121 79 38MB
English Pages 469 [406] Year 2024
Tommaso Scarabino · Saverio Pollice · Giuseppe Carmine Iaffaldano · Domenico Catapano Editors
Imaging Spine After Treatment A Case-based Atlas Second Edition
123
Imaging Spine After Treatment
Tommaso Scarabino • Saverio Pollice Giuseppe Carmine Iaffaldano Domenico Catapano Editors
Imaging Spine After Treatment A Case-based Atlas Second Edition
Editors Tommaso Scarabino Department of Radiology/Neuroradiology L. Bonomo Hospital Andria, Italy
Saverio Pollice Department of Radiology San Nicola Pellegrino Hospital Trani, Italy
Giuseppe Carmine Iaffaldano Department of Neurosurgery Ospedale L. Bonomo Andria, Italy
Domenico Catapano Department of Neurosurgery Ospedale L. Bonomo Andria, Italy
ISBN 978-3-031-42550-9 ISBN 978-3-031-42551-6 (eBook) https://doi.org/10.1007/978-3-031-42551-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2014, 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Paper in this product is recyclable.
Foreword
Imaging of the spine represents since many years a fundamental step in the identification of the disease and then in the following treatment planning. Treatment is influenced by proposed and executed diagnostic work up, both in terms of used diagnostic techniques that uses qualitative and iconographic interpretation. The first point is the virtuous plot between quality of examinations and diagnostic result, is definitely under the responsibility of the radiologist dedicated to the pathology of the spine and moreover must be linked appropriately and professionally impeccable. The second point is related to the professional preparation that, although integrated by experience, can not be separated from a thorough clinical and technological knowledge, constantly updated through professional training. This definition becomes essential when you have to study the “difficult” field of post- surgical imaging, where, in addition to the knowledge of surgical techniques and their results, there is the uneasy task of expressing an opinion with high diagnostic value in the medical- legal branch. A text that takes into account these important factors must become an integral part of cultural background in diagnostic imaging especially for radiologists dedicated to the study of the pathology of the spine. This volume examines, in a comprehensive way, the normal and pathological features that may arise in diagnostic imaging in the operated spine, by specifying the role of the various imaging techniques, their use, the “prickly” boundary between normal and pathological and then the different pathological findings. A praise to the authors and especially to Tommaso Scarabino for being able to pick up an important case study collection, clearly and comprehensive structured, easy to read and reference. This text, therefore, must be present on the desk for frequent use. My invitation can only be so to acquire and use this text, to increase diagnostic performance towards colleagues but particularly for the benefits of patients. Radiodiagnostica CTO AO Città della Salute e della Scienza Turin, Italy 2013
Carlo Faletti
* (adapted from “Imaging Spine After Treatment” edit by Tommaso Scarabino and Saverio Pollice, First Edition, Springer 2014) v
Preface
This paper provides a review about imaging assessment of the spine after treatment. This discussion is preceded by a detailed examination of spinal disorders (major cause of surgery and/ or interventional radiology) and its various types of treatments used in daily clinical practice. In general, any surgical approach alters the normal anatomical and functional arrangement of the district which is aimed, therefore image interpretation cannot ignore a correct set of knowledge in the field of anatomy, pathophysiology, drug compliance, interventional radiology, and surgery. Neuroradiological imaging plays an important role in the post-operative evaluation of patients undergoing spinal surgery. In particular, it is essential in documenting normal and pathological post-treatment changes, specific to approach type; in detecting any complications and in the follow-up. Imaging assessment of spine after surgery is complex and depends upon several factors including: surgical procedures and disease for which it was performed; biomechanical of the underlying cortical and cancellous bone; conditions of muscles, intervertebral disc and ligaments; time since surgery procedures; duration and nature of the post-surgical syndrome. Depending upon these factors, one or a combination of complementary imaging modalities (XR, CT, MR) may be required to evaluate effectiveness of the treatment; to demonstrate any clinically relevant abnormality at the treated region and adjacent structures; to assist the interventional radiologist or surgeon in deciding if it is necessary to intervene again, in which nature and in which vertebral level(s). Andria, Italy Trani, Italy Andria, Italy Andria, Italy
Tommaso Scarabino Saverio Pollice Giuseppe Carmine Iaffaldano Domenico Catapano
vii
Acknowledgments
The topic of this volume is the neuroradiological imaging of spinal pathology after surgery or interventional radiology treatment. Normal and pathological findings (including complications) in X-ray, CT, and MRI will be evaluated. This book is presented as a text-atlas. The first part (text) is essential and synthetic and talks about spinal diseases subjected to interventional procedure and/or surgery with its specific and various types of approach. Afterwards radiological and neuroradiological diagnostic techniques in post-treatment are assessed. The second part (atlas) instead includes a large iconography as the result of multi-centre collaboration with top experts in this matter to which I express my gratitude. Without their essential collaboration would not have been possible to carry out the work! Finally, a sincere thanks to the publishing house Springer Verlag Italy and in particular to Ms. Cerri, for the enthusiasm with which she received this scientific initiative, and to the whole team for the great care and professionalism shown in the drafting of the publication. Tommaso Scarabino
ix
Contents
Part I 1 Pathology��������������������������������������������������������������������������������������������������������������������� 3 Carla Leuci, Corradino Samarelli, Saverio Pollice, and Tommaso Scarabino 1.1 Disk Herniation��������������������������������������������������������������������������������������������������� 3 1.2 Canal Stenosis����������������������������������������������������������������������������������������������������� 4 1.3 Vertebral Instability��������������������������������������������������������������������������������������������� 5 1.4 Vertebral Fractures����������������������������������������������������������������������������������������������� 6 References��������������������������������������������������������������������������������������������������������������������� 6 2 Interventional Radiology������������������������������������������������������������������������������������������� 9 Alberto Palombella, Fabio Quinto, Paolo Cerini, Emanuele Malatesta, and Tommaso Scarabino 2.1 Percutaneous Techniques for Diskal Hernia ������������������������������������������������������� 9 2.2 Percutaneous Techniques in Vertebral Collapses������������������������������������������������� 11 References��������������������������������������������������������������������������������������������������������������������� 13 3 Surgery������������������������������������������������������������������������������������������������������������������������� 15 Domenico Catapano, Antonello Curcio, Filippo Flavio Angileri, Simona Ferri, Rossella Zaccaria, Michele Santoro, Giuseppe Carmine Iaffaldano, Fabio Cacciola, and Antonino Germanò 3.1 Surgery Techniques in Lumbar Diskal Hernia����������������������������������������������������� 15 3.2 Surgery in Lumbar Degenerative Disorders�������������������������������������������������������� 16 3.3 Anterior Cervical Diskectomy and Fusion ��������������������������������������������������������� 23 References��������������������������������������������������������������������������������������������������������������������� 24 4 Imaging Modalities����������������������������������������������������������������������������������������������������� 27 Carmela Garzillo, Saverio Pollice, and Tommaso Scarabino 4.1 X-Ray������������������������������������������������������������������������������������������������������������������� 27 4.2 Ultrasound����������������������������������������������������������������������������������������������������������� 27 4.3 Computed Tomography��������������������������������������������������������������������������������������� 27 4.4 Magnetic Resonance ������������������������������������������������������������������������������������������� 28 References��������������������������������������������������������������������������������������������������������������������� 29 5 Post-Treatment Imaging��������������������������������������������������������������������������������������������� 31 Umberto Tupputi, Michela Capuano, Saverio Pollice, and Tommaso Scarabino 5.1 Diskectomy ��������������������������������������������������������������������������������������������������������� 31 5.2 Vertebroplasty ����������������������������������������������������������������������������������������������������� 33 5.3 Conventional and Dynamic Stabilization������������������������������������������������������������� 33 References��������������������������������������������������������������������������������������������������������������������� 34
xi
xii
Part II Clinical Cases 6 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 39 Paola D’Aprile and Alfredo Tarantino 6.1 Early Postoperative Follow-Up��������������������������������������������������������������������������� 39 7 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 41 Paola D’Aprile and Alfredo Tarantino 7.1 Early Postoperative Follow-Up��������������������������������������������������������������������������� 41 8 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 43 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 8.1 Early Postoperative Follow-Up��������������������������������������������������������������������������� 43 9 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 45 Simone Salice, Domenico Tortora, Valentina Panara, Massimo Caulo, and Armando Tartaro 9.1 Postoperative Follow-Up������������������������������������������������������������������������������������� 45 10 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 47 Paola D’Aprile and Alfredo Tarantino 10.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 47 11 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 49 Paola D’Aprile and Alfredo Tarantino 11.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 49 12 Herniated Lumbar Disk. Diskectomy����������������������������������������������������������������������� 51 Ferdinando Caranci, Anna Caliendo, Carmen Castagnolo, Raffaele Nappi, and Achille Marotta 12.1 Preoperative Imaging����������������������������������������������������������������������������������������� 51 12.2 Postoperative Follow-Up After 1 Month����������������������������������������������������������� 54 12.3 Postoperative Follow-Up After 3 Months ��������������������������������������������������������� 56 12.4 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 57 13 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 61 Paola D’Aprile and Alfredo Tarantino 13.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 61 14 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 63 Paola D’Aprile and Alfredo Tarantino 14.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 63 15 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 65 Simone Salice, Domenico Tortora, Valentina Panara, Massimo Caulo, and Armando Tartaro 15.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 65 16 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 67 Paola D’Aprile and Alfredo Tarantino 16.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 67 17 Herniated Lumbar Disk Micro-Diskectomy������������������������������������������������������������� 69 Paola D’Aprile and Alfredo Tarantino 17.1 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 69 18 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 71 Paola D’Aprile and Alfredo Tarantino 18.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 71 18.2 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 73
Contents
Contents
xiii
