213 12 146MB
English Pages 198 Year 2023
MRI/DTI Atlas of the Human Brainstem in Transverse and Sagittal Planes
This page intentionally left blank
MRI/DTI Atlas of the Human Brainstem in Transverse and Sagittal Planes George Paxinos
Neuroscience Research Australia and The University of New South Wales, Australia
Teri M Furlong
Neuroscience Research Australia and The University of New South Wales, Australia
Ken Ashwell
The University of New South Wales, Australia
Kristie Smith
Neuroscience Research Australia and The University of New South Wales, Australia
Evan Calabrese
Department of Radiology, Duke University Medical Centre, Durham, NC 27710, USA
G. Allan Johnson
Centre for In Vivo Microscopy, Department of Radiology Duke University Medical Centre, Durham, NC 27710, USA
Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright © 2023 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the Publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. ISBN: 978-0-323-91583-0 For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals
Publisher: Nikki Levy Senior Acquisitions Editor: Anna Valutkevich Editorial Project Manager: Kathy Padilla Production Project Manager: Julie Taylor Designer: Matthew Limbert Printed in the USA
Dedicated to Cem Neve Cameron and Samantha Jean Jim Lagopoulos Patricia Furlong (in memory of)
This page intentionally left blank
Contents Preface
IX
Acknowledgements
IX
Introduction
IX
Nomenclature and abbreviations
XI
The basis of delineation of structures
XII
Efferent and afferent nuclei of the cranial nerves
XIII
Reticular and tegmental nuclei of the brainstem
XIV
Monoaminergic nuclei of the brainstem
XV
Precerebellar Nuclei and Red Nucleus
XV
Nuclei Related to the Visual System
XVI
Other regions
XVI
Comparison of this Atlas with Prior Work Using the Same Data
XVI
References List of Structures Index of Abbreviations Figures
XVII XIX XXII 1
This page intentionally left blank
Preface This atlas uses high resolution MR images juxtaposed with detailed diagrams. It is relevant to radiologists, radiotherapists, neurosurgeons, pathologists, anatomists, neurophysiologists, and graduate students in neuroscience. It provides neuroscientists and clinicians with MR images like those they see on their screens, but with the advantage of detailed delineations. Scientists working with brain connectivity will be able to follow tracts in colorized fractional anisotropy (FAC) images in both the transverse and the sagittal planes. The key features of the present atlas are: • TRANSVERSE (AXIAL) PLANE: Presents 60 axial levels at 1 mm intervals from the pyramidal decussation to the posterior commissure, with each open-book page featuring a colorized fractional anisotropy (FAC), diffusion-weighted (DWI), T2*-weighted gradient echo (GRE), and the accompanying fully labelled diagram. • SAGITTAL PLANE: Presents 26 sagittal levels at 0.5 mm intervals, with each open-book page featuring the FAC, DWI, GRE, and the corresponding fully labelled diagram with the abbreviations and their explanations. • Delineations primarily made based on direct observations of the MRI contrasts. • The orientation of sections corresponds to that of Human Brainstem: Cytoarchitecture, Chemoarchitecture, Myeloarchitecture (Paxinos et al., 2019). • Electronic diagrams available to purchasers of this book via a password-protected website. Reproduction of atlas igures in other publications. As authors, we give permission for the reproduction of any igure from the atlas in other publications, provided the atlas is cited. Formal permission from the publisher should be sought directly online via the Elsevier homepage (http://elsevier.com/locate/permissions) or from Elsevier Global Rights Department in Oxford, UK: phone: (+44) 1865843830, fax: (+44) 1865 853333, email: [email protected]. How to cite this atlas: Paxinos G, Furlong TM, Ashwell KWS, Smith K, Calabrese E, and Johnson GA, MRI/DTI Atlas of the Human Brainstem, San Diego, Elsevier Academic Press, 2023.
Acknowledgements We thank Christodoulos Skliros for help at various stages of this atlas. We also thank Mustafa (Steve) Kassem for brilliance in assisting page layout and image composition, Yvette Paxinos (http://www.paxiilm.com/) for the artistic cover design and the talented staff at Academic Press Elsevier, Natalie Farra, Anna Valutkevich, Kathy Padilla, and Julie Taylor, for delivering the book. This work was supported by NHMRC grants (APP1086083, APP1086643) and in part by ARC Center of Excellence for Integrative Brain Function (CE140100007) to G. Paxinos who is an NHMRC Senior Principal Research Fellow, Investigator Grant 2017282), as well as NIH P41 EB015897 and NIH 1S10OD010683 to G Allan Johnson.
Subsequently, Paxinos et al., (2019) used three times as many levels of the brainstem as previous atlases to cover it in greater depth. The next step in atlas development was the introduction of a wide range of histochemical and immunohistochemical stains to assist anatomical delineation (Paxinos and Watson, 1982; Paxinos, 1983, 1985). The most comprehensive presentation of this method is represented in Chemoarchitectonic Atlas of the Rat Brain of Paxinos et al., (1999, 2021). The recent editions of The Rat Brain in Stereotaxic Coordinates made use of additional immunohistochemical stains, even though these sections are not pictured in the atlas (Paxinos and Watson, 2005, 2007, 2014). Since the discovery of gene targeting in mice (Capecchi, 1989), data on gene expression in the rodent brain have contributed to anatomical mapping, through the use of mouse lineages based on site-speciic recombinases. This has led to an era of what Alexandra Joyner called ‘genetic neuroanatomy’ in which the developmental origins of neuron groups can be visualized in postnatal brains (Joyner and Zervas, 2006). In the present work, we make another departure and use MR images to segment the human brainstem. The delineations in the present book were guided by the histological atlas Human Brainstem, Cytoarchitecture, Chemoarchitecture, Myeloarchitecture (Paxinos et al., 2019). Over the past few decades, there have been predictions of the demise of classical histological neuroanatomical atlases and their imminent replacement by imaging atlases. However, there is no sign yet that these atlases are in fact replacing the classical paper atlases. We believe the reason for this is that the resolution and contrast of the images offered have not been satisfactory, and the neuroanatomical delineations were even less. Hence, here we are justiied in using the power of histological atlases to inform the delineation of an imaging one. The present atlas offers two major enhancements when compared with earlier attempts to make MRI human brain atlases. Firstly, the MRI resolution/contrast obtained at the Duke Center for In Vivo Microscopy is considerably higher than that obtained in conventional clinical MRI. Secondly, the comprehensive set of contrasts provided using DTI has enabled us to identify more than 80% of structures identiied in Human Brainstem, Cytoarchitecture, Chemoarchitecture, Myeloarchitecture (Paxinos et al., 2019). MRI mapping will not quickly replace histological methods, but rapid improvements in resolution and contrast have already established a secure place for MRI technologies, at least in rodent brain mapping (Paxinos et al., 2015). In addition, MRI, unlike histology, can be performed non-invasively and is used in human clinical diagnostics. Since the publication of the irst (MRI) atlas of the live rat in 1987 (Johnson et al., 1987), a series of important technical improvements have enabled the production of high-quality image series, such as those presented herein. MR images have progressively acquired higher spatial resolution, 3D acquisitions with isotropic voxels (Suddarth and Johnson, 1991), and a valuable set of contrast mechanisms. The major developments since 1987 include the following: 1.
An increase in magnetic ield strength from 1.5 T to 7.1 T, increasing the MRI signal.
2.
An increased number of sequences to emphasize different contrasts in the tissue (T1—emphasizing difference in spin lattice relaxation time; T2—emphasizing difference in spin relaxation time; PD—based on differences in proton density; and diffusion tensor images (DTI)—providing a suite of contrast parameters based on tissue-speciic diffusion of water).
3.
The development of isotropic imaging through the use of three-dimensional (3D) imaging sequences with large arrays (Suddarth and Johnson, 1991).
4.
Active staining of tissues with gadolinium contrast agents to reduce T1 and allow shorter acquisition (Johnson et al., 2002).
5.
The development of stronger gradient coils to increase the spatial encoding.
6.
The development of an extended dynamic range (Johnson et al., 2007).
Introduction Atlases can be likened to scientiic theories. Like theories they provide a means for inding our way in strange domains. Like theories, they are social constructs, the culmination of a community effort (original analogy by Toulmin, 1953). Our atlas relies on prior work by anatomists, physiologists, pharmacologists, psychologists, psychiatrists, neurologists and radiologists, engineers and physicists. The development of brain atlases over the past 100 years can be mapped upon the successive introduction of new staining and imaging technologies and the development of more accurate stereotaxic coordinates. Olszewski and Baxter (1954) constructed the irst comprehensive study of the cell groups in the human brainstem. Using Nissl and myelin stains, they produced a high-quality atlas which formed a starting point for the work of Paxinos and Huang (1995) who employed, in addition, histochemical staining (acetylcholinesterase, AChE).
Source of tissue The data for the construction of this atlas came from the Duke Center of In Vivo Microscopy, Duke University. The images are derived from a postmortem human brain (brainstem and thalamus) of a 65-yr-old male with no known history of neurologic or psychiatric illness. The resolution is 50 μm for GRE and 200 μm for the DTI, making our GRE data 8000 x higher resolution than a typical human structural scan (0.05 x 0.05 x 0.05 mm versus 1 x 1 x 1 mm), and DTI 1000 x higher resolution than a typical human DTI scan (0.2 x 0.2 x 0.2 mm versus 2 x 2 x 2 mm; see below for more details). All the work is based on one brain, but no feature was identiied unless it was conirmed on both hemispheres. Postmortem MR images were acquired using a 7.0T MRI system (Agilent Direct Drive) at the Duke Center for In Vivo Microscopy. The system has been conigured explicitly for magnetic resonance histology, with the addition of a high-strength gradient insert (Resonance Research), providing peak gradients of 770 mT/m that are linear over an 80 (diameter) x100 mm ield of view. A large specimen quadrature coil (M2M imaging) with a 65x100 mm homogenous volume. The specimen was perfused with saline ex vivo, immersion ixed in 10% formalin, and soaked in neural phosphate buffered saline doped with 2.5 mM gadoteridol (0.5 % ProHance) for 3 weeks. Structural T2*-weighted GRE images were acquired with a gradient echo pulse sequence (repetition time = 50 ms, echo time = 10 ms, lip angle = 60°, receiver bandwidth = 78 Hz/pixel) with a spatial resolution of 50 μm isotropic. GRE acquisition time was 14 hours. High-angular resolution DTI images were acquired with 120 angles at b=4000 mm2/s, and 11 evenly spaced b=0 volumes, using a standard spin echo pulse sequence (repetition time = 100 ms, echo time = 33.6 ms, receiver bandwidth = 278 Hz/pixel) with a spatial resolution of 200 μm isotropic. DTI scan time was 208 hours. Web-based tools and environmental monitoring systems have been implemented to monitor and control the scanner over the long course of the scan to ensure consistency. The raw data for each of the 120 constitutive images was approximately 1 GB yielding a total dataset size of 120 GB. A custom computer infrastructure (acquisition, reconstruction, post processing, archiving) was designed to accommodate these very large MRI data arrays. Post-processing pipelines were developed and implemented in a computing cluster environment to facilitate data reduction (diffusion tensor estimation and generating of quantitative parametric diffusion maps). Two speciic MRI contrasts were used for this atlas: the T2*-weighted GRE, which served as the higher resolution “structural” contrast, and the directionally colorized FA image from the DTI acquisition, which served as the “functional” contrast by highlighting the directional organization of brain structures, such as white matter tracts. The following is a more detailed description of methods from Calabrese et al., (2015): Postmortem MR imaging was performed in a 7 Tesla small animal MRI system controlled with an Agilent console (Agilent Technologies, Santa Clara, CA). RF transmission and reception were achieved with a 65 mm inner-diameter quadrature RF coil (M2M Imaging, Cleveland, OH). Anatomic images were acquired using a 3D gradient echo pulse sequence with repetition time (TR) = 50 ms, echo time (TE) = 10 ms, lip angle (α) = 60°, and bandwidth (BW) = 78 Hz/pixel. The ield of view (FOV) was 80 × 55 × 45 mm, and the acquisition matrix was 1600 × 1100 × 900 resulting in a 50 µm isotropic voxel size. Total acquisition time was 14 h. Diffusion data were acquired using a simple diffusion-weighted spin echo pulse sequence (TR = 100 ms, TE = 33.6 ms, BW = 278 Hz/pixel). Diffusion preparation was achieved with a pair of unipolar, half sine diffusion gradient waveforms of width (δ) = 4.7 ms, separation (Δ) = 26 ms, and gradient amplitude (G) = 50.1 G/cm. Single-shell high angular resolution diffusion imaging (HARDI) data were acquired with 120 unique diffusion directions at b = 4,000 s/mm2 and 11 b = 0 s/mm2 (b0) volumes dispersed evenly throughout the acquisition. The FOV was 90 × 55 × 45 mm, and the acquisition matrix was 450 × 275 × 225 resulting in a 200 µm isotropic voxel size. Total acquisition time was 208 h. Orientation of the MR Dataset to the Paxinos et al., (2019) Histological Atlas Plane The stereotaxic coordinates of this MRI atlas compare with those of the histological atlas of Paxinos et al., (2019). In this MRI/DTI atlas, the stereotaxic anterior-posterior and dorso-ventral zero
is at the obex, similar to our histological atlas (Paxinos et al., 2019). Researchers who section the brain on a plane perpendicular to the ventricular axis will obtain a different section from ours because our plane of section was perpendicular to the long axis of the medulla and pons (transverse plane). The pages for all 86 diagrams in this atlas are formatted with a blue square on the bottom right of the page containing 3 lines of text: a igure number, a distance relative to the obex number, and a reference number, indicating a sections position in its respective plane (i.e., there are 60 transverse and 26 sagittal sections in total). Each diagram is also itted with an x-y scale axis. For the 60 transverse diagrams, the distance relative to the obex number indicates the rostro-caudal distance of the section from the vertical transverse plane passing through the obex. The ordinate (y-axis) coordinates show the plates distance from the plane through the obex and contains the longitudinal axis of the brainstem and is orthogonal to the midline plane and passes through the obex. The abscissa (x-axis) coordinates show the distance of structures from the midsagittal plane. For the 26 sagittal drawings, the distance relative to the obex number indicates the sections distance from the midline. The ordinate (y-axis) coordinates indicate the distance from the obex, and the abscissa (x-axis) coordinates show the distance from the transverse plane passing through obex. Comparatively, the present MRI and histological (Paxinos et al., 2019) atlases are well aligned at the level of the 7th nerve (approx. +15 mm from the obex). In this MRI atlas, the posterior commissure is found at obex + 49 mm (Fig. 57b), and in the histological atlas at + 47 mm anterior to the obex (Fig. 127b). Diagrams and Representative Images For each diagram, image sections were printed and covered with transparency paper (0.2 mm thick), which was used to deine the borders of structures using pencil. The pencil drawings were scanned and digitized using Adobe Illustrator. In general, iber tracts are outlined by solid lines and nuclei by dashed lines. The ventricles are illed in solid blue. Additionally, several structures on sagittal drawings are color-illed corresponding to their general appearance in FAC: i.e., the medial lemniscus – blue, the transverse ibers of the pons – pink, and nerves – yellow. Magni ication To enhance resolution, we sacriiced consistency of magniication in the transverse plane, changing it in three locations (i.e., magniication 1: Figs 1-9, magniication 2: Figs 10-21, and magniication 3: Figs 22-60). Therefore, the individual scale bars should be consulted when comparison of sizes are made across plates or igures. The representative images (i.e., GRE, DWI, and FAC) are presented as lower in magniication than their corresponding diagrams allowing all the relative content for a single section to be viewed in an open page. All sagittal diagrams and corresponding GRE, FAC, and DWI images are presented at one magniication and, therefore, are itted with the same x-y scale axis as the diagram, in place of a scale bar. General comments on brainstem organization We have used the nomenclature and abbreviations introduced by Paxinos and Watson (1982). We have modiied this nomenclature to be consistent with the modern brain ontology based on gene expression during development (Watson et al., 2017a). The new ontology has important implications for the understanding of the organization of the brainstem and the boundaries of its subdivisions. Firstly, it redeines the caudal and rostral boundaries of the midbrain. At the caudal boundary of the midbrain, the isthmus is now recognized as the most rostral segment of the hindbrain. The characteristic isthmic structures include the trochlear nucleus, the dorsal raphe, the parabigeminal nucleus, the dorsal nucleus of the lateral lemniscus, the rostral interpeduncular nucleus, and the decussation of the superior cerebellar peduncle (Watson et al., 2017b). All of these structures were previously thought to belong to the midbrain. At the rostral boundary of the midbrain are a number of structures which are part of the pretectal segment of the diencephalon, but which have been mistakenly assumed to belong to the midbrain; they include the posterior commissure and associated nuclei, the nucleus of Darkschewitsch, the interstitial nucleus of Cajal, and the rostral (parvicellular) part of the red nucleus (Puelles et al., 2012a,b,c). Developmental gene expression has forced a major revision in the use of the term pons as a regional descriptor.
Pons. Traditionally the human hindbrain has been divided into two segments, the pons and the medulla, based on the appearance of their ventral surface. In most mammals, the basilar pontine enlargement is restricted to rhombomeres 3 and 4. The problem is that in the human, and to a lesser extend in other primates, the iber systems associated with the basilar pontine nuclei form a mushroom-like expansion so large that it appears to extend from the midbrain to the seventh rhombomere. This oddity can no longer be allowed to determine the subdivision of the hindbrain. Studies of gene expression in mammalian rhombomeres show that the pontine nuclei arise in the rhombic lip in rhombomeres 6-7 and migrate to their inal position in the ventral part of r3 and r4 (Farago et al., 2006). The mammalian hindbrain (including the human hindbrain) can be divided into a prepontine portion (isthmus, r1, and r2), a pontine portion (r3 and r4) and a post-pontine portion (r5 to r11). The terms pons and medulla should no longer be used as descriptive subdivisions of the hindbrain
Rhombomere 1
locus coeruleus caudal interpeduncular nucleus parabrachial nuclei
Rhombomere 2
rostral motor trigeminal nucleus
Rhombomere 3
caudal motor trigeminal nucleus
Rhombomere 4
emerging facial nerve rostral pontine nuclei
Gene expression reveals the segmental organization of the brainstem The segmental organization of the brainstem was irst observed by embryologists in the late nineteenth century; they described a series of outpouchings in the developing vertebrate brainstem. Since the advent of developmental gene expression and molecularly deined regional progeny studies, the outpouchings have been recognized as evidence for the fundamental segmental organization of the brainstem. It is now clear that the brainstem is made up of a rostrocaudal series of segments called neuromeres that arise in early development and impose an anatomical and functional organization that persists in the adult brain. In the midbrain there are two such segments, called mesomeres (Puelles et al., 2012b), whereas the hindbrain is divided into 12 neuromeres––the isthmus and 11 rhombomeres (Puelles et al., 2013; Tomas-Roca et al., 2016; Watson et al., 2017b). The irst attempt to illustrate the boundaries and contents of the segmental elements of the brainstem was presented in the chick brain atlas of Puelles et al., (2007, 2019). More recently, the boundaries of the brainstem segments in the mammalian brain have been illustrated in diagrams of sagittal brain sections in the rat brain atlas of Paxinos and Watson (2014). Many of the segments in the brainstem can be conidently identiied by the presence of one or more signature nuclei; examples are the trochlear nucleus in the isthmus, the abducens nucleus in r5, and the facial nucleus in r6. A list showing the segmental position of selected structures in the brainstem and adjacent diencephalon and spinal cord is shown here:
Diencephalon Prosomere 1
interstitial nucleus of Cajal parvicellular red nucleus superior colliculus oculomotor nucleus magnocellular red nucleus Mesomere 2
sagulum nucleus retrorubral ield (DA8) subbrachial nucleus
Rostral hindbrain Isthmus
caudal pontine nuclei abducens nucleus superior olive
Rhombomere 6
facial nucleus
Caudal hindbrain Rhombomere 8
compact ambiguus nucleus rostral inferior olive
Rhombomere 9
semicompact ambiguus nucleus middle inferior olive
Rhombomere 10
loose ambiguus nucleus caudal inferior olive
Rhombomere 11
retroambiguus nucleus
Rostral spinal cord C1 segment
pyramidal decussation
posterior commissure Darkschewitsch nucleus
Midbrain Mesomere 1
Rhombomere 5
trochlear nucleus parabigeminal nucleus microcellular tegmental nucleus rostral interpeduncular nucleus
Nomenclature and abbreviations The Paxinos/Watson nomenclature and abbreviation system was originally published in the rat brain atlas in 1982, and it has been retained and expanded in six subsequent editions of the rat brain atlas up to 2014 (Paxinos and Watson, 2014). It is currently used in major atlases of the mouse brain (Paxinos and Franklin, 2013, 2019), the marmoset brain (Paxinos et al., 2012b), the rhesus monkey brain (Paxinos et al., 2009, 2023 in press), the human brain (Mai et al., 2008), the developing rat brain (Paxinos and Ashwell, 2018), the developing mouse brain (Paxinos et al., 2007), the chick brain (Puelles et al., 2019) and the spinal cord (Watson et al., 2009; 2013). In NeuroNames, Bowden et al., (2012) used these abbreviations, as did Foster (1998) and Morin and Wood (2001). In considering the merit of a particular name over synonyms, Paxinos and Watson chose terms that have been ratiied by modern usage. Anglicized versions of terms have replaced older Latinized forms wherever possible. The Paxinos/Watson system avoids the use of eponyms in all but a handful of cases. In the digital era, it is increasingly important that scientists use consistent systems of abbreviation. Unfortunately, many neuroscientists ignore this principle and construct new abbreviations without reference to standard schemes. For example, SO sometimes stands for supraoptic nucleus and sometimes for superior olive; SC may stand for either for suprachiasmatic nucleus and superior colliculus; IC may stand for either inferior colliculus or internal capsule. Worse still, “accumbens nucleus” has been abbreviated in more than 20 ways - Acb, ACB, acb, NAS, nas, A, a, Ac, ac, NA, na, AN, an, NAC, nac, ACN, acn, ACU, acu, ACC, and Acc. We recommend neuroscientists consider the Paxinos/Watson system because it is logical, coherent, comprehensive, and widely used.
The construction of abbreviations in the Paxinos/Watson nomenclature The principles used in the construction of abbreviations are the similar to those used to derive the abbreviations for the elements of the periodic table of elements. The main rules we have followed are listed here: 1.
It is now explicit that DA11 refers to a dopamine group, and NA7 declares a noradrenaline group.
2.
Capital letters represent nuclei and cortical areas, and lowercase letters represent iber tracts and issures. Because of this, it has not been necessary to use the letter 'N' to denote nuclei or to use the letter 't' to denote iber tracts.
3.
Abbreviations representing nuclei and cortical regions are shown in uppercase characters. Fiber tracts and issures are abbreviated in lowercase characters.
4. The general principle used in the abbreviations of the names of elements in the periodic table was followed: the capital letter representing the irst letter of a word in a nucleus is followed by the lowercase letter most characteristic of that word (not necessarily the second letter; e.g., Mg = magnesium; Rt = reticular thalamic nucleus). 5.
Compound names of nuclei have a capital letter for each part of the compound that will represented in the abbreviation (e.g., LPGi = lateral paragigantocellular nucleus).
6.
If a word occurs in the names of a number of structures, it is usually given the same abbreviation (e.g., Rt = reticular thalamic nucleus; RtTg = reticulotegmental nucleus of the pons). Exceptions to this rule are made for well-established abbreviations, such as VTA (which we would otherwise have rendered as VTgA).
7.
8.
9.
Abbreviations of brain regions are omitted where the identity of the region in question is clear from its position (CMn = centromedian thalamic nucleus, not CMTh). Arabic numerals are used instead of Roman numerals in identifying (a) cranial nerves and nuclei (as in the Berman, 1968, atlas), (b) Rexed's laminae of the spinal cord, (c) layers of the cerebral cortex, and (d) cerebellar folia. While the spoken meaning is the same, the detection threshold for Arabic numerals is lower, and ambiguity is reduced. They are also easier to position in small spaces available on diagrams. We have added the sufix “Cb” to numbered cerebellar folia and the sufix “Sp” to Rexed's laminae of the spinal cord. For the cerebral cortical layers, numbers stand by themselves. We have used the preix A to identify numbered areas of the cerebral cortex.
10. We have modiied the abbreviations for monoamine cell groups. Because we allocated the capital letter A to cortical areas, we were forced to modify the alphanumeric nomenclature for the catecholamine cell groups. For A1 we used NA1 (noradrenalin group 1), for C1 we used Ad1 (adrenalin group 1), for A8 we used DA8 (dopamine group 8), for A11 we used DA11 (dopamine group 11). Whereas this change in nomenclature was introduced to avoid duplication, it has the beneit of specifying the different monoamine groups. In the original scheme, A1 stood for noradrenalin group 1, something counterintuitive, since “A” for the naïve reader stands for adrenalin. Adrenalin on the other hand was designated as C1 originally. Dahlström and Fuxe (1964) named these monoamine groups according to the order in which they were discovered without knowing the identity of the catecholamine in each case (A was used for the irst one identiied).
The basis of delineation of structures The human brainstem contains a complex amalgam of neuronal groups, some compact and some dispersed. This discussion deals irst with structures related to the motor and sensory functions of the cranial nerves. However, many brainstem structures are not obviously related to a particular cranial nerve
function. These include the reticular nuclei, the precerebellar nuclei, and the monoamine cell groups. As pointed out by Herrick (1922), the motor and sensory nuclei of the cranial nerves are organized in a series of columns in the hindbrain. From ventromedial to dorsolateral they are the general somatic efferent column (hypoglossal and abducens nuclei), the special visceral (branchial) efferent column (motor trigeminal, facial and ambiguus nuclei), the general visceral efferent column (dorsal motor nucleus of the vagus, superior and inferior salivatory nuclei), the visceral afferent column (nucleus of the solitary tract), the general somatic afferent column (sensory trigeminal nuclei), and the special somatic afferent column (cochlear and vestibular nuclei). Most brainstem nuclei were originally identiied using cytoarchitecture, myeloarchitecture, and connectivity. In recent years, researchers have made increasing use of developmental, functional, and chemoarchitectonic criteria to deine neuronal groups (Mehler, 1974; Paxinos et al., 2009; Paxinos and Watson, 2014). Using mainly chemoarchitectonic comparisons with the rat, Paxinos et al., (1990) and Paxinos and Huang (1995) identiied 61 homologous nuclei in the human brainstem, and to these Paxinos et al., (2019) added four. Because the AChE content of homologous nuclei is reasonably stable across mammalian species, our recent histological atlas relied mainly on AChE distribution to illustrate brainstem homologies. Some connectivity data were obtained from the study of therapeutic cordotomies (Mehler, 1974). Our guide to segmenting the present MRI/DTI atlas was our previous histological work, augmented with works of authors in The Human Nervous System (Mai and Paxinos, 2012), The Rat Nervous System (Paxinos, 2014) and The Mouse Nervous System (Watson et al., 2012). The following is a summary of our approach to the delineation of particular structures. Note that this section is organized according to the developmental ontology described by Puelles at al. (2013). We had available ive series of transverse images for the segmentation containing an evenly spaced subset of the original MR images spanning the rostrocaudal extent of the brainstem. Of the ive series listed below, only the GRE and FAC were helpful for delineations: GRE - gradient recalled echo DWI - isotropic diffusion weighted spin echo image ADC - apparent diffusion coeficient RD - radial diffusivity FAC - directionally colored fractional anisotropy image We began delineating the GRE image series using pencil on a transparent paper overlay. First, we outlined the obvious features of the GRE image. Next, we overlaid the transparency on the FAC image to outline the major iber tracts. FAC was occasionally helpful in the delineation of nuclear groups, memorably, for example, the superior olive was slightly green. The DWI, RD and ADC series nearly always provided no more information than the GRE. Finally, we compared each pencil diagram with the diagrams on either side of it to harmonize the boundaries in adjacent diagrams. We continually referred to the diagrams in the Paxinos et al., (2019) Human Brainstem atlas during this stage of editing of the drawings. Wherever possible, we relied on the actual signature of the structure on MRI. E.g., the red nucleus is all too evident because it is black in GRE. However, when we had conirmation of the presence of a structure, we could guess the location of its neighbors, much as you can safely guess the location of Italy, France, Austria and Germany once you know the borders of Switzerland. GRE images In the brainstem, overall, the GRE images display major iber tracts as generally darker while nuclear groups are often pale or lighter in appearance. Because GRE images represent iber bundles so well, they are the best choice for primary identiication of brain structures.
FAC images The color convention for FAC images displays longitudinal tracts in green (running across the rostrocaudal axis), tracts crossing the midline horizontally in red (running laterally), and vertical oriented tracts in blue (running along the dorsoventral axis), as seen in the MRI/DTI Atlas of the Rat Brain by Paxinos et al., (2015). In accordance with the orientation of the human brainstem, tracts along the dorsoventral axis are generally seen as green, running rostrocaudally as blue, and tracts crossing the midline horizontally displaying as red. Fibers with an oblique angle orientation are represented by a mix of these initial colors (i.e., tracts 45° to the dorsoventral (green) and rostrocaudal (blue) orientation are seen as cyan). Descriptive features from GRE/FAC Following the descriptions given below for GRE signal intensity (i.e., high – bright/white, intermediate – light/grey, low – dark/black), and FA color orientation, the reader should be able to identify each of our delineations in the same manner used to construct this atlas.
