261 43 14MB
English Pages [246] Year 2023
Mathematical Formulas and
Scientific Data
MFSDH.CH00_FM_2PP.indd 1
3/2/2023 10:14:51 AM
license, disclaimer of liability, and limited warranty By purchasing or using this book and disc (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work. Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship). The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work. The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state and might not apply to the purchaser of this product.
MFSDH.CH00_FM_2PP.indd 2
3/2/2023 10:14:51 AM
Mathematical Formulas and
Scientific Data A Quick Reference Guide
C. P. Kothandaraman, PhD
MERCURY LEARNING AND INFORMATION Dulles, Virginia Boston, Massachusetts New Delhi
MFSDH.CH00_FM_2PP.indd 3
3/2/2023 10:14:51 AM
Reprint & Revision Copyright © 2023 by Mercury Learning and Information LLC. All rights reserved. Original Copyright © 2021 by NEW AGE International Publishers. This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher. Publisher: David Pallai Mercury Learning and Information 22841 Quicksilver Drive Dulles, VA 20166 [email protected] www.merclearning.com (800) 232-0223 C. P. Kothandaraman. Mathematical Formulas and Scientific Data. ISBN: 978-1-68392-865-2 The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others. Library of Congress Control Number: 2022952304 232425321 Printed on acid-free paper in the United States of America. Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at (800) 232-0223(toll free). Digital versions of our titles are available at numerous electronic vendors. The sole obligation of Mercury Learning and Information to the purchaser is to replace the book and/or disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.
MFSDH.CH00_FM_2PP.indd 4
3/2/2023 10:14:51 AM
Contents Preface vii PART I: MATHEMATICAL FORMULAS Chapter 1 Algebra Chapter 2 Elementary Geometry Chapter 3 Trigonometry Chapter 4 Analytic Geometry Chapter 5 Differential Calculus Chapter 6 Integral Calculus—I Chapter 7 Integral Calculus—II Chapter 8 Vectors
PART II: SCIENTIFIC DATA FOR ENGINEERS Chapter 1 SI Units Chapter 2 The Fundamental Mechanical Units Chapter 3 The Fundamental Electrical and Magnetic Units Chapter 4 Relations Between the Systems of Electrical Units Chapter 5 Rationalization of MKS Units Chapter 6 Definitions of Electric and Magnetic Quantities in SI Chapter 7 Definitions in the CGS Electromagnetic System of Units Chapter 8 Heat Units and Definitions Chapter 9 Photometric and Optical Units and Definitions Chapter 10 Acoustical Units and Definitions Chapter 11 Properties of the Elements Chapter 12 Properties of Metallic Solids (at 293 K) Chapter 13 Properties of Non-Metallic Solids (at 293 K)
MFSDH.CH00_FM_2PP.indd 5
1 3 19 27 43 61 75 87 133
137 139 143 145 147 149 151 155 159 163 165 167 173 179
3/2/2023 10:14:51 AM
vi • Contents
Chapter 14 Properties of Liquids (at 293 K) Chapter 15 Properties of Gases at STP Chapter 16 Mechanical Data Chapter 17 Relative Humidities From Wet-and Dry-Bulb Thermometers (Exposed in Standard Screen) Chapter 18 Acoustic Data Chapter 19 Astronomical Data Chapter 20 Terrestrial and Geodetic Data Chapter 21 Radioactivity Chapter 22 Properties of Inorganic Compounds Chapter 23 Properties of Organic Compounds (at 293 K) Chapter 24 The Fundamental Constants
MFSDH.CH00_FM_2PP.indd 6
185 189 193 199 203 207 211 217 221 229 233
3/2/2023 10:14:51 AM
Preface This will serve as an excellent reference for in-service professionals in the areas of mathematics, science, and engineering. It will also help students as a quick review for examinations. Formulas from algebra to vectors are discussed in Part I of the book. Technical terms, theorems, and applicable laws are defined, and their uses are explained. Answers to standard equations in these areas are provided. Equations from straight lines to conics are derived and applications are provided. In the sections on differential and integral calculus, solutions are included for a large number of situations. Part II is unique in providing numerical data in astronomical, acoustical, optical, and geophysical areas. Properties such as density, specific heat, thermal conductivity, and expansion coefficients are tabulated for a large number of metallic, nonmetallic, organic, and inorganic materials. This information and data will be particularly useful for practicing engineers. C.P. Kothandaraman
MFSDH.CH00_FM_2PP.indd 7
3/2/2023 10:14:51 AM
MFSDH.CH00_FM_2PP.indd 8
3/2/2023 10:14:51 AM
PART I
Mathematical Formulas
MFSDH.CH01_2PP.indd 1
2/15/2023 11:22:44 AM
MFSDH.CH01_2PP.indd 2
2/15/2023 11:22:44 AM
CHAPTER
1
Algebra 1
FUNDAMENTAL LAWS (a) Commutative law: a + b = b + a, ab = ba. (b) Associative law: a + (b + c) = (a + b) + c, a(bc) = (ab)c. (c) Distributive law: a(b + c) = ab + ac.
2
LAWS OF EXPONENTS (a) ax · ay = ax+y, (ab)x = ax . bx, (ax)y = axy. (b) a0 = 1 if a ≠ 0, a−x = x
(c) a y =
3
y
1
1 ax , y = a x−y . x a a
y
ax , a y = a .
OPERATIONS WITH ZERO a − a = 0, a · 0 = 0 · a = 0. 0 If a ≠ 0, = 0, 0a = 0, a0 = 1 (division by zero undefined). a
MFSDH.CH01_2PP.indd 3
2/15/2023 11:22:45 AM
4 • Mathematical Formulas and Scientific Data
4
COMPLEX NUMBERS A number of the form a + ib, where a and b are real. i = −1 =i2 = −l, i3 = − i, i4 = l, i5 = i, etc. a + ib = c + id, if and only if a = c, b = d. (a + ib) + (c + id) = (a + c) + id (b + d). (a + ib) (c + id) = (ac − bd) + i (ad + bc).
a + ib (a + ib)(c − id) ac + bd bc − ad = = + i. (c + id)(c − id) c2 + d 2 c2 + d 2 c + id
5
LAWS OF LOGARITHMS If M, N, and b are positive numbers and b ≠ l then (a) logbM N = logbM + logbN, (c) logbMp = p . logbM, 1 (e) log b = − log b M , M
M = logbM − logbN, N 1 q (d) log b M = ⋅ log b M q (b) log b
(f) log b b = 1, logb1 = 0
Change of base of Logarithms (c ≠ l): log b M = log c M ⋅ log b c =
6
log c M . log c b
BINOMIAL THEOREM (n a positive integer). n(n − 1) n− 2 2 a b 2! n(n − 1)(n − 2) n− 3 3 + a b + …+ nabn−1 + bn 3!
(a + b)n =a n + na n−1 b +
where
n! = n = l · 2 · 3 (n − l) ………n.
Example 5! = 5 × 4 × 3 × 2 × l
MFSDH.CH01_2PP.indd 4
2/15/2023 11:22:46 AM
Algebra • 5
7
EXPANSIONS AND FACTORS (i) (a ± b)2 = a2 ± 2ab + b2. (ii) (a ± b)3 = a3 ± 3a2 b + 3ab2 ± b3. (iii) (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc. (iv) a2 − b2 = (a − b) (a + b). (v)
a3 − b3 = (a − b) (a2 + ab + b2).
(vi) a3 + b3 = (a + b) (a2 − ab + b2). (vii) an − bn = (a − b) (an–1 + an–2 b + ... + bn–1). (viii) an − bn = (a + b) (an–1 − an–2 b + ... − bn–1), for n an even integer. (ix) an + bn = (a + b) (an–1 − an–2 b + ... + bn–1), for n an odd integer. (x)
8
a4 + a2 b2 + b4 = (a2 + ab + b2) (a2 − ab + b2).
RATIO AND PROPORTION If a : b = c : d or
a c a c = , then ad = bc, = . b d b d
a c e If = = = = k, then b d f a + c + e + pa + qc + re + = k = b + d + f + pb + qd + rf +
9 CONSTANT FACTOR OF PROPORTIONALITY (OR VARIATION), k (i) If y varies directly as x, or y is proportional to x, y = kx. (ii) If y varies inversely as x, or y is inversely proportional to x, k y= , x
MFSDH.CH01_2PP.indd 5
2/15/2023 11:22:46 AM
6 • Mathematical Formulas and Scientific Data
(iii) If y varies jointly as x and z, y = kxz. (viii) If y varies directly as x and inversely as z, y=
kx . z
10 ARITHMETIC PROGRESSION a, a + d, a + 2d, a + 3d, .... . If a is the first term, d is the common difference, n is the number of terms, l is the last term, and S is the sum of n terms. l = a + (n − l) d, the sum of the series upto l S=
n n n (a + l)= [a + a + (n − 1)d]= [2 a + (n − 1)d] 2 2 2
The arithmetic mean of a and b is (a + b)/2.
11 GEOMETRIC PROGRESSION a, ar, ar2, ar3, ... . If a is the first term, r is the common ratio, n is the number of terms, l is the last term, and Sn is the sum of n terms, r n − 1 rl − a l = arn–1, sum up to n = terms Sn a= . r −1 r −1 If r2 < l, Sn approaches the limit S∞ as n increases without limit, S∞ =
a . 1−r
The geometric mean of a and b is
MFSDH.CH01_2PP.indd 6
ab .
2/15/2023 11:22:46 AM
Algebra • 7
12 HARMONIC PROGRESSION A sequence of numbers whose reciprocals form an arithmetic progression is called a harmonic progression. Thus 1 1 1 , , , a a + d a + 2d The harmonic mean of a and b is 2ab/(a + b).
13 PERMUTATIONS Each different arrangement of all or a part of a set of things is called a permutation. The number of permutations of n different things taken r at a time is P(n, r) = nPr = n(n − l) (n − 2) ... (n − r + l) =
n! , (n − r )!
where n! = n(n − l) (n − 2) ...(l).
14 COMBINATIONS Each of the groups or relations which can be made by taking part or all of a set of things, without regard to the arrangement of the things in a group, is called a combination. The number of combinations of n different things taken r at a time is C(n,= r)
n
n = Cr = r
Pr n(n − 1)…(n − r + 1) n! . = = r! r (r − 1)…(1) r !(n − r )!
n
15 PROBABILITY If an event may occur in p ways and may fail in q ways, all ways being equally likely, the probability of its occurrence is p/(p + q), and that of its failure to occur is q/(p + q).
MFSDH.CH01_2PP.indd 7
2/15/2023 11:22:47 AM
8 • Mathematical Formulas and Scientific Data
16 REMAINDER THEOREM If the polynomial f(x) is divided by (x − a), the remainder is f (a). Hence, if a is a root of equation f (x) = 0, then f(x) is divisible by (x − a).
17 DETERMINANTS The determinant D of order n, a11 a21 D= : a n1
a12 a22 : an 2
. . : .
. . : .
. a1 n . a2 n : : . ann
is defined to be the sum Σ (±) a1i a2j a3k ... anl of n! terms, the sign in a given term being taken plus or minus according to the number of inversions (of the numbers l, 2, 3, ..., n) in the corresponding sequence i, j, k, ..., l, is even or odd. The cofactor Aij of the element aij is defined to be the product of (− l)i + j by the determinant obtained from D by deleting the ith row and the jth column. The following theorems are true: (a) If the corresponding rows and columns of D be interchanged, D is unchanged. (b) If any two rows (or columns) of D be interchanged, D is changed to − D. (c) If any two rows (or columns) are alike, then D = 0. (d) If each element of a row (or column) of D be multiplied by m, the new determinant is equal to mD. (e) If each element of a row (or column) is added m times the corresponding element in another row (or column), D is unchanged. (f) D = a1j A1j + a2j A2j + ... + anj Anj ,
j = l, 2, … .., n.
(g) 0 = a1k A1j + a2k A2j + ......... + ank Anj, if j ≠ k.
MFSDH.CH01_2PP.indd 8
2/15/2023 11:22:47 AM
Algebra • 9
(h) The solution of the system of equations ai1 x1 + ai2 x2 + ... + ain xn = ci, i = l, 2, …, n,
is unique if D ≠ 0. The solution is given by the equations Dx1 = C1, Dx2 = C2, …, Dxn = Cn,
where Ck is what D becomes when the elements of its kth column are replaced by c1, c2, …, cn, respectively. EXAMPLE 1.
a b c p q r l m n
= a
q r p r p q −b +c m n l n l m
= a(qn − rm) − b (pn − rl) + c (pm − ql). EXAMPLE 2. Find the values of x, y, and z, which satisfy the system 3x + 2y + z = 1000 4x + y + 3z = 1500 x + y + z = 600 Solution: Here,
MFSDH.CH01_2PP.indd 9
1000 2 1 1500 1 3 600 1 1 −500 = x = = 100 3 2 1 −5 4 1 3 1 1 1
2/15/2023 11:22:47 AM
10 • Mathematical Formulas and Scientific Data
= y
3 1000 1 4 1500 3 1 600 1 −1000 = = 200 3 2 1 −5 4 1 3 1 1 1
= z
3 2 1000 4 1 1500 1 1 600 −1500 = = 300 3 2 1 −5 4 1 3 1 1 1
Interest, Annuities, Sinking Funds. In this section, n is the number of years, and r is the rate of interest expressed as a decimal.
18 AMOUNT A principal P placed at a rate of interest r for n years accumulates to an amount A, as follows: At simple interest:
A = P (l + nr).
At interest compounded annually:
A = P(l + r)n. nq
4 At interest compounded q times a year: A = P 1 + . q
19 NOMINAL AND EFFECTIVE RATES The rate of interest quoted in describing a given variety of compound interest is called the nominal rate. The rate per year at which interest is earned during each year is called the effective rate. The effective rate i corresponding to the nominal rate r, compounded q times a year is: q r i = 1 + − 1. q
MFSDH.CH01_2PP.indd 10
2/15/2023 11:22:47 AM
Algebra • 11
20 PRESENT OR DISCOUNTED VALUE OF A FUTURE AMOUNT The present quantity P which in n years will accumulate to the amount A at the rate of interest r, is: A At simple interest: P= . 1 + nr At interest compounded annually:
P=
At interest compounded q times a year:
P=
A . (1 + r )n A 1 +
r q
nq
.
P is called the present value of A due in n years at rate r.
21 TRUE DISCOUNT The true discount is: D =A − P.
22 ANNUITY A fixed sum of money paid at regular intervals is called an annuity.
23 AMOUNT OF AN ANNUITY If an annuity P is deposited at the end of each successive year (beginning one year hence), and the interest at rate r, compounded annually, is paid on the accumulated deposit at the end of each year, the total amount N accumulated at the end of n years is N = P.
(1 + r )n − 1 r
N is called the amount of an annuity P.
MFSDH.CH01_2PP.indd 11
2/15/2023 11:22:47 AM
12 • Mathematical Formulas and Scientific Data
24 PRESENT VALUE OF AN ANNUITY The total present amount P which will supply an annuity N at the end of each year for n years, beginning one year hence (assuming that in successive years the amount not yet paid out earns interest at rate r, compounded annually), is: (1 + r )n − 1 1 − (1 + r )− n P= N⋅ = N ⋅ . r (1 + r )n r P is called the present value of an annuity.
25 AMOUNT OF A SINKING FUND If a fixed investment N is made at the end of each successive year (beginning at the end of the first year), and interest paid at rate r, compounded annually, is paid on the accumulated amount of the investment at the end of each year, the total amount S accumulated at the end of n years is: S= N ⋅
(1 + r )n − 1 . r
S is called the amount of the sinking fund.
26 FIXED INVESTMENT, OR ANNUAL INSTALLMENT The amount N that must be placed at the end of each year (beginning one year hence), with compound interest paid at rate r on the accumulated deposit, in order to accumulate a sinking fund S in n years is: N= S ⋅
r . (1 + r )n − 1
N is called a fixed investment or annual installment.
MFSDH.CH01_2PP.indd 12
2/15/2023 11:22:47 AM
Algebra • 13
Algebraic Equations
27 QUADRATIC EQUATIONS If ax2 + bx + c = 0, a ≠ 0, x=
then,
− b ± b2 − 4 ac . 2a
If a, b, and c are real and if b2 − 4ac > 0, the roots are real and unequal; if b2 − 4ac = 0, the roots are real and equal, and; if b2 − 4ac < 0, the roots are imaginary.
28 CUBIC EQUATIONS The cubic equation y3 + py2 + qy + r = 0, may be reduced by the substitution p = y x− 3 to the normal form x3 + ax + b = 0 where a=
1 1 3 q − p2 ) , b = 2 p3 − 9 pq + 27 r ) , ( ( 3 27
which has the solutions x1, x2, and x3, 1 i 3 x1 =+ A B, x2 , x3 = − ( A + B) ± ( A − B), 2 2
MFSDH.CH01_2PP.indd 13
2/15/2023 11:22:48 AM
14 • Mathematical Formulas and Scientific Data
where b b2 a3 i2 = −1, A = 3 − + + 2 4 27
b b2 a3 B=3 − − + . 2 4 27
If p, q, and r are real (and hence, if a and b are real), and if
b2 a3 + > 0, there are one real root and two conjugate imag4 27
inary roots, if
b2 a3 + = 0, there are three real roots of which at least two 4 27
are equal, if
b2 a3 + < 0, there are three real and unequal roots. 4 27
If
b2 a3 + < 0. the above formulas are impractical. The real 4 27
roots are, a φ xk =2 − cos + 120°k , k = 0, 1, 2, 3 3 where cos = φ
b2 a3 ÷ − , 4 27
and where the upper sign is to be used if b is positive and the lower sign if b is negative. If
b2 a3 + > 0, and a > 0 4 27
then the real root is, = x 2
MFSDH.CH01_2PP.indd 14
a cot 2 φ, 3
2/15/2023 11:22:48 AM
Algebra • 15
where ϕ and Ψ are to be computed from cot= 2ψ
b2 a3 ÷ , tan ϕ = 4 27
3
tan ψ
and where the upper sign is to be used if b is positive and the lower sign if b is negative. b2 a3 + = 0 4 27
If the roots are,
a a a = x 2 − , ± − ,± − , 3 3 3 where the upper sign is to be used if b is positive, and the lower sign if b is negative.
29 BIQUADRATIC (QUARTIC) EQUATION The quartic equation y4 + py3 + qy2 + ry + s = 0 may be reduced to the form x4 + ax2 + bx + c = 0 by the substitution p = y x − . 4 Let l, m, and n denote the roots of the resolvent cubic. a2 − 4 c b2 a − = t3 + t2 + t 0. 2 16 64 The required roots of the reduced quartic are,
MFSDH.CH01_2PP.indd 15
x1
= + l + m + n,
x2
= + l − m − n,
x3
= − l + m − n,
x4
= − l − m + n,
2/15/2023 11:22:49 AM
16 • Mathematical Formulas and Scientific Data
where the selection of the square root to be attached to each of the b quantities l , m , n must give l m n = − . 8
30 GENERAL EQUATIONS OF THE nth DEGREE P ≡ a0xn + a1xn–1 + a2xn–2 + ... + an–1 x + an = 0. If n > 4, there is no formula that gives the roots of this general equation. The following methods may be used to advantage: (a) Roots by Factors: By trial, find a number r such that x = l satisfies the equation, that is, such that a0rn + a1rn–1 + a2rn–2 + ... + an–1r + an = 0, a0 ≠ 0. Then (x − r) is a factor of the left-hand member P of the equation. Divide P by (x − r) leaving an equation of degree one less than that of the original equation. Next, proceed in the same manner with the reduced equation. (All integer roots of P = 0 are divisors of an/a0.) (b) Roots by Approximation: Suppose the coefficients ai in P are real. Let a and b be real numbers. If for x = a and x = b, the left member P of the equation has opposite signs, then a root lies between a and b. By repeated application of this principle, real roots to any desired degree of accuracy may be obtained. (c) Roots by Graphing: If a graph of P is plotted as a function of x, the real roots are the values of x where the graph crosses the x-axis. By increasing the scale of the portion of the graph near an estimated root, the root may be obtained to any desired degree of accuracy. (d) Descartes’ Rule: The number of positive real roots of an equation with real coefficients is either equal to the number of its variations of sign or is less than that number by a positive even integer. A root of multiplicity m is here counted as m roots.
MFSDH.CH01_2PP.indd 16
2/15/2023 11:22:49 AM
Algebra • 17
31(a) THE EQUATION xn = a. The n roots of this equation are: 2 kπ 2 kπ + −1 sin a cos , if a > 0, n n (2 k + 1)π (2 k + 1)π + −1 sin x = n − a cos , if a < 0, n n
= x
n
where k takes successively the values 0, l, 2, 3, ..., n − l.
31(b) STIRLING’S FORMULA For large values of n, 2 nπ (n / e)n < n! < 2 nπ (n / e)n [1 + 1 / 12 n − 1], where π = 3.l4l59..., e = 2.7l828... 1 log n! ≅ n + log n − n log e + log 2 π . 2
MFSDH.CH01_2PP.indd 17
2/15/2023 11:22:49 AM
MFSDH.CH01_2PP.indd 18
2/15/2023 11:22:49 AM
CHAPTER
2
Elementary Geometry Let a, b, c, d, and s denote lengths, A denote areas, and V denote volumes.
32 TRIANGLE A = bh/2, where b denotes the base and h denotes the altitude.
33 RECTANGLE A = ab, where a and b denote the lengths of the sides.
34 PARALLELOGRAM (OPPOSITE SIDES PARALLEL) A = ah = ab sin θ, where a and b denote the sides, h denotes the altitude, and θ denotes the angle between the sides.
35 TRAPEZOID (FOUR SIDES, TWO PARALLEL) A=
MFSDH.CH02_2PP.indd 19
1 h (a + b), where a and b are the sides and h the altitude. 2
1/31/2023 5:58:35 PM
20 • Mathematical Formulas and Scientific Data
36 REGULAR POLYGON OF N SIDES A=
1 2 180° n a co t , 4 n
where a is the length of side.
a 180° R = cosec , 2 n
where R is the radius of circumscribed circle.
a 180° r = cot , 2 n
where r is the radius of inscribed circle.
= α
360° 2 π , = n n
FIGURE 2.1.
radians,
n−2 n−2 β = . 180° = π radians where α and β are the angles n n indicated in Figure 2.l a a = a 2= r tan 2 R sin . 2 2
37 CIRCLE Let
C = circumference,
S = length of arc subtended by θ,
R = radius,
l = chord subtended by arc S,
D = diameter,
h = rise,
`A = area,
θ = central angle in radians.
C = 2πR = πD,
π = 3.l4l59...
S = Rθ =
1 D 2
θ = D cos−1
θ θ d 2 2 R sin = 2 d tan . l = 2 R 2 −= 2 2 θ 1 θ d = 1 4 R 2 −= l 2 R cos = l ctn . 2 2 2 2
MFSDH.CH02_2PP.indd 20
d , R
FIGURE 2.2.
1/31/2023 5:58:37 PM
Elementary Geometry • 21
h = R − d. S 2S d l 1 θ== = 2 cos−1 = 2 tan −1 = 2 sin −1 . R D R 2d D 1 A (circle) = πR2 = πD2. 4 1 1 2 A (sector) = = Rs R θ. 2 2 1 A (segment) = A (sector) − A (triangle) = R 2 (θ − sin θ) 2 ( R − h) = R 2 cos−1 − (R − h) 2 Rh − h2 . R Perimeter of an n-side regular polygon inscribed in a circle. π = 2n R sin n . n 1 2π . Area of inscribed polygon = nR2 sin 2 n Perimeter of an n-side regular polygon circumscribed about a circle π = 2n R tan . n π Area of circumscribed polygon = nR2 tan . n Radius of a circle inscribed in a triangle of sides a, b, and c is r=
(s − a)(s − b)(s − c) 1 , s= (a + b + c). s 2
Radius of a circle circumscribed about a triangle is
R=
abc . 4 s(s − a)(s − b)(s − c)
38 ELLIPSE Perimeter = 4 a. E(k), where k2 = l − (b2/a2) and E(k) is the complete elliptic integral E. A = π ab, where a and b are lengths of semi-major and semi-minor axes, respectively.
MFSDH.CH02_2PP.indd 21
FIGURE 2.3.
1/31/2023 5:58:38 PM
22 • Mathematical Formulas and Scientific Data
39 PARABOLA A = 2ld/3. Height of d1 =
d 2 2 ( l − l1 ) . l2
Width of l1 = l
d − d1 . d
2 2 d 2 2 2 d 4 l Length of arc = 1 + − + ... . 3 l 5 l
FIGURE 2.4.
40 CATENARY, CYCLOID, ETC. Let P be a point at a distance d from the center of a circle of radius r. The curve traced out P as the circle rolls along a straight line, without slipping, is called a cycloid, as shown in Figure 2.5.
41 AREA BY APPROXIMATION
FIGURE 2.5.
If y0, y1, y2, ..., yn be the lengths of a series of equally spaced parallel chords and if h is their distance apart, the area enclosed by boundary is given approximately by any one of the following formulae:
FIGURE 2.6.
MFSDH.CH02_2PP.indd 22
1/31/2023 5:58:39 PM
Elementary Geometry • 23
1 AT = h ( y0 + yn ) + y1 + y2 + ... + yn−1 . (Trapezoidal Rule). 2 AD = h 0.4 ( y0 + yn ) + 1.1 ( y1 + yn−1 ) + y2 + y3 + ... + yn− 2 . (Durand’s Rule). 1 h ( y0 + yn ) + 4 ( y1 + y3 + ... + yn−1 ) + 2 ( y2 + y4 + ... + yn− 2 ) . 3 (n even, Simpson’s Rule). AS =
In general, As gives a more accurate approximation. The greater the value of n, the greater the accuracy of approximation.
42 CUBE V = a3; d = a 3 ; total surface area = 6a2, where a is the length of side and d is the length of diagonal.
43 RECTANGULAR PARALLELOPIPED 2 2 2 V = abc; d = a + b + c ; total surface area = 2(ab + bc + ca), where a, b and c are the lengths of the sides and d is the length of diagonal.
44 PRISM OR CYLINDER V= (area of base) · (altitude). Lateral area= (perimeter of right section). (lateral edge).
45 PYRAMID OR CONE 1 (area of base) ⋅ (altitude). 3 1 Lateral area= of regular pyramid (perimeter of base) ⋅ (slant height). 2 = V
MFSDH.CH02_2PP.indd 23
1/31/2023 5:58:39 PM
24 • Mathematical Formulas and Scientific Data
46 (A) FRUSTUM OF PYRAMID OR CONE
(
)
1 A1 + A2 + A1 ⋅ A2 h, where h is the altitude and A1 and A2 3 are the areas of the bases. 1 Lateral area of a regular figure = (sum of perimeters of base) · 2 (slant height). V=
46 (B) PRISMOID V=
h (A1 + A2 + 4A3), where h = altitude, A1 and A2 are the areas 6
of the bases and A3 is the area of the midsection parallel to the bases.
47 AREA OF SURFACE AND VOLUME OF REGULAR POLYHEDRA OF EDGE L Name
Type of Surface
Area of Surface
Volume
Tetrahedron
4 equilateral triangles
l.73205l2
0.11785l3
Hexahedron (cube) 6 squares
6.00000l2
l.00000l3
Octahedron
8 equilateral triangles
3.464l0l2
0.47l40l3
Dodecahedron
l2 pentagons
20.64578l2 7.663l2l3
Icosahedron
20 equilateral triangles 8.66025l2
2.l8l69l3
48 SPHERE A (sphere) = 4 πR2 = πD2. A (zone) = 2 πRh1 = πDh1. V (sphere) =
MFSDH.CH02_2PP.indd 24
4 3 1 πR = πD3 . 3 6
1/31/2023 5:58:39 PM
Elementary Geometry • 25
FIGURE 2.7.
V (spherical sector) = V (spherical segment of one base) = V (spherical segment of two bases) =
2 2 1 πR h1 = πD2 h1 . 3 6 1 πh3 ( 3 r32 + h32 ) . 6 1 πh2 ( 3 r32 + 3 r22 + h22 ) . 6
A (lune) = 2R2θ, where θ is the angle in radians of lune.
49 SOLID ANGLE (Ψ) The solid angle ψ at any point subtended by a surface S is equal to the area A of the portion of the surface of a sphere of unit radius, center at P, which is cut out by a conical surface, with vertex at P, passing through the perimeter of S. The unit solid angle ψ is called the steradian. The total solid angle about a point is 4π steradians.
MFSDH.CH02_2PP.indd 25
FIGURE 2.8.
1/31/2023 5:58:40 PM
26 • Mathematical Formulas and Scientific Data
50 ELLIPSOID V=
4 πabc, where a, b, and c are the lengths of the semi-axes. 3
FIGURE 2.9.
51 (A) TORUS V = 2π2Rr2. Area of surface = S = 4π2Rr.
51 (B) THEOREMS OF PAPPUS (a) If a plane area A is rotated about a line l in the plane of A and not cutting A, the volume of the solid generated is equal to the product of A and the distance traveled by the center of gravity of A. (b) If a plane curve C is rotated about a line l in the plane of C and not cutting C, the area of the surface generated is equal to the product of the length of C and the distance traveled by the center of gravity of C.
