853 121 2MB
English Pages 125 [119] Year 2021
Mehdi Rahmani-Andebili
Precalculus
Practice Problems, Methods, and Solutions
Precalculus
Mehdi Rahmani-Andebili
Precalculus Practice Problems, Methods, and Solutions
Mehdi Rahmani-Andebili The State University of New York, Buffalo State Buffalo, NY, USA
ISBN 978-3-030-65055-1 ISBN 978-3-030-65056-8 https://doi.org/10.1007/978-3-030-65056-8
(eBook)
# Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface
Calculus is one of the most important courses of many majors, including engineering and science, and even some of the non-engineering majors like economics and business, which is taught in the first semester at universities and colleges all over the world. Moreover, in many universities and colleges, precalculus is a mandatory course for the under-prepared students as the prerequisite course of calculus. Unfortunately, some students do not have a solid background and knowledge in math and calculus when they begin their education in universities or colleges. This issue prevents them from learning other important courses like physics and calculus-based courses. Sometimes, the problem is so escalated that they give up and leave university or college. Based on my real professorship experience, students do not have a serious issue to comprehend physics and engineering courses. In fact, it is the lack of enough knowledge of calculus that hinders their understanding of calculus-based courses. Therefore, this textbook, along with the other one (Calculus: Practice Problems, Methods, and Solutions, Springer, 2020), has been prepared to help students succeed in their major. Both textbooks include basic and advanced problems of calculus with very detailed problem solutions. They can be used as practicing textbooks by students and as a supplementary teaching source by instructors. Since the problems have very detailed solutions, the textbooks are useful for under-prepared students. In addition, the textbooks are beneficial for knowledgeable students because they include advanced problems. In the preparation of problem solutions, effort has been made to use typical methods to present the textbooks as an instructorrecommended one. By considering this key point, both textbooks are in the direction of instructors’ lectures, and the instructors will not see any untaught and unusual problem solutions in their students’ answer sheets. To help students study the textbooks in the most efficient way, the problems have been categorized in nine different levels. In this regard, for each problem, a difficulty level (easy, normal, or hard) and a calculation amount (small, normal, or large) have been assigned. Moreover, in each chapter, problems have been ordered from the easiest one with the smallest amount of calculations to the most difficult one with the largest amount of calculations. Therefore, students are advised to study the textbooks from the easiest problem and continue practicing until they reach the normal and then the hardest one. On the other hand, this classification can help instructors choose their desirable problems to conduct a quiz or a test. Moreover, the classification of computation amount can help students manage their time during future exams and instructors assign appropriate problems based on the exam duration. Buffalo, NY, USA
Mehdi Rahmani-Andebili
v
Contents
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Real Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Exponents and Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .
1 1 2 6
Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . 2.1 Real Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Exponents and Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Absolute Values and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .
9 9 10 17
3
Problems: Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
4
Solutions of Problems: Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . .
27
5
Problems: Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
6
Solutions of Problems: Quadratic Equations . . . . . . . . . . . . . . . . . . . . . . . . . .
39
7
Problems: Functions, Algebra of Functions, and Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
9
Problems: Factorization of Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
10
Solutions of Problems: Factorization of Polynomials . . . . . . . . . . . . . . . . . . . .
77
11
Problems: Trigonometric and Inverse Trigonometric Functions . . . . . . . . . . .
83
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
2
8
13
Problems: Arithmetic and Geometric Sequences and Series . . . . . . . . . . . . . . 101
14
Solutions of Problems: Arithmetic and Geometric Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
vii
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
Abstract
In this chapter, the basic and advanced problems of real number systems, exponents, radicals, absolute values, and inequalities are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations.
1.1
Real Number Systems
1.1. Which one of the numbers below exists? Difficulty level Calculation amount 1) 2) 3) 4)
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
The minimum integer number smaller than 1 The minimum irrational number larger than 1 The maximum integer number smaller than 1 The maximum rational number smaller than 1
1.2. As we know, ℝ is set of real numbers, ℤ is set of integer numbers, and ℕ is set of natural numbers. Which one of the choices is correct? Difficulty level Calculation amount 1) ℕ ⊂ ℤ ⊂ ℝ 2) ℝ ⊂ ℤ ⊂ ℕ 3) ℝ ⊂ ℕ ⊂ ℤ 4) ℤ ⊂ ℝ ⊂ ℕ
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
1.3. If ab ¼ dc, then which one of the choices is correct? Difficulty level Calculation amount 1) 2) 3) 4)
b c b a a c b a
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
¼ ab 6¼ dc 6¼ db ¼ dc
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_1
1
2
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
1.4. Which one of the choices has the greatest absolute value? Difficulty level Calculation pffiffiffiamount pffiffiffi 1) 1 þ 2 3 pffiffiffi pffiffiffi 2) 1 2 þ 3 pffiffiffi pffiffiffi 3) 1 2 3 pffiffiffi pffiffiffi 4) 1 þ 2 3
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.5. Which one of the choices below might be a rational number if respectively? Difficulty level Calculation amount 1) α + β4 2) α + β 3) 1þβpffiffiα
○ Easy ● Small
○ Normal ○ Normal
pffiffiffi α and β2 are rational and irrational numbers,
● Hard ○ Large
4) α2 + β
1.2
Exponents and Radicals
1.6. Calculate the value of x2 if x ¼ Difficulty level Calculation amount pffiffiffi 1) 2 pffiffiffi 2) 3 2 pffiffiffi 3) 3 4 4) 2
● Easy ● Small
1.7. Calculate the value of Difficulty level Calculation pffiffiffiamount 1) 1 þ 2 pffiffiffi 2) 2 þ 2 pffiffiffi 3) 1 þ 2 pffiffiffi 4) 2 þ 2
p1ffiffi 2
1
p ffiffiffiffiffiffiffiffiffi pffiffiffi 3 2 2. ○ Normal ○ Normal
1
● Easy ● Small
.
○ Normal ○ Normal
1.8. Simplify and calculate the final answer of Difficulty level Calculation amount 1) 2x 2 2) 2 3) 2x + 2 4) 2
○ Easy ● Small
○ Hard ○ Large
○ Hard ○ Large
qffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 3 ðxÞ3 þ x2 þ ð2Þ2 if x > 0.
● Normal ○ Normal
○ Hard ○ Large
pffiffiffiffiffi53 10 1.9. Calculate the final answer of 36 . Difficulty level
○ Easy
● Normal
○ Hard
(continued)
1.2 Exponents and Radicals
Calculation amount 1) 9 2) 9 3) 3 4) 3
3
● Small
○ Normal
○ Large
pffiffiffiffiffi pffiffiffiffiffi 1.10. Calculate the value of 2 3 x3 þ 4 x4 if x < 0. Difficulty level Calculation amount 1) 3x 2) x 3) x 4) 3x
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.11. In the equation below, determine the value of x: 3x1 ¼ Difficulty level Calculation amount 1) 24 2) 27 3) 31 4) 33
○ Easy ● Small
● Normal ○ Normal
1 81
8
○ Hard ○ Large
k
1.12. Calculate the value of 22 þ 1 for k ¼ 3. Difficulty level Calculation amount 1) 33 2) 65 3) 129 4) 257
○ Easy ● Small
● Normal ○ Normal
1.13. Solve the equation below:
Difficulty level Calculation amount 1) 1 2) 1 3) 37 4) 73
○ Easy ● Small
3x7 7x3 3 7 ¼ 7 3 ● Normal ○ Normal
1.14. Calculate the value of the following term:
Difficulty level Calculation amount 1) 25 2) 2 3) 52
○ Easy ○ Small
○ Hard ○ Large
● Normal ● Normal
○ Hard ○ Large
8 25
3
ð0:8Þ4 0:2
○ Hard ○ Large
4
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
4) 5
1.15. Calculate the value of the term below:
Difficulty level Calculation amount 1) 52 2) 10 3 3) 5 4) 15 2
○ Easy ○ Small
● Normal ● Normal
1.16. Calculate the value of the term below:
Difficulty level Calculation amount 1) 18 2) 2 3) 8 4) 4
5 25 3 ð0:75Þ3 90 2
○ Easy ○ Small
○ Hard ○ Large
pffiffiffi6 4 2 16 ð0:5Þ6 83 2
● Normal ● Normal
○ Hard ○ Large
1.17. Calculate the value of the term below: 3 ð45Þ6 ð15Þ6 37 Difficulty level Calculation amount 1) 1 2) 3 3) 5 4) 15
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
1.18. Calculate the value of x if we have the following term: !1 1 12 2 p ffiffiffi 1 2 x ð16Þ3 2¼ Difficulty level Calculation amount 1) 5 2) 6 3) 9 4) 12
○ Easy ○ Small
● Normal ● Normal
1
1.19. Calculate the value of ðx þ x1 Þ3 if x ¼ 1 Difficulty level Calculation amount pffiffiffi 1) 2 2) 1
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
pffiffiffi 2. ○ Hard ○ Large
1.2 Exponents and Radicals
5
pffiffiffi 3) 3 2 4) 1
1.20. Simplify and calculate the final answer of the term below: 1 1 1 pffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi 4 þ 11 11 þ 18 18 þ 25 Difficulty level Calculation amount 1) 27 2) 37 3) 13 4) 23
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
1.21. Determine the relation between A and B if: tþ1
1
A ¼ x t , B ¼ xtþ1 , t 6¼ 0, 1 Difficulty level Calculation amount t tþ1 1) Atþ1 ¼ B t t 2) Atþ1 ¼ Btþ1 1 3) Atþ1 ¼ Btþ1 1 4) Atþ1 ¼ Btþ1
○ Easy ○ Small
● Normal ○ Normal
○ Hard ● Large
1.22. Assume that a and b have different signs and a < b. Then, which one of the following statements is true? Difficulty level Calculation amount 1) a2 < b2 2) a3 < b3 3) b2 < a3 4) b3 < a3
○ Easy ● Small
1.23. Determine the final answer of Difficulty level Calculation amount pffiffiffi 1) 2 2) 2 pffiffiffi 3) 2 2 4) 4 1.24. Calculate the value of Difficulty level Calculation amount 1) 12 2) 1 3) 32 4) 2
○ Normal ○ Normal
● Hard ○ Large
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi p pffiffiffi 4 4 2 2 6 þ 4 2.
○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p pffiffiffipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi 4 7 4 3 2 þ 3. ○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
6
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
1.25. Which one of the numbers is greater? Difficulty level Calculation pffiffiffi amount 1) 1 þ 2 2 pffiffiffi 2) 1 þ 6 6 pffiffiffi 3) 1 þ 4 4 pffiffiffi 4) 1 þ 3 3
○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
1.26. Determine the final answer of the term below: 40:75 pffiffiffi pffiffiffi þ 90:25 1þ 2þ 3 Difficulty level Calculation amount pffiffiffi 1) 2 1 2) 1 pffiffiffi 3) 2 pffiffiffi 4) 1 þ 2
1.3
○ Easy ○ Small
○ Normal ○ Normal
● Hard ● Large
Absolute Values and Inequalities
1.27. If |x + 1| < 2, determine the range of x. Difficulty level Calculation amount 1) 3 < x < 1 2) 3 < x < 1 3) 1 < x < 3 4) 1 < x < 3
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
1.28. What is the solution of 1 3x 2 1? Difficulty level Calculation amount 1) 13 x 1 2) 1 x 1 3) 1 x 13 4) 2 x 1
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
1.29. Which one of the choices shows the range of the solution of |2x 3| 5? Difficulty level Calculation amount 1) [2, 6] 2) [1, 4] 3) [2, 2] 4) [3, 1]
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
1.3 Absolute Values and Inequalities
7
1.30. If the inequalities of |x 1| < 0.1 and A < 2x 3 < B are equivalent, calculate the value of A + B. Difficulty level Calculation amount 1) 2.1 2) 2 3) 1.1 4) 1
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.31. Which one of the choices is equivalent to |2x 3| < x? Difficulty level Calculation amount 1) |x 2| < 1 2) |x 1| < 2 3) |x 3| < 1 4) |x 2| < 2
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.32. Solve the inequality below: 1 1 > x1 x3 Difficulty level Calculation amount 1) x < 3 2) 1 < x < 3 3) 2 < x < 3 4) 2 < x < 3
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.33. Solve the inequality of |x 1| |x 3|. Difficulty level Calculation amount 1) |x| 2 2) |x 2| 1 3) x 2 4) x 2
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.34. Solve the inequality of |x + 1| |x 1|. Difficulty level Calculation amount 1) x 0 2) x 0 3) x 1 4) x 1
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
1.35. Which one of the choices is equivalent to 5 < x 11 < 3? Difficulty level Calculation amount 1) |x + 5| < 2 2) |x| < 7 3) |x 9| < 5
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
8
1
Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
4) |x 10| < 4 1.36. Calculate the value of |2x 1| + |2 x| if 1 < x < 0. Difficulty level Calculation amount 1) 3 3x 2) 3 3x 3) 3 + 3x 4) 1 + x
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
1.37. Determine the neighborhood radius for the deleted symmetric neighborhood of (3a 7, a + 5) {3}. Difficulty level Calculation amount 1) 1 2) 2 3) 3 4) 4
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
1.38. If b < 0 < a and ja j > j bj, calculate the final answer of |a + b| + |a| + j bj. Difficulty level Calculation amount 1) 2b 2) 2a 3) 2a 4) 2b
○ Easy ● Small
○ Normal ○ Normal
● Hard ○ Large
1.39. Determine the number of answers of x in the equation of |x + 1| + |x 3| ¼ 2. Difficulty level Calculation amount 1) 0 2) 1 3) 2 4) 3
○ Easy ● Small
○ Normal ○ Normal
● Hard ○ Large
2
Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
Abstract
In this chapter, the problems of the first chapter are fully solved, in detail, step-by-step, and with different methods.
