182 94 3MB
English Pages 255 Year 2005
Implementing802.11,802.16, and802.20WirelessNetworks
This page intentionally left blank [Thisisablankpage.]
Implementing802.11,802.16, and802.20WirelessNetworks Planning,TroubleshootingandOperations byRonOlexa
AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier
NewnesisanimprintofElsevier 200WheelerRoad,Burlington,MA01803,USA LinacreHouse,JordanHill,OxfordOX28DP,UK Copyright©2005,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical, photocopying,recording,orotherwise,withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience& TechnologyRightsDepartmentinOxford,UK:phone:(+44)1865 843830,fax:(+44)1865853333,e-mail:[email protected]. Youmayalsocompleteyourrequeston-lineviatheElsevierhomepage (http://elsevier.com),byselecting“CustomerSupport”andthen “ObtainingPermissions.” Recognizingtheimportanceofpreservingwhathasbeenwritten,Elsevier printsitsbooksonacid-freepaperwheneverpossible. LibraryofCongressCataloging-in-PublicationData (Applicationsubmitted.) BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:0-7506-7808-9 ForinformationonallNewnespublications visitourwebsiteatwww.newnespress.com 050607080910987654321 PrintedintheUnitedStatesofAmerica.
Contents Preface........................................................................................ix Introduction............................................................................... xiii What’sontheCD-ROM?............................................................ xix Chapter1:High-SpeedWirelessData:SystemTypes, Standards-BasedandProprietarySolutions............................ 3 FixedNetworks............................................................................................4 NomadicNetworks......................................................................................5 MobileNetworks.........................................................................................6 Standards-BasedSolutionsandProprietarySolutions.................................6 OverviewoftheIEEE802.11Standard.......................................................7 OverviewoftheIEEE802.16Standard.....................................................14 10−66GHzTechnicalStandards...............................................................16 2−11GHzStandards..................................................................................16 OverviewoftheIEEE802.20Standard.....................................................17 ProprietarySolutions.................................................................................18
Chapter2:BasicRadioandRFConcepts....................................... 27 RFEnergy..................................................................................................27 RFGenerationandTransmission...............................................................30 Oscillator....................................................................................................30 PowerAmplifiers.......................................................................................34 AntennasandFeedlines.............................................................................35 RFReception.............................................................................................41 ModulationofRFSignals..........................................................................44 AmplitudeModulation...............................................................................44 FrequencyModulation...............................................................................46 ComplexModulation.................................................................................47 Duplexing...................................................................................................54 v
Contents FrequencyDivisionDuplexing..................................................................54 TimeDivisionDuplexing...........................................................................55 MultipleAccessTechniques.......................................................................55 Spread-SpectrumModulation....................................................................58 OFDM........................................................................................................62 UltraWideband..........................................................................................64
Chapter3:Propagation,PathLoss,FadingandLinkBudgets.......... 69 PathLossandSystemCoverage................................................................79 FrequencyReuse........................................................................................85
Chapter4:PropagationModelingandMeasuring........................... 95 PredictiveModelingTools.........................................................................95 SpreadsheetModels...................................................................................96 Terrain-BasedModels................................................................................97 EffectivelyUsingaPropagationAnalysisProgram...................................98 UsingaPredictiveModel.........................................................................104 TheComprehensiveSiteSurveyProcess.................................................106 SurveyActivityOutline...........................................................................110 IdentificationofRequirements.................................................................112 IdentificationofEquipmentRequirements..............................................113 ThePhysicalSiteSurvey.........................................................................114 DeterminationofAntennaLocations.......................................................115 RFSiteSurveyTools...............................................................................117 TheSiteSurveyChecklist........................................................................119 TheRFSurvey.........................................................................................120 DataAnalysis...........................................................................................123
Chapter5:SystemPlanning....................................................... 131 SystemDesignOverview.........................................................................131 LocationandRealEstateConsiderations................................................132 SystemSelectionBasedUponUserNeeds..............................................139 IdentificationofEquipmentRequirements..............................................140 IdentificationofEquipmentLocations.....................................................143 ChannelAllocation,Signal-to-Interference,andReusePlanning...........151 NetworkInterconnectandPoint-to-PointRadioSolutions.....................155 vi
Contents Costs.........................................................................................................159 TheFiveC’sofSystemPlanning.............................................................159
Chapter6:SystemImplementation,Testing andOptimization............................................................ 163 Real-WorldDesignExamples..................................................................163 ExampleOne:LocalCoffeeHouse.........................................................163 ExampleTwo:OfficeLANDeployment.................................................165 2.4GHzRFCoverageResults.................................................................169 5.6GHzRFCoverageResults.................................................................170 CapacityRequirements............................................................................171 SystemDesignAnalysis...........................................................................171 NEC,Fire,andSafetyCodeConcerns.....................................................174 ExampleThree:CommunityWISP.........................................................176 Community:AGardenStyleApartmentComplex..................................177 RFConsiderations....................................................................................178 Backhaul..................................................................................................181 Weatherproofing.......................................................................................183 GroundingandLightningProtection.......................................................184 Community:ASmallAreaSubdivision...................................................185 EquipmentSelection................................................................................185 SystemPlanning......................................................................................187 Community:AnUrbanorSuburbanAreaServingBusinessUsers.........188 SpectrumIssues.......................................................................................188 DesignConsiderations.............................................................................190 Community:ASmallTownSystemforConsumerandBusinessUsers.191 Summary..................................................................................................191 ExampleFour:MobileBroadbandNetwork............................................192 InitialModeling.......................................................................................192 PreliminaryInformation...........................................................................193 CoverageModeling..................................................................................194 CapacityModeling...................................................................................194 CostModeling..........................................................................................195 DesigningintheRealWorld....................................................................195 ChapterSummary....................................................................................197 vii
Contents
Chapter7:BackOfficeSystemRequirements............................... 201 NetworkSystemsRequired......................................................................201 CustomerAuthorizationSystem..............................................................202 BillingDataCollection............................................................................203 NetworkMonitoringandControl............................................................203 BillingSystem..........................................................................................204 TroubleTicketing.....................................................................................205 CustomerServiceSystems.......................................................................206 DesignConsiderationsandRequirements...............................................208
Chapter8:NetworkPerformanceTestingandTroubleshooting...... 213 LowRSSIandNoiseLevelsinaSingleArea..........................................215 HighNoiseorInterferenceLevels...........................................................216 ThroughputProblemsUnrelatedtoSignalorNoise................................218 RepeaterMode........................................................................................219 MultipleChannelReuseinaCloseArea.................................................220 Near/FarProblems...................................................................................220 HiddenNodeProblems............................................................................220 ClientCard“Roam”.................................................................................221 VirusesandTrojans..................................................................................221 TroubleshootingSummary.......................................................................222
AbouttheAuthor..................................................................... 223 ListofAcronyms....................................................................... 225 Index ..................................................................................... 229
viii
Preface Communication,awordthatmanyassociatewithmoderntechnology,actually hasnothingtodowithtechnology.Atitscore,communicationinvolvesnothing morethanthespokenorwrittenword,andsymboliclanguageslikeartandmusic. Technologyhasbecomesynonymouswithcommunicationbecausetechnology hashistoricallybeenthemethodbywhichcommunicationtoorbythegeneral populationtakesplace.FromtheprintingpresstothetelephonetoradioandTV broadcasting,technologyhastouchedourlivesbyprovidingconvenientwaysfor alargepopulationtocommunicate.Becausetheintertwiningoftechnologyand communicationisfundamentaltoourculture,thetechnologyofcommunication inawaydefinesourculture. Asweentertheearlyyearsofthe21stcentury,humanityisawashininstantcommunicationbasedupontheradiotechnologythatmakesitpossible.Asasociety wehavenearrealtimeaccesstoworldeventsoccurringinanycornerofthe globe,andasindividualswehaveinstantvoicecommunicationwitheachotherby virtueofthetelephoneinitsmanyshapesandforms. Overthelastdecadeofthe20thcentury,thecellphoneredefinedourcultural expectationsofcommunication.Theadventoftheportablephonealongwithprice competitionamonghardwareandserviceprovidershasbroughttruepersonal voicecommunicationservicetoalargesegmentofhumanity. Butwhatofsymboliccommunication?Computingpowerandflexibilityhave allowedustodigitizethesecommunicationstomaketheirdisseminationmore convenient,andtheportablephonehassetanexpectationthatallcommunicationrequiresportability,convenience,andcosteffectivity.Unfortunately,these voice-centricsystemshaveonlymarginallyaddressedthemorecomplexnature ofsymboliccommunications.Moreover,asasocietywearenolongercontent withsimplisticcommunication.Theadventandadoptionofthecomputerandthe myriadsoftwarepackagesavailableforithasofferedtheabilitytogenerateanew ix
Preface waveofsymboliccommunicationcombiningart,pictures,music,andwordsinto atargetedmultimediapresentation.Nolongerisagenericpresentationenough.It isnowsoeasytotailorthepresentationofinformationtoanindividualorgroup thataudience-tailoredandtargetedmultimediapresentationsarenowexpected. Bytheirnature,thesepresentationsarelargeandrequirehighbandwidthtransmissionfacilitiestoaccommodatetheirrapiddissemination.Suchfacilitiesare availablewithinawiredofficeLANortosomeextentinthewiredtelephonynetwork(andbyextensiontheInternet),butthesefacilitiesonlyserveasegmented localcommunity.Theuserwhoisnotconnectedtoawiredbroadbandfacility cannotgainaccesstothiscommunication. Whilethereareseverallowspeedportabledatasystemsoperatingtoday,their speedmakesthemusefulforonlythemostrudimentaryofcommunication:short writtenmessageslikeemail,orsmalllowresolutionimages. Thegrowingvolumeoftargetedmultimediapresentationmaterialrequiresahigh bandwidthdeliveryfacility.Couplethiswithoursociety’sneedformobility,and youquicklyrealizethatcurrentlyavailableubiquitouscoveragewirelessdata deliverysolutionsfallfarshortofthebandwidthrequiredbythisemergingcommunicationrequirement. EnterWi-Fi(WirelessFidelity).Late2002through2003hasseenaremarkable interestin802.11(a.k.a.:Wi-Fi)networkdeployment.The802.11standardisa wirelessEthernetstandardthatwasdesignedtosimplifyofficeLANdeployment byeliminatingwiringrequirements.Interestingly,withtheadventofBroadband Internetconnectivityinthehome,thistechnologyhasfounditsnichenotinthe office,butinthehome.Wi-FicapabilitycanbeaddedtoacomputerorPDAby simplyplugginginacard.LaptopcomputersnowcomewithWi-Fifunctionality preinstalled,andconsumerqualityWi-Fibasestationscostlessthan$100,andare becomingeasytoinstall.Wi-Fihasbecometheequivalentofacordlessphonefor yourcomputer,andjustastheadventofthecordlessphonepresagedthedevelopmentandconsumeracceptanceofcellularandPCSservices,theadoptionof Wi-Fimaybegivingustheearlyglimpseoftheneedsandexpectationsofthe nextgenerationofwirelessdataconsumers.
x
Preface ThedeploymentofWi-Fiandotherwirelessdatadeliverytechnologieshavenot stoppedatthehomeandtheoffice.Thefactthatthesedevicesoperateinunlicensedspectrumisallowingindividualsandcompaniestotakethenextstepsin deployingareawidewirelessdatanetworks.Todaymoreandmoresystemsare beingdeployedtoprovidepublicInternetaccessinpublicareasassmallasacoffeeshop(the“hotspotmodel”)oraslargeasacommunity(the“WISP”model). Somecompaniesareimplementingthesesystemsinordertoprovide”forsale” service,whileothernetworksarebeingimplementedbyindividuals,companies, orgroupstoofferfreeInternetaccesstothosewhoenterthecoveredarea. Bylate2003,thefirst802.16-basedequipmentbegantoenterthemarketplace. The802.16standardisdesignedasanextgenerationbroadbanddatadelivery systemforMetropolitanAreaNetworks(MANs).802.16overcomesmanyofthe shortcomingsof802.11whenusedinaMANenvironment,andcanoperatein licensedandunlicensedbandsfrom2GHzto60GHz.Theadditionalspectrum, bandwidthandthroughputcapabilityof802.16willmarkedlyimprovewireless datadelivery,andshouldallowevenmorewirelessdataserviceareastobedeployedeconomically. Theinitial802.16specificationeffectivelyoffersasolutionforprovidinghigh speedwirelesscommunicationtofixedlocations,butitstilldoesnotoffertrue mobility.The802.16eand802.20standardsarebeingdevelopedasnextgenerationsolutionsthatcanoffertruehighspeed(over2Mbps)connectivitytovehicles travelingatover90MPH. Thesuccessfuldevelopmentandgrowthofanyhigh-speedwirelessdatanetwork, beitstandards-basedoraproprietarysolution,requiresnotonlyanunderstanding ofthedatanetworkrequirementsofthesystembutalso,maybemoreimportantly,anunderstandingofRFpropagationandinterferencemanagement.There isasignificantvolumeofpublishedinformationthatdescribesthefundamentals ofwirelessLANsand802.11technologyand/orthenetworkingneedsofsucha system,butlittleinformationisavailableregardingtheradiopropagationissuessurroundingthedeploymentandmanagementofanyoftheseRF-basedtechnologies. ThisbookisintendedtocorrectthisinformationgapbyprovidingabasicunderstandingoftheissuessurroundingtheimplementationofRF-basedtechnologies. Itwillbeusefultoanyonewhoplanstoimplementawirelessnetwork.The xi
Preface conceptsinthebookareequallyvalidforsystemsusinglicensedorunlicensed spectrum,andapplyequallytoanytechnologyselectedforimplementingthe wirelessnetwork.ItiswrittenforanaudiencethathaslimitedornoRFexperience,andwillofferthereaderabasicbutpracticalunderstandingoftheconcepts behindRF,suchastransmittingandreceiving,antennasandtheireffectanduse, RFpropagationcharacteristics,interferencemanagement,andregulatoryissues. Theseconceptswillprovidetheunderpinningsforthelaterchapters,whichwill focusonthereal-worldissuesofdesigning,implementing,andoptimizingawirelessnetwork. Thisbookwillprovideasolidgeneralunderstandingoftheissuesencounteredin designinganddeployingawirelessnetwork,andshouldhelpyougaintheabilityto effectivelyplanandconstructanetworkeitherbyyourselforwiththehelpofothers. Theprimaryaudienceforthisbookisthetechnicalprofessionalresponsiblefor deployingawirelessdatatechnology.ThisaudiencecanbeasdiverseastheIT professionalwhonowhastocopewithaddingwirelessconnectivitytoanoffice LAN;themanufacturer,orValueAddedReseller(VAR)whoissellingwirelesshardwaresolutions;theindividual,grouporcommunitythatwishestolearn enoughtobeabletoeffectivelydeploythistechnologytoimprovetheservices availabletoanareaorcommunity,ortheengineeringprofessionalsthatwilleventuallyleadthedevelopmentoftheubiquitouscarrierclasswirelessdataservices thatwillsomedaybecometodatawhatcellularandPCShavebecometovoice. Thesecondaryaudienceisthemanagement,sales,marketing,planning,oraccountingprofessionalandtheinvestmentcommunitythatsupportsdevelopment ofnewtechnologies.Thecontentofthisbookwillbevaluabletoanyonewhois responsibleforthedecisiontoadoptthesenewwirelesstechnologiesaspartofa businessplan,andisnowfacingtheproblemofnothavingtheappropriatelevel ofknowledgeto“asktherightquestions.” Itismyhopethatthisbookwilleducateandinspireanewgenerationofwireless pioneers,andindoingsoassureabrightfutureforwirelessdataservices.Ilook forwardtothedaywhenourcellphoneevolvesintoapocket-sizeddevicethat willfulfillallofourcommunicationneeds,andallowourwordsandvisionsto instantlyreachthefarthestcornersoftheglobe. xii
Introduction Fornearlyacentury,voicecommunicationsnetworkshavebeenkingofthe hill.ThegrowthoftheInternetinthe1990’shasgivenrisetotheneedfordata communicationsnetworksthatareaswelldevelopedandflexibleasthevoice networksthatarecurrentlyinplace.Broadbandconnectivityhasbecomeavailable incertainplacesusingthewiredinfrastructureofTelephoneandCATVcompanies,butthecoverageprovidedbythesesystemsisfarfromubiquitous.While thesesystemscanaddressthelowspeeddatarequirementsofmanyindividual users,thehighspeed(>2Mbps)datacommunicationsrequirementsofcorporate entitiescannotbeeasilyandeconomicallymetusingcopperwires.Fiberopticscananddoesofferthepossibilityofenormousspeeds,butoperationalfiber cabletothehomeorbusinessisnotcommonlyavailable,andwillnotbeforthe foreseeablefuture. Inaddition,theneedforinstantdataisbecomingasurgentastheneedforinstant voicecommunications.Instantvoicecommunicationsneedsaremetbycellularlikeservices.Althoughthesesameprovidershavebeguntoofferdataservices, justliketheirwiredcounterparts,theirspeedsareconstrainedbythelimitations inherentinsystemsthatwereoriginallydesignedforvoicecommunications. Wireless-baseddatanetworkshavetheabilitytomeetthedatarequirementsof corporatenetworksaswellasthebroadbandfixedandmobilerequirementsof individuals.Therearenumerousspectralallocationsthatcanbeusedtoprovide theseservices,andwhilesomearelicensed,thuslimitingtheirdeploymentto thosewhohaveaccesstothespectrum,othersarenot.Itisinthisunlicensedspectrumwheremanywirelessdataneedsarebeingmet. Theyear2003hasseenaremarkableinterestinwirelessdatanetworkdeployment usingthe802.11bstandard.Mostintriguingisthefactthatmanydeployments havenothingtodowiththeserviceoriginallyenvisagedbythedevelopersofthis
xiii
Introduction technology.The802.11standardisawirelessEthernetstandardthatwasdesigned tosimplifyofficeLANdeploymentbyeliminatingwiringrequirements. However,todaymoreandmoresystemsarebeingdeployedtoprovidepublicInternetaccessinareasassmallasacoffeeshop(the“hotspotmodel”),aslargeasa community(theWirelessISPor“WISP”model),oranythinginbetween.Companiesareimplementingsomeofthesesystemsinordertoprovidesaleableservice, whileothernetworksarebeingimplementedbyindividualsorgroupswiththe intenttoofferfreeInternetaccesstothosewhoenterthecoveredarea.As2003 comestoaclose,thenextgenerationofhardwareoperatingunderthe802.16 standardisbeginningtoenterthemarketplace.WirelessISPsareevaluatingthis technologyasabettersolutionformetropolitanareanetworkdeployment. ThesurginginterestindeployingwirelesstechnologytoprovidepublicInternet accessismadepossiblebyseveralfactors: Firstandforemostisanunmetneed.TheInternethasbecomeasmuchapartof ourlivesasthetelephone.Unfortunately,broadbandaccessisstillnotacommon commodity.Astheuser’srequirementforconstantdataconnectivitygrows,sodoes theexpectationthatconnectivitywillbeavailablewhenit’sneeded,whetherthat’s athome,attheoffice,oratanairport,trainstation,orcoffeeshop.Wheresuch connectivityisnotavailable,wehaveagroundswellofindividuals,groups,and corporationstryingto“fillthegap”andprovideconnectivitywherevertheybelieve theuserwillwantit. Assistingtheseentitiesisthesecondcontributingfactor:freespectrumisavailable.TheFCChasallocatedspectruminthe900,2,400and5,600MHzbandsto Part15devices.That’sgoodnewsandbadnews.Thegoodnewsisthatthespectrumisfreelyavailabletoanyoneatnocost.Thebadnewsisthatthespectrumis freelyavailabletoanyoneatnocost!ThePart15allocationsaresharedbymany usersandthus,tolimittheircoverageandinterferencepotential,carrysignificant limitationsonpoweroutput.Additionally,portionsofthesebandsarealsoallocatedtolicenseduserslikeAmateurRadiooperators,Government,andDefense userswhohave“primary”rightstotheband.Thismeansthattheselicensedusers haveoverridingrightstotheband.IfaPart15usercausesharmfulinterference toalicenseduser,thePart15usermusteithercorrecttheinterferenceorcease operation.Ontheotherhand,Part15usersmusttolerateanyinterferencefrom xiv
Introduction anysourcewithnorecoursetocorrectthesituation.Inotherwords,unlicensed usersinthesebandsaresubjecttouncontrolledinterferencefromanyotherusers intheband(includingotherPart15users).Thisleadstosomeriskwhentheunlicensedbandsareusedasthebasisforabusiness.Powerlimitsandinterference willlimitthedistanceoverwhichpart15devicescaneffectivelycommunicate. Theseissuesandwillbeexaminedindetailintheplanningandimplementation chaptersofthebook. Inamovethatmaypresageachangeinpolicyonthesebands,onSept17,2003 theFCCreleasedaNoticeofProposedRulemaking(NPRM)thatincreasesthe flexibilityofusingPart15devicesinacommunitycoverageorWirelessISP (WISP)environment.UndertherulesproposedintheNPRM,thepowerlimitsassociatedwithequipmentintheseserviceswillbeallowedtoincreasesignificantly whendirectionalor“smart”antennasareused.Thisdevelopmentcouldleadto costeffectivecoverageoflargeareasusingpubliclyavailablePart15spectrum. Ofcourse,it’sstillsharedspectrum,andinterferencemuststillbemanaged,ajob potentiallymademoredifficultbythehigherpowerauthorizations. Thethirdfactorleadingtowidespreaddeploymentisstandards.TheIEEEandthe Wi-Fiallianceworkingwithandthroughindustrypromulgatedastandardthatlet anymanufacturerproduceadevicethatwouldworkwithany802.11xequipment. Thislevelofstandardizationmakesimplementationeasy,asanyclientcardshould beabletocommunicatewithanyother802.11xhardware,regardlessofmanufacturer.Similarly,devicecompatibilityforthe802.16standardisbeingpromoted byanorganizationcalledtheWiMAXForum.Thiscompatibilityassuresthatany user’shardwarewillworkonanysystemdeployedusingtheappropriatestandard. Inaddition,thisstandardizationhelpstodrivedownthecostofhardware. Thefourthfactoriscost.Becauseoffreelyavailablespectrumandthe802.11x standards,inexpensiveequipmentexists.Anditwillallinter-operate.Sincethere isnorequirementforlicensing,thistechnologyisaseasytoacquireasacordless homephone(thatalso,bytheway,probablyoperatesinthesameband).Thisallowsmanufacturerstorampupproductionandgainthebenefitoftheeconomyof scaleassociatedwithproducingtensofmillionsofdevices. Thereductionincostdrovemanyuserstobegininstalling802.11xhardwarein theirhomesandoffices,thusleadingtoasignificantdeployedequipmentbase. xv
Introduction Nowmanyofthoseusersarediscoveringthebenefitsofmobilecomputing,but theirusageofthisemergingserviceisstilllimitedtowhereserviceisavailable. Thisbringsusfullcircle.Freespectrumandequipmentstandardsgenerateinexpensiveequipment.Inexpensiveequipmentgeneratesconsumeruse.Consumer usegeneratesexpectation.Andexpectationgeneratesbusinessopportunities predicatedonfillingtheseunmetneeds,usingthesamefreespectrumandcheap hardwarethathasallowed802.11xtodeveloptoitscurrentstate. Inorderforthesenewentrepreneurstobegintobuildmoreandmorecomplex networksusingthis(oranyother)technology,theywillneedtounderstandmore thanthenetworkingrequirementsofadatanetwork.Theywillalsobecompelled togainasolidunderstandingofthecharacteristicsoftheRFsystemtheyintend todeploy,andtheeffectsofenvironmentonthatRFsystem.WithoutanunderstandingoftheRFsystemandRFrelatedenvironmentalchallenges,thedeployed systemmaybemorecostlythannecessary(andyoumayneverrealizethatyou arewastingmoney).Worseyet,itmayneverworkasexpectedandyou’llhaveno ideawhy. Thelaterchaptersofthebookwillfocusonthereal-worldissuesofdesigning,implementing,testing,andoptimizingawirelessnetwork.Theseissues willincludehowtoselectequipmentmostappropriatetotheservicebeing contemplated,aswellasunderstandingthecostvariablesassociatedwithboth thecapitalexpenses(CAPEX)andoperatingexpenses(OPEX)associatedwitha particularsolution. Thisbookisdividedintochapters,eachdealingwithaspecificaspectofradio, RF,orsystemdesignanddeployment.Thecontentisorganizedinsuchawayas todevelopfundamentalunderstandingofasubjectthatcanbebuiltuponinlater chapters.Whilerelativelyfewchaptersdependdirectlyonapreviouschapter, mostaredependentinageneralwayontheinformationpresentedinearliertext. ThosewithpriorRFexperiencearewelcometoskiparound,butIsuggestthat mostreadersfollowthenormalreadingsequence. Laterchapterswillprovideguidanceforplanning,designingandimplementing awirelessnetwork.Bothpoint-to-pointandpoint-to-multipointnetworkswill bediscussed.Threeexamplenetworkswillbefeatured:ahotspot,alargeoffice xvi
Introduction LAN,andaWISPnetwork.Additionally,therewillbeadiscussionofthedesign requirementsofafullymobilenetwork.Theuniqueplanningandimplementation requirementsofeachnetworkwillbeidentifiedanddiscussed.Theseexample systemsaredesignedtoprovidecoverageofasmallgeographicarea.Astheneed andexpectationofuniversalubiquitousdataservicegrowsoutofthesesmallscale networks,largernetworkswillbedeveloped.The802.20standardisdesignedto bringmobilitytobroadbanddataservices.Bydefinition,mobileserviceshave ubiquitouscoverage.Amongothertools,theCD-ROMaccompanyingthisbook containsaspreadsheetthatcanbeusedalongwiththeradioknowledgegained fromthisbook,todetermineCAPEXandOPEXestimatesfordesigningandconstructingsuchasysteminmostU.S.markets. WhiletheexamplesinthisbookmostlyfocusontheuseofunlicensedPart15 spectrum,theprinciples,toolsandtechniquescanbeappliedtoanyRF-based network.Ultimatelyifyouaresuccessfulindeployinganetworkbasedupon unlicenseddevices,youwillhavenoproblemusingtheknowledgeandexperience gainedtodeployabettersystemusinglicensedspectrum.
xvii
This page intentionally left blank
What’sontheCD-ROM? TheCD-ROMcontainsdocumentsandtools,whichcanbeusefulindesigninga wirelessnetwork. ■
AfullysearchableeBookversionofthetextinAdobePDFformat.
■
CalculationSpreadsheets
Channelnoisefloorandminimumsignalcalculatorisaspreadsheetthatcan beusedtodeterminetheeffectivereceiversensitivitybaseduponthebandwidthofthereceivedcarrier,thenoisefigureofthereceiver,andthemanmade noiseandinterferenceintheenvironment.
Downtiltcalculatorisusedtocalculatetheantennadowntiltnecessaryto pointthemainbeamoftheantennaatthedesiredcoveragearea
Pathbalancecalculatoranddesignsignalstrengthobjectivesisusedtodeterminethedesignsignalstrengthrequirementsnecessarytoprovidecoverage onastreet,inavehicle,andinabuilding.Itderivesthesesignalrequirements baseduponthetransmitpower,receivesensitivity,antennagain,andtransmissionsystemlossofthebasestationandCPEequipment.
WattstodBmcalculatorisusedtoconvertpowerinwattstopowerindBm andviceversa.
■
FCCDocuments
AppendixAcontainstheFCCPart15rulesasofMarch2003.Theserules covertheimplementationrequirementsforsystems(suchas802.11band 802.11a)thatoperateintheunlicensedspectrumallocations.Theserulescover thepowerandantennalimitsassociatedwiththeunlicensedbands,andshould beunderstoodbyanyonedeployingequipmentinthesebands.
FCCPart15NPRMistheSeptember15,2003NoticeofProposedRule MakingthatproposessomechangestothePart15andPart2rules.Theseproposedchangesarenotyet(asofApril2004)writtenintolawbutifaccepted xix
What’sontheCD-ROM? wouldhaveasignificantimpactontheabilitytoutilizetheunlicensedbands forcommunityareaservice.
CodeofFederalRegulationsPart27istheFCCrulesetpertainingtothebands under5GHzthatcansupportnonline-of-sightfixedormobiledataservices.
■
MeasurementTools
ThisfoldercontainscopiesofKismetandNetstumbler.Theseprogramscan beusedtoallowacomputeroperatingunderLinux(Kismet)orWindows (Netstumbler)andequippedwithacompatible802.11clientdevicetobeused asasignalstrengthandinterferenceanalysistool.Thesetoolsareusefulfor sitesurveysandfortroubleshootingof802.11-basednetworks.
■
OperatorDesignandFinancialModels
Theselargespreadsheetsareexamplesofthemodelingthatcanbedoneto analyzethesize,complexityandcostofalargescalewirelessnetwork.Assigningvaluestokeyvariablesassociatedwithequipmentperformance,cost, subscriberbehavior,andthecoverageareatobedeployedallowsthemodel touseareaanddemographicdataassociatedwithU.S.citiestodeterminethe numberofbasestationlocationsnecessarytobothcovertheareaandprovide sufficientcapacitytoservethesubscribersbasedupontheiraverageusage characteristics.Themodelcandeterminethecapitalandoperatingexpense associatedwiththeresultingnetwork.
Thesemodelsprovideroughestimatesofneedonly,andshouldbeusedfor comparingequipmentfromdifferentvendors,orfor“whatif”studies.They provideawayofrapidlyevaluatingchangestothesystemcharacteristics,rolloutplanorsubscriberusagechanges.Finalsystemdesignwillrequiremore granularterrainanddemographicdatawhichcanbeusedbyanRFengineer andapropagationanalysisprogramtodeterminetheRFperformanceofactualavailablesitelocationsandtheactualsubscriberdistributionwithinthose coverageareas.
■
RadioMobileDeluxe
ThisfoldercontainsacopyoftheRadioMobileDeluxepropagationanalysis software,andbasicinstructionsforgettingitloaded.Thissoftwareusesthe Longley-Ricepropagationmodeltopredictcoverageusingpubliclyavailable terraindata. xx
C H APT ER 1
High-SpeedWirelessData: SystemTypes,Standards-Based andProprietarySolutions ■ FixedNetworks ■ NomadicNetworks ■ MobileNetworks ■ Standards-BasedSolutionsandProprietary
Solutions ■ OverviewoftheIEEE802.11Standard ■ OverviewoftheIEEE802.16Standard ■ 10−66GHzTechnicalStandards ■ 2−11GHzStandards ■ OverviewoftheIEEE802.20Standard ■ ProprietarySolutions
This page intentionally left blank
C H APT ER 1
High-SpeedWirelessData: SystemTypes,Standards-Based andProprietarySolutions Wirelessdatanetworksareoftendividedintoseveralcategoriesaccordingto howthenetworksareviewedbytheuser.Suchcharacteristicsasfixedormobile, point-to-point(PTP)orpoint-to-multipoint(PTM),licensedorunlicensed,and standards-basedorproprietaryareusedtodefinethenetwork.Inreality,thereare onlytwodistincttypesofnetworks:fixedormobile.Forpurposesofdefinition fixednetworksincludenetworksthatconnecttwoormorestationarylocationsas wellassystemslike802.11-basednetworksdesignedtosupport“nomadic”users. Thenomadicuserisnominallyafixeduserconstrainedbytheboundsofcoverage availableonthenetwork.Inatrulymobilesystem,theservicewillbeubiquitouslyavailable,andsupportusewhiletheuserisinmotion.Thefirstsystems tooffertruebroadbandmobiledataarestillyearsawayatthetimethisbookis beingwritten.ByaddingEDGE,GPRS,1XRTT,and1XEVDOoverlaystotheir voicenetworks,cellularandPCScarriershavetakenthefirsttenuousstepsinthe directionofprovidingtruemobiledata,butthespeedsatwhichcurrentnetworks functioncannotyetbecalledbroadband.Thatdesignatorcanbeusedwhenthe averageconnectionspeedperuserexceeds2Mbps. Thesystemsdiscussedinthisbookwilldelivertruebroadbandconnectivity. Availableequipmentcansupportspeedsinexcessof500Mbps.Theequipment utilizedinanetworkwillbeimpactedbythetypeofnetworkbeingimplemented aswellasthecostsandserviceexpectationsofthenetwork.Whilemorecomplex networksrequireattentiontomorevariables,RFdesigntoolsandknowledgerequirementsarefairlycommonforallnetworksregardlessoftheirtype.
3
Implementing802.11,802.16,and802.20WirelessNetworks
FixedNetworks Thesimplestnetworkisthefixedpoint-to-pointnetwork.Asthenameimplies, thesearefacilitiesthatconnecttwoormorefixedlocationssuchasbuildings. Theyaredesignedtoextenddatacommunicationstolocationsphysicallyseparate fromtherestofthenetwork.Afixednetworksolutioncouldbeusedtoconnect buildingstogether,toprovideanetworkconnectiontoahome,ortoconnectmultiplenetworkelementstogether. Theselinksmaybefamiliarasthetraditionalmicrowavelink.Theyusehighly directionalantennasinordertoachieverangeandcontrolinterference.Depending onthetechnologyselectedandthefrequencyofoperation,theselinkscanbedesignedtospandistancesasshortasseveralhundredfeetoraslongas20ormore miles,withcapacitiesofunder1Mbpstonearly1Gbps. Thesesystemsaredesignedandengineeredasindividualradiopaths,eachpath connectingtwopointstogether.Anetworkofmanyoftheseindividualpaths couldbedesignedtoconnectamultitudeofdisparatelocations.Forexample,a fixedpoint-to-pointnetworkconstructedoutofanumberofuniquepoint-to-point linkscouldbeusedtoextendhigh-speedconnectivityfromacentralpointtoa numberofbuildingsinacampusorofficepark.Itcouldalsobeusedtoextendthe highspeedconnectivityofafiberoptic-basednetworktobuildingssurrounding thefiberroute,thusavoidingthecostandcomplexityofdiggingupthestreetsto extendlateralconnectionsfromthefiberrouteintothoseotherbuildings. Anothervariantofpoint-to-pointnetworksarepoint-to-multipointnetworks.In thesenetworksamasterorcentralstationnolongerusesindividualantennas,each focusedonasinglestation.Instead,itusesawideapertureantennathatiscapable ofservingmanystationsinitsfieldofview.Inthisway,asinglesystemandantennacanshareitscapacitywithanumberofusers.Thebenefitofsuchasystem isthatasingleantennacanservemultiplelocations,thuseliminatingtheneedfor manyindividualdishantennastobelocatedontheroofortowerthatservesasthe centrallocation.Thedownsideofsuchanetworkisthreefold.Becausethecentral stationusesantennasthatcoverawiderarea,theyhavealowergain.Thisreduces thedistancethesenetworkscancommunicateascomparedtoapoint-to-point network.Secondly,sincemanyuserssharenetworkcapacityitmaynotbethe optimalsolutionforsupportingmultipleveryhighbandwidthusers.Aswithany 4
High-SpeedWirelessData system,thepeakcapacityrequirementsoftheusersmustbeconsideredaspartof theoverallnetworkdesign.Inthecaseofpoint-to-multipointnetworks,thepeak usagecharacteristicsofmultipleusersmustbeconsidered.Thethirddownside isrelatedtointerferencemanagementandfrequencyreuse.Sincethecentralsite transmitsoverawidearea,theabilitytoreusethesamefrequenciesinthenetworkbecomesmorelimited. Point-to-pointandpoint-to-multipointnetworkscanbeaccomplishedusingthe licensedorunlicensedbandsthatexistinfrequencyrangesfromunder1GHz toover90GHz.Theycanuseamultitudeofproprietarytechnologies,orcanbe accomplishedusingequipmentbuilttostandardssuchas802.11or802.16.Your selectionofoperatingfrequencyandtechnologywillbegovernedbyfactorssuch asrange,capacity,spectrumavailability,linkquality,andcost.
NomadicNetworks Anothervariationofpoint-to-multipointnetworksisthenetworkthatdirectly supportsauser’sconnectiontothesystem.BythisImeaninsteadofconnecting buildingstogether,thesenomadicnetworksconnectindividualcomputerusersto thenetwork.InthecaseofalaptopcomputerorPDA,thesecomputingdevices aresomewhatmobile,andthenetworkisdesignedtoofferalowlevelofmobility totheseusers. 802.11bisacommonstandardforthistypeofnetwork,although802.11gand 802.11aalsosupportthistypeofuse.InordertobetrulyportabletheRFdevice inthecomputermustbesmall,lowpowered,andtheantennasusedatthecomputermustbesmallandhaveanomnidirectionalpattern.Inaddition,theusermaybe shieldedfromthebasestationbywallsorotherobjectsthatattenuatethesignal. Thisleadstoasignificantreductionintheareathatcanbeeffectivelycoveredby oneofthesenetworks.Wherepoint-to-pointnetworkrangecouldbemeasuredin miles,anomadicimplementationofthesametechnologyhasrangesmeasuredin tenstohundredsofyards. Nomadicnetworksarebecomingquitecommonplace.An802.11bnetworkofferingInternetaccessinacoffeeshopisoneexampleofthistypeofnetwork. WirelessofficeLANs,andWISPnetworkscoveringcampusesorMultipleDwellingUnits(MDUs),likeapartments,canalsobeconsiderednomadicnetworks. 5
Implementing802.11,802.16,and802.20WirelessNetworks Thesenetworksarethefirststepbeingtakentoprovideindividualswithhighspeeddataaccessinmanypublicandprivatevenues. Thesenetworksarenottruemobilenetworks.Whiletheycanprovidesome mobility,theydonotcoverlargeareasandtheydonotsupportthehighvelocity mobilitythatwouldbeneededtosupportauserinavehicle.Aswitheverything therearetrade-offs.Localizedlowmobilitysolutionsarefairlyeasyandinexpensivetoimplement.Betteryet,thereisunlicensedspectrumavailabletousefor buildingthistypeofnetwork,andalargeinstalledbaseofcustomerequipment builttooperateonthe802.11bWi-Fistandardalreadyexists.Thesefactorshave ledtotherapiddevelopmentofallsortsofnomadicnetworks,someassmallasa home;othersaslargeasacommunity.
MobileNetworks Themostcomplexnetworkisonedesignedfortruemobility.Likeavoice-based cellularorPCSnetwork,thehigh-speedmobiledatanetworkmustprovideubiquitouscoverage,andmustsupporthighvelocitymobility.Theserequirements arenoteasilyachievedorinexpensive.Thesesystemswillrequiremanytensof megahertzoflicensedspectrum,andwillrequiretechnologythatcandealwiththe hostileRFenvironmentfoundinatrulymobileapplication.The802.16e,802.20 andCDMA2000standardsareseveralofthestandardsthatmayeventuallybring truebroadbandmobiledatasolutionstolargeareasoftheearth.Becauseoftheir cost,complexity,andneedforinterferencemanageddedicatedspectrum,large telecomcarriers,asopposedtothesmallbusinessesthatoffernomadicnetwork solutions,willbethemostlikelyownerofthesenetworks.
Standards-BasedSolutionsandProprietarySolutions TheIEEEhasanumberofworkinggroupsresponsiblefordevelopingopen standards.Theseopenstandardsareavailableforanymanufacturertouse,hopefullyensuringcompetitionandvolumeproduction.TheIEEEhasdevelopedthe 802.11xand802.16standards,andasofJuly2003hasaworkinggroupdevelopingthe802.20standard. Eachofthesestandardsisdesignedwithacertainutilityandlimitationsin mind.Forexample802.11bwasdesignedasashort-rangewirelessEthernet 6
High-SpeedWirelessData replacement.Whileitcanbeusedforotherapplications(suchascommunitynetworks)itisnotoptimizedforthistypeofservice,andwillneverperformaswell asatechnologythatwasdesignedfromthegrounduptoaddresstheuniqueissues foundinacommunitynetwork. CertainmanufacturersdevelopequipmentthatisnotdesignedtoanycurrentIEEE orotherstandard.Thesesolutionssometimesbecomepopularenoughthatthey becomeadefactostandard.Moreoften,theseproprietarystandardsbecomeniche marketsolutions,whichareonlyavailablefromasinglesource.Theseproprietary solutionsmaybetechnicallybestsuitedforcertainapplications,butoftenaresignificantlymoreexpensivethanstandards-basedoptions.Intheend,it’suptoyou todeterminewhethertheimprovedperformanceisworththeadditionalcostand single-vendorsupplyrisks. Therearemanyproprietarysolutionsavailable;unfortunatelyinacompetitive marketmanufacturersarenotwillingtoreleasemuchdetailabouttheirequipmentoperationandperformancewithouttherecipientsigningaNondisclosure Agreement(NDA)whichlimitstheamountofinformationthatcanbesharedor published.BecauseofthislimitationIwillnotbespendingmuchtimediscussing proprietarysolutionsindetail.
OverviewoftheIEEE802.11Standard Likemanystandards,802.11hasgonethroughmanyiterationsandexpansions overtheyears.Initiallyencompassinga1Mbpsthroughputona900MHzchannel,itnowsupportsupto54Mbpsinthe2400MHzand5600MHzbands. 802.11x,alsosometimesknownasWi-Fi,isanIEEEcertifiedwirelessnetworkingstandardthatcurrentlyincludestheIEEE802.11a,802.11band802.11g specifications.IntheU.S.,theRFemissionofthesedevicesisgovernedbyFCC Part15rules.Theserulesgovernthepoweroutput,equipmentandantennaconfigurationsuseableintheunlicensedbands.AcopyoftheFCCPart15rulesis includedontheCD-ROMthataccompaniesthisbook.The802.11bspecallows forthewirelesstransmissionofapproximately11Mbpsofrawdataatindoor distancesfromseveraldozentoseveralhundredfeetandoutdoordistancesofseveraltotensofmilesasanunlicenseduseofthe2.4GHzband.The802.11aspec usestheunlicensed5GHzband,andcanhandle54Mbpsovershorterdistances. 7
Implementing802.11,802.16,and802.20WirelessNetworks The802.11gstandardappliesthe802.11amodulationstandards(andtherefore supports54Mbpsjustlike802.11a)tothe2.4GHzband,andoffers“backward compatibility”for802.11bdevices.Theachievablecoveragedistancesforthese standardsdependonimpedimentsandobstaclestolineofsight. The802.11bspecificationstartedtoappearinconsumerforminmid-1999,with AppleComputer’sintroductionofitsAirPortcomponents,manufacturedinconjunctionwithLucent’sWaveLANdivision.(Thedivisionchangeditsnamedto OrinocoandwasspunofftothenewlyformedAgereCorporationwithavariety ofotherLucentassetsinearly2001;theseassetswereresoldtoProximCorporationinJune2002,althoughAgerecontinuestomakechips.) 802.11xisanextensionofwiredEthernet,bringingEthernet-likeprinciplesto wirelesscommunication.Assuch,802.11isagnosticaboutthekindsofdatathat passoverit.It’sprimarilyusedforTCP/IP,butcanalsohandleotherformsof networkingtraffic,suchasAppleTalkorNetBEUI. ComputersandotherdevicesusingWindowsorMacOSoperatingsystems,and manyflavorsofUnixandLinux,maycommunicateoverWi-Fi,usingequipment fromavarietyofvendors.TheclienthardwareistypicallyaPCcardoraPCI card,althoughUSBandotherformsofWi-Firadiosarealsoavailable.Adapters forPDAs,suchasPalmOSandPocketPCbaseddevices,areavailableinvarious forms,andsmalleronesthatfitintointernalSecureDigitalandCompactFlash cardslotsstartedappearinginlate2002. Eachradiomayact,dependingonsoftware,asahuboraspartofanadhoc computer-to-computertransmissionnetwork;howeverit’smuchmorecommon thataWirelessLocalAreaNetwork(WLAN)installationusesoneormoreAccess Points(AP),whicharededicatedstand-alonehardwarewithtypicallymore powerfulchipsetsandhighergainantennas.Homeandsmall-officeAPsoften includerouting,aDHCPserver,NAT,andotherfeaturesrequiredtoimplementa simplenetwork;enterpriseaccesspointsincludeaccesscontrolfeaturesaswellas secureauthenticationsupport. The802.11bstandardasimplementedinthe2.4GHzbandisbackwardscompatiblewithearly2.4GHz802.11equipment.802.11bcansupportspeedsof1,2,5.5 and11Mbpsonthesamehardware.Multiple802.11baccesspointscanoperatein
8
High-SpeedWirelessData thesameoverlappingareaoverdifferentchannels,whicharesubdivisionsofthe 2.4GHzbandavailable.
5
14
9
3
8
13
12
7
2
11
6
Figure1-1:2.4GHzfrequencychartshowing802.11bchannelallocations Figure 1.1: 802.11b frequency vs. channel allocation.
9
2487
2482
2477
2472
2467
2462
10
4
1
2457
2452
2447
2442
2437
2432
2427
2422
2417
2412
2407
2400 2401
Internationally,thereare14standardchannels,whicharespacedat5MHzintervals,from2.4000to2.487GHz.Onlychannels1through11arelegalinthe U.S.A.The802.11channelis22MHzwide,soitoccupiesmultiple5MHz channels(seeFigure1-1).Onlychannels1,6,and11canbeassignedtoan 802.11networkwithnooverlapamongthem.Ifcloserspacedchannelsareassigned,therewillbeinter-carrierinterferencegenerated.Suchoverlapping systemscanstillwork,buttheinterchannelinterferencewilleffectivelyraisethe noisefloorinthechannel,whichwillhaveanegativeimpactonthethroughput andrangeofthesystems.
Implementing802.11,802.16,and802.20WirelessNetworks 802.11busesseveraltypesofmodulation.BarkerCodeDirectSequenceSpread SpectrumwithBPSKorQPSKmodulationisusedtotransmitat1and2Mbps respectively,whileComplimentaryCodeKeyingisusedtosupportspeedsof 5.5and11Mbps.MultipleusersaresupportedbytheuseofCarrierSenseMultipleAccess/CollisionAvoidance(CSMA/CA). Anewhigherspeedstandardcalled802.11gfeaturescompletebackwardscompatibilitywith802.11b,butitoffersthreeadditionalencodingoptions(onemandatory, twooptional)thatboostitsspeedto54Mbps,althoughtwo22Mbps“flavors”are partofthespecificationaswell.Thehigherspeedconnectionsusethesamemodulationas802.11a:OrthogonalFrequencyDivisionMultiplexing(OFDM).Future speedimprovementsachievedthroughtheuseofmoreefficientmodulationsare expectedin802.11productsoperatinginboththe2.4and5GHzbands. 802.11aspecifiestheuseofOFDMmodulationonly,andsupportsdataratesof 6,9,12,18,24,36,48,or54Mbpsofwhich6,12,and24Mbpsaremandatory forallproducts.OFDMoperatesextremelyefficiently,thusleadingtothehigher datarates.OFDMdividesthedatasignalacross48separatesub-carrierstoprovide transmissions.Eachofthesub-carriersusesphaseshiftkeying(PSK)orQuadrature AmplitudeModulation(QAM)tomodulatethedigitalsignaldependingonthe selecteddatarateoftransmission.Inaddition,fourpilotsub-carriersprovideareferencetominimizefrequencyandphaseshiftsofthesignalduringtransmission. MultipleusersaresupportedbytheuseofCSMA/CA,sothesamelimitationsinherentinthisaccessmethodologyfor802.11bwillbepresentin802.11aaswell. Theoperatingfrequenciesof802.11afallintotheU-NIIbands:5.15−5.25GHz, 5.25−5.35GHz,and5.725−5.825GHz.AsshowninFigure1-2,withinthisspectrumtherearetwelve20MHzchannels(eightallowableonlyforindooruseand fouruseableforindoororoutdooruse)thatdonotoverlap,thusallowingdenser installations.Additionally,eachbandhasdifferentoutputpowerlimitsthatare detailedintheFCCrulesPart15.407.802.11a’srangeislessduetobothitsfrequencyofoperationandmorecomplexmodulation,butinaclosedenvironment likeanofficeorahomeitcanoftentransmithigherspeedsatsimilardistancesas comparedto802.11b. As802.11systemshaveproliferated,anumberofissuessurroundingitslimitationshavebeenraised.Thesecurityprovisionsof802.11arenotoriouslyweak, 10
5200
5220
5240
5260
5280
5300
5320
36
40
44
48
52
56
60
64
5335
5180
5115
High-SpeedWirelessData
5765
5785
5805
147
153
157
161
Figure1-2b:5.7GHz802.11achannelallocations
11
5825
5745
5725
Figure1-2a:5.2GHz802.11achannels
Implementing802.11,802.16,and802.20WirelessNetworks anditdoesnotinherentlysupportQualityofServicepacketprioritization.New workinggroupsattheIEEEareaddressingtheselimitations.The802.11e,h,and istandardswillimprovethecapabilitiesof802.11,andmakeitmorerobustand moreusefulinanumberofsituations. Eventhoughstandardsexist,theydonotguaranteethatequipmentfromdifferentmanufacturerswillinteroperate.Toassureinteroperability,andthereby assistadoptionbytheconsumer,anindustrygroupknownastheWi-FiAlliance (formerlyknownastheWirelessEthernetCompatibilityAlliance)certifiesits membersequipmentasconformingtothe802.11aandbstandards,andallows complianthardwaretobestampedWi-Ficompatible.TheWi-Fisealofapproval isanattemptataguaranteeofcompatibilitybetweenhundredsofvendorsand thousandsofdevices.(TheIEEEdoesnothavesuchamechanism,asitonlypromulgatesstandards.)InearlyOctober2002,thegroupmodifiedtheWi-Fimarkto indicatebothaandbstandardsbynoting2.4-or5-GHzbandcompatibility. 802.11bwasthefirststandarddeployedforpublicshort-rangenetworks,suchas thosefoundatairports,hotels,conferencecenters,andcoffeeshopsandrestaurants.Severalcompaniescurrentlyofferpaidhourly,session-based,orunlimited monthlyaccessviatheirdeployednetworksaroundtheU.S.andinternationally. 802.11aandbareagreatwaytoextendadataorInternetconnectiontoasite thatdoesnothaveonethroughpoint-to-pointoperation,ortobuildapoint-tomultipointsystemwhichcouldprovideahighspeeddataconnectionsharedbya numberoffixedandnomadicusers. Asdelivered,802.11productsconformtoFCCPart15rules,whichlimitboththe deviceRFpowerandEIRPachievedbyuseofagainantenna.Themoststringent restrictionsareplacedonomnidirectionaloperations,sincethoseoperationsresult inthehighestoverallinterferencecontributiontothesurroundingarea.Inthecase ofomnioperation,theEIRPislimitedto1watt.Ifadirectionalantennaisused, theallowableEIRPjumpsto4watts.Ifafixedpoint-to-pointlinkisimplemented, evenhigherEIRPisavailable,infactwith30dBigainantennas,over100watts EIRPcanbeachieved.EIRPofthismagnitudewillsupportapoint-to-pointlink over15mileslong,giventherightconditionsinthepath. 802.11doeshaveasignificantimpedimentwhenusedinaWISPorMANtype deployment:liketheEthernetstandarduponwhichitisbased,itusesCarrier 12
High-SpeedWirelessData SenseMultipleAccessasitsaccessprotocol.Inthecaseof802.11,thefullspecificationisCarrierSenseMultipleAccess/CollisionAvoidance(CSMA/CA), whichanticipatesthatallstationsareabletoheareachother,andthustohavethe abilitytolistenforactivityonthechannelpriortotransmitting.Ifanothercarrierisheard,thestationknowsthechannelisinuseand“backsoff”forarandom time.Attheendofthebackoffinterval,thestationlistensagain,andtransmitsif thechannelisclear. InawidespreadoutdoorsystemtheenduserscanhearthebasestationorAP, buttheymaynotbeabletoheareachother,soCSMA/CAdoesnotwork.Asthe systemgetsloadeditispossibleformultipleusersalltotransmitatonce,leadingtointerferenceandpacketloss.Anothereffectisthe“nearfar”issueinwhich usersclosertothebasestationgetbetteraccesstothebandwidththanstations furtheraway.Thisisduetothehighersignalstrengthoftheclose-inuserswampingtheweakersignaloftheremoteuser.EnablingRequesttoSend/CleartoSend (RTS/CTS)candiminishtheseeffects.WithRTS/CTSenabled,thestationsask permissionbeforetransmitting,andwaittogetanallclearbeforetheyactually starttheirtransmission.Still,thereisnowayforastationtoknowwhetheraCTS wasinresponsetohisRTSoranothersentbyanotherstation,socollisionscan stillhappen.Additionally,RTS/CTSaddsadditionaloverhead,thusreducingthe bandwidthavailabletocarryrealtraffic. Severalmanufacturershaveaddressedtheseissuesbyaddingsomesemblance ofcentralcontroltothesystems.Byqueuingtheusersandspecifyingwhogets totransmitnext,thereisanimprovementinusability,qualityandthroughputfor allusers.Ofcourse,suchequipmentusesproprietarystandards,andsomeeven requiretheradiohardwaretobetheirproprietarysolution. 802.11wasneverdesignedforWISPorMetropolitanAreaNetwork(MAN) deployment.Ithasbecomeadefactostandardforsuchusebecauseitisinexpensive,hasfreelyavailablespectrum,andworkswellenoughonlightlyloaded systems.TheIEEErecognizedthelimitationsof802.11andtheneedforaMAN solution.The802.16standardwaspromulgatedinordertoprovideasolutionfor theWISPandmetropolitanareanetworkprovider.Because802.16wasdesigned tocoverlargeareas,itsMAClayerdoesnotuseCSMA/CA,soitdoesnotexhibit 802.11’sCSMA/CAlimitations. 13
Implementing802.11,802.16,and802.20WirelessNetworks
OverviewoftheIEEE802.16Standard TheIEEE802.16AirInterfaceStandardisastate-of-the-artspecificationfor fixedbroadbandwirelessaccesssystemsemployingaPoint-to-Multipoint(PMP) architecture.TheinitialversionwasdevelopedwiththegoalofmeetingtherequirementsofalargenumberofdeploymentscenariosforBroadbandWirelessAccess (BWA)systemsoperatingbetween10and66GHz.Asaresult,onlyasubsetofthe functionalityisneededfortypicaldeploymentsdirectedatspecificmarkets. Anamendmenttoaddsupportforsystemsoperatingbetween2and11GHzwas addedtotheinitialspecification.SincetheIEEEprocessstopsshortofproviding conformancestatementsandtestspecifications,inordertoensureinteroperability betweenvendorstheWiMAXforumwascreated.Inmuchthesamemanneras theWi-Fiforumassuredequipmentinteroperabilitytothe802.11standard,the WiMAXforumwillprovidethetestingandcertificationnecessarytoassurevendorequipmentinteroperabilityfor802.16hardware. TaskGroup1oftheIEEE802.16committeedevelopedapoint-to-multipointbroadbandwirelessaccessstandardforsystemsinthefrequencyrange10−66GHz.The standardcoversboththeMediaAccessControl(MAC)andthePHYsical(PHY) layers.Taskgroupsaandbjointlyproducedanamendmenttoextendthespecificationtocoverboththelicensedandunlicensedbandsinthe2−11GHzrange. AnumberofPHYconsiderationsweretakenintoaccountforthetargetenvironment.Forexampleatfrequenciesabove6GHz,lineofsight(LOS)pathsbetween stationsareamust.BytakingtheneedforlineofsightpathsasadesignrequirementthePHYcanbedesignedforminimaleffectsrelatedtomultipath.This allowsthePHYtoaccomodatewidechannels,typicallygreaterthan10MHzin bandwidth,thusgivingIEEE802.16theabilitytoprovideveryhighcapacitylinks onboththeuplinkandthedownlink. Atthelowerfrequencies,lineofsightisnotrequiredforlinkoperation,although thelackofLineofSight(LOS)forcesotherdesigntrade-offs.Adaptiveburst profiles(changingbothmodulationandForward-ErrorCorrection(FEC))are usedtofurtherincreasethetypicalcapacityof802.16systemswithrespectto oldertechnology.TheMACwasdesignedtoaccommodatedifferentPHYsforthe differentenvironments.Thesingle-carrierPHYsaredesignedtoaccommodate 14
High-SpeedWirelessData eitherTimeDivisionDuplexing(TDD)orFrequencyDivisionDuplexing(FDD) deployments,allowingforbothfullandhalf-duplexterminalsintheFDDcase. TheMACwasdesignedspecificallyforthePMPwirelessaccessenvironment. ItisdesignedtocarryanyhigherlayerortransportprotocolsuchasAsynchronousTransferMode(ATM),EthernetorInternetProtocol(IP)seamlessly,and isdesignedtoaccommodatefutureprotocolsthathavenotyetbeendeveloped. TheMACisdesignedfortheveryhighbitrates(upto268Mbpseachway)of thetrulybroadbandphysicallayer,whiledeliveringATMcompatibleQualityof Service(QoS)toATMaswellasnon-ATM(MPLS,VoIP,andsoforth)services. Theframestructureallowsterminalstobeassigneduplinkanddownlinkburst profilesdynamicallyaccordingtotheirlinkconditions.Thisallowsatrade-offbetweencapacityandrobustnessinreal-time,andprovidesanapproximatetwofold increaseincapacityonaveragewhencomparedtononadaptivesystems,while maintainingappropriatelinkavailability. The802.16MACusesavariablelengthProtocolDataUnit(PDU)alongwith anumberofotherconceptsthatgreatlyincreasetheefficiencyofthestandard. MultipleMACPDUsmaybeconcatenatedintoasinglebursttosavePHYoverhead.Additionally,multipleServiceDataUnits(SDU)forthesameservicemay beconcatenatedintoasingleMACPDU,thussavingonMACheaderoverhead. VariablefragmentationthresholdsallowverylargeSDUstobesentpiecemealto guaranteetheQoSofcompetingservices.Additionally,payloadheadersuppressioncanbeusedtoreducetheoverheadcausedbytheredundantportionsof SDUheaders. TheMACusesaself-correctingbandwidthrequest/grantalgorithmknownas DemandAssignedMultipleAccess/TimeDivisionMultipleAccess(DAMA/ TDMA)thateliminatestheshortcomingsoftheCSMA/CAtechnique.DAMA adaptsasneededtorespondtodemandchangesamongmultiplestations.With DAMA,theassignmentoftimeslotstochannelsvariesdynamicallybasedupon need.Fortransmissionfromabasestationtosubscribers,thestandardspecifies twomodesofoperation,onetargetedtosupportacontinuoustransmissionstream (modeA),suchasaudioorvideo,andonetargetedtosupportabursttransmission stream(modeB),suchasIP-basedtraffic.Userterminalshaveavarietyofoptions availabletothemforrequestingbandwidthdependingupontheQoSandtraffic 15
Implementing802.11,802.16,and802.20WirelessNetworks parametersoftheirservices.Userscanbepolledindividuallyoringroups.They cansignaltheneedtobepolled,andtheycanpiggybackrequestsforbandwidth.
