150 31 5MB
English Pages [84]
Linear Equations and Inequalities
Manual Title: Linear Equations and Inequalities Author: Dan Hamilton Editor: John Hamilton Cover design by: John Hamilton Copyright 1998 All rights reserved. Printed in the United States of America. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior wri tten permission of the author. Request for per mission or further information should be addressed to Hamilton Education Guides via [email protected]. First published in 1998 Library of Congress Catalog Card Number 98-74114 Library of Congress Cataloging-in-Publication Data ISBN 979-8-88722-831-0
Hamilton Education Guides Book Series
____________________________________________________________________________________
eBook and paperback versions available in the Amazon Kindle Store
Hamilton Education Guides Manual Series
____________________________________________________________________________________
eManual versions available in the Amazon Kindle Store
Hamilton Education Guides Manual Series
____________________________________________________________________________________
eManual versions available in the Amazon Kindle Store
Contents Linear Equations and Inequalities Quick Reference to Problems 1 1.1
Introduction to Linear Equations.................................................................................. 2
1.2
Math Operations Involving Linear Equations ............................................................. 5
1.3
Solving Other Classes of Linear Equations .................................................................. 24
1.4
Formulas .......................................................................................................................... 41
1.5
Math Operations Involving Linear Inequalities .......................................................... 48
Appendix – Exercise Solutions................................................................................................... 67 Section 1.1 Section 1.2 Section 1.3 Section 1.4 Section 1.5
67 67 70 72 73
Hamilton Education Guides
i
Acknowledgments The primary motivating factor in writing the Hamilton Education Guides manual series is to provide students with specific subjects on mathematics. I am grateful to John Hamilton for his editorial comments, cover design, and suggestions on easier presentation of the topics. I would also like to acknowledge the original contributors of the Hamilton Education Guides book s for their editorial reviews. Finally, I would like to thank my family for their understanding and patience in allowing me to prepare this manual.
Hamilton Education Guides
ii
Introduction and Overview It is my belief that the key to learning mathematics is through positive motivation. Students can be greatly motivated if subjects are presented concisely and the problems are solved in a detailed step by step approach. Th is keeps students motivated and provides a great deal of encouragement in wanting to learn the next subject or to solve the next problem. During my teaching career, I found this method to be an effective way of teaching. I hope by presenting equations in this format, more students will become interested in the subject of mathematics. This manual is a chapter from my Mastering Algebra – Intermediate Level book with the primary focus on the subject of linear equations and inequalities . The scope of this manual is intended for educational levels ranging from the 9th grade to adult. The manual can also be used by students in home study programs, parents, teachers, special education programs, preparatory schools, and adult educational programs including coll eges and universities as a supplementary manual. A fundamental understanding of basic mathematical operations such as addition, subtraction, multiplication, and division is required. This manual addresses linear equations and inequalities and how they ar e simplified and mathematically operated. Students learn how to solve and verify one variable linear equations as well as add, subtract, multiply, and divide linear equations and inequalities. Detailed solutions to the exercises are provided in the Appendix. Students are encouraged to solve each problem in the same detail and step by step format as shown in the text. It is my hope that all Hamilton Education Guides books and manuals stand apart in their understandable treatment of the presented sub jects and for their clarity and special attention to detail. I hope readers of this manual will find it useful. With best wishes, Dan Hamilton
Hamilton Education Guides
iii
Linear Equations and Inequalities
Quick Reference to Case Problems
Linear Equations and Inequalities Quick Reference to Case Problems 1.1
Introduction to Linear Equations............................................................................. 2
1.2
Math Operations Involving Linear Equations ........................................................ 5 Case I - Addition and Subtraction of Linear Equations, p. 5 4 3 u 0.48 1 2 ; 5 5
1 1 2 y 3 2 ; 3 5 2
x2
3 1 1 5 8
Case II - Multiplication and Division of Linear Equations, p. 12 1 3 1 x 2 3 5
. h2 ; 38
3 8
2 5
; 3 x
Case III - Mixed Operations Involving Linear Equations, p. 18 5x 20 3x
1.3
; 4 y 2 3 y 8 ; 5m 5 3m 2
Solving Other Classes of Linear Equations ............................................................. 24 Case I - Solving Linear Equations Containing Parentheses and Brackets, p. 24 2 3 x 5 x ;
2 x 5 3x 8 0 ;
x 5 3 x 2 3
Case II - Solving Linear Equations Containing Integer Fractions, p. 29 x
1 2 x 3 3
1 4
; u u
2 5
2 3
; 4y 2 1 y
Case III - Solving Linear Equations Containing Decimals, p. 35 3.4x 2.5 2.8x 0.5
1.4
. x 0.2 0.5x 1 0 ; 55 . x 0.2 x 5 0.45 0 ; 125
Formulas ..................................................................................................................... 41 V
1.5
1 bh 3
9 5
; F C 32 ;
A
1 h b1 b2 2
Math Operations Involving Linear Inequalities ..................................................... 48 Case I - Addition and Subtraction of Linear Inequalities, p. 48 3 2 2 w 1 4 3
; 5u 0.45 4u 1
1 3
1 2 1 ; y 1 3
4
3
Case II - Multiplication and Division of Linear Inequalities, p. 54
2 4y 3
2 3
; 1 w2
3 5
; 2.6 m 3
2 3
Case III - Mixed Operations Involving Linear Inequalities, p. 60 6t 10 9t 5 ;
Hamilton Education Guides
3x 25 8x ;
0.8n 10 12 . n
1
Linear Equations and Inequalities The objective of this manual is to improve the student’s ability to solve operations involving linear equations and linear inequalities. One variable linear equations and the process of determining the solution to an algebraic equation as well as how the solution set to a linear equation is verified is addressed in Section 1.1. Math operations involving addition, subtraction, multiplication, and division of linear equations are addressed in Section 1.2. In Section 1.3 linear equations containing parentheses and brackets, integer fractions , and decimals are introduced. Formulas, its definition, and the steps as to how they are solved for a specific variable is addressed in Section 1.4. Math operations involving linear inequalities are discussed in Section 1.5. Cases presented in each section are concluded by solving additional examples with practice problems to further enhance the student ability.
1.1
Introduction to Linear Equations
”. A numerical statement consists of two expressions which are separated by an equal sign “ The symbol “ ” implies that the left and the right hand side of the nume rical statement must equal to each other in order for the equal sign to hold true. For example, 3 5 8 , 6 4 2 ,and 1 5 6 are true statements where as 7 3 9 , 8 5 23 , and 1 0 2 are false. An algebraic equation consists of two algebraic expressions which are separated by an equal sign “ ”. For example, using y as variable, the statement y 5 6 ; 3 y 2 7 ; y 2 3 y 5 are called algebraic equations. A solution to an equation is a value that when substituted for the variable, 1 is substituted fo r y in the make the equation a true numerical equation. For example, if equation y 5 6 , we obtain 1 5 6 or 6 6 which is a true numerical statement. Therefore, we say that y 1 is the solution to the equation y 5 6 . The process of determining the solution to an algebraic equation is referred to as solving an equation. The set of all solutions to an algebraic equation is called its solution set. For example, the solution set of y 5 6 is 1 , which is expressed as 1 , and the solution set of 3y 5 7 is 2 3
2 , which is expressed as . 3
In the following sections we will learn how to solve an algebraic equation. However, we first need to learn the process as to how a solution to a linear equation is verified. To check a solution to an equation we need to use the following steps: Step 1:
Substitute the solution into the original equation in place of the variable.
Step 2:
Solve the equation.
Step 3:
If both sides of the equation become equal to each other then the solution satisfies the original equation. Otherwise, the solution does not satisfy the original equation.
The following examples show how the solution to an algebraic linear equation is verified: Example 1.1-1: Given the algebraic equation 5x 3 3x 5 , does x 3 , x 4 , and x 5 satisfy the original equation? 1. Substitute x 3 into the original equation and see if both sides of the equation become equal to each other.
Hamilton Education Guides
2
Linear Equations and Inequalities
1.1 Introduction to Linear Equations
?
?
5 3 3 3 3 5 ; 15 3 9 5 ; 12 14 Since the left hand side of the equation is not equal to the right hand side of the equation, therefore x 3 does not satisfy the original equation. This implies that the two sides are not equal to each other. 2. Substitute x 4 into the original equation and see if both sides of the equation become equal to each other. ?
5 4 3 3 4 5 ;
? 20 3 12 5 ; 17 17
Since the left hand side of the equation is equal to the right hand side of the equation, therefore x 4 does satisfy the original equation. This implies that the two sides are equal to each other. Therefore, x 4 is the solution to the equation 5 x 3 3 x 5 . 3. Substitute x 5 into the original equation and see if both sides of the equation become equal to each other. ?
5 5 3 3 5 5 ;
? 25 3 15 5 ; 22 20
Since the left hand side of the equation is not equal to the right hand side of the equation, therefore x 5 does not satisfy the original equation. This implies that the two sides are not equal to each other. Example 1.1-2: Given the algebraic equation y 3 y 2 4 , does y 1 , y 0 , and y 1 satisfy the original equation? 1. Substitute y 1 into the original equation and see if both sides of the equation become equal to each other. ? 1 3 1 2 4
?
?
; 1 3 3 4 ; 1 9 4 ; 1 5
Since the left hand side of the equation is not equal to the rig ht hand side of the equation, therefore y 1 does not satisfy the original equation. This implies that the two sides are not equal to each other. 2. Substitute y 0 into the original equation and see if both sides of the equation become equal to each other. ? 0 3 0 2 4
?
?
; 0 3 2 4 ; 0 6 4 ; 0 2
Since the left hand side of the equation is not equal to the right hand side of the equation, therefore y 0 does not satisfy the original equation. This implies that the two sides are not equal to each other. 3. Substitute y 1 into the original equation and see if both sides of the equation become equal to each other. ? 1 31 2 4
Hamilton Education Guides
?
?
; 1 3 1 4 ; 1 3 4 ; 1 1
3
Linear Equations and Inequalities
1.1 Introduction to Linear Equations
Since the left hand side of the equation is equal to the right hand side of the equation, therefore y 1 does satisfy the original equation. This implies that the two sides are equal to each other. Therefore, y 1 is the solution to the equation y 3 y 2 4 . Example 1.1-3: Determine if z 2 is the solution to each of the following equations. a. 3z 1 2 z Solution:
c. z 3 9 z 13
b. 6 z 2 4 2 z ?
d. 3z 13 10
?
a. Let z 2 in the equation 3z 1 2z , i.e., 3 2 1 2 2 ; 6 1 4 ; 5 4 . Therefore, z 2 is not the solution to 3z 1 2 z . ?
?
b. Let z 2 in the equation 6z 2 4 2z , i.e., 6 2 2 4 2 2 ; 12 2 4 4 ; 10 8 . Therefore, z 2 is not the solution to 6 z 2 4 2 z . ?
?
c. Let z 2 in the equation z 3 9 z 13 , i.e., 2 3 9 2 13 ; 5 18 13 ; 5 5 . Therefore, z 2 is the solution to z 3 9z 13 . ?
?
d. Let z 2 in the equation 3z 13 10 , i.e., 3 2 13 10 ; 6 13 10 ; 7 10 . Therefore, z 2 is not the solution to 3z 13 10 . Practice Problems - Introduction to Linear Equations Section 1.1 Practice Problems - Solve the following linear equations: 1. Determine whether 2 is the solution to each of the following equations: a. 3x 2 10 b. 2 x 3 x c. 6 x 2 x 1 d. 2 x 8 3x 2 2. Determine if y 2 is the solution to the following equations: a. y 3 2 y
b. 6 y y 8 y 2
c. 6 3 y 0
d. 3 y 5 y
3. Given the algebraic equation 2 x 8 x 5 3 , does x 0 , x 1 , and x 6 satisfy the original equation? 4. Does a 2 satisfy any of the following equations? a. 3a 2 4a b. 3 7a 18 c. 5a 3 3a 1
Hamilton Education Guides
d. 8 a 3
4
Linear Equations and Inequalities
1.2
1.2 Math Operations Involving Linear Equations
Math Operations Involving Linear Equations
First degree equations of one variable, which are also referred to as linear equations, are solved by the proper use of addition, subtraction, multiplication, and division rules. It is important to learn how to apply these rules to linear equations in order to find the solution to the unknown variable. In this section, solving linear equations using either the addition and subtraction rules (Case I) or the multiplication and division rules (Case II) are disc ussed. Students are encouraged to learn how to solve first degree equations by properly organizing and applying the rules that are stated below in order to minimize mistakes. Case I
Addition and Subtraction of Linear Equations
To add or subtract the same positive or negative number to linear equations the following rules should be used: Addition and Subtraction Rules: The same positive or negative number can be added or subtracted to both sides of an equation without changing the solution: for all real nu mbers a , b , and c , 1. a b if and only if a c b c ab
2.
if and only if
ac bc
The steps as to how linear equations are s olved, using the addition and subtraction rules, are as follows: Step 1 Isolate the variable to the left hand side of the equation by applying the addition and subtraction rules. Step 2
Find the solution by simplifying the equation. Check the answer by solution into the original equation.
substituting the
Examples with Steps The following examples show the steps as to how linear equations are solved using the addition and subtraction rules: Example 1.2-1 x 3 5
Solution: Step 1
x 3 5
Step 2
; x 3 3 5 3 ; x 0 8 ; x 8
Not Applicable
The solution set is 8 . ?
Check: 8 3 5 ; 5 5 Example 1.2-2 2 3 1 w2 3 5
Solution: Step 1
2 3 1 w2 3 5
Hamilton Education Guides
;
1 3 2 w 2 5 3 3
5
;
3 2 10 3 w 3 5
;
5 13 w 3 5
5
Linear Equations and Inequalities
;
5 5 13 5 w 3 3 5 3
w
Step 2
1.2 Math Operations Involving Linear Equations
13 5 5 3
; w
; 0 w
13 5 5 3
13 3 5 5
; w
; w
53
13 5 5 3
39 25 15
; w
14 15
; w 0.93
The solution set is 0.93 . ?
2 3
Check: 1 0.93 2
? 2 5 3 ? 10 3 ? 13 3 1 3 2 5 3 2 ; ; ; 0.93 0.93 0.93 5 3 5 3 5 3 5 ?
; 167 . 093 . 2.6 ;
2.6 2.6
Example 1.2-3 4 3 u 0.48 1 2 5 5
Solution: Step 1
4 3 u 0.48 1 2 5 5
4 4 3 3 ; u 0.48 0.48 1 2 0.48 ; u 0 1 2 0.48 5
5
5
5
4 3 ; u 1 2 0.48 5
Step 2
5
1 5 3
4 3 u 1 2 0.48 5 5
; u
; u
; u
8 14 0.48 5 5
5
2 5 4 0.48 5
8 14 0.48 5
; u
5 3 10 4 0.48 5 5
; u
22 0.48 5
; u 4.4 0.48 ; u 4.88
The solution set is 4.88 . ? 1 5 3 2 5 4 ? 5 3 10 4 ? 8 14 4 ; 4.4 ; 4.4 ; 4.4 5 5 5 5 5 5 5 ? 8 14 ? 22 ; 4.4 ; 4.4 ; 4.4 4.4 5 5 ?
3 5
Check: 4.88 0.48 1 2
Example 1.2-4
1 1 2 y 3 2 3 5 2
1 1 2 y 3 2 3 5 2
Solution: Step 1
1 1 1 1 2 2 ; y y y 3 2 ; y 0 3 2 3
5
2
3
5
2
1 2 1 1 1 2 1 1 1 1 2 ; y 3 2 ; y 3 2 ; y 0 3 2 5
Hamilton Education Guides
3
2
5
5
3
2
5
3
2
5
6
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
1 1 2 ; y 3 2 3
2
5 3 3 2
1 1 2 y 3 2 3 2 5
Step 2
; y
; y
11 5 1 3 2 5
7 5 1 6
; y
2 2 1 1
2
11 2 5 3 1 3 2 5
35 6 30
; y
41 30
5
9 2 4 1 1 3 2 5
; y
; y
; y
; y
65
3
; y 1
11 30
22 15 1 6 5
7 6
; y
1 5
; y 1.37
The solution set is 1.37 . ? ? 3 3 2 2 2 1 1? 1 2 9 2 4 1 . . . 3 2 ; 0.2 137 Check: 137 ; 0.2 137
3
5
2
3
2
3
2
? ? 11 2 5 3 11 5 22 15 . . ; 0.2 137 ; 0.2 137 3 2 3 2 3 2
. ; 0.2 137 ?
?
; 0.2 137 .
? 7 ; 0.2 137 . 117 . ; 0.2 0.2 6
Example 1.2-5 2 3 x 3 4 5 7
Solution: 2 3 x 3 4 5 7
Step 1
2 2 2 3 x 3 4 5 5 5 7
;
2 3 ; 0 x 3 4 5
7
; x
28 3 7
2 3 ; x 3 4 5
Step 2
7
2 3 x 3 4 5 7 ; x 2 5
3 1
31 7
2 5
10 7
; x
; x
2 5
3
4 7 3
1
7
; x 2 5
3 7 31 1 1 7
; x
2 7 10 5 5 7
; x
2 5
3 1
21 31 7
; x
14 50 35
2 5
; x
64 35
; x 1.83
The solution set is 1.83 . Check:
? ? ? ? 4 7 3 ; 143 31 2 3 28 3 ; 143 183 . 3 4 ; 0.4 183 . 3 . 3 . 3 5 7 7 7 7 ?
; 143 . 3 4.43 ;
Hamilton Education Guides
1.43 1.43
7
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
Additional Examples - Addition and Subtraction of Linear Equations The following examples further illustrate how linear equations are solved using the addition and subtraction rules: Example 1.2-6 x 6 8 ; x 66 86 ; x 0 2 ; x 2
The solution set is 2 .
?
Check: 2 6 8 ; 8 8 Example 1.2-7 3 y 5 ; 3 3 y 5 3 ; 0 y 2 ; y 2 ?
The solution set is 2 .
?
Check: 3 2 5 ; 3 2 5 ; 5 5 Example 1.2-8 2 u5 ; 25 u55 ; 7 u0 ; 7 u ; u 7
The solution set is 7 .
?
Check: 2 7 5 ; 2 2 Example 1.2-9 5 x 10 ; 5 5 x 10 5 ; 0 x 15 ; x 15 ?
The solution set is 15 .
?
Check: 5 15 10 ; 5 15 10 ; 10 10 Example 1.2-10 24 10 h ; 24 10 10 10 h ; 14 0 h ; 14 h ; h 14 ?
The solution set is 14 .
?
Check: 24 10 14 ; 24 10 14 ; 24 24 Example 1.2-11 5 y 20 ; 5 20 y 20 20 ; 15 y 0 ; 15 y ; y 15
The solution set is 15 .
?
Check: 5 15 20 ; 5 5 Example 1.2-12 s 12 15 ; s 12 12 15 12 ; s 0 27 ; s 27
The solution set is 27 .
?
Check: 27 12 15 ; 15 15 Example 1.2-13 8.5 x 2.4 ; 8.5 8.5 x 2.4 8.5 ; 0 x 10.9 ; x 10.9 ?
The solution set is 10.9 .
?
Check: 8.5 10.9 2.4 ; 8.5 10.9 2.4 ; 2.4 2.4 Example 1.2-14 9 w 8 ; 9 8 w 8 8 ; 17 w 0 ; 17 w ; w 17
The solution set is 17 .
?
Check: 9 17 8 ; 9 9 Example 1.2-15 12 . y 2.8 ; 12 . 12 . y 2.8 12 . ; 0 y 16 . ; y 1.6 ?
?
. 16 . 2.8 ; 12 Check: 12 . 16 . 2.8 ;
Hamilton Education Guides
The solution set is 1.6 .
2.8 2.8
8
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
Example 1.2-16 x2
3 5
3 5
1 8
3 1 1 5 8
; x 2 2 1 2
9 8
; x
; x
13 5
9 5 13 8
3 5
1 8
; x 0 1 2 45 104 40
; x
85
3 5
; x
; x
59 40
1 8 1 2 5 3 8
; x
5
59 40
; x 1
19 40
; x
8 1 10 3 8 5
; x 1.475
The solution set is 1.475 . 3 5
?
Check: 1475 . 2 1
2 5 3 1 8 1 ; 1475 1 10 3 8 1 13 ? 9 ; 1475 ; 1475 . . . 8 5 8 5 8 5 8 ?
?
; 1475 ; . 2.6 1125 . Example 1.2-17 2
3 1 y 3 4 4
; y
3 4
1125 . 1125 .
1 4
1 4
11 13 4
; y
; 2 3 y 3 3
11 13 4 4
; y
3? 4
Check: 2 0.5 3
1 4
3 4
1 4
3 4
1 4
; 2 3 y 0 ; 2 3 y ; y
1 2 ; y ; y 0.5 2 4 2
2 4 3 3 4 1 4
4
The solution set is 0.5 .
? 3 4 1 ; 8 3 1 2 4 3 ? 12 1 11 ? 13 ; ; 0.5 0.5 0.5 4 4 4 4 4 4 4
?
; 2.75 05 . 325 . ; Example 1.2-18
2.75 2.75
3 8
3 8
y 2.35 2
?
; y 2.35 2.35 2 2.35 ; y 0
2 8 3 2.35 8
; y
16 3 2.35 8
; y
19 2.35 8
The solution set is 4.725 .
; y 2.375 2.35 ; y 4.725
? 2 8 3 ? 16 3 ? 19 3 ; 2.375 ; 2.375 ; 2.375 ; 2.375 2.375 8 8 8 8
?
Check: 4.725 2.35 2 Example 1.2-19 2.5 u 1
3 5
3 5
3 5
; 2.5 1 u 1 1
3 5
3 5
; 2.5 1 u 0 ; 2.5
1 5 3 u 5
8 ; 2.5 u ; 2.5 1.6 u ; 41. u ; u 4.1 5
?
3 5
?
Check: 2.5 41 . 1 ; 2.5 41 .
1 5 3 ; 5
; 2.5
53 u 5
The solution set is 4.1 . ?
2.5 41 .