Efferent and afferent nuclei of the cranial nerves Somatic efferent nuclei The somatic efferent nuclei of the brainstem are the hypoglossal and the abducens. The oculomotor and trochlear nuclei were previously classiied as somatic efferent, but they have been found to express Phox2b during development and, therefore, must be classed as branchial (special visceral) efferent. Special visceral (brachial) efferent nuclei – ambiguus nucleus, facial nucleus, motor trigeminal nucleus, trochlear nucleus, and oculomotor nucleus. The branchial motor nuclei supply the gill arch muscles of early vertebrates. The nuclei are clearly deined in early development by the expression of Phox2b. Using this criterion, we must consider the trochlear and oculomotor nuclei to be derived from ancestral gill arch motor nuclei since they both express Phox2b. General visceral efferent nuclei The general visceral efferent (parasympathetic) nuclei of the brainstem include the Edinger-Westphal nucleus (see oculomotor nucleus above), the superior and inferior salivatory nuclei and the dorsal motor nucleus of the vagus. General visceral afferent nuclei and associated nuclei – the nucleus of the solitary tract, the parabrachial nuclei, and periaqueductal gray Nucleus of the solitary tract The solitary tract (sol) is a heavily myelinated iber bundle that extends from the spinal cord to the level of facial nucleus (shown in Figs 27-67 and 136-141 of the histological atlas). The nucleus of the solitary tract (here abbreviated to ‘solitary nucleus’; Sol) occupies a large region of the dorsal tegmentum, mostly medial to the solitary tract. General somatic afferent nuclei The general somatic afferent (somatosensory) nuclei of the brainstem include the gracile and cuneate nuclei and the sensory trigeminal nuclei. Special somatic afferent nuclei – vestibular and cochlear nuclei The special somatic afferent nuclei include the auditory and vestibular nuclei. We have also included in this section a discussion of other nuclei associated with the auditory and visual pathways. Features in GRE/FAC The hypoglossal nucleus (12N) displays a higher signal intensity than the subjacent reticular formation, appearing lighter in GRE in the transverse plane (Fig 7). In contrast, the 12N shows a lower signal intensity than both the intercalated nucleus (In) and the dorsal motor nucleus of vagus (10N), appearing darker than both of which it overlies in the sagittal plane. The 12N is also darker than the prepositus nucleus (Pr) which lies rostral to it (Fig. 63). In the transverse plane, the facial nerve nucleus (7N) is slightly brighter than its surrounds making its boundary distinguishable from the intermediate reticular formation (IRt) which it abuts and is silhouetted against the descending exiting root of the facial nerve (7th nerve), which is very dark in appearance (Fig. 24). In FAC, while its boundaries are slightly dificult to distinguish, the 7N is nonetheless detectable between the exiting abducens
nerve (6th nerve) and 7th nerve and is seen as a blend of green and sky blue (Figs. 23 - 24). Another landmark in FAC at this level is the central tegmental tract (ctg) which, at this level, has an appearance of sky blue. Continuing in the transverse plane, the abducens nerve nucleus (6N) is seen to have a similar signal intensity to that of 7N, also making this nucleus evident in GRE in comparison to the subjacent reticular formation. However, in FAC, the boundaries of 6N are slightly more easily distinguishable than that of 7N, appearing as a mélange of faint green and mauve-blue hues (Fig 24). In contrast to the nuclei, both the 6th and 7th nerves are very conspicuous in FAC. The exiting 6th nerve is fully green, as it parallels with the descending part of the 7th nerve; both of which are well displayed in Figs 22-25. The exiting 7th nerve is captured particularly well in Fig. 24, as it hooks around 6N and proceeds to exit through the middle cerebellar peduncle (mcp), clearly visible as magenta-purple in its horizontal mediolateral course and appears as pale-yellow merging into bright green along its descending course (Fig. 24). In accordance with the transverse, 6N in the sagittal plane is brighter than the subjacent reticular formation in GRE. In FAC, 6N is principally a dull green under the purple-red crossing ibers (Fig. 65), while at more lateral levels, appears blue with patches of green (Fig. 67). The 6th nerve ibers are seen to sweep across the sagittal plane, appearing dark in GRE and green in FAC green (displayed well at Fig. 65). The exiting 7th nerve is seen as a pale yellow and purple where it takes multiple directions; mediolateral, dorsoventral, and anteroposterior (Fig. 72). The motor trigeminal nucleus (5N) is quite evident and detectable in GRE by its lighter appearance and the perforation of the dark exiting motor ibers in the transverse plane (Fig. 28). In FAC, 5N is dark navy laterally, but a lighter navy blue medially, while the extending sensory root (s5) and motor root (m5) ibers appear as a blend of bright yellow-green, and the exiting trigeminal nerve (5th) itself is seen as solid bright yellow as it exits (Fig. 28). In the sagittal plane, 5N is lighter in GRE compared to the darker 7th nerve which it abuts while in FAC, 5N appears as dark purple and blue, with patches of green from the iber bundles it issues (Fig. 75). The m5 and s5 trigeminal nerves are yellow, and the exiting ibers are green, as can be seen at Fig. 81. The trochlear nerve nucleus (4N) in the transverse plane has a light appearance in GRE and is evident against the darker grey of the medial longitudinal fasciculus (mlf). In FAC, the nucleus appears as a dull green with hints of dull purple (Fig. 47). The trochlear nerve (4th) is very dark in GRE, making it the most obvious structure in this section as it crosses the midline. In FAC, it can be seen as a distinct orange-red and purple coloring in FAC as it proceeds caudally and is poised to cross to the other side (Fig. 41). In the sagittal plane, 4N can be seen as a green and pink structure, and the 4th nerve is visible as burnt orange-red in color (Fig. 63). In the transverse plane, the oculomotor nucleus (3N) in GRE can be seen as lighter in appearance than the mlf that partly engulfs it, as well as the dorsal raphe (DR), and in FAC appears to be a split of blue and green (Fig. 50). The oculomotor nerve (3rd) ibers are very distinct, appearing quite dark in GRE compared to the brighter ventral tegmental area (VTA) they protrude through, while in FAC they are seen exiting as a dull green (Fig. 52). In the sagittal plane, 3N is, again, lighter in GRE compared to the darker mlf, and can be seen at an advantage at Fig. 62. In FAC, the nucleus appears blue and green (Fig. 62), becoming predominantly a deeper blue with slight purple hues more caudally at Fig. 63. The 3rd nerve exiting ibers are very dark in GRE, corresponding to the green exiting ibers visible in FAC at the same level (Figs. 66-67). The mlf can be seen throughout its tract to have a dark appearance in GRE (at the level of the 4N; Fig. 47), and appears light blue at this level in FAC, the nerve ibers themselves being reddish in appearance. Caudally, the mlf appears a lilac blue against the deeper blue of the interfascicular dorsal raphe (DRI; Fig. 40), while more rostrally, the mlf appears a sky blue (Fig. 48). In the sagittal plane, the mlf is panoramically visible in GRE at Fig. 62, and is equally prominent in FAC, where we can see its coloration change from deep blue caudally, to a sky blue more rostrally at the level of the decussation of the superior cerebellar peduncle (xscp). The mlf is also prominent at Figs. 63-64, becoming attenuated at Fig. 65. In the transverse plane, the solitary tract (sol) has an intermediate signal intensity in GRE, seen as dark grey making it easily identiied against the lighter grey background of the solitary nucleus (Sol), and 10N (Figs. 13 - 16), The tract is also conspicuous in FAC, seen as bright purple (Fig. 13). Sol itself is quite visible in GRE along with the associated 10N, as they are brighter than the ventrally lying parvicellular reticular formation (PCRt) and, at times, brighter than the overlying vestibular nuclei (e.g., Figs. 15-16). In FAC, Sol has olive green elements with slightly faint red hues (Fig. 15).
The medial parabrachial nucleus (MPB) has a brighter intensity signal in GRE compared to surrounding structures and is excellently displayed in the transverse plane at Fig. 33, where it borders the much darker superior cerebellar peduncle (scp). This arrangement is also well displayed in the sagittal plane in GRE (e.g., Fig 68). The MPB is a brilliant reddish purple in FAC in the transverse plane at Fig. 33. In the sagittal plane, MPB displays similar coloring in accordance with its transverse plane presentation, seen as a bright pink-purple structure at Figs. 75-74, becoming a blueish purple more rostrally at Figs. 73-71. In the transverse plane, the periaqueductal gray (PAG) is rather uniformly bright in GRE, with its intensiication of brightness appearing as a tight doughnut surrounding the aqueduct (Fig. 47). In FAC, the PAG appears predominantly as deep blueish purple, however patches of pinkish red are also visible in the ventrolateral PAG, and green present in the dorsomedial PAG (Fig. 47). In the sagittal plane, the PAG from both below and above the aqueduct is very bright at the most medial level in GRE (Fig. 61), with the brightness attenuating at more lateral locations, as seen in Fig. 65. In FAC, the PAG has a rather blue appearance at the medial locations, while at Fig. 65 is a darker, multicolor mélange. Nestled within the periaqueductal gray, and overhanging the 3N, are the parvicellular oculomotor nucleus (PC3), supraoculomotor periaqueductal gray (Su3), and supraoculomotor cap (Su3C), all of which appear slightly lighter than the subjacent ctg and other surrounding regions outside the PAG (Fig. 52). At rostral levels of the transverse plane, the ctg is quite visible in FAC, appearing as an oval of violet surrounded by a donut of blue or red hues (Fig. 49). However, in GRE the tract is only marginally detectable from the remainder of the mesencephalic reticular formation (mRt; Fig. 49). In FAC, at more caudal levels the tract still retains some of the violet hue, though is progressively seen to become more blueish before it descends to expire in the inferior olive (Fig. 29). The dorsal column nuclei (the gracile nucleus (Gr) and cuneate nucleus (Cu)) are light grey in appearance and feature against the darker gracile fasciculus (gr) and cuneate fasciculus (cu) that surround them, especially dorsally in the GRE (e.g., Fig. 4). The FAC also displays these structures well, with the nuclei themselves being green and the iber bundles of gr and cu being various colors, predominantly blue and pink-violet (Fig. 4). The external cuneate nucleus (ECu) in GRE appears similarly bright in appearance to the dorsal column nuclei (e.g., transverse Fig. 12), and is silhouetted well against the darker inferior cerebellar peduncle (icp). In FAC, the ECu is predominantly green with a slight area blended with purple-red, presumably due to the orientation of ibers within the nucleus (Fig. 12). In the sagittal plane, the Gr appears brighter than its surrounding iber bundle in GRE and is shown as light green in FAC (Fig. 61). This arrangement persists for the extent of the nucleus, seen as far as laterally as Fig. 65, subsequently becoming characterized by patches of red, green, deep blue. The Cu can also be seen as principally green, with some red regions in FAC, and is brighter than the cu in GRE at Fig. 68. In the transverse plane, the medial lemniscus (ml), at its origin in the dorsal column nuclei, is called the internal arcuate ibers (ia) and in FAC can be seen as green, consistent with their principally dorsοventral direction (Fig. 5). When entering its decussation, ml is a bright lime green, subsequently becoming blue as its direction becomes caudorostral in more rostral regions, such as Fig. 13. The ml is interrupted by ibers from the inferior olive as they rush through the midline to the opposite cerebellum via the icp, with the level of their crossing attenuating the blue color of the ml with a reddish tinge (e.g., Fig. 14). The midline at several levels features a very strong green coloration which is associated with the medullary stria (meds; e.g., Fig. 8-9). The ml is extremely clear in FAC at Fig 33, distinguishable from the mediolaterally directed ibers of the pons, as a blueish lilac color. Lateral to the crossing of the scp, at the same level, we see a very bright green appearance which corresponds to part of the nucleus of the retrorubral ield (RRF) and surrounding space, the green making a distinction between the nuclei, but it ills in the space between the lateral ml and the substantia nigra compacta (Fig. 48). In the sagittal plane, the ml can be seen at an advantage in Figs. 65-69, appearing darker than all bordering structures. The ml distinguishes itself in FAC against the red transverse ibers of the pons (tfp), appearing lilac in color that extends into a sky blue. More rostrally, the ml features shades of green and pink, like unmixed paints. More laterally in the sagittal plane, the ml can be seen circumnavigating the pontine bubble featuring components of slight pink, blue, and sky blue (e.g., Figs. 69-71), increasingly becoming a reddish-purple at Figs. 73-74, and purple at Figs. 75-77. The spinal trigeminal nucleus, caudal part (Sp5C) is very bright in GRE in laminae 1 & 2 (Sp5C1/2), and less bright in laminae 3 & 4 (Sp5C3/4) in the transverse plane (Fig. 1). In FAC, the nucleus itself is red and green across
different areas while, external to this, the spinal tract of 5 (sp5) appears as blue (Fig. 1). A similar arrangement is observed in Fig. 4, where laminae 1 & 2 are very bright in GRE, and the remaining caudal part of Sp5 is also quite bright. In GRE, sp5 itself is white in both Figs.1 and 4, which is unusual given that other tracts visible at the same level, such as the pyramidal tract (py) and cu, both appear darker. Therefore, the sp5 can be distinguished from the cu due to its brightness. In the sagittal plane, the sp5 can be seen as a blue structure in FAC at Fig. 77, with the crossing cerebellar ibers visible both above and below it, appearing red in their medial lateral course to join up the inferior cerebellar peduncle, which is seen as green caudally and blue more rostrally. The principle sensory trigeminal nucleus (Pr5) can be seen at an advantage in GRE in the transverse plane at Figs. 27-28, with the nucleus’s boundaries evident appearing slightly brighter than the mcp and s5 and, in FAC, is visible as a blend of both light and dark green, located medial to the mcp and s5 (Fig. 27). The spinal trigeminal oral subnucleus (Sp5O) can be seen in GRE as brighter than its tract in which it nestles, as seen at an advantage at Fig. 22. The medial vestibular nucleus (MVe) is evident in the sagittal plane in GRE showing a brighter signal intensity than other bordering structures, and in FAC appears principally as a dull green interspersed with dark blue-purple (Fig. 68). The superior olive (SOl) is not distinctive in GRE in the transverse plane, though in some regions it is seen to be cradled by the darker ibers of the lateral lemniscus (ll; Fig. 28). In FAC, SOl can be seen as a dark green, appropriate for its name (Fig. 26). In the sagittal plane SOl can be seen as patches of teal and olive green in FAC (Fig. 74). The ventral lateral lemniscus (VLL) appears lighter in GRE against the darker ll in the transverse plane (Fig. 35), while in FAC we can see VLL being a denser blue than the sky blue of the ll itself (Fig. 35). In the transverse plane, the central nucleus of the inferior colliculus (CIC) in GRE is has a lower signal intensity, seen to be dark in appearance while, in contrast, the dorsal cortex of the inferior colliculus (DCIC) is brighter, as is the dorsolateral aspect of the external cortex of the colliculus (ECIC). Conversely, the ventral and medial aspect of the external cortex of inferior colliculus, where the lateral lemniscus invades the colliculus, is darker (Fig. 46). In FAC, the CIC is purple and red in appearance, with the red portion extending into parts of the DCIC. The remaining DCIC is blue. The ECIC shows both slightly red and light green color, with the invading lm visible in blue. The commissure of the inferior colliculus (cic) shows dark in GRE at Fig. 47, and as expected, red in FAC. In the sagittal plane, the inferior colliculus can be seen at an advantage at Figs. 66 and 67. In GRE, the CIC is shown to be darker than both the DCIC and ECIC, and in FAC, the ECIC is greener in color than the CIC, which does not look homogeneous but is rather constituted by red, purple, and blue patches (Fig. 67). The brachium of the inferior colliculus (bic) in GRE has a lower signal intensity, seen as dark in appearance and in FAC, shows as a dull dark green in the transverse plane (Fig. 50). In the transverse plane, the medial geniculate (MG) is optimally seen in Fig. 55, and while it is hard to distinguish its subnuclei, the ventral (MGV) and dorsal (MGD) nuclei do appear slightly darker than the suprageniculate nucleus (SG) which abuts them dorsally and medially, as seen Fig. 56. In FAC, the MGV subnucleus shows a distinctly brighter red than the other subnuclei, which appear as a mélange of colors (Fig. 56).
Reticular and tegmental nuclei of the brainstem Many nuclei in the brainstem that are not directly associated with the cranial nerves, or the cerebellum have been labelled as reticular or tegmental nuclei. In the past, the reticular nuclei were considered to form a functional group which was named the reticular formation. This collective concept has been abandoned in favor of a separate consideration of the individually named reticular nuclei. Some nuclei that are named ‘reticular’ belong to entirely different functional entities. These include the reticulotegmental and lateral reticular nuclei (both precerebellar nuclei). In the hindbrain the large celled (gigantocellular) reticular nuclei are medially placed, and the small celled (parvicellular) nuclei are laterally placed (Figs. 8-24, and Figs. 61-72). The narrow region between these two large nuclei was named, by Paxinos and Watson (1986), the intermediate reticular nucleus. Features in GRE/FAC In the transverse plane, the reticular formation at the caudal level shows various colors in FAC, with reddish and green regions featured dorsally and blueish reddish regions more ventrally (Fig. 8). Rostral to the caudal nucleus, at the levels of the interpositus (IPo), the PCRt still has an olive-green tinge while the gigantocellular reticular nucleus (Gi) has a blueish tinge (Fig. 15). In the sagittal plane, the intermediate reticular nucleus (IRt) is displayed with the warmer colors red-purple and is bracketed by the PCRt which is seen as a deep
royal blue, and the lateral paragigantocellular nucleus (LPGi), which is also blue (Fig 72). This arrangement persists at Fig. 73.
Monoaminergic nuclei of the brainstem Four distinct populations of monoamine nuclei are present in the brainstem. These are the dopamine nuclei (substantia nigra, ventral tegmental area, and retrorubral ield), the noradrenaline nuclei (locus coeruleus, NA7, NA5, NA2 and NA1), the adrenaline nuclei (Ad1 and Ad2), and the serotonin nuclei of the raphe. Features in GRE/FAC In the transverse plane, the substantia nigra (SN) is visible in GRE as a very dark structure in its reticular part and has a slightly lighter appearance in its compact part. At times, it becomes dificult to distinguish the two as there are instances where some of the compacta invades or is found wholly within the reticulata (Figs. 53-54). In FAC, the SN is seen as blue and green, with blue dominating in the reticulata and the green dominating in the compacta. The green areas are at times blended with green corresponding to the invading compacta. Medial to the SN, and below the crossings of the scp, there is the parabrachial pigmented nucleus (PBP) and the ml. This area in FAC is bright green, indistinctly spreading from structure to structure (Fig. 54). In the sagittal view, the PBP is the brightest structure in GRE, between the SN and ml. It is brighter than the compact part of the reticular formation, with the reticulata nicely shown to be blueish in color in FAC, and the compacta seen as green (Fig. 75). The SN is seen at an advantage at Fig. 78, where it is a gravel of pebbles that are sky blue, yellow, and green. Here, the reticulata is of a duller color than the PBP, which is seen as a brighter green (Fig. 78). In the transverse plane, the locus coeruleus (LC) is brighter in its alpha part (Fig. 31), which is below the ibers separating the central grey from the reticular formation. In the FAC, these ibers show some purple-red coloration, which distributes and attenuates dorsally where the main LC lies (Fig. 31). The median raphe nucleus (MnR) in GRE is light grey followed dorsally by the bright white of the dorsal raphe nucleus, caudal part (DRC; Fig. 37). Here, the FAC shows the midline as a light mint-green, with the same color for the DR. At the level of the 4th nerve, the DR is bright in GRE, and in FAC it is blend of navy with patches of magenta, indistinguishable from the PAG (Fig. 47). Continuing caudally, the MnR becomes slightly brighter in GRE than its surrounds, and in the FAC it is shown to be a light green midline, surrounded by the deep blue paramedian raphe (PMnR; Fig. 40). In the sagittal plane, the DR is lighter than the ibers of the mlf that are below it, but darker than the region of the PAG near the midline. More laterally, the PAG and the DR are indistinguishable in GRE (Fig. 64).
Precerebellar Nuclei and Red Nucleus The precerebellar nuclei (nuclei that project directly to the cerebellum) include the pontine nuclei, the inferior olive, the lateral reticular nucleus, and smaller hindbrain nuclear groups. A comprehensive description of the cytoarchitecture and connectivity of the precerebellar nuclei is to be found in Voogd and Ruigrok (2012). The pontine nuclei. The pontine nuclei are interspersed between the longitudinal fasciculus of the pons and the transverse ibers of the pons. In GRE the cellular regions are lighter in color (e.g., Fig. 40). In FAC, the descending ibers are strikingly blue and the crossing ibers strikingly red, with the cellular regions often light green. Inferior olive. All the subdivisions of the inferior olive can be seen in the myelin series of Paxinos et al., (2019; their Figs. 133-143). In GRE of the present study, the inferior olive is conspicuously bright in its cellular regions (e.g., Fig 11), while in FAC, the cellular regions look greenish and strikingly different from the hilus of the inferior olive which appears red, consistent with the mediolateral disposition of ibers that exit the olive to cross the midline and reach the contralateral cerebellum (Fig. 11). Features in GRE/FAC The lateral reticular nucleus (LRt) is hard to identify in FAC, however, guided by expected position, it has green components in FAC (Fig. 6). More rostrally, it can be seen principally as blue with some slight purple coloration inside (Fig. 9). In the transverse plane, the principal subnucleus of the inferior olive is conspicuous in GRE, being bright white in the cellular areas, and darker in the
hilus and elsewhere (Fig. 16). The smaller subnuclei of the olive, such as the inferior olive, dorsomedial cell group (IODM), inferior olive, medial nucleus (IOM), inferior olive, cap of Kooy (IOK), and inferior olive, beta subnucleus (IOBe) are also quite bright regions adjacent to the darker iber bundles of the ml and the py (Fig. 16). In the FAC, the principal subnucleus is green in its cellular regions, and the hilus of the inferior olive (hio) is predictably (by the iber orientation) bright red. The red color is also present occasionally in other areas such as above the py and in some of the septa between the folds of the cellular regions; the red presumably produced by the mediolaterally directed ibers as they rush to cross the midline and reach the cerebellum of the opposite side (Fig. 16). The associated arcuate nucleus (Ar) which also projects to the cerebellum and is principally surrounding the pyramids is strikingly visible in GRE and it is the dark green region that is visible in the corresponding FAC (Fig. 10). In the sagittal plane, the inferior olive can be seen most prominently in Fig. 68 as a wrinkled/crumpled purse, bright in cellular regions and dark in ibrous regions in GRE. In FAC, the cellular regions are green, whereas the hilus can be seen as strong orange-red (Figs. 67-68). Remaining in the sagittal plane the ctg, when close to the olive, is excellently displayed at Fig. 67 and Fig. 68, and is seen in a panoramically in Fig. 68. In FAC it appears lilac blue, though caudally, at rostral levels above the crossing of the scp, it appears sky blue when approaching its destination, the inferior olive. The py, once it leaves the pontine nuclei (Pn), is principally royal blue in color, but within it exist clouds of sky blue and even reddish-purple at its most ventral region (Fig. 19). Advancing caudally, the situation persists, and where the pyramid is preparing to enter the decussation the color changes to a purple pink, with the pyramidal decussation (pyx) is itself principally a mint green (e.g., Fig. 3). In the sagittal plane, the py is evident, more so in the midline where it can be seen as blue to sky blue and a brighter blue green as it crosses in Fig. 61. In Fig. 62, the blue predominates with the crossing appearing a light green. In Fig. 63 it is principally seen as deep blue or sky blue and persists in this arrangement. The Pn hug the py as it struggles to exit and form the pyramids. In the transverse plane at these levels, the Pn are extremely bright in GRE, silhouetting the longitudinal fasciculus of the pons (lfp) as well as the tfp (e.g., Fig. 20). In FAC, these cell groups are principally green and dark green at the external end (Fig. 20). As we go rostrally, the lfp are embedded in the Pn and are bracketed by the crossing tfp, with pontine cell groups dispersed between. At this level, the Pn are light in color (however not as bright as seen in Fig. 20) and retain their green in appearance in FAC (Fig. 24). Internally, we see the lfp as various shades of blue (Fig. 24). Continuing in the transverse plane, many crossing ibers can also be seen to an advantage in Fig. 36, where the tfp, which are a vibrant red, are indigitated with the lfp, appearing as a range of deep blue, violet and lighter sky-blue ibers. These crossing ibers form the likeness of a big sandwich with many layers. The vibrant red tfp ibers terminate medially to form the mcp, and the blue lfp ibers are surrounded by patches of green, followed by red, and then blue again, repeatedly, like an interdigitation of ingers (Fig. 36). The mcp and tfp are also excellently shown at Fig. 43, where they allow some cellular groups to interpose themselves between them. The tracts appear dark in GRE, but there are visible light streaks appearing between them, owing to these cell groups. Notably, in the midline of the basilar pons there is always a green appearance which may be related to the step pattern that the crossing ibers seem to form. In preparations of myelin in Human Brainstem (Paxinos et al., 2019), we can see that the crossing ibers follow a step pattern when the bundles arrive at the midline, changing direction to advance slight upwards or downwards to interdigitate with their opposites on the other side and, possibly, this change in orientation produces some of the green midline (their Figs 146-148). However, the existence of a pontine midline iber bundle orthogonal to the lfp and tfp cannot be excluded (Fig. 43). On the midline of the sagittal plane, we ind vast displays of the green Pn in FAC, and in GRE they appear brighter than the surrounding ibers (especially at the caudal levels). At the midline, the tfp are seen to congregate in the more rostral part of the pontine oral nucleus (PnO). The Pn predominate at Fig. 61, however following this point the tfp and lfp become more predominant, with the green cellular Pn regions illing the matrix between the red tfp and blue lfp (FAC Fig. 63). One of the most striking images of this in the sagittal plane can be seen in Fig. 66. The lfp ibers are also seen to become continuous with the py at Figs 66-68 in GRE and, in FAC, together display a brilliant ibrous projection that is purple, cornlower blue, and sky blue in color. In the transverse plane, the cerebral peduncle (cp) looks like a psychedelic painting in FAC containing sky blue, royal blue, pink and purple hues all together
(Fig. 52). In GRE, the cp appears as solid grey, however it is not as dark as the SNR which it cradles (Fig. 52). At this level, the rostral region of the cp appears dark, however not as dark as the underlying SNR or SN (Fig. 57). In FAC, there are many purple-red ibers and patches that can be seen to be intermingled with the green and light blue (Fig. 57). In the sagittal plane, we meet the internal capsule (ic) at Fig. 81 as it metamorphoses into the cp at the level of the subthalamic nucleus (STh). The ic is principally blue, becoming a blend of blue, pink, and purple as it goes into the cp (Fig. 81). Continuing in the sagittal plane, the Ar, which can be viewed as a continuation of the Pn, is visible in Figs. 61-62, and is seen as green in appearance at more lateral levels such as Fig. 63, with the color shifting to deep blue at Fig. 64. The reticular tegmental nucleus (RtTg) is seen as lighter than the surrounding ml or pontine reticular formation in GRE, and in FAC one can see patches of green and blue (Fig. 27). In the sagittal plane, the RtRg can be seen throughout its extent in Fig. 63 and is lighter than the subjacent ibrous zone of the pons in GRE. In FAC, it appears as light blue, lilac and green, best seen in Fig. 63. The red nucleus (R) is a mélange of colors in Fig 55, while occasionally, at more rostral levels, the green predominates (Fig 58). At Fig. 59, the fasciculus retro lexus (fr) is a bright yellow-green and is shown to be advancing through green patches of the medial region of the R. The R loses green coloring more caudally (Fig. 52) appearing blue medially, and purple in the lateral half. The arrangement persists until the medial region becomes greener and the lateral region displays purple hues (Fig. 55). Even more rostrally, the green takes over until there is no more purple, as in Fig. 59, although some blue elements in the center remain. In the sagittal plane the R, when close to the midline (the most medial edge on the sagittal plane being at Fig. 63), can be seen to feature green and blue in a sea of principally mint green ibers of the scp. Yet more laterally, it looks mosaic with green, blue, and magenta patches, and is also seen as an intensiication of brighter green in FAC (Fig. 65). At Fig. 67 we see the R as being patchwork of green and pink with white parts surrounded by the scp. The red nucleus at more lateral levels is seen to be a conglomerate of green, deep blue and magenta (Fig. 74). The scp is very dark in GRE as it exits the cerebellum and is shown as an intense sky blue in FAC (Fig. 34). In contrast, the cerebellum itself appears extremely bright in GRE and a forest green in FAC (Fig. 30). In Fig. 34 the arrangement persists, where the scp is within the brainstem, still appearing as sky blue in FAC (Fig. 37). The scp indeed becomes dark again in GRE at Fig. 43. As it then proceeds to reach its crossing, the lateral elements that have not yet crossed appear a paler blue, becoming white at the elbow, and subsequently red as they cross the midline (Fig. 41). At the decussation itself, the lateral parts are light blue, moving into white, inally becoming principally red as they cross the midline (Fig. 44). In GRE, we can see a striation of the iber bundles as they cross the midline. At more rostral levels, in GRE the scp is still as dark where the nigra is about to expire. It has strips of redness interdigitated with a navy blue and lilac in FAC (Fig. 48). In the sagittal plane, the scp as it leaves the cerebellum is a sky blue through its extent (Fig. 71). At its crossing, the scp is evident as principally green (Fig. 61), though interdigitated with strips of red and yellow. This persists at Figs. 63-65, with the red now predominating, and the yellow lost at Fig. 67.
Nuclei Related to the Visual System In the midbrain, the superior colliculus and tectal gray are important visual centers. The dorsal lateral geniculate nucleus (DLG) in GRE is slightly bright and distinguishable amongst the ibers of the optic tract (opt) that terminate in it (Fig. 59). In FAC, it is seen as a dull green surrounded by the brighter green of the tract, with the tract itself becoming yellow as it follows a rostral and medial and ventral course girthing the cp (Fig. 59). The overlying pulvinar (Pul) appears a red-dull orange, as can be seen in Fig. 59, and in GRE stripes of ibers that traverse it appear darker than the cellular regions. The brachium superior colliculus (bsc) is dark in color and can be seen to surround the anterior pretectal nucleus (APT) which is light in color in GRE (Fig. 56). The APT in Fig. 56 is predominantly a dull teal green with purple-red components in FAC. In the sagittal plane, the opt is seen as bright yellow at Figs. 82-83. In the transverse plane, the superior colliculus (SC) in GRE features a bright zona layer (Zo) and super icial gray layer (SuG), and appears rather uniformly grey in the remainder of the colliculus, except for part of the optic nerve layer (Op), which is also partly bright (Fig. 52). The deep white layer (DpWh)
features a dense ibrous component. In FAC, the SC shows a green color in its Zo, SuG, and intermediate grey layers (InG), with this green color attenuated in the intermediate white layer (InW). The deep grey (DpG) and deep white (DpWh) layers are green in their medial edge but are a pink-purple color more laterally. Close to the midline, the layers above the DpG and DpWh show a slightly navy color (Fig. 52). The green from the SC layers continues with a green component of the PAG, ending halfway between the dorsal part of the PAG and the aqueduct. The posterior commissure (pc) is visible as bright red in its crossing at Fig. 58. In the sagittal plane, a striking feature of the SC is the red color of the DpWh, seen to be continuous with the red of the pc at Fig. 61. This layer is dark in GRE, outlined nicely against the subjacent PAG or the overlying DpG. The SC can be seen at an advantage in Fig. 65, again with the DpWh being obvious in GRE and showing purple and red in the FAC. The pineal gland (Pi) can be seen as green in FAC and very white in GRE. The SC has a substantial amount of green close to the midline except for its rostral level which is lilac (Fig. 65). This can also be seen at Fig. 67 with the DpWh appearing as magenta, and the remaining layers being principally green.
Other regions In the transverse plane, the regions surrounding the central canal (CC) are bright compared to the surrounding ibrous regions such as the subjacent pyx in GRE (Fig. 3), while in FAC, the region is royal to navy blue in color (Fig 3). The interpeduncular nucleus (IP) is shown as bright in GRE (Fig. 48), while in FAC is seen as extremely dark navy blue (Fig. 48). In the sagittal plane, the IP is shown as very bright in contrast to the adjacent xscp in GRE and appears a deep blue in FAC, becoming a sky blue as it reaches towards the MnR (Figs. 62-61). The crossing of the retromammillary decussation (rmx) in GRE is seen as a slightly darker grey than the surrounding cellular regions of the hypothalamus. The lateral hypothalamus (LH), ventromedial hypothalamus (VMH) and surrounding area have a high signal intensity and are seen as are extremely bright in the transverse plane (Fig 59). In FAC, the rmx is predominantly deep red in coloration containing some central green ibers/patches (Fig 59). The mammillary body (MB) in cellular areas has an intermediate signal intensity, silhouetting the principle mammillary tract (pm) and fornix (f) at this level, both of which are darker in GRE (Fig 59). Remaining in the hypothalamus, the STh is very evident in GRE, appearing as a dark structure just dorsal and anterior to the SN, while the zona inserta (ZI) is slightly lighter in appearance in GRE, distinct from the STh at the most caudal level (Fig 59). In FAC, the STh demonstrates a mosaic of colors, with yellow, green, and dark green dominating, while the ZI looks as though its ready for the Carnival - displaying orange, pink and yellow mélange (Fig. 60). Moving into the sagittal plane, the ZI is brighter than the ventrally lying STh in GRE, and in FAC is seen as lame red and orange appearance (Fig. 86). The f is signiicantly darker than the surrounding hypothalamic region, which appears very bright (in accordance with the transverse plane), while in FAC it has a mélange of colors as it prepares to invade the MB, showing components of lilac, deep blue, and sky blue (Fig 66). The mammillothalamic tract (mt) is predominantly green at this level, consistent with the dorsal ventral orientation at Fig. 66. The APT is distinct from the SC and subjacent reticular formation in FAC, predominantly appearing as a dark teal green (Fig. 75).
Comparison of this Atlas with Prior Work Using the Same Data The MRI data used to create this atlas has also been used in several previously published works including Calabrese et al., (2015), Sitek et al., (2019), Rushmore et al., (2020), and Adil et al., (2021). The present atlas differs substantially from prior work in terms of purpose, scope, and level of detail. Two of these studies did not attempt any in depth anatomic delineation, but rather were focused on DTI iber tracking for deep brain stimulator electrode targeting (Calabrese et al., 2015) or for mapping subcortical auditory pathways (Sitek et al., 2019). The two remaining studies from Rushmore et al., (2020) and Adil et al., (2021) each provided substantial anatomic delineations, but these did not approach the level of detail provided in the present work. For example, Rushmore et al., (2020) identiied 47 unique structures, and Adil et al., (2021) identiied 48, while the present work identiied 363 structures. In addition, Rushmore et al., (2020) used only the GRE images, thus limiting their ability to identify certain structures. The format of anatomic delineations also differs substantially with Rushmore et al., (2020) providing only annotated axial images (no diagrams) and Adil et al., (2021) providing only 3-dimensional voxel-based
labels. Finally, the present atlas is the irst and only such atlas to provide fully annotated sagittal plates and diagrams, giving a unique perspective on brainstem organization.
References Adil, S. M., Calabrese, E., Charalambous, L. T., Cook, J. J., Rahimpour, S., Atik, A. F., Cofer, G.P., Parente, B.A., Johnson, G.A., Lad, S.P., White, L. E. (2021). A high-resolution interactive atlas of the human brainstem using magnetic resonance imaging. NeuroImage, 237, 118-135. Berman AL. (1968). The Brainstem of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. University of Wisconsin Press, Madison. Bowden, D. M., et al. (2012). NeuroNames: an ontology for the BrainInfo portal to neuroscience on the web. Neuroinformatics 10 (1): 97-114. Calabrese, E, Hickey, P, Hulette, C, Zhang, J, Parente, B, Lad, SP, Johnson, GA. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Human brain mapping 36 (8), 3167-3178. Capecchi, M. R. (1989). The new mouse genetics: altering the genome by gene targeting. Trends Genet 5 (3), 70-76. Dahlström, A., and Fuxe, K. (1964) Localization of monoamines in the lower brainstem. Experimentia 20 (7), 398-399 Farago AF, Awatramani RB, Dymecki SM. (2006). Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50 (2), 205–218. Foster, G. (1998), Chemical Neuroanatomy of the Prenatal Rat Brain. A Developmental Atlas: 416. Oxford University Press. New York. Herrick, C. J. (1922). “An Introduction to Neurology,’’ 3rd Ed. W. B. Saunders, Philadelphia. Johnson GA, Ali-Sharief A, Badea A, Brandenburg J, Cofer G, Fubara B, Gewalt S, Hedlund L, Upchurch L. (2007). High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage 37 (1), 82–89.
