173 65 342MB
English Pages 292 Year 2017
Tall Zirä'a The Gadara Region Project (200 1-2011) Final Report
Volume 1 Introduction Edited by Dieter Vieweger and Jutta Häser
With contributions by David Adah-Bajewitz, Dietmar Biedermann, Götz Bongartz, Gilles Bülow, Johannes Große Frericks, Jutta Häser, Stefanie Hoss, Daniel Keller, Frauke Kenkel, Patrick Leiverkus, Linda OlsvikWhittaker, Knut Rassmann, Armin Rauen, Samantha Reiter, Katja Soennecken and Dieter Vieweger
German Protestant Institute of Archaeology (GPIA)
*
Biblical Archaeological Institute Wuppertal (BAI)
L Auflage, 2023 Copyright © 2017 by Deutsches Evangelisches Institut für Altertumswissenschaft des Heiligen Landes/Biblisch-Archäologisches Institut Wuppertal, Jerusalem/Amman/Wuppertal
Sollte diese Publikation Links auf Webseiten Dritter enthalten, so übernehmen wir für deren Inhalte keine Haftung, da wir uns diese nicht zu eigen machen, sondern lediglich auf deren Stand zum Zeitpunkt der Erstveröffentlichung verweisen. Der Inhalt dieses E-Books ist urheberrechtlich geschützt und enthält technische Sicherungsmaßnahmen gegen unbefugte Nutzung. Die Entfernung dieser Sicherung sowie die Nutzung durch unbefugte Verarbeitung, Vervielfaltigung, Verbreitung oder öffentliche Zugänglichmachung, insbesondere in elektronischer Form, ist untersagt und kann straf- und zivilrechtliche Sanktionen nach sich ziehen. Wir haben uns bemüht, alle Rechteinhaber an den aufgeführten Zitaten ausfindig zu machen, verlagsüblich zu nennen und zu honorieren. Sollte uns dies im Einzelfall nicht gelungen sein, bitten wir um Nachricht durch den Rechteinhaber. Redaktion: Sophie zu Löwenstein übersetzung: Andrea Sanner, Anne Poepjes, Linda Olsvig-Whittaker Satz: Sophie zu Löwenstein ISBN 978-3-641-31083-7 www.gtvh.de
TABLE OF CONTENTS LIST OF FrGURES. ...... ...... ...... ....................... ...... ...... ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ...... ....................... ......
X
LlliT OF TABLES..................................................................................................................................................................................
XVIII
GRAPHS.................................................................................................................................................................................
XIX
LlliT OF PLA:rns..... ...... ....................... ...... ...... ...... ...... ................. ...... ...... ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ....
XX
LlliT OF APPHNDICES. ...... ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ...... ...... ....................... ...... ...... ...... .......................
XXI
ABBlll!VIATIONS. ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ...... ...... ................. ...... ...... .......
XXII
by Die/er J'ieweger/Jutta Hiiser.......... ...... ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ...... ...... .................
1
AcKNOWLEDGEMENTS............................................................................................................................................................
7
Hiiser........................................................................................................................
9
LlliT OF
PREFACE
INTRODUCTION
1. Tim
by Dieter V~/.Jutta
'GADARA REGION PROJECT'!fALL ZIRA'A
1.1. The 'Gadara Region Proj ect'
by /Mter J'ieweger/Jutta Hiisu...............................................
13
by Dieter J'ieweger!Jutta Hiiser..............................................................................
14
by!MterJ'ieweger...................................................................................................................................
14
1.2.1. Morphology ofTall Ziri'a ...........................................................................................................................
15
1.2.2. Emergence ofthe Natural Hill....................................................................................................................
19
1.2. Tall Zirii'a
1.3. The Wadi al-'Arab and its Environment
Yiewegeri.JuttaHiiser...........................................................
20
1.3.1. The Natural Conditions in the Wadi al-'Arab..........................................................................................
21
1.3.2. The Wadi al-'Arab as a Trade Route..........................................................................................................
21
1.4. Research History for Tall Zirä'a
Dieter
by Dieter Yiewegeri.Jutta Hiiser......................................................................
23
1.4.1. Records ofGottlieb Schumacher................................................................................................................
23
1.4.2. Observations ofNelson Glueck..................................................................................................................
24
1.4.3. Modern Surveys Preceding the 'Gadara Region Project' .... ....... ....... ........ ....... ....... ....... ....... ....... ...
24
1.4.3.1. The 1978 Survey................................................................................................................................
25
1.4.3.2. The 1983 Survey................................................................................................................................
26
1.4.4. Archaeological Excavations on Tall Zirä'a, Surveys and Study Campaigns 2001- 2016................
27
1.4.4.1. The Three ExcavationAreas on TallZiri'a......................................................................................
27
1.4.4.2. Archaeological Seasons from 2001 to 2016. An Overview...............................................................
29
1.4.4.3. The 20()] Survey ofTall Ziri'a andin its Hinterland........................................................................
29
1.4.4.4. The 2001 and 2002 Test Trench Excavation......................................................................................
30
1.4.4.5. The Summer 2003 Excavation Season with Geophysical Prospection.............................................
30
1.4.4.6. The Spring 2004 Excavation Season............. ...... ...... ...... ...... ....................... ...... ...... ...... ...................
32
1.4.4.7. The Summer2004 Excavation Season..............................................................................................
33
1.4.4.8. The Spring 2005 Excavation Season.................................................................................................
33
1.4.4.9. The Summer 2005 Excavation Season..............................................................................................
34
1.4.4.10. The Spring 2006 Excavation Season................................................................................................
35
1.4.4.11. The Summer 2006 Excavation Season.............................................................................................
36
1.4.4.12. The Spring 2007 Excavation Season................................................................................................
37
1.4.4.13. The Summer 2007 Excavation Season.. ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ..
39
1.4.4.14. The Spring 2008 Excavation Season. ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ......
40
1.4.4.15. The Summer 2008 Excavation Season.. ...... ...... ....................... ...... ...... ...... ....................... ...... ...... ..
41
1.4.4.16. The Spring 2009 Excavation Season...............................................................................................
43
1.4.4.17. The Summer 2009 Excavation and Survey Season........ ...... ...... ...... ...... ....................... ...... ...... ......
46
1.4.4.18. The Spring 2010 Excavation Season...............................................................................................
46
1.4.4.19. The Summer 2010 Excavation and Survey Season.........................................................................
48
1.4.4.20. The Spring 2011 Excavation Season...............................................................................................
49
1.4.4.21. The Summer 2011 Excavation and Survey Season...... ....................... ...... ...... ...... ...... ................. ...
50
1.4.4.22. The Summer2012 Study Season.....................................................................................................
51
1.4.4.23. The Summer 2013 Study Season.....................................................................................................
52
1.4.4.24. The Summer 2014 Study and Excavation Season............... ...... ...... ...... ....................... ...... ...... ......
52
1.4.4.25. The Summer 2015 Study Season.....................................................................................................
53
1.4.4.26. The Summer 2016 Study Season....................................................................................................
54
1.5. Aims ofthe 'Gadara Region Project' byDierer Yieweger/JuttaHäser...................................................................
55
1.6. Bibliography..............................................................................................................................................................
56
2. THE 2001
SURVEY ON TALL
2.1. Methodology
2.2. Finds
ZlRA'A
by Dieter Vieweger/Frauke Kenkel/Daniel Keller/Stefanie Hoss .......................
59
by Dider Viewt!ger... ...... ........... ............ ...... ...... ...... ........... ...... ...... ...... ...... ...... ...... ..... ...... ...... ...... .....
59
by Dteter J'iewegeriFrauke Ketllrei/Stefanie Hoss/Daniel Keller.............................................................................
59
byFraukeKet~~rel...................................... . ........................................ . .......
2.2.1.1. 'JYpological Studies of the Pottery......... ...... ...... ...... ....................... ...... ...... ...... ............................. ....
59 60
2.2.1.2. Two Sherds with a Stamp from Tall Zirä'a........ ...............................................................................
64
2.2.1.3. Early Bronze Age Pottery from Tall Zirii'a.......................................................................................
65
2.2.1.4. Early and Middle Bronze Age Pottery from Tall Zirä'a.... ...... ....................... ...... ...... ...... ...... ...........
68
2.2.1.5. Middle and Late Bronze Age Pottery from Tall Zirä'a......................................................................
69
2.2.1.6. Late BronzeAgePottery from Tall Zirä'a.........................................................................................
71
2.2.1.7. Late Bronze Ageiiron Age and Iron Age Pottery from Tall Zirä 'a....................................................
73
2.2.1.8. IronAge Cooking Pots from Tall Zirä'a............................................................................................
75
2.2.1.9. IronAge IWB andlronAge llC Pottery from Tall Zirä'a...............................................................
77
2.2.1.10. Hellenistic and Early Roman Pottery from Tall Zirä'a......................................................................
79
2.2.1.11. Hellenistic- Roman and Roman Pottery from Tall Zirä'a. ...... ...... ...... ...... ....................... ...... ...... ....
81
2.2.1.12. Late Roman and Byzantine Pottery Imports from Tall Zirä'a...........................................................
84
2.2.1.13. Roman - Byzantine, Byzantine and Byzantine - Early Islamic Pottery from Tall Zirä'a....... ...... ...
85
2.2.1.14. Late Byzantine- Early Islamic, Umayyad and Mamluk Pottery from Tall Zirä'a.... ...... ...... ...........
88
2.2.1.15. Islamic Pottery from Tall Zirä' a. ...... ...... ...... ...... ................. ...... ...... ...... ...... ....................... ...... ...... ...
90
2.2.1.16. Islamic and Ottoman Pottery from Tall Zirä'a..................................................................................
92
2.2.1. Pottery from the 2001 Survey
2.2.2. Glass Finds from the 2001 Survey
by Stefanie Hoas/Daniel Keller............................................................
124
124 126 2.2.2.3. Catalogue ofthe Glass Finds............................................................................................................. 127 2.2.2.1. Typo1ogy of the Glass Findll.... ....................... ...... ...... ...... ...... ....................... ...... ...... ...... .................. 2.2.2.2. Analysis ofthe G1ass Finds...............................................................................................................
2.2.3. Stone/Mineral Finds from the 2001 Survey
byDieter Pieweger.............................................................
134
2.2.3.1. Stone/Mineral Finds of Different Types............................................................................................
134
2.2.3.2. Catalogue of the Stone/Mineral Findll. ....................... ...... ...... ...... ...... ....................... ...... ...... ...... ......
134
2.2.3.3. '!Wo Ear1y Roman Limestone Vessels...............................................................................................
139
2.2.3.4. Catalogue of the Ear1y Roman Limestone Vessels....................... ...... ...... ...... ....................... ...... ......
141
byDieter Pieweger............................................................................
141
byDieterPieweger.....................................................................................................
142
2.2.4. Bane Finds from the 2001 Survey
2.3. The2001 SurveyResults
2.3.1. Results ofFind Distribution......................................................................................................................... 142 2.3.2. Comparison ofDifferent Survey Methods................................................................................................. 146
2.4. Bibliography............................................................................................................................................................... 150
3.
SCIENTIFIC ME1HODS
by Dieter Vie_do _ _
32 J) 34
lliiii1Riry-T•ailoulel.l914, 3". ml.40).
«< """' Öle Lolo 0*"' ~ .. Ibo E.ty lilll: &mpi"M, OJt A ~ 1.YI)oloJlloll ~. 1b
q~..) Ot'~imnol-tbo iiiDp 111111 LqouuiouODtbo
...,. ofm BB jar (. ••), co41bo411:rlllllorübool: ('1)(••}. Thll
-lt·~ ftJtlllot< o.oc1iD$ 'Uk14pallclt ftJtdlc ~
prqm~ of llol,g!oll Pmject'. Th.e fullllllf two aum:)'ll bad a much broader arca in vicw 8Dd ~ fote COl'h "'-: to dlo 'Gadara ~ Pro:icn' aima, w. ia ratrictcd to !wo- alld. doca not CCM:r lhe ftll1 Wldl al.·'.An.b (Fig, 1.27). Fux~ almoit 30 :v-a llllft; .. ftNh Iook Cll alllhe giVI!II da!a- appt'OII:Iiam canlliderill&' dlo _ . much monl lllabarm lltndipl(lhy md typoiGs:y ofth& Ngian Ia avallahk da.e 10th&~ etrom ofthc 'Oadara R.epoa ~Whh lhe ~ of lhe ~ ~ 1111 llno . _ (2009to 2012) th& bmtsl6nd of'Illll Zlrl'a WM a•m!twl Th.& a:reaof~ Will di'ridedmtoZ'G.eA(Tall Zill'a hhdi!rlall.d; c. 20% ofth&mrvtsy area} 8ll.d Zollo B (Wlilll ai·'.An.b rqion; e. 80% ofthe aum:y a:rea), togc1bc:r ~ about 400 km' ~ Ta1l Zbi 'a lo l!bld 111 th& eMt, and north to the Yamdlk River Wll!a1!bed (Pt(? 1.61). ADidfon wu lllldo w Zollo A CDPI~ 1lbmaa in Zone B thc 11an'C7 cota:>Ci&a!td on thc ImaM! lalprailel. 'ibee:JUW:tlocaliO!lofallm. waa mouurecl.by aOPS, poUery BildIIZIIIIIllillda wm>col.le4rted for~md all.te.cripc~OM ofth.&CIIInlltt --N~ De1ail and OYa'Yiew pictum~ lllkm. All plhc:red illfomllllion wu ~ illto a dalabaeb.
:D
~-·GI. 11'64, '185-424: ~-1!134, ~(
Scientific Methods
Fig. 3.62
Site 215/226-8. Ottoman penstock mill at the south side of
Fig. 3.63
Location of Sites 211/225-7 and 211/225-8 in relation to Tall Zirä'a and Gadara (Source: BAI/GPIA).
Fig. 3.65
Site 219/227-1. Overview on Tall Kinise (Source: BAI/ GPIA).
the Wadi: al-'Arab (Source: BAI/GPIA).
Fig. 3.64
Site 211/225-8. Architectural remains dated to the Middle Bronze Age (Source: BAI/GPIA).
In the 2009 campaign 78 sites were recorded; 30 ofthem have not been known before. Over 80% ofthe sites relate to the Classical era. The other sites were inhabited in the Bronze Age, lron Age or different lslamic periods. Lithic sites could not be discovered. The large Tall Qaq (Jjirbat Bond) and Tall Kinise (Ra'an; Site 219/227-1; Fig. 3. 65) were revisited. The area around the Wadi al-' Arab Dam was covered as well, which was partly surveyed by T. M. Kerestes in 1978 and J. W. Hanbury-Tenison in 1983 (Chap. 1.4.3.2.). Furthermore, the slopes ofthe Wadi al-'Arab from Tall Zira'a upwards to the region of Sediir and Döqara were surveyed. Most parts of this area had not been surveyed in detail before. While Sediir and Döqara are mentioned by S. Mittmann, the surroundings revealed many sites which shed new light on the Settlements' agricultural subsistence. The northem slopes of the wadi directly upwards from Tall Zira'a are characterised by a dense occurrence of water sources. Many of the sites found there relate to them. This can shed further light on water management in the region (Fig. 3.62). One smaller site directly across
24
Kerestes et al. 1977/1978, 119.
the wadi from Tall Zira'a deserves special attention. This site was published first by T. M. Kerestes in 1978 (Site 2 in the Wadi al- 'Arab; i.e. Site 2111225-8; Fig. 3.64) and identi:fied tobe ofMiddle BronzeAge date24 • Its position relates this site directly to Tall Zira'a. Together they control a narrow passage in the wadi and of course a direct line of sight is given between them (Fig. 3. 63). Just 50 m up the slope another previously unknown site could be recorded with architectural remains of the Roman period (Site 211/225-7; Figs. 3.63 and 3.65). This site does not only overlook the lower wadi, as the nearby older one, it has also a direct line of sight to Gadara which is missing in the lower position. This gives a hint on the shifting of central settlement from Tall Zira'a to Gadara during the Classical era. In the Wadi al-'Arab above the Tall Zira'a five penstock mills were recorded together with two dams (see e.g. Figs. 1.37 and 3.62). J. W. Hanbury-Tenison only mentioned three mills. All of them can be dated to the Ottoman period.