10−66GHzTechnicalStandards InthesamemannerastheWi-Ficonsortiummanagedcompatabilityfor802.11 devices,theWiMAXforumisworkingwith802.16productsandstandardsto assurebroadcompatability.Sincethe10−66GHzstandardwasthefirsttobe released,WiMAXinitiallycreateda10−66GHztechnicalworkinggroup.The technicalworkinggroupcreatedequipmentoperatingprofilesandtestspecifications,butanauthorized,independentlaboratorydoesactualtesting.Foreach systemprofile,functionsareseparatedbetweenmandatoryandoptionalfeature classes.Therecanbedifferencesfromoneequipmentmanufacturertoanotherin implementingoptionalfeatures,butmandatoryfeatureswillbethesameinevery vendor’sproduct. WiMAXiscurrentlydefiningtwoMACsystemprofiles,oneforbasicATMand theotherforIP-basedsystems.TwoprimaryPHYsystemprofilesarealsobeingdefined:a25MHz-widechannel(typicallyforU.S.deployments)forusein the10−66GHzrangeanda28MHzwidechannel(typicallyforEuropeandeployments)alsoforuseinthe10−66GHzrange.ThePHYprofilesareidentical exceptfortheirchannelwidthandtheirsymbolrate,whichisproportionaltotheir channelwidth.EachprimaryPHYprofilehastwoduplexingschemesub-profiles oneforFrequencyDivisionDuplex(FDD)andanotherforTimeDivisionDuplex (TDD).Additionally,becausethesesystemsweredesignedforoperatingover LOSpaths,traditionalmultistateQAMmodulationisused.
2−11GHzStandards Inearly2003,theIEEE802.16standardwasexpandedwiththeadoptionofthe 802.16aamendment,focusedonbroadbandwirelessaccessinthefrequencies from2to11GHz.GiventhecharteroftheWiMAXforum,topromotecertificationandinteroperabilityformicrowaveaccessaroundtheglobe,WiMAXhas expandeditsscopetoincludethe802.16astandard. The802.16astandardisdesignedtooperateoverbothLOSandNLOSpaths. BecauseofthemultipatheffectspresentinNLOSpaths,QAMasusedinthe 16
High-SpeedWirelessData 10−66GHz802.16variant,wasnotasuitablemodulation.802.16ainsteaduses OFDMasitsmodulationtechnique. TheWiMAX2−11GHzworkinggroupiscurrentlydefiningMACandPHYSystemprofilesforIEEE802.16aandHiperMANstandards.TheMACprofilesthat arebeingdevelopedincludeIP-basedversionsfordeploymentinbothlicensed andunlicensedspectrum. WhiletheIEEE802.16aamendmenthasseveralphysicallayerprofiles,the WiMAXforumisfocusingonthe256-pointFFTOFDMPHYmodeasitsinitial andprimaryinteroperabilitymode.Variouschannelsizesthatcovertypicalspectrumallocationsinbothlicensedandlicenseexemptbandsaroundtheglobehave beenchosen.Allselectedchannelsizessupportthe256-pointFFTOFDMPHY modeofoperation. InFebruary2003,theIEEEinstitutedanotherworkinggroup,the802.16eworkinggroup.The802.16eextensionaddsvehicularspeedmobilityinthe2to6GHz licensedbands.Atthetimethisbookisbeingwritten,thisextensionisstillin committee.Itisanticipatedthatthestandardwillbereleasedinmid2004.
OverviewoftheIEEE802.20Standard The802.20standardfocusesontruehighvelocitymobilebroadbandsystems. The802.20interfaceseekstoboostreal-timedatatransmissionratesinwireless metropolitanareanetworkstospeedsthatrivalDSLandcablemodemconnections(1Mbpsormore).Thiswillbeaccomplishedwithbasestationscovering radiiofupto15kilometersormore,anditplanstodeliverthoseratestomobile usersevenwhentheyaretravelingatspeedsupto250kilometersperhour(155 milesperhour).Thiswouldmake802.20anoptionfordeploymentinhigh-speed trains.Thestandardisfocusedonoperationinlicensedbandsbelow3.5GHz. The802.20WorkingGroupwasactuallyestablishedbeforetheIEEEgavethe go-aheadto802.16e.TheIEEEoriginallyintendedtohavethe802.20standardin placebytheendof2004,butthegrouphasbeenmiredinconflictandhasmade littleprogresstodate. 802.20maybecomeadirectcompetitortothird-generation(3G)wirelesscellular technologiessuchasCDMA2000andGMRS.InsteadofusingTDMAorCDMA technology,802.20isexpectedtouseOFDMasitsmodulationtechnique. 17
Implementing802.11,802.16,and802.20WirelessNetworks
ProprietarySolutions Inadditiontothestandards-basedsolutions,therearenumerousvendorproprietarysystemsavailable.Proprietarysolutionsarenormallydesignedtobestsuit aparticulardeploymentscenario,andmayoperateinlicensedbands,unlicensed bands,orinsomecasesboth. Justlikestandardsolutions,proprietarysolutionscontinuetoevolveinorderto keepacompetitiveedgeandtobettermeettheneedsofagrowingbusinessopportunity.Becauseofthefinancialdynamicsassociatedwithcompaniesproviding proprietarysolutionsaswellasthechangingrequirementsofthemarketplace, thereisnoguaranteethattheequipmentormanufacturersdiscussednextwill stillbeavailablebythetimeyoureadthis.Table1-1listssomeoftheproprietary manufacturersandthepubliclyavailableproductspecificationsthatwereavailable inlate2003. Becauseproprietarysolutionsarejustthat:proprietary,itisoftenextremelydifficulttoobtainspecificinformationabouttheoperationofthehardwarewithout signinganondisclosureagreementwiththevendor.Ofcoursethisisonlypossible ifthevendorwillcommittosuchanagreementwithyou.Lackingtheseparticularsabouttheequipmentcanmakeitdifficulttocompareoperatingcharacteristics oftheequipment,andanalyzehowaparticularsolutionmightfulfillyourparticularrequirements.Happily,allisnotlost.Generally,informationaboutcapacity andthroughputisgenerallypubliclyavailable.Themissinginformationusually relatestotheactualRFoperatingcharacteristicsofthehardware. InorderforanyradiotransmittingequipmenttobesoldintheU.S.,itisrequired togothroughanFCCcertificationprocess.Thiscertificationisaccomplishedby anindependenttestinglab,whichconductstestsandmeasurementsontheequipmenttoassurethatitmeetstheFCC’stechnicalrequirementsforthebandin whichitoperates.TheresultofpassingthiscertificationprocessisthattheFCC grantsanauthorizationnumber,whichisusedbythemanufacturertoshowthat theequipmentislegallyoperatingwithintheFCCrules,andthatitcanlegallybe soldforoperationintheU.S. TheFCCpublishestheresultsofthesetestsaspublicrecord.Theycanbefound attheFCCEquipmentAuthorizationSystemGenericSearchwebpage.Asof
18
High-SpeedWirelessData February,2004thispageislocatedat:https://gullfoss2.fcc.gov/prod/oet/cf/eas/reports/GenericSearch.cfm.Knowingaslittleasthemanufacturersnameandthe bandofoperationwillallowyoutousethissearchenginetoidentifycertified equipment.Onceyou’veidentifiedtheparticularequipmentyou’reinterestedin, readthetestresultsandotherdocumentationonfile.Whilesomeinformationmay beheldinconfidence,importantinformationlikespectrumanalyzerplotsofthe outputwaveformandtheoutputpowerwillbepartofthepublicrecord.Knowing poweroutputiskeytoanalyzingthecoverageyoucanexpectfromaparticular solution.Receiversensitivityistheotherfactoryouwillneedtolearn.Inmany casesthisisnotapublishedpartoftheFCCcertificationtests,soyouwillneed toderiveitfromtheinformationavailable.Thewaveformisausefultoolforthis investigativework.Itwilloffercluesaboutthemodulationinuseandthespectraloccupancyofthesignal.Couplethatwithinformationaboutthecapacityor throughputofthesolution,andyoucanbegintounderstandtheoperatingcharacteristicsofthereceiver.AnRFhardwaredesignexpertcouldusethisinformation toderivethereceiversensitivitybasedonthecharacteristics.Alternatelyestimationcouldbemadebyassumingthatthesensitivitywillbesimilartothatof knownequipmenthavingsimilarmodulationcharacteristics. Nowthatyouhaveabriefoverviewofthetypesofsolutionsavailableforusein deployingawirelessdatanetwork,it’stimetomoveontogaininganunderstandingabouthowradioworksandwhatissuesmustbeconsideredindesigninga radio-basednetwork.
19
Maximum number of Sectors
Maximum number of users per Sector
LOS/NLOS
Modulation
Encryption Levels
Output Power
20 (continued)
Point to Point
Point to Multipoint
Duplex
EIRP 29.6 dB
Yes
No
Half
152-bit
EIRP 29.6 dB
Yes
No
Half
128-bit, triple DES option
26 dBm, with APC
Yes
Yes
TDD
LOS/NLOS
Other
Varies depending on band
No
Yes
Half
1
LOS/NLOS
Other
Varies depending on band
Yes
No
Half
12
256
LOS
TDMA/TDD
Yes, proprietary
32 dBm
Yes
Yes
full or half
2.3 GHz
Not Applicable
16,000 per cell
NLOS
Adaptive MultiBeam OFDM
Yes
Yes
BeamPlex
2.3 GHz
Not Applicable
16,000 per cell
NLOS
Adaptive MultiBeam OFDM
Yes
Yes
Ceragon
FibeAir
6,7,8,11,13,15,18, 23,26,28,28,31, 32,38 GHz
622 Mbps
N/A
N/A
LOS
Cirronet
WaveBolt
2.4 GHz and 5.8 GHz (5.8 available in Q1 ‘03)
1 Mbps
5
240
LOS/NLOS
Dragonwave
AirPair
18,23,28 GHz
50−100 Mbps
N/A
N/A
Innowave
MGW
0.8; 1.5; 1.9; 2.4; 3.4-3.8 GHz
850 Kbps
6
Innowave
eMGW
1.5; 1.9; 2.4; 3.4− 3.8; 5.7 GHz
1.5 Mbps
Innowave
WaveGain
3.5 GHz
MeshNetwork
MEA IAP6300
2.4 GHz
Company
Product
AIRAYA
A|108 Wireless Bridge
5.25−5.35 GHz
108 Mbps
1
1
LOS
OFDM
152-bit
AIRAYA
A|108 Wireless Bridge
5.25−5.35 GHz
108 Mbps
1
1
LOS
OFDM
Alvarion
BreezeACCESS
depends on band, up to 12 in 2.4, up to 36 in 3.5 (with multibeam)
1000
LOS and NLOS options
FHSS, DSSS, & OFDM
Aperto
PacketWave
2.5 GHz, 3.5 GHz and 5.8 GHz
20 Mbps per sector
6
1000
Aperto
PacketWave Point-toPoint Bridges
5.8 GHz
20 Mbps per sector
1
Axxcelera
AB-Access
5.7 UNII band
25 Mbps PMP, 12.5 Mbps PTP
BeamReach
BeamPlex
BeamReach
2.4, MMDS, 3.5, 3 Mbps for 5.15−5.35, 5.4, GFSK, 5.7 UNII, 5.7 ISM 12 Mbps for 3.5 GHz
Receiver Sensitivity
−86.1 dB for 10−4 BER
DES
MAX 24 dBm
−73 dBm
Yes
No
Full
FHSS
Proprietary
+18 dBm
−88 dBm
Yes
Yes
Full
LOS
Single Carrier QAM
REL 3 will include DES encryption
+13/+17 dBm
−77/−80.5 dBm
Yes
N/A
Full
1000
NLOS
FHCDMA/ TDMA/TDD
Other
27 dBm
−90 dBm
No
Yes
Full
6
2000
NLOS
FHCDMA/ TDMA/TDD
Other
27 dBm
−90 dBm
No
Yes
Full
15 Mbps
4
128
NLOS
WCDMA/FDD
Other
37 dBm
−110 dBm
No
Yes
Full
6 Mbps
N/A
250
NLOS
Multi-Hop DSSS
*VPN, IPSEC
22+ dBm
Yes
Yes
Half
Implementing802.11,802.16,and802.20WirelessNetworks
Total Speed
Table1-1
Operating Band
Maximum number of Sectors
Maximum number of users per Sector
21
Product
Motorola
Canopy
5.2 GHz
10 Mbps
6
200
LOS
single DES
30 dB
−83 dB
Yes
Yes
Half
Motorola
Canopy
5.7 GHz
10 Mbps
6
200
LOS
single DES
30 dB
−83 dB
Yes
Yes
Half
Navini
Ripwave
2.4 GHz; 2.5/2.6 GHz; 2.3 GHz
48 Mbps (3.3 sectored cell). 72 Mbps in 2003
3
1000
NLOS, Zeroinstall plugand-play
Phased-array smart antennas, Multi-Carrier Synchronous Beamforming (MCSB), TDD
Patented CDMA encoding + spatial isolation and nulling with beamforming provides for a high level of security and can be overlayed.
Depends on the frequency of operation
Yes
Yes
Full
Nokia
Nokia RoofTop
2.4 GHz
12 Mbps aggregate
6
40
NLOS
FHSS
none
12 dBm to 27 dBm
−82 dBm
No
No
Half duplex
P-Com
AirPro Gold.Net
2.4 & 5.8 GHz
11 Mbps
4
127
Both
FHSS
MAC security
+28 dBm − 2.4 GHz, +27 5.8 GHz
85 dBm @10^6 BER
Yes
Yes
Full
Proxim
Tsunami Multipoint 20 MB Base Station Unit
5.8 GHz
20 Mbps
6 typical max per hub site
1,023
Near Line of Sight
Proprietary
36 dBm
No
Yes
Half
Proxim
Tsunami Multipoint 20 MB Subscriber Unit
5.8 GHz
20 Mbps
6 typical max per hub site
N/A
Near Line of Sight
Proprietary
35 dBm
No
Yes
Half
Proxim
Tsunami Multipoint 60 MB Base Station Unit
5.8 GHz
60 Mbps
6 typical max per hub site
1,023
Near Line of Sight
Proprietary
36 dBm
No
Yes
Half
Proxim
Tsunami Multipoint 60MB Subscriber Unit
5.8 GHz
60 Mbps
6 typical max per hub site
N/A
Near Line of Sight
Proprietary
35 dBm
No
Yes
Half
Proxim
QuickBridge 20
5.8 GHz
18 Mbps aggregate capacity
N/A
LOS
16 Char Security ID
+36 dBm EIRP
−89 dBm
Yes
No
Half duplex
Proxim
QuickBridge 60
5.8 GHz
54, 36, 18 Mbps aggregate capacity
N/A
LOS
16 Char Security ID
+36 dBm EIRP
−77 dBm
Yes
No
Half duplex
Proxim
QuickBridge 20 +T1
5.8 GHz
12 Mbps aggregate capacity
N/A
LOS
16 Char Security ID
+36 dBm EIRP
−89 dBm
Yes
No
Half duplex
LOS/NLOS
Modulation
Encryption Levels
Output Power
Receiver Sensitivity
Point to Point
Point to Multipoint
Duplex
High-SpeedWirelessData
(continued)
Company
Table1-1
Total Speed
Operating Band
Maximum number of Sectors
Maximum number of users per Sector
22 (continued)
Encryption Levels
Output Power
Receiver Sensitivity
Point to Point
Point to Multipoint
16 Char Security ID
+36dBm EIRP
−89dBm
Yes
No
DSSS
8 bit Security Address
+27dBm
−86dBm
Yes
No
DSSS
8 bit Security Address
+20dBm
−84dBm
Yes
No
LOS
12 char Security Code
+17dBm
−79dBm
Yes
No
N/A
LOS
12 char Security Code
+13dBm
−79dBm
Yes
No
100 Mbps full duplex with wayside T1 channel
N/A
LOS
12 char Security Code
+10 and +17dBm
−77dBm
Yes
No
5.8 GHz
100 Mbps full duplex with wayside T1 channel
N/A
LOS
12 char Security Code
+16dBm
−71dBm
Yes
No
Campus BridgeLINK-II
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
6
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-Lite
5.775 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-II (RMG-377-EA1)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-II (RMG-377-25P)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-II (RMG-377-RW1)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17dBM
Yes
Yes
LOS/NLOS
Company
Product
Proxim
QuickBridge 20 +E1
5.8 GHz
12 Mbps aggregate capacity
N/A
LOS
Proxim
Tsunami 10 2.4 GHz Wireless Ethernet Bridge
2.4 GHz
10 Mbps full duplex with wayside T1 channel
N/A
LOS
Proxim
Tsunami 10 5.8 GHz Wireless Ethernet Bridge
5.8 GHz
10 Mbps full duplex with wayside T1 channel
N/A
LOS
Proxim
Tsunami 45 5.8 GHz Wireless Fast Ethernet Bridge
5.8 GHz
45 Mbps full duplex with wayside T1 channel
N/A
Proxim
Tsunami 45 5.3 GHz Wireless Fast Ethernet Bridge
5.3 GHz
45 Mbps full duplex with wayside T1 channel
Proxim
Tsunami 100 5.3/5.8GHz Wireless Fast Ethernet Bridge
5.3 and 5.8 GHz
Proxim
Tsunami 100 5.8 GHz Wireless Fast Ethernet Bridge
RadioLAN
Modulation
Duplex Half duplex
Implementing802.11,802.16,and802.20WirelessNetworks
Total Speed
Table1-1
Operating Band
Maximum number of users per Sector
23
Company
Product
Output Power
RadioLAN
Campus BridgeLINK-II (RMG-377-RW2)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17 dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-II (RMG-377-RW3)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
1
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17 dBM
Yes
Yes
RadioLAN
Campus BridgeLINK-II (RMG-377-S90)
5.775 GHz 5.3 GHz 5.2 GHz
10 Mbps
4
128
LOS
D-PPM
*WEP 128-bit *WEP 256-bit *Other
+17 dBM
Yes
Yes
Redline Communications
AN 100
3.40003.800 GHz
Up to 70 Mbps
NLOS
OFDM
Yes
Yes
TDD
Remec
ExcelAir® 70
3.5 GHz
Up to 300 Mbps
6
200-400
LOS
SCQAM
None
+40 dbi EIRP
No
Yes
Full
Solectek
SkyWay-NET
2.4 GHz
11 Mbps
6
64
LOS
DSSS
Proprietary
26 dBm
−83 dBm
Yes
Yes
Half
Solectek
SkyWay-LINK
2.4 GHz
11 Mbps
Solectek
SkyMate CPE
2.4 GHz
11 Mbps
LOS
DSSS
Proprietary
26 dBm
−83 dBm
Yes
No
Half
6
64
LOS
DSSS
Proprietary
23 dBm
−80 dBm
Yes
Yes
Solectek
AIRLAN Bridge Kit
2.4 GHz
Half
11 Mbps
LOS
DSSS
Proprietary
23 dBm
−80 dBm
Yes
No
Half
Solectek
AIRLAN Bridge 5
5.8 GHz
11 Mbps
LOS
DSSS
Proprietary
23 dBm
Yes
No
Half
Wi-LAN
AWE 120−24 Wireless Ethernet Bridge
2.4 GHz
12 Mbps raw, up to 9 Mbps effective
3
1000
LOS
DSSS
Proprietary up to 20 Byte
20 dBm
−81 dBm
Yes
Yes
Half Duplex
Wi-LAN
AWE 45−24 Wireless Ethernet Bridges
2.4 GHz
4.5 Mbps raw, up to 3.4 Mbps effective
3
250
LOS
DSSS
Proprietary up to 20 Byte
20 dBm
−83 dBm
Yes
Yes
Half Duplex
Wi-LAN
VIP 110-24
2.4 GHz
11 Mbps raw, up to 8 Mbps effective
4
500
NLOS
DSSS
Proprietary up to 20 Byte
0 to +23 dBm
−82 dBm
Yes
Yes
Half Duplex
Wi-LAN
Ultima3 RD (Rapid Deployment)
5.8 GHz
12 Mbps raw, up to 10 Mbps effective
N/A
N/A
LOS
DSSS
Proprietary up to 20 Byte
−10 dBm to +21 dBm
−80 dBm
Yes
No
Half Duplex
Modulation
+‘23 dBM’
Receiver Sensitivity
−88 dBm@ 1E-09 BER in a 7 MHz channel
Point to Point
Point to Multipoint
Duplex
High-SpeedWirelessData
(continued)
Encryption Levels
LOS/NLOS
Table1-1
Total Speed
Maximum number of Sectors
Operating Band
Maximum number of Sectors
Maximum number of users per Sector
LOS/NLOS
Modulation
Encryption Levels
Output Power
Receiver Sensitivity
Point to Point
Point to Multipoint
Duplex
24
Wi-LAN
Ultima3 ER (Extended Range)
5.8 GHz
12 Mbps raw, up to 10 Mbps effective
N/A
N/A
LOS
DSSS
Proprietary up to 20 Byte
−10 dBm to +21 dBm
−80 dBm
Yes
No
Half Duplex
Wi-LAN
Ultima3 AP (Access Point)
5.8 GHz
12 Mbps raw, up to 10 Mbps effective
4
1000
LOS
DSSS
Proprietary up to 20 Byte
−10 dBm to +21 dBm
−80 dBm
No
Yes
Half Duplex
Wi-LAN
Ultima3 CPE (Customer Premises Equipment)
5.8 GHz
12 Mbps raw, up to 10 Mbps effective
N/A
N/A
LOS
DSSS
Proprietary up to 20 Byte
−10 dBm to +21 dBm
−80 dBm
No
Yes
Half Duplex
Wi-LAN
LIBRA Series (Access Point)
3.5 GHz
16 Mbps raw, up to 12 Mbps effective (7 MHz)
6
2047
NLOS
W-OFDM
avg/peak +22/+32 dBm
−82 dBm/ −80 dBm (3.5/7 MHz)
Yes
Yes
Full Duplex
Wi-LAN
LIBRA Series (CPE)
3.5 GHz
16 Mbps raw, up to 12 Mbps effective (7 MHz)
N/A
N/A
NLOS
W-OFDM
+17/+27 dBm
−79dBm
No
Yes
Half Duplex
Implementing802.11,802.16,and802.20WirelessNetworks
Product
Total Speed
Table1-1
Company
Operating Band
C H APT ER 2
BasicRadioandRFConcepts ■ RFEnergy ■ RFGenerationandTransmission ■ Oscillator ■ PowerAmplifiers ■ AntennasandFeedlines ■ RFReception ■ ModulationofRFSignals ■ AmplitudeModulation ■ FrequencyModulation ■ ComplexModulation ■ Duplexing ■ FrequencyDivisionDuplexing ■ TimeDivisionDuplexing ■ MultipleAccessTechniques ■ Spread-SpectrumModulation ■ OFDM ■ UltraWideband
This page intentionally left blank
C H APT ER 2
BasicRadioandRFConcepts Thischapterisintendedtoprovideanoverviewofthesubsystemsthatmakeup aradiosystem.Bydesign,itwillbesimplisticinitsapproach.Theintentisonly tofamiliarizeyouwiththebasicoperationofthebuildingblocksofaradio-based system.Eachofthesebuildingblocksisinrealityaverycomplexdeviceabout whichentirebookshavebeenwritten.Ifyou’reinterestedinlearningmoreabout aparticularsubject,volumesofinformationcanbefoundinothertextsandin manufacturers’literature. Radioisawordusedtodefineasysteminvolvingthetransmissionandreceptionofanelectromagneticwaveuponwhichhasbeenimpressedsomeform ofinformation.Itcansupportone-waycommunicationlikeAMorFMradio andtelevision,alsoknownasbroadcast,whereasinglehighpowertransmittercommunicateswithalargenumberofreceivers.Itcanalsosupporttwo-way communicationasitdoesincellphones,businessbandradios,andwalkie-talkies, whereeachdevicecontainsbothatransmitterandreceiver(atransceiver).The commonelementsofthesesystemsarethattheyrequireatransmittertogenerate andimpressinformationontheradiowaveandareceivercapableof“hearing”the transmittedsignalandreturningittoitsoriginalstate.
RFEnergy RadioFrequencyenergy(commonlyabbreviatedtoRF)cansimplybedefined asanAlternatingCurrent(AC)signalthatformsamovingfieldofelectricand magneticforce.Thesefieldsgiverisetoanenergyfieldthatpropagatesacross space.Withinthisfieldthemagneticlinesofforcearealwaysatrightanglestothe electriclinesofforce,andbothlinesofforceareperpendiculartothedirection oftravel.Thewavecanhaveanypositionwithrespecttotheearthoverwhichit
27
Implementing802.11,802.16,and802.20WirelessNetworks travels,andtheplaneinwhichthewavetravelsiscalledthewavefront.Figure 2-1illustratestherelationshipofthemagneticfield,theelectricalfield,andthe resultantRFwave.
Electric Field
Direction of Travel
Magnetic Field
Amplitude
Figure2-1:Linesofforce
Time
Frequency or Wavelength
Figure2-2:Sinewave Figure 2.2: The Sine Wave.
28
BasicRadioandRFConcepts TheRFfieldisdefinedbythecharacteristicsoffrequency(f)andwavelength(w). Thesetwocharacteristicsareinverselyproportionaltoeachother.Frequencyis measuredinunitscalledhertz,afteroneofthefoundingfathersofRF,Heinrich Hertz.Onehertzcanbedefinedasonecycleofacompletesinewavepersecond. Wavelengthiscommonlymeasuredinmeters,andisdefinedasthelengthofthe sinewave.Intheatmosphereorinspacetherelationshipis: w=300/f wherefisfrequencyinmegahertzandwiswavelengthinmeters Figure2-2showsasinglecycleofasimplesinewave.Thefirstthingyouwill noticeisthatthisisananalogwaveform.Theamplitudeofthewaveissignified byitsmaximumheightabovethezerocrossing,whilethefrequencyisidentifiedbythetimeittakesforthecycletocompleteanentirepositiveandnegative transition.If,forexampleFigure2-1showeda1-Hzsinewave,thetimefromthe initiationofthewavetothecompletionofthewavewouldbe1second.A10Hz wavewouldcompletein1/10thofasecond,andsoon. Muchlikevisiblelightcanbedividedintocolorsbasedonwavelength,RFspectrumisdividedintoanumberoffrequencyranges,orbands,definedinChart2-1. Thisbandinggroupsspectrumwithcommonpropagationandattenuationattributestogether.AsthefrequencyisincreasedbeyondthoseassociatedwithRF,the EMenergytakestheformofinfraredlight,visiblelight,ultravioletlight,X-rays, andgammarays.
Designation
Abbreviation
Very Low Frequency
VLF
Frequencies
Free-space Wavelengths
9 kHz − 30 kHz
33 km − 10 km 10 km − 1 km
Low Frequency
LF
30 kHz − 300 kHz
Medium Frequency
MF
300 kHz − 3 MHz
1 km − 100 m
High Frequency
HF
3 MHz − 30 MHz
100 m − 10 m
Very High Frequency
VHF
30 MHz − 300 MHz
Ultra High Frequency
UHF
300 MHz − 3 GHz
Super High Frequency
SHF
3 GHz − 30 GHz
Extremely High Frequency
EHF
30 GHz − 300 GHz
10 m − 1 m 1 m − 100 mm 100 mm − 10 mm 10 mm − 1 mm
Chart2-1:Bandallocationandfrequencyvs.wavelengthrelationships Chart 2-1: Band allocation and frequency vs wavelength relationships
29
Implementing802.11,802.16,and802.20WirelessNetworks Thebandsoffrequenciesarefurtherdividedintoindividualchannels.These channelsarenothingmorethansmallerslicesofspectrumthatareassignedtoa transmitterandreceiveranddefinetheirexactoperatingfrequency.Thesechannelsareofvaryingspectralsizeandquantity,thesecharacteristicsbeingdictated bythebandandtypeofcommunicationservicetobeoffered.
RFGenerationandTransmission GenerationoftheRFsignalisthedutyofthetransmitter.Thetransmitteriscomprisedofanumberofelements,eachhavingauniqueduty.Ablockdiagramofa simpletransmitterisshowninFigure2-3. Antenna
Synthesizer
Power Amplifier
Modulator
Feedline
Oscillator
Figure2-3:Transmitterblockdiagram
Oscillator ThefirstorderofbusinessistogeneratethebaseRFsignalatthedesiredoperatingfrequency.Thisisthedutyoftheoscillator,orinmodernradios,thefrequency synthesizer.Theoscillatorfunctionsbymakinguseoftheprinciplesofamplification,feedback,andresonance.Mostofushaveheardtheresultoftheseprinciples atonetimeoranother:thesquealthatoccurswhenamicrophoneistoocloseto aspeaker,suchasoccursinaPAsystemonstage.Thissituationresultsinthe formationofanunintendedoscillator.Anoscillatorisanamplifierthathassome 30
BasicRadioandRFConcepts oftheoutputsignalcoupledbacktotheinputinphase.Thisisknownaspositive feedback.Ifthiscouplingofinputtooutputisallowedtocontinue,theamplifier willbegintostabilizearoundtheresonantfrequencyofthecomponentsinthe amplifierandthefeedbackloop.InthecaseofthePAsystem,theresonanceis baseduponthesizeofthecouplingelementsinthefeedbackloop:thespeaker, microphone,andtheairbetweenthem.Inthesamewayatuningforkgeneratesa certainfrequencybasedonitssize,thephysicalsizeofthespeaker,microphone, andairspacebetweenthemdeterminesthefrequencyatwhichthesqueal(or tone)willbegenerated.Thisisknownasresonance.Changingthedimensionsof anyoftheelementswillchangethefrequencyofthetone.Sinceanyfrequency canberepresentedbyawavelength,thephysicalsizeofanobjectcandetermine thefrequencyatwhichitresonates.Thisconceptwillbeexploredfurtherwhen wediscussantennas. ItjustsohappensthatinthecaseofthePAsystem,thefrequenciesfallintothe rangeofhumanhearing,andthemediumconveyingthem(air)allowsthesemechanicalvibrationstobeheard.ThesamethinghappensintheRFoscillator,butit normallyhappensatfrequenciesoutsidetherangeofhumanhearinganditoccurs notwithphysicalvibrationoftheair,butwithelectricalandmagneticvibration describedbytheACsignal. SimpleoscillatorslikethoseshowninFigure2-4relyontheresonantcharacteristicsofeitheratunedLCcircuitortheresonanceexhibitedbyaquartzcrystal. B+ B+
out
CrystalOscillator
Figure 2.4: Simple Oscillators.
Figure2-4:Simpleoscillators
31
LCOscillator
Implementing802.11,802.16,and802.20WirelessNetworks Inductorsandcapacitorsexhibitacharacteristiccalledreactance,whichisfrequencydependentandappearstotheEMwaveasresistance.Althoughreactance ismeasuredinohmsjustlikeresistance,unlikepureresistance,noneofthepower isdissipatedbythereactance.Insteaditisstoredforabriefintervalinthecapacitororinductor.Inductivereactanceandcapacitivereactancehaveopposing characteristics.Capacitivereactanceaffectslowfrequenciesmorethanhigher ones.InfactacapacitorwillblockDC(directcurrent)becauseitrepresentsaninfinitereactancetoanon-ACsignal.Inductivereactance,ontheotherhand,affects higherfrequenciestoagreaterextentthanlowerones.AninductorwillpassDC aseasilyasapieceofwire. Whenaninductorandcapacitorareconnectedtogether,forminganLCcircuit, aninterestinginteractionoccurs.Sincethereactancesareworkinginopposition, thereisafrequencywherethecapacitivereactanceandinductivereactanceare equal.Thispointofequalityisalsoknownastheresonantfrequency.TheresonantfrequencycanbedeterminedmathematicallyasshowninFigure2-5: L C Circuits
Series
Parallel
C R
C
L
f=
1 2π√LC
f = frequency in HZ L = inductance in Henrys C = capacitance in Farads Figure2-5:SeriesandparallelLCcircuits andresonanceformulae
32
R L
BasicRadioandRFConcepts ReactanceandresonanceareelementsthatarefundamentaltoradioandRF.They areusedtocharacterizethebehaviorofallmajorcircuitsthatmakeuparadioor RFcircuit.LCcircuitscanbeusedasthebasisfortheresonantcircuitinanoscillator,andbymakingthecapacitororinductorvariable,somedegreeoftuning,or changeintheresonantfrequencyismadepossible.HoweverLCcircuitsarenot extremelystable.Theytendtodrift(changefrequency)withtemperature,andthey aresusceptibletooutsideinfluence,suchasproximitytootherobjects.Dueto theseundesirablecharacteristics,LCcircuitsarenotusedasthefrequencysetting elementofmodernoscillatorsorfrequencysynthesizers.Theyareinsteadused wheretheirbroadresponseisofbenefit:infiltersandthetunedcircuitsassociated withRFamplifiers.InsteadofusinganLCcircuitasafrequencygeneratingelement,amorestablefrequencygeneratingelement,thequartzcrystal,isused. Quartzisasubstancethatexhibitspiezoelectricproperties.Piezoelectricmaterials cangenerateanelectricfieldwhenmechanicallydeformed.Conversely,theyalso deformwhenanelectricchargeisappliedtothem.Soaresonatorcanalsobeconstructedfromapieceofquartzcrystalsandwichedbetweentwoconductingplates. Whenvoltageisappliedtotheconductingplates,itcausesmechanicalstressin thecrystal.Afrequencyexistsatwhichthecrystalwillstarttovibrate,stressing andrelaxinginarhythmicpattern.Theresonantfrequencyofaquartzcrystalis dependentuponitsphysicalsize.Themostimportantdimensionisitsthickness. Quartzcrystalsexhibitaverystableresonantfrequency,andarecommonlyused inmodernoscillatorsastogeneratethefundamentalfrequencythatwillultimately becomethetransmittedRFsignal. Unlessthefrequencytobegeneratedisverylow,say100MHzorlower,theoscillatorcannotgeneratethisfrequencydirectly.Thisisduetothesizeofthecrystal necessarytogeneratehigherfrequencies.Asthefrequencyincreasesthesizeof thecrystalbecomessmaller.Theenergydissipatedbythecrystalgeneratessome amountofheat,andoverheatingcaneasilydamagethesmallercrystal.Aswell,as theheatgeneratedcausesfluctuationoftheresonantfrequency.Neithersituation isacceptable,sotheoscillatorisrunatthelowestpossiblefrequency. Aproblemwiththesimpleoscillatoristhatitoperatesonasinglefrequency. Unfortunatelymoderncommunicationdevicesrequirestableoperationovera widerangeoffrequencies.Inotherwordstheyneedtobetunable.Doingthiswith 33
Implementing802.11,802.16,and802.20WirelessNetworks multiplecrystalsisnoteffective,somodernradioequipmentreliesonadigitally generatedandcontrolledoscillatorcalledafrequencysynthesizer. Justasthenameimplies,thisdevicesynthesizesasinewaveoftheappropriate frequencyusingdigitallogictogenerateandcontrolananalogsignal.Itusesa crystalcontrolledoscillatorofafixedfrequencytoprovideareferencefrequency thatisusedforbothgeneratingnewfrequenciesaswellasprovidingareference tolockitsoperationto.FrequencysynthesizerscanbesingleICdevices,orthey canbeimplementedalongwiththeotherradiofunctionalblocksonacommon chip.Becauseitisimplementedindigitallogicthereispracticallynolimittothe granularityofthefrequenciesitcangenerateinitsuseabletuningrange.This makesitanidealbuildingblockforthemodernradio,andwithoutitmodern modulationschemeslikeCDMAwouldbeimpracticalorimpossibletoimplementcosteffectively. Usingasynthesizerremovesmanydesigncomplexitiesandsubstantiallyreduces thecostthatwouldotherwisebeassociatedwithotherformsoffrequencygeneration.Italsoallowsforthegenerationoftheextremelycomplexmodulation waveformscommonintoday’sconsumerradiohardware.Additionally,simply reprogrammingitsmicroprocessorcontrollercanchangeitsoperatingfrequency andcharacteristicswithoutanydesignchangetothesynthesizeritself.
PowerAmplifiers ThenextblockinthesimpletransmitteristheRFpoweramplifier.Thejobofthis amplifieristhesameasanyamplifier:faithfullytocreateahigherpowerimage ofthesignalpresentedtoitsinput.Theamplifiertakesthelowpowerpresented bytheoscillatorandincreasesthepowertoalevelthatwillbesufficienttotransmittheradioenergyacrossthepathbetweenthetransmitterandreceiver.Three importantconsiderationsinpoweramplificationarepoweroutput,linearity,and efficiency.Poweroutputismeasuredinwatts.Linearityisdefinedastheoperatingparametersofthedevicethatresultinalineargainrelationshipbetweenthe inputandoutput.Efficiencyistheratioofpoweroutputtototalpowerinput(the wattagedemandedofthepowersupply).Thisvalueistypicallyexpressedasa percentage,andisalwayslessthan100%.
34
BasicRadioandRFConcepts ThelinearityofPowerAmplifiersisoftendescribedbythe“class”towhichthe amplifierbelongs.ClassA,AB,B,C,andDarethecommonamplifierclass descriptors.InClassAamplifiers,theamplifierisbiasedsothatitisconstantly conducting.Theseamplifiersarethemostlinearandtheleastefficient,aslowas 10%efficiencyisnotunheardof.ClassABandBarebiasedsotheydonotconstantlyconduct.Theseamplifierstradeoffsomeamountoflinearityforincreased efficiency.Theseamplifierscanachieve35%efficiency.ClassCamplifiersare biasedsotheydonotconductunlessasignalofsufficientmagnitudeisinput. TheClassCampisanonlinearamplifier,andisuseableonlyforthosecertain modulationtypes,likeCWandFM,whosewaveformdoesnotrequirelinearamplificationtomaintainmodulationintegrity.ClassCamplifierscanachieveover 70%efficiency. ArelativenewcomerisClassDamplification.Thisamplifierfunctionsusingpulse widthmodulation,wherethedesiredsignalismixedwithatriangleorsquare wavesignalthathasasignificantlygreaterbasefrequency.Theresultingoutput isaseriesofon-offpulsesofvaryingwidthwhichcorrespondtotheinputsignal. Thesepulsesdrivetheamplifieroutputtransistors.Sincethepulsesareeitheron oroff,thetransistorsbehaveastheydoinClassCoperation.ClassDamplifiers aremuchmorecomplexthantheirtraditionalcounterparts,butcanachievevery highefficienciesandachieveextraordinarylinearityatthesametime. Theoutputofthepoweramplifierissenttothenextstageofthetransmitter,the feedlineandantenna.Antennasareresonanttransducersusedtoconvertbetween EMwavesandACsignalsinmuchthesamewayamicrophoneandspeakerconvertsoundvibrationsintoACsignalsandbackagain. Inthetransmitter,theACsignalthathasbeenamplifiedbythepoweramplifier isappliedtotheantenna.TheantennaconvertsthisACsignalintoavaryingEM fieldthatcanbecoupledintoairorspace.
AntennasandFeedlines Theantennaisnormallycoupledtothetransmitterorreceiverbywayofacoaxial cable,oftenjustcalledcoax.Coaxismorethanjustarandompieceofwire.It consistsoffourelements,eachofwhichhasaneffectonitscharacteristicimpedanceanditsloss.Thefourelementsarethecenterconductor,thedielectric,the 35
Implementing802.11,802.16,and802.20WirelessNetworks outerconductorandshield,andfinallytheouterjacket.Theimpedanceofthe coaxisdeterminedbytheinteractionoftheseelements.Thediameterofthecenterconductor,thecompositionofthedielectricanditsdiameter,thediameterand constructionoftheshieldandtoalesserextent,thematerialmakinguptheouter jacketalleffecttheimpedanceandthelossofthecable. Inradiowork,themostcommoncoaxhas50or75ohmimpedance.Themost commonforthesystemsdiscussedinthisbookarethe50ohmvarieties.Selectingthepropercoaxisimportant.Theimpedancemustbecorrectinorderforitto matewiththeimpedanceoftheantennaandradio.Energyflowswiththeleastimpairmentwhentheimpedancesofallelementsareequal.Usingacableorantenna withadifferentimpedancefromtheradiocausesanimpedancemismatch.This mismatchcausesenergytoreflectawayfromtheloadbacktowardsitssource. ThiseffectisalsoknownasVSWR,orvoltagestandingwaveratio,whichdescribesthematchofthecircuitandtheamountofreflectedenergy.Thesereflected currentsaredissipatedasheat.UnfortunatelyheatisnotRFenergy,soeverybitof energythatgetsreflectediswasted. Besidesselectingtheappropriateimpedance,youalsowanttousethecoaxwith thelowestloss.Unfortunatelythelowertheloss,thelargerthediameterofthe cable.SmallcablesuchasRG174islessthan3/16inchindiameterandveryflexible.At2GHzitexhibits45dBoflossperonehundredfeet.LM400cableisover ½inchindiameterandexhibits6.8dBperhundredfeet.Itisalsoquitestiffand difficulttobend.Largersizecoaxcanexhibitevenlessloss,althoughforaparticularrunyoureachapointofdiminishingreturnsasthesize,cost,andinstallation complexitygrowsbeyondtheminorgainsinlossperformance. Antennascomeinavarietyofshapesandsizes.Withinanyparticularfrequency bandamultitudeofdifferentantennasexist.Eachantennahasparticularattributes thatwillmakeitsuitableforspecificpurposes.Ingeneral,antennaselectionis oneofthemostimportantconsiderationswhenimplementingawirelessdata system. Theperfectantennaisknownasanisotropicradiator(Figure2-6).Itgeneratesa perfectsphereofenergyarounditthathasequalintensityinalldirections.Isotropicantennasexistintheorybutnotintherealworld.Theclosestvisualanalogyto anisotropicantennawouldbethesun. 36
BasicRadioandRFConcepts Assumingallthetransmitter’spowerisemittedbythisantenna,theamountof powerflowingthroughoutanarbitrarilysizedspherewillbethesameastheenergyemittedbytheantenna.ThustheaveragepowerdensitymeasuredinW/M2, attheedgeofthespherecanbedefinedastheratiooftotalpowerandthesphere’s surfacearea. Thesimplestreal-worldantennaisthedipole.Thedipolecanconsistofnothing morethantwoequallengthpiecesofwirethatareofalengththatisresonantat thedesiredfrequency.Thepatterngeneratedbyadipoleisintheshapeofatorus, ordonut.Now,ifthesameamountofenergyisemittedbythedipoleantenna,the averagepowerdensityinatorusofequaldiameterwillbe2.1dBhigher,because thetorushaslesssurfaceareathanasphere. Thisresultsintheantennaactinglikeanamplifier,andapparentlyexhibitinggain! Thesameamountofelectricalenergywentintoeachantenna,butthestrengthof theresultingfieldatsomedistancefromtheantennaisgreaterwithadipolethan withanisotrope,justbecausetheenergyisspreadoverasmallerarea. Twocommontermsyou’llhearinspecifyingthegainofanantennaaredBiand dBd.ThesetermsaredefinedasdBofgainreferencedtoanIsotrope(dBi)anddB ofgainreferencedtoadipole(dBd).Adipolehas2.1dBiofgain,but0dBdof gain.Itiscriticaltoknowwhichreferencetheantennamanufactureruses,because itwillhaveaneffectonthepathlossandpowercalculationswewilldiscusslater. Dipolesandisotropesareomnidirectionalantennas,meaningtheygenerateafield 360degreesaroundthem.Athirdtypeofantennaisthedirectionalantenna.This antennaisdesignedinsuchawayastoconcentrateitsradiationinonedirection,inapatternthatcanbeimaginedasacone.Thinkofaflashlightforavisual analogy.Onceagain,theseantennashavegain,becauseyouareconcentratingthe sameenergyoverasmallerarea.Figure2-6illustratesthisconceptusingcommon lightsourcesforanalogiesofantennapatterns. Antennashavepatternsdefinedintwoplanes:horizontalandvertical.Omnidirectionalantennasareavailablewithgainsfrom2.1dBitoover15dBi.Sincethe horizontalpatternoftheantennaisalreadydefinedasomnidirectional,theway thedesignerachievesgainintheseantennasisbyreducingtheverticalsizeof thetorus,ormainlobeoftheantenna.Theverticalsizeofthemainlobeofthe 37
Implementing802.11,802.16,and802.20WirelessNetworks
Antenna
Horizontal View
Analogy
Vertical View
Isotropic
Sun
Dipole
Lantern
Directional
Flashlight
Figure2-6:Everydayobjectsasantennapatternillustrations
antennaiswhatisusedtodefinetheantenna’sgain.Themainlobe(alsoknown asmainbeam)isdefinedintermsofits3dBorhalf-powerpoints,thatis,the pointsdefinedaboveandbelowthecenterofthemainbeamwherethepower fallsby3dB. AsyoucanseeintheantennapatternsinFigure2-7,asthegaingoesuptheverticalbeamwidthgetsnarrower.Inveryhighgainantennasthisbeamcanbereduced tolessthantendegrees. Now,thisisapotentialproblem.Ifanantennawithaverynarrowverticalbeam isinstalledatasignificantelevationabovetheareatobecovered,thereisagood chancethatthemajorityofthegainwillbewasted.That’sbecausethepowerin 38
BasicRadioandRFConcepts
Figure2-7:Comparisonoftheverticalpatternofunitygain (lightgrey)andhighgain(darkgrey)Omniantennas
themainlobeispointingatthehorizon,notatthereceiversatgroundlevelaround theantenna.Asub-lobehavingsignificantlylesspowerthanthemainlobeisservinganyreceivercloseby. Notonlyisthepowerofthemainlobewasted,itcanbecomeaninterferertoother usersofthesamefrequency. Antennadesignershaveawaytocorrectthissituation,calledelectricaldowntilt. Intheseantennasthemainlobedoesnotpointatthehorizon.Insteadthemain beamis“tilted”towardstheearthbyafewdegrees.Thishelpstoputthepower whereit’suseable,closertotheground.Determiningtheamountofdowntiltthat canbeusedisabasicgeometrycalculation.Determinetheareatobecovered,and selectanantennaheightanddowntiltthatresultinthemainbeammakinggroundfallwithintheouter25%ofthecoveragearea.Thisconceptisfurtherexplained inChapter5. Directionalantennasareavailableinmanypatternsaswell.Itiseasiertogethigh gainsinadirectionalantennabecauseitemitsenergyoverlessthan360degrees. Commonhorizontalpatternsare180,120,100,90,60,45,30,and15degrees. 39
Implementing802.11,802.16,and802.20WirelessNetworks Theseantennasareusefulinprovidingcontrolledareacoverage.Stillothersare designedtosupportpoint-to-pointlinks.Theseantennasaremadewithaparabolicreflectorthatfocusestheenergyintoabeamthatcanbeasnarrowas2degrees. AsshowninFigure2-8,ascomparedtoa120-degreeantennacommonlyusedto providewideareacoverage,parabolicreflectorantennashavetoonarrowapattern forareacoverage,butbecauseoftheirhighgaincanbeusedtoextendtherange ofasystemtoafixedlocationoutsidethenominalcoverageareaprovidedbythe widerbeamwidthantenna.Selectinganantennathathasappropriatetrade-offsin gainandapertureiscriticaltoensuringthataradio-basedsystemprovidesappropriatecoveragetoadesignatedareawithoutgeneratingsignificantamountsof interferenceinundesiredareas. Antennabehaviorisreciprocal,meaningtheybehavethesamewhiletransmitting orreceiving.Sothefirstblockinareceiveristheantennawejustdiscussed.
Figure2-8a:DishAntenna.Photo(s)and illustration(s)reprintedwiththepermission ofMAXRAD,Inc.
Figure2-8b:SectorAntenna. Photo(s)andillustration(s)reprinted withthepermissionofMAXRAD,Inc.
40
BasicRadioandRFConcepts
Figure2-8d:120-degreesectorantenna showingvertical(dark)andhorizontal (light)patterns
Figure2-8c:Antennapatternofamicrowave parabolicdishantenna
RFReception Inthiscase,theEMfieldpassingacrosstheantennaistransformedintoanAC signalthatisappliedtotheRFamplifier. Antenna
RF Amp.
Mixer
Filter
Gain Stages
Detector/ Demodulator
Output
Local Oscillator
Figure2-9:Receiverblockdiagram Figure 2.9: Receiver Block Oscillator Diagram.
Bythetimethesignalgetstothereceiveantennaithasbeenattenuatedbyits travelthroughtheenvironment.ThesignalattheantennaisalsopollutedwithRF fromamultitudeofothersources.Thefirstorderofbusinessistoputthereceived signalthroughabandpassfilter.Thejobofthisfilteristoremoveanyoutofband 41
Implementing802.11,802.16,and802.20WirelessNetworks energysotheRFamplifierisonlypresentedwithsignalsassociatedwiththedesiredband. TheRFamplifierisaweak-signalamplifierdesignedtodealwithexceedingly smallinputsignals,insomecasesmeasuringonlyafewpicowatts(−100dBm). dBmisacommontermusedtomeasurethepowerofradiosignals.Itismerely areferenceofdBchangereferencedtoonemilliwatt.Figure2-10canbeausefulreferencewhenworkingwithradiosystems.Inadditiontoillustratingjust howtinyasignalisdealtwithbythereceiver,itcanbeusedtoquicklyconvert betweenwattsanddBm.ThereisalsoautilityontheCD-ROMthatallowsyouto accuratelyconvertanyvalueofwattstodBmordBmtowatts. 60 dBm = 1000 watt 50 dBm = 100 watt 40 dBm = 10 watt 30 dBm = 1 watt 20 dBm = 100 mw 10 dBm = 10 mw 0 dBm = 1 mw −10 dBm = 0.1 mw −20 dBm = 0.01 mw −30 dBm = 0.001 mw −40 dBm = 0.0001 mw −50 dBm = 0.00001 mw −60 dBm = 0.000001 mw −70 dBm = 0.0000001 mw −80 dBm = 0.00000001 mw −90 dBm = 0.000000001 mw −100 dBm = 0.0000000001 mw
Figure2-10:dBmchartandpowerillustration
Becauseofthevanishinglylowsignalpowerreceivedbytheantenna,theRFamplifiermustgenerateminimalnoisewhileincreasingthesignalvoltagebyalarge factor.Thespecificationsthatdenotetheeffectivenessofaweak-signalamplifier aresensitivity,definedastheabilitytodiscernaweaksignal,andtheintercept 42
BasicRadioandRFConcepts pointwhichdefineshowthedevicebehavesinthepresenceoflargesignals.DesignofanRFamplifierisalwaysatrade-offbetweenthesetwofactors.Verylow noise,highsensitivityamplifiersworkwelloveranarrowrangeofinputsignal strengths.Ifthesignalontheinputgetstoolarge,thedevicegetsoverdrivenand nolongeramplifiesinalinearfashion.Thisiswhyfilteringthesignalcoming fromtheantennaiscritical.Theenergycontainedinoutofbandsignalscanadd tothetotalsignalseenbytheRFamplifierandcauseittobeoverdriven,evenif thedesiredsignalisoflowintensity.Ontheotherhand,devicesthatcantolerate highpowersignalsexhibithighernoiseandlowersensitivity.Selectionofthebest compromiseisuptothedesignerofthereceiverandisbasedupontheaverage signallevelsthatwillbeseenatthedevice’sinput. TheRFamplifierincreasesthelevelofthesignaltoapointwhereitcanbeprocessedbythemixer.ThemixergetsoneinputfromtheRFampandanother inputfromaLocalOscillator(LO).Themixercombinesthesetwosignals,which resultsinfourfrequenciesatitsoutput:thereceivefrequency,thelocaloscillator frequency,andtheirsumanddifference.Forexampleassumewehaveareceive frequencyof2,400MHz,andaLOfrequencyof2,000MHz.Themixeroutput wouldcontainsignalsat2,400MHz,2,000MHz,4,400MHzand400MHz.The onlyvaluableoutputisthedifferencesignalat400MHz.Thislowfrequencysignaliseasiertoamplifyandprocess,andisoneofthereasonsforusingthemixer togenerateit.TheotherreasonisthatbytuningtheLO,onecantunethereceiver todifferentfrequencies,justliketuningtheoscillatorinthetransmitterallowedit togeneratedifferentfrequencies.Themixofsignalsgoesthroughafilterthatis resonantatjustthedifferencefrequency,allowingonlyittopass.ThisfilteredfrequencyentersaseriesofamplifierscalledIntermediateFrequency(IF)amplifiers. TheIFampistunedtothedifferencesignalandprovidesadditionalamplification tothestillminisculesignal.Afterthesignalhasbeenamplifiedenoughtoprocess it,itgoestoadetector/demodulator.Thedetectorisusedtostriptheintelligence fromthesignalandpresentthatintelligenceinitsoriginalform. Nowthatwehaveatransmitterandareceiver,wehaveacommunicationsystem. Thetransmitteriscapableofgeneratingacarrierwaveatthedesiredfrequency. Ifcoupledtoanantenna,asignalwouldberadiatedthatcouldbedetectedbythe receiver.Unfortunately,thecarrierwavecontainsnoinformation.Itjustexistsasa steadystatesignal. 43
Implementing802.11,802.16,and802.20WirelessNetworks
ModulationofRFSignals Inordertotransmitinformation,somethingmustbedonewiththesignalcreated bythetransmitter.That’swheretheotherblockinthetransmitter,themodulator,entersthepicture.Thejobofthemodulatoristoimpressinformationonthe carrierwave.Itispossibletoconveyinformationbymodulatinganypropertyof thecarrier:time,frequency,amplitudeandphase.Thusthesimplestmodulatoris anon/offswitch.Ifthecarrieristurnedonandoffinastructuredwayfollowinga knownpattern,likeMorsecodeforexample,intelligencecanbeconveyedtothe receiver.Initstime,Morsecodewasausefulwaytocommunicate;however,it soonfelltothewaysideasothermoreusefulmodulatorsandmodulationtypesbecameavailableforimpressingfirstanalogthendigitalinformationonthecarrier. Aninterestingthinghappenstothecarrierwhenitismodulated.Nolongeristhe carriertheonlycomponentofthewaveform.Itnowcontainsenergythatoccupies spectrumonbothsidesoftheunmodulatedcarrierwave.Thisadditionaloccupied spectrumisknownassidebands.Sobyadditionofmodulationtothecarrierwave thatpreviouslyoccupiedonlyasinglefrequencycausesitto“spreadout”and occupymorespectrum.Thesizeandshapeofthesidebandsisdependentonthe modulation,andcanbedeterminedmathematically. Thissidebandenergydefinestheshapeofthetransmittedwaveform,andisthe reasonwhycommunicationchannelsareassignedcontainingaspecifiedamount ofbandwidth.Rulesandregulationsgoverningspectrumallocationandusetake intoaccountthetypesonmodulationtobeusedandthemaximumamountof informationthatthemodulationneedstorepresent,thendividetheRFbandsinto channelsthataresizedaccordingtotheuseofthespectrum.
