513 86 21MB
English Pages 1842 Year 2006
q 2006 by Taylor & Francis Group, LLC
q 2006 by Taylor & Francis Group, LLC
q 2006 by Taylor & Francis Group, LLC
Preface “Just do an Internet search.” “It’s on the Internet.” How often have we said or been told that we could find it on the Internet. This third edition of The Water Encyclopedia: Hydrologic Data and Internet Resources started from a premise that most of the information provided within this publication could be found on the Internet. As our team of contributing authors started reviewing each section within each chapter, it soon became apparent that you cannot always find it on the internet. This edition represents many hours of effort to identify the most current information on a wide range of waterrelated topics whether it can be found on the internet or in other sources. The Encyclopedia has retained many of the elements of the previous editions but has also been expanded to reflect the many changes within the environmental industry as well as the current and topical water-related matters of the last decade. Prepared by scientists and engineers, this publication is intended to serve as a valuable resource to all professionals dealing with water-related issues as well as the general public. The material presented has been footnoted to provide the user with the opportunity to return to the original source material for additional research. Where possible, an Internet URL address is provided to guide the user to the appropriate source. The third edition of the Encyclopedia has been significantly expanded beyond the previous edition. The first two chapters of this edition are new and discuss data management and international data collection. Data management concepts are presented to review the use of databases, geographic information systems (GIS), data reporting and metadata. Data repositories and availability vary around the world and range in ease of access and usability. The international data collection provides some direction on potential data sources in less developed areas as well as case histories of actual project work and Internet sources for international water-related data. This edition contains more than 1100 tables and 500 figures providing data related to weather, surface water, groundwater, water use, water quality, waste water, pollution, and water resource management. The pollution chapter alone has grown to contain some 450 plus tables and figures. Wastewater, previously included within the pollution chapter, is presented as a stand-alone chapter to facilitate use of this reference. A chapter of useful conversion factors and constants concludes this edition. Whether you are looking for a specific piece of information or exploring one or more of the many topics related to water, this edition provides its users with a tremendous wealth of data whether on the Internet or not.
q 2006 by Taylor & Francis Group, LLC
Acknowledgments We want to extend our thanks and appreciation to the many individuals, publishers, and organizations that have made this third edition a reality. Without their time, cooperation, collaboration, this work would not have been possible. Most importantly, the support and access to resources for the management of this compilation provided by ARCADIS G&M was invaluable, and their on-going support and encouragement to undertake these efforts are deeply appreciated. A number of individual contributors were involved in compiling the relevant information for each of the chapters and they are identified at the start of their chapters. Our thanks and appreciation to you and your families for the time committed to completing this task. Behind the scenes and the backbone of keeping everything organized, we want to extend a special thanks to Chris Worden and Carla Gerstner for their encouragement, patience, and the occasional stern word. Additionally, we want to acknowledge Barbara Kelly and Amanda Fierro for their efforts in preparing materials for the manuscript.
q 2006 by Taylor & Francis Group, LLC
The Editors Pedro Fierro, Jr. is a hydrogeologist and associate vice president with ARCADIS G&M, Inc., where he is involved with a wide variety of environmental assessments and remediation programs. He has been responsible for the direction of several hundred sites addressing environmental issues. Fierro has addressed various audiences on topics ranging from sampling methodologies, regulatory compliance, site assessment techniques, liability management, and remediation technologies. Fierro received his bachelor’s degree in geology from the University of Rochester, Rochester, New York and his master’s degree in geology with an emphasis on groundwater studies from the University of Kentucky. He currently holds geological professional licenses/registrations in Alabama, Florida, Georgia, Kentucky, Pennsylvania, and Tennessee. He is a certified groundwater professional and a certified professional geologist. He was a contributing author to In Situ Treatment Technology. Evan K. Nyer is a senior vice president with ARCADIS G&M, Inc., where he is responsible for maintaining and expanding the company’s technical expertise in geology/hydrogeology, engineering, fate and transport, and remediation technologies. He has been active in the development of new treatment technologies for many years. He has been responsible for the strategies, technical designs and installations of more than 400 groundwater and soil remediation systems at contaminated sites throughout the United States. Nyer also lectures, provides expert testimony, and serves as the public spokesperson for one technically complicated site. Nyer received his graduate degree in environmental engineering from Purdue University and has authored five books: Practical Techniques for Groundwater and Soil Remediation, published by Lewis Publishers, Inc.; Groundwater Treatment Technology, first and second edition, published by Van Nostrand Reinhold; Groundwater and Soil Remediation, and In Situ Treatment Technology (now in its second edition) published by CRC Press; and is co-author of Bioremediation, published by the American Academy of Environmental Engineers. Nyer is a regular contributor to Groundwater Monitoring and Remediation having had his own column “Treatment Technology” in the periodical for the past 20 years.
q 2006 by Taylor & Francis Group, LLC
Contributors James M. Bedessem ARCADIS G&M, Inc. Tampa, Florida
Melvin Rivera ARCADIS G&M, Inc. Tampa, Florida
Brian Burke ARCADIS G&M, Inc. Tampa, Florida
Christopher Spooner ARCADIS G&M, Inc. Tampa, Florida
Pedro Fierro, Jr. ARCADIS G&M, Inc. Tampa, Florida
Gustavo˜ Suarez ARCADIS G&M, Inc. Tampa, Florida
William H. Lynch ARCADIS G&M, Inc. West Palm Beach, Florida
Katherine L. Thalman ARCADIS G&M, Inc. Tampa, Florida
Daniel J. McCarthy ARCADIS G&M, Inc. Philadelphia, Pennsylvania
Daniel Zell Dewberry & Davis, LLC Fairfax, Virginia
q 2006 by Taylor & Francis Group, LLC
Contents Chapter 1 Data Management ...................................................................................................................................................... 1-1 Daniel J. McCarthy Chapter 2 International Data Collection .................................................................................................................................... 2-1 Daniel Zell Chapter 3 Climate and Precipitation .......................................................................................................................................... 3-1 Pedro Fierro, Jr. Chapter 4 Hydrologic Elements ................................................................................................................................................. 4-1 Brian Burke Chapter 5 Surface Water ............................................................................................................................................................ 5-1 Christopher Spooner Chapter 6 Groundwater .............................................................................................................................................................. 6-1 Melvin Rivera Chapter 7 Water Use .................................................................................................................................................................. 7-1 Katherine L. Thalman Chapter 8 Water Quality ............................................................................................................................................................ 8-1 Katherine L. Thalman and James M. Bedessem Chapter 9 Wastewater ................................................................................................................................................................. 9-1 William H. Lynch Chapter 10 Environmental Problems ........................................................................................................................................... 10-1 Katherine L. Thalman Chapter 11 Water Resources Management .................................................................................................................................. 11-1 Gustavo˜ Suarez Chapter 12 Agencies and Organizations ...................................................................................................................................... 12-1 Pedro Fierro, Jr. Chapter 13 Constants and Conversion Factors ............................................................................................................................ 13-1 Pedro Fierro, Jr.
q 2006 by Taylor & Francis Group, LLC
CHAPTER
1
Data Management Daniel J. McCarthy
CONTENTS 1.1 1.2 1.3 1.4 1.5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Database Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geographic Information Systems Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Understanding Data Management Needs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 Spatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Temporal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Data Validation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Data Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.1 Querying Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.2 Reporting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
INTRODUCTION
Data management encompasses many tasks, priorities, and decisions. Underlying these activities is the need for an accurate data from sampling and monitoring programs designed to measure the effects of operational activities. To understand the value of good data management, it is helpful to understand the nature of how this information is generated and used to support management decisions. So what is data? The American Heritage Dictionary defines data as factual information, especially information organized for analysis or used to reason or make decisions, or values derived from scientific experiments. Scientific professionals generate huge quantities of data every day. It is estimated that scientists spend 80% of their time managing the data and 20% analyzing and
1-1 1-1 1-3 1-4 1-5 1-5 1-6 1-7 1-7 1-7 1-8 1-8 1-9
interpreting. By establishing sound data management practices, more time can be spent in data analysis and interpretation. Throughout this chapter, we will provide examples of data management practices within the context of an investigation of contaminated groundwater and surface water. These practices are directly applicable to managing other types of data, such as those found in this book.
1.2
DATABASE OVERVIEW
A discussion of data management would be incomplete without a general discussion of databases. A very general definition of a database might be “A collection of related items of information contained on
1-1 q 2006 by Taylor & Francis Group, LLC
1-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 1.1 Groundwater and Surface Water Location Data Location ID SW-01 SW-02 SW-03 SW-04 SW-05 MW-01 MW-02 MW-03
Area of Concern Upstream Upstream Outfall 1 Downstream Downstream Background area Oil storage area Oil storage area
various media organized in a way that allows easy search and retrieval of subsets of the items of information.” Note that, strictly speaking, a database does not have to be electronic: Boxes containing recipes, telephone books, or paper address books are all databases. A database used for environmental purposes might be composed of a combination of paper copies of information along with items of information contained in electronic form, with perhaps some sort of paper or electronic index to or inventory list of all of the data. Electronic data are nearly always organized into tables. Consider the example shown in Table 1.1. Each row of this table represents a single data point; in this case the first row provides data about location SW-1, and only SW-1. Each column of this table represents a type of data that is stored for each row. In our example, the Area of Concern column identifies the spatial group that each location belongs to. The rows in a database table are typically called “records,” while the columns are called “fields.” Thus, a useful definition of an electronic database is “A collection of related items of data organized into one or more tables.” Each field is constrained to a single data type. Table 1.2 lists the most common data types. Electronic databases are typically either “flat file databases,” in which the entire database resides in a Table 1.2 Common Data Types Data Type Integer Decimal Floating point
Fixed length character Date/Time Boolean Unstructured data
Description or Example Typically stores numbers that relate to counts quantities, or, ID numbers Numbers with fractional parts such as percentages or rates Numbers with a scientific notation that can be calculated approximately, such as distance or weight Names, descriptions, addresses Storage of date and/or time or intervals of dates or times Explicit constraints (Yes/No, True/False) or logical constraints (AND/OR) Images, video, audio
q 2006 by Taylor & Francis Group, LLC
x
y
z
1,75,470.994 1,77,126.487 1,77,047.029 1,76,871.093 1,75,790.418 1,74,345.077 1,74,251.127 1,74,690.942
16,35,550.124 16,35,925.814 16,35,676.853 16,35,674.137 16,35,597.208 16,32,431.087 16,32,466.059 16,31,435.707
100.203 100.102 100.00 98.97 97.96 96.597 97.384 97.384
single table, or “relational databases,” in which the data are distributed into more than one table, which are then linked together by a common key field. The tables will be related to one another according to a one-to-one (each record in one table has a single matching record in the other table) or one-to-many relationship (each record in one table may have one or more matching records in the other table, but not the reverse). One significant advantage of relational databases to flat-file databases is the ability to query the data in different ways. A query is defined as a statement to retrieve database records that match certain criteria. By structuring the query statement a certain way, different information can be returned from the data set. The most popular general-purpose software for managing data is an electronic spreadsheet program such as Microsoft Excel. Electronic spreadsheets are excellent tools for managing electronic data that fit in a single table. However, spreadsheets are cumbersome or inadequate tools for managing relational data, where more than one table is required. For managing relational data, other more powerful data management programs should be used. There are many popular relational database management systems available, including Microsoft Access. It should be noted that, in contrast to flat-file databases, which typically can be managed by the casual computer user, large relational databases require management by trained individuals, and will usually be beyond the capabilities of the casual user. The field of database management is continually in flux, and would have changed by the time this book is published. Thus, it is impossible to cover all the facets of data management and database theory here. However, it can be said that the relational database model overwhelmingly dominates large-scale data management and database theory. For further information about relational databases, the reader is directed to any of the numerous references on this subject. A particularly helpful book designed for the casual database user is by Michael J. Hernandez (2003) entitled Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design, Addison–Wesley Developers Press.
DATA MANAGEMENT
1.3
1-3
GEOGRAPHIC INFORMATION SYSTEMS OVERVIEW
Data are often presented in a tabular format. Sometimes, a visual representation is helpful in drawing conclusions, particularly if the data have a spatial component. A Geographical Information System (GIS) is a way to display information with a spatial component. GIS can be defined as a software package that manages and displays information in a database composed of data that are associated with spatial information. That is to say, there will be both tabular and spatial information in the database, it will be possible to query the database for specific data, and the user will be able to display the data spatially, as a map. The software package comprising the GIS may be a single program, a set of programs from a single vendor, a combination of programs that together constitute the GIS, a custom-programmed software package, or any combination thereof. In the groundwater arena, the tabular data could typically be depth to water data, water table elevation data, water chemistry data, and water quality data. In addition, the tabular data will have some spatial component in either two or three dimensions, as x–y–z coordinates. Spatial data, in addition to the x–y–z coordinates mentioned above, often will include digitally processed air or satellite photographs, computer-aided design (CAD) drawings, or other electronic spatial
entities. Clearly, depth to water data and water chemistry data, which can be displayed in both plan view (twodimensional) and side view (three-dimensional), are well suited to management using a GIS. Table 1.3 is an example of data from a GIS system representing depth to groundwater. When generated in a GIS system in plan view, the view can look like Figure 1.1. The primary attraction of a GIS is the ability to manage, query and display a large amount of data spatially, in real time. Using most GISs, the user can view the data on a map, query for a subset of the data while viewing the map, and then see the distribution of the subset data when the map is refreshed. This process can be repeated as many times as necessary to answer a question. For example, the temporary wells in the previous figure were not measured during the August sampling event. By querying the GIS system only for locations that were measured during the August event, we return a subset of the data, shown in Table 1.4. From this set of data, our map would look like Figure 1.2. The literature on GISs is voluminous. Because GISs have a wide applicability throughout many disciplines, the reader is directed to the internet, where search engines associated with any popular internet portal (Yahoo! or America Online, for example) may be used to find literally thousands of references on the subject.
Table 1.3 Depth to Groundwater Data from GIS System Well_Id MW131 MW132 MW133 MW134 MW135 MW136 MW137 TW-161 TW-162 TW-163 TW-164 TW-165 TW-166 TW-167 TW-168 TW-169 TW-170 TW-171 TW-172 TW-173 TW-174 TW-175
Loc_Type Monitor well Monitor well Monitor well Monitor well Monitor well Monitor well Monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well Temp monitor well
q 2006 by Taylor & Francis Group, LLC
X_Coord
Y_Coord
Date
Gwelev
25,48,766.73000 25,48,671.72700 25,48,677.58100 25,48,740.41300 25,48,668.82800 25,48,747.90500 25,48,704.97300 25,48,677.70000 25,49,393.00000 25,49,412.00000 25,48,775.80000 25,48,788.62000 25,48,656.95000 25,48,690.37000 25,48,618.73000 25,48,672.29000 25,48,722.90000 25,48,745.57000 25,48,758.72000 25,48,304.43000 25,48,314.10000 25,48,247.26000
3,19,202.76570 3,19,228.04840 3,19,285.61010 3,19,287.73680 3,19,335.81440 3,19,346.29610 3,19,107.44400 3,18,512.69000 3,17,485.00000 3,17,501.00000 3,19,271.63000 3,19,196.71000 3,19,215.44000 3,19,153.66000 3,19,285.76000 3,19,291.02000 3,19,286.09000 3,19,224.97000 3,19,164.83000 3,19,248.26000 3,19,441.75000 3,19,666.89000
8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004
19.21000 20.38000 19.23000 18.13000 18.78000 16.71000 21.40000 NM NM NM NM NM NM NM NM NM NM NM NM NM NM NM
1-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
MW136 16.71 MW135 18.78
17 TW-169 MW133 19.23
TW-168
TW-170
MW134 18.13
TW-164
18
19 MW138 20.38
TW-171
TW-166 MW131 19.21 TW-165
20
TW-172
TW-167
21
Legend Monitoring well
MW137 21.4
Temporary monitoring well
N 21.07
Groundwater elevation (ft MSL)
18
Groundwater elevation contour (dashed where inferred)
0
30
60
120
180 Feel
Figure 1.1 Example of groundwater elevation data from GIS System.
1.4
UNDERSTANDING DATA MANAGEMENT NEEDS
Initially designing a data management program for an investigation or experiment requires significant scientific Table 1.4 Subset of Table 1.3 Data for August Events Only Well_Id MW131 MW132 MW133 MW134 MW135 MW136 MW137
Loc_Type Monitor well Monitor well Monitor well Monitor well Monitor well Monitor well Monitor well
X_Coord
Y_Coord
Date
Gwelev
25,48,766.73000 25,48,671.72700 25,48,677.58100 25,48,740.41300 25,48,668.82800 25,48,747.90500 25,48,704.97300
3,19,202.76570 3,19,228.04840 3,19,285.61010 3,19,287.73680 3,19,335.81440 3,19,346.29610 3,19,107.44400
8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004 8/17/2004
19.21000 20.38000 19.23000 18.13000 18.78000 16.71000 21.40000
q 2006 by Taylor & Francis Group, LLC
expertise. However, after design and implementation, the processes generally follow a well-defined and straightforward cycle. In our groundwater contamination example, samples are routinely collected and sent to laboratories where they are analyzed with the results reported in the form of a hard-copy analytical results report. From this point on, the data are put to multiple uses to meet a variety of needs. Some portion of the data are collected and reported under the requirements of environmental permits, while additional data are generated voluntarily to further the objectives of sound environmental management. Accountability for effectively managing the collection and utilization of this information according to well-defined processes within
DATA MANAGEMENT
1-5
MW136 16.71 MW135 18.78
17 MW134 18.13
MW133 19.23
18
19
MW132 20.38
MW131 19.21
20
21 MW137 21.4
N
Legend Monitoring well 21.07 Groundwater elevation (ft MSL) 18
Groundwater elevation contour (dashed where inferred)
0
30
60
120
180 Feel
Figure 1.2 Groundwater elevation data from August only.
standardized software environments is essential to effective environmental management. Problems with data collection can be mitigated with a data management plan. This plan will typically specify how data are to be labeled and categorized, the format that the data are to be stored in, how to handle data collected over a period of time or over a significant geographic area, and procedures to account for changes in the investigation and experiment. The advantage to having a data management plan is that it allows the users to collect, label, and record data in a consistent manner. By doing so, retrieval of that data does not have to take into account bias on the part of the individual collecting the data. Consistent terms, units, methods and procedures, will allow any user to retrieve data accurately and quickly. q 2006 by Taylor & Francis Group, LLC
1.5 1.5.1
DATA CATEGORIZATION
Spatial Data
Data found in this book are often of two distinct types: data with a spatial representation and that of a temporal representation. Water quality, for example, can be represented as changing over an area based on land use, and can also be represented as changing over time due to urban development changing the drainage pathways. It is often helpful to have a defined nomenclature when collecting and categorizing data. This nomenclature makes it easy to glean basic information from the raw data, as well as expediting queries from the data management system. As an example, consider the following spatial data, shown in Table 1.5.
1-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 1.5 Spatial Data for Groundwater and Surface Water Locations Location ID SW-01 SW-02 SW-03 SW-04 SW-05 MW-01 MW-02 MW-03
Area of Concern Upstream Upstream Outfall 1 Downstream Downstream Background area Oil storage area Oil storage area
x
y
z
1,75,470.994 1,77,126.487 1,77,047.029 1,76,871.093 1,75,790.418 1,74,345.077
16,35,550.124 16,35,925.814 16,35,676.853 16,35,674.137 16,35,597.208 16,32,431.087
100.203 100.102 100.00 98.97 97.96 96.597
1,74,251.127
16,32,466.059
97.384
1,74,690.942
16,31,435.707
97.384
Consistent nomenclature for identifying spatial locations is crucial to maintaining data integrity, particularly where there is sensitivity to geographic, political, and physical boundaries. In addition, each location should be unique in order to maintain referential integrity within the data management system. This unique value in this table is referred to as a primary key. The location IDs are coded in such a way to let the reader know at a glance what type of location it is. Acceptable locations types in this example include: Location Type Identifier
Location Type Description
MW SW
Monitoring well Surface water
The Area of Concern column provides a general categorization of where the location occurs within the context of the immediate surroundings. This is useful for queries that would ask for all data found in a particular site-specific area. The example table also presents spatial data in the form of x, y, and z coordinates. Spatial data for each location should be collected in a form that is consistent with use at the site, but that can also reference features that are located nearby, such as surface water bodies, wetland areas, or other physiographic features. Use of a consistent coordinate system will make sure that all the data can be compared to each other. Examples of coordinate systems include latitude, longitude and height, Universal Transverse Mercator (UTM), Earth Centered, Earth Fixed Cartesian (ECEF), and State Plane coordinates. In our example, the coordinates are in State Plane Coordinates. In the United States, the State Plane System was developed in the 1930s and was based on the North American Datum 1927 (NAD27), which are based on the foot. A more recent variation is the NAD83 system, which is based on the North American 1983 datum and is based on the meter. q 2006 by Taylor & Francis Group, LLC
The State Plane System was developed to provide local references tied to a national datum. Most USGS 7.5 Minute Quadrangles use several coordinate system grids including latitude and longitude, UTM kilometer tic marks, and applicable State Plane coordinates. 1.6 TEMPORAL DATA With the establishment of the spatial locations, data collected over time can be collected and referenced. Consider Table 1.6, which summarizes data from samples collected from our groundwater and surface water locations. Consistent nomenclature for sample identifications is crucial to maintaining data integrity. And sample identifications should be unique in order to maintain referential integrity. Character limits are often in place in database management systems; therefore, care should be taken in minimizing spaces, dashes, or parentheses. In our example, the date of collection is captured in the sample ID in parentheses, which allows each sample to be unique. By including the Location ID in this table, we establish a relationship to the previous table. This relationship allows us to query the data in different ways. Because the relationship is of one location to many samples, this is referred to as a one-to-many relationship. The Location ID in this table is referred to as a foreign key because it matches primary key values in our spatial data table presented earlier. Together the primary and foreign keys create a parent/child relationship, which is at the heart of relational database systems. The Sample Type column provides an identifier to discriminate individual samples from each other based on quality assurance needs. In this example, all of the samples have a normal “N” type. If duplicate samples were required for quality assurance purpose to check on the validity of the data set, one could identify the sample type as a “D” for duplicate. The Sample Matrix column identifies what the medium collected for each sample was, through Table 1.6 Sample Information from Groundwater and Surface Water Locations Sample ID
Location ID
Sample Type
Sample Matrix
Sample Date
Sample Time
SW-1(081602)
SW-1
N
WS
8/16/2002
13:00
SW-2(081602)
SW-2
N
WS
8/16/2002
13:10
SW-3(081602))
SW-3
N
WS
8/16/2002
13:20
SW-4(081602)
SW-4
N
WS
8/16/2002
13:30
SW-5(081602)
SW-5
N
WS
8/16/2002
14:31
MW-01(111301)
MW-01
N
WG
11/13/2001
15:22
MW-01(111401)
MW-01
N
WG
11/14/2001
16:31
MW-01(111501)
MW-01
N
WG
11/15/2001
11:00
DATA MANAGEMENT
1-7
an abbreviated two-digit code. Examples of these kinds of matrices are: Sample Matrix
Matrix Description
WB
Water collected from borehole or during geoprobe investigation Estuary water Ground water Leachate Ocean water Drinking water Water quality control matrix Surface water Waste water
WE WG WL WO WP WQ WS WW
The sample date and time columns allow the data to be sorted from more recent to historical and can provide a context for how the data changes over time. Continuing with our groundwater contamination example, consider Table 1.7, which summarizes the data obtained from an analytical laboratory. The primary key (Sample ID) is present again to establish the relationship back to the other tables. The other columns relate information related to the analyses performed on the samples and the results. Each of these records represents a concentration of a given chemical at a given location for a specific point in time. As chemical concentrations, detection limits and detections change, those data points would be represented as new records in the database. This can be illustrated in the following query result, shown in Table 1.8. 1.7
DATA VALIDATION AND VERIFICATION
Once data are collected into the database, steps must be taken to ensure that it was collected accurately and is representative of the source. Data verification checks the compliance of the collected data against known requirements of the experiment or investigation. For example, using the data set shown above, we
would verify with the analytical laboratory that the groundwater samples were analyzed according to specific methods, such as the use of the calibration samples for laboratory equipment. If a verification check fails, then the data may be considered suspect. Data validation, by contrast, must take into account the suitability of the data, and must take into account how the data were collected, how the data were analyzed, and finally, based on the results of the review of the collection and analysis processes, how the data should be used. If the collection process is found to be flawed, the data might be discarded or used for qualitative purposes only. The United States Environmental Protection Agency has provided guidance documents on validating data, which can be found at www.epa.gov/ superfund/programs/clp/guidance.htm.
1.8 DATA REPORTING Once the data have been collected and validated into the data management system, it is time to retrieve the data and make some conclusions about its meaning. Data retrieval usually takes the form of querying the data and then reporting the data.
1.8.1
Querying Data
A query is a programmatic statement that asks a question about the data. Each query usually specifies a criterion, which is a condition or test that must be met in order for a given record to be selected. Queries produce subsets of data, which are the records that match the conditions of the query. For example, a query might request the locations where a certain chemical, e.g. carbon tetrachloride, exceeds a certain concentration, e.g. 500 mg/L. This query would produce a result like the one presented below in Table 1.9.
Table 1.7 Analytical Data Summary Sample ID
Matrix
SDG
Lab Method
Chemical
Result
RDL
Detect
Unit
SW-1(081602)
WG
884825
SW8260
Carbon disulfide
2.5
N
mg/L
SW-1(081602)
WG
884825
SW8260
Xylene (total)
2.5
N
mg/L
SW-1(081602)
WG
884825
SW8260
Ethylbenzene
0.2
N
mg/lL
SW-1(081602)
WG
884825
SW8260
Carbon tetrachloride
Y
mg/L
670
25
Table 1.8 Additional Analytical Data Sample ID
Matrix
SDG
Sample Date
Lab Method
SW-1(081602)
WG
SW-1(111602)
WG
884825
8/16/2002
SW8260
884825
11/16/2002
SW8260
SW-1(011603)
WG
884825
01/16/2003
SW-1(031603)
WG
884825
03/16/2003
q 2006 by Taylor & Francis Group, LLC
Chemical
Result
RDL
Detect
Unit
Carbon tetrachloride
670
25
Y
mg/L
Carbon tetrachloride
340
25
Y
mg/L
SW8260
Carbon tetrachloride
100
5
Y
mg/L
SW8260
Carbon tetrachloride
5
N
mg/L
1-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 1.9 Query Results for Carbon Tetrachloride Concentrations over 500 mg/L Sample ID
Matrix
SDG
Lab Method
Chemical
Result
RDL
Detect
Unit
WG
884825
SW8260
Carbon tetrachloride
670
25
Y
mg/L
SW-1(081602)
Table 1.11 Crosstab Query Results
Table 1.10 Data Summary for Crosstab Query Loc ID
AoC
Nitrate
Iron
Sulfate Concentration
SW-01
Upstream
200
599
100.203
SW-02
Upstream
250
342
100.102
SW-03
Background area
300
105
100
SW-04
Downstream
100
20
98.97
SW-05
Downstream
50
40
97.96
MW-01
Background area
75
50
96.597
MW-02
Oil storage area
60
65
97.384
MW-03
Oil storage area
35
10
97.384
Area of Concern Background Area
Data Average of nitrate
Downstream
Oil Storage Area
Upstream
187.5
75
47.5
225
Average of iron
77.5
30
37.5
470.5
Average of sulfate
98.2985
98.465
97.384
100.1525
concentration Max of nitrate
300
100
60
250
Max of iron
105
40
65
599
Max of sulfate
100
98.97
97.384
100.203
concentration
This type of query is referred to a selection query; it returns the selection based on the criteria. Other types of queries, available in Microsoft Access for example, include action queries and crosstab queries. Action queries change record information by specifying criteria and changing the values in given fields based on those criteria. An example of an action query would be the application of data qualifiers following a rigorous validation of the collected data. For example, in our surface water example, the data validation process might uncover that the analytical laboratory initially reported the reported detection limit of carbon tetrachloride as 25 mg/L but in fact it should have been 100 mg/L. An action query could be used to specify the criteria (Sample SW-1(081602) and carbon tetrachloride) and correct the reported detection limit (RDL) from 25 to 100. Crosstab queries perform aggregate calculations on the value of a field, using one or more other fields as rows and one field’s data as columns. For example, consider the data set shown in Table 1.10. An analysis of this data might help refine a remedial course of action for impacted groundwater. Useful calculations to perform would be the average and the maximum values of each of the constituents. A crosstab query of this data would generate the following results, shown in Table 1.11.
1.8.2
Reporting Data
Once data have been retrieved through a query process, it can be reported in tabular format, like those found in this chapter and elsewhere in this book, graphically in the form of charts and graphs, or if there is a spatial representation to the data, as a figure in a GIS system. q 2006 by Taylor & Francis Group, LLC
1.9
METADATA
The formal definition of metadata is simply “data about data.” Metadata is the information about a data source, for example, a book contains information, but there is also information about that book such as the author and publisher—this is the metadata. Metadata in the context of this book can be used to describe how a particular data table was assembled, who collected the data, what method was used to collect and aggregate the data, the sources of the data. In our groundwater contamination example, metadata might include who did the surveying for the locations, the date of that survey, and the coordinate system specification. For the sample data, the metadata might consist of the following components, shown in Table 1.12.
Table 1.12 Examples of Metadata Components Field Name num
COC Sent_to_lab_date Sample_receipt_date Sampler Sampling_company Sampling_reason Sampling_technique Task_code Collection_quarter Composite_yn Composite_desc
Field Description Chain of custody identifier Date sample was sent to lab Date that sample was received at laboratory Name or initials of sampler Name or initials of sampling company Reason for sampling Sampling technique Code used to identify the task under which sample was retrieved Quarter of the year sample was collected (e.g., "1Q96") Boolean field used to indicate whether a sample is a composite sample Description of composite sample (if composite_yn is YES)
DATA MANAGEMENT
Within the context of GISs, metadata almost always refers to “data about digital geospatial data.” Throughout this discussion, the term “metadata” is used under this restricted definition to refer to the content, quality, condition, and other characteristics of digital geospatial data. Metadata for electronic images should include, as a minimum: How the image was created Who created it originally What has been done to enhance the image Coordinate system to which the image has been rectified † Projection system to which the image has been rectified † Other information unique to these particular images † † † †
With regard to electronic spatial data, in the United States, efforts are being made to try to develop a universal standard format for metadata for GIS systems. This would make accessing and using metadata much easier than it is today. Toward this end, the Federal Geographic Data Committee (FGDC) has approved a standard for metadata. Development of the standard was a part of the development of the National Spatial Data Infrastructure. The standard is known as the Content Standard for Digital Geospatial Metadata (Version 2). It may be downloaded as a pdf file from the FGDC web site (www.fgdc.gov/standards/documents/standards/ metadata/v2_0698.pdf). While this standard is intended to facilitate the use of metadata and associated data (particularly images), it appears to not have been universally accepted outside of U.S. government bodies. Accordingly, within this definition metadata may take many forms, ranging from simple (on the paper map, the map legend is the metadata) to separate electronic text files, often multipage, associated with a specific electronic aerial or satellite photo image. The primary use of metadata is to correlate spatial image information, particularly aerial photos, satellite photos, and computer aided design (CAD) images, in three-dimensional space, with tabular data obtained in the field. There are, thus, two aspects to this process. The first aspect is the creation of an electronic base map image on which tabular data may be electronically
q 2006 by Taylor & Francis Group, LLC
1-9
posted. Typically, the user will need to overlay images together (a CAD image superimposed on an aerial photo, for example) or combine smaller images together to create larger maps, or some combination of both. In this process, it is often possible to obtain access to additional tabular data already associated with (i.e. linked to, or posted on) images. The second aspect is creating or obtaining the tabular data, and orienting it in two- or threedimensional space. Tabular data are usually oriented in three-dimensional space according to surveys taken by hand on the ground, either using traditional surveying methods (compass, transit, etc) or global positioning satellite data. Because of the availability of extremely inexpensive receivers, GPS is rapidly becoming the dominate tool to obtain two- and threedimensional positioning data in the field. Typically the orientation metadata associated with the spatial data must be used to convert (reproject or recoordinate) the spatial data to conform to the orientation data associated with the tabular data, or vice-versa, or both. This process of correlation is called “rectification.” Metadata are thus typically used to rectify the spatial image data to the tabular data.
1.10
CONCLUSIONS
The data management process is intended to reduce the amount of time spent on manipulating data and increase the level of utility of the data to the end users. The goals of the data management process should be as follows: † Understand your data needs and how you are collecting it; † Have a plan to accurately categorize all facets of your data; † Promote accuracy of data through validation and verification; † Promote consistency of data querying and reporting; and † Understand the role of metadata in GIS. The data presented in this book are categorized in a way to facilitate effective data management, and through querying and reporting, would be a verifiable and validated source of data for experimentation and investigation purposes.
CHAPTER
2
International Data Collection Daniel Zell
CONTENTS 2.1 Introduction .......................................................................................................................................................... 2-1 2.2 Data Sources ........................................................................................................................................................ 2-2 2.3 Case Studies ......................................................................................................................................................... 2-3 2.3.1 Latin America .......................................................................................................................................... 2-3 2.3.2 Central Asia.............................................................................................................................................. 2-4 2.3.3 South Asia ................................................................................................................................................ 2-4 2.4 General Process for Data Collection ................................................................................................................... 2-5 2.5 Internet Sources ................................................................................................................................................... 2-5
In developing countries, dams, irrigation schemes, watershed management plans, water and wastewater systems, and flood mitigation works have grown in both number and complexity. Because these data intensive approaches, such as river basin planning, are being embraced worldwide and funded by multilateral and bilateral organizations, the need for data has increased. China, for example, has undertaken massive water resources projects on a scale never seen before, and vast irrigation rehabilitation projects are underway in Afghanistan. In many Latin American countries, water management projects are a top priority. With the demand for such types of projects comes the need for data, information, knowledge management, and, in particular, people who fall under the broad category of water resources engineers. This need is made sharper given the imminent retirement of the seasoned professionals of the post-WWII generation who have spent their lives in
water resources, leaving a younger, less experienced cohort of engineers to tackle the future. 2.1 INTRODUCTION When, as often happens, engineers and other technical professionals in the water resources field are asked to render a technical judgment, they usually need a large set of data to analyze the issue. In the United States, general information such as precipitation, topography, streamflow, and other related data is usually readily available from standard sources: previous studies are usually on-hand with the implementing agency, e.g., state government, military, and the private sector. But sometimes, data are harder to find, less reliable, maybe even lost. This latter case is the normal starting point for water resources projects in less developed countries. The engineer will have to invest a good deal of time, effort,
2-1 q 2006 by Taylor & Francis Group, LLC
2-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
and sometimes money to get the sort of data that are, usually, freely available in developed countries. This chapter gives engineers an idea of what to expect, some approaches to gathering data, and international internet data sources. There has been and always will be a need for rapid and complete data collection for water resources projects in the developing world, a process made even more challenging since data are fragmented among various government and private organizations. Due to both varied organizational arrangements and cultural factors, procedures for data collection vary from region to region and country to country, and it is not possible within the confines of this chapter to give a comprehensive step-bystep method for accomplishing it. Here, we present a brief picture of the challenges of data collection through some selected examples, an outline of a brief process, and a listing of sources of data for international water resources projects. This chapter, then, will be most useful for those with little experience in water resources projects in developing nations. Now, before getting into the details, a few definitions and explanations. 1. Less developed countries is a term of convenience, generally meaning any country except the United States, the former Soviet Union, Canada, Western Europe, Australia, New Zealand, and Japan. But even though such a simple dichotomy does not really exist—other countries undoubtedly deserve to be considered developed and may indeed boast superior data repositories—this term, because of its widespread acceptance, will be used throughout this chapter. 2. Engineer is defined here as a person responsible for technical aspects of a water-related project. Although the engineer is normally an outsider to the country or region under study and perhaps initially unfamiliar with its cultural norms and practices, he or she engineer understands not only the data collection need but also its intended application and eventual output. In some cases engineers will be scientists, economists, even policymakers. The term, again, is chosen out of convenience. 3. To make the chapter as useful as possible to the widest audience, it generally refers to data in the generic sense, rather than, for example, average precipitation and uses illustrative examples rather than an analytical examination. Without digressing too much into the world of development economics, we note that the engineer needs to understand the stage or level of development. In q 2006 by Taylor & Francis Group, LLC
general, there is a positive correlation between wealth, or Gross Domestic Product per capita, and the centralization and quality of water resources data. In Afghanistan, one of the poorest countries in the world, for example, where data sources are widely scattered, the results are incomplete, with much historical data, and studies lost in the warfare over the past few decades. Climate also plays a factor, as natural disasters, humidity, and even rodents often destroy hard copies in countries with limited computerized archives. The overall lesson is that even in the relatively more developed countries of Central and South America, the engineer will need to search for secondary sources of data outside of the government, such as previous consultants’ reports, private water companies’ data, and others (see the list of websites at the end of this chapter). An outside engineer’s local contacts will be essential in setting appointments, identifying possible resources, and even collecting data themselves. But—a word of caution—it is unlikely that this task can be accomplished without the involvement of the engineer. If you are not willing to travel to the country of assignment, then you should probably find somebody else to do the job. Both the credibility and realism of the outputs will suffer from a lack of field presence. Besides, as an outsider, typically seen as immune to local politics and prejudices, the engineer who is willing to travel and spend enough time in country can surmount obstacles that an indigenous assistant could not.
2.2
DATA SOURCES
For general purposes, let us consider a simple dichotomy in terms of data availability: † Initial Conditions (given data), and † Needs (data objectives). Initial data may be given by your client or employer or may be found through some cursory searching of the internet resources listed in this chapter. Data needs or objectives depend on the particular assignment and will likely evolve throughout the problem solving process. In any case, it is well worth taking the time to explore most, if not all, of the websites listed at the end of the chapter with a high-speed internet connection. You will spend much less time than trying to find data from alternate sources, such as government departments, previous and/or current projects, and well-known experts in the field. And the websites listed are generally regarded as reliable. But website searches are not the only route. I recommend a variety of methods, especially if the
INTERNATIONAL DATA COLLECTION
country and region are unfamiliar to the engineer. Before arriving in a country, establish primary contacts and introductions through the employer or client. Email, however convenient, is no substitute for phone calls in building relationships. These contacts may, if sufficiently motivated, be in a much better position to collect the required data. Unfortunately, due primarily to the long and frequently inconclusive history of most local water resources projects with international engineers, it will be a difficult task convincing someone unknown to you, that your cause is worthwhile. This is yet another reason why you should use your in-country network, even if it is only your employer or client, as a foundation for collecting data. The social ties and relationships that locals have established are a resource you should not ignore. A frequent issue when working in an unfamiliar region and culture is payment. How much do things cost? From CAD and GIS operators, to internet usage, to maps, most, if not all, goods and services have a value. In my experience, the issue is not whether or not to pay, but rather, “what is the correct price?” This is not to say that you can not get data for free; indeed, that is how I got most of mine. The engineer will have to rely on his or her in-country network and awareness of local social norms to determine whether or not a payment is required. In general, if work is required beyond normal hours or duties, then a payment is more likely to be required. Another thing to be prepared for is equipment and procedures that do not work. Copiers, for example, are usually broken because of a lack of basic supplies and/or maintenance. Or it may not exist or be available to anyone except the senior staff. Regulations may not let you take records from the office for off-site duplication. Unless you have a penchant for data entry, this is another case where it may be appropriate to pay the correct fee for the data to be digitally entered. I suggest offering an electronic copy of the records by email to both the department and data entry person. By making them part of the process, rather than a cog in a wheel, you may use these people as resources for a long time to come, as I did with a local hydrologist in Afghanistan months after my return. (It did, however, take much longer than expected and required several phone calls and visits by contacts in Afghanistan.)
2-3
conditions, and particularly the values of each nation or region. Ignoring them will imperil both the engineer and the project itself.
2.3.1
Latin America
Overall, although collecting water resources data in Latin America is like working in developing countries worldwide,* the relatively higher income in Latin America can make the work easier, as education level generally correlates with income. Because hydropower is a highly developed sector in Latin America, its organizations often have the best data. However, the data are often considered proprietary and, being tightly controlled, take concerted and time-consuming effort by the engineer and local counterparts to get it. As in other regions, engineers should rely on their counterparts, local staff, or client by insisting that reasonable efforts be expended to gather data in advance. Due to the culture of Latin America, counterparts can be relied on quite heavily, and will likely be highly competent. In this manner, the engineer’s time can be best and efficiently used to address the remaining obstacles, like analyzing the data and writing reports. Still, the engineer should be prepared to complete an assignment with much less data in both quantity and quality than is the norm in developed countries. When no data are found for a specific basin, data for a similar region—in combination with field interviews, maps, and surveys—is used to build a model. The uncertainties resulting from using such data should be plainly and simply stated in the engineer’s work. According to Dr Molina, the process of cleaning data—searching for errors—although time consuming and tedious, has repeatedly proved itself to be worth the trouble. Common errors include converting units, converting gauge readings to flow, and a myriad of other possibilities. These errors, if unchecked and corrected, will skew the results of an analysis. On the other hand, careful advance planning can minimize delays, for example, by contracting a local firm or consultants to carefully screen the data for anomalies and enter it into a useful format.
2.3 CASE STUDIES The following case studies will give the engineer a general perspective of the operational aspects of data collection in a few developing nations. Let me note at once, however, the enormous importance of learning about and paying attention to the unique cultures, q 2006 by Taylor & Francis Group, LLC
* According to a June 25, 2004, interview with Dr Medardo Molina, a Peruvian-born water resources expert who has been active in water resources since 1965 as an international consultant and professor. Dr Molina has published numerous papers in both Spanish and English.
2-4
2.3.2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Central Asia
In Afghanistan, collecting water resources data were quite complicated, based on my personal experiences in 2003. What little historical data existed was fragmented and incomplete. Thirty years of instability destroyed critical records and the hydrological network. The language barrier, with data sometimes recorded in Dari, Pashto, or Russian, further complicated data collection. The assigned task—to construct a national water balance and determine water availability for rehabilitating irrigation—necessitated casting a wide net to collect all sources of data. Before visiting Afghanistan, my thorough search of libraries and databases yielded only few results, but one of them, a previous water balance study, was quite useful. Although I made contacts in advance, scheduling appointments from outside of Afghanistan did not work. I now understand that the local custom is to pay a brief introductory visit, without an appointment. Then, a later appointment can be scheduled where the useful work will be accomplished. This introductory visit may seem full of pleasantries and even a bit useless. To the novice it may seem not along the critical path. Quite to the contrary, the visits are used to evaluate the engineer, to understand what the engineer is doing, and to understand if the engineer is worthy of help. Besides, since data are rarely immediately available, the first meeting gives the local source time to prepare. The team conducted initial and follow-up visits to the following organizations: Ministries: Irrigation and Water Resources and Environment, Rehabilitation and Rural Development, Agriculture and Animal Husbandry, and the Central Statistics Office United Nations: Food and Agriculture Organization and World Food Program, in particular the Vulnerability Analysis Mapping Unit for socio-economic data, and the Development Program Others: ICARDA (International Center for Agricultural Research in the Dry Areas), the U.S. Agency for International Development, and various private consultants, firms, and nongovernment organizations From these and subsequent visits over a 12-month period, the consultant team gathered the hydrological station data. We hired a local professional consultant to both construct and digitize a map of the monitoring stations. More importantly, the team was able to persuade a wide range of policy makers and water q 2006 by Taylor & Francis Group, LLC
resources professionals of the report’s thoroughness and usefulness by conducting follow-up visits to the data repositories, courtesy calls to government officials to present the report and findings, and formal presentations. The United Nations’ organizations provided the most accurate satellite and agricultural data, and previous consultants’ reports were essential in constructing the overall water balance. Although we still had to do careful fact checking based on the newly available data, the efforts of independent and knowledgeable local staff helped us get data not only more rapidly but also with a higher degree of reliability than would have otherwise been possible. It is important to note that the local staff’s efforts had to be supplemented with continual phone calls and emails by the consultants as well as periodic visits to Afghanistan. As outsiders, foreign consultants can often bypass the social norms and traditions that hamper local staff. At the same time, continued communication and visits let the team more completely understand the extent of the problem or issues to be addressed and more importantly, convey the engineers’ recommended solution to the client as it evolved. This served two purposes: 1. By avoiding the “parachute in” approach where a consultant works rapidly and alone, often behind a closed door, the team won a sense of buy-in and respect from the client, which ensured that the client would actually understand the results of the work. 2. By working hand-in-hand with a client who lacked basic institutional capacity, the consultant team was able to increase the client’s capacity to use the team’s results. With so many people interested in the report, the team decided to circulate a draft copy. The resulting informal peer review process increased the credibility of the findings, and although it led to a series of revisions, in the end, it was the only way to accomplish the task.
2.3.3
South Asia
In contrast to the situation in Afghanistan, data availability was relatively high during a 2004 assignment to the Indian State of Orissa. At the state water resources agency, I saw many rooms with neatly bound papers stacked literally from floor to ceiling. More remarkably, when motivated by the department head, almost everything we asked for was quickly found. And because the information requested was relatively recent,
INTERNATIONAL DATA COLLECTION
we did not encounter the issue of deteriorating paper records in a humid environment without climate control. The main problems were poor database design and data entry, and resistance to improving quality control standards. To make sure that our primary data on average daily flow from reservoirs were accurate, my team went to one of the more remote locations to look at primary records. This entailed a journey across the small rice paddies that characterize the regions, a courtesy call to the local supervisor, and even more driving to where the road literally ended at the reservoir. The water resources department had told the reservoir about our trip, and the records were ready. However, local customs dictated a long, slow, and quite good meal as well as an exchanging of pleasantries before the ledger was produced. Then, we asked the data recorders how they recorded the gate height and translated that measurement into a daily flow. Spot checking a few calculations for accuracy, we found no mistakes. A universal issue when dealing with government agencies is territorialism. This issue nearly derailed the entire project in India. An agency insisted that a task was within their realm of authority but showed neither the will nor the capacity to perform the work as required. Rather the agency did the bare minimum and strongly resisted any efforts at improvement. The lesson the engineer should take from this is that relying on someone or some agency out of your control is risky. In hindsight, the solution would have been to accept the agency as a partner, then help them, as cooperatively and diligently as possible, to complete the project.
2-5
3. Identify data requirements. 4. Identify local staff requirements such as cartographers, hydrologists, statisticians, field surveyors, etc. 5. Contact the client or local agency. 5.1. Contact made well in advance of the initial visit so that the staff are aware of the planned work and can plan accordingly. 5.2. Contact at regular intervals, at least weekly. Contact by phone and email is recommended. 6. Make initial visit. Prearranged visits with organizations should be conducted. Social outings, while exhausting, may prove useful for particularly difficult data collection situations. 7. Collect the data. 8. Review data collected. Determine what steps need to be taken to ensure the data are both accurate and in a usable format. 9. Conduct field validation if required. 10. Make more visits. These visits will supplement initial data gatherings and present initial findings. 11. Perform analysis. 12. Prepare and circulate draft report. 13. Incorporate comments as appropriate. 14. Prepare report.
2.5 2.4
GENERAL PROCESS FOR DATA COLLECTION
The following process serves as a guideline for engineers unfamiliar with international water resources engineering. It is highly likely that additional steps will be needed in any actual project depending on the requirements and country. 1. Learn key features of the country’s culture norms and values by both talking to someone from the country and reading appropriate articles and even the literature. 2. Identify the problem. This step consists of more than simply reading the terms of reference. The engineer should plan on conducting one-to-one discussions with senior and mid-level staff at the local or client agency. q 2006 by Taylor & Francis Group, LLC
INTERNET SOURCES
The following addresses give access to a lot of data. The descriptions of the 2006 websites come directly from the web pages themselves. AQUASTAT is the Food and Agricultural Organization’s (FAO) global information system of water and agriculture developed by the Land and Water Development Division of FAO. AQUASTAT is FAO’s global information system of water and agriculture developed by the Land and Water Development Division of FAO. The objective of AQUASTAT is to provide users with comprehensive information on the state of agricultural water management across the world, with emphasis on developing countries and countries in transition (www.fao.org/WAICENT/ FAOINFO/AGRICULT/AGL/AGLW/aquastat/main/ index.stm). The following is an excerpt from the AQUASTAT country profile of Afghanistan
2-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Water Resources Based on the hydrographic systems, the country can be divided into four zones: † the northern basin (24% of the territory) with the Amu Darya and its tributaries (14%), which drain toward the Aral sea, and the rivers of northern Afghanistan (10%), which disappear within the country before joining the Amu Darya; † the western region (12%) consisting of the Hari Rud river basin (6%) and the Murgab river basin (6%), both rivers disappearing in Turkmenistan; † the south-western basin (52%) with the Helmand river flowing toward the Sistan swamps, located on the border of Iran and Afghanistan. In 1972, a document was signed between Afghanistan and Iran to allocate a discharge of 26 m/s of Helmand river water to Iran all year round; † the eastern Kabul basin (12%), which is the only river system having an outlet to the sea, joining the Indus at Attock in Pakistan. Internal renewable water resources are estimated at 55 km3yrK1. The Kunar river, which originates in Pakistan, crosses the border with an average annual flow of 10 km3 and joins the Kabul river at Jalalabad about 180 km further downstream. The Kabul river flows again into Pakistan 80 km further downstream. Total water withdrawal was estimated at 26.11 km3 in 1987, of which 99% for agricultural purposes. Recently, there has been a large development of groundwater use in some provinces. In 1986, there were two dams higher than 15 m. The installed capacity of the hydroelectric plants was 281 MW in 1992, which is about 70% of total installed capacity. There is considerable potential for the generation of hydropower, by both large dams and microhydropower stations.
FAOSTAT is an on-line and multilingual database currently containing over 3 million time-series
Production Trade Food balance sheets Producer prices Forestry trade flow
records covering international statistics in the following areas:
Land use and irrigation Forest products Fishery products Population Food quality control
Fertilizer and pesticides Agricultural machinery Food aid shipments Exports by destination
faostat.fao.org/default.jsp?languageZEN.
Year 1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
Population-estimates rural (1000) Africa developing AGG_COUNTRIES
428,145 435,774 443,382 450,948 458,471 465,941 473,370 480,738 488,033 495,224 428,145 435,774 443,382 450,948 458,471 465,941 473,370 480,738 488,033 495,224
502,287 502,287
Population-estimates urban (1000) Africa developing AGG_COUNTRIES
205,568 214,269 223,156 232,235 241,525 251,050 260,846 270,932 281,347 292,111 205,568 214,269 223,156 232,235 241,525 251,050 260,846 270,932 281,347 292,111
303,245 303,245
The tables above are an example of the output produced by FAO STAT, in this case rural and urban populations in African Developing Nations from 1993 to 2003. The output is also available in .csv format. q 2006 by Taylor & Francis Group, LLC
GRDC (Global Runoff Data Center) The GRDC makes the unique offer to the international research and science community of easy and universal access to river flow information on a global scale. On request, data
INTERNATIONAL DATA COLLECTION
products are developed and specialized databases are assembled for projects on both regional and global scale. The GRDC serves as a communication platform between institutions, advisors, and scientists and also transfers information about other relevant databases with a hydrological content such as the Global Precipitation Climatology Centre (GPCC) and the Programme Office of the Global Environment Monitoring System—Water (GWPO) of UNEP. It also maintains close ties to the UNESCO Water project “Flow Regimes from International Experimental and Network Data” (FRIEND).
q 2006 by Taylor & Francis Group, LLC
2-7
The GRDC contains long-term mean annual freshwater surface water fluxes into the world oceans. Estimates are based on 251 discharge stations of major rivers. Data available include mean, minimum, maximum monthly discharges, and time series of mean, minimum, maximum annual discharge for 3035 stations. UNH-GRDC Global Composite Runoff Fields combines observed river discharge information with a climate-driven Water Balance Model (http:// grdc.bafg.de). The following is a sample output:
2-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
CGIAR is a global link to research on agriculture, hunger, poverty, and the environment. CGIAR (Consultative Group on International Agricultural Research) is a good starting point for international water issues related to agriculture (www.cigar.org). To access any of CGIARs publications published by the 15 research centers, go to the CGIAR Library Gateway (www.cgiar.org/publications/library/index. html). CGIAR Reefbase—ReefBase is the world’s premier online information system on coral reefs, and provides information services to coral reef professionals involved in management, research, monitoring, conservation, and education. Its goal is to facilitate sustainable management of coral reefs and related coastal/marine environments, in order to benefit poor people in developing countries whose livelihoods depend on these natural resources. ReefBase’s Online Geographic Information System (GIS) allows you to display coral reef related data and information on interactive maps. You can zoom, search, and query datalayers, and save or bookmark the map (www.reefbase.org). ICARDA (International Center for Research in the Dry Areas) is one of the research centers of CGIAR, whose mission is to improve and integrate the management of soil, water, nutrients, plants, and animals in ways that optimize sustainable agricultural production. There are many relevant articles, publications, and datasets on on-farm water use and water efficiency (www.icarda. cgiar.org). IWMI’s (International Water Management Institute) on-line publication section contains several thousand pages of peer reviewed research on water management. All research outputs and publications produced by IWMI are international public goods, freely available to partners in developing countries and to members of the international development, academic and research communities (www.iwmi.cgiar.org/pubs/mindex.htm). The Remote Sensing and GIS Unit (RS GIS Unit) of the International Water Management Institute (IWMI), is a centralized facility for all spatial datarelated activities of IWMI at the headquarters in Sri Lanka and Regional Offices located in different parts of the world. Currently, the RS GIS Unit holds over 1 terabyte of data. Although the emphasis is on IWMI benchmark river basins, large volumes of data are also available at National, Regional, and Global levels. These data are catalogued, streamlined, and released to the public through the IWMI Data Storehouse Pathway (DSP). Much of the river basin and other datasets are composed as single mega files of hundreds or sometimes thousands
q 2006 by Taylor & Francis Group, LLC
of bands consisting of continuous streams of 8-day or monthly time series data in several wavebands and/or indices. Large volumes of multitemporal data from multiple satellite sensors are used in several IWMI research projects. These projects include: (a) Global Irrigated Area Mapping (GIAM) at global to local scales, (b) the Wetland project in the Limpopo river basin of four Southern African Nations, (c) the Krishna river basin project in India, (d) the Indo-Gangetic river basin project in India and Pakistan, (e) the Drought Assessment and Mitigation project in Afghanistan, Pakistan, and parts of India, and (f) the biodiversity project in Sri Lanka. More information on the RS GIS Unit and its activities can be found in several areas of this web site (www.iwmidsp.org/iwmi/info/centerprofile.asp). Hydrological Processes is a relevant international journal with abstracts freely accessible on the web. Of particular interest are the past articles on mathematical and methodological aspects of hydrological processes and modeling. Accessed through Wiley Intersciences (www. interscience.wiley.com). Although traditionally thought of as a repository of United States data sets only, the United States Geological Survey (USGS) has a notably thorough database on selected countries that will likely grow over time. In particular, datasets for Jordan and Israel can be found through their project websites (www.watercare.org and www.exact-me.org). Also on USGS, a general homepage with linkages to Ukraine, United Arab Emirates, Bangladesh, and Cyprus (international.usgs.gov/disciplines/water.htm). Winrock Water is both a discussion forum and data clearinghouse that includes an annotated bibliography. Winrock water has selected leading reference materials, research and discussions of major issues in the water resources field through the internet. The links section is of particular interest to those in data collection (www. winrockwater.org). Sakia.org is an information and communication service in the area of “land and water”. Sakia.org hosts several services such as the email discussion list IRRIGATION-L the WWW Virtual Library Irrigation & Hydrology (content filling stage), the WWW Database on Irrigation & Hydrology Software—IRRISOFT (under revision), the e-Journal of Land and Water, an open access and peer reviewed international scientific journal for research and developments and the Journal of Applied Irrigation Science. Sakia.org is fostering the open and free access to knowledge in support of the “land and water” community (www.sakia.org).
CHAPTER
3
Climate and Precipitation Pedro Fierro, Jr.
CONTENTS Section Section Section Section Section
3A 3B 3C 3D 3E
Climatic Data — United States Climatic Data — World . . . . . Weather Extremes . . . . . . . . . Precipitation Data . . . . . . . . . . Snow and Snow Melt . . . . . . .
. . . . .
.. .. .. .. ..
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. . . . .
. . . . .
.. .. .. .. ..
. 3-2 . 3-76 . 3-95 . 3-112 . 3-138
3-1 q 2006 by Taylor & Francis Group, LLC
3-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 3A
North West
CLIMATIC DATA — UNITED STATES
West North Central
East North Central
West
North East
Central South West
South East South
Figure 3A.1 U.S. standard regions for temperature and precipitation. (From U.S. National Oceanic and Atmospheric Administration.)
q 2006 by Taylor & Francis Group, LLC
State AL
AK
AZ
AR
CA
Station Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento
Years 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
42.6 39.8 50.1 46.6 15.8 35.1 K13.7 6.6 K11.2 K2.6 28.2 K9.7 K4.7 23.4 25.7 15.4 29.7 K2.5 K6.7 5.8 25.7 11.0 3.3 21.9 25.8 29.7 54.2 51.7 34.2 58.1 40.1 40.2 38.0 47.8 38.0 47.9 46.0 57.0 57.1 58.3 35.3 45.5 46.3
46.8 44.3 53.5 50.5 18.7 37.1 K15.9 7.6 K7.9 2.3 27.6 K3.8 3.2 24.9 28.9 15.6 29.9 K3.5 K0.9 5.7 23.3 15.4 4.3 24.8 28.4 32.2 58.2 55.0 40.0 62.0 45.2 45.6 43.7 53.3 42.4 48.9 51.4 58.3 58.0 60.0 38.2 49.1 51.2
54.5 52.3 60.2 57.9 25.9 39.5 K13.7 14.5 4.2 14.2 30.0 11.1 15.3 29.4 33.7 23.5 32.6 K0.3 11.8 9.4 24.2 22.6 10.7 29.8 31.5 36.6 62.7 59.2 46.3 66.5 53.4 54.3 52.6 57.3 47.7 49.2 55.5 59.7 58.3 60.7 41.2 52.5 54.5
61.3 60.4 66.1 64.3 36.3 43.8 K0.5 25.9 22.4 32.1 33.5 31.7 31.1 36.4 40.8 33.1 37.3 11.5 29.1 19.6 28.4 34.3 22.7 37.7 37.2 42.9 70.2 66.0 53.4 72.7 61.4 63.0 61.1 62.7 54.1 50.7 61.2 63.0 60.8 63.8 46.3 57.8 58.9
69.3 68.6 73.5 72.3 46.9 49.4 20.1 41.3 44.3 47.8 39.8 48.8 43.9 43.7 47.9 43.5 43.5 31.6 46.2 37.1 35.7 45.8 39.5 45.8 43.6 50.8 79.1 74.5 62.2 79.9 70.1 70.9 69.5 70.3 62.5 53.6 68.8 65.9 63.1 66.2 53.2 66.2 65.5
76.4 76.0 79.3 78.9 54.7 54.3 35.0 51.4 57.8 57.5 45.9 59.7 53.1 50.0 53.9 50.9 49.2 44.8 56.7 47.3 41.9 55.3 49.0 52.2 49.7 60.1 88.6 84.1 72.1 88.8 78.4 78.8 77.5 77.7 71.1 56.3 76.1 69.8 66.4 70.5 60.2 75.2 71.5
80.2 79.5 81.5 81.8 58.4 58.2 40.4 56.0 60.2 60.8 50.6 62.4 57.0 54.1 56.8 55.7 54.1 54.7 59.8 52.6 46.7 58.9 55.5 55.2 53.6 66.1 92.8 86.5 77.5 94.1 82.4 83.2 82.2 83.1 76.8 58.1 81.4 73.8 69.3 74.2 66.1 81.3 75.4
79.6 78.6 81.3 81.2 56.4 58.6 38.7 53.6 53.5 55.5 51.8 56.2 53.1 53.8 55.7 54.8 55.0 52.1 54.9 50.6 48.4 55.6 53.1 53.6 53.3 64.4 91.4 84.9 75.6 93.5 81.3 82.1 81.5 81.9 74.8 58.7 79.9 75.1 70.7 75.2 65.1 78.9 74.8
73.8 72.4 77.2 76.3 48.2 53.8 31.2 45.4 41.0 44.4 47.8 44.5 43.1 47.9 50.0 47.6 49.4 41.8 44.7 42.9 45.0 46.2 43.6 47.1 48.2 57.8 86.0 80.9 68.2 88.2 74.4 75.0 73.9 76.7 67.3 57.4 74.6 73.4 70.1 74.0 59.5 73.4 71.7
62.9 61.3 67.7 65.4 34.1 46.5 14.6 30.0 18.7 24.1 40.0 23.5 26.4 37.8 42.3 33.3 40.3 23.2 25.3 28.5 38.3 31.4 26.5 38.2 41.1 47.1 74.6 70.5 55.9 77.2 63.3 64.5 62.8 67.2 56.6 54.5 65.0 68.6 66.9 69.5 50.5 63.2 64.4
53.1 51.2 58.9 56.1 21.8 39.7 K0.9 17.4 K0.8 6.4 34.5 2.3 5.5 29.4 33.3 23.2 34.0 8.3 5.8 16.9 33.1 17.5 12.6 28.3 32.4 36.5 61.6 58.7 43.2 64.8 51.7 52.5 50.5 54.8 44.8 51.0 52.7 61.8 61.6 62.9 39.9 51.1 53.3
45.6 43.1 52.3 49.0 17.5 36.4 K10.6 9.4 K7.4 0.1 31.0 K5.9 K1.6 25.8 28.7 17.2 30.6 K0.2 K3.8 8.4 28.8 13.0 6.1 24.7 28.6 30.2 54.3 51.9 34.1 57.4 43.2 43.4 41.0 47.2 38.0 47.9 45.2 57.1 57.6 58.5 34.8 45.3 45.8
Annual 62.2 60.6 66.8 65.1 36.3 46.1 10.4 29.9 22.9 28.6 38.4 26.8 27.1 38.1 41.5 34.5 40.5 21.8 26.9 27.1 35.0 33.9 27.2 38.3 39.5 46.2 72.9 68.7 55.2 75.3 62.1 62.8 61.2 65.0 56.2 52.9 63.2 65.3 63.3 66.2 49.2 61.6 61.1
q 2006 by Taylor & Francis Group, LLC
3-3
(Continued)
CLIMATE AND PRECIPITATION
Table 3A.1 Normal Daily Mean Temperature — Selected Cities of the United States
(Continued)
State
Station
CO
CT
FL
GA
HI
ID
IL
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
57.8 49.4 52.3 53.1 51.6 46.0 14.7 28.1 29.2 26.1 29.3 29.9 25.7 31.5 31.7 34.9 52.7 58.4 64.9 54.3 53.1 70.3 68.1 60.9 52.0 51.8 61.3 63.0 66.2 42.2 42.7 44.8 46.8 45.5 49.2 71.4 73.0 71.8 71.7 30.2 33.7 24.4 22.0 21.1
58.9 52.4 55.0 55.2 53.1 51.1 22.5 31.7 33.2 34.1 34.6 31.9 28.8 34.2 34.8 38.1 55.3 60.0 66.0 57.0 55.8 70.8 69.1 62.6 54.9 54.8 62.7 63.9 67.2 46.0 46.7 48.4 50.3 48.9 52.5 71.5 73.0 71.9 71.7 36.7 38.4 30.0 27.0 26.9
60.0 54.0 55.9 56.7 53.8 54.9 32.7 37.8 39.6 43.4 41.8 39.5 38.0 42.7 43.4 46.5 60.7 64.7 69.9 62.5 61.6 73.8 72.4 67.4 61.0 61.1 67.4 67.7 70.6 53.5 54.3 55.9 57.6 56.2 59.3 72.0 74.3 73.1 72.7 43.8 44.7 37.9 37.3 38.7
62.6 56.2 57.3 58.9 55.5 60.0 40.8 45.3 47.6 50.9 49.9 48.9 48.9 52.4 53.1 56.1 66.8 68.9 73.6 67.6 66.6 77.0 75.7 71.5 66.9 66.4 71.5 71.5 73.8 60.9 61.6 62.4 64.2 62.7 65.3 72.5 75.6 74.2 73.9 50.6 51.1 45.6 47.8 50.5
64.6 58.7 58.4 60.9 57.8 66.7 50.4 54.6 57.2 60.5 59.7 59.0 59.9 62.5 62.3 65.6 74.1 74.8 78.8 74.3 73.4 80.7 79.6 77.1 74.6 74.4 77.6 76.2 78.2 69.1 69.8 70.5 72.3 71.0 72.8 73.7 77.2 75.7 75.4 58.6 58.5 53.5 58.7 61.7
67.4 61.4 60.5 64.2 60.9 73.2 59.4 64.4 67.6 71.1 69.8 68.0 68.5 71.5 70.9 74.5 80.0 79.7 82.2 79.2 79.1 83.4 82.4 81.2 80.6 80.4 81.5 80.4 81.2 76.3 76.8 77.5 79.2 78.0 78.8 75.1 79.5 77.6 77.7 67.2 65.8 62.0 68.2 71.2
70.9 62.8 61.3 67.0 63.5 77.3 64.1 69.6 73.4 76.8 75.4 74.0 73.7 76.6 75.7 79.2 81.9 81.7 83.0 80.9 81.6 84.5 83.7 82.4 82.6 82.4 82.5 81.7 82.5 79.8 80.0 80.8 82.0 81.1 82.1 75.9 80.8 78.8 79.0 74.7 73.5 69.2 73.3 75.3
72.5 63.6 62.4 68.6 64.2 76.5 62.1 67.6 71.7 74.7 73.5 73.1 71.6 75.0 74.4 77.4 81.7 81.5 83.1 80.4 80.8 84.4 83.6 82.5 82.2 82.1 82.7 81.6 82.8 78.4 78.9 79.3 81.3 80.0 80.8 76.3 81.8 79.5 79.7 73.9 73.4 68.4 71.7 73.2
71.6 63.9 63.7 67.4 63.9 72.8 54.5 59.8 62.4 65.4 64.8 65.7 63.2 67.7 67.3 70.5 79.1 79.9 82.1 77.8 77.8 83.4 82.4 81.1 78.7 78.9 81.6 80.7 81.7 72.6 73.3 73.8 76.2 74.5 76.7 76.2 81.5 79.1 79.5 64.2 63.8 58.8 63.8 65.0
67.6 61.0 62.5 63.5 61.1 64.6 42.8 48.9 51.0 52.7 52.4 54.7 51.9 55.8 55.0 58.8 70.2 74.0 77.5 70.1 69.4 80.2 78.8 75.3 69.5 69.1 75.8 76.4 78.1 61.8 62.8 63.1 65.8 63.9 67.1 75.6 80.2 78.1 78.2 52.8 51.6 47.7 52.1 53.0
61.8 54.7 57.5 57.5 55.5 53.1 28.4 36.2 37.5 38.1 38.4 45.1 41.8 45.9 45.2 48.7 62.0 67.0 71.7 62.8 61.7 76.3 74.4 68.8 60.7 60.4 69.3 70.5 73.1 52.7 53.4 54.4 56.7 55.1 58.7 74.0 77.7 76.0 75.9 39.9 40.4 34.7 39.3 39.1
57.6 49.5 52.7 53.2 51.6 45.3 17.1 29.0 30.3 28.2 30.3 35.1 30.8 36.4 36.0 39.5 55.2 60.8 66.4 56.3 55.0 72.0 69.9 63.0 54.1 53.7 63.3 64.7 68.3 44.8 45.4 46.9 49.1 47.8 51.4 72.2 74.8 73.4 73.3 30.6 33.9 25.3 27.4 26.4
64.4 57.3 58.3 60.5 57.7 61.8 40.8 47.8 50.1 51.8 51.7 52.1 50.2 54.4 54.2 57.5 68.3 71.0 74.9 68.6 68.0 78.1 76.7 72.8 68.2 68.0 73.1 73.2 75.3 61.5 62.2 63.2 65.1 63.8 66.2 73.9 77.5 75.8 75.7 52.0 52.4 46.5 49.1 50.2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
DE DE
San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Chicago Moline
3-4
Table 3A.1
IA
KS
KY
LA
ME MD MA
MI
MN
MS
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
22.5 19.0 25.1 31.0 23.6 26.5 23.4 20.4 17.0 18.6 16.1 26.6 30.1 27.6 27.2 30.2 29.7 33.9 32.0 33.0 32.9 50.1 50.9 52.6 46.4 9.5 21.7 32.3 26.0 29.3 23.6 17.8 24.5 21.3 22.4 17.8 21.6 11.5 23.5 13.2 8.4 2.7 13.1 11.8 8.8 45.0
28.2 24.7 30.6 35.8 27.3 31.2 27.3 26.6 23.1 25.1 22.6 32.4 36.0 32.4 33.4 36.3 34.1 37.9 36.4 37.6 38.1 53.5 54.4 55.7 51.2 13.0 24.8 35.5 28.3 31.5 26.0 19.0 27.2 23.8 25.0 19.9 24.0 14.8 25.4 15.6 14.8 10.9 20.1 18.4 16.1 49.2
39.8 36.1 41.8 45.8 38.1 41.7 37.5 38.4 34.8 36.5 35.0 42.5 44.3 39.8 44.2 45.9 43.9 47.1 45.6 46.9 47.6 60.3 61.0 62.4 58.5 24.6 33.7 43.7 36.3 38.9 34.3 28.0 36.9 33.7 34.6 29.3 33.9 23.7 34.0 24.9 25.4 23.6 32.1 30.6 28.4 56.8
51.2 47.9 52.8 55.5 49.0 52.0 48.3 50.6 47.5 49.5 47.8 52.8 53.9 48.8 54.5 55.3 53.7 56.3 54.6 56.4 57.0 66.6 67.3 68.2 65.2 38.1 43.7 53.2 46.3 48.3 45.0 40.3 48.1 45.4 46.3 41.8 45.5 36.4 44.9 38.4 39.0 39.3 46.6 44.7 43.6 63.4
61.9 59.6 63.6 65.6 60.4 62.6 59.6 61.9 59.1 61.2 60.2 63.0 63.8 58.7 64.4 65.0 63.7 64.1 63.8 65.8 65.9 74.0 74.9 75.6 73.0 51.6 53.8 62.9 57.0 58.5 56.3 52.2 59.8 57.1 58.1 53.9 57.1 50.3 56.1 51.3 51.8 53.3 59.3 56.9 56.6 71.5
71.1 68.8 72.6 74.8 69.7 71.7 69.0 71.4 68.3 70.5 69.9 73.4 74.3 69.6 73.9 75.5 72.0 71.4 72.2 74.2 74.5 79.7 80.5 80.7 79.9 60.8 62.9 71.8 65.7 68.0 64.7 61.3 69.0 66.2 67.1 62.2 66.2 59.3 64.9 58.6 59.9 61.6 68.4 66.1 65.1 78.5
75.1 72.9 76.3 78.6 73.4 75.4 73.0 76.1 72.3 74.6 73.6 79.1 79.8 75.1 78.4 81.0 76.3 75.0 76.1 78.4 78.2 81.7 82.6 82.7 83.4 65.6 68.7 76.5 71.6 73.9 70.1 66.7 73.5 70.6 71.4 66.7 70.3 64.4 69.9 63.9 65.5 66.1 73.2 70.1 69.8 81.4
73.1 70.9 74.2 76.5 71.1 73.5 71.0 73.9 70.0 72.1 71.2 77.0 78.2 73.2 76.7 79.8 74.5 73.8 74.8 77.0 76.2 81.4 82.4 82.5 82.9 63.4 67.2 74.5 69.9 72.3 68.3 64.5 71.8 68.5 69.4 64.6 68.4 62.3 68.5 63.3 63.7 63.8 70.6 67.7 67.2 80.9
65.4 62.8 67.0 69.1 64.1 66.3 63.4 65.1 61.8 63.1 62.6 68.0 69.3 64.0 68.1 70.8 67.4 67.9 68.0 70.1 69.1 77.5 78.4 78.9 77.0 53.8 58.7 67.4 62.1 64.7 60.2 56.3 63.9 60.7 61.3 56.8 60.5 53.5 60.5 54.8 54.7 53.2 61.0 58.9 57.4 75.5
53.4 51.0 55.5 57.3 52.4 54.6 52.1 52.8 50.4 50.8 50.2 56.0 57.1 51.8 56.6 58.6 55.7 57.5 56.6 58.5 58.0 68.1 69.5 70.0 66.7 42.8 47.7 55.4 51.6 54.1 49.6 45.6 51.9 49.2 49.9 46.1 49.2 42.5 49.7 44.4 43.5 41.6 48.7 47.0 45.3 64.4
40.1 37.2 42.3 45.9 40.6 42.9 40.1 37.9 35.7 34.8 35.1 40.8 42.4 37.4 42.6 44.2 44.7 47.7 45.9 47.6 46.8 59.0 60.1 61.4 56.1 30.6 38.3 45.5 41.8 44.9 39.6 34.6 40.7 38.1 38.4 34.8 38.0 28.9 38.7 32.4 28.0 24.4 32.5 31.2 28.8 54.8
27.8 24.4 30.3 35.6 29.0 31.6 28.7 24.9 22.5 22.3 21.6 30.2 33.1 29.6 31.4 33.6 34.6 38.3 36.3 37.6 36.9 52.4 53.3 55.1 48.4 16.4 27.6 36.7 31.2 34.8 28.9 24.0 29.6 26.7 27.6 23.7 26.9 17.2 28.6 20.2 14.0 8.5 18.7 17.3 14.4 47.6
50.8 48.0 52.7 56.0 49.9 52.5 49.5 50.0 46.9 48.3 47.2 53.5 55.2 50.7 54.3 56.4 54.2 55.9 55.2 57.0 56.8 67.0 68.0 68.8 65.7 39.2 45.8 54.6 49.0 51.6 47.2 42.5 49.8 46.8 47.7 43.2 46.8 38.7 47.1 40.1 39.1 37.5 45.4 43.4 41.8 64.1
q 2006 by Taylor & Francis Group, LLC
3-5
(Continued)
CLIMATE AND PRECIPITATION
IN
Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson
(Continued)
State
Station
MO
MT
NE
NH NJ
NM
NY
NC
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
46.1 40.4 27.8 26.9 29.6 31.7 24.0 10.8 21.7 14.6 20.2 21.4 23.5 22.4 22.4 20.4 23.2 21.7 22.4 24.5 20.8 25.6 25.2 47.0 33.6 30.1 20.1 5.2 32.1 35.2 31.3 35.7 33.9 40.0 22.2 21.7 24.5 30.9 32.1 31.8 32.6 23.9 22.7 35.8
50.2 44.8 33.7 33.0 35.4 37.1 29.8 19.1 26.4 21.9 26.4 26.8 29.0 28.2 28.3 26.4 29.4 28.0 28.5 30.0 26.6 31.3 29.8 52.2 38.5 36.1 23.3 6.6 34.2 36.9 33.8 41.4 37.6 45.7 25.0 23.8 25.9 32.4 34.6 33.5 34.8 25.3 24.5 39.0
57.3 53.1 44.0 43.8 45.8 46.3 37.0 30.9 33.4 32.5 35.1 34.9 37.6 38.3 39.4 37.0 38.0 39.3 39.8 37.3 35.3 38.6 35.9 58.3 43.3 41.1 33.3 13.6 41.8 43.3 42.2 48.1 43.7 52.9 35.0 32.7 34.3 39.8 42.5 40.9 42.3 33.9 33.6 46.3
63.8 60.9 54.4 54.4 56.6 55.6 46.1 44.5 42.6 44.3 44.1 43.4 45.2 49.9 51.2 49.1 48.1 51.4 52.0 46.2 46.1 44.6 42.2 66.0 48.6 46.7 44.6 22.9 50.6 51.4 52.3 55.6 51.7 60.5 46.6 44.1 45.3 49.1 52.5 50.1 52.2 45.3 45.3 54.1
71.7 69.4 63.7 64.3 66.5 64.7 55.7 55.5 51.5 54.5 52.9 51.3 52.7 60.6 62.0 60.3 58.3 62.2 62.3 56.8 57.5 52.7 50.4 75.4 56.4 55.2 56.0 35.6 60.5 60.5 62.7 64.7 60.5 69.6 58.1 55.9 57.0 59.2 62.6 59.7 62.4 57.0 57.1 62.0
78.5 76.9 72.7 73.6 75.6 73.4 65.2 64.4 60.0 62.7 61.2 57.7 60.2 71.1 72.7 70.1 68.4 72.2 71.5 67.2 67.6 61.7 59.9 85.6 64.7 64.3 64.9 44.4 69.7 69.4 71.9 74.8 69.9 78.0 66.3 63.9 65.8 68.5 71.2 68.8 71.5 65.8 65.8 69.2
81.7 80.6 77.4 78.5 80.2 78.5 72.0 70.2 66.2 68.3 67.8 63.5 66.9 75.8 77.8 74.8 74.3 76.7 75.6 73.0 73.7 69.1 67.4 91.2 71.3 72.0 70.0 48.7 75.3 75.2 77.2 78.5 73.8 80.8 71.1 68.7 70.8 74.6 76.5 74.8 77.1 70.7 70.9 73.0
81.4 79.6 75.7 76.6 78.2 77.6 70.9 69.5 65.6 67.6 66.7 63.2 66.3 73.6 75.4 72.7 72.6 74.5 74.0 70.9 72.1 67.6 65.8 89.3 69.9 69.9 68.2 47.6 73.5 74.8 75.5 76.1 72.2 78.9 69.0 66.6 69.1 73.1 75.1 74.1 75.9 68.9 69.2 71.8
76.1 73.3 67.3 68.1 70.2 69.3 59.5 57.3 55.4 56.3 56.1 53.1 56.1 64.4 66.0 63.4 62.4 65.4 65.7 60.5 61.5 58.2 56.7 81.3 62.4 60.3 59.4 40.4 66.3 68.9 67.8 69.1 64.7 72.0 60.6 58.8 61.5 65.8 67.5 67.2 68.6 61.2 61.3 65.7
64.8 61.9 56.0 56.8 58.3 58.4 48.1 45.0 45.5 44.6 44.8 41.9 44.4 52.0 53.5 51.0 49.7 53.2 53.9 47.8 48.3 46.7 45.4 68.7 52.0 48.8 47.8 30.2 55.1 58.5 56.4 57.3 54.6 61.4 49.3 48.1 50.7 54.3 56.6 56.5 57.7 50.4 50.1 55.2
55.7 51.5 43.2 42.7 45.3 45.9 34.1 27.9 32.3 29.1 30.9 30.9 32.0 36.4 38.1 35.1 34.6 38.0 38.4 34.0 33.0 34.5 33.5 55.0 40.9 37.4 37.6 20.6 45.9 49.0 46.4 44.4 42.2 48.9 39.2 37.6 40.2 44.9 47.1 46.8 47.6 39.9 39.7 46.4
48.9 43.4 32.0 31.3 33.9 35.7 26.1 15.6 24.3 19.0 21.4 23.1 23.4 25.6 26.5 23.7 25.7 25.6 26.2 25.7 23.6 26.0 25.8 47.0 33.6 29.6 25.9 10.1 36.8 40.2 36.4 36.1 34.8 40.7 28.0 27.1 29.8 35.7 37.3 37.2 37.9 29.4 28.6 39.0
64.7 61.3 54.0 54.2 56.3 56.2 47.4 42.6 43.8 43.0 44.0 42.6 44.8 49.9 51.1 48.7 48.7 50.7 50.9 47.9 47.2 46.4 44.8 68.1 51.3 49.3 45.9 27.2 53.5 55.3 54.5 56.8 53.3 60.8 47.6 45.8 48.0 52.4 54.6 53.5 55.1 47.7 47.4 54.8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NV
Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville
3-6
Table 3A.1
OH
OK OR
PC
PA
30 30 30
46.1 41.7 37.7
46.8 45.2 41.2
52.4 52.8 49.1
59.8 60.9 57.6
67.6 69.0 65.8
74.8 76.5 73.6
79.2 80.3 77.9
78.6 78.9 76.2
74.8 72.7 69.8
65.7 61.7 58.5
57.6 52.3 49.2
50.0 44.4 41.0
62.8 61.4 58.2
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
39.7 46.1 10.2 6.8 5.3 8.0 25.2 25.7 28.3 26.3 24.3 23.9 24.9 36.7 36.4 42.4 24.4 39.8 39.1 33.8 39.9 40.3 37.5 77.6 77.5 81.4 81.6
43.0 48.5 18.1 14.1 13.1 16.8 28.3 28.4 32.0 30.3 27.3 27.0 27.7 42.3 42.0 44.2 30.0 42.8 43.5 38.7 43.1 43.0 38.6 77.6 77.7 81.2 81.8
50.7 55.0 29.7 27.2 25.7 28.7 37.7 37.5 42.0 40.2 36.7 37.2 36.7 51.0 51.4 46.0 37.0 46.3 47.1 45.1 47.2 46.5 39.6 78.4 77.9 81.8 82.3
59.1 62.7 43.3 43.5 42.3 42.5 48.1 47.6 52.0 50.6 47.2 48.3 47.4 59.7 60.8 48.5 43.0 49.8 51.6 51.0 51.2 50.0 43.4 79.5 78.7 82.3 82.2
67.0 70.2 56.0 57.4 56.8 54.6 58.8 58.5 62.6 61.2 58.0 59.6 57.6 68.4 69.3 52.7 50.9 54.8 58.1 58.1 57.1 55.6 49.9 80.3 79.8 82.6 82.4
74.7 77.0 64.7 66.0 65.2 63.7 67.5 67.5 71.2 70.2 66.8 68.8 65.9 76.8 78.0 56.7 58.1 60.2 65.6 65.4 62.7 61.2 56.5 80.5 81.2 81.8 82.2
78.8 81.1 70.4 70.6 69.4 69.3 71.8 71.9 75.1 74.3 71.0 73.0 69.9 82.0 83.5 60.1 65.9 66.2 72.7 72.6 68.1 66.8 63.7 79.8 82.0 81.4 82.1
77.2 79.7 69.0 69.0 67.8 68.3 70.3 70.2 73.5 72.3 69.3 70.8 68.4 81.2 82.2 60.8 64.2 66.4 72.5 72.0 68.5 67.0 64.2 79.5 82.6 81.6 82.3
71.2 75.0 57.7 58.0 57.0 56.1 63.0 63.3 66.5 65.1 62.6 63.5 61.5 73.2 73.5 58.5 55.0 61.7 65.9 63.4 63.6 62.2 60.1 79.7 82.5 82.0 82.3
60.0 64.8 45.2 45.3 44.3 43.6 51.6 52.2 54.7 53.5 51.5 51.8 50.8 62.0 62.6 52.6 44.4 52.6 55.1 52.3 54.3 52.9 51.3 79.5 81.9 82.1 82.4
51.0 56.5 28.0 27.0 25.8 25.6 41.1 41.8 43.7 42.2 40.5 40.5 40.7 48.9 49.7 46.6 32.7 44.7 43.9 41.2 45.8 45.2 40.5 79.6 79.9 82.5 82.1
43.0 48.9 15.2 12.5 11.3 13.0 30.7 31.1 33.5 31.4 29.6 29.2 30.4 39.5 39.7 42.8 24.9 39.5 38.1 33.9 40.2 40.2 37.3 78.9 78.3 82.0 81.9
59.6 63.8 42.3 41.5 40.3 40.9 49.5 49.7 52.9 51.5 48.8 49.5 48.5 60.1 60.8 51.0 44.2 52.1 54.5 52.3 53.5 52.6 48.6 79.2 80.0 81.9 82.1
30 30 30 30 30 30 30 30 30 30
80.8 81.5 80.8 81.5 77.8 80.1 27.1 26.9 30.3 30.3
81.1 81.8 81.1 81.3 77.3 80.3 29.9 28.2 32.8 32.8
81.2 82.0 81.4 81.6 78.2 80.8 38.8 36.5 41.7 41.7
81.1 81.6 81.2 81.8 79.2 81.5 49.0 46.8 52.1 52.1
81.3 80.9 81.2 81.9 80.8 81.7 59.6 58.1 62.0 62.0
81.2 80.3 81.0 81.6 82.6 81.0 68.5 67.4 70.7 70.7
81.1 79.7 80.7 81.4 83.3 80.6 73.3 72.1 75.9 75.9
81.4 79.8 80.7 80.9 83.3 80.4 71.2 70.9 74.0 74.0
81.5 80.3 80.7 81.3 83.6 80.6 63.4 64.0 66.2 66.2
81.5 80.7 80.7 81.4 82.6 80.7 52.0 53.3 54.5 54.5
81.4 81.2 81.0 82.1 81.0 80.9 42.0 42.9 44.3 44.3
80.9 81.7 80.9 81.5 79.3 80.6 32.0 32.7 34.8 34.8
81.2 81.0 81.0 81.5 80.8 80.8 50.6 50.0 53.3 53.3
30 30 30
32.3 27.5 26.3
34.8 30.5 28.9
43.2 39.8 37.9
53.1 49.9 48.7
63.5 60.0 59.6
72.3 68.4 67.5
77.6 72.6 72.1
76.3 71.0 70.3
68.8 64.0 62.5
57.2 52.5 51.5
47.1 42.3 41.5
37.4 32.5 31.4
55.3 51.0 49.9
q 2006 by Taylor & Francis Group, LLC
3-7
(Continued)
CLIMATE AND PRECIPITATION
ND
Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca
(Continued)
State
Station
RI SC
SD
TN
UT VT VA
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
25.5 28.7 47.9 49.8 44.6 40.8 11.0 14.2 22.4 14.0 34.2 39.4 37.6 39.9 36.8 36.6 43.5 35.8 50.2 48.1 59.6 56.1 44.1 45.9 51.3 45.1 55.8 51.8 38.1 43.2 52.2 44.9 50.3 53.2 46.1 40.5 28.1 29.2 18.0 34.5 40.1 36.4 35.8
28.5 30.9 50.7 52.4 47.9 44.4 18.7 21.0 27.3 20.8 38.0 43.4 41.8 44.9 41.3 40.6 48.6 40.6 54.6 52.6 62.7 59.5 49.4 51.0 56.1 50.5 58.0 55.4 43.3 48.6 55.6 49.7 54.7 56.7 50.8 45.7 33.7 34.5 19.9 37.8 42.0 39.5 39.1
38.0 38.8 57.7 58.7 55.4 51.6 30.7 32.6 34.9 32.6 46.5 51.4 49.7 53.5 50.1 48.8 56.4 47.9 61.7 59.9 68.8 66.0 57.4 58.8 63.8 57.0 64.1 62.3 51.2 55.9 62.2 57.2 62.1 63.7 58.5 54.2 41.6 43.1 30.7 46.0 49.0 47.7 47.2
49.0 48.6 64.2 65.9 63.2 59.0 45.4 46.1 44.7 45.7 54.6 59.6 57.8 62.1 58.5 57.2 64.6 56.2 68.3 67.1 73.8 71.5 65.0 66.3 70.6 64.6 70.0 68.5 60.0 63.7 68.2 65.0 68.6 69.7 65.9 62.4 48.3 50.0 43.5 55.3 57.4 57.1 56.1
59.5 58.7 72.1 73.5 71.6 67.2 57.9 58.2 55.0 57.8 63.0 67.7 66.0 70.6 67.1 65.6 72.8 65.2 75.1 74.7 79.3 77.5 73.1 74.4 77.7 73.7 76.9 75.8 69.2 72.8 75.4 73.1 75.8 76.6 74.1 71.4 56.6 58.8 56.5 63.4 66.3 65.4 64.1
67.8 67.6 78.2 79.4 78.5 74.7 66.8 67.9 64.6 67.5 70.7 75.4 73.8 78.7 75.1 73.3 79.8 74.3 81.0 80.1 82.7 81.9 80.9 82.2 82.9 82.1 82.2 81.3 77.1 79.6 80.9 79.2 81.5 81.8 81.3 79.7 66.7 69.0 65.6 71.0 74.5 73.5 71.9
72.4 73.3 81.7 82.8 82.0 78.8 72.2 73.4 71.7 73.0 74.2 79.6 77.7 82.5 79.1 77.3 83.5 78.2 84.2 82.8 83.9 83.8 85.0 86.5 85.3 83.3 84.3 83.6 79.8 81.7 82.7 82.4 84.3 84.2 85.4 84.8 74.2 77.0 70.6 75.1 79.1 77.9 76.2
70.9 71.9 80.5 81.6 80.3 77.5 70.5 71.5 71.1 70.8 72.8 78.5 76.9 81.2 77.9 76.2 82.6 76.3 84.5 82.1 84.0 83.9 84.4 86.1 85.1 81.1 84.4 83.3 78.0 80.4 82.5 81.3 84.2 84.2 85.2 83.5 72.6 75.6 68.2 73.8 77.4 76.3 74.7
63.1 64.0 76.1 77.6 74.7 71.4 59.8 61.0 60.6 60.9 66.6 72.1 70.8 74.8 71.3 70.0 75.5 69.1 79.5 77.5 81.0 80.8 77.5 78.9 80.0 75.4 81.1 78.9 70.9 73.9 78.7 74.8 79.4 80.1 78.6 75.6 63.1 65.0 59.4 67.1 72.1 69.8 67.7
51.3 53.0 66.2 68.5 63.7 60.5 46.8 47.9 48.2 48.0 55.0 60.4 58.8 63.8 59.9 58.4 66.0 58.2 70.6 68.6 75.0 73.8 67.2 68.4 71.1 64.9 74.1 70.4 60.7 64.4 70.1 65.4 70.7 72.3 68.6 64.7 50.6 52.5 47.7 56.1 61.1 58.3 56.6
40.8 43.8 58.0 60.5 54.7 51.1 29.3 31.3 33.4 31.3 45.5 50.3 49.0 52.3 49.3 47.7 53.7 45.1 59.7 57.8 67.7 65.1 55.1 56.4 60.1 52.7 65.4 60.9 48.1 52.3 60.9 54.0 60.0 62.7 56.8 51.9 37.6 39.6 37.1 46.6 52.3 49.0 47.3
30.7 33.8 50.5 52.8 47.0 43.5 16.0 18.6 24.7 18.3 37.3 42.4 40.9 43.3 40.5 39.4 45.4 37.0 52.1 49.8 61.1 58.1 46.7 48.0 52.4 45.4 58.1 53.7 39.7 44.8 54.2 46.4 52.4 55.2 48.3 42.9 28.6 30.2 24.8 38.2 44.2 40.4 39.1
49.9 51.1 65.3 67.0 63.6 60.1 43.8 45.4 46.6 45.1 54.9 60.0 58.4 62.4 58.9 57.6 64.4 57.0 68.5 66.8 73.3 71.5 65.5 66.9 69.7 64.7 71.2 68.8 59.7 63.4 68.6 64.5 68.7 70.0 66.6 63.1 50.1 52.0 45.2 55.4 59.6 57.6 56.3
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
TX
Williamsport Providence Charleston AP Charleston CO Columbia Greenville-Spartanburg Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCty-Kgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/Bergstrom Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke
3-8
Table 3A.1
PR WV
WI
WY
Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
38.1 40.6 41.5 40.9 27.3 34.7 29.1 76.6 30.4 33.4 28.6 32.7 15.6 15.9 17.3 20.7 22.3 25.9 20.3 21.3
40.5 42.2 43.8 43.3 32.5 39.7 35.2 76.9 33.9 36.9 31.6 36.8 20.5 22.6 22.6 25.4 26.7 28.8 25.6 26.9
43.6 43.8 46.9 46.2 39.5 46.5 42.5 77.6 42.1 45.3 40.0 45.9 31.3 34.6 33.7 34.9 35.0 34.2 35.5 35.3
47.4 46.7 50.9 50.2 46.5 52.7 48.7 79.1 51.5 54.3 48.9 55.2 44.2 48.4 45.9 45.2 42.7 41.6 43.9 43.9
53.3 51.2 56.6 55.8 54.4 59.8 56.2 80.6 59.9 62.4 57.9 63.6 56.4 60.6 57.7 56.1 52.1 51.3 53.4 52.5
58.2 54.9 61.1 60.7 61.6 67.3 62.9 82.1 67.0 69.9 65.6 71.3 65.4 69.6 67.0 66.3 62.7 61.5 63.7 61.6
62.8 58.6 65.5 65.3 68.6 75.3 69.1 82.2 70.7 73.9 69.6 75.3 69.9 74.0 71.6 72.0 70.0 67.7 70.9 68.8
63.3 59.3 66.0 65.6 68.6 75.2 68.3 82.4 69.3 72.6 68.5 73.9 67.5 71.6 69.1 70.6 68.6 65.9 69.4 68.2
58.3 56.5 61.3 61.1 59.2 66.1 60.0 82.2 63.1 66.2 62.1 66.9 58.8 62.7 60.7 63.0 57.6 56.6 58.7 57.1
49.7 50.1 53.4 52.7 47.2 54.7 48.6 81.6 52.8 55.1 50.6 55.6 47.4 50.6 49.3 51.4 45.7 45.4 46.4 45.1
42.4 44.2 46.0 45.2 34.9 43.1 37.0 79.6 43.4 45.9 41.0 45.9 34.0 35.5 35.5 38.4 32.0 33.3 30.3 31.0
38.0 40.6 41.3 40.7 27.2 35.1 28.8 77.7 34.8 37.5 32.7 37.1 21.2 21.8 23.0 26.2 23.8 27.1 21.3 22.4
49.7 49.1 52.9 52.3 47.3 54.2 48.9 79.9 51.6 54.5 49.8 55.0 44.4 47.3 46.1 47.5 44.9 45.0 45.0 44.6
CLIMATE AND PRECIPITATION
WA
Note: In Fahrenheit degrees, based on 30-year average values 1971–2000; Temperature data are the normal daily values for each month. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-9
q 2006 by Taylor & Francis Group, LLC
3-10
Table 3A.2 Normal Daily Minimum Temperature — Selected Cities of the United States State AL
AK
AR
CA
Years
Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
q 2006 by Taylor & Francis Group, LLC
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
32.3 30.7 39.5 35.5 9.3 30.4 K19.6 0.7 K19.2 K9.6 23.5 K19.0 K12.9 17.5 20.7 8.0 24.6 K8.6 K15.6 K1.8 21.5 2.3 K3.9 17.2 19.4 16.5 43.4 38.9 21.3 46.2 27.8 30.8 31.3 39.3 22.4 40.8 38.4 46.0 48.6 48.5 26.4 35.5 38.8 49.7
35.4 34.0 42.4 38.6 11.7 32.3 K22.0 1.3 K17.7 K6.4 22.9 K15.6 K7.4 18.3 23.5 7.4 24.3 K9.9 K12.5 K2.3 18.9 5.0 K4.2 19.6 21.0 18.8 47.0 41.6 25.5 48.8 32.6 34.8 36.1 43.0 26.4 41.8 41.4 48.1 50.1 50.3 28.7 38.1 41.9 51.5
42.4 41.2 49.2 45.4 18.2 34.2 K20.0 7.2 K8.0 3.2 24.9 K2.7 2.3 22.5 27.8 15.1 26.8 K7.7 K1.8 1.0 19.5 11.1 1.8 23.8 23.6 22.8 51.1 45.1 31.1 52.8 40.9 42.6 44.5 46.2 31.0 42.2 44.9 50.4 51.3 51.6 30.3 41.1 44.2 53.6
48.4 48.4 54.8 51.2 28.7 37.7 K7.3 18.4 10.6 21.7 28.8 19.8 19.7 29.3 33.4 24.9 31.8 3.3 17.7 12.4 24.0 23.9 13.8 30.9 29.2 27.3 57.5 50.5 36.9 58.1 49.0 50.0 52.7 49.6 36.0 44.0 48.4 53.2 53.6 54.4 33.3 44.9 46.3 56.4
57.6 57.5 62.8 60.1 38.9 43.1 15.3 33.1 33.7 37.7 34.8 36.9 32.2 36.7 40.1 34.8 38.2 25.3 35.5 31.1 31.5 34.9 32.1 38.6 36.1 34.0 66.3 58.6 45.3 65.1 58.9 59.2 61.2 56.8 43.7 47.6 54.9 57.8 56.9 57.9 39.0 51.6 50.9 59.8
65.4 65.4 69.2 67.3 47.0 48.3 30.4 43.3 46.9 47.6 41.1 48.5 41.1 43.0 46.1 42.2 43.9 38.8 45.7 40.6 37.6 45.1 42.7 45.0 42.7 41.4 75.2 68.0 54.2 73.2 67.2 67.8 68.9 63.7 50.7 50.7 61.2 61.3 60.1 61.4 44.9 59.6 55.5 62.6
69.7 69.5 71.8 70.9 51.5 52.4 34.3 48.8 49.5 51.1 46.1 51.9 45.4 47.2 49.2 47.5 48.5 49.4 49.8 46.6 43.0 49.9 48.9 48.0 47.1 49.9 81.4 73.4 62.0 80.8 71.4 72.0 72.9 69.2 55.7 52.8 66.1 64.6 63.3 64.6 48.9 64.1 58.3 65.9
68.9 68.1 71.7 70.1 49.4 52.6 33.8 47.5 43.7 46.1 47.4 46.2 41.7 46.7 48.3 47.4 48.6 47.4 45.7 45.2 45.1 46.5 46.5 46.4 46.2 49.1 80.4 72.4 61.1 80.8 70.3 70.5 71.5 68.4 53.7 53.4 64.9 65.6 64.5 65.6 47.5 60.8 58.1 67.4
63.0 61.7 67.6 64.9 41.4 48.0 27.5 39.1 32.8 35.6 43.0 34.7 32.8 41.0 43.8 40.3 43.2 37.2 35.9 37.2 40.7 37.3 35.8 40.9 40.6 41.7 74.5 67.7 52.9 75.3 62.9 63.6 64.9 63.9 46.9 51.2 60.4 63.7 63.6 64.6 42.9 56.5 55.8 66.1
50.9 49.6 56.3 52.2 28.3 41.7 9.8 24.7 11.9 17.0 35.1 15.6 18.4 31.4 37.7 26.0 34.3 18.8 18.3 22.9 34.1 23.6 19.4 33.4 34.8 31.1 62.9 57.0 40.1 64.0 50.5 51.5 54.1 54.9 37.1 47.7 51.9 58.3 59.4 59.9 36.6 48.0 50.6 61.2
41.8 40.7 47.8 43.5 15.9 35.1 K6.4 11.7 K8.0 K0.8 29.9 K6.6 K2.2 23.5 28.9 15.9 28.9 3.2 K2.2 10.8 29.1 9.4 5.0 23.9 26.3 22.1 50.0 45.1 28.7 52.2 39.5 41.5 43.4 44.2 27.1 43.9 42.3 50.1 52.7 52.6 29.9 39.8 42.8 53.6
35.2 33.8 41.6 37.6 11.4 32.1 K16.4 3.2 K15.1 K7.1 26.5 K15.2 K9.5 20.0 24.4 9.3 25.3 K6.4 K12.3 0.9 24.7 4.8 K1.4 20.2 22.9 16.6 43.5 39.2 21.0 45.8 31.1 33.9 34.9 38.2 21.6 40.6 37.0 45.3 48.5 48.3 25.8 35.0 37.7 48.9
Annual 50.9 50.1 56.2 53.1 29.3 40.7 5.0 23.3 13.4 19.7 33.7 16.3 16.8 31.4 35.3 26.6 34.9 15.9 17.0 20.4 30.8 24.5 19.7 32.3 32.5 30.9 61.1 54.8 40.0 61.9 50.2 51.5 53.0 53.1 37.7 46.4 51.0 55.4 56.1 56.6 36.2 47.9 48.4 58.1
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
CT DE DC FL
GA
HI
ID
IL
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
42.9 46.4 40.8 39.3 38.1 K3.7 14.5 15.2 15.6 14.0 22.9 17.2 23.7 21.9 27.3 43.0 47.1 54.5 42.4 41.9 65.2 59.6 49.9 42.7 39.7 52.4 52.7 57.3 32.9 33.5 33.1 36.6 34.5 38.0 63.6 65.7 63.3 65.4 23.6 28.0 16.3 14.3 12.3 14.3 10.8 17.1
45.5 48.5 44.0 41.4 41.0 4.7 18.0 19.1 22.7 18.8 24.9 19.9 25.8 24.1 29.7 45.8 48.8 55.4 44.7 44.3 65.7 60.5 51.3 45.4 42.1 53.8 53.6 58.2 35.4 36.5 35.5 39.0 37.0 40.9 63.5 65.4 63.1 65.5 28.8 31.2 20.9 19.2 18.2 19.7 16.3 22.2
46.8 49.2 46.0 42.7 43.6 15.8 23.9 25.4 31.0 26.3 32.0 28.3 33.4 31.8 37.3 51.4 53.7 59.3 49.9 49.8 68.8 64.0 55.9 51.7 48.2 58.5 57.8 61.9 42.3 43.6 42.5 45.7 43.8 47.5 64.7 66.9 64.6 67.3 34.0 35.6 27.3 28.5 29.0 30.2 26.7 32.4
48.1 50.1 47.6 43.4 46.7 22.8 31.4 34.2 37.5 34.5 40.7 37.9 42.1 40.2 45.9 57.6 58.0 62.7 54.7 54.6 72.1 67.6 59.9 57.6 52.8 62.4 61.6 65.4 48.7 50.4 48.1 51.8 49.5 52.9 65.6 68.2 66.0 68.9 39.4 40.6 32.6 37.6 39.3 40.3 36.8 42.2
50.5 51.4 50.5 46.9 52.1 32.4 40.7 43.8 46.4 44.8 50.6 48.1 52.4 49.9 55.8 65.1 64.5 68.4 62.0 62.5 75.9 72.0 65.9 65.8 62.3 68.9 67.2 70.5 57.6 59.5 57.2 61.3 58.6 61.3 66.7 69.6 67.0 70.3 46.6 47.0 39.2 47.5 50.0 50.8 47.9 52.7
52.9 53.2 53.9 50.4 57.5 40.4 49.5 53.0 55.3 53.5 59.6 57.0 61.8 59.0 65.0 71.6 70.6 73.1 68.4 69.4 78.7 75.2 71.3 72.1 69.8 74.0 71.8 73.8 65.3 67.1 65.4 68.8 66.6 68.1 68.0 72.1 69.3 72.7 54.2 53.6 45.7 57.2 59.7 60.1 57.6 61.9
54.5 54.4 57.3 53.5 60.8 46.4 54.8 58.7 61.4 59.4 66.0 62.4 67.3 64.0 70.1 73.9 72.4 74.2 70.8 72.4 79.6 76.5 72.6 74.5 72.7 75.3 73.0 75.0 69.3 70.6 69.6 72.3 70.5 71.8 69.2 73.8 70.8 74.0 60.3 59.3 50.9 63.2 64.5 64.6 62.6 66.0
55.5 55.6 58.4 54.2 60.3 45.2 53.6 57.4 59.7 58.1 65.4 60.7 65.8 62.8 68.6 74.0 72.8 74.4 70.6 72.2 79.2 76.5 73.0 74.2 72.7 75.4 72.9 75.4 68.5 69.9 68.4 71.5 69.5 71.3 69.4 74.7 71.0 74.5 59.8 59.3 49.9 62.2 62.4 62.6 60.9 63.9
55.1 56.1 56.6 52.9 57.4 36.5 45.4 47.3 50.4 48.7 57.7 52.1 58.1 55.6 61.8 71.2 71.9 73.9 68.1 69.4 78.5 75.7 71.9 70.4 69.2 74.3 72.7 74.7 62.7 64.3 62.4 66.4 63.7 67.3 69.0 74.2 70.0 74.0 51.2 50.9 41.8 53.7 53.4 54.0 51.8 55.4
52.4 54.6 51.6 48.2 50.5 23.9 34.3 35.9 38.6 35.3 46.3 40.6 45.6 42.3 49.6 60.5 65.3 68.6 59.2 59.7 75.7 72.2 65.5 59.6 56.9 67.6 68.5 71.2 50.7 52.8 49.6 54.5 51.1 56.1 68.5 73.2 69.4 72.8 41.3 41.2 33.3 42.1 41.6 42.3 40.1 44.4
47.5 50.8 44.0 41.8 42.1 11.1 22.6 23.5 26.3 22.5 37.5 32.6 36.9 33.8 40.0 52.0 57.0 62.1 51.1 50.8 71.9 67.5 58.7 51.1 47.9 60.7 61.9 65.8 42.2 43.5 40.9 45.7 42.5 46.9 67.2 71.1 67.9 70.8 32.4 34.1 24.9 31.6 30.1 31.4 29.0 33.7
43.0 46.7 39.9 38.2 36.7 K0.7 15.6 16.4 17.5 15.1 28.0 22.6 28.4 26.0 32.0 45.3 50.1 56.2 44.4 44.1 67.3 62.2 52.6 44.7 41.6 54.7 54.7 60.1 35.3 36.2 34.7 39.0 36.3 40.1 64.9 67.8 65.1 67.6 24.1 28.5 16.8 20.4 18.3 20.1 16.9 22.6
49.6 51.4 49.2 46.1 48.9 22.9 33.7 35.8 38.5 35.9 44.3 40.0 45.1 42.6 48.6 59.3 61.0 65.2 57.2 57.6 73.2 69.1 62.4 59.2 56.3 64.8 64.0 67.4 50.9 52.3 50.6 54.4 52.0 55.2 66.7 70.2 67.3 70.3 41.3 42.5 33.3 39.8 39.9 40.9 38.1 42.9
q 2006 by Taylor & Francis Group, LLC
3-11
(Continued)
CLIMATE AND PRECIPITATION
CO
San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Chicago Moline Peoria Rockford Springfield
State IN
IA
KS
KY
ME MD MA
MI
MN
MS
(Continued) Station
Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson Meridian
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
22.6 16.1 18.5 15.7 11.7 9.2 8.5 6.3 16.9 18.7 15.8 17.2 20.3 21.3 25.7 24.1 24.9 23.9 40.2 41.2 43.4 36.5 K0.3 12.5 23.5 18.1 22.1 15.8 9.5 17.8 13.3 15.6 9.7 13.9 3.3 17.1 4.9 K1.2 K8.4 4.3 3.7 K1.2 35.0 34.7
26.2 19.2 22.5 19.0 17.8 15.4 15.3 13.2 21.9 23.6 19.7 23.0 25.3 25.0 28.9 27.7 28.5 28.2 43.1 44.3 46.1 40.3 2.9 15.6 26.1 20.3 24.2 17.8 9.7 20.0 15.3 17.4 10.5 15.4 5.4 18.3 6.6 5.1 K0.7 11.8 10.6 6.4 38.2 37.7
35.2 28.8 32.0 28.2 28.7 26.2 25.7 24.9 31.1 31.2 26.4 32.9 34.4 33.8 37.4 35.9 37.1 37.1 49.6 50.8 52.7 47.2 15.2 25.2 33.6 27.8 31.5 25.6 18.7 28.5 24.3 25.9 19.2 24.3 14.3 25.4 16.1 16.5 12.3 23.5 22.6 19.1 45.4 44.3
43.8 38.2 41.2 37.7 39.9 37.5 37.3 35.8 41.2 40.7 34.8 42.9 43.7 42.7 45.8 44.1 46.0 45.6 55.8 57.2 58.4 53.8 29.2 34.7 42.0 37.1 40.5 35.5 30.2 38.4 34.6 36.1 30.6 34.5 26.9 35.1 28.8 28.9 27.1 36.2 34.6 32.2 51.7 50.4
54.0 49.1 51.8 48.4 51.4 48.8 49.2 48.1 51.9 51.7 45.7 53.4 54.0 52.9 54.3 53.6 56.1 55.0 64.1 65.7 66.4 62.7 40.7 44.2 51.8 47.0 50.2 46.2 40.0 49.4 45.2 46.6 40.7 44.8 39.1 45.1 39.3 40.2 40.0 48.5 46.1 44.1 61.0 59.5
63.5 58.8 61.3 58.3 61.0 57.9 58.5 58.1 61.8 61.6 55.5 63.2 63.9 61.6 61.9 62.2 65.1 63.8 70.2 72.1 72.0 69.9 49.9 52.9 60.8 55.9 59.4 55.0 48.8 58.9 54.6 55.8 48.9 54.3 48.3 54.2 46.5 48.5 49.1 57.8 55.6 52.9 68.1 66.8
67.8 62.5 65.2 62.8 66.1 62.4 62.9 62.2 67.4 66.8 61.1 67.7 69.1 66.1 65.7 66.4 69.8 67.7 72.7 74.3 74.2 73.4 54.8 58.6 65.8 62.0 65.5 60.8 54.5 63.6 59.1 60.5 53.4 58.4 53.5 59.8 52.0 54.6 53.6 63.0 60.1 57.9 71.4 70.5
65.1 60.4 63.3 61.3 63.9 60.2 60.6 59.5 65.6 65.6 59.6 65.4 67.9 64.2 64.3 64.9 68.2 64.9 71.9 73.6 73.9 72.3 52.6 57.2 63.9 60.9 64.5 59.5 52.9 62.2 57.4 59.0 52.2 57.0 52.0 58.8 52.4 53.5 51.3 60.8 58.0 55.5 70.3 69.8
57.0 52.8 55.2 53.3 54.3 51.7 50.1 49.8 56.1 56.5 50.0 55.9 59.3 56.8 58.4 57.9 60.9 57.1 67.5 69.1 70.6 66.4 43.6 48.5 56.6 53.2 56.8 51.3 45.2 54.1 49.4 51.0 45.3 48.9 43.8 50.7 44.8 44.8 41.6 50.8 48.7 45.7 64.6 64.2
44.6 41.8 43.6 42.3 42.2 40.5 38.0 37.8 44.0 43.8 37.5 44.3 46.9 44.9 47.4 46.4 48.5 45.2 56.4 58.6 60.2 55.0 34.1 37.4 43.7 42.9 46.4 40.7 35.6 42.5 38.6 40.2 36.2 38.6 34.0 40.6 36.0 34.5 31.5 38.9 37.1 34.3 52.0 51.3
36.0 32.7 34.1 32.6 29.0 27.8 24.8 25.1 30.5 30.2 25.2 32.1 33.9 35.7 38.9 37.3 39.3 36.5 47.9 49.7 51.8 45.3 23.7 29.5 34.7 34.2 37.9 32.0 27.0 33.5 29.8 31.2 27.6 30.1 22.4 31.8 25.9 20.7 16.4 24.8 23.7 20.4 43.4 42.8
27.0 22.3 24.0 21.7 16.7 15.2 12.8 12.5 20.8 21.7 17.8 21.8 24.0 26.4 30.2 28.4 29.9 27.5 42.1 43.3 45.6 38.3 8.0 18.7 27.3 23.8 27.8 21.6 16.9 23.4 19.1 21.4 16.8 19.7 10.2 22.6 13.1 5.6 K1.1 10.9 10.1 5.5 37.3 37.2
45.2 40.2 42.7 40.1 40.2 37.7 37.0 36.1 42.4 42.7 37.4 43.3 45.2 44.3 46.6 45.7 47.9 46.1 56.8 58.3 59.6 55.1 29.6 36.3 44.2 40.3 43.9 38.5 32.4 41.0 36.7 38.4 32.6 36.7 29.4 38.3 30.5 29.3 26.1 35.9 34.3 31.1 53.2 52.4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
LA
3-12
Table 3A.2
MT
NE
NV
NH NJ
NM
NY
NC
Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30.5 18.2 17.8 21.2 21.8 15.1 1.8 11.3 3.7 9.9 13.8 16.2 12.2 11.5 9.6 9.9 11.6 12.6 11.0 7.8 14.1 10.4 36.8 21.8 18.5 9.7 K3.7 22.8 29.0 24.4 23.8 20.3 24.4 13.3 15.0 17.8 22.6 26.2 24.7 26.5
33.5 23.4 23.3 26.5 26.4 20.1 9.9 15.1 10.4 15.6 18.4 20.5 17.7 17.2 15.5 15.4 18.0 19.0 15.8 13.7 19.7 15.6 41.4 25.4 23.6 12.6 K1.7 24.5 30.6 26.6 28.2 23.7 29.3 15.7 16.7 18.6 24.3 28.1 26.1 28.3
41.4 33.0 33.2 36.2 34.9 26.4 20.6 21.5 20.0 23.5 24.8 27.1 27.0 27.5 25.4 23.8 28.1 28.8 23.0 22.1 25.9 21.9 47.0 29.3 27.0 22.7 5.9 31.7 37.0 34.2 33.7 29.2 35.7 25.4 24.7 26.1 31.1 35.1 32.9 35.1
48.2 42.9 43.5 46.5 43.6 34.7 32.2 29.7 30.0 31.2 30.8 32.4 37.8 38.8 36.8 33.4 39.6 40.3 31.4 32.4 29.9 26.4 53.9 33.2 30.7 32.2 16.4 39.8 45.2 43.7 40.5 37.2 43.3 35.9 35.1 36.4 40.0 44.2 41.6 44.4
57.7 52.8 53.9 56.6 53.4 44.0 43.0 38.3 40.2 39.8 37.9 39.3 49.3 50.1 48.3 44.5 50.7 51.3 42.4 43.7 36.8 33.4 62.9 40.2 38.4 42.4 29.5 49.8 54.8 54.1 49.7 46.7 53.2 46.5 46.2 47.7 49.4 54.2 51.2 54.3
65.7 61.8 63.2 65.9 62.2 52.5 51.6 46.0 48.0 47.5 43.5 45.9 59.1 60.4 58.0 54.2 60.6 60.5 52.1 53.2 43.5 40.6 72.3 46.5 45.8 51.8 38.5 59.3 63.9 63.5 59.4 55.9 62.0 55.0 54.4 56.9 59.6 63.3 60.4 63.7
69.8 66.3 68.2 70.6 67.1 58.3 56.6 50.4 52.0 52.3 46.7 50.2 64.4 65.9 63.0 60.2 65.9 65.5 57.4 59.1 48.6 47.4 78.2 51.4 51.8 57.1 43.3 65.4 69.8 69.1 64.7 60.2 66.7 60.0 59.2 62.1 65.9 68.8 66.7 69.5
68.2 64.0 66.1 68.6 65.6 57.3 55.7 49.9 51.3 50.8 45.8 49.3 62.3 63.7 61.0 58.4 63.8 64.1 54.9 57.3 47.0 46.4 76.7 49.9 49.2 55.6 42.1 63.7 69.7 67.7 63.2 59.2 65.5 58.3 57.4 60.5 64.5 67.7 66.3 68.7
61.7 55.4 57.2 60.3 57.4 47.1 44.1 41.2 40.7 41.2 37.1 40.6 51.8 53.2 50.4 46.7 53.5 55.0 43.7 45.8 38.1 37.5 68.8 43.1 40.2 46.6 34.6 56.0 63.6 59.9 56.0 51.5 58.3 49.9 49.9 52.9 56.6 60.3 59.5 61.6
48.8 44.1 45.9 48.2 46.1 37.2 33.0 33.0 29.8 31.2 28.4 31.4 39.3 40.4 38.0 33.7 41.1 43.1 31.3 33.1 28.3 27.8 56.5 34.0 30.2 35.1 24.0 43.9 52.5 48.2 43.8 40.6 46.3 38.8 39.6 42.6 44.6 49.6 48.7 50.9
40.0 33.0 33.4 36.7 35.3 25.6 18.5 22.5 17.3 20.3 23.2 24.0 25.9 27.0 24.7 20.7 28.1 29.2 19.7 20.1 20.9 18.2 44.0 26.4 23.3 27.6 13.6 35.7 42.9 39.1 31.6 28.7 33.3 30.8 30.9 33.7 36.1 41.0 39.8 41.6
33.2 22.5 22.5 25.8 25.9 17.7 6.4 14.4 7.8 11.3 16.1 16.5 15.9 16.2 13.7 12.1 16.4 17.2 11.6 10.5 13.8 10.6 36.6 20.7 17.0 16.2 1.7 27.1 34.0 29.8 24.2 21.6 25.1 20.1 20.8 23.6 27.5 31.6 30.5 32.0
49.9 43.1 44.0 46.9 45.0 36.3 31.1 31.1 29.3 31.2 30.5 32.8 38.6 39.3 37.1 34.4 39.8 40.6 32.9 33.2 30.6 28.0 56.3 35.2 33.0 34.1 20.4 43.3 49.4 46.7 43.2 39.6 45.3 37.5 37.5 39.9 43.5 47.5 45.7 48.1
30 30 30 30 30
16.6 14.0 25.8 38.6 32.1
17.3 15.5 28.0 39.0 34.4
25.2 24.2 34.9 44.5 41.6
35.3 34.9 41.8 51.8 49.1
46.1 45.8 50.6 60.2 58.2
55.0 54.6 58.3 68.1 66.5
60.0 60.1 62.7 72.9 70.6
58.7 58.8 61.8 72.3 69.3
51.3 51.1 55.4 68.5 63.0
41.1 40.4 43.3 58.8 50.9
32.6 32.0 35.3 50.3 41.8
22.7 20.9 28.8 42.6 34.9
38.5 37.7 43.9 55.6 51.0
q 2006 by Taylor & Francis Group, LLC
3-13
(Continued)
CLIMATE AND PRECIPITATION
MO
State
ND
OH
OR
PC
PA
(Continued) Station
Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30
28.2
30.6
37.8
45.5
54.7
63.5
68.1
66.8
60.1
47.5
38.6
31.4
47.7
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
29.6 35.8 K0.6 K2.3 K4.3 K3.3 17.4 18.8 20.3 19.0 16.2 16.4 17.4 26.2 26.3 36.7 14.0 33.0 30.9 27.4 34.2 33.5 32.5 71.2 73.1 75.1 77.5
31.9 37.5 7.8 5.4 3.7 5.9 19.8 21.0 23.5 22.4 18.7 18.9 19.3 31.1 31.1 37.6 19.4 34.9 33.1 30.9 35.9 34.7 33.0 71.1 73.2 74.9 77.5
38.9 43.7 19.1 19.0 17.1 17.2 27.9 28.9 32.2 31.2 26.8 27.9 27.1 39.4 40.3 38.6 24.9 36.7 35.9 35.4 38.6 36.6 32.5 71.7 73.4 75.2 77.9
46.4 51.2 30.6 32.4 31.0 29.1 37.1 37.9 41.2 40.4 36.1 37.7 36.5 48.1 49.5 40.8 28.6 38.9 39.0 39.7 41.9 38.8 34.9 72.7 74.2 75.8 77.8
55.3 59.8 42.8 45.3 43.5 40.9 47.8 48.3 51.8 51.1 46.7 48.6 46.2 57.9 59.0 45.4 35.6 42.7 44.0 45.9 47.5 43.6 39.6 73.2 75.2 76.0 78.0
63.8 67.6 51.6 54.5 52.8 50.1 56.8 57.7 60.7 60.2 55.8 58.2 54.6 66.4 67.9 49.8 41.1 47.0 50.1 52.0 52.6 48.4 45.4 73.5 76.6 75.4 77.8
68.5 72.3 56.4 59.0 56.8 55.2 61.3 62.3 64.9 64.4 60.3 62.6 58.7 70.8 73.1 52.9 46.4 50.8 55.2 57.5 56.9 52.0 51.8 72.8 77.4 75.3 77.6
67.2 71.0 54.7 57.0 54.5 53.8 60.2 61.2 63.2 62.2 58.9 60.7 57.5 69.8 71.2 53.2 43.9 50.8 54.9 57.3 57.3 52.1 52.7 72.8 78.0 75.7 77.6
61.0 65.9 43.7 46.1 44.3 42.2 53.1 54.3 55.9 54.6 52.1 52.9 50.9 62.2 62.9 49.5 35.0 46.7 48.3 49.7 52.5 47.7 49.8 72.8 77.9 76.0 77.5
48.2 53.9 32.1 34.4 33.0 30.2 42.1 43.7 44.0 43.5 41.3 41.6 40.9 50.6 51.1 44.1 26.4 40.5 40.2 40.7 45.2 41.3 43.3 72.7 77.5 75.8 77.8
39.5 45.1 17.8 18.7 17.4 14.9 33.4 34.9 34.9 34.3 32.2 32.6 33.0 38.2 39.3 40.1 20.6 37.2 35.0 33.8 39.8 37.9 35.2 73.6 75.7 75.9 77.7
32.6 38.1 4.8 4.2 2.5 2.1 23.6 24.9 25.9 24.4 22.0 22.3 23.4 29.2 29.8 37.1 14.6 33.3 31.0 27.7 35.0 33.9 32.5 73.1 73.9 75.6 77.9
48.6 53.5 30.1 31.1 29.4 28.2 40.0 41.2 43.2 42.3 38.9 40.0 38.8 49.2 50.1 43.8 29.2 41.0 41.5 41.5 44.8 41.7 40.3 72.6 75.5 75.6 77.7
30 30
76.3 76.1
76.6 76.3
76.5 76.6
76.4 76.3
76.5 76.2
76.3 76.1
76.2 75.5
76.3 75.5
76.4 75.8
76.3 76.2
76.4 76.5
76.3 76.4
76.4 76.1
30 30 30 30 30 30 30 30
74.8 75.9 73.1 73.7 19.1 20.3 23.1 23.1
75.1 76.2 72.4 73.8 21.0 20.9 24.7 24.7
75.2 76.4 73.1 74.0 28.9 28.2 32.5 32.5
74.7 76.4 73.9 74.6 37.8 37.9 41.5 41.5
74.6 76.1 75.3 74.9 48.3 48.7 51.4 51.4
74.2 76.0 77.1 74.3 57.7 58.5 60.6 60.6
73.2 75.0 77.8 74.0 62.6 63.7 66.0 66.0
72.8 74.3 77.9 73.7 60.7 62.7 64.2 64.2
72.6 74.7 78.4 73.7 52.7 55.9 56.7 56.7
72.6 74.5 77.4 73.8 41.1 45.5 44.6 44.6
73.3 75.8 76.3 74.0 32.7 36.4 36.1 36.1
74.5 75.3 74.7 74.2 24.0 26.8 27.8 27.8
74.0 75.6 75.6 74.1 40.6 42.1 44.1 44.1
30 30 30
25.5 19.9 18.5
27.5 22.3 20.4
35.1 30.1 28.4
44.2 39.1 38.1
54.8 49.2 48.4
64.0 57.7 56.7
69.7 62.4 61.5
68.5 61.0 60.1
60.9 53.9 52.6
48.7 42.5 41.7
39.5 34.2 33.7
30.6 25.3 24.2
47.4 41.5 40.4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
OK
3-14
Table 3A.2
SD
TN
TX
UT VT VA
Williamsport Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/ Bergstrom Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke
30 30 30 30 30 30
17.9 20.3 36.9 42.4 34.0 31.4
19.9 22.5 39.1 44.9 36.3 33.9
28.2 30.0 46.0 51.5 43.5 40.5
37.8 39.1 52.2 58.8 50.7 47.0
47.8 48.8 61.3 67.4 60.0 56.2
56.8 57.9 68.5 73.8 67.9 64.3
61.7 64.1 72.5 77.0 71.8 68.7
60.4 62.8 71.6 76.1 70.6 67.9
52.8 54.5 67.1 72.2 64.6 61.7
40.9 43.1 55.3 61.9 51.5 49.7
32.7 35.1 46.4 53.4 42.6 41.0
23.7 25.6 39.3 45.5 36.1 34.3
40.1 42.0 54.7 60.4 52.5 49.7
30 30 30 30 30
0.6 3.5 11.3 2.9 24.3
8.8 10.8 15.9 10.1 27.0
21.2 22.3 23.2 21.3 34.6
33.4 33.9 32.3 32.5 42.0
45.6 45.8 42.7 44.6 51.0
54.8 55.4 51.8 54.5 59.5
59.7 60.7 57.9 60.3 63.5
57.4 58.6 56.6 58.4 61.7
46.5 47.3 46.0 47.6 54.7
34.4 34.9 34.7 34.8 41.8
19.7 21.1 22.1 20.7 33.6
6.3 8.4 13.3 7.8 26.8
32.4 33.6 34.0 33.0 43.4
30 30 30 30 30 30 30 30 30
29.9 28.9 31.3 27.9 27.2 31.8 22.6 40.0 37.3
32.6 31.8 35.5 31.2 29.5 36.5 27.0 44.0 41.0
40.0 39.1 43.7 39.4 36.6 43.8 33.6 50.9 48.4
47.0 46.6 51.9 47.1 43.8 51.8 41.7 57.6 56.3
56.2 55.6 60.8 56.7 53.4 61.0 51.7 65.4 65.1
64.6 63.9 68.8 65.0 61.7 68.5 61.1 71.1 70.2
69.4 68.5 72.9 69.5 66.4 72.3 65.3 73.4 71.5
68.3 67.3 71.2 68.0 65.2 71.4 63.8 73.3 70.3
61.7 60.8 64.3 61.0 58.8 64.4 56.3 68.8 65.3
48.5 47.7 52.5 48.6 45.7 54.4 44.6 59.8 56.3
39.5 38.9 42.6 39.5 36.4 42.3 31.8 49.3 45.9
32.7 31.9 34.5 31.5 29.8 33.9 24.1 41.9 38.2
49.2 48.4 52.5 48.8 46.2 52.7 43.6 58.0 55.5
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
50.5 46.2 34.0 36.4 39.7 32.9 49.7 41.2 24.4 29.6 42.9 31.8 38.6 43.6 35.1 28.9 15.5 21.3 9.3 24.5 32.3 27.6 26.6
53.3 49.3 38.7 41.0 44.1 37.5 51.5 44.3 28.9 34.1 45.9 36.0 42.4 46.7 39.3 33.4 20.2 25.5 10.9 26.9 33.6 29.7 29.0
59.5 56.2 46.4 48.5 51.6 43.7 58.2 51.3 36.2 40.8 52.4 43.3 49.9 53.9 46.8 41.1 26.4 33.4 21.8 34.4 40.1 37.0 36.5
65.2 62.3 54.0 56.1 58.5 51.1 64.7 57.9 45.4 48.6 58.6 51.0 56.9 60.1 54.2 49.3 31.6 39.0 33.6 42.6 47.8 45.3 44.2
71.6 69.5 63.0 64.9 66.7 60.6 72.3 66.1 55.6 58.8 66.4 60.6 65.5 68.1 63.3 59.3 38.9 46.9 45.2 51.2 57.6 54.6 52.3
74.9 73.5 70.7 72.7 72.1 68.8 77.8 71.8 64.1 66.4 72.3 67.6 71.6 73.3 70.6 67.8 47.1 55.8 54.7 59.5 66.2 63.3 60.4
75.4 74.4 74.6 76.8 74.3 72.0 79.8 73.5 67.7 69.1 73.8 70.4 74.0 75.0 74.1 72.4 55.4 63.4 59.8 63.7 71.4 68.3 64.9
75.3 74.5 74.0 76.4 74.1 70.2 79.5 73.0 66.0 67.9 73.2 69.4 73.6 74.6 73.5 71.3 54.5 62.4 58.1 62.4 70.1 66.8 63.4
72.6 71.6 67.2 69.2 69.4 63.7 75.6 68.4 58.4 61.6 69.4 63.0 68.8 70.3 67.0 63.7 44.9 52.4 49.9 55.9 64.8 59.9 56.6
65.9 64.0 56.4 58.2 60.5 51.8 68.4 58.8 47.0 51.3 59.6 53.0 59.4 61.6 56.7 52.4 33.1 41.0 38.9 43.7 52.8 47.2 44.6
58.6 55.4 45.1 46.8 49.2 39.8 59.4 49.8 34.5 38.8 50.8 41.4 48.6 52.3 45.8 40.1 23.0 30.4 30.3 35.2 43.7 38.4 36.6
52.0 48.1 36.8 38.6 41.2 33.4 51.8 42.8 26.1 31.2 44.5 33.5 40.8 45.2 37.5 31.3 15.0 22.4 17.3 27.9 36.1 31.1 29.6
64.6 62.1 55.1 57.1 58.5 52.1 65.7 58.2 46.2 49.9 59.2 51.8 57.5 60.4 55.3 50.9 33.8 41.2 35.8 44.0 51.4 47.4 45.4
q 2006 by Taylor & Francis Group, LLC
3-15
(Continued)
CLIMATE AND PRECIPITATION
RI SC
State WA
PR WV
WI
(Continued) Station
Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
31.8 34.6 36.0 35.9 21.7 28.8 20.5 70.8 22.1 24.2 18.0 24.5 7.1 6.3 9.3 13.4 12.2 14.8 8.7 9.7
32.6 35.1 37.1 37.2 25.7 32.5 24.7 70.9 24.9 26.7 19.7 27.5 12.1 12.8 14.3 18.3 16.4 17.2 13.9 14.9
34.1 35.7 39.2 39.1 30.4 36.9 28.9 71.7 32.4 34.0 26.9 35.5 22.6 24.5 24.6 27.3 23.1 22.0 23.5 22.5
36.5 37.6 42.5 42.1 35.5 41.3 33.2 73.2 40.6 41.8 34.6 43.7 33.9 37.1 35.2 36.4 29.3 28.7 31.3 30.4
42.0 41.9 48.2 47.2 42.6 47.6 40.0 74.9 49.2 50.3 44.1 52.6 44.7 48.7 46.0 46.2 37.9 38.3 40.3 38.6
46.4 46.0 52.7 51.7 49.2 54.3 46.2 76.6 57.0 58.3 52.7 60.9 54.0 57.9 55.7 56.3 46.6 47.5 48.9 46.8
49.6 49.0 56.4 55.3 54.6 60.7 50.9 76.9 61.1 62.9 57.6 65.4 58.6 62.8 61.0 62.9 53.2 53.4 55.4 52.4
49.5 49.2 57.1 55.7 54.5 61.2 50.1 77.0 59.8 61.7 56.7 64.1 56.5 60.7 58.7 62.1 51.8 52.0 54.1 51.5
44.9 45.7 52.6 51.9 45.9 52.9 42.3 76.5 53.5 55.0 50.1 56.8 47.5 51.7 49.9 54.1 41.7 42.9 44.4 41.0
38.9 40.9 46.4 45.7 35.8 43.6 32.9 75.6 42.4 43.1 37.0 44.8 36.9 40.1 38.9 42.6 31.8 32.5 33.2 30.3
35.3 37.5 40.4 39.9 28.7 36.0 26.3 74.0 34.4 35.3 29.3 36.6 25.6 27.4 27.7 31.0 21.3 22.1 18.9 18.5
32.1 34.6 36.1 35.9 21.6 29.3 20.5 72.1 26.5 28.2 21.9 28.9 13.3 13.6 15.8 19.4 14.0 16.1 9.9 10.4
39.5 40.7 45.4 44.8 37.2 43.8 34.7 74.2 42.0 43.5 37.4 45.1 34.4 37.0 36.4 39.2 31.6 32.3 31.9 30.6
Note: In Fahrenheit degrees, based on 30-year average values 1971–2000. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WY
3-16
Table 3A.2
State AL
AK
AZ
AR
CA
Station Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
52.8 48.9 60.7 57.6 22.2 39.7 K7.7 12.4 K3.1 4.4 32.8 K0.3 3.5 29.3 30.6 22.8 34.7 3.7 2.3 13.4 29.8 19.6 10.5 26.6 32.1 42.9 65.0 64.5 47.1 69.9 48.1 49.5 49.1 56.3 53.6 55.0 53.6 68.0 65.6 68.1 44.2 55.4 53.8
58.3 54.6 64.5 62.4 25.8 41.9 K9.8 13.9 2.0 10.9 32.3 8.0 13.8 31.4 34.3 23.8 35.5 3.0 10.7 13.6 27.6 25.7 12.7 30.0 35.7 45.6 69.4 68.4 54.4 75.2 54.8 55.6 55.1 63.5 58.4 55.9 61.3 68.5 65.8 69.6 47.6 60.1 60.5
66.5 63.4 71.2 70.5 33.6 44.7 K7.4 21.8 16.4 25.1 35.1 25.0 28.2 36.3 39.5 32.0 38.3 7.2 25.3 17.7 28.8 34.0 19.6 35.8 39.3 50.3 74.3 73.3 61.5 80.1 64.2 64.2 64.1 68.3 64.3 56.1 66.1 68.9 65.3 69.8 52.1 63.9 64.7
74.1 72.3 77.4 77.5 43.9 49.8 6.3 33.3 34.1 42.5 38.2 43.6 42.4 43.4 48.1 41.3 42.7 19.6 40.5 26.8 32.8 44.6 31.5 44.4 45.1 58.4 83.0 81.5 69.8 87.2 73.2 72.9 73.2 75.7 72.1 57.4 74.0 72.7 68.0 73.1 59.2 70.6 71.4
81.0 79.6 84.2 84.6 54.9 55.7 24.9 49.4 54.9 57.8 44.9 60.6 55.6 50.6 55.7 52.1 48.8 37.8 56.8 43.0 39.8 56.7 46.9 52.9 51.1 67.6 91.9 90.4 79.0 94.7 80.0 81.0 80.5 83.8 81.2 59.6 82.7 74.0 69.3 74.5 67.3 80.7 80.0
87.5 86.5 89.4 90.6 62.3 60.3 39.5 59.4 68.7 67.3 50.8 70.9 65.0 57.0 61.6 59.5 54.5 50.8 67.6 53.9 46.2 65.4 55.2 59.4 56.6 78.7 102.0 100.2 90.0 104.4 87.7 89.0 88.6 91.6 91.5 61.8 90.9 78.3 72.6 79.5 75.5 90.7 87.4
90.6 89.4 91.2 92.7 65.3 64.1 46.5 63.1 70.8 70.4 55.1 73.0 68.5 61.0 64.3 63.8 59.6 60.0 69.7 58.6 50.3 67.9 62.0 62.3 60.1 82.2 104.2 99.6 93.0 107.3 92.9 92.8 93.5 96.9 97.9 63.3 96.6 82.9 75.3 83.8 83.2 98.5 92.4
90.2 89.0 90.8 92.2 63.3 64.6 43.6 59.7 63.2 64.8 56.2 66.3 64.5 60.8 63.1 62.2 61.4 56.7 64.1 56.0 51.6 64.6 59.6 60.8 60.4 79.7 102.4 97.4 90.1 106.1 92.6 92.1 92.6 95.4 95.8 63.9 94.8 84.6 76.8 84.8 82.6 96.9 91.4