MFSDH.CH02_2PP.indd 26
1/31/2023 5:58:41 PM
CHAPTER
3
Trigonometry 52 ANGLE If two lines intersect, one line may be rotated about their point of intersection through the angle which they form until it coincides with the other line. The angle is said to be positive if the rotation is counterclockwise and negative, if clockwise. A complete revolution of a line is a rotation through an angle of 360°. Thus, A degree is l/360 of the plane angle about a point. A radian is an angle subtended at the center of a circle by an arc whose length is equal to that of the radius. 180° = p radians; 1°=
180 p radians; 1 rad. = degrees. 180 p
53 TRIGONOMETRIC FUNCTIONS OF AN ANGLE α Let α be any angle whose initial sidelines on the positive x-axis and whose vertex is at the origin, and (x, y) be any point on the terminal side of the angle. (x is positive if measured along OX to the right, from the y-axis; and negative, if measured along OX’ to the left from the y-axis. Likewise, y is positive if measured parallel to OY, and negative if measured parallel to OY’.) Let r be the positive
MFSDH.CH03_1PP.indd 27
1/31/2023 5:06:22 PM
28 • Mathematical Formulas and Scientific Data
FIGURE 3.1.
distance from the origin to the point. The trigonometric functions of an angle are defined as follows: sine α = sin α =
y . r
x . r y tangent α = tan α = . x cosine α = cos α =
cotangent α = ctn α = cot α = secant α = sec α =
r . x
x . y
r . y exsecant α = exsec α = sec α − 1. cosecant α = csc α = cosec α =
versine α = vers α = 1− cos α. coversine α = covers α = 1 − sin α. 1 haversine α = hav α = vers α 2
MFSDH.CH03_1PP.indd 28
3/3/2023 6:07:05 PM
Trigonometry • 29
54 SIGNS OF THE FUNCTIONS Quadrant
sin
cos
tan
ctn
sec
csc
I...................
+
+
+
+
+
+
II..................
+
−
−
−
−
+
III.................
−
−
+
+
−
−
IV.................
−
+
−
−
+
−
55 F UNCTIONS OF 0°, 30°, 45°, 60°, 90°, 180°, 270°, 360° 0°
30°
45°
60°
1 2
3 2
1 2
90°
l80°
270°
360°
1
0
−1
0
0
−1
0
1
sin
0
cos
1
3 2
tan
0
1 3
1
3
∞
0
∞
0
cot
∞
3
1
1 3
0
∞
0
∞
sec
1
2 3
∞
−1
∞
1
cosec
∞
1
∞
−1
∞
2
1 2
2
2
1 2
2 2 3
56 VARIATIONS OF THE FUNCTIONS Quadrant
sin
cos
tan
ctn
sec
csc
I
0 → +l
+ l →0
0→+∞
+∞→0
+l→+∞
+ ∞ → +l
II
+l → 0
0→−l
−∞→0
0→−∞
−∞→−l
+l→+∞
III
0 → −l
−l→0
0→+∞
+∞→0
−l→−∞
− ∞ → −l
IV
−l→0
0→+l
−∞→0
0→−∞
+ ∞ → +l
−l→−∞
MFSDH.CH03_1PP.indd 29
1/31/2023 5:06:29 PM
30 • Mathematical Formulas and Scientific Data
57 F UNCTIONS OF ANGLES IN ANY QUADRANT IN TERMS OF ANGLES IN FIRST QUADRANT sin cos tan cot sec cosec
−α
90° ± α
180° ± α
270° ± α
−sin α
+ cos α
∓ sin α
−cos α
n (360)° ±α ± sin α
+cos α
∓ sin α
− cos α
±sin α
+ cos α
−tan α
∓ ctn α
± tan α
∓ ctn α
± tan α
−ctn α
∓ tan α
± ctn α
∓ tan α
± ctn α
+sec α
∓ csc α
− sec α
± csc α
+ sec α
−csc α
+ sec α
∓ csc α
− sec α
± csc α
where n denotes any integer.
58 FUNDAMENTAL IDENTITIES sin α =
1 1 1 sin a ; cos a = ; tan a = = . csc a sec a cot a cos a
cosec α =
1 1 1 cos a ; sec a = ;cot a = = . sin a cos a tan a sin a
sin2 α + cos2 α = 1; 1 + tan2 α = sec2 α; 1 + cot2 α = cosec2 α. sin 2 α = 2 sin α cos α cos 2 α = 2 cos2 α − 1 = 1 − 2 sin2 α = cos2 α − sin 2 − α,
2 tan a , 1 - tan 2 a sin 3 α = 3 sin α − 4 sin3 α,
tan 2 α =
cos 3 α = 4 cos3 α − 3 cos α, sin n α = 2 sin (n − l)α · cos α − sin (n − 2) α, cos n α = 2 cos (n − l)α · cos α − cos (n − 2) α, sin (α ± β) = sin α cos β ± cos α sin β, cos (α ± β) = cos α cosβ ∓ sin α sin β, tan (α ± β) =
MFSDH.CH03_1PP.indd 30
tan a ± tan b . 1 ∓ tan a tan b
1/31/2023 5:06:32 PM
Trigonometry • 31
1 1 sin α + sin β = 2 sin (a + b) × cos (a - b). 2 2 1 1 sin α − sin β = 2 cos (a + b) × sin (a - b), 2 2 1 1 cos α + cos β = 2 cos (a + b) × cos (a - b), 2 2
1 1 cos α − cos β = -2 sin (a + b) × sin (a - b). 2 2 sin
a 1 - cos a positive if a in I or II quadrants, , = ± 2 2 2 negative otherwise.
1 + cos a a , positive if = ± 2 2 otherwise. 1 - cos a sin a tan a = =± = sin a 1 + cos a 2
cos
a in I or IV, negative 2 1 - cos a , 1 + cos a
a in I or III, negative otherwise. 2 1 1 sin2 α = (1 − cos 2 α); cos2 α = (1 + cos 2 α) 2 2 positive if
sin3 α =
MFSDH.CH03_1PP.indd 31
1 1 (3 sin α − sin 3 α); cos3 α = (cos3 α + 3 cos α). 4 4
sin α sin β =
1 1 cos (α − β) − cos (α + β). 2 2
cos α cos β =
1 1 cos (α − β) + cos (α + β), 2 2
sin α sin β =
1 1 sin (α + β) + sin (α − β). 2 2
1/31/2023 5:06:39 PM
32 • Mathematical Formulas and Scientific Data
59 E QUIVALENT EXPRESSIONS FOR SIN, COS, TAN, ETC. Function sin α sin α
sin α
cos α tan α cot α sec α cosec α
cos α
tan α
± 1 - cos2 a
± 1 - sin 2 a sin a
cos α
cot α
sec α
tan a
1
± 1 + tan 2 a
± 1 + cot 2 a
1
cot a
± 1 + tan 2 a
± 1 + cot 2 a
± 1 - sin 2 a
± 1 - cos2 a cos a
tan α
1 cot a
± 1 - sin 2 a sin a
cos a ± 1 - cos2 a
1 tan a
cot α
± 1 + tan 2 a
± 1 + cot 2 a cot a
± 1 + tan 2 a tan a
± 1 + cot 2 a
1 ± 1 - sin 2 a
1 cos a
1 sin a
± 1 - cos2 a
1
cosec α
± sec a - 1 sec a
1 cosec a
1 sec a
± cosec 2 a - 1 cosec a
2
± sec 2 a - 1 1 ± sec 2 a - 1
sec α sec a ± sec 2 a - 1
1 ± cosec 2 a - 1 ± cosec 2 a - 1 cosec a ± cosec 2 a - 1
cosec α
Note: The quadrant which terminates determines the sign used.
60 INVERSE OR ANTI-TRIGONOMETRIC FUNCTIONS The complete solution of the equation x = sin y is (in radians): y = (−l)nsin−1 x + n(π), − π /2 £ sin−1 £ x /2, where sin−1 x is the principal value of the angle whose sine is x (n denotes an integer). Similarly, if x = cos y, y = ± cos−1 x + n(2π), 0 £ cos−1 x £ π. If x = tan y, y = tan−1 x + n(π), − π/2 < tan−1 x < π/2. Similar relations hold for x = cot y, x = sec y, and x = cosec y.
MFSDH.CH03_1PP.indd 32
1/31/2023 5:06:51 PM
Trigonometry • 33
61 C ERTAIN RELATIONS AMONG INVERSE FUNCTIONS If the inverse functions are restricted as in Art. 60, the following formulae hold: sin−1 a = cos-1 1 - a2 = tan -1 = sec -1
1 1-a
2
tan−1 a = sin -1
1 - a2
= cosec -1
cos−1 a = sin -1 1 - a2 = tan -1 = sec -1
a
1 - a2 a
1 a.
a 1 - a2 = cot -1 a 1 - a2
1 1 = cosec -1 a 1 - a2 . a 1 1 = cos-1 = cot -1 2 2 a. 1+ a 1+ a
= sec -1 1 + a2 = cosec -1 cot−1 a = tan−1
= cot -1
1 ; sec−1 a = cos−1 a
1 + a2 a . 1 1 ; cosec−1 a = sin−1 . a a
62 SOLUTION OF TRIGONOMETRIC EQUATIONS To solve a trigonometric equation, reduce the given equation, by means of the relations expressed in Art. 58 to Art. 60 inclusive, to an equation containing only a single function of a single angle. Solve the resulting equation by algebraic methods (Art. 30) for the remaining function and from this find the values of the angle, by Art. 57 and Art. 59. All these values should then be tested in the original equation, discarding those which do not satisfy it.
MFSDH.CH03_1PP.indd 33
1/31/2023 5:06:55 PM
34 • Mathematical Formulas and Scientific Data
63 R ELATIONS BETWEEN SIDES AND ANGLES OF PLANE TRIANGLES Let a, b, and c denote the sides and α, β, and γ, the corresponding opposite angles with r = radius of inscribed circle; 2 s = a + b + c; A = area; R = radius of circumscribed circle; hb = altitude on side b. α + β + γ = 180°. a b c = = (law of sines). sin a sin b sin g 1 tan (a + b) a+ b 2 = (law of tangents).∗ 1 a-b tan (a - b) 2 a2 = b2 + c2 − 2 bc cos (law of cosines).∗ a = b cos γ + c cos β.∗ cos α =
b2 + c2 - a2 ∗ 2 , sin a = s(s - a)(s - b)(s - c).∗ 2 bc bc
sin
a = 2
(s - b)(s - c) a , ∗ cos = bc 2
tan
a = 2
r (s - b)(s - c) , ∗ where r = (s - a)(s - b)(s - c) . = s(s - a) s-a s
A=
1 * 1 bhb = ab sin g * 2 2
s(s - a) ;∗ bc
= =
R=
MFSDH.CH03_1PP.indd 34
a* abc = . 2 sin a 4 A
a2 sin b sin g * 2 sin a s(s - a)(s - b)(s - c) = rs. hb = c sin a* = a sin g* =
2 rs b
1/31/2023 5:07:01 PM
Trigonometry • 35
FIGURE 3.2.
64 SOLUTION OF A RIGHT TRIANGLE Given one side and any acute angle α, or any two sides, to find the remaining parts: a = (c + b)(c − a) = c sin α = b tan α. a b = (c + a)(c − a) = c cos α = . tan α ∗ Two more formulas may be obtained by replacing a by b, b by c, c by a, α by β, β by γ, γ by α.
sin α = c=
b a a , cos α = , tan α = , β = 90° − α. c c b a b = = sin α cos α
a 2 + b2 .
1 a2 b2 tan α c2 sin 2α A == = ab = . 2 2 tan α 2 4
FIGURE 3.3.
MFSDH.CH03_1PP.indd 35
3/3/2023 6:08:08 PM
36 • Mathematical Formulas and Scientific Data
65 SOLUTION OF OBLIQUE TRIANGLES The formulas of the preceding section Art. 63 will suffice to solve any oblique triangle. Use the trigonometric tables for numerical work. We give one method. Solutions should be checked by some other method.
FIGURE 3.4.
(a) Given any two sides b and c and included angle α. 1 1 1 (β + γ )= 90° − α;tan (β − γ)= 2 2 2 1 1 β= (β + γ) + (β − γ); γ= 2 2
b− c 1 tan (β + γ); 2 b+ c 1 1 b sin α (β + γ) − (β − γ); a= . 2 2 sin β
(b) Given any two angles α and β, and any side c. c sin α c sin β ;= . b sin γ sin γ (c) Given any two sides a and c, and an angle opposite one of these, say α. = γ 180° − (α + β);= a
c sin α a sin β β 180° − (α + γ),= b ,= . a sin α This case may have two sets of solutions, for γ may have two values, γ1 < 90° and γ2 = l80° − γ1 > 90°. If α + γ2 > l80°, use only γ1. γ sin=
(d) Given the three sides a, b, and c. 1 (s − a)(s − b)(s − c) (a + b + c), r= . s 2 1 r 1 r 1 r = = = tan α , tan β , tan γ . 2 s−a 2 s− b 2 s−c s=
MFSDH.CH03_1PP.indd 36
3/3/2023 6:11:14 PM
Trigonometry • 37
Spherical Trigonometry
66 THE RIGHT SPHERICAL TRIANGLE Let O be the center of the sphere, and a, b, and c the sides of a right triangle with opposite angles α, β, and γ = 90°, respectively, the sides being measured by the angle subtended at the center of the sphere. FIGURE 3.5.
sin a = sin a· sin c, sin a = tan b · cot β,
sin b = sin β · sin c. sin b = tan a · cot α.
cos α = cos a · sin β, cos α = tan b · cot c,
cos β = cos b · sin α. cos β = tan a · cot c.
cos c = cot α · cot β,
cos c = cos a · cos b.
67 NAPIER’S RULES OF CIRCULAR PARTS Let the five quantities a, b, co-α (complement of α), co-c, co-β, be arranged in order as indicated in the figure. If we denote any one of these quantities as a middle part, then two of the other parts are adjacent to it, and the other two parts are opposite to it. The above formulas may be remembered by means of the following rules : (a) The sine of a middle part is equal to the product of the tangents of the adjacent parts. (b) The sine of a middle part is equal to the product of the cosines of the o pposite parts.
MFSDH.CH03_1PP.indd 37
FIGURE 3.6.
3/3/2023 6:09:48 PM
38 • Mathematical Formulas and Scientific Data
68 THE OBLIQUE SPHERICAL TRIANGLE Let a, b, and c denote the sides and α, β, and γ the corresponding opposite angles of the spherical triangle, Δ its area, E its spherical excess, R the radius of the sphere upon which the triangle lies, and α', β', γ', a, b, and c the corresponding parts of the polar triangle. 0° < a + b + c < 360°,
l80° < + + < 540°.
α = l80° − a¢,
β¢ = l80° − b¢,
γ = l80° − c¢,
a = l80° − α¢,
b = l80° − β¢,
c = l80° − γ¢.
sin a sin b sin g (law of sines). = = sin a sin b sin c cos a = cos b cos c + sin b sin c cos α. cos α = −cos β cos γ + sin β sin γ cos a (law of cosines). tan
a = 2
sin(s - b) × sin(s - c) , sin s × sin(s - a)
where s = 1 (a + b + c). 2
tan
a = 2
- cos s × cos(s - a) , cos(s - b) × cos(s - g)
1 where s = (a + b + g). 2
1 1 1 1 sin (a + b) tan c cos (a + b) tan c 2 2 2 2 , . = = 1 1 1 1 sin (a - b) tan (a - b) cos (a - b) tan (a + b) 2 2 2 2 1 1 1 1 sin (a + b) cot g cos (a + b) cot g 2 2 2 2 , . = = 1 1 1 1 sin (a - b) tan (a - b) cos (a - b) tan (a + b) 2 2 2 2 1 1 1 1 sin (a + b)cos c = cos (a - b)cos g. 2 2 2 2 1 1 1 1 cos (a + b)cos c = cos (a + b)sin g. 2 2 2 2
MFSDH.CH03_1PP.indd 38
1/31/2023 5:07:11 PM
Trigonometry • 39
1 1 1 1 sin (a - b)sin c = sin (a - b)cos g. 2 2 2 2 1 1 1 1 cos (a - b)sin c = sin (a + b)sin g. 2 2 2 2 tan
E 1 1 1 1 = tan s × tan (s - a) × tan (s - b) × tan (s - c). 4 2 2 2 2 2 pR E , D= a + b + g - 180° = E. 180 Hyperbolic Functions
69 DEFINITIONS (For definition of e see Art. 108) Hyperbolic sine of x = sinh x =
1 x -x (e - e ); 2
Hyperbolic cosine of x = cosh x =
1 x -x (e - e ); 2
Hyperbolic tangent of x = tanh x = cosech x =
e x - e- x sinh x = . e x + e- x cosh x
1 1 1 ; sech x = ;coth x = . sinh x cosh x tanh x
70 INVERSE OR ANTI-HYPERBOLIC FUNCTIONS If x = sinh y, is the inverse hyperbolic sine of x, write y = sinh−1 x or arc sinh x.
(
)
sinh -1 x = log e x + x2 + 1 , 1 æ1+ xö tanh -1 x = log e ç ÷, 2 è1- xø æ 1 + 1 - x2 sech -1 x = log e ç ç x è
MFSDH.CH03_1PP.indd 39
ö ÷, ÷ ø
(
)
cosh -1 x = log e x + x2 - 1 , 1 æ x +1ö coth -1 x = log e ç ÷, 2 è x -1 ø æ 1 + 1 + x2 cosech -1 x = log e ç ç x è
ö ÷ ÷ ø
1/31/2023 5:07:15 PM
40 • Mathematical Formulas and Scientific Data
71 FUNDAMENTAL IDENTITIES sinh (−x) = − sinh x,
cosh2 x − sinh2 x
cosh (−x) = − cosh x,
sech2 x + tanh2 x
tanh (−x) = − tanh x,
cosech x − coth x = −1, 2
= 1, = 1,
2
sinh (x ± y) = sinh x cosh y ± cosh x sinh y. cosh (x ± y) = cosh x cosh y ± sinh x sinh y. tan (x ± y) =
tan x ± tanh y . 1 ± tanh x tanh y
sinh 2x = 2 sinh x cosh x, 2 sinh2
x = cosh x − 1, 2
cosh 2x = cosh2 x + sinh2 x. 2 cosh2
x = cosh x + 1. 2
72 CONNECTION WITH CIRCULAR FUNCTIONS e ix - e- ix , 2i sin x = −i sinh ix,
e ix + e- ix , 2 cos x = cosh ix,
tan x = −i tanh ix,
cos ix = cosh x
tan ix = i tanh ix,
sin x =
cos x =
sin ix = i sinh ix, sinh ix = i sin x,
i2 = −1.
cosh ix = cos x,
tanh ix = i tan x.
sin (x ± iy) = sinh x cos y ± i cosh x sin y. cos (x ± iy) = cosh x cos y ± i sinh x sin y. sinh (x + 2 iπ) = sinh x, sinh (x + iπ) = − sinh x, 1 ö æ sinh ç x + ip ÷ = i cosh x. 2 ø è
cosh (x + 2 iπ) = cosh x. cosh (x + iπ) = − cosh x. 1 ö æ cosh ç x + ip ÷ = i sinh x. 2 ø è
eθ = cosh θ + sinh θ,
e−θ = cosh θ − sinh θ.
eiθ = cosh θ + i sinh θ,
e−iθ = cosh θ − i sinh θ.
x + iy = reiθ , where r = +
MFSDH.CH03_1PP.indd 40
x2 + y2 , θ = arc cos
y x = arc sin . r r
1/31/2023 5:07:19 PM
Trigonometry • 41
y 1 log e ( x ± iy) = log e ( x2 + y2 ) ± i arc tan 2 x n ( cos q + i sin q ) = cos nq + i sin nq. n
2 kp 2 kp ö æ + i sin ç cos ÷ = 1, k = 0, 1, ..., n - 1. n n ø è æ x+ yö æ x-yö sinh x + sinh y = 2 sinh ç cosh ç ÷ ÷. è 2 ø è 2 ø æ x+ yö æ x-yö sinh x - sinh y = 2 cosh ç sinh ç ÷ ÷. è 2 ø è 2 ø æ x+ yö æ x-yö cosh x + coshy = 2 cosh ç cosh ç ÷ ÷. è 2 ø è 2 ø æ x+ yö æ x-yö cosh x - cosh y = 2 sinh ç sinh ç ÷ ÷. è 2 ø è 2 ø
MFSDH.CH03_1PP.indd 41
1/31/2023 5:07:20 PM
MFSDH.CH03_1PP.indd 42
1/31/2023 5:07:20 PM
4
CHAPTER
Analytic Geometry 73 RECTANGULAR COORDINATES Let X´X (x-axis) and Y´Y (y-axis) be two perpendicular lines meeting in the point O called the origin. The point P(x, y) in the plane of the x and y axes is fixed by the distances x (abscissa) and y (ordinate) from Y´Y and X´X, respectively, to P. x is positive to the right and negative to the left of the y-axis, and y is positive above and negative below the x-axis.
FIGURE 4.1.
74 POLAR COORDINATES Let OX (initial line) be a fixed line in the plane and O (pole or origin) a point on this line. The position of any point P(r, θ) in the plane is determined by the distance r (radius vector) from O to the point together with the angle (vectorial angle) measured from OX to OP. θ is positive if measured counterclockwise, negative if measured clockwise, r is positive if measured along the terminal side of θ and negative if measured along the terminal side of produced through the pole.
MFSDH.CH04_2PP.indd 43
2/15/2023 11:37:56 AM
44 • Mathematical Formulas and Scientific Data
75 RELATIONS BETWEEN RECTANGULAR AND POLAR COORDINATES
= x = y
r x 2 + y2 , r cos θ, = r sin θ, θ =tan −1 y , x
y sin θ = 2 x + y2 x cos θ = x 2 + y2
76 POINTS AND SLOPES Let P1(x1, y1) and P2(x2, y2) be any two points, and α1 be the angle measured counterclockwise from OX to P1P2: Distance between P1 and P2 = P1P2
d=
( x2 − x1 )
Slope of P1P2 = tan α1 = m =
2
+ ( y2 − y1 ) . 2
y2 − y1 . x2 − x1
m x + m2 x1 m1 y2 + m2 y1 , Point dividing P1P2 in the ratio m1 : m2 is 1 2 m1 + m2 m1 + m2 x + x2 y1 + y2 Mid-point of P1 P2 is 1 , . 2 2 The angle β between lines of slopes m1 and m2, respectively, is given by tan β =
m2 − m1 . 1 + m1 m2
Two lines of slopes m1 and m2 are 1 perpendicular if m2 = − , and m1 parallel if m1 = m2.
MFSDH.CH04_2PP.indd 44
FIGURE 4.2.
2/15/2023 11:37:56 AM
Analytic Geometry • 45
77 AREA OF TRIANGLE If the vertices are the points (x1, y1), (x2, y2), and (x3, y3), then the area is equal to the numerical value of x1 1 x2 2 x3
y1 y2 y3
1 1 1= ( x1 y2 − x1 y3 + x2 y3 − x2 y1 + x3 y1 − x3 y2 ) . 2 1
78 LOCUS AND EQUATION The set of all points which satisfy a given condition is called the locus of that condition. An equation is called the equation of the locus if it is satisfied by the coordinates of every point on the locus and by no other points. There are three common representations of the locus by means of equations: (a) Rectangular equation which involves the rectangular coordinates (x, y). (b) Polar equation which involves the polar coordinates (r, θ). (c) Parametric equations which express x and y or r and θ in terms of a third independent variable called a parameter.
79 TRANSFORMATION OF COORDINATES To transform an equation or a curve from one system of coordinates in x, y to another such system in x´, y´, substitute for each variable its value in terms of variables of the new system. (a) Rectangular System: Old axes parallel to new axes. The coordinates of new origin in terms of the old system are (h, k). x = y =
MFSDH.CH04_2PP.indd 45
x′ + h, y′ + k
2/15/2023 11:37:56 AM
46 • Mathematical Formulas and Scientific Data
(b) Rectangular System: Old origin coincident with a new origin and the x´-axis making an angle θ with the x-axis. x = y =
x′ ⋅ cos θ − y′ ⋅ sin θ. x′ ⋅ sin θ + y′ ⋅ cos θ.
(c) Rectangular System: Old axes are not parallel with new ones. New origin at (h, k) in the old system. x = y =
x′ ⋅ cos θ − y′ ⋅ sin θ + h. x′ ⋅ sin θ + y′ ⋅ cos θ + k.
80 STRAIGHT LINE The equations of the straight line may assume the following forms:
FIGURE 4.3.
(a)
y = mx + b.
(m = slope, b = intercept on y-axis).
(b)
y − y1 = m(x − x1).
[m = slope, line passes through point (x1, y1)].
(c)
y − y1 y2 − y1 = . x − x1 x2 − x1
[line passes thru points (x1, y1) and (x2, y2)].
(d)
x y + = 1. a b
(a and b are the intercepts on the x and y-axis, respectively).
(e)
(normal form, p is distance from x cos α + y sin α = p. origin to the line, α is angle which normal to the line makes with x-axis).
(f)
Ax + By + C = 0.
MFSDH.CH04_2PP.indd 46
(general form, slope = − A ÷ B).
2/15/2023 11:37:57 AM
Analytic Geometry • 47
To reduce Ax + By + C = 0 to normal form (e), divide by ± A2 + B2 , where the sign of the radical is taken opposite to that of C when C ≠ 0. The distance from the line Ax + By + C = 0 to the point P2(x2, y2) is: d=
Ax2 + By2 + C ± A2 + B2
.
81 CIRCLE General equation of a circle with radius R and center at (h, k) is: (x − h)2 + (y − k)2 = R2.
82 CONIC The locus of a point P which moves so that its distance from a fixed Point F (focus) bears a constant ratio e (eccentricity) its distance from a fixed straight line (directrix) is a conic. If d is the distance from focus to directrix, and F is at the origin. x2 + y2 = e2 (d + x)2 . de . r= 1 − e cosq If
e = l, the conic is a parabola; if
e > l, a hyperbola; and if e < l, an ellipse.
FIGURE 4.4.
MFSDH.CH04_2PP.indd 47
2/15/2023 11:37:57 AM
48 • Mathematical Formulas and Scientific Data
83 PARABOLA
e = l.
FIGURE 4.5.
FIGURE 4.6.
(a) (y − k)2 = 4a(x − h). Vertex at (h, k), axis || OX (Figure 4.5).
Figure 4.5 is drawn for the case when a is positive.
(b) (x − h)2 = 4a(y − k). Vertex at (h, k) axis || OY (Figure 4.6).
Figure 4.6 is drawn for the case when a is negative.
Distance from vertex to focus = VF = a.
Distance from vertex to directrix = a.
Latus rectum = LR = 4a.
84 ELLIPSE
e < l.
FIGURE 4.7.
MFSDH.CH04_2PP.indd 48
FIGURE 4.8.
2/15/2023 11:37:57 AM
Analytic Geometry • 49
(a)
(b)
( x − h)2 (y − k)2 = l. Center at (h, k), major axis || OX + a2 b2 (Figure 4.7). (y − k)2 ( x − h)2 = l. Center at (h, k), major axis || OY + a2 b2 (Figure 4.8). Major axis = 2a
Major axis = 2b.
Distance from center to either focus =
a2 − b2 .
Distance from center to either directrix = a/e. Eccentricity == e
a2 − b2 / a.
Latus rectum = 2b2/a. Sum of distances from any point P on the ellipse to foci, PF´ + PF = 2a.
85 HYPERBOLA
e > l.
FIGURE 4.9.
FIGURE 4.10.
Center at (h, k), transverse axis 2 || OX. ( y − k ) ( x − h) (a) − = 1. 2 2 a b Slopes of asymptotes = ± b/a (Figure 4.9). 2
MFSDH.CH04_2PP.indd 49
2/15/2023 11:37:57 AM
50 • Mathematical Formulas and Scientific Data
(b)
Center at (h, k), transverse axis || OY.
(y − k) ( x − h) − = 1. a2 b2 Slopes of asymptotes = ± a/b (Figure 4.l0). 2
2
Transverse axis = 2a.
Conjugate axis = 2b.
Distance from center to either focus =
a2 + b2 . Distance from center to either directrix = a/e. Difference of distances of any point on hyperbola from the foci = 2a. a2 + b2 . a Latus Rectum = 2b2/a. Eccentricity = e =
86 SINE CURVE = y a= sin (bx c).
FIGURE 4.11.
y = a cos (bx + c´) = a sin (bx + c), where c = c´ +
MFSDH.CH04_2PP.indd 50
π . 2
2/15/2023 11:37:58 AM
Analytic Geometry • 51
y = p sin bx + q cos bx = a sin (bx + c), q ,a p2 + q2 . where c = tan −1 = p a = amplitude = maximum height of wave. 2p = wave length = distance from any point on wave to the correb sponding point on the next wave. c x = − = phase, indicates a point on x-axis from which the positive b half of the wave starts.
87 TRIGONOMETRIC CURVES (1) y = a tan bx, or (1) y = a sec bx, or, 1 1 y y x = tan −1 . x = sec −1 . b b a a (2) y = a cot bx, or, 1 y x = cot −1 . b a
FIGURE 4.12.
MFSDH.CH04_2PP.indd 51
(2) y = a cosec bx, or, 1 y x = cosec −1 . b a
FIGURE 4.13.
2/15/2023 11:37:58 AM
52 • Mathematical Formulas and Scientific Data
88 LOGARITHMIC AND EXPONENTIAL CURVES y = logax or x = ay.
y = ax or x = logay.
Logarithmic Curve
Exponential Curve
FIGURE 4.14
FIGURE 4.15
89 PROBABILITY CURVE (FIGURE 4.16)
y = e− x
2
FIGURE 4.16.
90 OSCILLATORY WAVE OF DECREASING AMPLITUDE (FIGURE 4.17) y = e–ax sin bx.
MFSDH.CH04_2PP.indd 52
2/15/2023 11:37:58 AM
Analytic Geometry • 53
FIGURE 4.17.
91 CATENARY (FIGURE 4.18) = y
x − a ax a + e e . 2
A curve made by a cord of uniform weight suspended freely between two points. Length of
2 2 d 2 2 s l 1 + arc == , 3 l
FIGURE 4.18.
approximately, if d is small in comparison with l.
92 CYCLOID x= y =
a ( φ − sin φ ) . a (1 − cos φ ) .
