Pavement Analysis and Design - Solutions Manual [2nd Ed., 2 ed.] 0131842447


209 49 3MB

English Pages 114 Year 2004

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Contents
Chapter 1 Introduction
Chapter 2 Stresses and Strains in Flexible Pavements
Chapter 3 KENLA YER Computer Program
Chapter 4 Stresses and Deflections in Rigid Pavements
Chapter 5 KENSLABS Computer Program
Chapter 6 Traffic Loading and Volume
Chapter 7 Material Characterization
Chapter 8 Drainage Design
Chapter 9 Pavement Performance
Chapter 10 Reliability
Chapter 11 Flexible Pavement Design
Chapter 12 Rigid Pavement Design
Chapter 13 Design of Overlays
Recommend Papers

Pavement Analysis and Design - Solutions Manual [2nd Ed., 2 ed.]
 0131842447

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

SOLUTIONS MANUAL

PAVEMENT ANALYSIS AND DESIGN SECOND EDITION

YANG H. HUANG

SOLUTIONS MANUAL

PAVEMENT ANALYSIS AND DESIGN

YANG H. HUANG

Pearson Education, Inc. Upper Saddle River, New Jersey 07 458

Acquisitions Editor: Laura Fischer Supplement Editor: Andrea Messineo Executive Managing Editor: Vince O'Brien Managing Editor: David A. George Production Editor: Barbara A. Till Manufacturing Buyer: Ilene Kahn



© 2004 by Pearson Education, Inc .

.

Pearson Prentice Hall Pearson Education, Inc . Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Pearson Prentice Hall® is a trademark of Pearson Education, Inc. Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-184244-7 Pearson Education Ltd .. London Pearson Education Australia Pty. Ltd .. Sydney Pearson Education Singapore. Pte. Ltd. Pearson Education North Asia Ltd., Hong Kong Pearson Education Canada. Inc., Toronto Pearson Educaci6n de Mexico, S.A. de C.V. Pearson Education-Japan, Tokyo Pearson Education Malaysia. Pte. Ltd. Pearson Education, Inc., Upper Saddle Rivn; New Jersey

Contents 1

Introduction

1

2

Stresses and Strains in Flexible Pavements

2

3

KENLA YER Computer Program

11

4

Stresses and Deflections in Rigid Pavements

19

5

KENSLABS Computer Program

32

6

Traffic Loading and Volume

42

7

Material Characterization

49

8

Drainage Design

58

9

Pavement Performance

63

10

Reliability

70

11

Flexible Pavement Design

84

12

Rigid Pavement Design

91

13

Design of Overlays

102

lll

Chapter 1 Introduction 1-1.

The wheel follows

c o n f i g u r a t i o n , f tj r I

a

d u a 1 - t a n d e m a x 1e

1

i s

as

·1 ·~

I:. f

.l.~· t

-+

The 40 Kip load is applied over 8 tires. Thus, each tire bears 5000 Lbs (22.2 kN) load with 100 Psi (690 kPa) tire pressure. The contact area of each tire, Ac= Load of each 2 tire/tire pressure= 5000/100 = 50 in.2 (8.2 x 10 4 mm ). The dimension of the contact area is From Eq.1.7.

(Lecture Text) /so/0.5227 /Ac/0.5227 9.78 in. ( 24 8 mm).

L

width The most rectangle and figure : .... , -

=

0.6 L

=

5 .. 87

in (149 mm.)

./

I

realistic contact area consisting a two ~emi-circles as s h o wn .; 'i 11 f o 1 l o w i n g

~9.Jl1it.---+

10· ... ~ i

0

.

.~

......

.r:-f\l \J__U 1-2.

Freezing Index

Each tire imprint,if considered as a rectangular area,should have

:nle~g~~d~~ ~f 8~~~ ~'. ~; ~:~~ i~: ~ J/6 ,·,,,

= (32

- 24) x 30 + (32 + 3) x 31 + (32 - 14) x 31 + (32 - 16) x 28 + (32 - 22) x 31 + (32 -25) x. 30 = 1§2..L degree days.

Yes, this value is likely to be different because the last few da.ys in

October and tge first few days in May may have mean dl:J.ilY tempera.. tures lower than 32 F, so the degree days for these two months , may not be zero. ~

,._

Chapter 2 Stresses and Strains in Flexible Pavements C:Z-1. .fo l...·fion :

~ ::. I J Fie•... fi/. ( G; 4

%" ~

2.