19 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 75 Paola D’Aprile and Alfredo Tarantino 19.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 75 20 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 77 Paola D’Aprile and Alfredo Tarantino 20.1 Postoperative Follow-up ����������������������������������������������������������������������������������� 77 21 Herniated Lumbar Disk Diskectomy ����������������������������������������������������������������������� 81 Paola D’Aprile and Alfredo Tarantino 21.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 81 21.2 Postoperative Follow-Up After 5 Days ������������������������������������������������������������� 83 21.3 Late-Operative Follow-Up After 1 Year������������������������������������������������������������� 84 22 Herniated Lumbar Disk Diskectomy and Stabilization ����������������������������������������� 85 Achille Marotta, Raffaele Nappi, Anna Caliendo, Carmen Castagnolo, and Ferdinando Caranci 22.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 85 22.2 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 87 22.3 Postoperative Follow-Up After 9 Months ��������������������������������������������������������� 88 22.4 Postoperative Follow-Up After 12 Months ������������������������������������������������������� 89 23 Herniated Lumbar Disk Diskectomy and Stabilization ����������������������������������������� 93 Chiara Potente, Roberto Trignani, Tommaso Scarabino, and Gabriele Polonara 23.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 93 23.2 Late Postoperative Follow-Up��������������������������������������������������������������������������� 94 24 Herniated Lumbar Disk Diskectomy and Stabilization ����������������������������������������� 97 Chiara Potente, Roberto Trignani, Tommaso Scarabino, and Gabriele Polonara 24.1 Late Postoperative Follow-Up��������������������������������������������������������������������������� 97 25 Herniated Lumbar Disk Intradiskal Percutaneous Procedure������������������������������� 101 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 25.1 Preoperative Imaging����������������������������������������������������������������������������������������� 101 25.2 Intraoperative Imaging��������������������������������������������������������������������������������������� 101 25.3 Postoperative Follow-Up After 10 Days ����������������������������������������������������������� 102 25.4 Postoperative Follow-Up After 3 Weeks����������������������������������������������������������� 103 26 Herniated Lumbar Disk Percutaneous Intradiskal Procedure������������������������������� 105 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 26.1 Intraoperative Imaging��������������������������������������������������������������������������������������� 105 26.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 105 26.3 Postoperative Follow-Up after 36 h������������������������������������������������������������������� 106 26.4 Subsequent Postoperative Follow-Up ��������������������������������������������������������������� 107 27 Extraforaminal L5-S1 Herniated Disk: Transmuscular Approach����������������������� 109 Domenico Catapano and Vincenzo Monte 28 Intra-Extraforaminal L3-L4 Herniated Disk: Transmuscular Approach������������� 111 Domenico Catapano and Vincenzo Monte 29 Herniated Lumbar Disk Anterior Diskectomy��������������������������������������������������������� 113 Tommaso Scarabino, Michele Maiorano, Fabio Quinto, Michele Santoro, and Raniero Mignini 29.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 113 30 Herniated Lumbar Disk. Lateral Diskectomy and Interbody Arthrodesis. Posterior Stabilization ����������������������������������������������������������������������������������������������� 115 Giuseppe Di Perna, Emanuele Bavaresco, Nicola Zullo, and Francesco Zenga
xiv
31 Recurrent Herniated Lumbar Disk Patient Reoperated����������������������������������������� 117 Alessandro Stecco, Francesco Fabbiano, Silvio Ciolfi, Christian Cossandi, Piergiorgio Car, Gabriele Panzarasa, and Alessandro Carriero 31.1 Preoperative Imaging����������������������������������������������������������������������������������������� 117 31.2 Preoperative Imaging After 10 Months������������������������������������������������������������� 118 31.3 Postoperative Follow-Up����������������������������������������������������������������������������������� 119 32 Recurrent Herniated Lumbar Disk Stabilization ��������������������������������������������������� 121 Tommaso Scarabino, Fabio Quinto, Roberto Stanzione, Francesco Paradiso, and Raniero Mignini 32.1 Preoperative Imaging����������������������������������������������������������������������������������������� 121 32.2 Preoperative Follow-Up������������������������������������������������������������������������������������� 122 32.3 Early Postoperative Follow-Up������������������������������������������������������������������������� 124 32.4 Late Postoperative Follow-Up��������������������������������������������������������������������������� 125 33 Dorsal Herniated Disk Diskectomy and Stabilization��������������������������������������������� 127 Alessandro Stecco, Francesco Fabbiano, Silvio Ciolfi, Christian Cossandi, Piergiorgio Car, Gabriele Panzarasa, and Alessandro Carriero 33.1 Preoperative Imaging����������������������������������������������������������������������������������������� 127 33.2 Postoperative Follow-Up after 4 Months����������������������������������������������������������� 129 34 Herniated Cervical Disk Anterior Diskectomy ������������������������������������������������������� 131 Tommaso Scarabino, Fabio Quinto, Saverio Lorusso, Anna Totagiancaspro, and Raniero Mignini 34.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 131 35 Herniated Cervical Disk Anterior Diskectomy ������������������������������������������������������� 133 Teresa Popolizio, Francesca Di Chio, Giovanni Miscio, and Giuseppe Guglielmi 35.1 Preoperative Imaging����������������������������������������������������������������������������������������� 133 35.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 134 36 Herniated Cervical Disk Anterior Diskectomy ������������������������������������������������������� 135 Tommaso Scarabino, Saverio Pollice, Angela Lorusso, Vincenzo Brandini, and Michele Santoro 36.1 Preoperative Imaging����������������������������������������������������������������������������������������� 135 36.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 137 37 Herniated Cervical Disk. Anterior Diskectomy and Arthrodesis��������������������������� 139 Giuseppe Carmine Iaffaldano, Claudia Pennisi, Stefania D’Avanzo, Francesco Paradiso, Michele Santoro, and Domenico Catapano 38 Herniated Cervical Disk and Osteophytosis. Anterior Decompression and Arthrodesis ������������������������������������������������������������������������������� 141 Domenico Catapano, Costanzo De Bonis, and Leonardo Gorgoglione 39 Herniated Cervical Disk. Anterior Diskectomy and Arthroplasty������������������������� 143 Rossella Zaccaria, Simona Ferri, Antonello Curcio, Fabio Cacciola, and Antonino Germanò 39.1 Preoperative MRI����������������������������������������������������������������������������������������������� 143 39.2 Postoperative X-Ray ����������������������������������������������������������������������������������������� 144 40 Herniated Cervical Disk Anterior Diskectomy ������������������������������������������������������� 145 Teresa Popolizio, Francesca Di Chio, Michelangelo Nasuto, Leonardo Gorgoglione, and Giuseppe Guglielmi 40.1 Preoperative Imaging����������������������������������������������������������������������������������������� 145 40.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 147
Contents
Contents
xv
41 Cervical Ossified Posterior Longitudinal Ligament. Anterior Decompression and Stabilization������������������������������������������������������������������������������� 149 Giuseppe Di Perna, Nicola Zullo, Emanuele Bavaresco, and Fabio Cofano 42 Cervical Spondylotic Myelopathy. Anterior and Posterior Approach������������������� 151 Antonello Curcio, Simona Ferri, Rossella Zaccaria, Fabio Cacciola, Antonino Germanò, and Filippo Flavio Angileri 43 Cervical Spondylodiskitis Corpectomy��������������������������������������������������������������������� 153 Teresa Popolizio, Giuseppe Guglielmi, and Rosy Setiawati 43.1 Preoperative Imaging����������������������������������������������������������������������������������������� 153 43.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 155 44 Cervical Spondylitis. Anterior and Posterior Approach����������������������������������������� 157 Simona Ferri, Rossella Zaccaria, Antonello Curcio, Fabio Cacciola, Filippo Flavio Angileri, and Antonino Germanò 44.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 158 45 Septic Spondylodiskitis in Removal of Herniated Cervical Disk. Anterior Approach Surgery��������������������������������������������������������������������������������������� 159 Chiara Potente, Tommaso Scarabino, and Gabriele Polonara 45.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 159 46 Herniated Cervical Disk. Anterior Diskectomy������������������������������������������������������� 161 Chiara Potente, Tommaso Scarabino, and Gabriele Polonara 46.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 161 47 Synovial Cyst. Minimally Invasive Surgical Approach������������������������������������������� 163 Domenico Catapano, Costanzo De Bonis, and Leonardo Gorgoglione 48 Synovial Cysts. Surgical Removal����������������������������������������������������������������������������� 165 Ferdinando Caranci, Luca Brunese, Domenico Cicala, and Francesco Briganti 48.1 Preoperative Imaging����������������������������������������������������������������������������������������� 165 48.2 Preoperative Imaging����������������������������������������������������������������������������������������� 167 48.3 Postoperative Follow-Up After 2 Months ��������������������������������������������������������� 169 48.4 Postoperative Follow-Up After 3 Months ��������������������������������������������������������� 170 49 Instability and Lumbar Stenosis. Positioning of Interspinous Device������������������� 171 Tommaso Scarabino, Saverio Pollice, Michela Capuano, Michele Santoro, and Raniero Mignini 50 Degenerative Lumbar Instability. Double Interspinous Device Positioning��������� 175 Tommaso Scarabino, Michele Maiorano, Tullia Garribba, Giuseppe Diaferia, and Michele Santoro 50.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 175 51 Lumbar Degenerative Instability. Interspinous Device Positioning����������������������� 179 Paola D’Aprile and Alfredo Tarantino 51.1 Preoperative Imaging����������������������������������������������������������������������������������������� 179 51.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 180 52 Degenerative Lumbar Instability. Double Interspinous Device Positioning��������� 181 Paola D’Aprile and Alfredo Tarantino 52.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 181 53 Lumbar Degenerative Instability. Interspinous Device Positioning����������������������� 183 Paola D’Aprile and Alfredo Tarantino 53.1 Preoperative Imaging����������������������������������������������������������������������������������������� 183 53.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 185
xvi