Paxinos G, Huang X-F, Sengul G, Watson C. (2012a). Organization of human brainstem. In Mai JK and Paxinos G (Eds.), The Human Nervous System. (3rd edition). Elsevier Academic Press, San Diego. Paxinos G, Kus L, Ashwell K, Watson C. (1999a). Chemoarchitecture of the Rat Forebrain. Academic Press, San Diego. Paxinos G, Watson C, Carrive P, Kirkcaldie M, Ashwell K. (2009b). Chemoarchitectonic Atlas of the Rat Brain. 2nd edition. Elsevier Academic Press. San Diego. Paxinos G, Watson C. (1986). The Rat Brain in Stereotaxic Coordinates”, 2nd Ed. Paxinos G, Watson, C., (2005). The Rat Brain in Stereotaxic Coordinates, 5th Ed. Elsevier Academic Press. San Diego. Paxinos G, Watson, C., (2007). The Rat Brain in Stereotaxic Coordinates. 6th Ed. Elsevier Academic Press. San Diego. Paxinos G. (Ed.) (2004). The Rat Nervous System, 3rd ed., Elsevier Academic Press, San Diego. Paxinos, G. (1983). Evidence for the existence of a parvicellular nucleus medial to the parabigeminal (PBg) nucleus. Neurosci. Lett., Suppl. 14, S276. Paxinos, G. (1985). The microcellular tegmental nucleus (Mi). Neurosci. Lett., Suppl. 1-9, 589. Paxinos, G., and Franklin, K.B.J, (2019) Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, Compact 5th Edition, Academic Press, San Diego, Paxinos G, Furlong T and Watson, C, Human Brainstem: Cytoarchitecture, Chemoarchitecture, Myeloarchitecture, Academic Press Elsevier, San Diego, 2019. Paxinos, G., and Huang, X. F. (1995). Atlas of the Human Brainstem. Academic Press, San Diego. Paxinos, G and Watson, C. The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney, 1982. Paxinos, G and Watson, C, Paxinos and Watson’s The Rat Brain in Stereotaxic Coordinates, 7th Edition, Academic Press, San Diego, 2014.
Johnson GA, Cofer GP, Gewalt SL, Hedlund LW. (2002). Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222 (3), 789–793.
Paxinos, G, Watson, C, Calabrese, E, Badea, A and Johnson, GA, MRI/DTI Atlas of the Rat Brain, Academic Press/Elsevier, San Diego, 2015
Johnson GA, Thompson MB, Drayer BP. (1987). Three-dimensional MR microscopy of the normal rat brain. Magn Reson Med 4 (4), 351–365.
Paxinos, G., Huang, X. F., Petrides, M. and Toga, A. W. (2009). The Rhesus Monkey Brain in Stereotaxic Coordinates, 2nd ed., Academic Press, San Diego.
Joyner, A. L. and M. Zervas (2006). Genetic inducible fate mapping in mouse: establishing genetic lineages and deining genetic neuroanatomy in the nervous system. Dev Dyn 235(9), 2376-2385.
Paxinos, G., Tork, I., Halliday, G. and Mehler, W.R. (1990). Human homologues to brainstem nuclei identiied in other animals as revealed by acetylcholinesterase activity, In G. Paxinos, The Human Nervous System, Academic Press, San Diego, 149-202.
Mai JK, Paxinos G, Voss T. (2008). Atlas of the Human Brain. (3rd edition). Elsevier Academic Press, San Diego. Mai, J., and Paxinos, G. (2012). “The Human Nervous System”. 3rd ed. Academic Press, San Diego Mehler, W. R., (1974) Central Pain and the Spinothalamic Tract. Adv. Neurol. 4, 127 – 146. Morin LP, Wood RI. (2001). A Stereotaxic Atlas of the Golden Hamster Brain. Academic Press, San Diego. ine Olszewski, J. and D. Baxter (1954). Cytoarchitecture of the Human Brain Stem, Lippincott. Paxinos, G, The Rat Nervous System, 4th Edition, Academic Press, San Diego, 2014.
Paxinos, G., Watson. C., Petrides, M., Rosa, M.G., and Tokuno H. (2012b). ‘‘The Marmoset Brain in Stereotaxic Coordinates,”. Academic Press, San Diego. Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR. (2012b). Hypothalamus. In Watson C, Paxinos G, and Puelles L (Eds.), The Mouse Nervous System. Elsevier Academic Press, San Diego. Puelles L, Martinez-de-la-Torre M, Ferran J-L, Watson C. (2012c). Diencephalon. In Watson C, Paxinos G, Puelles L (Eds.), The Mouse Nervous System. Elsevier Academic Press, San Diego. Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson, C, Martinez S., (2007). The Chick Brain in Stereotaxic Coordinates. An Atlas Featuring Neuromeres and Mammalian Homologies. Elsevier Academic Press. San Diego.
Paxinos, G, Ashwell, KWS and Atlas of the Developing Rat Nervous System, 4rd Ed, Academic Press, San Diego, 2018
Puelles L, Martinez-de-la-Torre M, Martinez S, Watson C, Paxinos G, The Chick Brain in Stereotaxic Coordinates and Alternate Stains, 2nd Edition, Academic Press, San Diego, 2019.
Paxinos G, Carrive P, Wang H, Wang P-Y. (1999). Chemoarchitecture of the Rat Brainstem. Academic Press, San Diego.
Rushmore, Richard Jarrett, et al. (2020). 3D exploration of the brainstem in 50-micron resolution MRI. Frontiers in neuroanatomy 14, 40.
Paxinos G, Kassem, MS, Kirkcaldie, M and Carrive P, Chemoarchitectonic Atlas of the Rat Brain, Third Edition, Academic Press, San Diego, 2022.
Suddarth SA, Johnson GA. (1991). Three-dimensional MR microscopy with large arrays. Magn. Reson. Med. 18 (1), 132–141.
Paxinos G, Franklin K. (2013). Paxinos and Franklin’s, The Mouse Brain in Stereotaxic Coordinates, 4th ed. Elsevier Academic Press, San Diego.
Tomás-Roca, L., Corral-San-Miguel, R., Aroca, P., Puelles, L., Marin, F., (2016) Crypto-rhombomeres of the mouse medulla oblongata, deined by molecular and morphological features. Brain Structure and Function. 221 (2), 815 - 838.
Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang HQ (2007) Atlas of the Developing Mouse Brain at E17.5, P0, and P6. Elsevier Academic Press, San Diego.
Toulmin, S. (1953). The philosophy of science: An introduction. London: Hutchinson's University Library.
Voogd, J., and Ruigrok, T. (2012) Cerebellum and Precerebellar Nuclei. The Human Nervous System, J. Mai and G. Paxinos Eds, 471-545. Academic Press, San Diego. Watson C, Paxinos G, Puelles L. (Eds.). (2012). The Mouse Nervous System. Elsevier Academic Press, San Diego. Watson, C, Paxinos, G, Kayalioglu, and Heise, C. (2009). Atlas of the mouse spinal cord. Academic Press. Watson, C, Mitchelle, A, and Puelles L. (2017a). A New Mammalian Brain Ontology Based on Developmental Gene Expression. Evolution of the Nervous System 53-75. Watson, C., Shimogori, T., and Puelles L. (2017b). Mouse Fgf8-Cre-LacZ lineage analysis deines the territory of the postnatal mammalian isthmus. J Comp Neurol 525 (12), 2782-2799.
List of Structures 3rd ventricle 3V 4th ventricle 4V
A
abducens nerve 6n abducens nucleus 6N acoustic radiation ar Ad1 adrenalin cells Ad1 Ad1 adrenalin cells/A1 noradrenalin cells Ad1/NA1 ambiguus nucleus, compact part AmbC ambiguus nucleus, loose part AmbL ambiguus nucleus, semicompact part AmbSC amiculum of the olive ami anterior commissure ac anterior pretectal nucleus APT aqueduct Aq arcuate hypothalamic nucleus Arc arcuate nucleus of the caudal hindbrain Ar area postrema AP ascending ibers of the facial nerve asc7 austral nucleus Au
B
B9 serotonin cells B9 Barrington's nucleus Bar brachium of the inferior colliculus bic brachium of the superior colliculus bsc
C
caudal dorsal paramedian nucleus CDPMn caudal linear nucleus of the raphe CLi caudal linear nucleus of the raphe, azygos part CLiAz caudal linear nucleus of the raphe, zygos part CLiZ central canal CC central cervical nucleus of the spinal cord CeCv central gray CG central gray of the pons CGPn central gray, beta part CGB central nucleus of the inferior colliculus CIC central tegmental tract ctg Centromedian thalamic nucleus CMn cerebellum Cb cerebral peduncle cp cochlear root of the vestibulocochlear nerve 8cn commissure of the inferior colliculus cic commissure of the superior colliculus csc conterminal nucleus Ct corticobulbar tract cbu corticospinal tract csp cribiform nucleus Crb cuneate fasciculus cu cuneate nucleus Cu cuneiform nucleus CnF
D
decussation of the medial lemniscus xml decussation of the superior cerebellar peduncle xscp decussation of the superior cerebellar peduncle/caudal linear nucleus of the raphe, azygos part xscp/CliAz decussation of the superior cerebellar peduncle/caudal linear nucleus of the raphe, zygos part xscp/CLiz decussation of the trochlear nerve x4n deep gray layer of the superior colliculus DpG deep white layer of the superior colliculus DpWh dorsal cortex of the inferior colliculus DCIC dorsal lateral geniculate nucleus DLG dorsal motor nucleus of vagus 10N dorsal nucleus of the lateral lemniscus DLL dorsal paragigantocellular nucleus DPGi dorsal paramedian sulcus dpms dorsal periolivary region DPO dorsal raphe nucleus DR
dorsal raphe nucleus, caudal part DRC dorsal raphe, interfascicular part DRI dorsal spinocerebellar tract dsc dorsal tegmental nucleus DTg dorsolateral periaqueductal gray DLPAG dorsomedial periaqueductal gray DMPAG dorsomedial tegmental area DMTg dorsomedian sulcus dms
E
Edinger-Westphal nucleus EW endolemniscal nucleus EL endorestiform nucleus EnR ependyma and subependymal layer E epicoeruleus nucleus EC external cortex of the inferior colliculus ECIC external cuneate nucleus ECu
F
facial nerve 7n facial nucleus 7N fasciculus retrolexus fr fornix f frontopontine ibres frpn
G
gamma pontine nucleus Gam genu of the facial nerve g7 gigantocellular reticular nucleus Gi gigantocellular reticular nucleus, alpha part GiA gigantocellular reticular nucleus, ventral part GiV glossopharyngeal nerve 9n gracile fasciculus gr gracile nucleus Gr
H
habenular commissure hbc habenular nuclei Hb hilus of the inferior olive hio hypoglossal nerve 12n hypoglossal nucleus 12N hypoglossal nucleus, lateral part 12L hypoglossal nucleus, medial part 12M hypoglossal nucleus, ventral part 12V hypothalamus hypothal
I
inferior cerebellar peduncle icp inferior olive, beta subnucleus IOBe inferior olive, cap of Kooy of the medial nucleus IOK inferior olive, dorsal nucleus IOD inferior olive, dorsomedial cell group IODM inferior olive, medial nucleus IOM inferior olive, principal nucleus IOPr inferior olive, subnucleus A of medial nucleus IOA inferior olive, subnucleus B of medial nucleus IOB inferior olive, subnucleus C of medial nucleus IOC inferior salivatory nucleus IS intercalated nucleus In interfascicular nucleus IF interfascicular trigeminal nucleus IF5 intermediate gray layer of the superior colliculus InG intermediate nucleus of the lateral lemniscus ILL intermediate reticular nucleus IRt intermediate white layer of the superior colliculus InWh internal arcuate ibers ia internal capsule ic interoculomotor nucleus I3 interpeduncular fossa ipf interpeduncular nucleus IP interpositus IPo interstitial nucleus of Cajal InC interstitial nucleus of Cajal/mammillotegmental tract InC/mtg interstitial nucleus of the decussation of the superior cerebellar peduncle ID
isthmic reticular formation isRt
J
juxtaolivary nucleus JxO
K
Kölliker-Fuse nucleus KF
L
lamina 10 of the spinal gray 10Sp lamina 9 of the spinal gray 9Sp lateral corticospinal tract lcs lateral hypothalamic area LH lateral lemniscus ll lateral mammillary nucleus LM lateral parabrachial nucleus LPB lateral parabrachial nucleus, dorsal part LPBD lateral parabrachial nucleus, external part LPBE lateral parabrachial nucleus, superior part LPBS lateral paragigantocellular nucleus LPGi lateral periaqueductal gray LPAG lateral pericuneate nucleus LPCu lateral reticular nucleus LRt lateral reticular nucleus, subtrigeminal part LRtS5 lateral terminal nucleus of the accessory optic tract LT lateral vestibular nucleus LVe lateral vestibulospinal tract lvs laterodorsal tegmental nucleus LDTg laterodorsal tegmental nucleus, ventral part LDTgV linear nucleus of the medulla Li locus coeruleus LC longitudinal fasciculus of the pons lfp longitudinal fasciculus of the pons/pontine nuclei lfp/Pn
M
magnocellular nucleus of the posterior commissure MCPC mammillary body MB mammillotegmental tract mtg mammillotegmental tract/central tegmental tract mtg/ctg mammillothalamic tract mt matrix region of the medulla Mx medial accessory oculomotor nucleus MA3 medial geniculate nucleus MG medial geniculate nucleus, dorsal part MGD medial geniculate nucleus, medial part MGM medial geniculate nucleus, ventral part MGV medial lemniscus ml medial longitudinal fasciculus mlf medial longitudinal fasciculus/mammillotegmental tract mlf/mtg medial mammillary nucleus, lateral part ML medial mammillary nucleus, lateral part/interstitial nucleus of Cajal mlf/InC medial mammillary nucleus, medial part MM medial parabrachial nucleus external part MPBE medial parabrachial nucleus MPB medial pericuneate nucleus MPCu medial tuberal nucleus MTu medial vestibular nucleus MVe median raphe nucleus MnR medullary reticular nucleus, dorsal part MdD medullary reticular nucleus, ventral part MdV medullary stria meds mesencephalic reticular formation mRt mesencephalic trigeminal tract me5 microcellular tegmental nucleus MiTg middle cerebellar peduncle mcp motor root of the trigeminal nerve m5 motor trigeminal nucleus 5N
N
noradrenaline cells A1 NA1 noradrenaline cells A2 NA2 noto cuneate nucleus Nt nucleus of Darkschewitsch Dk nucleus of origin of the efferent ibers of the vestibular nerve EVe
nucleus of Roller Ro nucleus of the brachium of the inferior colliculus BIC nucleus of the posterior commissure PCom nucleus of the trapezoid body Tz nucleus U U nucleus X X
O
occipitopontine ibres ocpn oculomotor nerve 3n oculomotor nucleus 3N olivocerebellar bundle decussation ocx olivocerebellar tract oc olivocerebellar tract/hilus of the inferior olive oc/hio optic chiasm och optic nerve layer of the superior colliculus Op optic tract opt oral dorsal paramedian nucleus ODPMn
P
p1 periaqueductal gray p1PAG p1 periventricular gray p1PVG paraabducens nucleus Pa6 parabigeminal nucleus PBG parabrachial pigmented nucleus of the VTA PBP parafascicular thalamic nucleus PaF parainterfascicular nucleus of the VTA PIF paramedian raphe nucleus PMnR paranigral nucleus of the VTA PN parapeduncular nucleus PaP parasolitary nucleus PSol paratrochlear nucleus Pa4 paravestibular nucleus PaVe parietal pontine ibres ptpn parvicellular oculomotor nucleus PC3 parvicellular reticular nucleus PCRt parvicellular reticular nucleus, alpha part PCRtA pedunculotegmental nucleus PTg perifacial zone P7 peripeduncular nucleus PP peritrigeminal nucleus Pe5 peritrigeminal zone P5 periventricular gray PVG pineal gland Pi pineal recess PiRe pleioglia periaqueductal gray PlGl pontine nuclei Pn pontine nuclei/longitudinal fasciculus of the pons Pn/lfp pontine nuclei/transverse ibers of the pons Pn/tfp pontine raphe nucleus PnR pontine reticular nucleus, caudal part PnC pontine reticular nucleus, oral part PnO pontobulbar nucleus PnB post-olivary issure pof posterior commissure pc posterior hypothalamic nucleus PH posterior intralaminar thalamic nucleus PIL posterior limitans thalamic nucleus PLi posterior perforated substance PPS posterior thalamic nuclear group, triangular part PoT posterodorsal tegmental nucleus PDTg pre-Bötzinger complex PrBo pre-Bötzinger complex/intermediate reticular nucleus PrBo/IRt pre-Edinger-Westphal nucleus PrEW precommissural nucleus PrC precuneiform area PrCnF preolivary sulcus pos prepositus nucleus Pr principal mammillary tract pm principal sensory trigeminal nucleus Pr5 prosomere 1 reticular formation p1Rt pulvinar nuclei Pul pyramidal decussation pyx pyramidal tract py
R
raphe cap RC raphe interpositus nucleus RIP raphe magnus nucleus RMg raphe obscurus nucleus ROb raphe pallidus nucleus RPa red nucleus R red nucleus, parvicellular part RPC reticulotegmental nucleus of the pons RtTg reticulotegmental nucleus, lateral part RtTgL retroambiguus nucleus RAmb retrochiasmatic area RCh retroisthmic nucleus RIs retromammillary decussation rmx retromammillary nucleus RM retrorubral ield RRF rhabdoid nucleus Rbd rostral linear nucleus (midbrain) RLi rostral ventral respiratory group RVRG rubrospinal tract rs
S
sagulum nucleus Sag sensory root of the trigeminal nerve s5 solitary nucleus Sol solitary nucleus, dorsolateral part SolDL solitary nucleus, gelatinous part SolG solitary nucleus, intermediate part SolIM solitary nucleus, interstitial part SolI solitary nucleus, medial part SolM solitary nucleus, ventral part SolV solitary nucleus, ventrolateral part SolVL solitary tract sol sphenoid nucleus Sph spinal trigeminal nucleus, caudal part Sp5C spinal trigeminal nucleus, caudal part, lamina 1 & 2 Sp5C1/2 spinal trigeminal nucleus, caudal part, lamina 3 & 4 Sp5C3/4 spinal trigeminal nucleus, interpolar part Sp5I spinal trigeminal nucleus, oral part Sp5O spinal trigeminal tract sp5 spinal vestibular nucleus SpVe spinothalamic tract spth spinothalamic tract/medial lemniscus spth/ml stria medullaris of the thalamus sm subbrachial nucleus SubB subcoeruleus nucleus, dorsal part SubCD subcoeruleus nucleus, ventral part SubCV submammillothalamic nucleus SMT subpeduncular tegmental nucleus SPTg substantia nigra, compact part, dorsal tier SNCD substantia nigra, compact part, medial tier SNCM substantia nigra, compacta part, ventral tier SNCV substantia nigra, lateral part SNL substantia nigra, reticular part SNR subthalamic nucleus STh sulcus limitans sl supericial gray layer of the superior colliculus SuG superior cerebellar peduncle scp superior colliculus SC superior medullary velum smv superior olive SOl superior thalamic radiation str superior vestibular nucleus SuVe suprageniculate thalamic nucleus SG supragenual nucleus SGe supralemniscal nucleus SuL supraoculomotor cap Su3C supraoculomotor periaqueductal gray Su3 supraoptic decussation sox supratrigeminal nucleus Su5
T
tectal gray TG tectospinal tract ts temporopontine ibres tepn
thalamus thal transverse ibers of the pons tfp transverse ibers of the pons/pontine nuclei tfp/Pn trapezoid body tz trigeminal nerve 5n trigeminal transition zone 5Tr trigeminal-solitary transition zone 5Sol trigeminothalamic tract tth trochlear nerve 4n trochlear nucleus 4N tuberomamillary nucleus TuM
V
vagus nerve 10n ventral median issure vmf ventral nucleus of the lateral lemniscus VLL ventral posterior inferior nucleus VPI ventral posterolateral thalamic nucleus VPL ventral posteromedial thalamic nucleus VPM ventral spinocerebellar tract vsc ventral tegmental area VTA ventral tegmental area, caudal part VTAC ventral tegmental area, rostral part VTAR ventral tegmental nucleus VTg ventrolateral periaqueductal gray VLPAG ventrolateral sulcus vls ventrolateral tegmental area VLTg ventromedial hypothalamic nucleus VMH vestibular root of the vestibulocochlear nerve 8vn vestibulocochlear nerve 8n vestibulomesencephalic tract veme
Z
zona incerta ZI zona incerta, caudal part ZIC zona incerta, dorsal part ZID zona layer of the superior colliculus Zo
Index of Abbreviations 10N dorsal motor nucleus of vagus 5-19, 61-66 10n vagus nerve 15-18, 72-76, 79-81 10Sp lamina 10 of the spinal gray 1-4 12L hypoglossal nucleus, lateral part 9-11 12M hypoglossal nucleus, medial part 9-11 12N hypoglossal nucleus 7-8, 12-15, 61-63 12n hypoglossal nerve 14, 64 12V hypoglossal nucleus, ventral part 9-11 3N oculomotor nucleus 49-53, 62-63 3n oculomotor nerve 50-53, 62-69 3V 3rd ventricle 58-64 4n trochlear nerve 40-47, 62-63, 65-69 4N trochlear nucleus 47-48, 63-64 4V 4th ventricle 8-41, 61-70 5n trigeminal nerve 25-31, 79-86 5N motor trigeminal nucleus 27-30, 73-77 5Sol trigeminal-solitary transition zone 14-19, 69-75 5Tr trigeminal transition zone 27-30, 77-80 6n abducens nerve 21-25, 64-66, 68-71 6N abducens nucleus 23-26, 65-69 7N facial nucleus 22-24, 70-75 7n facial nerve 22-27, 64, 66-81 8cn cochlear root of the vestibulocochlear nerve 20-22, 81-86 8n vestibulocochlear nerve 19, 23-24 8vn vestibular root of the vestibulocochlear nerve 20-22, 79-83 9n glossopharyngeal nerve 19 9Sp lamina 9 of the spinal gray 1-3, 63-64
A
ac anterior commissure 70-71 Ad1 Ad1 adrenalin cells 10-20, 73-75 Ad1/NA1 Ad1 adrenalin cells/A1 noradrenalin cells 4-9, 71-72 AmbC ambiguus nucleus, compact part 15-20 AmbL ambiguus nucleus, loose part 4-9, 67-70 AmbSC ambiguus nucleus, semicompact part 10-14, 69-72 ami amiculum of the olive 6-21, 62-77 AP area postrema 8-10, 61-62 APT anterior pretectal nucleus 55-59, 75-86 Aq aqueduct 42-59, 61-63, 66 Ar arcuate nucleus of the caudal hindbrain 6-19, 61-70 ar acoustic radiation 57-59 Arc arcuate hypothalamic nucleus 57, 61, 71 asc7 ascending ibers of the facial nerve 22, 70 Au austral nucleus 1-2, 61
B
B9 B9 serotonin cells 29-42, 64-71 Bar Barrington's nucleus 33-36 bic brachium of the inferior colliculus 47-54, 74-84 BIC nucleus of the brachium of the inferior colliculus 48-53, 75-83 bsc brachium of the superior colliculus 53-58, 75-86
C
Cb cerebellum 28-32, 74-86 cbu corticobulbar tract 46-60 CC central canal 1-7 CDPMn caudal dorsal paramedian nucleus 16-19 CeCv central cervical nucleus of the spinal cord 1-6, 61-63 CG central gray 61-63 CGB central gray, beta part 27-31, 65-66 CGPn central gray of the pons 26-36, 63-73 CIC central nucleus of the inferior colliculus 44-48, 67-74 cic commissure of the inferior colliculus 46-48, 61-65 CLi caudal linear nucleus of the raphe 43-49, 61-63 CLiAz caudal linear nucleus of the raphe, azygos part 43-49, 62-63 CLiZ caudal linear nucleus of the raphe, zygos part 44-49, 61 CMn Centromedian thalamic nucleus 59-60, 62-63, 71-72, 80 CnF cuneiform nucleus 43-47, 67-75 cp cerebral peduncle 42-60, 66-86 Crb cribiform nucleus 12-13, 67-68 csc commissure of the superior colliculus 53-56 csp corticospinal tract 46-60
Ct conterminal nucleus 9-19, 64-66, 71 ctg central tegmental tract 8-58, 64-77 Cu cuneate nucleus 1-11, 62-71 cu cuneate fasciculus 1-11, 61-72
D
DCIC dorsal cortex of the inferior colliculus 44, 61-70 Dk nucleus of Darkschewitsch 55-59, 63-65 DLG dorsal lateral geniculate nucleus 55-59 DLL dorsal nucleus of the lateral lemniscus 39-42, 75-77 DLPAG dorsolateral periaqueductal gray 47-56, 62-66 DMPAG dorsomedial periaqueductal gray 45-56, 61-63 dms dorsomedian sulcus 1-6 DMTg dorsomedial tegmental area 27-32, 64-69 DpG deep gray layer of the superior colliculus 49-56, 62-73 DPGi dorsal paragigantocellular nucleus 21-23, 62-67 dpms dorsal paramedian sulcus 1-7 DPO dorsal periolivary region 24-28, 70-73 DpWh deep white layer of the superior colliculus 49-56, 61-71 DR dorsal raphe nucleus 42-52, 61-66 DRC dorsal raphe nucleus, caudal part 29-41, 61-62 DRI dorsal raphe, interfascicular part 32-40 dsc dorsal spinocerebellar tract 1-11, 69-76 DTg dorsal tegmental nucleus 34-41, 62-64
E
E ependyma and subependymal layer 1-7 EC epicoeruleus nucleus 38-41, 67 ECIC external cortex of the inferior colliculus 43-50, 65-78 ECu external cuneate nucleus 6-15, 70-74 EL endolemniscal nucleus 13-14, 63-64 EnR endorestiform nucleus 13-15, 76-77 EVe nucleus of origin of the efferent ibers of the vestibular nerve 26, 71 EW Edinger-Westphal nucleus 52-53, 62
F
f fornix 58-60, 63-68 fr fasciculus retrolexus 53-59, 62-71 frpn frontopontine ibres 51-60
G
g7 genu of the facial nerve 23-26, 62-66 Gam gamma pontine nucleus 25, 27-35, 70-75, 77-80 Gi gigantocellular reticular nucleus 8-24, 61-70 GiA gigantocellular reticular nucleus, alpha part 20-24, 61-64 GiV gigantocellular reticular nucleus, ventral part 14-19, 64-67 Gr gracile nucleus 1-10, 61-68 gr gracile fasciculus 1-10, 61-67
H
Hb habenular nuclei 60, 62-67 hbc habenular commissure 58-63 hio hilus of the inferior olive 58-63 hypothal hypothalamus 69-74
I
I3 interoculomotor nucleus 61-62 ia internal arcuate ibers 3-12, 61-65 ic internal capsule 71, 75-86 icp inferior cerebellar peduncle 6-28, 72-86 ID interstitial nucleus of the decussation of the superior cerebellar peduncle 45-46, 65 IF interfascicular nucleus 50-51, 61 IF5 interfascicular trigeminal nucleus 29, 77 ILL intermediate nucleus of the lateral lemniscus 37-39, 77-78 In intercalated nucleus 7-15, 61-65 InC interstitial nucleus of Cajal 55-58, 66 InC/mtg interstitial nucleus of Cajal/mammillotegmental tract 59, 64-65 InG intermediate gray layer of the superior colliculus 50-56, 62-76 InWh intermediate white layer of the superior colliculus 49-56, 62-75 IOA inferior olive, subnucleus A of medial nucleus 6-8, 65-67 IOB inferior olive, subnucleus B of medial nucleus 6-8, 65 IOBe inferior olive, beta subnucleus 6-9, 62-64
IOBe inferior olive, beta subnucleus 6-9, 62-64 IOC inferior olive, subnucleus C of medial nucleus 8, 63 IOD inferior olive, dorsal nucleus 6-18, 64-69 IODM inferior olive, dorsomedial cell group 13-18, 62-63 IOK inferior olive, cap of Kooy of the medial nucleus 6-7, 62-63 IOM inferior olive, medial nucleus 9-17, 61-65 IOPr inferior olive, principal nucleus 7-20, 64-77 IP interpeduncular nucleus 43-51, 61-64 ipf interpeduncular fossa 46-57, 61-65 IPo interpositus 16-23, 65-68 IRt intermediate reticular nucleus 1-24, 64-74 IS inferior salivatory nucleus 20-23, 69-71 isRt isthmic reticular formation 43-50, 63-78
J
JxO juxtaolivary nucleus 14-15, 71-72
K
KF Kölliker-Fuse nucleus 32-37, 75-78
L
LC locus coeruleus 29-42, 67-72 lcs lateral corticospinal tract 1-2, 63-67 LDTg laterodorsal tegmental nucleus 33-43, 63-67 LDTgV laterodorsal tegmental nucleus, ventral part 33-43, 65-67 lfp longitudinal fasciculus of the pons 20-46, 61-85 lfp/Pn longitudinal fasciculus of the pons/pontine nuclei 70-71 LH lateral hypothalamic area 59-60, 68-75 Li linear nucleus of the medulla 7-13, 67-72 ll lateral lemniscus 23-46, 71-80 LM lateral mammillary nucleus 58 LPAG lateral periaqueductal gray 43-50, 55, 61-69 LPB lateral parabrachial nucleus 32-39, 68-78 LPBD lateral parabrachial nucleus, dorsal part 40 LPBE lateral parabrachial nucleus, external part 31 LPBS lateral parabrachial nucleus, superior part 41 LPCu lateral pericuneate nucleus 6-12, 72-75 LPGi lateral paragigantocellular nucleus 12-23, 69-74 LRt lateral reticular nucleus 4-17, 67-77 LRtS5 lateral reticular nucleus, subtrigeminal part 8-19, 72-75 LT lateral terminal nucleus of the accessory optic tract 54-60, 83-86 LVe lateral vestibular nucleus 22-25, 76-78 lvs lateral vestibulospinal tract 1-3
M
m5 motor root of the trigeminal nerve 27-29, 76-80 MA3 medial accessory oculomotor nucleus 54-57, 62-63 MB mammillary body 55-59, 61-69 mcp middle cerebellar peduncle 19-47, 68-86 MCPC magnocellular nucleus of the posterior commissure 57-59, 67-71 MdD medullary reticular nucleus, dorsal part 1-7, 63-71 MdV medullary reticular nucleus, ventral part 1-7, 62-67 me5 mesencephalic trigeminal tract 28-50, 67-75 meds medullary stria 8-9 MG medial geniculate nucleus 57-59 MGD medial geniculate nucleus, dorsal part 53-56, 82-86 MGM medial geniculate nucleus, medial part 54-56, 85-86 MGV medial geniculate nucleus, ventral part 53-56, 85-86 MiTg microcellular tegmental nucleus 44-47, 75-79 ml medial lemniscus 6-86 ML medial mammillary nucleus, lateral part 58 mlf medial longitudinal fasciculus 1-53, 57-59, 61-65 mlf/InC medial mammillary nucleus, lateral part/interstitial nucleus of Cajal 54-56 mlf/mtg medial longitudinal fasciculus/mammillotegmental tract 64-65 MM medial mammillary nucleus, medial part 58 MnR median raphe nucleus 32-42, 61 MPB medial parabrachial nucleus 27-40, 68-77 MPBE medial parabrachial nucleus external part 31-35, 76-77 MPCu medial pericuneate nucleus 9-13, 66-70 mRt mesencephalic reticular formation 51-54, 64-65, 68-78 mt mammillothalamic tract 60, 63-76 mtg mammillotegmental tract 35-58, 62-64 mtg/ctg mammillotegmental tract/central tegmental tract 64
MTu medial tuberal nucleus 58-59, 64-70 MVe medial vestibular nucleus 11-26, 65-78 Mx matrix region of the medulla 3-14, 61-73
N
NA1 noradrenaline cells A1 1-3, 67-70 NA2 noradrenaline cells A2 2-6 Nt noto cuneate nucleus 1-2, 61-63