2 · 2. ..

) I DO/.: ~

-=

~

I

s

o.1g· 1;

fiJ. x 1-l·

I o.

6

5". .J-4

6

~'

J.J~,,1.. ~ .. .1ir41'·

:

/'a .. ,(·,.,., •

S'O

0.61.r 1'2. 6 4f6

(¥).

6]J..-

12·

-

I

.2

2.

6

8 z.

2.

o.31

.I

. : . . - - - - ... / . .? 'i jO ooo

:

_,

2-b

,4c~

~

.--,--,---;-' y

~' ..,.4ooooo ps;

lb

IQt>.PS• '

{

l~,

:

~= ":'

1S· 7-s,- _,",, ·--/.-

- - - - - - - - · - - - - - _.Q ...

0

q'J,5 wer

NBoND

400000 8000 10000 (11) E 1 (13) LOAD 4.5 75 (14) CR CP 1 (19) NPT 0 13.5 0 6.75 (20) XW YW XPT 1 15 (25) NOLAY ITENOL 2 0 (26) LAYNO NCLAY 6 (27) ZCNOL 0 0 0 0 0.01 (28) RCNOL XCNOL YCNOL SLD DELNOL 0. 5 (29) RELAX 145 135 0 (30) GAM 0.5 0.6 (31) K2 KO 8000 8000 (33) PHI Kl

1 (1) NPROB PROBLEM 3.9 3 0 1 1 (3) MATL NDAMA NPY NLG 0.001 (4) DEL 2 1 80 1 0 (5) NL NZ ICL NSTD NUNIT 8 (6) TH (7) PR 0.5 0.5 0 1

I 1-.

3 /. I J 3 ' -3.a83 p.>

;,,, -'

O. o 2a~6 ,':.,, J

o. 0 208 7 ;11, _,

~. o Za "JZ /"1,

CJ> J '3.51

0

.J

0

(39) TYME 4.57E-06

4.381:-06

0.0000046

(42)

~

1 (1) NPROB PROBLEM 3.10 3 1 1 1 (3) MATL NDAMA NPY NLG 0.001 (4) DEL 2 0 80 9 0 (5) NL NZ ICL NSTD NUNIT 8 (6) TH 0.5 0.5 (7) PR 1

(9) NBOND

10000 (11) E (13) LOAD 6 75 (14) CR CP 1 (16) NR 0 (17) RC 0.1 (36) DUR 1 1 (37) NVL LNV 11 (38) NTYME 0.001 0.003 0.01 0

qr'JJ

0

0.03

0.1

2 I. o '7 :Je'1r->

wer:

0.3

1

3

10

30

100

(39) TYME

0.113 70 (41) BETA TEMPREF 2.04E-06 2.12E-06 2.37E-06 2.92E-06 3.81E-06 4.19E-06 4.49E-06 4.57E-06 0.0000046 0.0000046 (42) CREEP 70 (44) TEMP 1 1 (46) NLBT NLTC 1 (47) LNBT 2 (48) LNTC 100000 (49) TNLR 0.0796 3.291 0.854 (50) FTl FT2 FT3 1.365E-09 4.477 (51) FT4 FT5

be 2

(1) NPROB N?J,tjHA ..ShD'-J}.::l 1 PRO!!IJiM 3. l~ 1 ~ (3) MATL NDAMA NPY NLG 0.001 (4) DEL 3 0 80 9 0 (5) NL NZ ICL NSTD NUNIT 6 8 (6) TH 0.4 0.35 0.45 (7) PR 1

.fo

9-e-I:..

