Hydrodynamics of High-Speed Marine Vehicles 0521845688, 9780521845687, 9780511137235

This volume considers hydrodynamic aspects of the three main categories of high-speed marine vehicles, i.e. vessels supp

302 107 19KB

English Pages 476 Year 2006

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover......Page 1
Half-Title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 15
List of symbols......Page 17
1 Introduction......Page 23
Submerged hull–supported vessels......Page 24
Foil-supported vessels......Page 25
Air cushion–supported vessels......Page 26
1.1 Operational limits......Page 28
1.3 Summary of main chapters......Page 32
2.1 Introduction......Page 34
2.2 Viscous water resistance......Page 35
2.2.1 Navier-Stokes equations......Page 38
2.2.2 Reynolds-averaged Navier-Stokes (RANS) equations......Page 40
2.2.3 Boundary-layer equations for 2D turbulent flow......Page 41
2.2.4 Turbulent flow along a smooth flat plate. Frictional resistance component......Page 42
2.2.5 Form resistance components......Page 47
2.2.6 Effect of hull surface roughness on viscous resistance......Page 50
2.2.7 Viscous foil resistance......Page 53
2.3 Air resistance component......Page 57
2.4 Spray and spray rail resistance components......Page 58
2.6 Other resistance components......Page 60
2.7 Model testing of ship resistance......Page 61
2.8 Resistance components for semi-displacement monohulls and catamarans......Page 64
2.9 Wake flow......Page 67
2.10 Propellers......Page 69
Propeller slip stream......Page 73
2.10.1 Open-water propeller characteristics......Page 75
2.10.2 Propellers for high-speed vessels......Page 77
Example: Determination of propeller characteristics......Page 81
2.10.3 Hull-propeller interaction......Page 82
2.11 Waterjet propulsion......Page 83
2.11.1 Experimental determination of thrust and efficiency by model tests......Page 85
Thrust by conservation of fluid momentum......Page 87
Impeller effect by conservation of kinetic fluid energy......Page 88
2.11.2 Cavitation in the inlet area......Page 92
2.12.1 Scaling......Page 95
2.12.2 Resistance by conservation of fluid momentum......Page 96
A. Thrust by conservation of fluid momentum......Page 97
2.12.5 Steering by means of waterjet......Page 99
3.2.1 Free-surface conditions......Page 100
3.2.2 Linear long-crested propagating waves......Page 103
3.2.3 Wave energy propagation velocity......Page 106
3.2.4 Wave propagation from deep to shallow water......Page 108
3.2.5 Wave refraction......Page 109
3.2.6 Surface tension......Page 112
3.3 Statistical description of waves in a sea state......Page 113
3.4 Long-term predictions of sea states......Page 116
3.5.1 Fluid particle motion in regular waves......Page 117
3.5.3 Second-order wave theory......Page 119
3.5.5 Gravity waves in a viscous fluid......Page 120
4.1.1 Wave resistance......Page 121
4.1.2 Wash......Page 123
4.2 Ship waves in deep water......Page 125
4.2.2 Far-field wave patterns......Page 127
4.2.3 Transverse waves along the ship’s track......Page 129
4.3 Wave resistance in deep water......Page 132
4.3.2 Example: Wigley ship model......Page 134
4.3.3 Example: Tuck’s parabolic strut......Page 136
4.3.4 2.5D (2D+t) theory......Page 137
4.3.5 Multihull vessels......Page 142
4.3.6 Wave resistance of SES and ACV......Page 144
4.4 Ship in finite water depth......Page 145
4.4.1 Wave patterns......Page 148
4.5.1 Near-field description......Page 150
4.5.2 Far-field equations......Page 151
4.5.3 Far-field description for supercritical speed......Page 152
4.5.4 Far-field description for subcritical speed......Page 153
4.5.5 Forces and moments......Page 154
4.5.6 Trim and sinkage......Page 156
4.6.1 Thin ship theory......Page 157
4.6.3 Steady ship waves in a towing tank......Page 158
4.6.4 Wash......Page 159
4.6.6 Internal waves......Page 160
5.2 Water level inside the air cushion......Page 163
