHIW PRVW DFWLYH WUDLO ZLOO GHILQH WKH OHIW PRVW FRQYHQHUQRGH RIWKHWUDLOZKLOHWKHULJKWPRVWQRGHRIWKHH[LVWLQJFRQQHFWLRQ GHILQHGWKHWUDLOu VHQGQRGH6LQFHFRQQHFWLRQV EXUVWV FRPHDQGJRG\QDPLFDOO\WR REWDLQ WKLV W\SH RI OLJKWWUDLO PDQDJHPHQW LW LV QHFHVVDU\ WR KDYH D GLVWULEXWHG PHFKDQLVP WR PRYH WKH WUDLOu V HQG QRGHV G\QDPLFDOO\ 7KLV FDQ EH GRQH XVLQJ  WKH IROORZLQJPHFKDQLVP $QRGH1DXSVWUHDPRIQRGH1DQGQRWSDUWRIDWUDLO/7 ^111W`PD\ UHTXHVWFRPPXQLFDWLRQWRDQRGHLQ/77KHFRQYHQHUQRGHE\YLUWXHRILWVGRPLQDQW VWDWXVPD\DOORZ1DWRMRLQWKHWUDLO,WGRHVVRLWVKLIWVWKHFRQYHQHUVWDWXVWRQRGH1D DQGWKHQHZWUDLO/71(: ^1D1D11W`LVIRUPHGDQGWKLVLQIRUPDWLRQLV EURDGFDVWWKURXJKWKHQHWZRUNE\*%37KHDFWRIH[SDQGLQJDOLJKWWUDLOLVVLPLODUWR VHWWLQJ XS D OLJKWWUDLO WKRXJK ZH XVH GLPHQVLRQLQJ SDFNHWV '3  DV FRQWURO PHFKDQLVPVIRUWKLVSXUSRVH 6LPLODUO\LIWKHHQGQRGHWKURXJKWKHORFDOFRPPXQLFDWLRQGDWDEDVHOHDUQVLWLVQR ORQJHU UHFLSLHQW RI LQIRUPDWLRQ  LW PD\ XV D '3  WR WKH FRQYHQHU UHTXHVW WR UHOLYH LWVHOI RUWKHJURXS IURPWKHOLJKWWUDLO,QWKDWFDVHWKHILUVWQRGHIURPWKHHQGQRGH LQWKHUHYHUVHGLUHFWLRQZKLFKLVVWLOODQDFWLYHPHPEHURIWKHOLJKWWUDLOQRZEHFRPHV WKHHQGQRGHRIWKHOLJKWWUDLODQGFRQILJXUHVLWVVKXWWHUDFFRUGLQJO\ 2YHU WLPH OLJKWWUDLOV WKXV H[SDQG DQG FRQWUDFW GHSHQGLQJ RQ GHPDQGV RI WUDIILF DOORZLQJ EXUVW FRPPXQLFDWLRQ ZLWKLQ RSWLFDO FRQQHFWLRQV ZLWKRXW VZLWFKLQJ  WR RFFXULQWXLWLYHO\IRUPRVWRIWKHWUDIILFPRVWRIWKHWLPH2QUHFRQILJXULQJDOLJKW WUDLO H[SDQGLQJRUFRQWUDFWLQJ WKHQHZOLJKWWUDLOLQIRUPDWLRQLVEURDGFDVWWKURXJKRXW

,PULFK&KODPWDFDQG$VKZLQ*XPDVWH

WKH HQWLUH QHWZRUN WR IDFLOLWDWH QRGHV WR OHDUQ DERXW SUHVHW RSWLFDO SDWKV WKDW FDQ JXDUDQWHHVHDPOHVVFRPPXQLFDWLRQRIOLJKWSDWKVDVZHOODVEXUVWV

III Light-Trail Evaluation $V SRLQWHG RXW LQ WKH ,QWURGXFWLRQ WKHUH DUH LPSRUWDQW EHQHILWV WR OLJKWWUDLO FRPPXQLFDWLRQLQSURYLVLRQLQJZDYHOHQJWKVXEODPEGDDOORFDWLRQWKURXJKWLPHEDVHG ZDYHOHQJWK PXOWLSOH[LQJ VXSSRUWLQJ YDULDEOH OHQJWK EXUVWV DQG YDULDEOH OHQJWK SDFNHWV ZLWKLQ D EXUVW DOORZLQJ YHU\ IDVW RSWLFDO FRQQHFWLRQ VHW XS EHLQJ WHFKQRORJLFDOO\ IHDVLEOH DQG SURYLGLQJ PXOWLFDVWLQJ  ,Q WKLV VHFWLRQ ZH SURYLGH D EDVLF HYDOXDWLRQ RI OLJKWWUDLOV E\ D FRPSDULVRQ WR FRQYHQWLRQDO EXUVW VZLWFKLQJ DQG VKRZKRZWKHEDVLFPHFKDQLVPRIGHOD\EHWZHHQFRQWURODQGGDWDSDFNHWVHQGLQJFDQ EHXVHGWRDGGTXDOLW\RIVHUYLFHWRWKHQHWZRUN A. Provisioning Time in Light-Trails for Optical (Bursts) Connections )RUHIILFLHQWEXUVWW\SHFRPPXQLFDWLRQWKHUDWLRRIEXUVWVHWXSWLPHWRGXUDWLRQLVD NH\ SDUDPHWHU IRU HIIHFWLYH EXUVW VZLWFKLQJ %XUVW WUDQVSRUW DOJRULWKPV GXH WR WKH FRQVWUDLQWV RQ VZLWFKLQJ VSHHG DQG XQFHUWDLQW\ RI UHVRXUFH DYDLODELOLW\ GXH WR WKH GLVWULEXWHGQDWXUHRIDQHWZRUNKDYHUHOLHGRQSUHDOORFDWLRQRIUHVRXUFHVWRFUHDWHDQ HQGWRHQG RSWLFDO SDWK -(7>@ LV D OHDGLQJ EXUVW WUDQVSRUW DOJRULWKP EDVHG RQ SUH DOORFDWLRQ RI UHVRXUFHV DKHDG LQ WLPH XVLQJ DQ RXW RI EDQG VLJQDOLQJ DSSURDFK ,Q OLJKWWUDLOV EHFDXVH WKH RSWLFDO FRQQHFWLRQ GRHV QRW QHHG WR UHVHW VZLWFKHV RQH FDQ H[SHFWDQDGYDQWDJHLQSURYLVLRQLQJWLPH6KRZQLQ)LJLVWKHSURYLVLRQLQJWLPHIRU OLJKWWUDLOVLQFOXGLQJFRQQHFWLRQVHVWDEOLVKHGZLWKLQDOLJKWWUDLODQGWKRVHWKDWUHTXLUH HVWDEOLVKLQJDQHZWUDLO)RUERWKOLJKWWUDLODQG-(7EXUVWVZLWFKLQJZHFRQVLGHUWKH SURYLVLRQLQJ WLPH WR EH D IXQFWLRQ RI WKH KRS OHQJWK VZLWFK FRQILJXUDWLRQ WLPH DQG FRQWUROSDFNHWSURFHVVLQJWLPH2SWLFDOEXUVWVDUHJHQHUDWHGE\PXOWLSOH[LQJGLIIHUHQW FODVVHVRIWUDIILF QDPHO\YRLFHDQGGDWD ,QWKHVLPXODWLRQVWXG\ZHDVVXPH3RLVVRQ DQG 3DUHWR GLVWULEXWLRQV IRU EXUVW DJJUHJDWLRQ 6FKHGXOLQJ SROLF\ IRU EXUVWV WKDW DUH GHOD\VHQVLWLYHLVVKRZQLQ>@,QWKHVLPXODWLRQZHXVHOLQHUDWHRI*ESVDQGEXUVWV RIPVLQOHQJWK DYHUDJH ,QWKHVLPXODWLRQSURSDJDWLRQGHOD\VDUHWDNHQWREHIRU  NP OLQNV EHWZHHQ FRQVHFXWLYH QRGHV WR HPXODWH D W\SLFDO PHWUR DUHD &RQWURO SDFNHWVDUHNELQOHQJWKDQGZHDVVXPHD*+]SURFHVVRUDWHDFKQRGHWRSURFHVV WKHGURSSHGFRQWUROSDFNHWV)RUDFROOHFWLRQRIVLPXODWHGULQJVRIVL]HVYDU\LQJIURP aQRGHVDQGZDYHOHQJWKVZHKDYHWKHVSHHGRIFRQWUROFKDQQHOWREH0EV WR DYRLG FROOLVLRQ DQG WR JXDUDQWHH FRQWURO SDFNHWV WR QRGHV DV GHVLUHG ZLWK D SUREDELOLW\  )LJ  VKRZV D VLJQLILFDQW EHQHILW LQ WKH SURYLVLRQLQJ WLPHV IRU OLJKWWUDLO FRPPXQLFDWLRQ 4XDQWLWDWLYHO\ ZH VHH WKDW HYHQ LI D FRQWHPSRUDU\ IDVW VZLWFK >@ KDYLQJ FRQILJXUDWLRQ WLPH RI   PV LV DVVXPHG IRU -(7 ZH VWLOO VHH DQ DSSUR[LPDWHGHFUHDVHLQSURYLVLRQLQJWLPHIRUVLQJOHFRQQHFWLRQXVLQJOLJKW WUDLOV,IZHIXUWKHUDVVXPHWKDWWKHOLJKWWUDLOLVDOUHDG\VHWXSDQGEXUVWWUDQVSRUWLV WKHDFWRIFRPPXQLFDWLRQ FUHDWLQJFRQQHFWLRQV ZLWKLQDOLJKWWUDLOZHREVHUYHUHVXOWV VXFK WKDW WKHUH LV RQ DQ DYHUDJH DQ RUGHU RI WZR DGYDQWDJH LQ SURYLVLRQLQJ DV FRPSDUHGWRWKHSURYLVLRQLQJXVLQJ-(7VKRZLQJWKHLPSRUWDQFHRIRSWLPL]HGOLJKW

/LJKW7UDLOV$6ROXWLRQWR,3&HQWULF&RPPXQLFDWLRQLQWKH2SWLFDO'RPDLQ

WUDLOOHQJWK7KLVYDOLGDWHVWKHOLJKWWUDLOVDUFKLWHFWXUHDVDPHWKRGIRUSURYLGLQJKLJK EDQGZLGWKRQGHPDQGWRHQGXVHUVRQDUHDOWLPHEDVLV 

P rovis ioning tim e (s )

0.1

Provisioning time JET

0.01 Provisioning time: JET with ACK LT Provisioning time

0.001 Connection Provisioning time within Light-trails

0.0001 1

2

3

4

5

6

7

8

9 10

Number of nodes in the connection



Fig.4. &RPSDULVRQ RI SURYLVLRQLQJ WLPHV IRU FRQYHQWLRQDO EXUVW EDVHG FRPPXQLFDWLRQ DOJRULWKP-(7DQGIRU/LJKWWUDLOV

B. Network Utilization Benefits of Light-Trails $ PDMRU DGYDQWDJH RI XVLQJ OLJKWWUDLOV IRU EXUVW WUDQVSRUW DV FRPSDUHG WR FODVVLFDO RSWLFDO EXUVW VZLWFKLQJ VROXWLRQ LV WKH EHQHILW REVHUYHG LQ QHWZRUN XWLOL]DWLRQ ,Q FODVVLFDORSWLFDOEXUVWVZLWFKLQJWKHGDWDEXUVWLVVHQWXSRQWKHVXFFHVVIXOUHVHUYDWLRQ RIEDQGZLGWKLQWKHSDWK7KDWLVIRUHYHU\EXUVWWREHEURDGFDVWDFRQWUROSDFNHWKDV WR EH VHQW DQG VZLWFKHV KDYH WR EH FRQILJXUHG 7KLV SURFHGXUH LV FXPEHUVRPH DQG OHQJWK\%\UHTXLULQJDQH[FOXVLYHZDYHOHQJWKSDWKWREHVHWXSIRUHDFKEXUVWORQJ YRLGVDUHFUHDWHGZLWKLQWKHFKDQQHOVLQFHWKHUHLVQRXWLOL]DWLRQRIWKHFKDQQHOZKHQ WKHFRQWUROSDFNHWLVLQWUDQVLWRUZKHQVZLWFKHVDUHEHLQJFRQILJXUHG,QFRQWUDVWIRU D OLJKWWUDLOV VROXWLRQ ZH GR QRW KDYH WR FRQILJXUH DQ\ VZLWFKHV 7KLV OHDGV WR H[FHOOHQW SURYLVLRQLQJ WLPHV DV VHHQ LQ WKHSUHYLRXV VXEVHFWLRQ 0RUHRYHU WKLV DOVR OHDGVWREHWWHUXWLOL]DWLRQRIWKHV\VWHP6KRZQLQ)LJLVDFRPSDULVRQRIXWLOL]DWLRQ RIDVLQJOHZDYHOHQJWKIRUGLIIHUHQWORDGVIRUERWKOLJKWWUDLOVDVZHOODVFODVVLFDOEXUVW VZLWFKLQJ:HDVVXPH*ESVFKDQQHOLQERWKFDVHV%XUVWVDUHDJJUHJDWHGDFFRUGLQJ WRDOJRULWKPLQ>@7KHDYHUDJHOHQJWKRIWKHSDWK IRUERWKOLJKWWUDLOVDQG2%6 LV KRSV3URSDJDWLRQGHOD\VDUHDVVXPHGWREHIRUNPSHUKRSDQGSURFHVVLQJDWHDFK QRGHGRQHE\D*K]SURFHVVRU SURFHVVLQJIRUFRQWUROSDFNHWLVPLFURVHFRQGV  &RQWURO SDFNHWV ZHUH  NE PD[LPXP OHQJWK /RDG LV FRPSXWHG VWRFKDVWLFDOO\ LQ (UODQJV8WLOL]DWLRQLVGHILQHGDVWKHUDWLRRIFDSDFLW\XVHGRYHUWLPHIRUDFWXDOGDWD WUDQVPLVVLRQWRWKHWRWDOFDSDFLW\6ZLWFKLQJWLPHIRUFODVVLFDO2%6VZLWFKHVDUH PVZKLFKDUHYHU\IDVWE\WRGD\u VVWDQGDUGV>@:HREVHUYHWKDWXWLOL]DWLRQLQ2%6LV VHYHUHO\GHJUDGHGDVFRPSDUHGWRWKDWLQOLJKWWUDLOV2QDQDYHUDJHWKHXWLOL]DWLRQRI OLJKWWUDLOVLVDVLQJOHRUGHURIPDJQLWXGHEHWWHUWKDQWKDWVHHQLQ2%6XQGHUVLPLODU FRQGLWLRQV

,PULFK&KODPWDFDQG$VKZLQ*XPDVWH

0.9 0.8

Utilization

0.7 0.6 0.5 0.4

Optical Burst switching

0.3

Light-trails

0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

Load on a wavelength

Fig. 5. 8WLOL]DWLRQ RI D ZDYHOHQJWK XVLQJ /LJKWWUDLOV DQG FRPSDUHG WR FODVVLFDO RSWLFDO EXUVW VZLWFKLQJ



C. QoS in Light-Trails 4XDOLW\ RI 6HUYLFH 4R6  LV DQ LPSRUWDQW SDUDPHWHU IRU DPDOJDPDWLQJ GLIIHUHQW VHUYLFH W\SHV LQ D VLQJOH QHWZRUN 7KH PRVW LPSRUWDQW 4R6 SDUDPHWHU LV GHOD\ RQ DFFRXQW RI LWV UHOHYDQFH WR YRLFH DQG YLGHR WUDIILF (QGWRHQG GHOD\ IRU EXUVWV LV D YHU\FULWLFDOWRHQVXUHEDQGZLGWKVDYY\DQGKLJKTXDOLW\PXOWLPHGLDWUDQVIHUV6LQFH SURYLVLRQLQJEXUVWVRYHUOLJKWWUDLOVLVPXFKIDVWHUHDVLHUDQGVLPSOHUDVFRPSDUHGWR RSWLFDO EXUVW VZLWFKLQJ WKLV PHDQV OLJKWWUDLOV LV D QDWXUDO FDQGLGDWH IRU SURYLGLQJ KLJK 4R6 ,Q >@ ZH SURSRVHG D SROLF\ WR DJJUHJDWH EXUVWV DQG VFKHGXOH WKHP IRU GHOD\VHQVLWLYHDSSOLFDWLRQV7KHSROLF\IRUDJJUHJDWLQJEXUVWVLVEDVHGRQWKHWLPHRXW RI WKH ILUVW GHOD\ VHQVLWLYH SDFNHW LQ WKH DJJUHJDWLQJ EXIIHU ,Q )LJ  ZH REVHUYH DYHUDJHGHOD\SHUSDFNHWZLWKLQDEXUVWIRUOLJKWWUDLOVZLWK4R6SROLF\DQGZLWKRXW 4R6SROLF\ QoS policy ,Q OLJKWWUDLOV ZH LPSOHPHQW GHOD\ EDVHG 4R6 7KH SROLF\ ZRUNV DV IROORZV*LYHQDFHUWDLQGHOD\ERXQGGHSHQGLQJRQWKHW\SHRIWUDIILFVD\7VHFRQGV 7KH FRQWURO SDFNHW UHVHUYLQJVHWWLQJ XS WKH FRPPXQLFDWLRQ LV VHQW DIWHU DJJUHJDWLQJ WKH EXUVW IRU 7NG VHFRQGV :KHUH G LV WKH RIIVHW GHOD\ EHWZHHQ WKH FRQWURO SDFNHW DQG WKH GDWD DQG N LV WKH GHOD\ UHVHUYHG IRU UHWUDQVPLVVLRQ LQ FDVH WKH EXUVW LV EORFNHG $JJUHJDWLRQSURFHVVRIEXUVWVLVDPXOWLSOH[LQJRSHUDWLRQRIYLGHRYRLFHDQGGDWD SDFNHWV9LGHRILOHVDUHFUHDWHGDVDVHOIVLPLODUDUULYDOSURFHVVZLWK+XUVWSDUDPHWHU WRGHSLFWWKHSLFWRULDOKHDY\WDLOHGQHVV9RLFHLVD3RLVVRQDUULYDOSURFHVVDQG GDWDLVD3DUHWRSURFHVVRIKLJKEXUVWLQHVV4R6GHOD\OHYHOVDUHDFFRUGHGWRYRLFHDQG YLGHRSDFNHWV,QWKHVLPXODWLRQZHKDYHWKHGLVWULEXWLRQRIYRLFHSDFNHWVDV ZKLOH WKDW RI YLGHR LV DQG GDWD SDFNHWV LV 7KH SDFNHWV DUH PD[LPXP E\WHVORQJDQGEXUVWVDUHDJJUHJDWHGE\FRDOHVFLQJPXOWLSOHSDFNHWV%XIIHUVDUH PD[LPXP0ELQOHQJWK,Q)LJZHREVHUYHWKHDYHUDJHGHOD\H[SHULHQFHGE\

/LJKW7UDLOV$6ROXWLRQWR,3&HQWULF&RPPXQLFDWLRQLQWKH2SWLFDO'RPDLQ

SDFNHWVLQOLJKWWUDLOVIRUSURYLGLQJ4R6DQGIRUVFKHPHVZKHUH4R6LVQRWSURYLGHG FRQWURO SDFNHWV DUH QRW VFKHGXOHG WR HQVXUH HQGWRHQG GHOD\ ZLWKLQ D ERXQG  :H REVHUYH WKDW DV XWLOL]DWLRQ LQFUHDVHV WKH HQGWRHQG GHOD\ H[SHULHQFHG E\ SDFNHWV ZLWKLQDEXUVWDOVRLQFUHDVHV)RUXWLOL]DWLRQRIDQGZHVHHWKDWWKHGHOD\LV OHVVHUWKDQWKH4R6FXWRIIGHOD\RI[  7KHDYHUDJHEXUVWVL]HLV0EDQG YDULDQFHLV0E/RDGLVPHDVXUHGLQ(UODQJV 