I'~

4.38E-06

-fa J)ow1~

4w-c 7° ~x.. --:4-'7.s,-/-e S-l->"qi.., e:>, o ~3..>J ~?4 ~Jrti qtJff: ro r:/~:ftr4/!r.>~4) $"t->q;,, = q e;-08801D4HJ4je '74-1-/-o

=

(9) NBOND

(11) E 740000 23000 11000 2 (13) LOAD 4.52 70 (14) CR CP 3 (19) NPT 48 13.5 0 0 0 3.375 0 6.75 (20) XW YW XPT 1 1 ( 46) NLBT NLTC 1 (47) LNBT 3 (48) LNTC 200000 (49) TNLR 0.0796 3.291 0.854 (50) FTl FT2 FT3 1.365E-09 4.477 (51) FT4 FT5

(1) NPROB 3 Problem 3-12 (a) 2 1 1 1 ( 3) MATL ND.AMA NPY NLG 0.001 (4) DEL 7 2 80 9 0 (5) NL NZ ICL NSTD NUNIT (6) TH 2 2 2 2 2 2 0.35 0.35 0.35 0.35 0.35 0.35 1

~

0.45

(7) PR

(9) NBOND

120000 100000 80000 68000 40000 20000 5000 0 (13) LOAD 6 100 (14) CR CP 1 (16) NR 0 (17) RC 7 15 (25) NOLAY ITENOL 1 0 2 0 3 0 4 0 5 0 6 0 7 1 1 3 5 7 9 11 13 (27) ZCNOL 0 0 0 0 0.01 (28) RCNOL XCNOL YCNOL SLD DELNOL 0.5 (29) RELAX 135 135 135 135 135 135 115 (30) GAM 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 6.2 1110 178 0.8 (31) K2 K3 K4 KO 0 10000 (33) PHI Kl 0 10000 (33) PHI Kl 0 10000 (33) PHI Kl 0 10000 (33) PHI Kl 0 10000 (33) PHI Kl

(11) E

(26) LAYNO NCLAY

0 10000 (33) PHI K1 1827 7682 3020 (33) EMIN EMAX K1 0 1 ( 46) NLBT NLTC 7 (48) LNTC 1000 (49) TNLR 1.365E-09 4.477 (51) FT4 FT5 Problem 3-12 (b) 2

2

1

1

(3) MATL NDAMA NPY NLG

0. 001 (4) DEL 2 2 80 9 0 (5) NL NZ ICL NSTD NUNIT 12 (6) TH (7) PR 0.35 0. 45 1

(9) NBOND

10000 3020 (11) E 0 (13) LOAD 6 100 (14) CR CP 1 (16) NR 0 (17) RC 2 15 (25) NOLAY ITENOL 1 0 2 1 (26) LAYNO NCLAY 4 13 (27) ZCNOL 0 0 0 0 0.01 (28) RCNOL XCNOL YCNOL SLD DELNOL 0.5 (29) RELAX 135 115 (30) GAM 0.5 0.6 (31) K2 KO 6.2 1110 178 0.8 (31) K2 K3 K4 KO 10000 10000 (33) PHI K1 1827 7682 3020 (33) EMIN EMAX K1 0 1 (46) NI.BT NLTC 2 (48) LHTC 1000 (49) TNLR 1.365E-09 4.477 (51) FT4 FTS Prob1em 3-12 (c) 2

2

1

0. 001 2

2

12 0.35 1

1

(3) MATL NDAMA NPY NLG

(4) DEL 80 9 0 (6)

(5) NL NZ ICL NSTD NUNIT

TH

0.45

(7)

PR

(9) NBOND

10000 3020 (11) E 0 (13) LOAD 6 100 (14) CR CP 1 (16) NR 0

(17) RC

2

15

1

0

(25) NOLAY ITENOL 2 1 (26) LAYNO NCLAY 6 13 (27) ZCNOL 0 0 0 0 0.01 (28) RCNOL XCNOL YCNOL SLD DELNOL 0.5 (29) RELAX 135 115 (30) GAM 0.5 0.6 (31) K2 KO 6.2 1110 178 0.8 (31) K2 K3 K4 KO 40 10000 (33) PHI K1 1827 7682 3020 (33) EMIN EMAX K1 0 1 (46) NLBT NLTC 2 (48) LNTC 1000 (49) TNLR 1.365E-09 4.477 (51) FT4 FTS

2

(1) NPROB 3-13 (a) 3 1 1 1 (3) MATL ND.AMA NPY NLG 0.001 (4) DEL 2 2 80 9 0 (5) NL NZ ICL NSTD NUNIT 10 (6) TH 0.5 0.5 (7) PR PROBLEM

1

(9)