? ? 53 8 ; 2.5 41 . ; 25 . 41 . 16 . 5 5
2.5 2.5
; Example 1.2-20
1 2 1 5 x 4 1 5 5 5
;
26 22 6 x 5 5
;
;
5 5 1 x 4 5 2 1 5 1 5
26 16 x 5 5
5
;
5
;
26 26 16 26 x 5 5 5 5
25 1 20 2 5 1 x 5 5 5
; 0 x
16 26 5
;
; x
26 22 6 x 5 5 5 10 5
; x
10 5
; x2
The solution set is 2 .
Hamilton Education Guides
9
Linear Equations and Inequalities
?
1 5
2 5
1.2 Math Operations Involving Linear Equations
1 5
Check: 5 2 4 1 ; ?
; 5.2 2 4.4 12 . ; Example 1.2-21 1 2 2 x 1 1 3 3 5 4 3
; x ; x
; x
10 21 15
93 45
5
3
11 15
; x 2
1?2 3 3
5
4 3
3 45
2 5
; 2.07 133 . 0.66 14 . ; Example 1.2-22 ; 0.45 w
4 3
31 2 5 2 3 3 5
11 4 15 3
; x0
4 3
2 3
; x
4 3
; x
; x
15 3
2 5 7 3 3 5
33 60 45
The solution set is 2.07 .
1 3 1 ? 2 1 5 2 ; 3
7 5
11 3 4 15
; x 2.07
?
2 6 3
5
; x
; x
Check: 2.07 1 1 ; 2.07
0.45 w 2
? 20 2 5 1 ? 22 6 25 1 26 ; 2 2 5 5 5 5 5 5
3.2 3.2
3
4 3
93 45
5
1 3 1 2 1 5 2
; x
; x
5 5 1 2 ? 4 5 2 1 5 1 ;
3
5
2.07
31 ? 2 5 2 4?2 7 ; 2.07 3 3 5 3 3 5
0.74 0.74
2 3 2 6 3
; 0.45 w
62 6 3
8 3
; 0.45 w 6 ; 0.45 w 2.67 6
; 0.45 w 8.67 ; 0.45 0.45 w 8.67 0.45 ; 0 w 8.67 0.45 ; w 8.67 0.45 ; w 8.22 ?
?
2 3
Check: 0.45 8.22 2 6 ; 0.45 8.22 ?
; 0.45 8.22 2.67 6 ; Example 1.2-23 20 x 80 1
2 3
3
?
0.45 8.22
?8 62 6 ; 0.45 8.22 6 3 3
8.67 8.67
4 5 x 16 5
;
2 3 2 6 ;
The solution set is 8.22 .
1 3 2 3
;
22 5 x 42 5
3 2 3
; 2 5x4 5
5 3
. ; 4.48 x 8.96 1.67 ; 4.48 x 10.63 ; 4.48 4.48 x 10.63 4.48 ; 2 2.24 x 4 2.24 167 . . The solution set is 615
. ; x 615 . ; x 6.15 ; 0 x 615
Check:
?
20 615 . 80 1 ?
?
2 ; 3
; 2 2.4 615 . 4 2.24
4 5 615 . 16 5
1 3 2 ; 3
?
2 5 615 . 4 5
3 2 3
? 5 ; 4.48 615 . 896 . 167 . ; 10.63 10.63 3
Example 1.2-24 3 3 1 h 2 5 4 8 5
;
;
11 h0 4
1 5 3 h 2 4 3 5
;
4
8 4 11 5 h
Hamilton Education Guides
;
5 4
;
53 83 h 5 4
32 55 h 20
;
8 5
; h
87 h 20
11 4
; h
8 5
;
87 20
11 11 11 h 4 4 4
; h 4
7 20
; h 4.35
10
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
The solution set is 4.35 . 3? 5
Check: 1 4.35 2
? ? 1 5 3 2 4 3 ; 5 3 3 83 8? 11 ; ; 4.35 4.35 4.35 4 5 4 5 4 5 4
?
; 16 . 435 . 2.75 ; Example 1.2-25 x 3
; x ; x
2 2 1 1 5 3 8
; x
1.6 1.6
3 5 2 2 1 8 1 5
3
8
; x
15 2 2 8 1 5 3 8
; x
17 2 9 5 3 8
17 16 27 17 17 11 17 11 17 17 11 17 2 8 9 3 ; x ; x ; x ; x0 5 24 24 5 5 24 5 5 24 5 5 3 8
11 5 17 24 24 5
; x
55 408 120
; x
353 120
; x2
113 120
; x 2.942 The solution set is 2.942 .
2?2 5 3
Check: 2.94 3 1 ?
3 5 2 ? 2 1 8 1 ; 2.94 15 2 ? 2 8 1 ; 2.94 17 ? 2 9 1 ; 2.94 8 5 3 8 5 3 8 5 3 8
; 2.94 34 . 0.67 113 . ;
0.46 0.46
Practice Problems - Addition and Subtraction of Linear Equations Section 1.2 Case I Practice Problems - Solve the following linear equations by adding or subtracting the same positive or negative number to both sides of the equation: 5 x3
1.
x 13 12
2.
8 h 20
3.
4.
3 u 5
5.
2.8 x 3.7
6. x 2
7. 4.9 x 1 10.
2 3
y 2.38 3
1 3
8. u 2 2
3 5
3 8
2 3
3 8
9. 6 y 2
4 5
2 5
Hamilton Education Guides
11
Linear Equations and Inequalities
Case II
1.2 Math Operations Involving Linear Equations
Multiplication and Division of Linear Equations
To multiply or divide linear equations by the same positive or negative number the following rules should be used: Multiplication Rule: The same positive or negative number can be multiplied by both sides of an equation without changing the solution: for all real numbers a , b , and c , ab
if and only if a c b c .
Division Rule: The same positive or negative number (except zero) can be divided by both sides an equation without changing the solution: for all real numbers a , b , and c , where c 0 ab
if and only if
a b c c
.
The steps as to how linear equations are solved, using the multiplication and division rules, are as follows: Step 1 Isolate the variable to the left hand side of the equation by applying the addition and subtraction rules. Step 2
Find the solution by applying the multiplication or division rules. Check the answer by substituting the solution in the original equation. Examples with Steps
The following examples show the steps as to how linear equations are solved using the multiplication or division rules: Example 1.2-26 2x
Solution: Step 1 Step 2
1 5
Not Applicable 2 x
1 1 1 2 5 2
1 1 5 2
; x
1 1 5 2
; x
; x
1 1 52
1
; x 10
1 The solution set is . 10
1 1 2 ? 1 1 1 2 1 1 2 1 1 Check: 2 ; ; ; ; 5 5 10 5 10 5 1 10 5 1 10 5 5 ?
?
?
Example 1.2-27 3 3w 8
Solution: 3 3w 8
;
; 3w
3 8
Step 1
Hamilton Education Guides
3 3w 3w 3w 8
;
3 3w 0 8
;
3 3 3 3w 0 8 8 8
; 0 3w
3 8
12
Linear Equations and Inequalities
3w
Step 2 Check:
1.2 Math Operations Involving Linear Equations
3 1 8 3
1 3
3 8
1 The solution set is .
1
; w8
; 3 w
8
?
3 3 3 1 3 ; 8 8 8 8
Example 1.2-28 1 3 1 x 2 3 5
Solution: Step 1
Not Applicable 1 3 1 x 2 3 5
Step 2
;
;
1 3 1 x 2 5 3 3
4 3 13 3 x 3 4 5 4
5
; x
13 3 5 4
;
; x
31 10 3 x 3 5 13 3 5 4
; x
?
1 3
13 3 5 4
4 13 x 3 5
; x
39 20
; x 1
19 20
The solution set is 1.95 .
; x 1.95 Check: 1 195 . 2
;
? 13 4 195 . ? 13 7.8 ? 13 3 4 ; 195 ; ; ; 2.6 2.6 . 5 3 5 3 5 3 5
Example 1.2-29 26 12y
Solution: Step 1
26 12y ; 26 12 y 12 y 12 y ; 26 12 y 0 ; 26 26 12 y 0 26
; 0 12 y 26 ; 12 y 26
12 y 26 ;
Step 2
13 y 26 1 12 26 13 26 . ; y ; y ; y ; y 2 ; y 2166 6 12 12 12 6 12 6 . . The solution set is 2166
?
Check: 26 12 2166 ; 26 26 . Example 1.2-30 38 . h2
Solution: Step 1 Step 2
3 8
Not Applicable 38 . h2
;
Hamilton Education Guides
3 8
. h ; 38
. h 2.375 38 . 38 38 .
2 8 3 8
; h 0.625
. h ; 38
16 3 8
; 3.8h
19 8
; 3.8 h 2.375
The solution set is 0.625 .
13
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
?
Check: 38 . 0.625 2
? 19 3 ; 2.375 ; 2.375 2.375 8 8
Additional Examples - Multiplication and Division of Linear Equations The following examples further illustrate how linear equations are simplified using the above multiplication or division rules: Example 1.2-31 20 20 3 y 60 3 y 60 ; ; y ; y 20 1 3 3
The solution set is 20 .
?
Check: 3 20 60 ; 60 60 Example 1.2-32 1 x8 5
1 x 5 8 5 5
;
The solution set is 40 .
; x 40
8 ? ? 8? 40 1 Check: 40 8 ; 8 ; 8 ; 8 8 5 1 5
Example 1.2-33 5 3h 7
; h
5 3h 3h 3h 7
;
1 5 3 7
;
5 3h 0 7
;
5 5 5 3h 0 7 7 7
; 0 3h
5 7
; 3h
5 7
;
1 1 5 3 h 3 3 7
5 The solution set is .
5
; h 21
21
Note that another way of solving for h is by not isolating the variable to the left hand si de of the equation. However, in the very last step, we should write the variable to the left hand side of the equation and the solution to the right hand side of the equation as shown below. 5 3h 7
1 5 1 h 3 3 7 3
;
;
1 5 h 3 7
;
5 h 21
5
; h 21
5 5 5 5? 5 5? 3 5 5 ? 3 5 5 ? 15 5 ? 15 Check: 3 ; ; ; ; ; 7 7 7 21 7 1 21 7 1 21 7 21 7 21 7
Example 1.2-34 u 3 5
;
u 5 3 5 5
; u 15
The solution set is 15 .
3 ? 3? 15 15 ? Check: 3 ; 3 ; 3 ; 3 3 5 1 5
Example 1.2-35 2w 28
;
2 w 28 2 2
14 14 28 ; w ; w ; w 14 1 2
The solution set is 14 .
?
Check: 2 14 28 ; 28 28
Hamilton Education Guides
14
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
Example 1.2-36 y 15 ;
y 15 1 1
; y
15 1
; y 15
2 5
2 5
The solution set is 15 .
?
Check: 15 15 ; 15 15 Example 1.2-37 3
;
2 x 5
2 5
2 5
2 5
2 5
; 3 x x x ; 3 x 0 ; 3 3 x 0 3 ; 0 x 3 ;
2 5 5 x 3 5 2 2
3 5 1 2
; x
; x
3 5 1 2
; x
15 2
; x7
1 2
; x 7.5
2 x3 5
The solution set is 7.5 .
Second Approach: Keep the variable x to the right hand side of the equation. 3
2 x 5
2 5
5 2
; 3 x ?
3 5 1 2
; x ;
35 x 1 2
? 2 7.5 2 7.5 ; 3 ; 5 1 5 1
?
2 5
5 2
Check: 3 7.5 ; 3
1 15 15 x ; x ; x7 2 2 2 3 ? 3 ? 15 ; 3 ; 3 3 3 1 5
;
; x 7.5
Example 1.2-38 1 x 3 8
1 x 8 3 8 8
;
The solution set is 24 .
; x 24
3 ? ? 3? 24 1 Check: 24 3 ; 3 ; 3 ; 3 3 8 1 8
Example 1.2-39 h 7 5
Check:
h 5 7 ; h 35 5 7 ? 35 ? 7? 35 7 ; 7 ; 7 5 1 5
The solution set is 35 .
; 5
; 77
Example 1.2-40 20 x 30
;
x 20 30 20 20
3 3 1 30 ; x ; x ; x 1 ; x 1.5 The solution set is 1.5 . 2 2 20 2
?
. 30 ; 30 30 Check: 20 15 Example 1.2-41 5
; 3
w 3
; 5
w 3 5 3
w 3
; 5
w w w 3 3 3
; 5
w 0 3
; 5 5
w 05 3
; 0
w 5 3
;
w 5 3
The solution set is 15 .
; w 15
Second Approach: Keep the variable w to the right hand side of the equation. 5
w 3
; 5 3
w 3 3
Hamilton Education Guides
; 15 w ; w 15
15
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
5 ? 15 ? 5 15 Check: 5 ; 5 ; 5 ; 5 5 3 1 3 ?
Example 1.2-42 12 6y ; 12 6 y 6 y 6 y ; 12 6 y 0 ; 12 12 6 y 0 12 ; 0 6 y 12 ; 6 y 12 2 2 12 ; y ; y ; y2 1 6
1 1 6 y 12 6 6
;
The solution set is 2 .
Second Approach: Keep the variable y to the right hand side of the equation. 2 2 12 y ; y ; 2 y ; y 2 ; 1 6
1 1 12 6 y 6 6
12 6y ;
?
Check: 12 6 2 ; 12 12 Example 1.2-43 3 y 18 ;
1 1 3 y 18 3 3
;
18 1 y 1 3
;
6 6 18 ; y ; y ; y 6 1 3
18 1 y 1 3
The solution set is 6 . ?
Check: 3 6 18 ; 18 18 Example 1.2-44 2 5 x 3 8
Check:
;
2 3 5 3 x 3 2 8 2
; x
53 82
; x
15 16
The solution set is 0.94 .
; x 0.94
? 5 2 0.94 ? 2 188 . ? 0.94 ; 0.625 ; 0.625 ; 0.625 0.625 3 8 3 3
Example 1.2-45 3.6 x 0.22
3 .6 x 0.22 3 .6 3.6
;
22 11 11 22 10 220 100 ; x 36 ; x ; x ; x ; x 0.06 100 36 180 3600 180 10 The solution set is 0.06 .
?
. 0.06 2.2 ; 0.22 0.22 Check: 36 Example 1.2-46
1 y 23 3
1 3
The solution set is 69 .
; y 3 23 3 ; y 69
23 ? ? 1 1 69 ? 23 ? 69 1 69 ? Check: 69 23 ; 23 ; 23 ; 23 ; 23 ; 23 23 3 3 1 3 1 1 3
Example 1.2-47 2
3 1 1 x 5 3
;
13 4 x0 5 3
;
2 5 3 1 3 1 x 5
;
3
13 13 4 13 x 0 5 5 3 5
Hamilton Education Guides
;
10 3 31 x 5 3 4 3
; 0 x
13 5
;
;
13 4 x 5 3
4 13 x 3 5
;
;
13 4 4 4 x x x 5 3 3 3
4 3 13 3 x 3 4 5 4
; x
13 3 5 4
16
Linear Equations and Inequalities
; x
39 20
1.2 Math Operations Involving Linear Equations
The solution set is 1.95 .
; x 1.95
Second Approach: Keep the variable x to the right hand side of the equation. 2
3 1 1 x 5 3
;
;
39 x 20
2 5 3 1 3 1 x 5
3
10 3 31 x 5 3
;
;
13 4 x 5 3
13 3 4 3 x 5 4 3 4
;
;
13 3 x 5 4
. x ; x 1.95 ; 195
3? 5
1 3
Check: 2 1 195 . ;
. 13 ? 7.8 13 ? 4 13 ? 4 195 ; ; 2.6 2.6 195 . ; 5 3 5 3 5 3
Example 1.2-48 2y
3 8
1 2
3 1 8 2
; 2 y ?
Check: 2 01875 .
; y
3 1 82
; y
3 16
. ; y 01875
The solution set is 0.1875 .
? 3 3 ; 0.375 ; 0.375 0.375 8 8
Example 1.2-49 x
2 3
x 0.67 1 1
; x 0.67 ; ?
Check: 0.67
; x
0.67 1
The solution set is 0.67 .
; x 0.67
2 ; 0.67 0.67 3
Example 1.2-50 3 1 2 x 1 5 5
;
2 5 3 x 1 5 1 5
5
;
10 3 5 1 x 5 5
13 6 x 5 5
;
13 5 6 5 x 5 13 5 13
; x
6 13
The solution set is 0.462 .
; x 0.462 3 5
;
?
1 5
Check: 2 0.462 1 ;
? 6 13 0.462 ? 6 6 6 13 0.462 ; ; 5 5 5 5 5 5
Practice Problems - Multiplication and Division of Linear Equations Section 1.2 Case II Practice Problems - Solve the following linear equatio ns by applying the multiplication or division rules: 1. 3 y 4.
2 3
x 2 8
7. w 1
4 5
1 2
2. x 1
2 3
3.
3 2 h 8 1 8
1 2
5. x 35
6. 2 u 1
1 2
9. 2.8 x 1.4
8. y 12
3 5
10. 2 x 4.3
Hamilton Education Guides
17
Linear Equations and Inequalities
Case III
1.2 Math Operations Involving Linear Equations
Mixed Operations Involving Linear Equations
In Cases I and II we learned how to solve linear equations by either applying: 1. The addition and subtraction rules or, 2. The multiplication or division rules. In this section, solution to linear equations which may involve using all four rules is discussed. Addition and Subtraction Rules: The same positive or negative number can be added or subtracted to both sides of an equation without changing the solution: for all real numbers a , b , and c , 1. a b if and only if a c b c 2. a b if and only if a c b c . Multiplication Rule: The same positive or negative numbe r can be multiplied by both sides of an equation without changing the solution: for all real numbers a , b , and c , ab
if and only if a c b c .
Division Rule: The same positive or negative number (except zero) can be divided by both sides an equation without changing the solution: for all real numbers a , b , and c , where c 0 ab
if and only if
a b c c
.
The steps as to how linear equations are solved using the addition and subtraction, multiplication, and division rules are as follows: Step 1
Isolate the variable to the left hand side of the equation by applying the additio n and subtraction rules.
Step 2
Find the solution by applying the multiplication or division rules. Check the answer by substituting the solution into the original equation. Examples with Steps
The following examples show the steps as to how linear equati ons are solved using the addition, subtraction, multiplication, and division rules: Example 1.2-51 5x 20 3x
Solution: Step 1
5 x 20 3x
; 5x 3x 20 3x 3x ; 2 x 20 0 ; 2 x 20
10 10 2 x 20 2 x 20 ; ; x ; x 10 1 2 2
Step 2 ?
The solution set is 10 .
?
Check: 5 10 20 3 10 ; 50 20 30 ; 50 50 Example 1.2-52 Solution: Step 1
4 y 2 3y 8 4 y 2 3y 8 ; 4 y 3 y 2 3 y 3 y 8 ; y 2 0 8 ; y 2 8
Hamilton Education Guides
18
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
y 2 2 8 2 ; y 0 10 ; y 10
Step 2
The solution set is 10 .
Not Applicable ?
?
Check: 4 10 2 3 10 8 ; 40 2 30 8 ; 38 38 Example 1.2-53 u 3 2 5
Solution: Step 1
u 3 2 5
Step 2
u 5 5
;
u 3 3 2 3 5
u 0 5 5
;
;
u 5 5
u ; 5 5 5 ; u 25 5
The solution set is 25 .
5 ? ? ? ? 25 25 5 Check: 3 2 ; 3 2 ; 3 2 ; 5 3 2 ; 2 2 5 1 5
Example 1.2-54 5m 5 3m 2
Solution: Step 1
5m 5 3m 2
; 5m 3m 5 3m 3m 2 ; 2 m 5 0 2 ; 2 m 5 2
; 2m 5 5 2 5 ; 2m 0 3 ; 2 m 3 Step 2
2 m 3 ? 3 2 5 5 ; 2 2
;
2 m 3 2 2
3 2
Check: 5 5 3 2 ;
3
; m2
3 The solution set is . 2
15 5 ? 9 2 15 1 5 2 ? 9 1 2 2 15 10 ? 9 4 ; ; 2 1 2 1 2 1 2 1 2 2
Example 1.2-55 15 x 5 3x 2
Solution: Step 1
15 x 5 3x 2
; 15x 3x 5 3x 3x 2 ; 18 x 5 0 2 ; 18 x 5 2
; 18 x 5 5 2 5 ; 18 x 0 7 ; 18 x 7 Step 2
18 x 7 ?
;
x 18 7 18 18
; x
7 18
; x 0.389
The solution set is 0.389 .
?
Check: 15 0.389 5 3 0.389 2 ; 584 . 5 116 . 2 ; 0.84 0.84
Hamilton Education Guides
19
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
Additional Examples - Mixed Operations Involving Linear Equations The following examples further illustrate how to solve linear equations using the addition, subtraction, multiplication, and division rules: Example 1.2-56 5 5 3 x 15 3x 5 10 ; 3x 5 5 10 5 ; 3x 0 15 ; 3x 15 ; ; x ; x5 1 3 3
The solution set is 5 .
?
?
Check: 3 5 5 10 ; 15 5 10 ; 10 10 Example 1.2-57 4 y 2 3y 5 ; 4 y 3y 2 3y 3y 5 ; y 2 0 5 ; y 2 5 ; y 2 2 5 2 ; y 0 7 ; y 7 The solution set is 7 . ?
?
Check: 4 7 2 3 7 5 ; 28 2 21 5 ; 26 26 Example 1.2-58 2 x 5 3 3
;
2 x 5 5 3 5 3
;
2 x 0 2 3
;
2 x 2 3
;
3 2 3 x 2 2 3 2
; x
3 1
; x 3
The solution set is 3 . Check:
?
?
?
?
2 2 2 3 5 3 ; 3 5 3 ; 1 5 3 ; 2 5 3 ; 3 3 3 3 1
Example 1.2-59 4
;
u 5u 2
u 2
u 2
; 4 4 5 4 u ; 0 1 u ;
1 u 2 u 1 2 1
;
u 2u 1 2
;
3u 1 2
;
3 u 1 2
;
u 1 u 2
;
2 3 2 u 1 3 2 3
u u 1 u u 2
; u
2 3
;
u u 1 0 2 1
; u 0.67
The solution set is 0.67 . Check: 4
? 0.67 ? 5 0.67 ; 4 0.33 4.33 ; 4.33 4.33 2
Example 1.2-60 5 x 3 10
; 5x 3 3 10 3 ; 5x 0 7 ; 5 x 7 ; ?
