109 19 21MB
English Pages 504 [505] Year 2023
Yoshiyuki Kawazoe Ursula Carow-Watamura
Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys A Supplement to Landolt-Börnstein III/37 Series
MATERIALS.SPRINGER.COM
Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys
Yoshiyuki Kawazoe • Ursula Carow-Watamura
Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys A Supplement to Landolt-Bo¨rnstein III/37 Series
With 432 Figures and 305 Tables
Yoshiyuki Kawazoe New Industry Creation Hatchery Center Tohoku University Aoba-ku, Sendai, Japan
Ursula Carow-Watamura Department of Physics, Grad. School of Science Tohoku University Aoba-ku, Sendai, Japan
ISBN 978-3-662-64977-0 ISBN 978-3-662-64978-7 (eBook) https://doi.org/10.1007/978-3-662-64978-7 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2022 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature. The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany
Preface
Natural glasses are formed in various materials, for example, oxides and polymers, while commercial metallic alloys have a crystalline structure either after slow or rapid cooling on casting. Metallic glassy alloys were first produced by using sputtering and rapid solidification techniques at very high cooling rates. Many amorphous alloys produced until the last decade of the last century, being marginal glass-formers, have been obtained in the shape of melt-spun ribbons or thin films. Later rod-shaped samples over 1 cm in diameter (called bulk metallic glasses, BMG) were produced by casting of the alloys, having high glass-forming ability in a variety of alloy systems including Rare-Earth (RE) metals-, Mg-, Zr-, Ti-, Fe-, Co-, Pd-, Pt-, Au-, Ag-, Cu-, Ni-, and Ca-based system alloys. These amorphous/glassy alloys demonstrate high strength, good elasticity, high wear, and corrosion resistance. The existing data on the glass-forming ability (including chemical compositions, critical size of fully glassy/amorphous sample, their characteristic temperatures, etc.) as well as physical and chemical properties of metallic amorphous materials have been collected since the database project AMOR was started in 1993 and are presented in the database. The first volume of this series, LB III/37A, presenting 6,450 compositions from 351 ternary amorphous alloy systems of fully amorphous, mixtures of amorphous and crystalline as well as crystalline and quasi-crystalline phases in the form of composition triangles and tables, was published in 1996. The second volume, LB III/37B, a successor volume to LB III/37A, accumulating the data on the structural, thermal, mechanical, magnetic, electrical, and optical properties as well as the corrosion behavior of the ternary alloys listed in volume A, was published in 2011. In addition, another 32 ternary amorphous alloy systems found in the period from 1995 to 2008 were added to volume B updating important information on ternary amorphous alloys. The third volume, LB III/37C, focuses on quaternary metallic amorphous alloys, which are of great interest for industrial applications. The volume covers the general physical structure, as well as thermal, mechanical, magnetic, electrical, and optical properties. The current fourth volume presents the data of five-component metallic amorphous alloys, including a large number of specimen obtained by adding a fifth component to a quaternary alloy; some were obtained by starting from lower v
vi
Preface
component base alloys, and there are a few examples of so-called high-entropy alloys. Structural data include diffraction profiles, radial distribution functions, coordination numbers, interatomic distances, etc. The methods include X-ray diffraction, small-angle x-ray scattering, small-angle neutron scattering, atom probe field ion microscopy, electron probe micro analysis, EDX, EXAFS, and XANES Spectra as well as X-ray photoelectron spectroscopy. Thermal properties include specific heat capacity, Debye temperature, atomic diffusivity, thermal expansion coefficient, glass transition temperature, reduced glass transition temperature, crystallization temperature, enthalpy of crystallization, structural relaxation, supercooled liquid range, melting enthalpy, critical quantities for formation of amorphous phase, and configuration entropy. Mechanical properties include stress-strain curves, yield strength and strain values, elastic moduli, hardness, fatigue strength, fracture and critical fracture temperature, as well as wear resistance, internal friction, viscosity and magnetomechanical coupling data. Magnetic properties include Curie temperature, magnetization curves, coercive force, remanence, permeability, core loss, saturation magnetic moment, magnetic anisotropy, susceptibility, magnetostriction, Mössbauer spectroscopy data, quadrupole splitting and isomer shift, magnetic hyperfine field and line splitting, as well as magnetic resonance spectra, ferromagnetic resonance, etc. Electrical properties include electrical resistivity and conductivity, temperature dependence of resistivity, Hall effect data, etc. Corrosion data include potentiostatic and potentiodynamic polarization curves and corrosion rate. We hope that the present volume composed of a collection of five-component metallic amorphous alloy systems contribute both to fundamental researches and industrial applications. Sendai, Japan December 2022
Y. Kawazoe
Contents
Part I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Part II
1
Data
Ag-Al-Co-Cu-La . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
Ag-Al-Cu-La-Ni
...........................................
23
Ag-Cu-Hf-Ta-Ti
...........................................
29
Al-B-Cu-Ni-Zr
............................................
35
Al-B-Fe-Nb-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
Al-B-Fe-P-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Al-Ce-Fe-Nd-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47
Al-Co-Cu-Ga-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
...........................................
52
Al-Co-Cu-Mm-Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
Al-Co-Cu-Nd-Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
Al-Co-Cu-Ni-Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
Al-Co-Cu-Ni-Zr
...........................................
74
Al-Co-La-Ni-Y
............................................
84
Al-Cu-Ir-Ni-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
86
Al-Cu-La-Ni-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88
...........................................
91
Al-Co-Cu-La-Ni
Al-Cu-Nb-Ni-Zr
vii
viii
Contents
Al-Cu-Ni-Pd-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
Al-Cu-Ni-Si-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
99
Al-Cu-Ni-Sn-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103
Al-Cu-Ni-Ta-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
110
Al-Cu-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
114
Al-Cu-Ni-Y-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117
Al-Nb-Ni-Ta-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
119
Al-Nb-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
127
B-C-Co-Cr-Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
B-C-Co-Cr-Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
140
B-C-Co-Fe-Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
142
B-C-Cr-Fe-Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
145
B-C-Cr-Fe-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
............................................
163
B-C-Er-Fe-Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
166
B-C-Fe-Ga-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
169
.............................................
174
B-C-Fe-P-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
182
B-Co-Cr-Fe-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
193
...........................................
197
B-Co-Cu-Fe-Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
208
B-Co-Cu-Nb-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
211
B-Co-Cu-Ni-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
218
B-Co-Dy-Fe-Nd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
220
B-Co-Fe-Ge-Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
231
B-Co-Fe-Hf-Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
234
............................................
237
B-Co-Fe-Mn-Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
246
B-Co-Fe-Mn-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
253
B-Co-Fe-Mo-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
256
B-C-Dy-Fe-Mo
B-C-Fe-Mo-P
B-Co-Cu-Fe-Mo
B-Co-Fe-Hf-Ni
Contents
ix
B-Co-Fe-Mo-Ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
259
B-Co-Fe-Nb-Ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
262
B-Co-Fe-Nb-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
268
............................................
272
B-Co-Fe-Nb-Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
278
B-Co-Fe-Nb-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
284
B-Co-Fe-Ni-Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
306
B-Co-Fe-Ni-Zr
............................................
309
B-Co-Fe-Pr-Zr
............................................
328
B-Co-Fe-Si-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
332
B-Co-Fe-Ta-Zr
............................................
334
B-Co-Fe-W-Zr
............................................
340
B-Cu-Fe-Nb-Si
............................................
347
B-Cu-Ni-Si-Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
374
B-Cu-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
376
Be-Cu-Fe-Nb-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
379
Be-Cu-Nb-Ni-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
381
Be-Cu-Ni-Sn-Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
383
Be-Cu-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
388
B-Fe-Ga-Ni-P
.............................................
396
B-Fe-Nb-Si-Y
.............................................
398
B-Fe-Nb-Y-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
400
B-Fe-Ni-Si-Ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
405
C-Cr-Er-Fe-Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
410
C-Cr-Fe-Mo-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
413
Co-Cu-Ga-Ni-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
415
Co-Cu-Hf-Ni-Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
417
Co-Cu-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
419
...........................................
422
Co-Nb-Ni-Sn-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
424
B-Co-Fe-Nb-Si
Co-Cu-Sn-Ti-Zr
x
Contents
Co-Nb-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
430
Cu-Fe-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
435
...........................................
440
Cu-Hf-Ni-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
447
Cu-Nb-Ni-Si-Ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
449
Cu-Ni-P-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
452
............................................
455
Cu-Pd-Si-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
468
Cu-Pd-Sn-Ti-Zr
...........................................
475
Cu-Pd-Ta-Ti-Zr
...........................................
488
Nb-Ni-Ta-Ti-Zr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
492
Cu-Hf-Nb-Ni-Ti
Cu-Ni-Si-Ti-Zr
Introduction
Contents Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
This is the fourth volume on metallic glasses in a series, the second one related to ternary and the third one to quaternary metallic glasses, which presents information on various properties of multicomponent bulk metallic glasses. Besides amorphous materials obtained by thin film deposition techniques [54BUCK01], the first metallic glass [15GREE02], namely Au-Si alloy, was produced by rapid solidification of the melt in 1960 [60KLEM03]. In the 1970s, noble metals-based bulk metallic glasses of 1–2 mm diameter were also produced [74CHEN04]. For a long time period, Pd-CuSi and Pd-Ni-P were known to be the best metallic glass formers, but remained a laboratory curiosity at that time. In the 1980s, Pd-Ni-P bulk metallic glass having a critical size of 10 mm was produced by fluxing and water cooling [82KUI05]. A large number of bulk metallic glasses defined as 3D massive glassy articles with a size of not less than 1 mm (by another definition not less than 10 mm) in every spatial dimension have been produced so far in the thickness range of 100–102 mm after several pioneering works made in the late 1980s to the beginning of the 1990s [95INOU06, 99JOHN07]. Non-noble-metal-based metallic glasses were initially made in Mg-, La-, and Zr-based alloys (Fig. 1) and later in various other systems [10SURY08].
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_1
1
2
Introduction
Fig. 1 A large Zr-based bulk metallic glassy sample produced by Cu mold gravity casting
Although a few binary bulk metallic glass-forming systems are known, the composition ranges are narrow and the glass-forming ability of the samples is limited while the addition of a suitable third, fourth, and fifth element drastically improves the glass-forming ability (Fig. 2) [10LOUZ09].
Introduction
3 0.8 Critical diameter distribution for binary alloys
Frequency
0.6
0.4
0.2
0.0 0.5
1.0
1.5 Critical diameter, mm
2.0
2.5
0.4 Critical diameter distribution for ternary alloys
Frequency
0.3
0.2
0.1
0.0 0
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16 17 Critical diameter, mm
0.20
Critical diameter distribution for quaternary alloys
Frequency
0.16
0.12
0.08
0.04
0.00
Fig. 2 (continued)
0
5
10
15 20 Critical diameter, mm
25
30
35
4
Introduction
0.20 Critical diameter distribution for quinary alloys
Frequency
0.16
0.12
0.08
0.04
0.00
0
5
10
15 20 Critical diameter, mm
25
30
35
Fig. 2 Frequency distribution of the number of alloys as a function of their critical diameter. (Reproduced from [10LOUZ09] with permission of FF)
Although bulk glassy alloys are much larger in size than ribbon samples on casting, they are still cooled at high rates of about 102–103 K/s (Fig. 3a) [10LOUZ10]. Thus, the samples are produced under highly nonequilibrium conditions compared to conventional metallic alloys cast as large-size ingots of decimeters and even meters in size. 10000
(a)
~2500 K/s
(b)
~600 K/s
1000
~ 240 K/s
at 1100 K
1000
900 800
~ 100 K/s 10 mm
~200 K/s
700
~600 K/s
600
, K/s
Temperature of the melt/glass, K
1200 1100
5 mm
100
at 700 K
500 400 300
3 mm
10
0
500
1000
1500
2000
Time, ms
2500
3000
0
2
4
6
8
10
12
Diameter of the ingot, mm
Fig. 3 (a) Cooling curves of the Cu44Ag15Zr36Ti5 bulk samples having 3, 5, and 10 mm in diameter. (b) The cooling rate β in logarithmic coordinates as a function of the ingot diameter and temperature as indicated. (Reproduced from [10LOUZ10] with permission of FF)
Upon homogeneous crystal nucleation from the melt on cooling, intrinsic parameters indicating high glass-forming ability of metallic glasses are the reduced glass transition temperature, liquid fragility, and many others [08LOUZ11]. ΔTx and γ can be considered only as nearly intrinsic, since Tx is dependent on the heterogeneous
Introduction
5
nucleation. The extrinsic factors influencing the glass-forming ability are as follows [08LOUZ11]: the factors that modify the melt-mould heat transfer coefficient such as mould surface quality and cleanliness, mould surface temperature, thermal conductivity of the mould, casting temperature, casting pressure, liquid metal turbulence during casting as well as upon chamber pressure [04KATO12], and the atmosphere. These factors which are difficult to control experimentally play a central role in the poor reproducibility in the critical thickness for a given metallic glass composition. The second group of factors takes into account heterogeneous nucleation. Possible sources of heterogeneous nucleation include irregularities of the mould and melt cleanliness, existence of impurities, or inclusions which cause heterogeneous nucleation of crystals [06WILD13]. Bulk metallic glasses possess (Fig. 4) unique physical (absence of grain boundaries), mechanical (high strength, hardness, and elasticity wear resistance), chemical (high corrosion resistance), and good soft magnetic (low coercive force and high permeability) properties. 6 Co
Mechanical Strength (MPa)
5 Fe
4 Ni
3 Zr
2 1
Cu
Ti
Mg
0
Fig. 4 Typical strength values of bulk metallic glasses based on the elements as indicated
The present volume contains information about the structure of multicomponent bulk metallic glasses in terms of interference function, radial distribution function, EXAFS measurement, XANES spectra, small-angle X-ray scattering, X-ray photoelectron spectroscopy, and the following properties of multicomponent metallic glasses: physical properties (density, volume, thermal properties, characteristic temperatures, heat capacity, and heat effects), mechanical properties (elastic moduli and strain as well as plastic features including tensile strength, compressive strength, hardness and strain values, fatigue strength, etc.), magnetic properties (Curie temperature, coercive force, remanence, permeability, saturation magnetization, magnetostriction, Mössbauer spectroscopy, etc.), electrical properties (resistivity, Hall effect, thermoelectric power, superconductivity, etc.), and some chemical properties (corrosion behavior).