0

0

NBOND

(11) E (13) LOAD 100 (14) CR CP

0

10 1 0

(16) NR (17) RC (36) DUR

0.1

1 2 (37) NVL LNV 7 (38) NTYME 0.01 0.03 0.1 0.3 1 0 0 ( 41) BETA TEMPREF 1.02E-06 1.06E-06 1.21E-06 2

0

0

( 41)

3

10

1.59E-06

(39) TYME 2.68E-06

0.000105 0.000289 0.000732 0.00125 0 0 (44) TEMP 1 1 (46) NI.BT NLTC 1 (47) LNBT 2 (48) LNTC 60000 (49) TNLR 0.0796 3.291 0.854 (50) FTl FT2 FT3 1.365E-09 4.477 (51) FT4 FT5 PROBLEM 3-13 (b) 3 1 1 1 (3) MATL ND.AMA NPY NLG 0.001 (4) DEL 2 2 80 9 0 (5) NL NZ ICL NSTD NUNIT 10 (6) TH 0.5 0.5 (7) PR 1 0 0

4.84E-06

9.27E-06

(42) CREEP

BETA TEMPREF

0.00195

0.00359

0.00732

(42) CREEP

//. 6 z

(9) 0

NBOND (11) E (13) LOAD

10 1

100 (14) CR CP (16) NR 0 (17) RC 0.2 (36) DUR 2 1 2 (37) NVL LNV 7 (38) NTYME 0.01 0.03 0.1 0.3 0

0

1.02E-06 0

0

1

3

10

(39) TYME

( 41) BETA TEMPREF

1.06E-06

1.21E-06

1.59E-06

2.68E-06

4.84E-06

9.27E-06

(42) CREEP

( 41) BETA TEMPREF

0.000105 0.000289 0.000732 0.00125 0 0 (44) TEMP 1 0 ( 46) NI.BT NLTC 2 (47) LNBT 60000 (49) TNLR 0.0796 3.291 0.854 (50) FTl FT2 FT3

0.00195

0.00359

0.00732

(42) CREEP

1

(1) NPROB

PROBLEM 3-14 4 1 2 2 (3) MATL ND.AMA NPY NLG 0. 001 (4) DEL 6 0 80 9 0 (5) NL NZ ICL NSTD NUNIT 6 2 2 2 2 (6) TH 0.4 0.35 0.35 0.35 0.35 0.45 (7) PR 1

(9) NBOND

0 0

7500 7500 7500 7500 3020 (11) E 10000 10000 10000 10000 12340 (11) E 0 (13) LOAD 5.35 100 (14) CR CP 1 (16) NR 0 (17) RC 1 (13) LOAD 4.52 70 (14) CR CP 3 (19) NPT 0 13.5 0 0 0 3.375 0 6.75 (20) XW YW XPT 5 15 (25) NOLAY ITENOL 0 3 0 4 0 5 0 6 1 2 (26) LAYNO NCLAY 7 9 11 13 15 (27) ZCNOL 0 0 6.75 0 0.01 (28) RCNOL XCNOL YCNOL SLD DELNOL 0.5 0.5 (29) RELAX 145 135 135 135 135 125 (30) GAM 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 0.5 0.6 (31) K2 KO 6.2 1110 178 0.8 (31) K2 K3 K4 KO 0 7500 (33) PHI K1 0 7500 (33) PHI K1 0 7500 (33) PHI K1 0 7500 (33) PHI K1 1827 7682 3020 (33) EMIN EMAX K1 0 10000 (33) PHI K1 0 10000 (33) PHI K1 0 10000 (33) PHI K1 0 10000 (33) PHI K1 7605 17002 12340 (33) EMIN EMAX K1 0.1 (36) DUR 1 1 (37) NVL LNV 11 (38) NT!ME 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 (39) TYME 0 .113 70 (41) BETA TEMPREF 3.7E-07 5.2E-07 8.6E-07 1.45E-06 0.0000025 0.000004 0.0000062 0.0000086 0.000012 0.000016 0.000019 (42) CREEP 60 (44) TEMP 80 (44) TEMP 1 1 ( 46) NLBT NLTC 1 (47) LNBT Qn.jwer: 3 (48) LNTC 25. 15 9125 18250 (49) TNLR 9125 18250 (49) TNLR 0.0796 3.291 0.854 (50) FT1 FT2 FT3 1.365E-09 4.477 (51) FT4 FT5

jeqrJ

Chapter 4 Stresses and Deflections in Rigid Pavements

+-1 ca.)