Delay in Seconds

1.E-04

1.E-05 Normal LT without QoS LT with QoS at Util=0.8

1.E-06

LT with QoS at Util=0.4 1.E-07 QoS threshold 1.E-08 1

2

3

4

5

6

7

8

9

10

Load



Fig. 5$YHUDJHGHOD\IRUSDFNHWVXVLQJOLJKWWUDLOVZLWKD4R6SROLF\DQGZLWKRXWD4R6SROLF\

IV Conclusion ,QWKLVSDSHUZHKDYHSURSRVHGWKHFRQFHSWRIOLJKWWUDLOVZKLFKFUHDWHVDIUDPHZRUN IRU ,3 FHQWULF FRPPXQLFDWLRQ LQ WKH RSWLFDO GRPDLQ %\ FUHDWLQJ PXOWLSRLQW DFFHVVLEOHLQIRUPDWLRQKLJKZD\VZHVKRZHGWKDW/LJKWWUDLODUFKLWHFWXUHFDQSURYLGH DQHIILFLHQWSODWIRUPIRUG\QDPLFSURYLVLRQLQJRIRSWLFDOFRQQHFWLRQVRQDSHUEXUVW WLPH VFDOH SURYLGLQJ VXE ODPEGD PXOWLSOH[LQJ LQ WKH WLPH GRPDLQ DQG VXSSRUWLQJ YDULDEOHVL]HSDFNHWWUDQVLWLRQVOHDGLQJWRPXOWLSOHEHILWVQRWRQO\LQXWLOL]DWLRQEXWLQ VLPSOLFLW\ RI QRGH GHVLJQ DQG UHGXFHG FRQVWUDLQV RQ WKH RSWLFDO QHWZRUN LQ WHUP VR EXIIHU PDQDJHPHQW DQG QRGH V\QFKURQL]DWLRQ 7KH SUDFWLFDOLW\ RI EXLOGLQJ D OLJKW WUDLO DUFKLWHFWXUH IRU DOO RSWLFDO FRPPXQLFDWLRQ FDQ DOVR EH H[SHFWHG WR SURYLGH VLJQLILFDQWFRVWDGYDQWDJHVFDODELOLW\LQVSHHGDQG /DVWO\ ZH GHPRQVWUDWHG  OLJKWWUDLOV DV D SODWIRUP IRU 4R6 DSSOLFDWLRQV 4R6 VHQVLWLYH DSSOLFDWLRQV SUHYLRXVO\ UHTXLULQJ GHGLFDWHG FRQQHFWLRQV FDQ QRZ EH G\QDPLFDOO\ FRQILJXUHG GXH WR HDVH RI SURYLVLRQLQJ DQG JXDUDQWHHG GHOLYHU\ XVLQJ OLJKWWUDLOV

References >@  , &KODPWDF $ *DQ] DQG * .DUPL t /LJKWSDWK &RPPXQLFDWLRQV $ 1RYHO $SSURDFK WR +LJK6SHHG2SWLFDO:$1Vu IEEE Trans. on Commun9RO1R-XO\SS >@0@  $ *XPDVWH DQG 7 $QWRQ\ t ':'0 1HWZRUNV 'HVLJQ DQG (QJLQHHULQJ 6ROXWLRQVu  McMillan Publishers. >@0%RXGDHWDOt 7XQDEOH$27)VZLWFKHVu Proc of OFC%DOWLPRUH >@$*XPDVWHDQG--XHt %XUVWDJJUHJDWLRQVWUDWHJLHVEDVHGRQDFFRUGLQJ4R6IRU,3WUDIILFu  )LUVW ,QWHUQDWLRQDO &RQIHUHQFH RQ 2SWLFDO &RPPXQLFDWLRQV DQG 1HWZRUNV 6LQJDSRUH 1RY  >@ 5 5DPDVZDPL DQG * 6DVDNL /LPLWHG :DYHOHQJWK &RQYHUVLRQ LQ 2SWLFDO :'0 ULQJ QHWZRUNVu ,((($&07UDQV2Q1HWZRUNLQJ9RO1R2FWSS >@,&KODPWDFDQG$*XPDVWHt %DQGZLGWK0DQDJHPHQWLQ&RPPXQLW\1HWZRUNVu .H\QRWH DGGUHVV,:'&&DOFXWWD'HF >@ % +XPEOHW  &RPSXWDWLRQ RI %ORFNLQJ SUREDELOLW\ LQ RSWLFDO QHWZRUNV ZLWK DQG ZLWKRXW ZDYHOHQJWKFRQYHUWHUVt -XQH-6$&9RO1R >@$*XPDVWHHWDOt %,7&$%LIXUFDWHG,QWHUFRQQHFWLRQWR7UDIILFDQG&KDQQHO$VVLJQPHQWLQ 0HWUR5LQJVu 3URFRI2)&$QDKLHP&$7X* 



End-to-End Bandwidth Estimation for Congestion Control in Packet Networks /XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR 

'LSDUWLPHQWRGu ,QJHJQHULDGHOOu ,QQRYD]LRQH8QLYHUVLW GL/HFFH 9LD0RQWHURQL/HFFH,WDO\ [email protected]





'LSDUWLPHQWRGL(OHWWURWHFQLFDHG(OHWWURQLFD3ROLWHFQLFRGL%DUL 9LD2UDERQD%DUL,WDO\ [email protected]

Abstract. 7RGD\ 7&3,3 FRQJHVWLRQ FRQWURO LPSOHPHQWV WKH additive increase/multiplicative decrease $,0'  SDUDGLJP WR SUREH QHWZRUN FDSDFLW\ DQG REWDLQ D v URXJKw  EXW UREXVW PHDVXUHPHQW RI WKH EHVW HIIRUW DYDLODEOH EDQGZLGWK :HVWZRRG 7&3 SURSRVHV DQ additive increase/adaptive decrease SDUDGLJP WKDW DGDSWLYHO\ VHWV WKH WUDQVPLVVLRQ UDWH DW WKH HQG RI WKH SURELQJ SKDVH WR PDWFK WKH EDQGZLGWK XVHG DW WKH WLPH RI FRQJHVWLRQ ZKLFK LV WKH GHILQLWLRQ RI EHVWHIIRUW DYDLODEOH EDQGZLGWK LQ D FRQQHFWLRQOHVV SDFNHW QHWZRUN7KLVSDSHUDGGUHVVHVWKHFKDOOHQJLQJLVVXHRIHVWLPDWLQJWKHEHVWHIIRUW EDQGZLGWKDYDLODEOHIRUD7&3,3FRQQHFWLRQE\SURSHUO\FRXQWLQJDQGILOWHULQJ WKHIORZRIDFNQRZOHGJPHQWVSDFNHWVXVLQJGLVFUHWHWLPHILOWHUV:HVKRZWKDW LQ RUGHU WR LPSOHPHQW D ORZSDVV ILOWHU LQ SDFNHW QHWZRUNV LW LV QHFHVVDU\ WR LPSOHPHQW DQ DQWL $&. FRPSUHVVLRQ DOJRULWKP ZKLFK SOD\V WKH UROH RI D FODVVLFDQWLDOLDVLQJILOWHU0RUHRYHUDFRPSDULVRQRIWLPHLQYDULDQWDQGWLPH YDU\LQJGLVFUHWHILOWHUVWREHXVHGDIWHUWKHDQWLDOLDVLQJDOJRULWKPLVGHYHORSHG

1 Introduction 7KH WRGD\ GRPLQDQW ,QWHUQHW LV D JOREDO SDFNHW QHWZRUN WKDW LPSOHPHQWV UHVRXUFH VKDULQJ WKURXJK VWDWLVWLFDO PXOWLSOH[LQJ 3DFNHWV DUH GHOLYHUHG KRS E\ KRS E\ D FRQQHFWLRQOHVVQHWZRUNOD\HUWKDWHPSOR\VVWRUHDQGIRUZDUGVZLWFKLQJXVLQJfirst in first out ),)2 TXHXLQJ7KHVWDELOLW\RIWKH,QWHUQHWDQGLQSDUWLFXODUWKHSUHYHQWLRQ RIFRQJHVWLRQUHTXLUHVWKDWIORZVXVHVRPHIRUPRIHQGWRHQGFRQJHVWLRQFRQWUROWR DGDSWWKHLQSXWUDWHWRWKHDYDLODEOHEDQGZLGWK>@7KXVWKHJRDORIREWDLQLQJDQ HQGWRHQG HVWLPDWH RI WKH EDQGZLGWK DYDLODEOH IRU D 7&3 FRQQHFWLRQ LV FUXFLDO LQ RUGHUWRGHVLJQPRUHHIILFLHQWDQGIDLUFRQJHVWLRQFRQWURODOJRULWKPV 7RGD\7&3FRQJHVWLRQFRQWUROZDVLQWURGXFHGLQWKHODWHHLJKWLHV>@DQGIROORZV WKH DGGLWLYH LQFUHDVHPXOWLSOLFDWLYH GHFUHDVH SURELQJ SDUDGLJP $,0'  >@ 7KH DGGLWLYHSKDVHOLQHDUO\LQFUHDVHVWKHWUDQVPLVVLRQUDWHXQWLOWKHQHWZRUNFDSDFLW\LVKLW DQG WKH VHQGHU EHFRPHV DZDUH RI FRQJHVWLRQ YLD WKH UHFHSWLRQ RI GXSOLFDWH DFNQRZOHGJPHQWV '83$&.V RUWKHH[SLUDWLRQRIDWLPHRXW7KHQWKHVHQGHUUHDFWV WR OLJKW FRQJHVWLRQ LH  '83$&.V  E\ KDOYLQJ WKH FRQJHVWLRQ ZLQGRZ IDVW UHFRYHU\  DQG VHQGLQJ DJDLQ WKH PLVVLQJ SDFNHW IDVW UHWUDQVPLW  DQG WR KHDY\ 0$MPRQH0DUVDQHWDO (GV 4R6,3/1&6SS 6SULQJHU9HUODJ%HUOLQ+HLGHOEHUJ

/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

FRQJHVWLRQ LH WLPHRXW  E\ UHGXFLQJ WKH FRQJHVWLRQ ZLQGRZ WR RQH PXOWLSOLFDWLYH GHFUHDVHSKDVH $IWHUDWLPHRXWRUDWWKHEHJLQQLQJRIWKHFRQQHFWLRQWKH7&3HQWHUV D IDVWHU LQFUHDVLQJ SKDVH WKDW LV H[SRQHQWLDO DQG DLPV DW JUDEELQJ WKH EHVWHIIRUW DYDLODEOHEDQGZLGWKIDVWHU 7KH$,0'SDUDGLJPFDQEHYLHZHGDVDQHQGOHVVVHULHVRIF\FOHVKDYLQJDOLQHDU RUH[SRQHQWLDOLQFUHDVLQJSKDVHDQGDPXOWLSOLFDWLYHGHFUHDVLQJSKDVHZKLFKDLPDW FRQWLQXRXVO\ SURELQJ WKH QHWZRUN FDSDFLW\ WR REWDLQ D v URXJKw  EXW UREXVW PHDVXUHPHQWRIWKHEHVWHIIRUWEDQGZLGWKWKDWLVDYDLODEOHIRUD7&3FRQQHFWLRQ$V UHSRUWHG LQ >@ v 7KLV PHFKDQLVP FDQ LQVXUH WKDW QHWZRUN FDSDFLW\ LV QRW H[FHHGHG EXWLWFDQQRWLQVXUHIDLUVKDULQJRIWKDWFDSDFLW\w ,QIDFWLWKDVEHHQVKRZQWKDWWKH WKURXJKSXWRID 7&3 FRQQHFWLRQ LV SURSRUWLRQDO WR WKH LQYHUVHRI LWV URXQG WULS WLPH >@ZKLFKIDYRUVVKRUWHUFRQQHFWLRQV)XUWKHUPRUHWRGD\7&3LVQRWZHOOVXLWHGIRU ZLUHOHVV OLQNV VLQFH ORVVHV GXH WR XQUHOLDEOH UDGLR FKDQQHOV DUH PLVLQWHUSUHWHG DV D V\PSWRP RI FRQJHVWLRQ WKXV OHDGLQJ WR DQ XQGXH UHGXFWLRQ RI WKH WUDQVPLVVLRQ UDWH DQG ORZ XWLOL]DWLRQ RI D ZLUHOHVV SDWK $V D FRQVHTXHQFH WRGD\ 7&3 UHTXLUHV VXSSOHPHQWDU\ OLQN OD\HU SURWRFROV VXFK DV UHOLDEOH OLQNOD\HU RU VSOLWFRQQHFWLRQV DSSURDFKWRHIILFLHQWO\RSHUDWHRYHUZLUHOHVVOLQNV>@ :HVWZRRG7&3SURSRVHVWRLPSURYHIDLUQHVVDQGHIILFLHQF\RIFRQJHVWLRQFRQWURO E\ LQWURGXFLQJ DQ LQQRYDWLYH HQGWRHQG EDQGZLGWK HVWLPDWLRQ DOJRULWKP ,Q SDUWLFXODU:HVWZRRG7&3OHDYHVXQFKDQJHGWKHSURELQJSKDVHRIFODVVLF7&3EXWLW VXEVWLWXWHVWKHPXOWLSOLFDWLYHGHFUHDVHSKDVHZLWKDQDGDSWLYHGHFUHDVHSKDVHZKLFK VHWVWKHFRQWUROZLQGRZVE\WDNLQJLQWRDFFRXQWWKHEDQGZLGWKHVWLPDWH,WKDVEHHQ VKRZQ WKDW :HVWZRRG 7&3 LQFUHDVHV WKH 7&3 WKURXJKSXW RYHU ZLUHOHVV OLQNV LQFUHDVHVWKHIDLUQHVVLQEDQGZLGWKDOORFDWLRQZUW5HQR7&3DQGLVIULHQGO\WRZDUGV 5HQR7&3>@ ,W LV ZRUWK UHPDUNLQJ WKDW WKH HQGWRHQG EDQGZLGWK HVWLPDWLRQ PHFKDQLVP SURSRVHGLQ:HVWZRRG7&3DQGWKDWZHDUHJRLQJWRLQYHVWLJDWHLQWKLVSDSHULVEXLOW RQWKHVWDQGDUGSURELQJPHFKDQLVPRIWRGD\7&3WKDWLVLWLVEDVHGRQSURELQJWKH QHWZRUNFDSDFLW\XVLQJWKHVORZVWDUWDQGFRQJHVWLRQDYRLGDQFHSKDVHV$FRQJHVWLRQ HSLVRGH DW WKH HQG RI D SURELQJ SKDVH SRLQWV RXW WKDW DOO WKH EHVWHIIRUW DYDLODEOH EDQGZLGWKKDVEHHQJUDEEHG7KHUHIRUHDQHVWLPDWHRIWKHXVHGEDQGZLGWKDWWKHHQG RIDSURELQJSKDVHLVE\GHILQLWLRQDQHVWLPDWHRIWKHDYDLODEOHEHVWHIIRUWEDQGZLGWK LQDVWDWLVWLFDOO\PXOWLSOH[HGSDFNHWQHWZRUN7KHODWWHUREVHUYDWLRQLVYDOXDEOHWREH NHSWLQPLQGEHFDXVHWKHXVHGEDQGZLGWKH[KLELWVKLJKYDULDELOLW\ZLWKWLPHLQSDFNHW QHWZRUNVGXHWRVWDWLVWLFDOPXOWLSOH[LQJZKHUHDVWKHDYDLODEOHEHVWHIIRUWEDQGZLGWK PLJKWQRW 7KH HQGWRHQGEDQGZLGWK HVWLPDWLRQ DOJRULWKP LV D FULWLFDO LVVXH 7KHEDVLF LGHD UHSRUWHGLQ>@LVWRJHWDQHVWLPDWHRIWKHXVHGEDQGZLGWKE\FRXQWLQJDQGORZSDVV ILOWHULQJ WKH IORZ RI $&. SDFNHWV GXULQJ WKH GDWD WUDQVIHU ,Q SDUWLFXODU ZKHQ DQ $&.DUULYHVLWFDQEHDUJXHGWKDWDFHUWDLQDPRXQWRIGDWDKDVEHHQGHOLYHUHGVLQFH WKHSUHYLRXV$&.DUULYDOWLPHDQGDVDPSOHRIWKHXVHGEDQGZLGWKFDQEHFRPSXWHG %DQGZLGWKVDPSOHVPXVWEHORZSDVVILOWHUHGWRREWDLQWKHORZIUHTXHQF\FRPSRQHQWV RI WKH XVHG EDQGZLGWK EHFDXVH FRQJHVWLRQ LV RQO\ GXH WR WKH ORZIUHTXHQF\ FRPSRQHQWV RI WKH WUDIILF >@ /RZSDVV ILOWHULQJ XVLQJ GLVFUHWHWLPH ILOWHU LV D FKDOOHQJLQJJRDOGXHWRWKHIDFWWKDW$&.SDFNHWVGRQRWDUULYHDWFRQVWDQWVDPSOLQJ LQWHUYDOV VLQFH SDFNHWV QHWZRUNV DUH DV\QFKURQRXV V\VWHPV ,Q SDUWLFXODU $&. SDFNHWV H[SHULHQFH FRQJHVWLRQ DORQJ WKH EDFNZDUG SDWK WKH\ WUDYHUVH DQG DUULYH EXQFKHG 7KH ODWWHU SKHQRPHQD NQRZQ DV $&. FRPSUHVVLRQ >@ SURYRNHV

(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV

FRQVLGHUDEOH EDQGZLGWK RYHUHVWLPDWH WKDW LV GLVUXSWLYH RI WKH DGDSWLYH GHFUHDVH PHFKDQLVPDQGOHDGVWRFRQQHFWLRQVWDUYDWLRQ 7KHGLVUXSWLYHHIIHFWVRI$&.FRPSUHVVLRQRQWKHEDQGZLGWKHVWLPDWLRQDOJRULWKP ZHUHQRWHYLGHQWLQWKHRULJLQDOSDSHURQ7&3:HVWZRRGEHFDXVHWKHSKHQRPHQDRI $&. FRPSUHVVLRQ ZDV QHJOLJLEOH LQ WKH FRQVLGHUHG VFHQDULRV 7KH\ ZHUH VKRZQ LQ >@DORQJZLWKDQHZILOWHULQJWHFKQLTXHDQGDPDWKHPDWLFDOPRGHOIRUWKHORQJWHUP :HVWZRRG7&3WKURXJKSXW 7KLV SDSHU LV HQWLUHO\ GHYRWHG WR WKH FKDOOHQJLQJ LVVXH RI HQGWRHQG EDQGZLGWK HVWLPDWLRQ LQ SDFNHW QHWZRUNV ,Q SDUWLFXODU LW LV VKRZQ WKDW $&. FRPSUHVVLRQ JHQHUDWHV DOLDVHG EDQGZLGWK VDPSOHV WKDW OHDG WR JUHDWO\ RYHUHVWLPDWH WKH XVHG EDQGZLGWK 7KHUHIRUH LW LV QHFHVVDU\ WR LPSOHPHQW DQ DQWL $&. FRPSUHVVLRQ DOJRULWKP ZKLFK SOD\V WKH UROH RI D FODVVLF DQWLDOLDVLQJ ILOWHU EHIRUH XVLQJ DQ\ GLVFUHWHWLPH ILOWHU LQ SDFNHW QHWZRUNV 7LPHLQYDULDQW DQG WLPHYDU\LQJ GLVFUHWH ILOWHUVDUHFRPSDUHG6LPXODWLRQUHVXOWVVKRZWKDWLWLVSRVVLEOHWRREWDLQDQHVWLPDWH RIDYDLODEOHEDQGZLGWKZKLFKHQKDQFHVWKHSHUIRUPDQFHRI7&3FRQJHVWLRQFRQWURO 7KHSDSHULVRUJDQL]HGDVIROORZV6HFWLRQVXPPDUL]HVWKHUHODWHGZRUN6HFWLRQ  GHVFULEHV WKH :HVWZRRG 7&3 FRQJHVWLRQ FRQWURO DOJRULWKP 6HFWLRQ  IRFXVHV RQ WLPHYDU\LQJ DQG WLPHLQYDULDQW GLVFUHWHWLPH ILOWHUV IRU ORZSDVV ILOWHULQJ DQG EDQGZLGWK HVWLPDWLRQ 6HFWLRQ  LQWURGXFHV WKH DQWLDOLDVLQJ ILOWHU DQG WHVW WLPH LQYDULDQWDQGWLPHYDU\LQJGLVFUHWHWLPHILOWHUVXVLQJWKHQVVLPXODWRU>@ILQDOO\ 6HFWLRQGUDZVWKHFRQFOXVLRQV

2 Related Work 7&3 9HJDV LV WKH ILUVW VLJQLILFDQW H[DPSOH RI FRQJHVWLRQ FRQWURO DOJRULWKP WKDW SDUWLDOO\ GHSDUWV IURP WKH $,0' SDUDGLJP E\ SURSRVLQJ WZR HVWLPDWHV D  WKH H[SHFWHG FRQQHFWLRQ UDWH cwndRTTmin DQG E  WKH DFWXDO FRQQHFWLRQ UDWH cwndRTT ZKHUH RTT LV WKH URXQG WULS WLPH DQG RTTmin LV WKH PLQLPXP PHDVXUHG RTT >@ :KHQWKHdifferenceEHWZHHQWKHH[SHFWHGDQGWKHDFWXDOUDWHLVOHVVWKDQDWKUHVKROG !WKHcwndLVDGGLWLYHO\LQFUHDVHG:KHQWKHdifferenceLVJUHDWHUWKDQDWKUHVKROG !WKHQWKHcwndLVDGGLWLYHO\GHFUHDVHG:KHQWKHGLIIHUHQFHLVEHWZHHQDQG cwnd LV NHSW FRQVWDQW >@ 9HJDV FDQ EH YLHZHG DV WKH ILUVW DWWHPSW WR XVH D EDQGZLGWKHVWLPDWLRQVFKHPHWRLPSURYHWKHLQWHUQHWFRQJHVWLRQFRQWURO+RZHYHULW VKRXOGEHQRWHGWKDW9HJDVHPSOR\VWKHDFWXDOVHQGLQJUDWHcwndRTTUDWKHUWKDQWKH UDWH RI WKH UHWXUQLQJ $&.V WR LQIHU FRQJHVWLRQ WKH VHQGLQJ UDWH cwnd/RTT LV D PHDVXUHRIEDQGZLGWKWKDWLVEDVHGRQWKHQXPEHURIVHQWSDFNHWV cwnd DQGQRWRQ WKHQXPEHURIDFNQRZOHGJHGSDFNHWV$VDFRQVHTXHQFHLWGRHVQRWWDNHLQWRDFFRXQW WKDW D IUDFWLRQ RI VHQW SDFNHWV FRXOG EH ORVW DQG FRXOG QRW FRUUHVSRQG WR DQ DFWXDO EDQGZLGWKFDSDFLW\WKDWLVWKH9HJDVDFWXDOUDWHRYHUHVWLPDWHVWKHXVHGEDQGZLGWK 7KH ILUVW DWWHPSW WR H[SORLW $&. SDFNHWV IRU EDQGZLGWK HVWLPDWLRQ LV WKH SDFNHW SDLU 33  DOJRULWKP ZKLFK WULHV WR LQIHU WKH ERWWOHQHFN DYDLODEOH EDQGZLGWK DW WKH VWDUWLQJRIDFRQQHFWLRQE\PHDVXULQJWKHLQWHUDUULYDOWLPHEHWZHHQWKH$&.VRIWZR SDFNHWV WKDW DUH VHQW EDFN WR EDFN >@ +RH SURSRVHV D UHILQHG 33 PHWKRG IRU HVWLPDWLQJWKHDYDLODEOHEDQGZLGWKLQRUGHUWRSURSHUO\LQLWLDOL]HWKHssthresh>@WKH EDQGZLGWKLVFDOFXODWHGE\XVLQJWKHOHDVWVTXDUHHVWLPDWLRQRQWKHUHFHSWLRQWLPHRI WKUHH $&.V FRUUHVSRQGLQJ WR WKUHH FORVHO\VSDFHG SDFNHWV $OOPDQ DQG 3D[VRQ