5 x 7 5 5
; x
7 5
; x 1.4
The solution set is 1.4 .
?
. 3 10 ; 7 3 10 ; 10 10 Check: 5 14 Example 1.2-61 8t 5 2t 3 ; 8t 2t 5 2t 2t 3 ; 10t 5 0 3 ; 10t 5 3 ; 10t 5 5 3 5
; 10t 0 8 ; 10t 8 ;
Hamilton Education Guides
t 10 8 10 10
; t
8 10
; t 0.8
The solution set is 0.8 .
20
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
?
?
. 14 . Check: 8 0.8 5 2 0.8 3 ; 6.4 5 16 . 3 ; 14 Example 1.2-62 5 3 y 5 y ; 5 5 3 y 5 y 5 ; 0 3 y 5 y 5 ; 3 y 5 y 5 ; 3 y 5 y 5 y 5 y 5 ; 2 y 0 5
; 2 y 5 ;
2 y 5 2 2
; y
5 2
; y2
?
1 2
The solution set is 2.5 .
; y 2.5
?
Check: 5 3 2.5 5 2.5 ; 5 7.5 12.5 ; 12.5 12.5 Example 1.2-63 6 x 10 8 x 4 ; 6 x 10 10 8 x 4 10 ; 6 x 0 8 x 6 ; 6x 8 x 6 ; 6 x 8 x 8 x 8 x 6 ; 2 x 0 6 ; 2 x 6 ;
3 3 6 ; x ; x ; x3 1 2
2 x 6 2 2
?
The solution set is 3 .
?
Check: 6 3 10 8 3 4 ; 18 10 24 4 ; 28 28 Example 1.2-64 w 10 4 5
;
w 10 10 4 10 5
;
w 0 4 10 5
;
w 14 5
; 5
w 5 14 5
; w 70
The solution set is 70 . 14 ? ? ? ? 14 70 70 Check: 10 4 ; 10 4 ; 14 10 4 ; 4 4 10 4 ; 5 1 5
Example 1.2-65 0.25 x 3.5 1.2 0.5
;
x 2.8 0.25 0.25 0.25
;
. 35 . 0.7 35 . ; 0.25x 0 2.8 ; 0.25x 2.8 ; 0.25x 3.5 0.7 ; 0.25x 35
2.8 x 0.25
28 10 280 28 10 28 100 10 ; x ; x ; x = x = x 11.2 25 1 25 25 25 10 100 The solution set is 11.2 .
?
?
. 35 . 12 . 0.5 ; 28 Check: 0.25 112 . 35 . 0.7 ; 0.7 0.7 Example 1.2-66 5m 6 3m 1 ; 5m 3m 6 3m 3m 1 ; 8 m 6 0 1 ; 8 m 6 1 ; 8 m 6 6 1 6
; 8 m 0 7 ; 8 m 7 ;
8 m 7 8 8
7 The solution set is .
7
; m8
8
? ? 21 35 35 6 ? 21 1 35 1 6 8 ? 211 1 8 7 7 6 1 ; ; 8 8 8 8 8 1 8 1 8 1 8 1 35 48 ? 21 8 13 13 ; ; 8 8 8 8
Check: 5 6 3 1 ;
Example 1.2-67 x
1 2 3x 2 5
1 2
; x 3 x 3x 3 x
Hamilton Education Guides
2 5
1 2
; 2 x 0
2 5
1 2
; 2 x
2 5
1 2
1 2
2 5
; 2 x
1 2
21
Linear Equations and Inequalities
1.2 Math Operations Involving Linear Equations
1 1 1 1 1 2 x 10 ; ; ; ; ; x 10 ; x ; x 20 2 10 2 2 2 5 2 1 1 The solution set is . 20 ? ? ? ? 1 1 1 2 1 2 1 20 3 2 2 20 3 2 22 3 5 2 20 Check: 3 ; ; ; 20 5 20 2 20 2 20 5 40 20 5 40 20 5 11 11 11 11 ? 55 22 ? 15 40 22 ; ; ; 20 20 40 100 40 100 20 20
2 2 1 5 2x 0
4 5 2 x 10
1 2 x 10
Example 1.2-68 6a 3 4a 4
; 2a 7 ;
; 6a 4a 3 4a 4a 4 ; 2a 3 0 4 ; 2a 3 4 ; 2a 3 3 4 3 ; 2a 0 7
2 a 7 2 2
; a
7 2
; a3
?
1 2
The solution set is 3.5 .
; a 3.5
?
Check: 6 35 . 3 4 35 . 4 ; 21 3 14 4 ; 18 18 Example 1.2-69 0.4 m 5 0.6 m ; 0.4m 0.6m 5 0.6m 0.6m ; 0.2m 5 0 ; 0.2m 5 5 0 5 ; 0.2m 0 5 ; 0.2m 5 ;
0 .2 m 5 0 .2 0.2
;
5 m 0.2
5 25 25 5 10 50 1 ; m 2 ; m ; m ; m ; m 25 1 1 2 2 10
The solution set is 25 .
?
?
Check: 0.4 25 5 0.6 25 ; 10 5 15 ; 15 15 Example 1.2-70 5 5 4 x 20 8 x 20 4 x ; 8 x 4 x 20 4 x 4 x ; 4 x 20 0 ; 4 x 20 ; ; x ; x5 1 4 4
The solution set is 5 .
?
?
Check: 8 5 20 4 5 ; 40 20 20 ; 40 40 Example 1.2-71 5 z 3 2 z 8 ; 5z 2 z 3 2 z 2 z 8 ; 3z 3 0 8 ; 3z 3 8 ; 3z 3 3 8 3 ; 3z 0 5 ; 3z 5 ;
3 z 5 3 3
; z
5 3
; z 1
2 3
The solution set is 1.667 .
. ; z 1667
?
?
. 11335 . . 3 2 1667 . 8 ; 8335 Check: 5 1667 . 3 3335 . 8 ; 11335 Example 1.2-72
7y 1 1
2 3
2 3
; 7 y 11 1 1 ; 7y 0
Hamilton Education Guides
1 3 2 1 3
5 1 3 1
; 7y
; 7y
5 1 1 3 3 1
; 7y
53 3
22
Linear Equations and Inequalities
;
2 7y 3
1.2 Math Operations Involving Linear Equations
2 2 2 2 1 7 y 3 ; ; y 73 ; y ; y 21 3 7 7 7 1
2 The solution set is . 21
5 ? 2 ? 5 5 5 2 14 1 ? 1 3 2 14 1 1 21 ? 3 2 14 21 ? 5 35 ? 5 35 Check: 7 1 1 ; ; ; ; ; ; 3 3 3 21 3 21 1 3 21 1 3 21 3 21 3 21 3
Example 1.2-73 2 z 1 12
; 2 z 1 1 12 1 ; 2 z 0 11 ; 2 z 11 ;
2 z 11 2 2
; z
11 2
; z 5
1 2
; z 5.5
The solution set is 5.5 . ?
?
. 1 12 ; 11 1 12 ; 12 12 Check: 2 55 Example 1.2-74 6 x 3 5x
; 6 x 5x 3 5 x 5x ; x 3 0 ; x 3 3 0 3 ; x 0 3 ; x 3 The solution set is 3 . ?
?
Check: 6 3 3 5 3 ; 18 3 15 ; 15 15 Example 1.2-75 2 y 8 5 y 13 ; 2 y 5 y 8 5 y 5 y 13 ; 7 y 8 0 13 ; 7 y 8 13 ; 7 y 8 8 13 8
; 7 y 0 21 ; 7 y 21 ;
7 y 21 7 7
3 3 21 ; y ; y ; y 3 1 7
The solution set is 3 . ?
?
Check: 2 3 8 5 3 13 ; 6 8 15 13 ; 2 2 Practice Problems - Mixed Operations Involving Linear Equations Section 1.2 Case III Practice Problems - Solve the following linear equations by applying the addition, subtraction, multiplication, and division rules: 1. 3x 20 5x 8
2. 6 y 2 3 10 y
4. 5x 3 15
5.
7. 25 3y 2 y
8. 10 y 2 8 y
1 2
10. m 4m
y 4 3 4
3.
x 35 2
6. 5 9.
w 10 2
2 x 5 12 3
2 3
Hamilton Education Guides
23
Linear Equations and Inequalities
1.3
1.3 Solving Other Classes of Linear Equations
Solving Other Classes of Linear Equations
In many instances linear equations contain parentheses and brackets, fractions, or decimals. To simplify and solve these classes of equations students should be familiar with the rules that are applicable to each class. For example, solving linear equations that contain either parentheses and brackets or integer fractions require familiarity with the commutative, associative, and distributive rules (see Section 1.1 in Mastering Algebra – Intermediate Level ) a s well as the fractions rules (see Section 1.2 in Mastering Algebra – Intermediate Level ). In this section students learn how to solve linear equations containing parentheses and brackets (Case I), fractions (Case II), and decimals (Case III). Case I
Solving Linear Equations Containing Parentheses and Brackets
To solve linear equations containing parentheses and brackets students need to be familiar with the concepts of signed numbers and the proper use of parentheses and brackets. Linear equations containing parentheses and brackets are solved using the following steps: Step 1
Simplify the linear equation by properly multiplying the negative sign inside the parentheses or brackets.
Step 2
Isolate the variable to the left hand side of the equation by apply ing the addition and subtraction rules (see section 1.2, Case I).
Step 3
Find the solution by applying the multiplication or division rules. Check the answer by substituting the solution into the original equation (see section 1.2 Case II). Examples with Steps
The following examples show the steps as to how linear equations containing parentheses and brackets are solved using the addition, subtraction, multiplication, and division rules: Example 1.3-1 2 3 x 5 x
Solution: Step 1
2 3 x 5x ; 2 3 x 5 x ; 1 x 5x
Step 2
1 x 5x ; 1 x 5x 5x 5x ; 1 6 x 0 ; 1 1 6x 0 1 ; 0 6 x 1
; 6 x 1 Step 3
6 x 1
;
6 x 1 6 6
?
; x
1 6
; x 0.166 ?
. 5 0166 . Check: 2 3 0166 ; 2 3 0166 . 083 . ; 0.83 0.83
Example 1.3-2
x 2 3x 1 4
Solution: Step 1
x 2 3x 1 4 ; x 2 3x 1 4 ; x 3x 1 2 4 ; 2 x 1 4
Hamilton Education Guides
24
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
Step 2
2 x 1 4
; 2 x 1 1 4 1 ; 2 x 0 5 ; 2 x 5
Step 3
2 x 5
2 x 5 2 2
;
; x
5 2
; x 2
?
1 2
; x 2.5 ?
?
Check: 2.5 2 3 2.5 1 4 ; 4.5 7.5 1 4 ; 45 . 85 . 4 ; 4 4 Example 1.3-3
2 x 5 3x 8 0
Solution: Step 1
2 x 5 3x 8 0 ; 2 x 5 3x 8 0 ; 2 x 3x 8 5 0 ; x 3 0
Step 2
x 3 0
; x 3 3 0 3 ; x 0 3 ; x 3
Step 3
x 3
x 3 1 1
;
; x3
?
?
?
?
Check: 2 3 5 3 3 8 0 ; 6 5 9 8 0 ; 6 5 1 0 ; 1 1 0 ; 0 0 Example 1.3-4
x 5 3 x 2 3
Solution: Step 1
x 5 3 x 2 3 ; x 5 3 x 2 3 ; x 2 x 1 ; x 2 x 1
Step 2
x 2 x 1 ; x x 2 x x 1
; 2 x 2 0 1 ; 2 x 2 1
; 2 x 2 2 1 2 ; 2 x 0 1 ; 2 x 1 Step 3
2 x 1
;
2 x 1 2 2
; x
1 2
; x 0.5 ?
?
. 15 . . 3 ; 15 . 15 . ; 15 Check: 0.5 5 3 0.5 2 3 ; 4.5 3 15 ?
Example 1.3-5
x 1 x 5 2x
Solution: Step 1
x 1 x 5 2x ; x 1 x 5 2 x ; x x 5 1 2x ; 0 4 2x
; 4 2x Step 2
; 4 2x ; 4 2 x 2 x 2 x ; 4 2 x 0 ; 4 4 2 x 0 4 ; 0 2 x 4 ; 2 x 4
Hamilton Education Guides
25
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
2 x 4
Step 3
;
2 x 4 2 2
2 2 4 ; x ; x ; x 2 1 2 ?
Check: 2 1 2 5 2 2 ; 3 7 4 ; 3 7 4 ; 4 4 ?
?
Additional Examples - Solving Linear Equations Containing Parentheses and Brackets The following examples further illustrate how to solve linear equations containing parentheses and brackets using the addition, subtraction, multiplication, and division rules: Example 1.3-6 2 x 4 5 ; 2 x 8 5 ; 2 x 8 8 5 8 ; 2 x 0 13 ; 2 x 13 ;
1 2 x 13 13 ; x ; x 6 ; x 6.5 2 2 2 2
?
?
Check: 26.5 4 5 ; 2 2.5 5 ; 5 5 Example 1.3-7 3 4 x 1 5 x 2 ; 3 4 x 4 5 x 10 ; 4x 3 4 5x 10 ; 4 x 7 5 x 10 ; 4 x 7 7 5 x 10 7 ; 4 x 0 5 x 17 ; 4 x 5 x 17 ; 4 x 5 x 5 x 5 x 17 ; x 0 17 ; x 17 ; ?
?
x 17 ; x 17 1 1
?
Check: 3 417 1 517 2 ; 3 4 18 5 15 ; 3 72 75 ; 75 75 Example 1.3-8 2 x 1 2 x 5 ; 2 x 1 2 x 5 ; 2 1 2 x x 5 ; 3 x 5 ; 3 3 x 5 3 ; 0 x 2 ; x 2 ?
?
?
Check: 2 2 1 2 2 5 ; 2 1 4 5 ; 1 4 5 ; 5 5 Example 1.3-9 3 y y 5 10 0 ; 3y y 5 10 0 ; 3 y y 5 10 0 ; 2 y 5 0 ; 2 y 5 5 0 5 2 y 5 2 2
; 2 y 0 5 ; 2 y 5 ;
; y
5 2
; y 2
?
1 2
; y 2.5 ?
?
?
Check: 3 2.5 2.5 5 10 0 ; 7.5 2.5 10 0 ; 7.5 2.5 10 0 ; 10 10 0 ; 0 0 Example 1.3-10
2 36x 2 5 3 0 ; 218 x 6 5 3 0 ; 218 x 1 3 0 ; 36 x 2 3 0 ; 36 x 5 0 x 36 5 36 36
; 36 x 5 5 0 5 ; 36 x 0 5 ; 36 x 5 ;
; x
5 36
; x 0.139
. 2 5 3 0 ; 230.834 2 5 3 0 ; 23 1166 . 5 3 0 Check: 236 0139 ?
?
?
?
?
?
. 5 3 0 ; 2 15 ; 2 35 . 3 0 ; 3 3 0 ; 0 0 Example 1.3-11
5 4 3x 5 2x 0 ; 5 4 3x 5 2 x 0 ; 5 4 3x 2x 5 0 ; 5 4 x 5 0 ; 5 4 x 20 0
Hamilton Education Guides
26
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
4 x 15 4 4
; 4 x 20 5 0 ; 4 x 15 0 ; 4 x 15 15 0 15 ; 4 x 0 15 ; 4 x 15 ; ; x
15 4
; x 3
3 4
; x 3.75 ?
. 5 7.5 0 ; 5 4 6.25 7.5 0 Check: 5 43 3.75 5 2 3.75 0 ; 5 4 1125 ?
?
?
?
; 5 4 125 . 0 ; 5 5 0 ; 0 0 Example 1.3-12 3 2 x 2 5 3x 4 ; 3 2 x 4 5 3x 4 ; 2 x 3 4 5 3x 4 ; 2 x 12 3x 4
; 2 x 12 12 3x 4 12 ; 2 x 0 3x 16 ; 2 x 3x 16 ; 2 x 3x 3x 3x 16 ; 5x 0 16 ; 5x 16 ;
5 x 16 5 5
; x
16 5
; x3
1 5
?
; x 3.2 ?
?
?
. 5 9.6 4 ; 3 2.4 5 56 Check: 3 23.2 2 5 3 3.2 4 ; 3 2 12 . ; 0.6 5 56 . ; 5.6 5.6 Example 1.3-13
10 2x 4 x 3x 1 ; 10 2 x 4 x 3x 1 ; 10 2x x 4 3x 1 ; 10 3x 4 3x 1 ; 10 3x 4 3x 1 ; 10 4 3x 3x 1 ; 6 3x 3x 1 ; 6 6 3x 3x 1 6 ; 0 3x 3x 5 ; 3x 3x 5 ; 3x 3x 3x 3x 5 ; 6 x 0 5 ; 6 x 5 ;
6 x 5 5 ; x ; x 0.83 6 6 6 ?
?
. 4.83 2.5 1 ; 10 6.49 35 Check: 10 2 0.83 4 0.83 3 0.83 1 ; 10 166 . ; 3.5 3.5 Example 1.3-14 ?
5x 2 x 1 3 x 5 ; 5 x 2 x 1 3x 15 ; 7 x 1 3x 15 ; 7 x 1 1 3x 15 1
; 7 x 0 3x 16 ; 7 x 3x 16 ; 7 x 3x 3x 3x 16 ; 10 x 0 16 ; 10 x 16 ; ; x
16 10
; x 1
6 10
x 16 10 10 10
; x 1.6 ?
?
?
. 2 16 . 1 316 . 5 ; 8 32 . 1 3 3.4 ; 8 2.2 10.2 ; 10.2 10.2 Check: 5 16 Example 1.3-15
8 2 3x 2 x 5 x 1 2 ; 8 23x 2 x 5x 5 2 ; 8 2 3x x 2 5x 5 2
; 8 23x x 2 5x 7 ; 8 2 2 x 2 5x 7 ; 8 4 x 4 5x 7 ; 8 4 4 x 5x 7 ; 12 4 x 5x 7 ; 12 12 4 x 5x 7 12 ; 0 4 x 5x 5 ; 4 x 5x 5 ; 4 x 5x 5x 5x 5 ; x 0 5 ; x 5
Hamilton Education Guides
27
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
?
Check: 8 23 5 2 5 5 5 1 2 ; 8 215 3 5 6 2 ; 8 2 15 3 30 2 ?
?
?
?
; 8 2 12 30 2 ; 8 24 32 ; 32 32 Practice Problems - Solving Linear Equations Containing Parentheses and Brackets Section 1.3 Case I Practice Problems - Solve the following linear equations by applying the addition, subtraction, multiplication, and division rules: 1. x 2 x 3 3
2. 2 3 x 1 3 x 5
3. 2 3 x 1 5x 0
4. 4 x 1 3x 2 x 1
5. 25 x 2 x 3 0
6. x 5 3 x 1 2 2
7. 3 x 1 2 3x 5
8. 5 x 3 4x 8
9. 3 2 x 5 4 x 3 3x
10. 6 x 2 2 x 1 3 x 2
Hamilton Education Guides
28
Linear Equations and Inequalities
Case II
1.3 Solving Other Classes of Linear Equations
Solving Linear Equations Containing Integer Fractions
A class of linear equations contains integer fractions. To solve these type of problems students need to be familiar with the fraction rules (review fraction concepts discussed in Section 1.2 in Matering Algebra – Intermediate Level). Note that the method used in solving linear equations with integer fractions is similar with what is addressed in section 1.2. However, these type of problems require more attention due to computations involvin g with integer fractions. Linear equations containing fractions are solved using the following steps: Step 1
Isolate the variable to the left hand side of the equation by applying the addition and subtraction rules (see section 1.2, Case I).
Step 2
Find the solution by applying the multiplication or division rules. Check the answer by substituting the solution into the original equation (see section 1.2, Case II). Examples with Steps
The following examples show the steps as to how linear equations contain ing integer fractions are solved using the addition, subtraction, multiplication, and division rules: Example 1.3-16 x
1 2 x 3 3
x
2 1 2 2 1 2 x ; x x x x ; 1 2 x 1 0 ; 1 2 x 1 0 1 3 3 3 3 3 3 3 3 3 3
Solution: Step 1
1 3 2 1 1 1 1 1 1 1 1 x 0 ; 3 2 x 1 0 ; x 0 ; x 0 1 3 3 3 3 3 3 3 3 3 3
;
;
Step 2
1 1 1 1 x0 ; x 3 3 3 3
1 1 1 1 x ; 3 x 3 ; x 1 3 3 3 3 1?2 3 3
Check: 1 1 ;
1 1 ? 2 1 3 1 1 ? 2 3 1 ? 2 2 2 ; ; ; 1 3 3 1 3 3 3 3 3 3
Example 1.3-17 1 2 u u 4 5
Solution: Step 1
1 4 1 1 2 1 2 u ; 4 1 u 2 u u ; 1 1 u 2 ; 1 1 u 2 ; 1 4 5 4 1 4 4 5 4 5 5 5
;
Hamilton Education Guides
3 2 u 4 5 29
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
4 3 2 4 24 3 2 8 u ; u ; u ; u ; u 0.53 3 4 5 3 53 4 5 15
Step 2
?
1 4
. 053 . Check: 053
? 053 . ?2 2 ; 053 ; 0.53 . 013 . 0.4 ; 5 4 5
0.4 0.4
Example 1.3-18 2 4y 2 1 y 3
Solution: 2 1 3 2 y 4 y 2 3 2 y 4 y 2 5 y 4 y 2 1 y ; 4y 2 ; ; 3 3 3 3
Step 1
5
5
5
5 4 5 ; 4 y y 2 y y ; 4 y 2 0 ; y 2 0 3 3 3 1
3
3
4 3 5 1 7 7 y 2 0 ; 12 5 y 2 0 ; y 2 0 ; y 2 2 0 2 1 3 3 3 3
;
;
7 7 y02 ; y 2 3 3 7 3 7 3 3 2 6 y 2 ; y 2 ; y ; y ; y 0.857 3 7 3 7 7 7
Step 2
?
2 3
?
. 2 Check: 4 0.857 2 1 0.857 ; 343 ?
. ; 143
? 4.285 5 0.857 . ; 143 ; 3 3
? 3 2 ?5 1 3 2 0857 . . 0.857 ; 143 . 0.857 ; 143
3
3
3
143 . 143 .
