139 92 868KB
English Pages [74] Year 2019
2019 NRL PLASMA FORMULARY
A. S. Richardson Pulsed Power Physics Branch Plasma Physics Division Naval Research Laboratory Washington, DC 20375
Supported by The Office of Naval Research
CONTENTS Numerical and Algebraic . . . . . . . . . . . . . . . . . . . . Vector Identities
. . . . . . . . . . . . . . . . . . . . . . .
Differential Operators in Curvilinear Coordinates
. . . . . . . . .
3 4 6
Dimensions and Units . . . . . . . . . . . . . . . . . . . . . 10 International System (SI) Nomenclature Metric Prefixes
. . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . . . . . 13
Physical Constants (SI) . . . . . . . . . . . . . . . . . . . . . 14 Physical Constants (cgs)
. . . . . . . . . . . . . . . . . . . . 16
Formula Conversion . . . . . . . . . . . . . . . . . . . . . . 18 Maxwellâs Equations . . . . . . . . . . . . . . . . . . . . . . 19 Electricity and Magnetism
. . . . . . . . . . . . . . . . . . . 20
Electromagnetic Frequency/Wavelength Bands AC Circuits
. . . . . . . . . . 21
. . . . . . . . . . . . . . . . . . . . . . . . . 22
Dimensionless Numbers of Fluid Mechanics . . . . . . . . . . . . 23 Shocks
. . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fundamental Plasma Parameters Plasma Dispersion Function
. . . . . . . . . . . . . . . . 28
. . . . . . . . . . . . . . . . . . 30
Collisions and Transport . . . . . . . . . . . . . . . . . . . . 31 Approximate Magnitudes in Some Typical Plasmas . . . . . . . . . 40 Ionospheric Parameters
. . . . . . . . . . . . . . . . . . . . 42
Solar Physics Parameters . . . . . . . . . . . . . . . . . . . . 43 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . 44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities . . . . . . . . . . . . . . . . . . . . . . . 48 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Atomic Physics and Radiation . . . . . . . . . . . . . . . . . . 53 Atomic Spectroscopy
. . . . . . . . . . . . . . . . . . . . . 59
Complex (Dusty) Plasmas
. . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2
NUMERICAL AND ALGEBRAIC Gain in decibels of ð2 relative to ð1 ðº = 10 log10 (ð2 /ð1 ). To within two percent (2ð)1/2 â 2.5; ð2 â 10; ð3 â 20; 210 â 103 . Euler-Mascheroni constant1 ðŸ = 0.57722 Gamma Function Î(ð¥ + 1) = ð¥Î(ð¥): Î(1/6) = 5.5663
Î(3/5) = 1.4892
Î(1/5) = 4.5908
Î(2/3) = 1.3541
Î(1/4) = 3.6256
Î(3/4) = 1.2254
Î(1/3) = 2.6789
Î(4/5) = 1.1642
Î(2/5) = 2.2182
Î(5/6) = 1.1288
Î(1/2) = 1.7725 = âð
Î(1)
= 1.0
Binomial Theorem (good for |ð¥| < 1 or ðŒ = positive integer): â
ðŒ ðŒ(ðŒ â 1) 2 ðŒ(ðŒ â 1)(ðŒ â 2) 3 (1 + ð¥)ðŒ = â ( )ð¥ð â¡ 1 + ðŒð¥ + ð¥ + ð¥ +⊠ð 2! 3! ð=0 Rothe-Hagen identity2 (good for all complex ð¥, ðŠ, ð§ except when singular): ð
â ð=0
ðŠ ð¥ ð¥ + ðð§ ðŠ + (ð â ð)ð§ ( ) ( ) ð¥ + ðð§ ð ðâð ðŠ + (ð â ð)ð§ =
ð¥+ðŠ ð¥ + ðŠ + ðð§ ( ). ð¥ + ðŠ + ðð§ ð
Newbergerâs summation formula3 [good for ð nonintegral, Re (ðŒ + ðœ) > â1]: â
â ð=ââ
(â1)ð ðœðŒâðŸð (ð§)ðœðœ+ðŸð (ð§) ð = ðœ (ð§)ðœðœâðŸð (ð§). ð+ð sin ðð ðŒ+ðŸð
3
VECTOR IDENTITIES4 Notation: ð, ð, are scalars; A, B, etc., are vectors; ð is a tensor; ð is the unit dyad. (1)
Aâ
BÃC=AÃBâ
C=Bâ
CÃA = BÃCâ
A = Câ
AÃB = CÃAâ
B
(2)
A Ã (B Ã C) = (C Ã B) Ã A = (A â
C)B â (A â
B)C
(3)
A Ã (B Ã C) + B Ã (C Ã A) + C Ã (A Ã B) = 0
(4)
(A Ã B) â
(C Ã D) = (A â
C)(B â
D) â (A â
D)(B â
C)
(5)
(A Ã B) Ã (C Ã D) = (A Ã B â
D)C â (A Ã B â
C)D
(6)
â(ðð) = â(ðð) = ðâð + ðâð
(7)
â â
(ðA) = ðâ â
A + A â
âð
(8)
â Ã (ðA) = ðâ Ã A + âð Ã A
(9)
â â
(A Ã B) = B â
â Ã A â A â
â Ã B
(10) â Ã (A Ã B) = A(â â
B) â B(â â
A) + (B â
â)A â (A â
â)B (11) A Ã (â Ã B) = (âB) â
A â (A â
â)B (12) â(A â
B) = A Ã (â Ã B) + B Ã (â Ã A) + (A â
â)B + (B â
â)A (13) â2 ð = â â
âð (14) â2 A = â(â â
A) â â Ã â Ã A (15) â Ã âð = 0 (16) â â
â Ã A = 0 If ð1 , ð2 , ð3 are orthonormal unit vectors, a second-order tensor ð can be written in the dyadic form (17) ð = â
ð,ð
ððð ðð ðð
In cartesian coordinates the divergence of a tensor is a vector with components (18) (â â
ð)ð = â (âððð /âð¥ð ) ð
[This definition is required for consistency with Eq. (29)]. In general (19) â â
(AB) = (â â
A)B + (A â
â)B 4
(20) â â
(ðð) = âð â
ð + ðâ â
ð Let r = i ð¥ + j ðŠ + k ð§ be the radius vector of magnitude ð, from the origin to the point ð¥, ðŠ, ð§. Then (21) â â
r = 3 (22) â Ã r = 0 (23) âð = r/ð (24) â(1/ð) = âr/ð3 (25) â â
(r/ð3 ) = 4ðð¿(r) (26) âr = ð If ð is a volume enclosed by a surface ð and ðS = nðð, where n is the unit normal outward from ð, (27) â« ððâð = â« ðSð ð
ð
(28) â« ððâ â
A = â« ðS â
A ð
ð
(29) â« ððâ â
ð = â« ðS â
ð ð
ð
(30) â« ððâ à A = â« ðS à ðŽ ð
ð 2
(31) â« ðð(ðâ ð â ðâ2 ð) = â« ðS â
(ðâð â ðâð) ð
ð
(32) â« ðð(A â
â Ã â Ã B â B â
â Ã â Ã A) ð
= â« ðS â
(B Ã â Ã A â A Ã â Ã B) ð
If ð is an open surface bounded by the contour ð¶, of which the line element is ðl, (33) â« ðS à âð = â® ðlð ð
ð¶
5
(34) â« ðS â
â Ã A = â® ðl â
A ð
ð¶
(35) â«(ðS à â) à A = â® ðl à A ð
ð¶
(36) â« ðS â
(âð Ã âð) = â® ððð = â â® ð ðð ð
ð¶
ð¶
DIFFERENTIAL OPERATORS IN CURVILINEAR COORDINATES5 Cylindrical Coordinates (ð, ð, ð§) Differential volume Line element ðð = ð ðð ðð ðð§
ðð¥ = ðð ð« + ððð ð + ðð§ ð³
Relation to cartesian coordinates ð¥ = ð cos ð
ð± = cos ð ð« â sin ð ð
ðŠ = ð sin ð
ð² = sin ð ð« + cos ð ð
ð§=ð§
ð³=ð³
Divergence ââ
A= Gradient (âð)ð =
âðŽð§ 1 â 1 âðŽð (ððŽð ) + + ð âð ð âð âð§ âð ; âð
(âð)ð =
1 âð ; ð âð
(âð)ð§ =
Curl
âðŽð 1 âðŽð§ â ð âð âð§ âðŽð âðŽð§ (â à A)ð = â âð§ âð 1 âðŽð 1 â (ððŽð ) â (â à A)ð§ = ð âð ð âð Laplacian (â à A)ð =
â2 ð =
6
âð 1 â 2 ð â2 ð 1 â (ð ) + 2 2 + 2 ð âð âð ð âð âð§
âð âð§
Laplacian of a vector ðŽ 2 âðŽð â 2ð ð2 âð ð ðŽð 2 âðŽð 2 2 (â A)ð = â ðŽð + 2 â 2 ð âð ð (â2 A)ð = â2 ðŽð â
(â2 A)ð§ = â2 ðŽð§ Components of (A â
â)B ðŽð âðµð ðŽð ðµð âðµð âðµ + + ðŽð§ ð â âð ð âð âð§ ð ðŽð âðµð ðŽð ðµð âðµð âðµð (A â
âB)ð = ðŽð + + ðŽð§ + âð ð âð âð§ ð ðŽð âðµð§ âðµð§ âðµð§ (A â
âB)ð§ = ðŽð + + ðŽð§ âð ð âð âð§ Divergence of a tensor ððð âð 1 â 1 âððð (â â
ð)ð = (ðð ) + + ð§ð â ð âð ðð ð âð âð§ ð âðð§ð ððð 1 â 1 âððð (â â
ð)ð = (ðð ) + + + ð âð ðð ð âð âð§ ð âðð§ð§ 1 â 1 âððð§ (â â
ð)ð§ = (ðð ) + + ð âð ðð§ ð âð âð§ (A â
âB)ð = ðŽð
Spherical Coordinates (ð, ð, ð) Differential volume Line element ðð = ð2 sin ð ðð ðð ðð
ðð¥ = ðð ð« + ððð ð + ð sin ððð ð
Relation to cartesian coordinates ð¥ = ð sin ð cos ð
ð± = sin ð cos ð ð« + cos ð cos ð ð â sin ð ð
ðŠ = ð sin ð sin ð
ð² = sin ð sin ð ð« + cos ð sin ð ð + cos ð ð
ð§ = ð cos ð
ð³ = cos ð ð« â sin ð ð
Divergence ââ
A=
1 â 2 1 â 1 âðŽð (ð ðŽð ) + (sin ððŽð ) + ð sin ð âð ð sin ð âð ð2 âð 7
Gradient (âð)ð = Curl
âð ; âð
(âð)ð =
1 âð ; ð âð
(âð)ð =
1 âð ð sin ð âð
1 â 1 âðŽð (sin ððŽð ) â ð sin ð âð ð sin ð âð 1 âðŽð 1 â (â à A)ð = â (ððŽð ) ð âð ð sin ð âð 1 â 1 âðŽð (â à A)ð = (ððŽð ) â ð âð ð âð (â à A)ð =
Laplacian â2 ð =
âð â2 ð 1 â 2 âð 1 â 1 (ð )+ 2 (sin ð ) + 2 2 âð âð ð2 âð ð sin ð âð 2 ð sin ð âð
Laplacian of a vector âðŽð 2 cot ððŽð 2ðŽð 2 âðŽð 2 â 2 â â 2 ð2 ð âð ð2 ð sin ð âð ðŽð 2 âðŽð 2 cos ð âðŽð (â2 A)ð = â2 ðŽð + 2 â â 2 2 ð âð ð2 sin ð ð2 sin ð âð ðŽ âðŽð 2 2 cos ð âðŽð ð + 2 + (â2 A)ð = â2 ðŽð â 2 2 ð2 sin ð ð sin ð âð ð2 sin ð âð (â2 A)ð = â2 ðŽð â
Components of (A â
â)B ðŽð âðµð ðŽð ðµð + ðŽð ðµð ðŽ âðµ âðµð + ð ð + â âð ð âð ð ð sin ð âð cot ððŽð ðµð ðŽð âðµð âðµð ðŽð âðµð ðŽð ðµð + + â (A â
âB)ð = ðŽð + âð ð âð ð ð ð sin ð âð âðµð ðŽð âðµð ðŽð ðµð cot ððŽð ðµð ðŽð âðµð (A â
âB)ð = ðŽð + + + + âð ð âð ð ð ð sin ð âð (A â
âB)ð = ðŽð
Divergence of a tensor (â â
ð)ð =
1 â 2 â 1 (ð ððð ) + (sin ðððð ) ð sin ð âð ð2 âð +
8
ððð + ððð 1 âððð â ð ð sin ð âð
(â â
ð)ð =
(â â
ð)ð =
â 1 â 2 1 (sin ðððð ) (ð ððð ) + ð sin ð âð ð2 âð cot ðððð ð 1 âððð + + ðð â ð ð ð sin ð âð 1 â 2 1 â (ð ððð ) + (sin ðððð ) ð sin ð âð ð2 âð ððð cot ðððð 1 âððð + + + ð ð ð sin ð âð
9
DIMENSIONS AND UNITS To get the value of a quantity in Gaussian units, multiply the value expressed in SI units by the conversion factor. Multiples of 3 in the conversion factors result from approximating the speed of light ð = 2.9979 Ã 1010 cm/sec â 3 Ã 1010 cm/sec. Dimensions SI Units SI Gaussian
Physical Quantitiy
Symbol
Capacitance
ð¡2 ð2 â ðâ2 ð1/2 â3/2 ð ð ð¡ ð ð1/2 ð â3 â3/2 ð¡ 2 ð¡ð â ðâ2 ð¡ ð¡ð2 1 ð ðâ3 ð¡ ð ð1/2 â3/2 ðŒ, ð ð¡ ð¡2 ð ð1/2 J, j â2 ð¡ â1/2 ð¡2 ð ð ð â3 â3 ð ð1/2 D â2 â1/2 ð¡ ðâ ð1/2 E ð¡2 ð â1/2 ð¡ â°, ðâ2 ð1/2 â1/2 Emf ð¡2 ð ð¡ ðâ2 ðâ2 ð, ð ð¡2 ð¡2 ð ð ð€, ð âð¡2 âð¡2
Charge Charge density Conductance Conductivity Current Current density Density Displacement Electric field Electromotance Energy Energy Density 10
ð¶
Conversion Gaussian Factor Units
farad
9 Ã 1011
cm
coulomb
3 Ã 109
statcoulomb
coulomb /m3
3 Ã 103
statcoulomb /cm3
siemens
9 Ã 1011
cm/sec
siemens /m 9 Ã 109
secâ1
3 Ã 109
statampere
ampere /m2 3 Ã 105
statampere /cm2
kg/m3
10â3
g/cm3
coulomb /m2
12ð Ã 105
statcoulomb /cm2
ampere
volt/m volt
1 Ã 10â4 3 1 Ã 10â2 3
statvolt/cm statvolt
joule
107
erg
joule/m3
10
erg/cm3
Physical Quantitiy
Symbol
Force
F
Frequency
ð, ð
Impedance ð Inductance ð¿
Dimensions SI Units SI Gaussian ðâ ð¡2 1 ð¡ ðâ2 ð¡ð2 ðâ2 ð2
ðâ ð¡2 1 ð¡ ð¡ â ð¡2 â
â
â
meter (m)
102
centimeter (cm)
ampereâ turn/m
4ð Ã 10â3
oersted
weber
108
maxwell
tesla
104
gauss
Length
â
Magnetic intensity
Magnetomotance
ð âð¡ ðâ2 Ί ð¡ð ð B ð¡ð ð2 ð ð, ð ð¡ ð M âð¡ â³, ð Mmf ð¡
ð1/2 â1/2 ð¡ ð1/2 â3/2 ð¡ ð1/2 â1/2 ð¡ ð1/2 ð5/2 ð¡ ð1/2 â1/2 ð¡ ð1/2 â1/2 ð¡2
Mass
ð, ð ð
ð
Magnetic flux Magnetic induction Magnetic moment Magnetization
H
