128 91 3MB
English Pages 168 [166] Year 2015
LECTURES ON PSEUDO-DIFFERENTIAL OPERATORS: Regularity theorems and applications to non-elliptic problems
by ALEXANDER NAGEL and Ε. M. STEIN
Princeton University Press and University
of Tokyo Press
Princeton, New Jersey 1979
Copyright Q 19 79 by Princeton University Press All Rights Reserved
Published in Japan Exclusively by University of Tokyo Press in other parts of the world by PrincetonJUniversity Press
Printed in the United States of America by Princeton University Press, Princeton, New Jersey
Library of Congress Cataloging in Publication Data will be found on the last printed page of this book
Table of Contents
Preface Introduction Chapter I §1 §2 §3
Further Regularity Theorems and Composition of Operators
Sobolev and Lipschitz spaces Non-isotopic Sobolev and Lipschitz spaces Composition of operators A Fourier integral operator; change of variables
Chapter IV §12 §13 §14 §15 §16
Basic Estimates for Pseudo Differential Operators
Examples of symbols The distance function p(x, ξ) LP estimates (p ^ 2) L estimates
Chapter III
§8 §9 §10 §11
Homogeneous Distributions
Homogeneity and dilations in IR n Homogeneous groups Homogeneous distributions on the Heisenberg group
Chapter II §4 §5 §6 §7
1
Applications
Normal coordinates for pseudoconvex domains Qi 3 and the Cauchy-Szego integral Operators of Hormander and Grushin The oblique derivative problem Second-order operators of Kannai-type
7 7 14 21 31 31 35 46 55
76 76 82 89 98 104 104 109 115 122 138
Appendix
144
References
156
Preface
The theory of pseudo-differential o p e r a t o r s (which originated a s singular integral operators) was largely influenced by i t s appli cation to function theory in one complex variable and regularity p r o p e r t i e s of solutions of elliptic partial differential equations. It is our goal h e r e to give an exposition of some new c l a s s e s of pseudo-differential o p e r a t o r s relevant to s e v e r a l complex variables and c e r t a i n non-elliptic problems. As such this monograph contains the details of the r e s u l t s we announced e a r l i e r in [34], together with some background m a t e r i a l . Wnat is presented below was the subject of a course given by the second author at Princeton University during the Spring t e r m of 1978. We a r e very happy to acknowledge the a s s i s t a n c e given us by David J e r i s o n . He prepared a draft of the lecture notes of the c o u r s e and made several valuable suggestions which a r e incorpo rated in the text. We should also like to thank Miss Florence Armstrong for h e r excellent job of typing of the manuscript.
1 INTRODUCTION
T h e o b j e c t of t h i s m o n o g r a p h i s to p r e s e n t t h e t h e o r y of c e r t a i n n e w c l a s s e s of p s e u d o - d i f f e r e n t i a l o p e r a t o r s .
T h e s e c l a s s e s of o p e r a t o r s
i n t e n d e d t o s a t i s f y two g e n e r a l r e q u i r e m e n t s . b e r e s t r i c t i v e e n o u g h t o b e b o u n d e d in spaces.
are
On t h e o n e h a n d , t h e y s h o u l d
L i p s c h i t z s p a c e s , and S o b o l e v
On t h e o t h e r h a n d , t h e y s h o u l d b e l a r g e e n o u g h to a l l o w f o r a
d e s c r i p t i o n of t h e p a r a m e t r i c i e s of s o m e i n t e r e s t i n g n o n - e l l i p t i c d i f f e r e n t i a l and p s e u d o - d i f f e r e n t i a l o p e r a t o r s and o t h e r o p e r a t o r s s u c h a s t h e C a u c h y Szego and H e n k i n - R a m i r e z i n t e g r a l s f o r s t r i c t l y p s e u d o - c o n v e x d o m a i n s . B e f o r e d i s c u s s i n g t h e s e n e w c l a s s e s h o w e v e r , we w i l l b r i e f l y r e c a l l s o m e b a s i c d e f i n i t i o n s , and o u t l i n e t h e s i t u a t i o n in t h e c l a s s i c a l
"elliptic"
case. A p s e u d o - d i f f e r e n t i a l o p e r a t o r , defined initially on the Schwartz class
has the f o r m :
(1)
where
i s t h e F o u r i e r t r a n s f o r m , and t h e s y m b o l
i s s m o o t h , and h a s a t m o s t p o l y n o m i a l g r o w t h in i m p o s e s additional d i f f e r e n t i a l inequalities on this s y m b o l . t h e " c l a s s i c a l e l l i p t i c s y m b o l s " of o r d e r
m
One also For example,
a r e defined by:
(2)
One i n t e r e s t in t h e s e c l a s s e s a r i s e s f r o m t h e f a c t t h a t a p a r a m e t r i x f o r a n
- Z -
an elliptic differential operator of order differential operator
m can be written as a pseudo-
with symbol in
.
The appearance of the Fourier transform in the definition (1) of a pseudo-differential operator often makes this the appropriate form for proving of
2
L
estimates.
x, the operator
the boundedness of
For example, if the symbol
a(x,D)
is then just a Fourier multiplier operator, and
2 η a ( x , D ) f r o m L (]R ) t o i t s e l f i s e q u i v a l e n t t o t h e
uniform boundedness of the symbol a(£). to prove that if from
a(x, ξ) is independent
a(x, ξ) e
0
^ then a(x, D)
More generally, it is fairly easy extends to a bounded operator
l3(IRn) to itself. However, if one wants to prove that pseudo-differential operators
are bounded on
Lp ( ρ Φ 2 ) o r o n L i p s c h i t z s p a c e s , o n e n e e d s t o r e p r e s e n t
these operators in another way as singular integral operators.
These are
operators of the form (3)
f—> Kf(x) =
C
K(x, x-z) f (z) dz .
IR Here the kernel K(x,y)
will in general be singular when
integral in (3) must be taken in a principal value sense.
y = 0, so the By explicitly
writing out the Fourier transform in (1), and formally interchanging the order of integration, one sees that the kernel K(x,y)
of the operator is
related to the symbol a(x, ξ) by the formula: (4)
K(x,y) = (2ir)"n C e l ( y ' J ,n IR If
a(x, ξ) ε
Q
?)
a(x, ξ) d4 .
i s a classical elliptic symbol, one can use (4) to
-3-
o b t a i n e s t i m a t e s o n t h e a s s o c i a t e d k e r n e l , of t h e f o r m
(5) at l e a s t when
( F o r f u t u r e r e f e r e n c e , n o t e t h a t (5) i s
e q u i v a l e n t to (5') where
is the b a l l c e n t e r e d at
Once one has e s t i m a t e s
x with radius
, one can apply the c l a s s i c a l
C a l d e r o n - Z y g m u n d t h e o r y to o b t a i n
estimates
singular integral o p e r a t o r with k e r n e l
for the
F o r e x a m p l e , it f o l l o w s
e a s i l y f r o m (5) o r (5') t h a t o n e h a s t h e w e l l - k n o w n c o n d i t i o n : (6)
for a kernel
K(x,y)
c o r r e s p o n d i n g to a s y m b o l
It i s t h i s
a p p r o a c h t h a t w e t r y to i m i t a t e in s o m e n o n - e l l i p t i c In s t u d y i n g a v a r i e t y of n o n - e l l i p t i c p r o b l e m s ,
situations. several more general
c l a s s e s of p s e u d o - d i f f e r e n t i a l o p e r a t o r s h a v e b e e n d e v e l o p e d by H o r m a n d e r ,
C a l d e r o n and V a i l l a n c o u r t ,
B e a l s a n d F e f f e r m a n , and B e a l s .