199
200
D. Vieweger/J. Häser/P. Leiverkus/G. Bongartz/G. Bülow/J. Große Frericks/D. Biedermann/A. Rauen/K. Rassmann!S. Reiter/K. Soennecken et al.
Fig. 3.66
Site 214/227-3 on the edge high above the Wadi al-'Arab
Fig. 3.67
Fig. 3.68
Site 224/217-3. Dolmen north-west ofKafr Yiibii (Source: BAI/GPIA).
During the season of2010, 57 sites were recorded. While during the first season of 2009 the lower part of the Wii.di al-'Arab from North Süna up to Döqara was surveyed, this season the survey covered the area from Döqara up to the vicinity of Irbid. The nature of the Iandscape changes while approaching the upper part of Wii.di al-'Arab. The wii.di is deeper incised and one can find the settlements mostly at the edges high above the wii.di (Fig. 3.66). The majority ofthe ancient settlements were known before by the work ofN. Glueck and S. Mittmann. In Season 20 11 the close inspection of the hinterland
of the Tall Zirii.'a (Zone A) was enhanced with a broad view on the Wii.di al-'Arab region by revisiting the major sites in the whole area (Zone B). The exact location of all sites was measured by GPS, pottery was collected for comparison and descriptions of the current state were refreshed. Thus several caves, graves, dolmens, cisterns, water basins, and a water mill could be documented (Figs. 3.67-3.69).
25
Hanbury-Tenison et al. 1984, 390.
Site 233/229-1. Ottoman mosque in ijargii with a Roman or Byzantine sarcophagus (Source: BAI/GPIA).
(Source: BAI/GPIA).
Fig. 3.69
Site 228/213-5. Roman - Byzantine sarcophagus fragments and grave niches near 'Aydiin (Source: BAI/GPIA).
Altogether 206 sites were identified, georeferenced and described, of which 30 were previously undescribed. lt was possible to discover a representative amount of pottery from all sites, a concise overview ofthe occupational history ofthe Wii.di al-'Arab can be derived. One important result ofrevisiting the previously published sites during the survey in the Wii.di al-'Arab is the observation ofheavy destruction on many sites in the last decades. The rapid increase of deterioration is alarming. Only recently a large tall with Roman, Byzantine and Islamic occupation (no. 026 in the J. W. Hanbury-Tenison Survey25 ; Site 211/224-2; Figs. 3. 70 and 3. 71) south of Tall Zirii.'a has been completely destroyed by bulldozing. Ancient remains could be seen covering an area of approx. 130 m x 90 m-some of the stones still in situ, but most of them shoved away. The section produced by a bulldozer showed at least two layers of Roman - Byzantine settlement, divided by layers of ash (Fig. 3. 71). Almost all of the modern villages date back at least to the Roman - Byzantine period, some of them to the
Scientific Methods
Fig. 3.70
Site 2111224-2. Settlement on a tall (Source: BAIIGPIA).
Fig. 3.71
Site 211/224-2. Two layers of Roman- Byzantine settlement divided by layers of ash (Source: BAIIGPIA).
Fig. 3.72
Site 228/221-1. :ijirbat Sns. Robbery trench with a wall, around it burnt vegetation (Source: BAIIGPIA).
Iron or Bronze Age. Only very few of the ancient Settlements are not covered and destroyed by modern Settlements. That includes most of the Islamic history of the Wadi al-'Arab. 1t is especially sad to note that none ofthe old mosques in the area of the wadi, some oft them dating back to the Medieval period, are in existence today. The oldest mosque in the area, to our knowledge, can be found in the village Jjarga (Site 233/229-1; Fig. 3. 67). Even this one is in a very bad condition. Despite the continuing demo1ition of the o1d sites, a huge amount of pottery from all sites cou1d be recovered. They give us a precise insight ofthe wädis' history. Severa1 smaller sites are destroyed by agricu1tural activities (especially olive tree cultivation) which 1eaves sites in an unrecognizable state. These observations lead the members of the 'Gadara Region Project' to the firm commitment to execute this survey not only as a necessary complement to an excavation but also as a preservation of knowledge on the history of the Wadi al-' Arab, most of which will be lost in the near future. Apart from the heavy destructions another problern emerged clearly: most of the unknown or at least unpub-
26
Mittmann 1970,28 no. 59.
Fig. 3.73
Site 220/224-1. Grave entrance with robbery trench (Source: BAIIGPIA).
lished sites showed traces of recent unauthorised excavation/digging, mainly concentrating on tombs (metal detectors) and removing most ofthe finds. In the following two examples will be presented. Site 228/221-1 is frrst described by S. Mittmann (M 059)26 and called Jjirbat Srls and comprises 1.5 ha. By visiting it, the vegetationwas burnt down (Fig. 3. 72). Pottery, tesserae, a cistem and a robber trench (three layers of ashlar masonry visible) could be found. The pottery could be dated to Roman, Byzantine, and Islamic (Umayyad) periods. Site 220/224-1 was not published before and is located north ofFü'ara, south-west ofWädi al-'Arab.An area of approx. 2 ha (250 m x 80 m) was covered with pottery, tesserae and some pieces of glass. Additionally cistems, a quarry, some natural caves and graves were found (Fig. 3. 73). Most of the graves were only visible because of recent robber trenches and nearly all of them were shaft tombs. In one robber trench ashlar blocks could be seen. The pottery dates to Roman, Byzantine, and Islamic periods and suggest at least two phases of occupation.
201
202
D. Vieweger/J. Häser/P. Leiverkus/G. Bongartz/G. Bülow/J. Große Frericks/D. Biedermann/A. Rauen!K. Rassrnann/S. Reiter!K. Soennecken et al.
3.6.2. Landscape Archaeology and its Methods Used in the 'Gadara Region Project' by Linda Olsvig-Whittaker
Fig. 3.74
Habitat mapping of Zone A and Zone B. Large scale (Source: L. Olsvig-Wbittaker).
Within the 'Gadara Region Project' several methods of Landscape Archaeology have been used. But this work in 2016 is still in its very early stages and methods are likely to change substantially as the research continues. Forthis reason only preliminary results are given in this chapter. A full report of results will be presented in Vol-
ume 8. So far, habitat rnapping according to methods developed in BioHab27 and EBONE28 as well as the multivariate analysis methods of Canonical Correspondence Analysis (CCA)29 and Detrended Correspondence Analysis (DCA) 30 have been used as methods. They will be described in the following sections.
3.6.2.1. Habitat Mapping Habitat rnapping as developed in BioHab and EBONE uses physiognomic categories-growth form and height categories-rather than species composition as the basis for classification of habitat. The system is now widely used for European habitat monitoring since the reliance on remote sensing and orthophotos enables coverage of large areas in a standardised fashion. The mapping begins from aerial photographs or remote sensing images. In the present study, the images used were from Google Earth Satellite Imagery31 maps at different resolutions, using the Open Layers Plugin option in QGIS 2.12 32 • The boundaries of the survey area and the sites were superimposed on a Google Earth image, and sites
were mapped from their centroid coordinates on QGIS (Fig. 3. 74). Halfkilomette buffers around each site were done in QGIS. Originally the entire area was to be mapped to habitat, but this proved very time consuming. Instead each site is currently being mapped by eye and classified based on the Google Earth images (see Fig. 3.74 with Site 219/2211 as an example). Polygons were drawn by eye at the 1 : 10,000 level (attime reduced to 1 : 5,000 when clarity was needed). The Iandscape observed by satellite was relatively simple, and was intuitively classified into crude categories as orchard, maquis, steppe (which later proved to be mostly open shrubland), urban, riverine, field, bare,
27
Bunce et al. 2011.
30
28
Olsvig-Whittakeretal. 2011.
31
Jongman et al. 1995, 105-109. https://en.wikipedia.org/wiki/Google_Eartb (12.7.2016).
29
Jongman et al. 1995, 137-144.
32
https://en.wikipedia.org/wiki/QGIS (12.7.2016).
Scientific Methods
water, archaeological site, and development (not urban, can include military bases, water installations, etc.). The ground verification started in summer 2016. For the multivariate analysis, categorical data were used. The habitat mapping provided the environmental
matrix data as the percentage of the area around each site in each habitat category. The response 'species' variables were of two types: epoch classification and size categories. These variables were provided as follows.
Habitat Categories Used in this Mapping (from QGIS Properfies ofthe Layer) Habitat categories used in this mapping are (see the legend inFigs. 3.74 and 3.76): Field (brown colour) Maquis (light green colour) Orchard (dark green colour)
other non-urban constructions. Greenhouse areas look like fields but are white from the plastic coverings. Ground verifications started in summer 2016 for the habitats mapped from satellite images. Hence the categories used are preliminary. The site types are categorised as follows: Building Cave
Unknown (turquoise colour with red point Urban (pink colour)
•
Cistem
Steppe (yellow colour) Open water (blue colour )
Installation
•
Bare (light pink colour)
Quarry
Riverine (olive green colour)
Scatter
Archaeological site (red colour)
Settlement
•
Development (purple colour)
Tall
Greenhouse area (white colour with brown point)
Tomb
Visually on Google Earth satellite images, steppe, fields and bare areas are difficult to distinguish, but fields are generally rectangular, while steppe has some vegetation (obviously grading into bare areas ). Maquis is more open vegetation. Orchards (presumably nearly all olive groves) are regular in form. Urban areas are quite clear with their roads. Riverine vegetation is relatively dark, dense and linear. Archaeological sites are a little difficult but can be checked as known locations. Development is a catch-all term for military camps, water systems, and
Natural vegetation appeared to include a range from steppe to shrubland to riverine forest; anthropogenic Iandscape (which dominate) included fields, urban areas, large installations and large archaeological sites. Open water, though rare, was important. These are only preliminary findings. The immediate next steps will be to develop automated mapping on GIS ofthe habitats for the entire area, based on algorithms derived from the habitat polygons drawn by eye. This will make possible the analysis of all sites much more rapidly and with different scales of relation to environment.
Epoch Classification Epochs were used as provided from the survey database, but broader groupings were made as follows in order to provide enough sites in each class for data analysis: Neolithic and Chalcolithic BronzeAge IronAge Hellenistic Roman Byzantine Islamic 'Undetermined' and 'modern' not into a group
Fig. 3.75
Site 220/225-1. Agricultural installation (Source: BAI/ GPIA).
203
204
D. Vieweger/J. Häser/P. Leiverkus/G. Bongartz/G. Billow/J. Große Frericks/D. Biedermann/A. Rauen!K.. Rassmann/S. Reiter/K.. Soennecken et al.
Size Categories Site size is a continuous variable. However to be used as an environmental variable in the analysis, this had to be changed to a categorical variable. Three very coarse size categories are used in the analysis:
A few metres in area A dunum (0.1 ha) in area or 1ess Several dunums in area
An Exapmplefor Habitat Mapping: Site 220/225-1
Fig. 3.76
Habitat mapping. Small scale. Site 220/225-1 in the middle (yellow) and Site 219/226-1 on the left (pink) (Source: L. Olsvig-Whittaker).
Site 220/225-1 is 1ocated south-west of the modern vi1lage ofls'arä at the westem slope ofWädi al-'Arab (Fig. 3. 76). Apart ofthe site is still used for agriculture. Olive trees are planted in the northem part of the site. Pottery collected dates it to late Roman to Umayyad periods. Former surveyers described Iron Age and Hellenistic occupations, but this could not be verified33 • At least six cis-
tems with various sizes have been found and documented as well as some agricultural installations (Fig. 3.68). In a 0.5 km radius, the habitat is dominated by steppe, but the direct surrounding is characterised by maquis. Towards the modern settlement, anthropogenic Iandscape with orchards and fields increases.
3.6.2.2. Multivariate Analysis of Assemblage Patterns Multivariate analysis is a form of exploratory data analysis which uses multivariate statistics to observe the behavior of multiple response variables, usually in a regression based approach. In this particular case the response variables are multiple habitat types and multiple size categories for sites. The driving 'environmental' factors are site attributes of epoch and size. Multivariate
33 34
Mittmann 1970,31 f. no. 67. Olsvig-Whittaker et al. 2015.
analysis has been used successfully34 in a manner similar to its more common usage in community and Iandscape ecology35 • In these studies, multivariate analyses are used for the statistical correlation of archaeological sites and habitat. Multivariate analysis-indirect ordination and direct ordination-using CANOCO 536 was selected as
35 36
Jongman et al. 1995. Smilauer- Leps 2014.
Scientific Methods
the tool for assessing patteins and correlations in site attribute and babitat attribute data. While ordination bas lang been in use in community ecology, its application to arcbaeological data is somewhat more recentl7 . There is a vast Iiterature on the subject of ordination and many algorithms to do itl1• In general, ordination methods help to find sttucture in complex matrix data sets, i.e. site by attribute or habitat by attribute tables. In the case of direct ordination, this is basically a regression ofthe site data versus the habitat data, conceptually similar to multiple regressions. Direct ordination can be used either heuristically or as a statistical test of correlation with measured driving factors, using Monte Carlo simulations.
When a heuristic search for pattem is desired, indirect ordination is the proper tool. Most algorithms for indirect ordination calculate similarity/dissimilarity between babitats or sites and their attributes, from a single table. Results are projected onto two dimensions in such a way that similar habitats or sites and most closely correlated attributes are plotted close together, and dissimilar babitats or sites and their attributes are placed far apartl9• Most importantly, in both direct and indirect ordinations, the scatter plots for habitat and site values can be superimposed In this way the habitals factors driving the pattem in sites can be seen, and vice versa.
3.6.2.3. Detrended Correspondence Analysis (DCA) Detrended Correspondence Analysis (DCA) was used on the babitat matrix, with site data carried passively, to determine maj or trends in variation of habitat distribution and the response of site factors to them. DCA is an indirect ordination method using only one matrix. It is an analytical approach in its own right, and is also a necessary first step in every CANOCO analysis, regardless of algorithm. Th.e first information obtained in DCA is the
habitat tumover along the first gradient (Axis 1, horizontal), which is either short (less than four standard deviation units in habitat composition), in which case a linear model such as PCA or RDA can be used in subsequent steps. If the gradient is Ionger than four standard deviation units, a unimodal model such as DCA, or Canonical Correspondence Analysis (CCA) is used in subsequent steps.
3.6.2.4. Canonical Correspondence Analysis (CCA) Canonical Correspondence Analysis (CCA) is a direct ordination method which correlates two matrices using eigenvector methods. In this study habitat bas been used as the 'species' matrix and the two factors of sites size
and age as the environmental matrix factors. Monte Carlo tests can be run to determine the significance of the correlation ofbabitat with site factors.
3.6.2.5. Preliminary Results A preliminary analysis using DCA and CCA was done of Roman sites, both those on previously occupied locations and those with no previous occupation. By type, the 'New Roman' sites were predominantly installation and scatter (no building). ThiB would fit with a predominantly agricultural expansion. DCA (Graph 3.1U) showed a close relationship of larger archaeological sites and open water. The analysis used DCA with supplementary variables. Total variation was 0.84771, supplementary variables accounted for 2.6% (adjusted explained variation is 0.4 %). CCA (Graph 3.9) was run on habitat with site size and age as environmental variables. Total variation was 0.84771, explanatory variables accounted for 2.6 % (adjusted explained variation is 0.4 %). Permutation tests on all axes provided a probability of correlation of
37
However, see Olsvig-Whittaker et al2015 for a review and case study.
p = 0.304, hence the Monte Carlo testing ofthe correlations of site and habitat factors was not significant. The ordinations, despite the lack of statistical significance of correlations, suggest that natural open water, riverine habitats, and large archaeological sites all seemed connected. In addition, CCA indicated a correlation of older (more successful or established?) sites with open water. Water was of course critical for human settlement, and it was reasonable that larger archaeological sites would be close to water sources. What was interesting in the CCA analysis was that new Roman sites were less related to water. We knew that Roman engiDeering both of cistern systems and aqueducts opened new areas (such as plateaus) for settlement and exploitation. Hence the weaker correlation of 'New Roman' sites with water also made sense.
