327 16 89KB
English Pages 10
IL-13 Receptor David J. Matthews and Andrew N.J. McKenzie* MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK * corresponding author tel: 44 1223 402377, fax: 44 1223 412178, e-mail: [email protected] DOI: 10.1006/rwcy.2000.14007.
SUMMARY There are two membrane-bound IL-13-binding proteins, IL-13R1 and IL-13R2. The IL-13R1 protein has a moderate affinity for IL-13 but requires the presence of IL-4R (CD124) to form a high-affinity receptor complex. IL-4R alone does not bind IL-13. Signaling through the IL-13R1/IL-4R complex activates STAT6 and IRS-1/2, and IL-13R1 appears to recruit a JAK kinase to the activated receptor. In contrast, IL-13R2 alone is a high-affinity receptor for IL-13 but there is little evidence that this protein has signal transduction properties. The function of IL-13R2 is still unclear, however, it has been proposed that it may act as an IL-13 antagonist. Both receptor chains have a wide tissue distribution, although notably, the IL-13R1 receptor does not appear to be expressed on the surface of T cells.
receptor (the type II IL-4 receptor) (Callard et al., 1996). The relationship between the IL-13R1 and IL-13R2 is not clear but there is evidence that IL13R2 may act as an IL-13 antagonist. The c chain, the promiscuous receptor chain found in the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors, does not appear to be a functional component of the IL-13 receptor (Matthews et al., 1995).
Alternative names A number of groups have cloned both IL-13 receptors in humans (Aman et al., 1996; Caput et al., 1996; Miloux et al., 1996; Gauchat et al., 1997) and in mice. The IL-13R1 has also been termed 0 and the IL-13R2 has also been called IL-13R0 .
Structure BACKGROUND
Discovery Two IL-13-binding chains have been identified following the cloning of IL-13. Using an expression cloning approach, Caput et al. (1996) identified IL13R2, a membrane-bound human protein with a high affinity for IL-13 but no apparent capacity for signal transduction. In contrast, Hilton et al. (1996) obtained a second type of IL-13 receptor by screening a mouse genomic library using redundant oligonucleotides to the WSXWS motif (a conserved motif found in all class I cytokine receptors). This approach identified IL-13R1, a low-affinity IL-13 binding chain, that requires the presence of the IL-4R chain (CD124) in order to form a high-affinity IL-13 receptor. As a consequence, the IL-4R/IL-13R1 complex was also identified as a functional IL-4
Both IL-13R1 and IL-13R2 are members of the class I cytokine receptor family and have a similar structure to the IL-5R chain and contain a WSXWS motif. The main structural difference between the two IL-13 receptors is that the IL-13R1 chain has a longer intracellular domain than IL-13R2.
Main activities and pathophysiological roles Signals generated by the IL-13R1/IL-4R receptor complex promote TH2-driven immunological responses important in parasitic worm infections and atopy (McKenzie et al., 1998a, 1998b). In humans, the signals generated by the IL-13 receptor promote the production of IgE (Punnonen et al., 1993) but inhibit the production of TH1 proinflammatory mediators such as TNF (Manna and Aggarwal, 1998).
1512 David J. Matthews and Andrew N.J. McKenzie Human IL-13R2: X95302 Mouse IL-13R2: U65747
GENE
Accession numbers
Sequence
Human IL-13R1: Y09328 Mouse IL-13R1: S80963
See Figure 1.
Figure 1 Nucleotide sequences for human and mouse IL-13R1 and IL-13R2. hIL-13Rα1 1 CGGGTAATTT 61 CCGGGCTCCG 121 CTGCTGCTCT 181 CCACCTGTGA 241 AATCCACCCG 301 AAACAAGATA 361 AGGATTTGTC 421 TTGGTTGAAA 481 CAATGCATTT 541 AGTCCCGACA 601 TGTGAAAACA 661 AAGGATTCCA 721 ATTAAACCAT 781 ATTAAAAACC 841 TTTATTAGCA 901 AATGTTTTCT 961 AATACATCTT 1021 AGAGTCAAAA 1081 GAAATGAGTA 1141 CCAGTCATCG 1201 ATTATATTCC 1261 AATGATGATA 1321 ACCGACTCTG 1381 ATTTTTACCT 1441 ACTTATTAGA 1501 ACAGGTCTTT 1561 TACTATGAGT