A curve is described as a point on the circumference of a circle which rolls along a fixed straight line.
MFSDH.CH04_2PP.indd 53
FIGURE 4.19.
2/15/2023 11:37:58 AM
54 • Mathematical Formulas and Scientific Data
Area one arch = 3πa2. Length of the arc of one arch = 8a.
93 PROLATE AND CURTATE CYCLOID aφ − b sin φ, x= y = a − b cos φ. A curve is described by a point on a circle at a distance b from the center of the circle of radius a which rolls along a fixed straight line. Prolate Cycloid
Curtate Cycloid
FIGURE 4.20.
FIGURE 4.21.
94 EPICYCLOID x= = y
a+b φ , (a + b)cos φ − a cos a a+ b φ . (a + b)sin φ − a sin a
A curve is described as a point on the circumference of a circle that rolls along the outside of a fixed circle.
MFSDH.CH04_2PP.indd 54
2/15/2023 11:37:59 AM
Analytic Geometry • 55
95 CARDIOID
FIGURE 4.22.
FIGURE 4.23.
96 CARDIOID r = a (1 + cos θ ) . An epicycloid in which both circles have the same radii is called a cardioid.
97 HYPOCYCLOID a−b φ , (a − b)cos φ − b cos b a−b (a − b)sin φ − b sin φ b
x= y=
A curve is described as a point on the circumference of a circle that rolls along the inside of a fixed circle.
98 HYPOCYCLOID OF FOUR CUSPS 2
2
2
x 3 + y3 = a3 . x = a cos3 φ,
MFSDH.CH04_2PP.indd 55
y = a sin3 φ.
2/15/2023 11:37:59 AM
56 • Mathematical Formulas and Scientific Data
The radius of a fixed circle is four times the radius of a rolling circle.
FIGURE 4.24.
FIGURE 4.25.
99 INVOLUTE OF THE CIRCLE = x = y
a cos φ + a φ sin φ a sin φ + a φ cos φ.
A curve generated by the end of a string is kept taut while being unwound from a circle.
100 LEMNISCATE r2 = 2 a2 cos 2θ.
FIGURE 4.26.
MFSDH.CH04_2PP.indd 56
FIGURE 4.27.
2/15/2023 11:37:59 AM
Analytic Geometry • 57
101 N-LEAVED ROSE (l) r = a sin nθ
(2) r = a cos nθ.
If n is an odd integer there are n leaves, and if n is even, 2n leaves, of which the figure shows one.
102 SPIRALS
FIGURE 4.28.
r = a θ.
FIGURE 4.29.
r θ = a.
FIGURE 4.30.
r = eaθ , or a θ = loge r.
Solid Analytic Geometry
103 COORDINATES (FIGURE 4.31) (a) Rectangular system: The position of a point P(x, y, z) in space is fixed by its three distances x, y, and z from three coordinate planes XOY, XOZ, and ZOY, which are mutually perpendicular and meet in a point O (origin). (b) Cylindrical system: The position of any point P(r, θ, z) is fixed by (r, θ), the polar coordinates of the projection of P in the XOY plane, and by z, its distance from the XOY plane.
MFSDH.CH04_2PP.indd 57
FIGURE 4.31.
2/15/2023 11:37:59 AM
58 • Mathematical Formulas and Scientific Data
(c) Spherical (or polar or geographical) system: The position of any point P(ρ, θ, φ) is fixed by the distance ρ = OP , the angle θ = ∠XOM and the angle φ = ∠ZOP . θ is called the longitude and the co-latitude. The following relations exist between the three coordinates systems: x = ρ sin φ cos θ, y = ρ sin φ sin θ, z = ρ cos φ.
r = ρ sin φ, z = ρ cos φ,
ρ r 2 + z2 . = z . cos φ = 2 r + z2
104 POINTS, LINES, AND PLANES Distance between two points P1(x1, y1, z1) and P2(x2, y2, z2), is d=
( x2 − x1 )
2
+ ( y2 − y1 ) + ( z2 − z1 ) . 2
2
Direction cosines of a line are the cosines of the angles α, β, and γ which the line or any parallel line makes with the coordinate axes. The direction cosines of the line segment P1 (x1, y1, z1) to P2(x2, y2, z2) are: cos α =
y − y1 x2 − x1 z −z , cos β = 2 , cos γ = 2 1 . d d d
cos2 α + cos2 β + cos2 γ =1. Angle θ between two lines, whose direction angles are α1, β1, γ1, and α2, β2, γ2, is given by cos= θ cos α1 cos α 2 + cos β1 cos β2 + cos γ 1 cos γ 2 . The equation of a plane is: Ax + By + Cz + D = 0, where A, B, and C are proportional to the direction cosines of a normal (a line perpendicular to the plane) to the plane.
MFSDH.CH04_2PP.indd 58
2/15/2023 11:38:00 AM
Analytic Geometry • 59
Angle between two planes is the angle between their normals. Equation of a straight line through the point P1(x1, y1, z1) is:
x − x1 y − y1 z − z1 = = , a b c where a, b, and c are proportional to the direction cosines of the line. a, b, and c are called the direction numbers of the line.
105 FIGURES IN THREE DIMENSIONS Plane∗
Elliptic Cylinder∗
FIGURE 4.32.
FIGURE 4.33.
x y z + + = 1. a b c ∗
x2 y2 + = 1. a2 b2
Only a portion of the figure is shown.
MFSDH.CH04_2PP.indd 59
Sphere
Ellipsoid
FIGURE 4.34.
FIGURE 4.35.
2/15/2023 11:38:00 AM
60 • Mathematical Formulas and Scientific Data
x 2 y2 z 2 + + = 1. a2 b2 c2
x 2 + y2 + z 2 = r2. Elliptic Paraboloid
Portion of Cone
Hyperboloid of One Sheet
FIGURE 4.36.
FIGURE 4.37.
FIGURE 4.38.
x 2 y2 + = cz. a2 b2
x2 y2 z2 + − = 0. a2 b2 c2
Hyperboloid of Two Sheets
Hyperbolic Paraboloid
FIGURE 4.39.
FIGURE 4.40.
x2 y 2 z 2 − − = 1. a 2 b2 c2
MFSDH.CH04_2PP.indd 60
x2 y 2 z 2 1. + − = a 2 b2 c2
x2 y 2 − = cz. a 2 b2
2/15/2023 11:38:01 AM
5
CHAPTER
Differential Calculus 106 DEFINITION OF FUNCTION A variable y is said to be a function of the variable x, if, for every x (taken at will on its range), y is determined. The symbols f(x), F(x), g(x), φ(x), etc., are used to represent various functions of x. The symbol f(a) represents the value of f(x) when x = a.
107 DEFINITION OF DERIVATIVE AND NOTATION Let y = f(x) be a single-valued (continuous) function of x. Let Δx be any increment (increase or decrease) given to x, and let Δy be the corresponding increment in y. The derivative of y with respect to x is the limit, (if it exists), of the ratio of Δy to Δx as Δx approaches zero in any manner whatsoever; that is, dy ∆y f ( x + ∆x) − f ( x) =lim =lim =f ′( x) =Dx y =y′. ∆ → 0 ∆ → 0 x x dx ∆x ∆x Higher derivatives are defined as follows:
d 2 y d dy d = = f ′( x) = f ″( x). dx2 dx dx dx
d3 y d d2 y d = f ″( x)= f ′″( x). = dx3 dx dx2 dx
MFSDH.CH05_2PP.indd 61
(second derivative)
(third derivative)
2/15/2023 11:48:11 AM
62 • Mathematical Formulas and Scientific Data
d n y d d n−1 y d ( n−1) = = f ( x) f ( n) ( x). n −1 = n dx dx dx dx
(nth derivative)
The symbol f(n) (a) represents the value of f(n) (x) when x = a.
108 CERTAIN RELATIONS AMONG DERIVATIVES dy dx = 1÷ . dx dy dy dy du If y = f(u), and u = F(x), then = ⋅ dx du dx If x = f(y), then
If x = f(α), y = φ(α), then dy φ′(α) d 2 y , = = dx f ′(α) dx2
f ′(α) ⋅ φ″(α) − φ′(α) ⋅ f ″(α)
[ f ′(α)]
3
.
109 TABLE OF DERIVATIVES In this table, u and v represent functions of x: a, n, and e represent constants (e = 2.7l83 ...), and all angles are measured in radians: d ( x) = 1 dx
d (a) = 0. dx
d du dv ( u ± v ± ...)= ± ± .... dx dx dx d du (au) = a . dx dx d u = dx v
v
du dv −u dx dx . 2 v
d n du . u ) = nun−1 ( dx dx
MFSDH.CH05_2PP.indd 62
d dv du (= uv) u + v . dx dx dx d du sin u = cos u . dx dx d du cos u = − sin u . dx dx
2/15/2023 11:48:11 AM
Differential Calculus • 63
log a e du d log a u = . x u dx
d du tan u = sec 2 u . dx dx
d 1 du log e u = . dx u dx
d du cot u = − cosec 2 u . dx dx
d u du a =⋅ a u log e a ⋅ . dx dx
d du sec u = sec u tan u . dx dx
d u du e = eu . dx dx
d du cosec u = − cosec u cot u . dx dx
d du d v du dv = + u v log e u vers u = sin u . u vu v−1 dx dx dx dx dx sin x 1 1 =1, lim(1 + x)1/ x =e =2.71828 =1 + 1 + + + . x →0 x →0 2! 3! x
lim
d du 1 sin −1 u = , 2 dx 1 − u dx
−π π ≤ sin −1 u≤ . 2 2
d du 1 cos−1 u = , 2 dx 1 − u dx
0 ≤ cos−1 u ≤ π.
d 1 du tan −1 u = . dx 1 + u2 dx
d 1 du cot −1 u = − . dx 1 + u2 dx
d 1 du π π −1 sec u , − π≤ sec −1 u < − , 0≤ sec −1 u < . = 2 dx 2 2 u u − 1 dx d 1 du π π cosec −1 = − , − π < csc −1 u≤ − , 0 < csc −1 u ≤ . 2 dx dx 2 2 u u −1 d 1 du vers−1 u = , v 2 dx 2 u − u dx
0 ≤ vers−1 u ≤ π.
d du sinh u = cosh u . dx dx
d du cosh u = sinh u . dx dx
MFSDH.CH05_2PP.indd 63
2/15/2023 11:48:12 AM
64 • Mathematical Formulas and Scientific Data
d du tanh u = sech 2 u . dx dx
d du coth u = − cosech 2 u . dx dx
d du sech u = − sech u tanh u . dx dx
d du cosech u = − cosech u coth u . dx dx
d sinh −1 u = dx
1
du . u + 1 dx 2
d = cosh −1 u dx
1
du , u > 1. u − 1 dx 2
d 1 du tanh −1 u = . dx 1 − u2 dx
d 1 du coth −1 u = − 2 . dx u − 1 dx
d du 1 sech −1 u = − , u > 0. 2 dx u 1 − u dx
d du 1 cosech −1 u = − . 2 dx u u + 1 dx
110 SLOPE OF A CURVE: EQUATION OF TANGENT AND NORMAL (RECTANGULAR COORDINATES) The slope of the curve y = f(x) at the point P(x, y) is defined as the slope of the tangent line to the curve at P: Slope = m = tan α =
dy = f´(x). dx
Slope at x = x1 is m1 = f´ (x1). Equation of tangent line to curve at P1 (x1, y1) is y − y1 = m1 (x − x1). Equation of normal line to curve at P1 (x1, y1) is 1 − y − y1 = ( x − x1 ) . m1 Angle (θ) of intersection of two curves whose slopes are m1 and m2 at the common point is given by tan θ =
m2 − m1 . 1 + m1 m2
The sign of tan θ determines whether the acute or obtuse angle is meant.
MFSDH.CH05_2PP.indd 64
2/15/2023 11:48:13 AM
Differential Calculus • 65
FIGURE 5.1
111 DIFFERENTIAL If y = f(x), Δx is an increment of x, and f´ (x) is the derivative of f(x) with respect to x, then the differential of x equals the increment of x, or dx = Δx; and the differential of y, dy is the product of f´(x) and the increment of x; dy df ( x) dy =f ′( x)dx = dx = dx, and dx dx
dy f ′( x) = . dx
If x = f (t), y = φ(t), then dx = f´ (t) dt and dy = φ´(t) dt. Every derivative formula has a corresponding differential formula. d(sin u) = cos u . du;
d(u . v) = u dv + vdu.
112 MAXIMUM AND MINIMUM VALUES OF A FUNCTION A maximum (minimum) value of a function f(x) in the interval (a, b) is a value of the function which is greater (less) than the values of the function in the immediate vicinity. The values of x which give a maximum or minimum value to y = f (x) are found by solving the equations f´ (x) = 0 or ∞. If a is a root of f´ (x) = 0 and if f´ (a) < 0, f (a) is a maximum; if f´ (a) > 0, f (a) is a minimum. If f ˝ (a) = 0, f ˝´ (a) 0, f (a) is neither a maximum nor a minimum, but if f ˝ (a) = f ˝´ (a) = 0, f (a) is maximum or minimum according as f IV (a) < > 0.
MFSDH.CH05_2PP.indd 65
2/15/2023 11:48:13 AM
66 • Mathematical Formulas and Scientific Data
In general, if the first derivative which does not vanish for x = a is of odd order, f (a) is neither a maximum nor a minimum; but if it is of even order, the 2nth, say, then f (a) is a maximum or minimum according as f (2n) (a) < > 0. To find the largest or smallest values of a function in an interval (a, b), find f(a), f(b), and compare with the maximum and minimum values as found in the interval.
113 POINTS OF INFLECTION OF A CURVE The curve is said to have a point of inflection at x = a if f ˝(a) = 0 and f ˝(x) < 0 on one side of x = a and f ˝(x) > 0 on the other side of x = a. Wherever f ˝(x) < 0, the curve is concave downward, and wherever f ˝(x) > 0, the curve is concave upward.
114 DERIVATIVE OF ARC LENGTH: RADIUS OF CURVATURE Let s be the length of arc measured along the curve y = f(x), [or in polar coordinates r = φ(θ)], from some fixed point to any point P(x, y), and α be the angle of inclination of the tangent line at P with OX. Then 1
dx = cos α= ds
dy 1+ dx
2
,
dy = sin α= ds
dy ds = dx + dy = 1 + dx 2
ds =
dr + r dθ= 2
2
2
dr r + dθ 2
dx 1+ dy
2
,
2
dx dx = 1 + dy. dy 2
2
d= θ
dθ 1 + r dr. dr 2
x = r cos θ, y = r sin θ,
If
2
2
1
dx = cos θ · dr − r sin θ · dθ, dy = sin θ · dr + r cos θ · dθ
MFSDH.CH05_2PP.indd 66
2/15/2023 11:48:14 AM
Differential Calculus • 67
The radius of curvature R at any point P(x, y) of the curve y = f(x) is 3
dy 2 2 1 + ds dx R = = = dα d2 y 2 dx
{
1 + [ f ′( x)]
2
}
f ″( x)
3 2
,
3
2 dr 2 2 r + dθ . R= 2 d2 r dr 2 r + 2 − r 2 dθ dθ 1 . R The center of curvature corresponding to the point (x1, y1) on y = f(x) The curvature (K) at (x, y) is K = is (h, k), where h= x1 − k y1 + =
{
f ′ ( x1 ) 1 + f ′ ( x1 ) f ″ ( x1 )
1 + f ′ ( x1 )
2
},
2
f ″ ( x1 )
.
115 MEAN ROLLE’S THEOREM If y = f (x) and its derivative f´(x) be continuous on the interval (a, b), there exist a value of x somewhere between a and b such that f (b= ) f (a) + b − a) f ′( x1 ), a < x1 < b. Rolle’s Theorem is a special case of the theorem of the mean with f (a) = f (b) = 0; that is, there exists at least one value of x between a and b for which f´ (x1) = 0.
MFSDH.CH05_2PP.indd 67
2/15/2023 11:48:14 AM
68 • Mathematical Formulas and Scientific Data
116 EVALUATION OF INDETERMINATE FORMS If f(x) and F(x) be two continuous functions of x having continuous derivatives, f´(x) and F´(x), then: (a) If lim f ( x) = 0 and lim F( x) = 0 and lim F′( x) ≠ 0, x→ a
x→ a
x→ a
[or if lim f ( x) = lim F( x) = ∞ ], then
x→ a
x→ a
lim
f ( x) f ′( x) = lim . x → a F( x) F′( x)
x→ a
(b) If lim f ( x) = 0 and lim F(x) = ∞ [i.e., F(x) becomes infinite as x→ a x→ a x approaches a as a limit], then lim[ f ( x).F( x)] may often be x→ a determined by writing f ( x).F( x) =
f ( x) , 1 / F( x)
thus expressing the functions in the form of (a).
(c) If lim f ( x) = ∞ and lim F( x) = ∞, then lim[ f ( x) − F( x)] may x→ a
x→ a
often be determined by writing
x→ a
[1 / F( x)] − [1 / f ( x)] f ( x) − F( x) = 1 / [ f ( x).F( x)]
and using (a).
(d) The lim f ( x)F ( x) may frequently be evaluated upon writing x→ a f ( x)F ( x) = eF ( x).log e f ( x) When one factor of the last exponent approaches zero and the other becomes infinite, the exponent is of the type considered in (b). Thus, we are led to the indeterminate forms which are symbolized by 0 / 0, ∞ / ∞, 0°, 1∞ , ∞ 0 .
MFSDH.CH05_2PP.indd 68
2/15/2023 11:48:15 AM
Differential Calculus • 69
117 TAYLOR’S AND MACLAURIN’S THEOREM Any function (continuous and having derivatives) may, in general, be expanded into a Taylor’s series: f ( x= ) f (a) + f ′(a) ⋅ + f ′″(a) ⋅
( x − a) ( x − a)2 + f ″(a ) ⋅ 1! 2!
( x − a)3 ( x − a)n−1 + …+ f ( n−1) (a) ⋅ + Rn , 3! (n − 1)!
where a is any quantity for which f (a), f´ (a), f” (a), ... are finite. If the series is to be used for approximating f(x) for some value of x, then a should be picked so that the difference (x − a) is numerically very small, and thus only a few terms of the series need to be used. The remainder, after n terms, is Rn = f (n)(x1) · (x − a)n/n!, where x1 lies between a and x. Rn gives the limits of error in using n terms of the series for the approximation of the function: n! = n = 1 ⋅ 2 ⋅ 3 ⋅ 4 n. If a = 0, the above series is called Maclaurin’s series: ) f (0) + f ′(0) f ( x=
x x2 x3 x n −1 + f ″(0) + f ′″(0) + …+ f ( n−1) (0) + Rn . 1! 2! 3! (n − 1)!
118 SERIES The following series may be obtained through the expansion of the functions by Taylor’s or Maclaurin’s Theorems. The expressions following a series indicate the region of convergence of the series, that is, the values of x for which Rn approaches zero as n becomes infinite, so that an approximation of the function may be obtained by using a number of terms of the series. If the region of convergence is not indicated, the series converges for all finite values of x. (n! = l·2·3...n). Loge u ≡ Log u. (a) Binomial Series n(n − 1) n− 2 2 a x 2! n(n 1)(n 2) n 3 3 a x , x2 a2 . 3!
(a + x)n =a n + na n−1 x +
MFSDH.CH05_2PP.indd 69
2/15/2023 11:48:18 AM
70 • Mathematical Formulas and Scientific Data
If n is a positive integer, the series consists of (n + l) terms; otherwise, the number of terms is infinite. 1 bx b2 x2 b3 x3 (a − bx)−1 = 1 + + 2 + 3 + … , b2 x2 < a2 . a a a a (b) Exponential, Logarithmic, and Trigonometric Series. e = 1+
1 1 1 1 + + + + . 1! 2! 3! 4!
ex = 1 + x +
x2 x3 x 4 + + + . 2! 3! 4!
ax = 1 + x log a + 2
e− x = 1 − x2 +
( x log a)2 ( x log a)3 + + . 2! 3!
x 4 x6 x8 − + − . 2! 3! 4!
1 1 2 3 0 < x ≤ 2. log x = ( x − 1) − ( x − 1) + ( x − 1) −…, 2 3 log x =
2 3 1 x −1 1 x −1 1 x −1 x> . + + + , 2 x 2 x 3 x
x − 1 1 x − 1 3 1 x − 1 5 + log x = 2 + + , x > 0. x + 1 3 x + 1 5 x + 1 log (1 + x) = x −
x2 x3 x 4 + − +, 2 3 4
−1 < x ≤ 1.
3 5 x 1 x 1 x log (1 + x) = log a + 2 + + + , 2 a + x 3 2 a + x 5 2 a + x a > 0, −a < x< + ∞.
x 3 x 5 x7 1+ x x2 < 1. log = 2 x + 3 + 5 + 7 + ... , 1− x
MFSDH.CH05_2PP.indd 70
2/15/2023 11:48:19 AM
Differential Calculus • 71
1 1 1 1 1 1 1 x+1 log = 2 + + + + , x −1 x 3 x 5 x 7 x 3
5
7
x2 >
1.
1 1 1 x +1 + + + … , x > 0. log = 2 3 5 5(2 x + 1) x 2 x + 1 3(2 x + 1)
(
)
log x + 1 + x2 = x −
1 x 3 1 ⋅ 3 x 5 1 ⋅ 3 ⋅ 5 x7 + − +, 2 3 2⋅4 5 2⋅4⋅6 7
x2
< 1.
sin x = x −
x 3 x 5 x7 + − + . 3! 5! 7!
cos x = 1 −
x2 x 4 x6 + − + 2! 4! 6!
tan x = x +
x3 2 x 5 17 x7 62 x9 π2 + + + + , x2 < . 3 15 315 2835 4
sin −1 x = x +
x 3 1 3 x 5 1 3 5 x7 + ⋅ ⋅ + ⋅ ⋅ ⋅ + , x2 < 1. 6 2 4 5 2 4 6 7
1 1 1 tan −1 x = x − x3 + x 5 − x7 + , x2 < 1. 3 5 7 =
π 1 1 1 − + 3 − 5 + , x2 > 1. 2 x 3x 5x
log sin x = log x − log cos x = −
x2 x 4 x6 17 x8 − − − − , 2 12 45 2520
log tan x = log x
x2 7 x 4 62 x6 + + + , 3 90 2835
e sin x = 1 + x +
MFSDH.CH05_2PP.indd 71
x2 x4 x6 − − − , x2 1 2 2 x2 2 ⋅ 4 4 x 4 2 ⋅ 4 ⋅ 6 6 x6
cosh−1 x = log 2 x −
1 1 1⋅3 1 1⋅3⋅5 1 − − −. 2 4 2 2x 2 ⋅ 4 4x 2 ⋅ 4 ⋅ 6 6 x6
tanh−1 x = x +
x 3 x 5 x7 + + + , x2 < 1. 3 5 7
119 PARTIAL DERIVATIVES: DIFFERENTIALS If z = f(x, y), is a function of two variables, then the derivative of z with respect to x, as x varies while y remains constant, is called the ∂z first partial derivative of z with respect to x and is denoted by . ∂x Similarly, the derivative of z with respect to y, as y varies while x remains constant, is called the first partial derivative of z with ∂z respect to y and is denoted by . ∂y Similarly, if z = f (x, y, u, ...), then the first derivative of z with respect to x, as x varies while y, u, ... remain constant, is called the
MFSDH.CH05_2PP.indd 72
2/15/2023 11:48:22 AM
Differential Calculus • 73
∂z . Likewise, ∂x the second partial derivatives are defined as indicated below: first partial of z with respect to x and is denoted by
∂ 2 z ∂ ∂z ∂ 2 z ∂ ∂z ∂ 2 z ∂ ∂z ∂ ∂z ∂ 2 z ; . = = = = = ; 2 2 ∂x ∂x ∂x ∂y ∂y ∂y ∂x ∂y ∂x ∂y ∂y ∂x ∂y ∂x If z = f(x, y, ..., u), and x, y, ..., u are functions of a single variable t, then dz ∂z dx ∂z dy ∂z du = + + …+ , dt ∂x dt ∂y dt ∂u dt ∂z ∂z ∂z dz = dx + dy + + du. ∂x ∂y ∂u If F(x, y, z, ..., u) = 0, then ∂F dx + ∂F dy + + ∂F du = 0. ∂x ∂y ∂u
120 SURFACES: SPACE CURVES (SEE ANALYTIC GEOMETRY ART. 97-98) The tangent plane to the surface F(x, y, z) = 0 at the point (x1, y1, z1) on the surface is ∂F ∂F ∂F 0, + ( z − z1 ) + ( y − y1 ) = ∂x 1 ∂z 1 ∂y 1
( x − x1 )
∂F ∂F where at (x1, y1, z1), etc. is the value of ∂x 1 ∂x The equations of the normal to the surface at (x1, y1 z1) are y − y1 x − x1 z − z1 = = . ∂F ∂F ∂F ∂x 1 ∂y ∂z 1 1
The direction cosines of the normal to the surface at the point (x1, y1, z1) are proportional to
MFSDH.CH05_2PP.indd 73
2/15/2023 11:48:22 AM
74 • Mathematical Formulas and Scientific Data
∂F ∂F ∂F , , . ∂x 1 ∂y 1 ∂z 1 Given the space curve x = x(t), y = y(t), z = z(t). The direction cosines of the tangent line to the curve at any point are proportional to dx dy dz , , , or to dx, dy, dz. dt dt dt The equations of the tangent line to the curve at (x1, y1, z1) on the curve are: y − y1 x − x1 z − z1 = = dx dy dz dt 1 dt 1 dt 1 dx dx where is the value of at (x1, y1, z1), etc. dt 1 dt
MFSDH.CH05_2PP.indd 74
2/15/2023 11:48:23 AM
CHAPTER
6
Integral Calculus—I 121 INTRODUCTION F(x) is said to be an indefinite integral of f(x), if the derivative of F(x) is f(x), or the differential of F(x) is f(x) dx; symbolically: F( x) f ( x)dx if
dF( x) f ( x), or dF( x) f ( x)dx. dx
In general: f ( x)dx F( x) C, where C is an arbitrary constant.
122 FUNDAMENTAL THEOREMS ON INTEGRALS. SHORT TABLE OF INTEGRALS (u and v denote functions of x; a, b and C denote constants). 1.
df (x) f (x) C.
2. d f ( x)dx f ( x)dx.
MFSDH.CH06_2PP.indd 75
3.
0 dx C.
4.
a f (x)dx a f (x)dx.
2/15/2023 11:50:54 AM
76 • Mathematical Formulas and Scientific Data
5.
(u v)dx udx vdx.
6.
u dv uv v du.
u dv du dx uv v dx. dx dx ( fy)dy 8. f (y)dx . dy dx 7.
9.
n u du
10.
u n 1 C, n 1. n1
du log e u C, u > 0; or, log e | u | C, u 0. u
11. e u du e u C. 12. bu du
bu C, b 0, b 1. log e b
13. sin u du cos u C. 14. cos u du sin u C. 15. tan u du log e sec u C log e cos u C. 16. cot u du log e sin u C log e cosec u C. u 17. sec u du log e (sec u tan u) C log e tan C. 2 4 u 18. cosec u du log e (cosec u cot u) C log e tan C. 2 1 1 19. sin 2 u du u sin u cos u C. 2 2 1 1 20. cos2 u du u sin u cos u C. 2 2 21. sec 2 u du tan u C.
MFSDH.CH06_2PP.indd 76
2/15/2023 11:51:48 AM
Integral Calculus—I • 77
22. cosec 2 u du cot u C. 23. tan 2 u du tan u u C. 24. cot 2 u du cot u u C. 25.
du 1 u tan 1 C. 2 u a a a
26.
du 1 1 ua 1 u 2 2 log e C ctnh C, if u a , 2 u a 2a a ua a 1 1 a u 1 u 2 2 log e C tanh C, if u a . 2a a u a a
27. 28. 29. 30.
2
2
u u sin 1 C, a 0; or, sin 1 C, | a | 0. a a 2 u2 | a| du
du u2 a 2
log e u u2 a2
C.
a u cos1 C. a 2 au u du
2
1 1 a u sec 1 C cos1 C. a u a u u2 a 2 a du
a a 2 u2 1 31. log e a u u a 2 u2 du
*
C.
1 u 32. a2 u2 du u a2 u2 a2 sin 1 C. 2 a * 1 33. u2 a2 du u u2 a2 a2 log e u u2 a2 C. 2
34. sinh u du cosh u C. 35. cosh u du sinh u C. 36. tanh u du log e (cosh u) C.
MFSDH.CH06_2PP.indd 77
2/15/2023 11:52:27 AM
78 • Mathematical Formulas and Scientific Data
37. coth u du log e (sinh u) C. 38. sech u du sin 1 (tan u) C. u 39. cosech u du log e tanh C. 2 40. sech u . tanh u . du sech u C. 41. cosech . coth u . du cosech u C. *
u u2 a 2 log e a u u2 a 2 a
a a 2 u2 u sinh 1 ; log e u a a a 2 u2 u cosh 1 ; log e u a
* log e
u sech 1 ; a
u cosech 1 . a
Definite Integrals
123 DEFINITION OF DEFINITE INTEGRAL Let f(x) be continuous for the interval from x = a to x = b inclusive. Divide this interval into n equal parts by the points a, x1, x2, ..., xn–1, b such that Δx = (b − a)/n. The definite integral of f(x) with respect to x between the limits x = a to x = b is:
b
b
a
a
f ( x)dx lim f (a)x f x1 x f x2 x ... f xn1 x . n
b
b f ( x)dx f ( x)dx F( x)a F(b) F(a), a
where F(x) is a function whose derivative with respect to x is f(x).
124 APPROXIMATE VALUES OF DEFINITE INTEGRAL Approximate values of the above definite integral are given by the rules of § 4l, where y0, y1, y2 ..., yn–1, yn are the values of f(x) for x = a, x1, x2, ..., xn–1, b, respectively, and h = (b − a)/n.