2.1
Real Number Systems
2.1. Choice (1) is not correct because set of integer numbers is not left-bounded. Choice (2) is not correct because between any pair of real numbers, infinite irrational numbers exist. Choice (3) is correct because 2 is the maximum integer number smaller than 1. Choice (4) is not correct because between any pair of real numbers, infinite rational numbers exist. Choice (3) is the answer. 2.2. Figure 2.1 shows the diagram of set of real numbers, irrational numbers, rational numbers, integer numbers, whole numbers, and natural numbers. Choice (1) is the answer.
Figure 2.1 The diagram of problem 2.2
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_2
9
10
2 Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
2.3. We know that: α¼β) Therefore:
1 1 ¼ α β
a c b d ¼ ) ¼ b d a c
Choice (4) is the answer. pffiffiffi pffiffiffi 2.4. As we know, 3 ¼ 1:73 and 2 ¼ 1:41, therefore: Choice (1): 1 þ
pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 3 < 0 ) 1 þ 2 3 ¼ 1 þ 2 3 1:31
1
pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 þ 3 < 0 ) 1 2 þ 3 ¼ 1 2 þ 3 0:68
1
pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 3 < 0 ) 1 2 3 ¼ 1 2 3 4:14
Choice (2):
Choice (3):
Choice (4): 1þ
pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 3 > 0 ) 1 þ 2 3 ¼ 1 þ 2 3 0:68
Choice (3) is the answer. 2.5. To solve the problem, we need to recall the following points: Point 1: A rational number will remain a rational number even if it is squared. pffiffiffi Point 2: An irrational number might be changed to a rational number if it is squared (e.g., β ¼ 4 2 ) β4 ¼ 2). Point 3: An irrational number will remain an irrational number if its square root is taken. Point 4: The sum of two rational numbers is always a rational number. Point 5: The sum of a rational number and an irrational number is always an irrational number. Point 6: The product of a nonzero rational number and an irrational number is always an irrational number. Point 7: A rational number will remain a rational number if it is inversed. Choice (1) might be a rational number based on points 1, 2, and 4. Choice (2) is an irrational number based on points 1, 3, and 5. Choice (3) is an irrational number based on points 3, 4, 7, and 6. Choice (4) is an irrational number based on points 1, 3, and 5. Choice (1) is the answer.
2.2
Exponents and Radicals
2.6. We know that:
ffiffiffiffiffi p n m an ¼ am ðam Þn ¼ amn
Hence: Choice (4) is the answer.
qffiffiffiffiffiffiffiffiffi 1 1 2 pffiffiffi 3 3 3 1 x ¼ 2 2 ¼ 22 ¼ 22 ) x 2 ¼ 22 ¼ 2
2.2 Exponents and Radicals
11
2.7. We know that: ð a þ bÞ ð a bÞ ¼ a2 b2 Thus:
pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 1 pffiffiffi 2 1þ 2 2 2 1 1 1þ 2 pffiffiffi 1 pffiffiffi ¼ pffiffiffi pffiffiffi ¼ ¼ 1 ¼ 2þ2 ¼ pffiffi 1 12 2 1 2 1 2 1þ 2 2
Choice (4) is the answer. 2.8. From exponent and radical rules, we know that: ffiffiffiffiffi p n an ¼ a, if n is an odd number ffiffiffiffiffi p n an ¼ jaj, if n is an even number Therefore:
qffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffi 3 ðxÞ3 þ x2 þ ð2Þ2 ¼ ðxÞ þ jxj þ j2j x>0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ )xþxþ2¼2
Choice (4) is the answer. 2.9. From exponent and radical rules, we know that: ðabÞn ¼ an bn ðam Þn ¼ amn Hence:
p 53 6 53 13 6 5 ffiffiffiffiffi53 5 1 6 10 3103 ¼ ð1Þ3 31 ¼ 1 3 ¼ 3 36 ¼ 1 310 ¼ ð1Þ3 310 ¼ ð1Þ5
Choice (3) is the answer. 2.10. From exponent and radical rules, we know that: ffiffiffiffiffi p n an ¼ a, if n is an odd number ffiffiffiffiffi p n an ¼ jaj, if n is an even number Therefore:
ffiffiffiffiffi p p ffiffiffiffiffi 3 4 2 x3 þ x4 ¼ 2x þ jxj x>0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼) 2x x ¼ x
Choice (2) is the answer. 2.11. We know that: n 1 ¼ an a Therefore:
12
2 Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
1 81
8
8 ¼ 818 ¼ 34 ¼ 332
3x1 ¼ 332 ) x 1 ¼ 32 ) x ¼ 33 Choice (4) is the answer. 2.12. From exponent rules, we know that: zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{ ¼ an . . . n m times
a
nm
Therefore for k ¼ 3, we can write: k
3
22 þ 1 ¼ 22 þ 1 ¼ 28 þ 1 ¼ 256 þ 1 ¼ 257 Choice (4) is the answer. 2.13. From exponent rules, we know that: an ¼
n 1 a
an ¼ am ) n ¼ m Therefore:
3x7 7x3 3x7 7xþ3 3 7 3 3 ¼ ) ¼ 7 3 7 7 ) 3x 7 ¼ 7x þ 3 ) 10x ¼ 10 ) x ¼ 1
Choice (2) is the answer. 2.14. From exponent rules, we know that: an ¼
n 1 a
n a an ¼ n b b ðam Þn ¼ amn an ¼ anm am The problem can be solved as follows:
8 25
3
8 ð0:8Þ ¼ 10 4
¼
4
¼
25 8
2 3 5 56 ¼ 3 ¼ 9 2 23
3 4 2 ð 2 5Þ
0:2 ¼ Therefore:
3
4
¼
2 1 ¼ 10 5
212 28 ¼ 4 4 2 5 5 4
2.2 Exponents and Radicals
13
8 25
3
ð0:8Þ4 0:2 ¼
56 28 1 56 28 1 5 ¼ ¼5 ¼ 2 2 29 54 5 55 29
Choice (3) is the answer.
2.15. From exponent rules, we know that: an ¼
n 1 a
n a an ¼ n b b ðam Þn ¼ amn an ¼ anm am Therefore: 2 3 5 5 3 2 25 3 5 3 3 5 35 43 5 35 ð0:75Þ 3 ¼ ¼ ¼ 90 2 18 2 4 33 2 32 25 33 2 32 25 ¼5
35 26 35 26 ¼ 5 ¼511¼5 32 33 2 25 35 26
Choice (3) is the answer. 2.16. From exponent rules, we know that: an ¼
n 1 a
n a an ¼ n b b ðam Þn ¼ amn an ¼ anm am Hence:
pffiffiffi6 6 6 4 2 1 1 6 43 4 16 ð0:5Þ 8 ¼ 2 1 23 3 2 2 22 ¼ 24
1 1 24 26 26 4 ¼ 4 ¼ 24þ643 ¼ 23 ¼ 8 3 2 23 2 2
Choice (3) is the answer. 2.17. From exponent rules, we know that: ðam Þn ¼ amn ðabÞn ¼ an bn
14
2 Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
Thus:
6 3 5 32 3 ð45Þ6 3 56 312 31þ12 ¼ ¼ ¼ 6þ7 ¼ 1 3 ð15Þ6 37 ð5 3Þ6 37 56 36 37
Choice (1) is the answer.
2.18. From exponent rules, we know that: ffiffiffi p 1 m 2 ¼ 2m ðam Þn ¼ amn an ¼ am ) n ¼ m Hence: ffiffiffi p 1 x 2 ¼ 2x
1 3
ð16Þ
12 12
Therefore: p ffiffiffi x 2¼
!12 ¼
1 !12 4 13 12 2 1 1 1 1 1 2 ¼ 243222 ¼ 26
!1 1 12 2 1 2 1 1 ð16Þ3 ) 2 x ¼ 26 ) x ¼ 6
Choice (2) is the answer. 2.19. We know that: ð a þ bÞ ð a bÞ ¼ a2 b2 ðam Þn ¼ amn Based on the information given in the problem, we have: x¼1 Therefore:
x þ x1
13
¼
pffiffiffi 1 2þ
pffiffiffi 2
pffiffiffi1 pffiffiffi1 13 pffiffiffi pffiffiffi 1 þ 2 3 1 1 1þ 2 3 pffiffiffi ¼ 1 2 þ pffiffiffi pffiffiffi ¼ 1 2 þ 12 1 2 1 2 1þ 2
pffiffiffi pffiffiffi13 pffiffiffi13 ¼ 1 2 1 2 ¼ 2 2 ¼ Choice (1) is the answer. 2.20. Based on the rule of difference of two squares, we know that:
1 pffiffiffi3 3 pffiffiffi 2 ¼ 2
2.2 Exponents and Radicals
15
pffiffiffi pffiffiffipffiffiffi pffiffiffi aþ b a b ¼ab To solve this problem, we need to change the denominator of each fraction to a rational number as follows: 1 1 1 pffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi 4 þ 11 11 þ 18 18 þ 25 pffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi 18 25 4 11 11 18 1 1 1 ¼ pffiffiffi pffiffiffiffiffi pffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi þ pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi 4 þ 11 11 þ 18 4 11 11 18 18 25 18 þ 25 pffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi 18 25 4 11 11 18 4 11 þ 11 18 þ 18 25 ¼ ¼ þ þ 18 25 4 11 11 18 7 ¼
pffiffiffi pffiffiffiffiffi 4 25 2 5 3 ¼ ¼ 7 7 7
Choice (2) is the answer. 2.21. From the problem, we have: tþ1
1
A ¼ x t , B ¼ xtþ1 , t 6¼ 0, 1 From exponent rules, we know that: ðam Þn ¼ amn In choice (1):
8 tþ1 tþ1t t > < Atþ1 ¼ x t ¼x tþ1 t ) Atþ1 6¼ B t tþ1 > tþ1 1 1 t : B t ¼ xtþ1 ¼ xt
In choice (2):
8 tþ1 tþ1t t > < Atþ1 ¼ x t ¼x t ) Atþ1 ¼ Btþ1 tþ1 > tþ1 1 : B ¼ xtþ1 ¼x
In choice (3):
8 1 tþ1 tþ1 1 1 > < Atþ1 ¼ x t ¼ xt 1 ) Atþ1 6¼ Btþ1 1 tþ1 > : Btþ1 ¼ xtþ1 ¼x
In choice (4):
8 tþ1 tþ1 ðtþ1Þ2 > ¼x t < Atþ1 ¼ x t 1 ) Atþ1 6¼ Btþ1 1 1 tþ1 1 > 1 : Btþ1 ¼ xtþ1 ¼ xðtþ1Þ2
Choice (2) is the answer. 2.22. Based on the information given in the problem, we know that a and b have different signs and a < b. Therefore:
16
2 Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
a < 0, b > 0 ð Þ3
) a3 < 0, b3 > 0 ) a3 < b3
Choice (2) is the answer.
2.23. We know that: ð a þ bÞ ð a bÞ ¼ a2 b2 p ffiffiffiffiffi n m an ¼ am The problem can be solved as follows: rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi pffiffiffi2 pffiffiffi pffiffiffi pffiffiffi 4 2 pffiffiffi2 pffiffiffi 4 4 2þ 2 42 2 6þ4 2¼ 42 2 2 þ 2 þ4 2¼ 2 2 2
¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi 2 2 2 2 þ 2 ¼ 2 2 2 2 þ 2 ¼ 2ð 4 2Þ ¼ 4 ¼ 2
Choice (2) is the answer. 2.24. We know that: ð a þ bÞ ð a bÞ ¼ a2 b2 p ffiffiffiffiffi n m an ¼ am Therefore: ffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi2 pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi2 pffiffiffi pffiffiffi 4 4 4 4 4 2þ 3 ¼ 74 3 2þ 3 ¼ 74 3 4þ4 3þ3 74 3 2þ 3¼ 74 3 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi2ffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffi pffiffiffi pffiffiffi 4 4 4 2 ¼ 7 4 3 7 þ 4 3 ¼ ð7Þ 4 3 ¼ 4 49 48 ¼ 1 ¼ 1 Choice (2) is the answer. 2.25. From radical rules, we know that:
pffiffiffiffiffi ffiffiffi p m a ¼ mn an
Now, we should define the radicals based on a common root (greatest common divisor (GCL)), as follows: GCLf2, 6, 4, 3g ¼ 12 Therefore: 1þ
pffiffiffiffiffi ffiffiffi p p ffiffiffiffiffi 26 2 12 2¼1þ 26 ¼ 1 þ 64
2.3 Absolute Values and Inequalities
As can be seen, 1 þ
17
1þ
pffiffiffiffiffi p p ffiffiffiffiffi ffiffiffi 62 6 12 62 ¼ 1 þ 36 6¼1þ
1þ
pffiffiffiffiffi p p ffiffiffiffiffi ffiffiffi 43 4 12 43 ¼ 1 þ 64 4¼1þ
1þ
pffiffiffiffiffi p pffiffiffiffiffi ffiffiffi 34 3 34 ¼ 1 þ 12 81 3¼1þ
p ffiffiffi 3 3 is the greatest number. Choice (4) is the answer.