O
oc olivocerebellar tract 9-23, 62-63, 74-83 oc/hio olivocerebellar tract/hilus of the inferior olive 63 och optic chiasm 69-70 ocpn occipitopontine ibres 51-62 ocx olivocerebellar bundle decussation 10-19, 61-62 ODPMn oral dorsal paramedian nucleus 20-21 Op optic nerve layer of the superior colliculus 49-56, 62-76 opt optic tract 55-60, 71-86
P
p1PAG p1 periaqueductal gray 64-66 p1PVG p1 periventricular gray 61-63 p1Rt prosomere 1 reticular formation 56-59, 68-78 P5 peritrigeminal zone 26-30, 72-76 P7 perifacial zone 22-24, 70-75 Pa4 paratrochlear nucleus 45-46, 64-66 Pa6 paraabducens nucleus 23-26, 65-69 PaF parafascicular thalamic nucleus 59-60, 67-72 PaP parapeduncular nucleus 54-56, 64-66 PaVe paravestibular nucleus 19-21, 74-76 PBG parabigeminal nucleus 44-47, 79 PBP parabrachial pigmented nucleus of the VTA 46-58, 67-86 pc posterior commissure 56-59, 61-67 PC3 parvicellular oculomotor nucleus 50-54, 62-64 PCom nucleus of the posterior commissure 57-59, 63-69 PCRt parvicellular reticular nucleus 8-23, 66-75, 77 PCRtA parvicellular reticular nucleus, alpha part 24-28, 73-78 PDTg posterodorsal tegmental nucleus 30-33, 63-64 Pe5 peritrigeminal nucleus 11-18, 73-77 PH posterior hypothalamic nucleus 60 Pi pineal gland 53-59, 61-66 PIF parainterfascicular nucleus of the VTA 47-51, 65-67 PIL posterior intralaminar thalamic nucleus 55-58, 83-86 PiRe pineal recess 61 PlGl pleioglia periaqueductal gray 48-56, 61 PLi posterior limitans thalamic nucleus 56-57, 76-86 pm principal mammillary tract 57-67 PMnR paramedian raphe nucleus 32-40, 61-62 Pn pontine nuclei 19-48, 61-86 PN paranigral nucleus of the VTA 47-51, 64-65 Pn/lfp pontine nuclei/longitudinal fasciculus of the pons 73 Pn/tfp pontine nuclei/transverse ibers of the pons 2 2-37, 44, 61-64, 66-72, 78-81 PnB pontobulbar nucleus 23-26, 82-86 PnC pontine reticular nucleus, caudal part 24-29, 61-70, 76 PnO pontine reticular nucleus, oral part 30-43, 62-76 PnR pontine raphe nucleus 30-31 pof post-olivary issure 10-19 pos preolivary sulcus 10-19, 70-71 PoT posterior thalamic nuclear group, triangular part 55-58, 84-86 PP peripeduncular nucleus 53-57, 84-86 PPS posterior perforated substance 67-69 Pr prepositus nucleus 15-23, 61-65 Pr5 principal sensory trigeminal nucleus 26-29, 77-80 PrBo pre-Bötzinger complex 15-19 PrBo/IRt pre-Bötzinger complex/intermediate reticular nucleus 72 PrC precommissural nucleus 57-60, 63-68 PrCnF precuneiform area 46-50, 67-74 PrEW pre-Edinger-Westphal nucleus 54-58, 62 PSol parasolitary nucleus 9-11, 64-66 PTg pedunculotegmental nucleus 41-47, 71-76 ptpn parietal pontine ibres 51-60 Pul pulvinar nuclei 52-60, 67-85 PVG periventricular gray 58-59, 62-66 py pyramidal tract 1-19
pyx pyramidal decussation 1-5, 61-65
R
R red nucleus 51-58, 63-77 RAmb retroambiguus nucleus 1-3, 67 Rbd rhabdoid nucleus 41-43, 62 RC raphe cap 41-49, 62-66 RCh retrochiasmatic area 60 RIP raphe interpositus nucleus 24-26 RIs retroisthmic nucleus 40-46, 75-77 RLi rostral linear nucleus (midbrain) 50-58, 61-63 RM retromammillary nucleus 58-59, 61-67 RMg raphe magnus nucleus 20-25, 61-62 rmx retromammillary decussation 58-59, 61-63 Ro nucleus of Roller 11-15, 62-63 ROb raphe obscurus nucleus 9-20 RPa raphe pallidus nucleus 11-19, 61, 63-64 RPC red nucleus, parvicellular part 59-60 RRF retrorubral ield 43-49, 70-77 rs rubrospinal tract 1-22, 46-53, 65-74 RtTg reticulotegmental nucleus of the pons 26-43, 61-65 RtTgL reticulotegmental nucleus, lateral part 27-32, 63 RVRG rostral ventral respiratory group 10-12, 65
S
s5 sensory root of the trigeminal nerve 27-29 Sag sagulum nucleus 43-45, 73-78 SC superior colliculus 48-56, 61-74 scp superior cerebellar peduncle 38-44, 50-60, 63-85 SG suprageniculate thalamic nucleus 55-57, 85-86 SGe supragenual nucleus 24-26, 64-66 sl sulcus limitans 9-21, 66 sm stria medullaris of the thalamus 61-64 SMT submammillothalamic nucleus 60 smv superior medullary velum 61-65 SNCD substantia nigra, compact part, dorsal tier 47-60, 70-86 SNCM substantia nigra, compact part, medial tier 47-54, 66-71 SNCV substantia nigra, compacta part, ventral tier 48-57, 72-86 SNL substantia nigra, lateral part 47-56, 80-86 SNR substantia nigra, reticular part 46-60, 68-86 Sol solitary nucleus 5-16, 61-76 sol solitary tract 6-24, 64-78 SOl superior olive 22-33, 70-74, 77 SolDL solitary nucleus, dorsolateral part 9 SolG solitary nucleus, gelatinous part 9-12, 62-65 SolI solitary nucleus, interstitial part 10, 18-24 SolIM solitary nucleus, intermediate part 17 SolM solitary nucleus, medial part 17 SolV solitary nucleus, ventral part 10 SolVL solitary nucleus, ventrolateral part 9-11 sox supraoptic decussation 58-60 sp5 spinal trigeminal tract 1-28, 65-80 Sp5C spinal trigeminal nucleus, caudal part 4-7, 64, 68-71 Sp5C1/2 spinal trigeminal nucleus, caudal part, lamina 1 & 2 1-7, 66-71 Sp5C3/4 spinal trigeminal nucleus, caudal part, lamina 3 & 4 1-3, 65-68 Sp5I spinal trigeminal nucleus, interpolar part 8-21, 70-76 Sp5O spinal trigeminal nucleus, oral part 22-25, 75-78 Sph sphenoid nucleus 62-64, 68-70 SPTg subpeduncular tegmental nucleus 38-39, 64-65 spth spinothalamic tract 1-57, 66-71, 73-76, 78-79 spth/ml spinothalamic tract/medial lemniscus 72-77 SpVe spinal vestibular nucleus 12-23, 68-79 STh subthalamic nucleus 59-60, 71-86 str superior thalamic radiation 60 Su3 supraoculomotor periaqueductal gray 49-53, 62-65 Su3C supraoculomotor cap 50-55, 63-66 Su5 supratrigeminal nucleus 27-29, 73-75 SubB subbrachial nucleus 49-52, 80-85 SubCD subcoeruleus nucleus, dorsal part 25-33, 68-72 SubCV subcoeruleus nucleus, ventral part 25-31, 71-75 SuG supericial gray layer of the superior colliculus 49-56, 61-78 SuL supralemniscal nucleus 31-38, 68-70, 72 SuVe superior vestibular nucleus 24-28, 72-78
T
tepn temporopontine ibres 51-60 tfp transverse ibers of the pons 20-48, 61-85 tfp/Pn transverse ibers of the pons/pontine nuclei 28-29, 61-80, 82-86 TG tectal gray 55-59, 66-79 thal thalamus 1-86 ts tectospinal tract 7-42, 47, 61, 64-65 tth trigeminothalamic tract 27-56 TuM tuberomamillary nucleus 58, 70 tz trapezoid body 20-26, 75-83 Tz nucleus of the trapezoid body 23-27, 66-70
U
U nucleus U 47-51, 75-78
V
veme vestibulomesencephalic tract 23-32, 64-69, 71-77 VLL ventral nucleus of the lateral lemniscus 58, 70 VLPAG ventrolateral periaqueductal gray 43-49, 62-67 vls ventrolateral sulcus 1 VLTg ventrolateral tegmental area 30-41, 71-78 vmf ventral median issure 1-19 VMH ventromedial hypothalamic nucleus 58-60, 62-66 VPI ventral posterior inferior nucleus 59-60 VPL ventral posterolateral thalamic nucleus 59-60, 80 VPM ventral posteromedial thalamic nucleus 59-60 vsc ventral spinocerebellar tract 1-28, 68-78 VTA ventral tegmental area 52-58, 63-71 VTAC ventral tegmental area, caudal part 44-46, 64-66 VTAR ventral tegmental area, rostral part 59, 66, 72-73 VTg ventral tegmental nucleus 33-34
X
X nucleus X 14-19, 74-77 x4n decussation of the trochlear nerve 38-39, 61, 64-66 xml decussation of the medial lemniscus 5-7, 62 xscp decussation of the superior cerebellar peduncle 40-49, 61-71 xscp/CLiAz decussation of the superior cerebellar peduncle/caudal linear nucleus of the raphe, azygos part 61 xscp/CLiZ decussation of the superior cerebellar peduncle/caudal linear nucleus of the raphe, zygos part 62-63
Z
ZI zona incerta 75, 77-86 ZIC zona incerta, caudal part 59-60 ZID zona incerta, dorsal part 76 Zo zona layer of the superior colliculus 49-56, 62-78
FIGURES
Fig 01a Obex -7.0mm Transverse 01 5mm
1
0
dms
dpms
gr 1
cu
Gr 2
sp5 Sp5C1/2
Cu
Nt Au
3
Sp5C3/4
10Sp 4 CeCv E CC
MdD
lcs
IRt
5
RAmb NA1 spth
MdV
6
pyx
dsc
rs
9Sp
7
mlf
vsc
lvs vls
8
py 9
vmf
10
11
0 10Sp lamina 10 of the spinal gray 9Sp Rexed's lamina Au austral nucleus CC central canal CeCv central cervical nu Cu cuneate nu cu cuneate fasciculus dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal Gr gracile nu gr gracile fasciculus
1
2
3
IRt intermed reticular nu lcs lateral corticospinal tract lvs lateral vestibulospinal tract MdD medullary reticular nu, dors MdV medullary reticular nu, vent mlf med longitudinal fasciculus NA1 A1 noradrenaline cells Nt noto cuneate nucleus py pyramidal tr pyx pyramidal decussation RAmb retroambiguus nu rs rubrospinal tract sp5 spinal trigem tract
4
5
Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5C3/4 spinal 5 nu, caud, lam 3 & 4 spth spinothalamic tract vls ventrolateral sulcus vmf vsc ventral spinocerebellar tr
6
7
Fig 01b
Obex -7.0mm Transverse 01
Fig 02a Obex -6.0mm Transverse 02 5mm
1
0
dms
1
dpms
gr
cu
Gr
2
Cu
Nt Au 3
4
NA2 10Sp CC E
Sp5C1/2 Sp5C3/4 MdD
CeCv
IRt
lcs
spth
pyx 9Sp mlf
7
9
dsc
NA1
MdV
vsc
lvs
8
rs
RAmb
5
6
sp5
py vmf
10
11
0 10Sp lamina 10 of the spinal gray 9Sp Rexed's lamina Au austral nucleus CC central canal CeCv central cervical nu Cu cuneate nu cu cuneate fasciculus dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal Gr gracile nu gr gracile fasciculus
1
2
3
IRt intermed reticular nu lcs lateral corticospinal tract lvs lateral vestibulospinal tract MdD medullary reticular nu, dors MdV medullary reticular nu, vent mlf med longitudinal fasciculus NA1 A1 noradrenaline cells NA2 A2 noradrenaline cells Nt noto cuneate nucleus py pyramidal tr pyx pyramidal decussation RAmb retroambiguus nu rs rubrospinal tract
4
5
sp5 spinal trigem tract Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5C3/4 spinal 5 nu, caud, lam 3 & 4 spth spinothalamic tract vmf vsc ventral spinocerebellar tr
6
7
Fig 02b
Obex -6.0mm Transverse 02
Fig 03a Obex -5.0mm Transverse 03 5mm
1
dms 0
Gr
1
4
cu
Mx
2
3
dpms
gr
Cu
sp5 Sp5C1/2
NA2 10Sp CC E
CeCv
Sp5C3/4
ia
MdD rs
IRt 5
RAmb NA1
MdV pyx
6
mlf
spth 9Sp
7
vsc lvs
8
9
dsc
py vmf
10
11
0 10Sp lamina 10 of the spinal gray 9Sp Rexed's lamina CC central canal CeCv central cervical nu Cu cuneate nu cu cuneate fasciculus dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal Gr gracile nu gr gracile fasciculus ia
1
2
3
IRt intermed reticular nu lvs lateral vestibulospinal tract MdD medullary reticular nu, dors MdV medullary reticular nu, vent mlf med longitudinal fasciculus Mx matrix region medulla NA1 A1 noradrenaline cells NA2 A2 noradrenaline cells py pyramidal tr pyx pyramidal decussation RAmb retroambiguus nu rs rubrospinal tract sp5 spinal trigem tract
4
5
Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5C3/4 spinal 5 nu, caud, lam 3 & 4 spth spinothalamic tract vmf vsc ventral spinocerebellar tr
6
7
Fig 03b
Obex -5.0mm Transverse 03
Fig 04a Obex -4.0mm Transverse 04 5mm
2
1
dms
gr
dpms
0
Gr
cu
1
Cu
2
sp5
Mx
Sp5C1/2
NA2 3
10Sp
CeCv
CC E
Sp5C MdD
ia
4
rs
IRt
5
MdV
pyx
6
spth
AmbL
Ad1/NA1 vsc
mlf
LRt
7
8
dsc
vmf
py
9
10
0 10Sp lamina 10 of the spinal gray Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part CC central canal CeCv central cervical nu cu cuneate fasciculus Cu cuneate nu dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal gr gracile fasciculus Gr gracile nu
1
2
3
ia IRt intermed reticular nu LRt lateral reticular nu MdD medullary reticular nu, dors MdV medullary reticular nu, vent mlf med longitudinal fasciculus Mx matrix region medulla NA2 A2 noradrenaline cells py pyramidal tr pyx pyramidal decussation rs rubrospinal tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal
4
5
Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 spth spinothalamic tract vmf vsc ventral spinocerebellar tr
6
7
Fig 04b
Obex -4.0mm Transverse 04
Fig 05a Obex -3.0mm Transverse 05 5mm
2
1
gr
dms
dpms Gr
0
cu
1
Mx
Sol
2
Cu Sp5C1/2
10N 3
NA2 CeCv CC E
5
IRt rs
AmbL xml
6
Ad1/NA1
MdV
mlf
7
Sp5C
MdD ia
4
sp5
pyx
spth
vsc
LRt
vmf
dsc
8
py 9
10
0 10N dorsal motor nu of vagus Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part CC central canal CeCv central cervical nu cu cuneate fasciculus Cu cuneate nu dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal gr gracile fasciculus Gr gracile nu
1
2
3
ia IRt intermed reticular nu LRt lateral reticular nu MdD medullary reticular nu, dors MdV medullary reticular nu, vent mlf med longitudinal fasciculus Mx matrix region medulla NA2 A2 noradrenaline cells py pyramidal tr pyx pyramidal decussation rs rubrospinal tract Sol nu of solitary tract sp5 spinal trigem tract
4
5
Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 spth spinothalamic tract vmf vsc ventral spinocerebellar tr xml decussation of medial lemniscus
6
7
Fig 05b
Obex -3.0mm Transverse 05
Fig 06a
Obex -2.0mm Transverse 06 5mm
2
gr
dms 1
dpms Gr
cu
0
1
Mx
3
10N
CC E
NA2
LPCu
Cu
Sol
2
ECu
ia
CeCv
icp
Sp5C1/2
sol
sp5
Sp5C MdD
dsc
4
5
6
AmbL
MdV xml
IOK ml
rs
IRt
mlf
ami
spth
Ad1/NA1
IOD
IOBe
7
vsc
LRt IOB
IOA
8
9
10
py
Ar
vmf
0
1
10N dorsal motor nu of vagus Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CC central canal CeCv central cervical nu Cu cuneate nu cu cuneate fasciculus dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal
2
3
ECu external cuneate nu gr gracile fasciculus Gr gracile nu ia icp inf cerebellar peduncle IOA inf olive, subnu A medial nu IOB inf olive, subnu B med nu IOBe inf olive, beta subnu IOD inf olive, dorsal nu IOK inf olive, cap of Kooy med nu IRt intermed reticular nu LPCu lateral pericuneate nucleus LRt lateral reticular nu
4
5
MdD medullary reticular nu, dors MdV medullary reticular nu, vent ml medial lemniscus mlf med longitudinal fasciculus Mx matrix region medulla NA2 A2 noradrenaline cells py pyramidal tr rs rubrospinal tract sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2
6
7
spth spinothalamic tract vmf vsc ventral spinocerebellar tr xml decussation of medial lemniscus
Fig 06b
Obex -2.0mm Transverse 06
Fig 07a Obex -1.0mm Transverse 07 5mm
2
gr
dms
dpms
1
Gr cu ECu
0
1
Cu
Sol
3
Mx
10N
2
Sp5C
ia
xml
ts
MdV Li
IOD
spth Ad1/NA1
vsc
LRt
ami
ml IOBe
7
dsc
rs AmbL
IOK
6
sp5
1/ 2
IRt
ia mlf
5
5C
MdD
12N
4
icp
Sp
sol
In
CC E
LPCu
IOPr
IOB IOA
8
py
9
Ar
10
vmf 0
1
10N dorsal motor nu of vagus 12N hypoglossal nu Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CC central canal cu cuneate fasciculus Cu cuneate nu dms dorsomedian sulcus dpms dorsal paramedian sulcus dsc dorsal spinocereb tract E ependyma/subependymal
2
3
ECu external cuneate nu Gr gracile nu gr gracile fasciculus ia icp inf cerebellar peduncle In intercalated nu medulla IOA inf olive, subnu A medial nu IOB inf olive, subnu B med nu IOBe inf olive, beta subnu IOD inf olive, dorsal nu IOK inf olive, cap of Kooy med nu IOPr inf olive, principal nu IRt intermed reticular nu
4
5
Li linear nu of the medulla LPCu lateral pericuneate nucleus LRt lateral reticular nu MdD medullary reticular nu, dors MdV medullary reticular nu, vent ml medial lemniscus mlf med longitudinal fasciculus Mx matrix region medulla py pyramidal tr rs rubrospinal tract sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract
6
7
Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 spth spinothalamic tract ts tectospinal tr vmf vsc ventral spinocerebellar tr xml decussation of medial lemniscus
Fig 07b
Obex -1.0mm Transverse 07
Fig 08a
Obex 0.0mm Transverse 08 5mm
gr 1
cu
4V Gr
AP
0
ECu
icp
Cu
1
Sol 10N
2
sol
In
3
LPCu
Mx
Sp5I
ia
12N
dsc
sp5
PCRt
IRt
4
ia
mlf 5
Gi IOD
meds ts
LRtS5
AmbL
rs
Ad1/NA1
Li
spth vsc
LRt
6
IOPr
ml
7
IOBe
8
IOC
IOB
ctg
hio IOA
ami
9
py 10
vmf
Ar
11 0
1
10N dorsal motor nu of vagus 12N hypoglossal nu 4V 4th ventricle Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part ami amiculum of the olive AP area postrema Ar arcuate nu of the caudal hindbrain ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus dsc dorsal spinocereb tract ECu external cuneate nu
2
3
Gi gigantocellular reticular nu gr gracile fasciculus Gr gracile nu hio hilus of the inferior olive ia icp inf cerebellar peduncle In intercalated nu medulla IOA inf olive, subnu A medial nu IOB inf olive, subnu B med nu IOBe inf olive, beta subnu IOC inf olive, subnu C of med nu IOD inf olive, dorsal nu IOPr inf olive, principal nu
4
5
IRt intermed reticular nu Li linear nu of the medulla LPCu lateral pericuneate nucleus LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal meds medullary stria ml medial lemniscus mlf med longitudinal fasciculus Mx matrix region medulla PCRt parvicell reticular nu py pyramidal tr rs rubrospinal tract sol solitary tract
6
7
Sol nu of solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract ts tectospinal tr vmf vsc ventral spinocerebellar tr
Fig 08b
Obex +0.0mm Transverse 08
Ͳͻ
ΪͳǤͲ Ͳͻ ͷ
1
0
sl 4V
AP
SolDL PSol
Cu
sol
MPCu
icp
ECu
Sol
10N In
2
cu
Gr
SolG
1
3
gr
Mx
LPCu
SolVL 12L
12M ROb
ia
4
Gi
ts
Li
LRtS5 Ad1/NA1
spth
meds
ctg
IOBe
7
IOPr
ml
hio
IOM
8
rs vsc
LRt
IOD
6
dsc
oc
AmbL
ia
mlf 5
PCRt
IRt
12V
sp5
Sp5I
Ct ami
9
py 10
Ar 11
vmf 0
1
10N dorsal motor nu of vagus 12L hypoglossal nucleus, lateral part 12M hypoglossal nucleus, medial part 12V hypoglossal nucleus, ventral part 4V 4th ventricle Ad1/NA1 Ad1 adren NA1 noradr AmbL ambiguus nu, loose part ami amiculum of the olive AP area postrema Ar arcuate nu of the caudal hindbrain Ct conterminal nu ctg central tegmental tract cu cuneate fasciculus
2
3
Cu cuneate nu dsc dorsal spinocereb tract ECu external cuneate nu Gi gigantocellular reticular nu gr gracile fasciculus Gr gracile nu hio hilus of the inferior olive ia icp inf cerebellar peduncle In intercalated nu medulla IOBe inf olive, beta subnu IOD inf olive, dorsal nu IOM inf olive, med nu
4
5
IOPr inf olive, principal nu IRt intermed reticular nu Li linear nu of the medulla LPCu lateral pericuneate nucleus LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal meds medullary stria ml medial lemniscus mlf med longitudinal fasciculus MPCu medial pericuneate nucleus Mx matrix region medulla oc olivocerebellar tract PCRt parvicell reticular nu
6
7
PSol parasolitary nu py pyramidal tr ROb raphe obscurus nu rs rubrospinal tract sl sulcus limitans sol solitary tract Sol nu of solitary tract SolDL sol nu, dorsolateral SolG nu sol tract, gelatinous SolVL nu sol tract, ventrolateral sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract
Fig 09b
Obex +1.0mm Transverse 09
ts tectospinal tr vmf vsc ventral spinocerebellar tr
Fig 10a
Obex +2.0mm Transverse 10 5mm
2
gr sl
1
4V
0
cu Cu
Sol
1
ECu
SolI 10N SolV sol In
2
12M
3
12L
4
MPCu
IRt
Gi
oc dsc
ia
ts ROb ocx
6
IOD
LRtS5 AmbSC rs RVRG Ad1 Li vsc LRt spth
IOM
7
pof
ami ctg
IOM
ml
8
LPCu sp5
Sp5I
PCRt
mlf
icp
Mx
SolVL
12V
5
Gr
AP SolG PSol
IOPr
hio
Ct 9
oc py
10
pos Ar
11
12
vmf
13
0
1
10N dorsal motor nu of vagus 12L hypoglossal nucleus, lateral part 12M hypoglossal nucleus, medial part 12V hypoglossal nucleus, ventral part 4V 4th ventricle Ad1 Ad1 adrenalin cells AmbSC ambiguus nu, subcompact ami amiculum of the olive AP area postrema Ar arcuate nu of the caudal hindbrain Ct conterminal nu ctg central tegmental tract cu cuneate fasciculus
2
3
Cu cuneate nu dsc dorsal spinocereb tract ECu external cuneate nu Gi gigantocellular reticular nu gr gracile fasciculus Gr gracile nu hio hilus of the inferior olive ia icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IOM inf olive, med nu IOPr inf olive, principal nu
4
5
6
7
IRt intermed reticular nu Li linear nu of the medulla LPCu lateral pericuneate nucleus LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus mlf med longitudinal fasciculus MPCu medial pericuneate nucleus Mx matrix region medulla oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu pof
8 pos preolivary sulcus PSol parasolitary nu py pyramidal tr ROb raphe obscurus nu rs rubrospinal tract RVRG rost vent respiratory sl sulcus limitans Sol nu of solitary tract sol solitary tract SolG nu sol tract, gelatinous SolI nu sol tract, interstitial SolV sol nu, ventral part SolVL nu sol tract, ventrolateral
Fig 10b
Obex +2.0mm Transverse 10
sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract See List of Structures
Fig 11a
Obex +3.0mm Transverse 11 5mm
2 1
sl SolG PSol
4V
0
MVe
cu Cu
Sol 1
10N
In
2
3
mlf
4
sol
Mx
Gi
6
IOD
ocx
oc dsc
Pe5
ia
ROb
sp5
Sp5I
PCRt
IRt
12V Ro
AmbSC RVRG Li
ts
5
LPCu
SolVL
12L
12M
icp
ECu
MPCu
ami
LRtS5 rs Ad1 LRt
IOD
vsc spth pof
7 8
ml
hio Ct
9 10
ctg
IOPr
IOM
oc RPa
py
Ar
pos
4
5
11
Ar
vmf 12 13
0
1
10N dorsal motor nu of vagus 12L hypoglossal nucleus, lateral part 12M hypoglossal nucleus, medial part 12V hypoglossal nucleus, ventral part 4V 4th ventricle Ad1 Ad1 adrenalin cells AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain Ct conterminal nu ctg central tegmental tract cu cuneate fasciculus Cu cuneate nu
2
3
dsc dorsal spinocereb tract ECu external cuneate nu Gi gigantocellular reticular nu hio hilus of the inferior olive ia icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IOM inf olive, med nu IOPr inf olive, principal nu IRt intermed reticular nu Li linear nu of the medulla LPCu lateral pericuneate nucleus
6
7
LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus mlf med longitudinal fasciculus MPCu medial pericuneate nucleus MVe medial vestibular nu Mx matrix region medulla oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus
8 PSol parasolitary nu py pyramidal tr Ro nu of Roller ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract RVRG rost vent respiratory sl sulcus limitans Sol nu of solitary tract sol solitary tract SolG nu sol tract, gelatinous SolVL nu sol tract, ventrolateral sp5 spinal trigem tract
Fig 11b
Obex +3.0mm Transverse 11
Sp5I spinal trigem nu, interpolar spth spinothalamic tract ts tectospinal tr See List of Structures
Fig 12a
Obex +4.0mm Transverse 12 5mm
2 1
sl SolG
0
4V
10N
1
SpVe Sol
Crb
In
2
sol SolI
Mx
ECu
MPCu
LPCu
12N
3
mlf
IRt
Ro
4
5
MVe
Gi
ROb
Sp5I
PCRt
ia
ts
Li
ocx
7
9
ctg
IOPr
8
IOM
ml
oc
Pe5 AmbSC LRtS5 rs RVRG LPGi Ad1 vsc LRt spth pof
IOD
6
sp5
icp
hio Ct
RPa
ami
10 11
py
Ar
vmf
pos
12
13
0
1
10N dorsal motor nu of vagus 12N hypoglossal nu 4V 4th ventricle Ad1 Ad1 adrenalin cells AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain Crb cribiform nucleus Ct conterminal nu ctg central tegmental tract ECu external cuneate nu Gi gigantocellular reticular nu hio hilus of the inferior olive
2
3
4
ia icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IOM inf olive, med nu IOPr inf olive, principal nu IRt intermed reticular nu Li linear nu of the medulla LPCu lateral pericuneate nucleus LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus
5
6
7
mlf med longitudinal fasciculus MPCu medial pericuneate nucleus MVe medial vestibular nu Mx matrix region medulla oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus py pyramidal tr Ro nu of Roller ROb raphe obscurus nu
8 RPa raphe pallidus nu rs rubrospinal tract RVRG rost vent respiratory sl sulcus limitans sol solitary tract Sol nu of solitary tract SolG nu sol tract, gelatinous sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf
Fig 12b
Obex +4.0mm Transverse 12
vsc ventral spinocerebellar tr
Fig 13a
Obex +5.0mm Transverse 13 5mm
2 1
4V 0
SpVe
10N
Crb
Sol
In
1
sol
2
12N
3
Ro
mlf
4
5
MVe
sl
ECu Mx MPCu
EnR sp5
Sp5I PCRt
Gi
Li
ROb
AmbSC LPGi
IOD
ocx
oc
IRt
ts
6
icp
Pe5 Ad1
ml
8
rs
vsc LRt spth ctg
IODM
7
LRtS5
pof
IOPr
IOM hio
9 10 11
12
Ct
EL RPa
ami
py
vmf
Ar
13
0
pos
1
10N dorsal motor nu of vagus 12N hypoglossal nu 4V 4th ventricle Ad1 Ad1 adrenalin cells AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain Crb cribiform nucleus Ct conterminal nu ctg central tegmental tract ECu external cuneate nu EL endolemniscal nucleus EnR endorestiform nucleus
2
3
4
Gi gigantocellular reticular nu hio hilus of the inferior olive icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOM inf olive, med nu IOPr inf olive, principal nu IRt intermed reticular nu Li linear nu of the medulla LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal
5
6
7
ml medial lemniscus mlf med longitudinal fasciculus MPCu medial pericuneate nucleus MVe medial vestibular nu Mx matrix region medulla oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus py pyramidal tr Ro nu of Roller
8 ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract sl sulcus limitans Sol nu of solitary tract sol solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf vsc ventral spinocerebellar tr
Fig 13b
Obex +5.0mm Transverse 13
Fig 14a
Obex +6.0mm Transverse 14 5mm
2 1
sl
4V 0
SpVe
10N In
1
X
Sol sol
12N
2
mlf
3
Mx
DPGi
Ro
icp Sp5I
PCRt
sp5
oc
Gi
ocx
LPGi IOD
IODM
Pe5
AmbSC
GiV
JxO
ami
7
LRtS5
rs
Ad1 LRt
vsc
spth pof ctg
12n IOPr
ml
8
EnR
IRt
ROb
6
ECu
5Sol
ts
4
5
MVe
IOM
hio
9
EL
Ct
10
RPa 11
12
py
pos
Ar vmf
13
0
1
10N dorsal motor nu of vagus 12n root of hypoglossal nerve 12N hypoglossal nu 4V 4th ventricle 5Sol trigeminal-solitary trans Ad1 Ad1 adrenalin cells AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu ECu external cuneate nu
2
3
4
EL endolemniscal nucleus EnR endorestiform nucleus Gi gigantocellular reticular nu GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOM inf olive, med nu IOPr inf olive, principal nu IRt intermed reticular nu JxO juxtaolivary nu
5
6
7
LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu Mx matrix region medulla oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus
8 py pyramidal tr Ro nu of Roller ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract sl sulcus limitans Sol nu of solitary tract sol solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr
Fig 14b
Obex +6.0mm Transverse 14
vmf vsc ventral spinocerebellar tr X nu X
Fig 15a
Obex +7.0mm Transverse 15 5mm
2 1 0
Sol
In
sol
12N
2
mlf
3
Ro
DPGi
ts
5Sol
AmbC
Gi
PrBo
ROb
GiV
6
ocx
10
10n sp5
rs vsc
Ct spth pof
ctg
IOPr
IOM
hio
RPa
EnR
oc
LRtS5 LRt
ami
ami
RPa Ar
11 12
icp
Ad1
JxO
IODM
ml
8
X
Pe5
LPGi
IOD
7
9
ECu Sp5I
PCRt
IRt
4 5
SpVe
10N
Pr
1
MVe
sl
4V
py
vmf
pos
13 14
0
1
10n vagus nerve 10N dorsal motor nu of vagus 12N hypoglossal nu 4V 4th ventricle 5Sol trigeminal-solitary trans Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu ECu external cuneate nu
2
3
4
EnR endorestiform nucleus Gi gigantocellular reticular nu GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle In intercalated nu medulla IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOM inf olive, med nu IOPr inf olive, principal nu IRt intermed reticular nu JxO juxtaolivary nu LPGi lat paragigantocellular nu
5
6
7
8
LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus Pr prepositus nu PrBo pre-Botzinger complex
9 py pyramidal tr Ro nu of Roller ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract sl sulcus limitans Sol nu of solitary tract sol solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr
Fig 15b
Obex +7.0mm Transverse 15
vmf vsc ventral spinocerebellar tr X nu X
Fig 16a
Obex +8.0mm Transverse 16 5mm
2 1
4V
0
MVe
sl
SpVe Pr
10N
CDPMn
1 2
mlf
Sol
IPo
5Sol
DPGi
3
Gi
4 5
Sp5I
PCRt
IRt ts
X
sol
GiV ocx
6
IOD
LRtS5 LRt Ad1
LPGi
ml
10n
pof
IOPr IOM
9
hio
Ct 10
rs
vsc
ctg
7 8
Pe5
spth
ami
IODM
oc
sp5
AmbC PrBo
ROb
icp
RPa
11
py
12 13
vmf
pos
Ar
14
0
1
10N dorsal motor nu of vagus 10n vagus nerve 4V 4th ventricle 5Sol trigeminal-solitary trans Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CDPMn caudal dorsal paramedian nu Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu
2
3
4
GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOM inf olive, med nu IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus
5
6
7
8
mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus Pr prepositus nu PrBo pre-Botzinger complex py pyramidal tr ROb raphe obscurus nu RPa raphe pallidus nu
9
rs rubrospinal tract sl sulcus limitans Sol nu of solitary tract sol solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf vsc ventral spinocerebellar tr X nu X