AmplitudeModulation Beyondjustturningthecarrieronandoff,theotherpropertiesofthecarrierthat canbemanipulatedareitsamplitude,frequencyandphase.Ifyouchangethe amplitude,orpowercontainedinthecarrier,basedontheinformationtobeconveyed,theresultingsignalisknownasAmplitudeModulation(AM).Thisisthe modulationtechniqueisillustratedinFigure2-11,andisusedasthemodulation ofchoiceintheAMbroadcastband.BecauseAMisfairlyeasilyaccomplished,it wasthefirstmodulationmethodusedafteron/offswitching.BecauseAMhasthe 44
BasicRadioandRFConcepts abilitytoimpressacomplexanalogsignal(likesound,forexample)onthecarrieritbecameimmenselypopularbecauseitallowedthebroadcastofvoiceand music.Thismodulationisstillinworldwideusetodaybybroadcasters.EvenTV reliesonatypeofAMfortransmittingthevideoportionoftheTVsignal. AM,whilesimple,carriesseveralpenalties.First,itrequiressignificantpower changeintheamplitudeofthecarrier.Second,becauseyouarereceivingasignal thatvariesinamplitude,anyimpulsenoisethatcoexistsinthechannel,likelightning,autoignitions,andfluorescentlights,isalsoheardbythereceiver.You’veno doubtexperiencedthisfirsthandwhenlisteningtoanAMbroadcastandhearing theimpulsenoisegeneratedduringasummerlightningstorm. Inaddition,anAMsignaloccupiesmorespectrumthanaMorsecodesignal.The morsecodesignaloccupiesonlythesinglefrequencyassociatedwiththecarrier wave.TheAMsignalspreadsoutfromthecarrierfrequencytoenvelopspectrum equaltothecarrierfrequency±themaximummodulatedfrequency.Forexample, ifacarrierweregeneratedat10MHzanda3KHztonewereAMmodulatedonto it,theresultwouldbethatspectrumfrom9.007MHzto10.003MHz,or6KHzof spectrumwouldbeoccupiedbythissignal.Somorecomplexinformationcanbe sentatthecostofspectrumconsumed.Thisisanartifactofanymodulation,andis oneofthefactorsthatdeterminethesize,inHzofbandwidth,ofthechannel.
Carrier Wave
Modulating Signal
AM Modulated Carrier
Figure2-11:Illustrationofamplitudemodulation
45
Implementing802.11,802.16,and802.20WirelessNetworks
FrequencyModulation ThenextevolutionofmodulationwasFrequencyModulation(FM).Asillustrated inFigure2-12,FMworksbymanipulatingthefrequencyofthecarrierinconcert withtheincominginformation.Onceagain,thefirstconsumeruseofFMwasin thebroadcastarena.FMisstillusedtodayintheFMbroadcastband,andisused tocarrytheaudiocontentinaTVsignal.
Carrier Wave
Modulating Signal
FM Modulated Carrier
Figure2-12:Illustrationoffrequencymodulation
AvariationofFMisPhaseModulation(PM).Thismodulationmethodistightly coupledtoFMbecauseyoucannotchangethephaseofthecarrierwithoutalso changingitsfrequency.FMandPMrequirelittleenergytoaccomplishandsince thereceiverislookingonlyatfrequencyorphaseshifts,thismodulationtechniqueisalsoverynoisetolerantsinceyouareinterpretingfrequencychangesand ignoringamplitudevariations. Fromaspectralusestandpoint,FMissimilartoAMinthatitoccupiesspectrum aroundthemaincarrier.ItcanatminimumoccupysimilarbandwidthtoanAM carrier,butitispossibletoconfigurethechanneltooccupyagreatdealmore spectruminordertoincreasethemaximummodulatedfrequencyandmaximize theabilityforthetransmissiontobereceivedeffectively.Theactualspectral occupancyofanFMsignalisacomplexcalculationdependentonthechannel bandwidth,themodulationindex,andthemaximumfrequencytobemodulated. Thisartifactofmodulationincreasingthesizeoftheoccupiedbandwidthhas givenrisetotheconceptofchannelizationofRFspectrum.Theactofimpressing informationonacarriercausesitto“spreadout”andoccupyamathematically calculableamountofspectrumoneithersideofthecarrier’scenterfrequency.In ordertoavoidrandominterferencebetweenusersofspectrum,theworld’sRF 46
BasicRadioandRFConcepts managementbodiesslicedup,or“channelized”thespectralallocationsinaccordancewiththemodulationtobeusedintheband.Regardlessoftheband,if youlookattherulesregulatingitsuse,therewillbespecificchannelmasksthat specifythespectrumthatcanlegallybeoccupiedbyatransmittedsignal. Morecomplexmodulationcancarrymoreinformation,sothechannelallocations arelarger.Caseinpoint:anAMradiobroadcaststationisallocatedachannel10 KHzwide.Thischannelcancarryaudioinformationof±5KHz,andisthuswide enoughtocarryvoiceandlowfidelitymusic.AnFMradiostationisallocateda 200KHzchannelwhichcancarryanaudiosignalofupto15KHz.ATVstation, becauseofthecomplexityoftheinformationbroadcast,needs6MHzofspectrum tocontainthemodulatedsignal,andan802.11bcarrieroccupiesinexcessof20 MHzofspectrum!
ComplexModulation AM,FM,andPMprovidedsimplewaystoconveytheonlyinformationavailableatthetimeoftheirinvention:audio.Asdigitalinformationbecameavailable, thesemodulationtechniqueswerepressedintoservicetotransmitdigitalinformationtoo.Asseenpreviouslyinthischapter,anRFcarrierisasinewave,anda sinewaveisanaloginnature.Totransmitdigitalinformationrequiredthedigital informationtobeconvertedtotheanalogrealm.Thiswasaccomplishedbyuse ofananalogMODEM,orMOdulator/DEModulator,whosesolepurposewasto changedigitalinformationintoaudiofrequencytonesthatcouldbetransmitted andreceivedoveraradiocarrierorphoneline.Originally,modemsworkedby generatingtwodistinctaudiofrequencies.Eachtonewasassociatedwitheithera binary1or0.Asthebinaryinformationenteredthemodemserially,itwasconvertedtoaudiotonestobetransmitted. Astheamountofdataneedingtobetransmittedincreased,thesimpletwo-tone modembecameincapableofmeetingtheeverincreasingthroughputrequirements.Fortunately,developmentofthedigitallogicandprocessingpower responsibleforthisgrowingbandwidthrequirementalsogaverisetotheabilityto manipulateormodulatethecarrierwaveinevermorecreativeandcomplexways. Furthermore,sincewecannowusethissameprocessingpowertotransform complexanalogsignalslikevideoandvoiceintodigitalform,thereisnolonger 47
Implementing802.11,802.16,and802.20WirelessNetworks aneedtohavethemodulationsupportthesecomplexanalogwaveformsthatgave risetoAMandFM.Instead,wecanmodulatethecarrierinsuchawayastorepresentonlybitsandbytes. Thisisaparadigm-changingconcept.Nolongerdoesthewaveformneedtorepresentcomplexanaloginformation.Itmerelyneedstoconveybitsandbytes,which canbeconveyedas“states”ofthecarrierwave.TakeforexampleAM;thecarrier statescouldbefullpowerfora1andhalfpowerfora0.FMcouldrepresent0and 1basedontheshiftofthefrequency.Freedfromtheneedtosupportananalog waveform,designersbeganlookingathowindividualcarrierstatescouldbeused torepresentbitsofdigitalinformation. Therearenumerousdigitalmodulationtechniquesinservicetoday,butinone wayoranother,theyallmanipulatethesameelementsofthecarrierwave:time, amplitude,frequencyandphase.It’sworthmentioning,thattheuniversalprincipleofTINSTAAFL(thereisnosuchthingasafreelunch)existsinradiotoo. Anyselectedmodulationtechniquemakestrade-offsbetweenspectraloccupancy, maximuminformationrate,circuitcomplexity,powerrequirements,androbustnessofthesignal. ActuallyinradiotheTINSTAAFLprinciplehasarealname:Shannon’sInformationTheory,namedafterClaudeShannon.Shannonwasamathematicianat BellLabs.In1948heauthoredaBellSystemTechnicalJournalarticleentitled “AMathematicalTheoryofCommunication”inwhichhepostulatedthat,dueto entropy,uncertaintywasafactoflifeinacommunicationchannel.Thusthere wasnoreasonwhymoreinformationcouldnotbetransmittedinagivenchannel solongasyoucouldtoleratetherisinguncertainty,orerrorrate,inthereceived information.Inotherwords,simplemodulationisveryrobust,butwithrobustness comesseverelimitationsoncapacity.Complexsystemsarelessrobust,buthave morepotentialcapacity.Complexsystemsalsoneedmorepowerdensityatthe receiverinordertoincreasethecertaintyofthetransmittedstate.ThetermsC/I, C/N,andEb/Noarecommonlyassociatedwithcommunicationsystems.These termsmeanCarriertoNoiseorInterferenceratio(C/I,C/N,C/I+N)andEnergy perBitrelativetoNoiseratio(Eb/No).Thesetermsareusedtoidentifyhow strongthesignalmustbeincomparisontothenoiseandinterferenceinthechannelinorderforthereceivertoreconstructthetransmittedinformationaccurately. 48
BasicRadioandRFConcepts Theequipment’sperformancewillbecompromisedifthesignalisallowedtofall belowthespecifiedthreshold.Meetingthiscriterionbecomesakeyrequirement ofsystemdesignandimplementation.Thisvalue,alongwithreceivesensitivity andtransmitpower,definethelimitofthereliabledistanceoverwhichthesystem cancommunicateinagivenenvironment. Wheninformationistobetransmittedandreceived,thereareacomplexsetof variablesthatgovernthetransaction.Theseinclude:thebandwidthofthedigital signal,itstransferrate,sizeofthetransmissionchannel,noiseinthetransmission channel,interferenceinthetransmissionchannel,complexityofthemodulation, propagationdelay,reliabilityofthetransmissionchannel,transmitpower,receive sensitivity,errorcodinganderrorcorrectionalgorithms.Thesevariablesallhave effectsontheaccuracyanderrorrateoftherecoveredsignal.Oneofthemost importantapplicationsofShannon’stheoryisusingittodeterminetheappropriate trade-offamongthecompetingvariables.Thisallowsthedesignertooptimizethe systemtofitagivensetofparameters. Moderndigitalcommunicationequipmenthavethroughputrequirementssohigh, andspectrumhasbecomesocongested,thatadvancedmodulationtechniques areneededinordertoachievethedesiredthroughputinnarrowchannels.The modulationformatsstillusephaseandamplitudeasthemodulatedcharacteristics, buthaveimplementedtheminevermorecomplexwaysinordertoincreasethe throughputofthechannel. Sincedigitalradiosarenolongerdealingwithanaloginformation,theydonot havetobebasedonmodulationsthatsupportanalogsignals.Theymerelyhaveto transit1’sand0’s.Thiscanbedonesimplywithtwophaseoramplitudestates: onestaterepresentingabinary1,theotherrepresentinga0.Inordertotransmit datafaster,youneedmoretransitions.Luckily,becauseofthenumberofdiscrete phaseanglesavailable(theoretically360butpracticallyfarless)andthenumber ofamplitudestatesavailable(theoreticallyinfinite,butagainpracticallyfarless), acarriertransitioncanrepresentmorethanonebit.Iffourdistinctcarrierstates areavailable,2bitscanberepresentedbyeachtransition,eightstatesyield3bits, andsoforth. BiPhaseShiftKeying(BPSK)phasemodulatesthecarrierwithtwodistinctphase shifts,180degreesopposed,itcanrepresent1bitpertransition.Figure2-13 49
Implementing802.11,802.16,and802.20WirelessNetworks showsthisconceptusingsignalstatesat0and180degrees.Thereisnoreason whytheinitialphasestatemustbe0.Solongasthephasestatesare180degrees outofphase,anytwostatescouldbeused.45and225degreesarecommonstates usedinBPSKradioequipment. 0° 90° = 0 270° = 1
270°
90°
180° Figure2-13:BPSKillustration
Iftwophasestatescanbeused,whynotmore?AccordingtoShannon,it’spossibleifyouarewillingtousemorepowertocommunicateoverthesamedistance. QuadraturePhaseShiftKeying(QPSK)isthenextlogicalstepupthemodulationcomplexitycurve.AsshowninFigure2-14,QPSKusesfourdistinctphases, eachseparatedby90degrees.Itcanrepresenttwobitspertransition,butinreturn requiresmoresignalpoweratthereceiverinordertorecoverthetransmitted informationaccurately.Aspreviouslydiscussed,thereisnoreasonwhyonestate mustbe0degrees.AsinBPSK,aninitialstateof45degreesiscommonlyused. Furtherincreasesinefficiencycancomefromaddingevenmorephasestates. DoublingthenumberofphasestatesinQPSKyields8PSK,whichuseseight distinctphasesseparatedby45degrees,andcanrepresentthreebitspertransition. 50
BasicRadioandRFConcepts 0° Phase
0 90 180 270
270°
Bit Pattern
00 01 10 11
90°
180° Figure2-14:QPSKillustration
Eachofthesemodulationsismoreefficientinthatmorebitsaretransmittedeach second.Atthesametime,asShannonpredicted,eachismoresusceptibletoloss ofinformationinanoisytransmissionmedium.Inanoisyandconstantlychangingmediumlikeradio,it’srelativelyeasytopickoutthetwophasestatesof BPSK,butmuchhardertodeterminethe45degreeshiftsof8PSKaccurately. Furtheradditionsofphasestatescontinuetoreducetherobustnessoftheradio channel.Incommonpractice8PSKisthehighestorderPSKmodulationinuse. Asspectrumbecamemorecongestedandtheamountofinformationincreased, even8PSKprovedinsufficienttoprovideenoughchannelcapacityinmanycases. Thislimitationwasovercomebyusingthecarrier’samplitudetoconveyadditionalbits.Soinadditiontomodulatingthephase,engineersstartedmodulating theamplitudeaswell.ThisisknownasQAM,orQuadratureAmplitudeModulationandisafancynameforasimpleprocess.Ifyoutakethetwophasestatesof BPSK,andaddtwodistinctamplitudestatestoeach,youhaveQAM.ThisconceptisillustratedinFigure2-15.ThesignalisabasicBPSKsignalwith0and 180degreephasestates,butnoweachphasestateisalsotransmittedwithtwo uniqueamplitudes. 51
Implementing802.11,802.16,and802.20WirelessNetworks 0°
Phase
Amplitude
90° 90° 180° 270°
0 1 0 1
270°
Bit Pattern
= 00 = 01 = 10 = 11
90°
180° Amplitude 0 Amplitude 1
Figure2-15:QAMModulation Figure 2.15: QAM Illustration.
Ofcourseitdoesn’tstopthere.ByaddingtwodistinctamplitudeshiftstoaQPSK signalyouget8QAM,whichhaseightdistinctphase/amplitudestates.Eachof thesestatescanrepresent3bitspertransition,thesameasfor8PSK. Butwait,there’sstillmore!16QAMhasfourphasestateswithfouramplitude states,canrepresent4bitspertransition,32QAMcanrepresent5bits,64QAM canrepresent6bits,and256QAM,whichhassixteenphasestatesandsixteenuniqueamplitudestates,canrepresent8bitspertransition.Allofthese modulationsarecommonlyusedinmodernequipment.Infactsomemodern point-to-pointmicrowaveequipmentuses512QAM. Asyoucanimagine,theuncertaintyassociatedwithreceivingandcorrectlyinterpretingoneuniquestateoutof256isextremelyhigh.Infact,thecarriermust beatleast30dB,or1000timesstrongerthanthenoiseinthechannel,inorder tobeheardandcorrectlydemodulatedbythereceiver.Modulationsthiscomplex 52
BasicRadioandRFConcepts canonlyoperateoverthecleanestmediums,andeventhenrequiresignificantly morepowerthanlesscomplexmodulations.Fixedmicrowavelinksandcommunicationovercoaxialcables,likecablemodems,canusethismodulationbecause theyareverynoisefreeandfadefreetransmissionmediums.BPSKontheother handneedstobeonly6dB,orfourtimesstrongerthanthenoiseinthechannel. Forthisreason,designersofmobilecommunicationssystemsrelyonthesimplest modulationthatwillgetthejobdone.Thebalancingacthereispowerversus spectrumbandwidthforagiventhroughput.Simplemodulationsrequirelower powertocoveragivenareaeffectively,howevertheyprovidelimitedthroughput. Ontheotherhand,complexmodulationrequiresmorepowertocoverthesame area,butoffersincreasedthroughputinagivenchannel.Iftoocomplexamodulationisselected,thesystemmayrequiretoomuchpowerofaportabledevice, leadingtoshortbatterylife.Orthesystemmayhaveseverecoveragelimits,or intheworstcase,thesystemmaybefragileandexperiencesomanyerrorsthat effectivecommunicationisimpossibleoverthedesiredcoverageareaofeach transmitter.Figure2-16illustratesthecharacteristicsandtrade-offsassociated withincreasingthemodulationcomplexity. Modulation
BPSK
QPSK
8PSK
16QAM
64QAM
1
2
3
4
6
Bits per Symbol Fading Tolerance High C/I&N Requirement
6dB
Low 12dB
18dB
18dB
24+dB
Interference and Noise Tolerance High
Low
Service Area
Small Large
Figure2-16:Modulationcomparisondiagram Figure 2.16: Modulation Comparisons.
53
Implementing802.11,802.16,and802.20WirelessNetworks Unlikeavoicecommunicationsystem,adatacommunicationsystemcannot tolerateerrors.Ifthetransmittedsignalisnotreceived100%correctly,thetransmissionisuseless,andtheinformationmustberetransmitted.Becauseofthe uncertaintyassociatedwiththereceptionofthesignal,alldigitalcommunication systemshaveimplementederrorcheckinganderrorcorrectionalgorithms.These algorithmshelptoidentify,andtosomeextentcorrect,errorscausedinthetransmissionandreceptionofthesignal.Thisallowsthechanneltotoleratesomelevel oferrorandallowcorrectiveactiontobetaken.Thesealgorithmsallowthesignal tonoiseratiotobecomeworsethanthetheoreticalrequirementswhilestillprovidingausefulcommunicationchannel.Again,thereisatrade-off.Thesealgorithms addoverheadtothetransmittedinformation,becausetheyaddeitherextraor redundantinformationtothedesireddatasothatthereceivedsignalcanberecreatedcorrectly.Errorcorrectionalgorithmsuseinformationcodingandredundancy schemestosendenoughextradatatoallowforthefactthatsomereceivedstates willbeindeterminate.Byusingtheredundantdata,theoriginalinformationcan berecreatedifenoughgooddataisreceived.Errorcheckingalgorithmsareused totestforerrors.Iferrorsaredetected,theerrorcorrectingalgorithmsarebrought intoplay.Iftheycannotcorrectthedata,thenthesystemasksthetransmitterto resendthedata.
Duplexing Sofarwe’vediscussedatransmitterandreceiverasstandalonedevicescapable ofaone-waycommunication.Wirelessdatasystemsmustbetwo-way,orduplex systems,ifonlytoallowthereceiveendtoacknowledgereceiptofgoodinformation,oraskforaresendoferroredinformation.Therearetwoformsofduplexing available:FrequencyDivisionDuplexing,andTimeDivisionDuplexing.
FrequencyDivisionDuplexing FrequencyDivisionDuplexingisaccomplishedbyallocatingtwoequal,distinct, andseparatefrequenciestothecommunicationchannel.Oneofthefrequenciesis transmittedbythebasestationtransmitterandreceivedbytheremotestationand theotherfrequencyistransmittedbytheremotestationandreceivedbythebase station.Sincetheseduplexsystemsshareacommonantenna,thetwofrequencies 54
BasicRadioandRFConcepts assignedhavelargeseparationsbetweenthem,45MHzormore,inordertoassure thatthelocaltransmitterenergycanbeeasilyfilteredoutofthelocalreceiver. CellularandPCSphonesuseFDD.FDDismostusefulinsystemsexpectingsymmetrictraffic,becausethetwochannelsassignedareequalinbandwidth.
TimeDivisionDuplexing InTimeDivisionDuplex(TDD)allowstheuseofasinglefrequencytoaccommodatebothtransmitandreceivedutiesatbothendsofthelink.Thisisaccomplished bytimeslicingthechannelfastenoughsothetransmittersandreceiversseea continuousflowofinformation.Thechannelistemporallydividedintotransmit timeslotsandreceivetimeslotswithasmallguardtimebetweenthem.802.11 equipmentandsomecordlessphonesworkinginthe2.4GHz-banduseTDD. TDDisusefulinsystemsthathaveasymmetrictrafficpatterns,becausethetime slotscanbeallocatedasymmetrically. Regardlessoftheduplexmethodused,boththebasestationandtheremoteuser needtohavebothatransmitterandreceiver,ortransceiver.Thisiswhatyoupurchasewhenyoubuywirelessdataradioequipment.Alltheblocksandcapabilities discussedabovehavebeenconsidered,trade-offshavebeenmadebaseduponthe expecteduseoftheequipment,andaproductwithsomelimitedcapabilityhas beenproducedandmarketed.Bythenatureofthetrade-offsmadeinthedesignof theequipment,thereisno“onesizefitsall”solution.Astheconstructorofacommunicationsnetwork,itisuptoyoutoselectanappropriatehardwaresolution thatbestmeetstheneedsofyourusers.Cost,capacity,range,andreliabilityare somevariablesthatyouwillhavetoconsiderinselectinganappropriatehardware solutiontomeettheusersneeds.
MultipleAccessTechniques Thetermusers(plural)isanimportantdistinction.Thecommunicationnetworks weareplanningtoimplementarenotdesignedtosupporttheneedsofasingle user.Ifthenetworkiseffectivelyimplementedandmarketedtousers,therewill bemultipleuserssimultaneouslytryingtousethecapacityofthenetwork.This bringsustothefinaltopictobediscussedinthischapter:MultipleAccess(MA) techniques. 55
Implementing802.11,802.16,and802.20WirelessNetworks WiththeadventofdigitalcellphonesandPCSphones,we’veallheardtheterms TDMAandCDMA.ThesearetwoformsofMultipleAccesstechnologies.SimplystatedMAtechniquesallowforthesharingofspectrumandcapacityby multipleusers. TheoriginalMAtechniquewasFrequencyDivisionMultipleAccess(FDMA). AsshowninFigure2-17,FDMAisnomorethandividingtheRFbandupinto discretechannelallocations.Eachofthechannelsisassignedenoughbandwidth toaccommodatethemodulationtechniqueandinformationraterequirementsof thetechnologythatistousethechannels.Eachchannelisavailableforoneuser atatime.BroadcastradioandTVareanexampleofFDMA.Eachbroadcasteris allocatedachannel,whichiswideenoughtocontainalltheinformationtheyare transmitting.Thiswasalsothetechniqueusedinearlycellularphonesystems. Eachcarrierwasallocatedover30030KHzwidechannelsthatusedanalogFM modulation.Theserviceprovidermadethesechannelsavailabletoonashareduse basisforusersastheywereneededtomakeorreceiveaphonecall.Whennoone wasusingthemtheywereinanidlechannelstatewaitingtoprovideservice.
User 1 User 2 User 3
Time
User 4
1
2
3 Frequency
4
Figure2-17:FDMAillustration
AnothermethodofsplittingupchannelsisshowninFigure2-18.Thismethod usestimeslicestoseparateusers.ThisisknownasTimeDivisionMultipleAccess(TDMA).TDMAreliesonthefactthatifyoucanswitchtheconnectionback andforthbetweenusersfastenough,theuserwillneverknowtheyaresharing thechannel.InTDMA,eachchannelisdividedintoanumberoftimeslots.These 56
BasicRadioandRFConcepts
User 1
1
User 2 2
User 3
Time
User 4
3 4
Frequency Figure2-18:TDMAillustration
timeslotsoccupytheentirechannel,andareassignedtousersinsteadofassigning theentirefrequencyallthetime.SomecellularoperatorsusedTDMAtoincrease thecapacityoftheirnetworkswhenFDMAcouldnolongerprovideeconomic growth.The30KHzchannelswereconvertedtodigitalchannelscontainingthree timeslots.Nowthreeuserscouldsimultaneouslyoccupythespectrumthatwas previouslyavailabletoonlyoneuser.Theneedformorechannelsgaveriseto replacinganalogFM-basedsystemswithdigital-basedsystemsandtheinevitable trade-offoffidelityandsimplicityforcomplexityandcapacity. FDMAandTDMArequirecarefulfrequencymanagementanduseplanningbecauseindividualchannelscanbeconstantlyinuse.Theuseofindividualchannels leadstopotentialinterferenceifdifferentpeopleinthesameareasimultaneously usethesamechannel.Thisresultsintheneedtointroduceanewsystemdesign criterion:frequencyreuseplanning.Reuseplanning,asit’scommonlycalled,is thescienceofmanagingthedeploymentofalimitedamountofspectruminorder toyieldthemaximumcapacityinanareatobeserved.Asyoucanguessbythe name,reuseisthedeploymentofthesamechannelmultipletimesinasingle geographicareainsuchawaythatinterferenceamongtheco-channelreusesites isminimized.Thisisaccomplishedbycarefulselectionofsitelocation,antenna selection,antennaheight,andtransmitpoweroutput.Carefulconsiderationmust begiventothesefactorsinordertoachieveinterferencefreeoperation.Frequency reusewillbefurtherdiscussedinChapter3. 57
Implementing802.11,802.16,and802.20WirelessNetworks
Spread-SpectrumModulation FDMAandTDMAsystemscannoteasilyaccommodatetheconflictingrequirementsofinterferencerejection,highthroughput,andmultipleuserswithout activefrequencymanagementandinterferencecontrol,soothermodulationand multipleaccesstechnologieswereperfected.SpreadSpectrumisoneofthese technologies.Originallyutilizedasamethodtoprovidesecurecommunications, itrequiresalargebandwidthtofunctionbecause,asthenameimplies,thecarrier isspreadoutoverachannelmuchlargerthanthefundamentalbandwidthrequired bythetransmission. Therearetwovariationsofspreadspectrum:FrequencyHopping(FHSS)and DirectSequence(DSSS).Theybothworkonthestatisticalprinciplethatusage collisionsareinevitable,butifthespreadingorhoppingcodesareeachunique, thentherewillneverbecaseswheretwoormoreusersconsistentlycollideon commonchannels.Ifcollisionsdooccur,anddataislost,itcannormallyberecoveredonthenextreceptioninterval,becausestatistically,therewillnotbeserial collisions.Further,becauseeachuserhasauniquespreadingcode,thereceiver canusethiscodetodiscriminatethedesiredcommunicationfromalltheothers. Thiseffectreducestheneedforfrequencymanagementandinterferencecontrol, andshiftstheradiodesigntoinsteadconsidersitecoverageandcapacityasthe designvariables.Thesetwofactorsinterrelatebecausewhilespreadspectrum techniquescanisolateindividualusersfromeachother,theystillgenerateRF signalswhichraisethenoisefloorofthecommunicationchannel.Asusersoccupythechannel,thenoisefloorrises.Withincreasednoisecomestheneedfor increasedtransmitpowertoovercomethisnoise.Essentiallywhathappensisthat thecoverageareaofasitebecomesdependentonthenumberofactiveuserson thechannel.Themaximumcoverageofasitewillbeachievedwithjustasingle user.Asadditionalusersareaddedtothesystem,eachreceivermustdealwiththe increasednoisegeneratedbyotherusers.Sincethisnewnoiseisadditivetothe thermalnoiseinthechannel,itaffectstheabilityofthereceivertoreceiveand demodulatethetransmittedsignalaccurately.Ifpowerislimited(asitalwaysisin therealworld),thentheadditionalnoisewillcausethereliablecoverageareaofa sitetoshrinkasusersareaddedtothesystem.
58
BasicRadioandRFConcepts
Frequency
Time User 1 hopping sequence User 2 hopping sequence Figure2-19:Frequencyhoppingspreadspectrum(FHSS) Figure 2.19: Frequency Hopping Spread Spectrum.
OnespreadingsolutionillustratedinFigure2-19isFHSS.FHSSreliesonan FDMAchannelset.Thetransmitterandreceiverarefrequencyagileandhavethe abilitytotune(hop)toanyoftheavailablechannelsmanytimesasecond.This allowstheuseofindividualfrequenciestobetimespread,thusloweringtheoccupancyrateonanychannelandloweringtheaverageinterferencelevelonanyone channel.Eachuserisassignedauniquehoppingsequencethattellsthetransceiver thesequenceofchannelstouseforitscommunication. AnotherspreadingtechniqueisDirectSequenceSpreadSpectrum(DSSS)in whichapseudo-randomcodeisusedtospreadthecarrier.AsillustratedinFigure 2-20,thedatatobecommunicatedisXORedwiththispseudo-randomcode.The resultingspreadsignalisusedtomodulatethecarrier,resultinginasignalthat issowidelyspreadthatitbecomesindistinguishablefromthermalnoise.Inthe receiver,thecarrierisreceivedandamplified.Thecodecontainedinthereceived signalismixedwithalocalcarriertorecoverthespreaddigitalsignal.This 59
Implementing802.11,802.16,and802.20WirelessNetworks Transmitter
XOR 010110 =
Baseband Signal
Spreading Code
Spread-Spectrum Transmitted Waveform
Receiver
010110
DSSS Waveform
Expected Code
Recovered Original Waveform
Figure2-20:Directsequencespreadspectrum
receivedcodeislockedtoaninternallygeneratedpseudo-randomcodematching theanticipatedsignalgeneratedbythereceiver.Thereceivedsignaliscorrelatedwiththeself-generatedcode,thusextractingtheinformation.Byspreading theinformationoverawidechannel,DSSSoffersprotectionfromnarrowband interferers,becausethenarrowbandinterfereraffectsonlyasmallportionof theoverallspectrumassignedtothecarrier.Becausetheenergydensityonany discretefrequencyisminiscule,DSSSspreadspectrumlendsitselftoimplementationinsystemsthathavemanyusersanddonotuseinterferencemanagement. OneimplementationofDSSSisknownasCodeDivisionMultipleAccess (CDMA).Thisisnotanewmodulation;insteaditisawayofusingthecharacteristicsofDSSStoprovidemultipleuserssimultaneousaccesstothechannel. Inessence,CDMAisnothingmorethanaDSSSsystemthatusesanumberof 60
BasicRadioandRFConcepts uniqueorthogonalcodesasthepseudo-randomspreadingcodes.Byassociatingauniquecodewitheachuseronthechannel,theCDMAsystemcansupport multipleusersonthesamechannelusingthespreadingcodetoisolatethemfrom eachother. Theunlicensed,orPart15bands,arerequiredtoaccommodatemanyusersofthe samespectrumwithnofrequencycoordinationrequirements.Further,theFCC originallymandatedthatthetechniquesusedtomodulatethecarrierwouldtrade offthroughputforinterferencerobustness.ThismandateledtoSpreadSpectrumbeingadoptedforthe802.11specification.802.11supports1and2Mbps throughputina20MHzwidechannel.Thereasonforthispoorefficiencywasto assurethatmultipleuncoordinateduserscouldcoexistonthesamechannelwithoutunmanageableinterference.Theruleswerelaterrelaxed,andallowedspectral efficiencytoplayagreaterroleinthetrade-offs.Thisleadtothedevelopmentof 802.11b/a/andg.Thesehigherthroughputstandardsprovidemoredatabandwidth inthesamespectrum,butarelesstolerantofinterferenceandnoise. DSSSisusedin802.11bwhenitisoperatingatthe1and2Mbpsrates.Atthese ratesthespreadingtechniqueusesasingle-spreadingcode,calledtheBarker Code,foralldevices.Atthe5.5and11Mbpsrates,thecodingshiftstoComplimentaryCodeKeying(CCK).CCKincreasesthethroughputofthechannelby usingeachof64orthogonalcodestorepresentsixuniquebitpatterns.Thefinal 2bitsthatmakeupthe8-bitdatabytearegeneratedbyusingoneoffourphasesto modulatethecarrier.UnlikeCDMA,whereeachuserisassignedauniquecode, CCKusesallthecodestorepresentdatabits,thusthereceivercannotusethe codestodiscriminateoneuserfromanother. Toallowmultipleusersaccesstotheavailablebandwidth,802.11a/bandgusea sharingmethodcalledCSMA/CA,orCarrierSenseMultipleAccesswithCollisionAvoidance.Inthisway,thesestandardsworkliketraditionalEthernet:there isnocentralcoordinationofdatabroadcasts.UnlikeEthernet,whichisatruefull timeduplexsystem,thesewirelessstandardsuseTDDastheirduplexingmethod, sothereisnowaytolistentothechannelwhiletransmitting.Thusthereisno methodofcollisiondetectionavailable.Instead,thebestthatcanbedoneiscollisionavoidance.Thedevicehavingdatatosendlistenstothechannel.Ifitsenses thatacarrieristhere(thechannelisinuse)itwillnottransmit.Instead,itwillbe 61
Implementing802.11,802.16,and802.20WirelessNetworks assignedarandomretryinterval,afterwhichitattemptstoretransmit.Ifitsenses thechannelisstillinuse,itbacksofftwiceaslongasthefirstrandominterval beforetryingagain.Ifsuccessfulintransmitting,thestationthenawaitsanACK message.IfanACKisnotreceived,thestationassumesacollisionoccurredand attemptstoresendthedataduringthenextintervalwhenitsensesanidlechannel. CSMA/CAallowsbothmultipleusersonanindividualWirelessLAN(WLAN) andpermitsmultipleWirelessLANstocoexistonthesamechannelinproximity toeachother.Thisisimportantbecausethe802.11standardsweredesignedfor useinunlicensedspectrum,wherethereisnorequirementforfrequencyusage coordination.Thisdoesnot,however,meanthatmultipleco-channelfacilitiesdo notinterferewitheachother.Infacttheydo.Interferencegeneratedbydifferent WLANsonacommonchannelresultsinalldeviceshearingthemultiplecarriers,andCSMA/CAwillfunctiontoprotectallLANs.Thisresultsinthemultiple WLANsandtheiruserssharingthethroughputofthechannel.Inotherwordsif two802.11bWLANswereworkinginacommonareasharingchannel6,neither WLANcouldachievefullutilizationoftheavailable11Mbps.Assumingthere wassufficienttraffictofilltheavailablebandwidth,eachLANwouldnominally gethalftheavailablebandwidth,or5.5Mbps.ThissharingwillcontinuetohappenifmoreWLANsusingthesamechannelappearinthearea.
OFDM 802.11a,802.11g,802.16and802.20allrelyonarelativelynewmodulation techniqueknownasOrthogonalFrequencyDivisionModulation(OFDM).OFDM isavariationofFDM.Insteadofusingasinglecarrierwithinthechannel,OFDM usesalargenumberofsmalloverlappingchannels(asseeninFigure2-21)to transmitthedatatobeconveyed.Eachofthesesub-channels(alsocalled“tones”) hasitsownindependentmodem,andappearstobeanindependentcarrier.These carriersoverlap,butarespacedapartatprecisefrequenciessoastoprovide “orthogonality.”Thecenterofthemodulatedcarrieriscenteredontheedgeof theadjacentcarriers.Thistechniquepreventstheindependentdemodulatorsfrom seeingfrequenciesotherthantheirown.ThebenefitsofOFDMarehighspectral efficiency,greatflexibilitytoconformtoavailablechannelbandwidth,andlower susceptibilitytomultipathdistortion.Thisisusefulbecauseinatypicalterrestrial 62
BasicRadioandRFConcepts Tone 1 Tone 2 Tone 3 Tone 4
Figure2-21:OFDMillustration
propagationenvironment,therearesignalreflections(i.e.thetransmittedsignal arrivesatthereceiverfromvariouspathsofdifferentlength)thatcausedistortion ofthereceivedsignal.Asalways,thereisatradeoff:OFDMismoresusceptible tointerference,especiallyfromnarrowbanddevices,anditrequiresextremely stableoscillatorssinceitcantoleratelittlefrequencydrift.Onceagainthisisa modulationtechniquethathasbeenknownformanyyears,buthasonlyrecently becomefeasibleforconsumergradeequipmentduetothefallingcostandrising complexityofdigitalcircuitryandcomputingpower. InOFDM,eachoftheorthogonalcarrierscanbeindependentlymodulatedwith aBPSKorQAMsignal.Becausetheyaretreatedasindependentchannels,the selectedmodulationoneachchannelcanbetailoredtothefadingenvironmentof thepropagationpath.Implementingthisflexibilityaddscomplexitytothesystem,butinreturnallowsthemaximumthroughputtobeaccomplishedbecauseit candynamicallyaccommodatethefrequencyselectivefadingofthechannel.If acertainsubcarrieroccupiesafadedfrequency,itcanbeassignedalowerorder modulation.Ifthesubcarrierisunfaded,itcanoperateatthemaximummodulationcomplexity. CurrentconsumerequipmentimplementationsofOFDMlike802.11aand 802.11gdonotimplementthiscomplexity.Thesestandardsuseacommonmodulationonallsubcarriers.Manufacturersofproprietarysolutionsoffervarying levelsofcomplexitybasedupontheanticipateduseofthehardware.OFDM comesinmanyflavors,dependingonthemanufacturerandtheintendeduseofthe 63
Implementing802.11,802.16,and802.20WirelessNetworks equipment.Justlikealltheothertechnologieswe’vediscussed,theimplementationtrade-offsareselectedbythestandardsbodyorequipmentdesignerinorder tomaximizetheequipment’sutilityinagivenmarketspace. OFDM,becauseofitsflexibilityandhighspectralefficiencyisbeingconsidered asthetechnologyfor4thgenerationcellularsystems,andisbeingusedinmore andmorestandards-basedandproprietarydatacommunicationsproducts.Itisalso thebasisforwiredADSLtechnologyandsomeHDTVtransmissionsstandards.
UltraWideband UltraWideband(UWB)communicationssystemsarealsoreferredtoascarrier free,baseband,orimpulsetechnology.Thebasicconceptistogenerate,transmit andreceiveanextremelyshortdurationburstofradiofrequency(RF)energy. These“pulses”typicallyrangefromtensofpicoseconds(trillionthsofasecond) toafewnanoseconds(billionthsofasecond)long.Eachpulse,orburst,representsonlyoneortwocyclesofanRFcarrierwave.Theresultingwaveformsare soextremelybroadthatitisoftendifficulttodetermineanactualRFcenterfrequencyofthetransmission.TheearliestmethodsofUWBsignalgenerationused afastrise-timepulsecoupledtoawidebandantennatogeneratetheRFsignal. Infact,theearliestradiosignalsgeneratedbyHertzandMarconicouldbecalled ultrawidebandbecausetheyweregeneratedinaverysimilarwayandoccupied vastamountsofspectrum.IntheHertzandMarconitransmitters,asparkwas usedtoexciteatunedcircuitandantenna,thusgeneratingaverywidebandsignal thatcoveredfrequenciesfromtensofkilohertztotensofmegahertz.Suchspark gaptransmitterswerethenormintheearlydaysofradioandwereusedtotransmitthedigitalcodeoftheday:Morsecode. Asradioadvancedincomplexityandutility,itbegantocontrolthecarrierfrequencymorecarefullyinordertoallowmanyuserstousethetechnology.Control ofoperatingfrequencywasneededinordertoallowanalogmodulationlikeAM tobeused,andtoallowcoexistenceofthemanyvoice-basedradiosystemsthat werecomingintouse.Thesparkgaptransmitterwithitswidebandspectraloutput couldnotsupportanalogmodulationandcouldnolongerbeoperatedonaninterferencefreebasisbecauseitsoutputoverlappedsomanyassignedchannels.
64
BasicRadioandRFConcepts ModernUWBsystemstakeadvantageoftheextremelysensitiveRFamplifier technologycurrentlyavailable,andthereforerequiresubstantiallylesstransmit powerthantheirsparkgappredecessors.Infact,modernUWBsignalsareofsuch alowspectraldensitythattheoutputofasingletransmittermaybeindistinguishablefromthenoisefloor. SinceUWBwaveformsareofsuchshorttimeduration,theyhavethepropertyof relativeimmunitytothemultipathcancellationeffectsobservedinmobileandinbuildingenvironments.AsdiscussedinChapter3,multipathcancellationoccurs whenastrongreflectedwavearrivespartiallyortotallyoutofphasewiththedirectpathsignal,causingasignalcancellationatthereceiver.Becauseofthevery shortpulses,thereceivercanbetimedtolookforthedirectpathsignal.Sincethe reflectedsignalarrivedbywayofalongerpath,ittakesmoretimetogettothe receiver,thusitistimedelayedinreferencetothedirectpath.Thereforeitisquite possiblethatthedirectpathsignalhascomeandgonebeforethereflectedpath arrives;thusnocancellationcanoccur.ThismakesUWBsystemswellsuitedfor nomadicormobilewirelessapplicationswhereconstantmultipathleadstofading andsignalintegrityissues. Sincethebandwidthofthegeneratedsignalisinverselyrelatedtopulseduration, thespectralbandwidthoccupiedbythesewaveformscanbemadequitelarge. Thereforetheresultingenergydensities(transmittedwattsofpowerperhertzof bandwidth)canbequitelow.Thislowenergydensitytranslatesintoalowprobabilityofinterferencetootherservicesalsooccupyingtheband.Thisisnotto saythattheycanoperateonaninterferencefreebasis.Thelawsofphysicsstill rule,andeveryUWBsignalthatisgeneratedaddstothenoiseflooroftheband inwhichitoperates.Anyriseinnoisefloorhasanegativeeffectontheoperation ofotherradiodevicesduetotheneedformorepoweratthereceiverinorderto overcometheincreasednoisefloor. OneoftheadvantagesofUWBtechnologyislowsystemcomplexityandlow cost.UWBsystemsareinherentlydigitalbecauseoftheirimpulsenature,andcan beconstructedwithminimalRFrelatedelectronics.BecauseoftheirinherentRF simplicity,thesesystemsarequitefrequencyagile,thusenablingthemtobeeasily designedtooperateanywherewithintheRFspectrum.
65
Implementing802.11,802.16,and802.20WirelessNetworks DuetotheinterferenceconcernssurroundingUWB,theFCChasnotauthorizedit foroutdooruse,andmanyothercountrieshavenotauthorizeditsuseatall.Most ofthefocusforthistechnologyisfordeploymentofaveryhighspeed(>200 Mbps)networkingtechnologytosupportshortrangecommunication(1to50feet) forin-buildingorin-roomnetworks.In2003,theIEEE802.15committeewas workingonastandardforjustsuchasolution.Whilemanyofthesolutionspresentedtothiscommitteeareimpulse-based,atleastoneofthesolutionsdiscussed wasawideband(>500MHz)OFDMsolution. So,itremainstobeseenwhetherimpulseUWBbecomesapervasivestandardfor datanetworks.Ithascertainadvantagesthatmakeitidealforlowcosthighperformancepersonalareanetworks,butitalsohasthepossibilityofdegradingother communicationsystemsifUWBequipmentissoldandusedinhighvolume.Even thoughthistechnologydifferssignificantlyfromconventionalRFdevices,froma systemdesignstandpointitstillfollowsthebasiclawsofphysicsandthedesign guidelinesandtoolsusedfordesigningconventionalRFnetworkscanbeusedto designUWBsystemsaswell.
66
C H APT ER 3
Propagation,PathLoss, FadingandLinkBudgets ■ PathLossandSystemCoverage ■ FrequencyReuse
This page intentionally left blank
C H APT ER 3
Propagation,PathLoss, FadingandLinkBudgets Understandinghowradiowavespropagatethroughspaceiscriticaltothedesign ofanyradio-basednetwork.Radioisanelectromagneticwavewhosepropagation isaffectedbymanyvariables.Frequency,distance,terrain,objectsinthewave’s path,andreflectionsallhaveaneffectonthepowerofthewaveatanypointin space.Becauseofthemyriadofvariablesaffectingthewave,itisimpossibleto knowwithcertaintytheexactsignalstrengththewavewillhaveataparticular pointinspace.Statisticsplaysabigroleinunderstandinganddefiningthe“average”behaviorofthewaveinanenvironment. Thefrequenciesweareinterestedinarethoseabove700MHz,sincethisiswhere adequateamountsofspectrumhavebeenassignedtosupporthighbandwidth systems.Theupperlimittospectrumusefulforanon-lineofsightcommunication pathisaround6GHz.Abovethisfrequency,radiowavesbehavemorelikelight, andnolongerrefractaroundobjectsinthepath.Frequenciesinthe10to70GHz bandsareveryusefulforbuildingpoint-to-pointcommunicationlinksthatcanbe usedtoconnectcommunicationssitesbacktoahublocationfortrafficaggregation.Theyarealsousefulforextendinghighbandwidthconnectionsfromone locationtoanother. Radiowaves,likelightwaves,getweakerwithdistance.TheattenuationassociatedwithdistanceinanunobstructedpathiscalledFreeSpaceLoss(FSL).FSLis mathematicallycalculablebytheformula20Log10(FrequencyinMHz)+20Log10 (DistanceinMiles)+36.6,becauseitistheresultofthespreadingofthewaveas itpropagatesawayfromitssource.Theattenuationisalsofrequencydependent. Thehigherthefrequency,themoreattenuationwilloccuroveragivendistance. AsyouseeinFigure3-1,thelosschangefollowsa6dBperoctave(adoubling 69
Implementing802.11,802.16,and802.20WirelessNetworks 1 5 10 100 1000 2000 5000 1 10 25 50 100 foot foot foot foot foot foot foot mile mile mile mile mile 0 dB 10 db 20 db 30 dB 40 dB 50 dB 60 dB 70 dB 80 dB 90 dB 100 dB 110 dB 120 dB 130 dB 140 dB 150 dB 160 dB 1 GHz
2 GHz
5 GHz
10 GHz
Figure3-1:Chartshowinglossvs.distanceat1,2,5and10GHz
offrequencyordistance)or20dBperdecade(atenfoldchangeinfrequencyor distance)slope. SinceFreeSpacePathLosscanalsobedescribedasa20dBperdecadeloss,it meansifthesignalis–104dBm1milefromthetransmitter,itwillbe–124dBm 10milesaway,and–144dBm100milesaway.Ausefulgaugeforreal-worldapplicationis:A6dBpowerchangewilldoubleorhalvepathdistance.Thereason thatradiowavesattenuateinthismannerisbecause,likelight,thewavefront continuestoexpandspherically,thus,asshowninFigure3-2,thewavefrontenergyisspreadoveraneverwideningarea,thusreducingitsdensityatanysingle pointinspace. Whendiscussingfreespaceloss,morethanjustopticallineofsightmustbeconsidered.It’sobviousthatanunobstructedpathcontainsnoobjectsthatblockthe opticallineofsight.Howevertherealworldofradioisabitmorecomplexthan that.TheunobstructedpathneededforFreeSpaceLossrequiresthepathtobe bothopticallyclearandhaveaclearFresnelzonesurroundingit. Theareabetweenthetransmitterandreceivercanbedefinedbyaseriesofconcentricellipsoidsthatcorrespondtotheever-wideningfieldoftheradiowave. ThetermFresnelzonedefinestheshapeoftheseellipsesasacircularzonewith 70
Propagation,PathLoss,FadingandLinkBudgets
/
I 16
/
I 9
/
I 4
r1 2r 3r
Sphere area 4π r 2
4r
Figure3-2:Expandingwavefrontandareapowerdensity
aradiussuchthatthedistancefromapointonthiscircletothereceivingpointis somemultipleofahalfwavelengthlongerthanthedirectpath. Fresnelzone=43.3*SqrRoot(dMi/(FreqGHz*4)) WhyisaclearFresnelzoneimportant?Becauseradiowavesreflectoffobjects muchlikelightreflectsoffamirror.Figure3-3showstheeffectofhavingan
Direct Path
ath Reflected P
Figure3-3:Fresnelzone
71
Implementing802.11,802.16,and802.20WirelessNetworks objectoutsidetheopticallineofsight,andwithintheFresnelzone:reflections aregenerated.DefiningtheFresnelzoneasapointwithadistanceamultipleof ahalfwavelongerthanthedirectpathisdonewithgoodreason.Anobjectinthe Fresnelzonegivesrisetoareflection.Thatreflectionalsopropagatestowardthe receiver,onlyitarriveslaterthanthedirectwaveandoutofphasewiththedirect wavebyhalfwavelengthintervals.Sinceradiosignalsaresinewaves,beingahalf wavelengthoutofphasecauseswavecancellation. Effects of Small Reflections Transmitted Signal
Received Signal Direct Path Reflected Path
180° out of phase signals cancel at receiver
Direct Path
Reflected Paths
out of phase signals distort signals received
Figure3-4:Sinewaveandphasediagramillustratingwavedistortion Figure 3.4: Effects of multipath signals on signal integrity.
Also,sincethedirectwaveandreflectedwavesaretravelingoverdifferentdistances,theyarriveatthereceiverdisplacedintimeandphase.Sincethedirectand reflectedwavesarecarryingthesameinformation,thetemporalandphasedisplacementresultsindistortionofthereceivedwave.Theseeffectsareillustrated inFigure3-4. Thesedestructiveeffectsareknownasmultipathinterference.Theresultof multipathinterferenceisthatthearrivingwaveisnolongerpristine.Ithasbeen affectedbyrandomcancellationsthatreduceitssignalstrength,andthedistortions introducedbythetemporalshiftinthearrivingwaveshaveledtomoreuncertainty abouttheactualphaseandamplitudestatescontainedinthearrivingwave. 72
Propagation,PathLoss,FadingandLinkBudgets Thenetresultisalossofsignalintegritythatleadstoanincreasingerrorrateatthe receiver.AsingleFresnelzoneincursioncandegradethesignalatthereceiverby10 dBormore.That’senoughtoreduceyoursystem’scoveragedistancebyten-fold! Thesereflectionsalsointroducesignalfadingintotheradiolink.Becauseof movementoftheobjectscausingthereflections(likeleavesinthewind)theradio pathexhibitsfluctuationsknownasfading,whichresultsinrandomvariationsin amplitudeandfrequencyresponse.FadingeffectsareillustratedinFigure3-5, andcanmanifestitselfintwoforms:lognormalfadingandfrequencyselective fading.Iftheradiochannelhasaconstantgainandalinearphaseresponseovera bandwidthlargerthanthebandwidthofthetransmittedsignal,itisexhibitinglog normalorflatfading.Lognormalfadingcanbeseenasavariationinamplitudeof theentiresignal.Underthesefadingconditions,thereceivedsignalhasamplitude fluctuationsduetothevariationsinthechannelgainovertimecausedbymultipath.Inflatfadeconditions,thespectralcharacteristicsofthetransmittedsignal remainintactatthereceiver,onlytheamplitudevaries.Inotherwords,theentire channelfadesasaconstant. Ontheotherhand,iftheradiochannelhasaconstantgainandlinearphase responseoverabandwidthsmallerthanthatofthetransmittedsignal,the Flat fading: entire channel changes amplitude. dB
dB
dB
0
0
0
0
−10
−10
−10
−10
−20
−20
−20
−20
−30
−30
−30
−30
Sample 1
dB
Sample 3
Sample 2
Sample 4
dB 0 −10 −20
Frequency Selection Facing: Only certain frequencies are affected.
