Nuclear chemical engineering [2d ed]
0070045313, 9780070045316
332
112
245KB
English
Pages 1078
Year 1981
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Front Matter......Page 1
Appendixes......Page 0
Preface......Page 4
Table of Contents......Page 7
1.1 Introduction......Page 12
1.2 Nuclear Fission......Page 13
1.3 Nuclear Fuels......Page 16
1.4 Nuclear Reactor Types......Page 18
1.5.1 Uranium Fuel......Page 21
1.5.2 Thorium Fuel......Page 25
1.6 Fuel-Cycle Operations......Page 26
1.7 Fuel Reprocessing......Page 31
1.8 Isotope Separation......Page 33
1.9 Nuclear Fusion......Page 34
References......Page 35
Problems......Page 36
2.1.1 Make-up of Nuclides......Page 37
2.2.1 Types......Page 38
2.2.2 Rate of Radioactive Decay......Page 39
2.2.3 Alpha Radioactivity......Page 40
2.2.4 Beta Radioactivity......Page 41
2.2.5 Gamma Radioactivity......Page 42
2.2.7 Electron Capture......Page 44
2.2.8 Spontaneous Fission......Page 45
2.3.1 Batch Decay......Page 46
2.3.2 Continuous Production......Page 49
2.3.3 Continuous Production and Shutdown......Page 51
2.4.2 Fission Reactions......Page 53
2.4.3 Reaction Rates......Page 54
2.4.5 Neutron Speeds in Reactors......Page 55
2.4.6 Neutron Flux......Page 56
2.4.7 Effective Cross Sections......Page 57
2.5.1 Fissile Materials......Page 64
2.5.3 Energy Release in Fission......Page 65
2.6.1 Batch Operation......Page 74
2.6.2 Continuous Production......Page 78
2.6.3 135 Xe Fission-Product Poisoning......Page 80
2.6.4 135 Xe Transient after Reactor Shutdown......Page 81
2.6.5 149 Sm Chain......Page 83
2.7.1 Properties of Laplace Transforms......Page 87
2.7.2 Derivation of the Bateman Equation (2.17)......Page 88
3.1 Nuclear Fuels......Page 95
3.2 Effects of Irradiation on Nuclear Fuels......Page 98
3.3.1 Objectives......Page 101
3.3.2 Drawbacks of Batch Irradiation of Uniform Fuel and Poison......Page 103
3.3.3 Idealized Methods of Fuel and Poison Management......Page 105
3.3.4 Reactivity-limited Burnup in PWR with Modified Scatter Fueling......Page 111
3.4.1 Reactor Construction......Page 116
3.4.2 Reactor Performance, Cycle 1......Page 118
3.4.3 Reactor Performance, Cycle 2......Page 120
3.4.4 Reactor Performance, Cycle 3......Page 121
3.4.5 Approach to Steady State......Page 122
3.5.1 Procedure for Calculating Fuel-Cycle Costs......Page 124
3.5.2 Steady-State Fuel-Cycle Costs......Page 134
3.6.1 Neutron Energy Cycle......Page 137
3.6.2 Neutron Balance for Reference Design......Page 138
3.6.3 Neutron Balance for Operating Reactor......Page 139
3.6.4 Reactor Example......Page 143
3.6.5 Change of Composition with Flux Time......Page 144
3.6.6 Composition Changes in PWR......Page 152
3.6.7 Reactivity Changes in PWR......Page 153
3.6.8 Effect of Fuel Management Method on Burnup......Page 154
3.7.2 LWR Fueled with Plutonium and Natural Uranium......Page 155
3.7.3 The HTGR......Page 158
3.7.4 The LMFBR......Page 160
Nomenclature......Page 162
References......Page 164
Problems......Page 165
4.2 Extractable Metal-Organic Complexes......Page 168
4.3 Solvent Extraction Principles......Page 171
4.4.2 Oxidation-Reduction Potential......Page 176
4.4.3 Nature of Solvent......Page 177
4.4.5 Concentration of Salting Agent......Page 178
4.4.6 Correlation of Equilibrium Extraction Data......Page 180
4.4.7 Presence of Other Extractable Species......Page 182
4.5 Solvent Requirements......Page 183
4.6.1 Extracting Cascade......Page 184
4.6.2 Extracting Cascade with Constant Distribution Coefficients......Page 187
4.6.3 The Extracting-scrubbing Cascade......Page 192
4.6.4 Limiting Flow Ratios for the Extracting-scrubbing Cascade......Page 195
4.6.5 Extracting-scrubbing Cascade with Constant Distribution Coefficients......Page 197
4.6.6 Extracting-scrubbing Cascade: Numerical Procedure for Use with Variable Distribution Coefficients......Page 202