- for example
Boutet de Monvel, Sjostrand,
(See [ 1] a n d [25] f o r r e f e r e n c e s . ) In
t h e s e c l a s s e s , o n e a g a i n i m p o s e s c e r t a i n c o n d i t i o n s o n t h e s i z e of t h e d e r i v a t i v e s of a s y m b o l , b u t t h e c o n d i t i o n s a r e d i f f e r e n t f r o m t h o s e i n (2). F o r e x a m p l e , o n e c a n a l l o w a c e r t a i n l o s s in t i v e , a n d a s i m i l a r g a i n in
with e v e r y
with every derivative.
x
deriva-
In a l l of t h e s e
c a s e s , i t i s p r o v e d , a m o n g o t h e r t h i n g s , t h a t s y m b o l s of o r d e r z e r o g i v e rise to operators which are bounded on
2
L .
(The proofs, however, are
considerably more delicate than in the classical elliptic case. ) However, boundedness in
I? (p^2) or in Lipschitz spaces is in general false, and
one does not obtain appropriate estimates for the associated singular integral operators. O n t h e o t h e r h a n d , F o l l a n d a n d S t e i n [16], a n d R o t h s c h i l d a n d S t e i n [39] have shown that parametricies for certain hypoelliptic differential
operators can be approximated, in an appropriate sense, by singular integral convolution operators on nilpotent Lie groups.
Since a version
of the Calderon-Zygmund theory is available in that context, they are able ρ to prove sharp L and Lipschitz estimates for these parametricies. However, these operators were not realized as pseudo-differential operators. W e c a n n o w e n u n c i a t e a b a s i c g u i d i n g p r i n c i p l e of o u r w o r k :
To treat
only those classes of symbols for which one can prove that the correspond ing operators have singular integral realizations with kernels having properties analogous to (5), (5'), and (6).
In this sense our approach to
pseudo-differential operators is essentially different from the generaliza tions which have been studied in the last dozen years.
What the more
g e n e r a l f o r m s o f ( 2 ) , ( 5 ' ) , a n d (6) m i g h t b e i s n o t a s i m p l e m a t t e r , b u t i t is in part motivated by the theory of singular integral operators on nilpotent groups, and the background for this is presented in Chapter 1. Our theory then proceeds along the following lines: _}_·
A ρ function is introduced in the
( χ , ξ) s p a c e w h i c h r e f l e c t s t h e
geometry of each particular situation and in t e r m s of which we will control the size of symbols and their derivatives.
This ρ function leads by
duality to a basic family of " b a l l s " in the χ space.
It i s the pseudo-
distance defined by these balls, and their volume in t e r m s of which we estimate the kernels of our operators (when realized as (3)). 2.
In this setup one can apply the Calderon-Zygmund theory (via a variant
ρ of (6)) to prove L estimates for our operators, assuming they a r e bounded 2
in L .
But here we must emphasize an important point.
work with a preliminary symbol c l a s s
S m (defined v e r y roughly by the P
requirement that the analogue of (5'') holds). 2
broad to allow L to
,). 1,1
estimates
At this stage we
Butthis c l a s s i s too
(in fact in the c l a s s i c a l c a s e it corresponds
So we must refine the c l a s s
S m ; the resulting c l a s s , P
cannot be defined in t e r m s of simple differential inequalities.
Sm , P
The actual
motivation for the definition we give i s in t e r m s of the explicit examples presented in Chapter 1.
The c l a s s
also has the further property that
it allows Lipschitz space and Sobolev space estimates - and this is carried out in Chapter 3.
There a r e two types of estimates of this kind, isotropic
and non-isotropic ones. 3. ~
We then show that operators whose symbols belong to S m a r i s e in P
various applications such a s : (i)
The Cauchy-Szego integral and Henkin-Ramirez integral for
strictly pseudo-convex domains. (ii)
The parametricies for
on boundaries of strictly pseudo-
convex domains, in the sub-elliptic c a s e .
(iii)
The p a r a m e t r i c i e s of o p e r a t o r s of Hormander
in the " s t e p 2" c a s e .
X^+ L· X. , j =1 J
(The higher step c a s e needs a generalization of our
theory; in this connection, s e e the announcement [35]. ) (iv)
The "oblique derivative" problem.
of our symbol c l a s s e s i s
Here a further extension
needed, because in general the elliptic symbols
do not belong to S m , and the p a r a m e t r i c i e s a r e a mixture of S m symbols P P with elliptic symbols. (v)
The p a r a m e t r i c i e s for the second-order singular o p e r a t o r s of
the type f i r s t studied by Kannai, e . g . ,
-7-
C h a p t e r I.
Homogeneous distributions
C h a p t e r I m a y b e t h o u g h t of a s a r e v i e w of s o m e k n o w n f a c t s w h i c h a r e b a s i c in m o t i v a t i n g o u r t h e o r y .
P r o o f s a r e for the m o s t p a r t only
sketched. §1.
H o m o g e n e i t y and d i l a t i o n s in Denote
.
Fix positive exponents
define
and
Observe that
(1)
(2)
(3) (More g e n e r a l l y , one might let where
A
be g i v e n b y m u l t i p l i c a t i o n b y t h e m a t r i x
is a r e a l m a t r i x w h o s e e i g e n v a l u e s all h a v e p o s i t i v e
real part. ) T h e c h a n g e of v a r i a b l e f o r m u l a f o r d i l a t i o n s
where
(In g e n e r a l ,
a = trace
is g i v e n by
A. )
D e n o t e E u c l i d e a n n o r m by P r o p o s i t i o n 1. (a) (b)
There exists a n o r m function
satisfying
if and o n l y if i s e v e r y w h e r e c o n t i n u o u s and
(c) (d)
(This is j u s t a n o r m a l i z a t i o n . )
-8-
Proof.
Define
To o b t a i n s m o o t h n e s s , apply the
implicit function t h e o r e m .
T h e r e s t of t h e p r o p o s i t i o n i s o b v i o u s .
D e f i n e p o l a r c o o r d i n a t e s by
Remark.
where
since this holds when
and both s i d e s
t r a n s f o r m the s a m e way u n d e r the dilations P r o p o s i t i o n 2.
where
on the unit s p h e r e and
to i s a p o s i t i v e
dcr d e n o t e s t h e u s u a l m e a s u r e f u n c t i o n on the s p h e r e .
p r o o f , a s i m p l e c a l c u l a t i o n of t h e J a c o b i a n , i s l e f t t o t h e r e a d e r . F a b e s and R i v i e r e Corollary.
The (See
p.20 . )
There exists a constant
such that for all
measurable,
Remark.
The c o r o l l a r y i m p l i e s that
i s l o c a l l y i n t e g r a b l e iff
i s i n t e g r a b l e a t i n f i n i t y iff Let
We s a y t h a t Let
f i s h o m o g e n e o u s of d e g r e e
K be a d i s t r i b u t i o n .
a l w a y s m e a n t e m p e r e d d i s t r i b u t i o n . ) If
if
(By d i s t r i b u t i o n w e s h a l l
K were a function homogeneous
of d e g r e e
It
i s t h e r e f o r e n a t u r a l to c a l l a d i s t r i b u t i o n
K h o m o g e n e o u s of d e g r e e
for every test function
X if
-9A distribution
K is
in a n o p e n s e t
if t h e r e i s a f u n c t i o n
such that class
We w i l l c a l l a d i s t r i b u t i o n
if it i s h o m o g e n e o u s of d e g r e e
K of
and A
Theorem 1.
K i s a d i s t r i b u t i o n of c l a s s X. if and o n l y if
K is a d i s t r i b u -
t i o n of c l a s s Proof.