5.3 Effect of air cushion on the metacentric height in roll......Page 165
5.4 Characteristics of aft seal air bags......Page 167
5.5 Characteristics of bow seal fingers......Page 169
5.6 “Cobblestone” oscillations......Page 171
Equations of heave and dynamic cushion pressure and density......Page 172
Example: Natural frequency, damping, and vertical accelerations......Page 175
5.6.2 Acoustic wave resonance in the air cushion......Page 176
Simplified response model......Page 177
5.6.3 Automatic control......Page 180
5.7 Added resistance and speed loss in waves......Page 181
5.8 Seakeeping characteristics......Page 183
5.9.3 Damping of cobblestone oscillations by T-foils......Page 185
5.9.6 Cobblestone oscillations with acoustic resonance......Page 186
6.1 Introduction......Page 187
6.3.1 Static equilibrium in foilborne condition......Page 188
6.3.3 Cavitation......Page 191
6.3.4 From hullborne to foilborne condition......Page 195
6.3.5 Maneuvering......Page 198
6.4.1 2D flow......Page 200
6.4.2 3D flow......Page 206
6.5 2D steady flow past a foil in infinite fluid. Forces......Page 209
6.6 2D linear steady flow past a foil in infinite fluid......Page 210
6.6.1 Flat plate......Page 214
6.6.4 Weissinger’s “quarter-three-quarter-chord” approximation......Page 215
6.6.5 Foil with flap......Page 216
6.7.1 Prandtl’s lifting line theory......Page 217
6.7.2 Drag force......Page 219
6.8.1 2D flow......Page 221
6.8.2 3D flow......Page 224
6.9 Foil interaction......Page 227
6.10 Ventilation and steady free-surface effects on a strut......Page 230
6.11.1 2D flow......Page 231
6.11.2 2D flat foil oscillating harmonically in heave and pitch......Page 232
6.12 Wave-induced motions in foilborne conditions......Page 234
6.12.1 Case study of vertical motions and accelerations in head and following waves......Page 238
6.13.5 Roll-up of vortices......Page 241
6.13.6 Vertical wave-induced motions in regular waves......Page 242
7.1.2 Main characteristics of catamarans......Page 243
7.1.3 Motion control......Page 246
Free vibrations......Page 248
Response to impulsive loads......Page 250
7.2 Linear wave-induced motions in regular waves......Page 251
Vertical accelerations in the bow......Page 253
Wave-induced accelerations of cargo and equipment......Page 254
7.2.1 The equations of motions......Page 255
7.2.2 Simplified heave analysis in head sea for monohull at forward speed......Page 258
7.2.3 Heave motion in beam seas of a monohull at zero speed......Page 259
7.2.4 Ship-generated unsteady waves......Page 260
7.2.5 Hydrodynamic hull interaction......Page 262
Wave trapping due to vertical motions......Page 263
Piston mode resonance......Page 264
7.2.7 Hull-lift damping......Page 268
7.2.8 Foil-lift damping......Page 269
7.2.10 Ride control of vertical motions by T-foils......Page 271
7.2.11 Roll motion in beam sea of a catamaran at zero speed......Page 272
7.2.12 Numerical predictions of unsteady flow at high speed......Page 275
7.3 Linear time-domain response......Page 279
7.4.1 Short-term sea state response......Page 281
7.4.2 Long-term predictions......Page 282
7.5.1 Added resistance in regular waves......Page 283
7.6 Seakeeping characteristics......Page 285
7.7 Dynamic stability......Page 288
7.7.1 Mathieu instability......Page 290
7.8 Wave loads......Page 292
7.8.1 Local pressures of non-impact type......Page 293
Global wave loads in regular waves......Page 295
Global wave loads in a short-term sea state......Page 300
7.9.2 2D heave-added mass and damping......Page 304
7.9.3 Linear wavemaker solution......Page 305
7.9.4 Foil-lift damping of vertical motions......Page 306
7.9.7 Global wave loads in the deck of a catamaran......Page 307
8.1 Introduction......Page 308
8.2 Local hydroelastic slamming effects......Page 312
Free vibration phase of hydroelastic slamming......Page 314
Scaling......Page 319