−30
Figure3-5:Fadingdiagramshowingflatandfrequencyselectivefading
73
Implementing802.11,802.16,and802.20WirelessNetworks transmittedsignalisundergoingfrequencyselectivefading.Inthiscase,the receivedsignalisdistortedanddispersedbythemultiplearrivalsofthemainand reflectedsignals.Theresultisthatthechannelnolongerfadesinitsentirety.Only certaindiscretefrequenciesareaffected.Theaffectedfrequenciesarethedirect resultofhalfwavelengthmultipletemporalandphasedisplacementofthearriving signals.Onlythosediscretefrequencieswithinthechannelthathappentohave anexact½wavelengthmultiplerelationshipwitheachotherareaffected.The resultoffrequencyselectivefadingisthatthereceivedsignalhas“holes”across thechannel.Frequencyselectivefadingcancause30dBormoreofattenuationat certaindiscretefrequenciesinthechannel. Itisinterestingtonotethatfadingeffectsareverylocalized.Fadingeffectsdiffer overdistancesofabouthalfawavelength.Inmanycasesmovingthereceiveror transmitterbyahalfwavelengthormorewillcauseacompletelydifferentsignal toappearatthereceiver. Youmayhavenoticedthisbehavioronyourcellphone.Therearemanyareaswhere thesignalmaybegoodinonelocationandpoorjustafewinchesaway.Turning yourheadcansometimesmeanthedifferencebetweenaconversationandnoise. Multipathanditsattendantfadingcannotbeeliminated,butitseffectsonsignal integritycanbelessenedbyincreasinglinkpowerorreceivesensitivity.Thiscan beaccomplishedby:additionalantennagain,additionaltransmitterpower,simplermodulation(withreducedthroughput),ormovingtheremotestationcloserto thebasestation. SincetheFCCsetsmaximumpowerlimitsoncommunicationchannels,therewill belimitsassociatedwithmaximumpathlengthssupportablebyagiventechnologyandmodulation.Thisisespeciallytrueofthoseassociatedwithpart15use, wherethepoweroutputsarequitelowinordertoallowoperationbyamyriadof deviceswithoutrequiringusagecoordination.Ifadditionalpowerorantennagain isnotavailableoruseable,thenreducingmodulationcomplexityanditsattendant reductioninthroughputmaybetheonlywaytomakethelinkwork. Fresnelzoneclearanceisatermnormallyassociatedwithpoint-to-pointmicrowavelinks.BydesigningthelinktoprovideaclearFresnelzone,freespaceloss canbeassumedasthepathlossattenuationfactorforthelink.IfaclearFresnel zonecannotbeachievedonapoint-to-pointlink,thenlargerantennasormore 74
Propagation,PathLoss,FadingandLinkBudgets transmitpowerarenecessarytoassurethatthelinkcanovercometheeffectsof multipathandprovidethequalityofserviceitwasdesignedfor. Inasystemwithabasestationservingmultipleenduserclients,likeawireless LANandmobile/portablecommunicationsystems,theremoteends(ortheusers) arelocatedwithinafieldofthree-dimensionalobjects.Insuchacase,allthose objectsbecomeFresnelzoneincursionsinadditiontobeingpotentialobstaclesto opticallineofsight.Thisleadstoanenvironmentwheremultipathcancomefrom alargenumberofsources,asshowninFigure3-6.Inthesimplestcase,alaptopcomputeronadeskinanoffice,therearemultiplereflectivesurfaces.Walls, filecabinets,people,windows,ceilings,floors,eventhedeskandlaptopitself cancausesignalreflectionsthataffecttheintegrityofthesignalasit’sreceived. Multipathinterferencealsoexistsinanoutsideenvironment,wherebuildings, vehicles,roads,trees,andpeopleprovidethereflectivesurfaces. Multipathisafactoflifeinmobileorportablesystemdesign.Becausetheremoteendisalwayslocatedamongamixofobstaclesandreflectiveobjects, andgenerallytheelevationoftheremoteendantennaislowerthansurrounding obstructions,theeffectsofmultipathandpathblockagemustbeconsideredwhen designingthesystem. Sofarwe’vejustseenwhateffectperipheralobjectshaveonthesignalpath.What happenswhenanobjectobstructsthepathcompletely?Inadditiontosomeofthe signalbeingreflected,thesignalgoingdirectlythroughitisattenuatedandsome ofthesignalgoingaroundtheobjectsedgesisrefracted.Insomecaseswherethe directpathisblockedbyanobstacle,theonlyavailablesignalatthereceiveristhe resultofareflectionorrefraction. Theamountofsignalthatisattenuatedbyanobjectdependsonitssizeandthe materialofwhichitisconstructed.Commonbuildingmaterialsandtheirattenuativepropertiesarelistedbelow:
Plasterboard Glasswallwithmetalframe Cinderblockwall Window Metaldoor Structuralconcretewall
75
3dBto5dB 6dB 4dBto6dB 3dB 6dBto10dB 6dBto15dB
R2
Dir
ect
R1
76
R3
Figure3-6a:Typicaloutdoorreflectorsofradiosignals
Implementing802.11,802.16,and802.20WirelessNetworks
Reflectors
chair
77 file c
abin
Figure3-6b:Typicalindoorreflectorsofradiosignals
et
Propagation,PathLoss,FadingandLinkBudgets
on cti e l or ref monit l l ct wa dire
Implementing802.11,802.16,and802.20WirelessNetworks Thesenumbersrelatetoeachinstanceofthesignalpenetratingthisconstructionmaterial,thereforeinatypicalsmallofficeenvironmentthesignalmaybe penetratingseveralplasterboardwallsresultinginanadditional9to15dBof attenuation.Metaldoorsorstructuralwallscouldalsobeobstructingthesignal, causingevenlargeramountsofattenuation. Theeffectoftheserandomobstaclesonthepropagationpathisknownasshadowing.Shadowingisnormallyofgreatconcernwhendesigningportableormobile systemsbecauseshadowingcanleadtolocalizedsignalstrengthchangesonthe orderof10to30dB,dependingontheenvironment.Shadowingoccurswhenthe remoteendismovedasufficientdistancesoastocausegrossvariationsinthe overallpathbetweenthetransmitterandreceiver.Theeffectiscalledshadowingbecausetheremoteendhasmovedintoanareathatresultsinitbeinginthe “shadow”ofsurroundingobjects.Duetotheeffectofmultipath,amovingreceivercanexperienceseveralfadesinaveryshortduration,orinamoreserious case,theremoteendmaystopatalocationwherethesignalisindeepfade.In suchasituationaslightmovementoftheremoteendantennalocationmayputthe receiveantennaintoabetterlocation.Anotherwaytoaccomplishthesamething automaticallyisthroughtheuseofdiversityreceiveantennas.Some802.11access pointsandclientcardshavethisfeature.Ifasingle-bandaccesspointhastwoantennasonit,itmostlikelyincludesdiversity.Manyclientcardsalsohavediversity antennas,butbecausetheyarehiddenwithintheshellofthecard,theyareimpossibletosee.Diversityiscommonlydeployedinportableandmobilesystemsin ordertoimprovethesystem’sabilitytodealwithfadingandmultipath. Sincefadingisalocalizedphenomenon,diversityworksbyallowingthereceiver tolistenontwoindependent,spatiallyseparatedantennas.Iftheantennashave enoughphysicalseparation,eachwillseeanindependentsignalthathascompletelydifferentfadingcharacteristics.Thereceiveristhenabletochoosethe betterofthetwosignals.Inordertohavecompletelyuncorrelatedsignalsateach antennatheantennasneedtohaveatleast10wavelengthsseparation.Inthisideal situation,diversitycanimprovethereceivesignalstrengthby3to6dB.Diversity willworkwithsignificantlylessantennaseparation;evena½wavelengthseparationwillprovidesomesignalstrengthimprovement.
78
Propagation,PathLoss,FadingandLinkBudgets
PathLossandSystemCoverage Nowlet’stakealookathowallthesevariablescanaffectthecoverageofferedby aradiosystem,andbegintolookatthetoolsyouwillneedinordertoanalyze, designandmanageasystem. ThefirstthingyouneedtodoisdeterminehowmanydBofradiopathlossthe equipmentcantolerateandstillfunction.Thisiseasilycalculatedonceyouhavea fewbasicbitsofinformationabouttheequipmentyouplantouse. Youwillneedtoknowthetransmitpower,thereceivesensitivity,theantenna gain,cableandconnectorlosses,anddiversitygainofeachstation(i.e.,basestationandclientequipment).ThesefactorsareusedtocalculateaLinkBudgetfor theequipmentbyusingtheformula: L[dB]=Ptx[dBm]+Gtx[dBi]−Prx[dBm]+Grx[dBi]+Gdv[dBi]−M[dB] WhereListhelinkbudgetindB,Ptxistransmitpower,Prxisreceiversensitivity,Misfadingmargin,GtxandGrxareantennasystemgainsonthetransmit sideandreceivesiderespectively,andGdvisdiversitygain.Antennasystemgain includesboththegainassociatedwiththeantennaandthelossassociatedwiththe coaxcableandconnectorsthatfeedit.Feedlineandconnectorlossisoneofthose easilyoverlookedsourcesoflossthatcanmakethedifferencebetweenareliable systemandonethatmaynotworkatall.Above1GHz,theimpedanceimbalance associatedwitheachcoaxconnectorcaneasilyadd0.5to1dBoflosstothesystem.Iftheconnectorsareofpoorqualityorareimproperlyassembled,thelosses perconnectorcanrisetoover3dB!Feedlinelossisalsosignificantatfrequencies above1GHz.EvenreallygoodcablelikeLMR-400coaxexhibits6.8dBofloss perhundredfeetat2.4GHzand10.6dBat5.6GHz.Keepthecoaxrunasshort aspossible,andmakesuretousehigh-quality,properly-assembledconnectors. Itisimportanttolookatboththebasetoclient(downlink)andclienttobase (uplink)communicationpaths.Often,thebasestationwillhaveamoresensitive receiver,amorepowerfultransmitter,anddiversity,whiletheclientendwillhave lowerperformanceduetosizeandpowerconstraints.Thiscanleadtoanequipmentdesignthatis“unbalanced,”meaningitcan“talk”fartherinonedirection thantheother.Ultimately,theuseablepathwillbedefinedbythelinkdirection havingthelowestperformance.Thelinkbudgetcalculatorspreadsheetincluded 79
Implementing802.11,802.16,and802.20WirelessNetworks ontheCD-ROMisanexpansionofthepreviousequationandisusefulforanalyzingtheperformanceofbothuplinkanddownlinkpaths,andrecommendingpower settingstoachievepathbalance. Thelinkbudgetisacriticalpartofthedesign,becauseittellsyouhowmuch pathlosscanbeovercomebythesystem.Thiswilldirectlyrelatetothecoverageavailablefromthesysteminanyenvironment.Thisonenumberisthekeyto determininghowwelltheequipmentwillworkinagivenenvironment. Forexample,let’sdesignapoint-to-pointcommunicationslinkwithofftheshelf 802.11bhardware.Commonoperatingcharacteristicsare:transmitpower+17 dBm,ReceiveSensitivityat11Mbps–84dBm,3dBofcoaxlossesinthecable thatconnectstheequipmenttotheantenna.Sincethisisapoint-to-pointfacility, asingle18dBdirectionalantennawillbeusedateachend,thusnodiversitygain isavailable.A10dBfademarginwillbeusedtoaccountforenvironmentalfactorslikeweather.Sincetheequipmentatbothendsofthelinkareidentical,only onepathlosscalculationneedstobeperformed.Ifthereisdifferentequipmentat eachend,thenacalculationneedstoberunforbothdirections.Selectthe“worst” performingdirectionasbasisforfurtheranalysis. Usingthesenumbersintheequationyieldsthefollowing: L=17dBm+15dBi−(−84dBm)+15dBi+0dB−10dB=121dB Thismeansthattheradiolinkcanovercome121dBofattenuationandstillremainfunctional. Assumingthatthispoint-to-pointlinkhasaclearFresnelzoneallowsustouse thefreespacelossformulae20Log10(FrequencyinMHz)+20Log10(Distancein Miles)+36.6.Becausethisis802.11bequipmentinthisexample,theoperating frequencyof2.4GHzisusedintheformula. Theresultofthecalculationshowsthatthislinkcanspanadistanceof6.7miles reliably.Ofcoursetoachievethisdistanceyou’dneedtodowhateverwasnecessarytomakesurethelinkwasoperatingwithaclearFresnelzone,becauseifthere isANYclutterinthepaththatencroachesontheFresnelzone,accordingtoFigure 3-7,youcanaddanadditional16dBoflosstothepath.Sousingourhandyreferences,a10dBchangereducedthepropagationdistancebyanorderofmagnitude, anda6dBlosshalvesthedistance,sothecoveragedropsto0.335miles,alldue toanobjectinthepaththatdidn’teveninterferewithopticallineofsight! 80
Propagation,PathLoss,FadingandLinkBudgets 160 150 140 130 120
Path Loss dB
110 100 90 80 70 60 50 40 30 20 10 0
1
10
100
1000
10000
Meters Free Space Loss (dB) Line of Site Loss (dB) Non-Line of Site Loss (dB)
Figure3-7:Freespacevs.lineofsightvs.non-lineofsightgraphfor2.4GHz
YoucanseeinFigure3-7thatfreespacelossoffersahugerangeadvantage. OpticallineofsightwithanencroachedFresnelzoneoffersconsiderablyshorter paths.Thepathgetsshorterstillifanobjectactuallyblockstheopticallineof sightinthepath,asisthecasewiththenon-lineofsightcurveinthetable. Thisexamplewasusefulforapoint-to-pointlink,butwhataboutabasestationto clientlink?ThisisthetypeofsystemthatyouwillnormallyencounterwhendesigningawirelessLANoraWirelessISPfacility.Inthesesystems,theuserwill belocatedinanenvironmentthatisfilledwithmultipathandshadowingeffects. Sinceyoucannolongerconsideronlyoneremoteendtothefacility,predicting theattenuationovertheaggregatecoverageareabecomesimportant.Thisismuch easiersaidthandone.Thenumberofinteractionsintheenvironmentbecomes almostinfinite,andthereforeimpossibletopredictwithcompleteaccuracy.Still, 81
Implementing802.11,802.16,and802.20WirelessNetworks fromaplanningstandpoint,usinganaveragelosscalculationisusefulforestimatingcoverageandtheamountofequipmentnecessarytocoverthegivenarea. Usingthepathlossformulaeandthepathlossattenuationestimatorswillallow youtoestimatetheexpectedcoverageofanyequipmentyoumightbeconsidering.Thisisvaluablefromseveralstandpoints:itallowsyoutocomparethe performanceofcompetinghardware,itallowsyoutoestimatehowmanybase stationlocationswillbenecessarytocovertheintendedarea,anditgivesyoua benchmarkthatisbaseduponphysicsandyouractualoperatingenvironmentinsteadofequipmentmarketinghype.Overmycareer,I’veseentoomanyinstances whereequipmentwasrepresentedbaseduponanidealoperatingenvironment. Unfortunately,thisenvironmentisrarelyavailableintherealworld. Awordofwarning:thepathdistanceestimationsarejustthat:estimations.The actualcoveragemayvarywildlyfromtheestimatesifyoudidnotaccuratelycalculatetheeffectofobstaclesinanonlineofsightpath.Evenifyoudiddoagood jobofdeterminingtheattenuators,therewillstillbelocationspecificvariations incoveragethatarebasedupontherealinteractionofobjectsintheenvironment. Shadowingandfadingeffectswillcompoundthelossincertainareasbutnotin others.Theresultisthattheactualcoveredareawillbeirregularlyshaped,asseen inFigure3-8. Thephysicalenvironmentencounteredbyaradiodeviceoperatinginnon-Free SpaceLossconditionsisanythingbutbenign,andanythingbutpredictable. Thisisespeciallytrueinasystemservingmultipleportableormobiledevices. Intherealworld,actualcoveragewillvaryfromtheestimatesgeneratedusing simplepathlossequations.Thisisbecausethepathchangesateverypointwithin thecoveredarea.Topredictthepropagationofasignalaccurately,youneedto knowthegainandlossofeachpartofthesystem,includingthelossthroughthe propagationmedium.Whileequipmentspecificationsareeasyenoughtofind, determiningthepathlosscanbetricky. Thefactorsaffectingpropagationlossesinanindoorenvironmentaremultipath effects,localclutterandtheconstructionmaterialsusedintheenvironment.Inan outdoorenvironment,terrainandmorphology(landuse)havethegreatesteffect onpropagationlosses.
82
Propagation,PathLoss,FadingandLinkBudgets
Figure3-8a:Predictedcoverage
83
Implementing802.11,802.16,and802.20WirelessNetworks
Figure3-8b:Measuredcoverage
84
Propagation,PathLoss,FadingandLinkBudgets Theunevenpropagationlossesacrossthecoveredareaaffectnotonlydesired coverage,butundesiredcoverageaswell.Howcancoveragebeundesired?If a“foreign”signalisonthesamefrequencyasthedesiredone,itcancausean increaseinnoiseorcauseinterference.Thiscausesareductioninsystemperformancebecauseofthedeleteriouseffectofhavinganundesiredinterferingsignal inthecoveragearea.
FrequencyReuse Radiospectrumisascarceresource,sothereisneverenoughavailabletoallow everyradiofacilitytohaveit’sownuniquechannel.EvenradioandTVbroadcasters“reuse”thelimitedpoolofassignedfrequenciesonacitybycitybasis. Theconceptoffrequencyreuseissimplytheuseofthesamefrequencyin multiplelocationswherethereissufficientphysicalseparationsoastoallow interference-freeoperationbyallusersofthefrequency.InTVbroadcastyoucan seethiseffectintheassignmentofchannelsalongtheEasternSeaboard.New YorkCitybroadcastersareallocatedchannels2,4,7,9,and13.Philadelphia, 90milesawayisallocatedchannels3,6,10,and12.WashingtonDC,170miles fromNewYorkissufficientlydistantthatchannels2,4,7,and9canbeusedagain becausetheinterferencecontourgeneratedbytheeitherstationneveroverlaps withthedesiredcoverageareaofeitherstation. Thesameconceptisusedwhendeployingafixedormobiledatanetwork,although theco-channelseparationdistancesaremuchshorter.Whenplanningasystemthat hasmorebasestationsthanchannels,areuseplanmustbeimplemented.Ifyouare designingpoint-to-point(PTP)links,antennaaperturecanbeusedtocontrolthe coverageareaofasite,andmakechannelreusepossibleatveryclosedistances. InaPTPlink,youknowexactlywherebothendsofthecommunicationchannel arelocated,soyoucanfocusyourRFenergyatoneuniquepointinspace.Youdo thisbyselectingveryhighgaindirectionalantennas.Bytheirnature,theseantennashaveverynarrowapertures,sometimesasnarrowasafewdegrees.Asyousee inFigure3-9,theseantennashaveaverynarrowbeamwidthandoutsidethemain beamthesignalstrengthfallsrapidly.Thisprovidestwobenefits:first,thereceivers donotseeallthenoiseandinterferenceintheenvironment,onlywhatexistswithin
85
Implementing802.11,802.16,and802.20WirelessNetworks
Figure3-9:Antennapatternofamicrowave parabolicdishantenna Figure 3.9: Antenna pattern of a microwave parabolic dish antenna.
thenarrowapertureoftheantenna.Second,thetransmitenergyiscontainedina verysmallarea,soitdoesnotgenerateinterferenceoveralargearea. Withtheproperantennas,powersettings,andangularseparationofstations,one canreusethesamechanneltoserveseverallinksoriginatingonthesamerooftop. ThisconceptisseeninFigure3-10. Thesituationbecomesmorecomplexwhenreuseisrequiredinasystemthatprovidesconnectivitytovariousfixed,portableandmobileusersinterspersedaround acoveragearea.Inthissituationtheantennaneedsawidefieldofviewinorder toservemultipleusers.Thepropagationoverthiswiderenvironmentwillbeless uniform,leadingtocompromisestosuchfactorsaspower,basestationlocation, andcoveragebeingmade.Thekeyinthisenvironmentistogetasmuchcoverage inthedesiredareaaspossiblewhilelimitingtheamountofRFenergyextending beyondthedesiredarea. Inapurelytheoreticalworldcomposedofflatspace,eachbasestationwouldhave auniformcircularcoveragepattern.Thesizeofthecirclewouldbebasedupon theheightoftheantennaandthemaximumpathlossofthesystem.Adjacent 86
Propagation,PathLoss,FadingandLinkBudgets Ch
.3
.1
Ch
.1
Ch
Ch. 3
Figure3-10:Illustrationofreuseon acommonrooftop
siteswouldbeplacedsoastohavetheminimumoverlapnecessarytoassurethat allareaswerecoveredwithoutgapsorholesinthecoverage.Theseoverlapping circularcoverageareascanbeviewedashexagons,witheachhexagonside definingthelocationwheresignalfromadjacentbasestationsareequal.Althoughsuchconditionsdon’texistintherealworld,theexerciseisstillusefulfor systemplanning,becauseitallowsyoutovisualizecoverageofindividualbase stations,andidentifythebestfitlocationforalltheneighboringbasestations. Figure3-11showstheprogressionfromcirclestohexagonsandshowsthereal coverageachievedfromasite.Asyoucansee,thereal-worldcoverageisneither circularnorhexagonal.Insteaditisamorphous,itsshapebeingdeterminedbythe environmentthroughwhichthesignalpropagates. Fornowlet’sfocusonassigningchannelstotheindividualsites,andcreatinga reusepattern.Theprimarypurposeofthereusepatternistodivideandassignthe availablefrequenciesinaregularrepeatablepatternthatseparatestheco-channel andadjacentchanneluserssufficientlyastocontrolinterference.NotethatIsaid control,noteliminate,interference.Ifreusedistancesweresogreatastoeliminate allpossibilitiesofinterference,thenspectralefficiencywouldsuffer.Assuming youhaveenoughchannels,thekeyistofindaspacingthatisadequateenoughto providesufficientC/IorEb/No(energyperbit/noiseinchannel)protectiontothe majorityofthedesiredcoveragearea. 87
Implementing802.11,802.16,and802.20WirelessNetworks
Figure3-11a: Simplecircles candefinea coveredarea forplanning purposes.
Figure3-11b:Overlapping circlesaremoreeasilygriddedas hexagons.Thisisusefulforlarger networksandcoverageareas.
Figure3-11c:Butreal-world coverageisamorphousandwill notmatchsimplegeometric planningguidelines.
Reusepatternsof1,3,4,7,9,12,and21arecommonlyusedincommercialtelecommunicationsnetworkslikecellularphonesystems.Thereusepatterncanbeused withomnidirectionalantennas,or,ifmoreprotectionandcapacityisneeded, directionalantennas(andalargerchannelset)maybeused.Thereusepatternis selectedbasedupontheC/Ineedsofthetechnologyinuseonthenetwork.As Figure3-12shows,thesereusepatternsarenothingmorethanaregular,repeatabledistributionofchannelstoeachbasestation.Byusingsuchapatternyoucan gridoutyoursysteminsuchawayastogenerallyprovideseparationbetween co-channelbasestationsthatissufficienttoassuretheinterferencelevelswillnot negativelyimpacttheusersofthechannel.Ofcourse,asyousawinFigure3-11c, theactualcoverageisneverperfectlyfitwithinthesimplecircularorhexagonal grid,soopportunitiesforinterferencebetweensitesstillexist,eveninthebest plannedsystem.Thisopportunityforinterferencecouldbeeliminatedbyselecting areuseplanwithmorespacingbetweenco-channelsites,howeverthiswouldreducethecapacityofthenetwork,leadtoinefficientuseofspectrum,andincrease thecostofthenetwork. Theamountofinterferencegeneratedinthereuseareaishigherforsmaller reusepatterns.AsyoucanseeinFigure3-12,areusepatternof1offerslittleC/I 88
Propagation,PathLoss,FadingandLinkBudgets N=3
N=1
1 1 1
1 1
1 1
1 1
1 1
2
1
1 1
1
3
1 1
1
1 2
3
1
3 1
2 4 3
3
7
2 4
2 4
1 2
3
2
3 1
1
3 2 3 1
N=7
2 4
3
2
1
1 2
1
N=4
1
3
3
1
1 6
4
3
3 4 5 2
7
1
6 2 7 3
1
1 6
4
Figure3-12:Commonreusepatterns Figure 3.12: Common Reuse Patterns.
protection:neartheedgeofcoverage,powersarenominallythesamefromboth basestations.ThispatternisusedinCDMAsystemsthatutilizedynamicpower control(DPC)tominimizeinterference.EvenwithDPC,nosinglebasestation canreachitsfullcapacityorcoveragepotentialwhenitissurroundedwithcochannelreusesites. Often,anequipmentmanufacturerwillstatetheminimumC/I,Eb/NoorSNR requirementsoftheirequipment,andmayevenrecommendareusepatterntouse withtheirequipment.Optimizedreusepatternsarecommonlyfoundincommercialradionetworks.Reusecanbeoptimizedtominimizeinterferencebecausethe spectrumislicensedtoandmanagedbyacarrier. 89
Implementing802.11,802.16,and802.20WirelessNetworks
Nreuse Pattern 1
OmniC/I 0
Omni Channels Required 1
120 degree C/I 2
Sector Channels Required 3
3
7
3
11
9
4
9
4
14
12
7
14
7
19
21
9
16
9
21
27
12
19
12
23
36
21
23
21
28
63
ApproximateachievableC/Iandchannelrequirementsfor variousreusepatterns
Usingtheunlicensedbandsleadstotheinabilitytomanageareuseplanbecause youarenottheonlyuseroftheband.Evenifyoucouldfindsufficientchannels tocreateanoptimizedreuseplan,thefactthatothersareusingthesamespectrum meansthatyoucannotoptimizethereuseplantosuitbothyourinternalfrequency requirementsandthoseofotherusersaroundyou.Forthisreason,unlicensedfrequencieswillhavegreatdifficultyprovidingubiquitoushighqualityareacoverage. Currentpublicstandardsforunlicensedspectrum,like802.11bwereinitiallydesignedforindoorLANextensionapplications.Therewasmoreconsiderationgiven toefficiencythanwasgiventosupportingclosespacedreuse.Theresultofthisis thatthe2.4GHzbandsupportsonlythreenonoverlapping802.11bchannels. Thismeansthat,likeitornot,areusepatternof3isthebestyoucangetusing 802.11bequipment.Thiswillcausesomelimitationsvis-à-visinterferencefreeoperation.Thiswillbeespeciallytruewhendeployingnetworksinmultistorybuildings. Thereuseexampleswe’velookedatsofarhaveonlyconsideredreuseintwo- dimensionalspace.Whenathirddimensionisadded,theworldgetsmorecomplex.Inamultistorybuilding,eachfloorcanusetheN=3reusepattern.Thismay workOKonasinglefloor,butwhathappensonfloorsaboveandbelow?Since, desiredornot,therewillbepropagationbetweenthefloors,thisleadstoanother sourceofinterferencethatneedstobeconsideredinthereusepatternusedon eachfloor. 90
Propagation,PathLoss,FadingandLinkBudgets Thinkofeachbasestationinthismultifloorbuildingashavinganovoidcoverage pattern.Itwon’tbecircularbecauseoftheaddedattenuationofthefloorandceiling.Thelargestcoverageareawillbeontheintendedfloor,butthetopandbottom oftheovoidwillextendtothefloorsaboveandbelowthecoveredfloor.Let’ssay thateachfloorrequiresfourbasestationstoprovidecoverage.Thatmeansinan 802.11bnetworkthatonechannelwillneedtobereusedoneachfloor.Inother wordsoneofthethreeavailablechannelswillprovidecoverageto50%ofthe floorspaceonthetargetfloor.Nowthatsamereusedchannelhasthepotentialof causinginterferenceto50%ofthefloorspaceaboveandbelowit.Thisseverely limitstheselectionofinterferencefreereusechannelsonthesefloorsbecauseyou havetomanagenotonlytheinterferenceonthefloor,youalsohavetocoordinate andmanageinterferencefromtheadjacentfloors! Obviously,ifthereissufficientpropagationthroughthefloorsandceilings, therewillbeunacceptableinterferencefromonefloortoanother.Channelusage considerationsinsuchanenvironmentwillrequireanunderstandingofthepropagationcharacteristics,userthroughputrequirementsandtrafficcharacteristics. TheseconceptswillbefurtherdiscussedinChapter5.
91
This page intentionally left blank
C H APT ER 4
PropagationModeling andMeasuring ■ PredictiveModelingTools ■ SpreadsheetModels ■ Terrain-BasedModels ■ EffectivelyUsingaPropagationProgram ■ UsingaPredictiveModel ■ TheComprehensiveSiteSurveyProcess ■ SurveyActivityOutline ■ IdentificationofRequirements ■ IdentificationofEquipmentRequirements ■ ThePhysicalSiteSurvey ■ DeterminationofAntennaLocations ■ RFSiteSurveyTools ■ TheSiteSurveyChecklist ■ TheRFSurvey ■ DataAnalysis
This page intentionally left blank
C H APT ER 4
PropagationModelingandMeasuring Whendesigningasystemornetwork,itishelpful(ifnotimperative)toknowthe coverageareaprovidedbyeachsite.Thisisimportantfortworeasons:first,you wanttoassurethattheusersinthedesiredcoverageareaareservedwithahigh qualitysignal,andsecond,youneedtoknowhoweachtransmitteraddstothe interferencelevelsinsurroundingareas. Inordertoevaluatethecoveragethatwillbeprovidedbytheselectedhardware, eitherpropagationpredictionmodelsorphysicalsurveyscanbeused.Propagationmodelingisaccomplishedwithasoftwaretool,whilephysicalsurveysare accomplishedbytemporarilyinstallinghardwarethenmeasuringtheresulting coverage.Ifyouarebuildingfewtransmitterlocations,orareonlyconstructing systemsinsidebuildings,thesitesurveymaybethequickestandiscertainlythe mostaccuratemethod.Ifontheotherhand,youareplanningmultipleoutdoor sitesinvariousareas,thetimeandexpenseassociatedwithacquiringandlearning asoftware-basedpredictivemodelmayprovevaluable.
PredictiveModelingTools Intheearly1980s,thefirstlargescalecellulartelephonenetworksbegantobe plannedandconstructed.Inordertosupporttheseprojectsitwasnecessaryto developtoolsthatwouldallowreasonablyaccuratepredictionofRFpropagation. Withoutsuchtoolstheonlywaytoassessthecoverageofasitewastoperform alengthy,complexandcostly“drivetest”oneachsitealternative.Thisinvolved erectinganantennaattheappropriateheight(often100ormorefeetintheair), connectingatransmitteroperatingattheappropriatepower,andthendriving aroundthedesiredcoverageareawithaspecialreceivercapableofrecording signalstrengthandlocation.Obviously,thiswasamassiveamountofeffortwhen contemplatedforthousandsortensofthousandsoflocations. 95
Implementing802.11,802.16,and802.20WirelessNetworks Luckily,duringthe70sasignificantbodyofworkdefiningthestatisticalpropertiesofRFpropagationwasaccomplishedworldwide.Thisworkledtothe developmentofaseriesofalgorithmsthatdescribedthemeanbehaviorofRF overavaryingenvironment,terrain,andmorphology.Intheirsimplestforms, thesealgorithmsdescribedaseriesofcurvesthatidentifiedthepropagationloss perdecadeoverthevariousenvironments. Ascellularsystemsmatured,thecomplexityofcellularsystemsincreasedand additionalbandsathigherfrequenciesbecameavailable.Thisledtoadditionalrefinementofthealgorithmsusedtopredictpropagation.Thesepropagationmodels havenameslikeTIREM,HATA,Longley-Rice,andWalfish-Ikegami.Allaredifferingattemptstocharacterizepropagationindifferentenvironmentsaccurately. Itisimportanttorealizethatthesepropagationmodelsare,atbest,estimations ofreal-worldpropagation.Themodelsarebaseduponstatisticalbehavior,and thedatathatrepresentstheterrainandmorphologythatthesignalpropagation isevaluatedoverisrathercoarseandincomplete.Still,themodelsareusefulfor analyzingcoverageandinterferenceifyouunderstand,accept,anddesignaround theirlimitations.
SpreadsheetModels Intheirsimplestform,thesealgorithmscanbeimplementedinaspreadsheet thatisusedforcalculatingtheaveragecoverageareaofacommunicationsite forthepurposeofestimatingthenumberofsitesnecessarytoprovideservicein thedesignatedarea.Thoughtheyprovideamorerealisticestimationofcoverage thansimplefreespacelosscalculations,theystilldonothingmorethanallowyou todrawacircledescribingtherangeofasystem.Figure4-1showsthedifferent rangesachievablebasedonvaryingthepathlossslope.Obviously,itisimportant tounderstandtheaveragelosscharacteristicsoftheenvironmentbeforeselecting alossslope.Selectinganinappropriateslopewillleadtosignificantoverorunder estimationsoftheactualpropagationinthearea. Thissimplisticapproachcanbeusefulasafinancialplanningtoolbecauseit allowstheapproximatesystemcoststobeknown,butitisstillnotusefulfor designinganetworkthatwouldprovideknowncoverageinaknownarea,aswell aspredictinterferencelevelsoutsidethedesiredcoveragearea.Forthis,more complexmodelsarenecessary. 96
PropagationModelingandMeasuring
Figure4-1:Mapwithdifferentcirclesdescribingcoveragebased onvariouslossslopes
Terrain-BasedModels Thesemodelsneededtotakeintoaccounttheactualterrainandmorphology (landuse)withinthecoveragearea,andcalculatecoveragebaseduponthose characteristics.ThesemodelsbegintorepresenttheactualbehavioroftheRF signalbasedonwhatobstaclesitencounterswhilepropagatingoutwardfromthe transmitter.Thesamealgorithmsdiscussedaboveformthebasisforthesemore complexmodels.Thedifferenceisthatthemodelsareappliedoverknownterrainand(maybe)morphology.Thisisaccomplishedbyusingdigitalterraindata. Terraindataisavailablefromseveralsources,includingtheUSGS.Suchpublicly availabledatahasaresolutionof1km,100meters,30meters,and10meters. Thismeansthatthedataisaveragedintoablockofthesizeshown.100Meter dataaveragesalltheterrainina100×100metersquare,andrepresentsitasa singleelevation.10meterdataaveragestheterraincontainedina10×10meter square.Thisaveragingdoesleadtosomeinaccuracyincoverageprediction,soit isimportanttoacquirethehighestresolutiondataavailable.Morphologicaldatais 97
Implementing802.11,802.16,and802.20WirelessNetworks hardertofind.Itisnormallycustomdigitizedfromhighaltitudestereometricphotographs.Morphologicaldataisalsosomewhattimelimitedinitsutility,because treesgrowandnewbuildingsareconstructed. Modelingisaccomplishedbyplacingthesimulatedradiobasestationinamodeled environmentrepresentativeoftheactualareatobecoveredsosignalstrengthcould bepredicted.Thisisdonebylookingoutacrossthedigitallandscaperepresented bytheterrainandmorphologicaldata,andcalculatingthemeansignalstrength basedupontheenvironmentpresentinthatsingleslice.Eachmodelpredictsthe meanlossusingdifferentparameters,buttheresultsarethesame:aplotidentifying theexpectedpropagationoverlaidonaterrainmap,orroadmap,orboth. Inordertoaccomplishthis,largescalecomputingpowerisnecessary.Thefirst ofthesemodelswererunonmainframecomputers,andasprocessingpower increased,minicomputers.By1984,programsweredevelopedthatcouldrunon aPC.Todaymanyprogramsexistandareavailableforpurchaseorlicensefrom varioussources.Alloftheseprogramscanruneffectivelyonamoderndesktopor laptopcomputer.
EffectivelyUsingaPropagationAnalysisProgram Acquiringasoftwarepackageandoperatingitisnotthehardpart,effectivelyusingitis.Thereareanumberofissuesthatyoumustconsiderinordertoassurethe propagationpredictionsreflecttherealworld.Youmustmakesureyouhaveaccurateterraininformationandmorphologicalinformation.Inaddition,youshould dofieldmeasurementsfromanumberofsitesinvarioussettingsandcompare themeasuredresultstothepredictedresultsusingthetechnologyandbandyou areimplementing.Thiscomparisonwillshowwhetherthemodeloverorunder predicts,andallowyouto“tweak”variablesinthemodelinordertomakethe predictionslineupwithreality.Bydoingthisyougainconfidenceinthemodel, andeventuallyyouwillbeabletorelyonpropagationmodelingtopredictthe behaviorofnewsiteswithoutalwaysresortingtofieldtestsandsitesurveys. Propagationpredictionsoftwareisatoolmosteffectivelyusedbyengineerswith someexperienceinRFpropagation.Withoutacertainlevelofexperience,the toolprovideslittlevalue.Forexample,propagationpredictionsoftwareisonly asaccurateastheunderlyinginformationinthedatabaseitusesforpredicting 98
PropagationModelingandMeasuring coverage.Itisimportanttoacquirethehighestresolutionterraindataavailable.In additiontoterrain,thelandhasusage,ormorphologicalfeatures,suchasbuildings,roads,andtrees.Ifthesefactorsarenotconsideredinthedatabase,then accuracysuffers.Take,forexample,NewYorkCity.Becausetheterrainisrelativelyflat,ifyouweretouseterrainalonetopredictcoveragefromasitewith antennasat100feetelevation,youwouldpredictlargecoverageareafromany siteinManhattan.Theactualpropagationwouldbefarlessduetothehighdensityofbuildingsinthearea. ThecoverageshowninFigure4-2showsthedifferencebetweenpredictionsbased onterrainonly,andterrainplusaveragebuildingclutter.Whilethepropagation predictionismoreaccuratewithaveragebuildingclutterdataaddedtotheterrain,itisstillinaccurate.Theactualcoveragefromthesiteinquestionwould lookmorelikea“+”sign.Thesiteislocatedatastreetintersection,sothereisno blockagealongthestreetinthenorth-southandeast-westorientations.Therefore thesignalswillpropagatesignificantlyfurtherinthosedirectionsthaninanyother orientation.Thepredictivemodeldidnotidentifythisbecausetheaveragebuildingclutterdataandterraindatadidnothaveenoughresolutiontoidentifyroads vs.buildings.Manhattanisanareawheretheuseofdataacquiredfromstereo photographymayberelevant.Becausethedigitizedimagecontainsinformation abouttheactuallocationandorientationofstreetsandbuildings,aswellasthe actualheightofbuildingsandthelevelofthestreetsbetweenthem,itprovidesa muchmoreaccuraterepresentationoftherealworld.Thepropagationsoftware wouldbeableto“see”theactualenvironmentasaseriesofdeepnarrowcanyons (streets)amongsttalldensecanyonwalls(buildings).Usingthistypeofdata insteadofaverageterrainandmorphologywillallowsignificantlymoreaccurate propagationprediction.Thedownsideofthisapproachiscost.Thedatabasegeneratedfromthestereophotograpyisquiteexpensivetoobtain. WhileManhattanisanextremeexample,thesameinaccuraciespropagatedbythe useofaverageterrainandmorphologywillexistinanyareawheretherearenaturalormanmadeobjectsontheground.Theseobjectsaffectpropagationbyboth blockingtheradiopathandbyprovidingreflectivesurfacesthatcausemultipath. Boththeseeffectsleadtosignalattenuationintherealworldthat,dependingon theaccuracyoftheterrainandmorphologicaldatabases,maynotbeappropriately consideredbythepropagationmodel. 99
Implementing802.11,802.16,and802.20WirelessNetworks
Figure4-2a:PredictedManhattancoveragebaseduponterrainonly
100
PropagationModelingandMeasuring
Figure4-2b:Manhattancoveragebaseduponmorphology
101
Implementing802.11,802.16,and802.20WirelessNetworks Thisiswhyfieldsurveysarenecessary.Thesurveyprovidesactualcoverage informationthatcanbecomparedtothepredictivemodel.Bycomparingthetwo resultsyoucanbegintounderstandtheaveragepropagationofradiosignalsin differentenvironments.Infact,thisishowthepredictivemodelswereinitially created.Millionsofmeasurementsweretakenindifferentenvironments,andthe resultsweregraphedassignalstrengthvs.distancefromthetransmitter.Statisticalanalysiswasdoneontheresults,andadeterminationoftheaveragelossover distanceandimpactofdiffractiveandreflectiveobjectswasdetermined.These statisticalresultswerethenrepresentedasasetofalgorithmsthatareusedinthe predictivemodelstocharacterizepropagationacrossagivenenvironment.Of course,youwillnotneedmillionsofdatapoints.We’renottryingtocreateanew algorithm,justverifytheaccuracyoftheonewe’vechosen. Byusingacombinationofpredictedpropagation,fieldsurveys,plusintuitionand logic,youcanestimatethecoverageavailablefromasite.Let’staketheManhattanexample.Thepredictionbasedonterrainaloneisuselessfordetermining generalcoverage.Itis,however,representativeofthecoverageachievedonthe streetsindirectviewofthesite,thusthe“+”shapedefinestheextendedcoverage areaassociatedwiththeimmediatecrossstreets.Thebuildingssurroundingthe sitewillattenuatethesignalbyover25dBeach,soyoucanassumethattherewill besomeinbuildingcoverageinthebuildingsdirectlyadjacenttothesite,butthe interveningbuildingswillattenuatethesignalsomuchthatthesignalwillnotappearinbuildingsablockaway.Giventheseassumptions,youcouldestimatethe coveragetobesimilartoFigure4-3. TheastutereadermayhavenoticedthatIhaveshowncoverageexpectationsfor theaboveexamplewithoutrepresentinganumberofkeyfactors.Whatfrequency wasused?Whatantennas?Howmuchtransmitpower?Whatreceivesensitivity? Whatcableloss? Inadditiontoterrainandmorphology,thesefactorsneedtobeknowninorder toeffectivelyuseanypropagationmodel.AsdiscussedinChapter4,theseare thecriticalfactorsfordeterminingmaximumpathloss,andareamongthekey variablesusedbythepredictivemodelingsoftwaretocalculatecoverage.
102
PropagationModelingandMeasuring
Figure4-3:Real-worldcoverageestimatedrawing
103
Implementing802.11,802.16,and802.20WirelessNetworks
UsingaPredictiveModel Let’stakealookatsomeactualpropagationmodelingsoftware,andloaditup withreal-worlddataandsystemvariables.ThesoftwarethatgeneratedthepropagationplotsinthisbookisaprogramcalledRadioMobileDeluxe,writtenby RogerCoudéandmadeavailableasfreeware.Acopyofthisprogramhasbeen includedontheCD-ROMaccompanyingthisbook.Rogerisconstantlyupdatingtheprogramandaddingnewimprovements,soyoumaywanttocheckand seeifanewerversionisavailable.RadioMobileisbasedupontheLongley-Rice propagationmodel,andaddsseveralmorphologicalcorrectionfactorswhichcan beusedtochangethemodeltomorecloselypredicttheactualpropagationinan areabaseduponlanduseandterrain.AsshowninFigure4-4,accuratelysetting thesemorphologicalparametersiscritical.Thebestwaytodeterminetheright parametersisbydoingsitesurveysinareassimilartothoseyouwishtocover. Oncethisreal-worlddataisavailable,itcanbecomparedtothemodeledresults, andthemorphologicalparametersassociatedwiththedifferentareascanbe “tweaked”untilthepredictedbehaviorcloselyapproximatesthemeasureddata. Todothis,lookatareaaveragesandtrytogetthemtomatchascloselyaspossible.Rememberthemodeldoesnothaveactualmorphology,soitdoesnotknow whereindividualroads,trees,andbuildingsarelocated.Becauseofthisthemodel cannotaccuratelypredictlocalshadowingcausedbytheseobjects.Thebestitcan doispredicttheaveragepropagationbehaviorinanareabaseduponanaverage morphologicaldensity.Thereforeyoushouldnotexpectabsoluteaccuracyof predictionsagainstmeasurements.Theaccuracyofthemodelincreasesthefurther yougetoutoflocalclutter.Ifbasestationandfarendequipmentislocatedabove theleveloflocalbuildingsandfoliage,themodelwillpredictmoreaccuratelybecausetheclutterisnownothingmorethanasourceofmultipath.Theclosertothe groundyouplaceoneofthestations,themorelocalmorphologicalfeatureswill begintoimpacttheaccuracybecauseofthelocalshadowingtheygenerate. Nonetheless,modelingisavaluabletool.Thoughitmaynotbeabletotellall,it canoftentellenoughaboutthepropagationinanareatogivealevelofcomfort aboutwhat,onaverage,toexpectasthecoverageprovidedbyabasestation.This canbeusefulforrankinglocations,orsimplycheckingtoseeifthecoverageofa siteappearssufficienttojustifyitscosts. 104
PropagationModelingandMeasuring Thefirstthingtodowiththisoranypropagationpredictionsoftwareistogather theappropriateterrainandmorphologicaldatabasesthatthemodelneedsforprediction.Alsogatheranydigitalstreetmapsthatyoumaywanttouseasbasemaps forplottingyourcoverageon.ThesetasksarestraightforwardwhenusingRadio Mobile,becausetheprogramisdesignedtoaccesspubliclyavailableInternet databasescontainingterraindataaswellasstreetmaps. ThenextrequirementistoknowtheRFperformancecharacteristicsofyourequipment.Theseincludefrequencyofoperation,RFpoweroutput,receivesensitivity, andantennacharacteristicsforboththebasestationandtheclientendequipment. ForthisexampleI’llusethefollowingRFcharacteristics,whicharesimilarto thoseusedforunlicensed802.11bequipmentoperatedinaWISPsystem:
■
Frequency=2450MHz
■
BaseStationTxpower=0.1W
■
BaseStationRxsensitivity=−94dBm
■
BaseStationAntennaPattern=360degrees
■
BaseStationAntennaGain=14dBi
■
BaseStationantennaazimuth=0degrees
■
BaseStationAntennaHeight=60feet
■
Cableloss=4dB
■
FarendTxPower=0.1W
■
FarendRxSensitivity=−94dBm
■
FarendAntennapattern=30degrees
■
FarendAntennagain=5dBi
■
FarendAntennaHeight=15feet
■
Cableloss=0dB
Thefinalrequirementisanestimationofthemorphologicalcorrectionfactorsto beaddedtothemodel.Thesecanbedeterminedbysitesurvey,orbyestimation fromknownpropagationbehaviorinsimilarareas. 105
Implementing802.11,802.16,and802.20WirelessNetworks Withtheaboveinformationloadedintothemodelandappliedtoterraindataonly itgeneratestheplotinFigure4-4a.Thisisprobablyanaccuraterepresentationof coverageinanopendesertorcoastalplain,butsincepopulatedareasdonothave thisopen,terrainonlycharacteristic,additionallossesduetothemorphologyof theareamustbeconsidered.Addinglossassociatedwithforestedmorphologyto theterrainyieldstheplotshowninFigure4-4b.Asyouseethissignificantlyreducesthepredictedcoverage,aswouldbeexpectedwhentryingtocoveranarea withdensefoliageatthesefrequencies.Figure4-4cshowsthepredictedbehaviorwhenthemodelistunedforthemorphologyassociatedwithatypicalnewly developedsuburbansubdivision,whichistheactualenvironmentbeingcovered bythissite.Thecorrectionfactorsselectedwerebasedupondatacollectedinthis andsimilarenvironments,andprovideareasonablyaccurateestimationofthe sitesreal-worldbehavior.Thisillustrationshowstheimportanceofaccurateterrainandmorphologicaldata.Italsoshowswhyyoushoulddosomefield-testing tovalidatepredictionsbeforeblindlybelievingtheoutput. Gatheringaccuratefieldmeasurementsisataskthatcanbeaccomplishedin associationwithcollectingotherinformationabouttheareawherethesystemwill bedeployed.Itcanbedoneaspartofacomprehensivesitesurvey.
TheComprehensiveSiteSurveyProcess Sincewearedealingwitharadio-basedwirelesstechnology,itexhibitstheirregularpropagationcharacteristicsofanRF-basedservice.Asdiscussedinprevious chapters,theRFsignalissubjecttofading,multipath,andmanyattenuation variablesalongitspropagationpath.Thesevariablescauseboththecoveredarea andthespotcoveragewithinthecoveredareatobedifficulttopredictaccurately. Onewaytodeterminecoverageaccuratelyisbyperformingasitesurvey.Thesite surveyinvolvesthetemporaryinstallationofequipmentandtheuseofmeasurementtoolstoactuallymeasurethesignalinthedesiredcoveragearea. SincetheRFsitesurveyrequiressuchasignificanteffort,itshouldbeconducted aspartofacomprehensivesitesurvey.Acomprehensivesurveywillconsider manyfactorsthatneedtobeknowninordertodeployasystemthatmeetsthe coverage,capacityandcostrequirementssetoutforthenetwork.Inaddition,the sitesurveycanbeaninvaluabletoolindeterminingwhatneedsandlimitations (likeavailabilityofpowerandnetworkconnectivity)existvis-à-visthesystem 106
PropagationModelingandMeasuring
Figure4-4a:Propagationmodeloutputplotsterrainonly
107
Implementing802.11,802.16,and802.20WirelessNetworks
Figure4-4b:Propagationmodeloutputplotsterrainplusforestmorphology
108
PropagationModelingandMeasuring
Figure4-4c:Propagationmodeloutputplotsterrainpluslowdensitysuburbanmorphology
109
Implementing802.11,802.16,and802.20WirelessNetworks installation.Thefollowingsitesurveyoutlineidentifiestheissuesthatneedtobe addressedduringthesurvey.
SurveyActivityOutline
■
■
■
■ ■
■
■
LocationIdentification • Latitude/Longitude • LocationAddress • Owner/ManagerContactInformation • StructureType — StructuralMaterial • Areaofdesiredcoverage Identificationofcustomerrequirements • Coverage • Capacity • Security IdentificationofRFZones • BasedonDesiredCoverage • Basedondesiredcapacity • Basedoninterferencemanagement • Basedonpowerandinterconnectavailability EquipmentandTechnologySelection SpectrumAnalysis • Identifyexistinginterferers RFSurvey • Measurecoveragefromtestlocations • Plotactualvs.desiredcoverageinarea Networkdesign • Interconnecttoradios • Interconnecttorestofnetwork • Capacity • Security • Accesscontrol • IPaddressing 110
PropagationModelingandMeasuring
EquipmentSelection • Transceivers — Make — Model — Frequency — Vendor • Antenna — Make — Model — Pattern — Vendor • MountingEquipment — Type/Description — Vendor • Network — Interconnect ■ Cable ■ Radio — Routers — Switches — Hubs — Accesscontrol ■ ConceptualDesign • RF • Network • Interconnect — RFsiteinterconnect — Networkinterconnect ♦ Tointernaldatanetwork ♦ ToInternet • Costs — Equipment ■
111
Implementing802.11,802.16,and802.20WirelessNetworks
— Labor — Recurring ■ Facilitieslease • Availabilityandcost ■ Sitelease • Availabilityandcost
IdentificationofRequirements Beforeequipmentcanbeplacedandmeasurementstaken,itisimportantto determinewhatisexpectedofthenetworkandhowitwillbeused.Theareato becovered,thenumberofusers,andtheservicesusedallhaveanintertwined relationship.Understandingthemwillbeofgreathelpindeterminingthebest equipmentsolutionandlocationstoeffectivelyservetheusersneeds. Forexample,thedesignrequirementsofasystemtoprovideInternetaccesstoa 20'by20'coffeeshopandprovideservicetofivesimultaneoususersissignificantlydifferentfromasystemdesignedtocoveranentire20,000squarefootoffice areaandallthecomputerusersinit.Differingevenmorearetherequirementsofa WirelessISP(WISP)thatwantstoprovideISPservicestoatownorcommunity. Inthefirstcaseabovetheroomissmallandtheusercommunityisalsosmall.It isrealistictoexpectthatasingle-accesspointlocatedwithintheroomwillprovidesufficientcoverageandcapacity.Theoutcomeofthesitesurveyinthiscase isdeterminationofthebestlocationfortheaccesspointbaseduponRFcoverageandeaseofgettingpowerandEthernetcablingtothatlocation.Thesurvey shouldalsoidentifywhatotherhardware,likearouterorgateway,isrequiredto implementtheservice. Thesecondcaseismuchmorecomplex.Howistheofficespacelaidout?What constructionmaterialswereusedininteriorwalls,ceilingsandfloors?Howare theusersdistributed?Whatconcernsdoesthecustomerhaveregardingsignal leakageoutofthebuilding?Whatcostdoesthecustomerhaveinmindtoprovide thissolution? AlloftheseissueswillaffectnotonlytheRFissuessurroundingthelocation,power level,antennaconfiguration,andchannelreuseofthesystem,butalsothenetwork requirementssurroundingtrafficsegmentation,security,routing,andswitching. 112
PropagationModelingandMeasuring TheWISPcasehasdifferentcomplexities.WhatareCAPEX,OPEX,andrevenue expectationsforthesystem?Whatarethereliabilityexpectations?Howbigan areaistobecovered?Whatarethelocationsofavailablesitesinwhichtoinstall theaccesspointorsimilarequipment?DoessufficientInternetaccessbandwidth existatthesesites?Ifmorethanonesiteisneededforcoverage,whatarethe availablebackhaulmethods?Whatistheterrainofthearea?Whatisthemorphologyofthearea?Howmanyuserswillbeinthecoveredarea?Whatwilltheir usagepatternsbelike?Howwilltheusersbedistributedacrossthecoveragearea? Howwillthesystemprovideaccesscontrol?Whatsecurityconcernsdoesthe WISPhave?WilltheuserhaveCustomerPremiseEquipment(CPE)locatedoutsidetheirhome,oristheserviceexpectedtoprovideRFcoveragetoCPElocated withintheresidence? Asyoucansee,thelargerthesystemdeployment,themorecomplexitbecomes. Knowingwhatisexpectedofthesystemisthefirststepinresolvingthebestmethod ofeithermeetingthoseexpectationsorsettingnewmorerealisticexpectations.
IdentificationofEquipmentRequirements Aftergaininganunderstandingofthecustomer’sneedsandexpectations,the implementershouldbeabletoselectequipmentthatbestsuitstheneedsofthe environment.Forexample,acheapconsumerquality802.11bAPmaybethe perfectsolutionforthecoffeeshop,becauseitisinexpensiveandincludesalowendrouter,DHCPserver,andprovidesNATfunctionality.Thusitisaone-box solutionforthisparticularenvironment. ThisconsumergradeAPsolutionwouldbeapoorchoicefortheofficeorWISP examples.TheofficesolutionhasneedofanAPwithfeatureslikeremote managementcapability,powercontrol,theabilitytouseexternalantennastocustomizetheareacoveredbyeachAP,thebestencryptionavailable,andtheability tobeupgradedwithnewfirmwaresoitcanofferstateoftheartcapabilitiesfor thelongestperiodoftime. TheWISP,ontheotherhandisprobablynotbestservedbyatraditional802.11b AP.Therequirementoflargeareacoveragefromminimumlocationsmeans thattheequipmentwillneedtobetailoredtohighEIRPdeviceswithhighgain antennas.Moreover,theequipmentwillbemountedoutdoors,thusrequiring 113
Implementing802.11,802.16,and802.20WirelessNetworks weatherproofingtobeadesignconsideration.Therearenumerouscompanieswho offersuchproducts(Motorola,Alvarion,Proxim,Navini,andVivatotonamea few)andnewonesseemtoenterthemarketeverymonth.Someofthesesolutions are802.11compatible,othersuseproprietaryairinterfacesolutions. Eachsolutionhasitsplaceinthemarket.Understandingtherequirementsofthe systemwillassistinselectingthemanufacturerandsolutionthatisbestsuitedto servingthoseneeds. Fortheremainderofthischapter,itisassumedthataworkingknowledgeofthe capabilitiesoftheequipmentbeingcontemplatedalreadyexists.Ifitdoesnot, thenoneshouldbecomefamiliarwiththecapabilitiesandexpectedcoverage oftheequipmentbeforeembarkingonthesitesurvey.Manyofthetechniques outlinedbelowcanbeutilizedtodeterminethecoverageandcapabilitiesofequipment,andcanbeusedtoevaluatetheequipmentinaknownenvironment.
ThePhysicalSiteSurvey Oncesystemrequirementsareunderstood,aphysicalsitesurveycancommence. Obtainasmuchexistinginformationaspossible.Itemsliketopographicmaps, satelliteimages,buildingblueprints,andsoforthwillbeinvaluableinplanning thesurvey. Withthesedocumentsinhand,youcanbegintophysicallysurveytheproperty. Walkordrivearoundtheareatobecoveredtogetavisualunderstandingofthe areatobecovered,notinganymajorobstaclestocoverage. Ifoutdoorcoverageisplanned,oneshouldlookforandnotedensetrees,buildings,andhillsbetweentheradiositeandthedesiredservicearea.Notehowfar awayyoucanphysicallyseetheradiositefromasmanylocationswithinthe desiredserviceareaaspossible. Forindoorsystemsnotethelocationofmetalorcementwallsandfloors,aswellas thelocationoflargemetalobjectslikerefrigerators.Alsonotethelocationof“utility walls,”i.e.,thosewallsthatcontaindenserunsofpipingandorelectricalcables. Determinewheretheequipmentneedstoobtainitsdataandpowerconnections. Ifthesurveyisofanofficebuilding,andtheequipmentneedstobeconnectedto 114
PropagationModelingandMeasuring anexistingcomputernetwork,notewherethisnetworkequipmentislocated,and hownewcableswillneedtoberoutedtogetthere. Ifremoteconnectionsareneeded,inotherwordstheconnectiontoadatasource doesnotresideonthesamesitebeingsurveyed,notewherethetelcofacilityroom islocatedonthepropertyandwheretheotherendoftheconnectivitymustgo. Alsonotehowcablesorwirelessfacilitiescanberoutedfromacentralpointof interconnecttotheradiositelocations,andwhetherthereisasecurespacewhere thenetworkandinterconnecthardwarecanbelocated.