Because
that
i t ' s e a s y to s e e
i s h o m o g e n e o u s of d e g r e e Let
there.
denote the
Choose
f u n c t i o n on
such that
has compact support,
in a n e i g h b o r h o o d of
so i t s F o u r i e r t r a n s f o r m i s
Denote
K
0.
(even analytic).
e v e r y w h e r e and
For sufficiently large
M, u s i n g h o m o g e n e i t y , we s e e t h a t
q u i c k l y e n o u g h a t i n f i n i t y so t h a t i s c o n t i n u o u s , and
d e r i v a t i v e of Example 1.
decreases
Therefore,
is c o n t i n u o u s e x c e p t at the o r i g i n .
i s h o m o g e n e o u s (of d e g r e e
for large
Similarly,
x , so t h a t a n y
is continuous outside the o r i g i n . Suppose
Re X; t h e n
K defines a distribution.
a r i s e in t h i s w a y .
In f a c t , if
qed. function away f r o m 0
t h a t i s h o m o g e n e o u s of d e g r e e fore,
that a g r e e s with
(by P r o p o s i t i o n 2 ) .
There-
C o n v e r s e l y , a l l d i s t r i b u t i o n s of c l a s s
K is s u c h a d i s t r i b u t i o n , let
be as above
-10Then
i s a d i s t r i b u t i o n of c l a s s X s u p p o r t e d at t h e o r i g i n . i s a s u m of d e r i v a t i v e s of t h e d e l t a f u n c t i o n a t t h e o r i g i n .
e a s y to c h e c k t h a t
E x a m p l e 2. 0, of d e g r e e sphere.
has homogeneity
Suppose -a
Thus It i s Therefore
In o r d e r t h a t a f u n c t i o n
away f r o m
d e f i n e a d i s t r i b u t i o n , it m u s t h a v e m e a n v a l u e z e r o o n t h e
C o n v e r s e l y , e a c h d i s t r i b u t i o n of c l a s s
- a i s t h e s u m of s u c h a
f u n c t i o n and a c o n s t a n t m u l t i p l e of t h e d e l t a f u n c t i o n a t P r o p o s i t i o n 3.
More generally,
g e n e o u s of d e g r e e
0.
suppose
is h o m o -
Then:
(a)
There exists a distribution
(b)
K c a n b e c h o s e n t o b e of c l a s s \
f o r all multiindices
K that a g r e e s with
such that
tion is vacuous u n l e s s
(Notice that this condi-
l i e s at c e r t a i n e x c e p t i o n a l points on the n e g a t i v e
real axis (c)
The distribution
t i o n s of
Proof sketch. degree zero.
K of c l a s s
for those
Write
is unique up to l i n e a r c o m b i n a -
for which
i s h o m o g e n e o u s of
Fix
converges absolutely for
Re
It c a n b e c o n t i n u e d a n a l y t i c a l l y to b e
-11m e r o m o r p h i c in
It h a s a t m o s t s i m p l e p o l e s a t t h e p o i n t s
a n d t h e s e p o l e s v a n i s h u n d e r t h e c o m p a t i b i l i t y c o n d i t i o n s of b ) .
is e n t i r e .
T h e m a i n p a r t of
i s (by a n a l y t i c c o n t i n u a t i o n )
T h u s p o l e s a r i s e only when if w e i m p o s e t h e c o n d i t i o n ( s )
In f a c t ,
and in t h a t c a s e t h e p o l e v a n i s h e s w h i c h a r e e q u i v a l e n t to t h o s e stated
in b). We c a r r y o u t t h e a r g u m e n t i n m o r e d e t a i l f o r t h e c a s e P r o p o s i t i o n 3'. away f r o m
Proof.
Suppose
0.
e x t e n d s to a d i s t r i b u t i o n of c l a s s - a
Suppose
definition:
i s h o m o g e n e o u s of d e g r e e
has m e a n value zero.
We g i v e a n a l t e r n a t i v e
We w i l l d e f i n e
exists works because
if a n d o n l y if
Note that t h e r e
such that
. It f o l l o w s t h a t
(In f a c t ,
b = l/maxaj
-12c o n v e r g e s absolutely as
Thus
is w e l l d e f i n e d .
Its h o m o -
geneity is also obvious. Now s u p p o s e
d o e s not h a v e m e a n v a l u e z e r o .
T h e r e is a c o n s t a n t
such that
i s h o m o g e n e o u s of d e g r e e Since
Kj
-a
and h a s m e a n v a l u e z e r o on the s p h e r e .
d e f i n e s a d i s t r i b u t i o n of c l a s s - a w e a r e r e d u c e d to s h o w i n g
that (4)
d o e s not.
Denote
i s a d i s t r i b u t i o n and a g r e e s w i t h exists a distribution
K
of c l a s s
Then
t h a t o c c u r in t h e s u m .
for all
t > 0.
Assume there a w a y f r o m 0.
so t h a t
The f o r m u l a implies f o r all
By h o m o g e n e i t y , w e a l s o h a v e
0.
- a that a g r e e s with Choose
for all other
away f r o m
t > 0.
i for all
t > 0.
Therefore
B u t a c h a n g e of v a r i a b l e in (4) s h o w s t h a t
a contradiction. Remark.
Let
i m p l i c i t y t h a t if
b e h o m o g e n e o u s of d e g r e e
-a.
We h a v e s h o w n
h a s m e a n v a l u e z e r o w i t h r e s p e c t to o n e h o m o g e n e o u s
-13norm
, t h e n it h a s m e a n v a l u e z e r o w i t h r e s p e c t to any h o m o g e n e o u s
norm
( s a t i s f y i n g P r o p o s i t i o n 1 a ) , b ) , c) b u t n o t n e c e s s a r i l y t h e
n o r m a l i z a t i o n d) ).
In f a c t , w e c a n s e e t h i s d i r e c t l y by o b s e r v i n g t h a t
T h e l e f t - h a n d side is b o u n d e d , but the r i g h t - h a n d s i d e would g r o w like -logb
if
Examples. 1.
d i d n o t h a v e m e a n v a l u e z e r o w i t h r e s p e c t to
(Recall the convention
(See S t e i n [41], C h a p t e r I I I . ) L e t
when
t a k e n in t h e s e n s e of P r o p o s i t i o n
3 b). M o r e g e n e r a l l y , if of d e g r e e
is a h a r m o n i c polynomial on
homogeneous
k, then
* F o r t h e o t h e r v a l u e s of these identities can be suitably i n t e r p r e t e d if o n e t a k e s into a c c o u n t t h e p o l e s and z e r o e s of
-14-
2.
with
Thus
K is the f u n d a m e n t a l solution to the h e a t e q u a t i o n
A f u n d a m e n t a l fact connecting h o m o g e n e o u s d i s t r i b u t i o n s and o p e r a t o r s is the following: T h e o r e m 2. of d e g r e e
Suppose
- a ) and i s
- a (or m o r e g e n e r a l l y
away f r o m the origin.
Then
T h e P r o o f of T h e o r e m 2 i s i m m e d i a t e f r o m t h e f a c t t h a t
is
Tf = K *f
with Re
K i s h o m o g e n e o u s of d e g r e e
is a bounded o p e r a t o r on
h o m o g e n e o u s of d e g r e e 0 , a n d h e n c e b o u n d e d . Remark. We w i l l s e e l a t e r t h a t T e x t e n d s to a b o u n d e d o p e r a t o r o n
§2.
Homogeneous groups We s h a l l n o w s k e t c h t h e b a c k g r o u n d f o r a n i m p o r t a n t g e n e r a l i z a t i o n
of T h e o r e m 2. C o n s i d e r Lie group.
w i t h a g r o u p m u l t i p l i c a t i o n t h a t m a k e s it a
A s s u m e (for s i m p l i c i t y ) that
* S e e a l s o F a b e s a n d R i v i e r e [12],
are canonical
coordinates.