TTTCAAAGTA AGGCGAGAGG GCGCCGGCGG CAAATTTGAG AGGGAGCCAG AGAAAATAGC TGCAAGTGGG AATGCATCTC GGCACAACCT CTAACTATAC TCTTTAGAGA GTTTTGAACA CCTTCAATAT TCTCCTTCCA GATGCCTATT ACGTCCAAGA GTTTCATGGT CAAATAAGTT TAGGTAAGAA TCGCAGATGC CTCCAATTCC CTCTGCACTG TAGTGCTGAT TCACTGTGAC TGGAAACTGA ATGTTGAGTC GG
AACGCTTCGG CTGCATGGAG CGGGGGCGGG TGTCTCTGTT CTCAAATTGT TCCGGAAACT GTCCCAGTGT ACCCCCAGAA GAGCTACATG TCTCTACTAT AGGCCAATAC ACACAGTGTC AGTGCCTTTA CAATGATGAC TTATGAAGTA GGCTAAATGT CCCTGGTGTT ATGCTATGAG GCGCAATTCC AATCATAGTA TGATCCTGGC GAAGAAGTAC AGAAAACCTG CTTGAGAAGA AACTACTGCA GCTAGCAAGA
GCCCCGCGGG TGGCCGGCGC GGCGGGGGCG GAAAACCTCT AGTCTATGGT CGTCGTTCAA AGCACCAATG GGTGATCCTG AAGTGTTCTT TGGCACAGAA TTTGGTTGTT CAAATAATGG ACTTCCCGTG CTATATGTGC GAAGTCAATA GAGAATCCAG CTTCCTGATA GATGACAAAC ACACTCTACA CTCCTGCTTT AAGATTTTTA GACATCTATG AAGAAAGCCT TTCTTCCCAT CCATTTAAAA ACAAGAAAAG
ACACTCAGCT GGCTCTGCGG CCGCGCCTAC GCACAGTAAT ATTTTAGTCA TAGAAGTACC AGAGTGAGAA AGTCTGCTGT GGCTCCCTGG GCCTGGAAAA CCTTTGATCT TCAAGGATAA TGAAACCTGA AATGGGAGAA ACAGCCAAAC AATTTGAGAG CTTTGAACAC TCTGGAGTAA TAACCATGTT ACCTAAAAAG AAGAAATGTT AGAAGCAAAC CTCAGTGATG TCTCCATTTG ACAGGCAGCT TTTTAAAGAA
AAGAGCCCGG GCTGTGGGCG GGAAACTCAG ATGGACATGG TTTTGGCGAC CCTGAATGAG GCCTAGCATT GATTGAGCTT AAGGAATACC AATTCATCAA GACCAAAGTG TGCAGGAAAA TCCTCCACAT TCCACAGAAT TGAGACACAT AAATGTGGAG AGTCAGAATA TTGGAGCCAA ACTCATTGTT GCTCAAGATT TGGAGACCAG CAAGGAGGAA GAGATAATTT TTATCTGGGA CATAAGAGCC AGATGTTGCT
hIL-13Rα2 1 GTAAGAACAC 61 ACCTGGTCAG 121 GAGAAATGGC 181 CATTTGGCTG 241 AGATAGTGGA 301 TGGATCATTT 361 AAACATGGAA 421 AGGGCATTGA 481 TTCAAAGTTC 541 AAGTTCAGGA 601 CTGGCATAGG 661 ATCATGCATT 721 TTCCCTATTT 781 AGAACAAGCC 841 TGCCGCCAGT 901 GCATACCTTT 961 ATGATACTAC 1021 ATGAAACCCG 1081 ACGGAATTTG 1141 AAACTTTGCT 1201 CCGGTCTGCT 1261 ATACATGAAG 1321 CCAAATGTTC
TCTCGTGAGT AAGTGTGCCT TTTCGTTTGC TACTTCATCT TCCCGGATAC TAAGGAATGC GACCATCATT AGCGAAGATA CTGGGCAGAA TATGGATTGC TGTACTTCTT ACAGTGTGTT GGAGGCATCA TATCAGATCC CTATCTTACT GGGACCTATT CTTGGTGACT ACAATTATGC GAGTGAGTGG ACGTTTCTGG TTTGCGTAAG ACTTTCCATA AATATGAGTC
CTAACGGTCT GTCGGCGGGG TTGGCTATCG TCAGACACCG TTAGGTTATC ACAGTGGAAT ACTAAGAATC CACACGCTTT ACTACTTATT GTATATTACA GATACCAATT GATTACATCA GACTATAAAG AGTTATTTCA TTTACTCGGG CCAGCAAGGT GCTACAGTTG TTTGTAGTAA AGTGATAAAC CTACCATTTG CCAAACACCT TCAAGAGACA TCAATAAACT
TCCGGATGAA AGAGAGGCAA GATGCTTATA AGATAAAAGT TCTATTTGCA ATGAACTAAA TACATTACAA TACCATGGCA GGATATCACC ATTGGCAATA ACAACTTGTT AGGCTGATGG ATTTCTATAT CTTTTCAGCT AGAGTTCATG GTTTTGATTA AAAATGAAAC GAAGCAAAGT AATGCTGGGA GTTTCATCTT ACCCAAAAAT TGGTATTGAC GAATTTTTCT
GGCTATTTGA TATCAAGGTT TACCTTTCTG TAACCCTCCT ATGGCAACCC ATACCGAAAC AGATGGGTTT ATGCACAAAT ACAAGGAATT TTTACTCTGT TTACTGGTAT ACAAAATATA TTGTGTTAAT TCAAAATATA TGAAATTAAG TGAAATTGAG ATACACCTTG GAATATTTAT AGGTGAAGAC AATATTAGTT GATTCCAGAA TCAACAGTTT TGCGAATGTT
AGTCGCCATA TTAAATCTCG ATAAGCACAA CAGGATTTTG CCACTGTCTC ATTGGTAGTG GATCTTAACA GGATCAGAAG CCAGAAACTA TCTTGGAAAC GAGGGCTTGG GGATGCAGAT GGATCATCAG GTTAAACCTT CTGAAATGGA ATCAGAGAAG AAAACAACAA TGCTCAGATG CTATCGAAGA ATATTTGTAA TTTTTCTGTG CCAGTCATGG GAAAAA
IL-13 Receptor 1513