DeterminationofAntennaLocations Determiningoptimalantennalocationsisthekeytoasuccessfuldeployment.An optimallocationservesamultitudeofneeds:itprovidesoptimalRFcoverage; meaningitcanbeoptimizedtoprovidesufficientcoverageoftheareawithout leadingtosignificantinterferenceelsewhereinthesystem,ithaseasyaccessto power,ithaseasyaccesstonetworkinterconnectfacilities,itcanbeeasilyinstalledandsecured,andithasreasonableaccessforfutureserviceneeds. Since802.11hardwareiseasilyavailableandhasalargebaseoftestingtools, I’lluse802.11asthebasictechnologytodiscussthedecisionsandtoolsrequired forsystemdesign.Evenifthesystemyouaredesigningisnot802.11-based,you canusethesameproceduresandcriteriaindesigninganetworkbasedon802.16, 802.20,oranyotherstandardorproprietarysolution. Thefirststepistoselectanequipmentsolutionbasedupontheneedsofthecustomerandtheenvironmenttobecovered.Selectsolutionsthatwillmosteasilyor mostcosteffectivelymeetthecoverageandcapacityrequirementsofthearea. OncetheequipmentisselectedyouhaveabaselinefortheRFtransmitpower, receivesensitivity,andantennaoptions.Aspreviouslydiscussed,thesenumbers areusedtodeterminetheavailablepathlossusingthefollowingequation:
L[dB]=Ptx[dBm]+Gtx[dBi]−Prx[dBm]+Grx[dBi]−M[dB]−Ca[dB]
WhereListhelinkbudgetindB,Ptxistransmitpower,Prxisreceiversensitivity, Misfadingmargin,Caistheattenuationofareaconstructionmaterial,andGtx andGrxareantennagainsonthetransmitsideandreceivesiderespectively.
115
Implementing802.11,802.16,and802.20WirelessNetworks Usingtheconservativepowerlevelsandantennagainsassociatedwithcommon APequipmentusedforindoorofficeLANtypedeploymentsyieldsthefollowing:
L=15dBm+0dBi−(−82dBm)+0dBi−10dB−8db=79DB
UsingthegraphfromFigure3-1(Chapter3),youcanseethatinanofficetype environmentwherethepropagationwillconsistofsomelineofsightandsome nonlineofsightpaths,theexpectedcoverageofasingleAPlocationcouldrange from60to150metersdependingontheactualconditionsofthepath.Ifnointeriorwallsblockthepath,thesignalwillpropagatefurther.High-densitywallswill attenuatethesignalmoreseverely. Remember,thisisasimplegraph,anddoesnottakeintoaccountallthepropagationvariablesthatwillbefoundinthefield.Thedistancesderivedfromthegraph areaveragenumbers.Therewillbeareasofabuilding(likecentralcoresand elevatorshaftsinahighrisebuilding)thatexhibitfargreaterattenuationthanthe averageintheofficeenvironment.Thisiswhyasitesurveyishelpful:itallows youtomeasuretheactualpropagationenvironmentsoyoucandecideprecisely whereradiositesshouldbelocatedinordertoprovidebestcoverage,capacityand interferencemanagement. Dependingonthephysicallayoutofthespacetobecoveredandtheavailability ofpowerandinterconnect,anumberoflocationoptionsareviable:youcoulduse anomniantennalocatedontheceilinginacentrallocation,oryoucoulduseadirectionalantennalocatedhighupinacorneroralonganoutsidewallandpointing towardthespacetobecovered. PossiblesolutionsareshowninFigure4-5:
Central
Corner
Quadrant
Figure4-5:Basestationlocationoptiondiagrams Figure 4.5: Base station location options within a building.
116
Combination
PropagationModelingandMeasuring Realbuildingsmaynotbesquareorrectangular,howeverthesamelocationopportunitiesexistregardlessofthebuilding’sshape.AsshowninFigure4-6,one methodofbreakingupasimpleorcomplexfloorplanistogriditintosquares thatapproximatethecoverageyouexpectfromeachbasestation.Bygridding thefloor,yougetasenseofhowthespaceisorganized,andyoucananalyzethe userdensitywithinthegrid.Ifyoufindtoomanyusersinasquare,breakitdown furthersoyoucanseetheactualareathatneedstobeservedbyeachbasestation inordertoaccommodatecoverageandcapacityneeds.Withtheareasodivided, theselectionoftechnologyandtheidealplacementofbasestationequipmentcan becomemuchclearer.
“U” Shaped
Square or Rectangular
Square or Rectangular with Elevator Core
“T” Shaped
By breaking down the area to be covered into a series of grid squares, sized to approximate the reliable coverage area of the technology, each area can be designed with the appropriate base station locations to serve it while minimizing interference in other areas. Figure 4.6: Common Building Layouts.
Figure4-6:Buildinglayoutsandgridding
RFSiteSurveyTools NowthatpossibleAPortransmittersitelocationshavebeenidentified,it’salmost timetodosometestingandmeasurementofthesignalstrength,noise,andinterferenceintheenvironment.Beforeyoucanbeginmeasuringthesevalues,you needtoacquiretestequipmenttodothemeasurementanddatacollection.Luckily suchhardwareandsoftwareisreadilyavailableandinsomecasesfree. Ifyouareusingproprietaryhardwareitwillbeuptotheequipmentproviderto supplythemeasurementsoftwareandprocedures.Ifyouareusingastandard 802.11solutiontherearenumeroussoftwarechoices. 117
Implementing802.11,802.16,and802.20WirelessNetworks Therearethreeclassesofmeasurementandtestsoftwareavailablefor802.11 RFtestingandmonitoring,eachhavingitsownbenefitsandlimitations.Thefirst classistheclientmanagerthatisincludedwithmostclientcards.Itisthesimplesttoolandhasfewornofeatures.SomecandisplaythesignalandSNRofthe accesspointtowhichyouareconnected,othersonlyshowabargraphofsignal strengthandthespeedatwhichyouareconnectedtotheAP.Stillothers,likethe LucentOrinococlientmanagershownbelow,canshowallactivechannelsinthe vicinitysolongastheyareassociatedwiththesamenetworkandhavethesame SSIDInadditiontheyshowtheMACaddressoftheAP,thesignalstrength,noise level,andSNR.TheOrinococlientmanageralsohasrudimentarydatalogging capability.Itcansavethemeasurementresultson1secondorgreaterintervals automatically,oritcanbesetupformanualloggingwheretheusermusttellit tologameasurementandprovideatextexplanationtogowiththemeasurement. Thismanualmodecanbeusefulfortaking“waypoint”measurements,inother wordsmeasurementsthatarecorrelatedtoaknownpointinspace. Thisclassofsoftwarecanbeusefulinsmall-scalesitesurveys,likethecoffee shopexamplementionedearlier,ortouseinspot-checkingcoverageinalarger deployment.Itcanalsobeausefultroubleshootingtoolbecauseeachuserofthe networkwillhavethissoftwareinstalledintheircomputerwhenthewirelesscard isinstalled.Afirstechelonoftroubleshootinguserproblemswouldbetohavethe useropentheclientmanagerprogramandlookattheinformationdisplayed. ThenextclassofsoftwarecontainsthefreesolutionslikeKismetifyouuse Linux,orNetstumblerifyouuseWindows.Bothhavesomelimitationvis-à-vis theclientcardsandGPSformatstheysupport,socaremustbetakentoassure compatibilitywiththerestofthetestsetup.Thebigbenefitofthesesoftware packagesistheirimprovedfeatureset.TheycanbeusedtomonitorallAPactivityonallchannelssimultaneously.InadditiontheyhaveaGPSinterface,which makesthemmuchmoreusefulifoutsidemeasurementsarecontemplated.They logdatatoafile,andhavetheabilitytoexportthesefilesinanumberofformats forpost-processingandanalysis. ThefinalclassofsoftwareisthecommercialpackagelikeAiropeek,AirMagnet, andEkahauSiteSurvey.Thesepackagesaresignificantlymorefunctionalthanthe freewarepackages.TheyalsohavecompatibilityissueswiththeClientCardsand 118
PropagationModelingandMeasuring GPSformatstheyworkwith.Theyarealsoexpensive:$1000to$2500percopy ofthesoftware.Itisalsoworthyofnotethattheyhaveallbeendesignedwith certainpurposesinmind,andtheydonothave100%overlapofcapabilities. Forexamplealloftheabovesolutionsarecapableofcollectingdata,butonlythe EkahauSiteSurveysoftwarehasthebuiltinabilitytocreatecoveragemapsdirectlyfromthesoftwaretoamapimage.Tomaptheoutputoftheotherpackages requiresexportingtheinformationandmanuallycreatingacoveragemapwith anothersoftwarepackage. Therewillcontinuetobenewdevelopmentsinthefieldofsoftwareandhardware forsitesurveying,monitoringandevaluation.Itiswellworthyourtimetosearch outcurrentlyavailableoptions.Evaluateseveralchoices,andselecttheonethat seemstobestfityourparticularrequirements.
TheSiteSurveyChecklist Beforeyouheadoutonyoursurvey,takethetimetoassurethatyouhaveallthe commonitemsyoumayneedonsite. Theobviousitemsaresuchthingsas:
■
Theselectedradiohardwaresolution
■
Yourportablecomputerconfiguredformeasurements
• • • • • • •
■
Spectrumanalyzer
Computer Clientcardmatchingthechosenhardwaresolution Measurementsoftware GPS Acartorslingtocarrythecomputer Extrabatteriesandabatterycharger/ACadapter Anycablesneededtoconnectexternaldevices
119
Implementing802.11,802.16,and802.20WirelessNetworks Lessobviousitemsinclude:
■
Mountinghardwarefortemporarilyinstallingtheradioequipment
■
Toolstoaccomplishthetemporaryinstallation
■
Extensioncordstoreachpower
■
Networkcablestoreachexistingnetwork
■
Ducttapetotapedownthesecables
■
Wire,tie-wraps
■
Antennasappropriatetotheinitialdesignanalysis
■
High-qualitycoaxjumperstoconnecttheantennatothehardware
■
Stepladder
TheRFSurvey Thesurveyisaccomplishedbytemporarilyinstallingtheselectedhardware solutionatoneormoreofthepredeterminedlocations,poweringitup,gettingit configuredandoperational,thenusingaclientdeviceandspecialsoftwaretocollectinformationonsignalstrength,noiseandSNRratio. Determinethebestwaytomountthehardwaretemporarilyinthelocationsyou’ve predeterminedfromstudyingtheareatobecovered.Youwantitsecure,butdonot wanttopermanentlydamagetheareawhereyouaremountingthehardware. Oncemounted,poweritupandperformanyconfigurationnecessarytogetit operating.Turnonyoursurveydeviceandlookforthesignalfromthehardware youjustinstalled.Ifyouareveryclose(within10feet)tothehardwareyou shouldseesignalstrengthsrangingfrom–40to–60dBm.Ifyouseeappropriate signalstrengthfromthedesiredequipment,youarereadytobeginsurveyingthe coveragearea. Itisimportanttorememberthat802.11aswellasanynumberofothertechnologiesoperateinunlicensedspectrumallocations.Ifthetechnologyyouare deployingisoperatingunderFCCpart15rules,afewinitialtestsareinorder. First,useaspectrumanalyzertolookforexistingcarriersintheband.Because Part15devicesusedifferentmodulations,theonlywaytoseeandcharacterize 120
PropagationModelingandMeasuring theuseofthebandistolookatthespectrumanalyzerplotandidentifyallcarriers occupyingtheband.Next,checkyoursurveysoftwaretoseeifithasidentified anyotherequipmentusingthesamestandardasyourequipmentworkingonor nearthechannelselectedforyourequipment.Ifyouseeotheroperatinghardware, makesureyousetyourequipmenttooperateonanonconflictingchannel.Also checkthenoiseflooronthechosenchanneltoassureit’sbelow−90dBm.Ifthe noisefloorisover−90dBm,thereisagoodpossibilitythatanotherdeviceusing noncompatiblemodulationisoperatingonthechannel.Becausethisnoncompatiblesystemwillbeseenasnoiseorinterferencebythenewnetwork,itisbestthat thischannelalsobeavoidedatthislocationinordertoassurethebestcoverage andcapacityfromyourdevice. NowthatyouhavetheequipmentfunctioningonaclearchanneltheRFsurvey cancommence.Beginbymovingaroundthedesiredcoverageareaandnoting thesignalstrengthandSNRatasmanylocationsaspossible.Thisiswhereyour environmentandselectionofmeasurementsoftwarebecomescritical.Ifyouare measuringoutside,GPScanbeusedforpositioning,andwithcompatiblemeasurementsoftwareGPScanbeusedtologlocationandsignalstrengthandSNR atthatlocation.WithoutGPSyouwillhavetomanuallylogasmanypointsas feasible,aswellaskeepaccuratetrackofyourpath.Withthemanuallylogged pointsandknowledgeofhowyougotfrompoint-to-point,youcanmanuallycreateacoveragemapfromtheinformationcollected.Measuringindoorspresentsa situationsimilartohavingnoGPS.SinceGPSdoesnotgenerallyworkindoors,it cannotberelieduponforpositioningintheindoorenvironment. Continuetomoveawayfromthetestnodeuntilthesignalfallsbelownoiselevel. Movebackintothecoverageareauntilyouagainacquiresignal.Ifyouhave measurementsoftwarethatiscapableofcollectinglocationdata,takeadvantage ofthiscapabilityandmoverandomlyaroundtheperipheryinandoutofcoverage.Thesoftwareshouldcollectsufficientdatatodefinethesiteboundary.Now moverandomlyinsidethisboundary,collectingasmuchdataasfeasibleinthe areacoveredbythetestlocation.Useyourmapping/plottingsoftwaretogenerate acoveragemapoftheareaforfurtherreviewandanalysis. Ifyoudonothavetheabilitytocollectaccuratepositionaldatawithyoursoftware,trythefollowingprocedure.Keepingthesignal1to3dBabovethenoise 121
Implementing802.11,802.16,and802.20WirelessNetworks floor(SNR=1to3dB)movearoundtheentireperipheryofthecoveredarea.As youwillbegintonotice,theremaybesignificantchangesinthelocationofthis outerperiphery.Youmayinsomecasesnoticethatamovementof5feetatthe peripheryrequiresyoutomove20feetclosertothetestsiteinordertomaintain thesignal,inotherareastheoppositewillbetrue.Continuetomoveabouttheperipheryandaccuratelydrawthiscontouronamap,picture,orblueprintofthesite. Youwillnowhaveamapdefiningthelimitsofcoverageofthetestlocation.This isnotthesameastheuseablelimitofthesite,definedasanareawithsufficient SNRandfademargintoprovidesolidconnectivitytotheuser,butdoesdefinethe interferencelimitofthelocation.Thiswillbecomeimportantinconsideringthe positioningofotherRFlocationsandthechannelselectionfortheselocations. NowrepeatthemeasurementprocesswithnewSNRlevels.5dB,10dB,and15 dBlevelsarereasonablestartingpoints.Thesecontoursshouldbeplottedonthe samemapasthefirstmeasurement. Performaquickevaluationofthedatayou’vecollected.Anexampleevaluation isprovidedbyFigure4-7.Doesthetestsitecoverthedesiredarea?Arethereany coverageholesincriticalareas?Ifthecoverageisnotasexpected,orthereare criticalcoveragegaps,trytoidentifywhythetestsiteisnotbehavingasanticipated.Lookcarefullyatthecoveragecontours;isthereaclearlyidentifiableshadow inthecoverage?Ifso,thereismostlikelyaconstructionanomalyorotherobstructioninthepath.Havingidentifiedthelocationofthisblockage,determineif itcanbeavoidedbymovingthetestsitetoanewlocationthatavoidstheobstacle andperformthesurveyagain.If,forsomereasonthetestsitecannotbemoved, thenthecoverageholeswillhavetobeacceptedasareasofpoorcoveragebythe system,ortheymaybecorrectablewithasignalrepeaterlocatedintheweakarea. Onceyouaresatisfiedwiththecoverage,repeattheaboveprocedureonallremainingtestlocations.
122
PropagationModelingandMeasuring
Roof
210
212
204
200 0
206 20
208
210 210 209
215 15
213
211
201
203 20 3
205
207
230
224
222
211
288
290
220
28 286 232
223 223
225
284
292 292
234
Idealized coverage
282 282 236
240 240
280
242 238 238
244
27 276
294 294
249
27 278
274
246
272
251
270
Roof 264
250
252
Actual measured coverage
253 253
255 255 262 262
254
256
258 258
260
Roof
Roof
Figure4-7:Coverageplot
DataAnalysis Withthedatacollectedandvisuallyplottedonamaporotherimagerepresentative oftheareatobecovered,numerousdetailswillbecomeevident.Thesedetailswill beusefulinfinalizingasystemdesignthatbestmeetstheneedsofthecustomer. Becausetheanalysis,andthechangesnecessarytoconformthenetworkto real-worldneedsisaniterativeprocess,thereviewisbestconductedutilizinga flowchartmethodology.TheflowchartsinFigure4-8arerepresentativeofthe 123
Implementing802.11,802.16,and802.20WirelessNetworks
Is coverage over 25% larger than target area?
Yes
Does site cover target area? No
No
Done. Site is acceptable.
Yes
Areapower and Can equipment can be be increased? secured?
Yes
Can power be reduced?
No
No
Can different antenna be used?
Yes
Can different antenna be used?
No
No
Can antenna be raised?
Yes
Can antenna be lowered?
No
No
Can better CPE be used?
Yes
Can antenna be downtilted?
No
No
Find alternate location or locations
Find alternate site location
Figure4-8:Siteanalysisflowchart
approachusedtoanalyzingthedataandmakechangesasneededtoconformthe solutiontotherealworldascharacterizedbythesurvey.Thefirstreviewshould beconductedwhilethesurveyequipmentisstillmountedandoperational.Upon seeingtheinitialsurveyresults,youmaydecidethatsomeoptimizationneedsto takeplace.It’seasiertodotheadditionaltestsnow,ratherthantrytorecreatethe surveyinstallationasecondtime. Thefirstanalysisshouldbetoreviewthecoverageofthesystem.Thefirstflowchartisusedtoanalyzewhetherthesite(s)providecoveragetotheintendedarea, andifnot,offeranumberofalternativestocorrectthecoverage. 124
PropagationModelingandMeasuring Oncecoverageisdeemedacceptable,thesecondflowchartisusedformanaging excesscoverage.Excesscoverageisaproblemonseveralfronts:Dependingon howbigthecoverageextensionis,itmaybeasecurityissue.Forexampleifthe wirelessapplicationistoprovideconnectivityforanofficeLAN,andthecoverageoftheWLANextendsoutsidethebuildingintotheparkinglotorintothe street,thereisanopportunityforunauthorizedaccessormonitoringoftheWLAN andallthetrafficitcontains.Suchanunintendedcoverageextensionshouldbe addressedfirstbyminimizingtheunintendedexcursion.Ifitcannotbecompletely eliminated,thenadditionalsecuritymeasuresmaybedesirableontheWLAN. Thesecondproblemgeneratedbyexcesscoverageisoverlapintotheprimary coverageareaofanotherradiosite.Becausetheclientcardnormallyidentifies itsprimaryradiositebasedonsignalstrength,therewillbeareasintheoverlap wherethereiscontentionforthestrongestsignal.Fadingandmultipathexacerbatethisproblem,andleadtomoment-by-momentchangesinsignalstrength betweenthecontendingsignals.Theresultofthiscanbetheinabilityoftheclient tomaintaincommunicationwithasingleradiosite.Theclientmay“bounce”betweencompetingsignalsatrandom,leadingtothroughputissues,orinsomecases completelossofdataorconnectivity. Moreimportantlyfromasystemdesignstandpoint,thisexcesscoverageleadsto interferencewithotherradiositesusingthesamechannel.Thisissueiscriticalin deploymentsusingmultipleradiosites,sincetherearealimitednumberofchannels.Thislimitedchannelsetwillneedtobereusedbytheradiositesoverand overagainwithinthecoveragearea.Interferenceisavoidedbyphysicalseparation ofco-channelreusesites(seeChapter3). Powerreduction,antennaselection,antennadowntilt,andsiteplacementcanall haveaprofoundeffectoncontrollingcoverageofasite.Thefirstcorrectiveaction toreducethecoverageshouldbepoweradjustment.Inordertoselectanappropriatepowerlevelyoumustrefertothelinkmarginusedwhenstartingthesurvey exercise.Thepublishedreceiversensitivityplusafademarginwasusedinthelink budgetasthebasesignalstrengthnecessarytomaintainacommunicationlinkat thedesiredthroughput.Usingthisvalue(receiversensitivityplusfademargin), reducethepoweroftheradiositeuntiltheedgeofthedesiredcoverageareais providedsignalatthislevel.Thisisastraightforwardprocessutilizingthedata 125
Implementing802.11,802.16,and802.20WirelessNetworks you’vealreadycollected.Yourcoveragemapalreadyshowssignalstrengthacross thecoveragearea.Lookatthemeasuredsignalstrengthattheedgeofthedefined coveragearea,andsubtractthemeasuredsignalfromtherequiredsignal.The resultwillbethenumberofdBthetransmittercanbepowerreduced. Ifthecoverageareacanbeconformedwithapowerreduction,nextmakesure thatthepowerreductionhasnotcreatedanycoverageholesinsidethedesired coveragearea.Dothisbyidentifyinganyareasonthesurveymapthatshow shadowsorweakcoverage.SubtractthenumberofdByou’vereducedthepower, andensurethattheseweakareasstillhavesufficientsignaltomeetexpectations. Iftheydonot,thenyoucouldeitherincreasethepoweruntiltheydo,consider addinganexternalantennatotheclientsintheweakarea,oraddasignalrepeater totheweakarea. YoushouldkeepinmindthatnoRF-basedsystemisperfect.Evenawell-designedsystemhascoveragegaps.Thebestthatcanbeexpectedisforthecoverage tobeuseableovermost(85to90%)ofthecoveredarea. Ifpoweraloneisinsufficienttoreducethecoveredarea,usingalowergainantenna,oradirectionalantennadowntiltedtowardthecenterofthedesiredcoverage areamaysolvetheproblem.Loweringtheantennaplacementmayalsohelp. Unfortunately,allofthesesolutionswillprobablyrequireadditionalsurveytime, sincethepreviouslycollecteddatacannotbeeasilyutilizedtoanalyzechangesof thismagnitude. Nowthatyourdesignhasbeenthroughenoughiterationtoassuremaximizedcoverageinsidethedesiredcoveragearea,andminimizedcoverageoutsidethatarea, it’stimetoselectchannels. Regardlessofthetechnologyselected,therewillbealimitednumberofchannels availableforuse.Thefirstlimitationonavailablechannelswillbethoseassigned bytheGovernmentregulatorinchargeofspectrumallocation;otherusersofthe spectrumintheareawillcausethesecondlimitation.Inthecaseoftechnology usingunlicensedspectrum(suchas802.11products),theavailablechannelsmight beusedbydevicesasdifferentascordlessphonesandvideotransmitters. Ifthesystemyouareconstructinghasfewertransmitterlocationsthanavailable channels,thedeploymentissimple:justassignuniqueavailablechannelstoeach 126
PropagationModelingandMeasuring transmitter.Ifthenumberoflocationsexceedsthenumberofchannels,thena frequencyreuseplan(asdiscussedinChapter3)willneedtobedesignedand implemented.Thecoveragemapsgeneratedduringthesurveyandcorrectedfor powerlevelareofgreatvalueinaccomplishingthistask. Thebackgroundprovidedinthischapterbecomesthebasisfordeployingeffectivenetworks.Chapter5willbegintoutilizethetoolsandtechniqueswe’ve discussedandshowhowtheycanbeusednotonlytodeterminecoverage,butto identifyalternativesystemdesignsandcompareandcontrastthem.Throughthis processofevaluatingalternatives,thesystemwithbestcompromisebetweencoverage,capacity,utilityandcostcanbeidentified.
127
This page intentionally left blank
C H APT ER 5
SystemPlanning ■ SystemDesignOverview ■ LocationandRealEstateConsiderations ■ SystemSelectionBasedUponUserNeeds ■ IdentificationofEquipmentRequirements ■ IdentificationofEquipmentLocations ■ ChannelAllocation,Signal-to-Interference,
andReusePlanning ■ NetworkInterconnectandPoint-to-Point
RadioSolutions ■ Costs ■ TheFiveC’sofSystemPlanning
This page intentionally left blank
C H APT ER 5
SystemPlanning Nowthatwehavereviewedthebasicsofradiooperation,propagation,andpredictiveandactualperformancemeasurements,it’stimetoseehowthisinformation isusedaspartofthedesigncriteriainasystemtoactuallyprovideservicestoa customerbase. SystemdesignmustconsiderfarmorethanjusttheRFaspectsofthesystem.If thesystemistofunctionoptimallyandbecosteffective,suchdiversetopicsas equipmentselection,realestate,construction,interconnect,power,andmaintenancemustbeconsidered.Eachofthesetopicshasaninitialcapitalcostand,with theexceptionofconstruction,anongoingcost.
SystemDesignOverview Becauseofthemyriadinteractionsyouwillencounterindesigningasystem,a flowchartishelpfulforidentifyingtheselectioncriteriaforeachofthekeyaspects ofsystemdesign.Becausetherearesomanydifferentuniquebusinessopportunitiesthatcanbeservedwithwirelessdatasystems,it’simpossibletoreviewthem allinthisbook.InsteadI’lllookatthreedistinctlydifferentmodels,andwalk throughadesignexerciseforeach.ThefirstexamplesystemwillbeasingleAP “hotspot”orsmallofficeLAN.Thesecondexamplewillbeafarmorecomplex MultiAPofficeLANor“hotzone”requiringfrequencyreuseinitsimplementation.ThethirdsystemwillbeaWirelessISP(WISP)typesystemthatisexpected tocoveralargeoutdoorareaandprovideInternetconnectivitytoalarge,geographicallydisperseduserbase.TheWISPsystemcouldbecomposedofasingle sitecoveringasmalltown,orpotentiallyhundredsorthousandsofsitescovering multiplecountiesorMSAs.Fundamentallytheyareallthesame,thoughthecomplexitiesandneedformanagedspectrumgrowwiththesizeofthedeployment.
131
Implementing802.11,802.16,and802.20WirelessNetworks Regardlessofthescaleofthesystembeingdeployed,thereareanumberof individualactivitiesthathaveinteractionwitheachother.Forexample,selecting locationsforinstallingtheradiohardwarewillbeinfluencedbycost,coverage, andcapacityneedsofthesystem.Cost,coverage,andcapacityareinfluenced bytheselectionofradiohardwareandthefrequencyofoperation.So,youcan begintoimaginethecomplexityinvolvedwiththedesignofalargesystem.Each individualtopicsurroundingsystemdesignhasitsownassociatedflowchart whichidentifiesactivitiesandgo/nogodecisionpoints.Aswell,eachflowchart mustconsiderotherparallelactivitiesoccurringunderanotherseparatetopic,so thatyouassurethatdecisionsandcompromisesmadeinthepursuitofoneareaof designdonotnegativelyimpactsystemviabilitybecausetheyignoredkeyfactors ofaseparatedecisionmatrixthattheyaffected. Tosimplifytheoveralldecisionmatrix,I’llpresentindividualflowchartsforeach keyactivity.Theseflowchartswillshowprecursororparallelactivitiesthatwill needtobeconsideredorreviewedwhenmakingfinaldecisionssurroundingindividualkeyactivities.Afterdiscussionofalltheplanningcriteria,I’llshowhow thesefactorsapplytoreal-worldsystemsbyusingtheflowchartsanddecision matricestoplanactualsystems,andshowsomeofthetrade-offs.
LocationandRealEstateConsiderations Ofcourse,thefirstthingyouneedtoknowiswherethesystemwillbedeployed, whatitneedstocover,andhowmuchcapacityisneeded.Inahotspotoroffice LANsystem,aphysicaladdressandsuitenumberarenecessary.Inaddition,a floorplanorotheridentifyingcriteriashowingthearea(s)tobecoveredshould beacquired.Alsodiscoverasmuchaboutthepropertyaspossible.Blueprints, buildingdrawingsorotherdocumentationconcerningofthetypeofconstructionpresentinthebuildingwillbeusefulintheexerciseofestimatingcoverage. Anotherkeybitofinformationwillbethenameandcontactinformationofthe buildingowner,propertymanager,orotherentitythatmayrequirecoordinationor approvalofworkonthepremise. IfthesystemisoftheWISPvariety,thereareadditionalneeds.Sinceabuilding nolongerdefinesthecoverage,thephysicalareatobecoveredshouldbeidentifiedonamaporareaimage.Thisareashouldbeinspectedforavailabletowers 132
SystemPlanning ormultistorybuildingsthatcouldbeusedtolocateequipmentandantennas. Latitude/longitudeandheightofantennamountinglocationsofthesebuildings ortowersshouldbeidentified.Inaddition,itisimportanttoascertainwhoisthe ownerorpropertymanageroftargetbuildingsortowers. Youshouldalsorememberthatmanyjurisdictionsusezoningandpermitprocessesforanycommunicationfacility,regardlessofwhetherituseslicensedor unlicensedspectrum.Itiscriticaltodiscoverandcomplywithanylocalzoningor buildingandsafetyrequirementsearlyinyourplanningprocess.Failuretodoso mayleadtosignificantdelaysindeploymentor,worstcase,thelocaljurisdiction finingyouandforcingyoutoceaseoperationsandremovetheequipment. Becauseoftheareatobecovered,numerouspossibleequipmentlocationswill exist.Determiningwheretoconcentrateyoureffortsrequiresarapidassessment ofwhichpropertiesarebestfromanRFdesignstandpoint.Assumingyouhave thespecificoperatingcharacteristicsofyourequipment,theuseofapropagationmodelingtoolcanprovevaluableforassessingcoveragefromeachofthelocation options. Inordertousesuchatool,theparametersofthesystemneedtobeknown,andassumptionsneedtobemadeabouttheconditionspresentattheCPElocation.For example,iftheCPEistobelocatedindoorsneartheuser’scomputer,additional pathlossduetotheconstructionofthebuildinginwhichtheCPEresidesmustbe considered.IftheCPEcanbemountedoutside,clearoflocalobstacles,thenthe propagationlosseswillbesignificantlylower,andthesite’scoveragegreater. Asexamplesofthis,thepropagationplotsinFigure5-1werecomputergenerated usingtheLongley-RicepropagationModel.Theplotsarebaseduponthesame transmitpoweroutputandreceivesensitivity.Onlyantennagainandplacement attheCPEhasbeenchanged.Figure5-1ashowsthecoverageachievedfromthe basestationoraccesspoint(thetermsbasestationandaccesspointcanbeand areusedinterchangeably.Whilethetermaccesspointwasonceuniqueto802.11 hardware,itcannowbeseenreferringtoanynumberofbasestationproducts supportingwirelessdata)toaCPEunitusinga0dBigainomniantennaatstreet level,whileFigure5-1bshowsthecoverageachievedfromthesamebasestation toCPEusinga15dBiantennamountedat15feetelevation(sufficienttoclearthe roofofaonestoryhome). 133
Implementing802.11,802.16,and802.20WirelessNetworks
Figure5-1a
134
SystemPlanning
Figure5-1b
135
Implementing802.11,802.16,and802.20WirelessNetworks TheLongley-Ricemodelpredictslong-termmediantransmissionlossoverirregularterrainrelativetofree-spacetransmissionloss.Themodelwasdesignedfor frequenciesbetween20MHzand40GHzandforpathlengthsbetween0.1km and2000km. TheLongley-Ricemodelisusedinanumberofcommercialpropagationmodels thatareutilizedforanalyzingsignalpropagationinsuchcommercialapplications ascellularandPCScommunicationsystems.Themodeliswellknown,andacceptedbytheFCCasamethodofpredictingcoverageofbroadcastfacilities. Themodelusesactualterraindataandpredictsthemediansignalstrengthacross thisterrainbaseduponacombinationofdistanceandterrainobstacles.The modelalsohasageneralizedmorphology(landuse)attenuationfactorthatcanbe attachedtoeachsite.Thisallowsadditionalattenuationtobeaddedtoaccommodatesuchthingsasbuildingdensityandfoliage. Whilethecoverageplotsinthisbookshowcoveragebytheuseofagreytoneto indicatecoveragearea,theactualplotsgeneratedbythesoftwareareinfullcolor andconsistofanumberofcolors,rangingfromgreentored.Eachshadeisassociatedwitha3dBrangeofsignalstrength,withgreensbeinghighsignalstrength andredbeinglowsignalstrength. Tousethepredictionplottodesignasystem,youmustdeterminethreefactors:
■
Howmuchfademargindoesthesystemneed?
■
Howmuchbuildingattenuationmustbeovercome?
■
Willtheclientdevicebeexternallymountedwithahighgainantenna?
Sinceradiopropagationiscontinuallyeffectedbymultipath,thesignalisalways inastateofflux.Thisfluxisknownasfading.Evenastationarytransmitterand receiverwillseepathfadebetweenthembaseduponobjectsliketrucks,carsand peoplemovingintheenvironment.Itisgoodengineeringpracticetouse8to10 dBoffademargininasystemdesign. Ifthesignalistobereceivedindoors,thebuildingitselfbecomesanadditional sourceofattenuation.Thiscanrangefrom5to7dBforwoodframeconstruction toover25dBforofficebuildingswithmetallizedglassfacades.
136
SystemPlanning Finally,theabovefactorsneedtobesubtractedfromthebaselinereceivesensitivity oftheclientdevice.Inan802.11bsystem,receivesensitivityonahighqualitycard rangesfrom–92dBmfor1Mbpsthroughputto–83dBmfor11Mbpsthroughput. Iftheclientdevicecanmakeuseofahighgaindirectionalantenna,thenthisgain canbeaddedtothepathloss,ortomakeitsimple,justaddittothereceivesensitivity.Sowitha15dBgainYagiantennathe–92dBmsensitivityincreasesto (–92dBm–15dB)or–107dBm.Youhavenotreallyincreasedthereceive sensitivity,butyouhaveaddedgaintothereceivechain,whichforallintents accomplishesthesamething. So,areliablecommunicationlinktoabaseclientcardat1Mbpsrequiresa consistent–92dBsignal.Becauseofthefadingnatureofradiowaves,itisnecessarytoaddthefademargintothe–92dBmminimumsignal.Thismeansthat thesignalrequiredforareliablelinkwillneedtobe(–92+10)or–82dBm.This signallevelissufficienttoofferoutdoorcommunication,butoffersnomarginto penetratebuildings.Additionalsignalisrequiredforthis.Again,5to10dBof additionalsignalstrengthwillbenecessarytopenetratelightconstruction,sothe requiredsignalstrengthrisesanother10dBto–72dBm. Iftheclientdevicemakesuseofa15dBgainantennalocatedoutsideabove roofline,onlythefademarginneedstobeconsidered.Thus,asignalof(–92dBm –15dB+10dB)or–97dBmisrequiredforareliablecommunicationpath. Lookingatthecontoursandthelegend,youcanidentifytheareasthatwillbe servedwithsignalsofthestrengthdiscussedabove.Thosepointsthatshowsufficientsignalstrengthtomeettheminimumrequirementswillgenerallybecapable ofsupportingareliablecommunicationslink. Usingthemodelingtoolcanallowrapidreviewofanumberofcandidateradio sitelocations,andallowyoutoselecttheoptimallocationsforprovidingcoverage tothetargetarea. Asalocationisidentified,apropagationmodelshouldberunwiththespecifics ofthatlocationsuchaslongitude,latitude,andheight.Thiswillgiveyouawayto evaluatetheanticipatedcoverageofeachlocationandquicklyidentifywhichpropertiesareidealcandidatesandwhicharepoorchoices.Byusingthemodelforfirst passidentificationofthebestsites,youcanfocusyoureffortsonthosesitesfirst. 137
Implementing802.11,802.16,and802.20WirelessNetworks Anotherkeyconsiderationinthe realestaterealmistheavailability ofspace,power,andinterconnect foryoursystem.OftentheidealRF locationmaybelackingoneormore ortheseelements.Determiningwhat additionalcostsandcomplexitiesare associatedwithgettingtherequired space,power,andinterconnecttothe desiredlocationisacriticalpartof theselectionprocess.Theflowchart inFigure5-2identifiesthecritical aspectsthatshouldbeconsidered whenselectingasite.Aswithmost everythingelseinaradio-based system,therewillrarelybeaperfect solution,socompromisesoncertain factorsrelatedtositeswillneedtobe made.Forexample,thesitemaynot provideoptimalcoverage,butmay betheonlysiteintheareaforwhich azoningvariancecanbeobtained. Asshowninthepriorityoftheflowchart,coverageshouldbetheprime consideration,althoughoftenother considerationswilldictatetheuseofa sitethatisanimperfectsolutionfrom acoveragestandpoint.Theflowchart isbestutilizedforanalyzinganumber ofdifferentsiteoptions.Thetradeoffsassociatedwitheachcanthenbe usedtomaketheappropriatebusiness decisionsaboutthebestlocationthat hasbeenanalyzed.
Identify site in coverage area
Is site available for lease?
No
Yes Does site provide adequate RF coverage?
No
Yes Is interconnect available?
No No
Can radio interconnect be used?
Yes
Yes
Is suitable space for equipment and antennas available?
No
Yes Can site be zoned?
No
Is lease cost acceptable?
No
Yes Acceptable site
Figure5-2
Figure 5.2: Real Estate selection flowchart. 138
SystemPlanning
SystemSelectionBasedUponUserNeeds Thenextconsiderationshavetodowithsubscriberbehavior.Whatformfactoris acceptableforCPE?Whataveragecapacityrequirementsandusagecharacteristicswilleachuserhave?Whatsecuritylevelwilltheuserexpect?And,finally, whatistheacceptableinitialandongoingcostoftheservice? Theseconsiderationsareprimarilydrivenbytheneedsofthecustomer.Meeting themwillaffectequipmentandrealestatedecisions.Forexample,inahotspot theequipmentdecisionmightbedrivenbythefollowinglogic:ahotspotserves customersthatareusinglaptopcomputersorPDAsequippedwithwireless access.ThehotspotprovidestheseuserswithshorttermInternetaccess.The systemisprimarilyusedforwebbrowsingandemailtypeactivities.Inthiscase theaverageusepercustomerislow,andtheconnectiontotheInternetisprobablyfarslowerthanthespeedoftheradiointerface,sotheradiosystemisnotthe capacitybottleneck.Inaddition,thesystemmustrelyonthefactthattheuseris alreadyequippedwithawirelessinterfaceintheircomputer.Inlate2003thissituationcallsfortheuseof802.11b,sinceitisthemostpervasivenomadicwireless standardavailable.Thiswillprobablynotbethecaseinthefuture,as802.11g, 802.11a,and802.16begintopermeatethemarketplace.Forthemoment(2003 to2004)acheapconsumerquality802.11bAPmaybetheperfectsolutionfor thehotspotenvironmentbecauseitisinexpensiveandincludesnetworkfunctions suchasalow-endrouter,DHCPserver,andNATfunctionality.Thusitisaoneboxsolutionforthisparticularenvironment. InalargeofficeLANenvironment,theusagecharacteristicsmaybequitedifferent.InadditiontoInternetandemailaccess,thesystemwillprobablybeusedfor transferringfilesandinter-networkcommunications.Inotherwords,theusage characteristicswillbemuchhigher;moreliketheusagecharacteristicsofawired LAN.Dependingonthedensityoftheusersandtheusers’needforaccessto othersystems(likeahotspotinahotelorairport),802.11aor802.11g,withtheir greaterthroughput,maybebetteralternativesforservingthissituation. TheWISP,ontheotherhand,isprobablynotbestservedbyatraditionalAP,or forthatmatter,802.11.Thecustomerswillbegeographicallydispersed,leadingto arequirementforlargeareacoveragefromaminimumoflocations.Theuserwill haveusageexpectationsofthissystemthataresimilartotheexpectationsusers 139
Implementing802.11,802.16,and802.20WirelessNetworks haveofwiredequivalentservices,likecablemodemandDSL.Theneedforlarge areacoveragemeansthattheequipmentwillneedtobetailoredtohighEIRPwith highgainantennas,andanaccesssharingmethodologymuchmorerobustthan theCSMA/CAschemeassociatedwiththe802.11standard.Asofthetimethis bookisbeingwritten,802.16equipmentdoesnotyetexist,sothechoicestoday areeitherahighgain802.11variant,likeVivatoorYDI,oroneofthepurpose builtsystemsfromthelikesofMotorola,Alvarion,Flarion,Proxim,orNavini.I anticipatethattherewillbecontinueddevelopmentofnewequipmenttomeetthe needsoftheWISPindustry,andthatwewillseemoremanufacturersofferequipmenttailoredtothisbusiness. Furtherexpansionoftheconceptofmatchingequipmentcapabilitiestotheneedsof thebusinessandtheusercanbeseeninFigure5-3.Thisfigureisamatrixthatoverlaystypicaluserandsystemcharacteristicswithequipmentoptions.Itcanassistyou inselectingthemostappropriatetechnologytoserveaparticularusercommunity.
IdentificationofEquipmentRequirements Aftergaininganunderstandingofthecustomerneedsandexpectations,the implementershouldbeabletodeterminewhatequipmentmeetsthoseneeds.As describedabove,theneedsofthecustomerareakeydriverofequipmentselection,howevertheyarenottheonlydriver.Sizeandenvironmentalrequirements, cost,manageability,reliabilityandavailabilityallenterintotheequipmentdecisionmatrix. Inthehotspotsystem,equipmentshouldbeselectedthatiscompatiblewiththe equipmentthattheuserswillhavepreviouslyinstalledintheircomputers.This woulddriveequipmentselectiontowardequipmentoperatingontheprevailing standardadoptedbytheuserbase.Additionally,theequipmentshouldintegrate mostofthenetworkfeaturesthatwillbenecessarytointerfacetheequipmentto theworld,andtomanagecustomersastheyconnecttothesystem. ThelargeLANsystemwillhaveitsequipmentselectiondrivenbyamorecomplexsetofissues.Thestandardselectedwillhavetobeabalancebetweenthe nowprevailingtechnicalsolutionthatisubiquitousandlowcost,andwhatever standardiscurrentlyemergingasthenextgenerationsolution.Thisemergent solutionwillprobablyhaveahighercost,sinceithasnotyetreachedmassappeal, 140
Equipment Characteristics Designed for Coverage
CPE
Base Station Hardware
Outdoor
Internal antenna
External antenna
Weather proof
AC power
Battery
External antenna
Weather proof
AC power
DC power
High EIRP
Standards-based
Proprietary
Fixed
N
Y
N
Y
Y
Y
N
Y
Y
Y
?
Y
Y
Y
Nomadic
?
?
Y
N
N
N
Y
Y
Y
Y
?
?
Y
N
Mobile
Y
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
?
Hotspot
Y
N
Y
N
N
N
Y
?
N
Y
N
N
Y
N
Office LAN
Y
N
Y
N
N
Y
Y
?
N
Y
?
N
Y
N
141
Indoor
Subscriber Service Type
SystemPlanning
Figure5-3:Userneedsmatrix
Implementing802.11,802.16,and802.20WirelessNetworks andmayalsohavesomedevelopmentalwrinklesthatstillneedtobefixed.Onthe otherhand,itwillalsohavegreatercapacity,greaterspectralefficiency,andmay offerbettercoverageandgreaterflexibilityindeployment.Dependingonyour forecastoffutureusagedemandandtheneedtoallowyourusersto“roam”to otherpublicorprivatelocationsandusetheirwirelessaccess,onetechnologywill beanappropriate,ifnotoptimal,selection. InthislargeLANnetwork,theadditionalnetworkcapabilitiesthatwereimportant toahotspotarenotnecessary.Sincethisequipmentwillconnecttoanexisting network,itisprobablethatalltheadvancednetworkfeatureswillbeperformed elsewhereonthenetwork,andthatthewirelessequipmentwillonlyneedtoprovidethewirelessinterface,andprovideexcellentremotemanagementandfault isolationcapabilities. TheWISPsystemhasevenmorecomplexneeds.Sincestandardslike802.11 weredesignedforwirelessLANtypenetworks,theyhavenotbeenoptimizedfor servingalargeareawithdispersedusers.While802.11hasbeenmadetoworkin thesesystems,othersystemsthatweredesignedforuseinthistypeofenvironmentmayofferabettertechnicalsolution.Thetrade-offhereiscost.Because 802.11isamass-marketproduct,equipmentisveryinexpensiveandcommonly available.Thoughaproprietarysolutionmaybetechnicallyabettersolution,it maybefarmorecostlythanusingthe802.11standardequipment. Additionally,becauseofthenatureofaWISPoperation,theequipmentmustbe locatedoutside.Thismeansthatequipmentmustwithstandtherigorsofweather andanoutdoorenvironment.Commonlyavailablehardwaredesignedforhome orofficeuseisnotcapableofsurvivingintheoutdoorenvironment,soany equipmentusedinthisenvironmentwillhavetobelocatedinaprotectedenclosureorwillhavetobedesignedforoutdooruse.Thisleadstoasetoflongterm maintenanceissues,especiallyifequipmentismountedontowers:iftheactive electronicsarelocatedatopthetower,thentheequipmentwillneedtoberemoved andtakentothegroundforservice.Obviously,thisisanadditionalongoingcost tobeconsideredindecidingtheappropriateequipmentdesignaswellasthebest locationfortheequipment. Ultimately,anyequipmentsolutionhasbeendesignedwithasetofexpectations inmind,andhasitsappropriateplaceinthemarket.Youneedtounderstand 142
SystemPlanning therequirementsofyoursystemandthedesignintentoftheequipmentyouare considering.Figure5-4providesanexampleofacomparisonmatrixthatcan assistwiththeidentificationofasolutionthatcloselymatchesyourneeds.By completingsuchananalysis,youcanbeassuredofselectingthemanufacturerand solutionthatisbestsuitedtoservingyouruniqueneeds. Suitability for serving environment
Operating Band
Costs CPE
Base Station
Mobile Data
WISP
Fixed WISP
Hotspot
Office LAN
Unlicensed
Licensed
802.11b Traditional AP
Y
low
low
802.11b High Power PtP
Y
high
medium
802.11g
Y
medium
medium
802.11a
Y
medium
medium
Y
high
high
Y
high
high
802.20
Y
high
high
CDMA2000
Y
high
high
Proprietary Solutions
Y
high
high
802.16
Y
802.16e
?
