239 78 2MB
English Pages [153]
Copyright © 2020, March 19, by Hassan A. M. Shoukr All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the use of brief quotations in a book review. ASIN: B08641T1VH ISBN: 979-8-62821-978-2 ISBN: 978-1-67803-082-7 ISBN: 979-8-64036-895-6
ﺑﺎﻟﮭﯿﺌﺔ اﻟﻌﺎﻣﺔ ﻟﻠﻜﺘﺎب13262 \ 2000 رﻗﻢ اﻹﯾﺪاع 3079ﺗﺮﺧﯿﺺ وزارة اﻟﺘﺮﺑﯿﺔ و اﻟﺘﻌﻠﯿﻢ ﺑﻤﺼﺮ رﻗﻢ
Dear parent, teacher, and student, The series of Mathematics Grade for primary stage is based on several principles: 1-
Mathematics is the queen of other sciences, i.e. all science has a certain amount of mathematics.
2-
Therefore, it must be accessible to all students and with different abilities, attitudes and inclinations...
Based on the previous principles, we did all of the following: 1) The mathematics grade series for primary
stage explains in details each topic of the book in simple, new and easy ways with solved examples followed by graduated exercises. Our strategy is analysis then construction, we analyze the mathematics topic into its initial blocks (small lessons); then we build every two blocks then every three and so on until the topic is finally built in a pyramid form from all its apparent aspects.
2) The mathematics grade series is built on using
the colors well to help the reader to understand quickly every part.
3) In addition to, the dictionary of new terms and
words in the course at the end of the book. We did it in English-Arabic
4) In the end of the book, there are five self-tests
as a bank of problems to measure the abilities of self-analysis and self-assessment.
5) After self-Test, there are ten Exam Style
Papers to ensure the capabilities of using the different skills in the books.
Mathematics Grade Primary Volume 8 has the topics: fractions, its operations, and its application in our life; decimals, its operations, and its applications; the data representation (the bar chart, bar line graph, and broken line graph). We are pleased to know your opinion and observations about the book with our correspondence Hassan A. Shoukr
Contents Subject
Page
Arithmetic I-Fractions
1
2
Reading fractions
2
Equality of two or more fractions
3
Mixed number and improper fractions
8
Comparing two fractions
9
Arrangement of fractions
12
Addition of fractions
15
Subtraction of fractions
20
Multiplication of fractions
22
Division of fractions
26
II- Applications on Fractions
29
Different Types Of Problems
29
Word Problems
35
III- Decimals
45
Decimal Form
45
Reading Decimals
45
Numeral Decimals
46
Place Value
49
Equivalence of two or more Decimals
51
Comparing Decimals
52
Arrangement of Decimals
52
Addition of Decimals
56
Subtraction of Decimals
59
Multiplication of Decimals by 10, 100, 1000, …
60
Division of Decimals by 10, 100, 1000, …
63
IV- Applications on Decimals
67
Different types of problems
67
Word problems
78
Data Representations
84
V-Bar chart, Bar line graph and broken line graph
85
Self-Tests
97
Examinations
117
Answers of self-tests and examinations
133
Terms
143
Mathematics will be making you very
intelligent, so you must study it hard
Fractions
The fraction is a part (or parts) of a whole number (or a quantity)
Reading Fractions Example 1: 2 can be read as “ 2- Thirds” or “ Two over Three” 3 3 can be read as” 3- fifths” or “ Three over five” 5
Exercise 1: Show how to read the following: i)
6 7
ii)
5 9
iii)
7 10
iv)
7 12
v)
9 11
vi)
4 13
vii)
1
2 3
viii)
3
ix)
3
7 12
x)
10
5 8 7 10
Equality of Two or More Fractions Note: Value of a fraction is unchanged by multiplying or dividing both top and the bottom figures by the same number ×8 Example2: You can ×4 multiply in 3 5
×2
6 12 = = 10 20
= ×2
×4
Exercise 2:
24 40
any number, also you can multiply the new fraction to get the next
×8
Complete i)
1 = = = 2
ii)
2 = = = 5
iii)
3 = = = 7
iv)
4 = = = 5
v)
5 = = = 8
vi)
3 = = = 4
vii)
3 = = = 9
viii)
4 = = = 11
ix)
1 = = = 6
x)
2 = = = 9
xi)
3 = = = 10
xii)
4 = = = 9
•
If you want to simplify a fraction
Example 3: 8 12
÷2
= ÷2
Also Exercise 3:
10 5 = = 20 10
÷2
4 6 1 2
2 3
= ÷2
Simplify, then complete:
You can simplify a fraction by dividing both the top and the bottom by the same number
i)
8 = = = 16
ii)
4 = 10
iii)
10 = = = 30
iv)
16 = = = 32
v)
40 = = = 80
vi)
14 = 49
vii)
15 = = = 20
viii)
36 = = = 48
ix)
16 = = = 20
x)
50 = = 100
xi)
32 = = = 64
xii)
9 = = = 27
♦ If we want to reduce a fraction into its simplest form, we divide the top and the bottom by the greatest number that they are divisible by it. Example 4: Put the following fractions in lowest terms or “simplest form”. i)
8 16
ii)
18 24
8 16
÷ ..
=
Solution ... ...
Ask your self: are 8 and 16 divisible by 8? Where 8 is the greatest number that are they divisible by it
÷ .. 8 16 8 16
÷8
= ÷8
=
... ... ..1. ..2.
÷ ..
18 24
=
... ...
Ask your self: are 18 and 24 divisible by 6? Where 6 is the greatest number that they are divisible by it
÷ ..
÷6
18 24 18 24
=
... ...
÷6 ..3. = ..4.
Exercise 4: A-Reduce these fractions into their lowest terms i)
4 8
ii)
4 6
iii)
4 12
iv)
4 10
v)
3 6
vi)
3 9
vii)
3 12
viii)
3 18
ix)
5 10
x)
5 15
xi)
5 25
xii)
5 30
xiii)
8 16
xiv)
8 12
xv)
8 24
xvi)
8 32
xvii)
6 12
xviii)
6 18
xix)
6 30
xx)
6 36
xxi)
12 24
xxii)
9 27
xxiii)
12 30
xxiv)
15 60
xxv)
24 48
xxvi)
27 54
xxvii)
18 90
xxviii)
72 84
B- Join equal fractions i)
5 10
8 16 1 5
ii)
24 48
iii)
1 4
3 4 12 18
15 3
1 3
8 24 15 20
4. 6 12 16
9 12
2 5
iv)
6 30 4 16
8 32 3 6
27 54
3 7
4 10 20 50
21 49
If you have the following problems
•
Example 5: Complete: 4 ... = 5 10
i)
Solution
40
÷ 4 5
ans
1 6 = ... 12
ii)
= =8
2= 6 1 = 12 ...
... 10
8 4 ... = 5 10
ans
÷ 12
6 1 = 2 ... 12
Exercise 5: Complete Ai)
4 = 8 4
ii)
8 = 12 6
iii)
8 = 10 5
iv)
3 1 = 6
v)
1 3 = 12
vi)
3 6 = 8
vii)
2 = 5 15
viii)
3 = 20 5
ix)
1 = 20 4
x)
1 = 2 24
xi)
3 = 4 28
xii)
3 9 = 24
xiii)
... 10 = 3 30
xiv)
2 16 = ... 32
xv)
25 ... = 35 7
xvi)
36 9 = 88 ...
xvii)
... 10 = 5 25
xviii)
4 40 = ... 80
Mixed Number and Improper Fraction •
If we want to convert an improper fraction into mixed number Example 6: Put the following in “mixed number form” 3 2
i)
ii)
5 3
Solution Ask yourself “How many 2 are in 3?
3 ... =… 2 2 ... =1 1
5 ... =… 3 3
Ask yourself “How many 3 are in 5?
... =1 2
2
and what‘s the remainder over 2”?
3
and what‘s the remainder over 3”?
Exercise 6: Convert the following into “mixed number” i)
10 4
ii)
11 5
iii)
6 5
iv)
10 7
v)
12 5
vi)
13 4
vii)
15 10
viii)
20 3
ix)
39 11
x)
40 3
xi)
53 12
xii)
19 4
Example 7: Put the following in “ improper form” +
2 17 3 = 5 × 5
+
3 31 = 7 × 7
4
We multiply the bottom ‘5’ by the whole number ‘3’, then we add on the product the top ‘2’ all over the bottom ‘5’
Exercise 7: Convert the following in to “ improper fraction “ i)
3
v) 10 ix)
1 4
ii)
3 5
1
10 11
5
3 4
3 5
iv)
5
3 5
3 10
viii)
1
5 7
5 11
xii)
8
iii)
2
vi)
4
2 9
vii)
1
x)
3
2 9
xi)
4
6 11
Comparing Two Fractions •
If we want to compare two fractions
Example 8: Put the suitable sign < , > or =: i)
4 5
...
3 7
Solution 15
28
4 5
...
3 7
We will use the arrow method as you see
28
>
15
4 5
...
3 7
4 5
... >
3 7
Exercise 8: Put the suitable sign < , > or =: i)
3 5 8 11
ii)
3 4 4 5
iii)
6 9 7 10
iv)
2 3 5 3
v)
3 4 10 7
vi)
3 9 5 11
vii)
5 6 11 7
viii)
3 9 9 27
ix)
8 1 16 2
x)
6 1 3 18
xi)
9 3 20 9
xii)
9 5 11 7
If we have two mixed numbers
•
Example 9: Complete using > , < or = : i)
4 4
4 4
>
3 4 … 3 4 5 3
3 4 … 3 4 5 3 4 … 3 > 4 5
ii)
2
1 2 … 2 3 5
Solution You noticed, the two whole numbers are different and 4 >3
1 3
>
2 5
2
1 2 … 2 3 5
2
2 1 … 2 > 3 5
You noticed, the two whole numbers are the same, we compare the two fractions as the previous
Exercise 9: Complete using > , < or = :
•
i)
4
5 3 … 3 7 4
ii)
3
1 3 …3 5 2
iii)
4
2 1 …5 3 2
iv)
7
2 4 …7 4 8
v)
3
1 3 …5 2 4
vi)
2
5 4 …2 7 8
vii)
10
4
2 3 …4 7 3
ix)
4
3 2 … 5 viii) 3 5
3 9 …6 5 15
If we have an improper fraction and mixed number Example 10: Complete using > , < or = : 2
11 3 … 5 4
Solution Convert the mixed number into improper fraction
2
11 3 … 4 5
11 11 … 4 5
Use the method
11 11 … > 4 5
arrow
Exercise 10: i) iv)
11 2 … 3 3 14 …2 7
2
ii) v)
15 2 …3 4 3 23 2 5 … 7 3
iii) vi)
14 1 …4 5 2 3 27 6 … 4 6
vii)
1
13 3 … 2 4
viii)
5…
16 5
ix)
2
5 20 … 5 7
Arrangement of Fractions If we want to arrange improper fractions
•
Example 11: Arrange each of the following groups of fractions in ascending order: 3 1 2 i) , , 10 4 5 Solution 20÷10
1 4
,
,
1 ×5 20
,
2× 4 20
6 20
,
5 20
,
8 20
1 4
,
3 10
,
2 5
3 10
,
3×2 20
Exercise 11:
2 5
20÷4 20÷5
Remember ascending order
10 = 2 × 5 4 =2×-×2 5 =- ×5
.
C.D=2 × 5 × 2 = 20 C.D means common denominator
A- Arrange each of the following groups of fractions in ascending order: 3 1 7 3 1 5 i) ii) , , , , 5 2 10 4 2 8
iii)
3 1 7 , , 8 4 16
iv)
2 1 4 , , 3 2 9
v)
3 2 8 , , 5 3 15
vi)
2 1 5 , , 9 3 18
vii)
23 3 13 , , 32 4 16
viii)
5 29 7 , , 6 36 9
ix)
13 7 19 , , 20 10 30
x)
2 5 7 , , 3 6 9
xi)
5 11 8 , , 6 12 9
xii)
2 5 7 , , 3 6 9
xiii)
13 7 19 , , 20 10 30
xiv)
1 2 5 , , 3 7 21
B- Arrange each of the following groups of fractions in descending order: i)
2 3 5 1 , , , 3 5 6 2
ii)
4 11 23 1 , , , 5 15 30 3
iii)
3 7 5 1 , , , 4 8 6 3
iv)
5 2 1 5 , , , 9 3 2 6
v)
5 3 7 1 , , , 6 4 9 2
vi)
7 5 11 3 , , , 8 6 12 4
vii)
4 7 17 1 , , , 5 8 20 2
viii)
5 7 22 1 , , , 6 9 7 3
ix)
4 13 7 1 , , , 11 33 22 3
x)
9 17 13 1 , , , 10 20 15 2
xi)
3 8 5 1 , , , 5 15 9 3
xii)
5 17 11 1 , , , 6 20 12 3
•
If we have an improper fraction , mixed number and a fraction If the whole Example 12:
numbers are different, then arrange them but if the whole numbers are the same, then arrange the fractions as the previous
Arrange the following in ascending order: i)
17 13 1 , ,1 20 5 2
Solution 13 5
17 20
,
17 20
,
23
17 20
,
11
5
2
,
1 2
,
1
,
11 2
23 5
Convert the improper fraction into mixed number Remember ascending order
Exercise 12: A- Arrange the following in ascending order: i)
2 12 5 1 , ,1 3 9 18
ii)
21 1 4 ,1 , 2 3 2 9
iii)
3 2 18 ,1 , 5 3 15
iv)
2 15 7 2 , ,1 3 6 9
v)
5 39 7 1 , ,2 6 36 9
vi)
23 7 19 ,1 , 20 10 30
vii)
13 1 17 ,2 , 8 4 16
viii)
3 1 15 1 ,2 , 4 2 8
ix)
15 1 8 ,1 , 2 6 12 9
x)
2 17 7 2 , ,2 3 6 9
1 12 5 2 , ,1 3 7 21
xi)
xii)
23 7 19 ,1 ,1 20 10 30
B- Arrange the following in descending order: i)
15 1 ,1 , 2 6 2
ii)
5 1 3, 2 , 2 9 2
iii)
7 15 1 , ,2 8 6
iv)
2
v)
27 13 ,1, 20 15
vi)
1
vii)
10 14 , 2, 3 11
viii)
17 13 , 3, 9 4
ix)
15 11 , ,4 6 3
x)
17 5 ,3 , 2 8 6
xi)
15 1 ,2 , 3 9 3
xii)
2 3 2 ,1 ,1 3 4
Addition of Fractions Proper fractions
•
Example 13: Add: i)
5 7 + 6 12
5 17 , 3, 6 9
17 23 ,2 , 20 12
Solution 5 6
12÷ 6
+
5 ×2 = 12
=
10
7 12
6
12 ÷12
7× 1 + 12
12 = 2 × 3 × 2 .
C.D = 2 × 3 × 2 = 12
7
+ 12
Convert the improper fraction into mixed number
17 12
=
=2×3
1 12 11 4 3 ii) + + 20 15 5
= 2
+ 4 + 3 20 15 5 11
60 ÷20
= = =
Solution
11 × 3 60 33
+
25 25 =1 = 1 60 60 5 =1 12
4 × 4 3 × 12 + 60 60
+ 16 + 60
85 60
60 ÷15
5 12
60 ÷ 5
20
=2×2×5
×- ×5×3 5 =- ×- ×5 C.D = 2 × 2 × 5 × 3 15
=-
= 60
36 Convert the improper fraction into mixed number You must put the fraction in the simplest form
.