Momentum p, P Momentum density Permeability ð
Conversion Gaussian Factor Units
ðâ ð¡ ð â2 ð¡ ðâ ð2
ðâ ð¡ ð â2 ð¡ 1
newton
105
dyne
hertz
1
hertz
ohm henry
1 Ã 10â11 9 1 Ã 10â11 9
sec/cm sec2 /cm
ampereâm2 103
oerstedâcm3
ampereâ turn/m
4ð Ã 10â3
oersted
ampereâ turn
4ð 10
gilbert
kilogram (kg)
103
gram (g)
kgâm/s
105
gâcm/sec
kg/m2 âs
10â1
g/cm2 âsec
henry/m
1 Ã 107 4ð
â
11
Physical Quantitiy
Permittivity ð Polarization P Potential
ð, ð
Power
ð
Power density Pressure
Dimensions SI Units SI Gaussian
Symbol
ð, ð
Reluctance â
ð¡2 ð2 1 ðâ3 ð ð1/2 2 â â1/2 ð¡ ðâ2 ð1/2 â1/2 ð¡2 ð ð¡ ðâ2 ðâ2 ð¡3 ð¡3 ð ð âð¡3 âð¡3 ð ð âð¡2 âð¡2 ð2 1 ðâ2 â ðâ2 ð¡ ð¡ð2 â ðâ3 ð¡ ð¡ð2
Conversion Gaussian Factor Units
farad/m
36ð Ã 109
coulomb /m2
3 Ã 105
statcoulomb /cm2
volt
1 Ã 10â2 3
statvolt
watt
107
erg/sec
watt/m3
10
erg/cm3 âsec
pascal
10
dyne/cm2
â
ampereâ 4ð à 10â9 turn /weber 1 ohm à 10â11 9 1 ohmâm à 10â9 9
cmâ1
Resistance
ð
Resistivity
ð, ð
Thermal conductivity
ð
, ð
ðâ ð¡3
ðâ ð¡3
watt/mâdeg 105 (K)
erg/cmâsecâ deg (K)
Time
ð¡
ð¡
ð¡
second (s)
1
second (sec)
ðâ ð¡ð â ð¡ ð âð¡ 1 ð¡ ðâ2 ð¡2
ð1/2 â1/2 ð¡ â ð¡ ð âð¡ 1 ð¡ ðâ2 ð¡2
weber/m
106
gaussâcm
m/s
102
cm/sec
kg/mâs
10
poise
sâ1
1
secâ1
joule
107
erg
Vector potential
A
Velocity
v
Viscosity
ð, ð
Vorticity
ð
Work
ð
12
sec/cm sec
INTERNATIONAL SYSTEM (SI) NOMENCLATURE6 Physical Quantity
Name of Unit
Symbol Physical Quantity for Unit
Name Symbol of Unit for Unit
*length *mass *time *current *temperature *amount of substance *luminous intensity â plane angle â solid angle frequency energy force pressure power electric charge electric potential
meter kilogram second ampere kelvin
m kg s A K
ohm
*SI base unit
mole
mol
candela
cd
radian steradian hertz joule newton pascal watt
rad sr Hz J N Pa W
coulomb C volt
V
â Supplementary unit
electric resistance electric conductance electric capacitance magnetic flux magnetic inductance magnetic intensity luminous flux illuminance â¡activity (of a radioactive source) §absorbed dose (of ionizing radiation)
Ω
siemens S farad
F
weber
Wb
henry
H
tesla lumen lux
T lm lx
becquerel Bq
gray
Gy
â¡Common non-SI unit is curie (Ci): 1 Ci = 3.7 à 1010 Bq 1 Bq = 1 decay per sec §Common non-SI unit is rad: 100 rad = 1 Gy = 1 J / kG
METRIC PREFIXES Multiple â1
10 10â2 10â3 10â6 10â9 10â12 10â15 10â18
Prefix
Symbol
Multiple
Prefix
Symbol
deci centi milli micro nano pico femto atto
d c m Ό n p f a
10 102 103 106 109 1012 1015 1018
deca hecto kilo mega giga tera peta exa
da h k M G T P E 13
PHYSICAL CONSTANTS (SI)7 Physical Quantitiy Boltzmann constant Elementary charge Electron mass Proton mass Gravitational constant Planck constant
Symbol
ð ð ðð ðð ðº â â = â/2ð Speed of light in vacuum ð Permittivity of free space ð0 Permeability of free space ð0 Proton/electron mass ratio ðð /ðð Electron charge/mass ratio ð/ðð ðð4 Rydberg constant ð
â = 8ð0 2 ðâ3 Bohr radius ð0 = ð0 â2 /ððð2 Atomic cross section ðð0 2 Classical electron radius ðð = ð2 /4ðð0 ðð2 Thomson cross section (8ð/3)ðð 2 Compton wavelength of â/ðð ð electron â/ðð ð Fine-structure constant ðŒ = ð2 /2ð0 âð ðŒâ1 First radiation constant ð1 = 2ðâð2 Second radiation constant ð2 = âð/ð Stefan-Boltzmann ð constant Wavelength associated ð0 = âð/ð with 1 eV Frequency associated with ð0 = ð/â 1 eV 14
Value
Units
1.3807 Ã 10â23 1.6022 Ã 10â19 9.1094 Ã 10â31 1.6726 Ã 10â27 6.6726 Ã 10â11 6.6261 Ã 10â34 1.0546 Ã 10â34 2.9979 Ã 108 8.8542 Ã 10â12 4ð Ã 10â7 1.8362 Ã 103 1.7588 Ã 1011
J Kâ1 C kg kg m3 sâ2 kgâ1 Js Js m sâ1 F mâ1 H mâ1
1.0974 Ã 10
7
C kgâ1 mâ1
5.2918 Ã 10â11
m
8.7974 Ã 10â21 2.8179 Ã 10â15 6.6525 Ã 10â29 2.4263 Ã 10â12 3.8616 Ã 10â13 7.2972 Ã 10â3 137.038 3.7418 Ã 10â16 1.4388 Ã 10â2 5.6705 Ã 10â8
m2 m m2 m m
W m2 mK W mâ2 Kâ4
1.2398 Ã 10â6
m
2.4180 Ã 1014
Hz
Physical Quantitiy Wave number associated with 1 eV Energy associated with with 1 eV Energy associated with 1 mâ1 Energy associated with 1 Rydberg Energy associated with 1 Kelvin Temperature associated with 1 eV Avogadro number Faraday constant Gas constant Loschmidtâs number (no. density at STP) Atomic mass unit Standard temperature Atmospheric pressure Pressure of 1 mm Hg (1 torr) Molar volume at STP Molar weight of air calorie (cal) Gravitational acceleration
Symbol
Value
Units 5
mâ1
ð0 = ð/âð
8.0655 Ã 10
âð0
1.6022 Ã 10â19
J
âð
1.9864 Ã 10â25
J
ðð3 /8ð0 2 â2
13.606
eV
ð/ð
8.6174 Ã 10â5
eV
ð/ð
1.1604 Ã 104
K
ððŽ ð¹ = ððŽ ð ð
= ððŽ ð ð0
6.0221 Ã 1023 9.6485 Ã 104 8.3145 2.6868 Ã 1025
molâ1 C molâ1 J Kâ1 molâ1 mâ3
ðáµ ð0 ð0 = ð0 ðð0
1.6605 Ã 10â27 273.15 1.0133 Ã 105 1.3332 Ã 102
kg K Pa Pa
ð0 = ð
ð0 /ð0 ðair
2.2414 Ã 10â2 2.8971 Ã 10â2 4.1868 9.8067
m3 kg J m sâ2
ð
15
PHYSICAL CONSTANTS (CGS)7 Physical Quantitiy
Symbol
Value
Units
Boltzmann constant Elementary charge
ð ð
1.3807 Ã 10â16 4.8032 Ã 10â10
Electron mass Proton mass Gravitational constant
ðð ðð ðº
9.1094 Ã 10â28 1.6726 Ã 10â24 6.6726 Ã 10â8
erg/deg (K) statcoulomb (statcoul) g g dynecm2 /g2 erg-sec erg-sec cm/sec
Planck constant
â â = â/2ð Speed of light in vacuum ð Proton/electron mass ratio ðð /ðð Electron charge/mass ratio ð/ðð 2ð2 ðð4 Rydberg constant ð
â = ðâ3 Bohr radius ð0 = â2 /ðð2 Atomic cross section ðð0 2 Classical electron radius ðð = ð2 /ðð2 Thomson cross section (8ð/3)ðð 2 Compton wavelength of â/ðð ð electron â/ðð ð Fine-structure constant ðŒ = ð2 /âð ðŒâ1 First radiation constant ð1 = 2ðâð2 Second radiation constant Stefan-Boltzmann constant Wavelength associated with 1 eV Frequency associated with 1 eV 16
6.6261 Ã 10â27 1.0546 Ã 10â27 2.9979 Ã 1010 1.8362 Ã 103 5.2728 Ã 1017 1.0974 Ã 10
5
5.2918 Ã 10â9 8.7974 Ã 10â17 2.8179 Ã 10â13 6.6525 Ã 10â25 2.4263 Ã 10â10 3.8617 Ã 10â11 7.2972 Ã 10â3 137.038 3.7418 Ã 10â5
statcoul/g cmâ1 cm cm2 cm cm2 cm cm
ð2 = âð/ð ð
1.4388 5.6705 Ã 10â5
ð0
1.2398 Ã 10â4
ergcm2 /sec cm-deg (K) erg/cm2 sec-deg4 cm
ð0
2.4180 Ã 1014
Hz
Physical Quantitiy Wave number associated with 1 eV Energy associated with 1 eV Energy associated with 1 cmâ1 Energy associated with 1 Rydberg Energy associated with 1 deg Kelvin Temperature associated with 1 eV Avogadro number Faraday constant Gas constant Loschmidtâs number (no. density at STP) Atomic mass unit Standard temperature Atmospheric pressure Pressure of 1 mm Hg (1 torr) Molar volume at STP Molar weight of air calorie (cal) Gravitational acceleration
Symbol ð0
Value 8.0655 Ã 10
Units 3
cmâ1
1.6022 Ã 10â12
erg
1.9864 Ã 10â16
erg
13.606
eV
8.6174 Ã 10â5
eV
1.1604 Ã 104
deg (K)
ððŽ ð¹ = ððŽ ð ð
= ððŽ ð
6.0221 Ã 1023 2.8925 Ã 1014 8.3145 Ã 107
ð0
2.6868 Ã 1019
molâ1 statcoul/mol erg/degmol cmâ3
ðáµ ð0 ð0 = ð0 ðð0
1.6605 Ã 10â24 273.15 1.0133 Ã 106 1.3332 Ã 103
g deg (K) dyne/cm2 dyne/cm2
ð0 = ð
ð0 /ð0 ðair
2.2414 Ã 104 28.971 4.1868 Ã 107 980.67
cm3 g erg cm/sec2
ð
17
FORMULA CONVERSION8 Here ðŒ = 10 cm m , ðœ = 107 erg Jâ1 , ð0 = 8.8542 à 10â12 F mâ1 , ð0 = 4ð à 10â7 H mâ1 , ð = (ð0 ð0 )â1/2 = 2.9979 à 108 m sâ1 , and â = 1.0546 à 10â34 J s. To derive a dimensionally correct SI formula from one expressed in Gaussian Ì where ð Ì is the counits, substitute for each quantity according to ðÌ = ðð, efficient in the second column of the table corresponding to ð (overbars denote variables expressed in Gaussian units). Thus, the formula ð0Ì = â2Ì /ðÌ ð2Ì for the Bohr radius becomes ðŒð0 = (âðœ)2 /[(ððœ/ðŒ2 ) (ð2 ðŒðœ/4ðð0 )], or ð0 = ð0 â2 /ððð2 . To go from SI to natural units in which â = ð = 1 (distinguished Ì ð,Ì where ð Ì is the coefficient corresponding to by a circumflex), use ð = ðâ1 ð in the third column. Thus ð0Ì = 4ðð0 â2 /[(ðâ/ð)( Ì ð2Ì ð0 âð)] = 4ð/ðÌ ð2Ì . (In transforming from SI units, do not substitute for ð0 , ð0 , or ð.) 2
â1
Physical Quantity
Gaussian Units to SI
Natural Units to SI
Capacitance Charge Charge density Current Current density Electric field Electric potential Electric conductivity Energy Energy density Force Frequency Inductance Length Magnetic induction Magnetic intensity Mass Momentum Power Pressure Resistance Time Velocity
ðŒ/4ðð0 (ðŒðœ/4ðð0 )1/2 (ðœ/4ððŒ5 ð0 )1/2 (ðŒðœ/4ðð0 )1/2 (ðœ/4ððŒ3 ð0 )1/2 (4ððœð0 /ðŒ3 )1/2 (4ððœð0 /ðŒ)1/2 (4ðð0 )â1 ðœ ðœ/ðŒ3 ðœ/ðŒ 1 4ðð0 /ðŒ ðŒ (4ððœ/ðŒ3 ð0 )1/2 (4ðð0 ðœ/ðŒ3 )1/2 ðœ/ðŒ2 ðœ/ðŒ ðœ ðœ/ðŒ3 4ðð0 /ðŒ 1 ðŒ
ð0 â1 (ð0 âð)â1/2 (ð0 âð)â1/2 (ð0 /âð)1/2 (ð0 /âð)1/2 (ð0 /âð)1/2 (ð0 /âð)1/2 ð0 â1 (âð)â1 (âð)â1 (âð)â1 ðâ1 ð0 â1 1 (ð0 âð)â1/2 (ð0 /âð)1/2 ð/â ââ1 (âð2 )â1 (âð)â1 (ð0 /ð0 )1/2 ð ðâ1
18
MAXWELLâS EQUATIONS Name or Description
SI
Gaussian
âB âð¡ âD âÃð= +ð âð¡ ââ
D=ð ââ
B=0
1 âB ð âð¡ 1 âD 4ð âÃð= + ð ð âð¡ ð â â
D = 4ðð ââ
B=0
Lorentz force on charge ð
ð (E + ð¯ à B)
ð (E +
Constitutive relations
D = ðE B = ðð
Faradayâs law AmpÚreâs law Poisson equation [Absence of magnetic monopoles]
âÃE=â
âÃE=â
1 ð¯ à B) ð D = ðE B = ðð
In a plasma, ð â ð0 = 4ð à 10â7 H mâ1 (Gaussian units: ð â 1). The permittivity satisfies ð â ð0 = 8.8542 à 10â12 F mâ1 (Gaussian: ð â 1) provided that all charge is regarded as free. Using the drift approximation ð¯â = E à B/ðµ 2 to calculate polarization charge density gives rise to a dielectric constant ðŸ â¡ ð/ð0 = 1 + 36ð à 109 ð/ðµ2 (SI) = 1 + 4ððð2 /ðµ 2 (Gaussian), where ð is the mass density. The electromagnetic energy in volume ð is given by ð= =
1 â« ðð(ð â
B + E â
D) 2 ð
(SI)
1 â« ðð(ð â
B + E â
D) 8ð ð
(Gaussian).
Poyntingâs theorem is âð + â« ð â
ðð = â â« ððð â
E, âð¡ ð ð where ð is the closed surface bounding ð and the Poynting vector (energy flux across ð) is given by ð = E Ã ð (SI) or ð = ðE Ã ð/4ð (Gaussian).