(This means that they are the coordinates given by the
exponential map.
In particular,
χ ^ = -x and a straight line through the
origin is a one-parameter subgroup. ) Suppose we have a one-parameter a
set of dilations 5 t (x) = (t t group.
I
a
x., . . .,t i
n
χ ) that are automorphisms of the n
We will call a group with dilations a homogeneous group.
This situation arises often.
If
G is a semi-simple Lie group then
G = KAN, where K i s a maximal compact subgroup, A
abelian, and N
nilpotent.
acts on N by
(This is the Iwasawa decomposition of G. ) A 2
dilations, and L (N) is of interest in representation theory.
For example,
let G = SU(n, 1), the biholomorphic self-mappings of the unit ball O
a n d t h e s y m b o l of t h i s i n v e r s e . Several words of caution need be stated.
F i r s t (2) h a s a n o n - t r i v i a l 2 ( i . e . , L?) n u l l s p a c e , n a m e l y t h e c o n s t a n t m u l t i p l e s o f e , and so only a right inverse can be found.
Moreover, we need the exact symbol
c o r r e s p o n d i n g t o t h i s i n v e r s e of ( 2 ) , b e c a u s e e v e n if w e m a k e v e r y g o o d approximations (for fixed X), these approximate symbols will not behave right under differentiation with respect to
X , and e s t i m a t e s o f t h i s k i n d
are crucial in what follows. W e s e e k t h e s y m b o l of t h e o p e r a t o r (3) and the range of
D K = I, A A
K
Λ
K
Λ
determined by
2, - X t /2 . is orthogonal to e
-124-
O n e w a y of o b t a i n i n g t h i s o p e r a t o r a n d i t s s y m b o l i s t o o b s e r v e t h a t ( s e e (14) of t h e p r e v i o u s
section).
T h e n if w e u s e (20) w e s e e t h a t t h e s y m b o l of
s y m b o l of
is e x a c t l y the
and so e q u a l s
(4) where
i s g i v e n b y (18) of However,
it i s p o s s i b l e t o w r i t e t h e s y m b o l of
in a m o r e
p a c t f o r m and to g i v e a m o r e e l e m e n t a r y d e r i v a t i o n f o r it.
This
d e r i v a t i o n a l s o a p p l i e s to t h e h i g h e r o r d e r o b l i q u e d e r i v a t i v e
com-
simpler
problem.
( T h e r e we need to i n v e r t the o p e r a t o r
The r e s u l t s we shall d e r i v e below for the c a s e h i g h e r v a l u e s of P r o p o s i t i o n 3.
k.
See [35], whe r e the c a s e
The operator
has
k = 1
also hold for t h e s e
k = 2 is d i s c u s s e d in d e t a i l . )
symbol
(5)
Also, (6)
Proof.
W e n o t e f i r s t t h a t if
Therefore,
then
and so
for some constant
* T h e f o r m u l a w e s t a t e d in [34] h a s a n e r r o r in it. correct form.
The above is the
-125-
Next,
is d e t e r m i n e d by the a s s u m p t i o n that
to
C a r r y i n g o u t t h e c o m p u t a t i o n of
u(t)
is o r t h o g o n a l
we have
Thus
(7)
F r o m t h i s t h e s y m m e t r y p r o p e r t y (6) i s o b v i o u s .
Next, replace the
i n n e r i n t e g r a l i n (7) b y u s i n g c o n t o u r i n t e g r a t i o n in t h e z-variable
around
t h e r e c t a n g l e (if x < t)
H e n c e (7) l e a d s t o t w o i n t e g r a l s w i t h t h e i n n e r i n t e g r a l s , t a k e n a l o n g t h e vertical ray
x + is,
and along the v e r t i c a l r a y
t+is,
So
(8)
T h e s e c o n d i n n e r i n t e g r a l i s i n d e p e n d e n t of out the
x
x , a n d s o if w e
carry
i n t e g r a t i o n w e g e t t h e s e c o n d t e r m of ( 5 ) .
T o d e a l w i t h t h e f i r s t t e r m of (8) r e q u i r e s o n l y a n e v a l u a t i o n of t h e
F o u r i e r t r a n s f o r m of
at
T h i s g i v e s t h e f i r s t t e r m of ( 5 ) ,
-126-
and the p r o p o s i t i o n is p r o v e d . We now define a We l e t
c l a s s a p p r o p r i a t e to t h e s y m b o l
be given by the q u a d r a t i c f o r m
g i v e n by (8).
(in t h e
v a r i a b l e s ) and s e t W e t h i n k of
as the d u a l v a r i a b l e to
of
l i m i t e d to
and with
(t,x), with everything
independent
P r o p o s i t i o n 4.
T o m a k e the n e c e s s a r y e s t i m a t e s we n e e d the following two
simple
lemmas.
Lemma 1.
L e m m a 2.
Jtf
If
m
is an integer
and
Re
is bounded and r a p i d l y d e c r e a s i n g on
then
then
w fsothal elnotrthw e, eF sTraohnbredy tfashionre sm ts e-ecfsot nli dm d ailnteetm e gin mr aLtIiw neom ent hm debiayvfiip1draesirtstcsw ot,reni svif uiidsaw el retashtui einsocenfea csi tni ntcthw eaot c a s e s t: h ei n stehccoaotnn-d
-127-
case.
In t h e s e c o n d c a s e w e h a v e
constant
and so w e
since
in t h a t c a s e .
get a s an e s t i m a t e
In p r o v i n g the e s t i m a t e s f o r region where
it s u f f i c e s t o r e s t r i c t a t t e n t i o n t o t h e
i n v i e w of t h e s y m m e t r y i n
i n t e g r a l r e p r e s e n t a t i o n (7) s h o w s t h a t
a
g i v e n by (6);
the
is s m o o t h a c r o s s
We p r o v e f i r s t t h a t
(8)
F o r t h e s e c o n d t e r m i n (5) w e u s e L e m m a 1, w i t h
m=l,
This gives as e s t i m a t e
and
which is
if w e c o n s i d e r t h e c a s e s w h e r e
and
F o r t h e f i r s t t e r m i n (5) w e o b s e r v e t h a t
and
t h e n u s e L e m m a 2, with T h e i n e q u a l i t i e s of t h e d e r i v a t i v e s of ( a s r e q u i r e d b y (15) i n s u m m a r i z e d as follows. derivative gains
(9)
(10)
w i t h r e s p e c t to
a n d t h e b e g i n n i n g of Each
of C h a p t e r 2) c a n b e
derivative gains Thus we want
and
and e a c h
-128-
T h e r e a d e r s h o u l d h a v e n o d i f f i c u l t y v e r i f y i n g (9) a n d (10) ( a n d t h e corresponding inequalities for higher
and
d e r i v a t i v e s ) in t h e
w a y w e p r o v e d (8).
T h e d i f f e r e n t i a t i o n c o n d i t i o n w i t h r e s p e c t to
(17) i n
that
where
requires
a
estimates,
satisfies e s t i m a t e s like
and
and
that
and
don't appear,
t
(see
satisfying
similar
and
and
but i m p r o v e d by a f a c t o r In f a c t t h e t e r m s
same
and the f a c t
c a n b e e a s i l y v e r i f i e d u s i n g L e m m a s 1 and 2.