2.26. We know that: ð a þ bÞ ð a bÞ ¼ a2 b2 ðam Þn ¼ amn The problem can be solved as follows: 2 34 pffiffiffi 3 pffiffiffi 1 2 1 40:75 22 2 2 0:25 pffiffiffi pffiffiffi þ 9 pffiffiffi pffiffiffi þ 32 4 ¼ pffiffiffi pffiffiffi þ 32 ¼ pffiffiffi pffiffiffi þ 3 ¼ 1þ 2þ 3 1þ 2þ 3 1þ 2þ 3 1þ 2þ 3 pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 2 1 þ 2 3 pffiffiffi 2 2 1 þ 2 3 pffiffiffi 2 2 1 þ 2 3 pffiffiffi pffiffiffi pffiffiffi pffiffiffi þ 3 ¼ pffiffiffi þ 3 ¼ pffiffiffi 2 pffiffiffi 2 þ 3 ¼ 1þ 2þ 3 1þ 2 3 1þ2 2þ23 3 1þ 2 pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 2 2 1þ 2 3 pffiffiffi ¼ þ 3¼1þ 2 3þ 3¼1þ 2 2 2 Choice (4) is the answer.
2.3
Absolute Values and Inequalities
2.27. We know from the features of absolute value and inequality that: jx aj < b , b < x a < b The problem can be solved as follows: ð1Þ 1 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ )10) >0 >0) x1 x3 x1 x3 ð x 1Þ ð x 3Þ ðx 1Þðx 3Þ ) ðx 1Þðx 3Þ < 0 ) 1 < x < 3 Choice (2) is the answer. 2.33. The problem can be solved as follows: ð Þ2
jx 1j jx 3j ) ðx 1Þ2 ðx 3Þ2 ) x2 2x þ 1 ) x2 6x þ 9 ) 4x 8 ) x 2 Choice (4) is the answer. 2.34. The problem can be solved as follows: ð Þ2
jx þ 1j jx 1j ) ðx þ 1Þ2 ðx 1Þ2 ) x2 þ 2x þ 1 ) x2 2x þ 1 ) 4x 0 ) x 0 Choice (2) is the answer.
ð2Þ
2.3 Absolute Values and Inequalities
19
2.35. We know from the features of absolute value and inequality that: jx aj < b , b < x a < b The problem can be solved as follows: þ11 10 5 < x 11 < 3 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 6 < x < 14 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 4 < x 10 < 4 ) jx 10j < 4 Choice (4) is the answer.
2.36. The problem can be solved as follows: 2
1
1 < x < 0 ) 2 < 2x < 0 ) 3 < 2x 1 < 1 ) j2x 1j < 1 2x ð1Þ þ2 1 < x < 0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 0 < x < 1) 2 < 2 x < 3 ) j2 xj < 2 x ) j2x 1j þ j2 xj ¼ 1 2x þ 2 x ¼ 3 3x Choice (2) is the answer. 2.37. The neighborhood center (C) and neighborhood radius (R) for the symmetric neighborhood of (α1, α3) {α2} can be determined as follows: α þ α3 C ¼ α2 ¼ 1 ð1Þ 2 α3 α1 2
ð2Þ
ð3a 7Þ þ ða þ 5Þ 4a 2 )3¼ )a¼2 2 2
ð3Þ
ða þ 5Þ ð3a 7Þ 2a þ 12 ¼ 2 2
ð4Þ
R¼ Therefore, for (3a 7, a + 5) {3}, we can write: 3¼
R¼ Solving (3) and (4):
R¼
2 2 þ 12 ¼4 2
Choice (4) is the answer. 2.38. The problem can be solved as follows:
Solving (1), (2), and (3):
a > 0 ) j aj ¼ a
ð1Þ
b < 0 ) jbj ¼ b
ð2Þ
ð1Þ, ð2Þ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) a > b ) a þ b > 0 ) ja þ bj ¼ a þ b jaj > jbj ¼
ð3Þ
20
2 Solutions of Problems: Real Number Systems, Exponents and Radicals, and Absolute Values and Inequalities
ja þ bj þ jaj þ jbj ¼ a þ b þ a þ ðbÞ ¼ 2a Choice (3) is the answer. 2.39. From the problem, we have: j x þ 1j þ j x 3j ¼ 2
ð1Þ
We know that: jAj þ jBj jA Bj Therefore: j x þ 1j þ j x 3j j x þ 1 ð x 3Þ j ) j x þ 1j þ j x 3j 4 Solving (1) and (2): 2 4 ) Wrong Therefore, there is no answer for the problem. Choice (1) is the answer.
ð2Þ
3
Problems: Systems of Equations
Abstract
In this chapter, the basic and advanced problems of systems of equations are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations. 3.1. For what value of m, the system of equations below has a unique solution? ( 2x 3y ¼ 5 x þ my ¼ 2 Difficulty level Calculation amount 1) m ¼ 32 2) m 6¼ 32 3) m ¼ 32 4) For any m
● Easy ● Small
○ Normal ○ Normal
○ Hard ○ Large
3.2. If the value of x from the system of equations below is 2.5, determine the value of 2a + b: ( ax y ¼ 1 bx þ 2y ¼ 3 Difficulty level Calculation amount 1) 2 2) 1 3) 1 4) 2
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
3.3. Calculate the value of y2 + y from the solution of the system of equations below: ( ðx þ 1Þ2 þ 3y ¼ 8 xðx þ 2Þ 5y ¼ 31 Difficulty level Calculation amount
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_3
21
22
3
1) 2) 3) 4)
12 6 10 8
3.4. For what value of a, the matrix below has a unique solution? aþ1 2 x 1 Difficulty level ○ Easy Calculation amount ● Small 1) {1, 1} 2) ℝ {0, 1} 3) For no value of a 4) ℝ
● Normal ○ Normal
a1
y
¼
a 1
○ Hard ○ Large
3.5. Calculate the value of y from the solution of the system of equations below: 8 < xy¼4 2 3 3 : 2x þ 3y ¼ 14 Difficulty level Calculation amount 1) 4 2) 2 3) 3 4) 4
○ Easy ● Small
● Normal ○ Normal
3.6. Solve the system of equations below:
Difficulty level ○ Easy Calculation amount ● Small 1) x ¼ 3, y ¼ 4 2) x ¼ 3, y ¼ 4 3) x ¼ 3, y ¼ 4 4) x ¼ 3, y ¼ 4
● Normal ○ Normal
○ Hard ○ Large
8 < x1¼y1 2 3 : x þ 2y ¼ 11 ○ Hard ○ Large
3.7. Calculate the value of x + y from the solution of the system of equations below: ( x þ 2y ¼ 1 3x y ¼ 4 Difficulty level Calculation amount 1) 1 2) 0 3) 1 4) 2
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
Problems: Systems of Equations
3
Problems: Systems of Equations
23
3.8. For what value of a, the system of equations below has an infinite number of solutions? ( 2x þ 3y ¼ 4 y ¼ aðx 2Þ Difficulty level Calculation amount 1) 32 2) 23 3) 23 4) 32
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
3.9. Calculate the value of y x from the solution of the system of equations below: ( x þ 3y ¼ 2 3x þ y ¼ 14 Difficulty level Calculation amount 1) 4 2) 3 3) 3 4) 6
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
3.10. Calculate the value of y from the solution of the system of equations below: 8
> < 2x 1 y 2 ¼ 3 > > : Difficulty level Calculation amount 1) 1 2) 2 3) 3 4) 4
○ Easy ○ Small
● Normal ○ Normal
1 5 þ ¼2 2x 1 2 y ○ Hard ● Large
3.20. How many solution(s) does the system of equations below have? 5x þ y 3x y 7x þ y ¼ ¼ 1 3 2 Difficulty level Calculation amount
○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
4
Solutions of Problems: Systems of Equations
Abstract
In this chapter, the problems of the third chapter are fully solved, in detail, step-by-step, and with different methods. 4.1. The system of equations with the form presented in (1) has a unique solution (the lines intersect each other) if: a1 b1 6¼ a2 b2 (
a1 x þ b1 y ¼ c 1 a2 x þ b2 y ¼ c 2
Therefore:
(
2x 3y ¼ 5 x þ my ¼ 2
)
ð1Þ
2 3 3 6¼ ) m 6¼ 1 m 2
Choice (2) is the answer. 4.2. The problem can be solved as follows: 2 ( ( ( 2 5a 2y ¼ 2 þ ax y ¼ 1 x ¼ 2:5 2:5a y ¼ 1 ¼ 5 ¼ ¼ ¼ ) ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) ) 5a þ 2:5b ¼ 5 ¼ ¼ ¼ ¼ ) 2a þ b ¼ 2 bx þ 2y ¼ 3 2:5b þ 2y ¼ 3 ) 2:5b þ 2y ¼ 3 Choice (4) is the answer. 4.3. The problem can be solved as follows: ( ( x2 þ 2x þ 3y ¼ 7 ðx þ 1Þ2 þ 3y ¼ 8 ) 8y ¼ 24 ) y ¼ 3 ) y2 ¼ 9 ) xðx þ 2Þ 5y ¼ 31 x2 þ 2x 5y ¼ 31 ) y2 þ y ¼ 9 þ ð3Þ ¼ 6 Choice (2) is the answer. 4.4. The system of equations with the matrix form presented in (1) has a solution (the lines intersect each other) if its determinant is nonzero as follows: jAj 6¼ 0 ) a1 a4 a2 a3 6¼ 0
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_4
27
28
4 Solutions of Problems: Systems of Equations
AX ¼ B )
a1 a3
a2 a4
x1 x2
¼
b1 b2
ð1Þ
Therefore:
aþ1
2
x
1
a1
y
¼
a 1
) jAj ¼ ða þ 1Þða 1Þ ð2Þð1Þ ¼ a2 1 þ 2 6¼ 0 ) a2 þ 1 6¼ 0 ) a 2 ℝ
Choice (4) is the answer. 4.5. The problem can be solved as follows: 8 12 ( 6x 4y ¼ 16 < xy¼4 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) þ 2 3 3 ð 3 Þ 6x 9y ¼ 42 ) 13y ¼ 26 ) y ¼ 2 : 2x þ 3y ¼ 14 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) Choice (2) is the answer. 4.6. The problem can be solved as follows: 8 8 ( < 3x 2y ¼ 1 þ < x 1 ¼ y 1 6 3x 3 ¼ 2y 2 ¼ ¼ ¼ ) 2 3 ¼ )4x ¼ 12 ) x ¼ 3 ) : x þ 2y ¼ 11 : x þ 2y ¼ 11 ) x þ 2y ¼ 11 x¼3 x þ 2y ¼ 11 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 3 þ 2y ¼ 11 ) y ¼ 4 Choice (2) is the answer. 4.7. The problem can be solved as follows: ( ( x þ 2y ¼ 1 ) x þ 2y ¼ 1 þ 2 ) 7x ¼ 7 ) x ¼ 1 3x y ¼ 4 ) 6x 2y ¼ 8 x ¼1 3x y ¼ 4 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 3 1 y ¼ 4 ) y ¼ 1 ) x þ y ¼ 1 þ ð1Þ ¼ 0 Choice (2) is the answer. 4.8. The system of equations with the form presented in (1) has an infinite number of solutions (the lines match each other) if: a 1 b1 c 1 ¼ ¼ a 2 b2 c 2 (
a1 x þ b1 y ¼ c 1 a2 x þ b2 y ¼ c 2
Thus:
(
2x þ 3y ¼ 4 y ¼ að x 2Þ
Choice (2) is the answer.
( )
2x þ 3y ¼ 4 ax y ¼ 2a
)
2 3 4 2 ¼ ¼ )a¼ a 1 2a 3
ð1Þ
4
Solutions of Problems: Systems of Equations
29
4.9. The problem can be solved as follows: (
8 ð3Þ < 3x 9y ¼ 6 þ x þ 3y ¼ 2 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) ) 8y ¼ 8 ) y ¼ 1 3x þ y ¼ 14 ) : 3x þ y ¼ 14 y¼1 3x þ y ¼ 14 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 3x þ 1 ¼ 14 ) x ¼ 5 ) y x ¼ 1 ð5Þ ¼ 6
Choice (4) is the answer. 4.10. The problem can be solved as follows: 8 8 (
4x þ ðm þ 1Þy ¼ 2 :m 3 ¼ m 4 2
ðm 3Þx þ 3y ¼ m
3 m ¼ ) m2 þ m ¼ 6 ) m2 þ m 6 ¼ 0 ) ðm þ 3Þðm 2Þ ¼ 0 ) m ¼ 3, 2 mþ1 2
However, m ¼ 2 does not satisfy (3), as is shown in the following: ð3Þ )
m3 m 23 2 1 ¼ ) ¼ ) 6¼ 1 4 2 4 2 4
Therefore, only m ¼ 3 is acceptable. Choice (2) is the answer. 4.18. The system of equations with the form presented in (1) does not have a solution (the lines are parallel) if:
ð 2Þ ð 3Þ
32
4 Solutions of Problems: Systems of Equations
a 1 b1 c 1 ¼ 6¼ a 2 b2 c 2 (
a1 x þ b1 y ¼ c 1
ð1Þ
a2 x þ b2 y ¼ c 2 Therefore:
my þ 2x ¼ 5 ) y þ ðm 1Þx ¼ 2m 3
8 >
: m 6¼ 5 1 2m 3 ð2Þ )
ð 2Þ ð 3Þ
2 m ¼ ) m2 m ¼ 2 ) m2 m 2 ¼ 0 ) ðm 2Þðm þ 1Þ ¼ 0 ) m ¼ 1, 2 m1 1
However, m ¼ 1 does not satisfy (3), as is proven in the following: m 5 1 5 6¼ ) 6¼ ) 1 6¼ 1 ) Wrong 1 2m 3 1 2 ð1Þ 3 Therefore, only m ¼ 2 is acceptable. Choice (4) is the answer. 4.19. The problem can be solved as follows: 8 8 3 1 4 > > 15 þ 5 ¼ 20 > ¼ < 2x 1 y 2 3 ð5Þ > < 3 þ 15 1 20 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 2x 1 y 2 ) þ ¼ þ2 2x 1 2x 1 3 > > 1 5 > : 1 þ 5 ¼2 ) > : þ ¼2 2x 1 2 y 2x 1 2 y )
14 14 ¼ ) 2x 1 ¼ 3 ) x ¼ 2 2x 1 3
x¼2 1 5 1 5 5 5 þ ¼2¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) þ ¼2) ¼ ) 2 y ¼ 3 ) y ¼ 1 2x 1 2 y 221 2y 2y 3 ) x þ y ¼ 2 þ ð1Þ ¼ 1 Choice (1) is the answer. 4.20. The system of equations shows the equations of two lines. Therefore, we need to check each pair of equations: 8 ( 5x þ y 3x y > < ¼ 15x þ 3y ¼ 3x y 12x þ 4y ¼ 0 5x þ y 3x y 7x þ y 1 3 ) ) ¼ ¼ ) 1 3 2 3x y 7x þ y > 6x 2y ¼ 21x þ 3y 15x þ 5y ¼ 0 : ¼ 3 2 )
3x þ y ¼ 0 3x þ y ¼ 0
Therefore, the equations of the lines are the same and the lines match each other. Hence, the system of equations has an infinite number of solutions. Choice (4) is the answer.