/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

HYDOXDWH WKH 33 WHFKQLTXHV DQG VKRZ WKDW LQ SUDFWLFH WKH\ SHUIRUP OHVV ZHOO WKDQ H[SHFWHG>@/DLDQG%DNHUSURSRVHDQHYROXWLRQRIWKH33DOJRULWKPIRUPHDVXULQJ WKH OLQN EDQGZLGWK LQ ),)2TXHXLQJ QHWZRUNV >@ 7KH PHWKRG FRQVXPHV OHVV QHWZRUN EDQGZLGWK ZKLOH PDLQWDLQLQJ DSSUR[LPDWHO\ WKH VDPH DFFXUDF\ RI RWKHU PHWKRGVZKLFKLVSRRUIRUSDWKVORQJHUWKDQIHZKRSV-DLQDQG'RYUROLVSURSRVHVWR XVHVWUHDPVRISURELQJSDFNHWVWRPHDVXUHWKHHQGWRHQGDYDLODEOHEDQGZLGWKZKLFK LVGHILQHGDVWKHPD[LPXPUDWHWKDWWKHSDWKFDQSURYLGHWRDIORZZLWKRXWUHGXFLQJ WKHUDWHRIWKHUHVWRIWKHWUDIILF>@)LQDOO\WKH\IRFXVRQWKHUHODWLRQVKLSEHWZHHQ WKHDYDLODEOHEDQGZLGWKLQDSDWKWKH\PHDVXUHDQGWKHWKURXJKSXWRIDSHUVLVWHQW7&3 FRQQHFWLRQ7KH\VKRZWKDWWKHDYHUDJHGWKURXJKSXWRID7&3FRQQHFWLRQLVDERXW PRUHWKDQWKHDYDLODEOHEDQGZLGWKPHDVXUHGE\WKHLUWRROGXHWRWKHIDFWWKDWWKH 7&3SURELQJPHFKDQLVPJHWVPRUHEDQGZLGWKWKDQZKDWZDVSUHYLRXVO\DYDLODEOHLQ WKH SDWK JUDEELQJ SDUW RI WKH WKURXJKSXW RI RWKHU FRQQHFWLRQV $ VLPLODU WHFKQLTXH KDV EHHQ SURSRVHG LQ >@ ,W XVHV VHTXHQFHV RI SDFNHW SDLUV DW LQFUHDVLQJ UDWHV DQG HVWLPDWHV WKH DYDLODEOH EDQGZLGWK E\ FRPSDULQJ LQSXW DQG RXWSXW UDWHV RI GLIIHUHQW SDFNHW SDLUV (VWLPDWLQJ WKH DYDLODEOH EDQGZLGWK DW WKH EHJLQQLQJ RI D 7&3 FRQQHFWLRQLVDGLIIHUHQWDQGPXFKPRUHGLIILFXOWWDVNWKDQPHDVXULQJWKHDFWXDOUDWHD 7&3FRQQHFWLRQLVDFKLHYLQJGXULQJWKHGDWDWUDQVIHUDVLWLVGRQHE\:HVWZRRG7&3 >@,QSDUWLFXODU:HVWZRRG7&3ORZSDVVILOWHUVWKHIORZRIUHWXUQLQJ$&.VWRJHW DQHVWLPDWHRIWKHEDQGZLGWKD7&3FRQQHFWLRQLVXVLQJ+RZHYHUWKHILOWHUSURSRVHG LQ >@ GRHV QRW ZRUN SURSHUO\ LQ WKH SUHVHQFH RI $&. FRPSUHVVLRQ EHFDXVH RI DOLDVLQJ ,Q SDUWLFXODU ZKHQ LQ WKH SUHVHQFH RI $&. FRPSUHVVLRQ WKH HVWLPDWLRQ DOJRULWKPGHVFULEHGLQ>@FDXVHVDQRYHUHVWLPDWHRIWKHEDQGZLGWKWKDWLVGLVUXSWLYH RI WKH :HVWZRRG DGDSWLYH GHFUHDVH PHFKDQLVP DQG OHDGV WR VWDUYDWLRQ DQG IDLUQHVV GLVUXSWLRQ>@

3 Westwood TCP Congestion Control 7&3:LVDVHQGHUVLGHRQO\PRGLILFDWLRQRIWKH7&3VWDFN,WSURSRVHVDQHQGWRHQG EDQGZLGWK HVWLPDWLRQ DOJRULWKP WKDW LV EXLOW RQ WKH VWDQGDUG SURELQJ PHFKDQLVP RI WRGD\7&3,WLPSOHPHQWVVORZVWDUWDQGFRQJHVWLRQDYRLGDQFHSKDVHVVXFKDVFODVVLF 5HQR7&3WRSUREHWKHQHWZRUNEXWDIWHUFRQJHVWLRQLWHPSOR\VWKHHVWLPDWHRIWKH EHVWHIIRUWDYDLODEOHEDQGZLGWKBWRSURSHUO\VHWWKHFRQJHVWLRQZLQGRZDQGWKHVORZ VWDUWWKUHVKROG,QSDUWLFXODUZKHQD7&3:VHQGHUUHFHLYHV'83$&.VLWVHWVERWK ssthresh DQG cwnd HTXDO WR max> B RTTmin seg_size@ ZKHUH RTTmin LV WKH PLQLPXPPHDVXUHGRTT DQGseg_sizeLVWKHVL]HRIWKHVHQWVHJPHQWV2QWKHRWKHU KDQGZKHQDWLPHRXWH[SLUHVssthreshLVVHWDVLQWKHSUHYLRXVFDVHZKHUHDVcwndLV VHWHTXDOWRVHJPHQW ,W LV LPSRUWDQW WR QRWLFH WKDW WKH VHWWLQJ ssthresh B RTTmin seg_size SURYLGHV D VORZVWDUW WKUHVKROG WKDW IROORZV H[DFWO\ WKH EHVWHIIRUW DYDLODEOH EDQGZLGWK DV LW LV FRPSXWHGE\WKH7&3:HVWZRRGVHQGHU RTTminseg_size LVDVFDOHIDFWRU 7KHUHIRUH WKHHIIHFWLYHDELOLW\RI:HVWZRRG7&3WRWUDFNWKHDYDLODEOHEDQGZLGWKFDQEHWHVWHG E\SORWWLQJWKHssthresh 7KH adaptive decrease PHFKDQLVP LPSURYHV WKH VWDELOLW\ RI WKH VWDQGDUG 7&3 multiplicative decrease DOJRULWKP VLQFH LW FDQ HQVXUH WKDW WKH FRQJHVWLRQ ZLQGRZ LV UHGXFHGHQRXJKLQWKHSUHVHQFHRIKHDY\FRQJHVWLRQDQGQRWWRRPXFKLQWKHSUHVHQFH

(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV

RIOLJKWFRQJHVWLRQRUORVVHVQRWGXHWRFRQJHVWLRQVXFKDVLQWKHFDVHRIUDGLROLQNV &OHDUO\ D NH\ UHTXLUHPHQW LQ RUGHU WR KDYH D SURSHUO\ ZRUNLQJ DGDSWLYH GHFUHDVH PHFKDQLVPLVWKDWWKHEDQGZLGWKHVWLPDWHLVFRUUHFW 7RFRQFOXGHWKLVEDFNJURXQGVHFWLRQZHDOVRQRWLFHWKDWWKHDGDSWLYHVHWWLQJRIWKH FRQWUROZLQGRZVLQFUHDVHVWKHIDLUDOORFDWLRQRIDYDLODEOHEDQGZLGWKWRGLIIHUHQW7&3 IORZV 7KLV FDQ EH LQWXLWLYHO\ H[SODLQHG E\ FRQVLGHULQJ WKDW WKH ZLQGRZ VHWWLQJ RI 7&3 :HVWZRRG WUDFNV WKH HVWLPDWHG EDQGZLGWK VR WKDW LI WKH HVWLPDWH LV D JRRG PHDVXUHPHQWRIWKHIDLUVKDUHWKHQWKHIDLUQHVVLVLPSURYHG IRUDPDWKHPDWLFDOSURRI RIWKLVUHVXOWVVHH>@ 0RUHRYHUWKHVHWWLQJcwnd B RTTmin VXVWDLQVDWUDQVPLVVLRQ UDWHcwndRTT B RTTminRTTWKDWLVOHVVWKDQWKHEDQGZLGWKB HVWLPDWHGDWWKHWLPH RIFRQJHVWLRQDVDFRQVHTXHQFHWKHFRQVLGHUHG7&3IORZFOHDUVRXWLWVSDWKEDFNORJ DIWHU D FRQJHVWLRQ HSLVRGH WKXV OHDYLQJ URRP IRU FRH[LVWLQJ IORZV DQG LPSURYLQJ VWDWLVWLFDOPXOWLSOH[LQJDQGIDLUQHVV

4 Bandwidth Estimation Algorithms 7KLVVHFWLRQIRFXVHVRQWKHLVVXHRIHVWLPDWLQJWKHXVHGEDQGZLGWKE\FRXQWLQJ$&. SDFNHWVDQGE\ILOWHULQJWKHLQIRUPDWLRQWKH\FRQYH\ )LJ  GHSLFWV WKH HQGWRHQG VHQGHUEDVHG EDQGZLGWK HVWLPDWLRQ IUDPHZRUN ,W VKRZV D :HVWZRRG 7&3 VHQGHU LQMHFWLQJ GDWD VHJPHQWV LQWR WKH ,QWHUQHW DQG UHFHLYLQJ$&.VIURPWKHUHFHLYHU:KHQDQ$&.LVUHFHLYHGDWWLPHtkLWPHDQVWKDW DFHUWDLQDPRXQWRIGDWDdkKDVEHHQUHFHLYHGE\WKH7&3UHFHLYHU,QSDUWLFXODURQ $&.UHFHSWLRQWKHIROORZLQJsampleRIEDQGZLGWKXVHGE\WKH7&3FRQQHFWLRQFDQ EHFRPSXWHG bk 

dk d  k  t k t k   k

1 

ZKHUH tk  LV WKH WLPH WKH SUHYLRXV $&. ZDV UHFHLYHG DQG  k  t k t k   LV WKH ODVW LQWHUDUULYDO WLPH 6LQFH FRQJHVWLRQ LV GXH WR ORZIUHTXHQF\ FRPSRQHQWV RI XVHG EDQGZLGWKVDPSOHV  PXVWEHORZSDVVILOWHUHGE\XVLQJDGLVFUHWHWLPHILOWHU7KH ODWWHULVDGHOLFDWHWDVNEHFDXVHVDPSOHV  FRQWDLQKLJKIUHTXHQF\FRPSRQHQWVGXHWR WKH IDFW WKDW $&. SDFNHWV FDQ FRPH EDFN WR WKH VHQGHU EXQFKHG DV ZHOO DV HTXDOO\ VSDFHG $V D FRQVHTXHQFH DQ\ GLVFUHWHWLPH ORZSDVV ILOWHU ZLOO UHPDUNDEO\ RYHUHVWLPDWHWKHDYDLODEOHEDQGZLGWKGXHWRWKHSKHQRPHQDRIDOLDVLQJ ,QWKLVVHFWLRQZHZLOOILUVWVKRZWKURXJKVLPXODWLRQVWKDWERWKWLPHLQYDULDQWDQG WLPHYDU\LQJGLVFUHWHWLPHILOWHUVIDLOWRHVWLPDWHWKHXVHGEDQGZLGWKGXHWRDOLDVLQJ HIIHFWV 7KHQ ZH ZLOO LQWURGXFH DQ DQWL $&.FRPSUHVVLRQ DOJRULWKP WKDW SOD\V WKH FODVVLFUROHRIDQDQWLDOLDVLQJILOWHULQSDFNHWQHWZRUNV>@ :HFRQVLGHUWKHIROORZLQJWKUHHW\SHVRIGLVFUHWHWLPHORZSDVVILOWHUVZKLFKDUH DOOREWDLQHGE\GLVFUHWL]LQJDILUVWRUGHUORZSDVVFRQWLQXRXVILOWHU $ WLPHYDU\LQJ ILOWHU REWDLQHG E\ GLVFUHWL]LQJ WKH FRQWLQXRXV ILOWHU XVLQJ D =HUR2UGHU+ROGHU =2+ >@ $WLPHLQYDULDQWILOWHUREWDLQHGXVLQJD=2+ $WLPHYDU\LQJILOWHUREWDLQHGE\GLVFUHWL]LQJWKHFRQWLQXRXVILOWHUXVLQJWKH ELOLQHDUDSSUR[LPDWLRQ>@

/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

,QRUGHUWRFRPSDUHWKHWKUHHILOWHUVDERYHZHHPSOR\WKHWRSRORJ\LQ)LJ

  6HJPHQWV    :HVWZRRG VHQGHU     $QWL$&.  FRPSUHVVLRQ   5HWXUQLQJ$&.V  'LVFUHWHWLPH  ORZSDVVILOWHU 

 

%DQGZLGWK HVWLPDWH

INTERNET

Fig. 1.%DQGZLGWKHVWLPDWLRQVFKHPH

              

'DWDIORZ %RWWOHQHFNOLQN

)RUZDUG WUDIILF

 6HQGHU 

6LQN

7&3: 6LQN

7&3:

8'3

 5RXWHU

%DFNZDUG WUDIILF

7&3: 6LQNV

 5RXWHU

8'3

7&3: FRQQHFWLRQV

Fig. 2.7RSRORJ\IRUWHVWLQJWKHGLVFUHWHWLPHILOWHUV

,W FRQVLVWV RI D GXSOH[ 0ESV ERWWOHQHFN OLQN VKDUHG E\ RQH SHUVLVWHQW 7&3 :HVWZRRG 7&3:  VRXUFH LPSOHPHQWLQJ WKH 1HZ 5HQR IHDWXUH >@ DQG RQH 212)) FRQVWDQW ELW UDWH 8'3 VRXUFH WUDQVPLWWLQJ GDWD DW 0ESV GXULQJ WKH 21 SHULRGWKDWODVWVVDQGLVVLOHQWGXULQJWKH2))SHULRGWKDWODVWVVWRR2QWKH UHYHUVH SDWK  7&3: VRXUFHV LPSOHPHQWLQJ WKH 1HZ 5HQR RSWLRQ SURYRNH FRQJHVWLRQ DORQJ WKH 7&3 :HVWZRRG $&. SDWK DQG H[FLWH $&. FRPSUHVVLRQ 3DFNHWVDUH%\WHVORQJZKHUHDV$&.VDUH%\WHVORQJ7KHERWWOHQHFNEXIIHU VL]H LV VHW HTXDO WR WKH OLQN FDSDFLW\ WLPHV WKH URXQG WULS WLPH RI WKH IRUZDUG 7&3 FRQQHFWLRQZKRVHYDOXHLVPV$OO7&3VLQNVLPSOHPHQWWKHGHOD\HG$&.RSWLRQ >@7KHLQLWLDOFRQJHVWLRQZLQGRZKDVEHHQVHWHTXDOWRVHJPHQWV>@,QWKHILUVW VHWRIVLPXODWLRQVWKH8'3VRXUFHLVWXUQHG2))WRWHVWYDULRXVHVWLPDWLRQDOJRULWKPV

(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV

LQWKHSUHVHQFHRIFRQVWDQWDYDLODEOHEDQGZLGWKHQYLURQPHQWWKHQLWLVWXUQHG21WR LQYHVWLJDWHWKHHVWLPDWHEHKDYLRULQWKHSUHVHQFHRIWLPHYDU\LQJDYDLODEOHEDQGZLGWK 4.1 A Time-Varying Discrete Time Filter Using a ZOH 7KHILUVWILOWHUZHFRQVLGHULVREWDLQHGGLVFUHWL]LQJDILUVWRUGHUORZSDVVFRQWLQXRXV ILOWHU ZLWK WLPH FRQVWDQW  E\ XVLQJ D ]HUR RUGHU KROGHU =2+  7KH GLVFUHWL]DWLRQ SURFHGXUHLVGHVFULEHGEHORZ $VDPSOHRIXVHGEDQGZLGWK  LVFRQVLGHUHGDVDQLPSXOVHZKLFKDUULYHVHYHU\ WLPHtk WKHVHQGHUUHFHLYHVDQ$&.7KHLPSXOVLYHVDPSOHLVLQWHUSRODWHGYLDD]HUR RUGHUKROGHUZKLFKJHQHUDWHVDSLHFHZLVHFRQVWDQWVLJQDO7KHFRQWLQXRXVSLHFHZLVH FRQVWDQWVLJQDOLVILOWHUHGE\DILUVWRUGHUVLQJOHSROHORZSDVVFRQWLQXRXVILOWHUZLWK WLPHFRQVWDQW 7KHRXWSXWRIWKHWLPHFRQWLQXRXVILOWHULVVDPSOHGDWtkWLPHV6XFK VWHSVOHDGWRWKHIROORZLQJGLVFUHWHWLPHILOWHU bkk   k bkk    k bk 

2 

ZKHUH  k  e  k  7KH,QILQLWH,PSXOVH5HVSRQVHILOWHU  LVLGHQWLFDOWRWKHRQH SURSRVHGLQ>@WRHVWLPDWHWKHDUULYDOUDWHRIDIORZDWQHWZRUNHGJHV )LJ  D  SORWV WKH XVHG EDQGZLGWK VDPSOHV DQG )LJ  E  WKH XVHG EDQGZLGWK HVWLPDWH REWDLQHG XVLQJ D 7&3: VHQGHU LPSOHPHQWLQJ WKH ILOWHU   ,W LV ZRUWK QRWLFLQJ WKDW LQ WKLV FDVH WLPHYDU\LQJ FRHIILFLHQWV FRXQWHUDFW WKH QRQXQLIRUP VDPSOLQJ WLPH DQG PLWLJDWHV WKH HIIHFWV RI $&. FRPSUHVVLRQ ,Q RUGHU WR LOOXVWUDWH KLJK IUHTXHQF\ FRPSRQHQWV GXH WR $&. FRPSUHVVLRQ )LJ  D  VKRZV EDQGZLGWK VDPSOHVIHHGLQJWKHILOWHU  ,WVKRXOGEHQRWLFHGWKDWEDQGZLGWKVDPSOHVH[KLELWD SHDN YDOXH HTXDO WR  0ESV 6XFK D YDOXH LV HTXDO WR WKH UHWXUQLQJ OLQN FDSDFLW\ 0ESV  WLPHV WKH UDWLR EHWZHHQ WKH VHJPHQWV VL]H %\WHV  DQG WKH $&.V VL]H %\WHV WLPHVWZRWRWDNHLQWRDFFRXQWWKDWHDFK$&.DFNQRZOHGJHVWZRVHJPHQWV EHFDXVHRIWKHGHOD\HG$&.RSWLRQ>@ (YHQ WKRXJK ILOWHU   PLWLJDWHV $&. FRPSUHVVLRQ LW GRHV QRW ZRUN IRU HYHU\ YDOXH RI  GXH WR DOLDVLQJ HIIHFWV ,Q IDFW )LJ  VKRZV WKH RYHU HVWLPDWH WKDW LV REWDLQHGE\XVLQJDILOWHUZLWKWLPHFRQVWDQW V 4.2 A Discrete Time Invariant Filter %\FRQVLGHULQJDFRQVWDQWLQWHUDUULYDOWLPH    k WKHILOWHU  JLYHVWKHIROORZLQJ WLPHLQYDULDQWILOWHU bkk   bkk    bk 

3 

  e   

4 

ZKHUH

)LJ D SORWVVDPSOHV  RIWKHXVHGEDQGZLGWKDQG)LJ E SORWVWKHRXWSXWRI WKHILOWHU  ZLWK    ZKHQIHGE\WKHVHVDPSOHV)LJ E VKRZVWKDWWKHILOWHU