This,
and the c o r r e s p o n d i n g r e s u l t s f o r h i g h e r d e r i v a t i v e s c o m p l e t e the proof that We a r e n o w in a p o s i t i o n to w r i t e d o w n t h e r i g h t p a r a m e t r i x f o r (Recall that
where
is a r e a l s y m m e t r i c p o s i t i v e d e f i n i t e m a t r i x v a r y i n g
s m o o t h l y in
x. ) T h e p a r a m e t r i x is
where
(11)
with The
c l a s s associated with
P
is defined as follows:
is the q u a d r a t i c f o r m
Now unfortunately b e c a u s e the
P
P
g i v e n b y (5) a n d ( 6 ) .
i s n o t of t h e c l a s s
i s t h e p r e s u m p t i v e i n v e r s e of
and
this is not
surprising, and this is
-1 29-
n o t of t h e c l a s s the class
since
i t s e l f i s n o t of
W h a t i s n e e d e d i s a n e x t e n s i o n of t h e c l a s s e s
w h i c h we
now define.
Definition.
b e l o n g s to the " e x t e n d e d c l a s s
every integer
N
if f o r
we can write
(12)
where
(a)
(b) (c)
b e l o n g s to
w h e n t e s t e d i n t e r m s of d e r i v a t i v e s
(in x and
of o r d e r
N.
Remark.
S i n c e a l l t h e e s t i m a t e s w e h a v e m a d e f o r o p e r a t o r s of o u r
s y m b o l c l a s s e s d e p e n d o n l y o n a f i n i t e n u m b e r of d e r i v a t i v e s , t h e r e g u l a r i t y p r o p e r t i e s w i l l h o l d if i n e a c h c a s e w e m a k e T h u s e . g . , the o p e r a t o r w ho se s y m b o l is if
N
P r o p o s i t i o n 5.
N
large
will m a p
required enough. to
i s s u f f i c i e n t l y l a r g e ( i n t e r m s of p , k a n d m ) .
If
then for each
N
we can w r i t e
(12')
where
and
t e s t e d i n t e r m s of d e r i v a t i v e s of o r d e r
b e l o n g s to N.
when
-1 30It s u f f i c e s t o p r o v e t h e p r o p o s i t i o n i n t h e c a s e with
N o w if
then clearly
the symbolic calculus holds for
and
The Kohn-Nirenberg
formula
( s e e H o r m a n d e r [24], p . 147) s t a t e s t h a t
remainder
w h e r e t h e r e m a i n d e r b e l o n g s to
O b s e r v e that each so we c a n i t e r a t e t h i s
process, M
u n t i l w e f i n a l l y o b t a i n (12 ), w i t h
l a r g e enough we then see that N
are
If w e c h o o s e a s f a r a s d e r i v a t i v e s of o r d e r
concerned.
O u r m a i n r e s u l t f o r the oblique d e r i v a t i v e is a s f o l l o w s : Theorem.
(a)
The symbol
(with
b y (5) a n d (6)) b e l o n g s t o
(b)
P
given
and
is a r i g h t - p a r a m e t r i x f o r
( w h e n r e s t r i c t e d t o a c o m p a c t s u b s e t of t h e x - s p a c e ) . T o p r o v e t h e t h e o r e m w e s h a l l n e e d a s e r i e s of
L e m m a 3.
Let and
be a
function on when
so t h a t
lemmas.
when
Then
T h i s r e s t r i c t i o n is n e c e s s a r y b e c a u s e we have always a s s u m e d all o u r s y m b o l s to have c o m p a c t x s u p p o r t .
-131-
Recall that
where
is s u c h t h a t
when
The condition on
and
when
T h e p r o o f of t h e l e m m a f o l l o w s e a s i l y f r o m t h e f a c t t h a t (see the Appendix).
L e m m a 4.
Suppose
T h e n on the set w h e r e
s a t i s f i e s a l l t h e d i f f e r e n t i a l c o n d i t i o n s of
Proof.
O b s e r v e that
Thus
for large
Moreover,
g i v e s a g a i n of
e a c h d e r i v a t i v e w i t h r e s p e c t to
since
p r o v e d t h a t if
then
So w e h a v e
on the s e t w h e r e
x d e r i v a t i v e s of a c a n b e h a n d l e d a s f o l l o w s .
where
Write
Then
and by w h a t we have just p r o v e d on the set w h e r e works for higher
L e m m a 5. of
Now the
and The same
argument
x-derivatives .
If
qed.
then
satisfies the
condition
on the set w h e r e
Recall that s y m m e t r i c positive definite.
where
is
real
-132Proof.
We s t a r t w i t h a s y m b o l
and
and s u b s t i t u t e
L e t u s f i r s t v e r i f y t h a t t h e r e s u l t i n g s y m b o l i s of c l a s s in the set w h e r e
Observe that
s at i s -
f i e s the c o r r e c t bound.
gives two t e r m s ,
Next c o n s i d e r the
derivative.
namely
Taking
and
But in b o t h c a s e s t h e d e c r e a s e is (at l e a s t )
t h a t condition is s a t i s f i e d .
If w e f o r m
so
then we get
a n d a g a i n t h e d e c r e a s e i s of t h e
o r d e r , this time the s a m e way,
Higher
derivatives are treated
s i n c e w e a r e d e a l i n g w i t h p r o d u c t s of s y m b o l s of t h e
kind with f a c t o r s like
so b e h a v e s l i k e a n
T h e l a t t e r i s of c o u r s e i n
s y m b o l in t h e set w h e r e
that the s a m e way.
right
in same and
and so we
D e r i v a t i v e s w i t h r e s p e c t to
x
are
see
treated
For example
So
where
where
and
We c a n w r i t e
Moreover
and
-1 33s a t i s f i e s the c o n d i t i o n (17) in w o r k s f o r (higher)
x
The s a m e argument
d e r i v a t i v e s and the l e m m a i s p r o v e d .
We n o w c o m e to the p r o o f of p a r t (a) of the t h e o r e m .
A c c o r d i n g to L e m m a s 3 and 5, However,
and so a l s o
is s u p p o r t e d in the set w h e r e since
where
We w r i t e
and so by l e m m a s ,
We next d e c o m p o s e
f u r t h e r , as
c o m e f r o m the t e r m
and
f r o m the t e r m
(on m a k i n g the s u b s t i t u t i o n We a s s e r t that
b e c a u s e d e r i v a t i v e s with r e s p e c t to
c o n t r i b u t e e i t h e r t e r m s c o n t r o l l e d by the c o r r e c t d e c r e a s e since t i v e s act o n
o r t e r m s w h i c h a r i s e when the
o r its d e r i v a t i v e s .
a gain of o r d e r
deriva-
F o r e a c h s u c h d e r i v a t i v e we get
and so f o r a d e r i v a t i v e of o r d e r
a r e led to e s t i m a t i n g
m
we
h o w e v e r , this is
clearly
s i n c e we a r e r e s t r i c t e d to the
set w h e r e hold f o r the
c a l c u l u s and lead to the
where x
Similar
arguments
derivatives.
F i n a l l y we c o m e to the t e r m
w h i c h i n v o l v e s c o n s i d e r a t i o n of the
-134integral
where
and
Re
We c l a i m the f o l l o w i n g a s y m p t o t i c e x p a n s i o n
(13)
with
real,
in the s e n s e that
as
(13) c a n be p r o v e d by w r i t i n g
where
f u n c t i o n w h i c h is = 1 n e a r z e r o , and v a n i s h e s o u t s i d e
a c o m p a c t set.