6
Introduction
Symbols and Abbreviations Short form A a = R1dR/dT a0 aexp Am amFe at A Å b=B/Bc2 B B B BB B3/2 Bmax Br Br/Bm Bs Bs Bs (BH)max C cm C CN Cp Cp,q Cp,s ΔCm ΔCp ΔCp,max ΔCp.s-l d d dcrit dmc dmn D D D
Full form lattice parameter, lattics spacing temperature coefficient of resistance mean atomic diameter coefficient in the equation for the specific heat calculation amorphous number of iron ions in surface film temperature dependence of shift factor anisotropy angstrom reduced magnetic field magnetization viscous flow constant brittle extremely brittle Bloch's law coefficient maximum induction field remanence rectangular ratio remanence and maximum induction field saturation magnetic induction saturation magnetic moment spontaneous magnetization energy product atomic fraction of the second component concentration of the m element Curie constant coordination number heat capacity heat capacity of the as-quenched sample heat capacity of the annealed sample heat capacity of magnetization at Curie temperature change in heat capacity maximum differential heat capacity change in the difference of heat capacity between amorphous solid and supercooled liquid interatomic distance sample thickness critical section diameter for glass formation medium size of amorphous composite powders medium size of amorphous non-dispersed powders sample diameter atomic diffusivity diffusion coefficient (continued)
Symbols and Abbreviations D D D D1/D2 D2 DRDF(r) Ds DS(k) D(T) D(x)/D(0) e e/a eV E E E E/ρ E0 E00 Eb EF Em Emf Eo Eoc ΔEB f f f f0 fa fg ft Δf
Fp FWHM (1/2)gJ g(r) gM(r) gN(r) G G0 G00
7
electronic diffusivity interdiffusion constant spin-wave stiffness constant ratio of line depths distribution, minimized weighted sum of squares differential radial distribution function spin wave stiffness differential structure factor spin wave stiffness constant reduced spin wave stiffness constant temperature coefficient of Young's modulus electron concentration, number of valent electrons per atom electron volt energy effective modulus Young’s elastic modulus specific Young’s modulus storage Young’s modulus loss Young’s modulus binding energy Fermi energy thermoelectromotive force thermoelectromotive force effective anisotropy gap due to the dipole-dipole interactions open circuit potential core level binding energy shifts electric quadrupole splitting free energy frequency resonant frequency resonant frequency, peak frequency antiresonance fractional free volume resonant frequency frequency change mean atomic scattering factor bulk pinning force full width at half maximum moment for asperomagnetic ordering reduced radial distribution function magnetic pair function nuclear pair function shear modulus storage shear modulus loss shear modulus (continued)
8 G(ћω) G(r) = 4πr [ρ(r)ρo] Ga Gc GIc GL GL(r) Gn ΔGa ΔGc hJ(h) H H H Ha Hc Hc2 dHc2/dT (dHc2/dT)Tc Hcb Hhf HI Hk Hm Hv Hx ΔH ΔHB ΔHc ΔHendo ΔHexo ΔHi,exo ΔHir ΔHr,exo ΔHr ΔHtot ΔHx I I Iexp Ir IS
Introduction generalized photon density of states radial distribution function, atomic distribution function shear modulus of the as-cast sample shear modulus of the crystalline sample crack resistance force coherence length reduced radial distribution function neutron pair correlation function change in the shear modulus after annealing change in the shear modulus upon crystallization normalized SAXS curve applied magnetic field enthalpy hardness average hyperfine field applied field coercive field, magnetic coercive force upper critical magnetic field critical field gradient temperature gradient of Hc2 in the vicinity of Tc critical bias field hyperfine field internal field uniaxial magnetic anisotropy exciting-field amplitude Vickers hardness or Vickers microhardness heat of crystallization enthalpy change minimum amount of enthalpy relaxation leading to embrittlement enthalpy change endothermic enthalpy relaxation exothermic heat irrecoverable relaxation enthalpy total irreversible enthalpy relaxation relaxation enthalpy heat of structural relaxation total heat of transformation heat of crystallization intensity total intensity diffracted intensity experimental remanence magnetization isomer shift average isomer shift (continued)
Symbols and Abbreviations Is Iv I(Q,E) Jc Jcoh k k k kF 2kF km kp K K K K2max Kc Kp Ks Kth Ku l l0 Δl Δl/l0 ln(f) L ΔL/L M M M1/M M2D Mr n n n n1 n1 na nm N N(0) N(E) N(Ef)
9
saturation magnetic moment nucleation frequency differential intensity profile critical current density coherent scattering absorption coefficient magnetomechanical coupling factor wave vector Fermi wavevector diameter of the Fermi sphere magnetomechanical coupling coefficient wave number corresponding to the first peak of the structure factor bulk modulus Knight shift rate constant maximal magnetomechanical coupling coefficient fracture toughness structure parameter strain gauge factor thermal conductivity uniaxial magnetic anisotropy constant length of the sample after tensile test length of the sample before tensile test elongation to failure strain pre-exponential factor length thermal expansion molecular weight magnetic moment fraction of first-stage magnetization against total magnetization proton second moments magnetic remanence number of the conduction electrons per atom Avrami coefficient, Avrami exponent average Avrami exponent coordination number in the first coordination shell nearest neighbour number Avogadro number number of electrons in the metalloid atoms contributing to the conduction band coordination number electronic density of states electronic density of states bare density of states at the Fermi level (continued)
10 N(O) N*(0) N*(Ef) Neff Nij Nmm Nmn Nmn Ntw pc P P(E) P(E) P(H) P(Hhf) P(Δ) P(ΔEQ) qc Q Qi QE Qg Qi(Q) Qm(Tm) Qp Qs QS Q(T) Qx ΔQ r r1 r2 R R0 R0 Rc Rc(CT) Rc(TTT) RH δRH(T) R(T) R(T)/Rmin
Introduction density of states of one spin per atom electronic dressed density electronic dressed density of states at the Fermi level number of electrons partial coordination number number of surrounding nonmetal atoms numbers of nearest metal neighbours numbers of nearest neighbours number of twisting paramagnetic moment polarization distribution of activation energies function representing the number of relaxation processes (relaxation centers) contributing to reversible relaxation with activation energy E distribution of the hyperfine field distribution of the hyperfine field distribution function distribution function of quadrupole splitting quasicrystal activation energy interference function interfacial energy activation energy reduced interference function activation energy spectrum apparent activation energy of transformation activation energy quadrupole splitting, distribution of quadrupole splitting average quadrupole splitting thermoelectric power activation energy for crystallization X-ray diffraction half-width for the peak interatomic distance first near neighbor distance second near neighbor distance electrical resistance isothermal electrical resistance normal Hall coefficient critical cooling rate critical cooling rate (CT approach) critical cooling rate (TTT approach) Hall coefficient temperature-dependent Hall coefficient electrical resistance as a function of temperature normalized electrical resistance (continued)
Symbols and Abbreviations R/R(T) R/Rn RDF(r) S S S(k) S(Q) S(T) S300K Sg Si(S) Sij(Q) SM(q) SN(q) SQ ΔS(Q) t t0 ta tb tmax tn T dT/dt T0 T 1/2 T1 Ta TB, TBB Tc TC TCR Td Te
11
normalized electrical resistance normalized electrical resistance total radial distribution function structure factor thermopower, thermoelectric power structure factor structure factor thermopower as a function of temperature thermoelectric power at 300 K residual configurational entropy interference function partial Faber-Ziman structure factor magnetic structure factor nuclear structure factor total structure factor differential neutron total structure factor time incubation time in Arrhenius plot annealing time embrittlement time time necessary to reach the maximum transformation rate nose time (TTT diagram) temperature heating rate characteristic temperature for viscous flow square-root temperature spin lattice relaxation time annealing temperature embrittlement temperatures superconducting transition temperature Curie temperature temperature coefficient of resistivity characteristic temperature eutectic temperature temperature at which the viscosity η = 1012 P thermally manifested glass transition temperature
Tf Tf Tg Tg/Tm TK TL Tm Tmin
critical fracture temperature spin freezing temperature glass transition temperature reduced glass transition temperature Kondo temperature liquidus temperature melting temperature resistivity- minimum temperature (continued)
12 Tmax Tn TN Tp Tp TQ Tr,x = Tx/Te Tr,g = Tg/TL Trel TRHa Trx = Tx/Te Tsf Tx Tx,1 Tx,2 ΔT = TxTg ΔTx u ur vL vt vs vs V V Va Vc0 Vf Vf Vh ΔV ΔV/V ΔVE ΔVr ΔVx w(k) W x x Z Zij α α α
Introduction temperature of maximum resistivity nose temperature (TTT diagram) temperature at which susceptibility difference undergoes a maximum peak temperature DSC peak temperature in Kissinger method quenching temperature reduced crystallization temperature reduced glass-transition temperature structural relaxation temperature temperature below which non-linearities in the Hall-coefficient RH occur reduced crystallization temperature spin-fluctuation temperatures crystallization temperature onset temperature of crystallization first crystallization temperature second crystallization temperature supercooled liquid region supercooled liquid region crystal growth rate reduced crystal growth rate longitudinal component of sound velocity transversal component of sound velocity sound velocity substrate velocity for melt spinning volume, gram atomic volume gram atomic volume atomic volume critical pitting potential free volume volume fraction hole volume volume change relative volume change velocity of extensional mode ultrasonic waves volume change during structural relaxation volume change upon crystallization window function core loss atomic concentration content in atomic percent impedance partial coordination numbers angle of twist angle heating rate (continued)
Symbols and Abbreviations α α α α α α Δα β β γ γ γexp γF Γ1 δ ε ε|| ε⊥ εc,f εc,y εf εf εf εrc/εe εt,f εv/εe εy ξ ξ ξGL(0) ζ ζ ζ η η0 ηm θ 2θ θB θD θF θK θp κ th λ
13
optical absorption coefficient relaxation constant thermal expansion coefficient, volume expansion coefficient reduction rate temperature coefficient of resistivity room-temperature coefficient of resistivity difference between thermal expansion coefficients coefficient of the lattice term spin relaxation constant integrated intensity electronic specific heat coefficient experimental electronic specific heat coefficient electronic specific heat coefficient f-band linewidth (full width at half-maximum) isomer shift deformation longitudinal deformation transverse deformation compressive fracture strain compressive yield strain bending fracture strain fracture elongation tensile fracture strain total recoverable creep strain in units of maximum elastic strain tensile fracture strain total viscous creep strain in units of maximum elastic strain yield strain thermopower parameter disorder parameter GL coherence length characteristic crystallization time constant coherence length superconducting coherent length viscosity viscosity viscosity at the melting temperature bend angle scattering (diffraction) angle temperature in Brillouin function Debye temperature Faraday rotation coefficient wavelength dependence of Kerr rotation paramagnetic Curie temperature thermal conductivity wavelength of X-rays (continued)
14 λ λ λs λ|| λ⊥ λs λs.o λs|| μ μ
μB μc μe μeff μi μFe μs μ(T) υ ρ ρ ρ273 ρ4.2 ρm ρmin ρRT ρsf ρsf/ρso ρ (H) ρ (T)/ρRT ρ (T)/ρ (300K) ρ (T) dρ /dT σ σ σ σ0 σ 300K σa
Introduction coupling constant linear saturation magnetostriction magnetostriction constant longitudinal magnetostriction perpendicular magnetostriction saturation magnetostriction spin orbit interaction longitudinal saturation magnetostriction permeability, effective permeability magnetic moment, average magnetic moment average magnetic moment calculated magnetic moment extrapolated magnetic moment magnetic moment of Fe atom magnetic moment per metal atom Bohr magneton permeability permeability, effective permeability effective magnetic moment permeability after demagnetization magnetic moment of Fe atom saturation magnetization, saturation magnetic moment permeability Poisson’s ratio density electrical resistivity electrical resistivity at 293 K residual electrical resistivity at 4.2 K mass density resistivity at the minimum room-temperature electrical resistivity spin-fluctuation resistivity normalized spin-fluctuation resistivity magnetoresistivity relative resistivity normalized temperature dependence of resistivity temperature dependence of the resistivity temperature coefficient of resistivity average electron density internal stress tension magnetization low temperature magnetizations conductivity at 300 K periodical stress amplitude (continued)
References σB σ B/ρ σ c.y σf σf σ ij σ K , σ L, σ H σm σ max σ net σ RT σs σs σ t.f σy σY σY σ Y/ρ σΔ (σ/μ)max σ(T)/σ(0) τ τo ϕ ϕc χ χ χ 4.2 χ1 χ ac χ cond ωs(0)
15 nominal tensile strength specific strength compressive yield strength tensile fracture strength ultimate tensile strength root-mean-square displacement estimated from EXAFS spectra parameters obtained by the asymmetric fit elastic stress saturation magnetization applied net stress saturation magnetization at room temperature saturation magnetization spontaneous magnetization fatigue strength apparent yield strength uniaxial yield stress yield stress specific yield strength full width at half maximum, Gauss function maximum elastic strain in any portion of the specimen reduced magnetization incubation time delay time heating rate critical crack opening displacement at fracture magnetic susceptibility temperature- independent part of magnetic susceptibility magnetic susceptibility at 4.2 K inverse magnetic susceptibility magnetic susceptibility, alternating current conduction electron susceptibility volume magnetostriction
Acknowledgment The authors would like to thank Dr. N. Watamura for technical help during the preparation of the manuscript.