Example 1.3-19 1 1 1 m m 4 3 2
Solution: 1 1 1 1 1 1 1 1 1 1 1 m m ; m m m m ; m m 0 ; 1 1 m 1 4 2 4 2 3 2 2 4 3 2 4 2 3 3
Step 1
1 2 1 4 1 3 1 m ; 2 4 m 1 ; 6 m 1 ; m ; 42 3 8 4 3 8 3 3 3
4
3 1 4 3 4 1 4 1 4 m ; m ; m ; m ; m 0.44 4 3 3 4 3 3 3 3 9
Step 2 Check:
? ?1 1 1 0.44 ? 1 0.44 0.44 0.44 ; ; 011 . 033 . 022 . ; 4 3 2 4 3 2
Hamilton Education Guides
011 . 011 .
30
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
Example 1.3-20 x 5 4x 2
3 5
x 5 4x 2
3 3 2 5 3 ; x 4 x 5 4 x 4 x 2 ; 3x 5 0 5 5 5
Solution: Step 1
; 3 x 5
; 3 x
13 5 13 13 13 1 5 5 ; 3x 5 5 5 ; 3x 0 ; 3x 5 1 5 5 5 1
13 25 38 ; 3x 5 5 38
38
38 3 x 3x 3x 5 ; 5 ; 3 5 3 3 3
Step 2
; x
38 1 8 38 ; x ; x 2 ; x 2.53 53 15 15
1 ?
?
3 Check: 2.53 5 4 2.53 2 ; 753 . 1012 . 2.6 ; 7.53 7.52 5
Additional Examples - Solving Linear Equations Containing Integer Fractions The following examples further illustrate how to solve linear equations containing integer fractions using the addition, subtraction, multiplication, and division rules: Example 1.3-21 2 2 1 3 1 2 1 1 1 1 2 1 1 x 5 x ; x x 5 x x ; 2 1 x 5 0 1 ; x5 3 2 5 3 2 2 2 5 3 2 3 2 5 5 1 4 3 x 5 6 5
; ;
;
1 1 1 1 1 1 5 11 5 5 1 x 1 25 1 x 5 ; x 55 5 ; x 0 ; x ; 6 5 6 5 6 5 1 6 5 6 5 1
1 24 1 24 24 6 24 6 144 4 x ; x 6 6 ; x ; x ; x ; x 28 ; x 28.8 6 5 6 5 5 1 5 5 5 1
Check:
?1 ? 1 28.8 1 ? 28.8 1 2 1 2 28.8 57.6 28.8 5 28.8 ; 5 ; 5 3 2 5 3 2 5 3 2 5
?
; 192 . 5 14.4 0.2 ; 14.2 14.2 Example 1.3-22 1 5 1 3 2 2u 4 1 1 u 4 ; 5 3 u 4 ; u4 ; u u 4 ; 1 1 u 4 ; ; 2u 1 15 4 3 5 3 5 15 15 15 1 3 5 30 2 u 60 30 60 ; 2u 60 ; ; u ; u ; u 30 2 2 1 2
Hamilton Education Guides
31
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
4 ? 30 5 30 3 ? ? 60 1 1 30 30 ? 150 90 ? 4? 4 ; 4 ; 4 ; 4 ; 4 ; Check: 30 30 4 ; 3 5 3 5 3 5 15 15 1
44
Example 1.3-23
1 1 2 5 1 1 y 9 0 y 9 2 y ; y 2 y 9 2 y 2 y ; 1 2 y 9 0 ; 1 2 y 9 0 ; 5 1 5 5 1 5 5
9 9 9 9 1 10 ; y 9 0 ; y 9 0 ; y 9 9 0 9 ; y 0 9 ; y 9
5
5 9
5
9 5
; y 9 Check:
5
5
5
5 5 ; y ; y5 9 1
? ? ? 5 1 5 9 2 5 ; 9 10 ; 1 9 10 ; 5 5
10 10
Example 1.3-24 1 5 1 3 1 2 1 1 1 1 2m 1 m m m ; 1 1 m 1 ; m ; 5 3 m 1 ; ; 3 5 2 15 15 2 3 5 2 3 5 15 2 2 2
; 2m 2 1 15 ; 4m 15 ; Check:
3 4 m 15 15 ; m ; m 3 ; m 3.75 4 4 4 4
? ?1 1 1 375 . 375 . ?1 375 . 375 . ; ; 125 . 075 . 05 . ; 3 5 2 3 5 2
0.5 0.5
Example 1.3-25 x
2 1 2 2 1 2 2 1 6 x ; x x 6 x x ; x x 6 0 ; 1 2 x 1 6 ; 1 2 x 1 6 1 3 3 3 3 3 3 3 3 3 3 3 3
1 3 1 2 1 1 1 1 1 1 1 1 6 1 x 6 ; 3 2 x 1 6 ; x 6 ; x 6 ; x 0 1 3 3 3 3 3 3 3 3 3 3 1 3 3
;
;
6 3 11 1 x 18 1 x 19 3 x 3 19 1 x ; ; ; ; 3 3 3 3 3 3 3 1 3 1? 3
2 3
1? 3
Check: 19 6 19 ; 19 6
x 19
? 2 19 1? 38 ; 19 6 ; 19 033 . 6 12.67 ; 3 3 3
18.67 18.67
Example 1.3-26 3 1 2 3 2 1 3 1 1 2 1 2 3 1 5 3 x 6 5 3 x 1 3 x x0 ; x ; x ; ; ; 10 3 5 5 3 10 10 3 3 5 3 10 10 15 10 15 5 3
;
x 10 3x 1 45 10 ; 3x 15 1 10 ; 45 x 10 ; ; x ; x 0.22 10 15 45 45 45
Check:
? 3 1 ? 2 3 0.22 1 ? 2 0.66 1 ? 2 0.22 ; ; ; 0.066 0333 . 0.4 ; 10 3 5 10 3 5 10 3 5
Hamilton Education Guides
0.4 0.4
32
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
Example 1.3-27 1 1 1 1 1 2 1 w 8 2w ; w 2w 8 2w 2w ; w w 8 0 ; 1 2 w 8 1 5 3 5 3 5 1 3 5 1 3
1 1 2 5 1 9 1 9 1 w 8 ; 1 10 w 8 1 ; w 8 ; w 8 8 8 5 1 3 5 5 3 5 3 3
;
1 8 11 8 3 9 w 1 24 9 w 25 9 w 5 25 5 9 ; w ; ; ; 5 3 5 9 3 9 3 1 5 3 5 3 1
9 5
; w0 ; w
25 5 125 17 ; w ; w 4 ; w 4.629 3 9 27 27
Check:
? ? ? 1 1 4.629 1 4.629 8 2 4.629 ; 8 9.258 ; 093 ; . 8 9258 . 0333 . 5 3 5 3
8.93 8.93
Example 1.3-28 x
1 4 1 1 2 1 2 1 1 2 1 x 0 x ; x x x x ; 1 1 x 2 0 ; 1 1 x 2 0 ; 1 4 5 4 1 4 4 5 4 4 5 4 5 5
2 4 1 x 0 4 5
;
;
3 2 2 2 3 4 2 4 3 2 3 2 3 2 x 0 ; x 0 ; x 0 ; x ; x 4 5 5 5 4 4 3 5 3 4 5 5 4 5
24 8 ; x ; x 0.533 53 15 ? 0533 2?1 . . 0133 . . 0533 . . 0.4 Check: 0533 ; 0533 ; 0133 5 4 4
; x
Example 1.3-29 2 2 1 3 1 2 2 1 1 1 1 2 2 1 1 2 x x ; x x x x ; 2 1 x 1 0 2 ; x 3 2 4 3 3 2 4 2 2 3 3 2 3 4 2 3 4 3 1 2 4 3 x 6 4 3
;
;
1 1 2 1 1 1 2 1 1 2 4 1 3 1 x 8 3 1 x 11 x ; x ; x ; ; 6 4 3 6 4 4 3 4 6 12 6 12 6 3 4
11 11 ; x ; x 5.5 2 12 2 . 3 2 2 2 1?1 2 2 55 . 1 ? 1 55 . 2 11 1 ? 55 . 2 11 4 1 3 ? 55 . 55 . ; ; ; Check: 55 3 4 2 3 3 4 2 3 3 4 2 3 3 4 23 1 6
; 6 x 6
;
44 3 ? 16.5 4 41 ? 20.5 ; ; 12 6 12 6
342 . 342 .
Example 1.3-30 1 3 2 2 1 1 2 1 7 1 t 5 t ; 3 4 t 5 1 t ; t 5 t t t 5 t ; 1 2 t 5 1 t ; 23 4 2 3 6 2 3 4 6 4 4 4
Hamilton Education Guides
33
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
7 4 1 6 7 1 1 1 17 7 1 t 5 ; 28 6 t 5 ; 34 t 5 ; t 5 ; t t 5 t t ; t 5 0 ; 64 6 4 24 6 4 4 4 12 24 17
12
;
17 12 12 12 5 60 9 t 5 ; t ; t ; t 3 ; t 3.53 12 17 17 17 17 17
Check:
? 1 2 1 1 353 . 2 353 . ? 1 353 . 353 . 7.06 ? 353 . 353 . 353 . 5 353 . ; 5 5 ; 2 3 4 2 3 4 2 3 4
?
. 412 . ; 177 . 235 . 5 088 . ; 412 Practice Problems - Solving Linear Equations Containing Integer Fractions Section 1.3 Case II Practice Problems - Solve the following linear equations by applying the addition, subtraction, multiplication, and division rules: 1.
1 1 y y5 2 5
2. x 3 2 3
3 5
1 3
5. s 1 2 s
2 1 1 x 3 4
8. t 5 t
4. u u 6 7. x
x 2
1 2
2 3
2 2 y 1 3 3
3.
y
6.
w 2 1 w 4 3 3 2 3
3 5
9. 4 z 2 z 1
1 4
2 5
10. 6 t t 1 t
Hamilton Education Guides
34
Linear Equations and Inequalities
Case III
1.3 Solving Other Classes of Linear Equations
Solving Linear Equations Containing Decimals
Another class of linear equations contains decimals. To solve these type of problems students need to be familiar with conversion of decimal numbers to integer fraction form (review decimal fraction concepts discussed in Chapter 4 of the Mastering Fractions book). Note that the method used in solving linear equations with decimal numbers is similar with what is addressed in section 1.2. However, these type of problems require more attention due to computations involving with decimals. Linear equations c ontaining decimals are solved using the following steps: Step 1
Isolate the variable to the left hand side of the equation by applying the subtraction rules (see section 1.2, Case I).
addition and
Step 2
Find the solution by applying the multiplication or division rules. Check the answer by substituting the solution into the original equation (see section 1.2, Case II). Examples with Steps
The following examples show the steps as to how linear equations containing decimals are solved using the addition, subtraction, multiplication, and division rules: Example 1.3-31
3.4x 2.5 2.8x 0.5
Solution: Step 1
3.4x 2.5 2.8x 0.5 ; 3.4x 2.8x 2.5 2.8x 2.8x 0.5 ; 6.2x 2.5 0 0.5 ; 6.2x 2.5 0.5 ;
6.2x 2.5 2.5 0.5 2.5
; 6.2x 0 3 ; 6.2x 3
3
Step 2
6 .2 3 3 3 10 30 x 6.2x 3 ; ; x ; x 1 ; x ; x ; x 0.484 62 6.2 6 .2 6.2 1 62 62 10 ?
Check: 3.4 0.484 2.5 2.8 0.484 0.5 ; 165 . 25 . 135 . 05 . ; 0.85 0.85 ?
Example 1.3-32 1.25 x 0.2 0.5x 1 0
Solution: Step 1
1.25 x 0.2 0.5x 1 0
; 0.75x 0.75 0 ;
. x 0.25 0.5x 1 0 ; 1.25x 0.5x 0.25 1 0 ; 125
0.75x 0.75 0.75 0 0.75
; 0.75x 0 0.75 ; 0.75x 0.75 75
Step 2
0 .75 0.75 0.75 75 100 x 0.75x 0.75 ; ; x ; x 100 ; x 75 0 .75 0.75 0.75 100 75 100
; x
Hamilton Education Guides
7500 ; x 1 7500 35
Linear Equations and Inequalities
Check:
1.3 Solving Other Classes of Linear Equations
?
?
?
. 12 . 0.5 1 0 ; 15 . 15 . 0 ; 1.25 1 0.2 0.5 1 1 0 ; 125
?
15 . 15 . 0 ; 0 0
Example 1.3-33 8.4 x 0.5 0.2 x 1.25x
Solution: Step 1
8.4 x 0.5 0.2 x 1.25x
. x ; 8.4x 0.2x 0.5 1.25x ; 8.4x 0.5 0.2x 125
. x ; 8.6x 1.25x 0.5 1.25x 1.25x ; 7.35x 0.5 0 ; 8.6x 0.5 125 ;
7.35x 0.5 0.5 0 0.5
; 7.35x 0 0.5 ; 7.35x 0.5 5
Step 2
7 .35 0.5 0.5 5 100 500 x 7.35x 0.5 ; ; x ; x 10 ; x ; x 735 7 .35 7.35 7.35 10 735 7350 100
; x 0.068 Check: 8.4 0.068 0.5 0.2 0.068 125 . 0.068 ; ?
?
0.57 0.5 0.014 0.09
?
; 057 . 0.48 0.09
; 0.09 0.09 Example 1.3-34
55 . x 0.2 x 5 0.45 0
Solution: Step 1
55 . x 0.2 x 5 0.45 0 ;
;
5.5 x 0.2 x 4.55 0
; 5.5 x 0.2 x 4.55 0
; x x 5.5 4.55 0.2 0 ; ;
5.5 x 0.2 x 5 0.45 0
2 x 10.25 10.25 0 10.25
2 x 5.5 4.55 0.2 0
; 2 x 10.25 0
; 2 x 0 10.25 ; 2 x 10.25 1025
Step 2
1025 2 10.25 10.25 1025 1 x 2 x 10.25 ; ; x ; x 100 ; x ; x 2 200 2 2 2 100 2 1
; x 5.125 Check:
?
5.5 5125 . 0.2 5125 . 5 0.45 0
;
?
5.5 4.925 0125 . 0.45 0
?
; 5.5 4.925 0.575 0
?
; 0575 . 0575 . 0 ; 0 0
Hamilton Education Guides
36
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
Example 1.3-35 0.5x x 2.5 0.45x 1
Solution: Step 1
0.5x x 2.5 0.45x 1
;
0.5x 0.55x 15 .
; 0.5x x 2.5 0.45x 1 ;
; 0.5x 0.55x 0.55x 0.55x 15 . ;
0.5x x 0.45x 1 2.5
0.05x 0 15 .
;
0.05x 15 .
15
0 .05 15 . 15 . 15 100 1500 x 0.05x 15 . ; ; x ; x 10 ; x ; x 5 0 .05 0.05 0.05 10 5 50
Step 2
100
; x 30 Check:
?
;
0.5 30 30 2.5 0.45 30 1
?
0.5 30 27.5 135 . 1
?
; 15 275 . 125 . ; 15 15
Additional Examples - Solving Linear Equations Containing Decimals The following examples further illustrate how to solve linear equations containing decimals using the addition, subtraction, multiplication, and division rules: Example 1.3-36 0.2 x 2.4 0.52 x 35 . ; 0.2 x 0.52 x 2.4 0.52 x 0.52 x 3.5 ; 0.32 x 2.4 0 35 . ; 0.32 x 2.4 35 . 11
x 11 . 0.32 x 11 . . ; 0.32 x 11. ; ; 0.32 x 2.4 2.4 3.5 2.4 ; 0.32 x 0 11 ; ; x 10 32 0.32 0.32 0.32 1
100
; x
11 100 1100 ; x ; x 3.44 320 10 32
Check:
?
0.2 3.44 2.4 0.52 3.44 35 .
?
. 171 . ; 0.69 2.4 179 . 35 . ; 171
Example 1.3-37 0.65 x 0.2 0.25x
. 0.25x ; 0.65x 0.25x 013 . 0 ; 0.65x 013 . 0.25x 0.25x ; 0.9 x 013 13
013 . 013 . . ; 0.9 x 013 . 013 . 0 013 . ; 0.9 x 0 013 . ; x ; 0.9 x 013 ; x ; x 100 9 0.9 0.9 10
; x
13 10 130 ; x ; x 0.144 100 9 900
Check:
?
0.65 0144 . 0.2 0.25 0144 .
?
; 0.65 0.056 0.036 ; 0.036 0.036
Example 1.3-38 4.5x 0.2 x 01 . 0.3 0
Hamilton Education Guides
; 4.5x 0.2 x 0.02 0.3 0 ; 4.3x 0.32 0 ; 4.3x 0.32 0.32 0 0.32
37
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
32
0.32 32 10 320 ; 4.3x 0 0.32 ; 4.3x 0.32 ; x ; x 100 ; x ; x ; x 0.074 43 4.3 100 43 4300 10
Check:
?
4.5 0.074 0.2 0.074 01 . 0.3 0
?
?
; 033 . 0.01 0.02 03 . 0 ; 033 . 033 . 0 ; 0 0
Example 1.3-39 4 x 0.45 3.9 x 0.005
. 39 . x 0.005 ; 4x 3.9x 18 ; 4 x 18 . 3.9 x 3.9 x 0.005
. 0.005 ; . 0 0.005 ; 7.9 x 18 ; 7.9 x 18
7.9 x 18 . 18 . 0.005 18 .
. . ; 7.9 x 0 1805 ; 7.9 x 1805
1805
18050 1805 . 1805 10 ; x ; x 1000 ; x ; x ; x 0.23 79 79000 7.9 1000 79 10
Check:
?
40.23 0.45 39 . 0.23 0.005
?
; 092 . 18 . 089 . 0.005 ; 0.88 0.88
Example 1.3-40 01 . 0.4 x 1 0.2 x 0.28
; 0.04 x 01. 0.2 x 0.28 ; 0.04 x 0.2 x 01. 0.2 x 0.2 x 0.28
. x 01. 0 0.28 ; 016 . x 01. 0.28 ; ; 016
016 . x 01 . 01 . 0.28 01 .
. x 0 0.38 ; 016
38
0.38 3800 0.38 38 100 . x 0.38 ; x ; 016 ; x ; x 100 ; x ; x ; x 2.375 16 1600 016 . 016 . 100 16 100
Check:
?
01 . 0.4 2.375 1 0.2 2.375 0.28
. 0195 . ; 0195 Example 1.3-41
;
?
01 . 0.95 1 0.475 0.28
0.5 x 0.2 0.45x 2.5x ; 0.5 x 0.45x 0.2 2.5x ;
;
?
01 . 195 . 0195 .
; 0.275x 01. 2.5x
0.5 0.55x 0.2 2.5x
; 0.275x 2.5x 01. 2.5x 2.5x ; 2.225x 01. 0 ; 2.225x 01. 01. 0 01. ; 2.225x 0 01. 1
1 1000 1000 01 . 01 . ; 2.225 x 01. ; x ; x ; x 10 ; x ; x ; x 0.045 2225 10 2225 22250 2.225 2.225 1000
Check:
?
0.5 0.045 0.2 0.45 0.045 2.5 0.045
. 011 . ; 011 Example 1.3-42
0.2 x 1 0.2 x 2 2.4x
Hamilton Education Guides
;
?
0.5 0.245 0.02 011 .
;
?
0.5 0.25 011 .
; 0.2 x 1 0.2 x 0.4 2.4 x ; 0.2 x 1 0.4 0.2x 2.4x
38
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
. x 2.4 x ; 0.2 0.6 x 0.2 x 2.4 x ; 0.8 12
;
0.2 x 0.6 0.2 x 2.4 x
;
0.8 1.2 x 2.4 x 2.4 x 2.4 x
; 0.8 3.6 x 0 ; 0.8 0.8 3.6x 0 0.8 ; 0 3.6 x 0.8 8
0.8 0.8 80 8 10 ; 3.6 x 0.8 ; x ; x ; x 10 ; x ; x ; x 0.22 36 3.6 360 3.6 36 10 10
Check: 0.2 0.22 1 0.20.22 2 2.4 0.22 ; ?
?
0.02 1 0.2 2.22 0.53
;
?
0.02 1 0.444 0.53
?
; 0.02 0556 . 053 . ; 0.54 0.53 Example 1.3-43 0.01x 0.25 x 01 . 1 ; 0.01x 0.25 x 0.025 1 ; 0.26 x 0.025 1 ;
0.26 x 0.025 0.025 1 0.025
975
0.975 97500 975 100 ; 0.26 x 0 0.975 ; 0.26 x 0.975 ; x ; x 1000 ; x ; x ; x 3.75 26 26000 0.26 1000 26 100 ?
Check: 0.01 3.75 0.253.75 01. 1 ; 0.0375 0.25 385 . 1 ; 1 1 . 1 ; 0.0375 09625 Example 1.3-44 . x ; 0.3x 0.5x 0.03 2.35 1.2 x 0.3 x 01 . 0.5x 2.35 1.2 x ; 0.3x 0.03 0.5 x 2.35 12 ?
?
. x ; 0.2 x 1.2 x 0.03 2.35 1.2 x 1.2 x ; x 0.03 2.35 0 ; x 0.03 2.35 ; 0.2 x 0.03 2.35 12 ;
x 0.03 0.03 2.35 0.03
Check:
; x 0 2.32 ; x 2.32 ?
0.32.32 01 . 0.5 2.32 2.35 12 . 2.32
?
?
; 0.3 2.42 116 . 0.434 . 2.35 2.784 ; 0.726 116
; 0.434 0.434 Example 1.3-45
0.2x 23. 0.2x 1 18. x 0 ; 0.2x 2.3 0.2x 0.2 18. x 0 ; 0.2x 0.2x 0.2 23. 18. x 0 . x 2.5 0 ; ; 0.4x 2.5 18 . x 0 ; 0.4 x 18 . x 2.5 0 ; 14
1.4 x 2.5 2.5 0 2.5
25
2.5 250 25 10 . x 0 2.5 ; 14 . x 2.5 ; x ; 14 ; x 10 ; x ; x ; x 1.78 14 140 14 . 10 14 10
. 2.3 0.2 178 . 1 18 . 178 . 0 ; 0.35 2.3 0.2 2.78 3.21 0 0.2 178 ?