Fig 16b
Obex +8.0mm Transverse 16
Fig 17a
Obex +9.0mm Transverse 17 5mm
2 1
sl
4V
0
IPo
Pr
10N SolIM
CDPMn
1
mlf
2
SpVe SolM
DPGi
ts
GiV
ocx
10n
IOD
LPGi
rs LRtS5 LRt vsc Ad1 spth
ctg
10n
Pe5
pof
ml IOM
8
IOPr
9
hio RPa
11 12
oc PrBo
IODM 7
oc
sp5
sp5 AmbC
6
icp
Gi
ROb
5
10
X
sol
5Sol Sp5I PCRt
IRt
3 4
MVe
Ar
ami
Ct py
vmf
pos
Ar
13 14
0
1
10N dorsal motor nu of vagus 10n vagus nerve 4V 4th ventricle 5Sol trigeminal-solitary trans Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CDPMn caudal dorsal paramedian nu Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu
2
3
4
GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOM inf olive, med nu IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus
5
6
7
8
mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus Pr prepositus nu PrBo pre-Botzinger complex py pyramidal tr ROb raphe obscurus nu RPa raphe pallidus nu
9
rs rubrospinal tract sl sulcus limitans sol solitary tract SolIM nu sol tract, intermediate SolM nu sol tract, medial sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf vsc ventral spinocerebellar tr X nu X
Fig 17b
Obex +9.0mm Transverse 17
Fig 18a
Obex +10.0mm Transverse 18 5mm
2
sl 1
4V Pr
0
MVe
IPo
10N
CDPMn
1
mlf
SolI sol
DPGi IRt
3
Gi
ts
oc
IOD ocx
7 8
LPGi
Ad1
ctg
IODM
oc
sp5 rs oc
Pe5 LRtS5
GiV
icp
sp5
AmbC PrBo
6
10n
Sp5I
PCRt
4
ROb
X
5Sol
2
5
SpVe
10n
vsc
spth
Ct
pof
ami
ml
hio IOPr
9 10
RPa Ar
11 12
ami
py
pos
vmf
13
Ar
14
0
1
10N dorsal motor nu of vagus 10n vagus nerve 4V 4th ventricle 5Sol trigeminal-solitary trans Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CDPMn caudal dorsal paramedian nu Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu
2
3
4
GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle IOD inf olive, dorsal nu IODM inf olive, dorsomed cell group IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu LPGi lat paragigantocellular nu LRtS5 lat reticular nu, subtrigeminal ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu
5
6
7
8
oc olivocerebellar tract ocx olivocerebellar bundle decussation PCRt parvicell reticular nu Pe5 peritrigeminal nucleus pof pos preolivary sulcus Pr prepositus nu PrBo pre-Botzinger complex py pyramidal tr ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract sl sulcus limitans
9
sol solitary tract SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf vsc ventral spinocerebellar tr X nu X
Fig 18b
Obex +10.0mm Transverse 18
Fig 19a
Obex +11.0mm Transverse 19 5mm
1
PaVe
sl
2
4V
MVe
IPo
Pr
10N
CDPMn
0
mlf
1
icp SolI
DPGi
sol 5Sol
IRt
2
X
Sp5I
3
ts
AmbC
5
IRt
GiV
IOPr ml
pof
ami
IOPr
8
8n
spth
ctg
7
vsc
9n
Ad1
LPGi
ocx
6
rs
LRtS5
PrBo
oc
sp5
PCRt
Gi
ROb 4
9
SpVe
hio
RPa
10 11 12
ami
Ct vmf
Ar
pos
py
13
mcp 14
Pn 0
1
10N dorsal motor nu of vagus 4V 4th ventricle 5Sol trigeminal-solitary trans 8n vestibulocochlear nerve 9n glossopharyngeal nerve Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain CDPMn caudal dorsal paramedian nu Ct conterminal nu ctg central tegmental tract DPGi dors paragigantocellular nu
2
3
4
Gi gigantocellular reticular nu GiV gigantocellular retic, vent hio hilus of the inferior olive icp inf cerebellar peduncle IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu LPGi lat paragigantocellular nu LRtS5 lat reticular nu, subtrigeminal mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu
5
6
7
8
oc olivocerebellar tract ocx olivocerebellar bundle decussation PaVe paravestibular nucleus PCRt parvicell reticular nu Pn pontine nuclei pof pos preolivary sulcus Pr prepositus nu PrBo pre-Botzinger complex py pyramidal tr ROb raphe obscurus nu RPa raphe pallidus nu rs rubrospinal tract
9
sl sulcus limitans sol solitary tract SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu ts tectospinal tr vmf vsc ventral spinocerebellar tr X nu X
Fig 19b
Obex +11.0mm Transverse 19
Fig 20a
Obex +12.0mm Transverse 20 5mm
PaVe sl
2 1
4V ODPMn
0
mlf
IPo
Pr
SpVe
Gi
AmbC
tz rs
GiA
vsc
Ad1
LPGi
6
8vn
8cn
spth
ctg
7
sp5
IRt
ts
RMg
oc
Sp5I
PCRt
4 5
SolI
IS
ROb
3
icp
sol
DPGi
1 2
MVe
ami
ml
IOPr
8 9 10
Pn 11
Pn
lfp
12
mcp
13 14
tfp 0
1
4V 4th ventricle 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve Ad1 Ad1 adrenalin cells AmbC ambiguus nu, compact part ami amiculum of the olive ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu GiA gigantocellular retic, alpha icp inf cerebellar peduncle IOPr inf olive, principal nu IPo interpositus
2
3
4
IRt intermed reticular nu IS inferior salivatory nu lfp longitudinal fasciculus pons LPGi lat paragigantocellular nu mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract ODPMn oral dorsal paramedian nu PaVe paravestibular nucleus PCRt parvicell reticular nu Pn pontine nuclei
5
6
7
Pr prepositus nu RMg raphe magnus nu ROb raphe obscurus nu rs rubrospinal tract sl sulcus limitans sol solitary tract SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu tfp ts tectospinal tr
8
9 tz trapezoid body vsc ventral spinocerebellar tr
Fig 20b
Obex +12.0mm Transverse 20
Fig 21a
Obex +13.0mm Transverse 21 5mm
scp
3
PaVe
2
sl
4V
1
Pr ODPMn
0
mlf
MVe
IPo
DPGi
ts
mcp
Sp5I
PCRt
IRt
Gi
icp
sol SolI
IS
1 2
SpVe
3 4
tz
rs
GiA RMg
5
oc
sp5
ctg
LPGi spth
vsc
8cn 8vn
ml
6
ami
7 8
Pn
9
mcp
6n lfp
10 11 12 13
tfp
0
Pn
1
4V 4th ventricle 6n root of abducens nerve 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve ami amiculum of the olive ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu GiA gigantocellular retic, alpha icp inf cerebellar peduncle IPo interpositus IRt intermed reticular nu IS inferior salivatory nu
2
3
4
lfp longitudinal fasciculus pons LPGi lat paragigantocellular nu mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract ODPMn oral dorsal paramedian nu PaVe paravestibular nucleus PCRt parvicell reticular nu Pn pontine nuclei Pr prepositus nu RMg raphe magnus nu
5
6
7
rs rubrospinal tract scp superior Cb peduncle sl sulcus limitans sol solitary tract SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu tfp ts tectospinal tr tz trapezoid body vsc ventral spinocerebellar tr
8
9
Fig 21b
Obex +13.0mm Transverse 21
Fig 22a
Obex +14.0mm Transverse 22 5mm
6 5
scp
4 3 2 1 0
LVe
4V IPo
Pr mlf
DPGi
1
MVe IRt asc7
2
4 5
Gi
ts
3
P7
ml
7
SpVe SolI sol Sp5O
oc vsc
7N
rs
tz 7n 8vn
Pn
6n
mcp
Pn/tfp
9
8cn
tfp
spth
8
mcp
sp5
LPGi ctg SOl
GiA RMg
6
IS PCRt
icp
10
Pn
11 12 13
lfp
Pn
14 15
tfp
lfp
16 17
Pn
18 19 20 21 0
1
4V 4th ventricle 6n root of abducens nerve 7N facial nu 7n facial nerve 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve asc7 ctg central tegmental tract DPGi dors paragigantocellular nu Gi gigantocellular reticular nu GiA gigantocellular retic, alpha icp inf cerebellar peduncle IPo interpositus
2
3
4
5
6
IRt intermed reticular nu IS inferior salivatory nu lfp longitudinal fasciculus pons LPGi lat paragigantocellular nu LVe lateral vestibular nu mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract P7 perifacial zone PCRt parvicell reticular nu Pn pontine nuclei
7
8
9
10
11
Pn/tfp Pr prepositus nu RMg raphe magnus nu rs rubrospinal tract scp superior Cb peduncle sol solitary tract SOl superior olive, lateral SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5O spinal trigeml nu, oral spth spinothalamic tract SpVe spinal vestibular nu tfp
12
13
14
15
ts tectospinal tr tz trapezoid body vsc ventral spinocerebellar tr
Fig 22b
Obex +14.0mm Transverse 22
Fig 23a
Obex +15.0mm Transverse 23 5mm
6 5
scp
4 3 2
4V Pr g7
1 0
mlf DPGi
1 2
ts
3 4 5
MVe
6N
veme IS IRt PCRt
Pa6
Gi
RMg GiA
LPGi
Tz
ml
6
IPo
ctg
6n spth 6n
7
Pn/tfp
8
Sp5O sp5
7N
7n
oc vsc mcp
tz
P7 SOl ll tfp
8n PnB
Pn
12 13
SpVe sol SolI
Pn
tfp
11
LVe
tfp
9 10
icp
lfp
Pn
14 15
lfp lfp
16
tfp tfp
17 18
Pn
19 20 21 0
1
4V 4th ventricle 6n root of abducens nerve 6N abducens nu 7n facial nerve 7N facial nu 8n vestibulocochlear nerve ctg central tegmental tract DPGi dors paragigantocellular nu g7 genu facial nerve Gi gigantocellular reticular nu GiA gigantocellular retic, alpha icp inf cerebellar peduncle IPo interpositus
2
3
4
5
6
IRt intermed reticular nu IS inferior salivatory nu lfp longitudinal fasciculus pons ll lateral lemniscus LPGi lat paragigantocellular nu LVe lateral vestibular nu mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu oc olivocerebellar tract P7 perifacial zone Pa6 paraabducens nu
7
8
9
10
11
PCRt parvicell reticular nu Pn pontine nuclei Pn/tfp PnB pontobulbar nucleus Pr prepositus nu RMg raphe magnus nu scp superior Cb peduncle sol solitary tract SOl superior olive, lateral SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5O spinal trigeml nu, oral spth spinothalamic tract
12
13
14
15
SpVe spinal vestibular nu tfp ts tectospinal tr tz trapezoid body Tz nu trapezoid body veme vestibulomesencephalic tr vsc ventral spinocerebellar tr
Fig 23b
Obex +15.0mm Transverse 23
Fig 24a
Obex +16.0mm Transverse 24 5mm
6 5
scp SuVe
4 3
4V
2 1
mlf
0
PnC
1 2
RIP
3 4 5
SGe g7 6n
SolI 7n PCRtA
IRt
Pa6
ml
sol vsc
Sp5O 7N
ctg DPO P7 SOl ll Tz spth
GiA
6
LVe
veme
6N
6n Gi
ts
RMg
MVe
icp
sp5
mcp
tz
7 8
PnB
Pn/tfp
9
8n
10 11
Pn
12
lfp
13 14
Pn
15
tfp
lfp
16
Pn
tfp
17
Pn
18 19 20 21 0
1
4V 4th ventricle 6n root of abducens nerve 6N abducens nu 7n facial nerve 7N facial nu 8n vestibulocochlear nerve ctg central tegmental tract DPO dorsal periolivary region g7 genu facial nerve Gi gigantocellular reticular nu GiA gigantocellular retic, alpha icp inf cerebellar peduncle IRt intermed reticular nu
2
3
4
5
6
7
lfp longitudinal fasciculus pons ll lateral lemniscus LVe lateral vestibular nu mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu P7 perifacial zone Pa6 paraabducens nu PCRtA parvicell reticular nu, alpha Pn pontine nuclei Pn/tfp PnB pontobulbar nucleus
8
9
10
11
12
PnC pontine reticular nu, caudal RIP raphe interpositus nu RMg raphe magnus nu scp superior Cb peduncle SGe supragenual nu sol solitary tract SOl superior olive, lateral SolI nu sol tract, interstitial sp5 spinal trigem tract Sp5O spinal trigeml nu, oral spth spinothalamic tract SuVe superior vestibular nu tfp
13
14
15
ts tectospinal tr Tz nu trapezoid body tz trapezoid body veme vestibulomesencephalic tr vsc ventral spinocerebellar tr
Fig 24b
Obex +16.0mm Transverse 24
Fig 25a
Obex +17.0mm Transverse 25 5mm
6 5
scp
4 3 2
4V
1 0
mlf
1 2 3 4
RIP
ts
icp
SuVe MVe
SGe g7
7n
6N
6n
Pa6
PnC
PnC
spth
6
mcp
vsc
PCRtA Sp5O sp5 SubCV DPO Gam tz
SOl ll
ml
5
veme
SubCD
ctg
RMg
LVe
5n
Tz
7 8
mcp
Pn/tfp
9
PnB
10 11
Pn
12
lfp
13 14 15
Pn
16
tfp
17
Pn
18 19 20 21 0
1
4V 4th ventricle 5n trigeminal nerve 6n root of abducens nerve 6N abducens nu 7n facial nerve ctg central tegmental tract DPO dorsal periolivary region g7 genu facial nerve Gam gamma pontine nucleus icp inf cerebellar peduncle lfp longitudinal fasciculus pons ll lateral lemniscus LVe lateral vestibular nu
2
3
4
5
6
7
mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu Pa6 paraabducens nu PCRtA parvicell reticular nu, alpha Pn pontine nuclei Pn/tfp PnB pontobulbar nucleus PnC pontine reticular nu, caudal RIP raphe interpositus nu RMg raphe magnus nu scp superior Cb peduncle
8
9
10
11
12
SGe supragenual nu SOl superior olive, lateral sp5 spinal trigem tract Sp5O spinal trigeml nu, oral spth spinothalamic tract SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral SuVe superior vestibular nu tfp ts tectospinal tr tz trapezoid body Tz nu trapezoid body veme vestibulomesencephalic tr
13
14
15
vsc ventral spinocerebellar tr
Fig 25b
Obex +17.0mm Transverse 25
Fig 26a
Obex +18.0mm Transverse 26 5mm
6 5 4 3 2
SuVe 4V SGe g7
1 0
mlf
1 2 3
PnC
RIP ts
6
RtTg
mcp
sp5
SubCV DPO tz
SOl ll Tz spth
ml
5
icp
CGPn EVe MVe veme 7n 6N vsc SubCD P5 Pa6 PCRtA Pr5 ctg
4
scp
5n
Pn
7 8
Pn/tfp
9
mcp
Pn
10
PnB
11 12
lfp
13 14
Pn
15
tfp
16
Pn
lfp
17 18 19 20 21 0
1
4V 4th ventricle 5n trigeminal nerve 6N abducens nu 7n facial nerve CGPn central gray pons ctg central tegmental tract DPO dorsal periolivary region EVe nu origin efferents ve n g7 genu facial nerve icp inf cerebellar peduncle lfp longitudinal fasciculus pons ll lateral lemniscus mcp middle cerebellar peduncle
2
3
4
5
6
7
ml medial lemniscus mlf med longitudinal fasciculus MVe medial vestibular nu P5 peritrigeminal zone Pa6 paraabducens nu PCRtA parvicell reticular nu, alpha Pn pontine nuclei Pn/tfp PnB pontobulbar nucleus PnC pontine reticular nu, caudal Pr5 principal sensory trigem nu RIP raphe interpositus nu RtTg reticulotegmental nu pons
8
9
10
11
12
scp superior Cb peduncle SGe supragenual nu SOl superior olive, lateral sp5 spinal trigem tract spth spinothalamic tract SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral SuVe superior vestibular nu tfp ts tectospinal tr tz trapezoid body Tz nu trapezoid body veme vestibulomesencephalic tr
13
14
15
vsc ventral spinocerebellar tr
Fig 26b
Obex +18.0mm Transverse 26
Fig 27a
Obex +19.0mm Transverse 27 5mm
6
MPB scp
5 4 3 2
icp
SuVe Gam
4V
CGPn 5Tr vsc CGB veme Su5 7n DMTg SubCD mlf 5N Pr5 sp5 m5 4V RtTgL P5 PnC ts SubCV PCRtA ctg Gam DPO tth RtTg s5 m5 Tz SOl ll ml spth
1 0 1 2 3 4 5
mcp
Pn
6 7 8
Pn/tfp
9
mcp
10
5n
Pn
11 12
lfp
13 14
Pn tfp
15 16 17 18 19
Pn
lfp tfp
Pn
20 21 0
1
4V 4th ventricle 5n trigeminal nerve 5N motor trigeminal nu 5Tr trigem transition zone 7n facial nerve CGB central gray, beta part CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DPO dorsal periolivary region Gam gamma pontine nucleus icp inf cerebellar peduncle lfp longitudinal fasciculus pons
2
3
4
5
6
7
ll lateral lemniscus m5 motor root trigeminal nerve mcp middle cerebellar peduncle ml medial lemniscus mlf med longitudinal fasciculus MPB medial parabrachial nu P5 peritrigeminal zone PCRtA parvicell reticular nu, alpha Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal Pr5 principal sensory trigem nu RtTg reticulotegmental nu pons
8
9
10
11
12
RtTgL reticulotegmental pons, lat s5 sensory root trigem n scp superior Cb peduncle SOl superior olive, lateral sp5 spinal trigem tract spth spinothalamic tract Su5 supratrigeminal nu SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral SuVe superior vestibular nu tfp ts tectospinal tr tth trigeminothalamic tr
13
14
15
Tz nu trapezoid body veme vestibulomesencephalic tr vsc ventral spinocerebellar tr
Fig 27b
Obex +19.0mm Transverse 27
Fig 28a
Obex +20.0mm Transverse 28 5mm
6
MPB
5 4 3 2 1 0 1 2 3 4 5
icp
Cb
scp
vsc SuVe Gam CGPn me5 e m e 5Tr v Su5 CGB DMTg SubCD m5 mlf 5N RtTgL P5 Pr5 PnC sp5 SubCV SubCV ts ctg DPO tth PCRtA RtTg SOl ll ml spth m5 s5 Pn 4V
mcp
6 7
Pn/tfp
8
5n
9 10
mcp
tfp
11
Pn
12 13
lfp
14
Pn
15
tfp/Pn
16 17
lfp
18 19
tfp Pn
20 21 0
1
4V 4th ventricle 5N motor trigeminal nu 5n trigeminal nerve 5Tr trigem transition zone Cb cerebellum CGB central gray, beta part CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DPO dorsal periolivary region Gam gamma pontine nucleus icp inf cerebellar peduncle lfp longitudinal fasciculus pons
2
3
4
5
6
7
ll lateral lemniscus m5 motor root trigeminal nerve mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MPB medial parabrachial nu P5 peritrigeminal zone PCRtA parvicell reticular nu, alpha Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal Pr5 principal sensory trigem nu
8
9
10
11
12
RtTg reticulotegmental nu pons RtTgL reticulotegmental pons, lat s5 sensory root trigem n scp superior Cb peduncle SOl superior olive, lateral sp5 spinal trigem tract spth spinothalamic tract Su5 supratrigeminal nu SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral SuVe superior vestibular nu tfp tfp/Pn
13
14
15
ts tectospinal tr tth trigeminothalamic tr veme vestibulomesencephalic tr vsc ventral spinocerebellar tr
Fig 28b
Obex +20.0mm Transverse 28
Fig 29a
Obex +21.0mm Transverse 29 5mm
6
MPB
5 4
2
Gam
4V
3
scp Cb
me5
CGPn LC 5Tr CGB e Su5 m e SubCD v DMTg 5N mlf Pr5 P5 RtTgL m5 SubCV PnC IF5 ts ctg RtTg SOl ll tth B9 spth ml Pn
DRC
1 0 1 2 3 4 5
mcp
s5 m5
6 7
Pn/tfp
8 9 10
5n
mcp
11 12
Pn
13 14
lfp
Pn
15
tfp
16
lfp
17
tfp/Pn Pn
18 19
tfp
20 21 0
1
4V 4th ventricle 5N motor trigeminal nu 5n trigeminal nerve 5Tr trigem transition zone B9 B9 serotonin cells Cb cerebellum CGB central gray, beta part CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DRC dorsal raphe nu, caudal Gam gamma pontine nucleus IF5 interfascicular trigeminal nu
2
3
4
5
6
LC locus coeruleus lfp longitudinal fasciculus pons ll lateral lemniscus m5 motor root trigeminal nerve mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MPB medial parabrachial nu P5 peritrigeminal zone Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal
7
8
9
10
11
12
Pr5 principal sensory trigem nu RtTg reticulotegmental nu pons RtTgL reticulotegmental pons, lat s5 sensory root trigem n scp superior Cb peduncle SOl superior olive, lateral spth spinothalamic tract Su5 supratrigeminal nu SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral tfp tfp/Pn ts tectospinal tr
13
14
15
tth trigeminothalamic tr veme vestibulomesencephalic tr
Fig 29b
Obex +21.0mm Transverse 29
Fig 30a
Obex +22.0mm Transverse 30 5mm
6
MPB
5 4
4V
3 2 1 0 1 2 3 4
me5
LC
CGPn
scp Cb
CGB PDTg veme SubCDGam g DMT 5Tr 5N mlf RtTgL P5 SubCV PnO ctg PnR ll ts SOl VLTg B9 Pn RtTg spth ml tth DRC
mcp
5 6
Pn/tfp
7 8 9
lfp
10
lfp
11
5n
Pn
tfp
12
mcp
Pn
lfp
13
Pn
14 15
Pn
16 17
tfp lfp
lfp
Pn
18
lfp
tfp
Pn
tfp
19 20 21 0
1
4V 4th ventricle 5N motor trigeminal nu 5n trigeminal nerve 5Tr trigem transition zone B9 B9 serotonin cells Cb cerebellum CGB central gray, beta part CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DRC dorsal raphe nu, caudal Gam gamma pontine nucleus LC locus coeruleus
2
3
4
5
6
lfp longitudinal fasciculus pons ll lateral lemniscus mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MPB medial parabrachial nu P5 peritrigeminal zone PDTg posterodors tegmental nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral PnR pontine raphe nu
7
8
9
10
11
12
RtTg reticulotegmental nu pons RtTgL reticulotegmental pons, lat scp superior Cb peduncle SOl superior olive, lateral spth spinothalamic tract SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral tfp ts tectospinal tr tth trigeminothalamic tr veme vestibulomesencephalic tr VLTg ventrolateral tegmental area
13
14
15
Fig 30b
Obex +22.0mm Transverse 30
Fig 31a
Obex +23.0mm Transverse 31 5mm
6 5 4 3 2 1 0 1 2 3 4
Cb
scp
me5 4V CGPn MPB DRC LC CGB LPBE PDTg me e SubCD v Gam DMTg mlf SubCV MPBE RtTgL PnO PnR ctg SOl ll ts B9 SuL VLTg Pn RtTg spth ml tth Pn
Cb
mcp
5 6 7
Pn/tfp
8
Pn
lfp
9 10
5n
lfp
11
tfp
12
lfp
13
tfp
lfp
14
tfp
lfp
Pn
15
lfp
16 17
tfp
18
lfp
lfp
tfp
19
Pn
20 21 0
1
4V 4th ventricle 5n trigeminal nerve B9 B9 serotonin cells Cb cerebellum CGB central gray, beta part CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DRC dorsal raphe nu, caudal Gam gamma pontine nucleus LC locus coeruleus lfp longitudinal fasciculus pons ll lateral lemniscus
2
3
4
5
6
7
LPBE lat parabrachial nu, external mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MPB medial parabrachial nu MPBE med parabrachial nu ext PDTg posterodors tegmental nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral PnR pontine raphe nu RtTg reticulotegmental nu pons
8
9
10
11
12
RtTgL reticulotegmental pons, lat scp superior Cb peduncle SOl superior olive, lateral spth spinothalamic tract SubCD subcoeruleus nu, dorsal SubCV subcoeruleus nu, ventral SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr veme vestibulomesencephalic tr VLTg ventrolateral tegmental area
13
14
15
Fig 31b
Obex +23.0mm Transverse 31
Fig 32a
Obex +24.0mm Transverse 32 5mm
6 5
scp
4 3 2 1 0 1 2 3 4
Cb
me5
4V DRC
CGPn LC veme LPB MPB PDTg DMTg DRI lf SubCD MPBE m RtTgL KF PnO Gam MnR PMnR ctg SOl ll ts VLTg SuL B9 Pn RtTg spth ml tth Pn
5 6
Pn/tfp
7
lfp
8 9 10
tfp
11
tfp
12 13 14 15
Pn Pn
18
lfp
lfp lfp
tfp lfp tfp lfp tfp
Pn
17
lfp
lfp
Pn
tfp
19
mcp
lfp
lfp
tfp
16
Pn
20 21 0
1
4V 4th ventricle B9 B9 serotonin cells Cb cerebellum CGPn central gray pons ctg central tegmental tract DMTg dorsomed tegmental area DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular Gam gamma pontine nucleus KF Kölliker-Fuse nu LC locus coeruleus lfp longitudinal fasciculus pons ll lateral lemniscus
2
3
4
5
6
LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu MPBE med parabrachial nu ext PDTg posterodors tegmental nu PMnR paramedian raphe nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral
7
8
9
10
11
12
RtTg reticulotegmental nu pons RtTgL reticulotegmental pons, lat scp superior Cb peduncle SOl superior olive, lateral spth spinothalamic tract SubCD subcoeruleus nu, dorsal SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr veme vestibulomesencephalic tr VLTg ventrolateral tegmental area
13
14
15
Fig 32b
Obex +24.0mm Transverse 32
Fig 33a
Obex +25.0mm Transverse 33 5mm
6 5 4 3 2 1
CGPn Bar
4V DRC DRI
LDTg PDTg
mlf
VTg
0
MnR PMnR 1 2
scp LC
MPB
SubCD LDTgV
spth
ml
tth
3
Gam
MPBE VLTg SOl ll
B9 SuL
RtTg
LPB KF
ctg
PnO
ts
me5
Pn
4 5 6
mcp
Pn/tfp
7
lfp
8 9 10 11
lfp tfp
12
tfp
13
Pn
lfp
lfp tfp
16
Pn
lfp
lfp
18
lfp
tfp
15
17
lfp
lfp
Pn
14
Pn
lfp lfp
lfp Pn
tfp
19 20 21 0
1
2
4V 4th ventricle B9 B9 serotonin cells Bar Barrington's nu CGPn central gray pons ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular Gam gamma pontine nucleus KF Kölliker-Fuse nu LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons
3
4
5
6
ll lateral lemniscus LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu MPBE med parabrachial nu ext PDTg posterodors tegmental nu PMnR paramedian raphe nu Pn pontine nuclei Pn/tfp
7
8
9
10
11
12
PnO pontine reticular nu, oral RtTg reticulotegmental nu pons scp superior Cb peduncle SOl superior olive, lateral spth spinothalamic tract SubCD subcoeruleus nu, dorsal SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLTg ventrolateral tegmental area VTg vent tegmental nu
13
14
15
Fig 33b
Obex +25.0mm Transverse 33
Fig 34a
Obex +26.0mm Transverse 34 5mm
6 5 4 3 2 1 0 1 2 3
scp
CGPn Bar
me5 4V DRC LDTg LC MPB DTg DTg LPB LDTgV DRI mlf VTg Gam MPBE KF ctg MnR PnO ll PMnR ts VLTg VLL SuL spth Pn RtTg B9 ml tth
4 5
Pn/tfp
6
lfp
7 8
Pn
lfp
tfp
11
lfp
tfp lfp
13
Pn
tfp
15
lfp
tfp
16 17 18
mcp
lfp
lfp
12
14
lfp
tfp
9 10
lfp
lfp
Pn
lfp
lfp
Pn
tfp
19 20 21 0
1
2
4V 4th ventricle B9 B9 serotonin cells Bar Barrington's nu CGPn central gray pons ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular DTg dorsal tegmental nu Gam gamma pontine nucleus KF Kölliker-Fuse nu LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent
3
4
5
6
lfp longitudinal fasciculus pons ll lateral lemniscus LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu MPBE med parabrachial nu ext PMnR paramedian raphe nu Pn pontine nuclei Pn/tfp
7
8
9
10
11
12
PnO pontine reticular nu, oral RtTg reticulotegmental nu pons scp superior Cb peduncle spth spinothalamic tract SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area VTg vent tegmental nu
13
14
15
Fig 34b
Obex +26.0mm Transverse 34
Fig 35a
Obex +27.0mm Transverse 35 5mm
6 5 4 3 2 1 0 1 2 3
scp 4V CGPn Bar me5 DRC LPB LDTg LC MPB DTg DRI mlf LDTgV Gam MPBE KF mtg ctg ll MnR PnO VLL VLTg PMnR ts SuL spth Pn B9 ml RtTg tth
4
tfp
5
lfp
6
lfp
lfp
7
Pn
8
mcp
Pn/tfp
9
lfp
10
tfp
11 12
Pn
13 14
lfp tfp
Pn
15
lfp
Pn
16 17
lfp tfp
tfp lfp
Pn
18
Pn
19
tfp
20
Pn
21 0
1
2
4V 4th ventricle B9 B9 serotonin cells Bar Barrington's nu CGPn central gray pons ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular DTg dorsal tegmental nu Gam gamma pontine nucleus KF Kölliker-Fuse nu LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent
3
4
5
6
lfp longitudinal fasciculus pons ll lateral lemniscus LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu MPBE med parabrachial nu ext mtg mammillotegmental tract PMnR paramedian raphe nu Pn pontine nuclei
7
8
9
10
11
12
Pn/tfp PnO pontine reticular nu, oral RtTg reticulotegmental nu pons scp superior Cb peduncle spth spinothalamic tract SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area
13
14
15
Fig 35b
Obex +27.0mm Transverse 35
Fig 36a
Obex +28.0mm Transverse 36 5mm
6 5 4 3 2 1
4V DRC DRI
0 MnR PMnR 1 2
CGPn
ts
scp KF
PnO B9
VLTg
SuL
ll VLL
spth Pn
ml
tth
4 5
lfp
tfp
6
lfp
Pn
7 8
lfp
Pn/tfp
10
Pn
mcp
lfp
Pn
9
LDTgV LDTg
LPB
LDTg LC MPB DTg Bar mlf LDTgV mtg ctg
RtTg
3
me5
lfp tfp
11 12
lfp
Pn lfp
13 14 15
lfp tfp
16 17
lfp
tfp
Pn
19
tfp
20
Pn
21 0
lfp
lfp
lfp
Pn
18
tfp
1
2
4V 4th ventricle B9 B9 serotonin cells Bar Barrington's nu CGPn central gray pons ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular DTg dorsal tegmental nu KF Kölliker-Fuse nu LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons
3
4
Pn
5
6
ll lateral lemniscus LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu mtg mammillotegmental tract PMnR paramedian raphe nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral
7
8
9
10
11
12
RtTg reticulotegmental nu pons scp superior Cb peduncle spth spinothalamic tract SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area
13
14
15
Fig 36b
Obex +28.0mm Transverse 36
Fig 37a
Obex +29.0mm Transverse 37 5mm
6 5
4V
4 3
1
1 2
LPB
LDTg LC DTg MPB LDTgV mlf mtg ctg
DRC 2 DRI 0
me5
MnR PMnR
3
ts RtTg
4
scp
KF
PnO B9
SuL
VLTg VLL spth
ml
tth tfp
5 6
lfp
Pn
7
ILL ll
Pn
tfp lfp mcp
lfp
8 9
Pn/tfp
10
tfp
11 12
tfp Pn
14
lfp
15
17
lfp
Pn
18
tfp
tfp
Pn
16
Pn
tfp
Pn
13
lfp
19
lfp
lfp
Pn
tfp
20
Pn
21 0
1
2
4V 4th ventricle B9 B9 serotonin cells ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular DTg dorsal tegmental nu ILL intermed nu lat lemniscus KF Kölliker-Fuse nu LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons ll lateral lemniscus
3
4
5
6
LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu mtg mammillotegmental tract PMnR paramedian raphe nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral RtTg reticulotegmental nu pons
7
8
9
10
11
12
scp superior Cb peduncle spth spinothalamic tract SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area
13
14
15
Fig 37b
Obex +29.0mm Transverse 37
Fig 38a
Obex +30.0mm Transverse 38 5mm
6 5 4 3 2 1 0 1 2 3 4 5 6
smv x4n me5
4V
EC LPB LDTg MPB LC DRC DTg ll scp DRI LDTgV mlf mtg ILL ctg PnO MnR SPTg VLL VLTg PMnR ts spth SuL ml B9 tth RtTg Pn tfp lfp lfp
Pn
7
tfp
8
mcp lfp
9 10
tfp
Pn
11
lfp
tfp
12
Pn
13
tfp
14
lfp
Pn
15
Pn
lfp
tfp
16 17
Pn
Pn
lfp
lfp
18
tfp
19
Pn
20 21 0
1
2
4V 4th ventricle B9 B9 serotonin cells ctg central tegmental tract DRC dorsal raphe nu, caudal DRI dorsal raphe, interfascicular DTg dorsal tegmental nu EC epicoeruleus nucleus ILL intermed nu lat lemniscus LC locus coeruleus LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons ll lateral lemniscus
3
4
5
6
LPB lateral parabrachial nu mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus MnR median raphe nu MPB medial parabrachial nu mtg mammillotegmental tract PMnR paramedian raphe nu Pn pontine nuclei PnO pontine reticular nu, oral RtTg reticulotegmental nu pons scp superior Cb peduncle
7
8
9
10
11
12
13
smv superior medullary velum SPTg subpeduncular tegmental nu spth spinothalamic tract SuL supralemniscal nucleus tfp ts tectospinal tr tth trigeminothalamic tr VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area x4n decussation of the trochlear nerve
14
15
Fig 38b
Obex +30.0mm Transverse 38
Fig 39a
Obex +31.0mm Transverse 39 5mm
6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ͶͲ
Ϊ͵ʹǤͲ ͶͲ ͷ
6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Fig 41a
Obex +33.0mm Transverse 41 5mm
6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Fig 42a Obex +34.0mm Transverse 42 5mm
Fig 43a
Obex +35.0mm Transverse 43 .