MFSDH.CH06_2PP.indd 78
2/15/2023 11:52:48 AM
Integral Calculus—I • 79
125 SOME FUNDAMENTAL THEOREMS
f (x) f (x) ... f (x) dx b
1
a
∫
b
∫
b
∫
b
∫
b
b
a
2
n
b
a
b
b
a
a
f1 ( x)dx f2 ( x)dx ... fn ( x)dx.
b
k f ( x)dx = k ∫ f ( x)dx , if k is a constant.
a
a
a
a
a
f ( x)dx = f ( x)dx. b
f ( x)dx =
c
a
b
f ( x)dx f ( x)dx. c
f ( x)dx = (b − a) f (x1), where x1 lies between a and b.
a
t
f ( x)dx = lim f ( x)dx. t a
b
f ( x)dx = lim f ( x)dx. t t
f ( x)dx =
c
f ( x)dx f ( x)dx. c
If f(x) has a singular point∗ at x = b, b ≠ a,
b
a
f ( x)dx lim e0
b e
a
f ( x)dx.
The mean value of the function f (x) on the interval (a, b) is: 1 b f ( x)dx. b a a Some Applications of the Definite Integral
126 PLANE AREA The area bounded by y = f (x), y = 0, x = a, x = b, where y has the same sign for all values of x between a and b, is: b
A f ( x)dx, dA f ( x)dx. a
MFSDH.CH06_2PP.indd 79
2/15/2023 11:53:36 AM
80 • Mathematical Formulas and Scientific Data
The area bounded by the curve r = f(θ) and the two radii θ = α, θ = β, is A
1 1 2 f () d, dA r 2 d. 2 2
vvv
dr rd
r
Y P(x, y)
d
y
a
P (r, )
dx
O
X
b
O
Figure 6.1.
Figure 6.2.
127 LENGTH OF ARC The length (s) of the arc of a plane curve f(x, y) = 0 from the point (a, c) to the point (b, d) is s
b
a
2
2
d dx dy 1 dx 1 dy. c dx dy
If the equation of the curve is x = f(t), y = f(t), the length of the arc from t = a to t = b is s
b
a
2
2
dx dy dt. dt dt
If the equation of the curve is r = f (θ), then s
2
1
MFSDH.CH06_2PP.indd 80
2
2
r2 dr d r 2 d r 2 1 dr. r1 d dr
2/15/2023 11:53:57 AM
Integral Calculus—I • 81
128 VOLUME BY PARALLEL SECTIONS If the plane perpendicular to the x-axis at (x, 0, 0) cuts from a given solid a section whose area is A(x), then the volume of that part of the solid between x = a and x = b is:
∫
b
A( x)dx.
a
129 VOLUME OF REVOLUTION The volume of a solid of revolution generated by revolving that portion of the curve y = f(x) between x = a and x = b b
(a) about the x-axis is y2 dx ; a
d
(b) about the y-axis is x2 dy , where c and d are the values of c
y corresponding to the values a and b of x.
130 AREA OF SURFACE OF REVOLUTION The area of the surface of a solid of revolution generated by revolving the curve y = f (x) between x = a and x = b (a) about the x-axis is 2
b
a
2
dy y 1 dx, dx
(b) about the y = axis is 2
d
c
2
dx x 1 dy. dy
131 PLANE AREAS BY DOUBLE INTEGRATION (a) Rectangular coordinates A
b
a
f ( x)
( x )
d
dy dx or
c
( y )
( y)
dx dy;
(b) Polar coordinates A
2
1
MFSDH.CH06_2PP.indd 81
f2 ( ) f1 ( )
r dr d or
r2
r1
2 ( r )
1 ( r )
r d dr.
2/15/2023 11:54:17 AM
82 • Mathematical Formulas and Scientific Data
132 VOLUMES BY DOUBLE INTEGRATION If z = f(x, y),
V=
b ( x)
a
( x)
f ( x, y) dy dx or
d
c
( y)
( y)
f ( x, y) dx dy.
133 VOLUMES BY TRIPLE INTEGRATION (a) Rectangular coordinates V dx dy dz; (b) Cylindrical Coordinates V r dr d dz; (c) Spherical Coordinates V 2 sin d d d., where the limits of integration must be supplied. Other formulas may be obtained by changing the order of integration. Area of Surface z = f(x, y) 2
A
2 z z 1 dy dx, x y
where the limits of integration must be supplied.
134 MASS The mass of a body of density δ is m dm, dm dA, or ds, or dV , or dS, where dA, ds, dV, and ds are, respectively, the elements of area, length, volume, and surface of Art. l25 to Art. l32.
MFSDH.CH06_2PP.indd 82
2/15/2023 11:54:44 AM
Integral Calculus—I • 83
135 DENSITY If δ is a variable (or constant) density (mass per unit of element), and δ is the mean density of a solid of volume V, then
dV . dV
136 MOMENT The moments Myz, Mxz, and Mxy, of a mass m with respect to the coordinate planes (as indicated by the subscripts) are: Myz x dm, M xz y dm, M xy z dm.
137 CENTROID OF MASS OR CENTER OF GRAVITY The coordinates x , y, z of the centroid of a mass m are: x
x dm , dm
y
y dm , dm
z
z dm . dm
NOTE In the above equations x, y, z are the coordinates of the center of gravity of the element dm.
138 CENTROID OF SEVERAL MASSES The x-coordinate ( x ) of the centroid of several masses m1, m2, ..., mn, having x1 , x2 ... , xn , respectively, as the x-coordinates of their centroids, is: x
m1 x1 m2 x2 ... m n xn . m1 m2 ... m n
Similar formulas hold for the other coordinates y , z .
MFSDH.CH06_2PP.indd 83
2/15/2023 11:55:12 AM
84 • Mathematical Formulas and Scientific Data
139(A) MOMENT OF INERTIA (SECOND MOMENT) The moments of inertia (I). (a) for a plane curve about the x-axis, y-axis, and origin, respectively, are: I x y2 ds,
Iy x2 ds,
I0 x2 y2 ds;
(b) for a plane area about the x-axis, y-axis, and origin, respectively, are: I x y2 dA,
Iy x2 dA,
I0 x2 y2 dA;
(c) for a solid of mass m about the yz, xz, and xy-planes, x-axis, etc., respectively, are:
Iyz y2 dm,
I xz y2 dm,
I xy z2 dm,
The limits of integration are to be supplied.
I x I xz I xy , etc.
139(B) THEOREM OF PARALLEL AXES Let L be any line in space and Lg a line parallel to L, passing through the centroid of the body of mass m. If d is the distance between the lines L and Lg, then IL ILg d 2 m, where IL and ILg are the moments of inertia of the body about the lines L and Lg, respectively.
140 RADIUS OF GYRATION If I is the moment of inertia of a mass m, and K is the radius of gyration, I = mK2. Similarly for areas, lengths, volumes, etc.
MFSDH.CH06_2PP.indd 84
3/3/2023 3:00:31 PM
Integral Calculus—I • 85
If masses (or areas, etc.) m1, m2, ..., mn, have, respectively, the radii of gyration k1 k2, ..., kn, with respect to a line or plane, then with respect to this line or plane, the several masses taken together have the radius of gyration K, where
K2
m1 k12 m2 k22 ...m n kn2 . m1 m2 ... m n
141 WORK The work W done in moving a particle from s = a to s = b by a force whose component expressed as function of s in the direction of motion is Fs, is W
s b
s a
Fs ds, dW Fs ds.
142 PRESSURE The pressure (P) against an area vertical to the surface of a liquid and between the depths a and b is: P
y b
y a
wly dy, dp wly dy,
where w is the weight of liquid per unit volume, y is the depth beneath surface of liquid of a horizontal element of area, and l is the length of the horizontal element of area expressed in terms of y.
143 CENTER OF PRESSURE The depth y of the center of pressure against an area vertical to the surface of the liquid and between the depths a and b is: y b
y
ydp
y a y b y a
MFSDH.CH06_2PP.indd 85
dp
.
2/15/2023 11:55:45 AM
MFSDH.CH06_2PP.indd 86
2/15/2023 11:55:45 AM
CHAPTER
7
Integral Calculus—II Certain Elementary Processes
144 TO INTEGRATE ∫ R( x ) . dx , WHERE R(X) IS RATIONAL FUNCTION OF X. Write R(x) in the form of a fraction whose terms are polynomials. If the fraction is improper, (i.e., the degree of the denominator is less than or equal to the degree of the numerator), divide the numerator by the denominator and thus write R(x) as the sum of a quotient Q(x) and a proper fraction P(x). (In a proper fraction the degree of the numerator is less than the degree of the denominator.) The polynomial Q(x) is readily integrated. To integrate P(x) separate it into a sum of partial fractions (as indicated below), and integrate each term of the sum separately. To separate the proper fraction P(x) into partial fractions, write P(x) = f(x)/ψ(x), where f(x) and ψ(x) are polynomials, ( x) ( x a)p ( x b)q ( x c)r ..., and the constants a, b, and c, are all different. By algebra, there exist constants A1, A2, ..., B1, B2,..., such that Ap f ( x) B1 A1 A2 ... p 2 ( x) ( x a) ( x a) ( x a) ( x b) Bq B2 ... ... 2 ( x b) ( x b)q
MFSDH.CH07_2PP.indd 87
2/15/2023 12:14:50 PM
88 • Mathematical Formulas and Scientific Data
The separate terms of this sum may be integrated by the formulas dx
(x )
t
1 dx , t 1, log( x ). t 1 (t 1)( x ) ( x )
If f(x) and ψ(x) have real coefficients and ψ(x) = 0 has imaginary roots the above method leads to imaginary quantities. To avoid this, separate P(x) in a different way. As before, corresponding to each p-fold real root a of ψ(x), use the sum Ap A1 A2 ... . ( x a) ( x a)2 ( x a)p To each λ-fold real quadratic factor x2 + αx + β, of ψ(x) which does not factor into real linear factors, use, instead of the two sets of terms occurring in the first expansion of R(x) and dependent on the conjugate complex roots of x2 + αx + β = 0, sums of the forms D x E D1 x E1 D2 x E2 ... , 2 2 x x x 2 x x 2 x where the quantities D1, D2, ..., E1, E2, ..., are real constants. These new sums may be separately integrated by means of Integral formulas l49 to l56, etc.
145 TO INTEGRATE AN IRRATIONAL ALGEBRAIC FUNCTION If no convenient method of integration is apparent the integration may frequently be performed by means of a change of variable. For example, if R is a rational function of two arguments and n is an integer, then to integrate 1 (a) R x,(ax b) n dx , let (ax + b) = yn, whence the integral
reduces to
∫ P(y) dy, where P(y) is a rational function of y
and may be integrated as in Art. 143;
MFSDH.CH07_2PP.indd 88
2/15/2023 12:15:02 PM
Integral Calculus—II • 89
1 1 (b) R x, x2 bx c 2 dx, let x2 bx c 2 z x, reduce R to a rational function of z, and proceed as in Art. 143;
(c) ∫ R(sin x, cos x)dx, let tan sin x
x = t, whence 2
2t 1 t2 2 dt , cos x , dx , 2 2 1 t 1 t 1 t2
reduce to a rational function of t and proceed as in Art. 143.
146 TO INTEGRATE EXPRESSIONS CONTAINING a2 x 2 , x 2 a2 Expressions containing these radicals can frequently be integrated after making the following transformations: (a) if
a2 − x2 occurs, let x = a sin t;
(b) if
x2 − a2 occurs, let x = a sec t;
(c) if
x2 + a2 occurs, let x = a tan t;
147 TO INTEGRATE EXPRESSIONS CONTAINING TRIGONOMETRIC FUNCTIONS The integration of such functions may frequently be facilitated by the use of the identities of Art. 58.
148 INTEGRATION BY PARTS The relation
u dv u v v du is often effective in reducing a given integral to one or more simpler integrals.
MFSDH.CH07_2PP.indd 89
2/15/2023 12:15:34 PM
90 • Mathematical Formulas and Scientific Data
149 TABLE OF INTEGRALS In the following table, the constant of integration, C, is omitted but should be added to the result of every integration. The letter x represents any variable; u represents any function of x; the remaining letters represent arbitrary constants, unless otherwise indicated; all angles are in radians. Unless otherwise mentioned loge u ≡ log u. Expressions Containing (ax + b) 42. (ax b)n dx 43.
1 (ax b)n1 , n 1. a(n 1)
dx 1 log e (ax b). ax b a
dx 1 . 2 a(ax b) (ax b) dx 1 . 45. 3 (ax b) 2 a(ax b)2 1 46. x(ax b)n dx 2 (ax b)n 2 a (n 2) b 2 (ax b)n1 , n 1, 2. a (n 1) 44.
47.
xdx x b 2 log(ax b). ax b a a
48.
xdx b 1 2 2 log(ax b). 2 (ax b) a (ax b) a
49.
xdx b 1 . 2 2 3 2 (ax b) 2 a (ax b) a (ax b)
n 2 50. x (ax b) dx
MFSDH.CH07_2PP.indd 90
1 (ax b)n 3 (ax b)n 2 2 b n2 a3 n 3 n 1 (ax b) b2 , n 1, 2, 3. n 1
3/3/2023 3:21:44 PM
Integral Calculus—II • 91
51.
x2 dx 1 1 (ax b)2 2 b(ax b) b2 log (ax b). ax b a3 2
52.
b2 x2 dx 1 ax b b ax b ) . ( ) 2 log ( ax b (ax b)2 a3
53.
x2 dx 1 3 3 (ax b) a
b2 2b log( ax b ) . 2 ax b 2(ax b)
54. x m (ax b)n dx
1 a(m n 1)
x m (ax b)n1 mb x m 1 (ax b)n dx , 1 x m 1 (ax b)n nb x m (ax b)n1 dx , m n1 m 0, m n 1 0. 55.
dx 1 x . log x(ax b) b ax b
56.
dx 1 a ax b 2 log . bx b x x (ax b)
57.
dx 2 ax b a2 x 3 log . 3 2 2 ax b x (ax b) 2 b x b
58.
dx 1 1 ax b 2 log . 2 b(ax b) b x x(ax b)
2
2 dx 1 1 ax 2 b x 3 59. . log 3 ax b x(ax b) b 2 ax b
60.
MFSDH.CH07_2PP.indd 91
dx b 2 ax 2a ax b 2 3 log . 2 x x (ax b) b x(ax b) b 2
2/15/2023 12:16:41 PM
92 • Mathematical Formulas and Scientific Data
2 (ax b)3 . 3a
61. ax b dx
2(3 ax 2 b) (ax b)3 . 15 a2
62. x ax b dx
63. x
ax b dx
2
64. x3 ax b dx
67. 68.
69.
70. 71. 72.
MFSDH.CH07_2PP.indd 92
105 a3
.
2 35 a3 x3 30 a2 bx2 24 ab2 x 16 b3 (ax b)3 315 a4
65. x n ax b dx 66.
2 15 a2 x2 12 abx 8 b2 (ax b)3
2 a
u u 2
n 1
2
.
b du, u ax b. n
ax b dx . dx 2 ax b b x x ax b dx ax b xdx ax b x2 dx ax b x3 dx ax b x n dx ax b
2 ax b . a
2(ax 2 b) ax b. 3 a2
dx x ax b
2 3 a2 x2 4 abx 8 b2 15 a3
ax b.
2 5 a3 x3 6 a2 bx2 8 ab2 x 16 b3 35 a4 2 a
n 1
1 b
u log
2
ax b.
b du, u ax b. n
ax b b ax b b
, for b 0.
2/15/2023 12:17:34 PM
Integral Calculus—II • 93
73.
dx 2 ax b tan 1 , b 0; b b ax b
x
2 ax b , b 0. tan h 1 b b 74.
dx x
2
ax b dx
ax b a dx . bx 2 b x ax b
ax b 3 a ax b 3 a2 2 2 bx2 4 b2 x 8b
75.
x
76.
dx 1 m n 1 n m x (ax b) b
3
ax b
dx
x
ax b
.
ax b ( u a)m n 2 du ,u . m x u 2n
2(ax b) 2 77. (ax b) dx . a(2 n) 2n
2 78. x(ax b) dx 2 a 2n
79.
dx x(ax b) x m dx
80. 81.
ax b
n 2
dx x
n
ax b n
1 b
(ax b) 2 b(ax b) 2n 4 n 4n
dx x(ax b)
MFSDH.CH07_2PP.indd 93
a b
dx (ax b)
n 2
. .
x m 1 dx 2 x m ax b 2 mb . (2 m 1)a (2 m 1)a ax b
ax b (2 n 3)a dx . n 1 n 1 (2 n 2)b x (n 1)bx ax b
(ax b) 2 82. dx a (ax b) x 83.
n2 2
2n 2
n2 2
(ax b) dx b x
n2 2
dx.
dx 1 cx d log , bc ad 0. (ax b)(cx d) bc ad ax b
2/15/2023 12:18:10 PM
94 • Mathematical Formulas and Scientific Data
84.
c dx 1 1 cx d log , (ax b)2 (cx d) bc ad ax b bc ad ax b bc ad 0.
85. (ax b)n (cx d)m dx
1 (ax b)n1 (cx d)m m(bc ad) (m n 1)a
(ax b) (cx d) n
86.
m 1
dx .
dx
(ax b) (cx d) n
m
1 1 a(m n 2) n 1 (m 1)(bc ad) (ax b) (cx d)m 1 dx
(ax b) (cx d) n
m 1
,
m 1, n 0, bc ad 0. 87.
(ax b)n dx (cx d)m
88.
89.
(ax b)n1 1 (ax b)n dx m n ( ) a 2 (cx d)m 1 , (m 1)(bc ad) (cx d)m 1
(ax b)n 1 (ax b)n1 n ( b c ad ) (cx d)m dx . (m n 1)c (cx d)m 1
xdx 1 d b log(ax b) log(cx d) , (ax b)(cx d) bc ad a c bc ad 0. xdx
1
(ax b) (cx d) bc ad 2
b d cx d a(ax b) bc ad log ax b , bc ad 0. 90.
MFSDH.CH07_2PP.indd 94
cx d ax b
dx
2 (3 ad 2 bc acx) ax b. 3 a2
2/15/2023 12:18:23 PM
Integral Calculus—II • 95
91.
ax b 2 ax b 2 dx cx d c c
ad bc tan 1 c
c(ax b) , c 0, ad bc. ad bc 92.
ax b 2 ax b 1 dx cx d c c log
93.
c(ax b) bc ad c(ax b) bc ad dx
(cx d) ax b
dx
94. (cx d)
bc ad c , c 0, bc ad.
2
c ad bc
tan 1
1
ax b c bc ad c 0, bc ad.
log
c(ax b) c 0, ad bc. ad bc
c(ax b) bc ad c(ax b) bc ad
,
Expressions Containing ax 2 c , ax n c , x 2 p2 , and p2 − x 2 . 95.
x x dx 1 1 tan 1 , or ctn 1 . 2 p p p p x p
96.
x p x dx 1 1 log , or tanh 1 . 2 p x p 2p p x p
97.
a dx 1 tanh 1 x , a and c 0. 2 ax c ac c
98.
dx 1 x a c log , a 0, c 0. 2 ax c 2 ac x a c
2
2
MFSDH.CH07_2PP.indd 95
1 2 ac
log
c x a c x a
, a 0, c 0.
2/15/2023 12:18:56 PM
96 • Mathematical Formulas and Scientific Data
99.
ax
dx 2
c
1 x 2 2(n 1)c ax c n1
n
2n 3 dx , n 1. 2(n 1)c ax2 c n1
100. x ax c 2
101. 102.
2 1 ax c dx 2a n1
n
n 1
, n 1.
x 1 dx log ax2 c . 2a ax2 c dx
x ax2 c dx
1 x2 log 2 . 2c ax c 1 a dx 2 . cx c ax c
103.
x
104.
x2 dx x c dx 2 . 2 ax c a a ax c
105.
x n dx x n 1 c x n1 dx , n 1. ax2 c a(n 1) a ax2 c
106. 107.
2
ax
2
c
x2 dx
ax
2
c
dx
x
2
ax
2
n
c
n
1 x 1 dx . n 1 2 2 2(n 1)a ax c 2(n 1)a ax c n1
1 dx a dx . n 1 2 2 2 c x ax c c ax c n
108. x2 p2 dx
1 x x2 p2 p2 log x x2 p2 . 2
109. p2 x2 dx
1 2 2 2 1 x x p x p sin . 2 p
MFSDH.CH07_2PP.indd 96
2/15/2023 12:19:34 PM
Integral Calculus—II • 97
110.
111.
dx x p 2
2
x x sin 1 or cos1 . p x p p dx
2
2
112. ax2 cdx
115.
dx ax c 2
dx ax c 2
a x c ax2 c sin 1 x , a 0. c 2 2 a
1 a
a sin 1 x , a 0. c a 3 1 2 ax c 2 . 3a
117. x2 ax2 c dx
x 4a
118. x2 ax2 c dx
MFSDH.CH07_2PP.indd 97
xdx ax c 2
log x a ax2 c , a 0.
1
116. x ax2 c dx
119.
x c ax2 c log x a ax2 c , a 0. 2 2 a
113. ax2 c dx 114.
log x x2 p2 .
x 4a
ax
2
c2 8 a
3
c 3
cx ax2 c 8a
log x a ax2 c , a 0.
cx ax2 c 8a a c2 sin 1 x , a 0. c 8a a
ax
2
c 3
1 ax2 c . a
2/15/2023 12:20:07 PM
98 • Mathematical Formulas and Scientific Data
120.
x2 dx ax c 2
x 1 ax2 c ax2 c dx. a a
121.
ax2 c c ax2 c dx ax2 c c log , c 0. x x
122.
ax2 c dx ax2 c c tan 1 x
123. 124. 125. 126. 127.
128.
dx
x p2 x2 dx
x x2 p2 dx x ax2 c dx x ax2 c
dx x2 ax2 c x n dx ax2 c
p p2 x2 1 log p x
ax2 c c
, c 0.
.
1 1 p p cos1 , or sin 1 . p p x x 1 c
ax2 c c , c 0. x
log
a sec 1 x , c 0. c c
1
ax2 c . cx
x n1 ax2 c (n 1)c x n 2 dx , n 0. na na ax2 c 3
129. x n ax2 c dx
x n1 ax2 c 2 (n 2)a
x 130.
MFSDH.CH07_2PP.indd 98
2
ax xn
ax c dx
2
n2
(n 1)c (n 2)a
ax2 c dx, n 0. 3
c2
c(n 1) x
n2
(n 4)a ax2 c dx, n 1. (n 1)c x n 2
2/15/2023 12:20:31 PM
Integral Calculus—II • 99
131.
dx
x n ax2 c 3
132. ax2 c 2 dx
ax2 c dx (n 2)a , n 1. n 1 n 2 (n 1)c x c(n 1) x ax2 c
x 2 ax2 5c ax2 c 8 3 c2 log x a ax2 c , a 0. 8 a
3
133. ax2 c 2 dx
134.
dx
ax
2
c
3 2
x 2 ax2 5 c ax2 c 8 a 3 c2 sin 1 x , a 0. c 8 a x
c ax2 c
3
135. x ax2 c 2 dx
.
5 1 2 2 . ax c 5a
3
136. x2 ax2 c 2 dx
3 x3 c ax2 c 2 x2 ax2 c dx. 6 2
3
3 2
137. x n ax2 c dx 138. 139.
MFSDH.CH07_2PP.indd 99
xdx
ax2 c
3 2
x2 dx
ax2 c
3 2
x n1 ax2 c 2 n4 1
a ax2 c x
a ax c 2
3c x n ax2 c dx. n4
.
1 a a
log x a ax2 c , a 0.
2/15/2023 12:20:53 PM
100 • Mathematical Formulas and Scientific Data
140. 141. 142. 143.
144.
145.
x2 dx
ax
c
2
3 2
x3 dx
ax
c
2
3 2
dx
x ax n c
ax
dx n
c
m
dx x ax n c dx x ax n c
x a ax c 2
x2 a ax c 2
a sin 1 x , a 0. c a a
2 a2
1
ax2 c .
1 xn . log n cn ax c
1 dx a x n dx . 1 m c ax n c c ax n c m 1
n c
log
2
n c
ax n c c ax n c c
sec 1
, c 0.
ax n , c 0. c
146. x m 1 ax n c dx p
1 x m ax n c p npc x m 1 ax n c p1 dx . m np 1 x m ax n c p1 (m np n) x m 1 ax n c p1 dx . cn(p 1)
1 x m n ax n c p1 (m n)c x m n1 ax n c p dx . a(m np)
p 1 p 1 m x ax n c (m np n)a x m n1 ax n c dx . mc
147. 148.
MFSDH.CH07_2PP.indd 100
x m dx
ax
n
c dx
x
m
ax
n
p
c
1 x m n dx c x m n dx . a ax n c p1 a ax n c p
p
1 dx a dx . p 1 m n m n c x ax n c p c x ax c
2/15/2023 12:21:09 PM
Integral Calculus—II • 101
Expressions Containing (ax 2 + bx + c ). 1
2 ax b b2 4 ac
149.
dx ax bx c
150.
dx 2 2 ax b tan 1 , b2 4 ac. 2 2 ax bx c 4 ac b 4 ac b
151.
dx 2 , b2 4 ac. 2 ax b ax bx c
152.
2
b 4 ac 2
log
2 ax b b 4 ac 2
, b2 4 ac.
2
2
ax
dx
2
bx c
n 1
2 ax b
n 4 ac b2 ax2 bx c
2(2 n 1)a
n 4 ac b
2
ax
n
dx
2
bx c
n
.
153.
b xdd 1 dx log ax2 bx c . 2 2 a ax bx c ax bx c 2 a
154.
x2 dx x b 2 log ax2 bx c 2 ax bx c a 2 a b2 2 ac dx . 2 2 2a ax bx c
155. 156.
2
x n dx x n 1 c x n 2 dx b x n1 dx . ax2 bx c (n 1)a a ax2 bx c a ax2 bx c
ax
xdx
2
bx c
n 1
(2 c bx)
n 4 ac b2 ax2 bx c
MFSDH.CH07_2PP.indd 101
b(2 n 1)
n 4 ac b
2
ax
n
dx
2
bx c
n
.
2/15/2023 12:21:25 PM
102 • Mathematical Formulas and Scientific Data
157.
158.
159.
ax
x m dx
2
bx c
dx
n 1
x ax2 bx c
x m 1
a(2 n m 1) ax2 bx c
n
(n m 1) b x m 1 dx (2 n m 1) a ax2 bx c n1
c x m 2 (m 1) . (2 n m 1) a ax2 bx c n1
b 1 x2 dx log . 2 2 ax bx c 2 c ax bx c 2c
dx
x2 ax2 bx c
ax2 bx c 1 b log x2 2 c2 cx
b2 a dx . 2 2 c ax bx c 2c 160.
161.
x
m
MFSDH.CH07_2PP.indd 102
bx c
n 1
1
(m 1)cx
m 1
ax
2
bx c
(n m 1) b dx m 1 2 m 1 c x ax bx c n1
dx (2 n m 1) a . m 2 2 m 1 c x ax bx c n1 dx
x ax2 bx c
162.
ax
dx
2
n
n
1
2 c(n 1) ax2 bx c
n 1
b dx 1 dx . 2 c ax2 bx c n c x ax2 bx c n1 dx
ax bx c 2
1 a
log 2 ax b 2 a ax2 bx c , a 0.
2/15/2023 12:21:38 PM
Integral Calculus—II • 103
163.
164.
165.
dx ax2 bx c xdx ax2 bx c x n dx
ax bx c x n1 dx
a
sin 1
2 ax b
, a 0.
b2 4 ac
ax2 bx c b dx . 2 2 a ax bx c a
2
1
x n 1 am
ax2 bx c
b(2 n 1) 2 an
ax2 bx c
c(n 1) x n 2 dx . an ax2 bx c
2 ax b ax2 bx c 4a 4 ac b2 dx . 2 8a ax bx c
166. ax2 bx c dx
3
167. x ax2 bx c dx
ax2 bx c 2 3a
b ax2 bx c dx. 2a 3
2 5 b ax bx c 2 2 2 168. x ax bx c dx x 6a 4a 2 5b 4 ac ax2 bx c dx. 16 a2
169. 170. 171.
MFSDH.CH07_2PP.indd 103
dx x ax2 bx c
dx x ax bx c 2
dx x ax2 bx
ax2 bx c c b log , c 0. x c 2 c
1
1 c
sin 1
bx 2 c x b2 4 ac
, c 0.
2 ax2 bx , c 0. bx
2/15/2023 12:22:00 PM
104 • Mathematical Formulas and Scientific Data
172.
dx
173.
dx
ax2 bx c c(n 1) x n1
x n ax2 bx c b(3 2 n) dx a(2 n) dx . n 1 2 n 2 2 c(n 1) x ax bx c c(n 1) x ax2 bx c
174.
ax
2
bx c
3 2
dx
ax
2
bx c
3 2
b
2
2(2 ax b)
4 ac ax bx c 2
1 2 a
3
x b / 2a
2
, b2 4 ac.
, b2 4 ac.
Miscellaneous Algebraic Expressions 175. 2 px x2 dx
176.
177.
1 ( x p) 2 px x2 p2 sin 1 [( x p) / p]. 2
p x cos1 . 2 px x p dx
2
dx ax b. cx d or
2 ac
tanh 1
2 ac
tan 1
c(ax b) , a(cx d)
c(ax b) . a(cx d)
178. ax b. cx d dx
(2 acx bc ad) ax b. cx d 4 ac (ad bc)2 dx . 8 ac ax b. cx d
179.
ax b. cx d (ad bc) cx d dx dx . ax b a 2a ax b. cx d
180.
xb dx x d . x b (b d) log x d x b . xd
MFSDH.CH07_2PP.indd 104
2/15/2023 12:22:25 PM
Integral Calculus—II • 105
181.
1 x dx sin 1 x 1 x2 . 1 x
182.
p x dx p x . q x (p q) sin 1 q x
183.
p x dx p x . q x (p q) sin 1 q x
184.
dx x p. q x
2 sin 1
xq . p q q x . p q
xp . q p
Expressions Containing sin ax 185. sin u du cos u, where u is any function of x. 1 186. sin ax dx cos ax. a 187. sin 2 ax dx
x sin 2 ax . 2 4a
1 1 188. sin 3 ax dx cos ax cos3 ax. a 3a 189. sin 4 ax dx
3 x 3 sin 2 ax sin 3 ax cos ax . 8 16 a 4a
sin n1 ax cos ax n 1 sin n 2 ax dx, na n (n pos. integer).
190. sin n ax dx 191.
MFSDH.CH07_2PP.indd 105
dx 1 ax 1 log tan log(csc ax ctn ax). sin ax a 2 a
2/15/2023 12:22:57 PM
106 • Mathematical Formulas and Scientific Data
192.
dx 1 csc 2 ax dx ctn ax. 2 a sin ax
193.
n2 dx cos ax dx 1 , n n 1 n2 a(n 1) sin ax n 1 sin ax sin ax
n integer > 1. 194.
dx 1 ax tan . 1 sin ax a 4 2
195.
bc 2 dx ax tan 1 tan , b2 c2 . 2 2 b c sin ax a b c 4 2 b c
196.
1 dx c b sin ax c2 b2 cos ax 2 , c b2 . log b c sin ax a c2 b2 b c sin ax
197. sin ax sin bx dx
sin(a b) x sin(a b) x 2 , a b2 . 2(a b) 2(a b)
x x 198. 1 sin x dx 2 sin cos ; use + sign 2 2 when (8 k 1) x(8 k 3) , otherwise −, k an integer. 2 2 x x 199. 1 sin x dx 2 sin cos ; use + sign 2 2 when (8 k 3) x(8 k 1) , otherwise −, k an integer. 2 2 Expressions Involving cos ax 200. cos u du sin u, where u is any function of x. 201. cos ax dx
MFSDH.CH07_2PP.indd 106
1 sin ax. a
2/15/2023 12:23:22 PM
Integral Calculus—II • 107
202. cos2 ax dx
x sin 2 ax . 2 4a
203. cos3 ax dx
1 1 sin ax sin 3 ax. a 3
204. cos4 ax dx
3 3 x 3 sin 2 ax cos ax sin ax . 8 16 a 4a
205. cos n ax dx
cos n1 ax sin ax na
n1 cos n 2 ax dx. n
206.
dx 1 ax 1 log tan log(tan ax sec ax). cos ax a 2 4 a
207.
dx 1 tan ax. 2 cos ax a
208.
n2 dx sin ax dx 1 , n n 1 cos ax a(n 1) cos ax n 1 cos n 2 ax
n integer > 1. 209.
dx 1 ax tan . 1 cos ax a 2
210.
dx 1 ax cot . 1 cos ax a 2
x x dx 2 2 sin . 2 2 Use + when (4k − 1) π< x ≦ (4k +1) π, otherwise −, k an integer.
211. 1 cos x dx 2 cos
MFSDH.CH07_2PP.indd 107
2/15/2023 12:23:48 PM
108 • Mathematical Formulas and Scientific Data
x x 212. 1 cos x dx 2 sin dx 2 2 cos . 2 2 Use top signs when 4kπ < x ≦ (4k +2)π, otherwise bottom signs. 213.
b2 c2 .sin ax 2 dx 1 tan 1 , b c2 . c b cos ax b c cos ax a b2 c2
214.
c2 b2 .sin ax 2 1 dx 2 tanh 1 , c b . cos b c cos ax a c2 b2 c b ax
215. cos ax cos bx dx
sin(a b) x sin(a b) x 2 , a b2 . 2(a b) 2(a b)
Expressions Containing sin ax and cos ax 1 cos(a b) x cos(a b) x 2 216. sin ax cos bx dx , a b2 . 2 ab a b 217. sin n ax cos ax dx
1 sin n1 ax, n 1. a(n 1)
218. cos n ax sin ax dx
1 cos n1 ax, n 1. a(n 1)
219.
sin ax 1 dx log cos ax. a cos ax
220.
cos ax 1 dx log sin ax. a sin ax
221. (b c sin ax)n cos ax dx
1 (b c sin ax)n1 , n 1. ac(n 1)
222. (b c cos ax)n sin ax dx
MFSDH.CH07_2PP.indd 108
1 (b c cos ax)n1 , n 1. ac(n 1)
2/15/2023 12:24:12 PM
Integral Calculus—II • 109
223.
cos ax dx 1 log(b c sin ax). b c sin ax ac
224.
sin ax 1 dx log(b c cos ax). b c cos ax ac
225.
dx 1 2 b sin ax c cos ax a b c2
226.
dx 1 sin 1 U , 2 b c cos ax d sin ax a b c2 d 2
1 1 c log tan 2 ax tan b .
c2 d 2 b(c cos ax d sin ax) 1 ; or log V , U 2 2 2 c d (b c cos ax d sin ax) a c d 2 b2 c2 d 2 b(c cos ax d sin ax) c2 d 2 b2 (c sin ax d cos ax) V 2 2 c d b c cos s ax d sin ax b2 c2 d 2 , ax . 227.
228.
dx b c cos ax d sin ax 1 b (c d) cos ax (c d) sin ax 2 , b c2 d 2 . ab b (c d) cos ax (c d) sin ax sin 2 ax dx b c cos ax 2
1 ac
sin ax cos ax dx
x b c b tan 1 tan ax . b b c c 1 log b cos2 ax c sin 2 ax . 2 a(c b)
229.
b cos ax c sin ax
230.
dx 1 b cos ax c sin ax . log b cos ax c sin ax b2 cos2 ax c2 sin 2 ax 2 abc
MFSDH.CH07_2PP.indd 109
2
2
2/15/2023 12:24:41 PM
110 • Mathematical Formulas and Scientific Data
231.
dx 1 c tan ax tan 1 . 2 2 b cos ax c sin ax abc b 2
2
232. sin 2 ax cos2 ax dx
x sin 4 ax . 8 32 a
233.
dx 1 log tan ax. sin ax cos ax a
234.
dx 1 tan ax cot ax . 2 sin ax cos ax a
235.
sin 2 ax 1 ax dx sin ax log tan . cos ax a 2 4
236.
ax cos2 ax 1 dx cos ax log tan . sin ax a 2
2
sin m 1 ax cos n1 ax a(m n) m 1 sin m 2 ax cos n ax dx, m, n 0. mn
237. sin m ax cos n ax dx
m n 238. sin ax cos ax dx
sin m 1 ax cos n1 ax n 1 a(m n) mn
sin 239.
m
ax cos n 2 ax dx, m, n 0.
mn2 sin m ax sin m 1 ax dx n n 1 n1 a(n 1) cos ax cos ax sin m ax cosn2 ax dx, m, n 0, n 1.
mn2 cos n ax cos n1 ax dx 240. m m 1 (m 1) a(m 1) sin ax sin ax cos n ax sin m 2 ax dx, m, n, 0, m 1.
MFSDH.CH07_2PP.indd 110
2/15/2023 12:25:07 PM
Integral Calculus—II • 111
241.
dx 1 1 mn2 n m 1 n 1 (n 1) sin ax cos ax a(n 1) sin cos ax m
sin 242.
m
dx . ax cos n 2 ax
dx 1 1 n m 1 a(m 1) sin sin ax cos ax ax cos n1 ax mn2 dx . m 2 (m 1) sin ax cos n ax m
1 cos2 ax dx. (Expand, divide, and sin 2 n ax 243. dx cos ax cos ax n
use Art. 205). 1 sin 2 ax cos2 n ax 244. dx dx. (Expand, divide, and sin ax sin ax n
use Art. 190). 1 cos2 ax sin 2 n1 ax 245. dx sin ax dx. cos ax cos ax n
(Expand, divide, and use Art. 218).
1 sin 2 ax cos2 n1 ax 246. dx cos ax dx. sin ax sin ax n
(Expand, divide, and use Art. 217). Expressions Containing tan ax or cot ax (tan ax=1/cot ax)
247. tan u du log cos u, or log sec u, where u is any function of x. 1 248. tan ax dx log cos ax. a
MFSDH.CH07_2PP.indd 111
2/15/2023 12:25:27 PM
112 • Mathematical Formulas and Scientific Data
249. tan 2 ax dx
1 tan ax x. a
250. tan 3 ax dx
1 1 tan 2 ax log cos ax. a 2a
251. tan n ax dx
1 tan n1 ax tan n 2 ax dx, n integer 1. a(n 1)
252. cot u du log sin u, or −log cosec u, where u is any function of x. 253. cot 2 ax dx
dx 1 cot ax x. 2 a tan ax
254. cot 3 ax dx
1 1 cot 2 ax log sin ax. a 2a
255. cot n ax dx
dx 1 ax cot n 2 ax dx, n a(n 1) tan ax
n integer > 1. 256.
cot ax dx dx 1 2 b c tan ax b cot ax c b c2 c 1 bx log(b cos ax c sin ax) 2 2 a b c
257.
tan ax dx dx b c cot ax b tan ax c c 1 2 bx log(c cos ax b sin ax) . 2 a b c
258.
dx b c tan 2 ax
bc sin 1 sin ax , b a bc 1
b pos., b2 > c2.
MFSDH.CH07_2PP.indd 112
2/15/2023 12:25:48 PM
Integral Calculus—II • 113
Expressions Containing sec ax = 1/cos ax or cosec ax = 1 sin ax. u 259. sec u du log(sec u tan u) log tan , where u is 2 4 any function of x. 1 ax 260. sec ax dx log tan . a 2 4 2 261. sec ax dx
262. sec 3 ax dx
1 tan ax. a 1 ax tan ax sec ax log tan . 2 a 2 4
n 263. sec ax dx
1 sin ax n2 sec n 2 ax dx, n 1 a(n 1) cos ax n 1
n integer > 1.
u 264. cosec u du log(cosec u cot u) log tan , where u is 2 any function of x. 265. cosec ax dx
ax 1 log tan . a 2
1 266. cosec 2 ax dx cot ax. a 267. cosec 3 ax dx
ax 1 cot ax cosec ax log tan . 2a 2
268. cosec n ax dx
cos ax n2 1 cosec n 2 ax dx, n 1 a(n 1) sin ax n 1
n integer > 1.
MFSDH.CH07_2PP.indd 113
2/15/2023 12:26:09 PM
114 • Mathematical Formulas and Scientific Data
Expressions Containing tan ax and sec ax or cot ax and cosec ax. 269. tan u sec u du sec u, where u is any function of x. 270. tan ax sec ax dx
1 sec ax. a
271. tan n ax sec 2 ax dx 272. tan ax sec n ax dx
1 tan n1 ax, n 1. a(n 1)
1 sec n ax, n 0. an
273. cot u cosec u du cosec u, where u is any function of x. 1 274. cot ax cosec ax dx cosec ax. a 275. cot n ax co sec 2 ax dx 276. cot ax cosec n ax dx
277.
1 cot n1 ax, n 1. a(n 1)
1 cosec n ax, n 0. an
cosec 2 ax dx 1 log cot ax. cot ax a
Expressions Containing Algebraic and Trigonometric Functions 278. x sin ax dx
1 1 sin ax x cos ax. 2 a a
279. x2 sin ax dx
x2 2x 2 ax ax cos ax. sin cos a a2 a3
280. x3 sin ax dx
x3 3 x2 6 6x ax ax sin sin cos ax 3 cos ax. a a2 a4 a
MFSDH.CH07_2PP.indd 114
2/15/2023 12:26:34 PM
Integral Calculus—II • 115
281. x sin 2 ax dx
x2 x sin 2 ax cos 2 ax 4 4a 8 a2
282. x2 sin 2 ax dx
x3 x2 1 3 6 4a 8a
x cos 2 ax sin 2 ax 4 a2
283. x3 sin 2 ax dx
x 4 x3 3x 3 8 4a 8a
284. x sin 3 ax dx
x cos 3 ax sin 3 ax 3 x cos ax 3 sin ax . 12 a 4a 36 a2 4 a2
285. x n sin ax dx
3 x2 3 sin ax 2 2 16 a4 8a
n 1 n x cos ax x n1 cos ax dx. a a
286.
sin ax dx (ax)3 (ax)5 ax . x 3 3! 5 5!
287.
sin ax dx x
m
cos ax dx 1 sin ax a . m 1 (m 1) x (m 1) x m 1
288. x cos ax dx
1 1 cos ax x sin ax. 2 a a
289. x2 cos ax dx
290. x
3a x cos ax dx
291. x cos2 ax dx
MFSDH.CH07_2PP.indd 115
x2 2x 2 ax ax sin ax. cos sin a a2 a3 2
3
cos 2ax.
2
6 cos ax a4
a x 2
3
6 x sin ax a3
.
x2 x sin 2 ax cos 2 ax . 4 4a 8 a2
2/15/2023 12:26:59 PM
116 • Mathematical Formulas and Scientific Data
292. x2 cos2 ax dx
x3 x2 1 x cos 2 ax 3 sin 2 ax . 6 4a 8a 4 a2
4 3 2 293. x3 cos2 ax dx x x 3 x3 sin 2 ax 3 x 2 3 4 cos 2ax. a
8
4
8a
8a
16 a
294. x cos3 ax dx
x sin 3 ax cos 3 ax 3 x sin ax 3 cos ax . 12 a 4a 36 a2 4 a2
295. x n cos ax dx
1 n n x sin ax x n1 sin ax dx, n pos. a a
296.
cos ax dx (ax)2 (ax)4 log ax ..... x 2 2! 4 4!
297.
sin ax dx cos ax 1 cos ax a dx m 1 . m (m 1) x (m 1) x x m 1
Expressions Containing Exponential and Logarithmic Functions 298. e u du e u , where u is any function of x. 299. bu du
bu , where u is any function of x. log b
300. eax dx
1 ax e , a
301. xeax dx
ax
dx
bax . a log b
xbax bax eax ax ax xb dx ( 1 ), . a log b a2 (log b)2 a2
302. x2 eax dx
MFSDH.CH07_2PP.indd 116
b
eax 2 2 a x 2 ax 2 . a3
2/15/2023 12:27:18 PM
Integral Calculus—II • 117
303. x n eax dx 304. x n eax dx
1 n ax n n1 ax x e x e dx, n pos. a a
eax (ax)n n(ax)n1 n(n 1)(ax)n 2 ... (1)n n !, a n 1
n pos. integ.
305. x n e ax dx
e ax (ax)n n(ax)n1 n(n 1)(ax)n 2 ..... n ! , a n 1
n pos. integ. x n bax n 306. x n bax dx x n1 bax dx, n pos. a b a b log log 307.
(ax)2 (ax)3 eax dx log x ax ....... x 2 2! 3 3!
308.
eax eax 1 eax dx , n integ. > 1. a dx n n 1 n 1 n1 x x x
309.
dx 1 ax log b ceax . ax ab b ce
310.
eax dx 1 log b ceax . ax ac b ce
311.
dx 1 b tan 1 eax , b and c pos. ax c be ce a bc ax
312. eax sin bx dx
MFSDH.CH07_2PP.indd 117
eax (a sin bx b cos bx). a2 b2
2/15/2023 12:27:48 PM
118 • Mathematical Formulas and Scientific Data
eax [(b c) sin(b c) x a cos(b c) x] 2 2 a2 b c eax [(b c) sin(b c) x a cos(b c) x] . 2 a2 (b c)2
313. eax sin bx sin cx dx
314. eax cos bx dx
eax (a cos bx b sin bx). a2 b2
315. eax cos bx cos cx dx
eax [(b c) sin(b c) x a cos(b c) x] . 2 a2 (b c)2
316. eax sin bx cos cx dx
eax [(b c) sin(b c) x a cos(b c) x] 2 a2 (b c)2
eax [a sin(b c) x (b c) cos(b c) x] 2 a2 (b c)2
eax [a sin(b c) x (b c) cos(b c) x] . 2 a2 (b c)2
317. eax sin bx sin(bx c)dx
eax cos c eax [a cos(2 bx c) 2 b sin(2 bx c)] . 2a 2 a2 4 b2
318. eax cos bx cos(bx c)dx.
eax cos c eax [a cos(2 bx c) 2 b sin(2 bx c)] 2a 2 a2 4 b2
319. eax sin bx cos(bx c)dx.
MFSDH.CH07_2PP.indd 118
eax sin c e ax [a sin(2 bx c) 2 b cos(2 bx c)] 2a 2 a2 4 b2
2/15/2023 12:28:04 PM
Integral Calculus—II • 119
320. eax cos bx sin(bx c)dx.
eax sin c e ax [a sin(2 bx c) 2 b cos(2 bx c)] 2a 2 a2 4 b2
ax 321. xe sin bx dx
a
eax 2
2 2
b
322. xeax cos bx dx
a
eax 2
2 2
b
323. eax cos n bx dx
n(n 1)b2 a2 n2 b2
ax n 324. e sin bx dx
n(n 1)b2 a2 n2 b2
xeax (a sin bx b cos bx) a2 b2 a2 b2 sin bx 2 ab cos bx .
xeax (a cos bx b sin bx) a2 b2 a2 b2 cos bx 2 ab sin bx . eax cos n1 bx(a cos bx nb sin bx) a2 n2 b2
e
ax
cos n 2 bx dx.
eax sin n1 bx(a sin bx nb cos bx) a2 n2 b2
e
ax
sin n 2 bx dx.
325. log ax dx x log ax x. 326. x log ax dx
x2 x2 log ax . 2 4
327. x2 log ax dx
MFSDH.CH07_2PP.indd 119
x3 x3 log ax . 3 9
2/15/2023 12:28:21 PM
120 • Mathematical Formulas and Scientific Data
328. (log ax)2 dx x(log ax)2 2 x log ax 2 x. 329. (log ax)n dx x(log ax)n n (log ax)n1 dx, n pos. 1 log ax 330. x n log ax dx x n1 , n 1. 2 n 1 (n 1) 331. x n (log ax)m dx
x n 1 m (log ax)m x n (log ax)m 1 dx. n1 n1
(log ax)n (log ax)n1 332. dx , n 1. x n1 333.
dx log(log ax). x log ax
334.
dx 1 . n x(log ax) (n 1)(log ax)n1
335.
x n dx x n 1 n1 x n dx , m 1.. (log ax)m (m 1)(log ax)m 1 m 1 (log ax)m 1
x n dx 1 336. n 1 log ax a
ey dy y , y (n 1) log ax.
(n 1)2 (log ax)2 log log ( ) log ax n 1 ax 2 2! 3 3 (n 1) (log ax) ... . 3 3!
x n dx 1 n 1 337. log ax a
338.
MFSDH.CH07_2PP.indd 120
(log ax)2 (log ax)3 dx 1 log log ax log ax ... . log ax a 2 2! 3 3!
2/15/2023 12:28:52 PM
Integral Calculus—II • 121
x 339. sin(log ax)dx [sin(log ax) cos(log ax)]. 2 x 340. cos(log ax)dx [sin(log ax) cos(log ax)]. 2 341. eax log bx dx
1 ax 1 eax e log bx dx. a a x
Expressions Containing Inverse Trigonometric Functions 342. sin 1 ax dx x sin 1 ax
1 1 a2 x 2 . a
343. sin 1 ax dx x sin 1 ax 2 x 2
2
344. x sin 1 ax dx
x2 x 1 sin 1 ax 2 sin 1 ax 1 a2 x 2 . 4a 2 4a
345. x n sin 1 ax dx 346.
347.
x n 1 a x n1 dx sin 1 ax , n 1. n 1 1 a2 x 2 n1
sin 1 ax dx 1 13 ax (ax)5 (ax)3 x 233 2455 135 (ax)7 ..., a2 x2 1. 2467 7 sin 1 ax dx x2
1 1 1 a2 x 2 sin 1 ax a log . x ax
348. cos1 ax dx x cos1 ax
MFSDH.CH07_2PP.indd 121
2 1 a2 x2 sin 1 ax. a
1 1 a2 x 2 . a
2/15/2023 12:29:16 PM
122 • Mathematical Formulas and Scientific Data
349. cos1 ax dx x cos1 ax 2 x 2
2
350. x cos1 ax dx
x2 x 1 cos1 ax 2 cos1 ax 1 a2 x 2 . 4a 2 4a
351. x n cos1 ax dx
352.
353.
x n 1 a x n1 dx cos1 ax , n 1. n 1 1 a2 x 2 n1
cos1 ax dx 1 13 log ax ax (ax)5 (ax)3 2 2 3 3 2 4 5 5 x 135 (ax)7 ..., a2 x2 1. 2467 7 cos1 ax dx x2
1 1 1 a2 x2 cos1 ax a log . x ax
354. tan 1 ax dx x tan 1 ax 355. x n tan 1 ax dx
356.
tan 1 ax dx x
2
1 log 1 a2 x2 . 2a
x n 1 a x n1 dx tan 1 ax , n 1. n1 n 1 1 a2 x 2
1 a2 x 2 1 a tan 1 ax log 2 2 x 2 a x
357. cot 1 ax dx x cot 1 ax 358. x n cot 1 ax dx
MFSDH.CH07_2PP.indd 122
2 1 a2 x2 cos1 ax. a
.
1 log 1 a2 x2 . 2a
x n 1 a x n1 dx cot 1 ax , n 1. n1 n 1 1 a2 x 2
2/15/2023 12:29:41 PM
Integral Calculus—II • 123
359.
cot 1 ax dx x
2
1 a2 x 2 1 a cot 1 ax log 2 2 . x 2 a x
360. sec 1 ax dx x sec 1 ax
1 log ax a2 x2 1 . a
361. x n sec 1 ax dx
x n 1 x n dx 1 sec 1 ax n 1. n1 n 1 a2 x 2 1
sec 1 ax ; sign when 0 sec 1 ax . 2 2
Use + sign when
362. cosec 1 ax dx x cosec 1 ax 363. x n cosec 1 ax dx
1 log ax a2 x2 1 . a
x n 1 x n dx 1 cosec 1 ax , n 1. n1 n 1 a2 x 2 1
Use + sign when 0 cosec 1 ax ; − sign when 2 cosec 1 ax 0. 2
Definite Integrals 364.
0
adx , if a > 0: 0, if a = 0; , if a < 0. 2 a x 2 2 2
1
n 1
365. x n1 e x dx log e (1 / x) 0 0
dx (n).
(n 1) n (n), if n > 0.
(2) (1) 1.
(n 1) n !, if n is an integer.
1 . 2
(n) (n 1) .
Z(y) = Dy [loge Γ(y)].
Z(1) = −0.5772157…(See integral 418).
MFSDH.CH07_2PP.indd 123
2/15/2023 12:30:20 PM
124 • Mathematical Formulas and Scientific Data
366. e zx zn x n1 dx (n), z 0. 0
1
0
0
367. x m 1 (1 x)n1 dx 368.
0
369.
2
0
x m 1 dx (m)(n) . mn (m n) (1 x)
x n1 dx , 0 n 1. 1 x sin n 2
sin n x dx cos n x dx 0
n 1 1 2 2 , if n 1; 2 n 1 2 1 3 5...(n 1) , if n is an even integer; 2 4 6...(n) 2 2 4 6...(n 1) = ,if n is an odd integer. 1 3 5 7...n 370.
371.
372.
0
0
0
sin 2 x dx . 2 2 x sin ax dx , if a 0. x 2 sin x cos ax dx 0, if a 1, or a 1; x , if a 1, or a 1; 4 , if 1 a 1. 2
373. sin 2 ax dx cos2 ax dx . 0 0 2
MFSDH.CH07_2PP.indd 124
2/15/2023 12:30:38 PM
Integral Calculus—II • 125
374.
/ a
0
sin ax cos ax dx sin ax cos ax dx 0. 0
0
0
375. sin ax sin bx dx cos ax cos bx dx 0, a b.
376.
377.
0
0
2a , if a b is odd; a b2 =0, if a b is even.
sin ax cos bx dx
2
sin ax sin bx 1 dx a, if a b. 2 x 2
378. cos x2 dx sin x2 dx
0
0
379. e a x dx 2 2
0
1 . 2 2
1 1 , if a 0. 2a 2a 2 (n 1) , a n 1 n! n1 , if n is a positive integer, a 0. a
380. x n e ax dx 0
381. x2 n e ax dx 2
0
382.
383.
xe ax dx
0
0
MFSDH.CH07_2PP.indd 125
1 . 2a 2
e ax dx . a x
384. e 0
1 3 5...(2 n 1) . 2 n 1 a n a
x 2 a2 / x 2
dx
1 2 a e , if a 0. 2
2/15/2023 12:31:03 PM
126 • Mathematical Formulas and Scientific Data
385. e ax cos bx dx 0
386. e ax sin bx dx 0
387.
0
a , if a 0. a b2 2
b , if a 0. a b2 2
e ax sin x dx ctn 1 a, a 0. x
388. e
a2 x2 cos bx dx
2 / 4 a2
e b 2a
, if a 0.
0
389. log x dx (1)n .n !, n pos. integ. 1
n
0
log x 2 dx . 0 1 x 6
390.
1
log x 2 dx . 0 1 x 12
391.
1
392.
1
log x
0
1 x2
393.
1
log x
0
dx
2 . 8
dx log 2. 2 1 x 2
2 1 1 x dx 394. log . . 0 4 1 x x
ex 1 2 395. log x dx . 0 4 e 1
MFSDH.CH07_2PP.indd 126
2/15/2023 12:31:26 PM
Integral Calculus—II • 127
396.
dx . log(1 / x)
1
0
1
0
0
397. log log x dx e x log x dx 0.577 2157....
2
2
398. log sin x dx log cos x dx log e 2. 2 0 0
399. x log sin x dx 0
2 log e 2. 2
1
1
1 2 400. log dx . x 2 0 1
1 401. log x 0
1 2
dx . n
1
1 (n 1) 402. x log dx , if m + 1 > 0, n + 1 > 0. x (m 1)n1 0 m
a a2 b2 403. log a b cos x dx log 2 0
, ab.
log 1 sin a cos x dx a. cos x 0
404. 1
405. 0
MFSDH.CH07_2PP.indd 127
xb xa 1 b . dx log log x 1 a
2/15/2023 12:31:50 PM
128 • Mathematical Formulas and Scientific Data
406. 0
dx , if a > b > 0. 2 a b cos x a b2
2
dx 407. a b cos x 0
b cos1 a , a b. a2 b2
cos ax dx a e , if a 0; ea , if a 0. 2 1 x 2 2 0
408.
cos xdx sin xdx . 2 x x 0 0
409.
410. 0
e ax e bx b dx log . x a
a tan 1 ax tan 1 bx dx log . x 2 b 0
411.
412. 0
2
413. 0
cos ax cos bx b dx log . x a dx . 2 2 a cos x b sin x 2 ab 2
2
2
414. 0
415. 0
a
dx
2
cos2 x b2 sin 2 x
(a b cos x)dx a 2 ab cos x b2 2
2
4 a3 b3
.
0, if a2 b2 ;
MFSDH.CH07_2PP.indd 128
a2 b2
, if a2 b2 ; a , if a b. 2a
2/15/2023 12:32:24 PM
Integral Calculus—II • 129
.
1
1 x2 2. dx 4 1 x 4 0
416. 1
417. 0
log(1 x) 1 1 1 1 2 . dx 2 2 2 2 ... 12 x 1 2 3 4
1
e xu x2 x3 x4 ..., where du log x x 2 2! 3 3! 4 4! u
418.
1 1 1 lim 1 ... log t 0.5772157..., 0 x . t t 2 3 1
cos xu x2 x4 x6 du log x ..., 2 2! 4 4! 6 6! u
419.
where 0.5772157..., 0 x . 1
420. 0
e xu e xu x3 x5 du 2 x ... , 0 x . 3 3! 5 5! u
1
1 e xu x2 x3 x4 du x ..., 0 x . u 2 2! 3 3! 4 4! 0
421. 2
422. 0
1 13 4 1 K 2 K 2 2 24 1 K sin x 2 2 dx
2
2
2 135 6 2 K ... , if K 1. 246 2
2 2 423. 1 K sin x dx 0
1 2 1 3 K4 1 K 2 2 24 3 2
2
2 6 13 5 K ... , if K 2 1. 246 5
MFSDH.CH07_2PP.indd 129
2/15/2023 12:32:46 PM
130 • Mathematical Formulas and Scientific Data
424. f ( x)
1 x 2 x x a0 a1 cos a2 cos ... b1 sin 2 c c c 2 x b2 sin ..., c x c, c
where am
c
c
mx mx 1 1 f ( x)cos dx, bm f ( x)sin dx. c c c c c c
(Fourier Series)
a , 0 | b | a. a b2
425. e ax cosh bx dx
2
0
b , 0 | b | a. a2 b2
426. e ax sinh bx dx 0
427. xe ax sin bx dx 0
2 ab
a b2 2
428. xe ax cos bx dx 0
429. x e
2 ax
430. x e
2 ax
sin bx dx
cos bx dx
0
431. x3 e ax sin bx dx 0
432. x e 0
MFSDH.CH07_2PP.indd 130
3 ax
a2 b2
a
0
cos bx dx
2
2
b2
2
, a 0.
, a 0.
2 b 3 a2 b2
a
b2
2
3
, a 0.
2 a a2 3 b2
a
2
b2
3
, a 0.
24 ab a2 b2
a2 b2
4
, a 0.
6 a4 6 a2 b2 b4
a
2
b2
4
, a 0.
2/15/2023 12:33:08 PM
Integral Calculus—II • 131
433. x n e ax sin bx dx 0
434. x n e ax cos bx dx 0
i n ! (a ib)n1 (a ib)n1 2 a2 b2
n 1
n! (a ib)n1 (a ib)n1 2 a2 b2
n 1
, a 0.
, a 0.
435. e x log x dx 0.577 2157....
(Also See Art. 418.)
0
1 1 436. e x dx 0.577 2157... x x 1e 0
1 1 437. e x dx 0.577 2157... x1 x 0 1 x x 1 e e 1 dx 0.577 2157... 438. x 0
MFSDH.CH07_2PP.indd 131
2/15/2023 12:33:18 PM
MFSDH.CH07_2PP.indd 132
2/15/2023 12:33:18 PM
CHAPTER
8
Vectors 150 DEFINITIONS: ANALYTIC REPRESENTATION A vector V is a quantity which is completely specified by a magnitude and a direction. A vector may be represented geometrically by a directed line segment V = OA. A scalar S is a quantity which is completely specified by a magnitude. Let i, j, and k represent three vectors of unit magnitude along the three mutually perpendicular lines OX, OY, and OZ, respectively. Let V be a vector in space, and a, b, and c the magnitudes of the projections of V along the three lines OX, OY, and OZ, respectively. Then V may be represented by V = ai + bj + ck. The magnitude of V is |V| = + a 2 + b 2 + c 2 , and the direction cosines of V are such that cos α: cos β: cos γ = a : b : c.
151 VECTOR SUM V OF n VECTORS Let V1, V2, ... Vn be n vectors given by V1 = a1i + b1 j + c1 k, etc. Then the sum is V = V1 + V2 + ... + Vn = (a1+ a2 + .... + an) i + (b1+ b2 + .... + bn) j + (c1+ c2 + .... + cn) k.
152 PRODUCT OF A SCALAR S AND A VECTOR V SV = (Sa) i + (Sb) j + (Sc) k. (S1 + S2)V = S1V + S2V · (V1 + V2)S = V1S + V2S.
MFSDH.CH08_1PP.indd 133
3/3/2023 3:24:00 PM
134 • Mathematical Formulas and Scientific Data
153 SCALAR PRODUCT OF TWO VECTORS: V1.V2. V1 · V2 = |V1| |V2| cos φ, where φ is the angle from V1 to V2. V1 · V2 = a1a2 + b1b2 + c1c2 = V2 · V1 V1 ·V1 = |V1|2. (V1 + V2) · V3 = V1 · V3 + V2 · V3. V1 · (V2 + V3) = V1 · V2 + V1 · V3. i · i = j · j = k · k = 1. i · j = j · k = k · i = 0.
154 V ECTORS PRODUCT OF TWO VECTORS: V1 × V2. V1 × V2 = |V1| |V2| sin f 1, where f is the angle from V1 to V2 and 1 is a unit vector perpendicular to the plane of V1 and V2 and so directed that a right-handed screw driven in the direction of 1 would carry V1 into V2. V1 × V2 = − V2 × V1 = (b1 c2 − b2 c1) i + (c1 a2 − c2 a1) j
+ (a1 b2 − a2 b1) k.
(V1 + V2) × V3 = V1 × V3 + V2 × V3. V1 × (V2 + V3) = V1 × V2 + V1 × V3. V1 × (V2 × V3) = V2(V1 · V3) − V3(V1 · V2). i × i = j × j = k × k = 0, i × j = k, j × k = i, k × i =j,
V1 · (V2 × V3) = (V1 × V2) · V3 = V2 · (V3 × V1) a1 a2 a3 = [V1 V2 V3] = b1 b2 b3 . c1 c2 c3
155 DIFFERENTIATION OF VECTORS V = ai + bj + ck. If V1, V2 ….. are functions of a scalar variable t, then
MFSDH.CH08_1PP.indd 134
2/1/2023 6:41:39 PM
Vectors • 135
dV dV d (V1 + V2 + ...) = 1 + 2 + ..., dt dt dt dV1 da1 db dc i + 1 j + 1 , etc. = dt dt dt dt
where
dV dV d (V1 ×V2 ) = 1 ×V2 + V2 × 2 . dt dt dt dV dV d (V1 ´ V2 ) = 1 ´ V2 + V1 ´ 2 . dt dt dt V×
dV dV dV =V . If |V| is constant, V × = 0. dt dt dt
grad S ≡ ÑS º
¶S ¶S ¶S i+ j + k , where S is a scalar. ¶x ¶y ¶z
div V ≡ Ñ × V º
¶a ¶b ¶c + + . (divergence of V). ¶x ¶y ¶z
i ¶ curl V ≡ rot V º ¶x a 2 div grad S ≡ Ñ S º
j ¶ ¶y b
k ¶ º Ñ ´V . ¶z c
¶ 2S ¶ 2S ¶ 2S + + . ¶x2 ¶y2 ¶z2
2 2 2 Ñ 2V ≡ iÑ a + jÑ b + k Ñ c.
curl grad S = 0. div curl V = 0. curl curl V = grad div V − Ñ 2V .
MFSDH.CH08_1PP.indd 135
2/1/2023 6:41:43 PM
136 • Mathematical Formulas and Scientific Data
156 GREEN’S THEOREM Let F be a vector and V be a volume bounded by a surface S. Then
òòò div F dV = òòò Ñ × F dV = òò F × d S , (V )
(V )
(S )
where the integrations are to be carried out over the volume V and the surface S.
157 STOKES’ THEOREM Let F be a vector and dr = dx i + dy j + dz k, and S be a surface bounced by a simple closed curve C. Then
ò F × dr = òò curl F × d S = òò Ñ ´ F × d S.
(C )
MFSDH.CH08_1PP.indd 136
(S )
(S )
2/1/2023 6:41:44 PM
PART II
Scientific Data for Engineers Constants e = Base of natural logarithms ≈ 2.71828 log10e ≈ 0.434294 loge 10 ≈ 2.30259 log10 N ≈ loge N × 0.4343 loge N ≈ log10 N × 2.3026 1-radian ≈ 57° · 2958 ≈ 57° 17′ 45″ π ≈ 3 · 14159265 log10 π ≈ 0.49715
MFSDH.Part II_2PP.indd 137
p 1 ≈ 0 · 31831 ≈ 0 · 01745 π3 ≈ 9 · 8696 180 p
2/15/2023 12:45:31 PM
MFSDH.Part II_2PP.indd 138
2/15/2023 12:45:31 PM
CHAPTER
1
SI Units When making measurements of a physical quantity, the final result is expressed as a number followed by the unit. The number expresses the ratio of the measured quantity to some fixed standard and the unit is the name or symbol for the standard. Over the years, a large number of standards have been defined for physical measurement and many systems of units have evolved. Recently, there has been an attempt to simplify the language of science by the adoption of a system of units, the System International Units, which is intended to be used universally. This system of units, SI, was the outcome of a resolution of the 9th General Conference of Weights and Measures (CGPM) in 1948, which instructed an international committee to “study the establishment of a complete set of rules for units of measurement.” The constants in this book are given in SI except where stated otherwise. SI contains three classes of units: (i) base units, (ii) derived units, and (iii) supplementary units. Base Units: There are seven base units: (i)
the meter, the standard of length,
(ii)
the kilogram, the standard of mass,
(iii) the second, the standard of time, (iv) the ampere, the standard of electric current, (v)
MFSDH.Part II_2PP.indd 139
the kelvin, the standard of temperature,
2/15/2023 12:45:31 PM
140 • Mathematical Formulas and Scientific Data
(vi) the candela, the standard of luminous intensity, and (vii) the mole, the standard of amount of substance. Derived Units: Derived units can be formed by combining base units. Thus the unit of force can be produced by combining the first three base units. Often derived units are given names, for example, the unit of force is the newton. Supplementary Units: Two supplementary units are at present defined, the radian and the steradian, which are the units for plane and solid angles, respectively. SI Prefixes and Multiplication Factors: To obtain multiples and submultiples of units, standard prefixes are used as shown below: Multiplication factor 1 000 000 000 000 = 1012 1 000 000 000 = 109 1 000 000 = 106 1 000 = 103 100 = 102 10 = 101 0.1 = 10–1 0.01 = 10–2 0.001 = 10–3 0.000 001 = 10–6 0.000 000 001 = 10–9 0.000 000 000 001 = 10–12 0.000 000 000 000 001 = 10–15 0.000 000 000 000 000 001 = 10–18
Symbol T G M k h da d c m µ n p f a
Prefix tera giga mega kilo hecto deca deci centi milli micro nano pico femto atto
It should be noted that masses are still expressed as multiples of the gram, although the base unit is the kilogram. Thus 10–6 kg should be written as 1 mg.
MFSDH.Part II_2PP.indd 140
2/15/2023 12:45:31 PM
SI Units • 141
Other systems of units: Some other systems of units are still in common use. Thus for mechanical measurements, the British or fps system is still largely used, while for electrical measurements, the electrostatic and electromagnetic cgs systems are by no means obsolete. In the pages which follow, these systems of units are discussed and tables are included to help in conversion from one system to another.
MFSDH.Part II_2PP.indd 141
2/15/2023 12:45:31 PM
MFSDH.Part II_2PP.indd 142
2/15/2023 12:45:31 PM
CHAPTER
2
The Fundamental Mechanical Units (A) SI UNITS In any system of measurement in mechanics, three fundamental units are required. These are the units of length, mass, and time. The base units as used in SI are the meter, kilogram, and second. The meter (m) This is defined as 1 650 763-73 of the wavelength, in vacuo of the orange light emitted by 86 in the transition 2p10 to 5d5. 38 Kr The kilogram (kg) This is defined as the mass of a platinum-iridium cylinder kept at Sévres. Originally intended to be the mass of a cubic decimeter of water at its maximum density, the cylinder was subsequently found to be 28 parts per million too large. The cylinder was then taken as an arbitrary standard of mass, while the volume of water which had the same mass (at maximum density) was defined to be 1 liter (l).Thus 1 litre = 1000.028 cm3. The 1964 General Conference on Weights and Measures redefined the liter to be a cubic decimeter but recommended that this unit should not be used in work of high precision. The second (s) This is the time taken by 9 192 631 770 cycles of the radiation from the hyperfine transition in cesium when unperturbed by external
MFSDH.Part II_2PP.indd 143
2/15/2023 12:45:31 PM
144 • Mathematical Formulas and Scientific Data
fields. Alternatively the ephemeris second is defined as 1/31 556 925-974 7 of the tropical year for 1900. Derived units of length, mass, and time Through common usage, certain multiples and submultiples of the three fundamental units have been given names. A list of the more common ones is given below as they have been in frequent use. None of them is a recognized SI unit. Length and area Micron (µm) = 10–6 m Angstrom (Å) = 10–10 m
Mass Tonne (t) = 106 g = 1000 kg
Time Minute (min) = 60 s Hour (h) = 3 600 s
Fermi (fm) = 10–15 m
Day (d) = 86 400 s
Are (a) = 100 m
Year (a) ≃ 3.1557 × 107 s
2
Barn (b) = 10–28 m2
The radian (rad) is the plane angle between two radii of a circle that cut off on the circumference of an arc equal in length to the radius. The steradian (sr) is the solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere. Other units of angular measures are: The degree (°) is a unit of angle equal to (π/180) rad. The minute of arc (′) is (1/60) degree and thus is equal to (π/10 800) rad. The second of arc (″) is (1/60) minute and thus is equal to (π/648 000) rad.
MFSDH.Part II_2PP.indd 144
2/15/2023 12:45:31 PM
CHAPTER
3
The Fundamental Electrical and Magnetic Units When units were first required for the measurement of electrical quantities it was natural to define them in terms of the three fundamental units, centimeter, gram, and second, which were already commonly used in mechanics. Electrical phenomena are related to mechanical phenomena by two effects: (a) the force between static electric charges (Coulomb’s law) and (b) the force between electric currents (Ampere’s law). Correspondingly, two distinct systems of cgs electrical units were introduced: the electrostatic and electromagnetic systems. Neither of these systems has units of convenient size in practical applications. Consequently, a practical set of electrical units, defined as decimal multiples of the electromagnetic units was established by various International Congresses of Electricians meeting between 1881 and 1889. The first two units defined were the ohm (109 emu), chosen to be similar to the Siemens unit of resistance, and the volt (108 emu), chosen to be similar to the emf of the Daniell cell. From these, six other units, the ampere, coulomb, joule, watt, henry, and farad were derived. These practical units were not made into a complete system, since no magnetic units were defined, the unmodified magnetic units of the electromagnetic system (e.g., oersted and gauss) being used in practical applications.
MFSDH.Part II_2PP.indd 145
2/15/2023 12:45:31 PM
146 • Mathematical Formulas and Scientific Data
In 1901, Giorgi showed that if the meter, kilogram, and second were used as fundamental units instead of the centimeter, gram and second, a single, consistent and comprehensive system of electrical and magnetic units could be built up incorporating the already firmly-established practical units. This is because, using the meter, kilogram and second, the unit of mechanical power becomes 107 erg s–1, which is the appropriate practical electrical unit, that is, the watt. The use of the Giorgi system, also known as the mks system, or the Absolute Practical System was approved by an International Electro-technical Commission in 1935. The Absolute Practical System, with the ampere as the electrical base unit was adopted by the CGPM for SI.
MFSDH.Part II_2PP.indd 146
2/15/2023 12:45:32 PM
CHAPTER
4
Relations Between the Systems of Electrical Units Coulomb’s law for the force F between charges Q1 and Q2, distance r apart in vacuo, may be expressed in the form
F=
Q1Q2 ...(1.1) e 1r2
where ε1 is a constant, called the permittivity of free space. In the cgs electrostatic system, ε1 is chosen to be unity. This choice of the value of ε1, together with the use of the centimeter, gram, and second uniquely determines the system of units. Ampere’s law for the force between two parallel current elements I1ds1 and I2ds2 distance r apart in vacuo may be expressed in the form
F = m1
I1 ds1 I2 ds2 sin q ...(1.2) r2
where µ1 is a constant, called the permeability of free space. In the cgs electromagnetic system, µ1 is chosen to be unity. This choice of the value of µ1, together with the use of the centimeter, gram, and second, again determine the system of units uniquely. It may be noted that these two systems of units, defined by ε1 = 1 and µ1 = 1, cannot be combined directly to form a single
MFSDH.Part II_2PP.indd 147
2/15/2023 12:45:32 PM
148 • Mathematical Formulas and Scientific Data
consistent system. It can be shown from Maxwell’s electromagnetic theory that, in any consistent system of units, µ1ε1 = 1/c2, where c is the velocity of electromagnetic radiation (e.g., light) in free space, measured in the appropriate units of length and time (e.g., c ≃ 3 × 108 ms–1).
In SI, neither ε1 nor µ1 is chosen to be unity. The fundamental units chosen are the meter, kilogram, and second and ampere which are sufficient to determine the complete system uniquely. In particular, µ1 may be shown to have the value 10–7 newton ampere–2, where the newton is the SI unit of force. This value of µ1 is readily derived from equation (2). The appropriate value of ε1 is then calculated, knowing the experimentally determined value of the velocity of light.
MFSDH.Part II_2PP.indd 148
2/15/2023 12:45:32 PM
CHAPTER
5
Rationalization of MKS Units It is found that many formulae are simplified if the permeability of free space is re-defined as µ0 = 4πµ1. Ampere’s law for current elements in free space is then expressed in “Rationalized mks units” as
F=
m 0 I1 ds1 I2 ds2 sin θ ...(1.3) 4p r 2
where µ0 = 4π × 10–7 newton ampere–2 (or henry meter–1). Similarly, the permittivity of free space is re-defined as ε0 = ε1/4π, and Coulomb’s law, for charges in free space, is expressed in rationalized mks units as
F=
Q1Q2 4pe 0 r 2 ...(1.4)
The value of ε0, given by 1/c2µ0, is approximately 8.85 × 10–12 farad meter–1. For an isotropic, homogeneous medium other than free space, µ0 in equation (3) is replaced by µ0 = µrµ0, where µr, is the relative permeability of the medium; and ε0 in equation (4) is replaced by ε = εr ε0, where εr, is the relative permittivity (dielectric coefficient) of the medium.
MFSDH.Part II_2PP.indd 149
2/15/2023 12:45:32 PM
MFSDH.Part II_2PP.indd 150
2/15/2023 12:45:32 PM
CHAPTER
6
Definitions of Electric and Magnetic Quantities in SI The base unit Current (I): The unit of current is the ampere (A) defined as that constant current which, if maintained in each of two infinitely long straight parallel wires of negligible cross-section placed 1 meter apart, in a vacuum, will produce between the wires a force of 2 × 10–7 newtons per meter length. Derived units Charge (Q): The unit of charge (quantity) is the coulomb (C) defined as the quantity of electricity transported per second by a current of 1 ampere. Potential Difference (V): The unit of potential difference is the volt (V), defined as the difference of electrical potential between two points of a wire carrying a constant current of 1 ampere when the power dissipation between those points is 1 watt. Resistance (R): The unit of resistance is the ohm (Ω), defined as the electrical resistance between two points of a conductor when a constant potential difference of 1 volt applied between these points produces in the conductor a current or 1 ampere.
MFSDH.Part II_2PP.indd 151
3/3/2023 7:14:36 PM
152 • Mathematical Formulas and Scientific Data
Conductance (G): The unit of conductance is the siemens (S), defined as the electrical conductance between two points of a conductor when a constant potential difference of 1 volt applied between these points produces in the conductor a current of 1 ampere. Inductance (L): The unit of inductance is the henry (H), defined as the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the current in the circuit varies uniformly at the rate of 1 ampere per second. Capacitance (C): The unit of capacitance is the farad (F), defined as the capacitance of a capacitor between the plates of which there appears a difference of potential of 1 volt when it is charged by 1 coulomb. Magnetic Intensity (H): is defined through Ampere’s theorem for the intensity due to a current element. In the usual notaI.ds.sin θ. tion H = Unit ampere meter –1. 4p r 2 Magnetic Flux (φ) of the induction B: is defined as Ú B.n dA where n is a unit vector perpendicular to an element of area dA. Unit, weber (Wb). Magnetic Flux Density or Induction (B): is defined through the equation for the force on a current element placed in a magnetic field, viz F = B.I.ds.sinθ, in the usual notation. Unit, Tesla (T). B = µ0µrH where µr is the relative permeability of the medium with respect to free space and µ0 is the permeability of free space. µ0 = 4π × 10–7 henry meter–1. Magnetic Moment (m)∗: is the couple exerted on a magnet placed at right angles to a uniform field with unit flux density. Unit, ampere meter2. Intensity of Magnetisation (M)∗: is the magnetic moment per unit volume of a magnet. Unit, ampere meter–1. Pole Strength (P)∗: On the mks system the hypothetical concept of an isolated magnetic pole is abandoned by many writers on the grounds that all magnetism arises from electrical effects, hence the definitions of H and B (above). Other writers use the idea of a magnetic pole as a simple and convenient concept in
MFSDH.Part II_2PP.indd 152
2/15/2023 12:45:32 PM
Definitions of Electric and Magnetic Quantities in SI • 153
magnetometry. In this connection, we define a unit magnetic, pole as one which when situated 1 meter distant in vacuum from an equal pole experiences a force of µ0/4π newtons. Alternatively, it can be defined as that pole strength which when placed in a unit induction experiences a force of 1 newton. Unit, ampere-meter. NOTE
For these definitions, we adopt the Sommerfeld system of units in which the magnetic moment of a current loop is the product of the area of the loop and the current flowing around the edge of the loop: m = IA. An alternative system due to Kennelly uses the relation m = µ0IA.
Line of Force: A line of force is a curve in a magnetic field, such that the tangent at every point is the direction of the magnetic force at that point. Magnetomotive Force (Fm): is defined as the line integral Ú H.dl evaluated for a closed path. It is equal to the total conduction current linked. Unit, ampere. Coulomb’s Magnetic Law: states that the force between two m m PP poles P1 and P2 situated distance d apart is given by F = r 0 12 2 , 4p d where µr is the permeability of the medium and µ0 the permeability of the free space = 4π × l0–7 henry meter–1. µrµ0 replaces the permeability µ of the cgs system. Electrical Intensity (X or E): The electrical intensity at a point in an electric field is the force exerted on unit charge (1 coulomb) placed at that point, assuming that the field is not disturbed by so doing. Unit, volt meter–1 (which is equivalent to the newton coulomb–1). Coulomb’s Electrostatic Law: appears in the form Q1Q2 , where Q1 and Q2 are the two charges situated a F= 4pe 0e r d 2 distance d apart in a medium whose permittivity relative to that of free space is εr. The permittivity of free space ε0 ≃ (l/36π) × 10−9 farad meter−1. εr is a pure number. (The product ε0εr, is analogous to the dielectric constant as defined in the cgs system.)
MFSDH.Part II_2PP.indd 153
2/15/2023 12:45:32 PM
MFSDH.Part II_2PP.indd 154
2/15/2023 12:45:32 PM
CHAPTER
7
Definitions in the CGS Electromagnetic System of Units Magnetic Pole (P): When two like magnetic poles are placed 1 cm apart in vacuo, they repel one another with a force of 1 dyne. Magnetic Field Strength or Intensity (H): is the force experienced by a unit North pole when placed at the given point in a magnetic field, it is assumed that the introduction of the pole does not disturb the field. Unit, oersted. The intensity is one oersted when a unit North pole experiences a force of 1 dyne on being placed at the given point in the field. The field strength in vacuum is represented as the number of lines of force passing perpendicularly through 1 cm2 placed at the point in question. On this convention 4π lines of force leave a unit North pole. Magnetic Flux (φ): through any area at right angles to a magnetic field is the product of the area and the field strength. Unit, maxwell. One maxwell is the flux through unit area (1 cm2) placed perpendicularly to a unit uniform field. Hence one line of force is equivalent to one maxwell. Magnetic Moment (m): of a magnet, is the couple exerted on the magnet when placed at right angles to a unit uniform field. For a bar magnet, it is equivalent to the product of the pole strength and the distance between the poles. Unit, pole cm.
MFSDH.Part II_2PP.indd 155
2/15/2023 12:45:32 PM
156 • Mathematical Formulas and Scientific Data
Magnetic Potential (Ω): is the work done in bringing a unit North pole from infinity or a point of zero potential to the point in question. Unit, gilbert. 1 gilbert is that potential that requires the expenditure of 1 erg of work in bringing a unit North pole from infinity to the point. Intensity of Magnetisation (M): of a sample of material is the magnetic moment per unit volume. Magnetic Susceptibility (χ): of a material is the ratio of the intensity of magnetization produced in the sample to the magnetic M field which produced the magnetization, c = . H N.B.: χ is not a constant but is a function of H. Magnetic Induction (B): in any material is the number of lines of magnetic force (often called lines of induction) passing perpendicularly through the unit area. Unit, gauss. One gamma = 10–5 gauss. Magnetic Permeability (µ): of any material is the ratio of the magnetic induction in the sample to the magnetic field producing it, that is, µ = B/H. Although µ is so defined, B is not proportional to H, for B = H + 4πM. Also B/H = 1 +4π M/H or µ = 1 + 4πχ. Hence µ is not a constant but a function of H. (see χ above). Coulomb’s Law of Force: states that the force F between two poles of strength P1 and P2 is proportional to the product of the pole strengths and inversely proportional to the square of their PP distance apart (d). Thus F = 1 22 where 1/µ is the constant of promd portionality, µ is the permeability of the medium in which the poles are located. In this system, as already stated, the permeability of free space is defined to be unity. Current (I): The electromagnetic unit (emu) of current is that which when flowing around 1 cm arc of a circle of radius 1 cm, produces a magnetic field of 1 oersted at the center. Unit, emu of current. Charge (Q): The emu of charge (quantity) is that delivered in 1 second by the passage of unit current. Unit, biot.
MFSDH.Part II_2PP.indd 156
2/15/2023 12:45:32 PM
Definitions in the CGS Electromagnetic System of Units • 157
Potential Difference (PD): When unit current flows between two points in a circuit and unit work (1 erg) is done per second, the PD between the two points is unity. Unit, emu of PD. Electromotive Force (emf): When lines of magnetic force cut a conductor an emf is created which is given numerically (in emu) by the number of lines cut per second. Emf = dn/dt. Resistance (R): A conductor has unit resistance when applying unit PD, unit current flows. Unit, emu of resistance. Self Inductance (L): A conductor possesses unit self-inductance if unit emf is developed across it when the rate of change of current is unity. Unit, emu of self-inductance. Mutual Inductance (M): Two conductors possess unit mutual inductance when unit emf is developed in one by unit rate of change of current in the other. Unit, emu of mutual inductance. Capacitance (C): A conductor has unit capacitance when the addition of unit charge raises its potential by unity. Unit, cm. Dielectric Constant or Specific Inductivity Capacity (εr): of a material is the ratio of the capacity of a condenser with the material as dielectric to that of the same condenser in vacuum without a material dielectric. Coulomb’s Electrostatic Law of Force: states that the force F between two charges Q1 and Q2 is proportional to the product of the charges and inversely proportional to the square of their disQQ tance apart d. Thus F = 1 22 , where 1/εr is the constant of proe rd portionality. εr is the dielectric constant of the medium in which the charges are located. On the electrostatic system of units, the dielectric constant of free space is unity.
MFSDH.Part II_2PP.indd 157
2/15/2023 12:45:32 PM
MFSDH.Part II_2PP.indd 158
2/15/2023 12:45:32 PM
CHAPTER
8
Heat Units and Definitions Temperature (t, θ or T). In SI, temperatures are measured on the thermodynamic scale with the Absolute Zero as zero and the triple point of water (i.e., the temperature at which ice, water, and water vapor are in equilibrium) as the upper fixed point. The thermodynamic scale is that given by a theoretical Carnot heat engine and is equal to the perfect gas scale. SI base unit, the Kelvin (K). The kelvin (K) unit of thermodynamic temperature, is the fraction 1/273-16 of the thermodynamic temperature of the triple point of water. The Degree Celsius (°C). The centigrade scale of temperature used the ice point as zero and the boiling point of water at 1 standard atmosphere as the upper fixed point set to be 100°C. The Celsius scale of temperature is defined to be the same as the thermodynamic scale with the zero shifted to the ice point, which is 273.15 K, and thus: q / °= C T / K − 273.15
The International Practical Scale of Temperature (IPST). In view of the difficulty of measuring on the thermodynamic scale, a scale of temperature based on fixed points was suggested by the 7th CCPM in 1927. The scale has been revised since so as to make temperatures on this scale agree as nearly as possible with the thermodynamic Celsius scale. A list of the fixed points and other important temperatures can be found in the book.
MFSDH.Part II_2PP.indd 159
2/15/2023 12:45:33 PM
160 • Mathematical Formulas and Scientific Data
The Degree Fahrenheit (°F). On the Fahrenheit scale, the ice point is 32°F and the steam point, 212°F. Thus t/°F = 32 + 1.8 (θ/°C). The Degree Reaumur (°R). On the Reaumur scale, the ice point is 0°R and the steam point, 80°R. Thus t/°R = 0.8 (θ/°C). Quantity of Heat (Q). Quantities of heat are measured in joules (J) in SI. Other units have been used, notably the calorie. The calorie is the amount of heat required to raise the temperature of 1 gram of water by l°C. This definition is not very precise however as the specific heat capacity of water varies with temperature. The 15°calorie was defined as the heat required to raise the temperature of 1 g of water from 14.5°C to 15.5°C. The mean calorie was defined as one-hundredth of the heat required to raise the temperature of 1 g of water from 0°C to 100°C. The k ilocalorie (1 000 calories) has also been used and written Calorie. Where quantities of heat are expressed in calories, it is recommended that the conversion factor to convert to joules be stated. In the fps system, the British thermal unit (Btu) is used. This is the quantity of heat required to raise the temperature of 1 lb of water through 1°F. The therm is 105 Btu. Specific Heat Capacity (cρ, c0). This is the amount of heat required to raise the temperature of 1 kg of a substance 1 K. Unit, J kg–1 K–1. Molar Heat Capacity (Cm). This is the amount of heat required to raise the temperature of 1 mol of substance through IK. Unit, Jmol–1 K–1. Heat Capacity (C). The amount of heat required to raise the temperature of a body through 1 K. Units, J K–1. Water Equivalent. The mass of water having the same total heat capacity as the given body. Thermal Conductivity (λ). The rate of flow of heat (dQ/dt) through a surface of area, A, in a medium is given by: dQ dT = −l A , dt dx
MFSDH.Part II_2PP.indd 160
2/15/2023 12:45:33 PM
Heat Units and Definitions • 161
where (dT/dx) is the temperature gradient, measured in the direction normal to the surface. The quantity λ is the thermal conductivity of the medium. Units, Jm–1s–1K–1, or Wm–1K–1. Specific Latent Heat (l). The specific latent heat of fusion (specific enthalpy Change on fusion) of a body is the heat required to convert 1 kg of the solid at its melting point into liquid at the same temperature. Unit, J kg–1. The specific latent heat of vaporization (enthalpy change on vaporization) of a liquid is the heat required to convert 1 kg of the liquid at its boiling point into vapor at the same temperature. Unit, J kg–1. Linear Expansivity (α). The increase in length per unit rise in temperature. Unit, K–1. Cubic Expansivity (γ). The increase in volume per unit rise in temperature. Unit, K–1. Critical Temperature (Tc) of a gas or vapor is that temperature above which it is not possible to liquefy the gas by the application of pressure alone. To liquefy a gas it must be cooled below its critical temperature before being compressed. Critical Pressure (pc): That pressure which just liquefies a gas at its critical temperature. Critical Volume (Vc): The volume of unit mass of gas at its critical temperature and pressure, that is, it is the reciprocal of the critical density. It is often taken as the volume of one mole of a gas at its critical temperature and pressure. Radiation. Stefan-Boltzmann Law: The total energy, E, of all wavelengths radiated per second per square meter by a full radiator at temperature T to surroundings at T0 is given by E = σ(T4 – T04 ), where σ is Stefan’s constant, σ = 5.669 7 × 10–8 W m–2 K–4. Planck’s Radiation Law: The energy density of radiation in an enclosure at temperature T having wavelengths in the range λ to λ + dλ is uλ dλ, where uλ dλ = 8πchλ–5 (exp hc/λkT – 1)–1 dλ = c1λ–5(exp c2/λT –1)–1 dλ c1 = 4.992 1 × 10–24 Jm
MFSDH.Part II_2PP.indd 161
c2 = 1.43879 × 10–2 m K
2/15/2023 12:45:33 PM
162 • Mathematical Formulas and Scientific Data
The corresponding relation for radiation of frequency, v, is uv dv = (8πh/c3) (exp hv/kT – 1)–1 v3 dv. h = Planck’s constant; c = speed of light; k = Boltzmann’s constant; T = temperature of the enclosure. Wien’s Displacement Law: The wavelength of the most strongly emitted radiation in the continuous spectrum from a full radiator is inversely proportional to the absolute temperature of that body, that is, λT = b, where b is Wien’s constant = 2.898 × l0–3 m K. The Energy (E) of a quantum of radiation of frequency v is E = hv where h is Planck’s constant.