84.6 83.0 86.8 87.7 55.0 59.6 34.8 51.7 49.1 53.2 52.5 54.3 53.4 54.8 56.1 54.9 55.6 46.4 53.4 48.6 49.2 55.1 51.3 53.3 55.7 73.8 97.4 94.0 83.5 101.0 84.9 85.1 85.0 89.4 87.6 63.6 88.8 83.1 76.5 83.3 76.0 90.2 87.5
74.9 72.9 79.2 78.7 40.0 51.4 19.3 35.3 25.4 31.1 45.0 31.4 34.3 44.1 46.9 40.5 46.2 27.5 32.2 34.0 42.5 39.1 33.6 43.0 47.3 63.1 86.4 84.0 71.7 90.3 75.0 75.1 74.8 79.5 76.0 61.3 78.1 78.9 74.3 79.0 64.4 78.4 78.2
64.5 61.6 70.1 68.7 27.7 44.2 4.6 23.1 6.4 13.5 39.1 11.2 13.2 35.2 37.6 30.5 39.0 13.3 13.8 23.0 37.1 25.6 20.2 32.7 38.4 50.8 73.3 72.3 57.7 77.3 61.4 62.0 61.6 65.3 62.4 58.0 63.0 73.4 70.4 73.2 49.9 62.4 63.7
56.0 52.4 62.9 60.3 23.7 40.7 K4.7 15.6 0.4 7.2 35.5 3.3 6.4 31.6 33.0 25.1 35.8 6.0 4.8 15.8 32.9 21.2 13.6 29.1 34.3 43.7 65.0 64.6 47.1 69.0 50.9 52.5 51.9 56.1 54.3 55.1 53.4 68.8 66.7 68.7 43.8 55.6 53.9
73.4 71.1 77.4 77.0 43.1 51.4 15.8 36.6 32.4 37.4 43.1 37.3 37.4 44.6 47.6 42.4 46.0 27.7 36.8 33.7 39.1 43.3 34.7 44.2 46.3 61.4 84.5 82.5 70.4 88.5 72.1 72.7 72.5 76.8 74.6 59.3 75.3 75.2 70.6 75.6 62.2 75.3 73.7
q 2006 by Taylor & Francis Group, LLC
3-17
(Continued)
CLIMATE AND PRECIPITATION
Table 3A.3 Normal Daily Maximun Temperature — Selected Cities of the United States
State
CO
CT
FL
GA
HI
ID
IL
(Continued) Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Chicago Moline
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
65.8 55.9 58.1 65.4 63.9 53.8 33.1 41.7 43.2 36.6 44.6 36.9 34.1 39.3 41.4 42.5 62.4 69.7 75.3 66.2 64.2 75.3 76.5 71.8 61.2 63.8 70.1 73.3 75.1 51.4 51.9 56.5 56.9 56.6 60.4 79.2 80.4 80.3 77.9 36.7 39.4 32.5 29.6 29.8
66.3 59.3 61.4 66.3 64.8 61.2 40.2 45.4 47.2 45.4 50.4 38.8 37.7 42.5 45.5 46.5 64.8 71.1 76.5 69.3 67.3 75.9 77.7 73.9 64.4 67.4 71.6 74.1 76.3 56.5 56.8 61.3 61.6 60.9 64.1 79.4 80.7 80.8 77.9 44.5 45.6 39.0 34.7 35.6
66.3 61.2 62.5 67.4 64.8 66.1 49.6 51.6 53.7 55.7 57.3 46.9 47.7 51.9 55.0 55.7 69.9 75.6 80.5 75.1 73.4 78.8 80.7 78.8 70.2 74.0 76.3 77.6 79.2 64.7 65.0 69.2 69.4 68.5 71.0 79.2 81.7 81.5 78.1 53.6 53.8 48.5 46.1 48.3
68.7 64.3 64.5 70.1 67.6 73.3 58.7 59.2 60.9 64.3 65.3 57.0 59.9 62.6 65.9 66.3 76.0 79.8 84.5 80.4 78.6 81.9 83.8 83.0 76.2 80.0 80.6 81.4 82.1 73.0 72.9 76.7 76.5 75.9 77.7 79.3 83.1 82.5 78.8 61.7 61.6 58.5 58.0 61.7
69.3 66.8 65.4 71.2 68.6 81.3 68.3 68.4 70.5 74.5 74.6 67.4 71.7 72.5 74.6 75.4 83.0 85.0 89.1 86.5 84.3 85.4 87.2 88.2 83.4 86.5 86.3 85.2 85.9 80.5 80.0 83.9 83.2 83.4 84.3 80.6 84.9 84.3 80.6 70.7 70.0 67.7 69.9 73.3
72.2 69.9 67.7 74.4 71.4 88.9 78.4 79.2 82.1 86.9 86.1 76.4 80.0 81.1 82.8 83.9 88.3 88.8 91.2 89.9 88.7 88.1 89.5 91.0 89.0 90.9 88.9 89.0 88.5 87.2 86.5 89.6 89.5 89.5 89.5 82.2 86.9 86.0 82.7 80.3 78.0 78.3 79.2 82.7
75.8 71.1 68.2 76.7 73.5 93.8 81.7 84.4 88.0 92.1 91.4 81.9 84.9 86.0 87.4 88.3 89.8 91.0 91.7 90.9 90.8 89.4 90.9 92.2 90.7 92.0 89.7 90.4 90.1 90.2 89.4 92.0 91.7 91.8 92.3 82.5 87.8 86.9 83.9 89.2 87.6 87.5 83.5 86.1
77.5 71.7 69.2 78.7 74.2 92.6 78.9 81.6 86.0 89.6 88.8 80.7 82.5 84.1 85.9 86.3 89.4 90.1 91.7 90.1 89.4 89.5 90.6 92.0 90.1 91.5 90.0 90.2 90.1 88.2 87.9 90.2 91.0 90.5 90.3 83.2 88.9 87.9 84.9 88.0 87.6 86.8 81.2 83.9
77.0 72.7 71.3 78.2 74.9 88.2 72.5 74.1 77.4 80.3 80.8 73.6 74.3 77.2 78.9 79.3 87.0 87.9 90.3 87.4 86.1 88.2 89.0 90.3 87.0 88.5 89.0 88.7 88.7 82.5 82.3 85.3 86.0 85.4 86.0 83.4 88.9 88.1 85.0 77.2 76.7 75.7 73.9 76.5
74.0 69.7 70.4 75.4 74.0 78.6 61.7 63.4 66.0 66.7 69.4 63.1 63.1 65.9 67.7 68.0 79.9 82.6 86.3 81.0 79.1 84.7 85.4 85.0 79.3 81.2 84.1 84.3 85.0 72.9 72.9 76.5 77.0 76.8 78.1 82.7 87.2 86.9 83.5 64.3 62.0 62.0 62.1 64.4
69.9 62.0 64.1 71.0 69.2 64.0 45.7 49.8 51.5 49.8 54.3 52.6 50.9 55.0 56.5 57.3 72.0 76.9 81.3 74.4 72.5 80.6 81.2 78.9 70.3 72.9 78.0 79.1 80.4 63.2 63.3 67.8 67.6 67.8 70.5 80.7 84.3 84.1 81.0 47.5 46.8 44.5 47.1 48.0
66.3 56.1 58.6 66.4 64.9 53.8 34.8 42.4 44.1 38.9 45.4 42.1 39.0 44.4 45.9 47.0 65.0 71.4 76.6 68.1 65.8 76.7 77.5 73.3 63.4 65.8 72.0 74.7 76.4 54.2 54.6 59.1 59.2 59.2 62.6 79.5 81.7 81.7 79.0 37.2 39.2 33.8 34.4 34.5
70.8 65.1 65.1 71.8 69.3 74.6 58.6 61.8 64.2 65.1 67.4 59.8 60.5 63.6 65.6 66.4 77.3 80.8 84.6 79.9 78.4 82.9 84.2 83.2 77.1 79.5 81.4 82.3 83.2 72.0 72.0 75.7 75.8 75.5 77.2 81.0 84.7 84.3 81.1 62.6 62.4 59.6 58.3 60.4
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
DE DC
3-18
Table 3A.3
IA
KS
KY
LA
ME MD MA
MI
MN
MS
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30.7 27.2 33.1 39.5 31.0 34.5 31.0 29.1 24.8 28.7 25.8 36.3 41.4 39.4 37.2 40.1 38.0 42.0 39.9 41.0 41.9 60.0 60.6 61.8 56.2 19.3 30.9 41.2 33.8 36.5 31.4 26.1 31.1 29.2 29.3 25.9 29.4 19.7 29.8 21.5 17.9 13.8 21.9 19.9 18.7 55.1
36.6 33.0 38.9 45.4 35.4 39.9 35.5 35.4 30.8 35.0 31.9 42.9 48.3 45.0 43.8 47.2 43.1 46.8 45.2 46.6 48.0 63.9 64.5 65.3 62.0 23.2 34.1 44.8 36.3 38.7 34.1 28.2 34.4 32.3 32.6 29.3 32.6 24.2 32.5 24.5 24.4 22.4 28.4 26.2 25.7 60.3
49.4 45.5 51.1 56.4 47.4 51.4 46.8 48.2 43.3 47.3 45.0 53.9 57.3 53.2 55.5 57.3 53.9 56.8 55.3 56.8 58.1 71.0 71.3 72.1 69.7 34.1 42.2 53.9 44.8 46.3 43.0 37.3 45.2 43.1 43.3 39.4 43.5 33.1 42.5 33.6 34.2 34.9 40.6 38.7 37.7 68.1
62.0 59.1 63.4 67.2 59.8 62.9 58.9 61.3 57.4 61.7 59.7 64.4 67.1 62.7 66.1 66.9 64.7 66.8 65.1 66.8 68.4 77.3 77.4 78.0 76.6 47.0 52.8 64.5 55.5 56.1 54.4 50.3 57.8 56.2 56.6 53.0 56.6 45.8 54.6 48.0 49.0 51.5 57.0 54.8 54.9 75.0
73.0 71.2 74.4 77.1 71.6 73.5 70.7 72.3 69.3 73.2 72.2 74.0 75.9 71.7 75.3 76.0 74.4 73.8 74.0 75.4 76.9 84.0 84.1 84.8 83.2 62.6 63.3 73.9 67.0 66.7 66.3 64.3 70.2 69.0 69.6 67.2 69.4 61.5 67.0 63.2 63.4 66.6 70.1 67.7 69.0 82.1
82.2 79.9 83.3 86.1 80.6 82.1 79.6 81.8 78.6 82.5 81.7 85.0 86.9 83.6 84.5 87.1 82.4 80.8 82.3 83.3 85.2 89.2 88.9 89.4 89.8 71.8 72.8 82.7 75.5 76.6 74.4 73.8 79.0 77.7 78.4 75.5 78.1 70.3 75.6 70.7 71.2 74.2 79.0 76.6 77.3 88.9
85.7 83.1 86.5 89.4 84.3 85.6 83.1 86.0 82.1 86.2 85.0 90.7 92.8 89.1 89.1 92.9 86.4 84.2 85.9 87.0 88.6 90.7 91.0 91.1 93.3 76.3 78.8 87.2 81.2 82.2 79.3 79.0 83.4 82.0 82.3 80.0 82.1 75.2 80.0 75.7 76.3 78.6 83.3 80.1 81.7 91.4
83.6 80.9 84.5 87.8 81.8 83.7 80.7 83.9 79.8 83.7 82.8 88.4 90.8 86.7 87.9 91.6 84.8 83.3 84.6 85.8 87.4 90.9 91.3 91.0 93.4 74.2 77.3 85.1 78.9 80.1 77.1 76.1 81.4 79.5 79.7 77.1 79.7 72.6 78.1 74.1 73.9 76.3 80.4 77.5 78.9 91.4
76.7 73.9 78.5 81.3 75.4 77.4 73.6 75.9 71.9 76.0 75.3 79.9 82.0 78.0 80.3 82.2 78.0 77.4 78.1 79.4 81.2 87.4 87.7 87.1 87.6 64.1 68.9 78.2 71.0 72.5 69.0 67.4 73.7 71.9 71.7 68.3 72.0 63.2 70.3 64.8 64.5 64.7 71.1 69.2 69.0 86.4
64.4 61.8 66.6 70.0 63.0 65.6 61.8 63.5 60.3 63.7 62.5 67.9 70.4 66.0 68.9 70.2 66.4 67.5 66.9 68.4 70.8 79.7 80.5 79.7 78.3 51.4 57.9 67.0 60.3 61.8 58.4 55.6 61.2 59.7 59.6 56.0 59.8 50.9 58.7 52.8 52.5 51.7 58.4 56.9 56.3 76.8
48.8 45.5 50.9 55.7 48.5 51.6 47.7 46.7 43.6 44.8 45.0 51.0 54.5 49.6 53.1 54.5 53.6 56.4 54.5 55.9 57.2 70.1 70.6 71.0 66.8 37.4 47.1 56.3 49.3 51.8 47.1 42.2 47.8 46.3 45.5 41.9 46.0 35.4 45.6 38.9 35.2 32.5 40.1 38.7 37.2 66.3
35.5 32.0 38.0 44.1 35.8 39.2 35.6 33.1 29.7 31.7 30.7 39.6 44.4 41.3 40.9 43.1 42.7 46.3 44.3 45.4 46.3 62.8 63.3 64.5 58.5 24.8 36.4 46.0 38.6 41.7 36.2 31.2 35.9 34.2 33.7 30.5 34.1 24.1 34.6 27.2 22.3 18.1 26.4 24.5 23.2 57.9
60.7 57.8 62.4 66.7 59.6 62.3 58.8 59.8 56.0 59.6 58.1 64.5 67.7 63.9 65.2 67.4 64.0 65.2 64.7 66.0 67.5 77.3 77.6 78.0 76.3 48.9 55.2 65.1 57.7 59.3 55.9 52.6 58.4 56.8 56.9 53.7 56.9 48.0 55.8 49.6 48.7 48.8 54.7 52.6 52.5 75.0
q 2006 by Taylor & Francis Group, LLC
3-19
(Continued)
CLIMATE AND PRECIPITATION
IN
Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson
State
MO
MT
NE
NH NJ
NM
NY
(Continued) Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
57.5 50.3 37.4 36.0 37.9 41.6 32.8 19.9 32.1 25.5 30.5 28.9 30.8 32.6 33.2 31.2 36.5 31.7 32.1 38.0 33.8 37.1 40.0 57.1 45.5 41.6 30.6 14.0 41.4 41.4 38.1 47.6 47.4 55.6 31.1 28.4 31.1 39.1 38.0 38.8 38.6
62.6 56.0 43.9 42.6 44.3 47.7 39.5 28.3 37.7 33.4 37.3 35.2 37.4 38.6 39.3 37.3 43.3 37.9 38.0 44.3 39.4 42.9 44.0 63.0 51.7 48.5 34.1 14.8 43.9 43.2 41.1 54.6 51.5 62.0 34.3 30.9 33.2 40.5 41.0 40.9 41.2
70.3 64.8 55.1 54.4 55.4 57.8 47.6 41.3 45.3 44.9 46.8 44.9 48.1 49.5 51.2 48.5 52.1 50.4 50.8 51.7 48.4 51.2 49.9 69.5 57.2 55.1 43.8 21.3 51.9 49.5 50.1 62.4 58.2 70.0 44.5 40.6 42.5 48.5 49.8 48.9 49.6
77.1 73.5 65.9 65.2 66.7 67.7 57.5 56.7 55.6 58.5 56.9 56.0 58.0 61.9 63.5 61.3 62.7 63.2 63.6 61.0 59.8 59.3 57.9 78.1 64.1 62.6 56.9 29.4 61.3 57.5 60.8 70.6 66.1 77.7 57.3 53.1 54.1 58.1 60.7 58.6 60.0
83.9 81.0 74.6 74.6 76.5 75.9 67.4 67.9 64.7 68.8 65.9 64.7 66.1 71.9 73.8 72.3 72.0 73.7 73.3 71.1 71.2 68.6 67.3 87.8 72.6 72.0 69.6 41.6 71.1 66.1 71.4 79.7 74.2 86.0 69.8 65.6 66.4 68.9 70.9 68.3 70.6
90.1 88.0 83.6 83.9 85.3 84.6 78.0 77.1 73.9 77.4 75.0 71.9 74.5 83.0 84.9 82.3 82.6 83.7 82.4 82.2 81.9 79.9 79.2 98.9 82.8 82.7 77.9 50.3 80.0 74.8 80.2 90.2 83.9 94.0 77.5 73.4 74.8 77.4 79.0 77.2 79.3
92.9 91.4 88.6 88.8 89.8 89.9 85.8 83.8 82.0 84.6 83.4 80.2 83.6 87.1 89.6 86.5 88.4 87.4 85.6 88.7 88.3 89.6 87.3 104.1 91.2 92.2 82.9 54.1 85.1 80.6 85.2 92.3 87.4 94.8 82.2 78.1 79.6 83.2 84.2 82.9 84.7
92.9 90.9 87.3 87.1 87.9 89.5 84.5 83.3 81.2 83.9 82.5 80.5 83.2 84.8 87.1 84.4 86.8 85.2 83.9 86.8 86.9 88.1 85.1 101.8 89.9 90.6 80.8 53.0 83.3 79.8 83.2 89.0 85.1 92.3 79.7 75.8 77.8 81.7 82.4 81.8 83.1
88.0 84.9 79.1 79.0 80.1 81.2 71.8 70.4 69.6 71.9 71.0 69.0 71.5 76.9 78.8 76.4 78.0 77.3 76.3 77.3 77.2 78.2 75.8 93.8 81.7 80.4 72.1 46.1 76.6 74.1 75.7 82.2 77.9 85.7 71.3 67.8 70.1 74.9 74.7 74.9 75.6
78.3 74.9 68.0 67.6 68.3 70.6 58.9 57.1 58.0 59.4 58.4 55.3 57.4 64.6 66.5 64.0 65.6 65.2 64.6 64.4 63.5 65.0 63.0 80.8 69.9 67.3 60.5 36.4 66.3 64.5 64.7 70.7 68.5 76.5 59.7 56.7 58.9 64.0 63.5 64.3 64.5
68.5 63.0 53.4 52.0 53.8 56.4 42.7 37.4 42.1 40.8 41.5 38.6 40.0 46.8 49.1 45.5 48.5 47.8 47.5 48.2 45.9 48.1 48.8 66.0 55.3 51.4 47.6 27.6 56.0 55.0 53.7 57.1 55.7 64.5 47.5 44.3 46.7 53.7 53.1 53.8 53.6
60.5 53.6 41.5 40.0 42.0 45.5 34.5 24.8 34.2 30.1 31.5 30.1 30.3 35.3 36.8 33.6 39.2 34.8 35.1 39.8 36.7 38.2 41.0 57.3 46.4 42.2 35.6 18.5 46.4 46.3 43.0 47.9 48.0 56.3 36.0 33.4 36.0 43.9 42.9 44.0 43.7
76.9 72.7 64.9 64.3 65.7 67.4 58.4 54.0 56.4 56.6 56.7 54.6 56.7 61.1 62.8 60.3 63.0 61.5 61.1 62.8 61.1 62.2 61.6 79.9 67.4 65.6 57.7 33.9 63.6 61.1 62.3 70.4 67.0 76.3 57.6 54.0 55.9 61.2 61.7 61.2 62.1
30 30
31.2 31.4
33.2 33.5
42.7 43.1
55.2 55.7
67.9 68.5
76.6 77.0
81.4 81.7
79.1 79.6
71.1 71.4
59.7 59.8
47.2 47.4
36.1 36.3
56.8 57.1
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NV
3-20
Table 3A.3
ND
OH
OK OR
PC
PA
Asheville Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia
30 30 30 30
45.9 53.6 51.3 47.2
50.0 54.6 55.9 51.7
57.7 60.2 64.1 60.3
66.5 67.7 72.8 69.7
73.5 74.9 79.7 76.9
80.0 81.5 86.6 83.8
83.3 85.4 90.1 87.6
81.7 84.8 88.4 85.7
76.0 81.1 82.3 79.4
67.1 72.6 72.6 69.6
57.4 64.8 62.8 59.9
49.3 57.3 54.0 50.6
65.7 69.9 71.7 68.5
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
49.8 56.3 21.1 15.9 14.9 19.4 32.9 32.6 36.2 33.7 32.4 31.4 32.4 47.1 46.5 48.1 34.7 46.5 47.3 40.1 45.6 47.0 42.5 84.0 81.9 87.6 85.6
54.0 59.5 28.5 22.8 22.4 27.6 36.8 35.8 40.5 38.2 35.9 35.1 36.0 53.5 52.9 50.8 40.5 50.7 53.8 46.5 50.3 51.2 44.1 84.0 82.1 87.5 86.1
62.5 66.2 40.2 35.3 34.3 40.1 47.5 46.1 51.7 49.3 46.6 46.5 46.3 62.5 62.4 53.3 49.0 55.9 58.3 54.8 55.7 56.3 46.7 85.0 82.3 88.3 86.7
71.8 74.1 55.9 54.5 53.6 56.0 59.0 57.3 62.9 60.7 58.4 58.9 58.2 71.2 72.1 56.1 57.4 60.6 64.3 62.2 60.5 61.1 51.9 86.2 83.1 88.8 86.5
78.7 80.6 69.1 69.5 70.0 68.2 69.8 68.6 73.3 71.2 69.3 70.7 69.0 78.9 79.6 60.0 66.1 66.8 72.2 70.2 66.7 67.5 60.1 87.3 84.3 89.1 86.7
85.5 86.4 77.8 77.4 77.6 77.3 78.2 77.4 81.6 80.1 77.8 79.5 77.1 87.2 88.0 63.6 75.1 73.3 81.2 78.7 72.7 74.0 67.5 87.4 85.8 88.1 86.5
89.1 89.9 84.5 82.2 81.9 83.4 82.3 81.4 85.3 84.2 81.8 83.4 81.0 93.1 93.8 67.2 85.4 81.5 90.2 87.7 79.3 81.5 75.5 86.8 86.5 87.5 86.6
87.2 88.3 83.3 81.0 81.0 82.8 80.3 79.2 83.8 82.3 79.7 81.0 79.3 92.5 93.2 68.3 84.5 81.9 90.1 86.6 79.7 81.9 75.7 86.1 87.2 87.5 86.9
81.3 84.1 71.6 69.9 69.7 70.0 72.8 72.3 77.1 75.6 73.0 74.0 72.1 84.1 84.1 67.5 75.0 76.6 83.5 77.1 74.6 76.6 70.3 86.5 87.0 88.0 87.0
71.8 75.6 58.2 56.1 55.6 57.0 61.1 60.8 65.4 63.5 61.7 62.1 60.7 73.4 74.0 61.0 62.4 64.6 70.0 63.8 63.3 64.5 59.3 86.3 86.2 88.3 86.9
62.4 67.8 38.2 35.2 34.1 36.2 48.7 48.7 52.4 50.1 48.7 48.3 48.4 59.6 60.0 53.1 44.8 52.1 52.8 48.5 51.8 52.4 45.7 85.6 84.1 89.0 86.5
53.3 59.6 25.7 20.8 20.1 24.0 37.7 37.4 41.0 38.5 37.2 36.0 37.3 49.8 49.6 48.4 35.1 45.7 45.2 40.0 45.4 46.4 42.0 84.7 82.6 88.4 85.8
70.6 74.0 54.5 51.7 51.3 53.5 58.9 58.1 62.6 60.6 58.6 58.9 58.2 71.1 71.4 58.1 59.2 63.0 67.4 63.0 62.1 63.4 56.8 85.8 84.4 88.2 86.5
30 30
85.2 86.8
85.6 87.2
85.9 87.3
85.7 86.9
86.0 85.6
86.0 84.5
85.9 83.8
86.4 84.0
86.6 84.8
86.6 85.2
86.3 85.8
85.5 86.9
86.0 85.7
30 30 30 30 30 30 30 30
86.8 87.0 82.4 86.5 35.0 33.5 37.5 37.5
87.0 86.4 82.1 86.7 38.7 35.4 40.9 40.9
87.5 86.7 83.3 87.5 48.7 44.7 50.9 50.9
87.6 87.1 84.5 88.3 60.1 55.6 62.6 62.6
87.8 87.6 86.2 88.5 70.9 67.4 72.6 72.6
87.8 87.2 88.1 87.7 79.3 76.2 80.8 80.8
88.2 87.7 88.8 87.2 83.9 80.4 85.7 85.7
88.6 87.4 88.7 87.1 81.7 79.0 83.7 83.7
88.8 87.8 88.7 87.4 74.0 72.0 75.7 75.7
88.7 88.3 87.8 87.6 62.9 61.0 64.3 64.3
88.6 88.3 85.7 87.7 51.2 49.3 52.5 52.5
87.3 87.7 83.9 87.0 40.0 38.6 41.7 41.7
87.9 87.4 85.9 87.4 60.5 57.8 62.4 62.4
30
39.0
42.1
51.3
62.0
72.1
80.6
85.5
84.0
76.7
65.7
54.8
44.2
63.2
q 2006 by Taylor & Francis Group, LLC
3-21
(Continued)
CLIMATE AND PRECIPITATION
NC
State
RI SC
SD
TN
UT VT VA
(Continued) Station Pittsburgh Avoca Williamsport Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/ Bergstrom Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30
35.1 34.1 33.2 37.1 58.9 57.1 55.1 50.2
38.8 37.3 37.1 39.3 62.3 59.8 59.5 54.8
49.5 47.3 47.8 47.7 69.3 65.8 67.4 62.7
60.7 59.2 60.2 58.1 76.1 72.9 75.7 71.0
70.8 70.8 71.3 68.5 82.9 79.6 83.1 78.2
79.1 78.2 78.9 77.3 87.9 84.9 89.1 85.1
82.7 82.6 83.2 82.6 90.9 88.5 92.1 88.8
81.1 80.5 81.4 80.9 89.4 87.1 90.0 87.1
74.2 72.4 73.3 73.4 85.0 83.0 84.8 81.1
62.5 61.2 61.8 62.9 77.0 75.1 75.8 71.4
50.5 49.3 49.0 52.4 69.6 67.6 66.7 61.3
39.8 38.6 37.8 42.1 61.6 60.0 57.8 52.7
60.4 59.3 59.6 60.2 75.9 73.5 74.8 70.4
30 30 30 30 30
21.4 24.8 33.6 25.2 44.1
28.5 31.3 38.6 31.6 48.9
40.2 43.0 46.6 43.8 58.4
57.4 58.3 57.1 58.8 67.1
70.2 70.5 67.2 71.0 74.9
78.7 80.3 77.4 80.6 81.8
84.7 86.1 85.5 85.6 84.8
83.5 84.4 85.5 83.2 83.9
73.0 74.7 75.2 74.2 78.5
59.2 60.9 61.7 61.1 68.2
38.8 41.4 44.8 41.9 57.4
25.7 28.8 36.1 28.8 47.8
55.1 57.1 59.1 57.2 66.3
30 30 30 30 30 30 30 30 30
48.8 46.3 48.6 45.6 45.9 55.2 48.9 60.3 58.9
54.1 51.7 54.4 51.4 51.6 60.7 54.1 65.1 64.1
62.8 60.3 63.3 60.7 61.0 69.1 62.2 72.5 71.4
72.1 69.0 72.4 69.8 70.5 77.3 70.6 78.9 77.8
79.1 76.3 80.4 77.5 77.8 84.7 78.6 84.8 84.3
86.2 83.6 88.5 85.1 84.9 91.1 87.4 90.9 89.9
89.8 86.9 92.1 88.7 88.1 94.8 91.0 95.0 94.0
88.7 86.4 91.2 87.8 87.2 93.7 88.7 95.6 94.0
82.5 80.7 85.3 81.5 81.1 86.7 81.8 90.1 89.7
72.3 69.9 75.1 71.1 71.1 77.6 71.8 81.4 80.8
61.1 59.0 62.1 59.0 59.0 65.1 58.4 70.1 69.7
52.0 49.8 52.2 49.4 49.0 56.9 49.8 62.3 61.3
70.8 68.3 72.1 69.0 68.9 76.1 70.3 78.9 78.0
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
68.7 66.0 54.1 55.4 62.8 57.2 61.9 62.3 51.9 56.8 61.5 57.9 62.1 62.8 57.0 52.1 40.6 37.0 26.7 44.5
72.2 69.7 60.1 61.0 68.0 63.4 64.4 66.5 57.8 63.0 65.3 63.5 67.1 66.6 62.3 58.1 47.1 43.4 29.0 48.6
78.0 75.8 68.3 69.1 76.0 70.2 70.0 73.3 66.2 70.9 72.0 71.1 74.3 73.4 70.2 67.2 56.7 52.8 39.6 57.6
82.3 80.7 75.9 76.5 82.7 78.1 75.2 79.1 74.7 78.8 77.8 79.0 80.4 79.2 77.6 75.5 65.0 60.9 53.3 68.0
86.9 85.6 83.2 83.8 88.7 86.7 81.4 85.5 82.8 86.8 84.3 85.6 86.0 85.1 84.8 83.5 74.2 70.6 67.8 75.5
90.5 90.2 91.1 91.6 93.7 95.3 86.6 90.7 90.0 92.7 89.4 90.8 91.4 90.3 92.0 91.7 86.2 82.2 76.5 82.5
92.4 93.2 95.4 96.1 96.2 94.5 88.7 93.6 91.9 94.3 91.6 94.4 94.6 93.4 96.7 97.2 92.9 90.6 81.4 86.4
92.6 93.4 94.8 95.8 96.0 92.0 89.3 93.5 90.0 92.8 91.7 93.1 94.7 93.7 96.9 95.8 90.7 88.7 78.4 85.1
89.4 89.9 87.7 88.5 90.6 87.1 86.5 89.3 83.4 86.1 88.0 86.6 90.0 89.9 90.1 87.5 81.3 77.6 68.9 78.3
84.0 83.6 77.9 78.6 81.7 77.9 79.7 82.0 74.4 77.4 80.5 77.8 82.0 83.0 80.4 77.1 68.0 64.0 56.4 68.4
76.8 74.9 65.1 66.0 70.9 65.5 71.3 72.0 61.6 65.8 70.9 66.5 71.4 73.0 67.8 63.7 52.2 48.7 44.0 58.0
70.2 68.0 56.5 57.4 63.5 57.4 64.3 64.6 53.2 58.4 63.9 59.3 64.0 65.2 59.1 54.5 42.2 38.0 32.3 48.4
82.0 80.9 75.8 76.7 80.9 77.1 76.6 79.4 73.2 77.0 78.1 77.2 79.8 79.6 77.9 75.3 66.4 62.9 54.5 66.8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
TX
3-22
Table 3A.3
PR WV
WI
WY
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
47.8 45.3 45.0 44.4 46.6 46.9 45.8 32.8 40.6 37.7 82.4 38.8 42.6 39.3 41.0 24.1 25.5 25.2 28.0 32.3 37.1 31.9 33.0
50.3 49.3 49.1 48.3 49.2 50.5 49.5 39.3 46.9 45.6 82.8 42.8 47.0 43.5 46.1 28.9 32.4 30.8 32.5 37.0 40.5 37.4 39.0
57.8 58.4 57.9 53.0 51.8 54.5 53.2 48.6 56.0 56.0 83.4 51.9 56.6 53.2 56.3 40.0 44.6 42.8 42.6 46.9 46.4 47.5 48.2
67.0 68.9 68.0 58.2 55.7 59.3 58.2 57.5 64.1 64.1 84.9 62.5 66.7 63.2 66.6 54.6 59.7 56.6 53.9 56.1 54.4 56.5 57.5
74.9 76.2 75.9 64.6 60.4 64.9 64.4 66.2 72.0 72.4 86.3 70.6 74.6 71.7 74.6 68.0 72.5 69.4 66.0 66.4 64.4 66.5 66.4
82.8 83.6 83.3 70.0 63.8 69.5 69.6 73.9 80.3 79.6 87.6 77.0 81.5 78.5 81.7 76.8 81.3 78.3 76.3 78.8 75.4 78.5 76.4
86.8 87.5 87.5 76.1 68.2 74.5 75.3 82.5 89.9 87.2 87.4 80.2 84.9 81.7 85.1 81.2 85.2 82.1 81.1 86.8 81.9 86.3 85.2
84.7 85.7 86.0 77.0 69.3 74.9 75.6 82.6 89.1 86.5 87.8 78.9 83.5 80.4 83.7 78.5 82.5 79.4 79.1 85.3 79.8 84.8 84.9
79.4 79.7 78.8 71.7 67.3 69.9 70.2 72.5 79.3 77.6 87.8 72.6 77.3 74.1 77.0 70.2 73.7 71.4 71.9 73.4 70.3 73.0 73.1
69.4 69.3 68.6 60.4 59.2 60.3 59.7 58.5 65.8 64.3 87.5 63.1 67.1 64.1 66.4 57.9 61.1 59.6 60.2 59.5 58.2 59.5 59.8
60.9 59.7 58.0 49.6 50.8 51.5 50.5 41.1 50.1 47.7 85.1 52.4 56.4 52.8 55.1 42.4 43.6 43.3 45.7 42.6 44.5 41.8 43.4
52.3 49.7 48.6 43.8 46.5 46.5 45.5 32.8 40.8 37.1 83.2 43.1 46.8 43.5 45.3 29.0 29.9 30.2 33.1 33.6 38.1 32.6 34.4
67.8 67.8 67.2 59.8 57.4 60.3 59.8 57.4 64.6 63.0 85.5 61.2 65.4 62.2 64.9 54.3 57.7 55.8 55.9 58.2 57.6 58.0 58.5
CLIMATE AND PRECIPITATION
WA
Norfolk Richmond Roanoke Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Note: In Fahrenheit degrees, based on 30-year average values 1971–2000. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-23
q 2006 by Taylor & Francis Group, LLC
3-24
Table 3A.4 Mean Number of Days with Minimum Temperature 32 8 or Less — Selected Cities of the United States State AL
AK
AR
CA
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham CO Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta
11 39 35 40 39 38 42 82 41 44 50 57 59 39 54 61 58 39 40 59 60 36 85 62 30 30 38 53 42 62 42 31 38 42 24 39 54 54 92 39 42 43 61 42
18 17 18 8 13 31 17 31 31 30 31 31 24 31 31 28 25 28 22 31 31 31 26 31 31 30 25 30 3 6 28 1 23 19 17 5 29 18 2 7 — — — 26
11 12 13 5 8 27 13 28 28 28 28 28 23 28 28 25 22 26 20 28 28 28 26 28 28 27 23 28 1 4 23 — 16 12 10 1 24 16 1 3 0 0 0 21
5 6 7 1 3 29 12 31 31 31 31 30 25 31 31 27 23 27 21 31 31 31 29 31 31 29 24 30 — 1 19 0 7 5 4 — 20 18 — 1 0 0 0 22
1 1 1 — — 20 4 30 30 28 29 26 21 27 29 22 14 24 13 30 28 29 27 28 29 17 21 25 0 — 8 0 1 — — 0 8 11 — — 0 0 0 14
0 0 0 0 0 3 — 31 31 16 14 8 9 7 15 9 3 11 3 25 11 19 18 13 18 1 8 13 0 0 1 0 0 0 0 0 1 4 0 0 0 0 0 4
0 0 0 0 0 0 0 24 23 1 — — — 0 1 — — — — 6 — 3 3 — 2 — — 3 0 0 0 0 0 0 0 0 — — 0 0 0 0 0 —
0 0 0 0 0 0 0 14 9 — — — 0 0 — 0 0 0 0 — 0 — — 0 — 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 —
0 0 0 0 0 — 0 15 11 — 2 1 0 1 3 — — — 0 — 1 1 — 1 1 — — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 25 25 6 15 10 — 9 14 3 1 5 1 7 10 10 2 8 8 1 5 3 0 0 — 0 0 0 0 0 — — 0 0 0 0 0 1
— — — — — 20 2 31 31 26 30 28 9 29 27 18 7 22 12 28 28 25 11 25 27 12 11 19 0 — 5 0 1 — — — 7 2 — — 0 0 0 6
4 6 8 1 4 28 10 30 30 29 30 30 19 30 30 25 18 25 18 30 30 29 19 29 30 26 22 28 — 1 21 0 8 5 4 1 24 10 — 2 0 0 0 18
14 14 16 6 10 30 14 31 31 30 31 31 24 31 31 28 23 28 23 31 31 31 25 31 31 30 25 30 1 5 28 1 19 15 12 5 29 15 1 8 — — — 25
52 57 63 22 39 191 72 321 310 224 240 222 154 222 238 185 137 197 134 248 229 238 187 223 236 172 163 208 5 17 135 1 74 56 46 11 143 95 4 20 0 0 0 136
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
CT DE DC FL
GA
HI
ID
IL
16 52 42 43 65 66 39 43 57 42 35 39 37 37 43 55 40 42 42 59 59 19 61 54 38 39 39 41 39 19 38 59 42 38 57 38 38 57 33 38 53 63 56 39 45 44
11 6 — 1 — 3 5 8 31 30 30 30 30 26 28 25 26 22 3 2 — 5 6 0 — 2 6 11 1 — — 15 15 16 13 14 10 0 0 0 0 26 21 28 21 29
5 2 0 — — 1 3 2 28 27 26 25 27 23 25 22 22 18 1 1 — 3 3 0 0 — 3 7 1 0 — 11 11 12 8 10 6 0 0 0 0 21 16 25 15 25
2 0 0 — 0 0 1 1 31 26 24 17 25 17 22 15 17 8 — — 0 1 1 0 — — 1 3 — — — 5 5 5 3 4 2 0 0 0 0 17 12 25 7 21
0 — 0 0 0 0 — — 27 14 11 6 11 3 8 3 5 1 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 1 — — — 0 0 0 0 8 3 15 — 7
0 0 0 0 0 0 — 0 14 2 1 — 1 — 1 — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 — 4 0 1
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 — 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0
0 0 0 0 0 0 0 0 8 1 1 — 1 0 — 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 3 0 —
0 0 0 0 0 0 — 0 27 9 8 4 11 1 6 1 5 — 0 0 0 0 0 0 0 0 — — 0 0 0 — — 1 — — — 0 0 0 0 6 3 15 — 5
3 1 0 0 0 — 2 2 30 24 24 21 26 8 16 10 14 4 — — 0 1 1 0 0 — 1 4 — 0 0 6 5 7 4 5 2 0 0 0 0 17 12 24 6 16
12 6 0 1 — 3 6 8 31 29 29 30 30 21 27 22 23 15 2 1 — 4 4 0 — 1 4 9 1 — — 13 12 14 11 12 8 0 0 0 0 26 21 28 17 26
33 16 0 2 0 7 17 21 227 162 156 133 162 98 133 99 113 68 6 5 0 14 15 0 0 2 15 34 3 0 0 50 48 55 39 44 28 0 0 0 0 122 87 168 66 130
q 2006 by Taylor & Francis Group, LLC
3-25
(Continued)
CLIMATE AND PRECIPITATION
CO
Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Cairo Chicago
State
IN
IA
KS
LA
ME MD MA
MI
MN
(Continued) Station
Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
42 43 39 43 41 41 43 39 41 35 43 43 40 39 36 38 49 40 22 39 42 19 43 38 56 50 63 62 52 117 38 47 43 44 39 39 38 39 24 42 61 41 63 43
29 29 29 28 25 28 27 28 30 31 31 31 29 29 30 29 28 26 23 24 24 23 9 5 5 12 31 30 25 28 26 29 30 29 29 29 31 29 31 29 31 31 31 31
25 25 26 23 20 24 23 24 25 26 27 27 24 23 27 22 22 22 16 20 19 16 5 3 3 7 28 27 21 26 23 26 27 25 26 26 28 26 28 26 28 28 28 27
21 19 23 17 13 21 17 20 21 23 23 24 19 18 24 16 15 16 12 14 12 11 1 1 1 3 29 26 14 23 16 25 28 22 24 24 28 25 29 24 29 29 30 25
7 6 9 4 3 8 5 8 6 8 9 10 5 5 12 4 3 5 3 3 2 3 — 0 — — 22 14 3 9 2 10 19 9 11 12 17 13 22 11 21 20 22 11
1 — 1 — — 1 — 1 — 1 1 1 — — 1 — — — — — — 0 0 0 0 0 5 2 — — 0 1 7 1 2 2 5 3 8 2 7 5 7 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 1 0 0 0 — — 0 — 1 — — 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 — 0 0 0 — — — 0
— — 0 — 0 — — — — 0 1 1 — — 1 — — — 0 0 0 0 0 0 0 0 3 1 0 — 0 — 2 — — — 2 1 2 — 2 2 4 0
6 4 7 4 3 5 4 3 5 7 8 9 3 4 8 4 1 3 1 2 1 2 — — 0 — 14 9 2 3 0 5 11 4 6 6 9 8 16 5 9 12 16 7
18 17 19 15 12 16 14 14 19 21 23 22 17 17 24 16 14 13 9 11 9 11 2 1 1 3 25 19 11 14 7 17 22 16 17 17 22 18 26 16 22 26 28 23
27 27 28 25 21 26 24 25 29 30 30 30 28 28 30 27 26 22 17 20 20 19 6 4 3 10 30 28 21 26 21 28 29 26 27 28 30 27 30 26 30 31 31 30
134 127 143 115 97 128 114 124 134 147 152 155 125 125 157 118 109 106 81 93 86 85 22 14 12 35 187 155 97 129 96 141 176 132 140 143 171 150 194 138 179 184 197 155
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
KY
3-26
Table 3A.4
MO
MT
NE
NV
NH NJ
NM
NY
42 62 39 38 19 33 30 42 42 43 38 41 39 43 42 41 31 57 38 38 39 38 47 38 64 42 39 53 37 70 38 40 37 42 54 30 37 51 42 19 89 41 40
31 31 14 15 16 27 28 26 26 28 31 27 30 29 29 31 30 31 31 30 30 30 31 29 31 11 27 28 30 31 25 21 23 28 29 25 29 29 28 25 22 23 22
27 28 10 11 10 21 21 20 20 24 28 24 27 26 26 26 26 27 28 26 26 27 28 26 27 4 24 24 27 28 22 17 20 21 25 16 26 26 26 21 20 20 19
26 28 4 5 6 15 15 13 13 23 28 26 27 27 26 23 22 24 27 22 21 27 27 26 29 1 22 25 26 31 17 10 12 14 22 7 24 25 24 17 12 12 10
12 17 — — 1 3 4 2 3 13 16 17 18 18 17 8 8 10 13 7 7 14 15 20 24 — 16 19 17 28 6 1 1 4 9 2 12 12 10 3 1 1 1
2 3 0 0 0 — — — — 2 3 4 4 6 5 1 1 1 3 — — 2 3 8 13 0 5 8 5 20 — 0 0 — 1 0 1 1 1 0 — 0 0
0 — 0 0 0 0 0 0 0 — 0 — — 1 — 0 0 0 — 0 0 — — 1 4 0 0 1 — 6 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 — — 0 0 0 0 0 0 0 0 — — 0 0 — 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 — — — — 0 0 0 0 0 0 0 0 — 0 0 — — — 3 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 — — 0 — 1 2 3 3 6 4 0 0 1 2 — — 2 2 7 8 0 3 6 2 12 — 0 0 0 — 0 0 — — 0 0 0 0
10 13 0 1 — 2 2 1 2 8 14 12 17 21 18 7 6 7 14 6 4 13 14 22 23 — 14 21 14 23 3 — 0 2 5 1 8 6 3 1 — — —
24 26 6 6 6 14 14 11 12 22 27 22 27 25 26 23 22 24 28 20 19 27 27 26 28 2 24 25 21 28 13 4 6 15 20 12 18 18 14 10 5 4 3
30 31 12 13 14 25 26 23 23 28 31 27 30 29 30 30 30 30 31 29 29 30 31 29 30 10 28 28 29 31 22 15 19 28 28 24 27 27 25 21 18 17 15
163 178 47 51 53 107 110 96 100 147 179 160 181 189 181 148 144 155 177 139 137 172 177 195 218 27 163 186 171 243 109 69 83 113 139 88 146 145 130 99 78 77 70
39 39
28 28
25 25
23 24
11 11
1 1
0 0
0 0
0 0
— —
4 5
15 15
25 26
133 135
q 2006 by Taylor & Francis Group, LLC
3-27
(Continued)
CLIMATE AND PRECIPITATION
MS
Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse
State NC
ND
OH
OR
PC
PA
(Continued) Station
Asheville Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/Harrisburg AP
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
38 45 42 39
23 9 18 22
19 8 14 18
13 3 7 10
4 — 1 2
— 0 — —
0 0 0 0
0 0 0 0
0 0 0 0
— 0 0 0
4 — 1 1
13 1 6 9
21 6 15 18
97 27 63 80
38 39 43 43 41 39 42 43 39 37 47 59 37 42 49 18 60 41 67 62 40 40 43 28 51 50
20 13 31 31 31 28 28 27 27 28 29 28 23 23 9 30 14 19 21 12 13 19 0 0 0 0
16 10 28 28 28 24 24 23 23 24 25 25 15 16 6 26 10 14 16 8 11 16 0 0 0 0
9 4 29 27 29 21 21 18 18 21 23 23 8 8 6 27 7 11 10 4 9 20 0 0 0 0
2 — 18 16 18 9 9 6 6 9 10 11 1 1 2 21 2 5 3 1 5 15 0 0 0 0
— 0 4 4 5 1 1 0 — 1 1 2 0 0 — 9 — 1 — — 1 7 0 0 0 0
0 0 — — — — — 0 0 0 — — 0 0 0 3 — 0 0 0 — — 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 3 2 3 0 0 — — 0 — — 0 0 0 8 — — — 0 — — 0 0 0 0
1 — 15 13 17 4 2 3 3 4 6 4 1 — — 24 2 4 3 1 3 3 0 0 0 0
9 3 28 27 29 14 12 13 14 15 17 16 8 8 4 27 7 10 12 5 7 11 0 0 0 0
17 10 31 31 31 25 24 23 24 25 26 26 20 19 7 30 11 16 20 9 13 17 0 0 0 0
75 40 186 179 189 125 121 115 115 126 137 134 75 76 34 207 54 80 84 40 62 107 0 0 0 0
48 43
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
51 51 50 54 59 37 37 64
0 0 0 0 28 27 26 26
0 0 0 0 25 25 23 23
0 0 0 0 20 23 17 17
0 0 0 0 6 10 4 3
0 0 0 0 — 1 — —
0 0 0 0 0 — 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 — 0 — —
0 0 0 0 4 1 2 2
0 0 0 0 15 11 11 11
0 0 0 0 26 24 23 23
0 0 0 0 123 122 106 105
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
OK
3-28
Table 3A.4
SC
SD
TN
TX
UT VT VA
43 43 47 58 39 39 60 27 36 40
25 27 28 28 24 28 10 4 16 18
21 24 25 25 21 24 7 2 12 14
14 19 22 21 16 19 3 — 6 7
2 8 8 8 3 5 — 0 1 1
— 1 1 1 0 — 0 0 0 —
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 — — 0 0 0 0 0 0
1 4 4 5 — 3 — 0 1 1
8 14 14 15 5 13 3 0 7 7
20 24 25 25 17 24 9 3 14 15
92 121 127 128 86 116 32 9 57 63
41 43 60 39 41
31 31 30 31 23
28 27 27 27 19
27 26 27 26 13
15 14 15 13 4
3 2 3 2 —
0 — — 0 0
0 0 0 0 0
— 0 0 0 0
2 1 2 1 0
14 12 11 12 3
27 26 25 26 13
31 31 30 31 21
178 170 169 168 96
62 42 61 37 37 39 41 40 36 38 39 39 42 42 33 55 39 42 42 60 41 39 42 39 43 38 39 54 73
19 20 17 21 21 17 27 8 1 3 14 6 18 2 7 25 20 6 17 8 5 12 21 30 27 30 23 16 21
15 16 12 16 17 10 22 4 — 1 8 3 11 1 4 18 13 3 10 4 2 7 13 26 22 26 20 13 19
8 9 5 9 12 4 15 1 — — 3 1 5 — 1 11 6 1 4 2 — 2 6 27 15 26 12 6 10
1 2 — 2 3 — 4 0 0 0 — 0 1 0 — 2 1 — 1 — 0 — 1 18 6 15 3 — 2
0 — 0 0 — 0 — 0 0 0 0 0 — 0 0 — 0 0 0 0 0 0 0 6 1 2 — 0 —
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 — 1 0 0 0
1 1 — 1 2 — 2 — 0 — — — — 0 — 1 — — — — — — — 15 4 8 3 — 2
10 8 5 8 12 5 15 1 — — 3 1 7 — 1 11 7 1 5 2 1 3 6 26 18 18 11 3 10
17 17 14 17 19 14 27 5 1 1 10 5 18 1 5 24 18 4 14 6 3 9 17 30 27 28 20 13 20
71 72 53 74 86 50 111 18 2 5 37 16 59 3 18 92 63 14 51 21 10 33 64 180 122 154 92 51 83
q 2006 by Taylor & Francis Group, LLC
3-29
(Continued)
CLIMATE AND PRECIPITATION
RI
Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin Brownsville Corpus Christi Dallas-Fort Worth Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond
State
WA
PR WV
WY
(Continued) Station
Roanoke Wallops Island Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
38 28 43 36 48 43 43 43 56 47 39 55 58 41 41 50 43 42 38 43 56 38
23 21 15 13 7 9 26 19 28 0 25 23 26 23 31 30 30 29 29 29 31 30
19 17 14 10 4 6 23 14 24 0 21 20 24 20 27 27 27 26 26 26 28 27
12 10 14 9 1 3 21 6 21 0 17 15 22 13 27 25 26 23 27 27 28 27
2 1 8 6 0 — 10 0 12 0 7 5 12 4 14 9 13 9 19 18 18 18
— 0 2 — 0 0 2 0 3 0 1 — 3 — 2 1 3 1 7 4 5 5
0 0 — 0 0 0 0 0 — 0 — 0 — 0 0 0 — 0 — 0 — —
0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 — 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 — 0 0 1 — 1 0 — 0 1 — 1 — 1 — 4 2 3 3
2 — 5 3 — — 10 2 12 0 5 3 11 3 9 6 9 4 16 13 14 16
10 6 10 7 2 3 20 9 22 0 14 13 20 11 22 21 21 17 25 24 28 28
19 17 15 12 5 8 27 22 28 0 22 21 26 20 29 29 29 27 29 29 31 30
88 72 84 61 19 29 139 73 149 0 112 99 144 95 161 149 159 136 181 172 184 186
The mean number of days with a minimum temperature of 328F or lower indicates the frequency of occurrence of days with freezing temperatures. The annual value is the total of the unrounded monthly values, it may not agree with the sum of the rounded monthly values. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WI
3-30
Table 3A.4
State AL
AK
AZ
AR
CA
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO
11 39 35 40 39 38 42 29 41 44 50 58 58 39 54 62 58 39 40 59 60 36 85 62 30 30 38 53 42 62 42 31 38 42 24 39 55 55 92 39 42 43 62
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 —
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — — 0 — 0 0 0 0 0 0 0 0 — — —
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 — — 0 — 0 0 0 — — — —
— — — — — 0 — 0 0 0 0 — 0 — 0 0 — 0 0 0 0 0 0 0 0 0 — 0 10 5 — 12 1 — — 2 — 0 0 2 1 — 1
1 2 1 4 4 1 2 0 0 1 1 2 0 4 1 — 1 1 — — 2 — 0 2 — — — 0 23 18 3 23 2 3 2 10 5 0 0 10 1 — 1
10 11 9 16 17 4 4 — 0 3 13 11 — 17 9 — 5 3 1 1 11 2 0 10 1 2 1 1 29 28 17 29 13 16 13 19 19 — 0 19 2 — 1
18 18 17 22 22 6 6 1 — 6 16 15 — 21 13 1 7 6 2 3 14 3 0 13 3 4 1 2 31 29 24 31 23 23 22 28 29 — 0 28 3 — 4
17 16 15 21 21 3 6 — — 2 5 8 — 10 7 1 6 4 3 1 6 1 0 7 2 3 1 — 31 29 19 31 22 21 21 26 27 0 0 27 5 — 5
5 7 6 10 12 — 2 0 0 — — 1 — 1 — 0 — — — 0 — — 0 — — — — — 28 24 5 28 10 9 8 17 14 — 0 18 6 1 6
0 — — 1 1 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 9 — 18 1 1 — 5 1 0 0 4 3 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — — 0 1 0 0 0 — 0 0 0 0 1 — 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — —
52 54 48 74 78 14 19 1 0 12 36 37 0 54 30 2 19 13 7 4 32 6 0 32 6 9 3 3 168 144 68 175 72 73 67 108 95 0 0 108 22 3 22
q 2006 by Taylor & Francis Group, LLC
3-31
(Continued)
CLIMATE AND PRECIPITATION
Table 3A.5 Mean Number of Days with Maximum Temperature 908 F or More — Selected Cities of the United States
State
CO
DE DC FL
GA
HI
ID
(Continued) Station
Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
42 16 52 42 43 65 66 39 43 57 42 35 39 37 37 43 55 40 42 42 59 59 19 61 54 38 39 39 41 39 19 38 59 42 38 57 38 38 57 33 38 53 63 56
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0
0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0
0 0 0 — 0 0 — — 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 — 0 — — 0 — 0 — — 0 0 0 0 — — — 0 — 0 0 0
0 1 — — — — — — 1 0 0 — 0 — — — — — — — 2 3 2 1 — 2 4 — 1 1 1 2 — — 1 — 1 1 0 0 — 0 — —
— 7 5 — — — — — 7 0 — — 1 3 — 1 1 1 2 1 6 14 10 8 1 4 12 2 9 9 4 4 3 1 6 6 6 6 — — 1 0 1 1
2 16 12 — 1 — — 1 14 — 4 7 15 15 1 4 4 5 7 6 11 20 17 16 7 10 19 13 19 17 10 10 11 8 15 17 17 14 — 2 2 0 5 4
9 28 22 — 1 — 0 — 23 1 9 15 25 23 3 7 8 11 14 8 17 25 22 24 16 17 25 18 23 21 17 18 17 13 23 22 23 22 0 5 3 0 19 16
7 25 19 — — — — — 21 — 3 10 19 18 2 5 5 9 10 8 14 25 20 21 17 17 25 16 22 22 18 19 14 10 19 21 21 18 — 11 6 — 16 14
3 18 13 1 1 1 1 1 14 0 1 2 4 7 — 1 2 3 4 4 6 19 10 10 8 10 18 9 15 16 10 10 5 3 9 10 10 7 — 10 7 — 4 4
— 5 3 1 — — 1 1 3 0 0 0 0 — 0 — — — — — 1 6 1 1 1 2 3 — 2 3 2 2 — 0 1 1 1 1 — 4 5 — — 0
0 0 0 — 0 0 — — 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 — — — 0 0 0 0 0 0 — 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 — 0 — 0 0 0
21 100 74 2 3 1 2 3 83 1 16 34 64 65 6 18 20 29 37 26 57 113 81 81 48 62 106 59 92 87 63 65 51 36 74 76 80 70 0 33 25 0 45 40
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
CT
3-32
Table 3A.5
IN
IA
KS
KY
LA
ME MD MA
MI
MN
Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls
39 45 44 42 43 39 43 41 41 43 39 41 35 43 43 40 39 36 38 49 40 22 39 42 19 43 38 56 50 63 62 52 117 38 47 43 44 39 39 38 39 24 42 61 41 63
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 — 0 — 0 0 — 0 0 0 0 0 0 0 0 — 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 — — — — — — — 0 0 0 — — 0 — — 1 — — — 0 — 0 — — — — — — 0 0 — — — — — 0 0 0 0 0 — 0 0 0 —
0 2 1 1 — 0 1 2 1 0 1 — — 1 1 1 3 1 1 2 — — — — 1 6 2 4 4 — — 2 — — — — — — 0 — — — — 0 — —
4 11 4 6 5 3 7 9 4 4 3 4 1 6 4 9 13 9 7 12 4 2 3 6 11 19 14 16 18 — 1 6 1 3 1 2 3 2 2 1 2 1 1 — — 1
14 17 7 9 8 6 10 15 6 7 5 9 4 9 6 18 22 17 16 21 8 6 8 12 18 24 23 21 26 1 2 12 3 6 2 3 5 3 5 2 4 2 1 1 1 2
13 13 4 6 5 3 6 11 4 5 3 6 2 6 4 14 19 14 14 19 6 5 7 10 14 22 23 21 25 — 1 8 2 3 1 1 3 2 2 1 2 1 1 1 1 1
2 4 2 2 2 1 3 4 1 2 1 2 1 2 1 5 8 6 5 8 2 1 2 3 6 12 12 9 14 — — 3 — 1 — — 1 — — — 1 — 0 — — —
— — — — — — — — 0 0 0 — 0 — — 1 1 — — 1 0 0 0 0 0 2 1 1 2 0 0 — 0 0 0 0 — 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 48 17 23 20 14 28 41 15 18 13 22 8 24 16 49 66 47 43 63 19 14 20 32 50 84 75 72 90 1 5 30 5 13 3 6 12 7 10 3 10 3 2 1 2 4
q 2006 by Taylor & Francis Group, LLC
3-33
(Continued)
CLIMATE AND PRECIPITATION
IL
State
MS
MO
MT
NV
NH NJ
NM
NY
(Continued) Station
Minneapolis-St. Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP)
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
43 42 62 39 38 19 33 30 42 42 43 38 41 39 43 42 41 31 57 38 38 39 38 47 38 64 42 39 53 37 70 38 40 37 42 54 30 37 51 42 19 89 41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0
— — — — — — — — — — — — 0 0 0 0 1 0 1 — 0 — — — 0 0 3 0 — — 0 — — — 0 — 2 — 0 — 0 — —
1 — — 5 4 2 — — 1 — — 1 — — — — 2 1 1 1 2 1 1 1 — 0 16 1 1 1 0 1 — 2 3 1 10 — 0 — 1 1 —
3 2 2 18 16 13 5 6 8 6 4 3 2 2 1 2 8 9 7 6 7 5 8 7 5 3 26 7 9 2 0 4 1 5 17 9 22 2 — 1 2 3 2
6 3 4 24 24 22 14 15 15 16 12 9 8 8 6 9 14 15 12 13 13 9 16 14 19 11 30 20 22 5 0 7 2 9 23 14 25 4 1 1 3 7 4
3 1 3 23 23 20 12 12 12 15 11 9 8 8 6 9 11 12 9 11 8 7 13 13 15 6 30 18 19 3 0 5 1 7 16 9 23 2 1 1 2 5 3
1 — 1 12 12 9 4 4 4 4 2 2 1 1 — 1 4 4 3 4 3 2 5 5 3 1 22 5 6 — 0 1 — 1 4 3 11 — — — — 1 1
0 0 — 1 1 — — — — — — — — 0 0 0 — — — — — — — 1 0 0 6 — — 0 0 0 0 0 — — 2 0 0 0 0 — 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 6 10 82 81 66 35 36 41 40 29 23 19 19 13 22 39 42 33 35 33 24 43 41 42 20 133 52 57 11 0 18 4 24 62 36 94 8 2 3 7 17 10
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NE
3-34
Table 3A.5
ND
OH
OK OR
PC
PA
40
0
0
0
—
1
3
6
4
1
0
0
0
16
39 39 38 45 42 39
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
— — 0 0 — —
— — — — 2 1
2 2 2 1 8 6
4 4 4 2 14 12
2 2 2 2 11 8
1 — — — 4 2
0 0 0 0 — —
0 0 0 0 0 0
0 0 0 0 0 0
8 7 8 5 39 29
38 39 43 43 41 39 42 43 39 37 47 59 37 42 49 18 60 41 67 62 40 40 44 28 51 50
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 —
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 —
— 0 0 0 0 0 0 0 0 0 0 0 — — 0 0 0 0 0 0 0 0 — 0 5 1
1 1 — — — 0 0 0 0 0 0 0 — 1 0 0 0 — — 0 0 0 — 0 10 0
2 2 1 1 1 — — 1 — — 1 — 2 2 0 — — 2 1 — — — 3 0 14 1
8 8 3 2 3 2 2 4 4 1 4 1 11 13 — 2 1 7 4 1 2 — 4 0 8 1
14 16 8 5 8 4 4 6 7 3 6 3 23 24 — 9 6 18 14 4 6 1 2 0 4 1
11 12 8 5 9 2 2 4 4 2 3 2 23 22 — 9 5 17 11 4 6 1 1 0 4 2
3 4 2 1 2 — 1 1 1 — 1 0 9 9 — 1 2 9 3 2 2 — 1 0 6 2
— — — — — 0 0 0 0 0 — 0 1 1 0 0 — 1 — — — 0 — — 9 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 12 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 —
38 44 21 14 23 7 9 16 16 6 15 7 68 72 0 21 15 55 33 10 16 2 10 0 86 10
48 43
0 4
0 5
0 5
0 3
— —
0 —
— 0
— —
1 0
1 —
— 2
— 4
1 22
51 51 50 54 59 37 37
1 — 0 — 0 0 0
1 — 0 — 0 0 0
3 — — — 0 0 0
4 1 — 4 — 0 —
6 3 1 7 1 — 1
5 2 3 5 3 1 5
8 3 6 3 7 1 9
10 3 8 4 4 1 6
12 3 7 4 1 — 2
12 3 3 5 — 0 —
9 2 — 4 0 0 0
3 — — 1 0 0 0
74 21 29 37 16 2 23
q 2006 by Taylor & Francis Group, LLC
3-35
(Continued)
CLIMATE AND PRECIPITATION
NC
New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg
State
RI SC
SD
TX
UT
(Continued) Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin Brownsville Corpus Christi Dallas-Fort Worth Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City
64
0
0
0
—
1
5
9
6
2
—
0
0
23
43 43 47 58 39 39 60 27 36 40
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 — 0 — 0
— 0 — — — — 1 — 2 —
1 — — 1 0 1 4 1 6 2
5 2 2 3 — 2 11 6 16 8
9 4 4 6 — 4 17 13 23 14
7 2 2 3 — 3 15 10 18 10
2 1 — 1 0 1 5 3 8 3
0 0 0 — 0 0 — — 1 —
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
24 8 7 14 0 10 53 34 73 37
41 43 60 39 41
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
— — — — 0
— 1 0 1 —
3 4 3 4 3
8 11 11 10 6
7 9 12 6 4
2 3 4 2 2
— — — 0 0
0 0 0 0 0
0 0 0 0 0
20 28 31 22 14
62 42 61 37 37 39 41 41 36 38 39 39 42 42 33 55 39 42 42 60 41 39 42 39 43
0 0 0 0 0 0 0 — — — 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0
0 0 0 0 0 0 0 — — — 0 — 0 0 — 0 — 0 — — — — — 0 0
0 0 0 0 0 1 — 1 1 1 — 2 0 0 — — — 0 1 1 — — 1 0 0
— — — — — 3 1 2 4 2 1 7 2 — 1 2 4 — 5 2 1 1 2 0 0
2 1 3 1 1 8 5 7 12 5 5 15 14 — 6 9 12 2 12 9 6 7 8 1 1
10 5 14 9 7 19 13 21 24 20 20 25 26 1 20 18 21 17 21 22 20 22 20 10 9
17 11 22 17 13 26 21 28 28 28 28 28 27 4 27 23 26 24 27 28 28 29 28 24 23
15 9 19 13 10 25 17 28 28 27 27 28 24 5 26 20 23 24 26 28 28 28 27 18 20
5 3 8 5 4 12 7 17 19 18 14 20 13 2 16 9 11 13 13 18 18 17 14 5 4
— 0 1 — — 2 1 4 6 5 3 5 2 — 3 1 2 2 3 4 5 4 4 — 0
0 0 0 0 0 — 0 0 — — 0 — 0 0 0 0 0 0 — — — — 0 0 0
0 0 0 0 0 0 0 0 — — 0 — 0 0 0 0 0 0 0 — 0 0 0 0 0
49 29 67 45 35 96 65 109 122 106 97 130 108 12 99 81 101 83 109 113 106 109 104 57 57
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
TN
3-36
Table 3A.5
WA
PR WV
WI
WY
Burlington Lynchburg Norfolk Richmond Roanoke Wallops Island Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
38 39 54 73 38 28 43 36 48 43 43 43 56 47 39 55 58 41 41 49 43 42 38 43 56 38
0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 — 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
— — 0 1 — — 0 0 0 0 — 0 — 3 0 — 0 — 0 — — — 0 0 0 0
0 1 2 3 1 1 — — — — — 2 1 6 0 1 — 1 — 1 — — — — — —
1 4 7 9 5 3 1 — — — 2 7 4 9 — 5 — 4 2 4 3 2 5 1 3 3
3 9 12 14 11 7 2 — 1 1 8 16 14 8 0 8 1 8 3 7 5 4 13 6 11 11
1 7 9 11 8 4 2 — — 1 7 15 11 10 — 5 1 6 1 4 3 2 11 3 7 11
— 2 3 4 2 1 1 — — — 1 4 2 11 0 2 — 2 — 1 1 1 2 — 1 3
0 — — — 0 0 — 0 0 0 0 0 0 9 0 — 0 0 0 — — 0 0 0 0 —
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
6 23 33 42 27 15 6 0 1 2 19 44 33 62 1 21 2 21 6 17 11 9 31 10 21 28
CLIMATE AND PRECIPITATION
VT VA
Note: Through 2002. For Alaska, the reported values are 708 F. The annual value is the total of the unrounded monthly values, it may not agree with the sum of the rounded monthly values. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-37
q 2006 by Taylor & Francis Group, LLC
3-38
Table 3A.6 Normal Monthly Heating Degree Days — Selected Cities of the United States State AL
AK
AR
CA
Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego
q 2006 by Taylor & Francis Group, LLC
Years
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 0 0 206 215 763 280 170 144 447 121 250 338 257 290 339 327 174 387 569 193 297 306 353 33 0 0 0 0 0 0 0 0 1 216 0 0 1 0 66 0 0 0
0 0 0 0 268 206 815 355 366 308 409 283 370 349 288 317 310 407 318 446 518 294 373 353 364 56 0 0 1 0 0 0 0 0 1 198 0 0 0 0 65 0 0 0
11 18 2 3 505 337 1016 587 721 620 518 615 658 514 453 521 468 696 611 664 603 563 644 537 506 224 0 0 31 0 23 13 8 2 46 232 3 1 2 1 196 13 11 1
133 165 51 84 957 572 1564 1085 1437 1270 774 1287 1199 844 704 984 766 1297 1233 1134 828 1043 1192 832 742 554 11 33 290 5 145 124 99 51 276 326 70 16 21 11 451 131 84 12
359 417 204 278 1297 760 1978 1428 1975 1761 915 1882 1786 1069 953 1254 931 1703 1779 1444 957 1425 1572 1101 980 850 117 195 649 90 448 400 383 283 609 423 344 128 121 91 753 420 359 109
590 669 387 487 1472 885 2346 1724 2245 2016 1054 2199 2064 1215 1125 1481 1067 2022 2132 1756 1122 1613 1826 1251 1129 1085 305 397 965 246 745 666 669 534 847 532 597 265 234 201 936 611 595 231
691 780 455 568 1526 928 2440 1813 2365 2097 1142 2315 2163 1290 1219 1538 1096 2092 2223 1836 1220 1676 1915 1336 1216 1099 304 401 961 228 854 775 770 521 843 530 578 268 252 206 921 606 580 227
514 587 326 415 1295 781 2267 1608 2041 1759 1048 1926 1733 1125 1010 1384 983 1918 1847 1663 1174 1391 1703 1126 1027 930 174 275 713 114 619 563 549 324 643 451 377 205 205 149 753 445 387 176
339 404 182 250 1212 791 2443 1566 1888 1576 1085 1670 1543 1103 973 1286 1007 2023 1653 1727 1267 1317 1685 1091 1040 880 99 194 580 73 410 369 343 236 545 491 283 186 212 144 738 390 335 160
154 180 57 98 861 637 1967 1175 1280 987 945 999 1018 860 728 957 833 1606 1078 1361 1097 923 1271 821 837 668 29 76 357 23 172 150 128 119 344 430 140 99 141 83 563 239 208 90
31 41 3 9 560 484 1391 738 642 536 780 504 655 663 529 667 667 1037 583 867 911 596 791 596 664 446 1 7 133 3 34 24 31 31 138 354 37 39 78 36 374 99 97 47
1 1 0 0 311 321 903 410 227 228 573 179 358 451 335 425 474 607 256 533 693 293 481 383 460 174 0 0 12 0 1 0 0 3 21 263 4 5 19 5 175 7 10 10
2823 3262 1667 2192 10470 6917 19893 12769 15357 13302 9690 13980 13797 9821 8574 11104 8941 15735 13887 13818 10959 11327 13750 9733 9318 6999 1040 1578 4692 782 3451 3084 2980 2104 4314 4446 2433 1212 1286 927 5991 2961 2666 1063
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
CT DE DC FL
GA
HI
ID
IL
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
77 133 22 68 0 47 11 1 1 1 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10 21 5 3 2 5 1
56 107 23 49 0 91 20 9 1 3 4 12 2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 10 26 9 8 7 14 4
62 95 54 70 5 302 163 136 59 88 68 120 49 60 19 0 0 0 0 0 0 0 0 1 1 0 0 0 10 11 5 3 4 1 0 0 0 0 126 102 201 112 108 94 136 77
131 100 92 141 76 675 471 436 342 381 320 413 297 323 202 32 6 1 21 30 0 0 2 35 49 4 0 0 133 126 112 78 91 56 0 0 0 0 408 401 536 401 394 368 444 319
298 232 234 288 348 1082 827 826 766 779 591 697 564 589 467 152 67 16 121 148 0 4 40 175 193 46 18 10 353 352 313 263 277 204 0 0 0 0 769 717 907 759 782 738 832 674
476 383 368 422 609 1475 1082 1078 1118 1058 918 1054 871 882 755 328 185 76 268 314 14 38 142 352 369 144 101 58 597 600 540 481 494 403 0 0 0 0 1088 951 1240 1147 1191 1136 1244 1060
482 396 369 419 592 1551 1114 1111 1194 1092 1089 1218 1029 1025 906 408 245 103 321 374 26 58 220 416 428 187 166 83 687 692 617 559 570 472 0 0 0 0 1102 962 1274 1333 1374 1316 1430 1239
354 283 277 337 391 1189 915 892 860 843 944 1024 864 847 741 285 183 75 208 272 18 39 128 299 315 136 114 60 522 523 469 415 427 350 0 0 0 0 819 742 1003 1075 1090 1045 1150 980
339 288 263 350 313 983 816 788 643 694 803 844 687 670 562 169 99 28 123 155 6 15 57 171 185 63 48 27 349 346 301 252 262 202 0 0 0 0 675 616 842 858 831 788 912 726
266 233 193 291 169 719 568 524 397 431 489 486 376 362 269 42 29 3 40 55 0 1 9 48 71 13 8 4 152 150 129 94 104 72 0 0 0 0 460 411 584 513 450 423 522 376
201 214 151 230 54 451 306 267 151 172 207 195 132 139 72 3 1 0 2 5 0 0 0 1 5 0 0 0 28 26 21 8 12 6 0 0 0 0 254 218 353 232 172 159 215 126
120 150 75 135 6 169 76 60 20 24 32 38 15 21 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 80 71 129 49 19 19 36 14
2862 2614 2121 2800 2563 8734 6369 6128 5552 5566 5467 6104 4887 4923 3999 1419 815 302 1104 1353 64 155 598 1498 1616 593 455 242 2832 2827 2508 2153 2241 1766 0 0 0 0 5809 5211 7116 6493 6422 6095 6940 5596
q 2006 by Taylor & Francis Group, LLC
3-39
(Continued)
CLIMATE AND PRECIPITATION
CO
San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Chicago Moline Peoria Rockford Springfield
State IN
IA
KS
KY
ME MD MA
MI
MN
MS
(Continued) Station
Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson Meridian
q 2006 by Taylor & Francis Group, LLC
Years
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 3 2 6 1 8 3 7 1 1 5 1 0 1 0 1 0 0 0 0 0 0 58 19 0 9 4 9 46 5 13 10 41 17 92 15 91 69 55 7 23 19 0 0
1 11 4 13 6 21 10 20 2 2 10 1 0 3 4 2 1 0 0 0 0 0 103 37 1 22 8 20 78 12 28 24 74 35 134 27 107 106 102 20 50 49 0 0
45 105 77 114 103 158 128 155 76 65 117 73 49 68 44 53 36 38 2 1 0 6 344 199 41 138 84 158 260 121 163 159 250 179 348 168 320 331 360 178 208 253 7 6
262 394 335 392 386 465 434 478 307 273 407 287 235 326 263 284 240 229 49 38 30 78 691 523 279 422 344 478 583 429 474 471 577 493 700 476 642 682 723 516 558 604 100 106
565 722 659 721 804 879 888 903 722 674 807 665 620 626 522 574 527 516 211 191 169 296 1039 790 549 698 604 764 894 742 781 793 901 805 1083 784 979 1124 1217 978 1014 1077 305 303
891 1094 1020 1090 1223 1307 1308 1343 1068 978 1079 1030 965 953 830 877 838 833 386 363 332 522 1505 1152 839 1040 932 1119 1244 1099 1149 1147 1271 1167 1484 1117 1383 1587 1744 1428 1479 1551 516 506
1047 1275 1192 1270 1385 1492 1439 1538 1195 1087 1147 1174 1087 1110 966 1026 992 978 456 434 403 597 1719 1346 986 1207 1104 1284 1447 1270 1329 1317 1468 1341 1659 1288 1606 1772 1946 1616 1650 1742 607 598
825 1063 957 1055 1090 1192 1131 1221 927 826 916 898 819 899 761 819 779 750 325 304 288 416 1466 1145 816 1034 951 1094 1285 1084 1147 1135 1283 1160 1405 1124 1405 1435 1551 1279 1305 1381 440 435
591 835 724 844 826 949 885 948 702 647 776 647 594 684 557 616 569 529 179 163 150 250 1254 988 647 894 815 952 1133 894 957 956 1115 970 1280 968 1253 1248 1304 1034 1066 1135 272 274
295 479 394 498 439 536 473 528 380 351 490 336 302 373 273 332 280 250 55 47 44 89 805 649 345 562 503 601 723 527 577 571 685 585 859 602 798 787 775 560 609 637 110 111
85 188 141 213 153 226 172 205 131 121 224 106 89 138 128 119 84 67 2 1 1 8 417 361 119 271 233 278 394 221 267 255 338 277 468 296 434 421 378 222 281 285 11 14
5 29 16 41 16 40 25 29 13 12 35 7 5 19 10 13 6 2 0 0 0 0 159 116 12 74 48 74 150 45 66 58 117 69 200 78 212 180 140 44 65 79 0 0
4612 6198 5521 6257 6432 7273 6896 7375 5524 5037 6013 5225 4765 5200 4358 4716 4352 4192 1665 1542 1417 2262 9560 7325 4634 6371 5630 6831 8237 6449 6951 6896 8120 7098 9712 6943 9230 9742 10295 7882 8308 8812 2368 2353
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
LA
3-40
Table 3A.6
MT
NE
NV
NH NJ
NM
NY
NC
Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 1 0 0 1 20 22 48 33 42 85 55 3 1 4 6 1 4 7 11 53 26 0 12 12 22 504 1 0 1 0 1 0 10 22 8 0 1 1 1
0 2 7 1 1 25 38 64 49 56 94 62 7 5 11 14 6 15 11 19 57 48 0 22 23 44 542 6 0 2 0 7 0 26 43 21 1 2 2 1
14 72 58 46 62 205 253 275 270 283 341 276 114 100 130 158 105 83 157 175 237 258 1 130 173 212 740 69 20 41 29 85 18 168 200 149 49 43 42 40
150 291 269 246 248 516 609 579 622 631 705 637 401 377 432 481 384 349 489 516 569 605 57 416 509 548 1079 323 228 264 248 325 144 484 514 442 339 261 264 249
400 642 668 583 578 909 1088 952 1067 1018 1014 985 835 806 879 902 806 800 885 952 916 938 320 732 829 835 1333 573 481 541 614 685 485 772 812 737 604 524 532 524
639 1004 1047 943 899 1195 1506 1237 1410 1348 1297 1287 1192 1188 1266 1222 1211 1204 1183 1285 1208 1220 581 987 1101 1220 1702 868 772 863 898 937 755 1142 1160 1081 909 841 838 836
750 1153 1182 1097 1034 1280 1671 1323 1546 1397 1359 1291 1310 1328 1388 1316 1349 1323 1233 1386 1222 1240 583 984 1088 1402 1857 1019 924 1030 914 964 775 1330 1331 1256 1060 1009 1007 1008
559 891 897 845 790 1001 1290 1063 1201 1093 1079 1019 1031 1043 1099 1026 1053 1022 969 1101 943 996 380 757 820 1188 1639 873 787 869 670 767 542 1136 1156 1111 913 853 868 861
368 656 658 613 581 876 1055 948 999 932 933 852 819 799 872 853 805 783 837 932 820 903 247 683 742 999 1594 725 674 697 525 661 378 938 997 961 782 695 723 713
160 336 331 294 300 575 610 639 613 634 640 596 452 425 478 519 424 400 544 571 612 690 90 502 554 623 1262 437 409 371 294 407 182 553 617 594 479 372 420 392
29 115 124 83 100 312 308 389 324 384 411 384 175 154 180 240 151 154 257 260 383 459 16 285 315 302 914 187 167 120 85 179 51 240 292 268 197 127 166 136
1 10 8 6 8 90 91 158 113 157 213 178 23 16 28 46 17 16 53 57 161 178 1 91 105 90 619 32 18 13 4 27 2 62 90 65 24 16 19 16
3070 5173 5249 4757 4602 7004 8541 7675 8247 7975 8171 7622 6362 6242 6767 6783 6312 6153 6625 7265 7181 7561 2276 5601 6271 7485 13785 5113 4480 4812 4281 5045 3332 6861 7234 6693 5357 4744 4882 4777
30 30 30 30 30
10 10 1 0 0
24 25 2 0 0
154 158 52 2 16
447 460 285 72 165
741 748 531 244 404
1085 1108 769 464 655
1263 1294 872 587 747
1117 1131 708 518 585
958 959 550 400 409
582 572 302 187 180
266 254 116 44 44
66 66 15 3 3
6713 6785 4203 2521 3208
q 2006 by Taylor & Francis Group, LLC
3-41
(Continued)
CLIMATE AND PRECIPITATION
MO
State
ND
OH
OR
PC
PA
(Continued) Station
Years
Greensboro-Wnstn-SlmHPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca
q 2006 by Taylor & Francis Group, LLC
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Annual
30
0
1
32
232
480
742
851
679
501
245
77
8
3848
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 19 17 27 22 7 7 3 2 8 6 15 0 0 151 89 40 10 14 21 39 127 0 0 0 0 0 0
1 0 44 37 53 43 16 13 7 7 19 18 26 0 0 130 96 31 7 15 15 34 101 0 0 0 0 0 0
20 3 256 245 276 274 120 110 81 90 122 129 148 30 29 197 313 115 69 115 78 116 211 0 0 0 0 0 0
194 95 625 614 655 645 412 385 354 358 407 431 439 152 152 386 638 370 316 400 318 376 440 0 0 0 0 0 0
425 277 1112 1137 1186 1146 704 677 656 669 714 745 723 482 468 542 968 594 632 711 558 592 737 0 0 0 0 0 0
679 497 1539 1610 1660 1567 1040 1023 982 1016 1066 1107 1063 780 781 688 1245 780 837 962 756 771 860 0 0 0 0 0 0
783 589 1711 1808 1860 1734 1220 1205 1154 1185 1236 1281 1243 884 898 695 1259 769 804 971 765 765 853 0 0 0 0 0 0
627 474 1335 1446 1484 1336 1026 1025 954 973 1045 1087 1057 648 658 583 982 615 610 747 605 623 741 0 0 0 0 0 0
456 331 1110 1185 1233 1104 836 847 742 760 852 878 879 446 437 585 869 564 550 623 529 574 788 0 0 0 0 0 0
214 134 660 652 689 646 498 516 421 427 509 517 530 197 179 492 661 443 402 433 393 452 648 0 0 0 0 0 0
61 28 305 271 294 315 219 235 165 167 227 224 252 43 38 375 439 308 233 247 234 301 470 0 0 0 0 0 0
5 1 93 73 88 90 50 54 27 24 53 45 71 1 1 244 226 152 69 83 94 141 267 0 0 0 0 0 0
3465 2429 8809 9095 9505 8922 6148 6097 5546 5678 6258 6468 6446 3663 3641 5068 7785 4781 4539 5321 4366 4784 6243 0 0 0 0 0 0
30 30 30 30 30 30 30 30
0 0 0 0 3 13 0 0
0 0 0 0 8 18 1 1
0 0 0 0 95 123 52 52
0 0 0 0 374 398 338 338
0 0 0 0 657 684 621 621
0 0 0 0 985 1016 937 937
0 0 0 0 1147 1209 1076 1076
0 0 0 0 966 1074 901 901
0 0 0 0 784 926 723 723
0 0 0 0 450 585 390 390
0 0 0 0 176 288 148 148
0 0 0 0 26 75 14 14
0 0 0 0 5671 6409 5201 5201
30 30 30
1 6 9
2 13 18
39 105 138
269 397 431
545 677 711
857 996 1047
1020 1163 1214
858 979 1040
681 788 866
362 462 512
113 200 219
12 43 53
4759 5829 6258
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
OK
3-42
Table 3A.6
SD
TN
TX
UT VT VA
WA
30 30 30 30 30 30
5 3 0 0 0 0
12 9 0 0 0 0
116 101 2 0 8 19
417 377 68 47 121 178
708 637 222 183 325 417
1033 961 428 390 552 655
1201 1125 510 489 628 750
1014 965 394 362 485 586
824 817 242 224 321 420
471 494 95 57 131 197
196 221 11 3 23 47
38 44 1 0 1 3
6035 5754 1973 1755 2595 3272
30 30 30 30 30
11 8 16 7 1
27 21 21 20 2
206 180 190 175 44
569 530 521 519 279
1066 996 934 986 541
1506 1417 1233 1417 810
1678 1572 1314 1563 919
1318 1242 1061 1236 744
1072 1004 925 988 556
591 567 595 558 303
251 242 313 231 108
59 49 88 46 11
8354 7828 7211 7746 4318
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 17 1 0 0 1 90 193
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 38 1 0 1 2 78 174
16 22 13 24 30 18 56 2 1 0 0 2 7 2 9 0 1 33 19 1 12 2 1 6 18 112 87 203 43 8 27 48 195 250
180 210 121 189 230 93 239 32 38 6 12 52 62 24 96 6 37 158 103 34 82 33 22 58 106 451 370 538 268 150 224 276 465 460
442 470 381 457 518 353 594 205 248 64 103 312 281 183 388 112 189 472 380 181 325 197 145 271 395 821 737 834 526 368 464 528 666 626
697 732 651 730 787 608 874 406 480 170 246 571 527 384 626 245 367 744 622 349 558 390 314 512 676 1129 1067 1240 798 623 736 798 829 762
797 841 770 858 882 678 920 475 532 206 299 650 605 423 641 316 427 800 680 411 617 455 372 589 762 1144 1108 1457 918 758 863 911 819 758
618 652 565 664 696 477 706 319 360 123 191 448 415 262 435 220 298 588 472 286 427 303 249 409 550 879 857 1273 749 638 705 745 678 646
432 467 366 462 510 299 542 163 180 45 77 248 238 111 285 94 156 409 302 143 258 149 113 235 354 726 665 1063 572 487 526 569 644 656
195 223 144 217 254 113 291 44 45 8 19 74 75 27 113 15 48 178 120 41 92 42 28 77 140 503 448 642 288 240 250 290 511 548
48 65 22 56 80 20 94 2 5 0 0 13 9 1 11 0 2 38 18 1 13 1 1 7 23 280 215 283 102 66 75 107 347 421
2 3 0 1 6 0 7 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 66 48 77 13 4 7 13 201 296
3427 3685 3033 3658 3993 2659 4325 1648 1889 622 947 2370 2219 1417 2604 1008 1525 3422 2716 1447 2384 1572 1245 2164 3024 6116 5607 7665 4279 3342 3878 4288 5523 5790 (Continued)
q 2006 by Taylor & Francis Group, LLC
3-43
Williamsport Providence Charleston AP Charleston CO Columbia Greenvile-Spartanbrg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/Bergstrom Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Olympia Quillayute
CLIMATE AND PRECIPITATION
RI SC
State
PR WV
WI
(Continued) Station
Seattle CO Seattle SeaTac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Years
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Annual
30 30
52 55
50 45
139 138
362 383
571 592
735 754
729 747
593 613
564 582
423 447
266 291
131 150
4615 4797
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
44 9 28 0 10 1 15 1 19 6 12 13 15 28 16 27
42 9 28 0 16 3 23 2 38 17 33 18 24 39 24 33
196 99 155 0 115 56 134 55 208 152 183 134 229 238 220 238
554 323 487 0 388 300 456 292 540 467 504 443 581 574 580 581
897 659 813 0 647 558 719 557 925 893 892 808 961 914 1027 979
1168 928 1100 0 926 837 996 843 1350 1347 1298 1200 1252 1145 1355 1293
1169 939 1090 0 1068 977 1133 991 1537 1545 1490 1384 1309 1187 1397 1351
916 709 821 0 882 794 959 796 1270 1225 1209 1132 1073 1000 1122 1078
790 574 671 0 714 604 792 596 1065 975 978 949 921 928 921 925
557 373 463 0 414 319 498 308 638 526 576 611 661 686 643 628
338 191 258 0 199 122 251 116 301 204 261 318 393 414 373 374
149 69 98 0 48 18 70 14 85 38 63 86 115 136 116 129
6820 4882 6012 0 5427 4589 6046 4571 7976 7395 7499 7096 7534 7289 7794 7636
Note: Based on 30-year average values 1971–2000. Degree-day data are used to estimate amounts of energy required to maintain comfortable indoor temperature levels. Each degree that a day’s mean temperature is below 658F is counted as one heating degree day. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WY
3-44
Table 3A.6
State AL
AK
AZ
AR
CA
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
1 0 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 12 0 1 0 0 0 0 0 0 3 6 15 0 0
3 1 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 3 0 29 0 1 6 1 0 0 0 0 5 7 23 0 0
16 8 45 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 25 0 118 8 14 10 7 0 0 0 3 10 6 26 0 3
51 40 108 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223 107 3 251 43 52 66 56 3 1 0 40 28 15 58 0 22
167 142 282 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 473 300 39 466 155 188 212 205 45 15 0 170 55 19 84 7 133
351 326 450 415 0 0 0 0 11 1 0 20 0 0 0 0 0 0 4 0 0 1 0 0 0 23 744 577 221 714 364 408 412 392 191 41 0 351 135 58 178 31 310
476 446 529 519 3 5 0 0 20 12 0 42 0 0 0 0 0 8 11 2 0 4 1 0 0 64 900 672 384 900 520 542 564 580 357 129 0 530 260 135 295 100 504
455 417 520 502 0 8 0 1 7 12 0 11 0 0 0 0 0 4 6 0 0 0 2 0 0 36 859 625 327 882 491 502 528 541 293 125 2 483 302 175 325 66 430
280 238 384 350 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 664 477 124 694 275 296 307 374 106 84 5 316 244 154 281 29 263
69 47 151 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 350 211 6 381 59 72 83 144 8 28 0 97 119 81 164 2 74
9 5 41 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 20 0 82 5 8 8 4 0 0 0 1 20 22 44 0 2
3 1 18 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 11 1 2 0 0 0 0 0 0 2 4 13 0 0
1881 1671 2548 2252 3 13 0 1 38 27 0 74 0 0 0 0 0 12 21 2 0 5 3 0 0 126 4355 3017 1104 4540 1921 2086 2196 2304 1003 423 7 1991 1183 682 1506 235 1741
q 2006 by Taylor & Francis Group, LLC
3-45
(Continued)
CLIMATE AND PRECIPITATION
Table 3A.7 Normal Monthly Cooling Degree Days — Selected Cities of the United States
State
CO
DE DC
FL
GA
HI
(Continued) Station
Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30
0 2 0
0 4 0
6 5 0
24 17 4
110 32 10
204 81 21
320 183 23
303 230 26
210 199 38
66 97 20
5 15 0
0 1 0
1248 866 142
30
0
2
4
3
9
14
19
26
56
22
5
0
160
30 30 30 30 30
0 0 0 0 0
0 1 0 0 0
5 1 0 0 0
8 4 18 0 1
23 5 111 0 5
50 10 254 7 86
84 23 390 27 184
133 25 363 10 131
125 33 247 0 35
45 18 73 0 1
9 3 0 0 0
0 0 0 0 0
482 123 1456 44 443
30 30 30 30 30 30 30
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 2 4
2 3 2 1 5 9 11
23 45 31 21 38 62 60
135 247 191 125 144 215 203
261 414 343 286 277 368 345
217 350 276 258 220 317 302
57 119 91 91 68 135 132
0 4 2 7 5 16 15
0 0 0 0 1 1 3
0 0 0 0 0 0 0
695 1182 936 789 759 1125 1075
30
0
0
4
21
108
307
464
410
210
32
4
0
1560
30 30 30 30 30 30 30 30 30 30 30 30 30
25 36 97 17 15 189 155 91 11 9 56 104 122
14 40 99 17 21 183 154 60 11 12 59 83 121
35 86 174 70 58 277 236 129 42 44 124 132 195
95 150 260 131 116 361 315 201 107 96 204 202 266
284 306 423 308 277 485 442 373 296 273 393 347 408
448 441 516 439 437 552 510 485 466 440 501 462 485
522 513 564 507 535 604 568 539 541 515 550 517 544
517 502 568 498 509 600 568 543 529 509 549 513 549
423 436 518 408 400 550 517 484 412 400 489 471 499
193 277 394 207 183 473 433 319 174 162 323 354 408
63 122 222 74 64 340 291 154 48 49 157 183 255
23 52 122 26 21 233 194 79 19 16 76 92 160
2642 2961 3957 2702 2636 4847 4383 3457 2656 2525 3481 3460 4012
30 30 30 30 30 30 30 30
0 0 1 1 1 6 198 249
1 1 2 4 3 11 180 225
8 11 15 25 23 39 215 288
46 52 52 77 73 101 223 319
164 170 191 234 227 267 268 379
351 354 385 429 418 435 303 436
471 463 511 533 528 547 336 490
430 430 468 511 495 506 350 521
257 262 296 349 325 367 336 497
54 58 77 107 95 141 328 472
7 8 15 21 19 40 268 382
1 1 3 6 6 11 223 303
1790 1810 2016 2297 2213 2471 3228 4561
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
CT
3-46
Table 3A.7
IL
IN
IA
KS
KY
LA
ME MD MA
MI
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
210 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
195 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
250 239 0 0 0 1 1 1 1 2 4 1 2 1 1 0 0 0 2 2 0 3 2 3
277 266 3 3 0 9 12 11 7 17 23 7 10 10 12 6 11 7 15 18 4 22 19 13
330 323 30 29 3 48 62 64 49 84 108 53 69 53 60 37 53 47 63 79 26 85 93 71
379 382 116 105 51 159 205 210 162 249 304 183 221 172 219 138 198 168 265 291 173 278 330 209
429 433 281 283 167 283 322 325 263 358 425 278 331 268 353 233 311 261 436 462 320 419 503 334
448 455 260 285 143 234 254 263 205 291 356 212 272 214 285 175 246 198 366 407 266 357 454 280
422 435 75 84 23 91 101 112 74 140 173 88 122 86 110 61 87 70 163 193 99 166 221 126
407 408 4 3 0 10 12 12 7 23 27 8 14 9 12 6 8 7 22 28 6 26 35 16
329 327 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0 1 1 0 1 1 1
260 257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3936 3920 769 792 387 835 969 998 768 1165 1422 830 1042 813 1052 656 914 758 1333 1481 894 1357 1658 1053
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 0 0 12 9 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 15 13 19 7 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 6 6 55 49 62 31 0 0 4 1 1 0 0 0 1 1 0 1 0
11 16 24 33 128 126 136 87 0 0 13 3 4 0 3 6 5 6 3 6 0
100 80 109 122 303 312 320 242 7 7 71 21 32 7 13 41 33 38 20 34 12
201 228 287 320 462 467 466 436 39 51 236 93 139 64 54 144 110 124 64 113 30
310 350 421 444 538 544 538 553 80 144 390 215 282 166 117 252 199 218 127 195 72
277 307 374 377 523 534 534 532 56 120 332 173 235 122 83 204 151 165 89 151 50
130 147 189 191 389 399 413 353 9 24 153 49 76 12 22 75 52 56 24 53 3
29 21 29 37 157 178 182 119 0 1 19 3 7 0 1 5 4 5 1 5 0
1 2 3 3 48 54 62 24 0 0 2 0 1 0 0 0 0 0 0 0 0
0 0 1 0 22 20 29 7 0 0 0 0 0 0 0 0 0 0 0 0 0
1059 1154 1443 1533 2652 2705 2776 2396 191 347 1220 558 777 371 293 727 555 613 328 558 167
q 2006 by Taylor & Francis Group, LLC
3-47
(Continued)
CLIMATE AND PRECIPITATION
ID
Kahului Lihue Boise Lewiston Pocatello Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette
State
MN
MS
MO
NE
NV
NH NJ
NM
(Continued) Station
Years
Muskegon Sault Ste. Marie Duluth International Falls MinneapolisSt. Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton
q 2006 by Taylor & Francis Group, LLC
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30
0 0 0 0
0 0 0 0
0 0 0 0
4 1 0 1
24 6 7 17
86 20 28 47
181 56 82 91
145 50 60 67
44 12 12 10
3 0 0 0
0 0 0 0
0 0 0 0
487 145 189 233
30
0
0
0
4
41
146
259
190
56
3
0
0
699
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 32 26 14 3 0 7 3 0 0 0 0 0 0 0 1 1 0 0 1
1 2 83 70 50 18 12 32 20 2 1 1 1 0 0 0 11 13 11 4 14
30 26 232 213 171 70 101 114 83 13 17 7 10 3 3 3 48 56 48 22 60
99 90 424 400 364 245 264 316 258 90 80 47 59 39 17 33 218 244 202 139 233
181 172 525 509 488 396 418 461 415 227 185 126 146 122 62 111 349 390 324 279 365
135 121 505 495 453 341 367 396 379 204 182 121 141 100 63 99 285 315 261 230 296
26 31 340 331 274 152 151 196 179 44 28 22 19 13 4 10 107 123 93 70 114
1 1 101 91 60 20 12 36 27 3 1 2 1 0 0 0 8 12 7 2 12
0 0 25 20 8 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
473 443 2290 2173 1885 1246 1325 1561 1365 583 494 326 377 277 149 256 1027 1154 946 746 1095
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 17 0 0 0 0 1 0 2 0 0
8 2 5 0 0 93 0 0 2 0 5 0 10 6 6
71 19 27 2 0 310 11 11 18 0 44 25 70 70 37
209 138 141 62 22 597 72 81 82 0 168 147 240 297 173
330 279 286 181 98 792 204 232 173 0 322 316 403 417 274
295 225 242 135 69 734 164 174 133 0 269 302 350 343 228
101 63 75 31 7 470 41 28 33 0 110 136 146 148 77
5 1 3 1 0 150 1 0 1 0 15 25 19 9 2
0 0 0 0 0 4 0 0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1019 727 779 412 196 3168 493 526 442 0 935 951 1242 1290 797
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
MT
3-48
Table 3A.7
NC
ND
OH
OK OR
PC
Roswell Albany Binghamton Buffalo Islip New York C. Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte GreensboroWnstn-SlmHPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS
30 30 30 30 30 30 30
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 0 0 2 0
47 3 4 4 0 10 2
194 27 23 28 15 63 31
391 102 74 101 129 214 162
488 206 158 203 296 379 335
431 157 115 158 251 335 306
228 46 32 50 72 138 125
32 2 2 4 7 17 13
2 0 0 0 0 2 1
0 0 0 0 0 0 0
1814 544 409 548 770 1160 975
30
0
0
1
6
54
209
377
336
141
17
1
0
1142
30 30 30 30 30 30
0 0 0 1 0 0
0 0 0 1 1 0
1 1 0 5 7 4
5 4 6 29 40 25
32 29 47 122 142 97
109 105 165 297 323 263
210 203 278 440 451 398
162 158 243 422 405 345
54 48 104 297 226 172
4 3 8 96 43 24
0 0 0 24 5 3
0 0 0 4 1 1
577 551 851 1738 1644 1332
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 390 389 507 512
1 4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 350 354 454 470
9 17 0 0 0 0 1 2 2 2 1 1 1 7 10 0 0 0 0 0 0 0 0 414 399 518 536
38 65 2 3 2 1 7 7 9 9 7 7 8 38 50 0 0 0 2 2 1 0 0 435 409 518 515
119 187 18 33 30 20 41 40 61 62 39 42 33 145 163 1 0 5 24 23 15 7 0 473 457 545 538
293 361 80 104 85 82 136 140 188 194 136 148 112 360 385 2 19 21 90 86 44 25 11 463 485 503 515
429 501 180 191 148 177 232 239 296 305 228 248 190 527 568 4 117 95 253 243 138 95 84 458 526 509 529
379 455 161 162 127 166 189 195 251 246 181 190 154 497 524 7 70 93 240 224 145 98 76 449 545 515 534
206 304 30 38 27 24 69 80 106 105 73 73 57 271 277 7 12 32 95 63 53 31 62 439 523 509 518
39 90 0 2 1 1 4 8 11 11 7 6 5 58 64 1 0 1 7 3 2 1 15 449 522 527 537
6 25 0 0 0 0 0 1 1 1 0 0 1 3 6 0 0 0 0 0 0 0 0 439 448 524 513
2 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 431 412 526 522
1521 2017 471 533 420 471 679 712 925 935 672 715 561 1907 2049 22 218 247 711 644 398 257 248 5190 5469 6155 6239
q 2006 by Taylor & Francis Group, LLC
3-49
(Continued)
CLIMATE AND PRECIPITATION
NY
State
PA
SC
SD
TN
TX
(Continued) Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/Bergstrom Brownsville Corpus Christi
30
487
451
502
482
504
485
498
507
496
510
490
493
5905
30
511
469
526
498
493
460
454
457
460
486
485
515
5814
30
490
449
506
485
501
480
486
487
471
486
477
493
5811
30
510
456
513
501
522
497
506
492
488
508
511
511
6015
30 30
396 467
344 428
409 488
427 493
488 518
527 479
567 484
567 478
556 466
546 486
480 476
443 484
5750 5747
30 30 30 30
0 0 0 0
0 0 0 0
1 1 0 0
6 5 1 1
45 30 54 54
164 105 186 186
292 197 337 337
235 166 279 279
83 63 87 87
7 6 11 11
0 0 0 0
0 0 0 0
833 573 955 955
30 30 30 30 30 30 30 30 30 30
0 0 0 0 0 0 3 16 2 0
0 0 0 0 0 0 7 7 4 0
2 2 1 0 0 0 29 27 20 5
10 8 5 6 0 3 85 83 69 30
70 41 35 39 1 25 242 266 206 127
234 143 113 135 51 122 408 431 388 304
395 244 220 251 184 265 532 551 515 430
351 203 174 206 177 223 494 514 467 384
152 78 57 68 48 71 348 377 296 207
19 6 4 4 5 5 122 156 76 35
2 1 0 0 0 0 35 47 15 3
0 0 0 0 0 0 8 11 5 1
1235 726 609 709 466 714 2313 2486 2063 1526
30 30 30 30 30
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
3 4 2 5 10
29 29 13 37 61
112 138 86 151 200
235 273 227 278 309
196 228 208 217 274
49 66 59 65 128
2 3 3 4 11
0 0 0 0 1
0 0 0 0 0
626 741 598 757 995
30 30 30 30 30 30 30 30 30 30 30
0 0 1 0 0 0 0 7 8 60 32
0 1 2 0 0 5 0 18 11 76 43
5 5 15 9 2 28 2 59 23 180 121
32 27 72 37 19 94 18 147 107 292 229
124 110 210 136 95 253 90 323 307 463 402
312 282 428 321 254 442 285 495 453 551 520
450 408 554 455 380 568 405 605 551 607 594
418 381 504 416 347 535 345 610 532 608 598
229 205 307 230 180 327 173 439 377 497 485
35 28 84 46 23 118 26 207 148 338 300
2 3 11 5 1 15 0 51 32 170 123
1 0 2 1 0 1 0 13 8 82 51
1608 1450 2190 1656 1301 2386 1344 2974 2557 3924 3498
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
RI
3-50
Table 3A.7
VT VA
WA
PR WV
WI
WY
30
2
11
10
72
265
478
621
601
376
118
15
2
2571
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
2 2 0 30 15 0 0 11 1 7 18 2 0 0 0 0 0 1 0 0 0 0 0 0
9 18 1 23 21 0 2 16 4 19 26 8 2 0 0 0 0 2 1 0 0 0 0 0
39 86 8 65 63 7 15 55 30 68 84 39 19 0 0 0 3 8 8 4 0 0 0 0
110 207 65 163 147 48 77 140 107 161 181 111 66 1 4 3 20 35 33 20 0 0 0 0
290 401 238 367 328 180 254 324 277 344 368 292 220 18 34 23 72 119 107 74 2 1 4 5
511 545 481 515 485 382 438 480 446 505 514 497 448 115 184 96 218 303 282 217 10 3 15 19
659 630 535 596 573 472 512 553 554 607 601 637 618 286 395 192 348 456 428 355 38 7 67 65
646 622 473 601 563 413 473 546 519 601 597 628 574 239 355 139 308 403 374 309 40 8 79 65
417 453 293 482 412 225 281 417 322 439 454 416 339 54 111 35 141 240 193 136 7 4 27 19
162 217 69 286 196 49 83 195 113 215 248 170 99 2 6 1 19 50 33 17 0 0 0 0
28 41 2 122 65 1 4 63 16 57 83 34 10 0 0 0 2 11 6 2 0 0 0 0
5 4 0 30 25 0 0 23 1 15 29 6 1 0 0 0 0 2 1 0 0 0 0 0
2878 3226 2165 3280 2893 1777 2139 2823 2390 3038 3203 2840 2396 715 1089 489 1131 1630 1466 1134 97 23 192 173
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0 0 0 360 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 332 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 388 1 7 0 8 0 0 0 0 0 0 0 0
1 4 1 421 8 25 2 25 3 8 6 5 0 0 0 1
11 29 18 484 29 77 16 82 24 49 33 27 3 1 3 4
46 138 68 513 99 204 76 218 95 162 123 114 64 41 70 52
155 329 187 533 183 324 153 341 177 272 214 222 186 126 190 165
154 323 163 539 149 280 126 300 126 208 154 180 154 92 153 154
26 131 28 515 56 125 41 135 36 70 48 63 28 20 29 30
1 3 0 513 4 18 2 19 2 6 4 5 0 0 0 1
0 0 0 436 0 3 0 3 0 0 0 0 0 0 0 0
0 0 0 392 0 1 0 1 0 0 0 0 0 0 0 0
394 957 465 5426 529 1064 416 1132 463 775 582 616 435 280 445 407
CLIMATE AND PRECIPITATION
UT
Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Olympia Quillayute Seattle CO Seattle Sea-TAC AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Note: Based on 30-year average values 1971–2000. Degree-day data are used to estimate amounts of energy required to maintain comfortable indoor temperature levels. Each degree that a day’s mean temperature is above 658F is counted as one cooling degree day.
q 2006 by Taylor & Francis Group, LLC
3-51
Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-52
Table 3A.8 Average Wind Speed (MPH) — Selected Cities of the United States State AL
AK
AR CA
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock Bakersfield Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO
59 35 54 58 49 38 69 33 44 27 26 47 51 14 28 57 47 49 56 52 55 28 19 22 54 35 57 57 42 28 57 60 50 50 54 53 33 54 28 3 16 52 62 75 28
8.1 9.0 10.1 7.7 6.4 11.6 11.9 15.1 14.5 5.8 11.2 17.5 3.0 5.0 7.8 8.1 10.5 12.7 13.9 3.2 10.8 19.9 6.0 7.5 7.2 6.5 5.3 7.9 7.1 7.3 8.2 8.4 5.2 7.8 6.9 5.2 5.2 6.7 6.2 5.0 6.2 7.1 6.0 7.2 6.7
8.7 9.4 10.3 8.2 6.8 11.8 11.3 14.4 14.7 6.3 10.2 17.9 3.9 4.9 7.7 8.2 11.0 12.5 13.0 4.2 11.0 20.0 5.5 7.8 7.3 6.6 5.8 8.1 8.5 7.4 8.5 8.9 5.8 7.7 7.2 5.7 6.0 7.4 6.4 5.2 7.1 7.3 6.6 8.6 7.5
9.0 9.8 10.7 8.3 7.1 10.5 11.3 13.7 13.7 7.0 8.8 17.4 5.3 6.3 7.8 8.4 11.3 12.5 11.9 5.3 10.1 18.8 5.5 6.7 7.0 7.1 6.6 8.6 10.3 7.9 9.4 9.6 6.5 7.4 7.6 6.7 6.7 8.1 6.5 5.8 7.3 8.4 7.5 10.5 8.5
8.2 9.2 10.1 7.3 7.3 10.6 11.5 12.0 12.9 7.4 8.0 17.5 6.6 8.5 8.1 8.5 10.9 11.6 12.0 6.5 10.1 17.4 4.7 5.2 7.1 7.6 6.9 8.9 11.3 8.3 8.9 9.0 7.1 6.5 8.0 7.4 7.4 8.5 6.3 6.2 7.0 8.6 7.8 12.2 9.5
6.8 7.9 8.7 6.1 8.5 9.0 12.0 12.7 11.5 7.2 8.2 16.2 7.7 8.7 8.2 8.3 11.0 10.6 10.7 6.7 9.9 14.9 4.9 5.8 7.5 7.3 7.0 8.8 10.7 8.3 7.7 7.6 7.9 6.5 7.9 8.1 7.1 8.4 6.0 5.4 7.3 9.0 7.9 13.4 10.4
6.0 6.9 7.5 5.8 8.4 8.5 11.5 11.6 11.0 6.8 6.9 15.8 7.1 8.1 7.8 7.7 10.5 9.3 11.9 6.4 9.7 13.6 5.1 5.9 6.9 7.0 6.7 8.7 10.6 8.5 6.7 7.1 7.9 6.3 7.4 8.3 7.0 8.0 5.4 5.4 7.5 9.6 7.8 14.0 10.9
5.7 6.0 6.9 5.7 7.3 7.7 11.7 10.9 10.6 6.5 6.1 15.6 6.6 7.7 7.1 7.5 9.9 7.7 12.7 5.9 9.7 12.1 4.2 4.9 6.6 5.5 7.1 8.4 9.0 9.5 6.3 6.7 7.2 5.8 6.8 7.4 6.8 7.9 5.0 4.4 6.6 8.9 7.5 13.6 11.2
5.4 5.8 6.7 5.2 6.9 8.1 12.4 11.8 11.0 6.2 6.6 16.2 6.1 7.7 6.6 7.4 10.0 8.4 13.2 5.8 10.4 13.7 3.7 4.2 6.3 5.0 6.6 7.9 8.4 8.9 6.3 6.3 6.8 5.9 5.8 6.8 6.6 7.7 4.9 4.2 6.1 8.4 7.4 12.8 10.5
6.3 6.7 7.7 5.9 6.7 8.8 13.2 13.2 11.6 6.4 7.6 16.2 6.0 7.3 7.0 8.0 10.4 9.7 13.2 5.9 11.0 15.4 3.7 4.3 6.9 5.6 6.3 8.3 8.1 7.3 6.6 6.6 6.2 6.4 5.5 6.1 6.2 7.3 5.1 4.6 6.0 7.4 7.1 11.1 9.1
6.2 7.3 8.0 5.7 6.7 11.2 13.3 14.8 12.3 6.4 8.7 16.6 5.3 6.0 7.3 9.5 10.3 11.4 13.5 5.4 10.5 17.4 3.8 6.3 7.8 5.8 5.8 8.2 7.6 6.6 6.8 6.8 5.5 6.8 5.6 5.2 5.6 6.9 5.2 4.2 6.0 6.4 6.5 9.4 7.6
7.2 8.1 8.9 6.5 6.4 11.7 12.5 14.9 13.2 5.8 10.2 17.5 3.8 4.1 7.7 8.4 10.4 12.5 14.4 3.7 11.5 20.0 5.0 7.5 7.2 6.6 5.3 8.1 7.3 6.9 7.8 8.0 5.1 6.6 6.0 4.7 5.2 6.7 5.8 5.2 5.7 6.0 5.9 7.5 6.3
7.7 9.0 9.6 7.1 6.3 12.0 11.7 13.9 13.6 5.6 10.0 17.5 3.0 3.3 7.8 8.8 10.1 12.6 12.9 3.2 10.3 20.1 4.9 7.0 7.8 6.6 5.1 7.8 6.7 7.2 8.1 8.1 5.0 6.7 6.4 4.9 5.0 6.6 5.8 5.4 6.4 6.4 5.6 7.1 6.5
7.1 7.9 8.8 6.6 7.1 10.1 12.0 13.2 12.6 6.5 8.5 16.8 5.4 6.5 7.6 8.2 10.5 11.0 12.8 5.2 10.4 16.9 4.8 6.1 7.1 6.4 6.2 8.3 8.8 7.8 7.6 7.8 6.4 6.7 6.8 6.4 6.2 7.5 5.7 5.1 6.6 7.8 7.0 10.6 8.7
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
CT DE DC
FL
GA
HI
ID IL
5.1 6.4 6.7 5.6 9.4 8.6 5.7 7.8 12.5 8.9 9.8 8.1
5.9 7.2 7.0 6.6 10.0 8.7 6.7 8.5 12.9 9.4 10.3 8.6
6.7 8.1 7.7 8.4 11.1 9.6 8.4 9.6 13.0 9.9 11.0 9.0
7.6 8.0 8.4 10.3 11.6 10.0 9.4 10.3 12.4 9.8 10.4 8.8
7.0 8.2 9.2 9.7 11.2 9.3 9.6 9.7 11.1 8.7 9.0 7.4
6.7 7.8 9.2 9.0 10.4 8.8 9.8 9.3 9.9 8.0 8.3 6.8
6.5 6.5 8.2 7.0 9.3 8.3 9.4 8.7 9.4 7.3 7.8 6.2
6.1 6.3 7.7 6.2 8.9 8.0 9.1 7.9 9.5 7.0 7.4 5.8
5.5 5.9 7.1 6.5 9.4 7.9 9.0 7.9 10.5 7.3 7.8 6.2
5.5 6.0 6.4 6.4 9.6 7.8 7.9 7.4 11.3 7.8 8.1 6.6
5.2 6.4 5.8 5.6 9.5 8.2 6.8 7.5 12.0 8.4 9.2 7.6
4.4 6.2 6.4 4.9 9.4 8.4 6.0 7.7 12.1 8.7 9.3 7.7
6.0 6.9 7.5 7.2 10.0 8.6 8.2 8.5 11.4 8.4 9.0 7.4
54
10.0
10.3
10.9
10.5
9.3
8.9
8.3
8.1
8.3
8.7
9.4
9.6
9.4
54 57 57 19 53 49 53 54 38 41 56 19 60 47 64 51 44 54 52 53 53 30 52 63 50 22 44 59 59 52 55 62
8.3 8.8 8.3 6.9 8.1 11.8 9.5 9.0 9.0 6.7 8.6 8.7 10.1 8.3 10.4 6.9 7.2 8.0 8.2 7.4 9.4 10.8 11.1 7.9 10.5 9.8 11.6 10.7 10.9 10.5 12.2 9.2
8.7 9.3 8.9 7.4 8.7 12.0 10.0 9.6 9.3 7.1 9.1 9.0 10.5 8.6 10.6 7.5 7.7 8.4 8.6 7.7 10.1 11.2 11.7 8.9 10.5 9.8 11.4 10.6 10.9 10.6 12.2 9.3
8.9 9.8 9.3 7.8 9.1 12.1 10.5 9.9 9.8 7.5 9.4 9.9 11.0 8.7 10.9 7.9 8.0 8.8 9.1 7.7 11.3 12.2 12.7 9.9 11.1 10.6 11.8 11.7 11.7 11.6 13.2 10.0
8.5 9.4 8.8 7.2 8.5 12.2 10.5 9.4 9.5 6.8 9.2 9.5 10.9 8.3 10.1 7.4 7.2 8.3 8.6 7.5 11.6 13.4 13.5 9.9 11.6 10.2 11.9 11.8 11.6 11.8 13.0 9.6
7.7 8.9 8.0 6.9 7.9 10.5 9.5 8.8 8.6 6.2 8.6 9.1 9.9 7.1 8.7 6.4 6.6 7.4 7.6 7.4 11.6 13.0 12.8 9.4 10.5 8.2 10.5 10.1 9.9 10.4 11.1 7.9
7.1 8.0 7.2 6.1 7.7 9.6 8.3 8.0 7.6 5.7 7.9 7.7 8.3 6.6 8.1 6.0 6.1 7.0 7.4 7.1 12.6 14.9 13.2 9.0 10.1 7.4 9.3 8.8 8.9 9.3 9.6 7.1
6.4 7.3 6.6 5.6 7.0 9.4 7.9 7.3 6.9 5.0 7.1 6.9 7.7 6.3 7.7 5.8 5.8 6.7 6.9 6.9 13.1 15.5 13.7 8.4 9.1 6.5 8.4 7.5 7.8 8.1 8.3 6.2
6.4 7.0 6.7 5.4 6.7 9.2 7.9 7.2 6.7 5.0 6.9 6.5 7.7 5.8 7.3 5.3 5.5 6.2 6.7 6.8 12.8 14.7 13.1 8.2 8.9 6.2 8.2 7.1 7.3 7.7 7.9 5.8
7.8 8.0 7.4 5.8 7.4 9.6 8.2 7.6 7.6 5.9 7.6 7.3 8.7 6.4 8.0 5.4 6.4 6.7 7.2 6.8 11.2 13.0 11.7 8.2 9.0 7.0 8.9 8.0 8.3 8.4 8.7 6.4
8.0 8.9 8.4 6.3 7.8 10.8 9.2 8.6 7.9 6.3 8.3 8.6 10.0 6.6 8.5 5.6 6.3 6.5 7.3 6.7 10.5 12.2 11.8 8.3 9.5 7.3 10.1 9.2 9.3 9.5 10.1 6.9
8.0 8.3 8.1 6.2 7.6 12.0 9.7 8.6 8.2 5.9 8.2 8.6 10.4 7.3 9.1 5.9 6.4 6.9 7.2 6.8 10.7 11.8 12.4 8.4 10.1 9.1 11.1 10.6 10.6 10.6 12.2 8.7
8.0 8.3 7.9 6.0 7.6 11.8 9.1 8.5 8.8 6.3 8.3 8.0 10.0 8.0 9.8 6.5 6.9 7.5 7.6 7.2 10.4 11.3 12.0 8.1 9.9 9.3 11.0 10.3 10.6 10.4 12.0 8.9
7.8 8.5 8.0 6.5 7.8 10.9 9.2 8.5 8.3 6.2 8.3 8.3 9.6 7.3 9.1 6.4 6.7 7.4 7.7 7.2 11.3 12.8 12.5 8.7 10.1 8.5 10.3 9.7 9.8 9.9 10.9 8.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
3-53
IN
31 22 42 11 54 47 56 47 30 48 54 40
CLIMATE AND PRECIPITATION
C0
Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville
State
IA
KS
KY
ME MD MA
MI
MN
MS
MO
(Continued) Station
Fort Wayne Indianapolis South Bend Des Moines Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
56 54 54 53 61 46 40 60 54 53 49 55
11.5 10.9 11.9 11.4 11.4 11.4 11.7 13.5 12.4 9.7 12.0 10.4
11.0 10.8 11.2 11.2 11.2 11.4 12.1 13.9 12.4 10.2 12.5 10.4
11.7 11.6 11.9 12.4 12.3 12.1 13.4 15.5 14.0 11.5 13.8 11.0
11.6 11.2 11.6 12.6 13.2 12.6 13.8 15.5 14.4 11.7 14.0 10.6
10.0 9.6 10.2 11.0 11.8 11.1 12.1 14.6 13.5 10.2 12.3 8.7
8.9 8.5 9.1 10.1 10.7 9.8 11.7 14.0 12.7 9.4 12.2 7.9
8.0 7.5 8.1 8.9 9.2 8.4 11.3 13.1 11.9 8.4 11.3 7.2
7.3 7.2 7.7 8.6 9.1 8.3 10.9 12.5 11.5 8.0 11.1 6.8
8.2 7.9 8.5 9.4 9.9 9.0 11.2 13.5 12.0 8.5 11.6 7.4
9.1 8.9 9.5 10.3 10.5 10.2 11.6 13.5 11.9 9.0 11.9 8.1
10.9 10.5 11.0 11.3 11.4 11.0 11.8 13.7 11.9 9.7 12.1 9.7
11.1 10.5 11.2 11.1 11.0 11.0 11.5 13.4 11.9 9.5 11.7 10.0
9.9 9.6 10.2 10.7 11.0 10.5 11.9 13.9 12.5 9.6 12.2 9.0
21 55 55 18 51 41 54 50 22 62 52 61 45 36 42 44 61 39 21 43 41 61 53 50 64
7.3 10.6 9.5 8.8 8.7 9.8 9.3 9.2 11.1 9.0 9.4 17.2 13.7 11.7 8.8 11.9 11.8 11.4 9.7 11.7 12.2 9.6 11.6 8.9 10.5
7.4 10.6 9.5 8.9 9.1 10.0 9.8 9.6 10.8 9.4 9.9 17.2 13.7 11.6 8.4 11.4 11.2 10.6 9.1 10.9 11.6 9.3 11.3 8.8 10.4
7.6 10.9 10.1 9.4 9.1 10.2 9.9 10.0 11.7 10.0 10.7 17.2 13.6 11.5 8.9 11.7 11.8 11.1 9.1 11.2 11.6 10.0 11.8 9.4 11.3
7.7 10.4 9.7 8.9 8.7 9.8 9.4 9.6 10.9 9.9 10.2 16.4 13.1 11.0 9.2 11.3 11.5 11.0 9.5 11.1 11.5 10.3 12.3 9.9 12.2
6.0 8.6 8.0 7.4 7.6 8.6 8.1 8.3 10.3 9.1 8.9 14.6 12.0 10.0 8.3 10.1 10.1 9.7 8.8 9.9 9.9 9.7 11.6 9.4 11.1
5.3 7.9 7.4 6.2 6.5 7.5 6.8 7.6 9.3 8.2 8.2 13.8 11.4 8.9 7.5 9.2 9.0 8.9 7.8 8.8 9.3 8.5 10.4 8.5 10.4
5.0 7.2 6.8 5.7 5.9 6.1 6.1 7.1 8.6 7.6 7.6 12.9 11.0 8.4 7.0 8.5 8.1 8.3 7.5 8.0 8.8 7.8 9.4 7.7 9.4
4.6 6.8 6.4 5.1 5.6 6.1 5.9 6.6 8.1 7.5 7.5 12.6 10.8 8.3 6.7 8.1 7.8 7.9 7.0 7.5 8.6 7.7 9.4 7.5 9.2
5.3 7.6 6.8 5.6 6.4 7.1 7.3 7.2 9.2 7.8 7.7 13.5 11.3 8.6 7.1 8.7 8.8 8.3 7.8 8.2 9.3 8.6 10.3 8.5 10.0
6.0 8.1 7.2 6.5 6.6 7.8 7.6 7.4 10.0 8.4 8.1 15.2 11.9 9.4 7.8 9.7 9.8 9.4 8.8 9.4 10.7 9.2 11.2 9.3 10.6
7.0 9.9 8.9 8.2 7.4 8.8 8.7 8.3 10.0 8.8 8.8 16.2 12.7 10.4 8.5 11.2 11.2 10.5 9.6 10.7 11.9 9.7 11.6 9.4 11.0
7.1 10.3 9.1 8.4 8.1 9.3 9.0 8.8 10.4 9.0 8.9 16.7 13.4 10.9 8.4 11.3 11.3 10.7 9.3 11.0 11.7 9.6 11.2 8.8 10.4
6.4 9.1 8.3 7.4 7.5 8.4 8.2 8.3 10.0 8.7 8.8 15.3 12.4 10.1 8.1 10.3 10.2 9.8 8.7 9.9 10.6 9.2 11.0 8.8 10.5
42 16 39 43 19 32
14.2 8.4 8.2 7.1 7.6 10.7
13.7 8.4 8.4 7.5 8.2 10.8
14.1 9.0 8.7 7.9 8.3 11.7
14.3 9.8 8.0 7.1 7.8 11.5
13.2 9.2 6.8 6.0 6.6 9.1
12.1 8.3 6.1 5.2 5.7 8.7
10.8 7.1 5.2 4.9 5.3 8.2
10.4 6.5 5.3 4.6 5.2 7.9
11.5 7.2 6.1 5.3 6.1 8.6
12.7 8.4 6.2 5.2 6.0 9.3
13.6 8.6 6.9 6.1 6.9 10.6
13.7 8.2 7.8 6.9 7.5 10.6
12.9 8.3 7.0 6.2 6.8 9.8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
LA
3-54
Table 3A.8
NE
NV
NH NJ NM
NY
30 53 57 63 33 61 3 62 40 58 53 30 26 50 66 9 51 34 47 61 54 60 46 60 67 44 58 63 10 29 64 51 63 19 65 44
11.1 10.6 11.4 13.0 9.8 14.9 8.8 6.7 5.6 5.1 11.7 9.6 11.6 9.2 10.9 9.9 10.6 9.3 5.2 10.1 7.4 5.6 7.6 7.2 46.1 10.7 11.2 8.0 11.9 7.7 9.8 11.3 14.0 9.6 10.6 13.0
11.1 10.8 11.5 12.3 10.1 13.9 9.4 7.3 5.6 5.6 11.7 10.0 11.5 9.8 11.1 9.2 11.1 9.4 5.7 10.3 8.5 6.2 8.0 7.9 44.3 11.1 11.5 8.8 12.4 8.6 10.1 11.3 13.3 10.1 10.7 13.3
12.3 11.6 12.5 11.4 11.2 12.8 10.2 8.2 6.7 6.7 13.1 11.3 12.5 11.5 12.2 10.5 12.0 10.4 6.6 10.7 10.1 7.8 8.6 8.1 41.4 11.8 11.9 9.9 13.1 10.1 10.6 11.5 13.1 10.5 11.0 13.5
12.3 11.3 12.0 11.4 12.3 12.6 11.6 9.1 7.7 7.6 14.0 12.1 13.1 12.6 12.6 10.2 12.5 11.1 7.2 10.9 11.0 8.2 8.6 7.8 35.8 11.4 11.2 10.7 14.4 10.2 10.5 11.2 12.3 9.8 10.2 12.7
10.3 9.4 10.2 10.7 12.2 11.3 12.4 8.8 7.4 7.4 12.6 10.5 11.5 11.5 10.9 8.9 11.8 11.0 6.8 10.7 11.0 8.0 8.6 7.0 29.7 10.1 10.0 10.5 13.2 9.9 9.0 9.9 11.4 9.0 8.8 11.6
9.9 8.8 9.3 10.1 11.1 11.1 10.8 8.5 6.9 7.2 11.8 9.8 10.8 10.4 10.1 8.3 10.5 9.9 6.7 10.6 11.0 7.7 8.5 6.5 27.3 9.1 9.5 9.8 12.9 9.7 8.3 9.3 10.8 8.4 8.1 10.7
9.2 8.0 8.4 9.5 10.5 10.0 9.8 7.8 6.3 6.9 10.5 9.3 9.7 9.5 8.8 7.5 9.3 9.1 6.2 10.3 10.2 7.2 8.4 5.7 25.3 8.3 8.9 8.9 11.2 8.6 7.5 8.4 10.2 7.7 7.6 10.2
8.8 7.6 8.4 9.5 10.9 10.1 9.0 7.4 6.3 6.7 10.3 9.1 9.5 9.2 8.8 7.6 8.9 9.2 5.9 10.4 9.6 6.6 7.8 5.4 24.7 7.9 8.7 8.1 10.2 7.9 7.0 8.2 9.7 7.4 7.5 10.0
9.6 8.2 9.1 10.2 10.9 11.2 9.4 7.4 6.1 6.0 11.0 9.5 10.3 9.7 9.4 8.6 9.4 9.7 5.4 10.3 9.0 5.8 7.6 5.6 28.8 8.3 9.0 8.4 11.3 8.0 7.4 8.8 10.2 7.7 8.1 10.4
10.5 8.9 10.1 11.0 10.6 12.9 9.1 7.1 5.1 5.1 11.2 9.9 11.0 9.6 9.8 9.0 9.7 9.5 5.0 10.0 8.1 5.4 7.3 6.0 33.8 8.7 9.4 8.2 11.8 7.9 8.0 9.7 11.1 8.3 8.8 11.0
11.2 10.2 11.0 12.2 9.5 14.5 10.6 7.1 5.3 5.0 11.8 9.9 11.4 9.5 10.9 9.7 10.2 9.7 5.1 9.9 7.8 5.5 7.2 6.6 39.5 9.9 10.2 7.9 11.8 7.7 9.1 10.8 12.6 9.4 9.8 12.2
10.9 10.3 11.2 13.0 9.7 15.2 10.8 6.7 5.1 4.7 11.6 9.6 11.3 9.0 10.7 9.8 10.4 9.2 5.0 9.9 7.3 5.3 7.4 7.0 44.5 10.3 10.8 7.6 12.1 7.6 9.3 11.0 13.1 9.3 10.1 12.7
10.6 9.6 10.4 11.2 10.7 12.5 10.2 7.7 6.2 6.2 11.8 10.1 11.2 10.1 10.5 9.1 10.5 9.8 5.9 10.3 9.2 6.6 8.0 6.7 35.1 9.8 10.2 8.9 12.2 8.7 8.9 10.1 11.8 8.9 9.3 11.8
54
13.7
13.8
13.9
12.9
11.6
11.0
10.4
10.3
11.0
11.6
12.8
13.4
12.2
62
11.6
11.1
11.0
10.7
9.3
8.6
8.0
7.7
8.1
8.8
10.2
10.7
CLIMATE AND PRECIPITATION
MT
Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C. Park New York (JFK AP) New York (Laguardia AP) Rochester
Note: Through 2002. The average wind speed is based on the speed of the wind regardless of direction. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-55
q 2006 by Taylor & Francis Group, LLC
3-56
Table 3A.9 Maximum Wind Speed (MPH) — Selected Cities of the United States Jan State AL
AK
Station
May
Jun
Jul
Aug
Sep
Oct
DR
SP
DR
SP
DR
SP
DR
SP
DR
SP
DR
SP
DR
SP
DR
SP
DR
SP
Nov
DR
SP
Dec
Annual
DR
SP
DR
SP
DR
SP
39
W
49
SE
59
SW
65
SW
56
NW
65
SW
56
SW
57
NW
50
SE
50
W
43
N
52
SE
41
SW
65
35
26
44
08
43
12
46
18
44
24
46
24
56
10
52
02
63
23
43
01
43
27
40
30
40
02
63
Mobile
44
18
44
23
46
10
40
01
44
32
51
16
45
21
60
14
63
09
63
36
46
17
38
22
43
14
63
Montgomery
17
30
32
26
38
28
46
32
39
36
35
29
44
26
35
10
44
70
35
08
52
30
39
30
35
08
52
Anchorage (G)
23
E
64
NE
61
NE
75
SE
43
S
43
SE
46
SE
40
N
44
S
48
S
55
NE
55
SE
55
NE
75
Annette
50
16
58
16
50
14
48
14
60
14
44
16
44
16
35
16
40
11
51
16
55
13
51
16
58
14
60
Barrow (G)
22
E
58
SW
74
E
56
26
51
NE
41
W
43
W
55
27
55
SW
66
W
54
E
53
SW
61
SW
74
9
W
75
W
69
W
66
E
49
W
56
E
53
W
48
NW
58
E
58
W
69
E
61
W
70
W
75
Bethel (G)
23
S
61
NE
59
S
56
S
51
S
53
S
59
S
46
NW
56
SE
69
S
77
W
66
S
67
S
77
Bettles
10
11
30
08
25
08
29
23
28
11
31
01
28
24
30
25
32
24
25
24
25
26
38
24
40
24
40
Big Delta
29
29
74
18
67
20
63
18
60
20
55
16
51
18
63
16
47
18
66
18
58
11
56
11
63
29
74
Cold Bay
47
17
71
16
73
15
71
15
61
14
60
11
63
17
54
16
64
17
75
21
60
14
66
11
64
17
75
Fairbanks
51
25
31
26
36
22
40
24
32
23
32
25
40
27
32
27
34
08
33
25
40
25
35
24
37
22
40
04
52
16
44
15
35
18
46
19
35
15
38
15
40
16
30
16
36
19
46
19
33
16
49
04
52
28
39
07
39
20
35
90
38
11
44
90
35
16
29
28
32
36
49
80
41
08
44
40
69
40
69
Juneau
32
12
45
12
46
11
40
11
40
12
40
12
35
12
32
12
38
12
48
12
49
11
58
11
55
11
58
King Salmon (G)
23
E
69
E
69
E
62
S
59
S
63
E
58
E
47
SW
56
E
71
E
67
E
67
E
66
E
71
Kodiak (G)
23
NW
75
NW
67
NW
82
E
67
W
59
NE
52
NW
52
NW
67
NW
78
NW
70
W
82
NW
83
NW
83
Kotzebue (G)
23
E
72
E
63
E
66
80
56
NE
49
SE
46
SE
45
S
53
NE
54
SE
60
SE
63
E
68
E
72
Mcgrath (G)
23
S
59
SW
47
SE
46
S
46
S
45
NW
62
S
46
S
49
S
49
E
40
S
53
SW
52
NW
62
Nome
45
09
54
04
51
02
44
05
45
09
44
04
35
24
35
15
41
18
44
20
52
24
55
05
54
24
55
St. Paul Island (G)
23
63
N
72
N
67
SE
67
SW
74
S
53
SE
47
N
58
N
61
W
70
SW
84
E
79
SW
84
Talkeetna
35
04
38
03
35
03
39
34
29
18
32
19
29
17
22
40
28
30
35
20
32
02
31
36
35
03
39
6
E
63
E
71
E
60
E
43
E
46
E
37
SW
39
S
44
S
45
SE
53
E
62
E
61
E
71
Valdez (G)
23
N
94
NE
83
NE
82
N
55
N
44
W
38
N
41
N
56
SW
69
NE
66
N
77
N
75
N
94
Yakutat (G)
23
SE
81
SE
62
SE
64
SE
64
SE
48
SE
45
SE
44
SE
60
SE
63
SE
60
SE
70
SE
63
SE
81
Flagstaff
18
SW
38
SW
34
21
38
SW
40
SW
46
SW
35
NW
39
SW
30
W
33
40
38
SW
39
NE
38
SW
46
Phoenix
17
25
36
26
30
24
43
30
51
11
35
40
33
13
43
14
37
15
39
24
36
25
30
29
39
30
51
Tucson
54
E
40
E
59
SE
41
SW
46
SE
43
SE
50
SE
71
NE
54
SE
54
SE
47
E
55
W
44
SE
71
Winslow
37
23
56
22
63
22
61
25
56
25
53
20
52
16
59
21
45
31
45
22
49
22
46
22
52
22
63
Yuma
40
NW
41
W
50
N
43
NW
47
NW
38
SW
42
NE
61
SE
60
E
57
S
47
N
47
W
47
NE
61
Fort Smith
20
30
43
30
39
34
45
26
45
30
49
28
57
09
51
09
46
31
45
29
51
26
40
22
44
28
57
Little Rock
41
Unalakleet (G)
S
44
SW
57
SE
56
NW
65
NW
61
NE
60
NW
56
NW
54
NW
50
SSW
58
SW
49
SW
48
NW
65
3
NW
25
SW
25
S
28
NE
30
SW
30
NE
21
W
30
W
28
NE
24
SE
24
SW
27
SW
25
NE
30
Bakersfield
53
19
36
13
49
17
40
29
40
32
40
15
41
29
25
14
33
14
35
08
38
30
35
13
46
13
49
Bishop (G)
17
60
W
63
Blue Canyon
33
67
17
76
07
51
17
76
Eureka
83
S
54
SW
48
SW
48
Fresno
24
14
39
13
36
29
30
North Little Rock
20
58 67
62 20
62
50
23
N
49
29
36
54 49
60 09
32
70
37
07
07
30
NW
40
NW
39
N
35
N
34
32
32
29
28
32
23
31
28
47 09
52 70
66 19
54
68 07
70
49
05
N
44
SW
56
S
55
S
56
SW
56
31
29
31
26
28
30
14
29
14
39
Long Beach
33
17
37
18
40
11
39
29
44
27
30
29
24
18
23
16
23
10
26
30
37
25
44
32
39
29
44
Los Angeles AP (G)
52
NE
51
N
57
W
62
N
59
W
49
W
40
SW
31
SE
33
E
39
W
46
W
60
NW
49
W
62
Los Angeles CO
40
N
49
NW
40
NW
47
NW
40
NW
39
N
32
W
21
E
24
NW
27
N
48
N
42
SE
44
N
49
6
34
23
36
22
35
21
34
24
32
21
31
18
36
20
34
15
35
20
30
17
34
20
32
21
34
24
44
S
66
S
58
S
85
S
85
NW
42
SE
68
SE
70
SE
70
SW
74
Mount Shasta Redding (G)
16
S
70
S
64
S
74
S
47
S
54
N
60
N
36
S
46
Sacramento
53
SE
60
SE
51
S
66
SW
45
SW
74
SW
47
SW
36
SW
38
San Diego
58
SE
56
S
45
SW
46
S
37
S
30
S
26
NW
23
NW
23
S
31
N
31
SE
51
NW
39
SE
56
San Francisco AP
53
16
58
22
55
26
46
18
47
26
46
28
44
28
40
26
37
28
38
25
44
18
51
22
54
16
58
San Francisco CO
36
SE
47
SW
47
S
44
W
38
W
38
W
40
W
38
W
34
W
32
SE
43
S
41
SE
45
SE
47
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
9 30
Homer
CA
Apr
Huntsville
Gulkana
AR
Mar
Birmingham AP
Barter IS. (G)
AZ
Years
Feb
13
13
36
13
46
16
35
30
44
30
35
29
36
29
32
29
30
29
32
17
37
26
31
16
36
13
46
Stockton
39
14
46
16
41
33
39
35
37
35
41
29
35
27
31
26
30
34
33
33
37
15
47
15
44
15
47
Alamosa (G)
19
SW
58
23
62
23
60
24
71
22
63
20
69
30
66
34
51
SW
54
W
62
21
63
26
54
24
71
Colorado Springs
52
29
55
28
61
29
60
28
61
27
52
20
55
22
49
34
45
30
44
27
59
34
52
27
60
28
61
Denver
14
32
44
30
36
30
41
33
46
36
43
21
38
29
46
33
33
29
36
01
36
36
36
32
38
33
46
Grand Junction
23
25
36
20
41
34
53
27
49
20
46
30
57
35
45
24
45
28
49
21
44
31
39
26
35
30
57
Pueblo
18
29
51
29
46
36
52
35
52
35
60
29
48
30
58
22
48
01
46
30
47
04
48
27
47
35
60
CT
Bridgeport
42
34
67
34
65
08
58
32
55
34
50
35
39
29
40
04
58
18
74
09
58
14
58
25
53
18
74
Hartford
17
24
46
30
46
30
43
05
41
28
39
36
45
27
39
18
40
17
43
29
38
17
44
26
41
24
46
DE
Wilmington
54
15
51
29
46
28
45
33
46
24
48
34
43
27
48
35
46
07
40
20
58
16
46
32
46
20
58
DC
Washington
39
20
39
30
37
28
44
32
46
35
40
31
55
30
48
34
43
25
35
29
38
29
35
30
40
31
55
17
29
41
33
39
33
44
31
39
32
46
31
49
50
47
34
37
32
39
23
39
32
37
34
38
31
49
Dulles AP Washington
CLIMATE AND PRECIPITATION
CO
Santa Maria
Nat’l AP FL
GA
HI
ID
IL
IN
IA
Apalachicola
48
E
48
E
42
E
54
SE
51
SE
47
E
55
N
63
NE
59
E
67
NW
56
SE
47
SE
42
E
67
Daytona Beach
54
26
43
20
44
24
58
18
46
28
46
33
40
25
40
11
50
11
58
05
53
50
39
34
40
24
58
Fort Myers
51
25
40
25
39
35
46
20
39
32
44
31
48
18
45
25
44
05
92
23
45
30
32
33
35
05
92
Jacksonville
22
30
38
30
39
22
44
32
46
29
34
28
39
26
57
11
38
25
36
21
31
33
38
31
40
26
57
Key West
26
27
41
12
57
22
54
01
58
13
46
18
40
12
33
19
41
12
43
35
46
12
47
26
39
01
58
Miami
45
24
46
19
55
04
46
24
35
32
52
13
37
25
43
12
86
06
69
90
59
07
38
32
38
12
86
Orlando
53
25
42
25
46
24
46
02
50
35
51
32
64
14
46
32
50
24
46
05
48
26
46
20
35
32
64
Pensacola
30
31
40
13
40
16
39
32
35
12
39
29
46
20
37
20
40
16
54
22
39
21
35
20
36
16
54
Tallahassee
43
23
46
09
40
27
48
19
35
29
40
03
44
22
39
02
58
08
46
20
32
16
40
28
37
02
58
Tampa
50
32
44
32
50
29
43
28
44
36
46
31
67
32
58
11
38
34
56
21
40
25
40
36
45
31
67
West Palm Beach
53
29
48
11
48
27
51
32
55
27
45
09
71
34
46
13
86
36
58
16
74
10
39
36
38
13
86
Athens
47
25
52
20
52
24
50
23
47
31
35
18
43
13
35
35
47
15
37
05
35
24
41
10
48
25
52
Atlanta
26
23
46
29
52
31
49
30
44
27
54
24
51
30
60
32
41
27
37
09
35
29
39
30
33
30
60
Augusta
51
25
40
30
40
23
52
32
39
28
48
08
62
33
48
18
45
04
36
18
40
27
40
28
35
08
62
Columbus
44
29
46
20
52
27
44
28
40
23
39
29
55
36
52
18
47
36
38
12
40
31
37
33
35
29
55
Macon
20
32
37
27
46
70
35
33
45
31
47
27
44
30
44
12
38
36
37
18
33
30
40
30
35
31
47
Savannah
22
31
30
09
31
32
46
23
35
22
44
05
43
04
45
34
37
10
40
31
35
23
40
30
29
32
46
Hilo
23
36
35
34
39
10
29
34
26
35
29
11
25
05
25
36
25
04
25
34
29
02
28
36
29
34
39
Honolulu
22
70
36
07
35
06
32
50
35
13
30
70
30
05
30
70
31
13
38
60
29
20
46
70
35
20
46
Kahului
28
SW
44
NE
40
N
43
E
36
E
34
40
38
60
38
NE
35
E
33
E
36
SW
41
21
40
SW
44
Lihue
23
40
38
23
41
06
39
05
36
06
33
90
35
70
31
05
31
15
84
04
33
18
65
40
41
15
84
Boise
61
SE
50
W
56
W
52
W
50
W
50
SW
50
W
61
SE
56
SE
50
SE
56
NW
57
NW
56
W
61
Lewiston (G)
31
54
29
59
Pocatello
51
SE
Cairo
45
Chicago
44
Moline
72
64
60
58
54
61
W
57
W
72
S
61
W
61
W
50
W
57
SW
50
SW
68
NW
60
SW
59
SW
63
SW
60
NW
28
47
25
45
01
54
24
54
34
52
24
41
36
13
29
40
26
40
23
46
26
49
30
40
24
49
Peoria
17
23
38
27
39
23
54
24
45
20
36
30
Rockford
52
27
40
22
49
25
46
11
54
27
52
20
51
59
59
59
63
72
SW
54
W
57
SW
54
W
67
NW
57
W
72
49
S
45
SW
47
SW
40
SW
53
SW
63
SW
68
55
32
46
23
58
20
48
23
51
26
46
23
58
27
37
20
57
26
36
26
40
26
49
22
45
20
57
44
26
40
30
37
29
35
27
44
20
48
06
46
23
54
47
30
53
29
57
20
52
21
40
20
46
06
46
29
57
Springfield
23
25
39
29
51
24
56
30
61
28
46
16
43
40
52
33
44
18
39
20
40
24
46
25
36
30
61
Evansville
17
26
34
26
43
25
40
28
44
33
46
28
46
32
35
27
37
28
36
23
36
31
41
24
41
28
46
Fort Wayne
53
SW
59
W
61
S
65
W
63
S
57
SE
65
NW
61
N
55
W
52
SW
46
SW
57
SW
52
S
65
Indianapolis
23
19
45
23
46
21
54
25
47
30
40
29
46
28
49
29
45
26
46
27
44
23
44
26
41
28
49
South Bend
53
22
52
20
47
20
51
27
55
27
68
27
50
34
45
32
63
25
36
25
56
22
58
23
43
27
68
Des Moines
47
NW
66
W
56
S
66
W
76
W
70
NW
76
W
73
SSE
60
NW
55
W
56
W
72
SW
61
W
76
Dubuque (G)
19
55
NW
74
32
66
NW
58
55
E
56
Sioux City
58
91
NW
66
NW
56
S
66
59
NW
53
W
91
58 NW
56
52 NW
54
62 N
61
68 W
68
74 W
80
W
54 W
70
NW
74
q 2006 by Taylor & Francis Group, LLC
3-57
(Continued)
3-58
Table 3A.9
(Continued) Jan
State
KS
KY
Station
Years
DR
Feb SP
DR
Mar SP
DR
Apr SP
DR
May SP
DR
Jun SP
DR
Jul SP
DR
Aug SP
DR
Sep SP
DR
Oct SP
DR
Nov SP
DR
Dec SP
DR
Annual SP
DR
SP
Waterloo
42
29
46
28
44
23
46
25
52
18
52
33
60
35
58
21
46
28
38
29
43
22
53
32
39
33
60
Concordia
21
32
46
21
41
35
46
24
55
30
41
24
54
25
58
06
44
17
44
26
46
34
46
35
40
25
58
Dodge City
16
34
56
34
47
35
63
21
53
30
52
29
60
36
56
32
63
14
51
34
49
20
44
32
46
32
63
Goodland
53
34
53
36
51
33
62
29
62
27
61
33
66
30
64
23
60
34
51
27
61
33
52
34
52
33
66
Topeka
17
31
39
31
36
18
55
08
51
34
47
34
48
34
44
27
38
32
43
23
39
31
45
30
37
18
55
Wichita
21
35
48
20
44
24
49
23
56
18
61
30
51
34
70
04
52
19
44
31
49
33
48
32
44
34
70
Greater
39
28
46
29
40
27
45
25
46
31
37
27
41
32
45
29
41
31
36
29
48
28
43
21
40
29
48
Jackson
21
23
37
19
39
31
33
27
43
28
39
29
31
33
32
28
37
29
26
25
28
19
30
30
30
27
43
Lexington
41
18
47
32
46
27
36
32
46
22
35
30
44
29
37
22
39
29
41
17
40
27
45
22
39
18
47
Louisville
17
16
38
23
44
19
43
22
56
23
40
04
54
32
46
21
47
29
39
29
40
23
44
27
40
22
56
Paducah
18
30
41
25
40
19
37
24
38
24
51
29
45
34
51
10
33
18
35
24
43
21
44
22
35
34
51
Baton Rouge
40
24
39
17
39
27
38
23
39
17
48
03
40
03
41
14
46
06
58
33
40
22
33
29
60
29
60
Lake Charles
41
32
58
25
40
18
40
06
44
31
43
19
53
33
36
11
46
36
40
33
38
21
46
33
36
32
58
New Orleans
43
27
48
26
43
16
38
10
40
36
55
25
49
13
44
33
42
09
69
17
40
22
38
28
46
09
69
Shreveport
40
30
41
30
43
29
54
28
52
32
63
36
46
29
46
11
40
19
44
25
37
31
46
32
43
32
63
Cincinnati AP
LA
Caribou
13
31
36
25
41
33
37
31
33
33
37
34
35
32
32
33
28
30
26
30
40
32
41
31
39
32
41
Portland
17
16
38
08
45
11
41
29
40
28
37
28
35
29
37
28
57
29
33
14
37
10
41
30
44
28
57
MD
Baltimore
50
NE
63
W
68
SE
80
W
70
SW
65
SW
80
NW
57
NE
54
W
56
SE
73
E
58
W
57
SE
80
MA
Blue Hill
39
S
76
S
77
ENE
72
NW
66
S
65
NW
61
NW
78
SSW
67
SSE
92
S
62
S
67
SSE
68
SSE
92
Boston
17
17
46
08
43
06
54
28
43
24
43
28
45
26
46
08
47
23
47
04
47
11
48
05
51
06
54
MI
MN
Worcester
46
25
60
32
76
29
76
05
54
31
51
25
39
31
46
36
44
32
41
25
43
20
54
23
51
32
76
Alpena
22
80
30
35
37
20
35
16
38
21
35
21
35
14
37
31
35
19
38
33
31
20
38
26
33
19
38
Detroit
23
22
48
22
51
21
46
22
47
23
43
23
37
28
53
29
35
28
35
24
47
24
45
29
49
28
53
Flint
47
26
45
28
40
27
58
24
44
32
81
29
52
29
41
27
37
27
46
25
39
23
46
27
40
32
81
Grand Rapids
23
24
45
24
55
25
47
24
52
26
47
24
39
26
51
31
41
18
40
24
47
23
49
24
39
19
52
Houghton Lake
25
26
40
24
37
28
36
24
37
26
40
19
51
13
37
25
29
23
32
16
35
27
40
32
33
19
51
Lansing
41
SW
54
SW
56
W
59
W
61
W
46
SE
63
NE
56
SW
47
N
57
SW
48
W
56
SW
56
SE
63
Marquette
6
NW
44
NW
31
NW
40
NW
44
N
34
NW
38
NW
35
NW
37
W
35
SE
38
NW
31
SW
35
NW
44
Muskegon
43
31
44
34
41
25
41
22
48
27
44
24
44
33
40
26
43
20
40
22
40
23
52
23
40
23
52 60
Sault Ste. Marie
31
NW
47
W
47
SE
42
SE
42
E
49
S
37
SE
44
NW
35
W
43
NW
42
NW
60
NW
45
NW
Duluth
17
30
45
29
44
E
57
20
43
28
44
27
46
31
41
26
48
26
33
32
46
08
44
32
41
E
57
International Falls
47
30
35
26
36
29
42
23
52
20
52
18
46
29
46
30
43
34
38
30
47
27
35
31
36
23
52
Minneapolis-
23
32
51
34
37
32
37
18
45
22
49
33
48
35
43
20
44
29
39
31
43
25
41
32
38
32
51
Rochester
40
30
48
28
45
23
58
30
53
25
69
13
53
17
51
34
46
24
44
30
47
29
47
32
47
25
69
Saint Cloud
13
1
36
30
46
30
43
30
44
27
41
32
62
22
49
22
45
32
34
31
43
30
39
31
39
32
62
Jackson
26
35
46
13
43
16
44
14
44
22
35
35
40
33
44
17
37
06
55
31
30
14
41
15
41
06
55
Meridian
43
33
41
02
35
34
39
19
48
17
35
22
46
40
51
34
38
02
45
02
35
19
41
80
37
40
51
Tupelo
19
24
39
25
35
24
39
10
33
31
41
20
41
35
48
01
41
30
32
25
38
23
37
11
38
35
48
Columbia
14
NW
49
24
41
26
46
23
54
36
39
26
49
31
46
19
52
35
38
25
47
19
45
06
37
23
54
Kansas City
18
32
39
20
40
23
46
20
48
24
46
10
51
20
58
31
40
14
41
21
40
22
37
20
39
20
58
St. Louis
23
29
40
30
45
27
48
27
49
34
46
27
48
36
46
31
40
25
41
28
52
11
41
29
39
28
52
Springfield
17
NW
39
15
39
25
39
34
41
10
43
36
47
28
46
36
48
10
40
22
35
10
43
13
37
36
48
St. Paul
MS
MO
MT
Billings
59
W
66
W
72
NW
61
NW
72
NN
68
NW
79
N
73
NW
69
NW
61
NW
68
NW
63
NW
66
NW
79
Glasgow
34
33
41
29
46
10
41
30
54
32
44
30
54
30
69
23
66
30
46
29
54
27
48
29
54
30
69
Great Falls
54
SW
65
W
72
W
73
W
70
SW
65
NW
70
W
73
SW
71
NW
73
W
73
SW
73
SW
82
SW
82
3
29
46
24
46
27
46
28
58
10
51
27
47
28
55
25
46
33
45
26
69
33
46
29
45
26
69
Havre
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
ME
NV
NH NJ
NM NY
62
SW
73
W
73
SW
61
W
52
SW
56
W
56
SW
65
S
65
NW
54
W
62
SW
56
NW
59
SW
Kalispell
36
04
52
01
40
03
41
23
43
23
40
03
38
31
38
15
43
22
36
32
38
03
35
03
52
04
73 52
Missoula
57
S
52
NW
47
SW
50
NW
51
SW
57
S
51
SE
72
SW
58
16
48
SW
51
SW
42
W
56
SE
72
Grand Island
40
34
54
33
53
34
55
21
52
29
59
30
68
29
59
22
52
25
40
33
51
34
51
31
52
30
68
Lincoln
30
33
48
NW
48
N
54
NW
52
W
51
NE
67
SW
52
NW
65
32
44
30
47
NW
48
34
46
NE
67
Norfolk
21
33
46
32
44
30
44
32
51
07
44
28
46
21
58
32
60
30
55
18
46
31
51
35
46
32
60
North Platte
23
31
45
36
52
02
47
28
49
31
48
32
52
24
55
31
56
30
46
31
53
29
46
02
52
31
56
Omaha Eppley AP
14
33
45
33
39
33
40
20
51
16
57
24
40
28
58
30
46
19
36
11
48
28
45
34
39
28
58
Omaha (North)
15
NW
41
NW
38
NW
38
NW
46
N
34
SW
39
SW
50
NW
39
NW
35
NW
34
NW
38
NW
37
SW
50
Scottsbluff
52
34
53
29
60
29
62
31
55
32
80
29
80
05
52
35
52
32
46
31
48
29
56
32
47
32
80
Valentine
20
32
43
30
52
33
43
30
49
33
49
29
53
26
51
20
53
31
40
29
51
30
45
31
41
20
53
Elko
39
23
40
27
39
29
41
25
48
34
55
27
61
23
45
16
35
27
58
29
35
20
40
27
50
27
61
Ely
57
SE
66
S
56
SW
65
S
59
S
74
SW
63
S
50
E
57
S
57
S
65
S
51
SE
61
S
74
Las Vegas
17
23
45
23
50
23
51
22
49
22
56
34
48
30
45
32
43
16
41
31
47
21
43
34
48
22
56
Reno
13
16
45
15
44
21
49
SW
50
17
46
23
37
18
41
19
40
23
43
15
41
19
52
19
67
19
67
Winnemucca
51
W
56
W
59
W
66
W
52
N
61
W
57
W
56
W
51
W
57
NE
54
22
48
SW
61
W
66
Concord
57
NW
44
N
42
NE
71
NW
52
NW
48
SW
44
SW
45
E
56
E
42
NW
39
NE
72
NW
52
NE
72
Mt. Washington (G)
63
NW
173
E
166
W
180
SE
231
W
164
NW
136
NW
110
ENE
142
SE
174
W
161
NW
163
NW
178
SE
231
Atlantic City AP
43
29
47
27
43
24
46
07
46
70
40
30
41
31
41
12
35
32
60
29
41
28
47
36
55
32
60
Atlantic City CO
11
4
43
04
43
07
63
19
37
01
37
05
30
19
44
35
30
07
32
04
44
04
36
11
45
07
63
Newark
54
30
52
23
46
30
45
29
55
32
50
26
58
35
52
09
46
05
51
11
48
09
82
32
55
09
82
Albuquerque
18
09
52
27
47
19
49
11
47
25
48
27
48
36
52
80
51
34
43
26
48
27
48
06
51
09
52
Roswell
16
NW
47
NW
56
NW
52
25
49
NW
60
NW
73
19
49
NW
44
35
43
22
44
NE
65
SW
58
NW
73
Albany
19
30
40
29
44
30
46
17
35
32
55
23
43
29
41
30
47
32
35
28
39
28
41
29
43
32
55
Binghamton
17
27
40
25
41
24
39
24
32
28
33
26
40
30
35
32
43
34
33
26
33
27
41
24
43
24
43
Buffalo
54
SW
91
SW
70
W
68
W
67
SW
63
NW
56
NW
59
SW
56
SW
59
SW
63
SW
66
S
60
SW
91
New York C. Park
19
7
40
08
34
8
37
80
35
30
29
08
28
35
29
30
33
90
29
33
28
32
30
05
39
7
40
New York (JFK AP)
39
26
52
25
46
06
46
31
46
16
44
28
43
29
51
30
46
28
47
26
44
30
44
26
49
26
52
New York
23
5
40
01
43
06
52
29
55
17
41
29
38
35
53
28
46
33
51
10
52
30
55
05
52
29
55
Rochester
17
24
45
25
59
25
55
25
41
18
45
36
39
20
52
27
40
27
68
25
43
25
46
24
45
27
68
Syracuse
53
W
60
W
62
SE
56
NW
52
30
52
NW
49
28
54
NW
43
32
59
SE
63
E
59
W
52
SE
63
CLIMATE AND PRECIPITATION
NE
Helena
(Laguardia AP)
NC
Asheville
38
34
45
34
60
33
48
22
44
34
40
36
40
35
43
30
41
36
45
33
35
32
40
34
44
34
60
Cape Hatteras
32
24
44
16
44
19
52
21
40
18
35
29
37
15
52
33
60
11
60
22
47
15
58
16
46
33
60
Charlotte
23
31
30
32
33
30
32
19
32
35
34
20
32
20
38
28
46
12
46
21
37
24
30
16
38
28
46
Greensboro-Wnstn-
22
19
41
07
38
30
49
26
37
27
62
27
43
35
50
19
30
26
46
30
46
20
38
24
34
27
62 73
Slm-HPT
ND
Raleigh
49
27
41
23
45
24
46
25
40
20
54
33
39
23
69
33
46
04
53
29
73
32
35
22
40
29
Wilmington
22
26
38
25
44
29
58
28
47
27
44
23
46
4
53
06
56
07
67
01
35
24
38
26
43
07
67
Bismarck
23
29
44
30
52
36
43
31
55
27
54
34
52
22
64
30
54
15
46
32
44
31
47
33
45
22
64
Fargo
17
34
49
33
51
34
49
32
49
24
45
14
43
33
74
34
51
31
45
33
49
31
47
30
45
33
74
5
17
39
27
47
35
48
31
49
15
53
31
51
12
40
30
62
29
43
31
46
31
54
34
45
30
62
23
32
44
30
46
29
46
30
55
27
46
30
56
26
63
29
53
27
40
28
55
29
52
30
48
26
63
Grand Forks Williston OH
OK
Akron
41
22
44
25
51
26
49
30
40
32
46
31
67
23
44
17
51
36
40
24
43
25
41
24
48
31
67
Cleveland
25
22
53
24
45
27
46
23
44
20
42
28
41
23
43
24
39
29
35
24
46
18
40
25
46
22
53
Columbus
21
24
40
27
43
26
47
26
47
25
52
31
40
33
47
29
43
23
44
24
40
27
45
26
47
25
52
Dayton
17
25
43
28
45
27
49
25
49
24
54
24
43
29
61
26
33
22
43
26
43
22
44
25
46
29
61
Mansfield
36
24
46
24
44
26
44
33
46
25
37
23
40
26
39
17
41
33
34
32
40
23
39
18
46
24
46
45
W
47
SW
56
W
56
SW
72
25
46
W
50
NW
54
W
47
NW
47
24
45
SW
65
30
48
SW
72
Youngstown
53
25
48
27
58
25
55
33
51
24
46
23
45
27
58
27
44
36
40
23
44
25
52
25
46
27
58
Oklahoma City
21
34
45
32
45
24
52
32
67
23
53
35
48
31
74
05
46
21
52
30
43
19
46
33
44
31
74
Tulsa
25
18
37
20
41
18
46
34
55
30
41
04
49
19
51
29
38
27
39
25
40
29
44
33
36
34
55
(Continued) q 2006 by Taylor & Francis Group, LLC
3-59
Toledo
3-60
Table 3A.9
(Continued) Jan
State OR
PC
Station
Years
DR
Feb SP
DR
Mar SP
DR
Apr SP
DR
May SP
DR
Jun SP
DR
Jul SP
DR
Aug SP
DR
Sep SP
DR
Oct SP
DR
Nov SP
DR
Dec SP
DR
Annual SP
DR
SP
Astoria
49
17
55
19
47
18
47
20
52
22
37
18
30
19
29
20
30
17
36
20
44
20
46
25
52
17
55
Eugene
46
20
58
19
60
18
48
18
44
25
46
27
29
32
37
11
32
20
32
18
63
23
46
18
40
18
63
Medford
53
23
50
25
46
16
55
14
35
12
38
17
37
07
44
16
48
14
47
20
40
19
40
14
44
16
55
Pendleton
47
24
52
25
54
29
63
27
77
27
48
29
62
31
49
23
43
27
47
25
49
27
62
29
63
27
77
Portland
48
S
54
SW
61
S
57
S
60
SW
42
SW
40
SW
33
SW
29
S
61
S
88
SW
56
S
57
S
88
Salem
53
18
43
18
46
19
40
18
44
20
31
23
28
24
26
18
25
19
34
18
58
17
49
17
46
18
58
Sexton Summit
15
16
60
19
53
21
60
20
50
20
44
18
42
35
39
20
45
12
45
14
51
19
59
20
63
20
63
Guam
38
W
64
NE
36
70
35
SW
64
NE
76
E
32
22
74
SE
43
E
35
W
44
NE
80
27
106
27
106
Johnston Island
5
33
31
09
38
08
35
09
35
07
32
08
31
06
33
08
32
07
35
08
32
03
33
06
43
06
43
Koror
13
20
35
06
23
36
26
10
25
15
46
30
33
26
33
08
28
27
37
29
31
25
52
09
31
25
52
Kwajalein, Marshall
42
22
55
18
35
90
39
08
37
11
44
12
41
09
41
70
44
07
44
20
40
12
60
09
45
12
60
Majuro, Marshall IS
13
06
36
70
35
07
25
07
26
07
25
09
29
23
30
32
29
22
29
06
33
22
31
09
35
06
36
Pago Pago, Amer
23
34
46
36
63
32
37
35
35
08
35
08
43
09
32
17
33
06
38
18
35
09
39
21
81
21
81
Pohnpei, Caroline IS
14
29
28
10
21
23
20
29
26
10
23
90
18
30
18
25
32
23
21
22
23
24
35
27
23
24
35
Chuuk, E. Caroline
13
34
30
50
28
33
33
8
29
09
29
40
29
24
33
23
39
21
32
22
35
24
35
24
46
24
46
IS
IS Wake Island PA
8
08
39
02
36
06
37
06
38
09
30
08
28
10
41
19
51
16
30
08
33
07
40
03
39
19
51
Yap, W Caroline IS
13
05
23
04
23
12
39
13
23
08
20
23
23
28
28
22
25
09
23
16
26
09
36
26
41
26
41
Allentown
54
29
55
25
58
29
58
29
60
30
58
27
81
27
55
23
58
25
46
14
49
30
58
29
52
27
81
Erie
45
20
53
29
52
14
55
21
46
25
37
36
37
32
46
25
36
17
45
24
43
31
41
24
40
14
55
Harrisburg
10
27
44
30
35
28
37
28
35
29
47
33
58
29
35
35
46
28
31
25
30
31
40
31
46
33
58
Middletown/
20
34
46
29
51
29
46
33
46
29
47
33
58
16
52
29
49
28
40
32
37
33
40
31
46
33
58
Philadelphia
60
NE
61
NW
59
NW
56
SW
59
SW
56
NW
73
SW
49
E
67
NE
49
SW
66
SW
60
NW
48
NW
73
Pittsburgh
50
23
52
26
58
25
48
30
51
30
48
34
53
25
51
29
46
20
38
31
39
29
45
25
48
26
58
Avoca
45
SW
52
W
60
S
49
NW
47
SW
46
W
43
NW
43
NE
50
SW
47
E
40
NW
49
SW
47
W
60
Williamsport
49
27
66
14
60
11
58
18
62
18
55
29
62
20
78
29
60
16
59
11
75
09
77
16
58
20
78
Harrisburg AP
RI SC
Block IS
12
27
36
36
46
05
45
04
29
15
29
18
28
30
28
04
29
16
53
08
37
28
38
25
40
16
53
Providence
49
20
46
16
46
18
60
20
51
20
42
20
40
14
39
11
90
18
58
14
41
18
52
14
48
11
90
Charleston AP
27
20
40
30
38
21
46
20
38
24
33
17
44
28
40
27
38
21
52
21
39
15
37
24
39
21
52
Columbia
49
28
46
20
40
27
60
33
44
28
47
27
47
32
40
30
48
30
48
27
29
35
35
26
41
27
60
Greenville-
12
25
36
22
37
25
39
29
39
36
43
30
43
17
49
24
36
23
30
12
31
25
32
35
29
17
49
Spartanburg AP SD
TN
Aberdeen
33
34
58
06
52
35
52
31
55
16
46
10
47
31
63
33
46
32
41
33
49
34
46
33
43
31
63
Huron
60
NW
57
NW
56
NW
68
SE
73
NW
70
SE
65
NW
77
NW
72
NW
64
W
72
NW
73
NW
59
NW
77
Rapid City
19
32
59
33
59
33
54
32
61
32
57
25
54
21
69
32
54
32
52
32
55
33
57
33
52
21
69
Sioux Falls
54
32
47
31
45
02
60
31
51
11
46
23
70
36
69
31
58
16
50
27
60
36
52
36
46
23
70
Bristol-JhnCty-
47
25
40
25
46
25
40
25
41
32
50
27
39
23
40
34
46
31
29
27
36
26
37
24
40
32
50
Chattanooga
27
31
30
25
37
32
44
18
32
18
35
24
37
30
44
06
43
29
33
29
35
30
38
22
29
30
44
Knoxville
28
27
43
25
39
24
43
28
64
20
40
07
35
24
43
30
38
24
29
26
43
25
49
20
39
28
64
Memphis
23
34
35
24
38
16
40
24
46
34
40
29
51
34
37
30
37
36
39
28
40
23
40
30
36
29
51
Nashville
27
26
38
20
36
13
41
25
40
36
41
10
38
36
38
02
40
34
33
17
35
15
39
23
41
13
41
Abilene
22
19
38
31
45
27
41
27
55
31
54
21
49
30
48
19
55
35
43
31
46
33
39
32
40
27
55
Kgsprt
TX
Amarillo
28
25
45
25
48
34
58
25
53
13
47
35
60
30
48
02
46
80
41
31
58
31
46
32
51
35
60
Austin/City
23
35
37
34
39
33
36
27
46
20
52
34
41
28
40
03
35
02
52
35
33
30
36
31
44
20
52
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Samoa
61
29
73
23
59
20
73
25
60
32
78
29
80
11
62
36
66
02
63
36
51
32
62
34
76
29
Brownsville
23
18
40
23
36
28
44
17
41
17
38
30
41
12
36
19
48
30
51
36
35
17
39
17
38
30
51
Corpus Christi
26
30
43
06
45
17
45
30
45
10
56
01
41
02
46
11
55
30
49
28
49
90
41
18
38
10
56
Dallas-Fort Worth
49
36
55
36
51
29
55
32
55
14
55
32
52
36
65
36
73
11
53
23
46
34
50
32
53
36
73
Dallas-Love Field
3
30
41
17
40
29
47
35
43
28
47
16
40
02
35
33
35
10
35
14
43
03
38
33
45
29
47
23
31
45
31
39
33
52
15
41
32
48
28
51
16
39
14
60
32
45
33
46
32
36
29
43
14
60
El Paso
27
26
64
24
51
28
52
26
56
25
45
32
51
30
45
26
54
35
41
23
41
23
52
26
44
26
64
Galveston
124
S
53
N
60
SE
50
NW
68
W
66
SE
62
NW
68
E
91
NE
100
SE
66
NW
72
NW
50
NE
100
Houston
33
33
32
26
46
25
35
14
45
23
46
30
45
10
46
08
51
05
37
27
41
33
37
14
46
08
51
Lubbock
54
28
59
25
58
34
69
25
58
36
70
05
63
25
64
30
46
36
45
25
65
25
59
25
58
36
70
Midland-Odessa
49
28
44
25
67
27
53
30
53
20
52
24
58
05
58
16
55
23
53
14
46
25
48
26
47
25
67
Port Arthur
23
06
39
16
39
10
43
30
46
29
52
14
55
05
44
01
44
06
38
33
36
34
38
25
41
14
55
San Angelo
54
26
45
29
48
27
58
28
75
02
60
02
57
17
46
02
44
34
52
29
60
29
66
30
43
28
75
San Antonio
26
29
39
31
42
33
46
35
39
28
46
90
38
09
48
11
39
25
43
31
35
33
37
33
33
09
48
Victoria (G)
19
N
49
N
54
N
54
N
62
N
68
N
60
E
54
N
54
S
44
NW
75
N
55
N
45
NW
75
Waco
54
32
49
36
58
27
65
36
62
36
60
09
69
36
60
05
60
32
60
34
52
29
62
32
52
09
69
Del Rio
80
Wichita Falls
54
32
49
29
57
27
59
14
52
20
59
36
69
33
60
34
55
01
53
29
60
32
56
29
55
36
69
UT
Milford
18
SW
44
W
56
SW
52
SW
52
SW
57
SW
57
NW
45
SW
52
SW
47
NW
45
SW
56
SW
53
SW
57
Salt Lake City
66
NW
59
SE
56
NW
71
NW
57
NW
57
W
63
NW
51
SW
58
W
61
NW
67
NW
63
S
54
NW
71
VT
Burlington
19
16
38
17
39
16
33
33
36
29
35
29
39
30
37
36
35
19
36
13
32
18
35
27
35
29
39
VA
Lynchburg
58
W
45
S
50
S
43
NE
43
N
56
SW
56
NW
43
W
48
NE
40
N
41
NW
43
SE
45
N
56
Norfolk
30
20
43
36
44
22
46
02
41
70
40
30
46
34
46
35
46
30
46
04
48
21
40
01
39
04
48 46
WA
Richmond
17
22
38
23
39
27
41
33
46
23
46
26
45
23
40
36
44
10
40
10
37
23
36
15
40
33
Roanoke
41
30
53
31
40
32
52
32
58
36
46
28
46
34
46
30
44
10
38
30
36
34
52
30
40
32
58
Wallops Island
16
NNE
70
SSW
66
W
68
NE
69
S
52
W
69
WNW
67
WNW
75
WNW
70
W
60
WNW
60
E
73
WNW
75
Olympia
54
18
55
18
45
23
40
23
46
29
39
25
32
18
29
27
26
18
35
23
58
18
60
16
45
18
60
Quillayute
34
21
35
SE
46
23
38
SW
32
W
28
SE
23
NE
23
SE
27
SE
33
SE
42
SE
37
SW
39
SE
46
Seattle CO (G)
11
SSE
51
SSW
40
WSW
54
SW
44
WSW
46
SW
37
SW
39
S
33
S
33
SSW
41
SSW
63
SW
46
SSW
63
Seattle Sea-Tac AP
34
S
47
S
51
SW
44
SW
38
SW
32
SW
29
SW
26
SW
29
20
36
SW
38
S
66
S
49
S
66
Spokane
53
SW
59
SW
54
SW
54
SW
52
W
49
SW
44
SW
43
SW
50
SW
38
SW
56
SW
54
SW
51
SW
59
Yakima
48
25
44
28
48
23
48
29
46
18
46
20
47
24
43
20
37
30
38
31
41
29
45
23
48
28
48
PR
San Juan
17
50
28
06
29
07
32
60
31
60
28
12
35
32
49
04
34
05
79
40
37
36
33
70
30
05
79
WV
Beckley
39
24
46
26
40
27
58
27
44
24
41
27
40
36
46
32
40
30
46
26
32
16
44
28
41
27
58
Charleston
53
25
45
19
40
32
46
27
45
25
55
32
50
29
46
29
50
20
35
25
45
29
40
25
55
25
55
WI
WY
Elkins
19
27
46
25
55
32
46
27
50
30
46
27
40
30
37
32
40
26
35
29
46
30
33
27
40
25
55
Huntington
40
26
43
26
41
25
37
18
44
29
47
24
35
34
35
24
35
34
29
30
38
23
35
26
36
29
47
Green Bay
17
40
39
27
37
29
44
22
41
29
46
16
41
24
36
28
35
32
37
28
36
20
45
26
38
29
46
La Crosse
21
32
45
34
37
34
40
25
53
09
58
34
63
27
52
32
63
27
40
34
39
18
46
34
43
34
63
Madison
53
E
68
W
57
SW
70
SW
73
SW
77
W
59
NW
72
W
47
W
52
SW
73
SE
56
SW
65
SW
77
Milwaukee
20
80
44
27
52
26
41
24
48
30
46
31
47
30
54
02
47
70
41
24
43
23
52
04
40
30
54
Casper
49
20
58
23
58
25
81
25
54
32
58
26
54
25
52
25
50
32
53
25
55
25
51
20
63
25
81
Cheyenne
21
25
55
27
59
28
52
30
58
26
48
29
71
25
46
25
56
28
48
26
53
27
59
27
63
29
71
Lander
13
26
44
20
46
23
68
25
62
17
52
19
53
22
47
18
39
20
52
26
55
27
44
24
55
23
68
Sheridan
17
30
53
24
45
31
49
30
61
31
60
31
47
20
52
32
58
31
46
29
46
32
55
31
48
31
60
CLIMATE AND PRECIPITATION
Austin/Bergstrom
Note: Through 2002. This table expresses both a maximum wind speed and where available, the direction (referenced to true North) from which it blew. Short gusts are listed only for stations denoted with a (G). If the direction is expressed as one of the 16 compass points (N, NNE, NE, etc) the maximum speed is calculated from the minimum time during which one mile of wind passed the station. If the direction is expressed numerically, the maximum speed is the highest one-minute average value recorded by the observer. Direction is given in tens of degrees clockwise from true North. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov. 3-61
q 2006 by Taylor & Francis Group, LLC
3-62
Table 3A.10 Average Percentage of Possible Sunshine — Selected Cities of the United States State AL
AK
AZ
AR
CA
CT DC FL
GA
HI
ID IL
Birmingham CO Birmingham AP Montgomery Anchorage Juneau Nome Flagstaff Phoenix Tucson Yuma Fort Smith Little Rock North Little Rock Eureka Fresno Los Angeles CO Redding Sacramento San Diego San Francisco CO Denver Grand Junction Pueblo Hartford Washington Nat’l AP Apalachicola Jacksonville Key West Miami Pensacola Tampa Atlanta Macon Savannah Hilo Honolulu Kahului Lihue Boise Pocatello Cairo Chicago Moline Peoria
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
10 34 45 40 33 40 15 101 53 42 51 32 24 84 46 32 10 46 56 38 46 56 61 42 50 57 50 38 20 5 50 65 48 46 52 46 37 51 60 53 45 16 53 52
48 42 47 34 32 40 77 78 80 84 50 46 61 43 47 69 72 48 72 56 71 61 75 53 46 58 58 74 66 48 63 49 56 54 46 65 64 55 40 40 45 44 48 47
48 50 52 42 32 55 73 80 82 87 55 54 62 46 65 72 82 65 71 62 69 65 74 56 50 61 62 77 68 53 65 54 61 57 46 68 64 57 50 53 50 49 50 50
62 54 59 50 37 54 76 84 86 90 56 57 72 52 77 73 85 74 70 69 69 65 74 57 55 65 68 82 74 61 71 58 65 62 42 72 64 56 62 61 56 51 50 51
61 63 65 50 39 54 82 89 90 94 60 62 77 57 85 70 90 82 68 73 67 70 74 55 57 74 73 84 76 63 75 66 73 71 37 70 63 55 68 66 62 50 53 55
64 66 63 50 39 50 88 93 92 95 62 68 74 58 90 66 91 90 59 72 64 73 73 57 58 77 70 82 72 67 75 68 71 68 37 72 68 61 70 67 65 58 57 60
63 65 62 46 34 43 86 94 93 97 69 73 81 59 95 65 94 94 58 73 70 81 78 60 64 71 66 76 68 67 67 67 70 65 44 74 72 63 75 75 72 67 63 67
60 59 61 43 31 37 75 85 78 91 73 71 82 55 97 82 97 97 68 66 71 79 79 62 62 64 65 77 72 57 62 63 67 64 41 76 71 62 87 83 74 66 68 69
62 63 63 39 32 32 76 85 80 91 72 73 79 51 96 83 97 96 70 65 71 77 78 62 62 64 64 76 71 58 61 64 71 62 42 77 71 65 85 81 75 62 66 67
57 61 62 38 26 36 81 89 87 93 66 68 81 55 94 79 94 93 69 72 74 79 80 59 61 66 58 72 70 60 61 62 67 58 43 77 73 67 82 80 69 59 62 64
63 66 64 36 19 34 79 88 88 92 65 69 75 50 88 73 92 86 68 70 72 74 79 57 59 74 60 71 70 71 65 66 69 63 39 70 68 59 69 72 67 55 58 61
49 55 55 32 23 31 75 83 84 87 54 56 62 44 66 74 84 66 75 62 64 63 72 45 51 67 60 71 67 64 64 58 64 61 33 65 62 49 43 47 51 38 42 43
52 46 49 27 20 34 73 77 79 82 50 48 57 41 46 71 73 49 73 53 67 61 71 47 46 57 54 70 63 49 61 50 57 55 37 63 63 49 38 40 44 43 40 42
57 58 58 41 30 42 78 85 85 90 61 62 72 51 79 73 88 78 68 66 69 71 76 56 56 66 63 76 70 60 66 60 66 62 41 71 67 58 64 64 61 54 55 56
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
CO
Station
IA KS
KY
LA
ME MD MA MI
MN MS MO
MT
NE
NV
NH
Springfield Evansville Fort Wayne Indianapolis Des Moines Sioux City Concordia Dodge City Topeka Wichita Greater Cincinnati AP Louisville Paducah Lake Charles New Orleans Shreveport Portland Baltimore Blue Hill Boston Alpena Detroit Grand Rapids Lansing Marquette Sault Ste. Marie Duluth Minneapolis-St.Paul Jackson Tupelo Columbia Kansas City St. Louis Billings Great Falls Helena Missoula Lincoln North Platte Omaha (North) Valentine Ely Las Vegas Reno Winnemucca Concord
48 56 52 53 50 55 34 59 53 49 13 48 18 19 22 50 55 40 112 61 37 31 36 42 21 55 48 58 33 13 27 23 37 57 46 55 57 40 50 57 29 56 47 45 42 58
48 42 46 40 51 57 64 67 56 58 33 41 45 62 46 51 56 51 46 53 36 40 28 36 35 36 48 53 49 53 50 58 50 47 49 46 33 58 63 55 63 68 77 65 51 52
52 48 51 49 54 56 63 65 55 61 40 48 48 66 50 57 59 55 50 56 45 46 39 44 41 47 53 59 54 53 49 55 52 53 56 55 44 57 62 53 62 68 81 68 56 55
51 55 55 50 57 57 63 65 57 62 48 51 54 74 56 58 56 56 48 57 53 52 46 49 49 55 55 57 60 61 50 58 54 61 66 61 54 57 62 54 59 71 83 75 60 53
56 60 60 54 56 59 65 68 58 63 56 56 61 71 62 60 54 56 49 56 52 54 51 52 51 54 56 58 66 73 55 62 56 60 62 59 57 58 64 58 59 70 87 80 66 53
63 64 68 60 61 61 67 67 61 64 57 60 63 72 62 63 54 56 52 58 59 61 56 61 61 57 57 61 63 72 57 61 59 61 62 60 59 61 65 61 62 72 88 81 72 55
68 71 74 65 68 67 76 74 66 69 61 66 60 78 63 71 59 62 55 63 63 66 62 65 64 58 58 66 70 74 64 66 66 64 65 64 63 69 71 67 69 80 93 85 77 58
71 73 75 66 72 73 78 79 71 76 61 67 70 83 58 75 63 64 57 65 65 68 64 69 66 62 65 72 66 75 67 72 68 76 79 78 81 73 77 74 76 80 88 92 86 62
70 73 74 68 70 70 76 78 70 75 61 66 70 81 61 74 63 62 58 65 59 67 61 64 62 58 61 69 67 73 64 67 65 75 76 74 77 70 75 70 76 81 88 92 85 60
68 69 68 65 66 66 70 74 66 68 61 64 63 78 61 70 62 60 56 63 51 61 54 59 54 45 52 62 65 72 60 66 63 68 67 67 69 66 72 68 71 82 91 91 82 56
63 65 62 61 62 63 68 73 64 65 54 61 64 75 64 69 58 58 55 60 42 51 44 50 45 38 46 55 70 62 59 60 60 61 61 60 55 63 70 65 68 75 87 83 74 53
48 48 42 41 49 51 59 67 54 58 36 46 50 67 54 60 48 51 47 50 28 35 27 31 35 24 35 39 57 51 47 49 46 46 46 44 34 53 60 51 60 67 81 70 54 42
44 42 38 38 46 50 57 65 52 57 31 40 42 59 48 54 53 49 46 52 28 31 23 29 34 27 39 42 49 46 45 49 43 45 44 42 29 52 61 48 60 67 78 64 52 47
58 59 59 55 59 61 67 70 61 65 50 56 58 72 57 64 57 57 52 58 48 53 46 51 50 47 52 58 61 64 56 60 57 60 61 59 55 61 67 60 65 73 85 79 68 54
q 2006 by Taylor & Francis Group, LLC
3-63
(Continued)
CLIMATE AND PRECIPITATION
IN
State NJ NM NY
NC
OH
OK OR PC
PA
RI
(Continued) Station
Mt. Washington Atlantic City AP Albuquerque Roswell Albany Binghamton Buffalo New York C.Park Rochester Syracuse Asheville Cape Hatteras Charlotte Greensboro-Wnstn-SlmHPT Raleigh Wilmington Bismarck Fargo Williston Cleveland Columbus Dayton Toledo Oklahoma City Tulsa Portland Guam Johnston Island Koror Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Harrisburg Middletown/Harrisburg AP Philadelphia Pittsburgh Avoca Providence
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
64 36 63 7 61 51 59 109 57 53 32 33 48 68
32 50 72 60 46 37 31 51 35 33 55 48 54 51
35 53 72 68 52 42 38 55 41 39 59 52 58 56
34 55 73 75 54 46 46 57 49 46 61 60 61 60
34 56 77 77 54 50 51 58 53 49 66 67 68 63
36 56 79 80 56 56 56 61 59 55 61 65 67 63
32 60 83 83 60 62 65 64 66 59 62 65 67 64
30 61 76 77 64 64 67 65 69 63 60 65 67 62
31 65 75 73 61 61 64 64 66 59 54 65 65 61
35 61 79 72 57 55 57 62 59 53 56 64 64 62
38 59 79 77 52 49 50 61 49 44 61 60 65 64
29 51 76 73 37 32 29 52 31 26 58 56 58 57
30 47 71 71 39 29 27 49 30 25 55 48 55 53
33 56 76 74 53 49 48 58 51 46 59 60 62 60
42 51 63 54 39 59 45 53 41 42 55 46 39 22 42 42
52 56 53 50 51 30 36 40 41 60 53 28 47 70 54 61
56 59 53 56 57 37 42 44 46 60 56 38 52 74 54 64
60 64 58 58 61 45 44 48 50 65 58 48 57 74 63 66
63 70 58 60 60 52 51 52 52 68 60 52 57 70 61 59
59 67 61 61 62 58 56 58 60 66 60 57 56 74 54 58
60 66 64 62 66 65 60 66 64 75 66 56 52 78 44 55
60 64 73 71 74 67 60 66 65 79 74 69 40 79 45 56
58 62 72 69 74 63 60 67 63 79 73 66 36 76 44 61
58 61 65 60 67 60 61 65 61 72 66 62 38 73 52 59
60 64 58 54 59 52 56 59 54 70 64 44 38 65 47 55
57 63 43 40 45 31 37 40 37 61 56 28 40 59 50 53
53 59 47 43 50 25 31 36 33 58 53 23 38 62 49 53
58 63 59 57 60 49 50 53 52 68 62 48 46 71 51 58
34 44 42 28 43 12 53 62
45 38 50 68 59 43 49 48
45 41 55 71 61 48 54 54
45 45 56 76 68 53 58 57
40 42 50 75 67 46 59 58
34 41 47 75 65 53 60 59
34 40 44 76 52 62 65 64
40 44 47 72 47 57 68 67
43 44 48 68 45 61 67 66
51 44 44 68 50 58 62 61
42 40 42 68 47 57 58 58
46 39 44 65 52 49 47 47
45 36 42 64 49 45 44 44
42 41 47 70 55 53 58 57
60 49 41 42
49 32 41 56
53 36 47 58
55 43 50 58
56 46 53 57
57 50 57 58
62 55 61 61
61 57 62 63
62 56 61 62
59 55 55 62
60 51 52 61
52 36 36 50
49 28 34 52
56 45 51 58
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
ND
3-64
Table 3A.10
Charleston AP Columbia Greenville-Spartanburg Huron Rapid City Chattanooga Knoxville Memphis Nashville Abilene Amarillo Austin/City Austin/Bergstrom Brownsville Corpus Christi Dallas-Fort Worth El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Antonio Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Quillayute Seattle CO Seattle Sea-Tac AP Spokane San Juan Elkins Green Bay Madison Milwaukee Cheyenne Lander Sheridan
SD TN
TX
UT VT VA
WA
PR WV WI
WY
Note:
39 46 39 55 55 65 57 35 54 49 61 58 60 59 60 17 54 103 27 25 22 26 53 16 64 59 52 32 46 30 31 30 48 47 11 53 50 55 63 50 55
56 55 54 57 57 43 40 50 41 62 69 49 49 41 44 52 78 48 45 65 66 42 47 58 45 41 52 53 54 22 28 28 28 69 29 49 47 44 64 65 57
59 59 57 59 60 49 47 54 47 64 68 51 51 48 49 54 82 51 50 66 69 52 50 64 54 48 56 56 58 30 34 40 41 70 32 52 51 47 67 68 60
66 64 63 59 63 53 53 56 52 70 72 55 55 53 54 58 86 56 54 73 73 52 57 63 64 51 58 60 62 34 42 50 55 76 39 53 52 50 67 70 63
72 70 66 61 62 61 63 64 59 72 74 54 54 58 56 61 89 61 58 74 78 52 56 69 68 49 62 63 66 35 47 52 61 72 46 55 52 53 63 66 60
68 68 62 65 60 65 64 69 60 70 71 56 56 63 59 57 90 67 62 71 78 64 56 73 72 56 62 62 66 37 52 56 65 64 44 61 58 60 61 64 60
66 67 62 70 65 65 65 74 65 78 78 69 69 73 72 67 90 75 68 76 81 69 67 82 80 59 65 67 70 35 49 56 67 65 48 65 64 65 67 72 65
67 67 60 76 73 62 64 74 63 80 79 75 75 80 80 75 82 73 70 77 81 65 74 77 83 64 62 62 68 43 63 65 80 69 44 66 67 69 69 75 75
64 66 61 74 74 63 63 75 63 78 77 74 74 76 76 73 81 71 68 76 77 63 74 79 82 60 62 62 66 44 56 65 78 68 44 63 64 66 68 75 75
61 65 62 69 70 64 61 69 62 71 73 66 66 68 68 67 83 68 66 71 77 62 67 80 82 54 61 61 65 47 53 62 72 62 45 56 60 59 70 72 68
63 67 66 63 66 63 61 70 62 72 75 64 63 65 67 63 84 71 64 75 72 67 64 76 72 47 62 59 63 34 37 43 55 64 46 47 54 54 69 67 62
59 63 58 50 55 53 49 58 50 67 72 54 56 51 54 57 83 59 52 69 74 57 54 62 53 31 56 56 59 21 28 28 29 60 37 38 39 39 61 58 53
56 59 54 49 55 44 40 50 42 62 67 49 49 42 43 52 77 48 51 65 65 47 48 60 42 33 53 54 54 19 23 23 23 61 28 40 40 38 60 61 55
63 64 60 63 63 57 56 64 56 70 73 60 60 60 60 61 84 62 59 72 74 58 60 70 66 49 59 60 63 33 43 47 54 67 40 54 54 54 66 68 63
CLIMATE AND PRECIPITATION
SC
Through 2002. The total time that sunshine reaches the surface of the earth is expressed as the percentage of the maximum amount possible from sunrise to sunset with clear sky conditions.