5mm
8 7 6 5 4 3 2 1 0 1 2 3
ECIC
DMPAG LPAG
me5 VLPAG CnF RC 4n LDTg isRt DR LDTgV mlf mtg ctg CLi
Sag
Aq
CLiAz
ll PTg RIs
Rbd
xscp ml
4 5 6
spth
RRF
scp
IP
7
PnO RtTg
8
tth
lfp
Pn
lfp
tfp
9 10
Pn
11 12
lfp tfp
Pn
tfp
Pn
13
cp
mcp
lfp tfp
14 15
lfp
Pn
16
tfp
17 18
Pn
19 0
1
2
4n trochlear nerve Aq aqueduct CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll IP interpedunc nu isRt isthmic reticular formation LDTg laterodor tegmental nu
3
4
5
6
7
LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons ll lateral lemniscus LPAG lat periaqueductal gray mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract Pn pontine nuclei PnO pontine reticular nu, oral PTg pedunculopontine tegmental Rbd rhabdoid nu
8
9
10
11
12
RC raphe cap RIs retroisthic nucleus RRF RtTg reticulotegmental nu pons Sag sagulum nu scp superior Cb peduncle spth spinothalamic tract tfp tth trigeminothalamic tr VLPAG ventlat periaqueductal gray xscp decussation sup cereb ped
13
14
15
Fig 43b
Obex +35.0mm Transverse 43
Fig 44a Obex +36.0mm Transverse 44 5mm
8
DCIC
7 6 5 4
DMPAG LPAG Aq VLPAG RC
3
DR
2 1 0
CIC me5 CnF 4n isRt
mtg
mlf
ECIC
MiTg
PTg
ctg
CLi
Sag
ll
RIs spth
scp
1
PBG
RRF
2
CLiAz CLiZ 3
xscp
ml
4
cp
5
tth
6
IP VTAC
7
tfp
8
tfp
9
lfp
tfp
10 11
Pn
Pn/tfp
tfp
12
tfp
13
tfp
Pn
14
Pn
15
mcp
lfp Pn lfp
16
tfp
17
Pn
18 19 0
1
2
4n trochlear nerve Aq aqueduct CIC central nu inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract DCIC dors cx inf colliculus DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll
3
4
5
6
IP interpedunc nu isRt isthmic reticular formation lfp longitudinal fasciculus pons ll lateral lemniscus LPAG lat periaqueductal gray mcp middle cerebellar peduncle me5 mesencephalic trigem tract MiTg microcell tegmental nu ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract PBG parabigeminal nu Pn pontine nuclei
7
8
9
10
11
12
Pn/tfp PTg pedunculopontine tegmental RC raphe cap RIs retroisthic nucleus RRF Sag sagulum nu scp superior Cb peduncle spth spinothalamic tract tfp tth trigeminothalamic tr VLPAG ventlat periaqueductal gray VTAC vent tegmental area, caudal xscp decussation sup cereb ped
13
14
15
Fig 44b
Obex +36.0mm Transverse 44
Fig 45a
Obex +37.0mm Transverse 45 5mm
9
DCIC
8 7 6 5 4
DMPAG LPAG
mlf CLi
ECIC
me5
MiTg
isRt
Pa4 mtg
ctg
PTg
CLiAz 3 CLiZ
PBG
spth RIs
1 2
Sag
ll
CnF
DR 4n
2
0
VLPAG RC
Aq
3
1
CIC
RRF
xscp
ml
ID
cp
4
tth
5 6 7
Pn
VTAC
IP
8 9
lfp
tfp
10 11
Pn tfp
12 13
lfp
tfp
Pn
14
mcp
lfp
15
Pn
lfp
tfp
16
tfp
17
Pn
18 0
1
2
4n trochlear nerve Aq aqueduct CIC central nu inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract DCIC dors cx inf colliculus DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll
3
4
5
6
ID intradecussational nu scp IP interpedunc nu isRt isthmic reticular formation lfp longitudinal fasciculus pons ll lateral lemniscus LPAG lat periaqueductal gray mcp middle cerebellar peduncle me5 mesencephalic trigem tract MiTg microcell tegmental nu ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract Pa4 paratrochlear nu
7
8
9
10
11
12
PBG parabigeminal nu Pn pontine nuclei PTg pedunculopontine tegmental RC raphe cap RIs retroisthic nucleus RRF Sag sagulum nu spth spinothalamic tract tfp tth trigeminothalamic tr VLPAG ventlat periaqueductal gray VTAC vent tegmental area, caudal xscp decussation sup cereb ped
13
14
15
Fig 45b
Obex +37.0mm Transverse 45
Fig 46a
Obex +38.0mm Transverse 46 5mm
9 8 7 6
cic
DCIC
DMPAG
3 2
Aq
1
VLPAG RC
DR mlf
1 0
ECIC
LPAG
5 4
CIC
PrCnF me5 CnF
4n Pa4
isRt ctg
mtg
CLiAz 3 CLiZ
IP
8
ipf
rs VTAC
tfp tfp
lfp
tfp
12 13
csp cbu Pn
10 11
cp
PBP
Pn
9
ml
tth SNR
5
7
RIs
RRF ID
6
MiTg
PTg
xscp
4
PBG
spth
CLi
2
ll
Pn
tfp
14
lfp
tfp
15 16
mcp
lfp
Pn
tfp
17 18 0
1
2
4n trochlear nerve Aq aqueduct cbu corticobulbar tract cic commissure inf colliculus CIC central nu inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos CnF cuneiform nu cp cerebral peduncle csp corticospinal tract ctg central tegmental tract DCIC dors cx inf colliculus
3
4
5
6
7
DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll ID intradecussational nu scp IP interpedunc nu ipf interpedunc fossa isRt isthmic reticular formation lfp longitudinal fasciculus pons ll lateral lemniscus LPAG lat periaqueductal gray mcp middle cerebellar peduncle me5 mesencephalic trigem tract MiTg microcell tegmental nu
8
9
10
11
12
ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract Pa4 paratrochlear nu PBG parabigeminal nu PBP parabrachial pigmented nu Pn pontine nuclei PrCnF precuneiform area PTg pedunculopontine tegmental RC raphe cap RIs retroisthic nucleus RRF rs rubrospinal tract
13
14
15
SNR s nigra, reticular spth spinothalamic tract tfp tth trigeminothalamic tr VLPAG ventlat periaqueductal gray VTAC vent tegmental area, caudal xscp decussation sup cereb ped
Fig 46b
Obex +38.0mm Transverse 46
Fig 47a Obex +39.0mm Transverse 47 5mm
9 8 7 6 5 4 3 2 1 0 1 2
DCIC
cic
DMPAG DLPAG LPAG
Aq
bic
CIC
ECIC
VLPAG PBG PBG RC me5 PrCnF MiTg CnF DR 4n ts 4N PBG ctg isRt mlf mtg spth PTg U CLi SNL RRF
3
CLiAz 4 CLiZ
xscp
ml
tth
5 6 7 8 9
IP
PN PIF
12
cp
SNR
PBP SNCM
csp cbu
ipf
10 11
rs
SNCD
Pn tfp tfp
13 14
mcp
Pn
15
tfp
16 17 18 0
1
2
4n trochlear nerve 4N trochlear nu Aq aqueduct bic brachium inf colliculus cbu corticobulbar tract cic commissure inf colliculus CIC central nu inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos CnF cuneiform nu cp cerebral peduncle csp corticospinal tract
3
4
5
6
7
ctg central tegmental tract DCIC dors cx inf colliculus DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll IP interpedunc nu ipf interpedunc fossa isRt isthmic reticular formation LPAG lat periaqueductal gray mcp middle cerebellar peduncle me5 mesencephalic trigem tract MiTg microcell tegmental nu
8
9
10
11
12
ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract PBG parabigeminal nu PBP parabrachial pigmented nu PIF parainterfascicular nu VTA PN paranigral nu of the VTA Pn pontine nuclei PrCnF precuneiform area PTg pedunculopontine tegmental RC raphe cap RRF rs rubrospinal tract
13
14
15
SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract tfp ts tectospinal tr tth trigeminothalamic tr U nucleus U VLPAG ventlat periaqueductal gray xscp decussation sup cereb ped
Fig 47b
Obex +39.0mm Transverse 47
Fig 48a Obex +40.0mm Transverse 48 5mm
9
SC
8
cic
7 6 5 4
DCIC
1 0 1 2 3
6 7
DR
10
BIC isRt
4N mlf mtg
ctg
U RRF
CLi
spth
SNL
ml
tth
xscp
SNCD SNCV
xscp
PBP
rs
IP
PN
8 9
bic
me5 VLPAG PrCnF RC
CLiAz 4 CLiZ 5
CIC
LPAG
Aq
3 2
ECIC
DMPAG PlGl DLPAG
PIF
SNR
SNR cp
SNCM
ipf
csp cbu
11
Pn
12 13
Pn
14
tfp
15 16 17 18 0
1
2
4N trochlear nu Aq aqueduct bic brachium inf colliculus BIC nu brachium inf colliculus cbu corticobulbar tract cic commissure inf colliculus CIC central nu inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos cp cerebral peduncle csp corticospinal tract ctg central tegmental tract
3
4
5
6
7
DCIC dors cx inf colliculus DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DR dorsal raphe nu ECIC external cx inferior coll IP interpedunc nu ipf interpedunc fossa isRt isthmic reticular formation LPAG lat periaqueductal gray me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract
8
9
10
11
12
PBP parabrachial pigmented nu PIF parainterfascicular nu VTA PlGl pleioglia periaqueductal gray Pn pontine nuclei PN paranigral nu of the VTA PrCnF precuneiform area RC raphe cap RRF rs rubrospinal tract SC superior colliculus SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNCV s nigra, compact, vent tier
13
14
15
SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract tfp tth trigeminothalamic tr U nucleus U VLPAG ventlat periaqueductal gray xscp decussation sup cereb ped
Fig 48b
Obex +40.0mm Transverse 48
Fig 49a
Obex +41.0mm Transverse 49 5mm
9 8 7 6 5 4 3 2 1
Zo SuG Op SC InG InWh DMPAG DpG PlGl DLPAG me5 DpWh Aq LPAG PrCnF VLPAG RC DR Su3
0
3N
1
mlf mtg
4
spth SubB
ctg
5
CLi
7
SNL
ml
SNCD SNCV SNR SNR
PBP
rs
IP
PN PIF SNCM
8 9
tth
xscp
6
ipf
spth
U RRF
CLiAz CLiZ
BIC
isRt
2 3
bic
ECIC
cp
csp cbu
10 11 12 13 14 15 16 17 18 0
1
2
3N oculomotor nu Aq aqueduct bic brachium inf colliculus BIC nu brachium inf colliculus cbu corticobulbar tract CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos CLiZ caudal linear nu of raphe, zygos cp cerebral peduncle csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray
3
4
5
6
7
DpG deep gray superior coll DpWh deep white superior coll DR dorsal raphe nu ECIC external cx inferior coll InG intermed gray layer SC InWh intermediate white layer SC IP interpedunc nu ipf interpedunc fossa isRt isthmic reticular formation LPAG lat periaqueductal gray me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus
8
9
10
11
12
mtg mammillotegmental tract Op optic nerve layer sup coll PBP parabrachial pigmented nu PIF parainterfascicular nu VTA PlGl pleioglia periaqueductal gray PN paranigral nu of the VTA PrCnF precuneiform area RC raphe cap RRF rs rubrospinal tract SC superior colliculus SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier
13
14
15
SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3 supraoculomotor PAG SubB subbrachial nu SuG tth trigeminothalamic tr U nucleus U VLPAG ventlat periaqueductal gray xscp decussation sup cereb ped Zo zona layer sup coll
Fig 49b
Obex +41.0mm Transverse 49
Fig 50a
Obex +42.0mm Transverse 50 5mm
9
Zo
SuG Op
8
SC
7 6 5 4 3 2 1 0 1
InG InWh
DMPAG PlGl DLPAG Aq DR PC3 3N
2
DpG
bic ECIC me5 DpWh BIC LPAG PrCnF Su3C Su3
isRt ctg
mtg mlf
5 6 7
RLi IF
10
scp
PN
SNL
ml
3n SNCD SNCV SNR
PBP
rs
IP
8 9
3n
U tth
3 4
spthSubB
SNR
PIF
cp
SNCM
ipf
csp cbu
11 12 13 14 15 16 17 18 0
1
2
3n oculomotor nerve 3N oculomotor nu Aq aqueduct BIC nu brachium inf colliculus bic brachium inf colliculus cbu corticobulbar tract cp cerebral peduncle csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll DpWh deep white superior coll
3
4
5
6
7
DR dorsal raphe nu ECIC external cx inferior coll IF interfascicular nu InG intermed gray layer SC InWh intermediate white layer SC IP interpedunc nu ipf interpedunc fossa isRt isthmic reticular formation LPAG lat periaqueductal gray me5 mesencephalic trigem tract ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract
8
9
10
11
12
13
Op optic nerve layer sup coll PBP parabrachial pigmented nu PC3 parvicellular oculomotor nucleus PIF parainterfascicular nu VTA PlGl pleioglia periaqueductal gray PN paranigral nu of the VTA PrCnF precuneiform area RLi rostral linear nu raphe rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier
14
15
SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3 supraoculomotor PAG Su3C supraoculomotor cap SubB subbrachial nu SuG tth trigeminothalamic tr U nucleus U Zo zona layer sup coll
Fig 50b
Obex +42.0mm Transverse 50
Fig 51a
Obex +43.0mm Transverse 51 5mm
10 9
Zo
SuG Op
8 7
SC
6 5 4 3 2 1 0
InG InWh
DMPAG PlGl DLPAG Aq
bic BIC
DpWh mRt
LPAG
DR
Su3C Su3
PC3 3N
1
DpG
ctg mtg mlf
2
spth SubB
U tth
SNL
ml
3 4 5
RLi
8
IF IP
9 10 11
scp
R
rs 3n PN PIF 3n 3n
ipf
ptpn ocpn tepn
SNCD SNCV SNR
3n
6 7
3n
PBP
SNR cp
SNCM
12
csp cbu
frpn
13 14 15 16 17 0
1
2
3n oculomotor nerve 3N oculomotor nu Aq aqueduct bic brachium inf colliculus BIC nu brachium inf colliculus cbu corticobulbar tract cp cerebral peduncle csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll DpWh deep white superior coll
3
4
5
6
7
DR dorsal raphe nu frpn IF interfascicular nu InG intermed gray layer SC InWh intermediate white layer SC IP interpedunc nu ipf interpedunc fossa LPAG lat periaqueductal gray ml medial lemniscus mlf med longitudinal fasciculus mRt mesencephalic retic form mtg mammillotegmental tract ocpn
8
9
10
11
12
13
Op optic nerve layer sup coll PBP parabrachial pigmented nu PC3 parvicellular oculomotor nucleus PIF parainterfascicular nu VTA PlGl pleioglia periaqueductal gray PN paranigral nu of the VTA ptpn R red nu RLi rostral linear nu raphe rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier
14
15
SNCM s nigra, compact, med tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3 supraoculomotor PAG Su3C supraoculomotor cap SubB subbrachial nu SuG tepn tth trigeminothalamic tr U nucleus U Zo zona layer sup coll
Fig 51b
Obex +43.0mm Transverse 51
Fig 52a
Obex +44.0mm Transverse 52 5mm
10 9
Zo SuG Op
8
SC
7
InG
6
InWh
5
DMPAG PlGl 4 DLPAG 3
Aq
1 0 1
DR
DpG
Su3
PC3
EW 3N 2
bic BIC
DpWh mRt
LPAG
2
Pul
Su3C
spth
SubB
tth
mtg ctg mlf
ml
SNL
3 4 5
scp
RLi
6 7
9 10
SNCD PBP SNR SNCV SNR
rs
8
ptpn ocpn tepn
R
VTA ipf
cp
SNCM
csp cbu
3n
11 12
frpn
13 14 15 16 17 0
1
2
3n oculomotor nerve 3N oculomotor nu Aq aqueduct BIC nu brachium inf colliculus bic brachium inf colliculus cbu corticobulbar tract cp cerebral peduncle csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll DpWh deep white superior coll
3
4
5
6
7
DR dorsal raphe nu EW Edinger-Westphal nu frpn InG intermed gray layer SC InWh intermediate white layer SC ipf interpedunc fossa LPAG lat periaqueductal gray ml medial lemniscus mlf med longitudinal fasciculus mRt mesencephalic retic form mtg mammillotegmental tract ocpn Op optic nerve layer sup coll
8
9
10
11
12
13
PBP parabrachial pigmented nu PC3 parvicellular oculomotor nucleus PlGl pleioglia periaqueductal gray ptpn Pul pulvinar nuclei R red nu RLi rostral linear nu raphe rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNCV s nigra, compact, vent tier
14
15
SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3 supraoculomotor PAG Su3C supraoculomotor cap SubB subbrachial nu SuG tepn tth trigeminothalamic tr VTA vent tegmental area Zo zona layer sup coll
Fig 52b
Obex +44.0mm Transverse 52
Fig 53a
Obex +45.0mm Transverse 53 5mm
10
Pi
9
Zo SuG Op
8 7 6 5 4 3 2 1 0 1 2
SC
InG
csc DMPAG PlGl DLPAG Aq
Pul
InWh DpG
LPAG
bsc
DpG
DpWh
mRt
Su3C Su3 PC3 ctg EW mtg 3N mlf
MGD
BIC bic
MGV
spth
tth
PP
ml
SNL
3 4 5
3n RLi
scp
ptpn ocpn tepn
R
6 7
fr
8 9 10
ipf
VTA
PBP
rs
3n
SNCD SNCV cp
SNR SNCV
csp cbu
SNCM
11 12
frpn
13 14 15 16 17 0
1
2
3n oculomotor nerve 3N oculomotor nu Aq aqueduct BIC nu brachium inf colliculus bic brachium inf colliculus bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csc comm superior colliculus csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray
3
4
5
6
7
DpG deep gray superior coll DpWh deep white superior coll EW Edinger-Westphal nu fr frpn InG intermed gray layer SC InWh intermediate white layer SC ipf interpedunc fossa LPAG lat periaqueductal gray MGD med geniculate nu, dorsal MGV med geniculate nu, ventral ml medial lemniscus mlf med longitudinal fasciculus
8
9
10
11
12
13
mRt mesencephalic retic form mtg mammillotegmental tract ocpn Op optic nerve layer sup coll PBP parabrachial pigmented nu PC3 parvicellular oculomotor nucleus Pi pineal gland PlGl pleioglia periaqueductal gray PP peripeduncular nu ptpn Pul pulvinar nuclei R red nu RLi rostral linear nu raphe
14
15
rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3 supraoculomotor PAG Su3C supraoculomotor cap SuG tepn
Fig 53b
Obex +45.0mm Transverse 53
tth trigeminothalamic tr VTA vent tegmental area Zo zona layer sup coll
Fig 54a
Obex +46.0mm Transverse 54 5mm
10 9
Pi
8
Zo
7
SC
6 5 4 3 2 1 0 1 2
InG
csc
InWh
DMPAG PlGl DLPAG Aq
PrEW
bsc
DpG
LPAG Su3C PC3 MA3
Pul
SuG Op
DpWh
bic
mRt ctg mtg mlf/InC
MGD MGV MGM
spth
tth
SNL
ml
LT
PP
3 4
scp
RLi
5
SNCV
R
SNR
6 7
SNCM
11
cp
SNR
VTA
ipf
SNCD SNCV
PaP
9 10
PBP
fr
8
ptpn ocpn tepn
csp cbu
SNCV
12
frpn
13 14 15 16 17 0
1
2
Aq aqueduct bic brachium inf colliculus bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csc comm superior colliculus csp corticospinal tract ctg central tegmental tract DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll DpWh deep white superior coll fr
3
4
5
6
7
frpn InG intermed gray layer SC InWh intermediate white layer SC ipf interpedunc fossa LPAG lat periaqueductal gray LT lat terminal nu acc optic tr MA3 med access oculomotor nu MGD med geniculate nu, dorsal MGM med geniculate nu, medial MGV med geniculate nu, ventral ml medial lemniscus mlf/InC medial long fas/interstitial nu mRt mesencephalic retic form
8
9
10
11
12
13
mtg mammillotegmental tract ocpn Op optic nerve layer sup coll PaP parapeduncular nucleus PBP parabrachial pigmented nu PC3 parvicellular oculomotor nucleus Pi pineal gland PlGl pleioglia periaqueductal gray PP peripeduncular nu PrEW pre-Edinger-Westphal nu ptpn Pul pulvinar nuclei R red nu
14
15
RLi rostral linear nu raphe SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular spth spinothalamic tract Su3C supraoculomotor cap SuG tepn tth trigeminothalamic tr
Fig 54b
Obex +46.0mm Transverse 54
VTA vent tegmental area Zo zona layer sup coll
ͷͷ
ΪͶǤͲ ͷͷ ͷ
10 9 8
Zo
Pi
Op
6
SC
5 4 3 2 1
Pul
SuG
7
InG InWh
csc DMPAG PlGl DLPAG LPAG
Aq
bsc
DpG DpWh p1Rt
ctg mtg PrEW InC 2 MA3 mlf/InC Dk
1
RLi
7
10 11
ptpn ocpn tepn
PBP
cp
SNR
PaP VTA
ipf
opt
SNCV
SNCD
fr
9
PP
LT SNL
ml
6
8
MGV
R
scp
5
DLG
PIL MGM
spth
tth
3 4
MGD
PoT
Su3C
0
SG
APT
TG
csp cbu
SNCV
12 13
frpn
14
MB
15 16 17 0
1
2
APT anterior pretectal nu Aq aqueduct bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csc comm superior colliculus csp corticospinal tract ctg central tegmental tract Dk nu of Darkschewitsch DLG dorsal lat geniculate nu DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll
3
4
5
6
7
DpWh deep white superior coll fr frpn InC interstitial nu of Cajal InG intermed gray layer SC InWh intermediate white layer SC ipf interpedunc fossa LPAG lat periaqueductal gray LT lat terminal nu acc optic tr MA3 med access oculomotor nu MB mammillary body MGD med geniculate nu, dorsal MGM med geniculate nu, medial
8
9
10
11
12
13
MGV med geniculate nu, ventral ml medial lemniscus mlf/InC medial long fas/interstitial nu mtg mammillotegmental tract ocpn Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation PaP parapeduncular nucleus PBP parabrachial pigmented nu Pi pineal gland PIL post intralaminar thal nu PlGl pleioglia periaqueductal gray
14
15
PoT posterior thal nu, triangular PP peripeduncular nu PrEW pre-Edinger-Westphal nu ptpn Pul pulvinar nuclei R red nu RLi rostral linear nu raphe SC superior colliculus scp superior Cb peduncle SG suprageniculate thal nu SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral
Fig 55b
Obex +47.0mm Transverse 55
SNR s nigra, reticular spth spinothalamic tract Su3C supraoculomotor cap See List of Structures
Fig 56a
Obex +48.0mm Transverse 56 5mm
10 9 8 7
Zo
Pi
6
3 2 1
Op
SC
5 4
Pul
SuG InG
csc
bsc PLi
InWh
DpG DMPAG PlGl DLPAG DpWh Aq
pc
LPAG
TG
p1Rt
PoT
0
Dk
ctg PrEW mtg 2 InC MA3 mlf/InC 3 1
SG
APT
MGM
PP
LT SNL
ml scp
ptpn ocpn tepn
4
R
RLi
5 6 7 8
PaP
9 10 11
PBP SNCD
fr
ipf
LT
opt
SNCV SNR
csp cbu
cp
SNCV
VTA
DLG
MGV
PIL
spth
tth
MGD
12
frpn
13 14
MB
15 16 17 0
1
2
APT anterior pretectal nu Aq aqueduct bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csc comm superior colliculus csp corticospinal tract ctg central tegmental tract Dk nu of Darkschewitsch DLG dorsal lat geniculate nu DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll
3
4
5
6
7
DpWh deep white superior coll fr frpn InC interstitial nu of Cajal InG intermed gray layer SC InWh intermediate white layer SC ipf interpedunc fossa LPAG lat periaqueductal gray LT lat terminal nu acc optic tr MA3 med access oculomotor nu MB mammillary body MGD med geniculate nu, dorsal MGM med geniculate nu, medial
8
9
10
11
12
13
MGV med geniculate nu, ventral ml medial lemniscus mlf/InC medial long fas/interstitial nu mtg mammillotegmental tract ocpn Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation PaP parapeduncular nucleus PBP parabrachial pigmented nu pc posterior comm Pi pineal gland PIL post intralaminar thal nu
14
15
PlGl pleioglia periaqueductal gray PLi posterior limitans thal nu PoT posterior thal nu, triangular PP peripeduncular nu PrEW pre-Edinger-Westphal nu ptpn Pul pulvinar nuclei R red nu RLi rostral linear nu raphe SC superior colliculus scp superior Cb peduncle SG suprageniculate thal nu SNCD s nigra, compact, dors tier
Fig 56b
Obex +48.0mm Transverse 56
SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular See List of Structures
Fig 57a
Obex +49.0mm Transverse 57 5mm
8 7
Pul
Pi
6
bsc PLi
TG
5 4 3 2 1 0
PrC
Aq
3 4
MCPC
R
PP
LT
LT ptpn ocpn tepn
SNCV
fr
7
PBP
8
SNCD
opt SNR
9
cp
SNCV
VTA
10 11
DLG
scp
RLi
6
MG
PIL
ml
mlf
5
ar
PoT
spth
ctg mtg Dk InC
PrEW MA3
SG
p1Rt
LPAG
1 2
APT
PCom
pc
bsc
csp cbu
ipf
12 13
frpn
14
MB
15
pm
16 17 18 19
Arc 0
1
APT anterior pretectal nu Aq aqueduct ar acoustic radiation Arc arcuate hypothal nu bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csp corticospinal tract ctg central tegmental tract Dk nu of Darkschewitsch DLG dorsal lat geniculate nu fr frpn
2
3
4
5
6
InC interstitial nu of Cajal ipf interpedunc fossa LPAG lat periaqueductal gray LT lat terminal nu acc optic tr MA3 med access oculomotor nu MB mammillary body MCPC magnocell nu post comm MG med geniculate nu ml medial lemniscus mlf med longitudinal fasciculus mtg mammillotegmental tract ocpn opt optic tract
7
8
9
10
11
12
13
p1Rt prosomere 1 reticular formation PBP parabrachial pigmented nu pc posterior comm PCom nu posterior comm Pi pineal gland PIL post intralaminar thal nu PLi posterior limitans thal nu pm principal mammillary tr PoT posterior thal nu, triangular PP peripeduncular nu PrC precommissural nu PrEW pre-Edinger-Westphal nu ptpn
14
15
Pul pulvinar nuclei R red nu RLi rostral linear nu raphe scp superior Cb peduncle SG suprageniculate thal nu SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular spth spinothalamic tract tepn TG tectal gray VTA vent tegmental area
Fig 57b
Obex +49.0mm Transverse 57
Fig 58a
Obex +50.0mm Transverse 58 5mm
5 4
Pi
TG
hbc
3
PCom
pc
2 1 0
PrC Aq
4
Dk
mlf PrEW InC
5 6 7
PVG
10 11 12
17
PIL
ml
DLG
LT
ptpn ocpn tepn
scp fr
R
PBP SNCD
cp SNR
rmx
csp cbu
opt sox
VTA
RM MB
14
16
ar
ctg
RLi
13
15
MG
PoT
8 9
APT
p1Rt MCPC
mtg
2 3
bsc
LPAG
1
Pul
pm
MM f
frpn
ML
TuM LM
3V
18 19
MTu
20
VMH
21 22 0
1
3V 3rd ventricle APT anterior pretectal nu Aq aqueduct ar acoustic radiation bsc brachium superior colliculus cbu corticobulbar tract cp cerebral peduncle csp corticospinal tract ctg central tegmental tract Dk nu of Darkschewitsch DLG dorsal lat geniculate nu f fornix fr
2
3
4
5
6
frpn hbc habenular commissure InC interstitial nu of Cajal LM lateral mammillary nu LPAG lat periaqueductal gray LT lat terminal nu acc optic tr MB mammillary body MCPC magnocell nu post comm MG med geniculate nu ML med mammillary nu, lat ml medial lemniscus mlf med longitudinal fasciculus MM med mammillary nu, medial
7
8
9
10
11
12
13
mtg mammillotegmental tract MTu medial tuberal nu ocpn opt optic tract p1Rt prosomere 1 reticular formation PBP parabrachial pigmented nu pc posterior comm PCom nu posterior comm Pi pineal gland PIL post intralaminar thal nu pm principal mammillary tr PoT posterior thal nu, triangular PrC precommissural nu
14
15
PrEW pre-Edinger-Westphal nu ptpn Pul pulvinar nuclei PVG periventricular gray R red nu RLi rostral linear nu raphe RM retromammillary nu rmx retromammillary decuss scp superior Cb peduncle SNCD s nigra, compact, dors tier SNR s nigra, reticular sox supraoptic decussation tepn
Fig 58b
Obex +50.0mm Transverse 58
TG tectal gray TuM tuberomamillary nucleus VMH ventmed hypothal nu VTA vent tegmental area
Fig 59a
Obex +51.0mm Transverse 59 5mm
6 5 4 3 2
Pi hbc
Pul
Aq
TG PCom
pc
1 0
PrC Aq
2
Dk mlf
3 4 5 6
p1Rt
MG
VPL
VPM
CMn
PaF
p1PAG
1
MCPC
APT
ZIC
scp
ptpn ocpn tepn
RPC
PVG
DLG LT
VPI ml
InC/mtg fr
ar
STh
7
cp
opt
8 9 10 11
SNCD
rmx RM
12 13
frpn
f
MB
15
17
SNR
pm
14
16
VTAR
sox
csp cbu
3V
LH
18
MTu
VMH
19 20 21 0
1
2
3V 3rd ventricle APT anterior pretectal nu Aq aqueduct ar acoustic radiation cbu corticobulbar tract CMn centromedian thalamic nucleus cp cerebral peduncle csp corticospinal tract Dk nu of Darkschewitsch DLG dorsal lat geniculate nu f fornix fr frpn
3
4
5
6
7
hbc habenular commissure InC/mtg interstitial nu/mam teg tract LH lateral hypothalamic area LT lat terminal nu acc optic tr MB mammillary body MCPC magnocell nu post comm MG med geniculate nu ml medial lemniscus mlf med longitudinal fasciculus MTu medial tuberal nu ocpn opt optic tract p1PAG p1 periaqueductal gray
8
9
10
11
12
13
p1Rt prosomere 1 reticular formation PaF parafascicular thal nu pc posterior comm PCom nu posterior comm Pi pineal gland pm principal mammillary tr PrC precommissural nu ptpn Pul pulvinar nuclei PVG periventricular gray RM retromammillary nu rmx retromammillary decuss RPC red nu, parvicell part
14
15
scp superior Cb peduncle SNCD s nigra, compact, dors tier SNR s nigra, reticular sox supraoptic decussation STh subthalamic nu tepn TG tectal gray VMH ventmed hypothal nu VPI ventral posterior inferior nucleus VPL ventral posterolat thal nu VPM vent posteromed thal nu VTAR vent tegmental area, rostr ZIC zona incerta, caudal
Fig 59b
Obex +51.0mm Transverse 59
Fig 60a
Obex +52.0mm Transverse 60 5mm
6
hbc
5 4
