146 21 11MB
English Pages [513]
V.V. Batygin, I.N. Toptygin
PROBLEMS in ELECTRODYNAMICS
T
PROBLEMS in ELECTRODYNAMICS
V. V. Batygin and I. N. Toptygin
PROBLEMS in ELECTRODYNAMICS Translated by
S. Chomet
Edited by
P. I. Dean
Translated from Russian V.V. BATYGIN and I.N. T0PTYG1N S bo rn ik Z a d a c h p o E le k tro d in a m ik e
Gosudarstvennoe Izdatel’stvo Fiziko Matematicheskoi Literatury 480 pp., Moscow, 1962
Copyright (c) 1964 by Academic Press Inc. (London) Ltd. and Infosearch Ltd.
All Rights Reserved
No part of this book may be produced in any form, by photostat, microfilm, or any other means, without written permission from the publishers
Library of Congress Catalog Card, Number: 64-17461 Academic Press Inc. (London) Ltd. Berkeley Square House, London, W. 1. Infosearch Ltd. London, N.W. 2.
U.S. Edition published by Academic Press Inc. I l l Fifth Avenue, New York 3, New York
P rin te d
in Great Britain by Pion Ltd., London, N.W. 2.
Contents
PAGE
P refac e
iii Problem s
C h a p te r I. V e c to r and te n s o r c a lc u lu s 1. V e c to r and te n s o r a lg e b r a . T ran sfo rm a tio n s o f v e c to r s and te n s o r s 2. V e c to r a n a ly s is C h a p te r II.
E l e c t r o s t a t i c s in v a c u u m
1
185
1 7
185 191
15
194
27 27 39 42
207 207 223 225
49
240
56
247
68 68 72 77
266 266 272 281
82
286
82 88
287 299
C h a p te r III. 1. 2. 3.
E l e c t r o s t a t i c s of c o n d u c to rs an d d ie le c tr ic s B a s ic c o n c e p ts an d m e th o d s of e l e c t r o s t a t i c s C o e ffic ie n ts of p o te n tia l an d c a p a c ita n c e S p e c ia l m e th o d s of e l e c t r o s t a t i c s
S o lu t io n s
C h a p te r IV. C h a p te r V.
S te a d y c u r r e n t s M a g n e to s ta tic s
C h a p te r VI. 1. 2. 3.
E l e c t r i c a l a n d m a g n e tic p r o p e r tie s of m a tte r P o l a r i s a t i o n o f m a t t e r in a c o n s ta n t fie ld P o l a r i s a t i o n o f m a t t e r in a v a r ia b le fie ld F e r r o m a g n e tic re s o n a n c e
C h a p te r V II. 1. 2.
Q u a s i - s t a t i o n a r y e le c tr o m a g n e tic fie ld s Q u a s i- s ta tio n a r y p h e n o m e n a in l i n e a r c o n d u c to r s E ddv c u r r e n t s a n d s k in e ffe c t
CO N TEN TS
11
P ro b le m s
C h a p te r VIII. 1. 2. 3.
P ro p a g a tio n of e le c tro m a g n e tic w av es P la n e w a v es in a h o m o g e n eo u s m e d iu m . R e fle c tio n and r e f r a c tio n . W ave p a c k e ts S c a tte rin g of e le c tro m a g n e tic w a v e s by m a c ro s c o p ic b o d ie s. D iffra c tio n P la n e w a v es in a n is o tro p ic and g y ro tro p ic m e d ia
Solutions
C h a p te r IX.
E le c tro m a g n e tic o s c illa tio n s in bounded b o d ie s
93
313
93
313
101
328
108
347
113
358
C h a p te r X. S p e c ial th e o ry of r e la tiv ity 1. L o re n tz tr a n s f o r m a tio n 2. F o u r -d im e n s io n a l v e c to r s and te n s o r s 3. R e la tiv is tic e le c tro d y n a m ic s
120 120 127 130
375 375 383 385
C h a p te r XI. R e la tiv is tic m e c h a n ic s 1. E n e rg y and m o m en tu m 2. T he m o tio n of c h a rg e d p a r tic le s in an e le c tro m a g n e tic fie ld
135 135
391 391
143
401
153
420
153
420
160
429
167
443
172
451
177
462
C h a p te r X II. E m is s io n of e le c tro m a g n e tic w a v es 1. T h e H e rtz v e c to r and th e m u ltip o le e x p a n sio n 2. T h e e le c tro m a g n e tic fie ld of a m o v in g p o in t c h a rg e 3. In te ra c tio n of c h a rg e d p a r tic le s w ith r a d i a tio n 4. E x p a n sio n of a n e le c tro m a g n e tic fie ld in t e r m s of p la n e w a v es C h a p te r XIII.