54 Stenosis and Degenerative Lumbar Instability. Positioning of Double Interspinous Device����������������������������������������������������������������������������������������������������� 187 Tommaso Scarabino, Michela Capuano, Roberto Stanzione, Anna Totagiancaspro, and Michele Santoro 54.1 Preoperative Imaging����������������������������������������������������������������������������������������� 187 54.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 189 55 Stenosis and Degenerative Lumbar Instability. Interspinous Device Positioning������������������������������������������������������������������������������������������������������������������� 191 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 55.1 Preoperative Imaging����������������������������������������������������������������������������������������� 191 55.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 193 56 Stenosis and Degenerative Lumbar Instability Interspinous Device Positioning������������������������������������������������������������������������������������������������������������������� 195 Tommaso Scarabino, Fabio Quinto, Francesco Nemore, Carlo Delvecchio, and Michele Santoro 56.1 Preoperative Imaging����������������������������������������������������������������������������������������� 195 56.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 196 57 Degenerative Lumbar Instability. Interspinous Device Positioning����������������������� 199 Paola D’Aprile and Alfredo Tarantino 57.1 Late Postoperative Follow-Up��������������������������������������������������������������������������� 199 58 Degenerative Lumbar Instability Interspinous Device Positioning����������������������� 201 Ferdinando Caranci, Domenico Cicala, Vincenzo Giugliano, Francesco Briganti, and Luca Brunese 58.1 Preoperative Imaging����������������������������������������������������������������������������������������� 201 58.2 Postoperative Follow-Up After 3 Months ��������������������������������������������������������� 203 59 Degenerative Lumbar Instability. Interspinous Device Positioning����������������������� 207 Paola D’Aprile and Alfredo Tarantino 59.1 Postoperative Follow-Up After 2 Months ��������������������������������������������������������� 207 60 Degenerative Lumbar Instability. Stabilization and Interspinous Device Positioning������������������������������������������������������������������������������������������������������� 211 Tommaso Scarabino, Angela Lorusso, Pietro Maggi, Carmen Bruno, and Michele Santoro 60.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 211 61 Degenerative Lumbar Instability Rigid Posterior Stabilization����������������������������� 213 Teresa Popolizio, Francesco Gorgoglione, and Giuseppe Guglielmi 61.1 Preoperative Imaging����������������������������������������������������������������������������������������� 213 61.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 214 62 Degenerative Lumbar Instability Rigid Posterior Stabilization����������������������������� 215 Tommaso Scarabino, Saverio Pollice, Marianna Schiavariello, Giuseppe Carmine Iaffaldano, and Raniero Mignini 62.1 Preoperative Imaging����������������������������������������������������������������������������������������� 215 62.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 216 63 Lumbar Canal Stenosis. Minimally Invasive Decompression��������������������������������� 217 Domenico Catapano, Costanzo De Bonis, and Leonardo Gorgolione 64 Lumbar Stenosis and Degenerative Instability Posterior Rigid Stabilization������� 219 Tommaso Scarabino, Maurizio Lelario, Pietro Maggi, Carmen Bruno, and Raniero Mignini 64.1 Preoperative Imaging����������������������������������������������������������������������������������������� 219 64.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 221
Contents
Contents
xvii
65 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 223 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 66 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 225 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 67 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 227 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 68 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 229 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 69 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 231 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 70 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 233 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 71 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 235 Giuseppe Di Perna, Nicola Zullo, Emanuele Bavaresco, and Francesco Zenga 72 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 237 Giuseppe Di Perna, Emanuele Bavaresco, Nicola Zullo, and Diego Garbossa 73 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 239 Giuseppe Di Perna, Emanuele Bavaresco, Nicola Zullo, and Fabio Cofano 74 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 241 Giuseppe Di Perna, Nicola Zullo, Emanuele Bavaresco, and Diego Garbossa 75 Lumbar Stenosis and Degenerative Instability. Interbody Arthrodesis and Posterior Stabilization ����������������������������������������������������������������������������������������������� 243 Giuseppe Di Perna, Nicola Zullo, and Emanuele Bavaresco 76 Degenerative Lumbar Instability Rigid Posterior Stabilization����������������������������� 245 Luigi Manfrè 76.1 Preoperative Imaging����������������������������������������������������������������������������������������� 245 76.2 Intraoperative Imaging��������������������������������������������������������������������������������������� 246 76.3 Postoperative Follow-Up����������������������������������������������������������������������������������� 247 77 Degenerative Lumbar Instability Stabilization������������������������������������������������������� 249 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 77.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 249 77.2 Postoperative Follow-Up After 3 Years������������������������������������������������������������� 250 77.3 Stop of Contrast Media in L2–L3 ��������������������������������������������������������������������� 251 78 Junctional Syndrome. Lateral Interbody Fusion and Posterior Decompression-Stabilization������������������������������������������������������������������������������������� 253 Emanuele Bavaresco, Nicola Zullo, and Giuseppe Di Perna
xviii
79 Junction Syndrome. Lateral Interbody Arthrodesis����������������������������������������������� 255 Simona Ferri, Rossella Zaccaria, Antonello Curcio, Fabio Cacciola, and Antonino Germanò 79.1 Postoperative X-Ray ����������������������������������������������������������������������������������������� 255 80 Degenerative Lumbar Instability Rigid Posterior Stabilization����������������������������� 257 Ferdinando Caranci, Achille Marotta, Domenico Cicala, and Francesco Briganti 80.1 Postoperative Follow-Up After 1 Month����������������������������������������������������������� 257 80.2 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 258 80.3 Postoperative Follow-Up After 9 Months ��������������������������������������������������������� 260 81 Degenerative Lumbar Instability Dynamic Stabilization��������������������������������������� 263 Tommaso Scarabino, Michele Maiorano, Tullia Garribba, Giuseppe Diaferia, and Raniero Mignini 81.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 263 81.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 265 82 Degenerative Lumbar Instability. Screws Loosening and Irregular Positioning������������������������������������������������������������������������������������������������������������������� 267 Costanzo De Bonis, Domenico Catapano, and Leonardo Gorgoglione 83 Degenerative Cervical Instability Stabilization–Posterior Decompression����������� 269 Alessandro Stecco, Francesco Fabbiano, Silvio Ciolfi, Christian Cossandi, Marco Pelle, Gabriele Panzarasa, and Alessandro Carriero 83.1 Preoperative Imaging����������������������������������������������������������������������������������������� 269 83.2 Postoperative Follow-Up After 1 Year��������������������������������������������������������������� 271 84 Traumatic Lumbar Dislocation Percutaneous Stabilization����������������������������������� 273 Gabriele Polonara, Chiara Potente, Roberto Trignani, and Tommaso Scarabino 84.1 Preoperative Imaging����������������������������������������������������������������������������������������� 273 84.2 Postoperative Follow-Up After 1 Month����������������������������������������������������������� 275 85 Dorsal Traumatic D10–D11 Dislocation. Decompression, Realignment, and Stabilization. ��������������������������������������������������������������������������������������������������������������� 277 Domenico Catapano, Costanzo De Bonis, and Leonardo Gorgolione 86 Traumatic Dorso-Lumbar Fracture������������������������������������������������������������������������� 279 Simona Ferri, Rossella Zaccaria, Antonello Curcio, Fabio Cacciola, and Antonino Germanò 87 Cervical Traumatic Dislocation Stabilization, Canal Decompression, and Diskectomy������������������������������������������������������������������������������������������������������������������� 281 Alessandro Stecco, Silvio Ciolfi, Francesco Fabbiano, Christian Cossandi, Giuliana Fini, Gabriele Panzarasa, and Alessandro Carriero 87.1 Preoperative Imaging����������������������������������������������������������������������������������������� 281 87.2 Postoperative Follow-Up (First Surgery)����������������������������������������������������������� 282 87.3 Postoperative Follow-Up (Re-surgery) ������������������������������������������������������������� 283 88 Traumatic Cervical Fracture-Dislocation. Conservative Treatment��������������������� 285 Achille Marotta, Domenico Cicala, Carmen Castagnolo, Luca Brunese, and Ferdinando Caranci 88.1 Pre-treatment Imaging��������������������������������������������������������������������������������������� 285 88.2 Follow-Up After 2 Months of Conservative Treatment������������������������������������� 286 88.3 Follow-Up After 4 Months��������������������������������������������������������������������������������� 287
Contents
Contents
xix
89 Traumatic Cervical Dislocation and Fracture Anterior Stabilization������������������� 289 Tommaso Scarabino, Michela Capuano, Roberto Stanzione, Giuseppe Carmine Iaffaldano, and Michele Santoro 89.1 Preoperative Imaging����������������������������������������������������������������������������������������� 289 89.2 Post-Treatment Conservative Follow-Up����������������������������������������������������������� 291 89.3 Early Postoperative Follow-Up������������������������������������������������������������������������� 293 90 Traumatic Cervical Fracture-Dislocation. Anterior and Posterior Approach��������������������������������������������������������������������������������������������������������������������� 295 Giuseppe Diaferia, Giuseppe Carmine Iaffaldano, Mario Bianco, Francesco Paradiso, Michele Santoro, and Domenico Catapano 91 Scoliosis Stabilization������������������������������������������������������������������������������������������������� 299 Ferdinando Caranci, Andrea Elefante, Domenico Cicala, and Francesco Briganti 91.1 Preoperative Imaging����������������������������������������������������������������������������������������� 299 91.2 Postoperative Follow-Up After 24 h ����������������������������������������������������������������� 300 91.3 Postoperative Follow-Up After 20 Days ����������������������������������������������������������� 301 92 Kyphoscoliosis Stabilization CSF Fistula����������������������������������������������������������������� 303 Simone Salice, Domenico Tortora, Valentina Panara, Massimo Caulo, and Armando Tartaro 92.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 303 93 Osteoporotic Lumbar Collapse Vertebroplasty������������������������������������������������������� 305 Francesco Fabbiano, Alessandro Stecco, Silvio Ciolfi, Emanuele Malatesta, Alessio Usurini, Rita Fossaceca, and Alessandro Carriero 93.1 Preoperative Imaging����������������������������������������������������������������������������������������� 305 93.2 Post-vertebroplasty Follow-Up (8 Months)������������������������������������������������������� 307 94 Traumatic Lumbar Fracture, Vertebroplasty ��������������������������������������������������������� 309 Giuseppe Carmine Iaffaldano, Pasquale Crudele, Giuseppe Diaferia, Francesco Paradiso, Michele Santoro, and Domenico Catapano 95 Traumatic Lumbar Collapse: Percutaneous Mechanical Vertebral Augmentation ������������������������������������������������������������������������������������������������������������� 313 Giuseppe Diaferia, Pasquale Crudele, Stefania D’Avanzo, Mario Bianco, Claudia Pennisi, and Domenico Catapano 96 Dorsal Osteoporotic Collapse Vertebroplasty ��������������������������������������������������������� 315 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 96.1 Early Post Vertebroplasty Follow-Up ��������������������������������������������������������������� 315 96.2 Late Post Vertebroplasty Follow-Up ����������������������������������������������������������������� 316 97 Osteoporotic Dorsal Collapse Vertebroplasty ��������������������������������������������������������� 317 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 97.1 Post-vertebroplasty Follow-Up ������������������������������������������������������������������������� 317 98 Osteoporotic Lumbar Collapse Kyphoplasty����������������������������������������������������������� 319 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 98.1 Early Post-kyphoplasty Follow-Up������������������������������������������������������������������� 319 98.2 Post-kyphoplasty Follow-Up (2 Years) ������������������������������������������������������������� 320 99 Traumatic Lumbar Collapse Vertebroplasty����������������������������������������������������������� 321 Tommaso Scarabino, Michele Maiorano, Claudia Rutigliano, Vincenzo Brandini, and Michele Santoro 99.1 Post-vertebroplasty Follow-Up ������������������������������������������������������������������������� 321
xx