5
Problems: Quadratic Equations
Abstract
In this chapter, the basic and advanced problems of quadratic equations are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations. 5.1. Two times of a positive quantity is 9 units fewer than the one-third of its square value. Determine this quantity. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 9 2) 12 3) 15 4) 18 5.2. For what value of a, the value of the term of ax2 + 2x + 4a is always positive? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) a 0.5 2) a 0.5 3) 0 a 0.5 4) 0.5 a 0.5 5.3. For what value of k, the roots of the quadratic equation of 2x2 + 3x k ¼ 0 are two units fewer than the quadratic equation of 2x2 5x + 1 ¼ 0? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 1 2) 2 3) 3 4) 4 5.4. For what value of m, the quadratic equation of 2x2 5x + m ¼ 0 has two real roots that the roots are inverse value of each other? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 1 2) 2 3) 3 4) 4 # Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_5
33
34
5
Problems: Quadratic Equations
5.5. Determine the value of m so that the quadratic equation of (m + 2)x2 + 4x + m 1 ¼ 0 has two real roots. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 2 < m < 1 2) 1 < m < 2 3) 2 < m < 2 4) 3 < m < 2 5.6. For what value of m, the inequality of m3 x2 þ mx þ m1 < 0 is always true? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) |m| < 3 2) m < 0 3) m > 0 4) m 2 ℝ 5.7. Which one of the quadratic equations below has the roots that their values are nine times of the roots of the quadratic equation of x2 + x 3 ¼ 0? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 + 9x 243 ¼ 0 2) x2 + 9x 27 ¼ 0 3) x2 + 18x 243 ¼ 0 4) x2 + 18x 27 ¼ 0 5.8. The sum of the roots of the quadratic equation of ax2 + bx + c ¼ 0 is equal to the product of the reciprocal of the roots. What relation exists between the parameters? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) a2 + bc ¼ 0 2) a2 bc ¼ 0 3) b2 ac ¼ 0 4) b2 + ac ¼ 0 5.9. For what value of a, the quadratic equation of 2x2 þ ax þ a 32 ¼ 0 has two distinct roots? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) a < 2 or a > 6 2) a < 3 or a > 4 3) 2 < a < 6 4) 3 < a < 4 5.10. Determine the range of m so that 4x2 2mx + 4m2 0. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) ℝ 2) 2) { } 3) |m| 2 4) |m| 2
5
Problems: Quadratic Equations
35
5.11. In the quadratic equation of 2x2 + (2k 1)x k ¼ 0, for what value of k, the sum of the inverse value of the roots is equal to 73? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 4 2) 3 3) 3 4) 4 pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi 5.12. Determine the quadratic equation that its roots are 2 þ 4 a and 2 4 a. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) x2 4x + a ¼ 0 2) x2 + ax 4 ¼ 0 3) x2 + 4x a ¼ 0 4) x2 ax + 4 ¼ 0 5.13. For what value of m, the sum of the square of the roots of 2x2 5x + m ¼ 0 is 37 4? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 2 2) 3 3) 2 4) 3 5.14. If x1 and x2 are the roots of the quadratic equation of mnx2 + n2x + m2 ¼ 0, determine the value of x21 x2 þ x1 x22 . Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 1 2) 1 3) mþn mn 4) mn 5.15. For what value of m, the quadratic equation of (m + 1)x2 + m(m2 9)x 2 ¼ 0 has two real and symmetric (equal in magnitude, but different in sign) roots. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 1 2) 3 3) 3 4) 9 5.16. What is the minimum value of x2 x + 2? Difficulty level ○ Easy ● Normal Calculation amount ○ Small ● Normal 1) 14 2) 34 3) 54 4) 74
○ Hard ○ Large
36
5
Problems: Quadratic Equations
5.17. Determine the value of k if the relation of x21 þ x22 ¼ 12 exists between the roots of the quadratic equation of x2 2kx 2 ¼ 0. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large pffiffiffi 1) 2 pffiffiffi 2) 3 3) 2 4) 3 5.18. The difference of the roots of the quadratic equation of 2x2 3x + m ¼ 0 is 52. Determine the value of m. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 2 2) 1 3) 1 4) 2 5.19. If the roots of the quadratic equation of x2 + ax a2 ¼ 0 are x1 and x2, determine the quadratic equation that its roots are x1 + 1 and x2 + 1. Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 + (a 2)x + a2 + a 1 ¼ 0 2) x2 + (a + 2)x a2 a 1 ¼ 0 3) x2 + (a 2)x a2 a + 1 ¼ 0 4) x2 + (a + 2)x + a2 + a 1 ¼ 0 5.20. The sum of the square of two successive numbers is 925. Determine the sum of these two numbers. Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ● Small ○ Normal ○ Large 1) 41 2) 43 3) 45 4) 47 pffiffiffiffi pffiffiffiffiffi 5.21. If x0 and x00 are the roots of the quadratic equation of x2 4x + 1 ¼ 0, determine the value of x0 x00 . Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ● Normal ○ Large pffiffiffi 1) 2 pffiffiffi 2) 3 3) 2 4) 3 5.22. If the quadratic equations of x2 x 2a ¼ 0 and x2 + 2x + a ¼ 0 have a common root, determine this common root for a > 0. Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ● Normal ○ Large 1) 2 2) 1 3) 1
5
Problems: Quadratic Equations
37
4) 2
5.23. What is the solution of the following inequality? x1 > 2x xþ1 Difficulty level Calculation amount 1) x < 1 2) x > 1 3) 1 < x < 1 4) 2 < x < 1
○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
5.24. How many distinctive real roots do the equation of (x2 2x)2 (x2 2x) ¼ 2 have? Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ● Normal ○ Large 1) 1 2) 2 3) 3 4) 4 5.25. For what value of m, the quadratic equation of mx2 + 5x + m2 6 ¼ 0 has two real roots that the roots are inverse value of each other? Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ○ Normal ● Large 1) 2, 3 2) 2 3) 2 4) 3 5.26. For what value of m, the sum of the square of the roots of 2x2 mx + m 1 ¼ 0 is 4? Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ○ Normal ● Large 1) 2, 6 2) 2 3) 2 4) 6
6
Solutions of Problems: Quadratic Equations
Abstract
In this chapter, the problems of the fifth chapter are fully solved, in detail, step-by-step, and with different methods. 6.1. Based on the information given in the problem, two times of a positive quantity is 9 units fewer than the one-third of its square value. In other words: x>0
ð1Þ
1 2x ¼ x2 9 3
ð2Þ
) x2 6x 27 ¼ 0 ) ðx 9Þðx þ 3Þ ¼ 0 ) x ¼ 3, 9
ð3Þ
Solving (1) and (3): x¼9 Choice (1) is the answer. 6.2. The value of the quadratic equation of ax2 + bx + c is always positive if a > 0 and Δ 0. Therefore, for the given quadratic equation of ax2 + 2x + 4a, we can write: a>0 Δ ¼ 22 4ðaÞð4aÞ 0 ) 4 16a2 0 ) a2
ð1Þ 1 1 1 )a & a 4 2 2
ð2Þ
Solving (1) and (2): a
1 2
Choice (1) is the answer. 6.3. Based on the information given in the problem, we have: 2x2 þ 3x k ¼ 0
ð1Þ
2X 2 5X þ 1 ¼ 0
ð2Þ
x¼X2)X ¼xþ2
ð3Þ
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_6
39
40
6 Solutions of Problems: Quadratic Equations
Solving (2) and (3): 2ðx þ 2Þ2 5ðx þ 2Þ þ 1 ¼ 0 ) 2x2 þ 3x 1 ¼ 0
ð4Þ
Comparing (1) and (4): k¼1 Choice (1) is the answer. 6.4. The product of the roots of a quadratic equation can be determined as follows: ax2 þ bx þ c ¼ 0 ) Product of roots ¼
c a
Since the roots are inverse value of each other, the product of the roots is equal to one. Hence: 2x2 5x þ m ¼ 0 ) Product of roots ¼
m ¼1)m¼2 2
Choice (2) is the answer. 6.5. A quadratic equation has two real roots if its discriminant is equal or greater than zero. In other words: ax2 þ bx þ c ¼ 0 ) Δ ¼ b2 4ac 0 Therefore, for the quadratic equation of (m + 2)x2 + 4x + m 1 ¼ 0, we can write: Δ ¼ 42 4ðm þ 2Þðm 1Þ 0 ) 16 4 m2 þ m 2 0 ) m2 þ m 6 0 ) ð m þ 3Þ ð m 2Þ 0 ) 3 m 2 Choice (4) is the answer. 6.6. The value of the quadratic equation of ax2 + bx + c is always negative if a < 0 and Δ < 0. Therefore, for the given quadratic equation of m3 x2 þ mx þ m1 , we can write: m3 < 0 ) m < 0
ð1Þ
1 < 0 ) m2 4m2 < 0 ) 3m2 < 0 ) m2 > 0 ) m 2 ℝ Δ ¼ m2 4 m3 m
ð2Þ
Solving (1) and (2): m 0 Therefore: 2x2 þ ax þ a
3 3 ¼ 0 ) Δ ¼ a2 4 2 a > 0 ) a2 8a þ 12 > 0 2 2 ) ða 6Þða 2Þ > 0 ) a < 2 & a > 6
Choice (1) is the answer. 6.10. The value of the quadratic equation of ax2 + bx + c is always positive if a > 0 and Δ 0. Therefore, for the given quadratic equation of 4x2 2mx + 4m2 0, we can write: 4>0
ð1Þ
Δ ¼ ð2mÞ2 4ð4Þ 4m2 0 ) 4m2 64m2 0 ) 60m2 0 ) m2 0
ð2Þ
As can be seen in (1) and (2), both criteria are satisfied disregarding the value of m. Therefore: m2ℝ Choice (1) is the answer. 6.11. Based on the information given in the problem, we have: 1 1 7 x þ x2 7 þ ¼ ) 1 ¼ x1 x2 3 3 x1 x2 As we know, the sum and the product of the roots of a quadratic equation can be determined as follows: b c ax2 þ bx þ c ¼ 0 ) S ¼ sum of roots ¼ , P ¼ product of roots ¼ a a
ð1Þ
42
6 Solutions of Problems: Quadratic Equations
Hence, for the quadratic equation of 2x2 + (2k 1)x k ¼ 0, we can write: x1 þ x2 ¼ x1 x2 ¼
ð2k 1Þ 2
ð2Þ
k 2
ð3Þ
Solving (1), (2), and (3): Þ ð2k1 2 k 2
¼
7 2k 1 7 ) ¼ ) 6k 3 ¼ 7k ) k ¼ 3 3 k 3
Choice (2) is the answer. 6.12. A quadratic equation has the following form, where S and P are the sum and the product of its roots:
x2 Sx þ P ¼ 0, S ¼ sum of roots, P ¼ product of roots Therefore, for the given roots of 2 þ
ð1Þ
pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi 4 a and 2 4 a, we can write:
pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi S¼ 2þ 4a þ 2 4a ¼4
ð2Þ
pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi P ¼ 2 þ 4 a 2 4 a ¼ 4 ð 4 aÞ ¼ a
ð3Þ
Solving (1), (2), and (3): x2 4x þ a ¼ 0 Choice (1) is the answer. 6.13. Based on the information given in the problem, we know that: x21 þ x22 ¼
37 37 ) ðx1 þ x2 Þ2 2x1 x2 ¼ 4 4
ð1Þ
On the other hand, we know that a quadratic equation has the form below, where S and P are the sum and the product of its roots: b c x2 Sx þ P ¼ 0, S ¼ sum of roots ¼ , P ¼ product of roots ¼ ð2Þ a a Solving (1) and (2): 37 S 2P ¼ ) 4 2
b a
2 2
c 37 ¼ a 4
Solving (3) for the given quadratic equation of 2x2 5x + m ¼ 0: 2 5 m 37 25 37 ) m¼ )m¼ 3 2 ¼ 2 2 4 4 4 Choice (2) is the answer.