Hb
3
PrC
2 1 0
Pul
fr
3V
CMn
PaF
1
3
ZIC
4
ptpn ocpn tepn
scp
5
RPC
6 7
cp
8
csp cbu
STh
9 10 11
sox
SNCD
PH
12
SNR
mt
frpn
13
SMT pm
14 15
17
str
LT
VPI
ml
2
16
VPL
VPM
f
3V
opt
LH
18
VMH
19 20 21
RCh 0
1
2
3V 3rd ventricle cbu corticobulbar tract CMn centromedian thalamic nucleus cp cerebral peduncle csp corticospinal tract f fornix fr frpn Hb habenular nuclei hbc habenular commissure LH lateral hypothalamic area LT lat terminal nu acc optic tr ml medial lemniscus
3
4
5
6
mt mammillothalamic tract ocpn opt optic tract PaF parafascicular thal nu PH posterior hypothal nu pm principal mammillary tr PrC precommissural nu ptpn Pul pulvinar nuclei RCh retrochiasmatic area RPC red nu, parvicell part scp superior Cb peduncle SMT submammillothalamic nu
7
8
9
10
11
12
SNCD s nigra, compact, dors tier SNR s nigra, reticular sox supraoptic decussation STh subthalamic nu str superior thalamic radiation tepn VMH ventmed hypothal nu VPI ventral posterior inferior nucleus VPL ventral posterolat thal nu VPM vent posteromed thal nu ZIC zona incerta, caudal
13
14
15
Fig 60b
Obex +52.0mm Transverse 60
60
55
50
45
40
35
30
25
20
15
10
5
0
5
10 20
15
Fig 62a
Obex +0.5mm Sagittal 02
10N dorsal motor nu of vagus 12N hypoglossal nu
10
5
0
3n oculomotor nerve 3N oculomotor nu 3V 3rd ventricle 4n trochlear nerve 4V 4th ventricle ami amiculum of the olive AP area postrema Aq aqueduct Ar arcuate nu of the caudal hindbrain CeCv central cervical nu CG central gray
5
20
cic commissure inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll DPGi dors paragigantocellular nu DpWh deep white superior coll
15
10
DR dorsal raphe nu DRC dorsal raphe nu, caudal DTg dorsal tegmental nu EW Edinger-Westphal nu fr g7 genu facial nerve Gi gigantocellular reticular nu GiA gigantocellular retic, alpha gr gracile fasciculus Gr gracile nu Hb habenular nuclei
5
0
5
hbc habenular commissure hypothal hypothalamus I3 interoculomotor nucleus ia In intercalated nu medulla InG intermed gray layer SC InWh intermediate white layer SC IOBe inf olive, beta subnu IODM inf olive, dorsomed cell group IOK inf olive, cap of Kooy med nu IOM inf olive, med nu
60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 20
15
Fig 63a
Obex +1.0mm Sagittal 03
10N dorsal motor nu of vagus 12N hypoglossal nu
10
5
0
3n oculomotor nerve 3N oculomotor nu 3V 3rd ventricle 4N trochlear nu 4n trochlear nerve 4V 4th ventricle 9Sp Rexed's lamina ami amiculum of the olive Aq aqueduct Ar arcuate nu of the caudal hindbrain CeCv central cervical nu
5
20
CGPn central gray pons cic commissure inf colliculus CLi caudal linear nu raphe CLiAz caudal linear nu of raphe, azygos Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus Dk nu of Darkschewitsch DLPAG dorsolat periaqueductal gray DMPAG dorsomed periaqueductl gray DpG deep gray superior coll
15
10
DPGi dors paragigantocellular nu DpWh deep white superior coll DR dorsal raphe nu DTg dorsal tegmental nu EL endolemniscal nucleus f fornix fr g7 genu facial nerve Gi gigantocellular reticular nu GiA gigantocellular retic, alpha gr gracile fasciculus
5
0
5
Gr gracile nu Hb habenular nuclei hbc habenular commissure hio hilus of the inferior olive hypothal hypothalamus ia In intercalated nu medulla InG intermed gray layer SC InWh intermediate white layer SC IOBe inf olive, beta subnu IOC inf olive, subnu C of med nu
Ͳ ͷͷ ͷͲ
͵Ͳ
ͳ
͵
͵ ͵ ͵
͵ ͵
͵
Ȁ
Ͷ
Ͷ Ȁ
Ȁ
ͷ
Ͳ
ͳͷ
ǡ
ǡ
ǡ
͵
Ȁ
ͷ
ʹͲ
ͳͲ
ͳʹ
Ͷ
ͳͲ
ͻ ͷ
Ȁ
ͳͲ
ͳͲ
͵ͷ
ͳͷ
ͶͲ
ʹͲ
͵
Ͷͷ
ʹͷ
Ͳ
ǡ
ǡ
Ȁ
Ȁ
ͷ
ͳͲ
ͳ ͳ
͵
Ȁ
ǡ
ǡ
͵
ΪͳǤͲ Ͳ͵
60
55
50
45
40
35
30
25
20
15
10
5
0
5
10 20
15
Fig 64a
Obex +1.5mm Sagittal 04
10N dorsal motor nu of vagus 12n root of hypoglossal nerve
10
5
0
3n oculomotor nerve 3V 3rd ventricle 4N trochlear nu 4V 4th ventricle 6n root of abducens nerve 7n facial nerve 9Sp Rexed's lamina ami amiculum of the olive Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGPn central gray pons
5
20
cic commissure inf colliculus Ct conterminal nu ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus Dk nu of Darkschewitsch DLPAG dorsolat periaqueductal gray DMTg dorsomed tegmental area DpG deep gray superior coll DPGi dors paragigantocellular nu
15
10
DpWh deep white superior coll DR dorsal raphe nu DTg dorsal tegmental nu EL endolemniscal nucleus f fornix fr g7 genu facial nerve Gi gigantocellular reticular nu GiA gigantocellular retic, alpha GiV gigantocellular retic, vent gr gracile fasciculus
5
0
5
Gr gracile nu Hb habenular nuclei hio hilus of the inferior olive hypothal hypothalamus ia In intercalated nu medulla InC/mtg interstitial nu/mam teg tract InG intermed gray layer SC InWh intermediate white layer SC IOBe inf olive, beta subnu IOD inf olive, dorsal nu
f
60 55 50
thal
hypothal
mt
pm
VMH
MTu
RM
MB
mtg
PCom Pi fr R VTA Zo SuG PC3 SC PaP mRt Op mtg/ Su3 3n InG scp ctg InWh PN DpG Su3C DpWh IP isR t 4N cic VTAC DCIC DR Pa4 xscp RC LPAG tg
mlf/m
ipf
fr Hb p1PAG pc 3V Dk PrC
PVG InC/mtg
AG DLP
45
sm
40
Pn
Pn
35 30
lfp
25
15
Pn/ tfp
lfp lfp
Pn
Pn
20 Pn
tfp/Pn lfp
Ar Ar
0
IOM
IOBe
10 15
IOM inf olive, med nu IOPr inf olive, principal nu IP interpedunc nu ipf interpedunc fossa IRt intermed reticular nu isRt isthmic reticular formation lcs lateral corticospinal tract LDTg laterodor tegmental nu lfp longitudinal fasciculus pons LPAG lat periaqueductal gray MB mammillary body
10
LDTg DTg
MdV
lcs
smv
Sph CGPn PDTg
DMTg SGe 4V
SolG
Sol sol
Mx
PSol
Gr
Cu cu MdD
Sp5C
5
7n
x4n
10N
In
IOPr ia IRt
VLPAG
Pr
Gi
IOM GiV RPa EL 12n IOD hio py Ct
9Sp 20
RtTg PnC g7 6n
DPGi
IOPr ami
pyx
5
Pn ml
GiA
Ar
ts
SPTg PnO B9 mlf veme
tfp
Pn
10 5
RtTg
gr
0
MdD medullary reticular nu, dors MdV medullary reticular nu, vent ml medial lemniscus mlf med longitudinal fasciculus mlf/mtg medial long fas/mam teg tr mRt mesencephalic retic form mt mammillothalamic tract mtg mammillotegmental tract mtg/ctg mam teg tr/central teg tr MTu medial tuberal nu Mx matrix region medulla
5
10
Op optic nerve layer sup coll p1PAG p1 periaqueductal gray Pa4 paratrochlear nu PaP parapeduncular nucleus pc posterior comm PC3 parvicellular oculomotor nucleus PCom nu posterior comm PDTg posterodors tegmental nu Pi pineal gland pm principal mammillary tr PN paranigral nu of the VTA
Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal PnO pontine reticular nu, oral Pr prepositus nu PrC precommissural nu PSol parasolitary nu PVG periventricular gray py pyramidal tr pyx pyramidal decussation R red nu
Fig 64b
Obex +1.5mm Sagittal 04
RC raphe cap See List of Structure
60
55
50
45
40
35
30
25
20
15
10
5
0
5
10 20
15
Fig 65a
Obex +2.0mm Sagittal 05
10N dorsal motor nu of vagus 3n oculomotor nerve
10
5
0
4n trochlear nerve 4V 4th ventricle 6N abducens nu 6n root of abducens nerve ami amiculum of the olive Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGB central gray, beta part CGPn central gray pons cic commissure inf colliculus Ct conterminal nu
5
20
ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus Dk nu of Darkschewitsch DLPAG dorsolat periaqueductal gray DMTg dorsomed tegmental area DpG deep gray superior coll DPGi dors paragigantocellular nu DpWh deep white superior coll DR dorsal raphe nu
15
10
ECIC external cx inferior coll f fornix fr g7 genu facial nerve Gi gigantocellular reticular nu GiV gigantocellular retic, vent gr gracile fasciculus Gr gracile nu Hb habenular nuclei hio hilus of the inferior olive hypothal hypothalamus
5
0
5
ia ID intradecussational nu scp In intercalated nu medulla InC/mtg interstitial nu/mam teg tract InG intermed gray layer SC InWh intermediate white layer SC IOA inf olive, subnu A medial nu IOB inf olive, subnu B med nu IOD inf olive, dorsal nu IOM inf olive, med nu IOPr inf olive, principal nu
f
60 55 50
hypothal
VMH
thal
InC/mtg PVG PrC fr p1PAG PCom RM Dk pc PaP fr R
f pm MB
MTu
ipf
Pn
lfp
15 10
Ar
Ar
0
Ct
IOB
IOA
5
20
15
ipf interpedunc fossa IPo interpositus IRt intermed reticular nu isRt isthmic reticular formation lcs lateral corticospinal tract LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons LPAG lat periaqueductal gray MB mammillary body MdD medullary reticular nu, dors
10
Pa6 6N
Gi
ia
ia IRt
lcs 5
Pr
LPAG
cic
Zo SuG Op InG InWh DpG DpWh
DCIC ECIC
RC
VLPAG 4n
SGe 4V
IPo 10N In MVe Sol sol SolG PSol
Mx
Cu
MdV
pyx
10
PnC 6n g7
GiV
IOD hio IOPr
IOM
LDTgV
Gi DPGi
ami
IOPr py
5
ml
Pn
DR
SC
Pi
smv LDTg x4n SPTg mlf/mtg PnO mlf B9 CGPn veme DMTg CGB
tfp
tfp/Pn
Pn
xscp
ts
Pn
Su3C Su3
Pa4
Pn
tfp/
20
Pn
isRt
VTAC ID RtTg
Pn
mRt
rs
Pn
lfp
ctg
scp
PIF
PN
35
25
3n
Pn
Pn
30
VTA
AG DLP
45 40
Hb
pm mt
cu
Gr
gr
MdD
sp5
0
MdV medullary reticular nu, vent ml medial lemniscus mlf med longitudinal fasciculus mlf/mtg medial long fas/mam teg tr mRt mesencephalic retic form mt mammillothalamic tract MTu medial tuberal nu MVe medial vestibular nu Mx matrix region medulla Op optic nerve layer sup coll p1PAG p1 periaqueductal gray
5
10
Pa4 paratrochlear nu Pa6 paraabducens nu PaP parapeduncular nucleus pc posterior comm PCom nu posterior comm Pi pineal gland PIF parainterfascicular nu VTA pm principal mammillary tr Pn pontine nuclei PN paranigral nu of the VTA PnC pontine reticular nu, caudal
PnO pontine reticular nu, oral Pr prepositus nu PrC precommissural nu PSol parasolitary nu PVG periventricular gray py pyramidal tr pyx pyramidal decussation R red nu RC raphe cap RM retromammillary nu rs rubrospinal tract
Fig 65b
Obex +2.0mm Sagittal 05
RtTg reticulotegmental nu pons See List of Structures
60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 20
15
Fig 66a
Obex +2.5mm Sagittal 06
10N dorsal motor nu of vagus 3n oculomotor nerve
10
5
0
4n trochlear nerve 4V 4th ventricle 6n root of abducens nerve 6N abducens nu 7n facial nerve ami amiculum of the olive Aq aqueduct Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGB central gray, beta part CGPn central gray pons
5
20
cp cerebral peduncle Ct conterminal nu ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DLPAG dorsolat periaqueductal gray DMTg dorsomed tegmental area DpG deep gray superior coll DPGi dors paragigantocellular nu DpWh deep white superior coll
15
10
DR dorsal raphe nu ECIC external cx inferior coll f fornix fr g7 genu facial nerve Gi gigantocellular reticular nu GiV gigantocellular retic, vent gr gracile fasciculus Gr gracile nu Hb habenular nuclei hio hilus of the inferior olive
5
0
5
hypothal hypothalamus InC interstitial nu of Cajal InG intermed gray layer SC InWh intermediate white layer SC IOA inf olive, subnu A medial nu IOD inf olive, dorsal nu IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu isRt isthmic reticular formation lcs lateral corticospinal tract
60 55 hypothal 50
thal
f
VMH
MTu
RM
pm MB
lfp
lfp
tfp
LDTg
Zo SuG Op InG InWh DpG DpWh
DCIC
ECIC
Aq
4n
LDTgV
x4n
PnO
tfp/Pn
ml
Pn
lfp
Tz
10 py
5
Ar
hio
DPGi
Ct IOPr Ct IOA
5 10 15
LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons LPAG lat periaqueductal gray MB mammillary body MdD medullary reticular nu, dors MdV medullary reticular nu, vent ml medial lemniscus MPCu medial pericuneate nucleus mt mammillothalamic tract MTu medial tuberal nu
10
GiV IOD
ami IRt
IOD MdV
4V
IPo sl
10N
MVe Sol sol
Gr
Cu Mx cu MdD
MVe medial vestibular nu Mx matrix region medulla Op optic nerve layer sup coll p1PAG p1 periaqueductal gray Pa4 paratrochlear nu Pa6 paraabducens nu PaP parapeduncular nucleus pc posterior comm PCom nu posterior comm PCRt parvicell reticular nu Pi pineal gland
PSol
MPCu PCRt
gr
sp5 lcs Sp5C1/2 5
CGB veme CGPn g7 SGe
PnC 7n Pa6 6n 6N
Gi
IOPr
0
DMTg
ctg
fp
Pn
20
Su3C
isRt RC DR VTAC Pa4 xscp
Pn
Pn
Pn/t
15
ctg
scp
SC
Pi
B9
tfp/Pn
20
LPAG
G
Pn
Pn
InC
A VLP
Pn
35
25
cp PIF Pn
rs
R
AG
PaP VTA 3n SNCM
fr PVG PrC p1PAG PCom TG pc DLP
40
fr
VTAR
45
30
Hb
mt
0
Sp5C3/4
5
10
PIF parainterfascicular nu VTA pm principal mammillary tr Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal PnO pontine reticular nu, oral PrC precommissural nu PSol parasolitary nu PVG periventricular gray py pyramidal tr R red nu
RC raphe cap RM retromammillary nu rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SGe supragenual nu sl sulcus limitans SNCM s nigra, compact, med tier sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract
Fig 66b
Obex +2.5mm Sagittal 06
Sp5C1/2 spinal 5 nu, caud, lam 1 & 2
60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 20
Fig 67a
15
Obex +3.0mm Sagittal 07
3n oculomotor nerve 4n trochlear nerve
10
5
0
4V 4th ventricle 6N abducens nu 7n facial nerve AmbL ambiguus nu, loose part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGPn central gray pons CIC central nu inf colliculus CnF cuneiform nu cp cerebral peduncle
5
Crb cribiform nucleus ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DMTg dorsomed tegmental area DpG deep gray superior coll DPGi dors paragigantocellular nu DpWh deep white superior coll EC epicoeruleus nucleus ECIC external cx inferior coll
20
15
10
f fornix fr Gi gigantocellular reticular nu GiV gigantocellular retic, vent gr gracile fasciculus Gr gracile nu Hb habenular nuclei hio hilus of the inferior olive hypothal hypothalamus InG intermed gray layer SC InWh intermediate white layer SC
5
0
5
IOA inf olive, subnu A medial nu IOD inf olive, dorsal nu IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu isRt isthmic reticular formation LC locus coeruleus lcs lateral corticospinal tract LDTg laterodor tegmental nu LDTgV laterodor tegmental nu, vent lfp longitudinal fasciculus pons
60
55
50
45
40
35
30
25
20
15
10
5
0
5
10 20
Fig 68a
15
Obex +3.5mm Sagittal 08
3n oculomotor nerve 4n trochlear nerve
10
5
0
4V 4th ventricle 6n root of abducens nerve 6N abducens nu 7n facial nerve AmbL ambiguus nu, loose part ami amiculum of the olive Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGPn central gray pons CIC central nu inf colliculus CnF cuneiform nu
5 cp cerebral peduncle Crb cribiform nucleus ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DMTg dorsomed tegmental area DpG deep gray superior coll DpWh deep white superior coll ECIC external cx inferior coll f fornix
20
15
10
fr Gi gigantocellular reticular nu Gr gracile nu hio hilus of the inferior olive hypothal hypothalamus InG intermed gray layer SC InWh intermediate white layer SC IOD inf olive, dorsal nu IOPr inf olive, principal nu IPo interpositus IRt intermed reticular nu
5
0
5
isRt isthmic reticular formation LC locus coeruleus lfp longitudinal fasciculus pons LH lateral hypothalamic area Li linear nu of the medulla LPAG lat periaqueductal gray LPB lateral parabrachial nu LRt lateral reticular nu MB mammillary body mcp middle cerebellar peduncle MCPC magnocell nu post comm
60
50
hypothal
Pul
mt
f
LH MTu
MB
VTA
SNCM 3n cp
45
R rs PPS
SNR
40
Pn
25
B9
Pn/tfp Pn
PnO
tfp/P n
15
Pn/tfp
Pn
PnC
IOPr py
Tz
hio
Gi ami
Li
LRt
5
MdD medullary reticular nu, dors me5 mesencephalic trigem tract ml medial lemniscus MPCu medial pericuneate nucleus mRt mesencephalic retic form mt mammillothalamic tract MTu medial tuberal nu MVe medial vestibular nu Mx matrix region medulla NA1 A1 noradrenaline cells Op optic nerve layer sup coll
Sol sol Crb
Gr
MdD
cu Sp5C
10 10
IRt
Cu
vsc rs
15
MVe
Mx
spth
20
IPo 4V
Ar
0
7n Pa6 6N
IOD
5
SubCD
veme DMTg CGPn
6n
Pn
10
me5
ctg
Pn
Pn
MPB scp
LC
ml B9
tfp
lfp
ECIC 4n LPB
PnO
SuL
Pn
Pn
DCIC CIC
Cn F
Pn
20
PrCnF
me5
lfp
30
fr PaF PrC PCom MCPC TG Zo p1Rt SuG Op SC InG mRt InWh LPAG DpG DpWh ctg isRt
PBP Pn rs xscp
mcp
35
scp
PCRt
55
thal
5
SpVe
AmbL
Sp5C3/4 Sp5C1/2 sp5 0
p1Rt prosomere 1 reticular formation Pa6 paraabducens nu PaF parafascicular thal nu PBP parabrachial pigmented nu PCom nu posterior comm PCRt parvicell reticular nu Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal PnO pontine reticular nu, oral PPS posterior perforated substance
MPCu
NA1
5
10
PrC precommissural nu PrCnF precuneiform area Pul pulvinar nuclei py pyramidal tr R red nu rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCM s nigra, compact, med tier SNR s nigra, reticular Sol nu of solitary tract
sol solitary tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5C3/4 spinal 5 nu, caud, lam 3 & 4 spth spinothalamic tract SpVe spinal vestibular nu SubCD subcoeruleus nu, dorsal SuG SuL supralemniscal nucleus tfp
Fig 68b
Obex +3.5mm Sagittal 08
tfp/Pn See List of Structures
60
55
50
45
40
35
30
25
20
15
10
5
0
5
10 20
Fig 69a
15
Obex +4.0mm Sagittal 09
3n oculomotor nerve 4n trochlear nerve
10
5
0
4V 4th ventricle 5Sol trigeminal-solitary trans 6n root of abducens nerve 6N abducens nu 7n facial nerve AmbL ambiguus nu, loose part AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain B9 B9 serotonin cells CGPn central gray pons
5 CIC central nu inf colliculus CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DMTg dorsomed tegmental area DpG deep gray superior coll DpWh deep white superior coll dsc dorsal spinocereb tract
20
15
10
ECIC external cx inferior coll fr Gi gigantocellular reticular nu hio hilus of the inferior olive hypothal hypothalamus InG intermed gray layer SC InWh intermediate white layer SC IOD inf olive, dorsal nu IOPr inf olive, principal nu IRt intermed reticular nu IS inferior salivatory nu
5
0
5
isRt isthmic reticular formation LC locus coeruleus lfp longitudinal fasciculus pons LH lateral hypothalamic area Li linear nu of the medulla LPAG lat periaqueductal gray LPB lateral parabrachial nu LPGi lat paragigantocellular nu LRt lateral reticular nu MB mammillary body mcp middle cerebellar peduncle
60
55
thal mt
hypothal och
LH MTu
3n
VTA PPS
cp
CM SN NR S
45
Pn
rs
Pn lfp
scp
isRt ctg PrCnF DCIC
xscp
CIC scp
lfp Pn
4n ECIC
PnO Pn
LPB
B9
PnO MPB scp
SuL
tfp/Pn
tfp
B9 ctg
Pn lfp
mcp
15
Pn Pn
10
PnC
Pn/tfp
6n
Ar
Li
Sol sol
LR t
th sp
5
vsc
rs dsc
4V
AmbSC 5Sol MPCu
SpVe Mx Cu
ami
me5 SubCD
veme DMTg CGPn 7n 6N veme
MVe
IRt
LPGi hio IOD
0
Pa6
Gi IS
IOPr
py
5
Tz
PCRt
Pn
LC
Gi
20
ml
lfp
LP
Pn
Pn
MdD Sp5C
25
SC
LPAG
Zo SuG Op InG InWh DpG DpWh
F Cn
lfp
TG
mRt
Pn
Pn
30
p1Rt
R
PBP
mcp
Pn
PCom
MCPC
MB cp
35
fr
mt
50
40
Pul
PaF
AmbL
cu NA1 Sp5C1/2 sp5
10 20
15
MCPC magnocell nu post comm MdD medullary reticular nu, dors me5 mesencephalic trigem tract ml medial lemniscus MPB medial parabrachial nu MPCu medial pericuneate nucleus mRt mesencephalic retic form mt mammillothalamic tract MTu medial tuberal nu MVe medial vestibular nu Mx matrix region medulla
10
5
0
NA1 A1 noradrenaline cells och optic chiasm Op optic nerve layer sup coll p1Rt prosomere 1 reticular formation Pa6 paraabducens nu PaF parafascicular thal nu PBP parabrachial pigmented nu PCom nu posterior comm PCRt parvicell reticular nu Pn pontine nuclei Pn/tfp
5
10
PnC pontine reticular nu, caudal PnO pontine reticular nu, oral PPS posterior perforated substance PrCnF precuneiform area Pul pulvinar nuclei py pyramidal tr R red nu rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCM s nigra, compact, med tier
SNR s nigra, reticular sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 spth spinothalamic tract SpVe spinal vestibular nu SubCD subcoeruleus nu, dorsal SuG SuL supralemniscal nucleus
Fig 69b
Obex +4.0mm Sagittal 09
tfp See List of Structures
65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 20
15
Fig 70a
Obex +4.5mm Sagittal 10
4V 4th ventricle 5Sol trigeminal-solitary trans
10
5
0
6n root of abducens nerve 7N facial nu 7n facial nerve ac anterior commissure AmbL ambiguus nu, loose part AmbSC ambiguus nu, subcompact ami amiculum of the olive Ar arcuate nu of the caudal hindbrain asc7 B9 B9 serotonin cells CGPn central gray pons
5
CIC central nu inf colliculus CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DCIC dors cx inf colliculus DpG deep gray superior coll DPO dorsal periolivary region DpWh deep white superior coll dsc dorsal spinocereb tract
20
15
10
ECIC external cx inferior coll ECu external cuneate nu fr Gam gamma pontine nucleus Gi gigantocellular reticular nu hio hilus of the inferior olive hypothal hypothalamus InG intermed gray layer SC InWh intermediate white layer SC IOPr inf olive, principal nu IRt intermed reticular nu
5
0
5
IS inferior salivatory nu isRt isthmic reticular formation LC locus coeruleus lfp longitudinal fasciculus pons lfp/Pn long fasciculus pons/pontine nu LH lateral hypothalamic area Li linear nu of the medulla LPB lateral parabrachial nu LPGi lat paragigantocellular nu LRt lateral reticular nu mcp middle cerebellar peduncle
ac thal
60
LH
MTu
VTA
TuM
CM SN R SN
mcp
40
Pn
15
lfp/ Pn Pn
Pn Pn mcp
10
Pn
5
IOPr
py pos Ar
0
15
MCPC magnocell nu post comm MdD medullary reticular nu, dors me5 mesencephalic trigem tract ml medial lemniscus MPB medial parabrachial nu MPCu medial pericuneate nucleus mRt mesencephalic retic form mt mammillothalamic tract MTu medial tuberal nu MVe medial vestibular nu Mx matrix region medulla
10
MPB scp
SuL ctg
SOl
Gi
PnO
LC
me5
DPO 7n Gi IRt P7
LRt
Li
Gam veme CGPn
PnC
7N
ctg
IRt
sol
veme
IS MVe Sol
AmbSC MPCu
Sp5I
cu ECu Sp5C rs Sp5C1/2 sp5 dsc 5
0
NA1 A1 noradrenaline cells och optic chiasm Op optic nerve layer sup coll p1Rt prosomere 1 reticular formation P7 perifacial zone PaF parafascicular thal nu PBP parabrachial pigmented nu PCRt parvicell reticular nu Pn pontine nuclei Pn/tfp PnC pontine reticular nu, caudal
asc7
4V
SpVe 5Sol Mx Cu
spth
vsc
5
LPB
B9
Tz
hio
ami
ECIC
PnO
lfp tfp
6n
Pn
Ar
20
Pn
Pn/tfp
lfp
isRt
scp
ml
Pn
20
xscp
DCIC PrCnF CIC CnF
Zo SuG Op InG InWh DpG DpWh
SubC
25
lfp
tfp/Pn
30
lfp
Pn
SC
mRt
scp RRF
lfp
Pn
35
Pn
rs PBP
TG
MCPC p1Rt
R
CD
cp
45
Pul
PaF fr
D
och
SN
50
hypothal
PCRt
55
mt
LPGi
65
AmbL MdD NA1
5
10
PnO pontine reticular nu, oral pos preolivary sulcus PrCnF precuneiform area Pul pulvinar nuclei py pyramidal tr R red nu RRF rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier
SNCM s nigra, compact, med tier SNR s nigra, reticular SOl superior olive, lateral sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu
Fig 70b
Obex +4.5mm Sagittal 10
SubCD subcoeruleus nu, dorsal See List of Structures
65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 20
15
Fig 71a
Obex +5.0mm Sagittal 11
5Sol trigeminal-solitary trans 6n root of abducens nerve
10
5
0
7N facial nu 7n facial nerve ac anterior commissure Ad1/NA1 Ad1 adren NA1 noradr AmbSC ambiguus nu, subcompact ami amiculum of the olive Arc arcuate hypothal nu B9 B9 serotonin cells CGPn central gray pons CIC central nu inf colliculus CMn centromedian thalamic nucleus
5
CnF cuneiform nu cp cerebral peduncle Ct conterminal nu ctg central tegmental tract Cu cuneate nu cu cuneate fasciculus DpG deep gray superior coll DPO dorsal periolivary region DpWh deep white superior coll dsc dorsal spinocereb tract ECIC external cx inferior coll
20
15
10
ECu external cuneate nu EVe nu origin efferents ve n fr Gam gamma pontine nucleus hio hilus of the inferior olive hypothal hypothalamus ic internal capsule InG intermed gray layer SC InWh intermediate white layer SC IOPr inf olive, principal nu IRt intermed reticular nu
5
0
5
IS inferior salivatory nu isRt isthmic reticular formation JxO juxtaolivary nu LC locus coeruleus lfp longitudinal fasciculus pons lfp/Pn long fasciculus pons/pontine nu LH lateral hypothalamic area Li linear nu of the medulla ll lateral lemniscus LPB lateral parabrachial nu LPGi lat paragigantocellular nu
55
ac
thal mt
hypothal opt
ic STh
LH
VTA
50
CD SN
Pn
25
Pn
lfp
Pn
lfp
Pn
Pn
15
tfp
Pn
tfp/
20
Pn/tfp
lfp
mcp
Pn
Pn
6n LPGi ctg
Ct Arc
10
pos
5
ami
0
Li LRt vsc
5
dsc
15
LRt lateral reticular nu mcp middle cerebellar peduncle MCPC magnocell nu post comm MdD medullary reticular nu, dors me5 mesencephalic trigem tract ml medial lemniscus MPB medial parabrachial nu mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu Mx matrix region medulla
SOl
P7
IRt
10
5
LPB
IRt
IS
7n
MVe
Sol sol SpVe 5Sol
Cu Sp5C sp5
ECIC
MPB scp
PCRt
Sp5I
CIC
PTg ll
LC
7N
rs
PnO VLTg
CnF
B9 ctg PnO
DPO
IOPr hio
spth
20
ml
Pn
Pn
lfp/
30
scp
lfp/
35
PrCnF
ctg
xscp PTg
Pn
Zo SuG Op InG InWh DpG DpWh
SC
isRt
40
PBP RRF
lfp
TG
mRt
scp
CM SN
mcp
MCPC CMn p1Rt
R
cp SNR
45
Pul
PaF fr
SubCD
60
mt
SubCV
65
ECu
Mx cu
Sp5C1/2 0
Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation P7 perifacial zone PaF parafascicular thal nu PBP parabrachial pigmented nu PCRt parvicell reticular nu Pn pontine nuclei Pn/tfp PnO pontine reticular nu, oral pos preolivary sulcus
me5
Gam CGPn
veme
veme EVe
JxO AmbSC MdD Ad1/NA1
5
10
PrCnF precuneiform area PTg pedunculopontine tegmental Pul pulvinar nuclei R red nu RRF rs rubrospinal tract SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCM s nigra, compact, med tier SNR s nigra, reticular
SOl superior olive, lateral sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract Sp5C spinal trigem nu, caudal Sp5C1/2 spinal 5 nu, caud, lam 1 & 2 Sp5I spinal trigem nu, interpolar spth spinothalamic tract SpVe spinal vestibular nu STh subthalamic nu SubCD subcoeruleus nu, dorsal
Fig 71b
Obex +5.0mm Sagittal 11
SubCV subcoeruleus nu, ventral See List of Structures
65
60
55
50
45
40
35
30
25
20
15
10
5