T h e ra d ia tio n e m itte d d u rin g th e in te r a c tio n of c h a rg e d p a r tic le s w ith m a tte r
A ppendix I.
T h e 6 -fu n c tio n
481
A ppendix II.
S p h e ric a l L e g e n d re fu n c tio n s
484
A ppendix III. C y lin d ric a l fu n c tio n s
487
Index
491
PREFACE
T h is b o o k c o n ta in s a b o u t 750 p r o b le m s on c l a s s i c a l e l e c t r o d y n a m ic s an d its m o r e im p o r ta n t a p p lic a tio n s , in c lu d in g o v e r 150 p r o b le m s on th e s p e c ia l th e o r y of r e l a tiv ity , an d a b o u t 70 p r o b le m s on v e c to r an d t e n s o r a n a ly s is . In a d d itio n to p r o b le m s i l l u s t r a t i n g fu n d a m e n ta l c o n c e p ts an d la w s of e le c tr o d y n a m ic s , w h ich c an b e s o lv e d b y p u r e ly m a th e m a tic a l m e th o d s , th e c o lle c tio n in c lu d e s a l a r g e n u m b e r of m o r e c o m p lic a te d p r o b le m s (th e s e a r e in d ic a te d b y a s t e r i s k s ) . S om e of th e s o lu tio n s in v o lv e a c o n s id e r a b le a m o u n t of e ffo rt, w h ile o th e r s a r e p u r e ly th e o r e t i c a l in n a tu r e and fo llo w fr o m a le c t u r e c o u r s e on e le c tr o d y n a m ic s (p ro p a g a tio n of w a v e s in a n is o tr o p ic an d g y r o tr o p ic m e d ia , m o tio n of c h a r g e d p a r t i c l e s in th e e l e c t r o m a g n e tic fie ld , r e p r e s e n t a t i o n of th e e le c tr o m a g n e tic fie ld b y a s e t of o s c i l l a t o r s , and so on). F in a lly , t h e r e a r e p r o b le m s w h ic h a r e c o n c e rn e d w ith to p ic s w hich a r e n o t w e ll c o v e r e d b y e x is tin g te x ts , f o r e x a m p le , in te r a c tio n of c h a r g e d p a r t i c l e s w ith m a tte r (C h a p te r X III), a p p lic a tio n s of c o n s e r v a tio n la w s to th e a n a ly s is of c o llis io n p r o c e s s e s and p a r t i c l e d is in te g r a tio n (C h a p te r XI), f e r r o m a g n e tic r e s o n a n c e (C h a p te r VI), and so on. T h e s e c o n d p a r t of th e book g iv e s a n s w e r s an d s o lu tio n s to a la r g e n u m b e r of th e s e p ro b le m s . E a c h s e c tio n is p re fa c e d b y a s h o r t th e o r e tic a l in tro d u c tio n in w h ich th e n e c e s s a r y fo r m u la e a r e g iv en . T h e s e s h o r t in tr o d u c tio n s do n o t p r e te n d to b e c o m p le te ; m o re e x te n s iv e t r e a t m e n ts w ill b e found in th e books lis te d in th e b ib lio g ra p h y . T h e m a th e m a tic a l a p p e n d ic e s re v ie w th e b a s ic p r o p e r tie s of th e 6 -fu n c tio n and th e c y lin d r ic a l and s p h e r ic a l fu n c tio n s, w hich a r e n e c e s s a r y fo r th e so lu tio n of th e p ro b le m s . T h e p r e s e n t c o lle c tio n is b a s e d on l e c t u r e s g iv e n in th e D e p a rtm e n ts of E le c tr o n ic s and P h y s ic s and M e c h a n ic s of th e L e n in g ra d P o ly te c h n ic a l In s titu te . A la r g e n u m b e r of th e p r o b le m s w e re s e t to th ir d and fo u rth y e a r s tu d e n ts .
iv
PREFA CE
In c o m p ilin g th is c o lle c tio n w e h av e m ade fre q u e n t u se of the w e ll-k n o w n te x ts of L. D. L an d au an d E. M. L ifs h its , I. E. T am m , Y a. I. F r e n k e l ', M. A b ra h a m an d R . B e c k e r, W .R .S m y th e , J . A. S tra tto n , an d o th e r s . A la r g e n u m b e r of m o n o g ra p h s, re v ie w p a p e r s , a n d o r ig in a l p a p e r s w e re a ls o c o n su lte d . V. Batygin and I. Toptygin
Problems
Chapter 1
V E C T O R AND T E N SO R C A L C U L U S
1.