38 39
See Jongman et al 1995 for a review. Pect 1980.
205
206
D. Vieweger/J. Häser/P. Leiverkus/G. Bongartz/G. Bülow/J. Große Frericks/D. Biedermann/A. Rauen!K. Rassmann!S. Reiter/K. Soennecken et al.
~ r-----------------------~--------------.
':Deve/opm
ci
[:,
Archaeol De-velopm
..
U1·ban
"
"
Field "'
O•·chm·d ·-----------------------
Urban
Afaquis
Riverine Bare : Riveri':Te
[:,
Steppe
!>
Archaeol Bare 6
.
"'
Field 6
size
w~:~~---_ _-_ -__-__-_-_-__-_ -c___-__-___-___-s-te-p_p'""l•\Mro AGE
AGE
~ ~------------~-----T_M. _a~q_u,_ s _""T------r------~
-2
~4---------+----+----~--~--~~--~--~ -1.0 0.6
4
Graph 3.9
Canonical Correspondence Analysis (Source: L. Ols-
Graph 3.10
vig-Whittaker).
Detrended Correspondence Analysis (Source: L. Olsvig-Whittaker).
3. 7. Archaeobotany by Linda Olsvig- Whittaker
Fig. 3.77
Landscape with olive groves around Tall Zirä'a. Photograph taken in spring 2012 (Source: BAI/GPIA).
Archaeobotany, the study ofplant remains from archaeological sites is a relatively new but important and necessary branch of archaeology and an integral part of archaeological projects40 • While in some cases, plantremains may persist due to the extreme dryness of conditions, in most cases what can be obtained in sites such as Tall Zirä.'a will be carbonised plantremains from destruction layers, hearths or middens where hearth remains were deposited.
Most of the findings will be carbonised seeds. These may come either from agricultural and weed species or from natural vegetation, especially where dung was used as fuel41 • These can be extracted and identified under a microscope. From such carbonised macrofossils it can be learned which plants were raised or traded. Where dung was burned there are clues about natural vegetation. Until now, very little was known about the botanical remains in Tall Zirä.'a. The main plantremains areolive
40
41
Grieg 1989.
See Olsvig-Whittaker et al. 2015.
Scientific Methods
kemels from 22 contexts dating between the Late Bronze Age and the Umayyad period. It was originally thought that few plant macrofossils were available on Tall Zirä'a, but experience suggests this was more a matter of not sampling specifically for plant remains, and there should be plant materials if one looks for them properly"2 • Sampling for archaeobotanical macrofossils involves specialised sampling and extraction; much small material
is lost in dry sifting using classical archaeological methods. In this chapter a preliminary study will be presented. Its aim was to see if more material could be obtained using methods designed for archaeobotanical sampling. While this is strictly a pilot study, the potential for future work is also discussed.
3. 7 .1. Ecological Background 3.7.1.1. Ecological Background ofNorthem Jordan graded forest. Vegetation: Dominant shrubs: Rhamnus palaestinus, Calicotome villosa, Echinops spp, Dactylis glomerata, Teucriumpolium, Ononis natrix, Ballota undulata, Eryngium glomeratum, Noaea mucronata".
Northem Jordan has a fairly steep gradient from Mediterranean climate in the west (475 mm/year at lrbid) to arid in the east (150 mm/year in Mafraq)43 • In response to this, according to the excellent review by S. A. Ghazanfar et al. the area around Tall Zirä'a would comprise two major vegetation zones: Mediterranean degraded nonforest vegetation to the west merging into Irano-Turanian steppe to the east, with some minor riverine vegetation in the wädis44 • Remote sensing images reveal a mosaic of open shrubland, steppe, farmland, orchards and riverine vegetation, with a predominance of open shrubland to the north-west and a predominance of steppe to the east. The area is generally regarded as transformed and degraded. As for the two major 'natural' vegetation types described by S. A. Ghazanfar et al.:
"Steppe. Land classification: This vegetation forms a strip surrounding the Mediterranean non-forest region, except in the north; excluding wooded areas and cultivations. Altitude range: 1000 m; Annual rainfall: 400-600 mm. Vegetation: Dominated by large shrubs; occasional tree species; composition varies in the north and south. Shrubs: Pistacia atlantica, Retama raetam, Ziziphus Iotus, Z. nummularia, Ferula communis (north), Anabasis syriaca, Artemisia sieberi, Sarcopoterium spinosum (NE and S Mediterranean), Tamarix spp., Noaea mucronata, Gypsophila arabica, Astragalus spinosus; geophytes: Crocus moabiticus. Aspodelus aestivus, Drimia maritima; Moraea sisyrinchium. Biogeography: Irano Turanian; Mediterranean or Saharo-Arabian in parts"45 •
"Mediterranean Non-Forest vegetation. Land classification: Northem and southem mountains and foothills. Approx. area: undetermined, Altitude range: > 1000 m; Annual rainfall: 400-600 mm. Localities: Mediterranean region not covered by forests, often treated as de-
3.7.1.2. Ecological BackgroundofTall Zirä'a Tall Zirä'a is situated in a region ofrapid transition from Mediterranean to steppe to desert environment46 • This area has experienced vegetation changes over time due to both climatic fluctuations and human activity, as amply demonstrated by D. Langgut et al. in their analysis of pollen records from several stations along the Jordan, Sea of Galilee and Dead Sea47 • As already known, this region has experienced periods of extended drought as well as wetter periods, and the pattem of climate change is now available48 • While pollen analysis gives information on the climate and vegetation of the region, plant macrofossils within a given site can give the human response to changing climate, including crops and in some cases pasture. If it is possible to obtain a good continuous record
42 43 44 45
Helbaek 1969. http://www.jordan.climatemps.com (14.10.2015). Ghazanfar et al. 2013. Ghazanfar et al. 2013,28 f.
Fig. 3.78
46 47 48
Flora at Tall Zirii'a (Source: BAI/GPIA).
Ghazanfar et al. 2013, 28 f. Langgut et al. 2015. Langgut et al. 2015.
207
208
D. Vieweger/J. Häser/P. Leiverkus/G. Bongar!VG. Bülow/J. Große Frericks/D. Biedermann/A. RaueniK. Rassmann/S. Reiter/K. Soennecken et al.
of plant remains at Tall Zirii'a, one can connect this agricultural information to the climate information available from regional pollen studies that is now available. Tall Zirii'a is a major tall which not only sits on a major caravan route and ancient highway ofthe Near Bast (see Chaps. 1.2 and 1.3.2.); it is also located in a mar-
ginal, ecologically shifting environment, a finger of Irano-Turanian steppe extending into the Mediterranean49• If plant remains can be extracted, they should represent local agriculture, long distance trade and, possibly, shifting vegetation composition through time in response to climate change.
3.7.2 Archaeobotanical Background While little archaeobotanical work has been done on Tall Zirii'a until now, there has been extensive work on sites around the Dead Sea-Jordan River-Sea of Galilee-area which together give a general idea ofwhat has happened over time. Changes should be anticipated related to climatic fluctuations and to cultural changes such as the introduction of vastly improved water management and introduction of better indus1rial agriculture in Roman times50• Changing climatic regimes and anthropogenic influences should be refiected in changing vegetation of the site through time. While northern Jordan experienced the same Late Bronze Age collapse around 1200 BC that
was happened around the Bastern Mediterranean, this is mostly attributed to the Sea People51• However, climate records around the Dead Sea suggest that a major desiccation of the environment may have also been involved. It should be possible to distinguish that by getting adequate archaeobotanical samples52• The work by D. Langgut indicates that drought was a major factor leading to the Bronze Age collapgeSJ. Their review ofrecent studies show a decrease in trees requiring a great deal ofwater and an increase in the cultivation of chy-climate trees, such as olive trees, during the period between 1250 and 1100 BC. This is most likely a human response to changing climate.
3.7.3. Methods In May 2014 a preliminary manual flotation sampling of 43 soil samples was conducted bythe authorofthis chapter4. The soil samples bad been collected at Tall Zirii'a during the past ten years and covered achaeological periods ranging from Early Bronze Age to Mameluk period (see Tab. 3. 1)55• The samples bad not been originally collected for flotation sampling, but were con1ributed for this purpose from the archived soil and soil-like samples stored at the dig house. Most of the samples contributed for this study were contents of pots, floor fillings, mortar, etc. A detailed listing is given in Tab. 3.1. The most productive samples came from hearths, pits, and collapse debris, as might be expected. The sampling was inspired by work which has been done by the Tel es-Safi/Gath team based at Bar llan University (BIU)56• The methods which were used by the author of this chapter were recommended by the archaeobotany lab under E. Weiss at Bill as suitable for
pilot studies57• They are also described by J. Grieg as 'manual flotation' or 'washing over'51.This is also called bucket flotation and is widely used for pilot studies59 • Despite the primitive nature of this method it was used successfully in earlier decades and vastly increased knowledge of plant macrofossils. Since its beginnings in the 1960's different methods were developed and it is a standard procedure in excavations worldwide60. The bucket and wash over methods were modi:fied by the author of this chapter somewhat to fit the equipment at band, using local buckets and washtubs, as well as fine-meshed commercial flour sieves. Soil samples varied from a few grams to a kilogram, but no more than a halfkilo could be processedat one time (for the process seeFigs. 3.79-3.84). The residues were inspected by using an Olympus binocular microscope. The organic residue was put in a plastic Petri plate, and any interesting objects in it (bones, shells, metal, possible and obvious seeds) were
Zohary 1962; Ghazanfar et aL 2013. Petitetal. 2006, 179-188. Cline 2014; see http://www.kinghussein.gov.jo/his_citystates. h1ml (9.9.2015). See Olavig-Whittabr et al. 2015 for llll&lytical methodology. Langgutetal. 2015. Grieg 1989, 32-39. I would 1ike to thank the stalf and students ofthe archaeobotany laboratmy at Bar Dan University, in particular Ehud Weiss and Suembikya Frumin, for their invaluable advice and practical help on methodology and taxonomic idemification. Wi1hout their he1p
this project would have been imposSlb1e. I also wish to 1hank 1he staff of the BAI/GPIA for providing the fie1d facilities and samp1es from which the seeds were extracted. Cf. Frumin et aL 2015. E. Weias and S. Frumin, personal communication. Grieg et al. 1989, 32-39. See illustnrtion in https:l/sites.google.com/site/archaeobotany/ buckets andhttps://sites.google.com/site/archaeobotaoyfbuckets2 (4.3.2016).
49
SO 51 52
53 54 55
56 57 58 59
60
Neef et al. 2012
Scientific Methods
transferred to a tripartite Petri plate. Those samples which had possible or probable seeds were taken to the Bar Ilan archaeobotanical laboratory, where S. Frumin
verified the identification of seeds using the accumulated fossil collection there.
Fig. 3.79.
Sieving out large stones and gravel (Source: L. OlsvigWhittaker).
Fig. 3.80.
Pouring soil sample into basin ofwater (Source: L. OlsvigWhittaker).
Fig. 3.81
Wash over ofwater and fioating organic material through a sieve (Source: L. Olsvig-Whittaker).
Fig. 3.82
Moving the organic material to a filter paper for drying (Source: L. Olsvig-Whittaker).
Fig. 3.83
Sample poor in organic material (Source: L. OlsvigWhittaker).
Fig. 3.84
Sample rich in organic material (Source: L. OlsvigWhittaker).
209
210
D. Vieweger/J. Häser/P. Leiverkus/G. Bongartz/G. Bülow/J. Große Frericks/D. Biedermann/A. Rauen/K. Rassmann/S. Reiter/K. Soennecken et al.
3. 7 .4. Preliminary Results of the Archaeobotanical Researches on Tall Zirä' a The samples were often rich in mollusk shells and some had vertebrate bones, which have been saved. There were also modern seeds (sometimes rich collections of them) which were saved but not of interest for present concerns. According to L. Kolska, archaeozoologist on the 'Tel es-Sa:fi Project', land mollusks often gather to aestivate in soil samples, and ants frequently collect modern seeds in the same samples. This may explain the large cache of modern seeds in one sample. Only carbonised seeds can be regarded as true archaeological specimens. It should be noted that most of the carbonised seeds were in poor condition, but nearly all were cultivars or weeds61 : Olea europaea (domestic olive) Vitis vinifera (domestic grape) Ficus carica (domestic fig) Triticum aestivum (common wheat)
Hordeum vulgare (domestic barley) Vicia ervilia (domestic bitter vetch) Gynandyris sp (a wild iris-like geophyte) Unknown Asteraceae species (daisy, sun:flower family) The bitter vetch is an interesting find; originating in Anatolia and northern Iraq but not native to Jordan62 • It was widely cultivated in the past both for animal feed and (after repeated washing to remove toxins) for human consumption as well. Most ofthe remaining species are typical Middle Bastern crops; Gynandyris may have been a weed in cereal fields. At this point in time, the data are far too sparse to say anything about vegetation, agriculture, trade or living conditions apart from the fact that the crop species found are typical for this region. Hence there are indeed archaeobotanical macrofossils at Tall Zira'a that are typical for Middle Bastern agriculture.
3.7.5. Potential Future Archaeobotanical Researches on Tall Zirä'a
Fig. 3.85
At the south-westem foot ofTall Zirii'a. View to the water reservoir. Photograph tak:en in 2009 (Soure: BAIIGPIA).
The feasibility study demonstrated that seeds can be obtained by flotation sampling in Tall Zira'a. The poor condition of the seeds obtained for research may be due to preservation conditions in the site. The climatic conditions on Tall Zira'a are disadvantageaus for the preservation of the samples. Future surveys and excavations will include systematic archaeobotanical sampling. Archaeobotanical macrofossils should be found comparable to those found elsewhere in the region when flotation extraction has been used, most likely thousands of seeds, as F. Hole et al. described in their experience63 •
In addition, this site is in an ecologically marginal zone which experienced times of drought. One should be able to document changing environmental conditions, if we have adequate sampling spread over the long time frame represented on Tall Zira'a. Ifwood rather than animal dungwas the main cooking fuel on Tall Zira' a, the rich collections of wild plant species found in hearth sites where dungwas bumed cannot be expected here. However, the presence of a weed species in this small collection is encouraging. Probably nearly all the plant species which have been found will be related to cultivation or trade.
61
Found, according to the BIU archaeobotany laboratory staff.
63
62
Zohary-Hopf2000, 116.
Hole et al. 1969.
Scientific Methods
Identification of sample
TZ-No.
Early Bronze Age III
Period
I
019311-001
6327
Content ofpot TZ 021630-001 II filling/pit
Late Bronze Age I-II
I
018818-001
6125
Filling
Late Bronze Age II Late Bronze Age II Late Bronze Age II
I I I
012193-001 016362-001 018821-001
3574 5129 6057
Clay II fillinglfireplace? Content ofpot TZ 020405-001 II pit Chalk II fireplace
I I Echium judaeum II modern seeds
018819-001 011752-001 011753-001
5942 3365 3449
Seeds? I I filling Content ofpot II pit Earth/seeds II fillinglfireplace?
I I I
016360-001 018815-001 018817-001
5209 6146 6124
Content ofpot TZ 020378-013 II mudbrick-wall Content ofpot TZ 021558-001 II filling filling
possible Ficus sp I I I
012191-001 018816-001 019001-001 012192-001
3494 5513 5738 3458
Pitlfireplace? Content of cooking pot TZ 021560-001 II filling Content of pot TZ 021031-001 II chalk I I filling Content ofpot TZ 005205-001 II earth/ash
I I Wheat (Triticum aestivium) II
112232-001 111855-001 111856-001
11186 11106 11106
Mortar II wall Earth around pot TZ 101236-001 II hearth Content of pot TZ 101236-001 II hearth
I
112233-001
11296
Mortar II pit
Barley ( Horduem vulgare) II wheat?