Source:
From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-65
q 2006 by Taylor & Francis Group, LLC
3-66
Table 3A.11 Mean Number of Cloudy Days (Clear, Partly Cloudy, Cloudy) — Selected Cities of the United States (Through 2002) Jan State AL
AK
AR CA
CO
CT DE DC
Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue McGrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP Santa Maria Stockton Alamosa Alamosa Colorado Springs Colorado Springs Denver Grand Junction Pueblo Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Years
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
37 27 47 51 44 41 54 34 34 5 3 42 45 5 15 47 42 25 52 55 51 66 10 4 23 48 43 57 55 37 32 49 35 55 29 31 92 46 38 60 34 22 9 49 55 68 45 46 33 2 44 3 61 49 50 3 46 41 47 33 48
7 7 8 7 7 4 6 4 8 15 14 2 9 15 8 6 8 5 11 9 10 2 6 8 5 5 12 14 14 12 15 9 9 7 11 9 6 5 12 12 14 9 8 7 12 9 13 5 13 16 12 5 10 9 12 11 8 8 7 7 7
6 6 6 6 5 4 2 3 5 5 8 5 6 4 4 3 5 6 4 5 4 6 4 4 4 3 6 7 7 7 7 6 6 8 8 5 6 7 8 8 8 6 5 6 7 8 7 6 10 6 8 2 9 7 9 4 8 8 7 7 7
18 18 17 17 19 23 3 8 18 11 9 23 16 12 19 23 18 20 16 17 17 23 21 20 22 22 12 10 10 12 9 16 16 17 12 17 19 19 11 11 9 16 18 19 11 15 11 19 8 6 11 2 11 15 10 3 15 15 17 17 16
7 7 8 8 6 3 12 10 10 10 5 2 8 6 7 4 7 6 12 9 12 3 8 10 5 4 11 13 13 12 15 9 9 7 11 8 5 8 10 11 12 8 8 8 10 8 12 7 11 8 9 8 8 8 10 9 8 7 7 7 7
6 6 7 6 4 4 6 6 4 4 7 5 6 4 4 3 5 5 3 4 4 6 4 3 3 3 6 7 7 7 7 6 6 8 8 5 6 8 7 6 7 7 6 7 8 7 6 7 10 6 8 5 9 7 8 5 7 8 7 6 7
15 16 14 14 18 21 11 12 14 14 17 22 14 18 17 21 16 18 13 15 13 20 16 15 20 21 11 9 9 10 6 14 13 13 10 15 17 13 11 11 9 13 14 13 10 13 10 15 7 7 11 7 11 13 11 6 13 14 14 15 15
7 7 9 8 8 4 14 12 9 9 8 2 10 9 6 4 8 6 12 9 11 3 9 10 8 5 12 14 15 13 17 9 9 10 13 9 6 11 11 12 13 8 8 10 11 10 13 10 10 8 9 8 8 8 10 7 8 7 8 7 7
8 8 8 8 5 5 7 8 5 5 8 6 7 6 6 3 6 7 6 6 5 7 4 6 4 4 8 8 7 9 7 7 7 9 9 6 8 8 9 9 9 8 7 9 9 9 8 8 11 4 9 6 10 8 9 2 9 8 8 8 8
16 17 14 15 18 23 10 12 16 16 15 23 14 15 19 23 18 18 13 15 14 21 18 15 19 22 12 8 9 9 6 15 15 12 9 17 17 12 11 11 9 15 17 12 11 13 10 13 9 3 13 7 13 15 12 5 14 16 15 16 15
9 9 9 10 6 3 11 9 6 7 2 1 7 5 5 4 4 4 10 7 9 2 5 9 6 4 12 17 17 15 21 9 9 12 14 10 6 14 12 11 12 10 8 12 10 11 13 12 10 8 8 5 7 8 9 10 7 6 7 7 7
8 7 9 8 6 6 7 8 6 10 9 4 8 10 6 4 7 6 7 7 6 6 5 5 5 5 9 7 7 9 6 7 7 9 9 7 8 8 10 9 10 10 8 10 10 9 9 9 13 8 10 6 11 9 10 8 9 9 8 9 9
13 14 12 12 18 21 12 13 17 13 20 26 16 15 18 22 20 19 13 15 14 22 18 16 19 21 9 6 6 7 4 14 14 9 7 13 16 8 8 9 8 10 13 8 10 10 8 10 8 8 12 8 13 13 11 5 14 15 14 14 14
8 8 9 9 4 4 3 3 4 7 2 — 5 3 4 4 3 3 8 4 7 1 6 5 4 2 15 21 20 17 24 8 8 18 15 12 6 18 10 10 11 12 11 17 8 14 14 17 9 11 7 1 6 10 9 4 7 6 7 7 7
11 10 11 10 7 7 5 6 8 11 11 3 11 10 7 4 6 5 9 8 8 4 6 9 6 5 9 7 7 9 5 10 11 9 10 8 10 8 13 11 12 8 9 9 11 10 10 8 14 7 12 5 12 11 12 7 10 10 10 10 10
12 14 11 12 20 21 23 22 20 13 18 27 15 18 20 23 22 22 14 19 16 26 19 17 21 24 7 3 4 5 2 13 12 5 6 11 15 5 8 10 8 10 10 5 11 8 7 5 8 6 12 2 13 11 11 4 14 16 14 14 14
7 8 7 8 3 2 3 3 2 4 4 — 3 2 4 3 1 3 6 2 6 1 1 5 3 2 18 23 21 20 25 10 9 23 20 18 7 23 12 10 14 16 17 22 9 16 15 22 14 14 10 3 10 15 12 11 8 6 8 6 7
13 11 14 12 7 6 6 7 7 13 9 3 10 10 8 4 5 6 10 9 9 3 12 7 6 5 8 5 6 7 4 10 12 5 7 5 10 5 12 11 10 7 8 6 12 9 11 6 12 6 12 4 12 9 11 4 10 10 11 12 11
10 11 9 10 20 21 21 20 21 13 17 27 17 18 18 22 24 21 14 19 15 26 17 18 21 24 4 2 3 4 1 10 9 2 3 6 13 2 6 9 6 7 5 2 9 5 4 3 4 5 8 2 8 6 7 2 12 14 12 12 11
5 7 4 6 3 4 3 3 2 2 — — 3 4 3 3 1 3 4 2 4 1 5 2 3 2 9 17 10 11 20 12 9 26 22 26 6 27 18 13 21 25 25 27 13 21 17 27 9 16 9 7 9 14 11 15 7 6 8 8 7
14 13 15 14 6 6 7 9 5 10 8 2 9 9 9 5 5 6 8 8 7 2 7 8 5 4 13 10 12 12 8 11 13 3 7 4 11 3 11 13 9 5 4 3 13 8 12 3 17 6 15 4 16 11 14 6 12 12 11 11 12
12 11 12 11 22 21 21 19 24 19 22 28 19 18 19 23 25 22 19 21 20 28 19 21 23 25 9 4 9 8 3 8 9 1 2 1 14 1 2 5 1 2 1 1 5 3 2 1 6 1 7 2 6 6 5 2 12 13 12 12 12
7 9 6 8 3 4 1 1 2 2 2 — 3 3 5 4 1 4 4 2 3 1 3 6 4 3 10 18 12 12 22 12 12 26 23 25 6 26 19 14 22 24 25 26 15 19 17 26 11 5 10 6 10 13 12 8 9 7 9 8 9
15 13 15 14 6 6 4 6 4 8 8 2 7 9 8 5 5 7 6 5 6 3 11 6 6 4 13 10 12 13 6 11 11 4 6 4 11 3 10 12 7 4 5 4 12 9 13 4 14 10 13 8 14 11 12 11 11 11 10 11 10
10 10 10 9 22 21 26 23 26 21 21 29 21 19 18 22 25 20 21 23 22 28 17 20 21 24 8 4 7 6 3 8 9 1 2 2 15 1 2 5 1 2 2 1 4 3 2 1 6 9 8 8 8 6 7 5 12 13 12 12 12
9 9 9 10 4 4 1 2 2 7 5 — 4 6 5 3 2 4 6 3 5 1 5 4 3 3 16 22 19 18 24 12 11 24 23 22 9 24 15 13 18 21 22 24 15 18 16 23 15 10 14 11 13 16 15 9 10 8 10 9 10
9 9 10 9 5 6 3 4 5 7 7 4 6 8 7 3 6 7 5 5 6 5 4 7 5 4 10 5 7 8 4 8 9 4 5 4 9 4 11 10 8 5 4 4 10 8 10 4 10 2 8 4 9 8 8 2 9 9 8 9 8
11 12 11 11 21 21 26 24 23 16 18 26 20 17 18 24 22 19 19 22 20 24 19 19 22 24 5 3 4 4 2 10 10 2 2 3 13 2 4 6 3 4 3 2 6 4 4 2 5 2 7 6 8 5 6 2 12 13 12 12 12
14 12 14 14 5 2 2 2 4 5 4 1 4 3 5 2 4 6 8 4 7 1 6 6 5 3 17 20 20 19 23 14 14 19 20 17 8 20 13 13 16 14 18 19 14 16 17 19 17 10 15 10 13 15 15 11 11 9 11 11 11
8 7 8 7 5 4 4 5 5 6 5 5 5 7 5 2 7 8 5 5 6 7 5 5 4 3 7 6 6 7 5 7 7 7 7 6 9 6 11 10 9 7 7 6 10 9 9 6 8 6 8 1 9 8 8 4 8 9 8 8 8
9 12 9 10 21 25 25 24 22 21 23 25 22 21 21 27 20 17 19 22 18 23 20 21 23 25 7 4 5 6 3 11 9 5 5 9 14 5 7 8 6 9 6 6 8 7 5 6 6 3 8 5 9 8 8 5 12 13 12 12 12
10 9 11 11 6 3 6 5 6 9 7 1 7 5 6 4 6 7 9 6 7 1 7 8 6 4 15 18 18 16 19 11 11 12 15 10 6 12 13 15 16 9 11 10 15 11 15 9 14 6 12 6 10 11 12 10 8 6 8 7 8
7 7 7 6 5 3 3 4 5 6 6 6 5 5 5 2 5 7 4 4 4 6 3 5 4 3 7 6 6 6 6 6 6 8 8 5 7 7 8 8 7 7 8 8 8 8 7 8 9 6 8 2 10 7 9 2 8 8 8 8 8
13 14 12 13 20 24 11 15 19 14 17 23 18 21 19 24 19 16 17 19 18 22 19 18 20 23 8 6 6 8 5 13 13 10 7 15 17 11 8 8 6 13 11 12 7 11 8 12 7 4 10 2 10 12 9 2 14 16 14 15 14
8 8 9 9 6 3 4 0 8 9 7 2 7 7 7 3 7 6 11 8 10 1 5 11 5 4 14 15 15 14 17 10 9 7 14 9 6 7 13 13 15 7 10 8 14 9 14 7 14 12 12 11 11 10 12 15 8 7 8 7 8
7 6 6 6 4 4 0 0 5 7 7 5 6 7 5 2 6 6 4 5 4 5 2 4 3 3 6 6 6 7 7 7 6 8 7 5 7 6 8 8 8 8 5 6 8 8 7 7 10 8 8 4 10 8 9 4 8 7 7 7 7
16 18 16 16 21 24 0 0 18 15 17 24 18 17 18 25 19 19 16 19 17 24 22 16 23 24 11 9 10 10 8 15 16 16 9 17 18 18 10 10 8 16 16 17 10 14 10 18 7 2 11 1 10 13 10 2 15 17 16 17 16
99 100 102 107 61 40 66 53 62 86 60 10 70 67 65 44 51 59 100 67 91 18 67 83 57 41 162 211 193 177 242 123 119 191 201 174 77 194 159 147 186 164 172 188 146 160 176 184 148 124 127 82 115 136 139 120 99 82 97 92 96
111 101 116 107 65 60 52 66 65 93 93 50 86 89 75 41 69 74 72 72 69 61 67 67 55 46 102 85 91 99 71 95 100 81 89 64 101 73 119 116 106 83 77 77 117 100 110 77 137 75 120 51 130 106 119 59 107 108 104 105 106
155 164 147 151 239 265 187 192 239 187 212 304 210 209 225 280 245 232 193 226 205 287 225 215 253 278 102 70 81 89 52 147 147 93 75 126 187 98 87 103 73 118 116 100 102 105 80 104 81 54 118 50 120 122 107 44 159 175 164 168 164
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MA MI
Apalachicola Daytona Beach Fort Myers Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa West Palm Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Concordia Dodge City Dodge City Goodland Goodland Topeka Topeka Wichita Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Boston Worcester Alpena Detroit
62 52 54 47 43 46 47 29 34 49 48 1 52 61 44 49 46 45 50 47 37 46 56 42 46 30 37 62 52 45 48 55 49 64 56 46 21 55 35 30 3 50 3 72 3 46 3 39 3 44 14 51 47 11 42 1 34 47 43 54 54 45 60 40 36 37
10 9 11 9 11 9 9 8 8 10 8 1 9 8 9 8 8 9 6 9 13 8 4 3 3 8 7 8 7 7 7 7 5 6 3 8 7 8 8 11 6 11 6 12 6 10 4 11 6 5 4 6 6 7 7 10 7 7 8 7 10 8 9 9 3 4
8 9 12 8 11 13 10 7 7 10 11 6 7 6 6 6 7 6 11 13 10 13 5 4 7 6 6 7 6 7 6 5 6 6 6 7 7 8 7 7 2 8 3 9 4 6 4 6 5 6 5 6 6 6 6 4 6 7 5 7 7 8 7 8 7 7
5 13 9 14 9 9 12 16 15 12 12 6 15 16 16 17 16 16 13 9 8 10 22 24 22 17 18 16 18 17 17 19 20 19 22 16 17 15 16 13 0 12 9 10 9 15 10 14 8 20 22 20 20 18 18 14 19 17 18 17 14 15 15 14 21 20
10 9 10 9 12 8 9 9 8 9 8 8 9 8 9 8 8 8 5 8 11 7 5 3 4 8 6 7 7 7 7 7 5 6 4 8 8 7 7 9 8 9 5 10 8 8 9 8 7 5 4 6 6 6 8 10 8 8 8 6 9 8 8 8 4 5
7 8 11 7 10 12 9 7 7 9 11 3 6 6 6 6 7 6 10 12 9 12 6 5 6 6 6 6 6 6 6 6 7 6 6 6 6 7 6 7 4 8 6 9 4 6 3 7 6 6 5 6 6 8 6 6 6 6 5 6 7 7 7 7 7 7
12 12 7 12 7 8 11 13 13 10 10 2 13 14 13 14 13 14 13 8 7 9 17 21 18 14 16 15 16 15 15 15 17 16 19 15 15 14 15 13 0 12 6 10 8 14 7 13 8 17 19 17 16 15 15 15 15 14 15 16 13 14 13 14 17 17
11 10 11 9 13 9 9 9 9 11 8 7 9 9 9 9 9 9 3 8 11 5 6 4 5 9 5 6 6 6 6 7 5 6 5 7 6 7 6 9 10 9 10 9 7 7 7 9 7 5 6 6 6 7 8 8 7 8 8 7 9 8 8 8 6 6
8 10 12 9 11 14 10 8 9 10 13 6 7 8 8 7 8 9 10 14 11 14 7 6 8 8 8 8 7 8 7 8 7 7 7 7 8 8 7 7 3 8 5 10 4 7 5 7 4 7 7 7 7 8 8 3 8 8 6 7 7 9 8 8 8 7
12 12 8 13 6 8 12 14 13 10 10 4 14 15 14 15 14 13 18 9 9 12 18 21 18 15 18 17 18 17 18 16 19 18 19 17 17 17 18 15 0 14 5 12 5 16 6 15 8 19 18 18 18 16 15 8 16 15 16 17 15 14 15 16 17 18
12 11 11 10 13 8 10 10 11 11 9 9 10 10 11 10 11 11 1 6 8 3 6 5 6 8 6 7 6 6 7 7 6 6 6 7 6 7 6 9 7 9 9 9 8 8 8 9 6 6 6 6 6 8 8 7 7 8 8 5 7 8 7 7 6 6
9 11 13 10 11 15 11 9 10 11 13 13 8 8 8 9 8 9 9 14 12 14 9 6 8 9 8 9 8 8 8 8 7 7 8 8 8 9 8 8 4 9 4 10 3 8 4 8 2 8 8 9 9 8 9 6 9 10 8 7 7 9 8 9 8 8
9 9 6 9 6 7 9 11 9 8 8 8 11 12 11 11 11 11 20 10 10 13 15 19 16 13 16 15 16 16 15 15 17 17 17 15 16 15 16 13 0 12 8 11 11 14 10 13 9 17 16 15 15 14 13 9 15 12 14 18 16 13 15 15 16 16
13 10 10 9 10 6 9 9 9 11 8 5 9 9 8 9 9 9 1 7 10 3 8 6 7 8 7 8 7 8 8 8 7 7 7 8 7 7 7 8 11 9 12 9 8 7 11 8 11 6 6 7 8 7 8 13 7 9 8 4 6 8 6 6 7 7
10 11 15 12 13 15 14 11 13 13 14 6 10 11 11 10 11 10 11 16 14 17 10 9 10 10 10 9 10 9 9 9 9 9 10 8 9 9 9 9 4 10 4 11 5 10 4 10 8 10 8 10 9 9 11 6 11 11 10 9 9 10 10 10 10 10
8 10 6 10 8 9 9 11 10 8 10 8 12 11 12 12 11 12 19 9 8 11 13 16 14 13 14 14 14 14 14 14 15 15 14 15 16 15 14 13 0 12 5 11 6 14 6 13 6 15 17 14 14 15 12 16 12 11 13 18 15 13 15 15 14 14
9 6 5 5 5 3 4 7 6 6 4 6 8 8 8 8 8 7 2 6 11 3 12 8 12 8 7 7 7 7 8 8 6 7 7 8 6 8 7 10 13 11 14 12 14 8 11 9 10 7 6 7 8 7 7 7 8 8 9 3 7 8 7 6 8 8
13 13 16 13 14 14 14 15 14 14 13 8 12 12 11 12 11 11 11 17 13 17 10 9 9 12 11 11 11 11 9 11 12 11 10 10 11 11 11 10 6 10 5 11 4 10 6 11 7 10 12 12 11 12 14 18 13 13 13 10 10 11 10 11 11 11
8 12 10 12 11 13 12 8 10 10 13 9 10 10 11 10 11 12 17 6 6 9 8 13 9 10 11 12 12 12 12 10 12 12 12 11 13 11 12 10 0 8 3 6 4 11 5 10 3 13 13 11 11 11 9 10 9 9 9 17 13 10 13 13 12 11
6 5 2 5 3 3 3 4 4 3 4 4 7 6 6 5 6 6 1 7 11 3 20 18 17 9 8 10 9 9 10 9 8 8 8 10 8 11 9 14 11 13 16 14 13 11 6 13 15 8 7 8 8 10 5 9 6 5 10 3 7 9 7 6 8 9
13 14 18 14 16 17 17 17 17 16 14 14 13 13 13 13 13 14 12 18 15 19 7 7 9 13 12 12 12 12 11 12 12 12 13 11 12 12 12 10 8 12 4 12 5 11 9 11 4 12 12 12 13 11 15 7 14 15 12 13 11 12 12 12 13 12
11 12 11 12 11 11 11 10 10 12 13 13 11 12 12 12 12 12 18 5 5 10 3 6 5 10 10 9 10 10 10 9 11 10 10 9 10 8 11 7 0 7 3 5 2 9 6 7 3 12 12 11 10 10 11 9 10 12 9 15 13 10 12 13 10 10
7 5 2 5 3 2 3 6 5 3 3 3 8 7 7 8 8 6 2 8 12 4 19 16 16 12 9 10 10 9 11 11 9 9 9 11 9 12 9 13 16 14 16 13 14 12 12 13 16 8 7 9 10 11 7 10 7 7 11 5 9 9 9 8 9 9
13 15 19 15 17 18 17 15 16 17 16 16 13 13 14 14 12 14 12 17 14 18 8 8 11 11 11 11 10 11 10 11 12 12 12 10 10 11 11 10 3 10 5 12 4 10 7 10 5 12 12 12 11 11 15 8 15 14 12 11 11 11 11 11 11 11
11 11 10 11 11 11 11 10 10 11 12 12 10 10 10 10 10 12 17 6 5 9 4 7 5 8 11 10 10 11 10 9 11 10 10 10 11 9 11 8 0 7 3 6 6 9 4 8 2 11 12 10 9 8 9 4 9 10 8 15 11 11 11 12 12 11
10 5 4 5 3 2 4 10 8 5 3 3 10 10 9 10 9 7 3 8 12 5 17 13 15 12 9 12 11 10 12 11 9 11 9 12 10 12 10 13 8 14 9 14 9 12 7 13 6 10 8 10 10 11 9 3 10 10 11 5 10 11 10 9 6 8
10 13 16 12 15 15 15 11 12 14 14 14 9 10 9 9 10 10 12 16 13 18 7 7 8 9 10 8 9 9 8 8 9 9 9 8 8 8 8 7 2 7 1 9 9 8 1 7 3 9 9 8 9 8 11 2 11 11 9 9 8 9 8 9 10 10
10 12 11 13 12 12 12 9 10 11 13 13 11 10 11 11 11 13 15 6 6 7 6 9 7 9 11 11 10 12 10 10 12 11 12 11 12 11 12 10 0 9 2 7 3 10 4 10 2 11 12 11 11 11 10 10 9 10 10 15 12 11 12 12 14 12
16 9 11 10 9 7 9 13 13 11 6 6 14 14 14 14 14 12 3 7 11 5 12 9 12 15 9 12 11 10 12 13 10 11 9 12 10 12 10 13 10 15 10 15 12 13 10 13 10 10 9 12 12 11 14 5 13 14 13 5 10 12 11 10 5 8
7 10 13 9 13 14 11 9 8 10 14 14 7 7 7 7 7 8 12 15 13 16 8 7 8 7 9 8 8 7 7 7 8 8 8 7 8 8 8 7 4 7 6 8 3 7 2 7 4 7 8 7 8 7 8 3 9 8 7 8 8 8 8 8 8 9
7 11 8 12 9 10 11 9 10 9 11 11 10 10 10 10 10 11 16 8 8 10 11 15 11 9 14 12 12 13 12 11 14 12 14 12 13 12 14 11 0 9 4 7 6 11 8 11 5 13 14 12 12 13 8 8 9 9 10 18 13 11 12 13 18 15
13 10 11 10 10 8 10 11 11 12 7 7 12 12 12 12 12 11 3 7 11 4 6 3 5 9 5 7 7 6 8 8 5 6 4 7 7 7 5 10 7 12 8 12 8 10 6 11 7 6 6 7 7 9 10 6 10 10 11 3 7 8 8 7 2 4
8 10 12 9 11 14 10 8 8 10 13 13 6 6 6 6 6 7 10 14 11 14 6 6 7 8 6 7 6 6 6 7 6 7 6 7 6 7 7 7 4 8 4 8 4 7 2 7 2 6 6 7 6 4 8 3 8 8 6 6 7 8 7 8 6 7
9 10 7 11 8 9 10 11 11 9 10 10 12 12 12 12 12 12 17 9 8 12 18 22 18 13 18 16 17 18 16 15 19 17 20 16 17 16 18 13 0 11 4 9 5 14 8 13 8 18 18 17 16 17 13 7 13 12 13 21 15 13 15 15 22 19
10 9 11 9 11 9 10 9 9 10 9 2 10 9 10 9 9 9 5 8 12 6 5 3 3 8 6 7 7 7 7 7 4 5 3 7 7 7 7 10 9 11 13 12 14 9 10 10 11 5 5 6 6 7 8 2 8 8 9 6 9 8 9 8 2 3
8 9 12 8 11 13 9 7 8 10 12 3 6 6 6 6 7 7 11 14 11 14 6 4 7 7 6 6 6 6 6 6 6 6 6 7 6 7 6 7 4 7 3 9 2 7 3 7 4 6 5 6 6 6 7 2 7 7 6 7 7 7 7 8 6 6
13 13 8 14 9 9 12 16 14 11 10 10 15 15 15 16 15 15 15 9 8 11 20 24 21 16 19 18 19 19 18 18 21 20 22 17 18 16 18 14 0 12 5 10 5 15 8 14 8 20 21 19 19 17 16 5 17 16 16 19 15 16 15 16 23 22
128 97 98 94 104 74 89 105 102 101 75 30 113 110 112 110 112 104 36 90 131 56 120 91 106 113 84 101 95 93 104 102 78 88 73 105 92 104 91 131 116 137 128 143 121 114 102 128 114 81 73 89 93 101 99 90 98 101 114 59 101 105 98 90 67 75
113 132 168 127 155 175 147 123 129 143 159 32 105 107 106 104 107 110 132 181 145 184 90 78 98 104 105 100 97 98 94 100 102 99 100 97 99 104 100 95 48 104 51 117 42 97 51 97 55 98 97 101 102 97 119 67 115 118 100 100 99 108 103 107 104 105
116 136 99 144 107 115 130 137 134 121 131 29 147 149 147 151 147 152 197 94 90 125 155 196 162 149 176 164 172 174 167 163 186 179 193 164 175 157 174 140 2 124 57 105 69 154 83 140 70 186 195 174 171 167 147 106 152 146 151 206 165 152 164 168 194 185
q 2006 by Taylor & Francis Group, LLC
3-67
(Continued)
CLIMATE AND PRECIPITATION
FL
3-68
Table 3A.11
(Continued) Jan
State
MN
MS
MO
NE
NV
NH NJ NM
NY
NC
Flint Grand Rapids Houghton Lake Lansing Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St. Paul Rochester Saint Cloud Jackson Jackson Meridian Tupelo Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Helena Kalispell Missoula Grand Island Grand Island Lincoln Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo New York C. Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Syracuse Asheville Cape Hatters Charlotte
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Years
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
54 32 30 41 53 54 47 56 57 35 50 30 2 50 10 2 26 23 47 50 56 39 57 54 45 51 54 2 28 3 50 43 49 18 52 40 56 56 47 53 45 54 70 37 53 56 28 9 57 44 52 42 37 47
4 3 3 3 2 4 7 7 8 7 8 8 8 7 8 10 8 10 7 8 6 5 5 5 2 2 9 5 10 3 9 9 9 9 8 9 7 9 14 8 7 9 5 8 8 13 13 11 5 3 1 8 8 8
6 5 6 7 3 6 7 7 7 7 8 6 4 7 6 3 6 6 7 7 8 7 6 6 4 4 8 3 7 2 8 9 8 8 8 8 8 8 6 7 7 7 6 8 8 8 7 9 8 7 6 9 8 8
21 23 22 21 26 22 17 16 15 16 15 17 15 17 17 14 16 14 17 16 18 18 19 20 25 24 14 11 15 5 15 14 14 14 14 14 17 15 11 16 18 15 21 15 16 10 12 11 18 22 24 14 15 15
4 3 4 4 3 5 7 8 8 7 8 8 12 7 7 9 7 8 7 7 4 5 4 4 2 3 7 7 8 5 8 7 7 8 7 7 6 7 12 7 6 8 4 8 7 11 11 12 6 3 2 8 8 8
7 6 7 7 5 6 6 6 7 6 7 6 4 6 6 4 6 6 6 6 8 7 6 7 5 5 7 4 7 1 7 7 7 6 8 7 7 7 7 7 6 8 5 7 8 8 7 8 7 6 6 9 8 7
17 19 17 17 21 17 15 14 14 15 13 14 13 15 15 14 15 14 15 15 16 16 18 17 21 21 13 7 13 6 14 14 14 15 13 13 15 14 9 14 16 13 19 14 13 10 10 8 15 19 20 11 13 13
5 5 6 5 5 7 7 8 7 6 7 9 10 8 8 10 7 8 6 8 4 5 4 4 3 3 8 7 8 4 7 7 7 8 6 7 6 7 14 8 7 8 4 8 8 11 11 14 6 4 4 9 8 8
7 7 7 8 7 7 7 8 7 7 7 7 4 7 7 7 7 8 8 8 9 9 9 8 6 6 8 4 8 3 8 8 8 8 10 8 8 8 8 9 7 8 5 8 8 10 9 9 8 7 8 10 9 9
19 19 18 18 18 17 17 16 17 18 17 15 10 15 16 8 17 16 16 16 18 17 18 19 21 22 15 7 15 4 16 16 16 16 15 15 17 15 9 14 17 15 21 15 15 10 11 8 17 20 19 12 14 14
6 6 6 6 7 6 6 7 7 6 7 9 12 9 10 14 8 9 7 8 4 5 4 4 4 4 8 6 8 8 8 7 7 8 7 8 6 7 16 8 6 7 4 7 7 13 12 14 5 5 5 8 8 7
7 7 7 7 7 7 8 8 8 7 7 7 6 8 8 4 7 7 8 8 9 8 8 9 6 7 9 6 8 8 8 9 8 8 9 8 9 9 8 10 9 8 6 9 9 10 9 9 8 7 8 11 9 9
17 17 17 17 16 16 16 15 15 16 16 13 5 13 12 5 15 14 15 14 17 16 18 18 20 20 13 9 14 14 14 14 14 14 15 14 15 13 7 12 14 15 20 14 14 8 10 7 16 18 17 12 13 13
6 7 7 7 8 7 6 7 7 7 7 8 16 9 8 18 7 8 7 7 6 6 5 5 5 5 8 9 8 3 8 7 7 7 6 8 8 7 18 12 9 6 3 6 6 14 11 13 5 5 6 8 7 7
10 9 9 10 9 9 10 9 9 9 10 10 8 11 10 4 8 9 9 10 10 11 10 10 9 9 9 3 10 2 10 10 10 10 11 10 10 11 8 10 10 10 7 11 11 10 9 12 9 9 10 12 11 11
15 15 14 14 14 15 15 15 15 15 14 12 12 12 13 8 16 14 14 14 15 15 17 16 17 17 14 9 13 7 14 14 14 14 14 13 13 12 5 10 12 15 20 14 14 7 10 6 16 17 16 11 13 13
6 7 7 7 9 7 5 5 7 7 7 9 14 8 9 7 7 10 7 8 7 7 5 6 6 6 10 12 10 6 10 10 8 9 10 11 13 13 22 16 14 6 2 7 7 17 13 17 5 5 6 8 7 7
12 11 11 11 10 10 11 11 10 11 11 12 12 13 11 11 11 10 11 10 12 12 11 11 10 9 10 4 10 4 10 11 11 11 11 10 10 10 5 8 9 12 7 12 11 9 10 10 11 11 12 12 11 11
12 12 12 11 12 13 14 14 12 13 12 9 9 9 9 6 12 11 12 11 11 11 14 13 14 14 9 5 10 4 10 9 11 10 9 9 7 6 3 6 8 12 21 12 12 4 6 3 13 14 12 10 12 11
7 8 7 8 11 8 7 6 10 8 10 8 9 6 11 8 11 13 9 12 13 12 13 14 14 15 13 11 12 4 13 12 11 11 13 14 17 15 20 22 20 7 1 7 7 12 12 11 6 6 7 8 7 7
13 12 13 13 11 11 13 13 12 12 12 13 4 15 11 7 10 11 11 10 12 12 12 11 9 10 11 8 10 2 11 12 12 10 12 12 10 11 7 6 7 12 8 12 12 14 12 15 13 13 13 13 12 13
11 11 10 10 9 12 11 11 9 11 9 10 14 10 8 11 10 7 10 9 6 7 6 6 7 6 7 4 9 4 7 7 8 10 6 6 4 5 3 3 4 12 22 13 12 5 7 5 12 13 11 10 11 11
8 8 8 8 11 8 7 7 10 9 10 9 9 9 12 10 11 12 10 12 14 12 12 13 12 14 13 14 12 10 13 12 12 10 13 14 18 15 22 22 19 8 3 8 8 13 15 13 7 5 7 9 8 8
12 11 11 12 11 11 12 12 11 11 11 13 7 13 12 7 10 11 11 10 11 11 11 11 9 10 10 4 10 5 10 11 10 11 11 11 9 12 7 6 8 11 8 11 12 13 10 12 12 12 12 12 13 12
11 12 12 11 10 13 11 12 10 11 10 9 5 9 8 3 10 8 10 9 7 8 8 7 9 8 8 5 9 4 8 8 9 9 7 6 4 5 3 3 4 12 20 12 12 5 6 6 13 14 12 10 10 11
7 7 6 8 9 5 6 6 10 9 10 10 5 10 13 4 11 12 11 12 10 9 10 11 10 10 14 8 13 9 13 13 12 13 14 14 18 17 22 21 18 9 4 10 10 17 17 13 8 6 6 11 10 10
10 9 9 9 9 9 9 9 8 7 9 9 9 9 9 1 8 8 8 7 9 9 9 9 8 8 7 2 8 5 8 8 8 8 8 7 7 8 5 6 6 9 7 8 9 8 6 8 10 10 10 10 9 9
13 14 14 13 12 17 15 15 12 14 12 10 1 11 8 1 12 10 10 11 10 11 11 11 12 11 9 3 10 5 10 9 10 9 8 9 5 5 2 4 5 12 19 12 12 6 7 9 12 14 14 9 11 11
7 6 5 7 7 5 7 6 10 8 10 15 6 14 14 7 12 13 12 13 9 8 7 8 6 7 13 9 12 12 12 12 13 11 13 12 14 14 20 16 14 9 6 11 11 17 18 18 8 6 6 12 11 11
9 8 8 9 8 7 8 7 7 8 8 7 7 7 6 2 7 7 7 7 9 9 9 9 7 7 8 3 8 2 8 8 8 8 8 8 8 8 6 8 7 9 6 9 8 8 7 6 9 8 8 10 9 9
15 17 18 15 15 19 17 18 14 15 13 10 12 10 11 9 13 11 11 11 13 15 15 14 18 17 10 6 12 7 11 10 10 12 10 10 9 9 4 8 9 13 19 12 12 6 7 7 14 17 16 9 11 11
3 3 2 4 2 2 5 4 5 5 6 10 5 10 9 5 8 9 9 10 6 6 5 5 2 2 9 9 9 6 8 9 9 8 8 9 8 10 16 9 8 6 3 8 8 15 15 16 4 3 2 9 8 7
6 5 5 6 4 4 6 5 6 6 6 7 1 7 6 1 6 7 7 6 8 7 7 7 5 5 7 4 7 2 7 8 7 7 8 8 7 8 7 8 7 8 5 9 8 8 6 7 8 6 5 10 8 8
21 22 23 21 23 24 20 21 18 19 18 13 7 13 15 9 16 14 15 14 17 17 18 18 23 23 13 6 15 4 14 13 14 15 14 13 15 12 7 13 15 16 22 13 14 7 9 7 18 21 23 12 14 14
3 2 2 3 2 3 6 6 6 6 7 9 3 9 8 3 8 10 7 9 6 5 5 4 2 2 10 10 8 6 9 10 8 8 9 10 8 9 15 8 8 8 4 8 8 14 14 15 5 2 1 9 8 8
6 4 6 6 4 4 6 6 6 6 7 6 3 7 6 3 6 6 7 6 8 8 8 7 3 4 7 2 7 6 8 8 8 7 9 7 7 8 7 8 6 8 5 8 8 7 7 9 7 6 6 9 8 9
22 25 23 23 26 23 19 19 18 19 18 16 5 16 18 7 17 15 17 16 17 18 18 20 26 25 14 10 15 12 15 13 15 15 14 14 16 14 10 15 16 15 22 15 15 10 10 7 19 23 24 13 15 15
66 64 65 71 75 66 77 76 95 86 97 111 110 108 119 104 104 120 101 115 89 86 79 82 70 75 123 106 117 71 117 115 111 110 115 123 130 131 210 158 138 90 44 94 93 167 162 168 69 52 54 107 98 96
105 96 100 104 88 90 102 101 101 97 102 104 52 110 97 47 91 96 101 96 112 111 106 104 81 83 102 48 99 35 103 109 105 102 112 105 99 109 82 93 89 109 76 111 112 111 99 113 111 102 103 127 116 117
195 205 200 191 202 209 187 188 169 182 166 150 108 148 150 96 169 149 164 155 164 168 180 179 214 208 140 81 149 62 146 141 149 153 138 136 136 125 73 114 138 166 245 160 160 87 104 84 185 212 208 132 152 153
55 44 0 31 38 49
2 3 3 9 9 9
7 7 7 7 7 6
22 22 3 15 16 16
2 3 3 9 9 8
7 6 6 6 5 6
19 19 5 13 14 14
5 5 3 9 10 9
8 7 7 8 7 8
18 19 11 14 14 14
6 6 6 10 10 10
8 7 7 8 9 9
16 17 17 12 11 12
6 6 5 7 9 8
10 10 6 10 10 10
15 15 9 13 13 13
7 7 3 6 7 7
11 11 10 12 10 11
12 12 6 12 12 12
8 8 8 5 7 7
12 12 12 14 10 12
11 11 11 12 14 12
8 7 7 5 8 7
12 11 11 13 10 13
12 13 13 13 13 11
7 7 7 7 10 9
10 10 10 11 9 9
13 13 13 13 11 11
6 6 6 12 11 13
8 8 8 8 8 8
16 17 17 11 12 10
2 2 2 11 10 11
6 6 6 7 8 6
22 22 22 12 12 12
2 2 2 10 10 10
6 5 5 7 7 6
23 24 24 14 14 15
61 63 11 99 109 109
104 98 23 113 101 105
200 205 34 153 156 152
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
MT
Station
OH
OK
OR
PC
PA
RI SC
SD
TN
TX
9
7
15
9
6
13
9
8
14
10
8
12
8
11
12
7
12
11
7
13
12
7
12
11
10
9
12
13
7
10
11
7
12
10
6
15
109
107
150
47 44 56 53 34 47 54 46 52 30 40 52 44 3 54 3 40 1 11 53 67 60 47 58 30 20 24 50 41 46 36
9 10 7 7 6 3 3 4 5 4 5 3 11 4 10 5 3 5 5 2 3 2 3 3 5 3 13 — 2 1 1
7 6 8 7 8 6 5 6 6 6 7 5 6 5 7 4 4 8 8 4 5 5 4 5 5 13 14 7 7 7 10
15 15 17 17 17 22 24 21 20 21 20 23 14 7 14 8 24 15 18 25 24 24 24 24 21 15 4 24 21 23 21
9 9 6 6 6 3 3 4 5 4 5 3 9 10 9 8 3 6 6 3 4 3 3 3 4 2 11 — 3 1 0
6 6 8 7 8 6 6 6 6 6 7 5 7 3 6 3 3 4 6 4 6 6 4 4 4 10 13 6 6 8 9
14 13 15 15 15 19 20 18 17 18 17 20 13 10 13 7 22 15 17 21 19 20 21 21 20 16 4 21 19 19 18
9 10 6 5 7 5 5 5 5 5 5 5 10 8 9 8 3 3 6 3 5 5 3 4 5 3 11 1 2 1 1
7 8 8 9 8 6 6 7 7 7 7 6 8 3 8 1 5 5 7 6 7 8 5 6 5 15 14 9 7 8 12
14 14 17 17 16 20 20 19 19 19 19 20 13 7 14 9 23 2 18 22 19 19 23 21 21 13 6 21 21 22 18
10 11 6 6 6 5 5 5 5 6 6 5 9 10 8 10 3 3 5 4 6 5 3 4 6 1 7 1 2 1 1
9 8 9 9 9 8 8 8 7 8 8 7 8 2 9 1 6 5 10 7 8 10 6 7 7 15 12 9 6 7 12
11 11 15 15 15 18 17 17 17 16 17 18 13 8 13 10 21 19 15 19 16 15 21 19 17 14 11 20 23 22 17
8 8 6 7 6 6 6 6 6 7 7 6 9 9 8 10 3 8 9 6 9 8 5 6 9 1 6 1 1 1 1
10 11 10 10 11 9 10 10 9 10 10 9 10 6 10 4 8 6 10 9 9 11 7 8 7 16 13 9 6 7 13
13 12 14 14 13 16 15 15 16 15 14 17 12 6 13 9 20 14 12 17 13 13 19 18 14 15 12 21 24 23 17
8 7 7 6 8 6 7 6 6 7 7 6 10 13 9 11 3 2 12 8 13 10 6 7 13 1 7 — 1 — 2
12 11 10 11 11 11 11 11 10 12 12 11 11 5 11 8 7 7 9 8 8 10 8 8 7 11 15 5 6 7 14
11 12 12 13 11 13 12 13 13 11 12 12 9 3 10 4 19 12 9 14 9 10 16 15 10 19 8 25 23 23 14
7 6 11 10 12 7 8 7 7 8 8 7 15 16 13 14 6 5 19 16 23 19 13 15 23 — 7 — 1 0 2
12 12 13 13 12 13 12 13 12 13 13 13 10 4 11 6 10 9 7 8 5 8 8 8 5 9 16 5 6 7 15
12 13 7 8 7 11 11 11 11 10 10 11 7 2 7 4 15 10 5 7 3 4 10 8 3 22 9 26 24 24 14
7 7 12 10 11 8 9 7 8 8 8 7 14 15 13 15 6 6 20 14 22 18 11 14 21 0 6 — 1 1 2
12 12 11 12 12 12 11 13 12 11 12 12 10 4 11 5 10 6 8 9 6 8 10 9 6 5 14 5 6 8 16
11 12 8 9 8 11 11 11 11 11 11 12 7 3 7 4 15 8 3 8 4 5 10 9 4 26 11 26 24 22 14
10 8 10 9 10 8 8 9 9 9 8 7 13 7 12 8 8 1 16 12 18 15 10 11 17 — 6 — 1 1 2
9 10 9 9 9 9 10 9 9 9 10 10 8 3 8 4 7 2 8 8 6 8 8 8 6 6 13 6 5 7 14
11 12 11 12 11 12 12 12 12 12 12 13 9 2 10 4 14 2 6 9 6 7 12 10 7 23 11 23 24 22 14
13 12 9 9 9 9 8 10 10 9 8 8 14 12 14 10 5 2 12 5 10 10 5 6 11 — 7 1 1 1 1
7 7 8 8 8 8 8 8 8 8 9 8 7 4 7 4 7 4 7 9 8 8 8 8 6 10 12 7 5 7 13
11 11 14 14 14 14 15 13 13 14 14 15 10 5 10 6 19 5 12 17 12 13 18 17 14 21 12 23 26 23 17
11 12 6 5 6 4 3 5 5 4 4 3 12 6 11 7 3 1 6 2 3 4 3 3 6 2 7 — 1 0 1
7 7 7 6 7 6 6 7 7 6 7 6 7 4 7 1 5 2 7 6 6 6 4 5 5 13 12 8 6 7 11
11 11 17 18 16 20 21 19 18 20 19 21 11 6 12 10 22 8 17 23 21 20 23 22 20 15 12 22 23 23 18
10 10 7 6 7 3 3 4 4 3 3 3 12 8 10 9 3 3 5 1 2 3 2 2 5 3 11 — 2 1 1
7 7 7 7 7 5 5 6 6 5 6 5 6 5 7 5 4 2 7 4 4 5 3 4 4 12 13 7 6 6 10
14 14 17 18 17 23 24 21 21 23 22 23 13 8 13 7 24 3 18 26 25 24 26 25 22 16 7 24 23 24 20
111 111 93 88 93 68 66 72 77 73 73 63 139 119 127 113 50 38 120 75 117 101 68 77 126 16 99 4 18 8 13
106 104 107 109 112 99 97 103 100 101 107 97 96 49 103 45 76 55 94 82 79 91 74 80 68 134 159 83 72 85 148
149 150 165 168 160 198 202 190 188 191 185 205 130 68 136 83 239 114 151 209 169 173 222 208 172 215 107 276 276 272 204
50 51 43 53 52 40 53 61
— — 12 1 7 2 7 7
5 4 13 8 8 4 7 8
26 27 5 22 16 25 17 17
— — 12 0 7 3 7 7
5 3 11 8 8 6 7 7
24 25 5 20 13 20 14 14
— — 12 1 8 5 7 7
5 4 14 9 8 7 8 8
26 27 5 21 15 19 16 16
— — 11 1 7 6 6 7
5 4 14 10 9 8 9 9
25 26 6 19 14 17 15 15
— — 10 1 7 7 6 6
5 4 14 10 11 10 10 11
25 27 6 20 14 14 15 14
— — 10 — 8 8 7 6
5 4 13 6 11 11 12 12
25 26 7 24 11 11 12 12
0 — 7 0 8 8 7 7
6 4 11 4 12 13 12 12
24 27 13 26 11 10 12 12
1 — 6 — 9 8 8 8
7 4 11 4 11 12 11 12
24 27 14 27 11 11 12 12
1 — 7 — 9 7 9 9
6 4 11 6 9 10 9 10
24 26 12 24 12 14 12 12
0 — 9 0 10 6 10 10
6 4 12 7 9 8 8 9
24 27 10 23 12 17 13 13
— — 12 — 7 3 6 6
6 4 13 8 8 5 8 8
24 26 5 21 15 23 15 15
— — 14 0 7 1 6 6
5 3 13 8 7 4 8 8
26 28 4 22 17 26 17 17
2 0 121 5 94 63 87 85
65 45 149 88 110 97 109 112
296 318 94 271 161 205 169 168
55 43 40 51 19 42 47 48 33
7 3 4 5 8 10 9 9 10
8 6 7 7 9 7 6 6 6
16 22 20 19 14 15 16 16 15
7 3 5 5 8 8 9 9 10
7 6 7 7 8 7 6 6 5
14 19 17 16 12 13 13 13 13
8 4 5 6 9 8 9 9 10
8 7 8 8 9 8 8 8 8
15 20 18 17 13 15 14 14 13
7 4 6 6 8 7 11 11 11
9 8 8 8 8 8 8 8 8
14 17 16 16 13 14 11 11 11
6 5 6 5 7 6 8 9 8
11 9 10 10 11 10 11 10 10
14 17 16 15 13 15 12 11 13
7 5 7 6 8 7 6 8 8
11 12 11 12 10 10 11 11 11
12 13 12 12 12 13 13 11 11
7 5 6 6 7 7 5 7 7
12 13 13 13 11 12 12 13 13
12 13 12 12 13 12 13 12 11
8 7 7 6 7 8 6 8 8
11 12 12 13 11 10 13 12 12
11 13 12 12 13 12 13 11 11
10 7 7 6 10 9 7 10 10
9 10 10 11 9 8 10 9 9
11 13 13 14 11 12 13 12 11
11 8 8 7 11 11 11 13 14
9 9 8 9 8 8 8 7 7
12 14 14 15 12 12 11 11 10
7 4 4 4 7 8 12 12 12
9 6 7 7 10 7 7 6 6
14 20 19 19 14 15 12 12 12
7 3 4 4 7 8 9 10 11
8 6 7 7 10 8 7 6 6
15 23 20 20 14 15 14 15 14
93 59 70 67 98 98 102 115 121
112 103 106 110 113 103 109 103 100
160 203 189 188 155 164 155 147 145
28 56 53 50 58 65 53 43 54 42 56 51 3 54
8 8 8 8 6 7 6 8 6 7 11 13 8 9
8 8 8 8 7 7 7 6 6 7 6 7 5 6
16 15 15 15 18 17 18 17 18 17 14 11 5 16
7 6 6 7 6 7 7 8 7 8 10 10 10 8
6 8 8 7 7 6 6 6 6 6 6 7 4 6
15 14 14 15 16 15 16 15 15 15 12 10 6 14
6 6 6 6 7 8 7 8 8 8 11 12 11 9
7 8 9 8 8 8 7 7 7 7 7 9 3 8
17 17 15 17 17 16 16 17 16 16 12 11 3 15
7 7 6 7 8 9 8 9 8 10 12 12 12 8
7 9 10 8 9 8 9 7 8 7 8 9 4 8
16 15 15 15 14 13 13 14 13 13 11 9 5 15
8 8 7 7 7 9 8 8 8 9 10 11 11 6
10 10 11 10 11 10 10 10 10 9 10 10 5 11
14 14 13 14 14 12 13 13 13 13 11 10 6 13
9 9 9 9 6 8 7 10 8 9 13 13 18 8
10 11 11 11 13 12 12 11 12 10 11 11 5 15
11 10 10 11 11 10 10 9 10 10 7 6 2 7
11 12 13 12 6 7 7 10 8 8 14 13 17 12
13 12 13 12 13 13 13 12 13 12 10 12 3 13
7 7 5 8 12 11 11 9 10 11 7 5 2 6
12 12 14 12 7 8 8 12 10 9 14 14 16 12
11 11 12 11 14 13 12 12 12 11 10 10 2 14
8 7 5 9 11 10 10 7 9 10 7 7 4 5
11 12 13 12 10 10 10 12 11 10 14 15 10 11
8 8 9 8 10 10 9 8 9 9 8 7 1 11
11 10 8 10 11 11 11 10 10 11 8 8 2 9
10 11 12 11 12 13 12 14 13 14 15 17 12 12
8 8 8 8 8 8 8 7 8 7 7 7 2 9
13 12 11 12 11 10 11 10 10 10 9 8 4 9
6 7 8 7 8 10 9 10 9 9 13 15 10 11
6 7 8 7 7 7 7 6 7 7 6 7 3 7
18 16 14 16 14 13 14 14 14 14 11 9 4 12
7 7 8 8 7 8 7 9 7 8 12 13 13 10
7 7 8 7 7 6 7 6 7 6 6 7 5 6
17 16 14 16 17 17 17 16 17 17 13 10 4 15
101 104 111 105 88 104 97 118 102 109 149 157 146 115
101 107 115 103 112 106 107 96 106 98 95 104 43 114
163 154 139 157 165 155 162 151 156 158 121 104 44 136
(Continued) q 2006 by Taylor & Francis Group, LLC
3-69
67
CLIMATE AND PRECIPITATION
ND
GreensboroWnstn-Slm-HPT Raleigh Wilmington Bismarck Fargo Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Oklahoma City Tulsa Tulsa Astoria Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/Harrisburg AP Philadelpia Pittsburgh Avoca Williamsport Block Is Providence Charleston AP Columbia Greenville-Spartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCty-Kgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Amarillo Austin
3-70
Table 3A.11
(Continued) Jan
State
Station
UT VT VA
WA
PR WV
WI
WY
Note:
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
CL
PC
CD
52 53 42 16 53 26 49 47 42 47 53 34 50 3 50 2 40 69 52 49 47 50 48 54 29 24 51 48 49 40 32 47 49 34 46 17 49 55 45 60 49 55
6 7 10 10 14 7 12 12 7 12 9 7 9 5 11 12 9 6 5 9 9 8 8 2 3 3 3 3 4 9 5 4 3 4 8 7 7 7 7 9 8 6
7 7 6 7 7 5 6 6 6 6 6 6 6 2 6 6 8 6 6 7 7 7 8 4 3 5 4 4 5 18 5 6 6 6 7 7 6 6 8 10 10 8
18 17 16 14 10 18 12 12 18 13 16 18 16 6 14 11 14 19 20 15 16 16 15 25 24 23 24 24 22 4 21 21 22 21 17 17 17 18 16 13 13 17
7 7 10 10 14 7 11 11 8 11 8 7 9 9 10 15 8 5 4 8 8 8 8 2 4 3 3 3 4 7 4 4 3 4 7 8 7 6 6 7 7 5
6 6 6 7 7 5 7 7 6 6 6 6 6 1 6 4 8 7 7 7 6 6 7 4 4 6 4 5 6 16 5 6 6 5 7 7 6 6 8 9 10 8
15 15 13 11 7 16 10 10 15 11 14 16 14 8 12 8 12 16 17 13 14 14 14 22 21 19 21 20 18 4 18 18 19 19 15 13 15 15 14 12 12 15
7 7 10 11 15 7 12 13 7 12 9 7 10 9 11 9 9 7 6 9 9 8 8 3 4 4 3 5 6 9 5 5 4 5 7 7 6 6 6 7 7 5
8 8 8 8 8 6 9 8 7 8 7 7 7 3 8 3 8 8 7 9 8 8 8 6 6 8 6 8 8 17 6 8 6 7 8 7 7 8 9 10 10 9
16 16 14 13 7 18 11 10 17 11 15 18 14 7 12 4 13 16 18 13 15 15 14 22 22 19 22 19 17 4 20 19 20 19 16 17 17 17 16 14 14 17
5 6 9 8 17 7 12 13 6 11 7 5 9 7 11 10 10 7 5 9 9 8 9 3 3 5 3 4 6 7 5 6 4 5 6 7 6 6 5 6 6 5
10 9 8 7 8 7 9 8 8 8 8 8 7 4 8 6 10 9 8 9 9 9 9 7 6 9 7 8 9 17 7 8 8 8 8 7 8 8 9 10 10 9
15 15 13 14 5 16 9 9 16 11 15 17 14 4 11 4 11 14 17 12 12 13 13 20 21 16 20 17 14 6 17 16 18 17 16 16 16 16 16 14 14 16
6 5 8 6 19 6 11 13 7 11 6 5 8 6 11 18 11 9 5 8 8 7 7 4 3 7 4 6 8 4 5 6 4 6 7 7 7 7 6 5 6 6
14 12 10 9 8 11 11 10 12 10 11 11 10 5 9 6 10 10 9 10 10 10 11 9 8 10 9 10 11 16 9 10 9 9 10 9 9 10 11 12 11 10
11 13 13 16 4 14 9 8 12 10 14 15 13 5 11 12 9 12 17 13 13 14 13 18 20 14 18 15 12 12 17 15 17 17 14 15 15 14 15 14 14 15
8 9 11 8 20 7 14 15 8 14 7 6 10 10 13 24 17 14 5 8 7 7 7 5 4 7 5 7 10 4 3 5 3 5 8 7 7 8 10 9 10 8
15 14 12 13 7 13 11 9 14 10 15 15 12 3 11 10 8 10 11 12 12 12 12 8 7 8 8 10 10 16 10 13 11 11 11 10 10 10 11 12 11 12
6 7 8 9 3 9 6 5 8 6 8 9 8 2 7 2 5 6 14 10 11 12 11 16 20 15 17 12 10 10 16 12 16 14 12 12 13 12 9 9 9 11
11 11 15 12 12 7 14 13 7 15 9 7 14 10 15 19 16 17 5 8 7 7 7 10 6 12 10 16 19 5 3 5 2 5 8 10 9 10 14 10 14 13
14 14 10 11 13 16 11 11 15 10 15 15 10 4 9 6 10 10 13 12 12 12 13 10 9 10 10 8 8 17 12 13 13 12 12 11 11 11 11 15 11 12
6 6 6 8 5 8 6 7 9 7 7 8 6 2 7 1 5 4 13 11 12 12 11 11 16 9 11 6 4 9 16 13 16 14 11 10 11 10 6 7 6 6
11 11 15 11 14 6 15 14 7 15 10 7 14 14 15 16 16 16 6 9 8 7 8 9 6 10 9 15 18 5 4 5 3 5 8 9 9 10 13 10 13 14
14 13 10 12 12 17 10 10 15 10 15 15 11 3 9 4 10 11 12 11 12 12 12 10 9 10 10 9 8 17 12 14 14 12 11 11 10 11 11 13 12 11
7 7 6 8 5 8 6 6 9 6 6 9 6 2 6 2 5 4 13 11 11 12 11 12 16 11 12 7 6 8 16 12 15 14 12 11 12 10 7 8 6 6
9 10 13 9 18 9 14 14 9 13 9 8 12 5 15 3 18 16 6 10 9 9 10 8 8 9 8 12 15 4 6 7 4 7 8 9 9 9 13 13 14 12
13 12 9 11 7 11 8 8 11 8 12 12 9 3 7 2 7 8 10 9 9 9 9 10 8 8 9 8 8 17 9 11 11 9 9 9 8 9 9 9 9 9
8 8 9 10 5 10 8 8 10 8 9 10 8 2 8 1 4 5 14 11 11 12 12 13 14 13 13 9 7 9 15 12 15 14 13 12 12 12 8 9 8 9
11 12 14 12 19 11 17 17 12 15 11 11 13 8 15 12 17 14 6 13 12 12 13 3 5 5 4 8 9 5 9 9 7 9 7 11 9 9 11 13 12 10
12 10 7 8 7 9 7 6 10 7 10 10 8 2 7 3 7 8 8 7 7 7 7 8 7 8 7 8 8 17 8 9 8 8 8 7 7 8 8 9 9 9
7 8 10 10 5 11 8 8 9 8 9 10 9 4 9 3 7 9 17 11 12 12 11 20 19 18 19 15 13 9 14 13 13 14 15 13 14 13 12 9 10 12
9 9 12 12 18 9 15 15 10 14 10 9 12 3 13 1 11 8 3 10 10 9 9 2 3 3 2 3 5 5 5 5 5 5 5 6 5 5 7 10 8 6
9 9 6 7 6 7 7 6 7 6 7 7 6 2 6 3 8 7 5 7 8 8 8 5 5 6 4 5 6 18 7 7 6 6 6 6 6 6 8 9 10 8
12 12 12 11 6 14 9 9 13 10 13 14 12 6 11 8 11 15 22 13 12 13 13 23 22 21 23 22 19 7 18 18 19 19 19 18 18 18 14 11 12 16
7 8 11 11 15 7 13 14 8 12 10 7 11 4 12 1 10 6 3 10 9 9 9 2 4 3 2 3 4 7 5 5 4 5 6 7 6 6 8 9 10 7
7 6 6 6 7 6 7 6 6 7 6 6 6 4 6 5 8 6 6 7 7 6 8 4 4 5 4 4 5 18 6 6 5 5 6 6 6 6 8 9 10 8
17 17 14 14 9 18 11 11 17 12 16 19 15 6 13 5 13 18 22 14 15 15 14 26 24 23 25 24 22 6 21 20 21 21 19 18 19 19 15 13 12 17
96 102 135 121 193 90 160 165 95 154 105 86 130 89 151 140 151 125 58 112 106 100 102 52 51 71 58 86 109 73 60 65 48 63 85 95 89 90 107 106 114 95
131 121 97 106 100 114 102 96 117 97 119 118 98 36 93 58 104 101 101 107 107 106 112 84 75 93 82 88 92 203 95 111 103 99 102 97 96 100 111 127 122 113
138 142 133 138 72 161 103 104 153 114 141 162 136 53 120 60 111 139 206 147 153 160 151 228 239 201 226 191 164 89 210 189 212 203 178 173 180 175 147 133 129 157
This table shows the mean number of days per category of cloudiness. The categories are determined for daylight hours only. Clear denotes zero to 3/10 average sky cover. Partly cloudy denotes 4/10 to 7/10 average sky cover. Cloudy denotes 8/10 to 10/10 average sky cover.
Source:
From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Brownsville Corpus Christi Dallas-Fort Worth Del Rio El Paso Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Waco Wichita Falls Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Feb
Years
Years State AL
AK
AZ
AR CA
CO
CI DE DC
Station Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue McGrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock Bakersfield Bishop Blue Canyon Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
39 35 40 39 49 37 51 40 52 52 43 33 50 50 53 36 54 55 39 48 39 24 51 10 30 38 45 42 62 25 14 38 38 26 7 13 39 32 43 43 13 16 16 42 43 8 6 26 26 45 42 35 39 23 36 43 55 33 42
39 35 40 39 49 37 51 40 52 52 43 33 50 50 53 36 54 55 39 48 39 24 51 10 30 38 45 42 62 25 14 38 38 26 7 13 39 32 43 43 13 16 16 42 43 8 6 26 26 45 42 35 39 23 36 43 55 33 42
80 82 83 82 75 81 69 70 78 69 65 85 70 72 78 78 79 79 73 73 74 84 73 67 75 85 74 64 62 76 57 82 80 85 67 56 91 76 71 64 76 84 91 72 86 81 80 82 90 78 58 63 78 69 70 72 76 77 71
64 68 65 64 73 77 69 70 77 68 64 83 71 71 75 74 76 76 73 72 74 83 69 69 74 82 50 32 32 47 28 65 65 63 32 58 68 53 61 50 66 61 70 58 68 63 57 61 71 57 46 49 62 49 59 57 60 58 56
79 80 83 80 75 80 66 69 76 67 68 85 68 73 78 81 78 79 73 73 73 86 74 71 74 86 74 59 58 68 56 80 79 80 68 61 89 78 75 70 75 82 89 74 85 83 79 85 89 78 59 67 73 66 70 72 75 78 71
60 63 61 60 68 73 67 67 74 64 61 81 65 67 70 71 71 73 73 64 72 84 64 73 68 77 45 27 27 33 24 60 61 53 31 61 56 54 64 52 60 51 61 60 66 63 58 62 61 48 40 44 47 37 57 53 56 54 53
79 80 85 82 70 77 67 67 80 67 64 85 68 70 75 79 78 76 73 73 73 87 71 71 72 83 72 56 53 61 52 79 78 74 58 66 86 80 79 74 75 78 86 76 82 80 83 86 84 74 62 67 64 68 70 73 74 78 70
57 60 60 57 57 69 68 67 75 60 52 78 53 54 65 66 67 69 71 53 70 83 57 70 64 71 41 24 23 25 21 57 59 44 20 61 47 55 66 52 52 46 53 61 63 61 60 65 50 36 39 40 35 34 55 51 53 52 50
83 82 88 86 66 76 75 73 83 66 57 84 60 64 72 77 77 74 78 68 76 86 67 76 71 78 67 42 42 52 47 82 82 67 53 61 80 80 80 79 71 76 83 76 82 82 76 89 80 71 63 67 58 68 69 70 73 77 70
57 57 58 57 53 66 74 74 72 60 44 77 45 45 63 61 62 69 75 49 74 81 52 74 61 69 32 17 16 20 17 56 60 33 17 54 35 51 65 54 43 38 44 60 60 61 58 61 41 30 35 35 28 31 53 45 50 49 49
86 86 88 88 63 76 85 86 80 62 50 84 53 58 70 75 73 76 82 63 76 89 65 76 73 78 63 34 34 43 44 88 87 57 49 55 71 81 83 80 69 72 82 78 83 88 83 91 74 72 68 70 54 70 75 74 76 83 75
60 60 60 60 49 66 82 84 62 50 38 75 37 40 63 61 56 72 78 44 73 81 49 71 61 71 27 14 13 16 15 62 62 27 15 47 27 55 67 55 39 33 38 65 60 68 60 61 34 28 37 38 25 32 59 48 54 55 53
84 88 89 88 67 79 87 89 78 60 57 87 60 60 71 75 77 79 81 66 76 92 70 80 78 81 54 30 32 37 41 89 85 52 39 47 65 82 85 80 67 63 78 81 84 78 88 92 71 74 67 69 44 70 78 77 78 84 76
59 61 61 60 56 69 84 87 60 47 44 77 43 42 64 61 59 75 77 47 73 83 53 74 64 74 21 12 13 14 13 62 58 24 14 38 24 56 68 54 36 25 32 67 59 63 62 61 29 25 35 35 19 28 61 51 54 56 53
86 90 90 90 74 81 88 89 86 69 64 90 70 68 76 79 83 82 83 75 82 95 79 81 84 85 67 43 56 58 49 88 86 49 46 41 61 82 86 80 64 60 77 82 86 80 90 89 68 83 69 68 48 74 78 79 79 86 76
62 64 66 64 63 71 84 86 68 53 49 82 50 48 69 67 64 77 77 56 78 89 61 75 71 78 37 20 28 27 22 60 58 23 14 34 22 54 69 52 28 20 30 67 60 65 64 62 28 35 39 34 22 32 60 51 54 55 53
86 91 91 91 78 84 92 91 91 79 69 91 78 71 79 82 86 80 85 83 83 95 84 82 85 86 77 50 65 65 55 88 85 53 45 42 66 82 85 79 65 60 78 83 87 80 90 90 69 85 71 69 52 76 79 83 83 88 80
61 63 66 64 65 73 86 88 73 61 51 82 55 49 69 70 67 74 77 62 79 89 64 73 72 79 44 23 33 30 24 58 58 25 14 34 24 53 69 53 29 19 29 67 61 64 64 62 29 38 43 35 24 35 61 53 56 55 55
87 89 90 89 80 86 91 90 92 79 70 88 79 75 80 86 86 81 83 84 81 90 84 80 87 89 74 48 55 65 57 89 86 57 50 48 71 83 84 75 66 61 77 81 85 75 86 92 71 81 67 68 53 72 82 86 85 90 82
62 63 65 62 64 75 87 87 71 62 53 79 55 52 68 74 66 73 74 61 73 83 64 69 74 78 37 23 27 29 24 60 59 28 16 42 28 54 68 52 33 23 31 67 59 58 63 63 32 33 38 34 27 32 61 55 56 56 56
87 87 87 89 78 85 85 84 88 78 74 84 80 79 79 84 85 78 82 84 80 83 80 77 78 89 72 49 52 60 54 87 84 62 50 50 77 81 80 72 71 68 79 77 82 70 81 85 75 76 59 65 59 69 80 84 85 89 80
58 59 59 58 66 78 84 83 76 72 66 77 68 65 66 76 68 68 77 70 71 78 67 71 70 79 36 22 25 26 23 57 55 34 16 48 35 54 66 54 46 30 37 65 59 52 62 62 38 34 37 36 33 33 59 51 54 54 54
83 84 86 87 78 83 78 75 84 73 69 84 75 76 77 81 83 78 78 79 77 82 75 74 74 87 70 56 54 66 56 84 81 77 63 57 87 79 72 59 78 82 87 73 84 71 77 80 83 78 61 68 71 74 77 79 80 83 76
60 62 62 60 74 79 79 75 81 72 67 81 74 75 72 77 77 72 77 76 75 80 71 73 70 82 43 27 28 33 27 61 60 50 24 60 54 53 62 47 62 51 57 62 64 55 52 62 57 47 46 49 47 46 60 56 56 54 54
81 82 85 84 77 83 73 70 78 70 68 84 72 73 78 81 79 77 75 76 74 84 73 68 76 86 72 65 62 75 58 83 79 83 64 55 91 77 68 59 77 83 88 71 85 69 81 80 91 77 57 65 77 69 74 76 77 79 72
63 67 66 64 76 80 73 70 78 70 68 83 73 73 76 79 77 74 75 75 74 83 73 69 75 85 51 33 34 47 32 65 63 61 29 59 68 52 60 48 67 59 67 59 68 55 55 59 71 56 49 52 59 51 60 59 59 58 57
83 85 87 86 73 81 80 79 83 70 65 86 69 70 76 80 80 78 79 75 77 88 75 75 77 84 70 50 52 60 52 85 83 66 54 53 78 80 79 73 71 72 83 77 84 78 83 87 79 77 63 67 61 70 75 77 78 83 75
60 62 62 61 64 73 78 78 72 62 55 79 57 57 68 70 68 73 75 61 74 83 62 72 69 77 39 23 25 29 22 60 60 39 20 50 41 54 65 52 47 38 46 63 62 61 60 62 45 39 40 40 36 37 59 52 55 55 54
q 2006 by Taylor & Francis Group, LLC
3-71
(Continued)
CLIMATE AND PRECIPITATION
Table 3A.12 Average Relative Humidity: Morning (M), Afternoon (A) — Selected Cities of the United States (Through 2002)
3-72
Table 3A.12
(Continued) Years
State FL
GA
ID
IL
IN
IA
KS
KY
LA
ME MD MA
MI
Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
42 58 58 19 66 54 38 39 39 41 39 39 38 47 42 38 57 38 38 53 33 38 53 63 44 39 22 44 42 43 39 43 41 41 43 39 41 35 43 43 40 39 36 38 49 40 21 39 42 18 43 38 54 50 58 62 49 49 38 47 43
42 58 58 19 66 54 38 39 39 41 39 39 38 47 42 38 57 38 38 53 33 38 53 63 44 39 22 44 42 43 39 43 41 41 43 39 41 35 43 43 40 39 36 38 49 40 21 39 42 18 43 38 54 50 58 62 49 49 38 47 43
85 88 89 90 88 82 84 88 82 87 87 88 84 81 79 84 84 84 83 79 81 83 82 80 80 80 80 78 76 80 81 80 79 81 81 82 77 78 78 78 78 76 76 78 79 80 78 81 78 81 85 87 85 83 75 76 73 76 69 73 81
66 59 57 60 58 69 60 57 65 58 60 60 59 58 59 54 59 58 55 67 61 62 67 70 70 71 67 70 69 71 73 71 69 72 71 73 70 72 71 72 67 61 61 66 65 69 64 69 65 71 67 72 68 66 67 61 57 62 58 60 71
86 87 88 90 87 81 84 88 82 87 86 88 83 80 77 83 83 84 82 78 78 81 80 79 79 80 79 78 77 81 81 80 79 81 81 81 79 79 80 80 79 76 77 78 78 78 76 79 77 80 84 87 84 82 75 76 72 75 68 72 80
65 57 54 56 54 67 58 53 61 54 57 56 57 54 55 49 54 54 51 66 59 60 66 60 61 62 64 67 67 69 69 70 66 69 67 68 67 69 69 71 64 58 53 64 62 64 60 64 61 68 62 67 65 62 63 57 54 59 56 57 66
86 87 89 91 87 80 82 89 84 89 87 86 82 81 77 84 84 86 84 80 74 77 78 73 76 76 78 79 78 81 81 81 79 81 80 80 78 79 80 82 78 76 78 78 77 78 73 77 76 77 86 89 84 83 76 75 72 75 70 71 83
65 55 52 53 50 66 56 50 62 51 55 56 56 53 52 48 51 52 49 67 57 59 66 44 50 50 59 63 63 65 65 66 62 63 61 61 63 65 66 68 59 54 48 60 57 59 53 58 57 65 61 67 63 60 60 58 51 57 57 55 61
86 86 88 91 87 77 79 88 86 91 86 84 79 83 79 86 85 88 84 81 70 75 77 70 74 71 77 77 78 78 80 79 78 79 79 78 77 77 78 81 80 76 78 80 78 77 71 76 76 80 89 90 87 86 76 73 72 72 69 68 80
64 54 48 50 48 64 54 47 60 47 52 55 55 50 50 45 48 49 46 69 56 58 67 36 43 38 54 58 58 59 60 60 58 57 56 56 58 60 57 59 57 51 43 58 56 54 48 55 52 62 60 65 62 60 56 55 49 52 55 50 54
85 85 88 91 86 77 80 88 87 90 85 84 80 86 82 87 85 88 86 80 68 71 75 69 75 71 82 77 80 81 80 81 82 80 82 79 78 79 79 81 84 81 84 84 83 81 82 81 82 87 91 93 89 90 74 75 77 75 72 70 78
65 57 50 50 51 65 58 49 62 50 53 58 59 54 53 49 50 50 51 68 54 56 66 34 40 35 57 57 57 60 58 58 59 55 57 54 59 61 58 58 61 56 48 62 60 56 57 58 56 66 62 67 62 63 52 58 52 55 59 51 52
85 87 89 88 88 78 84 90 84 91 86 80 84 88 84 87 85 88 88 79 67 68 75 66 73 71 83 79 82 82 82 83 83 81 83 81 80 83 82 84 84 80 82 86 83 84 86 84 83 88 92 93 90 90 78 78 77 78 73 75 80
67 63 58 56 57 68 65 58 61 56 60 60 66 56 56 52 53 54 56 66 52 53 66 29 36 32 57 58 58 60 60 59 59 55 57 55 60 64 61 60 59 53 42 63 56 57 62 58 57 67 63 68 65 62 56 60 52 58 58 57 52
86 89 89 89 89 77 83 91 86 94 87 83 85 90 88 89 89 90 89 81 68 71 76 54 60 65 84 82 85 86 86 86 86 85 87 84 83 86 86 87 81 76 82 85 79 86 90 86 85 90 92 94 91 90 83 80 80 80 74 77 85
71 64 60 59 59 67 63 59 65 61 64 59 64 58 59 55 57 57 58 68 52 56 66 21 25 25 59 60 62 63 62 63 61 56 60 57 61 65 63 63 56 50 40 63 53 58 63 59 58 69 66 69 68 61 58 59 53 56 57 58 54
88 91 91 91 91 78 85 93 87 95 90 85 86 92 89 92 90 93 91 81 68 72 76 52 57 62 87 86 89 89 91 89 88 89 90 89 85 89 89 90 83 79 83 87 79 89 91 88 87 92 92 94 91 90 86 83 84 82 77 79 90
75 67 60 60 61 67 65 60 66 61 65 60 64 59 60 57 56 57 60 69 52 56 66 22 25 23 59 61 64 65 64 64 61 59 60 59 63 66 66 64 59 52 42 62 53 58 62 59 57 69 66 68 68 59 59 59 55 58 59 59 58
88 90 92 96 92 81 87 92 85 93 91 82 87 92 88 92 89 93 91 80 69 71 77 58 66 66 87 85 87 87 90 88 88 89 90 89 84 87 86 89 82 79 79 87 81 89 89 88 88 91 91 92 89 89 88 86 85 83 79 82 91
69 67 61 64 63 70 67 61 63 58 63 59 66 59 59 55 56 58 60 68 53 55 65 29 32 28 57 61 62 63 63 61 60 57 57 59 62 65 63 63 58 53 41 61 57 57 60 58 57 67 64 67 67 60 61 60 55 59 61 61 61
86 87 90 94 91 82 86 90 82 91 89 81 84 89 84 91 88 90 89 80 71 74 78 66 78 70 85 81 81 84 85 83 84 86 87 84 79 81 81 83 78 75 75 83 80 84 83 85 85 86 89 91 87 88 86 84 84 80 77 78 87
62 63 57 61 59 69 63 57 57 53 58 58 63 55 54 50 52 52 54 69 56 57 68 38 49 37 53 59 59 61 61 59 57 58 57 60 59 62 58 61 55 51 45 58 56 56 55 57 55 65 59 62 62 59 62 59 54 56 58 56 61
85 88 90 93 90 83 85 90 82 90 88 79 84 85 82 89 87 88 87 82 75 77 80 77 82 77 80 80 80 83 83 82 80 84 84 83 79 81 82 83 80 77 76 81 79 80 76 81 80 82 89 89 86 86 85 82 79 79 74 78 84
63 60 56 60 57 69 62 56 61 55 58 56 61 54 56 50 54 53 53 71 59 60 69 60 68 60 58 66 66 69 69 67 64 68 66 68 66 69 67 69 63 57 59 64 60 63 58 63 61 68 63 66 64 62 71 62 54 60 59 61 69
86 88 89 91 89 83 84 89 81 88 88 81 84 82 80 85 84 85 84 81 79 80 81 81 81 80 79 80 79 83 83 83 80 83 83 83 80 82 82 82 79 76 75 80 80 81 79 81 79 82 87 89 85 85 80 79 75 75 70 75 83
67 61 57 61 59 70 60 58 65 57 60 56 60 58 59 53 58 57 55 69 61 61 69 71 74 72 66 71 71 73 74 73 70 75 72 75 72 74 73 74 67 60 61 67 65 69 65 68 66 71 66 70 68 65 71 61 57 61 59 62 73
86 88 89 91 89 80 83 90 84 90 88 83 83 86 82 87 86 88 87 80 72 75 78 69 74 72 82 80 81 83 83 83 82 83 84 83 80 82 82 83 80 77 79 82 80 82 81 82 81 85 89 91 87 87 80 79 78 78 73 75 83
66 61 56 58 56 68 61 55 62 55 59 58 61 56 56 51 54 54 54 68 56 58 67 43 48 44 59 63 63 65 65 64 62 62 62 62 63 66 64 65 61 55 48 62 58 60 59 60 59 67 63 67 65 62 61 59 54 58 58 57 61
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
HI
Station
MS
MO
MT
NE
NV
NH NJ NM
NY
NC
ND
OH
44 39 39 38 39 42 61 41 60 43 42 50 39 38 19 33 30 42 42 43 38 41 37 38 42 41 30 57 38 38 9 37 35 35 50 42 39 53 37 34 38 37 42 45 29 37 51 42 42 68 41 40 39 39 38 45 42 39
44 39 39 38 39 42 61 41 60 43 42 50 39 38 19 33 30 42 42 43 38 41 37 38 42 41 30 57 38 38 9 37 35 35 50 42 39 53 37 34 38 37 42 45 29 37 51 42 42 68 41 40 39 39 38 45 42 39
80 81 82 84 82 81 81 78 75 76 81 78 86 86 82 80 77 81 78 65 77 67 72 82 85 77 78 76 80 79 75 74 76 78 73 55 79 79 76 83 79 73 68 64 71 78 80 79 76 68 71 67 78 77 85 80 78 78
70 72 73 73 73 75 74 72 70 69 76 71 68 65 70 69 67 68 65 57 73 61 64 76 76 66 68 66 66 68 63 58 63 60 55 32 50 58 59 83 59 59 39 48 41 64 71 73 62 60 60 58 69 69 59 68 55 56
79 80 81 83 81 81 81 77 74 76 81 79 86 86 80 80 78 80 78 66 79 67 73 82 85 78 80 79 79 77 77 75 77 79 75 51 74 77 76 81 79 72 63 65 65 77 79 79 76 68 71 65 79 78 83 80 76 76
65 68 68 68 68 70 70 68 66 67 74 68 63 61 67 67 66 65 63 51 70 55 54 67 66 64 66 66 63 64 63 48 64 52 50 28 40 47 55 83 55 54 31 42 33 58 66 69 58 57 57 55 66 64 55 65 52 52
79 80 81 84 81 80 82 78 76 76 82 81 86 87 80 78 77 79 77 68 80 69 73 81 83 79 80 80 80 78 78 77 79 77 72 45 69 73 77 84 77 70 55 65 58 76 79 80 77 68 71 67 79 78 84 80 78 77
60 61 63 62 62 63 66 66 62 64 71 65 60 58 61 62 62 61 59 46 58 49 46 54 51 60 63 63 58 61 59 44 61 41 42 23 33 38 53 84 54 51 24 37 26 54 62 65 57 54 56 53 62 60 53 63 49 50
78 78 79 80 79 77 80 76 76 74 80 80 90 90 84 78 77 77 79 69 75 69 70 78 80 79 80 78 80 77 76 76 77 72 69 35 65 67 75 85 77 66 48 64 54 72 76 77 76 67 70 67 77 76 85 78 78 78
54 56 57 54 56 57 59 59 55 55 63 55 58 58 61 59 59 58 59 42 42 42 39 43 42 54 58 53 53 57 53 41 54 33 34 16 28 30 46 84 52 48 19 32 22 49 56 58 55 51 55 51 55 53 50 60 46 48
78 78 79 78 78 76 79 76 77 75 80 80 91 91 88 85 83 81 85 70 74 71 71 80 81 82 83 80 83 80 79 80 78 71 67 32 64 64 77 84 79 70 47 70 58 75 78 76 76 71 73 71 77 76 91 81 82 82
53 54 53 50 54 55 55 56 53 55 60 54 60 61 65 65 63 59 63 42 40 41 38 44 42 57 61 54 57 59 55 42 54 30 30 14 25 27 47 81 55 51 19 37 24 53 56 56 56 53 59 53 54 55 56 65 52 54
79 81 82 82 82 81 85 82 83 78 83 85 91 91 89 87 85 82 87 72 77 72 73 85 83 82 83 82 83 82 79 80 79 63 58 24 62 58 81 86 81 71 46 71 65 79 83 78 71 74 75 72 80 79 94 83 84 84
54 56 56 55 57 58 62 63 59 58 62 59 61 61 65 65 64 59 64 39 41 41 38 46 42 56 59 56 58 61 56 39 54 24 23 11 22 22 52 82 56 52 18 35 27 56 59 57 53 56 60 54 56 56 60 68 55 56
82 84 84 86 86 84 88 85 88 81 86 88 93 92 90 87 85 83 87 64 74 68 67 84 78 83 83 83 83 85 85 81 78 54 52 28 60 46 84 88 83 72 59 76 68 81 84 79 74 75 75 72 83 81 95 85 86 87
54 55 56 55 57 59 62 63 60 59 65 59 64 64 66 63 64 60 62 32 35 31 30 36 31 58 60 57 57 63 63 37 53 18 21 15 18 16 51 84 57 51 27 41 32 55 58 55 56 55 59 53 55 56 62 70 56 59
86 89 89 91 91 89 92 88 91 84 89 91 94 93 91 88 86 86 87 61 69 66 68 82 75 85 86 86 85 87 86 83 79 53 55 33 61 45 88 87 87 76 65 77 73 86 89 83 77 78 78 75 87 86 97 86 88 90
57 58 59 60 60 62 63 66 63 61 67 62 63 63 66 63 64 60 60 30 32 30 30 35 30 59 63 59 58 65 62 39 53 19 23 17 19 16 52 85 58 53 31 42 35 58 60 58 56 57 60 55 58 58 62 70 57 60
87 90 89 92 91 89 92 88 90 84 88 90 93 91 90 87 85 86 87 65 72 68 72 84 82 84 84 83 83 86 84 80 77 59 59 34 66 53 90 82 88 78 61 72 74 89 90 84 79 79 80 76 88 87 97 84 89 90
57 59 60 62 61 63 67 67 66 63 67 63 62 62 65 63 64 61 63 37 37 37 35 42 38 57 61 56 54 63 60 37 51 22 24 17 22 20 55 83 58 55 30 40 38 59 63 60 56 57 60 57 61 61 62 68 57 59
84 85 86 88 88 84 89 82 85 80 83 85 92 91 88 84 80 82 82 64 75 65 73 85 85 79 81 79 81 81 78 76 75 64 64 36 70 62 88 80 88 79 60 65 69 86 85 82 78 76 78 74 85 84 93 82 86 88
57 60 62 64 63 65 67 65 65 61 64 61 59 58 63 62 60 59 59 43 47 44 43 53 50 53 58 53 52 59 55 42 52 27 31 20 27 28 52 79 56 53 30 41 36 58 62 60 54 55 57 55 60 61 56 65 53 54
82 83 83 87 85 81 86 81 84 80 84 83 90 89 85 81 79 81 80 65 80 65 74 84 86 80 81 79 81 81 79 77 76 74 71 45 74 74 84 82 84 76 64 64 69 82 82 80 74 73 76 71 81 81 88 81 83 83
65 68 70 73 70 70 75 72 75 68 73 70 62 60 67 66 66 65 63 54 65 56 58 73 71 61 64 61 60 66 65 53 59 47 46 27 40 46 59 82 57 56 36 47 39 63 69 68 55 59 59 58 67 67 56 65 53 53
81 82 83 85 85 81 84 80 80 78 84 80 87 87 83 81 79 82 80 65 79 65 73 83 86 79 81 79 80 81 77 75 75 76 72 53 77 79 80 82 79 74 69 62 69 80 82 81 70 69 72 68 81 81 85 80 79 79
70 74 75 76 76 75 77 75 75 71 78 73 66 64 70 70 68 69 66 57 73 60 66 79 80 66 68 67 64 70 67 58 62 58 54 32 50 58 61 82 59 58 43 53 42 65 73 72 54 60 60 59 72 71 59 67 55 56
81 83 83 85 84 82 85 81 82 78 83 83 90 89 86 83 81 82 82 66 76 68 72 82 82 81 82 80 81 81 79 78 77 68 65 39 68 65 81 84 82 73 59 68 66 80 82 80 75 72 74 70 81 80 90 82 82 83
60 62 63 63 63 64 66 66 64 63 68 63 62 61 66 64 64 62 62 44 51 46 45 54 52 59 62 59 58 63 60 45 57 36 36 21 31 34 53 83 56 53 29 41 33 58 63 63 56 56 58 55 61 61 57 66 53 55
38 39 43 43 41 39
38 39 43 43 41 39
80 81 76 76 79 80
55 56 71 73 74 71
78 80 79 78 81 79
52 52 70 74 73 66
80 82 81 82 83 78
49 52 66 72 67 60
81 81 79 79 79 76
46 48 55 59 55 54
85 84 79 76 77 78
54 55 53 53 52 56
87 85 84 82 81 81
56 60 57 59 54 57
89 87 84 85 80 84
58 63 53 59 51 56
91 90 83 86 77 88
59 64 52 58 51 59
92 90 82 84 79 88
59 62 54 61 55 60
90 89 79 80 79 84
53 56 55 62 58 59
85 85 81 82 82 80
52 53 67 72 71 66
81 82 79 79 81 80
55 55 72 75 75 71
85 85 81 81 80 81
54 56 61 65 61 61
q 2006 by Taylor & Francis Group, LLC
3-73
(Continued)
CLIMATE AND PRECIPITATION
MN
Detroit Flint Grand Rapids Houghton Lake Lansing Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St.Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte Greensboro-Wnstn-SlmHPT Raleigh Wilmington Bismarck Fargo Williston Akron
3-74
Table 3A.12
(Continued) Years
State
OK OR
PC
RI SC
SD
TN
TX
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
M
A
Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Columbia Greenville-Spartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCty-Kgsprt Chattanooga Knoxville Memphis Nashville Abilene Amarillo Austin Brownsville Corpus Christi Dallas-Fort Worth Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur
42 43 39 36 47 55 37 42 49 45 41 61 62 40 7 9 23 51 42 47 34 32 32 45 54 52 37 49 37
42 43 39 36 47 55 37 42 49 45 41 61 62 40 7 9 23 51 42 47 34 32 32 45 54 52 37 49 37
79 78 79 82 81 81 78 78 87 92 90 80 85 87 80 87 76 80 79 80 88 85 81 77 79 76 78 72 73
70 68 70 73 70 72 62 63 78 80 70 75 76 76 72 73 68 76 72 75 75 78 76 66 76 62 72 58 59
78 77 79 81 80 80 77 76 86 92 88 78 85 88 78 87 77 80 78 79 88 84 81 78 78 76 77 71 72
68 64 66 69 66 68 60 59 74 72 57 65 67 68 70 72 68 75 70 74 75 76 75 66 74 57 70 55 55
79 76 79 80 81 80 76 75 88 91 86 74 85 88 84 86 78 78 79 80 89 85 82 80 77 75 77 72 72
63 57 61 63 60 63 57 56 71 65 50 50 60 61 68 70 70 73 71 75 75 77 75 67 73 53 65 52 53
77 76 77 78 79 77 77 77 89 90 84 71 86 88 84 88 79 78 81 83 89 88 84 81 76 74 75 70 71
58 53 55 57 54 56 56 55 70 58 45 42 55 57 63 70 71 74 74 77 76 79 77 68 73 50 62 49 50
78 79 78 79 80 79 83 85 89 91 83 70 85 88 73 89 78 79 83 83 87 90 85 82 78 78 76 74 75
58 55 55 57 53 54 62 62 70 55 39 38 53 53 53 72 70 77 77 78 76 81 78 68 75 53 62 52 52
80 81 80 81 82 82 84 85 90 90 78 66 83 87 73 88 77 81 81 84 85 92 86 82 80 80 79 77 76
58 55 55 58 54 56 61 63 71 50 33 33 49 49 49 73 69 78 75 78 76 80 78 68 77 54 64 53 52
82 84 82 83 85 85 80 81 90 87 74 55 82 85 65 90 78 81 84 84 83 94 88 82 81 82 80 79 78
57 56 56 58 55 56 55 57 70 39 26 24 45 41 40 77 69 78 77 78 74 79 78 70 77 53 64 52 52
86 87 87 88 91 89 80 82 91 88 74 54 83 85 66 91 79 80 83 83 84 95 88 83 82 86 82 83 81
60 57 57 61 59 57 55 56 71 39 26 26 45 40 42 78 71 77 77 77 74 79 77 71 78 56 65 55 54
85 87 87 88 91 89 83 85 91 89 78 61 86 87 65 92 80 79 83 82 84 95 88 83 81 88 82 85 84
60 57 56 60 57 59 59 62 70 43 29 32 48 45 45 79 72 76 76 76 74 79 77 71 78 57 65 56 55
81 83 83 83 86 85 80 82 90 93 86 72 90 90 70 90 80 79 83 82 84 94 87 82 81 87 77 82 81
60 55 57 59 57 58 57 57 73 62 42 47 62 60 58 77 72 77 76 76 76 79 78 71 78 55 63 54 54
78 80 81 81 83 82 80 80 87 93 91 80 88 90 81 88 79 79 83 83 84 93 86 80 80 82 76 77 76
66 63 65 67 66 67 60 61 78 78 67 70 74 77 75 77 73 77 76 77 76 80 78 69 78 59 68 57 56
78 79 81 83 83 82 78 79 86 92 91 81 86 89 79 87 78 80 81 82 85 87 83 78 80 79 77 73 72
71 69 71 74 73 72 62 63 81 84 76 78 78 80 75 76 72 77 75 77 75 79 79 67 77 62 72 58 58
80 81 81 82 84 83 80 81 89 91 84 70 85 88 75 89 78 80 81 82 86 90 85 81 79 80 78 76 76
62 59 60 63 60 61 59 60 73 60 47 48 59 59 59 74 70 76 75 76 75 79 77 69 76 56 66 54 54
43 42 47 57 15 39 60 36 40
43 42 47 57 15 39 60 36 40
74 77 76 77 73 72 83 83 77
60 66 66 62 65 57 56 54 55
72 75 75 76 73 71 82 82 76
55 62 61 58 65 54 52 49 51
72 76 74 77 75 72 83 84 76
53 57 57 53 65 53 50 48 50
71 74 72 75 79 70 84 84 78
50 51 52 49 65 49 49 44 48
75 77 76 80 80 73 85 85 83
53 52 52 51 66 53 53 48 53
77 80 82 84 83 76 86 86 85
53 53 56 54 69 56 59 51 54
78 83 83 87 87 77 88 88 87
54 54 55 55 72 56 62 53 56
81 86 86 90 86 80 90 91 89
54 56 58 57 71 56 63 56 58
83 87 88 92 84 82 90 92 89
56 57 60 59 70 57 62 55 59
83 82 84 89 80 81 89 91 86
54 55 58 57 66 54 56 51 53
78 79 79 82 76 78 86 89 82
56 62 63 61 65 57 53 51 53
74 78 77 78 72 74 84 84 79
59 67 67 63 65 58 55 53 55
76 79 79 82 79 75 86 86 82
55 58 59 57 67 55 56 51 54
34 43 52 39 41 72 42 63 37 39 41 41 36 38 39 23 42 96 33 55 39 42
34 43 52 39 41 72 42 63 37 39 41 41 36 38 39 23 42 96 33 55 39 42
79 77 69 78 81 82 82 78 79 72 71 78 88 87 79 74 65 85 85 72 71 88
73 70 64 71 62 62 64 65 66 56 53 63 70 70 63 60 34 77 68 52 51 71
80 80 71 80 80 81 80 77 79 72 72 78 89 87 78 72 55 84 86 71 71 87
74 71 61 71 58 57 59 61 62 56 52 61 66 68 61 57 27 74 65 52 48 67
83 83 75 82 80 81 80 76 77 70 69 79 88 87 79 70 47 85 87 67 65 88
70 68 54 67 52 53 55 58 57 51 46 59 63 65 59 54 21 74 65 44 40 66
82 82 73 81 82 82 82 77 79 72 68 82 89 89 81 74 39 86 89 67 66 90
59 59 47 59 50 49 52 56 56 50 42 60 64 66 59 57 17 75 64 42 38 66
81 83 76 81 89 86 87 81 85 78 75 88 90 92 86 78 41 84 91 74 73 92
57 59 48 58 55 53 57 58 60 55 48 64 65 70 63 61 17 73 66 47 43 68
84 85 78 81 90 87 89 82 86 78 77 88 90 93 85 78 45 81 92 76 75 93
61 61 49 60 58 55 59 59 60 54 49 61 64 67 59 60 19 70 65 48 46 68
86 86 74 84 92 89 90 84 88 71 73 87 91 93 79 74 61 81 92 73 70 94
59 58 41 60 61 57 61 60 61 49 46 56 60 62 53 57 29 70 63 49 45 70
87 88 72 86 93 91 92 85 89 72 77 85 91 92 78 75 65 81 92 76 73 94
58 59 37 62 60 57 60 59 61 50 50 55 61 62 53 59 33 69 63 52 47 69
85 86 68 85 93 91 92 85 89 76 79 85 91 90 82 80 66 81 92 79 78 92
58 58 39 61 57 56 59 58 62 56 52 59 65 65 59 62 33 68 64 54 53 68
82 81 67 81 90 90 90 82 86 75 73 83 90 89 82 80 63 80 91 77 78 91
59 58 46 60 53 53 56 54 58 54 48 59 64 63 58 63 30 65 62 51 49 63
83 82 69 83 85 85 85 79 81 75 73 82 87 87 81 80 61 83 89 73 75 89
71 66 60 69 56 56 59 58 62 56 50 62 66 66 61 63 33 72 65 49 49 66
81 80 69 81 82 83 83 78 80 73 71 79 87 86 80 75 65 85 87 72 72 89
74 71 64 73 62 61 64 64 66 56 52 63 69 68 63 59 38 76 67 51 49 70
83 83 72 82 86 86 86 80 83 74 73 83 89 89 81 76 56 83 89 73 72 91
65 63 51 64 57 56 59 59 61 54 49 60 65 66 59 60 27 72 65 49 46 68
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
PA
Jan
Station
UT VI VA
Note:
42 60 41 39 42 43 37 39 54
42 60 41 39 42 43 37 39 54
75 80 87 83 79 79 73 73 75
56 61 69 66 59 69 64 54 59
75 80 87 82 78 78 74 73 75
53 59 66 64 58 60 61 50 57
71 79 87 82 78 70 75 73 74
48 57 63 62 54 46 58 48 54
73 82 89 84 80 66 73 73 74
47 59 64 62 53 39 52 45 51
79 87 91 88 85 65 73 81 77
53 62 66 65 57 34 51 52 56
80 87 92 86 84 59 77 83 79
54 60 65 60 55 26 54 55 57
75 86 92 81 76 52 78 86 81
48 55 62 53 48 22 53 57 59
76 85 92 79 77 53 83 86 84
50 54 62 51 49 24 56 56 61
82 85 92 84 83 61 86 88 84
58 57 65 58 56 30 60 57 61
81 84 90 84 82 68 81 86 83
56 57 62 59 55 41 60 52 59
80 81 89 84 82 75 78 80 79
56 59 64 63 57 59 65 52 57
78 80 87 83 80 79 77 76
56 60 68 65 59 71 67 54
77 83 90 83 80 67 77 80
53 58 65 61 55 43 59 53
The relative humidity is expressed as a percentage measure of the amount of moisture in the air compared to the maximum amount of moisture the air can hold at the same temperature and pressure. Average humidity values are given for selected morning and afternoon observations. Maximum relative humidity values usually occur during morning hours. In this publication, the Local Standard Time (LST) of morning and afternoon humidity is shown below. Atlantic, Alaskan (M morning 8 A.M.) (Afternoon 2 P.M.), Eastern, Bering, 165W Meridian (M morning 7 A.M.) (Afternoon 1 P.M.), Central, 180E Meridian (M morning 6 A.M.) (Afternoon NOON), Mountain, 165E Meridian (M morning 5 A.M.) (Afternoon 5 P.M.), Pacific, 150E Meridian (M morning 4 A.M.) (Afternoon 4 P.M.), 135E Meridian (M morning 9 A.M.) (Afternoon 3 P.M.).
Source:
From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
CLIMATE AND PRECIPITATION
San Angelo San Antonio Victoria Waco Wichita Falls Salt Lake City Burlington Lynchburg Norfolk
3-75
q 2006 by Taylor & Francis Group, LLC
3-76
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 3B
CLIMATIC DATA — WORLD
Figure 3B.2 General Pattern of Annual World Precipitation. (From Environmental Science Service: Administration, Climates of the World, 1969. www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Figure 3B.3
3-77
Average January World Temperature. (From Climates of the World, Historical Climatology Series 6–14, 1991. www.noaa.gov.)
Figure 3B.4 Average July World Temperatures. (From Climates of the World, Historical Climatology Series 6–14, 1991. www.noaa.gov.) q 2006 by Taylor & Francis Group, LLC
Temperature
Average Precipitation
Average Daily
Extreme
October
November
December
8F
September
8F
August
8F
July
8F
June
Minimum
8F
May
Maximum
8F
April
Minimum
8F
March
Maximum
8F
February
Minimum
Year
January
Maximum
Feet
Length of Record
Minimum
8
Minimum
Maximum
8
Maximum
Length of Record
Oct
Elevation
July
Longitude
Country and Station
Apr
Latitude
Jan
3-78
Table 3B.13 Temperature and Precipitation Data for Representative World-Wide Stations
Year
8F
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
North America 35 35 33 30 33
03N 26N 39N 18N 34N
106 37W 82 32W 84 26W 97 42W 86 45W
5,311 2,140 1,010 597 620
30 30 30 30 30
46 48 52 60 57
24 28 37 41 36
69 67 70 78 76
42 42 50 57 50
91 84 87 95 93
66 61 71 74 71
71 68 72 82 79
45 45 52 60 52
104 99 103 109 107
K16 K7 K9 K2 K10
30 30 30 30 30
0.4 4.2 4.4 2.4 5.0
0.4 4.0 4.5 2.6 5.3
0.5 4.8 5.4 2.1 6.0
0.5 4.0 4.5 3.6 4.5
0.8 3.7 3.2 3.7 3.4
0.6 3.5 3.8 3.2 4.0
1.2 5.9 4.7 2.2 5.2
1.3 4.9 3.6 1.9 4.9
1.0 3.6 3.3 3.4 3.3
0.8 3.1 2.4 2.8 3.0
0.4 2.8 3.0 2.1 3.5
0.5 3.6 4.4 2.5 5.0
8.4 48.1 47.2 32.5 53.1
Bismark, ND Boise, ID Brownsville, TX Buffalo, NY Cheyenne, WY
46 43 25 42 41
46N 34N 54N 56N 09N
100 45W 116 13W 97 26W 78 44W 104 49W
1,647 2,838 16 705 6,126
30 30 30 30 30
20 36 71 31 37
0 22 52 18 14
55 63 82 53 56
32 37 66 34 30
86 91 93 80 85
58 59 76 59 55
59 65 85 60 63
34 38 67 41 32
114 112 104 99 100
K45 K28 12 K21 K38
30 30 30 30 30
0.4 1.3 1.4 2.8 0.5
0.4 1.3 1.5 2.7 0.6
0.8 1.3 1.0 3.2 1.2
1.2 1.2 1.6 3.0 1.9
2.0 1.3 2.4 3.0 2.5
3.4 0.9 3.0 2.5 2.1
2.2 0.2 1.7 2.6 1.8
1.7 0.2 2.8 3.1 1.4
1.2 0.4 5.0 3.1 1.1
0.9 0.8 3.5 3.0 0.8
0.6 1.2 1.3 3.6 0.6
0.4 1.3 1.7 3.0 0.5
15.2 11.4 26.9 35.6 15.0
Chicago, IL Des Moines, IO Dodge City, KS El Paso, TX Indianapolis, IN
41 41 37 31 39
47N 32N 46N 48N 44N
87 45W 93 39W 99 58W 106 24W 86 17W
607 938 2,582 3,918 792
30 30 30 30 30
33 29 42 56 37
19 11 20 30 21
57 59 66 78 61
41 38 41 49 40
84 87 93 95 86
67 65 68 69 64
63 66 71 79 67
47 43 46 50 44
105 110 109 109 107
K23 K30 K26 K8 K25
30 30 30 30 30
1.9 1.3 0.6 0.5 3.1
1.6 1.1 0.7 0.4 2.3
2.7 2.1 1.2 0.4 3.4
3.0 2.5 1.8 0.3 3.7
3.7 4.1 3.2 0.4 4.0
4.1 4.7 3.0 0.7 4.6
3.4 3.1 2.3 1.3 3.5
3.2 3.7 2.4 1.2 3.0
2.7 2.9 1.5 1.1 3.2
2.8 2.1 1.4 0.9 2.6
2.2 1.8 0.6 0.3 3.1
1.9 1.1 0.5 0.5 2.7
33.2 30.5 19.2 8.0 39.2
Jacksonville, FL Kansas City, MO Las Vegas, NV Los Angeles, CA Louisville, KY
30 39 36 33 38
25N 07N 05N 56N 11N
81 39W 94 36W 115 10W 118 23W 85 44W
20 742 2,162 97 477
30 30 30 30 30
67 40 54 64 44
45 23 32 45 27
80 66 78 67 66
58 46 51 52 43
92 92 104 76 89
73 71 76 62 67
80 72 80 73 70
62 49 53 57 46
105 113 117 110 107
10 K22 8 23 K20
30 30 30 30 30
2.5 1.4 0.5 2.7 4.1
2.9 1.2 0.4 2.9 3.3
3.5 2.5 0.4 1.8 4.6
3.6 3.6 0.2 1.1 3.8
3.5 4.4 0.1 0.1 3.9
6.3 4.6 — 0.1 4.0
7.7 3.2 0.5 — 3.4
6.9 3.8 0.5 — 3.0
7.6 3.3 0.3 0.2 2.6
5.2 2.9 0.2 0.4 2.3
1.7 1.8 0.3 1.1 3.2
2.2 1.5 0.4 2.4 3.2
53.6 34.2 3.8 12.8 41.4
Miami, FL Minneapolis, MN Missoula, MT Nashville, TN New Orleans, LA
25 44 46 36 29
48N 53N 55N 07N 59N
80 16W 93 13W 114 05W 86 41W 90 15W
7 834 3,190 590 3
30 30 30 30 30
76 22 28 49 64
58 2 10 31 45
83 56 57 71 78
66 33 31 48 58
89 84 85 91 91
75 61 49 70 73
85 61 58 74 80
71 37 30 49 61
100 108 105 107 102
28 K34 K33 K15 7
30 30 30 30 30
2.0 0.7 0.9 5.5 3.8
1.9 0.8 0.9 4.5 4.0
2.3 1.5 0.7 5.2 5.3
3.9 1.9 1.0 3.7 4.6
6.4 3.2 1.9 3.7 4.4
7.4 4.0 1.9 3.3 4.4
6.8 3.3 0.9 3.7 6.7
7.0 3.2 0.7 2.9 5.3
9.5 2.4 1.0 2.9 5.0
8.2 1.6 1.0 2.3 2.8
2.8 1.4 0.9 3.3 3.3
1.7 0.9 1.1 4.2 4.1
59.9 24.9 12.9 45.2 53.7
New York, NY Oklahoma City, OK Phoenix, AZ Pittsburgh, PA Portland, ME
40 35 33 40 43
47N 24N 26N 27N 39N
73 58W 97 36W 112 01W 80 00W 70 19W
132 1,285 1,117 747 47
30 30 30 30 30
40 46 64 40 32
27 28 35 25 12
60 71 84 63 53
43 49 50 42 32
85 93 105 85 80
68 72 75 65 57
66 74 87 65 60
50 52 55 45 37
106 113 118 103 103
K15 K17 16 K20 K39
30 30 30 30 30
3.3 1.3 0.7 2.8 4.4
2.8 1.4 0.9 2.3 3.8
4.0 2.0 0.7 3.5 4.3
3.4 3.1 0.3 3.4 3.7
3.7 5.2 0.1 3.8 3.4
3.3 4.5 0.1 4.0 3.2
3.7 2.4 0.8 3.6 2.9
4.4 2.5 1.1 3.5 2.4
3.9 3.0 0.7 2.7 3.5
3.1 2.5 0.5 2.5 3.2
3.4 1.6 0.5 2.3 4.2
3.3 1.4 0.9 2.5 3.9
42.3 30.9 7.3 36.9 42.9
Portland, OR Reno, NV Salt Lake City, UT San Francisco, CA Sault Ste. Marie, MI
45 39 40 37 46
36N 30N 46N 37N 28N
122 36W 119 47W 111 58W 122 23W 84 22W
21 4,404 4,220 8 721
30 30 30 30 30
44 45 37 55 23
33 16 18 42 8
62 65 63 64 46
42 31 36 47 30
79 89 94 72 76
56 46 60 54 54
63 69 65 71 55
45 29 38 51 38
107 106 107 106 98
K3 K19 K30 20 K37
30 30 30 30 30
5.4 1.2 1.4 4.0 2.1
4.2 1.0 1.2 3.5 1.5
3.8 0.7 1.6 2.7 1.8
2.1 0.5 1.8 1.3 2.2
2.0 0.5 1.4 0.5 2.8
1.7 0.4 1.0 0.1 3.3
0.4 0.3 0.6 — 2.5
0.7 0.2 0.9 — 2.9
1.6 0.2 0.5 0.2 3.8
3.6 0.5 1.2 0.7 2.8
5.3 0.6 1.3 1.6 3.3
6.4 1.1 1.2 4.1 2.3
37.2 7.2 14.1 18.7 31.3
Seattle, WA Sheridan, WY Spokane, WA Washington, DC Wilmington, NC
47 44 47 38 34
27N 46N 38N 51N 16N
122 18W 106 58W 117 32W 77 03W 77 55W
400 3,964 2,356 14 28
30 30 30 30 30
44 34 31 44 58
33 9 19 30 37
58 56 59 66 74
40 31 36 46 51
76 87 86 87 89
54 56 55 69 71
60 62 60 68 76
44 33 38 50 55
100 106 108 106 104
0 K41 K30 K15 5
30 30 30 30 30
5.7 0.6 2.4 3.0 2.9
4.2 0.7 1.9 2.5 3.4
3.8 1.4 1.5 3.2 4.0
2.4 2.2 0.9 3.2 2.9
1.7 2.6 1.2 4.1 3.5
1.6 2.6 1.5 3.2 4.3
0.8 1.2 0.4 4.2 7.7
1.0 0.9 0.4 4.9 6.9
2.1 1.2 0.8 3.8 6.3
4.0 1.1 1.6 3.1 3.0
5.4 0.8 2.2 2.8 3.1
6.3 0.6 2.4 2.8 3.4
39.0 15.9 17.2 40.8 51.4
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
United States Albuquerque, NM Asheville, NC Atlanta, GA Austin, TX Birmingham, AL
13N 02N 18N 47N 12N
149 131 156 161 162
52W 34W 47W 48W 43W
85 110 31 125 96
30 30 30 30 30
21 38 K9 11 33
4 30 K23 K4 23
44 50 7 34 38
28 37 K7 18 28
65 63 45 62 54
50 51 33 48 45
42 51 21 38 45
28 42 12 25 36
86 90 78 90 78
K38 K4 K56 K52 K9
30 30 30 30 30
0.8 11.4 0.2 1.1 2.3
0.7 8.5 0.2 1.1 3.2
0.5 9.6 0.1 1.0 1.8
0.4 9.1 0.1 0.6 1.5
0.5 7.1 0.1 1.0 2.3
1.0 5.7 0.4 1.2 2.0
1.9 6.0 0.8 2.0 1.8
2.6 7.5 0.9 4.2 4.3
2.5 9.9 0.6 2.6 4.3
1.9 16.9 0.5 1.5 4.6
1.0 14.7 0.2 1.1 3.8
0.9 12.1 0.2 1.0 2.6
14.7 118.5 4.3 18.4 34.5
Fairbanks Juneau King Salmon Nome St. Paul Island
64 58 58 64 57
49N 22N 41N 30N 09N
147 134 156 165 170
52W 35W 39W 26W 13W
436 12 49 13 22
30 30 30 30 30
K1 30 21 12 30
K21 20 6 K3 21
42 45 41 28 33
17 31 25 14 24
72 63 63 55 49
48 48 47 44 42
35 47 43 35 41
17 37 29 24 33
99 89 88 84 64
K66 K21 K40 K47 K26
30 30 30 30 30
0.9 4.0 1.1 1.0 1.8
0.5 3.1 1.0 0.9 1.2
0.4 3.3 1.0 0.9 1.1
0.3 2.9 0.6 0.8 1.0
0.7 3.2 1.0 0.7 1.3
1.4 3.4 1.4 0.9 1.2
1.8 4.5 2.1 2.3 2.3
2.2 5.0 3.4 3.8 3.3
1.1 6.7 3.1 2.7 3.1
0.9 8.3 2.2 1.7 3.2
0.6 6.1 1.5 1.2 2.5
0.5 4.2 1.0 1.0 1.8
11.3 54.7 19.4 17.9 23.8
Shemya Yakutat
52 43N 59 31N
174 06E 139 40W
122 28
30 30
34 34
29 20
38 45
33 29
49 61
44 48
42 49
38 35
63 86
16 K24
30 30
2.5 10.9
2.3 8.2
2.6 8.7
2.1 7.2
2.4 8.0
1.3 5.1
2.2 8.4
2.1 10.9
2.3 16.6
2.8 19.6
2.7 16.1
2.1 12.3
27.4 132.0
68 82 51 46 47
14N 31N 06N 17N 00N
135 00W 62 20W 114 01W 63 08W 65 27W
30 95 3,540 181 109
22 9 55 65 50
K10 K19 24 26 23
K26 K29 2 10 2
19 K8 53 43 47
K2 K18 27 30 28
66 44 76 73 77
47 36 47 58 56
25 2 54 54 55
15 K7 29 41 37
93 67 97 98 102
K62 K53 K49 K27 K43
22 10 55 65 50
0.5 0.2 0.5 3.8 3.4
0.5 0.3 0.5 3.0 2.7
0.4 0.3 0.8 3.2 3.3
0.5 0.3 1.0 2.8 3.0
0.5 0.5 2.3 2.7 3.2
0.8 0.6 3.1 2.6 3.6
1.4 0.5 2.5 3.0 3.9
1.4 1.1 2.3 3.4 4.0
0.9 1.0 1.5 3.4 3.1
0.9 0.9 0.7 4.1 4.0
0.8 0.2 0.7 3.8 3.4
0.4 0.4 0.6 4.0 3.2
9.0 6.3 16.7 39.8 40.8
Churchhill, Man Edmonton, Alta Fort Nelson, BC Fort Simpson, NWT Frobisher Bay, NWT
58 53 58 61 63
45N 34N 50N 45N 45N
94 04W 113 31W 122 35W 121 14W 68 33W
94 2,219 1,253 554 110
30 71 12 42 18
K11 16 1 K10 K9
K27 K3 K15 K27 K23
24 52 47 38 16
4 28 25 14 K1
64 74 74 74 53
43 50 51 50 39
34 51 43 36 29
20 30 25 21 18
96 99 98 97 76
K57 K57 K61 K70 K49
30 71 13 42 10
0.5 0.9 0.9 0.7 0.7
0.6 0.7 1.2 0.7 0.9
0.9 0.7 0.7 0.5 0.8
0.9 1.0 0.8 0.7 0.8
0.9 1.9 1.4 1.4 0.7
1.9 3.2 2.5 1.5 0.9
2.2 3.3 2.4 2.0 1.5
2.7 2.4 1.5 1.5 2.0
2.3 1.3 1.3 1.3 1.8
1.4 0.8 1.0 1.1 1.1
1.0 0.9 1.4 0.9 1.1
0.7 0.9 1.2 0.8 1.0
16.0 18.0 16.3 13.1 13.3
Gander, Nfld Halifax, NS Kapuskasing, Ont Knob Lake, Que Montreal, Que
48 44 49 54 45
57N 39N 25N 48N 30N
54 63 82 66 73
34W 34W 28W 49W 34W
496 83 743 1,712 187
14 75 19 30 67
27 32 10 K3 21
13 15 K14 K21 6
40 47 43 30 50
27 31 19 12 33
71 74 75 64 78
52 55 50 46 61
51 57 47 37 54
37 41 31 25 40
96 99 101 88 97
K17 K21 K53 K59 K35
14 71 19 10 77
2.6 5.4 2.0 1.9 3.8
3.3 4.4 1.1 1.9 3.0
2.8 4.9 1.6 1.4 3.5
2.6 4.5 1.8 1.6 2.6
2.6 4.1 2.1 1.7 3.1
2.8 4.0 2.3 3.3 3.4
3.6 3.8 3.4 3.3 3.7
3.6 4.4 2.9 4.4 3.5
3.7 4.1 3.5 3.4 3.7
4.1 5.4 2.5 2.9 3.4
4.2 5.3 2.4 2.4 3.5
3.7 5.4 1.9 1.5 3.6
39.6 55.7 27.5 29.7 40.8
North Bay, Ont Ottawa, Ont Penticton, BC Port Arthur, Ont Prince George, BC
46 45 49 48 53
21N 19N 28N 22N 53N
79 25W 75 40W 119 36W 89 19W 122 41W
1,216 374 1,129 644 2,218
17 65 32 62 27
22 21 32 17 23
2 3 21 K4 3
48 51 61 44 54
28 31 35 26 27
78 81 84 74 75
56 58 53 52 44
49 54 59 50 52
36 37 38 34 30
99 102 105 104 102
K46 K38 K16 K42 K58
23 65 32 59 27
2.0 2.9 1.0 0.9 1.8
1.5 2.2 0.7 0.8 1.2
1.8 2.8 0.7 1.0 1.4
2.2 2.7 0.7 1.5 0.8
2.5 2.5 1.1 2.1 1.3
3.2 3.5 1.2 2.8 2.1
3.2 3.4 0.8 3.6 1.6
2.7 2.6 0.8 2.8 1.9
3.7 3.2 1.0 3.4 2.0
3.2 2.9 0.8 2.5 2.0
2.7 3.0 0.9 1.5 1.9
2.1 2.6 1.1 0.9 1.9
30.8 34.3 10.8 23.8 19.9
Prince Rupert, BC Quebec, Que Regina, Sask Resolute, NWT St. John, NB
54 46 50 74 45
17N 48N 26N 43N 17N
130 23W 71 23W 104 40W 94 59W 66 04W
170 239 1,884 220 119
26 72 55 13 61
39 18 10 K20 28
30 2 K11 K33 11
50 44 50 K1 43
37 29 26 K16 32
62 76 79 45 69
49 57 51 35 54
53 51 52 11 54
42 37 27 0 41
90 97 110 61 93
K3 K34 K56 K61 K24
26 72 49 7 61
9.8 3.5 0.5 0.1 4.1
7.6 2.7 0.3 0.1 3.1
8.4 3.0 0.7 0.2 3.7
6.7 2.4 0.7 0.2 3.2
5.3 3.1 1.8 0.5 3.1
4.1 3.7 3.3 0.8 3.2
4.8 4.0 2.4 0.9 3.1
5.1 4.0 1.8 1.1 3.6
7.7 3.6 1.3 0.8 3.7
12.2 3.4 0.9 0.5 4.1
12.3 3.2 0.6 0.2 3.9
11.3 3.2 0.4 0.1 3.8
95.3 39.8 14.7 5.5 42.6
St. Johns, Nfld Saskatoon, Sask The Pas, Man Toronto, Ont Vancouver, BC
47 52 53 43 49
32N 08N 49N 40N 17N
52 44W 106 38W 101 15W 79 24W 123 05W
211 1,690 890 379 127
68 38 27 105 43
30 9 1 30 41
18 K11 K18 16 32
41 49 45 50 58
29 26 21 34 40
69 77 75 79 74
51 52 54 59 54
53 51 45 56 57
40 27 26 40 44
93 104 100 105 92
K21 K55 K54 K26 2
58 38 27 105 41
5.3 0.9 0.6 2.7 8.6
5.1 0.5 0.5 2.4 5.8
4.6 0.7 0.7 2.6 5.0
3.8 0.7 0.8 2.5 3.3
3.9 1.4 1.4 2.9 2.8
3.1 2.6 2.2 2.7 2.5
3.1 2.4 2.2 3.0 1.2
4.0 1.9 2.1 2.7 1.7
3.7 1.5 2.0 2.9 3.6
4.8 0.9 1.2 2.4 5.8
5.7 0.5 1.0 2.8 8.3
6.0 0.6 0.8 2.6 8.8
53.1 14.6 15.5 32.2 57.4
Whitehorse, YT Winnipeg, Man Yellow Knife, NWT
60 43N 49 54N 62 28N
135 04W 97 14W 114 27W
2,303 783 674
10 66 13
13 7 K8
K3 K13 K23
41 48 29
22 27 9
67 79 69
45 55 52
41 51 36
28 31 26
91 108 90
K62 K54 K60
10 66 13
0.6 0.9 0.8
0.5 0.9 0.6
0.6 1.2 0.7
0.4 1.4 0.4
0.6 2.3 0.7
1.0 3.1 0.6
1.6 3.1 1.5
1.5 2.5 1.4
1.3 2.3 1.0
0.7 1.5 1.3
1.0 1.1 1.0
0.8 0.9 0.8
10.6 21.2 10.8
Greenland Angmagssalik Denmarkshaven Elsmitte Godthaab Ivigtut
65 76 70 64 61
36N 46N 53N 10N 12N
37 19 40 51 48
33W 00W 42W 43W 10W
95 7 9,843 66 98
30 2 1 40 48
23 K1 K33 19 24
10 K15 K53 10 12
35 6 K14 31 38
16 K13 K37 20 24
54 47 19 52 57
37 34 1 38 42
35 13 K23 35 40
25 2 K42 26 29
77 63 27 76 86
K26 K42 K85 K20 K20
38 2 1 45 50
2.9 1.2 0.6 1.4 3.3
2.4 0.7 0.2 1.7 2.6
2.6 0.7 0.3 1.6 3.4
2.1 0.1 0.2 1.2 2.5
2.0 0.2 0.1 1.7 3.5
1.8 0.2 0.1 1.4 3.2
1.5 0.5 0.1 2.2 3.1
2.1 0.6 0.4 3.1 3.7
3.3 0.3 0.3 3.3 5.9
4.7 0.3 0.5 2.5 5.7
3.0 1.0 0.5 1.9 4.6
2.7 0.7 1.0 1.5 3.1
31.1 6.0 4.3 23.5 44.6
Jacobshavn Nord Scoresbysund Thule Upernivik
69 81 70 76 72
13N 36N 29N 31N 47N
51 16 21 68 56
02W 40W 58W 44W 07W
104 118 56 251 59
32 8 12 12 40
8 K15 12 K4 K1
K7 K28 K3 K17 K13
24 K5 22 10 15
6 K18 6 K7 K1
51 44 49 46 48
40 35 36 38 35
31 3 25 19 29
20 K6 15 8 21
71 61 63 63 69
K46 K60 K42 K44 K44
52 8 12 12 50
0.4 0.8 1.8 0.4 0.4
0.4 0.8 1.4 0.3 0.5
0.5 0.5 0.9 0.2 0.7
0.5 0.3 1.4 0.2 0.6
0.6 0.1 0.4 0.3 0.6
0.8 0.3 0.8 0.2 0.5
1.2 1.0 1.5 0.7 0.9
1.4 1.4 0.7 0.6 1.1
1.3 1.2 1.7 0.6 1.1
0.9 0.6 1.4 0.7 1.1
0.7 1.4 1.1 0.5 1.1
0.5 0.5 1.9 0.2 0.6
9.2 8.9 15.0 4.9 9.2
Canada Aklavik, NWT Alert, NWT Calgary, Alta Charlottetown, PEI Chatham, NB
(Continued) q 2006 by Taylor & Francis Group, LLC
3-79
61 55 71 60 55
CLIMATE AND PRECIPITATION
United States, Alaska Anchorage Annette Barrow Bethel Cold Bay
3-80
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
July
August
September
October
November
December
Maximum
June
Minimum
May
Maximum
April
Minimum
March
Maximum
8F
8F
8F
8F
8F
8F
8F
8F
8F
50N 42N 41N 57N 07N
99 56W 105 57W 103 20W 110 55W 110 17W
10 4,429 5,194 58 85
8 9 26 9 9
85 65 73 74 74
70 36 45 57 54
87 81 85 84 86
71 51 53 65 58
89 89 79 96 96
75 66 60 82 73
88 79 78 91 90
74 51 56 75 68
97 102 101 117 108
25 19 23 20 19
30N 04N 11N 58N 26N
103 32W 104 20W 106 25W 89 38W 99 04W
3,740 26 256 72 7,340
10 17 10 22 42
72 86 71 83 66
45 68 61 62 42
86 87 76 92 78
57 67 65 69 52
90 93 86 92 74
68 76 77 73 54
82 91 85 87 70
58 76 76 71 50
25 16 22 19
40N 12N 16N 12N
100 18W 95 12W 97 51W 96 08W
1,732 184 78 52
11 10 12 10
68 85 75 77
48 72 59 66
84 88 83 83
62 76 69 72
90 89 89 87
71 76 75 74
80 87 85 85
64 75 71 73
Monterrey Salina Cruz Tampico Vera Cruz
February
Minimum
Year
Lerdo Manzanillo Mazatan Merida Mexico City
January
Maximum
Feet
16 28 20 27 24
Length of Record
Minimum
8
Mexico Acapulco Chihuahua Guadalajara Guaymas La Paz
Minimum
Maximum
8
Country and Station
Year
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
60 12 26 41 31
40 22 33 41 12
0.3 0.2 0.4 0.5 0.2
— 0.4 0.2 0.2 0.1
0.0 0.3 0.2 0.2 0.0
— 0.2 0.2 0.1 0.0
1.4 0.2 1.1 — 0.0
12.8 1.7 8.8 0.1 0.2
9.1 3.6 9.4 1.7 0.4
9.3 3.7 8.5 2.7 1.2
13.9 3.3 7.2 2.1 1.4
6.7 0.9 2.2 0.7 0.6
1.2 0.5 0.8 0.3 0.5
0.4 0.4 0.7 0.8 1.1
55.1 15.4 39.7 9.4 5.7
105 103 93 106 92
23 54 52 51 24
14 17 46 40 48
0.4 0.1 0.8 1.2 0.2
0.1 0.2 0.5 0.9 0.3
0.2 — 0.2 0.7 0.5
0.3 0.0 0.1 0.8 0.7
0.8 0.1 0.1 3.2 1.9
1.5 4.7 1.5 5.6 4.1
1.5 5.7 5.9 5.2 4.5
1.3 6.4 8.3 5.6 4.3
2.0 14.5 8.0 6.8 4.1
0.8 5.1 2.6 3.8 1.6
0.8 0.9 0.9 1.3 0.5
0.5 1.8 1.3 1.3 0.3
10.2 39.5 30.2 36.5 23.0
107 98 104 98
25 62 34 53
33 22 12 40
0.6 * 1.5 0.9
0.7 0.4 1.2 0.6
0.8 0.6 1.0 0.6
1.3 0.5 1.5 0.8
1.3 3.3 1.9 2.6
3.0 11.6 8.7 10.4
2.3 4.5 4.9 4.1
2.4 5.5 4.8 11.1
5.2 7.1 10.8 13.9
3.0 4.0 5.0 6.9
1.5 0.9 2.0 3.0
0.8 0.1 1.6 1.0
22.9 38.5 44.9 65.7
Central America Belize Belize Canal Zone Balboa Heights Cristobal Costa Rica San Jose El Salvador San Salvador Guatemala Guatemala City Honduras Tela
17 31N
88 11W
17
27
81
67
86
74
87
75
86
72
97
49
33
5.4
2.4
1.5
2.2
4.3
7.7
6.4
6.7
9.6
12.0
8.9
7.3
74.4
08 57N 09 21N
79 33W 79 54W
118 35
34 36
88 84
71 76
90 86
74 77
87 85
74 76
85 86
73 75
97 97
63 66
46 73
1.0 3.4
0.4 1.5
0.7 1.5
2.9 4.1
8.0 12.5
8.4 13.9
7.1 15.6
7.9 15.3
8.2 12.7
10.1 15.8
10.2 22.3
4.8 11.7
69.7 130.3
09 56N
84 08W
3,760
8
75
58
79
62
77
62
77
60
92
49
34
0.6
0.2
0.8
1.8
9.0
9.5
8.3
9.5
12.0
11.8
5.7
1.6
70.8
13 42N
89 13W
2,238
39
90
60
93
65
89
65
87
65
105
45
39
0.3
0.2
0.4
1.7
7.7
12.9
11.5
11.7
12.1
9.5
1.6
0.4
70.0
14 37N
90 31W
4,855
6
73
53
82
58
78
60
76
60
90
41
29
0.3
0.1
0.5
1.2
6.0
10.8
8.0
7.8
9.1
6.8
0.9
0.3
51.8
15 46N
87 27W
41
4
82
67
87
72
88
73
86
71
96
58
20
8.9
5.1
2.6
3.3
4.3
5.0
6.4
9.4
7.7
13.5
15.9
14.0
96.1
5.8
6.7
7.0
8.1
3.8
50.3
West Indies Bridgetown, Barbados Camp Jacob, Guadaloupe Fort-de-France, Martinique Hamilton, Bermuda Havana, Cuba Kingston, Jamaica La Guerite, St. Christopher (St. Kitts)
13 08N
59 36W
181
35
83
70
86
72
86
74
86
73
95
61
22
2.6
1.1
1.3
1.4
2.3
4.4
5.8
16 01N
61 42W
1,750
19
77
64
79
65
81
68
81
68
92
54
21
9.2
6.1
8.1
7.3
11.5
14.1
17.6
15.3
16.4
12.4
12.3
10.1
140.4
14 37N
61 05W
13
22
83
69
86
71
86
74
87
73
96
56
31
4.7
4.3
2.9
3.9
4.7
7.4
9.4
10.3
9.3
9.7
7.9
5.9
80.4
32 17N
64 46W
151
59
68
58
71
59
85
73
79
69
99
40
62
4.4
4.7
4.8
4.1
4.6
4.4
4.5
5.4
5.2
5.8
5.0
4.7
57.6
23 08N 17 58N 17 20N
82 21W 76 48W 62 45W
80 110 157
25 33 19
79 86 80
65 67 71
84 87 83
69 70 73
89 90 86
75 73 76
85 88 85
73 73 75
104 97 91
43 56 61
72 59 21
2.8 0.9 4.1
1.8 0.6 2.0
1.8 0.9 2.3
2.3 1.2 2.3
4.7 4.0 3.8
6.5 3.5 3.6
4.9 1.5 4.4
5.3 3.6 5.2
5.9 3.9 6.0
6.8 7.1 5.4
3.1 2.9 7.3
2.3 1.4 4.5
48.2 31.5 50.9
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Length of Record
Oct
Elevation
July
Longitude
Apr
Latitude
Jan
Extreme
77 21W 72 20W
12 121
35 42
77 87
65 68
81 89
69 71
88 94
75 74
85 90
73 72
94 101
41 58
57 70
1.4 1.3
1.5 2.3
1.4 3.4
2.5 6.3
4.6 9.1
6.4 4.0
5.8 2.9
5.3 5.7
6.9 6.9
6.5 6.7
2.8 3.4
1.3 1.3
46.4 53.3
Saint Clair, Trinidad Saint Thomas, Virgin Is San Juan, Puerto Rico Santo Domingo, Dom. Rep
10 40N 18 20N
61 31W 64 58W
67 11
49 9
87 82
69 71
90 85
69 74
88 88
71 77
89 87
71 76
101 92
52 63
97 9
2.7 2.5
1.6 1.9
1.8 1.7
2.1 2.2
3.7 4.6
7.6 3.2
8.6 3.2
9.7 4.1
7.6 6.9
6.7 5.6
7.2 3.9
4.9 3.9
64.2 43.7
18 26N
66 00W
13
30
81
67
84
69
87
74
87
73
94
60
30
4.7
2.9
2.2
3.7
7.1
5.7
6.3
7.1
6.8
5.8
6.5
5.4
64.2
18 29N
69 54W
57
26
84
66
85
69
88
72
87
72
98
59
25
2.4
1.4
1.9
3.9
6.8
6.2
6.4
6.3
7.3
6.0
4.8
2.4
55.8
38 34 38 27 22
43S 35S 57S 28S 06S
62 58 67 58 65
16W 29W 59W 50W 36W
95 89 889 177 11,345
33 23 9 39 23
88 85 89 93 70
62 63 56 71 41
71 72 72 81 69
51 53 40 63 32
57 57 55 71 60
39 42 29 53 16
71 69 72 82 71
48 50 43 60 32
109 104 107 112 95
18 22 9 30 0
46 70 24 40 25
1.7 3.1 0.4 4.7 3.5
2.2 2.8 0.4 4.5 2.6
2.5 4.3 0.7 5.3 1.8
2.3 3.5 0.4 5.6 0.3
1.2 3.0 0.6 3.3 —
0.9 2.4 0.6 1.9 0.0
1.0 2.2 0.5 1.7 —
1.0 2.4 0.3 1.5 —
1.6 3.1 0.6 2.8 0.1
2.2 3.4 0.9 4.7 0.3
2.1 3.3 0.5 5.2 1.0
1.9 3.9 0.5 5.2 2.7
20.6 37.4 6.4 46.4 12.3
32 31 42 50 27 54
53S 44S 47S 01S 46S 50S
68 60 65 68 64 68
49W 31W 01W 32W 18W 20W
2,625 210 26 39 653 26
23 12 50 12 28 16
90 91 81 70 97 57
60 67 57 48 69 41
73 77 70 57 82 48
47 58 46 39 59 33
59 62 55 41 70 39
35 45 36 28 44 25
76 75 68 58 87 52
50 54 45 39 59 35
109 113 104 94 116 85
15 21 10 1 19 6
46 23 50 20 20 21
0.9 3.1 0.4 0.6 3.4 2.0
1.2 3.1 0.6 0.3 3.0 2.6
1.1 3.9 0.7 0.3 3.0 1.9
0.5 4.9 0.5 0.6 1.3 2.1
0.4 2.6 0.9 0.4 0.6 1.5
0.3 1.2 0.6 0.5 0.3 1.2
0.2 1.2 0.6 0.4 0.2 1.2
0.3 1.6 0.4 0.5 0.2 1.1
0.5 2.1 0.6 0.3 0.5 1.3
0.7 2.8 0.7 0.3 1.4 1.6
0.7 3.7 0.4 0.4 2.5 1.5
0.7 4.5 0.6 0.7 4.1 1.9
7.5 35.0 7.0 5.3 20.4 19.9
16 15S 16 30S 19 03S
62 03W 68 08W 65 17W
1,607 12,001 9,344
5 31 5
85 63 63
66 43 48
86 65 63
62 40 45
81 62 61
54 33 37
88 66 65
62 40 46
101 80 88
32 26 25
16 50 52
7.2 4.5 7.3
4.7 4.2 4.9
4.4 2.6 3.7
1.8 1.3 1.6
2.0 0.5 0.2
1.5 0.3 0.1
1.1 0.4 0.2
0.9 0.5 0.3
1.2 1.1 1.0
2.9 1.6 1.6
5.0 1.9 2.6
5.9 3.7 4.3
38.6 22.6 27.8
05 22 01 15 08
35S 06S 27S 51S 15S
45 56 48 47 49
28W 22W 29W 56W 12W
266 525 42 3,481 53
9 13 16 3 5
89 91 87 80 88
71 67 72 65 70
89 85 87 82 91
71 61 73 62 68
92 77 88 78 95
64 49 71 51 63
94 87 89 82 93
72 61 71 64 68
103 108 98 93 102
45 20 61 46 55
9 20 20 3 5
6.7 6.6 12.5 9.0 14.9
8.7 4.9 14.1 7.8 12.1
8.0 4.4 14.1 4.8 10.8
6.1 4.3 12.6 3.4 4.1
2.3 5.0 10.2 1.4 1.9
1.0 2.8 6.7 — 0.4
0.7 1.3 5.9 0.0 —
0.7 1.8 4.4 — 0.5
1.0 2.9 3.5 1.3 1.5
2.5 5.4 3.3 4.9 6.6
3.9 5.8 2.6 9.7 4.9
5.7 7.0 6.1 11.7 8.6
47.2 52.2 96.0 54.0 66.2
Corumba Florianopolis Goias Guarapuava Manaus
19 27 15 25 03
00S 35S 58S 16S 08S
57 48 50 51 60
39W 33W 04W 30W 01W
381 96 1,706 3,592 144
8 17 11 10 11
94 83 86 79 88
73 72 63 61 75
92 74 91 73 87
73 64 63 55 75
84 68 89 66 89
64 57 56 47 75
93 73 94 74 92
70 63 63 53 76
106 102 104 94 101
33 32 41 23 63
11 25 11 5 25
7.3 7.6 12.5 8.7 9.8
5.9 5.6 9.9 5.8 9.1
5.1 6.3 10.2 5.4 10.3
4.6 4.1 4.6 4.5 8.7
2.9 3.6 0.4 4.6 6.7
1.9 6.5 0.3 6.5 3.3
0.3 2.2 0.0 2.7 2.3
1.2 3.7 0.3 3.6 1.5
2.6 4.3 2.3 4.6 1.8
4.0 5.1 5.3 6.9 4.2
5.6 3.5 9.4 6.6 5.6
7.1 4.3 9.5 6.1 8.0
48.5 53.1 64.8 65.8 71.3
Natal Parana Porto Alegre Quixeramobim Recife
05 12 30 05 08
46S 26S 02S 12S 04S
35 12W 48 06W 51.13W 39 18W 34 53W
52 853 33 653 97
18 19 22 9 27
87 90 87 92 86
76 58 67 79 77
86 90 78 86 85
73 58 60 76 75
82 91 66 88 80
69 48 49 74 71
85 94 74 93 84
75 58 57 77 75
100 105 105 100 94
61 37 25 63 50
18 19 22 13 56
1.9 11.3 3.5 0.7 2.1
4.8 9.3 3.2 5.0 3.3
7.0 9.4 3.9 6.6 6.3
9.2 4.0 4.1 5.0 8.7
7.1 0.5 4.5 7.0 10.5
8.7 * 5.1 1.7 10.9
7.7 0.1 4.5 0.7 10.0
3.8 0.2 5.0 0.6 6.0
1.4 1.1 5.2 0.4 2.5
0.8 5.0 3.4 0.6 1.0
0.7 9.1 3.1 0.7 1.0
1.1 12.2 3.5 0.6 1.1
54.2 62.3 49.1 29.6 63.4
Rio de Janeiro Salvador (Bahia) Santarem Sao Paulo Sena Madureira Uaupes Uruguaiana
22 13 02 23 09 00 29
55S 00S 30S 37S 04S 08S 46S
43 38 54 46 68 67 57
12W 30W 42W 39W 39W 05W 07W
201 154 66 2,628 443 272 246
38 25 22 44 12 15 15
84 86 86 77 92 88 91
73 74 73 63 69 72 69
80 84 85 73 91 88 78
69 74 73 59 68 72 59
75 79 87 66 91 85 66
63 69 71 53 63 70 48
77 83 91 68 93 89 77
66 71 73 57 69 71 55
102 100 99 100 100 100 108
46 50 65 32 41 52 27
84 20 22 24 17 10 12
4.9 2.6 6.8 8.8 11.2 10.3 3.6
4.8 5.3 10.9 7.8 11.3 7.7 3.6
5.1 6.1 13.2 6.0 10.2 10.0 5.6
4.2 11.2 12.9 2.2 9.4 10.6 5.1
3.1 10.8 11.3 3.0 4.1 12.0 3.7
2.1 9.4 6.9 2.4 2.2 9.2 4.2
1.6 7.2 4.1 1.5 1.1 8.8 3.2
1.7 4.8 1.7 2.1 1.5 7.2 2.8
2.6 3.3 1.5 3.5 4.0 5.1 3.6
3.1 4.0 1.9 4.6 7.0 6.9 4.1
4.1 4.5 2.3 6.0 7.5 7.2 2.9
5.4 5.6 4.1 9.4 11.7 10.4 4.1
42.6 74.8 77.9 57.3 81.2 105.4 46.6
Chile Ancud Antofagasta Arica Cabo Raper Los Evangelistas
41 26 18 46 52
47S 42S 28S 50S 23S
73 70 70 75 75
52W 24W 20W 38W 07W
184 308 95 131 190
30 22 15 8 16
62 76 78 58 50
51 63 64 46 44
57 70 74 54 48
47 58 60 44 41
50 63 66 47 43
42 51 54 38 36
55 66 69 51 45
45 55 58 40 39
82 86 93 72 66
30 37 39 28 19
46 32 25 10 27
3.1 0.0 — 7.8 11.7
3.7 0.0 0.0 5.8 10.0
5.3 0.0 0.0 7.1 11.3
7.4 — 0.0 7.7 11.4
9.9 — 0.0 7.5 9.6
11.0 0.1 0.0 7.9 9.4
10.3 0.2 0.0 9.5 9.4
9.4 0.1 — 7.5 8.6
6.5 — 0.0 5.6 9.2
4.2 0.1 0.0 7.0 8.8
4.7 — 0.0 6.7 9.9
4.6 0.0 — 7.0 10.1
80.1 0.5 — 87.1 119.4
69 27W 72 42W
9,350 33
7 8
65 63
49 50
63 55
47 43
57 45
40 37
61 55
44 42
75 93
20 18
7 11
— 7.8
— 7.8
0.3 8.3
— 7.5
0.7 14.7
— 10.4
0.5 11.1
0.3 11.1
0.2 6.5
0.2 7.8
0.0 7.0
— 7.9
2.2 107.9
South America Argentina Bahia Blanca Buenos Aires Cipolletti Corrientes La Quiaca Mendoza Parana Puerto Madryn Santa Cruz Santiago del Estero Ushulaia Bollvia Concepcion La Paz Sucre Brazil Barra do Corda Bela Vista Belem Brasilia Conceicao do Araguaia
Potrerillos Puerto Aisen
26 30S 42 24S
(Continued) q 2006 by Taylor & Francis Group, LLC
3-81
25 05N 18 33N
CLIMATE AND PRECIPITATION
Nassau, Bahamas Port-au-Prince, Haiti
3-82
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Length of Record
January
February
March
April
May
June
July
August
September
October
November
December
8
Feet
Year
8F
8F
8F
8F
8F
8F
8F
8F
8F
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
53 33 39 33
10S 27S 48S 01S
70 70 73 71
54W 42W 14W 38W
26 1,706 16 135
15 14 29 30
58 85 73 72
45 53 52 56
50 74 62 67
39 45 46 52
40 59 52 60
31 37 41 47
51 72 63 65
38 45 44 50
86 99 97 94
11 24 19 32
15 58 60 41
1.5 0.1 2.6 0.1
0.9 0.1 2.9 —
1.3 0.2 5.2 0.3
1.4 0.5 9.2 0.6
1.3 2.5 14.2 4.1
1.6 3.3 17.7 5.9
1.1 3.0 15.5 3.9
1.2 2.2 12.9 2.9
0.9 1.2 8.2 1.3
1.1 0.6 5.0 0.4
0.7 0.3 4.9 0.2
1.4 0.2 4.1 0.2
14.4 14.2 102.4 19.9
Colombia Andagoya Bogota Cartagena Ipiales Tumaco
05 04 10 00 01
06N 42N 28N 50N 49N
76 74 75 77 78
40W 08W 30W 42W 45W
197 8,355 39 9,680 7
8 10 6 9 10
90 67 84 61 82
75 48 73 50 75
90 67 87 60 84
75 51 76 49 76
89 64 88 57 82
74 50 78 42 75
90 66 87 62 82
74 50 77 49 75
97 75 98 77 90
62 30 61 32 64
15 49 10 13 10
25.0 2.3 0.4 3.1 16.9
21.4 2.6 0.0 2.3 11.7
19.5 4.0 0.4 3.5 9.6
26.1 5.8 0.9 3.5 14.6
25.5 4.5 3.4 2.8 17.4
25.8 2.4 3.4 1.9 12.0
23.3 2.0 3.0 1.3 7.7
25.3 2.2 0.6 1.1 7.3
24.6 2.4 0.5 1.4 7.3
22.7 6.3 10.8 3.1 5.9
22.4 4.7 8.9 3.3 4.9
19.5 2.6 4.5 2.6 7.0
281.1 41.8 36.8 29.9 122.3
Ecuador Cuenca Guayaquil Quito
02 53S 02 10S 00 08S
78 39W 79 53W 78 29W
8,301 20 9,222
7 5 54
69 87 67
50 72 46
69 88 69
50 72 47
65 84 71
47 67 44
70 86 71
49 68 46
81 98 86
29 52 25
10 10 33
2.0 8.3 3.9
1.8 11.4 4.4
3.2 11.5 5.6
4.3 8.1 6.9
4.3 2.1 5.4
1.7 0.4 1.7
0.9 0.2 0.8
1.1 — 1.2
1.6 — 2.7
3.1 — 4.4
1.8 0.1 3.8
2.5 1.1 3.1
28.3 43.2 43.9
French Guiana Cayenne
04 56N
52 27W
20
38
84
74
86
75
88
73
91
74
97
65
51
14.4
12.3
15.8
18.9
21.7
15.5
6.9
2.8
1.2
1.3
4.6
10.7
126.1
Guyana Georgetown Lethem
06 50N 03 24N
58 12W 59 38W
6 270
54 3
84 91
74 73
85 91
76 74
85 87
75 73
87 92
76 76
93 97
68 63
35 9
8.0 1.2
4.5 1.4
6.9 1.3
5.5 5.7
11.4 11.5
11.9 11.9
10.0 14.8
6.9 9.4
3.2 3.4
3.0 2.3
6.1 4.3
11.3 1.3
88.7 68.5
Paraguay Asuncion Bahia Negra
25 17S 20 14S
57 30W 58 10W
456 318
15 20
95 92
71 74
84 87
65 68
74 79
53 61
86 90
62 69
110 106
29 35
30 20
5.5 5.4
5.1 5.3
4.3 4.9
5.2 2.9
4.6 2.3
2.7 1.6
2.2 1.5
1.5 0.6
3.1 2.3
5.5 4.2
5.9 5.3
6.2 4.3
51.8 40.6
Peru Arequipa Cajamarca Cusco Iquitos Lima Mollendo
16 07 13 03 12 17
71 78 71 73 77 72
34W 30W 59W 13W 03W 07W
8,460 8,662 10,866 384 394 80
13 9 13 5 15 10
67 71 68 90 82 79
49 48 45 71 66 66
67 70 71 87 80 76
48 47 40 71 63 63
67 70 70 88 67 67
47 41 31 68 57 57
68 71 72 90 71 70
47 47 43 70 58 59
82 79 86 100 93 90
25 25 16 54 49 50
37 9 12 5 15 10
1.3 3.6 6.4 9.1 0.1 —
1.8 4.2 5.9 10.4 — 0.1
0.7 4.6 4.3 9.4 — —
0.2 3.4 2.0 13.6 — —
— 1.7 0.6 10.7 0.2 0.1
— 9.5 0.2 5.7 0.2 0.1
— 9.2 0.2 6.4 0.3 —
— 9.3 0.4 5.2 0.3 0.2
0.0 2.3 1.0 10.5 0.3 0.2
— 2.3 2.6 7.3 0.1 0.1
— 1.9 3.0 9.1 0.1 0.1
0.4 3.2 5.4 10.3 — —
4.4 28.2 32.0 107.7 1.6 0.9
Surinam Paramaribo
05 49N
55 09W
12
35
85
72
86
73
87
73
91
73
99
62
75
8.4
6.5
7.9
9.0
12.2
11.9
9.1
6.2
3.1
3.0
4.9
8.8
91.0
Uruguay Artigas Montevideo
30 24S 34 52S
56 23W 56 12W
384 72
13 56
91 83
65 62
77 71
55 53
65 58
45 43
75 68
54 49
107 109
24 25
50 56
4.3 2.9
3.9 2.6
4.7 3.9
5.1 3.9
4.1 3.3
4.1 3.2
2.8 2.9
3.0 3.1
4.0 3.0
4.7 2.6
3.8 2.9
4.1 3.1
48.6 37.4
Venezuela Caracas Ciudad Bolivar Maracaibo
10 30N 08 07N 10 39N
66 56W 63 32W 71 36W
3,418 197 20
30 10 12
75 90 90
56 72 73
81 93 92
60 75 76
78 90 94
61 75 76
79 93 92
61 75 76
91 100 102
45 64 66
46 10 36
0.9 1.4 0.1
0.4 0.8 —
0.6 0.7 0.3
1.3 1.0 0.8
3.1 3.8 2.7
4.0 5.5 2.2
4.3 6.3 1.8
4.3 7.1 2.2
4.2 3.6 2.8
4.3 4.0 5.9
3.7 2.8 3.3
1.8 1.3 0.6
32.9 38.3 22.7
Merida Santa Elena
08 36N 04 36N
71 10W 61 07W
5,293 2,976
14 10
73 82
56 61
75 82
60 63
76 81
59 61
75 84
60 61
90 95
48 48
14 10
2.5 3.2
1.5 3.2
3.6 3.2
6.7 5.7
9.8 9.6
7.3 9.5
4.7 9.1
5.7 7.6
6.7 5.3
9.5 4.9
8.2 4.9
3.4 4.5
69.7 70.7
Latitude
Maximum
Oct
Length of Record
July
Elevation
Apr
Longitude
Jan
Extreme
Country and Station
8 Punta Arenas Santiago Valdivia Valparaiso
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
21S 09S 33S 45S 05S 00S
Year
Easter Is. (Isla de Pascua) Mas a Tierra (Juan Fernandez) Seymour Is. (Galapagos Is.)
27 10S
109 26W
98
4
77
64
78
63
70
58
73
58
88
46
10
4.8
3.7
4.6
4.2
4.6
4.3
3.5
3.0
2.7
3.7
4.6
4.9
48.6
33 37S
78 52W
20
25
72
60
68
57
60
50
61
51
86
39
29
0.8
1.2
1.6
3.4
5.9
6.4
5.8
4.4
2.9
1.9
1.6
1.0
36.9
00 28S
90 18W
36
3
86
72
87
75
81
69
81
67
93
58
3
0.8
1.4
1.1
0.7
—
—
—
—
—
—
—
—
4.0
03 50S 54 16S
32 25W 36 30W
148 8
32 23
84 48
75 35
82 42
75 29
81 34
73 23
82 41
75 28
93 84
63 K3
32 24
1.7 3.3
4.7 4.3
7.4 5.3
10.5 5.4
10.5 5.2
7.3 4.9
5.4 5.5
1.9 5.3
0.7 3.5
0.3 2.6
0.4 3.4
0.5 3.0
51.3 51.7
60 44S
44 44W
13
48
35
29
31
21
20
4
30
19
54
K40
46
1.4
1.5
1.9
1.6
1.2
1.0
1.3
1.3
1.1
1.1
1.3
1.0
15.7
51 42S
57 51W
6
25
56
42
49
37
40
31
48
35
76
12
41
2.8
2.3
2.5
2.6
2.6
2.1
2.0
2.0
1.5
1.6
2.0
2.8
26.8
95
21
10
3.0
3.3
3.9
2.2
1.6
1.9
0.5
1.9
1.7
7.1
8.5
7.3
42.9
Atlantic Islands Fernando de Noronha Cumberland Bay, South Georgia Laurie Is., South Orkneys Stanley, Falkland Isles
CLIMATE AND PRECIPITATION
Pacific Islands
Europe Albania Durres Andorra Les Escaldes Austria Innsbruck Vienna Bulgaria Sofia Varna Cyprus Nicosia Czechoslovakia Prague Prerov Denmark Copenhagen Aarhus Finland Helsinki Kuusamo Vaasa France Ajaccio (Corsica) Bordeaux Brest Cherbourg Lille Lyon Marseille Paris Strasbourg Toulouse Germany Berlin Bremen Frankfurt A/M Hamburg Munich Munster Numberg Gibraltar Windmill Hill Greece Athens Iraklion (Crete)
41 19N
19 28E
23
10
51
42
63
55
83
74
68
58
42 30N
01 31E
3,543
5
43
29
59
39
78
55
61
42
91
0
9
1.5
1.7
2.9
2.4
4.7
3.1
2.2
3.4
3.1
3.5
3.3
2.5
34.3
47 16N 48 15N
11 24E 16 22E
1,909 664
34 50
34 34
20 26
60 57
39 41
78 75
55 59
58 55
40 44
97 98
K16 K14
35 100
2.1 1.5
1.8 1.4
1.5 1.8
2.2 2.0
2.9 2.8
4.1 2.7
5.1 3.0
4.5 2.7
3.1 2.0
2.4 2.0
2.2 1.9
1.9 1.8
33.8 25.6
42 42N 43 12N
23 20E 27 55E
1,805 115
30 30
34 40
22 30
62 59
41 43
82 84
57 63
63 67
42 50
99 107
K17 K12
27 20
1.3 1.5
1.1 0.9
1.7 1.2
2.3 1.2
3.3 1.8
3.2 2.6
2.4 1.9
2.0 1.2
2.3 1.5
2.1 1.9
1.9 1.9
1.4 2.0
25.0 19.6
35 09N
33 17E
716
40
58
42
74
50
97
69
81
58
116
23
64
2.9
2.0
1.3
0.8
1.1
0.4
—
—
0.2
0.9
1.7
3.0
14.6
50 05N 49 27N
14 25E 17 27E
662 702
40 20
34 34
25 25
55 57
40 38
74 77
58 55
54 56
44 40
98 100
K16 K23
70 21
0.9 1.3
0.8 1.1
1.1 1.1
1.5 2.0
2.4 2.4
2.8 2.9
2.6 3.5
2.2 3.2
1.7 2.0
1.2 2.4
1.2 1.5
0.9 1.4
19.3 24.8
55 41N 56 08N
12 33E 10 12E
43 161
30 21
36 35
29 27
50 51
37 37
72 70
55 54
53 53
42 42
91 87
K3 K12
30 21
1.6 2.3
1.3 1.5
1.2 1.4
1.7 1.8
1.7 1.2
2.1 2.2
2.2 2.5
3.2 3.3
1.9 3.2
2.1 2.6
2.2 2.5
2.1 2.1
23.3 26.6
60 10N 65 57N 63 05N
24 57E 29 12E 21 36E
30 843 13
20 20 18
27 17 26
17 2 16
43 35 41
31 18 28
71 68 69
57 50 55
45 36 44
37 27 36
89 90 89
K23 K40 K29
50 20 19
2.2 1.1 1.1
1.7 1.1 0.8
1.7 1.1 0.8
1.7 1.1 1.0
1.9 1.4 1.4
2.0 2.3 1.8
2.3 2.8 2.4
3.3 3.0 2.5
2.8 2.1 2.7
2.9 2.1 2.3
2.7 1.6 1.7
2.4 1.1 1.1
27.6 20.8 19.6
41 44 48 49 50 45 43 48 48 43
52N 50N 19N 39N 35N 42N 18N 49N 35N 33N
08 35E 00 43W 04 47W 01 38W 03 05W 04 47E 05 23E 02 29E 07 46E 01 23E
243 157 56 30 141 938 246 164 465 538
46 51 56 47 40 70 72 66 20 47
56 48 49 47 42 41 53 42 40 47
40 35 40 40 33 30 38 32 31 35
66 63 57 54 58 61 59 60 59 62
48 44 44 43 40 42 41 41 41 43
85 80 70 67 75 80 78 76 78 82
64 58 56 57 55 58 58 55 57 59
72 66 61 59 59 61 76 59 58 66
55 47 49 50 45 45 57 44 43 48
103 102 95 91 96 105 101 105 101 111
23 9 7 14 0 K13 9 1 K8 1
86 47 56 47 40 70 102 118 20 47
3.0 2.7 3.5 3.3 2.5 1.4 1.9 1.5 1.6 1.9
2.3 2.8 3.0 2.9 1.9 1.4 1.5 1.3 1.4 1.7
2.6 2.9 2.5 2.7 2.5 1.8 1.8 1.5 1.7 2.3
2.2 2.6 2.5 2.0 2.0 2.1 2.0 1.7 2.6 2.7
1.6 2.5 1.9 1.9 2.4 2.8 1.9 2.0 2.6 2.9
0.9 2.3 2.0 1.8 2.2 2.9 1.0 2.1 3.1 2.4
2.8 2.0 2.0 1.9 2.8 2.8 0.6 2.1 3.4 1.5
0.7 1.9 2.2 3.0 2.3 2.9 0.9 2.0 3.4 2.1
1.7 2.2 2.3 2.9 2.6 3.1 2.6 2.0 3.1 2.3
3.8 3.0 3.6 4.6 3.0 3.1 3.7 2.2 2.7 2.2
4.4 3.9 4.2 5.1 3.0 2.6 3.1 2.0 2.0 2.4
3.1 3.9 4.4 5.2 3.2 1.9 2.2 1.9 1.9 2.3
29.1 32.7 34.1 37.3 30.3 28.8 23.2 22.3 29.5 26.7
52 53 50 53 48 51 49
27N 05N 07N 33N 09N 58N 27N
13 08 08 09 11 07 11
18E 47E 40E 58E 34E 38E 03E
187 52 338 66 1,739 207 1,050
50 50 50 50 50 50 50
35 37 37 35 33 39 35
26 30 29 28 23 29 26
55 53 58 51 54 56 56
38 38 41 39 37 38 38
74 71 75 69 72 73 74
55 55 56 56 54 54 55
55 54 56 53 53 56 55
41 43 43 44 40 42 41
96 94 100 92 92 96 99
K15 K7 K7 K4 K14 K17 K18
40 80 80 80 80 40 80
1.9 1.9 1.7 2.1 1.7 2.6 1.5
1.3 1.6 1.3 1.9 1.4 1.9 1.2
1.5 1.8 1.6 2.0 1.9 2.2 1.3
1.7 1.5 1.5 1.8 2.7 2.0 1.7
1.9 2.1 2.0 2.1 3.7 2.2 2.2
2.3 2.6 2.5 2.7 4.6 2.7 2.5
3.1 3.2 2.8 3.4 4.7 3.3 3.1
2.2 2.8 2.6 3.2 4.2 3.1 3.1
1.9 2.1 1.9 2.5 3.2 2.5 2.1
1.7 2.2 2.2 2.6 2.2 2.7 2.1
1.7 2.0 2.0 2.1 1.9 2.4 1.9
1.9 2.2 2.0 2.5 1.9 2.9 1.7
23.1 26.0 24.1 28.9 34.1 30.5 24.4
36 06N
05 21W
400
12
58
50
64
55
77
66
70
61
97
35
12
4.6
3.4
3.7
2.5
1.4
0.2
—
0.1
0.8
3.5
4.1
5.4
29.7
37 58N 35 20N
23 43E 25 08E
351 98
72 21
54 60
42 48
67 70
52 54
90 85
72 72
74 77
60 62
109 114
20 32
80 22
2.2 3.7
1.6 3.0
1.4 1.6
0.8 0.9
0.8 0.7
0.6 0.1
0.2 —
0.4 0.1
0.6 0.7
1.7 1.7
2.8 2.8
2.8 2.8
15.8 15.8
q 2006 by Taylor & Francis Group, LLC
3-83
(Continued)
3-84
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
December
Minimum
November
Maximum
October
Minimum
September
Maximum
August
Minimum
July
Maximum
June
Minimum
May
Maximum
April
Minimum
March
Maximum
Feet
Year
8F
8F
8F
8F
8F
8F
8F
8F
8F
8F
36 26N 40 37N
28 15E 22 57E
289 78
10 9
59 49
51
67
59
83
74
76
68
104
30
47 31N 47 36N
19 02E 21 39E
394 430
50 50
35 33
26 21
62 61
44 39
82 81
61 57
61 60
45 41
103 102
65 41N 64 09N
18 05W 21 56W
16 92
23 25
34 36
26 28
40 43
30 33
57 58
47 48
43 44
34 36
51 54N 53 22N 52 41N
08 29W 06 21W 08 55W
56 155 8
27 30 9
48 47 46
38 35 36
55 54 55
41 38 41
68 67 66
53 51 53
58 57 58
43 39 44 40 38
13 09 08 14 13
32E 03E 55E 15E 19E
52 3 318 82 354
30 30 10 30 10
46 56 50 54 58
36 43 41 40 47
62 66 65 65 67
50 50 53 52 53
83 86 82 84 86
68 67 70 70 71
41 48N 40 28N 45 26N
12 36E 17 17E 12 23E
377 56 82
10 10 10
54 55 43
39 43 33
68 59 63
46 50 49
88 89 82
49 37N
06 03E
1,096
7
36
29
58
40
35 54N
14 31E
233
90
59
51
66
43 44N
07 25E
180
60
54
46
61
52 23N
04 55E
5
29
40
34
52
43
69
59
56
48
95
3
29
2.0
1.4
1.3
1.6
1.8
1.8
2.6
2.7
2.8
2.8
2.6
2.2
25.6
60 58 59 69 63 70
24N 10N 56N 39N 25N 22N
05 07 10 18 10 31
19E 59E 44E 57E 27E 06E
141 175 308 335 417 43
49 11 44 47 44 40
43 32 30 30 31 27
27 25 20 22 22 19
55 50 50 37 45 34
34 35 34 27 32 26
72 71 73 69 66 53
51 53 56 48 51 44
57 53 49 40 46 38
38 39 37 33 36 32
89 90 93 83 95 80
3 K14 K21 K1 K22 K11
75 56 56 75 65 56
7.9 5.0 1.7 4.1 3.1 2.5
6.0 3.6 1.3 3.8 2.7 2.5
5.4 3.6 1.4 3.3 2.6 2.3
4.4 2.7 1.6 2.4 2.0 1.5
3.9 2.5 1.8 2.1 1.7 1.3
4.2 2.8 2.4 2.1 1.9 1.3
5.2 3.5 2.9 2.3 2.4 1.5
7.3 5.3 3.8 2.9 3.0 1.7
9.2 4.7 2.5 4.7 3.4 1.9
9.2 6.2 2.9 4.5 3.7 2.5
8.0 5.7 2.3 4.0 2.8 2.1
8.1 6.4 2.3 3.9 2.8 2.4
78.8 52.0 26.9 40.1 32.1 23.5
54 50 52 51
24N 04N 13N 07N
18 19 21 17
40E 57E 02E 05E
36 723 294 482
36 35 25 50
33 32 30 35
25 22 21 25
49 55 54 55
37 38 38 39
70 76 75 74
56 57 56 57
53 56 54 55
42 41 41 42
94 97 98 98
K16 K28 K22 K26
35 35 113 40
1.2 1.1 1.2 1.5
1.0 1.3 1.1 1.1
1.3 1.4 1.3 1.5
1.5 1.8 1.5 1.7
1.8 2.8 1.9 2.4
2.3 4.0 2.6 2.4
2.8 4.5 3.0 3.4
2.6 3.8 3.0 2.7
2.1 2.7 1.9 1.8
1.8 2.2 1.7 1.7
1.8 1.7 1.4 1.5
1.5 1.3 1.4 1.5
21.7 28.6 22.0 23.2
41 49N 37 06N 38 43N
06 47W 08 38W 09 08W
2,395 46 313
11 21 75
46 61 56
31 47 46
59 67 64
39 52 52
80 83 79
54 64 63
62 73 69
42 58 57
103 107 103
10 28 29
11 17 75
11.9 3.2 3.3
6.9 2.6 3.2
7.7 2.8 3.1
3.7 1.4 2.4
3.0 0.8 1.7
1.6 0.2 0.7
0.5 * 0.2
0.6 * 0.2
1.5 0.4 1.4
3.0 1.5 3.1
6.3 2.6 4.2
7.1 2.8 3.6
53.8 18.3 27.0
44 25N
26 06E
269
41
33
20
63
41
86
61
65
44
105
K18
41
1.5
1.1
1.7
1.6
2.5
3.8
2.3
1.8
1.5
1.6
1.9
1.5
22.8
q 2006 by Taylor & Francis Group, LLC
February
Length of Record
Portugal Braganca Lagos Lisbon Romania Bucharest
January
Elevation
8
37N 15N 24N 51N 07N
Length of Record
Longitude
Rome Taranto Venice Luxembourg Luxembourg Malta Valletta Monaco Monaco Netherlands Amsterdam Norway Bergen Kristiansand Oslo Tromoso Trondheim Vardo Poland Danzig Krakow Warsaw Wroclaw (Breslau)
Oct
Year
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
6
5.7
3.9
2.6
1.7
0.5
0.3
0.0
—
0.4
1.7
5.2
6.7
28.5
K10 K22
50 80
1.5 1.2
1.5 1.1
1.7 1.4
2.0 1.8
2.7 2.4
2.6 2.8
2.0 2.5
1.9 2.3
1.8 1.8
2.1 2.2
2.4 2.0
2.0 1.6
24.2 23.1
83 74
K8 4
26 30
1.7 4.0
1.5 3.1
1.7 3.0
1.3 2.1
0.6 1.6
0.9 1.7
1.3 2.0
1.6 2.6
1.9 3.1
2.3 3.4
1.9 3.6
1.9 3.7
18.6 33.9
44 43 45
85 86 87
15 8 12
35 35 12
4.9 2.7 3.8
3.6 2.2 3.0
3.3 2.0 2.0
2.6 1.9 2.2
2.9 2.3 2.4
2.0 2.0 2.1
2.9 2.8 3.1
3.1 3.0 3.0
2.9 2.8 3.0
3.9 2.7 3.4
4.5 2.7 4.2
4.7 2.6 4.3
41.3 29.7 36.5
67 72 73 71 75
55 58 58 60 62
102 102 100 101 113
18 25 18 24 31
30 25 10 30 30
2.6 2.2 3.9 3.7 3.8
1.7 1.5 4.0 3.2 3.4
1.6 1.5 3.3 3.0 2.4
2.3 1.2 3.4 2.6 1.9
2.1 1.5 4.6 1.8 1.1
1.9 0.5 1.4 1.8 0.6
1.5 0.1 1.6 0.6 0.2
1.5 0.4 2.3 0.7 0.6
3.5 1.0 4.7 2.8 0.2
3.7 3.0 6.1 5.1 3.7
2.5 1.8 7.2 4.5 4.1
3.0 2.3 4.1 5.4 4.5
28.0 17.0 46.6 35.2 28.3
64 70 67
73 73 65
53 58 52
104 108 97
20 26 14
30 10 30
3.3 1.6 2.0
2.9 0.9 2.1
2.0 1.3 2.4
2.0 0.8 2.8
1.9 1.0 3.2
0.7 0.6 3.3
0.4 0.4 2.6
0.7 0.7 2.6
2.8 1.0 2.6
4.3 2.2 3.7
4.4 1.8 3.5
4.1 1.9 2.6
29.5 14.2 33.4
74
55
56
43
99
K10
100
2.3
2.0
1.9
2.1
2.4
2.5
2.8
2.6
2.4
2.7
2.7
2.8
29.2
56
84
72
76
66
105
34
90
3.3
2.3
1.5
0.8
0.4
0.4
*
0.2
1.3
2.7
3.6
3.9
20.3
53
77
70
67
60
93
27
60
2.4
2.3
3.1
2.2
2.1
1.4
0.7
1.1
2.3
4.7
4.3
3.5
30.1
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Ireland Cork Dublin Shannon Airport Italy Ancona Cagliari (Sardinia) Genoa Naples Palermo (Sicily)
July
8
Country and Station
Rhodes Thessaloniki Hungary Budapest Debrecen Iceland Akureyri Reykjavik
Apr
Latitude
Jan
Extreme
46 47N 44 11N
23 40E 28 39E
1,286 13
15 20
31 37
18 25
58 55
38 42
79 79
56 63
60 62
41 49
100 101
K26 K13
16 39
1.3 1.2
1.2 1.2
1.0 1.1
2.1 1.1
3.3 1.3
3.3 1.7
2.6 1.3
3.3 1.1
2.0 1.1
1.7 1.4
1.0 1.2
1.2 1.4
24.0 15.1
36 41 42 40 37 39
51N 24N 20N 25N 29N 28N
02 28W 02 09E 03 42W 03 41W 05 59W 00 23W
213 312 2,825 2,188 98 79
20 20 29 30 26 26
61 56 42 47 59 58
47 42 30 33 41 41
69 64 57 64 73 67
54 51 38 44 51 51
85 81 77 87 96 83
69 69 53 62 67 68
76 71 61 66 78 73
62 58 43 48 57 57
108 98 99 102 117 107
34 24 0 14 27 20
20 30 29 30 26 29
0.9 1.2 1.5 1.1 2.2 0.9
1.0 2.1 1.5 1.7 2.9 1.5
0.7 1.9 2.1 1.7 3.3 0.9
0.9 1.8 1.9 1.7 2.3 1.2
0.7 1.8 2.4 1.5 1.3 1.1
0.2 1.3 1.7 1.2 0.9 1.3
* 1.2 0.8 0.4 0.1 0.4
0.1 1.7 0.7 0.3 0.1 0.5
0.6 2.6 1.4 1.2 1.1 2.2
0.9 3.4 2.0 1.9 2.6 1.6
1.5 2.7 2.2 2.2 3.7 2.5
1.1 1.8 2.0 1.6 2.8 1.3
8.6 23.5 20.2 16.5 23.3 15.4
Sweden Abisko Goteberg Haparanda Karlstad Sarna
68 57 65 59 61
21N 42N 50N 23N 41N
18 11 24 13 13
49E 58E 09E 30E 07E
1,273 55 30 164 1,504
11 39 20 30 20
20 35 22 30 19
6 27 10 20 4
33 48 38 49 42
19 36 23 32 23
61 69 71 73 69
45 56 53 56 46
35 51 39 49 42
24 42 30 38 28
82 88 89 93 91
K30 K13 K34 K21 K51
11 61 20 30 20
0.7 2.5 2.2 1.9 1.6
0.6 2.0 1.6 1.2 0.8
0.5 2.0 1.2 1.2 0.9
0.5 1.7 1.5 1.4 1.2
0.7 1.9 1.4 1.9 1.6
1.8 2.2 1.7 1.9 2.8
1.6 2.8 2.1 2.6 3.6
1.8 3.7 2.8 3.1 3.3
1.2 3.1 2.6 2.9 2.6
1.0 3.1 2.8 2.4 2.3
0.6 2.7 2.5 2.4 1.8
0.6 2.8 2.0 1.9 1.8
11.7 30.5 24.4 24.8 24.3
59 21N 57 39N
18 04E 18 18E
146 36
30 30
31 35
23 28
45 44
32 33
70 67
55 55
48 50
39 41
97 88
K26 1
30 30
1.5 1.7
1.1 1.1
1.1 1.2
1.5 1.4
1.6 1.1
1.9 1.4
2.8 2.0
3.1 2.7
2.1 1.7
2.1 1.9
1.9 2.1
1.9 2.0
22.4 20.3
46 57N 46 12N 47 23N
07 26E 06 09E 08 33E
1,877 1,329 1,617
30 30 23
35 39 38
26 29 28
56 58 57
39 41 39
74 77 76
56 58 55
55 58 57
42 44 42
96 101 98
K9 K1 K12
77 125 23
1.9 1.9 2.3
2.0 1.8 1.9
2.6 2.2 2.9
3.0 2.5 3.4
3.7 3.0 4.0
4.4 3.1 4.9
4.4 2.9 5.0
4.3 3.6 4.6
3.5 3.6 3.3
3.5 3.8 3.2
2.7 3.1 2.5
2.5 2.4 2.9
38.5 33.9 40.9
41 39N 40 58N
26 34E 28 50E
154 59
18 18
41 45
28 36
66 61
44 45
88 81
63 65
70 67
49 54
107 100
K8 17
18 18
2.2 3.7
1.9 2.3
1.7 2.6
1.9 1.9
1.7 1.4
2.1 1.3
1.5 1.7
1.1 1.5
1.1 2.3
2.1 3.8
2.9 4.1
3.0 4.9
23.2 31.5
54 52 51 53 55
35N 29N 28N 22N 55N
05 01 03 06 03
56W 56W 10W 21W 11W
57 535 203 155 441
7 30 30 30 30
42 42 45 47 43
34 35 36 35 35
53 53 55 54 50
38 40 41 38 39
65 69 69 67 65
52 54 54 51 52
55 55 57 57 53
44 45 45 43 44
82 92 91 86 83
14 11 2 8 15
30 30 30 35 30
4.2 2.9 4.6 2.7 2.5
2.8 2.1 3.0 2.2 1.6
2.3 1.7 2.3 2.0 1.6
2.4 2.2 2.5 1.9 1.6
2.3 2.5 3.0 2.3 2.2
2.5 1.8 2.2 2.0 1.9
3.5 2.8 3.4 2.8 3.1
3.5 2.7 3.9 3.0 3.1
3.4 2.3 3.6 2.8 2.6
3.8 2.9 4.5 2.7 2.9
3.6 3.2 4.6 2.7 2.4
3.9 2.6 4.3 2.6 2.1
38.2 29.7 41.9 29.7 27.6
51 53 56 50 58
29N 24N 24N 21N 26N
00 00 03 04W 03 27W 04 07W 03 04W
149 198 77 87 119
30 30 30 30 30
44 44 43 47 42
35 36 32 40 35
56 52 53 54 48
40 41 38 43 38
73 66 68 66 59
55 55 51 55 50
58 55 55 58 52
44 46 41 49 43
99 87 89 88 80
9 15 0 16 8
30 30 30 30 30
2.0 2.7 3.1 4.3 2.9
1.5 1.9 2.2 3.0 2.1
1.4 1.5 1.9 2.6 1.8
1.8 1.6 1.7 2.3 2.1
1.8 2.2 2.3 2.5 1.8
1.6 2.0 2.0 2.0 2.0
2.0 2.8 3.1 2.6 2.6
2.2 3.1 2.9 2.9 2.6
1.8 2.6 2.8 2.8 2.9
2.3 3.0 3.3 3.8 3.2
2.5 3.0 2.7 4.6 3.1
2.0 2.5 2.7 4.4 2.9
22.9 28.9 30.7 37.8 30.0
64 46 48 54 58
33N 21N 27N 54N 36N
40 48 35 23 49
32E 02E 04E 53E 41E
22 45 259 118 594
23 10 18 19 20
9 23 25 26 6
2 14 16 18 K2
36 57 53 49 41
23 40 39 34 27
64 85 80 72 72
51 69 62 53 55
36 56 56 50 37
30 40 40 38 29
91 99 101 96 92
K49 K22 K25 K23 K43
25 25 17 19 29
1.2 0.5 1.4 1.6 1.2
1.1 0.5 1.1 1.3 1.0
1.1 0.4 1.2 1.3 0.9
0.7 0.6 1.4 1.8 0.9
1.3 0.6 1.8 2.0 1.9
1.9 0.7 3.0 3.2 2.5
2.6 0.5 1.9 3.3 2.1
2.7 0.4 1.6 3.5 2.9
2.2 0.6 1.0 1.9 2.3
1.9 0.4 1.8 1.9 2.0
1.6 0.6 1.6 1.6 1.6
1.3 0.6 1.6 1.6 1.3
19.8 6.4 19.4 25.0 20.6
Kursk Leningrad Lvov Minsk Moscow
51 59 49 53 55
45N 56N 50N 54N 46N
36 30 24 27 37
12E 16E 01E 33E 40E
773 16 978 738 505
15 26 9 12 15
19 23 31 22 21
11 12 22 13 9
47 45 53 47 47
35 31 38 33 31
74 71 77 70 76
58 57 59 54 55
48 45 55 47 46
36 37 43 36 34
91 91 97 92 96
K23 K36 K29 K27 K27
20 95 35 20 11
1.5 1.0 1.3 1.4 1.5
1.3 0.9 1.5 1.5 1.4
1.2 0.9 1.8 1.3 1.1
1.5 1.0 2.0 1.5 1.9
2.2 1.6 2.8 2.0 2.2
2.5 2.0 3.7 2.8 2.9
3.2 2.5 4.1 3.0 3.0
2.3 2.8 3.1 3.1 2.9
1.6 2.1 2.4 1.6 1.9
1.8 1.8 2.1 1.5 2.7
1.5 1.4 0.8 1.5 1.7
1.7 1.2 1.6 1.7 1.6
22.3 19.2 28.2 22.9 24.8
Odessa Riga Saratov Sevastopol Stalingrad
46 56 51 44 48
29N 57N 32N 37N 42N
30 24 46 33 44
44E 06E 03E 31E 31E
214 67 197 75 136
20 30 14 20 8
28 29 15 39 15
22 20 7 30 4
52 48 50 55 52
41 35 35 42 36
79 72 82 79 84
65 56 64 65 65
57 49 48 63 53
47 39 36 50 37
99 93 102 97 106
K13 K20 K27 K4 K30
15 57 15 30 12
1.0 1.3 1.0 1.1 0.9
0.7 1.0 1.0 1.1 1.0
0.7 1.1 0.8 1.1 0.6
1.1 1.2 1.0 0.9 0.6
1.1 1.7 1.3 0.6 1.0
1.9 2.4 1.8 1.1 1.9
1.6 3.0 1.2 0.8 0.9
1.4 3.0 1.3 0.6 0.8
1.1 2.1 1.1 1.1 0.7
1.4 2.0 1.4 1.5 1.0
1.1 1.9 1.4 1.2 1.5
1.1 1.5 1.2 1.1 1.3
14.3 22.2 14.5 12.2 12.2
Stavropol Tallin Tbilisi Ust’Shchugor Ufy Yugoslavia Belgrade Skopje Split
45 59 41 64 54
02N 26N 43N 16N 43N
41 24 44 57 55
58E 48E 48E 34E 56E
1,886 146 1,325 279 571
18 15 10 15 20
26 27 39 4 6
17 18 26 K14 K3
50 42 61 35 44
37 31 44 17 30
76 70 83 65 75
60 55 65 49 58
55 47 64 33 41
42 38 48 23 31
95 89 95 90 99
K22 K19 6 K67 K42
41 63 10 15 23
1.4 1.1 0.7 1.1 1.6
1.1 1.0 0.8 0.8 1.3
1.5 0.9 1.3 0.8 1.2
2.4 1.1 1.6 0.7 0.9
3.0 1.7 3.6 1.4 1.6
4.1 1.9 3.1 2.2 2.4
3.0 2.1 2.2 3.0 2.6
2.0 2.7 1.7 3.2 2.2
2.5 2.3 1.9 2.4 1.8
2.3 2.1 1.3 2.2 2.3
1.8 1.9 2.0 1.5 2.2
1.8 1.5 1.2 1.3 2.3
26.9 20.2 21.4 20.6 22.5
20 28E 21 28E 16 26E
453 787 420
16 10 14
37 40 51
27 26 29
64 67 65
45 42 50
84 88 87
61 60 68
65 65 69
47 43 55
107 105 100
K14 K11 17
16 10 51
1.6 1.5 3.1
1.3 1.2 2.5
1.6 1.3 3.2
2.2 1.5 3.0
2.6 1.9 2.5
2.8 1.9 2.1
1.9 1.3 1.2
2.5 1.1 1.6
1.7 1.1 2.9
2.7 2.6 4.4
1.8 2.3 4.2
1.9 1.8 4.4
24.6 19.5 35.1
Stockholm Visby (Gotland) Switzerland Berne Geneva Zurich Turkey Edirne Istanbul United Kingdom Belfast Birmingham Cardiff Dublin Edinburgh London Liverpool Perth Plymouth Wick U.S.S.R. Arkhangelsk Astrakhan Dnepropetrovsk Kaunas Kirov
44 48N 41 59N 43 31N
q 2006 by Taylor & Francis Group, LLC
3-85
(Continued)
CLIMATE AND PRECIPITATION
Cluj Constanta Spain Almeria Barcelona Burgos Madrid Sevilla Valencia
3-86
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
54 21 35
64 31 46
55 22 37
76 46 58
65 38 49
71 39 50
December
62 31 42
November
36 25
October
36 38
September
44 46
August
16 K3
July
27 15
June
17 K4
May
26 10
April
8F
March
8F
February
30 5 30
8F
January
200 131 269
8F
Length of Record
28 38W 08 28W 01 11W
8F
Minimum
38 32N 77 01N 60 08N
8F
Maximum
10 19
8F
Minimum
49 23
Maximum
19 01E 14 15E
Minimum
74 31N 78 02N
Maximum
Year
Minimum
Length of Record
Feet
Oct
Maximum
Elevation
8
July
Minimum
Longitude
8
Country and Station
Apr
Maximum
Latitude
Jan
Extreme
Year
8F
8F
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
29 17
71 60
K25 K57
25 15
1.6 1.4
1.3 1.3
1.3 1.1
0.9 0.9
0.8 0.5
0.7 0.4
0.8 0.6
1.2 0.9
1.8 1.0
1.7 1.2
1.4 0.9
1.6 1.5
15.1 11.7
62 29 42
88 60 71
38 K18 17
30 29 30
4.5 2.1 4.5
4.1 1.7 3.4
4.2 1.6 2.9
3.0 1.4 2.7
2.9 0.9 2.2
2.0 0.9 2.2
1.5 1.4 2.7
1.9 1.8 2.9
3.2 2.5 3.7
4.4 2.5 4.3
4.1 2.2 4.5
4.5 2.2 4.5
40.3 21.2 40.5
Ocean Islands
73 16N
56 24E
61
9
8
K6
13
K1
47
36
30
21
68
K41
9
0.6
0.6
0.6
0.4
0.3
0.4
1.4
1.5
1.5
0.6
0.6
0.4
8.9
37 45N
25 40W
118
30
62
54
64
55
76
64
71
61
85
37
30
4.0
3.5
3.5
2.5
2.3
1.4
1.0
1.2
2.9
3.6
3.7
3.0
32.6
58 11N 62 02N
06 21W 06 45W
34 82
30 50
44 42
37 33
49 45
39 36
61 56
51 47
53 58
44 40
78 70
11 8
15 50
6.4 6.6
3.2 5.2
3.2 4.8
3.1 3.6
2.5 3.4
2.4 2.5
3.0 3.1
4.3 3.5
4.7 4.7
6.2 5.9
4.6 6.3
5.5 6.6
49.1 56.2
Africa Algeria Adrar Algiers Annaba Bordj Omar Driss El Golea
27 36 36 28 30
52N 46N 54N 06N 35N
00 17W 03 03E 07 46E 06 42E 02 53E
948 194 66 1,224 1,247
15 25 26 15 15
69 59 59 67 63
39 49 46 38 37
92 68 67 90 84
60 55 52 59 56
115 83 85 110 107
82 70 69 78 79
92 74 75 92 87
63 63 61 63 60
124 107 115 124 120
25 32 32 19 23
15 25 26 15 15
* 4.4 5.6 0.3 0.1
* 3.3 4.1 0.1 0.3
0.1 2.9 2.9 0.1 0.5
* 1.6 2.2 0.2 *
* 1.8 1.5 * *
* 0.6 0.6 * *
* * 0.1 0.0 *
* 0.2 0.3 * *
* 1.6 1.2 * *
0.2 3.1 3.0 * 0.3
0.2 5.1 4.3 0.2 0.4
* 5.4 5.2 0.2 0.3
0.6 30.0 31.0 1.1 1.9
Tamanrasset Touggourt Angola Cangamba
22 42N 33 07N
05 31E 06 04E
4,593 226
15 26
67 62
39 38
86 83
56 55
95 107
71 77
85 84
59 59
102 122
20 26
15 26
0.2 0.2
* 0.4
* 0.5
0.2 0.2
0.4 0.2
0.1 0.2
0.1 *
0.4 *
0.1 0.1
* 0.3
* 0.5
* 0.3
1.5 2.9
13 41S
19 52E
4,331
6
84
62
89
58
82
46
87
59
109
20
7
8.9
7.4
6.8
1.8
0.1
0.0
0.0
0.2
0.2
1.6
5.1
8.5
40.6
Huambo Luanda Moc¸aˆmedes
12 48S 08 49S 15 12S
15 45E 13 13E 12 09E
5,577 194 10
14 27 15
78 83 79
58 74 65
78 85 82
57 75 66
77 74 68
47 65 56
81 79 74
58 71 61
90 98 102
36 58 44
14 59 21
8.7 1.0 0.3
7.8 1.4 0.4
9.8 3.0 0.7
5.7 4.6 0.5
0.4 0.5 *
0.0 * *
* * *
* * *
0.6 0.1 *
5.5 0.2 *
9.6 1.1 0.1
8.9 0.8 0.1
57.0 12.7 2.1
Benin Cotonou
06 21N
02 26E
23
5
80
74
83
78
78
74
80
75
95
65
10
1.3
1.3
4.6
4.9
10.0
14.4
3.5
1.5
2.6
5.3
2.3
0.5
52.4
Botswana Francistown Maun Tsabong
21 13S 19 59S 26 03S
27 30E 23 25E 22 27E
3,294 3,091 3,156
20 20 10
88 90 94
65 66 65
83 87 83
56 58 51
75 77 71
41 42 34
90 95 88
61 64 54
107 110 107
24 24 15
28 20 14
4.2 4.3 2.0
3.1 3.8 1.9
2.8 3.5 1.9
0.7 1.1 1.3
0.2 0.2 0.4
0.1 * 0.4
* 0.0 0.1
* 0.0 *
* * 0.2
0.9 0.5 0.7
2.3 1.9 1.1
3.4 2.8 1.5
17.7 18.2 11.5
Burkina Faso Bobo Dioulasso Ouagadougou
11 10N 12 22N
04 15W 01 31W
1,411 991
11 10
92 92
58 60
99 103
71 79
87 91
69 74
90 95
70 74
115 118
46 48
10 15
0.1 *
0.2 0.1
1.1 0.5
2.1 0.6
4.6 3.3
4.8 4.8
9.8 8.0
12.0 10.9
8.5 5.7
2.5 1.3
0.7 *
0.0 0.0
46.4 35.2
Cameroon Ngaoundere Yaounde
07 17N 03 53N
13 19E 11 32E
3,601 2,526
9 11
87 85
55 67
87 85
64 66
82 80
63 66
82 81
61 65
102 96
46 57
10 11
* 0.9
* 2.6
1.1 5.8
5.5 6.7
7.0 7.7
8.4 6.0
10.6 2.9
9.6 3.1
9.2 8.4
5.3 11.6
0.5 4.6
* 0.9
57.2 61.2
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Bjornoya, Bear Island Gronfjorden, Spitzbergen Horta, Azores Jan Mayen Lerwick, Shetland Island Matochikin Shar, Novaya Zemlya Ponta Delgada, Azores Stornoway, Hebrides Thorshavn, Faeroes
Congo Brazzaville Ouesso Pointe Noire (Loango) Djibouti Djibouti Egypt Alexandria Aswan Cairo Ethiopia Addis Ababa Asmara Diredawa Gambela Gabon Libreville Mayoumba Gambia Banjul Ghana Accra Kumasi Guinea Conakry Kouroussa Guinea-Bissau Bolama Ifni (Now in Morocco) Sidi Ifni Ivory Coast Abidjan Bouake Kenya Mombasa Nairobi Liberia Monrovia Libya Benghazi Kufra Sabhah Tripoli Malagasy Republic Diego Suarez Tananarive Tulear Malawi Karonga Zomba Mali Araouane Bamako Gao Mauritania Atar Nema
04 22N 08 24N
18 34E 20 39E
1,270 1,939
5 3
90 99
68 67
91 98
71 73
85 86
69 69
87 90
69 68
101 109
57 58
5 3
1.0 0.2
1.7 1.3
5.0 0.6
5.3 1.7
7.4 8.4
4.5 6.1
8.9 8.3
8.1 10.1
5.9 10.7
7.9 7.8
4.9 0.6
0.2 0.0
60.8 55.8
11 02N 12 07N 18 00N
20 17E 15 02E 19 10E
1,430 968 837
3 5 5
98 93 84
56 57 54
105 107 104
68 74 69
89 92 109
70 72 76
96 97 103
67 70 72
113 114 121
43 47 37
3 5 5
0.0 0.0 0.0
0.0 0.0 0.0
0.1 0.0 0.0
1.2 0.1 0.0
4.3 1.2 *
5.0 2.6 0.0
7.3 6.7 *
12.3 12.6 0.7
5.8 4.7 *
1.2 1.4 0.0
0.0 0.0 0.0
0.0 0.0 0.0
37.2 29.3 0.7
04 15S 01 37N 04 39S
15 15E 16 04E 11 48E
1,043 1,132 164
15 4 7
88 88 85
69 69 73
91 91 87
71 71 74
82 85 78
63 69 66
89 87 83
70 69 72
98 106 93
54 60 59
18 4 7
6.3 2.4 5.4
4.9 3.6 6.7
7.4 6.4 6.4
7.0 3.2 8.0
4.3 5.8 3.9
0.6 4.6 0.0
* 2.9 0.0
* 3.7 0.0
2.2 7.9 0.4
5.4 10.0 4.1
11.5 5.7 6.6
8.4 2.4 6.6
58.0 58.6 48.1
11 36N
43 09E
23
16
84
73
90
79
106
87
92
80
117
63
46
0.4
0.5
1.0
0.5
0.2
*
0.1
0.3
0.3
0.4
0.9
0.5
46.0
31 12N 24 02N 29 52N
29 53E 32 53E 31 20E
105 366 381
45 46 42
65 74 65
51 50 47
74 96 83
59 66 57
85 106 96
73 79 70
83 98 86
68 71 65
111 124 117
37 35 34
61 11 42
1.9 * 0.2
0.9 * 0.2
0.4 * 0.2
0.1 * 0.1
* * 0.1
* * *
* 0.0 0.0
* 0.0 0.0
* 0.0 *
0.2 * *
1.3 * 0.1
2.2 * 0.2
7.0 * 1.1
09 15 09 08
38 38 41 34
45E 55E 45E 35E
8,038 7,628 3,937 1,345
15 9 8 26
75 74 81 98
43 44 58 64
77 78 91 98
50 51 69 71
69 71 90 87
50 53 68 69
75 72 89 92
45 53 67 67
94 88 100 111
32 31 49 48
37 17 8 30
0.5 * 0.8 0.2
1.5 * 0.8 0.4
2.6 0.4 3.3 1.4
3.4 1.5 3.0 3.2
3.4 1.5 2.8 5.9
5.4 1.3 1.5 6.7
11.0 6.7 4.3 8.5
11.8 5.0 3.8 9.5
7.5 1.3 2.2 7.3
0.8 0.3 0.5 3.5
0.6 0.4 0.3 1.8
0.2 * 0.8 0.4
48.7 18.4 24.1 48.8
00 23N 03 25S
09 26E 10 38E
115 200
11 8
87 84
73 73
89 86
73 73
83 78
68 68
86 82
71 72
99 91
62 60
21 8
9.8 6.5
9.3 9.3
13.2 6.2
13.4 10.2
9.6 2.3
0.5 0.1
0.1 0.0
0.7 0.2
4.1 2.6
13.6 9.3
14.7 10.7
9.8 4.6
98.8 62.0
13 21N
16 40W
90
9
88
59
91
65
86
74
89
72
106
45
9
0.1
0.1
*
*
0.4
2.3
11.1
19.7
12.2
4.3
0.7
0.1
51.0
05 33N 06 40N
00 12W 01 37W
88 942
17 10
87 88
73 66
88 89
76 71
81 82
73 70
85 86
74 70
100 100
59 51
65 10
0.6 0.8
1.3 2.3
2.2 5.7
3.2 5.1
5.6 7.5
7.0 7.9
1.8 4.3
0.6 3.1
1.4 6.8
2.5 7.1
1.4 3.7
0.9 0.8
28.5 55.2
09 31N 10 39N
13 43W 09 53W
23 1,217
7 9
88 93
72 60
90 99
73 73
83 87
72 69
87 90
73 69
96 109
63 39
10 10
0.1 0.4
0.1 0.3
0.4 0.9
0.9 2.8
6.2 5.3
22.0 9.7
51.1 11.7
41.5 13.6
26.9 13.4
14.6 6.6
4.8 1.3
0.4 0.4
169.0 66.4
20N 17N 02N 15N
11 34N
15 26W
62
31
88
67
91
73
84
74
87
74
106
59
37
*
*
*
*
0.8
7.8
23.1
27.6
16.9
8.0
1.6
0.1
85.9
29 27N
10 11W
148
14
66
52
71
59
75
64
75
62
124
40
14
1.0
0.6
0.5
0.6
0.1
0.1
*
*
0.4
0.1
0.9
1.8
6.1
05 19N 07 42N
04 01W 05 00W
65 1,194
13 12
88 91
73 68
90 92
75 70
83 85
73 68
85 89
74 68
96 104
59 57
10 10
1.6 0.4
2.1 1.5
3.9 4.1
4.9 5.8
14.2 5.3
19.5 6.0
8.4 3.1
2.1 4.6
2.8 8.2
6.6 5.2
7.9 1.5
3.1 1.0
77.1 46.7
04 03S 01 16S
39 39E 36 48E
52 5,971
45 15
87 77
75 54
86 75
76 58
81 69
71 51
84 76
74 55
96 87
61 41
54 17
1.0 1.5
0.7 2.5
2.5 4.9
7.7 8.3
12.6 6.2
4.7 1.8
3.5 0.6
2.5 0.9
2.5 1.2
3.4 2.1
3.8 4.3
2.4 3.4
47.3 37.7
06 18N
10 48W
75
6
89
71
90
72
80
72
86
72
97
62
4
0.2
0.1
4.4
11.7
13.4
36.1
24.2
18.6
29.9
25.2
8.2
2.9
174.9
32 24 27 32
20 23 14 13
04E 21E 26E 11E
82 1,276 1,457 72
46 7 3 47
63 69 64 61
50 43 41 47
74 90 89 72
58 62 60 57
84 101 102 85
71 75 74 71
80 90 91 80
66 64 64 65
109 122 120 114
37 26 24 33
46 7 10 56
2.6 * * 3.2
1.6 0.0 * 1.8
0.8 0.0 * 1.1
0.2 0.0 * 0.4
0.1 * 0.1 0.2
* 0.0 0.1 0.1
* 0.0 0.0 *
* 0.0 0.0 *
0.1 0.0 0.0 0.4
0.7 0.0 * 1.6
1.8 0.0 * 2.6
2.6 * * 3.7
10.5 * 0.3 15.1
12 17S 18 55S 23 20S
49 17E 47 33E 43 41E
100 4,500 20
11 44 27
88 79 92
75 61 72
88 76 89
75 58 64
84 68 81
69 48 58
86 80 86
72 54 65
98 95 108
63 34 43
31 62 15
10.6 11.8 3.1
9.5 11.0 3.2
7.6 7.0 1.4
2.2 2.1 0.3
0.3 0.7 0.7
0.2 0.3 0.4
0.2 0.3 0.1
0.3 0.4 0.2
0.3 0.7 0.3
0.7 2.4 0.7
1.1 5.3 1.4
5.8 11.3 1.7
38.7 53.4 13.5
09 57S 15 23S
33 56E 35 19E
1,596 3,141
8 27
86 80
71 65
85 78
70 62
81 72
59 53
91 85
66 64
99 95
51 41
8 29
7.1 12.1
7.0 9.9
10.8 10.1
6.2 2.7
1.7 0.7
0.1 0.4
* 0.3
* 0.3
0.0 0.2
0.3 1.0
0.3 4.3
4.7 10.9
38.3 52.9
18 54N 12 39N 16 16N
03 33W 07 58W 00 03W
935 1,116 902
8 11 15
81 91 83
48 61 58
110 103 105
67 76 77
111 89 97
79 71 80
103 93 100
70 71 78
130 117 116
37 47 44
10 10 19
* * *
* * 0.0
0.0 0.1 *
0.0 0.6 0.1
0.0 2.9 0.4
0.2 5.4 1.0
0.2 11.0 2.9
0.5 13.7 5.4
0.6 8.1 1.5
0.1 1.7 0.2
0.1 0.6 *
* * 0.0
1.7 44.1 11.5
20 31N 16 36N
13 04W 07 16W
761 883
7 9
84 86
54 62
97 105
67 79
106 99
81 78
98 101
72 79
117 120
39 47
10 10
* 0.1
0.0 *
* *
* *
* 0.7
0.1 1.1
0.3 2.3
1.2 4.7
1.1 2.1
0.1 0.7
* *
* 0.1
2.8 11.6
06N 12N 01N 54N
q 2006 by Taylor & Francis Group, LLC
3-87
(Continued)
CLIMATE AND PRECIPITATION
Central African Republic Bangui Ndele Chad Am Timan Fort Lamy Largeau (Faya)
3-88
(Continued) Temperature
Average Precipitation
Average Daily
South Africa, Republic of Cape Town Durban Kimberley Port Elizabeth Port Nolloth Pretoria Walvis Bay Sudan El Fasher Khartoum Port Sudan Wadi Halfa Wau
Minimum
8F
8F
18 07N
15 36W
33 31 34 35
07 08 06 05
Year
IN.
IN.
IN.
IN.
IN.