100 Multiple Lumbar Traumatic Collapses Vertebroplasty������������������������������������������ 323 Tommaso Scarabino, Angela Lorusso, Saverio Pollice, Giuseppe Carmine Iaffaldano, and Raniero Mignini 100.1 Preoperative Imaging����������������������������������������������������������������������������������������� 323 100.2 Post-vertebroplasty Follow-Up ������������������������������������������������������������������������� 324 101 Multiple Dorsal-Lumbar Traumatic Collapses Vertebroplasty����������������������������� 325 Tommaso Scarabino, Michele Maiorano, Tullia Garribba, Vincenzo Brandini, and Raniero Mignini 101.1 Preoperative Imaging����������������������������������������������������������������������������������������� 325 101.2 Early Post-vertebroplasty Follow-Up ��������������������������������������������������������������� 328 102 Traumatic Dorsal Collapse Vertebroplasty ������������������������������������������������������������� 331 Tommaso Scarabino, Fabio Quinto, Saverio Lorusso, Francesco Paradiso, and Raniero Mignini 102.1 Preoperative Imaging����������������������������������������������������������������������������������������� 331 102.2 Early Post-vertebroplasty Follow-Up ��������������������������������������������������������������� 332 103 Traumatic Lumbar Collapse Rigid Stabilization and Vertebral Body Stenting ����������������������������������������������������������������������������������������������������������������������� 335 Chiara Potente, Roberto Trignani, Tommaso Scarabino, and Gabriele Polonara 103.1 Preoperative Imaging����������������������������������������������������������������������������������������� 335 103.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 336 104 Lumbar Collapse in Lymphoma Vertebroplasty����������������������������������������������������� 339 Sivio Ciolfi, Alessandro Stecco, Francesco Fabbiano, Emanuele Malatesta, Alberto Zuccalà, Rita Fossaceca, and Alessandro Carriero 104.1 Preoperative Imaging����������������������������������������������������������������������������������������� 339 104.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 340 104.3 Late Postoperative Follow-Up��������������������������������������������������������������������������� 341 105 Malignant Dorsal Collapse Vertebroplasty��������������������������������������������������������������� 343 Ferdinando Caranci, Andrea Elefante, Antonio Volpe, and Francesco Briganti 105.1 Preoperative Imaging����������������������������������������������������������������������������������������� 343 105.2 Post-vertebroplasty Follow-Up ������������������������������������������������������������������������� 346 106 Lumbar Collapse in Chordoma Vertebral Drawing����������������������������������������������� 349 Tommaso Scarabino, Fabio Quinto, Michele Maiorano, Michela Capuano, and Saverio Pollice 106.1 Preoperative Imaging����������������������������������������������������������������������������������������� 349 106.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 351 106.3 Postoperative Follow-Up 6 Months������������������������������������������������������������������� 352 107 Dorsal Collapse in Multiple Myeloma Vertebroplasty ������������������������������������������� 353 Mario Muto, Gianluigi Guarnieri, and Roberto Izzo 107.1 Early Postvertebroplasty Follow-Up����������������������������������������������������������������� 353 107.2 Postvertebroplasty Follow-Up After 6 Months ������������������������������������������������� 356 107.3 Postvertebroplasty Follow-Up After 1 Year������������������������������������������������������� 357 108 Malignant Lumbar Collapse Thermal Ablation Through Radiofrequency and Vertebroplasty ����������������������������������������������������������������������������������������������������� 359 Simone Salice, Domenico Tortora, Valentina Panara, Massimo Caulo, and Armando Tartaro 108.1 Preoperative Imaging����������������������������������������������������������������������������������������� 359 108.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 360 108.3 Postoperative Follow-Up After 6 Months ��������������������������������������������������������� 361
Contents
Contents
xxi
109 Dorsal Collapse in Myeloma: Percutaneous Mechanical Vertebral Augmentation ������������������������������������������������������������������������������������������������������������� 363 Pasquale Crudele, Giuseppe Carmine Iaffaldano, Giuseppe Diaferia, Francesco Paradiso, Michele Santoro, and Domenico Catapano 110 Dorsal Collapse in Myeloma Stabilization��������������������������������������������������������������� 365 Teresa Popolizio, Giuseppe Guglielmi, and Rosy Setiawati 110.1 Preoperative Imaging����������������������������������������������������������������������������������������� 365 110.2 Postoperative Imaging��������������������������������������������������������������������������������������� 367 111 Neoplastic Cervical Dislocation-Collapse Vertebral Removal ������������������������������� 369 Tommaso Scarabino, Fabio Quinto, Claudia Suriano, Francesco Paradiso, and Michele Santoro 111.1 Preoperative Imaging����������������������������������������������������������������������������������������� 369 111.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 371 111.3 Postoperative Follow-Up After 3 Months ��������������������������������������������������������� 372 112 Traumatic Lumbar Fracture: Somatic Reconstruction ����������������������������������������� 373 Simona Ferri, Rossella Zaccaria, Antonello Curcio, Fabio Cacciola, and Antonino Germanò 113 Traumatic Lumbar Collapse Stabilization and Canal Decompression����������������� 375 Alessandro Stecco, Silvio Ciolfi, Francesco Fabbiano, Christian Cossandi, Rita Merla, Gabriele Panzarasa, and Alessandro Carriero 113.1 Preoperative Imaging����������������������������������������������������������������������������������������� 375 113.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 376 114 Traumatic Lumbar Collapse Double Stabilization and Decompression��������������� 377 Alessandro Stecco, Silvio Ciolfi, Francesco Fabbiano, Rita Merla, Giuliano Allegra, Gabriele Panzarasa, and Alessandro Carriero 114.1 Preoperative Imaging����������������������������������������������������������������������������������������� 377 114.2 Postoperative Follow-Up After 1st Surgery������������������������������������������������������� 379 114.3 Postoperative Follow-Up After 2nd Surgery����������������������������������������������������� 380 115 Multiple Traumatic Dorsal Collapses Double Stabilization����������������������������������� 381 Alessandro Stecco, Silvio Ciolfi, Francesco Fabbiano, Rita Merla, Christian Cossandi, Giuliano Allegra, Gabriele Panzarasa, and Alessandro Carriero 115.1 Preoperative Imaging����������������������������������������������������������������������������������������� 381 115.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 383 116 Traumatic Dorsal Collapse: Rigid Stabilization ����������������������������������������������������� 385 Giuseppe Diaferia, Giuseppe Carmine Iaffaldano, Pasquale Crudele, Francesco Paradiso, Michele Santoro, and Domenico Catapano 117 Traumatic Lumbar Collapse Rigid Stabilization����������������������������������������������������� 387 Chiara Potente, Roberto Trignani, Tommaso Scarabino, and Gabriele Polonara 117.1 Postoperative Follow-Up After 1 Year��������������������������������������������������������������� 387 118 Multiple Collapses Rigid Stabilization��������������������������������������������������������������������� 389 Tommaso Scarabino, Michela Capuano, Francesco Nemore, Carlo Delvecchio, and Raniero Mignini 118.1 Preoperative Imaging����������������������������������������������������������������������������������������� 389 118.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 390 118.3 Postoperative Follow-Up����������������������������������������������������������������������������������� 391
xxii
119 Traumatic Cervical Fracture Anterior Stabilization����������������������������������������������� 393 Tommaso Scarabino, Saverio Pollice, Marianna Schiavariello, Vincenzo Brandini, and Raniero Mignini 119.1 Preoperative Imaging����������������������������������������������������������������������������������������� 393 119.2 Posttreatment Follow-Up After 4 Days (Conservative Treatment) ������������������� 396 119.3 Postoperative Follow-Up����������������������������������������������������������������������������������� 396 120 Cervical Traumatic Fracture Posterior Stabilization ��������������������������������������������� 397 Tommaso Scarabino, Claudia Rutigliano, Pietro Maggi, Francesco Paradiso, and Raniero Mignini 120.1 Preoperative Imaging����������������������������������������������������������������������������������������� 397 120.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 399 121 Cervical Traumatic Fracture: Posterior Stabilization��������������������������������������������� 401 Tommaso Scarabino, Michela Capuano, Claudia Suriano, Giuseppe Carmine Iaffaldano, and Raniero Mignini 121.1 Preoperative Imaging����������������������������������������������������������������������������������������� 401 121.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 404 122 Cervical Traumatic Fracture Vertebral Removal ��������������������������������������������������� 405 Tommaso Scarabino, Maurizio Lelario, Pietro Maggi, Francesco Paradiso, and Michele Santoro 122.1 Preoperative Imaging����������������������������������������������������������������������������������������� 405 122.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 408 122.3 Postoperative Follow-Up After 1 Month����������������������������������������������������������� 409 123 Traumatic Cervical Vertebral Body Fracture: Anterior Corpectomy, Bone Grafting, and Stabilization����������������������������������������������������������������������������������������� 411 Domenico Catapano, Costanzo De Bonis, and Leonardo Gorgoglione 124 Traumatic Cervical Fracture: Anterior Decompression and Arthrodesis������������� 413 Domenico Catapano, Pasquale Crudele, Stefania D’Avanzo, Mario Bianco, Claudia Pennisi, and Giuseppe Diaferia 125 Traumatic Cervical Fracture Vertebral Removal ��������������������������������������������������� 417 Tommaso Scarabino, Saverio Pollice, Marianna Schiavariello, Vincenzo Brandini, and Michele Santoro 125.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 417 125.2 Postoperative Follow-Up����������������������������������������������������������������������������������� 420 125.3 Late Postoperative Follow-Up��������������������������������������������������������������������������� 421 126 Odontoid Traumatic Fracture: Suboccipito-cervical Stabilization ����������������������� 423 Antonello Curcio, Simona Ferri, Rossella Zaccaria, Fabio Cacciola, and Antonino Germanò 127 Odontoid Traumatic Fracture Stabilization������������������������������������������������������������� 425 Alessandro Stecco, Francesco Fabbiano, Silvio Ciolfi, Martina Quagliozzi, Christian Cossandi, Gabriele Panzarasa, and Alessandro Carriero 127.1 Preoperative Imaging����������������������������������������������������������������������������������������� 425 127.2 Postoperative Follow-Up After 1 Year��������������������������������������������������������������� 426 128 Odontoid Traumatic Fracture Stabilization������������������������������������������������������������� 427 Chiara Potente, Tommaso Scarabino, and Gabriele Polonara 128.1 Early Postoperative Follow-Up������������������������������������������������������������������������� 427
Contents
Contents
xxiii
129 Atlanto-occipital Malformation Anterior Odontoid Drawing ������������������������������� 429 Teresa Popolizio, Francesca Di Chio, Leonardo Gorgoglione, and Giuseppe Guglielmi 129.1 Preoperative Imaging����������������������������������������������������������������������������������������� 429 129.2 Early Postoperative Follow-Up������������������������������������������������������������������������� 430 130 Amyotrophic Lateral Sclerosis Stem Cell Transplant��������������������������������������������� 431 Alessandro Stecco, Letizia Mazzini, Mariangela Lombardi, Francesco Fabbiano, Anna Viola, Roberto Cantello, and Alessandro Carriero 130.1 Postoperative Follow-Up����������������������������������������������������������������������������������� 431 131 Functional MR ����������������������������������������������������������������������������������������������������������� 435 Marco Di Terlizzi, Michele Ricciardi, Tommaso Scarabino, and Francesco Ricciardi
Contributors