Y
LEGEND optimal suboptimal, but useful not optimal
Figure5-4
IdentificationofEquipmentLocations Nowthatyou’venarrowedthefieldofequipmentoptionstoafewthatappear suitableforyoursystem,wecanbegintolookathowandwheretodeploysitesto achievethecoverageandcapacitydesiredinthesystem.Determiningoptimalantennalocationsisthekeytoasuccessfuldeployment.Anoptimallocationservesa multitudeofneeds:itprovidesoptimalRFcoverage;meaningitcanbeoptimized toprovidesufficientcoverageoftheareawithoutleadingtosignificantinterferenceelsewhereinthesystem,ithaseasyaccesstopower,ithaseasyaccessto networkinterconnectfacilities,itcanbeeasilyinstalledandsecured,andithas reasonableaccessforfutureserviceneeds. 143
Implementing802.11,802.16,and802.20WirelessNetworks Withtheequipmentselected,youhaveabaselinefortheRFtransmitpower, receivesensitivity,andantennaoptions.Thesecharacteristicsareusedinconjunctionwithpredictivemodelingtoolsorsurveytoolstodeterminetheareathatcan becoveredwiththeselectedequipment. Thefirstorderofbusinessistoevaluatethepreviouslyidentifiedavailablelocationsfortheirsuitabilityinprovidingcoveragetothedesiredarea,andsodecide whichtoolisbestsuitedtoyourneedanddeterminethecoveragepotentialof yoursites. Byitsdefinitionthehotspotisasmallopencoveragearea,sothesimplepathloss calculationdiscussedinChapter3isuseabletodetermineifthesystemcancover therequiredarea.Infact,inahotspotsystem,findingaconvenientmountingspot withavailablepowerandnetworkconnectionisprobablymoreimportantthan findinganoptimalRFlocation.Ofcourse,justbecauseImadethisstatement, yourfirstattempttobuildahotspotwillsurelybeinsomeuniqueandbizarre locationwheretherearemultipleunknownimpedimentstoRFcoverage.Even thoughthehotspotappearstobeasimpledeployment,it’sstillworthspendinga littletimevalidatingyourassumptionswithafieldsurvey. Althoughthesameestimationtechniquesusedinahotspotcanbeappliedtoa hotzoneorLAN,determiningoptimalantennalocationsbecomesalittlemore complex.Thesizeoftheareatobecovered,theuserdensitywithinthespace,and thelayoutofthespacemustbeconsideredinordertooptimizelocationsfroma capacityandinterferencestandpoint. IntheLANenvironment,theprimaryusageofthesystemwillbewiredLAN replacement,thusthebandwidthrequirementsperuserwillbesignificantlyhigher thanthoseofthecasualuseraccessingtheInternet.Dependingontheuserdensity inthecoveredarea,youmayfindthatasinglebasestationmaynothavesufficient capacitytoservealltheusersinitscoveragearea.Inthiscaseitmaybenecessary toreducepower,relocatethebasestation,orchangetheantennatoprovideadifferentcoverageareathatincludesfewerusers. Thefirstobjectiveindesigningsuchasystemistocalculatetheperuserbandwidthrequirements.Becausetherearesomanyopinionsabouthowtoaccomplish this,Iwillnotdiscussithere.Usewhatevermethodofcalculationyouare 144
SystemPlanning familiarandcomfortablewith.Onceyouknowtheaverageusageperuser,you candeterminethetotalusersperbasestationbythissimplecalculation: It/BWuser,whereItistheradioinformationthroughput.Donotconfusethiswith rawdevicebandwidth.Weneedtousetheachievabledevicethroughputbasedon thetypesoftrafficonthenetwork.Forexamplein802.11bthechannelisadvertisedtohave11Mbpsthroughput.Inrealitythisisthetotalchannelthroughput includingalloverhead.Theinformationbandwidthofthechannelissignificantly less,moreontheorderof4.5to6Mbpsdependingonthetypesoftrafficonthe network.Also,becausethe802.11bchannelisaTDDchannel,thetotalthroughputissharedbybothupstreamanddownstreamtraffic,meaningthatanother deratingfactormustbeappliedbasedonthemixofupstreamanddownstream capacityrequirements.Allthismeansthattherealdatathroughputofan802.11b systemmaybeaslowas2Mbpsforbidirectionalsymmetricalusage. BWuseristheaveragebandwidthrequirement.Thisisnotthepeakrequirementof theuser,buteithertheaverageusage,orthepredeterminedlowestbandwidthlevel availabletoanyuserduringpeakusageperiods. Forexample,inasystemwithsymmetricaluplinkanddownlinkrequirements, andanaveragebandwidthperuserrequirementof200Kbps,an802.11system willsupportonly10to15usersperAP(2to3Mbpsinformationthroughput/ 200Kbpsperuser).Remember,802.11has4.5−6MBPStotalthroughout.Since thisexampleusessymmetricaltraffic,the4.5−6MBPSissharedbytheuplink anddownlinktraffic,thusleadingto2−3MBPSavailableineitherdirection. Assuminganormalofficeenvironmentwithcubiclesandwalkways,theaverage spaceallocationperemployeeis250squarefeet.Inthisenvironmentan802.11b APwillcoverabouta50-footradius,orabout8000squarefeetofareawith maximumbandwidth.Thisareamaycontainupto32users.Inthissituationthe coveragedefinedareaexceedsthecapacitydefinedarea. Thereareseveralsolutionsforthis.Antennaselectionandpowerreductioncan reducetheareacoveredtoonethatismoreinlinewiththecapacityneedsofthe users.Alternately,thismaybeasituationwhere802.11bisnotanoptimaltechnologyselection.802.11aor802.11gmaybemoresuitableprotocolsbecause oftheirhigherthroughput.Either802.11gor802.11awillprovideabout5times morebandwidththan802.11b,howevertheareacoveredbythisbandwidthwill 145
Implementing802.11,802.16,and802.20WirelessNetworks besmallerthanthe802.11bmaximumthroughputcoveragearea.Inthissameenvironment,802.11gwillprobablycoverlessthan3000squarefeetwithmaximum bandwidthsignallevels,while802.11amayserveonly1000squarefeetatmaximumbandwidthduetotheadditionalpropagationlossesassociatedwithits higheroperatingfrequency.Dorememberthatthesetechnologiesrateadaptto lowerthroughputspeedsasthesignalstrengthdrops.Itisentirelypossiblethat theneedsofuserscanbemetoveracoverageareaassociatedwithoneofmoreof thedatasub-rates. Thisisacasewherefuturegrowthandchangesinusagecharacteristicsshould beconsideredaspartoftheselectioncriteria.Ifcapacityneedsareexpectedto increaseovertime,thenahigherbandwidthstandardlike802.11aor802.11g shouldbeconsideredinsteadof802.11b. Nowthatthecapacityversuscoverageissueshavebeenaddressed,youknowhow muchareashouldbecoveredbyeachradiobasestationlocation.Nowyoucan begintoplanthelocationofhardwaretomeettheneedsofthedeployment.Use thedrawings,blueprintsandotherreferencedatayou’vecollectedincombination withaphysicalsitereviewtoidentifylocationswheretheequipmentcouldbe placedgivingeasyaccesstopowerandinterconnect,easyaccessformaintenance, avoidanceofutilitywallsandmassivemetalobjects,aswellaslocatedcentrally tothedesiredcoverageareaofeachradiobasestation.Dependingonthephysical layoutofthespacetobecoveredandtheavailabilityofpowerandinterconnect, anumberoflocationoptionsareviable:youcoulduseanomniantennalocated ontheceilinginacentrallocation,oryoucoulduseadirectionalantennalocated highupinacorneroralonganoutsidewallandpointingtowardthespacetobe covered.Youmighttrydrawingshapesconsistentwiththeantennapattern(circles foromniantennas,cardioidsorteardropsfordirectionalantennas)andscaledto anappropriatesizetorepresentthedesiredcoverageontheblueprints.Layout theshapesontheblueprints,arrangingthemsoastoprovidecoveragetoallthe desiredlocations.Thenphysicallycheckthelocationstoassurethatpowerand interconnectareeasilyavailableatthelocations.Ifnot,seewhereyouneedto moveittogaineasyaccesstopowerandinterconnect.Asyoumovethelocations toeasedeployment,trytokeepthespacingbetweenthebasestationsasevenas possible.Thiswillmakeyourfrequencyplanningeasier.Youmayalsowantto 146
SystemPlanning
Roof
210
212
204
200
206
208
210 209
215
213
211
201
203
205
207
230 224
222
211
288
290
220
286 232
223
225
284
292
234
282 236
240
280
242 238
244
276
294
249
278
274
246
272
251
270
Roof 264
250 252
255
253
262 254
256
258
260
Roof
Roof
Figure5-5
doasitesurveyontheselectedlocations.Thereasonistwofold:youcanassure yougettheexpectedcoverageand,moreimportantly,youcandeterminethe maximumcoverageandthereforetheinterferenceareaofeachlocation.Knowing thiswillbeusefulwhenallocatingchannelstoeachlocation.Figure5-5shows onepossibilityforlocatingequipmenttoserveanofficespace.Dependingonthe uniqueneedsandlimitationsofthespaceyouareworkingwith,suchasolution mayormaynotbefeasibleforyourdeployment. TheWISPsolutionhasmuchincommonwiththeLANsystemdeployment.Coverageandcapacityarebothcriticalissues,multiplelocationsmayberequiredto addresscoverageorcapacityissues,andtechnologyoptionswillneedtobeconsideredaccordingtosystemandcostrequirements.TheWISPsystemisdesigned 147
Implementing802.11,802.16,and802.20WirelessNetworks tocoveranextendedareaofpotentiallymultiplesquaremileswithacomplexmix ofterrain,morphology,anduserlocations.Thesystemwillbedesignedtoprovide Internetaccessservicetoresidentialand/orbusinesseswithinthecoveragearea. Inaddition,thelocationoftheCPEisaconsiderationindeterminingthecoverage ofeachsite.IftheCPEislocatedinsideastructure,additionallosseswillbeincurred,leadingtoasmallerreliablecoveragearea.Alternately,iftheCPEcanbe locatedoutdoorsabovetheroofline,coveragedistanceswillimprovesubstantially. Becauseofthesizeandcomplexityofthecoveredarea,thereisaveryrealpossibilitythatuserswillbeshieldedfromoneanother.Thisgivesrisetoproblems usingequipmentthatutilizesCSMA/CA,like802.11-basedhardware.Because CSMA/CAworksbymonitoringthechannelpriortotransmitting,thealgorithm assumesthatallusersarecloseenoughtoeachothertobeabletoheareachother. InthewidelydistributedWISPsystem,thisisnottrue.Thisleadstoaproblem calledthehiddentransmitterproblem,whereusersallhaveaclearpathtocommunicatewiththebasestation,butcannotheareachother.Sincetheycannothear eachother,theyallassumethechannelisclear,andtrytotransmit.Theeffectof thisisthatmultiplestationstotrytoaccessthechannelsimultaneously,because theyallthinkit’sclear.Inreality,thebasestationhearsallthesimultaneoususers andcannotdiscriminateonefromanother.Inessencethesimultaneoususersare allinterferingwitheachother. Thisbehaviorcanbetamedusingafeatureinthe802.11standardcalledRTS/ CTS,orRequesttosend/Cleartosend.Thisissimplyanadditionalprotocol whereauserasksthebasestationforpermissiontotransmit,andwaitsuntilitreceivespermissionbeforebeginningitstransmission.Therearethreedownsidesto thisscheme.First,RTS/CTSisnotaperfectsolution.Collisionscanstillhappen. Multiplestationsmaybeaskingpermissionnearsimultaneously,thenalltransmittingbasedonhearingaCTSbelongingtoadifferentuser.Second,RTS/CTStakes overhead,becauseeachtransactionhastobeprecededbyarequestandacknowledgment,thusleadingtoafurtherdecreaseinrealchanneldatathroughput.Third, sincecloserusershaveastrongersignal,itisquitecommonforthoseclosein userstogetanunfairshareoftheavailablebandwidth.Thisisbecausethecloserinuserstendtohavemoresignalstrengthatthebasestation,andtheadditional signaliseasiertohearthantheweaksignalfromthefurther-outuser.Insome 148
SystemPlanning casesitispossiblefortheclose-instationtooverridetheweaksignalcompletely, andbetheonlysignalheardbythebasestation. Conversly,802.11equipmentischeapandabundant,sofromacoststandpointit maybethebestsolutionforaparticularneed.Justbeawarethataswithanysystemofferingserviceforhire,aWISPneedstoassurethattheusershavefairand equitableaccesstotheservice.Clearly,eventhoughtheequipmentisinexpensive, theissuessurroundingtheaccessmethodologyneedtobegivenconsiderable thought.Whileitmaybecoercedintoworking,itisentirelypossiblethatthe solutionwillneverbeasgoodasapurposebuiltsolution. Thereareothersystemsthathavetakentheuniqueneedsoflargeareaaccess intoconsideration.802.16and802.20weredesignedwiththeneedsofwidearea coverageandpossiblemobileaccessinmind.Sohavesomeoftheproprietary systemstandardsthathavebeencreatedbyequipmentmanufacturers.Thesesystemshavethebenefitofbeingdesignedfortheexpresspurposeofprovidingwide areaaccesstomultiplegeographicallydiverseusers.Thedownsideiscostand/or availability.Atthetimethisbookisbeingwritten(Sept2003),thereisnotyet commerciallyavailable802.16or802.20equipment,andtheproprietaryequipmentthatisavailablecosts5to50timesmorethan802.11bequipment. Thewirelessdatafieldisstillgrowing.Newstandardsandvendorscontinueto evolve.Isuggestthatyoucarefullyreviewthetechnologiesandvendorsavailabletoyouatthetimeyouaredesigningthesystem.Determinetheirsuitabilityto youruniquebusinessplan,andmakeyourselectionbaseduponyouruniquemix ofcost,capacity,coverage,andspectrumavailabilityrequirements. Onceatechnologyhasbeenselected,youneedtoreviewthecoverageandcapacityneedsofyoursystem.Becauseyouarecoveringalargeoutdoorenvironment, propagationmodelingcanbeaneffectivewayofestimatingcoveragearea,and assessingthecoverageavailablefromspecificsites.Sincetheuserscannotbe identifiedbydesktoplocationastheycouldintheinbuildingLANsystem,anothermethodofestimatinguserdensityisneeded.Thisiswheredemographics datacancomeintoplay.Suchdataisavailablefrommanysources,andhasvaryingresolution.Youcanfinddemographicsascoarseasanentirecounty,orasfine asfractionsofasquaremile.Usethisdatatodeterminehowmanyhouseholds andbusinessesareinthegeographicareaassociatedwithcoverage.Thenbyusing 149
Implementing802.11,802.16,and802.20WirelessNetworks yourexpectedmarketpenetrationpercentage,youcandeterminethenumberof usersinthearea.Youshouldalreadyhaveanideaoftheexpectedperusertraffic, soyoucannowusethesameformulaweusedintheLANexampletodetermine thetrafficcapacityneededforthearea.Onceagain,determineifthecoveredarea hassufficientcapacitytomeetuserdemand.Ifnot,reducethecoverageareaand addmoreradiositestothesystemasneededtoservetheterritory. Onceyouhavedeterminedyoursitelocations,oneotherconsiderationyouwill faceisconnectingthesitestogetherortotheInternet.Sincethesiteswillhave significantdistancebetweenthem,CAT5cable,whichcanonlysupport300feetof linkdistance,isnotaviablemethodologytoconnectthemtogether.ThereareseveralalternativesforinterconnectiontotheInternet:purchaseanindividualaccess facilityfromatelco,CLEC(CompetitiveLocalExchangeCarrier),orotherproviderforeachofyourradiosites,orusepoint-to-pointradiotoconnectyourfacilities togetherandbringalltraffictoacommonlocationfordeliverytotheInternet. Theformersolutionmayleadtoamorerobustsystem,becauseasinglefacilityoutageisolatedonlyonesiteanditsassociatedcoveragearea.Itwillalsobe moreexpensivebecauseyoucannotaggregatetrafficfrommultiplesitesinorder tomosteffectivelyusethecapacityofthefacilityyou’repayingfor.Additionally, therewillbemoreequipmentnecessarybecauseeachsitewillhavetohaveit’s ownnetworkhardwaretoprovideaccesscontrol,DHCP,maintenanceaccess,and othernetworkandsecurityfunctions. Thelattersolutionallowsallthenetworkequipmenttoresideatasinglelocation,thusreducingtheneedforredundantequipmentateachsite.Italsoleadsto theadditionalcostofafacilitytoconnectthesitesbacktothedesignatedcentral location.ThiscouldbeaccomplishedwithaleasedTelcofacility,althoughyou’ll probablybelimitedtotheT-1orE-1facilityspeedsof1.544or2.048Mbps,or multiplesofthis.Giventhatthismaybeafractionofthebandwidthoftheradio,it maynotbeanappropriatechoice.Abetterchoicemaybepoint-to-pointradiofacilities.Ifthesitesinquestionhaveclearlineofsighttoeachotherortoacentral location,thisbecomesafeasibleimplementation.Thereisequipmentavailable inboththelicensedandunlicensedbandsthatcanbeusedtoprovidethistypeof connection.Betteryet,theseradioscanbehadwithanEthernetoutput,sothey cansimplybepluggedintoyourothernetworkequipmentwithouttheneedfor 150
SystemPlanning specializedequipmenttoconvertfromEthernet tosomeotherstandardlikeT-1orE-1. Asdiscussedeachofthesesolutionshastradeoffs.UsetheflowchartinFigure5-6asabasis toassistinselectionofthemostappropriate solutionbaseduponyouruniqueenvironment andneeds.
Identify location in leased site
Acceptable coax run lengths
No
Yes
ChannelAllocation,Signal-toInterference,andReusePlanning
Power available
Thenumberofavailablechannelsinasystem willbepredicatedonthreethings:thespectral allocationavailabletoyou,thespectralrequirementsoftheequipmentyou’veselected, andotherusersorinterferersintheband. Whenyoudidthesitesurveysatyourlocations,oneofthethingsyounotedwasthenoise floor,andanyotherusersinthebandthatyou noted.Ifpossible,avoidchannelswithexisting usersorahighnoisefloor. Inthehotspotsystemthisissimple:pickthe quietestchannelandimplementitastheoperatingchannelofyourequipment.Sincethereis onlyoneradiobasestationorAP,you’redone. IntheofficeLANorhotzone,youmustconsidernotonlyoutsideinterferencebutalsothe interferenceyouwillselfgeneratewhenallthe sitesareactive.Thismeansthatyoumustcarefullyallocatechannelsinordertominimize interferencebetweenlocations.Ingeneral, getasmuchphysicalseparationaspossible betweenco-channellocations.Asdetailedin
No
Yes Good site ground available
No
Yes Interconnect available?
No
Yes Area and equipment can be secured?
No
Yes Area and equipment safety accessible?
No
Yes Acceptable equipment location
Figure5-6
151 Figure 5.6: Equipment Location Flowchart.
Implementing802.11,802.16,and802.20WirelessNetworks Chapter4,thebuildinglayoutandcoverageinformationcollectedduringthesite surveywillbeinvaluableindetermininghowtoallocatethechannelsbasedon theactualcoverageandoverlapofeachlocation.Idealchannelseparation,i.e., sufficientsoastocausenointerference,israrelyachievable.Thebestseparation thatcanbedesignedforisseparationsufficienttoprovideadequateC/Imarginto themajorityofthecoverageareaofeachbasestation.TheC/Irequirementsofthe systemwillvarybaseduponthetechnology.Ifthemanufacturerdoesnotpublish C/IrequirementstheycangenerallybethoughtofasidenticaltotheS/Nrequirementsofthetechnology,whichbythewayarenormallythepublishedreceive sensitivitynumbers.Thereceivesensitivityisnothingmorethantheamountof signalrequiredfortheequipmenttoperformatacertainthresholdlevel.Thereferenceagainstwhichthisismeasuredisthermalnoiseinthechannel. Whatdoesthismeantothedesign?Itmeansthatthecoverageand/orcapacityperformanceofthenetworkwillnotbeasgoodasinwouldhavebeeninan interferencefreeenvironment.Therequiredsignalstrengthwillincreasebythe numberofdBtheinterferencehasraisedthenoisefloor. Forexample,thenoisefloorofa20-MHz802.11bchannelinthe2.4-MHzbandis –100.43dBmascalculatedbythethermalnoiseequation.Thepublishedreceive sensitivityspecificationsarebasedonthisnoisefloor.Ifinterferenceaddsundesiredsignal(man-madenoise)tothecoveragearea,thenoisefloorincreases abovethelevelcontributedbythermalnoisealone.Thebasicreceivesensitivity doesnotchange,butthesystemperformancedoes.ForeverydBinterferenceadds tothenoisefloor,theperceivedreceivesensitivitywillbeworsenedbyanequivalentamount.Inthecaseofan802.11bdevicewithapublished1Mbpssensitivity of–92dBm,thissensitivityisbasedonanexpectednoisefloorof–100.43dBm. Ifinterferenceraisedthenoisefloorto–98.43dBm,thedevicewouldnolonger performwhenthesignalstrengthwas−92dBm.Theinterferencehasraisedthe noisefloorby2dB,sothenewsignalrequirementwouldbe–90dBmforthe devicetoofferthesame1Mbpsperformancelevel. Thisisanotherreasonwhythesitesurveyisausefulsystem-planningtool.By knowingthesignallevelcontributedbyotherlocations,youcanassesshowmuch interferenceaddstothenoisefloor.Thisallowsyoutoestimatetherealcoverage oflocationsbasedontheadditionalnoiselevelcausedbyco-channelusersinthe formofinterference. 152
SystemPlanning TheWISPsystemrequiresthesamediligenceinallocatingchannelsforthesame reasonsasthoseintheLANenvironment.Interference,regardlessofitssource, willnegativelyimpacteitherthecoveragepotentialofasiteoritsabilitytoprovidemaximumthroughputoveritsdesignatedcoveragearea.Pickthechannel withthelowestnoisefloor,anduseantennaaperture,downtilt,andsiteseparation distancetoassuresufficientisolationofco-channelsignals. AntennadowntiltisanothersubjectthattheWISPoperatorshouldbecomefamiliarwith.BecausetheWISPsystemislocatedoutside,andisprobablylocatedat someelevationaboveground,downtiltbecomesanimportantfactorinoptimizing coverageandminimizinginterference.Thinkaboutitthisway:theantennayou willusehasaverticalpolarization,andhasamainlobewiththehighestenergy densitypointedperpendiculartotheantennaorientation.Thismeansthatthemain beamwillbepointedhorizontally,90degreesshiftedfromthemountingorientationoftheantenna,inotherwordsatthehorizon. AsyoucanseeinFigure5-7,themainbeampointsatthehorizon,anditisentirelypossibleto“miss”theintendedserviceareawiththemainbeamandtoendup Antenna Main beam, no downtilt
Antenna Downtilt
With downtilt, main beam puts its energy into the desired area.
Without downtilt, most energy does not serve the area of interest.
Figure5-7
153
Implementing802.11,802.16,and802.20WirelessNetworks servingthedesiredareawithsidelobeandsublobeenergy.Thissituationleadsto impairedserviceinboththedesiredcoverageareaandsurroundingareas,because themainlobeenergymissesthetargetuser,andincreasesinterferenceinadjacentareasbecausethemainlobeenergyispointedtowardthehorizon,andother potentialusers. Downtiltcorrectsbothofthesesituationsbypointingtheantenna’smainlobe towardthedesiredcoveragearea.Thiscanbeaccomplishedtwoways:mechanicallyandelectrically.Mechanicaldowntiltisusedonlywithdirectionalantennas, andisaccomplishedbyphysicallymountingtheantennainsuchawayastotiltit towardsthegroundbysomenumberofdegrees.Electricaldowntiltisachievedby thedesignoftheantenna,andcanbeappliedtobothdirectionalandomnidirectionalantennas.Infact,electricaldowntiltistheonlywaytoimplementdowntilt inanomniantenna.Thenumberofdegreesofdowntiltiscalculatedwiththe simpleformula:arctangent(H/D)whereHistheeffectiveheightandDisthe distancetothefaredgeofthedesiredcoveragearea. Tokeepthecalculationsimple,theformulaisbasedoncalculatingthevalueof theadjacentangleofarighttriangle,thereforetheeffectiveheightisdetermined asthedifferenceinelevationbetweentheantennaandtheareatobecovered, andthedistanceisthephysicaldistancebetweentheantennaandthefaredgeof coverageinthesameunitsusedforheightmeasurement.Forexample,let’stakea casewheretheantennaismountedonatower,whichisonahilloverlookingthe coveragearea.Thegroundelevationattheedgeofthecoverageareais540feet, thetopofthehillis650feet,andtheantennaismountedatthe100-footlevelon thetower.Inthiscase,theeffectiveantennaheightis(650+100)−540,or210 feet.Ifthedistancetothefaredgeofcoverageis½mile,thenatan(210/2640)= 4.548degreesofdowntilt. AsshowninFigure5-8,bydowntiltingtheantennaby4.5degrees,thecenter ofthemainbeamisaimedattheusersfurthestfromthesite,thusmaximizing theenergydensityintheareafurthestfromthesite.Areasclosertothesitehave lesspathlossduetodistance,andareeffectivelyservedbythelesseningenergy densityofthemainlobeandsublobesoftheantenna.Theothermajorbenefitof downtiltisinterferencereduction.Withoutdowntilt,thedesiredcoverageareahad lessthanidealsignal,whileundesiredareasweregettingmostofthesite’senergy. 154
SystemPlanning Byusingdowntilttomaximizeenergydensityinthedesiredcoveragearea,aside benefitisthatthisenergynolongergetstoplacesitdoesnotbelong,andtherefore doesnotappearasinterferenceinsomeundesiredarea. Downtilt Angle = Arctangent (Effective Height/Distance)
Effective Height
Height of Antenna Height above target area
Distance Figure 5.8: Downtilt Geometry.
Figure5-8
NetworkInterconnectandPoint-to-PointRadioSolutions Insmallvenueslikeahotspotorsmalloffice,networkconnectivityshouldnotbe asignificantissue.CAT5cableisaninexpensiveandreadilyavailablesolutionfor connectivityinthesesmallarealocations.Evenlargeofficespacescanhavethe radiosolutioneffectivelynetworkedusingCAT5cable.ThedistancelimitforCAT 5cableis300feetperrun,whichallowsquitealargeareatobeservedbycable alone,withnoneedforintermediateregenerators.Ifgreaterdistancesareneeded,it isfeasibletodividethenetworkonafloorbyfloorbasis,andruncablestoacentral pointwheretheyareconnectedusingaswitchorrouter,whichisinturnconnected tothewirednetworkinthebuilding.Thedecisionofhowtocablewillbedependentontheexistingwiring,existingnetwork,andconstructionoftheproperty. Butwhataboutthecampusenvironment,wherethespacetobeservedwith wirelessisinanumberofdisparatebuildings,ortheWISPsystemthatcoversa communityfromanumberofdifferentsites?Inthesecases,thedistancelimits associatedwithCAT5makeitunusable.Inthecampusenvironment,Ethernet overfiber(10Base-FLand100Base-FX)connectionsmaybefeasible,depending 155
Implementing802.11,802.16,and802.20WirelessNetworks ontheavailabilityandcostofductspacebetweenbuildings.IntheWISPsystem wheresuchductsbetweensitesarerarelyavailable,orinthedistributedbuildingofficeenvironmentwherenoductsareavailable,anotherinterconnectoption needstobeconsidered.Thatoptionisofcourseradio.Notonlycanradio-based systemsbeusedforconnectingusers,theycanbeusedtoconnecttogetherthe disparatelocations. Radiofacilitiessuchasthesearecalledpoint-to-pointlinks,andcanuseavariety oflicensedandunlicensedbandsforoperation.Unlicensedbandlinkscommonly offerlimitedbandwidth(1to50Mbps),whilelicensedmicrowavebandscanoffer linkswithhundredsofMbpsthroughput.Whenasinglecentralfacilityisused asadistributionpointforanumberofremotelocationstheresultingnetworkis knownasa“hubandspoke”configuration.Figure5-9illustratessuchanetwork. Theselinkscanbedesignedwiththesametoolsyouusefordesigningtheradio networksfortheusers.Thebigdifferenceisthatthereareonlytwopointstoconnect,theyarebothknownpointsthatdonotmove,andtheyshouldbewithinline ofsightofeachother.Thiseasesthedesignbecauseyouneedonlyconsiderthe coverageattwopointsinspacethatcanseeeachother.Ifthelocationshaveclear Fresnelzones,FreeSpacelossescanbeapplied;iftheFresnelzoneiscluttered thenlineofsightlosscharacteristicsshouldbeused.Becausethereareonlytwo locations,highlydirectionalantennascanbeusedwiththeradios.Thishelpsovercomethepathlossaswellasreduceunwantedinterferencebykeepingtheenergy tightlyfocusedontheotherstation.Infact,theseantennascanhavelessthantwo degreesofaperture,dependingontheirsizeandfrequencyofoperation.These smallaperturesmeanthatmountsmustbesturdy,andtheantennasmustbecarefullyaimedateachothertoassurethestationsareinitially,andremain,accurately pointedateachother. Anewconcepttoconsiderontheselinksisredundancy.Becausetheselinksare usedtoconnecttraffic-bearinglocationstogether,afailureofoneoftheselinks willisolatethosetraffic-bearinglocationsfromtherestofthenetwork,thusleading tousercommunicationfailures.Thissinglepointfailurecanberemediedbymakingtheinterconnectlinksredundant.Thiscanbeaccomplishedinseveralways. Thefirstmethodisthesimplestbutperhapsmostexpensivewaytoaccomplishredundancy:useredundantradioequipment.Thiscanbedoneintwoways,thefirst 156
SystemPlanning Hub and Spoke
Ring
Figure5-9:PTPlinksconfiguredinhubandspokeandring
Figure 5.9: PTP links configured in hub and spoke and ring.
beingtohavetwoactiveindependentradioseachbearinghalfthetotaltraffic.The advantageisthatafailurewillnotisolatetheendsite,butmay,dependingonthe totalthroughputcapabilitiesoftheradios,reducethetotaltrafficcapacitythatcan behandledbytheremotesite.Thedisadvantageisthattwoindependentchannels areneeded,andequipmentcostsaresignificantlyincreasedduetotheneedfor tworadios.Anotherredundancymethodis“HotStandby.”Inthismethod,thereis stilltheneedfortwoindependentradios,butonlyoneisactiveatanygiventime. 157
Implementing802.11,802.16,and802.20WirelessNetworks Iftheequipmentsensesafault,itautomaticallyswitchestothestandbyradioand allowstraffictoflowunimpeded.TherearetwoadvantagestoHotStandby:only oneRFchannelisneeded,andafailuredoesnotimpacttrafficflowfromtheremote site.Thedisadvantageofcostincreaseoverasingleradiostillexistsinthisscenario. FullRedundancyandHotStandbyredundancyarecommonlyusedwhenonlya singleremotesiteisconnected,ortherearemultipleremotesitesthatcannotbe connectedtoanyotherlocation.Ifmorethanoneremotesiteneedstobeconnectedandtherearemultiplechoicesforpathstoconnectthem,anothernetwork topologycalledaringshouldbeconsidered. Intheringnetworkasinglesiteconnectstoremotesiteone,remotesiteone connectstoremotesitetwo,andsoon.Thelastremotesiteconnectsbacktothe originsiteasshowninFigure5-9.Inthisscenario,trafficcanflowaroundthe ringineitherdirection.Asinglefailurecannotisolateasite,becausethereisan alternatepathtoroutethetraffic.Thereareseveraldisadvantagestothistopology: Backhaulfacilitiesneedtobelargeenoughtohandlethetrafficpresentedbymultiplesites,additionalnetworkhardwaremustbeconfiguredineachsiteinorder todropandinserttrafficfromthesite,andtomanagethetrafficflowonthering, andfinally,thelocationsneedtobearrangedinsuchamannerastoaccommodate theringtopology.Theprimaryadvantageoftheringarchitectureiscost:oneextra radioperringisneededtoachieveredundancy,insteadofoneextraradioperremotesite.Anotheradvantageofaringarchitectureisthatitcanbeusedtoextend theserviceareafarbeyondthedistancelimitsofasingleradiolink.Considering eachlinkasanindependentstartingpointallowsyoutodevelopanetworkthat continuestoexpandoutwardfromeachsiteonthering.Theonlylimitationisthat atsomepointthenetworkneedstoloopbackinordertoclosethering. Fromafrequencyutilizationstandpoint,itisbesttousedifferentfrequenciesfor thebackhaulandnetworkconnectionsthanyouareusingforconnectingusersto thesystem.Onceagainthishastodowithpotentialinterferencegeneratedbythe additionalfacilitiesusingcommonchannels.Eventhoughthebackhaulfacilities usedirectionalantennas,thereisstillapossibilityformutualinterference.Infact havingbackhaulinacompletelydifferentbandsometimesmakessensebecause itallowsallthechannelsavailableinyourprimarybandtobeusedforproviding servicetousers,thusallowinggrowthofcapacityinthenetwork.Alsotheremay 158
SystemPlanning beotherbandsmoresuitedtotheneedsofbackhaulbecausetheyhavetheability toconnectovergreaterdistancesorprovidegreatercapacity.
Costs Thelastdiscussionofthischaptermightactuallybeyourfirstconsideration: what’sitallgoingtocost,orlookedatanotherway,howmuchcanIaffordto spendandwhatcompromiseswillbenecessary?Costsarelargelybrokenintotwo categoriesCAPEXandOPEX.TheCAPEXcostsareonetimecostsassociated withcapitalequipment,construction,designandplanning,andsoforth.OPEX arerecurringcostsassociatedwithsuchthingsasinterconnect,leases,utilities, maintenance,andothermonth-to-monthcosts. Networkdesignwillhaveanimpactonallthesecostelements,andthefinal networkdesignwillhavetoincludethetrade-offsassociatedwithcostsaswellas performance.AsI’vesaidbefore,thereisnofreelunch.Forexample,usingcheap equipmenttoreduceCAPEXmayhaveaseriousnegativeimpactonOPEX, becauseequipmentreliabilityormaintainabilitysuffers.TherecanbemanyconsequencesofCAPEXdecisionsthatintheendhaveasignificantlygreatercost effectonOPEX.BecarefulwhenmakingCAPEXfinancialdecisionsandmake sureyouconsiderthelong-termownershipcoststoo.Youmayhavetolivewith theaftermathofyourcapitaldecisionsforaverylongtime.
TheFiveC’sofSystemPlanning Thisandpreviouschaptershavediscussedelementsofsystemselection,design andperformance.Theyhavealsomentionedthefactthattrade-offsarenecessary whenselectingasolutionorplanningasystem.Allofthosediscussionshaveled ustohere:thefivefundamentalaspectsofareal-worldcommunicationsystem. Initssimplestform,therearefiveelementsthatwillaffectyourdecisiononwhat technologytoselectandimplement.ThosefundamentalelementsareCost,Coverage,Capacity,Complexity,andC/Iratio.Costincludesbothinitialandongoing costsofownership,coveragecanbeeitherthetotalareatobecoveredorthearea coveredbyasinglebasestation,capacitycanbeeitherthenecessarycapacityor thecapacityofanindividualchannelorbasestation,complexitycanbedefined astheoverallsizeofthenetwork(forexamplehowmanyindividualsitesand 159
Implementing802.11,802.16,and802.20WirelessNetworks discretepiecesofhardwarearenecessarytomakethesystemfunction),andfinally C/Iortheamountofinterferencethatneedstobetolerated.Thisinterferencecan comefromtwosources:itcanbeinternallygeneratedthroughchannelreuseinthe system,oritcanbegeneratedbyothersystemsoverwhichyouhavenocontrol. Theseelementsareinextricablyinterrelatedandarealmostmutuallyexclusive. Forexample,youcannothaveacheapbutcomplexsystem,norcanyouhavea simpleandinexpensivesystemthatalsohasgreatcoverageandcapacity.The selectionofasuitablesystemsolutionwillbedrivenbyanunderstandingofthe businessneeds,theuserexpectations,andareatobeservedthenbalancingthose needsagainstaprioritizationofthefiveC’s.Thisbalancewillbedifferentineach situation.Alwaysrememberthatasuccessfulsetoftrade-offsinonesituationmay leadtoadismalfailureinanothersituation. Usethesefiveelementswheninitiallyformulatingyoursystemrequirements. Rankingthesefactorsinorderofimportancetoyourbusinesshelpstoorganize yourselectionprocessbyallowingyouquicklytoeliminatechoicesthatobviouslydonotfityourhierarchyofneed.Forexample,iflowcostandmaximum coveragearethemostimportantcriteria,asinglesitehighpowersolutionmight bethebestsolutionforyourneed,providingequipmentandspectrumforsucha systemcouldbeobtained.Ontheotherhand,ifhighcapacityanddealingwitha limitedcoverageareaandhostileinterferenceenvironmentaremostimportant, thenyoumayneedtodealwiththeadditionalcostsandcomplexityofanetwork requiringmultiplesitesinthecoveragearea.Thisofcoursegivesrisetoconsideringthenumberofchannelsneededtosupportthemultiplesitesandananalysisof whetherthereuserequiredbysuchaplancanbemanaged. Asyousee,thequestionsandconsiderationsquicklymultiply,andeachtime youmakeonedecision,youmayeliminateorseverelymodifyanotherofyour assumptionsorrequirements.LearningtherelationshipsbetweenthefiveC’s asdrivenbyyouruniquesystemrequirementswillallowyoutomakeinformed decisionsandoptimizethenecessarytrade-offsintoasystemthatbestsuitsthe financial,user,andoperationalneedsofyourparticularsituation.
160
C H APT ER 6
SystemImplementation, TestingandOptimization ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Real-WorldDesignExamples ExampleOne:LocalCoffeeHouse ExampleTwo:OfficeLANDeployment 2.4GHzRFCoverageResults 5.6GHzRFCoverageResults CapacityRequirements SystemDesignAnalysis NEC,Fire,andSafetyCodeConcerns ExampleThree:CommunityWISP Community:aGardenStyleApartmentComplex RFConsiderations Backhaul Weatherproofing GroundingandLightningProtection Community:ASmallAreaSubdivision EquipmentSelection SystemPlanning Community:AnUrbanorSuburbanAreaServing BusinessUsers SpectrumIssues DesignConsiderations Community:ASmallTownSystemforConsumer andBusinessUsers ExampleFour:MobileBroadbandNetwork InitialModeling PreliminaryInformation CoverageModeling CapacityModeling CostModeling DesigningintheRealWorld
This page intentionally left blank
C H APT ER 6
SystemImplementation,Testing andOptimization Real-WorldDesignExamples Nowthatthebasicshavebeencovered,let’stakealookatputtingtheconcepts intopracticebydesigningrealsystems.InthefollowingpagesI’lltakearealexampleofeachofthesystemtypeswe’vediscussedandwalkthroughthedecision processthatresultedinadeployednetwork.Additionally,I’llprovidealookatthe designissuesandapproachesnecessarytodeployafullymobilenetwork.
ExampleOne:LocalCoffeeHouse Theownerofthisvenuewantedtoexpandtheavailableservicesintheshopto includecharge-freeInternetaccessforpatrons.Internetaccesswillbeprovidedby oneshop-ownedhardwiredcomputer,pluswirelessaccessforpatronswithlaptopsorPDAs.Theareatobecoveredisaspace25feetby40feetwith15-foottall ceilings.Theareaisopenwithnoobstaclesexceptfortheservicecounterlocated alongoneside.Initialandrecurringcostsneedtobeaslowaspossible,sincethis isanoverheadservice,notarevenuegenerator. Walkingthroughthedesignprocessyieldsthefollowingissuesandanswers:The coffeeshopwantstoownanddeploythewirelesssolution,soaPart15compliant systemisnecessary.Furtheritmustbealowcostsolution,so802.11b,802.11a, and802.11gareviablesolutions.Giventhatitisexpectedtoworkwithuser customer’slaptopsandPDAs,theselectionisfurthernarrowedto802.11b,which atthetimeofimplementationisthemostwidelyavailableandcommonlyused standard.Theareatobecoveredisrelativelysmallandopen,andthebandwidth requirementofthecustomersisminimal,soasingle802.11APshouldprovide adequatecoverageregardlessofitslocationintheroom. 163
Implementing802.11,802.16,and802.20WirelessNetworks SothisquickreviewofthebasicneedshasalreadydeterminedthemostappropriateRFtechnology:802.11b.Nowlet’slookattheotherneeds.Thereisno existingnetwork,soonewillhavetobebuiltinordertosupportthecombined wirelessandwiredsolutions.Sincetheserviceisofferedtothepatronsatno charge,thereisnoneedtosecurethenetworkortoprovideRADIUSservicefor usernameandpasswordauthorization.ThisnetworkwillneedtoprovideDHCP servicetosupportthenomadicwirelessusers,andshouldalsoprovideNetwork AddressTranslation(NAT)serviceinordertoeliminatetheneedfornumerous publicIPaddresses.Italsoneedstoprovidebothwiredandwirelesssupport. Thenetworkrequirementscanbemetwithasimple4-portrouter,afunctionthat canbepurchasedasastand-alonedevice.Alternately,thisfunctionisalsobuilt intomanyinexpensiveconsumergrade802.11bAPs.Infact,theintegratedrouter/ APsolutionwasselectedforthisdeploymentduetoitslowercost,reducednetworkcomplexity,andreducedmaintenance.Theselecteddevice,aD-LinkDI614, isacombination802.11bAPwithbuiltin4-portrouter,DHCPserver,NATcapability,andahostofotherscreening,filteringandsecuritycapabilitiesthatwere unnecessaryforthisapplication.Bestofall,itwassourcedfromalocalcomputer storeforlessthan$90. Thenetworkwillbeusedforcasualwebbrowsingandemail,anditisexpected thatthemaximumnumberofsimultaneoususerswillbefive,sothetrafficload willbequitelow.InternetconnectivitycancomefromeitherthelocalCATV companyintheformofacablemodemorfromthelocalRBOCintheformofa DSLLine.EitherwilldeliverasingleIPaddress,connectionspeedofatleast 256Kbps,andEthernetconnectivity.Inthiscase,thecablemodem-basedservice wasselectedduetoitslowercost. ThelocationofthehardwarewasultimatelydictatedbythelocationofaCATV dropinthebuilding.Itjustsohappenedthatthedropwasinabackcornervery closetowherethewiredcomputerwastobelocated.Netstumblerwasusedto checkforinterferenceandtoverifycoveragewiththeAPsettingonatablein thislocation.Theresultoftheinterferencetestshowedthattherewasanother APworkinginthevicinity,andthatthisAPwastunedtoChannel6.Inorderto avoidinterference,channel11wasselectedforandprogrammedintoourAP.The resultingNetstumblercoveragesurveyshowedexcellentcoverageatalltablesin 164
SystemImplementation,TestingandOptimization theshop.Sincethelocationwasknowntoworkatathree-footelevation,itwas expectedthatabitofadditionalheightwouldnothurtthecoverage,soinorderto keeptheequipmentoutofreachofcurioushands,ashelfwasplacedonthewall ataten-footelevation,thecableswereroutedbehindapieceofwoodtrimmoldinginordertohidethemfromsight,andtheRouter/APwasplacedontheshelf. Thissolutionmettheneedsoftheclientextremelywell.Itwaslowcost,low maintenance,easilyinstalled,andisworkingwellfortheregularpatronswhostop bywiththeirWi-Fienabledcomputers.
ExampleTwo:OfficeLANDeployment Thisisasignificantlymorecomplexscenarioascomparedtothecoffeeshop example.Inthiscaseacompanyisexpanding,andislookingatwaystosupply networkconnectivityinthenewspace,aswellasmethodstoprovideaccessto theircompanynetworkinthenewspace.Thenewspaceisphysicallyseparated fromthecompany’soriginallocationbyapproximately½mile.Thespacetobe coveredencompasses40,000squarefeetonmultiplefloorsofabuilding.There willbeabout200computerusersinthenewspace,aswellasemployeesvisiting fromthemainspace.Theemployeesusethenetworkforemail,someInternetaccess,andaccesstocentraldatabases. Thefirststepinanalyzingtheneedsofthisnetworkistobetterunderstandthe needsandexpectationsoftheusers,theITdepartment,andthebudgetassociated withtheproject.Fromthisinformationcollectionprocessitwasdeterminedthat therewaslineofsightpathavailabilitybetweenthetwobuildings,soapoint-topointfacilitycouldbeusedtoconnectthemtogether. Itwasalsodiscoveredthatthemajorityofthecomputerusersinthecompany usedtraditionaldesktopcomputers,andthattherewasexistingCAT5wiringin thenewspace.Anotherissueuncoveredwasthatthemanagementusers,who weretheonlyemployeeswithportablecomputers,werecurrentlyhardwiredtoa CAT5-basednetwork,andwerehopingtogetfullportabilityintheiroldspaceas wellasthenewspace,andadditionallywantedtobeabletotakeadvantageofthe wirelessfacilitiesthatwerebecomingmorecommoninhotels,airportsandother locationswheretheyfrequentlytraveled.
165
Implementing802.11,802.16,and802.20WirelessNetworks TheITdepartmentdidnotwanttofullyadoptawirelesssolution.Theyfeltthat CAT5wasafine,inexpensive,securealternativeforthemajorityoftheusers, sincetheseusersweredesktopcomputerusersandthecablingexistedanyway. Theywerealsoconcernedaboutthesecurityofwirelesssolutions.Finally,they werealsoplanningtomovesomeserverhardwaretothenewspaceinorderto providephysicalseparationofequipmentaspartoftheirdisasterrecoveryplan. Thismeantthatthenetworkconnectionbetweenthebuildingswouldneedtobe extremelystable,secure,andprovideatleastduplex100Mbpsthroughput. Becauseofthecomplexityandnumberofuniqueissuestoeachsubcomponentof theproject,itwasreasonabletobreaktheprojectdownintothreesubcomponents: theinter-buildinglink,theuserconnectivityinthenewspace,andawirelessoverlaydeploymentintheoriginalspace. Giventheinputonusage,theinter-buildinglinkhastobehigh-speed,reliable andsecure.Thislinkcouldbeprovidedusingawirelessconnection,sincealine ofsightpathexistedbetweentherooftops.Anotheralternativeisusingafacility leasedfromthelocalTelco. TheTelcooptionwasexploredfirst.Thetelcocouldnotprovidea100Base-T Ethernetsolution.TheycouldonlyprovidestandardtelcofacilitiesofT1,T3and OC3.Becauseofthespeedsrequired,multipleT3facilitiesoranOC3facility weretheonlysolutions.Neitherexisted,buttheTelcodeterminedthatthecapacitycouldbemadeavailableinundersixmonths.ThecostoftheOC3facility wouldexceed$5000permonth.Additionalcostswouldbeincurredfortheroutersthatwouldbeneededoneachendtoconvertbetweenthecomputernetwork’s 100Base-Tprotocolandthetelco’sOC3protocol. Thesecondanalysiswasonradio-basedfacilitiestoconnectthebuildings.Althoughunlicensedproductoptionslike802.11acouldhavebeenusedthatwould havedirectlyinterfacedtothe100Base-Tcomputernetwork,andwouldhavecost lessthanamonthleaseontheOC3,itwasdeterminedthatthesesolutionsweretoo limitedinbandwidthandwerenotassecureasnecessary.Theotheralternativewas tousespectrumlicensedunderFCCPart101rulestobuildalicensedmicrowave linkbetweenthebuildings.Thiswouldprovidethespeedandsecuritydesired,and couldbedesignedtoachieveover99.999%uptime(lessthan34secondsperyear ofdowntime).Unfortunately,itwouldalsobeafarmoreexpensivealternative. 166
SystemImplementation,TestingandOptimization Severalproductswerereviewed,andseveralwerefoundthatcouldprovide 100Base-Tconnectivity,aswellasprovidingsomeT1connectivity.Thishadthe additionalbenefitofbeingabletoprovidefacilitiesforvoiceconnectionsback tothemainPBX,therebyavoidinganothersetofmonthlytelcocharges.The downsideofthissolutionwascost.Inordertogetalicenseforthefacility,an engineeringandcoordinationstudywouldneedtobeaccomplished,andalicense applicationwouldneedtobemadetotheFCC.Suchastudyandlicenseapplicationwouldcost$3,000to$5,000,andthehardwarewouldcostaround$27,000. GiventhetimingofthecoordinationstudyandFCCfiling,thissolutionwasdeliverableinaboutthesametimeasthetelcosolution,andwouldpayforitselfinhalf ayear,basedonthemonthlytelcofacilityleasecosts. Whilea$30,000solutionseemsextravagantwhencomparedtoasub$2,500unlicensedlink,theunlicensedfacilityhassomesevereconstraints.First,an802.11a linkhasamaximumthroughputof54Mbpstotal,whileaduplex100Base-T connectionhas200Mbpsoftotalthroughput(100simultaneouseachway).This meansthattogetcomparablebandwidthfroman802.11asolution,fourradiolinks wouldneedtobesimultaneouslyoperatedoneachrooftop,andthenetworkwould needadditionalhardwaretosplitandcombinethetrafficfromthemultipleradios. Onthepositiveside,therearesufficientchannelsavailabletoaccomplishthis,and suchamultiradiosolutionhasanadditionalbenefitofprovidingredundancy. Soinrealitythesingle$2,500802.11linkturnsintoa$10,000plussolutionthat usessignificantlymorerooftoprealestate,andhasnoguaranteesthatitsperformancewillremainatcurrentlevelsasotherusersbegintomigrateintothe5GHz bands.Additionally,thesecurityrequirementsdesiredbyITweretoostringentfor astand-alone802.11aproduct.Inordertouse802.11a,additionaldedicatedencryptionhardwarewouldhavebeennecessaryonthelinks,thusaddingadditional expensetothesolution. Thelicensedsolutionwasselectedduetoitsabilitytomeetorexceedthesecurityandbandwidthrequirementsofthenetwork,assurealongtermsolutionthat wouldnotbeimpactedbyotherusersintheband,andoffertheadditionalcost savingsassociatedwithcarryinginternalPBXtraffic. Withtheinter-buildinglinkoutoftheway,it’stimetofocusonconnectivityinthe newspace.Sincethemajorityofthecomputersonthenetworkwillbedesktops, 167
Implementing802.11,802.16,and802.20WirelessNetworks andCAT5cablealreadyexists,theITdepartmentdecidedtousewiredconnectivityforthemajorityofthecomputerusersinthespace.Theneedforwireless connectivitywouldthereforebelimitedtosupportingabout20%oftheworkforce whohadportablecomputersandaneedto“roam”betweenthebuildings.This alsomeansthattheoriginalofficespacewouldneedawirelessoverlayaddedin ordertogivetheseusersequivalentconnectivityineitherlocation. Baseduponthedesireoftheuserstohavetheabilitytouse“hotspots”inhotels andairportswhiletraveling,thetechnologychoiceforthewirelessapplication waslimitedtoonethatwas802.11bcompatible.Thisprovedtobeanonissue sinceseveralmanufacturersareproducingPCMCIA-basedcardsthatincorporate operationon802.11a/b/andgstandardsandbands. Thenetworkhardwarerequiredmorediligence.Thesolutionneededtobeflexible inallowingexternalantennasandpowercontroltobeusedtotailorcoverage,and thesolutionneededtoberemotelymanageablesoITcouldmonitorandmaintain alltheAPsfromtheirnetworkmonitoringcenter.Thereareamultitudeofconsumerquality802.11xsolutionsavailableatverylowcost,butthesesolutionslack themanageabilityandantenna/powerflexibilitythatareneededinacommercial deployment.Thesefactorslimithardwareselectiontoenterpriseclassequipment. BoththeProximAP2000andCiscoAironet1200solutionsofferedexternal antennaconnections,centralmanagement,and802.11a,b,andgsupport.Cisco hardwarewasselectedinlargepartduetoanexistingrelationshipbetweentheIT departmentandCisco. Thenexttaskistodeterminewhichstandardismostappropriatetocoveringthe targetarea.Assessingthephysicalareashowedthefloorspacetohaveasquare shapewithacentralelevatorcoreandwalledofficesandconferenceroomsaround muchoftheoutside.Theopenareaiscomprisedofcubicles.Thereis10,000 squarefeetofspaceperfloorandfourfloorsencompassthenewspace.Future planscallforexpandingintomorespaceinthisbuilding.Toassessthecoverage ofthevariousstandards,anAPsupportingthevariousstandardswasusedforthe sitesurvey. Priortotesting,aspectrumanalyzerwasusedtolookforsignalsinthebands. SeveralsignalsthatappearedtobewirelessPBXsorcordlessphoneswerefound 168
SystemImplementation,TestingandOptimization inthe2.4GHzband.ThewirelessPBXsystemsignalsappearedtobefrequency hoppingsystemswiththeirenergyconcentratedinthelowerportionoftheband. Additionally,severalexisting802.11bsystemsbelongingtoothertenantsinthe surroundingbuildingswereidentifiedinoperation.TheAirMagnetanalysistool wasusedtogainmoreinformationabouttheother802.11systems.Therewerea totalof13uniqueSSIDsfound.Sixsystemswereoperatingonchannel6,three onchannel1,fouronchannel11,andoneonchannel4.ThemeasuredRSSIof thesesystemsvariedfrom–87dBmdowntonoisefloor,withthestrongestsignals beingverylocalizednearcertainwindowsandincertainoffices.Therewereno signalsnotedinthe5GHzband. ThecoveragepotentialofAPsfunctioningon2.4and5.6GHzwasassessed,usingseveraldiscretelocationsandantennas.Thefirsttestwasconductedusingthe APconnectedtoa90degreebeamwidthantenna,whichwasmountedatceiling heightinanoutsidecornerandaimedtowardthecenterofthebuilding.Coveragewasmeasuredonthefloor.Additionalmeasurementsweremadeonthefloors aboveandbelowandoutsidethebuildinginordertoassesstheamountofsignal leakingintoundesiredareas. ThesecondtestwasconductedwiththeAPconnectedtoanomniantennathat wasmountedonaceilingtileinthecenterofonesideoftheopenareabetween theelevatorcoreandtheoffices.Againcoveragewasmeasuredonthefloor,on thefloorsaboveandbelow,andoutside.
2.4GHzRFCoverageResults InitialmeasurementsshowedthatanAPoperatingat2.4GHz(thussupportingeither802.11borg)providedexcellentcoverageoftheopenareasandgood penetrationoftheofficesandconferenceroomsfromeitherlocation.Thecorner mountwith90degreeantennaprovidedthebestcoverageareaintheopenarea, andminimizedthesignalseenoutsidethebuildingintheparkinglot.Coverageintheofficeswasuseableoverabout½thelengthofthebuilding,butsignal strengthwassignificantlylowerthanthesignalintheopenareathatreachedall thewaytothefarwall.Coveragefromtheomnilocationwasalsogood,although thereweresomeweakspotsintheopenareaproducedbytheshadowscreated bytheelevatorcore.Thecoverageintheofficesandconferenceroomswasbetter 169
Implementing802.11,802.16,and802.20WirelessNetworks withtheomni,mostlybecausetheantennawas“looking”intheglasswindows ofthesespaces,ratherthanlookingatreflectedsignalsorsignalsreceivedbythe “edge”oftheantenna’smainbeamandattenuatedthroughplasterboardinterior walls,whichwaswhatoccurredwhenusingthe90degreeantenna.Unfortunately, thesignalfromtheomniantennacouldbeseeninmoreplacesoutsidethebuilding.Thiswasexpected,becausethedirectionalantennawasradiatingtowardthe interiorofthebuilding,whereastheomniwasradiatinginalldirections,including throughthewindowstotheoutside.Interestingly,thisisthesamereasoncoverage intheofficeswasbetter,soonceagain,atrade-offwillneedtobemade:Isinteriorcoveragewithminimalequipmentmoreimportantthansignalleakageandits attendantsecurityconcerns? Interfloorcoveragewasalsoanalyzedfrombothlocations.Thiswasnecessaryin ordertodeterminetheinterferencesignallevelsthatwouldbecreatedintheother targetedcoverageareas.Areasofunintentionalcoverageweremeasuredfrom bothlocationsonboththeflooraboveandthefloorbelow.Theareasofunintentionalcoveragemanifestedthemselvesclosetothewindowsnearthelocationof theAPs,whichledtotheassumptionthatthesignalswere“ducting”alongthe metalwindowframes,andradiatingintotheadjacentfloors.Thesignalswere strongenoughtoneedfrequencyreusecoordinationinordertolimitsystemdegradationsduetointerference.
5.6GHzRFCoverageResults ThecoveragepotentialofthesamelocationsvariedsignificantlywhentheAPs wereoperatedas802.11adevicesinthe5.6GHzband.Theachievablecoverage droppedinbothlocations.Thecornerlocationprovidedalmostnocoverageinthe offices,andcoverageintheopenspacefelloffbyabouthalf.Coverageoutside wasminimal.Thecentrallylocatedomnifaredmuchbetter.Theopenareaswere coveredwell,andtheofficeswerecoveredwithsufficientsignaltoassureconnectivity,althoughnotatthefull54Mbpsratepotentialofthe802.11atechnology. Coverageoutsidewassignificantly(>15dB)lowerascomparedto2.4GHz.Interferenceonadjacentfloorswasalsoreducedwhenusing5.6GHz. Thebehaviorat5GHzaccuratelyreflectstheexpectedcoveragechangedueto frequencyincreases.Remember,Figure3-1showedthatifyoudoublethefre170
SystemImplementation,TestingandOptimization quencythefreespacepathlossincreasesby6dB,anda6dBvariationinsignal strengthwoulddoubleorhalvethecoveragedistance.That’stheeffectwe’re seeinghere.5GHzRFexperiencesgreaterpathlossaswellasgreaterattenuation whenpenetratingobjects.
CapacityRequirements Sincethemajorityofthenetworkuserswillbedesktopusers,ITdecidedthat thosedevicesshouldbehardwiredtothenetwork,thusleavingwirelesstoconnectonlymanagement,IT,andsalesemployees,whoarethecompany’sonly laptopusers.Thetotalnumberofregularusersinthenewspaceis50.Additionally,thereisexpectedtobeanother5to10usersfromtheprimaryfacilitythat wouldneedaccesstobandwidthwhilevisitingthenewspace.Theusagecharacteristicoftheseusersisverylight,requiringlessthan500Kbpsaveragetosatisfy theirneeds. Withthislimitedloading,andassuminganequaltrafficdistributionperfloor, thewirelesssystemonlyneedstoprovideabout6Mbpsoftrafficcapacityperfloor.
SystemDesignAnalysis Giventhecurrent6Mbpsperfloorcapacityrequirementsofthenetwork,any RFimplementationthatcoversthedesiredareawillbeadequatealsotoservethe capacitydemandsplaceduponthenetwork. Fromatechnologystandpoint,iftherewerenointerferencefromeitherinternal orexternalsources,802.11bor802.11gwouldrequiretwoAPswithdirectional antennasmountedeitherinopposingcornersortwoAPswithomniantennas centrallylocatedonopposingsidesofthebuilding.Thecornermountingminimizestheundesiredcoverageoutsidethebuilding,butalsoreducesthesignalin theofficesandconferencerooms,whicharetheveryplacesthesystemwilllikely beusedmost.Thecentrallocationprovidesbetterservicetotheseareas,butalso leakssignificantsignaloutofthebuilding. Frequencyreusewillberequiredsincethereareonlythreenonoverlappingchannelsavailableinthe2.4GHzband,andthesystemwillrequireaminimumof eightAPstocoverthearea.Theself-generatedinterferencefromchannelreuse 171
Implementing802.11,802.16,and802.20WirelessNetworks plusthefactthattherearenumerousothersignalsfromothersources,meansthat theminimalcoveragesolutionoftwoAPsperfloormaynotbethebestsolution becauseoftheneedforincreasedsignalstrengthtoovercomeinterferenceandallowallusers,regardlessoflocation,afullspeedconnectiontothenetwork. Giventhemeasuredcoverage,addingasingleAPperfloorwillnotsolvethe problem.TwoextraAPswouldberequiredperfloor.Thisisasignificantexpense. Alowercostalternativewouldbetousethedualradiocapabilitiesoftheselected product,centrallylocatethehardware,andextendLMR400cabletotheantenna locations.WithacentralAPlocation,thecablerunswouldbeapproximately 50feeteach,thusadding3dBofloss.Selectinganantennawith5to7dBof gaineasilyovercomesthelinelossandaddsamodicumofextraperformanceto thesystembyimprovinglinkmarginsafewdB. Makingareusepatternwiththreechannels,spreadoverfourlocationsperfloor, andmultiplefloorsischallenging.Threechannelsareinsufficienttodesignan interferencefreefrequencyreuseplan,althoughpossibilitiesexisttouseinternal objectsasshieldingtoprovideinterferenceprotection.Channel6couldbeused ontheeastside,channel1onthewestside,andchannel11couldbeusedonthe northsideandagainonthesouthsidewiththeexpectationthattheelevatorcore willprovidesufficientshieldingsoastoavoidinterferencebetweenthetwocochannelAPs.Thenextfloorwouldhavetoshiftthechannelusebecauseofthe signalleakagebetweenfloorsnotedduringthesurvey.Thenextfloorcoulduse channel11ontheeastside,channel6onthewestside,andchannel1onthenorth andsouthside.Asyoucansee,nomatterhowyouplanittherewillbeareasof interferencefloortoflooraswellaspotentiallyonthefloor. Abetteralternativemightbetouseaslightlyoverlappingchannelplanwith channels1,4,7,and11.Thisplandoeshavesomechanneloverlapthatwillresult insomeenergyfromtheadjacentchannel“spillingover,”thusresultinginsome opportunityfordegradationatveryhightrafficlevels.Howeverthespillover mayhavelesseffectthantheco-channelinterferencewill.Inthisdesign,channel1wouldbeusedonthenorthside,channel4ontheeastside,channel7on thesouthside,andchannel11onthewestside.Thenextfloorwouldhavethe planrotated180degrees,sochannel1wouldbeonthesouthside,4onthewest, 11onthenorthand4ontheeast.Thenextfloorgoesbacktothefirstfloorplan, 172
SystemImplementation,TestingandOptimization andthenextflooragaingetsthesecondfloorplan.Thisplanprovidesmaximum separationbetweenreusebyallowingnoreuseonafloor,andprovidingasmuch physicalseparationaspossiblebetweenco-channelAPsondifferentfloors. Inordertoservetheareawithan802.11a-basedsystem,afourAPsolutionwillbe necessary.Thecoverageprovidedat5.6GHzwasinsufficienttoallowatwolocationperfloornetworktoperformasdesired.SincetheAPssupporttworadios,a twoAPsolutionwithremotelylocatedantennascouldbedone,butLMR400will exhibitalmost6dBoflossoverthe50feetofcablebetweentheAPandantenna. Steppinguptohigherquality,lowerlosscablecouldbedone,butthelowloss cableismuchlargerindiameter,muchstifferandmoreexpensivethanLMR400. Reuseplanningat5GHzbecomeseasybecausethereare12nonoverlappingchannelsavailable,enoughtohaveafullyindependentchannelimplementationonthree ofthefourfloors,withreuseoccurringonlybetweenthefirstandfourthfloors.In addition,therewerenoothersignalsnotedinthe5GHzbandduringthesurvey,so managinganddesigningaroundoutsideinterferenceisnotanimmediateissue. So,wenowhavetenviabledesignalternativesthatallshouldwork.Eachhasdifferentcosts,capacities,implementation,andoperationsconsiderations.Choosing theoptimalalternativedependsonknowingtheuniquerequirementsoftheuser groupandthefinancialconsiderationsassociatedwiththeproject.Thebestsolutionwillbetheonethatcomesclosesttocosteffectivelyservingtheneedsofthe userwhileeliminatingasmanyshortcomingsaspossible. Thefirstdecisionistoselectthebestoptionforthewirelessnetwork.SincesecurityisaconcernoftheITgroupthatoverridescostconsiderations,the802.11b andgsolutionsusingomniantennasaredeemedunacceptable.The802.11bandg solutionsusingdirectionalantennasmaystillbeviable,iftheantennasaremoved andthepatternschangedinordertoprovidebettercoverageintheofficesand minimizingoutofbuildingcoverage.Anadditionaldownsideofthe802.11b/g solutionisthepresenceofmanyotherusersandservicesinthebandthataddto thenoisefloorandinterference,andmakereuseplanningmoredifficult. Onthe802.11afront,thecostsmaybehigherduetothelimitedcoveragepotentialofanysingleantennalocation,andthequestionableabilitytouseremote antennasduetotheexcessivecablelossatthesefrequencies.Ontheplusside,less signalleaksoutofthebuildingandreuseplanningiseasier. 173
Implementing802.11,802.16,and802.20WirelessNetworks SincetheITdepartmentwantedasolutionthatminimizedoutofbuildingcoverage,neededlittleongoinginterferencemanagement,andwouldworkwellwithout worriesaboutdegradationduetouncontrolledinterferencefromotherusers,it wasdecidedtomoveawayfroma2.4GHzsolution.Thiseliminated802.11b/g fromthedecision. ItwasdecidedtouseafourAPperfloor802.11asolution.Thiseliminatedroutingunwieldyantennacables,andassuredthattherewasasignificantamountof excesscapacityforthefuture.TheAPsusedomniantennasandwerecentrally locatedoneachsideofafloor,sincethisconfigurationgavethebestcoverageof theofficeandconferenceroomspace. Toaccommodatetheusers’needforcorporatenetworkaswellaspublichotspot access,tri-mode802.11a/b/gcardswereselectedastheclientdevicesforthe laptopusers,thusallowingaccesstothecompanynetworkvia802.11aaswellas accesstopublic802.11bnetworks. Althoughthecoverageoutsidethebuildingwasdeminimus,ITstillworriedabout networksecurity.Securityissueswereaddressedintwoways.First,multiplekey encryptionwasenabledonthewirelessnetwork.Sincethewirelessencryption standardsareknowntobebreakable,thiswasonlythefirststepinsecuringthe network.Thesecondstepwasisolatingthewirelessnetworkfromthecorporate network.Inessence,thewirelessnetworkexistsasastandalonenetworkthatis separatefromthecorporatenetwork.ThereisaVPNgatewayattheedgeofthe wirelessnetworkthatisusedastheinterfacetothecorporatenetwork.Auser accessingthewirelessnetworkisconnectedtotheVPNgateway,andauthorized asalegitimateuserbythisdevice.Onceauthorized,aVPNiscreatedbetween theuserandthecorporatenetwork.ThisVPNgatewayisalsousedtosecureall remoteaccesstothecorporatenetworkviatheInternet,includingusersaccessing thecorporatenetworkfrompublicwirelesshotspots.