V e c to r an d t e n s o r a lg e b r a . T r a n s f o r m a tio n s of v e c to r s an d t e n s o r s
A v e c to r in t h r e e - d im e n s i o n a l s p a c e is d e fin e d a s a s e t o f th r e e q u a n titie s w h ich t r a n s f o r m in a c c o r d a n c e w ith th e r u le
*=i
a - 1)
w hen th e s y s te m of c o o r d in a te s is r o ta te d . H e r e A ^ a r e th e c o m p o n e n ts o f th e v e c to r a lo n g th e a x e s of th e o r ig in a l s y s te m of c o o r d in a te s , A \ a r e th e c o m p o n e n ts a lo n g th e a x e s of th e r o ta te d s y s te m , a n d a r e th e tr a n s f o r m a tio n c o e ffic ie n ts w h ich a r e e q u a l to th e c o s in e s o f th e a n g le s b e tw e e n th e & -th a x is of th e o r ig in a l s y s te m and th e z'-th a x is of th e r o ta te d s y s te m . W e s h a ll u s e th e fo llo w in g s u m m a tio n r u le : th e s u m m a tio n s ig n w ill b e o m itte d an d th e s u m m a tio n p r o c e s s w ill b e in d ic a te d by a r e p e a te d s u b s c r ip t. In a c c o rd a n c e w ith th is c o n v e n tio n E qn. (1.1) m a y be r e - w r i t t e n in th e fo rm Aj = o-ikAif A te n s o r of ra n k 2 in th r e e - d im e n s io n a l s p a c e is d e fin e d a s th e n in e -c o m p o n e n t q u a n tity (i, k = 1, 2, 3) w hich t r a n s f o r m s in a c c o rd a n c e w ith th e r u le Tlk = ^■il^knJ'lm
(L2)
w h e re th e s u m m a tio n is to b e ta k e n o v e r I an d m . S im ila r ly , a te n s o r of ra n k s in th r e e - d im e n s io n a l s p a c e is d e fin e d by th e fo llo w in g tr a n s f o r m a tio n r u le : T i k i . . . r == 3-1 i ’&kk’ • • - a rr ’ T i ‘ k ’V . . . r ’ •
In th is e x p r e s s io n th e q u a n titie s T h a v e s in d ic e s e a c h .
(1 - 3 )
2
PROBLEMS.
CHAPTER I
Q u a n titie s w hich tr a n s f o r m a s v e c to r s w hen th e c o o rd in a te s y s te m is ro ta te d m ay b eh av e in tw o d is tin c t w ays w hen th e s y s te m of c o o rd in a te s is in v e rte d , i . e . it is s u b je c te d to th e t r a n s fo rm a tio n x' = -x, y ' = -y, z ' = - z . V e c to rs w h o se co m p o n en ts change sig n on in v e rs io n of th e c o o rd in a te s y s te m a r e known a s p o la r v e c to r s , o r sim p ly v e c to r s . V e c to rs w hose co m p o n en ts do not change s ig n on in v e rs io n of th e c o o rd in a te s y s te m a r e c a lle d p s e u d o v e c to rs o r a x ia l v e c to r s . We s h a ll not d istin g u ish b etw een c o v a ria n t and c o n tra v a r ia n t co m p o n en ts of v e c to r s and te n s o r s b e c a u s e th is d is tin c tio n is u n im p o rta n t fo r th e p ro b le m s c o n s id e re d in th is book. T he v e c to r p ro d u c t of tw o p o la r v e c to r s is an e x am p le of an a x ia l v e c to r . S im ila rly , a te n s o r of ra n k s is r e f e r r e d to sim p ly a s a te n s o r if its co m p o n en ts tr a n s f o r m on in v e rs io n a s th e p ro d u c ts of s c o o rd in a te s , i . e . w hen th e r e s u lt of th e tr a n s f o r m a tio n is to m u ltip ly th e m by ( - l ) s . W hen th e r e s u lt of th e in v e rs io n is to m u ltip ly th e c o m p o n en ts by ( - l ) s+1 th e n th e te n s o r is r e f e r r e d to a s a p s e u d o te n s o r. T he q u an tity “n