0
5 20
15
Fig 72a
Obex +5.5mm Sagittal 12
10n vagus nerve 5Sol trigeminal-solitary trans
10
5
0
7n facial nerve 7N facial nu Ad1/NA1 Ad1 adren NA1 noradr AmbSC ambiguus nu, subcompact ami amiculum of the olive CGPn central gray pons CIC central nu inf colliculus CMn centromedian thalamic nucleus CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract
5 cu cuneate fasciculus DpG deep gray superior coll DPO dorsal periolivary region dsc dorsal spinocereb tract ECIC external cx inferior coll ECu external cuneate nu Gam gamma pontine nucleus hio hilus of the inferior olive hypothal hypothalamus icp inf cerebellar peduncle InG intermed gray layer SC
20
15
10
InWh intermediate white layer SC IOPr inf olive, principal nu IRt intermed reticular nu isRt isthmic reticular formation JxO juxtaolivary nu LC locus coeruleus lfp longitudinal fasciculus pons LH lateral hypothalamic area Li linear nu of the medulla ll lateral lemniscus LPB lateral parabrachial nu
5
0
5
LPCu lateral pericuneate nucleus LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal mcp middle cerebellar peduncle me5 mesencephalic trigem tract ml medial lemniscus MPB medial parabrachial nu mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu
ͷ
ͳͲ
ͷ
Ͳ
ʹͲ
ͳͷ
ͳͳ
ͷ
Ȁ
ͳͲ
ͷ ͷ
Ȁ
ͳͷ
ͷ
ʹͲ
Ȁ
ͳ
͵Ͳ ʹͷ
Ͷͷ
͵ͷ
ͷͲ
ͶͲ
Ȁ
ͷͷ
Ͳ
ͷ
ͳͲ
Ȁ
ͷ
ͷ
ͳȀͳ ͷ
ͷ
Ͳ
ͷ
ͳͲ
ǡ ǡ
ǡ
ǡ Ȁ ǦÚȀ
ǡ
ǡ
ͷ
Ȁ ͷ ǡ
Ȁ
Ȁ
ǡ
ǡ
ǡ
ʹ
ΪͷǤͷ ͳʹ
ǡ
65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 20
Fig 73a
15
Obex +6.0mm Sagittal 13
10n vagus nerve 5N motor trigeminal nu
10
5
5Sol trigeminal-solitary trans 7n facial nerve 7N facial nu Ad1 Ad1 adrenalin cells ami amiculum of the olive CGPn central gray pons CIC central nu inf colliculus CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract DpG deep gray superior coll
0
5
DPO dorsal periolivary region dsc dorsal spinocereb tract ECIC external cx inferior coll ECu external cuneate nu Gam gamma pontine nucleus hio hilus of the inferior olive hypothal hypothalamus icp inf cerebellar peduncle InG intermed gray layer SC InWh intermediate white layer SC IOPr inf olive, principal nu
20
15
10
IRt intermed reticular nu isRt isthmic reticular formation lfp longitudinal fasciculus pons LH lateral hypothalamic area ll lateral lemniscus LPB lateral parabrachial nu LPCu lateral pericuneate nucleus LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal mcp middle cerebellar peduncle
5
0
5
me5 mesencephalic trigem tract ml medial lemniscus MPB medial parabrachial nu mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu Mx matrix region medulla Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation P5 peritrigeminal zone
65 60 hypothal
LH
R
CD SN CV SN
cp
SNR
40
mcp
lfp
Pn
Pn
Pn
tfp/Pn
lfp
Pn
mcp
10
hio
ctg
Sol sol
IRt
Sp5I
ami
P7 perifacial zone PBP parabrachial pigmented nu PCRt parvicell reticular nu PCRtA parvicell reticular nu, alpha Pe5 peritrigeminal nucleus Pn pontine nuclei Pn/lfp pontine nu/long fasciculus pons PnO pontine reticular nu, oral PrCnF precuneiform area PTg pedunculopontine tegmental Pul pulvinar nuclei
5Sol
ECu
icp spth sp5 dsc rs vsc LPCu dsc
10
5
Sag
LPB
MPB me5 Su5
MVe veme
IOPr
5 15
Gam
LPGi P7 PCRt
CIC CnF ECIC ll
scp
7N 7n
10n
20
PnO
VLTg
ll
5 0
PTg
5N SOl DPO P5 SubCV
Pn
tfp/P
Pn
15
Pn
n
20
ml
tfp
fp
Pn/l
25
lfp
lfp
PrCnF isRt
RRF
Zo SuG Op InG InWh DpG
SC
mRt
scp
CV SN
45
30
PBP
TG
p1Rt
SuVe
PCRtA
CGPn
SpV e
50
35
Pul
STh VTAR
/ml
opt
spth
55
thal
mt
R red nu RRF rs rubrospinal tract Sag sagulum nu SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular SOl superior olive, lateral sol solitary tract
0
Mx
Ad1
Pe5 LRtS5 LRt
5
10
Sol nu of solitary tract tfp tfp/Pn sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar TG tectal gray spth spinothalamic tract thal thalamus spth/ml spinothal tract/med lemniscus veme vestibulomesencephalic tr SpVe spinal vestibular nu VLTg ventrolateral tegmental area STh subthalamic nu vsc ventral spinocerebellar tr Su5 supratrigeminal nu VTAR vent tegmental area, rostr SubCV subcoeruleus nu, ventral Zo zona layer sup coll SuG SuVe superior vestibular nu
Fig 73b
Obex +6.0mm Sagittal 13
70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 20
Fig 74a
15
Obex +6.5mm Sagittal 14
10n vagus nerve 5N motor trigeminal nu
10
5
5Sol trigeminal-solitary trans 7n facial nerve 7N facial nu Ad1 Ad1 adrenalin cells ami amiculum of the olive bic brachium inf colliculus Cb cerebellum CIC central nu inf colliculus CnF cuneiform nu cp cerebral peduncle ctg central tegmental tract
0
5
dsc dorsal spinocereb tract ECIC external cx inferior coll ECu external cuneate nu Gam gamma pontine nucleus hio hilus of the inferior olive hypothal hypothalamus icp inf cerebellar peduncle InG intermed gray layer SC InWh intermediate white layer SC IOPr inf olive, principal nu IRt intermed reticular nu
20
15
10
isRt isthmic reticular formation lfp longitudinal fasciculus pons LH lateral hypothalamic area ll lateral lemniscus LPB lateral parabrachial nu LPCu lateral pericuneate nucleus LPGi lat paragigantocellular nu LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal mcp middle cerebellar peduncle me5 mesencephalic trigem tract
5
0
5
ml medial lemniscus MPB medial parabrachial nu mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu oc olivocerebellar tract Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation P5 peritrigeminal zone P7 perifacial zone
70 65
mt
thal
60 LH
Pul
STh
50 45
PBP
Pn
25
tfp/
30
Pn
Pn
20
Pn lfp
ml
PTg
Pn
lfp Pn
Pn
mcp
Pn
tfp/Pn
hio ami
LPB
MPB
Cb
me5 Su5
SuVe
PaVe
LPGi Ad1 Pe5 LRtS5 Pe5
c
vs
IOPr
0
Sag
VLTg
LRt 10n ECu rs LPCu spth sp5 c ds
Zo SuG Op InG InWh bic
ECIC
ll
7n MVe 7N P7 veme PCRt IRt Sol sol SpVe Sp5I 5Sol oc X oc ctg icp
Pn
10
CnF
scp
Gam SOl Pn 5N ll P5
Pn
IOPr
5
tfp
Pn
PrCnF CIC
PnO
lfp
Pn
15
isRt RRF
l
35
Pn lfp
SC
mRt
scp
40
TG
p1Rt
R
D SNC CV SN
cp
SNR
spth/m
opt
PC S Rt ubC A V
55
hypothal
20
15
PaVe paravestibular nucleus PBP parabrachial pigmented nu PCRt parvicell reticular nu PCRtA parvicell reticular nu, alpha Pe5 peritrigeminal nucleus Pn pontine nuclei PnO pontine reticular nu, oral PrCnF precuneiform area PTg pedunculopontine tegmental Pul pulvinar nuclei R red nu
10
5
RRF rs rubrospinal tract Sag sagulum nu SC superior colliculus scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular SOl superior olive, lateral sol solitary tract Sol nu of solitary tract
0
5
10
sp5 spinal trigem tract tfp/Pn Sp5I spinal trigem nu, interpolar TG tectal gray spth spinothalamic tract thal thalamus spth/ml spinothal tract/med lemniscus veme vestibulomesencephalic tr SpVe spinal vestibular nu VLTg ventrolateral tegmental area STh subthalamic nu vsc ventral spinocerebellar tr Su5 supratrigeminal nu X nu X SubCV subcoeruleus nu, ventral Zo zona layer sup coll SuG SuVe superior vestibular nu tfp
Fig 74b
Obex +6.5mm Sagittal 14
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0 20
Fig 75a
15
Obex +7.0mm Sagittal 15
10n vagus nerve 5N motor trigeminal nu
10
5
5Sol trigeminal-solitary trans 7n facial nerve 7N facial nu Ad1 Ad1 adrenalin cells ami amiculum of the olive APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum CnF cuneiform nu
0
5 cp cerebral peduncle ctg central tegmental tract DLL dorsal nu lateral lemniscus dsc dorsal spinocereb tract ECIC external cx inferior coll Gam gamma pontine nucleus ic internal capsule icp inf cerebellar peduncle InG intermed gray layer SC InWh intermediate white layer SC IOPr inf olive, principal nu
20
15
10
isRt isthmic reticular formation KF Kölliker-Fuse nu lfp longitudinal fasciculus pons LH lateral hypothalamic area ll lateral lemniscus LPB lateral parabrachial nu LPCu lateral pericuneate nucleus LRt lateral reticular nu LRtS5 lat reticular nu, subtrigeminal mcp middle cerebellar peduncle me5 mesencephalic trigem tract
5
0
5
MiTg microcell tegmental nu ml medial lemniscus MPB medial parabrachial nu mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu oc olivocerebellar tract Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation P5 peritrigeminal zone
70 65 60
ZI STh
LH
opt
SNCD
50
SNR mcp
lfp
scp ml
lfp
tfp
Pn
Pn
mcp
15
BIC bic U isRt CnF MiTg RIs ECIC RRF PTg PnO Sag DLL RIs ll
sol
KF
VLTg
Gam
Pn
ami
sp5
ctg IOPr LRt
0 15
P7 perifacial zone PaVe paravestibular nucleus PBP parabrachial pigmented nu PCRt parvicell reticular nu PCRtA parvicell reticular nu, alpha Pe5 peritrigeminal nucleus Pn pontine nuclei PnO pontine reticular nu, oral PTg pedunculopontine tegmental Pul pulvinar nuclei R red nu
scp
Cb MPB Su5 me5
oc
LRtS5 Ad1
icp
Pe5
LPCu vsc dsc
20
LPB
ll CV 5N Pn Sub P5 tfp/Pn 7n SuVe PCRtA Pn 7n MVe Pn veme 7N PCRt P7 sol Sp5O spth tz Sol SpVe PaVe Sp5I 5Sol 10n X
10 5
Zo SuG Op InG InWh
mRt
Pn
tfp/
20
lfp
Pn
bsc
TG
p1Rt
Pn
30
Pul
APT
R
Pn
lfp
Pn
35
25
PBP
cp SNCV
45 40
thal
spth/ml
55
mt
ic
10
5
RIs retroisthic nucleus RRF Sag sagulum nu scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular sol solitary tract Sol nu of solitary tract sp5 spinal trigem tract Sp5I spinal trigem nu, interpolar
0
5
10
TG tectal gray Sp5O spinal trigeml nu, oral thal thalamus spth spinothalamic tract spth/ml spinothal tract/med lemniscus tz trapezoid body U nucleus U SpVe spinal vestibular nu veme vestibulomesencephalic tr STh subthalamic nu VLTg ventrolateral tegmental area Su5 supratrigeminal nu vsc ventral spinocerebellar tr SubCV subcoeruleus nu, ventral X nu X SuG ZI zona incerta SuVe superior vestibular nu Zo zona layer sup coll tfp tfp/Pn
Fig 75b
Obex +7.0mm Sagittal 15
70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 20
Fig 76a
15
Obex +7.5mm Sagittal 16
10n vagus nerve 5N motor trigeminal nu
10
5
7n facial nerve ami amiculum of the olive APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ctg central tegmental tract DLL dorsal nu lateral lemniscus dsc dorsal spinocereb tract
0
5
ECIC external cx inferior coll EnR endorestiform nucleus ic internal capsule icp inf cerebellar peduncle InG intermed gray layer SC IOPr inf olive, principal nu isRt isthmic reticular formation KF Kölliker-Fuse nu lfp longitudinal fasciculus pons ll lateral lemniscus LPB lateral parabrachial nu
20
15
10
LRt lateral reticular nu LVe lateral vestibular nu m5 motor root trigeminal nerve mcp middle cerebellar peduncle MiTg microcell tegmental nu ml medial lemniscus MPB medial parabrachial nu MPBE med parabrachial nu ext mRt mesencephalic retic form mt mammillothalamic tract MVe medial vestibular nu
5
0
5
oc olivocerebellar tract Op optic nerve layer sup coll opt optic tract p1Rt prosomere 1 reticular formation P5 peritrigeminal zone PaVe paravestibular nucleus PBP parabrachial pigmented nu PCRtA parvicell reticular nu, alpha Pe5 peritrigeminal nucleus PLi posterior limitans thal nu Pn pontine nuclei
70 65
ZID
STh
opt
CV SN
mcp
ml U
n
tfp
tfp/
Pn
Pn
20
Pn
mcp
15 10
tfp/Pn
ctg
0 20
15
PnC pontine reticular nu, caudal PnO pontine reticular nu, oral PTg pedunculopontine tegmental Pul pulvinar nuclei R red nu RIs retroisthic nucleus RRF Sag sagulum nu scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier
KF
Zo SuG Op
ECIC Sag
DLL
LPB
MPBE Cb scp Pn ll 5N PnC MPB P5 m5 SuVe PCRtA 7n tz 7n veme MVe sol
LVe Sp5O Sol Sp5I SpVe sp5 tz PaVe ami spth X 10n IOPr IOPr
5
bsc
BIC bic
RIs VLTg
lfp lfp
isRt MiTg
PnO PTg RRF ll
Pn
tfp/P
25
lfp
Pn
35 30
CD
40
PLi
InG mRt
scp
CV
45
SN
cp
SNR
Pul
APT p1Rt TG
R
PBP
SN
50
spth/ml
55
mt
ic
60
thal
10
vsc
oc LRt Pe5
dsc
5
icp
EnR
0
5
10
SNR s nigra, reticular SuVe superior vestibular nu sol solitary tract tfp Sol nu of solitary tract tfp/Pn sp5 spinal trigem tract TG tectal gray Sp5I spinal trigem nu, interpolar thal thalamus Sp5O spinal trigeml nu, oral tz trapezoid body spth spinothalamic tract U nucleus U spth/ml spinothal tract/med lemniscus veme vestibulomesencephalic tr SpVe spinal vestibular nu VLTg ventrolateral tegmental area STh subthalamic nu vsc ventral spinocerebellar tr SuG X nu X
ZID zona incerta, dorsal Zo zona layer sup coll
Fig 76b
Obex +7.5mm Sagittal 16
75 70 65 60 55 50 45 40 35 30 25 20 15 10
20
Fig 77a
15
Obex +8.0mm Sagittal 17
5N motor trigeminal nu 5Tr trigem transition zone
10
5
7n facial nerve ami amiculum of the olive APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ctg central tegmental tract DLL dorsal nu lateral lemniscus ECIC external cx inferior coll
0
5
EnR endorestiform nucleus Gam gamma pontine nucleus ic internal capsule icp inf cerebellar peduncle IF5 interfascicular trigeminal nu ILL intermed nu lat lemniscus IOPr inf olive, principal nu isRt isthmic reticular formation KF Kölliker-Fuse nu lfp longitudinal fasciculus pons ll lateral lemniscus
20
15
10
LPB lateral parabrachial nu LRt lateral reticular nu LVe lateral vestibular nu m5 motor root trigeminal nerve mcp middle cerebellar peduncle MiTg microcell tegmental nu ml medial lemniscus MPB medial parabrachial nu MPBE med parabrachial nu ext mRt mesencephalic retic form MVe medial vestibular nu
5
0
5
oc olivocerebellar tract opt optic tract p1Rt prosomere 1 reticular formation PBP parabrachial pigmented nu PCRt parvicell reticular nu PCRtA parvicell reticular nu, alpha Pe5 peritrigeminal nucleus PLi posterior limitans thal nu Pn pontine nuclei Pr5 principal sensory trigem nu Pul pulvinar nuclei
75 70
thal
ic
65
ZI
60 55
STh
opt
scp R
p1Rt APT PLi TG bsc
PBP CD SN
V SNC
50
Pul
SNR
cp
ml
Pn
Pn
lfp
tfp/P
VLTg
Pn
30
tfp/Pn
mcp Pn
20
Pn
PCRt vsc
IOPr
10
ami
20
15
R red nu RIs retroisthic nucleus RRF Sag sagulum nu scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular sol solitary tract SOl superior olive, lateral sp5 spinal trigem tract
7n
IOPr
10
ctg
tz
KF
IF5
sp5
X oc Pe5 icp oc LRt EnR
5
MiTg DLL
ll VLL
PCRtA Gam m5 Pr5 5N tz Sp5O
Pn
15
sol
0
ECIC
bic
Sag
ILL
LPB scp
Cb
icp
25
tfp
lfp
Pn
Pn
RRF
spth/ml
35
U isRt
RIs
n
40
Zo bsc
BIC
V SNC
45
mRt SuG
5Tr SuVe MVe LVe SpVe
5
MPBE MPB
veme PCRtA SOl
10
Sp5O spinal trigeml nu, oral U nucleus U spth/ml spinothal tract/med lemniscus veme vestibulomesencephalic tr SpVe spinal vestibular nu VLL ventral nu lat lemniscus STh subthalamic nu VLTg ventrolateral tegmental area SuG vsc ventral spinocerebellar tr SuVe superior vestibular nu X nu X tfp ZI zona incerta tfp/Pn Zo zona layer sup coll TG tectal gray thal thalamus tz trapezoid body
Fig 77b
Obex +8.0mm Sagittal 17
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 78a
Obex +8.5mm Sagittal 18
5Tr trigem transition zone 7n facial nerve
10
5
0
APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ECIC external cx inferior coll Gam gamma pontine nucleus ic internal capsule icp inf cerebellar peduncle ILL intermed nu lat lemniscus
5
10
isRt isthmic reticular formation KF Kölliker-Fuse nu lfp longitudinal fasciculus pons ll lateral lemniscus LPB lateral parabrachial nu LVe lateral vestibular nu m5 motor root trigeminal nerve mcp middle cerebellar peduncle MiTg microcell tegmental nu ml medial lemniscus mRt mesencephalic retic form
15
10
5
MVe medial vestibular nu oc olivocerebellar tract opt optic tract p1Rt prosomere 1 reticular formation PBP parabrachial pigmented nu PCRtA parvicell reticular nu, alpha PLi posterior limitans thal nu Pn pontine nuclei Pn/tfp Pr5 principal sensory trigem nu Pul pulvinar nuclei
0
5
Sag sagulum nu scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular sol solitary tract sp5 spinal trigem tract Sp5O spinal trigeml nu, oral spth spinothalamic tract SpVe spinal vestibular nu STh subthalamic nu
10
75 70 ic
65
thal
60 55
Pul
ZI
STh
opt
scp
SNR
APT PLi bsc p1Rt
PBP
SN
CV SN
50
CV
lfp
Pn
mcp
Pn
10
15
SuG SuVe superior vestibular nu tfp tfp/Pn TG tectal gray thal thalamus tz trapezoid body U nucleus U VLL ventral nu lat lemniscus VLTg ventrolateral tegmental area vsc ventral spinocerebellar tr
10
ECIC Sag
ILL
VLL
ll
Pn KF 5Tr m5
Pn
tfp/Pn
15
VLTg
tfp
lfp
25
Pn
Pr5
tA
lfp
MiTg
spth
Pn/tfp
ml
lfp
BIC bic
U isRt
tz
PCR
Pn
35
20
SN SNR
40
30
CD
cp
45
Zo SuG
TG mRt
5
0
Gam LPB
Cb
scp icp SuVe MVe
LVe sol 7n Sp5O SpVe sp5 tz oc icp vsc sp5 Pn
ZI zona incerta Zo zona layer sup coll
5
Gam
10
Fig 78b
Obex +8.5mm Sagittal 18
75
70
65
60
55
50
45
40
35
30
25
20
15
10
15
Fig 79a
Obex +9.0mm Sagittal 19
10
5
0
5
10
15
10
5
0
5
10
75 70 65
thal
ic
60 55
ZI
STh
opt
40
30 25 20
Pn/tfp
Pn lfp
lfp
lfp tfp
tfp/Pn
Pn/tfp Pn
7n
15 10
tz
10n
10n vagus nerve 5n trigeminal nerve 5Tr trigem transition zone 7n facial nerve 8vn vestibular root of 8th nerve APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle
bsc
bic PBG
ll
10
5
Pn
Gam
Pr5
Gam
sp5
10n
ll
5Tr
m5
5n
8vn
15
PLi
Pul
VLL
Pn
mcp
TG BIC
ml MiTg spth
Pn
35
SNR
CD
cp
45
SNCV
APT
ml
PBP
SN
50
scp
Cb
8vn
oc
icp
scp
oc SpVe
0
Gam gamma pontine nucleus ic internal capsule icp inf cerebellar peduncle lfp longitudinal fasciculus pons ll lateral lemniscus m5 motor root trigeminal nerve mcp middle cerebellar peduncle MiTg microcell tegmental nu ml medial lemniscus oc olivocerebellar tract opt optic tract
5
10
PBG parabigeminal nu PBP parabrachial pigmented nu PLi posterior limitans thal nu Pn pontine nuclei Pn/tfp Pr5 principal sensory trigem nu Pul pulvinar nuclei scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNR s nigra, reticular
sp5 spinal trigem tract spth spinothalamic tract SpVe spinal vestibular nu STh subthalamic nu tfp tfp/Pn TG tectal gray thal thalamus tz trapezoid body VLL ventral nu lat lemniscus ZI zona incerta
Fig 79b
Obex +9.0mm Sagittal 19
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 80a
Obex +9.5mm Sagittal 20
10
5
0
5
10
15
10
5
0
5
10
75 70 65
thal
ic
60 55
STh
opt
ml
PBP
CV
Pn
35
lfp Pn
n
Pn/tfp
20
m5 Pr5
Pn
15
7n 8vn
10
15
ll
tfp
Pn
/P
tfp
mcp
10
10n vagus nerve 5n trigeminal nerve 5Tr trigem transition zone 7n facial nerve 8vn vestibular root of 8th nerve APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum CMn centromedian thalamic nucleus
PLi
bsc
bic
ml
lfp
Pn
Pul
SubB
SNL
40
APT
BIC
SN
cp
45
25
SNR
CMn
scp CD SN
SNCV
50
30
VPL
ZI
5
5n sp5
Gam
5Tr 8vn
Cb
icp
tz oc
scp
10n
0
cp cerebral peduncle Gam gamma pontine nucleus ic internal capsule icp inf cerebellar peduncle lfp longitudinal fasciculus pons ll lateral lemniscus m5 motor root trigeminal nerve mcp middle cerebellar peduncle ml medial lemniscus oc olivocerebellar tract opt optic tract
5
10
PBP parabrachial pigmented nu PLi posterior limitans thal nu Pn pontine nuclei Pn/tfp pontine nu/transv fibres pons Pr5 principal sensory trigem nu Pul pulvinar nuclei scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular
sp5 spinal trigem tract STh subthalamic nu SubB subbrachial nu tfp transverse fibers pons tfp/Pn transv fibers pons/pontine nu thal thalamus tz trapezoid body VPL ventral posterolat thal nu ZI zona incerta
Fig 80b
Obex +9.5mm Sagittal 20
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 81a
Obex +10.0mm Sagittal 21
10
5
0
5
10
15
10
5
0
5
10
75
70
65 thal
ic
60 ZI
55
STh
opt
SNR cp
45
Pn
25
20
BIC
bsc
bic
SubB
lfp
35
30
PLi
APT
SNL
40
Pul ml
PBP
CD CV SN SN
50
scp
Pn lfp tfp Pn
Pn/
tfp
Pn mcp
7n
15
tz
8vn 8cn
10
15 10n vagus nerve 5n trigeminal nerve 7n facial nerve 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle
Cb
5n
10
5
oc
icp
scp
0
5
10n
ic internal capsule icp inf cerebellar peduncle lfp longitudinal fasciculus pons mcp middle cerebellar peduncle ml medial lemniscus oc olivocerebellar tract opt optic tract PBP parabrachial pigmented nu PLi posterior limitans thal nu Pn pontine nuclei Pn/tfp
10
Pul pulvinar nuclei scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu SubB subbrachial nu tfp thal thalamus tz trapezoid body
ZI zona incerta
Fig 81b
Obex +10.0mm Sagittal 21
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 82a
Obex +10.5mm Sagittal 22
10
5
0
5
10
15
10
5
0
5
10
75
70
65
ic thal
60
55
ZI
STh
opt
Pul ml
SNR
PBP
CV SN
CD SN
50
bic SubB
SNL
cp
bsc
MGD
BIC
45
PLi
APT
40 Pn lfp
35 Pn
30
Pn
tfp
Pn
lfp
/P
25
tfp
n Pn
20
Pn
mcp
15
Cb
5n
PnB
8vn 8cn
tz
oc
icp
scp
10
15 5n trigeminal nerve 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ic internal capsule icp inf cerebellar peduncle
10
5
0
lfp longitudinal fasciculus pons mcp middle cerebellar peduncle MGD med geniculate nu, dorsal ml medial lemniscus oc olivocerebellar tract opt optic tract PBP parabrachial pigmented nu PLi posterior limitans thal nu Pn pontine nuclei PnB pontobulbar nucleus Pul pulvinar nuclei
5
10
scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu SubB subbrachial nu tfp tfp/Pn thal thalamus tz trapezoid body
ZI zona incerta
Fig 82b
Obex +10.5mm Sagittal 22
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 83a
Obex +11.0mm Sagittal 23
10
5
0
5
10
15
10
5
0
5
10
75
70
65
ic
thal
60
55
ZI STh
opt
Pul
SNR
CD SN
50
CV SN
45
ml
PBP PIL
bsc
PoT MGD bic LT BIC
SNL
cp
PLi
APT
SubB
40 Pn
35 lfp
30
Pn
Pn
tfp/Pn Pn
25
20
mcp
Pn
Pn
tfp
Cb 5n
PnB
15
Pn
tz 8vn 8cn
icp
oc
scp
10
15 5n trigeminal nerve 8cn cochlear root 8th nerve 8vn vestibular root of 8th nerve APT anterior pretectal nu bic brachium inf colliculus BIC nu brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ic internal capsule icp inf cerebellar peduncle
10
5
0
lfp longitudinal fasciculus pons LT lat terminal nu acc optic tr mcp middle cerebellar peduncle MGD med geniculate nu, dorsal ml medial lemniscus oc olivocerebellar tract opt optic tract PBP parabrachial pigmented nu PIL post intralaminar thal nu PLi posterior limitans thal nu Pn pontine nuclei
5
10
PnB pontobulbar nucleus PoT posterior thal nu, triangular Pul pulvinar nuclei scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu SubB subbrachial nu tfp
tfp/Pn thal thalamus tz trapezoid body ZI zona incerta
Fig 83b
Obex +11.0mm Sagittal 23
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 84a
Obex +11.5mm Sagittal 24
10
5
0
5
10
15
10
5
0
5
10
75
70
65
ic thal
60
55
ZI STh
opt
Pul
ml
PLi SNR PBP PIL LT SNCV PoT APT SNCD bsc SNCV bic MGD SNL PP cp SubB
50
45
40
35
Pn
lfp
mcp Pn
30
lfp
Pn
Pn
tfp/Pn 25
Pn
Pn
tfp
Pn
Cb 20
5n mcp
PnB
15
icp 8cn
scp
10
15 5n trigeminal nerve 8cn cochlear root 8th nerve APT anterior pretectal nu bic brachium inf colliculus bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ic internal capsule icp inf cerebellar peduncle lfp longitudinal fasciculus pons LT lat terminal nu acc optic tr
10
5
0
mcp middle cerebellar peduncle MGD med geniculate nu, dorsal ml medial lemniscus opt optic tract PBP parabrachial pigmented nu PIL post intralaminar thal nu PLi posterior limitans thal nu Pn pontine nuclei PnB pontobulbar nucleus PoT posterior thal nu, triangular PP peripeduncular nu
5
10
Pul pulvinar nuclei scp superior Cb peduncle SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu SubB subbrachial nu tfp tfp/Pn thal thalamus
ZI zona incerta
Fig 84b
Obex +11.5mm Sagittal 24
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 85a
Obex +12.0mm Sagittal 25
10
5
0
5
10
15
10
5
0
5
10
75
70
65 thal
ic
60
55
ZI STh
opt
ml
Pul
PLi PBP PIL APT SNCV LT PoT SG bsc SNCD SNL MGD SNR
50
45
MGV PP MGM SubB
cp
40
35
30
lfp Pn
Pn
tfp
Pn tfp/Pn mcp
Pn
Pn
25
Cb mcp
5n
20 PnB
15
8cn
icp
scp
10
15 5n trigeminal nerve 8cn cochlear root 8th nerve APT anterior pretectal nu bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ic internal capsule icp inf cerebellar peduncle lfp longitudinal fasciculus pons LT lat terminal nu acc optic tr mcp middle cerebellar peduncle
10
5
0
MGD med geniculate nu, dorsal MGM med geniculate nu, medial MGV med geniculate nu, ventral ml medial lemniscus opt optic tract PBP parabrachial pigmented nu PIL post intralaminar thal nu PLi posterior limitans thal nu Pn pontine nuclei PnB pontobulbar nucleus PoT posterior thal nu, triangular
5
10
PP peripeduncular nu Pul pulvinar nuclei scp superior Cb peduncle SG suprageniculate thal nu SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu SubB subbrachial nu tfp
tfp/Pn thal thalamus ZI zona incerta
Fig 85b
Obex +12.0mm Sagittal 25
75 70 65 60 55 50 45 40 35 30 25 20 15 10
15
Fig 86a
Obex +12.5mm Sagittal 26
10
5
0
5
10
15
10
5
0
5
10
75
70
65
ic
thal
60
55
opt
STh
50
SNR SNCV
45
cp
ZI
Pul
ml
PBP LT PoT APT SNCD PIL SG SNL MGD
PLi bsc
PP MGV MGM
40
35
30
Pn
tfp/Pn
mcp
Pn
25
Cb
20
5n
PnB
mcp
15
icp
8cn
mcp
10
15 5n trigeminal nerve 8cn cochlear root 8th nerve APT anterior pretectal nu bsc brachium superior colliculus Cb cerebellum cp cerebral peduncle ic internal capsule icp inf cerebellar peduncle LT lat terminal nu acc optic tr mcp middle cerebellar peduncle MGD med geniculate nu, dorsal
10
5
0
MGM med geniculate nu, medial MGV med geniculate nu, ventral ml medial lemniscus opt optic tract PBP parabrachial pigmented nu PIL post intralaminar thal nu PLi posterior limitans thal nu Pn pontine nuclei PnB pontobulbar nucleus PoT posterior thal nu, triangular PP peripeduncular nu
5
10
Pul pulvinar nuclei SG suprageniculate thal nu SNCD s nigra, compact, dors tier SNCV s nigra, compact, vent tier SNL s nigra, lateral SNR s nigra, reticular STh subthalamic nu tfp/Pn thal thalamus ZI zona incerta
Fig 86b
Obex +12.5mm Sagittal 26