110822-001
10611
Content of pot I I filling
I I I I
possible Ficus
016357-001 016358-001 016359-001 018820-001 016361-001
5095 5116 5189 5522 4940
Part offloor II filling Part offloor II filling/frreplace? Mortar II filling Mortar II pit Content ofpot TZ 020062-041 II
I Gynandiris sp I I
112231-001 012261-001
11346 3539
Mortar II filling Content of kernos TZ 005383-001
I I
310468-001 310693-001 310696-001 310697-001
30121 30416 30420 30420
Filling between two floor Ievels I I filling Clay II floor Mortar II part ofmosaic floor Mortar II part ofmosaic floor
Olivefragment (Olea europaea)
310695-001
30421
Clay with organic material II floor
I I I Grape (Vitis vinifera) possibly Asteraceae II shells I
009646-001 310692-001 310698-001 110931-001 110788-001 110757-001
2502 30398 30398 10578 10571 10571
Pottery and mortar I I filling Destroyed mosaic floor Mortar ? II part ofmosaic floor Content of amphora II fillin~lcollapse debris Content of amphora II fillinglcollapse debris Content of pot II filling
I I Wheat (Triticum aestivium) and bitter vetch (Vicia ervila) Barley ( Horduem vulf{are)
310418-001 111002-001 310694-001
30150 10655 30386
Content ofpot TZ 300132-001 II filling filling Clay II floor
310419-001
30023
Content of pot TZ 300173-001 II colluvium
Iron Age I Iron Age I Iron Age I
Context-No. and Description
prob. from an ant. storage Iron Age I Iron Age I Iron Age I Iron Age IIA/B Iron Age IIA/B Iron Age IIA/B Iron Age IIA/B Hellenistic Hellenistic Hellenistic
with glume attached Hellenistic Hellenistic - Early Byzantine
EarlyRoman EarlyRoman EarlyRoman EarlyRoman EarlyRoman Byzantine Byzantine
possibly a weed in acereal field Byzantine Byzantine Byzantine Byzantine Byzantine - Umayyad Umayyad Umayyad Umayyad Umayyad Umayyad Umayyad Abbasid-Marnluk Abbasid-Marnluk Abbasid-Mamluk Modem
Tab. 3.1
I
Unidentifiable seed
Sampies processed in 2015 (Source: BAI!GPIA).
211
212
D. Vieweger/J. Häser/P. Leiverkus/G. Bongar!VG. Bülow/J. Große Frericks/D. Biedermann/A. RaueniK. Rassmann/S. Reiter/K. Soennecken et al.
3.8. Archaeometry edited by Dieter Vieweger/Jutta Häser""
with a contribution by David Adan-Bajewitz
Archaeometry evaluates scientific data yielded by the excavated artefacts. This allows conclusions on an object's manufacture, the technologies used, the place of manufactuxe, and the trade route it has followed. Basically, the aim was finding out how the TaU Zirä'a's inhabitants managed in the course ofthousands ofyears to adapt their survival strategies to the natural conditions of the wiidi, and in what manner they reacted to changing resources. In the field of skilled cmfts and trades, this can be inferred from the raw materials they were able to wor.k, from the goods that were manufactuxed, and from the extent of improvement of the finished products' serviceability. Over the centuries, ai1 this necessitated technical knowledge, mechanical skills, and novel ideas, combined with target-oriented experiments, as well as innovation. The archaeometrical project conducted by the Biblical Archaeological Institute Wuppertal (BAI) was started in 2003. The cooperation partners are: German Mining Museum Bochum (A. Hauptmann, M. Prange, and D. Kirchner; especially with regard to studies of ceramies in the years 2003 and followings)
Tourism andHeritage (Ph.D. studentA. Mayyas; analyses of the contents ofEarly Bronze Age ceramic vessels)
Thanks to the kind support of the 'Department of Antiquities (Jordan)' (DoA), important finds could be exported to Germany (Wuppertal). Here, they were cleaned--and, if necessary, also restored-, photographed, sampled for further scientific examination and/or given to experts such as numismatists, osteo1ogists, botanists, etc. for inspection. Finally the finds were returned to Jordan. The abundance offinds on the Tall Zira'a allowed the comprehensive examination of various artefacts as well as raw materials, such as different types of ore, rocks, and minerals. A representative selection was taken from the multitude of finds on the Tall Zirä'a, made of ceramic, glass, faience, metal, or minerals, and analyzed both chemically and mineralogically. Among these, particular focus was placed on the archaeometrical examinations of pottery and glass finds. First results from the archaeometrical testings-regarding glass beads and ceramics-have already been published in the following articles: Auge-Vieweger 2006, 54-56
Leibniz University of Hannover, Institute of Inorganic Chemistry, Work Group Archaeometry (C. Vogt, R. Lehmann, and M. Schulze; pottery studies and metal examinations since 2009)
Lebmann-Schulze 2015, 28-30 Schulze et al. 2013,294-296
Martin (Szusz) Department, Land of Israel Studies and Archaeology, Bar Ilan University (D. Adan Bayewitz, and M. Osborn; studies on Hellenistic and Roman ceramies since 2010)65 The Austrian Academy of Sciences, OREA Department of Europe, and University Bonn (R. Jung, H. Mommsen; analyses of the origin ofMycenaean ceramics)66 University of Massachusetts Amherst, Department of Anthropology (graduate student Mary Larkum; analyses of the contents of Iron Age cooking pots) 67 The Hashemite University, Department of Conservation Science, Queen Rania Institute of
64
•
Schulze et al. 2014, 13 Schulze et al. 2015, 219-221
•
Vieweger 2013, 231-242
Vieweger et al. 2009, 245-258 Vieweger et al. 2014, 57- 77 Since the archaeometrical examinations of the various materials can supp1y important insights into the skilled crafts and trades on Tall Zirä'a, aseparate volume ofthe final report ofthe excavations on Tall Zirä'a, Volume 9, written by W. Auge, who was in charge of the Biblical Archaeologival Institute's (BAI) investigations and advanced them vigorous1y, will be solely dedicated to this topic. The objectives ofthese examinations will therefore only be introduced and broadly outlined below.
65
The detailed results af these examinations will be published in 1he
www.tallziraa.de/Gadara-Region-Project/An:haeometrie/O_415. btml and http:/lwww.bai-wuppertal.de/arch%C3%A4ometrie;
66
The detailed resulta will be published in Volume 3 of this publi-
written by W. Auge and M. Schulze (BAI Wuppcrtal} as weil
67
This article is edited by D. VJ.eWeger and J. Hiser and is bued on the resean:h resulta af W. Auge. They are published on http://
as R. Lebmann and C. Vogt (both Leibniz University Hannover, Institute of lnorganic Chemistry, WG Archaeometry}.
Volume 6 of this publication series. cation series. Th.e detailed results will be published in Volume 4 of this publi-
cation series.
Scientific Methods
3.8.1. Pottery edited by Dieter Vieweger/Jutta Häse.,F> 8
Fig. 3.86
Pottery from Tall Zirä'a (Source: BAIIGPIA).
The Biblical Archaeological Institute's (BAI) most comprehensive archaeometrical project deals with the examination of pottery since ceramies dating from all periods represented on Tall Zirä'a are remarkably abundant and can be allocated to almost every 'sphere oflife': domestic home (application and decoration), crafts, and cult. The project was started in 2003. By 2012, eighteen excavation campaigns had yielded 350,000 ceramic sherds and objects, 80,000 of them diagnostics, that were divided into 90 ware groups (groups with specific unique characteristics) by D. Vieweger, A. Schwermer, and F. Kenkel. Ofthis bulk, so far approx. 300 that were deemed
representative, and some further, partiewar sherds could be analyzed chemically and mineralogically by means of the ICP, RFA, and XRD methods. Likewise, 60 samples of clay bricks, tabuns, kilns as well as soils, minerals, and clays that had been collected in the course of geological explorations in the tall 's surroundings were subjected to similar testings. The material analyses were performed at the German Mining Museum Bochum, Research Field Archaeometallurgy/Laboratory of Materials Science (A. Hauptmann, M. Prange, D. Kirchner) and, from 2009, at the Leibniz University of Hannover (C. Vogt, R. Lehmann, M. Schulze).
3.8.1.1. Provenance Study In order to determine an object's provenance, cl ays /tabunes clays/tabunes WM C R2B/ Buff (Ta II Zira'a) {Gadara not only ceramies from the tall were analysed 15 h----.---.---.--t---.---.--+--.---.---.---.---rlr---.---.----.-~--.--t----.---.--,--,t----.---.-.--.----.but also more than a hundred pieces of pottery @I+~-+===:r=~;""-:t--- I-++'"'--==F"'-t--+'-"--+--"::--c;--cT+-"--+-tr-~~++-'-t--+-+-'-'--l-·t-"i-'--~=i·''-"1 , -'+"'=t=rt,H ~ that had been found during various surveys ö .c ·" · · J ·:! ~ ~ + · "-j --f=+=+r+~--i--i , conducted in its immediate and distant surroun- i l+---1-,-1-,+l-++,,,.+k+ Tt · : f ;-t · 1.~: 1 dings (survey by P. Leiverkus and K. Soen- ~ '--+'-'";-+-'-.-t-+-~-c-++~l--t--,--H:-+-r_~---1--'-,+ :I I~ --,::..H necken [BAI Wuppertal]), or that, thanks to 10 -+-, ~+ I+ " : f ::· ' :j • ! · :r;;~·: the kind support of the German Archaeological •+=:+=M•ct- t 1· "' + ! J l -··:· L! J ''- '-+!++ t-'-'--~- '-'+=_,=i_=i4"ilrl"Ff,,.""H __J:' 11 ·~+++-P= Institute (DAI) (C. Bührig [DAI] und B. Liesen , H-=+=t----!+ +fH-".;": -++~F) 17011
11100
Prof Dr Tomasz Goslar, Poznait Radiocarbon Laboratory, ul. Ru-
tbe :find numbcn TZ 100048 and TZ 100058 an: mainly LateHe1-
biei: 46, 61612 Poznail, Poland.
lenistic to Ear1y Roman/Roman period mixed witb some Ear1y
All calibration details are given acwrding to OxCal v4.2.2 Bronk: Ramsey- Lee 2013; r:S; Aimospheric data ftum Reimer et al.
activities.
2013. 9
1400
Finding place -20.35 m be1ow NN. The associated ccramic with
Bronze Age and Iron Age material caused by pits and building 10
In terms ofheight (-21.21 m), Context 3940 lies above medieval graves Contexts 4315 and4290 (-21.31 m and-21.24 mrcsp.).
Framework ofArchaeological Work on Tall Ziri'a
4.4.2.2. Early Roman Period (Stratum 7 c) Sampie TZ 015551-001 proves that Context 5201 (SquareAQ 123) can be assigned to the Classical periods; radiocarbon dating points to a time in the second or first century BC, thus confirming the context dating from Stratum 7 c as Early Roman.
Context 5201 belongs to the rubble of a workshop or kitchen. The coin TZ 015292-001 from Context 5201 depicts a cornucopia, and has an inscription which may mention the name Yehohanan (135-104 BC).
Sampie TZ 015551-001 Context 5201 from Square AQ 123 The sample dates to 2090 ± 30 BP: 163-128 BC (26.5 %); 121-88 BC (25.6 %); 77-56 BC (16 %) (= 1 Sigma: 68.2 %) 195-42 BC (= 2 Sigma: 95.4 %) 347-319 (0.6 %); 207-5 BC (99.1 %) (= 3 Sigma: 99.7%).
4.4.2.3. IronAge (Strata 13-10) In the following Pre-Classical periods, ceramic artefacts provided the main dating for the contexts. They are on the whole consistent with the radiocarbon dating presented in this chapter, thereby con:finning the stratigraphically
obtained image. Some specific differences between the assigned date of the Stratigraphie layer and the sampled radiocarbon data do occur in some cases, and are discussed below.
Stratum 10 Three samples were found in the Stratum 10 (in the Squares AO 118 and AP 121); they are assigned to
Iron Age IIC: TZ 002493-001, TZ 014126-001 and TZ 015539-001.
Sampie TZ 002493-001 Context 820 from SquareAO 118 The sample dates to 2815 ± 35 BP: 1007-922 BC (= 1 Sigma: 68.2 %) 1073-1066 BC (0.5 %); 1057--893 BC (92.8 %); 875-850 BC (2.1 %) (= 2 Sigma: 95.4 %) 1,118-836 BC (= 3 Sigma: 99.7 %)
TZ0248S R_~1~1y
...............,.
1DG7 (11:3)12211111C
l
1073(0.ft} 1DIIaiiiC
i
.8%) taCIIIIO
""""""
I C.......dlliii (GIIIC)
Sampie TZ 014126-001 Context 4418 from Square AP 121 The sample dates to 2,805 ± 30 BP: 996--921 BC (= 1 Sigma: 68.2 %) 1046--894 BC (94.2 %); 866--855 BC (1.2 %) (= 2 Sigma: 95.4 %) 1088--837 BC (= 3 Sigma: 99.7 %)
TZ 14128 R_Dni~~IIy -{el.fto} D11CIIIIC ....,., prabdllllr (94ft)ll4ai!IC
l
I
)~110
i
II
"""'
.... ".__c.->
Sampie TZ 015539-001 Context 4674 from Square AP 121 The sample dates to 2950 ± 35 BP: 1223-1112 BC (= 1 Sigma: 68.2 %) 1264-1044 BC (= 2 Sigma: 95.4 %) 1376--1353 BC (0.4 %); 1302-1003 BC (99.3 %) (= 3 Sigma: 99.7 %)
TZ 15538 R_Dolo~~llr
II' I
1221(11.:&)t1 1 ~
....,., pmullllr 1114 (15.4%)1044clll0
.
,"."....,.,.
,.., "._-~
%)13liloi!IIC )I.,._
245
246
D. Vieweger/J. Häser
Stratum 10 belongs to the Iron IIC settlement that followed the once thriving urban Iron Age IIAIB (Stratum 11 ), fortified by an impressive zigzag city wall. Stratum 11 and 12 represent the timeframe from the tenth to the eighth century BC. There is a significant cbronological difference between the radiocarbon dating for the samples TZ 002493001 and TZ 014126-001 on the one band, and Sampie TZ 015539-001 on the other. The first two samples can be dated to the era of the Iran Age IIA/B (Strata 12 and 11 ). However, the last one, with a radiocarbon date to the
IronAge I (Stratum 13) is much earlier. Therefore it can be assumed that the reoccupied smaller Iran Age IIC Settlement (without a city wall) reused extant wood residues from preceding settlements. The archeological evidence for the Iron Age IIC settlement on Tall Zira'a, is consistent with the evidence from other Iran Age IIC settlements (e.g. Tall al-Gul)fiya) in the region where mostly villages can be found; this is in shatp cantrast to the high Ievel of culture found in the contemporary cities and kingdoms from the central area ofTransjordan, such as Ammon, Moab and Edom.
Stratum 11 Two samples were found in Stratum 11 (Squares AL 118 and AP 119); they are assigned to Iron Age II AlB younger phase: TZ 007275-001 and TZ 007253-001. Both samples represent a prosperaus walled city, which was built araund 1000 BC (sec Stratum 12), ac-
cording to the evidence from the ceramies and other finds, with a partly existing horizon ofdestruction of stratum 12 during the tenth century (TZ 007275-001). Same contexts may have been rebuilt with reused material (TZ 007253-001) from the strata 12 or 11.