19
ELECTRICITY AND MAGNETISM In the following, ð = dielectric permittivity, ð = permeability of conductor, ðâ² = permeability of surrounding medium, ð = conductivity, ð = ð/2ð = radiation frequency, ð
ð = ð/ð0 and ð
ð = ð/ð0 . Where subscripts are used, â1â denotes a conducting medium and â2â a propagating (lossless dielectric) medium. All units are SI unless otherwise specified. Permittivity of free space Permeability of free space Resistance of free space Capacity of parallel plates of area ðŽ, separated by distance ð Capacity of concentric cylinders of length ð, radii ð, ð Capacity of concentric spheres of radii ð, ð Self-inductance of wire of length ð, carrying uniform current Mutual inductance of parallel wires of length ð, radius ð, separated by distance ð Inductance of circular loop of radius ð, made of wire of radius ð, carrying uniform current Relaxation time in a lossy medium Skin depth in a lossy medium Wave impedance in a lossy medium Transmission coefficient at conducting surface9 (good only for ð ⪠1) Field at distance ð from straight wire carrying current ðŒ (amperes) Field at distance ð§ along axis from circular loop of radius ð carrying current ðŒ 20
ð0 = 8.8542 Ã 10â12 F mâ1 ð0 = 4ð Ã 10â7 H mâ1 = 1.2566 Ã 10â6 H mâ1 ð
0 = (ð0 /ð0 )1/2 = 376.73 Ω ð¶ = ððŽ/ð ð¶ = 2ððð/ ln(ð/ð) ð¶ = 4ðððð/(ð â ð) ð¿ = ðð/8ð ð¿ = (ðâ² ð/4ð) [1 + 4 ln(ð/ð)]
ð¿ = ð {ðâ² [ln(8ð/ð) â 2] + ð/4}
ð = ð/ð ð¿ = (2/ððð)1/2 = (ðððð)â1/2 1/2 ð = [ð/(ð + ðð/ð)] â4 ð = 4.22 Ã 10 (ðð
ð1 ð
ð2 /ð)1/2
ðµð = ððŒ/2ðð tesla = 0.2ðŒ/ð gauss (ð in cm) ðµð§ = ðð2 ðŒ/[2(ð2 + ð§2 )3/2 ]
ELECTROMAGNETIC FREQUENCY/WAVELENGTH BANDS10 Frequency Range Designation ULF* VF* ELF VLF LF MF HF VHF UHF SHFâ S G J H X M P K R EHF Submillimeter Infrared Visible Ultraviolet X Ray Gamma Ray
Lower 30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 2.6 3.95 5.3 7.05 8.2 10.0 12.4 18.0 26.5 30 GHz 300 GHz 3 THz 430 THz 750 THz 30 PHz 3 EHz
Wavelength Range
Upper
Lower
30 Hz 300 Hz 3 kHz 30 kHz 300 kHz 3 MHz 30 MHz 300 MHz 3 GHz 30 GHz 3.95 5.85 8.2 10.0 12.4 15.0 18.0 26.5 40.0 300 GHz 3 THz 430 THz 750 THz 30 PHz 3 EHz
10 Mm 1 Mm 100 km 10 km 1 km 100 m 10 m 1m 10 cm 1 cm 7.6 5.1 3.7 3.0 2.4 2.0 1.67 1.1 0.75 1 mm 100 ÎŒm 700 nm 400 nm 10 nm 100 pm
Upper 10 Mm 1 Mm 100 km 10 km 1 km 100 m 10 m 1m 10 cm 11.5 7.6 5.7 4.25 3.7 3.0 2.4 1.67 1.1 1 cm 1 mm 100 ÎŒm 700 nm 400 nm 10 nm 100 pm
In spectroscopy the angstrom (Ã
) is sometimes used (1Ã
= 10â8 cm = 0.1 nm). *The boundary between ULF and VF (voice frequencies) is variously defined. â The SHF (microwave) band is further subdivided approximately as shown.11 21
AC CIRCUITS For a resistance ð
, inductance ð¿, and capacitance ð¶ in series with a voltage source ð = ð0 exp(ððð¡) (here ð = ââ1), the current is given by ðŒ = ðð/ðð¡, where ð satisfies ð¿
ð2 ð ðð ð +ð
+ = ð. ðð¡ ð¶ ðð¡2
Solutions are ð(ð¡) = ðð + ðð¡ , ðŒ(ð¡) = ðŒð + ðŒð¡ , where the steady state is ðŒð = ðððð = ð/ð in terms of the impedance ð = ð
+ ð(ðð¿ â 1/ðð¶) and ðŒð¡ = ððð¡ /ðð¡. For initial conditions ð(0) â¡ ð0 = ð0Ì + ðð , ðŒ(0) â¡ ðŒ0 , the transients can be of three types, depending on Î = ð
2 â 4ð¿/ð¶: (a) Overdamped, Î > 0. ðŒ + ðŸ+ ð0Ì ðŒ + ðŸâ ð0Ì ðð¡ = 0 exp(âðŸâ ð¡) â 0 exp(âðŸ+ ð¡), ðŸ+ â ðŸâ ðŸ+ â ðŸâ ðŸ (ðŒ + ðŸ+ ð0Ì ) ðŸ (ðŒ + ðŸâ ð0Ì ) ðŒð¡ = + 0 exp(âðŸ+ ð¡) â â 0 exp(âðŸâ ð¡). ðŸ+ â ðŸâ ðŸ+ â ðŸâ (b) Critically damped, Î = 0. ðð¡ = [ð0Ì + (ðŒ0 + ðŸð
ð0Ì )ð¡] exp(âðŸð
ð¡), ðŒð¡ = [ðŒ0 â (ðŒ0 + ðŸð
ð0Ì )ðŸð
ð¡] exp(âðŸð
ð¡).
(c) Underdamped, Î < 0. ðŸ ð Ì + ðŒ0 ðð¡ = [ ð
0 sin ð1 ð¡ + ð0Ì cos ð1 ð¡] exp(âðŸð
ð¡), ð1 ðŒð¡ = [ðŒ0 cos ð1 ð¡ â
(ð1 2 + ðŸð
2 )ð0Ì + ðŸð
ðŒ0 sin(ð1 ð¡)] exp(âðŸð
ð¡). ð1
Here ðŸÂ± = (ð
± Î1/2 )/2ð¿, ðŸð
= ð
/2ð¿, and ð1 = ð0 (1 â ð
2 ð¶/4ð¿)1/2 , where ð0 = (ð¿ð¶)â1/2 is the resonant frequency. At ð = ð0 , ð = ð
. The quality of the circuit is ð = ð0 ð¿/ð
. Instability results when ð¿, ð
, ð¶ are not all of the same sign.
22
DIMENSIONLESS NUMBERS OF FLUID MECHANICS12 Name(s)
Symbol Definition
Significance
Alfvén, Kármán Al, Ka ððŽ /ð
*(Magnetic force/ inertial force)1/2 Bond Bd (ðâ² â ð)ð¿2 ð/Σ Gravitational force/ surface tension Boussinesq B ð/(2ðð
)1/2 (Inertial force/ gravitational force)1/2 Brinkman Br ðð 2 /ðÎð Viscous heat/conducted heat Capillary Cp ðð/Σ Viscous force/surface tension Carnot Ca (ð2 â ð1 )/ð2 Theoretical Carnot cycle efficiency Cauchy, Hooke Cy, Hk ðð 2 /Î = M2 Inertial force/compressibility force Chandrasekhar Ch ðµ 2 ð¿2 /ððð Magnetic force/dissipative forces Clausius Cl ð¿ð 3 ð/ðÎð Kinetic energy flow rate/heat conduction rate 2 Cowling C (ððŽ /ð)2 = Al Magnetic force/inertial force Crispation Cr ðð
/Σð¿ Effect of diffusion/effect of surface tension Dean D ð·3/2 ð/ð(2ð)1/2 Transverse flow due to curvature/longitudinal flow Drag coefficient ð¶ð· (ðâ² â ð)ð¿ð/ Drag force/inertial force ðâ² ð 2 Eckert E ð 2 /ðð Îð Kinetic energy/change in thermal energy Ekman Ek (ð/2Ωð¿2 )1/2 = (Viscous force/Coriolis force)1/2 (Ro/Re)1/2 Euler Eu Îð/ðð 2 Pressure drop due to friction/dynamic pressure Froude Fr ð/(ðð¿)1/2 â (Inertial force/gravitational or ð/ðð¿ buoyancy force)1/2 GayâLussac Ga 1/ðœÎð Inverse of relative change in volume during heating Grashof Gr ðð¿3 ðœÎð/ð2 Buoyancy force/viscous force Hall coefficient ð¶ð» ð/ðð¿ Gyrofrequency/collision frequency Hartmann H ðµð¿/(ðð)1/2 = (Magnetic force/dissipative (Rm Re C)1/2 force)1/2 Knudsen Kn ð/ð¿ Hydrodynamic time/collision time *(â ) Also defined as the inverse (square) of the quantity shown. 23
Name(s)
Symbol Definition
Lewis
Le
*Thermal conduction/molecular diffusion Lorentz Lo ð/ð Magnitude of relativistic effects Lundquist Lu ð0 ð¿ððŽ /ð = ð à ð force/resistive magnetic Al Rm diffusion force Mach M ð/ð¶ð Magnitude of compressibility effects Magnetic Mach Mm ð/ððŽ = Alâ1 (Inertial force/magnetic force)1/2 Magnetic Rm ð0 ð¿ð/ð Flow velocity/magnetic diffusion Reynolds velocity Newton Nt ð¹/ðð¿2 ð 2 Imposed force/inertial force Nusselt N ðŒð¿/ð Total heat transfer/thermal conduction Péclet Pe ð¿ð/ð
Heat convection/heat conduction Poisseuille Po ð·2 Îð/ðð¿ð Pressure force/viscous force Prandtl Pr ð/ð
Momentum diffusion/heat diffusion Rayleigh Ra ðð» 3 ðœÎð/ðð
Buoyancy force/diffusion force Reynolds Re ð¿ð/ð Inertial force/viscous force Richardson Ri (ðð»/Îð)2 Buoyancy effects/vertical shear effects Rossby Ro ð/2Ωð¿ sin Î Inertial force/Coriolis force Schmidt Sc ð/ð Momentum diffusion/molecular diffusion Stanton St ðŒ/ððð ð Thermal conduction loss/heat capacity Stefan Sf ðð¿ð 3 /ð Radiated heat/conducted heat Stokes S ð/ð¿2 ð Viscous damping rate/vibration frequency Sr Vibration speed/flow velocity Strouhal ðð¿/ð Taylor Ta (2Ωð¿2 /ð)2 Centrifugal force/viscous force (Centrifugal force/viscous force)1/2 ð
1/2 (Îð
)3/2 â
(Ω/ð) Thring, Th, Bo ððð ð/ððð 3 Convective heat transport/radiative Boltzmann heat transport Weber W ðð¿ð 2 /Σ Inertial force/surface tension 24
ð
/ð
Significance
Nomenclature: ðµ ð¶ð , ð ðð ð· = 2ð
ð¹ ð ð ð», ð¿ ð = ððð ð
ð = (ð/ð»)1/2 ð
ð ðð¿ ð ð ððŽ = ðµ/(ð0 ð)1/2 ðŒ ðœ Î Îð
, Îð, Îð, Îð ð ð ð
, ð Î ð ð = ðð ð0 ð ð ðⲠΣ ð Ω
Magnetic induction Speeds of sound, light Specific heat at constant pressure (units m2 sâ2 Kâ1 ) Pipe diameter Imposed force Vibration frequency Gravitational acceleration Vertical, horizontal length scales Thermal conductivity (units kg mâ1 sâ2 ) BruntâVÀisÀlÀ frequency Radius of pipe or channel Radius of curvature of pipe or channel Larmor radius Temperature Characteristic flow velocity Alfvén speed âð = ðŒÎð Newtonâs-law heat coefficient, ð âð¥ Volumetric expansion coefficient, ðð/ð = ðœðð Bulk modulus (units kg mâ1 sâ2 ) Imposed differences in two radii, velocities, pressures, or temperatures Surface emissivity Electrical resistivity Thermal, molecular diffusivities (units m2 sâ1 ) Latitude of point on earthâs surface Collisional mean free path Viscosity Permeability of free space Kinematic viscosity (units m2 sâ1 ) Mass density of fluid medium Mass density of bubble, droplet, or moving object Surface tension (units kg sâ2 ) StefanâBoltzmann constant Solid-body rotational angular velocity 25
SHOCKS At a shock front propagating in a magnetized fluid at an angle ð with respect to the magnetic induction ð, the jump conditions are 13,14 Ì Ì â¡ ð; (1) ðð = ðð Ì Ì 2 + ð Ì + ðµâÌ 2 /2ð; (2) ðð 2 + ð + ðµâ2 /2ð = ðð Ì Ì ð Ì â ðµâ¥Ì ðµâÌ /ð; (3) ððð â ðµâ¥ ðµâ /ð = ðð (4) ðµâ¥ = ðµâ¥Ì ; (5) ððµâ â ððµâ¥ = ðÌ ðµâÌ â ð Ì ðµâ¥Ì ; 1 2 (6) (ð + ð 2 ) + ð€ + (ððµâ2 â ððµâ¥ ðµâ )/ððð 2 1 Ì Ì = (ðÌ 2 + ð Ì 2 ) + ð€Ì + (ðÌ ðµâÌ 2 â ð Ì ðµâ¥Ì ðµâÌ )/ððð. 2 Here ð and ð are components of the fluid velocity normal and tangential to the front in the shock frame; ð = 1/ð is the mass density; ð is the pressure; ðµâ = ðµ sin ð, ðµâ¥ = ðµ cos ð; ð is the magnetic permeability (ð = 4ð in cgs units); and the specific enthalpy is ð€ = ð + ðð, where the specific internal energy ð satisfies ðð = ððð â ððð in terms of the temperature ð and the specific entropy ð . Quantities in the region behind (downstream from) the front are distinguished by a bar. If ðµ = 0, then15 1/2 Ì ð â ðÌ = [(ð Ì â ð)(ð â ð)] ; â1 2 (ð Ì â ð)(ð â ð)Ì =ð ; 1 Ì (9) ð€Ì â ð€ = (ð Ì â ð)(ð + ð); 2 1 Ì (10) ð Ì â ð = (ð Ì + ð)(ð â ð). 2 In what follows we assume that the fluid is a perfect gas with adiabatic index ðŸ = 1 + 2/ð, where ð is the number of degrees of freedom. Then ð = ðð
ð/ð, where ð
is the universal gas constant and ð is the molar weight; the sound 2 speed is given by ð¶ð = (âð/âð)ð = ðŸðð; and ð€ = ðŸð = ðŸðð/(ðŸ â 1). For a general oblique shock in a perfect gas the quantity ð = ðâ1 (ð/ððŽ )2 satisfies14
(7) (8)
2
(11) (ð â ðœ/ðŒ)(ð â cos2 ð)2 = ð sin ð {[1 + (ð â 1)/2ðŒ] ð â cos2 ð} , 1
2
Ì ðŒ = [ðŸ + 1 â (ðŸ â 1)ð], and ðœ = ð¶ð /ððŽ 2 = 4ððŸð/ðµ 2 . where ð = ð/ð, 2 The density ratio is bounded by (12) 1 < ð < (ðŸ + 1)/(ðŸ â 1). If the shock is normal to ð (i.e., if ð = ð/2), then 2
(13) ð 2 = (ð/ðŒ) {ð¶ð + ððŽ 2 [1 + (1 â ðŸ/2)(ð â 1)]} ; 26
Ì = ð; (14) ð/ðÌ = ðµ/ðµ (15) ð Ì = ð; (16) ð Ì = ð + (1 â ðâ1 )ðð 2 + (1 â ð2 )ðµ 2 /2ð. If ð = 0, there are two possibilities: switch-on shocks, which require ðœ < 1 and for which (17) ð 2 = ðððŽ 2 ; (18) ðÌ = ððŽ 2 /ð; (19) ðµâÌ 2 = 2ðµâ¥ 2 (ð â 1)(ðŒ â ðœ); (20) ð Ì = ðÌ ðµâÌ /ðµâ¥ ; (21) ð Ì = ð + ðð 2 (1 â ðŒ + ðœ)(1 â ðâ1 ), and acoustic (hydrodynamic) shocks, for which (22) (23) (24) (25)
2
ð 2 = (ð/ðŒ)ð¶ð ; ðÌ = ð/ð; ð Ì = ðµâÌ = 0; ð Ì = ð + ðð 2 (1 â ðâ1 ).
For acoustic shocks the specific volume and pressure are related by Ì = [(ðŸ + 1)ð + (ðŸ â 1)ð]Ì / [(ðŸ â 1)ð + (ðŸ + 1)ð]Ì . (26) ð/ð In terms of the upstream Mach number ð = ð/ð¶ð , Ì = ð/ð Ì = ð/ðÌ = (ðŸ + 1)ð 2 /[(ðŸ â 1)ð 2 + 2]; ð/ð ð/ð Ì = (2ðŸð 2 â ðŸ + 1)/(ðŸ + 1); Ì = [(ðŸ â 1)ð 2 + 2](2ðŸð 2 â ðŸ + 1)/(ðŸ + 1)2 ð 2 ; ð/ð ðÌ 2 = [(ðŸ â 1)ð 2 + 2]/[2ðŸð 2 â ðŸ + 1].