/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

RYHUHVWLPDWHV WKH DYDLODEOH EDQGZLGWK XS WR PRUH WKDQ  WLPHV 7KH UHDVRQ LV WKDW EDQGZLGWK VDPSOHV RI )LJ D  FRQWDLQ DOLDVHG IUHTXHQF\ FRPSRQHQWV GXH WR$&. FRPSUHVVLRQ   (

(

8VHG%DQGZLGWK6DPSOHV $YDLODEOHEDQGZLGWK

(

( ESV

ESV

( (

(

(

(VWLPDWHRIWKH8VHG%DQGZLGWK

( (

$YDLODEOHEDQGZLGWK

( 



         

          V

V

D 



E 

Fig. 3.8VHG%DQGZLGWK D 6DPSOHV E 2XWSXWRIWKHILOWHU  

 (

ESV

(

(

(VWLPDWHRIWKH8VHG%DQGZLGWK $YDLODEOHEDQGZLGWK

( 















V







Fig. 4.(VWLPDWHRIWKHXVHGEDQGZLGWKXVLQJWKHILOWHU  ZLWK V

  (

(

8VHG%DQGZLGWK6DPSOHV $YDLODEOHEDQGZLGWK

(

(VWLPDWHRIWKH8VHG%DQGZLGWK

(

$YDLODEOHEDQGZLGWK

(

ESV

(

ESV



(

(

(

(

(

( (

( 

         



          V

V

D 

E 

Fig. 5.8VHGEDQGZLGWK D 6DPSOHV E 2XWSXWRIWKHILOWHU  



(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV

4.3 A Time Varying Filter Using the Bilinear Transformation $VLQWKHSUHYLRXVVHFWLRQDVDPSOHRIXVHGEDQGZLGWK  LVFRPSXWHGHYHU\WLPHtk WKHVHQGHUUHFHLYHVDQ$&.%\DVVXPLQJIRUWKHWLPHEHLQJWKDWLQWHUDUULYDOWLPH EHWZHHQVDPSOHVLVXQLIRUPDQGHTXDOWR  WKHFRQWLQXRXVILUVWRUGHUORZSDVVILOWHU LV GLVFUHWL]HG XVLQJ WKH ELOLQHDU WUDQVIRUPDWLRQ >@ ZKLFK OHDGV WR WKH IROORZLQJ GLVFUHWHWLPHILOWHU b bk    k  bkk  bk   k    

5 

4.3.1 The Filter of Westwood TCP 7RWDNHLQWRDFFRXQWWKDWWKHLQWHUDUULYDOWLPHRIEDQGZLGWKVDPSOHVLVQRWXQLIRUP WKH IROORZLQJ WLPH YDU\LQJ IRUP RI WKH ILOWHU   KDV EHHQ HPSOR\HG LQ :HVWZRRG 7&3>@   k k b bk   bkk  bk   k k   k   k

6 

ZKHUH  k LVWKHLQWHUDUULYDOWLPHEHWZHHQWKH k thVDPSOHDQGWKHk-thVDPSOH,Q RUGHU WR VDWLVI\ WKH 1\TXLVW6KDQQRQ VDPSOLQJ 7KHRUHP WKH LQWHUDUULYDO WLPH  k  PXVWEHOHVVWKDQ   7KHUHIRUHLILWKDSSHQVWKDW  k   WKHQWKHILOWHULVIHGE\ N YLUWXDO VDPSOHV ZLWK LQWHUDUULYDO WLPH    DQG DPSOLWXGH HTXDO WR  ZKHUH N  LQWHJHURI    k  f 0RUHRYHUDQDGGLWLRQDOVDPSOHV bk IHHGVWKHILOWHUZLWK LQWHUDUULYDO WLPH HTXDO WR  k N    ,Q WKH IROORZLQJ ZH VHW  s  XQOHVV RWKHUZLVHVSHFLILHG )LJ  UHSRUWV WKH XVHG EDQGZLGWK VDPSOHV DQG WKH HVWLPDWHG XVHG EDQGZLGWK REWDLQHGXVLQJWKHILOWHU  $VLWFDQEHYLHZHGWKHILOWHUJUHDWO\RYHUHVWLPDWHVWKH EDQGZLGWK EHFDXVH RI $&. FRPSUHVVLRQ WKDW JHQHUDWHV DOLDVHG VDPSOHV ,Q WKH RULJLQDO:HVWZRRG7&3SDSHU>@WKLVSKHQRPHQDZDVQRWHYLGHQWEHFDXVHWKH$&. FRPSUHVVLRQZDVZHDNLQWKHFRQVLGHUHGVFHQDULRV  (

(

8VHG%DQGZLGWK6DPSOHV $YDLODEOHEDQGZLGWK

( (

(

(

ESV

ESV

(VWLPDWHRIWKH8VHG%DQGZLGWK $YDLODEOHEDQGZLGWK

(

(

( (

(

(

( 









 V

D 







 

( 

          V

E 

Fig. 6.8VHG%DQGZLGWK D 6DPSOHV E 2XWSXWRIWKHILOWHU  



/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

5 Anti Aliasing Filter in Packet Networks :HKDYHVHHQWKDW$&.FRPSUHVVLRQJHQHUDWHVEDQGZLGWKVDPSOHVFRQWDLQLQJDOLDVHG IUHTXHQF\ FRPSRQHQWV WKDW FDQQRW EH ORZSDVV ILOWHUHG XVLQJ D GLJLWDO ILOWHU 7KHUHIRUHVLPLODUO\WRWKHFDVHRIILOWHULQJDQDQDORJVLJQDOZKLFKUHTXLUHVWKHDQDORJ VLJQDOEHSUHILOWHUHGE\DQDQWLDOLDVLQJILOWHUEHIRUHXVLQJDGLVFUHWHWLPHILOWHUDOVR LQSDFNHWQHWZRUNVLWLVQHFHVVDU\WRLPSOHPHQWDVRUWRIDQWLDOLDVLQJILOWHU7KHEDVLF LGHD WR LPSOHPHQW DQ DQWLDOLDVLQJ ILOWHU LQ SDFNHW QHWZRUNV LV WR JURXS WKH $&.V UHFHLYHG LQ D VXIILFLHQWO\ ODUJH WLPH LQWHUYDO T DQG FRPSXWH D XQLTXH FRUUHVSRQGLQJ EDQGZLGWK VDPSOH 7KLV RSHUDWLRQ KDV WKH HIIHFW RI VPRRWKLQJ VLQJOH $&.V ZKLFK FRUUHVSRQGV WR ILOWHU RXW KLJK IUHTXHQF\ FRPSRQHQWV ,Q SDUWLFXODU $&.V UHFHLYHG GXULQJWKHODVWRTTDUHJURXSHGLQWRDXQLTXHEDQGZLGWKVDPSOHWKDWLVFRPSXWHGE\ FRQVLGHULQJ WKH WRWDO GDWD DFNQRZOHGJHG RYHU WKH RTT  7R VKRZ WKDW WKH SURSRVHG DOJRULWKP DYRLGV $&. FRPSUHVVLRQ HIIHFWV ZH FRQVLGHU WKH VDPH VFHQDULR LQYHVWLJDWHG LQ WKH SUHYLRXV VLPXODWLRQV ,W LV ZRUWK QRWLQJ WKDW WKH DQWLDOLDVLQJ DOJRULWKPJHQHUDWHVRQHEDQGZLGWKVDPSOHIRUHDFKRTT WKDWLVWKHVDPSOLQJWLPH LVHTXDOWRRTT $VVXPLQJDFRQVWDQWRTTWKHFRHIILFLHQWLQILOWHU  FDQEHVHW DFFRUGLQJO\WR  7KHGLIIHUHQFHEHWZHHQWKHWLPHLQYDULDQWILOWHU  DQGWKHWLPH YDU\LQJILOWHUV  DQG  LVWKDWILOWHU  HPSOR\VDFRQVWDQWFRHIILFLHQWZKHUHDV ILOWHUV  DQG  G\QDPLFDOO\DGMXVWWKHLUFRHIILFLHQWVE\WDNLQJLQWRDFFRXQWWKHODVW VDPSOHV LQWHUDUULYDO WLPH 7KH ODWWHU IHDWXUH LV LPSRUWDQW WR SURYLGH SURSHU ILOWHULQJ DOVRLQVFHQDULRVZLWKODUJHRTTYDULDQFH ,Q RUGHU WR HPSOR\ WKH WLPHYDU\LQJ ILOWHU   LW LV VWLOO QHFHVVDU\ WR VDWLVI\ WKH 1\TXLVW6KDQQRQ VDPSOLQJ WKHRUHP WKDW LV LW PXVW EH  k     >@ 7R EH FRQVHUYDWLYH ZH DVVXPH  k  f    7KXV LI LW KDSSHQV WKDW  k    WKHQ ZH LQWHUSRODWH DQG UHVDPSOH E\ FUHDWLQJ N  LQWHJHU   k   YLUWXDO VDPSOHV bk  WKDW DUULYHZLWK WKH LQWHUDUULYDO WLPH    DQGRQHPRUH VDPSOH bk  DUULYLQJZLWK LQWHU DUULYDOWLPH T   k N    ,WVKRXOGEHQRWLFHGWKDWILOWHU  DOUHDG\LPSOHPHQWVLQWHUSRODWLRQDQGUHVDPSOLQJ WKURXJK WKH =2+ WKDW NHHSV FRQVWDQW WKH VLJQDO GXULQJ WKH ODVW LQWHUDUULYDO WLPH +RZHYHUWKHFRHIILFLHQWRIWKHILOWHU  UHTXLUHVWKHFRPSXWDWLRQRIDQH[SRQHQWLDO WKDWLVKDUGHUWKDQFRPSXWLQJDUDWLRDVLQWKHFDVHRIILOWHU  ,QWKHIROORZLQJRIWKH SDSHUZHZLOOWHVWWKHEHKDYLRURIILOWHUV    DQG  DIWHUDQDQWLDOLDVLQJILOWHULQJ VWDJH 5.1 Bandwidth Estimates in the Presence of Constant Available Bandwidth :H FRQVLGHU WKH VDPH VFHQDULR GHVFULEHG LQ )LJ  )LJ  D  VKRZV WKH EDQGZLGWK VDPSOHV FRPSXWHG XVLQJ WKH DQWLDOLDVLQJ SURFHGXUH ZKHUHDV )LJ  E  VKRZV WKH RXWSXWRIWKHILOWHU  ZKLFKLVIHGE\DQWLDOLDVHGVDPSOHV

(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV (

(

(

ESV

ESV

(

(

( (VWLPDWHRIWKH8VHG%DQGZLGWK

8VHG%DQGZLGWK6DPSOHV $YDLODEOHEDQGZLGWK

( 

















$YDLODEOHEDQGZLGWK

(

 



V

          V

D 



E 

Fig. 7.8VHGEDQGZLGWK D $QWLDOLDVHGVDPSOHV E 2XWSXWRIWKHILOWHU  

 $FRPSDULVRQRI)LJ D DQG)LJ D VKRZVWKDWQRZWKHUHLVQRRYHUHVWLPDWH RIWKHEDQGZLGWKVDPSOHVGXHWRDOLDVLQJ2QFHWKHEDQGZLGWKVDPSOHVDUHREWDLQHG DV VKRZQ LQ )LJ  D  D IXUWKHU VWDJH RI GLVFUHWHWLPH ILOWHULQJ H[WUDFWV WKH ORZ IUHTXHQF\FRPSRQHQWVRIWKHXVHGEDQGZLGWKDVLWLVVKRZQLQ)LJ E $QDORJRXV UHVXOWVKDYHEHHQREWDLQHGZLWKILOWHUV  DQG   5.2 Bandwidth Estimates in the Presence of Time Varying Available Bandwidth

(

(

(

(

(

(

ESV

ESV

,Q WKLV VHFWLRQ ZH LQYHVWLJDWH WKH EHKDYLRU RI WKH WKUHH ORZ SDVV ILOWHUV LQWURGXFHG DERYHLQWKHSUHVHQFHRIDWLPHYDU\LQJDYDLODEOHEDQGZLGWKZKHQEDQGZLGWKVDPSOHV DUHSURSHUO\SUHILOWHUHGXVLQJWKHDQWLDOLDVLQJSURFHGXUH7RWKHSXUSRVHWKHVFHQDULR LQ )LJ  KDV EHHQ FRQVLGHUHG ZLWK WKH 8'3 VRXUFH WXUQHG 21 7KH RTT RI WKH FRQVLGHUHG7&3FRQQHFWLRQLVPV$WILUVWWKHUHYHUVHWUDIILFKDVEHHQWXUQHG2)) WR REVHUYH WKH RXWSXW RI YDULRXV ILOWHUV ZLWKRXW GLVWXUEDQFHV DQG WKHQ WKH UHYHUVH WUDIILF KDV EHHQ WXUQHG 21 WR WHVW WKH ILOWHUV LQ D UHDOLVWLF VFHQDULR ZLWK $&. FRPSUHVVLRQ )LJV  D  DQG E  UHSRUW WKH HVWLPDWH RI WKH XVHG EDQGZLGWK REWDLQHG XVLQJ WKH ILOWHU   ZLWK DQG ZLWKRXW UHYHUVH WUDIILF UHVSHFWLYHO\ $V LW FDQ EH YLHZHG WKH UHYHUVHWUDIILFDIIHFWVWKHHVWLPDWHRIWKHXVHGEDQGZLGWKEHFDXVHRI$&.FRQJHVWLRQ 

(

( (

( (















(VWLPDWHRIWKH8VHG%DQGZLGWK

(

(VWLPDWHRIWKH8VHG%DQGZLGWK $YDLODEOHEDQGZLGWK

(

$YDLODEOHEDQGZLGWK

( 



 



   



D 







 

V

V

E 

Fig. 8. (VWLPDWH RI WKH XVHG EDQGZLGWK ZLWK ILOWHU   D  ZLWKRXW UHYHUVH WUDIILF E  ZLWK UHYHUVHWUDIILF 



/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR

( ( ( ( ( ( ( ( ( ( (

FZQG VVWKUHVK

6HJPHQWV

6HJPHQWV

+RZHYHULWVKRXOGEHFRQVLGHUHGWKDW:HVWZRRG7&3HPSOR\VWKHHVWLPDWHRIWKH XVHGEDQGZLGWKIRUVHWWLQJWKH slow start threshold ssthresh RQO\DIWHUDFRQJHVWLRQ HSLVRGH WKDW LV ZKHQ WKH XVHG EDQGZLGWK UHSUHVHQWV WKH EHVW HIIRUW DYDLODEOH EDQGZLGWK )RU WKLV UHDVRQ WKH HIIHFW RI UHYHUVH WUDIILF LV PXFK ZHDNHU RQ WKH ssthresh G\QDPLFV ZKLFK UHSUHVHQWV WKH HVWLPDWH RI WKH EHVWHIIRUW DYDLODEOH EDQGZLGWK7KLVLVVKRZQLQ)LJ6LPLODUUHVXOWVKDYHEHHQREWDLQHGE\HPSOR\LQJ WKHILOWHUV  DQG   



















( ( ( ( ( ( ( ( ( ( (

FZQG VVWKUHVK



 



  



  

 

V

V



E 

D 

Fig. 9.&RQJHVWLRQZLQGRZDQGVORZVWDUWWKUHVKROGZLWKILOWHU   D ZLWKRXWUHYHUVHWUDIILF E ZLWKUHYHUVHWUDIILF

( ( ( ( ( ( ( ( ( ( (

FZQG VVWKUHVK

6HJPHQWV

6HJPHQWV

,W LV LQWHUHVWLQJ WR FRPSDUH WKH ssthresh RI :HVWZRRG 7&3 ZUW WKH ssthresh RI 5HQR7&3ZKLFKLVSORWWHGLQ)LJ7KHFRPSDULVRQSRLQWVRXWWKDWWKHssthreshRI :HVWZRRG LV ODUJHU WKDQ WKH RQH RI 5HQR 7KLV SURYHV WKDW WKH SURSRVHG EDQGZLGWK HVWLPDWH HQKDQFHV WKH DELOLW\ RI 7&3 FRQJHVWLRQ FRQWURO WR PDWFK WKH DYDLODEOH EDQGZLGWKZKLFKSURYLGHVEHWWHUXWLOL]DWLRQRIQHWZRUNEDQGZLGWK 



















 

( ( ( ( ( ( ( ( ( ( (

FZQG VVWKUHVK





  



D 

  

 

V

V

E 

Fig. 10.&RQJHVWLRQZLQGRZDQGVORZVWDUWWKUHVKROGRI5HQR D ZLWKRXWUHYHUVHWUDIILF E  ZLWKUHYHUVHWUDIILF

5.3 Bandwidth Estimates Obtained by Many Concurrent TCP Flows ,QWKLVVHFWLRQZHLQYHVWLJDWHWKHEDQGZLGWKHVWLPDWHVRIPDQ\:HVWZRRG7&3IORZV FRPSHWLQJIRUWKHVDPHERWWOHQHFNFDSDFLW\:HZRXOGOLNHWKDWJLYHQDOLQNFDSDFLW\ CVKDUHGE\ NIORZVHDFKIORZREWDLQVDQHVWLPDWHRIWKHXVHGEDQGZLGWKRVFLOODWLQJ DURXQG WKH IDLUVKDUH CN DQG D ssthresh ZKLFK LV FORVH WR WKH DYDLODEOH EDQGZLGWK



(QGWR(QG%DQGZLGWK(VWLPDWLRQIRU&RQJHVWLRQ&RQWUROLQ3DFNHW1HWZRUNV

8VHG%DQGZLGWK(VWLPDWHV ESV

( ( ( ( ( ( (

)DLUVKDUH

( 











$YDLODEOH%DQGZLGWK(VWLPDWHV ESV

7KLVZRXOGSURYHWKDWWKHHQGWRHQGEDQGZLGWKHVWLPDWLRQDOJRULWKPFDQLPSURYHWKH IDLUQHVV RI 7&3 FRQJHVWLRQ FRQWURO LQ EDQGZLGWK DOORFDWLRQ :H FRQVLGHU D VLQJOH ERWWOHQHFN VFHQDULR VLPLODU WR WKH RQH GHSLFWHG LQ )LJ  ZKHUH D 0ESV ),)2 ERWWOHQHFNLVVKDUHGE\7&3:SHUVLVWHQWIORZVZLWKRTTsUDQJLQJXQLIRUPO\IURP PVWRPV)LJV D DQG E VKRZWKHHVWLPDWHVRIWKHXVHGEDQGZLGWKDQGRI WKH EHVW HIIRUW DYDLODEOH EDQGZLGWK ssthresh Seg_sizeRTTmin UHVSHFWLYHO\ REWDLQHG E\WKH7&3:FRQQHFWLRQVXVLQJWKHILOWHU  6LPLODUUHVXOWVKDYHEHHQREWDLQHG IRU ILOWHUV   DQG   )LJ  D  VKRZV WKDW WKH XVHG EDQGZLGWK HVWLPDWHV RVFLOODWH DURXQG WKH IDLUVKDUH CN ZKLFK LV GHQRWHG E\ WKH GDVKHG OLQH )XUWKHUPRUH )LJ  E  VKRZV WKDW WKH HVWLPDWHV RI WKH EHVW HIIRUW DYDLODEOH EDQGZLGWK DUH OHVV RVFLOODWLQJ DQG FORVHU WR WKH IDLU VKDUH CN 6LPLODU UHVXOWV KDYH EHHQ REWDLQHG E\ XVLQJWKHILOWHUV  DQG    ( ( ( ( ( ( (

)DLUVKDUH

( 





D 







V

V

E 

Fig. 11. %DQGZLGWK HVWLPDWHV RI  :HVWZRRG IORZV LPSOHPHQWLQJ WKH ILOWHU   D  8VHG %DQGZLGWK E $YDLODEOH%DQGZLGWK

6 Conclusions 7KLV ZRUN KDV IRFXVHG RQ HQGWRHQG EDQGZLGWK HVWLPDWLRQ VFKHPHV WR EH XVHG IRU 7&3FRQJHVWLRQFRQWURO,WKDVEHHQVKRZQWKDWLWLVQHFHVVDU\WRLPSOHPHQWDQDQWL DOLDVLQJILOWHUEHIRUHXVLQJGLVFUHWHWLPHILOWHUVLQSDFNHWQHWZRUNV6LPXODWLRQUHVXOWV KDYHVKRZQWKDWDQWLDOLDVLQJSOXVORZSDVVGLVFUHWHWLPH ILOWHULQJSURYLGHDUHOLDEOH HVWLPDWHRIWKHXVHGEDQGZLGWKWKDWZKHQFRXSOHGZLWKDSURELQJFRQJHVWLRQFRQWURO DOJRULWKP JLYHV DOVR D UHOLDEOH HVWLPDWH RI WKHEHVWHIIRUW DYDLODEOHEDQGZLGWK 7KLV HVWLPDWHHQKDQFHVWKHHIILFLHQF\RI7&3FRQJHVWLRQFRQWURO>@