ð3Þ
6
Solutions of Problems: Quadratic Equations
43
6.14. The sum and the product of the roots of a quadratic equation can be determined as follows: b c ax2 þ bx þ c ¼ 0 ) S ¼ sum of roots ¼ , P ¼ product of roots ¼ a a
ð1Þ
The problem can be solved as follows: x21 x2 þ x1 x22 ¼ x1 x2 ðx1 þ x2 Þ Solving (1) and (2): x21 x2 þ x1 x22 ¼ P S ¼
b c a a
ð2Þ ð3Þ
For the quadratic equation of mnx2 + n2x + m2 ¼ 0, we can write: x21 x2 þ x1 x22 ¼
2 n2 m ¼1 mn mn
Choice (1) is the answer. 6.15. Based on the information given in the problem, we have: x1 ¼ x2 ) x1 þ x2 ¼ 0
ð1Þ
As we know, the sum and the product of the roots of a quadratic equation are determined as follows: b c ax2 þ bx þ c ¼ 0 ) S ¼ sum of roots ¼ , P ¼ product of roots ¼ a a
ð2Þ
Solving (1) and (2): b S¼ ¼0)b¼0 a
ð3Þ
Hence, for the given quadratic equation of (m + 1)x2 + m(m2 9)x 2 ¼ 0, we can write: m m2 9 ¼ 0 ) m ¼ 0, 3, 3
ð4Þ
On the other hand, to have real roots for the given quadratic equation, the constraint below must be satisfied: 2 Δ 0 ) m2 m2 9 þ 8ðm þ 1Þ 0 ) 8ðm þ 1Þ 0 ) m 1 Solving (4) and (5):
ð5Þ
) m ¼ 0, 3
However, m ¼ 0 does not exist in the choices. Therefore, m ¼ 3 is the only acceptable choice. Choice (3) is the answer. 6.16. The problem can be solved as follows: 2 1 7 1 1 7 1 2 7 x 2 x þ 2 ¼ x2 x þ þ ¼ x2 2 þ ¼ x þ xþ 4 4 2 2 4 2 4 2 The term of x 12 is equal or greater than zero. Hence:
x
Choice (4) is the answer.
1 2
2
1 2 7 7 1 2 7 7 x ¼ 0) x þ ) min þ 2 4 4 2 4 4
44
6 Solutions of Problems: Quadratic Equations
6.17. Based on the information given in the problem, we know that: x21 þ x22 ¼ 12 ) ðx1 þ x2 Þ2 2x1 x2 ¼ 12
ð1Þ
On the other hand, we know that a quadratic equation has the form below, where S and P are the sum and the product of its roots: b c x2 Sx þ P ¼ 0, S ¼ sum of roots ¼ , P ¼ product of roots ¼ ð2Þ a a Solving (1) and (2):
2 b c S 2P ¼ 12 ) 2 ¼ 12 a a 2
ð3Þ
Solving (3) for the given quadratic equation of x2 2kx 2 ¼ 0:
2k 1
2 2
pffiffiffi 2 ¼ 12 ) 4k 2 þ 4 ¼ 12 ) k2 ¼ 2 ) k ¼ 2 1
Choice (1) is the answer. 6.18. We know that a quadratic equation has the form below, where S and P are the sum and the product of its roots: b c x2 Sx þ P ¼ 0, S ¼ sum of roots ¼ , P ¼ product of roots ¼ a a Therefore, for the given quadratic equation of 2x2 3x + m ¼ 0, we can write: x1 þ x 2 ¼ S ¼
3 3 ¼ 2 2
Based on the information given in the problem, we have: x1 x2 ¼ Hence:
5 2
8 3 > < x1 þ x2 ¼ þ 2 ) 2x ¼ 4 ) x ¼ 2 ) 1 1 > : x1 x2 ¼ 5 2 x1 þ x2 ¼ x 1 x2 ¼ P ¼
3 x1 ¼ 2 1 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) x2 ¼ 2 2
c 1 m )2 ¼ )m¼ 2 a 2 2
Choice (1) is the answer. 6.19. Based on the information given in the problem, x1 and x2 are the roots of the quadratic equation of x2 + ax a2 ¼ 0. To determine the quadratic equation that its roots are y1 ¼ x1 + 1 and y2 ¼ x2 + 1, we need to replace x by y 1 in the same quadratic equation, as follows: ðy 1 Þ2 þ aðy 1 Þ a2 ¼ 0 ) y2 2y þ 1 þ ay a a2 ¼ 0
6
Solutions of Problems: Quadratic Equations
45
y!x 2 ) y2 þ ða 2Þy þ 1 a a2 ¼ 0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) x þ ða 2Þx þ 1 a a2 ¼ 0 Choice (3) is the answer.
6.20. Based on the information given in the problem, we know that the sum of the square of the two successive numbers (e.g., n and n + 1) is 925. In other words: n2 þ ðn þ 1Þ2 ¼ 925 ) n2 þ n2 þ 2n þ 1 ¼ 925 ) 2n2 þ 2n ¼ 924 ) nðn þ 1Þ ¼ 462
ð1Þ
We can consider 462 as follows: 462 ¼ 21 22
ð2Þ
Solving (1) and (2): nðn þ 1Þ ¼ 21 22 ) n ¼ 21 ) The sum of the two numbers ¼ n þ ðn þ 1Þ ¼ 21 þ 22 ¼ 43 Choice (2) is the answer. 6.21. The sum and the product of the roots of a quadratic equation can be determined as follows: b c ax2 þ bx þ c ¼ 0 ) S ¼ sum of roots ¼ , P ¼ product of roots ¼ a a The problem can be solved as follows: pffiffiffiffi pffiffiffiffiffi2 pffiffiffiffiffiffiffiffi x0 x00 ¼ x0 þ x00 2 x0 x00 b 4 c 1 x2 4x þ 1 ¼ 0 ) S ¼ ¼ ¼ 4, P ¼ ¼ ¼ 1 a 1 a 1
ð1Þ
ð2Þ ð3Þ
Solving (1), (2), and (3): pffiffiffiffi pffiffiffiffiffi pffiffiffi pffiffiffiffi pffiffiffiffiffi2 pffiffiffiffiffiffiffiffi pffiffiffi pffiffiffi x0 x00 ¼ x0 þ x00 2 x0 x00 ¼ S 2 P ¼ 4 2 1 ¼ 2 ) x0 x00 ¼ 2 Choice (1) is the answer. 6.22. Based on the information given in the problem, we have: a>0
ð1Þ
If it is assumed that x1 is the common root, then we can write: (
x21 þ 2x1 þ a ¼ 0 x21
x1 2a ¼ 0
) 3x1 þ 3a ¼ 0 ) x1 ¼ a
ð2Þ
By replacing x1 ¼ a in one of the equations, we have: x1 ¼ a ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) ðaÞ2 þ 2ðaÞ þ a ¼ 0 ) a2 a ¼ 0 ) aða 1Þ ¼ 0 ) a ¼ 0, 1 x21 þ 2x1 þ a ¼ 0 ¼ Solving (1) and (3):
ð3Þ
46
6 Solutions of Problems: Quadratic Equations ð2Þ
a ¼ 1 ) x1 ¼ 1 Choice (2) is the answer.
6.23. The problem can be solved as follows: x1 x1 x 1 2x2 2x 2x2 þ x þ 1 > 2x ) 2x > 0 ) >0) 0 and Δ < 0, as can be seen in the following: a¼2>0 Δ ¼ 1 4 2 1 ¼ 7 < 0 Therefore: xþ1 0 Therefore, we will have two distinctive real roots, since the discriminant is greater than zero. Moreover, regarding the equation of x2 2x + 1 ¼ 0: Δ ¼ b2 4ac ¼ ð2Þ2 4 1 1 ¼ 0 Thus, we will have just one distinctive real root, as the discriminant is equal to zero. In overall, we will have three distinctive real roots. Choice (3) is the answer. 6.25. A quadratic equation has two real distinct roots if its discriminant is greater than zero. In other words: ax2 þ bx þ c ¼ 0 ) Δ ¼ b2 4ac > 0 Therefore:
mx2 þ 5x þ m2 6 ¼ 0 ) Δ ¼ 52 4m m2 6 > 0
ð1Þ
Moreover, the product of the roots of a quadratic equation can be determined as follows: ax2 þ bx þ c ¼ 0 ) Product of roots ¼
c a
Since the roots are inverse value of each other, the product of the roots is equal to one. Hence: mx2 þ 5x þ m2 6 ¼ 0 ) Product of roots ¼
m2 6 ¼ 1 ) m2 m 6 ¼ 0 m
) ðm þ 2Þðm 3Þ ¼ 0 ) m ¼ 2, 3 Solving (1) and (2) for m ¼ 3: m¼3 2 Δ ¼ 52 4m m2 6 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 5 4 3 32 6 ¼ 25 12 3 ¼ 11 < 0 Therefore, m ¼ 3 is not acceptable. Solving (1) and (2) for m ¼ 2: m ¼ 2 2 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 5 4 ð2Þðð2Þ2 6Þ ¼ 25 16 ¼ 9 > 0 Δ ¼ 52 4m m2 6 ¼ Thus, m ¼ 2 is not acceptable. Choice (2) is the answer. 6.26. Based on the information given in the problem, we know that:
ð2Þ
48
6 Solutions of Problems: Quadratic Equations
x21 þ x22 ¼ 4 ) ðx1 þ x2 Þ2 2x1 x2 ¼ 4
ð1Þ
On the other hand, we know that a quadratic equation has the form below, where S and P are the sum and the product of its roots: b c x2 Sx þ P ¼ 0, S ¼ sum of roots ¼ , P ¼ product of roots ¼ ð2Þ a a Solving (1) and (2):
2 b c S 2P ¼ 4 ) ¼4 2 a a 2
Solving (3) for the given quadratic equation of 2x2 mx + m 1 ¼ 0:
m 2 m1 m2 m2 ¼4) 2 mþ1¼4) m 3 ¼ 0 ) m2 4m 12 ¼ 0 2 2 4 4 ) ðm 6Þðm þ 2Þ ¼ 0 ) m ¼ 6, 2
m ¼ 6 is not acceptable because the equation will not have real roots, as can be seen in the following: m¼6 2 2x2 mx þ m 1 ¼ 0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 2x 6x þ 5 ¼ 0 ) Δ ¼ ð6Þ2 4ð2Þð5Þ ¼ 36 40 ¼ 4 < 0 m ¼ 2 is acceptable because the equation will have two real roots, as is presented below: m ¼ 2 2 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) 2x þ 2x 3 ¼ 0 ) Δ ¼ ð2Þ2 4ð2Þð3Þ ¼ 4 þ 24 ¼ 28 > 0 2x2 mx þ m 1 ¼ 0 ¼ Choice (2) is the answer.
ð3Þ
7
Problems: Functions, Algebra of Functions, and Inverse Functions
Abstract
In this chapter, the basic and advanced problems of functions, algebra of functions, and inverse functions are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations. 7.1. If f
1 x
¼
qffiffiffiffiffiffiffiffi 2x1 x2
and g(x) ¼ 2cos2(x), calculate the value of fog
Difficulty level Calculation amount 1) 0 2) 12 pffiffi 3) 23 4) 2
● Easy ● Small
○ Normal ○ Normal
π 3
:
○ Hard ○ Large
pffiffiffi 7.2. Determine the value of fog(3) if f ðxÞ ¼ x 2 and g(x) ¼ x + 1. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 0 2) 1 3) 2 4) 3 7.3. If f(x) ¼ 2x 2 and g(x) ¼ x2 1, solve the equation of fog(x) ¼ 0. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large pffiffiffi 1) 2 2) 2 pffiffiffi 3) 3 4) 3
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_7
49
50
7 Problems: Functions, Algebra of Functions, and Inverse Functions
7.4. In the function below, calculate the value of f(2) + f(2): ( 2 2x þ 4 f ð xÞ ¼ ½x 4 Difficulty level Calculation amount 1) 8 2) 6 3) 10 4) 5
● Easy ● Small
○ Normal ○ Normal
pffiffiffiffiffiffiffiffiffiffiffiffiffi 7.5. Determine the domain of y ¼ 2 x2 . Difficulty level ● Easy ○ Normal Calculation amount ● Small ○ Normal pffiffiffi pffiffiffi 1) x 2, x 2 pffiffiffi pffiffiffi 2) 2 x 2 3) x ¼ 0 pffiffiffi pffiffiffi 4) 2 < x < 2
○ Hard ○ Large
○ Hard ○ Large
7.6. Calculate fog(x) if f(x) ¼ 1 x2 and g(x) ¼ sin (x). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) cos2(x) 2) cos(x) 3) sin(1 x2) 4) sin(cos(x)) 7.7. What is the inverse function of f ðxÞ ¼ 1x? Difficulty level ● Easy ○ Normal Calculation amount ● Small ○ Normal 1) x 2) 1x 3) 1x pffiffiffi 4) x 7.8. Calculate fof(x) if f ðxÞ ¼ 1x 1þx. Difficulty level ● Easy Calculation amount ○ Small 2 1) 1þx 1x 2) 1 3) x 2 4) 1x 1þx
○ Normal ● Normal
○ Hard ○ Large
○ Hard ○ Large
7.9. Determine the inverse function of f(x) ¼ x2 2x Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large pffiffiffiffiffiffiffiffiffiffiffi 1) 1 þ x þ 1 pffiffiffiffiffiffiffiffiffiffiffi 2) 1 x þ 1 pffiffiffiffiffiffiffiffiffiffiffi 3) 1 þ x 1 pffiffiffiffiffiffiffiffiffiffiffi 4) 1 x 1
x2 x ( > > 0 < 3 \ x3 )0 > 0 > :2 x 0 :x 2 0 x x Note, that x ¼ 0 must be excluded from the domain, since it makes the denominator zero. Choice (1) is the answer.