December
Maximum
8F
November
Minimum
8F
October
Maximum
8F
September
Minimum
8F
August
Maximum
8F
July
Minimum
8F
May
Maximum
8F
April
Minimum
8F
March
Maximum
Year
February
Length of Record
Feet
January
Elevation
8
Length of Record
Longitude
Oct
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
69
5
85
57
90
64
89
74
91
71
115
44
10
*
0.1
*
*
*
0.1
0.5
4.1
0.9
0.4
0.1
*
39W 01W 50W 49W
164 1,509 213 239
48 35 35 35
63 65 63 60
45 40 46 47
69 79 71 65
52 52 52 51
79 101 82 80
65 67 63 64
76 83 77 72
58 57 58 59
110 120 118 106
31 27 32 28
40 31 29 35
2.1 1.0 2.6 4.5
1.9 1.1 2.5 4.2
2.2 1.3 2.6 4.8
1.4 1.2 1.7 3.5
0.9 0.6 1.1 1.7
0.2 0.3 0.3 0.6
0.0 0.1 * *
* 0.1 * *
0.3 0.4 0.4 0.9
1.5 0.9 1.9 3.9
2.6 1.2 3.3 5.8
2.8 1.2 3.4 5.4
15.9 9.4 19.8 35.3
19 50S 15 36S 25 58S
34 51E 32 21E 32 36E
28 899 194
37 8 42
89 96 86
75 65 71
86 93 83
71 63 66
77 86 76
61 55 55
87 101 82
71 68 64
109 117 114
48 32 45
39 8 42
10.9 7.8 5.1
8.4 5.7 4.9
10.1 4.4 4.9
4.2 0.6 2.1
2.2 * 1.1
1.3 * 0.8
1.2 * 0.5
1.1 * 0.5
0.8 * 1.1
5.2 1.1 1.9
5.3 2.6 3.2
9.2 5.2 3.8
59.9 27.4 29.9
26 35S 22 34S
18 08E 17 06E
3,295 5,669
17 30
95 85
65 63
85 77
57 55
70 68
42 43
87 84
55 59
108 97
26 25
45 60
0.8 3.0
1.1 2.9
1.4 3.1
0.6 1.6
0.2 0.3
* *
* *
* *
0.1 0.1
0.2 0.4
0.3 0.9
0.4 1.9
5.2 14.3
16 59N 18 41N 13 31N
07 59E 12 55E 02 06E
1,706 1,171 709
8 9 10
86 81 93
50 45 58
105 101 108
70 63 77
104 108 94
75 75 74
101 101 101
68 62 74
115 116 114
40 29 47
10 10 10
0.0 0.0 *
0.0 0.0 *
* 0.0 0.2
* * 0.3
0.2 * 1.3
0.3 0.0 3.2
1.9 0.1 5.2
3.7 0.5 7.4
0.7 0.3 3.7
0.0 0.0 0.5
0.0 0.0 *
0.0 0.0 0.0
6.8 0.9 21.6
06 10 06 11
07 06 03 13
29E 26E 24E 05E
763 2,113 10 1,162
11 18 32 15
90 89 88 90
72 59 74 54
91 95 89 104
74 72 77 72
83 83 83 90
71 68 74 73
87 89 85 96
71 66 74 68
99 105 104 112
55 46 60 43
33 34 47 40
0.7 * 1.1 *
1.1 0.1 1.8 *
2.6 0.5 4.0 *
5.9 2.5 5.9 0.3
10.4 5.9 10.6 1.6
11.4 7.1 18.1 2.7
7.6 8.5 11.0 7.1
6.7 11.9 2.5 8.7
12.8 10.6 5.5 4.2
9.8 2.9 8.1 0.7
2.1 0.1 2.7 *
0.5 * 1.0 0.0
71.5 50.1 72.3 25.3
14 42N 14 08N
17 29W 16 04W
131 20
25 9
79 93
64 60
81 103
65 68
88 91
76 75
89 93
76 74
109 114
53 48
26 10
* *
* 0.0
* *
* *
* 0.3
0.7 2.6
3.5 6.9
10.0 10.7
5.2 7.0
1.5 2.7
0.1 0.1
0.3 *
21.3 30.3
35N 36N 00N 48N
27N 35N 27N 51N
6.2
08 37N
13 12W
92
8
87
73
88
76
82
73
85
72
98
62
8
0.4
0.2
1.2
3.1
9.5
14.3
29.2
36.5
22.3
14.2
5.5
1.2
137.6
10 26N 02 02N
45 02E 45 21E
45 39
30 13
84 86
68 73
89 90
77 78
107 83
88 73
92 86
76 76
117 97
58 59
30 21
0.3 *
0.1 *
0.2 *
0.5 2.3
0.3 2.3
* 3.8
* 2.5
0.1 1.9
* 1.0
0.1 0.9
0.2 1.6
0.2 0.5
2.0 16.9
33 29 28 33 29
18 31 24 25 16
32E 02E 46E 36E 52E
56 16 3,927 190 23
19 15 19 14 20
78 81 91 78 67
60 69 64 61 53
72 78 77 73 66
53 64 52 55 50
63 72 65 67 62
45 52 36 45 45
70 75 83 70 64
52 62 54 54 49
103 107 103 104 107
28 39 20 31 31
18 78 57 84 64
0.6 4.3 2.4 1.2 0.1
0.3 4.8 2.5 1.3 0.1
0.7 5.1 3.1 1.9 0.2
1.9 3.0 1.5 1.8 0.2
3.1 2.1 0.7 2.4 0.3
3.3 1.3 0.2 1.8 0.3
3.5 1.1 0.2 1.9 0.3
2.6 1.5 0.3 2.0 0.3
1.7 2.8 0.6 2.3 0.2
1.2 4.3 1.0 2.2 0.1
0.7 4.8 1.6 2.2 0.1
0.4 4.7 2.0 1.7 0.1
20.0 39.7 16.1 22.7 2.3
25 45S 22 56S
28 14E 14 30E
4,491 24
13 20
81 73
60 59
75 75
50 55
66 70
37 47
80 67
55 51
96 104
24 25
12 20
5.0 *
4.3 0.2
4.5 0.3
1.7 0.1
0.9 0.1
0.6 *
0.3 *
0.2 0.1
0.8 *
2.2 *
5.2 *
5.2 *.
30.9 0.9
13 15 19 21 07
25 32 37 31 28
2,395 1,279 18 410 1,443
17 46 30 39 38
88 90 81 75 96
50 59 68 46 64
102 105 89 98 99
64 72 71 62 72
96 101 106 106 89
70 77 83 74 69
99 104 93 98 93
64 75 76 67 69
113 118 117 127 115
33 41 50 28 50
17 46 40 39 38
* * 0.2 * *
0.0 * 0.1 * 0.2
* * * * 0.9
* * * * 2.6
0.3 0.1 * * 5.3
0.7 0.3 * 0.0 6.5
4.5 2.1 0.3 * 7.5
5.3 2.8 0.1 * 8.2
1.2 0.7 * * 6.6
0.2 0.2 0.4 * 4.9
0.0 * 1.7 * 0.6
0.0 0.0 0.9 0.0 *
12.2 6.2 3.7 * 43.3
54S 50S 48S 59S 14S
38N 37N 37N 55N 42N
q 2006 by Taylor & Francis Group, LLC
21E 33E 13E 20E 03E
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Nigeria Enugu Kaduna Lagos Maiduguri Senegal Dakar Kaolack Sierra Leone Freetown/Lungi Somalia Berbera Mogadiscio
July
8
Country and Station
Nouakchott Morocco Casablanca Marrakech Rabat Tangier Mozambique Beira Chicoa Maputo Namibia Keetmanshoop Windhoek Niger Agades Bilma Niamey
Apr
Latitude
Jan
Extreme
June
Table 3B.13
06 50S 07 47S 04 53S
39 18E 35 42E 29 38E
47 5,330 2,903
44 14 26
83 76 80
77 59 67
86 75 81
73 59 67
83 72 83
66 52 63
85 80 84
69 57 69
96 90 100
59 42 53
49 24 18
2.6 6.8 4.8
2.6 5.1 5.0
5.1 7.1 5.9
11.4 3.5 5.1
7.4 0.5 1.7
1.3 * 0.2
1.2 * 0.1
1.0 * 0.2
1.2 0.1 0.7
1.6 0.2 1.9
2.9 1.5 5.6
3.6 4.5 5.3
41.9 29.3 36.5
06 10N
01 15E
72
5
85
72
86
74
80
71
83
72
94
58
15
0.6
0.9
1.9
4.6
5.7
8.8
2.8
0.4
1.4
2.4
1.1
0.4
31.0
33 53N 36 47N
10 07E 10 12E
7 217
50 50
61 58
43 43
74 70
54 51
89 90
71 68
81 77
62 59
122 118
27 30
50 50
0.9 2.5
0.7 2.0
0.8 1.6
0.4 1.4
0.3 0.7
* 0.3
* 0.1
0.1 0.3
0.5 1.3
1.2 2.0
1.2 1.9
0.6 2.4
6.7 16.5
00 20N 02 15N
32 36E 32 54E
4,304 3,560
15 14
83 91
65 61
79 86
64 64
77 81
62 61
81 86
63 61
97 100
53 50
15 14
1.8 0.7
2.4 1.0
5.1 3.5
6.9 6.9
5.8 7.9
2.9 4.9
1.8 6.4
3.4 10.0
3.6 8.3
3.8 6.1
4.8 3.2
3.9 1.8
46.2 60.7
26 46N 23 42N
11 31W 15 52W
1,509 35
6 12
73 71
47 56
88 74
58 60
99 78
66 65
88 80
61 65
121 107
37 48
6 14
0.1 *
* *
0.0 *
* *
* 0.1
0.0 0.0
0.0 *
* 0.2
1.0 1.4
* 0.1
0.4 0.2
0.0 1.0
1.5 3.0
05 54S 04 20S 00 26N 05 54S
29 15 25 22
12E 18E 14E 25E
2,493 1,066 1,370 2,198
5 8 8 3
85 87 88 85
66 70 69 68
83 89 88 86
67 71 70 68
82 81 84 85
58 64 67 63
87 88 86 85
67 70 68 68
92 97 97 94
50 58 61 57
20 12 14 14
4.2 5.3 2.1 5.4
4.7 5.7 3.3 5.6
6.3 7.7 7.0 7.7
8.4 7.7 6.2 7.6
3.3 6.2 5.4 3.3
0.3 0.3 4.5 0.8
0.1 0.1 5.2 0.5
0.3 0.1 6.5 2.3
0.8 1.2 7.2 4.6
2.8 4.7 8.6 6.5
7.9 8.7 7.8 9.1
6.3 5.6 3.3 8.9
45.4 53.3 67.1 62.3
13 34S 10 12S 15 25S
23 06E 31 11E 28 19E
3,577 4,544 4,191
8 10 10
82 79 78
65 61 63
84 79 79
61 60 59
81 76 73
47 50 49
91 87 88
64 62 64
108 95 100
38 39 39
9 10 10
8.5 10.7 9.1
6.9 9.9 7.5
5.8 10.9 5.6
1.2 2.8 0.7
* 0.5 0.1
0.0 * *
0.0 * *
* * 0.0
0.3 * *
2.3 0.8 0.4
4.4 6.4 3.6
8.9 9.5 5.9
38.3 51.5 32.9
20 09S 17 50S
28 37E 31 08E
4,405 4,831
15 15
81 78
61 60
79 78
56 55
70 70
45 44
85 83
59 58
99 95
28 32
50 50
5.6 7.7
4.3 7.0
3.3 4.6
0.7 1.1
0.4 0.5
0.1 0.1
* *
* 0.1
0.2 0.2
0.8 1.1
3.2 3.8
4.8 6.4
23.4 32.6
32 38N
16 55W
82
30
66
56
67
58
75
66
74
65
103
40
30
2.5
2.9
3.1
1.3
0.7
0.2
*
*
1.0
3.0
3.5
3.3
21.5
CLIMATE AND PRECIPITATION
Tanzania Dares Salaam Iringa Kigoma Togo Lome Tunisia Gabes Tunis Uganda Kampala Lira Western Sahara Semara Villa Cisneros Zaire Kalemie Kinshasa Kisangani Luluabourg Zambia Balovale Kasama Lusaka Zimbabwe Bulawayo Salisbury Atlantic Islands Funchal, Madeira Island Georgetown, Ascension Island Hutts Gate, St. Helena Las Palmas, Canary Islands Porto da Praia, Cape Verde Is Porto da Praia, Cape Verde Is Santa Isabel, Fernando Po Sao Tome, Sao Tome Tristan da Cunha
07 56S
14 25W
55
29
85
73
88
75
84
72
83
71
95
65
45
0.2
0.4
0.7
1.1
0.5
0.5
0.5
0.4
0.3
0.3
0.2
0.1
5.2
15 57S
05 40W
2,062
30
68
60
69
61
62
55
61
54
82
50
30
2.1
3.1
4.2
3.1
2.8
3.2
4.3
2.6
2.2
1.7
1.2
1.6
32.1
28 11N
15 28W
20
45
70
58
71
61
77
67
79
67
99
46
48
1.4
0.9
0.9
0.5
0.2
*
*
*
0.2
1.1
2.1
1.6
8.6
14 54N
23 31W
112
25
77
68
79
69
83
75
85
76
94
56
25
0.1
*
*
*
0.0
*
0.2
3.8
4.5
1.2
0.3
0.1
10.2
14 54N
23 31W
112
25
77
68
79
69
83
75
85
76
94
56
25
0.1
*
*
*
0.0
*
0.2
3.8
4.5
1.2
0.3
0.1
10.2
03 46N
08 46E
67
89
70
84
69
86
70
102
61
16
1.3
2.5
4.2
7.2
9.4
11.1
7.4
6.6
9.6
10.4
3.5
1.7
74.9
00 20N 37 03S
06 43E 12 19W
16 75
10 5
86 66
73 59
86 64
73 57
82 57
69 50
84 59
71 51
91 75
56 38
10 5
3.2 3.5
4.2 3.5
5.9 6.4
5.0 4.7
5.3 7.1
1.1 5.9
* 6.1
* 6.9
0.9 7.9
4.3 5.8
4.6 4.3
3.5 4.0
38.0 66.1
10 26S 12 05S
56 40E 96 53E
10 15
3 36
86 86
77 77
87 85
77 78
83 82
75 76
84 84
75 76
91 94
69 68
2 38
5.9 5.4
10.1 7.7
4.9 8.5
6.9 10.4
13.2 7.9
8.9 9.0
8.7 8.7
3.2 4.8
1.8 3.7
4.2 3.3
7.0 4.2
10.0 4.6
84.7 78.2
53 01S 21 04S
73 23E 55 22E
16 3,070
5 5
41 74
35 59
39 73
33 56
34 65
27 48
35 69
28 51
58 84
13 40
5 11
5.8 22.4
5.8 8.0
5.7 16.4
6.1 7.2
5.8 5.3
3.9 4.4
3.6 3.1
2.2 3.0
2.5 2.0
3.7 2.3
4.0 3.5
5.1 12.9
54.3 90.5
04 37S
55 27E
15
60
83
76
86
77
81
75
83
75
92
67
64
15.2
10.5
9.2
7.2
6.7
4.0
3.3
2.7
5.1
6.1
9.1
13.4
92.5
20 06S
57 32E
181
40
86
73
82
70
75
62
80
64
95
50
43
8.5
7.8
8.7
5.0
3.8
2.6
2.3
2.5
1.4
1.6
1.8
4.6
50.6
31 16 28
36 26 60
0.9 1.9 0.7
1.9 3.7 0.8
4.2 5.3 1.5
6.8 5.7 3.8
10.6 8.2 5.7
10.6 8.7 7.1
8.1 4.4 5.6
8.5 4.3 4.7
6.5 2.7 5.8
3.4 3.0 4.3
1.2 2.7 1.9
0.9 1.5 0.8
63.6 52.1 42.9
—
2
87
Indian Ocean Islands Agalega Island Cocos (Keeling) Island Heard Island Hellburg, Reunion Island Port Victoria, Seychelles Royal Alfred Observatory, Mauritius
Asia-Far East
23 10N 28 15N 29 30N
113 20E 112 58E 106 33E
59 161 855
26 14 27
65 45 51
49 35 42
77 70 73
65 56 59
91 94 93
77 78 76
85 75 71
67 59 61
101 109 111
(Continued) q 2006 by Taylor & Francis Group, LLC
3-89
China Canton Chanasha Chungking
3-90
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
May
June
July
August
September
October
November
December
117 10E 87 40E 114 10E
April
Tientsin 39 10N Urumchi 43 45N Hong Kong 22 18N Japan Kushiro 43 02N Miyako 39 38N Nagasaki 32 44N Osaka 34 47N Tokyo 35 41N Korea Pusan 35 10N Pyongyang 39 01N Seoul 37 31N Mongolia Ulan Bator 47 54N Taiwan Tainan 22 57N Taipei 25 04N Union of Soviet Socialist Republics Alma-Ata 43 16N Chita 52 02N Dubinka 69 07N Irkutsk 52 16N Kazalinsk 45 46N Khabarovsk 48 28N Kirensk 57 47N Krasnoyarsk 56 01N Markovo 64 45N Narym 58 50N
March
4,296 6,211 5,105 138 16
February
76 07E 102 43E 103 55E 123 24E 121 26E
January
24N 02N 06N 47N 12N
Length of Record
39 25 36 41 31
Minimum
Kashgar Kunming Lanchow Mukden Shanghai
Maximum
29 35
Minimum
75 476
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
60 31
108 102
9 K43
55 38
1.8 0.2
1.9 0.2
3.6 0.4
5.8 0.9
7.0 1.7
9.0 3.7
7.0 6.6
4.1 4.7
3.0 2.3
3.1 1.2
1.9 0.5
1.2 0.2
49.4 22.6
71 70 62 62 75
43 53 39 39 56
106 91 100 103 104
K15 22 K3 K28 10
18 31 4 42 81
0.6 0.4 0.2 0.2 1.9
0.1 0.5 0.2 0.2 2.4
0.5 0.7 0.2 0.7 3.3
0.2 0.8 0.5 1.2 3.6
0.3 4.3 0.8 2.6 3.8
0.2 6.3 0.7 3.8 7.0
0.4 8.8 3.3 7.0 5.8
0.3 8.6 5.1 6.3 5.5
0.1 5.0 2.2 2.9 5.2
0.1 3.0 0.6 1.7 2.9
0.2 1.7 0.0 0.9 2.1
0.3 0.4 0.3 0.4 1.5
3.2 40.5 14.1 28.2 45.0
73 58 78
68 50 81
48 31 73
109 112 97
K3 K30 32
25 6 50
0.2 0.6 1.3
0.1 0.3 1.8
0.4 0.5 2.9
0.5 1.5 5.4
1.1 1.1 11.5
2.4 1.5 15.5
7.6 0.7 15.0
6.0 1.0 14.2
1.7 0.6 10.1
0.6 1.7 4.5
0.4 1.6 1.7
0.2 0.4 1.2
21.0 11.5 85.1
66 77 85 87 83
55 62 73 73 70
58 66 72 72 69
40 46 58 55 55
87 99 98 102 101
K19 1 22 19 17
41 30 59 60 60
1.8 2.9 2.8 1.7 1.9
1.4 3.0 3.3 2.3 2.9
2.8 3.2 4.9 3.8 4.2
3.6 3.5 7.3 5.2 5.3
3.8 4.5 6.7 4.9 5.8
4.1 5.0 12.3 7.4 6.5
4.4 5.0 10.1 5.9 5.6
4.9 7.2 6.9 4.4 6.0
6.6 9.5 9.8 7.0 9.2
4.0 6.8 4.5 5.1 8.2
3.1 3.0 3.7 3.0 3.8
2.0 2.6 3.2 1.9 2.2
42.9 56.2 75.5 52.6 61.6
47 38 41
81 84 84
71 69 70
70 65 67
54 43 45
97 100 99
7 K19 K12
36 43 22
1.7 0.6 1.2
1.4 0.4 0.8
2.7 1.0 1.5
5.5 1.8 3.0
5.2 2.6 3.2
7.9 3.0 5.1
11.6 9.3 14.8
5.1 9.0 10.5
6.8 4.4 4.7
2.9 1.8 1.6
1.6 1.6 1.8
1.2 0.8 1.0
53.6 36.4 49.2
45
18
71
50
44
17
97
K48
15
*
*
0.1
0.2
0.3
1.0
2.9
1.9
0.8
0.2
0.2
0.1
7.7
55 53
82 77
67 64
89 92
77 76
86 80
70 68
95 101
39 32
13 12
0.7 3.8
0.7 5.3
1.1 4.3
3.2 5.3
6.3 6.9
15.6 8.8
16.0 8.8
15.8 8.7
8.4 8.2
1.2 5.5
0.9 4.2
0.6 2.9
70.5 72.7
23 K10 K23 3 16 K2 K14 3 K19 K7
7 K27 K31 K15 5 K13 K28 K10 K29 K18
56 42 6 42 58 41 38 34 5 35
38 19 K10 20 27 28 15 23 K8 19
81 75 59 70 90 75 74 67 59 71
60 51 47 50 65 63 51 55 47 56
55 38 19 41 57 48 10 34 16 35
35 18 11 21 35 34 K4 26 9 25
100 99 84 98 108 91 95 103 84 94
K30 K52 K62 K58 K27 K46 K71 K47 K72 K61
27 24 5 38 19 8 19 8 16 14
1.3 0.1 0.3 0.5 0.4 0.3 0.8 0.1 0.2 0.8
0.9 0.1 0.4 0.4 0.4 0.2 0.5 0.2 0.2 0.5
2.2 0.1 0.2 0.3 0.5 0.3 0.5 0.1 0.3 0.8
4.0 0.4 0.3 0.6 0.5 0.7 0.5 0.2 0.1 0.5
3.7 1.1 0.6 1.3 0.6 2.0 1.0 1.0 0.3 1.3
2.6 1.8 1.9 2.2 0.2 3.5 1.8 1.4 0.8 2.6
1.4 3.3 1.5 3.1 0.2 4.1 2.1 1.2 1.0 2.4
1.2 3.3 2.1 2.8 0.3 3.3 2.1 2.1 1.9 2.7
1.0 1.2 1.8 1.7 0.3 3.0 1.7 1.7 1.1 1.7
2.0 0.5 0.9 0.7 0.4 0.7 1.0 0.9 0.4 1.4
1.9 0.2 0.4 0.6 0.5 0.6 1.0 0.5 0.4 1.1
1.3 0.2 0.3 0.6 0.6 0.5 1.0 0.4 0.3 0.9
23.5 12.3 10.7 14.9 4.9 19.2 14.0 9.8 7.0 16.8
Maximum
114 17E 126 38E
8F
Minimum
30 35N 45 45N
8F
Maximum
Hankow Harbin
8F
Minimum
Year
Year
Maximum
Length of Record
Feet
Oct
Minimum
Elevation
8
July
Maximum
Longitude
8
Country and Station
Apr
8F
8F
8F
8F
8F
8F
8F
46 7
34 K14
69 54
55 31
93 84
78 65
74 54
27 32 8 40 56
33 61 33 20 47
12 37 7 K2 32
71 76 65 60 67
48 51 40 36 49
92 77 84 87 91
68 62 61 69 75
13 2,972 109
24 6 50
33 13 64
16 K7 56
68 60 75
45 36 67
90 82 87
12E 59E 53E 26E 46E
315 98 436 49 19
41 30 59 60 60
30 43 49 47 47
8 23 36 32 29
44 58 66 65 63
31 37 50 47 46
129 07E 125 49E 126 55E
6 94 34
36 43 22
43 27 32
29 8 15
62 61 62
106 56E
4,287
13
K2
K27
120 12E 121 32E
53 21
13 12
72 66
76 53E 113 30E 87 00E 104 19E 62 06E 135 03E 108 07E 92 52E 170 50E 81 39E
2,543 2,218 141 1,532 207 165 938 498 85 197
19 10 5 10 10 7 18 10 15 13
144 141 129 135 139
Okhotsk Omsk Petropavlovsk Salehkard Semipalatinsk
59 54 52 66 50
21N 58N 53N 31N 24N
143 17E 73 20E 158 42E 66 35E 80 13E
18 279 286 60 709
19 19 7 18 10
K6 K1 23 K13 8
K17 K14 11 K21 K7
29 39 35 18 45
10 21 25 4 26
57 74 56 61 81
48 56 47 49 57
33 40 46 26 46
21 27 34 20 30
78 102 84 85 101
K50 K56 K29 K65 K47
25 22 35 27 10
0.1 0.6 3.0 0.3 0.9
0.1 0.3 2.2 0.3 0.5
0.2 0.3 3.4 0.3 0.5
0.4 0.5 2.5 0.3 0.6
0.9 1.2 2.2 0.7 1.2
1.6 2.0 2.0 1.3 1.5
2.2 2.0 3.1 1.9 1.1
2.6 2.0 3.2 2.0 1.3
2.4 1.1 3.8 1.5 0.7
1.0 1.0 3.9 0.7 1.2
0.2 0.7 3.6 0.5 1.1
0.1 0.8 3.0 0.4 1.0
11.8 12.5 35.9 10.2 11.6
Sverdlovsk Tashkent Verkhoyansk Vladivostok Yakutsk
56 41 67 43 62
49N 20N 34N 07N 01N
60 38E 69 18E 133 51E 131 55E 129 43E
894 1,569 328 94 535
21 19 24 14 19
6 37 K54 13 K45
K5 21 K63 0 K53
42 65 19 46 27
26 47 K10 34 6
70 92 66 71 73
54 64 47 60 54
37 65 12 55 23
28 41 K3 41 11
94 106 98 92 97
K45 K19 K90 K22 K84
29 19 44 53 22
0.5 2.1 0.2 0.3 0.3
0.4 1.1 0.2 0.4 0.2
0.5 2.6 0.1 0.7 0.1
0.7 2.3 0.2 1.2 0.3
1.9 1.4 0.3 2.1 0.4
2.7 0.5 0.9 2.9 1.1
2.6 0.2 1.1 3.3 1.6
2.7 0.1 1.0 4.7 1.3
1.6 0.1 0.5 4.3 1.1
1.2 1.2 0.3 1.9 0.5
1.1 1.5 0.3 1.2 0.4
0.8 1.6 0.2 0.6 0.3
16.7 14.7 5.3 23.6 7.4
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Latitude
Jan
Extreme
Brunel Brunel Burma Mandalay Moulmein Cambodia Phanom Penh Indonesia Jakarta Manokwari Mapanget Penfui Pontianak Tabing Tarakan Laos Vientiane Malaysia Kuala Lumpur North Borneo Sandakan Philippine Islands Davao Manila Sarawak: Kuching
04 55N
114 55E
10
5
85
76
87
77
87
76
86
77
99
70
12
14.6
7.6
7.8
9.8
10.9
9.5
9.0
7.3
11.8
14.5
15.2
13.0
131.0
21 59N 16 26N
96 06E 97 39E
252 150
20 43
82 89
55 65
1.1 95
77 77
93 83
78 74
89 88
73 75
111 103
44 52
20 60
0.1 0.2
0.1 0.2
0.2 0.5
1.2 3.0
5.8 19.9
6.3 37.1
2.7 47.5
4.1 44.2
5.4 27.1
4.3 8.5
2.0 1.7
0.4 0.3
32.6 190.2
11 33N
104 51E
39
37
88
71
95
76
90
76
87
76
105
55
49
0.3
0.4
1.4
3.1
5.7
5.8
6.0
6.1
8.9
9.9
5.5
1.7
54.8
06 11S 00 53S 01 32N 10 10S 00 00N 00 52S 03 19N
106 134 124 123 109 100 117
50E 03E 55E 39E 20E 21E 33E
26 10 264 335 13 19 20
80 5 21 21 20 21 19
84 86 85 87 87 87 85
74 73 73 75 74 74 73
87 86 86 89 89 87 86
75 74 73 72 75 75 75
87 86 87 88 89 87 87
73 74 73 70 74 74 74
87 87 89 92 89 86 87
74 74 72 72 75 74 74
98 93 97 101 96 94 94
66 68 65 58 68 68 67
78 40 63 63 63 63 31
11.8 12.0 18.6 15.2 10.8 13.9 10.9
11.8 9.4 13.8 13.7 8.2 10.1 10.2
8.3 13.2 12.2 9.2 9.5 12.2 14.0
5.8 11.1 8.0 2.6 10.9 14.5 13.9
4.5 7.8 6.4 1.2 11.1 12.8 13.5
3.8 7.2 6.5 0.4 8.7 11.7 12.6
2.5 5.4 4.8 0.2 6.5 10.5 10.3
1.7 5.6 4.0 0.0 8.0 13.7 12.4
2.6 4.9 3.3 0.0 9.0 16.2 11.6
4.4 4.7 4.9 0.7 14.4 20.1 14.3
5.6 6.5 8.9 3.3 15.3 20.5 15.2
8.0 10.3 14.7 9.1 12.7 19.2 13.4
70.8 98.1 106.1 55.7 125.1 175.4 152.3
17 58N
102 34E
559
13
83
58
95
73
89
75
88
71
108
32
27
0.2
0.6
1.5
3.9
10.5
11.9
10.5
11.5
11.9
4.3
0.6
0.1
67.5
03 06N
101 42E
111
19
90
72
91
74
90
72
89
73
99
64
19
6.2
7.9
10.2
11.5
8.8
5.1
3.9
6.4
8.6
9.8
10.2
7.5
96.1
05 54N
118 03E
38
45
85
74
89
76
89
75
88
75
99
70
46
19.0
10.9
8.6
4.5
6.2
7.4
6.7
7.9
9.3
10.2
14.5
18.5
123.7
07 07N 14 31N
125 38E 121 00E
88 49
15 61
87 86
72 69
91 93
73 73
88 88
73 75
89 88
73 74
97 101
65 58
34 75
4.8 0.9
4.5 0.5
5.2 0.7
5.8 1.3
9.2 5.1
9.1 10.0
6.5 17.0
6.5 16.6
6.7 14.0
7.9 7.6
5.3 5.7
6.1 2.6
77.6 82.0
01 29N
110 20E
85
5
85
72
90
73
90
72
89
73
98
64
19
24.0
20.1
12.9
11.0
10.3
7.1
7.7
9.2
8.6
10.5
14.1
18.2
153.7
01 18N
103 50E
33
39
86
73
88
75
88
75
87
74
97
66
64
9.9
6.8
7.6
7.4
6.8
6.8
6.7
7.7
7.0
8.2
10.0
10.1
95.0
13 44N 21 03N 10 49N
100 30E 105 52E 106 39E
53 20 33
10 12 31
89 68 89
67 58 70
95 80 95
78 70 76
90 92 88
76 79 75
88 84 88
76 72 74
104 108 104
50 41 57
10 12 33
0.2 0.8 0.6
1.1 1.2 0.1
1.1 2.5 0.5
2.3 3.6 1.7
5.2 4.1 8.7
6.0 11.2 13.0
6.9 11.9 12.4
9.2 15.2 10.6
14.0 10.0 13.2
9.9 3.5 10.6
1.8 2.6 4.5
0.1 2.8 2.2
57.8 69.4 78.1
CLIMATE AND PRECIPITATION
Asia-Southeast
Singapore Singapore Thailand Bangkok Viet Nam Hanoi Saigon
Asia-Middle East Aden Riyan Afghanistan Kabul Kandhar
14 39N
49 19E
83
13
82
67
88
74
92
77
88
72
111
57
13
0.3
0.1
0.6
0.2
*
0.1
0.1
0.1
*
*
0.7
0.3
2.5
34 30N 31 36N
69 13E 65 40E
5,955 3,462
9 7
36 56
18 31
66 83
43 50
92 102
61 66
73 85
42 44
104 111
K6 14
45 7
1.3 3.1
1.5 1.7
3.6 0.8
3.3 0.3
0.9 0.2
0.2 *
0.1 0.1
0.1 *
* 0.0
0.4 *
0.6 *
0.6 0.8
12.6 7.0
Bangladesh Dacca India Ahmadabad Bangalore Bombay Calcutta Cherrapunji
23 46N
90 23E
24
60
77
56
92
74
88
79
88
75
108
43
61
0.3
1.2
2.4
5.4
9.6
12.4
13.0
13.3
9.8
5.3
1.0
0.2
73.9
23 12 19 22 25
03N 57N 06N 32N 15N
72 77 72 88 91
37E 40E 51E 20E 44E
180 2,937 27 21 4,309
45 60 60 60 35
85 80 88 80 60
58 57 62 55 46
104 93 93 97 71
75 69 74 76 59
93 81 88 90 72
79 66 75 79 65
97 82 93 89 72
73 65 73 74 61
118 102 110 111 87
36 46 46 44 33
45 60 60 60 35
* 0.2 0.1 0.4 0.7
0.1 0.3 0.1 1.2 2.1
0.1 0.4 0.1 1.4 7.3
* 1.6 * 1.7 26.2
0.4 4.2 0.7 5.5 50.4
3.7 2.9 19.1 11.7 6.1
12.2 3.9 24.3 12.8 96.3
8.1 5.0 13.4 12.9 70.1
4.2 6.7 10.4 9.9 43.3
0.4 5.9 2.5 4.5 19.4
0.1 2.7 0.5 0.8 2.7
* 0.4 0.1 0.2 0.5
29.3 34.2 71.2 63.0 425.1
Hyderabad Jalpaiguri Lucknow Madras Mormugao
17 26 26 13 15
27N 32N 45N 04N 22N
78 88 80 80 73
28E 43E 52E 15E 49E
1,741 272 400 51 157
50 50 60 60 10
85 74 74 85 86
59 50 47 67 70
101 90 101 95 88
75 68 71 78 79
87 89 92 96 83
73 77 80 79 75
88 87 91 90 86
68 70 67 75 75
112 104 119 113 98
43 36 34 57 59
45 55 60 60 30
0.3 0.3 0.8 1.4 *
0.4 0.7 0.7 0.4 *
0.5 1.3 0.3 0.3 *
1.2 3.7 0.3 0.6 0.7
1.1 11.8 0.8 1.0 2.6
4.4 25.9 4.5 1.9 29.6
6.0 32.2 12.0 3.6 31.2
5.3 25.3 11.5 4.6 15.9
6.5 21.2 7.4 4.7 9.5
2.5 5.6 1.3 12.0 3.8
1.1 0.5 0.2 14.0 1.3
0.3 0.2 0.3 5.5 0.2
29.6 128.7 40.1 50.0 94.8
28 35N 24 49N
77 12E 92 48E
695 95
10 60
71 78
43 52
97 88
68 69
95 90
80 77
93 88
64 72
115 103
31 41
75 53
0.9 0.8
0.7 2.1
0.5 7.9
0.3 14.3
0.5 15.6
2.9 21.7
7.1 19.7
6.8 19.7
4.6 14.4
0.4 6.5
0.1 1.4
0.4 0.4
25.2 124.5
11 40N
92 43E
261
60
84
72
89
75
84
75
84
74
97
62
60
1.8
1.1
1.1
2.4
15.1
21.7
15.4
16.3
17.4
12.5
10.5
7.9
123.2
New Delhi Silchar Indian Ocean Islands Port Blair, Andaman Is
q 2006 by Taylor & Francis Group, LLC
3-91
(Continued)
3-92
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
Iran Abadan Isfahan Kermanshah Rezaiyeh Tehran Iraq Baghdad Basra Mosul Israel Haifa Jerusalem Tel Aviv
Elevation
Length of Record
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Length of Record
January
February
March
April
May
June
July
August
September
October
November
December
Oct
Year
8
8
Feet
Year
8F
8F
8F
8F
8F
8F
8F
8F
8F
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
11 07N
72 44E
13
29
86
74
92
80
86
77
86
77
99
65
30
0.7
*
*
1.5
3.7
14.3
12.0
7.7
6.3
5.8
2.6
1.3
56.0
08 18N 09 09N
73 00E 92 49E
9 47
20 13
85 86
73 77
87 90
80 77
85 86
76 77
85 85
76 75
98 95
63 66
50 30
1.8 3.9
0.7 1.2
0.9 2.1
2.3 3.5
7.0 12.5
11.6 12.4
8.9 9.3
7.8 10.2
6.3 12.9
7.3 11.6
5.5 11.4
3.4 7.8
63.5 98.8
30 32 34 37 35
48 51 47 45 51
13E 41E 07E 05E 19E
10 5,238 4,331 4,364 3,937
12 45 15 3 24
64 47 45 32 45
44 25 23 17 27
90 72 68 67 71
62 46 38 45 49
112 98 99 91 99
81 67 56 64 72
98 78 79 67 76
63 47 38 47 53
127 108 108 99 109
24 K4 K3 K11 K5
10 45 15 3 33
1.5 0.7 2.6 1.9 1.8
1.7 0.6 2.3 2.3 1.5
0.6 0.8 2.8 2.0 1.8
0.8 0.6 2.2 1.7 1.4
0.1 0.3 1.6 1.2 0.5
0.0 * * 0.5 0.1
0.0 0.1 * * 0.1
0.0 * * 0.1 0.1
0.0 * * 0.2 0.1
0.1 0.1 0.4 1.5 0.3
1.0 0.4 2.0 0.8 0.8
1.8 0.7 2.4 1.6 1.2
7.6 4.4 16.4 13.8 9.7
33 20N 30 34N 36 19N
44 24E 47 47E 43 09E
111 8 730
15 10 26
60 64 54
39 45 35
85 85 77
57 63 49
110 104 109
76 81 72
92 94 88
61 64 51
121 123 124
18 24 12
15 10 29
0.9 1.4 2.8
1.0 1.1 3.1
1.1 1.2 2.1
0.5 1.2 1.9
0.1 0.2 0.7
* 0.0 *
* * *
* * *
* * *
0.1 * 0.2
0.8 1.4 1.9
1.0 0.8 2.4
5.5 7.3 15.2
32 48N 31 47N 32 06N
35 02E 35 13E 34 46E
23 2,654 33
16 19 10
65 55 64
49 41 50
77 73 70
58 50 57
88 87 82
75 63 72
85 81 79
68 59 65
112 107 102
27 26 34
30 50 10
6.9 5.1 4.9
4.3 4.7 2.7
1.6 2.9 2.0
1.0 0.9 0.7
0.2 0.1 0.1
* * 0.0
* 0.0 0.0
* 0.0 0.0
0.1 * 0.1
1.0 0.3 0.4
3.7 2.2 4.1
7.3 3.5 6.1
26.2 19.7 21.1
33 58N
74 46E
5,458
50
41
24
67
45
88
64
74
41
106
K4
50
2.9
2.8
3.6
3.7
2.4
1.4
2.3
2.4
1.5
1.2
0.4
1.3
25.9
21N 37N 19N 32N 41N
Jammu/Kashmir Srinagar Jordan Amman Kuwait Kuwait Lebanon Beirut
31 58N
35 59E
2,547
25
54
39
73
49
89
65
81
57
109
21
25
2.7
2.9
1.2
0.6
0.2
0.0
0.0
0.0
*
0.2
1.3
1.8
10.9
29 21N
48 00E
16
14
61
49
83
68
103
86
91
73
119
33
10
0.9
0.9
1.1
0.2
*
0.0
0.0
0.0
0.0
0.1
0.6
1.1
5.1
33 54N
35 28E
111
62
62
51
72
58
87
73
81
69
107
30
71
7.5
6.2
3.7
2.2
0.7
0.1
*
*
0.2
2.0
5.2
7.3
35.1
Nepal Katmandu
27 42N
85 22E
4,423
27
65
36
84
53
84
69
80
56
99
27
9
0.6
1.6
0.9
2.3
4.8
9.7
14.7
13.6
6.1
1.5
0.3
0.1
56.2
Oman and Muscat Muscat
23 37N
58 35E
15
23
77
66
90
78
97
87
93
80
116
51
38
1.1
0.7
0.4
0.4
*
0.1
*
*
0.0
0.1
0.4
0.7
3.9
Pakistan Karachi Multan Rawalpindi
24 48N 30 11N 33 35N
66 59E 71 25E 73 03E
13 400 1,676
43 60 60
77 68 62
55 42 38
90 95 86
73 68 59
91 102 98
81 86 77
91 94 89
72 64 57
118 122 118
39 29 25
59 60 60
0.5 0.4 2.5
0.4 0.4 2.5
0.3 0.4 2.7
0.1 0.3 1.9
0.1 0.3 1.3
0.7 0.6 2.3
3.2 2.0 8.1
1.6 1.8 9.2
0.5 0.5 3.9
0.1 0.1 0.6
0.1 0.1 0.3
0.2 0.2 1.2
7.8 7.1 36.5
Saudi Arabia Dhahran Jidda Riyadh
26 16N 21 28N 24 39N
50 10E 39 10E 46 42E
78 20 1,938
10 5 3
69 84 70
54 66 46
90 91 89
69 70 64
107 99 107
86 79 78
95 95 94
73 73 61
120 117 113
40 49 19
10 5 3
1.1 0.2 0.1
0.6 * 0.8
0.4 * 0.9
0.2 * 1.0
0.1 * 0.4
0.0 0.0 *
0.0 * 0.0
0.0 * *
0.0 * 0.0
0.0 * 0.0
0.2 1.0 *
0.9 1.2 *
3.5 2.5 3.2
Sri Lanka Colombo
06 54N
79 52E
22
25
86
72
88
76
85
77
85
75
99
59
40
3.5
2.7
5.8
9.1
14.6
8.8
5.3
4.3
6.3
13.7
12.4
5.8
92.3
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Amini Divi, Laccadive Is Minicoy, Maldive Is Car Nicobar, Nicobar Is
July
Longitude
Country and Station
Apr
Latitude
Jan
Extreme
35 21N 33 30N 36 14N
40 09E 36 20E 37 08E
699 2,362 1,280
5 13 8
53 53 50
35 36 34
80 75 75
52 49 48
105 96 97
78 64 69
86 81 81
56 54 54
114 113 117
16 21 9
8 7 10
1.6 1.7 3.5
0.8 1.7 2.5
0.3 0.3 1.5
0.8 0.5 1.1
0.1 0.1 0.3
* * 0.1
0.0 * 0.0
0.0 0.0 *
0.0 0.7 *
0.2 0.4 1.0
1.5 1.6 2.2
0.9 1.6 3.3
6.2 8.6 15.5
Turkey Adana Ankara Erzurum Izmir Samsun
36 39 39 38 41
35 32 41 27 36
18E 53E 16E 15E 19E
82 2,825 6,402 92 131
21 26 16 39 24
57 39 24 55 50
39 24 8 39 38
74 63 50 70 59
51 40 32 49 45
93 86 78 92 79
71 59 53 69 65
84 69 59 76 69
58 44 37 55 56
109 104 93 108 103
19 K13 K22 12 20
31 24 16 58 27
4.3 1.3 1.4 4.4 2.9
4.0 1.2 1.6 3.3 2.6
2.5 1.3 2.0 3.0 2.7
1.6 1.3 2.5 1.7 2.3
2.0 1.9 3.1 1.3 1.8
0.7 1.0 2.1 0.6 1.5
0.2 0.5 1.3 0.2 1.5
0.2 0.4 0.9 0.2 1.3
0.7 0.7 1.1 0.8 2.4
1.9 0.9 2.3 2.1 3.2
2.4 1.2 1.8 3.3 3.5
3.8 1.9 1.1 4.8 2.4
24.3 13.6 21.2 25.5 29.1
United Arab Emirates Sharjah
25 20N
55 24E
18
11
74
54
86
65
100
82
92
71
118
37
12
0.9
0.9
0.4
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.4
1.4
4.2
Yemen Kamaran I
15 20N
42 37E
20
26
82
74
89
79
98
85
93
82
105
66
21
0.2
0.2
0.1
0.1
0.1
*
0.5
0.7
0.1
0.1
0.4
0.9
3.4
59N 57N 54N 27N 17N
CLIMATE AND PRECIPITATION
Syria Deir Ez Zor Damascus Aleppo
Australia & Pacific Islands Australia Adelaide Alice Springs Bourke Brisbane Broome
34 23 30 27 17
57S 48S 05S 25S 57S
138 133 145 153 122
32E 53E 58E 05E 13E
20 1,791 361 17 56
86 62 63 53 41
86 97 99 85 92
61 70 70 69 79
73 81 82 79 93
55 54 55 61 72
59 67 65 68 82
45 39 40 49 58
73 88 85 80 91
51 58 56 60 72
118 111 125 110 113
32 19 25 35 40
104 30 72 91 50
0.8 1.7 1.4 6.4 6.3
0.7 1.3 1.5 6.3 5.8
1.0 1.1 1.1 5.7 3.9
1.8 0.4 1.1 3.7 1.2
2.7 0.6 1.0 2.8 0.6
3.0 0.5 1.1 2.6 0.9
2.6 0.3 0.9 2.2 0.2
2.6 0.3 0.8 1.9 0.1
2.1 0.3 0.8 1.9 *
1.7 0.7 0.9 2.5 *
1.1 1.2 1.2 3.7 0.6
1.0 1.5 1.4 5.0 3.3
21.1 9.9 13.2 44.7 22.9
Burketown Canberra Carnarvon Cloncurry Esperance
17 35 24 20 33
45S 18S 53S 40S 50S
139 149 113 140 121
33E 11E 40E 30E 55E
30 1,886 13 622 14
31 23 43 32 44
93 82 88 99 77
77 55 72 77 60
91 67 84 90 72
69 44 66 67 54
82 52 71 77 62
55 33 51 51 45
93 68 78 95 68
70 43 61 68 50
110 109 118 127 117
40 14 37 35 31
53 25 57 59 60
8.2 1.9 0.4 4.4 0.7
6.3 1.7 0.7 4.2 0.7
5.2 2.2 0.7 2.4 1.2
1.0 1.6 0.6 0.7 1.8
0.2 1.8 1.5 0.5 3.3
0.3 2.1 2.4 0.6 4.1
* 1.8 1.6 0.3 4.0
* 2.2 0.7 0.1 3.8
* 1.6 0.2 0.3 2.7
0.4 2.2 0.1 0.5 2.2
1.5 1.9 * 1.3 1.0
4.4 2.0 0.2 2.7 0.9
27.5 23.0 9.1 18.0 26.4
Laverton Melbourne Mundiwindi Perth Port Darwin
28 37 23 31 12
40S 49S 52S 56S 25S
122 144 120 115 130
23E 58E 10E 58E 52E
1,510 115 1,840 64 104
30 88 15 44 58
96 78 101 85 90
69 57 64 63 77
81 68 87 76 92
57 51 61 57 76
64 56 70 63 87
41 42 41 48 67
82 67 89 70 93
55 48 58 53 77
115 114 112 112 105
25 27 22 31 55
30 88 15 63 70
0.8 1.9 1.0 0.3 15.2
0.8 1.8 1.9 0.4 12.3
1.6 2.2 2.0 0.8 10.0
0.8 2.3 0.8 1.7 3.8
0.9 2.1 0.6 5.1 0.6
0.7 2.1 0.9 7.1 0.1
0.6 1.9 0.1 6.7 *
0.5 1.9 0.3 5.7 0.1
0.2 2.3 0.3 3.4 0.5
0.3 2.6 0.5 2.2 2.0
0.8 2.3 0.5 0.8 4.7
0.8 2.3 1.2 0.5 9.4
8.8 25.7 10.1 34.7 58.7
Sydney Thursday Island Townsville William Creek Windorah
33 10 19 28 25
52S 35S 15S 55S 26S
151 142 146 136 142
02E 13E 46E 21E 36E
62 200 18 247 390
87 31 31 39 29
78 87 87 96 101
65 77 76 69 74
71 86 84 80 86
58 77 70 55 59
60 82 75 65 70
46 73 59 41 43
71 86 83 84 91
56 76 71 56 61
114 98 110 119 116
35 64 39 25 26
87 49 67 30 50
3.5 18.2 10.9 0.5 1.4
4.0 15.8 11.2 0.6 1.6
5.0 13.9 7.2 0.3 1.6
5.3 8.0 3.3 0.3 0.9
5.0 1.6 1.3 0.3 0.8
4.6 0.5 1.4 0.5 0.8
4.6 0.4 0.6 0.2 0.5
3.0 0.2 0.5 0.3 0.4
2.9 0.1 0.7 0.3 0.5
2.8 0.3 1.3 0.5 0.6
2.9 1.5 1.9 0.5 0.9
2.9 7.0 5.4 0.7 1.4
46.5 67.5 45.7 5.0 11.4
Tasmania Hobart
42 53S
147 20E
177
70
71
53
63
48
52
40
63
46
105
28
100
1.9
1.5
1.8
1.9
1.8
2.2
2.1
1.9
2.1
2.3
2.4
2.1
24.0
New Zealand Auckland Christchurch Dunedin Wellington
37 43 45 41
174 172 170 174
47E 32E 12E 46E
23 118 4 415
36 52 77 66
73 70 66 69
60 53 50 56
67 62 59 63
56 45 45 51
56 50 48 53
46 35 37 42
63 62 59 60
52 44 42 48
90 96 94 88
33 21 23 29
92 64 77 79
3.1 2.2 3.4 3.2
3.7 1.7 2.8 3.2
3.2 1.9 3.0 3.2
3.8 1.9 2.8 3.8
5.0 2.6 3.2 4.6
5.4 2.6 3.2 4.6
5.7 2.7 3.1 5.4
4.6 1.9 3.0 4.6
4.0 1.8 2.7 3.8
4.0 1.7 3.0 4.0
3.5 1.9 3.2 3.5
3.1 2.2 3.5 3.5
49.1 25.1 36.9 47.4
Pacific Islands Canton, Phoenix Is Guam, Marianas Is Honolulu, Hawaii Iwo Jima, Bonin Is Madang, New Guinea
02 46S 13 33N 21 20N 24 47N 05 12S
171 43W 144 50E 157 55W 141 19E 145 47E
9 361 7 353 19
12 30 30 15 12
88 84 79 71 87
78 72 66 64 75
89 86 80 77 88
78 73 68 69 74
89 87 85 86 88
78 72 73 78 74
90 86 84 84 88
78 73 72 76 75
98 95 93 95 98
70 54 56 46 62
30 30 30 17 20
2.6 4.6 3.8 3.2 12.1
2.2 3.5 3.3 2.5 11.9
2.5 2.6 2.9 2.1 14.9
3.6 3.0 1.3 3.7 16.9
4.3 4.2 1.0 4.9 15.1
2.6 5.9 0.3 4.0 10.8
2.6 9.0 0.4 6.4 7.6
2.5 12.8 0.9 6.5 4.8
1.2 13.4 1.0 4.6 5.3
1.1 13.1 1.8 5.9 10.0
1.6 10.3 2.2 4.8 13.3
2.6 6.1 3.0 4.3 14.5
29.4 88.5 21.9 52.8 137.2
28 13N 26 12N 22 16S
177 23W 127 39F 166 27E
29 96 246
21 30 24
69 67 86
62 56 72
71 76 83
64 64 70
81 89 76
74 77 62
79 81 80
72 69 65
92 96 99
46 41 52
20 30 52
4.6 5.3 3.7
3.7 5.4 5.1
3.1 6.1 5.7
2.5 6.1 5.2
1.9 8.9 4.4
1.3 10.0 3.7
2.9 7.1 3.6
3.9 10.0 2.6
3.7 7.1 2.5
3.7 6.6 2.0
3.6 5.9 2.4
4.2 4.3 2.6
40.7 82.8 43.5
14 19S 06 58N
170 43W 158 13E
29 123
2 30
87 86
75 75
87 86
76 75
83 87
74 73
85 87
75 72
98 96
67 67
41 30
24.5 11.1
20.5 9.7
19.2 14.6
16.5 20.0
15.4 20.3
12.3 16.7
10.0 16.2
8.2 16.3
13.1 15.8
14.9 16.0
19.2 16.9
19.8 18.3
193.6 191.9
Midway Is Naha, Okinawa Noumea, New Caledonia Pago Pago, Samoa Ponape, Caroline Is
00S 29S 55S 17S
q 2006 by Taylor & Francis Group, LLC
3-93
(Continued)
3-94
Table 3B.13
(Continued) Temperature
Average Precipitation
Average Daily
Length of Record
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Maximum
Minimum
Length of Record
January
February
March
April
May
June
July
August
September
October
November
December
Oct
Elevation
July
Longitude
Country and Station
Apr
Latitude
Jan
Extreme
Year
8
8
Feet
Year
8F
8F
8F
8F
8F
8F
8F
8F
8F
8F
Year
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
IN.
09 29S
147 09E
126
20
89
76
87
75
83
73
86
75
98
64
38
7.0
7.6
6.7
4.2
2.5
1.3
1.1
0.7
1.0
1.4
1.9
4.4
39.8
04 18 17 09
13S 08S 33S 05S
152 11E 178 26E 149 36W 160 10E
28 20 7 8
19 43 23 20
90 86 89 88
73 74 72 76
90 84 89 88
73 73 72 76
89 79 86 86
73 68 68 76
92 81 87 87
73 70 70 76
100 98 93 96
65 55 61 68
24 43 27 37
14.8 11.4 13.2 14.3
10.4 10.7 11.5 15.8
10.2 14.5 6.5 15.0
10.0 12.2 6.8 10.8
5.2 10.1 4.9 8.1
3.3 6.7 3.2 6.8
5.4 4.9 2.6 7.6
3.7 8.3 1.9 8.7
3.5 7.7 2.3 8.0
5.1 8.3 3.4 8.7
7.1 9.8 6.5 10.0
10.1 12.5 11.9 10.4
88.8 117.1 74.7 123.4
Wake Is Yap, Caroline Is
19 17N 9 31N
166 39E 138 08E
11 62
30 30
82 85
73 76
83 87
74 77
87 88
77 75
86 88
77 75
92 97
64 69
30 30
1.1 7.9
1.4 4.6
1.5 5.4
1.9 6.4
2.0 9.5
1.9 10.7
4.6 13.8
7.1 14.7
5.2 14.0
5.3 13.2
3.1 11.2
1.8 10.2
36.9 121.6
Byrd Station Elisworth McMurdo Station South Pole Station Wilkes
80 77 77 89 66
119 32W 41 07W 166 48W 000 00W 110 31E
5,095 139 8 9,186 31
6 6 10 5 7
10 22 30 K16 34
K2 12 21 K23 28
K11 K10 K1 K66 17
K30 K25 K13 K79 9
K25 K21 K9 K67 8
K45 K35 K24 K81 K3
K15 K2 2 K55 16
31 36 42 6 46
K82 K70 K59 K107 K35
6 6 10 5 7
0.4 0.3 0.5 * 0.5
0.4 0.2 0.7 0.1 0.4
0.2 0.3 0.4 0.0 1.7
0.3 0.6 0.4 0.0 1.1
0.4 0.2 0.4 0.0 1.4
0.5 0.2 0.3 0.0 1.2
0.7 0.2 0.2 0.0 1.3
0.7 0.2 0.3 0.0 0.8
0.3 0.3 0.4 0.0 1.5
0.7 0.4 0.2 * 1.2
0.0 0.5 0.2 0.0 0.8
0.3 0.2 0.3 * 0.3
4.9 3.6 4.3 0.1 12.2
Antarctica 01S 44S 53S 59S 16S
K33 K15 K12 K64 6
Note: 1. “Length of Record” refers to average daily maximum and minimum temperatures and precipitation. A standard period of the 30 years from 1931–1960 had been used for locations in the United States and some other countries. The length of record of extreme maximum and minimum temperatures includes all available years of data for a given location and is usually for a longer period. 2. * Z Less than 0.05 00 . 3. Except for Antarctica, amounts of solid precipitation such as snow or hail have been converted to their water equivalent. Because of the frequent occurrence of blowing snow, it has not been possible to determine the precise amount of precipitation actually falling in Antarctica. The values shown are the average amounts of solid snow accumulating in a given period as determined by snow markers. The liquid content of the accumulation is undetermined. Source: From Environmental Science Services Administration, Climates of the World, 1969. Geographic names revised by editors in accordance with 1987 usage.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Port Moresby, New Guinea Rabaul, New Guinea Suva, Fiji Is Tahiti, Society Is Tulagi, Solomon Is
CLIMATE AND PRECIPITATION
3-95
SECTION 3C
WEATHER EXTREMES
118
106 117
119
105
121 114
118
114
120 115
111
118 117 116
117
13 4
113
121
118
120
122
110
114
110 109
110
113
128
106 110
112
118
107 104
108
112 118
125
105
120
111 115
112
112
120 114 109
100
100
Figure 3C.5 Record highest temperature (8F) (through 2000). (From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000. www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
3-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.14 Record Highest Temperatures by State State
Temperature (8F)
Date
Station
Elevation (ft)
112 100 128 120 134 118 106 110 109 112 100 118 117 116 118 121 114 114 105 109 107 112 114 115 118 117 118 125 106 110 122 108 110 121 113 120 119 111 104 111 120 113 120 117 105 110 118 112 114 115
Sep 5, 1925 Jun 27, 1915 Jun 29, 1994 Aug 10, 1936 Jul 10, 1913 Jul 11, 1888 Jul 15, 1995 Jul 21, 1930 Jun 29, 1931 Aug 20, 1983 Apr 27, 1931 Jul 28, 1934 Jul 14, 1954 Jul 14, 1936 Jul 20, 1934 Jul 24, 1936a Jul 28, 1930 Aug 10, 1936 Jul 10, 1911 Jul 10, 1936a Aug 2, 1975 Jul 13, 1936 Jul 6, 1936a Jul 29, 1930 Jul 14, 1954a Jul 5, 1937 Jul 24, 1936a Jun 29, 1994a Jul 4, 1911 Jul 10, 1936 Jun 27, 1994 Jul 22, 1926 Aug 21, 1983 Jul 6, 1936 Jul 21, 1934a Jun 27, 1994a Aug 10, 1898a Jul 10, 1936a Aug 2, 1975 Jun 28, 1954a Jul 5, 1936 Aug 9, 1930a Jun 28, 1994a Jul 5, 1985 Jul 4, 1911 Jul 15, 1954 Aug 5, 1961 Jul 10, 1936a Jul 13, 1936 Aug 8, 1983
Centerville Fort Yukon Lake Havasu City Ozark Greenland Ranch Bennett Danbury Millsboro Monticello Grenville Pahala Orofino East St. Louis Collegeville Keokuk Alton (Near) Greensburg Plain Dealing North Bridgton Cumberland & Frederick New Bedford & Chester Mio Moorhead Holly Springs Warsaw & Union Medicine Lake Minden Laughlin Nashua Runyon Waste Isolat. Pilot Plt Troy Fayetteville Steele Gallipolis (Near) Tipton Pendleton Phoenixville Providence Camden Gannvalley Perryville Monahans Saint George Vernon Balcony Falls Ice Harbor Dam Martinsburg Wisconsin Dells Basin
345 est. 420 505 396 K178 5,484 450 20 207 860 850 1,027 410 672 614 1,651 581 268 450 623; 325 120; 640 963 904 600 705; 560 1,950 2,169 605 125 18 3,418 35 213 1,857 673 1,350 1,074 100 51 170 1,750 377 2,660 2,880 310 725 475 435 900 3,500
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming a
Also on earlier dates at the same or other places.
Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-97
–48
–47 –70
–5 4
–5 0
–60 –60
–60
–3 5 –5 5
–5 8 –66 –5 0
–5 2 –25
–5 1 –47
–42
–47 –3 7
–3 6
–61 –40
–3 0
–40
–3 7
–27
–5 0
–29
–19 –19
–23
–17 –40
–3 4
–3 2
–40
–3 2 –3 4
–3 6 –3 9
–69
–45
–48
–27
–17
–16 –2
–80
12
Figure 3C.6 Record lowest temperature (8F) (through 2000). (From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000. www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
3-98
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.15 Record Lowest Temperatures by State State
Temperature (8F)
Date
Station
Elevation (ft)
K27 K80 K40 K29 K45 K61 K32 K17 K2 K17 12 K60 K36 K36 K47 K40 K37 K16 K48 K40 K35 K51 K60 K19 K40 K70 K47 K50 K47 K34 K50 K52 K34 K60 K39 K27 K54 K42 K25 K19 K58 K32 K23 K69 K50 K30 K48 K37 K55 K66
Jan 30, 1966 Jan 23, 1971 Jan 7, 1971 Feb 13, 1905 Jan 20, 1937 Feb 1, 1985 Jan 22, 1961a Jan 17, 1893 Feb 13, 1899 Jan 27, 1940 May 17, 1979 Jan 18, 1943 Jan 5, 1999 Jan 19, 1994 Feb 3, 1996a Feb 13, 1905 Jan 19, 1994 Feb 13, 1899 Jan 19, 1925 Jan 13, 1912 Jan 12, 1981 Feb 9, 1934 Feb 2, 1996 Jan 30, 1966 Feb 13, 1905 Jan 20, 1954 Dec 22, 1989a Jan 8, 1937 Jan 29, 1934 Jan 5, 1904 Feb 1, 1951 Feb 18, 1979a Jan 21, 1985 Feb 15, 1936 Feb 10, 1899 Jan 18, 1930a Feb 10, 1933a Jan 5, 1904 Feb 5, 1996 Jan 21, 1985 Feb 17, 1936 Dec 30, 1917 Feb 8, 1933a Feb 1, 1985 Dec 30, 1933 Jan 22, 1985 Dec 30, 1968 Dec 30, 1917 Feb 4, 1996 Feb 9, 1933
New Market Prospect Creek Camp Hawley Lake Pond Boca Maybell Coventry Millsboro Tallahassee CCC Camp F-16 Mauna Kea Obs 111.2 Island Park Dam Congerville New Whiteland Elkader Lebanon Shelbyville Minden Van Buren Oakland Chester Vanderbilt Tower Corinth Warsaw Rogers Pass Oshkosh San Jacinto Mt. Washington River Vale Gavilan Old Forge Mt. Michell Parshall Milligan Watts Seneco Smethport Greene Caesars Head McIntosh Mountain City Seminole Peter’s Sink Bloomfield Mtn. Lake Bio. Stn. Mazama & Winthrop Lewisburg Couderay Riverside R.S.
760 1,100 8,180 1,250 5,532 5,920 480 20 193 est. 1,000 13,770 6,285 635 785 770 1,812 730 194 510 2,461 640 785 1,460 420 700 5,470 3,379 5,200 6,262 70 7,350 1,720 6,525 1,929 800 958 4,700 est. 1,500 425 3,115 2,277 2,471 3,275 8,092 915 3,870 2,120; 1,755 2,200 1,300 6,500
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming a
Also on earlier dates at the same or other places.
Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-99
Table 3C.16 Temperature — Highest of Record — Selected Cities of the United States Data AL
AK
AZ
AR
CA
CO
CT DE DC FL
Through 2002
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham CO Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue McGrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers
11 59 35 61 58 49 55 82 39 44 52 58 58 51 55 59 58 60 54 60 60 56 85 63 30 31 56 53 65 62 71 45 57 61 24 65 55 55 92 53 50 67 62 42 16 52 62 75 65 66 60 43 57 54 61 56 61 54 48 55 40 61 61 59 59
74 81 77 84 83 50 61 36 39 48 48 48 51 50 46 51 57 53 54 39 54 43 48 45 47 46 55 66 88 87 75 88 81 83 78 82 77 71 78 78 91 88 95 65 77 70 88 72 79 86 86 71 62 73 73 60 81 68 66 75 75 79 79 87 88
80 83 83 82 85 48 65 36 37 46 40 51 50 47 46 51 57 57 56 40 55 48 44 51 44 52 54 71 92 92 78 97 86 85 83 87 81 73 85 80 91 92 95 71 83 76 90 78 81 85 89 78 66 76 76 68 81 67 73 78 79 82 80 89 92
87 89 85 90 89 51 64 34 36 46 49 58 56 56 50 53 61 56 57 39 55 43 50 54 47 53 59 73 100 99 85 100 94 91 87 92 87 72 78 90 98 95 98 80 88 88 93 85 83 90 95 87 73 81 84 81 86 84 89 86 89 89 85 92 93
91 92 90 94 91 65 82 42 43 60 63 72 60 74 67 63 72 65 64 48 67 51 49 69 62 62 71 80 105 104 92 107 95 95 94 101 93 82 80 100 105 102 106 86 94 95 98 92 94 96 103 100 80 87 90 89 93 91 96 94 93 95 90 96 96
95 99 96 100 98 77 88 47 52 80 86 90 67 89 85 71 82 80 80 74 82 78 59 85 78 78 79 89 113 108 101 116 98 98 97 107 101 88 84 107 103 97 102 94 104 105 96 97 101 92 100 107 90 94 96 101 102 97 99 96 97 99 98 100 99
99 102 101 102 105 85 89 72 68 86 92 92 72 96 90 80 86 88 86 85 90 81 62 91 86 86 87 96 122 117 106 122 105 105 102 114 109 92 85 110 109 104 112 98 111 115 101 106 103 109 102 111 95 100 104 105 108 96 100 100 100 101 101 102 103
106 106 104 104 105 82 89 79 78 83 93 91 77 94 91 81 90 86 82 85 89 86 63 90 87 85 84 97 121 114 109 124 111 112 110 115 110 95 76 112 107 97 107 100 118 114 95 105 103 109 104 114 96 100 104 105 106 103 102 102 104 104 102 102 101
102 103 103 105 104 82 90 76 72 84 88 90 78 93 86 78 83 84 83 80 89 81 66 89 85 82 86 92 116 112 103 120 110 109 111 112 107 97 82 112 105 98 105 105 115 110 98 100 98 101 103 109 91 99 101 103 104 100 102 101 104 105 99 100 100
99 100 101 99 101 73 82 62 66 72 79 79 76 84 74 69 73 74 73 69 76 71 61 78 71 74 77 90 118 107 99 116 109 106 105 112 112 93 86 111 110 110 110 103 116 108 111 103 101 102 103 108 87 94 97 100 101 99 99 100 99 101 96 99 96
89 94 90 93 100 61 71 43 46 58 53 66 69 65 65 64 61 67 62 51 61 59 54 68 57 58 63 85 107 102 93 112 96 97 92 103 97 88 87 102 111 106 108 93 105 104 107 99 102 103 108 101 81 86 89 88 94 86 91 91 90 94 93 95 95
82 85 84 87 87 54 67 39 37 51 45 52 59 49 48 55 56 56 54 38 49 47 50 51 48 50 55 74 95 93 80 98 86 86 83 91 84 78 78 89 101 101 100 80 88 87 97 85 86 97 93 84 71 78 79 75 84 78 81 85 84 86 87 89 95
76 80 79 81 85 48 62 34 37 45 38 55 54 45 49 51 54 49 56 37 49 43 52 54 41 52 52 68 88 84 74 86 82 80 78 83 78 75 77 76 92 94 91 72 78 72 88 75 76 83 90 72 61 77 75 64 82 76 76 75 79 79 82 88 90
106 106 104 105 105 85 90 79 78 86 93 92 78 96 91 81 90 88 86 85 90 86 66 91 87 86 87 97 122 117 109 124 111 112 111 115 112 97 87 112 111 110 112 105 118 115 111 106 103 109 108 114 96 100 104 105 108 103 102 102 104 105 102 102 103
(Continued) q 2006 by Taylor & Francis Group, LLC
3-100
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.16 Data
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME MD MA MI
(Continued)
Through 2002
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Milton Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing
19 61 50 60 60 39 42 56 19 66 59 54 52 57 54 52 56 33 38 52 63 56 53 45 44 70 63 52 55 62 56 63 63 63 50 62 54 41 60 82 56 50 41 22 58 55 19 52 38 56 50 63 62 52 117 51 47 44 44 46 39 38 44
83 85 86 88 87 80 82 86 88 89 80 79 82 83 84 84 92 88 89 86 63 66 57 75 65 69 70 63 71 76 69 71 68 65 60 71 65 74 80 79 73 75 69 78 76 77 70 84 82 83 84 53 64 75 68 66 60 52 62 61 62 54 66
87 88 85 89 90 82 86 88 89 90 81 80 86 83 85 86 92 88 89 86 71 72 65 77 72 71 72 70 74 79 73 76 74 73 66 71 66 86 85 81 84 87 75 79 80 77 77 85 83 85 89 59 64 79 68 70 67 65 70 68 69 59 69
89 91 88 92 92 86 90 91 91 94 88 89 89 89 95 91 93 88 90 88 81 76 75 85 88 88 86 85 87 84 82 85 85 91 85 91 87 88 93 89 89 89 84 87 83 86 84 91 86 89 92 73 88 89 89 89 84 80 81 80 78 76 79
95 95 90 96 96 96 95 93 94 99 93 93 96 93 96 95 89 91 91 88 92 97 86 91 91 93 92 91 90 91 88 89 91 93 93 97 100 98 100 96 95 96 89 92 88 91 90 92 95 92 94 86 85 94 94 94 91 90 89 87 88 86 86
98 100 91 96 102 98 100 98 99 96 97 95 99 97 99 100 94 93 92 88 98 100 93 98 93 104 93 95 95 95 94 93 95 98 91 102 94 102 105 104 97 100 93 90 92 95 94 98 96 96 102 96 94 98 93 95 92 94 93 93 92 90 94
102 103 94 98 100 101 103 99 99 98 104 101 105 104 106 104 90 92 94 89 109 107 103 104 104 104 105 101 103 104 106 102 104 103 100 108 103 109 110 109 107 110 102 99 101 102 103 103 99 100 102 96 98 101 99 100 94 103 104 101 98 103 99
108 105 95 98 101 106 103 97 99 101 104 105 107 104 108 105 89 94 95 89 111 110 104 104 104 105 103 103 112 105 103 104 102 105 101 108 105 109 109 111 110 113 103 101 103 106 102 101 102 101 107 95 99 104 100 102 96 102 102 101 100 98 100
99 102 95 98 100 104 103 98 98 98 107 102 108 104 105 104 93 93 97 90 110 115 104 103 101 106 103 104 103 102 101 102 103 108 100 104 105 108 107 110 110 110 102 101 103 101 104 105 107 102 109 95 103 105 101 102 96 102 100 98 100 96 100
97 100 94 97 98 98 99 96 97 97 99 98 101 100 102 98 92 95 96 90 102 103 98 103 99 100 100 102 101 103 100 100 99 101 97 103 98 109 106 105 109 108 98 95 103 104 100 104 105 101 109 91 95 100 99 100 91 94 98 94 93 92 97
92 96 93 95 95 92 94 94 94 95 98 95 97 96 100 97 91 94 96 90 94 89 91 92 91 93 90 90 93 94 90 90 92 95 90 94 95 96 96 96 96 95 88 86 91 92 89 94 94 94 97 79 88 92 88 90 85 88 91 89 87 85 89
88 88 89 91 89 85 88 90 92 91 86 84 90 86 88 89 92 93 93 89 78 77 75 82 78 80 81 76 83 83 79 81 82 81 75 81 80 84 91 87 85 85 81 81 83 84 83 87 87 87 88 68 74 83 81 79 78 76 77 76 77 70 77
84 84 86 87 90 81 84 86 87 90 79 79 82 82 82 83 93 89 90 86 65 65 64 79 71 71 71 67 74 77 71 74 70 69 67 70 67 82 86 83 73 83 75 79 75 76 74 85 82 84 84 58 71 77 74 76 72 65 69 70 69 64 69
108 105 95 98 102 106 103 99 99 101 107 105 108 104 108 105 94 95 97 90 111 115 104 104 104 106 105 104 112 105 106 104 104 108 101 108 105 109 110 111 110 113 103 101 103 106 104 105 107 102 109 96 103 105 101 102 96 103 104 101 100 103 100
(Continued)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Table 3C.16 Data
MN
MS
MO
MT
NE
NV
NH NJ
MN
NY
NC
ND
3-101
(Continued)
Through 2002 Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St.Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Grand Forks
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
24 63 62 61 63 64 43 62 39 57 19 33 30 45 57 68 47 65 3 62 53 58 57 31 57 51 66 39 60 48 72 64 54 61 53 61 70 59 41 61 63 55 30 56 51 59 19 134 42 41
46 63 45 52 48 58 55 55 83 83 77 74 69 76 76 68 61 67 62 72 53 59 76 73 74 73 69 66 74 72 64 68 77 70 68 68 47 78 70 74 69 80 82 65 63 72 69 72 69 68
61 67 49 55 58 61 63 55 85 85 84 82 77 85 81 72 71 70 64 69 64 66 80 84 76 79 78 76 77 78 70 67 87 75 74 67 43 75 72 76 76 81 85 68 66 71 67 75 71 73
71 80 75 78 76 83 79 79 89 90 85 85 86 89 87 79 79 78 77 77 72 75 90 89 88 86 89 88 87 85 77 73 91 83 81 89 54 87 82 89 85 86 93 89 82 81 82 86 85 83
92 86 85 88 93 95 91 96 94 95 93 90 93 93 93 92 91 89 91 86 84 87 96 97 95 98 97 96 93 100 86 82 99 89 90 95 60 94 91 97 89 91 99 92 88 94 94 96 90 94
93 93 89 90 95 96 92 97 99 99 94 92 95 94 93 96 102 93 96 93 94 95 101 99 103 97 99 100 97 99 92 90 109 96 97 97 66 99 94 99 98 99 107 94 89 90 98 99 99 97
96 98 93 94 99 102 101 102 105 104 101 103 105 102 101 105 108 101 99 100 96 98 107 107 106 107 105 104 106 110 104 99 115 103 106 98 71 106 97 102 107 104 114 99 94 96 96 101 99 99
99 96 97 97 98 105 102 103 106 107 105 111 107 107 113 108 104 105 103 105 104 105 109 108 113 112 114 107 109 114 107 101 116 108 109 102 71 104 101 105 105 102 111 100 98 97 102 106 104 107
96 99 98 97 95 102 99 103 107 106 106 110 109 107 106 105 108 106 109 105 105 105 110 107 107 105 110 106 104 108 107 97 116 105 108 101 72 103 102 105 101 102 107 99 95 99 100 104 100 104
93 95 95 95 95 98 95 98 104 105 103 101 106 104 104 103 103 98 96 99 99 99 104 106 101 102 104 103 102 104 99 93 113 101 103 98 69 99 92 105 100 99 103 100 96 98 92 102 98 96
87 83 80 86 88 90 93 90 95 97 92 93 92 94 93 90 90 91 82 87 86 85 96 93 95 94 96 93 92 96 88 84 103 91 91 90 59 90 89 92 91 93 99 89 82 87 86 94 88 87
73 76 67 71 73 77 75 75 88 87 86 83 82 85 81 77 79 76 78 75 69 73 82 85 82 82 83 79 80 86 78 75 87 77 77 80 52 84 78 85 77 85 88 82 77 80 78 84 77 80
59 64 62 55 57 68 62 61 84 84 79 76 74 76 77 69 59 69 61 64 57 60 76 70 71 75 72 66 77 74 65 67 77 70 67 73 47 77 74 76 72 83 81 71 65 74 77 75 75 75
99 99 98 97 99 105 102 103 107 107 106 111 109 107 113 108 108 106 109 105 105 105 110 108 113 112 114 107 109 114 107 101 116 108 109 102 72 106 102 105 107 104 114 100 98 99 102 106 104 107
62 53 38 45 63 74
74 70 80 75 79 78
73 69 78 76 81 81
84 87 83 81 90 90
93 92 89 89 93 94
94 96 93 91 100 98
100 98 96 95 103 102
98 98 96 96 103 102
99 101 100 94 103 103
99 97 92 92 104 100
91 87 86 89 98 95
81 81 81 81 85 85
72 72 78 78 78 78
100 101 100 96 104 103
58 51 63 50 5
80 82 63 52 47
84 85 69 66 67
92 89 81 78 64
95 95 93 100 87
97 98 98 98 88
104 104 111 100 96
105 102 109 106 93
105 103 109 106 95
104 98 105 102 96
98 95 95 93 77
88 87 79 74 73
80 82 65 57 50
105 104 111 106 96
(Continued)
q 2006 by Taylor & Francis Group, LLC
3-102
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.16 Data OH
OK OR
PC
PA
PA RI SC
SD
TN
TX
(Continued)
Through 2002
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS Allentown Erie Harrisburg Middletown/Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/Bergstrom Brownsville Corpus Christi
41 54 61 63 59 43 47 59 49 64 49 18 60 73 67 62 65 65 44 29 53 50
53 70 73 74 71 65 65 71 80 79 67 55 67 71 70 63 65 66 88 88 93 90
66 72 74 75 73 71 71 73 92 90 72 67 72 79 75 71 72 67 89 87 93 90
78 81 83 85 82 82 81 82 93 96 73 71 77 86 79 80 80 74 90 85 94 90
92 88 88 89 89 86 88 88 100 102 83 84 86 93 91 90 88 82 91 86 94 90
106 93 92 94 93 92 95 92 104 96 87 94 93 103 100 100 100 91 92 87 94 91
106 100 104 102 102 101 104 99 105 103 93 98 102 111 108 100 105 95 93 88 95 90
109 101 103 100 102 100 104 100 110 112 100 107 105 115 110 107 108 100 94 89 93 91
107 98 102 101 102 97 99 97 110 110 96 100 108 114 113 107 108 97 91 89 94 91
104 99 101 100 101 93 98 99 108 109 95 97 103 110 102 105 104 97 95 89 92 92
93 86 90 90 89 85 91 87 96 98 85 86 94 99 92 92 93 87 91 90 93 92
76 80 82 80 79 78 78 80 87 87 71 70 76 77 80 73 72 77 90 89 93 91
58 76 77 76 72 73 70 76 86 80 64 57 68 72 67 65 68 66 89 86 94 89
109 101 104 102 102 101 104 100 110 112 100 107 108 115 113 107 108 100 95 90 95 92
47 43
89 95
89 96
90 95
89 95
90 93
90 91
90 91
91 92
90 92
91 94
91 95
90 94
91 96
52 52 50 54 59 49 49 64
93 92 89 90 72 68 73 73
93 91 88 92 76 75 75 78
95 94 90 90 87 82 86 87
94 93 91 97 93 89 93 93
93 94 92 93 97 90 97 97
94 93 93 94 100 100 100 100
94 92 94 96 105 99 107 107
97 92 95 93 100 94 101 101
96 93 95 93 99 94 102 102
95 92 92 93 90 88 97 97
95 91 90 93 81 80 84 84
95 91 91 94 72 75 75 75
97 94 95 97 105 100 107 107
61 50 47 58 39 49 60 17 55 40
74 72 67 69 58 69 83 80 84 79
74 76 71 71 62 72 87 82 84 81
87 82 85 87 74 85 90 88 91 89
95 89 92 92 92 98 95 94 94 93
97 91 93 96 83 95 98 96 101 97
100 98 97 102 90 97 103 104 107 100
104 103 101 103 91 102 104 103 107 104
101 100 98 100 91 104 105 103 107 103
100 97 95 102 87 100 99 98 101 96
96 87 84 91 80 86 94 93 101 92
81 82 80 83 70 78 88 84 90 85
73 74 69 69 64 77 83 81 83 76
104 103 101 103 92 104 105 104 107 104
41 61 60 57 57
60 63 76 66 79
62 71 75 70 80
82 89 82 87 85
98 97 93 94 89
96 99 98 100 92
108 109 109 110 97
110 112 110 108 102
112 110 106 108 101
103 106 104 104 100
96 102 94 94 90
78 86 83 81 81
62 66 75 63 78
112 112 110 110 102
63 61 61 63 63 63 62 61 61 64 64
78 77 79 78 75 89 81 90 89 93 91
79 83 81 84 79 93 88 99 101 94 98
87 86 85 86 86 97 94 98 98 106 102
93 92 94 91 92 99 98 98 99 102 102
99 94 99 97 93 109 103 102 102 102 103
104 102 104 106 101 109 108 108 109 102 106
106 103 108 107 105 110 105 109 106 102 104
105 102 107 104 103 109 106 107 107 102 103
102 103 103 105 102 107 103 112 112 105 109
94 91 95 94 90 103 99 98 98 96 98
84 84 86 84 83 92 87 91 90 97 98
78 80 81 79 78 89 81 90 91 94 91
106 103 108 107 105 110 108 112 112 106 109
(Continued)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Table 3C.16 Data
UT VT VA
WA
PR WV
WI WI
WY
3-103
(Continued)
Through 2002 Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Wallops Island Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
49 3 40 63 63 33 56 55 49 55 61 42 60 56 53 74 59 58 54 73 55 28 61 36 65 58 55 55 56 48 39 55 58 42 53 50 63 62 52 67 56 62
88 80 90 80 78 84 83 84 82 90 89 88 88 87 66 62 66 80 80 81 79 79 63 65 66 64 59 67 68 92 73 79 76 78 53 57 56 62 60 66 63 70
95 81 99 83 83 91 87 90 85 97 100 95 96 93 75 69 62 79 82 83 80 79 73 73 74 70 63 75 69 96 74 79 75 79 61 64 64 68 68 71 68 76
96 86 101 89 85 91 95 95 87 97 100 97 100 100 80 78 84 87 88 93 87 86 76 72 75 75 71 77 80 96 81 89 84 86 78 84 82 82 74 74 76 77
95 92 106 98 92 95 100 101 94 103 101 98 101 102 87 86 91 94 97 96 95 93 87 83 87 85 90 87 92 97 86 94 89 92 89 93 94 91 84 83 82 87
103 96 109 104 94 99 109 108 97 109 103 101 102 110 94 96 93 93 100 100 96 97 96 92 92 93 96 99 102 96 89 93 93 93 91 94 93 93 92 91 91 95
113 97 112 114 99 103 114 116 100 110 107 106 109 117 105 104 100 100 101 104 100 96 101 96 100 96 101 107 105 97 90 98 93 100 98 102 101 101 102 100 100 105
110 104 108 112 101 104 108 112 103 111 106 104 109 114 104 107 100 103 103 105 104 101 103 97 100 100 103 112 108 95 94 104 99 102 103 108 104 103 104 100 101 107
108 106 109 108 100 107 106 107 108 109 108 107 112 113 102 106 101 102 104 102 105 100 104 99 97 99 108 109 110 97 96 101 95 100 99 105 102 103 102 96 101 106
111 110 110 104 96 109 103 107 105 107 111 111 111 111 98 100 98 101 99 103 101 96 98 97 92 98 98 99 100 97 92 102 97 97 95 100 99 98 97 95 94 103
102 93 106 96 94 96 100 101 95 100 99 99 101 102 90 89 85 93 95 99 93 90 90 83 82 89 86 87 88 98 81 92 86 87 88 93 90 89 87 83 85 92
89 86 96 87 85 89 88 90 88 93 94 93 92 89 76 75 75 83 86 86 83 82 74 69 73 74 67 81 73 96 78 85 80 82 74 75 76 77 72 75 70 81
88 80 90 80 80 85 81 85 84 91 90 88 91 88 65 69 67 79 80 81 80 77 64 64 65 64 56 65 67 94 73 80 76 80 64 67 64 68 63 69 64 72
113 110 112 114 101 109 114 116 108 111 111 111 112 117 105 107 101 103 104 105 105 101 104 99 100 100 108 112 110 98 96 104 99 102 103 108 104 103 104 100 101 107
Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
3-104
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.17 Temperature — Lowest of Record — Selected Cities of the United States Data AL
AK
AZ
AR
CA
CO
CT DE DC FL
Through 2002
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Birmingham CO Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue McGrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville
11 59 35 61 58 49 55 82 41 44 52 58 59 51 55 59 58 60 54 60 60 56 85 63 30 31 56 53 65 62 71 45 57 61 24 65 55 55 92 53 50 67 62 42 16 52 62 75 65 66 60 43 57 54 61 56 61 54 48 55 40 61 61 59 59 19 61
K6 K6 K11 3 0 K34 1 K53 K54 K48 K70 K63 K13 K61 K60 K24 K22 K48 K16 K49 K75 K54 K26 K48 K48 K20 K22 K22 17 16 K18 24 K10 K4 K6 20 K7 5 25 19 25 23 28 K2 19 23 29 24 30 26 20 19 K50 K26 K25 K23 K29 K7 K26 K14 K18 K5 9 15 28 10 7
11 3 1 11 10 K28 2 K56 K59 K39 K64 K60 K9 K58 K65 K19 K22 K41 K12 K52 K64 K42 K16 K46 K50 K10 K20 K23 22 20 K7 28 K9 K5 4 25 K2 6 27 24 33 32 34 1 21 23 36 25 31 25 22 22 K35 K27 K30 K18 K31 K5 K21 K6 K14 4 21 24 30 18 19
13 2 6 21 17 K24 1 K52 K51 K39 K56 K49 K13 K49 K48 K21 K15 K42 K6 K48 K51 K46 K19 K43 K50 K6 K20 K16 25 20 K2 32 7 11 14 31 9 9 29 26 33 34 26 11 28 26 39 30 38 34 24 27 K20 K11 K11 5 K20 4 K6 2 K1 11 22 26 33 26 23
29 26 26 32 28 K4 21 K42 K44 K22 K37 K37 4 K24 K42 K9 6 K15 7 K44 K40 K30 K8 K37 K30 5 3 K2 32 27 16 41 22 28 30 33 15 17 32 32 38 39 39 14 28 31 41 31 40 36 31 32 K6 K3 K2 11 2 18 9 18 17 24 36 35 39 34 34
42 35 36 43 40 17 31 K19 K16 4 K10 K1 18 K1 5 6 25 4 20 K18 K2 K11 8 K5 K6 21 21 14 40 38 23 46 35 40 40 37 25 21 35 36 40 43 5 21 34 36 48 36 44 38 31 38 11 21 22 26 25 31 28 30 28 34 47 44 50 42 45
48 42 45 49 49 33 37 4 13 28 27 30 29 31 26 29 31 29 30 20 30 23 16 28 25 31 29 22 50 47 35 54 47 46 52 45 29 28 40 44 47 48 49 25 42 41 51 41 47 42 36 45 24 32 30 34 36 41 35 41 36 47 48 52 60 50 47
60 51 54 60 59 38 40 22 24 31 29 32 33 35 29 34 36 33 37 30 33 30 28 33 32 33 35 32 61 59 44 63 50 54 60 52 34 36 45 50 51 49 54 31 53 48 55 43 47 49 43 49 30 42 43 44 44 49 44 48 41 54 63 60 66 62 61
57 51 52 59 56 31 40 20 20 28 22 22 32 27 20 31 27 25 34 29 25 26 29 25 28 32 29 24 60 61 41 63 51 52 53 52 37 35 44 49 52 51 53 34 51 49 57 42 48 47 43 50 29 39 41 43 40 44 36 43 38 49 62 65 65 61 59
41 37 38 42 39 19 33 1 4 18 0 K2 26 3 2 20 23 15 26 13 2 9 22 11 6 25 21 23 47 44 31 53 33 37 41 45 26 27 41 37 50 47 51 25 40 43 51 38 48 45 36 43 15 22 17 29 21 36 30 36 30 39 50 52 63 52 48
32 27 29 30 26 K5 18 K32 K26 K6 K35 K39 6 K27 K23 2 11 K12 10 K19 K28 K10 12 K21 K20 8 6 K2 34 26 13 35 22 29 27 29 16 17 32 27 39 41 41 19 33 36 43 34 45 36 26 33 K10 5 3 18 4 26 17 24 15 29 37 41 45 33 36
21 5 15 22 13 K21 K3 K40 K51 K24 K57 K47 1 K46 K44 K7 K5 K28 0 K36 K53 K39 4 K41 K47 1 K6 K13 25 24 K1 30 8 17 19 28 5 13 29 26 34 34 38 9 23 26 38 25 40 30 25 25 K30 K8 K8 K2 K17 16 1 14 9 16 24 27 34 25 21
K1 1 K3 8 5 K30 1 K55 K51 K37 K59 K62 K1 K62 K58 K16 K21 K38 K2 K47 K67 K41 K5 K45 K50 K6 K24 K23 22 16 K12 27 K5 K1 K2 19 K8 3 21 18 28 32 30 K5 17 18 34 20 28 20 20 17 K42 K24 K25 K17 K25 K4 K14 K7 K4 1 13 19 26 16 11
K6 K6 K11 3 0 K34 K3 K56 K59 K48 K70 K63 K13 K62 K65 K24 K22 K48 K16 K52 K75 K54 K26 K48 K50 K20 K24 K23 17 16 K18 24 K10 K5 K6 19 K8 3 21 18 25 23 5 K5 17 18 29 20 28 20 20 17 K50 K27 K30 K23 K31 K7 K26 K14 K18 K5 9 15 26 10 7
(Continued)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Table 3C.17 Data
GA
HI
ID
IL
IN
IA
KS
KY
LA
ME
MA
MI
MN
3-105
(Continued)
Through 2002
Years
Jan
Feb
Mar
Apr
May
Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls Minneapolis-St.Paul
50 60 60 39 42 56 19 66 59 54 52 57 54 52 56 33 38 52 63 56 53 45 44 70 63 52 55 62 56 63 63 63 50 62 54 41 60 82 56 50 41 22 58 55 19 52 38 56 50 63 62 52 117 51 47 44 44 46 39 38 44 24 63 62 61 63 64
41 30 19 5 6 21 21 27 K4 K8 K1 K2 K6 3 54 53 48 50 K17 K22 K30 K12 K27 K27 K25 K27 K21 K21 K22 K27 K22 K24 K28 K26 K33 K17 K13 K26 K20 K12 K25 K18 K21 K22 K15 9 15 14 3 K33 K26 K7 K16 K12 K19 K28 K21 K25 K22 K26 K29 K27 K13 K36 K39 K46 K34
45 32 26 15 14 24 28 32 5 5 9 10 9 14 53 53 50 52 K15 K15 K33 K5 K19 K28 K19 K24 K22 K23 K18 K21 K17 K26 K27 K26 K31 K15 K15 K22 K23 K21 K11 K8 K15 K19 K8 15 17 16 12 K41 K39 K3 K21 K4 K12 K37 K15 K22 K19 K34 K25 K34 K19 K35 K39 K45 K32
47 32 25 22 20 29 32 30 11 10 12 16 14 20 54 55 52 51 6 2 K12 6 K8 K19 K10 K11 K12 K9 K10 K7 K13 K22 K20 K22 K34 K7 K15 K20 K7 K2 K11 7 K2 K1 11 20 23 25 17 K28 K21 6 K5 6 K4 K27 K4 K12 K8 K23 K15 K23 K10 K24 K29 K38 K32
48 46 38 33 29 40 42 43 26 26 26 28 29 32 56 57 54 56 19 20 13 28 7 7 14 5 19 23 7 16 11 9 11 K2 K4 14 14 0 10 15 15 20 18 22 24 32 34 32 31 K2 8 20 6 16 11 0 10 6 3 3 K2 K5 1 K2 K5 K14 2
64 53 48 48 34 49 47 51 37 37 35 39 40 39 58 60 57 58 22 23 20 38 24 26 25 24 28 28 27 28 24 30 24 25 25 26 26 21 26 31 27 32 26 31 35 44 49 41 42 18 23 32 27 34 28 20 25 22 22 21 19 17 22 18 17 11 18
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
68 60 53 56 46 53 57 61 45 46 47 44 46 51 60 65 58 61 31 34 28 51 36 39 39 37 40 41 38 37 35 38 36 38 38 41 41 31 43 43 39 44 39 42 44 53 56 50 52 30 33 40 36 45 36 28 36 33 33 29 30 28 31 26 27 23 34
69 69 64 61 57 63 67 66 55 53 55 59 54 61 62 66 58 62 35 41 34 54 40 46 47 43 48 47 44 44 42 47 44 42 42 48 46 42 43 51 47 52 47 50 53 58 61 60 58 36 40 50 44 50 43 34 41 40 41 33 37 36 39 36 35 34 43
68 68 64 62 57 67 64 65 54 55 54 57 55 57 63 67 61 66 34 41 30 50 41 40 41 41 43 43 38 41 40 40 40 37 38 45 47 38 41 48 43 45 42 46 44 59 59 60 53 34 33 45 39 47 38 30 38 37 39 29 35 34 36 29 32 30 39
69 68 56 43 40 57 64 66 36 36 36 38 35 43 61 66 60 65 23 28 19 40 28 24 26 27 32 31 29 28 29 26 28 24 22 29 29 19 29 31 31 34 34 33 35 43 47 42 42 23 23 35 28 38 30 25 29 26 27 21 22 24 27 25 22 20 26
60 51 43 32 30 40 46 46 24 28 22 24 26 28 62 61 58 61 11 15 10 27 17 16 19 15 17 21 19 17 20 14 13 12 11 14 14 7 19 18 16 26 20 23 24 30 30 35 28 14 15 25 21 28 20 16 17 19 18 16 15 14 21 16 8 2 13
49 39 29 25 13 23 38 36 7 3 15 10 10 15 58 57 55 57 K3 K3 K14 5 1 K9 K2 K10 K3 K3 K1 K2 K7 K4 K17 K9 K17 K4 0 K12 2 1 1 13 K3 K1 10 21 23 24 16 K8 3 13 5 15 6 K6 9 6 5 K5 4 K5 K14 K10 K23 K32 K17
44 30 20 11 10 18 23 28 2 0 5 4 5 9 55 54 52 52 K25 K22 K29 K4 K25 K24 K23 K24 K21 K15 K18 K23 K16 K22 K25 K24 K29 K26 K21 K27 K26 K16 K20 K13 K19 K15 K10 8 11 11 5 K31 K21 0 K19 K7 K13 K18 K10 K13 K18 K21 K18 K28 K15 K31 K34 K41 K29
41 30 19 5 6 18 21 27 K4 K8 K1 K2 K6 3 53 53 48 50 K25 K22 K33 K12 K27 K28 K25 K27 K22 K23 K22 K27 K22 K26 K28 K26 K34 K26 K21 K27 K26 K21 K25 K18 K21 K22 K15 8 11 11 3 K41 K39 K7 K21 K12 K19 K37 K21 K25 K22 K34 K29 K34 K19 K36 K39 K46 K34
(Continued)
q 2006 by Taylor & Francis Group, LLC
3-106
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.17 Data
MS
MO
MT
NE
NV
NH NJ
NM
NY
NC
ND
OH
OK
(Continued)
Through 2002 Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C.Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
43 62 39 57 19 33 30 45 57 68 47 65 3 62 53 58 57 31 57 51 66 39 60 48 72 64 54 61 53 61 70 59 41 61 63 55 30 56 51 59 19 134 42 41
K32 K43 2 0 K6 K19 K17 K18 K13 K30 K47 K37 K23 K42 K38 K33 K28 K33 K27 K23 K23 K22 K32 K30 K43 K27 8 K16 K24 K33 K47 K10 K3 K8 K17 K21 K9 K28 K20 K16 K7 K6 K2 K3
K35 K40 10 8 4 K15 K19 K12 K17 K38 K38 K35 K23 K42 K36 K27 K19 K24 K26 K22 K21 K20 K28 K31 K37 K30 16 K16 K28 K37 K46 K11 1 K7 K5 K17 3 K21 K15 K20 1 K15 K2 K2
K31 K32 15 15 16 K5 K10 K5 K3 K19 K27 K29 K27 K30 K29 K13 K21 K19 K20 K22 K16 K16 K27 K29 K9 K13 23 K2 K3 K16 K38 5 2 6 8 K11 9 K21 K7 K7 8 3 7 8
5 K3 27 28 29 19 12 22 18 K5 K3 K6 4 1 10 14 7 3 2 7 5 7 K8 3 K2 K5 31 13 6 8 K20 12 22 16 19 9 23 10 9 12 24 12 20 22
21 19 38 38 40 29 30 31 30 14 20 15 17 17 19 21 23 24 24 19 27 25 15 19 10 7 40 18 10 21 K2 25 36 33 16 23 34 26 25 26 34 32 34 38
35 32 47 42 49 40 42 43 42 32 32 31 38 30 26 30 38 39 38 29 38 41 30 30 23 18 48 25 23 30 8 37 45 43 40 37 47 36 33 35 43 44 45 46
42 40 51 55 58 48 51 51 44 41 41 36 39 36 30 31 42 42 42 39 44 44 40 38 30 28 60 33 29 35 24 42 53 52 52 45 59 40 39 43 50 52 55 56
37 33 55 53 52 42 43 47 44 35 37 30 34 28 30 30 40 41 40 35 43 44 39 34 20 24 56 24 28 29 20 40 50 45 50 45 54 34 37 38 45 50 46 51
23 18 35 34 40 32 31 36 31 22 15 16 21 18 16 20 23 26 26 17 25 28 19 17 9 15 46 20 12 21 9 32 42 35 37 26 40 24 25 32 38 39 40 44
11 5 26 24 29 22 17 23 18 K7 K6 K11 4 K8 K3 0 9 8 11 10 13 15 K6 K1 1 K3 26 8 K2 10 K5 20 27 28 21 12 14 16 17 20 28 28 25 30
K20 K20 17 16 19 0 1 1 4 K22 K26 K25 K6 K39 K28 K23 K11 K5 K15 K13 K9 K11 K13 K22 K12 K15 21 1 K8 K5 K20 10 8 15 K7 K10 4 5 3 9 11 5 19 18
K33 K41 4 2 K3 K20 K23 K16 K16 K32 K38 K43 K30 K38 K35 K30 K26 K27 K30 K34 K23 K25 K42 K39 K38 K29 11 K16 K37 K22 K46 K7 4 K1 K7 K14 K8 K22 K18 K10 7 K13 2 K1
K35 K43 2 0 K6 K20 K23 K18 K17 K38 K47 K43 K30 K42 K38 K33 K28 K33 K30 K34 K23 K25 K42 K39 K43 K30 8 K16 K37 K37 K47 K11 K3 K8 K17 K21 K9 K28 K20 K20 K7 K15 K2 K3
62 53 38 45 63 74
K17 K26 K16 6 K5 K8
K19 K26 K2 14 5 K4
K7 K16 2 19 4 5
13 9 22 26 24 21
26 25 28 39 32 32
35 35 35 44 45 42
42 45 44 54 53 48
36 40 42 56 53 45
28 28 30 45 39 35
20 19 21 32 24 20
5 5 8 22 11 10
K16 K22 K7 12 2 0
K19 K26 K16 6 K5 K8
58 51 63 50 5 41 54 61 63 59 43 47 59 49 64
K9 5 K44 K35 K29 K40 K25 K20 K22 K25 K22 K20 K22 K4 K8
0 11 K43 K39 K22 K41 K13 K15 K13 K16 K11 K14 K14 K3 K11
11 9 K31 K23 K14 K28 K3 K5 K6 K7 K6 K6 K10 3 K3
23 30 K12 K7 6 K15 10 10 14 15 8 8 11 20 22
31 38 15 20 22 17 24 25 25 27 25 25 24 37 35
38 48 30 30 33 26 32 31 35 40 37 32 30 47 49
48 55 35 36 37 34 43 41 43 44 43 40 40 53 51
46 55 33 33 40 34 41 38 39 39 40 34 32 51 52
37 44 11 19 28 17 32 32 31 32 33 26 29 36 35
19 27 K10 7 12 K9 20 19 20 21 20 15 20 16 18
11 20 K30 K24 K9 K27 K1 3 5 K2 2 2 1 11 10
4 0 K43 K32 K24 K50 K16 K15 K17 K20 K17 K19 K12 K8 K8
K9 0 K44 K39 K29 K50 K25 K20 K22 K25 K22 K20 K22 K8 K11
(Continued)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Table 3C.17 Data OR
PC
PA
RI SC
SD
TN
TX
UT VT
3-107
(Continued)
Through 2002
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei,Caroline IS Chuuk,E.Caroline IS Wake Island Yap,W. Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston A Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCty -Kgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin City Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington
49 18 60 73 67 62 65 65 44 29 53 50 47 43
11 K27 K4 K3 K22 K2 K10 K2 56 65 69 68 69 67
9 K28 K3 6 K18 K3 K4 9 59 64 71 71 70 67
22 K14 20 16 1 19 12 15 54 67 69 70 70 67
29 10 27 21 18 29 23 19 59 65 69 71 70 68
30 15 28 28 25 29 25 22 62 68 71 71 70 66
37 21 32 31 35 39 32 27 63 69 70 71 70 64
39 25 39 38 42 43 37 36 64 70 70 70 70 62
39 22 38 39 40 44 36 36 63 70 70 71 71 64
33 17 31 29 30 34 26 26 61 71 70 68 70 63
26 K7 17 18 11 26 20 20 64 66 71 71 70 67
15 K13 12 10 K12 13 9 11 62 63 70 70 68 67
6 K20 K12 K6 K19 6 K12 2 61 62 71 69 70 67
6 K28 K12 K6 K22 K3 K12 K2 54 62 69 68 68 62
52 52 50 54 59 49 49 64
61 68 65 67 K15 K18 K9 K22
63 67 65 67 K8 K17 K5 K5
65 68 65 64 K1 K9 5 5
61 68 65 66 16 12 19 19
61 67 69 67 28 26 31 31
67 68 71 65 39 32 40 40
66 67 69 66 46 44 49 49
63 69 68 65 41 37 45 45
62 67 69 66 30 33 30 30
63 64 68 66 21 24 23 23
64 66 65 63 11 7 13 13
65 69 64 65 K8 K6 K8 K8
61 64 64 63 K15 K18 K9 K22
61 50 47 58 39 49 60 17 55 40
K7 K22 K21 K20 K2 K13 6 10 K1 K6
K4 K12 K16 K13 K2 K7 12 22 5 8
7 K1 K4 K2 8 1 15 22 4 11
19 14 14 15 18 14 29 36 26 25
28 26 27 28 34 29 36 13 34 31
44 34 34 36 41 41 50 58 44 40
51 42 43 43 51 48 58 65 54 54
44 39 38 38 45 40 56 59 53 52
35 31 29 28 40 33 42 55 40 36
25 16 19 20 30 20 27 40 23 25
15 K1 9 8 16 6 15 35 12 12
1 K12 K9 K15 K4 K10 8 5 4 5
K7 K22 K21 K20 K4 K13 6 5 K1 K6
41 61 60 57 57
K35 K37 K27 K36 K21
K45 K41 K31 K31 K15
K32 K24 K21 K23 K2
K2 K2 1 5 21
19 17 18 17 30
33 32 31 33 38
39 37 39 38 45
32 36 38 34 43
20 19 18 22 34
8 8 K2 9 20
K27 K21 K19 K17 5
K39 K30 K30 K28 K9
K45 K41 K31 K36 K21
63 61 61 63 63 63 62 61 64 64 49 3 40 63 63 33 56 55 49 55 61 42 60 56 53 74 59
K10 K24 K4 K17 K17 K9 K11 K2 19 14 4 19 15 K8 11 12 K16 K8 14 5 0 14 K5 K5 K28 K22 K30
1 K8 K11 K13 K13 K7 K14 7 22 18 7 21 14 8 8 20 K8 K11 20 K1 6 19 4 K8 K29 K30 K30
8 1 12 2 1 7 K3 18 32 24 15 17 21 14 26 22 2 9 23 8 19 21 15 8 K14 2 K20
25 22 29 23 20 25 14 35 38 33 29 41 33 23 38 31 22 20 32 25 31 33 27 24 9 14 2
34 32 38 34 30 36 28 43 52 47 41 50 45 31 52 44 30 34 46 35 43 49 37 36 17 25 24
41 43 48 42 39 47 41 53 60 58 51 62 55 46 57 52 44 47 56 48 53 59 52 51 24 35 33
51 49 52 51 49 55 51 64 68 64 59 69 64 57 66 62 51 53 61 56 62 62 60 54 38 40 39
50 49 48 47 50 50 49 61 63 64 56 70 64 56 67 60 52 54 60 54 61 62 53 53 34 37 35
36 36 36 36 33 35 30 41 55 50 43 49 48 41 52 48 33 36 45 37 41 48 40 38 23 27 25
22 25 25 26 21 23 12 30 35 28 29 39 28 25 39 29 18 24 30 26 27 31 25 25 K2 16 15
4 5 9 K1 0 14 0 20 31 28 20 29 22 1 26 19 K1 11 22 13 21 24 17 14 K13 K14 K2
K2 K6 K13 K10 K7 K7 K8 4 16 13 K1 21 10 5 14 7 K2 K1 12 K4 6 9 K4 K7 K32 K21 K26
K10 K24 K13 K17 K17 K9 K14 K2 16 13 K1 17 10 K8 8 7 K16 K11 12 K4 0 9 K5 K8 K32 K30 K30
(Continued) q 2006 by Taylor & Francis Group, LLC
3-108
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.17 Data VA
WA
PR WV
WI
WY
(Continued)
Through 2002 Lynchburg Norfolk Richmond Roanoke Wallops Island Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Years
Jan
Feb
Mar
Apr
May
58 54 73 55 28 61 36 65 58 55 55 56 48 39 55 58 42 53 51 63 62 52 67 56 62
K10 K3 K12 K11 0 K8 7 11 0 K22 K4 K21 61 K22 K16 K24 K21 K31 K37 K37 K26 K40 K29 K37 K35
K10 8 K10 K1 10 K1 11 11 1 K24 K13 K25 62 K16 K12 K22 K9 K28 K36 K29 K26 K29 K34 K28 K32
7 18 11 9 14 9 19 22 11 K7 4 K1 60 K5 0 K15 K2 K29 K28 K29 K10 K21 K21 K16 K23
20 28 23 20 27 23 23 31 29 17 29 20 64 11 19 3 20 7 7 0 12 K6 K8 K2 K2
31 36 31 31 37 25 29 35 28 24 34 25 66 23 26 20 27 21 26 19 21 16 16 18 13
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
40 45 40 39 44 30 33 42 38 33 39 30 69 32 33 25 40 32 37 31 33 28 25 25 27
49 54 51 47 53 35 38 47 43 37 46 34 69 41 46 32 46 40 33 36 40 30 38 39 35
45 49 46 42 48 33 36 48 44 35 42 35 70 36 41 34 43 38 40 35 44 33 36 35 32
35 45 35 34 43 25 28 40 35 22 32 24 69 30 34 27 31 24 28 25 28 16 8 10 6
21 27 21 22 31 14 24 30 28 7 15 4 46 18 17 11 16 15 14 13 18 K3 K1 K3 K9
8 20 10 9 20 K1 5 13 6 K21 K11 K13 66 4 6 0 8 K9 K9 K11 K5 K21 K16 K18 K25
K4 7 K1 K4 4 K7 7 9 6 K25 K14 K17 59 K18 K12 K24 K13 K27 K30 K25 K20 K41 K28 K37 K37
K10 K3 K12 K11 0 K8 5 9 0 K25 K14 K25 46 K22 K16 K24 K21 K31 K37 K37 K26 K41 K34 K37 K37
Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-109
Table 3C.18 World-Wide Extremes of Temperature and Precipitation Temperature A. Highest World, 588C (1368F), El Azizia, Libya, 13 September 1922 Western Hemisphere, 578C (1348F), Death Valley, California, 10 July 1913 Antarctica, K13.68C (7.58F), 27 December 1978 Asia, 548C (1298F), Tirat Tsvi, Israel, 21 June 1942 Australia, 538C (1288F), Cloncurry, Queensland, 16 January 1889 Europe, 508C (1228F), Seville, Spain, 4 August 1881 South America, 498C (1208F), Rivadavia, Argentina, 11 December 1905 Canada, 458C (1138F), Midale and Yellow Grass, Saskatchewan, 5 July 1937 Vanda Station, Antarctica, had a 158C (598F) maximum, 5 January 1974 (possibly Antarctica’s highest) South Pole, K148C (7.58F), 27 December 1978 Persian Gulf had a 368C (968F) sea-surface, 5 August 1924 Annual Mean, 34.48C (948F), Dallol, Ethiopia B.
Lowest World, K898C (K1298F), Vostok, Antarctica, 21 July 1983 Northern Hemisphere, K688C (K908F), Verkhoyansk, U.S.S.R., 5 and 7 February 1892 and Oimekon, U.S.S.R., 6 February 1933 Greenland, K668C (K878F), Northice, 9 January 1954 North America, excluding Greenland, K638C (K818F), Snag, Yukon Territory, 3 February 1947 U.S., K628C (K808F), Prospect Creek, Endicott Mts., Alaska, 23 January 1971 U.S., excluding Alaska, K56.58C (K708F), Rogers Pass, Montana, 20 January 1954 Europe, K558C (K678F), Ust ’Shchugor, U.S.S.R., January (date not known, lowest in 15-year period) South America, K338C (K278F), Sarmiento, Argentina, 1 June 1907 Africa, K248C (K118F), Ifrane, Morocco, 11 February 1935 Antarctica, annual mean temperature K578C, (K718F), Sovietskaya, Antarctica Australia, K238C (K98F), Charlotte Pass, New South Wales, 29 June 1994 Upper Air, K1538C (K2438F) at 93 km (58 mi) above Point Barrow, AK
Precipitation A. Greatest Rainfall World, 1-minute, 3.1 cm (1.23 00 ), Unionville, Maryland, 4 July 1956 World, 20-minute, 20.5 cm (8 00 ), Curtea-de-Arges, Romania, 7 July 1889 World, 42-minute, 30.5 cm (12 00 ), Holt, Missouri, 22 June 1947 World, 60-minute, 30.5 cm (12 00 ), Holt, Missouri, 22 June 1947 and Kilauea Sugar Plantaion 24–25 January 1956 World, 12-hour, 117 cm (46 00 ), Grand Ilet, La R’eunion Island, 28 January 1980 World, 24-hour, 183 cm (72 00 ), Foc-Foc, La R’eunion Island, 7–8 January 1966 World, 5-day, 430 cm (169 00 ), Commerson, La R’eunion Island, 23–28 January 1980 World, 1-month, 930 cm (366 00 ), Cherrapunji, India, July 1861 World, 12-month, 2,647 cm (1042 00 ), Cherrapunji, India, August 1860–1861 Northern Hemisphere, 24-hour, 125 cm (49 00 ), Paishih, Taiwan, 10–11 September 1963 Australia, 24-hour, 114 cm (44 00 ), Bellenden Ker, Queensland, 4 January 1979 Canada, 24-hour, 49 cm (19 00 ), Ucluelet Brynnor Mines, British Columbia, 6 October 1967 United States, 24-hour, 109 cm (43 00 ), Alvin, Texas, 25–26 July 1979 United States, 12-month, 1878 cm (793 00 ), Kukui, Maui, Hawaii, December 1981–1982 B.
Greatest Average Yearly Precipitation World, 1,168 cm (460i 00 ), Mount Waialeale, Kauai, HI (1931–1960), 1187 cm (467 Mawsynram,India (1941–1979), 1330 cm (524 00 ), Lloro, Colombia (1932–1960) Asia, 1187 cm (467 00 ) during a 38-year period, Mawsynrami, India Africa, 1029 cm (405 00 ) during a 32-year period, Debundscha, Cameroon South America, 899 cm (354 00 ) during a 10–16 year period, Quibdo, Colombia North America, 650 cm (256 00 ) during a 14-year period Henderson Lake, British Columbia Europe, 465 cm (183 00 ) during a 22-year period, Crkvice, Yugoslavia Australia, average yearly, 864 cm (340 00 ), Bellenden Ker, Queensland Bahia Felix, Chile, averages 325 days/year with rain Canada, highest frequency of days with precipitation, 242 per year average, Langara, Queen Charlotte Islands, British Columbia
C.
Least Precipitation Arica, Chile, had no rain for more than 14 consecutive years, October 1903 to January 1918 U.S., longest dry period, 767 days from 3 October 1912 to 8 November 1914, Bagdad, California Canada, least precipitation during a calendar year, 1.27 cm (0.05 00 ), Arctic Bay, Northwest Territories, 1949 Canada, lowest frequency of days with precipitation, 8 per year average, Rea Point, Northwest Territories Lowest Average Yearly Precipitation World, 0.08 cm (0.03 00 ) during a 59-year period, Arica, Chile
D.
(Continued) q 2006 by Taylor & Francis Group, LLC
3-110
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3C.18 (Continued) Africa, !0.25 cm (!0.1 00 O during a 39-year period, Wadi Haifa, Sudan North America, 3.0 cm (1.2 00 ) during a 14-year period, Bataques, Mexico United States, 4.1 cm (1.63 00 ) during a 42-year period, Death Valley, California Asia, 4.6 cm (1.8 00 ) during a 50-year period, Aden, South Yemen Australia, 10 cm (4.05 00 ) during a 42-year period, Troudaninna, South Australia Europe, 16 cm (6.4 00 ) during a 25-year period, Astrakhan, U.S.S.R. E.
Hailstones U.S., largest hailstone, 44.5 cm (17.5 00 ) circumference, Coffeyville, Kansas, 3 September 1979 Canada, heaviest hailstone, 290 gm (10.23 oz), Cedoux, Saskatchewan, 27 August 1973 Canada, highest frequency of days with hail, 7 per year average, Edson and Red Deer, Alberta United States, highest frequency of days with hail, 9.4 per year average, Cheyenne, Wyoming World, heaviest hailstone, 1.02 kg (2.25 lbs) in the Gopalganj district, Bangladesh, 14 April 1986
F.
Greatest Snowfall North America, 24-hour, 192.5 cm (76 00 ), Silver Lake, Colorado, 14–15 April 1921 Bessans, France, had a snowfall of 172 cm (68 00 ) in 19 hours, 5–6 April 1969 Canada, climatological day, 118 cm (46 00 ), Lakelse Lake, British Columbia, 17 January 1974 North America, one storm, 480 cm (189 00 ), Mt. Shasta Ski Bowl, California, 13–19 February 1959 North America, one season, 2850 cm (1122 00 ), Rainier Paradise Ranger Station, Washington, 1971–1972 Canada, one season, 2446.5 cm (964 00 ), Revelstoke Mt. Copeland, British Columbia, 1971–1972 Canada, highest frequency of days with snow, 142 per year average, Old Glory Mountain, British Columbia North America, greatest depth of snow on the ground, 1145.5 cm (451 00 ), Tamarack, California, 11 March 1911 Canada, greatest depth of snow on the ground, 775 cm (305 00 ), Loch Lomond, British Columbia
Other Elements A. Thunderstorms Kampala, Uganda, averages 242 days/year with thunderstorms, during a 10-year period Bogor, Indonesia, averaged 322 days/year with thunderstorms from 1916 to 1920 Canada, highest frequency of days with thunderstorms, 34 per year average, Windsor, Ontario North America, highest average annual days with thunderstorms, 100 per year average, Tampa, Florida B.
Fog Frequency U.S. West Coast, highest average, 2552 hours per year during a 10-year period or more, Cape Disappointment, Washington U.S. East Coast, highest average, 1580 hours per year during a 10-year period or more, Moose Peak Lighthouse, Mistake Island, Maine Canada, highest average, 158 days per year, Cape Race, Newfoundland
Source: From Krause, P. and Flood, K., 1997, Weather and climate extremes, U.S. Army Corps of Engineers, Topographic Engineering Center, Alexandria, VA 22315.
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-111
Table 3C.19 World Record Point Rainfall Duration 1 8 15 20 42 60 2.17 2.75 4.5 6 9 10 18.5 24 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 2 3 4 5 6 11 12 2
Units min
hours
days
months
years
Rainfall (mm) 38 126 198 206 305 401 483 559 782 840 1,087 1,400 1,689 1,825 2,467 3,130 3,721 4,301 4,653 5,003 5,286 5,692 6,028 6,299 6,401 6,422 6,432 6,433 9,300 12,767 16,369 18,738 20,412 22,454 22,990 26,461 40,768
Location Barot, Guadeloupe Fussen, Bavaria Plumb Point, Jamaica Curtea-de-Arges, Romania Holt, U.S.A. Shangdi, Nei Monggol, China Rockport, U.S.A. D’Hanis, U.S.A. Smethport, U.S.A. Muduocaidang, China Belouve, La Re´union Muduocaidang, China Belouve, La Re´union Foc Foc, La Re´union Aurere, La Re´union Aurere, La Re´union Cherrapunji, India Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Commerson, La Re´union Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India Cherrapunji, India
Date 26 Nov 1970 25 May 1920 12 May 1916 7 Jul 1889 22 Jun 1947 3 Jul 1975 18 Jul 1889 31 May 1935 18 Jul 1942 1 Aug 1977 28 Feb 1964 1 Aug 1977 28–89 Feb 1964 7–8 Jan 1966 7–9 Apr 1958 6–9 Apr 1958 12–15 Sep 1974 23–27 Jan 1980 22–27 Jan 1980 21–27 Jan 1980 20–27 Jan 1980 19–27 Jan 1980 18–27 Jan 1980 17–27 Jan 1980 16–27 Jan 1980 15–27 Jan 1980 15–28 Jan 1980 14–28 Jan 1980 1–31 Jul 1861 Jun–Jul 1861 May–Jul 1861 Apr–Jul 1861 Apr–Aug 1861 Apr–Sep 1861 Jan–Nov 1861 Aug 1860–Jul 1861 1860–1861
Source: From World Meteorological Organization and are published in the Guide to Hydrological Practices 1994, 5th Edition, WMO No. 168, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
3-112
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 3D
PRECIPITATION DATA
-ANNUALA < 5 .01 B 5 .01 – 12.00 C 12.01 – 20.00 D 20.01 – 3 0.00 E 3 0.01 – 40.00 F 40.01 – 5 0.00 G 5 0.01 – 70.00 H 70.01 – 100.00 I > 100.00 ( I N.) Figure 3D.7 U.S. annual mean total precipitation. (From Climate Atlas of the United States, updated 8/27/02.)
-ANNUALA < 10.01 B 10.01 – 15 .00 C 15 .01 – 20.00 D 20.01 – 3 0.00 E 3 0.01 – 40.00 F 40.01 – 5 0.00 G
5 0.01 – 75 .00 H 75 .01 – 100.00 I > 100.00 ( I N.)
Figure 3D.8 Alaska annual mean total precipitation. (From Climate Atlas of the United States, updated 8/27/02.) q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
Kaua `i
3-113
O `ahu
Ni `ihau
Moloka `i
Maui -ANNUAL A < 10.01
Lana `i
B 10.01 – 20.00 C 20.01 – 3 0.00
Kaho `olawe
D 3 0.01 – 5 0.00 E 5 0.01 – 80.00 F 80.01 – 120.00 G
120.01 – 200.00 H
200.01 – 3 00.00 I > 3 00.00 Hawai `i ( I N.)
Figure 3D.9 Hawaii annual mean total precipitation. (From Climate Atlas of the United States, updated 8/27/02.)
q 2006 by Taylor & Francis Group, LLC
State AL
AK
AR
CA
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
5.45 5.52 5.75 5.04 0.68 9.67 0.12 0.62 0.84 0.34 3.08 0.56 0.45 2.61 4.81 1.03 8.17 0.55 1.04 0.92 1.74 1.45 0.40 6.02 13.18 2.18 0.83 0.99 0.46 0.38 2.37 3.61 3.37 1.18 0.88 5.97 2.16 2.95 2.98 3.33 7.06 6.50 3.84 2.28 4.45
4.21 4.95 5.10 5.45 0.74 8.05 0.12 0.51 0.61 0.41 2.59 0.36 0.52 2.04 4.02 0.72 5.72 0.42 0.74 0.75 1.25 1.28 0.31 5.53 10.99 2.56 0.77 0.88 0.53 0.28 2.59 3.33 3.27 1.21 0.97 5.51 2.12 3.01 3.11 3.68 6.45 5.49 3.54 2.04 4.01
6.10 6.68 7.20 6.39 0.65 7.96 0.09 0.67 0.55 0.22 2.48 0.28 0.36 1.82 3.51 0.79 5.22 0.38 0.81 0.60 1.12 1.26 0.39 4.49 11.41 2.62 1.07 0.81 0.61 0.27 3.94 4.88 4.88 1.41 0.62 5.55 2.20 2.43 2.40 3.14 5.81 5.15 2.80 2.26 3.26
4.67 4.54 5.06 4.38 0.52 7.37 0.12 0.65 0.38 0.20 2.30 0.21 0.22 1.21 2.96 0.94 5.48 0.41 0.66 0.65 1.12 1.22 0.35 3.55 10.80 1.29 0.25 0.28 0.27 0.09 3.91 5.47 5.03 0.45 0.24 2.91 0.76 0.60 0.63 0.83 2.65 2.40 1.02 0.75 1.17
4.83 5.24 6.10 4.14 0.69 5.73 0.12 0.85 0.85 0.77 2.65 0.60 0.59 1.07 3.48 1.35 6.31 0.33 1.02 0.74 1.21 1.64 0.55 3.08 9.78 0.80 0.16 0.24 0.36 0.05 5.29 5.05 5.40 0.24 0.26 1.62 0.39 0.23 0.24 0.31 1.87 1.66 0.53 0.20 0.38
3.78 4.22 5.01 4.13 1.06 4.72 0.32 1.60 1.43 2.38 2.89 1.40 1.54 0.96 3.36 1.70 5.38 0.57 1.45 1.14 1.41 2.41 1.25 3.01 7.17 0.43 0.09 0.24 0.30 0.02 4.28 3.95 3.51 0.12 0.21 0.65 0.23 0.08 0.08 0.06 0.99 0.69 0.20 0.09 0.11
5.09 4.40 6.54 5.31 1.70 4.26 0.87 2.03 2.10 2.77 2.53 1.73 1.82 1.45 4.14 2.15 4.12 1.43 2.32 2.15 1.91 3.24 2.15 3.84 7.88 2.40 0.99 2.07 1.18 0.23 3.19 3.31 3.15 0.00 0.17 0.16 0.01 0.02 0.03 0.01 0.39 0.05 0.05 0.03 0.03
3.48 3.32 6.20 3.63 2.93 6.12 1.04 3.02 2.54 2.11 3.59 1.74 1.80 2.28 5.37 2.89 4.48 2.00 2.75 3.23 2.96 4.53 2.92 6.62 13.27 2.89 0.94 2.30 1.31 0.61 2.56 2.93 2.97 0.08 0.13 0.38 0.01 0.10 0.14 0.13 0.43 0.22 0.06 0.09 0.07
4.05 4.29 6.01 4.22 2.87 9.49 0.69 2.31 1.82 1.03 4.51 1.12 1.44 3.37 7.54 2.81 7.84 1.70 2.36 2.51 2.79 4.35 2.10 9.59 20.88 2.12 0.75 1.45 1.02 0.26 3.61 3.71 3.53 0.15 0.28 0.86 0.26 0.24 0.26 0.32 0.87 0.48 0.36 0.21 0.20
3.23 3.54 3.25 2.58 2.08 13.86 0.39 1.43 1.08 0.73 4.54 0.92 1.02 2.77 8.30 2.09 8.36 0.95 1.46 1.58 2.70 3.06 0.89 8.58 24.00 1.93 0.79 1.21 0.90 0.26 3.94 4.25 3.81 0.30 0.20 2.36 0.65 0.40 0.36 0.37 2.21 2.18 0.89 0.44 1.04
4.63 5.22 5.41 4.53 1.09 12.21 0.16 1.37 0.90 0.59 4.79 0.68 0.67 2.87 5.43 1.54 6.63 0.71 1.46 1.28 2.87 1.78 0.66 5.51 15.17 1.86 0.73 0.67 0.55 0.14 4.80 5.73 5.74 0.59 0.44 5.78 1.10 1.12 1.13 1.05 5.08 4.03 2.19 1.07 2.49
4.47 5.59 4.66 4.97 1.05 11.39 0.12 1.12 0.87 0.39 4.33 0.74 0.97 3.00 5.41 1.39 7.64 0.60 1.44 1.01 2.13 1.96 0.47 7.59 15.85 1.83 0.92 1.03 0.54 0.42 3.39 4.71 4.53 0.76 0.62 6.35 1.34 1.76 1.79 1.91 5.35 4.67 2.45 1.31 2.89
53.99 57.51 66.29 54.77 16.08 100.83 4.16 16.18 13.97 11.94 40.28 10.34 11.40 25.45 58.33 19.41 75.35 10.05 17.51 16.56 23.21 28.18 12.44 67.41 160.38 22.91 8.29 12.17 8.03 3.01 43.87 50.93 49.19 6.49 5.02 38.10 11.23 12.94 13.15 15.14 39.16 33.52 17.93 10.77 20.11
Birmingham Huntsville Mobile Montgomery Anchorage Annette Barrow Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue Mcgrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Eureka Fresno Long Beach Los Angeles AP Los Angeles CO Mount Shasta Redding Sacramento San Diego San Francisco AP
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AZ
Station
3-114
Table 3D.20 Normal Monthly Precipitation (inches) — Selected Cities of the United States
CT DE DC
FL
GA
HI
ID
IL
30 30 30 30 30 30 30 30 30 30 30 30 30
4.72 3.57 2.64 2.71 0.25 0.28 0.51 0.60 0.33 3.73 3.84 3.43 3.05
4.15 4.28 3.23 2.46 0.21 0.35 0.49 0.50 0.26 2.92 2.96 2.81 2.77
3.40 3.51 2.94 2.28 0.46 1.06 1.28 1.00 0.97 4.15 3.88 3.97 3.55
1.25 0.63 0.91 0.96 0.54 1.62 1.93 0.86 1.25 3.99 3.86 3.39 3.22
0.54 0.23 0.32 0.50 0.70 2.39 2.32 0.98 1.49 4.03 4.39 4.15 4.22
0.13 0.05 0.05 0.09 0.59 2.34 1.56 0.41 1.33 3.57 3.85 3.59 4.07
0.04 0.03 0.03 0.05 0.94 2.85 2.16 0.66 2.04 3.77 3.67 4.28 3.57
0.09 0.11 0.05 0.05 1.19 3.48 1.82 0.84 2.27 3.75 3.98 3.51 3.78
0.28 0.42 0.31 0.33 0.89 1.23 1.14 0.91 0.84 3.58 4.13 4.01 3.82
1.19 0.52 0.45 0.82 0.67 0.86 0.99 1.00 0.64 3.54 3.94 3.08 3.37
3.31 1.32 1.24 1.77 0.48 0.52 0.98 0.71 0.58 3.65 4.06 3.19 3.31
3.18 2.26 1.84 1.82 0.33 0.42 0.63 0.52 0.39 3.47 3.60 3.40 3.07
22.28 16.93 14.01 13.84 7.25 17.40 15.81 8.99 12.39 44.15 46.16 42.81 41.80
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
3.21 4.87 3.13 2.23 3.51 3.69 2.22 1.88 2.43 5.34 5.36 2.27 2.89 3.75 4.69 5.02 4.50 4.78 5.00 3.95 9.74 2.73 3.74 4.59 1.39 1.14 1.14 1.75 1.58 1.50 1.41 1.62
2.63 3.76 2.74 2.10 3.39 3.15 1.51 2.07 2.35 4.68 4.63 2.67 2.45 2.55 4.39 4.68 4.11 4.48 4.55 2.92 8.86 2.35 2.36 3.26 1.14 0.95 1.01 1.63 1.51 1.67 1.34 1.80
3.60 4.95 3.84 2.74 4.26 3.93 1.86 2.56 3.54 6.40 6.47 2.84 4.20 3.68 4.99 5.38 4.61 5.75 4.89 3.64 14.35 1.89 2.35 3.58 1.41 1.12 1.38 2.65 2.92 2.83 2.39 3.15
2.77 3.00 2.54 1.67 2.86 3.14 2.06 3.36 2.42 3.89 3.59 1.80 2.88 3.57 3.35 3.62 2.94 3.84 3.14 3.32 12.54 1.11 1.75 3.00 1.27 1.30 1.18 3.68 3.82 3.56 3.62 3.36
3.82 2.62 3.26 3.42 3.23 3.48 3.48 5.52 3.74 4.40 4.95 2.85 3.80 5.39 3.86 3.95 3.07 3.62 2.98 3.61 8.07 0.78 0.66 2.87 1.27 1.56 1.51 3.38 4.25 4.17 4.02 4.06
3.13 4.30 5.69 9.77 6.78 5.37 4.57 8.54 7.35 6.39 6.92 5.50 6.03 7.58 3.94 3.63 4.19 3.51 3.54 5.49 7.36 0.43 0.23 1.82 0.74 1.16 0.91 3.63 4.63 3.84 4.80 3.77
3.66 7.31 5.17 8.98 6.10 5.97 3.27 5.79 7.15 8.02 8.04 6.49 6.53 5.97 4.41 5.12 4.07 5.04 4.32 6.04 10.71 0.50 0.49 2.12 0.39 0.72 0.70 3.51 4.03 4.02 4.10 3.53
3.44 7.29 6.09 9.54 6.63 6.87 5.40 8.63 6.25 6.85 7.03 7.60 6.04 6.65 3.78 3.67 4.48 3.78 3.79 7.20 9.78 0.46 0.53 1.91 0.30 0.75 0.66 4.62 4.41 3.16 4.21 3.41
3.79 7.10 6.61 7.86 4.37 7.90 5.45 8.38 5.76 5.75 5.01 6.54 6.84 8.10 3.53 4.09 3.59 3.07 3.26 5.08 9.14 0.74 0.39 2.69 0.76 0.80 0.89 3.27 3.16 3.12 3.47 2.83
3.22 4.18 4.48 2.59 2.50 3.86 4.34 6.19 2.73 4.13 3.25 2.29 5.04 5.46 3.47 3.11 3.20 2.33 2.37 3.12 9.64 2.18 1.05 4.25 0.76 0.96 0.97 2.71 2.80 2.76 2.57 2.62
3.03 3.62 3.03 1.71 2.17 2.34 2.64 3.43 2.32 4.46 3.86 1.62 3.04 5.55 3.71 4.10 2.68 3.97 3.22 2.40 15.58 2.26 2.17 4.70 1.38 1.21 1.13 3.01 2.73 2.99 2.63 2.87
3.05 3.51 2.71 1.58 2.56 2.64 2.14 2.18 2.31 3.97 4.10 2.30 2.19 3.14 3.71 3.82 3.14 4.40 3.93 2.81 10.50 2.85 3.08 4.78 1.38 1.05 1.10 2.43 2.20 2.40 2.06 2.54
39.35 56.51 49.29 54.19 48.36 52.34 38.94 58.53 48.35 64.28 63.21 44.77 51.93 61.39 47.83 50.20 44.58 48.57 45.00 49.58 126.27 18.29 18.80 39.57 12.19 12.74 12.58 36.27 38.04 36.03 36.63 35.56
q 2006 by Taylor & Francis Group, LLC
3-115
(Continued)
CLIMATE AND PRECIPITATION
CO
San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue Boise Lewiston Pocatello Chicago Moline Peoria Rockford Springfield
State IN
IA
KS
KY
ME MD MA
MI
MN
MS
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30 30 30 30 30 30 30 30 30
2.91 2.05 2.48 2.27 1.03 1.28 0.59 0.84 0.66 0.62 0.43 0.95 0.84 2.92
3.10 1.94 2.41 1.98 1.19 1.42 0.62 1.05 0.73 0.66 0.44 1.18 1.02 2.75
4.29 2.86 3.44 2.89 2.21 2.57 2.00 2.13 2.35 1.84 1.20 2.56 2.71 3.90
4.48 3.54 3.61 3.62 3.58 3.49 2.75 3.23 2.45 2.25 1.51 3.14 2.57 3.96
5.01 3.75 4.35 3.50 4.25 4.12 3.75 4.15 4.20 3.00 3.46 4.86 4.16 4.59
4.10 4.04 4.13 4.19 4.57 4.08 3.61 4.82 3.95 3.15 3.30 4.88 4.25 4.42
3.75 3.58 4.42 3.73 4.18 3.73 3.30 4.20 4.20 3.17 3.54 3.83 3.31 3.75
3.14 3.60 3.82 3.98 4.51 4.59 2.90 4.08 3.24 2.73 2.49 3.81 2.94 3.79
2.99 2.81 2.88 3.79 3.15 3.56 2.42 2.95 2.50 1.70 1.12 3.71 2.96 2.82
2.78 2.63 2.76 3.27 2.62 2.50 1.99 2.49 1.84 1.45 1.05 2.99 2.45 2.96
4.18 2.98 3.61 3.39 2.10 2.49 1.40 2.10 1.45 1.01 0.82 2.31 1.82 3.46
3.54 2.77 3.03 3.09 1.33 1.69 0.66 1.11 0.86 0.77 0.40 1.42 1.35 3.28
44.27 36.55 40.95 39.70 34.72 35.52 25.99 33.15 28.43 22.35 19.76 35.64 30.38 42.60
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
3.56 3.34 3.28 3.47 6.19 5.52 5.87 4.60 2.97 4.09 3.47 4.78 3.92 4.07 1.76 1.91 1.57 2.03 1.61 1.61 2.60 2.22 2.64 1.12 0.84 1.04
3.68 3.27 3.25 3.93 5.10 3.28 5.47 4.21 2.06 3.14 3.02 4.06 3.30 3.10 1.35 1.88 1.35 1.53 1.25 1.45 1.85 1.58 1.60 0.83 0.64 0.79
4.38 4.41 4.41 4.27 5.07 3.54 5.24 4.18 2.57 4.14 3.93 4.79 3.85 4.23 2.13 2.52 2.22 2.59 2.05 2.33 3.13 2.36 2.41 1.69 0.96 1.86
3.79 3.67 3.91 4.95 5.56 3.64 5.02 4.42 2.64 4.26 3.00 4.32 3.60 3.92 2.31 3.05 3.13 3.48 2.29 3.09 2.79 2.91 2.57 2.09 1.38 2.31
5.16 4.78 4.88 4.75 5.34 6.06 4.62 5.25 3.27 3.82 3.89 3.79 3.24 4.35 2.61 3.05 2.74 3.35 2.57 2.71 3.07 2.95 2.50 2.95 2.55 3.24
4.67 4.58 3.76 4.51 5.33 6.07 6.83 5.05 3.31 3.28 3.43 3.93 3.22 4.02 2.53 3.55 3.07 3.67 2.93 3.60 3.21 2.58 3.00 4.25 3.98 4.34
4.59 4.80 4.30 4.45 5.96 5.12 6.20 3.99 3.89 3.32 3.85 3.74 3.06 4.19 3.17 3.16 3.17 3.56 2.75 2.68 3.01 2.32 3.14 4.20 3.37 4.04
4.13 3.77 3.41 2.99 5.86 4.85 6.15 2.71 4.15 3.05 3.74 4.06 3.37 4.09 3.50 3.10 3.43 3.78 3.72 3.46 3.55 3.77 3.47 4.22 3.14 4.05
3.77 3.11 3.05 3.56 4.84 5.95 5.55 3.21 3.27 3.37 3.98 4.13 3.47 4.27 2.80 3.27 3.76 4.28 3.11 3.48 3.74 3.52 3.71 4.13 3.03 2.69
3.18 2.70 2.79 3.45 3.81 3.94 3.05 4.45 2.99 4.40 3.16 4.42 3.79 4.67 2.33 2.23 2.34 2.80 2.26 2.29 3.66 2.80 3.32 2.46 1.98 2.11
4.20 3.44 3.80 4.53 4.76 4.61 5.09 4.68 3.12 4.72 3.12 4.64 3.98 4.34 2.08 2.66 2.65 3.35 2.14 2.66 3.27 3.23 3.40 2.12 1.36 1.94
4.27 4.03 3.69 4.38 5.26 4.60 5.07 4.55 3.19 4.24 3.35 4.56 3.73 3.80 1.83 2.51 2.18 2.70 1.75 2.17 2.43 2.64 2.91 0.94 0.70 1.00
49.38 45.91 44.54 49.24 63.08 57.19 64.16 51.30 37.44 45.83 41.94 51.22 42.53 49.05 28.40 32.89 31.61 37.13 28.43 31.53 36.31 32.88 34.67 31.00 23.93 29.41
30 30 30
0.94 0.76 5.67
0.75 0.59 4.50
1.88 1.50 5.74
3.01 2.13 5.98
3.53 2.97 4.86
4.00 4.51 3.82
4.61 3.34 4.69
4.33 3.93 3.66
3.12 2.93 3.23
2.20 2.24 3.42
2.01 1.54 5.04
1.02 0.69 5.34
31.40 27.13 55.95
Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon Sault Ste. Marie Duluth International Falls MinneapolisSt. Paul Rochester Saint Cloud Jackson
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
LA
(Continued)
3-116
Table 3D.20
MT
NE
NV
NJ
NM
NY
NC
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
5.92 5.14 1.73 1.15 2.14 2.11 0.81 0.35 0.68 0.47 0.52 1.47 1.06 0.54 0.67 0.57 0.39 0.77 0.76 0.54 0.30 1.14 0.74 0.59 1.06 0.83 2.97 8.52 3.60 3.44 3.98 0.49 0.30 0.39 2.71 2.58 3.16 4.27 4.13 3.62 3.56
5.35 4.68 2.20 1.31 2.28 2.28 0.57 0.26 0.51 0.36 0.38 1.15 0.77 0.68 0.66 0.76 0.51 0.80 0.77 0.58 0.48 0.88 0.75 0.69 1.06 0.62 2.36 7.33 2.85 2.88 2.96 0.44 0.27 0.41 2.27 2.46 2.42 3.33 3.15 2.70 2.75
6.93 6.30 3.21 2.44 3.60 3.82 1.12 0.47 1.01 0.70 0.63 1.11 0.96 2.04 2.21 1.97 1.24 2.13 2.25 1.16 1.11 0.98 1.05 0.59 0.86 0.86 3.04 9.42 4.06 3.79 4.21 0.61 0.62 0.35 3.17 2.97 2.99 4.76 4.37 3.78 3.93
5.62 4.94 4.16 3.38 3.69 4.31 1.74 0.75 1.40 0.87 0.91 1.22 1.09 2.61 2.90 2.59 1.97 2.94 3.07 1.79 1.97 0.81 0.90 0.15 0.35 0.85 3.07 8.43 3.45 3.25 3.92 0.50 0.99 0.58 3.25 3.49 3.04 4.13 4.28 3.75 3.68
4.87 5.80 4.87 5.39 4.11 4.57 2.48 1.72 2.53 1.84 1.78 2.04 1.95 4.07 4.23 3.92 3.34 4.44 4.57 2.70 3.20 1.08 1.29 0.24 0.62 1.06 3.33 8.21 3.38 3.16 4.46 0.60 2.08 1.30 3.67 3.55 3.35 3.90 4.69 4.13 4.16
3.99 4.82 4.02 4.44 3.76 5.02 1.89 2.20 2.24 1.90 1.82 2.30 1.73 3.72 3.51 4.25 3.17 3.95 3.84 2.65 3.01 0.67 0.66 0.08 0.47 0.69 3.10 8.36 2.66 2.46 3.40 0.65 2.21 1.62 3.74 3.80 3.82 3.71 3.84 3.59 3.57
5.45 3.65 3.80 4.42 3.90 3.56 1.28 1.78 1.45 1.51 1.34 1.41 1.09 3.14 3.54 3.74 3.17 3.86 3.75 2.13 3.37 0.30 0.60 0.44 0.24 0.27 3.37 8.02 3.86 3.36 4.68 1.27 2.81 1.99 3.50 3.49 3.14 2.93 4.62 3.92 4.41
3.34 2.67 3.75 3.54 2.98 3.37 0.85 1.25 1.65 1.20 1.29 1.25 1.15 3.08 3.35 2.80 2.15 3.21 2.93 1.19 2.20 0.36 0.91 0.45 0.27 0.35 3.21 8.08 4.32 4.16 4.02 1.73 2.69 2.31 3.68 3.35 3.87 4.48 4.22 3.64 4.09
3.64 3.35 3.42 4.64 2.96 4.83 1.34 0.98 1.23 1.03 1.05 1.20 1.08 2.43 2.92 2.25 1.32 3.17 3.03 1.22 1.61 0.68 0.94 0.31 0.45 0.53 3.16 8.55 3.14 3.02 4.01 1.07 1.56 1.98 3.31 3.59 3.84 3.39 4.23 3.50 3.77
3.28 3.38 3.18 3.33 2.76 3.47 1.26 0.71 0.93 0.62 0.66 0.96 0.83 1.51 1.94 1.72 1.24 2.21 2.49 1.01 1.22 0.71 1.00 0.24 0.42 0.66 3.46 7.66 2.86 2.71 3.16 1.00 0.74 1.29 3.23 3.02 3.19 3.63 3.85 3.03 3.26
4.95 5.01 3.47 2.30 3.71 4.46 0.75 0.39 0.59 0.45 0.48 1.45 0.96 1.41 1.58 1.44 0.76 1.82 1.67 0.80 0.72 1.05 0.63 0.31 0.80 0.80 3.57 10.49 3.26 2.96 3.88 0.62 0.54 0.53 3.31 3.32 3.92 3.86 4.36 3.48 3.67
5.31 6.12 2.47 1.64 2.86 3.17 0.67 0.37 0.67 0.51 0.46 1.65 1.15 0.66 0.86 0.65 0.40 0.92 0.95 0.56 0.33 0.93 0.50 0.40 0.88 0.81 2.96 8.84 3.15 3.18 3.57 0.49 0.32 0.59 2.76 3.03 3.80 4.13 3.95 3.31 3.51
58.65 55.86 40.28 37.98 38.75 44.97 14.77 11.23 14.89 11.46 11.32 17.21 13.82 25.89 28.37 26.66 19.66 30.22 30.08 16.33 19.52 9.59 9.97 4.49 7.48 8.33 37.60 101.91 40.59 38.37 46.25 9.47 15.13 13.34 38.60 38.65 40.54 46.52 49.69 42.46 44.36
30 30 30 30
2.34 2.60 4.06 5.84
2.04 2.12 3.83 3.94
2.58 3.02 4.59 4.95
2.75 3.39 3.50 3.29
2.82 3.39 4.41 3.92
3.36 3.71 4.38 3.82
2.93 4.02 3.87 4.95
3.54 3.56 4.30 6.56
3.45 4.15 3.72 5.68
2.60 3.20 3.17 5.31
2.84 3.77 3.82 4.93
2.73 3.12 3.39 4.56
33.98 40.05 47.07 57.75
q 2006 by Taylor & Francis Group, LLC
3-117
(Continued)
CLIMATE AND PRECIPITATION
MO
Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Havre Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip New York C. Park New York (JFK AP) New York (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras
State
ND
OH
OR
PC
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30
4.00 3.54
3.55 3.10
4.39 3.85
2.95 3.43
3.66 3.95
3.42 3.53
3.79 4.44
3.72 3.71
3.83 4.29
3.66 3.27
3.36 2.96
3.18 3.06
43.51 43.14
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
4.02 4.52 0.45 0.76 0.68 0.54 2.49 2.48 2.53 2.60 2.63 1.93 2.34 1.28 1.60 9.62 1.18 7.65 2.47 1.45 5.07 5.84 4.71
3.47 3.66 0.51 0.59 0.58 0.39 2.28 2.29 2.20 2.29 2.17 1.88 2.03 1.56 1.95 7.87 1.11 6.35 2.10 1.22 4.18 5.09 4.29
4.03 4.22 0.85 1.17 0.89 0.74 3.15 2.94 2.89 3.29 3.36 2.62 3.05 2.90 3.57 7.37 1.24 5.80 1.85 1.26 3.71 4.17 3.92
2.80 2.94 1.46 1.37 1.23 1.05 3.39 3.37 3.25 4.03 4.17 3.24 3.33 3.00 3.95 4.93 0.85 3.66 1.31 1.13 2.64 2.76 2.38
3.79 4.40 2.22 2.61 2.21 1.88 3.96 3.50 3.88 4.17 4.42 3.14 3.45 5.44 6.11 3.28 1.05 2.66 1.21 1.22 2.38 2.13 1.35
3.42 5.36 2.59 3.51 3.03 2.36 3.55 3.89 4.07 4.21 4.52 3.80 3.91 4.63 4.72 2.57 0.66 1.53 0.68 0.78 1.59 1.45 0.94
4.29 7.62 2.58 2.88 3.06 2.28 4.02 3.52 4.61 3.75 4.22 2.80 4.10 2.94 2.96 1.16 0.40 0.64 0.31 0.41 0.72 0.57 0.35
3.78 7.31 2.15 2.52 2.72 1.48 3.65 3.69 3.72 3.49 4.60 3.19 3.43 2.48 2.85 1.21 0.45 0.99 0.52 0.56 0.93 0.68 0.61
4.26 6.79 1.61 2.18 1.96 1.35 3.43 3.77 2.92 2.65 3.44 2.84 3.89 3.98 4.76 2.61 0.50 1.54 0.78 0.63 1.65 1.43 1.20
3.18 3.21 1.28 1.97 1.70 0.87 2.53 2.73 2.31 2.72 2.68 2.35 2.46 3.64 4.05 5.61 0.72 3.35 1.31 0.99 2.88 3.03 2.93
2.97 3.26 0.70 1.06 0.99 0.65 3.04 3.38 3.19 3.30 3.76 2.78 3.07 2.11 3.47 10.50 1.11 8.44 2.93 1.63 5.61 6.39 5.32
3.04 3.78 0.44 0.57 0.55 0.57 2.98 3.14 2.93 3.08 3.26 2.64 2.96 1.89 2.43 10.40 1.30 8.29 2.90 1.48 5.71 6.46 5.18
43.05 57.07 16.84 21.19 19.60 14.16 38.47 38.71 38.52 39.58 43.24 33.21 38.02 35.85 42.42 67.13 10.57 50.90 18.37 12.76 37.07 40.00 33.18
30 30
5.58 1.64
5.11 1.29
4.24 2.01
4.16 1.86
6.39 1.14
6.28 0.87
11.66 1.40
16.17 2.07
13.69 2.46
11.88 2.78
9.34 4.78
6.11 2.70
100.61 25.00
30 30
11.20 5.12
9.65 3.73
8.79 3.82
9.45 7.63
11.27 8.62
17.54 8.86
16.99 10.24
14.47 10.42
11.65 11.82
13.41 11.46
11.62 10.74
12.33 7.94
148.37 100.40
30
8.09
6.86
8.43
11.30
11.53
11.09
12.41
11.95
11.96
13.73
12.81
11.50
131.66
30
14.02
12.14
11.15
11.16
10.43
5.94
5.76
6.43
7.36
10.03
11.16
13.38
118.96
30
12.52
9.78
13.96
16.94
19.41
17.06
16.72
16.37
14.94
16.30
14.74
15.87
184.61
30
8.58
8.77
8.15
10.94
11.29
12.82
12.45
15.09
13.12
10.69
11.09
10.98
133.97
30 30
1.40 7.24
1.89 5.45
2.38 6.14
2.11 5.58
1.70 8.15
1.95 13.46
3.44 13.25
5.62 14.41
4.82 13.53
4.27 12.25
2.78 8.82
1.87 9.34
34.23 117.62
Charlotte GreensboroWnstn-SlmHPT Raleigh Wilmington Bismarck Fargo Grand Forks Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island Yap, W Caroline IS
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
OK
(Continued)
3-118
Table 3D.20
RI SC
SD
TN
TX
Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls Bristol-JhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin/City Austin/ Bergstrom Brownsville Corpus Christi Dallas-Fort Worth Dallas-Love Field Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo
30 30 30 30
3.50 2.53 3.18 3.18
2.75 2.28 2.88 2.88
3.56 3.13 3.58 3.58
3.49 3.38 3.31 3.31
4.47 3.34 4.60 4.60
3.99 4.28 3.99 3.99
4.27 3.28 3.21 3.21
4.35 4.21 3.24 3.24
4.37 4.73 3.65 3.65
3.33 3.92 3.06 3.06
3.70 3.96 3.53 3.53
3.39 3.73 3.22 3.22
45.17 42.77 41.45 41.45
30 30 30 30 30 30 30 30 30 30
3.52 2.70 2.46 2.85 3.68 4.37 4.08 3.62 4.66 4.41
2.74 2.37 2.08 2.61 3.04 3.45 3.08 2.62 3.84 4.24
3.81 3.17 2.69 3.21 3.99 4.43 4.00 3.83 4.59 5.31
3.49 3.01 3.28 3.49 3.72 4.16 2.77 2.44 2.98 3.53
3.88 3.80 3.69 3.79 3.40 3.66 3.67 2.77 3.17 4.59
3.29 4.12 3.97 4.45 2.77 3.38 5.92 4.96 4.99 3.92
4.39 3.96 3.74 4.08 2.62 3.17 6.13 5.50 5.54 4.65
3.82 3.38 3.10 3.38 3.00 3.90 6.91 6.54 5.41 4.08
3.88 3.21 3.86 3.98 3.19 3.70 5.98 6.13 3.94 3.96
2.75 2.25 3.02 3.19 3.04 3.69 3.09 3.02 2.89 3.88
3.16 3.02 3.12 3.62 3.77 4.40 2.66 2.18 2.88 3.79
3.31 2.86 2.55 2.94 3.57 4.14 3.24 2.78 3.38 3.86
42.05 37.85 37.56 41.59 39.79 46.45 51.53 46.39 48.27 50.24
30 30 30 30 30
0.48 0.48 0.37 0.51 3.52
0.48 0.57 0.46 0.51 3.40
1.34 1.67 1.03 1.81 3.91
1.83 2.29 1.86 2.65 3.23
2.69 3.00 2.96 3.39 4.32
3.49 3.28 2.83 3.49 3.89
2.92 2.86 2.03 2.93 4.21
2.42 2.07 1.61 3.01 3.00
1.81 1.80 1.10 2.58 3.08
1.63 1.59 1.37 1.93 2.30
0.75 0.89 0.61 1.36 3.08
0.38 0.39 0.40 0.52 3.39
20.22 20.90 16.64 24.69 41.33
30 30 30 30 30 30 30 30 30
5.40 4.57 4.24 3.97 5.13 0.97 0.63 1.89 2.20
4.85 4.01 4.31 3.69 4.50 1.13 0.55 1.99 1.73
6.19 5.17 5.58 4.87 5.72 1.41 1.13 2.14 1.98
4.23 3.99 5.79 3.93 4.32 1.67 1.33 2.51 2.77
4.28 4.68 5.15 5.07 5.14 2.83 2.50 5.03 5.87
3.99 4.04 4.30 4.08 4.64 3.06 3.28 3.81 3.38
4.73 4.71 4.22 3.77 5.16 1.69 2.68 1.97 1.61
3.59 2.89 3.00 3.28 3.39 2.63 2.94 2.31 1.48
4.31 3.04 3.31 3.59 3.75 2.91 1.88 2.91 2.63
3.26 2.65 3.31 2.87 3.02 2.90 1.50 3.97 2.70
4.88 3.98 5.76 4.45 4.86 1.30 0.68 2.68 2.61
4.81 4.49 5.68 4.54 5.42 1.27 0.61 2.44 2.39
54.52 48.22 54.65 48.11 55.05 23.78 19.71 33.65 31.36
30 30 30
1.36 1.62 1.90
1.18 1.84 2.37
0.93 1.73 3.06
1.96 2.05 3.20
2.48 3.48 5.15
2.93 3.53 3.23
1.77 2.00 2.12
2.99 3.54 2.03
5.31 5.03 2.42
3.78 3.94 4.11
1.75 1.74 2.57
1.11 1.75 2.57
27.55 32.26 34.73
30
1.89
2.31
3.13
3.46
5.30
3.92
2.43
2.17
2.65
4.65
2.61
2.53
37.05
30 30 30 30 30 30 30 30
0.57 0.45 4.08 3.68 0.50 0.53 5.69 0.81
0.96 0.39 2.61 2.98 0.71 0.58 3.35 1.18
0.96 0.26 2.76 3.36 0.76 0.42 3.75 0.99
1.71 0.23 2.56 3.60 1.29 0.73 3.84 1.60
2.31 0.38 3.70 5.15 2.31 1.79 5.83 3.09
2.34 0.87 4.04 5.35 2.98 1.71 6.58 2.52
2.02 1.49 3.45 3.18 2.13 1.89 5.23 1.10
1.59 1.75 4.22 3.83 2.35 1.77 4.85 2.05
2.06 1.61 5.76 4.33 2.57 2.31 6.10 2.95
2.00 0.81 3.49 4.50 1.70 1.77 4.67 2.57
0.96 0.42 3.64 4.19 0.71 0.65 4.75 1.10
0.75 0.77 3.53 3.69 0.67 0.65 5.25 0.94
18.23 9.43 43.84 47.84 18.69 14.80 59.89 20.91
q 2006 by Taylor & Francis Group, LLC
3-119
(Continued)
CLIMATE AND PRECIPITATION
PA
State
UT
VT VA
WA
WI
WY
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
30 30 30 30 30 30
1.66 2.44 1.90 1.12 0.73 1.37
1.75 2.04 2.43 1.57 0.77 1.33
1.89 2.25 2.48 2.27 1.21 1.91
2.60 2.97 2.99 2.62 0.99 2.02
4.72 5.12 4.46 3.92 0.94 2.09
4.30 4.96 3.08 3.69 0.44 0.77
2.03 2.90 2.23 1.58 0.76 0.72
2.57 3.05 1.85 2.38 1.04 0.76
3.00 5.00 2.88 3.19 0.92 1.33
3.86 4.26 3.67 3.11 1.12 1.57
2.58 2.64 2.61 1.68 0.77 1.40
1.96 2.47 2.76 1.68 0.58 1.23
32.92 40.10 33.34 28.83 10.27 16.50
30 30 30 30 30 30 30 30 30
2.22 3.54 3.93 3.55 3.23 7.54 13.65 5.24 5.13
1.67 3.10 3.34 2.98 3.08 6.17 12.35 4.09 4.18
2.32 3.83 4.08 4.09 3.84 5.29 10.98 3.92 3.75
2.88 3.46 3.38 3.18 3.61 3.58 7.44 2.75 2.59
3.32 4.11 3.74 3.95 4.24 2.27 5.51 2.03 1.77
3.43 3.79 3.77 3.54 3.68 1.78 3.50 1.55 1.49
3.97 4.39 5.17 4.67 4.00 0.82 2.34 0.93 0.79
4.01 3.41 4.79 4.18 3.74 1.10 2.67 1.16 1.02
3.83 3.88 4.06 3.98 3.85 2.03 4.15 1.61 1.63
3.12 3.39 3.47 3.60 3.15 4.19 9.81 3.24 3.19
3.06 3.18 2.98 3.06 3.21 8.13 14.82 5.67 5.90
2.22 3.23 3.03 3.12 2.86 7.89 14.50 6.06 5.62
36.05 43.31 45.74 43.91 42.49 50.79 101.72 38.25 37.07
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
1.82 2.25 1.17 3.02 3.23 3.25 3.43 3.21 1.21 1.19 1.25 1.85 0.58 0.45 0.52 0.77
1.51 1.97 0.80 2.30 2.96 3.19 3.20 3.09 1.01 0.99 1.28 1.65 0.64 0.44 0.54 0.57
1.53 2.20 0.70 2.14 3.63 3.90 3.92 3.83 2.06 2.00 2.28 2.59 0.90 1.05 1.24 1.00
1.28 1.83 0.53 3.71 3.42 3.25 3.53 3.33 2.56 3.38 3.35 3.78 1.52 1.55 2.07 1.77
1.60 1.95 0.51 5.29 4.39 4.30 4.77 4.41 2.75 3.38 3.25 3.06 2.38 2.48 2.38 2.41
1.18 1.15 0.62 3.52 3.92 4.09 4.61 3.88 3.43 4.00 4.05 3.56 1.43 2.12 1.15 2.02
0.76 0.73 0.22 4.16 4.78 4.86 4.83 4.46 3.44 4.25 3.93 3.58 1.29 2.26 0.84 1.11
0.68 0.84 0.36 5.22 3.45 4.11 4.26 3.88 3.77 4.28 4.33 4.03 0.73 1.82 0.57 0.80
0.76 0.83 0.39 5.60 3.23 3.45 3.82 2.80 3.11 3.40 3.08 3.30 0.98 1.43 1.14 1.38
1.06 1.77 0.53 5.06 2.64 2.67 2.86 2.73 2.17 2.16 2.18 2.49 1.14 0.75 1.37 1.41
2.24 2.85 1.05 6.17 2.88 3.66 3.42 3.32 2.27 2.10 2.31 2.70 0.82 0.64 0.99 0.80
2.25 2.51 1.38 4.57 3.09 3.32 3.44 3.37 1.41 1.23 1.66 2.22 0.62 0.46 0.61 0.68
16.67 20.88 8.26 50.76 41.63 44.05 46.11 42.31 29.19 32.36 32.95 34.81 13.03 15.45 13.42 14.72
San Antonio Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Note: Based on 30-year average values 1971–2000. The normal precipitation is the arithmetic mean for each month over the 30-year period and includes the liquid water equivalent of snowfall. The annual value is the total of the unrounded monthly values and may not agree with the sum of the rounded monthly values. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
PR WV
(Continued)
3-120
Table 3D.20
CLIMATE AND PRECIPITATION
3-121
-ANNUALA < 1.00 B 1.00 – 1.5 0 C 1.5 1 – 2.00 D 2.01 – 2.5 0 E 2.5 1 – 3 .00 F 3 .01 – 3 .5 0 G 3 .5 1 – 4.00 H 4.01 – 5 .00 I > 5 .00 ( I N.) Figure 3D.10 U.S. mean maximum daily precipitation. (From Climate Atlas of the United States, updated 8/27/02.)
-ANNUALA < 1.01 B 1.01 – 1.25 C 1.26 – 1.5 0 D 1.5 1 – 1.75 E 1.76 – 2.00 F 2.01 – 3 .00 G
3 .01 – 5 .00 H 5 .01 – 10.00 I > 10.00 ( I N.)
Figure 3D.11 Alaska mean maximum daily precipitation. (From Climate Atlas of the United States, updated 8/27/02.) q 2006 by Taylor & Francis Group, LLC
3-122
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Kaua `i
O`ahu
Ni `ihau
Moloka `i
Maui -ANNUAL-
Lana `i
A < 2.01 B 2.01 – 3 .00
Kaho `olawe
C 3 .01 – 4.00 D 4.01 – 5 .00 E 5 .01 – 6.00 F 6.01 – 7.00 G
7.01 – 8.00 H
8.01 – 10.00 I > 10.00 Hawai `i ( I N.)
Figure 3D.12 Hawaii mean maximum daily precipitation. (From Climate Atlas of the United States, updated 8/27/02.)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-123
Table 3D.21 Record Maximum Annual Precipitation by State State
Precipitation (inches)
Date
Station
98.22 332.29 58.92 98.55 153.54 92.84 78.53a 72.75 112.43a 122.16 704.83 81.05 74.58 97.38 74.50 68.55a 79.68 113.74a 75.64 76.52 76.49a 64.01 52.36 104.36a 92.77 55.51 64.52 59.03 130.14 85.99 62.45 90.97 129.60 37.98 70.82 84.47 204.04 81.64 70.21 110.79 48.42 114.88 109.38 108.54 100.96a 83.70a 184.56 89.01 62.07 55.46
1961 1976 1978 1957 1909 1897 1955 1948 1966 1959 1982 1933 1950 1890 1851 1993 1950 1991 1845 1971 1996 1881 1993 1991 1957 1953 1896 1969 1969 1882 1941 1996 1964 1944 1870 1957 1996 1952 1983 1994 1946 1957 1873 1983 1996 1996 1931 1926 1884 1945
Citronelle MacLeod Harbor Hawley Lake Newhope Monumental Ruby Burlington Lewes Wewahitchka Flat Top Kukui Roland New Burnside Marengo Muscatine Blaine Russelville New Orleans (Audubon) Brunswick Towson New Salem Adrian Fairmont Waveland Portageville Summit Omaha Mt. Rose Resort Mount Washington Paterson White Tail Slide Mountain Rosman Milnor Little Mountain Kiamichi Tower Laurel Mountain Mt. Pocono Kingston Jocassee Deadwood Haw Knob Clarksville Alta Mt. Mansfield Philpott Dam Wynoochee Oxbow Bayard Embarrass Grassy Lake Dam
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming a
At least one month estimated.
q 2006 by Taylor & Francis Group, LLC
Elevation (ft) 331 40 8,180 2,420 2,420 est.10,000 460 10 50 est. 3,600 5,788 4,150 560 570 680 1,530 590 6 70 390 845 770 1,187 8 280 5,210 980 est. 7,300 6,260 100 7,450 2,649 2,220 2,600 1,187 2,350 3,590 1,910 100 2,500 4,550 4,900 440 8,760 3,950 1,123 670 2,381 808 7,240
3-124
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
184.5 6
13 0.14 5 5 .5 1
100.96*
3 7.98
75 .64
204.04 81.05
5 2.3 6
76.49* 62.07
48.42
64.5 2 5 9.03
70.21
64.01
5 5 .46 74.5 0
81.64 74.5 8 97.3 8
108.5 4
15 3 .5 4
90.97
70.82
68.5 5 *
92.77
83 .70* 76.5 2
79.68 129.60
114.88
5 8.92 62.45
72.15
89.01
92.84
84.47
98.5 5
78.5 3 * 85 .99
110.79 104.3 6*
98.22 122.16
109.3 8 113 .74* 112.43 *
3 3 2.29*
704.83
Figure 3D.13 Record maximum annual precipitation (in.) (through 1998) (*at least one month estimate). (From U.S. National Oceanic and Atmospheric Administration, Comparative Climate Data for the United States Through 2000. www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-125
Table 3D.22 Record Maximum 24-hour Precipitation by State State
Precip. (inches)
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming a
Estimated.
q 2006 by Taylor & Francis Group, LLC
32.52 15.20 11.40 14.06 26.12 11.08 12.77 8.50 38.70 21.10 38.00 7.17 16.91 10.50 16.70 12.59 10.40 22.00 13.32 14.75 18.15 9.78 10.84 15.68 18.18 11.50 13.15 7.13 10.38 14.81 11.28 11.17 22.22 8.10 10.75 15.68 11.65 34.50a 12.13 17.00 8.00 11.00 43.00a 6.00a 8.77 27.00a 14.26 19.00a 11.72 6.06
Date Jul 19–20, 1997 Oct 12, 1982 Sep 4–5, 1970 Dec 3, 1982 Jan 22–23, 1943 Jun 17, 1965 Aug 19, 1955 Jul 13, 1975 Sep 5, 1950 Jul 6, 1994 Jan 24–25, 1956 Nov 23, 1909 Jul 18, 1996 Aug 6, 1905 Aug 5–6, 1959 May 31–Jun 1, 1941 Jun 28, 1960 Aug 28–29, 1962 Oct 20–21, 1996 Jul 26–27, 1897 Aug 18–19, 1955 Aug 31–Sep. 1, 1914 Jul 21–22, 1972 Jul 9, 1968 Jul 20, 1965 Jun 20, 1921 Jul 8–9, 1950 Jan 31, 1963 Feb 10–11, 1970 Aug 19, 1939 May 18–19, 1955 Oct 9, 1903 Jul 15–16, 1916 Jun 29, 1975 Aug 7–8, 1995 Oct 11, 1973 Nov 19, 1996 Jul 17, 1942 Sept 16–17, 1932 Aug 27, 1995 Sep 10, 1900 Mar 28, 1902 Jul 25–26, 1979 Sept 5, 1970 Nov 3–4, 1927 Aug 20 1969 Nov 23–24, 1986 Jul 18, 1889 Jun 24, 1946 Aug 1, 1985
Station Dauphin Is Sea Lab Angoon Workman Creek Big Fork Hoegees Camp Holly Burlington Dover Yankeetown Americus Kilauea Plantation Rattlesnake Creek Aurora Princeton Decatur Co. Burlington Dunmor Hackberry Portland Jewell Westfield Bloomingdale Fort Ripley Columbus Edgarton Circle York Mt. Rose Hwy. Stn. Mount Washington Tuckerton Lake Maloya NYC Central Park Altapass Litchville Lockington Dam Enid Port Orford Smethport Westerly Antreville Elk Point McMinnville Alvin Bug Point Somerset Nelson Co. Mt. Mitchell #2 Rockport Mellen Cheyenne
Elevation (feet) 8 15 6,970 1,100 2,760 3,390 460 30 5 490 180 4,000 640 480 1,110 1,010 610 10 45 165 220 750 1,140 190 856 2,440 1,610 7,360 6,262 20 7,400 130 2,600 1,470 950 1,245 150 1,510 40 700 1,127 900 50 6,600 2,080 Est 500 3,600 700 1,150 6,126
3-126
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
14.26
10.3 8 11.5 0
11.65
8.77
8.10
7.17
18.15
10.84 11.72
8.00
11.17
13 .15
12.77
3 4.5 0*
16.70 10.75
14.81
16.91 10.5 0
6.00* 11.08
26.12
12.13
9.78
6.06
7.13
13 .3 2
12.5 9
19.00*
18.18
15 .68
11.28
27.00* 14.75
10.40 22.22
11.00
11.40
8.5 0
14.06
17.00 15 .68 3 2.5 2
21.10
43 .00* 22.00 3 8.70
3 8.00 15 .20
Figure 3D.14 Record maximum 24-h precipitation (in.) (through 1998) (*estimated). (From U.S. National Oceanic and Atmospheric Administration, Comparative Climate Data for the United States Through 2000, www.noaa.gov.)
-ANNUALA < 10.00 B 10.00 – 20.00 C 20.01 – 3 0.00 D 3 0.01 – 40.00 E 40.01 – 5 0.00 F 5 0.01 – 60.00 G 60.01 – 80.00 H 80.01 – 120.00 I > 120.00 ( I N.) Figure 3D.15 U.S. record total precipitation. (From Climate Atlas of the United States, updated 8/27/02.) q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-127
-ANNUALA < 12.01 B 12.01 – 20.00 C 20.01 – 3 0.00 D 3 0.01 – 40.00 E 40.01 – 5 0.00 F 5 0.01 – 80.00 G
80.01 – 120.00 H 120.01 – 240.00 I > 240.00 ( I N.)
Figure 3D.16 Alaska record total precipitation. (From Climate Atlas of the United States, updated 8/27/02.)
Kaua `i
O`ahu
Ni `hau
Moloha `i
Maui -ANNUALLana `i A < 3 0.01 B 3 0.01 – 40.00 C 40.01 – 5 0.00
Kaho `olawe
D 5 0.01 – 80.00 E 80.01 – 120.00 F 120.01 – 200.00 G
200.01 – 3 00.00 H
3 00.01 – 400.00 I > 400.00
Hawai `i
( I N.)