Figure 1(b) (Contd. ) mIL-13Rα1 1 TGAAAAGATA 61 ATGGCGCGGC 121 GGCCAAGTTG 181 GAAAATCTCT 241 ACTCTCAGAT 301 CATCGTAAAG 361 AGTGCCAATG 421 GGTGATCCTG 481 AAGTGTTCCT 541 TGGTACAGCA 601 ATTGCTTGTT 661 ATAATGGTCA 721 TCCTATGTGA 781 TTAGTGCAGT 841 GTCAATAATA 901 AATTCCGAAT 961 GCCGACGCTG 1021 AACAAACTGT 1081 TTCTACACCA 1141 CTTTTTTACC 1201 ATTTTTAAAG 1261 ATCTATGAGA 1321 AAAGCAGCTC 1381 GATTTATTGC 1441 CTTGAAAAAC 1501 CCAAACCCAA 1561 CCCTAAAAGC 1621 ACCATCAATT mIL-13Rα2 1 GGCACGAGGG 61 CTGAACAGTG 121 TAGAGATTCA 181 CTGTGATAAT 241 CCTGGAGAAA 301 ACTGGCTATT 361 GGATTACTTG 421 GGCTGTACAC 481 ATAATTACTA 541 AAGATACGTA 601 ATAGAAGCTT 661 AAGTGTATAT 721 TATTCTGATA 781 TGTGCTGATT 841 TCATCAGACT 901 AGATCCAGCT 961 CTTCATATTA 1021 CCCATTCCAC 1081 GAGTCTGCCA 1141 CTATGCTTTT 1201 GAATGGAGTG 1261 ATAGTACCAG 1321 AAGGAAGAAC 1381 TATGAAGATA 1441 ATATTAAACT 1501 CTAATAGTGT 1561 AAAAAAA
GAATAAATGG CAGCGCTGCT CCGCGGCCAC GCACGATAAT ATTTTAGTCA AGGAATTACC AAAGTGAGAA AGTCCGCTGT GGCTCCCTGG GCCTGGAGAA CCTTTAAATT AGGATAATGC AACCTGATCC GGAAGAATCC CTCAAACCGA CTGATAGAAA TCTACACAGT GGAGTGATTG CCATGTTACT TGAAAAGGCT AAATGTTTGG AACAATCCAA CTTGATGGGG ATTCTCCATT AGGCAGCTCC AGGAGCTCCT AGATGTTTTG CATCTAATCA
CCTCGTGCCG GGGCGAGCTG AGAAGTTCAG ATGGACGTGG CTTTGATGAC CCTGGATGAG GCCTAGCCCT GACTGAGCTC AAGGAATACA AAGTCGTCAA GACTAAAGTG TGGGAAAATT TCCACATATT ACAAAATTTT CCGACATAAT CATGGAGGGT CAGAGTAAGA GAGTGAAGCA CACCATTCCA TAAGATCATT AGACCAGAAT AGAAGAAACG AGAAGTGATT TGTTATCTGG TAAGAGCCAC TCCAAGAAAA CCAAATCCCC GGAATTGTGA
AATTCGGCAC TTGGTGCTGC CCACCTGTGA AGTCCTCCTG CAACAGGATA AAAATCTGTC TTGGTGAAAA AAGTGCATTT AGCCCTGACA TGTGAAAACA GAACCTAGTT AGGCCATCCT AAACATCTTC AGAAGCAGAT ATTTTAGAGG ACAAGTTGTT GTCAAAACAA CAGAGTATAG GTCTTTGTCG ATATTTCCTC GATGATACCC GATTCTGTAG TCTTTCTTGC GGGACTTGTT AGGTCTTGAT GCAAGAGTTC AAACTAGAGG TGGCTTCCTA
GAGCCGAGGC TACTGTGGAC CGAATTTGAG AAGGAGCCAG AGAAAATTGC TGCAGGTGGG AGTGCATCTC GGCATAACCT CACACTATAC TCTATAGAGA TTGAACATCA GCAAAATAGT TCCTCAAAAA GCTTAACTTA TTGAAGAGGA TCCAACTCCC ACAAGTTATG GTAAGGAGCA CAGTGGCAGT CAATTCCTGA TGCACTGGAA TGCTGATAGA CTTCAATGTG AAATAGAAAC GTGACTTTTG TTCTCGTTCC ACAAAGACAA AGGAATCTCT
GAGGGCCTGC CGCCACCGTG CGTCTCTGTC TCCAAATTGC TCCAGAAACT CTCTCAGTGT ACCCCCTGAA GAGCTATATG TCTGTACTAT AGGTCAACAC GAACGTTCAA GTCTTTAACT TGGTGCCTTA TGAAGTGGAG CAAATGCCAG TGGTGTTCTT CTTTGATGAC AAACTCCACC CATAATCCTC TCCTGGCAAG GAAGTATGAC AAACCTGAAG ACCCTGTGAA TGAAACTACT CATTGAAAAC TTGTTCCAAT GGGGACAATG GCTTGCTCTG
AGAGGAGGAG ACCTCTCTCA ATTTAGTGTC ACATTTCTTG TGGCTTTTGT CTTTGGAGAT GTTATCTCTA TAGAATATGA GGAATCTAAT CGCATTTGTC CTTATGGGAT ATTATAACTG CCAACTATAC ACCTCCAGCA ATAAAGATTT ATACAGTTTT GTGTGGAGAA CAAGGTGTTA CAGACAAAAA TTGTAAGATG AAGAGGAATG TTTGTCTTTT CTGAACCCAC CCCTCTGTTA CAATTTCTCT TGGGTTTTTG
GGAAAGATAG AGACAGTGCT TAATGTGGAA AGAAACCATA GCATATCAGA AAAAGTTAAT TTTGCAATGG GTTAAAATAC TTACAAGGAT AGAGCATTGT ATCAGATGAA GCAGTATTTG CATGTTTTTC TGATGAAAAA TTTTATCTGT TCAACTTCAA TTCCATTGAT CACTTATGAA CGATATGAAG TAAGGTCAAT TTGGGAAGGT CTTTATATTC ATTGAGCCTC AACCACCAAT TAAAATTTCG ACTAAAGTGC
AAAGAGAGAG TTGCTCTTCA AGGAGGACAA TTATTGAGTA TGCTTGTGTT CCTCCTCAGG AAACCTCCTG CGAAATGTTG GGGTTTGATC ACAAATGGAT GGAAGTTTGG GTCTGCTCTT TGGTATGAGG AATGTTGGAT GTTAATGGAT AATATAGTTA ATTAGAATGA ATTGTGATCC TTGAAGAGGA ATATATTGTG TACACAGGGC CTTTTGTTAC CATGTGGATC TTCTTGACAT AATACATCTT TGGATATATA
AGAAAGATTG CGTATAAGGA AGAGGTCTTG GAGCTTTCAG TCATTCTTCT ATTTTGAAAT TGGTTATAGA ATAGCGACAG TTAATAAAGG CAGAAGTACA AAACTAAAAT GGAAACCTGG GCTTGGATCA GCAAACTGTC CTTCAAAGTT AACCATTGCC AATGGAGCAC GAGAAGACGA GAGCAAATGA CAGATGATGG CAGACTCAAA TTCTTTGCCT TGAACAAAGA AGAGCCAGCC CTTGAAAATC TCTCCAAAAA
CTTGCTACCC AGGAAAACAG TGATAACTGC CACACTAAAT TTGTACAATA ATTGGATCCT AAAATTTAAG CTGGAAGACT CATTGAAGGA AAGTCCATGG TCAGGACATG CAAGACAGTA TGCCTTACAG CAACTTGGAC GGAACCCATC ACCAGAATTC ACCTGGAGGA TATTTCCTGG AAGTGAAGAC AATTTGGAGC GATTATTTTC TATTGTGGAG AGTGTGTGCT AGCAGGAGTC AGTGTTTGTC AAAAAAAAAA
Chromosome location and linkages The location of the huIL-13R1 gene is at present unknown. The huIL-13R2 gene is located on the X
chromosome in the region Xq24 (Guo et al., 1997). Both murine genes map to the X chromosome (Donaldson et al., 1998). Murine IL-13R1 maps to the region DXMit85: 3.8 2.1 cM (mIL-13R1,