..,.,

~:.

6'! I I

I

tI

C'

t::k,: - ~ 0 f

- --------~A

G' I

+ I

8''

,-k_,,S)pci

6:: (

,!\)':: 0 . '4r

10

A'

\.() I

~~

4XUIG

I

_/

>f

• 6 ·; I of

0.- \, -: 15 X LO

II

?f·µ,·r

6 o't .At

N. E, . O ~b l z. 00 0 l

V'Vt.1tt.i.7

2. o,S'"

/~ IJt11tJi~r ~

IV= cSo

zs : :

t::S.f

~ ..J.1..Ye ~u;re_

.>, 27 q»:t.s.

2. OS°

/ Iz ~ 'O == .ss.

b)e;t:.K.J

3 S8

2. c;5 t.in~· t~

-fo,PJ ~c;

s, "l.7 : ~ 2

I

a..t

:t?

M::: /oox(~.1)z.>1Z9o::. ~9-.>-Z- /'v;-1o/f";.,_ /~_...t!:)OO

0 --,,.-17

0

/o ckkr"'~ ?'-he

1;, ~

l'l?t>Mtte'7/._

)d"'f,·Jve;J;">".J q17~~.f10':) I ~ ~;J~,,-lq.J.~"J

0

~:f -?-~ -/J~f

~ ?'.,&.:,~

IHllft

7'o:

q_s

.S/;c.v.J"> /";;; +-~ k-Fi ~"1uY-c_ Nok -1-~ 7-J.;e rr9">t -1wo ..;,~~$ .S-1,,-~+t:/k.J 6e-lw~'? µ5,·7,-~ ~ ~..J,~ 6/of!.ks arA.. ~Y-e v-e~y hH)-e -eff~-l °"> ~6e &lock' ~,,t, Al= 2So /1-:::. loax (.S°8.1fJt. ZS"o = 8/f',?~ 1~.-1~;,,

=-

~~l

4.15. 5.53

8.~o

i/ 1ocro/ 13.~

o.3L,o.4L

---r-

II'\

L

;iJ

12. ( I -

ce "c....rc tr

t'l"f

l_·-_E_h_~__

4

o.t, L

t"4~10'

V~) K

r0 :

psi

0,15

) 4_,,10". ~~

8.ZS? (15) LS XLl XL2 YLl YL2 QQ

1 (1) NPROB Problem 5 .10 1 (3) NFOUND NDAMA NPY NLG (4) NSLAB NJOINT 9 0 1 0 0 (5) NX NY JONOl JON02 JON03 JON04 9 1 0 0 0 (5) NX NY JONOl JON02 JON03 JON04 46 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 2 (6) NIAYER NNCK NOTCON NGAP NPRINT INPUT NBOND NTEMP NWT NCYCLE NATl NAT2 NSX NSY MDPO NUNIT UL TC CL 0 150 0 500 0 0.000005 0.001 1 (7) TEMP GAMA(l) GAMA(2) PMR(l) PMR.(2) CT DEL FMAX 17.61 0 17.61 0 (8) F1(1) F1(2) F2(1) F2(2) 0 30 60 90 108 120 0 12 24 42 66 78 90 117 144 (9) x• s and then Y's 0 12 30 60 90 120 0 12 24 42 66 78 90 117 144 (9) x• s and then Y's 10 0.15 4000000 (10) T PR YM 2 (12) NUDL 0 (13) NCNF 0 0 (14) NNMX NNMY 1 108 120 0 12 83.333 ( 15) LS XLl XL2 YLl YL2 QQ 1 108 120 72 84 83.333 (15) LS XL1 XL2 YL1 YL2 QQ 1 (22) FSAF 0 300 (24) NAS SUBMOD 29000000 0.3 (34) YMSB PRSB 0 0 1500000 1 12 0.25 0 0 ( 35) SPCONl SPCON2 SCKV BD BS WJ GDC NNAJ 0