Giuliano Allegra Department of Neurosurgery, “Maggiore della Carità” University Hospital, Novara, Italy Filippo Flavio Angileri Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Emanuele Bavaresco Casa di Cura “Città di Bra”, Bra, Italy Mario Bianco Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Vincenzo Brandini Department of Neurosurgery, “L. Bonomo” Hospital, Andria, BT, Italy Francesco Briganti Unit of Neuroradiology, Advanced Biomedical Sciences Department, “Federico II” University, Naples, Italy Luca Brunese Department of Health Science, Chair of Radiology, University of Molise, Campobasso, Italy Carmen Bruno Department of Neurosurgery, “L. Bonomo” Hospital, Andria, BT, Italy Fabio Cacciola Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Anna Caliendo Advanced Biomedical Sciences Department, Unit of Neuroradiology, “Federico II” University, Naples, Italy Unit of Diagnostic Imaging, Villa Fiorita Clinic, Capua, CE, Italy Roberto Cantello Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Department of Neurology, “Maggiore della Carità” University Hospital, Novara, Italy Michela Capuano Department of Radiology/Neuroradiology, L. Bonomo Hospital, Andria, Italy Ferdinando Caranci Unit of Neuroradiology, Advanced Biomedical Sciences Department, “Federico II’ University, Naples, Italy Piergiorgio Car Department of Neurosurgery, “Maggiore della Carità” University Hospital, Novara, Italy Alessandro Carriero Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Carmen Castagnolo Unit of Diagnostic Imaging, Villa Fiorita Clinic, Capua, CE, Italy Domenico Catapano Department of Neurosurgery, “Casa Sollievo della Sofferenza” I.R.C.C.S., S. Giovanni Rotondo, Italy Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy
xxv
xxvi
Massimo Caulo Department of Neurosciences and Imaging, Institute of Advanced Biomedical Technologies, ‘G. D’Annunzio” University, Chieti-Pescara, Italy Paolo Cerini Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Domenico Cicala Unit of Diagnostic Imaging, Villa Fiorita Clinic, Capua, CE, Italy Silvio Ciolfi Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Fabio Cofano Neurosciences Department “Rita Levi Montalcini”, University of Turin, Turin, Italy “Humanitas Gradenigo” Hospital, Turin, Italy Christian Cossandi Department of Neurosurgery, “Maggiore della Carità” University Hospital, Novara, Italy Pasquale Crudele Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Antonello Curcio Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Paola D’Aprile Department of Neuroradiology, “San Paolo” Hospital, Bari, Italy Stefania D’Avanzo Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Costanzo De Bonis Department of Neurosurgery, “Casa Sollievo della Sofferenza” I.R.C.C.S, S. Giovanni Rotondo, Italy Carlo Delvecchio Department of Neurosurgery, “Miulli” Hospital, Acquaviva, Italy Department of Neurosurgery, “Lorenzo Bonomo” Hospital, Andria, Italy Giuseppe Diaferia Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Francesca Di Chio Department of Radiology, Scientific Institute Hospital, “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (Fg), Italy Department of Radiology, University of Foggia, Foggia, Italy Giuseppe Di Perna Neurosciences Dept. “Rita Levi Montalcini”, University of Turin, Turin, Italy Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy Neurosciences Department “Rita Levi Montalcini”, University of Turin, Turin, Italy Marco Di Terlizzi Radiology Center, Andria, Italy Andrea Elefante Unit of Neuroradiology, Advanced Biomedical Sciences Department, “Federico II” University, Naples, Italy Francesco Fabbiano Department of Radiology, “Maggiore della Carita`” University Hospital, Novara, Italy Simona Ferri Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Giuliana Fini Department of Radiology, “Maggiore della Carita`” University Hospital, Novara, Italy Rita Rita Fossaceca Department of Radiology, “Maggiore della Carita`” University Hospital, Novara, Italy
Contributors
Contributors
xxvii
Diego Garbossa Neurosciences Department “Rita Levi Montalcini”, University of Turin, Turin, Italy Tullia Garribba Department of Radiology—Neuroradiology, ‘L. Bo-nomo’ Hospital, Andria, BT, Italy Carmela Garzillo Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Antonino Germanò Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Vincenzo Giugliano Unit of Diagnostic Imaging, GE.P.O.S. Clinic, Telese Terme, BN, Italy Francesco Gorgoglione Department of Orthopedics, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy Leonardo Gorgoglione Department of Neurosurgery, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy Department of Neurosurgery, “Casa Sollievo della Sofferenza” I.R.C.C.S, S. Giovanni Rotondo, Italy Leonardo Gorgolione Department of Neurosurgery, “Casa Sollievo della Sofferenza” I.R.C.C.S., S. Giovanni Rotondo, Italy Gianluigi Guarnieri Department of Neuroradiology, Cardarelli Hospital, Naples, Italy Giuseppe Guglielmi Department of Radiology, University of Foggia, Foggia, Italy Giuseppe Carmine Iaffaldano Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Roberto Izzo Department of Neuroradiology, “Cardarelli” Hospital, Naples, Italy Maurizio Lelario Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Carla Leuci Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Mariangela Lombardi Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Department of Radiology - Neuroradiology, L. Bonomo Hospital, Novara, Italy Angela Lorusso Department of Radiology—Neuroradiology, “Lorenzo Bonomo” Hospital, Andria, Italy Pietro Maggi Department of Radiology—Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Michele Maiorano Department of Radiology—Neuroradiology, “Lorenzo Bonomo” Hospital, Andria, Italy Emanuele Malatesta Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Department of Radiology - Neuroradiology, L. Bonomo Hospital, Novara, Italy Luigi Manfrè Department of Neuroradiology, Cannizzaro’ Hospital, Catania, Italy Achille Marotta Unit of Diagnostic Imaging, Villa Fiorita Clinic, Capua, CE, Italy Letizia Mazzini Department of Neurology, “Maggiore della Carità” University Hospital, Novara, Italy
xxviii
Rita Merla Department of Radiology, “University Hospital”, Campobasso, Italy Department of Radiology, “Maggiore della Carità University Hospital”, Novara, Italy Raniero Mignini Department of Neurosurgery, “Lorenzo Bonomo” Hospital, Andria, Italy Giovanni Miscio Department of Radiology, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy Vincenzo Monte Department of Neurosurgery, “Casa Sollievo della Sofferenza” I.R.C.C.S, S. Giovanni Rotondo, Italy Mario Muto Department of Neuroradiology, ‘Cardarelli’ Hospital, Naples, Italy Raffaele Nappi Unit of Diagnostic Imaging, Villa Fiorita Clinic, Capua, CE, Italy Michelangelo Nasuto Department of Neuroradiology, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy Department of Radiology, University of Foggia, Foggia, Italy Saverio Lorusso Department of Radiology-Neuroradiology, L. Bonomo Hospital, Andria, Italy Alberto Palombella Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Valentina Panara Department of Neurosciences and Imaging, Institute of Advanced Biomedical Technologies, “G. D’Annunzio’ University, Chieti-Pescara, Italy Gabriele Panzarasa Department of Neurosurgery, “Maggiore della Carità” University Hospital, Novara, Italy Francesco Paradiso Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Neurosurgical Operative Unit, “L. Bonomo” Hospital, Andria, Italy Marco Pelle Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Claudia Pennisi Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Saverio Pollice Department of Radiology, San Nicola Pellegrino Hospital, Trani, Italy Gabriele Polonara Department of Neuroradiology, University Hospital, Ancona, Italy Teresa Popolizio Department of Neuroradiology, Scientific Institute Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, FG, Italy Chiara Potente Department of Neuroradiology, University Hospital, Ancona, Italy Martina Quagliozzi Department of Radiology, “Maggiore della Carita`” University Hospital, Novara, Italy Fabio Quinto Department of Radiology—Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Francesco Ricciardi Radiology Center, Andria, Italy Michele Ricciardi Radiology Center, Andria, Italy Claudia Rutigliano Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Simone Salice Department of Neurosciences and Imaging, Institute of Advanced Biomedical Technologies, “G. D’Annunzio” University, Chieti-Pescara, Italy
Contributors
Contributors
xxix
Corradino Samarelli Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Michele Santoro Department of Neurosurgery, “L. Bonomo” Hospital, Andria, Italy Neurosurgical Operative Unit, “L. Bonomo” Hospital, Andria, Italy Tommaso Scarabino Department of Radiolgy/Neuroradiology, L. Bonomo Hospital, Andria, Italy Marianna Schiavariello Department of Radiology—Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Rosy Setiawati Department of Radiology, Rumah Satik Surabaya International Hospital, Surabaya, Indonesia Roberto Stanzione Department of Radiology—Neuroradiology, “Lorenzo Bonomo” Hospital, Andria, Italy Alessandro Stecco Department of Radiology, “Maggiore della Carita`” University Hospital, Novara, Italy Claudia Suriano Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy Alfredo Tarantino Department of Neuroradiology, “San Paolo” Hospital, Bari, Italy Armando Tartaro Department of Neurosciences and Imaging, Institute of Advanced Biomedical Technologies, ‘G. D’Annunzio” University, Chieti-Pescara, Italy Domenico Tortora Department of Neurosciences and Imaging, Institute of Advanced Biomedical Technologies, ‘G. D’Annunzio” University, Chieti-Pescara, Italy Anna Totagiancaspro Department of Neurology, “Lorenzo Bonomo” Hospital, Andria, Italy Roberto Trignani Department of Neurosurgery, University Hospital, Ancona, Italy Umberto Tupputi Department of Radiology/Neuroradiology, L. Bonomo Hospital, Andria, Italy Alessio Usurini Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Anna Viola Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Antonio Volpe Unit of Neuroradiology, Advanced Biomedical Sciences Department, “Federico II" University, Naples, Italy Rossella Zaccaria Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy Francesco Zenga Neurosciences Department “Rita Levi Montalcini”, University of Turin, Turin, Italy Alberto Zuccalà Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Nicola Zullo Casa di Cura “Città di Bra”, Bra, Italy
Part I
1
Pathology Carla Leuci, Corradino Samarelli, Saverio Pollice, and Tommaso Scarabino
Causes of surgery and interventional radiology on spine are represented largely by disk herniation (most commonly lumbar), which we will discuss further in this treatment. Stenosis of the vertebral canal, vertebral instability, and vertebral fractures will also be analyzed [1, 2]. The therapeutic treatment of spinal pathology initially includes conservative therapy and in case of failure a number of surgical procedures and/or interventional radiology approaches, with varying degrees of invasiveness, such as diskectomy, vertebroplasty, and surgical stabilization. With recent advances of intervention techniques and devices used, minimally invasive approaches are becoming increasingly popular for the treatment of spine disorders. In particular, minimally invasive spine surgery attempts to: decrease iatrogenic muscle injury, decrease pain, and speed postoperative course by the use of smaller incisions and specialized instruments.
1.1 Disk Herniation Disk herniation (DH) is the displacement of disk material (nucleus pulposus or annulus fibrosis) beyond the intervertebral disk space [3]. DH is one of the most common diseases with very high social costs; it is the first cause for absenteeism from work and the second for permanent disability. Around 55% of the population in European countries reports at least once in life a variable episode of low back pain and 80% a simple low back pain [4]. Approximately, 10% of people who experience low-back pain develop chronic low- back pain. Approximately, 1% of the population is completely disabled due to low-back pain. Low-back pain often
C. Leuci · C. Samarelli ∙ T. Scarabino (*) Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy e-mail: [email protected]; [email protected] S. Pollice Department of Radiology, San Nicola Pellegrino Hospital, Trani, Italy
starts at a young age, and the prevalence is the highest in middle-aged population [5]. Who is affected many times, unfortunately, begin a diagnostic and therapeutic route involving orthopedic, neurosurgeon, physiatrist, and neurologist. Its natural history provides for a first time period (of variable length between 3 and 6 weeks) characterized by pain (more or less intense) which is followed by a second phase in which the painful symptomatology is attenuated and then disappears leaving the place to symptoms of neurological deficit (decrease in strength of muscle innervated by the compressed root) [6–9]. Herniated disk, commonly lumbar, is the main cause for surgery on the spine, not always resolutive. Younger patients with higher baseline disability without neurological deficit are at increased risk of undergoing revision surgery for reherniation. Those considering revision surgery for reherniation will likely improve significantly following surgery, but possibly not as much as with primary diskectomy [10]. In postoperative course may arise in fact a recurrence or a fibrous scar that if hypertrophic can compress and irritate the affected nerve and require a second operation (the rate of re-operation is around 3–15%).