MFSDH.Part II_2PP.indd 162
2/15/2023 12:45:33 PM
CHAPTER
9
Photometric and Optical Units and Definitions Luminous intensity. In SI, the unit of luminous intensity is the candela. This unit replaces the International candle which was defined in terms of the light emitted per second in all directions by a specified electric lamp. SI base unit, the candela (cd). The candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 square meters of a full radiator at the temperature of freezing platinum under a pressure of 101 325 newtons per square meter. 1 candela = 0.982 international candles. Luminous flux: The unit of luminous flux, the lumen (1m) is defined as the light energy emitted per second within, unit solid angle by a uniform point source of unit luminous intensity. Thus, 1 cd = 1 1m sr–1. Illuminance of a surface is defined as the luminous flux reaching it perpendicularly per unit area. The British unit is the lumen ft–2, formerly called the foot-candle (fc). The metric unit is the lumen m–2 or lux (1x). Lambert’s Cosine law: For a surface receiving light obliquely, the illumination is proportional to the cosine of the angle which the light makes with the normal to the surface.
MFSDH.Part II_2PP.indd 163
2/15/2023 12:45:33 PM
164 • Mathematical Formulas and Scientific Data
Brightness of a surface is that property by which the surface appears to emit more or less light in the direction of view. This is a subjective quantity. The corresponding physical measurement of the light actually emitted is called luminance. Luminance of a surface is the measure of the light actually emitted (i.e., the luminous intensity) per unit projected area of surface, the plane of projection being perpendicular to the direction of view. Unit, cd ft–2 or cd m–2. In engineering, the luminance of an ideally diffusing surface emitting or reflecting one-lumen ft–2 is called one foot-lambert (ft–L). The Refractive index of a material (n) is the ratio of the velocity of light in free space to that in the material. Snell’s law: For light incident on a boundary between two media, the ratio of the sine of the angle of incidence (the angle between the light ray in the first medium and the normal to the boundary surface) to the sine of the angle of refraction (the angle between the refracted ray in the second medium and the normal) is a constant, being equal to the inverse ratio of the refractive indices of the two media. Dioptre is the unit of measure of the power of a lens and is given numerically by the reciprocal of the focal length expressed in meters.
MFSDH.Part II_2PP.indd 164
2/15/2023 12:45:33 PM
CHAPTER
10
Acoustical Units and Definitions Pressure: The unit of sound pressure is the pascal usually quoted as the root mean square (r.m.s.) pressure for a pure sinusoidal wave. Frequency: The unit of frequency is the cycle per second, now designated the hertz (Hz). Threshold of Hearing is, for a normal (average) observer, the sound level or intensity which is just audible. For a pure sinusoidal note of frequency 1000 Hz, it is close to a root mean square pressure of 2 × 10–5 Pa. Power Ratio: The unit of acoustical (or electrical) power measurement with respect to a standard level, is one bel. The interval between two powers W1 and W0 in bels is log10 (W1/W0). In practical work, the decibel (dB) is used. The interval between two powers W1 and W0 is 10 log10 (W1/W0) dB. In some instances, it is more convenient to employ natural logarithms. The power ratio so obtained is called the neper and is defined as follows. The power 1 interval between W1 and W0 is loge (W1/W0) nepers. Hence 2 1 neper = 8.686 dB. Intensity (I) of a sound wave in a given direction is the sound energy transmitted per second in this direction through unit area placed perpendicularly to the specified direction. Unit, W m–2. For a sinusoidal plane or spherical wave, the intensity is proportional to
MFSDH.Part II_2PP.indd 165
2/15/2023 12:45:33 PM
166 • Mathematical Formulas and Scientific Data
the mean square pressure exerted on an area at right angles to the given direction. Hence the interval between two intensities is given by 10 log10 (I1 /I0) dB or 20 log10 (ρ1/ρ0) dB where ρ1 and ρ0 are the r.m.s. pressures corresponding to the intensities I1 and I0. Loudness is the physiological counterpart of acoustical intensity. It is a function of the intensity but also varies with frequency and composition of the note being heard. The Weber–Fechner Law states that the sensation (loudness) is proportional to the logarithm of the stimulus (intensity). Loudness level of a sound is judged by comparison in free air with a standard sinusoidal note whose frequency is 1000 Hz. The unit is the phon. If an average observer decides that a sound is equally loud as the standard 1000 Hz note of intensity n dB above the standard reference level corresponding to a r.m.s. pressure of 2 × 10–5 Pa (i.e., the threshold of hearing), then the sound is said to have an “equivalent loudness” of n British Standard phons. Reverberation in an enclosure is the persistence of sound due to multiple reflections from the walls, etc. of the enclosure. Reverberation time is the time required, from the moment of cessation of a sound for the intensity to, drop by 60 dB, that is, to one-millionth of its original value. Unit, second. Absorption Coefficient of a surface is the ratio of the sound energy absorbed to the total sound energy incident on the surface. The ideal absorber is one from which no sound is reflected or scattered. For unit area of various substances, the coefficient is expressed in terms of equivalent area of open window (diffraction effects excluded). Unit, ft2 of open window or Sabine. The coefficient varies with frequency. Sabine’s Relation: For an auditorium whose walls, etc. consist of areas S1 S2, etc. of absorption coefficient α1 α2, etc., the reverberation time t (in seconds) is given by t = 0.05V (unit of length, Σa S 0.16V ft) or t = (unit of length, meter) where V is the volume of Σa S the auditorium and Σα S = α1S1 + α2S2 + etc.
MFSDH.Part II_2PP.indd 166
2/15/2023 12:45:33 PM
CHAPTER
11
Properties of the Elements The following table lists the elements with atomic number up to 92 alphabetically by name. Columns 1-4 and 13-16 are self- explanatory. Column 5 gives the crystal structures of the elements in their solid state. Where a change in structure occurs, the transition temperature is indicated (in K) under the crystal structures. The following abbreviations are used: bcc = body-centered cubic cubic (diam) = diamond structure fcc = face-centered cubic hcp = hexagonal close-packed
hex = hexagonal mon = monoclinic ortho = orthorhombic tetra = tetragonal
Column 6 lists the atomic radii of the elements in pm (10–12 m). These radii are calculated as half the distance of closest approach of atomic centers in the crystalline state. Column 7 gives the principal oxidation numbers and column 8, the corresponding ionic radii. Columns 9 and 10 give the energies (eV) required to remove the first and second electrons from the atom multiply by 96.49 to convert to kJ mol–1. Column 11 gives the energy required to remove an electron from the negative ion formed by the atom with an extra electron. These “electron affinities” are difficult to measure and there are few reliable results. Column 12 gives the electronegativities assigned to the elements by Pauling. These are numbers between 0 and 4 which may be used in determining the contribution of the ionic and covalent components of the bonds between different atoms.
MFSDH.Part II_2PP.indd 167
2/15/2023 12:45:33 PM
17
24
Argon
Arseni
Barium
Beryllium
Bismuth
Boron
Bromine
Cadmium
Caesium
Calcium
Carbon
Chlorine
Chromium
Cobalt
Copper
Ar
As
MFSDH.Part II_2PP.indd 168
Ba
Be
Bi
B
Br
Cd
Cs
Ca
C
Cl
Cr
Co
Cu
29
27
6
20
55
48
35
5
83
4
56
33
18
51
Antimony
13
Aluminum
Atomic number, Z
Al
Name
Sb
Symbols
63.55
58.93
52.00
35.45
12.01
40.08
132.90
112.40
79.90
10.81
208.98
9.01
137.34
74.92
39.95
121.75
26.98
Atomic weight (M/g mol−1)
1.8
0.9
0.98
3.615
1.25
—
> 0.19
—
3.363
0.33
> 0.7
0.30
—
—
−1.0
> 2.0
0.5
Electron affinities (E1/eV)
1.9
1.8
1.6
3.0
2.5
1.0
0.7
1.7
2.8
2.0
1.9
1.5
0.9
2.0
—
1.9
1.5
Electronegativities
8 930
8 900
7 200
(273 K)
3.21
2 300
1 540
1 870
8 650
(298 K)
3 100
2 500
9 800
1 800
3 600
5 730
1.66
6 700
2 700
Density (ρ/kg m−3)
(sub)
1550
1 356
1 765
2 160
172.1
>3 800
1 120
301.6
594.2
265.9
2 600
544.4
2 868
3170
2 755
238.5
5 100
1 760
960
1 038
331.9
(sub)
2 820
1 830
3 243
1 910
(28 atm) 1 000
886
87.4
1 650
2 740
Boiling point (Tb/K)
1 090
83.7
903.7
933.2
Melting point (Tm/K)
168 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:33 PM
49
53
36
57
82
3
Gold
Hafnium
Helium
Hydrogen
Indium
Iodine
Iridium
Iron
Krypton
Lanthanum
Lead
Lithium
Magnesium
Manganese
Mercury
Molybdenum
Au
Hf
He
H
In
I
Ir
Fe
Kr
La
Pb
Li
Mg
Mn
Hg
Mo
9
Germanium
MFSDH.Part II_2PP.indd 169
42
80
25
12
26
77
1
2
72
79
32
Fluorine
F
Ge
95.94
200.59
54.94
24.31
6.94
207.19
138.91
83.80
55.85
192.2
126.90
114.82
1.00797
4.003
178.49
196.97
72.59
19.00
1.0
1.54
—
− 0.32
0.82
—
—
—
0.6
—
3.070
—
0.76
− 0.53
—
2.1
—
3.448
1.8
1.9
1.5
1.2
1.0
1.8
1.1
—
1.8
2.2
2.5
1.7
2.1
—
1.3
2.4
1.8
4.0
10 200
(273 K)
13 590
7 440
1 741
534
11 340
6 150
3.49
7 870
22 420
4 940
7 310
(273 K)
0.08987
0.166
13 300
19 300
5 400
1.7 (273 K)
53.5
2 880
234.3
1 517
924
452
600.4
1190
116.5
1 808
2 716
386.6
429.8
14.01
0.95 (26 atm)
2 423
1 336.1
1 210.5
5 830
629.7
2 370
1 380
1 590
2 017
3 742
120.8
3 300
4 800
457.4
2 300
20.4
4.21
5 700
3 239
3 100
85.01
Properties of the Elements • 169
2/15/2023 12:45:33 PM
Neon
Nickel
Niobium
Nitrogen
Oxygen
Palladium
Phosphorus
Platinum
Polonium
Potassium
Radium
Radon
Rhenium
Rhodium
Samarium
Selenium
Silicon
Silver
Ni
Nb
N
O
Pd
P
Pt
Po
K
Ra
Rn
Re
Rh
Sm
Se
Si
Ag
Name
Ne
Symbols
MFSDH.Part II_2PP.indd 170
47
14
34
62
45
75
86
88
19
84
78
15
46
8
7
41
28
10
Atomic number, Z
107.87
28.09
78.96
150.35
102.91
186.2
222
226
39.10
209
195.09
30.97
106.4
16.00
14.01
92.91
58.71
20.18
Atomic weight (M/g mol−1)
2.5
1.5
3.7
—
—
0.15
—
—
0.82
—
—
0.8
—
1.471
0.05
—
1.3
− 0.57
Electron affinities (E1/eV)
1.9
1.8
2.4
1.1
2.2
1.9
—
0.9
0.8
2.0
2.2
2.1
2.2
3.5
3.0
1.6
1.8
—
Electronegativities
10 500
2 300
4 810
7 500
12 440
20 500
(273 K)
9.73
5 000
860
9 400
21 450
1 800 (y)
2 200 (r)
12 000
1.33
1.165
8.570
8 900
0.839
Density (P/kgm−3)
1 234
1 680
490
1 345
2 230
3 450
202
970
336.8
527
2 042
317.2
1 825
54.7
63.3
2 741
1 726
24.5
Melting point (Tm/K)
2 485
2 628
958
2 200
4 000
5 900
211.3
1 410
1 047
1 235
4 100
552
3 200
90.2
77.3
5 200
3 005
27.2
Boiling point (Tb/K)
170 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:33 PM
Sodium
Strontium
Sulfur
Tantalum
Tellurium
Thallium
Thorium
Tin
Titanium
Tungsten
Uranium
Vanadium
Xenon
Yttrium
Zinc
Zirconium
Na
Sr
S
Ta
MFSDH.Part II_2PP.indd 171
Te
Tl
Th
Sn
Ti
W
U
V
Xe
Y
Zn
Zr
40
30
39
54
23
92
74
22
50
90
81
52
73
16
38
11
91.22
65.37
88.91
131.30
50.94
238.03
183.85
47.90
118.69
232.04
204.37
127.60
180.95
32.06
87.62
22.99
—
—
—
—
—
0.94
0.5
0.39
—
—
—
3.6
—
2.07
—
0.84
1.4
1.6
1.2
—
1.6
1.7
1.7
1.5
1.8
1.3
1.8
2.1
1.5
2.5
1.0
0.9
970
6 500
7 140
4 600
5.50
6 100
19 050
19 320
4 540
7 300
11 500
11 860
6 240
16 600
2 070
2 600
371
2 125
692.6
1 768
161.2
2 160
1 405.4
3 650
1 948
505.1
2 000
576.6
722.6
3 269
386
1 042
3 851
1 180
3 200
166.0
3 300
4 091
6 200
3 530
2 540
4 500
1 730
1 260
5 698
717.7
1 657
1 165
Properties of the Elements • 171
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 172
2/15/2023 12:45:34 PM
CHAPTER
12
Properties of Metallic Solids (at 293 K) Values quoted for Tensile Strength and Yield Stress are in units of 104 N m−1 (= MPa). Values of Young’s Modulus are in units of 109 N m−l (= GPa). These values are typical observations and are approximate only. The elastic properties vary somewhat between specimens depending on the manufacturing process and the previous history of the sample. The Shear Modulus (G) and Bulk Modulus (K) can be calculated from the relations: G = ½E/(l + v) and K = ½E/ (l − 2v), where E is Young’s Modulus and v is Poisson’s Ratio.
MFSDH.Part II_2PP.indd 173
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 174
Aluminum
Aluminum strong alloy
Antimony
Bismuth
Brass (70Cu/30Zn)
Bronze (90Cu/10Sn)
Cobalt
Constantan
Copper
1.
2.
3.
4.
5.
6.
7.
8.
9.
Name
Density ρ/kg m−3
8 930
8 880
8 900
8 800
8 500
9 800
6 680
2 800
2 710
Melting point Tm/K 1356
1360
1765
1300
1300
544
904
800
932
Specific latent heat of fusion I/J kg−1 21
25
5
16
39
38
× 104
Specific heat capacity Cp/J kg −1 K−1 385
420
420
360
370
126
205
880
913
Linear expansivity α/K −1 17
17
12
17
18
13
10
23
23
× 10−6
Thermal conductivity λ/W m −1 K −1 385
23
69
180
110
8
18
180
201
Electrical resistivity ρ/Ω m 1.7
47
6
30
~8
115
40
5
2.65
× 10−8
Temperature coefficient of resistance (1/ρ0) (dρ /dT) K−1 39
± 0.4
66
~ 15
45
~ 50
16
40
× 10−4
Tensile strength (σT/MPa) 150
~ 500
260
550
600
80
Yield strength (σγ/MPa) 75
140
450
550
50
Elongation (e/%) 45
10
8
10
43
Young’s Modulus (E/GPa) 117
170
100
32
78
71
Poisson’s ratio 0.35
0.33
0.35
0.33
0.34
9
8
7
6
5
4
3
2
1
174 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:34 PM
German silver (60Cu/25Zn/15Ni)
Gold
Invar (64Fe/36Ni)
Iron, pure
Iron, cast grey
Iron, cast white
Iron, wrought
Lead
10.
11.
12.
MFSDH.Part II_2PP.indd 175
13.
14.
15.
16.
17.
1810 600
11 340
1420
1500
1810
7 850
7 700
7 150
7 870
1800
1340
19 300
8 000
1300
8 700
2.6
14
14
10
27
7
126
480
500
106
503
132
400
29
12
11
11
12
0.9
14
18
35
60
75
75
80
16
296
29
21
14
10
10
10
81
2.4
33
43
60
65
20
34
4
15
~ 370
230
100
300
480
120
450
12
150
165
280
50
45
~0
45
40
40
18
197
110
206
145
71
130
0.44
0.28
0.27
0.29
0.26
0.44
0.33
17
16
15
14
13
12
11
10
Properties of Metallic Solids (at 293 K) • 175
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 176
Magnesium
Manganin
Monel (70 Ni/30Cu)
Nickel
Nickel, a strong alloy
Phosphor bronze
Platinum
Silver
Sodium
18.
19.
20.
21.
22.
23.
24.
25.
26.
Name
Density ρ/kg m−3
970
10 500
21 450
8 500
8 900
8 800
8 500
1 740
Melting point Tm/K 371
1230
2042
1320
1726
1600
924
Specific latent heat of fusion I/J kg−1 12
10
11
31
41
38
× 104
Specific heat capacity Cp/J kg−1 K−1 1240
235
136
380
460
400
246
Linear expansivity α/K−1 71
19
9
17
13
14
18
25
× 10−6
Thermal conductivity λ/W m−1 K−1 134
419
69
59
210
22
150
Electrical resistivity (ρ/Ω m) 4.5
1.6
11
7
59
42
45
4
× 10−8
Temperature coefficient of resistance (1/ρ0) (dρ /dT) K−1 44
40
38
60
60
20
± 0.1
43
× 10−4
Tensile strength σT/MPa 150
350
560
1300
300
520
190
Yield strength σγ/MPa 180
420
1200
60
240
95
Elongation e/% 45
10
30
40
5
Young’s modulus E/GPa 70
150
120
110
207
120
44
Poisson’s ratio 0.37
0.38
0.38
0.38
0.36
0.33
0.29
26
25
24
23
22
21
20
19
18
176 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:34 PM
Solder, soft (50Pb/50Sn)
Stainless Steel (18Cr/δNi)
Steel, mild
Steel, piano wire
Tin
Titanium
Zinc
27.
28.
MFSDH.Part II_2PP.indd 177
29.
30.
31.
32.
33.
7 140
4 540
7 300
7 800
7 860
7 930
9 000
693
1950
505
1700
1700
1800
490
10
6.0
190
385
523
226
420
510
176
31
9
23
15
16
111
23
65
50
63
150
5.9
53
11
15
96
40
38
50
50
6
150
620
30
3000
460
600
45
480
300
230
50
20
35
60
50
110
40
210
210
0.25
0.36
0.36
0.29
0.29
33
32
31
30
29
28
27
Properties of Metallic Solids (at 293 K) • 177
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 178
2/15/2023 12:45:34 PM
CHAPTER
13
Properties of Non-Metallic Solids (at 293 K) The following table lists materials which do not readily conduct electricity. In many cases, the physical constants cannot be specified accurately as the values observed depend so much on the manufacture and life history of the specimen. The values given are to be taken as representative only.
MFSDH.Part II_2PP.indd 179
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 180
2/15/2023 12:45:34 PM
Alumina, ceramic
Bone
Brick, building
Brick, fireclay
Brick, paving
1.
2.
3.
4.
5.
Name
2 500
2 100
2 300
1 850
3 800
Density ρ/kg m−3
2 300
Melting point Tm/K
800
Specific heat capacity cp/J kg−1 K−1
4.0
4.5
9
9
× 10−4
Linear expansivity α/K−1
0.8
0.6
29
Thermal conductivity λ/W m−1 K−1
~5
140
~ 150
Tensile strength σγ/MPa
Elongation e/%
28
345
Young’s modulus E/GPa
5
4
3
2
1
180 • Mathematical Formulas and Scientific Data
Brick, silica
Carbon, graphite
diamond
Concrete
Cork
Cotton
Epoxy resin
Fluon (PTFE)
Glass (crown)
Glass (flint)
Glass (wool)
Ice
Kapok
Magnesium oxide
6.
7.
MFSDH.Part II_2PP.indd 181
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
3 600
50
920
50
4 200
2 600
2 200
1 120
1 500
240
2 400
3 300
2 300
1 750
3 200
273
1 400
1 500
1 400
3 800
960
2 100
670
500
670
1050
1 400
1 400
2 050
3 350
525
710
12
51
8
9
55
39
12
~0
7.9
0.03
2.0
0.04
0.8
1.0
0.25
0.05
0.1
900
5.0
0.8
~ 100
22
50
400
~4
50–75
2–6
207
80
71
0.34
4.5
14
1 200
207
19
18
17
16
15
14
13
12
11
10
9
8
7
6
Properties of Non-Metallic Solids (at 293 K) • 181
2/15/2023 12:45:34 PM
1 050 1 250
Naphthalene
Nylon
Paraffin wax
Perspex
Phenol formaldehyde
Polyethylene (low den)
(high den)
Polypropylene
Polystyrene
Polyvinylchloride (non-rigid)
Polyvinylchloride (rigid)
22.
MFSDH.Part II_2PP.indd 182
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
1 700
900
955
920
1 300
1 190
900
1 150
1 150
1 500
Melamine formaldehyde
21.
2 600
Marble
20.
485
485
510
450
410
410
350
330
470
350
1 000
1 800
1 300
2 100
2 300
2 300
1 700
1 500
2 900
1 700
1 310
1 700
880
55
150
70
62
250
250
40
85
110
100
107
40
10
0.08
0.2
0.2
0.25
0.25
0.4
0.3
2.9
60
15
50
35
26
13
50
50
70
70
5–25
200–400
1–3
>220
100–300
400–800
0.4–0.8
2–7
60–300
2.8
0.01
3.1
1.2
0.43
0.18
6.9
3
9
32
31
30
29
28
27
26
25
24
23
22
21
20
182 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 183
2/15/2023 12:45:34 PM
Polyvinylidene chloride
Quartz fiber
Rubber (polyisoprene)
33.
34.
35.
Name
910
2 660
Density ρ/kg m−3
300
2 020
470
Melting point (Tm/K)
1 600
788
Specific heat capacity cp/J kg−1 K−1
220
0.4
190
× 10−4
Linear expansivity α/K−1
0.15
9.2
Thermal conductivity λ/W m−1 K−1
17
30
Tensile strength σγ/MPa
480–510
160–240
Elongation e/%
0.02
73
Young’s modulus E/GPa
35
34
33
Properties of Non-Metallic Solids (at 293 K) • 183
MFSDH.Part II_2PP.indd 184
650
600
Titanium carbide
Wood, oak (with grain)
Wood Spruce (with grain)
Wood Spruce (across grain)
38.
39.
40.
41.
4 500
2 070
Sulfur
37.
3 170
Silicon carbide
36.
386
730
7
64
4.5
0.15
28
0.26
0.5
14
12
345
41
40
39
38
37
36
184 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:34 PM
CHAPTER
14
Properties of Liquids (at 293 K)
MFSDH.Part II_2PP.indd 185
2/15/2023 12:45:34 PM
MFSDH.Part II_2PP.indd 186
Acetic acid (C2H4O2)
Acetone (C3H6O)
Benzene (C6H6)
Bromine (Br)
Carbon disulfide (CS2)
Carbon tetrachloride (CCl4)
Chloroform (CHCl3)
Ether, diethyl (C4H10O)
1.
2.
3.
4.
5.
6.
7.
8.
Name
Density ρ/kg m−3
714
1490
1632
1293
3100
879
780
1049
Melting point Tm/K 157
210
250
162
266
279
178
290
Boiling point Tb/K 308
334
350
319
332
353
330
391
Specific latent heat of vaporization I/J kg−1 35
25
19
36
18.3
40
52
39
× 10−4
Specific heat of capacity cp/J kg−1 K−1 2300
960
840
1000
460
1700
2210
1960
Cubic expansivity γ/K−1 16.3
12.7
12.2
11.9
11.3
12.2
14.3
10.7
× 10−4
Thermal conductivity λ/W m−1 K−1 0.127
0.121
0.103
0.144
0.140
0.161
0.180
Surface tension σ/N m−1 17
27.1
26.8
32.3
41.5
28.9
23.7
27.6
× 10−3
Viscosity η/N s m−2 0.242
0.569
0.972
0.375
0.993
0.647
0.324
1.219
× 10−3
Refractive index n 1.3538
1.4467
1.4607
1.6276
1.66
1.5011
1.3620 (288 K)
1.3718
2.49
Bulk modulus of rigidity K/GPa 0.69
1.1
1.12
1.16
1.58
1.10
~ 0.8
8
7
6
5
4
3
2
1
186 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:34 PM
Ethyl alcohol (C2H6O)
Glycerol (C3H8O3)
Mercury (Hg)
Methyl alcohol (CH4O)
Nitrobenzene (C6H5NO2)
Olive oil
Paraffin oil
Phenol (C6H6O)
Toluene (C7H8)
Turpentine
Water (H2O)
Water, sea
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
789
MFSDH.Part II_2PP.indd 187
1025
998
870
867
1073
800
920
1175
791
13546
1262
264
273
263
178
314
279
179
234
293
156
~ 377
373
429
384
455
570
484
337
630
563
352
226
29
35
53
33
112
29
83
85
3900
4190
1760
1670
2350
2130
1970
1400
2500
140
2400
2500
2.1
9.7
10.7
7.9
900
7.0
8.6
11.9
1.82
4.7
10.8
0.591
0.136
0.134
0.150
0.170
0.160
0.201
7.96
0.270
0.177
72.7
27
28.4
40.9
26
32
43.9
22.6
472
63
22.3
1.000
1.49
0.585
12.74
~ 1000
84
2.03
0.594
1.552
1495
1.197
1.343
1.333
1.48
1.4969
1.5425 (313 K)
1.43
1.48
1.5530
1.3276
1.73
1.4730
1.3610
2.05
1.28
1.09
1.62
1.60
2.2
0.97
26.2
4.03
1.32
9
20
19
18
17
16
15
14
13
12
11
10
Properties of Liquids (at 293 K) • 187
2/15/2023 12:45:35 PM
MFSDH.Part II_2PP.indd 188
2/15/2023 12:45:35 PM
CHAPTER
15
Properties of Gases at STP
MFSDH.Part II_2PP.indd 189
2/15/2023 12:45:35 PM
MFSDH.Part II_2PP.indd 190
Acetylene (C2H2)
Air
Ammonia (NH3)
Argon (Ar)
Carbon dioxide (CO2)
Carbon monoxide (CO)
Chlorine (Cl2)
Cyanogen (C2N2)
1.
2.
3.
4.
5.
6.
7.
8.
Substance
Density ρ/kg m−3 2.337
3.214
1.250
1.977
1.784
0.771
1.293
1.173
Boiling point T/K 252
238
81
195
87
240
83
189
Specific latent heat of vaporization l/J kg−1 43.2
28.1
21.1
36.4
15.8
137.1
21.4
× 10−4
Specific Heat Capacity cp/J kg−1 K−1 1720
478
1050
834
524
2190
993
1590
Ratio of specific heats γ = cP/cv 1.26
1.36
1.404
1.304
1.667
1.310
1.402
1.26
Thermal conductivity (λ/W m−1 K−1) 72
232
145
162
218
241
184
× 10−4
Viscosity η/Ns m−2 9.28
12.9
16.6
14
21
9.18
18.325 (300 K)
9.35
× 10−6
Refractivity (n − 1) 835
773
338
451
281
376
292
606
× 10−6
Critical temperature Tc /K 401
417
134
304
151
405
132
309
Critical pressure (Pc /MPa) 6.0
7.71
3.50
7.38
4.86
11.3
3.77
6.14
Critical volume (Vc/m3 mol−1) 124
93.1
94.0
75.2
72.5
113∗
× 10−6
8
7
6
5
4
3
2
1
190 • Mathematical Formulas and Scientific Data
2/15/2023 12:45:35 PM
∗
MFSDH.Part II_2PP.indd 191
Helium (He)
Hydrogen (H2)
Hydrogen chloride (HCl)
Hydrogen sulfide (H2S)
Methane (CH4)
Nitric oxide (NO)
Nitrogen (N2)
Nitrous oxide (N2O)
Oxygen (O2)
Sulfur dioxide (SO2)
Water Vapor (273 K) (H2O)
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
0.800
2.927
1.429
1.978
1.250
1.340
0.717
1.538
1.640
0.090
0.179
1.260
170
263
90
183
77
121
109
211
189
20.35
4.25
226.1
40.3
24.3
37.6
20.9
46.2
51.1
55.3
41.4
45.3
2.5
48.4
2020 (373 K)
645
913
892
1040
972
2200
1020
796
14300
5240
1500
1.26
1.40
1.303
1.404
1.394
1.313
1.32
1.40
1.41
1.66
1.26
164
158
77
244
151
243
238
302
120
1684
1415
9.7
8.7
11.7
19.2
13.5
16.7
17.8
10.3
11.7
13.8
8.35
18.6
254
686
272
516
297
297
444
634
447
132
36
696
The critical volume is here defined as the volume of one mole of the gas at its critical temperature and pressure.