Check:
?
?
; 2.65 0.56 3.21 0 ; 321 . 321 . 0 ; 0 0 ?
Hamilton Education Guides
39
Linear Equations and Inequalities
1.3 Solving Other Classes of Linear Equations
Practice Problems - Solving Linear Equations Containing Decimals Section 1.3 Case III Practice Problems - Solve the following linear equations by applying the addition, subtraction, multiplication, and division rules: 1. 0.35 0.2 x 0.5 0.1x
2.
5.2 x 01 . x 0.25 0.2 x
3.
0.4 x 2 0.2 x 1 0.25
4. 1.2 x 0.56 0.6 x 1.25x
5.
x 05. x 01. 3x x
6.
5 0.02 x 0.002 0.5x 1.25
8.
135 . 0.5 x 0.2 0
. 08 . x 0.2 5 2.2x 9. 05
7. 10.
0.5x 2 2.5x 2.8
0.25x 13 . 1.2 x 1.7 2.8
Hamilton Education Guides
40
Linear Equations and Inequalities
1.4
1.4 Formulas
Formulas
Formulas are rules that are stated using symbols, called variables, and are expressed as equations. For example, to find the area of a circle with a radius equal to 3 cm we multiply the constant “pronounced pi” by the square of the radius. Thus, the area is 32 9 cm 2 . Note that in this case, the stated rule can then be expressed as a formula A r 2 which is an equation involving two variables, A and r , and a constant, . In this section we learn how to solve for a specific variable in a given formula by using the following steps: Step 1:
Isolate the variable either to the left or right hand side of the equation by applying the addition and subtraction rule (see Section 1.2, Case I).
Step 2:
Solve for the variable by applying the multiplication or division rules (see Section 1.2, Case II).
Note - If the variable is isolated to the right hand side of the equ ation, to be consistent with the steps used in the previous sections, at the very last step move the variable to the left hand side of the equation (see examples 1.4-2, 1.4-6, and 1.4-7). Examples with Steps The following examples show the steps for solving a specific variable in a given formula: Example 1.4-1 1 3
Solve V bh for b . Solution: Step 1 Step 2 Example 1.4-2
Not Applicable V
1 bh 3
3V bh h h
1 3
; 3 V 3 bh ; 3V bh ;
;
3V b h
3V
; b h
Solve a b c 2d for c and d .
Solution: I.
Step 1
a b c 2d ; a b cd 2 d ; a b 2 d cd ; a b b b 2d cd
; a b 0 2d cd ; a b 2 d cd ; a b 2d 2d 2d cd ; a b 2d 0 cd ; a b 2 d cd Step 2 II. Step 1
a b 2 d cd
;
a b 2 d cd d d
;
a b 2d c d
; c
a b 2d d
a b c 2d ; a b b b c 2d ; a b 0 c 2d ; a b c 2d
Hamilton Education Guides
41
Linear Equations and Inequalities
Step 2
1.4 Formulas
c 2 d a b d d a b ab ; ; c2 c 2 c 2 c 2
a b c 2 d ;
Example 1.4-3 Solve A 2r 2 2rh for and h . Solution: I. Step 1
Not Applicable
Step 2
A 2r 2rh 2
;
2r 2rh 2 r A
2
2 rh
2 r 2 2 rh 2
A
;
2r 2rh 2
A 2r 2rh 2
A 2r 2 2rh
II. Step 1
; A 2r 2rh ; 2
; A 2r 2 2r 2 2r 2 2rh ; A 2r 2 0 2rh
; A 2rr 2 2rh A 2r 2 2rh
Step 2
;
A 2r 2 A 2r 2 A 2r 2 2 rh h ; h ; 2r 2r 2r 2 r
Example 1.4-4 Solve A p prt for p and Solution: I. Step 1
t
.
Not Applicable
A p prt ; A p1 rt ;
Step 2
p1 rt A A A p ; p ; 1 rt 1 rt 1 rt 1 rt
A p prt ; A p p p prt ; A p 0 prt ; A p prt
II. Step 1
A p prt ;
Step 2
A p A p prt A p t ; t ; pr pr pr pr
Example 1.4-5 Solve
1 2 1 x y z 2 3 5
for x , y , and z .
Solution: I.
Step 1
1 2 1 x y z 2 7 5
;
Step 2
1 1 2 x z y 2 5 7
1 2 1 ; 2 x 2 z y ; x 5 z 7 y 2 5 7
Hamilton Education Guides
1 2 2 1 2 x y y z y 2 7 7 5 7
1 1 2 x0 z y 2 5 7
; 2
;
1 1 2 x z y 2 5 7
4
42
Linear Equations and Inequalities
1.4 Formulas
II. Step 1
1 2 1 x y z 2 7 5
;
1 1 2 1 1 x x y z x 2 2 7 5 2
Step 2
2 1 1 y z x 7 5 2
;
7 7 71 1 7 2 71 1 z x y z x ; y z x ; y 10 4 2 7 25 2 25 2
III. Step 1
2 7
1 5
1 2
; 0 y z x ;
2 1 1 y z x 7 5 2
Not Applicable 1 2 1 x y z 2 7 5
Step 2
; 5 x y 5 z ; 1 2
2 7
5 10 x yz 2 7
1 5
5
10
; z 2 x 7 y
Additional Examples - Formulas The following examples further illustrate how to solve for a specific variable in a given formula: Solve y mx b for x and b .
Example 1.4-6
y mx b ; y b mx b b ; y b mx 0 ; y b mx ;
Solution: I.
yb y b mx x ; m m m
yb
; x m
II. y mx b ; y mx mx mx b ; y mx 0 b ; y mx b ; b y mx Solve s 2t a b for
Example 1.4-7
Solution: I. s 2t a b ;
t
and b .
2 t a b s s s t ; t ; 2a b 2a b 2 a b 2a b
II. s 2t a b ; s 2at 2bt ; s 2at 2at 2at 2bt ; s 2at 0 2bt ; s 2at 2bt ; Example 1.4-8
s 2at s 2at s 2at 2 bt b ; b ; 2t 2t 2t 2 t
Solve 2s 3t 4 s 2t 5 for s and
t
.
Solution: I. 2s 3t 4 s 2t 5 ; 2s 3t 4s 8t 5 ; 2s 3t 3t 4s 8t 3t 5 ; 2s 0 4s 11t 5 ; 2s 4s 11t 5 ; 2s 4s 4s 4s 11t 5 ; 2s 0 11t 5 ; 2s 11t 5 ;
2 s 11t 5 2 2
; s
11t 5 2
II. 2s 3t 4 s 2t 5 ; 2s 3t 4s 8t 5 ; 2s 2s 3t 4s 2s 8t 5 ; 0 3t 2s 8t 5 ; 3t 2s 8t 5 ; 3t 8t 2s 8t 8t 5 ; 11t 2s 0 5
Hamilton Education Guides
43
Linear Equations and Inequalities
1.4 Formulas
t 2s 5 11 11 11
; 11t 2s 5 ;
2s 5
; t 11
Solve I prt for p , r , and
Example 1.4-9
.
I p r t I I p ; p ; rt rt r t rt
I prt ;
Solution: I.
t
I p r t I I r ; r ; p t pt p t pt
II. I prt ;
I p r t I I t ; t ; p r pr p r pr
III. I prt ;
Solve A r 2 for and r .
Example 1.4-10
A r 2
Solution: I.
r 2 r2 r 2 A
;
A
II. A r 2 ;
;
A r
2
;
A r2
A A r 2 ; r2 ; r2 ;
r2
A
; r
A
Solve P 2l 2 w for l and w .
Example 1.4-11
P 2l 2 w
Solution: I.
P 2w l 2
;
; P 2 w 2l 2 w 2 w ; P 2 w 2 l o ; P 2 w 2 l ; P 2w 2
; l
II. P 2l 2 w ; P 2l 2l 2l 2w ; P 2l 0 2 w ; P 2l 2 w ; P 2l w 2
;
P 2l 2
1 2
A
Solution:
1 bh 2
bh 2
; A
; 2 A 2
bh 2
; 2 A bh ;
2 A bh b b
;
2A h b
2A
; h b
5 9
Solve C F 32 for F .
Example 1.4-13 C
; Example 1.4-14
; w
P 2l 2 w 2 2
Solve A bh for h .
Example 1.4-12
Solution:
P 2w 2 l 2 2
5 F 32 9
;
9 C 32 F 0 5
9 9 5 C F 32 5 5 9
;
9 C 32 F 5
;
9 C F 32 5
;
9 C 32 F 32 32 5
9
; F 5 C 32
Solve A h b1 b2 for h and b2 .
Hamilton Education Guides
1 2
44
Linear Equations and Inequalities
A
Solution: I.
;
1.4 Formulas
1 h b1 b2 2
; 2 A 2 h b1 b2 ; 2 A h b1 b2 ; 1 2
h b1 b 2 2A b1 b2 b1 b 2
2A 2A h ; h b b1 b2 1 b2
II. A h b1 b2 ; 2 A 2 h b1 b2 ; 2 A h b1 b2 ; 2 A b1h b2 h 1 2
1 2
; 2 A b1h b1h b1h b2 h ; 2 A b1h 0 b2 h ; 2 A b1h b2 h ; ;
2 A b1 h 2 A b1h b2 ; b2 h h
Example 1.4-15
Solve
x4 y5 8 10
x4 y 5 8 10
Solution: I.
;
;
; 8
for x and y .
x4 4 y 5 8 8 10 5
4 x 0 y 5 4 5 x4 y 5 8 10
II.
2 A b1h b2 h h h
4 4 4 4 20 ; x y 4 ; x y 4 4 ; x 5 y 5 5 5
5 x4 y 5 10 8 10 4
; 10
5 x 4 5 y 0 4
4 5
4 5
; x 4 y 5 ; x 4 4 y 5 4
;
;
5 x 4 5 y 4
5 x 4 y 5 4
;
5 x 4 5 y 5 5 4
5 5 5 5 20 ; x 5 y ; x 5 5 y ; y 4 x 4 4 4
Note that in some instances formulas are solved for a specific variable while numerical values for the remaining variables are given. The following are few examples of this case: Solve A h b1 b2 for h , if A 50 , b1 3 , and b2 5 . 1 2
Example 1.4-16 A
Solution:
;
1 h b1 b2 2
; 2 A 2 h b1 b2 ; 2 A h b1 b2 ; 1 2
h b1 b 2 2A b1 b2 b1 b 2
2A 2A h ; h b1 b2 b1 b2
Substituting the given numerical values in the above equation we obtain a specific value for h . 25 1 2 50 25 2A 100 h ; h ; h ; h ; h 12 ; h 12.5 2 3 5 2 b1 b2 8 2
Hamilton Education Guides
45
Linear Equations and Inequalities
9 5
Solve F C 32 for C , if F 100 , F 25 , and F 10 .
Example 1.4-17 Solution:
1.4 Formulas
F
;
9 C 32 5
9 5
9 5
9 5
; F 32 C 32 32 ; F 32 C 0 ; F 32 C
5 5 9 F 32 C 9 9 5
;
5 F 32 C 9
5 9
; C F 32
5 9
5 9
I. If F 100 , then C 100 32 ; C 68 ; C
340 9
; C 37
7 9
; C 37.78
Note that 100 degrees Fahrenheit corresponds with 27.78 degrees Centigrade. 5 9
5 9
II. If F 25 , then C 25 32 ; C 7 ; C 5 9
5 9
35 9
; C 3
III. If F 10 , then C 10 32 ; C 42 ; C
210 9
8 9
; C 3.89
; C 23
3 9
; C 23.33 1 3
Solve V bh for h , if V 150 and b 2 .
Example 1.4-18 Solution:
V
1 bh 3
1 3
; 3 V 3 bh ; 3V bh ;
3V bh b b
;
3V h b
; h
3V b
Substituting the given numerical values in the above equation we obtain a specific value for h . h
Example 1.4-19 Solution:
3V b
; h
3 150 2
; h
450 2
; h 225
Solve S 2r 2 2rh 1. For S , if r 2 and h 5 . 2. For h , if S 40 and r 2. I. If r 2 and h 5 , then S 2r 2 2rh ; S 2 2 2 2 2 5 ; S 2 4 2 10 ; S 8 20 ; S 28 II. S 2r 2 2rh ; S 2r 2 2r 2 2r 2 2rh ; S 2r 2 0 2rh ; S 2r 2 2rh ;
S 2r 2 S 2r 2 S 2r 2 2 rh h ; h ; 2r 2 r 2r 2r
If S 40 and r 2 , then h ; h
Hamilton Education Guides
4 10 2 40 8 40 2 2 2 ; h ; h 4 2 2 4
10 2
46
Linear Equations and Inequalities
1.4 Formulas
5 9
Solve C F 32 for F , if C 37.78 , C 0 , and C 10 .
Example 1.4-20 C
Solution: ;
5 F 32 9
;
9 C 32 F 0 5
9 9 5 C F 32 5 5 9
;
9 C 32 F 5
;
9 C F 32 5
;
9 C 32 F 32 32 5
9 5
; F C 32
9 5
I. If C 37.78 , then F 37.78 32 ; F
340 32 5
; F 68 32 ; F 100
0 9 II. If C 0 , then F 0 32 ; F 32 ; F 0 32 ; F 32 5
5
Note that zero degree Centigrade corresponds with 32 degrees Fahrenheit. 9 5
III. If C 10 , then F 10 32 ; F
90 32 5
; F 18 32 ; F 14
Practice Problems - Formulas Section 1.4 Practice Problems - Solve each formula for the indicated variable. 1. V r 2 h 3. C 2r 5.
yb
7. m
for r and h
yb x
9. E mc 2
4. d rt
for r
1 2 x b 3 3
2. 2 x 2 y 3 x y 5
for x and b
for y and b for c and m
Hamilton Education Guides
6.
y
for
abc 3
1 3
8. V r 2 h 10.
t
for x and y
and r for c
for , r , and h
y 2 x 3 y 3 5 y x
for x and y
47
Linear Equations and Inequalities
1.5
1.5 Math Operations Involving Linear Inequalities
Math Operations Involving Linear Inequalities
Just as the symbol “ ” represents equality, the symbols “ ” and “ ” represent less than or greater than , respectively. In general, an equation states that two algebraic expressions are equal. An inequality, in the other hand, states that an algebraic expression is either greater than or less than another one. Note that an inequality with numbers on both sides is a numerical statement of inequality. Numerical statements of inequality are either true or false. For example, 6 5 8 , 4 3 10 , and 15 3 2 are true statements where as 5 3 10 , 8 2 2 , and 6 3 30 are false statements. Algebraic inequalities are inequalities that contain one or more variables. For example, x 3 5 , 2x 5 x 8 , and 3 y 5 y 2 are referred to as algebraic inequalities. An algebraic inequality becomes either a true or false numerical statement, each time a number is substituted for the variable. For example, the algebraic inequality y 3 5 is a false numerical statement if y 3 , because by substituting y 3 in y 3 5 we obtain 3 3 5 which implies 0 5 . On the other hand, y 3 5 is a true numerical statement if y 3 , because y 3 5 becomes 3 3 5 which implies 6 5 . Note that the set of all solutions to an inequality that make an algebraic inequality to become a true numerical statement is referred to as its solution set. For example, the solution set for y 3 5 is the set of all real numbers that are greater than 2 . This is
expressed as y y 2 . The notation y y 2 is read as “the set of all y such that y is greater than 2 .” In this section students learn how to solve algebraic inequalities. The rules for solving inequalities, with only one exception, are the same ones we have learned for solving equations. Solving inequalities using addition and subtraction rules (Case I), and multiplication or division rules (Case II) are addressed below: Case I
Addition and Subtraction of Linear Inequalities
To add or subtract the same positive or negat ive number to linear inequalities the following rules should be used: Addition and Subtraction Rules: The same positive or negative number, or variable, can be added or subtracted to both sides of an inequality without changing the solution: for all real numbers a , b , and c , 1. a b if and only if a c b c 2.
ab
if and only if
a c bc.
Linear inequities are added or subtracted using the following steps: Step 1
Isolate the variable to the left hand side of the inequality by applying the addition and subtraction rules.
Step 2
Find the solution by simplifying the inequality. Check the answer by substituting different values, that are greater than or less than the solution found for the inequality, into the original inequality. Examples with Steps
The following examples show the steps as to how linear inequalities are solved using the addition and subtraction rules: Hamilton Education Guides
48
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
Example 1.5-1 x 58
Solution: Step 1
x 5 8
Step 2
x 55 85
;
;
x 0 13
x 13
;
Check 1: Let x 2 which is less than 13 . Then, is “yes” because 7 8 .
?
2 5 8
Check 2: Let x 15 which is greater than 13 . Then, is “no” because
The solution set is x x 13 .
Not Applicable
;
?
7 8 ?
?
15 5 8
;
The answer is
?
10 8 ?
The answer is
10 8 .
Example 1.5-2 3 2 2 w 1 4 3
Solution: 3 2 2 4 3 1 3 2 8 3 w 3 2 11 w 5 2 w 1 ; w ; ; 4 3 4 3 4 3 4 3
Step 1
;
5 11 11 11 5 11 5 11 w ; 0w ; w 3 4 4 4 3 4 3 4
w
Step 2
5 11 5 4 3 11 w 20 33 w 13 w 1.08 ; w ; ; ; 3 4 12 12 3 4
. . The solution set is w w 108 ?
?
2 11 5 . . Then, is 2 3 108 . 1 ; 108 . ; Check 1: Let w 108 4 3 answer is “yes” because 167 . 167 . .
4
3
?
2.75 108 . 167 . ?
The
? ? . . Then, is 2 3 2 1 2 ; 11 2 5 Check 2: Let w 2 which is greater than 108
4
;
?
2.75 2 167 . ?
The answer is “yes” because
3
4
3
4.75 167 . .
Example 1.5-3 5u 0.45 4u 1
1 3
Solution: Step 1
5u 0.45 4u 1
1 1 3 1 u 0.45 0 4 ; 5u 4u 0.45 4u 4u ; 3 3 3
. ; u 0.45 0.45 133 . 0.45 ; u 0 178 . ; u 1.78 ; u 0.45 133
Step 2
Not Applicable
Hamilton Education Guides
. . The solution set is u u 178
49
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
?
?
4 1 . . Then, is 5 178 . 0.45 4 178 . 1 ; 8.9 0.45 712 . Check 1: Let u 178 3
;
?
8.45 712 . 133 . ?
3
The answer is “yes” because 8.45 8.45 . ?
?
. . Then, is 5 0 0.45 4 0 1 1 ; 0 0.45 0 4 Check 2: Let u 0 which is less than 178 3
3
?
4 ; 0.45 ? The answer is “yes” because 0.45 133 . . 3 ?
. . Then, is 5 5 0.45 4 5 1 1 Check 3: Let u 5 which is greater than 178
3 ? ? 4 ; 25 0.45 20 ; 24.55 20 133 . ; 24.55 2133 . ? The answer is “no” because we 3 ?
can not choose u 5 since
5 178 . .
Example 1.5-4
1 2 1 y 1 3 4 3
1 2 1 y 1 3 4 3
Solution: Step 1
1 4
1 4
1
1 3 2
3
3
; y y y
; 1 y 0 1 3 2 3 4 3
1 1 6 1 2 1 1 5 1 1 5 2 1 ; y ; y ; 0 y ; y 1 4 3 3 4 3 4 4 3 4 1 4
; y y
Step 2
2 1 2 4 11 y 8 1 y 9 y 2 1 y 2.25 ; y ; ; ; ; 1 4 4 4 4 1 4
The solution set is y y 2.25 . Check: Let y 10 which is greater than 2.25 . Then, is ;
1? 1 5 10 3 3 4
is “yes” because
1? 4
; 10
0.25 8
or
1? 2 1 10 1 3 4 3
? 1 5 1? 6 ; 10 ; 0.25 10 2 ? The answer 3 4 3
0.25 8 .
Example 1.5-5 2 2 y 2 1 3 7
Solution: Step 1
2 2 2 2 2 2 2 2 2 2 y 2 1 ; y 2 1 ; 0 y 2 1 ; y 2 1 3 7 3 3 7 3 7 3 7 3
Step 2
2 1 7 2 2 2 2 ; y 2 7 2 2 y 2 1 ; y 2 1 2 2 ; y 7 3 1 7 3 7 3 7 3 1
Hamilton Education Guides
50
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
; y 2 1
; y
9 7
2 7 9 1 2 5 2 ; y 14 9 2 ; y 1 7 7 3 7 3 3
2 3
; y
5 3 2 7
; y
73
15 14 1 ; y ; y 0.05 21 21
The solution set is y y 0.05 . ?
?
? 2 2 9 0.05 2 1 ; 0.67 0.05 2 ; 0.72 2 128 . ? The 3 7 7 answer is “yes” because 0.72 0.72 .
Check 1: Let y 0.05 . Then, is
? ? 2 2 9 Check 2: Let y 5 which is greater than 0.05 . Then is 5 2 1 ; 0.67 5 2
3
;
?
5.67 2 128 . ?
7
7
The answer is “yes” because 5.67 0.72 .
Additional Examples - Addition and Subtraction of Linear Inequalities The following examples further illustrate how linear inequalities are solved using the addition and subtraction rules: Example 1.5-6 x 8 12
;
x 8 8 12 8
;
x04
;
Check: Let x 3 which is less than 4 . Then, is Example 1.5-7 5 y 8
;
5 5 y 8 5
;
0 y 3
?
3 8 12 ?
The answer is “yes” because
11 12 .
The solution set is y y 3 .
y 3
;
Check 1: Let y 1 which is greater than 3 . Then, is answer is “yes” because
The solution set is x x 4 .
x4
?
5 1 8
;
?
6 8
;
6 ? 8 ? The 1 1
68. ?
Check 2: Let y 5 which is greater than 3 . Then, is 5 5 8 ? The answer is “yes” because 0 3 . Example 1.5-8 5 w9 ; 5 w w w9 ; 5 w 09 ; 5 w 9 ; 55 w 95 ; 0 w 4 ; w 4
The solution set is w w 4 . Check: Let w 8 which is greater than 4 . Then, is 5 1. Example 1.5-9 6 x 20
;
6 6 x 20 6
;
0 x 26
;
?
5 89?
x 26
?