8
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions
61
8.16. Based on the information given in the problem, we have: pffiffiffi x f ð xÞ ¼ j xj 1 The domain of a function in radical form, including even root, is determined by considering the radicand equal and greater than zero. Moreover, the value of those x that make the denominator zero must be excluded from the domain. Thus: x0 x0 x0 \ ) ) ) D f ¼ ½0, 1Þ f1g x 6¼ 1 jxj 1 6¼ 0 jxj 6¼ 1 Choice (2) is the answer. 8.17. Based on the information given in the problem, we have: pffiffiffi xþ1 f ðxÞ ¼ pffiffiffi x xþ1 The domain of a function in radical form, including even root, is determined by considering the radicand equal and greater than zero. Moreover, the value of those x that make the denominator zero must be excluded from the domain. Thus: x0 pffiffiffi x x þ 1 6¼ 0 pffiffiffi Note that x x þ 1 6¼ 0 is true for any x. Hence: )x0 Choice (3) is the answer. 8.18. Based on the information given in the problem, we have: f ð xÞ ¼
1x 4x þ x3
The value of those x that make the denominator zero are not in the domain. Thus: 4x þ x3 6¼ 0 ) x 4 þ x2 6¼ 0 Note that 4 + x2 6¼ 0 for any x. Hence: )x¼0 Choice (4) is the answer. 8.19. Based on the information given in the problem, we have:
Therefore:
f ðxÞ ¼ 2x
ð1Þ
f ðgðxÞÞ ¼ 2x þ 2
ð2Þ
62
8
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions
f ðgðxÞÞ ¼ 2gðxÞ
ð3Þ
Solving (2) and (3): 2gðxÞ ¼ 2x þ 2 ) gðxÞ ¼ x þ 1 Choice (3) is the answer. 8.20. Based on the information given in the problem, we have: f ð xÞ ¼ x 1
ð1Þ
f ð gð x Þ Þ ¼ x
ð2Þ
f ð gð x Þ Þ ¼ gð x Þ 1
ð3Þ
Thus:
Solving (2) and (3): gð x Þ 1 ¼ x ) gð x Þ ¼ x þ 1 Choice (1) is the answer. 8.21. Based on the information given in the problem, we have: f ðxÞ ¼
pffiffiffiffiffiffiffiffiffiffiffi 1x
To determine the inverse function of a function, it is convenient to use y instead of f(x). Then, we need to determine x based on y. After that, we must replace x with y and vice versa. Note that the domain of f 1(x) is the same as the range of f(x). Therefore: y¼
pffiffiffiffiffiffiffiffiffiffiffi or 1 x ) y2 ¼ 1 x ) x ¼ 1 y2 ) y ¼ 1 x2 ) f 1 ðxÞ ¼ 1 x2
Since the domain of f 1(x) is the same as the range of f(x), which is [0, 1), we need to add x 0 to f 1(x) as its domain. Thus: f
1
ð xÞ ¼ 1 x2 , x 0
Choice (1) is the answer. 8.22. Based on the information given in the problem, we have: f ðxÞ ¼ sin ðxÞ 2 To determine the inverse function of a function, it is convenient to use y instead of f(x). Then, we need to determine x based on y. After that, we must replace x with y and vice versa. Note that the domain of f 1(x) is the same as the range of f(x). Therefore:
8
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions
63 or
y ¼ sin ðxÞ 2 ) y þ 2 ¼ sin ðxÞ ) x ¼ arcð sin ðy þ 2ÞÞ ) y ¼ arcð sin ðx þ 2ÞÞ ) f 1 ðxÞ ¼ arcð sin ðx þ 2ÞÞ Choice (4) is the answer.
8.23. Based on the information given in the problem, we have: f ðxÞ ¼ 3x 2 gðxÞ ¼ 2 þ x First, we need to determine fog(x) as follows: fogðxÞ ¼ f ðgðxÞÞ ¼ f ð2 þ xÞ ¼ 3ð2 þ xÞ 2 ¼ 3x þ 4 To determine the inverse function of a function, it is convenient to use y instead of f(x). Then, we need to determine x based on y. After that, we must replace x with y and vice versa. Note that the domain of f 1(x) is the same as the range of f(x). Therefore: 1 4 1 4 y ¼ 3x þ 4 ) 3x ¼ y 4 ) x ¼ y ) y ¼ x 3 3 3 3 Choice (1) is the answer. 8.24. Based on the information given in the problem, we have: f ðxÞ ¼ x3 þ 3x2 þ 3x þ 2 First, we need to define the function in a cube form as follows: ) f ðxÞ ¼ x3 þ 3x2 þ 3x þ 1 þ 1 ¼ ðx þ 1Þ3 þ 1 To determine the inverse function of a function, it is convenient to use y instead of f(x). Then, we need to determine x based on y. After that, we must replace x with y and vice versa. Note that the domain of f 1(x) is the same as the range of f(x). Therefore: 1
1
1
) y ¼ ðx þ 1Þ3 þ 1 ) y 1 ¼ ðx þ 1Þ3 ) ðy 1Þ3 ¼ x þ 1 ) x ¼ ðy 1Þ3 1 ) y ¼ ðx 1Þ3 1 or
) f 1 ðxÞ ¼ 1 þ
p ffiffiffiffiffiffiffiffiffiffiffi 3 x1
Choice (3) is the answer. 8.25. Based on the information given in the problem, we have: f ðxÞ þ xf ðxÞ ¼ x2 þ 1 The problem can be solved as follows:
64
8
x¼2 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) x ¼ 2 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ )
(
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions
8 < f ð2Þ þ 2f ð2Þ ¼ 5
) ) ð 2Þ : f ð2Þ 2f ð2Þ ¼ 5 f ð2Þ þ ð2Þf ð2Þ ¼ ð2Þ2 þ 1 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) f ð2Þ þ 2f ð2Þ ¼ 22 þ 1
(
f ð2Þ þ 2f ð2Þ ¼ 5 2f ð2Þ þ 4f ð2Þ ¼ 10
þ
)5f ð2Þ ¼ 5 ) f ð2Þ ¼ 1 Choice (1) is the answer.
8.26. From trigonometry, we know that: 1 þ cos ð2xÞ ¼ 2 cos 2 ðxÞ Based on the information given in the problem, we have: f ð xÞ ¼ x2 2 The problem can be solved as follows: ) f ð2 cos ðxÞÞ ¼ ð2 cos ðxÞÞ2 2 ¼ 4 cos 2 ðxÞ 2 ¼ 2ð1 þ cos ð2xÞÞ 2 ¼ 2 cos ð2xÞ ) f ð f ð2 cos ðxÞÞÞ ¼ ð2 cos ð2xÞÞ2 2 ¼ 4 cos 2 ð2xÞ 2 ¼ 2ð1 þ cos ð4xÞÞ 2 ¼ 2 cos ð4xÞ ) f ð f ð f ð2 cos ðxÞÞÞÞ ¼ ð2 cos ð4xÞÞ2 2 ¼ 4 cos 2 ð4xÞ 2 ¼ 2ð1 þ cos ð8xÞÞ 2 ¼ 2 cos ð8xÞ Choice (4) is the answer. 8.27. Based on the information given in the problem, we have: f
pffiffiffiffiffiffiffiffiffiffiffiffiffi x1 ¼ 2x 1 x
First, we need to determine the f(x) as follows: x1 1 t)x¼ ) f ðt Þ ¼ x 1t
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffi 1 1þt t !x 1þx 2 1¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) f ð xÞ ¼ 1t 1t 1x
The domain of a function in radical form, including even root, is determined by considering the radicand equal and greater than zero. Therefore: 1þx xþ1 0) 0) 1x 0 f ð xÞ ¼ 1 x0 As can be noticed from f(x), the value of function is always positive. Therefore, the value of f(x) is always negative. Hence: f ðf ðxÞÞ ¼ 1 Choice (1) is the answer. 8.38. Based on the information given in the problem, we have: sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 5x x2 f ðxÞ ¼ log 4 The domain of a function in radical form, including even root, is determined by considering the radicand equal and greater than zero. Moreover, the domain of a logarithmic function can be determined by considering its argument greater than zero. Therefore: 8 8 8 5x x2 > 2 > 2 0 < log < 5x x2 < log 5x x log ð1Þ x 5x þ 4 0 4 1 4 ) ) ) 4 2 > : : x ð x 5Þ < 0 > 5x x xðx 5Þ < 0 : x2 5x < 0 >0 4 ( 1x4 \ ðx 4Þðx 1Þ 0 ) ) )1x4 x ð x 5Þ < 0 0 > < log x ðx þ 9Þ 0 < log x ðx þ 9Þ log x ð1Þ 0 x þ9>0 x þ9>0 > > > : : : x > 0, x 6¼ 1 x > 0, x 6¼ 1 x > 0, x 6¼ 1 Note that x2 + 9 > 0 and x2 + 8 0 are true for any x. Hence: \
) x > 0 , x 6¼ 1 Choice (4) is the answer.
8.40. Based on the information given in the problem, we have: f ðxÞ ¼ 2x 2½x þ 1 Based on the definition, we know that: ½ x 2 þ1 ½ x x < ½ x þ 1 ¼ ¼ ¼ ¼ ¼ ¼ ) 0 x ½x < 1)0 2x 2½x < 2 ) 1 2x 2½x þ 1 < 3 ) 1 f ðxÞ < 3 ) Rf ¼ ½1, 3Þ Choice (2) is the answer. 8.41. Based on the information given in the problem, we have: f ð xÞ ¼ x2 þ 1 gð x Þ ¼ ) fogðxÞ ¼ f ðgðxÞÞ ¼ f
pffiffiffiffiffiffiffiffiffiffiffi x1
pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi2 x1 ¼ x1 þ1¼x1þ1¼x
Next, we need to determine the domain of the function. As we know, the domain of a function in radical form, including even root, is determined by considering the radicand equal and greater than zero: x 1 0 ) x 1 ) Dfog ¼ ½1, 1Þ Now, we can determine the range of the function based its domain as follows: Dfog ¼ ½1, 1Þ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) Rfog ¼ ½1, 1Þ fogðxÞ ¼ x ¼ Choice (2) is the answer. 8.42. Based on the information given in the problem, we have:
70
8
Solutions of Problems: Functions, Algebra of Functions, and Inverse Functions
f ð xÞ ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 2x þ 3
The problem can be solved as follows: qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ) f ð x Þ ¼ ð x 1Þ 2 þ 2 As we know: pffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi hpffiffiffi pffiffiffi pffiffiffi þ2 2, 1 ðx 1Þ2 0)ðx 1Þ2 þ 2 2) ðx 1Þ2 þ 2 2 ) f ðxÞ 2 ) R f ðxÞ ¼
Choice (1) is the answer. 8.43. Based on the information given in the problem, we have: f ðxÞ ¼ jx 2j ) D f ¼ ℝ
Based on the definition, two functions are equivalent if they are equal and their domains are the same. Choice (1):
2
x 3x þ 2 ðx 1Þðx 2Þ
¼ j x 2j
¼ g1 ð x Þ ¼
x1 x1
) D g 1 ¼ ℝ f1g
Therefore, the functions are not equivalent, since their domains are different. Note that x ¼ 1 makes the denominator zero; thus, it is not in the domain. Choice (2):
2
x 4 ðx 2Þðx þ 2Þ
¼ j x 2j
¼ g2 ð x Þ ¼
xþ2 xþ2
) Dg2 ¼ ℝ f2g
Therefore, the functions are not equivalent because their domains are not the same. Note that x ¼ 2 makes the denominator zero; thus, it must be excluded from the domain. Choice (3): g3 ð x Þ ¼
ð x 2Þ 2 j x 2j 2 ¼ ¼ j x 2j j x 2j jx 2j ) Dg3 ¼ ℝ f2g
Therefore, the functions are not equivalent because their domains are not the same. Note that x ¼ 2 makes the denominator zero; thus, it must be excluded from the domain. Choice (4): g4 ð x Þ ¼
j6x 12j 6jx 2j ¼ ¼ jx 2j 6 6
9
Problems: Factorization of Polynomials
Abstract
In this chapter, the basic and advanced problems of factorization of polynomials are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations. 9.1. Which one of the following terms is not a factor of x3 7x2 + 6x. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x 2) x 1 3) x 6 4) x + 6 9.2. Calculate the value of the following term: x2 Difficulty level Calculation amount 1) x + 2 2) x 2 3) x + 1 4) x 1
● Easy ● Small
○ Normal ○ Normal
x3 þ 8 2x þ 4
○ Hard ○ Large
9.3. Which one of the choices is a factor of x3 + y3? Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x y 2) x2 + xy + y2 3) x2 xy + y2 4) x + y + xy
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_9
71
72
9
9.4. Which one of the choices is a factor of x3 y3? Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 + xy + y2 2) x2 xy + y2 3) x + y 4) x + y + xy 9.5. Which one of the choices is not a factor of x3 + 2x2 3x? Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x + 1 2) x 3) x 1 4) x + 3 9.6. Which one of the choices is a factor of 6x3 + 7x2 + 2x? Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 3x + 2 2) 2x 1 3) 3x2 2x 4) 2x2 x 9.7. Which one of the choices is a factor of x3 + x 10? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 2x + 5 2) x2 + 2x + 5 3) x + 2 4) x2 1 9.8. Which one of the choices is a factor of 3a2 + 2ab b2? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) a 2b 2) 3a b 3) a b 4) 2a b 9.9. Which one of the choices is not a factor of x5 x4 4x + 4? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 2 2) x + 1 3) x2 + 2 4) x 1 9.10. Calculate the value of x2 þ x12 if x þ 1x ¼ 2. Difficulty level ○ Easy ● Normal Calculation amount ● Small ○ Normal 1) 8 2) 6 3) 4 4) 2
○ Hard ○ Large
Problems: Factorization of Polynomials
9
Problems: Factorization of Polynomials
73
9.11. Calculate the value of the following term: ðx þ 1Þ3 3xðx þ 1Þ x3 þ 1 Difficulty level Calculation amount 3 2 3x 1) x þ13x x3 þ1 2) 1 3 3) xx33x þ1 4)
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
x3 3x2 x3 þ1
9.12. Calculate the value of (50.01)2 (49.99)2. Difficulty level ○ Easy ● Normal Calculation amount ● Small ○ Normal 1) 0.2 2) 0.02 3) 2 4) 0
○ Hard ○ Large
9.13. Which one of the following terms is not a factor of x4 + 2x3 x 2. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) x2 x + 1 2) x2 + x + 1 3) x + 2 4) x 1 9.14. Which one of the following terms shows the correct factorization of x4 + x2 2? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) (x2 2)(x2 + 1) 2) (x2 + 2)(x2 + 1) 3) (x2 + 2)(x + 1)(x 1) 4) (x2 2)(x + 1)(x 1) 9.15. Calculate the value of the term below: 3
x3 2x2 þ 1 2 3 x2 1 Difficulty level Calculation amount 1) 2 2) x 2 3) 1 4) x
○ Easy ● Small
● Normal ○ Normal
○ Hard ○ Large
9.16. Calculate the value of a3 b3 if a b ¼ 1 and a2 + b2 ¼ 5. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 10 2) 9 3) 7
74
9
4) 6
9.17. Calculate the value of the following term: ða þ bÞ2 þ ðb þ cÞ2 þ ða þ cÞ2 ða þ b þ cÞ2 a2 þ b2 þ c 2 Difficulty level Calculation amount 1) 1 2) abþbcþac a2 þb2 þc2 3) 4)
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
ðaþbþcÞ2 a2 þb2 þc2 2ðabþbcþacÞ a2 þb2 þc2
9.18. Calculate the value of x3 + y3 if xy ¼ 5 and x + y ¼ 7. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 216 2) 238 3) 244 4) 264 9.19. Calculate the value of the term below: 2x4 þ x3 4x 2 x3 2 Difficulty level Calculation amount 1) 2x 2) 2x 1 3) 2x + 1 4) x + 1
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
9.20. Calculate the value of the term below: x4 þ x2 þ 1 x2 þ x þ 1 Difficulty level Calculation amount 1) x2 + x + 1 2) x2 + x 3) x2 x + 1 4) x2 + x 1
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
9.21. Calculate the value of the following term: x6 þ 4x2 þ 5 x2 þ 1 Difficulty level Calculation amount 1) x4 + x2 + 5 2) x4 x2 + 5
○ Easy ● Small
○ Normal ○ Normal
● Hard ○ Large
Problems: Factorization of Polynomials
9
Problems: Factorization of Polynomials
75
3) x4 2x2 + 5 4) x4 + 2x2 + 5
9.22. Calculate the value of the following term: 9
x2 1 3 3 x þ x2 þ 1 Difficulty level Calculation amount 3 1) x2 þ 1 3 2) x2 1 3 3) x2 þ 2 3 4) x2 2
○ Easy ● Small
○ Normal ○ Normal
● Hard ○ Large
9.23. Calculate the value of x2 + y2 if x4 + y4 + 4 ¼ 2(2x2 + 2y2 x2y2). Difficulty level ○ Easy ○ Normal ● Hard Calculation amount ○ Small ● Normal ○ Large 1) 2 2) 1 3) 0 4) 8 9.24. Calculate the value of the following term: ð2 þ 1Þ 22 þ 1 24 þ 1 . . . 264 þ 1 Difficulty level Calculation amount 1) 2256 + 1 2) 2128 + 1 3) 2128 1 4) 2256 1
○ Easy ○ Small
○ Normal ● Normal
● Hard ○ Large
Solutions of Problems: Factorization of Polynomials
10
Abstract
In this chapter, the problems of the ninth chapter are fully solved, in detail, step-by-step, and with different methods. 10.1. The problem can be solved as follows: x3 7x2 þ 6x ¼ x x2 7x þ 6 ¼ xðx 1Þðx 6Þ As can be seen, x + 6 is not a factor of the expression. Choice (4) is the answer. 10.2. Based on the rule of sum of two cubes, we know that: a3 þ b3 ¼ ða þ bÞ a2 ab þ b2
Therefore: x2
ðx þ 2Þðx2 2x þ 4Þ x3 þ 8 ¼ ¼xþ2 2x þ 4 x2 2x þ 4
Choice (1) is the answer. 10.3. Based on the rule of sum of two cubes, we know that: x3 þ y3 ¼ ðx þ yÞ x2 xy þ y2
Choice (3) is the answer. 10.4. Based on the rule of difference of two cubes, we know that: x3 y3 ¼ ðx yÞ x2 þ xy þ y2
Choice (1) is the answer. 10.5. The problem can be solved as follows: x3 þ 2x2 3x ¼ x x2 þ 2x 3 ¼ xðx þ 3Þðx 1Þ Choice (1) is the answer.
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_10
77
78
10
Solutions of Problems: Factorization of Polynomials
10.6. The problem can be solved as follows: 6x3 þ 7x2 þ 2x ¼ x 6x2 þ 7x þ 2 ¼ xð3x þ 2Þð2x þ 1Þ Choice (1) is the answer. 10.7. Based on the rule of difference of two cubes, we know that: x3 y3 ¼ ðx yÞ x2 þ xy þ y2
Therefore: x3 þ x 10 ¼ x3 8 þ ðx 2Þ ¼ ðx 2Þ x2 þ 2x þ 4 þ ðx 2Þ ¼ ðx 2Þ x2 þ 2x þ 5 Choice (2) is the answer. 10.8. Based on the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 The problem can be solved as follows: 3a2 þ 2ab b2 ¼ 2a2 þ 2ab þ a2 b2 ¼ 2aða þ bÞ þ ða þ bÞða bÞ ¼ ða þ bÞð2a þ a bÞ ¼ ða þ bÞð3a bÞ Choice (2) is the answer. 10.9. From the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a 2 b2 The problem can be solved as follows: x5 x4 4x þ 4 ¼ x5 4x x4 4 ¼ x x4 4 x4 4 ¼ x4 4 ðx 1Þ ¼ x2 þ 2 x2 2 ðx 1Þ Choice (2) is the answer. 10.10. Based on the information given in the problem, we have: 1 ¼2 x
ð1Þ
1 1 1 2 2 ¼ x þ þ 2 2 ¼ x þ 2 x x2 x2
ð2Þ
xþ The problem can be solved as follows: x2 þ Solving (1) and (2): x2 þ Choice (4) is the answer. 10.11. As we know:
1 ¼ ð 2Þ 2 2 ¼ 2 x2
10
Solutions of Problems: Factorization of Polynomials
79
ða þ bÞ3 ¼ a3 þ 3a2 b þ 3ab2 þ b3 Therefore: ðx þ 1Þ3 3xðx þ 1Þ x3 þ 3x2 þ 3x þ 1 3x2 3x x3 þ 1 ¼ ¼ 3 ¼1 x3 þ 1 x þ1 x3 þ 1 Choice (2) is the answer. 10.12. Based on the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 The problem can be solved as follows: ð50:01Þ2 ð49:99Þ2 ¼ ð50:01 þ 49:99Þð50:01 49:99Þ ¼ ð100Þð0:02Þ ¼ 2 Choice (3) is the answer. 10.13. Based on the rule of difference of two cubes, we know that: a3 b3 ¼ ða bÞ a2 þ ab þ b2
The problem can be solved as follows: x4 þ 2x3 x 2 ¼ x3 ðx þ 2Þ ðx þ 2Þ ¼ ðx þ 2Þ x3 1 ¼ ðx þ 2Þðx 1Þ x2 þ x þ 1 Choice (1) is the answer. 10.14. Based on the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 The problem can be solved as follows: x4 þ x2 2 ¼ x4 1 þ x2 1 ¼ x2 1 x2 þ 1 þ x2 1 ¼ x2 1 x2 þ 2 ¼ ðx 1Þðx þ 1Þ x2 þ 2 Choice (3) is the answer. 10.15. Based on perfect square binomial formula, we have: a2 þ b2 2ab ¼ ða bÞ2 The problem can be solved as follows:
3 2 3 2 3 2 2 þ 1 2 1 x 2x x x 2x þ 1 ¼ 3 2 ¼ 2 2 ¼ 1 3 3 x2 1 x2 1 x2 1 3
3 2
Choice (3) is the answer. 10.16. From the rule of difference of two cubes, we know that:
80
10
Solutions of Problems: Factorization of Polynomials
a3 b3 ¼ ða bÞ a2 þ b2 þ ab
ð1Þ
Based on the information given in the problem, we have: ab¼1
ð2Þ
a2 þ b 2 ¼ 5
ð3Þ
a b ¼ 1) ða bÞ2 ¼ 1 ) a2 þ b2 2ab ¼ 1
ð4Þ
5 2ab ¼ 1 ) ab ¼ 2
ð5Þ
From (2), we have: ð Þ2
Solving (3) and (4):
Solving (1), (2), (3), and (5): a3 b 3 ¼ 1 ð 5 þ 2 Þ ¼ 7 Choice (3) is the answer. 10.17. As we know: ða þ b þ cÞ2 ¼ a2 þ b2 þ c2 þ 2ab þ 2bc þ 2ac Therefore: ða þ bÞ2 þ ðb þ cÞ2 þ ða þ cÞ2 ða þ b þ cÞ2 a2 þ b2 þ c 2 ¼
a2 þ b2 þ 2ab þ b2 þ c2 þ 2bc þ a2 þ c2 þ 2ac a2 þ b2 þ c2 þ 2ab þ 2bc þ 2ac a2 þ b2 þ c 2 ¼
a2 þ b2 þ c 2 ¼1 a2 þ b2 þ c 2
Choice (1) is the answer. 10.18. Based on the information given in the problem, we have: xy ¼ 5 xþy¼7 Based on the rule of sum of two cubes, we know that: x3 þ y3 ¼ ðx þ yÞ x2 xy þ y2
Therefore: x3 þ y3 ¼ ðx þ yÞ x2 þ 2xy þ y2 3xy ¼ ðx þ yÞ ðx þ yÞ2 3xy ¼ 7 72 3 5 ¼ 7 34 ¼ 238 Choice (2) is the answer. 10.19. The problem can be solved as follows:
10
Solutions of Problems: Factorization of Polynomials
81
2x4 þ x3 4x 2 ð2x4 4xÞ þ ðx3 2Þ 2xðx3 2Þ þ ðx3 2Þ ðx3 2Þð2x þ 1Þ ¼ ¼ ¼ ¼ 2x þ 1 x3 2 x3 2 x3 2 x3 2 Choice (3) is the answer.
10.20. Based on the rule of difference of two squares and perfect square binomial formula, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 a2 þ b2 þ 2ab ¼ ða þ bÞ2 The problem can be solved as follows: 2
x4 þ x2 þ 1 x4 þ x2 þ 1 þ x2 x2 x4 þ 2x2 þ 1 x2 ðx2 þ 1Þ x2 ¼ ¼ ¼ x2 þ x þ 1 x2 þ x þ 1 x2 þ x þ 1 x2 þ x þ 1 ¼
ð x2 þ 1 þ xÞ ð x2 þ 1 xÞ ¼ x2 x þ 1 x2 þ x þ 1
Choice (3) is the answer. 10.21. Based on the information given in the problem, the answer of the following term is requested: x6 þ 4x2 þ 5 x2 þ 1 The problem can be solved as follows:
Choice (2) is the answer. 10.22. Based on the rule of difference of two cubes, we know that: a3 b3 ¼ ða bÞ a2 þ ab þ b2 Therefore: 9
x2 1 ¼ 3 3 x þ x2 þ 1 Choice (2) is the answer.
3 3 2 3 x2 1 x2 þ x2 þ 1 x
3 2
2
þx þ1 3 2
3
¼ x2 1
82
10
Solutions of Problems: Factorization of Polynomials
10.23. As we know: ða þ b þ cÞ2 ¼ a2 þ b2 þ c2 þ 2ðab þ bc þ acÞ
ð1Þ
Therefore: x4 þ y4 þ 4 ¼ 2 2x2 þ 2y2 x2 y2 ) x4 þ y4 þ 4 2 2x2 þ 2y2 x2 y2 ¼ 0 ) x2
2
þ y2
2
þ 22 þ 2 2 x2 þ 2 y2 þ x2 y2 ¼ 0
Solving (1) and (2): 2 x2 þ y2 þ 2 ¼ 0 ) x2 y2 þ 2 ¼ 0 ) x2 þ y2 ¼ 2 Choice (1) is the answer.
10.24. Based on the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 Now, the problem can be solved as follows: ð2 þ 1Þ 22 þ 1 24 þ 1 . . . 264 þ 1 ð 2 1Þ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ )ð2 1Þð2 þ 1Þ 22 þ 1 24 þ 1 . . . 264 þ 1 ¼ 22 1 22 þ 1 24 þ 1 . . . 264 þ 1 ¼ 24 1 24 þ 1 . . . 264 þ 1 ¼ 28 1 . . . 264 þ 1 ¼ . . . ¼ 264 1 264 þ 1 ¼ 2128 1 Choice (3) is the answer.