Figure 3D.17 Hawaii record total precipitation. (From Climate Atlas of the United States, updated 8/27/02.) q 2006 by Taylor & Francis Group, LLC
3-128
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
2.61 2.97 3 .3 3
22.3 1 22.98
4.02
23 .06
7.81
2.09
21.76*
17.64
12.00
2.89
15 .64
24.08
1.28 6.3 0 trac e
15 .71
12.11 16.5 9* 18.67
1.3 4 1.69
19.85
16.96
0.00
21.3 8
9.5 0 4.77
12.5 2
16.14*
17.76
14.5 1 22.69
25 .23
0.07
23 .60*
6.5 3
1.00
19.11
20.73 25 .97 22.00
17.14
1.64* 26.44 21.16
1.61
0.19
Figure 3D.18 Record minimum annual precipitation (in.) (through 1998) (*at least one month estimate). (From U.S. National Oceanic and Atmospheric Administration, Comparative Climate Data for the United States Through 2000, www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
State AL
AK
AZ
AR
CA
Station
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
11 59 35 61 58 38 55 82 39 44 43 42 57 51 44 46 58 57 53 59 60 56 84 48 17 30 56 53 63 62 71 45 57 60 24 65 55 55 92 53 58 67 62
10 11 12 11 11 8 20 4 5 9 8 6 19 8 7 14 19 11 17 8 10 11 18 9 6 17 19 7 4 4 4 3 8 10 10 6 4 12 16 8 6 6 6
10 10 10 9 9 8 19 4 5 7 7 4 18 6 6 12 17 9 16 7 8 9 15 9 5 15 18 7 4 4 4 2 8 9 9 6 3 12 14 8 5 6 6
11 11 12 10 10 7 20 4 5 9 7 4 18 6 5 11 18 10 17 7 9 9 15 9 6 15 19 8 4 4 5 2 9 10 10 6 3 13 16 7 5 6 6
9 9 10 7 8 6 18 4 6 9 5 4 17 4 3 9 17 10 16 7 7 9 14 7 6 14 18 6 2 2 3 1 10 10 10 4 2 10 12 4 3 3 3
10 10 10 8 8 7 17 4 6 11 7 7 17 7 5 10 17 12 17 6 9 8 14 12 6 16 19 4 1 2 3 — 11 10 11 2 3 7 9 2 1 1 1
9 10 10 11 9 8 15 5 6 13 10 12 16 11 10 9 16 13 15 6 12 9 12 13 8 15 17 3 1 2 2 — 9 8 9 1 2 3 5 1 — 1 1
12 12 11 16 12 12 14 9 8 15 12 14 17 12 13 11 17 15 15 11 15 12 15 15 12 17 18 11 4 10 7 1 7 8 8 — 2 1 2 — — 1 —
10 10 9 14 9 14 15 11 12 18 14 13 20 13 12 13 18 17 14 14 17 16 18 17 16 17 18 12 5 9 9 2 7 7 7 — 2 1 3 — — — 1
9 8 8 10 8 14 18 11 10 16 12 9 21 10 11 16 21 17 16 12 14 14 20 16 12 21 21 7 3 5 5 1 7 7 8 1 2 3 4 1 1 1 1
8 6 7 6 6 12 24 11 12 12 11 9 23 11 9 15 24 13 17 10 12 11 22 13 10 19 24 5 3 3 4 1 7 7 8 2 1 6 9 2 2 2 2
10 9 10 8 8 9 22 6 8 11 10 7 22 10 7 13 20 12 17 10 12 12 22 10 8 15 21 5 2 3 3 1 7 8 9 4 2 10 13 5 3 3 3
9 11 11 10 10 11 23 5 5 10 10 6 21 9 8 15 21 12 18 9 12 10 20 11 8 18 22 6 4 4 4 2 8 9 10 5 3 12 16 7 5 5 5
117 117 118 121 108 115 226 78 87 141 114 93 229 106 94 147 223 152 195 108 138 130 205 139 103 200 235 82 36 53 54 17 97 104 107 37 29 90 119 45 31 35 35 (Continued)
q 2006 by Taylor & Francis Group, LLC
3-129
Birmingham CO Birmingham AP Huntsville Mobile Montgomery Anchorage Annette Barrow Barter IS Bethel Bettles Big Delta Cold Bay Fairbanks Gulkana Homer Juneau King Salmon Kodiak Kotzebue McGrath Nome St. Paul Island Talkeetna Unalakleet Valdez Yakutat Flagstaff Phoenix Tucson Winslow Yuma Fort Smith Little Rock North Little Rock Bakersfield Bishop Blue Canyon Eureka Fresno Long Beach Los Angeles AP Los Angeles CO
Years
CLIMATE AND PRECIPITATION
Table 3D.23 Mean Number of Days with Precipitation 0.01 in. or More — Selected Cities of the United States
State
CO
DE DC
FL
GA
HI
Station Mount Shasta Redding Sacramento San Diego San Francisco AP San Francisco CO Santa Barbara Santa Maria Stockton Alamosa Colorado Springs Denver Grand Junction Pueblo Bridgeport Hartford Wilmington Washington Dulles AP Washington Nat’l AP Apalachicola Daytona Beach Fort Myers Gainesville Jacksonville Key West Miami Orlando Pensacola Tallahassee Tampa Vero Beach West Palm Beach Athens Atlanta Augusta Columbus Macon Savannah Hilo Honolulu Kahului Lihue
q 2006 by Taylor & Francis Group, LLC
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
42 16 63 62 75 65 66 60 60 56 54 61 56 60 54 48 55 39
12 14 10 7 11 11 6 8 9 4 5 6 7 4 11 11 11 10
11 11 9 6 10 10 6 8 9 4 5 6 6 4 10 10 9 9
12 12 9 7 10 11 6 8 8 5 7 9 8 6 11 12 11 10
9 8 5 5 6 6 2 5 5 5 8 9 7 6 11 11 11 10
7 7 3 2 3 3 1 2 3 6 10 11 6 8 11 12 11 12
5 4 1 1 1 1 1 1 1 5 10 9 4 7 10 11 10 10
2 1 — — — — 1 — — 9 13 9 5 9 8 10 9 11
2 1 — 0 — 1 — — — 10 12 9 7 9 9 10 9 10
3 2 1 1 1 2 1 1 1 6 7 6 6 5 9 10 8 9
6 4 3 2 4 4 2 2 3 5 5 5 6 4 7 9 8 8
10 9 7 4 7 8 3 5 7 4 4 6 6 4 10 11 9 9
12 11 9 6 10 10 5 6 7 4 4 5 6 4 11 12 10 10
93 83 58 42 63 69 33 46 52 67 90 89 73 71 118 127 117 117
61
10
9
11
10
11
10
10
9
8
7
8
9
112
61 59 59 19 61 54 60 60 39 41 56 19 60 59 68 52 57 54 52 60 53 44 52
9 7 6 9 8 6 7 6 10 10 7 9 8 11 12 10 10 11 9 17 9 10 15
8 7 5 7 8 5 6 7 9 9 7 7 7 9 10 9 9 9 8 17 9 9 13
8 8 6 8 8 5 6 7 9 9 7 8 8 11 11 10 10 10 9 23 9 10 16
6 6 4 6 6 5 6 6 6 6 5 6 7 9 9 8 8 8 7 25 9 10 17
5 8 8 7 8 8 10 8 7 8 6 8 11 9 9 9 8 9 8 25 7 6 16
10 13 15 15 13 12 15 14 10 13 12 14 15 10 10 10 10 10 12 25 6 5 17
15 13 18 16 14 12 16 17 14 17 16 14 15 11 12 11 13 12 13 27 7 7 20
14 14 18 16 15 15 18 16 13 14 16 14 16 9 9 10 10 10 13 27 6 6 18
11 14 16 12 13 16 17 14 9 9 13 16 17 8 8 8 8 8 10 24 7 5 16
5 11 8 7 9 11 14 9 5 5 7 13 13 7 7 6 6 6 6 24 8 7 18
6 7 4 7 6 7 8 6 8 7 5 9 9 8 9 7 8 7 7 23 9 10 18
8 7 5 7 8 7 7 6 9 8 6 8 8 10 10 9 9 9 8 21 10 11 18
105 115 112 116 116 109 131 116 110 115 106 126 133 111 115 107 109 110 110 279 96 98 200
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
CT
(Continued)
3-130
Table 3D.23
IL
IN
IA
KS
KY
LA
ME MD MA
MI
Boise Lewiston Pocatello Cairo Chicago Moline Peoria Rockford Springfield Evansville Fort Wayne Indianapolis South Bend Des Moines Dubuque Sioux City Waterloo Concordia Dodge City Goodland Topeka Wichita Greater Cincinnati AP Jackson Lexington Louisville Paducah Baton Rouge Lake Charles New Orleans Shreveport Caribou Portland Baltimore Blue Hill Boston Worcester Alpena Detroit Flint Grand Rapids Houghton Lake Lansing Marquette Muskegon
63 56 53 45 44 70 63 52 55 62 56 63 63 63 50 62 52 40 60 82 56 49 55
12 11 12 10 11 9 9 9 9 10 12 12 16 7 9 7 7 5 5 4 6 5 12
10 9 10 9 9 8 8 8 8 9 10 10 12 7 8 6 7 5 5 5 6 5 11
10 11 10 12 12 11 11 11 11 12 13 13 14 10 11 9 9 8 7 6 9 8 13
8 10 8 11 13 11 12 12 12 12 13 12 13 11 12 10 10 9 7 7 10 8 13
8 10 9 11 11 12 12 12 11 11 12 12 12 12 12 11 12 11 10 10 12 11 12
6 9 7 9 10 10 10 10 10 10 10 10 11 11 11 11 10 10 9 9 11 9 11
2 5 4 9 10 10 9 10 9 9 10 10 9 9 10 9 9 9 9 9 9 8 10
2 4 4 8 9 9 8 9 8 7 9 9 9 9 9 9 9 9 8 8 8 7 9
4 5 5 7 9 9 8 9 8 7 9 8 9 9 9 8 9 8 6 6 8 8 8
6 8 5 7 9 8 8 9 8 8 9 8 10 8 9 7 7 6 5 5 7 6 8
10 11 9 9 11 9 9 9 9 9 11 10 13 7 9 6 7 5 4 4 6 5 11
11 11 11 10 11 9 10 10 10 10 12 12 15 8 10 7 7 5 4 4 6 6 12
89 104 95 112 125 115 114 117 113 115 132 126 144 108 117 99 104 89 78 77 97 86 130
22 58 55 19 51 41 54 50 63 62 52 117 51 47 43 44 61 39 38 48 24 62
14 12 11 10 10 10 10 9 15 11 10 12 12 12 15 13 13 16 15 14 18 17
13 11 10 9 9 8 9 8 12 10 9 11 10 11 11 11 11 12 11 11 13 13
14 13 13 11 9 8 9 10 13 11 11 13 12 12 12 13 12 12 12 13 15 13
12 12 12 11 7 7 7 8 13 12 11 12 11 12 12 13 13 13 12 13 12 12
14 12 12 11 8 8 8 9 14 12 11 12 12 13 12 11 11 11 11 11 11 11
12 11 10 9 10 9 11 8 14 11 10 11 11 11 11 10 10 10 11 11 12 9
12 11 10 8 13 11 14 8 14 10 9 11 9 10 10 10 9 9 9 10 11 9
9 9 8 7 12 11 13 7 13 9 9 10 10 10 11 10 9 9 10 10 11 9
9 8 8 7 9 9 10 7 12 9 8 10 9 10 12 10 10 11 12 10 14 10
9 8 7 8 6 6 6 7 13 9 7 10 9 9 13 10 10 11 12 10 15 11
12 11 10 10 8 8 8 9 14 12 9 11 11 12 14 12 12 13 13 13 16 14
14 12 12 10 10 9 10 9 14 11 9 12 12 12 15 13 13 16 14 14 17 16
143 130 124 110 110 104 114 99 160 129 114 134 126 134 146 135 134 144 141 139 165 143
q 2006 by Taylor & Francis Group, LLC
3-131
(Continued)
CLIMATE AND PRECIPITATION
ID
State MN
MS
MO
MT
NV
NH NJ
NM
NY
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Sault Ste. Marie Duluth International Falls Minneapolis-St.Paul Rochester Saint Cloud Jackson Meridian Tupelo Columbia Kansas City St. Louis Springfield Billings Glasgow Great Falls Helena Kalispell Missoula Grand Island Lincoln Norfolk North Platte Omaha Eppley AP Omaha (North) Scottsbluff Valentine Elko Ely Las Vegas Reno Winnemucca Concord Mt. Washington Atlantic City AP Atlantic City CO Newark Albuquerque Clayton Roswell Albany Binghamton Buffalo Islip
61 61 63 64 42 62 39 57 19 33 30 45 57 68 47 65 62 53 58 64 31 57 50 66 18 59 47 72 64 54 60 53 61 70 59 40 61 63 53 30 56 51 59 19
19 12 11 9 9 9 11 11 11 8 7 9 8 8 8 9 8 15 14 5 6 6 5 6 5 5 4 9 7 3 6 8 11 19 11 10 11 4 3 4 13 17 20 11
14 9 9 7 8 7 9 9 10 8 7 8 8 7 6 8 6 12 10 6 5 6 5 7 6 5 5 9 7 3 6 7 9 18 10 9 10 4 3 3 11 14 17 9
13 11 10 10 10 9 10 10 11 11 10 11 10 9 7 9 8 11 11 7 8 8 7 8 10 7 7 9 8 3 6 8 11 19 11 10 11 5 5 3 12 15 16 11
11 11 9 10 12 9 8 9 9 11 11 11 11 10 7 9 8 10 10 9 10 9 8 10 10 9 9 8 8 2 4 7 11 18 11 10 11 3 5 3 12 14 14 12
11 12 12 11 12 11 9 9 11 12 12 11 11 11 10 11 11 12 12 11 12 11 11 12 12 12 11 8 7 1 4 7 12 17 10 10 12 4 8 4 13 13 13 11
11 13 13 12 11 12 9 9 10 9 10 9 10 11 11 12 12 12 12 10 9 10 10 10 10 11 10 6 5 1 3 5 11 16 9 8 10 4 8 5 11 12 11 9
10 12 12 10 11 10 11 11 8 8 9 9 8 8 8 8 8 7 7 9 9 9 10 9 10 8 9 3 5 3 2 2 10 16 9 9 10 9 10 6 10 11 10 9
11 11 11 10 10 10 10 9 7 8 9 8 8 6 7 8 8 8 7 8 9 8 8 9 9 7 8 3 6 3 2 2 10 15 9 8 9 10 9 8 10 11 10 9
13 12 12 10 10 9 8 8 6 8 8 8 8 7 6 7 6 8 8 7 8 8 7 8 8 7 7 4 4 2 3 3 9 15 8 8 9 6 6 7 10 11 11 9
14 10 10 8 9 8 7 6 7 9 8 8 8 6 5 6 6 9 8 5 6 6 5 6 7 5 5 5 5 2 3 4 9 15 7 7 8 5 4 5 9 12 12 8
17 11 11 8 9 8 9 8 9 9 7 9 9 6 6 7 7 13 11 5 6 5 5 6 6 5 4 7 5 2 5 7 11 19 9 9 10 4 3 3 12 15 16 10
19 11 11 9 9 8 10 10 11 9 7 9 9 7 7 7 8 15 13 5 6 5 4 6 7 5 4 9 6 3 6 8 11 20 10 10 11 4 3 4 12 17 19 10
165 134 130 116 120 109 110 107 111 112 105 111 109 96 90 100 95 131 123 87 93 91 84 99 101 86 83 79 73 26 51 69 127 209 113 109 122 61 68 55 135 161 168 118
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NE
(Continued)
3-132
Table 3D.23
ND
OH
OK OR
PC
133 44 62
11 10 11
10 10 10
11 11 11
11 11 11
11 11 11
10 10 10
10 9 9
10 9 9
8 8 8
8 8 8
9 10 10
10 11 11
121 118 118
62 53 38 45 63 74
18 19 11 11 10 10
16 16 9 10 9 9
15 17 12 11 11 11
13 14 10 9 9 9
12 13 11 10 9 10
11 11 12 9 10 10
10 11 12 12 11 12
10 11 12 11 10 10
11 11 10 9 7 8
12 13 8 9 7 7
15 17 9 9 8 8
18 19 10 10 10 9
160 171 125 120 111 115
58 51 63 60 41 54 61 63 59 43 47 59 63 63 49 18 60 73 67 62 65 65 45 28 51 50
10 11 8 9 8 16 16 13 13 14 13 17 5 6 22 11 18 14 12 18 18 16 20 11 23 16
10 10 7 7 6 14 14 11 11 12 11 15 6 7 19 10 15 11 10 16 16 15 18 12 19 13
10 10 8 8 8 15 15 13 13 14 13 15 7 8 21 11 17 12 11 17 17 16 19 15 20 15
9 8 8 8 8 14 15 13 13 14 13 15 8 9 18 9 13 10 9 15 14 12 20 14 19 17
10 9 10 10 10 13 13 13 12 13 12 13 10 11 16 9 10 8 8 12 11 9 20 13 23 21
10 10 12 11 11 11 11 11 11 11 10 12 9 9 13 6 7 5 7 9 8 6 24 12 25 23
11 13 9 10 9 11 10 11 10 10 9 11 6 6 8 3 3 2 3 4 3 2 26 12 24 24
10 12 8 9 7 10 10 9 9 10 9 10 6 7 8 3 4 2 3 5 4 3 26 13 22 23
8 10 7 8 7 10 10 8 8 9 10 10 7 7 10 4 6 4 4 7 7 5 25 14 20 22
7 7 6 7 6 10 11 9 9 10 9 11 7 7 16 6 11 7 7 12 12 9 25 16 23 24
8 8 6 6 7 14 14 11 11 13 12 15 5 6 21 12 17 13 12 18 18 16 25 15 22 23
9 9 7 8 8 16 16 13 12 14 14 17 6 7 22 11 18 14 12 19 19 17 24 16 24 19
113 117 96 101 95 154 155 137 132 144 134 160 83 91 193 95 139 101 98 152 147 126 271 162 265 240
48 36
18 24
16 21
18 23
20 22
23 20
24 19
24 19
23 18
23 17
23 21
23 20
22 23
258 247
51
22
20
23
24
27
27
27
26
24
25
25
24
294
51
19
16
19
20
24
24
24
24
22
23
23
23
264
50
11
10
12
14
15
15
19
19
19
19
15
13
180
q 2006 by Taylor & Francis Group, LLC
3-133
(Continued)
CLIMATE AND PRECIPITATION
NC
New York C. Park New York (JFK AP) New york (Laguardia AP) Rochester Syracuse Asheville Cape Hatteras Charlotte Greensboro-WnstnSlm-HPT Raleigh Wilmington Bismarck Fargo Williston Akron Cleveland Columbus Dayton Mansfield Toledo Youngstown Oklahoma City Tulsa Astoria Burns Eugene Medford Pendleton Portland Salem Sexton Summit Guam Johnston Island Koror Kwajalein, Marshall IS Majuro, Marshall IS Pago Pago, Amer Samoa Pohnpei, Caroline IS Chuuk, E. Caroline IS Wake Island
State PA
RI SC
TN
TX
Station
Years
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual
Yap, W Caroline IS Allentown Erie Harrisburg Middletown/ Harrisburg AP Philadelphia Pittsburgh Avoca Williamsport Block IS Providence Charleston AP Charleston CO Columbia GreenvilleSpartanburg AP Aberdeen Huron Rapid City Sioux Falls BristolJhnCtyKgsprt Chattanooga Knoxville Memphis Nashville Oak Ridge Abilene Amarillo Austin Brownsville Corpus Christi Dallas-Fort Worth Del Rio El Paso Galveston Houston Lubbock Midland-Odessa Port Arthur San Angelo San Antonio
54 59 49 49 24
21 11 19 11 11
18 10 15 10 10
18 11 15 11 11
18 12 14 13 12
21 12 12 13 13
24 11 10 11 10
24 10 10 10 10
24 10 11 9 9
23 9 11 9 9
24 8 13 9 8
23 10 16 10 10
22 11 19 10 10
258 124 163 126 122
62 50 47 58 36 49 60 27 55 40
11 16 12 12 10 11 10 10 10 11
9 14 11 11 9 10 9 8 9 9
11 15 13 12 11 12 10 8 10 11
11 14 12 13 10 11 7 7 8 9
11 13 13 13 10 11 9 8 8 10
10 12 12 12 9 11 11 10 10 10
9 11 11 11 7 9 14 11 12 12
9 10 11 11 8 9 13 11 11 10
8 10 10 10 7 9 10 10 8 9
8 10 10 10 8 9 6 6 6 7
9 13 12 12 10 10 7 7 7 9
10 16 12 12 11 12 9 9 9 10
117 152 139 139 110 124 114 104 109 117
71 63 60 57 57
6 6 6 6 14
6 7 7 7 12
7 8 8 9 13
8 9 10 10 11
10 10 12 11 12
10 11 12 11 11
9 9 9 10 12
8 8 8 9 10
7 7 6 8 8
5 6 6 6 8
6 6 6 7 10
6 6 6 6 12
89 92 95 98 133
72 60 52 61 61 63 61 61 60 63 49 39 63 63 33 56 55 49 55 60
12 12 10 11 12 5 4 8 7 8 7 5 4 10 10 4 4 10 5 8
10 11 9 10 11 5 4 8 6 7 7 5 3 8 8 4 4 9 5 7
12 13 11 12 13 5 5 8 4 5 8 5 2 8 9 4 3 8 4 8
10 11 10 11 11 6 5 7 4 5 8 5 2 6 7 5 3 7 5 7
10 11 9 11 11 8 8 9 5 6 9 7 2 6 8 7 6 7 7 8
11 11 9 10 11 6 8 7 6 6 7 5 3 7 10 7 5 9 5 7
12 11 9 10 12 5 8 5 4 5 5 4 8 9 9 7 5 11 4 4
10 9 7 9 10 6 8 5 7 6 5 4 8 9 9 7 6 12 5 5
8 8 7 8 8 6 6 7 10 9 6 6 5 9 9 6 6 10 6 7
7 8 6 7 8 6 5 7 7 7 6 5 4 7 8 5 5 7 5 6
9 10 9 9 10 5 4 7 6 6 6 5 3 8 8 3 3 8 4 7
11 11 10 11 11 5 4 8 7 7 7 5 4 10 9 4 3 9 4 8
121 127 107 119 128 67 69 85 73 77 79 62 49 96 105 63 51 105 59 82
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SD
(Continued)
3-134
Table 3D.23
VT VA
WA
PR WV
WI
WY
41 59 59 56 74 59 58 54 65 55 28 61 36 48 58
8 7 5 7 10 15 11 11 10 10 11 20 23 18 19
7 7 5 7 9 11 9 10 9 10 10 17 19 15 16
7 8 6 8 10 13 11 11 11 11 11 18 21 17 17
6 7 7 6 10 12 10 10 9 10 10 15 19 14 14
7 9 9 5 8 14 12 10 11 12 10 11 17 11 11
8 6 7 3 5 13 10 9 9 10 9 9 14 9 9
7 4 5 5 4 12 11 11 11 12 11 5 11 5 5
9 5 6 6 6 12 10 10 9 10 8 6 10 6 6
10 6 6 4 5 12 8 8 8 9 8 8 12 8 9
7 6 6 4 6 12 7 7 7 7 8 14 18 11 13
7 7 5 5 8 14 9 8 8 9 9 19 22 18 18
8 6 5 6 9 15 9 9 9 9 10 21 23 18 19
91 80 71 67 91 154 118 116 113 119 115 163 209 151 155
55 55 56 47 39 55 58 41 53 50 54 62 52 67 56 62
14 13 10 17 16 15 18 13 10 9 10 11 7 6 4 9
11 10 7 13 14 14 16 12 8 7 8 10 8 6 5 8
11 12 6 12 15 15 17 14 11 10 11 12 9 9 7 11
9 10 5 13 15 14 15 13 11 11 12 12 10 10 8 11
9 9 5 16 14 13 15 13 11 11 12 12 11 12 9 12
8 7 5 15 13 12 13 11 11 11 11 11 9 11 6 11
5 4 2 19 13 13 14 11 10 10 10 10 8 11 6 8
5 3 3 19 11 11 12 10 11 10 10 9 6 10 5 6
6 4 3 18 11 9 11 8 10 10 9 9 7 8 6 7
8 7 5 17 10 9 11 9 9 8 9 9 7 6 5 8
13 15 8 19 12 12 13 11 10 8 10 10 7 6 5 8
14 12 10 19 15 14 17 13 10 9 10 11 7 6 4 8
112 106 69 197 159 151 171 139 121 114 120 125 95 100 71 106
CLIMATE AND PRECIPITATION
UT
Victoria Waco Wichita Falls Milford Salt Lake City Burlington Lynchburg Norfolk Richmond Roanoke Wallops Island Olympia Quillayute Seattle CO Seattle Sea-Tac AP Spokane Walla Walla Yakima San Juan Beckley Charleston Elkins Huntington Green Bay La Crosse Madison Milwaukee Casper Cheyenne Lander Sheridan
Note: Through 2002. This table shows mean number of days per month with at least 0.01 in. of precipitation. This is the smallest amount of precipitation numerically recorded, and includes the liquid water equivalent of frozen precipitation. The frequency of days with precipitation should not be considered as frequency of cloudy days. Source: From U.S. National Oceanic and Atmospheric Administration, Comparative Climatic Data for the United States Through 2000, www.noaa.gov.
3-135
q 2006 by Taylor & Francis Group, LLC
3-136
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3D.24 Record Minimum Annual Precipitation by State State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming a
At least one month estimated.
q 2006 by Taylor & Francis Group, LLC
Precipitation (in.)
Date
Station
22.00 1.61 0.07 19.11 0.00 1.69 23.60a 21.38 21.16 17.14 0.19 2.09 16.59a 18.67 12.11 4.77 14.51 26.44 23.06 17.76 21.76a 15.64 7.81 25.97 16.14a 2.97 6.30 T 22.31 19.85 1.00 17.64 22.69 4.02 16.96 6.53 3.33 15.71 24.08 20.73 2.89 25.23 1.64a 1.34 22.98 12.52 2.61 9.50 12.00 1.28
1954 1935 1956 1936 1929 1939 1965 1965 1989 1954 1953 1947 1956 1934 1958 1956 1968 1936 1930 1930 1965 1936 1936 1936 1956 1960 1931 1898 1930 1965 1910 1941 1930 1934 1963 1956 1939 1965 1965 1954 1936 1941 1956 1974 1941 1941 1930 1930 1937 1960
Primrose Farm Barrow Davis Dam Index Death Valley Buena Vista Baltic Dover Conch Key Swainsboro Kawaihae Grand View Keithsburg Brooksville Cherokee Johnson Jeremiah Shreveport Machias Picardy Chatham L.S. Croswell Angus Yazoo City La Belle Belfry Hull Hot Springs Bethlehem Canton Hermanas Lewiston Mount Airy Parshall Elyria Regnier Warm Springs Reservoir Breezewood Block Island Rock Hill Ludlow Halls Presidio Myton Burlington Moores Creek Dam Wahluke Upper Tract Plum Is. Lysite
Elevation (ft) 180 31 660 300 K282 7,980 140 30 6 320 est. 75 2,360 540 630 1,360 3,270 1,160 170 30 1,030 20 730 870 120 770 4,040 4,400 4,072 1,440 20 4,540 320 1,070 1,930 730 4,280 3,330 1,350 40 667 2,850 310 2,580 5,080 330 1,950 416 1,540 590 5,260
CLIMATE AND PRECIPITATION
3-137
Table 3D.25 Velocity of Fall, Number of Drops, and Kinetic Energy for Rainfall of Various Intensities
Fog Mist Drizzle Light Rain Moderate Rain Heavy Rain Excessive Rain Cloudburst Do Do
Intensity (in./hr)
Median Diameter (mm)
Velocity of Fall (ft/sec)
Drops per Square Foot (no./sec)
Kinetic Energy (ft-lbs.per sq. ft/hr)
0.005 0.002 0.01 0.04 0.15 0.60 1.60
0.01 0.1 0.96 1.24 1.60 2.05 2.40
0.01 0.7 13.5 15.7 18.7 22.0 24.0
6,264,000 2.510 14 26 46 46 76
4.043!10K8 7.937!10K5 0.148 0.797 4.241 23.47 74.48
4.00 4.00 4.00
2.85 4.00 6.00
25.9 29.2 30.5
113 41 12
q 2006 by Taylor & Francis Group, LLC
216.9 275.8 300.7
3-138
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 3E
SNOW AND SNOW MELT
-ANNUALA 0.0 B 0.1 – 3 .0 C 3 .1 – 6.0 D 6.1 – 12.0 E 12.1 – 24.0 F 24.1 – 3 6.0 G 3 6.1 – 48.0 H 48.1 – 72.0 I > 72.0 ( I N.) Figure 3E.19 U.S. mean total snow. (From Climate Atlas of the United States, updated 8/27/02.)
-ANNUALA < 24.1 B 24.1 – 48.0 C 48.1 – 72.0 D 72.1 – 96.0 E 96.1 – 144.0 F 144.1 – 240.0 G
240.1 – 3 60.0 H
3 60.1 – 600.0 I > 600.0 ( I N.)
Figure 3E.20 Alaska mean total snow. (From Climate Atlas of the United States, updated 8/27/02.) q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-139
- ANNUALA 0.0 B 0.1 – 2.0 C 2.1 – 6.0 D 6.1 – 12.0 E 12.1 – 24.0 F 24.1 – 48.0 G
48.1 – 72.0 H 72.1 – 180.0 I > 180.0
( I N.) Figure 3E.21 U.S. annual (Aug–Jul) record total snowfall. (From Climate Atlas of the United States, updated 8/27/02.)
- Annual A < 24.1 B 24.1 – 3 6.0 C 3 7.1 – 48.0 D 48.1 – 60.0 E 60.1 – 72.0 F 72.1 – 84.0 G 84.1 – 96.0 H 96.1 – 120.0 I > 120.0 ( I N.)
Figure 3E.22 General Pattern of Annual World Precipitation. (Form Environmental Science Service: Administration, Climates of the World, 1969, www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
3-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
A 90 ( P erc ent)
Figure 3E.23
Average January world temperature. (From Climates of the World, Historical Climatology Series 6–14, 1991, www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-141
A 95
( P erc ent)
Figure 3E.24 Average July world temperature. (From Climates of the World, Historical Climatology Series 6–14, 1991, www.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
3-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3E.26 Physical Properties of Snow and Ice
New Snow Old Snow Firma Glacier Ice a
Density (g/cm3)
Porosity (percent)
Air Permeability (g/cm3/sec)
Grain Size (mm)
0.01–0.3 0.2–0.6 0.4–0.84 0.84–0.917
99–67 78–35 56–8 8–0
O400–40 100–20 40–0 0
0.01–5 0.5–3 0.5–5 1–100
Firm is snow which has been modified into a dense compact material by deformation, refreezing, recrystallization, and other processes.
Table 3E.27 Heat Supplied to Melting Snow by Different Processes Extreme Conditions
Approximate Heat Supplieda
708 dry bulb, 20-mile wind 608 dew point, 20-mile wind Very moist air, cloudy at night 4 in., 508 wet bulb New snow
600 600 200 100 20
Heat Supply Convection from turbulent air Condensation of atmospheric moisture Absorption of solar radiation Warm rain Conduction from soil a
Calories per square centimeter per day.
Table 3E.28 Relation of Snow Melt to Snow Evaporation
Air Temperature (8C) 5 10 15 20 a
Relative Humidity (%) 20 20 20 20
Heat Transfer from Air to Snow Snow (cal cmL2 Evaporated L2 1 day1) (g cm day ) 2.02 1.69 1.25 0.67
Heat Required in Evaporation Processa (cal cmL2 day1)
Heat Available to Melt Snow (cal cmL2 day1)
Melted Snow (g cmL2 day1)
Melt/Evaporation
1,370 1,150 850 460
0 640 1,840 3,130
0 8.0 23.0 39.1
4.7 18.4 58.4
900 1,790 2,690 3,590
Heat required in evaporation process is equal to heat transfer from air to snow plus heat obtained by lowering of snow-surface temperature.
Table 3E.29 Melting Constant for Snow Location Albany, NY Donner Summit, CA Gooseberry Creek, UT Gooseberry Creek, UT Finland Soda Springs, CA New England floods NY and PA basins LaGrange Brook, NY New England floods, 1936 Permigewasset Basin, NH Crater Lake, OR Crater Lake, OR
Descriptive Notes Tests of small cylinders Observations in 1917 Field measurements Tests of cores All basins, 1934–1937 Average, 1936–1941 Studies by Boston Soc. C.E. Flood runoff studies Basin area, 36 acres Geol. Survey, average values Flood of March 1936 Small test plots Small test plots
Melting Period 8–12 hours Apr 1–May 6 Apr 23–May 9 6–9 hr Apr Apr 1–14 days Mar or Apr Mar 28–Apr 6 Mar 9–22 Mar 17–20 Mar 3–Jun 9 May 26–Jun 2
Melting Constant 0.04–0.06 0.071 0.091 0.05–0.07 0.108 0.051 0.01–0.04 0.04–0.07 0.09 0.03–0.05 0.16 0.153 0.658
Note: The melting constant is the depth of water in inches melted per degree day. A degree day is a unit of heat resulting from a day with a mean temperature one degree Fahrenheit above 328F. q 2006 by Taylor & Francis Group, LLC
CLIMATE AND PRECIPITATION
3-143
Table 3E.30 Snow Survey Reports — Western United States SNOTEL (SNOWpack Telemetry) is an extensive system operated by the Natural Resources Conservation Services (NRCS). The system supports the Congressional mandate from the mid-1930’s “to measure snow pack in the mountains of the West and forecast the water supply.” SNOTEL has been in operation since 1980 replacing manual measurements and provides the data necessary to support the data needs of the NRCS and others Specific products (data) supported include † Climate Information † Data Collection Technology † Snow Survey Information † Water Supply Forecasting B Colorado River Basin B Columbia River Basin/Alaska B Great Basin/California/Pacific Coastal B Missouri River Basin † Hydraulics and Hydrology † Irrigation and Water Management † Water and Wind Erosion † Water Quality Assessment and Monitoring † Wetlands and Drainage Regional Water and Climate Monitoring Natural Resources Conservation Service Unites States Department of Agriculture 101 SW Main, Suite 1600 Portland, OR 97204-3224 Water and Climate Services Natural Resources Conservation Service Unites States Department of Agriculture 101 SW Main, Suite 1600 Portland, OR 97204-3224 States Alaska Data Collection Officer, Natural Resources Conservation Service, 949 E. 36th Ave., Suite 400, Anchorage, AK 99508-4362, (907) 271-2424 Arizona Water Supply Specialist, Natural Resources Conservation Service, 3003 N. Central Ave., Suite 800, Phoenix, AZ 85012-2945
q 2006 by Taylor & Francis Group, LLC
California Water Supply Specialist, 430 G Street, #4164, Davis, CA 95616, (530) 792-5624, (530) 7925791 (fax) Colorado Snow Survey Supervisor, USDA Natural Resources Conservation Service, Snow Survey Office, 655 Parfet St., Rm. E200C, Lakewood, CO 80215-5517, (303)236-2910 Ext. 235 Idaho Water Supply Specialist, Natural Resources Conservation Service, Snow Survey Office, 9173 West Barnes Drive, Suite C, Boise, Idaho 83709-1574 Montana Water Supply Specialist, Natural Resources Conservation Service, 10 E. Babcock, Room 443, Bozeman, Montana 59715 Nevada Water Supply Specialist, Natural Resources Conservation Service, 5301 Longley Lane, Building F, Suite 201, Reno, NV 89511 New Mexico Water Supply Specialist, USDA—NRCS, 6200 Jefferson NE, Albuquerque, NM Oregon Snow Survey Supervisor, USDA, NRCS, 101 SW Main Street, Suite 1300, Portland, OR 97204, 503-414-3266 Utah Snow Survey Supervisor, USDA–NRCS, Snow Surveys, 245 N. Jimmy Doolittle Road, Salt Lake City, UT 84116 Washington Water Supply Specialist, Washington Snow Survey Office, 2021 E. College Way, Suite 214, Mount Vernon, WA 98273 Wyoming Water Supply Specialist, Federal Building, Room 3124, 100 East B Street Casper, Wyoming 82601-1911 http://www.wcc.nrcs.usda.gov
3-144
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 3E.31 Greatest Snowfalls in North America Place 24 hr 1 month 1 storm 1 season
Date
Silver Lake, CO Tamarack, CA Mt. Shasta Ski Bowl, CA Mount Baker, WA
In.
Apr 14–15, 1921 Jan 1911 Feb 13–19, 1959 1998–1999
Cm
76 390 189 1,140
195.6 991 480 2,895.6
Table 3E.32 National Snowfall and Snow Depth Extremes Location
Coop Station Number
Ending Date
Number of Years of NonMissing Data
Data Period Analyzed
AK AK
12/29/1955 12/30/1955
19 19
1952–1973 1952–1073
Thompson Pass
AK
12/30/1955
19
1952–1973
509146
Thompson Pass
AK
12/30/1955
19
1952–1973
175.4
509146
Thompson Pass
AK
12/31/1955
19
1952–1973
172.6
509146
Thompson Pass
AK
2/24/1953
19
1952–1973
186.9
509146
Thompson Pass
AK
2/25/1993
19
1952–1973
297.9
509146
Thompson Pass
AK
2/1953
17
1952–1973
1069.8
456898
WA
1974
17
1948–2000
293.0
456898
Rainier Paradise Rangers Rainier Paradise Rangers
WA
4/12/1974
11
1948–2000
Snow Amount (in.)
Station Name
62.0 120.6
509146 509146
Thompson Pass Thompson Pass
147.0
509146
163.0
Greatest daily snowfall Greatest 2-day snowfall (snowed both days) Greatest 3-day snowfall (snowed all 3 days) Greatest 4-day snowfall (snowed all 4 days) Greatest 5-day snowfall (snowed all 5 days) Greatest 6-day snowfall (snowed all 6 days) Greatest 7-day snowfall (snowed all 7 days) Greatest monthly snowfall total Greatest Aug–July snowfall total Greatest daily snow depth
State
Note: Missing data may cause apparent discrepancies between the daily extreme, monthly total, and seasonal total snowfall values. The monthly and seasonal totals were based on complete data; if any days were missing, then the monthly or seasonal total could not be computed for that year. Daily snowfall extremes were not as susceptible to missing data. Consequently, it may be possible for a 1-day extreme to be greater than a multiple-day extreme, a daily extreme to be greater than a monthly total, and a monthly total to be greater than a seasonal total. Checking the “number of years with non-missing data” parameter is an important part of using this snow climatology. q 2006 by Taylor & Francis Group, LLC
CHAPTER
4
Hydrologic Elements Brian Burke
CONTENTS Section Section Section Section Section Section Section Section Section Section Section Section
4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 4K 4L
Hydrologic Cycle .................................................................................................................................. Water Resources — United States ....................................................................................................... World Water Balance ........................................................................................................................... Hydrologic Data.................................................................................................................................... Interception ........................................................................................................................................... Infiltration ............................................................................................................................................. Runoff ................................................................................................................................................... Erosion and Sedimentation................................................................................................................... Transpiration ......................................................................................................................................... Evaporation ........................................................................................................................................... Consumptive Use .................................................................................................................................. Phreatophytes ........................................................................................................................................
4-2 4-5 4-7 4-11 4-24 4-25 4-28 4-39 4-61 4-63 4-69 4-95
4-1 q 2006 by Taylor & Francis Group, LLC
4-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 4A
HYDROLOGIC CYCLE
Vapo rs
co ol &p re
to
Clouds
rm n fo tio ta pi ci
Rain Hail
Evaporation from
Infiltration/ percolation
om tion fr
Soil/Porous earth
t re
P l an
n
Water vapor
Sun’s heat causes evaporation
es
ts
C ro p
s
Su runrface of f
Fresh groundwater zone
Su r run face off
e fac Sur ff o run
Septic system
Water well Salty/Brackish water zone
Non-porous earth and confining rock
Figure 4A.1 The hydrologic cycle. (From www.dnr.ohio.gov.)
q 2006 by Taylor & Francis Group, LLC
oceans from tion ora ap Ev
Transpira
i t a ti o p recip
Evaporati on fro l a k es & m r ive rs
Snow
Ocean
HYDROLOGIC ELEMENTS
4-3
Table 4A.1 Hydrologic Effects of Urbanization Change in Land or Water Use Transition from Pre-Urban to Early-Urban Stage: Removal of trees or vegetation Construction of scattered city-type houses and limited water and sewage facilities Drilling of wells Construction of septic tanks and sanitary drains
Transition from Early-Urban to Middle-Urban State: Bulldozing of land for mass housing, some topsoil removed, farm ponds filled in Mass construction of houses, paving of streets, building of culverts
Discontinued use and abandonment of some shallow wells Diversion of nearby streams for public water supply Untreated or inadequately treated sewage discharged into streams or disposal wells Transition from Middle-Urban to Late-Urban Stage: Urbanization of area completed by addition of more houses and streets and of public, commercial, and industrial buildings Larger quantities of untreated waste discharged into local streams Abandonment of remaining shallow wells because of pollution Increase in population requires establishment of new watersupply and distribution systems, construction of distant reservoirs diverting water from upstream sources within or outside basin Channels of streams restricted at least in part to artificial channels and tunnels Construction of sanitary drainage system and treatment plant for sewage Improvement of storm drainage system
Drilling of deeper, large-capacity industrial wells
Increased use of water for air conditioning Drilling of recharge wells Waste-water reclamation and utilization
Possible Hydrologic Effect Decrease in transpiration and increase in storm flow Increased sedimentation of streams Some lowering of water table Some increase in soil moisture and perhaps a rise in water table. Perhaps some waterlogging of land and contamination of nearby wells or streams from overloaded sanitary drain system Accelerated land erosion and stream sedimentation and aggradation. Increased flood flows. Elimination of smallest streams Decreased infiltration, resulting in increased flood flows and lowered groundwater levels. Occasional flooding at channel constrictions (culverts) on remaining small streams. Occasional overtopping or undermining of banks of artificial channels on small streams Rise in water table Decrease in runoff between points of diversion and disposal Pollution of stream or wells. Death of fish and other aquatic life. Inferior quality of water available for supply and recreation at downstream populated areas Reduced infiltration and lowered water table. Streets and gutters act as storm drains, creating higher flood peaks and lower base flow of local streams Increased pollution of streams and concurrent increased loss of aquatic life. Additional degradation of water available to downstream users Rise in water table Increase in local streamflow if supply is from outside basin
Increased flood damage (higher stage for a given flow). Changes in channel geometry and sediment load. Aggradation Removal of additional water from the area, further reducing infiltration and recharge of aquifer A definite effect is alleviation or elimination of flooding of basements, streets, and yards, with consequent reduction in damages, particularly with respect to frequency of flooding Lowered water-pressure surface of artesian aquifer; perhaps some local overdrafts (withdrawal from storage) and land subsidence. Overdraft of aquifer may result in salt-water encroachment in coastal areas and in pollution or contamination by inferior or brackish waters Overloading of sewers and other drainage facilities. Possibly some recharge to water table, due to leakage of disposal lines Raising of water-pressure surface Recharge to groundwater aquifers. More efficient use of water resources
Note: A selected sequence of changes in land and water use associated with urbanization. Source: U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
4-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Precipitation
Precipitation
Condensation
W at e r
Condensation Solar energy
vapor transport
W at e r In cr
Ru
r ta
s ea
ff
Infiltration
no
ble
Evapotranspiration
Decreased infiltration
te Wa
W Evaporation
ru no f
Evapotranspiration
Evaporation Evaporation
Increased pollution Evaporation Ocean
Ocean Groundwater flow
Figure 4A.2 Water cycle before and after urbanization. (From www.unce.unr.edu.)
q 2006 by Taylor & Francis Group, LLC
ed
f
ble ater ta
Groundwater flow
Solar energy
vapor transport
HYDROLOGIC ELEMENTS
4-5
SECTION 4B
WATER RESOURCES — UNITED STATES
Table 4B.2 Distribution of Water in the Continental United States
%
Annual Circulation (!109 m3/yr)
Replacement Period (yr)
43.2 43.2 13.0 0.43 0.04 0.03 0.13 0.05
310 6.2 190 3,100 5.7 1,900 6,200 1.6
O200 O10,000 100 0.2 O10 !0.03 O0.03 O40
Volume !109 m3 Liquid water Groundwater Shallow (!800 m deep) Deep (O800 m deep) Freshwater lakes Soil moisture (1-m root zone) Salt lakes Average in stream channels Water vapor in atmosphere Frozen water, glaciers
63,000 63,000 19,000 630 58 50 190 67
Source: From Ad Hoc Panel on Hydrology, Scientific Hydrology, Washington, DC: Federal Council for Science and Technology, 1962.
Atmospheric moisture 40,000 bgd
Evaporation and transpiration from surface-water bodies, land surface and vegetation 2,800 bgd
Precipitation 4,200 bgd
Consumptive use 100 bgd
Evaporation from oceans
Well Stream flow
Recharge
to oceans 1,230 bgd
Wa ter tab le
Total surface and groundwater flow to oceans 1,300 bgd
Fresh groundwater
face Inter
Ocean Saline groundwater
bgd = billion gallons per day
Figure 4B.3 Hydrologic cycle showing the gross water budget of the conterminous United States. (From U.S. Geological Survey, National Water Summary 1983 — Hydrologic Events and Issues, Water-Supply Paper 2250, 1984.) q 2006 by Taylor & Francis Group, LLC
4-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4B.3 Some Purposes of Water-Resources Development Purpose Flood control
Irrigation
Hydroelectricity
Description Flood-damage abatement or reduction, protection of economic development, conservation storage, river regulation, recharging of groundwater, water supply, development of power, protection of life Agricultural production
Navigation
Provision of power for economic development and improved living standards Transportation of goods and passengers
Domestic and industrial water supply
Provision of water for domestic, industrial, commercial, municipal, and other uses
Watershed management
Conservation and improvement of the soil, sediment abatement, runoff retardation, forests and grassland improvement, and protection of water supply Increased well-being and health of the people
Recreational use of water Fish and wildlife
Pollution abatement
Insect control
Drainage Sediment control
Salinity control
Improvement of habitat for fish and wildlife, reduction or prevention of fish or wildlife losses associated with man’s works, enhancement of sports opportunities, provision for expansion of commercial fishing Protection or improvement of water supplies for municipal, domestic, industrial and agricultural uses and for aquatic life and recreation Public health, protection of recreational values, protection of forests and crops Agricultural production, urban development and protection of public health Reduction or control of slit load in streams and protection of reservoirs
Abatement or prevention of salt-water contamination of agricultural, industrial, and municipal water supplies
Type of Works and Measures Dams, storage reservoirs, levees, floodwalls, channel improvement, floodways, pumping stations, floodplain zoning, flood forecasting Dams, reservoirs, walls, canals, pumps and pumping plants, weed-control and desilting works, distribution systems, drainage facilities, farmland grading Dams, reservoirs, penstocks, power plants, transmission lines Dams, reservoirs, canals, locks, open-channel improvements, harbor improvements Dams, reservoirs, walls, conduits, pumping plants, treatment plants, saline-water conversion, distribution systems Soil-conservation practices, forest and range management practices, headwater-control structures, debris-detention dams, small reservoirs, and farm ponds Reservoirs, facilities for recreational use, works for pollution control, preservation of scenic and wilderness areas Wildlife refuges, fish hatcheries, fish ladders and screens, reservoir storage, regulation of streamflows, stocking of streams and reservoirs with fish, pollution control, and land management Treatment facilities, reservoir storage for augmenting low flows, sewage-collection systems, legal control measures Proper design and operation of reservoirs and associated works, drainage, and extermination measures Ditches, tile drains, levees, pumping stations, soil treatment Soil conservation, sound forest practices, proper highway and railroad construction, desilting works, channel and revetment works, bank stabilization, special dam construction and reservoir operations Reservoirs for augmenting low stream-flow, barriers, groundwater recharge, coastal jetties
Source: From Chow, V.T., Water as a World Resource, Water International, 4, 6, 1979. With permission.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-7
SECTION 4C
1,357,506,000 km3 (1,167,200 cm or 11,672 m) total volume of water
1,320,000,000 km3 (1,135,000 cm or 11,350 m) or 97.20% in the oceans
3
8,506,000 km (7,316 cm or 73.16 m) or 0.65% fresh water on land and air
8,506,000 km3 (7,316 cm or 73.16 m) total volume of fresh water on land and air
WORLD WATER BALANCE
4,150,000 km3 (3,570 cm or 35.70 m) or 48.77% groundwater ½ mile deep
3
29,000,000 km (24,900 cm or 249 m) or 2.15% frozen water
3
4,150,000 km (3,570 cm or 35.70 m) or 48.77% groundwater below ½ mile
3
13,000 km (11 cm or 0.11 m) or 0.16% as water vapor in the atmosphere 3
67,000 km (57 cm or 0.75 m) or 0.8% soil moisture and seepage
126,250 km3 (108 cm or 1.08 m) or 1.5% lakes, rivers and streams
Note: figures in brackets indicate the height that the relevant quantites of water would reach if they were placed on the whole non-frozen land area of the earth which is 116,400,000 km3
Figure 4C.4 Water availability on earth. (From Doxiadis, C.A., Water and Environment International Conference on Water for Peace, Washington, DC, 1967.)
q 2006 by Taylor & Francis Group, LLC
4-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4C.4 Estimated Global Water Cycle Volume Type of Water
Location
Millions of cu. Miles
Millions of cu Kilometer
Percent of Total Volume
Salt Water
97.00 Oceans Saline bodies
314.2 2.1
1308.0 (96.4%) 8.7 (0.6%)
Fresh Water
2.90 Ice & snow Lakes Rivers Accessible groundwater
6.9 0.5 0.01 1.0
28.7 (2.1%) 2.1 (0.15%) 0.04 (0.003%) 4.2 (0.31%)
Atmospheric
0.10 Sea evaporation Land evaporation Precipitation over sea Precipitation over land Water vapor
Rounded Total
0.1 0.05 0.09 0.03 0.005 326.00
0.42 (0.03%) 0.21 (0.015%) 0.37 (0.03%) 0.12 (0.01%) 0.02 (0.002%) 1357.00
100.0
Source: From National Weather Service Northwest River Forecast Center, www.nwrfc.noaa.gov.
Table 4C.5 World Water Balance, by Continent Water Balance Elements Area, millions of km2 in mm Precipitation (P) Total river runoff (R) Groundwater runoff (U) Surface water runoff (S) Total infiltration and soil moisture (W) Evaporation (E) in km3 Precipitation Total river runoff Groundwater runoff Surface water runoff Total infiltration and soil moisture Evaporation Relative values Groundwater runoff as percent of total runoff Coefficient of groundwater discharge into rivers Coefficient of runoff a b c d
Europea 9.8
Asia 45.0
Africa 30.3
North Americab 20.7
South America 17.8
Australiac 8.7
Total Land Aread 132.3
734 319 109 210 524 415
726 293 76 217 509 433
686 139 48 91 595 547
670 287 84 203 467 383
1,648 583 210 373 1,275 1,065
736 226 54 172 564 510
834 294 90 204 630 540
7,165 3,110 1,065 2,045 5,120 4,055
32,690 13,190 3,410 9,780 22,910 19,500
20,780 4,225 1,465 2,760 18,020 16,555
13,910 5,960 1,740 4,220 9,690 7,950
29,355 10,380 3,740 6,640 22,715 18,975
6,405 1,965 465 1,500 4,905 4,440
110,303 38,830 11,885 26,945 83,360 71,475
34
26
35
32
36
24
31
0.21
0.15
0.08
0.18
0.16
0.10
0.14
0.43
0.40
0.23
0.31
0.35
0.31
0.36
Including Iceland. Excluding the Canadian archipelago and including Central America. Including Tasmania, New Guinea and New Zealand, only within the limits of the continent: P-440 mm; R-47 mm; U-7 mm; S-40 mm; W-400 mm; E-393 mm. Excluding Greenland, Canadian archipelago and Antarctica.
Source: From Lvovitch, M.I., EOS, 54, 1973. With permission. Copyright by American Geophysical Union. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4C.6 World Water Resources by Region
Region 1 2 3 4 5 6 7 8 9 10
Northern America Central America and Caribbean Southern America Western and Central Europe Eastern Europe Africa Near East Central Asia Southern and Eastern Asia Oceania and Pacific World
Total Area (km2) (FAOSTATE, 1999) (1)
Total Population (FAOSTAT, 2000) (2)
Average Precipitation 1961–1990 (km3/yr) (IPCC) (3)
Internal Resources: Total (km3/yr) (4)
External Resources: Natural (km3/yr)
External Resources: Actual (km3/yr)
Total Resources: Natural (km3/yr)
Total Resources: Natural (km3/yr)
% of World Resources
IRWR/inhab. (m3/yr)
TRWR (actual)/inhab. (m3/yr)
47 (5) 6 (6)
47 6
6,709 787
6,709 787
15.2% 1.8%
16,253 10,784
16,368 10,867
21,899,600 749,120
409,895,363 72,430,000
13,384 1,506
6,662 781
17,853,960 4,898,416
345,737,000 510,784
28,635 4,096
12,380 2,170
0 11
0 11
12,380 2,181
12,380 2,181
28.3% 5.0%
35,808 4,249
35,808 4,270
18,095,450 30,044,850 6,347,970 4,655,490 21,191,290
217,051,000 793,288,000 257,114,000 78,563,000 3,331,938 000
8,452 20,415 1,378 1,270 24,017
4,449 3,950 488 261 11,712
244 0 3 28 8
244 0 3 28 8
4,693 3,950 491 289 11,720
4,693 3,950 491 289 11,720
10.2% 9.0% 1.1% 0.6% 26.8%
20,498 4,980 1,897 3,321 3,515
21,622 4,980 1,909 3,681 3,518
8,058,920
25,388,537
4,772
911
0
0
911
911
2.1%
35,869
35,869
133,795,066
6,042,188,900
107,924
43,764
0
0
43,764
43,764
100.0%
7,243
7,243
Notes: (1) No FAOSTAT data for Spilsbergen (Norway); (2) No FAOSTAT data for West Bank (Palestinian authority); data from Margat and Valle´e (2000); (3) No IPCC data on Near East (Saudi Arabia, West Bank (Palestinian Authority); Gaza strip (Palestinian Authority)), South Asia (Taiwan Province of China, east Timor), Caribbean (Aruba). Pacific (Polynesia, Guam) so not included in total. For Europe: no IPCC data for Spilsbergen (Norway), Luxembourg and Belgium; national data source used; (4) No data for various islands in Caribbean (Aruba, Bermuda, Grenada, Guadeloupe, Martinique, St. Lucia. St. Vincent, Dominica) Pacific (French Polynesia, Guam, New Caledonia, Samoa, Tonga), Asia (Macao, Hong Kong); so not included in regional and global totals; (5) 47 km3/year from Guatemala to Mexico; (6) 6 km3/year from North America region (Mexico). Source: www.fao.org.
4-9
q 2006 by Taylor & Francis Group, LLC
4-10
Table 4C.7 Water Poor Countries
FAO Code 105 112 124 136 35 72 225 179 134 76
Internal Resources Surface (km3/yr)
Internal Resources Groundwater (km3/yr)
Internal Resources Overlap (km3/yr)
Internal Resources Total (km3/yr)
External Resources Natural (km3/yr)
External Resources Actual (km3/yr)
Total Resources Natural (km3/yr)
Total Resources Actual (km3/yr)
9.16 9.93 98.53 94.66 1.70 5.12 6.53 0.81 0.12 0.00
0.25 0.40 0.20 0.10 0.18 0.30 0.15 0.00 0.00 0.00
0.50 0.50 0.50 0.30 0.12 0.02 0.12 0.05 0.05 0.05
0.00 0.22 0.10 0.00 0.00 0.02 0.12 0.00 0.00 0.00
0.75 0.68 0.60 0.40 0.30 0.30 0.15 0.05 0.05 0.05
0.92 0.20 0.00 11.00 0.00 0.00 0.00 0.00 0.00 0.01
0.92 0.20 0.00 11.00 0.00 0.00 0.00 0.00 0.00 0.01
1.67 0.88 0.60 11.40 0.30 0.30 0.15 0.05 0.05 0.06
1.67 0.88 0.60 11.40 0.30 0.30 0.15 0.05 0.05 0.06
0.06 2.16
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.11 0.02
0.11 0.02
0.12 0.02
0.12 0.02
Israel Jordan Libyan Arab Jamahiriya Mauritania Cape Verde Djibouti United Arab Emirates Qatar Malta Gaza Strip (Palestinian Authority) Bahrain Kuwait
Source: From Review of World Water Resources by Country, www.fao.org/documents.
Table 4C.8 Water Rich Countries
FAO Code 21 185 33 101 41 44 231 170 100
Country Brazil Russian Federation Canada Indonesia China, Mainland Colombia United States of America (Cont.) Peru India
Average Precipitation 1961–1990 (km3/yr)
Internal Resources Surface (km3/yr)
Internal Resources Groundwater (km3/yr)
Internal Resources Overlap (km3/yr)
Internal Resources Total (km3/yr)
External Resources Natural (km3/yr)
External Resources Actual (km3/yr)
Total Resources Natural (km3/yr)
Total Resources Actual (km3/yr)
IRWR/inhab. (m3/yr)
15,236 7,855 5,352 5,147 5,995 2,975 5,800
5,418 4,037 2,840 2,793 2,712 2,112 1,862
1,874 788 370 455 829 510 1,300
1,874 512 360 410 728 510 1,162
5,418 4,313 2,850 2,838 2,812 2,112 2,000
2,815 195 52 0 17 20 71
2,815 195 52 0 17 20 71
8,233 4,507 2,902 2,838 2,830 2,132 2,071
8,233 4,507 2,902 2,838 2,830 2,132 2,071
31,795 29,642 92,662 13,381 2,245 50,160 7,153
1,919 3,559
1,616 1,222
303 419
303 380
1,616 1,261
297 647
297 636
1,913 1,908
1,913 1,897
62,973 1,249
Source: From Review of World Water Resources by Country, www.fao.org/documents.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
13 118
Country
Average Precipitation 1961–1990 (km3/yr)
HYDROLOGIC ELEMENTS
4-11
SECTION 4D
HYDROLOGIC DATA
Figure 4D.5 Locations of NASQAN and national hydrologic bench-mark stations in the United States. (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
USGA Station ID
Station Name
Mississippi River Basin 03216600 Ohio River at Greenup Dam near Greenup, KY 03303280
03378500
03612500
05420500
Latitude
Longitude
Hydrologic Unit Code
Location of Stream Gage and Sampling Site
Drainage Area
Louisville, KY
38838 0 48 00
82851 0 38 00
05090103
Louisville, KY Ohio River at Cannelton Dam at Cannelton, IN Wabash River at Paducah, KY New Harmony, IN Tennessee River Paducah, KY at Highway 60 near Paducah, KY
37853 0 58 00
86842 0 20 00
05140201
38807 0 55 00
87856 0 25 00
05120113
37802 0 16 00
88831 0 46 00
06040006
At auxiliary gaging station at bridge on U.S. Highway 60, 16.3 mi downstream from gagin station, 2.4 mi east of Paducah, and at mile 5.3
40,330 sq. mi., 40,200 sq. mi. at gage
Paducah, KY Ohio River at Dam 53 near Grand Chain, IL Mississippi River Iowa City, IA at Clinton, IA
37812 0 11 00
89802 0 30 00
05140206
203,100 sq. mi, approximately
41846 0 50 00
90815 0 07 00
07080101
38858 0 05 00
90825 0 42 00
07110009
48807 0 30 00
104828 0 20 00
10060005
At auxiliary gaging station, 0.5 mi upstream from Gar Creek, 3.0 mi southwest of Grand Chain, 18.1 mi downstream from gaging station at Metropolis, and at mile 962.2 At river end of 3rd St., at downstream end of ADM repair dock, 10.3 miles upstream from Wapsipinicon River, 4.8 mi upstream from Camanche gage, 5.9 mi downstream from Lock and Dam 13, and at mile 516.6 upstream from Ohio River. Water-quality samples collected at Fulton-Lyons Bridge, 6.4 mi upstream of discharge station On left bank 0.2 mi downstream from the mouth of the Illinois River, 15.3 mi above Lock and Dam 26, 23.0 mi above mouth of Missouri River and at mile 218.6 upstream of the mouth o the Ohio River. Water-quality samples collected 4 mi downstream of discharge station On right bank at upstream side of bridge on State Highway 16, 2.5 mi southeast of Culbertson, 10 mi downstream from Big Muddy Creek and at river mile 1,620.76
05587455
Mississippi River Rolla, MO below Grafton, IL
06185500
Missouri River near Culbertson, MT
Fort Peck, MT
q 2006 by Taylor & Francis Group, LLC
At left bank at downstream end of lock guidewall in 62,000 sq. mi., lower poolat Greenup locks, 1.1 mi upstream approximately from Grays Branch, 4.7 mi downstream from Little Sandy River, 5.0 mi north of Greenup and at mile 341.5 97,000 sq. mi, At Cannelton Dam, 0.7 mi upstream from Indian approximately Creek, 3.3 mi upstream from Lead Creek, and at mile 720.8. Water-quality samples are collected 2.0 mi upstream from discharge station At bridge on U.S. Highway 66 at New Harmony and 29,234 sq. mi at mile 51.5
85,600 sq. mi., approximately, at Fulton-Lyons Bridge in Clinton
171,300 sq. mi., approximately
91,557 sq. mi
Remarks
Water discharge obtained from station Wabash river at Mount Carmel, IL (03377500) Records of daily discharge are taken from gaging station near Paducah (03609500). Flow completely regulated. BarkleyKentucky Cannal (03438190) diverts water from and to Lake Barkley in the Cumberland River Basin Water discharge obtained from Ohio River at Metropolis, IL (03611500). Flow regulated by many dams and reservoirs
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
03609750
USGS Office Sampling Station
4-12
Table 4D.9 National Stream Water Quality Accounting Network (NASQAN) — Stations Operated by NASQAN 1996–2000
Yellowstone River near Sidney, MT
06338490
Missouri River at Bismark, ND Garrison Dam, ND Missouri River at Pierre, SD Pierre SD
06440000
47840 0 42 00
104809 0 22 00
10100004
47830 0 08 00
101825 0 50 00
10130101
44822 0 23 00
100822 0 03 00
10140101
06610000
Missouri River at Council Bluffs, IA 41815 0 32 00 Omaha, NE
95855 0 20 00
10230006
06805500
Platte River at Louisville, NE
41800 0 55 00
96809 0 28 00
10200202
06934500
Missouri River at Rolla, MO Hermann, MO Mississippi River Rolla, MO at Thebes, IL
38842 0 36 00
91826 0 21 00
10300300
37813 0 00 00
89827 0 50 00
07140105
Little Rock, AR 34840 0 07 00 Arkansas River at David D. Terry Lock & Dam below Little Rock, AR Mississippi River Baton Rouge, LA 30845 0 30 00 near St. Francisville, LA Baton Rouge, LA 30841 0 26 00 Atchafalaya River at Melville, LA
92809 0 18 00
11110207
91823 0 45 00
08070100
91844 0 10 00
08080101
07022000
07263620
07373420
07381495
Linclon, NE
On left bank at Montana-Dakota Utilities Company powerplant, 0.2 mi downstream from bridge on State Highway 23, 2.5 mi south of Sidney, 3.0 mi downstream from Fox Creek, and at river mile 29.2 In control structure of Garrison Dam, 2.5 mi west of Riverdale, 14 mi upstream from Knife River, and at mile 1,389.9 On left bank downstream from Dakota Minnesota and Eastern Railroad bridge, 1.3 mi upstream from Bad River, 5.8 mi downstream from Oahe Dam, and at mile 1066.5. Water-quality samples collected 0.25 mile below Oahe Dam, about 5.55 mile upstream from gaging station. Inflow between these two locations generally are negligible On right bank on left side of concrete floodwall, at foot of Douglas Street, 275 ft downstream of Interstate 480 Highway bridge in Omaha and at mile 615.9 Water-quality samples are collected at Interstate-80 bridge, 2.0 miles downstream of gaging station On the left bank at the upstream side of bridge on Nebraska Highway 50, 1 mi north of Louisville, and at mile 16.5
On downstream side of third pier from right abutment of bridge on State Highway 19 at Hermann, and at mile 97.9 Near center span on downstream side of railroad bridge at Thebes, 5.0 mi downstream from Headwater Diversion Channel and at mile 43.7 above Ohio River At upper end of upstream wall at David D. Terry Lock and Dam. 10.7 mi downstream from Main Street bridge at Little Rock, and at mile 124.2
HYDROLOGIC ELEMENTS
Fort Peck, MT
06329500
69,103 sq. mi;
181,400 sq. mi., approximately 243,500 sq. mi., approximately
322,800 sq. mi. approximately. The 3,959 sq. mi. in the Great Divide basin are not included 85,370 sq. mi., appoximately, of which about 71,000 sq. mi., contributes directly to surface runoff 524,200 sq. mi., approximately
Flow regulated by upstream mainstem reservoirs. US Army Corps of Engineers raingage and satellite data collection platform at station
713,200 sq. mi., approximately
158,288 sq. mi., of which 22,241 sq. mi. is probably noncontributing
Discharge is from station 07263450, 16.8 mi. upstream
At State Highway 10 ferry crossing, 2.0 mi southwest of St. Francisville and at mile 266.0
1,125,300 sq. mi. contributing
Discharge is from Mississippi River at Tarbert Landing, MS, station 07295100
At bridge on Texas and Pacific Railroad in Melville
93,316 sq. mi
Discharge is from station 07381490, Atachafalaya river at Simmesport, LA
(Continued) 4-13
q 2006 by Taylor & Francis Group, LLC
USGA Station ID
4-14
Table 4D.9
(Continued) USGS Office Sampling Station
Station Name
08470400
08475000
09180500
Colorado River near Cisco, UT
Rio Grande Basin 29,267 sq. mi 13030102 At gaging stati on the downstream side of the Courchesne Bridge, 5.6 mi upstream from the Santa Fe Street-Juarez Avenue bridge betwen El Paso, Tx, and Cd. Juarez, Chihuahua at mile 1,249 and 1.7 mi upstream from the American Dam 13040212 At gaging station 0.1 mi downstream from Terrell- 80,742 sq. mi Val Verde Country line, 16.9 mi from Langtry, and 597.2 midownstream from the American Dam at El Paso 13040212 At gaging station 7.4 mi east of Langtry and 15.0 mi 35,179 sq. mi upstream from confluence with Rio Grande
Remarks
29848 0 10 00
101826 0 45 00
San Angelo, TX
29825 0 30 00
101802 0 27 00
13080001
2.2 mi downstream from Amistad Dam and 10 mi northwest of Del Rio
San Angelo, TX
27824 0 01 00
99829 0 18 00
13080002
8.7 Mi (14.0 km) downstream from Texas-Mexican 132,578 Railway Bridge near Laredo, and at mile 352.69 (567.48 km)
Discharge measured by International Boundary and Water Commission
San Angelo, TX
26833 0 25 00
99810 0 05 00
13090001
U.S. tailrace at Falcon Dam
San Angelo, TX
26810 0 24 00
97842 0 01 00
San Angelo, TX
25852 0 35 00
97827 0 15 00
Moab, UT
38848 0 38 00
109817 0 34 00
On downstream side of northbound service road on 182 sq. mi U.S. Highways 83&77, about 18 mi from point of main floodway that divides into North Floodway and Arroyo Colorado 13090002 At International Boundary and Water Commission 176,333 sq. mi gaging station, 1000 ft downstream from El Jardin pumping plant, 6.8 mi below International bridge between Brownsville and Matamoras, Tamps., Mex. And 48.8 miles above the Gulf of Mexico Colorado River Basin 14030005 On left bank 1 mi downstream from Dolores River, 24,100 sq. mi., approximately 11 mi south of Cisco, 36 mi downstream from Colorado-Utah state line, 97 mi upstream from Green River and 235 mi upstream from San Juan River, at mile 1022.3 from Arizona-Sonora
Discharge measured by International Boundary and Water Commission Discharge measured by International Boundary and Water Commission
Albuquerque, NM
q 2006 by Taylor & Francis Group, LLC
13090002
123,143 sq. mi
159,270 sq. mi
Discharge measured by International Boundary and Water Commission
Discharge measured by International Boundary and Water Commission Discharge measured by International Boundary and Water Commission Discharge measured by International Boundary and Water Commission
Discharge measured by International Boundary and Water Commission
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
08461300
Drainage Area
101845 0 20 00
San Angelo, TX Rio Grande at Foster Ranch, near Langtry, TX Pecos River near San Angelo, TX Langtry, TX
08459200
Location of Stream Gage and Sampling Site
29846 0 50 00
08377200
Rio Grande below Amistad Dam near Del Rio, TX Rio Grande at Pipeline Crossing below Laredo, TX Rio Grande below Falcon Dam, TX Arroyo Colorado at Harlingen, TX map of lower basin Rio Grande near Brownsville, TX map of lower basin
Hydrologic Unit Code
106832 0 25 00
Rio Grand at El Paso, TX
08450900
Longitude
31848 0 10 00
08364000
08447410
Latitude
Green River at Green River, UT
Moab, UT
38859 0 10 00
110809 0 02 00
14060008
09379500
San Juan River Moab UT near Bluff, UT
37808 0 49 00
109851 0 52 00
14080205
09380000
Flagstaff, AZ Colorado River at Lees Ferry, AZ
36851 0 53 00
111835 0 15 00
14070006
09404200
Colorado River above Diamond Creek near Peach Springs, AZ
Flagstaff, AZ
36846 0 25 00
113821 0 46 00
15010002
09421500
Las Vegas, NV Colorado River below Hoover Dam, AZ-NV
36800 0 55 00
114844 0 16 00
15030101
09429490
Yuma, AZ Colorado River above Imperial Dam, CA-AZ. schematic map of Lower Colorado River
32852 0 59 00
114827 0 55 00
15030104
44,850 sq. mi. of On right bank, 1,400 ft upstream from railroad which about bridge, 0.9 mi southeast of town of Green River, 4,260 sq. mi. 22.7 mi upstream from San Rafael River, at mile (including 117.6 upstream from mouth 3,959 sq. mi. in Great Divide Basin in southern Wyoming) i noncontributing 23,000 sq. mi., On left bank, 1,600 ft downstream from Gypsum approximately Creek, 1,800 ft upstream from highway bridge, 20 mi southwest of Bluff, at mile 113.5 In Navajo Indian Reservation, on left bank at head of 111,800 sq. mi., approximately, Marble gorge at lees ferry, just upstream from including 3,959 Paria River, 16 mi downstream of Glen Canyon sq. mi. in Great Dam, 28 mi downstream from UT-AZ state line, Divide basin in and 61.5 mi upstream from Little Colorado River southern Wyoming, which is noontributing 149,316 sq. mi., In Lake Mead NRA, on the right bank, 0.6 mi including 3,959 upstream from Diamond Creek, 138 mi sq. mi. in Great downstream from Phantom Ranch, 25 mi north Divide Basin in of Peach Springs, 242 mi downstream from Glen southern Canyon Dam, and 130 mi upstream from Hoover Wyoming nand Dam 697 sq. mi. on the Colorado Plateau In powerhouse at downstream side of Hoover Dam. 171,700 sq. mi., Water-quality samples collected at gaging approximately, station 0.3 mi downstream from Hoover Dam included 3,959 sq. mi. in Great Divide Basin in southern Wyoming, which is noncontributing Imperial Dam is 5 mi upstream from Laguna Dam, 188,500 sq. mi., approximately, 15 mi northeast of Yuma, 90 mi downstream including 3,959 from Palo Verde Dam and 147 mi downstream sq. mi. in Great from Parker Dam. Water-quality samples Divide basin in collected below trash racks at All-American southern Canal headworks at west end of Imperial Dam Wyoming, which is noncontributing
Flow regulated by Flaming gorge Reservoir (09234400)
No diversions between station and mouth of river. Flow regulated by Navajo Reservoir, NM (09355100) Many diversions above Lake Powell for irrigation, municipal, and industrial use. No diversion or inflow between Lake Powell and the gage
Several unregulated tributaries below Glen Canyon Dam
Records show flow of Colorado River reaching Imperial Dam and are synthesized from records of several other stations
4-15
(Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
09315000
USGA Station ID
4-16
Table 4D.9
(Continued) USGS Office Sampling Station
Station Name
Yuma, AZ Colorado River at Northerly International Boundary (NIB), above Morelos Dam, near Andrade, CA schematic map of Lower Colorado River
12400520
Columbia River at Northport, WA Columbia River at Vernita Bridge, near Priest Rapids Dam WA Snake River at Burbank, WA
12472900
13353200
14128910
14211720
14246900
0
32843 07
00
Longitude 0
114843 05
00
Hydrologic Unit Code
Location of Stream Gage and Sampling Site
Drainage Area
On left bank at northerly international boundary, 0.5 246,700 sq. mi., approximately, mi east of Andrade. 1.1 mi upstream from including all Morelos Dam, 1.1 mi downstream from closed basins Rockwood Gate, and 6.4 mi downstream from entirely within gaging station on Colorado River below Yuma the drainage Main Canal wasteway boundary, also 3,959 sq. mi. in Great divide basin in southern Wyoming, which is noncontributing Columbia River Basin 17020001 0.4 mi downstream from State Highway 25 bridge at 60,200 sq. mi., approximately Northport, 10.3 mi downstream from gaging station at boundary, and at mile 735.1 17020016 At State Highway 24 Vernita Bridge crossing, 9.0 mi 96,000 sq. mi., approximately downstream from Priest Rapids Dam and at mile 388.1 15030108
Spokane, WA
48855 0 08 00
117847 0 11 00
Pasco, WA
46838 0 34 00
119843 0 54 00
Pasco, WA
46815 0 00 00
118853 0 45 00
17060110
Approximately 1.0 mi downstream from Ice Harbor Dam
45836 0 45 00
122801 0 35 00
17080001
On left bank 0.1 mi downstream from Tumult Creek, 240,000 sq. mi., approximately 1.0 mi west of Warrendale, 5.1 mi downstream from Bonneville Dam, and at mile 141.0
45831 0 07 00
122840 0 00 00
17090012
In pier at east end of drawspan, on upstream side of 11,100 sq. mi., Morrison bridge in Portland, and at mile 12.8 approximately
46810 0 55 00
123810 0 50 00
17080003
On left bank, 0.7 mi downstream from Crims Island, 256,900 sq. mi., 3.0 mi northwest of Qunicy, and at mile 53.8 approximately
Portland, OR Columbia River at Warrendale, OR Willamette River Portland, OR at Portland, OR Columbia river at Portland, OR Beaver Army Terminal, near Quincy, OR
Source: From http://water.usgs.gov
q 2006 by Taylor & Francis Group, LLC
Remarks
108,800 sq. mi
Discharge is routed from gaging station at international boundary (12399500) Discharge determined by routing flows from the gaging station below Priest Rapids Dam (12472800) 6.4 mi upstream Discharge is obtained and routed from Ice Harbor Dam, 1.0 mi upstream Stream discharge taken from Columbia River at the Dalles, OR (14105700) at river mile 188.9 Water discharge records obtained by flow routing procedures usg sta records
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
09522000
Latitude
4-17
nia .R .
HYDROLOGIC ELEMENTS
Co l VERNITA FERRY BURBANK WARRENDALE Willamette .R
M is s o u r i
CULBERTSON GARRISON DAM
.R Yel l o ws ton SIDNEY e
SAINT LAWRENCE
CISCO HERMANN ka
THEBES
an
ni
Ri
n
r
de
se
TOMBIGBEE
e Riv r a n G
EL PAGO
Te n n es er
Re d R iv er
Ri v er D. TERRY DAM
FOSTER RANCH LANGTRY AMISTAD RES. PRESIDIO
MELVILLE
r
RM
Riv
DIAMOND CREEK River Gi l a IMPERIAL DAM
HA W NE hio O
GREEN LIP DAM CANNELTON DAM PADUCAH ver
Ar
BLUFF
SUSQUEHANNA Y ON
ve
G re en
GREENR.
CLINTON r ve OMAHA Ri LOUISVILLE GRARTON
Pa r ua
N.I.B
LEES FERRY R do Co l o r a
P la tte
R
JORDAN Minnesota
i sipp
PIERRE
r ve
HOOVER DAM
Ri
R i ver
rR i
na
ke
MHASTINGS is s is
Ri
S
GRAND CHAIN W abash R
PORTLAND
um
NORTHPORT BEAVER ARMY TERMINAL
ALABAMA ST. FRANCISVILLE
EXPLANATION NASQAN station NAWQA station Joint NASQAN/ NAWQA station Cooperative station Inactive station
Aichafalaya R.
LAREDO FALCON DAM
ARROYO COLORADO BROWNSVILLE
Figure 4D.6 NASQAN stations, 1996–2000. (From http://water.usgs.gov.)
Table 4D.10 Water Quality Characteristics Are Measured as NASQAN Stations Code
Parameter
4S MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ
5S 00010 00061 00076 00095 00300 00400 00452 00453 00608 00613 00623 00625 00631 00665 00666 00671 00681 00689 00915 00925 00930 00935 00940 00945
Description 75S Water temperature (degree Celsius) Discharge, instantaneous (cubic feet per second) Turbidity (nephelometric turbidity units, NTU) Specific conconductance (microsiemens per centimeter at 25 Celsius) Oxygen, dissolved (milligrams per liter) Ph, field (standard units) Carbonate, filtered (milligrams per liter as CO3) Bicarbonate, filtered (milligrams per liter as HCO3) Ammonia–nitrogen (milligrams per liter as N) Nitrite–nitrogen (milligrams per liter as N) Ammonia-plus-organic-nitrogen, dissolved (milligrams per liter as N) Ammonia-plus-organic-nitrogen (milligrams per liter as N) Nitrite-plus-nitrate-nitrogen, dissolved (milligrams per liter as N) Phosphorus, total (milligrams per liter as P) Phosphorus, dissolved (milligrams per liter as P) Orthophosphate-phosphorus (milligrams per liter as P) Carbon, organic, dissolved (milligrams per liter as C) Carbon, organic, suspended (milligrams per liter as C) Calcium, dissolved (milligrams per liter as Ca) Magnesium, dissolved (milligrams per liter as Mg) Sodium, dissolved milligrams per liter as Na) Potassium, dissolved (milligrams per liter as K) Chloride, dissolved (milligrams per liter as Cl) Sulfate, dissolved (milligrams per liter as SO4) (Continued)
q 2006 by Taylor & Francis Group, LLC
4-18
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4D.10 Code
(Continued) Parameter
MAJ MAJ MAJ MAJ MAJ MAJ SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM SEDCHEM TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE TE PEST PEST PEST
00950 00955 39086 70300 70331 80154 29816 29818 29820 29822 29826 29829 29832 29836 29839 29841 29843 29846 29847 29850 29853 29855 30221 30244 30269 30292 30308 30317 35031 35040 35046 35050 49955 50279 50465 01000 01005 01010 01020 01025 01030 01035 01040 01046 01049 01056 01057 01060 01065 01075 01080 01085 01090 01095 01106 01130 01145 04024 04028 04035
Description Fluoride, dissolved (milligrams per liter as F) Silica, dissolved (milligrams per liter as SiO2) Alkalinity, filtered (milligrams per liter as CaCO3) Residue on evaporation (180 Celsius) (milligrams per liter) Sediment, finer than 63 microns (percent) Sediment, suspended (milligrams per liter) Antimony, sediment, suspended, total (micrograms per gram) Arsenic, sediment, suspended, total (micrograms per gram) Barium, sediment, suspended, total (micrograms per gram) Beryllium, sediment, suspended, total (micrograms per gram) Cadmium, sediment, suspended, total (micrograms per gram) Chromium, sediment, suspended, total (micrograms per gram) Copper, sediment, suspended, total (micrograms per gram) Lead, sediment, suspended, total (micrograms per gram) Manganese, sediment, suspended, total (micrograms per gram) Mercury, sediment, suspended, total (micrograms per gram) Molybdenum, sediment, suspended, total (micrograms per gram) Nickel, sediment, suspended, total (micrograms per gram) Selenium, sediment, suspended, total (micrograms per gram) Silver, sediment, suspended, total (micrograms per gram) Vanadium, sediment, suspended, total (micrograms per gram) Zinc, sediment, suspended, total (micrograms per gram) Aluminum, sediment, suspended, total (percent) Carbon, sediment, suspended, total (percent) Iron, sediment, suspended, total (percent) Phosphorus, sediment, suspended, total (percent) Sulfur, sediment, suspended (percent) Titanium, sediment, suspended, total (percent) Cobalt, sediment suspended, total (micrograms per gram) Strontium, sediment, suspended, total (micrograms per gram) Uranium, sediment, suspended, total (micrograms per gram) Lithium, sediment, suspended, total (micrograms per gram) Thallium, sediment, suspended, total (micrograms per gram) Sediment, suspended (milligrams per liter) Carbon, organic, suspended, total (percent) Arsenic, dissolved (milligrams per liter as As) Barium, dissolved (milligrams per liter as Ba) Beryllium, dissolved (milligrams per liter as Be) Boron, dissolved (micrograms per liter as B) Cadmium, dissolved (micrograms per liter as Cd) Chromium, dissolved (micrograms per liter as Cr) Cobalt, dissolved (micrograms per liter as Co) Copper, dissolved (micrograms per liter as Cu) Iron, dissolved (micrograms per liter as Fe) Lead, dissolved (micrograms per liter as Pb) Manganese, dissolved (micrograms per liter as Mn) Thallium, dissolved (micrograms per liter as Tl) Molybdenum, dissolved (micrograms per liter as Mo) Nickel, dissolved (micrograms per liter as Ni) Silver, dissolved (micrograms per liter as Ag) Strontium, dissolved (micrograms per liter as Sr) Vanadium, dissolved (micrograms per liter as V) Zinc, dissolved (micrograms per liter as Zn) Antimony, dissolved (micrograms per liter as Sb) Aluminum, dissolved (micrograms per liter as Al) Lithium, dissolved (micrograms per liter as Li) Selenium, dissolved (micrograms per liter as Se) Propachlor, dissolved (micrograms per liter) Butylate, dissolved (micrograms per liter) Simazine, dissolved (micrograms per liter) (Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4D.10
4-19
(Continued)
Code
Parameter
PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST PEST
04037 04040 04041 04095 22703 34253 34653 38933 39341 39381 39415 39532 39542 39572 39632 46342 49260 82630 82660 82661 82663 82664 82665 82666 82667 82668 82669 82670 82671 82672 82673 82674 82675 82676 82677 82678 82679 82680 82681 82682 82683 82684 82685 82686 82687 91063 91065 99108 99856
Description Prometon, dissolved (micrograms per liter) Desethyl atrazine, dissolved (micrograms per liter) Cyanazine, dissolved (micrograms per liter) Fonofos, dissolved (micrograms per liter) Uranium, natural, dissolved (micrograms per liter) Alpha BHC, dissolved (micrograms per liter) P, P 0 DDE, dissolved (micrograms per liter) Chlorpyrifos, dissolved (micrograms per liter) Lindane, dissolved (micrograms per liter) Dieldrin, dissolved (micrograms per liter) Metolachlor, dissolved (micrograms per liter) Malathion, dissolved (micrograms per liter) Parathion, dissolved (micrograms per liter) Diazinon, dissolved (micrograms per liter) Atrazine, dissolved (micrograms per liter) Alachlor, dissolved (micrograms per liter) Acetochlor, dissolved (micrograms per liter) Metribuzin, dissolved (micrograms per liter) Diethylanilene, dissolved (micrograms per liter) Trifluralin, dissolved (micrograms per liter) Ethalfluralin, dissolved (micrograms per liter) Phorate, dissolved (micrograms per liter) Terbacil, dissolved (micrograms per liter) Linuron, dissolved (micrograms per liter) Methyl parathion, dissolved (micrograms per liter) EPTC, dissolved (micrograms per liter) Pebulate, dissolved (micrograms per liter) Tebuthiuron, dissolved (micrograms per liter) Molinate, dissolved (micrograms per liter) Ethoprop, dissolved (micrograms per liter) Benfluralin, dissolved (micrograms per liter) Carbofuran, dissolved (micrograms per liter) Terbufos, dissolved (micrograms per liter) Pronamide, dissolved (micrograms per liter) Disultoton, dissolved (micrograms per liter) Triallate, dissolved (micrograms per liter) Propanil, dissolved (micrograms per liter) Carbaryl, dissolved (micrograms per liter) Thiobencarb, dissolved (micrograms per liter) DCPA, dissolved (micrograms per liter) Pendimethalin, dissolved (micrograms per liter) Napropamide, dissolved (micrograms per liter) Propargite, dissolved (micrograms per liter) Azinphos-methyl, dissolved (micrograms per liter) Permethrin, dissolved (micrograms per liter) Diazinon, D-10 surrogate (percent) HCH, alpha, D-6 surrogate (percent) Spike volume (milliters) Sample volume (milliters)
Note: ASCII text file containing parameter code definitions for constituents. Analyzed by the USGS National Stream Quality Accounting Network (1996–2000). File is tab-delimited. The first header contains column names. The second header contains column formats. CodeZConstituent group, defined as follows: MAJZinstantaneous Q, field parameters, major ions, nutrients, suspended sediment SEDCHEMZsediment chemistry TEZtrace elements (dissolved) PESTZpesticides ParameterZWATSTORE code DescriptionZConstituent name (units of measure) Source: http://water.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
4-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total stations 7,426 Other Federal agency programs 1,868
Combined sources 779
Federal−state cooperative program 4,222
Federal program 557
Figure 4D.7 Sources of funds for operation of continuous surface-water discharge stations. (From U.S. Geological Survey Water Data Program, http://water.usgs.gov.)
Table 4D.11 Hydrologic and Related Data Collection Networks in the United States Type of Network Automatic meterological observing stations (full parameter); temperature, dew point, wind, pressure, precipitation) National weather service synoptic and basic observation stations (high quality observations for basic weather program) Cooperative station services (observations by lay persons): Temperature and precipitation Precipitation only — daigeoly Precipitation only — storage Hourly precipitation stations equipped with recording precipitation gages Cooperative stations equipped with both recording and nonrecording precipitations gages Crop reporting stations River and/or rainfall reporting stations River stage reports only Rainfall reports only River stage and rainfall reports Evaporation storage Reference Climatological Stations Automated Hydrologic Observing System (AHOS) — river and rainfall data for flood forecasting AHOS/Ta AHOS/Sb Special reporting stations Cooperative station data published Temperature and precipitation Precipitation only Evaporation Soil temperature Miscellaneous (snow density, special meteorological, etc) a b
Data transmitted by telephone. Data transmitted by satellite.
Source: From National Weather Service, Operations of the National Weather Service, 1985. q 2006 by Taylor & Francis Group, LLC
Number of Stations 92 67 5,568 3,200 32 3,205 1,995 566 998 3,656 1,069 448 21 506 75 293 8,256 3,055 431 308 473
HYDROLOGIC ELEMENTS
4-21
Table 4D.12 USGS Programs Managed by the Water Resources Discipline † Cooperative Water Program — The Cooperative Program, a partnership between the USGS and state and local agencies, provides information that forms the foundation for many of the Nation’s water resources management and planning activities † National Streamflow Information Program (NSIP) — The National Streamflow Information Program (NSIP) is a conceptual plan developed by the USGS for a new approach to the acquisition and delivery of streamflow information † National Water Quality Assessment Program (NAWQA) — Since 1991, USGS scientists with the NAWQA program have been collecting and analyzing data and information in more than 50 major river basins and aquifers across the Nation. The goal is to develop long-term consistent and comparable information on streams, groundwater, and aquatic ecosystems to support sound management and policy decisions. The NAWQA program is designed to answer these questions: 1. What is the condition of our Nation’s streams and groundwater? 2. How are these conditions changing over time? 3. How do natural features and human activities affect these conditions? † Toxic Substances Hydrology (Toxics) Program — provides unbiased earth science information on the behavior of toxic substances in the Nation’s hydrologic environments. The information is used to avoid human exposure, to develop effective cleanup strategies, and to prevent further contamination † Groudwater Resources Program — The Groundwater Resources Program encompasses regional studies of groundwater systems, multidisciplinary studies of critical groundwater issues, access to groundwater data, and research and methods development. The program provides unbiased scientific information and many of the tools that are used by Federal, State, and local management and regulatory agencies to make important decisions about the Nation’s groundwater resources † Hydrologic Research and Development — Hydrologic Research and Development focuses on long-term investigations that integrate hydrological, geological, chemical, climatic, and biological information related to water resources issues. The program provides the primary support for the National Research Program (NRP) in the hydrologic sciences and for Water, Energy, and Biogeochemical Budgets (WEBB) program † State Water Resoruces Research Institute Program — A matching grant program to support water resources research, education, and information transfer at the 54 university based Water Resources Research Institutes. This program includes the National Institutes for Water Resources USGS Student Internship Program Subprograms: † Water Information Coordination Program (WICP) — ensures the availability of water information required for effective decision making for natural resources management and environmental protection and to do it cost effectively † Drinking Water Programs — The wide range of monitoring, assessment, and research activities conducted by the USGS to help understand the protect the quality of our drinking water resources is described on these pages. These studies are often done in collaboration with other federal, state, tribal, and local agencies † National Stream Quality Accounting Network (NASQAN) — Focus is on monitoring the water quality of four of the Nation’s largest river systems — the Mississippi (including the Missouri and Ohio), the Columbia, the Colorado, and the Rio Grande † Hydrologic Benchmark Network (HBN) — was established in 1963 to provide long-term measurements of streamflow and water quality in areas that are minimally affected by human activities. These data were to be used to study time trends and to serve as controls for separating natural from artificial changes in other streams. The network has consisted of as many as 58 drainage basins in 39 State † National Atmospheric Deposition Program/National Trends Network (NADP/NTN) — A nationwide network of precipitation monitoring sites. The first sites in the network were established in 1978. The network currently consists of approximately 200 sites † National Research Program (NRP) — conducts basic and problem-oriented hydrologic research in support of the mission of the U.S. Geological Survey (USGS) † National Water Summary Program — a series of publications designed to increase public understanding of the nature, geographic distribution, magnitude, and trends of the Nation’s water resources. It is often referred to as the USGS “encyclopedia of water” † National Water-Use Program — examines the withdrawal, use, and return flow of water on local, state, and national levels † USGS Environmental Affairs Program — provides guidance and information on the National Environmental Policy Act and other environmental issues † Water, Energy, and Biogeochemical Budgets (WEBB) — understands the processes controlling water, energy, and biogeochemical fluxes over a range of temporal and spatial scales and to understand the interactions of these processes, including the effect of atmospheric and climatic variables † National Irrigation Water Quality Program — A Department of Interior program to identify and address irrigation-induced water quality and contamination problems related to Department of Interior water projects in the west International Programs: † Cyprus Water Resources Database Development — This project met the USGS goal of supporting U.S. foreign policy. It was requested by the U.S. Ambassador to Cyprus and coordinated closely through the U.S. Department of State. It took 5 years of negotiations with senior Cypriot officials, Embassy staff, U.S. Department of State, and selected United Nations offices to design and implement this project. This project enabled water managers on Cyprus to manage their limited water resources, which will directly contribute to enhancement and protection of the quality of life for Cypriot citizens † Public Awareness and Water Conservation — The project, which began in 1996, is part of the Middle East Peace Process and is one of several projects sponsored by the Multilateral Working Group on Water Resources. The U.S. Department of State requested the USGS to undertake this activity and has provided political guidance throughout the project. The project meets the USGS goal of supporting U.S. foreign policy and fostering outreach and public awareness activities (Continued)
q 2006 by Taylor & Francis Group, LLC
4-22
Table 4D.12
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
† Regional Water Data Banks — The Executive Action Team Multilateral Working Group on Water Resoruces, Water Data Banks Project consists of a series of specific actions to be taken by the Israelis, Jordanians, and Palestinians that are designed to foster the adoption of common, standardized data collection and storage techniques among the Parties, improve the quality of the water resources data collected in the region, and to improve communication among the scientific community in the region † Ukraine Streamflow Project — Floods are among the most frequent and costly natural disasters in terms of human hardship and economic loss. In Ukraine, two major floods (one in 1998 and one in 2001) have occurred in the Tisa River Basin in the last 5 years. Both floods caused several fatalities, damaged or destroyed several thousand homes, destroyed bridges and roads, and created severe personal and economic hardship for the residents of Zakarpattia Oblast in western Ukraine. Near real-time streamflow data can be used to forecast and manage floods and improve public safety † Groundwater Research Program for the Emirate of Abu Dhabi, United Arab Emirates — Since 1988 the USGS has been partnering with the National Drilling Company (NDC) of the Abu Dhabi Emirate to collect information on the groundwater resources of the Emirate, to conduct research on the hydrology of the arid environment, to provide training in water resources investigations, and to document the results of the cooperative work in scientific publications † Geologic, Hydrologic, and Geochemical Characterization of the Deep Groundwater Aquifer System In the Bengal Delta of Bangladesh — The USGS is currently conducting research on the deeper aquifer system in Bangladesh in areas associated with high levels of arsenic in the shallow groundwater. This work is an integral step in the characterization of the hydrogeolocial framework needed to define the potential for developing safe and sustainable groundwater sources † Botswana–Village Flood Watch — The Village Flood Watch project, which was completed in 2002, was designed to help establish an early-warning system for potential flooding events by adding or upgrading six gauging stations to near real-time capabilities and providing training on hydrologic runoff modeling † Jordan Groundwater Management — The project objective is to enhance current Jordanian technical capacities for hydrogeologic data and information development, management and analysis; development and use of groundwater management models; and joint design and conduct of outreach workshops and meetings to increase public understanding of the benefits of local efforts in groundwater management and conservation † Summary of Palestinian Hydrologic Data 2000 — The project provides a critical tool to the USAID Water Resources Program including several investigative, development, and construction projects, in the West Bank and Gaza, designed to comprehensively develop, manage, and protect water resources. This activity demonstrates the USGS leadership role in the natural sciences and confirms the mission of providing scientific information to manage natural resources to enhance and protect the quality of life Source: From Water Resources of the United States, http://water.usgs.gov.
Table 4D.13 Number of USGS Data-Collection Stations Operated in 1994, by Source of Funds
Types of Stations Surface water: Discharge Stage-only — streams, lakes and reservoirs Quality Groundwater: Water levels Quality
Federal-State Cooperative Program
Other Federal Agency Program
Combined Support
Total
638 47
6,419 968
2,219 850
964 183
10,240 2,048
778
1,666
426
228
3,098
2,344 691
27,029 4,602
2,421 1,347
237 216
32,031 6,856
Federal Program
Source: From U.S. Geological Survey Water Data Program, http://water.usgs.gov. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4D.14 Increasing Global Data Coverage Regions
Number of Stations
Number of Data Point
Physical/Chemical
Major Loans
Metals
Nutrients
Organic Contaminants
Microbiology
Date Range
Africa Americas Asia Europe Oceania Total
138 682 332 318 94 1544
206907 417994 641940 823323 206650 2296814
26712 47198 118868 146747 31678 371203
79889 73210 159329 136392 12237 461087
6439 88124 83005 154742 2535 334845
41289 47284 98796 108815 46992 343176
370 3583 6794 14539 1438 26734
832 10401 32018 27260 1383 71894
1977–2004 1965–2004 1971–2004 1978–2003 1979–2004 1965–2004
Source: From GEMS Water, State of the UNEP GEMS/Water Global Network and Annual Report, United Nations Environment Programme, Global Environment Monitoring System (GEMS) Water Programme, 2004, www.gemswater.org.
4-23
q 2006 by Taylor & Francis Group, LLC
4-24
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 4E
INTERCEPTION
Table 4E.15 Interception by Trees Type or Species
Age or Size
Hemlock Douglas fir Hemlock Spruce-fir Hemlock Douglas fir Hemlock Spruce — fir — paper birch White pine — hemlock Western white pine — western hemlock Maple — beech Mixed Maple — hemlock Beech — birch — maple Ponderosa pine Lodgepole pine Ponderosa pine Jeffrey pine Lodgepole pine Ponderosa pine Ponderosa pine Calif, scrub oak Mixed brush White pine — red pine Jack pine Shortleaf pine Quaking aspen Chaparral, mixed Maple — hemlock Hemlock Oak-pine Ponderosa — lodgepole pine Beech — maple Chamise
Place in Succession
Locality
Interception (Percent)
Mature 25 yr Mature Mature Mature Mature Mature Mature Mature Overmature
Climax Climax Climax Climax Climax Climax Climax Climax Climax Climax
Connecticut Washington New Hampshire Maine Adirondacks, New York Washington Ithaca, New York Maine Massachusetts Idaho
48 43 38 37 34 34 31 26 24 21
Mature Mature Mature, cutover Mature Mature Mature Mature Mature 32 yr Mature Young 6 ft Mature 40 yr 50 yr 45 yr 32 yr 6 ft Mature (after leaf fall) Mature Open, second growth 25 ft Mature 6 ft
Climax Climax Climax Climax Preclimax Preclimax Preclimax Preclimax Preclimax Preclimax Pioneer — Preclimax Preclimax Pioneer Pioneer Pioneer
New York New York Wisconsin Ontario Arizona Colorado Idaho Southern California Colorado Idaho Colorado Southern California North Fork, California Ontario Wisconsin North Carolina Colorado Southern California Wisconsin New York New Jersey Idaho New York Southern California
43 40 25 21 40 32 27 26 23 22 18 31 19 37 21 16 16 17 16 13 13 8 6 3
Climax (under-stocked) Climax Preclimax Preclimax Climax Pioneer
Note: Interception includes stemflow and is expressed as a percentage of annual precipitation. Source: From Compilation of data from various references, Kittredge, Forest Influences, McGraw-Hill, Copyright 1948. With permission.
Table 4E.16 Interception by Various Forest Types Gross Interception Forest Type Northern hardwood Aspen — birch Spruce — spruce-fir White pine Hemlock Red pine
Stemflow
Net Interception
With Leaves (%)
Without Leaves (%)
With Leaves (%)
Without Leaves (%)
With Leaves (%)
Without Leaves (%)
Net Snow Interception (%)
20 15 35 30 30 32
17 12 — — — —
5 5 3 4 2 3
10 8 — — — —
15 10 32 26 28 29
7 4 — — — —
10 7 35 25 25 30
Source: U.S. Forest Service. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-25
Table 4E.17 Interception by Various Crops Description
Alfalfa
Corn
Soybean
Oats
During growing season: Rainfall (in.) Canopy penetration (in.) Stemflow (in.) Interception (in.) Interception (%) During low-vegetation development (%)
10.81 6.18 0.76 3.87 35.8 21.9
7.12 4.84 1.18 1.10 15.5 3.4
6.25 4.06 1.28 0.91 14.6 9.1
6.77 6.30 0.47 6.9 3.1
Source: U.S. Department of Agriculture.
SECTION 4F
INFILTRATION
Figure 4F.8 Total annual infiltration and soil moisture in the world (in mm). (From Lvovitch, M.I., EOS, 54, 1973, Copyright by American Geophysical Union. With permission.) q 2006 by Taylor & Francis Group, LLC
4-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4F.18 Seepage Rates for Canals Canal Soil Material
Seepage (Feet per Day)
Sandy loam Gravelly loam Fine sandy loam and adobe Sand and sandy loam Loam and sandy loam Adobe Fine sandy loam
8.2 5.3 3.8 3.4 3.3 3.0 2.1
Canal Soil Material
Seepage (Feet per Day)
Loam and adobe Loam Silty clay Sand and silty clay Sand and clay Loam and gravelly loam
1.4 1.1 0.9 0.4 0.1 0.1
Note: Values are average maximum rates through the wetted area. Source: From Rohwer and Stout, Colo, Agric. Exp. Sta. Bull., 1948. With permission.
Table 4F.19 Infiltration Rate and Land Use 1. Fallow 2. Row crops, poor rotationa 3. Row crops, good rotationb 4. Pasture, poor 5. Legumes after row crops 6. Small grains, poor rotation 7. Small grains, good rotation
8. Pasture, fair 9. Woods, poor 10. Pasture, good 11. Woods, fair 12. Meadows 13. Woods, good
Notes: Rank of land uses in order of infiltration rate; first use listed has lowest rate a b
One-fourth or less in hay or sod. More than one-fourth of rotation in hay or sod.
Source: U.S. Soil Conservation Service.
Table 4F.20 Infiltration Model Classification Category Semi-empirical Homogeneous Nonhomogeneous Ponding Non-ponding Wetting and drying
Model Selected SCS model Philip’s two-term model Green-Ampt model for layered systems Green-Ampt explicit model Constant Flux Green-Ampt model Infiltration/Exfiltration model
Reference USDA-SCS (1972) Philip (1957) Flerchinger et al. (1988) Salvucci and Entekhabi (1994) Swartzendruber (1974) Eagleson (1978)
Source: From USEPA Estimation of Infiltration Rate in the Vadose Zone: Application of Selected Mathematical Models — Volume II, EPA/600/R-97/128b, 1998. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-27
Table 4F.21 Concentrations of Compounds in Highway Runoff Prior to and after Infiltration through the Second Batch of Medium Formulation Number 9: 90-Percent Sand, 5-Percent Clay, and 5-Percent Mulch Effluent After Infiltration Analyte Calcium, dissolved (mg/L) Magnesium, dissolved (mg/L) Potassium, dissolved (mg/L) Sodium, dissolved (mg/L) Chloride, dissolved (mg/L) Fluoride, dissolved (mg/L) Silica, dissolved (mg/L) Sulfate, dissolved (mg/L) NitrateCnitrite (mg/L) Suspended solids (mg/L) Dissolved solids (mg/L) Arsenic, dissolved (mg/L) Arsenic, total (mg/L) Cadmium, dissolved (mg/L) Cadmium, total (mg/L) Copper, dissolved (mg/L) Copper, total (mg/L) Iron, dissolved (mg/L) Lead, dissolved (mg/L) Lead, total (mg/L) Manganese, dissolved (mg/L) Zinc, dissolved (mg/L) Zinc, total (mg/L) Total petroleum hydrocarbons (mg/L) Calcium, dissolved (mg/L) Magnesium, dissolved (mg/L) Potassium, dissolved (mg/L) Sodium, dissolved (mg/L)
Influent Prior to Infiltration
Halfway Through Experiment
End of Experiment
Percent Changea
6.3 1.2 1.2 3.2 2.8 !0.2 7.6 11 0.83 13 48 0.3 !2 0.1 0.28 6 10.5 48 0.4 2.8 17 20 55.3 4 6.3 1.2 1.2 3.2
5.2 1.9 1.6 3.5 3.0 e 0.1 8.3 11 0.83 42 55 0.5 e 2 e 0.02 0.17 4 16.9 79 0.09 8.1 e 2 2 54.0 !2 5.2 1.9 1.6 3.5
5.1 1.8 1.6 3.4 3.0 e 0.1 7.9 11 0.80 65 52 0.7 e 1 e 0.02 0.16 4 12.9 19 e 0.06 6.4 !3 2 54.7 !2 5.1 1.8 1.6 3.4
K19 50 33 6 7 — 4 0 K4 400 8 133 — e K80 K43 K33 23 K60 e -85 129 OK82 K90 K1 OK50 K19 50 33 6
Note: mg/L, milligrams per liter; mg/L, micrograms per liter; !, less than; O, greater than; e, estimated value; — , not computed. a
Percent change was calculated using the prior-to-infiltration and end-of-experiment values.
Source: From Kenneth, C. Ames, Emily L., Inkpen, Lonna M., Frans, William R., Bidlake, Technical Report WARD 5122, Wahington State Department of Transportation.
q 2006 by Taylor & Francis Group, LLC
4-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 4G
RUNOFF
SOURIS-RED RAINY
AT
LA
GREAT LAKES
RT NO
ORN
OHIO
ARKANSAS-WHITE-RED
RI O E
ND
A GR
LOWER COLORADO
TEXAS-GULF
LOWER MISSISSIPPI
CO
IA
UPP E LOR R ADO
CALIF
GREAT BASIN
UPPER MISSISSIPPI
H
MISSOURI
NT
IC
COLUMBIA NORTH PACIFIC
E
SE
S NE
LF
GU
N TE
IC
NT
LA
H
UT
AT
SO
ALASKA
PUERTO RICO
HAWAII
Figure 4G.9 Water resources regions of the United States. (From U.S. Water Resources Council, 1968.)
Table 4G.22 World-Wide Stable Runoff, by Continent Stable Runoffa (km2) Of Underground Origin
Regulated by Lakes
Regulated by Water Reservoirs
Total
Total River Runoffb
Total Stable Runoff as Present of Total River Runoff
1,065 3,410 1,465 1,740 3,740 465 11,885
60 35 40 150 — — 285
200 560 400 490 160 30 1,840
1,325 4,005 1,905 2,380 3,900 495 14,010
3,110 13,190 4,225 5,960 10,380 1,965 38,830
43 30 45 40 38 25 36
Europe Asia Africa North America South America Australiac Total land area except polar zones a b c
Excluding flood flows. Including flood flow. Including Tasmania, New Guinea, and New Zealand.
Source: From Lvovitch, M.I., EOS, 54, 1, 1973. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
q 2006 by Taylor & Francis Group, LLC
4-29
Figure 4G.10 Annual total river runoff in the world (includes groundwater discharge to rivers; in mm). (From Lvovitch, M.I., EOS, 54, 1973. Copyright by American Geophysical Union. With permission.)
4-30
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4G.23 Runoff in the United States Region North Atlanticb South Atlantic-Gulf Great Lakesb,c Ohiod Tennessee Upper Mississippid Lower Mississippid Souris-Red-Rainyb Missourib Arkansas-White–Red Texas-Gulf Rio Grandee Upper Coloradoe Lower Coloradod,e Great Basind Columbia-North Pacificb Californiaf Conterminous United Statesg Alaskab Hawaii United Statesg
Mean
50%a
90%a
95%a
163 197 63.2 125 41.5 64.6 48.4 6.17 54.1 95.8 39.1 4.9 13.45 3.19 5.89 210 65.1 1,201 580 13.3 1,794
163 188 61.4 125 41.5 64.6 48.4 5.95 53.7 93.4 37.5 4.9 13.45 2.51 5.82 210 64.1
123 131 46.3 80.0 28.2 36.4 29.7 2.60 29.9 44.3 15.8 2.6 8.82 1.07 3.12 154 32.8
112 116 42.4 67.5 24.4 28.5 24.6 1.91 23.9 33.4 11.4 2.1 7.50 0.85 2.46 138 25.6
—h —h
—h —h
—h —h
Note: Annual natural runoff in billions of gallons per day; regions are shown in Figure 4G.9. a
Flow exceeded in indicated percent of years. Does not include runoff from Canada. c Does not include net precipitation on the lakes. d Does not include runoff from upstream regions. e Does not include runoff from Mexico. f Virgin flow. Mean annual natural runoff estimated to be 13.7 bgd. g Rounded. h Not available. Source: U.S. Water Resources Council, 1968. b
Table 4G.24 Runoff Distribution in the United States Range in Runoff (Inches per Year) 0–0.25 0.25–0.5 0.5–1.0 1.0–2.5 2.5–5 5–10 10–20 20–40 40–80 Over 80 Total
Area (Square Miles)
Percent of Total Area
Percent of Total Runoff
306,000 380,000 266,000 413,000 247,000 258,000 830,000 290,000 30,000 2,000 3,022,000
10.1 12.6 8.8 13.7 8.2 8.5 27.4 9.6 1.0 0.1 100
0.1 .5 .8 2.8 3.6 7.4 44.8 32.4 6.9 0.7 100
Source: House of Representatives, U.S. Congress. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-31
Table 4G.25 Seasonal Variation of Natural Runoff by Regions of the United States Region
Months of High Flow
North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-White–Red Texas-Gulf Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific
March, April February, March April March March March, April March April March, June April, May, June March, May May June March, April June February, April, May
California
April, May
Months of Low Flow August, September September, October January, August, September September, October October January, September, October October January, February January January, September August, October June January, February June, November September, January January, February, August, September September, October, December
Source: U.S. Water Resources Council, 1968.
Average annual runoff INCHES ALASKA
0−1 1−5 PUERTO RICO
Regional data not available
5 − 20 20 − 40
HAWAII Regional data not available
Over 40
Figure 4G.11 Average annual runoff in the United States. (From U.S. Water Resources Council 1968, The Nation’s Water Resources.) q 2006 by Taylor & Francis Group, LLC
4-32
Table 4G.26 Runoff for National Forest and Non-National Forest Areas in Selected Western Drainage Basins Average Annual Water Production
Drainage Basin or Area Columbia (in U.S.) Colorado (in U.S.) Rio Grande above El Paso Central Valley (California only) Rogue-Umpqua Area Northwest Washington (State less Columbia) Southern California Coast (Los Angeles watershed to Mexican border) North Platte and South Platte Missouri above Fort Randall Dam Arkansas above Dodge City Source: U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
Outside NF
NF (Percent)
Outside NF (Percent)
Whole Area (Inches)
Inches
Percent of Total Volume
Inches
Percent of Total Volume
37 19 25 32 40 32
63 81 75 68 60 68
10.4 2.5 1.7 11.8 35.5 39.3
16.7 7.2 3.8 23.5 37.0 51.4
59 56 58 63 42 41
6.7 1.3 0.9 6.4 34.2 33.7
41 44 42 37 58 59
25
75
3.7
6.3
43
2.8
57
11 9 9
89 91 91
1.7 1.7 1.2
6.2 6.9 4.7
41 37 38
1.2 1.2 0.7
59 63 62
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NF
Area
HYDROLOGIC ELEMENTS
4-33
KO
RR 5 IT O
Arctic
N
N
O
RY
R
T H W E S T
7 BR 1
Pacific C
OL
IT
IS
T E R R I T O R
16
H
N
6
ALB
UM
BI 2 A
4
11 12
ND
E O E B2 2 Q U
O N T A R I O 13
Gulf of Mexico
L
Atlantic
Hudson Bay 17
9
FO
18
D
10
MA NI TO BA 14
N
8 AS K
EW
25
15
TA
A
3
ER
21
19
25 24P . E . L
23 N . A
VA IA NO OT C S
20
200
Scale 0 200 400 600 kilometres
INQUIRY ON FEDERAL WATER POLICY
Pacific
1 2 3 4 5
River basin region Pacific Coastal Fraser-Lower Mainland Okanagan-Similkameena Columbiaa Yukona
Arctic
6 7 8
Peace-Athabasca Lower Mackenzie Arctic Coast-Islands
Gulf of Mexico
9
Missouria
Ocean basin region
Area in 000s km2
Population in 000s 1981
352 234 14 90 328
616 1 722 189 161 23
487 1 300 2 025
286 43 13
26
14
Hudson Bay
10 11 12 13 14 15 16 17 18
North Saskatchewan South Saskatchewana Assiniboine-Reda Winnipega Lower Saskatchewan-Nelson Churchill Keewatin Northern Oontario Northern Quebec
146 170 190 107 363 298 689 694 950
1 084 1 282 1 300 77 224 68 5 157 109
Atlantic
19 20 21 22 23 24 25
Great Lakesa Ottawa St. Lawrencea North Shore-Gaspé St. John-St. Croixa Maritime Coastal Newfoundland-Labrador
319 146 116 403 37 114 376
7 579 1 270 5 193 653 393 1 314 568
9 974
24 343
CANADA a
Prepared by Drafting Division, ECS
YU TE
Canadian portion only; area and population on U.S. side of international basin regions are excluded from totals.
Figure 4G.12 Drainage regions of Canada. (From Pearse, P.H., Currents of change, Final Report Inquiry on Federal Water Policy, Ottawa, Canada, 1985.)
q 2006 by Taylor & Francis Group, LLC
4-34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Separate storm sewer system
Separate sanitary sewer system
Combined sewer system
Storm drain Sanitary wastewater
Sanitary wastewater
Storm drain Snowmelt
Storm water
Storm drain
Sanitary wastewater
Storm water
Storm drain
Sanitary wastewater Storm drain
wastewater treatment plant Storm water point source
Erosion
Fully treated Combined effluent sewer overflow
Nonpoint source pollution Sanitary sewage/wastewater Storm water runoff with potential contaminants
Figure 4G.13 Urban runoff flows in different types of sewer systems. (From www.gao.gov. GAO water quality — better data and evaluation of urban runoff programs needed to assess effectiveness — report to Congressional requesters, U.S. General Accounting Office.)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-35
Table 4G.27 Projections of Average Water Availability in the United Statesa Region
1965
1980
2000
2020
North Atlantic South Atlantic-Gulf Great Lakesb Ohio Tennessee Upper Mississippic Lower Mississippid Souris-Red-Rainye Missourif Arkansas-White–Redf Texas-Gulfg Rio Grandeh Upper Coloradoi Lower Coloradoj Great Basink Columbia-North Pacificl Californiam Alaskal Hawaii
163 197 80.3 125 41.5 66.7 408 6.2 54.5 95.8 39.1 5.2 13.5 14.1 6.9 258 69.7 710 13.3
163 197 80.3 125 41.5 66.7 401 6.4 54.6 95.9 39.2 5.3 13.5 12.6 7.0 258 69.4 710 13.3
163 197 80.3 125 41.5 66.7 395 6.8 54.8 96.0 39.2 5.3 13.5 11.9 7.1 258 69.3 710 13.3
163 197 80.3 125 41.5 66.7 390 6.8 54.9 96.0 39.2 5.3 13.5 11.6 7.2 258 69.2 710 13.3
Note: Values in billion gallons per day; for regions, see Figure 4G.9. a b c d e f g h i j k l m
Nature runoff adjusted for imports and upstream runoff where appropriate, values rounded. Includes net precipitation of U.S. portion of Great Lakes. Includes import from Great Lakes Region. Includes net upstream runoff and imports. Includes import from Missouri Region. Includes imports from Upper Colorado Region. Includes import from Arkansas-White–Red Region. Includes imports from Upper Colorado Region and Mexican Treaty deliveries. Virgin flow at Lee Ferry Compact point. Includes net upstream runoff. Includes imports from Upper Colorado Region and nature runoff from California Region. Includes natural runoff from Canada. Includes imports from Lower Colorado Region.
Source: U.S. Water Resources Council, 1968.
Table 4G.28 Values of Runoff Coefficient in the Rational Formula Types of Drainage Area Lawns: Sandy soil, flat, 2% Sandy soil, average, 2–7% Sandy soil, steep, 7% Heavy soil, flat, 2% Heavy soil, average, 2–7% Heavy soil, steep, 7% Business: Downtown areas Neighborhood areas Residential: Single-family areas Multi units, detached Multi units, attached Suburban Apartment dwelling areas
Runoff Coefficient (C) 0.05–0.10 0.10–0.15 0.15–0.20 0.13–0.17 0.18–0.22 0.25–0.35 0.70–0.95 0.50–0.70 0.30–0.50 0.40–0.60 0.60–0.75 0.25–0.40 0.50–0.70
Type of Drainage Area Industrial: Light areas Heavy areas Parks, cemeteries Playgrounds Railroad yard areas Unimproved areas Streets: Asphaltic Concrete Brick: Drives and walks Roofs
Runoff Coefficient (C) 0.50–0.80 0.60–0.90 0.10–0.25 0.20–0.35 0.20–0.40 0.10–0.30 0.70–0.95 0.80–0.95 0.70–0.85 0.75–0.85 0.75–0.95
Note: Formula is applicable to drainage areas less than about 5000 acres and has the form QZCiA where Q is peak discharge in cfs, C is a dimensionless runoff coefficient, i is rainfall intensity for the time of concentration in inches per hour, and A is drainage area in acres. Source: Amer. Soc. Civil Engrs. q 2006 by Taylor & Francis Group, LLC
4-36
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4G.29 Watershed Characteristics for Determining Runoff Coefficient in the Rational Formula Designation of Watershed Characteristics Relief
Soil infiltration
Vegetal cover
Surface storage
Runoff-Producing Characteristics 100 Extreme
75 High
50 Normal
(20) Rolling, with average (40) Steep, rugged terrain, (30) Hilly, with average slopes of 10–30% slopes of 5–10% with average slopes generally above 30% (20) No effective soil cover, (15) Slow to take up water; (10) Normal; deep loam either rock or thin soil clay or other soil of low with infiltration about mantle of negligible infiltration capacity, such equal to that of typical infiltration capacity as heavy gumbo prairie soil (20) No effective plant (15) Poor to fair; clean(10) Fair to good; about cover; bare or very cultivated crops or poor 50% of drainage area in sparse cover natural cover; less than good grassland, 10% of drainage area woodland, or equivalent under good cover cover; not more than 50% of area in cleancultivated crops (10) Normal; considerable (15) Low; well-defined (20) Negligible; surface surface-depression system of small depressions few and storage; drainage drainage-ways; no ponds shallow; drainage-ways system similar to that of or marshes steep and small; no typical prairie lands; ponds or marshes lakes, ponds and marshes less than 2% of drainage area
25 Low (10) Relatively flat land, with average slopes of 0–5% (5) High; deep sand or other soil that takes up water readily and rapidly (5) Good to excellent; about 90% of drainage area in good grassland, woodland, or equivalent cover
(5) High; surface-depression storage high; drainage system not sharply defined; large flood-plain storage or a large number of lakes, ponds, or marshes
Note: For each watershed characteristic in left column select appropriate descriptive box; add four numerical values given in parentheses to obtain runoff coefficient as a percentage. Source: U.S. Soil Conservation Service.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4G.30 Time of Concentration of a Watershed Height (Feet) Length (Feet) 200 400 600 800 1,000 2,000 3,000 4,000 5,000 7,000 10,000 15,000 20,000 30,000 40,000 50,000
5
10
20
40
60
100
200
400
600
800
1000
2 5 8 10 14 28 48 65 100 150 240 330 430 600 870 1080
2 4 6 8 10 21 35 50 65 100 180 270 350 500 660 840
1 3 4 6 8 17 27 36 48 70 120 210 280 450 510 600
1 2 3 5 6 13 20 28 35 52 85 150 210 320 420 480
1 2 3 4 5 10 17 24 28 42 70 120 180 280 360 430
1 1 2 3 4 9 13 19 22 34 54 90 140 230 300 360
1 2 2 3 7 10 14 19 27 40 60 95 170 240 300
1 2 2 5 8 11 14 20 28 46 65 120 180 230
1 2 2 4 7 9 12 17 25 44 54 100 150 190
1 2 4 6 8 11 15 22 34 48 90 130 160
2 3 5 7 9 13 20 30 43 75 120 150
Note: Values are time in minutes for water to travel from the most distant point in a watershed to the watershed outlet. Length is distance along the main stream from the watershed outlet to the most distant ridge; height is difference in elevation between the watershed outlet and the most distant ridge. Source: From Kirpich, Civil Eng, 1940.
4-37
q 2006 by Taylor & Francis Group, LLC
4-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4G.31 Total Impervious Area for Specific Land-Use Categories Typical Values of Total Impervious Area (Precent) Land-Use Category a
Single-family residential Multifamily residentialb Commercialc Industriald Public facilitiese Parks and undeveloped landf a b c d e f
Low
Intermediate
High
16 50 80 50 50 0
27 60 88 75 60 1
45 70 95 90 75 3
Single-family residential — Single-family dwellings predominate. Multifamily residential — Multiple-family units predominate. These include duplexes, apartment buildings, and condominiums. Commercial — Zone consisting of various types of business. Industrial — Manufacturing complexes, railroad yards, and large utilities. Public facilities — School, hospitals, churches, airports, and other public buildings. Parks and undeveloped land-parks, forests, and open undeveloped land.
Source: From Conger, D.H., Estimating magnitude and frequency of floods for wisconsin urban streams, U.S. Geological Survey Water-Resources investigations Report 86-4005, 1986.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-39
SECTION 4H
EROSION AND SEDIMENTATION
Table 4H.32 Drainage Area, Water and Suspended Sediment Discharges for Major Rivers of the World
River North America St. Lawrence (Canada) Hudson (U.S.A.) Mississippi (U.S.A.) (including Atchafalaya) Brazos (U.S.A.) Colorado (Mexico) Eel (U.S.A.) Columbia (U.S.A.) Fraser (Canada) Yukon (U.S.A.) Copper (U.S.A.) Susitna (U.S.A.) MacKenzie (Canada) Total North America South America Chira (Peru) Magdalena (Colombia) Orinoco (Venezuela) Amazon (Brazil) Sao Francisco (Brazil) La Plata (Argentina) Negro (Argentina) Total South America Europe Rhone (France) Po (Italy) Danube (Romania) Semani (Albania) Drini (Albania) Total Europe Eurasian Arctic Yana (U.S.S.R.) Ob (U.S.S.R.) Yenisei (U.S.S.R.) Severnay Dvina (U.S.S.R.) Lena (U.S.S.R.) Kolyma (U.S.S.R.) Indigirka (U.S.S.R.) Total Euras. Arctic Asia Amur (U.S.S.R.) Liaohe (China) Daling (China) Haiho (China) Yellow (Huangho) (China) Yangtze (China) Huaihe (China) Pearl (Zhu Jiang) (China) Hungho (Vietnam) Mekong (Vietnam) Irrawaddy (Burma) Ganges/Brahmaputra (Bangladesh) Mehandi (India)
Sediment Discharge Millions of Tons per Year
Drainage Area (!106 km2)
Water Discharge (km3 yr)
Strakhov (1961) and Lisitzin (1972)
1.03 0.02 3.27
447 12 580
4 36 500
4 — 349
4 1 210
0.11 0.64 0.008 0.67 0.22 0.84 0.06 0.05 1.81 9.57
7 20 — 251 112 195 39 40 306
32 135 — 36 — 88 — — 15
32 135 16 9 — — — — —
16 0.1 14 8 20 60 70 25 100 528
0.02 0.24 0.99 6.15 0.64 2.83 0.10 10.85
5 237 1100 6300 97 470 30
— — 86 498 — 129 —
— — 86 364 — 82 —
4-75 220 210 900 6 92 13 1420
0.09 0.07 0.81 — 0.01 0.97
49 46 206 — —
31 18 67 — —
— 15 19 22 15
10 15 67 ? ? 92
0.22 2.50 2.58 0.35 2.50 0.64 0.36 9.15
29 385 560 106 514 71 55
3 16 13 4.5 15 6 14
— 15 — — — — —
3 16 13 4.5 12 6 14 68
1.85 0.17 0.02 0.05 0.77 1.94 0.26 0.44 0.12 0.79 0.43 1.48
325 6 1 2 49 900 — 302 123 470 428 971
25 — — — 1890 500 — — 130 170 299 2180
— — — — 1890 502 — 27 130 170 300 2180
52 41 36 81 1080 478 14 69 130 160 265 1670
0.13
67
—
62
2
Holeman (1968)
Milliman and Meade (1983)
(Continued) q 2006 by Taylor & Francis Group, LLC
4-40
Table 4H.32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Strakhov (1961) and Lisitzin (1972)
0.02 0.31 0.97 1.05 9.74
10 84 238 46
— — 435 105
28 — 440 53
? 96 100 ? 4334
2.96 1.21 3.82 1.02 1.20 0.41 0.18 0.032 7.48
30 192 1250 11 223 5 9 —
110 67 65 153 100 — — —
111 4 64 — — — — —
0 40 43 17 20 33 17 32 175
1.06 — 0.001 0.061 0.031 0.003 0.003 0.001 0.002 0.002 0.002 1.074
22 — 6 77 77 6 9 2 4 4 4 39
32 — —
32 — —
— — — — — —
— — — — — —
30 28 13 30 80 66 39 28 19 17 16 336
Drainage Area (!106 km2)
River Damodar (India) Godavari (India) Indus (Pakistan) Tigris-Euphrates (Iraq) Total Asia Africa Nile (Egypt) Niger (Nigeria) Zaire (Zaire) Orange (S. Africa) Zambesi (Mozambique) Limpopo (Mozambique) Rufiji (Tanzania) Tana (Kenya) Total Africa (minus Nile) Oceania Murray (Aust.) Waiapu (N.Z.) Haast (N.Z.) Fly (New Guinea) Purari (New Guinea) Choshui (Taiwan) Kaoping (Taiwan) Tsengwen (Taiwan) Hualien (Taiwan) Peinan (Taiwan) Hsiukuluan (Taiwan) Total Oceania (excluding Murray)
Sediment Discharge Millions of Tons per Year
Water Discharge (km3 yr)
Holeman (1968)
Milliman and Meade (1983)
Source: From Milliman, J.D., and Meade, R.H., World-wide Delivery of River sediment to oceans Copyright. J. Geol., 91, 1, 1983. With permission. Table 4H.33 Losses of Land by Riverbank Erosion in the United States Region North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-White–Red Texas-Gulf Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Alaska Hawaii Puerto Rico
Areas of Significant Erosion River-miles Not significant 5,100 Not significant Not significant Not significant Not available 1,044 Not available 1,692 2,300 1,698 250 Not available Not available 265 13,500 2,600 80,000 Not significant Not available
Note: Estimated average annual losses as of 1966; for regions see Figure 4G.9. Source: U.S. Water Resources Council, 1968. q 2006 by Taylor & Francis Group, LLC
Average Land Losses Acres/yr Not significant 350 Not significant Not significant Not significant Not available 4,705 Not available 5,000 7,300 1,045 150 Not available Not available 150 1,300 3,837 5,000 Not significant Not available
HYDROLOGIC ELEMENTS
4-41
Table 4H.34 Losses of Land by Erosion of Beaches and Estuary Shores in the United States Region
Average Annual Land Losses Acres/mile 0.12 0.11 0.07 — 0.27 0.02 0.13 0.06 0.24 —
North Atlantic South Atlantic-Gulf Great Lakes Lower Mississippi Texas-Gulf Columbia-North Pacific California Alaska Hawaii Puerto Rico
Note: Estimated average annual losses as of 1966; for regions see Figure 4G.9. Source: U.S. Water Resources Council, 1968.
Table 4H.35 Erosion Problems in the Public Domain of the United States Extent of Erosion Region Missouri Arkansas-White–Red Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Total
Slight
Moderate
Critical
Total
7.5 0.1 1.3 4.1 2.4 15.4 14.6 6.8 52.2
9.0 0.4 6.4 14.4 13.8 20.1 8.5 5.4 78.0
5.2 0.2 3.6 8.3 7.9 11.6 5.0 3.2 45.0
21.7 0.7 11.3 26.8 24.1 47.1 28.1 15.4 175.2
Note: Values in millions of acres; conterminous United States only; for regions see Figure 4G.9. Source: U.S. Water Resources Council, 1968.
Figure 4H.14 Total erosion on cropland and Conservation Reserve Program Land. (From USDA, Natural Resources Conservation Service, 1997 National Resources Inventory, revised December 2000, www.nrcs.usda.gov.) q 2006 by Taylor & Francis Group, LLC
4-42
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Erosion Billion tons per year
3.50
Total = 3.07
3.00 2.50
1.38
Total = 2.92 Includes erosion on both cropland and Conservation Reserve Program land Total = 2.16 1.40
2.00
Total = 1.90 0.95
1.50 1.00
1.69
1.52
0.50
1.21
0.84
1.06
0.00 1982
1987
1992
1997 Wind Sheet & Rill
Figure 4H.15 Changes in erosion, 1982–1997. (From www.nrcs.usda.gov.)
Each red dot represents 5,000 acres of highly erodible land (57.3 million acres) and each yellow dot represents 5,000 acres of non-highly erodible land (50.5 million acres) with excess erosion above the tolerable soil erosion rate.
Hawaii Pacific Basin (No Data) Northern Marianas
108 million acres have excessive erosion with a total of 1.3 billion tons of erosion.
Guam American Samoa
Alaska (No Data) U.S. Department of Agriculture Natural Resources Conservation Service Resource Assessment Division Washington DC December 2000
Excess erosion leads to water quality concerns from sediments, nutrients, and pesticides as well as air quality in wind erosion areas of the West, Midwest, Northern Plains, and Southern Plains. Puerto Rico / U.S. Virgin Islands Excess erosion is also an indicator of forgone opportunities for improving soil, water and air quality, sequestering carbon dioxide, and helping in goals to reduce greenhouse gases in the atmosphere. Map ID: m5083 For proper interpretation, see Explanation of Analyis for this map at our web site. Search for "USDASOTL" to locate our map index.
Figure 4H.16 Excessive erosion on cropland, 1997. (From www.nrcs.usda.gov.) q 2006 by Taylor & Francis Group, LLC
95% or more Federal area
Data Source: 1997 National Resources Inventory Revised December 2000
HYDROLOGIC ELEMENTS
4-43
Each blue dot represents 200,000 tons of erosion due to water. 1,068 million tons per year. Each red dot represents 200,000 tons of erosion due to wind. 840 million tons per year.
Hawaii Pacific Basin (No Data) Northern Marianas
Total 1.9 billion tons per year.
Guam
Sheet and rill (water) erosion mostly occurs in areas east of the Corn Belt and Southern Plains. Wind erosion is mostly in the West, Northern Plains, Southern Plains, and parts of the Corn Belt. Several parts of the country battle difficult problems with both wind and water erosion.
American Samoa
Puerto Rico / U.S. Virgin Islands
Alaska (No Data) U.S. Department of Agriculture Natural Resources Conservation Service Resource Assessment Division Washington DC December 2000
Map ID: m5112 For proper interpretation, see Explanation of Analyis for this map at our web site. Search for "USDASOTL" to locate our map index.
Figure 4H.17 Total wind and water erosion, 1997. (From www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
Data Source: 1997 National Resources Inventory Revised December 2000
4-44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Tons/Acre/Year
Hawaii Pacific Basin (No Data) Northern Marianas
41 million acres are eroding at a rate above 5 tons/acre/year. The national erosion rate averages 2.6 tons/acre/year. Total erosion equals 1,068 million tons.
Guam American Samoa
Data are only displayed where cropland and Conservation Reserve Program (CRP) land are 5% or more of the total area. Gully erosion is also excluded from the analysis. Alaska (No Data) U.S. Department of Agriculture Natural Resources Conservation Service Resource Assessment Division Washington DC December 2000
Figure 4H.18
8 or more 4.6% of erosion 0.8% of watersheds 5 to 8 19.6% of erosion 5.9% of watersheds 3 to 5 36.0% of erosion 15.2% of watersheds 1 to 3 34.5% of erosion 27.2% of watersheds Less than 1 4.2% of erosion 18.2% of watersheds Less than 5% cropland and CRP 1.1% or erosion 32.7% of watersheds 95% or more Federal area Puerto Rico/U.S. Virgin Islands
Watersheds are defined as U.S. Geological Survey Hydrologic Cataloging Units (8-digit). Map ID: m5058 For proper interpretation, see Explanation of Analysis for this map at our web site. Search for ''USDASOTL'' to locate our map index.
Data Source: 1997 National Resources Inventory Revised December 2000
Average annual soil erosion by water on cropland and Conservation Reserve Program land, 1997. (From www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-45
Tons/Acre/Year
Hawaii Pacific Basin (No Data) Northern Marianas There was a net decrease of 1.4 tons/acre/year between 1982 and 1997
Guam
Data are only displayed where cropland and Conservation Reserve Program (CRP) land are 5% or more of the total area. Gully erosion is also excluded from the analysis.
American Samoa
Alaska (No Data) U.S. Department of Agriculture Natural Resources Conservation Service Resource Assessment Division Washington DC January 2001
Increase > 0.5 0.9% of change 3.0% of watersheds Little change 5.8% of change 30.3% of watersheds Decrease of 0.5 to 2 29.1% of change 20.3% of watersheds Decrease of 2 to 4 25.4% of change 7.6% of watersheds Decrease > 4 35.6% of change 7.6% of watersheds Less than 5% cropland and CRP 3.2% of change 33.5% of watersheds 95% or more Federal area Puerto Rico/U.S. Virgin Islands
Watersheds are defined as U.S. Geological Survey Hydrologic Cataloging Units (8-digit). Map ID: m5060 For proper interpretation, see Explanation of Analysis for this map at our web site. Search for ''USDASOTL'' to locate our map index.
Data Source: 1997 National Resources Inventory Revised December 2000
Figure 4H.19 Change in average annual soil erosion by water on cropland and Conservation Reserve Program land, 1982–1997. (From www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
4-46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Tons/Acre/Year 8 or more 40.9% of erosion 3.2% of watersheds 5 to 8 13.1% of erosion 2.6% of watersheds 3 to 5 18.7% of erosion 5.2% of watersheds 1 to 3 22.3% of erosion 12.5% of watersheds Less than 1 3.4% of erosion 43.8% of watersheds Less than 5% Cropland and CRP 1.6% or erosion 32.7% of watersheds 95% or more Federal area Puerto Rico/U.S. Virgin Islands
Hawaii Pacific Basin (No Data) Northern Marianas 41 million acres are eroding at a rate above 5 tons/acre/year. The national erosion rate averages 2.0 tons/acre/year. Total erosion equals 840 million tons.
Guam American Samoa
Data are only displayed where cropland and Conservation Reserve Program (CRP) land are 5% or more of the total area. Watersheds are defined as U.S. Geological Survey Hydrologic Cataloging Units (8-digit).
Alaska (No Data) U.S. Department of Agriculture Natural Resources Conservation Service Resource Assessment Division Washington DC December 2000
Figure 4H.20
Map ID: m5065 For proper interpretation, see Explanation of Analysis for this map at our web site. Search for ''USDASOTL'' to locate our map index.
Data Source: 1997 National Resources Inventory Revised December 2000
Average annual soil erosion by wind on cropland and Conservation Reserve Program land, 1997. (From www.nrcs.usda.gov.)
Table 4H.36 Selected Quantitative Effects of Man’s Activities on Surface Erosion Initial Status of Land Use
Type of Disturbance
Forestland Grassland Forestland Forestland Forestland Forestland Row crop Pastureland Forestland
Planting row crops Planting row crops Building logging roads Woodcutting and skidding Fire Mining Construction Construction Construction
a
Magnitude of Specific Disturbancea 100 to 1,000 Times 20 to 100 Times 220 Times 1.6 Times 7 to 1,500 Times 1,000 Times 10 Times 200 Times 2,000 Times
Relative magnitude of surface erosion from disturbed surface, assuming “I” for the initial status. The first row of the table, for example, indicates that transforming a forestland into row crops may increase surface erosion 100 to 1000 times. Source: U.S. Environmental Protection Agency, Loading Functions for Assessments of Water Pollution from Non-Point Sources, Environmental Protection Technology Series, Washington, DC, 1976. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-47
Table 4H.37 Representative Rates of Erosion from Various Land Uses Land Use
Amount of Erosion (Tons/Square Mile/Year)
Rate of Erosion Relative to ForestZ1
24 240 2,400 4,800 12,000 48,000 48,000
1 10 100 200 500 2,000 2,000
Forest Grassland Abandoned Surface Mines Cropland Harvested Forest Active Surface Mines Construction
Source: U.S. Environmental Protection Agency. Methods For Identifying and Evaluating the Nature and Extent of Nonpoint Source of Pollutants, EPA 430/9-73-014, Washington, DC, 1973.
Table 4H.38 Estimated Average Annual Sheet and Rill Erosion on Nonfederal Land, by State and Year (Data in tons/acre/year) Cropland State
Year
Cultivated
Noncultivated
Total
CRP Land
Pastureland
Alabama
1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987
7.6 6.5 7.0 6.7 0.6 0.6 0.6 0.7 3.8 3.8 3.5 3.5 1.2 1.1 1.0 0.7 2.2 2.2 2.0 1.7 4.8 5.7 6.1 5.6 2.1 2.0 2.1 2.0 2.4 2.1 1.8 1.8 6.2 6.1 5.5 5.9 5.3 5.1 4.6 2.5 5.0 4.4
0.8 0.5 0.5 0.5 0.3 0.2 0.2 0.2 0.8 0.6 0.6 0.6 0.7 0.8 0.5 0.5 0.2 0.2 0.2 0.2 0.6 1.2 1.4 0.7 0.2 0.4 0.7 0.4 0.5 0.4 0.4 0.5 0.4 1.0 0.6 0.3 3.0 2.8 2.8 3.3 0.4 0.3
7.2 6.0 6.3 6.0 0.5 0.6 0.6 0.6 3.7 3.7 3.4 3.4 1.1 1.0 0.8 0.6 1.9 2.0 1.8 1.5 2.6 3.1 3.3 2.7 2.0 2.0 2.1 2.0 1.8 1.4 1.2 1.2 5.9 5.7 5.0 5.2 5.0 4.8 4.3 2.7 4.3 3.7
— 3.0 0.6 1.0 — — — — — 0.7 0.7 0.6 — 2.4 1.1 0.3 — 2.2 0.8 0.4 — — — — — — 0.1 0.1 — 0.5 0.6 0.4 — 2.1 0.5 0.2 — — — — — 2.9
0.6 0.5 0.5 0.5 0.2 0.1 0.1 0.1 1.1 1.1 1.2 1.1 0.2 0.2 0.1 0.1 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.4 0.4 0.5 0.6 0.1 0.1 0.1 0.1 0.5 0.4 0.4 0.4 0.8 0.7 0.7 0.8 0.4 0.4
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Georgia
Hawaii
Idaho
(Continued)
q 2006 by Taylor & Francis Group, LLC
4-48
Table 4H.38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Cropland
State
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Year
Cultivated
Noncultivated
Total
CRP Land
Pastureland
1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982
3.5 3.4 6.3 5.3 4.4 4.1 4.8 4.4 3.4 3.0 7.7 6.5 5.6 4.9 2.7 2.6 2.3 2.2 8.3 8.2 5.8 4.4 4.7 4.1 3.5 3.3 3.6 4.0 3.1 3.9 5.6 5.3 5.0 4.4 5.7 5.9 4.1 4.5 2.5 2.5 2.3 2.0 2.6 2.6 2.3 2.1 7.7 6.6 5.7 5.3 10.9 8.4 6.6 5.6 2.1 2.3 2.0 1.9 4.8
0.4 0.4 1.2 1.5 1.6 0.6 1.1 0.9 1.1 0.9 1.8 1.5 1.1 0.8 0.4 0.5 0.4 0.4 1.0 1.1 1.2 1.2 0.6 0.3 0.6 0.6 0.2 0.4 0.3 0.3 1.3 2.0 1.8 1.2 0.2 0.1 0.2 0.1 0.6 0.7 0.6 0.5 0.6 0.4 0.3 0.3 2.8 2.3 1.3 1.2 1.0 0.7 0.7 0.7 0.2 0.2 0.2 0.3 0.7
2.9 2.8 6.2 5.2 4.3 4.0 4.7 4.2 3.3 2.9 7.5 6.3 5.4 4.7 2.5 2.5 2.2 2.1 6.9 6.6 4.5 3.4 4.6 4.0 3.4 3.2 1.7 1.8 1.3 1.7 5.2 5.1 4.6 4.0 1.7 1.7 1.3 1.2 2.2 2.2 1.9 1.6 2.4 2.5 2.2 2.0 7.6 6.5 5.5 5.0 9.6 7.4 5.5 4.5 1.8 2.0 1.7 1.6 4.5
1.5 1.3 — 4.3 1.2 0.5 — 1.7 0.4 0.3 — 0.8 0.5 0.5 — 2.3 0.4 0.3 — 4.2 0.9 0.9 — 0.6 0.2 0.6 — — 0.1 0.2 — 1.0 1.3 1.0 — — — — — 3.8 0.6 0.2 — 1.3 0.3 0.2 — 4.4 2.6 1.1 — 6.3 1.1 0.7 — 0.8 0.2 0.2 —
0.4 0.5 1.6 1.3 1.0 1.0 1.0 0.8 0.8 0.7 1.3 1.3 1.2 1.1 0.8 0.8 0.7 0.7 2.4 2.4 2.5 2.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.1 1.1 1.0 0.7 0.2 0.1 0.2 0.1 0.3 0.2 0.2 0.2 0.4 0.3 0.3 0.3 1.3 1.2 1.2 1.2 2.0 1.7 1.6 1.3 0.2 0.2 0.2 0.2 0.9 (Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4H.38
4-49
(Continued) Cropland
State
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Year
Cultivated
Noncultivated
Total
CRP Land
Pastureland
1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997
4.2 3.5 2.9 0.2 0.2 0.2 0.2 4.1 4.4 3.7 3.5 6.7 6.7 5.5 5.6 1.2 0.9 1.0 0.9 4.0 4.1 4.0 3.9 6.4 6.3 5.6 5.0 1.9 2.0 1.5 1.4 3.8 3.7 3.3 2.6 2.7 3.0 2.9 2.8 4.6 3.4 3.2 3.1 7.0 6.9 5.8 5.1 7.0 5.0 4.8 3.5 4.0 3.9 3.3 3.2 2.8 2.6 2.2 2.0
0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.4 0.4 0.4 0.4 1.0 1.1 0.8 0.6 0.1 0.1 0.2 0.1 0.7 0.9 0.8 0.7 1.5 1.0 1.4 1.0 0.4 0.5 0.3 0.3 1.1 1.1 1.2 1.4 0.6 0.6 0.5 0.5 0.7 0.5 0.4 0.4 0.7 1.2 1.2 1.2 1.1 2.2 1.6 1.8 1.9 1.4 1.0 0.7 0.3 0.3 0.3 0.2
3.9 3.3 2.7 0.1 0.1 0.1 0.1 1.4 1.3 0.8 0.9 5.5 5.7 4.3 4.3 1.0 0.7 0.8 0.7 2.6 2.7 2.4 2.3 6.1 6.0 5.3 4.6 1.8 1.8 1.4 1.3 3.6 3.5 3.1 2.5 2.6 2.9 2.8 2.8 3.8 2.6 2.5 2.3 4.8 5.0 4.2 3.8 3.0 2.9 2.5 2.2 3.9 3.8 3.1 3.0 2.5 2.3 2.0 1.7
1.5 0.7 0.5 0.0 0.0 0.0 0.0 — — — — — — 0.3 0.3 — 1.0 0.4 0.2 — 3.8 0.5 0.3 — 15.7 4.5 1.2 — 1.1 0.3 0.2 — 3.4 0.5 0.3 — 1.1 0.4 0.3 — 2.9 0.4 0.4 — 1.7 1.0 0.3 — — — — — 3.9 1.7 0.5 — 2.6 0.4 0.1
0.8 0.7 0.7 0.0 0.0 0.1 0.1 0.5 0.5 0.4 0.5 0.5 0.6 0.5 0.4 0.1 0.1 0.1 0.1 0.4 0.4 0.3 0.3 1.1 1.0 1.0 1.7 0.4 0.5 0.5 0.4 2.3 1.7 1.7 1.7 0.9 0.7 0.7 0.6 0.6 0.5 0.5 0.5 1.1 1.0 1.0 0.8 0.1 0.1 0.1 0.1 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.2 (Continued)
q 2006 by Taylor & Francis Group, LLC
4-50
Table 4H.38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Cropland
State
Year
Cultivated
Noncultivated
Total
CRP Land
Pastureland
Tennessee
1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997 1982 1987 1992 1997
11.0 10.8 9.1 7.7 2.6 2.6 2.6 2.6 1.4 1.5 1.4 1.6 4.6 4.2 3.4 3.1 6.6 6.4 6.4 5.9 6.1 7.0 5.0 4.7 7.3 9.2 4.7 4.3 4.7 4.1 3.8 3.7 1.5 1.4 1.3 1.1 11.1 11.2 12.1 12.2 4.4 4.0 3.5 3.1
0.9 1.0 0.9 0.6 0.9 1.2 0.7 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.7 1.5 1.6 1.4 1.5 0.5 0.4 0.5 0.6 0.7 0.9 0.8 0.8 1.5 2.0 0.7 1.2 0.2 0.1 0.2 0.1 11.9 13.1 15.4 13.2 0.7 0.7 0.6 0.7
9.4 9.1 7.1 5.6 2.6 2.5 2.6 2.6 0.9 0.8 0.8 0.8 1.3 1.4 1.2 1.2 5.3 4.9 4.5 3.9 5.5 6.2 4.4 4.0 2.5 2.8 1.7 1.4 4.1 3.7 3.2 3.3 0.9 0.8 0.7 0.6 11.2 11.5 12.9 12.7 4.0 3.7 3.1 2.8
— 9.5 0.8 0.7 — 0.6 0.3 0.2 — 3.2 1.3 0.9 — — — — — 0.8 0.8 0.5 — 2.4 0.5 0.6 — 0.7 0.3 0.0 — 4.5 0.7 0.6 — 1.6 0.6 0.2 — — — — — 2.0 0.6 0.4
0.8 0.7 0.7 0.8 0.7 0.6 0.5 0.5 0.1 0.1 0.1 0.2 0.3 0.2 0.1 0.1 3.4 3.4 3.4 3.3 0.2 0.4 0.4 0.3 4.2 5.4 6.1 6.0 0.6 0.6 0.5 0.6 0.3 0.2 0.3 0.3 7.0 7.3 8.0 6.4 1.1 1.0 1.0 0.9
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
Caribbean
National average
Source: www.nrcs.usda.gov.
q 2006 by Taylor & Francis Group, LLC
River and Location Little Colorado at Woodruff, Arizona Canadian River near Amarillo, Texas Colorado River near San Saba, Texas Bighorn River at Kane, Wyoming Green River at Green River, Utah Colorado River near Cisco, Utah Iowa River at Iowa City, Iowa Mississippi River at Red River Landing, Louisiana Sacramento River at Sacramento, California Flint River near Montezuma, Georgia Juniata River near New Port, Pennsylvania Delaware River at Trenton, New Jersey a b c
Elevation (ft)
Drainage Area (sq mi)
5,129
8,100
2,989
19,445
1,096
Average Discharge, Q (cfs) 63.3
Discharge D Drainage Area (cfs/sq mi)
Years of Record in Samplea
Average Suspended Load
Average Dissolved Load (millions of tons/yr)
Total Average Suspended and Dissolved Load
Total Average Load D Drainage Area (tons sq mi/yr)
Dissolved Load as Percent of Total Load (%)
0.0078
6
1.6
0.02
1.62
199
1.2
621
0.032
1
6.41
0.124
6.53
336
1.9
30,600
1,449
0.047
5
3.02
0.208
3.23
105
6.4
3,609
15,900
2,391
0.150
1
1.60
0.217
1.82
114
12
4,040
40,600
6,737
0.166
26–20
19
2.5
21.5
530
12
4,090
24,100
8,457
0.351
25–20
15
4.4
19.4
808
23
627
3,271
1,517
0.464
3
510
29
1,144,500b
569,500b
0.497
3
337
26
0
27,000c
25,000c
0.926
3
2.85
2.29
5.14
190
44
256
2,900
3,528
1.22
1
0.400
0.132
0.53
183
25
364
3,354
4,329
1.29
7
0.322
0.566
0.89
265
64
8
6,780
11,730
1.73
9–4
1.003
0.830
1.83
270
45
1.184 284
0.485 101.8
1.67 385.8
HYDROLOGIC ELEMENTS
Table 4H.39 Dissolved and Suspended Sediment Loads in Selected Rivers of the United States
Computation of load, dissolved or suspended, depends on discharge for same period. Years of record pertain to number of years used for related values of discharge and of suspended and dissolved load. Where two figures are shown, the first is for suspended load and the second is for dissolved load. From USGS records for Vicksburg, Mississippi station. Estimated.
Source: From Leopold, Wolman, and Miller, Fluvial Processes in Geomorphology, W.H. Freeman and Company, 1964. With permission.
4-51
q 2006 by Taylor & Francis Group, LLC
4-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4H.40 Discharge of Suspended Sediment to the Coastal Zone by 10 Major rivers of the United States, About 1980 Rivers
Average Annual Sediment Discharge (million ton/yr)
Rivers that discharge the largest sediment loads: Mississippi Copper Yukon Susitna Eel Brazos Columbia: Before Mount St. Helens eruption Since Mount St. Helens eruptionapproximate Rivers with large drainage areas: St. Lawrence Rio Grande Colorado
230a 80 65 25 15 11 10 40
1.5 0.8 0.1
a Includes Atchafalaya River. Source: From Meade, R.H., Parker, R.S., Sediment in rivers of the United States, U.S. Geological Survey Water-Supply Paper 2275, National Water Summary 1984, 1985.
Columbia River 10
Before Mount St. Helens eruption
St. Lawerence River 1.5
After eruption 40
Eel River 15
Susquehanna River 2 Potomac River 1.3
Colorado River
Peedee River 0.6
0.1
11 Brazos River Concentration of suspended sediment in rivers, in milligrams per liter Less than 300
2000−6000
300−2000
More than 6000
Rio Grande
0.8
230
Mississippi River
Discharge of suspended sediment to the coastal zone, in millions of tons per year 15
(Area of semicircle is proportional to sediment volume)
Figure 4H.21 Concentration of suspended sediment in rivers and discharge of suspended sediment to the coastal zone in the conterminous United States. (From Meade, R.H., Parker, R.S., Sediment in the rivers of the United States, National Water Summary 1984, U.S. Geological Survey Water-Supply Paper 2275, 1984.) q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-53
Table 4H.41 Dimension and Rate of Formation of Modern Deltas Dimension of Subaerial Delta, Statute Mi River
Length
Breadth
12
30
300 220
470a 200
30
47
46 96 43
46 145 0.05–0.6
350
90
Mississippi’s present bird-foot delta Hwang-Ho Ganges-Brahmaputra Rhone into Mediterranean Sea Danube Nile (prior to barrages) Colorado above Hoover Dam Euphrates Tigris
Amount of Sediment Discharged
Annual Extension of Subaerial Delta
River Water by Annual Volume of Measurement Weight (avg), ppm Sediment (mi3) Period (yr) 550 50,000b 870 400–590 310 1600 8300
0.068
Approximate Distance (ft)
1838–1947
250
1870–1937
950
0.043 (Ganges only) 0.005
1737–1870
190
0.008 0.001 0.032
1100–1870 1936–1948 1793–1853
40 45 3.6 mi (gorge) 180
a
Includes 100 ml of nondeltaic Shantung Peninsula. Maximum is 400,000 ppm. Source: From McGraw-Hill Encyclopedia of the Geological Sciences. Copyright 1978. With permission. b
Table 4H.42 Water Storage Capacity and the Capacity Lost Annually Due to Sedimentation in the Conterminous United States
Farm Production Region
Total Water Storage Capacity (million ac-ft)
Usable Water Storage Capacity (million ac-ft)
Estimated Water Storage Capacity Lost (%)
36.5 59.5 73.6 29.3 39.7 42.7 78.9 110.3 167.1 90.7 728.3
25.2 30.6 47.6 19.5 15.2 20.1 54.4 46.6 138.1 74.7 472.1
0.08 0.13 0.17 0.27 0.26 0.21 0.23 0.19 0.18 0.49 0.22
Northeast Appalachian Southeast Lake States Corn Belt Delta States Northern Plains Southern Plains Mountain Pacific United States (Lower 48)
Estimated Water Storage Stream Capacity Lost Sediment (thousand Originating on ac-ft) Cropland (%)
Note: Reservoirs with 5000 acre-feet or more total capacity. Source: From Crowder, B.M., J Soil Water Conserv., Soil Conserv. Soc. Am., 1987. q 2006 by Taylor & Francis Group, LLC
28.1 75.5 127.3 79.1 104.8 87.5 184.6 207.4 302.5 441.6 1,638.5
29 29 33 64 63 41 36 19 8 9
Reservoir Sedimentation from Cropland (thousand ac-ft) 8.2 21.9 42.0 50.6 66.0 35.9 66.5 39.4 24.2 39.7 394.4
4-54
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Percent 0−10 10−25 25−40 40−60 60−90 No data
Hawaii (No Data) Pacific Basin (No Data) Northern Marianas
Guam American Samoa Puerto Rico/U.S. Virgin Islands (No Data)
Alaska (No Data)
U.S. Department of Agriculture Natural Resources Conservation Service
Map ID: 4124 For proper interpretation, see Explanation
Figure 4H.22 Percent conservation tillage. (From www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
Source: Conservation Technology Information Center,1998
HYDROLOGIC ELEMENTS
4-55
Figure 4H.23 Water erosion vulnerability. (From www.soils.usda.gov.) Table 4H.43 Matrix of Laws Relating to Beach Nourishment Law P.L. 71-520 of 1930
Provisions
Authorized the USACE to conduct shoreline erosion control studies (not construction) in cooperation with state governments; the Beach Erosion Board (BEB) was also established P.L. 79-727 of 1946 Expanded the use of federal funds to now include one third of construction costs in addition to the studies for projects along publicly owned shores Gave coastal states authority over the resources of Submerged Lands Act of submerged lands from the shore out to three miles 1953 (43 USC 1301 and seaward following) Provided for the federal government to manage the Outer Continental Shelf mineral resources of the OCS lying on or under the Lands Act of 1953 (43 seabed that extends seaward from state waters out to USC 1331 and following) the edge of the shelf P.L. 84-826 of 1956 Expanded the authority for federal shore protection to include privately owned shores where substantial public benefits would result; also defined periodic renourishment as construction for the protection of shores for a period of usually ten years Under Section 103 (33 USC 426g), the Corps was River and Harbor Act (33 authorized to participate in the cost of protecting the USC 401 and following) of shores of publicly owned property and private property 1962 (P.L. 87-874) and where public benefits result; increased federal aid from 1968 (P.L. 980-483) one third to 100 percent for shore protection study costs leading to authorization; also increased federal participation in the cost of beach erosion and shore protection to 50 percent of the construction cost when the beaches were publicly owned or used, and 70 percent for seashore parks and conservation areas when certain conditions of ownership and use of the beaches were met
Relevance First federal involvement in shoreline protection activities
Expanded federal involvement as a result of major hurricanes Affected the availability of offshore sand for beach nourishment Affected the availability of offshore sand for beach nourishment
Federal authority now included shore protection on privately owned shores where public benefits result
Resulted in a large number of studies and subsequent authorizations in the 1950’s and 60’s; Required USACE to fund mitigation for downdrift erosion caused by federal navigation works
(Continued) q 2006 by Taylor & Francis Group, LLC
4-56
Table 4H.43
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Law
P.L. 88-172 of 1963
Provisions Under Section 111 (33 USC 426i), mitigation could be conducted for shoreline erosion that results from federal navigation works Established the Coastal Engineering Research Board (CERB) and the Coastal Engineering Research Center (CERC), replacing the Beach Erosion Board
Coastal Zone Management Required all federal agencies with activities directly Act of 1972 (16 USC 1451 affecting the coastal zone, or with development and following) (P.L. projects within the zone, to assure that those activities 92-583) or projects are consistent with the approved state Coastal Zone Management Program
Coastal Barrier Resources Established the Coastal Barrier Resources System Act of 1982 (16 USC 3501 (CBRS); areas in the CBRS may no longer receive and following) (P.L. federal financial assistance for new construction or 97-384) improvements. The CBRS was greatly expanded with the passage of the Coastal Barrier Improvement Act (CBIA) of 1990 (P.L. 101-591) Water Resources Established a broad congressional policy to encourage Development Act (33 conservation efforts among federal, state, and local USC 2201 and following) governments. Authorized the Secretary of the Army to of 1976 (P.L. 94-587), construct, operate, and maintain any water resource 1986 (P.L. 99-662), 1988 development project. The resource development (P.L. 100-676), 1992 (P.L. projects over which the USACE currently maintains 102-580), 1996 (P.L. 104jurisdiction are navigation, flood control, shore 303), 1999 (P.L. 106-53), protection, and beach renourishment projects and 2000 (P.L. 106-541) Shore Protection Act of 1996 Recommended funding for shore protection project (Section 227 of the studies and construction WRDA of 1996) (33 USC 2601 and following) National Environmental Required federal agencies to evaluate the environmental Policy Act of 1969 (42 impacts associated with major actions they fund, USC 4321 and following) support, permit, or implement
Clean Water Act (33 USC 1251 and following)
Under section 404, a permit was required for the discharge of dredged or fill materials into the waters of the U.S. The USACE has the permitting authority for the 404 program Endangered Species Act (16 Federal agencies must review actions they undertake or USC 1531 and following) support to determine whether they may affect endangered species or their habitats; agency must consult with the USFWS
Federal agencies must consider the effects of their National Historic undertakings (including the issuance of permits, the Preservation Act (16 USC expenditure of federal funding, and the initiation of 470 and following) federal projects) on historic resources that the either eligible for listing or are listed on the National Register of Historic Places Source: csc.noaa.gov/beachnourishment.
q 2006 by Taylor & Francis Group, LLC
Relevance
Resulted from increased need for additional engineering and study in the area of beach erosion, coupled with increased beach development and more demand for erosion relief from the federal government Established a national program to assist the states in comprehensively managing the nation’s coastal resources through wise management practices. Encouraged coastal zone management and provided grants (Section 306A) for maintaining coastal areas The intent of the law was to discourage development. The law applied only to areas within the defined CBRS
Authorized beach nourishment projects. Set cost-sharing percentage, with a general trend to reduce federal percentage and increase non-federal percentage (will be 50/50 by 2003)
Rejected the Administration’s position of not authorizing funding for new projects
Required that actions be the least environmentally damaging practicable alternative. Most beach nourishment projects have the potential for adverse impacts and will trigger a required NEPA analysis Proponents of beach nourishment projects must obtain a Section 404 permit
Significant impacts on beach nourishment projects; limitations on construction typically exclude construction in certain seasons, for example, the nesting season for sea turtles on the Atlantic and Gulf Coasts. There are short-term environmental impacts associated with both removing the sand from the source and depositing it onto the beach Areas worthy of historic preservation must be avoided in the beach nourishment site selection process
HYDROLOGIC ELEMENTS
4-57
Table 4H.44 Atlantic and Gulf Coast State Beach Nourishment Program Summary Beach Nourishment Policy
State Alabama Connecticut Delaware Florida Georgia Louisiana Maine Maryland Massachusetts Mississippi New Hampshire New Jersey New York North Carolina Rhode Island South Carolina Texas Virginia
Yes Yes Yes Yes Yes Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Related Policies
State Funding Program
ABCDE BCDE ABCDE BCDE ABCDE ABCD ABCD ABC ABCDE ABC ABCDE ABCDE ABCDE ABCDE ABCDE BCDE ABDE ABC
No Yes Yes Yes Case-by-Case Yes No Yes Yes Yes Case-by-Case Yes Case-by-Case Case-by-Case No Case-by-Case Case-by-Case Yes
Note: Policies related to beach nourishment. AZnear shore sand mining; BZdredge and fill; CZsand scraping/dune reshaping; DZdune creation/restoration; EZpublic access. Source: NOAA 2000, csc.noaa.gov.
Table 4H.45 Riverbank Treatment in the United States Region North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-White–Red Texas-Gulf Bio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Alaska Hawaii Puerto Rico
Mattress
Jetties
Training Walls
Riprap
Revetment
Dikes
Other
Total Treated
— 35 — — — — 573 — — 250 0 — — — 0 — — — 0 —
18 67 — — — — — — 735 1 0 250 — — 0 — — — 0 —
18 — — — — — — — — 80 0 — — — 0 — — 6 0 —
— — — 50 — — — — — — 0 — — — 0 261 — — 0 —
— — — 10 — — — — 735 — 0 — — — 0 — — — 0 —
— — — — — — 75 — — 140 0 — — — 0 — — — 0 —
— — — — — — 5836 — — — 0 — — — 0 — 19 — 0 —
36 102 — 60 — — 6484 — 1470 471 0 250 — — 0 261 19 6 0 —
Note: Value in miles as of 1966; Corps of Engineers projects only; for regions see Fig. 4G.9. Source: U.S. Water Resources Council, 1968. q 2006 by Taylor & Francis Group, LLC
4-58
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4H.46 Sediment Yield from Drainage Areas of 100 Square Miles or Less of the United States Estimated Sediment Yield
Estimated Sediment Yield
Region
High
Low
Average
North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri
1210 1850 800 2110 1560 3900 8210 470 6700
tons/sq/mi/yr 30 100 10 160 460 10 1560 10 10
250 800 100 850 700 800 5200 50 1500
Region
High
Arkansas-White–Red Texas-Gulf Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California
8210 3180 3340 3340 1620 1780 1100 5570
Low tons/sq/mi/yr 260 90 150 150 150 100 30 80
Note: For regions see Fig. 4G.9. Source: U.S. Water Resources Council, 1968.
Table 4H.47 Permissible Velocities for Channels Lined with Vegetation Permissible Velocity a
Cover
Slope Range (Percent)
Bermudagrass Buffalograss Kentucky bluegrass Smooth brome Blue grama Grass mixture Lespedeza sericea Weeping lovegrass Yellow bluestem Kudzu Alfalfa Crabgrass Common lespedezac Sudangrassc
Erosion Resistant Soils (ft/sec)
Easily Eroded Soils (ft/sec)
0–5 5–10 over 10 0–5 5–10 over 10
8 7 6 7 6 5
6 5 4 5 4 3
0–5a 5–10
5 4
4 3
0–5b
3.5
2.5
0–5d
3.5
2.5
Note: Use velocities exceeding 5 feet per second only where good covers and proper maintenance can be obtained. Values apply to average, uniform stands of each type of cover. a b c d
Do not use on slopes steeper than 10 percent except for side slopes in a combination channel. Do not use on slopes steeper than 5 percent except for side slopes in a combination channel. Annuals — used on mild slopes or as temporary protection until permanent covers are established. Use on slopes steeper than 5 percent is not recommended.
Source: U.S. Soil Conservation Service. q 2006 by Taylor & Francis Group, LLC
Average 2200 1800 1300 1800 600 400 400 1300
HYDROLOGIC ELEMENTS
4-59
Table 4H.48 Permissible Velocities for Channels with Linings Other Than Vegetation
Original Material Excavated
Clear Water, No Detritus (ft/sec)
Water Transporting Colloidal Silts (ft/sec)
Water Transporting Noncolloidal Silts, Sands, Gravels, or Rock Fragments (ft/sec)
1.50 1.75 2.00 2.00 2.50 2.50 2.50 3.75 3.75 3.75 4.00 4.00 5.00 6.00
2.50 2.50 3.00 3.50 3.50 3.50 5.00 5.00 5.00 5.00 5.50 6.00 5.50 6.00
1.50 2.00 2.00 2.00 2.25 2.00 3.75 3.00 5.00 3.00 5.00 6.50 6.50 5.00
Fine sand, noncolloidal Sandy loam, noncolloidal Silt loam, noncolloidal Alluvial silts, noncolloidal Ordinary firm loam Volcanic ash Fine gravel Stiff clay, very colloidal Graded, loam to cobbles, noncolloidal Alluvial silts, colloidal Graded, silt to cobbles, colloidal Coarse gravel, noncolloidal Cobbles and shingles Shales and hardpans
Note: Values apply to aged straight channels with mild bed slopes. Source: From Fortier and Scobey, Trans. Am. Soc. Civil Eng., 1926. With permission.
Table 4H.49 Settling Velocities of Sand and Silt in Still Water Diameter of Particle (mm) 9 > > 10.0 > > > > > 1.0 > > > > > 0.8 > > > > = 0.6 0.5 > > > > > 0.4 > > > > > 0.3 > > > > > 0.2 ; 0.15 9 > > 0.10 > > > > > 0.08 > > > > > 0.06 > > = 0.05 > > 0.04 > > > > > 0.03 > > > > > 0.02 > ; 0.015 9 0.010 > > > > > 0.008 > > > > > 0.006 > > > > 0.005 = 0.004 > > > > > 0.003 > > > > > 0.002 > > > ; 0.0015 0.001 0.0001 0.00001
Order of Size Gravel
Coarse sand
Fine sand
Silt
Bacteria Clay particles Colloidal particles
Setting Velocity (mm/sec) 1000 100 83 63 53 42 32 21 15 8 6 3.8 2.9 2.1 1.3 0.62 0.35 0.154 0.098 0.065 0.0385 0.0247 0.0138 0.0062 0.0035 0.00154 0.000154 0.000000154
Note: Temperature 50 8F; all particles assumed to have a specific gravity of 2.65. Source: Amer. Water Works Assoc. q 2006 by Taylor & Francis Group, LLC
Time Required to Settle 1 Foot 0.3 sec 3.0 sec
38.0 sec
33.0 min
55.0 h 230.0 d 63.0 yr
4-60
Table 4H.50 Classification of Alluvial Channels Based on Channel Stability and on Mode of Sediment Transport Proportion of Total Sediment Load Suspended Load Percent
Bedload, Percent
30–100
85–100
0–15
Mixed load
8–30
65–85
15–35
Bedload
0–8
30–65
35–70
Mode of Sediment Transport Suspended load
a
Channel Stability Stable (Graded Stream)
Stable suspended-load channel. Width-depth Depositing suspended load channel. Major deposition ratio less than 7; sinuosity greater than 2.1; on banks cause narrowing gradient relatively gentle of channel; streambed deposition minor Stable mixed-load channel. Width-depth ratio Depositing mixed-load channel. Initial major greater than 7 less than 25; sinuosity, less deposition on banks than 2.1 greater than 1.5; gradient followed by streambed moderate deposition Stable bedload channel. Width-depth ratio Depositing badload channel. greater than 25; sinuosity, less than 1.5; Streambed deposition and gradient relatively steep island formation
The percentage of sediment finer than 0.074 mm in the perimeter of the channel.
Source: U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
Depositing (Excess Load)
Eroding (Deficiency of Load) Eroding suspended-load channel. Streambed erosion predominant; channel widening minor Eroding mixed-load channel. Initial streambed erosion followed by channel widening Eroding bedload channel. Little streambed erosion; channel widening predominant
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Silt-Clay in Channel Sediment, Percenta
HYDROLOGIC ELEMENTS
4-61
SECTION 4I
TRANSPIRATION
Table 4I.51 Transpiration Ratios for Crops Transpiration Ratio Crop Grains Proso Millet Buckwheat Sorgo Grain sorghum Barley Corn Oats Wheat, emmer Wheat, durum Wheat, common Wheat, hybrids Rye Flax Legumes Clover Clover, sweet Vetch Alfalfa Cowpeas Beans Beans, soy Chickpeas Peas, Canadian field Lupinus albus Grassses Sudan grass Wheat grass Brome grass Miscellaneous Cotton Sugar beets Potatoes Cabbage Rape Watermelons Cantaloupes Turnips Cucumbers
Varieties Tested, No
Range
Mean
2 3 1 3 4 4 2 4 1 6 11 2 1 6
531–603 863–1117 — 863–1804 750–1050 1128–1464 821–1998 1379–1915 — 1365–1622 1244–3398 1995–2163 — 2010–5162
567 959 969 1237 868 1241 1405 1627 1167 1475 1872 2079 2142 3252
2 1 5 10 1 2 1 1 1 1
636–759 — 562–899 626–920 — 1583–1815 — — — —
698a 731a 708a 844a 1632 1699 1974 1685 2153 4734
1 1 1
— — —
1 1 2 1 1 1 1 1 1
— — 1325–2877 — — — — — —
380a 678a 977a 568a 629 2101 518a 714a 1102 1754 1471 1549
Note: Transpiration ratios are weighted values in pounds of water per pound of crop product. Data measured at Akron, Colorado. a
Based on total dry matter
Source: From Shantz and Piemeisel, J. Agric. Res., 1927.
q 2006 by Taylor & Francis Group, LLC
4-62
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4I.52 Transpiration Ratios for Weeds and Native Plants Weeds or Native Plants Weeds Tumbleweed Pigweed Russian thistle Lamb’s quarters Polygonum Native weeds Purslane Cocklebur Nightshade Buffalo bur Gumweed
Transpiration Ratio 260 305 314 658 678 281 415 487 536 585
Weeds or Native Plants
Transpiration Ratio
Native weeds (continued) Sunflower Mountain sage Verbena Fetid marigold
623 654 702 847
Native plants Buffalo grass Buffalo and grama grass Clammyweed Iva Western ragweed Western wheat grass Franseria
296 338 483 534 912 1035 1131
Note: Transpiration ratios are weighted values in pounds of water per pound of dry matter. Data measured at Akron, Colorado. Source: From Shantz and Piemeisel, J. Agric. Res., 1927.
Table 4I.53 Transpiration Ratios for Trees Tree
Scientific Name
Ash White birch Beech Hornbeam Field elm Stiel oak Traubean oak Zerr oak Black alder Gray alder Sycamore maple Mountain maple Field maple Linden Aspen Service berry Larch Spruce Fir Scotch white pine Black Austrian pine
Fraxinus excelsior Betula alba Fagus sylvatica Carpinus betulus Ulmus campestris Quercus pedunculus Quercus sessilifolia Quercus cerris Alnus glutinosa Alnus incana Acer platanoides Acer pseudoplat Acer campestria Tilia grandifolia Populus tremula Sorbus tormin Larix europea Abies excelsa Abies pectinata Pinus silvestris Pinus larico
Transpiration Ratio 981 849 1043 787 738 454 790 669 840 678 520 635 1281 1038 873 1748 1165 242 96 110 123
Note: Transpiration ratios are expressed as pounds of water per pound of dry-leaf matter. Data measured by Hohnel (1879–1880). Source: U.S. Weather Bureau. q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-63
SECTION 4J
q 2006 by Taylor & Francis Group, LLC
EVAPORATION
4-64
Table 4J.54 Reservoir Evaporation at Selected Stations in the United States Month Jan
Feb
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
Dec
Annual
AZ, Yuma CA, Sacramento CO, Denver FL, Miami GA, Macon ME, Eastport MN, Minneapolis MS, Vicksburg MO, Kansas City MT, Havre NE, North Platte NM, Roswell NY, Albany ND, Bismarck OH, Columbus OK, Oklahoma City OR, Baker SC, Columbia TN, Nashville TX, Galveston TX, San Antonio UT, Salt Lake City VA, Richmond WA, Seattle WI, Milwaukee Gulf off Texas Coast Gulf Stream off Cape Hatteras, NC Ocean off Massachusetts
3.9 0.8 1.6 3.0 1.7 0.8 0.3 1.3 0.9 0.5 0.8 2.1 0.6 0.4 0.6 1.5 0.5 1.6 0.9 0.9 2.2 0.8 1.3 0.8 0.6 4.0 9.0 3.0
4.6 1.4 1.8 3.4 2.2 0.7 0.4 1.9 1.1 0.5 1.1 3.2 0.7 0.5 0.8 1.9 0.7 2.4 1.3 1.3 3.1 1.0 1.7 0.8 0.7 4.0 9.5 2.5
6.5 2.5 2.5 4.1 3.1 0.9 0.9 2.9 1.7 1.1 2.2 4.9 1.1 1.0 1.1 3.1 1.4 3.2 1.9 1.6 4.5 2.0 2.2 1.4 0.9 3.5 8.5 2.0
8.0 3.6 3.7 4.9 4.3 1.1 1.7 4.2 3.1 2.5 3.7 6.8 2.0 2.3 2.3 4.7 2.5 4.5 3.3 2.6 5.6 3.5 3.5 2.1 1.3 3.5 7.0 1.5
9.8 5.0 5.0 5.0 5.1 1.4 3.2 5.0 4.4 4.5 5.0 8.3 3.2 4.0 3.5 5.5 3.4 5.4 4.1 4.1 6.5 5.1 4.1 2.7 2.1 4.0 5.5 1.0
11.5 7.1 7.4 4.8 6.2 1.7 4.4 5.7 6.1 6.1 6.5 9.8 4.3 5.3 4.6 7.8 4.4 6.3 5.1 5.6 8.4 7.9 5.0 3.4 3.2 4.5 3.5 1.5
13.4 8.9 8.8 5.3 6.3 2.0 6.0 5.8 8.0 8.2 8.6 9.4 5.2 7.3 5.6 10.2 6.9 6.6 5.8 6.2 9.4 10.6 5.6 3.9 5.0 5.0 3.5 1.5
12.9 8.6 8.4 5.1 5.8 2.1 5.8 5.5 7.8 8.3 8.4 8.3 4.7 7.7 5.1 10.7 7.3 6.0 5.4 6.1 9.4 10.4 4.9 3.4 5.4 5.5 3.5 2.0
10.7 7.1 6.7 4.3 5.2 2.0 4.6 5.2 6.0 5.6 6.9 6.9 3.4 5.8 4.1 8.8 4.9 5.5 4.9 5.7 7.6 7.3 4.1 2.6 4.7 6.5 5.5 2.5
8.0 4.8 4.6 4.1 4.2 1.6 3.0 4.4 4.5 3.3 4.6 5.5 2.4 3.3 3.0 6.3 2.9 4.4 3.7 4.6 5.8 3.9 3.2 1.6 3.2 6.5 9.0 3.0
6.1 2.6 3.0 4.3 2.8 1.1 1.3 2.9 2.5 1.5 2.6 3.5 1.4 1.3 1.6 3.5 1.5 3.0 2.1 2.7 3.7 2.0 2.4 1.1 1.6 6.0 9.5 3.5
4.5 1.2 1.9 2.7 1.8 0.7 0.4 1.6 1.0 0.7 1.1 2.5 0.8 0.5 0.6 2.0 0.6 1.9 1.1 1.3 2.4 1.0 1.5 0.7 0.6 5.0 10.0 4.0
100 54 55 51 49 16 32 46 47 43 51 71 30 39 33 66 37 51 39 43 69 55 39 24 29 58 84 28
Note: Mean monthly computed values in inches. Source: Minnesota Resources Commission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Station
HYDROLOGIC ELEMENTS
Table 4J.55 Evaporation Equations For pan evaporation, the expression is EP Z fexp½ðTa K 212Þð0:1024 K 0:01066ln RÞ K 0:0001 C 0:025ðes K ea Þ0:88 ð0:37 C 0:0041Up Þg !f0:025 C ðTa C 398:36ÞK2 4:7988 !1010 exp½K7482:6=ðTa C 398:36ÞgK1 For lake evaporation, the expression is EL Z fexp½ðTa K 212Þð0:1024 K 0:01066ln RÞ K 0:0001 C 0:0105ðes K ea Þ0:88 ð0:37 K 0:0041UP Þg !f0:015 C ðTa C 398:36ÞK2 6:8554 !1010 exp½K7482:6=ðTa C 398:36ÞgK1 The terms in these expressions are EPZpan evaporation, inches ELZlake evaporation, inches TaZair temperature, degrees Fahrenheit eaZvapor pressure, inches of mercury at temperature Ta esZvapor pressure, inches of mercury at temperature Td TdZdew point temperature, degrees Fahrenheit RZsolar radiation, langleys per day UPZwind movement, miles per day Notes: The equations enable pan and lake evaporation to be computed from climatic data at first-order weather stations. Daily values of evaporation are obtained using mean daily temperature and vapor pressure data together with data on solar radiation and wind movement as specified. Source: U.S. Weather Bureau, 1962.
4-65
q 2006 by Taylor & Francis Group, LLC
4-66
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 4J.24 Mean annual lake evaporation in the United States (values in inches for period 1946–1955). (From U.S. Weather Bureau.)
HYDROLOGIC ELEMENTS
Figure 4J.25 Annual evaporation in the world (in mm). (From Lvovitch, M.I., EOS, 54, 1973, Copyright by American Geophysical Union.) 4-67
q 2006 by Taylor & Francis Group, LLC
4-68
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Water surplus or deficiency Inches 20 to >80 0 to 20
Alaska
0 to −20 Puerto Rico Hawaii Regional data not available
−20 to < −40
Regional data not available
Figure 4J.26 Areas of natural water surplus and natural water deficiency (computed by subtracting values of potential evapotranspiration from average precipitation). (From U.S. Water Resources Council, 1968, The Nation’s Water Resources.)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-69
SECTION 4K
CONSUMPTIVE USE
Table 4K.56 Consumptive Use by Irrigated Crops in the Western United States Consumptive Use (Evapotranspiration), (in.) Location Arizona, Mesa California Los Angelesa
Coastal Ontario Shafter Firebaugh Deltab
Davis
Winters Nebraska, Scottsbluff
Crop
Apr
May
June
July
Aug
Sept
Oct
Total
Alfalfa Dates
5.0 6.2
6.5 7.6
9.0 8.3
12.0 9.2
10.0 8.4
6.0 7.2
4.0 5.7
52.5 52.6
Lemons Oranges Walnuts Alfalfa Alfalfa Peaches Cotton Cotton Cotton Alfalfa Potatoes Truck Sugar beets Beans Fruit Onions Sugar beets Tomatoes Alfalfa Prunes Peaches Walnuts Grapes Apricots Alfalfa
2.1 2.2 3.8 3.3 4.9 1.0 0.5 — — 3.6 — 1.2 1.6 1.9 2.2 1.6 — — — — — — — — 1.4
2.6 2.2 5.0 6.7 4.9 3.5 1.0 0.8 0.4 4.8 1.8 3.0 3.8 2.4 3.8 3.2 5.2 — 6.8 5.8 5.4 6.6 4.6 — 4.0
3.3 3.1 5.9 5.4 4.3 6.7 4.0 1.1 0.7 6.0 4.6 6.0 6.1 1.7 6.0 5.9 5.7 3.2 7.9 6.0 6.4 6.7 4.9 5.6 7.0
3.9 3.4 6.1 7.8 5.2 8.0 8.5 7.3 8.4 7.8 6.2 5.4 7.3 2.9 6.8 5.2 7.1 6.2 8.3 7.6 7.9 8.4 6.2 6.8 7.1
3.7 3.7 5.0 4.2 5.9 6.5 9.7 7.8 9.5 6.6 3.6 5.4 6.4 6.9 4.8 2.4 5.8 4.9 7.1 6.5 7.2 7.2 5.3 6.5 6.4
3.4 3.1 2.8 5.6 5.5 2.7 5.8 3.6 3.0 6.0 1.8 3.6 2.4 4.4 2.8 1.9 — 4.7 4.3 5.0 5.0 4.8 4.3 4.9 3.0
2.8 2.9 2.0 4.4 4.7 1.4 3.2 2.0 2.5 1.2 — 1.8 — — 0.8 — — — — — — — — — —
21.8 20.6 30.6 37.4 35.4 29.8 32.7 22.6 24.5 36.0 18.0 26.4 27.6 20.2 27.2 19.8 23.8 22.3 — — — — — — 28.9
Beets Potatoes Oats
1.9 — —
3.3 — 3.0
5.2 — 6.1
6.9 3.4 5.1
5.8 5.8 —
1.1 4.4 —
— — —
24.2 — 14.2
Notes: Data for irrigation season only. a b
In San Fernando Valley, City of Los Angeles, California. In Sacramento–San Joaquin Delta, California.
Source: U.S. Dept. of Agriculture.
q 2006 by Taylor & Francis Group, LLC
4-70
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.57 Consumptive Use by Principal Crops in the Central Valley, California
Month January February March April May June July August September October November December Total
Sugar Beets
Cotton
Improved Pasture
Alfalfa
S.V.
S.J.V.
a
b
Deciduous Orchard
Rice S.V.