6 20 20
;
?
14 20
;
14 ? 20 ? 1 1
14 20 .
Check 2: Let x 5 which is greater than 26 . Then, is
Hamilton Education Guides
The solution set is x x 26 .
Check 1: Let x 20 which is greater than 26 . Then, is The answer is “yes” because
The answer is “yes” because
?
6 5 20 ?
The answer is “yes”
51
Linear Equations and Inequalities
because
1.5 Math Operations Involving Linear Inequalities
11 20 .
Check 3: Let x 50 which is less than 26 . Then, is
?
6 50 20
;
?
44 20
;
44 ? 20 1 1
?
; 44 20 ? The answer is “no” because we can not choose x 50 since Example 1.5-10 m 12 15
;
m 12 12 15 12
;
m 0 27
m 27
;
The solution set is m m 27 .
Check 1: Let m 5 which is less than 27 . Then, is is “yes” because
50 26 .
?
5 12 15
;
?
7 15
;
7 ? 15 ? The answer 1 1
7 15 . ?
Check 2: Let m 20 which is less than 27 . Then, is 20 12 15 ? The answer is “yes” because 8 15 . Example 1.5-11 . ; x 11.6 9.2 x 2.4 ; 9.2 9.2 x 2.4 9.2 ; 0 x 116
. . The solution set is x x 116
. . Then, is Check 1: Let x 15 which is less than 116
?
?
;
5.8 2.4
. . Then, is 9.2 5 2.4 ; Check 2: Let x 5 which is greater than 116 is “no” because we can not choose x 5 since 5 116 . . Example 1.5-12 2.3 w 4.8 ; 2.3 2.3 w 4.8 2.3 ; 0 w 2.5 ; w 2.5
14.2 2.4 ?
The answer is “yes” because
9.2 15 2.4
;
58 . ? 2.4 ? 1 1
5.8 2.4 . ?
?
The answer
. . The solution set is w w 25
Check 1: Let w 2.5 . Then, is
?
2.3 2.5 4.8 ?
The answer is “yes” because 4.8 4.8 .
Check 2: Let w 10 which is greater than 2.5 . Then, is because 7.7 4.8 . Example 1.5-13
?
2.3 10 4.8 ?
The answer is “yes”
2 3 1 3 2 2 7 3 h 3 2 14 3 h 5 17 h 5 5 17 5 h 0 17 5 h 1 2 ; h ; ; ; ; 3 7 7 3 3 7 3 7 3 3 7 3 3 7
; h
17 3 5 7 73
; h
51 35 16 ; h ; h 0.76 21 21
The solution set is h h 0.76 .
2? 3 2 ? 3 1 3 2 ? 2 7 3 Check: Let h 0 which is less than 0.76 . Then, is 0 1 2 ; 1 2 ; 3 7 3 7 3 2 ? 14 3 5 ? 17 ; ; ? The answer is “yes” because 167 . 2.43 . 3 7 3 7
3
7
Example 1.5-14 y 3.85 1
3 1 8 3 y 3.85 8 3 y 3.85 11 . . 138 . ; y 385 ; ; ; y 385 8 8 8 8
Hamilton Education Guides
52
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
?
?
3 8
. 1 ; 138 . Check 1: Let y 5.23 . Then, is 5.23 385
? 83 ? 11 1 8 3 ; 138 . . ? The ; 138
8
8
8
answer is “yes” because 138 . 138 . .
3 . . Then, is 2 385 . 1 ; 185 . Check 2: Let y 2 which is greater than 178 ?
1 8 3
?
8
?
. ; 185
The solution set is y y 5.23 .
. 385 . 138 . 385 . ; y 0 5.23 ; y 5.23 ; y 385
8
83 . ? The answer is “yes” because 185 ; 185 . 138 . . 8 8 ? 11
Example 1.5-15 1 3 1 3 5 1 w 2 5 3 1 5 1 15 1 w 10 3 5 1 16 w 13 6 3 w 2 1 ; ; ; 5 5 5 5 5 5 5 5 5 5 5 5
;
16 13 6 16 19 16 19 16 19 16 16 19 16 3 w w ; w ; ; 0 w ; w ; w 5 5 5 5 5 5 5 5 5 5 5 5
. . The solution set is w w 06
; w 0.6
? 3 ? 13 6 1 1 16 Check 1: Let w 0.6 . Then, is 3 0.6 2 1 ; 0.6 ;
5
. 38 . . answer is “yes” because 38
5
5
5
5
5
?
3.2 0.6 2.6 12 . ?
? 3 1 1 16 ? 13 6 ; Check 2: Let w 0 which is less than 0.6 . Then, is 3 0 2 1 ;
5
The answer is “yes” because
5
5
5
5
5
The
?
32 . 2.6 12 . ?
3.2 38 . .
? 3 ? 13 6 1 1 16 Check 3: Let w 5 which is greater than 0.6 . Then, is 3 5 2 1 ; 5
5
;
?
3.2 5 2.6 12 .
since
;
?
8.2 38 . ?
5
5
5
5
5
The answer is “no” because we can not choose w 5
5 0.6 .
Practice Problems - Addition and Subtraction of Linear Inequalities Section 1.5 Case I Practice Problems - Solve the following linear inequalities by adding or subtracting the same positive or negative number to both sides of the inequality. 1.
2. 3 u 8
x 10 12
5. 0.65 t 2
. w 2.8 4. 32
1 3
7. 0.8 w 1 0.9 2 3
2 5
10. x 1 2
2 7
3.
2 3
8. 1 h 2
8 x 5
3 5
6. s 1 3 8
3 5
9. y 1.25 2
3 4
2 7
Hamilton Education Guides
53
Linear Equations and Inequalities
Case II
1.5 Math Operations Involving Linear Inequalities
Multiplication and Division of Linear Inequalities
To multiply or divide linear inequalities by the same positive or negative number the following rules should be used: Multiplication Rule: a. The same positive number can be multiplied by both sides o f an inequality without changing the solution: for all real numbers a , b , and c , with c 0 (a positive number), a b if and only if a c b c .
b. The same negative number can be multiplied by both sides on an inequality, however, the direction of the inequality must be changed in order to keep the same inequality: for all real numbers a , b , and c , with c 0 (a negative number), a b if and only if a c b c .
Division Rule: a. The same positive number (except zero) can be divided by both sides of an inequality without changing the solution: for all real numbers a , b , and c , with c 0 (a positive number), a b if and only if
a b c c
.
b. The same negative number can be divided by both sides of an inequality, however, the direction of the inequality must be changed in order to keep the same inequality: for all real numbers a , b , and c , with c 0 (a negative number), a b if and only if
a b c c
.
Linear inequalities are multiplied or divided using the following steps: Step 1
Isolate the variable to the left hand side of the inequality by applying the addition and subtraction rules.
Step 2
Find the solution by applying the multipl ication or division rules. Check the answer by substituting different values, that are greater than or less than the solution found for the inequality, into the original inequality. Examples with Steps
The following examples show the steps as to how linear inequalities are solved using the multiplication or division rules: Example 1.5-16 3x
Solution: Step 1 Step 2
1 5
Not Applicable 3x
Hamilton Education Guides
1 5
;
1 1 1 3 x 3 5 3
; x
1 1 53
; x
1 15
; x 0.06
54
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
The solution set is x x 0.06 . ?
?
1 5
1 Check 1: Let x 10 which is less than 0.06 . Then, is 3 10 ; 30 ? The answer 5
30 0.2 1 1
is “yes” because 30 0.2 or
; 30 0.2 . ?
?
1 Check 2: Let x 0 which is greater than 0.06 . Then, is 3 0 ; 0 0.2 ? The answer
is “no” because we can not choose
x0
5 since 0 0.06 .
Example 1.5-17
2 4y 3
2 4y 3
Solution: Step 1
; 0 4y Step 2
4 y
2 3
2 3
2 3
2 3
2 3
2 3
; 4y 4y 4y ; 4y 0 ; 4y 0 ; 4y 0 2 3
; 4 y
; 4 y
2 3
2 3
1 2 1 4 3 4
; y
2 1 3 4
; y
2 12
; y
1 6
. ; y 0166
The solution set is y y 0166 . . 2 3
?
?
. Check 1: Let y 0166 . Then, is 4 0166 ; 0.66 4 0166 ? The answer is “yes” . .
because 0.66 0.66 . ?
?
2 2 . Check 2: Let y 2 which is less than 0166 . Then, is 4 2 ; 8 ? The answer
is “yes” because 0.66 8 or
0.66 8 1 1
3
3
; 0.66 8 . ?
?
?
2 2 . Check 3: Let y 2 which is greater than 0166 . Then, is 4 2 ; 8 ; 0.66 8 ? 3
3
The answer is “no” because we can not choose y 2 since 2 0166 . . Example 1.5-18 2 3 1 w2 3 5
Solution: Step 1 Step 2
Not Applicable 2 3 1 w2 3 5
;
;
1 3 2 w 2 5 3
3 5 13 3 w 5 3 5 5
3
; w
5
13 3 55
; w
;
3 2 10 3 w 3 5
39 25
;
5 13 w 3 5
; w 1.56 The solution set is w w 156 . .
? ? 13 2 3 5 . . Then, is 1 10 2 ; 10 Check: Let w 10 which is less than 156
3
Hamilton Education Guides
5
3
5
55
Linear Equations and Inequalities
;
1.5 Math Operations Involving Linear Inequalities
16.6 2.6 50 ? 13 ; 16.6 2.6 . ? The answer is “yes” because 16.6 2.6 or 1 1 3 5
Example 1.5-19 2 5t
Solution: Step 1
2 5t ; 2 5t 5t 5t ; 2 5t 0 ; 2 2 5t 0 2 ; 0 5t 2 ; 5t 2
Step 2
5t 2 ;
5 t 2 5 5
The solution set is t t 0.4 .
; t 0.4
?
Check: Let t 5 which is greater than 0.4 . Then, is 2 5 5 ? The answer is “yes” because 2 25 or
2 25 1 1
; 2 25 .
Example 1.5-20 2.6 m 3
Solution: Step 1
2 3
Not Applicable 2.6 m 3
Step 2
2 3
; 2.6m
3 3 2 3
; 2.6m
92 3
; 2.6m
11 3
; 2.6m 3.66 ;
2 .6 3.66 m 2.6 2.6
366 366 10 3660 100 ; m 26 ; m ; m ; m 1.4 100 26 2600 10
The solution set is m m 14 . . ?
?
2 11 Check 1: Let m 1 which is less than 1.4 . Then, is 2.6 1 3 ; 2.6 ? The answer is 3
3
“yes” because 2.6 3.7 . ?
?
?
2 11 . ? The Check 2: Let m 2 which is greater than 1.4 . Then, is 2.6 2 3 ; 5.2 ; 5.2 37 3
3
answer is “no” because we can not choose m 2 since 2 1.4 . Additional Examples - Multiplication and Division of Linear Inequalities The following examples further illustrate how linear inequalities are simplified using the above multiplication or division rules: Example 1.5-21 5 y 75 ;
5 y 75 5 5
; y 15
The solution set is y y 15 . ?
Check: Let y 40 which is less than 15 . Then, is 5 40 75 ? The answer is “yes” because 200 75 .
Hamilton Education Guides
56
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
Example 1.5-22 2 x 4 3
;
3 2 3 x 4 2 3 2
4 3 1 2
; x
; x
43 1 2
12 2
; x
; x 6
The solution set is x x 6 .
? 2 12 ? Check 1: Let x 6 . Then, is 6 4 ; 4 ? The answer is “yes” because 4 4 .
3
3
? 2 20 ? Check 2: Let x 10 which is less than 6 . Then, is 10 4 ; 4 ? The answer is
6.67 4 1 1
“yes” because 6.67 4 or
3
3
; 6.67 4 .
Example 1.5-23 4 2h 7
; h
;
4 14
4 2h 2h 2h 7
;
4 2h 0 7
;
4 4 4 2h 0 7 7 7
4 7
; 0 2h
; 2h
4 7
1 4 1 2 h 2 7 2
;
The solution set is h h 0.28 .
; h 0.28
Note that another way of solving these type of inequalities is as shown below: 4 2h 7
;
4 1 1 2 h 7 2 2
;
4 h 14
; 0.28 h or h 0.28
? 4 ? Check 1: Let h 0.28 . Then, is 2 0.28 ; 0.56 2 0.28 ? The answer is “yes” because
7
0.56 0.56 .
4? Check 2: Let h 7 which is greater than 0.28 . Then, is 2 7 ? The answer is “yes” 7
because 0.57 14 . Example 1.5-24 w 9 ;
w 9 1 1
The solution set is w w 9 .
; w9 ?
Check: Let w 2 which is less than 9 . Then, is 2 9 ? The answer is “yes” because 2 9 1 1
; 29.
Example 1.5-25 5
; x
2 x 5
25 2
2 5
2 5
2 5
2 5
2 5
2 5
; 5 x x x ; 5 x 0 ; 5 5 x 0 5 ; 0 x 5 ;
2 x5 5
;
5 2 5 x 5 2 5 2
The solution set is x x 12.5 .
; x 12.5
Note that another way of solving these type of inequalities is as shown below: 5
2 x 5
5 2
2 5
5 2
; 5 x ;
25 x 2
; 12.5 x or x 12.5 ?
?
2 2 Check: Let x 5 which is less than 12.5 . Then, is 5 5 ; 5 5 ? The answer is “yes” 5
Hamilton Education Guides
5
57
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
because 5 2 or
5 2 ; 52. 1 1
Example 1.5-26 1 k3 8
The solution set is k k 24 .
1 8
; 8 k 8 3 ; k 24 3
? ? 24 1 3? Check 1: Let k 24 . Then, is 24 3 ; 3 ; 3 ? The answer is “yes” because 3 3 .
8
8
1
Check 2: Let k 8 which is less than 24 . Then, is
1 ? 1 ? 8 3 ; 8 3 ? The answer is “yes” 8 8
because 1 3 . Example 1.5-27 5
w 6
; 5
w w w 6 6 6
; 5
w 0 6
; 5 5
w 05 6
; 0
w 5 6
;
w 5 6
; 6
w 5 6 6
; w 30
Or the inequality can be solved in the following way: 5
w 6
; 5 6
w 6 6
; 30
w 6 6
The solution set is w w 30 .
; 30 w or w 30 ?
?
10 10 Check: Let w 10 which is less than 30 . Then, is 5 ; 5 ? The answer is “yes”
because 5 166 . or
5 166 . 1 1
6
6
; 5 166 . .
Example 1.5-28 1 5 x 5 7
1 5
5 7
; 5 x 5 ; x
25 7
The solution set is x x 3.57 .
; x 3.57
? 5 1 357 . ? 5 Check 1: Let x 3.57 . Then, is 357 . ; ? The answer is “yes” because
5
7
5
7
0.714 0.714 ? 5 ? 5 ? 5 1 1 . . Then, is 5 ; 5 ; 1 ? The Check 2: Let x 5 which is less than 357
Check 3:
5 7 5 7 7 1 0.7 answer is “yes” because 1 0.71 or ; 1 0.7 1 1 ? ? 5 1 ? 5 . . Then, is 0 ; 0 ; 0 0.71 ? Let x 0 which is greater than 357 5 7 7 answer is “no” because we can not choose x 0 since 0 357 . .
The
Example 1.5-29
1 y5 4
4 1
1 4
; y 5
4 1
; y
20 1
; y 20
The solution set is y y 20 .
5 ? ? 20 5 ? 1 Check 1: Let y 20 . Then, is 20 5 ; 5 ; 5 ? The answer is “yes” because 5 5 . 4 1 4 2 ? 8 ? 2? 1 Check 2: Let y 8 which is greater than 20 . Then, is 8 5 ; 5 ; 5 ? The answer 4 1 4 is “yes” because 2 5 .
Hamilton Education Guides
58
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
10 ? ? ? 40 1 10 ? Check 3: Let y 40 which is less than 20 . Then, is 40 5 ; 5 ; 10 5 ? 5 ; 4 1 4 The answer is “no” because we can not choose y 40 since 40 20 .
Example 1.5-30
2 3 2 1 5 1 x
2
2 1 1 x 3 5
3
5
;
8 8 6 8 x 0 3 3 5 3
; 0 x
;
6 5
8 3
;
;
62 5 1 x 3 5
6 8 x 5 3
;
;
8 6 x 3 5
5 6 8 5 x 6 5 3 6
;
8 6 6 6 x x x 3 5 5 5
; x
40 18
;
8 6 x0 3 5
; x 2.22
Or the inequality can be solved in the following way: 2
2 1 1 x 3 5
;
2 3 2 1 5 1 x 3
5
;
62 5 1 x 3 5
;
8 6 x 3 5
5 6
6 5
5 8 6 3
; x ;
40 x 18
The solution set is x x 2.22 .
; 2.22 x or x 2.22 2 3
?
1 5
Check 1: Let x 2.22 . Then, is 2 1 2.22 ;
8 ? 6 8 ? 1332 . ? The answer is 2.22 ; 3 5 3 5
“yes” because 2.66 2.66 . 8? 2? 1 Check 2: Let x 0 which is greater than 2.22 . Then, is 2 1 0 ; 0 ? The answer is 3
5
3
“yes” because 2.66 0 . 2 ? 1 8 ? 90 8? 6 Check 3: Let x 15 which is less than 2.22 . Then, is 2 1 15 ; 15 ; 3
5
3
5
3
5
?
; 2.66 18 ? The answer is “no” because we can not choose x 15 since 15 2.22 . Practice Problems - Multiplication and Division of Linear Inequalities Section 1.5 Case II Practice Problems - Solve the following linear inequalities by applying the multiplication or division rules: 1. 4 y 4.
2 3
2 3
2. x 1
w 3 7
5. 3 4
7. 2 x 2 1 1 3
2 3
w 5 2
8. 328 . x 2.4
3.
2 2h 5 1 4
6. 2 u 1
1 5
1 4
9. y 2
3 4
10. 5 2 x
Hamilton Education Guides
59
Linear Equations and Inequalities
Case III
1.5 Math Operations Involving Linear Inequalities
Mixed Operations Involving Linear Inequalities
In Cases I and II we learned how to solve linear inequalities by either applying: 1. The addition and subtraction rules, or 2. The multiplication or division rules. In this section, solution to linear inequalities which may involve using all four rules is discussed. Addition and Subtraction Rules: The same positive or negative number, or variable, can be added or subtracted to both sides of an inequality without changing the solution: for all r eal numbers a , b , and c , 1. a b if and only if a c b c 2. a b if and only if a c b c . Multiplication Rule: a. The same positive number can be multiplied by both sides of an inequality without changing the solution: for all real numbers a , b , and c , with c 0 (a positive number), a b if and only if a c b c .
b. The same negative number can be multiplied by both sides on an inequality, however, the direction of the inequality must be changed in order to keep the same inequality: for all real numbers a , b , and c , with c 0 (a negative number), a b if and only if a c b c .
Division Rule: a. The same positive number (except zero) can be divided by both sides of an in equality without changing the solution: for all real numbers a , b , and c , with c 0 (a positive number), a b if and only if
a b c c
.
b. The same negative number can be divided by both sides of an inequality, however, the direction of the inequality must be changed in order to keep the same inequality: for all real numbers a , b , and c , with c 0 (a negative number), a b if and only if
a b c c
.
Linear inequalities are solved using the following steps: Step 1
Isolate the variable to the left hand side of the inequality by applying the addition and subtraction rules.
Step 2
Find the solution by applying the multiplication or division rules. Check the answer by substituting different values, that are greater than or less than the solution found for the inequality, into the original inequality. Examples with Steps
The following examples show the steps as to how linear inequalities are solved using the addition, subtraction, multiplication, and division rules:
Hamilton Education Guides
60
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
Example 1.5-31 6y 1 2
3 7
Step 1
6y 1 2
3 7
Step 2
3 6 y 2 1 7
Solution:
; 6y
17 7 7
3 7
3 7
3 7
; 6 y 11 2 1 ; 6 y 0 2 1 ; 6 y 2 1 ; 6y
2 7 3 1
; 6y
7
10 7
; 6y
. ; ; 6 y 143
14 3 1 7
6 y 1.43 6 6
; 6y
17 1 7 1
; 6y
17 1 1 7 7 1
; y 0.24
The solution set is y y 0.24 . ?
?
?
3 17 17 Check 1: Let y 4 which is greater than 0.24 . Then, is 6 4 1 2 ; 24 1 ; 25 ? 7
7
7
The answer is “yes” because 25 2.43 . ?
?
?
3 17 Check 2: Let y 0 which is less than 0.24 . Then, is 6 0 1 2 ; 0 1 ; 1 2.43 ? The 7
7
answer is “no” because we can not choose y 0 since 0 0.24 . Example 1.5-32 Solution: Step 1
6t 10 9t 5 6t 10 9t 5 ; 6t 9t 10 9t 9t 5 ; 3t 10 0 5 ; 3t 10 5
; 3t 10 10 5 10 ; 3t 0 5 ; 3t 5 Step 2
3t 5 ;
3 t 5 3 3
; t 1.66
The solution set is t t 166 . .
?
?
. 10 9 166 . 5 ; 9.9 10 14.9 5 ? The answer is “yes” Check 1: Let t 1.66 . Then, is 6 166
because 19.9 19.9 . ?
?
. . Then, is 6 1 10 9 1 5 ; 6 10 9 5 ? The Check 2: Let t 1 which is less than 166 answer is “yes” because 16 14 . ?
?
. . Then, is 6 3 10 9 3 5 ; 18 10 27 5 Check 3: Let t 3 which is greater than 166 ?
; 28 32 ? The answer is “no” because we can not choose t 3 since 3 166 . . Example 1.5-33 Solution: Step 1 Step 2
3x 25 8x 3x 25 8x ; 3x 8x 25 8x 8x ; 5x 25 0 ; 5x 25 5x 25 ;
Hamilton Education Guides
5 x 25 5 5
; x 5
The solution set is x x 5 .
61
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
?
?
Check 1: Let x 5 . Then, is 3 5 25 8 5 ; 15 25 40 ? The answer is “yes” because 15 15 . ?
?