“ l2
“ l3
“ 21
“ 22
®23
‘“ 31
“ 32
®33‘
(1.4)
is c a lle d th e tra n s fo rm a tio n m a trix . T h e d e te rm in a n t w hose e le m e n ts a r e equal to th e e le m e n ts of a giv en m a trix is c a lle d th e d e te rm in a n t of th a t m a trix . T h u s, th e d e te rm in a n t of th e m a trix g iven by Eqn. (1.4) is “ l2
“ 13
“ 21
“ 22
“ 23
“ 31
“ 32
“ 33
“n
The sum a + ft of tw o m a tr ic e s is defin ed a s th e m a trix y w hose e le m e n ts a r e equal to th e su m s of th e c o rre s p o n d in g e le m e n ts in th e com ponent m a tr ic e s . Thus T/* =
(I>6)
T he p ro d u c t a/3 of tw o m a tr ic e s is defin ed a s th e m a trix y w hose e le m e n ts a r e ob tain ed by m u ltip ly in g th e co m p o n en ts a n d /3 ^ in a c c o rd a n c e w ith th e ru le
w h e re th e su m m a tio n is to be c a r r i e d out o v e r I.
T h e m a trix y
3
VECTOR AND TENSOR CALCULUS
r e p r e s e n t s th e tr a n s f o r m a tio n w hich r e s u l t s a f te r th e s u c c e s s iv e a p p lic a tio n of th e tr a n s f o r m a tio n s /3 and « . T h e u n it m a tr ix is d efin e d by 1 0 0 1 >0 0
i =
( 1. 8 )
and d e s c r ib e s th e tr a n s f o r m a tio n y ie ld in g A £ = A i . T h e e le m e n ts of th e u n it m a tr ix m ay b e r e p r e s e n te d by th e sy m b o l 6 ;^ w h ich is su c h th a t / = k, i =A k.
1 0
(1.9)
A m a tr ix of th e fo rm ®i 0 O' 0 *2 0 ,0 0 a3‘
a
is c a lle d a d ia g o n a l m a tr ix . c o n d itio n
(1.10)
A m a tr ix w h o se e le m e n ts s a tis f y th e
(1.11)
«/*«« = 8« is c a lle d an o rth o g o n a l m a tr ix . T h e r e c i p r o c a l (or in v e r s e ) m a tr ix o'-1 is d e fin e d by aa 1= a *0 = 1,
(1.12)
an d d e s c r ib e s th e r e c i p r o c a l tr a n s f o r m a tio n , i . e . if A'i = a ^ ^ A ^ th e n Afr = F in a lly , th e tr a n s p o s e d m a tr ix 5 , is o b ta in e d fr o m a by in te rc h a n g in g th e c o lu m n s an d th e ro w s , s o th a t all “21 a12 022
a31 “32 'a13 “23 “33'
a lk — **/•
(1.13)
------ oOo-------
1. F in d th e c o s in e o f th e a n g le 9 b e tw e e n tw o d ir e c tio n s n an d n ' w h ic h a r e d e fin e d in a s p h e r ic a l s y s te m of c o o r d in a te s by th e a n g le s a , fi an d a ' , (S’ r e s p e c tiv e ly .
4
PROBLEMS.
2.
CHAPTER I
P ro v e th e id e n titie s
(A X B) • (C X D) = (A • C) (B • D) — (A • D)(B ■C); (A X B) X (C X D) = [A • (B X D)] C — [A • (B X C)J D = = [A • (C X D)] B — [B ■(C X D)J A.