1.0 1.8 3.0 4.7 6.1 7.8 8.2 7.1 5.2 3.5 1.6 0.8 50.8
1.0 1.8 2.8 4.2 5.4 7.0 7.6 6.8 5.1 3.5 1.6 0.8 47.6
0.9 1.2 — — 1.8 6.0 8.5 7.3 5.6 3.5 1.6 0.8 37.2
— — 1.6 3.6 5.6 7.7 8.5 5.1 1.9 — — — 34.0
— — — — 1.0 6.0 9.7 8.5 5.5 2.1 — — 32.8
— — — — 0.6 3.6 8.8 7.8 5.3 1.8 — — 27.9
— — 1.8 3.3 4.9 6.7 7.5 6.4 4.5 2.7 — — 37.8
(0.8)c (1.5) (1.4) 4.8 7.6 9.6 10.0 8.5 6.4 3.2 (1.4) (0.8) 56.0
Note: Values in inches; S.V. is Sacramento Valley, and S.J.V. is San Joaquin Valley. a b c
Solid planting or one row skipped in three. Planting of two rows skipped in four. Values in parentheses are for nongrowing season. Values may change with differences in rainfall.
Source: Calif. Dept. of Water Resources, 1967.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4K.58 Consumptive Use by Crops in the Sacramento-San Joaquin Delta, California Month
Alfalfa
Asparagus
Beans
Beets
Celery
Corn
Fruit
Grain and Hay
Onions
Potatoes
January February March April May June July August September October November December Growing season Year
(0.06) (0.08) 0.10 0.30 0.40 0.50 0.65 0.55 0.50 0.20 (0.10) (0.07) 3.20 3.51
0.05 0.05 0.05 0.05 0.08 0.14 0.40 0.68 0.55 0.42 0.12 0.10 2.69 2.69
(0.06) (0.08) (0.08) (0.16) (0.20) 0.14 0.24 0.58 0.37 (0.09) (0.07) (0.05) 1.33 2.12
(0.06) (0.08) (0.08) 0.13 0.32 0.51 0.61a 0.53a 0.20a (0.13) (0.10) (0.07) 2.30 2.82
(0.04) (0.04) (0.04) (0.08) (0.10) 0.10 0.10 0.20 0.25 0.30 0.20 0.05 1.20 1.50
(0.04) (0.04) (0.04) (0.08) (0.10) 0.24 0.85 0.84a 0.40a 0.10 (0.10) (0.07) 2.43 2.90
(0.04) (0.04) (0.04) 0.18 0.32 0.50 0.57 0.40 0.23 0.07 (0.07) (0.05) 2.27 2.51
(0.04) (0.04) 0.07 0.60 0.83 0.20 (0.14) (0.23) (0.21) (0.14) (0.07) (0.05) 1.70 2.62
(0.04) (0.04) 0.08 0.13 0.27 0.49 0.43 0.20 (0.16) (0.13) (0.10) (0.07) 1.60 2.14
(0.06) (0.08) (0.08) (0.16) 0.15 0.38 0.52 0.30 0.15 (0.09) (0.07) (0.05) 1.50 2.09
Note: Depth in feet. Figures in parentheses show estimated losses by soil evaporation and weed transpiration. a
Including additional use of water by weeds.
Source: California Department of Public Works.
4-71
q 2006 by Taylor & Francis Group, LLC
4-72
Table 4K.59 Total Consumptive Use and Peak Daily Use, Western United States Southern Coastal 300 Days Plus Crops
250–300 Days
250–300 Days
210–250 Days
180–210 Days
150–180 Days
Season Use (in.)
Daily Use (in./d)
Season Use (in.)
Daily Use (in./d)
Season Use (in.)
Daily Use (in./d)
Season Use (in.)
Daily Use (in./d)
Season Use (in.)
Daily Use (in./d)
Season Use (in.)
Daily Use (in./d)
36.0 33.5 16.0 29.0 12.0 — — 10.0 25.0 18.0 16.0 — 16.0 — — — — — 20.0 18.0 22.0 22.0 4.0 — —
0.20 0.20 0.18 0.20 0.18 — — 0.18 0.20 0.16 0.16 — 0.18 — — — — — 0.16 0.16 0.20 0.20 0.16 — —
30.0 28.0 14.0 25.0 10.0 — — 8.0 22.0 15.0 14.0 — 14.0 — — — — — 18.0 — 18.0 18.0 4.0 — —
0.17 0.17 0.16 0.18 0.16 — — 0.16 0.18 0.16 0.16 — 0.16 — — — — — 0.16 — 0.18 0.18 0.16 — —
37.0 33.0 17.0 30.0 13.0 — 24.0 11.0 26.0 19.0 18.0 18.0 16.0 24.0 24.0 24.0 22.0 22.0 22.0 — 24.0 23.0 6.0 23.0 20.0
0.27 0.27 0.22 0.27 0.22 — 0.20 0.20 0.25 0.20 0.18 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.18 — 0.25 0.25 0.18 0.24 0.22
32.0 30.0 14.5 26.0 11.0 19.0 20.0 9.0 22.0 16.0 16.0 16.0 14.0 22.0 22.0 22.0 20.0 20.0 — — 22.0 18.0 5.0 21.0 20.0
0.22 0.22 0.20 0.22 0.18 0.25 0.18 0.18 0.22 0.18 0.18 0.20 0.18 0.20 0.20 0.20 0.20 0.20 — — 0.22 0.22 0.18 0.22 0.20
26.0 24.0 12.0 — — 16.0 — 8.0 20.0 13.0 14.0 14.0 12.0 20.0 — — — — — — 20.0 16.0 — 19.0 —
0.20 0.20 0.20 — — 0.22 — 0.16 0.20 0.16 0.16 0.18 0.18 0.18 — — — — — — 0.20 0.20 — 0.20 —
22.0 20.0 10.0 — — 14.0 — 7.0 18.0 11.0 12.0 12.0 11.0 18.0 — — — — — — — 14.0 — 17.0 —
0.18 0.18 0.18 — — 0.20 — 0.16 0.18 0.16 0.16 0.16 0.16 0.18 — — — — — — — 0.18 — 0.18 —
Central Valley—California and Valleys East Side of Cascade Mountains 250–300 Days Alfalfa Pasture Grain — small Beets — sugar Beans — field Corn — field Potatoes — summer Potatoes — fall Peas — green Peas — field
210–250 Days
180–210 Days
150–180 Days
120–150 Days
90–120 Days
40.0 36.0 18.0 33.0 17.0 26.0 12.0
0.30 0.30 0.22 0.30 0.22 0.35 0.16
34.0 30.0 16.0 28.0 13.0 22.0 —
0.28 0.28 0.22 0.25 0.20 0.32 —
30.0 28.0 15.0 24.0 13.0 22.0 —
0.25 0.25 0.20 0.22 0.20 0.30 —
26.0 24.0 14.0 20.0 12.0 20.0 —
0.22 0.22 0.18 0.20 0.18 0.25 —
20.0 18.0 13.0 18.0 12.0 18.0 —
0.20 0.20 0.18 0.18 0.18 0.22 —
14.0 13.0 12.0 — — 17.0 —
0.18 0.18 0.16 — — 0.20 —
— — —
— — —
19.0 8.0 10.0
0.25 0.18 0.18
18.0 7.0 9.0
0.22 0.18 0.18
18.0 7.0 9.0
0.20 0.18 0.18
17.0 7.0 8.0
0.18 0.16 0.16
16.0 6.0 8.0
0.16 0.15 0.15
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alfalfa Pasture Grain — small Beets — sugar Beans — field Corn — field Potatoes Peas — green Legume seed Tomatoes Vegetable seed Beans — pole Corn — sweet Apples Cherries Peaches Prunes Apricots Oranges Avocados Walnuts Strawberries Lettuce Mint Hops
South Pacific Coastal Interior and North Coastal
20.0 26.0 15.0 — — 22.0 20.0 28.0 24.0 4.0 — — 30.0 24.0 22.0
0.20 0.30 0.20 — — 0.22 0.22 0.18 0.20 0.20 — — 0.25 0.22 0.25
18.0 22.0 13.0 26.0 24.0 22.0 17.0 — 20.0 — 20.0 18.0 25.0 20.0 20.0
0.18 0.28 0.18 0.20 0.20 0.20 0.20 — 0.20 — 0.22 0.20 0.22 0.20 0.22
18.0 — 12.0 23.0 21.0 20.0 15.0 — 18.0 — 18.0 16.0 22.0 — —
0.18 — 0.17 0.20 0.20 0.20 0.20 — 0.18 — 0.20 0.18 0.20 — —
17.0 — 10.0 21.0 19.0 18.0 — — — — — — — — —
0.17 — 0.16 0.18 0.18 0.18 — — — — — — — — —
16.0 — 9.0 — — — — — — — — — — — —
0.16 — 0.15 — — — — — — — — — — — —
— — 8.0 — — — — — — — — — — — —
— — 0.15 — — — — — — — — — — — —
HYDROLOGIC ELEMENTS
Tomatoes Cotton Grain — sorghum Apples Cherries Peaches Apricots Oranges Strawberries Lettuce — winter Mint Hops Grapes Walnuts Almonds
Central Intermountain, Desert, and Western High Plains 250–300 Days Alfalfa Pasture Grain — small Beets — sugar Beans — field Corn — field Potatoes — fall Peas — field Tomatoes Cotton Grain — sorghum Apples Cherries Peaches Apricots Almonds Vineyards Legume seed Grass seed Potatoes — seed Grapefruit Oranges Lettuce — winter Melons Palm dates Truck crops
52.0 48.0 21.0 37.0 22.0 — — — — 32.0 19.0 — — — 26.0 22.0 40.0 — — — 45.0 36.0 6.0 22.0 60.0 20.0
0.40 0.40 0.25 0.30 0.25 — — — — 0.30 0.25 — — — 0.25 0.25 0.27 — — — 0.20 0.18 0.18 0.25 0.30 0.25
210–250 Days 44.0 40.0 18.0 32.0 17.0 30.0 23.0 — 20.0 30.0 18.0 — — 29.0 24.0 20.0 32.0 — — — — — — 20.0 — 18.0
0.32 0.30 0.22 0.30 0.20 0.35 0.30 — 0.22 0.28 0.20 — — 0.25 0.25 0.25 0.25 — — — — — — 0.22 — 0.22
180–210 Days 36.0 33.0 16.0 30.0 14.0 26.0 21.0 10.0 18.0 16.0 28.0 26.0 27.0 25.0 — 26.0 — — — — — — 18.0 — 14.0
0.29 0.28 0.20 0.28 0.20 0.30 0.28 0.19 0.20 — 0.20 0.22 0.22 0.22 0.20 — 0.22 — — — — — — 0.20 — 0.20
q 2006 by Taylor & Francis Group, LLC
30.0 28.0 16.0 26.0 14.0 24.0 20.0 10.0 17.0 — 14.0 24.0 — — — — — — — — — — — 16.0 — 12.0
0.26 0.25 0.20 0.25 0.18 0.28 0.25 0.18 0.18 — 0.18 0.20 — — — — — — — — — — — 0.18 — 0.18
120–150 Days 24.0 22.0 16.0 24.0 14.0 22.0 19.0 10.0 16.0 — 12.0 20.0 — — — — — 16.0 14.0 16.0 — — — — — 12.0
0.22 0.22 0.20 0.22 0.17 0.24 0.22 0.17 0.17 — 0.17 0.18 — — — — — 0.18 0.14 0.16 — — — — — 0.16
90–120 Days 19.0 17.0 14.0 18.0 12.0 — 17.0 9.0 — — — — — — — — — 14.0 12.0 14.0 — — — — — 10.0
0.20 0.20 0.18 0.20 0.15 — 0.20 0.15 — — — — — — — — — 0.16 0.14 0.15 — — — — — 0.15 4-73
Source: From Woodward, Sprinkler Irrigation, Sprinkler Irrigation Assoc., 1959. With permission.
150–180 Days
4-74
Table 4K.60 Accumulated Use of Water by Crops with Various Planting to Maturity Periods Total Period of Growth
10 20 30 40 50 60 70 80 90 100 a
Days Since Planting
Accum. Water Use (in.)
Days Since Planting
Accum. Water Use (in.)
Days Since Planting
Accum. Water Use (in.)
Days Since Planting
Accum. Water Use (in.)
Days Since Planting
Accum. Water Use (in.)
6.0 13.8 23.5 34.5 46.5 59.4 72.3 84.3 94.5 100.0
6 12 18 24 30 36 42 48 54 60
0.3 0.7 1.1 1.7 2.3 2.9 3.5 4.1 4.7 4.9
9 18 27 36 45 54 63 72 81 90
0.4 1.0 1.9 2.6 3.4 4.4 5.3 6.2 7.0 7.4
12 24 36 48 60 72 84 96 108 120
0.6 1.4 2.3 3.4 4.6 5.8 7.1 8.3 9.3 9.8
15 30 45 60 75 90 105 120 135 150
0.8 1.7 2.9 4.3 5.7 7.3 8.9 10.3 11.6 12.3
18 36 54 72 90 108 126 144 162 180
0.9 2.0 3.5 5.1 6.8 8.7 10.6 12.4 13.9 14.7
2 Month
3 Month
4 Month
5 Month
6 Month
Growing Period refers to the entire time from planting to the time the plant dies, which is usually longer than the period from planting to harvesting. Flowering will occur at about 50 to 60 percent of the growing period and fruiting after 60 percent.
Source: From Israelson and Hansen, Irrigation Principles and Practices, John Wiley & Sons, 1962. With permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Percentage of Growing Perioda
Accumulated Consumptive Use of Water in Percentage of Total Use
HYDROLOGIC ELEMENTS
4-75
Table 4K.61 Variations in Consumptive Use by Crops Crop Alfalfa Rhodes grass Sudan grass Barley Oats Wheat Corn Kafir Flax Broomcorn Emmer Feterita Millet Milo Sorghum Cotton Potatoes Soybeans Sugar beets Sugar canea Beans, snap Beets, table Cabbage Carrots Cauliflower Lettuce Onions Peas Melons Spinach Sweet potatoes Tomatoes Forage, including alfalfa Barley Oats Wheat Corn Kafir corn Flax Millet Milo maize Sorghum Apples Beans Buckwheat Cantaloupes Peas Potatoes Sugar beets Sunflowers Tomatoes Cucumbers a
No. of Tests
(A) Farm crops in the southwest 369 12 25 3 2 46 42 16 3 9 6 8 5 35 34 103 12 36 5 41
3.47–5.08 3.49–4.43 2.88–3.16 1.24–1.83 1.90–2.09 1.46–2.24 1.44–1.99 1.32–1.54 1.23–1.59 0.97–1.15 1.19–1.87 0.97–1.10 0.91–1.09 0.96–1.67 1.69–2.08 2.35–3.51 1.59–2.04 1.66–2.81 1.77–2.72 3.48–4.56
(B) Vegetable crops in the southwest 9 28 21 6 6 49 4 8 3 12 3 17
0.83–1.44 0.87–1.37 0.94–1.49 1.27–1.60 1.43–1.77 0.72–1.35 0.73–1.52 1.21–1.56 0.80–1.07 0.80–1.07 1.77–2.25 0.95–1.42
(C) Crops in the Missouri and Arkansas Basins 648 335 409 542 70 15 50 14 27 26 4 4 3 10 168 350 128 16 6 7
1.94–2.62 1.33–1.82 1.35–1.81 1.36–1.80 1.23–1.83 1.43–1.57 1.47–1.85 0.81–0.94 1.09–1.70 1.06–1.47 2.10–2.60 1.30–1.60 1.05–1.30 1.50–2.30 1.36–1.94 1.38–1.70 1.60–2.50 1.20–1.40 2.10–2.80 1.73–3.75
Not commonly produced in the Southwest.
Source: U.S. Dept. of Agriculture.
q 2006 by Taylor & Francis Group, LLC
Range in Water Requirements (ft)
4-76
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.62 Consumptive Use of Water by Crops in Florida Month
Citrus
Pasturea
Sugarcane
Riceb
Rainfall
Pan Evapotranspirationc
January February March April May June July August September October November December Total
2.09 2.60 3.58 4.49 5.31 4.41 4.88 4.80 4.02 3.59 2.72 2.09 44.58
2.01 2.52 3.35 4.21 5.20 4.25 4.80 4.80 3.86 3.43 2.48 1.93 42.84
1.42 1.10 2.52 3.39 4.80 5.98 6.50 6.69 5.12 5.20 3.19 2.59 48.50
0 0 0 1.63 3.07 5.82 8.43 3.05 (5.00) (3.00) 0 0 22.00
1.97 1.97 3.21 2.96 4.74 9.08 8.58 8.21 8.82 5.65 1.74 1.80 58.76
3.39 4.00 5.70 6.54 7.06 6.24 6.36 6.12 5.31 4.82 3.71 3.19 62.44
Note: Everglades agricultural area; in inches. a b c
Mean monthly values averaged over 5 years and averaged over water table depth of 12, 24, and 36 inches maintained in lysimeters at Ft. Lauderdale. These turfgrass evapotranspiration values are assumed to be valid for pastures adequately supplied with water. Assuming planting date of April 15 which is approximately the middle of the planting season. Values in parentheses are estimates for a ratoon crop. Rice is not always ratoon cropped. Pan evapotranspiration is a measure of the capability of the air to evaporate water. A relatively higher indicates relatively high consumptive use of water.
Source: From Bajwa, R.S., Analysis of Irrigation Potential in the Southeast: Florida, A Special Report, U.S. Department of Agriculture, 1985.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-77
Table 4K.63 Economic Irrigation Requirements in the Western United States Div. No
Division Description
State
Irrigation Season, Inclusive
Total Depth (ft)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(A) Columbia River basin Snake River Valley Idaho Upper Snake River Valley Idaho Jackson Lake and Upper Snake basin Idaho and Wyoming Southwest Idaho and north Nevada Idaho and Nevada Salmon River basin Idaho North Idaho Idaho Bitterroot and Missoula River basins Montana Flathead Lake and River basins Montana Owyhee and Malheur River basins Oregon Northeast Oregon Oregon Umatilla, John Day, Deschutes, and Hood basins Oregon Central Oregon Oregon Yakima and Wenatchee river basins Washington Southeast Washington Washington Northeast Washington Washington Okanogan River basin Washington Lower Columbia River basin Washington Willamette River basin Oregon Washington Puget Sound regiona
Apr–Oct Apr–Sept May–Sept Apr–Sept May–Aug May–Sept Apr–Nov Apr–Sept Apr–Sept Apr–Sept Apr–Oct May–Aug Apr–Nov Apr–Oct Apr–Oct Apr–Nov May–Sept May–Sept May–Sept
2.5 2.3 1.7 1.9 2.0 1.5 2.1 1.8 2.4 2.0 2.5 2.4 2.6 2.1 2.2 2.3 1.3 1.2 1.4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(B) Pacific Slope basins Umpqua, Coquill, and Lower Rogue basins Oregon Upper Rogue River basin Oregon Klamath Lake and River basins Oregon and California Northwest California California Pit River basin California Feather, Yuba, and American River basins California Sacramento Valley California Sacramento-San Joaquin Delta California San Francisco Bay basin California Salinas River basin California Santa Maria, Santa Inez, and Santa Clara basins California San Joaquin Valley California West slope of Sierras California East slope of Coast Range California Antelope and Victor Valleys California Los Angeles, San Gabriel, and Santa Ana basins California Upper Santa Ana River Valley California San Diego County California
Apr–Sept Mar–Sept Apr–Sept Apr–Oct Apr–Sept Mar–Nov Mar–Oct May–Sept Mar–Nov Mar–Oct Jan–Dec Feb–Oct Feb–Nov Feb–Oct Mar–Oct Jan–Dec Jan–Dec Jan–Dec
0.85 1.50 2.00 1.40 1.60 1.50 2.10 2.00 1.50 1.70 1.60 2.30 1.70 1.80 1.90 1.70 1.80 1.40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Imperial Valley South Nevada Southwest Arizona Northwest Arizona Navajo country Southeast Arizona San Juan basin West New Mexico Rio Grande basin Pecos River basin Northeast New Mexico Central Rio Grande basin Pecos River basin West Central Texas Lower Rio Grande basin Upper Nueces and Colorado River basins Upper Brazos and Red River basins Eastern Panhandle
Jan–Dec Jan–Dec Jan–Dec Mar–Oct Mar–Oct Feb–Nov Apr–Sept Apr–Oct Jan–Dec Jan–Dec Feb–Nov Jan–Nov Jan–Nov Jan–Dec Jan–Dec Jan–Dec Jan–Dec Mar–Oct
3.10 2.90 3.00 2.30 2.30 2.60 2.20 1.70 2.60 2.40 1.60 2.40 2.25 1.60 1.75 1.30 1.10 1.35
(C) Southwest California Nevada Arizona Arizona Arizona Arizona New Mexico New Mexico New Mexico New Mexico New Mexico Texas Texas Texas Texas Texas Texas Texas
(Continued)
q 2006 by Taylor & Francis Group, LLC
4-78
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.63 Div. No
(Continued) Division Description
Irrigation Season, Inclusive
Total Depth (ft)
Texas Oklahoma Oklahoma Colorado Colorado Colorado Colorado Utah Utah Utah Utah Wyoming
Mar–Oct Apr–Oct Apr–Oct May–Sept Apr–Sept May–Aug Apr–Sept Feb–Nov Apr–Sept Apr–Oct Apr–Sept May–Aug
1.65 1.25 1.00 1.80 1.90 1.35 1.70 2.25 2.10 2.00 1.75 1.60
(D) Great basin Idaho and Utah Utah Utah Utah Nevada California and Nevada California California and Nevada California and Nevada Nevada California and Nevada Oregon
May–Oct May–Oct May–Oct Apr–Oct Apr–Oct Mar–Oct Mar–Oct Apr–Oct May–Oct May–Sept Apr–Sept Apr–Sept
2.0 2.2 2.1 1.8 1.7 1.8 2.1 2.0 2.1 2.0 1.7 1.5
May–Aug May–Aug May–Aug May–Aug May–Aug May–Sept May–Sept May–Sept May–Sept Apr–Sept Apr–Sept Apr–Sept Apr–Oct Apr–Oct Apr–Oct Apr–Oct May–Sept May–Sept
1.40 1.50 1.70 1.60 1.90 1.95 1.65 1.70 1.60 2.05 2.20 2.10 2.30 1.75 1.25 2.00 1.50 1.35
State
19 20 21 22 23 24 25 26 27 28 29 30
Western Panhandle Panhandle West Oklahoma San Luis basin San Juan basin Yampa and White River basins Upper Colorado River basin Virgin River basin San Juan basin Green River basin Uintah basin Green River basin
1 2 3 4 5 6 7 8 9 10 11 12
Bear River basin Utah Lake and Great Salt Lake Valleysb Sevier River basin Irrigable lands, southwest Utah Irrigable lands, southern Nevada Antelope Valley and Mohave River areas Mono, Owens, and Inyo-Kern valleys Walker River basin Truckee and Carson River basins Humboldt, Quinn, and White River basins Honey Lake basin Malheur Lake, Harney Lake, and other basins
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(E) Missouri and Arkansas basins Northeast Montana Montana North central Montana Montana Central Montana Montana Upper Missouri River basin Montana Upper Yellowstone River basin Montana Southeast Montana Montana Big Horn River basin Wyoming Yellowstone and Missouri River basins Wyoming Upper Platte River basin Wyoming Northeast Colorado Colorado North central Colorado Colorado South central Colorado Colorado Southeast Colorado Colorado West Kansas Kansas Central Nebraska Nebraska West Nebraska Nebraska Western South Dakota South Dakota Western North Dakota North Dakota
Note: Estimated minimum quantities of irrigation water required, assuming optimal irrigation practices. a b
Not in the Columbia River Basin. South of Weber River basin.
Source: U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-79
Table 4K.64 Estimated Evapotranspiration for Types of Vegetation in the Western United States Vegetation Type
Annual Evapotranspiration (in.)
Forest Lodgepole pine Engelmann spruce-fir White pine-larch-fir Mixed conifer True fir Aspen Pacific Douglas-fir-hemlock-redwood Interior ponderosa pine Interior Douglas-fir Chaparral and woodland Southern California chaparral California woodland-grass Arizona chaparral Pinon-juniper Semiarid grass and shrub Alpine
19 15 22 22 24 23 30 17 21 20 18 17.5 14.5 10.6 20
Source: Select Committee on National Water Resources, U.S. Senate, 1960.
Table 4K.65 Consumptive Use in a Municipal Area Cultural Classification Estates Class A residential Class B residential Rural residential Semicommercial
Consumptive Use (ft) 2.07 1.92 1.88 1.78 1.32
Note: Data for Raymond Basin, Los Angeles County, California. Source: California Department of Water Resources. q 2006 by Taylor & Francis Group, LLC
Cultural Classification Reservoir sites Park Schools River wash
Consumptive Use (ft) 1.34 2.40 1.63 0.99
4-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Blaney-Criddle Consumptive Use Formula
consumptive use factor f, so that Equation 4.1 becomes simply
The consumptive use of an irrigated crop in which ample water supply is available can be estimated by the BlaneyCriddle formula. For a given month the consumptive use is given by
For an entire growing season the consumptive use is given by
(4.1)
u Z kðtpÞ
where u is the monthly consumptive use measured in inches, k is a monthly consumptive use coefficient dependent on the crop and location, t is the mean monthly temperature in degrees Fahrenheit, and p is the monthly percentage of daytime hours of the year. Because t and p can be found from climatic data at a given location, they are often combined into a monthly
(4.2)
u Z kf
(4.3)
U Z KF
where U is the seasonal consumptive use measured in inches, K is a seasonal consumptive use coefficient, and F is the sum of the monthly consumptive use factors. Values for the Western United States of k are given in Table 4K.66, K in Table 4K.67, p in Table 4K.69, and f in Table 4K.70.
Table 4K.66 Monthly Consumptive Use Coefficients (k) for Irrigated Crops in the Western United States Crop
Location
Alfalfa
California, coastal California, interior North Dakota Utah, St. George Corn (maize) North Dakota Cotton Arizona Texas Orchard, citrus Arizona California, coastal Pasture California, Murrieta Potatoes North Dakota South Dakota Small grain North Dakota Wheat Texas Sorghum Arizona Kansas Texas Soy beans Arizona Sugar beets California, coastal California, interior Montana Truck crops California, interior
Mar
Apr
May
June
July
Aug
Sept
Oct
Nov
0.60 0.65 — — — — 0.24 0.57 — — — — — 0.64 — — — — — — — 0.19
0.65 0.70 0.84 0.88 — 0.27 0.22 0.60 0.40 — — — 0.19 1.16 — — — — 0.39 0.30 — 0.26
0.70 0.80 0.89 1.15 0.47 0.30 0.61 0.60 0.42 0.84 0.45 0.69 0.55 1.26 — — — — 0.38 0.60 — 0.38
0.80 0.90 1.00 1.24 0.63 0.49 0.42 0.64 0.52 0.84 0.74 0.60 1.13 0.87 — 0.80 0.26 0.26 0.36 0.86 — 0.55
0.85 1.10 0.86 0.97 0.78 0.86 0.50 0.64 0.55 0.77 0.87 0.80 0.77
0.85 1.00 0.78 0.87 0.79 1.04
0.80 0.85 0.72 0.81 0.70 1.03
0.70 0.80
0.60 0.70
0.68 0.55 0.82 0.75 0.89 0.30
0.68 0.55 1.09 0.54 0.39
0.65 0.50 0.70
0.62 0.45
0.34 0.94 0.73 0.58 0.37 0.96 0.83 0.71
0.72 1.17 1.20 0.92 0.35 0.91 1.05 0.82
0.97 0.86 0.85 0.92 0.38 0.41 1.02 0.69
0.62 0.47 0.49 0.55
0.60
0.37
0.35
Note: For use with the Blaney-Criddle consumptive use formula. Source: U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
0.81
HYDROLOGIC ELEMENTS
4-81
Table 4K.67 Seasonal Consumptive Use Coefficients (k) for Irrigated Crops in the Western United States Crop Alfalfa Bananas Beans Cocoa Coffee Corn (Maize) Cotton Dates Flax Grains, small Grain, sorghums Oilseeds Orchard crops Avocado Grapefruit Orange and lemon Walnuts Deciduous Pasture crops Grass Ladino whiteclover Potatoes Rice Sisal Sugar beets Sugarcane Tobacco Tomatoes Truck crops, small Vineyard
Length of Normal Growing Season or Perioda
Consumptive Use Coefficient (K)b
Between frosts Full year 3 months Full year Full year 4 months 7 months Full year 7 to 8 months 3 months 4 to 5 months 3 to 5 months
0.80 to 0.90 0.80 to 1.00 0.60 to 0.70 0.70 to 0.80 0.70 to 0.80 0.75 to 0.85 0.60 to 0.70 0.65 to 0.80 0.70 to 0.80 0.75 to 0.85 0.70 to 0.80 0.65 to 0.75
Full year Full year Full year Between frosts Between frosts
0.50 to 0.55 0.55 to 0.65 0.45 to 0.55 0.60 to 0.70 0.60 to 0.70
Between frosts Between frosts 3 to 5 months 3 to 5 months Full year 6 months Full year 4 months 4 months 2 to 4 months 5 to 7 months
0.75 to 0.85 0.80 to 0.85 0.65 to 0.75 1.00 to 1.10 0.65 to 0.70 0.65 to 0.75 0.80 to 0.90 0.70 to 0.80 0.65 to 0.70 0.60 to 0.70 0.50 to 0.60
Note: For use with the Blaney-Criddle consumptive use formula. a b
Length of season depends largely on variety and time of year when the crop is grown. Annual crops grown during the winter period may take much longer than if grown in the summertime. The lower values of K for use in the Blaney-Criddle formula, UZKF, are for the more humid areas, and the higher values are for the more arid climates.
Source: U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
4-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.68 Monthly and Seasonal Consumptive Use Coefficients (k) for Mature Urban Landscape Plantings Planting Type Warm-season grass (Bermuda, buffalo), Mesa and Tempe, Arizona (elevation 1200 ft) Warm-season grass (Bermuda, buffalo), Laramie and Wheatland, Colorado (elevation 7200 and 4700 ft) Cool-season grass (Kentucky bluegrass), Mesa and Tempe, Arizona (elevation 1200 ft) Cool-season grass (Kentucky bluegrass), Laramie and Wheatland, Colorado (elevation 7200 and 4700 ft) Deciduous fruit or nut tree in bare soil, Mulch, or Paved Area Deciduous fruit or nut tree with cover crop (turf, ground cover, etc) Grapefruit in bare soil, mulch, or paved area Lemon, orange Other trees Grapevine, Mesa and Tempe, Arizona (elevation 1200 ft) Grapevine, elsewhere Other vines Shrubs over 4 ft diameter Shrubs under 4 ft diameter Ground cover plants, other small plants Arid climate native plants Pavements, mulches, nonliving soil covers
Monthly (Maximum K)
Seasonal (Average)
1.17 1.08
0.97 0.79
1.41 1.30
1.20 0.95
0.90 1.25 0.75 0.65 0.90 0.80 0.75 0.80 0.80 1.00 1.00 0.35 0.00
0.70 1.00 0.65 0.55 0.80 0.70 0.60 0.70 0.70 0.90 0.90 0.25 0.00
Note: For use with the Blaney-Criddle consumptive use formula; the higher the monthly or seasonal factor, the greater the planting’s water demand in that time period. Source: From Ferguson, B.K., Water conservation methods in urban landscape irrigation: an exploratory overview, Water Res. Bull., 23, 147, 1987. With permission.
q 2006 by Taylor & Francis Group, LLC
Latitude North 0 5 10 15 20 25 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 South 0 5 10 15 20 25 30 32 34 36 38 40 42 44 46
January
February
March
April
May
June
July
August
September
October
November
December
8.50 8.32 8.13 7.94 7.74 7.53 7.30 7.20 7.10 6.99 6.87 6.76 6.63 6.49 6.34 6.17 5.98 5.77 5.55 5.30 5.01 4.67
7.66 7.57 7.47 7.36 7.25 7.14 7.03 6.97 6.91 6.85 6.79 6.72 6.65 6.58 6.50 6.41 6.30 6.19 6.08 5.95 5.81 5.65
8.49 8.47 8.45 8.43 8.41 8.39 8.38 8.37 8.36 8.35 8.34 8.33 8.31 8.30 8.29 8.27 8.24 8.21 8.18 8.15 8.12 8.08
8.21 8.29 8.37 8.44 8.52 8.61 8.72 8.76 8.80 8.85 8.90 8.95 9.00 9.06 9.12 9.18 9.24 9.29 9.36 9.45 9.55 9.65
8.50 8.65 8.81 8.98 9.15 9.33 9.53 9.62 9.72 9.82 9.92 10.02 10.14 10.26 10.39 10.53 10.68 10.85 11.03 11.22 11.46 11.74
8.22 8.41 8.60 8.80 9.00 9.23 9.49 9.59 9.70 9.82 9.95 10.08 10.22 10.38 10.54 10.71 10.91 11.13 11.38 11.67 12.00 12.39
8.50 8.67 8.86 9.05 8.25 9.45 9.67 9.77 9.88 9.99 10.10 10.22 10.35 10.49 10.64 10.80 10.99 11.20 11.43 11.69 11.98 12.31
8.49 8.60 8.71 8.83 8.96 9.09 9.22 9.27 9.33 9.40 9.47 9.54 9.62 9.70 9.79 9.89 10.00 10.12 10.26 10.40 10.55 10.70
8.21 8.23 8.25 8.28 8.30 8.32 8.33 8.34 8.36 8.37 8.38 8.39 8.40 8.41 8.42 8.44 8.46 8.49 8.51 8.53 8.55 8.57
8.50 8.42 8.34 8.26 8.18 8.09 7.99 7.95 7.90 7.85 7.80 /7.75 7.69 7.63 7.57 7.51 7.45 7.39 7.30 7.21 7.10 6.98
8.22 8.07 7.91 7.75 7.58 7.40 7.19 7.11 7.02 6.92 6.82 6.72 6.62 6.49 6.36 6.23 6.10 5.93 5.74 5.54 5.31 5.04
8.50 8.30 8.10 7.88 7.66 7.42 7.15 7.05 6.92 6.79 6.66 7.52 6.37 6.21 6.04 5.86 5.65 5.43 5.18 4.89 4.56 4.22
8.50 8.68 8.86 9.05 9.24 9.46 9.70 9.81 9.92 10.03 10.15 10.27 10.40 10.54 10.69
7.66 7.76 7.87 7.98 8.09 8.21 8.33 8.39 8.45 8.51 8.57 8.63 8.70 8.78 8.86
8.49 8.51 8.53 8.55 8.57 8.60 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69 8.70
8.21 8.15 8.09 8.02 7.94 7.84 7.73 7.69 7.64 7.59 7.54 7.49 7.44 7.38 7.32
8.50 8.34 8.18 8.02 7.85 7.66 7.45 7.36 7.27 7.18 7.08 6.97 6.85 6.73 6.61
8.22 8.05 7.86 7.65 7.43 7.20 6.96 6.85 6.74 6.62 6.50 6.37 6.23 6.08 5.92
8.50 8.33 8.14 7.95 7.76 7.54 7.31 7.21 7.10 6.99 6.87 6.76 6.64 6.51 6.37
8.49 8.38 8.27 8.15 8.03 7.90 7.76 7.70 7.63 7.56 7.49 7.41 7.33 7.25 7.16
8.21 8.19 8.17 8.15 8.13 8.11 8.07 8.06 8.05 8.04 8.03 8.02 8.01 7.99 7.96
8.50 8.56 8.62 8.68 8.76 8.86 8.97 9.01 9.06 9.11 9.16 9.21 9/9.26 9.31 9.37
8.22 8.37 8.53 8.70 8.87 9.04 9.24 9.33 9.42 9.51 9.61 9.71 9.82 9.94 10.07
8.50 8.68 8.88 9.10 9.33 9.58 9.85 9.96 10.08 10.21 10.34 10.49 10.64 10.80 10.97
HYDROLOGIC ELEMENTS
Table 4K.69 Monthly Percentage of Daytime Hours of the Year (p)
Note: Latitudes 608N to 468S. For use with the Blaney-Criddle consumptive use formula. Source: U.S. Dept. of Agriculture. 4-83
q 2006 by Taylor & Francis Group, LLC
4-84
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.70 Monthly Consumptive Use Factors (f ) for Locations in the Western United States and Hawaii Arizona Month January February March April May June July August September October November December Total Frost-free period
California
Phoenix f
Safford f
Yuma f
Bakersfield f
3.64 3.82 5.07 5.89 7.28 8.17 8.85 8.25 6.91 5.58 4.20 3.62 71.28 2/5 to 12/6
3.14 3.40 4.51 5.35 6.73 7.61 8.20 7.52 6.26 5.04 3.67 3.15 64.58 4/5 to 11/4
3.90 4.07 5.36 6.10 7.36 8.16 8.91 8.41 6.98 5.81 4.42 3.87 73.35 1/12 to 12/26
3.33 3.58 4.74 5.55 6.87 7.61 8.38 7.69 6.20 5.13 3.68 3.38 65.84 2/21 to 11/25
California El Centro f
Escondido f
Merced f
Red Bluff f
January February March April May June July August September October November December Total Frost-free period
3.88 4.00 5.37 6.17 7.58 8.20 9.07 8.56 7.19 5.95 4.44 3.93 74.34 1/29 to 12/9
3.70 3.70 4.72 5.26 6.20 6.49 7.22 6.93 5.95 5.14 4.06 3.73 63.10 3/9 to 11/25
3.16 3.38 4.45 5.27 6.57 7.35 8.08 7.39 6.06 4.95 3.67 3.14 53.47 3/9 to 11/20
3.06 3.35 4.53 5.33 6.70 7.58 8.34 7.61 6.14 4.98 3.60 3.20 64.24 3/5 to 12/5
Month
Sacramento f
Santa Ana f
Fort Collins f
Grand Junction f
January February March April May June July August September October November December Total Frost-free period
3.13 3.39 4.52 5.18 6.30 6.93 7.42 6.92 5.81 4.89 3.64 3.06 61.19 2/6 to 12/10
3.77 3.78 4.77 5.27 6.17 6.50 7.05 6.71 5.81 5.11 4.15 3.80 62.89 2/7 to 12/7
1.76 1.89 3.02 4.10 5.49 6.45 7.11 6.50 4.98 3.73 2.42 1.81 49.26 5/7 to 9/29
1.72 2.29 3.57 4.67 6.20 7.22 7.98 7.19 5.60 4.22 2.71 1.92 55.29 4/13 to 10/25
Month
California
Colorado
Idaho
Colorado Month January February March
Montrose f
Boise f
Idaho Falls f
Lewiston f
1.68 2.15 3.32
1.82 2.22 3.44
1.26 1.55 2.79
2.09 2.42 3.77 (Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4K.70
4-85
(Continued)
April May June July August September October November December Total Frost-free period
4.32 5.70 6.64 7.31 6.62 5.20 3.89 2.56 1.77 51.16 5/6 to 10/9
4.44 5.74 6.68 7.58 6.87 5.15 3.83 2.58 1.90 52.25 4/23 to 10/17
4.05 5.45 6.26 7.19 6.45 4.79 3.60 2.18 1.45 47.02 5/15 to 9/19
4.84 6.25 7.12 8.13 8.01 5.40 4.02 2.64 2.12 56.81 4/5 to 10/26
Kansas
Idaho
Montana
Month
Twin Falls f
Garden City f
Wichita f
Agricultural College f
January February March April May June July August September October November December Total Frost-free period
1.77 2.16 3.35 4.39 5.75 6.53 7.57 6.67 5.00 3.93 2.48 9.84 51.44 5/18 to 9/26
2.12 2.32 3.65 4.81 6.32 7.30 7.97 7.37 5.83 4.41 2.93 2.17 57.20 4/25 to 10/16
2.21 2.39 3.80 4.98 6.45 7.45 8.10 7.53 5.99 4.65 3.13 2.32 59.00 4/10 to 10/27
1.30 1.48 2.50 3.76 5.15 6.03 6.87 6.21 4.53 3.35 2.03 1.41 44.63 5/24 to 9/16
Nebraska
Montana Month January February March April May June July August September October November December Total Frost-free period
New Mexico
Missoula f
McCook f
Scottsbluff f
Albuquerque f
1.16 1.54 2.77 4.01 5.46 6.34 7.17 6.32 4.51 3.26 1.98 1.27 45.79 5/18 to 9/23
1.85 2.11 3.34 4.59 6.14 7.17 7.97 7.25 5.56 4.20 2.64 1.91 54.73 5/3 to 10/6
1.72 1.88 3.02 4.20 5.71 6.79 7.58 6.87 5.19 3.83 2.45 1.81 51.05 5/11 to 9/26
2.40 2.69 3.85 4.87 6.23 7.09 7.65 6.98 5.65 4.46 3.01 2.54 57.39 4/13 to 10/28
New Mexico Month January February March April May June July August
Nevada
Carlsbad f
State College f
Carson City f
Yerington f
3.18 3.37 4.64 5.56 6.89 7.61 7.93 7.55
2.96 3.12 4.29 5.15 6.29 7.29 7.72 7.17
2.20 2.40 3.45 4.25 5.49 6.23 7.04 6.42
2.06 2.46 3.56 4.40 5.65 6.37 7.17 6.63 (Continued)
q 2006 by Taylor & Francis Group, LLC
4-86
Table 4K.70
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
September October November December Total Frost-free period
6.15 5.04 3.70 3.06 64.68 3/29 to 11/4
5.94 4.77 3.45 2.85 61.00 4/6 to 10/31
5.00 3.87 2.69 2.24 51.28 5/23 to 9/19 Oregon
Oklahoma Month January February March April May June July August September October November December Total Frost-free period
Altus f
Baker f
Hood River f
Medford f
2.75 3.09 4.43 5.49 6.86 7.78 8.33 7.82 6.34 5.07 3.65 2.88 64.48 3/28 to 11/9
1.60 1.90 3.12 4.10 5.33 6.11 6.92 6.26 4.72 3.55 2.32 1.68 47.64 5/12 to 10/3
2.09 2.40 3.61 4.57 5.83 6.47 7.15 6.50 5.04 3.92 2.65 2.15 52.38 4/20 to 10/20
2.50 2.81 3.90 4.69 5.91 6.74 7.54 6.85 5.33 4.12 2.90 2.42 55.71 5/6 to 10/4
Texas
January February March April May June July August September October November December Total Frost-free period
January February March April May June July
Utah
Amarillo f
Fort Stockton f
Lubbock f
Logan f
2.33 2.48 3.78 4.75 6.07 6.98 7.54 6.98 5.67 4.39 2.87 2.43 56.27 4/11 to 11/2
3.45 3.61 4.87 5.74 7.08 7.69 7.94 7.47 6.25 5.25 3.93 3.39 66.67 4/1 to 11/3
2.85 3.09 4.28 5.25 6.57 7.37 7.80 7.28 5.95 4.83 3.47 2.84 61.58 4/12 to 11/3
1.59 1.86 3.05 4.28 5.63 6.53 7.53 6.86 5.19 3.87 2.46 1.69 50.54 5/7 to 10/11
Washington
Utah Month
5.09 3.95 2.67 2.11 52.12 5/23 to 9/18
Wyoming
Salt Lake City f
Prosser f
Yakima f
Cheyenne f
1.96 2.26 3.47 4.45 5.77 6.83 7.77
1.95 2.36 3.80 4.82 6.21 7.03 7.74
1.72 2.22 3.71 4.64 6.06 6.88 7.63
1.70 1.82 2.75 3.67 5.08 6.13 6.87 (Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Table 4K.70
4-87
(Continued)
August September October November December Total Frost-free period
7.13 5.40 4.06 2.75 2.06 53.91 4/13 to 10/22
6.92 5.24 3.97 2.55 2.01 54.55 4/28 to 10/4
6.79 5.21 3.91 2.41 1.92 53.11 4/15 to 10/22
Wyoming Month January February March April May June July August September October November December Total Frost-free period
Worland f 0.97 1.40 2.79 4.08 5.57 6.58 7.41 6.60 4.87 3.57 2.07 1.19 47.10 5/10–9/27
Note: For use with the Blaney-Criddle consumptive use formula. Source: U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
6.29 4.78 3.46 2.32 1.84 46.71 5/14 to 10/2 Hawaii
Honolulu W.B. Airport f
Waianai f
5.62 5.15 6.04 6.26 6.87 6.98 7.20 7.02 6.49 6.27 5.67 5.54 75.07 —
5.57 5.16 6.08 6.45 7.05 7.23 7.49 7.35 6.65 6.43 5.74 5.61 76.81 —
4-88
Table 4K.71 Estimated Oat Yieldsa Based on Stored Soil Water and Growing Season Precipitationa Consumptive Use Area
Stored Soil WaterDGrowing Season Precipitation (in.) 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
77 84 96 102
86 95 108 115
96 105 119 128
105 115 131 140
115 126 143 152
124 136 154 165
17
18
19
20
21
228
1,591
1,755
1,919
2,083
2,247
2,411
b,c
a
Estimated yields reflect consumptive use data from Huntley, Havre, Sidney, Conrad, Kalispell, Bozeman, and Moccasin. Yields may vary from estimates due to climatic conditions, weeds, disease, insects, lodging, or stand density. When rooting depths are limited by rocks, gravel, or impermeable layers such as shale, yields may vary.
c
2 2 2 2
11 12 14 15
21 23 26 28
30 33 37 40
39 43 49 52
49 54 61 65
68 74 84 90
Source: From NRCS, MT July 2002, Specification MT590-5.
Table 4K.72 Estimated Safflower Yieldsa Based on Stored Soil Water and Growing Season Precipitationa Consumptive Use Area
Stored Soil WaterDGrowing Season Precipitation (in.) 8
9
10
11
12
13
14
15
16 b,c
2 Moderate high a b c
115
279
443
607
771
935
Pounds per acre 1,099 1,263 1,427
Estimated yields reflect consumptive use data from Huntley, Havre, Sidney, Conrad, Kalispell, Bozeman, and Moccasin. Yields may vary from estimates due to climatic conditions, weeds, disease, insects, lodging, or stand density. When rooting depths are limited by rocks, gravel, or impermeable layers such as shale, yields may vary.
Source: From NRCS, MT July 2002, Specification MT590-5.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
High Moderate high Moderate Moderate low
b
0 0 0 0
Bushels per acre 58 64 72 78
1 2 3 4
Consumptive Use Area
Stored Soil WaterDGrowing Season Precipitation (in.) 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
39 42 48 50
43 47 53 56
48 52 59 62
53 57 65 68
57 62 71 74
62 67 77 80
67 72 82 87
b,c
High Moderate high Moderate Moderate low
a
Estimated yields reflect consumptive use data from Huntley, Havre, Sidney, Conrad, Kalispell, Bozeman, and Moccasin. Yields may vary from estimates due to climatic conditions, weeds, disease, insects, lodging, or stand density. When rooting depths are limited by rocks, gravel, or impermeable layers such as shale, yields may vary.
b c
0 0 0 0
6 6 7 7
10 11 13 13
15 16 19 20
20 21 24 26
24 27 30 32
Bushels per acre 29 34 32 37 36 42 38 44
1 2 3 4
HYDROLOGIC ELEMENTS
Table 4K.73 Estimated Spring Wheat Yieldsa Based on Stored Soil Water and Growing Season Precipitationa
Source: From NRCS, MT July 2002, Specification MT590-5.
Table 4K.74 Estimated Barley Yieldsa Based on Stored Soil Water and Growing Season Precipitationa Consumptive Use Area
Stored Soil WaterDGrowing Season Precipitation (in.) 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
62 68 76 80
69 75 84 89
76 83 93 98
83 90 101 107
90 98 110 116
97 106 118 125
104 113 127 134
b,c
High Moderate high Moderate Moderate low
a
Estimated yields reflect consumptive use data from Huntley, Havre, Sidney, Conrad, Kalispell, Bozeman, and Moccasin. Yields may vary from estimates due to climatic conditions, weeds, disease, insects, lodging, or stand density. When rooting depths are limited by rocks, gravel, or impermeable layers such as shale, yields may vary.
b c
6 7 8 8
13 14 16 17
20 22 25 26
27 30 33 35
34 37 42 44
41 45 50 53
Bushels per acre 48 55 52 60 59 67 62 71
1 2 3 4
Source: From NRCS, MT July 2002, Specification MT590-5. 4-89
q 2006 by Taylor & Francis Group, LLC
Consumptive Use Area
4-90
Table 4K.75 Estimated Winter Wheat Yieldsa Based on Stored Soil Water and Growing Season Precipitationa Stored Soil WaterDGrowing Season Precipitation (in.) 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
44 47 53 57
49 53 60 64
55 59 67 71
60 64 73 78
65 70 80 85
71 76 86 92
76 82 93 99
b,c
High Moderate high Moderate Moderate low
a
Estimated yields reflect consumptive use data from Huntley, Havre, Sidney, Conrad, Kalispell, Bozeman, and Moccasin. Yields may vary from estimates due to climatic conditions, weeds, disease, insects, lodging, or stand density. When rooting depths are limited by rocks, gravel, or impermeable layers such as shale, yields may vary.
b c
0 0 0 0
6 6 7 8
11 12 14 15
17 18 20 22
22 24 27 29
28 30 34 36
Bushels per acre 33 38 35 41 40 47 43 50
1 2 3 4
Source: From NRCS, MT July 2002, Specification MT590-5.
Region
1889a,b
1949a
1969a
1974a
1978a
1982a
1987a
1992c
1993c
1994d
1000 acres USDA production region Atlantice North Centralf Northern Plains Delta States Southern Plains Mountain States Pacific Coast United Statesg Crop Corn for grain Wheat Rice Soybeans Cotton Hay
— — — — — 2,300 1,200 3,600
500 — 1,100 1,000 3,200 11,600 8,300 25,800
1,800 500 4,600 1,900 7,400 12,800 10,000 39,100
2,000 600 6,200 1,800 7,100 12,700 10,600 41,200
2,900 1,400 8,800 2,700 7,500 14,800 12,000 50,400
2,700 1,700 9,300 3,100 6,100 14,100 11,900 49,000
3,000 2,000 8,700 3,700 4,700 13,300 10,800 46,400
3,500 2,600 10,200 5,400 5,300 13,600 10,500 51,300
3,600 2,400 9,800 5,200 5,500 13,900 10,100 50,600
3,700 2,700 10,300 5,300 5,300 14,300 10,300 52,000
NA NA NA NA NA NA
NA NA NA NA NA NA
3,300 2,000 2,200 700 3,100 7,900
5,600 3,300 2,600 500 3,700 8,000
8,700 3,000 3,000 1,300 4,700 8,900
8,500 4,600 3,200 2,300 3,400 8,500
8,000 3,700 2,400 2,600 3,500 8,600
10,300 4,100 3,500 3,100 3,700 8,400
9,800 3,900 3,100 3,200 4,400 8,600
10,600 3,900 3,400 3,200 4,300 8,900
Note: — IndicatedO50,0000 acres. NAZnot applicable. a b c d e f g
Census of agriculture. Excludes rice, which was grown on 342,000 acres in South Atlantic and Gulf States in 1899. Preliminary estimates constructed from unpublished USDA sources and the Census. Partial returns from 1992 Census were incorporated. Forecast based on March Planting Intentions (NASS). Northeast, Appalachian, and Southeast farm production regions. Lake States and Corn Belt production regions. Remaining regions correspond to single farm production regions. Includes Alaska and Hawaii.
Source: USDA, ERS data. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4K.76 Irrigated Land in Farms, 1889–1994, by Region and Crop
HYDROLOGIC ELEMENTS
4-91
Table 4K.77 Average Depth of Irrigation Water Applied Per Season, 1969–94, by Region and Crop 1969a
Item
1974a
1979b
1984b
1988b
1990c
1991c
1992c
1993c
1994d
Inchese Region Atlanticf North Centralg Northern Plains Delta States Southern Plains Mountain States Pacific Coast United Statesh Crop Corn for grain Wheat Rice Soybeans Cotton Alfalfa hay
8.5 7.5 16.0 15.5 18.0 30.5 33.0 25.5
11.5 8.0 17.0 17.5 18.5 28.5 34.0 25.0
15.0 9.5 15.5 26.0 17.0 24.0 32.0 22.5
16.5 9.5 13.5 17.5 16.5 24.5 34.0 22.5
15.5 10.5 14.5 18.0 17.0 24.5 34.5 22.5
15.5 9.0 14.0 16.5 16.5 24.0 34.5 22.5
16.0 9.5 14.0 15.5 15.0 24.0 34.5 21.5
16.0 10.0 13.5 16.5 16.0 24.0 34.5 21.5
16.5 8.0 11.5 15.5 16.0 23.0 33.0 20.0
16.5 10.0 14.5 15.5 16.0 24.0 35.0 21.5
18.5 23.0 28.0 12.0 23.0 32.5
19.5 24.0 28.5 11.5 25.5 30.5
17.0 20.5 33.5 14.0 24.0 26.0
16.0 16.5 33.5 9.5 25.0 28.0
16.0 16.0 32.5 10.0 24.5 29.0
15.5 15.5 31.5 8.5 23.0 28.5
15.0 14.5 30.5 7.0 21.0 27.5
15.0 14.5 30.0 8.0 23.0 27.5
13.5 14.0 30.5 6.5 20.0 26.5
15.5 14.5 30.5 7.5 21.5 27.5
a
Census of Agriculture. Estimates constructed by State, by crop, from Farm and Ranch Irrigation Surveys (FRIS) (USDC, 1990, 1986, and 1982a) and ERS estimates of irrigated area. c Aggregated from FRIS State/crop application rates adjusted to reflect annual changes in precipitation. Sensitivity to precipitation is estimated as a function of average precipitation and soil hydrologic group. d Forecast using precipitation records through May 1994. e Values rounded to nearest 0.5 inches. f Northeast, Appalachian, and Southeast production regions. g Lake States and Corn Belt farm production regions. h Includes Alaska and Hawaii. Source: USDA, ERS data. b
Table 4K.78 Irrigated Area, 1992 Census of Agriculture State
1987
1992
Change
3,170 6 62 1,783 3,260 328 241 116 2,680 10 57 20 368 709 2 80 29 1,622 3 2 62 1,641 3 331 1,465 18,050
Percent 5 K19 2 10 1 58 42 25 9 69 12 K1 17 33 K41 K12 K9 K2 K15 16 K22 8 K12 16 K4 6
1,000 acres Colorado Connecticut Delaware Florida Idaho Illinois Indiana Iowa Kansas Maine Maryland Massachusetts Michigan Missouri New Hampshire New Jersey Ohio Oregon Rhode Island Vermont Virginia Washington West Virginia Wisconsin Wyoming Total, 25 states
3,014 7 61 1,623 3,219 208 170 92 2,463 6 51 20 315 535 3 91 32 1,648 3 2 79 1,519 3 285 1,518 16,967
Note: The table includes 1992 data on States released by the Bureau of the Census by June 20, 1994. Source: USDC, 1994. q 2006 by Taylor & Francis Group, LLC
4-92
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Blaney-Criddle empirical estimate
or
Monthly ET Adjust sum of monthly
to obtain and
values to reflect local Monthly evaporimeter data
Monthly ET (a)
or
Carryover moisture
(b)
Cultural practices
Growing season
to obtain
minus
minus
ET of applied water
Growing season effective precipitation
divide to by obtain
Applied water demand
Irrigation efficiency
(a) Obtained from field measurements of evapotranspiration (ET) of crop and measurements of evaporation from evaporimeters at agroclimatic stations. (b) Stored soil moisture available at start of growing season.
Growing season ET
Known measured factors
add
to obtain
Total applied water demand
Miscellaneous water demand (c)
Calculated values
(c) Water used for leaching, crop cooling, crop heating, etc.
Figure 4K.27 Steps in determining agricultural applied water demand. (From American Society of Civil Engineers, 1972, Copyright, Groundwater Management.)
Other crops Other small grains Dry beans Alfalfa Cherries Wheat for grain Tobacco Corn silage Peanuts Barley Pasture and range Fall potatoes Vegetables Cotton Corn for grain Land in orchard Soy beans Rice
0
1
2 3 Million acre-feet
4
5
Figure 4K.28 Eastern water applications by crop, 1998. (From ERS, 1998 Farm and Ranch Irrigation Survey, USDA, www.ers.usda.gov.) q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-93
Other crops Other small grains Peanuts Sorghum grain Dry beans Soy beans Sugar beets Barley for grain Fall potatoes Corn silage Rice Vegetables Wheat for grain Cherries Cotton Pasture and range Land in orchard Corn for grain Alfalfa
0
2
4
6
8
10
12
14
16
Million acre-feet
Figure 4K.29 Western water applications by crop, 1998. (From ERS, 1998 Farm and Ranch Irrigation Survey, USDA, http://ers.usda. gov.)
Figure 4K.30 Estimated mean annual evapotranspiration in the United States and Puerto Rico. (From U.S. Geological Survey, 1990, http://geochange.er.usgs.gov.) q 2006 by Taylor & Francis Group, LLC
4-94
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Million acres 54
Inches 26
Irrigation land in farms 1 (left scale)
52 50
24
48 46 22
44 42 Water applied 2 (right scale)
40
20
38 36
18 1969
73
77
81
85
89
93
Figure 4K.31 Irrigation trends, 1969–1994. (From USDA, ERS data, www.ers.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
4-95
SECTION 4L
PHREATOPHYTES
Table 4L.79 Phreatophyte Areas and Their Consumptive Use in Selected Western States (Estimates as of 1953) State Arizona Californiaa Coloradoa Idaho Montana Nebraskaa Nevada New Mexico North Dakota Oregona South Dakota Texasa Utah Wyoming Total (approximate)b a b
Area (Acres)
Annual Use (Acre-Feet)
405,000 317,000 737,000 500,000 1,600,000 515,000 2,801,000 300,000 1,035,000 40,800 850,000 262,000 1,200,000 527,000 11,090,000
1,280,000 1,150,000 1,056,000 1,000,000 3,200,000 709,000 1,500,000 900,000 1,660,000 21,200 1,240,000 436,500 1,500,000 1,100,000 16,750,000
Partial data, from published reports on areas within the state. Partial data.
Source: U.S. Geological Survey.
Table 4L.80 Consumptive Use by Some Common Phreatophytes in the Western United States
Plant Alder Batamote or seepwillow Cottonwood Do Greasewood Mesquaite Sacaton Saltcedar Do Saltgrass Do Do Do Do Do Do Do Do Willow Do
Annual Rate Including Precipitation Acre-feet per acre 5.3 4.7 7.6–5.2 6.0 2.5–0.08 3.3 4.0–3.5 5.5–4.7 9.2–7.3 4.1–1.1 2.9–1.1 2.3–1.1 4.5 2.6 4.0–0.8 1.9 2.3–1.6 2.0 4.4 2.5
Volume Density
Depth to Water
Percent — 100 100 100 — 100 — — 100 — — — — — — — — — — —
Feet — 6 3–4 6 — 10 — — 4–7 1.5–5 2–4 0.3–2.1 2.0 0.65 0.4–3.1 2.2 1.9–2.6 2.0 2.0 1.1
Source: From Select Committee on National Water Resources U.S. Senate, 1960. q 2006 by Taylor & Francis Group, LLC
Locality Santa Ana River, CA Safford Valley, AZ San Luis Rey River, CA Safford Valley, AZ Escalante Valley, UT Safford Valley, AZ Pecos River Valley, NM Do Safford Valley, AZ Owens Valley, CA Santa Ana, CA San Luis Valley, CO Carlsbad, NM Isleta, NM Los Griegos, NM Mesilla Dam, NM Escalante Valley, UT Vernal, UT Santa Ana, CA Isleta, NM
4-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 4L.81 Phreatophyte Areas and their Consumptive Use in River Basins of the Western United States
State and River or Valley Arizona Little Colorado River Main stem only St. Johns to mouth Total Little Colorado including Zuni and Puerco Rivers Gila River Virden, NM to Clifton, AZ Head of Safford Valley to Coolidge Dam
Coolidge Dam to Kelvin
Kelvin to Gillespie Dam downstream from Granite Reef Dam on Salt River, Rillito on Santa Cruz River and Lake Pleasant on Agua Fria River Gillespie Dam to Dome Total Gila River including San Pedro River, Palominas to mouth, Verde River, Bartlett Dam to mouth, Salt River, Stewart Mountain Dam to Granite Reef Dam Salt River: Stewart Mountain Dam to Granite Reef Dam San Pedro River: Palominas to Gila at mouth Verde River: Bartlett to Gila at mouth California San Luis Rey River: IN San Diego County Santa Anna River: Below Prado Dam Kings River: Kings River Soil Conservation District Idaho: Malad Valley New Mexico Pecos River: Alamogordo Dam to Texas State line Rio Grande: Bernardo to San Marcial Nevada Little Humboldt River: Paradise Valley Muddy River: To mouth Nevada-Utah-Arizona-California Virgin River: Littlefield to mouth Lower Colorado River: Main stem Lee Ferry to Hoover Dam Hoover Dam to Davis Dam Davis Dam to Parker Dam Parker Dam to Laguna Dam Laguna Dam to International Boundary Total main stem Total Lower Colorado River Basin, including Little Colorado River, Virgin River, and Gila River Basins
Area in Acres
Estimated Annual Year of Water Survey or Use in Acre-Feet Estimate
49,560
64,720
1951
65,310
74,360
1951
5,600 25,520
6,310 61,500
1951 1951
3,970
7,460
1951
142,880
282,770
1951
51,270 300,710
69,220 522,510
1951 1951
2,710
2,070
1951
Saltcedar, mesquite
42,510 3,790
69,420 5,720
1951 1951
Saltcedar, mesquite Saltcedar, mesquite, seepwillow
6,390 1,071 1,080 10,900
17,800 3,000 6,500 32,400
1945 1946 1958 1953
Cottonwood, willow Cottonwood, willow Cottonwood, willow Grasses and rushes
42,500 52,000
117,000 77,800
1956 1955
Saltcedar Saltcedar
36,500 4,900
23,000 10,330
1947 1951
Greasewood, saltgrass, willows Saltcedar
7,360
27,160
1951
Saltcedar
1,480 4,500 57,490 191,890 33,510 288,920 667,200
5,920 11,450 209,290 314,360 54,210 595,230 1,230,090
1951 1951 1950 1951 1951 1951 1951
Saltcedar, willow Saltcedar, willow Saltcedar, willow Saltcedar, willow Saltcedar, willow
Source: Select Committee on National Water Resources, U.S. Senate, 1960.
q 2006 by Taylor & Francis Group, LLC
Principal Species of Phreatophytes
Saltcedar, cottonwood, willow, brush Saltcedar, cottonwood, willow, brush Cottonwood, willow, seepwillow Saltcedar, mesquite, willow, seepwillow, cotton wood, arrowweed Saltcedar, mesquite, willow, seepwillow, cotton wood, arrowweed Saltcedar, mesquite, willow, seepwillow, cotton wood, arrowweed Saltcedar, mesquite, seepwillow
Relation to Groundwater
Scientific Name Acacia greggii A. Gray
Acer negundo Linnacus
Alhagi camelorum Fischer
Depth to Water Below Land Surface (ft)
Quality
Use (acre feet/acre)
Catclaw, Southern devilsclaw, una California to de gato western Texas Boxelder Canada to Oklahoma and Arizona
—
1
—
Uses more water than mesquite. Forms thickets along streams and washes
—
—
—
Camelthorn
—
—
—
Occurs in moist places and along streams, chiefly in mountains. Observed in the flood plain of the North Canadian River near Oklahoma City, Okla. Widely used as a shade tree Introduced into Southwestern United States from Asia Minor. Poor browse plant. Observed growing as a phreatophyte along Little Colorado River between Holbrook and Winslow, AZ, in localities where the depth to water ranged from 4 to 6 ft. Aggressive and thicket forming, root system deep and extensive
California to western Texas —
1–20
3
—
—
—
5.3
So. California, So. Nevada to Utah and Texas Arizona
Shallow
3
—
—
—
—
South Dakota to Oregon, south to Mexico
8–62
1–2
—
Oregon and California to Kansas and New Mexico Southern Utah and Nevada to California and Sonora, Mexico
—
3
—
Occurs in saline soils, especially around alkaline lakes, in salt marshes, and in other water-soaked soils
6–15
3
—
High tolerance for alkali and saline soil. Fair browse plant. Reaches height of 10 ft where water table is shallow
Common Name
Allenrolfea occidentalis (S. Pickleweed, Watson) Kuntze iodinebush Alnus Alder
Anemopsis californica (Nuttall) Hooker and Arnott Aster spinosus Bentham
Yerba mansa
Spiny aster
Atriplex canescens (Pursh) Fourwing Nuttall saltbush, Chamiso, chamiza hastata Linnaeus —
lentiformis (Torrey) Watson
Quailbrush, lenscale Nevada saltbush
Occurrence as a Phreatophyte
Arizona
Remarks
HYDROLOGIC ELEMENTS
Table 4L.82 Phreatophytes in the Western United States
Occurs along streams, river bottom land, and other wet sites. The use of 5.3 ft was for the period May to October 1932 in Cold-water Canyon, altitude 2400 ft, San Bernardino Mountains, CA, where alder constituted 82 percent of the vegetation Used by Pima Indians as a herbal remedy. Common in saline and wet lowlands Identified as phreatophyte in bottom land of lower Safford Valley, AZ Tolerates alkali. Valuable browse plant. Useful in erosion control. Taproots 30–40 ft deep. May not always occur as a phreatophyte
(Continued) 4-97
q 2006 by Taylor & Francis Group, LLC
4-98
Table 4L.82
(Continued) Relation to Groundwater
Scientific Name Baccharis emoryi A. Gray
glutinosa Persoon
sarothroides A. Gray
viminea Crandolle
Bigelovia hartwegii, probably Aplopappus heterophyllus A. Gray Celtis reticulata Torrey Cercidium floridum Bentham
Quality
—
2
2–15
2
4.7
Evapotranspiration for plants grown in tanks ranged from 10.3 ft with water level at 2 ft to 4.6 ft with water level of 6 ft. Safford Valley, AZ
—
—
—
Occurs along streams in draws, in canyon bottoms and wet alkaline sites
—
2
—
Occurs as a phreatophyte in lower Safford Valley, AZ
—
—
—
Useful in erosion control
—
—
—
Will grow in dry places but thrives where groundwater is within reach
Arizona
—
—
—
Southwestern Arizona, southeastern California Western Texas to southern Nevada, Arizona, southern California Mud Lake, Idaho
—
—
—
A large tree that may reach 3 ft in diameter and 50 ft in height. Usually occurs along streams Common along washes, canyons, valleys, alluvial plains, grassland at sites where groundwater is plentiful
To 50
—
—
May not always occur as a phreatophyte
—
—
—
Emory baccharis
Texas to southern California and southern Utah Colorado and Batamote, Texas to seepwillow, California and water motie, Mexico waterwillow Broom baccharis, Southern California, desertbroom, Arizona, rosinbrush southwestern New Mexico Squaw baccharis, Arizona, southern waterweed California, southern Nevada, southwestern Utah Mulefat Southwestern Utah, southern California, Nevada, Arizona Rayless goldenrod Hackberry, cumaru, kom Blue palo verde
Chilopsis linearis Sweet
Desertwillow
Chrysothamnus pumilus (Nuttall)
Rabbitbrush
q 2006 by Taylor & Francis Group, LLC
Use (acre feet/acre)
Remarks
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
sergiloides A. Gray
Common Name
Depth to Water Below Land Surface (ft)
Occurrence as a Phreatophyte
Rubber rabbitbrush
nauseosus graveolens (Nuttall)
Rubber rabbitbrush
nauseosus mohavensis (Greene)
Rubber rabbitbrush
nauseosus oreophilus (Al Nelson) nauseosus viridulus
Rubber rabbitbrush Rubber rabbitbrush
Cowania stansburiana (Torrey)
Vanadium bush
Dalea spinosa Gray
Smoketree, smokethorn
Dasiphora fruticosa Linnaeus
Bush or shrubby cinquefoil
Distichlis spicata (Linnaeus) Greene stricta (Torrey) Rydberg
Seashore saltgrass Saltgrass, or desert saltgrass Elymus condensatus Presl Giant wildrye
triticoides Buckley Eragrostis obtusiflora (Fournier) Scribner
Nevada, Utah, Idaho, Wyoming Montana, Idaho, Utah, Nevada, New Mexico Northern California, Nevada Wyoming, Colorado, Utah Colorado to Oregon; Nevada, New Mexico Arizona, Idaho, Utah
Southeastern California, southwestern Arizona Locally in Idaho but widespread in Oregon, Washington, Utah, Nevada and Arizona Western United States All Western States
All Western States except New Mexico Creeping wildrye Western United States Mexican Southeastern saltgrass, alkali Arizona, lovegrass southwestern New Mexico
HYDROLOGIC ELEMENTS
nauseosus consimilis (Greene)
—
2–3
—
2.5–15
2–3
—
—
2–3
—
—
—
—
—
—
—
—
—
—
—
—
—
Shallow
—
—
—
—
—
2–14
1–3
—
1–12
1–2
—
Fair forage, Killed by overgrazing. Extensive root system
—
1–2
—
4–15
2–3
—
Good forage. Frequently cut for hay. Associated with giant wild-rye along Humboldt River, Nev Commonly locally in saline soil near Wilcox, AZ. Observed growing in Sulphur Springs Valley, AZ, where depth to water table was from 4–15 ft
Used as an indicator of vanadium–uranium deposits by prospectors in the Colorado Plateau. Able to grow in highly mineralized ground and to absorb large amounts of uranium Its persistent occurrence in gravelly and sandy washes suggests it depends upon groundwater underflow and occurs as a phreatophyte Occurs as a phreatophyte in Pahsimeroi Valley, Idaho. Grows on subalpine meadows, along streams, about cold springs in peaty, sandy, or clayey loams
(Continued) 4-99
q 2006 by Taylor & Francis Group, LLC
4-100
Table 4L.82
(Continued) Relation to Groundwater
Scientific Name Fraxinus velutina Torrey
Common Name
Occurrence as a Phreatophyte
Velvet ash, Arizona ash
Quality
Use (acre feet/acre)
—
1
—
Prominent stream-bank and canyon tree; restricted to areas with a permanent groundwater supply. Popular as a shade tree in Arizona and California
— Shallow
— 2–3
— —
Deep tap root. Identified as a phreatophyte in Colorado High tolerance for alkali. Occurs on moist saline soil
Shallow
1–2
—
—
—
—
Occurs largely along streams, washes, and in bottom lands; aggressive. Often forming thickets. Unpalatable to livestock Occurs in sandy desert
2–20
1
—
—
—
7.8
Juncus cooperi Engelmann Desertrush
Southern Utah to California
—
2–3
—
Juniperus scopulorum?
Nevada
10
1–2
—
Western United States
—
1–3
—
Western United States Western United States Mountain areas of western United States
4C
1–2
—
0–8G
1–2
—
—
1
—
Leptochola fascicularis (Lamarck) A. Gray
Rocky Mountain juniper; locally “swampcedar.” Sprangletop
Medicago sativa Linnaeus
Alfalfa
Phragmites communis Trinius Picea engelmanni Parry
Reed, giant reedgrass, carrizo Engelmann spruce
q 2006 by Taylor & Francis Group, LLC
Remarks
Occurs along watercourses and washes; intolerant of shade. Deep tap root Grows in wet sites where groundwater is shallow, also in shallow ponds. Appears to occur both as phreatophyte and hydrophyte. Deep root system. Fair to good forage Occurs on the margins of salt marshes and alkaline meadows, common in Death Valley, CA, along the edge of the playa often associated with saltgrass Occurs locally as a phreatophyte in White River and Spring Valleys, Nev. May be a hybrid between J. scopulorum and J. utahensis. Occurs along ditches and in moist waste places, often in brackish marshes; most places in alkali plains. Often invades rice fields
Occurs also as a hydrophyte in the shallow water of streams, lakes, ponds, and marshes Requires a good water supply and depends upon groundwater in many localities. Shallow root system
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Southwestern Utah, southern Nevada, California, Arizona, New Mexico, and western Texas Hedysarum boreale Nuttall Sweet vetch Colorado, Utah Heliotropium curassavicum Heliotrope, Southwestern Linnaeus Chinese pusley Utah to southern California Hymenoclea monogyra Burrobush Western Texas to Torrey and Gray southern California salsola Torrey and Gray White burrobush Utah to Arizona and California Juglans microcarpa Walnut, nogal, Arizona, New Berlandier butternut Mexico Juncus balticus Willdenow Wirerush, Western United wiregrass States
Depth to Water Below Land Surface (ft)
Pluchea sericea Coville
Populus tremuloides aurea Tidestorm
Prosopis juliflora (Swartz.)
velutina Wooton pubescens Bentham
Quercus agrifolia Nee lobata Nee Salicornia europaea Linnaeus rubra Linnaeus
Arizona sycamore Southern Arizona, southeastern and southwestern California, New Mexico Arrowweed Texas to southern Utah and southern California Cottonwood Western United States Quaking aspen Mountainous areas of Western United States Mesquite, honey Southern Kansas mesquite to southeastern California and Mexico Velvet mesquite Southern Arizona Screwbean Western Texas to mesquite, southern tornillo Nevada and southern California California live oak California Roble oak California Glasswort — Glasswort
utahensis Tidestrom Salix
Glasswort Willow
Sambucus
Elder, elderberry
Colorado, New Mexico, Nevada, Utah Utah Western United States Western United States
Sarcobatus vermiculatus Big greasewood Western United (Hook). Torrey States Sequoia gigantea (Lindley) Giant or bigtree California sequoia Sesuvium portulocostrum Lowland purslane Southern Nevada and California
—
1
—
Common along stream and rocky canyons, in foothills and mountains, upper desert, desert grassland, and oak woodland zones. Valuable in erosion control
0–10G
1–2
—
Occurs along streams and flood plains. Abundant along lower reaches of Colorado River and tributaries. Arrowweed may grow where depth to water is 25 ft
—
1–2
—
—
1
—
Considered a phreatophyte when it grows along streams, around springs, and in other wet areas. Shallow root system
—
1–2
—
Extensive root development. Reported to penetrate 60 ft below surface
10C —
1–2 —
3.3 —
Occurs in bottom lands. Extensive root development Characteristic of bottom lands along desert streams and water holes of Mojave and Colorado Deserts
35G 10–20 —
1 — 3
— — —
Occurrence related to depth to water table
—
3
—
— —
3 —
— —
Occurs on borders of salt lakes and alkaline places
—
1
—
Eleven species reported to grow in Western United States. Grows along streams, in canyons and in moist sites
60G
—
—
—
1
—
—
3
—
Frequently occurs in salt flats with salts approximately 1.0 percent of weight of soil Some value as waterfowl feed. In Nevada occurs along edges of channels draining into playas
Appears to prefer localities where a water table is within reach of its roots but will grow elsewhere Reported as a plant that grows on moist alkaline soils. Indicative of groundwater but usually of poor quality. Alkali resistant 4-101
(Continued)
q 2006 by Taylor & Francis Group, LLC
HYDROLOGIC ELEMENTS
Platanus wrightil Watson
4-102
Table 4L.82
(Continued) Relation to Groundwater
Scientific Name verrucosum Rafinesque
Shepherdia
Common Name Warty sesuvium, sea purslane Buffalo berry
Sporobolus airoides Torrey Alkali sacaton
Sacaton
Quality
Use (acre feet/acre)
Southern Arizona, California, and New Mexico Arizona, New Mexico, Nevada, Oregon, Black Hills Western United States
Shallow
3
—
—
1
—
Fruit edible. Grows in moist sites and along streams and river bottoms. One species reported growing as a phreatophyte in Big Smoky Valley, Nev. Occurs also as a phreatophyte in Mason Valley, Nev.
5–25G
1–3
3.7
Arizona to western Texas Southwest
—
1–2
—
—
3
—
—
3
—
4–15
3
—
Most common in the Southwest where it is important as forage; deep, coarse root system. Prefers moist alkali flats. Grows in very saline or saline-alkali soils. Soil salinity may range from 0.3 to 3.0 percent. Grows best in range 0.3 to 0.5 percent Occurs in alluvial flats and bottom lands. Will not grow on highly alkaline soils Browsed when other forage is scarce. Occurs on saline or saline-alkali soils with salt content in first foot as much as 3.2 percent Browsed when other forage is scarce. Occurs on saline or saline-alkali soils with salt content in first foot as much as 3.2 percent Browsed when other forage is scarce. Occurs on saline or saline-alkali soils with salt content in first foot as much as 3.2 percent
— —
1–3 1–3
— —
—
1–3
—
Suaeda depressa Watson
Seepweed, saltwort
Suaeda suffrutescens Watson
Desert seepweed Western Texas, New Mexico, Arizona Torrey seepweed, Eastern Oregon iodineweed, to New Mexico inkweed and California Athel tree Southwest Saltcedar, French Southwest tamarisk Fan palm, Southern Arizona, California palm California, SE New Mexico
torreyana Watson
Tamarix aphylla Linnaeus Gallica Linnaeus Washingtonia filifera Wendland
Remarks
Highly tolerant to alkali. Generally grows where groundwater is at shallow depth
Note: The quality of the groundwater with respect to its suitability for crop growth is indicated by numerals as follows: 1Zexcellent to good; 2Zgood to poor; 3Zpoor to unsatisfactory. The use of groundwater, including precipitation, unless otherwise stated is presumed to be for a plant growth of 100-percent volume density. Source: U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
wrightii Munro
Depth to Water Below Land Surface (ft)
Occurrence as a Phreatophyte
CHAPTER
5
Surface Water Christopher Spooner
CONTENTS Section Section Section Section Section Section Section Section Section
5A 5B 5C 5D 5E 5F 5G 5H 5I
Rivers . . . . . . . . . . . . . . . . . Lakes . . . . . . . . . . . . . . . . . . Waterfalls . . . . . . . . . . . . . . Glaciers and Ice . . . . . . . . . . Floods . . . . . . . . . . . . . . . . . Flood Prevention . . . . . . . . . Flood Controls Works . . . . . . Water Areas — United States Oceans and Seas . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
. . . . . . . . .
. . . . . . . . .
.. .. .. .. .. .. .. .. ..
5-2 5-39 5-64 5-68 5-93 5-126 5-128 5-130 5-142
5-1 q 2006 by Taylor & Francis Group, LLC
5-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
RIVERS
R
SECTION 5A
b um ia
R
ce
en
r
e il
Missouri
le
St
R
me
ss
iss
ipp
ver Ri
e ny
R
i
R
Riv er
bam Ala
ve r
Apalachicola
bee R
R
20,000 ft3 sec−1 50,000 ft3 sec−1 100,000 ft3 sec−1 250,000 ft3 sec−1 500,000 ft3 sec−1 Rivers shown are those whose average flow at the mouth is 17,000 ft3 sec−1 or more. Average flow of Yukon River, Alaska, is 240,000 ft3 sec−1.
Tombig
River Atc haf ala ya
R
Missis
Red
EXPLANATION
C a Ten ne ss ee
Wh it e
sippi
Riv er
R r erland r Rive mb ve i u R
eR
Arkans as
bil
o ol
o hi O
er Riv
C
do ra
le
Ri
is Illi no
River
Al
R
hR as ab W
a
R
gh
r
Mo
Rive
quehann
Sacremenio R
R
e
S us
Sn
tt e
Mi
Hudson R re R lawa De
W i lli a
ak
er iv
La wr
O nd
Col
Pe
100
0
100 0
100
200
300 MILES
100 200 300 km
Figure 5A.1 Large rivers in the United States. (From Iseri, K.T., and W.B. Langbein, Large Rivers of the United States, U.S. Geol. Survey Circular 686, 1974.)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-3
Table 5A.1 Average Discharge at Downstream Gaging Stations on Large Rivers of the United States, 1931–1960, and 1941–1970
River
Gaging-Station Location
Drainage Area (Square Miles)
Average Discharge (1931–1960) (ft3/sec)
Average Discharge (1941–1970) (ft3/sec)
Alabama Allegheny Apalachicola Arkansas Atchafalayaa
At Claiborne, AL At Natrona, PA At Chattahoochee, FL At Little Rock, AR At Krotz Springs, LA
22,000 11,410 17,200 158,000 93,320
31,140 19,200 20,700 41,300 160,800b
31,510 18,810 21,700 42,130 180,800b
Colorado Columbia Cumberland Delaware Hudson
Below Hoover Dam, AZ–NVc At The Dalles, OR Near Grand Rivers, KY At Trenton, NJf At Green Island, NY
167,800 237,000 17,598 9,397 8,090
14,580d 183,000 26,900 16,100 —
14,530 189,000 28,030e 14,500g 12,520h
Illinois Mississippi Mississippi Missouri Ohio
At Merdosia, IL At Alton, IL At Vicksburg, MS At Hermann, MO At Metropolis, IL
25,300 171,500 1,144,500 528,200 203,000
20,500 91,300 554,000 69,200 257,000
20,670 98,300 565,300 76,200 257,200
Pend Oreille Red Sacramento St. Lawrence
At international boundary At Alexandria, LA At Verona, CAi At Cornwall, Ontario-near Massena, NYj Near Clarkston, WA
25,200 67,412 — 299,000
26,900 32,470 25,700 233,000k
28,420 32,100 27,200 239,000k
103,200
48,600
48,960
25,990 40,200 18,500
36,100 63,400 25,200
35,060 64,050f 25,130
28,600 25,497 7,280 259,000
26,400 29,490 23,870 —
26,600 29,360 24,780 170,000l
Snake Susquehanna Tennessee Tombigbee Wabash White Willamette Yukon a b c
d e f g h i j k l
At Marietta, PA Near Paducah, KY At Jackson Lock and Dam near Coffeeville, AL At Mount Carmel, IL At Clarendon, AR At Salem, OR At Ruby, AK
Continuation of Red River. Includes diversion from Mississippi River through Old River or Old River diversion channel. Very little tributary flow downstream. Downstream station located at Yuma, AZ., drainage area 242,900 square miles. The greater part of the natural flow is diverted for irrigation and other uses in the basin above Yuma. Average flow at Yuma, 1963–1970, is less than 1,000 ft3secK1. For the period 1934–1960. Interbasin diversion beginning June 1966 between Lake Barkley on Cumberland River and Lake Kentucky on Tennessee River through Barkley–Kentucky Canal. Five tributaries below Trenton have been added. Unadjusted for diversion by New York City reservoirs since 1954. October 1946 to September 1970 (24 years). American River and Yolo bypass have been added. Formerly at Ogdensburg, NY Furnished by the U.S. Army Corps of Engineers through International St. Lawrence River Board of Control. Average is for 1957–1970; station operated only since 1956.
Source: From Iseri, K.T., and W.B. Langbein, 1974, Large Rivers of the United States, U.S. Geol. Survey Circular 686.
q 2006 by Taylor & Francis Group, LLC
5-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2 Flow of Selected Streams in the United States Gaging Station
Name
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
Alabama 1. 2. 3. 4. 5.
6.
7. 8.
9.
10. 11.
South Atlantic–Gulf Region Choctawhatcheee-Wseambia Subregion Choctawhatchee River, Newton 686 1923–1926 88 1937–1983 Conecuh River, Brantley 500 1937–1983 31 Alabama Subregion Coosa River, Childersburg 8,392 1915–1968 2,000 1969–1978 1,330 Tallapoosa River, Wadley 1,675 1923–1983 140 Alabama River, Montgomery 15,087 1927–1968 5,240 1969–1983 3,860 Mobile–Tombigbee Subregion Cahaba River, Centreville 1,027 1902–1907 143 1931 1937–1983 Mulberry Fork, Garden City 365 1928–1983 4.9 Black Warrior River, Northport 4,820 1895–1902 90 1929–1960 1961–1983 504 Tombigbee River, Coatopa 15,385 1928–1983 685 Tennessee Region Middle Tennessee-Elk Subregion Flint River, Chase 342 1930–1983 66 Tennessee River, Florence 30,810 1984–1983 7,490
983
40,900
680
27,300
13,860 13,860 2,594 24,260 24,260
157,600 144,900 73,800 317,000 219,500
1,633
117,000
681 8,041
51,300 221,000
8,041 23,500
305,400
554 51,900
75,200 —
4,500a 31
56,674 421
299,600a 5,420
3,040 723 5,000a
37,670 9,724 49,940
321,000 115,000 230,000a
7,380 1,100 6,000a 7,850
18,060 6,156 23,840 41,220
66,500 36,200 89,200a 445,000
10,500
82,660
605,000
6b 150 4,740 267 37,000a
14,230 1,384 23,550 14,540 219,600
476,000 38,800c 153,000d 332,000e 751,000a
1,300a
15,270
152,000a
No flow
1,367
218,000
1,670 — 2,550
17,850 — 13,590
189,500 — —
Alaska 1. 2.
Stikine River, Wrangell Fish Creek, Ketchikan
3. 4. 5.
Copper River, Chitina Susitna River, Gold Creek Susitna River, Susitna Station
6. 7. 8. 9.
Kvichak River, Igiugig Nuyakuk River, Dillingham Nushagak River, Ekwok Kuskokwim River, Crooked Creek
10.
Yukon, River, Eagle
11. 12. 13. 14. 15.
Porcupine River, Fort Yukon Chena River, Fairbanks Tanana River, Nenana Koyukuk River, Hughes Yukon River, Pilot Station
16.
Kobuk River, Kiana
17.
Kaparuk River, Deadhorse
Alaska Region Southeast Alaska Subregion 19,920 1976–1983 32.1 1915–1936b 1938–1983 South-Central Alaska Subregion 20,600 1955–1983 6,160 1949–1983 19,400 1974–1983 Southwest Alaska Subregion 6,500 1967–1983 1,490 1953–1983 9,850 1977–1983 31,100 1951–1983 Yukon Subregion 113,500 1911–1913b 1950–1983 29,500 1964–1979 1,980 1948–1983 25,600 1962–1983 18,700 1960–1982 321,000 1975–1983 Northwest Alaska Subregion 9,520 1976–1983 Arctic Subregion 3,130 1971–1983
Arizona 1.
Colorado River, Lees Ferry
2.
Colorado River, below Hoover Dam
Lower Colorado River Basin 111,800 1912–1962 1965–1984 171,700 1935–1984
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-5
(Continued) Gaging Station
Name 3. 4.
Bill Williams River, below Alamo Dam Colorado River, above Morelos Dam
5.
Little Colorado River, Cameron
6. 7.
Gila River, Clifton Gila River, Solomon
8. 9. 10. 11.
San Pedro River, Palominas San Pedro River, Winkelman Gila River, Kelvin Santa Cruz River, Tucson
12. 13. 14. 15.
Black River, Fort Apache White River, Fort Apache Salt River, Roosevelt Verde River, above Horseshoe Dam
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
4,730 1940–1968 246,700 1950–1984 Little Colorado Subregion 26,500 1974–1984 Upper Gila Subregion 4,010 1928–1984 7,896 1914–1984 Middle Gila Subregion 741 1950–1981 4,471 1966–1979 18,011 1912–1984 2,222 1915–1981 Salt Subregion 1,232 1958–1984 632 1958–1984 4,306 1925–1984 5,872 1945–1984
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
0.72 541
92.3 —
325,000 —
—
244
32,800
8.15 22.0
192 468
30,600 86,800
0.03 — 0.82 —
32.1 57.1 494 22.7
21,800 — 244,000 20,300
16.7 4.80 81.9 72.5
412 201 888 564
56,100 11,900 164,000 158,000
99,000
474,200
1,860,000
57
5,274
—
83
—
—
105 244 236 548 0.35 12.6 6.5
2,380
194,000
7,490 — 374 2,590 676
299,000 — 39,700 102,000 6,930
16.5 894 973 1,120 279 1,980
1,027 9,830 — — 1,360 8,410
176,000 352,000 — — 163,000 176,000
1,990 !0.19 4,090 5,050 6,020
— 467 29,510 — —
— 140,000 291,000 — —
!0.1 !0.1
215 —
47,100 —
Arkansas 1.
2.
3. 4. 5. 6. 7.
8. 9.
10. 11.
12. 13.
14.
Lower Mississippi Region Mississippi River Main Stem Mississippi River, Memphis, TN 932,800 1933–1981 Lower Mississippi–St. Francis Subregion St. Francis River Basin St. Francis Bay, Riverfront — 1936–1975 1978–1981 1944–1975 1978–1981 Lower Red–Ouachita Subregion Ouachita River, Malvern 1,585 1928–1984 1954–1984 Ouachita River, Camden 5,357 1928–1984 1954–1984 Smackover Creek, Smackover 385 1961–1983 Saline River, Rye 2,102 1937–1983 Bayou Bartholomew, McGehee 576 1939–1942 1946–1984 Arkansas–White–Red Region Upper White Subregion White River Basin Buffalo River, St. Joe 829 1939–1984 White River, Calico Rock 9,978 1939–1983 1945–1983 1958–1983 Spring River, Imboden 1,183 1936–1983 Black River, Black Rock 7,369 1929–1931 1939–1983 1950–1983 Middle Fork Little Red River, Shirley 302 1939–1983 White River, Clarendon 25,555 1928–1981 1945–1981 1958–1981 Lower Arkansas Subregion Arkansas River Basin Poteau River, Cauthron 203 1939–1983 1950–1983
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 15. 16. 17.
Mulberry River, Mulberry Big Piney Creek, Dover Petit Jean River, Danville
18.
Arkansas River, Murray Dam
19.
Red River, Index
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
!0.16 0.15 0.74 1.9 1,230
534 398 809 — 40,290
82,400 112,000 91,900 — 588,000
812 934 1,110
11,170 — —
190,000 — —
169 1,061 1,618 5,732 64 426
7,957 9,424 18,240 22,680 3,735 3,942
521,000 332,000 77,700f 94,700f 257,000 150,000
104 111 52 241
762 2,177 733 4,783
45,800 135,000 14,400 99,900
0.1 1.0 0 0 0 0.1 3.8 0.1
42.3 13.7 43.3 31.0 52.8 110 222 36.2
54,900 5,400 46,000 32,000 33,800 192,000 118,000 161,000
2.9
67.8
58,500
0.1 0.5 0.6 9.2
659 262 590 140
145,000g 145,000g 145,000g 39,600
77 40 43 1,859 191
2,230 2,435 7,412 18,110 3,891
108,000 93,400 608,000 556,000 231,000
2.4
240
2,830
35 3.3 51 7.6
440 79.1 834 524
7,870 2,410 40,400 62,300
373 274 764
1938–1983 1950–1983 1916–1984 1949–1984 158,030 1927–1984 Red–Sulphur Subregion Red River Basin 48,030 1936–1984 1945–1984 1969–1984
100-Year Flood (ft3/sec)
California 1. 2. 3.
4. 5. 6. 7. 8. 9. 10. 11. 12.
13.
14. 15. 16. 17. 18.
19.
California Region Sacramento Subregion Feather River, Nicolaus 5,921 1944–1969 1970–1983 Sacramento River, Verona 21,251 1930–1969 1970–1983 American River Fair Oaks 1,888 1906–1955 1956–1983 Tulare–Buena Vista Lakes and San Joaquin Subregions Kern River, Kernville 846 1912–1984 Kings River, Trimmer 1,342 1953–1983 Merced River, Stevinson 1,273 1941–1983 San Joaquin River, Vernalis 13,536 1930–1983 Southern California Coastal Subregion San Diego River, Santee 377 1914–1943 1944–1982 Santa Margarita River, Ysidora 740 1924–1948 1949–1983 Santa Ana River, Santa Ana 1,700 1942–1984 Los Angeles River, at Long Beach 827 1930–1940 1941–1982 Santa Clara River, Los Angeles– 625 1953–1971 Ventura County Line 1972–1984 Central California Coastal Subregion Salinas River, Spreckels 4,156 1930–1941 1942–1965 1966–1984 San Lorenzo River, Big Trees 106 1937–1984 Klamath–Northern California Coastal Subregion Russian River, Guerneville 1,338 1940–1958 1959–1983 Eel River, Scotia 3,113 1911–1984 Klamath River, Klamath 12,100 1911–1984 Smith River, Crescent City 609 1932–1984 Great Basin Region Central Lahontan Subregion Truckee River, Tahoe City 507 1910–1984
Colorado 1. 2. 3. 4.
North Platte River, Northgate South Platte River, Hartsel South Platte River, Kersey South Platte River, Julesburg
Missouri Region North and South Platte Subregions 1,431 1915–1984 880 1933–1984 9,598 1901–1984 23,138 1902–1984
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-7
(Continued) Gaging Station
Name
5. 6.
Arkansas River, Canon City Arkansas River, La Junta
7.
Purgatoire River, Trinidad
8.
Purgatoire River, Las Animas
9.
Arkansas River Lamar
10. 11.
Rio Grande, Del Norte Rio Grande, Lobatos
12. 13.
Colorado River, near Dotsero Colorado River, Cameo
14.
Gunnison River, Gunnison
15.
Gunnison River Grand Junction
16. 17.
Yampa River, Maybell White River, Meeker
18.
Animas River, Durango
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Arkansas–White–Red Region Upper Arkansas Subregion 3,117 1888–1981 12,210 1912–1973 1974–1984 795 1895–1976 1977–1981 3,503 1922–1931 1948–1976 1977–1984 19,780 1913–1942 1948–1984 Rio Grande Region Rio Grande Headwaters Subregion 1,320 1889–1984 7,700 1899–1984 Upper Colorado Region Colorado Headwaters Subregion 4,394 1940–1984 8,050 1933–1984 Gunnison Subregion 1,012 1940–1928 1944–1984 7,928 1896–1965 1968–1984 White–Yampa Subregion 3,410 1916–1984 755 1901–1984 San Juan Subregion 692 1912–1984
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
129 4.8 3.8 2.7 — 0.34
715 244 233 83.3 64.3 116
14,300 96,300 19,300 34,400 — 94,000
— 1.1 0.63
81.0 301 93.6
— 131,000 35,500
107 7.1
901 575
13,400 19,900
536 997
2,136 3,900
23,800 41,900
148 115 265 495
888 709 2,611 2,659
11,500 9,000 38,100 30,500
39 179
1,573 626
19,900 6,570
128
819
15,500
2,200 0.7 144 101 5.2
16,400 8.3 1,030 1,040 184
209,000 1,250 44,000 24,000 16,600
0.9 46.5 44.2 119 90.0 5.2
51.2 667 734 1,250 1,330 165
5,620 25,000 22,500 29,500 26,500 10,800
32.6
211
6,340
119 6.2 6.0 160 61.2 59.4
1,090 236 128 2,600 484 557
24,000 24,000 19,900 95,100 46,000 23,000
Connecticut
1. 2. 3.
Connecticut River, Thompsonville Burlington Brook, Burlington Farmington River, Rainbow
4.
Salmon Silver, East Hampton
5. 6.
Mount Hope River, Warrenville Shetucket River, Willimantic
7.
Quinebaug River, Jewett City
8.
Yantic River, Yantic
9.
Quinnipiac River, Wallingford
10. 11. 12. 13. 14.
Housatonic River, Falls Village Shepaug River, Roxbury Pomperaug River, Southbury Housatonic River, Stevenson Naugatuck River, Beacon Falls
New England Region Connecticut Subregion Connecticut River Basin 9,661 1928–1983 4.10 1931–1983 590 1928–1960 1961–1983 100 1928–1983 Connecticut Coastal Subregion Thames River Basin 28.6 1940–1983 404 1928–1952 1953–1983 713 1918–1958 1959–1983 89.3 1930–1983 Quinnipiac River Basin 115 1930–1983 Housatonic River Basin 634 1912–1983 132 1930–1971 75.1 1932–1983 1,544 1928–1983 260 1928–1959 1960–1983
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 15.
Saugatuck River, Westport
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Saugatuck River Basin 79.8 1932–1967
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
2.25
119
13,400
1.5 75
28.8 488
4,840 34,300
0.66
7.04
200
15
92.8
3,570
18
672
40,500
24 0 788 —
1,310 3,120 2,020 1,550
18,500 21,900 12,900 —
0 809 36
257 2,190 1,390
21,400 29,800
57 53 158
1,150 259 1,090
34,400 10,300 9,750
1,790 730
6,940 1,610
68,000 16,400
4,020
10,400
66,400
30
1,030
41,200
7,000
22,400
264,000
1,630 184 291 777 221
7,140 1,170 1,100 6,360 766
128,000 45,900 33,600 179,000 34,200
200
1,809
5,500
10,200
60,400 — —
150
1,446
50,700
2,250
13,770
Delaware
1. 2.
Christina River, Coochs Bridge Brandywine Creek, Wilmington
3.
Stockley Branch, Stockley
4.
Nanticoke River, Bridgeville
Mid-Atlantic Region Delaware Subregion Christina River Basin 20.5 1943–1984 314 1946–1984 Upper Chesapeake Subregion Indian River Basin 5.24 1943–1984 Nanticoke River Basin 75.4 1943–1984
Florida 1.
St. Marys River, Macclenny
2. 3. 4.
St. Johns River, Christmas St. Johns River, DeLand Oklawaha River, Rodman Dam
5. 6.
Fisheating Creek, Palmdale Kissimmee River, S-65E near Okeechobee
7. 8. 9.
Peace River, Acradia Hillsborough River, Zephyrhills Withlacoochee River, Holder
10. 11.
Suwannee River, Branford Santa Fe River, Fort White
12.
Suwannee River, Wilcox
13.
Ochlockonee River, Havana
14.
Apalachicola River, Chattahoochee
15. 16. 17. 18. 19.
Choctawhatchee River, Bruce Yellow River, Milligan Shoal River, Crestview Escambia River, Century Perdido River, Barrineau Park
South Atlantic–Gulf Region Altamaha–St. Marys Subregion 700 1927–1983 St. Johns Subregion 1,539 1934–1983 3,066 1934–1983 2,747 1944–1968 1969–1983 Southern Florida Subregion 311 1932–1983 2,886 1929–1962 1964–1983 Peace–Tampa Bay Subregion 1,367 1932–1983 220 1940–1983 1,825 1932–1983 Suwannee Subregion 7,880 1932–1983 1,017 1928–1929 1933–1983 9,640 1931 1942–1983 Ochlockonee Subregion 1,140 1927–1983 Apalachicola Subregion 17,200 1929–1983 Choctawhatchee–Escambia Subregion 4,384 1931–1983 624 1939–1983 474 1939–1983 3,817 1935–1983 394 1942–1983
Georgia 1.
Broad River, Bell
2.
Savannah River, Augusta
3.
Oconee River, Greensboro
4.
Altamaha River, Doctortown
South Atlantic–Gulf Region Ogeechee–Savannah Subregion 1,430 1927–1932 1937 7,508 1960–1981 Altamaha–St. Marys Subregion 1,090 1903–1932 1936–1978 13,600 1931–1983
225,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-9
(Continued) Gaging Station Drainage Area (mL2)
Name 5.
Penholoway Creek, Jesup
6.
Alapaha River, Statenville
7. 8.
Chattahoochee River, Atlanta Flint River, Culloden
9.
Flint River, Albany
10.
Etowah River, Allatoona Dam
11.
Toccoa River, Dial
Streamflow Characteristics
Period of Analysis
210 1958–1983 Suwannee Subregion 1,400 1931–1983 Apalachicola Subregion 1,450 1959–1981 1,850 1911–1923 1928–1931 1937–1983 5,310 1901–1921 1929–1983 Alabama Subregion 1,120 1950–1981 Tennessee Region Middle Tennessee–Hiawassee Subregion 177 1912–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
0
201
7,180
25
1,044
24,200
860 180
2,840 2,402
— 99,100
1,000
6,303
94,600
240
1,944
—
125
498
16,600
10.4
48.6
10,400
0.29
6.74
10,400
0.26
4.69
4,410
0.10
11.8
1,140
80
937
8,190
200
1,686
11,500
180
6,297
46,000
560 400 14
6,691 2,088 280
31,700 12,100 2,650
5 — 36
2,711 — 314
42,400 28,300 3,280
2
480
10,400
6,000 — 47
10,910 — 409
54,600 39,100 7,500
Hawaii 1.
East Branch of North Fork Wailua River near Lihue
2.
Kalihi Stream, near Honolulu
3.
Honopou Stream near Huolo
4.
Waiakea Stream near Mountain View
Hawaii Region Kauai Subregion 6.27 1916–1983 Oahu Subregion 2.61 1917–1983 Maui Subregion 0.64 1911–1983 Hawaii Subregion 17.4 1931–1983
Idaho
1.
Bear River, Preston
2.
Priest River, Priest River
3.
Spokane River, Post Falls
4. 5. 6.
Snake River, Irwin Henrys Fork, Rexburg Portneuf River, Pocatello
7.
Snake River, Milner
8.
Big Lost River, below Mackay Reservoir, Mackay
9.
Big Wood River below Magic Dam, Richfield
10.
Snake River, King Hill
11.
Bruneau River, Hot Spring
Great Basin Region Bear Subregion Bear River Basin 4,545 1944–1984 Pacific Northwest Region Kootenai–Pond Oreille–Spokane Subregion Pend Oreille River Basin 902 1904 1930–1984 Spokane River Basin 3,340 1913–1984 Upper Snake Subregion 5,225 1950–1984 2,920 1910–1984 1,250 1913–1916 1918–1984 17,180 1910–1926 1927–1984 813 1905
1,600
1913–1914 1920–1984 1913–1984
Middle Snake Subregion 35,800 1910–1926 1927–1984 2,630 1904–1914 1943–1984
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-10
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 12. 13. 14. 15.
Boise River, Boise Payette River, Payette Weiser River, Weiser Snake River, Weiser
16.
Salmon River, White Bird
17.
Clearwater River, Spalding
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
2,680 1953–1984 3,240 1936–1984 1,460 1953–1984 69,200 1911–1984 Lower Snake Subregion 13,550 1911–1917 1920–1984 9,570 1910–1913 1925–1984
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
1 400 54 6,600
2,951 3,183 1,132 18,490
10,000 10,000 26,000 10,000
2,400
11,420
126,000
1,500
15,550
188,000
— 3,180 — 3,630
— 9,791 — 21,976
91,100 — 132,300 —
463 — 6.0 48 176 366 — 9.6 1.3 20 147 263 10
4,233 — 471 — 1,703 — 822 — 511 1,054 3,335 — 802
68,100 7,830 — — 37,400 — 40,700 — 43,900 37,600 82,800 — 27,500
191 68 1,270 40
900 713 6,020 610
21,300 25,000 58,800 13,000
14 34 — 2.3 47
1,412 1,769 — 1,788 1,888
33,000 30,400 39,300 — 41,000
Illinois
1. 2.
3. 4.
5. 6. 7. 8. 9. 10.
11. 12. 13. 14.
15. 16.
Upper Mississippi Region Upper and Lower Illinois Subregions Illinois River Main Stem Illinois River, Marseilles 8,259 1919–1983 1940–1983 Illinois River, Meredosia 26,028 1921–1983 1940–1983 Illinois River Basin–Tributaries Kankakee River, Wilmington 5,150 1915–1983 Des Plaines, River Riverside 630 1914–1983 1943–1983 1974–1983 Fox River, Dayton 2,642 1915–1983 1974–1983 Vermillion River, Leonore 1,251 1931–1983 1973–1983 Mackinaw River, Congerville 767 1945–1983 Spoon River, Seville 1,636 1914–1983 Sangamon River, Oakford 5,093 1910–1983 1974–1983 La Moine River, Ripley 1,293 1921–1983 Rock Subregion Rock River Basin Pecatonica River, Freeport 1,326 1914–1983 Kishwaukee River, Perryville 1,099 1940–1983 Rock River, Joslin 9,549 1940–1983 Green River, Geneseo 1,003 1936–1983 Upper Mississippi–Kaskaskia–Meramec Subregion Kaskaskia and Big Muddy River Basins Kaskaskia River, Vandalia 1,940 1908–1969 1970–1983 Big Muddy River, Murphysboro 2,169 1916–1970 1931–1970 1971–1983
Ohio Region Wabash and Lower Ohio Subregions Embarras and Little Wabash River Basins 1,516 1910–1983 3,102 1940–1983
17. 18.
Embarras River, Ste. Marie Little Wabash, River, Carmi
14 6.2
1,224 2,529
53,700 45,300
1.
Ohio Region Great Miami Subregion Whitewater River Basin Whitewater River, Alpine 522 1928–1983 48 Wabash Subregion Wabash River Main Stem–White River Basin–Patoka River Basin Muscatatuck River, Deputy 293 1947–1983 0.0
551
49,000
348
41,200
Indiana
2.
(Continued) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-11
(Continued) Gaging Station
Name 3. 4.
South Fork Patoka River, Spurgeon Eagle Creek, Indianapolis
5. 6.
Driftwood River, Edinburgh Wabash River, Peru
7.
Wabash River, Mount Carmel, IL
8. 9.
Kankakee River, Shelby Iroquois River, Foresman
10. 11.
St. Joseph River, Elkhart Pigeon Creek Angola
12.
Muamee River, New Haven
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
42.8 174
1964–1983 1938–1968 1969–1983 1,060 1940–1983 2,686 1943–1967 1970–1983 28,635 1927–1983 Upper Mississippi Region Upper Illinois Subregion Kankakee River Basin 1,779 1922–1983 449 1948–1983 Great Lakes Region Southestern Lake Michigan Subregion St. Joseph River Basin 3,370 1947–1983 106 1947–1983 Western Lake Erie Subregion Maumee River Basin 1,967 1956–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
2.2 0.5 6.0 91 92 155 2,280
51.9 148 168 1,144 2,290 2,500 27,440
5,990 18,400 11,800 49,500 74,300 31,000 315,000
417 11
1,619 383
6,950 5,660
818 5.8
3,177 78.5
21,500 843
72
1,645
25,600
10,050
47,390
295,000h
32 81
327 949
22,400 33,100
160 98
1,027 1,537
47,700 31,600
60 93 2.3 64 284 347 555 893
1,470 2,180 370 974 2,984 3,414 5,950 8,650
43,700 17,400 25,300 42,800 98,900 83,500 102,000 116,000
10 2.3 31
916 436 2,407
25,800 27,400 55,200
40 8.3 26 34 143
1,882 708 449 1,346 5,160
54,600 27,200 32,200 46,500 123,000
245
7,860
90,600
3,810 6,570
30,000 28,700
437,000 144,500n
Iowa 1.
Mississippi River, Clinton
2. 3.
Upper Iowa River, Decorah Turkey River, Garber
4. 5.
Maquoketa River, Maquoketa Wapsipinicon River, De Witt
6.
Iowa River, Iowa City
7. 8. 9. 10. 11.
English River, Kalona Shell Rock River, Shell Rock Cedar River, Waterloo Cedar River, Cedar Rapids Iowa River, Wapello
12. 13. 14.
South Skunk River, Oskaloosa North Skunk River, Sigourney Skunk River, Augusta
15. 16. 17. 18. 19.
Des Moines River, Stratford North Raccoon River, Jefferson South Raccoon River, Redfield Raccoon River, Van Meter Des Moines River, Keosauqua
20.
Missouri River, Sioux City
Upper Mississippi Region Mississippi River Main Stem 85,600 1873–1983 Northeast Iowa River Basini 511 1951–1983 1,545 1913–1916 1919–1927 1929–1930 1932–1983 1,553 1913–1983 2,330 1934–1983 Iowa–Cedar River Basinj 3,271 1903–1958 1959–1983 573 1939–1983 1,746 1953–1983 5,146 1940–1983 6,510 1902–1983 12,499 1914–1958 1959–1983 Skunk River Basinj 1,635 1945–1983 730 1945–1983 4,303 1914–1983 Des Moines River Basink 5,452 1920–1983 1,619 1940–1983 988 1940–1983 3,441 1915–1983 14,038 1903–1906 1911–1968 1969–1983 Missouri Region Missouri River Main Steml 314,600 1897–1956m 1957–1983
(Continued) q 2006 by Taylor & Francis Group, LLC
5-12
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 21. 22. 23.
Big Sioux River, Akron Floyd River, James Little Sioux River, Correctionville
24.
Boyer River, Logan
25.
Nishnabotna River, Hamburg
26.
Nodaway River, Clarinda
27.
Thompson River, Davis City
28.
Chariton River, Rathbun
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Western Iowa River Basino 9,030 1928–1983 886 1934–1983 2,500 1918–1925 1928–1932 1936–1983 871 1918–1925 1937–1983 Southern Iowa River Basinp 2,806 1922–1923 1928–1983 762 1918–1925 1936–1983 701 1918–1925 1941–1983 549 1956–1969 1970–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
19 2.7 14
901 197 766
71,000 34,300 32,600
6.5
315
31,800
28
1,057
40,700
5.8
338
37,900
1.6
370
25,500
0.25 4.0
303 382
40,327 2,130
990 30 550
76,000q 70,000 51,000r
1,600
85,000r
2,600 2,000 7,000 2,000
140,000r 50,000r 300,000r 67,000q
42,000
—
310
130,000q
280 1,800
43,000 99,000r
1,700
72,000r
2,500
56,000q
7,400 8,200 46,000
92,530 115,700 271,000
699,000 862,000 1,580,000
0.22 2.3
1,572 1,801
61,900 65,600
Kansas
1. 2. 3. 4.
5. 6. 7. 8. 9.
10. 11. 12.
13. 14.
Missouri Region Republican and Smoky Hill Subregions Republican and Smoky Hill River Basins Republic River, Clay Center 24,542 1917–1983 75q Smoky Hill River, Elkader 3,555 1940–1983 0.0 Solomon River, Niles 6,770 1897–1903 33q 1917–1983 Smoky Hill River Enterprise 19,260 1935–1983 120q Kansas, Gasconade–Osage, and Missouri–Nishnabotna Subregions Kansas, Osage, and Missouri River Basins Kansas River, Fort Riley 44,870 1964–1983 240q Big Blue River, Manhattan 9,640 1955–1983 18q Kansas River, De Soto 59,756 1917–1983 800q Marais des Cygnes River, Kansas– 3,230 1959–1983 2.5q Missouri State line Missouri River, St. Joseph, MO 420,300 1929–1983 6,100q Arkansas–White–Red Regions Middle Arkansas, Upper Cimarron, and Arkansas–Keystone Subregions Arkansas River Basin Arkansas River, Syracuse 25,763 1902–1906 0.3q 1921–1983 Little Arkansas River, Valley Center 1,327 1922–1983 10 Arkansas River, Arkansas City 43,713 1902–1906 170q 1922–1983 Middle Arkansas and Neosho–Verdigris Subregions Walnut, Verdigris, and Neosho River Basins Verdigris River, Independence 2,892 1895–1904 9.0q 1921–1983 Neosho River, Parsons 4,905 1922–1983 7.5q
Kentucky
1. 2. 3.
Ohio River, Greenup Dam Ohio River, Louisville Ohio River, Metropolis, IL
4. 5.
Salt River, Shepherdsville Rolling Fork, Boston
Ohio Region Middle and Lower Ohio Subregions Ohio River Main Stem 62,000 1968–1983 91,170 1928–1983 203,000 1928–1983 Salt River Basin 1,197 1938–1983 1,299 1938–1983
(Continued) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-13
(Continued) Gaging Station
Name 6.
Levisa Fork, Pikeville
7.
Licking River, Catawba
8. 9.
Middle Fork Kentucky River, Tallega Kentucky River, Salvisa
10. 11.
Green River, Munfordville Pond River, Apex
12. 13.
Cumberland River, Williamsburg Little River, Cadiz
14.
Tennessee River, Paducah
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Big Sandy–Guyandotte Subregion 1,232 1937–1983 Kentucky–Licking Subregion Licking River Basin 3,300 1914–1983 Kentucky River Basin 537 1930–1983 5,102 1925–1983 Green Subregion Green River Basin 1,673 1915–1983 194 1940–1983 Cumberland Subregion Cumberland River Basin 1,607 1959–1983 244 1940–1983 Tennessee Region Lower Tennessee Subregion 40,200 1889–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
5.8
1,474
76,400
13
4,143
84,900
0.64 136
730 6,737
51,400 125,000
73 0
2,722 267
70,300 25,800
22 11
2,736 349
54,000 18,200
8,190 —
64,060s 65,450t
— —
9,887 1,915
129,000 93,200
578,800 514,200
2,203,000 —
61.4
37,200
2,021 1,154
136,000 81,900
196,700 1,147
— 58,900
2,568
121,000
24,030 30,870 162
297,000 251,000 17,200
7,491
90,700
Louisiana
1. 2.
3. 4.
5. 6. 7.
8. 9. 10.
11. 12. 13.
14.
South Atlantic–Gulf Region Pearl Subregion Pearl River Basin Pearl River, Bogalusa 6,573 1939–1983 1,320 Bogue Chitto, Bush 1,213 1938–1983 460 Lower Mississippi Region Mississippi River Main Stemu Mississippi River, Vicksburg, MO 1,118,160 1929–1983 127,000 Mississippi River, Tarbert Landing, MO 1,124,900 1939–1983 142,000 Lower Red–Ouachita Subregion Ouachita River Basin Big Creek, Pollock 51 1943–1983 7.4 Lower Mississippi–Lake Maurepas Subregion Amite River, Denham Springs 1,280 1939–1983 304 Tangipahoa River, Robert 646 1939–1983 284 Louisiana Coastal Subregion Atchafalaya–Teche–Vermillion and Calcasieu–Mermentau River Basin Atchafalaya River, Simmesport 87,570 1939–1983 26,000 Calcasieu River, Oberlin 753 1923–1924 37 1939–1983 Calcasieu River, Kinder 1,700 1923–1924 202 1939–1957 1962–1983 Arkansas–White–Red Region Red–Sulphur Subregion Red River Basin Red River, Shreveport 60,613 1929–1983 1,150 Red River, Alexandria 67,500 1929–1983 1,650 Saline Bayou, Lucky 154 1941–1983 4.5 Texas–Gulf Region Sabine Subregion Sabine River Basin Sabine River, Ruliff, TX 9,329 1925–1983 432
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-14
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
Maine 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
11. 12. 13. 14. 15.
1. 2. 3. 4. 5. 6. 7.
8.
New England Region St. John Subregion St. John River, Ninemile Bridge 1,341 1950–1985 St. John River, Fort Kent 5,665 1926–1985 Aroostook River, Washburn 1,654 1930–1985 Maine Coastal Subregion St. Croix River, Baring 1,374 1958–1985 Narraguagus River, Cherryfield 227 1948–1985 Sheepscot River, North Whitefield 148 1938–1985 Penobscot Subregion Penobscot River, Dover–Foxcroft 298 1902–1985 Penobscot River, West Enfield 6,71 1901–1985 Kennebec Subregion Kennebec River, Bingham 2,715 1907–1910 1930–1985 Carrabassett River, North Anson 353 1902–1907 1925–1985 Androscoggin Subregion Swift River, Roxbury 96.9 1929–1985 Little Androscoggin River, South Paris 75.8 1913–1924 1931–1985 Androscoggin River, Auburn 3,263 1928–1985 Saco Subregion Royal River, Yarmouth 141 1949–1985 Saco River, Cornish 1,293 1916–1985 Maryland (and the District of Columbia) Mid-Atlantic Region Potomac Subregion Conoccocheague Creek, Fairview 494 1928–1983 Antietam Creek, Sharpsburg 281 1899–1983 Monocacy River, Frederick 817 1929–1983 Upper Chesapeake Subregion Pocomoke River, Willards 60.5 1949–1983 Choptank River, Greensboro 113 1948–1983 Patuxent River, Unity 34.8 1944–1983 Susquehanna Subregion Susquehanna River, Conowingo 27,100 1968–1983 Ohio Region Monongahela Subregion Youghiogheny River, Oakland 134 1941–1983
96 747 143
2,330 9,730 2,670
47,900 167,000 51,500
484 29 8.8
2,760 503 249
31,000 11,300 7,080
19 2,970
603 11,960
25,400 150,000
1,310
4,450
59,200
45
717
39,500
6.9 2.6
199 139
21,100 6,700
1,690
6,140
99,700
24 386
275 2,710
11,000 36,800
53 66 50
590 275 926
26,800 14,400 65,900
3.4 5.4 2.8
71 132 39
1,830 9,360 26,900
—
42,180
—
5.9
297
12,800
47 8.1 97 1,700 6.4 0.2 130 5.7
630 183 1,285 13,760 167 69.5 903 190
— 17,000 56,000 — — 3,100 — 29,000
84
921
—
46 33
568 630
16,000 6,000
Massachusetts 1. 2. 3. 4. 5. 6. 7. 8. 9.
Millers River, Erving North River, Shattuckville Deerfield River, West Deerfield Connecticut River, Montague City Ware River, Barre East Branch Swift River, Hardwick Chicopee River, Indian Orchard West Branch Westfield River, Huntington Westfield River, Westfield
10. 11.
Nashua River, East Pepperell Concord River, Lowell
New England Region Connecticut Subregion 372 1915–1983 89.0 1940–1983 557 1941–1983 7,860 1905–1983 96.3 1929–1983 43.7 1938–1983 689 1929–1983 94.0 1936–1983 497 1915–1983 Merrimack Subregion 316 1936–1983 307 1937–1983
(Continued) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-15
(Continued) Gaging Station
Name 12. 13. 14. 15. 16. 17. 18.
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Merrimack River, Lowell
4,423 1924–1983 Massachusetts–Rhode Island Coastal Subregion Parker River, Byfield 21.3 1946–1983 Ipswich River, Ipswich 125 1931–1983 Charles River, Dover 183 1938–1983 Indian Head River, Hanover 30.2 1967–1983 Wading River, Norton 43.3 1926–1983 Connecticut Coastal Subregion Housatonic River, Great Barrington 280 1914–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
937
7,530
—
0.2 2.0 13 1.4 2.3
36.7 187 302 62.4 73.3
610 3,120 3,800 1,800 1,500
69
526
11,000
3,260 1,420
20,400 12,300
205
6,890
833
8,800
3,570
53,000
892
13,000
998
9,060
1,970
14,100
2,000
8,240
420 743 490
9,330 16,700 20,800
1,680
44,600
1,430 216
32,400 4,830
936 531 456
7,660 23,200 5,940
1,194 173 13.1
7,655 1,264 276
98,000 15,300 10,000
14.7
664
19,000
64.4
602
14,000
61.6
501
34,000
Michigan 1. 2. 3. 4. 5. 6.
7. 8.
9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
Great Lakes Region Northwestern Lake Michigan and Southeastern Lake Michigan Subregions St. Joseph River, Niles 3,666 1931–1984 945 Kalamazoo River, Fennville 1,600 1930–1936 335 1938–1984 Red Cedar River, East Lansing 355 1903 9.79 1932–1984 Grand River, Lansing 1,230 1902–1906 80.2 1935–1984 Grand River, Grand Rapids 4,900 1902–1905 721 1931–1984 Escanaba River, Cornell 870 1904–1912 168 1951–1984 Northeastern Lake Michigan–Lake Michigan Subregion Muskegon River, Evart 1,450 1931 314 1934–1984 Muskegon River, Newaygo 2,350 1910–1914 672 1917–1919 1931–1984 Manistee River, Manistee 1,780 1952–1984 1,210 Southwestern Lake Huron–Lake Huron Subregion Shiawassee River, Fergus 637 1940–1984 42.1 Flint River, Fosters 1,188 1940–1984 66.4 Cass River, Frankenmuth 841 1936 20.4 1940–1984 Tittabawassee River, Midland 2,400 1937–1984 187 Southern Lake Superior–Lake Superior and St. Clair–Detroit Subregions Ontonagon River, Rockland 1,340 1943–1984 308 Sturgeon River, Sidnaw 171 1913–1915 8.19 1944–1984 Tahquamenon River, Paradise 790 1954–1984 196 Clinton River, Mt. Clemens 734 1935–1984 61.4 Huron River, Ann Arbor 729 1905–1984 43.6
Minnesota 1. 2. 3.
Mississippi River, Anoka Crow Wing River, Pillager Sauk River, St. Cloud
4.
Crow River, Rockford
5.
Rum River, St. Francis
6.
Cannon River, Welch
Upper Mississippi Region Mississippi River Basinv 19,000 1932–1983 3,300 1968–1983 925 1910–1912 1931 1935–1981 2,520 1910–1917 1931 1935–1983 1,360 1931 1934–1983 1,320 1911–1913 1931–1971
(Continued) q 2006 by Taylor & Francis Group, LLC
5-16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name
Streamflow Characteristics Drainage Area (mL2)
7.
Zumbro River, Zumbro Falls
1,130
8.
Root River, Houston Minnesota Subregion
1,270
9. 10.
Minnesota River, Jordan Lac qui Parle River, Lac qui Parle
11. 12.
Chippewa River, Milan Cottonwood River, New Ulm
13.
Blue Earth River, Rapidan
14.
St. Croix River, St. Croix Falls
15. 16. 17.
Otter Tail River, Orwell Dam Fergus Falls Red River of the North, Grand Forks Red Lake River, Crookston
18. 19.
Rainy River, Manitou Rapids Little Fork River, Littlefork
20.
Big Fork River, Big Falls
21. 22. 23
Pigeon River, Grand Portage Baptism River, Beaver Bay St. Louis River, Scanlon
Period of Analysis 1910–1917 1931–1980 1910–1917 1931–1983
16,200 983
1935–1983 1913 1932 1934–1983 1,870 1938–1983 1,280 1912–1913 1936–1937 1939–1983 2,430 1940–1945 1950–1983 St. Croix Subregion 6,240 1903–1983 Souris–Red–Rainy Region Red Subregion Red Lake River Basin 1,830 1931–1983 30,100 1883–1983 5,280 1902–1983 Rainy Subregion Little Fork and Big Fork River Basins 19,400 1929–1983 1,730 1912–1916 1929–1983 1,460 1929–1979 1983 Great Lakes Region Western Lake Superior Subregion 600 1924–1983 140 1928–1983 3,430 1909–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
77.7
517
40,200
178
696
51,500
171 0.20
3,520 120
115,000 19,300
2.90 2.77
269 289
12,400 33,000
14.9
895
34,600
1,099
4,235
61,000
12.3
304
4,800
71.4 31.6
2,558 1,130
89,000 31,000
3,597 40.3
12,830 1,053
80,000 27,400
33.7
715
21,800
44.5 3.45 316
506 169 2,313
13,600 8,820 38,000
831 741
9,330 10,900
— 45,000
87
1,070
14,100
84
3,800
73,400
324 365
6,110 7,530
— 97,100
233
6,520
223,000
865
9,350
Mississippi
1.
Yazoo River, Greenwoodw
2.
Big Sunflower River, Sunflowerw
3.
Big Black River, Bovina
4.
Pearl River, Monticello
5.
Tombigbee River, Columbus
6.
Pascagoula River, Merrill
Lower Mississippi Region Lower Mississippi–Yazoo Subregion Yazoo River Basin 7,450 1907–1912 1927–1939 1940–1984 767 1935–1984 Lower Mississippi–Big Black Subregion Big Black River Basin 2,810 1936–1984 South Atlantic–Gulf Region Pearl Subregion Pearl River Basin 4,993 1938–1960 1961–1984 Mobile–Tombigbee Subregion Tombigbee River Basin 4,463 1899–1912 1928–1982 Pascagoula Subregion Pascagoula River Basin 6,590 1930–1968
— (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-17
(Continued) Gaging Station
Name
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis 1969–1984
7-Day, 10-Year Low Flow (ft3/sec) 1,080
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
11,800
221,000
1,700 183,000 3,100 198,000
87,000 1,000,000 144,000 1,100,000
1,100 530
89,000 11,000
51,000 1,200 9,900 2,500 72,000
— 72,000 — 106,000 —
940 3,500 2,700 840
69,000 — 104,000 80,000
122 2,230 65
430 7,827 940
3,040 96,000 —
0.00
301
34,600
13 1,520
710 11,000
36,600 54,900
1,090 767 3.3
7,074 3,939 440
80,000 41,700 17,800
1.6 1,410
612 13,080
48,100 156,000
1,440 123 1,090 4,440
7,583 931 9,737 20,010
79,800 13,200 84,000 145,000
Missouri 1. 2. 3. 4.
5. 6.
7. 8. 9. 10. 11.
12. 13. 14. 15.
Upper Mississippi Region Upper Mississippi–Kaskaskia–Meramec Subregion Salt River, New London 2,480 1922–1983 1.7 Mississippi River, St. Louis 697,000 1951–1983 43,000 Meramec River, Eureka 3,788 1921–1983 280 Mississippi River, Thebes, IL 713,200 1951–1983 47,100 Lower Mississippi Region Lower Mississippi–St. Francis Subregion St. Francis River Basin St. Francis River, Patterson 956 1920–1983 15 Little River, Morehouse 450 1945–1983 33 Missouri Region Gasconade–Osage and Chariton–Grand Subregions Osage and Grand River Basins Missouri River, Kansas City 485,200 1955–1983 6,400 Grand River, Gallatin 2,250 1921–1983 4.0 Osage River, St. Thomas 14,500 1931–1983 480 Gasconade River, Jerome 2,840 1923–1983 320 Missouri River, Hermann 524,200 1955–1983 11,000 Arkansas–White–Red Region Upper White Subregion White River Basin James River, Galena 987 1921–1983 38 White River, Branson 4,020 1956–1983 78 Current River, Doniphan 2,038 1918–1983 940 Spring River, Waco 1,164 1924–1983 18
Montana 1. 2. 3.
Beaverhead River, Barretts Missouri River, Fort Benton Marias River, Shelby
4.
Musselshell River, Mosby
5. 6.
Milk River, Nashua Missouri River, Culbertson
7. 8. 9.
Yellowstone River, Billings Bighorn River, Bighorn Tongue River, Miles City
10. 11.
Powder River, Locate Yellowstone River, Sidney
12. 13. 14. 15.
Clark Fork, St. Regis Bitterroot River, Darby Flathead River, Columbia Falls Clark Fork, Plains
Missouri Region Missouri River Basinx 2,737 1907–1983 24,749 1890–1983 3,242 1902–1904 1905–1906 1907–1908 1911–1983 7,846 1929 1932–1983 1934–1930 22,332 1939–1983 91,557 1941–1951 1958–1983 Yellowstone River Basiny 11,795 1928–1983 22,885 1945–1983 5,379 1938–1942 1946–1983 13,194 1938–1983 69,103 1910–1931 1933–1983 Pacific Northwest Region Clark Fork Basinz 10,709 1910–1983 1,049 1937–1983 4,464 1928–1983 19,958 1910–1983
(Continued) q 2006 by Taylor & Francis Group, LLC
5-18
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station Drainage Area (mL2)
Name 16.
Streamflow Characteristics
Period of Analysis
Kootenai River Basinz 10,240 1911–1970 1973–1983
Kootenai River, Libby
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
1,610 2,560
12,100 11,740
116,000 76,300
1,450bb 6,210bb
25,230bb 40,190bb
99,000bb 241,000bb
Nebraska 1. 2.
Missouri River, Fort Randall Dam, SD Missouri River, Rulo
3.
Niobrara River, Norden
4. 5.
Pumpkin Creek, Bridgeport North Platte River, North Platte
6.
South Platte River, North Platte
7.
Platte River, Overton
8.
Platte River, Louisville
9. 10.
Middle Loup River, Dunning Loup River, Genoa
11.
Elkhorn River, Waterloo
12.
Big Nemaha River, Falls City
13. 14.
Medicine River, Harry Strunk Lake Republican River, Cambridge
15. 16.
Big Blue River, Barneston Little Blue River, Fairbury
Missouri Region Missouri River Main Stemaa 263,500 1947–1983 414,900 1950–1983 Niobrara Subregion 8,390 1953–1963 1964–1983 North Platte Subregion 1,020 1932–1983 30,900 1896–1940 1941–1983 South Plate Subregion 24,300 1918–1946 1947–1983 Platte Subregion 57,700 1915–1940 1941–1983 85,800 1954–1983 Loup Subregion 1,850 1946–1983 14,400 1943–1983 Elkhorn Subregion 6,900 1929–1983 Missouri–Nishnabotna Subregion 1,340 1945–1983 Republican Subregion 770 1951–1983 14,520 1950–1983 Kansas Subregion Blue River Basin 4,447 1933–1983 2,350 1911–1915 1930–1983
516 398
952 810
10,900
0.35 135
28.3 2,720 713
3,320 36,700 10,700
78
435 402
77,300 57,300
46 430
2,860 1,470 5,980
60,700 32,800 169,000
260 0.96
401 574
1,100 130,000
119
1,120
83,500
11.4
587
80,700
16.0 18.0cc
65.9 279cc
23,700 16,800cc
35.1 48.3
787 369
50,100 48,500
48 31
243 41.5
35,300 5,000
0 —
0.025 46.6
4,300 6,500
8.9
385
7,700
0.3
235
5,700
Nevada 1. 2.
Virgin River, Littlefield, AZ Muddy River, Moapa
3. 4.
Lee Canyon, Charleston Park Las Vegas Wash, Henderson
5.
Humboldt River, Palisade
6.
Humboldt River, Imlay
Lower Colorado Regions Lower Colorado–Lake Mead Subregion 5,090 1929–1983 3,820 1913–1915 1916–1918 1928–1931 1944–1983 9.20 1963–1983 2,125 1957–1983 Great Basin Region Black Rock Desert–Humboldt Subregion Humboldt River Basin 5,010 1902–1906 1911–1983 15,700 1911–1983
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-19
(Continued) Gaging Station Drainage Area (mL2)
Name
7.
8. 9. 10. 11.
Streamflow Characteristics
Period of Analysis
Central Lahontan Subregion Walker Lake Basin Walker River, Wabuska 2,600 1902–1904 1920–1924 1925–1935 1939–1941 1942–1943 1944–1983 Carson River Basin Carson River, Carson City 886 1939–1983 Truckee River Basin Truckee River, Nixon 1,827 1957–1983 Central Nevada Desert Basins Subregions Newark Valley tributary, Hamilton 157 1962–1983 South Twin River, Round Mountain 20 1965–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
3.8
170
6,700
4.8
418
28,300
14
538
28,300
0 0.78
0.325 7.06
1,100 260
1,280
2,465
20,900
93
933
53,800
4.9
282
6,310
115 13
1,358 213
60,800 —
3.7 663
112 5,280
4,080 —
35 49
571 473
— 10,800
27
208
13,600
632 40 993 46
4,731 404 9,380 671
— 13,800 — —
0 3.7 32 13
103 172 1,168 102
5,570 3,730 22,500 5,750
22
123
6,600
0.1 72
65.1 1,293
8,390 40,800
0
12.9
3,280
New Hampshire 1.
Androscoggin River, Gorham
2.
Saco River, Conway
3.
Lamprey River, Newmarket
4. 5.
Pemigewasset River, Plymouth Blackwater River, Webster
6. 7.
Soucook River, Concord Merrimack River, Goffs Falls Manchester
8. 9.
Connecticut River, Pittsburg Upper Ammonoosuc River, Groveton
10.
Ammonoosuc River, Bethlehem Junction Connecticut River, Wells River, VT Sugar River, West Claremont Connecticut River, North Walpole Ashuelot River, Hinsdale
11. 12. 13. 14.
New England Region Androscoggin Subregion 1,361 1913–1983cc Saco Subregion 385 1903–1909 1929–1983 183 1934–1983 Merrimack Subregion 622 1903–1983 129 1918–1920 1927–1983 76.8 1951–1983 3,092 1936–1983 Connecticut Subregion 254 1956–1983 232 1940–1980 1982–1983 87.6 1939–1983 2,644 269 5,493 420
1949–1983 1928–1983 1942–1983 1907–1911 1914–1983
New Jersey Lower Hudson–Long Island Subregion Hackensack and Passaic River Basins 113 1922–1984 100 1904–1984dd 762 1898–1984 54.6 1924–1984 Raritan River Basin 65.3 1919–1984
1. 2. 3. 4.
Hackensack River, New Milford Passaic River, Chatham Passaic River, Little Falls Saddle River, Lodi
5.
South Branch Raritan River, High Bridge Stony Brook, Princeton Raritan River below Calco Dam Bound Brook Green Brook, Plainfield
6. 7. 8.
44.5 785
1954–1984 1904–1984dd
9.75
1939–1984
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name
9. 10. 11. 12.
13. 14. 15. 16. 17. 18.
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Delaware and Lower Hudson–Long Island Subregions Atlantic Coastal Basins Swimming River, Red Bank 49.2 1923–1984 0 Manasquan River, Squankum 44.0 1932–1984 18 Oyster Creek, Brookville 7.43 1968–1984 13 Great Egg Harbor River, Folsom 57.1 1926–1984 22 Delaware Subregion Delaware River Basin and Streams Tributary to Delaware Bay Maurice River, Norma 112 1933–1984 37 Flat Brook, Flatbrookville 64.0 1924–1984 7.8 Delaware River, Trenton 6,780 1914–1984 1,800ff Crosswicks Creek, Extonville 81.5 1941–1984gg 24 McDonalds Branch, Lebanon State 2.35 1954–1984 0.9 Forest Cooper River, Haddonfield 17.0 1964–1984 8.6
Average Discharge (ft3/sec)
80.8ee 75.9 28.7 86.8
168 110 11,740 136 2.32 36.3
100-Year Flood (ft3/sec)
11,000 2,870 514 1,230
2,880 7,070 217,000ff 5,800 49 3,840
New Mexico
1.
Canadian River, Logan
Arkansas–White–Red Regionhh Upper Canadian Subregion Canadian River Basin 11,141 1904–1983
0.0
392ii
333,000
Rio Grande Region 2. 3.
Pecos River, Pecos Delaware River, Red Bluff, TX
4.
Rio Grande, Albuquerque
5.
San Juan River, Shiprock
6.
Gila River, Gila
Upper and Lower Pecos Subregions Pecos River Basin 189 1919–1983 689 1912–83 Rio Grande River Basin (main stem)ll 117,440 1941–1983
12.0 0.0
98.1 13.0
3,070 82,500
0.3 1,232nn
1,068mm —
22,000 —
53.6
2,181
67,200
19.7
141
24,900
106 757 772 2,810 6.5
2,230 2,090 5,750 13,700 253
30,400 14,800 128,000 191,000 18,500
89
1,670
73,700
111 416 832
1,100 5,570 4,750
40,100 184,000 170,000
385 104
7,580 2,530
139,000 143,000
511 311 980
2,780 2,880 6,690
44,100 30,600 38,600
Upper Colorado Region San Juan Subregion 12,900 1927–1983 Lower Colorado Regionoo 1,864 1927–1983
New York 1.
Sacandaga River, Stewarts Bridge
2. 3. 4.
Mohawk River, Cohoes Hudson River, Green Island Wappinger Creek, Wappingers Falls
5.
East Branch Delaware River, Fishs Eddy
6.
7. 8.
9. 10.
Mid-Atlantic Region Upper Hudson Subregion 1,055 1907–1929 1931–1984 3,456 1917–1984 8,090 1946–1984 181 1928–1984 Delaware Subregion 784 1912–1954
1955–1984 1904–1954 1963–1984 Susquehanna Subregion Susquehanna River, Waverly 4,773 1937–1984 Chemung River, Chemung 2,506 1903–1984 Great Lakes Region Southwestern and Southeastern Lake Ontario Subregions Genesee River, Rochester 2,467 1919–1951 1952–1984 Oswego River, Oswego 5,100 1933–1984 Delaware River, Port Jervis
3,070
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-21
(Continued) Gaging Station
Name 11. 12. 13.
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Northeastern Lake Ontario–Lake Ontario–St. Lawrence Subregion Black River, Watertown 1,874 1920–1984 825 West Branch Oswegatchie River, 244 1916–1984 43 Harrisville St. Lawrence River, Massena 298,000 1860–1984 179,000
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
4,020 515
41,000 7,290
243,000
358,000
1,010 1,310
8,085 7,700
215,000 66,800
90
2,234
45,500
210 —
2,892 —
43,100 33,000
75 600
3,300 3,300
117,000 80,000
61
340
15,700
455
2,093
49,100
!0.1
171
11,500
12.3 0
519 44.1
11,000 3,370
12.9
176
5,280
69.1
2,558
89,000
!0.1 2.7
593 181
78,700 36,200
6,570 !0.3
22,740 268
63,700 49,500
!0.1 1.1
256 62.2
60,000 4,800
71 253
441 2,541
641
7,596
8,670 66,900 23,000 183,000 97,100
North Carolina 1.
Roanoke River, Roanoke Rapids
2.
Tar River, Tarboro
3.
Neuse River, Kinston
4.
Cape Fear River, Lillington
5.
South Yadkin River, Mocksville
6.
French Broad River, Asheville
South Atlantic–Gulf Region Chowan–Roanoke Subregion 8,386 1911–1949 1950–1984 Neuse–Pamlico Subregion 2,183 1896–1900 1931–1984 2,692 1930–1981 1981–1984 Cape Fear Subregion 3,464 1923–1975 1975–1981 Pee Dee Subregion 306 1939–1984 Tennessee Region Tennessee Subregion 945 1896–1984
North Dakota
1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11.
Souris–Red–Rainy Region Souris and Red Subregions Souris River and Red River of the North Basins Souris River, Minot 10,600pp 1904–1983 6,700qq 1943–1983 Red River of the North, Wahpeton 4,010pp Big Coulee, Churchs Ferry 2,510pp 1951–1979 690qq 1904–1905 Sheyenne River, West Fargo 8,870pp 1930–1983 5,780qq Red River of the North Grand 30,100pp 1883–1983 3,800qq Missouri Region Missouri–Little Missouri and Missouri–Oahe Subregions Missouri River Main Stem and Tributary River Basins 1935–1983 Little Missouri River, Watford City 8,310pp Knife River, Hazen 2,240pp 1930–1933 1938–1983 Missouri River, Bismarck 186,400pp 1921–1983 1929–1932 Heart River, Mandan 3,310pp 1938–1983 Cannonball River, Breien 4,100pp 1935–1983 James River, Jamestown 2,820pp 1929–1934 1,650qq
Ohio 1. 2.
Tuscarawas River, Massillon Tuscarawas River, Newcomerstown
3.
Muskingum River, McConnelsville
Ohio Region Muskingum Subregion 518 1937–1984 2,443 1921–1937 1938–1984 7,422 1921–1937 1938–1984
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-22
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 4.
Scioto River, Prospect
5.
Olentangy River, Delaware
6.
Scioto River, Higby
7. 8. 9. 10.
Great Miami River, Sidney Stillwater River, Englewood Mad River, Dayton Great Miami River, Hamilton
11.
Blanchard River, Findlay
12. 13.
Auglaize River, Defiance Maumee River, Waterville
14.
Cuyahoga River, Hiram Rapids
15.
Cuyahoga River, Independence
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Scioto Subregion 567 1925–1932 1939–1984 393 1923–1934 1938–1951 1951–1984 5,131 1930–1984 Great Miami Subregion 541 1914–1984 650 1925–1984 635 1914–1984 3,630 1907–1918 1927–1984 Great Lakes Region Western Lake Erie Subregion Maumee River Basin 346 1923–1935 1940–1984 2,318 1915–1984 6,330 1898–1901 1921–1935 1939–1984 Southern Lake Erie Subregion Cuyahoga River Basin 151 1927–1935 1944–1984 707 1921–1923 1927–1935 1940–1984
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
9.3
454
13,900
5.2
351
22,000 6,280
296
4,579
184,000
21 15 131 284
477 579 629 3,279
27,300 10,500 21,100 140,000 95,900
2.3
251
14,300
11 95
1,718 4,926
62,700 97,800
16
207
63
817
4,410 3,690 18,000
730 1,180 6,550 6,940 3,720 3,720 867 398 242 95.9 126 133
69,400 174,000 324,000 165,000 178,000 46,400 141,000 66,800 23,300 68,100 51,400 17,900
266 2,750 1,540 1,140 880 7,890
54,200 180,000 117,000 64,200 61,200 174,000
Oklahoma
1. 2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13.
Arkansas–White–Red Region Arkansas River Basin, Salt Fork Arkansas River and Cimarron River Basin, Verdigris River and Grand (Neosho) River Basins, and Canadian River Basinsrr Salt Fork Arkansas River, Tonkawa 4,528 1942–1982 6.68 Cimarron River Perkins 17,852 1940–1982 8.73 Arkansas River, Tulsa 74,615 1926–1964 155 1965–1982 346 Verdigris River, Claremore 6,534 1936–1962 3.06 1965–1982 15.4 Illinois River, Tahlequah 959 1936–1982 16.8 Little River, Sasakawa 865 1943–1965 0.69 1966–1982 0.08 Beaver River, Beaver 7,955 1938–1982 0.03 Fourche Maline, Red Oak 122 1939–1963 0.10 1966–1982 0.12 Red River Basinss, Washita River Basin North Fork Red River, Headrick 4,244 1946–1982 0.39 Red River, Gainesville 30,782 1947–1982 97.6 Washita River, Dickson 7,202 1929–1960 33.7 1962–1982 4.87 Muddy Boggy Creek, Farris 1,087 1938–1982 0.14 Red River, Arthur City, TX 44,531 1945–1982 375
Oregon 1.
Silvies River, Burns
Pacific Northwest Region Oregon Closed Basins Subregion 934 1928–1983
1.5
175
4,900 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-23
(Continued) Gaging Station
Name 2.
3. 4. 5. 6.
7. 8.
9. 10. 11.
12. 13. 14.
Donner und Blitzen River, Burns
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
200
1912–1913 1915–1916 1918–1921 1939–1983 Middle Snake Subregion Owyhee River, Owyhee Reservoir 11,160 1930–1983 Middle Columbia Subregion Umatilla River, Umatilla 2,290 1928–1983 John Day River, McDonald Ferry 7,580 1906–1983 Deschutes River, Moody 10,500 1897–1999 1907–1983 Willamette Subregion Santiam River, Jefferson 1,790 1909–1953 1967–1982 Willamette River, Salem 7,280 1911–1941 1969–1982 Oregon–Washington Coastal Subregion Rogue River Basin Wilson River, Tillamook 161 1932–1983 Umpqua River, Elkton 3,683 1906–1983 Rogue River, Raygold 2,053 1905–1983 California Region Klamath–Northern California Coastal Subregion Klamath River Basin Sprague River, Chiloquin 1,580 1922–1983 Williamson River, Chiloquin 3,000 1918–1982 Klamath River, Keno 3,920 1905–1912 1930–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
20
125
4,200
1.7
380
—
1.3 28 3,610
456 2,036 5,846
19,700 37,800 —
323 1,150 2,720 5,160
7,821 7,821 23,650
— —
51 797 870
1,205 7,517 2,978
36,700 276,000 139,000
127 414 165
584 1,049 1,684
13,300 14,100 13,000
7.6 920 —
235 7,890 11,685
10,800 220,000 270,000
28 260
292 1,891
14,600 74,000
550 980 1,600 2,556
10,600 15,320 26,520 34,350
105,000 260,000 530,000 750,000
655
10,810
280,000
380
4,295
145,000
0.27
12.4
1,590
24 29 511
476 535 10,470
9,300 19,800 125,000
Pennsylvania
1. 2. 3.
Bush Kill Shoemakers Delaware River, Belvidere, NJ Delaware River Trenton, NJ
4. 5.
Schuylkill River, Landingville Schuylkill River, Pottstown
6. 7. 8. 9.
Susquehanna River, Towanda Susquehanna River, Danville Susquehanna River, Sunbury Susquehanna River, Harrisburg
10.
West Branch Susquehanna River, Lewisburg
11.
Juniata River, Newport
12.
Tonoloway Creek, Needmore
Mid-Atlantic Region Delaware Subregion Delaware River Main Stem 117 1908–1983 4,535 1922–1983 6,780 1913–1983 Schuylkill River Basin 133 1947–1983 1,147 1926–1983 Susquehanna Subregion Susquehanna River Main Stem 7,797 1913–1983 1,220 1899–1983 18,300 1937–1983 24,100 1890–1983 West Branch Susquehanna River Basin 6,847 1939–1983 Juniata River Basin 3,354 1899–1983 Potomac Subregion 10.7 1965–1983
Ohio Region 13. 14. 15.
Allegheny River, Port Allegany Oil Creek Rouseville Allegheny River, Franklin
Allegheny Subregion 248 1974–1983 300 1932–1983 5,982 1914–1983
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-24
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
Name 16. 17.
Monongahela River, Elizabeth Monongahela River, Braddock
18.
Connoquenessing Creek, Zelienople
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
Monongahela Subregion 5,340 1933–1983 7,337 1938–1983 Upper Ohio Subregion Ohio River Main Stem 356 1919–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
698 1,150
9,109 12,460
170,000 230,000
11
464
19,450
20.0 90.0
299 510
111,000 —
60.0 8.2tt 7.8 14.0 1.4tt 5.0
375 125 276 219 9.47 57.0
255,000 45,800 202,000 131,000 5,430tt 22,400
3.5
68.9
45,400
5.4 1.3
60.9 18.6
40,500 15,100
3.1 1.5
35.8 18.2
22,200 21,800
5.9tt 38.0
220 304
160,000tt 83,600
13 100 16
171 763 130
7,110 19,200 2,890
73
345
5,220
28 20 67
194 156 576
2,090 2,630 6,850
Puerto Rico
1. 2. 3. 4. 5. 6. 7. 8.
Rio Culebrinas, Moca Rio Grande de Arecibo, Central Cambalache Rio Grande de Manati, Manati Rio Cibuco, Vega Baja Rio de la Plata, Toa Alta Rio Grande de Loiza, Caguas Rio Herrera, Colonia Dolores Rio Espiritu Santo, Rio Grande
9.
Rio Fajardo, Fajardo
10. 11.
Rio Grande de Patillas, Patillas Rio Inabon, Real Abajo
12. 13.
Rio Cerrillos, Ponce Rio Portugues, Ponce
14. 15.
Rio Guanajibo, Hormigueros Rio Grande de Anasco, San Sebastian
Caribbean Region Puerto Rico Subregion North Coast Area 71.2 1967–1985 200tt 1969–1984 1970–1985 197uu 1973–1985 99.1vv 200ww 1960–1985 89.8 1960–1985 2.75 1966–1973 8.62 1966–1985 East Coast Area 14.9 1961–1985 South Coast Area 18.3 1966–1985 9.70 1964–1970 1971–1985 17.8 1964–1985 8.82 1964–1985 West Coast Area 120 1973–1985 134xx 1963–1985
Rhode Island
1. 2. 3. 4. 5. 6. 7.
New England Region Massachusetts–Rhode Island Coastal Subregion Blackstone River Basin Branch River, Forestdale 91.2 1941–1983 Blackstone River, Woonsocket 416 1930–1983 South Branch Pawtuxet River, 63.8 1942–1983 Washington Pawtuxet River, Cranston 200 1941–1983 Pawcatuck River Basin Pawcatuck River, Wood River Jct. 100 1942–1983 Wood River, Hope Valley 72.4 1942–1983 Pawcatuck River, Westerly 295 1942–1983
South Carolina
1. 2. 3. 4. 5.
Pee Dee River, Pee Dee Lynches River, Effingham Little Pee Dee River, Galivants Ferry Black River, Kingstree Waccamaw River, Longs
6.
North Pacolet River, Fingerville
South Atlantic–Gulf Region Pee Dee Subregion Lower Pee Dee River Basin 8,830 1938–1983 1,030 1925–1983 2,790 1943–1983 1,252 1920–1983 1,110 1950–1983 Edisto–Santee Subregion Santee River Basin 116 1931–1983
1,500yy 132 315 5.7 0.99
43
9,850 1,035 3,243 942 1,223
215
160,000yy 22,100 31,300 39,100 17,300
13,100 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-25
(Continued) Gaging Station
Name 7. 8. 9. 10. 11. 12. 13.
14.
Broad River, Richtex Saluda River, Columbia Wateree River, Carnden
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
4,850 2,520 5,070
1925–1983 1925–1983 1904–1910 1925–1983 Congaree River, Columbia 7,850 1939–1983 Lake Marlon–Moultrie Diversion Canal — 1943–1983 Edisto–South Carolina Coastal Basin Edisto River, Givhans 2,730 1939–1983 Salkehatchie River, Miley 341 1951–1983 Ogeechee–Savannah Subregion Savannah River Basin Savannah River, Augusta, GA 7,508 1883–1891 1896–1906 1925–1983
7-Day, 10-Year Low Flow (ft3/sec)
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
970yy 260yy 490yy
6,250 2,929 6,444
210,000yy 70,000yy 225,000yy
1,800yy 2,320
9,425 15,125
220,000yy —
2,711 356
29,200 4,390
10,300
—
442 33
4,700yy
South Dakota 1. 2. 3. 4. 5.
Missouri River, Mobridge Missouri River, Pierre Missouri River, Fort Randall Dam Missouri River, Yankton Missouri River, Sioux City, IA
6. 7. 8. 9. 10. 11. 12.
Little Missouri River, Camp Crook Grand River, Little Eagle Moreau River, Whitehorse Cheyenne River, Cherry Creek Bad River, Fort Pierre White River, Oacoma Keya Paha River, Wewela
13. 14. 15.
James River, Scotland Vermillion River, Wakonda Big Sioux River, Akron, IA
Misouri Region Missouri River Main Stemzz 208,700 1928–1962aaa 243,500 1929–1965 263,500 1947–1983 279,500 1930–1983 314,600 1929–1983 Western Tributariesccc 1,970 1903–1983ddd 5,370 1958–1983 4,880 1954–1983 23,900 1960–1983 3,107 1928–1983 10,200 1928–1983 1,070 1937–1983ddd Eastern Tributarieseee 20,300 1928–1983 1,680 1945–1983 8,360 1928–1983
3,500 2,100bbb 1,450bbb 5,980bbb 6,380bbb
21,560 21,860 25,230 26,430 29,360
471,000 97,500bbb 99,000bbb 92,400bbb 115,000bbb
0.2 0.3bbb 0.0 26.1bbb 0.0 0.5 3.6
136 238 202 827 147 531 68.9
13,300 24,400bbb 44,900 84,600bbb 47,000 49,200 8,680
1.5 0.9 18.8
372 125 901
23,600 6,050 73,200
Tennessee
1. 2. 3. 4. 5. 6.
7. 8. 9. 10.
Ohio Region Cumberland Subregion Cumberland Basin New River, New River 382 1934–1985 0.47 741 Wolf River, Byrdstown 106 1942–1985 5.19 192 Cumberland River, Celina 7,307 1924–1985 850 11,830 West Fork Stones River, Smyrna 237 1965–1985 9.0 440 Harpeth River, Kingston Springs 681 1924–1985 25.4 986 Red River, Port Royal 935 1961–1985 66.6 1,351 Tennessee Region Upper Tennessee, Middle Tennessee–Hiwassee, Middle Tennessee–Elk, and Lower Tennessee Subregions Tennessee Basin Nolichucky River, Embreeville 805 1919–1985 224 1,370 Little River, Maryville 269 1951–1985 54.8 535 Obed River, Lancing 518 1958–1968 1.3 1,062 1974–1985 South Chickamauga Creek, 428 1928–1978 88.3 698 Chickamauga 1980–1985
63,500 31,400 78,000 57,400 69,700 18,000
72,600 37,200 84,400 35,100
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2
(Continued) Gaging Station
11. 12. 13. 14. 15.
16. 17. 18. 19.
1. 2.
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15.
Streamflow Characteristics
Name
Drainage Area (mL2)
Tennessee River, Chattanooga Elk River, Prospect
21,400 1,784
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
1874–1985 10,000 1905–1907 330 1920–1985 Duck River, Hurricane Mills 2,557 1925–1985 303 Buffalo River, Lobelville 707 1927–1985 174 Big Sandy River, Bruceton 205 1929–1985 35.5 Lower Mississippi Region Lower Mississippi–Hatchie Subregion Lower Mississippi Basin Obion River, Obion 1,852 1929–1958 266 1966–1985 Hatchie River, Bolivar 1,480 1929–1985 126 Loosahatchie River, Arlington 262 1969–1985 71 Wolf River, Germantown 699 1969–1985 200 Arkansas–White–Red Region Canadian–Red River Basinfff Canadian River, Amarillo 15,376 1939–1983 0.3 Red River Terral, OK 22,787 1939–1983 76.4 Texas–Gulf Region Sabine–Neches–Trinity–San Jacinto River Basinggg Trinity River, Dallas 6,106 1903–1983 20.5 Trinity River, Romayor 17,186 1969–1983 64 Neches River, Rockland 3,636 1962–1983 27.6 Brazos–Colorado River Basinhhh Salt Fork Brazos River, Aspermont 2,496 1940–1983 0.0 Brazos River, South Bend 13,107 1939–1983 0.0 North Bosque River, Clifton 968 1968–1983 0.0 Colorado River, Colorado City 1,585 1953–1983 0.0 Llano River, Junction 1,849 1916–1983 17.8 Colorado River, Wharton 30,600 1939–1983 224 Lavaca–Guadalupe–Nueces River Basiniii Guadalupe River, Spring Branch 1,315 1923–1983 0.1 Nueces River, Laguna 737 1924–1983 9.6 Nueces River, Three Rivers 15,427 1916–1983 0.0 Rio Grande Region Rio Grande Basinjjj Pecos River, Girvin 29,560 1940–1983 3.3
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
37,100 3,076
257,000 128,000
4,121 1,196 294
114,000 88,900 18,900
2,702
92,800
2,428 364 1,040
68,000 24,000 42,100
331 2,117
135,000 —
1,530 7,417 1,974
— — 68,400
108 836 167 38.9 194 2,685
52,900 — 73,200 — 363,000 —
311 148 848
158,000 408,000 116,000
84.2
23,300
U.S. Virgin Islands
1.
Bonne Resolution Gut, Bonne Resolution
Caribbean Region U.S. Virgin Islands Subregion St. Thomas 0.49 1963–1968
2.
Turpentine Run, Mariendal
2.97
3.
Guinea Gut, Bethany
St. John 0.37
4.
Jolly Hill Gut, Jolly Hill
St. Croix 2.10
0
0.24
kkk
0
1.07
kkk
1963–1967 1983
0
0.08
kkk
1963–1969 1983
0
0.02
lll
1979–1981 1982 1963–1969 1979–1980 1982
1,650
9,710
946
223
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.2
5-27
(Continued) Gaging Station
Name
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
11. 12.
Streamflow Characteristics Drainage Area (mL2)
Period of Analysis
7-Day, 10-Year Low Flow (ft3/sec)
Guam, American Samoa, and the Trust Territory of the Pacific Islands Aipan S. F. Talofofo Stream 0.64 1968–1984 0.0 Guam Ugum River 5.76 1977–1984 3.6 Ylig River 6.48 1952–1984 0.2 Pago River 5.67 1951–1982 0.2 Palau Diongradid River 4.45 1969–1984 3.2 Tabecheding River 6.07 1970–1984 1.7 Yap Oaringeel Stream 0.24 1968–1984 0.1 Truk Wichen River 0.57 1968–1983 0.02 Pohnpei Nanpil River 3.00 1970–1984 1.8 Kosrae Malem River 0.76 1971–1981 0.3 1982–1984 American Samoa Aasu Stream 1.03 1958–1984 0.4 Afuelo Stream 0.25 1958–1984 0.03
Average Discharge (ft3/sec)
100-Year Flood (ft3/sec)
1.35
—
23.3 28.0 26.3
— 5,980 12,300
32.4 48.4
2,870 4,910
1.07
696
3.05
1,060
44.6
10,000
6.71
2,760
6.05 1.45
586 683
7,563
87,600
785
23,600
Utah 1.
Colorado River, Cisco
2.
Dolores River, Cisco
3.
Green River, Jensen
Upper Colorado Region Colorado River Main Stemmmm 24,100nnn 1895–1984 1,100 Upper–Coloradodolores Subregion Dolores River Basin nnn 4,580 1951–1984 19 Great Divide–Upper Green and Lower Green Subregions Green River Basin nnn ooo 29,660 1904–1984 480ppp 743
4,396ppp 4,456
38,200
Gaging station: Period of analysis is for the water years used to compute average discharge and may differ from that used to compute other streamflow characteristics. Streamflow characteristics: The 7-day, 10-year low flow is a discharge statistic; the lowest average discharge during 7 consecutive days of a year will be equal to or less than this value, on the average, once every 10 years. The average discharge is the arithmetic average annual discharges during the period of analysis. The 100-year flood is the peak flow that has a 1-percent chance of being equaled or exceeded in a given year. The degree of regulation is the effect of dams on the natural flow of the river. Abbreviations: DoZditto; mi2Zsquare miles; ft3/secZcubic feet per second; .Zinsufficient data or not applicable. a b c d e f g h i j k l m n o p q
Less than 10 years of record. Minimum discharge and maximum instantaneous discharge for period of record are shown. Record interrupted. Adjusted for no-flow periods. Adjusted for high-outlier in period of record. Did not use 1981 peak because it was regulated. Adjusted for high-outlier in period of record. Sutter and Yolo Bypasses Carry Much of Floodflow Past Verona gage. Regulation has Little Effect on High Floodflows. From Upper Mississippi River Basin Commission, 1978. Within the Upper Mississippi–Black–Root, Upper Mississippi–Maquoketa–Plum, and Upper Mississippi–Iowa–Skunk–Wapsipinicon Subregion (Seaber and Others, 1984). Within the Upper Mississippi–Iowa–Skunk–Wapsipinicon Subregions (Seaber and Others, 1984). Within the Minnesota Des Moines Subregions(Seaber and Others, 1984). Within the Missouri–Big Sioux, Missouri–Little Sioux, and Missouri–Nishnabotna Subregions (Seaber and Others, 1984). Flow Parameters Based Only on 1929–1931 and 1939–1956 Water Years. From U.S. Army Corps of Engineers, February 1978. Within the Missouri–Big Sioux, Missouri–Little Sioux, and Missouri–Nishnabotna Subregions (Seaber and Others, 1984). Within the Missouri–Nishnabotna, Chariton–Grand, and Upper Mississippi–Salt Subregions (Seaber and Others, 1984). Based on period of analysis since regulation began. These values are not based on detailed analyses, are approximate estimates, and are for information purposes only. (Continued)
q 2006 by Taylor & Francis Group, LLC
5-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.2 r s t u v w x y z aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo pp qq rr ss tt uu vv ww xx yy zz aaa bbb ccc ddd eee fff ggg hhh iii jjj kkk lll mmm nnn ooo ppp qqq
(Continued)
From flood-insurance hydrology study. Based on detailed analyses of regulated-flow conditions. Prior to opening of Barkley–Kentucky Canal (1889–1965). Since the opening of Barkley–Kentucky Canal (1965–1983). Includes all or parts of the Lower Mississippi–Yazoo, Lower Mississippi–Big Black, Lower Mississippi–Lake Maurepas, and the Lower Mississippi Subregions (Seaber, Kapinos, and Knapp, 1984). Includes the Mississippi Headwaters and the Upper Mississippi Black-Roof Subregions. Data furnished by U.S. Army Corps of Engineers. Includes the Saskatchewan, the Missouri Headwaters, the Missouri–Marias, the Missouri–Musselshell, the Milk, and the Missouri– Polar Subregions. Includes the upper Yellowstone, the Big Horn, the Powder–Tongue, the lower Yellowstone, and the Missouri–Little Missouri Subregions. Contained within the Kootenai–Pend Oreille–Spokane Subregion. Within the Missouri–Big Sioux, Missouri–Little Sioux, and Missouri–Nishnabotna Subregions. Analysee based on period of record since regulation began. Based on record to 1981. Period of record not continuous. Adjusted for diversion and change in reservoir contents. Analysis based no regulated period 1955–1984. Period of record not continuous. Also includes parts of the Upper Arkansas, Upper Cimarron, Lower Canadian, North Canadian, and Red Headwaters Subregions. Fifteen years, prior to completion of Conchas Dam. Twenty-four years, prior to completion of Ute dam. Twenty-one years (1963–1983), subsequent to completion of Ute Dam. Includes all or parts of Rio Grande Headwaters, Rio Grande–Elephant–Butte, Rio Grande–Mimbres, and Rio Grande Closed basins Subregions. Thirty-two years, prior to closure of Cochiti Dam. Ten years (1974–1983), subsequent to closure of Cochiti Dam. Includes parts of the Little Colorado, Upper Gila and Sonora Subregions. Approximate. Noncontributing. Includes parts or all of the Upper Cimarron, Arkansas–Keystone, Lower Cimarron, Lower Arkansas, Neosho–Verdigris, Lower Canadian and North Canadian Subregions. Includes parts or all of the Red Headwaters, Red–Washita, and Red–Sulphur Subregions. Estimated. Drainage area includes 38 mi2 which are partly or entirely noncontributing and excludes 6.0 mi2 upstream from Lago El Guinea and Lago de Matrullas. Drainage area includes 25.4 mi2 which do not contribute directly to surface runoff. Drainage area excludes 8.2 mi2 upstream form Lago Carite, flow from which is diverted to the Rio Guamani. Drainage area includes 39.7 mi2 from headwaters of Lago Yahuecas (17.05 mi2), Lago Guayo (9.67 mi2), Lago prieto (9.50 mi2), and Lago Toro (3.5 mi3) which does not contribute to surface runoff except at high stages. Analysis based on records collected since regulation began. Within the Missouri–Oahe, Missouri–White, and Missouri–Big Sioux Subregions. Station discontinued subsequent to construction of Oahe Dam in 1962. Analysis based on period of record after regulation began. Within the Missouri–Oahe, Missouri–Little Missouri, Cheyenne, Missouri–White, and Niobrara Subregions. Period of record not continuous. Within the James and Missouri–Big Sioux Subregions. Within the Upper Canadian, Lower Canadian, North Canadian, Red Headwaters, Red–Washita, and Red–Sulphur Subregions. Within the Sabine, neches, Triniy, and Galveston Bay–San Subregions. Within the Brazos Headwaters, Middle Brazos, Lower Brazos, Upper Colorado, and Lower Colorado–San Bernard Coastal Subregions. Within the Central Texas Coastal and Nueces–Southwestern Texas Coastal Subregions. Within the Rio Grande–Mimbres, Rio Grande Amistad, Rio Grande Closed Basins, Upper Pecos, Lower Pecos, Rio Grande–Falcon, and Lower Rio Grande Subregions. Discharge represents highest recorded. Data available are not adequate to determine a discharge–frequency relation, but it is estimated to have exceeded the 100-year flood. Discharge represents highest recorded. Within the Upper Colorado–Dolores and Upper Colorado–Dirty Devil Subregions. Approximate. Period of analysis not continuous. Since completion of Flaming Gorge Reservoir in 1963. Based on record to 1981.
Source: From U.S. Geological Survey, National Water Summary 1985—Hydrologic Events and Surface-Water Resources, Water-Supply Paper 2300. Original Source: Reports of the U.S. Geological Survey and State agencies.
q 2006 by Taylor & Francis Group, LLC
Mean Monthly Discharge (m3/sec)
River and Station
Basin Area (km2)
Period of Record
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Year
214 94.4 123 187 385
186 99.5 111 188 341
290 116 194 348 677
809 202 428 542 1,300
685 259 336 320 763
345 136 161 165 365
221 94.8 93.5 86.6 194
181 89.6 81.7 71.3 172
176 89.0 93.4 90.8 202
224 88.2 107 98.4 237
328 93.3 149 171 390
282 92.9 137 193 393
327 121 168 205 4511
1902–65 1907–10 1929–65 1923–65 1928–65
353 1,100 461 300 329
611 2,210 642 358 362
653 2,090 552 316 315
387 1,290 379 192 233
235 703 221 126 182
197 422 132 83.5 175
170 332 143 106 183
157 306 110 85.1 158
179 457 150 95.3 155
292 696 161 105 153
334 877 245 185 221
327 9631 296 184 230
1912–65 1890–1965 1930–65 1934–65 1911–65
169 471 161 519 795
140 396 139 520 782
66.6 241 47.8 338 388
49.7 179 24.8 240 239
64.9 190 22.2 244 231
61.3 183 18.8 253 214
72.7 210 63.6 222 177
59.0 182 72.9 277 177
57.6 171 31.6 249 162
87.7 224 43.0 313 295
95.9 265 67.0 336 385
1923–65 1938–65 1942–65 1929–33, 37–65 1931–65
73.4 287 1,150
70.8 316 1,040
46.2 207 652
46.8 145 465
80.2 148 477
100 180 429
124 185 341
168 175 361
144 141 359
103 142 550
92.2 191 6201
1933–65 1931–65 1928–65
90.5 433
160 834
173 9021
1934–65 1930–65
347 133 101 1,500 332
661 269 222 2,780 537
7421 269 250 3,1201 7441
1928–60 1930–65 1938–65 1928–65 1928–65
Penobscot, West Enfield, ME Kennebec, Bingham, ME Androscoggin, Auburn, ME Merrimack, Lowell, MA Connecticut, Thompsonville, CT
17,000 7,040 8,436 12,000 25,020
Delaware, Trenton, NJ Susquehanna, Harrisburg, PA Potomac, Washington, DC James, Richmond, VA Roanoke, Roanoke Rapids, NC
17,600 62,400 29,940 17,500 21,800
Cape Fear, Lillington, NC Pee Dee, Pee Dee, SC Santee, Pineville, SC Savannah, Clyo, GA Altamaha, Doctortown, GA
8,910 22,900 38,100 25,500 35,200
143 316 58.6 418 477
181 431 123 438 636
St. Johns, De Land, FL Suwannee, Branford, FL Apalachicola, Chattahoochee, FL Escambia, Century, FL Alabama, Claiborne, AL
8,080 20,000 44,300
78.8 169 752
69.0 203 876
351 1,070 369 260 304
9,886 57,000
223 1,280
246 1,550
339 1,830
337 1,770
166 899
108 531
120 519
123 484
95.6 369
74.6 367
Tombigbee, Leroy, AL Pascagoula, Merrill, MS Pearl, Bogalusa, LA Ohio, Louisville, KY Wabash, Mount Carmel, IL
49,500 17,000 17,200 236,100 74,100
1,190 381 332 4,880 1,130
1,580 492 483 5,470 1,110
1,750 561 554 7,210 1,370
1,530 515 502 6,020 1,380
714 279 298 3,730 1,130
318 140 138 2,280 742
330 170 144 1,610 528
208 124 103 1,190 270
175 100 74.8 743 194
162 78.5 70.0 738 217
Cumberland, Smithland, KY Tennessee, Paducah, KY Ohio, Metropolis, IL Fox, Wrightstown, WS Grand, Grand Rapids, MI
46,395 104,000 526,000 15,900 12,700
1,210 2,890 10,900 109 90.7
1,580 3,590 13,400 112 111
1,740 3,160 14,900 132 213
1,390 2,100 13,400 199 185
718 1,520 8,650 171 128
446 1,170 5,480 143 88.9
348 1,140 4,070 95.4 54.4
272 1,080 3,040 76.2 41.0
217 1,050 2,300 73.1 46.0
188 987 2,180 86.4 54.0
383 1,370 3,640 99.8 64.8
809 2,130 6,200 105 70.9
779 1,8201 7,3001 117 95.2
1939–65 1939–65 1928–65 1896–1965 1904–65
Maumee, Waterville, OH St. Lawrence, Ogdensburg, NY Red of the North, Grand Forks, ND
16,350 764,600
197 6,230
203 6,150
317 6,430
268 6,970
157 7,230
92.4 7,340
47.4 7,290
22.7 7,100
22.4 6,860
31.5 6,630
58.7 6,510
108 6,450
127 6,760
1899–1901 1860–1965
238
138
108
80.3
44.1
36.0
35.2
31.4
24.8
68.5
2,420 4,870 259 310 1,120 233 1,540 221
2,280 4,290 205 527 829 218 1,200 261
1,990 3,680 184 1,200 1,250 267 1,690 426
1,030 1,740 363 257 737 88.6 918 169
1,040 1,650 389 197 696 93.7 848 180
1,100 1,660 377 228 663 87.6 807 136
1,030 1,790 249 197 485 109 674 99.1
708 1,530 197 153 263 93.4 384 67.5
1,3301 2,6201 252 3651 6891 150 9481 185
19.5
222,000 444,200 237,130 178,220 723,900 221,000 1,073,000 155,100
677 1,790 187 143 267 84.7 374 67.0
18.0 730 2,120 171 173 299 148 532 106
48.1 1,330 3,540 212 307 600 249 1,060 161
1,560 2,840 236 690 1,060 134 1,360 332
1882–1965 1874–1965 1927–65 1941–51; 58–65 1910–31; 33–65 1930–65 1953–65 1929–65 1917–65
(Continued) q 2006 by Taylor & Francis Group, LLC
5-29
Mississippi, Clinton, IA Mississippi, Alton, IL Missouri, Culbertson, MT Yellowstone, Sidney, MT Missouri, Yankton, SD Platte, South Bend Missouri, Nebraska City, NE Kansas, Bonner Springs,
78,000
SURFACE WATER
Table 5A.3 Monthly Discharge of Principal Rivers in the United States
5-30
Table 5A.3
(Continued) Mean Monthly Discharge (m3/sec)
River and Station
Basin Area (km2)
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug 1,930 339
1,820 291
1,600 305
1,440 402
151 69.0 545 9,340 305
164 88.6 555 7,320 260
185 117 762 7,090 342
103 10,500 82.9 37.3 41.4
90.1 8,100 57.5 28.2 53.6
109 7,930 55.5 36.6 86.4
Missouri, Herman, MO White, DeValls Bluff, AR
1,368,000 60,686
1,080 850
1,420 943
2,430 1,140
3,360 1,270
3,020 1,230
4,160 829
3,390 505
Arkansas, Tulsa, OK Canadian, Whitefield, OK Arkansas, Little Rock, AR Mississippi, Vicksburg, MS Red, Alexandria, LA
193,250 123,220 409,741 2,964,300 175,000
73.6 61.5 987 16,200 1,100
90.9 102 1,160 21,100 1,330
118 147 1,330 24,800 1,380
261 255 1,810 27,900 1,350
375 430 2,320 23,600 1,600
368 291 1,780 18,500 1,150
277 164 1,070 14,600 555
Ouachita, Monroe, LA Mississippi, Tarbert Landing Sabine, Ruliff, TX Neches, Evadale, TX Trinity, Romayor, TX
39,622 3,923,800 24,160 20,590 44,512
627 17,900 399 273 247
879 23,000 416 297 262
1,010 27,800 406 308 291
1,039 30,800 366 308 278
940 27,900 381 325 439
524 21,400 252 188 295
272 16,500 120 73.4 118
114,000 107,200 43,150 91,069 352,178
200 67.6 8.6 5.42 73.7
234 79.5 12.0 5.28 72.2
231 67.5 11.4 4.82 61.9
257 101 15.0 6.57 69.7
459 133 43.5 13.4 121
Green, Green River, UT Colorado, Lees Ferry, AZ Colorado, Yuma, AZ Sevier, Juab, UT Humboldt, Imlay, NV
105,000 279,500 629,100 13,300 40,700
49.3 150 222 0.67 2.09
64.8 192 262 0.35 3.53
124 274 293 1.28 6.60
222 561 367 6.86 9.83
485 1,280 665 20.4 14.2
600 1,600 1,040 13.6 13.9
239 850 108 648 64.5
212 501 35.3 381 31.0
San Joaquin, Vernalis, CA Sacramento, Sacramento, CA Eel, Scotia, CA Klamath, Klamath, CA Chehalis, Porter, WA
35,070 60,940 8,063 31,300 3,351
126 940 508 806 279
181 1,180 566 1,050 251
187 1,020 349 749 182
199 960 262 793 131
Pend Oreille, Newport, WA Columbia International Bdry. Snake, Clarkston, WA Columbia, Dalles, OR Willamette, Salem, OR
62,700 155,000 267,300 614,000 18,900
377 1,080 866 2,750 1,300
382 1,110 1,010 3,020 1,250
439 1,200 1,320 3,590 971
723 1,930 2,300 5,700 824
1,540 5,040 3,540 10,300 624
5,796 9,539 10,200 53,300 80,500
371 443 312 160 385
354 450 352 130 328
297 350 260 124 284
323 278 229 147 315
345 191 181 848 2,080
294,000 516,400 767,000
475 674 1,320
433 591 1,100
394 502 915
408 517 930
3,220 5,420 7,980
Cowlitz, Castle Rock, WA Umpqua,Elkton, OR Rogue, Agness, OR Copper, Chitina, AK Kuskokwim, Crooked Creek, AK Yukon, Eagle, AK Yukon, Rampart, AK Yukon, Kaltag, AK 1
Monthly and yearly averages rounded to three significant figures.