Check 2: Let x 2 which is greater than 5 . Then, is 3 2 25 8 2 ; 6 25 16 ? The answer is “yes” because 6 9 . Example 1.5-34 0.8n 10 12 . n
Solution: Step 1
0.8n 12 . n 10 12 . n 12 . n ; 0.4n 10 0 ; 0.4n 10 0 ; 0.4n 10 10 0 10
; 0.4n 0 10 ; 0.4n 10 Step 2
0.4n 10 ;
0.4 n 10 0.4 0.4
10 n 0.4
;
10 10 10 100 ; n 14 ; n ; n ; n 25 1 4 4 10
The solution set is n n 25 .
?
?
. 25 ; 20 10 30 ? The answer is “yes” Check 1: Let n 25 . Then, is 0.8 25 10 12 because 30 30 . ?
?
. 20 ; 16 10 24 ? The Check 2: Let n 20 which is less than 25 . Then, is 0.8 20 10 12 answer is “yes” because 26 24 . ?
?
. 30 ; 24 10 36 Check 3: Let n 30 which is greater than 25 . Then, is 0.8 30 10 12 ?
; 34 36 ? The answer is “no” because we can not choose n 30 since 30 25 . Example 1.5-35 z
2 1 4z 3 5
z
2 1 4z 3 5
Solution: Step 1
2 3
2 3
2 3
1 5
; 3z Step 2
3 z
;
1 2 5 3
1 5
; 3 z 0
1 5
2 3
; z 4z 4z 4z 2 3
; 3z
1 7 1 3 z 3 15 3
; 3 z 0
1 3 2 5
; z
53 7 1 15 3
2 3
1 5
; 3 z
; 3 z
; z
7 45
1 5
3 10 15
2 3
; 3 z
1 5
2 3
; 3 z
7 15
. ; z 0155
The solution set is z z 0155 . . ?
?
2 1 . . Then, is 0155 . 0.66 0.62 0.2 ? The Check 1: Let z 0155 . 4 0155 . ; 0155 3
Hamilton Education Guides
5
62
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
answer is “yes” because 0.82 0.82 . ?
?
2 1 . . Then, is 5 4 5 ; 5 0.66 20 0.2 ? Check 2: Let z 5 which is greater than 0155 3
5
The answer is “yes” because 4.34 19.8 . ?
2 1 . . Then, is 5 4 5 Check 3: Let z 5 which is less than 0155 ?
?
; 5 0.66 20 0.2 ; 5.66 20.2 or ;
3 5.66 20.2 1 1 ?
5
?
; 5.66 20.2 ? The answer
is “no” because we can not choose z 5 since 5 0155 . . Additional Examples - Mixed Operations Involving Linear Inequalities The following examples further illustrate how to solve linear inequalities using the addition, subtraction, multiplication, and division rules: Example 1.5-36 2x 8 10 ; 2 x 8 8 10 8 ; 2 x 0 18 ; 2 x 18 ;
2 x 18 2 2
; x9
The solution set is x x 9 . ?
?
Check 1: Let x 20 which is greater than 9 . Then, is 2 20 8 10 ; 40 8 10 ?. The answer is “yes” because 32 10 . ?
?
?
Check 2: Let x 0 which is less than 9 . Then, is 2 0 8 10 ; 0 8 10 ; 8 10 ? The answer is “no” because we can not choose x 0 since 0 9 . Example 1.5-37 6w 5 2w 8 ; 6w 5 5 2w 8 5 ; 6w 0 2w 13 ; 6w 2w 13 ; 6w 2w 2w 2w 13
; 4w 0 13 ; 4w 13 ;
4 w 13 4 4
The solution set is w w 3.25 .
; w 3.25 ?
?
. 5 2 325 . 8 ; 19.5 5 6.5 8 ? The answer is “yes” Check 1: Let w 3.25 . Then, is 6 325
because 14.5 14.5 . ?
?
Check 2: Let w 2 which is less than 3.25 . Then, is 6 2 5 2 2 8 ; 12 5 4 8 ?. The answer is “yes” because 7 12 . Example 1.5-38 2 x 38 5
;
2 x 3 3 8 3 5
;
2 x05 5
;
2 x5 5
;
5 2 5 x 5 2 5 2
; x
25 2
; x 12.5
The solution set is x x 12.5 . ? ? ? 2 2 Check: Let x 5 which is less than 12.5 . Then, is 5 3 8 ; 5 3 8 ; 2 3 8 ? The answer
5
5
is “yes” because 5 8 .
Hamilton Education Guides
63
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
Example 1.5-39 4
;
u 5 2u 3
1 u 3 2u 1 3 1
u 3
u 3
; 4 4 5 4 2u ; 0 1 2 u ; ;
u 6u 1 3
;
7u 1 3
;
7 u 1 3
;
u 1 2u 3
u 2u 1 2 u 2 u 3
;
3 7 3 u 1 7 3 7
; u
3 7
;
u 2u 1 0 3 1
; u 0.43
The solution set is u u 0.43 . ?
?
0.43 . 5 0.86 ? The answer is “yes” Check 1: Let u 0.43 . Then, is 4 5 2 0.43 ; 4 014 3
because 414 . 414 . . ?
?
6 Check 2: Let u 6 which is greater than 0.43 . Then, is 4 5 2 6 ; 4 2 5 12 ?. The 3
answer is “yes” because 6 7 . ?
?
?
0 0 Check 3: Let u 0 which is less than 0.43 . Then, is 4 5 2 0 ; 4 5 2 0 ; 4 5 ? 3
3 0 0.43 .
The answer is “no” because we can not choose u 0 since Example 1.5-40 25 18 h ; 25 h 18 h h ; 25 h 18 0 ; 25 h 18 ; 25 25 h 18 25 ; 0 h 7 ; h 7 ;
h 7 1 1
; h 7
The solution set is h h 7 .
? ? 25 ? 19 Check 1: Let h 1 which is greater than 7 . Then, is 25 18 1 ; 25 19 ; ?
1
1
The answer is “yes” because 25 19 . ? ? 25 ? 16 Check 2: Let h 2 which is greater than 7 . Then, is 25 18 2 ; 25 16 ; ?
1
1
The answer is “yes” because 25 16 . Example 1.5-41 5 y 35 ; 5 y y y 35 ; 5 y 0 35 ; 5 y 35 ; 5 5 y 35 5 ; 0 y 30 ; y 30 ;
y 30 1 1
; y 30
The solution set is y y 30 . ?
Check 1: Let y 40 which is less than 30 . Then, is 5 40 35 ? The answer is “yes” because 5 5 . ?
?
Check 2: Let y 0 which is greater than 30 . Then, is 5 0 35 ; 5 35 ? The answer is “no” because we can not choose y 0 since 0 30 . Example 1.5-42 8 w 6 ; 8 w w w 6 ; 8 w 0 6 ; 8 w 6 ; 8 8 w 6 8 ; 0 w 6 8 ; w 14 ;
w 14 1 1
; w 14
Hamilton Education Guides
The solution set is w w 14 .
64
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
? ? 8 ? 14 Check 1: Let w 20 which is less than 14 . Then, is 8 20 6 ; 8 14 ; ? The
1
1
answer is “yes” because 8 14 . ?
?
Check 2: Let w 10 which is greater than 14 . Then, is 8 10 6 ; 8 16 ? The answer is “no” because we can not choose w 10 since 10 14 . Example 1.5-43 x 75 4
x 7 7 5 7 4
;
x 0 12 4
;
x 12 4
;
x 4
; 4 12 4 ; x 48 The solution set is x x 48 .
? ? 50 Check 1: Let x 50 which is greater than 48 . Then, is 7 5 ; 12.5 7 5 ? The answer is
4
“yes” because 5.5 5 . ? ? ? 12 Check 2: Let x 12 which is less than 48 . Then, is 7 5 ; 3 7 5 ; 4 5 . The answer is
4
“no” because we can not choose x 12 since 12 48 . Example 1.5-44 2
3 1 k2 5 4
;
2 5 3 k 2 4 1 5
4
;
10 3 8 1 k 5 4
;
13 9 k 5 4
; 2.6 k 2.3 ; 2.6 k k k 2.3
; 2.6 k 0 2.3 ; 2.6 k 2.3 ; 2.6 2.6 k 2.3 2.6 ; 0 k 0.3 ; k 0.3 ;
k 0.3 1 1
; k 0.3
The solution set is k k 0.3 .
2 4 1 3? 1 2 5 3 ? Check: Let k 01. which is less than 0.3 . Then, is 2 01 . 2 ; 01 . 5
10 3 8 1 01 . 5 4 ?
;
;
?
13 9 01 . 5 4
4
5
4
?
. 2.3 ? The answer is “yes” because 2.6 2.4 . ; 2.6 01
Example 1.5-45 3 4
2.8 u 2
; 2.8 u u u
2 4 3 4
; 2.8 u 0
. ; u 555 . ; ; 2.8 2.8 u 2.75 2.8 ; 0 u 555
83 4
; 2.8 u
u 5.55 1 1
11 4
; 2.8 u 2.75
; u 5.55
The solution set is u u 5.55 .
?
?
3 Check 1: Let u 5.55 . Then, is 2.8 555 . 2 ; 2.8 555 . 4
;
?
11 2.8 555 . 4
2 4 3 ; 4
?
2.8 555 .
83 4
?
. 2.75 ? The answer is “yes” because 2.8 2.8 . ; 2.8 555 ?
?
3 Check 2: Let u 10 which is less than 5.55 . Then, is 2.8 10 2 ; 2.8 10 4
2 4 3 4
11 83 ; 2.8 10 ; 2.8 10 2.75 ? The answer is “yes” because 4 4 2.8 7.25 ; 2.8 7.25 . 2.8 7.25 or 1 1 ?
; 2.8 10
Hamilton Education Guides
?
?
65
Linear Equations and Inequalities
1.5 Math Operations Involving Linear Inequalities
Practice Problems - Mixed Operations Involving Linear Inequalities Section 1.5 Case III Practice Problems - Solve the following linear inequalities by applying the addition, subtraction, multiplication, and division rules: 1. 2x 9 9x 20
2. 15x 3 20x
3. 4 x 5 10
4. 12t 4 4t 8
5. 4w 5 8w 17
6. 10 y 4 4 y 12
7.
y 2 3 5 1 3 3 5
4 5
8. 3 t 2
1 3
9. 3.4 w 2
3 5
10. 0.48x 2.5 15 . x 0.35
Hamilton Education Guides
66
Appendix – Exercise Solutions: Section 1.1 Solutions - Introduction to Linear Equations 1.
Determine whether 2 is the solution to each of the following equations: ? ? a. 3 2 2 10 ; 6 2 10 ; 4 10 . Therefore, 2 is not the solution to 3x 2 10 . ? ? b. 2 2 3 2 ; 4 3 2 ; 1 2 . Therefore, 2 is not the solution to 2 x 3 x . ? ? c. 6 2 2 2 1 ; 4 4 1 ; 4 5 . Therefore, 2 is not the solution to 6 x 2 x 1 . ? ? d. 2 2 8 3 2 2 ; 4 8 6 2 ; 4 4 . Therefore, 2 is the solution to 2 x 8 3 x 2 .
2.
Determine if y 2 is the solution to the following equations: ? a. 2 3 2 2 ; 1 4 . Therefore, y 2 is not the solution to y 3 2 y . ? ? b. 6 2 2 8 2 2 ; 12 2 16 2 ; 14 14 . Therefore, y 2 is the solution to 6 y y 8 y 2 .
3.
c.
? ? 6 3 2 0 ; 6 6 0 ; 0 0 . Therefore, y 2 is the solution to 6 3 y 0 .
d.
? ? 3 2 5 2 ; 6 5 2 ; 6 7 . Therefore, y 2 is not the solution to 3y 5 y .
Given the algebraic equation 2 x 8 x 5 3 , does x 0 , x 1 , and x 6 satisfy the original equation? a.
? ? Let x 0 in 2 x 8 x 5 3 . Then, 2 0 8 0 5 3 ; 0 8 5 3 ; 8 2 . Therefore, x 0 does not satisfy 2 x 8 x 5 3 .
b.
? ? Let x 1 in 2 x 8 x 5 3 . Then, 2 1 8 1 5 3 ; 2 8 6 3 ; 10 3 . Therefore, x 1 does not satisfy 2 x 8 x 5 3 .
c.
? ? Let x 6 in 2 x 8 x 5 3 . Then, 2 6 8 6 5 3 ; 12 8 1 3 ; 4 4 . Therefore, x 6 satisfies 2 x 8 x 5 3 .
4.
Does a 2 satisfy any of the following equations? ? ? a. 3 2 2 4 2 ; 6 2 8 ; 8 8 . Therefore, a 2 is the solution to 3a 2 4a . ? ? b. 3 7 2 18 ; 3 14 18 ; 17 18 . Therefore, a 2 is not the solution to 3 7a 18 . ? ? c. 5 2 3 3 2 1 ; 10 3 6 1 ; 7 7 . Therefore, a 2 is the solution to 5a 3 3a 1 . ? d. 8 2 3 ; 8 5 . Therefore, a 2 is not the solution to 8 a 3 .
Section 1.2 Case I Solutions - Addition and Subtraction of Linear Equations 1.
x 13 12 ; x 13 13 12 13 ; x 0 25 ; x 25
2.
8 h 20 ; 8 8 h 20 8 ; 0 h 12 ; h 12
3.
5 x 3 ; 5 3 x 3 3 ; 8 x 0 ; 8 x ; x 8
4.
3 u 5 ; 3 5 u 5 5 ; 2 u 0 ; 2 u ; u 2
5.
2.8 x 3.7 ; 2.8 2.8 x 3.7 2.8 ; 0 x 6.5 ; x 6.5
6.
x
2 8 3 3 16 3 3 19 3 22 3 3 3 3 3 3 19 3 2 ; x 2 ; x0 ; x ; x ; x ; x ; x 2.75 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Hamilton Education Guides
67
Linear Equations and Inequalities
Solutions
1 3 2 4.9 2 5 2 3 2 4.9 ; x 4.9 ; x 1.67 4.9 ; x 3.23 ; 4.9 4.9 x 1 4.9 ; 0 x ; x 3 3 3 3 3
7.
4.9 x 1
8.
2 5 3 2 3 1 1 1 3 1 3 1 10 3 6 1 1 3 u 2 2 ; u 2 2 2 2 ; u 0 2 2 ; u ; u 5 3 3 5 3 3 5 3 5 3 5 3 ; u
9.
6
2 4 4 4 6 3 2 2 5 4 18 2 10 4 20 14 2 4 y0 ; y2 ; 6 2 y2 2 ; y0 ; y 3 5 3 5 3 5 5 5 3 5 3 5
20 5 14 3 y
;
10.
13 3 7 5 13 7 39 35 74 ; u ; u ; u ; u 4.93 53 5 3 15 15
35
y 2.38 3
;
100 42 142 y ; y ; 9.46 y ; y 9.46 15 15
3 5 2 2.38 15 2 17 2 2 2.38 ; y 2.38 ; y 2.38 2.38 3 2.38 ; y 0 ; y 5 5 5 5 5
; y 34 . 2.38 ; y 1.02
Section 1.2 Case II Solutions - Multiplication and Division of Linear Equations 2 1 2 2 1 2 1 ; 3 y ; y ; y 3 3 3 3 3 3 9
1.
3y
2.
3.
3 1 1 3 0187 . h 3 1 3 . h ; . h ; h 0.187 2h ; 2 h ; h ; h ; 0187 ; 0187 8 8 2 2 8 2 16 1 1
x 1 3 2 x 5 x 5 10 x 3 2 x 3.33 1 2 x 1 ; ; ; ; 2 2 ; x ; x 3.33 ; ; x 3.33 2 3 2 3 2 3 2 3 3 1 1 2 3
1. Note that in cases where the variable, in this case h , is in the right hand side of the equation we can solve for h without isolating the variable to the left hand side by applying the multiplication or division rules. However, in the very last ste p we should move the variable h to the left hand side of the equation and the solution to the right hand side of the equation. 2. Another method of solving for h is by applying the addition or subtraction rules as shown below: 3 3 3 3 3 3 1 3 1 3 3 2h ; 2h 2h 2h ; 2 h 0 ; 2h 0 ; 0 2h ; 2 h ; 2 h 8 8 8 8 8 8 2 8 2 8 8 ; h
3 1 3 ; h ; h 0.187 82 16
4.
x x 2 ; 8 2 8 ; x 16 8 8
5.
x 35 ;
6.
7. 8.
9.
x 35 ; x 35 1 1
4 1 2 1 16 1 3 8 2 1 17 3 3 4 1 1 2 8 1 8 17 3 8 u 2 u 1 ; u u ; u ; ; ; u ; u 8 2 8 2 17 8 2 8 2 8 2 17 2 17 1 17 12 ; u ; u 0.71 17 1 5 4 9 w 18 . 4 5 4 . ; w 1 ; w ; w ; w ; w 18 ; w 1.8 5 5 5 1 1 5 y 24 1 1 y 12 ; y 2 12 2 ; y 24 ; ; y 24 2 2 1 1 14 14 140 2 .8 x 14 . 14 10 1 14 10 2.8 x 1.4 ; ; x ; x ; x ; x ; x ; x 0.5 28 2 .8 2.8 10 28 280 2 28 2 28 10
Hamilton Education Guides
68
Linear Equations and Inequalities
Solutions
2 5 3 x 4.3 10 3 13 4.3 13 5 4.3 5 3 4.3 5 x 4.3 ; x 10. 2 x 4.3 ; ; ; x ; x 5 5 5 5 1 5 13 1 13 1 13 ; x
215 . ; x 1.654 13
Section 1.2 Case III Solutions - Mixed Operations Involving Linear Equations 1.
3x 20 5x 8 ; 3x 20 20 5 x 8 20 ; 3x 0 5 x 12 ; 3x 5 x 12 ; 3x 5 x 5 x 5 x 12 ; 2 x 0 12
; 2 x 12 ; 2.
2 x 12 12 ; x ; x 6 2 2 2
6 y 2 3 10 y ; 6 y 10 y 2 3 10 y 10 y ; 16 y 2 3 0 ; 16 y 2 3 ; 16 y 2 2 3 2
; 16 y 0 5 ; 16 y 5 ;
y 16 5 5 ; y ; y 0.313 16 16 16
3.
x x x x x 35 ; 3353 ; 02 ; 2 ; 2 2 2 ; x 4 2 2 2 2 2
4.
5x 3 15 ; 5x 3 3 15 3 ; 5x 0 12 ; 5x 12 ;
5.
y y y y y 4 3 ; 4 4 3 4 ; 0 7 ; 7 ; 4 7 4 ; y 28 4 4 4 4 4
6.
5
7.
25 3 y 2 y ; 25 3 y 2 y 2 y 2 y ; 25 5 y 0 ; 25 25 5 y 0 25 ; 0 5 y 25 ; 5 y 25 ;
w w w w w 10 ; 5 5 10 5 ; 0 5 ; 5 ; 2 5 2 ; w 10 2 2 2 2 2
; y 8.
5 y 25 5 5
25 ; y5 5
10 y 2 8 y ; 10 y 2 2 8 y 2 ; 10 y 0 8 y 2 ; 10 y 8 y 2 ; 10 y 8 y 8 y 8 y 2 ; 2 y 0 2 ; 2 y 2
; 9.
5 x 12 12 ; x ; x 2.4 5 5 5
2 y 2 2 ; y ; y 1 2 2 2 2 2 2 3 2 3 3 7 3 7 2 21 x 5 12 ; x 5 5 12 5 ; x 0 12 5 ; x 7 ; x 7 ; x ; x ; x ; x 10.5 3 3 3 3 2 3 2 2 1 2 1 2
10. m
1 2 1 2 1 2 1 2 1 1 2 1 4m ; m 4m 4m 4m ; 3m 0 ; 3m ; 3m 2 3 2 3 2 3 2 3 2 2 3 2
; 3m 0
2 2 1 3 2 1 4 3 7 1 7 1 7 1 7 ; 3m ; 3m ; 3m ; 3m ; m ; m 3 2 3 2 6 6 3 6 3 63 18
; m 0.388
Section 1.3 Case I Solutions - Solving Linear Equations Containing Parentheses and Brackets x 6 ; x 6 1 1
1.
x 2x 3 3 ; x 2 x 3 3 ; x 3 3 ; x 3 3 3 3 ; x 0 6 ; x 6 ;
2.
2 3 x 1 3 x 5 ; 2 3x 3 3 x 5 ; 2 3 3x 3 5 x ; 1 3x 8 x ; 1 1 3x 8 1 x
; 0 3x 7 x ; 3x 7 x ; 3x x 7 x x ; 4 x 7 0 ; 4 x 7 ; 3.
4 x 7 ; x 1.75 4 4
2 3 x 1 5x 0 ; 2 3x 3 5x 0 ; 2 3 3x 5x 0 ; 5 2 x 0 ; 5 5 2 x 0 5 ; 0 2x 5
Hamilton Education Guides
69
Linear Equations and Inequalities
; 2 x 5 ; 4.
Solutions
2 x 5 5 ; x ; x 2.5 2 2 2
4 x 1 3x 2 x 1 ; 4 x 4 3x 2 x 2 ; 4x 3x 4 2 x 2 ; x 4 2 x 2 ; x 2 x 4 2 x 2 x 2
; x 4 0 2 ; x 4 2 ; x 4 4 2 4 ; x 0 2 ; x 2 ; 5.
2 5 x 2 x 3 0 ; 25 x 2 x 3 0 ; 2 7 x x 3 0 ; 14 2 x x 3 0 ; 14 3 2 x x 0
; 17 3x 0 ; 17 17 3x 0 17 ; 0 3x 17 ; 3x 17 ; 6.
x 5 3 x 1 2 2 ; x 5 3x 3 2 2
3x 17 17 ; x ; x 5 .67 3 3 3
; x 5 3x 1 2 ; x 5 3x 1 2 ; x 3x 5 1 2
; 2 x 4 2 ; 2 x 4 4 2 4 ; 2 x 0 6 ; 2 x 6 ; 7.
x 2 ; x 2 1 1
2 x 6 6 ; x ; x 3 2 2 2
3 x 1 2 3x 5 ; 3 x 1 2 3x 5 ; 3 x 3 3x 5 ; 3 x 3 3x 5 ; 3 3 x 3x 5
; 0 x 3 x 5 ; x 3x 5 ; x 3x 3 x 3x 5 ; 2 x 0 5 ; 2 x 5 ; 8.