3. A s e t of th r e e q u a n titie s a i (i = 1, 2, 3) is giv en in a li c a r t e s i a n s y s te m s of c o o rd in a te s and it is know n th a t a ^ b i is in v a ria n t w ith r e s p e c t to ro ta tio n s and r e f le c tio n s . Show th a t if is a v e c to r (p se u d o v e c to r) th e n a ; is a ls o a v e c to r (p se u d o v e c to r ). 4. Show th a t if a i = T { k bk in e v e r y s y s te m of c o o rd in a te s , w h e re T i k is a t e n s o r of ra n k 2 w h ile bk is a v e c to r , th e n a i is a ls o a v e c to r . da 7 5. Show t h a t —— is a t e n s o r of ra n k 2. 8xk 6. Show th a t if T i k is a te n s o r of ra n k 2 and P i k is a p s e u d o te n s o r of ra n k 2, th e n T i k P i k is a p s e u d o s c a la r . 7. Show th a t th e s y m m e tr y of a te n s o r is a p r o p e r ty w hich is in v a ria n t w ith r e s p e c t to r o ta tio n s , i . e . a te n s o r w hich is s y m m e tr ic ( s k e w - s y m m e tr ic ) in a g iv e n c o o rd in a te s y s te m r e m a in s s y m m e tr ic ( s k e w - s y m m e tr ic ) in a ll o th e r s y s te m s w hich a r e r o ta te d w ith r e s p e c t to th e o r ig in a l s y s te m . 8. Show th a t if th e t e n s o r S i k is s y m m e tr ic w h ile th e t e n s o r A ^ k is s k e w - s y m m e tr ic , th e n A i k S i k = 0. 9. Show th a t th e su m of th e d ia g o n a l c o m p o n e n ts of a te n s o r of r a n k 2 is an in v a ria n t q u a n tity . 10*. In s o m e c a s e s it is c o n v e n ie n t to u s e th e c y c lic c o m p o n e n ts d e fin e d by a±i = * ( a x ± i a y ) / y [ 2 , a 0 = a z in s te a d of th e c a r t e s i a n c o m p o n e n ts a ^ ay, a F of a v e c to r . E x p r e s s th e s c a l a r an d v e c to r p r o d u c ts of tw o v e c to r s in t e r m s of t h e i r c y c lic c o m p o n e n ts . F in d a ls o th e c y c lic c o m p o n e n ts of th e p o s i tio n v e c to r in t e r m s of th e s p h e r ic a l L e g e n d re f u n c tio n s !. 11*. F in d th e c o m p o n e n ts of th e t e n s o r e ^ w h ich is r e c i p r o c a l to e ^ . C o n s id e r in p a r t i c u l a r th e c a s e w h e re is a s y m m e tr ic te n s o r d e fin e d a lo n g th e p r in c ip a l a x e s . 12. S uppose th a t in a ll c o o rd in a te s y s te m s th e c o m p o n e n ts of th e v e c to r a a r e li n e a r fu n c tio n s of th e c o m p o n e n ts of a n o th e r v e c to r b so th a t a i = e^A^AShow th a t th e q u a n tity is a
t Spherical functions are defined in Appendix II.
VECTOR AND TENSOR CALCULUS
5
te n s o r of r a n k 2. (M ore p r e c is e ly , is a te n s o r if a an d b a r e both p o la r v e c to r s o r p s e u d o v e c to rs , w h ile c j^ is a p s e u d o te n s o r if one of th e v e c to r s is p o la r and th e o th e r is a x ia l.) 13. Show th a t th e s e t of q u a n titie s - w h e re A^k.1 is a te n s o r of ra n k 3 and a is a te n s o r of ra n k 2, is a v e c to r . 14. F in d th e tr a n s f o r m a tio n law fo r th e s e t of v o lu m e in te g r a ls TjA = f x ^ x ^ d V , w hich d e s c r ib e s s p a c e r o ta tio n s and r e f le c tio n s (x{ and xa a r e th e c a r te s ia n c o o rd in a te s ). 15. Set up th e tr a n s f o r m a tio n m a tr ic e s fo r th e b a s ic u n it v e c to r s w hich r e p r e s e n t th e tr a n s f o r m a tio n fro m c a r te s ia n c o o rd in a te s to s p h e r ic a l c o o rd in a te s and v ic e v e r s a , and a ls o th e tr a n s f o r m a tio n fro m c a r te s ia n c o o rd in a te s to c y lin d r ic a l c o o r d in a te s a n d v i c e v e r s a . 