The second integral contributes z e r o
asymptotically
( s e e the p r o o f of L e m m a 1), w h i l e if we u s e the f a c t that
we get a f t e r i n t e g r a t i o n by p a r t s (13) with T h i s a l l o w s us to w r i t e
remainde
T h e s e r i e s can b e w r i t t e n as
Collecting t e r m s
we g e t l i n e a r c o m b i n a t i o n s of t e r m s of the f o r m
When we substitute
we o b s e r v e that we can w r i t e it in
-1 35the f o r m
where
a r e s y m b o l s in
Moreover
while
and
b e l o n g to
r e s t r i c t e d to the set w h e r e
In a d d i t i o n ,
w e have that as we have a l r e a d y pointed o u t .
A l t o g e t h e r then e x c e p t f o r the r e m a i n d e r t e r m , p r o d u c t s s y m b o l s of the c l a s s
is a finite s u m of
and
Now the r e m a i n d e r t e r m i n s o f a r as it and its d e r i v a t i v e s a r e c o n c e r n e d
b e h a v e s no w o r s e than
w h i c h b e h a v e s l i k e a s y m b o l of
class
m
when d e r i v a t i v e s of o r d e r
are c o n s i d e r e d ,
(with o f c o u r s e
T h i s c o m p l e t e s the p r o o f o f the f a c t that
(The r e a d e r should k e e p in m i n d that in v i e w of the s y m m e t r y p r o p e r t y (6) f o r
it s u f f i c e s to c a r r y out o u r c o m p u t a t i o n s f o r
P
when
as long as the d e c o m p o s i t i o n s we h a v e c a r r i e d out r e s p e c t s this s y m m e t r y . tion.
N o t i c e that this is the c a s e f o r
Now
and
a r e r e a l and the e x p o n e n t s
(and
by t h e i r d e f i n i -
has this s y m m e t r y , b e c a u s e c o e f f i c i e n t s are odd.
w e have
Since and this is e x t e n d e d
by the s y m m e t r y (6) to We shall c o m p u t e We have o b s e r v e d that
in o r d e r to p r o v e p a r t (b) of the t h e o r e m . and s i n c e
we have that
P
also
-1 36b e l o n g s to
T h u s we c a n apply the s y m b o l i c c a l c u l u s and o b t a i n
( s e e (1))
(14)
where
is a s u m of t e r m s i n v o l v i n g p r o d u c t s of the f o r m
(15) with p r e a s s i g n e d
m.
However,
is the s y m b o l of a r i g h t i n v e r s e of
thus
we have (16)
Substituting
g i v e s us
Now f r o m the f o r m u l a (5) it is e v i d e n t that where
and
is of the f o r m
h a v e s i m i l a r e x p r e s s i o n s to
Thus
but
and
by the s a m e a r g u m e n t u s e d to t r e a t u s i n g the fact that where
and
Moreover, and
|
we s e e that
By the
s a m e a r g u m e n t the t e r m s (15) a l s o b e l o n g to
.
s u f f i c i e n t l y l a r g e , then e v e r y s y m b o l in
b e l o n g s to
t e s t e d a g a i n s t d e r i v a t i v e s of o r d e r
F i n a l l y , if we take
T h i s s h o w s that
when
m
-1 37and the t h e o r e m is p r o v e d .
Concluding (1)-
remarks
We can o b t a i n a s i m i l a r l e f t - p a r a m e t r i x f o r
T h i s c a n b e d o n e by taking ad j o i n t s of the b a s i c r e l a t i o n and noting that all the s y m b o l c l a s s e s u s e d a r e e s s e n t i a l l y i n v a r i a n t u n d e r adjoints.
A l t e r n a t i v e l y we c a n f o l l o w a p a r a l l e l d e r i v a t i o n to that f o r
by f i r s t c o m p u t i n g the s y m b o l fies
of the o p e r a t o r
which satis-
and w h i c h is u n i q u e l y s p e c i f i e d by the f u r t h e r
f a c t that
One c a n s h o w (with an a r g u m e n t s i m i l a r to that
of P r o p o s i t i o n 3), that
(5')
(6')
(2).
The assumption
in this c a s e .
f o r the s y m b o l s
(as g i v e n in
In f a c t if we take
T h e o r e m 21 in need o n l y take
14 this o p e r a t o r h a s a l e f t p a r a m e t r i x
holds
then a c c o r d i n g to
E
in
and we
while
It is a l s o to be noted that the n o n - i s o t r o p i c S o b o l e v s p a c e s
-138Sob
d i s c u s s e d h e r e a r e then e q u i v a l e n t to the s p a c e s
f o r the o p e r a t o r
t r e a t e d in R o t h s c h i l d - S t e i n [ 3 9 ] . (3).
A s a r e s u l t of the a b o v e , and in p a r t i c u l a r the f i r s t r e m a r k ,
w e c a n a s s e r t the f o l l o w i n g l o c a l r e g u l a r i t y r e s u l t f o r the o p e r a t o r (the o p e r a t o r
has a c o r r e s p o n d i n g e x i s t e n c e s t a t e m e n t ) .
Suppose
(17) and
g
b e l o n g s ( l o c a l l y ) to e i t h e r
or
( l o c a l l y ) to
Then
respectively.
f r o m the r e g u l a r i t y r e s u l t s of the c l a s s w h o s e s y m b o l s b e l o n g to not know if
i m p l i e s that
f
belongs
This follows
and the f a c t that o p e r a t o r s
preserve these c l a s s e s .
a t o r s of the s t a n d a r d c l a s s
1 6.
Sob
H o w e v e r , we do
b e c a u s e it is not t r u e that o p e r preserve
S e c o n d - o r d e r o p e r a t o r s of K a n n a i - t y p e We s h a l l c o n s t r u c t the p a r a m e t r i c i e s f o r o p e r a t o r s
of the f o r m
(1)
where
and
a r e s m o o t h r e a l f u n c t i o n s , with the
nxn
matrix
s y m m e t r i c and p o s i t i v e d e f i n i t e . Kannai [ 2 6 ] s h o w e d that b a s i c e x a m p l e s of the o p e r a t o r s type (1) a r e u n s o l v a b l e , y e t h y p o e l l i p t i c . e x t e n d e d by s e v e r a l p e o p l e ,
see e . g . ,
of the
T h i s r e s u l t has s i n c e b e e n
B e a l s and C . F e f f e r m a n [ 4 ] w h e r e
s o m e e a r l i e r r e f e r e n c e s may be found.
-1 39We s h a l l s h o w h o w to c o n s t r u c t a r i g h t p a r a m e t r i x f o r similarly a left p a r a m e t r i x for
(and
T h e m e t h o d w i l l b e s i m i l a r to that
u s e d f o r the o b l i q u e d e r i v a t i v e p r o b l e m in the p r e v i o u s s e c t i o n , but the d e t a i l s w i l l turn out to be m u c h s i m p l e r .
Let us d e a l f i r s t with
We
b e g i n by d e s c r i b i n g the s y m b o l c l a s s e s a p p r o p r i a t e f o r this p r o b l e m . We take
w h i c h w e c a n w r i t e as
where
a r e a spanning set of l i n e a r f o r m s f o r
the s u b s p a c e g i v e n by function
equals
and w h i c h d e p e n d s m o o t h l y on and we set
x. The
t i o n is d e f i n e d by
The func-
hence
(2)
where T h e n a t u r a l c a n d i d a t e f o r the s y m b o l
of
of a r i g h t p a r a m e t r i x
is
(3)
with
g i v e n by (5) and (6) of
Theorem.
15.
When r e s t r i c t e d to c o m p a c t
x
subsets
(a)
(b)
Proof.
R e c a l l that
and if we m a k e the
-140s
u
b
s
t
i
t
u
t
i
o
n
w
e
see
that (4) Thus by (8) of
15, we s e e that
(5) L e t us n o w c o n s i d e r the P
b e l o n g s to
d e r i v a t i v e s of
is that an a p p l i c a t i o n of
w h i l e an a p p l i c a t i o n of
P.