Sampie TZ 007175-001 Context 1138 from Square AL 118 The sample dates to 2830 ± 35 BP:
TZD7275R_~~ 1021(et-2%)~ 11.111!11.~
1101{1.ft)1011a111C ,,.)~
•
1021-926 BC (= 1 Sigma: 68.2 %) 1108--1099 BC (1.3 %); 1090--904 BC (94.1 %) (= 2 Sigma: 95.4 %) 1190--1179 BC (0.1 %); 1157-1147 (0.1 %); 1129--841 BC (99.5 %) (= 3 Sigma: 99.7 %)
Sampie TZ 007253-001 Context 1267 from SquareAP 119 The sample dates to 2945 ± 30 BP: 1213-1115 BC (= 1 Sigma: 68.2 %) 1258--1247 BC (1.5 %); 1233-1049 BC (93.9 %) (= 2 Sigma: 95.4 %) 1280--1010 BC (= 3 Sigma: 99.7 %)
"._
12072S!IR_~~...
k
I I-
tJ11 {11.fti)111'-IBC 11.4,.~
1ZII {1.1ti)124TGIIIIO 1J:S3 (8U%)1~BC
)1otc.JBC
Stratum 12 Sampies TZ 008557-001, TZ 002149-001, TZ 002391001 and TZ 008668-001 are from Stratum 12 (IronAge IIAIB older phase). The contexts of Stratum 12 describe a city built araund 1000 BC, which was surrounded by
a wall and marked an impressive change from the open settlement of Iran Age I (Stratum 13) to the flourishing city oflron Age IIA/B (Strata 12 and 11 ).
Sampie TZ 008557-001 Context 1996 from Square AM 119 The sample dates to 2890 ± 35 BP: 1120--1012 BC (= 1 Sigma: 68.2 %) 1207-1141 BC (1.5 %); 1135--976 BC (93.9 %) (= 2 Sigma: 95.4 %) 1225--919 BC (= 3 Sigma: 99.7 %)
1208557 R-~~ I 12D (11.2%) 1012DEBC 11.4"~
~"'-''"1m "'
~
Framework of Archaeological Work on Tall Zirä'a
Sampie TZ 001149-(101 Context 55 5 from Square AN 117 Thc sample dates to 2905 ± 35 BP: 1155-1148 BC (3.2 %); 1128-1021 BC (65 %) (= 1 Sigma: 68.2 %) 1214-1001 BC (= 2 Sigma: 95.4 %) 1260--1242 BC (0.3 %); 1236--929 BC (99.4 %) (= 3 Sigma: 99.7 %)
__
TZ ~148 R_Doio(21105,35)
111N5(3.A}1141a111C 1111 (II.0%)1011CIIIC
I
•
I
II
1196--1140BC (32.1 %); 1134-1074BC (32.3 %); 1065-1057 BC (3.8 %) (= 1 Sigma: 68.2 %) 1226--1014 BC (= 2 Sigma: 95.4 %) 1282-976 BC (= 3 Sigma: 99.7 %)
....
4)1001CIBC
"""'
....
,...
--(-.:)... ""'
...
,
TZ023t1 R-~,.;!!l.,.,.
Sampie TZ 002391-(101 Context 599 from Square AN 117 Thc sample dates to 2930 ± 35 BP:
,...
&ft.lll'l-111:1:~·
i'
I' II
1111 (11.1'1.)114DaiiiC 11M(UA)107~ 1015(S.I%}1~1C
'"'
1014GIBC
-.... C.......lilm(caiiC)
Sampie TZ 008668-(101 Context 2069 from Square AH 116 Thc sample dates to 2910 ± 35 BP: 1190--1179 BC (4.7 %); 1160--1145 BC (6.9 %); 1130--1031 BC (56.6 %) (= 1 Sigma: 68.2 %) 1214-1006 BC (= 2 Sigma: 95.4 %) 1261-970 BC (99 %); 961-934 BC (0.7 %) (= 3 Sigma: 99.7 %)
Stratum 13 The samples from Stratum 13 (Iron Age I) suggest that the Ear1y Iron Age settlement was established around 1200 BC; it followed the Late Bronze Age settlement immediate1y with no hiatus in habitation. Existing architectural units as weil as building material (Sample
TZ 007257-001) were reused in the new stratum. The other samples, (TZ 007688-001 and TZ 008858-001) have been assigned to Iron Age I. Context 1413 continues from the Iron Age I to Iron Age IIA/B (o1der phase).
Sampie TZ 007688-(101 Context 1413 from Square AO 118 The sample dates to 2960 ± 70 BP/Second examination to 2960 ± 30 BP: First examination: 1265-1055 BC (= 1 Sigma: 68.2 %) 1395-993 BC (95 %); 987-980 BC (0.4 %) (= 2 Sigma: 95.4 %) 1433-907 BC (= 3 Sigma: 99.7 %)
TZ07818R_~A
~
I-
1 2E (II&.~) 10liiaii!C
IIA't'~ ·-{KINo) ~
(0.4")-.-c
I .,.,....
Clilllnlild ••ladtCI
TZ0781111BIS R-~..A
Secend examination: 1219--1125 BC (= 1 Sigma: 68.2 %) 1263- 1056 BC (= 2 Sigma: 95.4 %) 1372-1358 BC (0.3 %); 1297-1018 BC (99.4 %) (= 3 Sigma: 99.7 %)
' II ]!
1211{11.2%) 11a&.IIC 11.4"~
1JIJI{IU'Ii) 101D!a11C
•.711.~
,.,......,
{11-"'11-
I
c......... ..-r-IIIC'I
247
248
D. ViewegmfJ. Häser
Sampie TZ 008158-001 Context2115 from SquareAN 119 The sample dates to 2940 ± 35 BP: • 121~1108 BC (63.1 %); 1100-1088 BC (5.1 %) (= 1 Sigma: 68.2 %) • 1258-1246 BC (1.8 %); 1234-1027 (93.6 %) (= 2 Sigma: 95.4 %) • 1372-1359 BC (0.1 %); 1297-996 (99.6 %) (= 3 Sigma: 99.7 %)
_
TZ-~A
tl'l4 (II.tS) 11aea.c 11CIO(I.tii)....C
.......
,.....,
t•(t.ßlae.IID
Sampie TZ 007257-001 Context 1298 from Square AH 115 The S8liip1e dates to 3105 ± 30 BP: 1419--1380 BC (35.3 %); 1343--1306 BC (32.9 %) (= I Sigma: 68.2 %) 143~1286 BC (= 2 Sigma: 95.4 %) • 1495-1476 BC (0.4 %); 1459-125 BC (99.1 %); 1246--1233 BC (0.2 %) (= 3 Sigma: 99.7 %)
,".,
.. ,.,..,
R_Oate TZ 15551 R_Oate TZ 02493 R_Date TZ 14126 R_Oate TZ 15539 R_Date TZ 07275 R_Oate TZ 07253 R_Oate TZ 08557
M-,'
R_Oate TZ 02149 R_Date TZ 02391
-
R_Oate TZ 07688 R_Date TZ 07688 BIS R_Date TZ 08668 R_Date TZ 08858
2000
1500
1000
500
1caiBC/1caiAD
Onph. 4.1 Calibm1ed date (eaJBCiealAD): Rlldic:arlJon &le~ 1ium lhlll!arly Roman and lroD Age (SCIWQl; BAIIOPIA).
Framework ofAn::haeological Work on Tall Zira'a
4.4.2.4. Late Bronze Age ll (Stratum 14) The samples from Stratum 14 are TZ 015568-001, TZ 007269-001, TZ 014477-001 and TZ 015531-001. These samples cover the entire time period of Stratum 14, which has evidence of rebuilding no less than three times in some places. The reconstruction ofthe Late Bronze Age city after Stratum 16 which was destroyed
Sampie TZ 015568-(101
by a large landslide, took place before 1500 BC. The following building activieties correspond with sample TZ 007269-001. Several rebuilding activities of Stratum 14 occurred during the fourteenth and thirteenth centuries BC. They are proven by the Sampies TZ 014477001, TZ 015568-001, and TZ 015531-001.
•
Context 4792 from Square AL 118 The sample dates to 2930 ± 35 BP!HS (Humic Acid) 2930±45 BP: 1196-1140 BC (32.1 %); 1134-1074 BC (32.3 %); 1065- 1057 BC (3.8 %) (= 1 Sigma: 68.2 %)/HS: 1207-1056BC (= 1 Sigma: 68.2 %)
.....
_..
1226-1014 BC (= 2 Sigma: 95.4 %)/HS: 12621005 BC (= 2 Sigma: 95.4%) 1282-976 BC (= 3 Sigma: 99.7%)/HS: 1378--1347 BC (0.5%); 1304-927 BC (99.2%) (= 3 Sigma: 99.7 %)
lZ 16688 HS R_D~
lZ 166811 R_Do11o[l!I30,3S)
c
1111(31.1%)1140aiiiC
I
1011 (3.1'1fi) 1017..-c
..
1134(*2-K)I~BC
8
I
1111o4ai!IC
I ..,...,
1207(tlll.fto) 10!5laii!Kl
_.,
132 (Z.4%) IOOiiDIIIIBC
I
I
I ~--(CIBC)
..... _.,
c
8
134n.JBC
ac
.., 24011
---
Sampie TZ 007269-(101
Context 1172 from Square AI 115 The sample dates to 3110 ± 30 BP: 1425-1381 BC (39 %); 1342-1307 BC (29.2 %) (= 1 Sigma: 68.2 %) 1437-1288 BC (= 2 Sigma: 95.4 %) I496--147I BC (0.7 %); I465-1259 BC (99.0 %) (= 3 Sigma: 99.7 %)
Sampie TZ 014477-(101 Context 3701 from Square AF 116 The samp1e dates to 3015 ± 35 BP:
1347-1356 BC (8 %); 1302-1210 BC (60.2 %) (= 1 Sigma: 68.2 %) 1392-1337 BC (17.1 %); 1323-1156 BC (74.1 %); 1147-1128 BC (4.2 %) (= 2 Sigma: 95.4%) 1415-1108 BC (99.5 %) 1100-1081 BC (0.2 %) (= 3 Sigma: 99.7 %)
1207288 R_D~=~1425 (at.o'l'.) 18&101111!10 1!G(2t.2%) 1101e11BC 15.41&o,......lltr 14S1'(16.fto)IJIIaiiiC
T%!M'OI*IIIap (0.7%) 1471CIIIIC
) 12Aee!BC
lZ 144.77 R_D~=~1J'U (e.O%) 13811:d1C 1JQI (11).2%) IJ1DDIIIBC 15.41&o .......lltr
1311 (17.1'1.) ID1aiiiC
1323(14.1%)11eok:IIBC 2% 1121!1:d1C
249
250
D. Vieweger/J. Häser
Sampie TZ 015531-001 Context 4793 from Square AL ll8 The sample dates to 2940 ± 35 BP: 1214-1108 BC (63.1 %); 1100-1088 BC (5.1 %) (= 1 Sigma: 68.2 %) 1258-1246 BC (1.8 %); 1234-1027 BC (93.6 %) (= 2 Sigma: 95.4 %) 1372-1359 BC (0.1 %); 1297-996 BC (99.6 %) (= 3 Sigma: 99.7 %)
0 1C_Ca.l v4.2.3 Bmnk
Ra~AV r?On\~
r: lntC::aln atrT'Irutl heri
R Date TZ 15568
r.urv
R 1in-w r t al ?013\
f -
~~u
R Date TZ 15568 H ~ ~
R Date TZ 15531
~
-
~
~
..-
R Date TZ 14477
~
......... ........
R Date TZ 07269
~~
~
~
~
1800 Graph. 4.2
1600
1400
1200
1000
800
Calibrated date {ca!BC): Radicarbon samples from the Late Bronze Age {Source: BAI/GPIA).
4.4.2.5. Constructional Stratum (Stratum 15) Sampies TZ 014150-001, TZ 009090-001, TZ 007402001, and TZ 014158-001 belong to the repair stratum immediately after the landslide, Stratum 15; this stratum restered lost areas ofStratum 16. The samples of Stratum 15 analyzed here prove that the damaged Middle Bronze Age/Late Bronze Age city (Stratum 16) was repaired with existing material from the earlier strata. The filling layers contain ceramic finds dating from the Early Bronze Age to the Late Bronze Age. The sample TZ 007402-001 from the Context 5288 comes from a fire place. It was found on one of the constructionallayer's top. It gives a glimpse ofthe repair activities which was undertaken most probably during
Sampie TZ 014150-001 Context 4025 from Square AO 118 The sample dates to 3495 ± 30 BP: 1880-1861 BC (12.5 %); 1853-1771 BC (55.7 %) (= 1 Sigma: 68.2 %) 1900-1741 BC (94 %); 1710-1701 BC (1.4 %) (= 2 Sigma: 95.4 %) 1936-1692 BC (= 3 Sigma: 99.7 %)
the second half ofthe sixteenth century BC. The wooden waste from the fill (which do not have a constructive relevance) can be assigned to the Middle Bronze Age Contexts TZ 014150-001 and TZ 014158-001. In the first analysis at the PoznaD. Radiocarbon Laboratory, the estimated date for sample TZ 009090-00 1 was 14500-13650 BC. Asthis was deemed tobe an unreliable result, a secend measurement was made, which points to a Chalcolithic origin (3946-3659 BC; 99.7 %). The latter date is quite better credible, because the majority of the ceramic finds in the repair layer date from the Early Bronze Age ll and III; but under the circumstances, it was also deemed to be an unreliable result.
1Z 14150 R_Dele(3485,3D)
11.1%pa.••ttr
l
I
I
I:
1810 (12.6'%) 1161cdC 1a&::t (65.7%) 1711ea&C 85.oftopklbllll'tr
(94A}1741cdC
..
1.4%)1101caBC
Framework ofArchaeological Work on Thll Zirii'a
Sampie TZ 009090-001 Context 2194 from Square AN 116 The sample dates to 4995 ± 35 BP (second sample)11 : 3889--3886 BC (1.9 %); 3798-3710 BC (66.3 %) (= 1 Sigma: 68.2 %) 3941-3858 BC (22.4 %); 3816--3694 BC (71.8 %); 3679--3666 BC (1.1 %) (= 2 Sigma: 95.4 %) 3946--3659 BC (= 3 Sigma: 99.7 %)
Sampie TZ 007402-001 Context 5288 from Square AH 115 (fire p1ace) The sample dates to 3325 ± 35 BP: 1658-1651 BC (3.7 %); 1645-1600 BC (32.1 %); 1586--1534 BC (32.4 %) (= 1 Sigma: 68.2 %) 1690--1513 BC (= 2 Sigma: 95.4 %) 1745-1497 BC (= 3 Sigma: 99.7 %) Sampie TZ 014158-001 Context 4586 from Square AO 118 The samp1e dates to 3535 ± 35 BP:
~
i
1929--1872 BC (35.8 %); 1845-1813 BC (18.4 %); 1802-1777 BC (14 %) (= I Sigma: 68.2 %) 1956--1751 BC (= 2 Sigma: 95.4 %) 2023-1740 BC (99.4 %); 1712-1699 BC (0.3 %) (= 3 Sigma: 99.7 %)
xCal v4.2. Bmr k Ramsev f201:l)· r:51ntCal13 atmos heri
urv
I Cllilnled date (CIIBC)
-
Reimer et al 'X 13)
...
R_Da e TZ 14150
..
R- Da e TZ 09090 8 ~ ~
~~"
R_Da e TZ 07402 R_Da e TZ 14158 +----~"
4500 Graph. 4.3
4000
3500
3000
2500
2000
1500
Calibrated date (calBC): Radicarbon samples from the Constructional Stratum (Source: BAI/GPIA).
4.4.2.6. Middle BronzeAge (Strata 19-16) On Tall Zirä'a four different layers ofMiddle Bronze Age occupation could be identified. Their dating range from the transition period Middle Bronze Age IIC/Late Bronze
11
First samplc: 13460±70 BP; 14240-13830 (68.2%); 1450013650 (95.4 %).
Age I in Stratum 16 to Middle Bronze Age llB (Strata 19--17; 1950--1630 BC). Allthese samples from wooden remains cover a wide time span from the twentysecond
251
252
D. Vieweger/J. Häser
to the twentyfirst centuries BC down to the seventienth centucy BC. Therefore the differentiation of the Middle
Bronze Age layers is not only based on radiocarbon samples but also on other evidence and on pottery.
Stratum 16 (Middle Bronze Age IIC/Late Bronze Age I) Sampie TZ 014162-001
......