16. W rite down th e tr a n s f o r m a tio n m a tr ic e s f o r th e c o m p o n e n ts of a v e c to r w h ich d e s c r ib e th e re f le c tio n of th e th r e e c o o rd in a te a x e s a n d th e r o ta tio n of th e c a r t e s i a n s y s te m of c o o rd in a te s abo u t th e z —a x is th ro u g h an a n g le a . 17. F in d th e tr a n s f o r m a tio n m a t r i x fo r th e c o m p o n e n ts of a v e c to r , w hich d e s c r ib e s th e r o ta tio n of th e c o o rd in a te a x e s d e fin e d by th e E u le r a n g le s oq, 0, oi2 (F ig . 1), by m u ltip ly in g to g e th e r th e m a tr ic e s c o rre s p o n d in g to r o ta tio n s a b o u t th e z - a x is th ro u g h a n g le o^, ab o u t th e lin e ON th ro u g h an an g le 0, an d a b o u t th e z '- a x i s th ro u g h i e . I. an a n g le oi2. 18. F in d th e m a tr ix D (arp 0, a 2) fo r th e tr a n s f o r m a tio n of th e c y c lic c o o rd in a te s of a v e c to r (c f . P r o b le m 10) w h en th e c o o rd in a te s y s te m is r o ta te d th ro u g h th e E u le r a n g le s aq, 0, an d a 2 (F ig. 1). 19*. Show th a t th e m a tr ix r e p r e s e n tin g an in f in ite s im a l rAo ta tio n A of a s y s teAm of c o o rd in a te s m a y b e w r itte n in th e fo rm A o = 1 + e w h e re c is a s k e w - s y m m e tr ic m a tr ix (l^ a = ~ ^ k 0 E lu c id a te th e g e o m e tr ic a l m e a n in g of g^a* 20. Show th a t if a is a n o rth o g o n a l tr a n s f o r m a tio n m a tr ix th e n th e c o rr e s p o n d in g tr a n s p o s e d m a tr ix r e p r e s e n t s th e r e c i p r o c a l tr a n s f o r m a tio n . 21. Show th a t th e m a tr ix r e p r e s e n tin g th e r e f le c tio n o r r o ta tio n of th e th r e e b a s ic u n it v e c to r s of a c o o rd in a te s y s te m
6
PROBLEMS.
CHAPTER I
is id e n tic a l to th e m a tr ix d e s c rib in g th e tr a n s f o r m a tio n of th e c o m p o n e n ts of a v e c to r . 22*. Show th a t w hen an ev en n u m b e r of c o o rd in a te a x e s a r e r e f le c te d o r ro ta te d , th e tr a n s f o r m a tio n d e te r m in a n t is e q u al to + 1, w h ile th e c o rre s p o n d in g r e s u l t fo r an odd n u m b e r of c o o rd in a te a x e s is -1 . 23. Show th a t if th e c o m p o n e n ts of tw o v e c to r s in a g iv e n s y s te m of c o o rd in a te s a r e r e s p e c tiv e ly p ro p o r tio n a l to e a c h o th e r, th e n th e y a r e a ls o p ro p o r tio n a l in any o th e r s y s te m of c o o rd in a te ? (such v e c to r s a r e c a lle d p a r a lle l) . 24*. T h e s e t of q u a n titie s e-[k i is g iv en in a ll c a r te s ia n s y s te m s of c o o rd in a te s and h a s th e follo w in g p ro p e rty : tr a n s p o s itio n of any tw o s u b s c r ip ts of e ^ k i g iv e s r i s e to a ch an g e of sig n , and e 123 = Show th a t e ^ k i is a p s e u d o te n s o r of ra n k 3. 25. Show th a t th e c o m p o n e n ts of a s k e w - s y m m e tr ic te n s o r of ra n k 2 tr a n s f o r m on r o ta tio n a s th e c o m p o n e n ts of a v e c to r . 26. W rite dow n e x p r e s s io n s fo r th e c o m p o n e n ts of th e v e c to r p ro d u c t of tw o v e c to r s an d fo r th e c u r l of a v e c to r in t e r m s of th e te n s o r &ik iD e te rm in e how th e s e q u a n titie s t r a n s f o r m on r o t a tio n and r e f le c tio n . 27. P r o v e th e follo w in g e q u a tio n s e l k l e lmn