References   

-DFREVRQ9&RQJHVWLRQDYRLGDQFHDQGFRQWUROLQ3URFHHGLQJVRI$&06LJFRPP  6WDQIRUG&$$XJXVW  y  $OOPDQ 0 3D[VRQ 9 DQG 6WHYHQV :5 7&3 FRQJHVWLRQ FRQWURO 5)&  $SULO  0HODQGHU % %MRUNPDQ 0 DQG *XQQLQJEHUJ 3 $ 1HZ (QGWR(QG 3URELQJ DQG $QDO\VLV 0HWKRG IRU (VWLPDWLQJ %DQGZLGWK %RWWOHQHFNV LQ 3URFHHGLQJV RI *OREDO ,QWHUQHW6\PSRVLXP



/XLJL$OIUHGR*ULHFRDQG6DYHULR0DVFROR                    

&ODUN ' 7KH GHVLJQ SKLORVRSK\ RI WKH '$53$ ,QWHUQHW SURWRFROV LQ 3URFHHGLQJV RI $&06LJFRPPu 6WDQIRUG&$$XJXVW  y  )OR\G 6 )DOO . 3URPRWLQJ WKH XVH RI HQGWRHQG FRQJHVWLRQ FRQWURO LQ WKH ,QWHUQHW ,((($&07UDQVDFWLRQVRQ1HWZRUNLQJ9RO    y  'DK0LQJ&KLX-DLQ5$QDO\VLVRIWKHLQFUHDVHDQGGHFUHDVHDOJRULWKPVIRUFRQJHVWLRQ DYRLGDQFH LQ FRPSXWHU QHWZRUNV &RPSXWHU 1HWZRUNV DQG ,6'1 6\VWHPV 9RO     y  -DLQ 0 'RYUROLV & (QG WR (QG $YDLODEOH %DQGZLGWK 0HDVXUHPHQW 0HWKRGRORJ\ '\QDPLFVDQG5HODWLRQZLWK7&37KURXJKSXWLQ3URFHHGLQJVRI$&06LJFRPP 6WRLFD , 6KHQNHU 6 DQG =KDQJ + &RUH6WDWHOHVV )DLU 4XHXHLQJ $FKLHYLQJ $SSUR[LPDWHO\)DLU %DQGZLGWK$OORFDWLRQV LQ +LJK 6SHHG 1HWZRUNV LQ 3URFHHGLQJV RI $&06LJFRPP 9DQFRXYHU&DQDGD$XJXVW  y  /L 6 4 DQG +ZDQJ & /LQN &DSDFLW\ $OORFDWLRQ DQG 1HWZRUN &RQWURO E\ )LOWHUHG ,QSXW5DWHLQ+LJKVSHHG1HWZRUNV,((($&07UDQVDFWLRQRQ1HWZRUNLQJ9RO    y  Astrom  . - DQG % :LWWHQPDUN   &RPSXWHU FRQWUROOHG V\VWHPV 3UHQWLFH +DOO (QJOHZRRG&OLIIV1- %UDNPR / 6 DQG 3HWHUVRQ / 7&3 9HJDV (QGWRHQG FRQJHVWLRQ DYRLGDQFH RQ D JOREDO,QWHUQHW,(((-RXUQDORQ6HOHFWHG$UHDVLQ&RPPXQLFDWLRQV -6$& ,9RO    y  0DVFROR6&DVHWWL&*HUOD06DQDGLGL0:DQJ57&3:HVWZRRG(QGWR(QG %DQGZLGWK (VWLPDWLRQ IRU (IILFLHQW 7UDQVSRUW RYHU :LUHG DQG :LUHOHVV 1HWZRUNV LQ 3URFHHGLQJVRI$&00RELFRP5RPH,WDO\-XO\   3DGK\H - )LURLX 9 7RZVOH\ ' .XURVH - 0RGHOLQJ 7&3 7KURXJKSXW $ 6LPSOH 0RGHODQGLWV(PSLULFDO9DOLGDWLRQLQ3URFHHGLQJVRI$&06LJFRPP9DQFRXYHU %&&DQDGD6HSWHPEHU  y  0RJXO - & 2EVHUYLQJ 7&3 G\QDPLFV LQ UHDO QHWZRUNV LQ 3URFHHGLQJV RI $&0 6LJFRPPy  1VQHWZRUNVLPXODWRU YHU /%/85/KWWSZZZPDVKFVEHUNHOH\HGXQV /DL . DQG %DNHU 0 0HDVXULQJ /LQN %DQGZLGWKV 8VLQJ D 'HWHUPLQLVWLF 0RGHO RI 3DFNHW 'HOD\ LQ 3URFHHGLQJV RI $&0 6LJFRPP  6WRFNKROP 6ZHGHQ $XJXVW  y  )OR\G 6 +HQGHUVRQ 7 1HZ5HQR 0RGLILFDWLRQ WR 7&3 V )DVW 5HFRYHU\ 5)&  $SULO $OOPDQ0)OR\G63DUWULGJH&,QFUHDVLQJLQLWLDO7&3u VLQLWLDOZLQGRZ5)& 6HSWHPEHU *ULHFR / $ DQG 0DVFROR 6 :HVWZRRG 7&3 DQG HDV\ 5(' WR LPSURYH )DLUQHVV LQ +LJK6SHHG1HWZRUNVLQ3URFHHGLQJVRI,),3,(((6HYHQWK,QWHUQDWLRQDO:RUNVKRSRQ 3URWRFROV)RU+LJK6SHHG1HWZRUNV3I+61%HUOLQ*HUPDQ\$SULO  y  &KDVNDU+0/DNVKPDQ79DQG0DGKRZ87&32YHU:LUHOHVVZLWK/LQN/HYHO (UURU &RQWURO $QDO\VLV DQG 'HVLJQ 0HWKRGRORJ\ ,((($&0 7UDQVDFWLRQV RQ 1HWZRUNLQJ9RO    y  .HVKDY 6 $ &RQWUROWKHRUHWLF $SSURDFK WR )ORZ &RQWURO LQ 3URFHHGLQJV RI $&0 6LJFRPP=XULFK6ZLW]HUODQG6HSWHPEHU  y  +RH-&,PSURYLQJWKH6WDUWXS%HKDYLRURID&RQJHVWLRQ&RQWURO6FKHPHIRU7&3LQ 3URFHHGLQJVRI $&06LJFRPP 3DOR$OWR&$$XJXVW  y  $OOPDQ 0 DQG 3D[VRQ 9 2Q (VWLPDWLQJ (QGWR(QG 1HWZRUN 3DWK 3URSHUWLHV LQ 3URFHHGLQJV RI $&0 6LJFRPP  &DPEULGJH 0DVVDFKXVHWWV $XJXVW   y 



Priority-Based Internet Access Control for Fairness Improvement and Abuse Reduction* 







7VXQJ&KLQJ/LQ @ DGYRFDWHG WKH SURSRUWLRQDO IDLUQHVV LQVWHDG 7KLV NLQG RI IDLUQHVV DLPV DW PD[LPL]LQJ WKH RYHUDOO XWLOLW\ RI UDWH DOORFDWLRQV DVVXPLQJ WKDWWKHWUDIILFRI,QWHUQHWLVHODVWLFDQGWKHXWLOLW\RIHDFKWUDIILFIORZLVORJDULWKPLF 7R OLPLW QHWZRUN XVDJH E\ D XVHU WKH YROXPHEDVHG TXRWD KDV EHHQ D VWUDLJKWIRUZDUG FRPPRQ SUDFWLFH DGRSWHG IRU WKH PDQDJHPHQW RI D IUHH RI FKDUJH QHWZRUNHQYLURQPHQW>@(DFKXVHULVDOORFDWHGDIL[HGQXPEHURIE\WHV YROXPH RI XVDJHLQDSHULRGRIWLPH2QFHWKHTXRWDLVXVHGXSDXVHULVUHIUDLQHGIURPXVLQJWKH QHWZRUNVHUYLFHXQWLOWKHQH[WSHULRG7KHTXRWDVFKHPHVHWVDKDUGFRQVWUDLQWWRHDFK XVHUSUHYHQWVXVHUVIURPDEXVLQJQHWZRUNUHVRXUFHVDQGLVIDLU1HYHUWKHOHVVLWLVQRW IOH[LEOH WR DOORZ H[FHVVLYH XVDJH ZKHQ WKH QHWZRUN UHVRXUFH LV ORZO\ XWLOL]HG LH GLVDGYDQWDJHRXVIRUQHWZRUNHIILFLHQF\ 3ULRULWL]DWLRQRIVHUYLFHSURYLGHVDVRIWZD\RIUHGXFLQJDEXVLYHDQGXQIDLUXVDJH ,QWKHGHYHORSPHQWRI,QWHUQHWWHFKQRORJ\DGLIIHUHQWLDWHGVHUYLFHDUFKLWHFWXUHFDOOHG v 'LII6HUYw  >@ KDV UHFHQWO\ EHHQ SURSRVHG E\ ,(7) 7KHUH LV D FODVV RI TXDOLWDWLYH VHUYLFHV XQGHU 'LII6HUY ZKHUH D VHUYLFH ZLWK D KLJKHU SULRULW\ DOZD\V JHWV D EHWWHU TXDOLW\ RI VHUYLFH WKDQ WKDW ZLWK D ORZHU SULRULW\ $ KLJK SULRULW\ LV JLYHQ WR XVHUVu  HVVHQWLDOQHHGVZKLOHRWKHUQHHGVDUHVHUYHGLQDORZSULRULW\2QHu VXQLPSRUWDQWRU H[FHVVLYHXVDJHLQORZSULRULW\ZLOOQRWDIIHFWWKHHVVHQWLDORULPSRUWDQWXVDJHLQKLJK SULRULW\ ,QWKLVSDSHUZHFRPELQHWKHLGHDVRIERWKWKHYROXPHTXRWDOLPLWDWLRQDQGWKH SULRULW\VFKHPHLQWRDSULRULW\EDVHGVFKHPHWRFRQWURO,QWHUQHWDFFHVVWUDIILF,QWHUQHW DFFHVVE\GRUPLWRU\XVHUVRI178FDPSXVQHWZRUNVVHUYHVDVDFRQYH\HUSUREOHPRI RXU VWXG\ +RZ WKH SULRULW\ DQG TXRWD VKRXOG EH DVVLJQHG WR XVHUVu  QHWZRUN VHUYLFH GHPDQGV DQG KRZ WKH SULRULW\ DQG TXRWD VHWWLQJV PD\ DIIHFW QHWZRUN UHVRXUFH DOORFDWLRQ SHUIRUPDQFH TXDOLW\ RI VHUYLFH WR XVHUV DQG XVHU EHKDYLRUV DUH WKH FKDOOHQJLQJUHVHDUFKLVVXHVLQWKLVSDSHU 7KHUHPDLQGHURIWKLVSDSHULVRUJDQL]HGDVIROORZV,Q6HFWLRQ,,ZHGHVFULEHWKH LVVXHV RI XQIDLU DQG DEXVLYH ,QWHUQHW DFFHVV E\ 178 GRUPLWRU\ QHWZRUN XVHUV ,Q 6HFWLRQ,,,ZHSURSRVHDPDWKHPDWLFDOPRGHOIRUDQDO\VLVDQGGHVLJQRIWKHSULRULW\ EDVHG,QWHUQHWDFFHVVFRQWUROVFKHPHV\VWHPLPSOHPHQWDWLRQLVGHVFULEHGDVZHOO,Q 6HFWLRQ,9ZHSUHVHQWH[SHULPHQWDOUHVXOWVWRYDOLGDWHRXUGHVLJQ)LQDOO\6HFWLRQ9 FRQFOXGHVWKHSDSHU  

2. Unfair and Abusive Internet Access 2.1 Network Configuration without Prioritized Service   )LJGHSLFWVWKHFRQILJXUDWLRQRIWKHGRUPLWRU\QHWZRUNLQ178FDPSXVZLWKRXWWKH SULRULW\EDVHG FRQWURO 7KHUH DUH IRXUWHHQ GRUPLWRULHV DQG DSSUR[LPDWHO\  QHWZRUNXVHUV(DFKXVHULVSURYLGHGZLWKD873(WKHUQHW0ESVDFFHVVSRLQW DQG DVVLJQHG DQ ,QWHUQHW ,3 DGGUHVV 7KH GRUPLWRU\ QHWZRUN LV FRQQHFWHG WR 178 FDPSXV QHWZRUNV DQG 7DLZDQ$FDGHPLF 1HWZRUNV 7$1HW  ,QWHUQHW YLD DQ$OFDWHO

3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

URXWHUDQGD&LVFRURXWHU7KHDFFHVVOLQNLVD0ESV(WKHUQHWOLQN+RZHYHU WRKHOSDOOHYLDWLQJWKHIUHTXHQWFRQJHVWLRQRQWKH,QWHUQDWLRQDOOLQNEHWZHHQ7$1(7 DQGWKH,QWHUQHW178KDVVHWDSROLF\WR UHVWULFWWKHRXWERXQG,QWHUQHWWUDIILFRILWV GRUPLWRULHVWRDPD[LPXPUDWHRI0ESV 

178&DPSXV 1HWZRUNV

5RXWHU

$OFDWHO3DFNHW(QJLQH

'RUPLWRU\ 0ESV 1HWZRUNV

0ESV

5RXWHU 0ESV

&DEOHWURQ665

'RUPLWRU\ 1HWZRUNV

0ESV

0ESV 0ESV

5RXWHU

7$1(7 ,QWHUQHW

&LVFR

0ESV

 Fig. 1.2ULJLQDO,QWHUQHW$FFHVV$UFKLWHFWXUHIURP'RUPLWRU\XVHUV $ QHWZRUN PDQDJHPHQW WRRO 1HWIORZ70 >@ LV LQVWDOOHG LQ 178 FDPSXV QHWZRUNV WR PRQLWRU DOO SDFNHW IORZV SDVVLQJ WKH &LVFR  URXWHU &XUUHQWO\ 1HWIORZ FROOHFWV HYHU\  PLQXWHV 0,% LQIRUPDWLRQ LWHPV DERXW HDFK IORZ DQG FDOFXODWHV PDQ\ VWDWLVWLFV VXFK DV WKH WRS KHDY\ XVHUV DQG DSSOLFDWLRQ VKDUH E\ YROXPH 8QGHU WKH FXUUHQW HQYLURQPHQW WKH YROXPH SHU ,3 XVHG LV HDVLO\ REWDLQHG IURP1HWIORZ 2.2 Traffic Characteristics 1DWLRQDO 7DLZDQ 8QLYHUVLW\ LV D QDWLRQDO XQLYHUVLW\ DQG IXQGHG E\ WKH JRYHUQPHQW 7KH ,QWHUQHW DFFHVV VHUYLFH WR WKH GRUPLWRU\ XVHUV LV XQOLPLWHG DQG DOPRVW IUHH RI FKDUJH D IODW FKDUJH RI OHVV WKDQ  86SHUVRQVHPHVWHU  :H GHILQH WKH WUDIILF IRU ,QWHUQHW DFFHVV DV WKDW LV WUDQVPLWWHG IURP GRUP QHWZRUNV WR WKH ,QWHUQHW DQG WKH WUDIILF IRU LQWUDQHW DFFHVV DV WKDW LV WUDQVPLWWHG IURP GRUP QHWZRUNV WR RWKHU 178 FDPSXVQHWZRUNV2XUDQDO\VLV )LJ VKRZVWKDWWKHSHDNKRXUVIRU,QWHUQHWDFFHVV DQG LQWUDQHW DFFHVV DUH $0 DQG 30 UHVSHFWLYHO\ 7KH ,QWHUQHW DFFHVV WUDIILF 0ESV  LV PRUH WKDQ WZR WLPHV RI WKDW IRU LQWUDQHW DFFHVV 0ESV  +RZHYHU XQGHU WKH FXUUHQW FDPSXV QHWZRUN HQYLURQPHQW ,QWHUQHW DFFHVV LV EDQGZLGWKWLJKWZKLOHWKHUHLVH[FHVVEDQGZLGWKIRULQWUDQHWFRPPXQLFDWLRQV$OPRVW DOOWKH,QWHUQHWDFFHVVWUDIILF  LV7&3WUDIILF 7KHGURSUDWHRIWKHWUDIILFDWWKH0ESVOLQNLVPHDVXUHGHYHU\PLQXWHV7KH GURSUDWLRLVGHILQHGDVWKHGURSUDWHGLYLGHGE\WKHOLQNEDQGZLGWK7KH0ESVOLQN LVFRQVLGHUHGFRQJHVWHGRQFHWKHGURSUDWLRLVPRUHWKDQ$EXVLYHXVDJHQDWXUDOO\ H[LVWVDQGOHDGVWRQHWZRUNFRQJHVWLRQ5HSUHVHQWDWLYHSDWWHUQVRIWKHWRWDORXWERXQG ORDGDQGWKHGURSUDWHDW&LVFRURXWHUGXULQJDGD\DUHVKRZQDV)LJZKHUH

7VXQJ&KLQJ/LQHWDO

WKH FRQJHVWLRQ ODVWV RYHU  KRXUV IURP DP WR DP 7KH DYHUDJH GDLO\ QHWZRUN XWLOL]DWLRQLVZLWKDQDYHUDJHSDFNHWGURSUDWLRRI6XFKQHWZRUNVHUYLFH TXDOLW\LVGHILQLWHO\XQVDWLVIDFWRU\  O u t b o u n d Tra ffic Th ro u g h p u t o f A ll D o rm s , B a s e lin e 40 35

Throughput (Mbps)

30 25 20 15 10 In t e rn e t in t ra n e t

5 0 1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d a y t im e (h o u r)

Fig. 2.,QWHUQHWDQG,QWUDQHW7UDIILF&RPSRQHQWVLQ2XWERXQG7UDIILF 



Load D ro p ra t e

50

Load & Drop Rate (Mbps)

45 40 35 30 25 20 15 10 5 1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d a y t im e (h o u r)

Fig. 3.'URSUDWHDQGWKURXJKSXWRIRXWERXQGWUDIILF   2.3 User Characteristics



7KH ,QWHUQHW DFFHVV LV ERWK DEXVLYH DQG XQIDLU )LJ  JLYHV D GRUPLWRU\ ,QWHUQHW DFFHVVSURILOHRIGDLO\YROXPHSHU,3,WFOHDUO\VKRZVDWKUHHSHDNSURILOH(PSLULFDO GDWDIXUWKHUVKRZVWKDWWKHGDLO\XVDJHIRU,QWHUQHWDFFHVVLV0E\WHVSHUXVHULQ DYHUDJHEXWZLWKDODUJHVWDQGDUGGHYLDWLRQ0%DQGDFRHIILFLHQWRIYDULDWLRQ RI7KHWRSKHDY\XVHUVZKRVHGDLO\DYHUDJHXVDJHLVPRUHWKDQ*%FUHDWH

3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

RIWKHWUDIILFORDG+RZHYHUWKHOLJKWHVWXVHUVRQO\FUHDWHRIWKHWUDIILF ORDG ,W LV XQIDLU WKDW DOO XVHUV VXIIHU IURP WKH VDPH OHYHO RI QHWZRUN FRQJHVWLRQ ,Q WKLV SDSHUZH GHILQH WKH DEXVH LQGH[ DV WKH WRWDO YROXPH E\WHV  WUDQVPLWWHG E\ WKH WRS  KHDY\ XVHUV DQG WKH XQIDLUQHVV LQGH[ DV FRHIILFLHQW RI YDULDWLRQ YDULDQFHPHDQ RIXVHUVu GDLO\YROXPHXVDJH  16

percentage of users (percent)

14 12 10 8 6 4 2 0

0

1

2

3

4

5

6

7

8

9

10

11

10 n (B y tes )

Fig. 4.7KHORDGGLVWULEXWLRQDQGXVHUFOXVWHUV

3. Priority Control System Design  3.1 Policy Design  $V VHHQ LQ PDQ\ ,QWHUQHW DFFHVV QHWZRUNV SHUIRUPDQFH LVVXHV PDLQO\ DULVH IURP RYHUXVHDQGFRQJHVWLRQH[WHUQDOLWLHVZKLFKDUHRIWHQIDFWRUVRIKXPDQEHKDYLRU2Q DFFRXQWRIOLPLWHGQHWZRUNUHVRXUFHVIRUDQHWZRUNPDQDJHUWKHJRDOLVWRDVVXUHWKH EHQHILWRIPRVWXVHUVLHWRPD[LPL]HWRWDOXVHUXWLOLW\>@2QHZD\WRDOOHYLDWHWKH SUREOHP RI SRRU SHUIRUPDQFH FDXVHG E\ DEXVLYH ,QWHUQHW DFFHVV LV WR WDNH VRPH PHDVXUHV WR HQVXUH WKDW HDFK XVHU LV JXDUDQWHHG ZLWK D EDVLF VHUYLFH TXRWD  D IDLU VKDUHRIUHVRXUFHDQGDFFHVV7KHSKLORVRSK\LVQRWWRSUHYHQWKHDY\XVHUVIURPXVLQJ WKHQHWZRUNZKHQWKHLUXVDJHH[FHHGVWKHTXRWDEXWWRPDNHVXUHWKHLURYHUXVDJHLV XQGHUFRQWUROQRWDIIHFWLQJRWKHUXVHUVu EDVLFVHUYLFH 2XUSULRULWL]HGVHUYLFHSODQFRQVLVWVRIWZRVHUYLFHFODVVHVUHJXODUDQGFXVWRG\ 7KH UHJXODU VHUYLFH KDV D KLJKHU SULRULW\ WKDQ WKH FXVWRG\ VHUYLFH RQ GDWD WUDQVPLVVLRQ 7KHUH LV D YROXPH TXRWD IRU HDFK XVHUu V UHJXODU VHUYLFH ZKLFK LV GHVLJQHG WR PHHW PDMRULW\ XVHUVu  HVVHQWLDO GHPDQGV ZKLOH OLPLWLQJ DEXVLYH XVDJH RI