0

2 6 6 1

1

1

1 (1) NPROB Problem 5.11

0 0 1 1 (3) NFOUND ND.AMA NPY NLG 2 1 ( 4) NSLAB NJOINT 6 14 0 1 0 0 (5) NX NY JONOl JON02 JON03 JON04 6 14 1 0 0 0 (5) NX NY JONOl JON02 JON03 JON04 1 46 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2 2 (6) NIAYER NNCK NOTCON NGAP NPRINT INPUT NBOND NTEMP NWT NCYCLE NATl NAT2 NSX NSY MDPO NUNIT UL TC CL 0 150 0 500 0 0.000005 0.001 1 (7) TEMP GAMA(l) GAMA(2) PMR.(1) PMR(2) CT DEL FMAX 17.61 0 17.61 0 (8) Fl(l) F1(2) F2(1) F2(2) 0 30 60 90 108 120 0 6 18 30 42 54 66 78 90 102 114 126 138 144 (9) X's and then Y's 66 78 90 0 12 30 60 90 120 0 6 18 30 42 54 102 114 \ 126 138 144 (9) x• s and then Y's QIJ.)WeY: 4):. N~ 72- tfo~2. '7 f'.P-' 10 0.15 4000000 (10) T PR YM - !Jo. 8 z.b P~ 2 (12) NUDL 0 (13) NCNF ?I e>. 0 2 7 ;>]. 0 0 (14) NNMX NNMY 1 108 120 0 12 83.333 (15) LS XLl XL2 YLl YL2 QQ

78

z

J

(15) LS XLl XL2 YL1 YL2 QO 1 108 120 72 84 83.333 1 (22) FSAF 0 300 (24) HAS SUBMOD 29000000 0.3 (34) YMSB PRSB 0 14 (35) SPCONl SPCON2 SCKV BD BS WJ GDC NNAJ 0 0 1500000 1 12 0.25 1 1 1 1 0 (36) BARNO 0 1 1 1 1 1 1 1 1

1

(1) NPROB

Problem 5.12 0

0

2 6 6 1

1

1

1

(3) NFOUND NDAMA NPY NLG

( 4) NSLAB NJOINT 9 0 1 0 0 (5) NX NY JONOl JON02 JON03 JON04 9 1 0 0 0 ( 5) NX NY JONOl JON02 JON03 JON04 46 0 0 0 0 0 0 0 l 0 0 0 0 0 0 1 2 2 (6) NLAYER NNCK NOTCON NGAP NPRINT INPUT NBOND NTEMP NWT NCYCLE NATl NAT2 NSX NSY MDPO NUNIT UL TC CL 0 150 0 500 0 0.000005 0.001 1 (7) TEMP GAMA(l) GAMA(2) PMR(1) PMR(2) CT DEL FMAX 17.61 0 17.61 0 (8) F1(1) F1(2) F2(1) F2(2) 117 144 (9) X's and then Y's 0 30 60 90 108 120 0 12 24 42 66 78 90 144 (9) X's and then Y's 0 12 30 60 90 120 0 12 24 42 66 78 90 117 10 0.15 4000000 (10) T PR YM \ 2 (12) NUDL Z NCNF Q,l'J.jy..Jer: at:, N~cle -ZZ 2 PS-

1

Bf;

(1) NPROB

Problem 5.15 0

0

1

1

( 3) NFOUND NDAMA NPY NLG

2 1 (4) NSLAB NJOINT 6 6 0 1 0 0 (5) NX NY JONOl JON02 JON03 JON04 6 6 l 0 0 0 (5) NX NY JONOl JON02 JON03 JON04 1 34 0 0 1 0 0 0 0 1 0 0 12 0 0 0 2 2 1 ( 6) NLAYER NNCK NOTCON NGAP NPRINT IN.PUT NBOND NTEMP NWT NCYCLE NATl NAT2 NSX NSY MDPO NUNIT UL TC CL 0 150 0 500 0 0.000005 0.001 l. (7) TEMP GAMA(1) GAMA(2) PMR(1) PMR(2) CT DEL FMAX 17.61 0 17.61 0 (8) Fl(l) F1(2) F2(1) F2(2) 0 30 60 90 108 120 0 15 30 42 54 72 (9) X's and then Y's 0 12 30 60 90 120 0 l.5 30 42 54 72 (9) X's and then Y's 10 O.l.5 4000000 (l.0) T PR YM 0 (12) NUDL l. (l.3) NCNF ps~ 0 0 (l.4) NNMX NNMY 34 12000 (16) NN FF 34 (18) NP 1 7 13 l.9 25 31 37 43 49 55 61 (19) NODSX 67 1 (22) FSAF 300 (24) NAS SUBMOD 0 29000000 0.3 (34) YMSB PRSB 0 0 1500000 l. 12 0.25 0.01 0 (35) SPCON1 SPCON2 SCKV BD BS WJ GDC NNAJ