References [54BUCK01] W. Buckel, R. Hilsch Z. Physik, 138 (1954) 109. [15GREE02] A. L. Greer, New horizons for glass formation and stability. Nat. Mater. 14, (2015) 542–546. [60KLEM03] W. Klement, R. H. Willens and P. Duwez, Nature 187 (1960) 869. [74CHEN04] H. S. Chen, Acta Metall. 22 (1974) 1505. [82KUI05] H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett. 45 (1982) 716. [95INOU06] A. Inoue, Mater. Trans. JIM 36 (1995) 866.
16
Introduction
[99JOHN07] W. L. Johnson, MRS Bull 24 (1999) 42. [10SURY08] C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, CRC Press, Boca Raton, FL, (2010). [10LOUZ09] D. V. Louzguine-Luzgin, D. B. Miracle, L. Louzguina-Luzgina, and A. Inoue Comparative analysis of glass-formation in binary, ternary, and multicomponent alloys Journal of Applied Physics, 108, (2010) 103511 [10LOUZ10] D. V. Louzguine-Luzgin, G. Xie, Q. Zhang, C. Suryanarayana and A. Inoue, Formation, structure, and crystallization behavior of Cu-based bulk glass-forming alloys, Metallurgical and Materials Transactions A: 41, (2010), 1664–1669. [08LOUZ11] D. V. Louzguine-Luzgin, D. B. Miracle, A. Inoue, Intrinsic and Extrinsic Factors Influencing the Glass-Forming Ability of Alloys Advanced Engineering Materials, 10, (2008) 1008–1015. [04KATO12] H. Kato, J. Saida, and A. Inoue, Scripta Mater. 51, (2004), 1063. [06WILD13] G. Wilde, J. L. Sebright and J. H. Perepezko, Acta Mater. 54, (2006), 4759.
Ag-Al-Co-Cu-La
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Strength, Fracture, and Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 17 19 19 20 20 20 21 21 21 21 22 22 22
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_2
17
18
Ag-Al-Co-Cu-La
Structural Information X-ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 X-ray diffraction patterns of cast La-Al-Cu-Co-Ag alloy rods with diameter of 9.0 mm [07ZHAN11]
Fig. 2 X-ray diffraction patterns of cast La-Al-Ag-Cu-Co alloy rods with diameter d ¼ 8, 9, and 10 mm [08JIA]
Thermal Properties
19
Thermal Properties DSC/DTA Analysis
Fig. 3 DSC curves of melt-spun La-Al-Cu-Co-Ag glassy alloy [07ZHAN11]. The glass transition temperature Tg and crystallization temperature Tx are indicated in the figure by arrows
Fig. 4 DTA curves of the La-Al-Cu-Co-Ag glassy alloy [07ZHAN11]. Indicated in the figure is the liquidus temperature Tl
20
Ag-Al-Co-Cu-La
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 Glass transition temperature Tg and reduced glass transition temperature Tg/Tl of La-based bulk glassy alloys. Tl is the liquidus temperature Composition [at %] La62.5Al12.5Cu15Co5Ag5 La62.5Al12.5Ag5Cu17.5Co2.5
Tg [K] 397 393
Tg/Tl 0.567 0.552
References [07ZHAN11] [08JIA]
Crystallization Temperature Table 2 Crystallization temperature Tx of La-based bulk glassy alloys Composition [at %] La62.5Al12.5Cu15Co5Ag5 La62.5Al12.5Ag5Cu17.5Co2.5
Tx [K] 474 473
References [07ZHAN11] [08JIA]
Supercooled Liquid Region Table 3 Supercooled liquid region ΔTx of La-based bulk glassy alloys ΔTx [K] 77 80
Composition [at %] La62.5Al12.5Cu15Co5Ag5 La62.5Al12.5Ag5Cu17.5Co2.5
References [07ZHAN11] [08JIA]
Melting/Liquidus Temperature and Enthalpy Table 4 Liquidus temperature Tl of La-based bulk glassy alloys Composition [at %] La62.5Al12.5Cu15Co5Ag5 La62.5Al12.5Ag5Cu17.5Co2.5
Tl [K] 700 712
Tg/Tl 0.567 0.552
References [07ZHAN11] [08JIA]
Critical Quantities for Formation of Amorphous Phase Table 5 The glass formation parameter γ and the critical sample diameters dc of La-based bulk glassy alloys Composition [at %] La62.5Al12.5Cu15Co5Ag5 La62.5Al12.5Ag5Cu17.5Co2.5
γ 0.432 –
dc [mm] 9 8
References [07ZHAN11] [08JIA]
Mechanical Properties
21
Mechanical Properties Stress-Strain Curves
Fig. 5 Compressive stress-strain curves of cast La62.5Al12.5Cu15Co5Ag5 glassy alloy rods with a diameter of 2.0 mm [07ZHAN11]
Elastic Moduli and Poisson’s Ratio Table 6 Young’s modulus E of La-based bulk glassy alloy [07ZHAN11] Composition [at.%] La62.5Al12.5Cu15Co5Ag5
E [GPa] 38
Hardness Table 7 The hardness number HV of La-based bulk glassy alloy [07ZHAN11] Composition [at.%] La62.5Al12.5Cu15Co5Ag5
HV 204
22
Ag-Al-Co-Cu-La
Fatigue Strength, Fracture, and Fracture Toughness Table 8 The compression fracture strength σ c,f, the elastic deformation limit εc,e, and the plastic strain εc,p of La-based bulk glassy alloy [07ZHAN11] Composition [at.%] La62.5Al12.5Cu15Co5Ag5
σ c,f [MPa] 670
εc,e [%] 1.7
εc,p [%] 0.4
Symbols and Abbreviations Short form εc,p εc,e σ c,f HV E ε σc γ Tl ΔTx Tg/Tl Tx Tg DSC curve dc
Full form plastic strain elastic deformation limit compressive fracture strength hardness number or Vickers hardness Young modulus compressive strain compressive stress glass formation parameter liquidus temperature supercooled liquid region temperature reduced glass transition temperature crystallization temperature glass transition temperature differential scanning calorimetry curve critical diameter
References [07ZHAN11] Zhang, W., Jia, F., Inoue, A.: Materials Transactions 48 (2007) 68–73. [08JIA] Jia, F., Zhang, W., Kimura, H., Inoue, A.: Materials Science and Engineering B 148 (2008) 119–123.
Ag-Al-Cu-La-Ni
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Strength, Fracture, and Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 23 24 24 25 25 26 26 26 27 27 27 27 28
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_3
23
24
Ag-Al-Cu-La-Ni
Structural Information X-ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 X-ray diffraction patterns of cast La-Al-Cu-Ni-Ag alloy rod with d ¼ 8 mm in diameter [07ZHAN11]
Thermal Properties DSC/DTA Analysis
Fig. 2 DSC curves of melt-spun La-Al-Cu-Ni-Ag glassy alloy [07ZHAN11]. The glass transition temperature Tg and crystallization temperature Tx are indicated in the figure by arrows
Thermal Properties
25
Fig. 3 DTA curves of La-Al-Cu-Ni-Ag glassy alloy. The liquidus temperature Tl is indicated in the figure by an arrow [07ZHAN11]
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 Glass transition temperature Tg and reduced glass transition temperature Tg/Tl of typical La-based bulk glassy alloy. Tl is the liquidus temperature [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
Tg [K] 391
Tg/Tl 0.545
Crystallization Temperature Table 2 Crystallization temperature Tx of typical La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
Tx [K] 487
Supercooled Liquid Region Table 3 Supercooled liquid region ΔTx of typical La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
ΔTx [K] 96
26
Ag-Al-Cu-La-Ni
Melting/Liquidus Temperature and Enthalpy Table 4 Liquidus temperature Tl of typical La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
Tl [K] 717
Critical Quantities for Formation of Amorphous Phase Table 5 The glass formation parameter γ and the critical sample diameter dcrit of typical La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
γ 0.440
dcrit [mm] 8
Mechanical Properties Stress-Strain Curves
Fig. 4 Compressive stress-strain curves of cast La62.5Al12.5Cu15Ni5Ag5 glassy alloy rod with a diameter of 2.0 mm [07ZHAN11]
Symbols and Abbreviations
27
Elastic Moduli and Poisson’s Ratio Table 6 The Young’s modulus E of La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
E [GPa] 38
Hardness Table 7 The hardness number HV of La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Ni5Ag5
HV 198
Fatigue Strength, Fracture, and Fracture Toughness Table 8 The compression fracture strength σ c,f, the elastic deformation limit εc,e, and the plastic strain εc,p of La-based bulk glassy alloy [07ZHAN11] Composition [at%] La62.5Al12.5Cu15Co5Ag5
σ c,f [MPa] 665
εc,e [%] 1.7
εc,p [%] 0.3
Symbols and Abbreviations Short form DTA curve εc,p εc,e σ c,f HV E ε σc γ Tl ΔTx Tg/Tl Tx Tg DSC curve dc
Full form differential thermal analysis curve plastic strain elastic deformation limit compressive fracture strength hardness number or Vickers hardness Young modulus compressive strain compressive stress glass formation parameter liquidus temperature supercooled liquid region temperature reduced glass transition temperature crystallization temperature glass transition temperature differential scanning calorimetry curve critical diameter
28
Ag-Al-Cu-La-Ni
References [07ZHAN11] Zhang, W., Jia, F., Inoue, A.: Materials Transactions 48 (2007) 68–73. [08JIA] Jia, F., Zhang, W., Kimura, H., Inoue, A.: Materials Science and Engineering B 148 (2008) 119–123.
Ag-Cu-Hf-Ta-Ti
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 29 30 30 31 32 34 34
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_4
29
30
Ag-Cu-Hf-Ta-Ti
Structural Information X-ray Diffraction Profile, Neutron Diffraction Profile
(Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax Ta-rich phase
Intensity (a.u.)
(d) x=12
(c) x=8 (b) x=3
(a) x=0
20
30
40
50
60
70
80
2θ (degree) Fig. 1. XRD patterns of (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax amorphous alloys with Ta content x ¼ 0, 3, 8, 12 [05BIAN2]
Mechanical Properties Stress-Strain Curves
Fig. 2. Compressive stress-strain curves of (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax alloy showing dependence on the Ta content x ¼ 0, 1, 3, 8 [05BIAN3]
Mechanical Properties
31
Fig. 3. Relation of stress-strain curve and elastic modulus E of (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax alloy with composition x ¼ 0, 8, respectively [05BIAN3]
Elastic Moduli and Poisson’s Ratio
Fig. 4. Calculated (filled triangles) and measured (open triangles) data of elastic modulus E in (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax alloy with increasing Ta content x ¼ 0, 1, 3, 5, 8, 12 [05BIAN3]
32
Ag-Cu-Hf-Ta-Ti
Hardness
(Cu0.50Hf0.35Ti0.10Ag0.05)92Ta8 alloy
Hardness H [GPa]
25
dendrite composite matrix Pure Ta metal
20 15 10 5 0
0
200
400
600
800
Displacement h [nm] Fig. 5. Hardness-displacement curves for dendrite and composite matrix samples of (Cu0.50Hf0.35Ti0.10Ag0.05)92Ta8 alloy in comparison to pure Ta metal [05BIAN2]
(Cu0.50Hf0.35Ti0.10Ag0.05)92Ta8 alloy
Hardness H [GPa]
25
dendrite composite matrix Pure Ta metal
20 15 10 5 0
0
200
400
600
800
Displacement h [nm] Fig. 6. Indentation measurement load-displacement curves (top) and enlarged curves (bottom) of the glassy matrix in (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax alloy with Ta content x ¼ 0 (filled triangles), 1 (circles), 3 (filled circles), 5 (squares), 12 (open triangles) [05BIAN2]
Mechanical Properties
33
Fig. 7. Hardness versus displacement curves (top) and the enlarged curves (bottom) of the glassy matrix in (Cu0.50Hf0.35Ti0.10Ag0.05)100-xTax alloy with Ta content x ¼ 0 (filled triangles), 1 (filled circles), 3 (filled triangles), 5 (open triangles), 12 (asterisks) [05BIAN2]
34
Ag-Cu-Hf-Ta-Ti
Symbols and Abbreviations Short form HV ε σc E
Full form hardness number or Vickers hardness compressive strain compressive stress elastic modulus
References [05BIAN2] Bian, Z., Kato, H., Inoue, A.: Mater. Trans. 46 (2005) 798–804. [05BIAN3] Bian, Z., Kato, H., Qin, C.L., Zhang, W., Inoue, A.: Acta Materialia 53 (2005) 2037–2048.