8.2.1 Example: Local hydroelastic slamming on horizontal wetdeck......Page 320
8.2.2 Relative importance of local hydroelasticity......Page 321
8.3 Slamming on rigid bodies......Page 323
Pressure distribution......Page 324
Water entry force......Page 325
Asymmetric impact......Page 326
8.3.1 Wagner’s slamming model......Page 327
Prediction of wetted surface......Page 330
8.3.2 Design pressure on rigid bodies......Page 331
8.3.4 Effect of air cushions on slamming......Page 332
8.3.5 Impact of a fluid wedge and green water......Page 335
8.4 Global wetdeck slamming effects......Page 339
8.4.1 Water entry and exit loads......Page 341
8.4.2 Three-body model......Page 343
8.5 Global hydroelastic effects on monohulls......Page 347
8.5.1 Special case: Rigid body......Page 350
8.5.2 Uniform beam......Page 351
8.6 Global bow flare effects......Page 352
8.7 Springing......Page 356
8.7.1 Linear springing......Page 358
8.9.1 Probability of wetdeck slamming......Page 360
8.9.3 Water entry of rigid wedge......Page 361
8.9.6 3D flow effects during slamming......Page 362
8.9.9 Springing......Page 363
9.1 Introduction......Page 364
9.2 Steady behavior of a planing vessel on a straight course......Page 366
9.2.1 2.5D (2D+t) theory......Page 367
9.2.2 Savitsky’s formula......Page 371
Alternative flow description in the bow region......Page 375
Gravity effects......Page 376
9.2.3 Stepped planing hull......Page 377
Local analytical solution near the transom......Page 378
9.2.4 High-aspect–ratio planing surfaces......Page 380
9.3.1 Example: Forces act through COG......Page 382
9.3.2 General case......Page 384
9.4 Steady and dynamic stability......Page 385
9.4.1 Porpoising......Page 387
Restoring force and moment......Page 388
Added mass in heave and pitch......Page 390
Porpoising stability analysis......Page 392
Example: Porpoising stability......Page 394
9.5 Wave-induced motions and loads......Page 395
Generalized Froude-Kriloff loads......Page 396
Diffraction loads......Page 398
Summary......Page 399
9.5.3 Time-domain solution of heave and pitch in head sea......Page 400
9.5.4 Example: Heave and pitch in regular head sea......Page 402
9.6 Maneuvering......Page 405
9.7.1 2.5D theory for planing hulls......Page 407
9.7.3 Steady heel restoring moment......Page 408
9.7.6 Wave-induced vertical accelerations in head sea......Page 410
10.1 Introduction......Page 412
10.2 Traditional coordinate systems and notations in ship maneuvering......Page 415
10.3 Linear ship maneuvering in deep water at moderate Froude number......Page 417
10.3.1 Low-aspect–ratio lifting surface theory......Page 420
10.3.2 Equations of sway and yaw velocities and accelerations......Page 421
10.3.3 Directional stability......Page 422
10.3.5 Steady-state turning......Page 423
10.3.6 Multihull vessels......Page 424
10.5 Linear ship maneuvering in deep water at high Froude number......Page 425
CD-values for ship sections......Page 428
4. Effect of laminar or turbulent boundary-layer flow......Page 431
10.6.2 2D+t theory......Page 432
10.6.3 Empirical nonlinear maneuvering models......Page 437
10.7 Coupled surge, sway, and yaw motions of a monohull......Page 438
10.7.1 Influence of course control on propulsion power......Page 439
10.8 Control means......Page 441
10.9.1 Euler’s equation of motion......Page 443
10.9.2 Linearized equation system in six degrees of freedom......Page 447
10.9.3 Coupled sway-roll-yaw of a monohull......Page 448
10.10.1 Course stability of a ship in a canal......Page 453
10.10.3 Maneuvering in waves and broaching......Page 454
10.10.5 High-speed motion in water of an accidentally dropped pipe......Page 455
Appendix: Units of Measurement and Physical Constants......Page 457
References......Page 459
Index......Page 473

Hydrodynamics of High-Speed Marine Vehicles
 0521845688, 9780521845687, 9780511137235

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers