Table of contents : Title Page ......Page 1 Copyright......Page 2 ACS Symposium Series......Page 3 FOREWORD......Page 4 DEDICATION......Page 5 PdftkEmptyString......Page 0 PREFACE......Page 6 Acknowledgments......Page 8 1 Origin of the Acentric Factor......Page 9 Literature Cited......Page 17 2 State-of-the-Art Review of Phase Equilibria......Page 19 Thermodynamics: Not Magic but a Tool......Page 20 Equations of State for Both Fluid Phases......Page 24 Vapor-Phase Fugacity Coefficients......Page 35 Liquid-Phase Activity Coefficients......Page 43 Local Composition to Describe Nonrandomness......Page 47 Group-Contributions for Activity Coefficients......Page 54 Chemical Theory for Activity Coefficients......Page 57 Supercritical Components in the Liquid Phase......Page 58 Aqueous Solutions of Weak Volatile Electrolytes......Page 59 Conclusion......Page 63 Literature Cited......Page 68 3 Industrial View of the State-of-the-Art in Phase Equilibria......Page 70 HOW Are Phase Equilibria Problems Treated?......Page 72 WHAT Models Are Used And WHY?......Page 77 WHERE Should Future Development Work Be Directed?......Page 90 Nomenclature......Page 92 B. Equations of State......Page 93 E. Enthalpy......Page 94 4 Measurement of Vapor-Liquid Equilibrium......Page 95 Thermodynamic Considerations......Page 96 Isothermal vs. Isobaric Data......Page 97 Direct vs. Indirect Determination of Vapor Compositions......Page 98 Extension of Isothermal VLE Data with Temperature......Page 100 Measurement of Low-Pressure VLE Data......Page 101 Conclusions and Remarks......Page 104 Notation......Page 105 Literature Cited......Page 106 5 Equilibria in Aqueous Electrolyte Systems at High Temperatures and Pressures......Page 107 Critical Curves and Miscibility......Page 109 Dielectric Behavior......Page 114 Ionization and Complex Formation......Page 117 Conclusion......Page 121 References......Page 124 General Principles......Page 126 Single Component, Two Phase Systems Solid/Solid Equilibria in Crystalline Polymers......Page 127 The Glass/Rubbery State "Equilibrium"......Page 131 The Rubbery State/Liquid Equilibrium......Page 132 Polymer Melt/Monomer Liquid(s)......Page 134 Adsorption Equilibria......Page 143 Conclusions......Page 145 Literature Cited......Page 147 Discussion......Page 149 Characteristics of Equations of State Required by Industry......Page 158 Equations of State Adopted by Industry......Page 164 Soave Equation......Page 170 Practical Applications......Page 180 Summary......Page 202 Nomenclature......Page 204 References......Page 205 8 Applications of the Peng-Robinson Equation of State......Page 208 The Peng-Robinson Equation......Page 209 Applications......Page 211 Nomenclature......Page 224 Literature Cited......Page 227 9 Application of Equations of State in Exxon's Production Operations......Page 229 Literature Cited......Page 231 Discussion......Page 232 Conclusions......Page 235 Acknowledgment......Page 238 I. Correlation of Fluid Properties with Analytic ES......Page 239 II. Non-Analytic ES......Page 241 Literature Cited......Page 242 Desired Characteristics of an EOS for VLE Calculations......Page 244 Characterization of Heavy Hydrocarbons (NBP>200F)......Page 246 Literature Cited......Page 248 Displacement Mechanisms in CO2--Reservoir Oil Systems......Page 249 Phase and Flow Behavior Characteristics of CO2--Reservoir Oil Systems......Page 252 Calculations......Page 258 Literature Cited......Page 261 14 A Computer Model for Calculating Physical and Thermodynamic Properties of Synthetic Gas Process Streams......Page 264 Possibilities for New Prediction Methods......Page 266 A New Modified Van der Waals Equation for Both Polar and Non-Polar Compounds and Their Mixtures......Page 267 Nomenclature......Page 289 Appendix......Page 292 Literature Cited......Page 296 Scope......Page 297 Design Basis and Process Description......Page 300 Effects of K-Value Predictions......Page 303 Effects of Thermophysical Property Correlations for Enthalpy and Entropy......Page 305 Conclusions......Page 311 Literature Cited......Page 315 Discussion......Page 317 References......Page 321 16 Prediction of Thermodynamic Properties......Page 324 The Virial Expansion......Page 325 Intermolecular Forces......Page 326 Liquid and Dense Gas Mixtures......Page 327 Advantages and Disadvantages of the Principle of Corresponding States as a Method of Prediction......Page 334 Literature Cited......Page 336 Formal Theory......Page 338 Comparison with Experiment for the Dilute Gas......Page 341 Corresponding States......Page 344 Modification of the Transport Expressions......Page 346 Comparisons with Experimental Data Mixtures......Page 348 Literature Cited......Page 351 18 Polar and Quadrupolar Fluid Mixtures......Page 352 Intermolecular Forces......Page 353 Theory......Page 354 Results......Page 357 References......Page 373 Discussion......Page 375 19 Criteria of Criticality......Page 377 Development of the General Criticality Criteria......Page 379 Alternate Criteria in the U-Representation......Page 384 Alternate Criteria in Other Potential Functions......Page 386 Criteria in Gibbs Free Energy......Page 393 Concluding Remarks......Page 395 Literature Cited......Page 396 What are the Synthetic Fuels?......Page 398 How are Synthetic Fuels Made?......Page 401 New Gasification Processes......Page 414 Shale Oil......Page 417 What are the Data Needs?......Page 421 How Good Do the Data Need to Be?......Page 423 When Are the Data Needed?......Page 424 Literature Cited......Page 425 Discussion......Page 426 References......Page 428 21 A Group Contribution Molecular Model for Liquids and Solutions Composed of the Groups CH3, CH2, OH,and CO......Page 429 Abstract......Page 431 Literature Cited......Page 436