1.1.1 Lumbar Disk Hernia Lumbar disk herniation is a degenerative disease of the intervertebral disk that arises from the rupture of the annulus fibrosus and subsequent leakage of nucleus pulposus in spinal canal with compression on dural sack and nerve root. Lumbar disk herniation is a common sequela of degenerative spine disease and it’s estimated that 30% of the population will experience it at some point in their lifetime [11]. Especially in people of 30–50 years with low back pain, symptoms originate from radiculopathy due to compression of lumbosacral nerve roots (pain radiating along the course of the sciatic nerve, from gluteal region to the back of the thigh and posterolateral leg up the ankle) or crural suffering (pain along the anterior or anterior-medial thigh, along the course of the crural nerve), causing functional impairment.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 T. Scarabino et al. (eds.), Imaging Spine After Treatment, https://doi.org/10.1007/978-3-031-42551-6_1
3
4
Radicular pain is caused by mechanical compression, inflammatory effects, vascular and biochemical modifications caused by the contact between the disk and nerve roots. Diagnosis involves the collection of anamnestic data; physical examination and clinical trials to assess root involvement (irritative, deficit, paretic), diagnostic imaging (X-ray, computed tomography CT, magnetic resonance MRI), and instrumental examination (electromyography). In the diagnosis of lumbar disk herniation, myelography is not as sensitive as MRI, and MRI has a higher positive rate. Compared with CT, it has more imaging parameters, multiple tissue variable functions, more flexible and extensive, no radiation, and no damage to the human body, and its diagnostic accuracy is better than that of CT scan [12]. Treatment may be conservative or can contemplate surgical procedures and/or interventional radiology approach. The choice of treatment depends in general on two elements: the entity or the persistence of acute symptoms and the presence of a functional damage. This latter aspect is sometimes highlighted (in case of serious damage root) by the decreased (or absent) functionality of the muscles innervated by that root. In this case, a great help is the electromyographic examination that tells us precisely the functional status of the root compressed by herniated disk. This test, performed by implanting small needles along the lower limb, records the electrical potentials sent along nerve roots to the muscles for their contraction. Compression (and inflammatory state that follows) alters the ability of conducting electrical stimulation along the nerve fibers and thus alters the electrical characteristics of these pulses. Recording these changes allows to obtain a quantitative assessment of root damage and also to determine whether the damage is recent or old. Conservative therapy for at least 7–10 days, or until the disappearance of intense pain, consists of absolute abstention from even moderate physical actions, from assumption of incorrect positions, or from trunk flexion. Pharmacotherapy, recommended for a short time, involves administration of corticosteroids (betamethasone or methyl-prednisolone), nonsteroidal anti-inflammatory (NSAIDs), pain relievers (tramadol, paracetamol, paracetamol? codeine, morphine), muscle relaxants, and periradicular infiltration therapy. After the hyperacute phase, physiatric evaluation may be required to start postural exercises and neuromuscular electrical stimulation. In addition to standard medical treatments, several alternative treatments have also been shown to provide effective pain relief for many patients. Most common alternative care actually are chiropractic manipulation, acupuncture, and massage therapy. Surgical options are: open surgery, micro-surgery, and minimally invasive percutaneous surgery. These are used for different types of herniated disks: contained or extruded, with and without dislocated fragment, and with or without narrow canal. Criteria for elective surgical indication is the
C. Leuci et al.
failure of conservative therapy; the presence of symptoms and signs of sensory or motor involvement in the corresponding dermatomer; electromyography positive for severe root damage and recent documentation of disk herniation on MRI or CT. The cauda equina syndrome from herniated disk is an absolute indication for surgery to be performed urgently.
1.1.2 Cervical Disk Hernia Cervical hernia is less common than lumbar. It can show nonspecific symptoms such as neck pain and shoulder pain. Specific symptoms are radiculopathy with arms pain or myelopathy with spasticity, abnormal reflexes, abnormal walking, and bladder dysfunction. Radiological diagnosis requires as a first step X-ray of the cervical spine in double projection (lateral and anteroposterior), followed by MRI, which still represents the gold standard. The treatment initially may be pharmacological (analgesics, muscle relaxants, NSAIDs). Even physiokinesitherapy and the use of cervical collar may be useful. In absence of any clinical improvement, surgical treatment is recommended which may include anterior arthrodesis; anterior microdiskectomy with interbody fusion anterior cervical diskectomy and fusion (ACDF) or arthroplasty, evolution of classic ACDF, with implantation of a prosthetic disk that replaces the degenerated [13]. Indications for surgical intervention include severe or progressive neurological compromise and significant pain that is refractory to non-operative measures. There are several techniques described based on pathology. The gold standard remains the anterior cervical diskectomy with fusion, as it allows the removal of the pathology and prevention of recurrent neural compression by performing a fusion. A posterior laminoforaminotomy can be a consideration in patients with anterolateral herniations. Total disk replacement is an emerging treatment modality, where indications remain controversial [14].
1.2 Canal Stenosis Spinal stenosis is a condition in which the nerve roots are compressed by a number of pathologic factors, congenital or acquired, leading to symptoms such as pain, numbness, and weakness. The upper neck (cervical) and lower back (lumbar) areas most frequently are affected, although the thoracic spine also can be compressed most frequently by a disk herniation. Three different anatomic sites within the vertebral canal can be affected by spinal stenosis. First, the central canal, which houses the spinal cord, can be narrowed in an anterior-posterior dimension, leading to compression of neural elements and reduction of blood supply to the spinal cord in the cervical area and the cauda equina in the lumbar area.
1 Pathology
Secondly, the neural foramen, which are openings through which the nerve roots exit the spinal cord, can be compressed as a result of disk herniation, hypertrophy of the facet joints and ligaments, or unstable slippage of one vertebral body relative to the level below. Lastly, the lateral recess, which is seen in the lumbar spine only and is defined as the area long the pedicle that a nerve root enters just before its exit through the neural foramen, can be compressed from a facet joint hypertrophy. Depending on the level of the spine affected, each type of compression can lead to different symptoms that warrant a particular treatment modality [15]. Acquired causes are usually multiple: disk herniation, spondylolisthesis, disk arthrosis, marginal osteophytes, facet joint arthrosis with a consequent reduction of canal amplitude, calcification of the joint capsule, hypertrophy, and calcification of the posterior longitudinal ligament and yellow ligaments, hyperostosis of the plates [16, 17]. Stenosis is also documented after surgical procedures as a result of exuberant degeneration. Symptoms of lumbar stenosis, more frequent than the remaining districts, are neurogenic claudication, represented by inability of the patient to walk long distances for the onset of pain in the upright position. This pain is emphasized in walking, with sensation of heavy legs and progressive lack of strength. CT and MRI with axial acquisitions allow to accurately measure the amplitude of the canal, both central and lateral [18]. Treatment may be conservative: epidural steroid injections, NSAIDs, calcitonin, prolonged bed rest, magnetotherapy, ionophoresis, neuro-electrical stimulation, physical therapy (postural exercises, swimming), corsets, and external orthoses. Traditional surgery consists of enlargement of the neural canal through posterior laminectomy without or with foraminotomy, partial or total arthrodesis with interbody screws and bars. Minimally invasive surgery instead uses interspinous devices.
1.3 Vertebral Instability Vertebral instability can be from muscle–tendon–ligament– disk insufficiency secondary to degenerative spinal disease, which can be traumatic or rarely congenital and can lead to a progressive failure with consequent alteration of joint mobility and pain. There are different patterns of instability based on the pathophysiologic mechanisms that sustain the process: degenerative, traumatic, and neoplastic [19]. Instability of degenerative origin is most common, affecting usually the last lumbar vertebrae [20–22]. This condition, despite enormous variability, from simple postural imbalance can evolve gradually in protrusion, disk hernia, muscle failure, arthritic degeneration, amplitude reduction of the central, and lateral spinal canal.
5
With age, joints (intervertebral disk, interapophyseal joints) that allow movements of the spine (flexion, extension, and rotation) undergo degenerative changes that alter structure and functioning. In particular, intervertebral disk goes through dehydration with reduction of its thickness and hence distance between the two bodies which is interposed. The annulus, which adheres firmly to the edges of the vertebral bodies, protrudes beyond the limiting bodies, profiles. The reduction in height of the disk, placed in the anterior part of the vertebra, involves on the interapophyseal joints a greater burden to which they are not predisposed with wear of the cartilage and increase of ligamentous laxity (microinstability) that thus determines inflammatory processes responsible for low back pain. Over time, even ligaments that keep vertebrae, together with the joints, stretch out causing abnormal increase in amplitude of movement allowed. Moreover, the progressive failure of the ligaments leads to slipping of vertebra over the lower (degenerative spondylolisthesis). The body responds trying to block the abnormal movements by affixing new bone to strengthen the joints. Joints hypertrophy and distortion cause progressive narrowing of canal and related neurological syndrome (root canal stenosis, sciatic nerve suffering). Osteophytes that are formed along the edges can form bone bridges which block the articulation. Osteoporosis may worsen this context by associating possibly a “crushing” spine. Symptoms are postural pain (conditioned by the position of the body), more pronounced at certain times of the day (getting out of bed) and accentuated by fatigue, sometimes (especially when stenosis of the spinal canal coexists) associated with numbness and weakness in the lower limbs. In the forms secondary to traumatic accidents, local acute pain prevails, usually at the fractured vertebrae, with associated neural damage (paresis or paralysis). Clinical history of these individuals allows a diagnosis of instability. The objective evaluation is then indispensable; radiological examinations help to determine the stage of instability, although sometimes there is not always a correlation between clinical and imaging. Spinal instability as a result of a neoplastic process differs significantly from high-energy traumatic injuries in the pattern of bony and ligamentous involvement, potential for healing, neurologic manifestations, and bone quality. It requires a specific and different set of criteria for stability assessment. Neoplastic spine instability has been defined by the Spine Oncology Study Group as loss of spinal integrity as a result of a neoplastic process associated with movement-related pain, symptomatic or progressive deformity, and/or neural compromise under physiologic loads [19]. X-rays are performed in anteroposterior, lateral and oblique with associated dynamic study in the upright (in
6
maximum flexion and extension) in order to verify the presence of a slide of a vertebra to the other (in the absence of congenital anomaly such as spondylolysis with spondylolisthesis). With X-ray, it is also possible to document the presence of diskopathy, osteophytes, spinal deviations, and areas of greatest sclerosis (index of functional overload). CT scan evaluates the root canal diameters (central and lateral), shows the interapophyseal joints, the epidural fat, and muscle atrophy. CT also detect even the tiniest fractures in the middle and posterior columns, revealing potentially unstable lesions. CT also allows an excellent evaluation of vertebral alignment and the spatial position of dislocated bone fragments, both in the cervical and thoracolumbar districts when conventional radiography failed [19]. MRI analyzes the disk degeneration, the diskopathies, the stages of disk-somatic degeneration (Modic), and the fatty atrophy of the deep spinal musculature. Apart from instability assessment, in many cases, dynamic MRI has proved to reveal disk-radicular conflicts not depicted on conventional MRI studies [19]. Treatment is multimodal and can include medical conservative therapy associated with spinal manipulation, neuro- reflex, and physiokinesitherapy. The neurosurgeon and orthopedic have two options: the traditional stabilization (“fusion surgery”) in the macro-instability and the dynamic stabilization (“non-fusion surgery”) used instead in the presence of micro-instability and in cases where it is necessary to preserve the movement [23, 24].
1.4 Vertebral Fractures Vertebral fractures can be the result of trauma, structural failure for osteoporosis, or primary or secondary cancer. Posttraumatic fractures are divided into myelopathic with dislocation of bone fragments in the canal and spinal cord or root damage, and non-myelopathic in which there is a reduction in volume of the vertebral body with preservation of canal size and neural structures integrity. Osteoporotic fractures are rather secondary to a skeletal disease that thins and weakens bones predisposing them to fracture commonly affecting female subjects after menopause. Thoracic compression fractures lead to kyphosis with a disastrous impact on quality of life. Vertebral body has reduction in height and preservation of the posterior wall thus the absence of spinal cord damage. The thoracolumbar spine is the most common site afflicted by trauma; L1 is the most common vertebra followed by T12. Its predilection and vulnerability for injury stems from the following reasons: (1) mobility: the thoracolumbar spine presents a high degree of mobility, so is subjected to all kinds of forces, resulting in a district highly vulnerable to frac-
C. Leuci et al.
tures; (2) transition zone: the thoracolumbar region is relatively straight (kyphosis from 0 to 10) and situated between the kyphotic thoracic and lordotic lumber spine; unlike the thoracic spine, the absence of costovertebral structures no longer protects the thoracolumbar zone; and (3) facet joints: facet joints of the thoracic spine are coronally oriented to resist flexion-extension and that of lumbar spine are sagittally oriented to allow flexion-extension. In the thoracolumbar area, facet joints show a transition from predominantly coronal to predominantly sagittal orientation [19]. Symptoms usually include back pain with breathing difficulty due to decreased lung capacity. X-ray detects the distortion of somatic profiles. CT has a better spatial resolution. In the early phase MRI identifies the intracancellous edema, signal of bone bruise, and possible fracture, even in absence of deformation of somatic profiles. In case of non- myelophatic traumatic fractures, treatment may be conservative with positioning of bust for 3 months associated with MR follow-up. Surgery is quickly necessary in case of unstable myelopathic fractures. The aim of surgery is to perform a spinal stabilization with minimally invasive technique using pedicle screws and rods percutaneously inserted. The purpose is to determine bony fusion to prevent segmental movements. Another therapeutic option is the percutaneous vertebroplasty [25–27]. Sometimes single or multiple corpectomy may be necessary to replace the vertebral body, especially in the case of cancer or infection.