Al-B-Cu-Ni-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 35 37 37 38 40 40 40 40
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_5
35
36
Al-B-Cu-Ni-Zr
Structural Information X-ray Diffraction Profile, Neutron Diffraction Profile
Zr60Al10Ni9Cu18B3
Intensity (a.u.)
d
c
b
a
20
30
40
50
60
70
80
90
100
2q (degree) Fig. 1 X-ray diffraction patterns of Zr60Al10Ni9Cu18B3 powder mixture and dependence on milling time: (a) 5 h, (b) 10 h, (c) 15 h, and (d) 20 h, respectively [99QI]
Thermal Properties
37
Thermal Properties Specific Heat Capacity 45 Zr60Al10Ni9Cu18B3
Cp [Jmol-1 K-1]
40
RQ MA equilibrium
35
30
25
20
15 350
450
550
650
750
850
Temperature [K] Fig. 2 The specific heat capacity Cp of Zr60Al10Ni9Cu18B3 powder sample as a function of temperature. (X) equilibrium, (circles, RQ) arc-melted plus sucking sample, (diamond, MA) sample milled for 20 h [99QI]
38
Al-B-Cu-Ni-Zr
DSC/DTA Analysis
Zr65–x Ni10 Cu20 Al5 Bx 0.67 K s-1
Exothermic (a.u.)
X=6
X=3
X=0 Tg
Tx 600
650
700
750
800
Temperature T [K] Fig. 3 DSC curves of amorphous Zr65-xNi10Cu20Al5Bx alloy with varying B content x ¼ 0, 3, and 6 at% [95INOU7]. Indicated in the figure are the glass transition temperature Tg and crystallization temperature Tx
Thermal Properties
39
Endothermic (a.u.)
Zr60Al10Ni9Cu18B3
c
b
a
300
400
500
600
700
800
900
Temperature [K] Fig. 4 DSC curves of Zr60Al10Ni9Cu18B3 mixed powder milled for (a) 5 h, (b) 10 h, and (c) 20 h, respectively [99QI]
Endothermic (a.u.)
Milled
Quenched
Zr60Al10Ni9Cu18B3
300
400
500
600
700
800
900
Temperature [K] Fig. 5 DSC curves of Zr60Al10Ni9Cu18B3 mixed powder samples milled (top) and arc-melted plus sucking (bottom) [99QI]
40
Al-B-Cu-Ni-Zr
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 Glass transition temperature Tg of Zr60Al10Ni9Cu18B3 alloy for milled (MA) and rapidly quenched (RQ, 40 K min1) samples [99QI] Composition Zr60Al10Ni9Cu18B3
Sample MA RQ
Tg [K] 678 655
Crystallization Temperature Table 2 Crystallization temperature Tx of Zr60Al10Ni9Cu18B3 alloy for milled (MA) and rapidly quenched (RQ, 40 K min1) samples [99QI] Composition Zr60Al10Ni9Cu18B3
Sample MA RQ
Tx [K] 749 753
Supercooled Liquid Region Table 3 Supercooled liquid region ΔTx of Zr60Al10Ni9Cu18B3 alloy for milled (MA) and rapidly quenched (RQ, 40 K min1) samples [99QI] Composition Zr60Al10Ni9Cu18B3
Sample MA RQ
ΔTx [K] 71 98
Symbols and Abbreviations Short form Cp ΔTx Tx Tg DSC curve
Full form specific heat capacity supercooled liquid region temperature crystallization temperature glass transition temperature differential scanning calorimetry curve
References [95INOU7] Inoue, A., Fan, C., Masumoto, T.: Materials Transactions, JIM. Vol. 36 (1995) 1411–1419. [99QI] Qi, M., Sagel, A., Fecht, H.J.: Journal of Materials Science Letters 18 (1999) 1991–1993.
Al-B-Fe-Nb-Si
Contents Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saturation Magnetization, Core Loss, and Coercive Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 41 41 42 42
Magnetic Properties Saturation Magnetization, Core Loss, and Coercive Force Table 1 Saturation magnetization Ms and coercivity Hc in Fe-based metallic glasses [06AFON] Composition Fe68Nb5Al4Si3B20 Fe63Nb10Al4Si3B20
Sample Ribbon Ribbon
Ms [T] 1.19 0.58
Hc [A m 1] 45.0 11.0
Permeability Table 2 Permeability μ in Fe-based metallic glasses [06AFON] Composition Fe68Nb5Al4Si3B20 Fe63Nb10Al4Si3B20
Sample Ribbon Ribbon
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_6
μ [1 kHz] 13,500 6000
41
42
Al-B-Fe-Nb-Si
Symbols and Abbreviations Short form μ Hc Ms
Full form permeability coercivity or coercive force saturation magnetization
Reference [06AFON] Afonso, C.R.M., Bolfarini, C., Filho, W.J.B., Kiminami, C.S.: Journal of Non-Crystalline Solids 352 (2006) 3404–3409.
Al-B-Fe-P-Si
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Saturation Magnetization, Core Loss, and Coercive Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_7
44 44 44 45 45 45 45 46 46 46
43
44
Al-B-Fe-P-Si
Thermal Properties Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy
Fig. 1 Changes in glass transition temperature Tg with Al content x in amorphous Fe80-xAlxP12B4Si4 alloy [96INOU1] Table 1 Glass transition temperature Tg of as-quenched amorphous Fe76Al4P12B4Si4 alloy [96INOU1] Composition Fe76Al4P12B4Si4
Tg [K] 738
Crystallization Temperature
Fig. 2 Changes in crystallization temperature Tx with Al content x in amorphous Fe80-xAlxP12B4Si4 alloy [96INOU1] Table 2 Crystallization temperature Tx of as-quenched amorphous Fe76Al4P12B4Si4 alloy [96INOU1] Composition Fe76Al4P12B4Si4
Tx [K] 780
Magnetic Properties
45
Supercooled Liquid Region
Fig. 3 Changes in the supercooled liquid region ΔTx(¼ Tx Tg) of amorphous Fe80-xAlxP12B4Si4 alloy as a function of Al content x [96INOU1] Table 3 The supercooled liquid region ΔTx(¼ Tx Tg) of as-quenched amorphous Fe76Al4P12B4Si4 alloy [96INOU1] ΔTx [K] 46
Composition Fe76Al4P12B4Si4
Magnetic Properties Saturation Magnetization, Core Loss, and Coercive Force Table 4 Coercive force Hc, saturation magnetization Ms, residual magnetization Mr, and squareness ratio Ms/Mr of amorphous Fe76Al4P12B4Si4 alloy in as-quenched state and after annealing for 600 s at 723 K [96INOU1] Composition Fe76Al4P12B4Si4
Sample As-quenched Annealed
Hc [A m1] 12.7 2.6
Ms [T] 0.96 1.24
Mr [T] 0.30 –
Ms/Mr 0.31 –
Permeability Table 5 Permeability μe of amorphous Fe76Al4P12B4Si4 alloy in as-quenched state and after annealing for 600 s at 723 K [96INOU1] Composition Fe76Al4P12B4Si4
Sample As-quenched Annealed
μe 2600 21000
46
Al-B-Fe-P-Si
Magnetostriction Table 6 Magnetostriction λs of amorphous Fe76Al4P12B4Si4 alloy in as-quenched state and after annealing for 600 s at 723 K [96INOU1] Composition Fe76Al4P12B4Si4
λs 30 106 –
Sample As-quenched Annealed
Symbols and Abbreviations Short form λs μ Hc Ms ΔTx Tx Tg Mr Ms/Mr
Full form magnetostriction permeability coercivity or coercive force saturation magnetization supercooled liquid region temperature crystallization temperature glass transition temperature residual magnetization squareness ratio
Reference [96INOU1] Inoue, A., Park, R.E.: Materials Transactions, JIM 37 (1996) 1715–1721.
Al-Ce-Fe-Nd-Si
Contents Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Magnetization Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_8
47
48
Al-Ce-Fe-Nd-Si
Magnetic Properties Magnetization Curve 0.4 Nd35Ce15Fe40Si5Al5(Ce-mm) 0.3
Magnetisation [T]
0.2
Nd35Ce15Fe40Si10(Ce-mm) Nd35Ce15Fe40Si5Al5
0.1 0.0 -0.1 -0.2 -0.3 -0.4 -1500
-1000
-500
0
500
1000
1500
Applied Field [kA m-1]
Fig. 1 Hysteresis curve for amorphous Nd35Ce15Fe40Si5Al5 and Nd35Ce15Fe40Si5Al5 (Ce-mischmetall[Ce-mm]) ribbons samples of about 35 μm in thickness obtained by arc melting from alloys having different compositions [99CHIR]. The hysteresis for the quaternary Nd35Ce15Fe40Si10 (Ce-mischmetall[Ce-mm]) is given for comparison
Reference [99CHIR] Chiriac, H., Lupu, N.: Journal of Non-Crystalline Solids. 250–252 (1999) 751–756.
Al-Co-Cu-Ga-Zr
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 50 51 51
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_9
49
50
Al-Co-Cu-Ga-Zr
Thermal Properties DSC/DTA Analysis
Fig. 1 DSC curves of amorphous Zr65-xCo5Cu25Al5Gax alloy and dependence on Ga content x ¼ 0, 3, 6 at% [95INOU7]. Indicated in the figure are glass transition temperature Tg and crystallization Temperature Tx
Reference
51
Symbols and Abbreviations Short form Tx Tg DSC curve
Full form crystallization temperature glass transition temperature differential scanning calorimetry curve
Reference [95INOU7] Inoue, A., Fan, C., Masumoto, T.: Materials Transactions, JIM 36 (1995) 1411–1419.
Al-Co-Cu-La-Ni
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53 53 54 54 55 57 58 58 59 59
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_10
52
Structural Information
53
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
(200)
CuK D
(311) (222)
(220)
D-La
Intensity (a.u.)
(111)
Primary solidification cooling rate: I
La55Cu10Ni5Co5Al25 I : 105 K s -1
La60Cu10Ni5Co5Al20 I : 94 K s -1
La65Cu10Ni5Co5Al15 I : 170 K s -1
20°
30°
40°
50°
60°
70°
80°
90°
2q (degree) Fig. 1 XRD patterns of La80-xCu10Ni5Co5Alx alloy samples produced with gas jet flow type electromagnetic levitation process. The Al content x ¼ 15, 20 and 25, respectively. I is the cooling rate of solidification [06AZUM]
54
Al-Co-Cu-La-Ni
Thermal Properties Specific Heat Capacity
Fig. 2 Specific heat capacity Cpl of the undercooled liquid (dotted line, fitted data) and of the crystalline mixture Cps (solid line with dots, fitted data) for La55Al25Ni5Cu10Co5 alloy measured by TMDSC (solid line). The glass transition temperature Tg and the crystallization temperature Tx are indicated by arrows [00LU1]
Table 1 The specific heat capacity of undercooled liquid Cl and crystalline sample Cs for La-based alloy as a function of absolute temperature T measured by means of TMDSC [00LU1] Composition [at %]
Cl [J (mol K)1] Undercooled liquid
Cs [J (mol K)1] Crystalline
La55Al25Ni5Cu10Co5
3R + 1.817 102 T + 1.687 106 T2
3R 7.047 103 T + 1.813 105 T2
Thermal Properties
55
DSC/DTA Analysis
Fig. 3 DSC heating (top) and cooling curves for La55Al25Ni5Cu10Co5 alloy, showing that the onset solidification temperature Txc decreases from 786.9 K to 778.7 K as the cooling rate is increased from 0.17 K s1 to 0.67 K s1. Tl is the liquidus temperature [99LU]
56
Al-Co-Cu-La-Ni
Exothermic (a.u.)