NEC,Fire,andSafetyCodeConcerns InstallingwirelessLANequipmentinabuildingcarriesafewadditionalobligationsthatareoftenoverlooked.Ifanyofthecablingorequipmentistobe mountedaboveceilingsorinwalls,somejurisdictionsrequirethatthecableand hardwarebeeitherenclosedinmetalconduitorbe“plenumrated.”Ofcourse 174
SystemImplementation,TestingandOptimization thereisnowaytoenclosethehardwareinconduit,soitmustbefireretardantand complywiththeappropriatestandards,oneofwhichisULstandard#2043.The manufacturershouldnotewhethertheequipmentiscompliantwiththisstandard inthedevice’sliterature.Compliancesimplymeansthatfireretardantmaterials areusedinconstructionofthecableordevice.Thisisaveryimportantconsiderationwhenmountingequipmentabovedroppedceilingsthatareusedaspartof thebuilding’sairreturnsystemorareotherwiseviewedascommonairwaysin thebuilding.Thereasonforuseofplenumratedcableandhardwareortheuse ofconduittoenclosenonconformingcableisthattheuseofthewrongcableor equipmentintheseareascouldcausealocalizedfiretopropagatethroughouta largeareaofthebuilding.Itcanalsoleadtothegenerationoflargeamountsof toxicsmokeduringafire.Thatsmokecouldrapidlypropagatethroughthebuildingbywayofthecommonairpathavailableintheplenum. FurtherthereareverystringentNationalElectricalCode(NEC)rulesforthe routingofcommunicationscabling.Areasthatyoushouldpaycarefulattention toaretherulesconcerningcablemountingandabandonedcables.Becauseofthe in-depthrequirementsofthecode,youshouldbefamiliarwithallofChapter8. Forexample,althoughitisdoneonaroutinebasis,usingziptiestomountaCat 5cableisunacceptableandunlawful.Therearespecificguidelinesformounting andacceptabledevicesformountingcommunicationcablesoutlinedinChapter8 oftheNEC. Withmostofficebuildings,eachnewtenantinstallstheirowncommunication cablingandleavestheoldcablinginplace.ThiscreateswhattheNationalFire ProtectionAgencycallsa“highfuelload,”becausetheexcesscablecreatesan increasedfireandsmokehazard.In2002theNECcreatednewrulesthatrequire thelatestinstallertoremoveallabandonedcablesfromabuildinguponperforminganewinstallation.Forcommunicationscablingtheremovalappliesonlyto cablenotenclosedinametalconduit.ThismeansthatifthereisunusedCat5in theplenumonacablehangeritmustberemoved. TheNECisstillcatchingupwiththeincreasinguseoftelecomcablingandequipment.BesuretokeepanupdatedcopyoftheNECsoyoucanbeawareoffuture rulechangesthatwillimpactyourinstallationmaterialsandprocedures.Ultimately,youastheinstallerareresponsibleforadheringtotherulesandregulations, 175
Implementing802.11,802.16,and802.20WirelessNetworks anditistheinstallerwhobeartheliabilityfordamagescausedbyimproper installationmaterialsandpractices.
ExampleThree:CommunityWISP ThefactorsdefiningacommunityWISPareaboutasnumerousastheequipment choicesavailabletoservethem.Withthatinmind,I’lldivergefromtheprevious examplesandinsteadofdiscussingthespecificsofasinglesystem,I’lldiscuss severalsituationsthatmightgenerallyfallundertheheadingCommunityWISP, andlookatsomeoftheantennaplacement,technology,anddesignalternatives available.Asweshallsee,eachsituationisquiteuniqueanddifferentfromthe other,andtheapplicabletechnicalsolutionsvaryaccordingtotheareaandneeds oftheusers.Additionally,thesesystemsaremostlikelydeployedasabusiness, meaningthatthereisanexpectationofreturnoninvestment.Thecostofsolutions toservethesemarketsisasvariableasarethetechnologicalsolutionsavailable fordeployment.Inanalyzingtheavailabletechnologiesandselectingasolution youwilloftenfindseveralthatseemtoworkwellfromatechnicalstandpoint.In additiontofindingagoodtechnicalsolution,youwillalsoneedtoconsiderthe capitalandrecurringcostsassociatedwitheachsolution.Besuretocomparethe expenseassociatedwiththebasestationequipmentandthecostofthesubscriber hardware.Youwillbedeployingfarmoresubscriberequipmentthanbasestations,sothecostpersubscriberservedwillbemoregreatlyaffectedbysubscriber equipmentcoststhanbybasestationcosts. Inaddition,lookattheongoingoperatingexpenses.Ifatechnologyneedsmore sites,thentheleasecostsandmaintenancecostsassociatedwiththesolutionwill behigher.Itisusefultocomparesystemalternativesbycomparingtheoverall capitalandannualoperatingexpensesassociatedwitheach.Bylookingatthe totalcostofownershiponanannualbasis,yougetthebestideaofwhichsolution ismostcosteffectiveforyourparticularbusiness.TheaccompanyingCD-ROM containsaspreadsheetthatanalyzestheCAPEXandOPEXcostsassociatedwith aubiquitousareawidewirelesssolution.Whilethecomplexityofsuchasystemis muchhigherthanthesystemswearenowdiscussing,thebasicsystemneedssuch asequipmentcosts,leasecosts,maintenancecosts,interconnectcosts,salesand marketingcosts,andsoforthareoutlinedwithinthisspreadsheet.Reviewingthe 176
SystemImplementation,TestingandOptimization costelementswillassistyouinidentifyingandcapturingthosecostsassociated withthebusinessyouaredeveloping.
Community:AGardenStyleApartmentComplex Forthefirstsystemlet’stakealookatasystemthatwillserveendusersina gardenstyleapartmentcomplex.TheusersinthissituationexpecttohaveconnectivitytotheirPCsintheirapartmentsaswellastheabilitytotaketheirlaptops tothecommonareasofthecommunitylikethepoolandclubhouse.Inaddition, somesegmentoftheuserswouldliketheabilitytousetheirwirelessenabled laptopcomputersinotherpublichotspots. FromanRFstandpoint,designingasystemlikethisdependsonthesamebasics asdesigninganyothersystem:Knowingwhatpowerlevelsareavailablefromthe basestationandclientequipmentandwhatantennaswillbeusedallowsyouto determinethemaximumtolerablepathloss.Sitesurveyswillshowtheattenuative propertiesoftheconstructionmaterialsusedonsite.Together,thesefactorswill showhowlargetheareaservedbyeachbasestationwillbe.Coverageareawill thendirectlyrelatetothenumberofbasestationsnecessarytocovertheproperty. Thenumberofpotentialusersperbasestationandtheexpectedusagepercustomerwilldeterminehowmuchcapacityeachbasestationwillneedtoserve.If thebasestationshavecapacitydemandsthatexceedthecapacityavailable,then coveragecanbemodifiedbychanginglocations,antennas,orpoweroutputin ordertoreducethecoverage.Ofcourse,makinganyofthesechangeswillrequire aredoofthedesign,spacingbasestationsasappropriatetoservethedemand insteadofthecoveragelimitspreviouslyidentified. Thecustomerrequirementofmobilityinandoutofthecommunityimmediately limitsthenetworkdesigntousingtheprevailingstandardfor“hotspot”coverage. Atthetimethisbookiswritten,thatstandardis802.11b.Bythetimeyouread this,itisquitepossiblethatanotherstandardwillhavedisplaced802.11b.Even so,thesystemdeploymentguidelineswillremainthesame.You’lljusthaveto makemodificationstothecoverageandcapacityexpectationsinordertodeploy thecurrentlyprevailingarchitecture.
177
Implementing802.11,802.16,and802.20WirelessNetworks
RFConsiderations Oneofthefirstthingsthatwillneedtobeconsideredistheperformanceof thehardwaretobeusedinthenetwork.Thisincludesnotonlythebasestation hardwarebuttheclienthardwareaswell.Becauseclientequipmentcomesfrom avarietyofmanufacturersandhasvaryingpoweroutputandreceivesensitivityfigures,theperformanceoftheclientcardcanbecomeasignificantfactorin determiningcoverageofeachbasestation.If,forexample,youdesignedthesystemwiththeexpectationthattheclientcardhad100mWofpoweroutput,then thecoverageofthesystemwouldbesetbasedonthatexpectation.Ifacustomer alreadyhadaclientcardtheywantedtouse,butthatcardonlyproduced25mW ofoutputpower,thenthesystemmaynotworkproperlywiththisuser.The6dB differenceinpoweroutputwouldlimittheserviceareaassociatedwiththisuserto distanceshalfasgreatasthoseuserswith100mWclientdevices. Itiscriticaltodetermineaminimalacceptableperformancelevelforclientdevices.Ifapotentialcustomerhasadevicethatdoesnotmeetorexceedthisminimum performancethreshold,thenitshouldbereplacedwithaclientdevicethatdoes. Thiswillassurethatthesystemworkswellforallusers,andthatcoverageissues arenottheresultofpoorqualityclientdevices. Nowthatequipmentperformancehasbeenconsidered,let’sthinkaboutthechallengesassociatedwithcoveringthistypeofenvironment.Inthelastsectionofthis chapterwediscussedcoveringanofficebuilding.Ifwewerenowtalkingabout ahighriseapartment,similardesigncriteriacouldbeused;utilizingequipment installedincommonareaslikehallways.Unfortunately,inthecaseofthegarden stylecomplexthereislittlecommonhallwayareaineachbuildingandyoucannot expecttogainaccesstoindividualapartmentsfordeploymentofinfrastructure. So,whatothercommonareasareavailable? Arethereatticsorunutilizedareasundertheroof?Ifso,thesespacescanbecome areaswhereequipmentcanbeinstalled.Dependingonhowmanyfloorsexistin thebuildingandhowthebuildingsareconstructed,placingdirectionalantennas inatticareaswiththeirmainbeampointeddowntowardtheoccupiedareasis onewayofprovidingcoveragetothetenants.Anotheristomountomnidirectionalantennasontheroof.Notethatitisimportanttomakesurethatyouuselow gainomniantennasorthatthereisconsiderableelectricaldowntiltimplemented 178
SystemImplementation,TestingandOptimization
Rooftop omni covers donor and adjacent buildings
hallway
In attic to cover area in building
In hallway to cover adjacent areas in building
Rooftop directional covers adjacent building and some of donor building
Under eave aiming at donor to cover through windows and walls
Under eaves directional covers adjacent building only
In basement to cover through floor
Figure6-1:Antennainstallationoptions
inhighgainomniantennas.Ifnot,themainbeamwillshineovertheintended coveragearea,leavingpoorsystemperformanceintheapartmentsand(probably) excellentcoverageinadjacentareas. Anotheroptionforcoverageistopointdirectionalantennassotheyarepenetratingtheleastattenuativepartsofthebuilding:thewindowsintheoutsidewalls. Thisdeploymentwouldrequiredirectionalantennasplacedonorundertheeaves oftheroof,andeitherpointedatthewindowsandwallsofadjacentbuildingsor pointeddownandbackatthewindowsandwallsofthebuildingtowhichthey areattached. Theselectionofthebestlocationandantennamountingoptionswillbedriven bythereal-worldvariablesassociatedwiththeparticularbuildingstobecovered. Ifthebuildingshaveastuccoexterior,youmayfindthatthewiremeshtowhich thestuccoisaffixedcausestoomuchattenuation.Inthiscasetryingto“shine through”thesidesofthebuildingmaynotbeanappropriatesolution.Ontheother 179
Implementing802.11,802.16,and802.20WirelessNetworks hand,theremaybeasufficientareacomprisedofwindows,inwhichcasethe propagationthroughthewindowswillbesufficienttoprovideservicetotheuser. Ifthebuildingsaresingleortwostoryandarenotbuiltlikeconcretebunkers(in otherwordstheyhavetraditionaldrywallandwoodfloorconstructioninsteadof pouredconcretefloorsandwalls)thenlocatingthebasestationequipmentinthe atticspaceshiningthroughtheceilingmaybethebettersolution. Anotherconsiderationthatcanhaveaneffectonyourantennaplacementdecision iscapacity.Itispossiblethatthelocationgivingthebestcoverageactuallyprovidessomuchcoveragethatasinglebasestationdoesnothavesufficientcapacity toservethecustomersinthecoveredarea.Inthiscase,selectinga“poorer”antennalocationinalocationprovidinglesscoveragemayprovideasolutionthatis moreinlinewithbalancingthecoverage/capacityneedsofthesystem. Intheend,theonlywaytoknowwillbetodoasitesurveyusingantennasmountedatvariousspotsthatseemreasonablefromacoveragestandpoint.Bylearning moreabouttheattenuativeeffectsoftheconstructionmaterialsused,andwhich areasofthebuildingoffertheleastattenuationtothesignalallowsyoutorankthe designsaccordingtowhichbestcoversthedesiredarea.Ofcourse,thebestcoveragedesignmayhaveintractableproblemsfromanimplementationstandpoint,so knowingwhatsolutionissecondorthirdbestisusefulincasecompromisesare requiredinordertoinstalltheequipmentcosteffectively. Thebestcoveragelocationsmayalsohaveaproblemwithinterferencemanagement.Becausethecoveredareaislarge,manybasestationswillbeneeded. Sincethesystemwearediscussingis802.11b-based,itwilldefinitelyrequire frequencyreuseinordertohavesufficientAPlocationstoprovidefullcoverage ofthecommunity.Again,thesitesurveywillhelpidentifywhichlocationsarethe bestcompromiseforgainingsufficientcoveragewithoutallowinginterferenceto becomeunmanageable. Interferencemanagementismademoredifficultinasituationlikethisoneifthe antennasarelocatedoutdoorswiththeintenttocoverindoorareas.Astrongsignalisrequiredtoovercometheattenuationofwallsandwindows,internalwalls, andobstacles.TheRFdesignwillhavetoallowatleastanextra10to20dBof linkmargininordertoovercometheselossesandprovideuseablesignalinside 180
SystemImplementation,TestingandOptimization thebuildings.Unfortunately,thisextraattenuationdoesnotexisteverywhere,so thesignaloutsidecancarrysignificantlyfurtherthantheintendedcoveragearea. BecauseitpropagatesfurtheritcanbeseenbyotherAPsonthepropertyand, potentially,usersfarfromtheareawhereitprovidesprimarycoverage.Theextent ofthiseffectisshowngraphicallyinFigure6-2.
Backhaul BecauseofthesizeofthecoveredareaandthenumberofbuildingsandAPs, amethodofnetworkingthesystemtogetherwillbeneeded.Inaddition,connectivitytotheInternetwillberequired.Dependingonthelocation,theInternet connectioncancomefromanumberofsources.LocalRBOC,CLEC,orISP operatorsmaybeabletoprovideawiredconnectionwithsufficientspeedtomeet theusagedemandsofthesystem.Alternately,theremaybeawirelessISPinthe areawhocanprovideconnectivity. Oncethisconnectivityissecured,itwillbebroughttoasinglelocationonthe property.Thesystemimplementerwillneedtoextendthisconnectivityaroundthe areasotheindividualAPscanbeconnectedtogetherasanetwork. MultipleAPsineachbuildingcoulduseCAT5orsimilarcabletobringtheindividualdatadropstoaconvenientcentrallocationinthebuilding.AnEthernet switchorhubcanbeusedasatrafficaggregatoratthislocation.UsingCAT5 cablebetweenbuildingsisprobablynotfeasibleforseveralreasons.First,CAT5 runsarelimitedto300feet,whichisprobablyinsufficientlengthtoconnecttwo ormorebuildings.Thesecondhurdleisfindingawaytoroutethecablebetween thebuildings.Unlessunusedundergroundductsexist,thereisnopracticalwayof routingcables. Abetteralternativeistheuseofwirelessforbackhaul.Donotuseradioequipmentoperatinginthesamefrequencyrangeastheequipmentprovidingenduser connectivity.Doingsoonlyincreasestheamountofchannelreuseandattendant interferencelevels.Sincethisexampleisusing802.11bgearoperatingat2.4 GHz,thebackhaulhardwarecouldoperateunderthe802.11.astandardinthe 5.6GHzband.UsethebuildingwheretheInternetfacilityisterminatedasa donorstationbyinstallingan802.11aAPandanomniantennaofappropriate gaininalocationwhereitcanbeseenbyeachofthesurroundingbuildings.Each 181
Implementing802.11,802.16,and802.20WirelessNetworks
Figure6-2:Plotofintendedcoveragevs.interferencecontour
182
SystemImplementation,TestingandOptimization surroundingbuildingwouldhavean802.11aclientdeviceandantennamounted sothatthereisaclearlineofsightbacktothedonorstation. IfasingleAPcannotaccommodatethetrafficbackhaulrequirementsontheproperty,thenusemultiple802.11aAPswithdirectionalantennasinordertoserve individualbuildingswithhigherbandwidth.Aseparatechannelshouldbeusedat eachAPinordertoeliminateinterferenceandchannelcontentionissues.
Weatherproofing Becauseofthelowpowernatureof802.11devicesandthelossassociatedwith coaxatfrequenciesover2GHz,mountingtheAPsatacentrallocationinsideand usingcoaxtoconnecttotheantennaswillnotbeafeasibleidea. Thismeansthattheoutdoorantennalocationswillrequireradiohardwarethatis weatherproof.Thiscanbeaccomplishedbypurchasingequipmentintendedfor outdooruse,andthereforemanufacturedwithweatherproofinginmind,orusingindoorequipmentandinstallingitinaweatherproofenclosure.Allowingthe equipmenttobemountedasclosetotheantennaaspracticalreducesthecoaxloss toaminimum,andassuresmaximumpoweroutputandreceivesensitivity.This bringsupanotherareathatrequiresattention:thecableusedinthedeployment. Makesurethatallcoaxcable,powercableandCAT5cableisratedforoutdoor useorthatitisenclosedinconduit.Further,localbuildingandsafetyorfirecodes mayrequiretheuseofTeflonorotherfireresistantmaterialsasthejacketingmaterialofthecables. Also,makesurethatallantennaandfeedlineconnectorsareproperlysealedand waterproof.Evenindryclimatesimproperlysealedcablescanbedamagedby waterbecausethey“breathe”duetochangingtemperature.Thecableheatsduring theday,expellingair.Intheeveningasthecablecools,coolermoisture-ladenair returnstothecable.Overtimethisleadstocondensationcollectinginthecable andconnector.Thiscondensationchangesthecharacteristicimpedanceofthe cable,andcanleadtoreducedpoweroutputandapparentreceivesensitivitydue tothegrowingmismatchofthecoaximpedanceandtheantenna.
183
Implementing802.11,802.16,and802.20WirelessNetworks
GroundingandLightningProtection Properequipmentgroundingandlightningprotectionisalsoaconsiderationwhen mountinghardwareinoutdoorslocations.Becausetheantennaismountedata highelevation,itbecomesaprimelightningstrikecandidate.Alightningstrike candamageequipmentconnectedtotheantennaor,intheworstcasecauseafire insidethebuildingwhereconnectedhardwareislocated. Lightningprotectionreliesonagoodground,solet’sdiscussgroundingfirst. Grounding,likethenameimplies,involvesconnectingtheequipmenttoanearth groundinordertodischargeanystaticelectricitycollectingonantennasandlines, ortoprovideadirectlowresistancepathtogroundforalightningstrike.This lastpoint:“alowresistancepath”isacriticalelementindefiningaground.The grounditselfmustprovideaslittleresistancetotheearthaspossible.Drivinga 4footlongcoppercladrodintotheearthdoesnotmakeagoodground!Agood groundiscomposedofmultiple8footminimumlengthgroundrodsspacedat intervalsaroundthebaseofthetowerorbuildingwitheachrodweldedtoacommonheavycoppergroundwire.Often,thesegroundsarecompletelyburiedand inspectionportsareprovidedatthepointswheretherodsarelocated. Thecommoncopperwirefromthegroundconnectstothetowerlegsandtoa copperbussbaratthebaseofthetowercalledagroundwindow.Thegroundalso extendstoanothergroundwindowlocatedinsidetheequipmentroom.Theground windowonthetowerisusedasapointwheretheshieldsofallcoaxcablesandan independentgroundwirefromeachantennaonthetowercanbegrounded.Italso providesonespotwheretheinlinelightningprotectioninstalledonthecoaxcan begrounded.Thegroundwindowintheequipmentroomprovidesagrounding spotforequipmentracks,equipment,lightningprotection,andpowersupplies. Itisimportantthatallgroundsatthesiteconnecttogethertoacommonground. Thismeansthattelcoandelectricutilitygroundsmustalsobebondedtothe groundwindow.Ifnot,thedifferencesinresistanceofindependentgroundscan causevoltagestoflowbetweenequipmentconnectedtothedifferentgrounds. Thiswillcausedamageduringlightningstrikes,becausepartofthelightning energywillflowthroughotherequipmentinsearchofthepathofleastresistance toground.
184
SystemImplementation,TestingandOptimization Lightningprotectiondevicesaredesignedtoprotectanumberofdevicesfrom lightningstrikes.Theycanbepurchasedtoconnectinlinewithcoax,toprotect theradioequipmentconnectedtotheantenna,theycanbesourcedinRJ-11or RJ-45configurationsandusedtoprotecttelcoanddataequipment.Nomatter whattheformfactor,thesedevicesallprovideacommonservice:theyprovide analternatelowresistancepathtogroundduringalightningstrike,andthereby protecttheelectronicequipmentconnectedtothem.That’swhyit’simportantto haveanexcellentsiteground.Ifthesitegroundisinferior,thelightningprotectioncannotofferthelowresistancegroundpath,sothelightningwilldischarge throughtheelectronics,leadingtodamage. Ifyouarelocatingantennasandequipmentinanexistingsitewithothercommunicationcarriers,thesitegroundisprobablygood.Ifyouarethefirstonasite,or aredevelopingyourownsite,getaprofessionaltoevaluateanyexistingground andmakerecommendationsforimprovementstoexistinggrounds,ortodesign newgroundfacilitiestoaccommodatethelocalsoilconditions.
Community:ASmallAreaSubdivision Thiscommunityiscomprisedofhighdensityresidentialhousing.Theareatobe coveredmeasuresonesquaremileandcontains300homes.Therearecurrentlyno otherbroadbandfacilitiesavailableinthearea,sothewirelesssystemwillprovide thefirstandcurrentlyonlybroadbandInternetconnectivityavailable.
EquipmentSelection Theequipmentselectionandimplementationdecisionsbecomesignificantlymore complexwhentryingtoserveanareathissize.Fromtheequipmentstandpoint, whiletraditionallowpower802.11productscanbemadetoworkinthisenvironmenteitherbydeployingmanyofthemaroundtheneighborhoodorusingfewer unitswithhighgainantennaslocatedathighelevationlocations,theywillnever performaswellasaproductdesignedtofunctioninthisenvironment.Highpower solutionsusingsmartantennas,liketheVivatoproduct,canofferimprovementsin coverage.Dependingontheparticularsofthearea,itmightbecoveredwithtwo tofourVivato-typeproducts.Still,Vivatois802.11-basedandcarriesthelimitationsof802.11technology. 185
Implementing802.11,802.16,and802.20WirelessNetworks Aspreviouslydiscussed,802.11usesCSMA/CAforsharingaccesstothesystem. Because802.11wasdesignedforLANreplacement,itexpectsalluserstobeable toheareachother.Inthecaseofacommunityspreadoutlikethisyoucannot expectthistobethecase.Inaneffectivelydesignedsystem,therewillbemany userswhohavegreatconnectionstothebasestationbutcannotseeeachother. Additionallybecausethereisnopowercontrolin802.11,thereisa“near-far” issuein802.11.Thisproblemmanifestsitselfwherethereareusersverycloseto thebasestation,andotherusersfaraway.Theclose-inuserspresentasignificantlystrongersignaltothebasestation.Thisstrongersignalcancompletelyoverride theweaksignalcomingfromadistantuser. InvokingRTS/CTSandsettinglowpacketfragmentationthresholdscanimprove thesituationtosomedegree,butthishasthesideeffectofsignificantlydecreasing systemcapacity. Itisalsonotrealistictoexpecttheservicetobedirectlyuseablebyan802.11 clientcardinacomputerlocatedinsidethehome.Whiletherewillbecertain homeswherethisispossible(thoseclosetothebasestationwithanunblocked path),themajorityofpropertieswillnotbecoveredwithsufficientsignalstrength toguaranteesuchservice.Thistoocouldberemediedwithmoreequipmentat morelocations,howeverthecostofdeploying,operating,andmaintainingsucha networkwillbeprohibitive. Thereisonefinalconsiderationtokeepinmind.Thecoverageofasystemwill onlybeasgoodasthelowestperformanceradiohardwareinthelink.Havinga highpowerAPwillnotcompensateforalowperformanceCPEdevice.When usinghighpowerAPequipmentincommunitycoveragesituations,itiscriticalto assurethatallsubscribersuseCPEthathaspowerandreceivesensitivitycommensuratewiththatoftheAP.Otherwise,performanceandcoveragewillsuffer. Abettersolution,ifthecommunityCodes,Covenants,andRestrictions(CC&Rs) allowit,wouldbetouseexternallymountedCPEradiosanddirectionalantennas atthecustomer’shome.Thesesmalldeviceswouldbemountedinsuchawayas tocleartheroofandbepointedtowardthebasestation.Thisextendstheservice rangeofeachbasestationbyaddinggainattheclientendandimprovingthepath losscharacteristicsofthelink.
186
SystemImplementation,TestingandOptimization LocatingtheCustomerPremisesEquipment(CPE)outsideorinawindowfacingthebasestationwillimprovethecoveragepotentialofthesystemwhetheritis 802.11-basedorbaseduponanotherstandardorproprietarysolution.Decreasing thepathlossalwaysimprovesthestability,throughputandcoverageofthenetwork. Since802.11isnotwellsuitedtothistypeofnetwork,othertechnologiesshould beconsideredforuse.Thereareseveralproprietarysolutionsavailablethataredesignedforthisenvironment.Also,the802.16standardwasdesignedforuseinthis typeofenvironment.TheMACandPHYlayersin802.16donotsufferfromthe limitationsofCSMA/CAandthenearfarproblemsassociatedwith802.11. FromanRFstandpoint,deploying802.16oraproprietarysolutioninthislocationisnodifferentfromdeploying802.11.Youneedtoknowthefrequencyof operation,thepoweroutput,receivesensitivity,andantennagainsofboththebase stationequipmentandtheclientequipment.Withtheseparametersyoucanuse theguidelinesandtoolspresentedinthisbooktodeterminetheallowablepath lossandestimatecoveragefromeachbasestation.
SystemPlanning Onceyou’venarrowedthefieldofhardwaresolutions,it’stimetotakeaclose lookattheenvironmenttoseewherethebestequipmentlocationswillbe.In particular,lookforhighelevationareas(hills)orobjects(tallerthanaveragestructures)inorimmediatelysurroundingtheareatobecovered.Themoreyoucan raisetheantennaabovethelocalclutter,thebetteryourcoveragewillbe. Oncetheseareashavebeenidentified,runapropagationmodeltodetermine whicharethebestchoices.Witharankedlistofchoicesinhand,it’stimeto conductsitesurveys.Thepurposeofthesurveyistoidentifyownershipofthe property,availabilityofthepropertyforyouruse,identifyanyzoningrestrictions thatwoulddisqualifythelocationfromuse,andidentifyifanyofthelocations haveavailabilityofhighspeedInternetconnectivityeitherthroughanRBOC, CLEC,orISP.Ifnonehavesuchconnectivity,you’llhavetocontinuelooking forasitethatdoeshaveconnectivityaswellaslineofsightpathstoyourtarget coveragesites.Thisadditionalsitewillbeusedasthehubsiteforaggregationand backhaulfromthetrafficcarryingsites.
187
Implementing802.11,802.16,and802.20WirelessNetworks Havingidentifiedlocationsthatareavailableforyouruse,anRFsurveyshouldbe conducted.Aswithallsurveys,thepurposeistoassurethattheselectedhardware doesindeedprovidethecoveragethatyouexpect,andthatthelocationcansupporttheselectedtrafficbackhaultotheaggregationpointinthenetwork.Once youaresatisfiedwiththeperformanceofalllocationsneededtocoverthearea, you’llneedtoarrangeforleasingandzoningattheselectedproperties.Once leasedandzoned,installationofthenetworkhardwarecanbegin.
Community:AnUrbanorSuburbanAreaServingBusinessUsers Inthisexamplewemoveawayfromtheresidentialconsumermarket.Inthiscase wearelookingatahighdensitybusinesssettingsuchaswouldbefoundinalarge officeparkorinanurbanorsuburbancommercialzone. Thissystemwillprovideveryhighspeedfacilities(>10Mbps)tobuildings.The distributionofbandwidthtousersinthebuildingwillbeaccomplishedwitha networkusingtraditionalCAT5wiring.Becauseofthelargebandwidthrequirements,thesystemwillneedahublocationthathasaccesstohighspeedwired facilities.Themostobviouschoicewouldbeabuildingwithanexistingconnectiontoafiberopticnetwork. Thewirelessnetworkinthiscaseisusedtoextendtheconnectivityofthefiber backbonetobuildingsthataretoofarfromthefibertobecosteffectivelyconnectedbyextendingafiberconnectiontothebuildinginquestion.Inmanyurban locations,thecostofextendingtheseconnectionscanbeover$1Millionpermile. Thisleaveswirelessasamuchmorecosteffectivesolutionintheseareas.
SpectrumIssues Becausethisisasystemservingcommercialinterests,security,reliability,and uptimewillbeamuchmorecriticalelementthantheywerewhendeployinga consumerInternetaccessnetwork.Thesefactorsaloneshouldbeenoughtodrive youawayfromusingPart15spectrumasthebasisforthenetwork. Sonowwearelookingatlicensedspectrumandequipmentdesignedtoworkin theseallocations.802.16deployedasapoint-to-multipointnetworkmayworkin thisenvironment.Individualpoint-to-pointmicrowavelinksmayalsowork.In 188
SystemImplementation,TestingandOptimization fact,dependinguponthebandwidthrequirementsofeachbuilding,asystemcombiningbothalternativesmaybeappropriate. Availabilityoflicensedspectrumbelow5GHzisrare.Itisstillpossibletocoordinateandobtainlicensesfor18GHzand23GHzpoint-to-pointmicrowavelinks fromtheFCC.Inadditionthereareseveralcompanieswhoown38GHzspectrum andaremakingitavailableforleasetothirdparties. Linksatthesefrequenciesdohavelimitations.TheymustbeLineofSight(LOS). Inapoint-to-pointdeploymenttheyrequireaseparateantennaforeachlink, whichmaycauseaproliferationofdishantennasonthehubsite.Rainfade,the additionalpathlossassociatedwithrainfallingacrosstheradiopath,alsobecomesaproblemasthefrequencyincreases.Linksmustbekeptshort(under severalmilesdependingonfrequencyandarea)inordertomaintainreliability. Infact,becausetheselinksareLOS,andthereforethepathlossoverdistanceisa knownfactor,mostmanufacturersofequipmentforthesetypesofsystemscanofferguidanceontheaveragelinklengthssupportablebytheareayouareplanning tobuild.Thereasonlinklengthsareareaspecificisbecauseoftheeffectsofrain fade.Above10GHz,rainfadebecomesadesignconsiderationbecauseheavyrain causesadditionalattenuationofthesignal.Astheoperatingfrequencyincreases, thedeleteriouseffectofrainfadealsoincreases.Theamountofrainfadeisdependentontheintensity(inchesperhour)anddurationofthesepeakrainstorms. Luckily,thephysicsofweatherandtheintensityanddurationofstormcells havebeenwellcharacterizedaroundtheworld,sotablesexistwhichidentifythe rainfallcharacteristicsofanarea,theextralossassociatedwiththisrainfall,and theadditionalsignalheadroomyouwillneedtodesignintothesysteminorderto maintainaparticularlinkuptime. Ontheplusside,thereisplentyofchannelbandwidthatthesefrequencies,so extremelyhighbandwidth(over650Mbps)canbeachievedbynetworksutilizing thesefrequencies. The18and23GHzbandsarelimitedtopoint-to-pointlinks,andbecauseofthese rulelimitationswillbeunusableforan802.16systemdeployment.The38GHz spectrumrulesdosupportpointtomultipointsystemdeployments,soitwouldbe possibletodeploy802.16inthe38GHzband.
189
Implementing802.11,802.16,and802.20WirelessNetworks
DesignConsiderations Asyoucansee,theavailabilityofspectrumandtherulesgoverningthatspectrumwilldrivetheselectionoftechnology.Thebandwidthrequirementsofthe enduserswilldictatethemethodusedtodeploythenetwork.Forexample,ifall buildingshaveextremebandwidthrequirements,thenapoint-to-pointnetwork builtasahubandspokenetworkmaybemostappropriatebecauseitallowsthe maximumbandwidthperlink.Insuchanetworkitmaybeimportanttoprovide physicalredundancyoftheradiohardwareinordertoassurethatahardware failuredoesnotcauseserviceoutages.Thisiseasilyachieved;howeveritisvery costlysinceitdoublestheradioequipmentrequirements. Ifthebandwidthrequirementsaresmallenoughthatseveralbuildingscanshare thecapacityofasingleradio,thenyoucouldconsiderpoint-to-pointfacilities constructedinaringarchitecture.Thisreducesthecostofoutageprotectionby usingtheabilitytotransmittrafficineitherdirectionaroundthering.Asingle breakwillnotisolateanyuser,butmayimpairthetraffichandlingcapabilityof thenetworkuntilitisrepaired.Becauseofthis“routeredundancy,”theringdoes notneedtheequipmentredundancyprovidedbybackupradiosoneachhop.Insteaditrequiresonlyoneadditionalradio:theonethatconnectsthelastsiteinthe chainbacktothehubsite,thuscompletingthering. Ifappropriatespectrumisavailable,an802.16orsimilarpoint-to-multipointnetworkcouldbeconsidered.Thisnetworkwouldbedesignedsimilarlytothehub andspokenetwork.Forallpracticalpurposes,thearchitectureofthetwosolutions isidentical:Bothdependonacentralfacilitythatoriginatesandterminatestraffic fromanumberoffarendstations.Thearchitecturaldifferencebetweenthetwo boilsdowntotheantennasystemonthiscentralsite.Insteadofusingdedicated antennasforeachlink,point-to-multipointnetworks,including802.16systems; useasingleantennatoconnectmultiplefarendstations.Theseantennascouldbe omnidirectionalordirectionaldependingontheneedsofthedesign.Thedecision onantennapatternwillbedrivenbythegainrequiredtomakethelink,theareato becovered,andthecapacityrequirementsoftheareatobecovered. Ineithercase,theRFdesignissimplifiedbecauseyouonlyneedtoconsidera fixednumberofendstations,eachofwhichhasaneasilycalculablepathlossdue tothefactthattheyarealllineofsightpathswithknownrainfaderequirements. 190
SystemImplementation,TestingandOptimization Yourdesignwillneedtofocusonassuringthatthebuildingsselecteddohaveline ofsightpaths,orthatyoucanacquireintermediatelocationswhichhavelineof sightandcanbeusedasrepeaterlocations.
Community:ASmallTownSystemforConsumerandBusinessUsers Thissystemdesignisalogicalexpansionofthepasttwocommunityexamples. TherearemanysmalltownsacrossAmericathathavelimitedbroadbandconnectivity.Awirelessnetworkcaneffectivelyservethesecommunities.The communityismadeupofbothresidentialusersandbusinessusers,eachofwhom havespecificneedswehavediscussedintheprevioussectionsofthischapter. Thisisanothersituationwherean802.16networkwouldbeanidealsolution. WithitsabilitytoofferQualityofServicelevelsandvaryingspeeds,itcanprovide agoodmatchtobothresidentialuserswhoarelookingforaDSLlikeconnection andtothebusinessuserwhorequiresastable,highthroughputconnectionthatcan offerconsistentthroughputperformance.Suchasystemcouldoperateinlicensed orunlicensedspectrum,howeverthelicensedbandhardwarewillhavetheability toservelargerareasbecauseofthehigherallowablepoweroutput. Therearealsosomeproprietarysolutionsthatcouldworkwellinthisenvironment.TheMotorolaCanopy solutionandtheProximTsunami multipointare twosolutionsthatuseunlicensedspectrum.TheNaviniRipWave hardwarecan bepurchasedinbothunlicensedandlicensedversions. TM
TM
TM
Onceagain,thekeytocosteffectivecoveragewillbefindingthelocationsin andaroundtheareathatofferthebestlineofsightpathstoasmanylocationsas possible.Talldowntownbuildingsareanoptionasaretowerslocatedwithinthe coverageareaoronnearbyhills.Propagationmodelsandsitesurveyswillassist youinselectingthebestsites.Backhaulcouldbeprovidedbywirelessorwired facilitiesdependingonwhatisavailableandcosteffective.
Summary Theexampleswe’vereviewedshowthattherearealwaysmultiplechoices.Tradeoffswillneedtobemadebasedupontheparticularneedsofyourcustomerand business.Certaintechnicalsolutionsmayofferlowcostofentrybutthatbenefit 191
Implementing802.11,802.16,and802.20WirelessNetworks maybeerodedbyhigherongoingoperatingcostsassociatedwiththesystem.Othersmayhaveinexpensivebasestationhardwarebuthighcostsubscriberterminal equipment.Stillothersmaybeinexpensivebutlimitedintheirabilitytomeetthe needsofthecustomer.Ultimately,thesearethetrade-offsyouwillneedtomake bybalancingthecapabilitiesoftheequipmenttothefinancialneedsofthebusinessandtheneedsofthecustomer.Inmanycasestherewillbeseveralsolutions thatcouldworkwell,eachwithitsownbenefitsandshortcomings.Wheninthis situation,itmaybeusefultolookatothersinthesamelineofbusinessandsee whattheyhaveselected.Ifaparticularsolutionhasbeenadoptedbyanumberof disparatecompanies,theremaybegoodreason.
ExampleFour:MobileBroadbandNetwork SowefinallytakealookattheHolyGrailofwirelessdatasystems:awidearea ubiquitousbroadbandnetworkcapableofproviding>2Mbpsofbandwidthto mobileuserstravelingathighwayvelocities.Inadditiontoprovidingmobile coverage,suchasystemwillalsobydefaulthavetheabilitytoprovideservice tofixedlocations,andcouldbecomearealcompetitorinthebroadbanddelivery businessbycompetingagainstDSLandCableModemsolutions. Becauseoftheneedtoassureubiquitouscoverageanddependingontheareato becoveredandthefrequencyatwhichthesystemoperates,suchanetworkwill requirethousandsifnottensofthousandsofbasestations,andcosthundredsof millionsofdollars.Higheroperatingfrequencieswillrequiremorebasestation locationsduetopropagationlossincreasingwithfrequency. Inordertobeeffectivelydeployed,suchasystemwillrequirelicensedspectruminabandunder5GHz.Itwillprobablyalsoadheretoastandardlike CDMA2000,802.16eor802.20.Unfortunately,atthetimethisbookisbeingwritten,noneofthesestandards(otherthanthelowspeedfirstgeneration CDMA2000solutionsof1XRTTand1XEVDO)havebeenfinalizedandthereis noavailableequipmentconformingtoanyofthesespecifications.
InitialModeling Thatneednotstopusfromconsideringwhatitwilltaketodesignanddeploya network.Infact,that’swhattheMSAandRSAOperatorsmodelsonthe 192
SystemImplementation,TestingandOptimization CD-ROMareusedfor.Thesemodelstakeahighlevelapproachtodetermining thequantityofequipmentnecessarytobuildthenetwork,thenumberofbasestationlocationstoprovidecoverageandcapacity,theexpectedsubscribergrowth overtime,thecapitalexpensesassociatedwiththebusiness,andtheoperatingexpensesassociatedwiththebusiness.Whiletheyarenotaccurateenoughtouseto actuallydesignanetwork,theyareusefulforfinancialplanningandcomparisons oftechnologyandfrequencyvariables.Usingthesemodels,oranotherlikethem, isthefirststepinunderstandingthemagnitudeofthesystemanditscosts. Thisisonlyafirststep.Thegranularityoftheinformationgleanedfromtheuse ofsuchasimplemodelwillnotbesufficienttoactuallybuildanetwork.Afterwe reviewthepreliminarybusinessplanningtools,we’lldiscussthetoolsandsteps necessarytoexpandtheconceptualdesignintoonethatcouldactuallybeconstructedandoperated.
PreliminaryInformation Inordertobeginplanningthisnetworkyouwillneedtoidentifytheareatobe coveredalongwiththepercentageoftheareaconsideredurban,suburban,andrural,thefrequencyofoperation,andthetechnologytobedeployed.Thetechnology beingdeployedwillgiveyouthepoweroutputandreceivesensitivityassociatedwiththehardwaresothebasiclinkbudgetcanbedetermined.Inaddition, youwillknowthecapacityofthehardware.Thiswillbeusefulwhenyoubegin analyzingthecapacityrequirementsofthenetworkbasedonuserdemandandthe demographicsofthearea.Thisallowsyoutodetermineifasinglebasestationlocationcanmeetthetrafficdemandsintheareadefinedbyitsmaximumcoverage. Inadditiontothetechnicalspecifications,youwillneedtheroughdemographics andmorphology(landusecharacteristics)ofthearea,includingthepopulation anditsdistributionthroughouttheurban,suburbanandruralareas,plusthebusinessplanexpectationsofsubscribergrowthandaverageusagecharacteristics.You willalsoneedtoestimatethecostsofallhardware,services,andongoingexpenses(suchasleasecosts,facilitycosts,andsoforth).
193
Implementing802.11,802.16,and802.20WirelessNetworks
CoverageModeling Withthisbasicinformation,youcanbegintomodelthesystem.First,determine thelinkbudgetoftheequipment.NowthattheMaximumAllowablePathLoss (MAPL)isknown,itcanbeusedasaninputtowhateverpropagationmodelyou wishtouseforanalyzingcoverage.Theoperatorsmodelspreadsheetusesthewell knownCOST231HATAmodel.Thismodelallowsforthecharacterizationof NLOSlossinavarietyofenvironmentsandsocanmodelcoveragebehaviorthat isdifferentforsitesinurbanareasvs.ruralareas.Theotherinputtothepropagationmodelwillofcoursebeoperatingfrequency. Theoutputofthismodelingexercisewillbetheaveragecoverageradiusyoucan expectfromanysiteineachmorphologicalareayou’vedefined.Fromthisradius, thediameterandsubsequentareaofeachsitecanbedetermined. Sincetheareatobecoveredintotal,aswellasitsmorphologyisknown,you cannowdeterminehowmanybasestationsareneededintheareausingsimple math(areatobecovered/perBScoveragearea).Younowhaveagoodestimate ofhowmanybasestationswillbenecessarytoservethearea.Thenextstepisto determineiftheaggregatecapacityofthosesitesissufficienttomeettheusage demandinthearea.
CapacityModeling Hereiswheredemographicsbecomevaluable.Youneedtoknowthepopulation ofanareaanditsdistributionoverthedifferentmorphologiesinthemarketsoyou candeterminehowmuchofthepopulationiscontainedwithinthecoveragearea ofeachbasestation. Thetotalpopulationperbasestationisthenmultipliedbythepercentagemarket penetrationexpected.Thisidentifiesthenumberofsubscribersperbasestation. Bymultiplyingtheaverageusagepersubscriberbythenumberofsubscribersper basestationyounowknowthedemandthatwillbeplacedoneachbasestation.If thedemandexceedsthecapacity,additionalbasestationswillneedtobeaddedto thesysteminordertoincreasethetotalcapacityofthesystemenoughtomeetthe expecteddemand. Congratulations!You’venowestimatedthetotalbasestationquantitynecessaryto servethemarket.Withthisnumberyoucancalculatethecostofthenetwork. 194
SystemImplementation,TestingandOptimization
CostModeling Largely,thenumberofbasestationsdeployeddrivesthenetworkcost.Inaddition tothecostassociatedwitheachbasestation,therearecostsassociatedwithsupporthardwareateachsitelikepower,backhaul,antennasandcables.Therewill alsobecostsassociatedwithaggregationfacilitieswheretrafficfromanumberof sitesinanareaiscollectedandconcentratedbeforebeingsenttothemainrouting centerinthenetwork. Inadditiontocapitalexpenses,thereareongoingoperationalexpensesassociated witheachbasestation.Leasecostsarearecurringexpenseatsitesthatarenot ownedandconstructedbytheoperator.Thetotalnumberofbasestationsitesalso drivesmaintenancecostsandfacilitycosts.Thefinancial(CAPEXandOPEX)inputsworksheetintheoperatorsmodelspreadsheetsbreaksdownthesecosts,and providesyoutheopportunitytouseyourvaluestodefinethesevariables. Basedupontheseinputs,themodelcalculatesthesystemcapitalandoperating costs,whichcanbeusedasinputstotherestofyourbusinessplan,justasthey areusedtoprovidesummaryoutputintheoperator’smodels.
DesigningintheRealWorld Thepreviousdesignwalkthroughwasusefulasabusinessplanningexercise.It isonlymarginallyusefulindesigningarealsystem.Thedifferencebetweenthe planningexerciseandtherealnetworkdesignisamatterofgranularity.Inthe planningexercise,therewasnoreasontoknowexactlywhereasitewaslocated, orexactlyhowthepopulationandtrafficwasdistributedovereachsite. Inordertodesignasystemthatwillactuallybebuilt,thesequestionsandothers mustbeaccuratelyanswered.Tostartwith,arealdesignwillbebaseduponthe actualcoverageachievablefromeachbasestationandanaccuratelyestimated numberofuserswithinthecoveragearea.Neitherthesimplespreadsheettool,nor theRadioMobilesoftwarediscussedearlier,issufficientforthistask.Acomputer modelingtoolthatincludesterrain,morphology,accuratepredictivealgorithms, andfineresolutiondemographicswillbeneededforthisexercise.Suchtoolsare availablefromanumberofsourceslikeLCCInc.,MSIInc.,EDXInc.,andWFI Inc.,asistheengineeringtalenttousethemandassistindesigningandbuilding 195
Implementing802.11,802.16,and802.20WirelessNetworks anetwork.Justasitwasnecessaryinoursimplernetworks,itwillbenecessary toevaluatethepredictivemodelsabilitytoaccuratelydeterminethepropagation behavioroftheareatobecovered.Theexperienceofthepurveyorofthesemodelswillbeextremelyusefulintailoringtheirmodeltoyourneeds. Thedemographicsthatarenecessarymustbebaseduponthesmallestareaavailable.Thatcouldbegovernmentcensusdataorganizedbypostalcodeandfurther distributedbysquarekilometerormile.Thedemographicsshouldbebrokeninto categoriesthatwillbehelpfulindefiningacustomer.Suchfactorsasage,income, education,roadmiles,andbusinessesareusedbymarketingorganizationsto definethemakeupofasubscriber.Byapplyingthesesameweightingsagainstthe demographicdataavailableforthemodel,individualsiteswillmoreaccurately reflectthetruenumberofusersratherthanamarketaverage. Asyoubeginandplananactualsystem,thefirstchallengewillbetoidentify availablepropertiesthatcanbeusedasbasestationlocations.Thepropagationof theselocationsismodeled,andmatchedtotheunderlyingdemographics.Thetotal numberofpossibleusersinthesitescoveragefootprintwillbeoutputalongwith themodeledcoverageofthesite.Byevaluatingtheexpectedmarketpenetration percentageandtheusagepersubscriber,themodelwillpredicttheexpectednumberofuserscoveredbythebasestationandthetotaldemandplaceduponit. Thesecomplexcommercialmodelsallowyoutoaddallthesitesthatmakeupa network,andthentoseegraphicallywhetherthecoverageandcapacityaresufficient.Ifthereareproblems,sitescanbeaddedormoveduntilthenetworkis optimizedforcoverageandcapacity.Inadditiontocoverageandcapacity,there arefrequencyreuseconsiderations.Thesemodelsalsoconsiderandcalculatethe effectofco-channelinterference,andcanhelptooptimizeareuseplanacceptable totheC/Irequirementsoftheequipmentyouareusing. Thesemodelscanalsobeusedforplanningradio-basedbackhaulnetworks.By analyzingthelineofsightopportunitiesbetweendifferentsites,theycanassistin thedesignofapoint-to-pointorpoint-to-multipointbackhaulnetwork. Theoutputofthismodelingandplanningeffortwillbeactualaddress,longitude andlatitudeofsites,theheightandtypeofantenna,thenumberofradiosnecessary toservethedemandinthearea,andthepoweroutputofeachbasestation.These outputswillbeusedforacquiringrealestateandconstructingindividualsites. 196
SystemImplementation,TestingandOptimization Thesetoolswillcontinuetobeusedthroughoutthelifeofthenetwork.Asthe numberofsubscribersandusageincrease,thenetworkwillneedtobeexpanded tomeetthesegrowthdemands.Themodelingtoolcanbeusedtofindoptimal locationsfornewsitesandtofrequencycoordinatechannelsforthesenewsites. Theycanalsobeusedforforecastingsystemrequirementsbasedonanticipated growth,sotheyremainavaluabletoolforplanningtheannualgrowthrequirementsofthenetworkbaseduponthesubscribergrowthandusagepredictionsof thesalesandmarketingstaff.
ChapterSummary Asyouseefromtheexamplespresentedinthischapter,thereisno“onesizefits all”solution.Therearemanyuniquesituationsandbusinessopportunities,as wellasmanydifferenttechnicalsolutions.Insomecasestherewillnotbeaclear advantagetoonetechnologyoranother,inothersaclear“winner”willemerge fromyouranalysis.Themoreyouunderstandtheenvironmentyouaretryingto cover,theexpectationsofthebusiness,andtheusersofthetechnology,thebetter chanceyouwillhaveofselectinganddeployingtechnologythatmeetstheneeds ofallparties.
197
This page intentionally left blank
C H APT ER 7
BackOfficeSystemRequirements ■ NetworkSystemsRequired ■ CustomerAuthorizationSystem ■ BillingDataCollection ■ NetworkMonitoringandControl ■ BillingSystem ■ TroubleTicketing ■ CustomerServiceSystems ■ DesignConsiderationsandRequirements
This page intentionally left blank
C H APT ER 7
BackOfficeSystemRequirements ThroughoutthisbookIhaveeitherexplicitlyorimplicitlydiscussedcostasa partofthesystemdesign.Evenifthenetworkisaprivateone,costsneedtobe consideredinordertoassurethereisadequatevaluereceivedfortheexpenditures made.InthecasewhereyouareplanningtoconstructareawideWISPcoverage ordeployamobilecoveragenetwork,youmostlikelyaredoingitforprofit,so beyondjustmanagingCAPEXandOPEXcosts,youneedsomewayofmanagingsubscribers,billingthemandcollectingtheirpayments.Inaddition,ifyouare billingforservice,thecustomerhassomeexpectationofservicereliability.To assurethis,thereisaneedforamethodofmonitoringthenetworkandremotely facilitatingfaultisolation. Thesoftwaresolutionsthatperformthesefunctionsarevariedintheircapabilities andcomplexity,andareknowncollectivelyasbackofficesystems.Thischapter willprovideanoverviewofthetypesofsystemsneededtosupportabusiness. Whileafull-onmetropolitanmobilenetworkwillrequireallofthesubsystems discussed,alocalWISPwithafewhundredcustomerswillbeabletomakedo withsignificantlylesscomplexity,andmaybeabletohandlethemajorityofthe taskswithoutsignificantlevelsofautomation. Figure7-1illustratesthevarioustypesofbackofficesystemsandtheirinterface andinteractionwitheachotherandthenetwork.Asyoucansee,thebackoffice systemisactuallyamultitudeofsubsystemseachdedicatedtoaspecifictask,but needingthecooperationofandcommunicationwithmostoftheotherbackoffice subsystemsandthehardwarecomprisingthenetwork.
NetworkSystemsRequired Thesystemsdescribedinthischaptermayeitherbepartofthesystemsolution providedbytheequipmentvendor,orthesesystemsmaybecomprisedofthird 201
Implementing802.11,802.16,and802.20WirelessNetworks
Financial System Bill Generation Engine Billing System
Subscriber Authorization System
ACD
Network Usage Subsystem
Banking Lockbox
Customer Service System
Customer Database
Trouble Ticketing System
Network Fault Management
NOCC System
Inventory Management
Figure7-1Backofficesysteminterdependencies
Figure 7.1: Back Office Systems interaction.
partyhardwareandsoftwaredesignedtointerfacewiththeequipmentandprovide functionalitynototherwiseavailableintheequipmentasinitiallyprovided.