Exercise 13: Find the result: i)
1 1 + 3 4
ii)
1 1 + 4 5
iii)
2 3 + 3 4
iv)
1 2 + 3 5
v)
1 3 + 3 5
vi)
1 3 + 2 4
vii)
1 1 + 2 8
viii)
1 1 + 4 8
ix)
1 2 + 2 5
x)
1 1 + 5 8
xi)
3 1 + 4 6
xii)
4 2 + 3 9
xiii)
4 3 + 5 10
xiv)
4 2 + 5 15
xv)
1 1 1 + + 2 3 4
xvi)
1 1 3 + + 2 3 4
xvii)
1 1 1 + + 3 4 6
xviii)
2 1 1 + + 3 4 6
xix)
2 3 5 + + 3 4 6
xx)
1 3 3 + + 4 8 16
xxi)
3 3 3 + + 4 8 16
xxii)
3 1 5 + + 8 6 12
xxv)
1 1 8 + + 4 6 9
•
xxvi)
7 9 13 + + 11 22 33 3 1 5 + + 8 4 12
xxiv)
11 7 5 + + 15 20 6
xxvii)
1 3 5 + + 4 8 16
Improper fractions and mixed number
Example 14: Add i)
xxiii)
5 1 +2 3 2
Solution
Convert into mixed number
5 3
1 2
+ 2
3
1 + 2 2
2 =1 3
12÷ 6
12 ÷12
1 ×3 2 × 2 =1 +2 6 6 4
= (1 + 2) 1
7 6
=3
7
1 = 4 6
ii) 2
60 ÷20
=5
=1
13 11 4 + + 20 15 5
5 =
6
11 20
+
11 + 5 20 11 × 3 60
= (5 + 2)
33
+
2 =-
×2
.C.D= 2 × 3
=6
3
+ 6
=3×-
Convert the improper fraction into mixed number
1 6
Solution
4 15
+
4 15
3 +2 5
13 5
60 ÷15 60 ÷ 5
4× 4 3 × 12 +2 60 60 + 16 + 60
36
20
=2×2×5
15
=- ×- ×5×3
5
=- ×- ×5
.C.D = 2 × 2 × 5 × 3 = 60
1
=7
Convert the improper fraction into mixed number
85 60
25 25 =8 =8 60 60
5 12
You must put the fraction in the simplest form
5 =8 12
Exercise 14: Find the result i)
1 2 3 1 +1 + 2 4 2 3
ii)
1 3 3 1 +1 + 3 6 4 8
iii)
2 4 1 + 3 5
iv)
15 +5 7
v)
3 7 5 3 + +1 4 16 8
vi)
1 1 8 2 +1 + 5 10 15
vii)
2 1 3 2 + 2 +1 9 3 4
viii)
1 1 7 4 +1 + 5 4 15
ix)
2+3
x)
4
xi)
5 5 5 + 2 +1 8 12 6
xii)
1 1 7 +1 + 5 4 15
xiii)
1 1 2 +1 + 2 2 4
xiv)
1 1 1 +3+ 2 3 6
xv)
5+2
2 3
xvi)
2+1
xvii)
7+2
1 2
xviii)
1 4 +5 3
1 2
3 2 +2 4 7
1 +3 6
Subtraction of Fractions •
Proper fractions
Example 15: Subtract
3 1 − 4 2
i)
3 4
4÷ 4
3 ×1 = 4
= =
3
-
1 2
-
1× 2 4
− 4
Solution 4 ÷2
2
=2×-
4 =2×2 C.D = 2 × 2 =4
2
1 4
Exercise 15: Subtract: i)
1 1 − 2 4
ii)
1 1 − 2 3
iii)
1 1 − 2 5
iv)
1 1 − 3 4
v)
1 1 − 3 4
vi)
1 1 − 4 5
vii)
2 1 − 3 2
viii)
2 1 − 3 4
ix)
2 2 − 3 5
x)
3 1 − 4 3
xi)
3 2 − 4 3
xii)
2 1 − 5 3
xiii)
1 1 − 2 8
xiv)
1 1 − 4 8
xv)
1 1 − 3 8
xvi)
5 3 − 8 5
xvii)
7 2 − 8 5
xviii)
1 1 − 3 6
xix)
7 5 − 12 9
xx)
7 5 − 8 6
xxi)
3 8 − 4 15
xxii)
7 9 − 15 20
xxiii)
19 5 − 20 6
xxiv)
9 13 − 22 33
xxv)
5 4 − 8 7
xxvi)
13 5 − 15 6
xxvii)
7 31 − 8 36
Improper fractions and mixed numbers
•
Example 16: i)
Convert into improper fraction
Subtract: 3 5 3 −1 4 8 3 3 4
=
15 4
=
15 × 2 8
=
30
5 - 1 8 13 8
− 8
13 × 1 8 13
Solution 4
=2×2
8 =2×2×2 .C.D= 2 × 2 × 2 =8
17 8
=
1 8 Exercise 16 : =2
Subtract i)
3 2 3 −1 4 3
ii)
7 2 −1 2 5
iii)
1 1 3 −1 5 6
iv)
25 3 −1 12 8
v)
13 3 −1 4 6
vi)
3
vii)
2
viii)
7 5 4 −3 9 12
ix)
1 4 3 −2 6 9
x)
5 7 4 −3 9 12
xi)
2
xii)
1 23 3 − 8 12
xiii)
2 10 3 −1 3 11
xiv)
1
xv)
3
5 11 −1 8 12
11 5 −1 12 18
7 14 − 20 15
Multiplication of Fractions •
Proper fractions
Example 17: i)
Multiply: 1 1 × 2 3
8 3 −1 15 10
3 8 −1 15 10
1 2
×
Solution
1 3
We multiply the top by the top and the bottom by the bottom
1 1 × 1 = 6 2 × 3
=
Exercise 17: Multiply i)
1 3 × 2 4
ii)
1 3 × 2 5
iii)
1 1 × 2 5
iv)
1 1 × 3 4
v)
1 2 × 3 5
vi)
1 4 × 3 5
vii)
2 5 × 3 7
viii)
1 1 1 × × 2 3 4
ix)
2 2 1 × × 3 5 3
x)
3 1 5 × × 4 2 7
xi)
2 1 1 × × 7 3 4
xii)
3 1 3 × × 5 2 4
xiii)
4 1 2 × × 5 7 9
xiv)
3 3 6 × × 4 5 7
xv)
4 1 1 × × 7 3 2
Example 18: i)
You must simplify before multiplication
3 2 × 4 6 1 2
= =
3 4
1 2
Solution
1
×
×
2 6
2
1 2
1 1 × 1 = 6 2 × 2
We multiply the top by the top and the bottom by the bottom
Exercise 18: Multiply: i)
1 ×8 2
ii)
1 ×9 3
iii)
1 ×8 4
iv)
1 × 10 5
v)
2 ×3 3
vi)
3 ×4 4
vii)
4 × 10 5
viii)
2 3 × 3 5
ix)
2 5 × 3 8
x)
3 4 × 4 5
xi)
2 3 × 3 4
xii)
3 8 × 4 9
xiii)
2 5 × 5 8
xiv)
5 3 × 6 8
xv)
5 9 3 × × 6 10 4
xvi)
2 5 3 × × 3 8 10
xvii)
3 5 4 × × 4 6 5
xviii)
5 3 4 × × 8 5 9
xix)
5 6 14 × × 9 7 15
xx)
5 3 7 × × 7 10 12
xxi)
9 5 4 × × 10 6 5
Improper fractions and mixed numbers
♦
Example 19: Multiply i)
4 3 ×3 4 3
=
4 3
×
4 3
×
3 3 4 15 4
Solution Before, you must convert the mixed into improper
1
4 = 3
×
1 1
×
1
= =
1 1
× 5 × 1
15 4
5 Remember: You must simplify before multiplication
1
5 1
=
5 =5 1
Exercise 19: Multiply: i)
2 1 ×1 3 2
ii)
3 1 ×1 4 3
iii)
2 1 ×2 5 2
iv)
3 1 × 5 3
v)
2 5 1 × 5 7
vi)
5 1 ×3 8 5
vii)
3 4 1 × 4 7
viii)
1 1 1 ×1 2 3
ix)
2 1 1 ×1 3 5
x)
3 1 1 ×1 4 7
xi)
3 1 1 ×1 5 4
xii)
3 1 1 ×1 5 4
xiii)
1 2 2 ×2 4 3
xiv)
1 3 3 ×1 4 13
xv)
1 1 3 1 ×1 × 2 7 11 3
xvi)
3 3 3 4 3 3 1 ×1 ×1 4 5 7 xvii) 1 × 2 × 1 13 11 8
xviii)
14 4 4 ×1 × 2 39 9 7
xix)
1 1 5 2 × 3 × 2 xx) 7 5 8
7 7 4 × 1 × xxi) 11 9 24
1
5 27 5 3 × ×1 6 46 9
Division of Fractions Proper fractions
♦
Example 20: Divide 3 3 i) ÷ 4 5 3 4
÷
Solution
3 5
15 5 × 3 = 12 3 × 4
= 5
We will use the arrow method of division as you see, where you must put the product at the head of the arrow
15
= 12 4
=
5 1 =1 4 4
Exercise 20: Divide i)
1 2 ÷ 2 3
ii)
2 3 ÷ 3 4
iii)
3 4 ÷ 4 5
iv)
2 3 ÷ 5 7
v)
3 1 ÷ 5 2
vi)
3 2 ÷ 4 3
vii)
5 2 ÷ 8 9
viii)
6 2 ÷ 7 5
ix)
7 3 ÷ 8 5
9 3 ÷ 10 8
x)
xi)
4 2 ÷ 5 3
xii)
5 2 ÷ 7 7
Improper fractions and mixed numbers
♦
Example 21: Divide: 1 1 i) 1 ÷ 2 2 3 3 1 2
= = =
÷
7 2
Solution
3 2 3
÷
13 3
You must convert the mixed numbers into improper fractions, then use the arrow method of division as you see and don’t forget put the product at the head of the arrow
3 × 7 13 × 2 21 26
Exercise 21: Divide i) iv) vii) x) xiii)
1 1 2 ÷1 2 3 1 2 4 ÷2 5 3 2 2 3 ÷4 3 5 3 2 ÷1 5 5 2 1 1 ÷3 3 2
ii) v) viii) xi) xiv)
1 1 1 ÷2 2 4 1 3 2 ÷1 2 4 2 1 4 ÷5 3 4 1 13 6 ÷ 7 5 3 2 1 ÷3 7 5
iii) vi) ix) xii) xv)
1 3 3 ÷1 2 4 1 1 2 ÷3 3 5 3 1 11 ÷ 2 7 5 13 1 ÷2 4 3 1 5 3 ÷1 8 9
Applications on Fractions Different Types of Problems ♦
Using >, or = : 3 3 1 2 i) + × 5 10 5 3 Solution 3 3 1 2 + × You must calculate the R.H.S 5 10 5 3 and L.H.S before using the 9 2 10 15 135 > 20
arrow method of or =.
9 2 10 15 Thus
9 2 > 10 15
Exercise 22: Put the suitable sign or =: i)
3 2 3 2 + ÷ 7 5 8 5
ii)
3 3 2 3 1 + 1 − 3 5 4 8
iii)
2 5 3 ... + 3 6 5
iv)
5 2 5 − ... 7 5 9
v)
3 2 5 5 × − 9 5 7 14
vi)
2 3 3 3 1 × 1 ÷ 1 5 5 4 4
vii)
5 3 5 ... × 7 4 6
viii)
5 3 4 ÷ ... 6 5 9
ix)
1 1 1 1 1 + 2 3 ÷ 3 6 4 2
x)
3 3 2 3 2 − 1 ÷ 5 10 3 5
xi)
2 3 +3 9
xii)
15 5 2 − 1 ... 6 7
xiii)
1 3 1 1 3 − 1 1 × 2 2 4 2 3
xiv)
1 4 1 1 3 − 2 × 1 5 5 2 3
... 6
1 3
Problems of Completing
♦
♦ Addition Example 23: Complete: 1 1 i) 2 + = 3 5 3 1 - 2 5
1 3 3 10 = 3
= =
-
10 × 5 15 50
11 5
− 15
-
11 × 3 15 33
Solution Here the space comes first or second the sign “+”always convert into “-“, but you must subtract the smallest from the greatest
=
17 15
2 15 Therefore =1
2
1 5
+ 1
2 15
= 3
1 3
Exercise 23 Complete ii)
5 4 + = 7 5
1 1 1 + = 2 3 3
iv)
1 1 + 1 = 3 4 2
v)
1 3 + 3 = 3 5 4
vi)
3 2 1 + = 2 4 3
vii)
1 1 1 + = 2 5 10
viii)
3 1 + 1 = 3 8 2
i)
+
iii)
3 1 =1 4 2
Subtraction
♦
Here if the space in the first, the sign “-“convert into “+”, add the second and the last
Example 23: Complete i)
1 1 3 − = 2 5 3
1 1 -2 3 5 3 10 11 = 5 3
1 3 − 1 = 2 8 4
ii) Solution
Here if the space in the second, the sign “-“ stills as it and subtract the last from the first
=1 =1
3 4 ×
+
2
+2
1 8 ×
= = =
10 × 5 15 50
-
− 15
11 × 3 15 33
1 3
6
1
+ 8
7 8
=3
7 8 Therefore
17 15
= 3
2 =1 15 Therefore 3
= (1 + 2)
3
- 1 2
15
7 8
-1 3 4
= 2
1 8
= 2 1 5
Exercise 23: Complete i)
1 3 − 2 = 1 3 4
ii)
3 1 1 − = 4 2
iii)
1 2 3 − = 1 5 3
iv)
3 3 − 2 = 1 5 10
v)
3 1 − 1 = 4 8 3
vi)
3 3 4 − = 1 7 5
vii)
1 1 5 − = 1 2 3
viii)
−
♦
Multiplication
Example 24: Complete
i)
3 3 1 × = 1 4 5
4 1 =1 7 2
Here the space comes first or second the sign “ × ”always convert into “ ÷ ”, but you must divide the last by the first or the second3 1 1 2
8
8
1 =
3 5
÷
8 5 4 7
=
32 35
Therefore 1
3 4
×
Remember you must convert the mixed into improper before dividing
7 4
÷
=
Solution
3 1 4
× 8 × 5
32 35
= 1
3 5
Exercise 24: Complete ii)
1 3 × = 2 5
3 1 1 × = 4 2
iv)
1 5 × 1 = 3 7
v)
2 1 × 2 = 1 3 3
vi)
1 3 2 × = 1 3 4
vii)
4 × = 1
viii)
× 3 = 2
ix)
3 × 1 = 4 4
x)
1 2 × = 1 3
i)
×
iii)
3 1 = 4 3
3 4
1 3
Division
♦
Example 25: Complete 1 1 3 ÷ = 2 4
i) 3
1 1 ÷ 4 2
= = =
7 2
÷
4 1
1 4
× 7 × 2
28 = 14 2
3
1 2
÷
14
Solution
Here if the space in the second, the sign “ ÷ ” stills as it “ ÷ ”, divide the first by the last
Therefore =
1 1 ÷ 2 = 3 5
ii)
1 4
1 5
2
×
1 3
=
1 5
×
7 3
=
1 5
×
7 3
=
1 5
× 7 × 3
=
Therefore 7 15
Exercise 25:
÷2
Here if the space in the first, the sign “÷” convert into “ × ” the second by the last
7 15 1 3
=
Complete
3 1 = 4 2
i)
÷
iii)
3 4 1 ÷ = 4 7
v)
÷
vii)
3 2 = 10 7 1 5 5 ÷ = 6 8
ii)
4 2 ÷ = 1 7 3
iv)
3 1 ÷ 1 = 2 5 5
vi) viii)
1 1 1 ÷ = 3 2 4 3 1 1 ÷ = 2 3 10
1 5
Word Problems on Fractions ♦ Addition Example 26: Ahmed bought three pencils for L.E 1 L.E
3 and two pens for 4
5 Find the total cost for the three pencils and two 7
pens?
Solution The total cost for the three pencils and two pens = 28÷ 7
5 7
+ 1
3 4
3 ×7 5× 4 +1 28 28
=
= (1) 1
=1
20
+ 28
28 ÷4
21
41 28
= L.E 2
4
=2×2
×-×7 C.D= 2 × 2 × 7 7 =-
= 28
Convert the improper fraction into mixed number
13 28
Exercise 26: i)
Hany bought two pencils for L.E
3 and two rulers for L.E 4
1 1 . Find the total cost for the two pencils and two rulers? 2
ii)
Mohamed bought two books for L.E 1 1 3
3 and two pens for 5
L.E 2 . Find the total cost for the two notebooks and two pens? iii)
1 2
Amr bought three coloured balls, the red one 1 gm weight, the green one 5
3 3 gm weight and the yellow 7 5 10
gm weight. Find the total weight of Amr’s balls? iv)
Bassem has got three toy coloured cars, the red one 5 cm long, the yellow one 10
1 2
3 cm long and the blue one 6 4
cm long. Find the total length of Bassem’s cars? v)
Mona bought three coloured satin ribbons , a red ribbon m long , a green ribbon 1
vi)
3 4
1 m long and the blue ribbon 2
3 m long. Find the total length of Mona’s satin ribbons? 10
Nadia has got a bag for L.E 10 1 2
3 3 , shoes for L.E 50 and 4 8
stokes for L.E 5 . Find the total cost of Nadia’s things? vii) Samia bought some chocolate for L.E 1 for 2
3 , two notebooks 5
1 3 pounds and a pen for L.E . Find the cost for the 10 4
chocolate, two notebooks and a pen?
viii) Ramy has trousers for L.E 30 35
3 and a smart jacket for 8
2 pound. Find the total cost of Ramy’s uniform? 5
Subtraction
♦
Example 27:
3 4
Nabila has got L.E 1 . She bought a ruler and a pencil for 5 remainder. . How much money was left? greater …….. than 8
L.E
Solution
The left = 1
3 4
=
7 4
=
7 ×2 8
=
5 8
5 8
− 8
14
5× 1 8 5
less …….. than difference left increase decrease more …….. than and so on. All these words denote to subtraction. 4
=2×2
8 =2×2×2 .C.D= 2 × 2 × 2 =8
= 9 8
= L.E 1
1 8
Exercise 27: i)
Bassem has got 2 1 4
1 pounds. He bought a chocolate and a 2
pen for L.E 1 . How much money was left?
ii)
Ahmed has got two containers. the first one weighs 1 , and the second one weighs 3
1 kg 3
1 kg . What is the 6
difference between the two Ahmed’s containers? iii)
Ramy’s length is
3 1 m and Mohammed’s length is 1 m. 2 4
How much is Mohammed’s length greater than Ramy’s length by? iv)
Abd El Rahman’s Weight is 10 is 15
3 kg , and Magdy’s weight 5
1 kg. How much is Abd. El Rahman’s Weight less 10
than Magdy’s weight? v)
Amr has got 3
1 1 kilograms of Oranges. He ate 2 3 6
kilograms of it. What is the remainder? vi)
Mona has got L.E 4
3 3 and her brother has got L.E 5 . 10 5
How much is what her brother has more than what Mona has? vii) Ahmed bought a ruler for L.E
3 3 and a pen for L.E . 5 10
How much do the price of ruler increase the price of pen?