T h e r e q u i r e m e n t that g i v e s a gain o f
should g i v e a gain of
Thus we e x p e c t
(6)
and this f o l l o w s f r o m (9) in
15, s i n c e
We a l s o e x p e c t
(7)
However,
is
The t e r m
b e c a u s e of (9) in and
15 and
is bounded by
while
While .
Now
This gives
us (7). The higher c o n s i d e r the
x
d e r i v a t i v e s a r e t r e a t e d in the s a m e w a y . derivatives.
We c l a i m that
L e t us n o w
-141(8) where
and
and
(More precisely
In f a c t ,
and so (8) f o l l o w s f r o m what we have p r o v e d in
and
15 f o r
t o g e t h e r with the o b s e r v a t i o n s that
while
Of c o u r s e (8) is of the a p p r o p r i a t e f o r m as r e q u i r e d b y d e f i n i t i o n (20) in
7.
By the s a m e a r g u m e n t we s e e that
(9)
where again enter.
Higher
s i n c e h e r e the t e r m x
derivatives are treated similarly.
Thus, finally,
T o p r o v e p a r t (b) of the t h e o r e m we u s e the identity (16) of the s y m b o l i c c a l c u l u s .
Thus
is a s u m of t e r m s of the f o r m
d o e s not
15 and
-142(10)
and
m u l t i p l i e d by s m o o t h f u n c t i o n s of and
x.
w e s e e that while
By ( 9 ) , and s i n c e a c t u a l l y and
( R e c a l l that
T h e a n a l o g u e of (9) f o r
( e x c l u d i n g d e r i v a t i o n with r e s p e c t to
where
second-derivatives
is
and
However, in (10) a r e in Further (1)
and
so a l l the t e r m s w h i c h a p p e a r
p r o v i n g the t h e o r e m .
remarks Suppose
u(t,x)
i s a s o l u t i o n of the heat e q u a t i o n
with
Then
(11)
is a s o l u t i o n of
(f) = 0, in the c a s e
then
Moreover,
w h i c h s h o w s that this
In this s p e c i a l c a s e of o f the o p e r a t o r w h i c h is the r i g h t i n v e r s e of and the r a n g e of
L
if
is not h y p o e l l i p t i c . is the e x a c t s y m b o l
u n i q u e l y d e t e r m i n e d by is o r t h o g o n a l to the null
-143s o l u t i o n s of (2)
L
of the f o r m (11).
By s i m i l a r m e t h o d s (using
instead o f
we c a n o b t a i n a
left parametrix for
w h o s e s y m b o l a l s o b e l o n g s to
special c a s e when
then
is the
e x a c t s y m b o l of the o p e r a t o r w h i c h is the l e f t i n v e r s e of d e t e r m i n e d by
A g a i n , in the
uniquely
a n n i h i l a t e s the f u n c t i o n s
of the f o r m ( 1 1 ) . (3)
T h e p a r a m e t r i x f o r the g e n e r a l
theorem. or
Suppose
then
respectively.
and
f b e l o n g s l o c a l l y to
p r o v e s the f o l l o w i n g r e g u l a r i t y
g b e l o n g s ( l o c a l l y ) to
-144Appendix:
S o m e c o m p u t a t i o n s c o n c e r n i n g the c l a s s
In o r d e r not to have d i s c o u r a g e d the i n t e r e s t e d r e a d e r we p o s t p o n e d to this a p p e n d i x s o m e of the m o r e e l e m e n t a r y but t i r e s o m e involving our s y m b o l s .
computations
R e c a l l the d e f i n i t i o n s of the s y m b o l c l a s s
the p r e l i m i n a r y c l a s s e s
g i v e n in
the i n c l u s i o n r e l a t i o n s
and
and
A m o n g t h e s e hold
(of w h i c h the f i r s t is o b v i o u s ,
and the s e c o n d is p r o v e d b e l o w ) . 1.
Preliminaries Let
x,
A(x)
Since
A(x)
be a real symmetric
nx n m a t r i x , and s u p p o s e f o r e a c h
is either positive o r negative s e m i - d e f i n i t e .
A(x)
is s e m i - d e f i n i t e we have
Hence:
Next, we have a l r e a d y c h e c k e d that if
Put
-145T h e n ( P r o p o s i t i o n 7)
Since
Q
is a q u a d r a t i c f o r m d e p e n d i n g s m o o t h l y on
Lemma A.
x
we a l s o h a v e :
where each
A s s u m e that
We c o n s i d e r p o s s i b l e v a l u e s f o r
I
and
m:
follows since f o l l o w s f r o m (iv) s i n c e We have by (v)
since
and
T h i s c o m p l e t e s the c a s e
-146-
We w i l l skip the c a s e
since
until the e n d .
-147We s k i p t h i s a l s o until the e n d .
since When to p r o v e .
the d e r i v a t i v e is i d e n t i c a l l y z e r o ,
and
H e n c e it o n l y r e m a i n s to c h e c k the c a s e s
H e r e we u s e
We d e a l with the s e c o n d t e r m f i r s t .
When
so t h e r e is nothing
is a s u m of s q u a r e s .
A s in P r o p o s i t i o n 7,
-148-
When
we get
H e n c e we have to take c a r e of
where we get
and this is bounded by
-149-
For
w h i c h is b o u n d e d by
L e m m a B.
If
t h e r e is nothing to p r o v e .
If
t h e r e is
-1 50a l s o nothing to p r o v e .
Now:
The c l a s s
a r e all c l e a r .
T o c h e c k (d), note that
is a s u m o f t e r m s of the f o r m :
where
We e s t i m a t e e a c h s u c h t e r m in a b s o l u t e v a l u e
by
a r e the u s u a l f a c t o r s )
-151-
provided
Corollary. N o t i c e that by L e m m a s A and B ,
Corollary.
Theorem.
is a c o m p l e x v e c t o r
are again o b v i o u s . To prove
space
follows f r o m
We m u s t e s t i m a t e
-152But
is a s u m of t e r m s of the type
where
H e n c e we h a v e to e s t i m a t e t e r m s of the f o l l o w i n g t y p e :
where
Now
H e r e a t y p i c a l t e r m is b o u n d e d by
where
Therefore,
Finally, H e n c e , o n e t e r m we have to e s t i m a t e i s :
-153-
since
and t h e r e f o r e
T h e o t h e r t e r m w e have to e s t i m a t e i s :
-154since This proves (c). T o p r o v e ( d ) , let
Then
(by the p r o p o s i t i o n ) .
T o s h o w that
s i d e r the b e h a v i o r of
x
detail
we s h a l l have to c o n -
d e r i v a t i v e s of
aZ (see
7).
L e t u s c o n s i d e r in
A t y p i c a l t e r m r e s u l t i n g f r o m the d i f f e r e n t i a t i o n is
a m u l t i p l e of
where Since
e a c h d e r i v a t i v e o c c u r r i n g a b o v e is a s u m of t e r m s ;
( s e e the identity f o l l o w i n g (2) in
7).
T h i s l e a d s us to t e r m s of the f o r m
where Now
is a p o l y n o m i a l of d e g r e e
while
T h e r e f o r e by the
proposition
and h e n c e where
w h i c h is the d e s i r e d i n c l u s i o n f o r the p r o o f of (d). F i n a l l y , to p r o v e (e) note that f o r p o l y n o m i a l (in £), so s a t i s f i e s the r e q u i r e m e n t s .
is a q u a d r a t i c On the o t h e r hand
-1 55-
so it r e m a i n s to c h e c k that
so t h i s h o l d s .