1514 David J. Matthews and Andrew N.J. McKenzie Agtr2) 3.8 2.1 cM: DXMit49. Murine IL-13R2 maps to the region DXMit4: 6.4 2.5 cM (mIL13R2, DXMit34) 7.9 2.9 cM: DXMit120.
PROTEIN
Accession numbers Human IL-13R1: P78552 Mouse IL-13R1: O09030 Human IL-13R2: Q14627 Mouse IL-13R2: 3483094
Sequence See Figure 2.
Description of protein Both IL-13R1 and IL-13R2 proteins contain an Nterminal immunoglobulin-like domain followed by a class I cytokine receptor region including a WSXWS motif near the transmembrane domain. The human and mouse IL-13R1 proteins have a cytoplasmic region capable of signal transduction and contain Box 1 and Box 2 motifs. Although the IL-4R chain has no measurable ability to bind IL-13 (Zurawski et al., 1995), it does, however, act as an affinity converter for IL-13R1, increasing its affinity for IL-13 by 100fold (Hilton et al., 1996). The role of IL-13R2 is unclear, although it has a very short intracellular domain and it does not appear to be involved in signal transduction. The IL-13 receptor displays a high degree of complexity in its relationship with its ligands and with the IL-4 receptor (Callard et al., 1996). IL-13
Figure 2 Amino acid sequences for human and mouse IL-13R1 and IL-13R2. Putative signal peptides are shown in bold. huIL-13Rα1 1 MEWPARLCGL 61 NCSLWYFSHF 121 PEGDPESAVT 181 QYFGCSFDLT 241 DDLYVQWENP 301 GVLPDTLNTV 361 IVLLLYLKRL 421 NLKKASQ huIL-13Rα2 1 MAFVCLAIGC 61 HFKECTVEYE 121 SSWAETTYWI 181 ALQCVDYIKA 241 PVYLTFTRES 301 TRQLCFVVRS 361 LLLRKPNTYP mIL-13Rα1 1 MARPALLGEL 61 TLRYFSHFDD 121 GDPESAVTEL 181 IACSFKLTKV 241 LVQWKNPQNF 301 ADAVYTVRVR 361 LFYLKRLKII 421 KAAP mIL-13Rα2 1 MAFVHIRCLC 61 LEYELKYRNV 121 SYGISDEGSL 181 YLQHDEKNVG 241 SVENSIDIRM 301 FVRCKVNIYC 361 PEPTLSLHVD
WALLLCAGGG GDKQDKKIAP ELQCIWHNLS KVKDSSFEQH QNFISRCLFY RIRVKTNKLC KIIIFPPIPD
GGGGGAAPTE ETRRSIEVPL YMKCSWLPGR SVQIMVKDNA EVEVNNSQTE YEDDKLWSNW PGKIFKEMFG
TQPPVTNLSV NERICLQVGS NTSPDTNYTL GKIKPSFNIV THNVFYVQEA SQEMSIGKKR DQNDDTLHWK
SVENLCTVIW QCSTNESEKP YYWHRSLEKI PLTSRVKPDP KCENPEFERN NSTLYITMLL KYDIYEKQTK
TWNPPEGASS SILVEKCISP HQCENIFREG PHIKNLSFHN VENTSCFMVP IVPVIVAGAI EETDSVVLIE
LYTFLISTTF LKYRNIGSET SPQGIPETKV DGQNIGCRFP SCEIKLKWSI KVNIYCSDDG KMIPEFFCDT
GCTSSSDTEI WKTIITKNLH QDMDCVYYNW YLEASDYKDF PLGPIPARCF IWSEWSDKQC
KVNPPQDFEI YKDGFDLNKG QYLLCSWKPG YICVNGSSEN DYEIEIREDD WEGEDLSKKT
VDPGYLGYLY IEAKIHTLLP IGVLLDTNYN KPIRSSYFTF TTLVTATVEN LLRFWLPFGF
LQWQPPLSLD WQCTNGSEVQ LFYWYEGLDH QLQNIVKPLP ETYTLKTTNE ILILVIFVTG
LVLLLWTATV QQDKKIAPET KCIWHNLSYM EPSFEHQNVQ RSRCLTYEVE VKTNKLCFDD IFPPIPDPGK
GQVAAATEVQ HRKEELPLDE KCSWLPGRNT IMVKDNAGKI VNNTQTDRHN NKLWSDWSEA IFKEMFGDQN
PPVTNLSVSV KICLQVGSQC SPDTHYTLYY RPSCKIVSLT ILEVEEDKCQ QSIGKEQNST DDTLHWKKYD
ENLCTIIWTW SANESEKPSP WYSSLEKSRQ SYVKPDPPHI NSESDRNMEG FYTTMLLTIP IYEKQSKEET
SPPEGASPNC LVKKCISPPE CENIYREGQH KHLLLKNGAL TSCFQLPGVL VFVAVAVIIL DSVVLIENLK
FILLCTITGY DSDSWKTIIT ETKIQDMKCI CKLSNLDSSD KWSTPGGPIP ADDGIWSEWS LNKEVCAYED
SLEIKVNPPQ RNLIYKDGFD YYNWQYLVCS YKDFFICVNG PRCYTYEIVI EEECWEGYTG TLC
DFEILDPGLL LNKGIEGKIR WKPGKTVYSD SSKLEPIRSS REDDISWESA PDSKIIFIVP
GYLYLQWKPP THLSEHCTNG TNYTMFFWYE YTVFQLQNIV TDKNDMKLKR VCLFFIFLLL
VVIEKFKGCT SEVQSPWIEA GLDHALQCAD KPLPPEFLHI RANESEDLCF LLCLIVEKEE
IL-13 Receptor 1515 and IL-4 can both cross-compete for binding to the IL-13 receptor complex (Hilton et al., 1996; Miloux et al., 1996). In addition, the c, a component of the type 1 IL-4R, appears to compete for the IL-4R chain and inhibit IL-13 binding by sequestering the IL-4R chain (Orchansky et al., 1997; Kuznetsov and Puri, 1999). This complex relationship may be important in hematopoietic cells where both the type 1 IL-4 receptor and the IL-13 receptors are coexpressed.