Example 28: Heba Has got L.E 3 3 8
1 3 . She bought a pen for L.E and a pencil 2 4
for L.E 1 . How much money was left? Solution
The price of pen and the pencil = The price of pen
3 3 +1 8 4
3× 2 3 ×1 +1 8 1 6+3 3 6 = +1 =1 8 8 8 9 1 = 1 = 2 pounds 8 8 1 1 The left money = 3 − 2 2 8 What Heba has
=
= = = = =
This type of problem firstly, we add, then we subtract.
7 17 − 2 8 7 × 4 17 × 1 − 8 8 28 17 − 8 8 28 − 17 8 11 3 = 1 pounds 8 8
The price of pencil
What Heba spent.
Exercise 28: i)
12 1 kilograms of sweets. She gave kg 3 3 2 for her brother and 1 kg for her sister. How much 9
Rasha has got 4
sweets was left? ii)
1 from his father. He bought a 2 3 3 and a notebook for L.E 1 . What is chocolate for L.E 4 4
Nagy had taken L.E 3
the remainder?
iii)
2 3
Walaa had taken L.E 4 . She bought a book for L.E 1 a notebook for L.E
2 5
3 3 and a pencil for L.E 1 . How 10 4
much money was left? iv)
Ahmed’s mother has got a cake. She gave Ahmed his sister
v)
1 . How much cake was left? 4
1 and 3
3 meters of cloth. He gave Nadia 4 1 3 3 meters and her sister 2 meters. How much cloth 2 4
Nadia’s father has got 7
was left?
♦
Multiplication
Example 29:
1 2
Ahmed bought 2 kilograms of oranges, the price of onekilogram L.E
3 . How much did he pay? 4
Solution
The paying money
3 4
= The price of one kilo
= = =
Exercise 29: i)
3 4
3 4
×
×
1 2 5 2
The number of kilos
5 3 × 2 4 7 × 5 15 = = L.E 1 8 × 2 8
Mohammed has got 3 metre L.E
2
1 meters of cloth, the price of one 3
3 . What’s the total price? 5
3 kilograms of coffee, the price of the 5 1 kilogram L.E 15 . How much did he pay? 2
ii)
Ahmed bought
iii)
Mona’s dress was 3
1 meters, the price of one meter L.E 4
3 1 . What’s the total price of the dress? 7
iv)
3 4
Nadir bought a kilogram of apples for L.E 5 . What’s the price of 3
v)
1 kilograms? 2
Hoda has got 5 1 4
1 bars of chocolate, the price of a bar was 3
LE 1 . How much did she pay? ♦
Division
Example 30: Bassem bought 4
1 3 kilograms of butter for L.E 5 . 3 4
What’s the price of each one-kilogram? Solution The price of each one kilogram = 5 The total price
23 = 4
÷ ÷
4
1 3
13 3
The number of kilos
3 × 23 13 × 4
= =
3 4
69 17 = L.E 1 52 52
Exercise 30: i)
3 metre of cloth for making a suit, the price 4 1 of total cloth was L.E 9 . Find the price of total each one 2
Amr bought 5
metre of this cloth?
ii)
Layla has got 3
3 1 kilograms of a cake , she paid L.E 4 . 5 4
What’s the price of each one kilo? iii)
iv)
3 kilograms of butter, the price of 4 4 the kilogram was L.E . Find the price of butter? 5
Mohammed bought 5
Samira bought 5
3 1 bars of chocolate for 6 pounds. Find 4 2
the price of each bar of chocolate? v)
Bassem bought 9
5 2 kilos of oranges for 2 pounds. Find 5 9
the price of each kilo of oranges?
0
1
2
3
4
5
6
7
8
9
10
11
The decimal is a part (or parts) of whole numbers 10, 100, 1000, … and so on
Defn: Decimals are fractions that have denominators 10, 100, 1000, … and so on.
Decimal Form Well dear pupil comes to know the form of the decimals and its fractional form. 3 can be written in the form 0.3 10 6 can be written in the form 0.06 100 7 can be written in the form 0.007 1000
Thus the dot “.” is called “the decimal point” and 0.3, 0.06, 0.007, … are called “decimals”.
Reading Decimals Well dear pupil comes to learn how to read a decimal, we can read the decimals as follows:
Example 31: i)
0.5 can be read as “Zero point five”
ii) 1.65 can be read as “One point six five” iii) 23.053 can be read as “Twenty-three point zero five three” Exercise 31: Show how to read the following: i)
4.36
ii)
0.003
iii)
v)
413.6
vi)
40.31
vii) 14.362
1.001
iv)
0.043
viii) 133.005
Numeral Decimals Look at:
413.056 Whole number
Decimal
Numeral Decimal
Defn: Numeral Decimal (or mixed number) is a whole number and a decimal
♦ Converting from fractional form into decimal form Example 32: Put the following fractions in the decimal form: i)
5 10
Since 10 has 1zero, then insert “.” after 1-digit form the right.
51 100
ii) Solution 5 = 0.5 10
6 = 0.06 100
Since 100 has 2- zeros, then insert “.” after 2-digit from the right.
Exercise 32: Convert from the fraction form into the decimal form: 2 10
iv)
9 100
viii)
136 1000
xii)
3 1000
xvi)
i)
7 10
ii)
3 10
iii)
v)
4 100
vi)
7 100
vii)
ix)
23 1000
x)
15 100
xi)
xiii)
31 100
xiv)
5 10000
xv)
5 10 3 100
45 10000 3191 10000
Example 33: Convert the following into decimal form: 436 100
i)
6 43 1000
ii) Solution
Since 100 has 2Zero Then insert the “.” after 2digits from the right
436 = 4.36 100
43
Since 1000 has 3-Zeros Then insert the “.” after 3-digits from the right
43006 6 = = 43.006 1000 1000
Exercise 33: Put the following in the decimal form: i)
563 10
v)
11
♦
3 100
ii)
563 100
vi)
4
36 1000
iii)
1536 1000
vii) 46
7 10
iv)
15381 100
viii) 361
4 1000
Converting the decimal form into fractional form
Example 34: Put the following decimals in the fractional form: i) 0.03 ii) 0.015
There are 2digits after “.” To the right, then the denominator
Solution 0.03 =
003 100
There are 3digits after “.” to the right, then the denominator is 1000
0015 1000
0.015 =
Exercise 34:
Convert from the decimal form into the fraction form: i)
0.1
ii)
0.03
iii)
0.13
iv)
0.001
v)
0.05
vi)
0.007
vii)
0.0002
viii)
0.36
ix)
0.315
x)
0.013
xi)
0.0315
xii)
0.103
xiii)
0.1003
xiv)
0.0101
xv)
0.300
xvi)
0.400
Example 35: Convert from the decimal form into the fraction form: i) 41.3 ii) 5.36 There is 1-digit after the “.” to the right then the denominator is 10
Solution 41.3 = 41 3
10
5.36 = 5
36 100
=5
9 25
There is 2-digits after the “.” to the right then the denominator is 100
Exercise 35:
Put the following in the fractional form: i)
3.56
ii)
41.03
iii)
v)
4.301
vi)
45.001
vii) 136.038
viii) 5.006
ix)
12.5
x)
125.06
xi)
xii) 6.0002
xiii) 1.0025
xiv) 10.2314
153.4 2.008
xv) 1254.9
iv)
45.36
xvi) 123.1
Place Value
Look at: ..Thousands Hundreds Tens Units
To the right of the point
4361.381
To the left of the point
Tenth
Example 36:
hundredth thousandth ..
Show the place value of “ 8 “ in the following: i) 486.314 ii) 513.816 Solution 486.314
513.816
8 is tens
8 is tenth
Exercise 36: A-Show the place value of “5” in each of the following: i)
1.051
ii)
v)
543.186 vi)
25.38
iii)
163.005
vii) 5619.1
34.035
iv)
31.560
viii) 3413.5
B-Complete: i)
The place value of “3” in the number 4.328 is …….
ii) The place value of “6” in the number 1638.41 is ……. iii) The place value of “7” in the number 4.367 is ……. iv) The place value of “9” in the number 139.4 is ……. v) The place value of “2” in the number 14.32 is ……. Note:
After you have known the place value of a digit, we are going to show “another read” for the numeral decimals.
Example 37: i)
5.06 is “five and 6-hundredths”
ii)
25.46 is “twenty-five and 46-hundredths”
iii)
1.306is “one and 306-thousandths”
Exercise 37: Show how to read the following: “Write in letters” i)
1.05
ii)
22.003
iii)
0.033
iv)
1.08
v)
155.2
vi)
510.07
vii)
1.3
viii)
41.025
Example 38: Write in digits: i) One and hundredths
ii) Twenty-two and 3tenths
2-
Solution One and 2-hundredths
Twenty-two and 3-tenth
1.02
22.3
Remember: 2-hundredths = 2 = .02 100
Remember: 3-tenths = 3 = .3 10
Exercise 38: Write in digits: i)
3-thousandths.
ii)
Four and fifty-one hundredths.
iii)
Sixty-one and 9-thousandths.
iv)
3-hundreds, one and thirty-five thousandths.
v)
Seventy and 6-tenths.
Equivalence of Two or More Decimals Look at: As you have known:
3 = 30 = 300 = … 10 100 1000
Therefore 0.3 = 0.30 = 0.300 =… i.e. 3-tenth = 30-hundredths = 300-thousandths = … Note: The decimal doesn’t change by adding “Zeroes” to the right or by canceling “Zeroes” from the right. Example 39: i)
Complete adding zeros or canceling zeros: 5.3 = … ii) 1.4600 = … Solution 5.3 = 5.30 = … By adding the “Zeroes”
1.4600 = 1.460 = 1.46 By canceling the “Zeroes”
Exercise 39: Complete adding zeros or canceling zeros: i)
66.2 = …
ii)
1.4100 = …
iii)
6.431 = …
iv)
1.500 = …
v)
12.6 = …
vi)
4.3000 = …
vii)
17.46000 = …
viii)
9.000 = …
ix)
12.3000 = …
Example 40:
Don’t forget: 0.3 = 0.30 = 0.300 = ...
Complete: i)
3-tenths = … -hundredths = … -thousandths Solution 3-tenths = 30-hundredths = 300-thousandths
Exercise 40: Complete: i) 5-tenths = ……… hundredths = ………. thousands ii) 9-tenths = ……… hundredths = ………. Thousands iii) 20-hundredths = …….. thousandths = …….. tenths iv) 100-thousandths = ……… hundredths = …….. tenths v) 60-hundredths = …….. tenths = …….. thousandths
Comparing Decimals Well dear pupil comes to understand how to compare two decimals or decimal and a fraction Don’t forget, we compare from the left
Example 41: Complete using < , > or = : i) 32.4 … 7.65 i)
4.35
…
4.29
Solution 32.4
…
7.65
4.35
2-digits > 1-digit Therefore: 32.4
… = >
4.29
Therefore: >
7.65
4.35
>
4.29
Exercise 41: Put the suitable sign < , > or = : i) 46.3 …… 9.78
ii) 41.03 …… 561.6
iii) 5.061 ……. 22.3
iv) 96.1 ……. 8.91
v) 55.38 ……. 56.18
vi) 6.08 …….. 6.80
vii) 5.60 ……. 5.6
viii) 56.36 …….. 56.360
ix) 5.6 …….. 5 xi) 6
3 5
x) 3
1 …….. 6.25 3
2 ……… 32.4 5
xii) 3.46 ……… 3
3 4
Arrangement of Decimals ♦ All decimals Example 42:
i)
Arrange each of the following groups of decimals in ascending order: Add “0” to the left to make the whole number 2-digits in all
7.25 , 72.5 , 0.725
Solution
First digit to the left in all
17.25
,
72.5
,
17.25
,
72.5
, 09.725
09.725
0
7
1
,
9.725
17.25
,
72.5
Don’t for get: In ascending order
Exercise 42: A- Arrange each of the following groups of decimals in ascending order: i)
5.31 , 53.1 , 41.5
ii)
0.43 , 39.61 , 19.4
iii)
9.61 , 17.3 , 71.2
iv)
143.4 , 46.31 , 201.4
v)
1.35 , 13.5 , 0.135
vi)
9.38 , 93.8 , 0.938
vii) 44.61 , 446.1 , 4.461
viii) 66.31 , 663.1 , 6.631
B- Arrange each of the following groups of decimals in descending order: ix)
9.43 , 94.3 , 19.32
x)
xi)
19.04 , 19.40 , 19.41
xii) 65.32 , 65.12 , 65.42
13.5 , 1.35 , 23.06
Decimals and fractions. The whole numbers are different
♦
Example 43: Re-arrange the following in ascending order: i)
9.3 , 3
1 , 5.25 2
Solution
9.3 Remember: In ascending order
,
9
3
3
1
2
5.25
,
3
1 2
,
You note that: the whole number are different, then we descend them.
5
5.25
,
9.3
Exercise 43: A- Arrange each of the following groups in ascending order: i)
12.7 , 6.6 , 9
1 5
ii)
7.25 , 5.65 , 8
1 3
1 , 3.5 , 5.15 5
iii)
9
v)
2.75 , 3
vii) 3
iv) 4.35 , 6
1 , 1.9 3
vi)
2 , 4.9 , 1.81 5
6
1 , 5.1 4
1 , 2.8 , 5.3 5
viii) 4.32 , 5
1 , 3.11 2
B- Arrange each of the following in descending order: ix) 4.9 , 2 xi) 5
3 , 1.08 4
1 , 7.9 , 12.01 3 4 xii) 4.3 , 5 , 1.98 5
x) 9
3 , 1.13 , 6.1 4
Decimals and fractions. The whole numbers are the same
♦
Example 44: Arrange each of the following in ascending order: i)
4.5 , 4
1 , 4.4 3
Solution
4.5
,
4 1
,
4.4
.5
,
1 3
,
.4
3
5 10
,
1 3
,
4 10
5 ×3 30
,
1 × 10 30
,
4 ×3 30
You note that: whole numbers are equal, then we descend the fractions and decimals
10 = 2 × 5 3
= -- × -- × 3
10 = 2 × 5
C.D = 2 × 5 × 3 = 30
15 30
10 30
,
4 1
,
3
4.4
,
12 30
,
4.5
Don’t forget: In ascending order
Exercise 44:
A- Arrange each of the following groups in ascending order: i)
3.4 , 3
iii) v)
4 , 3.09 5
3 , 4.75 , 4.18 4 3 6.3 , 6.03 , 6 5 4
1 , 5.1 , 5.93 2
ii)
5
iv)
2.7 . 2.17 , 2
vi)
9.2 , 9
1 3
3 , 9.12 5
B- Arrange each of the following groups in descending order: 1 , 1.3 2
viii)
vii)
1.25 , 1
ix)
7
xi)
5.120 , 5.210 , 5
3 , 7.18 , 7.81 7
Example 45: Add: i)
3.361 + 96.8
x) 3 4
1
3 , 1.05 , 1.5 4
3.153 , 4
xii)
Addition of Decimals
3
3 , 4.71 5
1 , 3.4 , 3.81 2
Add “0” to become whole number in the above of 2-digits like the under
Solution 03.361 + 96.800
Add “00” to become the decimals in the under of 3-digits like the above
Now, the problem becomes: 03.361 Put “.” under the above + 96.800 . Exercise 45:
1 1
03.361 + 96.800 100.161
Add the problem as normal addition
Add i)
1.36 + 93.563
ii)
iii)
96.4 + 8.63
iv)
3.461 + 31. 3
v)
1.563 + 65.7
vi)
10.5 +13.006
0.638 +63.181
viii)
563.01 + 4.938
ix)
9.363 +91.29
0.6.38 + 93.986
xi)
1.008 + 23.919
xii)
xiii)
36.4 +29.69
xiv)
4.36 +315.48
xv)
938.3 + 1.98
xvi)
96.456 + 9.39
xvii)
4.369 +39.84
xviii)
4.638 +89.19
.
vii) x)
♦
.