4.7.1 Requirements......Page 209
4.7.3 Mixer-Settlers......Page 211
4.7.4 Centrifugal Contactor......Page 215
4.7.5 Rotary Annular Contactor......Page 216
4.7.7 Spray Column......Page 217
4.7.8 Packed Columns......Page 219
4.7.9 Pulse Columns......Page 220
Nomenclature......Page 222
References......Page 223
Problems......Page 225
5.1.3 236 U and 237 U......Page 227
5.2.1 238 U Decay Series......Page 228
5.2.2 235 U Decay Series......Page 230
5.2.4 Radioactivity in Uranium Mines and Refineries......Page 231
5.3.3 Density and Thermal Expansion......Page 233
4.4.2 Uranium Oxides......Page 234
5.4.4 Uranium Nitride......Page 235
5.4.6 Uranium Halides......Page 236
5.4.7 Uranium Hexafluoride......Page 237
5.5.2 Uranium(IV) Solutions......Page 240
5.5.4 Solvent Extraction of Uranyl Compounds......Page 241
5.6.1 Principal Uranium-containing Minerals......Page 243
5.6.2 Low-Grade Sources of Uranium......Page 244
5.7.1 World Resources......Page 245
5.8.1 Steps in Producing Refined Uranium Compounds......Page 247
5.8.2 Concentration Methods......Page 248
5.8.4 Uranium Concentration by Carbonate Leaching......Page 249
5.8.5 Acid Leaching of Uranium Ores......Page 252
5.8.6 Solvent Extraction of Uranium from Leach Liquors......Page 255
5.8.7 Uranium Concentration by Anion Exchange......Page 261
5.8.8 Uranium from Seawater......Page 272
5.8.9 Radioactive Effluents from Uranium Mills......Page 275
5.9.2 Purification of Uranium Concentrates......Page 277
5.9.3 Conversion of UNH to UO 3......Page 280
5.9.4 Reduction of UO 3 to UO 2......Page 281
5.9.6 Fluorination of UF 4 to UF 6......Page 282
5.9.7 Allied Chemical Process for Converting Uranium Concentrates to UF 6......Page 283
5.10.1 Difficulties......Page 285
5.10.2 Alternative Methods......Page 286
5.10.4 Production of Uranium Metal by Reduction of UF 4 with Magnesium......Page 289
References......Page 291
Problems......Page 292
6.2 Thorium Isotopes......Page 294
6.2.1 Naturally Occurring Thorium Isotopes......Page 295
6.3 Thorium Radioactivity......Page 296
6.4.3 Density and Thermal Expansion......Page 298
6.4.6 Chemical Reactivity......Page 299
6.5.2 Thorium Dioxide......Page 300
6.5.3 Thorium Carbides......Page 301
6.5.6 Thorium Halides......Page 302
6.6.1 Solubility of Thorium Compounds in Aqueous Solution......Page 304
6.7.1 Principal Thorium-containing Minerals......Page 305
6.7.3 U.S. Thorium Resources......Page 306
6.7.5 Thorium Requirements......Page 307
6.8.1 Concentration of Monazite......Page 309
6.8.3 Processes for Opening Up Monazite......Page 310
6.8.4 Caustic Soda Process......Page 311
6.8.5 Sulfuric Acid Processes......Page 312
6.8.6 Separation of Thorium, Rare Earths, and Uranium from Monazite by Solvent Extraction......Page 315
6.8.7 Separation of Thorium from Other Minerals by Solvent Extraction......Page 317
6.9 Purification of Thorium......Page 318
6.10.1 Conversion of Thorium Nitrate to ThO 2......Page 320
6.10.2 Production of ThF 4......Page 321
6.10.4 Production of Thorium Metal......Page 322
References......Page 326
Problems......Page 328
7.1 Uses of Zirconium and Hafnium......Page 329
7.3 Production and Price......Page 330
7.4.1 Phases......Page 331
7.4.5 Chemical Reactivity......Page 332
7.5.1 Valence States......Page 334
7.5.2 Zirconium Dioxide......Page 335
7.5.5 Zirconium Hydrides......Page 336
7.5.8 Aqueous Chemistry of Zirconium and Hafnium......Page 338
7.6.2 Zircon Extraction Processes......Page 341
7.6.4 Alkali Fusion......Page 342
7.7.2 Fractional Crystallization......Page 344
7.7.3 Solvent Extraction of Thiocyanates......Page 345
7.7.4 Solvent Extraction with TBP......Page 348
7.7.5 Selective Reduction of Double Fluorides by Aluminum......Page 349
7.8.3 Kroll Process......Page 353