_
TZ141112~3G)
Context 3 847 from Square AM 119 The samp1e dates to 3465 ± 35 BP:
1tn(21.K)11M1C118C 1121 (13.'7"1o} 1lWDIIBC 11U(ZI.I%)1"11111111BC 1711(1LG'!Ci)1~
1877-1841 BC (21.9 %); 1821-1796 BC (13.7 %); 1782-1741 BC (26.6 %); 17111700 BC (6.0 %) (= 1 Sigma: 68.2 %) 1885--1691 BC (= 2 Sigma: 95.4 %) 1921-1643 BC (= 3 Sigma: 99.7 %)
....
....,__..._,_,
\
Sampie TZ 014121-001 Context 3979 from Square AN 118 The :first sample dates to 3570 ± 35 BP/HS (Humic acid): 3435 ± 35 BP; the second sample dates to 3550 ± 35 BP/ HS (Humic acid): 3590 ± 40 BP: First sample: 1972-1882 BC (= 1 Sigma: 68.2 %)/ HS: 18671848 BC (8.4 %); 1774-1687 BC (59.8 %) (= 1 Sigma: 68.2 %) 2026-1871 BC (84.2 %); 1846-1812 BC (6.6 %); 1803- 1777 BC (4.6 %) (= 2 Sigma: 95.4 %)/HS: 1879-1837 BC (14.2 %); 18301657 BC (80.3 %); 1652-1645 BC (0.9 %) (= 2 Sigma: 95.4 %) 2116-2098 BC (0.3 %); 2039-1751 BC (99.4 %) (= 3 Sigma: 99.7 %)/HS: 18891623 BC (= 3 Sigma: 99.7 %)
lZ 14121 R_D~=187'2(81.2%) IIGI:lii!C
~
tu~prDblllll-
I I .... """'
JDII(84S) 1171GIIIIIIC . . (l.ni) 1112raiiC
1TT7COI!C
.,.."_,_ .-:>
1Z1412 1 H8 R_~~
!
1111(U%} 1.....C 17T4(11A) 1-tiiiiiiBC IIA'JiopniiiUIRy
~
1171(1-4.2%) 11131CMIC (8].3%) 1157a11C )1........
I I
I ...,""" C:.O...-o-;)
Second sample:
TZ 14121 BIS R,_D8tio[3660,36] l!l.ftprllbiiDIIJW
1947-1877 BC (52.1 %); 1841-1821 BC (9.6%); 1796-1782BC(6.6%)(= 1 Sigma: 68.2 %)/HS: 2014-1998 BC (9.1 %); 19791892 BC (59.1 %) (= 1 Sigma: 68.2 %) 2011-2000BC (1.6 %); 1977-1771 BC (93.8 %) (= 2 Sigma: 95.4 %)/ HS: 21172098 BC (1.7 %); 2039-1874 BC (88.9 %); 1844-1816 BC (2.9 %); 1799-1779 BC (1.9 %) (= 2 Sigma: 95.4 %) 2031-1743 BC (= 3 Sigma: 99.7 %)/HS: 2135--2079 BC (3 %); 2065--1760 BC (96.7 %) (= 3 Sigma: 99.7 %)
1M7 (5Z.IW.) 1e71CIIJC 1141 (lft)111it1CIIIIC
"'1!.
I I
' " ' (U'tt) 17t2t*IIC
• .4"-pnDDIIltf
l""""IC
1m-.:
,...
-
!
I
I
I C:.O...-o-;)
Framework ofArchaeological Work on Tall Ziri'a
Sampie TZ 019167...,01 Context 6311 from Square Kr 122 Thc samplc dates to 3460 ± 35 BP: 1876-1842 BC (19.8 %); 1820-1797 BC (11.6 %); 1781-1738 BC (27.2 %); 17141696 BC (9.6 %) (= 1 Sigma: 68.2 %) 1882-1691 BC (= 2 Sigma: 95.4 %) 1915-1639 BC (= 3 Sigma: 99.7 %)
~
i
I
Sampie TZ 014138...,01 Context 4398 from Square AN 119 Thc samplc dates to 3485 ± 40 BP: 1879-1838 BC (24.2 %); 1829-1754 BC (44 %) (= 1 Sigma: 68.2 %) I911-I730 BC (88.7 %); I72I-1692 BC (6.7 %) (= 2 Sigma: 95.4 %) 1956-1642 BC (= 3 Sigma: 99.7 %)
Sampie TZ 014141...,01 Context 4364 from Square AN 119 The samp1e dates to 3490 ± 35 BP/HS (Humic Acid) 3530±35 BP: 1879-1767 BC (= 1 Sigma: 68.2 % )/ HS: 19201871 BC (30.7 %); 1846-1811 BC (21.1 %); 1804-1776 BC (16.5 %) (= 1 Sigma: 68.2 %) 1907-1737 BC (91.5 %); 1716-1696 BC
--c-c> (3.9 %) (= 2 Sigma: 95.4 %)/HS: 1949-1751 BC (95.4 %) (= 2 Sigma: 95.4 %) 1949-1684 BC (99.7 %) (= 3 Sigma: 99.7 %)/ HS: 2023-I737 BC (99.2 %); 1715-I697 BC (0.5 %) (= 3 Sigma: 99.7 %)
1Z 14141 R_lloiii~~IOy
(
I
I
'-'
.
1171 (&al ll'87'tiiiiiBC 15A11oprulllllla,. 110T(I1.ft) 173TaiiBC I (11'11i) 1ellcdiC
, ...,.__.....,.,
,.....,ac
I Stratum 17 (Middle Bronze Age IIB) Sampie TZ 014136...,01 Context 4480 from Square AN 119 The samp1e dates to 3435 ± 35 BP: 1867-1848 BC (8.6 %); 1774-1687 BC (59.8 %) (= 1 Sigma: 68.2 %) 1879-1837 BC (14.2 %); 1830-1657 (80.3 %) 1652-1645 BC (0.9 %) (= 2 Sigma: 95.4 %) I889-1623 BC (= 3 Sigma: 99.7 %)
1Z 141315 RJ)IIfo(3436,36f
11.:1"~
11157(1..... )1MIOIIIC t77o4(51).1%)1117la1EIC
....~-
,,_
1171{14.ßi) 1117.-JBC {mni) 1em.JBC
253
254
D. Vieweger/J. Häser
Sampie TZ 015567-001 Context 4727 from Square AN 118 The sample dates to 344() ± 35 BP/HS (Humic Acid) 3470± 35 BP: 1869-1847 BC (10.7 %); 1775-1689 BC (57.5 %) (= 1 Sigma: 68.2 %)/HS: 18771841 BC (25 %); 1821-1796 BC (16.2 %);
1782-1744 BC (27 %) (= 1 Sigma: 68.2 %) 1880-1662 BC (= 2 Sigma: 95.4 %)/HS: 1886-1692 BC (95.4 %) (= 2 Sigma: 95.4 %) 1891-1625 BC (= 3 Sigma: 99.7 %)/HS: 19291658 BC (= 3 Sigma: 99.7 %)
1Z 16617 R,_[loto(344D,3&)
_,.
-.Dopnlblllllllr
,.(111.ro.)1141aiiC 1771(&1.1~)1~
-.w"._r.,
, . . (11.4..)1~
)1-
Cdnlod ... (efJBC)
Sampie TZ 015541-001 Context 4727 from Square AN 118 The sample dates to 3485 ± 35 BP: 1878--1839 BC (25.5 %); 1828-1792 BC (23.5 %); 1785-1755 BC (19.2 %) (= 1 Sigma: 68.2 %) 1896--1735 BC (90.3 %); 1717-1695 (5.1 %) (= 2 Sigma: 95.4 %) 1944--1682 BC (= 3 Sigma: 99.7 %)
TZ15541 R-~~
·-
1118125.5Yt}113fb1BC 11i2e (23.6'%}17'8aciBC
17851112Yt}1755aiBC )178biiC
""
Sampie TZ 014142-001 Context 4107 from SquareAO 119 The sample dates to 3530 ± 35 BP/HS (Humic Acid) 3,550 ± 35 BP: 1920-1871 BC (30.5 %); 1846--1811 BC (21.2 %); 1804-1776 (16.5 %) (= 1 Sigma; 68.2 %)/HS: 1947-1877 BC (52.1 %); 18411821 BC (9.6 %); 1796--1782 BC (6.6 %) (= 1 Sigma: 68.2 %)
1949-1751 BC (= 2 Sigma: 95.4 %)/HS: 20112000 BC (1.6 %); 1977-1771 BC (93.8 %) (= 2 Sigma: 95.4 %) 2023-1737 BC (99.2 %); 1715--1697 BC (0.5 %) (=3 Sigma: 99.7 %)/HS: 2031-1743 BC (= 3 Sigma: 99.7 %)
Framework ofAn::haeological Work on Tall Zira'a
Sampie TZ 014131...,01 Context 4256 from Square AO I19 The samp1e dates to 3550 ± 30 BPIHS (Humic Acid) 3535 ±30 BP:
2009--2002 BC (0.8 %); 1976--1861 BC (67.7 %); 1853-1772 BC (26.9 %) (= 2 Sigma: 95.4 %)/HS: 1949--1766BC (=2 Sigma: 95.4 %) 2023-1751 BC (= 3 Sigma: 99.7 %)/HS: 20171996 BC (0.5 %); 1981-1742 BC (99.2 %)(= 3 Sigma: 99.7 %)
1945-1878 BC (57.1 %); 1840-1826 BC (6.9 %); 1793-1784 (4.2 %)(= 1 Sigma: 68.2 %)/HS: 1923-1874 BC (36.9 %); 18431816 BC (18.3 %); 1799--1779 BC (13 %) (= 1 Sigma: 68.2 %)
_
TZ 14131 HS R _ = =
1123(18.1%)1174ca!IIC
~
......
IM3(11.1%}111e.!IC 1711(1&ft.}17'l'a.JIC
I
'-='"""')1)""'1'-""
I
Sampie TZ 014128...,01 Context 3987 from Square AN 118 The first sample dates to 3,640 ± 40 BP/the second samp1e dates to 3685 ± 35 BP/
2200-2136 BC (0.9 %); 2153-1879 BC (98.8 %) (= 3 Sigma: 99.7 %)/HS: 2116-2098 BC (0.2 %); 2039-1739 BC (99.3 %); 1712-1699 (0.2 %) (= 3 Sigma: 99.7 %)
HS (Humic Acid) first sample: 3555 ± 40 BPIHS second sample: 3685 ± 35 BP:
Second sample: First samp1e: 2117-2098 BC (9 %); 2039--1945 BC (59.2 %) (= 1 Sigma: 68.2 %)/HS: 1955-1876 BC (52.8 %); 1842-1,820 BC (9.1 %); 1797-1781 BC (6.3 %) (= 1 Sigma: 68.2 %) 2136--1907 BC (= 2 Sigma: 95.4 %)/HS: 20201993 BC (5.1 %); 1983-1768 BC (90.3 %) (= 3 Sigma: 95.4 %)
"
•
2135--2028 BC (= 1 Sigma: 68.2 %)/HS: 21352018 BC (=I Sigma: 68.2 %) 2196--2171 BC (4.8 %); 2146--1960 BC (90.6 %) (= 2 Sigma: 95.4 %)/HS: 2196-2171 BC (4.8 %); 2146--1960 BC (90.6 %) (= 2 Sigma: 95.4 %) 2206--1920 BC (= 3 Sigma: 99.7 %)/HS: 2206-1920 BC (= 3 Sigma: 99.7 %)
"
i
i
I
I
".__
TZ 14121 BIS R_Dotlol31116,36)
"I!!
I ....
"""......
11315 (11.2").201b110 2ttl (4ft)2171a.BC
2141 (1D.Hi}1~
1"1) 11101:d10
I
"I!!
I I
I ....
I Clllnted Gdt(CIIBC)
-
_ "._
........
TZ 14128 BIS HS R_Dotlo(3886,36)
215~(M.2%) 2Jl21ca!BC 21111 fC.&"') 21T1a.IIC 2141 (ZIN.) 1..-rac
7%) 11C1k:a!IC
""'
Cllll:nllddlibt{CIJBC)
255
256
D. Vieweger/J. Hiser
Stratum 18 (Younger Stratum from Middle Bronze Age IIA) Sampie TZ 015536-001 1973-1748 BC (= 2 Sigma: 95.4 %)/HS: 1956-1743 BC (= 2 Sigma: 95.4 %) 2030-1735 BC (99 %) 1718-1695 BC (0.7 %) (= 3 Sigma: 99.7%)/HS: 20241731 BC (98.4 %); 1721-1693 BC (1.3 %) (= 3 Sigma: 99.7 %)
Context 4958 from Square AN 118 The sample dates to 3535 ± 40 BP/HS (Humic Acid) 3,525 ± 40 BP: 1932-1871 BC (35.1 %); 1846--1811 BC (18.6 %); 1804-1776 BC (14.5 %) (= 1 Sigma: 68.2 %)/HS: 1914-1867 BC (25.7 %); 18481774 BC (42.5 %) (= 1 Sigma: 68.2 %)
Sampie TZ 014129-001 Context 4303 from SquareAO 119 The sample dates to 3570 ± 35 BP: 1972-1882 BC (= 1 Sigma: 68.2 %) 2026--1871 BC (84.2 %); 1846--1812 BC (6.6 %); 1803-1777 BC (4.6 %) (= 2 Sigma: 95.4%) 2116--2098 BC (0.3 %); 2039--1751 BC (99.4 %) (= 3 Sigma: 99.7 %)
~
I I
Sampie TZ 015540-001
--c-cl
(15 %) (= 2 Sigma: 95.4 %)/HS: 2028-1884 BC (= 2 Sigma: 95.4 %) 2113-2101 BC (0.1 %); 2036--1748 BC (99.6 %) (= 3 Sigma: 99.7%)/HS: 2125-2092 BC (0.7 %); 2044-1868 BC (97 %); 18471775 BC (2 %) (= 3 Sigma: 99.7 %)
Context 4888 from Square AN 119 The sample dates to 3565 ± 35 BP/HS (Humic Acid) 3590±30BP: 1971-1880 BC (= 1 Sigma: 68.2 %)/HS: 20082004 BC (2.4 %); 1976--1900 BC (65.8 %) (= 1 Sigma: 68.2 %) 2023-1869 BC (80.4 %); 1846--1776 BC
TZ16641lHS~
~
i
I
"'
1!.
I
I:
2DOI(IA'A)2004c:IIIIC 1111 (lU%) 1aoa.BC 11.4,. prd~Ui~l\< 2ml IJU") 111Mad1C
-~
Framework of Archaeological Work on Tall Zirä'a
Stratum 19 (Older Stratum from Middle Bronze Age 1/A) Sampie TZ 017489-001 Context 5685 from Square AL 118 The sarnple dates to 3560 ± 35 BP: 1959-1878 BC (61.5 %); 1839-1828 BC (4.4 %); 1792-1785 BC (2.3 %); (= 1 Sigma: 68.2 %) 2021-1992 BC (5.3 %); 1983-1865 BC (70.3 %); 1850--1773 BC (19.8 %) (=2 Sigma: 95.4 %) 2036-1745 BC (= 3 Sigma: 99.7 %)
2200
2100
2000
1900
1800
1700
1600
Cellbrated date (caiBC)
TZ 17350 R_Da1e(3615,35)
Sampie TZ 017350-001
68.2% probability
2026 {88.2%) 1933caiBC 95.4% probablllty 2122 {5.0%) 2093caiBC 2042 (90.4%} 1888caiBC probability
Context 5658 from Square AM 118 The sarnple dates to 3615 ± 35 BP:
OxGal v4.2.3 Bronk Ramse
1 ~
2026-1933 BC (= 1 Sigma: 68.2 %) 2122-2093 BC (5 %); 2042-1888 BC (90.4 %) (= 2 Sigma: 95.4 %) 2140--1876 BC (99.2 %); 1842-1820 BC (0.3 %); 1796--1781 (0.2 %) (= 3 Sigma: 99.7 %)
842 99.
l B7"";'~~c
__..~·~".,
_ _. . . .... 3200
2200
2000
1800
Callbrateddate(caiBC)
20 13 ·r: ln!Cal 13atmos hericcurve Reimereta120 1
-- --
R_Date TZ 141 ii2
~
w
.....-..