5 x 3 4 x 8 ; 5 x 3 4x 8 ; 5 3 x 4 x 8 ; 8 5x 8 ; 8 5 x 8
; 8 8 5 x 8 8 ; 0 5 x 16 ; 5 x 16 ; 9.
2 x 5 5 ; x ; x 2.5 2 2 2
5 x 16 ; x 3.2 5 5
3 2 x 5 4x 3 3x ; 3 2 x 5 4 x 3 3x ; 3 5 2 x 4x 3 3x ; 8 2 x 3 3x ; 8 8 2 x 3 8 3x
; 0 2 x 5 3x ; 2 x 5 3x ; 2 x 3x 5 3x 3x ; x 5 0 ; x 5 10. 6 x 2 2 x 1 3 x 2 ; 6 x 12 2 x 2 3x 6 ; 6 x 2 x 12 2 3x 6 ; 4 x 14 3x 6 ; 4 x 3x 14 3x 3x 6 ; x 14 0 6 ; x 14 6 ; x 14 14 6 14 ; x 0 20 ; x 20
Section 1.3 Case II Solutions - Solving Linear Equations Containing Integer Fractions
y 5 2 y 5 5 y 2 y y y 3y 5 3y 1 1 1 1 1 1 y y5 ; y y y y5 ; 05 ; 5 ; 5 ; ; 25 2 5 2 5 5 5 2 5 10 10 10 1
1.
; 3y 1 5 10 ; 3y 50 ;
3 y 50 50 ; y ; y 1667 . 3 3 3
A second way to solve this problem is as follows: 1 5 2 1 y y 1 1 1 1 1 1 1 1 5 2 y 5 ; y y5 ; y y y y 5 ; 0 5 ; y 5 ; y5 2 5 10 2 5 2 5 5 5 2 5 25
;
3 y 1 5 10 0 3 y 50 3y 5 3 y 50 0 3y 3 y5 ; 5 55 ; 0 ; 0 ; ; 3 y 50 1 10 0 ; 10 1 10 10 10 1 10 10 1
; 3y 50 0 ; 3y 50 50 0 50 ; 3y 0 50 ; 3y 50 ;
2.
x 3
3.
y
3 y 50 50 ; y ; y 1667 . 3 3 3
x 2 1 x 3 2 x x x x x x x 3x 2 3 2 x 3 3 0 ; 3 ; 3 ; x 3 ; x 3 ; x 2 ; x 3 ; ; 1 2 2 2 2 2 1 2 2 2 2 3 2 3
2 2 y 1 ; 1 3 3
2 1 3 2 1 ; y 1 3 3
Hamilton Education Guides
5 5 3 2 5 5 2 3 2 1 3 1 2 y ; ; y y ; y 3 3 3 3 3 3 3 3
70
Linear Equations and Inequalities
;
Solutions
3 5 5 3 y ; y 1 5 3 3 5
4.
u 3 1 u 6 3u u u u 2u 6 2 u 18 1 9 u u 6 ; 6 ; 6 ; ; 2u 1 6 3 ; 2u 18 ; ; ; u ; u9 1 3 3 3 3 1 2 2 1 3 1
5.
s 1
1 3 2 2 5 3 s 3 2 10 3 5 13 5 5 13 5 13 5 2 3 2 s ; s s ; s s ; s s ; s0 s ; s 3 5 3 5 3 5 3 5 3 3 5 3 5 3
; s
5 5s 13s 13 5 13 13 13 5 13 5 s 13s 5 5 s 13s 1 5 ; s ; s s s s ; s s0 ; ; 1 5 3 5 3 5 5 5 3 5 3 1 5 3 5 3
;
s 8s 5 24 25 25 ; 8 s 3 5 5 ; 24 s 25 ; ; s ; s 1.04 5 3 24 24 24
w 1 3 2 w 3 2 w 5w 4 w 4 w 2 w 5w w4 ; 1 w 4 ; w4 ; 4 ; 4 ; ; 4 w 1 3 4 3 3 3 3 3 3 3 3 3 3 1
6.
; 4 w 12 ;
7.
x
12 4 w 12 3 ; w ; w ; w 3 4 4 4 1
2 1 4 1 2 5 5 2 5 5 2 1 2 4 1 5 2 x ; x 1 x ; x x ; x x ; x x x x ; x x 0 3 4 3 4 3 4 3 4 4 3 4 4 4 3
; x
5 2 2 2 5 2 5 2 x 0 ; x x 0 ; x x ; 1 4 3 3 3 4 3 4 3
5 2 1 x ; 4 3 1
2 5 2 1 4 1 5 x x ; 1 4 3 4 3
8 2 x 2 1 2 2 4 5 ; x ; x ; 4 4 ; x ; x 2 ; x 2.67 4 4 3 4 3 3 3 3
8.
t 5
;
9.
2 2 2 2 2 t ; t t 5 t t ; t t 5 0 ; 1 3 3 3 3 3
2 1 t 5 ; 1 3
1 3 1 2 3 2 2 t 5 ; t 5 t 5 ; 1 3 3 3
5 3 3 5 3 t 5 ; t 5 ; t ; t 3 3 5 3 5 1
2 5 3 z 1 4 1 12 2 10 3 4 1 14 13 5 14 13 5 2 3 1 4 3 2 z 4 z 2 z 1 ; z z z z ; z ; ; 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 14 5 13 3 5 31 5 15 5 15 5 15 75 70 39 5 31 z ; z ; z ; ; z ; z ; z 0.605 z ; 15 3 5 4 15 4 31 4 31 4 31 124 4 15
10. 6
6
1 5 2 t 1 1 7 1 52 1 2 1 7 1 1 7 t t 1 t ; 6 t t t ; 6 t t t ; 6 t 1 t ; 6 t t ; 6 t t 1 5 5 2 5 2 5 2 5 2 5 2 2 1 5 1 7 1 1 2 1 2 2 2 1 2 1 5 7 t ; 6 t t t ; 6 t t ; 6 t t t t ; 6 t t 0 2 1 5 2 5 2 5 5 5 2 5 2 5
; 66
;
1 5 2 2 1 2 1 2 1 2 5 4 1 2 t 6 ; t t 0 6 ; 0 t t 6 ; t t 6 ; t 6 ; t 6 2 5 2 5 2 5 2 5 2 5 10
9 9 10 10 6 10 60 6 10 t 6 ; t 6 ; t ; t ; t ; t 6.67 10 9 10 9 1 9 1 9 9
A second way to solve this problem is as follows: 6
1 5 2 t 1 1 7 1 52 1 2 1 7 t t 1 t ; 6 t t t ; 6 t t t ; 6 t 1 t ; 6 0.5t 1 14 . t ; 6 t t 2 5 5 2 5 2 5 2 5 2
Hamilton Education Guides
71
Linear Equations and Inequalities
Solutions
8.
8 4 8 1 2 x 0.8 4 10 ; 2 x 0.8 0 ; 2 x 0.8 ; ; x ; x ; x ; x 0.4 2 10 2 2 2 10 1 . 0.5 x 01 . 0 ; 0.5x 135 . 0 ; 0.5 x 125 . 125 . 0 125 . 135 . 0.5 x 0.2 0 ; 135 . 01 . 0 ; 0.5 x 125
9.
125 25 10 125 25 0 .5 x 125 . 125 . 100 . ; 0.5 x 125 . ; ; 0.5 x 0 125 ; x ; x ; x ; x ; x 2.5 5 100 5 0.5 0.5 0.5 10 10 10 0.5 0.8 x 0.2 5 2.2 x ; 0.5 0.8 x 0.2 5 2.2 x ; 0.5 0.8 x 4.8 2.2 x ; 0.4 x 2.4 2.2 x
; 0.4 x 2.2 x 2.4 2.2 x 2.2 x ; 2.6 x 2.4 0 ; 2.6 x 2.4 2.4 0 2.4 ; 2.6 x 0 2.4 ; 2.6 x 2.4 24 12 10 24 2 .6 x 2.4 12 10 ; ; x ; x ; x ; x 0.923 26 26 2 .6 2.6 10 13 13 10 . 12 . x 17 . 2.8 ; 0.25x 12 . x 3 2.8 10. 0.25x 13 . 12 . x 17 . 2.8 ; 0.25 x 13 . x 17 . 13 . 2.8 ; 145
2 10 . x 0.2 2 100 145 20 10 . x 3 3 2.8 3 ; 145 . x 0 0.2 ; 145 . x 0.2 ; ; 145 ; x ; x ; x ; x 0.138 145 145 . 145 10 145 . 145 100
Section 1.4 Solutions - Formulas 1.
I. V r 2 h ; V hr 2 ;
II. V r 2 h ; V r 2 h ; 2.
2 V V V hr r2 ; r2 ; ; h h h h
V
r
2
r2
V
h
; r
V
h
V V r 2 h h ; h 2 ; r 2 r r 2
I. 2 x 2 y 3 x y 5 ; 2x 2 y 3x 3y 5 ; 2x 3x 2 y 3x 3x 3 y 5 ; x 2 y 0 3y 5 ; x 2 y 3 y 5 ; x 2 y 2 y 3 y 2 y 5 ; x 0 y 5 ; x y 5 ;
y5 x y 5 ; x ; x y 5 1 1 1
II. 2 x 2 y 3 x y 5 ; 2 x 2 x 2 y 3x 2 x 3 y 5 ; 0 2 y x 3 y 5 ; 2 y x 3 y 5 ; 2 y 3 y x 3 y 3 y 5 ; y x 0 5 ; y x 5 ;
y x 5 x5 ; y ; y x 5 1 1 1
C C 2 r C r ; r ; 2 2 2 2
3.
C 2r ;
4.
I. d rt ;
5.
I. y b
d d d rt ; t ; t r r r r
II. d rt ;
d d rt d ; r ; r t t t t
2 1 2 2 2 1 1 1 2 1 x b ; y b b x b b ; y b b x 0 ; y b 0.67b x ; y 1.67b x 3 3 3 3 3 3 3 3 3 3
; 3 y 1.67b 3 II. y b
1 x ; 3y 5.01b x ; x 3 y 5.01b 3
2 1 2 2 2 1 1 1 2 1 x b ; y b b x b b ; y b b x 0 ; y b 0.67b x ; y 1.67b x 3 3 3 3 3 3 3 3 3 3
; y y 1.67b
0.33 x y b 0.33x y 1 1 1.67 x y ; 0 1.67b x y ; 167 ; b . b 0.33x y ; 3 3 1.67 1.67 1.67
Hamilton Education Guides
72
Linear Equations and Inequalities
6.
y
Solutions
y abc abc ; ; 3 y 1 a b c ; 3y a b c ; 3y a a a b c ; 3y a 0 b c 3 1 3
; 3y a b c ; 3y a b b b c ; 3y a b 0 c ; 3y a b c ;
3 y a b c 1 1
; 3y a b c ; 3y a b c ; c 3 y a b 7.
I. m II. m ;
8.
yb m yb ; ; m x y b 1 ; mx y b ; mx b y b b ; mx b y ; y mx b x 1 x yb m yb ; ; m x y b 1 ; mx y b ; mx y y y b ; mx y 0 b ; mx y b x 1 x
mx y b mx y b ; mx y b ; b mx y ; 1 1 1 1
3V 3V 3V r 2 h 1 r 2 h V r 2 h I. V r 2 h ; V ; ; 3 V 1 r 2 h ; 3V r 2 h ; ; 2 ; 2 2 2 1 3 3 3 r h r h r h r h
2 3V 1 3V hr r 2 h V r 2 h r2 II. V r 2 h ; V ; ; 3 V 1 r 2 h ; 3V r 2 h ; 3V hr 2 ; ; 1 3 h 3 h h 3 ; r2
3V ; h
r2
3V 3V ; r h h
3V 3V 1 3V r 2 h r 2 h V r 2 h h ; h 2 III. V r 2 h ; V ; ; 3 V 1 r 2 h ; 3V r 2 h ; ; 2 2 2 1 3 3 3 r r r r
9.
I. E mc 2 ; II. E mc 2 ;
2 E E E mc c2 ; c2 ; ; m m m m
E c
2
mc 2 c
2
;
E c
2
m ; m
c2
E E ; c m m
E c2
10. I. y 2 x 3 y 3 5 y x ; y 2x 3y 3 5 y x ; y 3 y 2 x 3 5 y x ; 4 y 2x 3 5 y x ; 4 y 4 y 2 x 3 5 y 4 y x ; 0 2x 3 y x ; 2x 3 y x ; 2x 3 3 y x 3 ; 2x 0 y x 3 ; 2x y x 3 ; 2x x y x x 3 ; x y 3 ;
x y 3 ; x y 3 ; x 3 y 1 1
II. y 2 x 3 y 3 5 y x ; y 2x 3y 3 5 y x ; y 3 y 2 x 3 5 y x ; 4 y 2x 3 5 y x ; 4 y 5 y 2 x 3 5 y 5 y x ; y 2x 3 0 x ; y 2x 3 x ; y 2 x 2 x 3 x 2 x ; y 0 3 x ; y 3 x ; y 3 3 x 3 ; y 0 x 3 ; y x 3 ;
y x 3 x3 ; y ; y 3 x 1 1 1
Section 1.5 Case I Solutions - Addition and Subtraction of Linear Inequalities 1.
x 10 12 ; x 10 10 12 10 ; x 0 12 10 ; x 22
2.
3 u 8 ; 3 u u u 8 ; 3 u 0 8 ; 3 u 8 ; 3 3 u 8 3 ; 0 u 11 ; u 11
3.
8 x 5 ; 8 x x x 5 ; 8 x 05 ; 8 x 5 ; 88 x 58 ; 0 x 3 ; x 3
4.
. 32 . w 2.8 32 . ; 0 w6 ; w 6 32 . w 2.8 ; 32
Hamilton Education Guides
73
Linear Equations and Inequalities
Solutions
2 3 2 0.65 2 62 8 0.65 ; t 0.65 ; t 2.67 0.65 ; t 2.02 ; 0.65 0.65 t ; 0t 3 3 3 3
5.
0.65 t 2
6.
s
7.
1 3 1 0.9 0.8 31 4 1 0.8 w 1 0.9 ; 0.8 0.8 w 01 . ; w 01 . ; w 133 ; 0 w . 01 . ; w 1.43 3 3 3 3
8.
1
1 7 2 h 2 8 3 72 16 3 9 19 9 19 2 3 h2 ; h ; ; h ; h h h 7 8 7 8 7 8 7 8 7 8
;
19 7 9 8 9 19 9 9 19 9 133 72 205 9 19 h 0 ; h ; h ; h ; h ; h ; h 3.66 87 7 8 7 8 7 7 8 7 56 56
9.
3 3 1 5 3 3 53 3 8 3 83 3 3 11 ; s0 1 ; s ; s ; s ; s ; s 2.2 5 5 5 5 5 5 5 5 5 5 5 5
y 1.25 2
2 4 3 1.25 83 11 3 1.25 ; y 1.25 ; y 2.75 125 ; y 1.25 1.25 ; y 0 . 4 4 4 4
; y 1.5
1 3 2 2 5 2 2 5 12 7 2 5 2 2 2 5 12 2 3 2 10 2 2 ; x ; x 10. x 1 2 ; x ; x 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 ; x
74 3 5 35 5 84 10 5 74 222 175 47 5 5 74 5 ; x0 ; x ; x ; x ; x ; x 0.45 35 3 3 35 3 35 3 3 35 3 105 105 Section 1.5 Case II Solutions - Multiplication and Division of Linear Inequalities 2 1 2 2 1 2 1 ; 4 y ; y ; y ; y 0.167 3 4 12 3 4 3 4
1.
4y
2.
3.
2 2 2 2 2 2 1 2 1 2 2 1 2 2h ; 2h 2h 2h ; 2h 0 ; 2h 0 ; 0 2h ; 2h ; 2 h ; h 5 5 5 5 5 5 5 5 2 5 2 5 2
1 3 2 2 3 2 5 3 5 3 5 2 2 2 3 2 2 5 x 1 ; x ; x ; x ; x ; x ; x ; x 2.5 3 3 3 3 3 3 3 3 2 3 3 2 3 2 2
; h
1 5
Another way of solving the problem is:
2 1 2 h 1 2 2 1 2h ; h ; h or h ; 5 5 2 2 10 5 5
4.
w w w 3 ; 7 3 7 ; 21 ; w 21 7 7 1
5.
w w w 5 ; 2 5 2 ; 10 ; w 10 2 2 1
6.
1 5 1 8 1 6 4 9 64 24 1 1 2 4 1 5 1 9 6 4 u 2 u 1 ; u ; ; u ; u ; u ; u ; u 0.53 4 5 4 5 4 5 4 5 9 4 5 9 59 45
7.
2 x 2
2 4 3 1 11 1 1 4 83 1 15 3 11 1 11 4 1 ; 2 x ; 2 x ; 2 x ; 2x ; 2 x ; 2 x 4 1 4 1 4 4 1 4 1 4 4
15 1 15 1 1 15 1 15 2 x ; x ; x ; x ; x 1.875 2 4 2 4 2 42 8 24 x 3 .28 2.4 2.4 24 100 2400 10 3.28x 2.4 ; ; x ; x ; x ; x ; x 0.732 328 3 .28 3.28 3.28 10 328 3280 100 1 1 y 2 ; 4 y 2 4 ; y 8 ; y 8 4 4
;
8.
9.
Hamilton Education Guides
74
Linear Equations and Inequalities
Solutions
5 3 1 2 4 3 x 15 1 8 3 16 11 16 11 1 3 11 11 16 11 x ; x ; x x x ; x0 10. 5 2 x ; ; 3 4 3 4 3 4 3 4 3 4 4 4 3 4 16 4 11 16 4 16 4 64 16 16 11 16 11 16 11 x 0 x x ; 0 x ; ; ; x ; x ; x 1.94 4 3 3 4 3 4 3 4 3 11 3 11 3 11 33
;
Section 1.5 Case III Solutions - Mixed Operations Involving Linear Inequalities 1.
2x 9 9x 20 ; 2x 9x 9 9x 9x 20 ; 11x 9 0 20 ; 11x 9 20 ; 11x 9 9 20 9 ; 11x 0 11 ; 11x 11 ;
2.
x 11 11 ; x 1 11 11
15x 3 20x ; 15x 20x 3 20x 20x ; 5x 3 0 ; 5x 3 3 0 3 ; 5x 0 3 ; 5x 3 ; ; x
5 x 3 5 5
3 ; x 0.6 5 4 x 5 1 5 ; x ; x 1 ; x 1.25 4 4 4 4
3.
4x 5 10 ; 4x 5 5 10 5 ; 4x 0 5 ; 4 x 5 ;
4.
12t 4 4t 8 ; 12t 4t 4 4t 4t 8 ; 16t 4 0 8 ; 16t 4 8 ; 16t 4 4 8 4 ; 16t 0 12 ; 16t 12 ;
5.
t 12 3 16 12 ; t ; t ; t 0.75 16 16 16 4
4w 5 8w 17 ; 4w 8w 5 8w 8w 17 ; 12w 5 0 17 ; 12w 5 17 ; 12w 5 5 17 5 ; 12w 0 22 ; 12w 22 ;
6.
10 y 4 4 y 12 ; 10 y 4 y 4 4 y 4 y 12 ; 6 y 4 0 12 ; 6 y 4 12 ; 6 y 4 4 12 4 ; 6 y 0 8 ; 6y 8 ;
;
y 109 y y 24 85 y 7.27 ; 3 3 7.27 ; y 21.81 ; ; 3 15 3 15 3 3
3
2 3 1 15 4 6 1 19 7 19 7 4 1 3 5 4 7 7 19 7 19 7 t t2 ; t t ; t ; t0 ; t ; ; 5 3 5 3 5 3 5 3 3 3 5 3 5 3 5 3
;
9.
6 y 8 4 1 ; y ; y 1 ; y 1.33 6 6 3 3
8 3 17 5 y 2 3 y 5 3 2 1 5 3 y 15 2 5 3 y 17 8 y 17 17 8 17 y 0 5 1 ; ; ; ; ; 3 5 3 53 3 3 5 3 3 3 5 3 3 5 3 3 3 5 3
7.
8.
w 12 22 22 5 11 ; w ; w ; w 1 ; w 183 . 12 12 12 6 6
19 3 7 5 t 53
;
57 35 22 7 t ; t ; 1 t ; 147 . t or t 1.47 . A second way to solve this problem is as follows: 15 15 15
3
2 3 1 15 4 4 1 4 1 4 1 3 5 4 6 1 4 1 t t2 ; 3 tt t 2 ; 3 t 02 ; 3 t2 ; t ; 5 3 5 3 5 3 5 3 5 3 5 3
;
7 5 19 3 19 7 19 19 7 19 35 57 7 19 22 22 t ; t ; 0t ; t ; t ; t ; t ; t 1.47 35 5 5 3 5 3 5 15 15 15 5 3
2 5 3 10 3 13 3 . w 2.6 ; 3.4 w w w ; 3.4 w 0 ; 3.4 w ; 34 5 5 5 5 w 0.8 . 34 . w 2.6 34 . ; 0 w 0.8 ; w 08 . ; ; 34 ; w 0.8 1 1 3.4 w 2
. x 0.35 ; 0.48x 15 . x 25 . 15 . x 15 . x 035 . ; 102 . x 25 . 0 035 . ; 102 . x 25 . 035 . 10. 0.48x 2.5 15
. x 25 . 035 . 035 . 035 . ; 102 . x 285 . 0 ; 102 . x 2.85 2.85 0 285 . ; 102 . x 0 285 . ; 102 285 . 2.85 285 100 285 81 102 2.85 100 x . x 2.85 ; ; 102 ; x ; x ; x ; x ; x2 ; x 2.794 102 . 102 102 102 . 100 102 102 . 102 100
Hamilton Education Guides
75
About the Author Dan Hamilton received his B.S. degree in Electrical Engineering from Oklahoma State University and Master's degree, also in Electrical Engineering from the University of Texas at Austin. He has taught a number of math and engineering courses as a visiting lecturer at the University of Oklahoma, Department of Mathematics, and as a faculty member at Rose State College, Department of Engineering Technology, at Midwest City, Oklahoma. He is currently working in the field of ae rospace technology and has published several books and numerous technical papers.
Hamilton Education Guides
76