Integrated sustainable urban water, energy, and solids management: achieving triple net-zero adverse impact goals and resiliency of future communities
2019045370, 9781119593652, 9781119593690, 9781119593669, 1119593654
A guide for urban areas to achieve sustainability by recovering water, energy, and solids
Integrated Sustainable Urban
390
38
5MB
English
Pages xv, 400 pages; 27 cm
[419]
Year 2020
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Cover......Page 1
Title Page......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 13
Integrated Sustainable Urban Water, Energy, and Solids Management......Page 19
1.1 Introduction to Urban Sustainability......Page 21
1.2 Historic and Current Urban Paradigms......Page 26
Paradigms of Urbanization......Page 27
1.3 Global Climate Changes......Page 32
1.4 Need for a Paradigm Shift to Sustainability......Page 34
1.5 Population Increase, Urbanization, and the Rise of Megalopolises......Page 37
Brief Outlook Toward the Future......Page 41
1.6 What is a Sustainable Ecocity?......Page 42
The UN 2015 Resolution of Sustainability......Page 46
2.1 The Search for a New Paradigm......Page 49
2.2 From Linear to Hybrid Urban Metabolism......Page 51
Circular Economy......Page 55
2.3 Urban Resilience and Adaptation to Climate Change......Page 58
Engineering and Infrastructure Hazards and Disaster Resilience......Page 60
Socioecological or Governance Resilience......Page 66
3.1 Review of Existing Sustainability Criteria......Page 69
LEED Criteria for Buildings and Subdivisions......Page 71
Triple Net-Zero (TNZ) Goals......Page 72
Water Footprint......Page 74
GHG (Carbon Dioxide) Net‐Zero Footprint Goal......Page 76
Ecological Footprint......Page 78
3.2 Zero Solid Waste to Landfill Goal and Footprint......Page 79
Landfill Gas (LFG)......Page 82
Swedish Recycling Revolution......Page 86
3.3 Importance of Recycling Versus Combusting or Landfilling......Page 87
Energy Definitions and Units......Page 91
Greenhouse Gases (GHGs)......Page 94
Blue and Green Sources of Hydrogen on Earth......Page 97
Hydrogen as a Source of Energy......Page 102
Vision of Hydrogen Role in the (Near) Future......Page 107
Stopping the Atmospheric CO2 Increase and Reversing the Trend......Page 109
Sequestering CO2......Page 111
Non‐CCUS Reuse of Carbon Dioxide......Page 114
Recycling......Page 115
Solar Power......Page 116
Wind Power......Page 121
Green and Blue Energy Storage......Page 124
4.5 Food/Water/Energy/Climate Nexus......Page 126
4.6 World and US Energy Outlook......Page 128
5.1 Economy of Scale Dogma Forced Centralized Management 45 Years Ago......Page 135
5.2 Distributed Building and Cluster Level Designs and Management......Page 137
Cluster or Neighborhood Level Water and Energy Recovery......Page 139
5.3 Flow Separation: Gray Water Reclamation and Reuse......Page 144
Tap a Sewer, Keep the Liquid, and Sell the Solids......Page 150
Integrated District Water and Energy Providing Loop......Page 154
Energy Savings and GHG Reduction by Gray Water Reuse in Clusters......Page 155
6.1 Urban Nature and Biophilic Designs......Page 159
Biophilic Designs......Page 160
6.2 Low‐Impact Development......Page 162
Classification of LID (SUDS) Practices......Page 167
Stream Restoration......Page 183
Waterscapes......Page 187
Vertical Forests and Systems......Page 188
6.4 Biophilic Urban Biomass Management and Carbon Sequestering......Page 189
Other Vegetation......Page 190
7.1 Traditional Aerobic Treatment......Page 193
GHG Emissions from Traditional Regional Water/Resources Recovery Facilities......Page 196
Anaerobic Digestion and Decomposition......Page 197
Comparison of Aerobic and Anaerobic Treatmentand Energy Recovery (Use) Processes......Page 200
Acid Fermentation and Its Hydrogen Production......Page 202
Anaerobic Treatment......Page 206
7.3 Triple Net‐Zero: COF Future Direction and Integrated Resource Recovery Facilities......Page 207
Goals of the Future IRRFs and Enabling Technologies......Page 208
Energy Recovery in a Centralized Concept with Anaerobic Treatment and Digestion as the Core Technology......Page 210
Anaerobic Energy Production and Recovery Units and Processes......Page 212
High Rate Anaerobic Treatment Systems......Page 213
7.4 Co‐Digestion of Sludge with Other Organic Matter......Page 221
7.5 Conversion of Chemical and Sensible Energy in Used Water into Electricity and Heat......Page 225
8.1 Traditional Waste-to-Energy Systems......Page 229
Incineration......Page 230
Heat Energy to Dry the Solids......Page 233
8.2 Pyrolysis and Gasification......Page 234
Gasification of Digested Residual Used Water Solids with MSW......Page 236
Gasification of Municipal Solid Wastes (MSW)......Page 239
8.3 Converting Biogas to Electricity......Page 250
Steam Methane Reforming (SMR) to Syngas and Then to Hydrogen......Page 252
8.4 Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs)......Page 253
Microbial Fuel Cells (MFCs)......Page 254
Modifications of MFCs to MECs for Hydrogen Production......Page 256
Hybrid Fermentation and the MEC System......Page 259
8.5 Hydrogen Yield Potential by Indirect Gasification......Page 260
Sources of Energy Hydrogen......Page 262
8.6 Hydrogen Fuel Cells......Page 267
Molten Carbonate Fuel Cells (MCFCs)......Page 268
Solid Oxide Fuel Cells (SOFCs)......Page 271
Producing Hydrogen and Oxygen by Electrolysis......Page 272
Gas Separation......Page 274
8.7 The IRRF Power Plant......Page 275
Hydrogen-CO2 Separator......Page 278
Carbon Dioxide Sequestering in an IRRF......Page 280
Carbon Dioxide Capture and Concentration by the Molten Carbonate Fuel Cell......Page 282
9.1 The Need to Recover, Not Just Remove Nutrients......Page 283
Traditional Nutrient Removal Processes......Page 285
Anammox......Page 286
Phosphorus Biological Removal and Limited Recovery......Page 288
MEC Can Recover Struvite......Page 290
Urine Separation......Page 291
Nutrient Separation......Page 292
Phytoseparation of Nutrients......Page 293
Chemical Removal and Recovery of Nutrients......Page 301
Phosphorus Flow in the Distributed Urban System......Page 303
Nutrients in Gasifier Ash......Page 304
Concepts, Building Blocks, and Inputs......Page 309
Milwaukee (Wisconsin) Plan......Page 313
Danish Billund BioRefinery......Page 314
Integrating MSW......Page 317
10.3 Visionary Mid‐Twenty‐First Century Regional Resource Recovery Alternative......Page 322
The Power Plant......Page 327
Three Alternatives......Page 329
Inputs to the Analyses......Page 333
CO2/Kw‐h Ratio for the Alternatives......Page 337
Discussion and Results......Page 339
11.1 Community Self‐Reliance on TMZ System for Power and Recovering Resources......Page 355
11.2 Economic Benefits and Approximate Costs of the 2040+ Integrated Water/Energy/MSW Management......Page 359
Cost of Green and Blue Energies Is Decreasing......Page 360
Political‐Economical Tools......Page 367
The Process to Achieve the Goals......Page 369
References......Page 375
Index......Page 403
EULA......Page 419