R_Date TZ 141 1
~ ~
R_Date TZ 141 1 HS
...........
~
u
....-.....-
R_Date TZ 141 1 BIS
-
R_Date TZ 141 1 BIS H" ~
R_Date TZ 191 7
~
~
- -- .... ~
R_Date TZ 141 8 R_Date TZ 141 1
~ ~
-.
R_Date TZ 141 1 HS
-- --
R_Date TZ 15T 1
·~
-.
R_Date TZ 141 2
--
........ --
R_Date TZ 141 2 HS
~
........ --
R_Date TZ 141 1
~-~·....::____
-
R_Date TZ 141 8
~
~
..::...
......... --- ...
R_Date TZ 141 1 HS
2400
..........
~
R_Date TZ 155 7 HS
Graph. 4.4
...........
~
R_Date TZ 155ii7
2600
~
-
R_Date TZ 141 6
~
--
~
.............
~
2200
2000
1800
1600
Calibrated date (calBC): Radicarbon samples from the Middle Bronze Age (Source: BAI/GPIA).
257
258
D. Vieweger/J. Häser
OxCa l v4. 2.3 Bronk Ramsev 2013 · r:S lntCa l13 atmosoheric curve Reimer et al 2013
- ---- ....-.
R_ ;Jate TZ 14128
~
R_ ;Jate TZ 14128 H~
..-~
- - ~
R_ ;Jate TZ 14128 B ~ R_ ;Jate TZ 14128 B
~
JC"
·~
~
~"
~
...........
R_ ;Jate TZ 15536
~-
-..--
R_ ;Jate TZ 15536 H~
~
~
~ ~
......-... .....-....
R_ ;Jate TZ 14129 ~
R_ ;Jate TZ 15540
-
~
~ ~ ~
..........
R_ ;Jate TZ 15540 H ~
R_ ;Jate TZ 17489
.....-....
-~"
R_ ;Jate TZ 17350 2600
Graph. 4.5
~ ~
.......::'_____
-
~
~ ~
2400
2200
2000
~
~
1800
1600
Calibrated date (calBC): Radicarbon sarnples from the Middle Bronze Age (Source: BAI/GPIA).
4.4.2.7. Transitional Period from Early Bronze Age IV to Middle Bronze Age I (Strata 21 and 20) Remarkably, Tall Zirä'a has two transitional strata from Early Bronze Age IV to Middle Bronze Age 1: Strata 21 and 20. Analysis of the wooden remains indicate
dates of this period (TZ 017 691-001; TZ 017 693-001; TZ 018647-001) or Early Bronze Age (TZ 018648-001).
Stratum 20 (Younger Stratum from Early Bronze Age IVIMiddie Bronze Age I) Sampie TZ 017691-001 Context 5735 from Square AN 118 The sample dates to 3800 ± 40 BP: 2293-2196 BC (56.9 %); 2171-2146 BC (11.3 %) (= 1 Sigma: 68.2 %) 2452-2420 BC (2 %); 2405-2378 BC (2.6 %); 2350-2132 BC (89 %); 2082-2059 BC (1.7 %) (= 2 Sigma: 95.4 %) 2463-2118 BC (96.8 %); 2098-2039 BC (2.9 %) (= 3 Sigma: 99.7 %)
Sampie TZ 017693-001 Context 5736 from Square AN 118 The sample dates to 3850 ± 35 BP/HS (Humic Acid) 3,835 ± 35 BP:
Calibratecl date (ca.IBC)
TZ 17693 R_Date(3850,35) 68.2% probability 2435 (5.3%) 2421caiBC
2404 (10.0%) 2379caiBC 2349 (37.8%) 2277caiBC 2252 (10.4%) 2228caiBC 2210ca.IBC ~"''nmt,.hmirtv
2435-2421 BC (5.3 %); 2404-2379 BC (10 %); 2349-2277 BC (37.8 %); 22522228 BC (10.4 %); 2223-2210 BC (4.8 %) Calibrateddate(ca.IBC)
Framework ofArchaeological Work on Tall Zirä'a
(= 1 Sigma: 68.2 %)/HS: 2344--2206 BC (= 1 Sigma: 68.2 %) 2459-2206 BC (= 2 Sigma: 95.4%)/ HS: 24582199 BC (94.7 %); 2159-2154 BC (0.7 %) (= 2 Sigma: 95.4 %) 2470--2194 BC (98.6 %); 2175-2145 BC (1.1 %) (= 3 Sigma: 99.7 %)/HS: 2466--2141 BC (= 3 Sigma: 99.7 %)
Stratum 21 (older Stratum from Early Bronze Age IVIMiddie Bronze Age I) Sampie TZ 018647-001 Context 5964 from Square AM 118 The sample dates to 3835 ± 35 BP:
2344--2206 BC (= 1 Sigma: 68.2 %) 2458--2199 BC (94.7 %); 2159-2154 BC (0.7 %) (= 2 Sigma: 95.4 %) 2466--2141 BC (= 3 Sigma: 99.7 %) Sampie TZ 018648-001
Context 5978 from Square AN 118 The sample dates to 4135 ± 35 BP/HS (Humic Acid) 4,160 ± 70 BP: 2862-2831 BC (13.4 %); 2821-2807 BC (5.7 %); 2758--2718 BC (17.3 %); 27082631 BC (31.9 %); (= 1 Sigma: 68.2 %)/ HS: 2877-2835 BC (14.3 %); 2817-2665 BC (53.1 %); 2643-2640 BC (0.8 %) (= 1 Sigma: 68.2 %)
i
2873-2619 BC (93 %); 2607-2599 BC (1.5 %); 2593-2588 (0.9 %) (= 2 Sigma: 95.4 %)/HS: 2900--2572 BC (94.7 %); 25122504 BC (0.7 %) (= 2 Sigma: 95.4 %) 2885-2572 BC (99.6 %); 2512-2504 BC (0.1 %) (= 3 Sigma: 99.7 %)/HS: 3008--2987 BC (0.1 %); 2934--2469 BC (99.6 %) (= 3 Sigma: 99.7 %)
"""'
I2800
2800
2700
C4111nt8d
Z800
2500 Cllbrated didl (caiBC)
*"' (caiiC)
1xCal v4.2.3 Bronk Ramsev 12013\: r:5 1ntCa113 atmosoheric c urv
Reimer et ,II 2013)
R_Dme1Z1~691
~~
---~~~~~
~
......
R- Date TZ 1 693
u~
I R_DateTZ 1 693 HS R_DateTZ 1ß647
....
R_DateTZ 1ß648
~u
--
-~u
~
.........
~~
""
R Date TZ 1ß648 HS
- . . I .. 3500 Graph 4.6
3000
2500
2000
Calibrated date (calBC): R.äiliöcarlion· samples ffuiii the transitional period from Early to Middle
Bronze Age ( Source: BAI/GPIA)
259
260
D. Vieweger/J. Häser
4.4.2.8. Early Bronze Age II and III (Strata 24-22) Only a small part of the Early Bronze Age Settlements on Tall Zirä'a has been excavated yet. The contexts of the three strata (Strata 24-22) point to Early Bronze Age li and III.
Also earlier layers do exist, but for security reasons they could not be excavated.
Stratum 22 (Early Bronze Age III) Sampie TZ 018655-001 Context 6045 from Square AN 118 The samp1e dates to 3780 ± 35 BP: 2281-2249 BC (19.8 %); 2232-2190 BC (22.5 %); 2181-2142 BC (25.8 %) (= 1 Sigma: 68.2%) 2336-2324 BC (1 %); 2308-2128 BC (89.1 %); 2089-2047 BC (5.3 %) (= 2 Sigma: 95.4 %) 2456-2418 BC (0.4 %); 2406-2376 BC (0.6 %); 2351-2032 BC (98.8 %) (= 3 Sigma: 99.7 %)
!
I I
Sampie TZ 018654-001 Context 6045 from Square AN 118) The samp1e dates to 3,880 ± 35 BP: 2456-2417 BC (20.7 %); 2410--2335 BC (38.7 %); 2324-2307 BC (8.8 %) (= 1 Sigma: 68.2 %) 2469-2279 BC (91 %); 2250--2230 BC (3.4 %); 2220--2212 BC (1 %) (= 2 Sigma: 95.4 %) 2486-2199 BC (= 3 Sigma: 99.7 %)
Stratum 23 (Early Bronze Age II/Ill) Sampie TZ 019158-001 Context 6462 from Square AM 118 The samp1e dates to 4140 ± 35 BP: 2864-2833 BC (13.6 %); 2819-2806 BC (5.5 %); 2760--2659 BC (42.7 %) 26512634 BC (6.4 %) (= 1 Sigma: 68.2%) 2875-2619 BC (94.7 %); 2605-2601 BC (0.7 %) (= 2 Sigma: 95.4 %) 2886-2573 BC (= 3 Sigma: 99.7 %)
!
II
Callbrlled d!Me {ceiBC)
Stratum 24 (Early Bronze Age II) TZ 19160 (4330,35) 68.2%probability
Sampie TZ 019160-001 Context 6497 from Square AN 118 The samp1e dates to 4330 ± 35 BP: 3011-2978 BC (22.9 %); 2960--2952 BC (4.3 %); 2942-2898 BC (41.1 %) (= 1 Sigma: 68.2 %) 3078-3074 BC (0.6 %); 3024-2890 BC (94.8 %) (= 2 Sigma: 95.4 %) 3091- 2881 BC (= 3 Sigma: 99.7 %)
(22.9%) 3011· 2978caiBC (4.3%)2960-2952caiBC (41.1%) 2942-2898cai8C 95.4% probability %)3078-3074cai8C
(94.
) 3024-2890caiBC
. tj 3800
~~oor-~,~m~~,~ ~--~,~ ~--~ 2600 Calibrateddate (caiBC)
Sampie TZ 019162-001 Contm 6424 äum Square AN 118 The sample ~ to 4130:1: 40 BP: • 2862-2808 BC (20.S %); 2757-2719 BC (15.3 %); 2706-2625 BC (32.4 %) (= 1 Sipla: 68.2%) 2872-2617 BC (88.9 %}; 2611-2581 BC (6.5 %) (= 2 Sipa: 95.4 %) • 2889-2566 BC (98.9 %); 2524-2497 BC (0.8 %) (= 3 Sigm&: 99.7 %)
. c,
',,
,.,. '"""'
'" '
I •""'"
........ ....
R_DatE TZ 1865! R_DatE TZ
1865~
R_DatE TZ
1915~
-·
-.
.....
~
f---'
R_DatE TZ 19164
3400
~
"
R_DatE TZ 1916(
3600
---
3200
3000
-2800
2600
2400
2200
2000
1800
262
D. Vieweger/J. Hiser
lnv~
No.
WIOiif
-
Squore
11110
A.W128
y-
......,..
Jei'S.AIII
IG(al!Q
Uoco-
-..
51-127 A.D
1915±35BP
6
EilrtyRoman
36Si 30 BP
1
ottoman
...
....
.,.
Areall 2006
39 BC-230A.D
!7-173A.D(93.1") 193-21D (2.3 ")
Area I OU1li5
1115551
3940
5201
A.R121
2009
AQ123
2013
144!7-11i42AD
347-319(0.6 "' 207-5 BC (99.1 ")
1449-1529 A.D (5L5 "I
1458-1521 AD (46.5 "I
~1634 A.D (43.9 "'
1591-1620(21.7 "'
195-42 BC (95.4 ")
163-128 BC (26.5 ") 121-118 BC (25.6") 77-56 BC (16 ")
209DHOBP
7c
EilrlyRomiiln
lron.Agell
-
B2D
A011B
2004
11~6BC
1Dn-1D56 BC (0.5 "I 11157-893 BC (92.1 "I 17s-a50 BC (2.1 "I
1007-922 BC
:ZI15 :t: 35 BP
1D
lronApiiC
014126
4418
AP121
2009
1-7BC
1~ BC(94.2 "I
991Hl21 BC
28DSHOBP
1D
lronApiiC
86IHISS BC (1.2 "I
II155JI
4674
AP121
2010
1376-1353 BC (0.4 ") 130t-1003 BC (99.3 ")
1264-1044 BC
1223-1112 BC
29SDH5BP
10
lronApiiC
0117275
1138
AL118
2DD6
1190-1179 BC (0.1 ")
11011-1099 BC (1.3 "I 1D9G-004 BC (94.1 "I
1021-926 BC
:ZDl:t35BP
11
lronApiiA/8
1157-1147(0.1 "' 112-1 BC (99.5 ")
0072511
1267
AP119
2005
1280-1010 BC
1258-1247 8C (1.5"1 1233-1049 BC (93.9 "I
1213-1115 8C
2945:!: 30 BP
11
lrooApiiA/8
11111557
1996
AM119
2006
122!7-919 BC
1207-1141 BC (1.5 "I 1135-!176 BC (93.9 "I
1120-1012 BC
211!10:!:358P
12
Iran Aae II A/8
0071411
555
AN117
2004
1260-1242 BC (0.3 "I 12-BC(99.4")
1214-1001 BC
115!7-1148 BC (3.2 "I 1126-1021 BC (65 "i
2905±35BP
12
lron Aae 11 A/8
CIIIZHl
599
AN117
2004
12112-976 BC
1226-1014 BC
1196-11~ BC (32.1 "I
2930:t: 35 BP
12
lrooApiiA/8
-
1134-1074 BC (32.3 "I 1065-1057 BC (3.8 "I
2850
A.H 116
2006
1261-970 BC(99"1 961-934 BC (0.7")
1214-1006 BC
1190-1179 BC (4.7 "I 116D-1145 BC (6.9 "I 113D-1031 BC (3.8 "I
2910±35BP
12
lrooAaeiiA/8
A0118
2DD6
1433-907 BC
1395-993 BC (95 "I 917-980 BC (DA "I
1265-1055 BC
2960:1:70 BP
13
Iran Aae I
1372-1358 BC (0.3 "I 1291-1018 BC (99.4 "I
1263-1056 BC
1219-1125 BC
296D:t30BP
13
lronA.sel
lron.Agel
-
1413
11m
ournlnollon
-
Sllllt:ond
nornl· nollon
-
2115
A.N119
2006
1372-1359 BC (0.1 ") 1291-996(99.6 "}
1258-1246 BC (1.8 ") 1234-1027 (93.6 "I
1214-1108 BC (63.1 "I 11DD-1DBB BC (5.1 "I
294DH5BP
13
Iren Ale I
007257
1298
A.H 115
2005
~14768C(0.4"1
1434-1286 8C
1419-1380 BC (35.3 "I 1343-1306 8C (32.9 "I
3105±30BP
13
Iran Ale I
1459-1258(99.1 "' 1246-1233 (0.2 "'
Framework ofArchaeological Work on Tall Ziri'a
Late Bronze Ale M5511
4792
AL1IJI
2010
M5511
12l12-!176BC
1226-1014 SC
11!16-1140 SC (32.1 "I 1134-1074 BC (32.3 "I 1065-1057 SC (3.8"1
2930 :t35 BP
14
Late Bronze Apll
13711--1347 SC (0.5 "I 1304-'!l27 BC (99.2 "I
1262,--1005 SC
1201-1055 SC
2930 :t4S BP
14
Late Bronze Apll
1495-1471 SC (0.7 "I 1455-1159 SC (99.0 "I
1431-1281 SC
1425-1381 BC (39 "I 134:1-1307 8C (29.2 "I
3110 t30 BP
14
Litc lronz111
HS
0012&11
1172
AI11S
2005
Apll
014477
3701
AF116
2010
1415-1108 BC (99.5 "I 1100-1081 SC (0.2 "I
1392-1337 9C (17.1 •I 1323-1155 SC (74.1 "I 1147-1128 BC (4.2 161
1374-1356 SC (B "I 130:1-1210BC (5o.2 "I
3015 t35 BP
14
Late Bronze Apll
M5511.