Source:
From UNESCO, 1971.
q 2006 by Taylor & Francis Group, LLC
303 131 38.9 9.84 158
2,060 8,140 3,140 14,000 412 291 113 94.2 2,320 2,740 6,160 11,500 18,300
Oct
Nov
Period of Record
Dec
Year
1,050 542
2,2201 7201
116 87.0 695 8,220 432
82.6 76.9 721 11,100 673
188 157 1,1401 15,8001 8801
1925–65 1938–65 1927–65 1928–65 1928–65
174 8,750 116 81.1 122
316 12,100 221 164 185
5071 17,7001 239 176 202
1932–65 1928–65 1927–65 1904–06; 21–65 1924–65
1897–1965 1928–45; 50–65
145 82.8 29.5 7.23 136
68.9 47.0 6.9 5.28 143
99.2 72.2 42.7 16.6 269
153 77.2 38.2 12.7 188
140 80.6 10.8 6.31 96.8
188 69.8 4.2 5.44 82.5
207 80.7 21.9 8.24 123
1903–06; 22–65 1919–25; 38–65 1939–65 1954–65 1900–14; 22–65
250 657 586 14.2 10.8
108 313 306 9.13 2.54
76.8 236 230 5.98 1.05
77.4 245 214 2.36 0.71
68.5 210 200 1.05 0.92
50.6 163 213 0.38 1.71
181 4891 383 6.36 5.66
1895–99; 1905–65 1911–65 1902–65 1911–65 1935–41; 45–65
64.9 299 9.42 162 15.8
28.1 289 4.08 94.2 10.9
33.8 323 3.57 93.6 12.4
46.8 320 22.1 148 38.9
58.6 419 121 348 176
99.2 681 370 629 239
124 6471 200 486 119
1922–65 1948–65 1910–65 1910–26; 50–65 1952–65
1,210 5,920 1,130 9,630 205
505 3,130 555 5,270 134
339 1,940 549 3,470 147
340 1,600 666 2,810 253
150 50.9 46.7 3,250 2,000
76.3 33.6 37.1 2,920 2,420
65.2 33.4 35.9 1,460 2,470
122 55.8 64.1 615 1,300
2,980 5,090 9,820
1,930 2,780 5,400
5,130 7,950 13,100
3,980 6,480 11,800
402 1,430 777 2,800 772
391 1,190 887 2,820 1,130
7261 2,810 1,3901 5,5201 6651
1903–41; 52–65 1937–65 1915–65 1878–1965 1909–16; 23–65
302 194 154 303 599
415 361 427 200 457
259 212 182 1,0401 1,280
1927–65 1905–65 1960–65 1955–65 1951–65
980 1,220 2,350
598 799 1,490
2,2201 3,6301 6,2101
1911–14; 50–65 1955–65 1956–65
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Brazos, Richmond, TX Colorado, Wharton, TX Nueces, Mathis, TX Pecos, Shumla, TX Rio Grande, Laredo, TX
Sep
SURFACE WATER
5-31
Table 5A.4 Length of Principal Rivers in the United States and Canada Length River/Outflow
Miles
km
Alabama/Mobile River Albany/James Bay Arkansas/Mississippi River Black/Chantrey Inlet Brazos/Gulf of Mexico Canadian/Arkansas River
735 610 1,459 600 870 906
1,183 981 2,348 965 1,400 1,458
Churchill/Hudson Bay Cimarron/Arkansas River Colorado (U.S.-Mex.)/Gulf of California Colorado (Texas)/Matagorda Bay Columbia/Pacific Ocean Columbia, Upper Mouth of Snake River
1,000 600 1,450 840 1,243 890
1,609 965 2,333 1,352 2,000 1,432
720 850 630 730 600 710
1,158 1,368 1,014 1,175 965 1,142
Kuskokwim/Kuskokwim Bay Liard/Mackenzie River Mackenzie/Arctic Ocean Milk/Missouri River Mississippi/Mouth of SW Pass Mississippi, Upper/to Mouth of Missouri River Mississippi–Missouri–Red Rock/Mouth of SW Pass Missouri/Mississippi River Missouri–Red Rock/Mississippi River Mobile-Alabama–Coosa/Mobile Bay North Canadian/Canadian River North Platte/Platte River Ohio/Mississippi River Ohio–Allegheny/Mississippi River Ottawa/St. Lawrence Ouachita/Red River Peace/Slave River Pecos/Rio Grande Red (OK–TX–LA)/Mississippi River
680 693 900 625 2,348 1,171
1,094 1,115 1,448 1,006 3,778 1,884
3,710 2,315 2,533 780 760 618 981 1,306 790 605 1,195 735 1,270
5,969 3,725 4,076 1,255 1,223 994 1,578 2,101 1,271 973 1,923 1,183 2,043
Rio Grande/Gulf of Mexico St. Lawrence/Lake Ontario Saskatchewan N./Lake Winnipeg Saskatchewan S./Lake Winnipeg Severn (Ontario)/Hudson Bay Snake/Columbia River Tanana/Yukon River
1,885 800 1,100 1,205 610 1,038 620
3,033 1,287 1,770 1,939 981 1,670 998
Tennessee/Ohio River Tennessee–French Broad/Ohio River White (AR–MO)/Mississippi River Yellowstone/Missouri River Yukon/Bering Sea
652 900 720 671 1,979
1,049 1,448 1,158 1,080 3,185
Cumberland/Ohio River Fraser/Strait of Georgia Gila/Colorado River Green (UT–WY)/Colorado River Hamilton/Atlantic Ocean James (ND–SD)/Missouri River
Note: Comprises rivers 600 miles or more in length. Length represents distance to designated outflow from (a) original headwater of named river where name applies to entire length of channel, or (b) upper limit of channel so named, usually the junction of two tributaries or headwater streams. Source: From Statistical Abstract of the United States 1986.
q 2006 by Taylor & Francis Group, LLC
5-32
Table 5A.5 Flowing Water Resources of the United States
Number Streams
1 2 3 4 5 6 7 8 9 10 Total
1,570,000 350,000 80,000 18,000 4,200 950 200 41 8 1 2,023,000
Average Length Miles 1 2.1 5.3 12 28 64 147 338 777 1,800
Total Length Miles (L) 1,570,000 810,000 420,000 220,000 116,000 61,000 30,000 14,000 6,200 1,800 3,249,000
Drainage Area Sq. Miles (Ad)
Mean Width Feet (W)
Mean Depth Feet (D)
Mean Velocity ft/sec (V)
1 4.7 23 109 518 2,500 12,000 56,000 260,000 1,250,000
0.65 3.1 15.0 71.0 340 1,600 7,600 36,000 171,000 810,000
4 10 18 37 75 160 320 650 1,300 2,800
0.15 0.29 0.58 1.10 2.20 4.1 8.0 15.0 29.0 55.0
1.0 1.3 1.5 1.8 2.3 2.7 3.3 3.9 5.6 5.9
Total Surface Calculated Area, AsSq. Miles Discharge CFS Z WDV (thousands) 0.60 3.7 15.6 73 380 1,800 8,500 38,000 211,000 900,000
1.2 1.5 1.4 1.5 1.6 1.8 1.8 1.7 1.5 1.0 15.0
Total Channel Storage Acre Feet (millions) 0.11 0.29 0.53 1.1 2.4 4.9 9.3 16.5 28.3 34.3 97.0
Note: Based on stream order and channel morphology. a
Stream order classification based on river characteristics. A first order stream has no tributary channels; a second order stream is formed when two first order streams merge. When two second order streams merge, a third order stream is formed, and so on, downstream in the drainage basin until the water is discharged to the sea.
Source: From Keup, L.E., Flowing Water Resources, Water Resources Bulletin, V.21, no.2, 1985. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Stream Ordera
Mean Flow For Area Drained (CFS)
SURFACE WATER
5-33
3
3
3
3
3
3
3 3
3
3 Subregions with inadequate streamflow Increased demand is causing significant competition among major users of water. Streamflow in 14 of the 106 subregions is inadequate to support navigation, hydropower, recreation, fish, wildlife, and other instream uses in an average year. Inadequate means that 70% or more of the water is consumed offstream during a given year, In a dry year, nine more subregions are in the 70% or more depletion category.
1 2
70% or more depleted in dry year
3
Less than 70 % depleted
70% or more depleted in average year
Figure 5A.2 Inadequate surface water supply for instream use in the United States. (From COUNCIL on Environmental Quality, 1981, Environmental Trends.)
q 2006 by Taylor & Francis Group, LLC
5-34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.6 Velocity of Low Flows and Average Length of Streams in the United States
Water Resource Region New England Delaware-Hudson Eastern Great Lakes Western Great Lakes Chesapeake Bay Ohio Cumberland Tennessee Southeast Upper Mississippi Lower Mississippi Upper Missouri Lower Missouri Upper Arkansas, Red Lower Arkansas, Red, and White Western Gulf Rio Grande and Pecos Colorado Great Basin Pacific Northwest Central Pacific South Pacific
Mean Velocity (mi/hour)
Average Stream Length (miles)
Mean Depth at Velocities Given in Col. 1 (ft)
Mean Flow at Velocity Given in Col. 1 (ft3/sec)
11⁄2 11⁄2 11⁄2 11⁄2 11⁄2 1 11⁄2 11⁄2 11⁄2 1 11⁄2 11⁄2 1 11⁄2 11⁄2 1 11⁄2 1 1 1 11⁄2
100 75 50 50 75 100 100 75 150 150 150 250 125 200 175 300 150 150 100 150 100 50
4.0 3.0 3.0 3.0 5.0 4.0 3.0 4.0 5.0 3.0 4.0 3.0 3.5 2.0 3.5 4.0 1.5 2.0 1.0 4.0 4.0 0.5
1,500 500 800 800 2,500 1,500 500 1,200 2,500 500 1,200 500 900 200 1,000 1,500 100 300 50 1,500 1,500 20
Note: Velocities are estimated for discharges which are exceeded 95 percent of the time. Stream lengths are estimated for representative streams in each region. For location of river basins see Figure 2.6. Source: From U.S. Geological Survey.
Table 5A.7 Annual River Flow Rates in Canada Annual Flow Ratesa(m3/sec) Ocean Basin Region Pacific
Arctic
Gulf of Mexico Hudson Bay
Atlantic
River Basin Region 1. Pacific Coastal 2. Fraser-Lower Mainlandd 3. Okanagan-Similkameend 4. Columbiae 5. Yukone 6. Peace-Athabasca 7. Lower Mackenzief 8. Arctic Coast-Islands 9. Missourie 10. North Saskatchewan 11. South Saskatchewan 12. Assiniboine-Rede 13. Winnipegd,e 14. Lower Saskatchewan-Nelsonef 15. Churchilld 16. Keewatin 17. Northern Ontariod 18. Northern Quebecd 19. Great Lakes 20. Ottawa 21. St. Lawrencee,f 22. North Shore-Gaspe´ 23. St. John-St. Croixe 24. Maritime Coastal 25. Newfoundland-Labrador
Canada
Reliableb(Low)
Mean
Highc
12,570 3,044 31 1,644 1,806 1,862 6,114 5,920 3 160 147 16 382 1,108 323 2,945 3,733 12,820 2,403 1,390 1,504 6,437 507 2,079 6,908 75,856
16,390 3,972 74 2,009 2,506 2,903 7,337 10,251 12 234 239 50 758 1,911 701 3,876 5,995 16,830 3,067 1,990 2,140 8,706 779 3,081 9,324 105,135
20,200 4,900 116 2,373 3,206 3,946 8,561 14,582 41 373 418 188 1,137 2,714 1,070 4,806 8,258 20,830 3,733 2,590 2,777 10,980 1,050 4,085 11,739 134,674
Note: For map of river basin regions see Figure 2.8. a b c d e f
From recorded flows except in Prairie basins where natural flows have been estimated. Flow equalled or exceeded in 19 years out of 20. Flow equalled or exceeded in 1 year out of 20. Excludes flow transferred into neighboring basin region; because this flow is recorded in importing basin, transfers have little effect on national total. Excludes inflow from United States portion of basin region. Excludes inflow from upper basin region.
Source: From Pearse, P.H., Currents of change, Final Report Inquiry on Federal Water Policy, Ottawa, Canada, 1985. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-35
Table 5A.8 Longest Rivers of the World Lengtha Name World Nile Amazon Yantze Mississippi Yenisey Huang Ho (Yellow) Ob Parana´ Congo Amur Africa Nile Congo Niger Zambezi Kasai Orange White Nile (al-Bahr al-Abyad) Lualaba Limpopo Jubba (Juba) Se´ne´gal Okavango (Kubango) Lomami Blue Nile (al-Bahr al-Azraq) Chari (Shari) Ubangi-Uele Awash
Rank in World (first 100)
Outflow
Miles
km
Mediterranean Sea South Atlantic Ocean East China Sea Gulf of Mexico Kara Sea Gulf of Cihli Gulf of Ob Rio de la Plata South Atlantic Ocean Sea of Okhotak
4,132 4,000 3,915 3,710 3,442 3,395 3,362 3,032 2,900 2,761
6,650 6,400 6,300 5,971 5,540 5,464 5,410 4,880 4,700 4,444
1 2 3 4 5 6 7 8 9 10
Mediterranean Sea South Atlantic Ocean Bight of Blafra Mozambique Channel Congo River South Atlantic Ocean Nile River
4,132 2,900 2,600 2,200 1,338 1,300 1,295
6,650 4,700 4,200 3,500 2,153 2,100 2,084
1 9 16 24 63 66 67
Congo River Mozambique Channel Indian Ocean South Atlantic Ocean Okavango Swamp Congo River White Nile River
1,100 1,100 1,030 1,020 1,000 830 907
1,800 1,800 1,658 1,641 1,600 1,500 1,460
87 87 94 95 100
870 870 750
1,400 1,400 1,200
Lake Chad Congo River Lake Abe
America, North Mississippi-Missouri-Red Rock
Gulf of Mexico
3,710
5,971
4
Mackenzie-Slave-Peace Missouri-Red Rock St. Lawrence-Great Lakes
Beaufort Sea Mississippi River Gulf of Saint Lawrence
2,635 2,533 2,500
4,241 4,076 4,000
15 17 19
Mississippi Missouri Yukon–Nisutlin Rio Grande Yukon Nelson Saskatchewan Arkansas Colorado Ohio–Allegheny Red Columbia Saskatchewan Peace Snake Churchill Ohio Canadian Tennessee–French Broad
Gulf of Mexico Mississippi River Bering Sea Gulf of Mexico Bering Sea Hudson Bay Mississippi River Gulf of California Mississippi River Mississippi River North Pacific Ocean Lake Winnipeg Slave River Columbia River Hudson Bay Mississippi River Arkansas River Ohio River
2,348 2,315 1,979 1,885 1,875 1,600 1,459 1,450 1,306 1,270 1,243 1,205 1,195 1,038 1,000 981 906 900
3,779 3,726 3,185 3,034 3,018 2,575 2,348 2,333 2,102 2,044 2,000 1,939 1,923 1,670 1,609 1,579 1,456 1,448
20 21 28 29 31 46 55 56 65 68 71 76 79 93 99
Upper Columbia Brazos South Saskatchewan Fraser Colorado (of Texas) St. Lawrence North Saskatchewan Ottawa
Columbia River Gulf of Mexico Saskatchewan River Strait of Georgia Matagorda Bay Lake Ontario Saskatchewan River St. Lawrence
890 870 865 850 840 800 800 790
1,432 1,400 1,392 1,368 1,352 1,287 1,287 1,271
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-36
Table 5A.8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Lengtha
Name
Outflow
North Canadian Pecos Kuskokwim
Canadian River Rio Grande River Bering Sea
America, South Amazon-Ucayali-Apurimac Parana´ Madeira-Mamore´-Guapore´ Jurua Purus Sa´o Francisco Japura´ (Caqueta´) Ucayali-Apurimac Orinoco Tocantins Araguaia Paraguay Pilcomayo Negro (Guainia) Xingu Tapajos-Teles Pires Mamore´ Maran˜o´n-Hualiaga Guapore´ (Ite´nez) Parnaiba Madre de Dios Putumayo (Ic¸a) Solimo˜es Uruguay Magdalena Guaviare Ucayali Teles Pires Grande Cauca Iguac¸u Asia Yangtze Yenisey-Balkal-Selenga Huang Ho (Yellow) Oh-Irtysh Amur-Argun Lena Mekong Ob-Katun Irtysh–Chorny Irtysh Yenisey Ob Syrdarya–Arabelsu Nizhnyaya Tunguska Brahmaputra Indus Amur Euphrates Vilyuy Amu Darya–Pyandzh Kolyma–Kulu Ganges Ishim Salween Olenyok Aldan Syrdarya Chu Chiang (Pearl)-Hsi
Miles
km
Rank in World (first 100)
760 735 680
1,223 1,183 1,094
South Atlantic Ocean Rio de la Plata Amazon River Amazon River Amazon River South Atlantic Ocean Amazon River Amazon River South Atlantic Ocean Para´ River Tocantins River Parana´ River Paraguay River Amazon River Amazon River Amazon River Guapore´ River Amazon River Mamore River South Atlantic Ocean Beni River Amazon River Amazon River Rı´o de la Plata Caribbean Sea Orinoco River Maran˜o´n River Tapajo´s River Mamore´ River Magdalena River Parana´ River
4,000 3,032 2,082 2,040 1,995 1,811 1,750 1,701 1,700 1,677 1,632 1,584 1,550 1,400 1,300 1,238 1,200 1,184 1,087 1,056 1,056 1,000 1,000 990 930 930 910 870 845 838 808
6,400 4,880 3,350 3,283 3,211 2,914 2,816 2,738 2,736 2,699 2,627 2,550 2,500 2,253 2,100 1,992 1,931 1,905 1,749 1,700 1,700 1,609 1,609 1,593 1,497 1,497 1,465 1,400 1,360 1,349 1,300
2 8 25 26 27 33 37 40 41 42 44 47 51 59 66 72 77 80 90 92 92 99 99
East China Sea Kara Sea Gulf of Chihli Gulf of Ob Sea of Okhotsk Laptev Sea South China Sea Gulf of Ob Ob River Kara Sea Gulf of Ob Aral Sea Yenisey River Jamuna River Arabian Sea Sea of Okhotak Shatt-al-Arab Lena River Aral Sea East Siberian Sea Padma River Irtysh River Gulf of Martaban Laptev Sea Lena River Aral Sea South China Sea
3,915 3,442 3,395 3,362 2,761 2,734 2,700 2,696 2,640 2,549 2,268 1,876 1,857 1,800 1,800 1,755 1,740 1,647 1,578 1,562 1,560 1,522 1,500 1,424 1,412 1,374 1,365
6,300 5,540 5,464 5,410 4,444 4,400 4,350 4,338 4,248 4,102 3,650 3,019 2,989 2,900 2,900 2,824 2,800 2,650 2,540 2,513 2,510 2,450 2,400 2,292 2,273 2,212 2,197
3 5 6 7 10 11 12 13 14 18 22 30 32 34 34 36 38 43 48 49 50 52 54 57 58 60 62
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5A.8
5-37
(Continued) Lengtha
Name
Outflow
Miles
km
Rank in World (first 100)
Kolyma (Kolima) Tarim Chulym-Bely Iyus Irrawaddy Vitim-Vitimkan Indigirka-Khastakh Hsi Sungari Tigris Podkamennaya Tunguska Vitim Chulym Angara Indigirka Khatanga-Kotuy Ket Argun Shilka-Onon Tobol-Kokpektysay Alazeya–Kadylchan Han Shui Yana-Sartang Godavari Amga Sutleg Ili-Tekes Olyokma Amu Darya Taz Yamuna Kura Tavda-Lozva Liao Taseyeva-Chuna Vyatka Krishna Narmada Zeya Chu
East Siberian Sea Lop Nor Basin Ob River Andaman Sea Lena River East Siberian Sea South China Sea Amur River Shatt-al-Arab Yenisey River
1,323 1,261 1,257 1,238 1,229 1,228 1,216 1,197 1,180 1,159
2,129 2,030 2,023 1,992 1,978 1,977 1,957 1,927 1,900 1,865
64 69 70 72 73 74 75 78 81 83
Lena River Ob River Yanisey River East Siberian Sea Laptev Sea Ob River Amur River Amur River Irtysh River East Siberian Sea Yangtze River Laptev Sea Bay of Bengal Aldan River Indus River Lake Balkhash Lena River Aral Sea Gulf of Taz Ganges River Caspian Sea Tobol River Gulf of Liaotung Angara River Kama River Bay of Bengal Gulf of Cambay Amur River Betpak Dala Plateau
1,141 1,118 1,105 1,072 1,017 1,007 1,007 989 989 988 952 927 910 908 900 894 892 879 871 855 848 843 836 820 817 800 800 772 663
1,837 1,799 1,779 1,726 1,636 1,621 1,620 1,592 1,591 1,590 1,532 1,492 1,465 1,462 1,450 1,439 1,436 1,415 1,401 1,376 1,364 1,356 1,345 1,319 1,314 1,290 1,290 1,242 1,067
84 88 89 91 96 97 98
Europe Volga Danube Ural Dnepr Don Pechora Kama Oka Belaya Rhine Dnestr Northern Dvina-Sukhona
Caspian Sea Black Sea Caspian Sea Black Sea Sea of Azov Barents Sea Volga River Vola River Kama River North Sea Black Sea White Sea
2,193 1,770 1,509 1,367 1,162 1,124 1,122 932 889 865 840 809
3,530 2,850 2,428 2,200 1,870 1,809 1,805 1,500 1,430 1,392 1,352 1,302
23 35 53 61 82 85 86
Oceania Darling Murray Murrumbidgee Lachlan
Murray River Great Australian Bight Murray River Murrumidgee River
1,702 1,609 981 992
2,739 2,589 1,579 1,484
39 45
a
Conversions of rounded figures are rounded to nearest hundred miles or kilometres.
Source: From Encyclopaedia Britannica, 15th edition, Copyright 1988 by Encyclopaedia Britannica, Inc. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
5-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5A.9 Large Rivers of the World
River
Country
Drainage Area (Thousands of sq mi)
Average Discharge at Mouth (Thousands of cfs)
Rank
North America a
Mississippi St. Lawrence Mackenzie Columbia Yukon
U.S.A. and Canada U.S.A. and Canada Canada U.S.A. and Canada Canada
Frazer Nelson Mobile Susquehanna
Canada Canada U.S.A. U.S.A.
1,244 498 697 258 360
611 500 280 256 180
7 11 17 19 24
92 414 42 28
113 80 58 38
32 37 43 48
7,500b 600 526 360 265 136 100
1 8 10 16 18 26 34
1,400 250 215 100
2 20 22 33
750 361 409 1,000 936
770 700 660 614 547
3 4 5 6 9
South America Amazon Orinoco Parana Tocantins Magdalena Uruguay Sao Francisco
Brazil Venezuela Argentina Brazil Colombia c
Brazil
2,231 340 890 350 93 90 260 Africa
Congo Zambezi Niger Nile
Congo Mozambique Nigeria Egypt
1,550 500 430 1,150 Asia
Yangtze Brahmaputra Ganges Yenisel Lena
China Bangladesh India U.S.S.R. U.S.S.R.
Irrawaddy Ob Mekong Amur Indus
Burma U.S.S.R. Thailand U.S.S.R. Pakistan
166 959 310 712 358
479 441 390 388 196
12 13 14 15 23
Kolyma Sankai (Si) Godavari Hwang Ho (Yellow) Pyasina
U.S.S.R. China India China U.S.S.R.
249 46 115 260 74
134 127 127 116 90
27 28 29 31 36
Krishna Indigirka Salween Shatt-al Arabd Yana
India U.S.S.R. Burma Iraq U.S.S.R.
119 139 108 209 95 Europe
69 64 53 51 35
39 40 44 45 49
Danube Pechora Dvina (Northern) Neva Rhine
Romania U.S.S.R. U.S.S.R. U.S.S.R. Netherlands and Germany
315 126 139 109 56
218 144 124 92 78
21 25 30 36 38
Dnepr Rhone Po Vistula
U.S.S.R. France Italy Poland
194 37 27 76
59 59 51 38
41 42 46 47
a b c d
Includes Atchafalaya River. Department of Interior News Release, Feb. 24, 1964. Argentina and Uruguay. Tigris, Euphrates and Karun.
Source: From Young, L.L., U.S. Geological Survey, 1964.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-39
SECTION 5B
LAKES
Table 5B.10 Natural Fresh-Water Lakes of the United States of 10 sq. mi or More Name Alaska Iliamna Becharof Teshekpuk Naknek Tustumena Clark Dall Inlanda Imuruk Basina Upper Ugashik Kukaklek Lower Ugashik Nerka Nuyakuk Aropuk Tazlina Nanwhyenuk or Nonvianuk Nunavakpak Kaghasuka Skilak Chauekuktuli Chikuminuk Beverly Whitefish Aleknagik Brooks Kgun Nonvianuk Takslesluk George Nunavak Anukslak Unnamed Grosvenor Tetlin Chakachamna Imuruk Nunavakanuk Louise Minchumina Klutina Unnamed Unnamed Beluga Unnamed Unnamed Kenai Kyigayalik Tikchik Bering Kulik Upnuk Unnamed slough Teloquana Unnamed Unnamed Unnamed Five Day Slough Togiak Unnamed Black Ualik
Latitude
Longitude
Area (sq. mi)
59835 57850 70835 58835 60825 60810 60815 66830 65805 57850 59835 57830 59820 59850 61810 61850
155800 156825 153830 156800 150820 154800 163845 159850 165840 156825 155800 156855 158845 158850 163845 146830
1,000 458 315 242 117 110 100 95 80 75 72 72 69 64 57 57
59800 60845 60855 60825 60805 60815 59840 61820 59820 58830 61835 59800 61805 61815 61805 60855 58840 63805 61810 65835 62805 62820 63855 61840 61830 71805 61825 60805 61840 60825 61800 59855 60820 59850 60805 62840 60855 60830 61800 61830 62805 59835 59855 56825 59805
155825 162840 163840 150820 158850 158855 158845 160800 158845 155855 163850 155830 162855 148835 162830 164800 155815 142845 152830 163810 164840 146830 152815 145830 164830 156830 151830 164800 160825 149835 162830 158820 144820 158850 158855 163830 153855 161840 163845 164855 162800 159835 163815 159800 159830
56 53 52 38 34 34 33 33 31 31 31 31 31 29 29 28 27 27 26 26 25 23 23 22 22 21 20 20 20 19 19 19 17 17 17 17 16 16 16 16 15 15 15 14 14
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-40
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5B.10
(Continued)
Name Walker Unnamed Unnamed Unnamed Amanka Whitefish Unnamed Crosswind Kakhomak Karluk Mother Goose Unnamed Unnamed Unnamed Unnamed Coleville Harlequin Unnamed Unnamed Bear Chignik Ewan Kontrashibuna Kukaklik Kulik Unnamed Miles Susitna Unnamed Unnamed Unnamed Unnamed Unnamed Name California Tahoeb Clear Eaglec Florida Okeechobee George Kissimmee Apopka Istokpoga Tsala Apopka Tohopekaliga Harris Orange East Tohopekaliga Griffin Monroe Jessup Weohyakapka Talquin Eustis Blue Cypress Hatchineha Lochloosa Idaho Pend Oreille Beard Coeur d’Alene Priest Graysf Henrys
Latitude
Longitude
67805 60820 60850 59850 59805 60855 71800 62820 59830 57820 57810 60825 59850 62815 70850 58845 59825 60825 60855 56800 56815 62825 60810 61840 58855 61845 60840 62825 60820 60825 60855 59855 62800
154825 164825 163830 163830 159810 154855 156800 146800 154810 154805 157820 164810 163825 162820 153830 155840 138855 164810 162820 160815 158850 145850 154800 160830 155800 160840 144845 146840 162800 162800 162810 163815 162800 County
Area (sq. mi) 14 14 14 14 13 13 13 12 12 12 12 12 12 12 12 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Area (sq. mi)
Placer, Eldorado Lake Lassen
193 65 41
Hendry, Glades, Okeechobee, Martin, Palm Beach Putnam, Marion, Volusia, Lake Osceola, Polk Orange Highlands Citrus Osceola Lake Alachua, Marion Osceola Lake Seminole, Volusia Seminole Polk Gadsden, Leon Lake Osceola, Indian River Polk, Osceola Alachua
700
Bonner Bear Lake Kootenai Bonner Bonneville, Caribou Fremont
70 55 48 43 30 29 27 26 19 14 14 13 12 11 11 10 10 10 148 110d 50 37 34 10
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-41
Table 5B.10
(Continued)
Name Iowa Spirit Louisiana Whiteg Grand Caddoh Catahoulai Grand Six Mile Fausse Pointe Lac des Allemands Verret Polourde Maine Moosehead Sebago Chesuncookj West Grand Flagstaff Spednik Grand Fallsk East Grandk Mooselookmeguntic Twin Chamberlain and Telos Graham Churchill and Eagle Baskahegan Umbagogl Brassua Square Millinocket Great Richardson Schoodic Sebec Aziscohos Canada Falls Rangeley Michigan St. Clairm Houghton Torch Charlevoixn Burt Mullet Gogebic Manistique Black Crystal Portage Higgins Hubbard Leelanau Indian Elk Glen Minnesota Lake of the Woodso Upper and Lower Red Rainyo Mille Lacs Leech Winnibigoshish Vermilion Lac La Croixo Cass
County
Area (sq. mi)
Dickinson
12
Vermilion Iberia, St. Mary, St. Martin DeSoto LaSalle Cameron St. Martin, St. Mary St. Mary, Iberia St. John the Baptist Assumption St. Martin, St. Mary, Assumption
83 64 60 32 32 30 24 23 22 18
Piscataquis, Somerset Cumberland Piscataquis Washington Somerset, Franklin Washington Washington Washington, Aroostook Oxford, Franklin Penobscot, Piscataquis Piscataquis Hancock Piscataquis Washington Oxford Somerset Aroostook Penobscot, Piscataquis Kennebec Oxford Piscataquis Piscataquis Oxford Somerset Oxford
117 45 43 37 28 28 27 26 26 25 22 19 17 16 16 15 14 14 13 13 11 11 10 10 10
Roscommon Antrim, Kalkaska Charlevoix Cheboygan Cheboygan Ontonagon, Gogebic Mackinac, Luce Cheboygan, Presque Isle Benzie Houghton Crawford, Roscommon Alcona Leelanau Schoolcraft Antrim, Grand Traverse Leelanau
460 31 29 27 27 26 21 16 16 15 15 15 14 13 12 12 10
Lake of the Woods Beltrami Koochiching, St. Louis Aitken, Crow Wing, Mille Lacs Cass Itasca, Cass St. Louis St. Louis Cass, Beltrami
1,485 451 345 207 176 109 77 53 46
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-42
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5B.10
(Continued)
Name
County o
Basswood Namakano Kabetogama Pepinp Mud Saganagao Pokegama Minnetonka Otter Tail Gull Pelican Traverseq Big Stoneq Crookedo Sandy Swan Island Bowstring Burntside Sand Pointo Trout St. Croixp Lac qui Parle Pelican Dead Minnewaska Thief Nett Osakis Bemidji Lida Montana Flathead Medicine McDonald Nevada Tahoeb New Hampshire Winnipesaukee Umbagogl Squam New York Champlaint Oneida Seneca Cayuga George Chautauqua Black Canandaigua Skaneateles Owasco North Carolina Mattamuskeetv Phelps Waccamaw Oregon Upper Klamath Crater South Dakota Traverseq Big Stoneq Tennessee Reelfoot Texas Caddoh
Lake St. Louis Itasca Goodhue, Wabasha Marshall Cook Itasca Hennepin, Carver Otter Tail Cass, Crow Wing St. Louis Traverse Big Stone St. Louis, Lake Aitkin Nicollet St. Louis Itaska St. Louis St. Louis St. Louis Washington Chippewa, Lac qui Parle Crow Wing Otter Tail Pope Marshall St. Louis, Koochiching Douglas, Todd Beltrami Otter Tail
Area (sq. mi) 46 44 40 39 37 32 24 22 22 20 19 18 17 17 15 15 14 14 14 14 14 13 13 13 12 12 12 12 10 10 10
Lake, Flathead Sheridan Flathead
197r 15s 10
Ormsby, Douglas
193
Belknap, Carroll Coos Gafton, Carroll Clinton, Essex Oswego, Oneida Seneca, Schuyler Cayuga, Seneca, Tompkins Warren Chautauqua St. Lawrence Ontario, Yates Onondaga, Cayuga Cayuga Hyde Washington Columbus
72 16 11 490u 80 67 66 44 21 17 17 14 10 67 25 14
Klamath Klamath
142w 21
Roberts Roberts
18 17
Lake, Obion
22
Marion
60
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-43
Table 5B.10
(Continued)
Name Utah Utah Beard Vermont Champlaint Washington Chelan Washington Ozette Wisconsin Winnebago Pepinp Poygan Koshkonong Mendota St. Croixp Green Wyoming Yellowstone Jackson Shoshone
County
Area (sq. mi)
Utah Rich Chittenden, Franklin
140 110 490u
Chelan King Clallam
55 35 12
Winnebago, Calumet, Fond du Lac Pierce, Pepin Winnebago Jefferson Dane St. Croix Green Lake
215 39 17 16 15 12 11
Yellowstone National Park Teton Yellowstone National Park
37x 39y 11
Note: Lakes are arranged by states; the Great Lakes are excluded. a b c d e f g h i j k l m n o p q r s t u v
w x y
May be salt water. California and Nevada. Mildly saline, less than 1,000 ppm. Idaho and Utah. 136 sq. mi including Mud Lake. Submerged marsh. Originally brackish; now kept fresh by controls on salt water intrusion. Louisiana and Texas. Shrinks to small area at extremely low stages. Includes Ripogenus and Caribou. Maine and Quebec. Maine and New Hampshire. Michigan and Ontario. Formerly called Pine. Minnesota and Ontario. Minnesota and Wisconsin. Minnesota and South Dakota. At normal high water; 188 sq. mi at medium low water; lake regulated for power between these limits. Includes 4 islands having area of about 1 sq. mi. New York, Vermont, and Quebec. Includes islands totaling about 55 sq. mi. The lake originally landlocked, was drained and provided with outlet and is fresh water; level regulated to some extent by control works on canals draining the area. At upper level; dam at outlet allows regulation so that area varies between 93 and 142 sq. mi. Includes islands totaling 3 sq. mi. Enlarged by dam; original area, 30 sq. mi.
Source: From U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
5-44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5B.11 Natural Fresh-Water Lakes of the United States of 100 sq. mi or More Name Lake of the Woods Iliamna Okeechobee Champlain St. Clair Becharof Upper and Lower Red Rainy Teshekpuk Naknek Winnebago Mille Lacs Flathead Tahoe Leech Pend Oreille Upper Klamath Utah Yellowstone Tustumena Moosehead Clark Bear Winnibigoshish Dall
Location
Area (sq. mi)
Minnesota and Ontario Alaska Florida New York, Vermont, and Quebec Michigan and Ontario Alaska Minnesota Minnesota and Ontario Alaska Alaska Wisconsin Minnesota Montana California and Nevada Minnesota Idaho Oregon Utah Wyoming Alaska Maine Alaska Idaho and Utah Minnesota Alaska
1,485 1,000 700 490 460 458 451 345 315 242 215 207 197 193 176 148 142 140 137 117 117 110 110 109 100
Note: The Great Lakes are excluded. Source: From U.S. Geological Survey.
Table 5B.12 Natural Fresh-Water Lakes of the United States, 250 ft Deep or More Name Crater Tahoe Chelan Pend Oreille Nuyakuk Deer Chauekuktuli Crescent Seneca Clark Beverley Nerka Tokatz Long Lower Sweetheart Cayuga Crater Cooper Champlain Kasnyku
Location Oregon California and Nevada Washington Idaho Alaska Alaska Alaska Washington New York Alaska Alaska Alaska Alaska Alaska Alaska New York Alaska Alaska New York, Vermont, and Quebec Alaska
Depth (ft) 1,932 1,645 1,605 1,200 930 877 700 624 618 606 500 475 474 470 459 435 414 O400 400 393 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-45
Table 5B.12 Name Chakachamna Ozette Aleknagik Sebago Swan Baranoff Payette Quinault Crescent Wallowa Chilkoot Odell Silver Grant
(Continued) Location Alaska Washington Alaska Maine Alaska Alaska Idaho Washington Alaska Oregon Alaska Oregon Alaska Alaska
Note: The Great Lakes are excluded. Source: From U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
Depth (ft) 380 331 330 316 O314 303 O300 About 300 291 283 282 279 278 O250
5-46
Table 5B.13 Largest Lake in Each State of the United States
State AL
Largest Entirely Within State
Largest Partly in Another State
Shared With
Wheeler Illamna San Carlosa
AR
Ouachita
CA
Salton Sea
CO CT DE FL GA
John Martina Candlewood Lum’s Pond Okeechobee Sidney Lanier
HI ID
Koloaa Pend Oreille
IL
Crab Orchard
IN
Wawasee
IA KS KY
Spirit Tuttle Creeka Cumberland
LA ME MD MA MI
Pontchartrain Moosehead Deep Creek Quabbina Houghton
MN
Red
MS MO
Sardis Lake of the Ozarks
MT NE NV
Fort Pecka McConaughy Pyramid
NH NJ
Winnipesaukee Hopatcong
q 2006 by Taylor & Francis Group, LLC
TN
Powell
UT
Bull Shoals
MO
Tahoe
NV
Clark Hilla
SC
Bear
UT
Michigan
WI, IN, MI
Michigan
WI, IL, MI
Kentucky
TN
Superior
WI, Ont, MN
Superior
WI, Ont, MI
Bull Shoals
AR
Mead
AZ
Man-made Man-made Natural Man-made Man-made Man-made Man-made Natural Natural Man-made Man-made Man-made Natural Man-made Man-made Man-made Natural Natural Man-made Natural Natural Natural Natural Man-made Man-made Man-made Natural Natural Man-made Man-made Natural Natural Natural Natural Man-made Man-made Man-made Man-made Man-made Natural Man-made Natural Man-made
Area sq. mi 104.84 107.97 1,033 30.6 252 62.65 111.31 360 192 28.72 8.46 0.31 700 57.96 111.09 0.66 133 136 10.96 22,400 4.09 22,400 8.84 24.68 78.51 247.34 630 117 7.03 38.6 31.3 31,800 451 31,800 15.31 93.75 111.31 382.81 55 187.5 247 71.55 4.19
Feet Above Sea Level 556 595 50 2,523 3,700 578 695 K231 6,229 3,765 429 44 18.7 1,035 330 233 2,063 5,930 405 578.8 859 578.8 1,402 1,075 723 375 S.L 1,028 2,462 530 1,139 600 1,175 600 234 — 695 2,250 3,276 3,800 1,221 504 924
Maximum Depth (ft) 58 60 — 249 580 207 243 46 1,685 118 85 12 — 180 190 22.5 1,150 30 33 923 68 923 — 56 — 145 15 246 — 150 20 1,333 31 1,333 — 125 243 220 150 330 589 120 58
Shoreline Length (miles) 1,063 962 188 — — 690 1,050 — 71 86 65 3.5 110 540 1,057 3.3 111.3 51.5 103 1,660 18 1,660 — 112 1,255 2,380 113 — — 118 30 2,980 123 2,980 60 1,375 1,050 1,600 50 70 550 128 35
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AK AZ
Guntersville
Origin
NC ND OH
OK OR PA
Elephant Buttea Oneida MI, PA, OH, Ont
John H. Kerra
VA
Erie
MI, PA, NY, Ont
Texoma
TX
Erie
MI, NY, OH, Ont
Clark Hilla
GA
Kentucky
KY
Texoma
OK
Powell
AZ
Champlain
NY Que
John H. Kerra
NC
Bluestonea
VA
Superior
MN, MI, Ont
Norman Garrisona Grand
Eufaulaa Upper Klamath (incl. Agency Lake) Wallenpaupack
RI SC
Scituatea Marion
SD TN
Francis Case Watts Bar
TX
Texarkana
UT
Great Salt
VT
Bomoseen
VA
Smith Mountain
WA WV
F.D. Roosevelt Tygart
WI
Winnebago
WY
Yellowstone
a
Erie
Man-made Natural Natural
58.85 80 9,910
4,450 370 570
193 50 210
250 52 856
Man-made Man-made Man-made Man-made Natural
50.78 76.4 609.38 20 9,910
760 300 1,850 869 570
115 100 200 12 210
520 800 1,600 60 856
Man-made Man-made Natural
160.16 149.06 140.63
585 617 4,139
87 94 40
600 540 105
Man-made Natural Man-made Man-made Man-made Man-made Man-made Man-made Man-made Man-made Natural Man-made Natural Natural Man-made Man-made Man-made Man-made Man-made Natural Natural Natural
9 9,910 5.68 157.03 111.09 160.31 60.31 247.34 46.56 149.06 1,500 252 3.69 430 31.25 76.4 123.44 5.37 3.07 215.26 31,800 137
1,182 570 284 75 330 1,375 745 375 225 617 4,200 3,700 411 100 795 300 1,288 1,010 1,409 — 600 7,735
50 210 80 35 190 140 80 145 39 94 48 580 — 399 200 100 375
45 856 38 299 1,057 540 783 2,380 141 540 350 — — — 500 800 302 106 33 91.96 2,980 —
42 21.6 1,333 —
SURFACE WATER
NM NY
Reservoir.
Source: From National Geographic Society.
5-47
q 2006 by Taylor & Francis Group, LLC
5-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Minne
sota
Lake Superior
Scale 0
50
100
200
300
Miles
Mich igan Wis cons in
M ic h
ig a n
n uro eH Lak
Province of Ontario
nt eO
ario
L a ke
Lak
Wisconsin Illinois
Michigan Indiana
e Lak
Eri
ork N ew Y
e
Pen ns yl
va ni a
Ohio
Figure 5B.3 The Great Lakes. (From U.S. Geological Survey, National Water Summary 1985—Hydrologic Events and Surface-Water Resources, Water-Supply Paper 2300.)
Average lake level (m, IGLD1985)
184
183.5
183
182.5
Sep,2001
Apr,1998
Nov,1994
Jun,1991
Jan,1988
Aug,1984
Oct,1977
Mar,1981
May,1974
Dec,1970
Jul,1967
Feb,1964
Sep,1960
Apr,1957
Nov,1953
Jun,1950
Jan,1947
Mar,1940
Aug,1943
Oct,1936
May,1933
Dec,1929
Jul,1926
Feb,1923
Sep,1919
182
Date (month, year) Figure 5B.4 Great Lakes water levels for Lake Superior graphed for consecutive years, Lake Superior: 1918–2003. (From www.usace. army.mil.) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-49
Table 5B.14 Selected Facts about the Great Lakes System Outlet
Remarks
St. Marys River to Lake Huron Straits of Mackinac to Lake Huron St. Clair River to Lake St. Clair Detroit River to Lake Erie Niagara River and Falls to Lake Ontario St. Lawrence River to Atlantic Ocean
Largest surface area of all the freshwater lakes in the world. Outflow controlled by St. Marys River Compensating works Sixth largest surface area of world’s freshwater lakes Fifth largest surface area of world’s freshwater lakes Shallowest lake in the Great Lakes system Eleventh largest surface area of world’s freshwater lakes Outflow controlled by St. Lawrence Seaway and Power Project
Source: From U.S. Geological Survey, National Water Summary 1985—Hydrologic Events and Surface-Water Resources, Water-Supply Paper 2300, 1985.
Table 5B.15 Great Lakes Physical Features and Population Superior a
Elevation Length Breadth
Average Deptha Maximum Deptha Volumea Water Area Land Drainage Areab Total Area Shoreline Lengthc Retention Time Population:U.S
Note:
f
Michigan
Huron
Erie 569 173 241 388 57 92 62 19 210 64 116 484 9,910 25,700 30,140
Ontario
(ft) (m) (mi)e (km) (mi)e (km) (ft)f (m) (ft)e (m) (cu. mi.)e (km3) (sq. mi)e (km2) (sq. mi)e
600 183 350 563 160 257 483 147 1,332 406 2,900 12,100 31,700 82,100 49,300
577 176 307 494 118 190 279 85 925 282 1,180 4,920 22,300 57,800 45,600
577 176 206 332 183 245 195 59 750 229 850 3,540 23,000 59,600 51,700
243 74 193 311 53 85 283 86 802 244 393 1,640 7,340 18,960 24,720
(km2) (sq. mi)e (km2) (mi)e (km) (yr)f (1990)g Canada (1991) Totals Outlet
127,700 81,000 209,800 2,726 4,385 191 425,548 181,573
118,000 67,900 175,800 1,638 2,633 99 10,057,026
134,100 74,700 193,700 3,827 6,157 22 1,502,687 1,191,467
78,000 40,050 103,700 871 1,402 2.6 10,017,530 1,664,639
64,030 32,060 82,990 712 1,146 6 2,704,284 5,446,611
607,121 St. Marys River
10,057,026 Straits of Mackinac
2,694,154 St. Clair River
11,682,169 Niagara River/ Welland Canal
8,150,895 St. Lawrence River
Totals
5,439 22,684 94,250 244,160 201,460 521,830 295,710 765,990 10,210d 17,017d 24,707,075 8,484,290 33,191,365
a Measured at low water datum; bLand Drainage Area for Lake Huron includes St. Marys River. Lake Erie includes the St. ClairDetroit system. Lake Ontario includes the Niagara River; cIncluding islands; dThese totals are greater than the sum of the shoreline length for the lakes because they include the connecting channels (excluding the St. Lawrence River).
Source: From www.epa.gov. Original Source:
e Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data, Coordinated Great Lakes Physical Data. May, 1992; fExtension Bulletins E-1866-70, Michigan Sea Grant College Program, Cooperative Extension Service, Michigan State University, E. Lansing, Michigan, 1985; g1990–1991 population census data were collected on different watershed boundaries and are not directly comparable to previous years.
q 2006 by Taylor & Francis Group, LLC
q 2006 by Taylor & Francis Group, LLC
Sep, 2001
Apr, 1998
Nov, 1994
Jun, 1991
Jan, 1988
Aug, 1984
Mar, 1981
Oct, 1977
May, 1974
Dec, 1970
Jul, 1967
Feb, 1964
Sep, 1960
Apr, 1957
Nov, 1953
Jun, 1950
Jan, 1947
Aug, 1943
Mar, 1940
Oct, 1936
May, 1933
Dec, 1929
Jul, 1926
Feb, 1923
Sep, 1919
Average lake level (m, IGLD1985)
Sep,2001
Apr,1998
Nov,1994
Jun,1991
Jan,1988
Aug,1984
Mar,1981
Oct,1977
May,1974
Dec,1970
Jul,1967
Feb,1964
Sep,1960
Apr,1957
Nov,1953
Jun,1950
Jan,1947
Aug,1943
Mar,1940
Oct,1936
May,1933
Dec,1929
Jul,1926
Feb,1923
Sep,1919
Average lake level (m, IGLD1985)
5-50 THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
178
177.5
177
176.5
176
175.5
175
Date (month, year)
Figure 5B.5 Great Lakes water levels for Lake Michigan/Huron graphed for consecutive years, Lake Michigan/Huron: 1918–2003. (From www.usace.army.mil.)
176
175.5
175
174.5
174
173.5
173
Date (month, year)
Figure 5B.6 Great Lakes water levels for Lake St. Clair graphed for consecutive years, Lake St. Clair: 1918–2003. (From www.usace. army.mil.)
q 2006 by Taylor & Francis Group, LLC
Nov, 2000
Aug, 1997
May, 1994
Feb, 1991
Nov,1987
Aug, 1984
May, 1981
Feb, 1978
Nov, 1974
Aug, 1971
May, 1968
Feb, 1965
Nov, 1961
Aug, 1958
May, 1955
Feb, 1952
Nov, 1948
Aug, 1945
May, 1942
Feb, 1939
Nov, 1935
Aug, 1932
May, 1929
Feb, 1926
Nov, 1922
Aug, 1919
Average lake level (m, IGLD1985)
Sep, 2001
Apr, 1998
Nov, 1994
Jun, 1991
Jan, 1988
Aug, 1984
Mar, 1981
Oct, 1977
May, 1974
Dec, 1970
Jul, 1967
Feb, 1964
Sep, 1960
Apr, 1957
Nov, 1953
Jun, 1950
Jan, 1947
Aug, 1943
Mar, 1940
Oct, 1936
May, 1933
Dec, 1929
Jul, 1926
Feb, 1923
Sep, 1919
Average lake level (m, IGLD1985)
SURFACE WATER 5-51
176
175.5
175
174.5
174
173.5
173
Date (month, year)
Figure 5B.7 Great Lakes water levels for Lake Erie graphed for consecutive years, Lake Erie: 1918–2003. (From www.usace.army.mil.)
76
75.5
75
74.5
74
73.5
73
Date (month, year)
Figure 5B.8 Great Lakes water levels for Lake Ontario graphed for consecutive years, Lake Ontario: 1918–2003. (From www.usace. army.mil.)
5-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Lake St. Lawrence EL.241 St. Marys River Lakes Michigan Huron EL. 600.4
EL. 578.7
573.1
Lake St. Francis EL.152
Niagara Falls
St. Clair River
Lake St. Louis EL.69
Lake Ontario
570.4
L.Erie Lake Superior
244.8
Lake St. Clair
925 FT. Michigan
Gulf of St. Lawrence
Detroit River
EL.20
EL.0
St. Lawrence River 752 FT. Huron
804 FT.
212 FT.
Niagara River
1333 FT.
379
60
223
89
236
35
150
77
28
52
33
350
Distances in miles
Figure 5B.9 Profile of the Great Lakes—St. Lawrence River Drainage System. (From International great lakes levels board. Regulation of Great Lakes water levels, Report to the international joint commission, Washington, 1973. With permission.)
4,212 1847-75 1875-77 1877-79 1879-81 1881-1901 1902-03 1903-38 1938-present
4,210
Water-surface altitude in feet
4,208 4,206 4,204
Traditional data Black Rock gage Farmington gage Lakeshore gage Garfield gages Midtake gage Saltair gage Boat Harbor gage
4,202 4,200 4,198 4,196
Estimated
4,194
Measured
4,192 4,190 1/1/1845
1/1/1865
1/1/1885
1/1/1905
1/1/1925
1/1/1945
1/1/1965
1/1/1985
11/15/2004
Figure 5B.10 Fluctuation in water-surface altitude of Gilbert Bay (south part), Great Salt Lake, 1847 to present. (From www.usgs.gov.) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-53
Table 5B.16 Hydrologic Characteristics of the Great Lakes Lake Surface Elevation, in Feet, 1900–1984 Monthly Range (From Winter Low to Summer High)
Monthly Mean
Total Dissolved Solids, 1986 ppm
Mean Discharge (m2/sec)
Lake
Average
Maximum
Minimum
Average
Maximum
Minimum
Superior Michigan– Huron Michigan Huron St. Clair Erie Ontario
600.59 578.27
602.02 581.04
598.23 575.35
1.2 1.2
2.1 2.1
0.4 0.4
52 —
2,076 —
— — 573.34 570.44 244.71
— — 576.23 573.51 248.06
— — 569.86 567.49 241.45
— — 1.7 1.6 2.0
— — 3.3 2.8 3.6
— — 0.6 0.9 0.7
150 118 — 198 194
1,558 5,038 — 5,545 6,624
Note: Levels referenced to international Great Lakes datum 1955. Source: From U.S. Geological Survey, National Water Summary 1985—Hydrologic Events and Surface-Water Resources, Water-Supply Paper 2300 and U.S. Army Corps of Engineers data.
Table 5B.17 Principal Saline Lakes of the United States Present Area (sq. mi)
Lake California Salton Sea Owens Mono Goose (in California and Oregon) Eagle
350 Dry at times each year since 1943 76 About 100
Honey
Louisiana Pontchartrain Sabine (Louisiana and Texas) Calcasieu Maurepas Salvador Nevada Pyramid
Walker Winnemucca
Carson
41
Dry
625
Remarks About 650 sq. mi at highest stage in 1905–07 110 sq. mi in 1872, prior to diversions from Owens River; 35 sq. mi in 1943 Maximum, 89 sq. mi in 1919 Maximum, 186 sq. mi, 125 in California and 61 in Oregon; overflowed into Pitt River in 1869 and 1881; dry in 1930; 150 sq. mi in 1958 Some question as to whether Eagle Lake should be considered saline or fresh water. It has no surface outlet (Martin, 1962), but since 1924 it has been tapped by tunnel to Willow Creek. Salinity is considerably less than 1,000 ppm, according to California Dept. of Water Resources. During period 1895–1925 lake rose to highest level since at least 1650 (Harding, 1935); rise believed due to closing of subterranean outlet by earthquake in 1890 (Antevs, 1938) 90 sq. mi in 1867, possibly higher in 1890; dry in 1903; high in 1904; dry in 1924. Contained some water April 1958 to September 1960, and early in 1962
95
These lakes are connected with the Gulf of Mexico, and are subject to tidal fluctuation As above
90 90 70
As above As above As above
180
107 Dry
Nearly dry
Maximum size, 220 sq. mi. Low until 1860; reached extreme high level in 1862 and 1868 or 1869; nearly as high in 1890; began to drop in 1917 (Hardman and Venstrom, 1941) Maximum size, 125 sq. mi Maximum size, 180 sq. mi. Dry in 1840, but began to fill shortly thereafter (Zones, 1961). According to Russell (1885) the lake rose more than 50 ft and approximately doubled its area between 1867 and 1882. Was 87 ft deep in 1882. Dry since 1945 Maximum size, 41 sq. mi. A few water-filled pot holes remain. Once called South Carson Lake; received flow of Carson River before Lahontan Reservoir was built (Continued)
q 2006 by Taylor & Francis Group, LLC
5-54
Table 5B.17
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Present Area (sq. mi)
Lake Carson Sink
Dry
Ruby Franklin North Dakota Devils
24
Oregon Malheur and Harney
Goose (see California) Abert Summer Silver
Warner
Sevier
A shallow playa some 250 sq. mi in area shown on some maps as a body of water. Russell (1885) called it North Carson Lake. Dry in 1882, but probably has had some water at times since. Once received water from both Carson and Humboldt Rivers Maximum size, 37 sq. mi. Shown as swamp on recent maps of Army Map Service and Nevada Dept. of Highways Maximum size, 32 sq. mi. Shown as swamp on recent maps of the Army Map Service and Nevada Dept. of Highways 140 sq. mi in 1867; 70 sq. mi in 1883; 45 sq. mi in 1900; 10 sq. mi in 1940. Since 1940 lake has been rising
Probably dry
Malheur, the larger of the two lakes, overflows into Harney, which has no outlet. Maximum combined size, 125 sq. mi. Reported dry in 1931; high in late 1950s; about 1 sq. mi in 1961, and expected to go dry in 1962
52 Probably dry Dry
Maximum size, 60 sq. mi. Dry in 1930 or thereabouts, but fairly high in 1958 Maximum size, 70 sq. mi. Nearly dry in 1961 Maximum size, 15 sq. mi. Dry in 1961. Because of the transient nature of the lake, the water—whenever there is any—is relatively fresh; hay is raised on the dry lake bed A series of shallow lakes; combined area about 30 sq. mi in 1953, a wet year, estimated from Army Map Service map based on aerial photograph taken in 1953. Present lakes are all that is left of Pleistocene Warner Lake, which covered about 300 sq. mi and was about 270 ft deep
Probably less than 10
Utah Great Salt
Remarks
About 1,000 Dry
Maximum size since 1851, 2,400 sq. mi in 1870s; minimum, 950 sq. mi in October 1961; seasonal high in 1962 was 1,050 sq. mi in June Maximum size, 125 sq. mi; has been dry for several years
Source: From U.S. Geological Survey, 1963.
Table 5B.18 Hydrologic Data for Great Salt Lake and West Desert Pumping Project Great Salt Lake Dimensions Average depth Maximum depth Contents in dissolved minerals (mainly chloride, sodium, sulfate, magnesium, potassium with lesser amounts of calcium, lithium, bromium and borona) West Desert Pumping Project Flood control project by State of Utah to lower water level of Great Salt Lake Start of construction July 1986 Cost of construction and 1st year of operation Projected volume of diversion Water is lifted by 3 large pumps (capacity 1,000 cfs each) through 4.1 mi long outlet canal to evaporation pond (west pond) Surface area of west pond Rate of evaporation from west pond Salinity of water in west pond
80!35 mi 22 ft 42 ft 4–5 billion tons
71.7 million 2.73 million acre ft total
500 sq. mi 825,000 acre-ft/yr 350 g/L
Rock and earthfill Southern Pacific Transportation Co. railroad causeway separates the lake into two parts, Southern part of lake (60% of total area) receives 90% of lake’s freshwater inflow, Total annual inflow 1931–76 averaged 2.9 million acre-ft, Northern part of lake receives most of its water as brine flowing through culverts and causeway from southern part of lake, Lake salinity varies with lake level, Northern lake is 16% salt and about 3 times saltier than southern lake (June 1987). a For chemical analysis of brine see Chapter 6 Table 6.8. Source: From Compiled from information provided by Utah Division of Water-Resources, 1987 and U.S. Geological Survey Circular 913. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-55
4,203.0 Records for 2003 and 2004 water year are provisional
4,202.0
Date
Water-surface altitude, in feet
4,201.0 Boat Harbor
4,200.0
Saline
4,199.0
Altitude of lake surface
Nov 1
4,194.2 Boat Harbor
Nov 1
4,193.7 Saline
Nov 15
4,194.3 Boat Harbor
Nov 15
4,193.7 Saline
4,198.0 4,197.0 4,196.0 4,195.0 4,194.0
12/15/2004
11/15/2004
10/15/2004
9/15/2004
8/15/2004
7/15/2004
6/15/2004
5/15/2004
4/15/2004
3/15/2004
2/15/2004
1/15/2004
12/15/2003
11/15/2003
10/15/2003
9/15/2003
8/15/2003
7/15/2003
6/15/2003
5/15/2003
4/15/2003
3/15/2003
2/15/2003
1/15/2003
12/15/2002
11/15/2002
10/15/2002
4,193.0
Figure 5B.11 Fluctuation in water-surface altitude of both parts of Great Salt Lake during last 2 years. (From www.usgs.gov.)
Year 1960
1950
1940
1930
1920
1910
2.0
220
1.5 Evaporation
1.0
240 Water level
0.5
260 Surface inflow
280
Evaporation and surface inflow in millions of acre-feet
Water level in feet below mean sea level
200
0
Figure 5B.12 Water levels, evaporation and surface inflow of the Salton Sea, California. (From U.S. Geological survey, professional paper 486-C and California department of water resources bulletin 143-7, geothermal wastes and the water resources of the salton sea area, 1966. With permission.) q 2006 by Taylor & Francis Group, LLC
5-56
Table 5B.19 Long Term Average Min-Max Water Levels Jan Mean Max Min
601.51 602.69 1986 599.84 1926
Feb 601.31 602.46 1986 599.61 1926
Mar 601.21 602.40 1986 599.54 1926
Apr
May
Jun Lake Superior 601.90 602.89 1986 599.90 1926
Jul
Aug
Sep
Oct
Nov
Dec
602.13 603.08 1950 600.26 1926
602.20 603.22 1952 600.46 1926
602.23 603.22 1985 600.79 1926
602.13 603.38 1985 600.72 1925
602.00 603.31 1985 600.43 1925
601.77 603.05 1985 600.13 1925
a
601.31 602.62 1986 599.48 1926
601.64 602.82 1986 599.61 1926
579.36 581.99 1986 576.67 1964
579.20 581.99 1986 576.64 1964
579.00 582.35 1986 576.44 1964
578.81 581.96 1986 576.28 1964
578.64 581.56 1986 576.18 1964
574.77 577.20 1986 572.51 1934
574.67 577.10 1986 572.21 1934
574.44 576.90 1986 571.98 1934
574.15 577.30 1986 571.75 1934
573.88 576.84 1986 571.46 1934
573.88 576.77 1986 571.65 1964
571.92 574.25 1986 569.06 1934
571.69 573.95 1986 569.00 1934
571.39 573.59 1986 568.83 1934
571.06 573.95 1986 568.57 1934
570.83 573.65 1986 568.24 1934
570.83 573.82 1986 568.21 1934
246.03 248.23 1947 243.24 1934
245.67 247.97 1947 242.78 1934
245.18 247.41 1947 242.49 1934
244.78 246.78 1945 242.19 1934
244.55 246.65 1945 241.96 1934
244.49 246.72 1945 241.93 1934
183.53 183.82 1950 182.96 1926
183.55 183.86 1952 183.02 1926
186.56 183.86 1985 183.12 1926
183.53 183.91 1985 183.10 1925
183.49 183.89 1985 183.01 1925
183.42 183.81 1985 182.92 1925
a
Min
Mean Max Min
Mean Max Min
Mean Max Min
578.54 581.30 1987 576.12 1965
578.48 581.07 1986 576.08 1964
578.54 581.10 1986 576.05 1964
578.81 581.46 1986 576.15 1964
573.62 576.77 1986 570.47 1936
573.43 576.77 1986 570.51 1926
573.82 576.77 1986 571.03 1934
574.31 576.84 1986 571.92 1926
574.57 576.87 1986 572.24 1934
570.83 573.69 1987 568.27 1935
570.80 573.43 1987 568.18 1936
571.10 573.75 1986 568.24 1934
571.59 574.08 1985 568.83 1934
571.85 574.05 1986 569.03 1934
574.70 577.17 1986 572.34 1934 a Lake Erie 571.95 574.28 1986 569.06 1934
244.59 246.59 1946 246.16 1935
244.69 246.95 1952 242.06 1936
244.98 247.28 1952 242.59 1935
245.64 248.20 1973 242.88 1935
246.10 248.46 1973 243.14 1935
Lake Ontario 246.19 248.56 1952 243.41 1935
a
Lake Superior Mean Max Min
183.34 183.70 1986 182.83 1926
183.28 183.63 1986 182.76 1926
q 2006 by Taylor & Francis Group, LLC
183.25 183.61 1986 182.74 1926
183.28 183.68 1986 182.72 1926
183.38 183.74 1986 182.76 1926
183.46 183.76 1986 182.85 1926
b
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Mean Max
Lakes Michigan–Huron 579.13 579.33 579.43 581.63 581.79 581.99 1986 1986 1986 576.57 576.64 576.71 1964 1964 1964 a Lake St. Clair
Mean Max Min
176.34 177.18 1987 175.60 1965
176.32 177.11 1986 175.59 1964
176.34 177.12 1986 175.58 1964
176.42 177.23 1986 175.61 1964
176.52 177.28 1986 175.74 1964
176.58 177.33 1986 175.76 1964 Lake St. Clair
Mean Max Min
174.84 175.80 1986 173.88 1936
174.78 175.80 1986 173.89 1926
174.80 175.80 1986 174.05 1934
175.05 175.82 1986 174.32 1926
175.13 175.83 1986 174.42 1934
Mean Max Min
173.99 174.86 1987 173.21 1935
173.98 174.78 1987 173.18 1936
174.07 174.88 1986 173.20 1934
174.22 174.98 1985 173.38 1934
174.30 174.97 1986 173.44 1934
Min
74.55 75.16 1946 73.81 1935
74.58 75.27 1952 73.78 1936
74.67 75.37 1952 73.94 1935
74.87 75.65 1973 74.03 1935
75.01 75.73 1973 74.11 1935
174.33 175.04 1986 173.45 1934 75.04 75.76 1952 74.19 1935
176.59 177.39 1986 175.77 1964
176.54 177.38 1986 175.76 1964
176.48 177.50 1986 175.70 1964
176.42 177.38 1986 175.65 1964
176.37 177.26 1986 175.62 1964
175.19 175.93 1986 174.50 1934
175.16 175.90 1986 174.41 1934
175.09 175.84 1986 174.34 1934
175.00 175.96 1986 174.27 1934
174.92 175.82 1986 174.18 1934
174.92 175.80 1986 174.24 1964
174.32 175.03 1986 173.45 1934
174.25 174.94 1986 173.43 1934
174.16 174.83 1986 173.38 1934
174.06 174.94 1986 173.30 1934
173.99 174.85 1986 173.20 1934
173.99 174.90 1986 173.19 1934
74.99 75.66 1947 74.14 1934
74.88 75.58 1947 74.00 1934
74.73 75.41 1947 73.91 1934
74.61 75.22 1945 73.82 1934
74.54 75.18 1945 73.75 1934
75.52 75.20 1945 73.74 1934
b
Lake Ontario Mean Max
176.61 177.39 1986 175.78 1964 b
175.17 175.92 1986 174.45 1934 Lake Erie
b
SURFACE WATER
Lakes Michigan–Huron
b
Note: Period of Records: 1918–2003. All levels in this table are referenced to the International Great Lakes Datum of 1985 (IGLD85). a English Units (ft). b Metric Units (m). Source: From www.usace.army.mil.
5-57
q 2006 by Taylor & Francis Group, LLC
5-58
Table 5B.20 Hydrologic Data for Closed Lakes
Lake Devils Lake, ND
Drainage Area (sq. mi) 3,000
Netc
2.5
1.2
0.40
14
2.25
1.0
0.07
25
2.0
0.75
0.15
2.25
1.0
Evaporation (ft/yr)
Response Timeb (yr)
Overflow Expressed as Depth Over Tributary Area (ft) 2.5
—
1938–41
25,000
10
230
0.038
50
—
1938–41
14,000
43
27
1877 1932 1872 1882 1882 1882 1949 1876 1905 1902 1912 1956—59 1901 1912 1912 1950 1951 1933
138,000 276,000 86,400 3,486 2,500 51,170 8,880 60,000 213,700 5,704 76,000 30,000 20,000 36,000 18,000 22,380 e 40,000 e 240,000 105,000
18 13 8 167 120 61 5 24 11 50 5
2,200 1,300 188 200 110 85 5 105 76 5.5 50 – 60 30 – 47 3,100 740 74
1950 1956 — — — —
50,000 12,000 10,700 11,000 220,000 148,000
9
Sevier Lake, UT Pyramid Lake, NV Walker Lake, NV Mono Lake, CA Elsinore Lake, CA Owens Lake, CA
16,000 2,650 3,500 600 717 2,900
3.7 4.2 4.2 4.1 4.5 5.5
3.2 3.7 3.8 3.3 3.2 5.0
0.35 0.04 0.075 0.043 0.68 0.10
3 65 45 35 3.0 10
Omak Lake, WA Lake Abert, OR
100 900
3.2 3.5
2.2 2.5
0.067 0.5
30 6
19 11
Summer Lake, OR
330
3.5
2.5
1.0
2
61
5,300 550,000
3.3 7.5
2.5 7.0
0.8 2.5
2 1.5
1.0 10
1,300
4.0
2.0
0.30
q 2006 by Taylor & Francis Group, LLC
625,000 1,400,000 12,000 20,000
3.0 3.3 5.1 3.0
2.6 2.8 4.8 2.5
0.10 0.015 0.03 0.11
10
35 300 40 9
1.0 4 9 13 200 0.3 12
3.8
10 22 175
d
10 3 4.8 8.5 2.8 3.5 6.0 12 52 600 460 16
45 26 14 20 16
88 140 25,000 170,000 390 1,800
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
20
0.125
Aral Sea, U.S.S.R. Caspian Sea, Asia Dead Sea, Palestine Lake of Urmia, Iran
Lake Area (sq. mi)
—
2.7
Lake Corangamite, Australia
ppm
13 10 4.5 10 20
3.3
120
Date
Mean Depth (ft)
8,470 15,210 25,000 8,680 11,900
21,000
2,700
Salinity
1899 1923 1948 1952 1938–41
Basin, Lake, Saskatchewan Quill Lakes, Saskatchewan Redberry Lake, Saskatchewan Great Salt Lake, UT
Harney Lake, OR Lake Eyre, Australia
105
Gross
Coeffcient of Variation of Lake Areaa
Note: a b c d e
6,000 4,400 — —
3.3 3.4 — —
2.0 2.4 3.0 3.0
0.02 0.5 1.0 2.0
150 1 1.0 0.5
53 86 — —
1944 1959 — —
e 22,400 250,000 300,000 260,000
These lakes occupy topographic sinks with no discharges by surface streams or seepage and with a groundwater gradient toward the lake.
175 2 2.3 1.15
1,450 650 110 50
SURFACE WATER
Lake Van, Turkey Tuz Golu, Turkey Elton Lake, U.S.S.R. Baskuntschak Lake, U.S.S.R.
Coefficient of variation of lake area is equal to the standard deviation of lake volume divided by the area of the lake. Response time is the ratio of a change in lake volume to the corresponding change in rate of discharge. Net evaporation is gross evaporation minus precipitation. Before 1924. Milligrams per liter.
Source: From U.S. Geological Survey.
5-59
q 2006 by Taylor & Francis Group, LLC
5-60
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5B.21 Water Balance of the Major Lakes of the World Lake Caspian Sea Michigan and Huron Superior Victoria Aral Sea Tanganyika Baikai Nyasa Great Slave Erie Ontario Balkhash Ladoga Chad Eyre Maracaibo Onega Rudolf Titicaca a b
Observation Period
Volume (km3)
Inflow (km3/yr)
Precipitation (mm/yr)
Outflow (km3/yr)
1940–1966 1959–1966
78200 8200
289 142
246 780
10.8 161
1959–1966 1925–1959 1959–1969 Long-term 1901–1970 Long-term Long-term 1959–1966 1959–1966 1911–1966 1932–1958 1954–1962 Long-term Long-term Long-term Long-term Long-term
11600 2700 1020 18900 23000 7720 1070 545 1710 112 908 44 — — 295 — 710
47.6 17.9 49.5 25.8 60.3 34.2 136 190 210 15.7 69.1 45.8 4.2 19.6 15.9 16.0 7.7
760 1630 173 1000 405 1220 350 860 900 154 606 378 150 977 575 750 625
69.7 21.9 0 3.0 59.5 6.3 141 182 210 0 73.7 0 0 4.9 18.0 0.0 0.6
Inflow Factora
Outflow Factorb
Retentions Time (yr)
994 750
0.76 0.61
0.03 0.65
204 33
470 1570 1050 1690 416 2130 166 920 800 1020 344 2260 Dries up 2080 350 2610 1500
0.43 0.14 0.82 0.44 0.82 0.48 0.93 0.90 0.93 0.85 0.87 0.85 0.77 0.60 0.74 0.71 0.60
0.64 0.17 0 0.05 0.82 0.09 0.97 0.88 0.94 0 0.92 0 0 0.15 0.84 0 0.05
107 21 15 322 317 107 7.4 2.6 7.6 6.0 11 0.9 — — 14 — 55
Evaporation (mm/yr)
Percentage of inflow of the sum of inflow and lake precipitation. Percentage of outflow of the sum of outflow and lake evaporation.
Source: From Kuusisto, E.E., Lakes Their Physical Aspects, in Facets of Hydrology II, John C. Rodda, Editor, John Wiley and Sons 1985. Reproduced with permission.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-61
Table 5B.22 Major Lakes in the World Lake
Country
Caspian Seaa Ladozskoje Onezskoje Va¨nern Cudskoje with Pskovskoje Va¨ttern Saimaa Beloje Vygozero Ma¨laren Il’men’ Pa¨ya¨nne Inari Imandra Balaton Lac de Geneve Bodensee Ha¨lmaren Stor Sjo¨n Kubenskoje Loch Ness Garda Mjøsa Skadarsko Ohridsko Sniardwy Torne Tra¨sk Neusieler See Prespansko Neuchaˆtel Lago Maggiore Femund Como
U.S.S.R. Iran U.S.S.R. U.S.S.R. Sweden U.S.S.R. Sweden Finland U.S.S.R. U.S.S.R. Sweden U.S.S.R. Finland Finland U.S.S.R. Hungary Switzerland, France German Federal Republic, Switzerland, Austria Sweden Sweden U.S.S.R. Great Britain Italy Norway Albania, Yugoslavia Albania, Yugoslavia Poland Sweden Austria, Hungary Greece, Albania, Yugoslavia Switzerland Italy, Switzerland Norway Italy
Aral’skoje Morea Bajkali Balchas Tonle Sap Issyk-Kul’ Dongtinghu Rizaiyeh (Urumiyeh)a Zajsan Tajmyr Kukunora Chanka Vana Lob Nora Ubsa Nora Poyanghu Alakol’ Cho¨vsgo¨l Nuur Cany Tuza Namru Tsoa Taihu Char Us Nuur Tengiza
U.S.S.R. U.S.S.R. U.S.S.R. Cambodia U.S.S.R. China Iran U.S.S.R. U.S.S.R. China U.S.S.R. China Turkey China Mongolia China U.S.S.R. Mongolia U.S.S.R. Turkey China China Mongolia U.S.S.R.
Surface Area (km2)
Maximum Depth (m)
Volume (km3)
374,000 17,700 9,630 5,550 3,550 1,900 1,800 1,290 1,140 1,140 1,100 1,065 1,000 900 596 581 538
1,025 230 127 100 15 119 58 20 18 64 10 93 80 67 12 310 252
78,200 908 295 180 25 72 36 5.2 7.1 10 12 — 28 11 1.9 90 48
484 464 407 396 370 363 362 350 331 330 323 288 216 214 202 146
22 74 13 31 346 434 10 256 47 168 2 54 152 372 131 410
— 8.0 1.7 — 50 56 2.2 61 2.8 17 — 4.0 — — 6.0 —
68 1,741 26 12 702 10 16 8.5 26 38 10.6 145 5 — 20 54 270 10 — — — — 8
1,020 23,000 112 40 1,730 — 45 53 13 — 18.5 — (5) — — 58.6 480 4.5 — — — — —
Europe
Asia 64,100 31,500 18,200 10,000b 6,200 6,000c 5,800 5,510 4,560 4,220 4,190 3,760 3,500 3,350 2,700 2,650 2,620 2,500 2,500 2,460 2,210 1,760 1,590
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-62
Table 5B.22
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Lake
Country
Ebi Nora Chirgis Nuur Sevan Dalai Nur Ulyunger Nor Dead Seaa Seletyteniz Sasykkol’ P’asino Kulundinskojea Biwa ko Gandhi Karnaphuli Buir Nuur Markakol’ Ubinskoje Karakul’a Tungabharda Fumibhal Kronockoje Teleckoje
China Mongolia U.S.S.R. China China Israel, Jordan U.S.S.R. U.S.S.R. U.S.S.R. U.S.S.R. Japan India Bangladesh, India Mongolia U.S.S.R. U.S.S.R. U.S.S.R. India Thailand U.S.S.R. U.S.S.R.
Victoria Tanganyika
Chad Rudolf Mobutu Sese Seko Mweru Bangweulu Rukwa Tana Idi Amin Dada Kivu Mai Ndombe Kamnit Abaya Shirwa Tumba Faguibine Gab el Aulia Chamo Upemba Zwai Shala Langana L. de Guiers Hora Abyata Naivasha Awusa
Tanzania, Kenya, Uganda Tanazania, Zaire, Zambia, Burundi, Rwanda Malawi, Mozambique, Tanzania Chad, Niger, Nigeria Kenya Uganda, Zaire Zambia, Zaire Zambia Tanzania Ethiopia Zaire, Uganda Zaire, Rwanda Zaire Nigeria Ethiopia Malawi Zaire Mali Sudan Ethiopia Zaire Ethiopia Ethiopia Ethiopia Senegal Ethiopia Kenya Ethiopia
Superior Huron Michigan Great Bear Great Slave Erie
Canada, U.S.A. Canada, U.S.A. U.S.A. Canada Canada Canada, U.S.A.
Surface Area (km2)
Maximum Depth (m)
Volume (km3)
1,420 1,480 1,230 1,100 1,000 940 777 736 735 728 688 663 656 610 449 440 380 378 300 245 223
— — 86 — — 400 3.2 — 10 4.9 103 64 33 11 30 3 238 47 123 128 325
— — 38 — — 188 1.5 — — — 27.5 39.2 13.8 — — — — 12.4 29.7 — 40
69,000 32,900
92 1,435
2,700 18,900
30,900
706
7,725
12 73 57 15 5 — 14 131 496 6 60 13 2.6 — 14 12 12.7 3.5 7 266 46.2 7 14.2 — 21
44.4 — 64.0 32.0 5.00 — 28.0 78.2 569 — 14.0 8.20 45.0 — 3.72 — — 0.90 1.10 37.0 3.82 0.64 1.56 — 1.34
406 229 281 137 156 64
11,600 3,580 4,680 1,010 1,070 545
Africa
Nyasa
16,600d 8,660 5,300 5,100 4,920e 4,500 3,150 2,500 2,370 2,325 1,270 1,160 1,040 765 620 600 551 530 434 409 230 213 205 140 130 North America 82,680 59,800 58,100 30,200 27,200 25,700
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5B.22
5-63
(Continued)
Lake
Country
Winnipeg Ontario Nicaragua Athabaska Dear Lake Winnipegosis Nipigon Manitoba Great Salta Forest Dubawant Mistassini Managua Saint Clair Lesser Slave Chapala Winnibago Marion Winnipesaukee
Canada Canada, U.S.A. Nicaragua Canada Canada Canada Canada Canada U.S.A. Canada, U.S.A. Canada Canada Nicaragua Canada Canada Mexico U.S.A. U.S.A. U.S.A.
Maracaibo Titicaca Poopo´a Buenos-Aires Lago Argentina Valencia
Venezuela Peru, Bolivia Bolivia Chile, Argentina Argentina Venezuela
Eyrea Amadeusa Torrensa Gairdnera George Taupo Te Anau Wakatipu Wanaka Manapouri Hawea a b c d e
Surface Area (km2) 24,600 19,000 8,430 7,900 6,300 5,470 4,800 4,720 4,660 4,410 4,160 2,190 1,490 1,200 1,190 1,080 818 465 181 South America 13,300 8,110 2,530 2,400 1,400 350 Australia up to 15,000 8,000 5,800 4,780 145 New Zealand 611 352 293 194 130 119
Maximum Depth (m)
Volume (km3)
19 236 70 60 — 12 162 28 14 21 — 120 80 7.2 3 10 6 — 55
127 1,710 108 110 — 16
35 230 3 — 300 —
— 710 2 — — —
20 — — — 3
— — — — 0.3
159 276 378 — — —
— — — — — —
Salt lakes. At low levels 3000 km2, at high levels 30,000 km2. At low levels 4000 km2, at high levels 12,000 km2. At low levels 7000–10,000 km2, at high levels 18,000–22,000 km2. At low levels 4000 km2, at high levels 15,000 km2.
Source: From U.S.S.R. National Committee for the International Hydrological Decade, Atlas of World Balance UNESCO, 1977.
q 2006 by Taylor & Francis Group, LLC
17 19 — — — — 5.3 — 10.2 4.1 2.8 3.8
5-64
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 5C
WATERFALLS
Table 5C.23 Major Waterfalls of the World Name and Location
ft Africa
Angola Duque de Braganca, Lucala R Ruacana, Cunene R Ethiopia Baratieri, Ganale Dorya R Dal Verme, Ganale Dorya R Fincha Tesissat, Blue Nile Rb Lesotho Maletsunyane Rhodesia-Zambia Victoria, Zambezi Rb South Africa Aughrabies, Orange Rb Howick, Umgeni R Tugela (5 falls)a Highest fall Tanzania-Zambia Kalambob Uganda Murchison, Victoria Nile R Zambia Chirombo, Leisa R
344 406 459 98 508 140 630 355 400 311 3,110 1,350 726 130 880 Asia
India Cauveryc Gersoppa (Jog), Sharavati Ra,c Japan Kegon, L. Chuzenjic Yudaki, L. Yuno
330 830 330 335
Australasia Australia New South Wales Wentwortha Highest fall Wollomombi Queensland Coomera Tully New Zealand Bowen (from Glaciers)b Helena Sterling Sutherland, Arthur Ra Europe Austria Upper Gastein Lower Gastein (Both on Ache R.) Golling, Schwarzbach Ra Krimml (Krimmler) France Gavarnie (C)a Great Britain–Wales Pistyll Cain, Afon Gain R Pistyll Rhaiadr Scotland Glomach
518 360 1,100 210 450 540 890 505 1,904
207 280 200 1,250 1,385
150 240 370 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-65
Table 5C.23
(Continued)
Name and Location Iceland Detti, Jokul R Gull, Hvita R Italy Toce (C) Norway Eastern Mardalsfossa Highest fall Western Mardalsfoss (Both on L. Eikesdal) Skjeggedal Skykkje, Skykkjua R Vettis, Morkedo¨la R Highest fall Vo¨ring, Bjoreia R Sweden Hando¨l, Hando¨l Cra Stora Sjo¨fallet, Lule Ra,b Tannforsen, Are R Switzerland Gie´troz (Glacier) (C)a Diesbacha Giessbacha Handegg, Aare R Iffigen Pissevache, La Salanfe R Reichenbacha Rhine Simmen, Simme Ra Sta¨uber Staubbach Tru¨mmelbacha North America Canada British Columbia Takakkaw (Daly Glacier)a Highest fall Panther, Nigel Cr Labrador Churchill Falls, Churchill R Mackenzie District Virginia, S. Nahanni R Quebec Montmorency Canada-United States Ontario-New York Niagara: American Horseshoe United States Arizona Mooney, Havasu Cr California Feather, Fall R Illilouette Nevada, Merced R Ribbonc Silver Strand Vernal, Merced R Yosemitea Bridalveil Yosemite (upper)b
ft 144 101 470 1,696 974 1,535 525 820 1,214 889 597 345 130 120 1,640 394 1,312 151 394 213 656 65 459 590 984 1,312
1,650 1,200 600 245 315 251
193 186
220 640 370 594 1,612 1,170 317 2,425 620 1,430 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-66
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5C.23
(Continued)
Name and Location
ft b
Yosemite (lower) Colorado Seven Georgia Tallulaha Idaho Henry’s Fork (upper) Henry’s Fork (lower) Shoshone, Snake Rc Twin, Snake Rc Kentucky Cumberland Maryland Great Potomac R (C) Minnesota Minnehahac Montana Missouri New Jersey Passaicc New York Taughannock Oregon Multnomaha Highest fall Tennessee Fall Creek Rock House Creek Washington Fairy Falls Mt. Rainer National Pk Narada, Paradise R Sluiskin, Paradise R Palouse Snoqualmie Wisconsin Manitou, Black R Wyoming Yellowstone National Pk Tower Yellowstone (upper) Yellowstone (lower) Mexico El Salto Juanacatla´n, Rio Grande de Santiagoc South America Argentina-Brazil Iguazu´a Brazil Glass Herval Paulo Afonso, Sa˜o Francisco R Patos-Maribondo, Rio Grande Urubupunga, Alto Parana´ R Brazil-Paraguay Sete Quedas, or Guaira Alto Parana´ R Colombia Tequendama Bogota´ R
320 266 251 96 70 195 125 68 90 54 75 70 215 620 542 256 125 700 168 300 198 270 165
132 109 308
66
230 1,325 400 275 115 40 130
427 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-67
Table 5C.23
(Continued)
Name and Location
ft
Catarata de Candelas, Cusiana R Ecuador Agoyan, Pastaza R Guyana Kaieteur, Potaro R King Edward VIII, Semang R King George VI, Utshi R Marina, Ipobe Ra Highest fall Venezuela Angel Highest fall Cuquena´n
984 200 741 840 1,600 500 300 3,212 2,648 2,000
Note: Height-total drop in one or more leaps. If river names not shown, they are same as the falls. R—river; L—lake; (C)—Cascade-type. a b c
Falls of more than one leap. Falls that diminish greatly seasonally. Falls that reduce to a trickle or are dry for part of each year.
Source: From National Geographic Society.
q 2006 by Taylor & Francis Group, LLC
5-68
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 5D
GLACIERS AND ICE
Legend Glaciers (all sizes) Missing values Less than 0.05 km2 0.05– 0.1 km2 0.1–0.5 km2 0.5–1 km2 1–5 km2 5 – 10 km2 10 – 50 km2 50 – 100 km2 100 – 500 km2 500 – 1000 km2 Greater than 1000 km2
Map generated by the national geophysical data center
0
Figure 5D.13 World glacier inventory. (From www.ngdc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
8677 km
SURFACE WATER
5-69
Legend Countries Glaciers (all sizes) Missing values Less than 0.05 km2 0.05– 0.1 km2 0.1–0.5 km2 0.5–1 km2 1–5 km2 5 – 10 km2 10 – 50 km2 50 – 100 km2 100 – 500 km2 500–1000 km2 Greater than 1000 km2
Map generated by the national geophysical data center
0
737 km
Figure 5D.14 Glacier inventory of western North America. (From www.ngdc.noaa.gov.)
Table 5D.24 Glacial Ice Coverage of the World Land Area
sq. mi
Continental Europe Continental Asia Continental North America Continental South America South polar regions North polar regions Africa New Zealand New Guinea Total
3,880 43,270 30,900 9,600 5,020,450 721,150 8 386 6 5,829,650
Source: From Huberty and Flock, Natural Resources, McGrawHill, Copyright 1959. Reproduced with permission. q 2006 by Taylor & Francis Group, LLC
5-70
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.25 Glaciers in the United States
State Alaska Washington California Wyoming Montana Oregon Colorado Idaho Nevada Utah
Approximate Number of Glaciers (unknown) 950 290 100 200 60 25 20 5 1
Glacier Contribution to July–August Streamflow (Estimated) Total Glaciated Area (sq. mi)
Thousand Acre-feet
Million Gallons
29,000 160 19 19 16 8 0.6 0.6 0.1 0.04
150,000 870 65 80 65 40 2 2 0.4 0.1
49,000,000 280,000 21,000 26,000 21,000 13,000 650 650 130 33
Source: From U.S. Geological Survey, National Water Summary 1985—Hydrologic Perspectives. Water-Supply Paper 2300.
Table 5D.26 Areas of Glaciers in the Western Conterminous United States Area (sq. km) Location Washington 1. North Cascades (northern Cascade Range)a 2. Olympic Mountains 3. Mount Rainier 4. Goat Rocks area 5. Mount Adams 6. Mount St. Helens Total Oregon 7. Mount Hood 8. Mount Jefferson 9. Three Sisters area 10. Wallowa Mountains Total California 11. Mount Shasta 12. Salmon-Trinity Mountains 13. Sierra Nevada Total Montana 14. Glacier National Park 15. Cabinet Range 16. Flathead-Mission-Swan Ranges 17. Crazy Mountains 18. Beartooth Mountains Total Wyoming 19. Big Horn Mountains 20. Absaroka Range 21. Teton Range 22. Wind River Range Total Colorado 23. Rocky Mountain Park-Front Range, others
Meier (1961a)
More Recent Source, Where Available
251.7 33.0 87.8 1.5 16.1* 7.3 397.4
267.0b 45.9c 92.1d 1.5 16.1* 5.92/2.16e 428.5/424.8
9.9 3.2 7.6 — 20.7
13.5d 3.2 8.3d *0.1 25.1
5.5 0.3 13.1 18.9
6.9d 0.3 50.0/63.0f 57.2/70.2
13.8 0.5 *1.2 *0.5 10.8 26.8
28.4g 0.5g *2.3g *0.4g 10.9g 42.5
0.3 0.7* 2.0 44.5 47.5
1.0g .7*g 1.7g 31.6g 37.5
1.7
1.5g (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.26
5-71
(Continued) Area (sq. km) Meier (1961a)
Location Idaho 24. Sawtooth Mountains Utah 25. Wasatch Mountains Nevada 26. Wheeler Peak
More Recent Source, Where Available
—
1.0h*
—
0.2i
0.2
0.2
Note: Glacier areas in the first column are taken from Meier (1961a); dashes mean not determined by Meier. Glacier areas in the second column are from Meier (1961a) where a more recent source is not available. The change in area between 1961 and the more recent source is normally due to a more complete data set rather than a true change. An asterisk indicates that the value is estimated. a b c d e f
g h i
The region bounded by the Canadian border on the north, Snoqualmie Pass on the south, the Puget Lowlands on the west, and the Columbia and Okanogan Rivers on the east. Post and Others, 1971. Spicer, 1986. Driedger and Kennard, 1986. Brugman and Meier, 1981. Before/after eruption of 18 May 1980. Raub and Others, 1980; unpub. data. The 50 km2area includes glaciers plus moraine-covered ice; the 63 km2 area includes glaciers, moraine-covered ice, and small ice bodies not large enough to be considered glaciers. Graf, 1977. Estimated; various observers have reported numerous small glaciers. Timpanogos Cave, Utah, USGS 1:24,000-scale topographic map.
Source: From www.usgs.gov.
Table 5D.27 Variations in the Position of Glacier Fronts Addenda from Earlier Years NR
Glacier Name
PSFG NR
Method
1st Survey DMY
1
Colombia Alfombralese
CO0013B
A
2
Azufradoe
CO0005B
A
3
Azufradow
CO0005A
A
4
Lacabana
CO00007
A
5
Laplazuela
CO00006
A
6
Lagunillas
CO00008
A
7
Leonera alta
CO00009
A
13.1.1945 10.2.1959 11.1.1975 10.12.1985 13.1.1945 10.2.1959 11.1.1975 10.12.1985 13.1.1945 10.2.1959 11.1.1975 10.12.1985 10.2.1959 11.1.1975 10.12.1985 13.1.1945 10.2.1959 11.1.1975 13.1.1945 10.2.1959 11.1.1975 10.12.1985 13.1.1945 10.2.1959 11.1.1975 10.12.1985
2nd Survey DMY 10.2.1959 11.1.1975 10.12.1985 19.1.1987 10.2.1959 11.1.1975 10.12.1985 19.1.1987 10.2.1959 11.1.1975 10.12.1985 19.1.1987 11.1.1975 10.12.1985 19.1.1987 10.2.1959 11.1.1975 19.1.1987 10.2.1959 11.1.1975 10.12.1985 19.1.1987 10.2.1959 11.1.1975 10.12.1985 19.1.1987
Variations (m) K50.0 K50.0 K80.0 K20.0 60.0 K20.0 K130.0 ST K70.0 K20.0 K80.0 ST K200.0 K200.0 K20.0 K20.0 K30.0 K220.0 0.0 0.0 K50.0 K10.0 K330.0 K180.0 K100.0 K30.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-72
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.27
(Continued)
NR
Glacier Name
PSFG NR
Method
1st Survey DMY
2nd Survey DMY
8
Nereidas
CO00014
C
1958 6.3.1986 5.5.1987 18.3.1988
6.3.1986 5.5.1987 18.3.1988 27.12.1990
9 10
Amalia Asia
RC00056 RC00055
A A
11
Balmaceda
RC00060
A
12
Bernardo
RC00037
A
13
Calvo
RC00053
A
14 15
Dickson EUROPA
RC00063 RC00049
A A
16
GREVE
RC00040
A
17
GREY
RC00062
A
18
HPS12
RC00043
A
19
HPS13
RC00045
A
20
HPS15
RC00046
A
21 22
HPS19 HPS28
RC00047 RC00051
A A
23
HPS29
RC00052
A
24
HPS31
RC00050
A
25
HPS34
RC00054
A
26
HPS38
RC00057
A
27
HPS41
RC00058
A
28
HPS8
RC00041
A
29
HPS9
RC00042
A
30
OCCIDENTAL
RC00039
A
31
FHIDRO
RC00036
A
32 33
PENGUIN PINGO
RC00048 RC00061
A A
1945 1945 1984 1945 1984 1945 1976 1945 1984 1945 1945 1981 1945 1976 1981 1984 1986 1945 1967 1981 1984 1945 1984 1945 1984 1981 1945 1984 1945 1984 1945 1970 1945 1984 1945 1984 1945 1984 1945 1976 1979 1984 1976 1979 1984 1945 1976 1984 1945 1976 1984 1981 1945 1984
1986 1984 1986 1984 1986 1976 1984 1984 1986 1984 1981 1986 1976 1981 1984 1986 1987 1967 1975 1984 1986 1984 1986 1984 1986 1986 1984 1986 1984 1986 1970 1984 1984 1986 1984 1986 1984 1986 1976 1979 1984 1986 1979 1984 1986 1976 1984 1987 1976 1984 1986 1986 1984 1986
Variations (m) K644.5 K40.0 K50.0 K150.0
Chile K6000.0 K195.0 K96.0 K2496.0 K80.0 K837.0 K304.0 0.0 0.0 K3120.0 K504.0 K234.0 K3317.0 K215.0 K102.0 K22.0 K80.0 K550.0 K 350.0 K180.0 0.0 0.0 0.0 0.0 0.0 K400.0 K351.0 K1028.0 K234.0 K120.0 K975.0 K252.0 K39.0 0.0 K 468.0 240.0 K360.0 0.0 K1240.0 K60.0 K265.0 66.0 K30.0 K35.0 K134.0 K93.0 K592.0 K 462.0 K1643.0 K216.0 134.0 K60.0 K1326.0 0.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.27
5-73
(Continued)
NR
Glacier Name
PSFG NR
Method
34
Pio XI
RC00044
A
35
Snowy
RC00059
A
36
Tempano
RC00038
A
37
Frias
RA00064
Variations (m)
1st Survey DMY
2nd Survey DMY
1925 9.1926 12.1928 1945 1951 1963 1969 1976 1981 1945 1984 1945 1976 1984
9.1926 12.1928 1945 1951 1963 1969 1976 1981 1986 1984 1986 1976 1984 1986
1000.0 400.0 K2500.0 5400.0 600.0 500.0 2400.0 310.0 K400.0 K936.0 0.0 K1178.0 K1264.0 K694.0
A
1984
1986
0.0
S00780
C
16.8.1984
15.9.1988
K38.0
KN00004
A
1899 3.9.1947 21.2.1947 21.2.1947 21.2.1947 21.2.1947 13.3.1986 21.2.1947 21.2.1947 1899 1.5.1934 1.1.1974 21.2.1947 21.2.1947 21.2.1947 1899 21.2.1947
21.2.1947 3.9.1987 3.9.1987 3.9.1987 3.9.1987 3.9.1987 1.9.1990 3.9.1987 3.9.1987 21.2.1947 21.2.1947 13.2.1978 3.9.1987 3.9.1987 3.9.1987 21.2.1947 3.9.1987
K120.0 K95.0 K60.0 K40.0 K9.0 K120.0 K25.0 K9.0 K250.0 K150.0 K130.0 K25.0 K245.0 K220.0 K230.0 K250.0 K70.0
Argentina
39
Sweden Hyllglaciaeren Kenya Cesar
40 41 42 43
Darwin Diamond Forel Gregory
KN00006 KN00010 KN00011 KN00009
A A A A
44 45 46 47
Heim Joseph Krapf Lewis
KN00012 KN00003 KN00001 KN00008
A A A A
48 49 50
Melhuish Northey Tyndall
KN00014 KN00013 KN00005
A A A
51
Poland Pod Bula
PL00111
C
9.9.1980 26.9.1981 25.9.1982 10.10.1983 30.9.1984 30.9.1985 29.9.1986 10.10.1987 25.9.1988 8.10.1989
26.9.1981 25.9.1982 10.10.1983 30.9.1984 30.9.1985 29.9.1985 10.10.1987 25.9.1988 8.10.1989 27.9.1990
K32.6 K7.0 13.0 K.3 K20.7 24.3 K10.3 17.7 3.3 K33.0
52
Dzhelo
SU07106
C
53
Leviy Karagemsk
SU07107
C
54
Mizhirgichiran
SU03043
C
6.9.1985 1986 1987 3.9.1988 6.9.1989 6.9.1985 2.9.1986 5.9.1987 3.9.1988 6.9.1989 6.9.1989
1986 1987 3.9.1988 6.9.1989 3.9.1990 2.9.1986 5.9.1987 3.9.1988 6.9.1989 5.9.1990 7.9.1990
KX KX K50.7 K19.6 K8.7 K19.0 1.1 K12.6 K11.0 K8.7 12.9
38
C.I.S
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-74
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.27
(Continued)
NR
Glacier Name
PSFG NR
Method
55 56
Muravlev NO. 122 (UNIV.)
SU06002 SU07108
C C
57
Praviy Karagems
SU07109
C
58
Shumskiy Pakistan Aling Bualtar Nepal Thulagi
SU06001
C
59 60 61
Note: NR Glacier Name PSFG Number Method
1ST Survey: 2ND Survey: Variation in Meters: Key to Symbols:
PK00035 PK00004 NP00013
A
1st Survey DMY
2nd Survey DMY
3.9.1989 6.9.1985 2.9.1986 5.9.1987 3.9.1988 6.9.1989 6.9.1985 2.9.1986 5.9.1987 3.9.1988 8.9.1989
26.8.1990 2.9.1986 5.9.1987 3.9.1988 6.9.1989 5.9.1990 2.9.1986 5.9.1987 3.9.1988 5.9.1990 27.8.1990
1970 1939
1989 1988
1958 1.11.1972 1.11.1977 1.11.1984
1.11.1972 1.11.1977 1.11.1984 1.11.1988
Variations (m) K3.3 K15.6 K6.4 K4.9 K5.5 K13.1 K18.6 K.5 2.3 K7.5 K9.4 KX CX K50.0 K50.0 K150.0 K850.0
Record number 15 alphabetic or numeric digits 5 digits identifying glacier with alphabetic prefix denoting country AZaerial photogrammetry BZterrestrial photogrammetry CZgeodetic ground survey (theodolite, tape etc.) DZcombination of a, b, or c EZother methods or no information Day, month, and year of survey Day, month, and year of following survey Variation in the position of the glacier front in horizontal projection expressed as the change in length between the surveys CX: Glacier in advance KX: Glacier in retreat ST: Glacier stationary SN: Glacier front covered by snow
Source: From World Glacier Monitoring Service by Wilfried Haeberli, Martin Hoelzle, Stephan Suter and Regula Frauenfelder. www.wgms.ch.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-75
Table 5D.28 Variations in the Postion of Glacier Fronts 1990–1995
NR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Glacier Name Canada Overlord Wedgemount U.S.A. Blue Glacier Cantwell Mccall Middle Toklat South Cascade Colombia Nereidas Peru Broggi Uruashraju Yanamarey Bolivia Chacaltaya Zongo Chile Bernardo Grey PIO XI Iceland Breidamjok EA Briedamjok EB Breidamjok WA Breidamjok WC Brokarjokull Falljokull Fjallsfitjar Fjallsj. Brmfj Fjallsj.G-Sel Flaajokull Gigjokull Gljufurarjokull Hagafellsjok E Hagafellsjok W Halsjokull Hoffellsj W Hrutarjokull Hyrningsjokull Jokulkrokur Kaldalonsjokull Kverkjokull Kviarjokull Leirufjjokull Morsarjokull Mulajokulls Nauthagajokull Oldufellsjokull Reykjafjardarj Satujokull Sidujok EM177 Skaftafellsj. Skalafellsjokul Skeidararj E1 Skeidararj E2 Skeidararj E3 Skeidararj W
Variations (m)
First Survey
Last Survey
Method
CD01590 CD02333
1928 1928
1990 1990
C A
US02126 US00320 US00001 US00315 US02013
1938 1950 1957 1954 1957
1990 1950 1971 1954 1990
C C C C A
K14.0
K42.0
CO00014
1958
1990
PE00003 PE00005 PE00004
1968 1968 1972
PSFG NR
RB05180 RB05150
1994
1995
K39.0
K50.0 K14.5
K6.0 K98.0 K285.0
K25.0
8.0
K5.4
K19.0
K30.0
K769.0 K38.0
K22.0
K29.0
K23.0
C
K50.0
K80.0
KX
KX
K260.0
1990 1990 1990
C C C
K36.7 K25.8 K7.2
K54.5 K32.7 K4.0
K22.2 K24.2 K22.0
K7.8 K24.1 K21.7
K17.4 K34.7 K35.8
1991 1991
C C
K5.2 K12.3
K4.7 1.1
K4.6 K10.2
K17.6 K6.4
500.0
400.0
700.0
K80.0 K600.0
K24.0 K57.0 K69.0
K25.0 K40.0 K16.0 K18.0 K3.0 K67.0 K15.0 K30.0 K7.0 7.0
RC00037 RC00062 RC00044
1945 1945 1925
1984 1975 1986
A A A
IS1126A IS1126B IS1125A IS1125C IS01427 IS01021 IS1024B IS1024A IS1024C IS1930A IS00112 IS00103 IS00306 IS00204 IS00117 IS02031 IS00923 IS00100 IS00007 IS00102 IS02500 IS00822 IS00200 IS00318 IS0311A IS00210 IS00114 IS00300 IS00530 IS0015B IS00419 IS1728A IS0117A IS0117B IS0117C IS00116
1932 1932 1932 1932
1990 1990 1990 1990 1990 1990 1990 1987 1990 1972 1990 1989 1990 1990 1990 1990 1990 1990 1985 1988 1989 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
1932 1948 1948 1948 1930 1939 1934 1934 1972 1930 1948 1931 1965 1931 1963 1934 1966 1932 1933 1932 1967 1931 1964 1932 1932 1932 1932 1932
1991
1992 K27.3
1993 0.8
226.0 K352.0
KX K40.0 K62.0 K70.0 K12.0 K3.0 K9.0 K21.0 K25.0 5.0
3.0 K5.0 2.0 3.0 SN
K14.0 K39.0 K22.0 K25.0 6.0
5.0 K2.0 KX 9.0 K4.0
K14.0 K22.0 K3.0 K91.0 K8.0
KX 0.0 K52.0 49.0 1.0
K47.0 K11.0 K95.0 K12.0
K10.0 K8.0 K27.0 0.0 2.0 K28.0 K10.0 K3.0 86.0
147.0 64.0 0.0 429.0
K18.0 K20.0 11.0 K14.0 10.0 K20.0 KX K5.0 22.0 KX
0.0 K30.0
KX 20.0
K28.0 16.0
5.0 28.0
K6.0 13.0 KX K37.0 31.0 153.0 3.0 57.0 SN 0.0 K63.0 K6.0 5.0 K9.0 K16.0 K1.0 KX
K3.0
12.0
K11.0 K32.0 0.0 K15.0 K9.3
6.0 39.0 0.0 K52.0 K2.0
K25.0 KX 1117.0 K46.0
K8.0
K1.0 5.0 K5.0 25.0
K4.0
K149.0 K86.0 SN
K33.0 K11.0 K4.0 KX
K3.0 K56.0 2.0 K31.0 K7.0 K3.0 K77.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-76
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.28
(Continued) Variations (m)
First Survey
Last Survey
Method
1991
NR
Glacier Name
PSFG NR
53 54 55 56
Solheimajok W Svinafellsj Tungnaarjokull Virkisjokull Norway Austerdalsbreen Brigsdalsbreen Engabreen Faabergstoelsb. Hansbreen Hellstugubreen Leirbreen Nigardsbreen Stegholtbreen Storbreen Styggedalsbreen Sweden Hyllglaciaeren Isfallsglac Karsojietna Mikkajekna Partejekna Passusjietna E Passusjietna W Rabots Glaciaer Riukojietna Ruopsokjekna Ruotesjekna Salajekna SE Kaskasatj GL Storglaciaeren Stour Raetta GL Suottasjekna Unnaraeita GL Vartasjekna France Argentiere Blanc Bossons Gebroulaz Mer De Glace Saint Sorlin Switzerland Allalin Alpetli (Kander) Ammerten Arolla (BAS) Basodino Bella Tola Biferten BIS Bluemlisalp Boveyre Breney Bresciana Brunegg Brunni Calderas Cambrena
IS0113A IS0520A IS02214 IS00721
1930 1932 1955 1932
1990 1990 1990 1990
C C C C
2.0 11.0 K81.0 KX
N31220 N37110 N67011 N31015 N12419 N00511 N00548 N31014 N31021 N00541 N30720
1906 1901 1903 1907 1936 1902 1910 1907 1907 1904 1903
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1992
C C C C B C C C C C C
0.0 10.0 K24.0 K18.0 K309.0 K7.0
K6.0 56.0 K9.0
10.0 K7.0
21.0 K5.0
S00780 S00787 S00798 S00766 S00763 S00797 S00796 S00785 S00790 S00764 S00767 S00759 S00789 S00788 S00784 S00768 S00783 S00765
1965 1897 1905 1896 1965 1968 1968 1946 1963 1965 1965 1897 1910 1897 1963 1964 1963 1964
1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1989 1990 1990 1990 1990 1990
C C C C C C C C C C C C C C C C C C
0.0 0.0
F00002 F00031 F00004 F00009 F00003 F00015
1878 1871 1861 1730 1879 1904
1990 1990 1990 1990 1990 1990
CH00011 CH00109 CH00111 CH00027 CH00104 CH00021 CH00077 CH00107 CH00064 CH00041 CH00036 CH00103 CH00020 CH00072 CH00095 CH00099
1880 1893 1969 1884 1893 1945 1893 1883 1893 1889 1892 1896 1941 1882 1920 1889
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
57 58 59 60 61 62 60 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
1992
1993
1994
1995
13.0 7.0 K9.0 KX
12.0 K11.0 K31.0 KX
K3.0 K7.0 K17.0 K22.0
13.0 5.0 1175.0 KX
5.0 35.0
7.0 75.0 18.0 10.0 K64.0 K3.0 K16.5 14.0 K3.0
15.0 80.0
15.0 65.0 115.0 44.0 42.0 K6.0 K14.5 50.0 K5.0 0.0 2.0
0.0 0.0 3.0 0.0 K15.0 K5.0 0.0 K4.0 K15.0 0.0 K11.0 K4.0
0.0
0.0 5.0 0.0 K10.0 K4.0 0.0 K2.0 K14.0 0.0 K10.0 K7.0 K10.0 3.0 0.0 0.0 0.0 0.0 0.0
C C C C C C
K11.0 K15.5 K110.0 K6.0 5.0 K2.7
A C C C C C C E C C C C C C C C
K8.0 0.0
K11.0
34.0 45.0 K9.0 36.0 K10.0 K1.5 4.0 K4.0 2.0 K2.0 K12.5 K12.0 K2.0
0.0 5.0 K13.5 K9.0 0.0 K18.6 0.0 K3.4
1.0 0.0 K5.0 0.0 0.0 0.0
0.0 K3.9 K10.0 K14.0 2.0 0.0 K3.0 0.0 0.0 0.0
K12.5 5.0 0.0 K1.0 0.0 0.0 0.0
K13.0 K18.0 K66.0 K21.0 ST K6.2
K25.0 K26.0 K81.0 ST ST K1.8
K10.0 K27.0 K74.0 ST ST 2.6
K22.0 K23.5 K18.0 ST ST K3.4
K35.0 K2.0 K6.0 K26.0 K2.0 K13.0 K4.0 KX K11.0 K25.0 K11.0 K12.0 K5.0
K63.0 K9.0 K4.0 K10.0 K3.0 K1.0
K20.0 K6.0 K1.0 K15.0 CX K5.0
K24.0 K3.0 K2.0 K11.0 K25.0 K39.0 K7.0 KX K3.0
K17.0 K5.0
K9.0 K12.0
K11.0 K3.0 K4.0 K6.0 6.0 K9.0 K39.0 KX K7.0 K13.0 K8.0 K8.0 K8.0 KX K4.0 K17.0
K14.0 0.0 0.0 K2.0
KX K6.0 K37.0 K24.0 SN K3.0
K17.0 K27.0 K17.0 K4.0 K8.0 KX
K2.0 K14.0 K5.0 K7.0 K9.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.28
5-77
(Continued)
NR
Glacier Name
PSFG NR
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
Cavagnoli Cheillon Corbassiere Corno Damma Eiger EN Darrey FEE North Ferpecle Fiescher Findelen Firnalpeli Forno Gamchi Gauli Gietro Glaernisch Gorner Grand Desert Grand Plan Neve Gries (Aegina) Griess (Klausen) Griessen (OBWA) Grosser Aletsch Huefi Kaltwasser Kehlen Kessjen Laemmern Lang Lavaz Lenta Limmern Lischana Martinets Mittelaletsch Moiry Moming Mont Durand Mont Fort Mont Mine Morteratsch Mutt OB. Grindelwald Oberaar Ofental Otemma Palue Paneyrosse Paradies Paradisino Pierredar Pizol Plattalva Porchabella Prapio Punteglias Raetzli Rhone
CH00119 CH00029 CH00038 CH00120 CH00070 CH00059 CH00030 CH00013 CH00025 CH00004 CH00016 CH00075 CH00102 CH00061 CH00052 CH00037 CH00080 CH00014 CH00031 CH00045 CH00003 CH00074 CH00076 CH00005 CH00073 CH00007 CH00068 CH00012 CH00063 CH00018 CH00082 CH00084 CH00078 CH00098 CH00046 CH00106 CH00024 CH00023 CH00035 CH00032 CH00026 CH00094 CH00002 CH00057 CH00050 CH00009 CH00034 CH00100 CH00044 CH00086 CH00101 CH00049 CH00081 CH00114 CH00088 CH00048 CH00083 CH00065 CH00001
Variations (m)
First Survey
Last Survey
Method
1991
1992
1993
1994
1893 1919 1889 1893 1920 1893 1929 1879 1891 1891 1892 1894 1894 1893 1886 1889 1923 1883 1892 1893 1961 1929 1894 1886 1882 1891 1893 1928 1917 1888 1899 1895 1964 1895 1894 1970 1891 1911 1885 1892 1956 1879 1918 1880 1920 1922 1887 1894 1893 1898 1955 1921 1894 1969 1893 1898 1895 1924 1970
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1986 1990 1990 1990 1990 1988 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990
C C C C C C C C C C D C C C C A C C C C A C C A C C C A C C C C C C E C C C C C C C D C A D C C C C C E C C C C C C A
K16.0 K79.0 K15.0 K7.0 2.0 K28.0
K21.0 K60.0 K14.0 K13.0 K9.0 K16.0 K8.0 K5.0 K8.0 7.0 K22.0 K15.0 K22.0 K6.0 K21.0 KX
KX
K12.0 11.0
0.0 K7.0
K16.0 K9.0 K13.0 K65.0 K55.0 K23.0 K21.0 K32.0 K8.0 K24.0 K9.0 K30.0 KX K9.0 K34.0 K11.0 4.0 K17.0 K18.0 K5.0 K37.0 K33.0 K8.0 K41.0
1.0 K16.0 K8.0 K2.0 K38.0 K12.0 K16.0 K35.0 K5.0 K21.0 K1.0 K12.0 KX K35.0 K10.0 K4.0 6.0 K11.0 0.0 ST K60.0 K33.0 K4.0 K29.0 CX K5.0 K8.0 CX K11.0 K2.0 K6.0
K10.0 K19.0 K6.0 K61.0 K19.0 K3.0 K11.0 KX K5.0 K4.0 K73.0 K10.0 K9.0 K34.0 K9.0 4.0 K14.0 K28.0 K10.0 K7.0
K5.0 K5.0 K16.0 K6.0 K10.0 23.0 K221.0 K25.0 K5.0 K5.0 K53.0 K4.0 K13.0 K12.0 K7.0 K21.0 K12.0 KX K22.0 K10.0 K9.0 K15.0 K22.0 K20.0 K31.0
K52.0 K7.0 0.0 K18.0 K2.0 K9.0 K18.0 K26.0 1.0 K12.0 12.0 K8.0 K3.0 K92.0 K2.0 K7.0 KX K8.0 K4.0 K30.0 6.0 K8.0 K5.0 K6.0 K7.0 K50.0 K18.0 K42.0 K13.0 K7.0 0.0 K81.0 3.0 KX 5.0 1.0 K10.0 K10.0 KX KX K10.0
9.0 KX KX K17.0
K7.0 K16.0 KX K16.0 K12.0 K9.0 KX K22.0 K12.0
KX K2.0 K26.0 KX KX K6.0 K7.0 K386.0
K2.0 KX K2.0 K81.0 20.0 K7.0 K24.0 KX K60.0 K3.0 K40.0 K7.0 K1.0 4.0
K5.0 K56.0 K12.0
K6.0 K1.0 K11.0 K6.0 K5.0 KX K1.0 K32.0 8.0 5.0 K58.0 K12.0 0.0 K62.0 K20.0 K32.0 K9.0 K4.0 K10.0 K3.0 KX K14.0 K8.0 K15.0 0.0 K38.0 0.0 K7.0
1995
KX 0.0 K16.0 8.0 23.0 K18.0 K24.0 K7.0 K10.0 CX K13.0 K8.0 6.0 12.0 0.0 KX SN K4.0 K6.0 ST K22.0 K16.0 1.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-78
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.28
(Continued) Variations (m)
First Survey
Last Survey
Method
1991
1992
1993
1994
1995
KX K47.0 KX 2.0 KX K6.0
K11.0 KX K6.0 KX K14.0 K6.0 K10.0
KX K30.0 KX 3.0 K9.0 K26.0 K7.0 K16.0 K43.0 KX K9.0 ST K6.0 K15.0 K18.0
K38.0
70.0
K2.0
K1.0 K20.0 K58.0 KX K2.0 K45.0 K5.0 K10.0 14.0
KX K84.0 KX K9.0 K11.0 K18.0 K1.0 27.0 K1.0 K10.0 K2.0 ST K15.0 K12.0 K3.0 K22.0 K14.0 CX ST 3.0 K40.0 KX K18.0 K24.0 K0.0 K27.0 6.0 2.0 KX K26.0 K5.0 K7.0 K43.0 K3.0 SN K3.0 K6.0
NR
Glacier Name
PSFG NR
167 168 169 170 171 172 172 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
Ried Roseg Rosenlaui Rossboden Rotfirn Nord Saleina Sankt Anna Sardona Schwarz Schwarzberg Sesvenna Sex Rouge Silvretta Stein Steinlimmi Sulz Suretta Taelliboden Tiatscha Tiefen Trient Trift (Gadmen) Tsanfleuron Tschierva Tschingel Tseudet Tsidjiore Nouve Turtmann (West) UNT.Grindelwald Unteraar Val Torta Valleggia Valsorey Verstankla Vorab Wallenbur Zinal Zmutt Austria Aeu.Pirchi.Kar Alp.Kraeul F Alpeiner F Bachfallen F Baerenkopf K Berglas F Bieltal F Bockkogel F Brennkogl K Daunkogel F Diem F Dorfer K E.Gruebl F Eiskar G Fernau F Freiger F Freiwand K Frosnitz K Fruschnitz K Furtschagl K
CH00017 CH00092 CH00056 CH00105 CH00069 CH00042 CH00067 CH00091 CH00062 CH00010 CH00097 CH00047 CH00090 CH00053 CH00054 CH00079 CH00087 CH00008 CH00096 CH00066 CH00043 CH00055 CH00033 CH00093 CH00060 CH00040 CH00028 CH00019 CH00058 CH00051 CH00118 CH00117 CH00039 CH00089 CH00085 CH00071 CH00022 CH00015
1895 1894 1880 1891 1956 1888 1926 1895 1924 1915 1956 1898 1956 1894 1961 1912 1921 1922 1926 1925 1878 1921 1892 1943 1893 1890 1880 1883 1880 1893 1970 1971 1889 1926 1893 1893 1891 1892
1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
C C E C C C C C C A C C A C C C C D C C C E C C C C C C E A C C C C C C C C
K6.0 0.0 KX 2.0 K5.0 K24.0 K12.0 K23.0 K8.0 6.0 K7.0 K22.0 K9.0 K5.0 K12.0 K10.0 48.0 K8.0 K10.0 K14.0 K19.0 KX K15.0 K9.0 K9.0 K12.0 K4.0 7.0 KX K17.0 K9.0 KX K9.0 K6.0 K29.0 K6.0 K15.0 3.0
K12.0 K12.0 KX 10.0 K12.0 K10.0 K5.0 K8.0 K3.0 K5.0 K5.0 KX K13.0 K7.0 K11.0 K5.0 K43.0 K2.0 K13.0 K7.0 K15.0 KX
A00229 A00321 A00307 A00304 A00702 A00308 A0105A A00302 A00727 A0310A A00220 A00509 A00317 A01301 A00312 A00320 A00706 A00507 A00722 A00406
1981 1975 1881 1922 1924 1891 1924 1922 1987 1891 1893 1896 1891 1992 1890 1974 1950 1923 1974 1978
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1992 1990 1990 1990 1990 1986 1990
C C C C C C C E C C C C C C C C C C E E
3.5 K2.6 K8.5 K5.5 K3.4 K1.7 K8.9 KX K2.3 K2.6 K3.7 K6.3 K1.3
1.8 K8.6 K14.3 K11.3 K27.5 K10.0 K8.8 KX K9.3 K10.2 K1.6 K16.6 K13.2
K1.5 K2.9 K7.0 K3.0 KX KX
K4.0 K7.5 K4.4 K5.5
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
K19.0 K4.0 K22.0 K8.0 3.0 KX K30.0 SN K10.0 K19.0 K10.0 K19.0 K30.0 K2.0
KX
KX K6.0 K21.0 K2.0 16.0 K6.0 K12.0 KX K37.0 K2.0 K6.0 K9.0 KX KX K7.0 2.0
ST K43.0 9.0 K2.0 K25.0 K30.0 K22.0 K13.0 K4.0 0.0
K1.5 K2.8 K10.6 K8.4 K3.2 K5.6 K5.0 KX K11.5 K4.3 K3.8 K9.8 K6.4 K2.0 K2.9 K6.9 K1.1 K5.5
K3.0 K10.6 K7.7 K7.7 K5.3 K10.5 K12.6 KX K14.4 K6.5 K6.7 K13.6 K7.2 K.4 K7.2 K4.2 K10.9 K6.7
K5.0 K3.0 K10.3 SN K1.6
KX
KX
KX
K.8 K24.9 K11.2 4.4 K8.0 K7.1 K4.0 K4.8 K5.1 K13.2
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.28
5-79
(Continued)
NR
Glacier Name
PSFG NR
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
Gaiskar F Gaissberg F Gepatsch F Goessnitz K GR Goldberg Kee GR.Gosau G Grosselend K Gruenau F Gurgler F Guslar F Habach Kees Hallstaetter G Hinteraeis F Hochalm K Hochjoch F Hochmoos F Hofmanns K Horn K. (Schob.) Horn K. (Ziller) INN.Pirchlkar Jamtal F KA.Tauern K.S Kaelberspitz K Karles F Karlinger K Kesselwand F KL.Fleiss K Kleineiser K Kleinelend K Klostertaler M Klostertaler N Klostertaler S Krimmler K. East Krimmler K Kruml K Laengentaler F Landeck K Langtaler F Laperwitz K Larain F Liesenser F Litzner GL Marzell F Maurer K (GLO.) Maurer K (VEN.) Mittelberg F Mitterkar F Mutmal F Niederjoch F Obersulzbach K Ochsentaler GL Oedenwinkel K Pasterzen K Pfaffen F Pfandlscharten Praegrat K Rettenbach F Riffl K.N Rifflkar Kees
A00325 A00225 A00202 A01201 A0802B A01101 A01001 A00315 A00222 A00210 A00504 A01102 A00209 A01005 A00208 A00309 A00724 A01202 A00402 A00228 A00106 A0602B A01003 A00207 A00701 A00226 A00801 A00717 A01002 A0102B A0102A A0102C A0501B A0501A A00806 A00305 A00604 A00223 A00721 A00107 A00306 A00101 A00218 A00714 A00510 A00206 A00214 A00227 A00217 A00502 A00103 A00712 A00704 A00324 A00707 A00603 A00212 A00718 A0713A
Variations (m)
First Survey
Last Survey
Method
1991
1992
1993
1994
1995
1983 1891 1896 1982
1990 1990 1990 1990 1975 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1987 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1992 1990 1990 1990 1990 1990 1986 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
C C C C C C C C C C E C C C C C E C C C C C C C C C C C C C C C C C C C C C E C C C C C C C C C C C C C C C C C C C E
K5.6 K6.5 K4.4 K3.3 K2.5 K2.2 0.9 6.0 K2.5 K11.5 KX 0.4 K17.2 0.3 K25.7 K4.0 KX K2.8 K2.7 1.4 K14.6 K2.1 K4.6 K9.2 K12.0 K17.5 K2.6 K.2 K4.3 K9.1 K4.1 K10.9
K11.5 K2.1 K6.2 K7.3 K12.1 K14.4 K6.7 K6.0 K6.3 K12.8
KX K17.2 K6.0 K10.9 K5.5 K4.0 K7.8 K17.2 K1.2 K12.8
K5.9 K5.8 K10.8 K21.1 K15.0 K8.2 K29.2 K12.7 K7.3 K13.8
K2.5 K7.5 K8.4 K6.6 K4.2 K10.5 K6.7 K15.3 K3.4 K10.5
K7.7 K23.4 K15.0 K25.5 K1.7
K22.4 K12.4 K32.2 K2.0
K8.7 K21.8 K6.1 K27.4 K2.0
K4.9 K13.1 K5.1 K31.4
K4.1 K7.7 K11.4 K11.1 K18.8 K7.1 K4.5 K37.0 K36.1 K10.8 K8.7 K6.0 K11.0 K4.2 K12.7 K10.8 K4.4
K4.3 K9.3 1.4 K7.1
1933 1898 1891 1895 1894 1843 1891 1898 1890 1946 1977 1983 1881 1982 1892 1961 1927 1950 1896 1965 1896 1961 1898 1964 1968 1924 1895 1985 1922 1979 1891 1974 1928 1922 1932 1891 1961 1896 1924 1891 1969 1891 1880 1901 1960 1879 1981 1931 1961 1952 1961 1961
K2.5 K1.5 K3.2 K.7 K18.0 KX K24.5 K7.7 4.5 K4.0 0.2 K12.1 K22.5 K8.1 K19.7 K6.1 K7.2 K4.7 K33.5 K6.1 K9.5 K4.5 K5.4 2.7 KX
K5.8 K8.7 0.4 K9.0 K27.1 K14.7 K13.0 K10.0 K22.3 K20.8 K4.7 K19.4 K7.4 K5.1 K11.4 K7.2 K7.0 K5.3 K1.4 K27.5 K23.7 K16.6 K1.7 K6.8 K7.6 K61.8 K6.3 K21.8 K21.4 K14.4 K13.6 K18.7 K1.4 K7.6 K11.5 K13.1 K9.2 K5.9 K8.6
K2.8 K4.7 0.1 K9.2 K7.1 K7.9 K84.0 K28.4 K13.0 K4.8 K2.9 K1.0 K3.8 K7.8 2.5 K6.5 K4.2
1.4 K2.0 KX K33.9 K2.2 1.4 K4.1 K7.6 K6.3 K16.6 SN SN
K6.0
K4.9 K12.5 K25.0
K15.8
K6.4 K1.7 1.7 K1.0 K8.8 KX K3.0 K16.1 K9.2 K14.8 K15.2 0.3 K17.5 K2.5
K16.1 0.9 K6.8 K3.9 K6.5 K6.5 K10.6 K24.2 K14.2 K18.5 K25.1 K3.2 K17.1 K15.0
K4.9 K3.3 K3.6 SN SN 0.9 SN K7.4 K6.4 K8.2 K9.2 0.3 K13.6 K6.5
K5.9 1.1
K14.4 K9.8 K4.7
K3.4 SN (Continued)
q 2006 by Taylor & Francis Group, LLC
5-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.28
(Continued) Variations (m)
First Survey
Last Survey
Method
1991
1992
1993
K10.6 K8.8 K9.6 K15.0 K4.1 K3.0 K2.8 K7.9 KX K3.6 K8.2 K5.2 K13.8 K15.0 K11.1 K11.5 K28.5 K13.4 K9.8 K7.9 K2.2 K20.3 K18.5 K12.8 K12.4
K3.8 K8.0 K15.5 K5.5 K5.6
NR
Glacier Name
PSFG NR
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
Rofenkar F Rotmoos F Schalf F Schattenspitz Schaufel F Schladminger G Schlappereben K Schlaten K Schlegeis K Schmiedinger K Schneeglocken Schneeloch G Schwarzenberg F Schwarzenstein Schwarzkarl K Schwarzkoepfl K Sexegerten F Simming F Simony K Sonnblick K Spiegel F Sulzenau F Sulztal F Taschach F Taufkar F Teischnitz K Totenfeld Triebenkarlas F Uebergoss.ALM Umbal K UNT.Riffel Kees Untersulzbach K VD.Kasten K Verborgenberg F Vermunt GL Vernagt F Viltragen K W.Tripp K Wasserfallwinkl Waxegg K Weissee F Wielinger K Wildgerlos Winkl K Wurfer K Wurten K Zettalunitz K Italy Agnello Alta (Vedretta) Amola Andollanord Antelao Inf Antelao Sup Aurona Barbadorso D Basei Belvedere Bessanese
A00215 A00224 A00219 A00108 A00311 A01103 A00805 A00506 A00405 A00726 A00109 A01104 A00303 A00403 A00716 A00710 A00204 A00318 A00511 A0601A A00221 A0314A A00301 A00205 A00216 A00723 A00110 A00323 A00901 A00512 A0713B A00503 A00719 A00322 A00104 A00211 A00505 A01004 A00705 A00401 A00201 A00725 A00404 A01006 A00715 A00804 A00508
1891 1891 1924 1973 1922 1933 1983 1891 1978 1981 1973 1969 1905 1881 1961 1954 1919 1922 1896 1963 1891 1891 1922 1924 1891 1975 1976 1978 1892 1896 1960 1896 1961 1977 1913 1888 1891 1925 1943 1895 1891 1980 1973 1928 1961 1896 1896
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1986 1990 1990 1990 1990 1990 1990 1980 1990 1909 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
C C C C C C C C E C C C C C C C C C C C C C C C C E C C C C C C E C C C C C C C C C C C C C C
K6.0 K1.0 K2.9 K2.7 K1.9 K1.4 K2.0 K4.6 KX K0.1 K5.8 K1.3 K6.8 5.5 K4.4 K7.0 K6.0 K1.9 K4.8 K2.1 K6.8 K4.0 K4.3 K4.9 K8.9 KX K2.7 0.1 K5.8 K18.2 K3.0 K5.0 KX K2.7 K7.4 K13.7 K3.9 0.4 K5.4 K6.2 K8.3 K47.0 6.1 K0.7 K5.0 K10.3 K3.4
I00029 I00730 I00644 I00336 I00967 I00966 I00338 I00778 I00064 I00325 I00040
1928 1923 1942 1927 1939 1934 1956 1935 1925 1927 1928
1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990
C C C C C C C C C C C
K2.5
331 332 333 334 335 336 337 338 339 340 341
K2.1 K12.0 K3.0 K4.7 K7.5 K11.3 K12.0 K11.0 K10.7 K6.4 K15.6 K3.0 K10.6 K49.0 K30.8 K26.3 K16.4 K12.5 K21.0
1994 K9.8 K8.0
1995 K7.3 K12.1 K18.1
K10.8 K17.0 K6.0 K6.3 K10.7 K17.5 K8.1 0.4 K4.4 K29.9 K35.8 K12.9 K3.4
K5.2 K11.1 K1.4 K.5 K10.5 KX K2.8 K7.7 K2.2 K15.3 K16.0 K19.7 K17.9 K39.0 K43.4 K11.5 K8.7 K10.4 K34.2 K21.6 K10.5 K6.2
K5.8 K6.7 K6.8 K12.0 K2.3 K14.8 K5.3 K22.6 K15.2 0.7 K9.8 K104.4 K7.8 K13.5 K6.2
K3.2 K14.3
K5.1 K16.3
K.3 K12.3
K24.3 K5.8 K6.1
K24.5 K4.4 K11.2
K68.5 K4.1 0.7
K2.3 K5.3 K15.9 K10.4
K7.4 K15.2 K16.5 K12.0 K5.5 K7.7 K8.0 K4.0 KX K20.0 K2.4 K16.8 K14.8 K21.1
K7.3 K4.3 K13.3 K12.0 SN 3.6 K38.0 K2.9 KX K8.4 K5.0
SN K10.0 K14.0 K3.0 K4.5 KX
KX K17.0 K16.0 K2.0 K3.0 K3.0 KX
0.0 2.0 K2.0
K2.0 0.0
K2.9 K6.8 KX K2.3 K4.3
K1.7 K12.0 K25.6 KX K12.2 K1.2 SN K5.5 K13.7
K1.0 K8.0 K2.0 K3.5
K8.5 K9.0 K24.0 K7.0 K2.5
K7.0 1.5 K2.0 0.0
K3.0 4.0 K1.0
K65.0 K1.0 K3.0 K3.0
K29.0 0.0 K4.0 K1.5
K3.3 K.1 K3.5 K7.9 KX
K2.6 K18.0
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.28
5-81
(Continued)
NR
Glacier Name
PSFG NR
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
Brenva Caspoggio Cevedale Chavannes Ciardoney Collalto Cristallo Croda Rossa Dosde OR Dosegu Fellaria OCC Fontana OCC Forcola Forni Gigante Centr Gigante OCC Goletta Gran Pilastro Hosand Sett LA Mare Lana LEX Blanche Lunga (Vedretta) LYS M. Nevoso OCC Malavalle Mandrone Marmolada Moncorve Nardis OCC Neves OR. Niscli Pendente Piode Pisgana OCC. Pizzo Scalino Pre De Bar Presanella Quaira Bianca Rosim Rossa (Vedr.) Rosso Destro Rutor Sassolungo OCC Serana (Vedr.) Sforzellina Solda Tessa Toules Travignolo Tresero Tza De Tzan Ultima (Vedr.) Valle Del Vento Vallelunga Valtournenche Venerocolo Venezia (Vedr.) Ventina
I00219 I00435 I00732 I00204 I00081 I00927 I00937 I00828 I00473 I00512 I00439 I00780 I00731 I00507 I00929 I00930 I00148 I00893 I00357 I00699 I00913 I00209 I00733 I00304 I0931X I00875 I00639 I00941 I00131 I00640 I00902 I00633 I00876 I00312 I00577 I00443 I00235 I00678 I00889 I00754 I00697 I00920 I00189 I00926 I00728 I00516 I00762 I00829 I00221 I00947 I00511 I00259 I00729 I00919 I00777 I00289 I00581 I00698 I00416
Variations (m)
First Survey
Last Survey
Method
1929 1928 1923 1930
1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1989 1990 1990 1990 1990 1990 1981 1990 1990 1990 1990 1990 1989 1990 1990 1990
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
1932 1949 1932 1925 1915 1925 1923 1880 1930 1930 1929 1932 1926 1899 1930 1929 1923 1927 1930 1928 1896 1925 1924 1925 1932 1919 1933 1924 1920 1911 1929 1951 1931 1926 1923 1952 1927 1930 1925 1925 1922 1926 1929 1925 1925 1927 1925 1932 1922 1927 1919 1925 1890
1991 8.0 K2.0 K15.0 K2.5 K2.0 0.0 K28.0 K13.0
K124.0 K2.0 K10.5 K5.0 K33.0 K3.0
3.0 K2.5 K9.0 K5.0 K11.5 K5.0 K10.0 K13.0 K5.5 K17.0 K19.0 KX K8.5 K6.5 0.0 K7.0 K11.0 K9.5 K10.5 K11.0 4.0
K12.0 K59.0 CX K9.0 K.5 K6.0 K9.5 1.0
1992
1993
K9.0 KX KX K5.0 K2.0 K7.5 K12.0 K4.0 K15.5 K60.0 K12.0
0.0 KX K17.0 1.5 K3.0 K8.0 K8.0
K43.0 K30.0 KX K7.0 K19.5 K7.5 K68.0 K8.0 K40.0 K26.0 K11.0 K6.0 K8.0 K14.0 K13.5 K5.0 K4.5 K19.0 K3.5 K9.0 K59.0 K8.0 K32.0 K4.5 K6.0 K6.5 K4.0 K8.5 K7.0 K11.0 K4.0 3.0 0.0 K12.0 K3.5 K10.0 KX K13.0 K10.0 K15.0 K1.5 K6.0 K38.5 K11.0
K32.0 KX K9.5 K14.5 K13.0 K22.0 K92.0 K5.0 K26.0 0.5 K23.5 K6.5 KX K5.0 K7.0 K14.0 K2.0 K2.0 K1.0 2.0 K13.0 0.0 K3.0 K34.0 KX K2.0 7.0 K12.5 K11.0 K7.0 K6.0 K17.0 K1.5 K2.5 K8.0 KX K12.0
1994
1995
K43.0 K16.0 K1.0 K2.0 K4.5 K6.0 K4.0 K37.0 K17.0 K9.5
K12.0 K19.0
K21.0 K95.0 K1.5 K6.5 0.0 K59.0 K9.0 KX K18.0 K12.0 K1.0 K8.0 K3.0 K10.0 K3.0 K12.5 K5.0 K51.0 K14.0 K16.0 K10.0 K7.5 K19.0 K10.0 K20.5 K10.5 KX K4.5 K8.0 K4.0
K2.0
K15.0 K8.0 K13.0 ST K9.0 K15.0 K15.0
K3.0 KX K15.0 K5.5 K2.5 K8.0 K14.5 K16.5 K10.0
K.5 K5.0 K17.5 K9.0 K22.0 K15.0 K18.0 K19.5 K21.5 K2.5 K4.0 6.5 K5.5 K3.5 K47.0 K12.0 K7.5 K2.5
K10.0 K12.0 K7.5 K15.0 K5.0 KX K10.0 K16.0 K8.5 0.0 K2.5 K6.5 K16.0 K5.0 K8.0 K86.0 K3.5 K6.0 K11.5 K4.5
K19.0 KX K14.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.28
(Continued) Variations (m)
First Survey
Last Survey
Method
NR
Glacier Name
PSFG NR
401 402 403
Vitelli Zai Di Dentro Zai Di Mezzo Kenya Cesar Darwin Diamond Forel Gregory Heim Joseph Krapf Lewis Northey Tyndall Poland Mieguszowieckie Pod Bula POD Cubryna C.I.S Abramov Alibekskiy Bezengi Bolshoy Azau Djankuat Dzhelo Garabashi Kara-Batkak Khakel Korumdu Kozelskiy Leviy Artru Levivy Karagemsk Maliy Aktru Maliy Azau Mizhirgichiran Muravlev NO. 122 (UNIV.) NO. 125 (VODOP.) NO. 462V (KULN.) Praviy Karagems Shumskiy TS.Tuyuksuyskiy Tseya Yugo-Vostochniy Yuzhniy China Urumqihe S.NO.1 Pakistan Aling Bualtar Karambar Nepal AX010 DX080 Gyajo Kongma Kongma Tikpe Rikha Samba
I00483 I00749 I00750
1921 1924 1930
1990 1979 1979
C C C
KN00004 KN00006 KN00010 KN00011 KN00009 KN00012 KN00003 KN00001 KN00008 KN00013 KN00005
1899 1919 1899 1899 1899 1899 1899 1899 1899 1899 1899
1987 1987 1987 1987 1990 1987 1987 1987 1990 1987 1987
A A A A A A A A A A A
PL00140 PL00111 PL00180
1958 1978 1978
1988 1990 1988
C C C
1.0 34.0 K1.0
K2.0 K14.1 1.0
2.4 K2.0
SU04101 SU03002 SU03006 SU03004 SU03010 SU07106 SU03031 SU05080 SU03003 SU07103 SU08005 SU07102 SU07107 SU07100 SU03032 SU03043 SU06002 SU07108 SU07105 SU03005 SU07109 SU06001 SU05075 SU03007 SU03018 SU03017
1967 1954 1956 1887 1965 1952 1887 1957 1957 1952 1948 1952 1952 1952 1887 1956 1966 1952 1956 1934 1952 1966 1956 1927 1957 1957
1990 1990 1990 1987 1990 1990 1987 1990 1990 1990 1990 1990 1990 1990 1987 1990 1990 1990 1990 1990 1990 1990 1990 1990 1991 1991
C C C B B C B C C C C D C D B C C C D C C C C C C C
K9.1
K12.9
K22.4
K3.0
K2.5
K69.0 K6.0 K18.0 0.0 K5.5
K3.0
K12.0
0.0
K6.8 K16.0 K3.5
K16.0 K19.0 K5.0
K11.0 0.0 K10.0 0.0
K1.0 ST 0.5
K22.0 ST K9.0
CN00010
1960
1990
C
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
PK00035 PK00004 PK00028 NP00005 NP00007 NP00011 NP00010 NP00009 NP00012
1991
K42.0 K61.0 K58.0
1989 1989 1978 1989 1989 1974
1993 K7.0 K2.5 K6.0
1994
1995
0.0 K5.0 K5.5
KX K4.0 K3.0
SN K1.0 2.0
2.0 13.1 1.0
K25.3 9.0
ST K8.0 K14.0
K25.0 K15.0 0.0 0.0 K30.0 0.0 0.0 K25.0 K25.0 0.0 K50.0
K7.0
K19.0
15.9 K3.5 K14.0 K1.0 K7.5 K12.0 K7.2 K17.0 K11.8
K6.5
1989 1988 1993 1978 1976 1970 1970 1974 1974
1992
K3.3
K10.0 K14.3 K7.2 8.0 K1.0 ST K3.0 K3.8 K12.0 61.0
K8.0 K4.8
ST 0.0
K7.0
ST
K8.4 K1.7 K11.4 K4.1
K7.3 K16.3 K1.5 K2.7
K13.8 4.2 3.5
K20.8 K5.0 17.0 K3.7
K3.4
K3.8
K6.8
K6.2
K1.7
K6.6 K1.5 K5.0
CX 1800.0
KX KX
C C C C C C
CX 25.0 K29.6 K75.6 K13.0 K53.7
K30.0
K205.7 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.28
5-83
(Continued)
NR
Glacier Name
PSFG NR
454
Yala New Zealand Abel Adams Almer Andy Ashburton Balfour Barlow Blair Bonar Brewster Burton Cameron Classen Colin Campbell Crow Dart Donne Douglas (KAR.) Douglas (RAK.) Evans Fitzgerald Fox Franz Josef Glenmary Godley Grey and Maud Hooker Horace Walker Ivory Jack Jackson Jalf Kahutea KEA LA Perouse Lambert LE Blanc Lindsay Lyell Marchant Marion Marmaduke Dixon MC COY Mueller Murchison Park Pass 1 Poet Ramsay Reischek Retreat Richardson Ridge Rolleston Sale Siege Sinclair Snow White
NP00004
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 482 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
NZ893A3 NZ08974 NZ888B1 NZ863C1 NZ688A1 NZ882B1 NZ893A2 NZ711D1 NZ863A1 NZ868C1 NZ888A1 NZ685B2 NZ711M1 NZ693C1 NZ664C2 NZ752C2 NZ851B2 NZ880B2 NZ685B1 NZ08972 NZ880B3 NZ882A1 NZ888B2 NZ711F1 NZ711M3 NZ711M2 NZ711H2 NZ880B1 NZ09011 NZ08751 NZ868B5 NZ08861 NZ685E1 NZ08971 NZ882B2 NZ08973 NZ868B3 NZ08671 NZ685C2 NZ880A1 NZ863B4 NZ664C1 NZ693C2 NZ711H1 NZ711J1 NZ752B1 NZ868B2 NZ685C3 NZ685C1 NZ906A1 NZ711E1 NZ711L1 NZ911A2 NZ906B1 NZ893A1 NZ693C3 NZ863B2
Variations (m)
First Survey
Last Survey
Method
1982
1989
C
1989 1987 1989 1987 1989 1985 1989 1989 1987 1989 1989 1988 1989 1988 1988 1989 1987 1987 1989 1988 1984 1989 1989 1989 1989 1989 1985 1987 1989 1989 1989 1989 1989 1989 1985 1989 1985 1989 1989 1986 1989 1989 1985 1989 1989 1989 1986 1983 1989 1989 1987 1989 1989 1993 1989 1985 1987
A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
1980
1867
1989
1991
1992
1993
1994
1995
K30.9
KX
KX
KX
KX
SN ST CX CX
CX KX ST ST CX KX KX CX ST KX
ST CX KX
CX KX CX KX
CX ST SN
CX CX
KX CX CX
KX
KX
KX
KX CX
SN
CX CX CX KX
ST
KX
SN
KX CX ST KX
SN
SN
CX SN
KX KX SN
KX CX
ST SN
KX KX CX
SN CX
KX
SN
SN
ST SN
SN
ST
KX
ST CX CX CX CX CX CX CX CX ST ST ST ST CX CX KX KX ST SN ST CX CX CX ST KX ST KX CX ST SN SN CX SN ST CX SN KX ST CX CX KX ST CX CX KX KX SN CX SN SN CX SN CX KX (Continued)
q 2006 by Taylor & Francis Group, LLC
5-84
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.28
(Continued)
NR
Glacier Name
PSFG NR
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
Snowball Spencer Strauchon Tasman Therma Thurneyson Tornado Unnamed NZ664C Unnamed NZ685C Unnamed NZ685F Unnamed NZ752E Unnamed NZ752I Unnamed NZ797G Unnamed NZ846 Unnamed NZ851B Unnamed NZ863B Unnsmrf NX868B Unnamed NZ911A Victoria Whitbourne White Whymper Wigley Wilkinson Zora Antarctica Bartley Clark CPI Hart Heimdall Meserve MPII Victoria Upper Wright Lower Wright Upper B
NZ863B3 NZ888A2 NZ880A2 NZ71111 NZ08641 NZ711B1 NZ863C2 NZ664C1 NZ685C4 NZ685F1 NZ752E1 NZ75211 NZ797G1 NZ08461 NZ851B1 NZ863B1 NZ868B4 NZ911A1 NZ882A1 NZ752C1 NZ664C1 NZ893B1 NZ873B2 NZ906B2 NZ868B1
537 538 539 540 541 542 543 544
Note: NR Glacier Name PSFG Number Method
1ST Survey: Last Survey: Variation in Meters: Key to Symbols:
AN00016 AN00012 AN00019 AN00003 AN00017 AN00013 AN00018 AN00011
First Survey
1983 1982 1985 1970 1983 1984 1975 1984
Variations (m)
Last Survey
Method
1987 1989 1986 1989 1987 1989 1986 1989 1989 1989 1989 1989 1989 1989 1989 1989 1980 1989 1989 1988 1989 1980 1989 1989 1986
A A A A A A A A A A A A A A A A A A A A A A A A A
1990 1990 1990 1991 1990 1990 1990 1990
C C C C C C C C
1991
KX
1992
1993
1994
1995
ST CX
ST
CX KX
KX
ST CX ST KX CX
CX
SN
SN
KX KX CX
SN SN SN CX SN SN CX ST SN
SN SN SN SN SN CX ST SN
SN
SN
CX KX
SN SN SN CX ST SN ST SN CX KX CX KX KX ST CX 0.2 2.6 K0.5
K1.8 0.0 3.5 K3.3 1.8 K1.8 K1.2
KX SN CX
1.3
0.6
Record number 15 alphabetic or numeric digits 5 digits identifying glacier with alphabetic prefix denoting country AZaerial photogrammetry BZterrestrial photogrammetry CZgeodetic ground survey (theodolite, tape etc.) DZcombination of a, b or c EZother methods or no information Year when glacier was first surveyed Last survey before reported period Variation in the position of the glacier front in horizontal projection expressed as the change in length between the surveys CX: Glacier in advance KX: Glacier in retreat ST: Glacier stationary SN: Glacier front covered by snow
Source: From World Glacier Monitoring Service by Wilfried Haeberli, Martin Hoelzle, Stephan Suter and Regula Frauenfelder www.wgms.ch.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-85
Table 5D.29 Changes in Area, Volume and Thickness Period NR
Glacier Name
1.1
U.S.A McCall US00001
2.1
Summary Data Switzerland Gries (Aegina) CH00003
From
Altitude To
From
To
Area Mean
1972
1993
2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 1400 1400
2500 2400 2300 2200 2100 2000 1900 1800 1700 1600 1500 2500
110 720 1160 1360 890 810 530 450 600 360 240 7230
1923
1961
3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 2300 2300 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 2300 2300 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 2300 2300 3300 3200 3100 3000 2900 2800 2700 2600 2500
3400 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 3400 3400 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 3400 3400 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 3400 3400 3300 3200 3100 3000 2900 2800 2700 2600
16 201 772 1572 1040 813 699 1303 613 716 112 7857 9 133 533 1574 1015 752 605 1082 563 297 127 6690 10 130 547 1597 1004 726 543 984 608 184 4 6337 10 90 430 1666 1061 727 573 850 678
2.2
Summary Data Gries (Aegina) CH00003
1961
1979
2.3
Summary Data Gries (Aegina) CH00003
1979
1986
2.4
Summary Data Gries (Aegina) CH00003
1986
1991
Area Change
K7 K68 K239 2 K25 K61 K94 K221 K50 K419 K15 K1167 1 3 14 23 K11 K26 K62 K98 45 K112 K123 K353 0 K40 K117 69 57 1 30 K134 70 K20 K4 K88 0 116 262 K66 K67 K69 K116 K231 127
Volume Change
Thickness Change
K248 K1383 K4284 K6126 K5019 K5110 K4286 K5070 K11774 K9733 K8730 K61762
K2257 K1921 K3693 K4504 K5639 K6308 K8086 K11267 K19624 K27037 K36374 K8543
K146 K2062 K11148 K28673 K19760 K18227 K21250 K45553 K28419 K56048 K22387 K247810 3 72 1055 4533 4385 3384 436 K7596 K5472 K8874 K9304 K12042 K40 K355 K3853 K1006 K2038 K2185 K1368 K4890 K2724 K1468
K9120 K10260 K14440 K18240 K19000 K22420 K30400 K34960 K46360 K78280 K199880 K31540 360 540 1980 2880 4320 4500 720 K7020 K9720 K29880 K73260 K1800 K3990 K2730 K7043 K630 K2030 K3010 K2520 K4970 K4480 K7980
K16413 14 K266 K1699 K8580 K6154 K4435 K3495 K7098 K7831
K2590 1350 K2950 K3950 K5150 K5800 K6100 K6100 K8350 K11550 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-86
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.29
(Continued) Period
NR
3.1
4.1
Glacier Name Summary Data Austria Hintereis F. A00209
Summary Data C.I.S Djankuat SU03010
From
Altitude To
From
To
Area Mean
Area Change
Volume Change
Thickness Change
2400 2400
2500 3400
164 6249
K11 K55
K1796 K41556
K10950 K6650
1979
1991
3700 3600 3500 3400 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 2300 2300
3800 3700 3600 3500 3400 3300 3200 3100 3000 2900 2800 2700 2600 2500 2400 3800
3 52 48 229 701 975 1535 1469 1221 909 968 662 280 156 9 9217
K1 K4 K16 K50 K66 K110 K260 K181 K112 K64 K70 K19 19 K39 K18 K991
K2 K82 K58 K944 K2694 K5155 K9390 K11802 K12738 K12846 K11516 K9636 K6046 K2529 K48 K85486
K667 K1576 K1208 K4122 K3843 K5287 K6117 K8034 K10432 K14132 K11897 K14556 K21593 K16212 K5333 K9275
1984
1992
3600 3500 3400 3300 3200 3100 3000 2900 2800 2698 2698 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570
3990 3600 3500 3400 3300 3200 3100 3000 2900 2800 3990 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580
207 532 358 370 427 361 292 286 183 97 3113 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 11 302 27 22 11 9 10
K41 81 K30 K10 K16 K2 K8 K1 K6 7 K26
303 K363 K165 404 439 K466 109 K589 K754 K510 K1592 1 4 3 3 4 5 3 1 K2 K4 K6 K7 K10 K6 K6 K5 K7 K8 K7 K6 K4 K6 K60 K21 K17 K8 K7 K8
1465 K683 K460 1092 1027 K1290 374 K2059 K4121 K5258 K511 40 170 290 380 370 320 190 60 K120 K280 K420 K520 K560 K550 K550 K560 K580 K550 K520 K520 K530 K550 K150 K770 K770 K760 K750 K750
5.1
Summary Data Muravlev SU06002
1981
1982
5.2
Summary Data Muravlev SU06002
1982
1983
(Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.29
5-87
(Continued) Period
NR
Glacier Name
From
Altitude To
5.3
Summary Data Muravlev SU06002
1983
1984
5.4
Summary Data Muravlev SU06002
1984
1985
From 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440
To 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450
Area Mean 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 10 301 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 10 301 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14
Area Change
K1 K1
Volume Change K11 K10 K10 K11 K10 K9 K9 K12 K8 K8 K7 K10 K12 K11 K10 K7 K9 K225 K16 K14 K7 K6 K6 K10 K10 K10 K11 K9 K9 K8 K10 K6 K6 K5 K8 K8 K7 K6 K5 K6 K183 K21 K16 K8 K6 K6 K10 K11 K11 K13 K12 K13 K11 K14 K11 K11 K10 K13 K15
Thickness Change K720 K690 K680 K660 K650 K630 K650 K710 K740 K770 K800 K840 K870 K880 K880 K890 K880 K740 K580 K620 K650 K660 K640 K660 K660 K650 K630 K610 K600 K580 K570 K570 K590 K610 K650 K600 K570 K570 K590 K630 K620 K770 K720 K700 K650 K630 K690 K730 K740 K760 K800 K840 K780 K840 K970 K1040 K1070 K1090 K1060 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-88
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.29
(Continued) Period
NR
Glacier Name
From
Altitude To
5.5
Summary Data Muravlev SU06002
5.6
Summary Data Muravlev SU06002
1986
1987
5.7
Summary Data Muravlev SU06002
1987
1988
1985
1986
From 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540
To 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550
Area Mean 13 11 8 9 300 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 8 299 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 8 299 27 22 11 9 10 15 15 15
Area Change
K1 K1
K1 K1
Volume Change K14 K11 K8 K9 K254 K17 K14 K7 K5 K6 K9 K9 K9 K11 K9 K9 K9 K12 K9 K9 K9 K12 K15 K15 K12 K9 K9 K225 K18 K14 K7 K5 K5 K9 K9 K9 K11 K9 K9 K8 K10 K8 K10 K10 K12 K13 K12 K10 K7 K7 K212 3 3 1 1 1 2 2 2
Thickness Change K1040 K1040 K1030 K1030 K830 K620 K640 K630 K610 K600 K620 K620 K620 K630 K600 K600 K640 K720 K820 K860 K960 K1020 K1070 K1130 K1140 K1150 K1160 K740 K680 K630 K600 K560 K530 K580 K620 K630 K630 K600 K570 K550 K610 K740 K950 K1060 K1000 K930 K900 K890 K890 K880 K690 100 120 60 70 140 110 110 130 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.29
5-89
(Continued) Period
NR
Glacier Name
From
Altitude To
5.8
Summary Data Muravlev SU06002
1988
1989
5.9
Summary Data Muravlev SU06002
1989
1990
From 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410
To 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420
Area Mean 17 15 15 14 17 11 11 9 12 14 13 11 8 7 298 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 7 298 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8
Area Change
K1 K1
Volume Change 2 2 1 K2 K4 K3 K3 K3 K5 K7 K6 K5 K4 K3 K25 K3 K4 K2 0 0 K2 K3 K4 K4 K5 K6 K5 K7 K5 K6 K5 K7 K10 K10 K9 K7 K6 K110 0 2 1 K1 K1 K6 K7 K7 K9 K10 K10 K11 K15 K9 K9 K8 K12 K14 K12 K10 K7
Thickness Change 150 110 40 K150 K230 K240 K310 K330 K450 K510 K500 K490 K490 K480 K80 K120 K190 K190 K30 20 K120 K200 K240 K260 K330 K370 K390 K390 K450 K520 K570 K600 K730 K790 K820 K840 K860 K340 K10 110 90 K90 K110 K370 K510 K490 K590 K690 K680 K760 K880 K860 K820 K840 K960 K1020 K950 K930 K920 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-90
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.29
(Continued) Period
NR
Glacier Name
5.1
Summary Data Muravlev SU06002
1990
1991
6.1
Summary Data Shumskiy SU06001
1989
1990
6.2
Summary Data Shumskiy SU06001
From
Altitude
1990
To
1991
From 3400 3400 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3400 3400 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3440 3420 3400 3380 3360 3340 3320 3300 3280 3260 3240 3220 3200 3180 3160 3140 3140 3720 3700 3680
To 3410 3620 3620 3610 3600 3590 3580 3570 3560 3550 3540 3530 3520 3510 3500 3490 3480 3470 3460 3450 3440 3430 3420 3410 3620 3740 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3440 3420 3400 3380 3360 3340 3320 3300 3280 3260 3240 3220 3200 3180 3160 3740 3740 3720 3700
Area Mean
Area Change
6 297 27 22 11 9 10 15 15 15 17 15 15 14 17 11 11 9 12 14 13 11 8 6 297 96 114 145 111 77 89 76 76 92 104 113 42 35 43 58 92 52 38 31 34 53 46 26 20 23 26 27 23 13 4 1779 96 114 145
K1 K1
K1 K1 K2
Volume Change K5 K165 K33 K25 K13 K12 K13 K22 K22 K22 K26 K24 K25 K22 K25 K19 K22 K19 K26 K31 K27 K22 K16 K12 K478 K42 K42 K46 K32 K30 K34 K29 K20 K28 6 K14 K24 K26 K36 K57 K87 K49 K27 K18 K27 K45 K45 K28 K20 K28 K36 K59 K54 K35 K11 K1023 K76 K89 K115
Thickness Change K910 K530 K1220 K1160 K1180 K1300 K1350 K1430 K1430 K1430 K1500 K1600 K1650 K1540 K1490 K1690 K1990 K2140 K2180 K2200 K2080 K2030 K2020 K1990 K1590 K440 K370 K320 K290 K390 K380 K380 K260 K300 60 K120 K580 K750 K840 K990 K950 K940 K700 K570 K800 K850 K980 K1060 K1020 K1200 K1400 2190 K2370 K2690 K2740 K600 K790 K780 K790 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5D.29
5-91
(Continued) Period
NR
Glacier Name
From
Altitude To
7.1
Summary Data TS.Tuyuksuysk SU05075
1990
1991
7.2
Summary Data TS.Tuyuksuysk SU05075
1991
1992
From 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3440 3420 3400 3380 3360 3340 3320 3300 3280 3260 3240 3220 3200 3180 3160 3140 3140 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3460 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600 3580
To 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3440 3420 3400 3380 3360 3340 3320 3300 3280 3260 3240 3220 3200 3180 3160 3740 3820 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3820 3820 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600
Area Mean 111 77 89 76 76 92 104 113 42 35 43 58 92 52 38 31 34 53 46 26 20 23 26 27 22 12 3 1776 117 150 184 200 166 138 73 51 54 48 70 55 99 56 54 53 50 37 1655 117 150 184 200 166 138 73 51 54 48 70 55
Area Change
K1 K1 K1 K3
Volume Change K84 K59 K82 K71 K65 K114 K177 K209 K69 K54 K67 K103 K187 K115 K90 K74 K67 K99 K97 K56 K44 K47 K51 K63 K56 K26 K7 K2513 K117 K159 K206 K234 K184 K135 K88 K72 K62 K55 K73 K70 K144 K96 K111 K118 K129 K120 K2173 K35 K39 K52 K74 K70 K63 K48 K38 K42 K37 K57 K51
Thickness Change K760 K770 K920 K940 K850 K1240 K1700 K1850 K1650 K1530 K1550 K1780 K2030 K2210 K2370 K2400 K1960 K1870 K2110 K2170 K2220 K2060 K1980 K2340 K2560 K2210 K2240 K1420 K1000 K1060 K1120 K1170 K1110 K980 K1200 K1410 K1150 K1140 K1040 K1280 K1460 K1710 K2060 K2220 K2590 K3230 K1330 K300 K260 K280 K370 K420 K460 K660 K740 K770 K770 K820 K930 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-92
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5D.29
(Continued) Period
NR
7.3
8.1
Glacier Name
From
Summary Data TS.Tuyuksuysk SU05075
1992
Summary Data Nepal AX010 NP00005
1978
Summary Data Note: NR Glacier Name Period From To Altitude Area Mean Area Change Volume Change Thick Change
Altitude To
1993
1991
From
To
Area Mean
3560 3540 3520 3500 3480 3460 3460 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3460 3460
3580 3560 3540 3520 3500 3480 3820 3820 3800 3780 3760 3740 3720 3700 3680 3660 3640 3620 3600 3580 3560 3540 3520 3500 3480 3820
99 56 54 48 40 17 1620 117 150 184 200 166 138 73 51 54 48 70 55 99 56 54 48 40 15 1618
5340 5320 5300 5280 5260 5240 5220 5200 5180 5160 5140 5120 5100 5080 5060 5040 5020 5000 4980 4960 4952 4952
5360 5340 5320 5300 5280 5260 5240 5220 5200 5180 5160 5140 5120 5100 5080 5060 5040 5020 5000 4980 4960 5360
6 12 12 29 65 101 62 60 35 24 19 15 16 20 31 21 15 15 7 3 1 568
Area Change
Volume Change
Thickness Change
K5 K10 K20 K35
K130 K88 K89 K96 K91 K38 K1138
K1310 K1570 K1650 K1990 K2270 K2230 K790
K2 2
134 213 252 196 183 104 58 46 40 61 40 69 32 22 K2 K27 K15 1406
891 1160 1259 1180 1324 1431 1141 846 835 866 734 696 567 400 K38 K681 K973 936
K2 K2 K2 K8 K23 K9 7 4 3 K3 K3 3 K6 K7 K16 7 K2 K4 2 1 0 K58
K97 K324 K353 K576 K378 K278 K229 K232 K271 K354 K564 K387 K321 K355 K145 K51 K18 K4934
K1500 K3200 K5700 K9600 K109000 K11400 K11800 K15900 K16700 K17900 K18500 K18800 K21000 K23200 K21700 K17500 K17500 K8689
Record number 15 alphabetic or numeric digits Period in which the changes take place Altitude interval in meters above sea level Mean area of altitude interval for period of change (thousand square meters) Change in area of altitude interval for period of change (thousand square meters) Change in volume of altitude interval for period of change (thousand cubic meters) Change in thickness of altitude interval for period of change (millimeters)
Source: From World Glacier Monitoring Service by Wilfried Haeberli, Martin Hoelzle, Stephan Suter and Regula Frauenfelder www.wgms.ch.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-93
SECTION 5E
FLOODS
[In thousands of cfs; for a typical 300 mi2 (780 km2) drainage basin; a mean annual flood is one that will be exceeded in about half the years; the probability of a mean annual flood in any given year is about 50%]
1 1 2
1
10
5 8
5
8
1
1
20 30
5
8
2
6
5
0.2
8
10
20
5
5
8
10
2
1
2
1
5
10
Miles 0 0
200
400
200 400 600 km
Figure 5E.15 Mean annual flood potential in the United States. (From U.S. Geological Survey, National Atlas Map 121, 1965.)
q 2006 by Taylor & Francis Group, LLC
5-94
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
[In thousands of cfs; for a typical 300 mi2 (780 km2) drainage basin; a 10-year flood will be exceeded at irregular intervals that average 10 years; the probability of a 10-year flood in any given year is 10%]
2
10
50 30
5
20
5
10
2
5
10
0.5
2
2 2
30
20 10
10
10 5
5
20
20 0
Miles 200
400
0 200 400 600 km Figure 5E.16 Ten-year flood potential in the United States. (From U.S. Geological Survey, National Atlas Map 121, 1965.)
National meteorological centre
QP
F*/
We a
the
rg
uid
Community actions
ce
PF
*Q
an
River forecast center
Runoff Guidance
Weather service forecast office Weather service office
Local flash flood warning system Flash flood alarms Watches Warnings
NOAA** weather radio NOAA** weather wire News media Emergency planning
Radar satellite surface and upper air networks Flow of guidance information, watches, and warnings Observational data
Flow of observational data *QPF = Quantitative precipitation forecast **NOAA = National oceanic and atmospheric administration
Figure 5E.17 Flash flood warning system in the United States. (From National weather service, Operations of the national weather service. U.S. Department of Commerce, 1985.) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
23 9 16 33
35
32 30 20 1
21 24
4 14
36 6
3
12
26
38
ATL ANT IC O CEA N
18
29 17
19
13
37
IF PAC
32
31 34
10
Explanation
IC
15
OC
8
EA
Dambreak flood
2
Tidal flood
36
Flash flood
11
Flood wave generated in Lake Okeechobee by hurricane
N
1
39 Those in Tables 3-26
40 22
2
28 ALASKA 0
600 Miles
HAWAII
0 100 Miles
27
7
5
25
L F G U
O F
C O X I M E
11 PUERTO RICO 100 Miles 0
Area affected by riverine floods. Variation of boundaries indicates incidents of overlap Numbers correspond to those in table, p. B40 0
100
200 Miles
Figure 5E.18 Distribution of great floods in the conterminous United States since 1889. (From Hays, W.W., Facing geologic and hydrologic hazards, Earth-Science considerations, U.S. geological survey professional paper 1240-B, 1981.)
5-95
q 2006 by Taylor & Francis Group, LLC
5-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.30 Estimated U.S. Flood Damage, by Fiscal Year (Oct–Sep) Fiscal Year 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
Damage (Millions Current Dollars)
Implicit Price Deflator
Damage (Millions 1995 Dollars)
9.243 315.187 88.155 61.700 25.832 2.070 10.365 27.366 18.903 123.327 287.137 433.339 108.970 13.861 40.067 26.092 91.548 220.553 99.789 159.251 68.930 281.321 213.716 108.586 129.903 1,076.687 254.190 121.752 74.170 784.672 305.573 352.145 224.939 121.281 111.168 147.680 86.574 179.496 194.512 1,221.903 116.645 291.823 443.251 889.135 173.803 323.427 4,442.992 1,805.284 692.832 1,348.834 1,054.790 988.350 1,028.970 3,626.030 — — — 3,693.572
— — — 0.12854 0.12385 0.11091 0.09796 0.09541 0.10071 0.10265 0.10377 0.10815 0.10499 0.10387 0.10530 0.11244 0.12120 0.12773 0.13058 0.13425 0.15056 0.16667 0.17615 0.17594 0.17788 0.19072 0.19368 0.19623 0.19817 0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214
— — — 480 209 19 106 287 188 1,201 2,767 4,007 1,038 133 381 232 755 1,727 764 1,186 458 1,688 1,213 617 730 5,645 1,312 620 374 3,892 1,466 1,635 1,020 544 491 646 373 766 818 5,041 468 1,136 1,653 3,161 587 1,040 13,698 5,271 1,856 3,306 2,446 2,154 2,093 6,808 — — — 5,260 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-97
Table 5E.30
(Continued)
Fiscal Year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Note:
Damage (Millions Current Dollars)
Implicit Price Deflator
Damage (Millions 1995 Dollars)
3,540.770 379.303 5,939.994 1,442.349 214.297 1,080.814 1,636.366 1,698.765 672.635 16,364.710 1,120.149 5,110.714 6,121.753 8,934.923 2,465.048 5,450.375 1,336.744
0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
4,862 505 7,737 1,824 262 1,273 1,856 1,859 718 17,069 1,145 5,111 6,005 8,597 2,343 5,109 1,225
— Data unavailable.
Source: From U.S. Bureau of Economic Analysis, 2001.
Table 5E.31 Comparison of Damage Estimates by State, 1955–1978 and 1983–1999.
State Rhode Island Delaware Massachusetts New Hampshire Hawaii Connecticut Vermont Wyoming Maine New Jersey Alaska (29 yr) Maryland & DC Nevada Michigan N. Dakota S. Dakota Colorado S. Carolina New Mexico Utah Montana Idaho Wisconsin Georgia Virginia Arizona Minnesota Florida N. Carolina Oregon Washington
Region New England New England New England New England New England Arid West New England
Arid West N. Central N. Central Arid West Arid West Arid West Arid West
Southeast Arid West Southeast Pacific NW Pacific NW
Median Damage (All Years)
Maximum Damagea
Years with No Estimate
Years with 0!Est 1.0
Years with Est O100
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.06 0.07 0.14 0.16 0.21 0.41 0.51 0.57 0.66 0.73 0.84 1.04 1.21 1.61 1.86 1.91 2.27 2.40 2.48 3.99 4.06 4.32
143 7 774 56 44 1,881 194 53 77 749 383 681 616 528 3,280 796 1,866 40 34 712 229 1,507 943 307 1,042 306 1,006 410 2,919 3,143 363
33 32 25 23 23 21 20 17 20 18 14 15 13 17 14 10 11 5 16 7 10 9 11 5 9 7 4 6 5 2 5
5 7 5 6 2 6 9 14 3 5 4 14 12 11 9 13 10 18 6 14 10 10 8 7 9 9 12 9 5 6 7
1 0 2 0 0 2 1 0 0 8 1 1 1 3 4 4 4 0 0 2 1 2 4 3 6 4 7 5 3 4 3 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-98
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.31
(Continued)
State Louisiana Tennessee Alabama Arkansas Mississippi W. Virginia Kansas Oklahoma Pennsylvania Nebraska New York Illinois Iowa Kentucky Indiana Ohio Missouri California Texas a
Region
Median Damage (All Years)
Maximum Damagea
Years with No Estimate
Years with 0!Est 1.0
Years with Est O100
5.60 6.01 6.10 6.87 8.07 8.60 8.61 8.97 10.39 13.89 14.60 15.31 17.18 17.67 19.29 22.06 25.42 45.64 77.44
3,097 193 351 712 1,157 782 575 1,045 8,590 307 2,305 2,754 5,987 453 310 313 3,577 2,007 691
7 2 4 2 1 1 3 4 3 4 7 1 4 1 0 3 0 3 1
7 8 4 6 3 7 4 8 7 4 3 3 6 7 3 5 7 4 1
10 1 3 4 4 5 6 5 6 4 6 8 9 7 3 4 12 13 16
Lower Miss. Southeast Southeast Lower Miss. Lower Miss. Ohio R. Central Central Upper Miss. Upper Miss. Upper Miss. Ohio R. Ohio R. Ohio R. Upper Miss.
Estimates of maximum damage can be misleading. For example, in Idaho the maximum was caused by failure of the Teton Dam in 1976; the worst damage directly from precipitation and streamflow is estimated at $120 million. In Texas, the maximum appears small but much greater damage occurred in a year not covered by this table ($3.76 billion in 1979). States are ordered by increasing median damage. Missing estimates are treated as zero; all estimates are in millions of 1995 dollars.
Source: From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller, 2002: Flood Damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO: UCAR, www.flooddamagedata.org.