(27) (28) (29) (30)
The entropy change across the shock is (31) Îð â¡ ð Ì â ð = ðð ln[(ð/ð)(ð/ Ì ð)Ì ðŸ ], where ðð = ð
/(ðŸ â 1)ð is the specific heat at constant volume; here ð
is the gas constant. In the weak-shock limit (ð â 1), 2ðŸ(ðŸ â 1) 2 16ðŸð
(32) Îð â ðð (ð â 1)3 â (ð â 1)3 . 3(ðŸ + 1) 3(ðŸ + 1)ð The radius at time ð¡ of a strong spherical blast wave resulting from the explosive release of energy ðž in a medium with uniform density ð is (33) ð
ð = ð¶0 (ðžð¡2 /ð)1/5 , where ð¶0 is a constant depending on ðŸ. For ðŸ = 7/5, ð¶0 = 1.033. 27
FUNDAMENTAL PLASMA PARAMETERS All quantities are in Gaussian cgs units except temperature (ð, ðð , ðð ) expressed in eV and ion mass (ðð ) expressed in units of the proton mass, ð = ðð /ðð ; ð is charge state; ð is Boltzmannâs constant; ðŸ is wavenumber; ðŸ is the adiabatic index; ln Î is the Coulomb logarithm. Frequencies electron gyrofrequency ððð = ððð /2ð = 2.80 à 106 ðµ Hz ððð = ððµ/ðð ð = 1.76 à 107 ðµ rad/sec ion gyrofrequency ððð = ððð /2ð = 1.52 à 103 ððâ1 ðµ Hz ððð = ðððµ/ðð ð = 9.58 à 103 ððâ1 ðµ rad/sec electron plasma frequency ððð = ððð /2ð = 8.98 à 103 ðð 1/2 Hz ððð = (4ððð ð2 /ðð )1/2 = 5.64 à 104 ðð 1/2 rad/sec ion plasma frequency ððð = ððð /2ð = 2.10 à 102 ððâ1/2 ðð 1/2 Hz ððð = (4ððð ð 2 ð2 /ðð )1/2 = 1.32 à 103 ððâ1/2 ðð 1/2 rad/sec electron trapping rate ððð = (ððŸðž/ðð )1/2 = 7.26 à 108 ðŸ 1/2 ðž 1/2 secâ1 ion trapping rate ððð = (ðððŸðž/ðð )1/2 = 1.69 à 107 ð 1/2 ðŸ 1/2 ðž 1/2 ðâ1/2 secâ1 electron collision rate ðð = 2.91 à 10â6 ðð ln Îðð â3/2 secâ1 ion collision rate ðð = 4.80 à 10â8 ð 4 ðâ1/2 ðð ln Îðð â3/2 secâ1 Lengths electron deBroglie length classical distance of minimum approach electron gyroradius ion gyroradius electron inertial length ion inertial length Debye length magnetic Debye length 28
Æ = â/(ðð ððð )1/2 = 2.76 à 10â8 ðð â1/2 cm ð2 /ðð = 1.44 à 10â7 ð â1 cm ðð = ð£ðð /ððð = 2.38ðð 1/2 ðµâ1 cm ðð = ð£ðð /ððð = 1.02 à 102 ð1/2 ð â1 ðð 1/2 ðµ â1 cm ð/ððð = 5.31 à 105 ðð â1/2 cm ð/ððð = 2.28 à 107 ð â1 (ð/ðð )1/2 cm ðð· = (ðð/4ððð2 )1/2 = 7.43 à 102 ð 1/2 ðâ1/2 cm ðð = ðµ/4ððð ð = 1.66 à 108 ðµðâ1 ð cm
Velocities electron thermal velocity ion thermal velocity ion sound velocity Alfvén velocity
ð£ðð = (ððð /ðð )1/2 = 4.19 à 107 ðð 1/2 cm/sec ð£ðð = (ððð /ðð )1/2 = 9.79 à 105 ðâ1/2 ðð 1/2 cm/sec ð¶ð = (ðŸðððð /ðð )1/2 = 9.79 à 105 (ðŸððð /ð)1/2 cm/sec ð£ðŽ = ðµ/(4ððð ðð )1/2 = 2.18 à 1011 ðâ1/2 ðð â1/2 ðµ cm/sec
Dimensionless (electron/proton mass ratio)1/2 (ðð /ðð )1/2 = 2.33 à 10â2 = 1/42.9 number of particles in Debye sphere Alfvén velocity/speed of light electron plasma/gyrofrequency ratio ion plasma/gyrofrequency ratio thermal/magnetic energy ratio magnetic/ion rest energy ratio Miscellaneous Bohm diffusion coefficient transverse Spitzer resistivity
3
(4ð/3)ððð· = 1.72 à 109 ð 3/2 ðâ1/2 ð£ðŽ /ð = 7.28ðâ1/2 ðð â1/2 ðµ ððð /ððð = 3.21 à 10â3 ðð 1/2 ðµâ1 ððð /ððð = 0.137ð1/2 ðð 1/2 ðµâ1 ðœ = 8ðððð/ðµ 2 = 4.03 à 10â11 ðððµ â2 ðµ2 /8ððð ðð ð2 = 26.5ðâ1 ðð â1 ðµ2 ð·ðµ = (ððð/16ððµ) = 6.25 à 106 ððµ â1 cm2 /sec ðâ = 1.15 à 10â14 ð ln Îð â3/2 sec = 1.03 à 10â2 ð ln Îð â3/2 Ω cm
The anomalous collision rate due to low-frequency ion-sound turbulence is Ë/ðð = 5.64 à 104 ðð 1/2 ð Ë/ðð secâ1 , ð* â ððð ð Ë is the total energy of waves with ð/ðŸ < ð£ðð . where ð Magnetic pressure is given by 2
ðmag = ðµ 2 /8ð = 3.98 Ã 106 (ðµ/ðµ0 )2 dynes/cm = 3.93(ðµ/ðµ0 )2 atm, where ðµ0 = 10 kG = 1 T. Detonation energy of 1 kiloton of high explosive is ðkT = 1012 cal = 4.2 Ã 1019 erg = 4.2 Ã 1012 J. 29
PLASMA DISPERSION FUNCTION 16
Definition
(first form valid only for Im ð > 0): +â
ð(ð) = ðâ1/2 â« ââ
ðð ðð¡ exp (âð¡2 ) = 2ð exp (âð2 ) â« ðð¡ exp (âð¡2 ) . ð¡âð ââ
Physically, ð = ð¥ + ððŠ is the ratio of wave phase velocity to thermal velocity. Differential equation: ðð = â2 (1 + ðð) , ð(0) = ðð1/2 ; ðð Real argument (ðŠ = 0):
ð2 ð ðð + 2ð + 2ð = 0. ðð2 ðð
ð¥
ð(ð¥) = exp (âð¥2 ) (ðð1/2 â 2 â« ðð¡ exp (ð¡2 )) . 0
Imaginary argument (ð¥ = 0): ð(ððŠ) = ðð1/2 exp (ðŠ2 ) [1 â erf(ðŠ)] . Power series (small argument): ð(ð) = ðð1/2 exp (âð2 ) â 2ð (1 â 2ð2 /3 + 4ð4 /15 â 8ð6 /105 + â¯) . Asymptotic series, |ð| â« 1 (Ref. 17): ð(ð) = ðð1/2 ð exp (âð2 ) â ðâ1 (1 + 1/2ð2 + 3/4ð4 + 15/8ð6 + â¯) , where ð=
⧠0, 1, ⚠⩠2,
ðŠ > |ð¥|â1 |ðŠ| < |ð¥|â1 ðŠ < â|ð¥|â1
Symmetry properties (the asterisk denotes complex conjugation): ð(ð*) = â [ð(âð)]*; ð(ð*) = [ð(ð)] * + 2ðð1/2 exp[â(ð*)2 ], 18
(ðŠ > 0).
Two-pole approximations (good for ð in upper half plane except when ðŠ < ð1/2 ð¥2 exp(âð¥2 ), ð¥ â« 1): 0.50 + 0.81ð 0.50 â 0.81ð â , ð = 0.51 â 0.81ð; ð(ð) â ðâð ð* + ð 0.50 + 0.96ð 0.50 â 0.96ð + , ð = 0.48 â 0.91ð. ð â² (ð) â (ð â ð)2 (ð* + ð)2 30
COLLISIONS AND TRANSPORT Temperatures are in eV; the corresponding value of Boltzmannâs constant is ð = 1.60 à 10â12 erg/eV; masses ð, ðâ² are in units of the proton mass; ððŒ = ððŒ ð is the charge of species ðŒ. All other units are cgs except where noted.
Relaxation Rates Rates are associated with four relaxation processes arising from the interaction of test particles (labeled ðŒ) streaming with velocity vðŒ through a background of field particles (labeled ðœ): ðvðŒ ðŒ\ðœ slowing down = âðð vðŒ ðð¡ ð ðŒ\ðœ transverse diffusion (v â vÌ ðŒ )2â = ðâ ð£ðŒ 2 ðð¡ ðŒ ð ðŒ\ðœ parallel diffusion (v â vÌ ðŒ )2⥠= ð⥠ð£ðŒ 2 ðð¡ ðŒ ð 2 ðŒ\ðœ ð£ = âðð ð£ðŒ 2 , energy loss ðð¡ ðŒ where ð£ðŒ = |ð¯ðŒ | and the averages are performed over an ensemble of test particles and a Maxwellian field particle distribution. The exact formulas may be written19 ðŒ\ðœ
= (1 + ððŒ /ððœ )ð(ð¥ðŒ\ðœ )ð0 ;
ðŒ\ðœ
= 2 [(1 â 1/2ð¥ðŒ\ðœ )ð(ð¥ðŒ\ðœ ) + ðâ² (ð¥ðŒ\ðœ )] ð0 ;
ðŒ\ðœ
= [ð(ð¥ðŒ\ðœ )/ð¥ðŒ\ðœ ] ð0 ;
ðŒ\ðœ
= 2 [(ððŒ /ððœ )ð(ð¥ðŒ\ðœ ) â ðâ² (ð¥ðŒ\ðœ )] ð0 ,
ðð
ðâ ð⥠ðð
ðŒ\ðœ
ðŒ\ðœ
ðŒ\ðœ
ðŒ\ðœ
where ðŒ\ðœ ð0 = 4ðððŒ 2 ððœ 2 ððŒðœ ððœ /ððŒ 2 ð£ðŒ 3 ; ð(ð¥) =
2 âð
ð¥
â« ðð¡ ð¡1/2 ðâð¡ ; 0
ðâ² (ð¥) =
ð¥ðŒ\ðœ = ððœ ð£ðŒ 2 /2ðððœ ; ðð , ðð¥
and ððŒðœ = ln ÎðŒðœ is the Coulomb logarithm (see below). Limiting forms of ðð , ðâ and ð⥠are given in the following table. All the expressions shown have units cm3 secâ1 . Test particle energy ð and field particle temperature ð are both in eV; ð = ðð /ðð where ðð is the proton mass; ð is ion charge state; in electronâelectron and ionâion encounters, field particle quantities are distinguished by a prime. The two expressions given below for each rate hold for 31
very slow (ð¥ðŒ\ðœ ⪠1) and very fast (ð¥ðŒ\ðœ â« 1) test particles, respectively. Slow
Fast
Electronâelectron ð|ð
ðð /ðð ððð â 5.8 à 10â6 ð â3/2 ð|ð ðâ /ðð ððð â 5.8 à 10â6 ð â1/2 ðâ1 ð|ð ð⥠/ðð ððð â 2.9 à 10â6 ð â1/2 ðâ1
ⶠ7.7 à 10â6 ðâ3/2 ⶠ7.7 à 10â6 ðâ3/2 ⶠ3.9 à 10â6 ððâ5/2
Electronâion ð|ð
ⶠ3.9 à 10â6 ðâ3/2 ðð /ðð ð 2 ððð â 0.23ð3/2 ð â3/2 ð|ð 2 â4 1/2 â1/2 â1 ðâ /ðð ð ððð â 2.5 à 10 ð ð ð ⶠ7.7 à 10â6 ðâ3/2 ð|ð ð⥠/ðð ð 2 ððð â 1.2 à 10â4 ð1/2 ð â1/2 ðâ1 ⶠ2.1 à 10â9 ðâ1 ððâ5/2 Ionâelectron ð|ð
ðð /ðð ð 2 ððð â 1.6 à 10â9 ðâ1 ð â3/2 ⶠ1.7 à 10â4 ð1/2 ðâ3/2 ð|ð 2 â9 â1 â1/2 â1 ðâ /ðð ð ððð â 3.2 à 10 ð ð ð ⶠ1.8 à 10â7 ðâ1/2 ðâ3/2 ð|ð 2 â9 â1 â1/2 â1 ð⥠/ðð ð ððð â 1.6 à 10 ð ð ð ⶠ1.7 à 10â4 ð1/2 ððâ5/2 Ionâion
ð|ðâ²
ðâ² ðâ²1/2 ðð â 6.8 à 10â8 (1 + ) ð â3/2 2 â²2 ð ð ððâ² ð ð ðððâ² 1 1 ð1/2 ⶠ9.0 à 10â8 ( + â² ) 3/2 ð ð ð ð|ðâ² ðâ â 1.4 à 10â7 ðâ²1/2 ðâ1 ð â1/2 ðâ1 ððâ² ð 2 ð â²2 ðððⲠⶠ1.8 à 10â7 ðâ1/2 ðâ3/2 ð|ðâ²
ð⥠â 6.8 à 10â8 ðâ²1/2 ðâ1 ð â1/2 ðâ1 ððâ² ð 2 ð â²2 ðððⲠⶠ9.0 à 10â8 ð1/2 ðâ²â1 ððâ5/2 In the same limits, the energy transfer rate follows from the identity ðð = 2ðð â ðâ â ð⥠, except for the case of fast electrons or fast ions scattered by ions, where the leading terms cancel. Then the appropriate forms are ð|ð
ðð ⶠ4.2 à 10â9 ðð ð 2 ððð [ðâ3/2 ðâ1 â 8.9 à 104 (ð/ð)1/2 ðâ1 exp(â1836ðð/ð)] secâ1 32
and ð|ðâ²
ðð
ⶠ1.8 à 10â7 ððâ² ð 2 ð â²2 ðððâ² {ðâ3/2 ð1/2 /ð
â²
â1.1[(ð + ðâ² )/ððâ² ](ðâ² /ð â² )1/2 ðâ1 exp(âðâ² ð/ðð â² )} secâ1 . ðŒ\ðœ
In general, the energy transfer rate ðð is positive for ð > ððŒâ and negative for ð < ððŒâ , where ð¥â = (ððœ /ððŒ )ððŒâ /ððœ is the solution of ðâ² (ð¥â ) = (ððŒ |ððœ )ð(ð¥â ). The ratio ððŒâ /ððœ is given for a number of specific ðŒ, ðœ in the following table: ðŒ\ðœ:
ð|ð
ððŒâ /ððœ : 1.5
ð|ð, ð|ð
ð|ð
ð|D
ð|T, ð|He3
ð|He4
0.98
4.8 Ã 10â3
2.6 Ã 10â3
1.8 Ã 10â3
1.4 Ã 10â3
When both species are near Maxwellian, with ðð â² ðð , there are just two characteristic collision rates. For ð = 1, ðð = 2.9 à 10â6 ðððð â3/2 secâ1 ; ðð = 4.8 à 10â8 ðððð â3/2 ðâ1/2 secâ1 . Temperature Isotropization Isotropization is described by ððâ 1 ðð⥠=â = âðððŒ (ðâ â ð⥠), ðð¡ 2 ðð¡ where, if ðŽ â¡ ðâ /ð⥠â 1 > 0, ðððŒ =
2âðððŒ2 ððœ2 ððŒ ððŒðœ 3/2 ð1/2 ðŒ (ðð⥠)
ðŽâ2 [â3 + (ðŽ + 3)
tanâ1 (ðŽ1/2 ) ]. ðŽ1/2
â1
If ðŽ < 0, tanâ1 (ðŽ1/2 )/ðŽ1/2 is replaced by tanh (âðŽ)1/2 /(âðŽ)1/2 . For ðâ â ð⥠⡠ð, ððð = 8.2 à 10â7 ððð â3/2 secâ1 ; ððð = 1.9 à 10â8 ððð 2 ðâ1/2 ð â3/2 secâ1 . Thermal Equilibration If the components of a plasma have different temperatures, but no relative drift, equilibration is described by ðððŒ ðŒ\ðœ = â ððÌ (ððœ â ððŒ ), ðð¡ ðœ 33
where ðŒ\ðœ
ððÌ
= 1.8 Ã 10â19
(ððŒ ððœ )1/2 ððŒ2 ððœ2 ððœ ððŒðœ (ððŒ ððœ + ððœ ððŒ )3/2
secâ1 .
For electrons and ions with ðð â ðð â¡ ð, this implies ð|ð
ð|ð
ððÌ /ðð = ððÌ /ðð = 3.2 à 10â9 ð 2 ð/ðð 3/2 cm3 secâ1 . Coulomb Logarithm For test particles of mass ððŒ and charge ððŒ = ððŒ ð scattering off field particles of mass ððœ and charge ððœ = ððœ ð, the Coulomb logarithm is defined as ð = ln Î â¡ ln(ðmax /ðmin ). Here ðmin is the larger of ððŒ ððœ /ððŒðœ ð¢Ì2 and â/2ððŒðœ ð¢,Ì averaged over both particle velocity distributions, where ððŒðœ = ððŒ ððœ /(ððŒ + ððœ ) and ð® = ð¯ðŒ â ð¯ðœ ; ðmax = (4ð â ððŸ ððŸ2 /ðððŸ )â1/2 , where 2 the summation extends over all species ðŸ for which ð¢Ì2 < ð£ððŸ = ðððŸ /ððŸ . If â1 â1 < ðmax , this inequality cannot be satisfied, or if either ð¢ð Ì ððŒ < ðmax or ð¢ð Ì ððœ the theory breaks down. Typically ð â 10â20. Corrections to the transport coefficients are ð(ðâ1 ); hence the theory is good only to ⌠10% and fails when ð ⌠1. The following cases are of particular interest: (a) Thermal electronâelectron collisions â5/4 ððð = 23.5 â ln(ð1/2 ) â [10â5 + (ln ðð â 2)2 /16]1/2 . ð ðð
(b) Electronâion collisions 1/2 â3/2 ðð ðð /ðð < ðð < 10ð 2 eV; ⧠23 â ln (ðð ððð ) , 1/2 â1 ððð = ððð = 24 â ln (ðð ðð ) , ðð ðð /ðð < 10ð 2 eV < ðð ; âš 1/2 â3/2 2 ð ð) , ðð < ðð ðð /ðð . â© 16 â ln (ðð ðð
(c) Mixed ionâion collisions 2
ðððâ² = ððâ² ð = 23 â ln [
ðð â² (ð + ðâ² ) ðð ð 2 ð â² ðâ² + ð ( ) â² ðððâ² + ð ðð ðð ððâ²
1/2
].