4793
AL 1J!8
2010
137:1-1359 SC (0.1 161 1297-'396 8C (99.6 161
11511--1246 BC (1.8 "I 12.'14-1027 BC (93.6 16)
1214-1108 BC (63.1 161 1100-1088 IIC (5.1 "I
2940t35BP
14
l.atelronza
1935-1B9211C
lJI00-1741 BC(94"1 171()...1701 BC (1.4161
IJI8G-1861 BC (12.5 161 IJIS:l-1771 BC (55.7"1
3495 :t30 BP
15
Connructlanll
B..460t7D
15
Construc:tlonll
Apll
Constructlonal Stratum 014150
4025
A0118
2009
-
21!14
Atl115
2005
unreliable result
........ !Ißt
BP
nltlon
-
3945-3659 BC
.'1941-385811C (22.4"1 3815-3694 BC (7L8 161 367H666 BC (1.1 "I
31189-3886 BC (1.9 "I 379H710 BC (66.3 "I
4995 t35 BP
15
CondructiDNII
socond eomlnltlon
--
521111
AH 115
2005
1745-149711C
1690-1513
16511-1651 BC (3.7 "I 1645-1600 BC (32.1 "I 1585-1534 BC (32.4 "I
3:125 :t35 BP
15
Connructlanal
014151
4586
A0118
2009
21la-1740 BC (99.4 "I 171:1-1699 BC (0.3 "I
195&-175111C
1929-Z87211C (35.8"1 1845-1813 BC (18.4 "I 180:1-1777 IIC (14 "I
3535 US BP
15
Condructlonol
2009
1921·1643 BC
18115·1691 BC
IJI77-1841 BC (21.9 161 IJI21-1796 SC (13.7"1 1782-1741 SC (26.6"1 1711-1700 BC (6.0 161
3465 :t35 BP
16
Mlddle Bronze
2026-IJI7111C (84.2 "I 1B45-IJI12 BC (6.6 "I 1103-1777 BC (4.6 161
1!17:1-1882 BC
3570 :t35 BP
IJI-IJI3711C(14.2"1 183()...1657 BC (S0.3 161 165:1-1645 BC (0.9 "I
1867-1848BC (1.4161 1774-1687 BC (59.8 "I
2011-2000 BC (1.6 "I 1977-1771 (93.8"1
1947-:1877 BC (52.1 "I 1841-1B2111C [9.6"1 179&-178211C [6.6"1
3550 t3S BP
2014-19988C (9.1 "I (59.1 "I
3590 t40 BP
Mlddle Bronze Ap II 01411Z
014121
3847
3!179
AM 119
Atl118
2009
!Ißt
2115-2098 BC (0.3 161 BC (99.4 " I
203~1751
eomlnatlon
~1623BC
014121 HS flm eomlnatlon
---
2031-1743 BC
014121
socond
AßoiiC/Lite BronzeAle I
16
Mlddle Bronze
Aa•IIC/Lim Bronze Ace I
3435 :t35 BP
16
Mlddle Bronz•
Aa•IIC/Lim Bronze Aal I
16
Mlddle Bronze
Aaa iiC/Lote 8ranze A.Ia l
Ritlon
014121
2135-2079 BC 13 "l 2065-1760 BC (96.7 161
HS
socond
2111-2098 BC(1.7"1 203~1874 BC [88.9 16)
16
Mlddle Bronza
Aaa iiC/Lobt
1!17~1892 IC
Bronze Aaa l
1844-IJI16 BC (2.9 "l 179~1779 BC (1.9 "l
nltlon
OUI.67
6311
AT122
2013
1915-1639 BC
1882-169111C (95.4"1
1876-1842 BC [1J1.8 "I 182()...1797 BC (11.6"1 1781-1731 BC (27.2 "I 1714-169611C (9.6"1
3460 :t35 BP
16
Mlddle Bronz•
Aa•IIC/Lim
Bronze Aal!! I
263
264
D. Vieweger/J. Häser
0~
43911
AN 119
2009
1956-1642 BC
1911-1730 BC{BII.H6) 1n1-1692 ac {6.7 "l
014141
4364
AN 119
2009
lli4S-1684 BC
1!107--1737 BC {91.5 ") 171&-1696 {3.9 "I
BC {24.2 "I 1.12!1-1754 BC {44 "l
3485:t40 BP
16
Mlddle Bronze J1Co IIC/latl! BronzeApJI
1~1767BC
3490t:3S BP
16
Mlddle Bronze AI•IIC/W.
187~1838
Bronz• Ale I 2023-1737 BC (99.2 "l 1715-1697 BC [0.5!1)
014141
1949-17511C
Ol4Uii
015Y7
4480
4n7
AN 119
AN 118
2009
3530±35 BP
Ul79-l.l37 BC{14.2 ") 1830-1657 BC (111.3 ") 1651-1645 BC [0.9 ")
1167-11148 BC (8.6") 1774-1617 BC [59.1 ")
3435%35 BP
2009
1.191-1625 BC
18BD-1662 BC
Ul-1847 BC [lll.7 ") 1775-16119 BC [57.5 "I
344D:t:3S BP
17
Mlddle Bronze AI•IIB
015Y7
192~1658BC
11116-1692 BC
1177-1841 BC (25 ") 1821-1796 BC [16.2 !I) 1782-1744 BC{27")
3470%35 BP
17
Middle Bronze AleiiB
1.88&-1623 BC
H$
16
Mlddle Bronze
192D-1171 BC(30.7"l 1146-1811 BC [21.1 "I 1104-1776 BC [16.5 "I
H5
/oceiiC/latl!
8ronzeApl 17
Micldlo Bron"' AIOIIB
015541
4n7
AN 118
20lll
1!144-1682 BC
1196-1735 BC {90.3 ") 1717-1695 BC [5.1 ")
1871-1139 BC [25.5 ") 111211-17!12 BC [23.5 !I) 1785-1755 BC [19.2 !I)
34&5±35 BP
17
Mlddle Bronze AI•IIB
01414Z
4107
AD119
2009
2023-1737 BC (99.2 !I) 1715-1697 BC [0.5!1)
1949-1751 BC
192D-1171 BC (30.5 "I 1146-1811 BC [21.2 !I) 1104-1776 BC [16.5 !I)
3530±35 BP
17
Mlddle Bronze
2031-1743 BC
2011-2000 BC (1.6 !I) 1971-1771 BC (93.8 !I)
1941-1177 BC (52.1 !I) 1841-1.121 BC (9.6!1) 1796-1782 BC (6.6!1)
3550±35 BP
17
Mlddle Bronze AloiiB
202,_1751 BC
2009-2002 BC [0.8 !I) 1976-UI61 BC [67.7 !I) 1115,_1772 BC [26.9 !I)
1945-1178 BC [57.1 "I U14o-UI26 BC (6.9 "I 179,..1714 (4.2 !I)
3550UOBP
17
Micldle Bron"'
2017-1996 BC (0.5 !I) 1981-1742 BC(99.2 !II
194!1-1766 BC
192,_1874 BC (36.9 !I) 114!-Uil6 BC [UI.3 !I) 179!1-1779BC{13!1)
3535:t30BP
2200-2136 BC (0.9 !II 215,_1879 BC (!JB.B !I)
2136-1907 BC
2111-209BBC(9!1) 2039-1945 BC (59.2 !II
3610±4DBP
17
Mlddle Bronze AI• IIB
2116-2098 BC [O.Z !I) 2039-1739 BC [99.3 "I 1712-1699 BC [0.2"1
2020-1993 IC (5.1 !I) 198,_1768 BC [90.3 !I)
1955-1176 BC [52.8 "I 1842-1820 BC (9.1 "I 1797-1711 BC (6.3"1
3555±4DBP
17
Micldle Bron"'
2206-1920 BC
2196-2171 BC (4.8 !I) 2146-1960 BC (!10.5 ")
2135-2028 BC
36851:35 BP
2206-1920 BC
2196-2171 BC (4.8 !I} 2146-1960 BC (90.6 !I}
2135-201.1 IC
3ö85±35 BP
17
Mlddle Bronze Alo iiB
203o-1735 BC (99 !I} 171&-1695 BC (0.7 !I)
197,_17-48 BC
1932-1171 BC (35.1 "I 1146-UI11 BC [UI.6 !I) 1104-1776 BC (14.5 !I)
3535±4DBP
18
Micldle Bron.., ..... IIA
2024-1731 BC (98.4 !I} 1n1-1693 ac [1.3 !I}
1956-1743 BC
1914-1867 BC(25.7") 18411-1774 BC [42.5 !I)
35:Z5:t40BP
Ul
Mlddle Bronze
2116-2098 BC (0.3 !I) 2039-1751 BC (99.4"1
2026-1871 BC (14.2 !I) 1146-1.112 BC (6.6 !I}
1972-UI82 IC
3570US BP
01414Z Hs
014U1
4256
AD119
2009
014U1 Hs
014UI ftrrt
3987
AN 111
2009
AleiiB
AIOIIB
17
Mlddle Bronze AleiiB
oum~
natlon
014UI Hsfim
...",;.
AleiiB
llitign
-
0141H
17
Mlddle Bronze AleiiB
eum~
nll:lon
-
014UI Hs oum~
nltlon
015511
4S58
AN 118
20lll
01Wii
..... IIA
H5
0:14129
4303
AD119
2009
~1777BC(4.6!1}
l.l
Middle Bronze AieiiA
Framework ofArchaeological Work on Tall Zirli'a
-
4888
AN119
2010
-
21n-21018C 10.1 "l 2036-1748 8C 199.6 "I
202a-18691C 180.4 "l 1846-1776 ac 115 "l
19n-181!oBC
3565:135 BP
18
Mlddle Bronze ApiiA
21:ZS...2092 8C{0.7"l
2028-181!4 BC
lll08-2004 BC {2.4 "I lJI76-1900 BC {65.1 "J
3590 :t 30 BP
11
Mlddle Bronze ApiiA
2044-18681!17 "' 1147-1775 BC 12"1
HS
01748
5686
Al.118
2013
2036-1745 8C
2021-1992 8C {5.3 "l 198l-1865 8C (70.3 "l 185D-1773 8C (19.8 "l
1!159-1B78 8C 161.5 "I Wt-1828 IC {4.4 "l 179:Z,...1785 IC {2.3 "l
3560:135 BP
19
Mlddle Bronze ApiiA
017150
5651
AM118
2013
214D-1876 BC (99.2 "I 1842-1820 BC (0.3 "I 1796-1781 BC (0.2 "I
2U:Z,...2093 BC (5 "l 2042-1881 BC (90.4 "l
2026-1933 BC (61.2 "I
3615 t 35 BP
19
Middle Bronze AaeiiA
Transitional Period (Early Bronze Ace IV/Middle Bronze Ace II 017111
5735
AN118
2013
2463-2118 BC [96.8 "I 2098-2039 BC 12.9 "I
2~2420 IC (2 "l 2405-2378 BC [2.6 "l 2350-2132 BC [89 "l 208:Z,...2059 BC [1.7 "l
2293-2196 8C (56.9 "I 2171-2146 BC{11.3"l
380CH40BP
20
017AI
5736
AN118
2013
247D-2194 BC [98.6"1 2175-2145 BC ILl "I
24St-2206 BC
2435-2421 BC (5.3 "I 2404-2379 BC (10 "I 2349-2277 BC (37.8 "l 22S:Z,...2228 BC {10.4 "J 222H210 BC (4.8 "J
3850 t35 BP
20
2466-2141 BC
24511-2199 BC (94.7 "l 215t-2154 BC (0.7 "l
2344-2206 BC
3135:1:35 BP
20
Earfy Bronze A,aeiV/ Mlddle BrorueA&e I
017UJ
Earty Bronze A,aeiV/Middle BronzeApl
Eirty Bronze A,ao IV/ Mlddlo BronzeA,aol
HS
OlM47
5964
AM11S
2013
2466-2141 8C
2344-2206 8C
383H35BP
21
-
2458-2199 BC [94.7 "l 21St-2154 BC (0-7 "l
E1rty Bronze A,aeiV/ Mlddle BroiiZI!Aae I
5978
AN118
2011
1885-2572 8C [99.6"1 2512-2504 BC 10-1 "I
2873-2619 8C (93 "l 2601-2599 BC (1.5 "l 2593-2588 BC (0.9 "l
2-28318C (13.4"1 2821-28071C (5. 7 "l 2758-2718 BC (17.3 "l 2708-2631 BC (31.9 "l
413St35BP
21
Earty Bronze A,aoiV/ Mlddlo BronzeA,aol
3008-2987 BC {0.1 "l 2934-2469 BC (99.6 "I
290D-2572 BC (94.7 "l 2512--2504 BC (0.7 "l
2177-2835 BC (14.3 "I 2811-2665 BC{53.1 "l 2643r-2640 BC (0.1 "l
4260 t70 BP
Z1
Earfy Bronze A,aeiV/ Mlddle Brarue:Aae I
2456-2418 8C 10.4 "l 2406-2376 BC 10-6 "I 2351-2032 BC (98.8 "I
2336-23241C (1 "l 2308-2128 BC (89.1 "l 208t-2D47 BC (5.3 "l
2281-2249 8C (19.8"1 223:Z,...2190 BC (22.5 "l 21B1-2142 BC(25.8"l
3780 t35 BP
22
Earty Bronze
HS
Earty Bronze Ace 6D45
AN118
2013
Aplll
-
6D45
AN118
2013
2486-2199 BC
2469-2219 BC (91 "l 225D-2230 BC (3.4 "l 222D-2212 BC (1 "l
2456-2417 BC (20.7 "I 241D-2l95 BC{38.7") 2324-2307 BC (U "J
3880 •35 BP
22
Earfy Bronze Aplll
019151
6462
AM118
2013
28116-2573 BC
2175-2619 BC (94.7 "l 2605-2601 BC (0.7 "l
2864-21133 BC (13.6"1 211!r21106 BC (5.5 "l 2760-2659 BC (42.7 "l 2651-2634 BC (6.4 "l
4140t35BP
23
Earty Bronze
3078-3074 8C (0.6 "l 3024-2890 8C (94.1 "l
3011-2978 8C (22.9 "I 296D-2952 BC (4.3 "l 2942-2898 8C (41.1 "l
4330 t35 BP
2172-2617 IC (88.9 "l 2611-258! BC (6.5 "l
2862-2808 BC (20.5 !II 2751-2719 BC (15.3 "l 2706-2625 BC (32.4 "l
4130 •40 BP
0191111
019112
6497
6424
AN118
AN118
2013
2013
3091-18818C
288t-2566 BC (98.9!11 2524-2497 BC (O.B !II
Aaeli/111
24
Earty Bronze A,aell
24
~rfyBrgnze
A,aell
265
266
D. Vieweger/J. Hiser
4.5. Bibliography Amimn 1974
Reimer et al. 2013
R. Amimn, An Egyptian Jar Fragment with the Name of Narmer fromArad, IEJ 24, 1974,4-12
P. J. Reimer - E. Bard - A. Bayliss - J. W. Beck P. G. Blackwell- C. Bronk Ramsey - P. M. Grootes T. P. Guilderson - H. Ha.fiidason - I. Hajdas - C. HattZ - T. J. Heaton - D. L. Hoffmann- A. G. HoggK. A. Hughen- K. F. Kaiser- B. Kromer- S. W. Manning - M. Niu- R. W. Reimer- D. A. Richards Staff E. M. Scott - J. R. Southon - R. A. C. S. M. Tumey- J. van der Plicht, IntCa113 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP, Radiocmbon 55, 4, 2013, 1869-1887
Amimn-Dan 1992 R. Amimn- 0. Ilan, Arad. Eine 5000 Jahre alte Stadt in der Wüste Negev, Israel (Neumünster 1992) Bietak 1989 M. Bietak, The Middle Bronze Age of the Levant. A New ApproachtoRelative andAbsolute Chronology, in: P. Astrom (ed.), High. Middle or Low?. Acts of an International Colloquium on Absolute Chronology University of Goilienburg 20th-22th August 1987, Sturlies in Mediterranean Archaeology and Literature (Göteborg 1989) 78-120 Bronk Ramsey- Lee 2013 C. Bronk Ramsey - S. Lee, Recent and Planned Developments of the Program OxCal, Radiocarbon, 55, 2-3, 2013, 720-730,