Horizontally:
Example 46: Add: i) 36.4 + 365.381
+
361.3 9.638
.
.
.
9.867 + 68.39 .
.
Solution
1 1
36.4 + 365.381 = 401.781 You can solve the problem by putting it vertically in the draft then solve
036.400 + 365.381 401.781
Exercise 46: Add: i)
0.361 + 36.4
ii)
963.43 + 9.363
iii)
9.386 + 368.4
iv)
5.463 + 563.46
v)
363.4 + 5.486
vi)
561.36 + 36.586
vii)
96.36 + 1.361
viii)
9.368 + 563.3
ix)
31.38 + 39.49
x)
0.003 + 933.4
Whole number and a decimal
♦
Add “.” and “000” to 365 to become like the under, then carry out the addition
Example 47: Add i) 365 + 4.631
Solution
365. 000 + 004.631 369.631
365 + 4.631 = 369.631 Exercise 47: Add: i)
46 + 9.463
ii)
4.36 + 563
iii)
363 + 1.36
iv)
586 + 0.008
v)
4.363 + 500
vi)
0.038 + 36
vii)
600 + 0.046
viii) 156 + 3.481
Subtraction of Decimals Note: Subtraction of decimals looks like addition in the previous types, where we will make the number of digits in the above equals the number of digits in the under before and after the point, then display normal subtraction. Example 48: Subtract: i) 46.3 - 8.463 46.3 - 8.463
Add the zeroes
Descend the point
46.3 - 8.463 .
1
Exercise 48:
Display as a normal subtraction
3 15 12 9 10 5 2 10
Solution 2
46.300 - 08.463 .
3
4 6 .3 0 0 - 0 8 .4 6 3 3 7 .8 3 7
A-Subtract: i)
46.3 - 21.46
ii)
19.38 - 0.968
iii)
39.4 - 3.509
iv)
363.1 - 15.986
v)
406.05 - 39.981
vi)
56.93 - 9.863
400.5 54.86
ix)
50.03 - 8.964
506.09 9.698
xii)
vii) x)
.
189.3 - 19.68
viii)
46.03 - 9.693
xi)
-
363.4 - 79.93
.
.
B- Subtract i)
14.3
– 9.32
ii)
56.4
– 6.983
iii)
63.1
– 1.608
iv)
5.38
– 0.988
v)
93.5
– 10.98
vi)
99.1
– 4.908
vii)
36.1
– 1.819
viii)
36.4
– 9.009
ix)
461.4
– 16.96
x)
463.3
– 19.381
xi)
563.1
– 73.568
xii)
386.1
– 56.563
xiii)
593.2
– 96.693
xiv)
406.9
– 56.381
xv)
638.5
– 17.906
xvi)
406.5
– 99.463
xvii) 15
– 0.561
xviii)
19
– 0.361
xix)
65
– 9.098
xx)
18
– 9.361
xxi)
75
– 20.506
xxii)
99
– 5.888
xxiii) 86
– 5.986
xxiv)
78
– 4.361
xxv)
– 3.056
xxvi)
200
– 46.36
xxvii) 300
– 14.361
xxviii) 400
– 56.36
xxix) 800
– 9.639
xxx)
500
– 1.981
xxxi) 600
– 1.989
xxxii) 900
– 5.309
100
Multiplication of Decimals by 10, 100, 1000, … Vertically
♦
Example 49: Multiply: i) 0.56 × 10
Solution
ii) 1.438 × 100
10 has one zero, then we walk with “.” To the right 1-step
0.56 × 10 = 05.6 = 5.6
1.438 × 100 = 143.8 100 has two zero, then we walk with “.” To the right 2-step
Don’t forget: Zeros on the lift has no meaning
Exercise 49: A- Multiply: i)
0.063 × 10
ii)
0.045 ×100
iii)
0.069 ×100
iv)
1.36 ×10
v)
36.43 ×10
vi)
36.461 × 100
vii)
1.3613 × 1000
viii)
0.9381 × 10000
B- Multiply: ix)
10
x)
× 9.006
xii)
100
× 0.6381
xiii)
× 5.381
xv)
100
xi)
100
× 0.3631
xiv)
10 × 4.361
xvi)
× 563.511
1000 100 × 36.361
xvii)
1000 × 0.3619
1000 × 0.0386
Horizontally
♦
Example 50: i)
Multiply 3.5 × 10
Don’t forget: Walking with “.” one step because 10 has 1-zero
3.5 × 10 = 35. = 35
ii) Solution
31.3 × 100
You note: 100 has 2-zeros, then you must walk 2-steps to the right but there is 1-digit after the “.” So, we “0” to become 2-digits
31.3 × 100 = 3130. = 3130
When the “.” is the last, then we can cancel it
Don’t forget: if the “.” is the last, you can cancel it
Exercise 50: Multiply: i)
10 × 356.1
ii)
100 × 3.3
iii)
1000 × 0.361
iv)
0.36 × 1000
v)
1.36 × 100
vi)
361.3 × 1000
ix)
56.31 × 10000
vii) 3.5 × 100
viii) 561.1 × 1000
x)
10000 × 0.36
xi)
1000 × 5.3
xii) 935.1 × 100
xiii) 100 × 23.5
xiv) 10 × 231
xv) 10000 × 12.3
xvi) 2.3 × 100
xvii) 0.01 × 1000
xviii)0.001 × 10000
xix) 1.002 × 10
xx) 23.01 × 100
xxi) 1000 × 2.33
xxii) 1000 × 12.02
xxiii)100 × 112
xxiv) 0.003 × 10000
Division of Decimals by 10, 100, 1000, … Note :
Just we will take dividing a decimal or a numeral decimal by 10, 100, 1000, ……
Example 51: Divide i) 55.5 ÷ 10
ii) Solution
10 has one zero, then we walk with the “.” 1-step to the left
55.5 ÷ 10 = 5.55
361.3 ÷ 100
100 has 2- zero, then we walk with the “.” 2-steps to the left
361.3 ÷ 100 = 3.613
Exercise 52: Divide i)
453.1 ÷ 10
ii)
56.3 ÷ 10
iv)
631.3 ÷ 100
v)
6356.1 ÷ 1000 vi)
vii) 538.1 ÷ 100 x)
463.361 ÷ 10
iii)
viii) 361.361 ÷ 100 ix) xi)
43.43 ÷ 10
631.3 ÷ 100 5631.3 ÷ 100 563.36 ÷ 10
xii) 563.319 ÷ 100
xiii) 300.005 ÷ 100 xiv) 361.3 ÷ 100
xv) 199.36 ÷ 10
xvi) 46.38 ÷ 10
xviii)14.361 ÷ 10
xvii) 136.3 ÷ 100
Example 52: Divide i) 13.15 ÷ 100
1.36 ÷ 1000
ii) Solution
Don’t forget: walking with the “.” 2-steps to the left because 100 has 2-zeros
13.15 ÷ 100 = .1315 = 0.1315
You note: 1000 has 3-zeros then, you must walk with the “.” to the left 3-steps but there is 1-digit before the “.” So add “00” to become 3-digits
1.36 ÷ 1000 = .00136 = 0.00136
If the “.” is first add “0” to the left of it
Don’t forget: If the “.” is the first, you can add “0” to the left of it.
Exercise 52: Divide i)
ii)
2.36 ÷ 100
iii) 1.361 ÷ 1000
iv) 43.5 ÷ 100
v)
36.48 ÷ 1000
vi) 361.3 ÷ 100
vii) 1.63 ÷ 1000
viii) 5.631 ÷ 100
ix) 23.5 ÷ 10
x)
xi)
0.2 ÷ 100
xii) 0.02 ÷ 1000
xiii) 235.6 ÷ 100
xiv) 6 ÷ 1000
xv) 0.007 ÷ 100
xvi) 78.154 ÷ 1000
xvii) 213 ÷ 10
xviii)231.5 ÷ 10
xix) 654 ÷ 10
xx)
xxi) 2134 ÷ 1000
xxii) 21 ÷ 1000
xxiii) 0.8 ÷ 100
xxiv)451 ÷ 10
xxv) 854.1 ÷ 100
xxvi) 7 ÷ 10
xxvii0.004 ÷ 100
1.3 ÷ 10
0.221 ÷ 10
0.547 ÷ 1000
Applications of Decimals Different type of Problems Example 53: Rewrite the following in digital from. i)
ii)
5-hundredths
7-tens
Solution
Convert it into fraction then convert the fraction into decimal as the previous
5 100 = 5.
7-tens = 7 × 10 = 70
5-hundredths = You note: hundredths has “ths” so we divide by “100”
You note: tens has “s” so, we multiply “10”
= .05 = 0.05
Exercise 53: Rewrite the following in decimal from: i)
4- thousandths ii)
iv)
7-tens
v)
5-tenths
iii) 5-hundredths
6-thousandths vi)
7-thousandths
vii) 9-thousands
viii) 8-tens
ix)
x)
xi)
xii) 6-tens
12-hundredth
7-hundreds
4-hundreds
Example 54: Rewrite each of the following in digital form, then find the result: i) 5-tens + 6-hundredths 5-tens + 6-hundredths 50.06
Change it into digital form
Solution 50. 2 + 0.06
1
50.00 + 00.06
5-tens =5×10 = 50 6-hundredths = 6 100
= .06 = 0.06
Make all digits equal in the above and the under by adding zeroes
Exercise 54:
Rewrite each of the following in digital from, then find the result: i) 3-hundredths + 4-tenths iv) 7-thousands - 5-tenths
ii)
5-tenths - 4-thousands
v) 6-thousandths + 7-hundredths
vii) 3-tenths + 5-hundreds
iii)
6-hundreds + 3-tens
.
vi) 7-tens - 5-thousandths
viii) 9-hundreds – 5-hundredths
ix) 4-hundredths – 4-thousandths
x) 5-tens + 6-thousandths
Come to understand the following type
♦
Example 55: A- Write the decimal that B- Write the decimal that come after each of the comes before each of the following: following: i)
3.7 , …
ii)
… , 4.26
Look at the last digit, then ask your self: what’s the number after “7”? It’s “8”
3.7 ,
3.8
Solution
Look at the last digit, then ask your self: what’s the number before “6”? It’s “5”
4.25 , 4.26 1-
+1
Exercise 55 : A- Write the decimal that comes before each of the following. i)
… , 1.3
ii)
… , 1.36
iii)
… , 5.201
iv)
… , 2.06
v)
… , 3.001
vi)
… , 1.312
vii)
… , 0.07
viii)
… , 1.008
ix)
… , 2.003
B- Write the decimal that comes after each of the following. xiii)
1.004 , …
xiv)
2.6 , …
xvi)
5.07 , …
xvii) 3.00 , …
xix)
1.315 , …
xx)
2.12 , …
xv)
1.72 , …
xviii) 2.005 , … xxi)
0.006 , …
Come to see the following type
♦
Example 56: A-Write the decimal that B-Write the decimal that comes between each of come between each of the the following two decimals following two decimals i)
3.36 , … , 3.38
ii)
4.015 < … < 4.017
Look at the last two digits in the given two number then; Ask your self, what’s the number between 6, 8 ? It’s 7
Solution
3.36 , 3.37 , 3.38 +1
Or
Look at the last two digits in the given two number then; Ask your self, what’s the number between 5, 7 ? It’s 6
4.015 < 4.016 < 4.017
1-
+1
or
1-
Exercise 56 A- Complete the decimal that comes between each of the following two decimals: i)
4.3 < … < 4.5
ii)
1.31 < … < 1.33
iii)
1.03 > … > 1.01
iv)
4.031 > … > 4.029
v)
4.36 < … < 4.38
vi)
5.007 < … < 5.009
vii)
6.041 > … > 6.039
viii)
2.21 > … > 2.19
B- Write the decimal that comes between each of the following two decimals: ix) xi) xiii) xv) ♦
4.021, …, 4.019 6.051 , … , 6.049 7.001, …, 7.003 6.18, …, 6.2
5.31, …, 5.29 5.32, …, 5.34 0.091, …, 0.089 1.03, …, 1.028
Come to see the empty squares (addition)
Example 54: Complete the missing digits: i)
x) xii) xiv) xvi)
5. 4 + 3 . 3 1 96. 1 29
Solution 5. 4 + 3 . 3 1 96. 1 29
Remember in case of addition, ask your self I want to reach the under number I have “1” and I want to reach “9” It’s “8”
5. 4 8 + 3 . 3 1 96. 1 29 1
I have “4” and I want to reach “2”. impossible because 4 >2. Then consider “2” as “12” and carry up above the following and again I have and I want to reach “12”. It’s “8”
1
1 + 3 = 4, I have “4” and I want to reach “1”. It’s impossible then “1” become “11”, again I have “4” and I want to reach “11”. It’s “7”
5. 4 8 + 3 . 38 1 96. 1 29
1
5. 7 4 8 + 3 . 38 1 96. 1 29 1
1
1
1 7
It’s we “1” “4”
1 + 5 = 6, I have “6” and I want to reach “6”. It’s “0”.
5. 7 4 8 + 30. 38 1 96. 1 29
I have “3” and I want to reach “9”. It’s “6”.
5. 4 8 + 30. 38 1 96. 1 29 Exercise 58: 6
Complete the missing digits: i) 5 . 3 5 + 3. 1 91. 12 9
ii)
3
.3 +4 2. 4 9 1 6. 1 6
iii)
3
.3 1 + 2. 2 86. 215
.
iv) 3. 5 + 3 .1 2 9 2. 0 9 1
v)
3. 5 + 2 .2 8 8 2 .9 1
viii)
43 5.36 + . 896.81
4
vii)
. + 391.38 680.81
x)
……
xi)
53.386 + …… = 71.103
xii)
……
xiii)
3.436 + …… = 9.103
xiv)
…… + 4.006 = 7.863
xv)
53.481 + …… = 90.013
xvi)
…… + 5.406 = 7.105
vi)
ix)
3 .3 +5 2. 4 920.11 . + 65.81 80.19
+ 356.28 = 921.31 + 531.46 = 931.401
xvii) 15.306 + …… = 19.101 xviii) …… + 363.28 = 472.13 ♦
Come to see the empty squares (subtraction)
Example 59 Complete the missing digits: i)
3. 2 -3 .2 1 54.813 3. 24 -3 .2 1 54.813
Don’t forget, in case of subtraction, look the square, if it’s above, we add and if it’s under, we subtract
Solution is above, then we add: 1+3 = 4
3. 24 -3 .21 1 54.813
is under, subtract 2-1 = 1
3.024 -3 .21 1 5 41 . 8 1 3
is above, add 2+8=10, we can’t write 10 in but, we write 0 and carry down “1” under the following.
3.024 -3 8 .21 1 1 5 41. 8 1 3
1 + 4 =5, is under, subtract; 3 - 5 is impossible, then “3” becomes “13” and carry down “1” under the following, again is under, subtract 13 – 5 = 8
93.024 -3 8 .21 1 1
1 + 5 = 6,
is above, add 6 + 3 = 9
5 41. 8 1 3
Exercise 59: Complete the missing digits: i) 3 2 . 1 - 2 .3 1 3 1. 21
ii)
3. 2 - 2 .1 2 25.231
iv) 3 . 8 -5 3.2 1 8 4. 31
v) -
5 6. .63 15.12
vi)
vii)
viii) 6 8 2 . 1 3 . 1 87 .51
ix)
. -68. 893 16. 293
ix)
…… - 35.361 = 11.186
x)
563.108 - …… = 138.619
xi)
…… - 4.386 = 36.381
iii) 2 . 3 1 2. 2 . 15.323 3
2. 1 - 2 .32 683.21 .367 –3 67. . 1 62.173
xii)
14.386 - ……
= 0.419
xiii)
…… - 431
= 361.43
xiv)
365 - ……
xv)
…… - 53.006 = 111.111
xvi)
555.33 - ……
= 131.486
xvii) …… - 4.007
= 222.22 = 15.001
Come to see multiplication in the following form
♦
Example 60: Complete i)
…… × 13.478 = 1347.8 ii) Solution
Ask your self: How many steps did the “.” walk? It’s “2” then put “00” and I means “100”
100 × 13.478 = 1347.8 Exercise 60: i)
…… × 1000 = 4361.2 Ask your self: where is the “.” before multiplying by 1000?
4.3612 × 1000 = 4361.2 Don’t forget: multiplying by “1000” means walking with the “.” to the right 3 steps
…… × 4.361 = 43.61
ii) 56.313 × …… = 56313
iii) 5.3618 × …… = 5361.8
iv) …… × 4.3 = 430
v) …… × 1.36 = 1360
vi) 153.3 × …… = 153300
vii) 43.56 × …… = 43560
viii)
ix) 100 × …… = 43.5
x) 1000 × …… = 163.4
…… × 4.36 = 436
xi) …… × 10 = 36.4 xiii)
xii) …… × 100 = 1.4
1000 × …… = 43.6
xiv) 10 × …… = 0.361
xv) …… × 100 = 0.13
xvi) …… × 1000 = 0.003
Come to see division in the following form
♦
Example 61: Complete 36.17 ÷ …… = 0.03617 ii)
i)
Ask your self: How many steps did the “.” Walk to the left? It’s “3” then put “000” and I means “1000”
…… ÷ 100 = 1.361
Solution
36.17 ÷ 1000 = 0.03617
Ask your self: where is the “.” before dividing by 100?
136.1 ÷ 100 = 1.361 Don’t forget: dividing by “100” means walking with the “.” to the left 2-steps
Exercise 61: Complete the missing: i)
43.38 ÷ …… = 4.338
ii)
iii)
36.4 ÷ …… = 0.0364
iv)
4.36
v)
43.3 ÷ …… = 0.433
vi)
3.436 ÷ …… = 0.3436
vii)
36.3 ÷ …… = 0.0363
viii)
ix)
…… ÷ 100 = 4.361
x)
…… ÷ 1000 = 0.0361
xi)
…… ÷ 10
xii)
…… ÷ 10
= 0.36
xiv)
…… ÷ 100
= 0.361
= 0.4
xiii) …… ÷ 1000 = 0.03
436.31 ÷ …… = 4.3631
4.3
÷ …… = 0.00436
÷ …… = 0.0043
…… ÷ 100 = 0.5
xv)
xvi)
…… ÷ 1000 = 3.6
Come to see how to complete as the pattern
♦
Example 62: Complete as the pattern: i) 36.22, 36.26, 36.30, ……, ……, ……, …… Solution Firstly: note is the problem in ascending order or descending order? It’s in ascending
Secondly: Ask yourself, how did he add in each one time ? by subtracting, it’s “0.04”
36.22 , 36.26 , 36.30 , 36.34 , 36.38 , 36.42 , 36.46 Note that: if the biggest came after the smallest. Then it is in ascending order and vice versa.
In the draft calculate each one. For example 36.30 + 0.04 36.34
Exercise 62: Complete as the pattern: i)
4.36, 4.41, ……, ……, ……, ……
ii)
36.431, 36.437, ……, ……, ……, ……
iii)
32.4, 32.51, ……, ……, ……, ……
iv)
361.5, 361.62, ……, ……, ……, ……
v)
51.31, 51.321, ……, ……, ……, ……
vi)
63.46, 63.38, ……, ……, ……, ……
vii)
713.5, 713.42, ……, ……, ……, ……
viii)
9.813, 9.8, ……, ……, ……, ……
36.34 + 0.04 36.38
ix)
11.361, 11.35, ……, ……, ……, ……
x)
56.38, 56.31, ……, ……, ……, …… Using or =
♦
Example 63: Put the suitable sign < , > or = : i) 36.36 + 25.7 ……100 × 6.36 Solution 36.36 + 25.7 ……10 × 6.36 36.36 + 25.70 …… 63.6 62.06 ……63.6 Don’t forget all of Calculate it in the draft 62.06 ……63.6 these steps on your mind = < Thus; 36.36 + 25.7 < 10 × 6.36 Exercise 63: Put the suitable sign < , > or = : i)
361.3
ii) iii)
÷ 100
325.25 21.2
iv)
+ 125.3
254.2
………
3.613
………
3.2525 × 100
………
231.5
………
5248.2 - 210.523 78.3
v)
36.38
+ 4.9
………
vi)
12.54
÷ 100
………
vii)
0.0023
× 100
………
- 6.06
1.20546 12.3
÷ 1000
viii) 46.38
× 10
………
73.63
+ 238.3
ix)
437.8
- 13.006
………
736.3
÷ 100
x)
436.1
÷ 1000
………
1000
× 0.4361
xi)
36.38
× 100
………
36.38
÷ 100
xii) 431.3
+ 7.36
………
963.1
- 13.486
xiii) 43.5
+ 73.15
………
11.31
× 10
xiv) 56.38
× 1000
………
5631.4 + 13.481
xv) 5.36
÷ 100
………
5.3
♦
Addition
- 4.361
Word Problems
Example 64: Mohamed bought two kilos of oranges for L.E 3.75 and three kilos of apples for L.E 17.5. Calculate the total cost of oranges and apples. Solution The total cost of oranges and apples = 3.75 + 17.5 = L.E 21.25 Exercise 64: i)
You can calculate it in the draft
03.75 + 17.50 21.25
Nadia has got a stock for L.E 1.35 and shoes for L.E 85.3. Calculate the total cost for what Nadia has.
ii) Ramy bought a pencil for L.E 3.25 and two pen for L.E10.5. Find the total cost for what Ramy buy.
iii) If Bassem has got 2.65 metres of material for making a trousers and 3.5 metres for making a jacket. Then what are the total metres for making the suit? iv) If Abd El Rahman bought three kilos of rice for L.E 5.75 and two kilos of butter for L.E 15. Then calculate the total cost that he paid. v) Amr paid three pounds for 3.25 kilos of banana and two pounds for 1.5 kilos of watermelon. Calculate the total kilos that he bought. vi) Marwa bought three notebooks for L.E 5.5, two pencils for L.E 2.75 and three pens for L.E 6.35. Find the total cost of what she buy. vii) Mohamed has got three coloured cars, the green one 3.75m long, the yellow one 2.5m long and the blue one 3m long. Find the total length of Mohamed’s cars. ♦
Subtraction
Example 65: Mohamed has got two containers, the first weighs 2.75 kg and the second one weighs 12.3kg. Calculate the difference between the weight of the two containers. Solution The difference = 12.3 - 2.75 = 9.55 kg
12.30 Remember the previous words that denote to the subtraction problem
- 02.75 09.55
Exercise 65: i) Nabila has got 3.35 metres of cloth for making a dress and 2.5 metres for making a blouse. Calculate the different between the cloth of the dress and that of the blouse.
ii) Ramy’s tall is 1.75 metres and Amr’s tall is 2.01 metres. How much is Amr’s tall greater than Ramy’s tall? iii) If Bassem’s house height is 43.46 metres and Ahmed’s house height is 50 metres. Then how much is Bassem’s house height less than Ahmed’s house height? iv) If Madiha has got 134.5 pounds and her brother has got 93.75 pounds. How much did they have together? v) Marwa has got a tree whose height is 50.36 metres and Mona has another one whose height is 131.5 metres. How much does Mona’ tree increase Marwa’s tree? vi) If Abd El Rahman has got L.E. 15.25, he bought three kilos of apples for L.E 12.6. How much money was left? vii) If Mohamed has got L.E 56.3 and his sister has got L.E 35.65. How much did Mohamed has more than his sister? viii) Donia has bought 3.25 kilos of banana and 13.5 kilos of potatoes. How much did the banana decrease the potatoes? ♦
Addition and Subtraction to gather
Example 66: i)
Doaa has got L.E 20.2, she bought three kilos of banana for L.E 5.75 and two kilos of apples for L.E 12.3. How much money was left? Solution The cost of banana and apples = 5.75 + 12.3 = L.E 18.05 The left money = 20.2 – 18.05 = L.E 2.15
Carry out it in the draft
05.75 +12.30 18.05 20.20 -18.05 2.15
Exercise 66: i)
Basma has got L.E 5.3, she bought a pencil for L.E 1.25 and a pen for L.E 2.7. How much money was left?
ii) If Omr has got 5 kilos of banana, he gave Hany 2.5 kilos and Mona 1.25 kilos. How many bananas were left? iii) Abd El Rahman has took 9.35 metres of cloth from his father, he made a trousers by 3.3 metres and a jacket by 4.65 metres. How much metre was left? iv) Marwa’s mother has got a cake, she gave Marwa 0.25 and her brother 0.5. What’s the remainder from the cake? v) Mahmoud has took L.E 3.25 from his father and L.E 2.7 from his mother, he bought a pencil for L.E 0.5. How much money was left? vi) Nagy has took 1.25 kilos of sweets from his father and 2.3 kilos from his mother, he gave his brother 1.75 kilos. How much sweet was left with him? vii) Magda has took 3.5 metres of cloth from her brother and 1.35 metres from her sister, she made a dress by 2.75 metres. How much cloth was left? viii) Mohamed has took L.E 5.35 from his father and L.E 3.2 from his mother, he bought a pencil for L.E 2.3 and a pen L.E 3.75. How much money was left? ♦
Multiplication
Example 67: i)
If Mohamed has bought 100 kilos of rice for L.E 1.75 each. What’s the total cost?
The total cost = 100 × 1.75 = 175. = L.E 175
Solution Remember, in multiplication, walk with the point to the right
Exercise 67: i)
Maged has got 10 metres of material for L.E 0.75 each. What’s the total cost of the material?
ii) What’s the total cost of 1000 kilos of banana, if you knew the price of one kilo L.E 1.3? iii) Mohamed has bought a pencil for L.E 2.75. What’s the price of 10 pencils? iv) If you knew the price of a metre of cloth L.E 0.3. Then can you calculate the total price of 1000 metres? v) Mona has got 5.3 kilos of sweets, the price of a kilo L.E10. What’s the total cost? ♦
Division
Example 68: i)
Mohamed has got 10 kilos of watermelon for L.E 17.5. What the price of one kilo? Solution The price of one kilo = 17.5 ÷ 10 = 1.75 pounds
Remember, in the division, walk with the “.”to the left
Exercise 68: i)
How many 100s are there in 35.36?
ii) How many 100s are there in 1.35? iii) How many thousand are there in 361.3? iv) How many hundreds are there in 1.36? v) If Ahmed has got 100 metres of cloth for L.E 563.4. then What’s the price of each metre? vi) Mona bought 10 kilograms of apples for L.E 30.5. What is the price of each one?
vii) Hoda bought 1000 metres of a certain material for making a balloon, she paid L.E 361.3, what’s the price of each kilo? viii) Ramy has got 100 toy cars for L.E 136.5. What is the price of each one?
100 80 60 40 20 0 Ahmed
Aiya
Bassem
Mona
In each natural science, there is a certain quantity of mathematics. Cant
Bar chart, Bar-Line Graph and Broken Line Graph ♦
Come to understand how to draw each of them
Example 69: The following table shows the marks obtained by Waleed in each of five subjects. Subject
Math’s.
English
Arabic
Science
Art
Mark
2
10
6
9
8
Use the information from the table to draw: a bar chart. a bar-line graph. a Line graph or “broken line graph” Solution We will show the steps of drawing : 1- Bring a lattice, then draw the vertical axis and the horizontal axis. It is called the vertical axis
Put “0” at the intersection point of the two axis
0
It is called “origin”
It is called the horizontal axis
2- Put the first row in the table on the horizontal axis:
Make the distance between each two equal the previous and so on
Art
Science
English
Math’ s
Arabic
Subjects 0
3- Put that the second and the third rows represent in the table on the vertical axis: Marks 11 10 9 8 7 6 5 4 3 2
Famous scales: 1,2,3,… 2,4,6,8,… 5,10,15,20,… For example: From (1). You can add “0” for all, then you’ll get a new one: 10,20,30,… or add “00”, you’ll get: 100,200,300,… and so on
Subjects Art
Science
Arabic
0
English
1
Math’ s
You note; we took 1,2,3,… because the greatest mark is “10” that means if you took 1,2,3,… the vertical axis is sufficiently
Note: Pay Attention to the following: i) ii)
If you want to use the scale: 1,2,3,…. Then. Each one in the data = 10-small squares. 10÷1 =10 If you want to use the scale: 2,4,6,…. Then. Each one in the data = 5-small squares.
10÷2 = 5
iii)
If you want to use the scale: 5,10,15,…. Then. Each one in the data = 2-small squares. 10÷5 = 2
iv)
If you want to use the scale: 10,20,30,…. Then. Each one in the data = 1-small squares. 10÷10 =1
4- Determine the ends of columns: Marks 11 10 9 8 7 6 5 4 3 2
Subjects Art
Science
Arabic
English
0
Math’ s
1
5- Now, draw the graph: a) bar chart: Marks 11 10 9 8 7 6 5 4 3 2
Subjects Art
Science
Arabic
Math’ s
0
English
1
b) a bar-line graph Marks 11 10 9 8 7 6 5 4 3 2
Subjects Art
Science
Arabic
English
0
Math’ s
1
3- Broken line graph or a line graph Marks 11 10 9 8 7 6 5 4 3 2
Subjects
Exercise 69:
Art
Arabic
English
Math’ s
0
Science
1
A-Group: The following tables show the marks obtained by children in each of six subjects. Use the information in each table to draw: 1a bar charts. 2a bar line graph. 3a line-graph. Then show the greatest and the smallest mark and their subjects. i)
Ahmed’s marks:
Subject
Math’s
English
Science
Arabic
Art
History
Marks
6
3
9
8
2
7
ii) Subject Marks
Heba’s marks: English 8
iii) Subject Marks
History 6
Art 2
Math’s 9
Science 5
Arabic 4
Math’s 2
Arabic 7
History 9
Art 5
English 9
Math’s 8
Science History 3 6
Waleed’s marks: Science English 6 8
iv)
Marwa’s marks:
Subject Marks
Art 6
Arabic 5
B- Group: The following tables show the temperatures obtained in a week in many cities. Use the information in each table to draw: 1- a bar charts. 2- a line-graph. 3- a broken-line graph. Then show the greatest and smallest temperatures and their days in each city. v)
Cairo temperatures:
Day
Sat. 10
Temperature
vi)
Day
Temperature
Mon. 16
Tue. 28
Wed. 18
Thu. 23
Fri. 12
Wed. 22
Thu. 11
Fri. 18
Sat. 26
Thu. 18
Fri. 20
Sat. 28
Sun. 25
Alex. Temperatures:
Day Temperature
vii)
Sun. 20
Sun. 12
Mon. 28
Tue. 16
Tanta temperatures: Mon. 22
Tue. 26
Wed. 14
viii) Day
Assuit’s temperatures:
Temperature
Tue. 23
Wed. 28
Th. 20
Fri. 12
Sat. 18
Sun. 26
Mon. 20
C- Group: In the following tables show the number of famous players obtained in each activity many clubs. Use the information in each table to draw: 1- a bar charts. 2- a broken-line graph. 3- A line-graph. Then; show the greatest and smallest number of players and their activities in each club. ix)
Ahlly club:
Activity
Foot ball
Hand ball
No. of plays
Basket ball
Volleyball
Table tennis
40
25
30
20
7
x)
Zamalik club:
Activity
Foot ball
Hand ball
No. of plays
Basket ball
Volleyball
Table tennis
30
40
25
5
22
xi)
Ismaely club:
Activity
Foot ball
Hand ball
No. of plays
Basket ball
Volleyball
Table tennis
15
35
25
30
6
xii)
Mansoura club:
Activity
Foot ball
Hand ball
No. of plays
Basket ball
Volleyball
Table tennis
4
15
25
40
30
D- Group: In each of the following tables show the weights of pupils in kilograms. Use the information in each table to draw: 1- a broken-line graph. 2- a bar charts. 3- A bar-line graph. Then; show the heaviest and lightest pupil and their weight; then find the difference between them. xiii)
First group
Name
Ahmed
Waleed
Maged
Marwa
Hind
Heba
Weight in kg
150
135
100
75
80
53
xiv)
Second group
Name
Mona
Aiya
Donia
Nagy
Nabil
Ramy
Weight in kg
123
105
150
85
50
100
xv)
Third group
Name
Mohamed
Akram
Amr
Magda
Walaa
Doaa
Weight in kg
135
145
120
83
70
65
xvi)
Fourth group
Name Weight in kg
Bassma Nadia 65
95
Nabila Bassem 150
55
Abd El Mahmoud Rahman 105
73
E- Group: In each of the following tables show the tall of pupils in meter. Use the information in each table to draw: 1- a line graph. 2- a bar-line graph. 3- a bar graph. Then; show the tallest and shortest pupil and their weight; then find the difference between them. xvii) First group Name
Tall in m
Ahmed 1
Hoda 1.8
Nabil 3
Amal 2.7
Waleed 105
Mona 2.1
Nabila 0.9
Ramy 1
Amany Bassem 1.7 3
Abd El Rahman 2.5
Doaa 1.3
1
3
Ayman 1.5
Karima 0.8
Samir
Nagwa 1.6
xviii) Second group Name
Tall in m
xix)
Name
Tall in m
xx) Name Tall in m
Magda 2.3
Amr 1.7
Third group Mohamed
Aiya
2
1.7
Mahmoud Walaa
Fourth group Adel 3
Marwa 2
2.5
F- Group: The following tables show the heights of trees in Ahmed’s garden in metres. Use the information in each table to carryout the under required. xxi)
First group
Tree name A-tree B-tree C-tree D-tree E-tree F-tree G-tree 80.5 90 100 70.7 65.8 120.3 60.4
Height in m
Draw a line-graph, then find the highest and the shortest and difference between the highest and shortest one. xxii) Second group Tree name H-tree I-tree 50.7 100.8
Height in m
J-tree K-tree L-tree M-tree N-tree 80.2 95.7 70.7 60 110.3
Draw a bar chart, then find the difference between the highest and the shortest. xxiii) Third group Tree name O-tree P-tree Q-tree R-tree S-tree T-tree U-tree 120 110.3 40.7 75.3 80.5 60.5 90.9
Height in m
Draw a bar-line graph, then find the highest and the shortest tree, the difference between the highest and the shortest. xxiv) Fourth group Tree name V-tree W-tree X-tree Y-tree Z-tree 120 110.3 40.7 75.3 80.5
Height in m
ζ-tree
60.5
ξ-tree 90.9
Draw a broken line graph, then show the highest and the shortest tree and the difference between them. G- Group: The following tables show the population in many of governorates in Egypt. Use the information in each table to carry out the under required. xxv) First group Governerate Population in thousands
Ismaelia
Port-said
513684
600000
El Suize Domiatta Dakahlia 486193
681931
938138
Draw the bar-graph, then show the biggest and the smallest governorate and find the difference between them in population.
xxvi) Second group Governorate Population in thousands
Sharkia
Assiut
Aswan
Monofia
Kalubia
456381
513831
200000
731932
638153
Draw the bar-line graph, then show the biggest and the smallest governorate in population, also find the difference between them. xxv) Third group
governorate
Population in thousands
Gharbia
Menia Beni-Sueif Behera Kafr El sheik
738631
538138
4000000
235631
353638
Draw the line graph, then show the biggest and the smallest governorate in population, also find the difference between them. xxvi) Fourth group Governerate Population in thousands
Kena
Sohage
Red sea
Fayoum
El-Wady
138386
300000
538134
638193
238153
Draw the broken line, then show the biggest and the smallest governorate, also find the difference between them.