Relevant homologies and species differences See Table 1. It is also of note that both human and mouse IL-13 receptors share approximately 25% identity to the IL-5R chain.
Affinity for ligand(s)
Cell types and tissues expressing the receptor See Table 3.
Regulation of receptor expression Studies on mature human B cells found that potent B cell activators, such as the antibodies anti- or antiCD40, upregulated IL-13R1 mRNA expression, especially when they were used to co-stimulate B cells (Graber et al., 1998; Ogata et al., 1998; Ford et al., 1999). In addition, the expression of hIL-13R1 mRNA on human peripheral T cells was shown to be downregulated after stimulation by either anti-CD3 plus anti-CD28 or anti-CD3 plus PMA (Gauchat et al., 1997). The activation of human monocytes by IL-13 results in the downregulation of IL-13R1 (Graber et al., 1998).
Release of soluble receptors
See Table 2.
Table 1 Percentage of shared amino acid identity between the IL-13-binding chains huIL13R1
huIL13R2
mIL13R1
mIL13R2
huIL-13R1
100%
27%
74%
26%
huIL-13R2
27%
100%
25%
59%
mIL-13R1
74%
25%
100%
29%
mIL-13R2
26%
59%
29%
100%
In humans, soluble IL-13R1 has been detected in T cell supernatants (Graber et al., 1998). In mice, a soluble receptor is present in serum and urine which binds IL-13 with high affinity. Purification and subsequent partial sequencing of the protein indicate that it is the soluble form of mIL-13R2 protein (Zhang et al., 1997).
SIGNAL TRANSDUCTION
Associated or intrinsic kinases Although the IL-13R1/IL-4R does not have an intrinsic kinase domain, it does associate with
Table 2 Summary of the physical properties of the IL-13-binding chains: number of potential glycosylation sites and approximate affinities of IL-13 receptors for IL-13 Human
Mouse
IL-13R1
IL-13R2
IL-13R1
IL-13R2
sIL-13R2
Mr
70,000
70,000
60,000
70,000
40,000
Mature peptide
401 aa
354 aa
398 aa
362 aa
n.k.
Precursor peptide
427 aa
380 aa
424 aa
383 aa
n.k.
Glycosylation sites
10
4
4
4
n.k.
Affinity Kd
4 nM
450 pM
2±10 nM
250 pM
35 pM
+IL-4R
30 pM
n.c.
75 pM
n.c.
±
n.c., no change; n.k., not known; sIL-13R2, soluble IL-13R2.
1516 David J. Matthews and Andrew N.J. McKenzie Table 3
Summary of cell types shown to express IL-13 receptor messenger RNA
Tissue/cells
hIL-13R1
mIL-13R1
hIL-13R2
mIL-13R2
Brain
yes
not detected
yes
yes
Spleen
yes
yes
yes
yes
Liver
yes
yes
yes
yes
Fetal liver
yes
unknown
yes
unknown
Thymus
yes
yes
yes
unknown
Heart
yes
yes
yes
unknown
Lung
yes
yes
yes
unknown
Kidney
yes
yes
unknown
not detected
Testis
yes
yes
yes
not detected
Stomach
yes
yes
yes
unknown
Skin
yes
yes
yes
unknown
Appendix
yes
unknown
yes
unknown
PBC
yes
unknown
yes
unknown
Bone marrow
yes
no
yes
unknown
Skeletal muscle
yes
no
yes
unknown
Colon
yes
yes
unknown
unknown
Small intestine
yes
unknown
unknown
unknown
Ovary
yes
unknown
unknown
unknown
Prostate
yes
unknown
unknown
unknown
Pancreas
yes
unknown
yes
unknown
B cells
yes
unknown
yes
unknown
T cells
yes
unknown
yes
unknown
Endothelial cells
yes
unknown
yes
unknown
members of the JAK kinase family. The IL-13 receptor has been shown to phosphorylate JAK2 and TYK2 in fibroblasts (Murata et al., 1998), JAK1, TYK2 in B9 cells (Welham et al., 1995), JAK1 in TF-1 cells (Keegan et al., 1995), JAK1, JAK2 and TYK2 in monocytes (Roy and Cathcart, 1998) and colon carcinoma cell lines (Murata et al., 1996). Partial deletion analysis of the cytoplasmic domain of IL13R1 cells has noted that the terminal 38 amino acids were not necessary for proliferation or for the tyrosine phosphorylation of JAK1 or TYK2 in FD5 cells (Orchansky et al., 1999). There is no evidence that JAK3 kinase is involved in IL-13 signal transduction (Keegan et al., 1995).