-/655. 9

l. (1) NPROB Problem 5.16 0 0 1 l. ( 3) NFOUND NDAMA NPY NLG l. 0 (4) NSLAB NJOINT 9 6 0 0 0 0 (5) NX NY JONOl. JON02 JON03 JON04 l. 22 0 0 0 0 0 0 0 l. 0 0 9 6 0 0 l. 2 2 (6) NLAn:R NNCK NOTCON NGAP NPRINT INPUT NBOND NTEMP NWT NCYCLE NATl. NAT2 NSX NSY MDPO NUNIT UL TC CL 0 l.50 0 500 0 0.000005 0.001 l. (7) TEMP GAMA(1) GAMA(2) PMR(1) PMR(2) CT DEL FMAX 17.61 0 l.7.61 0 (8) Fl(l) F1(2) F2(l.) F2(2) 0 14 28 41 54 72 96 l.32 168 0 10 20 29.5 38.75 48 (9) X's and then Y's 8 0.15 4000000 (l.0) T PR YM 1 (l.2) NUDL tJ~e 0 (l.3) NCNF 0 0 (14) NNMX NNMY 1 37.5 44.5 23.5 35.5 150 (15) LS XLl XL2 YLl YL2 QQ l. 7 l.3 19 25 31 37 43 49 (19) NODSX l. 2 3 4 5 6 (20) NODSY l. (22) FSAF 0 150 (24) NAS SUBMOD

cit

22

1 (1) NPROB Probl.em 5.17 1 0 1 1 ( 3) NFOUND NDAMA NPY NLG 2

l

(4j NSLAB NJOINT

6 14 0 1 0 0 (5) NX NY JONOl JON02 JON03 JON04 6 14 1 0 0 0 (5) NX NY JONOl JON02 JON03 JON04 1 46 0 0 42 0 0 0 0 1 0 0 0 0 0 0 1 2 2 (6) NI.AYER NNCK NOTCON NGAP NPRINT INPUT NBOND NTEMP NWT NCYCLE NATl NAT2 NSX NSY MDPO NUNIT UL TC CL 0 150 0 500 0 0.000005 0.001 1 (7) TEMP GAMA(l) GAMA(2) PMR(l) PMR.(2) CT DEL FMAX 17.61 0 17.61 0 (8) Fl(l) F1(2) F2(1) F2(2) 54 66 114 0 30 60 90 108 120 0 6 18 30 42 78 90 102 126 138 144 (9) X's and then Y's 0 12 30 60 90 120 0 6 18 30 42 54 66 78 90 102 114 126 138 144 (9) X's and then Y's A,,,? weY Ala:/e -308 10 0.15 4000000 (10) T PR YM 2 (12) NUDL -13S:z.69 ~

:

=

7 ,t

;,,

1J

c!1 =

/.< /,,

...z.q

E

,' .,..

0·-360

/I I· ...-

o. 366

Ib

o.h3

84.5 6/4

p.6;24

.. -

(. (717~

18

/. S-1

;(,,()

A

1.~

47. 2

I· 52a

..2,/.4

,z.23 2

9

-3.l{,O

r;.

I

4. ~s

cl ..;,

...

.J4

? .03 4.07

12.

.( 'g

S.:3~

~.q

30

6'.97

/1 2

7, 7

//. !J

7 (} ·3

p.121

~

~b

18

o,eg

j.;( ?

N/11_ .R6

E:AlF'

q()

0.18'7

12

A

-=-t-t

.3

>"· 8S5 /?

q,q8 3

t).

IZ

1)

EAL

~

L

t' ~I

t=i n· I

~

-a6 s.,. 20 "' .z,q9

.,_ ID

6

/

I>

- (Ca. /. .J6.2-

CJ']
o \ _ /A.,a ~ 1 :...,"T .

ju-w .:

z.t- - .YJ I -;-

=

--·------

,LL

2-o - rur,

13..J. =

l-

-..)A(;-

:

"·'!!.)