CustomerAuthorizationSystem Sincethissystemisofferingserviceforhire,itneedstodenyaccesstoanyone whoisnotapayingcustomer.ARADIUSserverisonewayofaccomplishing this.Othersystemsmayhaveothersolutions,butthebasicrequirementforthis 202
BackOfficeSystemRequirements systemisforittoactasagatekeeper,identifyingandallowingaccessbylegitimateusersanddenyingaccesstoothers.Thisscreeningcanbeaccomplishedby requiringausernameandpasswordwhenloggingontothenetwork,oritmayuse aMACaddressorotheruniqueidentifierassociatedwiththesubscriber’sequipment.Thissysteminterfaceswiththebillingsystemsocustomerconnectsand disconnectscanbehandled.
BillingDataCollection Iftheservicebeingsoldhasausagesensitivecomponent,thenasystemthat monitorsandcollectsdataaboutthenumberofpacketsorMBofinformation usedbyeachcustomerwillbenecessary.Thesesystemsarenormallylocatedat thecentralinterconnectpointsofthenetwork,and“sniff”thetrafficcrossingthe facilities.Bymonitoringthetraffic,thesesystemscancollectinformationabout allpacketssentfromallIPaddresses.SinceeachconcurrentuserhasauniqueIP address,thisusageinformationcanbemappedbacktotheIPaddress“owner”at thetimeitwascollected.Thisusageinformationiscollectedinadatabase,which isusedbythebillingsystemtoprepareausage-basedbill.
NetworkMonitoringandControl AnotherimportantsystemistheNetworkMonitoringandControl(NMC)system.SometimescalledanNOCC,orNetworkOperationsControlCenter,this centralizedsystemprovidesasinglepointformonitoringallthehardwarethat comprisesthenetwork.ThiscanbeaccomplishedusingacombinationofSNMP commandstoequipmentthatsupportsSNMP,orbyproprietaryinterfacestothe hardware,suppliedbythemanufacturerforthespecificpurposeofremotenetworkmanagement. OftenthefunctionalityoftheNOCCiscomprisedofnumeroussubsystemsthat allfeedinformationtoahighlevelgraphicaluserinterface(GUI).ThisGUIis whatnetworktechnicianswillinteractwithwhenmonitoringortroubleshooting thenetwork. Anothersubsystemisthetroubleticketingsystem.Thissystemmustbeableto taketroublereportsfromcustomersaswellastroublereportsthatareinternally generatedbythemonitoringsystem.Thetroubleticketingsystemisatwoway 203
Implementing802.11,802.16,and802.20WirelessNetworks systemthatshouldbeabletoforwardthetroublereporttothetechnicianresponsiblefortheareainwhichthetroublewasidentifiedaswellasprovidingawayfor theresponsibletechniciantoinputinformationnecessarytoclosethereportwhen thefaultisisolatedandrepaired.Boththetroubleticketandthecorrectiveaction arekeptinadatabase.Thisdatacanbeusefulinidentifyingrecurringproblemsor systemweaknesses.
BillingSystem Fromitsname,you’dexpectthissystemtobenothingmorethanthefinancialAccountsReceivablesystem.Inrealityit’smuchmorecomplex.Agoodbillingsystem handlesallcustomertosystemtransactionsfromsignup,tointervalbilling,to customerservicerecordkeeping,toautomatedservicedisconnectfornonpayment. Agoodbillingsystemcanbecomethecoreenginethatdrivescustomerinteraction.Thebillingsystemwillbeoneofthefewsystemsthatthecustomeractually comesincontactwith.Fromthemomentserviceisrequestedthebillingsystem beginshandlingcertaintransactions.Forexample,howisthenewserviceprovisioned?Doesitrequireacustomerserviceorsalespersontointerfacewiththe billingsystemtoestablishservice,oristhesystemcustomerfriendlyandonline thusallowingthecustomertoselfprovisiontheservice?Eitherorbothofthese optionsmaybetherightoneforyourbusiness,andtherearesystemsavailable thatsupportbothoptions. Oncethebillingsystemhasthebasicinformationaboutthecustomer,thingslike name,address,contactinformation,billingandpaymentmethod,andidentification informationabouttheirhardware,itcanupdateseveralsubsystems.Customername, addressandcontactinformationbecomepartofthecustomerrecordusedbyother organizationssuchassales,marketing,andcustomerservice.Thebillingandpaymentinformationbecomespartofabillingrecordinthesubsystemthatmanages customerbillingandcollection.Thissystemmaygeneratepaperbillingstatements thataremailedtothecustomer,oritmaygeneratee-mailbillingstatementsandautomaticallysendthemtothecustomer.Itmayevenbesetuptodoarecurringcredit cardtransactionagainstthecreditcardnumbersuppliedbythecustomer. Inordertoaccomplishsuchthingsascustomersetupandbilling,thebilling systemneedstobeinterfacedtothenetworkelementsinsuchawayastogive 204
BackOfficeSystemRequirements ittheabilitytoautomaticallyprovisionordisconnectservicetoacustomer,and tonearrealtimemonitortheusageofacustomersothatusagesensitivebilling canbeoffered.So,aconnectiontotheRADIUSorotherauthorizationsystemis required,asisaconnectiontothenetworkusagesystemthatkeepstrackofindividualusersconnectivityanduseofthenetwork.Thisconnectionallowsnotonly fixedmonthlyaccesstobeabillableevent,butalsoallowsadditionalchargesper MBoftrafficsentandreceived.Dependingonthecomplexityoftheusageinformationbeingcollected,itcouldalsoprovidetieredbillingallowinghighercoststo beassociatedwithrealtimeQOStransactionslikeVOIPorstreamingvideo,and lowcostsassociatedwithnonrealtimeeventssuchasftptransfers. Anothercriticalcapabilityofthebillingsystemisitsabilitytomanagemultiple pricingplans,includingshorttermpromotionsandspecials.Thebillingsystemis acomputingsystem,andthereforecanonlyallowthosepriceplansthatareprogrammedintoitasoptionsforacustomer.Ifthecomplexitysurroundingadding anewplanistoohigh,thenthebillingsystemmaycausethecompanytobecome uncompetitiveinthemarketbecauseofitsinabilitytoquicklyrespondtoadynamicmarketplace. Thebillingsystemmustalsohavelinkstothebankingsystemused.Ifpayment bycheckorcashisacceptedthentherewillmostlikelybealockboxrelationship withabankinginstitutiontomanagethecollectionofthesechecks.Asthepaymentarrivesatthelockbox,thepaymentinformationmustmakeitswaytothe billingsystemasanupdatetothecurrentaccountstatus.Similarlinksareneeded formanagingcreditcardpayments,andadditionalrelationshipswithafinancial institutionareneededifautomaticchargesordebitstoacreditcard,debitcard,or checkingaccountarecontemplated.
TroubleTicketing Inordertomanagethemaintenanceofthenetwork,amethodofgeneratingand closingtroublereportsisneeded.Thissystemderivesitsinformationfromseveral sources.Customertroublereportscollectedbycustomerservice,whichappearto benetworkrelated,aresenttothetroubleticketingsystem.Also,knowntroubles identifiedbytheNOCCaresenttothetroubleticketingsystem.
205
Implementing802.11,802.16,and802.20WirelessNetworks Thetroubleticketingsystemcanidentifytroublereportsbytypeorbyarea,and usethisinformationtoidentifytheindividualtechnicianresponsibleforinvestigatingtheissue,andforwardthetroublereporttothatspecificindividual.Aswith allthesesystems,thedegreeofautomationisdrivenbythesizeandcomplexityof thenetwork. Thefirststepintroubleresolutionistoidentifythataproblemexists.Thisisinitiatedbyacustomerreportingaproblemwithserviceorbythesystemreporting ahardwarefailure.Thiseventopensatroubleticket.Theticketisassignedand forwardedtothetechresponsibleforresolution,andaclockisstarted.Theclock runsuntilthetechreportsbackthattheproblemisresolved.Duringthistimethe systemcanreportongoingstatusofthetroubleticket,suchasopenassigned,open pendingforwarding,openandbeingworked,andsoforth.Whentheproblemis resolved,thetechclosestheticketbyconnectingtothetroubleticketsystemand reportingwhatwasdone,andifnecessary,whathardwarewasreplaced.Acopy oftheclosedticketissenttotheoriginatortoinformthemoftheresolution.In addition,ifhardwarewasreplaced,theserialnumbersofthedefectivehardware andtheserialnumberofthereplacementhardwareareforwardedtotheInventory Managementsubsystem.Thisallowsallequipmenttobetrackedtoitscurrent locationthusassuringaccurateinventorymanagementandcontrol. Thetroubleticketingsystemkeepsadatabaseofallreports,whoclearedthem, whatwasdone,whatequipmentwasused,andhowlongtheticketwasopen.This informationisvaluableforfuturereview,andcanidentifycommonequipment problems,coverageorinterferenceproblems,designweaknesses,andpersonnel trainingissues.
CustomerServiceSystems Customerserviceorganizationscanbesubdividedintothreecategories:Those supportingactivitiesassociatedwithsubscriberserviceinitiationandchange, thosesupportingsubscribertroublereports,andthosesupportingsubscriber technicalsupport.Thesystemssupportingtheseuniquefunctionsaresimilarin theirneedtoconnecttootherbackofficesubsystems.Thekeydifferenceispotentiallyonlythetraininglevelofthepersonnelhandlingtherequest.Activating acustomerrequiresfarlessskillthanassistingacustomerwithatroubleshooting andproblemisolationprocess. 206
BackOfficeSystemRequirements Contactbythesubscribercanbemaderealtimeusingthetelephone,oroff-line usinge-mailorweb-basedrequestforms.Thecustomerservicesystemtherefore needsnotonlyconnectionstotheotherbackofficesubsystems,butalsoneedsits ownuniquesubsystemthatmanagesthesevariouscontactmethods.Depending onthesizeofthecustomerserviceorganization,anAutomaticCallDistribution (ACD)systemmaybeneededaspartofthephonesystemsupportingcustomer service.Thissystemcanautomaticallyholdandroutecallstothenextavailable representative,andofferadvertisingoralternatecontactmethodsaspartofits“on hold”dialogue.TheACDsystemalsokeepstrackofcallertimeonhold,number ofcallshandledbyeachrepresentative,andthedurationofeachcall.Thesemetricscanbeusefulfordeterminingstaffingandtrainingrequirements. Asimilartypeofdistributionsystemisneededforautomatedcollectionand distributionofe-mailandweb-basedrequests.Moreover,thesystemsupporting thevoice-basedanddata-basedrequestsmustsomehowcoordinatedistribution totheCustomerServiceRepresentative(CSR)sothatthereisnotcontentionbetweenthetwodissimilarsystems.ThiscoordinationmaybeassimpleastheCSR going“off-line”ontheACDsystemwhilehandlingtheseothere-mailor weboriginatedrequests. TheACDgeneratedrequests,andpotentiallythee-mail-basedrequests,haveno wayofhavingtheircontentautomaticallyplacedintherequisitedatabasesofthe backofficesystems;thereforethisbecomesthejoboftheCSR,whoneedsasubsysteminwhichtoplacethecontentofthecustomerconversation. Thecustomerservicesubsystemprovidesaconvenientuserfriendlyfrontend totheotherbackofficesystems.Thisfrontendprovidesaninputscreentocapturecustomerinformationandalsoprovideslinksforretrievingdatafromother systems.Forexample,anewservicerequestrequirestheCSRtocollectall theinformationnecessarytoinitiateserviceandbilling.Informationlikecustomernameandaddress,billingnameandaddress,serviceplan,thecustomer equipment’suniqueidentification,andthebillingmethodologywillbenecessary toallowtheothersubsystemstocreateanewaccount,authorizeserviceonthe customer’sequipment,andrenderthecustomerabillonanappropriateinterval andinanappropriatemanner.
207
Implementing802.11,802.16,and802.20WirelessNetworks Sincethisinformationispartofthecustomerrecord,acustomercallingtoreporttroublemayonlyneedtoprovideanameoraccountnumberinorderfor theCSRtogettheentirecustomerrecord.Thereportedtroublecanbeentered intotheCSR’scomputer,whichcanbothupdatethetroubleticketingsystemby generatingatroubleticket,aswellasquerythetroubleticketsystemandNOCC subsystemstoseeifthereareknownsystemproblemsthatmightbethecauseof thecustomer’strouble.Ifthisisthecase,thentheCSRcaninformthecustomer oftheknownproblemandofferanexpectedtimeofresolution.
DesignConsiderationsandRequirements Userrequirements Giventhatthesebackofficesystemsprovidetheman-machineinterfacetoa myriadofnetworkelements,oneofthehighestprioritydesignconsiderationsis thatthesystemsare“userfriendly”.Afterall,thisautomationissupposedtomake thejobeasier,notmoredifficult.Forthosesystemsthatinterfacedirectlywitha customer(likeaselfprovisioningsystem),thereareadditionalneedsthatthese systemsbesecure,errorproof,andsimpleandlogicaltouse.Anautomatedcustomersupportsystemmaybethefirstinteractionacustomerhaswithacompany. Theimpressionleftbytheinteractionwiththesystemmaycolortheimpression thecustomerhasofthebusiness,soit’simportanttothinkthroughtheprocessand designtheinterfacetomaketheinteractionassimpleandpleasantaspossible. The“lookandfeel”oftheuserinterfaceisanimportantareatofocuson,since thiswillprovidetheuserwithsimpleinput/outputscreensnecessarytoaccomplishcomplextransactionswithnumerousbackofficesystems.Lookandfeelcan beassimpleascolorandintuitivelayoutofthescreenorascomplexasthelogicalflowoftheinformationrequestsandfeedbacktotheuser. Theusergroupswillallhavedifferentneedsofthisuserinterface.Thecustomer willneedthesimplest,mostlogicallookandfeelbecauseoftheinfrequencyof interaction,whiletheemployees,duetotheirconstantinteraction,willrequire less“handholding.”Ofcourse,employeeinteractionwiththebackofficesystems willofferamuchgreaterflexibilitytomakechangesandenterordeleteinformationthanisofferedtoacustomer. 208
BackOfficeSystemRequirements ReliabilityandSecurityRequirements Thesesystemsformthebasisformanagingallcustomerrecords,billingrecords, troublerecords,andsystemmaintenancerecords.Iftheyarenotfunctioning, thenthebusinesscannotfunctioneffectively.Reliabilityisakeyrequirement. Reliabilitycomesfrombothgoodsoftwaredesignandhardwareredundancyfor keysystems. Hardwareplatformsforkeysystemsshouldberedundant.Thisredundancy maybeprovidedbysplittingtheactivitiesovermultipleplatforms,orbyhaving processorandhardwareredundancyaspartofthecomputingplatformselected. Further,databasesmustbeprovidedredundancyviaRAIDarrays.Also,routine backupsshouldbeperformed,andatleastonerecentbackupimageshouldbe keptoffsiteinasecurelocation. Sincesomeofthesesystems(troubleticketing,NOCC,andcustomerselfsupport forexample)needtobeaccessedfromandbythe“outsideworld”thereisaneed tomakesurethatsuchopenfrontendsareeffectivelysecuredsothatnoonecan getdeepenoughintothebackofficesystemstocauseanybreachofsecurityor systemproblems.InternallyfocusedinterfacesliketheNOCCandtroubleticketingsystemscanbesecuredbyrequiringVPNandusernameandpasswordaccess. Customerfacingsystemsmaynotbeabletorelyonthesemethods.Ifthisisthe case,additionalstepsmustbetakentoisolatethesystemprovidingcustomerinterfacefromtherestofthebackofficehardwareandsoftware.Thishelpstoassure thatahackerorotherindividualwithintenttobreakintothesystemisstopped beforetheycancausereachapointwheretheycancauserealdamage. Personnelrequirements LikeanyITsystem,withthesesystemscomesaneedforpersonneltomaintain, operate,andimprovethesystems.Thesizeandcomplexityofthesystemswillin largepartdeterminethepersonnelneeds,buttheycanbebrokendownintothree basiccategories:Hardwaremaintenancepersonnel,networkmaintenancepersonnel,andsoftwaresupportanddevelopmentpersonnel. Likeeveryotherdecisionmadeinthebusiness,decisionssurroundingbackoffice systemsarefraughtwithtrade-offs.Yes,thesesystemscanleadtogreatefficiencies,buttheseefficienciescarryapricetagoftheirown.Notonlyarethere 209
Implementing802.11,802.16,and802.20WirelessNetworks capitalcostsassociatedwiththehardwareandsoftwareforthesesystems,there areongoingoperatingexpenseslikelicensefees,maintenanceandsupportpersonnel.Carefulconsiderationofyourcurrentandfutureoperatingandfinancial needsiscriticalindeterminingwhichoftheavailableoptionsbestfitsyourunique requirements.
210
C H APT ER 8
NetworkPerformanceTesting andTroubleshooting ■ LowRSSIandNoiseLevelsinaSingleArea ■ HighNoiseorInterferenceLevels ■ ThroughputProblemsUnrelatedtoSignal
orNoise ■ RepeaterMode ■ MultipleChannelReuseinaCloseArea ■ Near/FarProblems ■ HiddenNodeProblems ■ ClientCard“Roam” ■ VirusesandTrojans ■ TroubleshootingSummary
This page intentionally left blank
C H APT ER 8
NetworkPerformanceTesting andTroubleshooting RFrelatednetworkproblemsmanifestthemselvesinnumerousways.Theconnectiontothenetworkmaybeunstable,theconnectionspeedmaybeslow,theuser maynoticeslowresponsetonetworkqueries,ortheremaybenoticeable“holes” inthedesiredcoveragearea. ThemostcommoncauseofsuchproblemsislowSNR.Thiscanbecausedbytoo muchpathattenuation,byhigherthanexpectedinterferencelevels,ormaybethe resultofimpairedantennasystemsorfailinghardware. Anothercauseisclient“bouncing,”whichisthetendencyforaclientattheedge ofcoverageoftwoormorebasestationstobouncefrombasestationtobase stationinsearchofbettersignalstrength.ThisistheresultoflowSNRcoupled withthesearchthresholdlevelssetintheclient.Thisproblemisquitecommonin 802.11systems,butmaynotbeaprobleminmorecomplexsolutions. Ifabaselinesignalandnoiselevelwasestablishedduringthesitesurveyorinitial installation,thiscanbeavaluabletoolindeterminingwhathaschanged.Ifa baselinedoesnotexist,thenyouneedtostartoutbydeterminingtoday’sbaseline, andcomparingittosystemrequirements. Rememberthatthenetworkisabidirectionalsystem.Youmustunderstandreceive signalstrengthsandnoiselevelsatboththeclientandbasestation.Sothefirststep introubleshootingistocollectsomesignalandnoisedataintheimpairedarea. Yoursurveytoolwillbeusefultorapidlycollectinformationpertainingtosignalandnoiseattheclientendofthelink.Inaddition,thereisaneedtotake somenumberofmeasurementsofthesignalandnoiseseenbythebasestation. Thisismosteasilydonebystoppingatalocation,openingboththebasestation 213
Implementing802.11,802.16,and802.20WirelessNetworks monitoringsoftwareandtheclientmonitoringsoftwareonthePCusedtocollect data,andcollectingallfourofthereportednumbersforfurtheranalysis(client RSSI,clientnoise,basestationRSSI,andbasestationreceivednoise). Itiscriticaltohaveadesignbaselinethatsetstheminimumcoveragesignal strength.Thatbaselineshouldreflecttheactualminimalsignalthatisnecessaryforsustainablecommunication.Itwillbeaderivedusingthesensitivityof theequipment,theSNRrequired,thenoisefloorintheenvironmentandafade margin.Forexample,ifallclientsinan802.11bnetworkareexpectedtomaintain an11Mbpsconnection,thentherequiredRSSIwillbe–83dBmifthenoisefloor is–100dBm.Inaddition,atleast10dBoffademarginwillbenecessaryinorder tocompensateformultipatheffects,thushelpingtoassurethesignalremains abovetherequiredminimumsignalthreshold.Thereforedesigncoveragecriteria shouldbe–73dBminalllocationswherethesystemwillbeused.Iftheexpected throughputisreducedto1Mbps,thendesigncriteriacanbereducedto–83dBm, assumingthesystemsupports1MbpsconnectionsatanRSSIof–93dBm. Ifsystemnoisefloorisabove–100dBm,thenadditionalsignalwillberequired inordertomaintainSNR.Forevery1dBofadditionalnoise,therequiredsignal strengthwillincreaseby1dB.Inthecaseofthepreviousexample,ifthenoise floorweremeasuredat–90dBminsteadof–100dBm,thenthereceivesignal strengthnecessarytosupporta11Mbpsconnectionwouldincreaseto–63dBm. Oncethedataiscollecteditcanbeanalyzed.Themeasurementresultswillbe usedtodetermineasetofscenarios,whicharereflectionsofthedatacollected. Eachscenarioisspecificinthenatureofthefault,andnormallyhasalimited numberofcausesandpossiblesolutions.StartingwithRSSIrelatedissuesonly, thenmovingintomorecomplexinterferenceandnoiserelatedissues,thebreakdownbelowofferssomeanalysisofthedifferingfailuremodes.
214
NetworkPerformanceTestingandTroubleshooting
LowRSSIandNoiseLevelsinaSingleArea LowRSSIonallbasestationsinbothdirectionsinalllocations: Likelycauses:
■
Defectiveclient
■
Badmeasurementtechnique
■
Defectivetestequipment
Resolution:Evaluatetestequipmentandprocedures.Retestinaknownenvironmentinordertoassurethatmeasurementsareaccurate.Oncetestingisshowing accurateresults,beginanalysisagain. LowRSSIatallbasestationsinalllocations: Likelycauses:
■
Defectiveclient
■
Lowpowerclientdevicenotprovidingabalancedpath
Resolution:Replaceclientandretest.Ifproblempersiststryaknowngoodclient device. LowRSSIonasinglebasestationinbothdirectionsinalllocations: Likelycauses:
■
Antennasystemfailure
■
Defectiveantenna
■
Misdirectedantenna
■
Insufficientdowntilt(especiallyonOmniantennas)
■
Defectiveconnectororfeedline
■
Waterinfeedlineorconnectorduetoimpropersealing
Resolution:Inspectaffectedbasestation’sfeedlineandantennasystem.Assure thattheantennamainbeamisaccuratelypointedandthatdowntiltisappropriate fortheareatobecovered.Tryreplacingtheantennaandfeedlinewithaknown goodsubstitute. 215
Implementing802.11,802.16,and802.20WirelessNetworks LowRSSIonasinglebasestationonbasestationdirectiononly,alllocations: Likelycauses:
■
Defectivebasestationreceiver
Resolution:Replacebasestation LowRSSIonasinglebasestationonclientdirectiononly,alllocations: Likelycauses:
■
Defectivebasestationtransmitter
Resolution:Replacebasestation LowRSSIinbothdirectionsincertainlocationsbutOKinothers: Likelycauses:
■
Localpathattenuationisgreaterthanexpectedintheimpairedlocation.
Resolution:Movebasestationtoalocationthathasbettercoverageofaffected area.Addbasestationtocoveraffectedarea.
HighNoiseorInterferenceLevels Highnoiseinbothdirectionsinalllocations: Likelycauses:
■
Badmeasurementtechnique
■
Defectivetestequipment
■
Highlevelofnoisefromothersource
Resolution:Evaluatetestequipmentandprocedures.Retestinaknownenvironmentinordertoassurethatmeasurementsareaccurate.Oncetestingisshowing accurateresults,beginanalysisagain.Ifnoisepersists,useadirectionalantennain conjunctionwiththetestequipmentinordertoattempttofindthenoisesource.In thecaseof802.11aor802.11b,oranyothertechnologyusingunlicensedspectrum,youhavenostandingtocauseaninterferertoceaseoperation.Luckilymost interferersarelowbandwidthdevicesandshouldcausenoiseonsinglechannels ratherthanacrosstheentireband.Changingyouroperatingchanneltoonewith lessinterferenceshouldresolvetheproblem. 216
NetworkPerformanceTestingandTroubleshooting Highnoiselevelsatallbasestationsinalllocations: Likelycauses:Thebasestation,bynatureofitslocationandantenna,willsee morenoisethantheclientinasinglesemishieldedlocationwillsee.Itiscommon toseethebasestationreportanoiselevel3to10dBhigherthantheclient.Thisis notnecessarilyaproblem,andassociatedclientSNRshouldbeanalyzedtoassure thereissufficientsignaltoovercomethenoise.Forexample,all802.11bdevices haveareceivesensitivitywhichisbasedonanoisefloorof–100dBm.An802.11 basestationthatrequires–93dBmofsignaltomaintaina1Mbpsconnection, onlyrequires–93dBmwhenthenoiseflooris–100dBm.Ifthemeasurednoise flooris–90,thentherequiredsignalrisesby10dBalso,sothebasestationwill need–83dBmofsignaltomaintaintheconnection. Resolution:AssurethatsignalissufficienttomaintainadequateSNR. Iftherearemultiplebasestationsoperatingoncommonchannelsinthearea,they ortheirassociatedclientsmaybecontributingtothenoisefloor.Ifunlicensedbands arebeingused,anotheruser’sequipmentmaybecontributingtothenoise.Ifthisis thecase,thechannelizationofthesystemorthereuseplanmayneedtobemodified. Resolution:First,determinewhethertheinterferenceisbeinggeneratedbyequipmentassociatedwithyournetwork.Dothisbytestingatanoisylocation,while turningoffotherco-channelbasestations,andseehowthenoisefloorisaffected. Ifsignificantimprovementinnoiseisnoted,thenthereuseplanisineffectiveand willneedtobemodified.Ifnoimprovementisnoted,thenoiseiscomingfroman outsidesource.Channelchangesmaybeaneffectivewayofreducingthenoise seenbyindividualbasestations. Highnoiseonasinglebasestationinbothdirectionsinalllocations: Likelycauses:Thisisanunlikelyevent.Ifitexists,lookforanonchannelinterferer,eitheranotherinterferingbasestation,oranoisesourcelikeacordless phonesystem,babymonitor,wirelessvideosystem,andsoforth.Ifusingunlicensedspectrum,orifoperatinginlicensedspectrum,useaspectrumanalyzerto lookfornoisesourceslikeIntermodortransmittersinuseintheareasthathave failedandaregeneratingout-of-bandenergy. Resolution:Changechannelofaffectedbasestation.Thismayhavearippleeffect onthereuseplaninthearea. 217
Implementing802.11,802.16,and802.20WirelessNetworks Highnoiseonasinglebasestationinbasestationdirectiononly,alllocations: Likelycauses:
■
Defectivebasestationreceiver
■
Noisesourceinfieldofviewofbasestationantenna
Resolution:Changechannel,disconnectantennaandseeifthebasestationstill reportshighnoise.Ifsothebasestationmaybedefective,replacebasestation. Movebasestationandantennatoalocationwherenoiseisnotseen,addbase stationinlocationwherenoiseisnotseen. Highnoiseonasinglebasestationinclientdirectiononly,alllocations: Likelycauses:
■
Defectivebasestationtransmitter
Resolution:Replaceorrepairbasestation HighnoiseinbothdirectionsincertainlocationsbutOKinothers: Likelycauses:
■
Localnoisesourcesuchasdiscussedabove.
Resolution:Addbasestationtocoveraffectedarea.Changeexistingbasestation channeltoacleanone. Highnoiseinclientdirectionincertainareas: Likelycauses:
■
Localizednoisesourcesuchasdiscussedabove
Resolution:Addbasestationtoaffectedarea,changeexistingbasestationchannel toacleanone.
ThroughputProblemsUnrelatedtoSignalorNoise Inadditiontonoiseorsignalrelatedissues,certaindeploymentscancausereducedthroughputduetothenatureofthedeploymentleadingtochannelusage contentionamongthevariousdevices.
218
NetworkPerformanceTestingandTroubleshooting
RepeaterMode Operating802.11basestationsasrepeatersisusefulinareaswheretherepeaters canbeshieldedfromeachother.Inadeploymentwheretherepeaterscanseeeach other’ssignals,systemthroughputwillbedecreased.Thisisbecauseoftheway 802.11bmanagesbandwidthallocation.ThestandardusesCSMA/CAorcarrier sensemultipleaccess/collisionavoidance.Thissimplymeansthatmultipleusers aresupportedbecause802.11allowsonlyoneatatimetousethechannel.Everyonelistenstothechannelbeforetransmitting.Ifthechannelisunused,thenthe usercantransmit.If,ontheotherhand,asignalisheard,thentheuserwill“back off”byarandomtimeintervalandtryagainafterthatintervalhasexpired. Inarepeatednetworkwheretherepeaterscanseeeachother,thisleadstocontentionproblemsfortherepeatersandthecontrolstation.Let’stakeanexampleof amasterstationandfourrepeaters.Themastersendsitspacketstoallrepeaters. Therepeatershearandacceptthepackets.Nowthefastestrepeateraccessesthe channeltorebroadcastthepackets.Whilethisrepeateristransmitting,allotherrepeatersareinaback-offmode.Eventually,theywillallgetachancetorepeatthe message.Unfortunately,theresultofthisisthatthepackettakesupthechannel fivetimeslongerthanitwouldhavetakenifnorepeatswereused,thusthroughput isreducedfive-fold.Worsethanthisisthefactthatthepacketbelongedtoasingle user,somostoftherepeaterrebroadcastswereawasteoftime. Thischannelcontentioncausesanotherproblemfortheuser:latencyandlost packets.Let’sassumethattheclientwaitingforthepacketiscoveredbythefirst repeater.Hemayimmediatelygetthepacketandtrytosendaresponse.Because heprobablycannotheartheotherrepeaters,hisresponsemaycomeatatime whenanotherrepeaterisbroadcasting.Sincethechannelisinuseandtheother repeatersarebeingheardbythefirstrepeater,thereisagoodchancethatthe client’spacketwillbelostduetointerference.Thisleadstoaneedtoresendpackets,thusfurtherreducingnetworkthroughput. Inasituationwhererepeatersseeeachother,repeatersshouldbeavoided.Instead useequipmentthatoffersdualradiocapability,sothatoneradiocanbesetasa clientandtheotherasabasestationrebroadcastingonadifferentchannel.
219
Implementing802.11,802.16,and802.20WirelessNetworks
MultipleChannelReuseinaCloseArea CSMA/CAleadstosimilarproblemsinareaswheremultiplebasestationsare sharingacommonchannel.Againthebasestationsmaybehearingeachother buttheclientsbecauseoftheirshieldedlocationcannothearallbasestations. Thiscausesinterferencetodevelopatthebasestationbecausethebasestationis hearingmultiplesimultaneoustransmissions,andcannotdiscriminatebetweenthe desiredandundesiredsignals.Theresultispacketlossandretransmissions. Thissituationcanbeidentifiedbyusingtheclientsoftwaretoidentifysignal strengthbyMACaddressoutsideintheareaneareachbasestation.Ifthesignal fromco-channelbasestationscanbeseenhereandnotintheareawheretheusers arelocated,thentherewillbeaproblem. Betterreuseplanning,powerreduction,orimplementingRTS/CTSinan802.11basednetworkmayhelpthesituation.
Near/FarProblems Anotherissuewithcertainradio-basedsystemslike802.11isknownasthe near/farproblem.Inthissituationstrongersignalsmaskweakerones,leadingto adisproportionateamountofbandwidthbeingallocatedtousersthatconsistently presentastrongersignaltothebasestation(forexample,thoseclosesttothebase station).RTS/CTScanhelpthissituation,butwillnotcompletelyeliminateit. Usinghigherpowerclientcardsorexternalhighgainantennasinweakareasmay alsohelp.
HiddenNodeProblems Thisisaproblemexperiencedby802.11orotherCSMA-basednetworks.ItoccurswhenclientstationscanhearacommonAPbutnoteachother,whichisa commonproblemincampusorcommunitycoveragenetworks.BecauseCSMA sharesachannelbylisteningtoassureachannelisclear,ifstationscommunicatingtoacommonbasestationcannotheareachothertheycannoteffectivelyshare thechannel.Thisleadstotheopportunityformultiplestationstoassumethe channelisclear,andbeginsimultaneouslytransmitting.Theresultisthatthebase stationhearsmultiplesimultaneoussignals.Ifoneissignificantlystronger,itmay 220
NetworkPerformanceTestingandTroubleshooting capturethechannelandgetthrough,whiletheothersarelost.Ifthesignalsareall ofequivalentstrength,thenallwillbelost. RTS/CTScanhelpthissituation,butwillnotcompletelyeliminateit.Ifitis financiallyviable,changingtoaprotocolthatisnotdependentonCSMA/CAisa betterlongtermsolutiontothisproblem.
ClientCard“Roam” Somestandards-basedandproprietarysolutionsaredesignedtosupport“roaming”orhandoffbetweenbasestationsorAPs.Thisallowsuserstomoveaboutan areaandshiftfrombasestationtobasestationbaseduponthestrongestsignal. Unfortunately,thedefaultsettinginmanycardsforcesthecardalwaystolook forabettersignal.Assoonasthesignalfades,thecardtriestoreassociatewith anotherbasestation,oftenlosingconnectivityandpacketsintheprocess.Because ofthenatureofthefadingenvironment,this“newbestsignal”maynotbethebest forlong,andthecardwillagaintrytoreassociate.EarlyLucentdriversandCisco 802.11bdrivershadtheabilitytoselectwhattheycalledbasestationdensityto low,medium,orhigh.Allclientsshouldbesetappropriatetothedensityofthe APsinthenetwork.Thistellsaclientthattherearemanybasestation’sandto holdontotheoneithasuntilitdropstounacceptableRSSIandstaysthere.This willhelptostabilizeassociationsbetweenbasestationsandclientsandreducelost packetsandunstableconnections.
VirusesandTrojans WeliveinaworldwhereInternetandemailbornevirusesandTrojanprograms areproliferating.Worseyet,manycomputerusersareeitherignorantofthesituation,orchoosetoignoreit. Unfortunately,suchprogramscancauseproblemstowirelessnetworkthroughput.Becausemanyoftheseprogramsactivelyseektoinfectothersortosend someinformationtoanothercomputer,theyutilizenetworkbandwidth.Ifmany computersonawirelessnetworkbecomeinfected,thevirusesbeginusinga considerableamountofbandwidth.Thisbandwidthisnolongeravailabletocarry legitimatetraffic.
221
Implementing802.11,802.16,and802.20WirelessNetworks ThissituationmayrequiretheuseofanEthernetpacketanalyzertoallowyouto inspectthetrafficonthewirelessnodeandseeifalargeproportionofitisvirus orTrojanrelated.Ultimately,theonlywaytosolvethisproblemistohave customersrunantivirussoftwarewhichiskeptupdated,ortoidentifyusers withvirusesanddisconnectthemfromserviceuntilthevirusproblemintheir computeriseliminated.
TroubleshootingSummary Everysystemisunique,sothereisnowayforthisbooktocoverallpossible troublesyoumayencounterinanetwork.Theproblemsdiscussedaremerelya helpfulidentificationofissuescommonlyfoundinanRFsystem.Theexamples mostcertainlydonotidentifyeverysourceoftroubleyouarelikelytofind,howevertheyareusefulasastartingpoint. Likeanyothertroubleshootingprocess,theRFsystemtroubleshootingprocess requiresasystematicapproach,anintimateunderstandingofthevariablesinplay inyournetwork,andanunderstandingofRFandtheenvironmentalfactorsthat affectit.Havingthesebasicswillallowyoutoapproachtheproblemlogically, defineitsnature,anddeterminefromwhatpossiblesourcesthetroublearises. Eliminatingthoseissuesthatcannotbethesourceoftheproblemwillallowyou tohoneinontheproblembyfocusingonthemostprobablecausesandthen eliminatingallbuttherootcauseoftheproblem.
222
AbouttheAuthor RonOlexahasbeenactivelyinvolvedinthedesign,deployment,andoperationof wirelesscommunicationssystemsforover30years.Hehasdesignedsystemsas simpleasindividualpoint-to-pointlinksandascomplexasnationalscaleGSM networks.Intheearly1980’s,Ronworkedinaseniormanagementrolewitha numberoftheLINBroadcastingandMetromediacellularmarkets,wherehewas responsibleforthedesign,deployment,andoperationofsomeofthefirstcellularsystemsdeployedinthetopfiveU.S.markets.Inthelate1980’sandearly 1990’s,hewasresponsiblefortheinitialdesignofanumberofinternationalGSM andCDMAsystemdesignsforPacTelCellular(laterknownasAirtouchandnow partofVodaphone).Themid-1990’sbroughtanewtechnicalchallenge,andRon joinedDialCallInc.,whereheassembledateamthatdesigned,constructedand managedanetworkbaseduponMotorola’siDENtechnology,thesametechnologycurrentlyusedbyNextelCommunications. Inthelate1990’s,Ronshiftedfromwirelessvoicenetworkstotheemergingwirelessdataindustry.Hewasresponsibleforsystemdesignsofpoint-to-pointand point-to-multipointdatanetworksusingmillimetermicrowavespectrum.From 2000topresent,Ronhasrunaconsultingcompanythathasprovidedtechnical supportandbusinessplanningguidancetoprojectsasdiverseassatellitecommunicationssystemsand802.11hotspotandhotzoneimplementations. Roncanbereachedthroughhiscompanywebsite:www.wirelessimplementation.com.
223
This page intentionally left blank
ListofAcronyms AC
AlternatingCurrent
AM
AmplitudeModulation
AP
AccessPoint
APC
AutomaticPowerControl
ATM
AsynchronousTransferMode
BS
BaseStation
BPSK
BiPhaseShiftKeying
CAPEX
CapitalExpense
CAT5
Category5Cable
CC&R
Conditions,Covenants,andRestrictions
CCK
ComplimentaryCodeKeying
C/I
CarriertoInterferenceRatio
C/I+N
Carrier-to-NoiseplusInterferenceratio
C/N
Carrier-to-NoiseRatio
CPE
CustomerPremiseEquipment
CSMA/CA
CarrierSenseMultipleAccess/CollisionAvoidance
CSMA/CD
CarrierSenseMultipleAccess/CollisionDetect
CTS
CleartoSend
CW
ContinuousWave
dB
Decibel
dBd
DecibelGainReferencedtoaDipoleAntenna 225
Acronyms dBi
DecibelgainreferencedtoanIsotropicAntenna
dBm
Decibelsreferencedto1milliwatt
dBu
Decibelsreferencedto1microvolt
dBW
Decibelsreferencedto1Watt
DC
DirectCurrent
DHCP
DynamicHostConfigurationProtocol
DPC
DynamicPowerControl
DSL
DigitalSubscriberLine
DSSS
DirectSequenceSpreadSpectrum
Eb/No
EnergyperBittoNoiseRatio
EM
ElectroMagnetic
FCC
FederalCommunicationsCommission
FDD
FrequencyDivisionDuplexing
FDM
FrequencyDivisionMultiplexing
FDMA
FrequencyDivisionMultipleAccess
FHSS
FrequencyHoppingSpreadSpectrum
FM
FrequencyModulation
FSL
FreeSpaceLoss
GBPS
GigabitsPerSecond
GPS
GlobalPositioningSystem
GUI
GraphicalUserInterface
Hz
HertzorCyclesperSecond
IEEE
InstituteofElectricandElectronicEngineers
IP
InternetProtocol
ISP
InternetServiceProvider 226
Acronyms LAN
LocalAreaNetwork
LO
LocalOscillator
LOS
LineofSight
MAC
MediaAccessLayer
MAN
MetropolitanAreaNetwork
MBPS
MegabitsperSecond
MDU
MultipleDwellingUnit
Modem
Modulator/Demodulator
NAT
NetworkAddressTranslation
NEC
NationalElectricalCode
NLOS
NonorNearLineofSight
NOCC
NetworkOperationsandControlCenter
NPRM
NoticeofProposedRuleMaking
OFDM
OrthogonalFrequencyDivisionMultiplexing
OPEX
OperatingExpense
PCS
PersonalCommunicationService
PHY
PhysicalLayer
PM
PhaseModulation
PMP
Point-to-Multipoint
PtMP
Point-to-Multipoint
PTP
Point-to-Point
QAM
QuadratureAmplitudeModulationorQuaternaryAmplitude Modulation
QOS
QualityofService
QPSK
QuaternaryPhaseShiftKeying 227
Acronyms RADIUS
RemoteAuthenticationDialInServer
RF
RadioFrequency
RSSI
RelativeSignalStrengthIndicator
RTS
RequesttoSend
SNR
Signal-to-NoiseRatio
SSID
ServiceSetIdentifier
TDD
TimeDivisionDuplex
TDM
TimeDivisionMultiplexing
TDMA
TimeDivisionMultipleAccess
USGS
UnitedStatesGeologicalSurvey
UWB
UltraWideband
VAR
ValueAddedReseller
VOIP
VoiceoverIP
Wi-Fi
WirelessFidelity
WiMAX
WorldwideInteroperabilityforMicrowaveAccess
WISP
WirelessISP
228
Index Numbers
C
100Base-FX,155 100Base-T,166 10Base-FL,155 802.11b,xiii 802.11x,6 802.16,6 802.20,6
C/Iratio,159 cable,79 capacitivereactance,32 capacity,159 capacity,132 CAPEX,xvi,xvii,159 carriersensemultipleaccess/collision avoidance(CSMA/CA),10 carriertonoiseorinterferenceratio (C/I,C/N,C/I+N),48 CAT5,150 channelization,46 channelreuse,220 ClassA,AB,B,C,andD,35 clienthardware,8 coax,35 codedivisionmultipleaccess,60 collisions,148 commonreusepatterns,89 complexity,159 complimentarycodekeying(CCK),10,61 comprehensivesitesurvey,106 connector,79 cost,132,159 coverage,132,159 customerauthorizationsystem,202 customerpremiseequipment(CPE),113
A AmateurRadiooperators,xiv amplitudemodulation,44 antennas,35,36 antennadowntilt,125 antennagain,79 antennaheight,57 antennaselection,57,125 ATM,15 attenuation,136 automaticcalldistribution(ACD),207 averageusage,145
B backhaul,181 backofficesystems,201 Barkercode,61 Barkercodedirectsequencespread,10 billingdatacollection,203 billingsystem,204 BiPhaseShiftKeying,49 BPSK,10,50
229
Index D
H
dBd,37 dBi,37 dipole,37 directionalantennas,39 directsequencespreadspectrum(DSSS),59 diversity,79 downtilt,153 drivetest,95 DSL,17 duplexing,54
half-powerpoints,38 HATA,96 hertz,29 hiddennode,220 hotstandby,157 hubandspoke,156
E E-1,150 efficiency,34 EIRP,12 energyperbitrelativetonoiseratio (Eb/No),48 Ethernet,8,150
I IEEE,xv impedance,36 Inductivereactance,32 interceptpoint,42 interconnect,138 Interference,180 isotropic,36
K Kismet,118
F
L
fade,136 fademargin,136 fading,78 FCC,xiv FCCcertification,18 feedline,35,79 freespaceloss,69 frequencydivisionduplexing,54 frequencydivisionmultipleaccess,56 frequencymodulation,46 frequencyreuse,85,171 frequencyselectivefading,73 Fresnelzone,70
LAN,x lightningprotection,184 lineofsight(LOS),14 linkbudget,79 localoscillator(LO),43 lognormalfading,73 Longley-Rice,96
G GPS,118 grounding,184 groundrods,184
M MAC,15 maximumallowablepathloss,194 metropolitanareanetworks(MANs),xi,13 mobile,3 MODEM,47 modulator,44 morphology,82 multipath,74,136 multipathinterference,72
230
Index multipleaccesstechniques,55
R
N
radiofrequency,27 radiomobiledeluxe,104 radiopropagation,136 RADIUS,202 reactance,33 realestate,138 receiver,41 receivesensitivity,137 redundancy,156 repeater,126 repeatermode,219 requesttosend/cleartosend(RTS/CTS), 13,148 resonance,33 RF,27 RFamplifiers,33,42 RFSiteSurveyTools,117 ring,158 RTS/CTS,148
near/far,220 NEC,174 Netstumbler,118 networkmonitoringandcontrol,203 NOCC,203 nomadicnetworks,5
O OC3,166 OFDM,10,17 OPEX,xvi,xvii,159 orthogonal,63 orthogonalfrequencydivision modulation,62 oscillator,30
P Part15,xiv pathloss,115 phasemodulation,46 physical(PHY),14 piezoelectricmaterials,33 point-to-multipoint(PTM),3 point-to-point(PTP),3 point-to-pointradiofacilities,150 power,138 poweramplifiers,34 predictivemodelingtools,95 propagation,98
Q QAM,51 QPSK,10 quadratureamplitudemodulation,51 quadraturephaseshiftkeying(QPSK),50 qualityofservice(QoS),12,15 quartz,33
S sensitivity,42 shadowing,78 Shannon,Claude,48 sitelocation,57 sitesurvey,106 spectrum,188,189 spectrumanalyzer,120 spread-spectrummodulation,58 spreadsheetmodels,96 systemplanning,187
T T-1,150 T1,166 T3,166 TDMA,56 terrain,97
231
Index timedivisionduplexing,55 timedivisionmultipleaccess,56 TIREM,96 trade-offs,191 transmitpoweroutput,57 troubleticketing,205
U ultrawideband,64 USGS,97
W Walfish-Ikegami,96 weatherproofing,183 wi-fi,x WiMAX,xv wirelessdatanetworks,3 fixed,3 mobile,3 point-to-point,3 point-to-multipoint,3 WISP,12
232
ELSEVIERSCIENCECD-ROMLICENSEAGREEMENT PLEASEREADTHEFOLLOWINGAGREEMENTCAREFULLYBEFOREUSINGTHISCD-ROMPRODUCT.THIS CD-ROMPRODUCTISLICENSEDUNDERTHETERMSCONTAINEDINTHISCD-ROMLICENSEAGREEMENT (“Agreement”).BYUSINGTHISCD-ROMPRODUCT,YOU,ANINDIVIDUALORENTITYINCLUDINGEMPLOYEES, AGENTSANDREPRESENTATIVES(“You”or“Your”),ACKNOWLEDGETHATYOUHAVEREADTHISAGREEMENT, THATYOUUNDERSTANDIT,ANDTHATYOUAGREETOBEBOUNDBYTHETERMSANDCONDITIONSOF THISAGREEMENT.ELSEVIERSCIENCEINC.(“ElsevierScience”)EXPRESSLYDOESNOTAGREETOLICENSE THISCD-ROMPRODUCTTOYOUUNLESSYOUASSENTTOTHISAGREEMENT.IFYOUDONOTAGREEWITH ANYOFTHEFOLLOWINGTERMS,YOUMAY,WITHINTHIRTY(30)DAYSAFTERYOURRECEIPTOFTHISCDROMPRODUCTRETURNTHEUNUSEDCD-ROMPRODUCTANDALLACCOMPANYINGDOCUMENTATIONTO ELSEVIERSCIENCEFORAFULLREFUND. DEFINITIONS AsusedinthisAgreement,thesetermsshallhavethefollowingmeanings: “ProprietaryMaterial”meansthevaluableandproprietaryinformationcontentofthisCD-ROMProductincludingallindexes andgraphicmaterialsandsoftwareusedtoaccess,index,searchandretrievetheinformationcontentfromthisCD-ROM ProductdevelopedorlicensedbyElsevierScienceand/oritsaffiliates,suppliersandlicensors. “CD-ROMProduct”meansthecopyoftheProprietaryMaterialandanyothermaterialdeliveredonCD-ROMandanyother human-readableormachine-readablematerialsenclosedwiththisAgreement,includingwithoutlimitationdocumentation relatingtothesame. OWNERSHIP ThisCD-ROMProducthasbeensuppliedbyandisproprietarytoElsevierScienceand/oritsaffiliates,suppliersandlicensors.ThecopyrightintheCD-ROMProductbelongstoElsevierScienceand/oritsaffiliates,suppliersandlicensorsand isprotectedbythenationalandstatecopyright,trademark,tradesecretandotherintellectualpropertylawsoftheUnited Statesandinternationaltreatyprovisions,includingwithoutlimitationtheUniversalCopyrightConventionandtheBerne CopyrightConvention.YouhavenoownershiprightsinthisCD-ROMProduct.Exceptasexpresslysetforthherein,nopart ofthisCD-ROMProduct,includingwithoutlimitationtheProprietaryMaterial,maybemodified,copiedordistributedin hardcopyormachine-readableformwithoutpriorwrittenconsentfromElsevierScience.Allrightsnotexpresslygrantedto Youhereinareexpresslyreserved.AnyotheruseofthisCD-ROMProductbyanypersonorentityisstrictlyprohibitedand aviolationofthisAgreement. SCOPEOFRIGHTSLICENSED(PERMITTEDUSES) ElsevierScienceisgrantingtoYoualimited,non-exclusive,non-transferablelicensetousethisCD-ROMProductinaccordance withthetermsofthisAgreement.YoumayuseorprovideaccesstothisCD-ROMProductonasinglecomputerorterminal physicallylocatedatYourpremisesandinasecurenetworkormovethisCD-ROMProducttoanduseitonanothersingle computerorterminalatthesamelocationforpersonaluseonly,butundernocircumstancesmayYouuseorprovideaccess toanypartorpartsofthisCD-ROMProductonmorethanonecomputerorterminalsimultaneously. Youshallnot(a)copy,download,orotherwisereproducetheCD-ROMProductinanymedium,including,withoutlimitation, onlinetransmissions,localareanetworks,wideareanetworks,intranets,extranetsandtheInternet,orinanyway,inwhole orinpart,exceptthatYoumayprintordownloadlimitedportionsoftheProprietaryMaterialthataretheresultsofdiscrete searches;(b)alter,modify,oradapttheCD-ROMProduct,includingbutnotlimitedtodecompiling,disassembling,reverse engineering,orcreatingderivativeworks,withoutthepriorwrittenapprovalofElsevierScience;(c)sell,licenseorotherwise distributetothirdpartiestheCD-ROMProductoranypartorpartsthereof;or(d)alter,remove,obscureorobstructthedisplayofanycopyright,trademarkorotherproprietarynoticeonorintheCD-ROMProductoronanyprintoutordownload ofportionsoftheProprietaryMaterials. RESTRICTIONSONTRANSFER ThisLicenseispersonaltoYou,andneitherYourrightshereundernorthetangibleembodimentsofthisCD-ROMProduct, includingwithoutlimitationtheProprietaryMaterial,maybesold,assigned,transferredorsub-licensedtoanyotherperson, includingwithoutlimitationbyoperationoflaw,withoutthepriorwrittenconsentofElsevierScience.Anypurportedsale, assignment,transferorsublicensewithoutthepriorwrittenconsentofElsevierSciencewillbevoidandwillautomatically terminatetheLicensegrantedhereunder.
TERM ThisAgreement will remain in effect until terminated pursuant to the terms of thisAgreement.You may terminate this AgreementatanytimebyremovingfromYoursystemanddestroyingtheCD-ROMProduct.Unauthorizedcopyingofthe CD-ROMProduct,includingwithoutlimitation,theProprietaryMaterialanddocumentation,orotherwisefailingtocomply withthetermsandconditionsofthisAgreementshallresultinautomaticterminationofthislicenseandwillmakeavailable toElsevierSciencelegalremedies.UponterminationofthisAgreement,thelicensegrantedhereinwillterminateandYou mustimmediatelydestroytheCD-ROMProductandaccompanyingdocumentation.Allprovisionsrelatingtoproprietary rightsshallsurviveterminationofthisAgreement. LIMITEDWARRANTYANDLIMITATIONOFLIABILITY NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT ORWARRANTTHATTHE INFORMATION CONTAINEDINTHEPROPRIETARYMATERIALSISCOMPLETEORFREEFROMERROR,ANDNEITHERASSUMES,ANDBOTHEXPRESSLYDISCLAIM,ANYLIABILITYTOANYPERSONFORANYLOSSORDAMAGE CAUSEDBYERRORSOROMISSIONSINTHEPROPRIETARYMATERIAL,WHETHERSUCHERRORSOROMISSIONSRESULTFROMNEGLIGENCE,ACCIDENT,ORANYOTHERCAUSE.INADDITION,NEITHERELSEVIER SCIENCE NOR ITS LICENSORS MAKEANY REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,REGARDINGTHEPERFORMANCEOFYOURNETWORKORCOMPUTERSYSTEMWHENUSEDIN CONJUNCTIONWITHTHECD-ROMPRODUCT. IfthisCD-ROMProductisdefective,ElsevierSciencewillreplaceitatnochargeifthedefectiveCD-ROMProductisreturned toElsevierSciencewithinsixty(60)days(orthegreatestperiodallowablebyapplicablelaw)fromthedateofshipment. ElsevierSciencewarrantsthatthesoftwareembodiedinthisCD-ROMProductwillperforminsubstantialcompliancewith thedocumentationsuppliedinthisCD-ROMProduct.IfYoureportsignificantdefectinperformanceinwritingtoElsevier Science,andElsevierScienceisnotabletocorrectsamewithinsixty(60)daysafteritsreceiptofYournotification,Youmay returnthisCD-ROMProduct,includingallcopiesanddocumentation,toElsevierScienceandElsevierSciencewillrefund Yourmoney. YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITEDABOVE, ELSEVIER SCIENCE,ITSAFFILIATES,LICENSORS,SUPPLIERSANDAGENTS,MAKENOWARRANTIES,EXPRESSEDOR IMPLIED,WITHRESPECTTOTHECD-ROMPRODUCT,INCLUDING,WITHOUTLIMITATIONTHEPROPRIETARY MATERIAL,AN SPECIFICALLY DISCLAIMANY WARRANTY OF MERCHANTABILITY OR FITNESS FORA PARTICULARPURPOSE. IftheinformationprovidedonthisCD-ROMcontainsmedicalorhealthsciencesinformation,itisintendedforprofessional usewithinthemedicalfield.Informationaboutmedicaltreatmentordrugdosagesisintendedstrictlyforprofessionaluse,and becauseofrapidadvancesinthemedicalsciences,independentverificationfdiagnosisanddrugdosagesshouldbemade. INNOEVENTWILLELSEVIERSCIENCE,ITSAFFILIATES,LICENSORS,SUPPLIERSORAGENTS,BELIABLE TOYOUFORANYDAMAGES,INCLUDING,WITHOUTLIMITATION,ANYLOSTPROFITS,LOSTSAVINGSOR OTHERINCIDENTALORCONSEQUENTIALDAMAGES,ARISINGOUTOFYOURUSEORINABILITYTOUSE THECD-ROMPRODUCTREGARDLESSOFWHETHERSUCHDAMAGESAREFORESEEABLEORWHETHER SUCHDAMAGESAREDEEMEDTORESULTFROMTHEFAILUREORINADEQUACYOFANYEXCLUSIVEOR OTHERREMEDY. U.S.GOVERNMENTRESTRICTEDRIGHTS TheCD-ROMProductanddocumentationareprovidedwithrestrictedrights.Use,duplicationordisclosurebytheU.S. Governmentissubjecttorestrictionsassetforthinsubparagraphs(a)through(d)oftheCommercialComputerRestricted RightsclauseatFAR52.22719orinsubparagraph(c)(1)(ii)oftheRightsinTechnicalDataandComputerSoftwareclause atDFARS252.2277013,orat252.2117015,asapplicable.Contractor/ManufacturerisElsevierScienceInc.,655Avenueof theAmericas,NewYork,NY10010-5107USA. GOVERNINGLAW ThisAgreementshallbegovernedbythelawsoftheStateofNewYork,USA.InanydisputearisingoutofthisAgreement, youandElsevierScienceeachconsenttotheexclusivepersonaljurisdictionandvenueinthestateandfederalcourtswithin NewYorkCounty,NewYork,USA.