Handbook of Offshore Engineering Volume 1 [1 ed.]
0080443818, 9780080443812
* Each chapter is written by one or more invited world-renowned experts * Information provided in handy reference tables
269
120
247KB
English
Pages 1000
[669]
Year 2005
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Front Matter......Page 1
Volume 2. Handbook of Offshore Engineering......Page 0
Preface......Page 3
Table of Contents......Page 7
1.1 Introduction......Page 13
1.1.2 Historical Development......Page 14
1.1.3 Selection of Deepwater Production Concepts......Page 17
1.1.4 Offshore Disasters......Page 20
1.2 Deepwater Challenges......Page 21
1.3.1 Exploratory Drilling Structures......Page 23
1.3.2 Production Structures......Page 24
1.3.3 Storage Structures......Page 25
1.3.4 Export Systems......Page 26
1.4 Offshore Structure Configurations......Page 27
1.4.2 Floating Offshore Structures......Page 28
1.4.3 Floating vs. Fixed Offshore Structures......Page 29
1.5.1 Minimal Platforms......Page 31
1.5.2 Jacket Structures......Page 32
1.5.4 Jack-Ups......Page 33
1.5.6 Subsea Pipelines......Page 34
1.6.2 Compliant Tower......Page 36
1.6.3 Guyed Tower......Page 37
1.7.2 Drilling Units......Page 38
1.7.3 Production Units (FPSO and FPS)......Page 39
1.7.5.1 Semi-Submersible Platform......Page 40
1.7.5.2 Spar......Page 41
1.7.5.3 Tension Leg Platform......Page 42
1.7.5.4 MiniTLPs: SeaStar and Moses......Page 45
1.8 Classification Societies and Industry Standard Groups......Page 46
References......Page 48
2.1 Introduction......Page 51
2.2.1.1 Reservoir Characteristics and Modelling......Page 52
2.2.1.2 Drilling, Production and Export Requirements......Page 53
2.2.2.1 Bottom-Supported Structures......Page 54
2.2.2.2 Floating Structures......Page 55
2.3.1.1 Bottom-Supported Structures......Page 56
2.3.1.2 Floating Structures......Page 58
2.3.2.2 Excitation Forces......Page 59
2.3.2.3 Response of the Unit to Excitation Forces......Page 61
2.4.1.1 Multi-Purpose Vessel......Page 64
2.5.1 Bottom-Supported Systems......Page 65
2.5.1.1 Fixed Structures......Page 66
2.5.2 Neutrally-Buoyant Floating Systems......Page 68
2.5.2.1 Technically-Driven Innovations......Page 69
2.5.2.2 Technically and Economically-Driven Innovations......Page 71
2.5.3 Positively-Buoyant Floating Systems......Page 72
2.5.3.3 Buoyant Leg Structure (BLS)......Page 73
2.6.1 Overview......Page 75
2.6.2 Field Development Concept......Page 76
2.7 Discussion of Selected Innovative Structures......Page 77
2.7.2 Construction and Construction Schedule......Page 78
2.7.3 Transportation and Installation......Page 80
2.7.4.2 Downtime and Utilisation......Page 81
2.7.5.2 Utilisation Following Relocation......Page 82
2.7.6 Capital and Operating Expenditures......Page 83
2.7.8 Summary Discussion......Page 84
2.8.1.1 Hull Configuration and Vortex-Induced-Vibration (VIV) Phenomena......Page 85
2.8.1.3 Steel Catenary Risers (SCRs) and Their Response to High Current......Page 86
References......Page 87
3.1 Introduction......Page 90
3.3 Wave Theory......Page 91
3.3.1 Linear Wave Theory......Page 94
3.3.2 Second-Order Stokes Wave Theory......Page 102
3.3.3 Fifth-Order Stokes Wave Theory......Page 104
3.3.4 Stream Function Theory......Page 105
3.3.4.1 Regular Stream Function Theory......Page 106
3.3.4.2 Irregular Stream Function Theory......Page 107
3.3.5.3 Second-Order Stretching......Page 109
3.3.6 Applicability of Wave Theory......Page 112
3.3.8 Series Representation of Long-Crested Wave......Page 114
3.4 Breaking Waves......Page 115
3.5 Internal Waves......Page 116
3.6.1 Spectrum Model......Page 117
43818_v1_03b......Page 118
3.6.2 Applicability of Spectrum Model......Page 121
3.6.3 Simulation of Two-Dimensional Sea......Page 124
3.6.4 Directional Spectrum......Page 125
3.6.5 Simulation of Directional Sea......Page 127
3.7 Sea States......Page 128
3.8.1 Steady Uniform Current......Page 129
3.8.3 Combined Current and Waves......Page 130
3.9 Loop Current......Page 132