~. l y

.

x / ('#.11})

:I- IA

/ . (J L

% t1a..J,.,-1 t

~

:

/t'P-

';-JI..

= . lvv - JY, J- 1-17 / : ;Ir X

/.Zo .

~,/-

p .-

_!1#7 .

~u1'/ l~•,q_

t

./~//. /lod.

~ /...!}, = ~ ~l" I~'~--~~;:,~-~- . -.~--·. .. ~- ~ -~ .- -/J, :

/IJ. dr--~7/~~~-t--~~~l~~_J

/

1000

10

2?u.gr,041

J.

~ = 1- .r ~ I- _tJ. 4/Y// :: Cl: .s-..rl'.3_ /t ~ - f..S • . /;Liz. )( ~. 'fl/1 ,.,.,,0-.;-.: . o. J (' 6 L .J. 4"f>l. ll 10- ..r · .

~r------r---+V·~--.---~~~_.:___,..,,

2..o

,f

/.k~

'" 0

7-10.

No. OF

PERMANEXT STRAIN

REPETITION

(10~-5)

1 10

2.:1n

5.813 12.773 13.93 19.715 36.231 73.506

100 200

1000 10000 100000

PROBLEM 7-10 .79.4J282

I

50.11872

_J

39.81071

I

....,_I

.......

JL622.77

·r

I 1

25.11886

....

1

_, •

19.95262

.J

z

15.8489J

-1

!()

(

0

< ~

f-

12.58925

zrz

10

(/)

I

I

63.:95 73

I

\

'

! \

!

1

~

I

w

-l I ...., 6.309573 I 5.011672 i 7.943282

-1:

~

er

w

a.

i

3.9Ei J7i

1

3.162277

j

2.5111'385

/

-4

1.995262 I •P

C

-

• 28, fO..,

S =

! I

\

r - -1 e.6.e

1~0-..i---,-:-----.-----r------,,-----_J ,. '1

r

1

, ODOO n

100.0

0. 2 ~ ")

NIJMl3ER OF LOAD k£PDI \10h

1 ... e.bz cl.-= 1-S

1 E

s

=

I - o. 2c:l s 2 ·b '2 ~

---4. /'2

o. -z95

~

--

/

o. 7 o 5

=

i=:'

I -

o. 187

-

Chapter 8 Drainage Design

--

Q:: \J ~ v::.~~

,i;;.J

8. 1..

.:x. ~ J.S:_19._,~

lo ...

~.

.3

8

~

D~-:..

I/ 'l 0....,..

"J.,{'-lc.-... - /OOm..,.__

/ Io. 001 :. 5-4 ~~ O.i

Io. 0?1~

: 10

D"'° ~I D10 ~ ~ 'Z.~ D.C)/O.~

~

'!:>

D~ ~ ?=. o . o7A ./l'IJW'\ D.

z:z.'6 c o. 07.A

~B (~) ~~ (~)

~~ o. co1 I o.01tc:, =

o.~"'

~-·

{-)~~ 0.001

,

~

fJIJI

J

Io. ooozz.d:>

,,,,~.;c ~ ~ -~ . o. 0~7~ I 0. OOlic?

Nit:~ J 4..>.S''?J-

7/~Ye /q~ 4-

3 ~ .f"c/;,,,;fc

a..

Fo.,- eirw- w}-~

::.

:ft~

I< ( H-H•)

t?..5 )< (zj-15") - - - - -- - ::.

'},.,

=Z 3

0 ,"S-~

L.,i.. =- 3. $' ( zj-IS)::::. 3o. 4' f-c

i. zo,,,

':. z. ~'-

8..s

=

/~IJY

o,6

5

frl"'?

o,

o 2.. Inn?.> _.J;.H-J

/c:f:ly.

-r 120x10)/1z :::::- I Lf-8 ?>f F-ro1t1 ~~ Y·t.5, q__ =

{),.,

e.; Jr;;; > ::. ~. o ~7 :f't- ~cfqyI ;-c- ~ ~ /'J .

;

,

c4

Z. 9

F~ E'~ g. .?~

z.

4:t.y ==

Sf. = 18 7;: .:

~h>""I h ~ ?J', I 8>

t1.,.." = -

-

/, .



f'J~

L

Kl'i

o. o/8Z

447

a. a 7 -4r >