-1 56References 1
R. Beals, "A general calculus of pseudo-differential operators," Duke Math. J . (1975) 42, 1-42.
2
, -Lp and Schauder estimates for pseudo-differential operators," to appear.
3
R. Beals and C. Fefferman, "Spatially inhomogeneous pseudodifferential operators," Comm. Pure Appl. Math (1974) 27, 1-24.
4
, "On the hypoellipticity of second-order operators," Comm. Partial Diff. Equations (1976) 1, 73-85.
5
L. Boutet de Monvel, "Hypoelliptic operators with double character istics and related pseudo-differential operators," Comm. Pure Appl. Math (1974) 27, 585-639.
6
L. Boutet de Monvel and J. Sjostrand, "Sur la singularity des noyaux de Bergman et de Szego,'' Asterisque (1976) 34-35, 123-164.
7
L. Boutet de Monvel and F. Treves, "On a class of pseudo-differential operators with double characteristics," Inventiones Math (1974) 24, 1-34.
8
A. P . Calderon, "Lebesgue spaces of differentiable functions and distributions," Amer. Math. Soc. Proc. Symp. Pure Math 5(1961), 33-49.
9
A. P . Calderon and R. Vaillancourt, "A class of bounded pseudodifferential operators," P r o c . Nat. Acad. Sci. (1972) 79, 1185-1187.
10
R. R. Coifman and G. Weiss, "Analyse harmonique non-communica tive sur certains espaces homogenes," Lecture Notes in Mathematics (1971) no 242, Springer Verlag.
11
V. Yu, Egorov and V. A. Kondrater, "The oblique derivative problem," Math. USSR Sbornik (1969) 7, 1 39-169.
12
E . B. Fabes and Ν. M. Riviere, "Singular integrals with mixed homogeneity," Studia Math. (1966) 27, 19-38.
13
C. Fefferman, "The Bergman kernel and biholomorphic mappings of pseudo-convex domains," Invent. Math. (1974) 26, 1-66.
14
G. B. Folland, "Subelliptic estimates and function spaces on nilpotent Lie groups," Arkiv f. Mat. (1975) 13, 161-207.
-1 57-
15.
G. Β. Folland and J. J. Kohn, "The Neumann problem for the Gauchy-Riemann complex," Annals of Math. Studies (1972) no. 75, Princeton University Press.
16.
G . B . F o l l a n d a n d Ε . M . S t e i n , " E s t i m a t e s f o r t h e "§ complex and analysis on the Heisenberg group," Comm. Pure and Appl. Math (1974) 27, 429-522.
17.
L. Garding, Bulletin Soc. Math. France (1961) 89, 381-428.
18.
R. Goodman, "Nilpotent Lie groups," (1976) no 562, Springer Verlag.
19.
P . C. Greiner, J. J . Kohn, and Ε. M. Stein, "Necessary and sufficient conditions for solvability of the Lewy equation," Proc. Nat. Acad. Sci. (1975) 72, 3287-3289
20.
P. C. Greiner and Ε. M. Stein, " Estimates for the ^-Neumann problem," Mathematical Notes (1977) no 19, Princeton University Press.
20a.
V. V. Grushin, "On a class of hypoelliptic pseudo-differential operators degenerate on a sub-manifold," Math. USSR Sbornik (1971) 1 3, 1 55-185.
21 .
Lecture Notes in Mathematics
S. Helgason, "Differential geometry and symmetric spaces," (1962) Academic P r e s s , New York.
22.
I. I. Hirschman Jr. , "Multiplier transformations I," Jour. (1956) 26, 222-242.
23.
L. Hormander, "Pseudo-differential operators and non-elliptic boundary problems," Ann. Math. (1966) 83, 129-209.
23a.
, "Hypoelliptic second-order differential equations," ActaMath. (1967)119, 147-171.
24.
, "Pseudo-differential operators and hypoelliptic equa tions," Amer. Math. Soc. P r o c . Symp. Pure Math. (1967) no. 10, 138-183.
25.
,
Duke Math.
"The Weyl calculus of pseudo-differential operators,"
to appear. 26.
Y. Kannai, "An unsolvable hypoelliptic differential operator," Israel J . Math. (1971) 9, 306-315.
-1 5827
N. Kerzman and Ε. Μ. Stein, "The Szego kernel in terms of CauchyFantappie kernels," Duke Math. Jour. (1978) 45, 197-224.
28
A. W. Knapp and Ε. M. Stein, "Intertwining operators for semisimple groups," Ann. of Math. (1971) 93, 489-578.
29
A. Koranyi and S. Vagi, "Singular integrals in homogeneous spaces and some problems of classical analysis," Ann. Scuola Norm. Sup. P i s a (1971) 25, 575-648.
30
S. Krantz, appear.
31
P. Kree, "Distributions quasi-homogenes ," C.R.A. Sci. Paris (1965) 261, 2560.
32
J. L. Lions and J. Peetre, "Sur une classe d'espaces d'interpolation," Publ, Math. Inst. Hautes Etudes Sci. (1964) 1 9, 5-68.
33
W. Madych and N. Riviere, "Multipliers of Holder classes," of Funct. Analysis (1976) 21, 369-379-
34
A. Nagel and Ε. M. Stein, "A new class of pseudo-differential operators," Proc. Nat. Acad. Sci (1978) 75, 582-585.
35
, "Some new classes of pseudo-differential operators," Proc. Symp. Amer. Math. Soc. held in Williamstown, Summer 1978, to appear.
36
R. O'Neil, "Two elementary theorems on the interpolation of linear operators," Proc. Amer. Math. Soc. (1966) 17, 76-82.
37.
D. H. Phong and Ε. M. Stein, "Estimates for the Bergman and Szego projections on strongly pseudo-convex domains," Duke Math. Jour. (1977) 44, 695-704.
38.
Ν. M. Riviere, "Singular integrals and multiplier operators," Arkiv f. Mat. (1971)9, 243-278.
39.
L. P. Rothschild and Ε. M. Stein, "Hypoelliptic differential oper ators and nilpotent groups," Acta Math. (1976) 137, 247-320.
40.
J . Sjostrand, "Operators of principal type with interior boundary conditions," ActaMath. (1973) 1 30, 1 -51.
41 .
Ε. M. Stein, "Singular integrals and differentiability properties of functions," (1970), Princeton University P r e s s .
"Generalized function spaces of Campanato type,"
to
Jour,
-1 5942.
, " S i n g u l a r i n t e g r a l s and e s t i m a t e s f o r t h e C a u c h y R i e m a n n e q u a t i o n s , " B u l l . A m e r . Math. S o c . (1973) 7 9 , 4 4 0 - 4 4 5 .
43.
M. H . T a i b l e s o n , " T r a n s l a t i o n i n v a r i a n t o p e r a t o r s , d u a l i t y , and i n t e r p o l a t i o n I I , " J . Math. M e c h . (1965) 1 4 , 8 2 1 - 8 4 0 .
44.
S . W a i n g e r , " S p e c i a l t r i g o n o m e t r i c s e r i e s in K d i m e n s i o n s , " M e m . A m e r . Math. S o c . (1965) no 5 9 .
45.
N. W i e n e r , " T h e F o u r i e r i n t e g r a l and c e r t a i n of i t s a p p l i c a t i o n s , (1933), C a m b r i d g e Univ. P r e s s .
L i b r a r y of C o n g r e s s Cataloging in Publication Data
Nagel, Alexander, 1945Lectures on pseudo-differential operators. Includes bibliographical references. 1 . Pseudodifferential operators. I . Stein, Elias M . , 1951joint author. II. Title. Q A 3 2 9 . 7 . 5 1 5 ' . 7 2 ISBN 0-691-082147-2
79-19388