7.8.4 The Hot-Wire Process......Page 356
7.8.5 Electrolysis of Fused Salts......Page 358
References......Page 359
Problems......Page 361
8.1.1 Activity in Irradiated Fuel......Page 363
8.1.3 Neutron Absorption by Long-lived Fission Products......Page 369
8.1.4 Toxicity of Inhaled or Ingested Fission Products......Page 374
8.2.1 Actinide Radioactivity in Uranium and Uranium-Plutonium Fuel......Page 375
8.2.2 Preprocessing Storage Time for Irradiated Uranium Fuel......Page 380
8.2.4 Long-term Radioactivity of Actinides from Uranium-Plutonium Fuel......Page 383
8.2.5 Actinide Reactions in Thorium Fuel......Page 388
8.2.6 Growth of 232 U in Irradiated Uranium-Thorium Fuel......Page 390
8.2.7 Growth of 228 Th and Gamma Activity in Separated Uranium......Page 393
8.2.8 234 Th in Separated Thorium......Page 394
8.2.9 228 Th in Irradiated Thorium......Page 396
8.3 Effect of Fuel-Cycle Alternatives on Properties of Irradiated Fuel......Page 398
8.4.1 Tritium from Neutron Activation......Page 402
8.4.2 14 C......Page 407
8.4.4 Nonvolatile Radionuclides Activated in Fuel-Element Structure......Page 410
8.5.1 Light-Element (a, n) Reactions......Page 412
8.5.2 Neutrons from Spontaneous Fission......Page 414
Nomenclature......Page 415
References......Page 416
Problems......Page 417
9.1.1 Electronic Configurations......Page 418
9.1.2 Hydrolytic Behavior......Page 420
9.1.3 Complex Formation......Page 422
9.1.4 Oxidation-Reduction Reactions in Aqueous Solutions......Page 424
9.1.5 Summary......Page 429
9.2.1 Protactinium Isotopes......Page 431
9.2.3 Protactinium Compounds......Page 433
9.2.4 Protactinium Solution Chemistry......Page 434
9.3.1 Neptunium Isotopes......Page 435
9.3.3 Neptunium Compounds......Page 436
9.4.1 Plutonium Isotopes......Page 437
9.4.2 Plutonium Radioactivity......Page 439
9.4.4 Plutonium Metal......Page 441
9.4.5 Plutonium Compounds......Page 442
9.4.6 Plutonium Solution Chemistry......Page 447
9.4.7 Plutonium Conversion......Page 451
9.4.8 Production of Plutonium Metal......Page 457
9.5.1 Americium Isotopes......Page 460
9.5.3 Americium Compounds......Page 461
9.6.1 Curium Isotopes......Page 462
9.6.4 Curium Solution Chemistry......Page 464
References......Page 465
Problems......Page 467
10.2 Composition of Irradiated Fuel......Page 468
10.3.1 Bismuth Phosphate Process......Page 469
10.3.3 Trigly Process......Page 470
10.3.4 Butex Process......Page 471
10.3.5 Purex Process......Page 472
10.3.9 Pyrometallurgical Processes......Page 473
10.3.10 Pyrochemical Processes......Page 475
10.3.11 Fluoride Volatility Processes......Page 476
10.4.1 Steps in Purex Process......Page 477
10.4.2 Principal Reprocessing Plants......Page 479
10.4.3 Decladding......Page 481
10.4.4 Dissolution......Page 487
10.4.6 Off-gas Treatment......Page 491
10.4.7 Primary Decontamination......Page 495
10.4.8 Plutonium Partitioning......Page 497
10.4.9 Uranium Purification......Page 498
10.4.11 Solvent Reuse......Page 499
10.4.12 Aqueous Waste Processing......Page 500
10.4.14 Barnwell Nuclear Fuel Plant......Page 502
10.4.15 Distribution Equilibria in Purex Systems......Page 512
10.4.16 Example of Use of Purex Equilibrium Data......Page 515
10.4.17 Physical Properties of TBP and Its Mixtures with Hydrocarbons, Water, and Nitric Acid......Page 519
10.4.18 Degradation of TBP-Hydrocarbon Mixtures......Page 522
10.5.1 History......Page 525
10.5.2 Decladding Thorium-based Fuels......Page 526
10.5.4 Feed Pretreatment......Page 528
10.5.5 Thorex Solvent Extraction at Hanford......Page 529
10.5.6 Two-Stage Acid Thorex Process for High Burnup Fuel......Page 533
10.5.8 Phase Equilibria in Thorex Systems......Page 536
10.6.1 Differences from LWR Fuels......Page 538
10.6.2 Principal Steps in Reprocessing LMFBR Fuel......Page 540