7VXQJ&KLQJ/LQHWDO

TXDOLW\ VHUYLFH 7KH FXVWRG\ FODVV KDV QR TXRWD OLPLWDWLRQ ZKLFK DOORZV WKH KHDY\ XVHUVWRDFFHVVWKH,QWHUQHWDWDORZHUTXDOLW\  3.2 Mathematical Model for Priority Control System  :H QRZ FRQVWUXFW D PDWKHPDWLFDO PRGHO RI WKH UHODWLRQVKLS DPRQJ WKH TXRWD XVHU WUDIILFGHPDQGVDQGWKHQHWZRUNSHUIRUPDQFH7KHPRGHOIDFLOLWDWHVWKHTXRWDGHVLJQ DQGWKHDQDO\VLVRIKRZWKHSULRULW\FRQWUROVFKHPHPD\LPSURYHXQIDLUDQGDEXVLYH ,QWHUQHWDFFHVV  Individual User Model. 7KHPRGHORIYROXPHWUDQVPLWWHGE\DXVHUXQGHUWKHTXRWD EDVHG SULRULW\ FRQWURO VFKHPH LV EDVHG RQ WKH HPSLULFDO GDWD FROOHFWHG IURP WKH EDVHOLQHQHWZRUNZKHUHQRSULRULW\LVLQVWDOOHG/HWWKHYROXPHVRIWKH,QWHUQHWDQG LQWUDQHWWUDIILFWUDQVPLWWHGE\XVHUnDWWLPHVORWlLQWKHEDVHOLQHQHWZRUNEHGHQRWHG DV v BI OQ l  l    L n    N  DQG

v Bi OQ l  l    L n    N  ZKHUHL LV WKH WRWDO QXPEHURI WLPH VORWV RYHU DGD\ N LV WKH WRWDO XVHU SRSXODWLRQ VXELQGH[ I PHDQV WKH ,QWHUQHW DFFHVV i PHDQV WKH LQWUDQHW DFFHVV DQG B PHDQV WKH EDVHOLQHQHWZRUN7KHGURSUDWLRDWWLPHVORWlLQWKHEDVHOLQHSHULRGLVGHQRWHGDV d B B l  l    L  $ XVHUu V RULJLQDO WUDQVPLVVLRQ GHPDQG LQFOXGHV ERWK WUDQVPLWWHG DQG GURSSHG SDFNHWV7UDIILFDUULYDOYROXPHVIURPXVHUnIRU,QWHUQHWDQGLQWUDQHWDFFHVVHVDWWLPH VORWlDUHHVWLPDWHGDV ak BI B OQ vBI B OQ   d B B l  l    L n    N DQG 

ak Bi B OQ v Bi B OQ   d B B l  l  

 L n  

 N  

/HWWKHYROXPHTXRWDEHH. ,IWKHFXPXODWLYHUHJXODU,QWHUQHWWUDIILFYROXPHRID XVHU H[FHHGV WKH TXRWD H WKH VXEVHTXHQW ,QWHUQHW DFFHVV RI WKH XVHU ZLOO EH GRZQJUDGHG WR WKH FXVWRG\ VHUYLFH RQO\ )RU WKH UHJXODU ,QWHUQHW DFFHVV WKH WUDIILF DUULYDOYROXPHIURPXVHUnDWWLPHVORWlLVGHQRWHGDV ak HI B OQ DQGLVHVWLPDWHGDV l   ak BI B OQ LI vk HI B jn  H ak HI B OQ  j   RWKHUZLVH

l   L n   N

ZKHUH vk IH OQ LVWKHUHJXODU,QWHUQHWWUDIILFYROXPHVXFFHVVIXOO\WUDQVPLWWHGE\XVHUn DWWLPHVORWl  7KXVWKHWRWDOWUDIILFDUULYDOYROXPHIURPXVHUnDWWLPHVORWlLV

ak H B OQ ak HI B OQ  ak Bi B OQ  l   

 L n   

 N  

DQGWKHWRWDOWUDIILFDUULYDOYROXPHIURPDOOXVHUVDWWLPHVORWlLVFDOFXODWHGDV N







Ak H B l  ak H B OQ  l   n 

 L 

3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

WKHHVWLPDWHRIWKHWUDIILFDUULYDOUDWHDWWLPHVORWlLVFDOFXODWHGDV Ak      Xk H B l H B l  l    L   T  ZKHUHTLVWKHOHQJWKRIHDFKWLPHVORW 2QFH WKH HVWLPDWHG WUDIILF DUULYDO UDWH LH WKH RIIHUHG ORDG  H[FHHGV WKH ERWWOHQHFNEDQGZLGWKB,LH Xk H B l  B ZHFRQVLGHUWKDWFRQJHVWLRQRFFXUV7KHGURS UDWLRLVSUHGLFWHGDV

  Xk H B l  B  BLI  Xk H B l  B dk H B l  l    L   RWKHUZLVH ,WLVDVVXPHGWKDWWKHUHJXODU,QWHUQHWDFFHVVVXIIHUVIURPWKHVDPHGURSUDWLR+HQFH WKHUHJXODUWUDIILFYROXPHVVXFFHVVIXOO\WUDQVPLWWHGE\XVHUnIRU,QWHUQHWDQGLQWUDQHW DFFHVVHVDUHHVWLPDWHGDV l   k ak HI B OQ   d H B l LI  vk HI B jn  H       vk HI B OQ  j  RWKHUZLVH DQG vk Hi B OQ ak Hi B OQ   dk H B l  l    L n    N 





,Q VXPPDU\ ZH KDYH GHYHORSHG D PRGHO WR SUHGLFW XQGHU D JLYHQ TXRWD H HYHU\ XVHUu V EHKDYLRU DQG QHWZRUN SHUIRUPDQFH ZLWKLQ D WLPH VORW LQFOXGLQJ SHU XVHUu V YROXPH XVDJH   WKH DJJUHJDWHG WUDIILF UDWH   DQG WKH GURS UDWLR   3UHGLFWLRQVRIDOOWLPHVORWVFDQWKHUHIRUHEHREWDLQHG  Aggregate User Model. %DVHGRQVXEVHFWLRQWKHPHDQVDQGWKHVWDQGDUG GHYLDWLRQVRIWKHUHJXODUWUDIILFYROXPHVWUDQVPLWWHGE\XVHUVIRU,QWHUQHWDQGLQWUDQHW DFFHVVDUHFDOFXODWHGDV For Internet access N

vk HI

 vk n 

N

HI B n

N



Sk HI

 vk n 

HI B n

 vk HI 

DQG

N 

For Intranet access N

vk Hi

ZKHUH vk HI B n

L

 vk l 

HI B OQ

 vk n 

N

Hi B n

N

DQG vk Hi B n

 k S Hi

 vk n 

L

 vk Hi B OQ l 



Hi B n



 vk Hi 



N 

$VDUHVXOWZHKDYHWKHUHODWLRQVKLSEHWZHHQWKHTXRWDDQGWKHDJJUHJDWHXVHU EHKDYLRU PHDQDQGVWDQGDUGGHYLDWLRQRIWUDQVPLWWHGYROXPH   Network Performance Model. :HKDYHFDOFXODWHGWKHGURSUDWHDQGXVHUVu XVDJHIRU DOOWLPHVORWV7KHGDLO\PHDQRIWKHGURSUDWLRLVWKHQ

7VXQJ&KLQJ/LQHWDO L

 dk

 l    L L 7KHGDLO\PHDQVRIWKHUHJXODUWUDIILFUDWHIRU,QWHUQHWDQGLQWUDQHWDFFHVVHVDUH N  vk IH B n  DQG n

 Rk IH

L N vk iH B n    n

 Rk iH

L 





dk H

7KHQHWZRUNXWLOL]DWLRQLV ku H

l 

H Bl

Rk IH  Rk iH ZKHUH Tday LVWKHOHQJWKRIRQHGD\ B Tday

  3.3 Prediction of Control Effects



:HDSSO\WKHXVHUEHKDYLRUDQGQHWZRUNSHUIRUPDQFHPRGHOVWRSUHGLFWFRQWUROHIIHFW RI RXU SURSRVHG VFKHPH :H FRQVWUXFW D QXPHULFDO H[SHULPHQW ZLWK WKH IROORZLQJ SDUDPHWHUVWKHTXRWDHLVJLYHQDV*%DQG*%WRVDWLVI\DWOHDVWDQGRI XVHUVLQWKHEDVHOLQHQHWZRUNUHVSHFWLYHO\7KHOLQNEDQGZLGWKBLV0ESVWKHWRWDO XVHU SRSXODWLRQ LV  )ROORZLQJ WKH DERYH PRGHOV ZH SUHGLFW FRQWUROOHG XVHU EHKDYLRURI,QWHUQHWDFFHVVDVOLVWHGLQ7DEOH5HVXOWVVKRZWKDWDUHGXFWLRQ RI XQIDLUQHVV DQG D  UHGXFWLRQ RI DEXVLYH XVDJH DV FRPSDUHG WR EDVHOLQH QHWZRUNEHKDYLRU  Table 1.1XPHULFDOUHVXOWVIRU,QWHUQHW$FFHVV  7UHDWPHQW %DVHOLQH *% *% ,QIRUPDWLRQ 6WDQGDUGGHYLDWLRQ 0%     0HDQYROXPH 0%XVHU     8QIDLUQHVVLQGH[    &RHIILFLHQWRI9DULDWLRQ $EXVHLQGH[8VDJHRIWRS    XVHU *% 

3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

3.4 System Implementation



,QWKLVVHFWLRQZHGHVLJQDQHWZRUNV\VWHPDUFKLWHFWXUHWRUHDOL]HWKHFRQWUROSROLF\ SURSRVHG LQ VHFWLRQ  7KH ZKROH GHVLJQ LV GHSLFWHG LQ )LJ  ZKHUH WKH LQIUDVWUXFWXUHFRQVLVWVRI  4R6URXWHU  PHWHULQJURXWHU  PHWHUUHDGLQJVHUYHU   DFFRXQWLQJ VHUYHU   XVHU LQWHUIDFH VHUYHU $OO WKHVH GHYLFHV EXW WKH PHWHULQJ URXWHUGRQRWH[LVWLQWKHEDVHOLQHQHWZRUNDQGQHHGQHZGHVLJQDQGGHYHORSPHQW :H DGRSW WKH 4R6 URXWHU GHYHORSHG E\ 6XQ HW DO >@ WR SURYLGH SULRULWL]HG VHUYLFHV7KHFODVVLILHUDQGSULRULW\TXHXHLQJVFKHGXOHURIWKHURXWHULVVSHFLDOL]HGWR WKHWZRy FODVVVHUYLFHSURYLVLRQLQJ7KHPHWHUUHDGLQJVHUYHULVEDVHGRQ1HWIORZ70 ZKLFK FROOHFWV WUDIILF VWDWLVWLFV RI HDFK ,3 IURP WKH PHWHULQJ URXWHU 7KH DFFRXQWLQJ VHUYHU LV GHYHORSHG LQ 3HUO>@ DQG &VKHOO 6HUYLFH FODVV RI PHWHUHG WUDIILF LV GHWHUPLQHGDWWKHDFFRXQWLQJVHUYHUE\FKHFNLQJLIWKHTXRWDRI,3LVH[FHHGHG7KHVH WZRVHUYHUVMRLQWO\LPSOHPHQWWKHTXRWDFRQWUROIXQFWLRQ,QDGGLWLRQZHFRQVWUXFWD XVHU LQWHUIDFH VHUYHU KWWSQWXQPQWXHGXWZ  WKURXJK ZKLFK XVHUV FDQ FKHFN ZLWK WKHDFFRXQWLQJVHUYHUWKHLUDYDLODEOHTXRWDWUDQVPLWWHGYROXPHUDQNLQJRIDOOXVHUV DQGWKHFXUUHQWVHUYLFHFODVV

8 V H U  , Q W H U ID F H VHUYHU

'%

$ F F R X Q W LQ J VHUYHU

' R UP V

4 R 6 UR X W H U



4. Experiment Results 

178 G R P D LQ

0 H W H U LQ J UR X W H U & LV F R     

0 H W H U  U H D G LQ J VHUYHU

7$ 1 HW



Fig. 5.6\VWHP$UFKLWHFWXUH 

7R DVVHVV WKH HIIHFWLYHQHVV RI RXU SULRULW\EDVHG VFKHPH DQG WR LQYHVWLJDWH XVHUVu  UHVSRQVHWRWKHWZRSULRULW\VHUYLFHZHGHVLJQDQGFRQGXFWDVHWRIH[SHULPHQWVRQ WKH SULRULW\EDVHG ,QWHUQHW DFFHVV FRQWURO V\VWHP MXVW GHVFULEHG LQ 6HFWLRQ  :H DQQRXQFHGWKHSULRULW\FRQWUROH[SHULPHQW WRGRUPLWRU\XVHUVLQWKHIDOOVHPHVWHURI 7KHXVHUVWKHQKDGWZRPRQWKVRIWULDOSHULRGWRIDPLOLDUL]HZLWKWKHH[SHULPHQW DQGIHHGEDFNWKHLUFRPPHQWVIRUV\VWHPWXQLQJ,QWKLVVHFWLRQZHFRQVLGHUHGDVWKH EDVHOLQHGDWDVHWWKHQHWZRUNGDWDRIDUHSUHVHQWDWLYHEXWDUELWUDULO\VHOHFWHGZHHNRI u  WR u  ,Q WKDW ZHHN WKH QHWZRUN LV ZLWKRXW SULRULW\ RU TXRWD FRQWURO 7KHGDLO\TXRWDHLVRXUFRQWUROYDULDEOHWKHUHZHUHWZROHYHOVRIHH[SHULPHQWHG *% DQG*% HDFK VHW DV WKH GDLO\ TXRWD RYHU RQHZHHN IURP u  WR u  7KHTXRWDZDVUHQHZHGDWWKHWLPHRIOHDVWWUDIILFLH$0HDFKGD\3HUIRUPDQFH

7VXQJ&KLQJ/LQHWDO

VWDWLVWLFVRIRXUVWXG\LQFOXGHWKHGDLO\YROXPHXVHGE\HDFKXVHUWKHGURSUDWHDQG WKHWUDIILFORDGRYHUDGD\HWF  4.1 Fairness Improvement 7DEOHVKRZVWKHPHDQDQGVWDQGDUGGHYLDWLRQRILQGLYLGXDOXVHUu VGDLO\YROXPHIRU ,QWHUQHW DFFHVV XQGHU GLIIHUHQW H OHYHOV ,W FDQ EH FOHDUO\ REVHUYHG WKDW WKH DYHUDJH DQG VWDQGDUG GHYLDWLRQ RI XVHUVu  ,QWHUQHW DFFHVV WUDIILF DUH ERWK UHGXFHG &RPSDUHG ZLWKWKHEDVHOLQHVWDWLVWLFVWKHFRHIILFLHQWVRIYDULDWLRQRIXQIDLUQHVVDUHUHGXFHGE\  DQG  IRU WKH WZR H OHYHOV UHVSHFWLYHO\ ZKLFK LV FORVH WR  DQG SURMHFWHGE\RXUQXPHULFDOH[SHULPHQW 7DEOH   Table 2.&RPSDULVRQLQIRUPDWLRQRI,QWHUQHW$FFHVV  7UHDWPHQW %DVHOLQH *% *% ,QIRUPDWLRQ 6WDQGDUGGHYLDWLRQ 0%     0HDQYROXPH 0%     &RHIILFLHQWRIYDULDWLRQRI    XQIDLUQHVV  4.2 Abuse Reduction



)LJ  GHSLFWV WKH WUDIILF ORDG IRU ,QWHUQHW DQG LQWUDQHW DFFHVV RYHU WKH ZKROH GD\ :KHQWKHTXRWDLVVHWWR*%WKHH[SHULPHQWDOUHVXOWVVKRZDUHGXFWLRQLQ DEXVHLQGH[ 7DEOH IRU,QWHUQHWDFFHVVZKLFKLVFORVHWRSURMHFWHGE\RXU QXPHULFDOH[SHULPHQW 7DEOH 7KHSHDNGXUDWLRQPRYHVIURPPLGQLJKWKRXUVWRWKH PRUQLQJKRXUVEHFDXVHWKHWRSXVHUVZHUHOLPLWHGE\WKHTXRWDGXULQJPLGQLJKW KRXUVDQGWKH\KDGWRXVHHDUO\PRUQLQJKRXUVZKHQPRVWRIRWKHUXVHUVZHUHRIIOLQH 7KH DYHUDJH ,QWHUQHW DFFHVV WUDIILF UDWH LV UHGXFHG E\  7DEOH   ZKLFK PD\ LPSO\WKHUHGXFWLRQRIXQQHFHVVDU\DFFHVVRIDEXVLYHXVHUV7KLVLVVXSSRUWHGE\)LJ  ZKLFK VKRZV D GHFUHDVH LQ WKH QXPEHUV RI XVHUV ZKRVH XVDJH LV PRUH WKDQ *%GD\)XUWKHUPRUHVLQFHKHDY\XVHUVKDGWKHVDPHTXRWDLQXVLQJWKHUHJXODUFODVV MXVW OLNH HYHU\ERG\ HOVH WKH PDMRULW\ RI XVHUV PXVW EH EHQHILWHG DQG WKHLU QHWZRUN XVDJHZHUHHQFRXUDJHGDVLQGLFDWHGE\7DEOH  Table 3.&RPSDULVRQVDPRQJGLIIHUHQWXVHUVRI,QWHUQHW$FFHVV  4XRWD  %DVHOLQH *% *% 7RWDOWUDQVPLWWHGYROXPH $EXVHLQGH[    7RSXVHUV *%  /RZHUXVHUV 0%       

3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

Table 4.&RPSDULVRQVRIORDGRI,QWHUQHW$FFHVV  %DVHOLQH *% 7KURXJKSXW 0ESV   



*% 

40

Internet access load (Mbps)

35 30 25 20 15 10 Baseline 2G 1G

5 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 day time (hour)



Fig. 6.7KH,QWHUQHWDFFHVVORDGRYHUDGD\ 18 B a s e lin e 2G 1G

16

Percentage of users (percent)

14 12 10 8 6 4 2 0

0

2

4

6

8

10

1 0 n (B y t e s )

Fig. 7.7KHFRPSDULVRQVRI,QWHUQHWXVDJHGLVWULEXWLRQ 

12



7VXQJ&KLQJ/LQHWDO

4.3 Network Performance Improvement



)ROORZLQJ WKH UHGXFWLRQ RI GDLO\ ,QWHUQHW DFFHVV YROXPH WKH QHWZRUN FRQJHVWLRQ LV VRRWKHGWRR)LJDQG7DEOHLQGLFDWHDUHGXFWLRQRIWKHGURSUDWHZKHQWKH TXRWD LV VHW WR *% )LJ  LQGLFDWHV D  UHGXFWLRQ RI EDQGZLGWK XWLOL]DWLRQ 7R LGHQWLI\ WKH SHUIRUPDQFH VHHQ E\ HDFK XVHU ZKHQ WKH XVHUu V VHUYLFH FODVV LV GRZQJUDGHGIURPUHJXODUWRFXVWRG\ZHKDYHLPSOHPHQWHGWKHPHWHULQJRIURXQGWULS GHOD\RI,QWHUQHWDFFHVVIRUHDFKXVHU  7

6

drop rate (Mbps)

5

4

3 2 B a s e lin e 2G 1G

1

0 1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d a y t im e ( h o u r)



Regular Load (Mbps)

Fig. 8.7KHFRPSDULVRQVRIGURSUDWHVEHWZHHQ%DVHOLQH*DQG* 50 40 30 20 10

Custody load(Mbps)

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d a y t im e (h o u r) B a s e lin e 2G 1G

15 10 5 0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 d a y t im e (h o u r)

Fig. 9.7KHFRPSDULVRQVRIGURSUDWHVEHWZHHQ%DVHOLQH*DQG*



3ULRULW\%DVHG,QWHUQHW$FFHVV&RQWURO

Table 5&RPSDULVRQVRIGURSUDWH   %DVHOLQH + *% 'URS5DWH 0ESV    

+ *% 

5. Conclusions 

,Q WKLV SDSHU D SULRULW\EDVHG ,QWHUQHW DFFHVV FRQWURO VFKHPH KDV EHHQ SURSRVHG WR DOOHYLDWHWKHSUREOHPRIXQIDLUDQGDEXVLYHXWLOL]DWLRQIRU,QWHUQHWDFFHVVE\DQLQWUD QHWZRUN :H KDYH EXLOW VLPSOH XVHU EHKDYLRU DQG WUDIILF PRGHOV IRU WKH GHVLJQ DQG DQDO\VLV RI WKH FRQWURO VFKHPH :H KDYH DOVR HVWDEOLVKHG WKH QHFHVVDU\ H[SHULPHQWDWLRQHQYLURQPHQWRYHUWKHGRUPLWRU\QHWZRUNVRI178([SHULPHQWVZLWK GRUPLWRU\XVHUVGHPRQVWUDWHDVLJQLILFDQWUHGXFWLRQRIDEXVLYHXVDJHLPSURYHPHQWLQ IDLUQHVV DQG DOOHYLDWLRQ RI WKH FRQJHVWLRQ 0RGHOV RI XVHUVu  EHKDYLRU XQGHU WKH SULRULWL]HG VHUYLFH DUH DOVR YDOLGDWHG :H DUH QRZ FRQVWUXFWLQJ GHWDLOHG PRGHOV WR EHWWHUSUHGLFWWUDIILFJHQHUDWHGE\XVHUVWKDWILWVHPSLULFDOGDWD

