CHAPTER 1 METRIC SPACES 1 Metric and normed spaces.............. 1 2 Open and closed sets.............. 4 3 Compactness.............. 1O 4 Connectedness.............. 17 5 Convergence.............. 22 6 Consequences of completeness.............. 26 Problems 1.............. 28
CHAPTER 2 CONTINUOUS FUNCTIONS 7 Definition and topological conditions.............. 32 8 Preservation of compactness and connectedness.............. 34 9 Uniform convergence.............. 39 10 Uniform continuity.............. 44 11 Weierstrass‘s Theorem.............. 46 12 The Stone—Weierstrass Theorem.............. 50 13 Compactness in C(X).............. 55 14 Topological spaces: an aside.............. 58 Problems 2.............. 59
CHAPTER 3 FURTHER RESULTS ON UNIFORM CONVERGENCE 15 Uniform convergence and integration.............. 63 16 Uniform convergence and differentiation.............. 68 17 Uniform convergence of series.............. 70 18 Tests for uniform convergence of series.............. 71 19 Power series.............. 75 Problems 3.............. 80
CHAPTER 4 LEBESGUE INTEGRATION 20 The collection K and null sets.............. 85 21 The Lebesgue integral.............. 91 22 Convergence theorems.............. 97 23 Relation between Riemann and Lebesgue integration........... 102 24 Daniell integrals.............. 109 25 Measurable functions and sets.............. 113 26 COmplex-valued functions: Lᵖ spaces.............. 120 27 Double integrals.............. 127 Problems 4.............. 133