(d) Counterstreaming ions (relative velocity ð£ð· = ðœð· ð) in the presence of 2 warm electrons, ððð /ðð , ðððâ² /ððâ² < ð£ð· < ððð /ðð ðððâ² = ððâ² ð = 43 â ln [
34
ðð â² (ð + ðâ² ) ðð ( ) 2 ðð ððâ² ðœð·
1/2
].
Fokker-Planck Equation ð·ððŒ âððŒ âððŒ â¡ + ð¯ â
âððŒ + ð
â
âð¯ ððŒ = ( ) , ð·ð¡ âð¡ âð¡ coll where ð
is an external force field. The general form of the collision integral is (âððŒ /âð¡)coll = â âðœ âð¯ â
ððŒ\ðœ , with ððŒ\ðœ = 2ðððŒðœ
ððŒ2 ððœ2 ððŒ
â« ð3ð£â² (ð¢2 ð â ð®ð®)ð¢â3 â
{
1 ðŒ 1 ðœ â² ð (ð¯)âð¯â² ððœ (ð¯â² ) â ð (ð¯ )âð¯ ððŒ (ð¯)} , ððœ ððŒ
(Landau form) where ð® = ð¯â² â ð¯ and ð is the unit dyad, or alternatively, ððŒ2 ððœ2
1 {ððŒ (ð¯)âð¯ ð»(ð¯) â âð¯ â
[ððŒ (ð¯)âð¯ âð¯ ðº(ð¯)]} , 2 ð2ðŒ where the Rosenbluth potentials are ððŒ\ðœ = 4ðððŒðœ
ðº(ð¯) = â« ððœ (ð¯â² )ð¢ð3ð£â² , ð»(ð¯) = (1 +
ððŒ ) â« ððœ (ð¯â² )ð¢â1 ð3ð£â² . ððœ
If species ðŒ is a weak beam (number and energy density small compared with background) streaming through a Maxwellian plasma, then ððŒ\ðœ = â
ððŒ 1 ðŒ\ðœ ðŒ\ðœ ðð ð¯ððŒ â ð⥠ð¯ð¯ â
âð¯ ððŒ ððŒ + ððœ 2 â
1 ðŒ\ðœ 2 ð (ð£ ð â ð¯ð¯) â
âð¯ ððŒ . 4 â
B-G-K Collision Operator For distribution functions with no large gradients in velocity space, the FokkerPlanck collision terms can be approximated according to ð·ðð = ððð (ð¹ð â ðð ) + ððð (ð¹ðÌ â ðð ); ð·ð¡ ð·ðð = ððð (ð¹ðÌ â ðð ) + ððð (ð¹ð â ðð ). ð·ð¡ ðŒ\ðœ
The respective slowing-down rates ðð given in the Relaxation Rate section above can be used for ððŒðœ , assuming slow ions and fast electrons, with ð re-
35
placed by ððŒ . (For ððð and ððð , one can equally well use ðâ , and the result is insensitive to whether the slow- or fast-test-particle limit is employed.) The Maxwellians ð¹ðŒ and ð¹ðŒÌ are given by ð¹ðŒ = ððŒ (
ððŒ ) 2ððððŒ
3/2
exp {â [
ððŒ (ð¯ â ð¯ðŒ )2 ]} ; 2ðððŒ
3/2
ððŒ ð (ð¯ â ð¯Ì ðŒ )2 ]} , ) exp {â [ ðŒ 2ððððŒÌ 2ðððŒÌ where ððŒ , ð¯ðŒ and ððŒ are the number density, mean drift velocity, and effective temperature obtained by taking moments of ððŒ . Some latitude in the definition of ððŒÌ and ð¯Ì ðŒ is possible;20 one choice is ððÌ = ðð , ððÌ = ðð , ð¯Ì ð = ð¯ð , ð¯Ì ð = ð¯ð . ð¹ðŒÌ = ððŒ (
Transport Coefficients Transport equations for a multispecies plasma: ððŒ ððŒ + ððŒ â â
ð¯ðŒ = 0; ðð¡ ððŒ ð¯ðŒ 1 ððŒ ððŒ = ââððŒ â â â
ð¥ðŒ + ððŒ ðððŒ [ð + ð¯ðŒ à ð] + ððŒ ; ðð¡ ð 3 ððŒ ðððŒ ð + ððŒ â â
ð¯ðŒ = ââ â
ðªðŒ â ð¥ðŒ ⶠâð¯ðŒ + ððŒ . 2 ðŒ ðð¡ ðŒ Here ð /ðð¡ â¡ â/âð¡ + ð¯ðŒ â
â; ððŒ = ððŒ ðððŒ , where ð is Boltzmannâs constant; ððŒ = âðœ ððŒðœ and ððŒ = âðœ ððŒðœ , where ððŒðœ and ððŒðœ are respectively the momentum and energy gained by the ðŒth species through collisions with the ðœ th ; ð¥ðŒ is the stress tensor; and ðªðŒ is the heat flow. The transport coefficients in a simple two-component plasma (electrons and singly charged ions) are tabulated below. Here ⥠and â refer to the directions relative to the magnetic field ð = ððµ; ð® = ð¯ð â ð¯ð is the relative streaming velocity; ðð = ðð â¡ ð; ð£ = âððð® is the current; and the basic collisional times are taken to be 3âðð (ððð )3/2 ðð3/2 ðð = sec, = 3.44 à 105 ðð 4â2ð ððð4 where ð is the Coulomb logarithm, and ðð = 36
3âðð (ððð )3/2 4âðð ðð4
= 2.09 Ã 107
ðð3/2 1/2 ð sec. ðð
In the limit of large fields (ðððŒ ððŒ â« 1, ðŒ = ð, ð) the transport processes may be summarized as follows:21ð,ð momentum transfer Rðð = âRðð â¡ R = Rð® + Rð ; ðð frictional force Rð® = (0.51ð£â¥ + ð£â ); ð0 = ðð2 ðð /ðð ð0 3ð thermal force Rð = â0.71ðâ⥠(ððð ) â ð à ââ (ððð ) 2ððð ðð 3ðð ðð ion heating ðð = (ð â ðð ); ðð ðð ð electron heating ðð = âðð â R â
ð®; ion heat flux ðªð = âð
â¥ð â⥠(ððð ) â ð
âð ââ (ððð ) + ð
â§ð ð à ââ (ððð ) ðððð ðð 2ðððð 5ðððð ion thermal ð
â¥ð = 3.9 ; ð
âð = ; ð
â§ð = 2 ðð 2ðð ððð ðð ððð ðð conductivities electron heat flux
ðªð = ðªðð® + ðªðð
frictional heat flux
ðªðð® = 0.71ðððð ð®â¥ +
thermal gradient heat flux
ðªðð
3ðððð ð à ð®â 2ððð ðð ð ð = âð
⥠â⥠(ððð ) â ð
â ââ (ððð ) â ð
â§ð ð à ââ (ððð )
ðððð ðð ðððð 5ðððð electron thermal ð
â¥ð = 3.2 ; ð
âð = 4.7 ; ð
â§ð = 2 ðð 2ðð ððð ðð ððð ðð conductivities ð ð stress tensor (either îð¥ð¥ = â 0 (ðð¥ð¥ + ððŠðŠ ) â 1 (ðð¥ð¥ â ððŠðŠ ) â ð3 ðð¥ðŠ ; 2 2 species) ð0 ð1 îðŠðŠ = â (ðð¥ð¥ + ððŠðŠ ) + (ðð¥ð¥ â ððŠðŠ ) + ð3 ðð¥ðŠ ; 2 2 ð îð¥ðŠ = îðŠð¥ = âð1 ðð¥ðŠ + 3 (ðð¥ð¥ â ððŠðŠ ); 2 îð¥ð§ = îð§ð¥ = âð2 ðð¥ð§ â ð4 ððŠð§ ; îðŠð§ = îð§ðŠ = âð2 ððŠð§ + ð4 ðð¥ð§ ; îð§ð§ = âð0 ðð§ð§ (here the ð§ axis is defined parallel to B); 3ðððð 6ðððð ; ð2ð = ; ion viscosity ð0ð = 0.96ðððð ðð ; ð1ð = 2 2 10ððð ðð 5ððð ðð ððð ððð ð ð ; ð4ð = ; ð3ð = 2ððð ððð ððð ððð electron viscosity ðð0 = 0.73ðððð ðð ; ðð1 = 0.51 2 ð ; ðð2 = 2.0 2 ð ; ððð ðð ððð ðð ðððð ðððð ; ðð4 = â . ðð3 = â 2ððð ððð 37
For both species the rate-of-strain tensor is defined as âð£ð âð£ 2 ððð = + ð â ð¿ðð â â
ð¯. âð¥ð âð¥ð 3 When B = 0 the following simplifications occur: Rð® = ððð£/ð⥠;
Rð = â0.71ðâ(ððð );
ðªðð®
ðªðð
= 0.71ðððð ð®;
=
âð
â¥ð â(ððð );
ðªð = âð
â¥ð â(ððð ); îðð = âð0 ððð .
For ððð ðð â« 1 â« ððð ðð , the electrons obey the high-field expressions and the ions obey the zero-field expressions. Collisional transport theory is applicable when (1) macroscopic time rates of change satisfy ð/ðð¡ ⪠1/ð, where ð is the longest collisional time scale, and (in the absence of a magnetic field) (2) macroscopic length scales ð¿ satisfy ð¿ â« ð, where ð = ð£ðÌ is the mean free path. In a strong field, ððð ð â« 1, condition (2) is replaced by ð¿â¥ â« ð and ð¿â â« âððð (ð¿â â« ðð in a uniform field), where ð¿â¥ is a macroscopic scale parallel to the field B and ð¿â is the smaller of ðµ/|ââ ðµ| and the transverse plasma dimension. In addition, the standard transport coefficients are valid only when (3) the Coulomb logarithm satisfies ð â« 1; (4) the electron gyroradius satisfies ðð â« ðð· , or 8ððð ðð ð2 â« ðµ 2 ; (5) relative drifts ð® = ð¯ðŒ â ð¯ðœ between two species are small compared with the thermal velocities, i.e., ð¢2 ⪠ðððŒ /ððŒ , ðððœ /ððœ ; and (6) anomalous transport processes owing to microinstabilities are negligible. Weakly Ionized Plasmas Collision frequency for scattering of charged particles of species ðŒ by neutrals is ðŒ|0 ððŒ = ð0 ðð (ðððŒ /ððŒ )1/2 , ðŒ|0
where ð0 is the neutral density, ðð is the cross section, typically ⌠5 à 10â15 cm2 and weakly dependent on temperature, and (ð0 /ð0 )1/2 < (ððŒ /ððŒ )1/2 where ð0 and ð0 are the temperature and mass of the neutrals. When the system is small compared with a Debye length, ð¿ ⪠ðð· , the charged particle diffusion coefficients are ð·ðŒ = ðððŒ /ððŒ ððŒ , In the opposite limit, both species diffuse at the ambipolar rate (ð + ðð )ð·ð ð·ð ð ð· â ðð ð·ð = ð , ð·ðŽ = ð ð ðð â ðð ðð ð·ð + ðð ð·ð
38
where ððŒ = ððŒ /ððŒ ððŒ is the mobility. The conductivity ððŒ satisfies ððŒ = ððŒ ððŒ ððŒ . In the presence of a magnetic field B the scalars ð and ð become tensors, ððŒ = ð ðŒ â
E = ðâ¥ðŒ E⥠+ ðâðŒ Eâ + ðâ§ðŒ E à ð, where ð = B/ðµ and ðâ¥ðŒ = ððŒ ððŒ2 /ððŒ ððŒ ; 2 ðâðŒ = ðâ¥ðŒ ððŒ2 /(ððŒ2 + ðððŒ ); 2 ). ðâ§ðŒ = ðâ¥ðŒ ððŒ ðððŒ /(ððŒ2 + ðððŒ
Here ðâ and ð⧠are the Pedersen and Hall conductivities, respectively.