28. v e c to r fo rm :
e i k l e klm
^ Im•
R e - w r ite th e fo llo w in g e x p r e s s io n s in an in v a ria n t
e.in I eIrs e,Imp esip a n a r bm c t-
e,Inl
. dro!b krs e,Imp estp n kJb\c i t m
29. S h o w th a t T ^ k a i b k - T i k ak b i = 2c»>*(a x b ) w h e re is an a r b i t r a r y te n s o r of ra n k 2, a and b a r e v e c to r s , and u is a v e c to r e q u iv a le n t to th e s k e w - s y m m e tr ic p a r t of T 30. E x p r e s s th e p ro d u c t [ a * ( b x c ) ] [ a '* ( b 'x c ') ] in th e fo rm of a s u m of t e r m s c o n ta in in g only s c a l a r p ro d u c ts of v e c to r s . H int: U se th e th e o r e m on th e m u ltip lic a tio n of d e t e r m in a n ts , o r th e p s e u d o te n s o r of ra n k 3 ( c f . P r o b le m 24). 31*. Show th a t: (1) th e only v e c to r w h o se c o m p o n e n ts a r e id e n tic a l in a ll s y s te m s of c o o r d in a te s is th e z e r o v e c to r , (2) any t e n s o r of ra n k 2 w h o se c o m p o n e n ts a r e id e n tic a l in a ll s y s te m s of c o o r d in a te s is p r o p o r tio n a l to 6 ^ , (3) is a te n s o r of ra n k 3, and (4) (8i k 5 i m + 8 i m5k l + 8km) is a t e n s o r of ra n k 4. 32*. S uppose th a t n is a u n it v e c to r w h ic h is su ch th a t it is e q u a lly lik e ly to lie a lo n g any d ir e c tio n in s p a c e . F in d th e
7
VECTOR AND TENSOR CALCULUS
a v e r a g e v a lu e s of its c o m p o n en ts and of th e p ro d u c ts rT[, n^ n^ , n i n ^ n i , ni?ij^ninm b y u s in g t h e i r tr a n s f o r m a tio n p r o p e r tie s r a t h e r th a n by th e d ir e c t e v a lu a tio n of th e c o rre s p o n d in g in te g r a ls . 33. F in d th e a v e r a g e s o v e r a ll d ire c tio n s of th e fo llo w in g e x p r e s s io n s : (a*n)2, (a*n)(b.n), (a-n)n, (a x n )2, (a x n ) .( b x n), (a-n) (b*n) (c-n) ( d-n) w h e re n is a u n it v e c to r w hich is su c h th a t it is e q u a lly lik e ly to lie alo n g any d ir e c tio n an d a , b, c , and d a r e c o n s ta n t v e c to r s . H int: U se th e r e s u lts of th e p re c e d in g p ro b le m . 34. O b tain a ll th e p o s s ib le in d e p en d e n t in v a ria n t fo r m s in v o lv in g th e p o la r v e c to r s n, n ', and th e p s e u d o v e c to r 1. 35. F in d th e in d e p e n d e n t p s e u d o s c a la r s w h ich c a n b e c o n s tr u c te d fro m (1) tw o p o la r v e c to r s n, n ' and one p s e u d o v e c to r 1, and (2) th r e e p o la r v e c to r s n l5 n 2, n 3. 2.
V e c to r a n a ly s is
In a n a r b i t r a r y o rth o g o n a l s y s te m of c o o rd in a te s q\, q 2, cos a, y = r sin 9 sin a, z = r cos 9; hr — 1, h^ — r, /za = rsin&; eg
gradcp = er ^ - + - ^ divA = - ^ r ( / - M r)(curl A ). = — )—o Jr r sin 9 (curl A)#
_
1 _ ^ (^ s in O )-
r sin
1 dA„ r sin 9 da
(1.18)
[ ± ( A a sin f t ) - - ? ] ;
1 dAr r sin 9 da
1 d (r A ») r
.
r sin a da
dr
1 3 M e .) . r
dr dAr i r ao ’
’
i
l
a2?
. d /> 6 I - in & dr \ dr 1 * r 2 sin #a# I S1 ^ a » J ' r 2sin 29 aa 2
In th e c y lin d r ic a l s y s te m of c o o r d in a te s w e h a v e ;c = r c o s a , y — r sin a, z — z\
hr =
1. h a = r, hz = 1;
dA, i a 1 dAa div A — T dF { r A ') + T ~ d i + ~dF (curl A ), =
i» \
/
(curl A )2 =
,
dA
7
dAr
!(curl A ). = ~ r -
dA z .
(1.19)
!
1 ^