ð2Þ
Problems: Trigonometric and Inverse Trigonometric Functions
11
Abstract
In this chapter, the basic and advanced problems of trigonometric and inverse trigonometric functions are presented. To help students study the chapter in the most efficient way, the problems are categorized in different levels based on their difficulty levels (easy, normal, and hard) and calculation amounts (small, normal, and large). Moreover, the problems are ordered from the easiest problem with the smallest computations to the most difficult problems with the largest calculations. 11.1. Calculate the value of 2 cos (x) if sin ðxÞ ¼ 12 and the end of arc x is in the second quadrant. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large pffiffiffi 1) 3 pffiffiffi 2) 2 pffiffiffi 3) 2 pffiffiffi 4) 3 11.2. If cos(α)(1 + tan2(α)) > 0, then determine the quadrant that the end of arc α is located in that. Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) First 2) Second 3) First or third 4) First or fourth
11.3. Calculate the value of cos(10 ) + cos (190 ). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 0 2) 2 cos (10 ) 3) 2 sin (10 ) 4) cos(200 )
11.4. Calculate the value of sin(200 ) + sin (10 ) + sin (20 ) + sin (190 ). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 2 sin (10 ) 2) 2 cos (10 ) 3) 0 4) sin (10 )
# Springer Nature Switzerland AG 2021 M. Rahmani-Andebili, Precalculus, https://doi.org/10.1007/978-3-030-65056-8_11
83
84
11
Problems: Trigonometric and Inverse Trigonometric Functions
11.5. Calculate the value of sin(1860 ) + cos (1860 ) Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large pffiffi 1þ 3 1) 2 pffiffi 2) 321 pffiffi 3) 12 3 4) 0
11.6. Calculate the value of tan(135 )sin2(60 ). Difficulty level ● Easy ○ Normal Calculation amount ● Small ○ Normal 1) 34 2) 12 3) 14 4) 34 7π 11.7. Calculate the value of cos 2 5π 4 þ sin 6 . Difficulty level ● Easy ○ Normal Calculation amount ● Small ○ Normal 1) 1 2) 12 3) 14 4) 0
○ Hard ○ Large
○ Hard ○ Large
11.8. Calculate the value of (sin(60 ) sin (45 ))(cos(30 ) + cos (45 )). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 34 2) 14 3) 12 4) 1 11.9. If cos ðθÞ ¼ 23 and tan(θ) cos (θ) > 0, which quadrant is the location of the end of arc θ? Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) First 2) Second 3) Third 4) Fourth 11.10. In Figure 11.1, in triangle ABC, determine the value of sin(θ). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 35 2) 34 3) 45 4) 54
11
Problems: Trigonometric and Inverse Trigonometric Functions
85
Figure 11.1 The graph of problem 11.10
11.11. In Figure 11.2, determine the value of tan(α) + tan (β). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) 56 2) 45
Figure 11.2 The graph of problem 11.11
3) 4)
6 5 5 4
11.12. Calculate the value of cos(60 ) cos (30 ) + sin (60 ) sin (30 ). Difficulty level ● Easy ○ Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) tan(30 ) 2) cot(45 ) 3) sin(60 ) 4) cos(60 ) 11.13. Which one of the statements below is correct? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ● Small ○ Normal ○ Large 1) sin(50 ) < sin (40 ) 2) cos(50 ) < cos (40 ) 3) tan(50 ) < tan (40 ) 4) cot(40 ) < cot (50 ) 11.14. Simplify and calculate the final answer of the term below: sin 60 cos 60 tan 60 csc 60 sec 60 cot 60 sin ð40 Þ cos ð40 Þ tan ð40 Þcscð40 Þ sec ð40 Þ cot ð40 Þ Difficulty level Calculation amount 1) 0 2) 12 3) 1
○ Easy ○ Small
● Normal ● Normal
○ Hard ○ Large
86
11
Problems: Trigonometric and Inverse Trigonometric Functions
4) 2
11.15. Calculate the value of sin(135 ) + cos (45 ) + tan (225 ) + cot (315 ). Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large pffiffiffi 1) 2 þ 2 pffiffiffi 2) 2 pffiffiffi 3) 2 2 4) 2
11.16. Which one of the choices is equal to tan(10 )? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) tan(10 ) 2) cot(100 ) 3) tan(170 ) 4) tan(190 ) pffiffi 11.17. Calculate the value of tan(θ) if sin ðθÞ ¼ 55 and the end of arc θ is in the third quadrant. Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 2 2) 12 3) 12 4) 2
11.18. Which one of the choices is equivalent to the angle of 27 ? Difficulty level ○ Easy ● Normal ○ Hard Calculation amount ○ Small ● Normal ○ Large 1) 127 2) 127 3) 333 4) 53 11.19. Calculate the range of m if: cos ð3xÞ ¼ Difficulty level Calculation amount 1) (1, 2] 2) (0, 2) 3) (2, 3] 4) (2, 3)
○ Easy ● Small
○ Normal ○ Normal
m1 , 2
π π 22
○ Easy ● Small
○ Normal ○ Normal
m , 2
● Hard ○ Large
π 3π 0 cos ðαÞ 1 þ tan 2 ðαÞ > 0 ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ) cos ðαÞ > 0
Figure 12.2 The graph of the solution of problem 12.2
Therefore, the end of arc α is in the first or fourth quadrant, as can be noticed from Figure 12.2. Choice (4) is the answer. 12.3. From trigonometry, we know that for an acute angle of θ: cos 180 þ θ ¼ cos ðθÞ Therefore: cos 10 þ cos 190 ¼ cos 10 þ cos 180 þ 10 ¼ cos 10 cos 10 ¼ 0 Choice (1) is the answer. 12.4. From trigonometry, we know that for an acute angle of θ: sin 180 þ θ ¼ sin ðθÞ Therefore:
sin 200 þ sin 10 þ sin 20 þ sin 190
¼ sin 180 þ 20 þ sin 10 þ sin 20 þ sin 180 þ 10 ¼ sin 20 þ sin 10 þ sin 20 sin 10 ¼ 0 Choice (3) is the answer. 12.5. From trigonometry, we know that for an acute angle of θ: sin n 360 þ θ ¼ sin ðθÞ, n 2 ℤ cos n 360 þ θ ¼ cos ðθÞ, n 2 ℤ Moreover, we know that:
sin 60
pffiffiffi 3 ¼ 2
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
91
1 cos 60 ¼ 2
Therefore:
sin 1860 þ cos 1860 ¼ sin 5 360 þ 60 þ cos 5 360 þ 60 ¼ sin 60 þ cos 60 ¼
pffiffiffi pffiffiffi 3 1 3þ1 þ ¼ 2 2 2
Choice (1) is the answer. 12.6. From trigonometry, we know that for an acute angle of θ: tan 180 θ ¼ tan ðθÞ In addition, we know that:
tan 45 ¼ 1
sin 60
Therefore:
pffiffiffi 3 ¼ 2
tan 135 sin 2 60 ¼ tan 135 sin 2 60 ¼ tan 180 45 sin 2 60 ¼ tan 45 sin 2 60 ¼ 1 ¼
pffiffiffi2 3 2
3 4
Choice (1) is the answer. 12.7. From trigonometry, we know that for an acute angle of θ: cos ðπ þ θÞ ¼ cos ðθÞ sin ðπ þ θÞ ¼ sin ðθÞ Moreover, we know that:
pffiffiffi 2 π cos ¼ 2 4 sin
π 1 ¼ 6 2
Therefore: cos 2
2 pffiffiffi2 2 5π 7π π π π π 1 1 1 þ sin ¼ cos 2 π þ þ sin π þ ¼ cos ¼ sin ¼ ¼0 2 4 6 4 6 4 6 2 2 2
Choice (4) is the answer. 12.8. From trigonometry, we know that:
sin 60
pffiffiffi 3 ¼ 2
92
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
sin 45 ¼
pffiffiffi 2 2
cos 30 ¼
pffiffiffi 3 2
cos 45
pffiffiffi 2 ¼ 2
In addition, based on the rule of difference of two squares, we know that: ð a þ bÞ ð a bÞ ¼ a2 b2 The problem can be solved as follows:
sin 60 sin 45 cos 30 þ cos 45 ¼
pffiffiffi pffiffiffipffiffiffi pffiffiffi pffiffiffi2 pffiffiffi2 3 3 3 2 2 2 3 2 1 þ ¼ ¼ ¼ 2 2 2 2 2 2 4 4 4
Choice (2) is the answer. 12.9. Based on the information given in the problem, we know that: cos ðθÞ ¼
2 ) cos ðθÞ < 0 3
ð1Þ
tan ðθÞ cos ðθÞ > 0
ð2Þ
tan ðθÞ < 0
ð3Þ
Solving (1) and (2):
Figure 12.3 The graph of the solution of problem 12.9
By considering Figure 12.3 as well as (1) and (3), we can conclude that the location of the end of arc θ is in the second quadrant. Choice (2) is the answer.
12.10. From trigonometry, we know that:
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
Side opposite to the angle Hypotenuse
sin ðangleÞ ¼
Moreover, by using Pythagorean formula for the triangle shown in Figure 12.4, we can write: BC 2 ¼ AB2 þ AC 2 ) AB ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi BC 2 AC 2 ¼ 52 42 ¼ 3
Figure 12.4 The graph of the solution of problem 12.10
Therefore: sin ðθÞ ¼
AB 3 ¼ BC 5
Choice (1) is the answer.
12.11. From trigonometry, we know that: tan ðangleÞ ¼
Side opposite to the angle Side adjacent to the angle
Figure 12.5 The graph of the solution of problem 12.11
Therefore: tan ðαÞ þ tan ðβÞ ¼
CB CB 1 1 1 1 5 þ ¼ þ ¼ þ ¼ AB DB 1 þ 1 þ 1 1 þ 1 3 2 6
Choice (1) is the answer. 12.12. From trigonometry, we know that: 1 cos 60 ¼ 2
93
94
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
cos 30 ¼
sin 60
pffiffiffi 3 2
pffiffiffi 3 ¼ 2
1 sin 30 ¼ 2
Therefore: pffiffiffi pffiffiffi pffiffiffi pffiffiffi pffiffiffi 1 3 3 1 3 3 3 þ ¼ þ ¼ ¼ sin 60 cos 60 cos 30 þ sin 60 sin 30 ¼ 2 2 4 4 2 2 2 Choice (3) is the answer. 12.13. We know that for an acute angle, sin(α) and tan(α) have ascending trends. Therefore: sin 40 < sin 50 tan 40 < tan 50 Moreover, for an acute angle, cos(α) and cot(α) are descending. Therefore: cos 50 < cos 40 cot 50 < cot 40 Choice (2) is the answer. 12.14. From trigonometry, we know that: cot ðαÞ ¼
1 tan ðαÞ
sec ðαÞ ¼
1 cos ðαÞ
cscðαÞ ¼
1 sin ðαÞ
The problem can be solved as follows: sin 60 cos 60 tan 60 csc 60 sec 60 cot 60 sin ð40 Þ cos ð40 Þ tan ð40 Þcscð40 Þ sec ð40 Þ cot ð40 Þ sin 60 csc 60 cos 60 sec 60 tan 60 cot 60 ¼ ¼ sin ð40 Þcscð40 Þ cos ð40 Þ sec ð40 Þ tan ð40 Þ cot ð40 Þ sin 60 sin
cos 60 cos 160 tan 60 tan 160 ð Þ ð Þ 111 ¼ ¼ ¼1 1 1 111 sin ð40 Þ sin 40 cos ð40 Þ cos 40 tan ð40 Þ tan 140 ð Þ ð Þ ð Þ Choice (3) is the answer.
1
ð60 Þ
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
95
12.15. From trigonometry, we know that for an acute angle of θ: sin 180 θ ¼ sin ðθÞ tan 180 þ θ ¼ tan ðθÞ cot 360 θ ¼ cot ðθÞ
In addition, we know that:
pffiffiffi 2 ¼ 2
pffiffiffi 2 ¼ 2
sin 45
cos 45
tan 45 ¼ 1 cot 45 ¼ 1 The problem can be solved as follows: sin 135 þ cos 45 þ tan 225 þ cot 315 ¼ sin 180 45 þ cos 45 þ tan 180 þ 45 þ cot 360 45
¼ sin 45
þ cos 45
þ tan 45 cot 45 ¼
pffiffiffi pffiffiffi pffiffiffi 2 2 þ þ11¼ 2 2 2
Choice (2) is the answer. 12.16. From trigonometry, we know that for an acute angle of θ: tan ðθÞ ¼ tan ðθÞ cot 90 þ θ ¼ tan ðθÞ tan 180 θ ¼ tan ðθÞ tan 180 þ θ ¼ tan ðθÞ Choice (1):
Choice (2):
Choice (3):
Choice (4):
tan 10 ¼ tan 10 cot 100 ¼ cot 90 þ 10 ¼ tan 10 tan 170 ¼ tan 180 10 ¼ tan 10
96
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
tan 190 ¼ tan 180 þ 10 ¼ tan 10 Choice (4) is the answer. 12.17. Based on the information given in the problem, we know that the end of arc θ is in the third quadrant and: pffiffiffi 5 sin ðθÞ ¼ 5
ð1Þ
sin 2 ðθÞ þ cos 2 ðθÞ ¼ 1
ð2Þ
tan ðθÞ ¼
sin ðθÞ cos ðθÞ
ð3Þ
The problem can be solved as follows: Solving (1) and (2):
Figure 12.6 The graph of the solution of problem 12.17
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos ðθÞ ¼ 1 sin 2 ðθÞ ¼
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffi pffiffiffi2 5 1 2 1 ¼ 1 ¼ pffiffiffi 5 5 5
In (4), the negative value is acceptable because the end of arc θ is in the third quadrant (see Figure 12.6). Solving (1), (3), and (4):
pffiffi sin ðθÞ 55 1 tan ðθÞ ¼ ¼ ¼ cos ðθÞ p2ffiffi 2 5
Choice (3) is the answer.
12.18. As we know from trigonometry, in a unit circle, the relation below holds for any pair of angles:
θ2 θ1 ¼ n 360 , n 2 ℤ ) θ2 θ1 The problem can be solved as follows: Choice (1):
ð4Þ
12
Solutions of Problems: Trigonometric and Inverse Trigonometric Functions
97
127 27 ¼ 154 ) 127 ≢ 27 Choice (2):
Figure 12.7 The graph of the solution of problem 12.19
127 27 ¼ 100 ) 127 ≢ 27 Choice (3):
333 27 ¼ 360 ) 333 27
Choice (4):
53 27 ¼ 80 ) 53 ≢ 27
Choice (3) is the answer. 12.19. Calculate the range of m if: cos ð3xÞ ¼
m1 , 2
π π