39
APPROXIMATE MAGNITUDES IN SOME TYPICAL PLASMAS Plasma Type Interstellar gas
ð cmâ3 ð eV ððð secâ1 1 3
1
6 Ã 104 6
ðð· cm
ððð·
3
ððð secâ1
7 Ã 102
4 Ã 108 7 Ã 10â5
20
8 Ã 106 6 Ã 10â2
Gaseous nebula
10
1
2 Ã 10
Solar Corona
109
102
2 Ã 109
2 Ã 10â1 8 Ã 106
60
Diffuse hot plasma
1012
102
6 Ã 1010
7 Ã 10â3 4 Ã 105
40
Solar atmosphere, gas discharge
1014
1
6 Ã 1011
7 Ã 10â5
Warm plasma
1014
10
6 Ã 1011
2 Ã 10â4 8 Ã 102
Hot plasma
1014
102
6 Ã 1011
7 Ã 10â4 4 Ã 104 4 Ã 106
Thermonuclear plasma
1015
104
2 Ã 1012
2 Ã 10â3 8 Ã 106 5 Ã 104
Theta pinch
1016
102
6 Ã 1012
7 Ã 10â5 4 Ã 103 3 Ã 108
Dense hot plasma
1018
102
6 Ã 1013
7 Ã 10â6 4 Ã 102 2 Ã 1010
Laser Plasma
1020
102
6 Ã 1014
7 Ã 10â7
40
40
2 Ã 109 107
2 Ã 1012
The diagram (facing) gives comparable information in graphical form.22
40
25 50% ionization hydrogen plasma
(4Ï/3)nλ3D < 1
Laser Plasma
20 Shock tubes
High pressure arcs
Focus
Z-pinches
λi-i λe-e > 1 cm Fusion reactor
log10 n (cm-3)
15 Fusion experiments
Low pressure Alkali metal plasma
10 Glow discharge
Flames
Solar corona
λD > 1 cm
5
Earth ionoshpere
Solar Wind (1 AU)
0 â2
â1
0
1
Earth plasma sheet
2
3
4
5
log10 T (eV)
41
IONOSPHERIC PARAMETERS23 The following tables give average nighttime values. Where two numbers are entered, the first refers to the lower and the second to the upper portion of the layer. Quantity Altitude (km)
E Region
F Region
90 â 160
160 â 500
1.5 Ã 1010 â 3.0 Ã 1010
5 Ã 1010 â 2 Ã 1011
9 Ã 1014
4.5 Ã 1015
Ion-neutral collision frequency (secâ1 )
2 Ã 103 â 102
0.5 â 0.05
Ion gyro-/collision frequency ratio ð
ð
0.09 â 2.0
4.6 Ã 102 â 5.0 Ã 103
Ion Pederson factor ð
ð /(1 + ð
ð 2 )
0.09 â 0.5
2.2 Ã 10â3 â 2 Ã 10â4
8 Ã 10â4 â 0.8
1.0
Electron-neutral collision frequency
1.5 Ã 104 â 9.0 Ã 102
80 â 10
Electron gyro-/collision frequency ratio ð
ð
4.1 Ã 102 â 6.9 Ã 103
7.8 Ã 104 â 6.2 Ã 105
Electron Pedersen factor ð
ð /(1 + ð
ð 2 )
2.7Ã10â3 â1.5Ã10â4
10â5 â 1.5 Ã 10â6
1.0
1.0
Number density (mâ3 ) Height-integrated number density (mâ2 )
Ion Hall factor ð
ð 2 /(1 + ð
ð 2 )
Electron Hall factor ð
ð 2 /(1 + ð
ð 2 ) Mean molecular weight Ion gyrofrequency (secâ1 ) Neutral diffusion coefficient (m2 secâ1 )
28 â 26
22 â 16
180 â 190
230 â 300
30 â 5 Ã 103
105
The terrestrial magnetic field in the lower ionosphere at equatorial latitudes is approximately ðµ0 = 0.35 Ã 10â4 T. The earthâs radius is ð
ðž = 6371 km. 42
SOLAR PHYSICS PARAMETERS24 Parameter
Symbol
Total mass Radius Surface gravity Escape speed Upward mass flux in spicules Vertically integrated atmospheric density Sunspot magnetic field strength Surface effective temperature Radiant power Radiant flux density Optical depth at 500 nm, measured from photosphere Astronomical unit (radius of earthâs orbit) Solar constant (intensity at 1 AU)
Value
Units 33
ðâ ð
â ðâ ð£â â â ðµmax ð0 ââ â± ð5
1.99 Ã 10 g 6.96 Ã 1010 cm 2.74 Ã 104 cm sâ2 7 6.18 Ã 10 cm sâ1 1.6 Ã 10â9 g cmâ2 sâ1 4.28 g cmâ2 2500â3500 G 5770 K 3.83 Ã 1033 erg sâ1 6.28 Ã 1010 erg cmâ2 sâ1 0.99 â
AU ð
1.50 Ã 1013 cm 1.36 Ã 106 erg cmâ2 sâ1
Chromosphere and Corona25 Parameter (Units)
Quiet Sun
Chromospheric radiation losses (erg cmâ2 sâ1 ) Low chromosphere 2 Ã 106 Middle chromosphere 2 Ã 106 Upper chromosphere 3 Ã 105 Total 4 Ã 106 Transition layer pressure (dyne cmâ2 ) 0.2 Coronal temperature (K) at 1.1 Râ 1.1 â 1.6 Ã 106 Coronal energy losses (erg cmâ2 sâ1 ) Conduction 2 Ã 105 Radiation 105 Solar Wind â² 5 Ã 104 Total 3 Ã 105 Solar wind mass loss (g cmâ2 sâ1 ) â² 2 Ã 10â11
Coronal Hole
Active Region
2 Ã 106 2 Ã 106 3 Ã 105 4 Ã 106 0.07 106
â³ 107 107 2 Ã 106 â³ 2 Ã 107 2 2.5 Ã 106
6 Ã 104 105 â 107 104 5 Ã 106 7 Ã 105 < 105 8 Ã 105 107 2 Ã 10â10 < 4Ã10â11 43
THERMONUCLEAR FUSION26 Natural abundance of isotopes: hydrogen ðD /ðH = 1.5 Ã 10â4 helium ðHe3 /ðHe4 = 1.3 Ã 10â6 lithium ðLi6 /ðLi7 = 0.08 Mass ratios: ðð /ðD (ðð /ðD )1/2 ðð /ðT (ðð /ðT )1/2
= 2.72 Ã 10â4 = 1.65 Ã 10â2 = 1.82 Ã 10â4 = 1.35 Ã 10â2
= 1/3670 = 1/60.6 = 1/5496 = 1/74.1
Fusion reactions (branching ratios are correct for energies near the cross section peaks; a negative yield means the reaction is endothermic):27 (1a) D + D â 50% T(1.01 MeV) + p(3.02 MeV) 3 (1b) â 50% He (0.82 MeV) + n(2.45 MeV) 4 (2) D + T â He (3.5 MeV) + n(14.1 MeV) (3) D + He3 â He4 (3.6 MeV) + p(14.7 MeV) (4) T + T â He4 + 2n + 11.3 MeV 4 (5a) He3 + T â 51% He + p + n + 12.1 MeV 4 He (4.8 MeV) + D(9.5 MeV) (5b) â 43% 5 (5c) He (1.89 MeV) + p(9.46 MeV) â 6% (6) p + Li6 â He4 (1.7 MeV) + He3 (2.3 MeV) 4 (7a) p + Li7 â 20% 2 He + 17.3 MeV 7 (7b) â 80% Be + n â 1.6 MeV (8) D + Li6 â 2He4 + 22.4 MeV (9) p + B11 â 3 He4 + 8.7 MeV (10) n + Li6 â He4 (2.1 MeV) + T(2.7 MeV) The total cross section in barns (1 barn = 10â24 cm2 ) as a function of ðž, the energy in keV of the incident particle [the first ion on the left side of Eqs. (1)â (5)], assuming the target ion at rest, can be fitted by28ð â1
ðð (ðž) =
ðŽ5 + [(ðŽ4 â ðŽ3 ðž)2 + 1] ðŽ2 ðž [exp(ðŽ1 ðžâ1/2 ) â 1]
where the Duane coefficients ðŽð for the principal fusion reactions are as follows: 44
DâD (1a)
DâD (1b)
DâHe3 (3)
DâT (2)
ðŽ1 46.097 47.88 ðŽ2 372 482 ðŽ3 4.36 à 10â4 3.08 à 10â4 ðŽ4 1.220 1.177 ðŽ5 0 0
45.95 5.02 Ã 104 1.368 Ã 10â2 1.076 409
TâHe3 (5aâc)
TâT (4)
89.27 38.39 2.59 Ã 104 448 3.98 Ã 10â3 1.02 Ã 10â3 1.297 2.09 647 0
123.1 11250 0 0 0
Reaction rates ðð£ (in cm3 secâ1 ), averaged over Maxwellian distributions: Temperature (keV)
DâD (1a + 1b)
DâT (2)
D â He3 (3)
TâT (4)
T â He3 (5aâc)
1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0 500.0 1000.0
1.5 Ã 10â22 5.4 Ã 10â21 1.8 Ã 10â19 1.2 Ã 10â18 5.2 Ã 10â18 2.1 Ã 10â17 4.5 Ã 10â17 8.8 Ã 10â17 1.8 Ã 10â16 2.2 Ã 10â16
5.5 Ã 10â21 2.6 Ã 10â19 1.3 Ã 10â17 1.1 Ã 10â16 4.2 Ã 10â16 8.7 Ã 10â16 8.5 Ã 10â16 6.3 Ã 10â16 3.7 Ã 10â16 2.7 Ã 10â16
10â26 1.4 Ã 10â23 6.7 Ã 10â21 2.3 Ã 10â19 3.8 Ã 10â18 5.4 Ã 10â17 1.6 Ã 10â16 2.4 Ã 10â16 2.3 Ã 10â16 1.8 Ã 10â16
3.3 Ã 10â22 7.1 Ã 10â21 1.4 Ã 10â19 7.2 Ã 10â19 2.5 Ã 10â18 8.7 Ã 10â18 1.9 Ã 10â17 4.2 Ã 10â17 8.4 Ã 10â17 8.0 Ã 10â17
10â28 10â25 2.1 Ã 10â22 1.2 Ã 10â20 2.6 Ã 10â19 5.3 Ã 10â18 2.7 Ã 10â17 9.2 Ã 10â17 2.9 Ã 10â16 5.2 Ã 10â16
For low energies (ð â² 25 keV) the data may be represented by (ðð£)DD = 2.33 à 10â14 ð â2/3 exp(â18.76ð â1/3 ) cm3 secâ1 ; (ðð£)DT = 3.68 à 10â12 ð â2/3 exp(â19.94ð â1/3 ) cm3 secâ1 , where ð is measured in keV. A three-parameter model has also been developed for fusion cross-sections of light nuclei.28ð The power density released in the form of charged particles is ðDD = 3.3 à 10â13 ðD 2 (ðð£)DD watt cmâ3 (including the subsequent prompt DâT reaction only); ðDT = 5.6 à 10â13 ðD ðT (ðð£)DT watt cmâ3 ; ðDHe3 = 2.9 à 10â12 ðD ðHe3 (ðð£)DHe3 watt cmâ3 . 45
RELATIVISTIC ELECTRON BEAMS 2 â1/2
Here ðŸ = (1 â ðœ ) is the relativistic scaling factor; quantities in analytic formulas are expressed in SI or cgs units, as indicated; in numerical formulas, ðŒ is in amperes (A), ðµ is in gauss (G), electron linear density ð is in cmâ1 , and temperature, voltage and energy are in MeV; ðœð§ = ð£ð§ /ð; ð is Boltzmannâs constant. Relativistic electron gyroradius: ðð =
ðð2 2 (ðŸ â 1)1/2 (cgs) = 1.70 à 103 (ðŸ2 â 1)1/2 ðµ â1 cm. ððµ
Relativistic electron energy: ð = ðð2 ðŸ = 0.511ðŸ MeV. Bennett pinch condition: ðŒ 2 = 2ðð(ðð + ðð )ð2 (cgs) = 3.20 à 10â4 ð(ðð + ðð ) A2 . Alfvén-Lawson limit: ðŒðŽ = (ðð3 /ð)ðœð§ ðŸ (cgs) = (4ððð/ð0 ð)ðœð§ ðŸ (SI) = 1.70 à 104 ðœð§ ðŸ A. The ratio of net current to ðŒðŽ is ðŒ ð = . ðŒðŽ ðŸ Here ð = ððð is the Budker number, where ðð = ð2 /ðð2 = 2.82 à 10â13 cm is the classical electron radius. Beam electron number density is ðð = 2.08 à 108 ðœðœ â1 cmâ3 , where ðœ is the current density in A cmâ2 . For a uniform beam of radius ð (in cm), ðð = 6.63 à 107 ðŒðâ2 ðœâ1 cmâ3 , and 2ðð ð = . ð ðŸ Childâs law: (non-relativistic) space-charge-limited current density between parallel plates with voltage drop ð (in MV) and separation ð (in cm) is ðœ = 2.34 à 103 ð 3/2 ðâ2 A cm 46
â2
.
The saturated parapotential current (magnetically self-limited flow along equipotentials in pinched diodes and transmission lines) is29 ðŒð = 8.5 à 103 ðºðŸ ln [ðŸ + (ðŸ2 â 1)1/2 ] A, where ðº is a geometrical factor depending on the diode structure: for parallel plane cathode and anode of width ð€ ðº= 2ðð ð€, separation ð; ðº = (ln
ð
2 ) ð
1
â1
for cylinders of radii ð
1 (inner) and ð
2 (outer);
ð
ð for conical cathode of radius ð
ð , maximum separation ð0 (at ð = ð
ð ) from plane anode. ð0 For ðœ â 0 (ðŸ â 1), both ðŒðŽ and ðŒð vanish. ðº=
The condition for a longitudinal magnetic field ðµð§ to suppress filamentation in a beam of current density ðœ (in A cmâ2 ) is ðµð§ > 47ðœð§ (ðŸðœ)1/2 G. Voltage registered by Rogowski coil of minor cross-sectional area ðŽ, ð turns, major radius ð, inductance ð¿, external resistance ð
and capacitance ð¶ (all in SI): externally integrated self-integrating
ð = (1/ð
ð¶)(ððŽð0 ðŒ/2ðð); ð = (ð
/ð¿)(ððŽð0 ðŒ/2ðð) = ð
ðŒ/ð.
X-ray production, target with average atomic number ð (ð â² 5 MeV): ð â¡ x-ray power/beam power = 7 à 10â4 ðð. X-ray dose at 1 meter generated by an e-beam normally-incident on material with atomic number ð, depositing total charge ð while the pulse voltage is within 84% of peak (ð ⥠0.84ðmax ): 2.8 ð· = 150ðmax ðð 1/2 rads.
47
BEAM INSTABILITIES30 Name
Conditions
Saturation Mechanism
Electron-electron
ðð > ðððÌ , ð = 1, 2
Electron trapping until ðððÌ âŒ ðð
Buneman
ðð > (ð/ð)1/3 ððÌ , ðð > ððÌ
Electron trapping until ððÌ âŒ ðð
Beam-plasma
ðð > (ðð /ðð )1/3 ððÌ
Trapping of beam electrons
1/3
ððÌ
Weak beam-plasma
ðð < (ðð /ðð )
Beam-plasma (hot-electron)
ððÌ > ðð > ððÌ
Quasilinear or nonlinear
Ion acoustic
ðð â« ðð , ðð â« ð¶ð
Quasilinear, ion tail formation, nonlinear scattering, or resonance broadening.
Anisotropic ððâ > 2ðð⥠temperature (hydro)
Quasilinear or nonlinear (mode coupling)
Isotropization
Ion cyclotron
ðð > 20ððÌ (for ðð â ðð )
Ion heating
Beam-cyclotron (hydro)
ðð > ð¶ð
Resonance broadening
Modified two-stream (hydro)
ðð < (1 + ðœ)1/2 ððŽ , ðð > ð¶ð
Trapping
Ion-ion (equal beams)
ð < 2(1 + ðœ)1/2 ððŽ Ion trapping
Ion-ion (equal beams)
ð < 2ð¶ð
For nomenclature, see p. 50.
48
Ion trapping
Parameters of Most Unstable Mode Name
Growth Rate
Frequency
1 ð 2 ð
0
Electronelectron Buneman Beam-plasma Weak beam-plasma
ð 1/3 ) ðð ð 1/3 ð 0.7 ( ð ) ðð ðð 2 ðð ðð ( ) ðð 2ðð ððÌ 0.7 (
1/2
Beam-plasma (hot-electron)
(
ðð ) ðð
ððÌ ð ðð ð
ð 1/3 ) ðð ð 1/3 ð ðð â 0.4 ( ð ) ðð ðð
Wave Group Number Velocity 0.9
ðð ðð
0
ðð ðð ðð ðð ðð ðð
2 ð 3 ð 2 ð 3 ð 3ððÌ 2 ðð
ðð ðð ððÌ
ðâ1 ð·
ðð
0.4 (
ðð
ð 1/2 ) ðð ð Ωð
ðð
ðâ1 ð·
ð¶ð
ðð cos ð ⌠Ωð
ððâ1
Ì ððâ
0.1Ωð
1.2Ωð
ððâ1
0.7Ωð
ðΩð
0.7ðâ1 ð·
1 Ω 2 ð»
0.9Ωð»
1.7
1 Ì ð 3 ð â³ ðð ; â² ð¶ð 1 ð 2 ð
0.4Ωð»
0
1.2
Ion-ion 0.4ðð (equal beams) For nomenclature, see p. 50.
0
Ion acoustic Anisotropic temperature (hydro) Ion cyclotron Beam-cyclotron (hydro) Modified two-stream (hydro) Ion-ion (equal beams)
(
Ωð» ðð
Ωð» ð ðð 1.2 ð
0 0
49
In the preceding tables, subscripts ð, ð, ð, ð, ð stand for âelectron,â âion,â âdrift,â âbeam,â and âplasma,â respectively. Thermal velocities are denoted by a bar. In addition, the following are used: ð ð ð ð ðð , ðð ð ð¶ð = (ðð /ð)1/2 ðð , ðð ðð·
50
electron mass ion mass velocity temperature number density harmonic number ion sound speed plasma frequency Debye length
ðð , ðð ðœ ððŽ Ωð , Ωð Ωð» ð
gyroradius plasma/magnetic energy density ratio Alfvén speed gyrofrequency hybrid gyrofrequency, 2 Ωð» = Ωð Ωð relative drift velocity of two ion species
LASERS System Parameters Efficiencies and power levels are approximate.31 Wavelength Type CO2 CO Holmium Iodine Nd-glass Nd:YAG Nd:YLF Nd:YVO4 Er:YAG *Color center *Ti:Sapphire Ruby He-Ne *Argon ion *OPO N2 *Dye Kr-F Xenon Ytterbium fiber Erbium fiber Semiconductor *Tunable sources
Power levels available (W)
(ÎŒm)
Efficiency
Pulsed
CW
10.6
0.01 â 0.02 (pulsed) 0.4 0.03â â 0.1â¡ 0.003 â â â
> 2 Ã 1013
> 105
5 > 109 2.06 > 107 1.315 3 Ã 1012 1.06 1.25 Ã 1015 1.064 109 1.045, 4 Ã 108 1.54, 1.313 1.064 â â 2.94 â 1.5 Ã 105 1â4 10â3 5 Ã 108 0.7 â 1.5 0.4 Ã ðð 1014 â3 0.6943 < 10 1010 0.6328 10â4 â 0.45 â 0.60 10â3 5 Ã 104 0.3 â 10 > 0.1 Ã ðð 1010 0.3371 0.001 â 0.05 106 0.3 â 1.1 10â3 5 Ã 107 0.26 0.08 1012 0.175 0.02 > 108 1.05 â 1.1 0.55 5 Ã 107 1.534 â 7 Ã 106 0.375 â 1.9 > 0.5 3 Ã 109 â lamp-driven â¡diode-driven
> 100 80 â â > 104 80 > 20 â 1 150 1 1 â 50 Ã 10â3 150 5 â > 100 500 â 104 100 > 103
Nd stands for Neodymium; Er stands for Erbium; Ti stands for Titanium; YAG stands for YttriumâAluminum Garnet; YLF stands for Yttrium Lithium Fluoride; YVO5 stands for Yttrium Vanadate; OPO for Optical Parametric Oscillator; ðð is pump laser efficiency. 51
Formulas An e-m wave with ð€ ⥠ð has an index of refraction given by ð± = [1 â ððð2 /ð(ð â ððð )]1/2 , where ± refers to the helicity. The rate of change of polarization angle ð as a function of displacement ð (Faraday rotation) is given by ðð/ðð = (ð/2)(ðâ â ð+ ) = 2.36 à 104 ððµðâ2 cmâ1 , where ð is the electron number density, ðµ is the field strength, and ð is the wave frequency, all in cgs. The quiver velocity of an electron in an e-m field of angular frequency ð is ð£0 = ððžmax /ðð = 25.6ðŒ 1/2 ð0 cm secâ1 2
in terms of the laser flux ðŒ = ððžmax /8ð, with ðŒ in watt/cm2 , laser wavelength ð0 in ÎŒm. The ratio of quiver energy to thermal energy is 2
ðqu /ðth = ðð ð£0 2 /2ðð = 1.81 à 10â13 ð0 ðŒ/ð, where ð is given in eV. For example, if ðŒ = 1015 W cmâ2 , ð0 = 1 ÎŒm, ð = 2 keV, then ðqu /ðth â 0.1. Pondermotive force: â± = ðââšðž 2 â©/8ððð , where â3 ðð = 1.1 à 1021 ðâ2 0 cm .