3.10.2 Wind Spectrum......Page 134
3.11 Offshore Environment by Location......Page 136
References......Page 141
4.1 Introduction......Page 143
4.2 Gravity Loads......Page 145
4.4 Resistance Loads......Page 146
4.5.1 Current Drag and Lift Force......Page 147
4.5.2 Blockage Factor in Current......Page 151
4.7 Wave Loads on Structures......Page 153
4.7.1 Morison Equation......Page 154
4.7.2 Forces on Oscillating Structures......Page 155
4.7.3 Wave Plus Current Loads......Page 160
4.7.4.1 Coefficients from Field Tests......Page 162
4.7.4.2 Design Guidelines of Certifying Agencies......Page 163
4.7.4.3 Example Design Procedures from API (2000)......Page 164
4.7.5 Froude-Krylov Force on Structure......Page 168
4.7.6 Wave Diffraction Force on Structure......Page 170
4.7.7 Added Mass and Damping Coefficients......Page 171
4.7.9 Linear Diffraction/Radiation Theory Software......Page 172
4.8 Applicability of Morison Force vs. Diffraction Force......Page 174
4.9 Steady Wave Drift Force......Page 176
4.9.1 Steady Drift Potential Force......Page 177
4.9.2 Viscous Drift Force......Page 180
4.10 Slow-Drift Wave Forces......Page 182
4.11 Varying Wind Load......Page 184
4.12 Impulse Loads......Page 185
4.12.1 Wave Slamming Load......Page 186
4.12.3 Wave Run-Up Load......Page 187
4.13.1 Structure Motion in One Degree......Page 188
4.13.2 Transient Response of Structure......Page 190
4.13.3 Forced Linearly Damped System......Page 193
4.13.4 Non-Linearly Damped Structure Response......Page 196
4.13.5 Motions of Floating Structure......Page 197
4.13.6 Interaction of Two Floating Structures......Page 198
4.13.8 Simplified Computation of Slow-Drift Oscillation......Page 199
4.13.9 High-Frequency Response......Page 201
4.13.10 Hydrodynamic Damping for Floating Systems......Page 202
References......Page 204
5.2 Wave Statistics......Page 207
5.2.1 The Gaussian Distribution......Page 211
5.2.2 The Rayleigh Distribution......Page 212
5.3 Response Statistics......Page 217
5.4.1 Design Wave......Page 220
5.4.2 Short-Term Design......Page 221
5.4.2.1 Short-Term Extreme Values......Page 222
5.4.2.2 Extreme Waves......Page 224
5.4.3.1 All Peak Values......Page 226
5.4.3.2 All Short-Term Extremes......Page 227
5.4.3.3 The Long-Term Extreme Value......Page 230
5.5.1 Combination of First- and Second-Order Responses......Page 232
5.6.1 Introduction......Page 234
5.6.2 Limit States and Failure Criteria......Page 237
5.7.1.1 Mechanical Properties of Structural Materials......Page 242
5.7.1.3 Loads and Imposed Deformations......Page 243
5.7.1.4 Uncertainties in the Theoretical Model......Page 244
5.7.2 Representation of Uncertainty......Page 245
5.7.3 Probabilistic Description of Response in Complex Structures......Page 247
5.7.3.1 Fatigue Analysis......Page 248
5.8.1 Elementary Case......Page 250
5.8.1.1 Tail Sensitivity of P_f......Page 252
5.8.2 Generalisation of Reliability Analysis......Page 253
5.8.2.1 FORM/SORM......Page 255
5.8.2.3 Time-Variant R and S......Page 257
5.8.2.4 Further Generalisation of Calculation of Reliability......Page 259
5.8.2.5 Target Reliability Level......Page 260
5.8.3.1 Elementary Format......Page 261
5.8.3.3 Time Variant Interaction between Strength Degradation and Overload Failure......Page 262
5.8.4.1 Probability-Based Design Values......Page 263
5.8.4.2 Multiple Loads, Single Load Effect - Strength Variable......Page 265
5.8.4.3 General Calibrations......Page 266
5.8.5 Probabilistic Calibration of Combination Values for Loads......Page 267
5.9.1 General......Page 269
5.9.2 Analysis of Simple Systems......Page 271
5.9.2.1 Simplified System Analysis of Framed Offshore Tower Structures......Page 273
5.10.1 General......Page 275
5.10.1.1 Event Updating......Page 277
5.10.2 Calibration of Fatigue Design Criteria......Page 280
References......Page 282
6.1.1 Introduction......Page 288
6.1.2 Design Spiral and Field Development Timeline......Page 289
6.1.3 Factors That Drive Concept Selection......Page 291
6.1.3.1 Field Development Cost......Page 292