Please… Dear pupil… Review all syllabuses before solving each self-test and each exam, determine for your-self the time of exam and solve each exam more than once. Hassan A. Shoukr
Self-Tests Self–Test I Complete: 1)
5 = = = 8
2)
36 = = = 48
3)
3 = 9 3
4)
2 16 = 64
5)
3 36 =3 11
6)
50 = 4
7)
83 2 = 9 9
8) 11 =
9)
13 3
3 5
5
11)
1 3
5 8
24)
45 39 33 , , ,,, 73 69 65
1 2 + = 3 5
26)
3 3 1 + = 4 8
27)
3 1 2 +3 = 4 8
28)
29)
1
31)
1 3 + = 8 2
23)
> 2
25)
33)
3 8
1 3 3 +2 + = 5 4 10
3 7 +1 = 4 3
3 2 1 + + = 8 5 2 3 8 = 5 9
30)
+
32)
1 3 1 + = 3 5 4
34)
1 3 1 1 + + = 5 4 8 2
35)
3 2 2 ++1 = 5 4 9 3
36)
37)
3 3 1 − = 4 8
38)
3 1 = 8 4
40)
5 5 − = 9 18
5 1 − = 6 3 5 5 4 −4 = 7 14
39)
−
41)
3 3 1 − = 8 4
42)
− 2
43)
3 18 × = 9 21
44)
2 3 ×1 = 5 4
45)
3 3 3 4 ×1 × = 5 4 7
46)
×
47)
4 5 × = 9 8
48)
3 5 1 × = 4 8
49)
× 3
50)
3 2 ÷ = 4 5
1 7 = 4 10
3 3 =1 10 5
3 4 = 5 8
51)
3 3 1 ÷ = 4 5
52)
÷
3 4 = 5 9
53)
3 4 ÷ = 1 5 10
54)
3 4 1 ÷ = 5 7
55)
3 1 ÷ 4 = 2 5 2
56)
÷
57)
0.06 =
58)
5.003 =
59)
64 = 1000
60)
1
5 5 = 9 3
3 = 100
61)
1.005 can be read as: ………………
62)
463.06 can be read as: ………………
63)
The place value of “6” in the number 4.316 is ………
64)
The place value of “5” in the number 53.41 is ………
65)
The place value of “3” in the number 14.319 is ………
66)
The place value of “0” in the number 413.306 is ……
67)
6-hundredths
= …………….
68)
5- tens
= …………….
69)
7- thousands
= ……………..
70)
100- thousandths = …………….
71)
507- hundredths =
72)
6003- thousandths =
73)
43.361, 43.370, ……, ……, ……,
74)
96.406, 96.4, ……, ……, ……,
75)
46.361 < …………
76)
………. < 563.3
77)
43.461 < ………< 43.463
78)
531.4 > ……… > 531.38
79)
4.367 + 463.4 = ………
80)
……… + 56.38 = 136.4
81)
56.381 + ……… = 936.5
82)
5-tens + 6-hundredths = ………
83)
5- thousandths + ……… = 4- hundreds.
84)
……… - 9-tens = 4- thousands.
85)
563.4 – 35.438 = ………
86)
……… - 4.389 = 463.5
87)
563.5 - ……… = 46.531
88)
4-tens – 6- hundredths = ………
89)
……… - 5-tenths = 43.45
90)
363.3 ÷ 100 = ………
91)
4.631 × 1000 = ………
92)
……… ÷ 100 = 0.003
93)
456.3 ÷ ……… = 0.04563
94)
……… × 1000 = 1563
95)
4361.3 × ……… = 43613
96)
7-hundredths × 100 = ………
97)
4-tenths × 1000 = ………
98)
9-thousandths × ……… = 9
99)
7-tens ÷ 100 = ………
100)
9- hundredths ÷ 10 = ………
101)
103 – tenths ÷ ……… = 103
102)
………, 43.361
103)
4638.43, ………
104) 431.3, ……, 431.32 106)= 3.4 +5 . 3 4 91. 8 3 1
105) 107)
463.4, ……, 463.38
108)
109)
.3 6 1 - 3 1 5. .. 1 4 1. 6 1 7
4. 3 1 -2 3 . 2 . 5 11 .015 4 6 3. 2 + .. 1 3 9 9 1.231
B- Complete Using < , > or = : 3 4
110) 3 4
5 7
112) 4 3 3 4
3 8
3 6
111) 1 3 4
4 5
113) 5 5
2 9
114) − + 3 2 5 4
3 5
1 3
116) 1 × + 1 3 7
118) + 1
7 3
2 5
115) 1 + 3 10
2 1 3 1 ÷ 2 5 10 14
120)4.831 …… 53.43
5 6
3 1 1 2 − 1 10 2 4
2 3
3 4
3 8
117) 1 ÷ 2 1 − 3 1 4 4
3 8
119) 4 × 1 ÷
1 4
121)63.31 …… 63.41
1 4
122)3.5 …… 4
1 4
123)603.60 …… 603.06
2 5
124) 6 6.4
125)3-tenths …… 5-tens
126)
9- thousandths …… 4-hundredths
127)
100-thousandths …… 10-hundredths
128)
600-hundredths …… 6-tenths
129)
1000-thousandths ……1
130)
60 …… 600-tenths
Self-Test II Put the answer either “True” or “False”: 5 8
1) =
3 4
1 4
7 4
3 5
8 5
3 5
4) 1
3 5) 0.05 = 7)
3 4
2) 1 =
30 = 0.003 1000
8) 1
9)7-hundredths = 700 11)538-tenths = 53
8 10
157 1000
3 = 1.3 10
10) 40-thousandths = 0.04 12)46.38 < 46.39
13) 361.4 < 36.14 < 361.42 14) 43.06 can be read as: “forty three point six”. 15)
3-tenths + 4-hundredths = 0.34
16) 17)
5-tenths – 3-thousandths = 0.497 7-hundredths × 10 = 0.7
18)
100 × 4-tenths = 0.4
19)
5-thousands ÷ 100 = 5
20)
3-tenths ÷ 10 = 3-hundredths
21)
3.438 × 100 = 0.03438
22)
3.438 ÷ 100 = 343.8
23)
436 + 3.46 = 7.82
24)
536 – 48.93 = 43.43
25)
The place value of “5” in the number “4.315” is “thousands”
26)
The place value of “9” in the number “391.381” is “tenths”
27)
3 2 6 ×1 = 1 5 4 20
28)
3 3 2 1 ÷ =2 5 4 15
29)
1 4 3 +3 =3 15 5 10
30)
3 1 2 5 − =5 4 2 4
31)
5 1 3 3 1 +2 + =4 8 2 8 4
32)
3 2 1 4 −1 = 3 7 14 14
33)
5-tenths = 50-hundredths = 500-thousandths
34)
25.46 is “twenty-five and forty-six hundredths”
35)
Sixty-one and 9-thousandths is 61.09
36)
0.725, 17.25, 72.5 are in descending order.
37)
17 1 13 are in ascending order. ,1 , 20 2 5
38)
4.381 kg > 4381 gm.
39)
4.381 m2 > 4381 cm2.
Self-Test III Choose the correct answer: 1)
4 = 12 3
[ 8 , 4 , 1 , 2 ]
2)
4 = 25 5
[ 20 , 5 , 4 , 25 ]
3)
3 9 = 7
[ 3 , 63 , 21 , 27 ]
4)
27 =3 8 8
[ 3 , 8 , 7 , 27 ]
5)
3 4 = 5 5
[ 12 , 20 , 23 , 15 ]
6)
13 9
28 29 30 31 , , , 9 9 9 9
10)
3.46, …
47 45 44 43 3 100 , 3 100 , 3 100 , 3 100
11)
,
361 100
[3.6, 3.62, 3.63, 3.46]
12)
3 4 +1 = 5 8
8 6 7 7 2 40 , 2 40 , 2 40 ,1 40
13)
1 3 4 +1 + 2 = 2 4 8
3 3 18 1 4 ,3 , 4 , 4 4 4 4
14)
1 3 1 + = 3 8 4
3 3 4 2 1 8 ,1 8 , 2 8 ,1 8
15)
3 3 1 ++1 = 5 5 4 2
5 3 63 4 3 20 , 3 20 , 20 , 3 20
16)
3 3 3 +1 + 2 = 9 8 4 4
3 2 4 5 5 8 , 5 8 , 5 8 , 5 8
17)
3 3 2 − = 8 4
13 14 4 3 8 , 8 , 1 8 , 1 8
18)
4 3 1 − = 5 10
3 4 5 6 , , , 2 2 2 2
19)
− 3
1 3 = 4 16
5 7 6 8 3 , 3 , 3 , 3 16 16 16 16
20)
4 3 ×1 = 9 8
8 9 10 11 , , , 18 18 18 18
21)
3 1 1 × = 3 4 8
11 10 9 8 114 ,114 ,114 ,114
22)
× 2
3 4 =1 9 8
7 8 9 10 , , , 14 14 14 14
23)
1 3 4 ÷ = 5 8
55 56 57 54 5 , 5 , 5 , 5
24)
÷
3 5 = 4 8
13 14 15 16 32 , 32 , 32 , 32
9 10 11 13 22 , 22 , 22 , 22
1 3 ÷ = 2 5 10
25)
1
26)
51.03
27)
6- hundredths = …
[600, 0.006, 0.06, 0.6]
28)
30-tens
=…
[ 30 , 300 , 3 , 0.3 ]
29)
32 = 100
30)
103-tenths = …
31)
The place value of “3” in “431.415” is …
=
100
[ 5103 , 510.3 , 5.103]
[32-hundredths, 32-hundreds, 3.2] 30 3 03 30 10 10 ,1 10 ,1 10 ,10 10
[tenths, tens, hundredths, hundreds] 32)
96.406, 96.3, …
[96.194, 96.506, 96.206, 96.106]
33)
4.381, … , 4.379
[4.382, 4.38, 4.383, 3.378]
34)
536.41 > … > 536.39 [536.38, 536.39, 536.4, 536.41]
35)
46.381 + 4.9 = …
36)
… + 361 = 461.386
[53.281, 52.281, 51.281, 50.281]
[100.486, 100.386, 100.281, 100.181] 37)
463 - … = 4.386 [456.614, 457.614, 458.614, 459.614]
38)
435.386 ÷ 100 = … [4.35386, 43538.6, 435.386, 435386]
39)
541.438 ÷ … = 0.514138
[100, 10, 1000, 10000]
40)
100 × 563.198 = … [5.63198, 56319.8, 563.198, 563198]
41)
… × 534.039 = 5340.39
[ 10, 100, 1000, 10000 ]
42)
6- hundredths ÷ 10 = …
[ 0.6 , 0.06 , 0.006 , 6 ]
43)
100 × 30-thousandths = …
[ 0.03 , 0.003 , 0.3 , 3]
44)
300-tenths ÷ … = 3
[ 10, 100, 1000, 10000 ]
45)
… × 20-tens = 200
[ 1 , 100 , 1000, 10000 ]
46)
100 of 4-tenths = …
[ 4 , 40 , 400 , 4000 ]
Self-Test IV Word Problems: 1)Samiha bought some chocolate for L.E
3 and two notebooks 5
3 . Find the total cost for the chocolate and two 5
for L.E
notebooks in pounds?
2)Amina bought three coloured satin ribbons. A red 3 4
ribbons metres long, a green one yellow one
4 metres long and 5
1 metres long. Find the total length of Amina’s 2
satin ribbons.
3)Hazem had one pound. He bought biscuits for L.E ruler for L.E
3 . How much money was left? 4
1 and a 5
4 from his father. He bought a protractor 5 3 and set-square for L.E . How much money was left? 4
4)Hossam took L.E
5)Amal bought 4 metres of cloth to make a dress but it shrunk by
1 metres after washing. How much cloth did she have 5
left?
6)Ramy is
6 1 metres tall and his brother Amr is metres 5 4
shorter. How tall is Amr?
7)Samira bought a pen for L.E magazine for L.E
1 1 , a cola drink for L.E and a 5 4
5 . How much money did Samira spend? 8
8)Wafaa bought three strips of coloured decorations the length
3 1 metres, the length of the second was 8 4 1 metres. Find the metres and the length of the third was 2
of the first was
total length of the three strips. 9)Hany needs
5 kg of sugar for one day. How much sugar does 8
he need for one week?
10)If the price of one kilogram of cheese is L.E 12. Then what is the price of
3 kilograms? 4
11)A grocer puts 36 kg of vegetables into bags, each bags holds 3 kg. How many bags are needed for the whole quantity? 4
12)The distance between Ahmed’s house and the school is
4 km. He covers this distance in 10 minutes. Find the 5
distance that Ahmed covers in one minute.
13)Bassem bought two bottles of sherbet. The first was rose flavoured weighing weighing
7 8
kg and the second flavoured
4 kg. Find the total weigh of the two bottles. 5
14)Mona bought
3 2 metres of cloth, each metre costs L.E . 4 5
How much did Mona pay in L.E? 1 5
15)Six boxes of biscuits cost L.E 1 . How much does one box cost?
16)How many books can you buy for L.E 4, if each book costs L.E
2 ? 5
17)In a house keeping section, the students made 5 kg of jam. They want to put them in jars that can hold
5 kg. How 8
many jars are needed for the whole quantity of jam.
18)How many bags are needed to hold 3 kg of rice if each bag holds
3 kg 4
19)Three cakes, each one is divided into 3-equal parts. How many parts are there?
20)Abd El-Rahman bought
2 kg of tea, the price of the 3
kilogram was L.E 12. How much did he pay? 21)A lady bought
3 kg of butter, the price of the kilograms 4
was L.E 6. How much did she pay?
22)A merchant has two pieces of cloth, the length of one is 54 metres and the length of the other is 45 metres. If he sold of the first and
3 4
3 of the second. How many metres did he 5
sell from each of the two pieces.
23)Mohamed has L.E 15. He bought fruits for L.E 3.42 and vegetables for L.E 2.86, as well as compass and a protractor for L.E 3.05. Calculate how much money he has left. 24)Nagwa has got a tree whose height is 50.36 metres and Mona has got another whose height is 131.5 metres. How much does Mona’s tree increase Nagwa’s tree? 25)Mohamed has took L.E 5.35 from his father and L.E 3.2 from his mother, he bought a pencil for L.E 2.3 and a pen for L.E 3.75. How much money was left?