For uniform illumination of a lens with ð-number ð¹, the diameter ð at focus (85% of the energy) and the depth of focus ð (distance to first zero in intensity) are given by ð â 2.44ð¹ðð/ðð·ð¿
and
ð â ±2ð¹ 2 ðð/ðð·ð¿ .
Here ð is the beam divergence containing 85% of energy and ðð·ð¿ is the diffraction-limited divergence: ðð·ð¿ = 2.44ð/ð, where ð is the aperture. These formulas are modified for nonuniform (such as Gaussian) illumination of the lens or for pathological laser profiles.
52
ATOMIC PHYSICS AND RADIATION Energies and temperatures are in eV; all other units are cgs except where noted. ð is the charge state (ð = 0 refers to a neutral atom); the subscript ð labels electrons. ð refers to number density, ð to principal quantum number. Asterisk superscripts on level population densities denote local thermodynamic equilibrium (LTE). Thus ðð * is the LTE number density of atoms (or ions) in level ð. Characteristic atomic collision cross section: (1)
ðð0 2 = 8.80 Ã 10â17 cm2 .
Binding energy of outer electron in level labeled by quantum numbers ð, ð: (2)
ð ðžâ (ð, ð) = â
ð» ð 2 ðžâ , (ð â Îð )2
ð» where ðžâ = 13.6 eV is the hydrogen ionization energy and Îð = 0.75ðâ5 , ð â³ 5, is the quantum defect.
Excitation and Decay Cross section (Bethe approximation) for electron excitation by dipole allowed transition ð â ð (Refs. 32, 33): ð ð(ð, ð) (3) ððð = 2.36 à 10â13 ðð cm2 , ðÎðžðð where ððð is the oscillator strength, ð(ð, ð) is the Gaunt factor, ð is the incident electron energy, and Îðžðð = ðžð â ðžð . Electron excitation rate averaged over Maxwellian velocity distribution, ððð = ðð âšððð ð£â© (Refs. 34, 35): ð âšð(ð, ð)â©ðð Îðž exp (â ðð ) secâ1 , (4) ððð = 1.6 à 10â5 ðð ðð Îðžðð ðð1/2 where âšð(ð, ð)â© denotes the thermal averaged Gaunt factor (generally ⌠1 for atoms, ⌠0.2 for ions).
53
Rate for electron collisional deexcitation: (5)
ððð = (ðð */ðð *)ððð .
Here ðð */ðð * = (ðð /ðð ) exp(Îðžðð /ðð ) is the Boltzmann relation for level population densities, where ðð is the statistical weight of level ð. Rate for spontaneous decay ð â ð (Einstein ðŽ coefficient)34 (6)
ðŽðð = 4.3 à 107 (ðð /ðð )ððð (Îðžðð )2 secâ1 .
Intensity emitted per unit volume from the transition ð â ð in an optically thin plasma: (7)
3
ðŒðð = 1.6 à 10â19 ðŽðð ðð Îðžðð watt/cm .
Condition for steady state in a corona model: (8)
ð0 ðð âšð0ð ð£â© = ðð ðŽð0 ,
where the ground state is labelled by a zero subscript. Hence for a transition ð â ð in ions, where âšð(ð, 0)â© â 0.2, (9)
ðŒðð = 5.1 à 10â25
ððð ðð ðð ð0 ð0 ðð1/2
3
(
Îðž Îðžðð watt . ) exp (â ð0 ) Îðžð0 ðð cm3
Ionization and Recombination In a general time-dependent situation the number density of the charge state ð satisfies (10)
ðð(ð) = ðð [ â ð(ð)ð(ð) â ðŒ(ð)ð(ð) ðð¡ + ð(ð â 1)ð(ð â 1) + ðŒ(ð + 1)ð(ð + 1)].
Here ð(ð) is the ionization rate. The recombination rate ðŒ(ð) has the form ðŒ(ð) = ðŒð (ð) + ðð ðŒ3 (ð), where ðŒð and ðŒ3 are the radiative and three-body recombination rates, respectively.
54
Classical ionization cross-section36 for any atomic shell ð (11) ðð = 6 à 10â14 ðð ðð (ð¥)/ðð 2 cm2 . Here ðð is the number of shell electrons; ðð is the binding energy of the ejected electron; ð¥ = ð/ðð , where ð is the incident electron energy; and ð is a universal function with a minimum value ðmin â 0.2 at ð¥ â 4. Ionization from the ground state, averaged over Maxwellian electron distrið bution, for 0.02 â² ðð /ðžâ â² 100 (Ref. 35): (12) ð(ð) = 10â5
ð 1/2 (ðð /ðžâ ) ðžð exp (â â ) cm3 /sec, ð )3/2 (6.0 + ð /ðž ð ) ðð (ðžâ ð â
ð where ðžâ is the ionization energy.
Electron-ion radiative recombination rate (ð + ð(ð) â ð(ð â 1) + âð) is in error †0.5% for ðð /ð 2 â² 8.6 eV, by ⌠3% for ðð /ð 2 â² 86 eV, and by ⌠31% for ðð /ð 2 â² 431 eV (Ref. 37): 1/2
(13) ðŒð (ð) = 5.2 à 10â14 ð (
ð ðžâ ) ðð
[0.43 +
1 ð ln(ðžâ /ðð ) 2 ð + 0.469(ðžâ /ðð )â1/3 ] cm3 /sec.
For 1 eV < ðð /ð 2 < 15 eV, this becomes approximately35 (14) ðŒð (ð) = 2.7 à 10â13 ð 2 ðð â1/2 cm3 /sec. Collisional (three-body) recombination rate for singly ionized plasma:38 (15) ðŒ3 = 8.75 à 10â27 ðð â4.5 cm6 /sec. Photoionization cross section for ions in level ð, ð (short-wavelength limit): (16) ðph (ð, ð) = 1.64 à 10â16 ð 5 /ð3 ðŸ 7+2ð cm2 , where ðŸ is the wavenumber in Rydbergs (1 Rydberg = 1.0974 à 105 cmâ1 ).
55
Ionization Equilibrium Models Saha equilibrium:39 (17)
ðð ðð 3/2 ðð ð1 *(ð) ðžð (ð, ð) = 6.0 Ã 1021 1 ðâ1 exp (â â ) cmâ3 , ðð ðð *(ð â 1) ðð
ð where ððð is the statistical weight for level ð of charge state ð and ðžâ (ð, ð) is the ionization energy of the neutral atom initially in level (ð, ð), given by Eq. (2).
In a steady state at high electron density, ðð ð*(ð) ð(ð â 1) = , ðŒ3 ð*(ð â 1) is a function only of ð. (18)
Conditions for LTE:39 (a) Collisional and radiative excitation rates for a level ð must satisfy (19) ððð â³ 10ðŽðð . (b) Electron density must satisfy ð 1/2 (20) ðð â³ 7 à 1018 ð 7 ðâ17/2 (ð/ðžâ ) cmâ3 .
Steady state condition in corona model: ðŒð ð(ð â 1) (21) = . ð(ð) ð(ð â 1) Corona model is applicable if 40 (22) 1012 ð¡ðŒ â1 < ðð < 1016 ðð 7/2 cmâ3 , where ð¡ðŒ is the ionization time.
56
Radiation Note: Energies and temperatures are in eV; all other quantities are in cgs units except where noted. ð is the charge state (ð = 0 refers to a neutral atom); the subscript ð labels electrons. ð is number density. Average radiative decay rate of a state with principal quantum number ð is (23) ðŽð = â ðŽðð = 1.6 à 1010 ð 4 ðâ9/2 sec. ð ð) for absorption (emission) lines. For hydrogen and hydrogenic ions the series of lines belonging to the transitions ð â ð have conventional names: Transition:
1âð
2âð
Name: Lyman
Balmer
3âð
4âð
Paschen Brackett
5âð
6âð
Pfund
Humphreys
Successive lines in any series are denoted ðŒ, ðœ, ðŸ, etc. Thus the transition 1 â 3 gives rise to the Lyman-ðœ line. Relativistic effects, quantum electrodynamic effects (e.g., the Lamb shift), and interactions between the nuclear magnetic moment and the magnetic field due to the electron produce small shifts and splittings, â² 10â2 cmâ1 ; these last are called âhyperfine structure.â In many-electron atoms the electrons are grouped in closed and open shells, with spectroscopic properties determined mainly by the outer shell. Shell
59
energies depend primarily on ð; the shells corresponding to ð = 1, 2, 3, ⊠are called ðŸ, ð¿, ð, etc. A shell is made up of subshells of different angular momenta, each labeled according to the values of ð, ð, and the number of electrons it contains out of the maximum possible number, 2(2ð + 1). For example, 2ð5 indicates that there are 5 electrons in the subshell corresponding to ð = 1 (denoted by p) and ð = 2. In the lighter elements the electrons fill up subshells within each shell in the order s, p, d, etc., and no shell acquires electrons until the lower shells are full. In the heavier elements this rule does not always hold. But if a particular subshell is filled in a noble gas, then the same subshell is filled in the atoms of all elements that come later in the periodic table. The ground state configurations of the noble gases are as follows: He Ne Ar Kr Xe Rn
1s2 1s2 2s2 2p6 1s2 2s2 2p6 3s2 3p6 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f 14 5s2 5p6 5d10 6s2 6p6
Alkali metals (Li, Na, K, etc.) resemble hydrogen; their transitions are described by giving ð and ð in the initial and final states for the single outer (valence) electron. For general transitions in most atoms the atomic states are specified in terms of the parity (â1)Σðð and the magnitudes of the orbital angular momentum ð = Σð¥ð , the spin ð = Σð¬ð , and the total angular momentum ð = ð + ð, where all sums are carried out over the unfilled subshells (the filled ones sum to zero). If a magnetic field is present the projections ðð¿ , ðð , and ð of ð, ð, and ð along the field are also needed. The quantum numbers satisfy |ðð¿ | †ð¿ †ðð, |ðð | †ð †ð/2, and |ð| †ðœ †ð¿ + ð, where ð is the number of electrons in the unfilled subshell. Upper-case letters S, P, D, etc., stand for ð¿ = 0, 1, 2, etc., in analogy with the notation for a single electron. For examo ple, the ground state of Cl is described by 3p5 2 P3/2 . The first part indicates that there are 5 electrons in the subshell corresponding to ð = 3 and ð = 1. (The closed inner subshells 1s2 2s2 2p6 3s2 , identical with the configuration of Mg, are usually omitted.) The symbol âPâ indicates that the angular momenta of the outer electrons combine to give ð¿ = 1. The prefix â2â represents the value of the multiplicity 2ð + 1 (the number of states with nearly the same energy), which is equivalent to specifying ð = 12 . The subscript 3/2 is the 60
value of ðœ. The superscript âoâ indicates that the state has odd parity; it would be omitted if the state were even. The notation for excited states is similar. For example, helium has a state 1s2s 3 S1 which lies 19.72 eV (159,856 cmâ1 ) above the ground state 1s2 1 S0 . But the two âtermsâ do not âcombineâ (transitions between them do not occur) because this would violate, e.g., the quantum-mechanical selection rule that the parity must change from odd to even or from even to odd. For electric dipole transitions (the only ones possible in the long-wavelength limit), other selection rules are that the value of ð of only one electron can change, and only by Îð = ±1; Îð = 0; Îð¿ = ±1 or 0; and Îðœ = ±1 or 0 (but ð¿ = 0 does not combine with ð¿ = 0 and ðœ = 0 does not combine with ðœ = 0). Transitions are possible between the helium ground state (which has ð = 0, ð¿ = 0, ðœ = 0, and even parity) and, e.g., the state 1s2p 1 Po1 (with ð = 0, ð¿ = 1, ðœ = 1, odd parity, excitation energy 21.22 eV). These rules hold accurately only for light atoms in the absence of strong electric or magnetic fields. Transitions that obey the selection rules are called âallowedâ; those that do not are called âforbidden.â The amount of information needed to adequately characterize a state increases with the number of electrons; this is reflected in the notation. Thus43 â² O II has an allowed transition between the states 2p2 3pâ² 2 Fo7/2 and 2p2 (1 D)3d 2 F7/2 (and between the states obtained by changing ðœ from 7/2 to 5/2 in either or both terms). Here both states have two electrons with ð = 2 and ð = 1; the closed subshells 1s2 2s2 are not shown. The outer (ð = 3) electron has ð = 1 in the first state and ð = 2 in the second. The prime indicates that if the outermost electron were removed by ionization, the resulting ion would not be in its lowest energy state. The expression (1 D) gives the multiplicity and total angular momentum of the âparentâ term, i.e., the subshell immediately below the valence subshell; this is understood to be the same in both states. (Grandparents, etc., sometimes have to be specified in heavier atoms o and ions.) Another example43 is the allowed transition from 2p2 (3 P)3p 2 P1/2 o ) to 2p2 (1 D)3dâ² 2 S1/2 , in which there is a âspin flipâ (from antiparallel (or 2 P3/2 to parallel) in the ð = 2, ð = 1 subshell, as well as changes from one state to the other in the value of ð for the valence electron and in ð¿. The description of fine structure, Stark and Zeeman effects, spectra of highly ionized or heavy atoms, etc., is more complicated. The most important difference between optical and X-ray spectra is that the latter involve energy changes of the inner electrons rather than the outer ones; often several electrons participate.