Cytoplasmic signaling cascades The IL-13R initiates a JAK/STAT signaling cascade resulting in the activation of STAT6 (Lin et al., 1995) and STAT3 (Orchansky et al., 1999) and which may
be downregulated by SOCS proteins (Starr et al., 1997). In addition, IL-13 also induces the phosphorylation of IRS-1/2 and IL-4R (Keegan et al., 1995) and activates PI-3 kinase (Wright et al., 1999). In human monocytes, IL-13 has been described as inducing cAMP production, PLC 1 activation, phosphoinositol metabolism, and mobilization of intracellular calcium stores (Sozzani et al., 1998). The tyrosine phosphatase SHP-1 has been implicated in the negative regulation of IL-13 signal transduction (Haque et al., 1998).
DOWNSTREAM GENE ACTIVATION
Transcription factors activated STAT6 is activated upon IL-13 receptor activation and is an important mediator of IL-13 function
IL-13 Receptor 1517 (Lin et al., 1995; Palmer-Crocker et al., 1996). STAT3 has also been reported to be activated by IL-13 (Orchansky et al., 1999). The transcription factors c-fos, c-jun, and c-myc have also been shown to be upregulated by IL-13 (Doucet et al., 1998).
Genes induced Notable genes induced or upregulated by IL-13 include CD23 (Punnonen et al., 1993), MHC class II, and in human B cells surface IgM (Zurawski and de Vries, 1994). VCAM-1 is found to be upregulated in fibroblasts (Doucet et al., 1998) and endothelial cells (Kotowicz et al., 1996).
Promoter regions involved A STAT6 response element has been described in the IL-4 promoter GTCTGATTTCAGGAACAATTTTA (Curiel et al., 1997).
BIOLOGICAL CONSEQUENCES OF ACTIVATING OR INHIBITING RECEPTOR AND PATHOPHYSIOLOGY
Human abnormalities There have not been cases described where either IL-13 receptor has been directly implicated in a human abnormality; however, in certain cases some polymorphisms in the IL-4R chain have been shown to be associated with atopy (Hershey et al., 1997; Mitsuyasu et al., 1998). The IL-13R has been found to be overexpressed and a marker for human gliomas (Debinski et al., 1999a,b).
THERAPEUTIC UTILITY
Effect of treatment with soluble receptor domain There are no published work describing the effects of using the soluble IL-13 receptor for therapeutic purposes in humans. In mice, treatment with a recombinant soluble IL-13R2-Fc fusion protein impaired the expulsion of nematode worms (Urban et al., 1998). A soluble form of the mIL-13R1 has also been administered to mice and found to increase the production of IgG2a and IgG2b in germinal center B cells (Poudrier et al., 1999).
Unique biological effects of activating the receptors
Effects of inhibitors (antibodies) to receptors
In humans, only IL-4 and IL-13 have been reported to induce antibody class-switching to IgE (Punnonen et al., 1993), which is a major mediator of allergic responses. Therefore, IL-13 and its receptor are likely to have an important role in the pathology of atopy. In mice, IL-13 has been demonstrated to play a unique role in inducing the rapid expulsion of certain nematode worms, suggesting an important role for IL-13 in gut immunology (McKenzie et al., 1998b).
There is no published works describing the effects of using anti-IL-13 receptor antibodies for therapeutic purposes. However, the mutant form of human IL-4, Y124D, is a potent antagonist of both IL-4 and IL-13 (Kruse et al., 1992; Aversa et al., 1993; Matthews et al., 1997) and may have therapeutic potential. Some antibodies to the IL-4R chain have been shown to inhibit B cell responses to both IL-4 and IL-13 (Zurawski et al., 1995; Matthews et al., 1997).
Phenotypes of receptor knockouts and receptor overexpression mice
References
As yet, neither IL-13R molecules have been knocked out. However, mice deficient in both the IL-4R chain (Barner et al., 1998) and STAT6 (Takeda et al., 1996) have been generated and these mice have impaired TH2 cell development and fail to expel nematode infections efficiently (Urban et al., 1998). These results are in concordance with findings for IL-13-deficient mice (McKenzie et al., 1998b).
Aman, J., Tayebi, N., Obiri, N., Puri, R., Modi, W., and Leonard, W. (1996). cDNA cloning and characterisation of the human interleukin 13 receptor chain. J. Biol. Chem. 271, 29265±29270. Aversa, G., Punnonen, J., Cocks, B., de Waal Malefyt, R., Vega, F. J., Zurawski, S., Zurawski, G., and de Vries, J. (1993). An interleukin-4 (IL-4) mutant protein inhibits both IL-4 and IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors. J. Exp. Med. 178, 2213±2218.