Acknowledgements 

7KHDXWKRUVZRXOGOLNHWRWKDQN@ 5HFHQWO\WKHUROHRI6,3KDVJDLQHGVWUHQJWKGXHWRLWVIOH[LELOLW\DQGVFDODELOLW\7KLV SURWRFRO FRXOG EH D PHDQV RI LPSOHPHQWLQJ WKH ,QWHOOLJHQW 1HWZRUN FRQFHSW DQG LV FHUWDLQO\DQLPSRUWDQWVWHSWRZDUGV1*1V>@ 6HFRQGO\DVIDUDV4R6DUFKLWHFWXUHIRUUHVRXUFHUHVHUYDWLRQLVUHJDUGHGWKH,QWHU QHW(QJLQHHULQJ7DVN)RUFH ,(7) KDVHODERUDWHGWZRIXQGDPHQWDOVHUYLFHDUFKLWHF WXUHVIRU4R6SURYLVLRQLQJLQ,3QHWZRUNVWKH,QWHJUDWHG6HUYLFHV ,QW6HUY DUFKLWHF WXUH DQG WKH 'LIIHUHQWLDWHG 6HUYLFHV 'LII6HUY  DUFKLWHFWXUH >@ >@ DQG >@  'LII 6HUYSURYLGHV4R6IRUDJJUHJDWHIORZVWKHUHIRUHLWLVSULPDULO\LQWHQGHGIRUXVHLQ WKH FRUH QHWZRUN GRPDLQ GXH WR LWV VFDODELOLW\ 2Q WKH RWKHU KDQG WKH IORZ EDVHG ,QW6HUYSURYLGHV4R6IRUHDFKIORZRQDVHSDUDWHEDVLVWKURXJKWKH5HVRXUFH5HVHU YDWLRQ3URWRFRO 5693 DWWKHH[SHQVHRIKLJKHUDGPLQLVWUDWLYHFRVWVFRQVHTXHQWO\LW LVRQO\VXLWDEOHIRUWKHDFFHVVQHWZRUNGRPDLQ7KHLQWHUZRUNLQJRIWKHWZRDUFKLWHF WXUHVKDVDOUHDG\EHHQGHPRQVWUDWHGE\IRUH[DPSOHWKH(/,6$DQG0426SURMHFWV >@PRUHRYHU,(7)UHFRPPHQGDWLRQVDOVRH[LVW>@*33VWDQGDUGVSURSRVHWKHXVH RIERWKDUFKLWHFWXUHV )LQDOO\QHWZRUNSROLF\FRQWUROLVLQHYLWDEOHLQ4R6SURYLVLRQ7KLVLVJHQHUDOO\UH ODWHGWRDXWKHQWLFDWLRQDXWKRUL]DWLRQDQGDFFRXQWLQJ $$$ DVZHOODVUHVRXUFHPDQ DJHPHQWDQGFDOODGPLVVLRQFRQWURO6HUYLFHUHTXHVWVRIXVHUVPXVWEHHLWKHUDFFHSWHG RU UHIXVHG EDVHG RQ VHYHUDO SROLF\ UXOHV 7KHQ WKLV GHFLVLRQ PXVW EH H[HFXWHG DQG DGKHUHG WR DW WKH DSSURSULDWH QHWZRUN GHYLFHV 7KH &RPPRQ 2SHQ 3ROLF\ 6HUYLFH &236  LV D SURPLVLQJ FDQGLGDWH SURWRFRO IRU FRPPXQLFDWLRQ RQ SROLF\ GHFLVLRQV EHWZHHQWKHVRFDOOHG3ROLF\'HFLVLRQ3RLQWV 3'3V DQG3ROLF\(QIRUFHPHQW3RLQWV 3(3V >@,WKDVEHHQGHILQHGVRWKDWLWFRXOGEHDSSOLHGZLWK5693DVZHOO>@ *33VWDQGDUGVSURSRVH&236IRUWKHFRPPXQLFDWLRQEHWZHHQ3'3VDQG3(3V $OWKRXJKWKHIXQFWLRQDOFRPSRQHQWVRIWKH,06DQGWKHLURSHUDWLRQKDYHDOUHDG\ EHHQ GHILQHG WR D FHUWDLQ H[WHQW WKH QHFHVVDU\ LQWHURSHUDELOLW\ RI FDOO FRQWURO UH VRXUFH UHVHUYDWLRQ DQG QHWZRUN SROLFLQJ KDV QRW \HW EHHQ FRYHUHG 7KHUHIRUH WKLV SDSHUDLPVDWWKHDQDO\VLVRIWKH,06DUFKLWHFWXUHIRFXVLQJRQVHUYLFHSURYLVLRQDQG SURWRFRO LQWHURSHUDELOLW\ 7R IDFLOLWDWH WKH DQDO\VLV D SURWRW\SH LPSOHPHQWDWLRQ ZDV SUHSDUHG %DVHG RQ WKH H[SHULHQFHV JDWKHUHG IURP WKH LPSOHPHQWDWLRQ LPSRUWDQW FRQFOXVLRQV FDQ EH GUDZQ UHJDUGLQJ LVVXHV WKDW VWLOO QHHG IXUWKHU FODULILFDWLRQ DQG UHFRPPHQGDWLRQVFDQEHJLYHQWRKHOSWKHVWDQGDUGL]DWLRQSURFHVVDQGIXWXUHLPSOH PHQWDWLRQV 0RUHRYHU DV WKH VDPH SUREOHPV DULVH LQ IL[HG ,3 QHWZRUNV RXU UHVXOWV FDQEHDSSOLHGLQWKDWFRQWH[WDVZHOO 2EYLRXVO\WKHLPSOHPHQWDWLRQRIDGGLWLRQDOIXQFWLRQVVXFKDVDXWKHQWLFDWLRQDQG DFFRXQWLQJLVDOVRLQHYLWDEOHIRUVHUYLFHSURYLVLRQKRZHYHUWKHVHUHPDLQRXWRIWKH VFRSHRIWKHSUHVHQWSDSHU 7KHUHVWRIWKHSDSHULVRUJDQL]HGDVIROORZV6HFWLRQJLYHVDVKRUWRYHUYLHZRI WKH ,06 DUFKLWHFWXUH ZKLOH 6HFWLRQ  EULHIO\ FRQVLGHUV VRPH LVVXHV UHODWHG WR WKH SURWRW\SH LPSOHPHQWDWLRQ 6HFWLRQ  GLVFXVVHV FDOO VHWXS VLJQDOLQJ WKHQ 6HFWLRQV  DQG  GHDO ZLWK WKH 3ROLF\ &RQWURO )XQFWLRQ DQG 6,3 3UR[\ 6HUYHU HQWLWLHV UHVSHF WLYHO\ 6HFWLRQ  DQDO\]HV WKH UHTXLUHPHQWV IRU D FRPPXQLFDWLRQ SURWRFRO EHWZHHQ WKHVHWZRHQWLWLHVDQG6HFWLRQFRQFOXGHVWKHSDSHU

$QDO\VLVRI6,35693DQG&236,QWHURSHUDELOLW\

2 Short Overview of the IMS Architecture ,QWKLVVHFWLRQRQO\WKHPRVWLPSRUWDQWIXQFWLRQDOHQWLWLHVRIWKH,06DUHFRYHUHG)RU DPRUHGHWDLOHGGHVFULSWLRQWKHUHDGHULVUHIHUUHGWR>@ $JHQHUDOVFHQDULRIRUWKHDSSOLFDWLRQOD\HUVLJQDOLQJLQWKH,06DUFKLWHFWXUHLVLO OXVWUDWHG LQ )LJ  $FFRUGLQJ WR >@ WKH PRVW LPSRUWDQW IXQFWLRQDO HOHPHQWV LQ WKH ,06DUHWKH*DWHZD\*3566XSSRUW1RGH **61 WKH3UR[\&DOO6HVVLRQ&RQWURO )XQFWLRQ 3&6&) DQGWKH8VHU(TXLSPHQW 8( :LWKLQWKH3&6&)WKHUHDUHWZR IXQGDPHQWDO IXQFWLRQDO HOHPHQWV D ORFDO 6,3 SUR[\ DQG D 3ROLF\ &RQWURO )XQFWLRQ 3&)   P-CSCF 6,3 3UR[\

UE 6,38VHU $JHQW ,3UHVRXUFH PDQDJHPHQW

6,3

"

6,3

3ROLF\&RQWURO )XQFWLRQ &236

5693

GGSN ,3UHVRXUFH PDQDJHPHQW

Home Network

 Fig. 1.$SSOLFDWLRQOD\HUVLJQDOLQJVFHQDULRLQWKH,06

>@GLVFXVVHVVHYHUDOSRVVLEOHVFHQDULRVZKHUHWKHVHIXQFWLRQDOHOHPHQWVKDYHGLI IHUHQWFDSDELOLWLHV)RUH[DPSOH8(VPD\VXSSRUW5693VLJQDOLQJRU'LII6HUYHGJH IXQFWLRQVEXWWKH\GRQRWKDYHWRKDYH,3EHDUHUVHUYLFHPDQDJHPHQWIXQFWLRQDOLW\DW DOO $VVXPLQJ D VFHQDULR ZKHUH 8(V DUH 5693FDSDEOH WKDW LV 5693 VLJQDOLQJ LV HQGWRHQG DQG ZKHUH **61V DUH QRW WUDQVSDUHQW IRUZDUGHUV RI 5693 PHVVDJHV VFHQDULRLQ$QQH[$RI>@ WKHFRPSRQHQWVRIWKHDUFKLWHFWXUHPXVWKDYHWKHIRO ORZLQJIXQFWLRQDOLW\7KHIP resource management function in the UELVUHVSRQVLEOH IRU 4R6 UHTXHVWV XVLQJ D VXLWDEOH SURWRFRO HJ 5693  ZKHUHDV WKH IP resource management function in the GGSNPXVWFRQWDLQ,3SROLF\HQIRUFHPHQWDQG'LII6HUY HGJH IXQFWLRQDOLW\ 7KH PCF LQ WKH 3&6&) FRPPXQLFDWHV ZLWK WKH **61WKURXJK WKH*RLQWHUIDFHZKLFKLVXVHGIRUWUDQVPLWWLQJSROLFLQJUHODWHGGDWDDQGSROLF\GHFL VLRQVEHWZHHQWKHWZRHQWLWLHV&236LVSURSRVHGIRUXVHLQWKH*RLQWHUIDFH7KH3 &6&)DOVRFRQWDLQVSIP ProxyIXQFWLRQDOLW\WREHDEOHWRWUDFNFXUUHQW6,3FDOOVDQG WKXVPDNHDSSURSULDWHSROLF\GHFLVLRQVDERXWUHVRXUFHUHVHUYDWLRQUHTXHVWV+RZHYHU WKHLQWHUIDFHEHWZHHQWKHORFDO6,33UR[\DQGWKH3&)LVVWLOOXQGHILQHGLQWKHVWDQ GDUG

&VDED.LU O\=VROW3 QGLDQG7LHQ9DQ'R 

3

Adopted Approach: Prototype Implementation

,QRUGHUWREHDEOHWRDQDO\]HWKH,06ZHKDGWRLPSOHPHQWD6,38VHU$JHQW 8$ D 6,3 3UR[\ DQG D &236 3ROLF\ 'HFLVLRQ 3RLQW 3'3  VRIWZDUH ZLWK WKH DSSURSULDWH IXQFWLRQDOLWLHV OLVWHG LQ 7DEOH  7KHVH UHTXLUHPHQWV ZHUH GHULYHG IURP >@ DQG >@ DQG ZLOO EH GHWDLOHG ODWHU RQ $V WKH LPSOHPHQWDWLRQ RI WKH **61 D FRPPHUFLDOO\ DYDLODEOHDQGZLGHVSUHDG,3URXWHUZDVXVHG ,QWKH**61WKH'LII6HUYIXQFWLRQDOLW\ZDVQRWXVHGGXHWRWKHIROORZLQJUHDVRQV )LUVWO\LQWKHIRFXVRILQWHUHVWWKHUHDUHWKHUHTXLUHPHQWVIRUWKH+RPH1HWZRUNDQG QRWWKH,3FORXGEH\RQGWKH**610RUHRYHU>@DOUHDG\GHPRQVWUDWHGKRZ5693 PLJKWEHXVHGRYHUD'LII6HUYGRPDLQWKHUHIRUHIURPRXUSRLQWRIYLHZLWLVLUUHOH YDQWZKHWKHU5693RU'LII6HUYPDUNLQJHQVXUHV4R6EHWZHHQ**61V Table 1.)XQFWLRQDOHOHPHQWVRIWKHLPSOHPHQWDWLRQ

,06IXQFWLRQ ,PSOHPHQWDWLRQ 5HPDUN 8( 6,38VHU$JHQW PXVW VXSSRUW HQGWRHQG 6,3 DQG VRIWZDUH 5693 VLJQDOLQJ IRU FDOO FRQWURO DQG UHVRXUFHUHVHUYDWLRQ **61 5RXWHU PXVW FRQWDLQ 5693 DQG &236 3(3 IXQFWLRQDOLW\ 3&6&)6,3 6,33UR[\ PXVW EH DEOH WR SURYLGH WKH &236 3UR[\ VRIWZDUH 3'3ZLWKVHVVLRQGDWD 3&6&)3&) &2363'3 PXVW EH FDSDEOH RI PDNLQJ SROLF\ VRIWZDUH GHFLVLRQV EDVHG RQ 6,3 VHVVLRQ LQIRU PDWLRQDQGDSULRULFRQILJXUDWLRQGDWD  'XULQJWKHVRIWZDUHGHVLJQDQGGHYHORSPHQWVHYHUDOSUREOHPVZHUHIDFHGUHJDUG LQJWKHLQWHURSHUDELOLW\LVVXHVRIWKHDSSOLHGSURWRFROV,QWKHUHVWRIWKHSDSHUWKHVH SRLQWVZLOOEHFRYHUHG)LUVWO\ZHZLOORYHUYLHZWKHDFWLRQVWKDWPXVWEHWDNHQGXULQJ VHUYLFHSURYLVLRQHVSHFLDOO\DWFDOOVHWXSDVWKLVLVWKHPRVWGLIILFXOWSURFHVVLQWKH ,062WKHUSURFHVVHVUHODWHGWR4R6SURYLVLRQLQJFDQEHKDQGOHGLQDIDLUO\VWUDLJKW IRUZDUGPDQQHUWKHUHIRUHWKHLUGLVFXVVLRQZLOOEHRPLWWHG$IWHUGLVFXVVLQJWKHFDOO VHWXS DOO WKH UHTXLUHPHQWV GHULYHG IURP WKH IXQFWLRQDOLWLHV OLVWHG LQ 7DEOH  ZLOO EH DQDO\]HGIRUHDFKV\VWHPFRPSRQHQWWKDWEHORQJVWRWKHVHUYLFHSURYLGHUH[FHSWIRU WKH **61 DV WKH UROH RI WKLV HQWLW\ LV DGHTXDWHO\ GHILQHG DQG LWV LPSOHPHQWDWLRQ GRHVQRWHQWDLOLQWHURSHUDELOLW\LVVXHVIRUWKHLQYHVWLJDWHGSURWRFROV

4 Call Setup Signaling Scenario 'XHWRWKHVHSDUDWLRQRIWKHEHDUHUDQGFRQWUROSODQHVWKHFDOOVHWXSSURFHVVLVDGLIIL FXOWSURFHVVZLWKPXOWLSOHHQWLWLHVZKLFKPD\IDLOGXHWRWKHIROORZLQJUHDVRQV

$QDO\VLVRI6,35693DQG&236,QWHURSHUDELOLW\

 (LWKHUWKHFDOOHURUWKHFDOOHHLVQRWDXWKRUL]HGWRPDNHWKHFDOO  (LWKHU WKH FDOOHU RU WKH FDOOHH WULHV WR PDNH DQ LOOHJDO VWHS GXULQJ FDOO VHWXS IRU H[DPSOHLVVXHVDUHVHUYDWLRQUHTXHVWIRUWRRPXFKUHVRXUFHV  7KH DXWKRUL]HG UHVHUYDWLRQ UHTXHVW IDLOV GXH WR WKH ODFN RI UHVRXUFHV VXSSRVLQJ WKDW4R6DVVXUHGRSHUDWLRQPRGHLVLPSOHPHQWHG  0RUHRYHU v JKRVW ULQJVw  PXVW EH DYRLGHG WKDW LV WKH GHYLFH RI WKH FDOOHH PXVW QRW ULQJLIWKHFDOOFDQQRWEHVHWXSIRUDQ\UHDVRQ)LJGHPRQVWUDWHVDVXFFHVVIXOFDOO VHWXS SURFHVV XQWLO WKH SKRQH RI WKH FDOOHH EHJLQV WR ULQJ 'DUN OLJKW  EDFNJURXQG VKDGLQJPDUNVWKH5693DQG&236PHVVDJHVDVVRFLDWHGZLWKWKHPHGLDVWUHDPVHQW E\WKHFDOOHU FDOOHH  7KHIXQFWLRQDOHOHPHQWVLQWHUDFWGXULQJFDOOVHWXSDVIROORZV  $8(LQLWLDWHVWKHFDOOVHWXSWKH8(VQHJRWLDWHDQGDJUHHLQWKHPHGLDVWUHDPVWKH VHWRIDSSOLFDEOHFRGHFVIRUHDFKVWUHDPDQGWKHQHFHVVLW\RI4R6ZLWKDQ6'3RI IHUDQVZHUSDLU>@LQWKH,19,7(DQGPHVVDJHV  %RWKRQWKHFDOOHUDQGFDOOHHVLGHWKH6,33UR[LHVIRUZDUGWKH6'3LQIRUPDWLRQWR WKH3&)V  )RU ERWK XVHUV WKH DSSURSULDWH 3&) GHFLGHV ZKHWKHU WKH XVHU LV DXWKRUL]HG DQG ZKLFKELOOLQJFDWHJRU\WKHFDOOEHORQJVWR  7KH 5693 PHVVDJHV VHQW E\ 8(V IRU HDFK PHGLD VWUHDP DUULYH DW WKH **61 ZKLFKUHTXHVWVDGHFLVLRQXVLQJ&236IURPWKH3&)7KH3&)WKHQH[DPLQHVIRU HDFK UHTXHVW LI WKH 5693 SDUDPHWHUV FRQIRUP WR WKH SDUDPHWHUV QHJRWLDWHG YLD 6'3,IWKH\GRWKHUHVRXUFHDOORFDWLRQZLOOEHSHUPLWWHGDQGUHMHFWHGRWKHUZLVH )LQDOO\WKH8(VQRWLFHWKHVXFFHVVRUIDLOXUHRIWKHLU5693UHTXHVWV$UHTXHVWPLJKW EHUHMHFWHGE\WKH3&) GXHWRSROLF\UHDVRQV RU&$&DWWKH**61 GXHWRWKHODFN RI UHVRXUFHV  'HSHQGLQJ RQ WKH UHVXOW RI WKLV SUHOLPLQDU\ QHJRWLDWLRQ WKH FDOO VHWXS PD\SURFHHGE\VHQGLQJ5LQJLQJPHVVDJHV $WWKHWLPHZKHQWKHSUHVHQWHGZRUNZDVLQSURJUHVVWKHFXUUHQWYHUVLRQRIWKH6,3 5)&>@GLGQRWFRQWDLQDQ\UHFRPPHQGDWLRQVUHJDUGLQJWKHLQWHJUDWLRQRIUHVRXUFH UHVHUYDWLRQ PDQDJHPHQW LQ WKH 6,3 SURWRFRO VWDWH PDFKLQH 1HLWKHU ZRUN WKDW ZDV XQGHU SURJUHVV LQ WKH ,(7) >@ QRU WKH QHZ SURSRVHG VWDQGDUG SXEOLVKHG UHFHQWO\ >@ FRQWDLQHG VXFK UHFRPPHQGDWLRQV +RZHYHU WKH WRSLF ZDV DGGUHVVHG LQ RWKHU ,(7)GUDIWV>@DQG>@ZKLFKZHUHEHLQJGHYHORSHGFRQWLQXRXVO\7KHDYDLODEOH GUDIWYHUVLRQDWWKHWLPHRIWKHVSHFLILFDWLRQRIWKHDUFKLWHFWXUHUHFRPPHQGHGWKHXVH RI&20(7DQG35$&.PHVVDJHVIRUWKLVSXUSRVH+HQFHZHDGKHUHGWRWKHVHVSHFL ILFDWLRQV+RZHYHURXWRIWKHVHWZRPHVVDJHVWKHILUVWZDVUHSODFHGE\WKH83'$7( PHVVDJH XVHG IRU WKH VDPH SXUSRVH KHUH ZKLOH WKH VHFRQG RQH EHFDPH D SURSRVHG VWDQGDUG>@(YHQWKRXJKWKH83'$7(PHVVDJHUHSODFHG&20(7DQGLWVIXQFWLRQ WKHDQDO\VLVRIWKHDUFKLWHFWXUHXVLQJ&20(7ZLOOQRWORRVHLWVUHOHYDQFHDVWKHEDVLF IXQFWLRQDOLW\RIWKHWZRDOWHUQDWLYHVGRHVQRWGLIIHU $V IDU DV 6'3 XVDJH LV UHJDUGHG ZH DGKHUHG WR WKH 6'3 RIIHUDQVZHU PRGHO RI >@ SXEOLVKHGODWHUDVDQ5)&>@ DQG>@



 7KH RIIHUDQVZHU FDQ DOVR EH LQ  DQG 35$&. ZKHQ PHGLD VWUHDPV DUH GHILQHG E\ WKH

FDOOHH

&VDED.LU O\=VROW3 QGLDQG7LHQ9DQ'R  3&6&) 8(

6,3SUR[\

3&6&)

3&)

**61

,19,7(

**61

3&)

6,3SUR[\

,19,7(

,19,7(

6'3LQIR

6'3LQIR 

 35$&.