Ethylene (C2H4)
9.
10.
647
430
154
310
126
179
191
374
325
33.3
5.3
283
22.12
7.88
5.08
7.24
3.39
6.5
4.62
9.01
8.26
12.94
0.23
5.12
56.8
122
78
96.7
90.1
98.7
97.9
87
65.5
58
127.4
9
20
19
18
17
16
15
14
13
12
11
10
Properties of Gases at STP • 191
2/15/2023 12:45:35 PM
MFSDH.Part II_2PP.indd 192
2/15/2023 12:45:35 PM
CHAPTER
16
Mechanical Data
The Mohs Scale of Hardness Substance
Hardness
Substance
Hardness
Substance
Hardness
Talc
1
Felspar
6
Fused zirconia
11
Gypsum
2
Vitreous silica
7
Fused alumina
12
Calcite
3
Quartz
8
Silicon carbide
13
Fluorite
4
Topaz
9
Boron carbide
14
Apatite
5
Garnet
10
Diamond
15
Approximate Hardness of Some Common Materials Substance Agate Aluminum Amber Asbestos Brass
MFSDH.Part II_2PP.indd 193
Hardness
Substance
6–7
Calcium
2–3
Carborundum
2–2.5 5 3–4
Chromium Copper Finger nail
Hardness 1.5 9–10 9 2.5–3 2.5
Substance Glass
Hardness 4.5–6.5
Marble
3–4
Penknife blade
6.5
Silver Steel (mild)
2.5–2.7 4–5
2/15/2023 12:45:35 PM
194 • Mathematical Formulas and Scientific Data
Viscosities of Liquids and Their Temperature Dependence, η, Ns m−2 Substance
0°C
10°C
20°C
30°C
40°C
50°C
Water
0.001787
0.001304
0.001002
0.00080
0.000653
0.000547
Aniline
0.0102
0.0065
0.0044
0.00316
0.00237
0.00185
Benzene
0.000912
0.0000758
0.000652
0.000564
0.000503
0.000442
Ethanol
0.00177
0.00147
0.0012
0.00100
0.000834
0.00070
Glycerol (propane 1, 2, 3-triol)
10.59
3.44
1.34
0.629
0.289
0.141
Rape oil
2.53
0.385
0.163
0.096
—
—
EMF of Standard Cells Weston (Cadmium) cell (20°C) Clark cell (l5°C)
=
l.0l86 volts (absolute)
=
l.0l83 volts (international)
=
l.4333 volts (absolute)
=
l.4328 volts (international)
Temperature dependence Weston cell Et = 1.0l86 − 0.0000406 (t − 20) − 9.5 × 10−7(t − 20)2 absolute volts Clark cell Et = 1.4333 − 0.00ll9 (t − 15) − 7 × 10−6(t − l5)2 absolute volts Approximate EMFs of Cells Bichromate
2 volts
Accumulator 2.0 volts (Ranges l.85−2.2 volts)
Bunsen
l.9 volts
Dry cell
l.5 volts
Daniell
l.08 volts
Nickel-Cadmium
l.3 volts
Grove
l.8 volts
Nickel-Iron
l.4 volts
Leclanché
l.46 volts
Zinc-Silver oxide
l.8 volts
MFSDH.Part II_2PP.indd 194
2/15/2023 12:45:35 PM
Mechanical Data • 195
Relative Permittivities (εr) of Various Substances at Room Temperature (293 K) Solid
εr
Liquid
εr
Gas
εr
Amber
2.8
Acetone
21.3
Air
1.000536
Ebonite
2.7−2.9
Benzene
2.28
Argon
1.000545
Glass
5−10
Carbon tetrachloride
2.17
Carbon dioxide
1.000986
Ice (268 K)
75
Castor oil
4.5
Carbon monoxide
1.00070
Marble
8.5
Ether
4.34
Deuterium
1.000270
Mica
5.7−6.7
Ethyl alcohol
25.7
Helium
1.00007
Paraffin wax
2−2.3
Glycerine
43
Hydrogen
1.00027
Perspex
3.5
Medicinal paraffin
2.2
Neon
1.000127
Polystyrene
2.55
Nitrobenzene
35.7
Nitrogen
1.000580
P.V.C.
4.5
Pentane
1.83
Oxygen
1.00053
Shellac
3−3.7
Silicon oil
2.2
Sulfur dioxide
1.00082
Sulfur
3.6−4.3
Turpentine
2.23
Water vapor
1.00060
Teflon
2.1
Water
80.37
(393 K)
Values given in the table above refer to low frequencies, gases at l atmosphere pressure. Temperature—EMF Data for Thermocouples The table gives the emf in millivolts for “hot junction” temperature from 0° to l00°C. The “cold junction” is maintained at 0°C. Thermocouple
0°
10°
20°
30°
40°
50°
60°
70°
80°
90°
100°
Platinum− Platinum
0
0.06
0.11
0.17
0.23
0.30
0.36
0.43
0.50
0.57
0.64
Copper− Constantan
0
0.39
0.79
1.19
1.61
2.03
2.47
2.91
3.36
3.81
4.28
Iron−Constantan
0
0.52
1.05
1.58
2.12
2.66
3.20
3.75
4.30
4.85
5.40
(90%), Rhodium (10%)
Magnetic Mass Susceptibility, χm (at 293 K) The mass susceptibility is given by the expression, χm = (μr − l)/ρ; where μ, is the relative permeability and ρ the density of the specimen.
MFSDH.Part II_2PP.indd 195
2/15/2023 12:45:35 PM
196 • Mathematical Formulas and Scientific Data
χm/m3
χm/m3
χm/m3
× 10−8
× 10−8
× 10−8
Aluminum
+ 0.82
Glass
− 1.3
Oxygen
+ 133.6
Araldite
− 0.63
Helium
− 0.59
Perspex
− 0.5
Carbon (graphite)
− 4.4
Hydrogen
− 2.49
Polyethylene
+ 0.2
Copper
− 0.108
Lead chloride
− 0.40
P.V.C.
− 0.75
Copper sulfate
+ 7.7
Manganese chloride
+ 134
Sodium chloride
− 0.63
Ebonite
+0.75
Manganese dioxide
+ 48.3
Sulfur
− 0.62
Iron ammonium alum
+ 38.2
Manganese sulfate
+ 111
Sulfuric acid
− 0.50
Ferric hydroxide
+ 197
Mercury
− 0.21
Water
− 0.90
Ferrous sulfate
+ 52.2
Nitrogen
− 0.54
Maximum Relative permeability (μi max)
Coercive force (Hs/A m−2)
Energy loss per cycle (E/J m−3)
Resistivity, ρ (ohm m)
Saturation induction (BM/T)
Magnetic Properties of Some “Soft” Magnetic Materials
200 000
4.0
30
10
2.15
Mild steel
2 000
143
− 500
10
Silicon iron (1.25% Si)
6 100
67.6
220
Silicon iron (4.25% Si)
9 000
23.9
70
60
2.0
Isotropic
Silicon iron (3% Si)
40 000
12
30
47
2.0
Anisotropic, (110).100
Silicon iron (3.8% Si)
1 400 000
Alloy
Iron, pure (total impurities < 0.005%)
MFSDH.Part II_2PP.indd 196
80. Three “families” are known in which one substance decays to another which in turn continues the process until a stable material (lead) is attained. The decay process involves the emission of an electron (β-particle) or an α-particle from the nucleus. In the former case, the mass number, A, remains unchanged while Z increases by unity, while the latter emission involves a decrease in A of four and a decrease in Z of two as the α-particle is the helium nucleus. In any one “family” the mass numbers alter in steps of four only. In the Thorium family, each value of A can be described by the number (4n), the Uranium family by (4n + 2), and the Actinium family by (4n + 3). The apparently missing family (4n + 1) has been found as a result of the artificial production of heavy isotopes. It does not appear naturally because the longest half-life is short compared with the age of the Earth. The Law of Radioactive Decay All radioactive substances transform at a rate that is proportional to the number of atoms present. If there are N0 atoms present at the zero of time, then at time, t, there are Nt, where
= N t N 0 exp − (λ t)
MFSDH.Part II_2PP.indd 218
2/15/2023 12:45:38 PM
Radioactivity • 219
Here, λ, is a constant for the particular type of atom considered and is known as the transformation constant. The rate at which an atom decay is often measured in terms of the mean lifetime of the atom, τ, or the half-value period, Tt, which is often abbreviated to the half-life. The relation between these constants is:
τ = 1/λ = Tt / log e 2
MFSDH.Part II_2PP.indd 219
2/15/2023 12:45:38 PM
MFSDH.Part II_2PP.indd 220
2/15/2023 12:45:38 PM
CHAPTER
22
Properties of Inorganic Compounds In the following table, properties refer to room temperature, 293 K. Enthalpies of Formation refer to the substance in the crystalline (c), liquid (lq), or gaseous (g) states at 293 K. A negative value indicates that heat is evolved in the formation of the compound, while a positive value indicates absorption of heat. The following abbreviations are used:
MFSDH.Part II_2PP.indd 221
bl.
black
effi.
efflorescent
s.
sublimes
col.
colorless
ex.
explodes
tetr.
tetragonal
crys.
crystals
gn.
green
trig.
trigonal
cub.
cubic
hex.
hexagonal
visc.
viscous
d.
dissociates
mono.
monoclinic
w.
white
delq.
deliquescent
rh.
rhombic
yel.
yellow
2/15/2023 12:45:38 PM
Refractive index n
Enthalpy of formation, ΔHtθ kJ/mol1
Density ρ, kg/m3
Boiling point, Ta K
Melting point, TM K
Molecular weight, M g/mol−1
222 • Mathematical Formulas and Scientific Data
Al
Al2O3
101.96
2290
3250
3965
1.768
− 1670 c
Corundum. w. trig.
Ag
AgBr
187.78
705
1600 (d)
6473
2.252
− 99.5 c
pale yel. cub
AgCl
143.32
728
1820
5560
2.071
− 127 c
w. cub.
AgNO3
169.87
485
717 (d)
4352
1.744
− 123 c
col. rh.
AsBr3
314.65
306
494
3540
− 195.0 c
col. prisms
AsCl3
181.28
265
403
2163
− 335 lq
Oily liquid
As2O3
197.84
588
3738
− 1310 c
col. cub. (As4O6)
Au
AuCl3
303.33
527 (d)
3900
− 118 c
red delq.
Ba
BaCl2
208.25
1240
1820
3856
1.736
− 860.1 c
col. mono.
BaO
153.34
2196
2300
5720
1.98
− 558.1 c
col. cub.
BeCl2
79.92
678
790
1899
1.719
− 511.7 c
w. delq. needles
BeO
25.01
2800
4170
3010
1.719
− 610.9 c
w. hex.
CO
28.01
74
84
1.25
− 110.5 g
col. gas
CO2
44.01
162
195
1.98
− 393.5 g
col. gas
CaCO3
100.09
1612
d
2930
1.6809
− 1206.9
Aragonite. col. rh.
CaCl2
110.99
1045
1900
2150
1.52
− 795.0 c
w. delq. cub.
CaO
56.08
2850
3120
3300
1.837
− 635.5 c
col. cub.
CdBr2
272.22
840
1136
5192
− 314.4c
w. effi. needles
CdCl2
183.32
841
1233
4047
− 389.1 c
w. cub.
CdO
128.40
1200 (d)
8150
− 254.6 c
brown cub.
CoCl2
129.84
997∗
2940
− 326 c
blue crys. ∗ in HCl gas
CoO
74.93
2208
6450
− 239 c
brown cub.
Formula
As
Be
C Ca
Cd
Co
MFSDH.Part II_2PP.indd 222
1322
1.755
Description
2/15/2023 12:45:39 PM
CsCl
168.36
919
Cu
CuO
79.54
1599
CuSO4
223.14
Formula
1560
3988
1.534
6400
Boiling point, Ta K
249.68
3605
1.733
− 548.9 c
rose-red rh.
− 433.0 c
col. delq. cub.
− 155.2 c
bl. cub. or trig.
− 769.9 c
gn/w. rh.
Enthalpy of formation, ΔHtθ, kJ/ mol1
Cs
CuSO4
3597
Refractive index, n
d
Density ρ, kg/m3
92.95
Melting point, TM K
Co(OH)2
Molecular weight, M g/mol−1
Properties of Inorganic Compounds • 223
Description
2284
1.537
− 2278c
blue trig.
6000
2.705
− 166.7c
red cub.
− 95.1c
blue hex.
5H2O Fe
H
Hg
K
MFSDH.Part II_2PP.indd 223
Cu2O
143.08
1508
FeS
87.91
1470
Fe2O3
159.69
1838
5240
3.042
− 822.2c
red or bl. trig.
Fe3O4
231.54
1810 (d)
5180
2.42
− 1117c
bl. cub.
HBr
80.92
185
206
3.5
− 36.2 g
col. gas
HCl
36.46
158
188
1.0
− 92.3 g
col. gas
HF
20.01
190
293
0.99
− 268.6 g
col. gas
HI
127.91
222
238
5.66
+ 25.9 g
col. gas
HNO3
63.01
231
356
1503
− 173.2 lq
col. liquid
H2O
18.02
273
373
1000
− 285.9 lq
col. liquid
H2SO4
98.08
284
610
1841
− 814.0 lq
col. visc. liquid
HgCl
236.05
670 (s)
HgCl2
271.50
549
HgO
216.59
800 (d)
KCl
74.56
1049
d
575
1770 (s)
4740
1.333
7150
1.973
− 265∗ c
w. tetr. (∗Hg2Cl2)
5440
1.859
− 230 c
w. rh.
11100
2.5
− 90.4 c
yel. or red rh.
1984
1.490
− 435.9 c
col. cub
2/15/2023 12:45:39 PM
224 • Mathematical Formulas and Scientific Data
KHCO3
100.12
400 (d)
K2CO3
138.21
1164
K2O
94.20
620 (d)
Li
LiCl
42.39
887
Mg
MgBr2
184.13
970
MgCO3
84.32
620
1200
2958
1.700
MgCl2
95.22
981
1685
2320
MgF2
62.31
1539
2512
MgH3
26.33
550 (d)
MgI
278.12
1000 (d)
MgO
40.31
3100
Mg(OH)2
58.33
MgSO4
120.37
MnO
70.94
MnO3
86.94
MnO3
102.94
Mn2O3
Mn
N
d
2170
1.482
− 959.4 c
mono.
2428
1.531
− 1146.1 c
w. delq.
− 361.5 c
w. cub.
− 408.8 c
w. delq. cub.
− 517.6 c
w. delq.
− 1112 c
w. trig.
1.675
− 641.8 c
col. hex
1.378
− 1102 c
col. tetr.
2320 1600
2068
1.662
3720
w. tetr. 4430 3900
− 359 c
w. delq.
3580
1.736
− 601.8 c
col. cub.
620
2360
1.562
− 924.7 c
w. trig.
1397
2660
1.56
− 1278 c
col. rh.
5440
2.16
− 385 c
gray/gn cub.
808 (d)
5026
− 520.9 c
bl. rh.
157.87
1350 (d)
4500
− 971.1 c
Mn2O7
221.87
279
Mn3O4
228.81
1978
NH3
17.03
195
NH4Cl
53.49
613 (s)
MFSDH.Part II_2PP.indd 224
red delq.
328 (d)
2396 4856
240
red oil 2.46
0.77 1527
brown/bl. cub.
1.64
− 1386 c
brown/bl. tetr
− 46.2 g
col. gas
− 315.4 c
w. cub.
2/15/2023 12:45:39 PM
Na
Ni P
MFSDH.Part II_2PP.indd 225
Description
Enthalpy of formation, ΔHtθ, kJ/mol1
Refractive index, n
Density ρ, kg/m3
Boiling point, Ta K
Melting point, TM K
Formula
Molecular weight, M g/mol−1
Properties of Inorganic Compounds • 225
NO
30.01
110
121
1.34
+ 90.4 g
col. gas
NO2
44.01
182
185
1.98
+ 33.8 g
red/brown gas (N2O4)
N2O3
76.01
171
277 (d)
1447
+ 83.8 g
red/brown gas
NaBr
102.90
1028
1660
3203
1.641
− 359.9 c
col.cub.
NaCl
58.44
1074
1686
2165
1.544
− 411.0 c
col.cub.
NaF
41.99
1261
1968
2558
1.326
− 569 c
col.tetr.
NaH
24.00
1100 (d)
920
1.470
− 57.3 c
silver needles
NaHCO3
84.00
540 (d)
2159
1.500
− 947.7 c
w. mono. powder
NaHSO4
120.06
590
d
2435
− 1126 c
col. tricl.
Nal
149.89
924
1577
3667
− 288.0 c
col.cub.
NaOH
40.00
592
1660
2130
− 426.7 c
w. delq.
Na2CO3
105.99
1124
d
2532
− 1131 c
w. powder
Na2O
61.98
1548 (s)
− 416 c
w/gray delq.
Na2SO4
142.04
− 1384 c
mono (→hex at 510 K)
NiCl2
129.62
1274
3550
− 316 c
yel. delq.
NiO
74.71
2260
6670
2.37
− 244 c
gm/bl. cub.
PCl3
137.33
161
349
1574
1.503
− 320 c
col. fuming liquid
PCl5
208.24
435 (s)
4.65
− 463.2g
delq. tetr.
PH3
34.00
140
+ 5.2 g
col. gas
P2O3
109.95
297
− 820 lq
w. delq. mono ∗ in N2
1.774 1.535
2270 2680
185 447
∗
2135
1.477
2/15/2023 12:45:39 PM
226 • Mathematical Formulas and Scientific Data
P2O4
125.95
370
450∗
2540
P2O5
141.94
850
875
2390
PbCl2
278.10
774
1220
5850
PbCl4
349.00
258
378 (ex)
3180
PbO
223.19
1161
9530
− 219.2 c
red amor.
PbO2
239.19
560 (d)
9375
2.229
− 276.6 c
brown tetr.
PbS
239.25
1387
7500
3.912
− 100.4 c
lead gray cub.
Pb3O4
685.57
770 (d)
9100
− 718.4 c
red amor.
Rb
RbCl
120.92
988
1660
2800
− 430.5 c
cub.
S
SO2
64.06
200
263
2.93
− 296.9 g
col. gas
SO3
80.06
306
318
1927∗
− 395.2 g
col. gas (∗liquid)
SbBr3
361.48
370
550
4148
− 260 c
col. rh.
SbCl3
228.11
347
556
3140
− 382 c
col. rh. delq.
SbCl3
299.02
276
352
2336
SiC
40.10
3000
SiCl4
169.90
203
SiH4
32.12
SiO
44.09
SiO2
60.08
Pb
Sb
Si
MFSDH.Part II_2PP.indd 226
w. delq. rh. ∗in vacuo
2.217
− 3012∗ c
w. delq. amor. ∗ P4O10
− 359.2 c
w. rh. yel. liquid
1.494
1.74
− 438 lq
pale yel. liquid
3217
2.654
− 111.7 c
blue/bl. trig.
331
1483
1.412
− 640.2 lq
col. fuming liquid
88
161
1.44
+ 34 g
col. gas
1975
2150
2130
1880
2500
1.544
w. cub. − 911 c
Quartz. hex.
2/15/2023 12:45:39 PM
Ti U W Zn
− 511.3 lq
cot. fuming liquid
6446
− 286 c
bl. cub.
1.997
− 581 c
w. tetr.
1.536
− 828 c
w. rh.
1.870
− 590 c
col. cub.
− 750 lq
col. liquid
Refractive index, n
2226
Density ρ, kg/m3
Boiling point, Ta K
Description
Sr
SnCl4
260.05
240
SnO
134.69
1350 (d)
SnO2
150.69
1400
2100 (s)
6950
SrCl2
158.53
1146
1520
3052
SrO
103.62
2700
3300
4700
TiCl4
189.71
248
409
1726
TiO2
79.90
2098
UC2
262.05
2650
UO2
270.03
2800
WC
195.86
3140
WO3
231.85
1746
7160
ZnCO3
125.39
570 (d)
4398
1.818
ZnCl3
136.28
556
2910
ZnO
81.37
2100
5606
MFSDH.Part II_2PP.indd 227
387
Enthalpy of formation, ΔHtθ, kJ/mol1
Sn
Melting point, TM K
Formula
Molecular weight, M g/mol−1
Properties of Inorganic Compounds • 227
4170 4640 6300
1005
− 912 c
bl.rh.
11280
2.586
− 176 c
metallic crystals
10960
− 1130 c
bl. rh.
15630
− 38.0 c
gray. cub. powder
− 840 c
yel. rh.
− 813 c
w. trig.
1.687
− 416 c
w. delq.
2.004
− 348 c
w. hex.
2/15/2023 12:45:39 PM
MFSDH.Part II_2PP.indd 228
2/15/2023 12:45:39 PM
CHAPTER
23
Properties of Organic Compounds (at 293 K) Enthalpies of Formation refer to the substance in the crystalline (c), liquid (lq), or gaseous (g) states at 293 K. A negative value indicates the evolution of heat during the formation of the compound, while a positive value indicates absorption of heat. Enthalpy changes in combustion refer to combustion at a pressure of l atmosphere and temperature 293 K, the final products being liquid water, and gaseous carbon dioxide and nitrogen.
MFSDH.Part II_2PP.indd 229
2/15/2023 12:45:39 PM
Enthalpy of formation, ΔHtθ kJ/mol1
Heat of combustion, ΔHc, kJ/mol1
109
− 74.85 g
890.4 g
Ethane, C2H6
30.07
90
185
− 84.7 g
1560 g
Propane, C3H8
44.11
83
231
− 103.8 g
2220 g
n-Butane, n-C4H10
58.13
135
273
579
−146.2 lq
2877 g
2-Methyl propane iso-C4H10
58.13
114
261
557
− 134.6 g
2869 g
n-Pentane, n-C5H12
72.15
143
309
626
1.3575
− 173 lq
3509 lq
n-Hexane, n-C6H14
86.18
178
342
660
1.3751
− 198.8 lq
4163 lq
n-Heptane, n-C7H16
100.21
183
372
638
1.3878
− 224.4 lq
4853 lq
n-Octane, n-C8H18
114.23
216
399
702
1.3974
− 250 lq
5512 lq
Enthalpy of formation, ΔHtθ kJ/mol1
Heat of combustion, ΔHc, kJ/mol1
Boiling point, TB K
Molecular weight
Refractive index, n
91
Density, ρ kg/m3
16.04
Name and formula
Melting point, TM K
Methane, CH4
Refractive index, n
230 • Mathematical Formulas and Scientific Data
Alternative name
Hydrocarbons
1.3543
Density, ρ kg/m3
Boiling point, TB K
Melting point, TM K
Name and formula
Molecular weight
Isobutane
Ethene, n-C3H4
28.05
104 169
1.26
Propene, C3H6
42.08
88
226
519
Ethyne, C2H2
26.04
192 189
618
Benzene, C6H6
78.12
279 353
879
Cyclohexane, C6H12 84.16
280 354
779
Alternative Name
+ 52.3 g
1411 g
Ethylene
+ 20.4 g
2059 g
Propylene
+ 226.7 g
1300 g
Acetylene
1.5011
+ 48.7 lq
3273 lq
1.4266
− 156.2 lq 3924 lq
1.3567
Halogen derivatives of
MFSDH.Part II_2PP.indd 230
2/15/2023 12:45:39 PM
Properties of Organic Compounds (at 293 K) • 231
Hydrocarbons Monochloro-methane, 50.49 CH3Cl
175 249
916
− 81.9 g
687 g
Methyl chloride
Dichloromethane, CH2Cl2
84.93
178 313
1327
1.4242
− 117 lq
447 g
Methylene dichloride
Trichloromethane, CHCl3
119.38 210 335
1483
1.4459
− 132 lq
373 lq
Chloroform
Tetrachloromethane, CCl4
153.82 250 350
1594
1.4601
−139.5 lq 156 lq
Cargon tetrachloride
Bromomethane, CH3Br
94.94
180 277
1676
1.4218
− 35.6 g
770 g
Methyl bromide
Iodomethane, CH3I
141.94 207 316
2279
1.5380
− 8.4 lq
815 lq
Methyl iodine
Methanol, CH3OH
32.04
179 338
791
1.3288
− 238.7 lq 726.5 lq
Ethanol, C2H5OH
46.07
156 352
789
1.3611
− 277.7 lq 1371 lq
60.11
147 371
803
1.3850
− 300 lq
293 d
1261
1.4746
− 103.9 lq 1661 lq
Glyerol
Alcohols
n-Propanol, n-C3H7OH
Propane-1,2,3-triol, 92.11 C3H8O3
2017 lq
Acids Ethanoic acid, CH3COOH
60.05
290 391
1049
1.3716
− 488.3 lq 876 lq
Acetic acid
Propanoic acid, C2H5COOH
74.08
252 414
993
1.3869
− 509 lq
Propionic acid
88.12
269 437
958
1.3980
− 538.9 lq 2194 lq
122.13 396 522
1266
1.504
− 390 c
3227 c
Ethanal, CH3CHO
44.05
152 294
783
1.3316
− 166.4 g
1192 lq
Acetaldehyde
2-Propanone, CH3 • CO • CH3
58.08
178 329
790
1.3588
− 216.7 g
1821 g
Acetone
Methoxymethane, CH3 •O • CH3
46.07
135 250
− 185 g
1454 g
Dimethylether
Ethoxyethane, C2H3 •O • C2H5
74.12
157 308
714
1.3526
− 279.6 lq 2761 lq
Urea, CO(NH2)2
60.06
408 d
1323
1.484
− 333.2 c
634 c
d
828
− 528.6 c
981 c
n-Butanoic acid, n-C3H7COOH Benzoic acid, C6H5COOH
1527 lq
Miscellaneous
Glycine, NH2 • CH2 • 75.07 COOH
MFSDH.Part II_2PP.indd 231
Diethylether
2/15/2023 12:45:39 PM
MFSDH.Part II_2PP.indd 232
2/15/2023 12:45:39 PM
CHAPTER
24
The Fundamental Constants Certain physical constants have special importance on account of their universality or place in fundamental theory. These are given below, first in SI and then in cgs units. The figure in brackets which follows the final digit, is the estimated uncertainty in the last digit. Thus c = 2.997 924 590(8) × l08m s−1 could be written
MFSDH.Part II_2PP.indd 233
c = (2.997 924 590 ± 0.000 000 008) × 108 m s−1.
2/15/2023 12:45:39 PM
234 • Mathematical Formulas and Scientific Data
General contents
Symbol
Quantity Speed of light in vacuo
2.997 924 590 (8)
108ms−1
μ0
Permeability of free space
4π
10−7 H m−1
ε0
Permittivity of free space
8.854 19 (1)
10−12 F m−1
e
Elementary charge
1.602 192 (7)
10−19 C
or 4.803 25(2)
—
6.626 20(5)
10−34 J s
1.054 592(8)
10−34 J s
h
Planck’s constant
h/2π h/e
Quantum charge ratio
4.135 708(14) or 1.379 523(5)
10−15 J s C−1 —
α
Fine structure
7.297 351(11)
10−3
1.370 360(2)
102
e2 2hε 0c
1/α G
Gravitational constant
6.673(3)
10−11 N m2 kg−2
Z0
Impedance of free space
3.767 304(1)
102 Ohm
Electron rest mass
9.109 56(5)
10−31 kg
Electron rest energy
8.187 26(6)
10−14 J
or 5.110 041(16)
10−1 Me V
1.758 803(5)
1011 C kg−1
me mec Electron
2
Proton
Multiplier and units SI
C
constant =
Neutron
Value
e/mc
Electron change mass ratio
or 5.272 759(16)
—
λc
Compton wave length of electron
2.426 310(7)
10−12 m
rc
Classical radius of electron
2.817 939(13)
10−15 m
mp
Proton rest mass
1.672 614(11)
10−27 kg
mpC2
Proton rest energy
1.503 271(15)
10−10 J
or 9.382 59(5)
102 MeV
9.578 97(11)
107 C kg−1
or 2.871 70(3)
—
e/mp
Proton charge-mass ratio
λcp
Proton Compton wavelength
1.321 441(9)
10−15 m
γ
Gyromagnetic ratio
2.675 197(8)
108 S−1 T−1
eγ
Gyromagnetic ratio (uncorrected for diamagnetism
2.675 127(8)
108 S−1 T−1
mn mnc2
Neutron rest mas Neutron rest energy
1.674 920(11) 1.505 353(15) or 9.395 53(5)
10−27 kg 10−10 J 102 MeV
MFSDH.Part II_2PP.indd 234
2/15/2023 12:45:40 PM
Matter in bulk
Atomic constants
The Fundamental Constants • 235
MFSDH.Part II_2PP.indd 235
R a0 μ μ0 μ/hc
Rydberg constant Bohr radius Bohr magneton Nuclear magneton Zeeman splitting constant
1.097 3731(1) 5.291 772(8) 9.274 10(6) 5.050 95(5) 4.668 60(7)
107m−1 10−11 m 10−24 J T−1 10−27 J T−1 101 m−1 T−1
N
Avogadro constant
F
Faraday
V0 R k σ
Normal volume of perfect gas Gas constant Boltzmann constant Stefan’s constant
6.022 17(4) or 6.022 17(4) 9.648 67(5) or 2.892 599(16) 2.241 36(30) 8.314 3(3) 1.380 62(6) 5.669 9(9)
1023 mol−1 1026 kg mol−1 104 C mol−1 — 10−2m3/mol 100 J/K mol 10−23 J/K 10−8 W/m2 K4
2/15/2023 12:45:40 PM
MFSDH.Part II_2PP.indd 236
2/15/2023 12:45:40 PM