References 1. Gallucci M, Caulo M, Masciocchi C (2001) il Rachide operato. In: Compendio di Risonanza magnetica a cura di Dal Pozzo G, Utet Ed, p 1047–1071 2. Kaech DL (1998) Failed back surgery syndrome: surgeon’s perspective. Riv Neuroradiol 11:385–395 3. Kim Y-K, Kang D, Lee I, Kim S-Y (2018) Differences in the incidence of symptomatic cervical and lumbar disc herniation according to age, sex and National Health Insurance Eligibility: a pilot study on the disease’s association with work. Int J Environ Res Public Health 15:2094. https://doi.org/10.3390/ijerph15102094 4. Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) MRI of the lumbar spine in people with outback pain. N Engl J Med 331:69 5. Boyraz I, Yildiz A, Koc B, Sarman H (2015) Comparison of high- intensity laser therapy and ultrasound treatment in the patients with lumbar discopathy. BioMed Res Int 2015:304328. https://doi. org/10.1155/2015/304328 6. Davis AR (1994) A long-term outcome analysis of 984 surgically treated herniated lumbar discs. J Neurosurg 80:415–421 7. Gallucci M, Bozzao A, Orlandi B et al (1995) Follow-up of surgical treated and untreated disk pathology. Riv Neuroradiol 8:86–96 8. Lee JK, Amorosa L, Cho SK et al (2019) Recurrent lumbar disk herniation. J Am Acad Orthop Surg 18:327–337
1 Pathology 9. Splendiani A, Puglielli E, De Amicis R et al (2004) Spontaneous resolution of lumbar disk herniation: predictive signs for prognostic evaluation. Neuroradiology 46:916–922 10. Abdu RW, Abdu WA, Pearson AM, Zhao W, Lurie JD, Weinstein JN (2017) Reoperation for recurrent intervertebral disc herniation in the spine patient outcomes research trial: analysis of rate, risk factors, and outcome. Spine (Phila Pa 1976) 42(14):1106–1114. https://doi.org/10.1097/BRS.0000000000002088 11. Ilyas H, Savage J (2018) Lumbar disk herniation and SPORT: a review of the literature. Clin Spine Surg 31(9):366–372. https://doi. org/10.1097/BSD.0000000000000696 12. Zheng K, Wen Z, Li D (2021) The clinical diagnostic value of lumbar intervertebral disc herniation based on MRI images. J Healthcare Eng 2021:5594920. https://doi.org/10.1155/2021/5594920 13. Celestre PC, Pazmiño PR, Mikhael MM et al (2012) Minimally invasive approaches to the cervical spine. Orthop Clin North Am 43:137–147 14. Sharrak S, Al KY (2022) Cervical disc herniation. In: StatPearls. StatPearls Publishing, Treasure Island, FL. https://www.ncbi.nlm. nih.gov/books/NBK546618/ 15. Raja A, Hoang S, Patel P, Mesfin FB (2022) Spinal stenosis. In: StatPearls. StatPearls Publishing, Treasure Island, FL 16. Nowicki BH, Haughton VM, Schmidt TA et al (1996) Occult lumbar lateral spinal stenosis in neural foramina subjected to physiologic loading. AJNR 17:1605–1614 17. Schönström N, Lindahl S, Willen J et al (1989) Dynamic changes in the dimensions of the lumbar spinal canal: an experimental study in vitro. J Orthop Res 7:115–121
7 18. Kent DL, Haynor DR, Larson EB et al (1992) Diagnosis of lumbar spinal stenosis in adults: metaanalysis of the accuracy of CT, MR and myelography. AJR 158:1135–1144 19. Muto M, Giurazza F, Guarnieri G, Izzo R, Diano A (2016) Neuroimaging of spinal instability. Magn Reson Imaging Clin N Am 24(3):485–494. https://doi.org/10.1016/j.mric.2016.04.003 20. Gallucci M, Puglielli E, Splendiani A et al (2005) Degenerative disorders of the spine. Eur Radiol 15:591–598 21. Modic MT, Steimberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193 22. Rabischong P (1997) Comprehensive approach to the disco- radicular conflict iv. Neuroradiology 10:5–7 23. Hauger O, Obeid I, Pelé E (2010) Imaging of the fused spine. J Radiol 91:1035–1048 24. Eif M, Schenke H (2005) The Interspinous-U: indications, experience, and results. Spinal Arthroplasty Society, New York 25. Alvarez L, Perez-Higueras A, Granizo JJ et al (2003) Vertebroplasty in the treatment of vertebral tumors: post procedural outcome and quality of life. Eur Spine 12:356–360 26. Anselmetti GC, Bonaldi G, Baruzzi F et al (2004) Percutaneous vertebroplasty: results in a large series of patients. Eur Radiol 14:B-354 27. Dublin AB, Hartman R, Latchaw P et al (2005) The vertebral body fracture in osteoporosis: restoration of height using percutaneous vertebroplasty. AJNR 26:489–492
2
Interventional Radiology Alberto Palombella, Fabio Quinto, Paolo Cerini, Emanuele Malatesta, and Tommaso Scarabino
Interventional radiology of the spine includes a set of minimally invasive surgical procedures with percutaneous approach, used primarily for the treatment of diskal hernia (especially lumbar) and vertebral collapse of different nature [1]. These techniques involve short time hospitalization, are usually practicable in day surgery, and do not require general anesthesia.
2.1 Percutaneous Techniques for Diskal Hernia Interventional techniques with percutaneous approach for diskal hernia are based on the principle of “empty of nucleus pulposus”(both by physical and chemical ways) in order to reduce its volume and thus indirectly the compression of nerve root. Compared to surgery, they are less invasive, with similar efficacy and lower risk of recurrences, thanks to an external approach. They also have the advantage of being repeatable without precluding, in case of failure, the use of traditional surgery [2]. They find indication especially in young patients with disk protrusion, where disk degeneration is the only source of pain, and therefore, all the degenerative phenomena typical of the advanced age are absent. Positive result is generA. Palombella Department of Radiology/Neuroradiology, “L. Bonomo” Hospital, Andria, BT, Italy e-mail: [email protected] F. Quinto · P. Cerini · T. Scarabino (*) Department of Radiology/Neuroradiology, “Lorenzo Bonomo” Hospital, Andria, Italy e-mail: [email protected] E. Malatesta Department of Radiology, “Maggiore della Carità” University Hospital, Novara, Italy Department of Radiology - Neuroradiology, L. Bonomo Hospital, Novara, Italy
ally quite limited in time and influenced by the progression of disk degeneration. These procedures include intradiskal electrothermal therapy (IDET), chemonucleolysis, coblation, laser diskectomy, and oxygen ozone therapy.
2.1.1 Percutaneous Mechanical Decompression Technique The rationale of mechanical decompression is based on the theory provided by Hijikata who assumed that a small reduction in disk volume, obtained by mechanical removal, reflects in a drop of intradiskal hydrostatic pressure. According to several studies, the success rate of these techniques varies between 75 and 80% [3]. There are available several semi-automatic devices consisting in a rotating screw inserted in a needle lumen. Once the needle tip reaches the disk center under CT o fluoroscopic guidance, the automatic rotation of the screw, in combination with a continuous manual antero-posterior oscillation, leads to a remotion of a volume between 1–3 mL for a treatment of 3 min. Other techniques include pneumatic or water-driven suction-cutting probes.
2.1.2 Intradiskal Electrothermal Therapy IDET or intradiskal electrothermal annuloplasty (IDEA) is a new and minimally invasive technique for the treatment of diskogenic low back pain. It involves percutaneous threading of a flexible catheter into the disk under fluoroscopic guidance. The catheter, composed of thermal resistive coil, heats the posterior annulus of the disk, causing contraction of collagen fibers and destruction of afferent disk nociceptors. Breakage of heat sensitive hydrogen bonds of the collagen fibers causes collagen contraction. With disk temperatures reaching 650 °C collagen may contract as much as 35% from its original size. The tightening of annular tissue may enhance the structural integrity of degenerated disk and
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 T. Scarabino et al. (eds.), Imaging Spine After Treatment, https://doi.org/10.1007/978-3-031-42551-6_2
9
10
A. Palombella et al.
repair the annular fissures. The process of disk restructuring (as shown by time courses of patient’s pain relief) may take several months to reach its full extent. IDET might also cause destruction of sensitized nociceptors in the annular wall. Denervation by thermal energy is used widely for peripheral and central nervous system lesioning and might contribute to partial and initial pain relief following the procedure [4, 5]. IDET is minimally invasive and has a low complication rate. In a systematic review of intradiskal percutaneous minimally invasive procedures for chronic low back pain, Gelalis et al. concluded that IDET, when performed in properly selected patients, may eliminate or delay the need for surgical intervention for an extended period, with few reported adverse effects [6].
this decompression, the nerve root regains the lost space and is no longer marked by protruding disk, and thus not subjected to mechanical irritation responsible for the pain [10, 11]. Treatment takes about 30 min and is performed under local anesthesia or with patient mildly sedated in order to verify immediately the disappearance of pain. No surgical wound is practiced, and the patient can be dismissed the same day or, in special cases, the immediately following. There are no risks, thanks to the use of not high temperatures (max 70°), which are not able to cause irritation or damage to the adjacent spinal cord. Pandolfi et al. proved a 50% complete pain relief in 18 patients treated with coblation in the shortly post-treatment follow-up which were maintained in the 2-year follow-up for 30% of the patients without significant peri- and post-procedural complication [12].
2.1.3 Chemonucleolysis
2.1.5 Laser Diskectomy
Chemonucleolysis is a minimally invasive interventional procedure characterized by destruction of the nucleus by the injection in the intervertebral disk of papain, enzyme which destroys nucleus without damaging the neighboring structures. Papain is injected percutaneously with posterolateral approach in the intervertebral space, until the level of the hernia. This technique should be preceded by allergy test to papain and for radiological examinations (CT, MRI) to confirm diagnosis of hernia. Procedure is performed under light anesthesia (analgesics and neuroleptics), takes about 20 min, and requires 3–4 days of hospitalization. In 40% of cases, the healing occurs 3 days after the treatment, but sometimes later. Therapy is considered failed if a month after there was no sign of remission. Percentage of success is about 70% [7, 8]. This percutaneous treatment, very popular in the 1980s, was phased out for possible adverse reactions to chemical parts. Recently was introduced a new agent for chemonucleolysis, the Condoliase, a mucopolysaccharidase highly specific for chondroitin sulfate and hyaluronic acid, two of the most abundant glycosaminoglycans in the nucleus pulposus of the intervertebral disk. In a recent study, Okada et al. obtained an improvement of symptoms in 85.4% of the patients without severe adverse events [9].