10.6.4 Decay Heat Removal......Page 543
10.6.6 Voloxidation......Page 544
10.6.9 Purex Process for LMFBR Fuel......Page 545
10.7.3 Oxidation-Reduction Equilibria in Neptunium Recovery......Page 548
10.7.4 Distribution Coefficients in Neptunium Recovery......Page 551
10.7.5 Kinetics of Neptunium Oxidation and Reduction......Page 553
10.7.6 Neptunium Recovery Examples......Page 555
10.7.7 Neptunium Recovery Process......Page 556
10.8.1 Factors Affecting Criticality Safety......Page 558
10.8.2 Single-Parameter Limits for Fissile Nuclides......Page 559
10.8.3 Multiparameter, Concentration-dependent Limits for Criticality Control......Page 561
References......Page 567
Problems......Page 574
11. Radioactive Waste Management......Page 576
11.2.7 Actinide Partitioning......Page 612
11.3 Non-High-Level Waste......Page 615
11.3.1 Volume Reduction......Page 616
11.3.2 Recovery of Transuranium Elements......Page 618
11.3.3 Immobilization......Page 619
11.4 Special Radioactive Waste......Page 620
11.4.1 Tritium......Page 622
11.4.3 85 Kr......Page 623
11.5.1 Basic Considerations on Geologic Disposal......Page 624
11.5.2 Design of Repositories in Salt Formations......Page 627
11.5.3 Other Disposal Techniques......Page 628
11.6 Assessment of Long-Term Safety......Page 629
11.6.2 Significant Period of the Hazard......Page 631
References......Page 635
Problems......Page 637
12.1.1 235 U......Page 638
12.1.3 Lithium Isotopes......Page 639
12.2.1 235 U......Page 640
12.2.2 Deuterium......Page 646
12.2.3 Lithium Isotopes......Page 649
12.2.4 10 B......Page 650
12.2.7 Heavy Oxygen Isotopes......Page 654
12.3.1 Separating Unit, Stage, and Cascade......Page 655
12.3.2 Measures of Composition......Page 656
12.4.1 Terminology......Page 658
12.4.3 Differential Stage Separation......Page 659
12.5 Types of Cascade......Page 662
12.6 The Simple Cascade......Page 664
12.7 The Recycle Cascade......Page 665
12.7.1 Material-Balance Relations......Page 666
12.7.3 Minimum Number of Stages: Constant Separation Factor......Page 667
12.7.4 Minimum Reflux Ratio......Page 668
12.8.1 Heads Separation Factor......Page 669
12.8.3 Reflux Ratio......Page 671
12.8.5 Total Flow Rates......Page 673
12.9 Close-Separation Cascade......Page 676
12.10.1 Definitions......Page 678
12.10.3 Costs from Separative Work......Page 680
12.10.4 Toll Enrichment Charges......Page 681
12.10.5 Cost of Enriched Uranium......Page 682
12.10.6 Optimum Tails Composition......Page 683
12.11 Differential Equation for Separation Potential......Page 685
12.12 Equilibrium Time for Isotope Separation Plants......Page 688
12.12.1 Operating Procedure during Start-up......Page 689
12.12.2 Relation between Equilibrium Time and Inventory......Page 690
12.12.3 Inventory of Ideal Cascade......Page 691
12.12.4 Relation between Equilibrium Time and Separative Work......Page 692
12.12.5 Inventory Functions......Page 693
12.12.6 Equilibrium Time Example......Page 694
12.13 Squared-off Cascade......Page 695
12.14.1 Separation Factor......Page 696
12.14.2 Cut......Page 698
12.14.4 Special Cases......Page 699
12.14.5 Separative Capacity of Low-Enrichment, Two-Up, One-Down Ideal Cascade......Page 700
12.15 Three-Component Isotope Separation......Page 704
12.15.1 Separation Factors......Page 705
12.15.2 Three-Component Value Function......Page 706
12.15.3 Three-Component Separation Example......Page 708
12.15.4 Number of Stages......Page 709
Nomenclature......Page 712
References......Page 714
Problems......Page 716
13.1 Sources of Deuterium......Page 719
13.2 Deuterium Production Processes and Plants......Page 721
13.3.1 Terminology......Page 723
13.3.2 Relation of Separation Factor to Vapor Pressures......Page 724
13.3.3 Separation Factors......Page 725
13.4 Distillation of Hydrogen......Page 728