Self-Test V Data Representation: i)
The following table shows the heights of some students
Name Mohamed Height in m 1.12
Nagy 0.98
Amr 0.83
Omr 1.2
Bassem 0.91
Draw the line graph, then answer: a)
What is the name of the tallest student?
b)
What is the name of the shortest student?
c)
Arrange the students from the shortest to the tallest.
ii)
The following table shows the value of petroleum and raw oil produced in Egypt in the period from 1973 to 1978.
Year Value in millio ns
1973
1974
1975
1976
1977
1978
178.4
263.9
385.7
574.6
696
794
Draw the bar chart, then answer: a)
Find the yearly increase in the value of petroleum and raw oil products in Egypt.
iii) In the following table shows the change in the number of pupils in “one class room schools” from the academic year 1982/83 to the academic year 1988/89. Academic year Number of pupils
1982/83 68358
1984/85 37599
1986/87 25781
1988/89 27023
Draw the broken line graph. iv) In the following table shows the prediction about maximum temperatures in some Egyptian towns and 3rd December 1995.
Town
Cairo
Temperatures in Co
30
Alex. Ismaeliya Assuit
26
25
Luxor
40
Kafr El Port Sheik Said
42
25
20
Represent these data by a line graph, then show: a) The hottest town b) coldest town c)
The difference between highest temperature and lowest one.
v)
The following table shows the number of ships which passed through the Seuz canal in the period 1985-1990. Year
Number of ships
1985
1986
1987
1988
1989
1990
17664 17628 18190 17541 18403 19791
Represent the previous data by bar line graph and the line graph. vi) The following table shows the number of different types of housing units built in the year 1988/1989. Type Egypt Number of 84789 units
Nigeria Algeria Kenya Zimbabwe Morocco 56043
17137
5633
26227
40328
Represent the data by bar-line graph and the line graph, then show: a)
The ascending order of types of these housing units.
b) The biggest state in the number of types of housing
units.
vii) The following table shows the quantities of needs in ardebs sold by a farmer during some months: Month
March
April
May
June
July
August
Quantity in ardebs
20
30
45
40
15
20
Represent the previous data by the bar-line graph and the line graph. viii) The following table shows the number of television colour sets sold in Egypt during the period 1970-75 Year Number of sets in thousands
1970
1971
1972
1973
1974
1975
77.2
84.0
91.3
114.6
130.9
142.5
Represent the data by bar-line graph and broken line. ix) The following table shows the production of grain on a certain from during the period from 1968-1973. Year Grain production in millions
1968
1969
1970
1971
1972
1973
395
410
495
560
420
515
Represent the data by the bar-line graph and a line graph, then show: a)
In which year is the greatest grain production.
b)
In which year is the smallest grain production.
c)
The difference between them.
x)
The following table shows the area of the various continents of the world.
Continent
Area in millions of square miles
Africa
Asia
Europe
N.America
30.3
26.9
4.9
24.3
S.America Oceania
17.9
22.8
Represent the data by line graph and bar-line graph, then show: a)
Which is continent of the world the greatest?
b)
Which is continent of the world the smallest?
xi) The following table shows the sales of motor cars by a certain company in the period 1990-1995.
Year Sales
1990 2000
1991 2500
1992 3200
1993 2700
1994 3000
1995 2500
Represent the data by a bar-line graph and line graph. xii) The information below gives the production of tyres (in thousands) produced by a certain company for the first six months of 1998. Month January February March April Production 40 43 39 38
May 37
June 45
Represent the data by a bar-line graph and a broken line. Then show: a)
The month of the best production.
b)
The month of the lowest production.
c)
The difference between them.
Examinations Exam Style Paper I Answer the following questions: 1 a) Complete: i)
1 3 1 + = 3 5
ii)
− 2
iii)
21.35 + … = 118.13
iv)
365 – 32.51 = …
2 3 =4 10 10
b) Put the suitable sign (√) or (×). i)
15.31× 100 = 0.1531
ii)
81.313 ÷ 10 = 8131.3
iii)
1 2 2 3 × =3 3 7 21
iv)
3 1 9 ÷2 = 2 5 3 5
2 a) Choose the correct answer: i)
4 = 12 3
[ 8 , 4 , 1 ,
ii)
103-tenths = …
30 03 03 30 10 10 ,1 10 ,1 10 ,10 10
iii)
32 = 100
2 ]
[32-hundredths, 32-hundreds, 32, 3.2]
b) Put the suitable sign < , > or = : i)
4 5 9 7
iii)
31.56 – 26 … 5
1 6
ii)
4.831 … 48.31
iv)
6
2 … 6.4 5
3
a) Arrange in ascending order : b) If there are 11
2 3 1 , , 5 10 4
1 3 cans of oil and each one contains kg 3 7
of oil. Then find the amount of oil in the cans.
4 The following table shows the marks of Nagy in different subject. Subject
Math’s
Arabic
Science
English
Mark
32
25
17
28
Social studies 19
Represent the data by a bar-line graph and a line graph, then show; a)
What is the best subject of Nagy?
b)
What is the bad subject of Nagy?
c)
What is the total mark of Nag?
Exam Style Paper II Answer the following questions: 1
2
Find the result: i)
3 4 1 × 5 5
ii)
5 2 1 1 +2 + 7 3 3
iii)
5.56 – 2.763
iv)
35.25 ÷ 100
a) Put the suitable sign “ + ” , “ - “ , “ × “ or “ ÷ “: i)
7 2 3 3 2 = 5 10 10 5
ii) 135.43 … 100 = 1.3543
10 … 43.36 = 433.6
iii)
3 2 17 1 = 8 3 24
iv)
b) There is a piece of land whose area is 3565.562m2. If we want to divide it on 10 brothers, Then what is the share of each one? 3 a) Complete i)
3 3 1 − = 8 4
iii)
0.4 ÷ = 1
3 5
3 = 100
ii)
1
iv)
56.381 + … = 936.5
b) Put the suitable sign (√) or (×) : 157 100
i)
5 3 = 8 4
iii)
The place value of “8” in 391.381 is tenth.
ii)
15.007 =
4 a) Put the suitable sign < , > or = : i)
3 3 3.57 4
ii)
3 2 1 − 5.3 ÷ 10 7 5
iii)
3 16 1 5 10
iv)
13.2 – 5.36 … 6
1 5
b) Arrange in ascending order: 1 2
5
,
0.05 ,
1 , 4
0.025
The following table shows the book types and its number of pages.
Book type Math’s English Number of pages
160
200
Science
Arabic
170
240
Social Religion studies 100
80
Represent the data by a bar-line graph and a broken line, then show: a) the big book b) the smallest book.
Exam Style Paper III Answer the following questions: 1 a) Put the suitable sign < , > or = : i)25.36 … 25
4 7
3 4
ii) 2 + 3
iii)15.31 × 10 …1.531 × 100
5 3 2 9 − 4 14 5 10
iv)5.3 – 2.35 … 1.15 + 2.6
b) Complete as the pattern: 3.2, 5.5, 7.8, …,… , …,… 2 a) Complete: 1 3 =2 6 5
i)
35 = 8
ii)
+
iii)
35.43 × … = 3543
iv)
53.5 - … = 25.31 1 4
b) Mohamed and his sister have L.E 11 . If his sister has 3 4
L.E 5 . Then find what Mohamed has? 3
Join in order: 3
1
3 2 −1 4 8
1 3 ×2 5 4 5
3
2 3 +1 3 6
3 2 −3 4 5
1
1
3 2 ÷1 7 5
3 1 ×1 5 4
4 a) Arrange in descending order: 6.2 , 6
1 4
, 6.3 , 6.35
b) Choose the correct answer: i)
13 : i)
42 2 49 5
iii) 2.4 × 10 … 0.24 × 100
ii)
0.25
1 8
iv) 1000-thousandths … 1
3 a) Find the result of each: i)
1 1 1 7 + 2 +1 4 6 3
ii)
0.85 + 2.013
iii)
9.79 ÷ 1000
iv)
2.015 – 1.278
b) Arrange in ascending order:
8007 2 , 0.7 , 0.08 , 0.0087 , 1000 24 3 each and a book for 8 L.E 4.75. If she had L.E 10 then find the money left with her.
4 a) Madiha bought 4-notebooks for L.E
b) Put the suitable sign (√) or (×) : i)
4.381 m2 = 43810 cm2
iii) 10-hundredths = 100-tenths 5
ii)
30 = 0.003 1000
iv)
3 8 1 < 5 5
The following table shows the number of housing units of different types built in the year 1998: Type
Economy
Intermediate
Above inter
Luxury
Number in thousands
85
56
17
6
Represent the data by a bar chart and a line graph.
Exam Style Paper VI Answer the following questions: 1
Find the result: i)
3546 × 100 = …
ii)
483 ÷ 1000 = …
iii)
5 5 1 +3 = 7 14
iv)
2 3 3 −1 = 5 3
35.31 – 1.356 = …
v)
vi)
63 + 31.56 = …
2 a) Complete: i)
356.35 × … = 3.5635
ii)
563 ÷ 10 = …
iii)
3 81 = = 5 15
iv)
1 3 × = 12 4
b) How many hundreds are there in 35.36? 3 a) Put the suitable sign < , > or = : 35.3 … 35
i)
1 3
3 2 ii) 1 + 1.35 + 2.36 4 8
iii) 9-thousandths … 4-hundredths iv) 3.48 × 10 … 348 ÷ 10 b) Arrange the following in ascending order: 13.15 , 41 , 0.015 , 1.015 , 13.015 4 a) Complete:
i)
5-tenths = …
iii)
The place value of “4” in the number 1356.438 is …
ii)
3.005 =
b) Find the perimetre of a rectangle and its area, if its length is 13 cm and its width is 5 cm. 5 The following table shows the population in millions in the period 1940-2000. Year
1940
1950
1960
1970
1980
1990
2000
Population in millions
8
15
20
27
40
55
65
Represent the data by a bar-line graph and a line graph.
Exam Style Paper VII Answer the following questions: 1
Complete: i)
3 11 = 5
ii)
2 16 = = 64 8
iii)
0.005 =
iv)
7-thousandths = …
v)
431.29, …, 431.31
vi)
“6” in 41.426 is …
2 Choose the correct answer: i)
9-thousandths…4-hundredths
[ < , > , =]
ii)
27 =3 8
3 8 7 27 8 , 3 , 8 , 8
iii)
or = : i)
603.60 … 603.06
iii)
3 7 1 6 3
ii)
3.5 … 4
1 4
b) Complete as the pattern: 96.406 , 96.4 , … , … , … , … 5 a) Arrange in ascending order: 4 3 4.3 , 5 , 1.98 , 3 5 4 b) How many bags are needed to hold 3 kg of rice if each 3 bag holds kg? 4 6 In the following table the heights of some trees in Mona’s garden. Tree name Height in m
V-tree
W-tree
X-tree
Y-tree
Z-tree
ζ-tree
ξ-tree
55.6
80.5
60.4
115.3
110.4
70.6
60.7
Draw the bar chart and the broken line. Graph.
Exam Style Paper VIII Answer the following questions: 1 Put the suitable sign (√ ) or (X): 3 i) ii) 1 = 1.03 10
538-tenths =
4 5
iii)
536 – 48.93 = 43.43
iv)
v)
4.381 m2 > 4381 c m2
vi)
2 Choose the correct answer: 3 i) 4 = 5 2 ii) 3 > 9 4 3 1 iii) +1 + 2 = 8 4 2
2 1 3 4 −1 = 3 14 7 14 3 3 2 1 ÷ =2 5 4 15
12 20 23 15 5 , 5 , 5 , 5 28 29 30 31 9 , 9 , 9 , 9 1 3 3 18 4 4 ,3 4 ,4 4 , 4
iv)
46.381+ 4.9 = …
v)
541.438 ÷ … = 0.541438
[53.281, 52,281, 51.281, 50,281] [10, 100, 1000, 10000]
3 Find the result: i)
3 4 +1 8 5
ii)
4 3 ×1 9 8
iii)
563 – 459.614
iv)
563.198 ÷ 1000
4 a) Arrange the following ascending order: 66.31, 663.1, 6.631, 0.6631 b) Complete the missing digits: i)
3
+4
.3 2.
5 4
9 1 6.16 1 5
ii)
.3 6 7 -3 67.
.
1 62. 1 73
The information below gives the production of tyres ( in thousands) produced by a certain company for the first six months of 1998.
Month Productio n
a)
January
February
March
April
May
June
40
43
39
38
37
45
Represent the table a bar line graph and a line graph, then show: The month of the best production. b) The month of the lowest production. c) The difference between them.
Exam Style Paper IX Answer the following questions: 1 a) Complete using < , > or = : 1 3 5 ii) 7.5 … 7 i) 5 5 2 4 6 3 1 3 1 iii) 4 × 4 ÷ iv) 0.345 × 100 … 345 ÷ 10 4 4 4 4 b) Arrange the following groups in ascending order:
1 3 3 , 3.3 , 3 , 3.25 2 4 2 a) Choose the correct answer: i)
300-tenths ÷ … = 3
[10, 100, 1000, 10000]
ii)
1 3 − 3 = 4 16
8 7 6 5 3 16 ,3 16 ,3 16 ,3 16
iii)
The place value of “5” in the number 431.365 is … [hundreds, hundredths, thousandths, thousands]
b) How many books can you buy for L.E 4, if each book 2 costs L.E ? 5
3
Complete: i)
… × 20-tens = 200 ii)
iii)
1 3 3 + = 4 4 8
iv)
3 1 ×1 = 2 8 4
v)
36.38 × …= 3638
vi)
÷
6-hundredths ÷ … = 0.006
3 5 = 4 8
4 a) Complete as the pattern:
1 5 9 , , ,,,, 2 4 6 b) Complete as the pattern: 2.5, 4.8, 7.1, … , … , … , … 5
The following table shows the change in the number of pupils in “one class room schools” from the academic year 1992/1993 to the academic year 2000/1. Academic year
1992/93
1994/95
1996/97
1998/99
2000/1
Number of pupils
68358
37599
25781
27023
53028
Represent the data by line graph.
Exam Style Paper X Answer the following questions: 1
Find the results: i)
3 3 1 1 + 3 +1 4 8 2
ii)
1 3 − 3.25 2
iii)
35.53 × 100
iv)
45.38 ÷ 10
2 a) Complete the missing digits: i) 4 5 . 3 +2 . 2 9 01.5 1
ii) 3 . 5 6 - 2.3 18.893
.