1518 David J. Matthews and Andrew N.J. McKenzie Barner, M., Mohrs, M., Brombacher, F., and Kopf, M. (1998). Differences between IL-4R-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Curr. Biol. 8, 669±672. Callard, R. E., Matthews, D. J., and Hibbert, L. (1996). IL-4 and IL-13 receptors: are they one and the same? Immunol. Today 17, 108±110. Caput, D., Laurent, P., Kaghad, M., Lelias, J.-M., Lefort, S., Vita, N., and Ferrara, P. (1996). Cloning and characterisation of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor chain. J. Biol. Chem. 271, 16921±16926. Curiel, R., Lahesmaa, R., Subleski, J., Cippitelli, M., Kirken, R., Young, H., and Ghosh, P. (1997). Identification of a Stat6responsive element in the promoter of the human interleukin-4 gene. Eur. J. Immunol. 27, 1982±1987. Debinski, W., Gibo, D. M., Hulet, S. W., Connor, J. R., and Gillespie, G. Y. (1999a). Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin. Cancer Res. 5, 985±990. Debinski, W., Gibo, D. M., Slagle, B., Powers, S. K., and Gillespie, G. Y. (1999b). Receptor for interleukin 13 is abundantly and specifically over-expressed in patients with glioblastoma multiforme. Int. J. Oncol. 15, 481±486. Donaldson, D. D., Whitters, M. J., Fitz, L. J., Neben, T. Y., Finnerty, H., Henderson, S. L., O'Hara, R. M. J., Beier, D. R., Turner, K. J., Wood, C. R., and Collins, M. (1998). The murine IL-13 receptor alpha 2: molecular cloning, characterization, and comparison with murine IL-13 receptor alpha 1. J. Immunol. 161, 2317±2324. Doucet, C., Brounty-Boye, D., Pottin-Clemenceau, C., Jasmin, C., Canonica, G. W., and Azzarone, B. (1998). IL-4 and IL-13 specifically increase adhesion molecule and inflammatory cytokine expression in human lung fibroblasts. Int. Immunol. 10, 1421±1433. Ford, D., Sheehan, C., Girasole, C., Priester, R., Kouttab, N., Tigges, J., King, T. C., Luciani, A., Morgan, J. W., and Maizel, A. L. (1999). The human B cell response to IL-13 is dependent on cellular phenotype as well as mode of activation. J. Immunol. 163, 3185±3193. Gauchat, J.-F., Schlagenhauf, E., Feng, N.-P., Moser, R., Yamage, M., Jeanin, P., Alouani, S., Elson, G., Notarangelo, D., Wells, T., Eugster, H.-P., and Bonnefoy, J.-Y. (1997). A novel 4 kb interleukin-13 receptor mRNA expressed in human B, T, and endothelial cells encoding an alternate typeII interleukin-4/interleukin-13 receptor. Eur. J. Immunol. 27, 971±978. Graber, P., Gretener, D., Herren, S., Aubry, J. P., Elson, G., Poudrier, J., Lecoanet-Henchoz, S., Alouani, S., Losberger, C., Bonnefoy, J. Y., Kosco-Vilbois, M. H., and Gauchat, J. F. (1998). The distribution of IL-13 receptor 1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4. Eur. J. Immunol. 28, 4286±4298. Guo, J., Apiou, F., Mellerin, M. P., Lebeau, B., Jaques, Y., and Minvielle, S. (1997). Chromosome mapping and expression of the human interleukin-13 receptor. Genomics 42, 141±145. Haque, S. J., Harbor, P., Tabrizi, M., Yi, T., and Williams, B. R. (1998). Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J. Biol. Chem. 273, 33893±33896. Hershey, G. K., Friedrich, M. F., Esswein, L. A., Thomas, M. L., and Chatila, T. A. (1997). The association of atopy with a gainof-function mutation in the alpha subunit of the interleukin-4 receptor. N. Engl. J. Med. 337, 1720±1725.
Hilton, D., Zhang, J.-G., Metcalf, D., Alexander, W., Nicola, N., and Wilson, T. (1996). Cloning and characterisation of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl Acad. Sci. USA 93, 497±501. Keegan, A., Johnston, J., Tortolani, P., McReynolds, L., Kinzer, C., O'Shea, J., and Paul, W. (1995). Similarities and differences in signal transduction by interleukin 4 and interleukin 13: analysis of janus kinase activation. Proc. Natl Acad. Sci. USA 92, 7681±7685. Kotowicz, N., Callard, R., Friedrich, K., Matthews, D., and Klein, N. (1996). Biological activity of IL-4 and IL-13 on human endothelial cells: functional evidence that both cytokines act through the same receptor. Int. Immunol. 8, 1915±1925. Kruse, N., Tony, H., and Sebald, W. (1992). Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. EMBO J. 11, 3237±3244. Kuznetsov, V. A., and Puri, R. K. (1999). Kinetic analysis of high affinity forms of interleukin (IL)-13 receptors: suppression of IL-13 binding by IL-2 receptor gamma chain. Biophys. J. 77, 154±172. Lin, J.-X., Migone, T.-S., Tsang, M., Friedmann, M., Weatherbee, J., Zhou, L., Yamauchi, A., Bloom, E., Meitz, J., John, S., and Leonard, W. (1995). The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13 and IL-5. Immunity 2, 331±339. Manna, S. K., and Aggarwal, B. B. (1998). IL-13 suppresses TNFinduced activation of nuclear factor-B, activation protein-1, and apoptosis. J. Immunol. 161, 2863±2872. Matthews, D., Clark, P., Herbert, J., Morgan, G., Armitage, R., Kinnon, C., Minty, A., Grabstein, K., Caput, D., Ferrara, P., and Callard, R. (1995). Function of the interleukin-2 (IL-2) receptor gamma-chain in biologic responses of X-linked severe combined immunodeficient B cells to IL-2, IL-4, IL-13 and IL-15. Blood 85, 38±42. Matthews, D. J., Hibbert, L., Friedrich, K., Minty, A., and Callard, R. E. (1997). X-SCID B cell responses to interleukin4 and interleukin-13 are mediated by a receptor complex that includes the interleukin-4 receptor alpha chain (p140) but not the gamma c chain. Eur. J. Immunol. 27, 116±121. McKenzie, G., Bancroft, A., Grencis, R., and Mckenzie, A. (1998a). A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr. Biol. 8, 339±342. McKenzie, G. J., Emson, C. L., Bell, S. E., Anderson, S., Fallon, P., Zurawski, G., Murray, R., and McKenzie, A. N. J. (1998b). Impaired development of Th2 cells in IL-13-deficient mice. Immunity 9, 423±432. Miloux, B., Laurent, P., Bonnin, O., Lupker, J., Caput, D., Vita, N., and Ferrara, P. (1996). Cloning of the human IL-13R1 chain and reconstitution with the IL-4R of a functional IL-4/IL-13 receptor complex. FEBS Lett. 401, 163±166. Mitsuyasu, H., Izuhara, K., Mao, X. O., Gao, P. S., Arinobu, Y., Enomoto, T., Kawai, M., Saski, S., Dake, Y., Hamasaki, N., Shirakawa, T., and Hopkin, J. M. (1998). IleVal variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma. Nat. Genet. 2, 119±120. Murata, T., Noguchi, P., and Puri, R. (1996). IL-13 induces phosphorylation and activation of JAK2 janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-13 signalling. J. Immunol. 156, 2972±2978. Murata, T., Husain, S. R., Mohri, H., and Puri, R. K. (1998). Two different IL-13 receptor chains are expressed in normal human skin fibroblasts, and IL-13 mediate signal transduction through a common pathway. Int. Immunol. 8, 1103±1110.
IL-13 Receptor 1519 Ogata, H., Ford, D., Kouttab, N., King, T. C., Vita, N., Minty, A., Stoeckler, J., Morgan, D., Girasole, C., Morgan, W. J., and Maizel, A. L. (1998). Regulation of interleukin-13 receptor constituents on mature human B lymphocytes. J. Biol. Chem. 279, 9864±9871. Orchansky, P., Ayres, S., Hilton, D., and Schraeder, J. (1997). An interleukin (IL)-13 receptor lacking the cytoplasmic domain fails to transduce IL-13-induced signals and inhibits responses to IL-4. J. Biol. Chem. 272, 22940±22947. Orchansky, P. L., Kwan, R., Lee, F., and Schrader, J. W. (1999). Characterization of the cytoplasmic domain of interleukin-13 receptor-alpha. J. Biol. Chem. 274, 20818±20825. Palmer-Crocker, R., Hughes, C., and Pober, J. (1996). IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the c chain. J. Clin. Invest. 98, 604±609. Poudrier, J., Graber, P., Herren, S., Gretener, D., Elson, G., Berney, C., Gauchat, J. F., and Kosco-Vilbois, M. H. (1999). A soluble form of IL-13 receptor alpha 1 promotes IgG2a and IgG2b production by murine germinal center B cells. J. Immunol. 163, 1153±1161. Punnonen, J., Aversa, G., Cocks, B., Mckenzie, A., Menon, S., Zurawski, G., de Waal Malefyt, R., and de Vries, J. (1993). Interleukin-13 induces interleukin-4-independent IgG4 and IgE synthesis and CD23 expression by human B-cells. Proc. Natl Acad. Sci. USA 90, 3730±3734. Roy, B., and Cathcart, M. K. (1998). Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of JAK2 and TYK2 in human monocytes. J. Biol. Chem. 273, 32023±32029. Sozzani, P., Hasan, L., Seguelas, M. H., Caput, D., Ferrara, P., Pipy, B., and Cambon, C. (1998). Il-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. Biochem. Biophy. Res. Commun. 244, 665±670.
Starr, R., Willson, T., Viney, E., Murray, L., Rayner, J., Jenkins, B., Gonda, T., Alexander, W., Metcalf, D., Nicola, N., and Hilton, D. (1997). A family of cytokine-inducible inhibitors of signalling. Nature 387, 917±921. Takeda, K., Kamanaka, M., Tanaka, T., Kishimoto, T., and Akira, S. (1996). Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J. Immunol. 157, 3220±3222. Urban, J., Noben-Trauth, N., Donaldson, D., Madden, K., Morris, S., Collins, M., and Finkelman, F. (1998). IL-13, IL-4R and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255±264. Welham, M. J., Learmonth, L., Bone, H., and Schrader, J. W. (1995). Interleukin-13 signal transduction in lymphohemopoietic cells. Similarities and differences in signal transduction with interleukin-4 and insulin. J. Biol. Chem. 270, 12286±12296. Wright, K., Kolios, G., Westwick, J., and Ward, S. G. (1999). Cytokine-induced apoptosis in epithelial HT-29 cells is independent of nitric oxide formation. Evidence for an interleukin-13driven phosphatidylinositol 3-kinase-dependent survival mechanism. J. Biol. Chem. 274, 17193±17201. Zhang, J., Hilton, D., Willson, T., McFarlane, C., Roberts, B., Moritz, R., Simpson, R., Alexander, W., Metcalf, D., and Nicola, N. (1997). Identification, purification and characterisation of a soluble interleukin (IL)-13-binding protein. Evidence that it is distinct from the cloned IL-13 receptor and IL-4 receptor alpha chains. J. Biol. Chem. 272, 9474±9480. Zurawski, G., and de Vries, J. (1994). Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B-cells but not on T-cells. Immunol. Today 15, 19±26. Zurawski, S., Chomarat, P., Djossou, O., Bidaud, C., Mckenzie, A., Miossec, P., Banchereau, J., and Zurawski, G. (1995). The primary binding subunit of the human interleukin-4 receptor is also a component of the interleukin-13 receptor. J. Biol. Chem. 270, 13869±13878.