&2365(4

2.

2.

2.

&236'(&

3$7+

&2365(4 &236'(& &2365(4

5(69

5(69

3$7+

&2365(4

3$7+ &20(7



6'3LQIR

6'3LQIR

3$7+

8(

3$7+ 3$7+ 5(69

&236'(&

&236'(& 5(69

5(69

5(69

&20(7

2.

2. 5LQJLQJ

5LQJLQJ

&20(7 2. 5LQJLQJ



Fig. 2.0HVVDJHVHTXHQFHGLDJUDPRIDVXFFHVVIXOFDOOVHWXS

5 Policy Control Function $VLWZDVDOUHDG\PHQWLRQHGWKH3&)FROOHFWVDOOWKHQHFHVVDU\FDOOSDUDPHWHUVIURP 6,3DQG5693VLJQDOLQJDQGGHFLGHVZKHWKHUWKHUHVRXUFHUHVHUYDWLRQUHTXHVWRIWKH XVHUPD\SURFHHG)RUPDNLQJWKHSROLF\GHFLVLRQWKH3&)PXVWXVHD3ROLF\,QIRU PDWLRQ %DVH 3,%  WKDW FRQWDLQV LGHQWLILFDWLRQ LQIRUPDWLRQ DQG VHUYLFH FRQWUDFW GH WDLOV IRU HDFK XVHU XVHU SURILOH  0RUHRYHU WKH 3&) PXVW KDYH D SUHGHILQHG VHW RI GHFLVLRQ UXOHV DQG DQRWKHU GDWDEDVH GHVFULELQJ UHVRXUFH UHTXLUHPHQWV RI GLIIHUHQW FRGHFVLQWHUPVRI5693SDUDPHWHUV 5.1 Input Information for the Decision :KHQGHILQLQJWKHGHFLVLRQSURFHVVWKHVWDUWLQJSRLQWZDVWKHIDFWWKDWWKHLQIRUPD WLRQ FRQWDLQHG LQ 5693 PHVVDJHV LV LQVXIILFLHQW IRU GHFLGLQJ ZKHWKHU WKH FDOOHU

$QDO\VLVRI6,35693DQG&236,QWHURSHUDELOLW\

FDOOHH  LV DXWKRUL]HG IRU UHTXHVWLQJ WKH LQGLFDWHG UHVRXUFHV 7UDQVPLWWLQJ UHVRXUFH PDQDJHPHQW UHODWHG LQIRUPDWLRQ LQ 6'3 SDUDPHWHUV HPEHGGHG LQ 6,3 PHVVDJHV LV PRUHFRQIRUPDQWWRWKHEXVLQHVVPRGHORIVHUYLFHSURYLGHUV 9DULRXVSLHFHVRILQIRUPDWLRQPLJKWEHXVHGIRUDXWKRUL]DWLRQDQGDFFRXQWLQJGH SHQGLQJRQWKHEXVLQHVVPRGHOZKLFKOHDGVWRDGHFLVLRQPHFKDQLVPWKDWLVIDUPRUH JHQHUDODQGIOH[LEOHWKDQGHFLVLRQPDNLQJEDVHGRQO\RQ5693SDUDPHWHUV7KHPRVW LPSRUWDQWIHDWXUHVRIDJHQHUDOGHFLVLRQPHFKDQLVPDUHDVIROORZV  LQWHJUDWHGPDQDJHPHQWRIPXOWLSOHPHGLDVWUHDPVXVHGLQWKHVDPHVHVVLRQ  GLVWLQFWLRQ EDVHG RQ WKH ORFDWLRQV RI  WKH RWKHU SDUW\ VDPH QHWZRUNIRUHLJQ QHW ZRUN   GLVWLQJXLVKHGFDOOHUVRUFDOOHHV HJFXVWRPHUVHUYLFHHPHUJHQF\FDOOV   GLVWLQFWLRQEHWZHHQGLIIHUHQWPHGLDW\SHV HJDXGLRYLGHRZKLWHERDUG   GLVWLQFWLRQ EHWZHHQ FRGHF SHUIRUPDQFH OHYHOV HJ KLJK DQG ORZ TXDOLW\ YLGHR FRQIHUHQFH   FRQVWUDLQWVRQWKHQXPEHURIVLPXOWDQHRXVFDOOV ,WLVLPSRUWDQWWRQRWHKRZHYHUWKDWDOWKRXJKWKHVHDVSHFWVPLJKWEHLQYROYHGLQWKH GHFLVLRQSURFHVVVRPHRIWKHPLPSO\WKHFRQIRUPDQFHRIXVHUWHUPLQDOVZKLFKFDQ QRWEHFRQWUROOHGE\WKHVHUYLFHSURYLGHU)RUH[DPSOH6'3SDUDPHWHUVFRQWDLQWKH FRGHFLQIRUPDWLRQEXWLWLVQRWUHDVRQDEOHWRFKHFNZKHWKHUXVHUWHUPLQDOVDSSO\RQH RIWKHQHJRWLDWHGFRGHFVDVWKLVZRXOGPHDQKXJHDGGLWLRQDOORDGIRU**61V:HGR QRWGHHPWKHYLRODWLRQRIWKLVFRQIRUPDQFHUHTXLUHPHQWWREHDVHULRXVEXVLQHVVULVN DVWKLVIUDXGZRXOGUHTXLUHWKHPRGLILFDWLRQRIXVHUWHUPLQDOV 5.2 Decomposition of the Decision Process 7KHGHFLVLRQSURFHVVFDQEHGHFRPSRVHGWRWKHIROORZLQJVWDJHV  7KH3&)FKHFNVZKHWKHUWKHVHUYLFHFRQWUDFWSHUPLWVWKHFDOOIRUWKHXVHUDFFRUG LQJWRWKHFRQGLWLRQVPHQWLRQHGDERYHDQGGHWHUPLQHVZKLFKELOOLQJFDWHJRU\WKH FDOOEHORQJVWR  7KH 3&) FKHFNV ZKHWKHU WKH UHVRXUFH UHVHUYDWLRQ UHTXHVW LV UHDVRQDEOH EDVHG RQ FDOOSDUDPHWHUV 7KHILUVWVWDJHFDQEHFDUULHGRXWEDVHGRQWKHFRQWHQWVRIWKH6'3RIIHUDQVZHUDQG WKHXVHUSURILOHDQGDVRFDOOHG5693(QYHORSHFDQEHGHWHUPLQHGIRUHDFKGLUHFWLRQ RI HDFK PHGLD VWUHDP ZKLFK GHVFULEHV WKH PD[LPDO DOORZHG UHVRXUFH UHVHUYDWLRQ :KHQWKH&236UHTXHVWDUULYHVODWHURQDQGWKHILQDOGHFLVLRQKDVWREHPDGHWKLV 5693 (QYHORSH ZKLFK LQ IDFW FRQWDLQV WKH QHFHVVDU\ LQIRUPDWLRQ LQ D FRQWUDFWHG IRUPZLOOSURYLGHWKHERXQGDULHVIRUWKHFRPSDULVRQ 7KLV WZRVWDJH SURFHVV VLPSOLILHV WKH GHILQLWLRQ RI GHFLVLRQ UXOHV DQG DOWKRXJK XQVXSSRUWHGE\&236IDFLOLWDWHVSXVKLQJGHFLVLRQLQIRUPDWLRQWRWKH**61UHVXOW LQJLQDUHGXFHGFDOOVHWXSWLPH(YHQWKRXJKWKLVWZRVWDJHSURFHVVLVQRWHTXLYDOHQW 

 ,I WKH 35$&. PHVVDJH FDUULHV 6'3 LQIRUPDWLRQ WKH &236 5(4 PLJKW DUULYH DW WKH 3&)

HDUOLHU WKDQ WKH 6'3 LQIRUPDWLRQ IRUZDUGHG E\ WKH 6,3 SUR[\ GXH WR WKH LQGHSHQGHQFH RI SDWKVWDNHQE\6,3DQG5693PHVVDJHV,QWKLVFDVHWKHGHFLVLRQPXVWEHSRVWSRQHGXQWLO 6'3LQIRUPDWLRQDUULYHV

&VDED.LU O\=VROW3 QGLDQG7LHQ9DQ'R 

WR D VLQJOH GHFLVLRQ PDGH ZKHQ DOO WKH QHFHVVDU\ LQIRUPDWLRQ LV DYDLODEOH LW LV VWLOO IOH[LEOHHQRXJKWRVXSSRUWDGHTXDWHGLIIHUHQWLDWLRQ 5.3 RSVP Envelopes $QQH[ & RI >@ GHPRQVWUDWHV WKURXJK DQ H[DPSOH KRZ WR GHWHUPLQH WKH DPRXQW RI UHVRXUFHVWKDWWKHXVHULVDOORZHGWRUHVHUYHWKDWLVWKH5693(QYHORSH7KLVLVLQ WHQGHG WR SURKLELW XQDXWKRUL]HG UHVRXUFH UHVHUYDWLRQV 7KH HQYHORSH PD\ LQWURGXFH FRQVWUDLQWVRQWKHIROORZLQJSDUDPHWHUVEDVHGRQWKH6'3GHVFULSWLRQ  )LOWHU6SHFSDUDPHWHUV  VRXUFH,3DGGUHVV  GHVWLQDWLRQ,3DGGUHVV  SURWRFRO,'  GHVWLQDWLRQSRUW V   )ORZ6SHFSDUDPHWHUV  PHDQUDWH U   SHDNUDWH S   EXFNHWGHSWK E   PLQLPXPSROLFHGXQLW P   PD[LPXPSDFNHWVL]H 0  'HWHUPLQLQJWKH,3DGGUHVVHVEDVHGRQWKH6'3GHVFULSWLRQJXDUDQWHHVWKDWWKHUHVHU YDWLRQFDQRQO\EHDFFHSWHGEHWZHHQWKHFDOOHUDQGWKHFDOOHH3RUWQXPEHUVGHSHQG RQPHGLDW\SHDQGWKHDSSOLHGWUDQVSRUWSURWRFRODFFRUGLQJWR>@DQGWKLV5)&RQO\ UHTXLUHVWKDWWKH\FRXOGEHGHWHUPLQHGE\DQDOJRULWKPXVLQJWKHQXPEHUFRQWDLQHGLQ WKH6'3SDUDPHWHUV7KH3&)WKHUHIRUHPXVWEHDZDUHRIWKHVHPHGLDDQGWUDQVSRUW GHSHQGHQWFDOFXODWLRQPHWKRGVDVZHOO )ORZ6SHFSDUDPHWHUVFDQEHFDOFXODWHGEDVHGRQWKHVHWRIFRGHFVGHWHUPLQHGE\ 6'3UHTXHVWDQGDQVZHU7KH6'3LQIRUPDWLRQRQO\GHVFULEHVWKHVHWRIFRGHFVVXS SRUWHGE\ERWKSDUWLHVQRWWKHFXUUHQWO\DSSOLHGFRGHF,QDGGLWLRQWRWKLVWKHDSSOLHG FRGHF PD\ EH VHOHFWHG DUELWUDULO\ IURP WKLVVHW DQGFDQEHFKDQJHGGXULQJWKHFDOO FRQVHTXHQWO\WKHHQYHORSHPXVWILWDOORIWKHLQGLFDWHGFRGHFV7KH5693SDUDPHWHUV QHFHVVDU\IRUDQDSSURSULDWHUHVHUYDWLRQFDQEHGHWHUPLQHGIRUHDFKFRGHFEDVHGRQ WKHLUSDUDPHWHUVOLNHIUDPHVL]HDQGIUDPHGXUDWLRQ)URPWKHDVSHFWRILPSOHPHQWD WLRQLWLVPRUHVWUDLJKWIRUZDUGWRVWRUH5693SDUDPHWHUVDVVRFLDWHGZLWKHDFKFRGHF LQWKH3&)GDWDEDVH7KHHQYHORSHFDQWKHQEHFDOFXODWHGE\ILQGLQJWKHPD[LPXP U SE0 DQGWKHPLQLPXP P RIWKH5693SDUDPHWHUVDVVRFLDWHGZLWKWKHFRGHFVLQ WKHVHW 7KLV FDOFXODWLRQ PHWKRG PLJKW VLJQLILFDQWO\ RYHUHVWLPDWH UHDO UHVRXUFH XVH FRQ VLGHUWKHFDVHZKHQWKHVHWRIFRGHFVFRQWDLQVD*DQGD*60)5FRGHFDQGDOO XVHUVDSSO\WKHODWWHU EXWWKHXVHUZLOOKDYHQRLQWHUHVWLQLVVXLQJDWRRODUJHUHVHUYD WLRQ UHTXHVW LI LW FRVWV PRUH PRQH\ +RZHYHU LI DFFRXQWLQJ LV EDVHG RQ WKH PHGLD W\SH OLNHWHOHSKRQHTXDOLW\DXGLR DQGQRWRQWKHDFWXDOFRGHFLQXVHWKHRQO\UHDVRQ

$QDO\VLVRI6,35693DQG&236,QWHURSHUDELOLW\

ZK\DXVHUVKRXOGFKRRVHDORZHUEDQGZLGWKFRGHFLVWKHVOLJKWO\KLJKHUSUREDELOLW\ RIWKHVXFFHVVIXOUHVHUYDWLRQ

6 SIP Proxy Server 7KH6,3SUR[\LVSULPDULO\DSSOLHGLQWKH3&)WRH[WUDFW6,3VHVVLRQDQG6'3FRGHF GDWDIURP6,3FDOOIORZV7KLVDGGLWLRQDOIXQFWLRQLVDUHODWLYHO\VLPSOHH[WHQVLRQRI WKHVWDQGDUGL]HG6,3SUR[\IXQFWLRQVHW >@ GHILQHV WZR W\SHV RI 6,3 SUR[\ VHUYHU EHKDYLRU QDPHO\ WUDQVDFWLRQ VWDWHIXO DQG WUDQVDFWLRQ VWDWHOHVV SUR[LHV 7KH IRUPHU VKRXOG WUDFN WUDQVDFWLRQ VWDWH EXW QRW QHFHVVDULO\ FDOO VWDWH  ZKHUHDV WKH ODWWHU GRHV QRW NHHS VWDWH LQIRUPDWLRQ 6LQFH 6,3 DQG 6'3 VSHFLILFDWLRQV KDYH EHHQ FKDQJLQJ UDSLGO\ GXULQJ WKH ODVW \HDU ZH UHFRP PHQGWKHXVHRIDVWDWHOHVVSUR[\IRUWKHIROORZLQJUHDVRQV  7KHSUR[\GRHVQRWJHQHUDWH6,3PHVVDJHVVRWKH6,3VLJQDOLQJFDQEHHQGWRHQG  $VWDWHOHVVSUR[\FDQVLPSO\IRUZDUGPHVVDJHVZLWKRXWIROORZLQJWUDQVDFWLRQVDQG GHSHQGHQFLHVEHWZHHQPHVVDJHVWKXVLPSOHPHQWDWLRQDQGIXWXUHDGRSWLRQDFFRUG LQJWRWKHQRQILQDOVWDQGDUGLVPRUHHDV\  %HWWHUVFDODELOLW\FDQEHDFKLHYHGZLWKWKHVWDWHOHVVGHVLJQ +RZHYHUWKHUHDUHVRPHFRXQWHUDUJXPHQWVWRFRQVLGHU  7KHSUR[\FDQRQO\SHUIRUPV\QWDFWLFFKHFNRQ6,3PHVVDJHVEXWLWFDQQRWIRUFH WKHFRUUHFWRUGHURI6,3PHVVDJHV7KLVFKHFNFDQEHLPSOHPHQWHGLQWKH3&)EXW LWYLRODWHVRXUJRDOWRVHSDUDWHUHVSRQVLELOLWLHVVLQFHWKH3&)LWVHOIGRHVQRWWDNH SDUWLQ6,3VLJQDOLQJ  7KHSUR[\FDQQRWILOWHURXWUHSHDWHG UHWUDQVPLWWHG 6,3PHVVDJHV5HWUDQVPLWWHG 6,3PHVVDJHVKRZHYHUVKRXOGEHLGHQWLFDOVRLQFDVHRIUHSHDWHG6,3PHVVDJHV WKHVWDWHOHVVSUR[\VHQGVUHSHDWHGPHVVDJHVWRWKH3&)DVZHOOZKLFKFDQHDVLO\ EHUHFRJQL]HG  7KH VWDWHOHVV SUR[\ FDQQRW VXSSRUW DGYDQFHG IXQFWLRQV OLNH IRUNLQJ SUR[\ PRGH 7KLV UHVWULFWLRQ FDQ EH UHOD[HG LI QHFHVVDU\ VLQFH DQRWKHU JHQHUDOSXUSRVH 6,3 3UR[\FDQEHFKDLQHGDIWHUWKHVWDWHOHVVSUR[\  ,PSOHPHQWLQJD6,3DXWKHQWLFDWLRQVFKHPHVWURQJHUWKDQv +773%DVLFw DXWKHQWL FDWLRQFDQEHFRPSOLFDWHG $ VWDWHIXO SUR[\ GRHV QRW KDYH WKHVH SUREOHPV KRZHYHU LWV LPSOHPHQWDWLRQ DQG PDLQWHQDQFH UHTXLUHV IDU PRUH HIIRUWV WKDQ WKDW RI D VWDWHOHVV SUR[\ GXH WR WKH IDFW WKDWFKDQJHVLQ6,3DQG6'3VWDQGDUGVPXVWEHIROORZHG



8QIRUWXQDWHO\VRPH5693LPSOHPHQWDWLRQVGRQRWVXSSRUWWKHPRGLILFDWLRQRI5693UHVHU

YDWLRQSDUDPHWHUVZLWKRXWWHDUGRZQZKLFKLQIDFWIRUFHVWKHXVHUVWRLVVXHODUJHUUHVHUYD WLRQUHTXHVWVLQRUGHUWRHQVXUHWKDWGXULQJWKHFDOOWKH\ZLOOEHDEOHWRFKDQJHWRDFRGHFWKDW QHHGVPRUHUHVRXUFHVZLWKRXWORRVLQJWKH4R6JXDUDQWHH

&VDED.LU O\=VROW3 QGLDQG7LHQ9DQ'R 

7 Protocol between the SIP Proxy and the PCF $VLWZDVSUHYLRXVO\QRWHGWKHFRPPXQLFDWLRQSURWRFROEHWZHHQWKH3&)DQGWKH6,3 3UR[\LVQRW\HWVWDQGDUGL]HGWKHUHIRUHZHKDGWRHODERUDWHLWVGHWDLOV,QWKLVSDSHU ZHUHVWULFWRXUVHOYHVWRUHYLHZVRPHFRQVLGHUDWLRQVDQGGHFLVLRQVZLWKRXWGHVFULELQJ WKHSURWRFROV\QWD[ 7KH3&)KDVWRUHFHLYHHQRXJKLQIRUPDWLRQIURPWKH6,33UR[\WR  LGHQWLI\WKHXVHU  UHFRJQL]HSURWRFROPHVVDJHVEHORQJLQJWRWKHVDPHVHVVLRQ  FDOFXODWH 5693 (QYHORSHV EDVHG RQ PHGLD DQG FRGHF LQIRUPDWLRQ LQ WKH 6'3 RIIHUDQVZHUSDLU  FRXSOH&236UHTXHVWVZLWKWKHFRUUHVSRQGLQJ5693(QYHORSH 7.1 Protocol Messages and Statefulness of the SIP Proxy $VVXPLQJ WKDW WKH 6,3 3UR[\ LV VWDWHOHVV LW FDQQRW JDWKHU LQIRUPDWLRQ DERXW WKH ,19,7(WUDQVDFWLRQRUFDOOVWDWHWKXVDPHVVDJHPXVWEHVHQWWRWKH3&)HYHU\WLPHD 6,3 PHVVDJH FRQWDLQV DQ\ LQIRUPDWLRQ QHFHVVDU\ IRU WKH GHFLVLRQ 7KHVH 6,3 PHV VDJHV DUH ,19,7(  35$&. &20(7  PHVVDJHV IRU FDOO VHWXS DQG %