b) How many 100s are there in 4538? 3 a) Complete using < , > , = : i)
438.3 ÷ 10 … 4383
ii)
1 4 × 28 2
iii)
1 1 1 1 1 ÷ 1 × 4 4 4 4
iv)
3 7 3 8 2
b) Complete as the pattern: 49.3 , 52.8 , … , … , … , … 4 a) In a house keeping section, the students made 5 kg of jam. 5 They want to put them in jars that can hold kg. How 8 many jars are needed for the whole quantity of jam? b) Arrange the following in descending order:
56 1 2 3 , 9 , 4.35 , 10.75 , 10 2 3 5 Put the suitable sign (√) or (×): i)
1 3 1 = 2 2
ii)
1 104 =1 100 25
iii)
35.3 + 0.368 = 4.21
iv)
46 – 0.46 = 0
v)
2 3 2 ×3 = 6 3 2
vi)
1 1 1 ÷1 = 1 4 4
6
The following table shows the weights of pupils in kilograms. Use the information in the table to draw the line graph and bar line graph. Name
Bassem
Nadia
Nabila
Bassma
Ramy
Amr
Weight in kg
65
95
150
55
105
73
Please… Dear pupil… Try to solve the problems before looking these answers. Hassan A. Shoukr
i) ii) iii) v) vii) ix) xi) xii)
10, 16, 15, 24, 20, 32 18, 24, 9, 12, 3, 4 1 iv) 11 vi) 9 viii) 14, 5 x) one of the answers is 15 19 23 , , 12 14 16
8 12, 1, 2 58 19, 3 4
xiii) 16, 20, 12, 15, 8, xiv) 4, 5,8 , 10 10 xv) 15 xvi) 3 xvii) 13, 1 xviii) 5 xix) 21, 9 xx) 8 xxi) 6, 9 xxii) 6, 8 xxiii) one of the answers is 3 17 21 15 , , . 61 57 53 11 xxv) 15 7 xxvii) 5 8 1 xxix) 4 4 3 xxxi) 1 8 7 xxxiii) 12 31 xxxv) 3 36 3 xxxvii) 1 8 5 xxxix) 8 5 xli) 8 2 xliii) 7 9 xlv) 3 20
xxiv)
xxvi) 2
1 8
xxviii) 1 xxx)
13 32 14 xlix) 65 11 li) 2 12 1 liii) 4 1 lv) 11 2 3 lvii) 50
xlvii) 1
Self-Test I
13 45
11 40
9 20 7 xxxiv) 3 8 1 xxxvi) 2 5 xxxviii) 14 5 xl) 18 9 xlii) 3 10 7 xliv) 10 5 xlvi) 6
xxxii) 1
5 14 7 l) 1 8 4 lii) 15 4 liv) 2 5 25 lvi) 27
xlviii)
lviii) 5
3 1000
lix) 0.064 lx) 1.03 lxi) One point zero zero five lxii) 4-hundred and sixty-three point zer six. lxiii) thousandth lxiv) tens lxv) tenth lxvi) hundredth lxvii)0.06 lxviii)50 lxix) 7000 lxx) 0.1 lxxi) 5.07 lxxii)6.003 lxxiii)43.37, 43.388, 43.397 lxxiv)96.394, 96.388, 96.382 lxxv)46.362 lxxvi)563.29 lxxvii)43.462 lxxviii)531.49 lxxix)467.767 lxxx)80.02 lxxxi)880.119 lxxxii)50.006 lxxxiii)0.035 lxxxiv)130 lxxxv)527.962 lxxxvi)467.889 lxxxvii)516.969 lxxxviii)39.94 lxxxix)43.95 xc) 3.633 xci) 4631 xcii) 0.3 xciii)10000 xciv) 1.563 xcv) 10 xcvi) 0.7 xcvii)400 xcviii)1000 xcix) 0.7 c) 0.009 ci) 0.1 cii) 43.36 ciii) 4638.43 civ) 431.31 cv) 46339 cvi) 3, 8, 3, 9, 7 cvii) 7, 4, 3, 3, 4, 6 cviii)4,5,7,7,4,4 cix) 5, 2, 9, 1, 0, 9 cx) > cxi) < cxii) > cxiii)< cxiv) < cxv) > cxvi) < cxvii)< cxviii)>
cxix) < cxxi) < cxxiii) > cxxv) < cxxvii) = cxxix)
cxxx) =
Self-Test II
i) X iii) X v) X vii) X ix) X xi) √ xiii) X xv) √ xvii) √ xix) X xxi) X xxiii)X xxv) X xxvii) X xxix) X xxxi) √ xxxiii)√ xxxv) X xxxvii)√
ii) √ iv) X vi) X viii) √ x) √ xii) √ xiv) X xvi) √ xviii)X xx) √ xxii) X xxiv) X xxvi) X xxviii)√ xxx) √ xxxii) X xxxiv)√ xxxvi)X xxxviii)X Self-Test III
i) iii)
1 21
v)
23
vii)
3 5 28 9
ix) xi)
3.6
ii) iv) vi)
20 3
15 4 viii) 2 1 8 x) 3 47 100 xii) 2 7 40
xiii) 4 3
xiv) 1 3
4 xv) 3 3 20 13 xvii) 8 xix) 3 7 16 11 xxi) 1 14 xxiii) 56 5 13 xxv) 22
8 xvi) 5 5 8 xviii) 3 2 11 xx) 18 xxii) 9 14 xxiv) 15 32
xxvi) 5103
xxvii)0.06 xxviii)300 xxix)32-hundredths xxx) 10 3 10
xxxi)tens xxxiii)4.38 xxxv)51.281 xxxvii)458.614 xxxix)1000 xli) 10 xliii)0.3 xlv) 100
xxxii)96.194 xxxiv)536.4 xxxvi)100.386 xxxviii)4.35386 xl) 56319.8 xlii)0.006 xliv)10 xlvi)40
Self-Test IV
i)
1 1 5
The total = L.Eii) The total = L.E 2
1 20
iii)
The left = L.Eiv) The left = L.E
v)
The
1 20
3
4
5
1 20
m
left
=vi) Amr’s tall = 19 m 20
b) The shortest is Amr c) Amr, Bassem, Nagy, Mohamed, Omr.
vii) Samira spent L.E 1 3
40
viii)The total of three strips = 1 1 m
2)
8
3 8
ix)
For one week = 4 kg
x)
The price of
3 kg = L.E 9 4
xi) –The number of bags = 48 xii) The distance per one minute 2 km 25
=
1977
1978
80000
19 82 /8 3 19 84 /8 5 19 86 /8 7 19 88 /8 9 30 20 10
Nagwa’s
0 Cairo
5) 0.98
0.91
0.83
0.6 0.4 0.2 0
a) The tallest is Omr
1976
40
1.2
N
1975
4) 50
1.4
M
1974
0
Self-Test V
0.8
263.9
20000
2
tree = 81.14 m xxv)The left = L.E 2.5
1
178.4
40000
xxiii)The left = L.E 2.66 xxiv)Mona’s tree increases
1.12
574.6 385.7
60000
1 The cost of one box =L.E 5
1.2
794
The yearly increasing ~ 784 – 696 = 88
3)
xvi) The number of books = 10 xvii)The number of jars = 8 xviii)The number of bags = 4 xix) The number of parts = 9 xx) He paid = L.E 8 xxi) She paid = L.E 9 xxii)The number of metres = 67 1
1)
696
1973
xiii)The total = 1 27 kg 40 xiv) Mona paid = L.E 3 10 xv)
800 700 600 500 400 300 200 100 0
A
O
B
Ismaeliya
Luxor
Port Said
a) Hottest town is Luxor b) The coldest town is Port said c) The difference = 22o 20000 19500 19000 18500 18000 17500 17000 16500 16000 1985
1986
1987
1988
1989
1990
6) 100000
10) 30 35
80000
25
60000
20
40000
15
20000
10
0
5
O
ce an ia
er ic a m
ei ca
S. A
N .A m
a
a) The greatest is Africa b) The smallest is Europe
11)3500
50 45 40
3000
35 30
2500
25
2000
20
1500
15 10
1000
5
500
0 March
May
July
0 1990
8) 160
1991
1992
1993
1994
1995
12) 50
140
20 1971
1972
1973
1974
1975
Ja nu a
1970
ry
0
600
Ju ne
40
M ay
60
A pr il
80
M ar
100
ch
45 40 35 30 25 20 15 10 5 0
120
9)
Eu ro pe
A fr ic
a
a) The ascending order is : 5633 , 17137, 26227, 40328, 56043 , 84789 b) The biggest state is Egypt
Fe br ua ry
7)
0
Kenya
A si
Egypt
a) The best month is June b) The lowest month is May c) The difference is 8
500 400
Exam I
300 200
1)
100
a) Complete: i)
0 1968
1969
1970
1971
1972
a) The greatest in 1970 b) The smallest in 1968 c) The difference = 165
1973
1
14 15
ii)
6
1 2
iii) 96.78 iv) 332.49 b) Put the suitable sign (√) or (X): i)X ii)X
ii) 10
i)1
03 10
iii)32-hundredths b) Put the suitable sign or = i)< ii)< iii)> iv)=
b) In ascending order: 0.025, 0.05,
5) 300 200 150
17 b) The total amount in cans = 3 kg 21
100 50
53
4) 03 51
R el
tu di e
s
ig io n
bi c
lS
A ra
a) The big book is Arabic book b) The smallest is Religion book
01 5 0 Math's
cibarA
ecneicS
hsilgnE
laicoS seidutS
a) The best is Math’s b) The bad is Science c) The total mark is 121
Exam II Find the result: i) 1
7 25
ii) 4
5 7
iii)2.797 iv)0.3525 a) Put the suitable sign “+” , “-“ , “ × ” or “ ÷ ”. i)+ ii) ÷ iv)iii) × b) the share of each one = 356.5562 m2 3) a) Complete 5 8
Exam III
1)
a) Put the suitable sign or =: i)< ii)> iii)= iv)< b) Complete: 10.1 , 12.4 , 14.7 2) a) Complete i) 4
2)
i)
nc e
So ci a
02
h
M at h' s
0
52
1)
1 1 , . 4 2
250
1 3 2 , , 4 10 5
a)
a) Put the suitable sign or =: i)> ii)> iii)= iv)>
Sc ie
3)
4)
En gl is
2)
iii)X iv)X a) Choose the correct answer:
ii)1.03
iii)0.25 iv)880.119 b) Put the suitable sign (√) or (X): i)X ii)X iii)X
3 8
iii)100
ii) 1
17 30
iv)28.19
b) Mohammed has L.E 5
1 2
3)
Join
4)
a) In descending:6.35, 6.3, 6 , 6.2
1 4
b) Choose: i)
15 4
iii)10
ii) 3
47 100
iv)20
5) 80
Exam V
70
1)
60 50 40
i)
30 20 10
W af aa
H od a
r A m
y
m
R am
B as se
A hm
ed
0
a) The heaviest pupil is Amr b) The lightest pupil is Hoda c) The difference is 45.35 kg.
Exam IV 5 i) 3 12
6 ii) 7
iii)10
1 iv) 2 4
Choose: ii)
i)3.4
1 20
58 7
iii)7 iv)1000 v)30 2) a) Complete i)1000 ii)3200 iii)2485 iv)73024 b) Put the suitable sign or =: i)> ii)> iii)= iv)= 3) a) Find the result: 3 4
ii)2.863 iv)0.737
b) in ascending: 0.0087, 0.08,
2 , 0.7, 24
8007 1000
4)
a) The left = L.E 4
7 8
b) Put the suitable sign (√) or ( X): ii)X i)√ iii)X iv)X
5)
90 80 70 60 50
160
40
140
30
120
20
100
10
80
0
60
Economy
40 20
Inter mediate
Above inter
Exam VI
A
M us H ic ou se K gr e ep ic l tu in g ra lE du Ph ca ys ti o ic n al Ed uc at io n
0 rt
4) 5)
ii)
iii)0.00979
iii)0.02 iv)Tenth v)0.8005 vi)4000m2 Complete i)23.532 ii)0.354 iii)6.3 iv)7.45 v)10 vi)201.8 Problem ( xxv) in self test iv
A
3)
51 40
i) 10
s
2)
Find the result:
Sp or t
1)
Choose
1)
Find the result i)354600
ii)0.483
Luxury
iii) 5
2)
1 14
iv) 1
iii)X iv)X vi)X v)√ 4) a) Complete using or =: i)= ii)< iii)< b) Complete: 96.394, 96.388, 96.382, 96.376
2 5
v)33.954
vi)31.44
a) Complete i)100
ii)56.3
iii)9, 13
iv) 3
i)0.5
ii) 3
9 13
3
5) a) in ascending order: 1.98, 3 , 4.3, b) the number of 100s = 0.3536 4 3) a) Put the suitable sign < , > or =: 4 5 i)< ii)< 5 iii)< iv)= b) the number of bags = 4 b) in ascending: 0.015, 1.015, 13.015, 6) 140 13.15, 41 120 4) a) Complete
5)
iii)tenth
5 1000
100 80 60
70
40
60
20
50
0
40
V
30 20
0 1940
1950
1960
1970
1980
1990
2000
Exam VII
2)
Complete i)58, 5 iii)5, 1000 v)431.3 Choose
ii)8, 2 iv)0.007 vi) thousandth
i)
or =: i)< ii)= iii)> iv)>
120 100 80
1 2
3 4
1 2
iv) 1
b) Complete: 9.4, 11.7, 14, 16.3 5) Problem (III) in self-test V
Exam X 1) Find the result 5 8
ii)0.25
iii)3553 iv)4.538 2) a) Complete i) 6 , 5, 6, 2, 8 ii) 1, 1, 2, 6, 3 b) The number of 100s = 45.38 3) a) Complete using < , > or =: i)< ii)> iii)< iv)< b) Complete: 56.3, 59.8, 63.3, 66.8 4) a) problem (xvii) in self-test IV 2 3
b) In descending: 10.75, 9 , 1 3 . 2
20
56 , 4.35, 10
5) Put the suitable sign (√) or (X):
r
y
A m
a
R am
B as sm
N ab ila
m
7 11 15 vi) v)100 32 13 17 21 25 4) a) Complete: , , , 8 10 12 14
i) 6
40 0
7 16
iii)thousandth b) The number of books = 10 3) Complete i)100 ii)10 iii) 1
60
N ad ia
i)10
6)160
B as se
ii) 3
ii)√ iv)X vi)√
140
b) in ascending order: 3.25, 3.3, 3 , 3 2) a) Choose
i)√ iii)X v)X
Mathematical Terms addition angle measure area
A
ascending order arrangement breadth bottom bar chart
B
broken line graph comparing convert calculate common denominator
C
dimensions data representation decimal
ﻋرض اﻟﺷﻛل ﻗﺎع/أﺳﻔل اﻻﻋﻣدة اﻟﺑﯾﺎﻧﯾﺔ رﺳم ﺧط ﻣﻧﻛﺳر ﺑﺎﺳﺗﺧدام اﻟﻣﺳطرة ﻗﺎرن ﺣول اﻟﻰ اﺣﺳب اﻟﻣﻘﺎم اﻟﻣﺷﺗرك
D
decillion 10 division operation determine drawing divisible by divisibility divisor dividend quotient division operation 15
ﻋﻣﻠﯾﺔ اﻟﺟﻣﻊ ﻗﯾﺎس اﻟزاوﯾﺔ ﻣﺳﺎﺣﺔ ﺗﺻﺎﻋدﯾﺎ )ﻣن اﻟﺻﻐﯾر (اﻟﻰ اﻟﻛﺑﯾر ﺗرﺗﯾب
دﯾﺷﻠﯾون ﻋﻣﻠﯾﺔ اﻟﻘﺳﻣﺔ ﺣدد رﺳم ﯾﻘﺑل اﻟﻘﺳﻣﺔ ﻋﻠﻰ ﻗﺎﺑﻠﯾﺔ اﻟﻘﺳﻣﺔ ﻗﺎﺳم ﻣﻘﺳوم ﻧﺎﺗﺞ اﻟﻘﺳﻣﺔ ﻋﻣﻠﯾﺔ اﻟﻘﺳﻣﺔ اﺑﻌﺎد )اﻟﺷﻛل او (اﻟﻣﺟﺳم ﺗﻣﺛﯾل اﻟﺑﯾﺎﻧﺎت ﻛﺳر ﻋﺷري
decimal form E
Equality
F
factor first multiple fraction
H
highest common factor (H.C.F) hundred-million digit horizontally
I
L
line graph length million milliard multiplication operation multiple measure of
ﺗﺳﺎوي ﻋﺎﻣل اﻟﻣﺿﺎﻋف اﻻول ﻛﺳر اﻟﻌﺎﻣل اﻟﻣﺷﺗرك اﻷﻋﻠﻰ رﻗم ﻣﺋﺎت اﻟﻣﻼﯾﯾن
infinite included angle improper fraction lowest common multiple long division
ﻓﻲ ﺻورة اﻟﻛﺳر اﻟﻌﺷري
M
اﻓﻘﯾﺎ ﻏﯾر ﻣﺣدد اﻟزاوﯾﺔ اﻟﻣﺣﺻورة ﻛﺳر ﻏﯾر ﻓﻌﻠﻲ اﻟﻣﺿﺎﻋف اﻟﻣﺷﺗرك اﻷدﻧﻰ اﻟﻘﺳﻣﺔ اﻟﻣطوﻟﺔ رﺳم ﺧط ﺑﺎﺳﺗﺧدام اﻟﯾد طول ﻣﻠﯾون ﻣﻠﯾﺎر ﻋﻣﻠﯾﺔ اﻟﺿرب
mixed number N
ﻣﺿﺎﻋف ﻗﯾﺎس ال ﻋدد وﻛﺳر )ﻋﺷري (او اﻋﺗﯾﺎدي
numeral decimals place value prime number perimeter proper fraction remainder reduce side length simplify simplest form subtraction trillion
P
R S
T
3-digit number 2- third 3-fifth top 3thousandth total cost unit-million digit vertically
U V W
اﻷﻋداد اﻟﻌﺷرﯾﺔ اﻟﻘﯾﻣﺔ اﻟﻣﻛﺎﻧﯾﺔ ﻟﻠرﻗم اﻟﻌدد اﻻوﻟﻲ ﻣﺣﯾط ﻛﺳر ﻓﻌﻠﻲ ﺑﺎﻗﻲ اﺧﺗزل او ﺑﺳط طول اﻟﺿﻠﻊ ﺑﺳط اﺑﺳط ﺻورة ﻋﻣﻠﯾﺔ اﻟطرح ﺗرﯾﻠﯾون ﻋدد ﻣﻛون ﻣن ﺛﻼث ارﻗﺎم ﺛﻠﺛﯾن ﺛﻼث اﺧﻣﺎس اﻋﻠﻰ/ ﻗﻣﺔ ﺛﻼﺛﺔ ﻣن اﻷﻟف ﺗﻛﻠﻔﺔ ﻛﻠﯾﺔ اﺣﺎد اﻟﻣﻼﯾﯾن راﺳﯾﺎ
width zero multiple
Z
ﻋرش اﻟﺷﻛل اﻟﻣﺿﺎﻋف اﻟﺻﻔري
Congratulations You have finished your course for Mathematics Grade Volume 8. Follow us on Amazon for new textbooks