6.1.3.2 Multi-Criteria Concept Selection......Page 297
6.1.4.1 Basic Design Phase......Page 299
6.1.4.2 Detailed Design Phase......Page 301
6.2.1 Introduction......Page 302
6.2.1.1 Major Structural Components......Page 303
6.2.1.2 Major Classes of Loads......Page 306
6.2.2 Selection of the Design Parameters......Page 308
6.2.3.1 Pile Size Selection......Page 312
6.2.3.2 Deck Leg and Deck Structure Dimensions Selection......Page 319
6.2.3.3 Jacket Bracing Configurations......Page 336
6.2.3.4 Jacket Leg Size Selection......Page 337
6.2.3.5 Jacket Brace Size Selection......Page 338
6.2.4 Computer Simulation and Detailed Analysis......Page 342
6.2.4.1 Deck and Jacket Geometry Simulation......Page 343
6.2.4.2 Foundation Simulation......Page 346
6.2.4.3 Checking the Platform Geometry Input......Page 351
6.2.4.4 Load Simulation......Page 352
43818_v1_06c......Page 353
6.2.4.5 Load Combination......Page 360
6.2.5 Solution of the Load Deflection Equation P_i = k_ij d_j......Page 365
6.3.1.1 Tubular Joints......Page 377
43818_v1_06d......Page 391
6.3.1.2 Pile to Jacket Connections......Page 396
6.3.2.1 Deepwater Jackets......Page 399
6.3.2.2 Compliant Tower Platforms......Page 407
6.3.3.2 Structural Elements of Jack-Up Platforms......Page 410
6.3.3.3 Global Structural Analysis of a Jack-Up Platform......Page 413
6.3.3.4 Simulation of the Major Structural Components......Page 414
6.3.3.5 Description of the Jack-up Platforms Components......Page 418
References......Page 422
7.1 Introduction......Page 427
7.2.2 Functions......Page 429
7.2.3 Motions......Page 431
7.2.4 Concept Selection......Page 432
7.3.1 Functional Requirements......Page 435
7.3.2 Configuration Proportions......Page 444
7.3.3 Weight Control......Page 445
7.3.4 Stability (Krish Thiagarajan, University of Western Australia, Perth, WA, Australia)......Page 448
7.3.5 Coordinate Systems and Transformations......Page 453
7.4 Floating Production Storage and Offloading Systems......Page 456
7.4.1 FPSO Hull Design......Page 457
7.4.2 Hull Structure......Page 459
7.4.3 Example FPSO Design......Page 460
7.4.5 Turret Design and Selection......Page 462
7.4.5.1 Turret Designs......Page 463
7.4.5.2 Moorings Interface......Page 466
7.4.6.4 Fire Water System......Page 470
7.4.6.6 Offloading......Page 471
7.5.1 History of the Semi-Submersible......Page 472
7.5.2 Distinctions between a MODU Semi-Submersible and an FPS......Page 477
7.5.3 Semi-Submersible Design......Page 478
7.5.4 Functions and Configurations of Semi-Submersibles......Page 479
7.5.5 Sizing of Semi-Submersibles......Page 486
7.5.6 Initial Design Process......Page 492
7.5.7 Closed-Form Heave RAO Calculation......Page 495
7.5.8 Weight and Buoyancy Estimates......Page 498
7.5.9 Semi-Submersible Hull Structure......Page 503
7.6.1 Introduction......Page 509
7.6.2 Functions and Configurations of TLPs......Page 512
7.6.3 TLP Mechanics......Page 515
43818_v1_07d......Page 521
7.6.4 Sizing of TLP......Page 522
7.6.5 Weight Estimates of TLPs......Page 532
7.6.6 TLP Hull Structure......Page 536
7.7.1 History of Spars......Page 544
7.7.2 Spar Description......Page 548
43818_v1_07e......Page 549
7.7.3 Spar Riser Systems......Page 550
7.7.4 Spar Mooring......Page 552
7.7.5 Spar Sizing......Page 553
7.7.6 Drilling from a Spar......Page 559
7.7.7 Spar Construction and Installation......Page 563
7.8.2 Applicable Code......Page 571
7.8.3 Structural Design Considerations......Page 573
7.8.4 Hull Structure Design......Page 576
43818_v1_07f......Page 577
7.8.5 Local Strength Design......Page 580
7.8.6 Hydrostatic Loading......Page 581
7.8.7 Plate Thickness......Page 585
7.8.8 Stiffener Sizing......Page 590
7.8.9 Framing......Page 603
43818_v1_07g......Page 604
7.8.10 Global Strength......Page 612
7.8.11 Buckling......Page 625
7.8.12 Fatigue......Page 638
43818_v1_07h......Page 640
7.9.1 Fabrication......Page 654
7.9.2 Transportation......Page 656
7.9.3 Derrick Barges......Page 660
References......Page 661