La65Cu10Ni5Co5Al15
Heating rate = 0.33Ks-1 400
450
500
550
600
Temerature T [K] Fig. 4 DTA curves of La65Cu10Ni5Co5Al15 alloy obtained at a heating rate of 0.33 K s1. Indicated in the figure by arrows are the glass transition temperature (at 408 K) and the crystallization onset temperatures of the first event (at 460 K) and the third event (at 527 K) [06AZUM]
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 2 The glass transition temperature Tg of La55Al25Ni5Cu10Co5 fully amorphous melt-spun ribbons and after Bridgeman solidification as a function of growth velocity V (A: fully amorphous, A+C: partial amorphous), and glass transition temperature Tg and reduced glass transition temperatures Tg/Tm and Tg/Tl obtained from DSC [99LU] Composition [at %] La55Al25Ni5Cu10Co5
V [mm s1] 4.82 3.54 1.25 1.12 0.87 0.74
Sample A A A A+C A+C A+C
As-spun
A
Tg [K] 476 474 473 474 469 469 465.7 (DSC) 471
Tg/Tm – – – – – – 0.70 (DSC) –
Tg/Tl – – – – – – 0.566 (DSC) –
Thermal Properties
57
Crystallization Temperature Table 3 The crystallization temperature Tx of La55Al25Ni5Cu10Co5 fully amorphous melt-spun ribbons and after Bridgeman solidification as a function of growth velocity V [99LU]. A: fully amorphous, A+C: partial amorphous Composition [at %] La55Al25Ni5Cu10Co5
V [mm s1] 4.82 3.54 1.25 1.12 0.87 0.74 As-spun
Tx [K] 560 558 558 549 546 538 465.7 (DSC) 552
Enthalpy of Crystallization and Crystallization Kinetics
Fig. 5 The ratio ΔHx/ΔHr, i.e., the crystallization enthalpy ΔHx for Bridgeman samples grown at different velocities divided by the crystallization enthalpy ΔHr of fully amorphous melt-spun ribbons, plotted as a function of growth velocity V for La55Al25Ni5Cu10Co5 alloy [99LU]
58
Al-Co-Cu-La-Ni
Table 4 The crystallization enthalpy ΔHx for Bridgeman samples grown at different velocity V and the ratio (ΔHx/ΔHr) with the enthalpy ΔHr of fully amorphous melt-spun ribbons of La55Al25Ni5Cu10Co5 alloy [99LU] V [mm s1] 4.82 3.54 1.25 1.12 0.87 0.74 As-spun
Composition [at %] La55Al25Ni5Cu10Co5
ΔHx [J g1] 41.7 2.1 38.4 1.9 40.9 2.0 35.7 1.8 24.9 1.2 2.2 0.2 42.0 2.1
ΔHx/ΔHr [%] 0.99 0.92 0.98 0.85 0.59 0.05 1
Supercooled Liquid Region Table 5 The supercooled liquid region ΔTx ¼ Tx – Tg of La55Al25Ni5Cu10Co5 alloy for Bridgeman samples grown at different velocity V and of fully amorphous melt-spun ribbons [99LU] V [mm s1] 4.82 3.54 1.25 1.12 0.87 0.74 As-spun
Composition [at %] La55Al25Ni5Cu10Co5
ΔTx [K] 84 83 84 75 77 69 81
Melting/Liquidus Temperature and Enthalpy Table 6 The melting point Tm, the offset temperature of fusion (liquidus temperature) Tl, their difference, and the calculated ΔHmcal and tested ΔHmtest melting enthalpies of La55Al25Ni5Cu10Co5 alloy [99LU] Composition [at %] La55Al25Ni5Cu10Co5
Tm [K] 660.9
Tl [K] 822.5
Tl - Tm [K] 161.6
ΔHmcal [KJ mol1] 12.9619
ΔHmtest [KJ mol1] 6.09
Critical Quantities for Formation of Amorphous Phase Table 7 The critical growth velocity and cooling rate for glass formation in La55Al25Ni5Cu10Co5 alloy [99LU] Composition [at %] La55Al25Ni5Cu10Co5
Critical growth velocity [mm s1] 1.25
Critical cooling rate Bridgman solidification [K s1] 18.8
References
59
Symbols and Abbreviations Short form ΔHm ΔHx Cp DTA curve Tl ΔTx Tg/Tl Tx Tg DSC curve Tm Txc
Full form melting enthalpy crystallization enthalpy specific heat capacity differential thermal analysis curve liquidus temperature supercooled liquid region temperature reduced glass transition temperature crystallization temperature glass transition temperature differential scanning calorimetry curve melting temperature onset solidification temperature
References [99LU] Lu, Z.P., Goh, T.T., Li, Y., Ng, S.C.: Acta Materialia 47 (1999) 2215–2224. [00LU1] Lu, Z.P., Tan, H., Li, Y.: Materials Transactions, JIM 41 (2000) 1397–1405. [06AZUM] Azumo S., Utsuno S., Nagayama K.: Journal of the Japan Institute of Metals 70 (2006) 138–141.
Al-Co-Cu-Mm-Ni
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enthalpy of Crystallization and Crystallization Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60 60 61 61
Thermal Properties Enthalpy of Crystallization and Crystallization Kinetics 529 K
Heat flow [W g-1]
0.12
Mm55Al25Cu10Ni5Co5
0.08 519 K
513 K 508 K
0.04
0.00 0
10
20
30
40
50
60
Time [min]
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_11
60
Reference
61
Fig. 1 Isothermal crystallization kinetics curves of Mm55Al25Cu10Ni5Co5 bulk metallic glass in supercooled liquid region. The DSC plots correspond to 508 K, 513 K, 519 K, and 529 K, respectively [07WU1]
Mm55Al25Cu10Ni5Co5
Crystalization x
513 K
519 K
1.0
508 K
529 K
0.8 0.6 0.4 0.2 0.0
0
10
20
30 Time [min]
40
50
Fig. 2 Crystallized volume fraction x of Mm55Al25Cu10Ni5Co5 bulk metallic glass in supercooled liquid region as a function of annealing time τ at different annealing temperature as indicated in the figure [07WU1]
Symbols and Abbreviations Short form τ DSC curve
Full form annealing time differential scanning calorimetry curve
Reference [07WU1] Wu, X., Meng, L., Zhao, W., Suo, Z., Si, Y., Qiu, K.: Journal of Rare Earths 25 (2007) 189–193.
Al-Co-Cu-Nd-Ni
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of
62 62 64 64 65 65
Thermal Properties
63
Thermal Properties DSC/DTA Analysis
Fig. 1 DSC thermogram in Nd55Cu15Ni10Co5Al15 alloy ribbons taken at a heating rate of 20 K min 1. The insets include magnified portions around: (a) the glass transition temperature Tg and (b) around the melting region [02KUMA1]
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 Glass transition temperature Tg and reduced glass transition temperature Trg in Nd55Cu15Ni10Co5Al15 alloy cylinder, ribbon, and rod samples Composition Nd55Cu15Ni10 Co5Al15 Nd55Cu15Ni10Co5Al15 Nd60Cu10Ni10Co5Al15
Sample Cylinder Ribbon Cast rod
Tg [K] 495 475 463
Trg 0.62 0.63 0.59
Reference [02KUMA1] [02KUMA1] [94HE]
64
Al-Co-Cu-Nd-Ni
Crystallization Temperature Table 2 The onset temperatures of crystallization Tx1 and Tx2 of first and second crystallization events, respectively, in Nd55Cu15Ni10Co5Al15 alloy cylinder, ribbon, and rod samples Composition Nd55Cu15Ni10 Co5Al15 Nd55Cu15Ni10Co5Al15 Nd60Cu10Ni10Co5Al15
Sample Cylinder Ribbon Cast rod
Tx1 [K] 553 529 495
Tx2 [K] 623 596 –
Reference [02KUMA1] [02KUMA1] [94HE]
Enthalpy of Crystallization and Crystallization Kinetics Table 3 The enthalpies of crystallization ΔHx1 and ΔHx2 of first and second crystallization events in Nd55Cu15Ni10Co5Al15 alloy cylinder and ribbon sample [02KUMA1] Composition Nd55Cu15Ni10 Co5Al15 Nd55Cu15Ni10Co5Al15
Sample Cylinder Ribbon
ΔHx1 [J g 1] 26 31
ΔHx2 [J g 1] 11 2
Supercooled Liquid Region Table 4 The supercooled liquid region ΔT in Nd55Cu15Ni10Co5Al15 alloy cylinder, ribbon, and rod samples Composition Nd55Cu15Ni10 Co5Al15 Nd55Cu15Ni10Co5Al15 Nd60Cu10Ni10Co5Al15
Sample Cylinder Ribbon Cast rod
ΔT [K] 58 54 32
Reference [02KUMA1] [02KUMA1] [94HE]
Melting/Liquidus Temperature and Enthalpy Table 5 The liquidus temperature Tl in Nd55Cu15Ni10Co5Al15 alloy cylinder, ribbon, and rod samples Composition Nd55Cu15Ni10 Co5Al15 Nd55Cu15Ni10Co5Al15 Nd60Cu10Ni10Co5Al15
Sample Cylinder Ribbon Cast rod
Tl [K] 796 765 780
Reference [02KUMA1] [02KUMA1] [94HE]
References
65
Symbols and Abbreviations Short form ΔHx Tl ΔTx Tg/Tl Tg DSC curve Tm
Full form crystallization enthalpy liquidus temperature supercooled liquid region temperature reduced glass transition temperature glass transition temperature differential scanning calorimetry curve melting temperature
References [94HE] He, S., Price, C.E., Poon, S.J., Shiflet, G.J.: Philos. Mag. Lett. 70 (1994) 371–377. [02KUMA1] Kumar, G., Eckert, J., Schultz, L., Ram, S.: Materials Letters 53 (2002) 305–315.
Al-Co-Cu-Ni-Y
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultimate Tensile and Compressive Strength, Yield Strength, and Strain . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66 66 68 68 69 70 71 72 72 73 73 73
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_13
66
Structural Information
67
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 X-ray diffraction patterns of Al85Y8Ni4Co2Cu1 and Al85Y8Ni3Co2Cu2 metallic glass (a) and after annealing at 540 K for 1.5 ks (b) [02LOUZ2]
68
Al-Co-Cu-Ni-Y
Thermal Properties Specific Heat Capacity
Fig. 2 The specific heat capacity Cp of amorphous Zr60Al10Co3Ni9Cu18 alloy cylinders of 5 mm and 7 mm (dash-dot lines) in diameter in comparision with Cp,q of melt-spun ribbon (dashed line), taken at a heating rate of 0.67 K s1. Cp,s gives the curve of a sample once heated to the supercooled liquid region [95INOU5]
Thermal Properties
69
DSC/DTA Analysis
Fig. 3 DSC traces of Al85Y8Ni4Co2Cu1 and Al85Y8Ni3Co2Cu2 metallic glasses taken at 0.67 K/s. The down arrow indicates the shift in the peak A [02LOUZ2]
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy
Fig. 4 The influence of Cu content x on the glass transition temperature between x ¼ 0, 1, 2 in Al85Y8Ni5-3Co2Cux metallic glasses [02LOUZ2]
70
Al-Co-Cu-Ni-Y
Crystallization Temperature
Fig. 5 The influence of Cu content x on the crystallization temperature Tx between x ¼ 0, 1, 2 in Al85Y8Ni5-3Co2Cux metallic glasses [02LOUZ2]
Thermal Properties
71
Supercooled Liquid Region
Fig. 6 The influence of Cu content x between x ¼ 0, 1, 2 in Al85Y8Ni5-3Co2Cux metallic glasses on the temperature range (ΔTx) of a supercooled liquid [02LOUZ2]
72
Al-Co-Cu-Ni-Y
Mechanical Properties Hardness
Fig. 7 The Vickers hardness number HV as a function of Cu content x between x ¼ 0, 1, 2 in Al85Y8Ni5-3Co2Cux metallic glasses [02LOUZ2]
References
73
Ultimate Tensile and Compressive Strength, Yield Strength, and Strain
Fig. 8 The tensile strength as a function of Cu content x between x ¼ 0, 1, 2 in Al85Y8Ni5-3Co2Cux metallic glasses [02LOUZ2]
Symbols and Abbreviations Short form Cp HV ΔTx Tx Tg DSC curve
Full form specific heat capacity hardness number or Vickers hardness supercooled liquid region temperature crystallization temperature glass transition temperature differential scanning calorimetry curve
References [02LOUZ2] Louzguine, D.V., Inoue, A.: Journal of Materials Research 17 (2002) 1014–1018. [95INOU5] Inoue, A., Zhang, T., Masumoto, T.: Materials Transactions, JIM, 36 (1995) 391–398.
Al-Co-Cu-Ni-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Strength, Fracture, and Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Corrosion-Related Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74 74 76 76 77 78 78 80 80 80 81 81 82 82 83 83
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_14
74
Structural Information
75
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Zr60Al10Ni9Cu18Co3
Intensity (a.u.)
(a)
(b)
(c)
(d)
30
40
50
60 70 2q (degree)
80
90
Fig. 1 X-ray diffractograms of Zr60Al10Ni9Cu18Co3: (a) long annealed equilibrated ingot powder before ball milling, (b) the 20 h ball-milled ingot powder, (c) liquid quenched bulk glass, and (d) 20 h ball-milled ingot powder annealed at 870 K for 30 min [97SAGE]. The identification of the peaks: CuZr2 (dots), AlZr (+), and Ni7Zr2 (squares)
Fig. 2 X-ray patterns of Zr48Al15Cu24 Ni10Co3 metallic glass before and after cavitation erosion [07DROZ]
76
Al-Co-Cu-Ni-Zr
Thermal Properties Specific Heat Capacity
Fig. 3 The specific heat capacity of amorphous Zr60Al10Co3Ni9Cu18 cylinders of 5 mm and 7 mm (dash-dot lines) in comparison with Cp,q of melt-spun ribbon (dashed line). Cp,s gives the specific heat of a sample once heated to the supercooled liquid region (solid line) [95INOU5]
Zr60Al10Ni9Cu18Co3
Cp [J mol-1 K-1]
50
40
30 Tg
Tl
20 300
500
700 T [K]
900
1100
Fig. 4 Specific heat capacity Cp versus temperature T of Zr60Al10Ni9Cu18Co3 ingot powder ball milled for 20 h (square with cross), a liquid quenched sample (*), and ball-milled elemental powder and fully crystallized equilibrated ingot sample (squares) [97SAGE]. Indicated in the figure by arrows are the glass transition temperature Tg and the liquidus temperature Tl
Thermal Properties
77
Table 1 The change of the specific heat ΔCp of amorphous Zr60Al10Ni9Cu18Co3 alloy at the glass transition temperature Tg [97SAGE] Composition [at%] Zr60Al10Ni9Cu18Co3
ΔCp [J (mol K) 1] 20 22 21
Sample Preparation Ingot powder after 20 h milling Rapidly quenched from melt Ball-milled elemental powder mixture
DSC/DTA Analysis
Zr60Al10Ni9Cu18Co3 20 hr ball milled ingot powder liquid quenched bulk glass
Heat flow (a.u.)
Tx
Tg
400
500
600
700
800
900
Temperature [K]
Fig. 5 DSC traces of Zr60Al10Ni9Cu18Co3 ingot sample ball milled for 20 h (solid line) and rapidly quenched bulk glass (dashed line) taken at a heating rate of 40 K/min [97SAGE]. Indicated in the figure by arrows are the glass transition temperature Tg and the crystallization temperature Tx
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 2 The glass transition temperature Tg of Zr-Al-Ni-Cu-Co alloy Composition [at%] Zr60Al10Ni9Cu18Co3
Zr48Al15Cu24Ni10Co3
Sample Preparation Ingot powder after 20 h milling Rapidly quenched from melt Ball-milled elemental powder mixture Suction casted disc
Tg [K] 673 668 691 721
Reference [97SAGE] [97SAGE] [97SAGE] [07DROZ]
78
Al-Co-Cu-Ni-Zr
Crystallization Temperature Table 3 The crystallization temperature Tx of amorphous Zr60Al10Ni9Cu18Co3 alloy [97SAGE] Composition [at%] Zr60Al10Ni9Cu18Co3
Sample Preparation Ingot powder after 20 h milling Rapidly quenched from melt Ball-milled elemental powder mixture
Tx [K] 768 766 753
Enthalpy of Crystallization and Crystallization Kinetics Table 4 The crystallization enthalpy ΔHx of amorphous Zr60Al10Ni9Cu18Co3 alloys [97SAGE] Composition [at%] Zr60Al10Ni9Cu18Co3
Sample Preparation Ingot powder after 20 h milling Rapidly quenched from melt Ball-milled elemental powder mixture
ΔHx [kJ mol 1] 3.5 3.5 3.4
Supercooled Liquid Region Table 5 The supercooled liquid region ΔTx of amorphous Zr60Al10Ni9Cu18Co3 alloys [97SAGE] Composition [at%] Zr60Al10Ni9Cu18Co3
Sample Preparation Ingot powder after 20 h milling Rapidly quenched from melt Ball-milled elemental powder mixture
ΔTx [K] 95 98 62
Thermal Properties
79
Fig. 6 Compositional dependence of the supercooled liquid region ΔTx for Zr65(CoxNiyCuz)30Al5 glassy alloy [95INOU7]
Melting/Liquidus Temperature and Enthalpy Table 6 The calculated melting enthalpy ΔHm, and predicted and tested critical cooling rates Rc of Zr-Al-Cu-Ni-Co metallic glass [07CAI] Composition Zr65Al7.5Cu15Ni10Co2.5
ΔHm [KJ mol 1] 19.8734
Rc [K s 1](predicted) 1.0
Rc [K s 1](tested) 10
80
Al-Co-Cu-Ni-Zr
Mechanical Properties Stress-Strain Curves
Tensile Stress [MPa]
2000
Zr60Al10Ni9Cu18Co3
∈=5.5x10-4s-1
1500
1000
500
0.005 strain
0
Strain e
Fig. 7 Tensile stress-strain curves for two samples of amorphous Zr60Al10Co3Ni9Cu18 alloy, showing that a distinct plastic flow accompanying serration occurs before final fracture [95INOU5]
Elastic Moduli and Poisson’s Ratio Table 7 Youngs modulus E, shear modulus G, bulk modulus K, G/K ratio, and Poisson’s ratio υ of Zr-Al-Cu-Co-Ni metallic glass. The data for quaternary alloy are given for comparison Composition Zr48Al15Cu25.5Ni11.5 Zr48Al15Cu24Ni10Co3 Zr60Al10Co3Ni9Cu18
E [GPa] – – 97
G [GPa] 39.2 39.3 –
K [GPa] 118.3 120.4 –
G/K 0.33 0.33 –
υ 0.35 0.35 –
Reference [07DROZ] [07DROZ] [95INOU5]
Mechanical Properties
81
Hardness
Fig. 8 Vickers hardness number HV as a function of the distance r from the central point in the transverse cross-section of amorphous Zr60Al10Co3Ni9Cu18 cylinders with 5 mm and 7 mm thicknesses, compared to melt-spun ribbon sample [95INOU5]
Fatigue Strength, Fracture, and Fracture Toughness Table 8 The yield stress σ y, elatic elongation Δlel, plastic elongation Δlp, and fracture stress σ f of Zr-Al-Cu-Co-Ni metallic glass [95INOU5] Composition Zr60Al10Co3Ni9Cu18
σ y [MPa] 1390
Δlel [%] 1.6
Δlp [%] 0.4
σ f [MPa] 1510
82
Al-Co-Cu-Ni-Zr
Corrosion Behavior Special Corrosion-Related Properties
Fig. 9 Mean depth of erosion (MDE) and erosion rate (ER) as a function of time for Zr-based Zr-Al-Cu-Ni-Co bulk metallic glass in deionized water [07DROZ]. Data for the alloy without Co addition are given for comparison
References
83
Symbols and Abbreviations Short form K G σy ΔHm ΔHx Cp HV ΔTx Tx Tg DSC curve Δlel Δlp υ MDE ER σf
Full form bulk modulus shear modulus yield stress melting enthalpy crystallization enthalpy specific heat capacity hardness number or Vickers hardness supercooled liquid region temperature crystallization temperature glass transition temperature differential scanning calorimetry curve elastic elongation plastic elongation Poisson's ratio mean depth of erosion erosion rate fracture stress
References [07CAI] Cai, A.-H., Chen, H., An, W.-K., Tan, J.-Y., Zhou, Y.: Materials Science and Engineering A 457 (2007) 6–12. [95INOU7] Inoue, A., Fan, C., Masumoto, T.: Materials Transactions, JIM 36 (1995) 1411–1419. [95INOU5] Inoue, A., Zhang, T., Masumoto, T.: Materials Transactions, JIM 36 (1995) 391–398. [97SAGE] Sagel, A., Wunderlich, R.K., Fecht, H.-J.: Materials Letters 33 (1997) 123–127. [07DROZ] Drozdz, D., Wunderlich, R.K., Fecht, H.-J.: Wear 262 (2007) 176–183.
Al-Co-La-Ni-Y
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
84 84 85 85
Thermal Properties Crystallization Temperature Table 1 Crystallization temperature Tx and crystallization peak temperature Tp of Al-based Al-YLa alloy with additions of Ni and Co [07SQUI] Composition Al88Ni1Co1Y5La5
Ribbon quality Brittle
Tx [K] 537
Tp [K] 910
Exothermic DSC peaks 2
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_15
84
Reference
85
Symbols and Abbreviations Short form Tp Tx
Full form crystallization peak temperature crystallization temperature
Reference [07SQUI] Squire, P.J., Chang, I.T.H.: Materials Science and Engineering A 449–451 (2007) 1009–1012.
Al-Cu-Ir-Ni-Zr
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
86 86 87 87 87
Thermal Properties DSC/DTA Analysis
Fig. 1 DSC curves of the melt-spun Zr65Al7.5Ni5Cu17.5Ir5 and Zr65Al7.5Ni10Cu12.5Ir5 alloy ribbons measured at a heating rate of 0.67 K s 1 [01LI1]. The glass transition temperatures Tg and crystallization temperatures Tx are indicated in the figure by triangles © The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_16
86
Reference
87
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 The glass transition temperature Tg of melt-spun Zr-Al-Ni-Cu-Ir alloy ribbons [01LI1] Composition Zr65Al7.5Ni5Cu17.5Ir5 Zr65Al7.5Ni10Cu12.5Ir5
Tg [K] 683 746
Crystallization Temperature Table 2 The crystallization temperature Tx of melt-spun Zr-Al-Ni-Cu-Ir alloy ribbons [01LI1] Composition Zr65Al7.5Ni5Cu17.5Ir5 Zr65Al7.5Ni10Cu12.5Ir5
Tx [K] 748 786
Symbols and Abbreviations Short form Tx Tg DSC curve
Full form crystallization temperature glass transition temperature differential scanning calorimetry curve
Reference [01LI1] Li, C., Inoue, A.: Physical Review B 63 (2001) 172201.
Al-Cu-La-Ni-Zr
Contents Corrosion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Potentiostatic and Potentiodynamic Polarization Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrosion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88 88 89 90 90
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_17
88
Corrosion Behavior
89
Corrosion Behavior Potentiostatic and Potentiodynamic Polarization Curves
Fig. 1 Potentiodynamic polarization curves recorded for two-phase glassy La27.5Zr27.5Al25Cu10Ni10 ribbon in 0.5 M phthalate buffer [04GEBE]. Indicated by dashed line is the corrosion current density icorr determined by using the Tafel slope method
Corrosion Rate Table 1 Corrosion potential Ecorr and corrosion current density icorr for two-phase La27.5Zr27.5Al25Cu10Ni10 metallic glass determined from polarization curves [04GEBE] Composition La27.5Zr27.5Al25Cu10Ni10
Ecorr [V vs. SCE] 0.385
icorr [μA cm 2] 1.2
90
Al-Cu-La-Ni-Zr
Symbols and Abbreviations Short form icorr Ecorr
Full form current density corrosion potential
Reference [04GEBE] Gebert, A., Kündig, A.A., Schultz, L., Hono, K.: Scripta Materialia 51 (2004) 961–965.
Al-Cu-Nb-Ni-Zr
Contents General Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debye Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultimate Tensile and Compressive Strength, Yield Strength, and Strain . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91 91 91 92 93 93 94 95 95 95 96 96 96
General Physical Properties Density and Volume Table 1 The density of various Zr-based Zr-Nb-Cu-Ni-Al alloys [01WANG] Composition Zr57Nb5Cu15.5Ni12.5Al10 Zr60Nb3Cu14Ni3Al10 Zr55Nb9Cu15Ni11Al10
Sample structure Amorphous Composite Composite
ρ [g cm3] 6.81 6.69 6.87
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_18
91
92
Al-Cu-Nb-Ni-Zr
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 XRD pattern of Zr57Nb5Cu15.5Ni12.5Al10 amorphous alloy [01WANG]
Fig. 2 XRD patterns of the Zr55Nb9Cu15Ni11Al10 ingot (bottom), Zr55Nb9Cu15Ni11Al10, Zr57Nb5Cu15.5Ni12.5Al10, and Zr60Nb3Cu14Ni13Al10 alloys, showing that the glass forming ability is very sensitive to a change in Nb content [01WANG]
Thermal Properties
93
Fig. 3 XRD patterns for Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 alloy samples showing various phases from fully amorphous (bottom, r.q.: rapid quenched) to partially crystallized and composite structure [02ECKE]. For comparison, a Zr71.0Nb10.5Cu9.0Ni1.0Al9.5 sample and a Zr71.0Nb10.5Cu9.0Ni1.0Al9.5 alloy are used (see also the table) Table 2 Phases, sample size, and volume fraction of Zr-Nb-Cu-Ni-Al alloy samples [02ECKE] Composition [at %] Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr67.0Nb6.0Cu11.0Ni7.0Al9.0 Zr71.0Nb10.5Cu9.0Ni1.0Al9.5
Sample dimension Melt-spun ribbon 3 mm diameter 5 mm diameter 3 mm diameter 3 mm diameter
Phases and volume fraction [vol %] 100% glassy 75 10% glassy + 25% bcc 50 10% glassy + bcc + CuZr2 50 10% bcc + unknown phase 88% bcc + 12% CuZr2
Thermal Properties Debye Temperature Table 3 The Debye temperature θD0 for Zr-based Zr-Nb-Cu-Ni-Al amorphous alloy [01WANG] Composition Zr57Nb5Cu15.5Ni12.5Al10
θD[K] 273.9
94
Al-Cu-Nb-Ni-Zr
DSC/DTA Analysis
Fig. 4 DSC traces of the Zr-Nb-Cu-Ni-Al amorphous alloys showing that the crystallization of Zr57Nb5Cu15.5Ni12.5Al10 alloy proceeds through one single DSC event [01WANG]. The measurement was performed at a heating rate of 20 K min1
Melting/Liquidus Temperature and Enthalpy Table 4 The calculated and tested melting enthalpy ΔHm of Zr-based Zr-Nb-Cu-Ni-Al amorphous alloy [07CAI] Composition Zr57Cu15.4Ni12.6Al10Nb5
ΔHm (calculated) [KJ mol1] 19.8148
ΔHm (tested) [KJ mol1] 9.4
Mechanical Properties
95
Mechanical Properties Stress-Strain Curves
Fig. 5 Room temperature compressive stress-strain curves of Zr-Nb-Cu-Ni-Al alloy samples, d ¼ 3 mm ca 75% glassy+25%bcc, d ¼ 5 mm ca 50% glassy+bcc + CuZr2 and two composites (see also table below) [02ECKE] Table 5 Phases, sample size, and volume fraction of Zr-Nb-Cu-Ni-Al alloy samples [02ECKE] Composition [at %] Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr67.0Nb6.0Cu11.0Ni7.0Al9.0 Zr71.0Nb10.5Cu9.0Ni1.0Al9.5
Sample dimension Melt-spun ribbon 3 mm diameter 5 mm diameter 3 mm diameter 3 mm diameter
Phases and volume fraction [vol %] 100% glassy 75 10% glassy + 25% bcc 50 10% glassy + bcc + CuZr2 50 10% bcc + unknown phase 88% bcc + 12% CuZr2
Elastic Moduli and Poisson’s Ratio Table 6 Young’s moduls E, yield stress σ y, bulk modulus K, shear modulus G, and strain at the yield point εy of various Zr-Nb-Cu-Ni-Al alloy samples Composition [at %] Zr57Nb5Cu15.5Ni12.5Al10 Zr60Nb3Cu14Ni3Al10 Zr55Nb9Cu15Ni11Al10 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr67.0Nb6.0Cu11.0Ni7.0Al9.0 Zr71.0Nb10.5Cu9.0Ni1.0Al9.5
E [GPa] 87.1 84.8 93.7 84.2 72.4 93.7 108.0
σy [MPa] – – – 1769 1638 1762 1440
K [GPa] 106.7 111.7 115.7
G [GPa] 31.9 30.9 34.3
– – –
– – –
εy [%] – – – 2.1 2.4 2.1 1.5
Reference [01WANG] [01WANG] [01WANG] [02ECKE] [02ECKE] [02ECKE] [02ECKE]
96
Al-Cu-Nb-Ni-Zr
Ultimate Tensile and Compressive Strength, Yield Strength, and Strain Table 7 The ultimate compression stress σ max and fracture strain εf of various Zr-Nb-Cu-Ni-Al alloy samples [02ECKE] Composition [at %] Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr66.4Nb6.4Cu10.5Ni8.7Al8.0 Zr67.0Nb6.0Cu11.0Ni7.0Al9.0 Zr71.0Nb10.5Cu9.0Ni1.0Al9.5
σ max [MPa] 1794 1791 1909 1845
εf [%] 2.3 3.7 2.8 5.2
Symbols and Abbreviations Short form θD ρ K G ΔHm E DSC curve εy εf σ max
Full form Debye temperature density bulk modulus shear modulus melting enthalpy Young modulus differential scanning calorimetry curve strain at yield fracture strain ultimate compression stress
References [01WANG] Wang, W.H., Wang, R.J., Fan, G.J., Eckert, J.: Mater. Trans. 42 (2001) 587–591. [02ECKE] Eckert, J., Kühn, U., Mattern, N., He, G., Gebert, A.: Intermetallics 10 (2002) 1183–1190. [07CAI] Cai, A.H, Chen, H., An, W.K., Tan, J.Y. Zhou, Y.: Materials Science and Engeneering A 457 (2007) 6–12.
Al-Cu-Ni-Pd-Zr
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Melting/Liquidus Temperature and Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for the Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97 97 97 98 98 98 98
Thermal Properties Melting/Liquidus Temperature and Enthalpy Table 1 The calculated melting enthalpiy ΔHm of Zr-Al-Ni-Cu-Pd metallic glass [07CAI] ΔHm (calculated) [K J mol 1] 19.3967
Composition [at%] Zr60Al10Ni10Cu15Pd5
Critical Quantities for the Formation of Amorphous Phase Table 2 The predicted and tested critical cooling rates Rc of Zr-Al-Ni-Cu-Pd metallic glass [07CAI] Composition [at%] Zr60Al10Ni10Cu15Pd5
Rc (predicted) [K s 1] 6.3
Rc (tested) [K s 1] 10
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_19
97
98
Al-Cu-Ni-Pd-Zr
Mechanical Properties Stress-Strain Curves
Fig. 1 Compressive stress-strain curves of Zr65Al7.5Cu7.5Ni10Pd10 alloy rods: (a) glassy phase in as-cast state and (b) mostly single Q phase after heat treatment at 705 K for 60 s [00INOU3]
Symbols and Abbreviations Short form ΔHm Rc
Full form melting enthalpy critical cooling rate
References [00INOU3] Inoue, A., Kimura, H.M., Zhang, T.: Materials Science and Engineering A 294–296 (2000) 727–735. [07CAI] Cai, A.-H., Chen, H., An, W.-K., Tan, J.-Y., Zhou, Y.: Materials Science and Engineering A 457 (2007) 6–12.
Al-Cu-Ni-Si-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
99 99 100 100 102 102
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 XRD patterns of the as-quenched Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy [06JANG1]
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_20
99
100
Al-Cu-Ni-Si-Zr
Thermal Properties DSC/DTA Analysis
Fig. 2 DSC traces of Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy taken at different heating rates [06JANG1]. Indicated in the figure are the glass transition temperature Tg and the crystallization temperature Tx
Enthalpy of Crystallization and Crystallization Kinetics
Fig. 3 Isothermal differential calorimetry curves for Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy at different temperature, as indicated in the figure [06JANG1]
Thermal Properties
Fig. 4 The crystallization fraction transformed versus the annealing time Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy at various temperatures as indicated in the figure [06JANG1]
101
for
Fig. 5 The Avrami plot for Zr61Al7.5Cu17.5Ni10Si4 amorphous alloy at different temperatures as indicated in the figure [06JANG1]
102
Al-Cu-Ni-Si-Zr
Symbols and Abbreviations Short form τ Tx Tg DSC curve
Full form annealing time crystallization temperature glass transition temperature differential scanning calorimetry curve
Reference [06JANG1] Jang, J.S.C., Tsao, S.F., Chang, L.J., Chen, G.J., Huang, J.C.: Journal of Non-Crystalline Solids 352 (2006) 71–77.
Al-Cu-Ni-Sn-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermomechanical Analysis (TMA) and Dynamic Mechanical Analysis (DMA) Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_21
103 103 104 104 105 106 107 107 108 108 109
103
104
Al-Cu-Ni-Sn-Zr
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Zr61.7Al8Ni13Cu17sN0.3
Zr2Cu Ni2Zr3
Intensity (a.u.)
NiZr2
763K 60sec
677K 60sec
20
40
60
80
2q (degree) Fig. 1 X-ray diffraction patterns for the Zr61.7Al8Ni13Cu17Sn0.3 alloy sample annealed for 60 s at 677 K and 763 K, respectively [06BAE]
Thermal Properties Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 The glass transition temperature Tg and reduced glass transition temperature Trg (¼ Tm/Tg) for as-cast and 20% deformed Zr-Al-Ni-Cu-Sn alloys obtained from DSC measurements [06BAE] Composition [at %] Zr61.7Al8Ni13Cu17Sn0.3 Zr61.5Al8Ni13Cu17Sn0.5 Zr61Al8Ni13Cu17Sn1 Zr60Al8Ni13Cu17Sn2
Sample condition As-cast 20% strained – – –
Tg [K] 655 655 660 665 675
Trg 0.579 – 0.574 0.583 0.598
Thermal Properties
105
Crystallization Temperature Table 2 The crystallization temperature Tx for as-cast and 20% deformed Zr-Al-Ni-Cu-Sn alloys obtained from DSC measurements [06BAE] Composition [at %] Zr61.7Al8Ni13Cu17Sn0.3
Specimen condition As-cast 20% strained – – –
Zr61.5Al8Ni13Cu17Sn0.5 Zr61Al8Ni13Cu17Sn1 Zr60Al8Ni13Cu17Sn2
Tx [K] 732 735 736 740 738
Enthalpy of Crystallization and Crystallization Kinetics Table 3 The amount of heat flux ΔH for as-cast and 20% deformed Zr61.7Al8Ni13Cu17Sn0.3 amorphous alloy obtained from DSC measurements [06BAE] Composition [at %] Zr6.17Al8Ni13Cu17Sn0.3
ΔH [J g1] 0.565 0.579
Specimen condition As-cast 20% strained
0.0
Vit1
-0.5
Q = 1.4 eV [16] In(1/t0.6) [min-1]
-1.0
Zr61.7Al8NiCu17Sn0.3
-1.5
Q = 3.96 eV
-2.0 -2.5 -3.0 -3.5 -4.0 1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1000/T [K-1] Fig. 2 Temperature dependence of the rate of 50% crystallization (1/t0.5) of Zr61.7Al8Ni13Cu17Sn0.3 alloy [06BAE]. The thermal activation energy for crystallization Q indicated in the figure ist about 2.8 times higher than that of Vitreloy1 given here for comparison
106
Al-Cu-Ni-Sn-Zr
Supercooled Liquid Region Table 4 The supercooled liquid region ΔT (¼ Tx Tg) for as-cast and 20% deformed for Zr-AlNi-Cu-Sn alloys obtained from DSC measurements [06BAE] Composition [at %] Zr61.7Al8Ni13Cu17Sn0.3 Zr61.5Al8Ni13Cu17Sn0.5 Zr61Al8Ni13Cu17Sn1 Zr60Al8Ni13Cu17Sn2
Specimen condition As-cast 20% strained – – –
ΔT [K] 87 80 76 75 63
Melting/Liquidus Temperature and Enthalpy Table 5 The melting temperature Tm for Zr-Al-Ni-Cu-(Sn) alloys obtained from DSC measurements [06BAE] Composition [at %] Zr61.7Al8Ni13Cu17Sn0.3 Zr61.5Al8Ni13Cu17Sn0.5 Zr61Al8Ni13Cu17Sn1 Zr60Al8Ni13Cu17Sn2
Tm [K] 1131 1150 1141 1129
Mechanical Properties
107
Mechanical Properties Stress-Strain Curves
2100
Zr61Al8Ni13Cu17Sn1
Stress [MPa]
Zr61.5Al8Ni13Cu17Sn0.5
1400 Zr61.7Al8Ni13Cu17Sn0.3 Zr61Al8Ni13Cu17 700
Zr60Al8Ni13Cu17Sn2
Initial strain rate = -10-4s-1 0 0.00
0.05
0.10
0.15
0.20
0.25
0.30
Strain Fig. 3 Stress-strain curves of Zr62-xAl8Ni13Cu17Snx for x ¼ 0, 0.3, 0.5, 1, and 2 metallic glasses of 1 mm in diameter under uniaxial compression at the test condition of an initial strain rate of 104 s1 and at room temperature [06BAE]
108
Al-Cu-Ni-Sn-Zr
Thermomechanical Analysis (TMA) and Dynamic Mechanical Analysis (DMA) Curves
Fig. 4 Thermo-mechanical analyzer (TMA) thermograms determined by heating at 20 K/min under compressive stress of 320 kPa of Vit1 and Zr62-xAl8Ni13Cu17Snx metallic glasses. The Zr62-x Al8Ni13Cu17Snx, x ¼ 0, 0.3, 0.5, 1, 2, alloys exhibit a much lower strain rate than Vit1, i.e., they possess a higher viscosity (i.e., stress-strain rate) [06BAE]
Symbols and Abbreviations Short form Q ΔTx Tg/Tl Tx Tg Tm ΔH
Full form activation energy for crystallization supercooled liquid region temperature reduced glass transition temperature crystallization temperature glass transition temperature melting temperature heat flux
Reference
109
Reference [06BAE] Bae, D.H., Lee, S.W., Kwon, J.W., Yi, S., Park, J.S.: Journal of Materials Research 21 (2006) 1305–1311.
Al-Cu-Ni-Ta-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultimate Tensile and Compressive Strength, Yield Strength, and Strain . . . . . . . . . . . . . . . . . . . Fatigue Strength, Fracture, and Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
110 110 111 111 112 112 112 112 113 113
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_22
110
Thermal Properties
111
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 X-ray diffraction pattern from the as-cast Zr59Ta5Cu18Ni8Al10 amorphous alloy [01XING]
Thermal Properties DSC/DTA Analysis
Fig. 2 Differential scanning calorimetry data of Zr59Ta5Cu18Ni8Al10 alloy taken at a heating rate of 20 K/min. The figure shows a distinct glass transition at Tg ¼ 673 K and a crystallization onset at 770 K [01XING]
112
Al-Cu-Ni-Ta-Zr
Mechanical Properties Stress-Strain Curves
Fig. 3 Stress-strain curves of Zr59Ta5Cu18Ni8Al10 alloy in uniaxial compression and tension in comparison with a conventional Zr57Ti5Cu20Ni8Al10 bulk metallic glass in uniaxial compression. The curves are put offset along the strain axis for clarity. Note the extended region of plastic deformation in the Ta-containing alloy [01XING]
Ultimate Tensile and Compressive Strength, Yield Strength, and Strain Table 1 Maximum diameter Dmax, ultimate fracture strength σ f, and compressive total strain to failure εf for Zr59Ta5Cu18Ni8Al10 metallic glass in compression [01XING] Composition Zr59Cu18Ni8Al10Ta5
Dmax [mm] 3
σ f [MPa] 1700
εf [%] 8.8
Fatigue Strength, Fracture, and Fracture Toughness Table 2 Maximum diameter Dmax, ultimate fracture strength σ f, and plastic strain to failure for Zr59Ta5Cu18Ni8Al10 metallic glass exhibiting high plasticity in compression [01XING] Composition Loading Flow/Fracture strength [MPa] Plastic strain to failure [%] 45 1.9 Zr59Cu18Ni8Al10Ta5 Compression 1700 60 Tension 1630 110 0
Reference
113
Symbols and Abbreviations Short form σf Tx Tg DSC curve σf εf εc,p
Full form fracture strength crystallization temperature glass transition temperature differential scanning calorimetry curve ultimate fracture strength compressive strain to failure plastic strain
Reference [01XING] L.-Q. Xing, Y. Li, K.T. Ramesh, J. Li, T.C. Hufnagel Phys. Rev. B, 64 (2001), p. 180201(R)
Al-Cu-Ni-Ti-Zr
Contents General Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Debye Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for the Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
114 114 115 115 115 115 115 116 116 116
General Physical Properties Density and Volume Table 1 The density ρ for Zr57Ti5Cu20Ni8Al10 metallic glass [01WANG] Composition Zr57Ti5Cu20Ni8Al10
ρ [g cm 3] 6.55
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_23
114
Mechanical Properties
115
Thermal Properties Debye Temperature Table 2 The Debye temperature θD for Zr57Ti5Cu20Ni8Al10 metallic glass [01WANG] θD [K] 270.3
Composition Zr57Ti5Cu20Ni8Al10
Melting/Liquidus Temperature and Enthalpy Table 3 The calculated and tested melting enthalpies ΔHm of Zr-Ti-Al-Cu-Ni metallic glass [07CAI] Composition Zr52.5Ti5Al10Cu17.9Ni14.6 Zr56.6Ti4Al9.6Cu17.5Ni12.5 Zr54.5Ti7.5Al10Ni8Cu20
ΔHm (calculated) [K J mol 1] 19.1843 19.4106 19.2492
ΔHm (tested) [K J mol 1] 8.2 – –
Critical Quantities for the Formation of Amorphous Phase Table 4 The predicted and tested critical cooling rates Rc of Zr-Ti-Al-Cu-Ni metallic glass [07CAI] Composition Zr52.5Ti5Al10Cu17.9Ni14.6 Zr56.6Ti4Al9.6Cu17.5Ni12.5 Zr54.5Ti7.5Al10Ni8Cu20
Rc (predicted) [K s 1] 18.9 5.7 14.4
Rc (tested) [K s 1] 25 7.1 10
Mechanical Properties Elastic Moduli and Poisson’s Ratio Table 5 The Young’s modulus E, the shear modulus G, and bulk modulus K for Zr-Ti-Al-Cu-Ni metallic glass [01WANG] Compositio Zr57Ti5Cu20Ni8Al10
E[GPa] 82.0
G [GPa] 30.1
K [GPa] 99.2
116
Al-Cu-Ni-Ti-Zr
Hardness
Fig. 1 The Vickers hardness versus load curve of Zr59Cu20Al10Ni8Ti3 alloy [05PAN1]
Symbols and Abbreviations Short form θD ρ K G ΔHm HV E
Full form Debye temperature density bulk modulus shear modulus melting enthalpy hardness number or Vickers hardness Young modulus
References [01WANG] Wang, W.H., Wang, R.J., Fan, G.J., Eckert, J.: Mater. Trans. 42 (2001) 587–591. [05PAN1] Pan, X.F., Zhang, H., Zhang, Z.F., Stoica, M., He, G., Eckert, J.: Journal of Materials Research 20 (2005) 2632–2638. [07CAI] Cai, A.-H., Chen, H., An, W.-K., Tan, J.-Y., Zhou, Y.: Materials Science and Engineering A 457 (2007) 6–12.
Al-Cu-Ni-Y-Zr
Contents Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Melting/Liquidus Temperature and Enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for the Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
117 117 117 118 118
Thermal Properties Melting/Liquidus Temperature and Enthalpy Table 1 The calculated melting enthalpies ΔHm of Zr-Al-Ni-Cu-Y metallic glass [07CAI] ΔHm (calculated) [K J mol 1] 18.6754 18.6820
Composition Zr54Al15Ni10Cu19Y2 Zr53Al14Ni10Cu19Y4
Critical Quantities for the Formation of Amorphous Phase Table 2 The predicted and tested critical cooling rates Rc of Zr-Al-Ni-Cu-Y metallic glass [07CAI] Composition Zr54Al15Ni10Cu19Y2 Zr53Al14Ni10Cu19Y4
Rc (predicted) [K s 1] 74.6 73.7
Rc (tested) [K s 1] 40 40
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_24
117
118
Al-Cu-Ni-Y-Zr
Symbols and Abbreviations Short form ΔHx Rc
Full form crystallization enthalpy Critical cooling rate
Reference [07CAI] Cai, A.-H., Chen, H., An, W.-K., Tan, J.-Y., Zhou, Y.: Materials Science and Engineering A 457 (2007) 6–12.
Al-Nb-Ni-Ta-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSC/DTA Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for the Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
119 119 121 121 122 123 124 124 125 125 126 126
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_25
119
120
Al-Nb-Ni-Ta-Zr
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Intensity (a.u.)
Ni61Zr22Nb7Al4Ta6
25
30
35
40
45
50
55
60
65
70
2 theta (deg.)
Fig. 1 X-ray diffraction pattern obtained from an injection cast Ni61Zr22Nb7Al4Ta6 alloy rod with 2 mm in diameter [06NA]
Thermal Properties
121
Thermal Properties Specific Heat Capacity
Fig. 2 Heat capacity Cp for Ni61Zr22Nb7Al4Ta6 alloy as a function of temperature: (a) as-spun sample, (b) sample cyclically heated at 580 C, (c) 600 C, and (d) 620 C, respectively [07NA]
122
Al-Nb-Ni-Ta-Zr
DSC/DTA Analysis
Fig. 3 DSC traces obtained from as-melt-spun Ni61Zr28xNb7Al4Tax alloy ribbons with Ta content (a) x ¼ 0, (b) x ¼ 2, (c) x ¼ 4, (d) x ¼ 6, and (e) x ¼ 8 [07NA]. The glass transition temperature Tg and crystallization temperature Tx are indicated in the figure by arrows
Thermal Properties
123
3.5
Heat flow (W/g)
Ni61Zr22Nb7Al4Ta6 3.0
2.5
(a) (b) (c) (d)
18 µm 35 µm 70 µm 103 µm
2.0 560
580
600
620
640
660
680
Temperature (°C) Fig. 4 DSC traces obtained from as-melt-spun Ni61Zr22Nb7Al4Ta6 alloy ribbons during continuous heating at a rate of 0.67 K s1. The ribbon thickness is (a) 18 μm, (b) 35 μm, (c) 70 μm, and (d) 103 μm, respectively [07NA]
Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 The glass transition temperature Tg and reduced glass transition temperature Trg of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
Tg [K] 850 857 867 876
Trg 0.625 0.625 0.629 0.632
Crystallization Temperature Table 2 The crystallization temperature Tx of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
Tx [K] 904 915 927 934
124
Al-Nb-Ni-Ta-Zr
Enthalpy of Crystallization and Crystallization Kinetics Table 3 The enthalpy of crystallization ΔHx of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
ΔHx [J g1] 54.3 52.9 51.1 45.7
Supercooled Liquid Region Table 4 The supercooled liquid region ΔTx of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
ΔTx 54 58 60 58
Melting/Liquidus Temperature and Enthalpy Table 5 The liquidus temperature T1 of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
T1 [K] 1359 1371 1379 1386
Critical Quantities for the Formation of Amorphous Phase Table 6 The glass forming parameter γ of amorphous Ni-Zr-Nb-Al-Ta alloys [06NA] Composition Ni61Zr26Nb7Al4Ta2 Ni61Zr24Nb7Al4Ta4 Ni61Zr22Nb7Al4Ta6 Ni61Zr20Nb7Al4Ta8
γ 0.409 0.411 0.413 0.413
Mechanical Properties
125
Mechanical Properties Stress-Strain Curves
Fig. 5 The compressive stress-strain curve of Ni61Zr22Nb7Al4Ta6 alloys rod with 1 mm diameter under a strain rate of 106 s1 [05NA]
Fig. 6 The compressive stress-strain curves of an Ni61Zr28-xNb7Al4Tax alloy rod with 1 mm diameter [06NA]
126
Al-Nb-Ni-Ta-Zr
Symbols and Abbreviations Short form ΔHx Cp γ Tl ΔTx Tg/Tl Tx Tg DSC curve
Full form crystallization enthalpy specific heat capacity glass formation parameter liquidus temperature supercooled liquid region temperature reduced glass transition temperature crystallization temperature glass transition temperature differential scanning calorimetry curve
References [05NA] Na, J.H., Han, K.H., Kim, W.T., Kim, D.H.: Materials Science Forum 475–479 (2005) 3435–3438. [06NA] Na, J.H., Park, J.M., Han, K.H., Park, B.J., Kim, W.T., Kim, D.H.: Materials Science and Engineering A 431 (2006) 306–310. [07NA] Na, J.H., Sohn, S.W., Kim, W.T., Kim, D.H.: Scripta Materialia 57 (2007) 225–228.
Al-Nb-Ni-Ti-Zr
Contents Structural Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X-Ray Diffraction Profile, Neutron Diffraction Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystallization Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supercooled Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Critical Quantities for the Formation of Amorphous Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elastic Moduli and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultimate Tensile and Compressive Strength, Yield Strength, and Strain . . . . . . . . . . . . . . . . . . . Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
© The Editor(s) (if applicable) and The Author(s), under exclusive license to SpringerVerlag GmbH, DE, part of Springer Nature 2022 Y. Kawazoe, U. Carow-Watamura, Phase Diagrams and Physical Properties of Nonequilibrium Alloys: 5 Component Amorphous Alloys, https://doi.org/10.1007/978-3-662-64978-7_26
127 127 128 128 128 129 129 130 130 130 130 131 131
127
128
Al-Nb-Ni-Ti-Zr
Structural Information X-Ray Diffraction Profile, Neutron Diffraction Profile
Fig. 1 X-ray diffraction of Zr65Ni10Al7.5Ti5Nb5 alloy ribbon [04OUYA]
Thermal Properties Glass Transition Temperature, Reduced Glass Transition Temperature, and Activation Energy Table 1 The glass transition temperature Tg and reduced glass transition temperature Trg ¼ Tg/Tl of melt-spun Ni60Zr20TixNb15xAl5 (x ¼ 2.515 at.%) alloy ribbons [08QIAN] Composition Ni60Zr20Ti2.5Nb12.5Al5 Ni60Zr20Ti5Nb10Al5 Ni60Zr20Ti7.5Nb7.5Al5 Ni60Zr20Ti10Nb5Al5 Ni60Zr20Ti12.5Nb2.5Al5 Ni60Zr20Ti15Al5
Tg [K] 836 826 824 814 805 797
Tg/Tl 0.607 0.599 0.595 0.585 0.575 0.562
Crystallization Temperature Table 2 The onset temperature of the first crystallization event Tx of the melt-spun Ni60Zr20TixNb15xAl5 (x ¼ 2.515 at.%) alloy ribbons [08QIAN] Composition Ni60Zr20Ti2.5Nb12.5Al5 Ni60Zr20Ti5Nb10Al5 Ni60Zr20Ti7.5Nb7.5Al5 Ni60Zr20Ti10Nb5Al5 Ni60Zr20Ti12.5Nb2.5Al5 Ni60Zr20Ti15Al5
Tx [K] 897 896 885 872 860 842
Thermal Properties
129
Supercooled Liquid Region Table 3 The supercooled liquid region ΔTx ¼ Tx Tg of melt-spun Ni60Zr20TixNb15xAl5 (x ¼ 2.5 15 at.%) ribbons [08QIAN] ΔTx [K] 61 70 61 58 55 45
Alloys Ni60Zr20Ti2.5Nb12.5Al5 Ni60Zr20Ti5Nb10Al5 Ni60Zr20Ti7.5Nb7.5Al5 Ni60Zr20Ti10Nb5Al5 Ni60Zr20Ti12.5Nb2.5Al5 Ni60Zr20Ti15Al5
Melting/Liquidus Temperature and Enthalpy Table 4 The onset temperature of melting Tm, the liquidus temperature Tl and their ration; reduced glass transition temperature Tm/Tl of melt-spun Ni60Zr20TixNb15xAl5 (x ¼ 2.5 15 at.%) alloy ribbons [08QIAN] Alloys Ni60Zr20Ti2.5Nb12.5Al5 Ni60Zr20Ti5Nb10Al5 Ni60Zr20Ti7.5Nb7.5Al5 Ni60Zr20Ti10Nb5Al5 Ni60Zr20Ti12.5Nb2.5Al5 Ni60Zr20Ti15Al5
Tm [K] 1331 1322 1308 1297 1280 1260
Tm/Tl 0.628 0.625 0.630 0.628 0.629 0.633
Tl [K] 1378 1379 1385 1391 1399 1417
Critical Quantities for the Formation of Amorphous Phase Table 5 The GFA parameter γ ¼ Tx/(Tg + Tl) and the critical diameter Dc of melt-spun Ni60Zr20TixNb15xAl5 (x ¼ 2.5 15 at.%) alloy ribbons [08QIAN] Alloys Ni60Zr20Ti2.5Nb12.5Al5 Ni60Zr20Ti5Nb10Al5 Ni60Zr20Ti7.5Nb7.5Al5 Ni60Zr20Ti10Nb5Al5 Ni60Zr20Ti12.5Nb2.5Al5 Ni60Zr20Ti15Al5
γ 0.405 0.406 0.401 0.395 0.390 0.380
Dc [mm] 2 2 2 ~2