61
COMPLEX (DUSTY) PLASMAS Complex (dusty) plasmas (CDPs) contain charged microparticles (dust grains) in addition to electrons, ions, and neutral gas. Electrostatic coupling between the grains can vary over a wide range, so that the states of CDPs can change from weakly coupled (gaseous) to crystalline. Typical experimental dust properties grain size (radius) ð â 0.3 â 30 ÎŒm, mass ðð ⌠3 à 10â7 â 3 à 10â13 g, number density (in terms of the interparticle distance) ðð ⌠Îâ3 ⌠103 â 107 cmâ3 , temperature ðð ⌠3 à 10â2 â 102 eV. Typical discharge (bulk) plasmas gas pressure ð ⌠10â2 â 1 Torr, ðð â ðð â 3 à 10â2 eV, ð£ðð â 7 à 104 cm/s (Ar), ðð ⌠0.3 â 3 eV, ðð â ðð ⌠108 â 1010 cmâ3 , screening length ðð· â ðð·ð ⌠20 â 200 ÎŒm, ððð â 2 à 106 â 2 à 107 sâ1 (Ar). B fields up to ðµ ⌠3 T. Dimensionless Havnes parameter normalized charge dust-dust scattering parameter dust-plasma scattering parameter coupling parameter lattice parameter particle parameter lattice magnetization parameter
ð = |ð|ðð /ðð ð§ = |ð|ð2 /ððð ð ðœð = ð 2 ð2 /ððð ðð· ðœð,ð = |ð|ð2 /ððð,ð ðð· Î = (ð 2 ð2 /ððð Î) exp(âÎ/ðð· ) ð
= Î/ðð· ðŒ = ð/Î ð = Î/ðð
Typical experimental values: ð ⌠10â4 â102 , ð§ â 2â4 (ð ⌠103 â105 electron charges), Î < 103 , ð
⌠0.3 â 10, ðŒ ⌠10â4 â 3 à 10â2 , ð < 1 Frequencies dust plasma frequency
ððð = (4ðð 2 ð2 ðð /ðð )1/2 â (|ð| 1+ð§
ð 1+ð
ðð /ðð )1/2 ððð
charge fluctuation frequency
ðch â
dust-gas friction rate dust gyrofrequency
ððð ⌠10ð2 ð/ðð ð£ðð ððð = ðððµ/ðð ð
â2ð
(ð/ðð· )ððð
Velocities dust thermal velocity 62
ð£ðð = (ððð /ðð )1/2 â¡ [
ðð ðð ðð ðð
1/2
]
ð£ðð
dust acoustic wave velocity
ð¶DA = ððð ðð· â (|ð|
ð 1+ð
1/2
ðð /ðð )
ð£ðð
1/2
dust Alfvén wave velocity dust-acoustic Mach number dust magnetic Mach number
ð£ðŽð = ðµ/(4ððð ðð ) ð/ð¶DA ð/ð£ðŽð
dust lattice (acoustic) wave velocity
ð,ð¡ ð¶DL = ððð ðð· ð¹ð,ð¡ (ð
)
The range of the dust-lattice wavenumbers is KÎ < ð. The functions ð¹ð,ð¡ (ð
) for longitudinal and transverse waves can be approximated44,45 with accuracy < 1% in the range ð
†5: ð¹ð â 2.70ð
1/2 (1 â 0.096ð
â 0.004ð
2 ),
ð¹ð¡ â 0.51ð
(1 â 0.039ð
2 ),
Lengths frictional dissipation length dust Coulomb radius dust gyroradius
ð¿ð = ð£ðð /ððð ð
ð¶ð,ð = |ð|ð2 /ððð,ð ðð = ð£ðð /ððð
Grain Charging The charge evolution equation is ð|ð|/ðð¡ = ðŒð â ðŒð . From orbital motion limited (OML) theory46 in the collisionless limit ððð(ðð) â« ðð· â« ð: ðð ð§) . ðð Grains are charged negatively. The grain charge can vary in response to spatial and temporal variations of the plasma. Charge fluctuations are always present, with frequency ðch . Other charging mechanisms are photoemission, secondary emission, thermionic emission, field emission, etc. Charged dust grains change the plasma composition, keeping quasineutrality. A measure of this is the Havnes parameter ð = |ð|ðð /ðð . The balance of ðŒð and ðŒð yields ðŒð = â8ðð2 ðð ð£ðð exp(âð§),
ðŒð = â8ðð2 ðð ð£ðð (1 +
1/2
ð ðð ðð ) (1 + ð ð§) [1 + ð(ð§)] ðð ðð ðð When the relative charge density of dust is large, ð â« 1, the grain charge Z monotonically decreases. exp(âð§) = (
Forces and momentum transfer In addition to the usual electromagnetic forces, grains in complex plasmas 63
are also subject to: gravity force ð
g = ðð ð ; thermophoretic force 4â2ð 2 (ð /ð£ðð )ð
ð âðð 15 (where ð
ð is the coefficient of gas thermal conductivity); forces associated with the momentum transfer from other species, ð
ðŒ = âðð ððŒð ððŒð , i.e., neutral, ion, and electron drag. For collisions between charged particles, two limiting cases are distinguished by the magnitude of the scattering parameter ðœðŒ . When ðœðŒ ⪠1 the result is independent of the sign of the potential. When ðœðŒ â« 1, the results for repulsive and attractive interaction potentials are different. For typical complex plasmas the hierarchy of scattering parameters is ðœð (⌠0.01 â 0.3) ⪠ðœð (⌠1 â 30) ⪠ðœð (⌠103 â 3 à 104 ). The generic expressions for different types of collisions are47 ð
th = â
ððŒð = (4â2ð/3)(ððŒ /ðð )ð2 ððŒ ð£ððŒ ΊðŒð Electron-dust collisions 1 Ίðð â ð§2 Îðð , 2
ðœð ⪠1
Ion-dust collisions 1
ð§2 (ðð /ðð )2 Îðð , Ίðð = { 2 2 2(ðð· /ð)2 (ln ðœð + 2 ln ðœð + 2),
ðœð < 5 ðœð > 13
Dust-dust collisons ð§2 Î , ðœð ⪠1 Ίðð = { ð ðð 2 (ðð· /ð) [ln 4ðœð â ln ln 4ðœð ], ðœð â« 1 where ð§ð â¡ ð 2 ð2 /ðððð . For ððð ⌠ððð the complex plasma is in a two-phase state, and for ððð â« ððð we have merely tracer particles (dust-neutral gas interaction dominates). The momentum transfer cross section is proportional to the Coulomb logarithm ÎðŒð when the Coulomb scattering theory is applicable. It is determined by integration over the impact parameters, from ðmin to ðmax . ðmin is due to finite grain size and is given by OML theory. ðmax = ðð· for repulsive interaction (applicable for ðœðŒ ⪠1), and ðmax = ðð· (1 + 2ðœðŒ )1/2 for attractive interaction (applicable up to ðœðŒ < 5).
64
For repulsive interaction (electron-dust and dust-dust) â
ÎðŒð = ð§ðŒ â« eâð§ðŒ ð¥ ln[1 + 4(ðð· /ððŒ )2 ð¥2 ]ðð¥
â
0
â 2ð§ðŒ â« eâð§ðŒ ð¥ ln(2ð¥ â 1)ðð¥, 1
where ð§ð = ð§, ðð = ð, and ðð = 2ð. For ion-dust (attraction) â
Îðð â ð§ â« eâð§ð¥ ln [ 0
1 + 2(ðð /ðð )(ðð· /ð)ð¥ ] ðð¥. 1 + 2(ðð /ðð )ð¥
For ððð â« ððð the complex plasma behaves like a one phase system (dustdust interaction dominates). Phase Diagram of Complex Plasmas The figure below represents different âphase statesâ of CDPs as functions of the electrostatic coupling parameter Î and ð
or ðŒ, respectively. The vertical dashed line at ð
= 1 conditionally divides the system into Coulomb and Yukawa parts. With respect to the usual plasma phase, in the diagram below the complex plasmas are âlocatedâ mostly in the strong coupling regime (equivalent to the top left corner). α-1=Î/a 4
10
100
1000
I
V
log10(Î)
2
II
0
VI III
â2
VII
IV â4
0.1
1
κ=Î/λ
VIII 10
Regions I (V) represent Coulomb (Yukawa) crystals, the crystallization condition is48 Î > 106(1 + ð
+ ð
2 /2)â1 . Regions II (VI) are for Coulomb (Yukawa) non-ideal plasmas â the characteristic range of dust-dust interaction (in terms of the momentum transfer) is larger than the intergrain distance (in terms of the Wigner-Seitz radius), (ð/ð)1/2 > (4ð/3)â1/3 Î, which implies that the interaction is essentially multiparticle.
Regions III (VII and VIII) correspond to Coulomb (Yukawa) ideal gases. The range of dust-dust interaction is smaller than the intergrain distance and only pair collisions are important. In addition, in the region VIII the pair Yukawa interaction asymptotically reduces to the hard sphere limit, forming a âYukawa granular mediumâ. In region IV the electrostatic interaction is unimportant and the system is like a usual granular medium. 65
REFERENCES When any of the formulas and data in this collection are referenced in research publications, it is suggested that the original source be cited rather than the Formulary. Most of this material is well known and, for all practical purposes, is in the âpublic domain.â Numerous colleagues and readers, too numerous to list by name, have helped in collecting and shaping the Formulary into its present form; they are sincerely thanked for their efforts. Several book-length compilations of data relevant to plasma physics are available. The following are particularly useful: ⢠C. W. Allen, Astrophysical Quantities, 3rd edition (Athlone Press, London, 1976). ⢠A. Anders, A Formulary for Plasma Physics (Akademie-Verlag, Berlin, 1990). ⢠H. L. Anderson (Ed.), A Physicistâs Desk Reference, 2nd edition (American Institute of Physics, New York, 1989). ⢠K. R. Lang, Astrophysical Formulae, 2nd edition (Springer, New York, 1980). The books and articles cited below are intended primarily not for the purpose of giving credit to the original workers, but (1) to guide the reader to sources containing related material and (2) to indicate where to find derivations, explanations, examples, etc., which have been omitted from this compilation. Additional material can also be found in D. L. Book, NRL Memorandum Report No. 3332 (1977). 1. See M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1968), pp. 1â3, for a tabulation of some mathematical constants not available on pocket calculators. 2. H. W. Gould, âNote on Some Binomial Coefficient Identities of Rosenbaum,â J. Math. Phys. 10, 49 (1969); H. W. Gould and J. Kaucky, âEvaluation of a Class of Binomial Coefficient Summations,â J. Comb. Theory 1, 233 (1966). 3. B. S. Newberger, âNew Sum Rule for Products of Bessel Functions with Application to Plasma Physics,â J. Math. Phys. 23, 1278 (1982); 24, 2250 (1983). 4. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill 66
Book Co., New York, 1953), Vol. I, pp. 47â52 and pp. 656â666. 5. W. D. Hayes, âA Collection of Vector Formulas,â Princeton University, Princeton, NJ, 1956 (unpublished), and personal communication (1977). 6. See Quantities, Units and Symbols, report of the Symbols Committee of the Royal Society, 2nd edition (Royal Society, London, 1975) for a discussion of nomenclature in SI units. 7. E. R. Cohen and B. N. Taylor, âThe 1986 Adjustment of the Fundamental Physical Constants,â CODATA Bulletin No. 63 (Pergamon Press, New York, 1986); J. Res. Natl. Bur. Stand. 92, 85 (1987); J. Phys. Chem. Ref. Data 17, 1795 (1988). 8. E. S. Weibel, âDimensionally Correct Transformations between Different Systems of Units,â Amer. J. Phys. 36, 1130 (1968). 9. J. Stratton, Electromagnetic Theory (McGraw-Hill Book Co., New York, 1941), p. 508. 10. Reference Data for Engineers: Radio, Electronics, Computer, and Communication, 7th edition, E. C. Jordan, Ed. (Sams and Co., Indianapolis, IN, 1985), Chapt. 1. These definitions are International Telecommunications Union (ITU) Standards. 11. H. E. Thomas, Handbook of Microwave Techniques and Equipment (Prentice-Hall, Englewood Cliffs, NJ, 1972), p. 9. Further subdivisions are defined in Ref. 10, p. Iâ3. 12. J. P. Catchpole and G. Fulford, Ind. and Eng. Chem. 58, 47 (1966); reprinted in recent editions of the Handbook of Chemistry and Physics (Chemical Rubber Co., Cleveland, OH) on pp. F306â323. 13. W. D. Hayes, âThe Basic Theory of Gasdynamic Discontinuities,â in Fundamentals of Gas Dynamics, Vol. III, High Speed Aerodynamics and Jet Propulsion, H. W. Emmons, Ed. (Princeton University Press, Princeton, NJ, 1958). 14. W. B. Thompson, An Introduction to Plasma Physics (Addison-Wesley Publishing Co., Reading, MA, 1962), pp. 86â95. 15. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition (AddisonWesley Publishing Co., Reading, MA, 1987), pp. 320â336. 16. The ð function is tabulated in B. D. Fried and S. D. Conte, The Plasma 67
Dispersion Function (Academic Press, New York, 1961). 17. R. W. Landau and S. Cuperman, âStability of Anisotropic Plasmas to Almost-Perpendicular Magnetosonic Waves,â J. Plasma Phys. 6, 495 (1971). 18. B. D. Fried, C. L. Hedrick, J. McCune, âTwo-Pole Approximation for the Plasma Dispersion Function,â Phys. Fluids 11, 249 (1968). 19. B. A. Trubnikov, âParticle Interactions in a Fully Ionized Plasma,â Reviews of Plasma Physics, Vol. 1 (Consultants Bureau, New York, 1965), p. 105. 20. J. M. Greene, âImproved BhatnagarâGrossâKrook Model of Electron-Ion Collisions,â Phys. Fluids 16, 2022 (1973). 21. (a) S. I. Braginskii, âTransport Processes in a Plasma,â Reviews of Plasma Physics, Vol. 1 (Consultants Bureau, New York, 1965), p. 205. (b) R. Balescu, âTransport Processes in Plasma,â (North Holland Publishing, Amsterdam, 1988), p. 211. 22. J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975), p. 6 (after J. W. M. Paul). 23. K. H. Lloyd and G. HÀrendel, âNumerical Modeling of the Drift and Deformation of Ionospheric Plasma Clouds and of their Interaction with Other Layers of the Ionosphere,â J. Geophys. Res. 78, 7389 (1973). 24. C. W. Allen, Astrophysical Quantities, 3rd edition (Athlone Press, London, 1976), Chapt. 9. 25. G. L. Withbroe and R. W. Noyes, âMass and Energy Flow in the Solar Chromosphere and Corona,â Ann. Rev. Astrophys. 15, 363 (1977). 26. S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions (Van Nostrand, New York, 1960), Chapt. 2. 27. References to experimental measurements of branching ratios and cross sections are listed in F. K. McGowan, et al., Nucl. Data Tables A6, 353 (1969); A8, 199 (1970). The yields listed in the table are calculated directly from the mass defect. 28. (a) G. H. Miley, H. Towner and N. Ivich, Fusion Cross Section and Reactivities, Rept. COO-2218-17 (University of Illinois, Urbana, IL, 1974); B. H. Duane, Fusion Cross Section Theory, in Rept. BNWL-1685 (Battelle Pacific Northwest Laboratory, 1972); (b) X.Z. Li, Q.M. Wei, and B. Liu, 68
âA new simple formula for fusion cross-sections of light nuclei,â Nucl. Fusion 48, 125003 (2008). 29. J. M. Creedon, âRelativistic Brillouin Flow in the High ð/ðŸ Limit,â J. Appl. Phys. 46, 2946 (1975). 30. See, for example, A. B. Mikhailovskii, Theory of Plasma Instabilities Vol. I (Consultants Bureau, New York, 1974). The table on pp. 48â49 was compiled by K. Papadopoulos. 31. Table prepared from data compiled by J. M. McMahon (personal communication, D. Book, 1990) and A. Ting (personal communication, J.D. Huba, 2004). 32. M. J. Seaton, âThe Theory of Excitation and Ionization by Electron Impact,â in Atomic and Molecular Processes, D. R. Bates, Ed. (New York, Academic Press, 1962), Chapt. 11. 33. H. Van Regemorter, âRate of Collisional Excitation in Stellar Atmospheres,â Astrophys. J. 136, 906 (1962). 34. A. C. Kolb and R. W. P. McWhirter, âIonization Rates and Power Loss from ð-Pinches by Impurity Radiation,â Phys. Fluids 7, 519 (1964). 35. R. W. P. McWhirter, âSpectral Intensities,â in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, Eds. (Academic Press, New York, 1965). 36. M. Gryzinski, âClassical Theory of Atomic Collisions I. Theory of Inelastic Collision,â Phys. Rev. 138A, 336 (1965). 37. M. J. Seaton, âRadiative Recombination of Hydrogenic Ions,â Mon. Not. Roy. Astron. Soc. 119, 81 (1959). 38. Ya. B. Zelâdovich and Yu. P. Raizer, Physics of Shock Waves and HighTemperature Hydrodynamic Phenomena (Academic Press, New York, 1966), Vol. I, p. 407. 39. H. R. Griem, Plasma Spectroscopy (Academic Press, New York, 1966). 40. T. F. Stratton, âX-Ray Spectroscopy,â in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, Eds. (Academic Press, New York, 1965). 41. G. Bekefi, Radiation Processes in Plasmas (Wiley, New York, 1966). 42. T. W. Johnston and J. M. Dawson, âCorrect Values for High-Frequency 69
Power Absorption by Inverse Bremsstrahlung in Plasmas,â Phys. Fluids 16, 722 (1973). 43. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities, NSRDS-NBS 4, Vol. 1 (U.S. Govt. Printing Office, Washington, 1966). 44. F. M. Peeters and X. Wu, âWigner crystal of a screened-Coulomb-interaction colloidal system in two dimensionsâ, Phys. Rev. A 35, 3109 (1987) 45. S. Zhdanov, R. A. Quinn, D. Samsonov, and G. E. Morfill, âLarge-scale steady-state structure of a 2D plasma crystalâ, New J. Phys. 5, 74 (2003). 46. J. E. Allen, âProbe theory â the orbital motion approachâ, Phys. Scripta 45, 497 (1992). 47. S. A. Khrapak, A. V. Ivlev, and G. E. Morfill, âMomentum transfer in complex plasmasâ, Phys. Rev. E (2004). 48. V. E. Fortov et al., âDusty plasmasâ, Phys. Usp. 47, 447 (2004).
70
NOTES
71
For information about careers in plasma physics at the US Naval Research Laboratory, contact us at: [email protected] The NRL Plasma Formulary is available in PDF format online at https://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary Any questions, suggestions, comments, etc. can be directed to: [email protected] This document was typeset using XELATEX. The text and mathematics are set using the STIX Two fonts, which were created by the Scientific and Technical Information Exchange (STIX) font creation project. The headings are set in Frutiger Neue LT Pro, and the monospace text in Inconsolata. The character for the partial derivative, â, is from Charis SIL.
Reviewed and Approved NRL/PU/6770--19-652 RN: 19-1231-3251 September 2019
72
Thomas A. Mehlhorn Superintendent Plasma Physics Division