13.5.1 Primary Concentration of Deuterium......Page 733
13.5.2 Final Concentration of Deuterium by Distillation of Water......Page 748
13.6.1 Electrolysis of Water......Page 749
13.6.2 Analysis of Electrolysis......Page 753
13.7.1 Principle of Process......Page 760
13.7.2 History......Page 762
13.7.3 Trail Plant......Page 763
13.7.4 Recovery of Deuterium from Electrolytic Hydrogen by Exchange with Liquid Water Under Pressure......Page 764
13.8 Separation Factors in Deuterium Exchange Processes......Page 767
13.9 Number of Theoretical Stages in Exchange Columns......Page 771
13.10 Monothermal Exchange Processes......Page 773
13.10.1 Monothermal Ammonia-Hydrogen Exchange......Page 774
13.10.2 Monothermal Water-Hydrogen Sulfide Exchange......Page 776
13.11.1 Principle of Process......Page 778
13.11.2 History......Page 780
13.11.3 Simplified Analysis of Process......Page 781
13.11.4 Detailed Process Flow Sheet for GS Plant......Page 787
13.11.5 Materials of Construction......Page 789
13.11.6 Economics......Page 790
13.11.7 Detailed Analysis of Process......Page 791
13.11.8 Improved GS Flow Sheets......Page 800
13.12 Dual-Temperature Ammonia-Hydrogen Exchange Process......Page 803
13.13 Methylamine-Hydrogen Exchange Processes......Page 808
13.14 Dual-Temperature Water-Hydrogen Exchange Processes......Page 810
13.15 Exchange Processes for Separation of Lithium Isotopes......Page 811
16.1 Separation Factors......Page 812
16.2 Separation of Nitrogen Isotopes......Page 813
Nomenclature......Page 815
References......Page 817
Problems......Page 819
14.1 Introduction......Page 823
14.2 Isotopic Content of Uranium......Page 824
14.3.2 Current Industrial Uranium Enrichment Projects......Page 826
14.3.3 Processes Under Development......Page 828
14.4.2 History......Page 829
14.4.3 U.S. Process Equipment......Page 830
14.4.4 French Process Equipment......Page 832
14.4.5 Flow of Gases through Diffusion Barrier......Page 833
14.4.6 Mixing Efficiency......Page 842
14.4.7 Stage Characteristics......Page 846
14.4.8 Minimum Power Requirement of Gaseous Diffusion Process......Page 853
14.5.1 Principle......Page 858
14.5.2 History......Page 859
14.5.3 Description of Centrifuges......Page 861
14.5.4 Mechanical Performance of Centrifuges......Page 863
14.5.5 Separation Performance of Gas Centrifuge......Page 867
14.6.2 The Separation Nozzle Process......Page 887
14.6.3 The South African UCOR Process......Page 899
14.7 Mass Diffusion......Page 906
14.7.1 Mass Diffusion Stage......Page 907
14.7.2 Mass Diffusion Column......Page 908
14.7.3 Sweep Diffusion......Page 909
14.7.4 Separation of Uranium Isotopes by Cascade of Mass Diffusion Stages......Page 910
14.8.1 General Description......Page 917
14.8.2 Partial Separation of Uranium Isotopes......Page 918
14.8.3 Theory of Thermal Diffusion Separation......Page 922
14.9.1 Introduction......Page 925
14.9.2 Laser Isotope Separation of Uranium Metal Vapor......Page 926
14.9.3 Laser Isotope Separation of UF 6......Page 930
Nomenclature......Page 933
References......Page 936
Problems......Page 940
Appendix A: Fundamental Physical Constants......Page 943
B.2 Mass and Energy Equivalents......Page 944
B.3 Pressure Equivalents......Page 945
C.1 Nuclear Species......Page 946
C.5 Decay Energy......Page 947
C.6 Neutron Reactions......Page 948
References......Page 949
Appendix D Radioactivity Concentration Limits for Selected Radionuclides......Page 988
A......Page 991
B......Page 994
C......Page 997
D......Page 1003
E......Page 1008
F......Page 1011
G......Page 1014
H......Page 1017
I......Page 1022
K......Page 1024
L......Page 1025
M......Page 1027
N......Page 1030
O......Page 1035
P......Page 1037
R......Page 1046
S......Page 1051
T......Page 1060
U......Page 1068
W......Page 1074
X......Page 1075
Z......Page 1076