In the last 5 years, this minimally invasive technology has improved particularly through the use of highly precise and safe surgical laser, making the procedure without risk, as long as performed in hospitalized structures and experienced hands. Under fluoroscopic or CT guidance, a fine needle (less than 1 mm) is introduced in herniated intervertebral disk with interlaminar or transforaminal or extraforaminal approach. Once checked the correct position, a thin optical fiber of 360 uM is introduced inside the needle, connected to the laser, whose action towards the herniated disk is partial vaporization with consequent retraction of the hernia, reduction of intradiskal pressure, and improvement of disk radicular conflict [13]. Laser also alters the chemical and physical structure of the nucleus pulposus and thus can change the chemical origin of pain by interfering with the mediators of the inflammatory process. After laser treatment, both macroscopic and histological characteristics are different for effect of depolymerization of condromucoprotein of the nucleus pulposus. This process can have a positive influence on the progression of the degenerative process and in the stabilization of the segment. The procedure, normally performed under local anesthesia and sometimes a slight analgesic, takes 15–20 min for a single level treatment. It is normally devoid of significant pain symptoms unlike other techniques that utilize heat (coblation, nucleus plastic, radio frequency), since the laser allows to concentrate very high powers without dissipation of heat into the surrounding tissues. The physical characteristics of the optical fibers (pure silicon) and their emission mode allows in fact to concentrate the energy in just a few mm with energy absorption rate greater than 90%. Patient can be dismissed within the day (day surgery). There is no surgical wound or any instability after the procedure. Antibiotic prophylaxis with analgesics to need is carried out for 3 days. A day of rest is recom-
2.1.4 Coblation This minimally invasive interventional procedure is performed for “contained” hernia that irritates nerve root causing pain in absence of massive muscular deficits. This percutaneous technique involves the insertion of a needle into the disk space under radiological control. At this level, a series of cold ablations are produced to lose the disk tension, vaporize part of the nucleus pulposus, and reduce pressure on the irritated root. It is a cold disk lysis without irritating effects of the other traditional techniques of aspiration. By
2 Interventional Radiology
mended and returning to the normal working life occurs within 1 week. Results are satisfying in about 80% of cases with a significant reduction of complications conversely present in traditional surgery [14, 15]. In case of failure, it can be repeated without any compromise for the use of traditional surgery. Laser energy is safer with the endoscopic technique that allows to clearly see the surgical field, to dose more appropriate energy, to irrigate and aspire. Focus of the energy on the herniated disk allows material removal in a more effective and safe way [16]. Laser energy can be applied at a reduced dose (Low Level Laser) in thermodiskoplasty, which does not aim to remove disk material, but only to change the intradiskal, physical, and chemical environment [17]. The thermodiskoplasty acts both on diskal pain, both on disk radicular conflict in small dimension hernia. With non-ablative doses, laser energy causes a contraction of the disk tissue by about 15% (photocoagulation effect).
2.1.6 Oxygen Ozone Therapy It is a minimally invasive interventional procedure extremely reliable and competitive. It has recently developed much more respect than other percutaneous techniques because it is considered as a valid alternative to surgery. It consists of periganglionic intradiskal injection of a mixture of O2–O3 (3–10 cc, concentration of 30 mg/ml) in order to have lytic action, anti-inflammatory, and analgesic effects [18–20]. This result is obtained thanks to three mechanisms: (1) Direct action on mucopolysaccharides of the nucleus with release of H2O and reduction of size of the disk that compresses the root, (2) improved oxygenation and reduction of inflammation at the site of the disease for oxidizing action on algogenic mediators of pain (in herniated disk there is increase in chondrocytes, cytokines, prostaglandin E2, and sensitivity to bradykinin), and (3) improved micro circulation for rising venous stasis and loss of oxygenated blood caused by mechanical compression. The chronic reduction of oxygen is partly responsible for the pain, because nerve roots are susceptible to hypoxia. Patient, pretreated with antibiotic therapy, is placed in prone position with use of the pillow, in order to reduce the physiological lumbosacral lordosis. The procedure is performed in a comfortable and sterile setting, with mild sedation and local anesthesia. The interbody space is identified under scopic or CT control, then a needle is placed in the nucleus pulposus through which is introduced a mixture of O2O3. Mostly, it includes the injection of steroids and anesthetics, as long as patients are not already treated for recurrent disk herniation and scarring following surgery. By this way, the appearance of any transient paraplegia (lasting 2 h) is avoided due to postsurgical inflammatory processes in the epidural
11
space. Headache is caused instead due to epidural anesthetic diffusion. It is recommended a 48-h postoperative period of no absolute rest with the beginning of specific physiokinesitherapy after a week.
2.1.7 Biomaterial Implantational Disk Cell Therapies While a field still in early development, bioengineering- based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disk disorders. The intervertebral disk undergoes a degenerative process resulting in loss of proteoglycans, loss of disk height, and tears with generation of herniation fragments. While the mainstream treatment is aimed at relieving the symptoms, a relative new approach is based in implantation of biomaterials to restore the disk function. The approaches initially pursued to restore NP height, function, and motion focused on the use of in situ hydrating, synthetic polymers to restore NP hydration, and, consequently, IVD disk pressure and disk height [21]. Disk reparative therapy using soft biomaterial may be useful, as well, to compensate for defects occurring after diskectomy. A diskectomy for a herniated disk relieves pain by removing the nucleus polposus through fissures in the annulus fibrosus, which relieves nerve compression. However, this procedure does not aim to repair defects in the NP or AF, and the defect within the IVD produced by diskectomy can lead to undesirable postoperative outcomes, including further disk degeneration, chronic low back pain, and recurrent herniation [22]. To date, tis interesting field is still under investigation and no suitable biomaterial has been approved [23].
2.2 Percutaneous Techniques in Vertebral Collapses Percutaneous interventional techniques currently used in treating various nature collapses (osteoporotic, traumatic, and neoplastic) are represented by vertebroplasty and kyphoplasty. Both reach a similar result, with specific advantages and disadvantages (mainly the lower cost in vertebroplasty).
2.2.1 Vertebroplasty Percutaneous vertebroplasty (PVP) is a therapeutic, minimally invasive, image-guided procedure that involves injection of radio-opaque bone cement into a partially collapsed vertebral body, in an effort to provide pain relief and stability. The main indication for vertebroplasty are: painful
12
osteoporotic vertebral collapses, painful vertebrae due to benign bone tumors (e.g. hemangioma, giant cell tumor, aneurysmal bone cyst) or malignant bone infiltration (multiple myeloma, metastasis), painful fractures associated with osteonecrosis (Kummel’s disease). In the setting of osteoporotic vertebral fractures, patients should initially receive medical management and vertebroplasty should be limited to patients with severe pain, refractory to conservative therapy. Thus, vertebral augmentation is not indicated in mild or moderate pain for osteoporotic compression fractures, since evidence has not shown vertebroplasty to be more beneficial than a placebo in this population [24]. Vertebroplasty is also useful in patients with multiple fractures where possible, and further collapses would lead to respiratory compromission, in unconsolidated fractures in healthy bone and in treatment of cystic degeneration [25–27]. Absolute contraindications are stable asymptomatic fractures, effective medical therapy, osteomyelitis in fractured vertebra, uncorrectable coagulopathy, allergy to components, and local or systemic infections such as spondylodiskitis. Relative contraindications are radicular pain or radiculopathy caused by compressive syndrome not related to vertebral fracture, fragment displaced posteriorly with compromission [20% of the spinal canal, tumor extended into the epidural space, acute traumatic fracture of not osteoporotic vertebra, severe compression of the vertebral body, and stabilized fracture without pain lasting more than a year. This technique originally described by Deramond et al. in 1987 for the treatment of an aggressive vertebral hemangioma [28] has been widely circulated in other European countries (including Italy) and United States, favored above all by lower costs of DRG (diagnosis related group) compared to other similar techniques (kyphoplasty). Vertebroplasty consists of the injection in the center of the vertebral body of few cc (may also be enough 2–5 cc) of low viscosity bone cement, called polymethyl-methacrylate (PMMA), which diffuses within the fractured vertebral body, distributing itself along the lines of failure (regardless of the outcome of imaging). This material solidifies quickly, resulting in the immediate consolidation of the bone and preventing further collapses. It results in reduction of pain that definitively disappears within maximum 24 h so that patients can repurchase regular mobility. A specifically conformed metal needle (10–15 cm in length with a gauge of 10–15 G) is introduced under the double combined guide of CT and digital fluoroscopy, in order to minimize the execution time (20–30 min) and then the related risks. Approach is usually trans somatic (with small and unique surgical breech to reach the center of the body), sometimes trans pedicle (for levels L4 and L5). This procedure is performed with patient awake, in presence of the anesthetist that monitors vital functions, usually under local anesthesia, preferably in day surgery. After the procedure, patient can stand up after 2 h, then after
A. Palombella et al.
4 h can be dismissed with muscle relaxants therapy. The pretreatment evaluation should first include clinical examination in order to focus the level of pain (pain must be treated, not the image!!). Preliminary PT, PTT, platelets and INR examinations are necessary to have the certainty that the patient can be submitted to surgery, for which is significant evaluate breathing capacity and if patient can stay prone. Diagnostic algorithm pretreatment involves X-ray that documents the collapse, sometimes associated with a targeted CT scan. MR is still the gold standard because it is able to clearly identify the vertebra to be treated. MR particular sequences (fast field eco T2 weighted with fat suppression or STIR) document edema pattern in the cancellous bone of the fractured vertebrae, even in the absence of clear vertebral collapse. Conversely, ld collapses, without edema pattern, should not be treated [29–31]. The choice of vertebra to be treated is in fact based not only on the shape at X-ray but even in the presence of edema on MRI proving that fracture is recent. This finding should be related to the precise site of pain reported by the patient with a targeted digital pressure. Vertebroplasty obtains excellent results in treatment of pain caused mainly by osteoporosis (with positive results up to 90%), and in less measure in treatment of vertebral metastases (approximately 70% efficacy) [32]. One-third of all vertebral fractures is attributable to osteoporosis and in Italy there are approximately 100,000 vertebral fractures each year (1/3 of them with significant pain). Conventional treatment involves a long immobilization (30–60 days) and analgesic with the risk of complications (thrombophlebitis or pneumonia). Multiple osteoporosis fractures can also be treated in the same session (up to three) when symptomatic and white edema pattern (if there is no pain, no treatment should be carried out) [33]. Sometimes it is advisable to treat the clinically most affected vertebra and then treat the other collapses at a later time. The majority of patients (80–85%), which benefited from this therapy reported a reduction or resolution of pain during the first 14 days, with an average of 72 h, which made it possible to stop wearing the bust, to reduce analgesics, and thus to improve the quality of life. The recently published VAPOUR multicenter, randomized, double-blind trial found vertebroplasty to be superior to placebo intervention for pain reduction in patients with acute osteoporotic fractures