Table 5E.32 Damage in Thousands of Current Dollars
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
Deflator
AL
AK
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262
3,379 720 2,324 872 0 670 12,625 3,529 1,280 5,343 723 2,366 1,695 408 88 10,891 2,170 2,278 5,439 1,731 91,815 4,710 4,760 3,000 a
98,550 0 0 0 8,631 1,090 1,500 0 0 0 200 0 0
AZ 226 0 0 0 100 0 325 1,000 0 55 11,330 3,050 3,576 188 0 5,000 3,476 20,868 0 2,605 927 6,000 15,590 131,360 0
AR 61 255 27,938 6,202 3,090 580 3,503 91 2,500 598 143 5,055 1,497 21,099 3,411 639 2,549 1,780 129,579 8,746 21,387 0 130 23,900 2,620
CA 165,767 8,745 13 33,063 4 516 95 2,780 11,834 229,168 11,321 24,347 1,370 0 423,296 47,798 3,522 1,132 9,480 27,124 1,845 120,100 28,500 124,230 25,900
CO 2,567 5,135 2,901 240 0 0 0 80 50 0 452,293 707 0 0 66 2,040 0 15 121,383 0 0 35,540 1,250 70 50
CT
DE
379,360 0 0 0 0 750 0 0 0 0 0 0 0 100 528 0 0 15,414 1,950 0 9,360 7,100 1,570 0 a
117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 5 0 0 0 0 0 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5E.32
(Continued) Deflator
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113 Deflator
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
5-99
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397
AL
29,431 23,000 1,700 0 755 1,721 178 120,000 15,055 320 0 112,696 0 1,649 1,354 368,938 4,663 3,087 FL
AK
0 7,150 50 0 20,000 500 6,000 0 0 7,302 0 74,000 10,025 0 1,271 314 0 110 GA
AZ
179,938 223,000 1,350 3,000 7 71 33,636 3,220 258 5,189 228,900 1,616 6,618 701 85 66 12,796 90 HI
AR
CA
500,000 5,000 19,823 2,240 15,045 12,612 2,320 143,056 12,006 909 2,680 2,024 0 205 12,874 2,045 1,777 2,773
673,000 0 0 402,000 1,015 52,353 38,738 570 3,376 93,152 165,920 1,792 1,495,960 13,205 2,086,125 621,588 14,176 9,238
ID
IL
CO
100 107,050 7,000 166 0 0 481 130 2,820 1,602 100 1,242 18,240 4,058 358,890 2,550 50,675 297 IN
CT
DE
0 81,700 0 0 5,000 0 800 10 16 10,366 0 1,316 0 2,092 52 40 1,112 6,010
0 5,000 50 0 0 0 1,600 0 0 2 0 741 0 300 0 0 0 0
IA
KS
105 1,891 0 0 150 12,047 317 1,481 0 426 144 548 95 46 2,858 145 476 41,206 2,282 23,050 15,839 0 140 3,720 21,990
1 212 1,068 323 0 392 5,236 0 445 3,641 397 1,628 23 133 79 348 243 328 5,143 405 3,002 8,130 4,160 0 0
0 0 0 400 0 0 0 0 2,300 0 0 0 1,029 2,500 0 0 500 0 0 3,869 0 270 0 0 11,000
1,371 6,222 20,896 3 500 0 939 8,112 2,766 11,704 4,184 0 792 0 111 38 1,187 355 0 36,118 378 650,000 0 60 0
102 1,026 1,206 17,970 1,506 7,503 11,553 891 513 3,044 30,564 577 2,629 2,576 9,095 9,124 462 5,927 258,704 75,068 20,598 3,370 7,190 50 32,250
1,003 4,021 66,748 52,302 12,958 2,649 13,306 670 8,266 12,327 20 3,098 4,618 22,463 6,672 2,300 1,690 4,700 6,326 15,805 12,317 3,680 8,160 38,960 16,000
35 51 1,543 7,508 128 7,612 9,389 6,778 70 240 32,462 904 4,416 1,650 6,233 977 684 13,262 12,724 56,367 7,300 160 0 0 2,000
474 33 9,164 4,606 4,061 1,947 13,397 1,826 168 370 29,792 97 15,093 2,304 10,991 4,138 1,644 1,646 53,772 3,700 3,255 1,330 46,350 0 7,000
0 200,000 30,000 7,275 645 50,350 2,109 500 0
0 5,050 0 2,000 1,470 230 1,792 30,658 106,158
0 6,055 3,100 0 2,050 35,647 3,392 665 23,715
2,200 1,000 0 2,005 17 0 178 113 2,574
202,500 7,992 11,500 104,705 150,000 102 1,600 71,045 19,834
20,000 22,194 50,000 2,500 1,906 89 716 105,550 89,504
0 600,550 50 45,307 16,755 0 7,286 351,401 195,703
0 50,050 5,000 181,700 152,000 0 3,394 2,048 16,551 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-100
Table 5E.32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Deflator
FL
GA
HI
ID
IL
IN
IA
KS
1992 1993 1994 1995 1996 1997 1998 1999 2000
0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113 Deflator
41,938 2,080 182,605 18,536 158,001 49,707 431,311 60,080 499,080 KY
1,156 7,340 300,000 8,845 2,581 464 166,291 8,520 2,101 LA
9,260 2,910 3,700 0 1,935 0 0 0 400 ME
224 0 0 2,096 49,400 125,060 1,005 1,297 85 MD
189 2,640,140 32,606 27,240 107,585 4,295 2,380 3,666 3,113 MA
45,424 9,550 2,852 6,789 21,575 68,598 19,611 50,124 819 MI
50,800 5,740,000 9,124 3,498 165,265 3,680 168,101 111,221 14,877 MN
10,127 551,070 10,437 8,874 3,969 102 4,888 60,030 250 MS
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
6,629 568 55,233 3,817 2,480 3 12,969 16,885 36,917 35,476 1,044 1,671 17,583 6,036 8,075 707 6,099 15,841 10,491 5,218 26,302 0 101,000 100,000 0
30 0 4,147 2,842 0 112 6,074 1,908 0 30 0 250 0 2,810 251 1,000 0 100 334,904 10,343 90,204 0 48,040 145,000
0 0 0 0 61 0 800 0 0 0 0 528 0 0 300 0 0 0 11,200 3,000 0 3,360 4,190 0 0
5,450 888 0 100 0 0 0 0 0 0 53 0 125 0 200 15 8,600 220,739 0 0 27,200 4,900 0 150 69,000
155,982 0 0 0 0 6,400 0 0 0 0 0 0 0 35,000 0 0 0 10 0 0 0 1,000 0 0
0 1,278 0 0 0 1,181 0 0 0 0 0 0 0 100 13 0 0 10 530 240 54,358 790 0 0 0
0 11 9,128 17 50 212 552 1,290 26 0 97,603 4,300 0 1,197 67,168 4,350 15 64,318 242 16,939 139,726 0 7,870 65,000 13,140
3,132 1,270 2,693 13,826 280 744 15,918 1,982 19 3,152 1,931 2,706 1,192 6,269 1,900 3,586 12,431 10,248 226,885 27,827 70,990 2,840 2,780 0
100 180,236 460 25 68 250 27,445 5,664 9,034 46,870 4,980 2,544 17,673 21,323 470,915 16,639 506 17,631
651,000 6,550 8,050 1,515,250 1,175 8,708 322,118 115,901 221,720 4,191 4,020 675 3,097,250 121 4,359 17,845 5,979 153
375 10,050 45 5,000 61,250 0 3,200 0 16,336 2,179 3,040 9,323 0 4,916 26,845 0 1,580 2,814
100 10,015 50 0 51 0 1,600 23 48 339 0 4,524 1,620 90,481 198 334 9,715 2,452
0 50,560 0 21,500 47,480 0 0 50 9,716 176 160 0 0 2,663 75,024 13,510 250 206
0 0 80,000 405,000 15 206 180 627 6,133 355 1,600 6,236 2,900 26,690 325 18,190 325 25,430
310 5,000 500 1,501 27,800 555 17,600 3,032 1,280 1,760 964,050 1,867 3,750 460 743,218 2,529 466 43,112
812,600 6,050 2,000 651 6,380 39,420 3,635 21,805 313,359 1,010 4,480 1,352 1,092 200 32,774 3,498 1,769 408
Deflator 1955 1956
0.20163 0.20846
MO 666 167
a
MT 63 317
NE 1,500 865
NV 7,398 237
a
NH
NJ 0 0
23,102 0
NM 1,066 0
a
NY 30,072 1,089 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5E.32
5-101
(Continued) Deflator
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
MO
MT
NE
NV
NH
9,618 38,718 6,018 13,506 27,375 557 152 6,591 33,976 2,781 39,080 890 36,601 14,926 191 5,783 231,438 62,594 7,611 810 52,500 2,000 0
33 1 82 57 0 147 148 54,389 253 0 2,947 0 388 581 412 595 0 4,217 24,123 50 0 19,060 0
5,983 3,064 3,753 8,884 674 2,630 13,394 5,146 1,368 11,628 40,644 6,029 1,826 0 5,941 73 10,388 126 0 0 1,590 67,000 0
0 0 0 0 891 762 2,858 2,454 4 307 45 1 0 138 0 0 0 1,000 6,200 200 0 0 0
0 0 4,500 100 0 0 0 0 0 0 0 800 400 0 0 0 19,100 0 0 0 610 900 0
0 3 0 0 0 0 0 0 0 0 1,438 166,690 580 0 138,700 15,050 50,868 0 60,687 0 95,880 14,720
50,000 96,293 100 155,000 100,550 69 16,067 1,842 1,960 2,044 3,429,630 37,864 25,415 871 692 10,227 36,862 109,760
0 663 0 38,674 0 0 2,194 1,758 10,743 1,403 6,720 3,392 510 2,243 2,874 3,001 184 30
0 100,550 500 28,482 25,890 61 29,772 36,536 53,615 6,683 294,500 2,710 5,129 31,233 10,273 1,483 22,765 23,456
1,000 0 0 20,650 13 12 23 51 2 1,621 0 160 11,970 370 640,110 1,300 25,009 221
75 6,000 50 5,962 19,100 0 0 1,200 0 0 0 0 110 4,000 10,952 700 1,002 515
0 334,200 0 0 17,050 50 1,600 1 16,002 500 0 3,520 0 36,720 38,700 750 800,000 179,100
Deflator 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809
NC 625 831 788 3,201 506 100 1,400 0 0 15,816 88 198 1,168 0
ND 2 0 100 0 28 136 0 0 0 0 5,192 9,700 0 0
OH 753 1,056 7 4,867 54,840 191 1,217 6,512 22,359 28,039 0 1,893 6,622 20,074
OK 977 0 35,665 169 8,907 2,638 2,483 792 413 798 2,508 12 3 3,021
OR 9,515 6,376 310 363 20 360 757 1,550 299 187,101 5,679 2,283 1,044 538
NJ
NM
a
PA 141,381 7,199 1,048 3,582 21,109 3,072 612 15 5,397 16,938 0 705 7,251 421
NY
0 0 0 0 0 0 620 1,235 4,833 1,048 0 0 0 0 0 6,613 251 0 577 500 0 14,450 3,210
166 42 5,667 7,229 608 0 33,102 3,275 0 0 777 0 3,383 3,953 1,000 747,674 5,000 0 60,064 38,020 10,600 0
6,000 23,000 24,000 0 10 0 3,378 1,187 1,567 32,264 210 2,000 954 1,285 380 713 3,980 160
0 217,500 24,700 30,820 75,275 230 38,271 6,530 19,603 1,862 55,480 25,707 1,485 220,011 55,909 38,627 18,715 18,498
RI 28,830 0 0 0 0 0 0 0 0 0 0 0 588 9,000
a
SC 74 0 60 680 122 72 369 97 89 1,809 268 140 579 0 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-102
Table 5E.32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Deflator
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
NC
OH
OK
OR
PA
RI
SC
1,338 2,326 965 10,772 39,004 1,028 7,932 9,120 52,500 0 0
37,436 13,832 1,266 537 0 8,291 154,715 2,420 80 13,000 20,100
87,916 2,478 782 12,929 8,317 1,500 15,513 40 370 1,520 60,000
762 5,212 23,166 12,006 38,119 29,083 300 52,640 12,720 0 0
938 2,518 4,350 12,977 2,699 64,017 7,898 1,170 10,690 0 0
3,310 365 20,899 2,786,294 5,935 0 270,600 440 330,020 6,630 0
0 0 0 0 0 0 0 0 0 0
470 40,000 50 1,990 20,461 0 21,072 1,075 2,694 12,927 1,400 2,032 26,596 42,119 17,994 16,135 3,117,160 7,605
0 5 0 315 4,943 0 16,000 0 32 0 413,600 58,552 44,366 220 3,408,298 2,583 100,355 191,177
0 10,122 10,000 10,000 20,518 2 52,240 40,846 55,165 20,078 25,800 39,913 28,511 22,721 66,666 181,409 963 8,839
0 268,000 15,030 802,250 22,250 3,437 2,121 40,650 90 10,871 44,720 166 3,275 0 155 262 9,578 11,691
7,300 52,900 50 33,900 900 125 98 1,070 9,010 32 1,760 0 11,320 3,203,500 173,200 10 2,100 5,734
0 75,500 100 71,540 28 62 7,106 792 8,342 1,805 440 16,194 10,385 494,862 3,136 1,103 27,642 27,476
0 5 0 0 550 0 0 50 174 16 0 0 0 0 0 0 0 0
SD
TN
UT
VT
226 210 169 10 4 0 281 1,272 64 70 1,746 1,577 453 1,260 237 222 1,033 358 2,270 0 212 0 300 0 130
0 0 3 0 0 0 0 0 0 692 0 0 0 100 680 0 0 40 66,466 0 200 0 2,710 0 0
Deflator 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
ND
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145
11 10 3,969 0 0 3,417 1 3,030 0 0 740 470 1,125 123 31,898 19 0 165,086 0 268 0 5,500 0 250 49,000
977 279 5,118 128 0 226 2,263 651 6,262 156 2,472 1,608 1,090 648 1,090 13,260 86 6,634 66,273 2,243 12,700 200 21,000 0 0
TX 5,165 3,715 78,881 18,101 2,886 8,093 2,846 1,948 20 5,435 39,395 28,001 98,259 24,267 12,878 3,150 26,538 20,605 136,758 41,707 23,074 33,390 2,450 132,730 2,000,000
VA 10,695 0 139 0 28 211 231 0 5,937 0 2 0 581 0 123,552 148 1,158 180,770 1,615 100 18,340 0 268,700 10,000 24,800
a
WA 1,165 6,472 1,664 50 4,914 0 130 0 1,013 11,817 1,012 592 1,910 611 2,722 380 3,908 21,029 0 21,318 42,289 2,500 5,630 0 3,100
625 52 295 69 7,674 78 1,477 11,210 260 60 0
0 1,110 100 3,070 31,771 0 370 677 11,871 0 17,920 6,228 28,169 668 1,105 4,044 75 2,885 WV 5,187 3,185 11,052 1,170 709 370 3,455 5,914 17,624 4,169 49 1,868 14,235 47 5,996 297 1,653 37,974 3,359 10,375 5,913 3,260 50,500 2,900 2,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5E.32
5-103
(Continued) Deflator
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872 0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
0.20163 0.20846 0.21539 0.22059 0.22304 0.22620 0.22875 0.23180 0.23445 0.23792 0.24241 0.24934 0.25698 0.26809 0.28124 0.29623 0.31111 0.32436 0.34251 0.37329 0.40805 0.43119 0.45892 0.49164 0.53262 0.58145 0.63578 0.67533 0.70214 0.72824 0.75117 0.76769 0.79083 0.81764 0.84883 0.88186 0.91397 0.93619 0.95872
Deflator
SD
0 206,015 55 6,665 3 0 16 3,000 2,934 3,460 763,380 20,399 12,270 360 100,541 50 619 0
TN
40,100 50,500 1,550 15,150 95 5,165 11,482 18,059 13,109 204 5,070 51,039 1,264 2,740 23,479 25,427 554 230
WI
WY
50 335 0 0 1,791 996 1,442 57 142 0 14,067 361 0 0 4,763 0 0 0 6,121 50 3,041 0 0 71,000 0
200 11 526 3 0 0 0 0 899 138 390 0 1,096 0 0 500 503 0 304 48 0 100 100 16,320 0
0 6,000 2,300 80,000 2,992 32 160 31,159 180 29,305 903,660
0 0 40,000 250 16 0 1,602 44 2,160 0 0
TX
0 51,500 38,650 34,100 546,515 2,226 341,098 386,886 188,766 199,356 56,990 1,721 85,050 407,066 136,472 163,407 612,634 25,130
UT
500,000 50,500 0 479,000 250 0 15,403 56 6,005 24 160 0 1,500 312 10,100 4,485 1,314 679
VT
0 51,600 0 0 10,500 0 50 15,657 19 2 7,550 1,502 5,150 5,123 170 23,805 1,036 1,845
VA
30 55,055 290 800,000 1,510 0 39,363 3,472 984 7,371 0 16,169 66,759 153,516 898 2,381 255,062 1,368
WA
16,943 1,500 0 20,351 30,150 11 320 58,770 227,634 176 2,080 160 250 370,060 54,675 3,120 2,371 488
WV
0 229,000 1,050 600,000 125 1 1,010 8,930 908 5,791 620 5,397 8,595 224,172 18,391 35,506 363 11,003
(Continued)
q 2006 by Taylor & Francis Group, LLC
5-104
Table 5E.32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Deflator
1994 1995 1996 1997 1998 1999 2000 a
0.97870 1.00000 1.01937 1.03925 1.05199 1.06677 1.09113
WI 62,052 675 218,025 93,346 82,825 9,305 74,298
WY 0 0 181 192 22 0 20
Damage estimate available for large region, but not for individual state.
Source: From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller, 2002: Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO: UCAR, www.flooddamagedata.org.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-105
Total damage, 1955–1978 and 1983–1999 (millions 1995$)
State PA CA IA LA MO TX IL OR ND NY NC VA MN NJ CO MS KY OK CT ID WV SD KS WI AR IN OH FL UT AZ NE WA MA AL MD MI NV GA TN AK MT VT ME NM SC RI HI NH WY DE 0
1000
2000
3000
Damage:
4000
5000
6000
7000
Worst year
8000
9000 10000 11000 12000 All years
Figure 5E.19 States ranked by estimated total damage during 1955–1978 and 1983–1999. (From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller; Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO:UCAR, 2002, www.flooddamagedata.org.)
q 2006 by Taylor & Francis Group, LLC
5-106
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
U.S. Total Flood Damage, 1934–2000
60 M Ii S s S s Ii N n G g
12 9
Per capita damage (1995$)
Damage (billions 1995$)
15
6 3 0 1930
U.S. Per Capita Flood Damage, 1934–2000
70
18
M Ii S s S s Ii N n G g
50 40 30 20 10
1940
1950
1960
(a)
1970
1980
1990
0 1930
2000
1940
1950
1960
(b)
Water year
1970
1980
1990
2000
Water year
U.S. flood damage per unit wealth, 1934–1998 $ Damage per million $ Tangible wealth
1500
900
600
300
0 1930
(c)
M Ii s S s S Ii n N g G
1200
1940
1950
1960
1970
1980
1990
2000
Water year
Figure 5E.20 Estimated annual flood damage in the United States, 1934–1999: (a) Total flood damage, (b) Flood damage per capita, (c) Flood damage per million dollars of tangible wealth. (From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller; Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO:UCAR, 2002, www.flooddamagedata.org.)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-107
Total damage in period (millions 1995$) Period = 1955–1978
State PA CA NY TX CO CT MO ID NJ VA LA KY MN IL MS OR IN OH MA AR MD OK KS SD ND NE WV IA AZ TN NC AK WA MT FL AL WI VT RI MI GA NM NV NH SC ME WY UT HI DE 0
1000
2000
3000
4000
Damage: Figure 5E.21A
5000
6000
7000
Worst year
8000
9000 10000 11000 12000 All years
States ranked based on total flood damage during 1955–1978. (From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller; Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO:UCAR, 2002, www.flooddamagedata.org.)
q 2006 by Taylor & Francis Group, LLC
5-108
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total damage in period (millions 1995$) Period = 1983–1999 State IA LA CA MO ND IL TX OR NC MN FL VA WI MS OK NJ UT WV SD KS AR NY KY AZ WA PA NE MI AL NV GA OH CO IN TN MA ID ME VT CT AK MD NM SC HI MT NH WY DE RI 0
1000
2000
3000 Damage:
4000
5000
6000
7000
Worst year
Figure 5E.21B States ranked based on total flood damage during 1983–1999.
Figure 5E.21A
(Continued )
q 2006 by Taylor & Francis Group, LLC
8000
9000 10000 11000 12000 All years
SURFACE WATER
5-109
Average annual damage per capita, 1983–1999 (1995$)
State ND IA SD LA OR UT MO WV MS NV OK KS NC NE AR MN WI IL VA VT AK AZ KY TX CA ID CO AL NJ WA ME WY MT IN GA FL HI NM MI PA TN OH NY NH MA CT SC MD DE RI
363 170 104 95 72 49 49 46 38 33 30 28 28 27 25 24 19 19 18 15 15 14 14 12 12 11 10 10 10 10 8 8 6 6 6 6 6 5 4 4 4 3 3 3 3 2 2 1 1 0 0
50
100
150
200
250
300
350
400
Figure 5E.22 States ranked based on average annual flood damage per capita, 1983–1999. (From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller; Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO:UCAR, 2002, www.flooddamagedata.org.)
q 2006 by Taylor & Francis Group, LLC
5-110
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.33 California 1998 El Nin˜o Disaster: Estimated and Actual Public Assistance Costs, in Thousands of Current Dollars
County State agencies Alameda Amador Butte Calaveras Colusa Contra Costa Del Norte Fresno Glenn Humboldt Kern Lake Los Angeles Marin Mendocino Merced Monterey Napa Orange Riverside Sacramento San Benito San Bernardino San Diego San Francisco San Joaquin San Luis Obispo San Mateo Santa Barbara Santa Clara Santa Cruz Solano Sonoma Stanislaus Sutter Tehama Trinity Tulare Ventura Yolo Yuba Total a
IDE
PDA
Actual Cost (By 6/1/01)
Estimate
Prop. of Actual
Estimate
Prop. of Actual
30,091 18,471 258 1,726 131 4,652 5,631 271 1,701 3,802 7,748 12,312 1,889 31,229 6,449 2,836 2,327 26,182 468 12,617 3,130 2,366 6,455 7,525 6,977 3,859 2,657 4,006 21,951 15,816 13,638 12,459 3,346 11,779 2,122 1,039 881 1,091 2,149 20,391 909 592 315,929
7,129 12,971 235 665 — 25,000 3,885 — 820 21,250 1,049 — 1,395 5,660 3,319 4,259 490 20,181 720 3,992 — — 26,870 — — 12,300 655 772 16,110 75 9,846 13,673 3,628 11,180 — 1,582 20,000 1,970 — 3,302 4,321 196 239,500
0.24 0.70 0.91 0.39 — 5.37 0.69 — 0.48 5.59 0.14 — 0.74 0.18 0.51 1.50 0.21 0.77 1.54 0.32 — — 4.16 — — 3.19 0.25 0.19 0.73 0.00 0.72 1.10 1.08 0.95 — 1.52 22.70 1.81 — 0.16 4.75 0.33 0.86a
14,497 8,176 176 706 162 1,829 4,760 461 1,052 9,884 1,753 10,306 3,044 35,516 5,447 3,846 734 11,822 448 16,720 5,964 3,066 10,595 30,429 9,180 3,703 3,155 4,915 26,328 12,954 13,310 6,320 8,564 4,127 909 758 616 975 919 14,350 4,484 249 297,204
0.48 0.44 0.68 0.41 1.24 0.39 0.85 1.70 0.62 2.60 0.23 0.84 1.61 1.14 0.84 1.36 0.32 0.45 0.96 1.33 1.91 1.30 1.64 4.04 1.32 0.96 1.19 1.23 1.20 0.82 0.98 0.51 2.56 0.35 0.43 0.73 0.70 0.89 0.43 0.70 4.93 0.42 0.94
Proportion of actual cost ($279 million) of cases with an IDE.
Source: From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller, 2002: Flood Damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO: UCAR, www.flooddamagedata.org.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-111
Preliminary Damage Assessment (PDA)
Initial Damage Estimate (IDE) 32.00
32.00
16.00
16.00
8.00
8.00
4.00
4.00
2.00
2.00
1.00
1.00
0.50
0.50 0.25
0.25 0.25
0.50
1.00
2.00
4.00
8.00
Actual costs, as of 6–1–01
16.00
32.00
0.25
0.50
1.00
2.00
4.00
8.00
16.00
32.00
Actual costs, as of 6–1–01
Figure 5E.23 Flood damage estimates in California 1998 El Nino disaster (millions of dollars) estimated flood damage in California counties in the 1998 El Nino disaster, compared with actual cost as of June 1, 2001: (A) Initial damage estimate, (B) Preliminary damage assessment. (From Pielke, Jr., R.A., M.W. Downton, and J.Z. Barnard Miller; Flood damage in the United States, 1926–2000: A Reanalysis of National Weather Service Estimates. Boulder, CO:UCAR, 2002, www.flooddamagedata.org.)
q 2006 by Taylor & Francis Group, LLC
5-112
150,000 100,000 80,000
I
50,000
S.k.
Mad
ch Pak
USA Mad
20,000
USA
15,000
Ph
Ja
Ja
USA
Mex (Ch) Ja USA Ta Au
10,000 8,000
2
ion uat
Nc (Fr) (Ch) Ta
198
100,000 80,000
Sit
USA
5,000
50,000
2
n
196
S.k
30,000
Pak Ja
2,000
Mad
20,000
(Ch) USA USA Ta Ph. Ja Ja Ja Ja USA Nik
USA
1,500
Ha (USA)
Mex Ta (Ch)
NC. (Fr.)
1,000
USA Ta (Ch)
USA NC. (Fr.)
15,000 10,000 6,000
Au
Nz
Discharge, m3/sec
Situ
ch.
USA Nk
atio
3,000
Mad.
4,000
Mex. NC. (Fr.)
3,000
Ha (USA) Ta (Fr.) Cub.
2,000 1,000 800,000
100,000
80,000
50,000
30,000
20,000
15,000
8,000
5,000
3,000
2,000
1,500
800
500
300
200
150
100 80
50
30
20 15
Basin area, km2 Figure 5E.24 Relationship between maximum flood flows in the world and size of drainage basin. (From Rodier, J.A., and Roche, M. World Catalogue of Maximum Observed Floods, International Assoc. Hydrological Sciences Publ. No. 143, 1984.)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Discharge, m3/sec
30,000
SURFACE WATER
5-113
Year 1975
Year 2000
Other areas including: Public lands and buildings, mining, utilities, and rural industries Unaccounted
Urban
Other areas including:
Urban
Agricultural
Public lands and buildings, mining, uitilities, and rural industries
Agricultural
$4,300,000,000 (1975 Dollars)
$3,400,000,000
Figure 5E.25 Trends in distribution of annual flood losses in the United States, 1975–2000. (From Hays, W.W., Facing Geologic and Hydrologic Hazards, Earth-Science Considerations, U.S. Geological Survey Professional Paper 1240-B, 1981.)
Table 5E.34 Great Floods in the United States Since 1889
Numbera
Type of Flood
1 2 3
b
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
d
c d
c b,e d d d b f d d d d d e d d d d d d d c d
Date May 1889 September 8, 1900 May–June 1903 March 1913 September 14, 1919 June 1921 September 1921 Spring 1927 November 1927 March 12–13, 1928 September 13, 1928 May–June 1935 March–April 1936 January–February 1937 March 1938 September 21, 1938 July 1939 May–July 1947 June–July 1951 August 1955 December 1955 June 27–30, 1957 December 1964 June 1965 September 10, 1965 January–February 1969
Location Johnstown, Pennsylvania, Dam failure Hurricane–Galveston, Texas Kansas, Lower Missouri, and Upper Mississippi River Ohio River and Tributaries Hurricane–South of Corpus Christi, Texas Arkansas River, Colorado Texas Rivers Mississippi River Valley New England Rivers St. Francis Dam failure, Southern California Lake Okeechobee, Florida Republican and Kansas Rivers Rivers in Eastern United States Ohio and Lower Mississippi River Basins Streams in Southern California New England Licking and Kentucky Rivers Lower Missouri and Middle Mississippi River Basins Kansas and Missouri Hurricane Diane floods–Northeastern United States West coast rivers Hurricane Audrey–Texas and Louisiana California and Oregon South Platte River Basin, Colorado Hurricane Betsy–Florida and Louisiana Floods in California
Lives Lost
Estimated Damages (Millions of Dollars)
3,000 6,000 100
— 30 40
467 600–900 120 215 313 88 450 1,836 110 107 137 79 600 78 29 28 187 61 390 40 16 75 60
147 22 25 19 284 46 14 26 18 270 418 25 306 2 235 923 714 155 150 416 415 1,420 399 (Continued)
q 2006 by Taylor & Francis Group, LLC
5-114
Table 5E.34
Numbera 27 28 29 30 31 32 33 34 35 36 37 38 39 40 a b c d e f
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Type of Flood c,d
c b e c,d d d c,d
b e e b,e d c
Date August 17–18, 1969 July 30–August 5, 1970 February 1972 June 1972 June 1972 Spring 1973 June–July 1975 September 1975 June 1976 July 1976 April 1977 July 1977 April 1979 September 12–13, 1979
Location
Lives Lost
Hurricane Camille–Mississippi, Louisiana, and Alabama Hurricane Celia–Texas Buffalo Creek, West Virginia Black Hills, South Dakota Hurricane Agnes floods–Eastern United States Mississippi River Basin Red River of the North Basin Hurricane Eloise floods-Puerto Rico and Northeastern United States Teton Dam failure, Southeast Idaho Big Thompson River, Colorado Southern Appalachian Mountains area Johnstown–Western Pennsylvania Mississippi and Alabama Hurricane Frederic floods–Mississippi, Alabama, and Florida
Estimated Damages (Millions of Dollars)
256
1,421
11 125 237 105 33 !10 50
453 10 165 4,020 1,155 273 470
11 139 22 78 !10 13
1,000 30 424 330 500 2,000
Number corresponds to those shown on Figure 3.12. Dam break flood. Tidal flood. Riverine flood. Flash flood. Flood wave generated in Lake Okeechobee by hurricane.
Source: From Hays, W.W., 1981, Facing Geologic and Hydrologic Hazards, Earth–Science Considerations, U.S. Geological Survey Professional Paper 1240-B.
Table 5E.35 Sources of Flood Damage Estimates Source National weather service flood damage data sets Insurance records (National flood insurance program, private insurers) Disaster assistance records (Federal emergency management agency) State and local government records Newspaper archives
q 2006 by Taylor & Francis Group, LLC
Timespan
Spatial Scale
Scope
1925–present
Nation State Basin
1969–present
Nation Community
1992–present
Nation State
Varies
State
Federal and state outlays for public assistance, individual assistance, and temporary housing in presidentially declared disasters Varies
Varies
Community
Varies
Estimates of direct physical damage from significant flooding events that result from rainfall or snowmelt Personal property claims made by individuals holding flood insurance
SURFACE WATER
5-115
Table 5E.36 Major Flood Disasters of the World Date 1228 1642 1887 1889 May 31 1900 Sep 8 1903 June 15 1911 1913 Mar 25–27 1915 Aug 17 1928 Mar 13 1928 Sep 13 1931 Aug 1937 Jan 22 1939 1946 Apr 1 1947 1951 Aug 1953 Jan 31 1954 Aug 17 1955 Oct 7–12 1959 Nov 1 1959 Dec 2 1960 Oct 10 1960 Oct 31 1962 Feb 17 1962 Sep 27 1963 Oct 9 1966 Nov 3–4 1967 Jan 18–24 1967 Mar 19 1967 Nov 26 1968 Aug 7–14 1968 Oct 7 1969 Jan 18–26
Location
Deaths
Holland China Huang He River, China Johnstown, PA Galveston, TX Heppner, OR Chang Jiang River, China Ohio, IN Galveston, TX Collapse of St. Francis Dam, Santa Paula, CA Lake Okeechobee, FL Huang He River, China Ohio, Miss. Valleys Northern China Hawaii, Alaska Honshu Island, Japan Manchuria Western Europe Farahzad, Iran India, Pakistan Western Mexico Frejus, France Bangladesh Bangladesh German North Sea coast Barcelona, Spain Dam collapse, Vaiont, Italy Florence, Venice, Italy Eastern Brazil Rio de Janeiro, Brazil Lisbon, Portugal Gujarat State, India Northeastern India So. CA
100,000 300,000 900,000 2,200 5,000 325 100,000 732 275 450 2,000 3,700,000 250 200,000 159 1,900 1,800 2,000 2,000 1,700 2,000 412 6,000 4,000 343 445 1,800 113 894 436 464 1,000 780 100
Date
Location
1969 Mar 17 1969 Aug 20–22 1969 Sep 15 1969 Oct 1–8 1970 May 20 1970 July 22 1971 Feb 26 1972 Feb 26 1972 June 9 1972 Aug 7 1973 Aug 19–31 1974 Mar 29 1974 Aug 12 1976 June 5 1976 July 31 1976 Nov 17 1977 July 19–20 1978 June–Sep 1979 Jan–Feb 1979 July 17 1979 Aug 11 1980 Feb 13–22 1981 Apr 1981 July 1982 Jan 23 1982 May 12 1982June 6 1982 Sep 17–21 1982 Dec 2–9 1983 Feb–Mar 1983 Apr 6–12 1984 May 27 1984 Aug–Sep 1985 July 19
Deaths
Mundau Valley, Alagoas, Brazil Western Virginia South Korea Tunisia Central Romania Himalayas, India Rio de Janeiro, Brazil Buffalo Creek, WV Rapid City, SD Luzon Is., Philippines Pakistan Tubaro, Brazil Monty-Long, Bangladesh Teton Dam collapse, ID Big Thompson Canyon, CO East Java, Indonesia Johnstown, PA Northern India Brazil Lomblem Is., Indonesia Morvi, India So. CA., AR Northern China Sichuan, Hubei Prov., China Nr. Lima, Perui Guangdong, China So. Conn El Salvador, Guatemala IL., MO., AR CA coast AL., LA, MS., TN Tulsa, OK S. Korea Northern Italy, dam burst
218 189 250 500 160 500 130 118 236 454 1,500 1,000 2,500 11 139 136 68 1,200 204 539 5,000–15,000 26 550 1,300 600 430 12 1,300C 22 13 15 13 200C 361
Source: From The World Almanac and Book of Facts 1988. Copyright Pharos Books, A Scripps Howard Co., New York. Reproduced with permission.
Table 5E.37 Maximum Flood Flows in the World
Country U.S.A. (California) U.S.A. (California) U.S.A. (Hawaii) U.S.A. (Hawaii) Cuba Tahiti Mexico New Caledonia Taiwan New Caledonia
Station San Rafael San Rafael L. San Gorgonio Beaumont Halawa Waa¨ilua Lihue Buey San Miguel Papenoo San Bartolo Ouinne Embouchure Cho Shui Ouaa¨le`me derniers rapides
Basin Area (km2)
Maximum Discharge (m3/sec)
KaValue
Year
3.2
250
5.194
1973
4.5
311
5.226
1969
12
762
5.494
1965
58
2,470
5.819
1963
73
2,060
5.623
1963
78 81 143
2,200 3,000 4,000
5.650 5.859 5.845
1983 1976 1975
259 330
7,780 10,400
6.225 6.389
1979 1981
(Continued) q 2006 by Taylor & Francis Group, LLC
5-116
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.37
(Continued)
Country New Caledonia U.S.A. (New York)
New Zealand U.S.A. (California) Mexico Australia Taiwan Japan Japan U.S.A. (Texas) India Taiwan Japan U.S.A. (Texas) North Korea Japan Philippines
Japan U.S.A. (Texas) U.S.A. (California) U.S.A. (Texas) Madagascar North Korea South Korea Pakistan China Madagascar India China U.S.S.R. Brazil
Station Yate´ Little Nemaha Syracuse Haast Roaring Billy M.F. American Cithuatian Paso del Mojo Pioneer Pleystowe Hualien Hualien Bridge Nyodo Ino Kiso Imujama W. Nueces Bracketville Macchu Tam Shui Taipei Bridge Shingu Oga Pedernales Johnson City Daeryong Gang Yoshino Iwazu Cagayan Echague Isabella Tone Yattajima Nueces Uvalde Eel Scotia Pecos Comstock Betsiboka Ambodiroka Toedong Gang Mirim Han Koan Jhelum Mangla Hanjiang Hankang Mangoky Banyan Narmada Garudeshwar Chang Jiang Yitchang Lena Kusur Amazonas Obidos
Basin Area (km2)
Maximum Discharge (m3/sec)
KaValue
Year
435 549
5,700 6,370
5.810 5.826
1981 1950
1,020
7,690
5.765
1979
1,360
8,780
5.770
1964
1,370
13,500
6.156
1959
1,490
9,840
5.840
1918
1,500
11,900
6.011
1973
1,560 1,680
13,510 11,150
6.111 5.910
1963 1961
1,800
15,600
6.156
1959
1,900 2,110
14,000 16,700
6.060 6.199
1979 1963
2,350 2,450
19,025 12,500
6.290 5.873
1959 1952
3,020 3,750 4,244
13,500 14,470 17,550
5.830 5.844 5.980
1975 1974 1959
5,110
16,900
5.871
1947
5,504
17,400
5.870
1935
8,060
21,300
5.917
1964
(9,100) 11,800
26,800 22,000
6.110 5.780
1954 1927
12,175
29,000
6.060
1967
23,880 29,000
37,000 31,100
6.047 5.739
1925 1929
41,400
40,000
5.868
1583
50,000
38,000
5.698
1933
88,000
69,400
6.210
1970
1,010,000
110,000
5.197
1870
2,430,000 4,640,000
189,000 370,000
5.520 6.760
1967 1953
Note: Arranged by size of drainage basin. Flood coefficient KZ10 [(1K(log(Q)K6)/(log(A)K8)] where Q is the largest flood in m3/sec; A is the basin area in km2. Source: From Rodier, J.A., and Roche, M., 1984, World Catalogue of Maximum Observed Floods, International Assoc. Hydrological Sciences Publ. No. 143. Reproduced with permission. a
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5E.38 Tornadoes, Floods, and Tropical Cyclones in the United States, 1931–1984 Item a
Tornadoes, number Lives lost, total Most in a single tornado Property loss of $500,000 and over Floods: Lives lost Property loss (mil. dot.) North Atlantic tropical cyclones and hurricanes:b Number reaching U.S. coast Hurricanes only Lives lost in U.S.
1931– 1935
1936– 1945
1946– 1955
1956– 1965
1966– 1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
830 909 37 15
1,514 1,896 216 56
2,969 1,751 169 130
6,572 924 44 191
8,030 1,172 58 428
835 44 5 46
852 43 22 46
788 53 16 59
852 84 42 73
866 28 5 92
783 24 5 55
1,046 64 10 92
931 34 3 95
907 122 16 125
368 187
953 1,484
808 3,350
557 2,721
1,528 10,225
187 1,000
212 1,393
125 1,000
103 4,000
97 1,500
90 1,000
155 3,500
200 4,100
126 4,000
21 12 494
41 19 768
40 21 495
33 14 692
25 13 504
2 1 9
1 1 —
2 — 35
5 3 11
2 1 2
2 — —
1 — —
2 1 22
2 1 4
Note: — Represents zero. a A violent, rotating column of air descending from a cumulonimbus cloud in the form of a tubular- or funnel-shaped cloud, usually characterized by movements along a narrow path and wind speeds from 100 to over 300 miles per hour. Also known as a “twister” or “waterspout.” b Tropical cyclones have maximum winds of 39–73 miles per hour; hurricanes have maximum winds of 74 miles per hour or higher. Source: From Bureau of the Census, Statistical Abstract of the United States 1987 and data from the U.S. National Oceanic and Atmospheric Administration.
5-117
q 2006 by Taylor & Francis Group, LLC
5-118
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.39 Tornadoes: Floods, Tropical Storms, and Lightning: 1993–2003 Weather type Tornadoesa Lives lost Injuries Property loss (mil. dol.) Floods and flash floods: Lives lost Injuries Property loss (mil. dol.) North Atlantic tropical storms and hurricanesb Number of hurricanes reaching U.S. mainland Direct deaths on U.S. mainland Property loss in U.S. (mil. dol.) Lightning: Deaths Injuries
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003, prel.
33 (NA) (NA)
69 (NA) (NA)
30 650 410.8
26 705 719.6
67 1,033 730.7
130 1,868 1,714.2
94 1,842 1,989.9
41 882 423.6
40 743 630.1
55 968 801.3
54 1,087 1,263.2
103 (NA) (NA) 8
91 (NA) (NA) 7
80 57 1,250.5 19
131 95 2,120.7 13
118 525 6,910.6 7
136 6,440 2,324.8 14
68 301 1,420.7 12
38 47 1,255.1 15
48 277 1,220.3 15
49 88 655.0 12
85 65 2,540.9 (NA)
1
—
2
2
1
3
3
—
—
1
(NA)
2 57.0
9 973.0
17 5,932.3
37 1,436.1
1 667.6
9 3,546.6
19 4,190.1
— 8.1
24 5,187.8
51 1,104.4
14 1,879.5
43 295
69 577
85 433
52 309
42 306
44 283
46 243
51 364
44 371
51 256
44 237
Note: — Represents zero. NA Not available. a
U.S. National Weather Service, Internet site !www.spc.noaa.gov/climo/torn/monthlytomstats.htmlO (accessed 14 April 2004). A violent, rotating column of air descending from a cumulonimbus cloud in the form of a tubular- or funnel-shaped cloud, usually characterized by movements along a narrow path and wind speeds from 100 to over 300 miles per hour. Also known as a “twister” or “waterspout.” b National Hurricane Center (NHC), Coral Gables, FL, unpublished data. For data on individual hurricanes, see the NHC web site at www.nhc.noaa.gov/. Tropical storms have winds of 39–73 miles per hour, hurricanes have winds of 74 miles per hour or higher. Source: From, except as noted, U.S. National Oceanic and Atmospheric Administration (NOAA), Storm Data, monthly. See also NOAA website at www.nws.noaa.gov/om/hazstats.shtml and www.nws.noaa.gov/om/severeweather/sum03.pdf (released 03 March 2004).
Table 5E.40 Deaths, Injuries, and Damage Caused by Floods in the United States, 1965–1985
Fiscal Year 1965–66 1966–67 1967–68 1968–69 1969–70 1970–71 1971–72 1972–73 1973–74 1974–75 1975–76 1976–77 1977–78 1978–79 1979–80 1980–81 1981–82 1982–83 1983–84 1984–85 Totals
No. of Events
Persons Killed
Persons Injured
Dwellings Destroyed
Dwellings Damaged
Dwellings Destroyed & Damaged
67 NA NA NA NA 49 77 78 83 90 70 68 106 148 122 115 133 149 121 48 —
22 16 38 24 51 22 519 105 71 48 55 165 196 143 79 NA 70 69 65 9 —
102 161 824 284 783 58 16,587 1,559 366 500 2,071 1,469 3,712 3,842 1,121 NA 2,561 1,988 1,478 29 —
91 108 84 71 83 105 7,346 3,229 1,417 803 1,377 3,581 1,489 2,659 887 NA NA NA NA NA —
9,131 22,353 14,224 17,674 33,769 6,993 133,805 81,467 31,309 25,008 26,179 35,942 48,508 56,646 37,439 NA NA NA NA NA —
9,222 22,461 14,308 17,745 33,852 7,098 141,151 84,696 32,726 25,811 27,556 39,523 49,997 59,305 38,326 19,578 46,256 48,874 41,578 2,308 762,371
Note: Based on American National Red Cross data which are by fiscal year (July 1–June 30). Source: From Rubin, C.B., Yezer, A. M., Hussain, Q, and Webb, A., 1986, Summary of Major Natural Disaster Incidents in the U.S. 1965–85, Natural Hazards Research and Applications Information Center, George Washington University Spec. Publ. 17. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-119
Table 5E.41 Deaths Caused by Floods in the United States in 1987 State AL AR GA HI IL IN KY MA MI MN NY OK OR PA PR SC TN TX VA VT Total Percent
Boat
Open
Other
Outside
Perm. Home
Playing
Auto
All
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1%
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 3 4%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1%
0 0 0 2 0 1 1 1 0 0 1 1 0 0 0 0 0 1 2 0 10 14%
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1%
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 2 3%
2 4 4 0 1 1 0 0 1 1 10 2 0 0 7 0 3 14 1 1 52 74%
2 4 4 3 1 2 2 1 1 2 11 3 1 1 7 1 3 17 3 1 70 99%a
Note: By location; flash floods and floods. a
Rounding to the nearest percent causes the column to sum to less than 100 percent.
Source: From Peters, B.E., 1988, National Weather Service, Fort Worth, TX.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
Table 5E.42 Flood Fatalities
5-120
SURFACE WATER
5-121
Table 5E.43 Major Natural Disasters in the United States, 1965–1985
Type of Disaster Ice and snow events Hurricanes/tropical storms Earthquakes Dam and levee failures Rains, storms & floodinga High winds & waves Coastal storms & flooding Tornadoes Drought/water shortage Totals
Number
Federal Outlay (thousands of current dollars)
Federal Outlay (thousands of 1982 dollars)
19 39 7 7 337 2 7 109 4 531
151,427 1,173,141 203,881 55,764 1,684,702 125,313 158,261 441,685 1,134 3,995,308
205,511 1,947,939 405,706 80,806 2,439,852 120,536 205,357 648,352 5,344 6,059,403
Note: Federally-declared disasters, by type. a Includes land, mud, and debris flows and slides. Source: From Rubin, C.B., Yezer, A.M., Hussain, Q, and Webb, A., 1986, Summary of Major Natural Disaster Incidents in the U.S. 1965– 85, Natural Hazards Research and Applications Information Center, George Washington University Spec. Publ. 17.
q 2006 by Taylor & Francis Group, LLC
5-122
Table 5E.44 No. 375. Major U.S. Weather Disasters: 1990–2003 Event Southern California wildfires Hurricane Isabel Midwest severe storms and tornadoes Storms and hail Widespread drought Western fire season Tropical Storm Allison
Western fire season Hurricane Floyd Drought/heat wave Oklahoma-Kansas tornadoes Arkansas-Tennessee tornadoes Texas flooding Hurricane Georges Hurricane Bonnie Southern drought/heat wave Minnesota severe storms/hail Southeast severe weather Northeast ice storm Northern plains flooding MS and OH valleys flooding and tornadoes West Coast flooding Hurricane Fran Southern Plains severe drought Pacific Northwest severe flooding Blizzard of ’96 followed by flooding Hurricane Opal Hurricane Marilyn TX/OK/LA/MS severe weather and flooding
q 2006 by Taylor & Francis Group, LLC
Dry weather, high winds, and resulting wildfires in southern CA burned 743,000 acres & destroyed 3,700 homes Category 2 hurricane makes landfall in eastern NC, causing damage along coasts of NC, VA, and MD with wind damage and flooding in NC, VA, MD, DE, WV, NJ, NY and PA Numerous tornadoes over the Midwest, MS River valley, and OH/TN River valleys with record 400 tornadoes in one week Sever storms and large hail over southern plains, lower MS River valley, and TX Moderate to extreme drought over large portions of 30 states Major fires over 11 western states from Rockies to west coast Tropical storm produced rainfall and severe flooding in coastal portions of TX & LA & damage in MS, FL, VA. and PA Storms, tornadoes, and hail in TX, OK, KS, NE, IA, MO, IL, IN, WI, MI, OH, KY, and PA
Estimated cost Time period Oct–early Nov 2003
(bill. dot.) 2.5
Deaths 22
September 2003
over 4
47
Early May 2003
over 3.1
41
Early April 2003 Spring to fall 2002 Spring to fall 2002 June 2001
over 1.6 over 10 over 2 5.0
— — 21 43
April 2001
1.7
3
Springer-summer 2000
over 4.0
140
Severe drought and heat over south-central and southeast states cause significant losses in agriculture and related industries Severe fire season in western states Category 2 hurricane in NC, causing severe flooding in NC and some flooding in SC, VA, MD, PA, NY, NJ, DE, RI, CT, MA, and VT Drought/heatwave over eastern U.S. Category F4–F5 tornadoes hit OK, KS, TX, and TN Two outbreaks of tornadoes in 6-day period
Spring-summer 2000 September 1999
over 2.0 6.0
— 75
Summer 1999 May 1999 January 1999
1.0 1.0 1.3
256 55 31
Severe flooding in southeast Texas from 2 heavy rain events with 10–20 in. totals Category 2 hurricane in Puerto Rico, Florida Keys, and Gulf coasts fo LA, MS, AL, and FL Category 3 hurricane in eastern NC and VA Severe drought and heat wave from TX/OK to the Carolinas Very damaging severe thunderstorms with large hail over wide areas of Minnesota Tornadoes and flooding related to strong El Nino in the southeast Intense ice storm hits ME, NH, VT, and NY Severe flooding in Dakotas and Minnesota due to heavy spring snowmelt Tornadoes and severe flooding hit the slates of AR, MO, MS, TN, IL, IN, KY, OH, and WV
Oct–Nov 1998 September 1998 August 1998 Summer 1998 May 1998 Winter/Spring 1998 January 1998 April–May 1997 March 1997
1.0 3–4 1.0 6.0 1.5 1.0 1.4 2.0 1.0
31 16 2 200 1 Over 130 16 11 67
Flooding from rains and snowmelt in CA, WA, OR, ID, NV, & MT Category 3 hurricane in NC and VA Drought in agricultural areas of TX & OK Flooding from heavy rain & snowmelt in OR, WA, ID, and MT.
Dec 1996–Jan 1997 Sep 1996 Fall 1995-summer 1996 Feb 1996
2–3 5.0 Over 4 1.0
36 37 (NA) 9
Heavy snowstorm followed by severe flooding in Appalachians, Mid-Atlantic, and Northeast
Jan 1996
3.0
187
Category 3 hurricane in FL, AL, parts of GA, TN, & Carolinas. Category 2 hurricane in Virgin Islands Flooding, hail, & tornadoes across TX, OK, parts of LA, MS, Dallas & New Orleans hardest hit
Oct 1995 Sep 1995 May 1995
Over 3 2.1 5–6
27 13 32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Midwest and Ohio Valley hail and tornadoes Southern drought/heat wave
Description
Southeast ice storm California wildfires Midwest flooding Drought/heat wave Storm/blizzard Nor’easter of 1992 Hurricane Iniki Hurricane Andrew Oakland Firestorm Hurricane Bob TX/OK/LA/AR Flooding
Flooding from frequent winter storms across much of CA Severe fire season in western states due to dry weather Flooding from torrential rain & thunderstorms across southeast TX Flooding due to 10–25 inch rain across GA, AL, part of FL intense ice storm in pts of TX, OK, AR, LA, MS, AL, TN, GA, SC, NC, & VA Out-of-control wildfires over southern CA Extreme flooding across central U.S. Extreme drought/heatwave across southeastern U.S. “Storm of the Century” hits entire eastern seaboard Slow-moving storm batters northeast U.S. coast, New England. Category 4 hurricane hit Hawaiian Island of Kauai Category 4 hurricane hit FL & LA Oakland, CA firestorm due to low humidity & high winds Category 2 hurricane-mainly coastal NC, Long Island, & New England Torrential rains cause flooding along Trinity, Red, and Arkansas rivers
Jan–Mar 1995 Summer-Fall 1994 Oct 1994 July 1994
3.0 1.0 1.0 1.0
27 (NA) 19 32
Feb 1994 Fall 1993 Summer 1993 Summer 1993 Mar 1993 Dec 1992 Sep 1992 Aug 1992 Oct 1991 Aug 1991 May 1990
3.0 1.0 15–20 1.0 3–6 1–2 1.8 27.0 1.5 1.5 1.0
9 4 48 (NA) 270 19 7 58 25 18 13
SURFACE WATER
California flooding Western Fire Season Texas flooding Tropical Storm Alberto
Note: 5.0 represents $5,000,000,000. Covers only weather related disasters costing $1 billion or more. — Represents zero. NA not available or not reported. $del. Source: From U.S. National Oceanic and Atmospheric Administration. National Climatic Data Center, “Billion Dollar U.S. Weather Disasters, 1980–2003” (release date: March 2, 2004). See also !www.ncdc.noaa.gov/oa/reports/billionz.html#TOPO (released 02 March 2004).
5-123
q 2006 by Taylor & Francis Group, LLC
5-124
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5E.45 Deaths, Injuries, and Damage Caused by Hurricanes in the United States, 1965–1985
Fiscal Year
No. of Events
Persons Killed
Persons Injured
Dwellings Destroyed
Dwellings Damaged
Dwellings Destroyed & Damaged
5 NA NA NA NA 5 4 0 0 2 3 1 3 1 6 2 1 2 4 0 —
72 0 19 2 272 9 2 0 0 3 32 2 0 0 20 NA 0 2 16 0 —
25,202 13 11,396 45 9,062 4,498 235 0 0 8 4,409 23 8 0 6,765 NA 0 961 3,094 0 —
2,059 6 388 1 6,046 1,887 36 0 0 45 4,642 15 6 1 6,897 NA NA NA NA 0 —
148,607 316 29,405 705 48,734 34,442 24,258 0 0 2,514 31,670 498 142 3 65,033 NA NA NA NA 0 —
150,666 322 29,793 706 54,780 36,329 24,294 0 0 2,559 36,312 513 148 4 71,930 14,865 3 7,454 18,663 0 449,341
1965–66 1966–67 1967–68 1968–69 1969–70 1970–71 1971–72 1972–73 1973–74 1974–75 1975–76 1976–77 1977–78 1978–79 1979–80 1980–81 1981–82 1982–83 1983–84 1984–85 Totals
Note: Based on American National Red Cross data which are by fiscal year (July 1–June 30). Source: From Rubin, C.B., Yezer, A.M., Hussain, Q, and Webb, A., 1986, Summary of Major Natural Disaster Incidents in the U.S. 1965– 85, Natural Hazards Research and Applications Information Center, George Washington University Spec. Publ. 17.
Table 5E.46 Public and Private Outlays for Hurricane Damage in the United States, 1965–1985
State
Year
LA FL MS
1965 1965 1965
TX FL MS LA AL
1967 1968 1969 1969 1969
TX LA FL
1970 1971 1972
NY VA PA MD WV OH
1972 1972 1972 1972 1972 1972
LA
1974
Federal Outlay (in Thousands of Dollars)
Insurance Payment (in Thousands of Dollars)
38,543 1,706 1,783 42,032 9,925 640 74,524 15,167 918 90,609 35,808 1,160 3,361
98,098 16,815 351,531 23,309 1,294 1,453 495,861 4,565
14,721
States Affected
500,000
LA,FL,MS
34,800 2,580 165,300
TX FL MS,LA,AL,FL
309,950 4,730 97,853
TX LA,MS FL,NY,VA,PA MD,WV,OH,GA SC,NC,MI,DE DC,NJ,CT,RI MA,VT,ME
LA (Continued)
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-125
Table 5E.46
(Continued) Federal Outlay (in Thousands of Dollars)
State
Year
NY CA AL
1976 1976 1979
6,773 8,507 189,893
MS FL
1979 1979
TX TX HI TX NC MS AL FL
1980 1980 1982 1983 1984 1985 1985 1985
PA
1985
33,684 3,691 227,268 31,817 386 11,920 40,038 3,460 18,929 4,647 13,933 37,509 9,233
CT RI NJ NY MA
1985 1985 1985 1985 1985
LA FL TOTAL NOZ39
1985 1985
Insurance Payment (in Thousands of Dollars)
21,359 5,846 4,613 38,750 13,862 93,663 23,962 7,238 1,173,141
States Affected
22,697 NA 752,510
NY,NJ,CT,MA — AL,MS,FL,GA SC,NC,VA,MD DC,DE,PA,NJ NY,CT,MA
57,911 NA 137,000 675,520 36,000 543,304
TX — HI TX NC,SC MS,AL,FL,LA
418,750
PA,CT,RI,NJ NY,MA,NC,VA MD,DE,NH,VT ME
44,000 77,600 3,895,226
LA,MS,AL,FL FL,GA
Source: From Rubin, C.B., Yezer, A.M., Hussain, Q, and Webb, A., 1986, Summary of Major Natural Disaster Incidents in the U.S. 1965–85, Natural Hazards Research and Applications Information Center, George Washington University Spec. Publ. 17.
Table 5E.47 U.S. Hurricane Strikes by Decade Number of Hurricanes by Saffir-Simpson Category to Strike the Mainland U.S. Each Decade. Saffir-Simpson Categorya Decade 1900–1909 1910–1919 1920–1929 1930–1939 1940–1949 1950–1959 1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 1900–1999 a
1
2
3
4
5
All 1–5
Major 3–5
5 8 6 4 7 8 4 6 9 3 1 61
5 3 4 5 8 1 5 2 1 6 0 39
4 5 3 6 7 7 3 4 5 4 0 48
2 3 2 1 1 2 2 0 1 0 0 14
0 0 0 1 0 0 1 0 0 1b 0 3
16 19 15 17 23 18 15 12 16 14 1 165
6 8 5 8 8 9 6 4 6 5 0 65
Only the highest Saffir-Simpson Category to affect the U.S. has been used. This reflects the Hurricane Andrew reanalysis and upgrade from Category 4 to Category 5 Source: From www.nhc.noaa.gov. b
q 2006 by Taylor & Francis Group, LLC
5-126
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 5F
FLOOD PREVENTION
Table 5F.48 Strategies and Tools for Achieving Flood Hazard Reduction Nonstructural A. Modify susceptibility to flood damage and disruption 1. Floodplain regulations a. State regulations for flood hazard areas b. Local regulations for flood hazard areas (1) Zoning (2) Subdivision regulations (3) Building codes (4) Housing codes (5) Sanitary and well codes (6) Other regulatory tools 2. Development and redevelopment policies a. Design and location of services and utilities b. Land-right acquisition and open-space use c. Redevelopment and renewal d. Permanent evacuation 3. Disaster preparedness and response planning 4. Floodproofing 5. Flood forecasting and warning systems and emergency plans B. Modify the impact of flooding on individuals and the community 1. Information and education 2. Flood insurance 3. Tax adjustments 4. Flood emergency measures 5. Postflood recovery Structural C. Modify flooding 1. Dams and reservoirs 2. Dikes, levees, and floodwalls 3. Channel alterations 4. High-flow diversions and spillways 5. Land treatment measures 6. On-site detention measures Source: From U.S. Water Resources Council, 1981.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-127
Table 5F.49 Structural Adjustments as Floodproofing Measures
Measure Seepage control Sewer adjustment Permanent closure Openings protected Interiors protected Protective coverings Fire protection Appliance protection Utilities service Roadbed protection Elevation Temporary removal Rescheduling Proper salvage Watertight caps Proper anchorage Underpinning Timber treatment Deliberate flooding Structural design Reorganized use
Material Protected St–Co St–Co St–Co St–Co St St–Co St–Co Co Co St St–Co Co Co Co Co St–Co St St St–Co St–Co Co
Prerequisites
Class of Measure
Structural
Hydrologic
P–C P–C P C–E P–C P–C–E P E P–C–E P–E P–C–E E E — P–C P–C P P E P P
Well constructed None Impervious walls Impervious walls None None None None None Sound structure Sound structure None Alternatives None None Sound structure Sound structure None None Design Alternatives
None H–W H–S H–S–W S–W H–W–F None W S–W–V H–W–V–D S–W–V–F W–F W None W S–W–V–D V None None H–S None
StZstructure; PZpermanent; HZhydrostatic pressure; FZflood-to-peak interval; CoZcontent; CZcontingent; SZstage of flood; VZvelocity of flow; EZemergency; WZwarning; DZduration of flood. Source: From Schaeffer, Univ. Chicago, Dept. Geography Research Paper, 1960.
Table 5F.50 Flood Safety Rules Before the Flood 1. Keep on hand materials like sandbags, plywood, plastic sheeting, and lumber 2. Install check valves in building sewer traps, to prevent flood water from backing up in sewer drains 3. Arrange for auxiliary electrical supplies for hospitals and other operations which are critically affected by power failure 4. Keep first aid supplies at hand 5. Keep your automobile fueled; if electric power is cut off, filling stations may not be able to operate pumps for several days 6. Keep a stock of food which requires little cooking and no refrigeration; electric power may be interrupted 7. Keep a portable radio, emergency cooking equipment, lights and flashlights in working order When You Receive a Flood Warning 8. Store drinking water in clean bathtubs, and in various containers. Water service may be interrupted 9. If forced to leave your home and time permits, move essential items to safe ground; fill tanks to keep them from floating away; grease immovable machinery 10. Move to a safe area before access is cut off by flood water During the Flood 11. Avoid areas subject to sudden flooding 12. Do not attempt to cross a flowing stream where water is above your knees 13. Do not attempt to drive over a flooded road—you can be stranded, and trapped After the Flood 14. Do not use fresh food that has come in contact with flood waters 15. Test drinking water for potability; wells should be pumped out and the water tested before drinking 16. Seek necessary medical care at nearest hospital. Food, clothing, shelter, and first aid are available at Red Cross shelters 17. Do not visit disaster area; your presence might hamper rescue and other emergency operations 18. Do not handle live electrical equipment in wet areas; electrical equipment should be checked and dried before returning to service 19. Use flashlights, not lanterns or torches, to examine buildings; flammables may be inside 20. Report broken utility lines to appropriate authorities During any flood emergency, stay tuned to your radio or television station. Information from NOAA and civil emergency forces may save your life. Source: From Environmental Science Services Administration, 1966. q 2006 by Taylor & Francis Group, LLC
5-128
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5F.51 Methods of Flood Control and Organization Solutions for the flood problem fall into two distinct classes. The first includes those aimed at preventing the overflow of valley lands. The second embraces measures for human adjustment to the flood hazard The overflow of the valley lands may be prevented, or reduced in frequency and extent, by 1. Providing an additional or an alternative channel to carry flood flows; 2. Increasing the capacity of the existing channel, so that the same flood may be passed downstream at lesser heights, thus reducing flood damages—a solution commonly known as channel improvement; 3. Reducing flood heights and damages by holding back a part of the floodwaters by means of reservoirs; 4. Constructing levees and flood walls to prevent the spread of floodwaters, or 5. Any combination of the above. Measures of the second class, aimed at adjustment to the hazard include 1. Zoning of the flood plain to inhibit the development of high damageable values in hazardous areas; 2. Abandonment of efforts to use parts of the flood plain; 3. Use of flood forecasting so that damage may be minimized by removal of people and movable property; 4. Use of flood insurance, not to reduce flood damages, but to spread out the cost of floods over a period of years and thus minimize economic shock; 5. Flood relief in the event of disasters. Source: From Task Force on Water Resources and Power, 1955.
SECTION 5G
FLOOD CONTROLS WORKS
Table 5G.52 Upstream Flood Control Works in the United States Flood Prevention Cost Region North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-WhiteRed Texas-Gulf Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Alaska Hawaii Puerto Rico-Virgin Islands Total
Watershed Area
Land Treatment
Reservoirs
Channel Improvement
Total
No. 120 163 21 89 21 49 104 21 184 153
1,000 acres 4,906 8,897 879 4,442 1,440 2,052 6,895 2,882 4,938 12,438
Mil. dol. 27.0 93.9 11.3 45.5 11.8 10.9 80.6 3.8 118.9 94.4
Mil. dol. 108.8 88.6 6.4 78.8 18.8 23.8 65.9 4.0 176.4 274.1
Mil. dol 52.5 75.5 7.8 30.7 10.1 8.4 65.9 15.8 31.1 27.5
Mil. dol. 181.3 258.0 25.5 155.0 40.7 43.1 212.4 23.6 326.4 369.0
83 29 6 10 13 24
14,616 1,512 517 884 871 768
65.2 4.7 3.2 5.6 5.6 5.7
113.6 14.3 9.7 17.0 8.8 15.0
24.9 2.0 4.3 7.7 1.2 6.8
203.7 21.0 17.2 30.3 15.6 27.5
31 0 5 3
1,402 0 278 252
11.2 0 0.5 2.7
25.7 0 0.9 3.2
77.2 0 10.3 7.6
114.1 0 11.7 13.5
1,129
70,869
602.5
1,046.8
467.3
2,089.6
Projects
Note: Data covers the existing and approved program of the Soil Conservation Service only. In addition, there have been many projects in upstream areas constructed by the Corps of Engineers, the Bureau of Reclamation, and the Bureau of Land Management. Neither the totals nor regional data are available, but this construction amounted to over 1,000 projects, with an estimated cost of about $1 billion. Source: From U.S. Water Resources Council, 1968. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-129
Table 5G.53 Downstream Flood Control Works in the United States Reservoirs Region North Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-WhiteRed Texas-Gulf Rio Grandec Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Alaska Hawaii Puerto Rico-Virgin Islands Totald a b c d
Levees and Floodwalls a
Channel Improvement
Projects
Storage
Cost
Projects
Structures
Cost
Projects
Improvement
Cost
No. 5 7 1 36 17 14 5 5 56 43
1,000 af 492 3,090 377 12,500 11,590 3,020 4,400 1,030 20,700 24,800
Mil. dol. 36.0 49.8 23.4 600.0 180.2 54.0 76.7 1.8 656.0 635.5
No. 36
Mil. dol. 144.4 154.4 1.3 202.0 0 242.0 841.0 2.7 193.6 52.4
No. 25 23 9
7 7 39
Miles 54 185 28 138 0 70 3,348 224 75 563
Mil. dol. 27.3 5.1 7.1
2 50 56
Miles 132 876 7 252 0 861 1,621 2 1,130 1,023
20 4 3 6 6 24
8,600 795 1,500 12,100 386 15,210
234.2 31.1 5.5 59.6 7.4 320.7
5 5 8 2 4 103
128 205 5 7 33 546
121.4 7.6 0.2 3.2 1.6 28.1
8 7 1 1 3 27
106 114 1 4 23 55
94.4 10.5 20.0 0.5 1.4 27.7
11 0 0 0
3,720 0 0 0
186.5 0 0 0
13 2 4 0
1,515 3 6 0
260.6 0.6 0.2 0
12 1 4 0
84 1 3 0
91.4 0.1 0.2 0
263
124,310
426C
8,352
5,076
1,354C
3,158
b
6 65 0 65 b
2,257
b
0 19 b
193C
Does not include cost of flood control storage in Bureau of Reclamation projects. Not reported. Does not include some facilities constructed by the International Boundary and Water Commission. Rounded.
Source: From U.S. Water Resources Council, 1968.
q 2006 by Taylor & Francis Group, LLC
b
0 8.7 980.0 2.9 22.2 54.0
5-130
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 5H
WATER AREAS — UNITED STATES
Table 5H.54 Coastline of the United States (by State) General Coastlinea State U.S. Atlantic coast Connecticut Delaware Florida Georgia Maine Maryland Massachusetts
Statute Miles
Tidal Shorelineb
Kilometers
Statute Miles
Kilometers
12,383 2,069 — 28 580 100 228 31 192
19,924 3,329 — 45 933 161 367 50 309
88,633 28,673 618 381 3,331 2,344 3,487 3,190 1,519
142,610 46,135 994 613 5,360 3,771 5,596 5,133 2,444
13 130 127 301 — 40 187 112
21 209 204 484 — 64 301 180
131 1,792 1,850 3,375 89 384 2,876 3,315
211 2,883 2,977 5,430 143 618 4,627 5,334
Gulf coast Alabama Florida
1,631 53 770
2,624 85 1,239
17,141 607 5,095
27,580 977 8,198
Louisiana Mississippi Texas
397 44 367
639 71 591
7,721 359 3,359
12,423 578 5,405
7,623 5,580 840
12,265 8,978 1,352
40,298 31,383 3,427
64,839 50,495 5,514
Hawali Oregon Washington
750 296 157
1,207 476 253
1,052 1,410 3,026
1,693 2,269 4,869
Arctic coast Alaska
1,060
1,706
2,521
4,056
New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island South Carolina Virginia
Pacific coast Alaska California
Note: — Represents zero. a Figures are lengths of general outline of seacoast. Measurements were made with a unit measure of 30 min of latitude on charts as near the scale of 1:1,200,000 as possible. Coastline of sounds and bays is included to a point where they narrow to width of unit measure, and includes the distance across at such point. b Figures obtained in 1939–1940 with a recording instrument on the largest-scale charts and maps then available. Shoreline of outer coast, offshore islands, sounds, bays, rivers, and creeks is included to the head of tidewater or to a point where tidal waters narrow to a width of 100 ft. Source: From Statistical Abstract of the United States, 1987.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-131
Table 5H.55 Land and Water Area of States and Other Entities: 2000 Water Area Total Area State and Other Area Total United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Other areas Puerto Rico U.S. Minor Outlying Islands Virgin Islands of the U.S.
Note:
Land Area
Sq. mi.
Total
Sq. km.
Sq. mi.
Sq. km.
Inland (sq. mi.)
Coastal (sq. mi.)
Great Lakes (sq. mi.)
Territorial (sq. mi.)
Sq. mi.
Sq. km.
3,800,286 3,794,083 52,419 663,267 113,998 53,179 163,696 104,094 5,543 2,489 68 65,755 59,425 10,931 83,570 57,914 36,418 56,272 82,277 40,409 51,840 35,385 12,407 10,555 96,716 86,939 48,430 69,704 147,042 77,354 110,561 9,350 8,721 121,590 54,556 53,819 70,700 44,825 69,898 98,381 46,055 1,545 32,020 77,117 42,143 268,581 84,899 9,614 42,774 71,300 24,230 65,498 97,814
9,842,696 9,826,630 135,765 1,717,854 295,254 137,732 423,970 269,601 14,357 6,447 177 170,304 153,909 28,311 216,446 149,998 94,321 145,743 213,096 104,659 134,264 91,646 32,133 27,336 250,494 225,171 125,434 180,533 380,838 200,345 286,351 24,216 22,588 314,915 141,299 139,389 183,112 116,096 181,036 254,805 119,283 4,002 82,932 199,731 109,151 695,621 219,887 24,901 110,785 184,665 62,755 169,639 253,336
3,540,999 3,537,439 50,744 571,951 113,635 52,068 155,959 103,718 4,845 1,954 61 53,927 57,906 6,423 82,747 55,584 35,867 55,869 81,815 39,728 43,562 30,862 9,774 7,840 56,804 79,610 46,907 68,886 145,552 76,872 109,826 8,968 7,417 121,356 47,214 48,711 68,976 40,948 68,667 95,997 44,817 1,045 30,110 75,885 41,217 261,797 82,144 9,250 39,594 66,544 24,078 54,310 97,100
9,171,146 9,161,923 131,426 1,481,347 294,312 134,856 403,933 268,627 12,548 5,060 159 139,670 149,976 16,635 214,314 143,961 92,895 144,701 211,900 102,896 112,825 79,931 25,314 20,306 147,121 206,189 121,489 178,414 376,979 199,099 284,448 23,227 19,211 314,309 122,283 126,161 178,647 106,056 177,847 248,631 116,075 2,706 77,983 196,540 106,752 678,051 212,751 23,956 102,548 172,348 62,361 140,663 251,489
259,287 256,645 1,675 91,316 364 1,110 7,736 376 699 536 7 11,828 1,519 4,508 823 2,331 551 402 462 681 8,278 4,523 2,633 2,715 39,912 7,329 1,523 818 1,490 481 735 382 1,304 234 7,342 5,108 1,724 3,877 1,231 2,384 1,239 500 1,911 1,232 926 6,784 2,755 365 3,180 4,756 152 11,188 713
671,550 664,707 4,338 236,507 942 2,876 20,037 974 1,809 1,388 18 30,634 3,933 11,677 2,131 6,037 1,427 1,042 1,197 1,763 21,440 11,715 6,819 7,031 103,372 18,982 3,945 2,120 3,859 1,247 1,903 989 3,377 606 19,016 13,229 4,465 10,040 3,189 6,174 3,208 1,295 4,949 3,191 2,399 17,570 7,136 945 8,237 12,317 394 28,976 1,847
79,018 78,797 956 17,243 364 1,110 2,674 376 161 72 7 4,672 1,016 38 823 756 316 402 462 681 4,154 2,264 680 423 1,611 4,783 785 818 1,490 481 735 314 396 234 1,895 3,960 1,724 378 1,231 1,050 490 178 1,008 1,232 926 5,056 2,755 365 1,006 1,553 152 1,830 713
42,241 42,225 519 27,049 — — 222 — 538 371 — 1,311 48 — — — — — — — 1,935 613 1,843 977 — — 590 — — — — — 401 — 981 — — — — 80 — 9 72 — — 404 — — 1,728 2,537 — — —
60,251 60,251 — — — — — — — — — — — — — 1,575 235 — — — — — — — 38,301 2,546 — — — — — — — — 3,988 — — 3,499 — — 749 — — — — — — — — — — 9,358 —
77,777 75,372 200 47,024 — — 4,841 — — 93 — 5,845 455 4,470 — — — — — — 2,189 1,647 110 1,314 — — 148 — — — — 68 507 — 479 1,148 — — — 1,254 — 314 831 — — 1,324 — — 446 666 — — —
5,325 141
13,790 365
3,425 3
8,870 7
1,900 138
4,921 359
67 138
16 —
— —
1,817 —
737
1,910
134
346
604
1,564
16
—
—
588
One square mileZ2.59 sq. km. Area is calculated from the specific boundary recorded for each entity in the U.S. Census Bureau’s geographic TIGER database; —, Represents or rounds to zero.
Source: From U.S. Census Bureau, 2000 Census of Population and Housing, Summary Population and Housing Characteristics, Series PHC-1; and unpublished data from the Census TIGERe data base.
q 2006 by Taylor & Francis Group, LLC
5-132
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5H.56 U.S. Wetland Resources and Deepwater Habitats by Type: 1986 and 1997 Wetland or Deepwater Category All wetlands and deepwater habitats, total All deepwater habitats, total Lacustrinea Riverineb Estuarine Subtidalc All wetlands, total Intertidal wetlandsd Marine intertidal Estuarine intertidal non-vegetated Estuarine intertidal vegetated Freshwater wetlands Freshwater non-vegetated Freshwater vegetated Freshwater emergente Freshwater forestedf Freshwater shrubg
1986
1997
Change, 1986 to 1997
144,673.3 38,537.6 14,608.9 6,291.1 17,637.6 106,135.7 5,336.6 133.1 580.4 4,623.1 100,799.1 5,251.0 95,548.1 26,383.3 51,929.6 17,235.2
144,136.8 38,645.1 14,725.3 6,255.9 17,663.9 105,491.7 5,326.2 130.9 580.1 4,615.2 100,165.5 5,914.3 94,251.2 25,157.1 50,728.5 18,365.6
K536.5 107.5 116.4 K35.2 26.3 K644 K10.4 K2.2 K0.3 K7.9 K633.6 663.3 K1,296.9 K1,226.2 K1,201.1 1,130.4
Note: In thousands of acres (144,673.3 represents 144,677,300). Wetlands and deepwater habitats are defined separately because the term wetland does not included permanent water bodies. Deepwater habitats are permanently flooded land lying below the deepwater boundary of wetlands. Deepwater habitats include environments where surface water is permanent and often deep, so that water, rather than air, is the principal medium within which the dominant organisms live, whether or not they are attached to the substrate. As in wetlands, the dominant plants are hydrophytes; however, the substrates are considered nonsoil because the water is too deep to support emergent vegetation. In general terms, wetlands are lands where saturation with water is the dominant factor determining the nature of soil development and the types of plant and animal communities living in the soil and on its surface. The single feature that most wetlands share is soil or substrate that is at least periodically saturated with or covered by water. Wetlands are lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water. a
b c
d e
f g
The lacustrine system includes deepwater habitats with all of the following characteristics: (1) situated in a topographic depression or a dammed river channel: (2) lacking trees, shrubs, persistent emergents, emergent mosses or lichens with greater than 30 percent coverage; (3) total area exceeds 20 acres. The riverine system includes deepwater habitats contained within a channel, with the exception of habitats with water containing ocean derived salts in excess of 0.5 parts per thousand. The estuarine system consists of deepwater tidal habitats and adjacent tidal wetland that are usually semi-enclosed by land but have open, partly obstructed, or sporadic access to the open ocean, and in which ocean water is at least occasionally diluted by freshwater runoff from the land. Subtidal is where the substrate is continuously submerged by marine or estuarine waters. Intertidal is where the substrate is exposed and flooded by tides. Intertidal includes the splash zone of coastal waters. Emergent wetlands are characterized by erect, rooted herbaceous hydrophytes, excluding mosses and lichens. This vegetation is present for most of the growing season in most years. These wetlands are usually dominated by perennial plants. Forested wetlands are characterized by woody vegetation that is 20 ft tall or taller. Shrub wetlands include areas dominated by woody vegetation less than 20 ft tall. The species include true shrubs, young trees, and trees or shrubs that are small or stunted because of environmental conditions.
Source: From U.S. Fish and Wildlife Service, Status and Trends of Wetlands In the Conterminous United States, 1986 to 1997, January 2001.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-133
Upland
Upland
Marine system (Ocean)
LEGEND System boundary Estuarine system
Upstream limit of saltwater
Riverine system Barrier Island
Lacustrine system Palustrine system Rocky shore Intertidal beach Tidal flat Aquatic bed
Reservoir dam
Emergent wetland Forested wetland
Upland
Wetlands occur in every state of the country and due to regional differences in climate, vegetation, soil and hydrologic conditions, they exist in a variety of sizes, shapes and types. Although more abundant in other areas, wetlands even exist in deserts. Wetlands and deepwater habitats are divided into five ecological systems: (1) Marine, (2) Estuarine, (3) Riverine, (4) Lacustrine, and (5) Palustrine. The Marine System generally consists of the open ocean and its associated coastline. It is mostly a deepwater habitat system, with marine wetlands limited to intertidal areas like beaches, rocky shores and some coral
reefs. The Estuarine System includes coastal wetlands like salt and brackish tidal marshes, mangrove swamps, and intertidal flats, as well as deepwater bays, sounds and coastal rivers. The Riverine System is limited to freshwater river and stream channels and is mainly a deepwater habitat system. The Lacustrine System is also a deep water dominated system, but includes standing waterbodies like lakes, reservoirs and deep ponds. The Palustrine System encompasses the vast majority of the country’s inland marshes, bogs and swamps and does not include any deepwater habitat.
Figure 5H.26 Major wetland types in the United States. (From Tiner, R.W., Jr., Wetlands of the United States: Current Status and Recent Trends, U.S. Department of the Interior, Fish and Wildlife Service, 1984.)
q 2006 by Taylor & Francis Group, LLC
5-134
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5H.57 Water Areas for Selected Major Bodies of Water: 2000 Area Body of Water and State Atlantic Coast water bodies Chesapeake Bay (MD-VA) Pamlico Sound (NC) Long Island Sound (CT-NY) Delaware Bay (DE-NJ) Cape Cod Bay (MA) Albemarle Sound (NC) Biscayne Bay (FL) Buzzards Bay (MA) Tangier Sound (MD-VA) Currituck Sound (NC) Pocomoke Sound (MD-VA) Chincoteague Bay (MD-VA) Gulf Coast water bodies Mississippi Sound (AL-LA-MS) Laguna Madre (TX) Lake Pontchartrain (LA) Florida Bay (FL) Breton Sound (LA) Mobile Bay (AL) Lake Borgne (LA-MS) Matagorda Bay (TX) Atchafalaya Bay (LA) Galveston Bay (TX) Tampa Bay (FL) Pacific Coast water bodies Puget Sound (WA) San Francisco Bay (CA) Willapa Bay (WA) Hood Canal (WA) Interior water bodies Lake Michigan (IL-IN-MI-WI) Lake Superior (MI-MN-WI)a Lake Huron (MI)a Lake Erie (MI-NY-OH-PA)a Lake Ontario (NH)a Great Salt Lake (UT) Green Bay (MI-WI) Lake Okeechobee (FL) Lake Sakakawea (ND) Lake Oahe (ND-SD) Lake of the Woods (MN)a Lake Champlain (NY-VT)a Alaska water bodies Chatham Strait Prince William Sound Clarence Strait Iliamna Lake Frederick Sound Sumner Strait Stephens Passage Kvichak Bay Montague Strait Becharof Lake Icy Strait
Note: a
Sq. mi.
Sq. km.
2747 1622 914 614 598 492 218 215 172 116 111 105
7115 4200 2368 1591 1548 1274 565 558 445 301 286 272
813 733 631 616 511 310 271 253 245 236 212
2105 1897 1635 1596 1323 802 702 656 635 611 549
808 264 125 117
2092 684 325 303
22,342 20,557 8,800 5,033 3,446 1,836 1,396 663 563 538 462 414
57,866 53,243 22,792 13,036 8,926 4,756 3,617 1,717 1,459 1,394 1,196 1,072
1,559 1,382 1,199 1,022 792 791 702 640 463 447 436
4,039 3,579 3,107 2,646 2,051 2,048 1,819 1,659 1,198 1,158 1,130
Includes only that portion of body of water under the jurisdiction of the United States, excluding Hawail. One square mileZ2.59 sq. km.
Area measurements for Lake Champlain, Lake Erie, Lake Huron, Lake Ontario, Lake St. Clair, Lake Superior, and Lake of the Woods include only those portions under the jurisdiction of the United States.
Source:
From U.S. Census Bureau, unpublished data from the Census TIGERe data base.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-135
Table 5H.58 Wetlands Lost in the United States State or Region
Original Wetlands (acres)
Wetlands in 1984 (acres)
Percentage of Wetlands Lost
2,333,000 5,000,000 94,000 24,000,000 11,200,000 5,000,000 18,400,000 11,300,000 30,000 2,500,000 2,000,000 10,000,000
26,470 450,000 8,460 5,200,000 3,200,000 2,000,000 8,700,000 5,635,000 15,000 1,503,000a 1,300,000 6,750,000
99 91 91 78 71 60 53 50 50 40 35 32
Iowa’s natural marshes California Nebraska’s rainwater basin Mississippi alluvial plain Michigan North Dakota Minnesota Louisiana’s forested wetlands Connecticut’s coastal marshes North Carolina’s pocosins South Dakota Wisconsin a
Only 695,000 acres of pocosins remain undisturbed; the rest are partially drained, developed or planned for development. Source: From Tiner, R.W., Jr., 1984, Wetlands of the United States: Current Status and Recent Trends, U.S. Department of the Interior, Fish and Wildlife Service.
Table 5H.59 Change in Wetland Area for Selected Wetland and Deepwater Categories, 1986 to 1997 Area in Thousands of Acres Wetland/Deepwater Category Marine intertidal Estuarine intertidal non-vegetateda Estuarine intertidal vegetatedb All intertidal wetlands Freshwater non-vegetatedc Freshwater vegetatedd Freshwater emergent Freshwater forested Freshwater shrub All freshwater wetlands All wetlands Deepwater habitats Lacustrinee Riverine Estuarine subtidal All deepwater habitats All wetlands and deepwater habitatsa,b
Note: a b c d e
Estimated Area, 1986
Estimated Area, 1997
Change, 1986–97
Change (in Percent)
133.1 (19.6) 580.4 (10.7) 4,623.1 (4.0) 5,336.6 (3.8) 5,251.0 (4.1) 95,548.1 (3.0) 26,383.3 (8.1) 51,929.6 (2.8) 17,235.2 (4.2) 100,799.1 (2.9) 106,135.7 (2.8)
130.9 (19.9) 580.1 (10.6) 4,615.2 (4.0) 5,326.2 (3.8) 5,914.3 (3.9) 94,251.2 (3.0) 25,157.1 (8.4) 50,728.5 (2.8) 18,365.6 (4.1) 100,165.5 (2.9) 105,491.7 (2.8)
K2.2 (88.5) K0.3 (*) K7.9 (75.1) K10.4 (73.0) 663.3 (13.4) K1,296.9 (17.1) K1,226.2 (18.2) 1,201.1 (23.8) 1,130.4 (25.7) 633.6 (36.5) K644.0 (36.0)
K1.7
14,608.9 (10.6) 6,291.1 (9.6) 17,637.6 (2.2) 38,537.6 (4.4) 144,673.3 (2.4)
14,725.3 (10.5) 6,225.9 (9.4) 17,663.9 (2.2) 38,645.1 (4.4) 144,136.8 (2.4)
116.4 (*) K35.2 (*) 26.3 (95.6) 107.5 (*) K536.5 (30.7)
0.8
K0.1 K0.2 K0.2 12.6 K1.4 K4.6 K2.3 6.6 K0.6 0.6
K0.6 0.1 0.3 K0.4
The coefficient of variation (CV) for each entry (expressed as a percentage) is given in parentheses. Statistically unreliable.
*
Includes the categories: estuarine intertidal aquatic bed and estuarine intertidal unconsolidated shore. Includes the categories: estuarine intertidal emergent and estuarine intertidal shrub. Includes the categories: palustrine aquatic bed, palustrine unconsolidated bottom and palustrine unconsolidated shore. Includes the categories: palustrine emergent, palustrine forested and palustrine shrub. Does not include the great lakes.
Source:
From Dahl, T.E. 2000. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp. http://training.fws.gov.
q 2006 by Taylor & Francis Group, LLC
5-136
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5H.60 Estuarine and Marine Intertidal Wetland Area and Change, 1986 to 1997 Area in Thousands of Acres Estimated Area, 1986
Wetland Category Marine Intertidal
Area (as Percent) of All Intertidal Wetland, 1997
130.9 (19.9)
K2.2 (88.5)
2.5
Estuarine Unconsolidated shore
551.3 (10.9)
550.8 (10.8)
K0.5 (* )
10.3
Estuarine aquatic bed
29.1 (27.1) 580.4 (10.7)
29.3 (26.9) 580.1 (10.6)
0.2 (* ) K0.3 (* )
0.6
Estuarine emergent
3,956.9 (4.1)
3,942.4 (4.1)
K14.5 (49.2)
74.0
Estuarine shrub
666.2 (12.6) 4,623.1 (4.0)
672.8 (12.6) 4,615.2 (4.0)
6.6 (76.5) K7.9 (75.1)
12.6
26.3 (95.6)
—
Estuarine intertidal Vegetatedb
Changes in coastal deepwater area, 1986–1997 17,637.6 17,663.9 (2.2) (2.2)
Estuarine Subtidal Note:
b
Gain or Loss, 1986–1997
133.1 (19.6)
Marine and estuarine intertidal Non-vegetateda
a
Estimated Area, 1997
13.4
86.6
The coefficient of variation (CV) for each entry (expressed as a percentage) is given in parentheses. * Statistically unreliable.
Includes the categories: estuarine unconsolidated shore and estuarine aquatic bed. Includes the categories: estuarine emergent and estuarine shrub.
Source: From Dahl, T.E. 2000. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp. http://training.fws.gov.
(mid-1950's to mid-1970's) 8% Urban development 7
5% Other development
5
4
1
Scrub–shrub wetland
2
Emergent wetland
3
Forested wetland
87% Agriculture
Millions of acres lost to agriculture
6
Palustrine wetland types Figure 5H.27 Causes of recent wetland losses in the conterminous United States. (From Tiner, R.W., Jr., Wetlands of the United States: Current Status and Recent Trends, U.S. Department of the Interior, Fish and Wildlife Service, 1984.) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-137
Table 5H.61 Major Causes of Wetland Loss and Degradation Human Threats Direct 1. Drainage for crop production, timber production and mosquito control 2. Dredging and stream channelization for navigation channels, flood protection, coastal housing developments, and reservoir maintenance 3. Filling for dredged spoil and other solid waste disposal, roads and highways, and commercial, residential and industrial development 4. Construction of dikes, dams, levees and seawalls for flood control, water supply, irrigation and storm protection 5. Discharges of materials (e.g., pesticides, herbicides, other pollutants, nutrient loading from domestic sewage and agricultural runoff, and sediments from dredging and filling, agricultural and other land development) into waters and wetlands 6. Mining of wetland soils for peat, coal, sand, gravel, phosphate and other materials Indirect 1. Sediment diversion by dams, deep channels and other structures 2. Hydrologic alterations by canals, spoil banks, roads and other structures 3. Subsidence due to extraction of groundwater, oil, gas, sulphur, and other minerals Natural Threats 1. Subsidence (including natural rise of sea level) 2. Droughts 3. Hurricanes and other storms 4. Erosion 5. Biotic effects, e.g., muskrat, nutria and goose “eat-outs” Source: From Tiner, R.W. Jr., 1984, Wetlands of the United States: Current Status and Trends, U.S. Fish and Wildlife Service.
Table 5H.62 Major Wetland Values Fish and Wildlife Values Fish and shellfish habitat Waterfowl and other bird habitat Furbearer and other wildlife habitat Environmental Quality Values Water quality maintenance Pollution filter Sediment removal Oxygen production Nutrient recycling Chemical and nutrient absorption Aquatic productivity Microclimate regulator World climate (ozone layer) Socio-economic Values Flood control Wave damage protection Erosion control Groundwater recharge and water supply Timber and other natural products Energy source (peat) Livestock grazing Fishing and shellfishing Hunting and trapping Recreation Aesthetics Education and scientific research Source: From Tiner, R.W., Jr., 1984, Wetlands of the United States: Current Status and Trends, U.S. Fish and Wildlife Service. q 2006 by Taylor & Francis Group, LLC
5-138
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1 SUPER IOR
19 8
10
13
LAKE MICHIGAN
O C E A N
12
20
4
N
7
E
A
18
O
C F I C I A P
C
2
A T L A N T I C
21
5 16
F G U L
11
O F
M E X I C O
9 3
14 6
17
15
Priority area name 1 Praire Patholes and Parklands 2 Central valley of California 3 Yukon-Kuskokwim delta 4 Middle-upper Atlantic coast 5 Lower Mississippi river delta and Red river basin 6 Izembek Lagoon 7 Upper Mississippi river and northern lakes 8 Northern great plains 9 Yukon flats 10 Intermountain west (great basin) 11 Tesheluk lake
12 Middle-upper pacific coast 13 Klamath basin 14 Upper Alaska Penninsula 15 Copper river delta 16 West-central Gulf coast 17 Upper cook inlet 18 San Francisco bay 19 NE United States - SE Canada 20 Sandhills and rainwater basin 21 Playa lakes
Figure 5H.28 Principal waterfowl habitat areas in the United States. (From Tiner, R.W. Jr., Wetlands of the United States: Current Status and Recent Trends, U.S. Department of the Interior, Fish and Wildlife Service, 1984.)
Freshwater wetlands 14% Deepwater 12% Other uplands 30%
Urban development 24%
Agriculture 1%
Rural development 19%
Figure 5H.29 Percent of estuarine and marine wetlands lost to freshwater wetlands, deepwater, or upland categories between 1986 and 1997. (From Dahl, T.E. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp, 2000.) (http://training.fws.gov.) q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-139
Estuarine wetland loss to urban or rural development Insufficient Data Figure 5H.30 Areas along the Gulf and Atlantic coasts where estuarine wetlands were lost to urban or rural development (shown in orange) between 1986 and 1997. (From Dahl, T.E. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp, 2000.) (http://training.fws.gov.)
Silviculture 23%
Rural development 21% Agriculture 26%
Urban development 30%
Figure 5H.31 Change in wetlands converted to various land uses between 1986 and 1997. (From Dahl, T.E. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp, 2000.) (http://training.fws.gov.)
Silviculture 2%
Urban and rural development 25% Miscellaneous lands 25%
Agriculture 51%
Figure 5H.32 Current upland classification of areas where emergent wetlands were lost between 1986 and 1997. (From Dahl, T.E. Status and trends of wetlands in the conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, 82pp, 2000.) (http://training.fws.gov.) q 2006 by Taylor & Francis Group, LLC
5-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5H.63 Effect of Wetlands on Flood Peak Reduction in Wisconsin Wetland Present in a Basin (percent)
2
1 2 3 5 10 15 30
19 28 34 42 51 56 64
Storm Recurrence Interval (years) 25 50
100
Percentage of Flood Peak Reduction 22 33 39 48 58 63 71
26 38 45 54 63 70 77
27 39 46 55 64 71 79
Source: From Conger, D.H., 1971, Estimating Magnitude and Frequency of Floods in Wisconsin, U.S. Geological Survey Open-File Rept.
Table 5H.64 Terms Descriptive of Water Landscapes Fluvial Types Bayou Braided stream Brook Canal Connecting stream Creek Disappearing stream Feeder stream
Fluvial lakes Freshet Inlet Influent Intermittent stream Interrupted stream Misfit river Outlet Raft
Rill River Slough Spring Stream Torrent Vigorously meandering stream Watercourse Waterway
Lacustrine Types Aestival ponds Alkali lakes Alluvial dam lakes Alpine lakes Bar lake Barrier lake Bayou Blind lake Blowout pond Bog lake Borrow pit pond Caldera lake Chain of lakes Charco Cirque lake Clear lake Closed lake Crater lake Dead lake Deflation lake Delta lake Doline lake Drainage lake Dry lake Dugout pond Dune lake Dystrophic lake Effluent lake Evanescent lake Extinct lake Farm pond Finger lake Fission lake
Fluvial lake Fluviatile lake Fosse lake Glacial lake Grass lake Headwaters lake Holding pond Holm lake Hot springs Impoundment Intermittent lake Kettle lake Lagoon Lake Lakelet Landslide lake Laguna Lateral lake Marl lake Marsh lake Meadow lake Mesotrophic lake Mill pond Mirror lake Moat lake Morainal lake Nova lake Oligotrophic lake Open lake Oriented lake Oxbow Palodolac Perched lake Perennial lake
Pit lake Playa Pond Pool Pothole Puddle Quarry pond Raft lake Reflection basin Rejuvenated lake Reservoir Ria lakes Rift lakes Riverine lakes Rock lakes Sag pond Salt lakes Satellite lakes Scour lakes Seepage lakes Senescent lake Sink lakes Slough Snag lake Strath lake Swarm of lakes Tailing pond Tanks Tarn Thaw lakes Tundra lakes Vernal & autumnal ponds Walled lakes
Source: From Litton, R.B., Tetlow, R.J., Sorensen, J., and Beatty, R.A., 1974, Water and Landscape, Water Information Center, Inc. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
Table 5H.65 Aesthetic Evaluation of Rivers Aesthetic factors Landscape Views and vistas Diversity of flora and geologic features Color Form and contrasts Sensual stimuli Temperature regime Winds and other aerial features Sounds Odors Visual patterns Intellectual interests Opportunities for interpretive programs Ecology Geology Wildlife Range and diversity of subjects available for study Emotional interest Physical stimuli Intellectual potentials Possibility for adventure Interaction of flora, fauna, and people Access Climatic factors Obstacles or discomforts Troublesome flora and fauna Access Climatic factors Culture Quality of land use management construction Scenic pollution Historic artifacts Subjective analysis of most important factors in viewing river — most significant in deriving-pleasurable feelings Vista Color Vegetation (amount and variety) Spaciousness Serenity Naturalness Riffles in water Turbidity Lack of pollution Source: From Morisawa, M., and Murie, M., 1969, Evaluation of Natural Rivers. Antioch College, Water Resources Research, Yellow Springs, OH, in Litton, R.B. and others, 1974, Water and Landscape, Water Information Center, Inc. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
5-141
5-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 5I OCEANS AND SEAS
Table 5I.66 Dimensions of the Oceans Ocean
Area (109m2)
Mean Depth (meters)
Volume (1015m3)
Arctic North Pacific South Pacific North Atlantic South Atlantic Indian Antarctic
14,090 83,462 65,521 46,772 37,364 81,602 32,249
1205 3858 3891 3285 4091 4284 3730
17.0 322.0 254.9 153.6 152.8 349.6 120.3
Source: From U.S. Naval oceanographic office, 1966.
Table 5I.67 Maximum Depths of the Oceans Depth Name of Area
Location
Mariana trench Tonga trench Philippine trench Kermadec trench Bonin trench Kuril trench Izu trench New Britain trench Yap trench Japan trench Peru-Chile trench Palau trench Aleutian trench New Hebrides trench North Ryukyu trench Mid America trench
11820 0 N 23816 0 S 10838 0 N 31853 0 S 24830 0 N 44815 0 N 31805 0 N 06819 0 S 08833 0 N 36808 0 N 23818 0 S 07852 0 N 50851 0 N 20836 0 S 24800 0 N 14802 0 N
Puerto Rico trench So. Sandwich trench Romanche gap Cayman trench Brazil basin
19855 0 N 55842 0 S 0813 0 S 19812 0 N 09810 0 S
Java trench Ob trench Diamantina trench Vema trench Agulhas basin
10819 0 S 09845 0 S 35850 0 S 09808 0 S 45820 0 S
Eurasia basin
82823 0 N
Ionian basin
36832 0 N
Pacific Ocean 142812 0 E 174844 0 W 126836 0 E 177821 0 W 143824 0 E 150834 0 E 142810 0 E 153845 0 E 138802 0 E 142843 0 E 71814 0 W 134856 0 E 177811 0 E 168837 0 E 126848 0 E 93839 0 W Atlantic Ocean 65827 0 N 25856 0 E 18826 0 W 80800 0 W 23802 0 W Indian Ocean 109858 0 E 67818 0 E 105814 0 E 67815 0 E 26850 0 E Arctic Ocean 19831 0 E Mediterranean Sea 21806 0 E
m
Fathoms
ft
10,924 10,800 10,057 10,047 9,994 9,750 9,695 8,940 8,527 8,412 8,064 8,054 7,679 7,570 7,181 6,662
5973 5906 5499 5494 5464 5331 5301 4888 4663 4600 4409 4404 4199 4139 3927 3643
35,840 35,433 32,995 32,963 32,788 31,988 31,808 29,331 27,976 27,599 26,457 26,424 25,194 24,836 23,560 21,857
8,605 8,325 7,728 7,535 6,119
4705 4552 4226 4120 3346
28,232 27,313 25,354 24,721 20,076
7,125 6,874 6,602 6,402 6,195
3896 3759 3610 3501 3387
23,376 22,553 21,660 21,004 20,325
5,450
2980
17,881
5,150
2816
16,896
Source: From The World Almanac and Book of Facts 1987. Copyright Pharos Books, a Scripps Howard Co., New York. q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-143
Table 5I.68 Water Residence Times of the Oceans
A. B. C. D. E. F. G. H. I. J. K.
3
4
Ocean volume (km !10 ) Surface ocean volume (200 m) (km3!106) Ocean flow compensation (km3/yr) Total compensation time: A/C (yr) Surface-only compensation time: B/C (yr) Stream runoff to oceans (km3/yr) Runoff residence time: A/F (yr) Surface runoff residence time: B/F (yr) Atmospheric cycling (precipitation minus evaporation) (km3/yr) Whole-ocean atmospheric-cycling residence time: A/I (yr) Atmospheric-cycling surface ocean residence time: B/I (yr)
North Polar
Atlantic
Pacific
Indian
8.85 1.7 3,000 2,950 570 2,600 3,400 650 400
350 19.6 K17,100 20,500 1,150 19,400 18,000 1,000 K36,500
695 35.4 C28,000 25,000 1,250 21,100 57,500 2,900 15,900
295 15.5 K13,900 21,200 1,100 5,600 52,700 2,800 K19,500
Total 1,349 72.2 0
39,700 34,000 1,800 K39,700
22,125
9,600
43,700
15,100
34,000
4,250
500
2,200
1,000
1,800
Source: From Speidel, D.H., and Agnew, A.F., 1979, The Natural Geochemistry of our Environment, in An Overview of Research in Biogeochemistry and Environmental Health, Committee Print 825, Committee on Science and Technology. U.S. House of 77–239.
Table 5I.69 Water Balance of the Oceans
Ocean Pacific Southern sector Without southern sector Atlantic Southern sector Without southern sector Indian Southern sector Without southern sector Arctic World
Area 1000 km3
Precipitation
Evaporation
Inflow of Water from Continents
Water Balance
mm
1000 km3
mm
1000 km3
mm
1000 km3
178,700 25,300
1460 1140
260 28.9
1510 684
269.7 17.3
83 72
14.8 1.8
30 530
5.1 13.4
153,400
1510
231.1
1640
252.4
85
13.0
K50
K8.4
91,700 15,500
1010 1190
92.7 18.4
1360 466
124.4 7.2
226 37
20.8 0.6.
K120 760
K10.9 11.8
76,200
975
74.3
1540
117.2
265
20.6
K300
K22.7
76,200 28,500
1320 1240
100.4 35.4
1420 688
108.0 19.6
81 30
6.1 0.8
K20 580
K1.5 16.6
47,700
1360
65.0
1850
88.4
111
5.3
K380
K18.1
14,700 361,300
361 1270
5.3 458.0
220 1400
8.2 505.0
355 130
5.2 47.0
500 0
7.3 0
Source: From UNESCO, 1977, Atlas of World Water Balance. Reproduced with permission. q 2006 by Taylor & Francis Group, LLC
mm
1000 km3
5-144
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5I.70 Dimensions of Individual Seas Sea Tributary to Arctic Ocean Norwegian Sea Greenland Sea Barents Sea White Sea Kara Sea Laptev Sea East Siberian Sea Chukchi Sea Beaufort Sea Baffin Bay Tributary to North Atlantic North Sea Baltic Sea Mediterranean Sea Black Sea Marmara Azov Caribbean Sea Gulf of Mexico Gulf of St. Lawrence Hudson Bay Tributary to South Atlantic Gulf of Guinea Tributary to Indian Ocean Red Sea Persian Gulf Arabian Sea Bay of Bengal Andaman Sea Great Australian Bight Tributary to North Pacific Gulf of California Gulf of Alaska Bearing Sea Okhotsk Sea Japan Sea Yellow Sea East China Sea Sulu Sea Celebes Sea In both North and South Pacific South China Sea Makassar Strait Molukka Sea Ceram Sea Tributary to South Pacific Java Sea Bali Sea Flores Sea Savu Sea Banda Sea Ceram Sea Timor Sea Arafura Sea Coral Sea
Area (109m2)
Mean Depth (m)
Volume (1012m3)
1383 1205 1405 90 883 650 901 582 476 689
1742 1444 229 89 118 519 58 88 1004 861
2408 1740 322 8 104 338 53 51 478 593
600 386 2516 461 11 40 2754 1543 238 1232
91 86 1494 1166 357 9 2491 1512 127 128
55 33 3758 537 4 0.4 6860 2332 30 158
1533
2996
4592
450 241 3863 2172 602 484
558 40 2734 2586 1096 950
251 10 10561 5616 660 459
177 1327 2304 1590 978 417 752 420 472
818 2431 1598 859 1752 40 349 1139 3291
145 3226 3683 1365 1713 17 263 478 1553
3685 194 307 187
1060 967 1880 1209
3907 188 578 227
433 119 121 105 695 187 615 1037 4791
46 411 1829 1701 3064 1209 406 197 2394
20 49 222 178 2129 227 250 204 11470
Source: From U.S. Naval Oceanographic Office, 1966; amended.
q 2006 by Taylor & Francis Group, LLC
SURFACE WATER
5-145
Table 5I.71 Average Rise and Fall of Tides in the United States and Canada Location East Coast Quebec Halifax, NS St. John, NB Eastport, ME Portland, ME Boston, MA Newport, RI New London, CT Bridgeport, CT New York (The Battery) Port Jefferson, NY Albany, NY Newark, NJ Sandy Hook, NJ Philadelphia, PA Cape May, NJ Washington, DC Cape Hatteras, NC Wilmington, NC Charlotte, SC Savannah, GA Miami, FL Key West, FL Mobile, AL Galveston, TX San Juan, PR West Coast Vancouver, BC Seattle, WA San Francisco, CA Los Angeles, CA San Diego, CA a
Feet 13.7 4.4 20.8 18.4 9.1 9.5 3.5 2.6 6.7 4.5 6.6 4.6 5.1 4.7 6.2 4.6 2.8 3.6 4.2 5.2 7.9 2.4 1.3 1.5a 1.0 1.1 10.6a 7.7 4.1 3.8 4.0
Diurnal range.
Source: From National Oceanic and Atmospheric Administration, National Ocean Survey Tide Tables.
q 2006 by Taylor & Francis Group, LLC
5-146
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 5I.72 Temperatures and Salinities of the Oceans Temperature North Atlantic 1. North Polar water 2. Subarctic water 3. North Atlantic central water 4. North Atlantic water 5. North Atlantic bottom water 6. Mediterranean water South Atlantic 1. South Atlantic central water 2. Antarctic intermediate water 3. Subantarctic water 4. Antarctic circumpolar water 5. South Atlantic deep and bottom water 6. Antarctic bottom water Indian Ocean 1. Equatorial water 2. Indian central water 3. Antarctic intermediate water 4. Subantarctic water 5. Indian Ocean deep and Antarctic circumpolar water 6. Red Sea water South Pacific 1. Eastern South Pacific water 2. Western South Pacific water 3. Antarctic intermediate water 4. Subantarctic water 5. Pacific deep water and Antarctic circumpolar water North Pacific 1. Subarctic water 2. Pacific equatorial water 3. Eastern North Pacific water 4. Western North Pacific water 5. Arctic intermediate water 6. Pacific deep water and Arctic circumpolar water
K1 to C2 C3 to C5 C4 to C17 C3 to C4 C1 to C3 C6 to C10
34.9 34.7 to 34.9 35.1 to 36.2 34.9 to 35.0 34.8 to 34.9 35.3 to 36.4
C5 to C16 C3 to C5 C3 to C9 C0.5 to C2.5 0 to C2 K0.4
34.3 to 35.6 34.1 to 34.6 33.8 to 34.5 34.7 to 34.8 34.5 to 34.9 34 to 36
4 to 16 6 to 15 2 to 6 2 to 8 0.5 to 2 9
34.8 to 35.2 34.5 to 35.4 34.4 to 34.7 34.1 to 34.6 34.7 to 34.75 35.5
9 to 16 7 to 16 4 to 7 3 to 7 (K1) to 3
34.3 to 35.1 34.5 to 35.5 34.3 to 34.5 34.1 to 34.6 34.6 to 34.7
2 to 10 6 to 16 10 to 16 7 to 16 6 to 10 (K1) to 3
33.5 to 34.4 34.5 to 35.2 34.0 to 34.6 34.1 to 34.6 34.0 to 34.1 34.6 to 34.7
Source: From U.S. Oceanographic Office, 1966.
Table 5I.73 Composition of Sea Water Constituent
Concentration (ppm)
Chloride Sodium Sulfate Magnesium Calcium Potassium Bicarbonate Bromide Strontium Boron Fluoride Rubidium Aluminum Lithium Barium Iodide Silicate Nitrogen
18,980 10,560 2,560 1,272 400 380 142 65 13 4.6 1.4 0.2 0.16–1.9 0.1 0.05 0.05 0.04–8.6 0.03–0.9 (Continued)
q 2006 by Taylor & Francis Group, LLC
Salinity
SURFACE WATER
5-147
Table 5I.73
(Continued) Concentration (ppm)
Constituent Zinc Lead Selenium Arsenic Copper Tin Iron Cesium Manganese Phosphorous Thorium Mercury Uranium Cobalt Nickel Radium Beryllium Cadmium Chromium Titanium
0.005–0.014 0.004–0.005 0.004 0.003–0.024 0.001–0.09 0.003 0.002–0.02 w0.002 0.001–0.01 0.001–0.10 %0.0005 0.0003 0.00015–0.0016 0.0001 0.0001–0.0005 8!10K11 — — — Trace
Source: From U.S. Geological survey.
Table 5I.74 Approximate Mineral Content of One Cubic Mile of Sea Water Mineral Sodium chloride Magnesium chloride Magnesium sulfate Calcium sulfate Potassium sulfate Calcium carbonate Magnesium bromide Bromine Strontium Boron
Weight (in tons) 120,000,000 18,000,000 8,000,000 6,000,000 4,000,000 550,000 350,000 300,000 60,000 21,000
Mineral Fluorine Barium Iodine Arsenic Rubidium Silver Copper, Manganese, Zinc, Lead Gold Radium Uranium
Weight (in tons) 6,400 900 100 to 12,000 50 to 350 200 up to 45 10 to 30 up to 25 about 1/6 (ounce) 7
Source: From Smith, The Sun, the Sea, and Tomorrow; Potential Sources of Food, Energy and Minerals from the Sea, Charles Scribners, 1954. With permission.
q 2006 by Taylor & Francis Group, LLC
5-148
Longitude 30E
60E
90E
120E
150E
180
150W
120W
90W
60W
30W
GM
30E 90N
90N
L
-1.0
75N
-1.0
-1.0
-1.0
-1.0
0.0
-1.0
3.0
-1.0 1.0
60N
5.0 5.0
45N
7.0 13.0
25.0
14.0
27.0
28.5
22.0
23.0
30S
19.0
20.0
24.0
15N
25.0 22.0
20.0
21.0 20.0
19.0 13.0
15.0
6.0
7.0
60S
2.0 1.0
-1.0
13.0
9.0
11.0 2.0
0.0
4.0
5.0 3.0
30S
18.0
17.0
9.0
8.0
18.0
21.0
17.0
12.0
11.0
10.0
3.0
15S 19.0
23.0
23.0 14.0
EQ
26.0
25.0
24.0
22.0
45S
30N
22.0
24.0 18.0
45N
17.0
27.0 27.0
27.0
26.0
25.0
14.0
27.0
26.0
27.0
15S
26.0 28.0
28.0 28.5 29.0
28.5 28.0
25.0
25.0
27.0
EQ
23.0
23.0
24.0
28.0 28.5
21.0 18.0
60N
-1.0
10.0
45S
1.0
60S
-1.0
75S
75S
90S
90S 30E
60E
90E
120E
Minimum value = –1.93
150E
180
150W
120W
Maximum value = 29.93
90W
60W
30W
GM
30E
Contour interval: 1.00
Figure 5I.33 Annual mean temperature (8C) at the surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
Above 30.0 29.0 - 30.0 26.0 - 29.0 23.0 - 26.0 20.0 - 23.0 17.0 - 20.0 14.0 - 17.0 11.0 - 14.0 8.0 - 11.0 5.0 - 8.0 2.0 - 5.0 –1.0 - 2.0 –4.0 - –1.0 Below –4.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Latitude
19.0
26.0
H
15N
18.0
9.0
75N
11.0
13.0
9.0
20.0
6.0 7.0
8.0
6.0
15.0
30N
3.0
5.0
6.0
2.0
SURFACE WATER
Longitude 30E
60E
90E
120E
150E
180
150W
120W
90W
60W
30W
GM
30E
90N
90N –1.0
–1.0
–1.0
75N
3.0
0.0
–1.0
–1.0
5.0 9.0
24.0
19.0
21.0 18.0
23.0
23.0
27.0
27.0 28.0
28.5
EQ
28.0 29.0 28.5
28.5 28.0
25.0 23.0
30S
19.0
20.0
30N
22.0 24.0
15N
25.0
EQ
26.0 25.0 22.0
24.0
15S
24.0
19.0
23.0
22.0 18.0
45N
27.0 27.0
27.0
26.0
14.0 17.0
27.0
28.0
26.0
27.0
15S
26.0
25.0
26.0
60N
25.0
22.0
H
15N
18.0
14.0
20.0 25.0
13.0
13.0
15.0
30N
10.0
8.0
9.0
75N
11.0
7.0
7.0
6.0
45N
Latitude
6.0
2.0
60N
5.0
6.0
2.0
0.0
23.0 20.0 14.0
20.0
19.0 13.0
45S 3.0
21.0 18.0
17.0 13.0 8.0
9.0
1.0
11.0
5.0
0.0
3.0
30S
16.0
2.0 4.0
2.0 –1.0
9.0
10.0
7.0
60S
17.0
13.0
12.0
11.0
20.0
21.0
10.0
45S
1.0
–1.0
60S
–1.0
L
75S
75S
90S
90S 30E
60E
90E
120E
Minimum value = –1.88
150E
180
150W
120W
Maximum value = 29.71
90W
60W
30W
GM
Above 30.0 29.0 - 30.0 26.0 - 29.0 23.0 - 26.0 20.0 - 23.0 17.0 - 20.0 14.0 - 17.0 11.0 - 14.0 8.0 - 11.0 5.0 - 8.0 2.0 - 5.0 –1.0 - 2.0 –4.0 - –1.0 Below –4.0
30E
Contour interval: 1.00
Figure 5I.34 Annual mean temperature (8C) at 10 m depth. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
5-149
q 2006 by Taylor & Francis Group, LLC
5-150
Longitude 30E
60E
90E
120E
150E
180
150W
120W
90W
60W
30W
GM
30E
90N
75N
90N –1.0
–1.0
0.0
–1.0 1.0
2.0
75N
6.0
0.0
60N
6.0
4.0 5.0 4.0
45N
7.0
6.0
15.0 20.0
30N
24.0
25.0
14.0
Latitude
EQ
19.0
27.0
H
28.0
15S
26.0 22.0
30S
18.0
9.0
28.0
15N
27.0
10.0
26.0 22.0
9.0 7.0
4.0 2.0
–1.0
1.0
22.0 20.0
20.0
18.0
16.0 11.0
10.0
3.0
30S
17.0
13.0
11.0
8.0
6.0 1.0
5.0
0.0
15S 19.0
23.0
14.0
12.0
25.0
24.0
24.0
16.0 11.0
EQ
27.0
8.0
–1.0
24.0
25.0
19.0 15.0
30N
22.0
23.0 21.0
3.0
60S
26.0
25.0
19.0
17.0
13.0
45S
23.0
23.0
21.0
45N
25.0
22.0
27.0
25.0
24.0
18.0
23.0
28.0 27.0 28.5 29.0
27.0
15.0 19.0
27.0
28.0
28.5
60N
12.0
9.0
45S
2.0
–1.0
60S
–1.0
L
75S
75S
90S
90S 30E
60E
90E
120E
Minimum value = –1.96
150E
180
150W
120W
Maximum value = 29.57
90W
60W
30W
GM
Contour interval: 1.00
Figure 5I.35 Annual mean temperature (8C) at 20 m depth. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
30E
Above 30.0 29.0 - 30.0 26.0 - 29.0 23.0 - 26.0 20.0 - 23.0 17.0 - 20.0 14.0 - 17.0 11.0 - 14.0 8.0 - 11.0 5.0 - 8.0 2.0 - 5.0 –1.0 - 2.0 –4.0 - –1.0 Below –4.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
27.0
16.0
13.0
26.0
15N
11.0
10.0
8.0
9.0
9.0 10.0
2.0
SURFACE WATER
Longitude 30E
60E
90E
120E
150E
180
150W
120W
90W
60W
30W
GM
30E 90N
90N 0.0
-1.0
75N
2.0
1.0
75N
6.0
7.0 9.0
60N 4.0
5.0
5.0 6.0
45N
2.0 8.0
7.0
24.0
18.0
27.0
28.0 28.5
H 27.0
15S 22.0 18.0
26.0
25.0
9.0
21.0
23.0 20.0
19.0 15.0
10.0
3.0
16.0 11.0
9.0
8.0 7.0
60S
2.0 -1.0
0.0
EQ 22.0
23.0
18.0
4.0
18.0 13.0 8.0
16.0
11.0 6.0 1.0
5.0
30S 18.0 9.0
L
75S
45S
2.0
-1.0
3.0
1.0
15S
20.0
21.0 19.0
15.0 11.0
10.0
24.0
26.0
14.0
12.0
15N
27.0
22.0
19.0
17.0
24.0
24.0
29.0
23.0
21.0
30N
25.0
27.0
27.0
13.0
45S
19.0
25.0
24.0
30S
20.0
25.0
28.0
45N
16.0
22.0
27.0 28.5
EQ
60N
13.0
17.0
23.0 22.0 25.0
23.0
26.0
26.0
15N Latitude
19.0
20.0 25.0
13.0
14.0
15.0
30N
11.0
9.0
9.0
8.0
60S
75S
90S
90S 30E
60E
90E
120E
Minimum value = –1.96
150E
180
150W
120W
Maximum value = 29.52
90W
60W
30W
GM
Above 30.0 29.0 - 30.0 26.0 - 29.0 23.0 - 26.0 20.0 - 23.0 17.0 - 20.0 14.0 - 17.0 11.0 - 14.0 8.0 - 11.0 5.0 - 8.0 2.0 - 5.0 –1.0 - 2.0 –4.0 - –1.0 Below –4.0
30E
Contour interval: 1.00
Figure 5I.36 Annual mean temperature (8C) at 30 m depth. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
5-151
q 2006 by Taylor & Francis Group, LLC
5-152
Longitude 30E
60E
90E
120E
150E
90N
180
150W
120W
90W
60W
30W
30E 90N
L
75N
75N
60N
60N 2.30
45N
1.45 1.45
1.45
2.25 1.50
EQ 15S
2.40 2.20
EQ
1.50
1.85
1.20
1.40
1.45
1.20
1.15
1.00
1.00
1.15
0.00 -0.25
-0.05
1.65
0.70
1.40 0.90
1.35
2.40
30S
1.50
1.20
0.45
0.70
0.90 0.35
-0.10
0.45
0.45
0.50
45S
0.55
0.00
1.05 0.85
15S
1.65
0.90
1.60
1.25
0.90
0.05
1.25 1.70
1.55
1.40
1.05
0.85
60S
1.80
1.35
0.70
45S
2.35
1.70
1.25
30S
15N
1.40
1.40 1.40
30N
2.45
2.30
1.45
H
2.50
-0.25 -0.45
-0.40
-0.30
60S
0.20
75S
75S
90S
90S 30E
60E
90E
120E
Minimum value = –0.69
150E
180
150W
120W
Maximum value = 13.93
90W
60W
30W
GM
30E
Contour interval: 0.05
Figure 5I.37 Annual mean temperature (8C) at 4000 m depth. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
Above 2.95 2.90 - 2.95 2.75 - 2.90 2.60 - 2.75 2.45 - 2.60 2.30 - 2.45 2.15 - 2.30 2.00 - 2.15 1.85 - 2.00 1.70 - 1.85 1.55 - 1.70 1.40 - 1.55 1.25 - 1.40 1.10 - 1.25 0.95 - 1.10 0.80 - 0.95 0.65 - 0.80 0.50 - 0.65 0.35 - 0.50 0.20 - 0.35 0.05 - 0.20 –0.10 - 0.05 –0.25 - –0.10 –0.40 - –0.25 –0.55 - –0.40 –0.70 - –0.55 –0.85 - –0.70 –1.00 - –0.85 Below –1.00
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1.55
15N
1.55
45N
2.55
2.35
1.50
30N
Latitude
GM
SURFACE WATER
Longitude 30E
60E
90N
31.4 33.8
75N
90E
120E
32.6
150E
180
30.8 30.2
32.4 26.2
30.2 29.6
28.6
34.6
120W
30.4
28.8
33.0
150W
90W
30W
GM
90N 33.4
33.6
30.0
29.0
30E
30.2
30.4
30.8 31.4
30.4
30.6
60W
27.4
34.2
32.4
75N
35.0 34.8
60N
33.0
35.4
L
45N
33.0
33.4 34.2
30N
35.6
32.4
32.8
45N
35.8
36.2
34.0
36.4
33.8
35.2
H
60N
34.8
34.2
32.6
32.4
35.0
37.0
36.6
34.6
30N
36.8
34.4
Latitude
15N
36.4 35.8
36.4
33.2
34.4 34.2
35.4
EQ
35.2
34.8
34.4 35.4
36.0
34.6
35.6
35.8
35.2
35.0 35.2
35.4 36.4
35.4
35.2 34.4
33.8
35.4 34.6
36.2 34.8
34.6
35.6 34.8
34.6
33.8 34.0
34.4
33.8
34.2
34.8
45S
34.2 34.0
34.0 33.8
34.0
30S
35.6
35.4
34.4
35.0
33.8
15S
35.8
36.6
36.2
35.8 35.0
60S
EQ
35.6
35.8
35.6
45S
33.8
35.0
34.0
34.8
30S
15N
36.0
35.8
34.0
35.2
35.0
15S
34.6
34.2
34.2
33.8
33.8
60S
34.2 34.4
75S
75S
90S
90S 30E
60E
90E
Minimum value = 2.37
120E
150E
180
150W
120W
Maximum value = 40.37
90W
60W
30W
GM
Above 37.4 37.2 - 37.4 37.0 - 37.2 36.8 - 37.0 36.6 - 36.8 36.4 - 36.6 36.2 - 36.4 36.0 - 36.2 35.8 - 36.0 35.6 - 35.8 35.4 - 35.6 35.2 - 35.4 35.0 - 35.2 34.8 - 35.0 34.6 - 34.8 34.4 - 34.6 34.2 - 34.4 34.0 - 34.2 33.8 - 34.0 33.6 - 33.8 33.4 - 33.6 33.2 - 33.4 33.0 - 33.2 Below 33.0
30E
Contour interval: 0.20
Figure 5I.38 Annual mean salinity (PSS) at the surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
5-153
q 2006 by Taylor & Francis Group, LLC
5-154
Longitude 30E
60E
90N
90E
31.4 31.2 33.6
75N
120E
150E
32.2
32.6
32.8
32.0
180 31.6
28.6
150W 31.2
31.4
30.2
29.8
28.8
34.6
120W
90W
30.8
31.4
31.2
30.4
60W
30W
GM
31.0
31.6
34.8
33.2
33.4
34.8
H
36.4 33.8 36.6
37.2
35.4
EQ
36.4
34.2
34.2
34.0
34.8
33.8
30N
36.8
15N
36.0
35.8
33.8
35.0
35.6
35.0
15S
34.8
34.4
34.6
35.4
30S
35.2
35.6
35.2
35.4
36.4
35.8
35.6
36.2
35.0
34.4
33.8
36.0
35.0
35.8
37.0
35.0
35.6
34.8
35.4 34.6
34.8
35.2
34.4
35.0
34.8
33.8 34.0
30S
35.6
34.6
34.4
33.8
34.6
34.2
34.2
60S
15S
36.2
35.8 35.0
45S
35.2
34.2
EQ
34.8
35.2
34.0
34.0
33.8
45S 60S
33.8
34.0
75S
34.2
34.2
33.8
75S
34.4
90S
90S 30E
60E
90E
Minimum value = 3.52
120E
150E
180
150W
120W
Maximum value = 40.37
90W
60W
30W
GM
Contour interval: 0.20
Figure 5I.39 Annual mean salinity (PSS) at 10 m surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
30E
Above 37.4 37.2 - 37.4 37.0 - 37.2 36.8 - 37.0 36.6 - 36.8 36.4 - 36.6 36.2 - 36.4 36.0 - 36.2 35.8 - 36.0 35.6 - 35.8 35.4 - 35.6 35.2 - 35.4 35.0 - 35.2 34.8 - 35.0 34.6 - 34.8 34.4 - 34.6 34.2 - 34.4 34.0 - 34.2 33.8 - 34.0 33.6 - 33.8 33.4 - 33.6 33.2 - 33.4 33.0 - 33.2 Below 33.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
33.2
36.0
Latitude
34.0
34.4
15N
36.0
36.2
35.2
35.0
45N
32.6 35.6
33.2
34.2
30N
35.4
33.4
33.0
L 60N
34.8
34.2
32.6
75N
35.0
34.4
32.8
60N
45N
90N 33.6
33.8
30.8
32.6
30E
31.4
SURFACE WATER
Longitude 30E
60E
90E
90N
120E
33.8
75N
33.6
180
150W 30.6
30.8 29.2
120W
29.4
90W
60W
30W
GM
31.2
31.2
31.0
31.8
32.8
33.4
32.6
34.6
150E 31.6
32.2
31.4
31.4
31.6
90N 32.6
30.2
34.0
34.2
29.8
30.4
30E
75N
34.8
33.0
35.0
60N 32.8
34.6
32.6
45N
H
45N
35.8
36.2
34.0 33.8
35.2
35.0
32.8 35.6
32.8
34.2 34.8
35.4
32.6
33.4
30N
L 60N
33.0
30N
37.0
36.6
36.8 34.4
Latitude
15N 36.0
36.4
33.2 34.2
34.4
34.0 35.2
15S
35.0 34.8
35.8
36.2
35.0 35.0
35.2
35.6
34.8
35.2
36.4
36.8 35.6
36.2 35.8
35.0
35.0
34.4 33.8
33.8
33.8
34.0
34.2
34.0
34.0 34.2
34.8 34.2
34.4
34.0
34.0
75S
30S
35.6
34.6
35.0
34.6
15S
37.0
36.0
36.4
35.8 35.4
60S
EQ
35.8 35.6
34.4
35.6
45S
34.0
35.2
35.0
15N
34.2
35.4 35.2
30S
34.2
34.6
34.8
35.4
EQ
36.2
33.8
45S 60S
34.2
33.8
75S
90S
90S 30E
60E
90E
Minimum value = 3.55
120E
150E
180
150W
120W
Maximum value = 40.55
90W
60W
30W
GM
Above 37.4 37.2 - 37.4 37.0 - 37.2 36.8 - 37.0 36.6 - 36.8 36.4 - 36.6 36.2 - 36.4 36.0 - 36.2 35.8 - 36.0 35.6 - 35.8 35.4 - 35.6 35.2 - 35.4 35.0 - 35.2 34.8 - 35.0 34.6 - 34.8 34.4 - 34.6 34.2 - 34.4 34.0 - 34.2 33.8 - 34.0 33.6 - 33.8 33.4 - 33.6 33.2 - 33.4 33.0 - 33.2 Below 33.0
30E
Contour interval: 0.20
Figure 5I.40 Annual mean salinity (PSS) at 20 m surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
5-155
q 2006 by Taylor & Francis Group, LLC
5-156
Longitude 30E
60E
90N
90E
31.8 33.8
34.0 34.2
75N
120E 32.4
150E 32.2
33.6
33.8
180
32.0
150W
120W
31.8
32.6
31.0 30.2
30.4
32.0
60W
30W
GM
31.2
31.4
30E 90N
31.6
32.8
34.2
30.4 34.4
31.2
34.8
90W 31.6
31.2
30.6
33.2
75N
35.0
L 60N
60N
33.6 33.0
33.0
34.6
33.4
34.8 35.0
H
32.8
33.2 32.8
34.2
30N
35.4
32.6
45N
35.6
36.2
34.0 33.8
35.2
45N
35.8
30N
37.0
36.6
36.8
Latitude
33.4
36.0
35.2
15S
34.8
34.6
35.6
36.4
35.6
36.2
34.0
15N 35.6
35.2 34.4
36.0
35.0
35.8
35.8
35.8 36.4
35.6
34.8
30S
34.6
35.2
34.4
35.0
34.0
33.8
34.2
33.8
34.2
60S 34.0
35.0 34.4
34.6
60S
34.2
33.8 34.2
75S
45S
34.0
34.0
34.0
33.8
15S
35.6
35.0
35.2 34.6
EQ 36.2
36.8
35.6
36.2
35.0
35.4
45S
36.0
33.8
34.2
34.2
35.4 35.2
30S
34.4 34.4 35.0
35.0 34.8
34.4
34.0
35.4
EQ
34.4
75S
90S
90S 30E
60E
90E
Minimum value = 3.59
120E
150E
180
150W
120W
Maximum value = 40.73
90W
60W
30W
GM
Contour interval: 0.20
Figure 5I.41 Annual mean salinity (PSS) at 30 m surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
30E
Above 37.4 37.2 - 37.4 37.0 - 37.2 36.8 - 37.0 36.6 - 36.8 36.4 - 36.6 36.2 - 36.4 36.0 - 36.2 35.8 - 36.0 35.6 - 35.8 35.4 - 35.6 35.2 - 35.4 35.0 - 35.2 34.8 - 35.0 34.6 - 34.8 34.4 - 34.6 34.2 - 34.4 34.0 - 34.2 33.8 - 34.0 33.6 - 33.8 33.4 - 33.6 33.2 - 33.4 33.0 - 33.2 Below 33.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
15N
SURFACE WATER
Longitude 30E
60E
90E
90N
120E
150E
180
150W
120W
90W
60W
30W
GM
30E 90N
34.94
75N
75N
60N
60N
45N
45N
34.68
34.68
34.91 34.68
30N
15N
34.69
34.69
L Latitude
30N
34.90
H
34.68
34.89
34.90
15N
34.69
34.89 34.89
EQ
EQ
34.84
15S
34.83
34.72
34.78
34.70
30S
34.68
34.66
34.70
Above 34.94 34.92 - 34.94
34.75 34.68
34.66
60S
30S 34.79
34.72
34.72
45S
34.89
34.69
34.70
34.71
34.72
34.71
15S
34.69
34.72
45S
34.69
34.71
34.71
60S
34.68
34.70 34.70
75S
75S
90S
90S 30E
60E
90E
Minimum value = 34.47
120E
150E
180
150W
120W
Maximum value = 35.00
90W
60W
30W
GM
34.86 34.84 34.82 34.80 34.78 34.76 34.74 34.72 34.70 -
34.88 34.86 34.84 34.82 34.80 34.78 34.76 34.74 34.72
34.68 - 34.70 Below 34.68
30E
Contour interval: 0.01 5-157
Figure 5I.42 Annual mean salinity (PSS) at 4000 m surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
34.90 - 34.92 34.88 - 34.90
5-158
Longitude 30E
60E
90E
90N
120E
150E
8.75
180 8.50
90W
60W
30W
GM
90N 8.25
H
8.00
8.75 7.00 7.25 7.00
6.50
6.00
5.75
6.25
5.75
5.25
5.50 5.00
45N 5.50
5.00
30N
4.75 4.75
15N
15N
4.50 4.75
Latitude
6.00
4.75
4.50
EQ
EQ 4.50
4.50 4.50
15S
4.75
4.75 5.00
30S
5.25
5.00
5.00 5.25
5.50
5.75
5.50
6.00
45S
6.00 7.50
7.00
7.75
60S
15S
4.75
6.25
5.50
7.25
6.75
8.00
8.00
45S
6.75
7.75
7.50 7.75
7.50
75S
6.50
7.00
30S
5.50
5.75
6.00
6.50
7.75
5.50
5.25
7.50 7.75
7.00
60S
7.75
7.50
75S
7.75
90S
90S 30E
60E
90E
120E
Minimum value = 4.07
150E
180
150W
120W
Maximum value = 9.64
90W
60W
30W
Contour interval:
GM
0.25
Figure 5I.43 Annual mean oxygen (mL/l) at the surface. (From World Ocean Atlas 2001, Ocean Climate Laboratory/NODC, www.nodc.noaa.gov.)
q 2006 by Taylor & Francis Group, LLC
30E
Above 9.00 8.00 - 9.00 7.50 - 8.00 7.00 - 7.50 6.50 - 7.00 6.00 - 6.50 5.50 - 6.00 5.00 - 5.50 4.50 - 5.00 4.00 - 4.50 3.50 - 4.00 3.00 - 3.50 2.50 - 3.00 2.00 - 2.50 1.50 - 2.00 1.00 - 1.50 0.50 - 1.00 0.00 - 0.50 Below 0.00
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
L
5.25
60N
6.25
6.75
6.75 6.50
30N
75N
7.00
60N
45N
30E
8.75
9.25
8.75 7.75
75N
120W 9.00
8.50
8.50
150W
CHAPTER
6
Groundwater Melvin Rivera
CONTENTS Section Section Section Section Section Section Section Section Section Section Section
6A 6B 6C 6D 6E 6F 6G 6H 6I 6J 6K
Groundwater — United States . Water Wells — United States . Water Wells . . . . . . . . . . . . . . Injection Wells . . . . . . . . . . . . Pumping of Water . . . . . . . . . Subsidence . . . . . . . . . . . . . . . Aquifer Characteristics . . . . . . Soil Moisture . . . . . . . . . . . . . Springs . . . . . . . . . . . . . . . . . Artificial Recharge . . . . . . . . . Geophysical Logging . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
............................................. ............................................. ............................................. ............................................. ............................................. ............................................. ............................................. ............................................. ............................................. ............................................. .............................................
6–2 6–17 6–22 6–39 6–49 6–59 6–64 6–76 6–79 6–85 6–88
6-1 q 2006 by Taylor & Francis Group, LLC
6-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 6A
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER — UNITED STATES
GROUNDWATER
q 2006 by Taylor & Francis Group, LLC EXPLANATION Unconsolidated sand and gravel aquifers 1
Basin and Range aquifers
2
Rio Grande aquifer system
3
California Coastal Basin aquifers
4
Pacific Northwest basin-fill aquifers
5
7
Puget-Willamette Lowland aquifer system Northern Rocky Mountains Intermountain Basins aquifer system Central Valley aquifer system
8
High Planes aquifer
6
9
Pacos River Basin alluvial aquifer
10
Mississippi River Valley alluvial aquifer
11
Seymour aquifer
12
Surfical aquifer system
13
Unconsolidated-deposit aquifer (Alaska)
14
South Coast aquifer (Puerto Rico)
Semiconsolidated sand aquifer
Scale Miles Kilometres
Sandstone aquifers 20
Colorado Plateaus aquifer
21
Denver Basin aquifer system
22
Lower Cretaceous aquifers
43
Basin and Range carbonate-rock aquifers
23
Rush Springs aquifer
44
Roswell Basin aquifer system
24
Central Oklahoma aquifer
45
Ozark Plateaus aquifer system
25
Ada-Varnoosa aquifer
46
Bialine aquifer
26
Early Mesozoic basin aquifers
47
Arbuckle Simpsion aquifer
59
27
New York sandstone aquifers
35
Southern Nevada volcanic-rock aquifers
48
Silarian-Devonian aquifers
60
28
Pennsylvantan aquifers
36
Northern California volcanic-rock aquifers
49
Ordovician aquifers
61
29
Mississippian aquifer of Michigan
37
Pliocene and younger basaltic-rock aquifers
50
Upper carbonate aquifers
Carbonate-rock aquifers
Basaltic and other volcanic-rock aquifers
15
Coastal lowlands aquifer system
30
Cambrian-Ordovician aquifer system
38
Miocene basaltic-rock aquifers
51
Eoxiden aquifer system
16
Texas coastal uplands aquifer system
31
Jacobsville aquifer
39
Volcanic and sedimentary-rock aquifers
52
Biscayne aquifer
53
New York and New England carbonate rock aquifers
54
Piedmont and Blue Ridge carbonate rock aquifers
17
Mississippi embayment aquifer system
32
Lower Tertiary aquifers
40
Snake River Plain aquifer system
18
Southeastern Coastal plain aquifer system
33
Upper Cretaceous aquifers
41
Columbia Plateaus aquifer system
Northern Atlantic Coastal plain aquifer system
34
Upper Tertiary aquifers (Wyoming)
42
Volcanic-rock aquifer-Overlain by sedimentary deposits where patterned (Hawaii)
19
q 2006 by Taylor & Francis Group, LLC
58
Glacial deposit aquifers overlie bedrock aquifers in many areas Not a principal aquifer
55
Castle Hayne aquifer
56
North Coast Limestone aquifer system (Puerto Rico)
57
Kingshill aquifer (St. Croix)
6-3
Figure 6A.1 Principal aquifers of the United States. (From http://capp.water.usgs.gov.)
Sandstone and carbonate-rock aquifers
6-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 6A.2 River valley aquifers in the United States. (From Water Information Center, 1973, Water Atlas of the United States. H.E. Thomas, The Conservation of Ground Water, McGraw-Hill, 1951. With permission.)
q 2006 by Taylor & Francis Group, LLC
(1) Geologic Age and Rock Type Cenozoic Quaternary Aluvium and related deposits (primarily. Recent and Pleistocene sediments and may include some of Pliocene age)
Glacial drift, especially outwash (Pleistocene)
Other Pleistocene sediments
(2)
(3)
(4)
(5)
(6)
(7)
Western Mountain
Arid
Columbi Lava
Colorado
High
Unglaciated Central
Ranges
Basin
Plateau
Plateau
Plains
Region
S and G along water courses.
S and G along water courses
S and G deposits in valleys and along
S and G deposits in valleys and along
stream courses. Highly productive but not greatly developed
stream courses. Highly developed with local depletion. Storage
— P to M
large but perennial recharge limited-P
S and G deposits in northern part of region — I
S and G deposits especially in northern part of region and in some valleys — I
Alluvial Fm and other basin deposits in the southern part — M to P (see Alluvium above)
S and G deposits along streams,
U
Sand dune deposits —P (in part)
interbedded with basalt — I to M
S and G outwash, especially
U
reworked (see above) — I
in Spokane area — I
U
S and G outwash, much of it
U
and in terrace deposits — I (limited)
S and G outwash especially along northern boundary of region —I
Alluviated plains and valley fills — M to I
(8)
(9)
(10)
Glaciated Central
Unglaciated Appalachian
Glaciated Appalachian
(11) Atlantic and Gulf Coastal
Region
Region
Region
Plain
S and G along water courses
S and G along water courses and in terrace deposits. Not developed
—M
S and G outwash, terrace
S and G outwash in northern
S and G outwash, terrace
part. Not highly developed —M
deposits and lenses in till. Locally highly
deposits and lenses in till throughout region — P (in part)
U
U
developed —I U
S and G along water courses and in terrace and littoral
(12)
Special Comments
GROUNDWATER
Table 6A.1 Occurrence of Aquifers in the United States
The most widespread and important aquifers in the
deposits, especially in the Mississippi and tributary valleys.
United States. Well over one-half of all groundwater pumped in the United States is withdrawn from
Not highly developed in East and South. Some depletion
these aquifers. Many are easily available for artificial recharge and induced infiltration.
in Gulf Coast — I
Subject to saltwater contamination in coastal areas
S and G outwash in Mississippi Valley (see above) —I
Coquina, limestone, sand, and marl Fms in Florida — M
(Continued)
6-5
q 2006 by Taylor & Francis Group, LLC
(1) Geologic Age and Rock Type Tertiary Sediments, Pliocene
6-6
Table 6A.1
(Continued) (2)
(3)
(4)
(5)
(6)
(7)
Western Mountain Ranges
Arid Basin
Columbi Lava Plateau
Colorado Plateau
High Plains
Unglaciated Central Region
U
U
S and G in valley fill and terrace
Some S and G in valley fill — M
deposits. Not highly developed —M
Ellensburg Fm in Washi-
U
Glaciated Central Region U
(9)
(10)
(11) Atlantic
Unglaciated Appalachian Region
Glaciated Appalachian Region
and Gulf Coastal Plain
Absent
Absent
S and G with huge storage but little recharge locally. Much
U
ngton — I; elsewhere —U
Ellensburg Fm in Washington
U
depletion —P (in part) Arikaree Fm — M
Fms in Gulf States — I
Arikaree Fm — M
— I; elsewhere —U
Flaxville and other terrace
Absent
Absent
New Jersey, Maryland, Delaware, Virginia — Cohansey and Calvert Fms — I Delaware to North Carolina —
deposits, S and G in north western part — M
Tampa Ls, Alluvium Bluff Gp, and Tamiami Fm — I Eastern Texas — Oakville and
U
U
U
U
Brule, clay, locally — I; else where — U
q 2006 by Taylor & Francis Group, LLC
Special Comments
Dewitt Ss in Texas. Citronelle and LaFayette
St. Marys and Calvert Fms — I Georgia and Florida —
Oligocene
(12)
U
U
Absent
Absent
Catahoula Ss — I Suwannee Fm, Byram Ls, and Vicksburg Gp — I
Aquifers in coastal areas subject to saltwater encroachment and contamination
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Miocene
Ogalalla Fm in High Plains. Extensive
(8)
Knight and
U
U
Almy Fm in southwest Wyoming —M
Paleocene
U
U
Volcanic rocks, primarily basalt
U
Local flows — M
Mesozoic upper cretaceous
U
Ss lenses in southern California — M; elsewhere
U
Many interbeded basalt flows from Eocene to Pliocene — P U
Kngiht and
U
Claibourne
Almy Fm in southwest Wyoming, Chuska Ss, and Tohatchi
and Wilcox Gp in southern Illinois (?), Kentucky, and Missouri
Sh in northwest Arizona and northeast New Mexico —M
— M; elsewhere — U
U
Local flows — M
Absent
Absent
Absent
New Jersey, Maryland, Delaware, Virginia — Pamunkey Gp — I. North Carolina to Florida — Ocal a Ls and Castle Hayne Marl — P (in part) Florida — Avon Park Ls, South Carolina to Mexican border,
Feet Union Gp — M
Feet Union Gp — M
Feet Union Gp — M
Absent
Absent
Absent
Absent
Absent
Absent
Absent
Dakota Ss and other not clearly distinguishable Ss a notable source of water from Minnesota and Iowa to the Rocky Mountains and south into New Mexico; also in Utah and Arizona — I In northwestern part of region Fox Hills and related Ss (Lennep, Colgate, etc.) locally valuable as water sources — M
—U
U
formations (Ocala Ls, especially) of the great Floridan aquifer. Subject to saltwater contamination in coastal areas but source of largest groundwater supply in southeastern United States
Claibourne Gp, Wilcox Gp — I Clayton Fm in Georgia —I Absent
U
New Jersey, Maryland, Delaware — Magothy and Raritan Fm — I North and South Carolina — Peedee and Black Creek
Ss of Montana Gp — M Ss members of Mesaverde Gp in Wyoming, Colorado, Utah, New Mexico, and Arizona — M In Texas aquifers listed under col. 11 — I
Includes the principal
GROUNDWATER
Eocene
In coastal areas subject to saltwater encroachment and contamination. Ss aquifers of the central regions and the west primarily valuable when water from other sources is unavailable
Fms — I Alabama and Georgia — Ripley and Eutah Fms — I
(Continued)
6-7
q 2006 by Taylor & Francis Group, LLC
(Continued)
(1) Geologic Age and Rock Type
6-8
Table 6A.1
(2)
(3)
(4)
(5)
(6)
(7)
Western Mountain Ranges
Arid Basin
Columbi Lava Plateau
Colorado Plateau
High Plains
Unglaciated Central Region
(8) Glaciated Central Region
(9)
(10)
(11) Atlantic
Unglaciated Appalachian Region
Glaciated Appalachian Region
and Gulf Coastal Plain
(12)
Special Comments
Tennessee, Kentucky, Illinois — McNairy
U
Lower
U
U
In northern part of these regions
U
U
U
Woodbine Ss — I. New Jersey, Maryland, Delaware — Patapsco and Patuxent Fms — I West of Mississippi River, especially in Texas —
Jurassic
Locally — Ss Fm — M
Triassic
Locally — Ss and C Fms — M
Locally — Ss Fm
U
—M
U
Ss Fms. Some may not be developed — I Ss and C Fms used locally. Shinarump C and correlatives give rise to springs — I
q 2006 by Taylor & Francis Group, LLC
U
U
Absent
Absent
Absent
U
U
Absent
Ss, C, jointed shale, and basalt beds of Newark Gp in Massachusetts, Connecticut, New Jersey, Pennsylvania, Maryland, Virginia, and North Carolina — M
Edwards Ls and Ss in Trinity Gp — I U
Water from Ss, C, and Ls Fms west of Mississippi river, especially valuable when water from other sources is unavailable
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Lakota, Cloverly, and Kootenai Ss — M In southern part Purgatoire and Dakota Ss—M. Texas aquifers listed in col. 11—I
cretaceous
Ss — I Arkansas to Texas — Navarro Gp and Taylor Fm — I Texas —
U
U
U
Permian
DeChelly
U
Ss — I
San Andres
U
U
Absent
U
Jointed and weath-
U
GROUNDWATER
Paleozoic
Ls in Roswell Basin — P Quartermaster Gp gives
Kaibab Ls — M
rise to many springs — M Other Ss and Ls in Kansas,
Pennsylvanian
Tensleep Ss in Wyoming and other
U
U
U
U
Oklahoma, and Texas — M Ss and C beds from the Appalachians to Iowa and eastern Kansas — M to I
Ss elsewhere — M
Mississippian
Devonian
Silurian
Ls locally but little developed; springs arise from Ls in Rocky Mountains —M U
U
ered Sh, Ss, and C in Rhode Island and Massachusetts —M A few springs arise from Ls locally —U
U
Some springs arise from Ls locally —U
U
U
U
U
U
U
U
U
U
In Illinois, Iowa, Missouri, and Kentucky the Burlington, Keokuk, and St. Louis Ls — I Some Ss (primarily Chester) — M In Alabama and Tennessee — the Feet Payne chert, Gaspar Fm,
U
and St. Genevieve and Tuscumbia Ls — I In Kentucky many springs arise in Ls U, except locally in Michigan Jointed Ls, Ss, and Sh, (Traverse Fm), Illinois, some highly Missouri, Ohio metamorphosed (Columbia Ls), and M locally and Kentucky — M Ls and dolomite Fms in New York, Kentucky, Tennessee, Ohio, Illinois, and Iowa Better-known aquifers
U
Do
U
little used U
U
U
include Monroe dolomite and related carbonate Fms in Ohio — I; “Niagaran” dolomite in Illinois — P (in part)
q 2006 by Taylor & Francis Group, LLC
6-9
(Continued)
(1) Geologic Age and Rock Type Ordovician
6-10
Table 6A.1
(Continued) (2)
(3)
(4)
(5)
(6)
(7)
Western Mountain Ranges
Arid Basin
Columbi Lava Plateau
Colorado Plateau
High Plains
Unglaciated Central Region
U
U
U
U
U
(8) Glaciated Central Region
In Arkansas, Missouri, Iowa, Illinois, eastern Indiana, southern Wisconsin, south-
(9)
(10)
(11) Atlantic
Unglaciated Appalachian Region
Glaciated Appalachian Region
and Gulf Coastal Plain
Locally Ls and Ss Fms; not highly developed — M
U
Ls Fms give rise to large springs in
U
(12)
Special Comments
eastern Minnesota, the St. Peter Ss — I Overlying and subjacent Ls and Ss where present in above states and in Kansas, Oklahoma, and New York — M to I
U
U
U
U
U
Jordan Ss, “Dresbach Fm” (Galesville Ss, Eau Claire Fm, Mt. Simon Ss) — P (in part) Ls and Ss Fms in
Precambrian
Weathered and jointed
(including crystalline rocks which may be younger)
rocks locally — M
U
U
U
southern Appalachians. Otherwise —U
Eastern New York and New England Ss Fms — M; otherwise — U
Missouri and Arkansas give rise to many large springs and yield water to many wells — P U Weathered and jointed rocks locally in Minnesota,
U
Do
Wisconsin, northern Michigan, Piedmont Plateau, New England — M to I. Some Ss in North Central States
Note: Abbreviations: (1) Aquifers: P, principal aquifer in region; I, important aquifer in region; M, minor aquifer in region; U, unimportant as an aquifer in region. (2) Rock terms; S, sand, Ss, sandstone; G, gravel; C, conglomerate; Sh, shale; Ls, limestone; Fm, formation; Gp, group. Source:
From Maxey, In Chow, Handbook of Applied Hydrology, McGraw-Hill, Copyright 1964. With permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Cambrian
In Kentucky and Tennessee — Ls Fm — M to I Ss beds in Wisconsin, Minnesota, Iowa, and Illinois include
GROUNDWATER
6-11
Weste rn Rang es
High
d te ion g re
c la
an t on m
Nonglaciated Central region
and
Gulf
e Blu l a t C o as
Ri
dg lain P
HAWAII
0
500 MI
Ha w Is aiia la nd n s
0
800 KM
tal oas t C Plain
eas
tic
lan
At
Nonglaciated Central region
e
l ra nt e C
ed
Mir
d
g
on
N
uth
Alaska
ion
reg
So
ALASKA
ntr al
Glaciated Central region ia
Plains
Basins
Ce
Plains
High
Colorado Plateau and Wyoming Basin
No Ce ngla reg ntral ciate d ion
Alluvial
Nonglaciated Central region
Western Min Ranges
Plateau
Pi
ter n We s
Nonglaciated Central region
ed at
Lava
and Northeast Superior Uplands
ci la G
es
ng
Ra
Columbia
No Su r th pe ea r io st a r u nd pla nd s
Mountain
Figure 6A.3 Groundwater regions of the United States. (From Heath, R.C., Classification of ground-water regions of the United States, Groundwater, 20, 4, 1982.)
q 2006 by Taylor & Francis Group, LLC
6-12
Table 6A.2 Principal Physical and Hydrologic Characteristics of Groundwater Regions in the United States
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-13
Table 6A.3 Basic Data Required for Groundwater Studies A. Maps, Cross Sections, and Fence Diagrams 1. Planimetric 2. Topographic 3. Geologic a. Structure b. Stratigraphy c. Lithology 4. Hydrologic a. Location of wells, observation wells, and springs b. Groundwater table and potentiometric contours c. Depth to water d. Quality of water e. Recharge, discharge, and contributing areas 5. Vegetative cover, location of wetlands 6. Soils 7. Aerial photographs B. Data on Wells and Springs 1. Location, depth, diameter, types of well, and logs 2. Static and pumping water level, hydrographs, yield, specific capacity, quality of water 3. Present and projected groundwater development and use 4. Corrosion, incrustation, well interference, and similar operation and maintenance problems 5. Location, type, geologic setting, and hydrographs of springs 6. Observation well networks 7. Water sampling sites C. Aquifer Data 1. Type, such as unconfined, artesian, or perched 2. Thickness, depths, and formational designation 3. Boundaries 4. Transmissivity, storativity, and permeability 5. Specific retention 6. Discharge and recharge 7. Ground and surface water relationships 8. Aquifer models D. Climatic Data 1. Precipitation 2. Temperature 3. Evapotranspiration E. Surface Water 1. Use 2. Quality 3. Runoff distribution, reservoir capacities, inflow and outflow data 4. Return flows, section gain or loss 5. Recording stations 6. Low flow data F. Environment 1. Location of hazardous waste sites or other potential sources of pollution 2. Use of herbicides, pesticides, fertilizers, and road salt 3. Site history G. Local Drilling Facilities and Practices 1. Size and types of drilling rigs locally available 2. Logging services locally available 3. Locally used materials, well designs, and drilling practices 4. State or local rules and regulations Source: From U.S. Bureau of Reclamation, Groundwater Manual; Amended, 1977.
q 2006 by Taylor & Francis Group, LLC
6-14
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
23 17
23
25 1 9
13
19 4
12
3 24
21
14 18
2
5
10 22
11 20
8 6
15 Hawaii
16 Caribbean Islands
1 Northern Great Plains 14 Upper Colorado River basin 15 Oahu, Hawaii 2 High Plains 3 Central Valley, California 16 Caribbean Islands 17 Columbia Plateau 4 Northern Midwest 18 San Juan Basin 5 Southwest Alluvial Basins 6 Floridan 19 Michigan Basin 7 Northern Atlantic Coastal Plain 20 Edwards-Trinity 8 Southeastern Coastal Plain 21 Midwestern Basins and Arches 22 Appalachian Valleys and Piedmont 9 Snake River Plain 23 Puget-Willamette Lowland 10 Central Midwest 24 Southern California Alluvial Basins 11 Gulf Coastal Plains 12 Great Basin 25 Northern Rocky Mountain Intermontane 13 Northeast Glacial Aquifers The U.S. Geological Survey initiated the Regional Aquifer-System Analysis (RASA) Program in 1978 in response to Federal and State needs for information to improve management of the Nation's groundwater resources. The objective of the RASA Program is to define the regional geohydrology and establish a framework of background information—geologic, hydrologic, and geochemical—that can be used for regional assessment of groundwater resources and in support of detailed local studies. The program was completed in 1995. A total of 25 aquifer systems were studied under the RASA Program. Figure 6A.4 Regional aquifer study areas. (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-15
Explanation Depth to saline ground water, in feet Less than 500 500 to 1,000 More than 1,000
0
Inadequate information
0
200 200
400 Miles
400 Kilometres
Figure 6A.5 Depth to saline groundwater in the United States (generalized from Feth and others, 1965). (From USGS fact sheet 075-03, October 2003.)
10° 5°
5°
10°
15° 15°
15°
20° 20°
20° 20° 25°
Figure 6A.6 Average shallow groundwater temperatures in the United States developed by Collins. (From www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
6-16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6A.4 Estimated Groundwater in Storage, by Continent Continent Europe Asia Africa North America South America Australia Total Note:
0–100 m
100–200 m
200–2000 m
Total
0.2 1.3 1 0.7 0.3 0.1 3.6
0.3 2.1 1.5 1.2 0.9 0.2 6.2
1.1 4.4 3.0 2.4 1.8 0.9 13.6
1.6 7.8 5.5 4.3 3 1.2 23.4
In millions of km3; based on publications by soviet hydrologists.
Source: From Castany, G., Hydrogeology of deep aquifers, Episodes, 1981, 3, 1981.
Groundwater
0–25% 26–50 % 51– 75 % 76–100 % Aquifer areas Aquifer areas with a flow rate greater than 0.4 l/sec. Regions outside Canada Boundaries International Canada / Kalaallit Nunaat dividing line EEZ (200 mile)
0
590
1180
1770
2360 km
Figure 6A.7 Groundwater potential in Canada and a percentage of people using groundwater resources in Canadian municipalities over 10,000 people. (From www.atlas.gc.ca.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-17
SECTION 6B
WATER WELLS — UNITED STATES
300
KOREAN WAR WORLD WAR 2
400
DEPRESSION
500
WORLD WAR 1
Number of wells drilled, in thousands per year
600
200
100
0 1900
1910
1920
1930
1940
1950
1960 1964
1980 1985
Year Figure 6B.8 Number of water wells drilled in the United States and relation to major events in the United Stated history. (From Hindall, S.M., Eberle, Michael,1987, National and regional trends in water-well drilling in the United States 1964–1984, U.S. Geological Survey, Open File Report 87–247; 1985 data from National Water Well Association.)
Table 6B.5 Number and Type of Water Wells and Boreholes Constructed in the United States in 1985 Application/type
1985
Commercial/industrial
49,379
Heat pump supply/return
18,029
Agricultural irrigation
21,583
Private household
488,918
Public supply
20,010
Monitoring
121,294 a
29,343
a
Lawn/turf irrigation
27,036
Other
34,482
Total
810,074
Livestock watering
Note: a
PRIVATE HOUSEHOLD WELLS 60.35% HEAT PUMP 2.23% PUBLIC 2.47% IRRIGATION 2.66% COMM/IND 6.1% OTHER 11.22%
Based on Water Well Journal Survey of 8,043 firms.
Included in “Other” category on pie chart.
Source: From McCray, Kevin. Copyright Water Well Journal September 1986. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
MONITORING 14.97%
6-18
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
HAWAII
Figure 6B.9
ALASKA
LEGEND UNITS/SQ.MI. < 10 10 – 40 > 40
Density of housing units using on site domestic water supply systems in the United States [By county]. (From U.S. Environmental Protection Agency, Office of Water Supply, Office of Solid Waste Management Programs, 1977, The Report to Congress: Waste Disposal Practices and Their Effects on Groundwater.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-19
Table 6B.6 Number and Type of Water Wells in the United States, 1988 Public Supplya
Community Supply
State
Irrigation
Alabama Alaska Arizona Arkansas California
N/A 10 6,125 21,078 67,770
1,706 1,283 2,533 3,220 8,143
1,013 454 1,650 1,073 3,320
267,202 32,391 43,226 213,672 359,584
Colorado Connecticut Delaware Florida Georgia
17,809 N/A 559 29,017 4,492
3,116 5,373 1,141 11,337 4,139
1,465 1,073 497 4,650 2,460
84,459 241,130 52,701 573,059 405,078
N/A 7,371 1,107 N/A 2,210
219 3,114 10,018 16,100 5,052
218 1,312 1,492 1,805 3,674
536 88,853 443,681 546,381 236,709
18,658 N/A 4,558 N/A N/A
2,456 1,144 3,162 3,433 4,955
2,405 386 1,996 595 953
116,567 247,506 200,446 149,331 252,142
Massachussets Michigan Minnesota Missisippi Missouri
N/A N/A 4,250 N/A 3,700
2,894 12,188 13,163 3,109 3,996
1,384 1,138 2,467 2,257 1,633
132,119 934,184 382,572 150,816 305,853
Montana Nebraska Nevada New Hampshire New Jersey
997 61,361 2,332 N/A N/A
2,504 1,558 1,156 2,009 7,765
999 1,501 697 733 2,256
80,817 112,740 24,142 110,712 227,326
New Mexico New York North Carolina North Dakota Ohio
8,031 651 530 808 N/A
2,478 18,068 15,972 1,261 13,306
1,545 5,381 5,094 718 3,508
70,157 659,973 821,995 54,008 692,062
Oklahoma Oregon Pennsylvania Rhode Island South Carolina
4,351 9,241 N/A N/A 185
3,265 3,330 17,477 916 3,376
2,181 1,267 5,578 169 2,174
164,506 178,407 800,292 33,987 297,435
South Dakota Tennessee Texas Utah Vermont
1,266 320 59,636 2,295 N/A
1,244 3,125 13,297 1,961 1,739
872 1,006 9,207 1,164 653
56,512 258,997 490,453 14,511 58,380
Virginia Washington West Virginia Wisconsin Wyoming
N/A 5,853 N/A N/A 1,409
6,771 6,130 2,771 22,982 1,373
2,869 3,810 834 2,239 647
455,556 195,132 181,069 521,579 30,900
348,116
282,827
98,472
13,101,846 13,732,680
Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland
Totals Grand total
Household
Note: N/A, Not available. a Includes community supply (systems with at least 15 service connections used by year-round residents or regularly serving at least 25 year-round residents). Source: From National Water Well Association, 1988.
q 2006 by Taylor & Francis Group, LLC
6-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6B.7 Number of Water Wells Drilled in the United States, 1960–1984 Estimated Number of Wells Drilleda
State
1960
1964
1980
1981
1982
1983
1984
Percent of Total Drilled in 1984
Percentage Change between Annual Totalsb 1960 and 1964
1964 and 1984
1980 and 1984
Alabama Alaska Arizona Arkansas California
4,000 726 1,400 5,000 9,100
4,500 1,000 1,520 5,000 10,000
5,960 2,440 2,190 4,010 17,100
6,420 2,400 2,220 5,910 15,900
5,920 2,400 2,380 2,750 11,300
5,570 2,800 2,710 3,320 11,000
6,260 2,700 2,760 4,200 14,300
1.6 0.68 0.7 1.1 3.6
C13 C38 C8.6 NC C10
C39 C170 C82 K16 C43
C5 C11 C26 C5 K16
Colorado Connecticut Delaware District of Columbia Florida
3,100 6,500 3,800 12
5,910 6,500 3,440 12
4,910 5,470 2,000 ND
4,570 5,410 2,680 0
4,390 4,500 2,290 0
4,360 5,140 2,700 0
4,060 5,780 3,100 ND
1.0 1.5 0.78 ND
C91 NC K9.5 NC
K31 K11 K10 ND
K17 C6 C55 ND
33,900
55,000
40,200
40,500
38,900
43,200
45,600
C62
K17
C13
Georgia Hawaii Idaho Illinois Indiana
10,500 17 1,400 21,000 17,700
10,000 21 1,400 19,500 15,000
11,000 11 2,880 14,000 9,670
13,400 11 1,470 12,200 8,180
10,100 7 2,400 13,400 9,700
10,800 7 1,590 13,600 9,180
12,200 2 1,630 15,300 10,300
3.1 !0.1 0.35 3.9 2.6
K4.8 C24 NC K7.1 K15
C22 K90 C16 K22 K31
C11 K82 K43 C9.3 C6.5
9,000 4,700 9,880 974 1,500
15,000 5,500 9,620 2,620 1,700
5,890 4,530 5,060 6,050 2,860
6,850 5,050 5,100 6,830 2,570
4,120 3,380 4,800 6,580 2,440
3,780 3,420 5,440 5,180 3,470
3,140 3,910 5,740 5,560 3,900
0.79 1.0 1.4 1.4 1.0
C67 C17 K2.6 C170 C13
K79 K29 K40 C110 C130
K47 K14 C13 K8.1 C36
Maryland Massachusetts Michigan Minnesota Mississippi
4,020 8,000 25,000 13,000 5,300
6,900 9,000 25,000 9,000 5,900
7,200 6,330 24,000 14,400 2,670
8,000 6,270 20,000 10,500 3,550
6,700 5,370 16,000 10,800 2,540
8,800 6,820 17,000 11,100 2,400
8,300 7,670 18,500 12,500 2,640
2.1 1.9 4.7 3.1 0.66
C72 C12 NC K31 C11
C20 K15 K26 C39 K55
C15 C21 K23 K13 K1
Missouri Montana Nebraska Nevada New Hampshire
6,380 1,900 5,510 824 3,600
9,990 2,000 6,000 825 4,400
10,900 3,580 4,500 775 3,050
8,530 6,410 5,940 765 4,190
7,830 6,260 3,470 503 2,630
10,200 2,360 3,260 639 5,210
11,500 2,560 3,660 718 5,860
2.9 0.64 0.92 0.18 1.5
C57 C5.3 C8.9 NC C22
C15 C28 K39 K13 C33
C5.5 K28 K19 K7.4 C92
New Jersey New Mexico New York North Carolina North Dakota
3,800 2,290 25,000 20,000 4,200
3,440 3,150 25,000 25,000 3,760
8,620 2,750 16,800 10,500 1,710
8,540 2,880 17,000 12,000 2,190
8,580 3,370 15,600 13,500 1,450
10,900 3,430 17,800 15,900 1,480
13,100 3,110 20,000 17,100 1,450
3.3 0.78 5.0 4.3 0.36
K9.5 C38 NC C25 K10
C280 K1.3 K20 K32 K61
K52 C13 C19 C63 K15
Ohio Oklahoma Oregon Pennsylvania Rhode Island
17,100 4,400 3,500 13,500 200
18,600 5,000 4,500 16,200 250
16,700 7,980 7,500 15,600 319
14,300 7,630 6,620 12,400 240
14,200 6,500 3,800 9,620 206
14,000 5,870 3,550 8,140 387
15,700 6,590 3,530 10,800 548
4.0 1.8 0.89 2.7 0.14
C8.8 C14 C29 C20 C25
K160 C32 K22 K33 C120
K6.0 K17 K53 K31 C72
South Carolina South Dakota Tennessee Texas Utah
5,300 6,080 10,000 19,000 630
5,400 5,430 8,000 25,000 650
11,400 2,210 7,080 16,200 630
5,340 1,820 7,130 17,700 547
4,640 1,590 6,710 21,700 507
7,780 1,330 7,600 17,700 488
8,740 1,500 8,020 21,200 548
2.2 0.38 2.0 5.3 0.14
C1.9 K11 K20 C32 C3.2
C62 K72 NC K15 K16
K23 K32 C13 C31 K13
Vermont Virginia Washington West Virginia Wisconsin
1,240 8,500 1,400 5,500 11,000
1,460 10,000 1,700 5,900 12,000
3,100 10,900 5,040 3,280 11,600
2,280 8,830 4,290 3,510 9,900
1,900 9,060 3,550 2,730 9,590
2,330 15,300 4,320 2,580 10,400
3,050 16,900 4,030 2,900 11,700
0.77 4.3 1.0 0.73 2.9
C18 C18 C21 C7.3 C9.1
C110 C69 C137 K51 K2.5
K1.6 C55 K20 K12 C0.86
Iowa Kansas Kentucky Louisiana Maine
11
(Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6B.7
6-21
(Continued) Estimated Number of Wells Drilleda
State
1960
Wyoming Totals a b
1964
1980
1981
1982
1983
Percent of Total Drilled in 1984
1984
1,000
1,000
3,010
3,680
2,970
2,500
2,520
381,000
434,000
387,000
371,000
336,000
359,000
397,000
0.6 100
Percentage Change between Annual Totalsb 1960 and 1964
1980 and 1984
1964 and 1984
NC
C152
K16
C14
C8.5
C2.6
Numbers rounded to three significant figures. Numbers rounded to two significant figures.
Source: From Hindall, S.M., Eberle, Michael, national and regional trends in water-well drilling in the United States 1964–1984, U.S. Geological Survey, Open File Report, 87–247, 1987.
Table 6B.8 Regional Trends in Water-Well Construction in the United States, 1960–1984
1960
1964
1980
1981
1982
1983
1984
Average Annual Total 1980 Through 1984
Northeast (includes DC) Southeast Great Lakes and Central Appalachians South-Central Northern Rockies and Northern Great Plains Southwest (includes Hawaii) Pacific Northwest (includes Alaska)
63,300 95,300 130,000
68,000 126,000 123,000
62,100 102,000 106,000
60,600 106,000 95,300
50,800 93,600 87,900
60,200 112,000 90,900
70,800 121,000 101,000
60,900 107,000 96,200
54,800 20,100
77,200 19,600
63,200 17,900
62,100 16,700
60,600 18,100
57,300 12,500
63,300 13,300
61,300 15,700
12,000 5,620
13,000 7,200
20,700 15,000
17,700 11,400
15,100 9,750
14,800 8,670
18,300 10,300
17,300 11,000
Totals
381,000
434,000
387,000
370,000
336,000
359,000
397,000
370,000
Number of Wells Drilled Region
Percentage of Total Wells Drilled
Northeast (includes DC) Southeast Great Lakes and Central Appalachians South-Central Northern Rockies and Northern Great Plains Southwest (includes Hawaii) Pacific Northwest (includes Alaska) Totals
Percentage Change between Annual Totals
1964
1984
1960 and 1964
1964 and 1984
1980 and 1984
16
18
C7.4
C4.1
C14
29 28
30 25
C32 K5.4
K3.9 K18
C19 K4.7
18 4.5
16 3.3
C41 K2.5
K18 K32
NC K26
3.0
4.6
C8.3
C41
K12
1.7
2.6
C28
C43
K31
C14
K8.5
C2.6
100
100
Source: From Hindall, S.M., Eberle, Michael, national and regional trends in water-well drilling in the United States 1964–1984, U.S. Geological Survey, Open File Report, 87–247, 1987. q 2006 by Taylor & Francis Group, LLC
6-22
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 6C
q 2006 by Taylor & Francis Group, LLC
WATER WELLS
Method
Materials for Which Best Suited
Water Table Depth for Which Best Suited (m)
Usual Maximum Depth (m)
Usual Diameter Range (cm)
Usual Casing Material
Customary Use
Yield m3/daya
Augering Hand auger
Clay, silt sand, gravel less than 2 cm
2–9
10
5–20
Sheet metal
Domestic, drainage
15–250
Power auger
Clay, silt sand, gravel less than 5 cm
2–15
25
15–90
Concrete, steel or wrought-iron pipe
15–500
Driven Wells Hand, air hammer Jetted Wells Light, portable rig Drilled Wells Cable tool
Silt, sand, gravel less than 5 cm
2–5
15
3–10
Standard weight pipe
Domestic, irrigation, drainage Domestic, drainage
Silt, sand, gravel less than 2 cm
2–5
15
4–8
Standard weight pipe
Domestic, drainage
Unconsolidated and consolidated medium hard and hard rock
Any depth
450b
8–60
Steel or wrought-iron pipe
Rotary
Silt, sand, gravel less than 2 cm; soft to hard consolidated rock
Any depth
450b
8–45
Reservecirculation rotary
Silt, sand, gravel, cobble
2–30
60
Rotarypercussion
Silt, sand, gravel less than 5 cm; soft to hard consolidated rock
Any depth
600b
a b
15–200
Remarks Most effective for penetrating and removing clay. Limited by gravel over 2 cm. Casing required if material is loose Limited by gravel over 5 cm, otherwise same as for hand auger Limited to shallow water table, no large gravel
15–150
Limited to shallow water table, no large gravel
All uses
15–15,000
Steel or wrought-iron pipe
All uses
15–15,000
40–120
Steel or wrought-iron pipe
Irrigation, industrial, municipal
2500–20,000
30–50
Steel or wrought–iron pipe
Irrigation, industrial, municipal
2500–15,000
Effective for water exploration. Requires casing in loose materials. Mudscow and hollow rod bits developed for drilling unconsolidated fine to medium sediments Fastest method for all except hardest rock. Casing usually not required during drilling. Effective for gravel envelope wells Effective for large-diameter holes in unconsolidated and partially consolidated deposits. Requires large volume of water for drilling. Effective for gravel envelope wells Now used in oil exploration. Very fast drilling. Combines rotary and percussion methods (air drilling) cuttings removed by air. Would be economical for deep water wells
GROUNDWATER
Table 6C.9 Water Well Construction Methods and Applications
Yield influenced primarily by geology and availability of groundwater. Greater depths reached with heavier equipment.
q 2006 by Taylor & Francis Group, LLC
6-23
Source: From U.S. Soil Conservation Service, Engineering Field Manual for Conservation Practices, 1969.
6-24
Table 6C.10 Relative Performance of Different Drilling Methods in Various Types of Geologic Formations
Note: a
3 5 3 5 3
5 5 5 5 4
3
3
5
5 5 5
3 5 3
3 5 5
5
3
5 5 5
Reverse Rotary (Dual Wall)
Hydraulic Percussion
Jetting
Driven
Auger
3 3
1 1 1 1
5 5 5 1
5 5 5 1
5 5 5 5
5 5 3 5 4
5 5 5 5 5
3 3 3 3 4
3
3
5
3
6 6
3 5 3
3 5 3
5 5 5
5
6
2
5
5
3–1 5 3
2 5 5
5 6 6
1 5 3
5 5 5
1 5 5
3 3
3 1
4 3
5 3
3 1
4 4
3 1
3 3
3 3
4 5
5 5
3 3
4 4
3 3
Rate of Penetration: 1, Impossible; 2, Difficult; 3, Slow; 4, Medium; 5, Rapid; 6, Very rapid.
Assuming sufficient hydrostatic pressure is available to contain active sand (under high confining pressures).
Source: From Driscoll, F.G., 1986, Groundwater and Wells. Copyright Johnson Division.
q 2006 by Taylor & Francis Group, LLC
Not recommended
6 6 6 4
Not applicable
5a 5a 5a 2–1
Not recommended
6 6 6 5
3 2 2
Not applicable
5 5 5 2–1
Reverse Rotary (with fluids)
Not recommended
2 2 2 3–2
Direct Rotary (DrillThrough Casing Hammer)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Dune sand Loose sand and gravel Quicksand Loose boulders in alluvial fans or glacial drift Clay and slit Firm shale Sticky shale Brittle shale Sandstone — poorly cemented Sandstone — well cemented Chert nodules Limestone Limestone with chert nodules Limestone with small cracks or fractures Limestone, cavernous Dolomite Basalts, thin layers in sedimentary rocks Basalts — thick layers Basalts — highly fractured (lost circulation zones) Metamorphic rocks Granite
Cable Tool
Direct Rotary (with Air)
Not recommended
Type of Formation
Direct Rotary (with Fuids)
Direct Rotary (Down-the-Hole Air Hammer)
GROUNDWATER
6-25
Table 6C.11 Description of Drilling Methods Methods Without Drilling Fluids Displacement Boring Pros: † † Cons: † † † †
Does not require heavy equipment (by hand or lightweight equipment) Clean method for shallow well installation Method limited to shallow depths Method limited to soft soils and boulder, cobble-free zones Not efficient if necessary to install several wells Practical limitation up to w2 00 diameter sampler
Similar to the above method is “Direct Push Technology” or DPT. A common trade name is GeoProbe. DPT does not require heavy equipment, most units are pickup mounted or ATV mounted for easy accessibility Driven Wells Pros: † † Cons: † † †
Cost effective Easy access in most conditions Limited to shallow depths (! 50 ft) Limited to unconsolidated, soft formations relatively free of cobbles or boulders May require pre-drilling a hole of slightly greater diameter that the well point
Solid-Stem Auger Pros: † † † † Cons: † † †
Rapid and low-cost drilling in clayey formations Clean method, does not require circulation fluids No casing necessary where the formation is stable Allows collection of representative sample in semi-consolidated formations Practical limitation to 24 00 diameter Inefficient in loose, sandy material (depends on the depth) Inefficient below the water table (depends on the depth)
Hollow-Stem Auger (HSA) Pros: † † † Cons: † †
Allows collection of uncontaminated sample in unconsolidated formation Can be used as temporary casing to prevent caving Relatively rapid, especially in clayey formations
Ineffective through boulders Limited drilling in loose, granular soils, particularly below the water table where sample recovery can be compromised † Difficult to retrieve a sample in loose, granular soil because cuttings do not always want to come to the surface. Samples must be collected with a split spoon or a continuous corer, either of which can provide excellent samples if done correctly † Limited to rather shallow depths
Sonic Drilling Pros: Drilling can proceed with or without the use of drilling fluids Method can be utilized in unconsolidated and some consolidated formations Minimal disturbance to soil samples Good recovery of quasi-continuous samples Conventional air rotary or down-hole hammer methods can be employed through the outer drive casing † The rig can also be operated as a fluid rotary machine Cons: † A relatively new method that is not available everywhere † Relatively expensive compared to other drilling methods † † † † †
(Continued)
q 2006 by Taylor & Francis Group, LLC
6-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.11
(Continued)
† Dry casing advancement generates heat that can affect the sample integrity † Maximum nominal diameter of less than 12 in. † Practical depth limitation of less than 500 ft Methods that Use Drilling Fluids Rotary (Direct) Drilling Pros: † † † Cons: †
High penetration rate Drilling operation requires a minimum amount of casing Rapid mobilization and demobilization
Use of a drilling fluid, both in terms of sample contamination and water management (in the case of water-based fluids and air injected by gasoline compressors) † Circulation of drilling fluid may be lost in loose/coarse formations, hence making difficult to transport drill cuttings † Difficult to collect accurate samples, i.e. a sample from a discrete zone since the cuttings accumulate at surface around the rim of the borehole
Reverse Circulation Rotary Drilling (RC) Pros: † Applicable to a wide variety of formations † Possible to drill large-diameter holes, both quickly and economically † Minimal disturbance to the formation due to the pressure being applied inside and outside the pipe string † Easier recovery of cuttings since the up-hole velocity is controlled by the size of the drill pipe and less subject to lost-circulation † No casing required during drilling and advantageous when high risks of caving inches. If there is a risk of caving, mud should be used as a stabilizer. In the case of air drilling, it presents the same risk than regular air rotary, since the flow is down the annular space Cons: † High water requirements (not for air drilling) † Collection of a representative sample is difficult due to potential material mixing † Rig size can render access difficult † Need for drilling mud management (not for air drilling) Dual-Wall Reverse Circulation Drilling Pros: † † † † † Cons: † † † †
Good sample recovery due to controlled up-hole fluid velocity Fast penetration in coarse alluvial or broken, fissured rock Possible to obtain continuous representative samples of the formation and groundwater Easy estimate of aquifer yield at many depths in the formation Reduction of lost-circulation problems Practical borehole diameter limited to 10 in. Maximum depth of w1,400 ft, although greater depths can be achieved in hard rock Possible to dry out or to not detect a thin of low-yield aquifer Possible sample contamination due to the oil used in the air-compressor unless quality air filters are used (this is true for all air methods, unless the contractor uses filters)
Cable-Tool Percussion Pros: † In situations where the aquifer is thin and yield is low, the method permits identification of zones that might be overlooked by other drilling methods † Recovery of representative soil samples at every depth, although samples are disturbed due to the impact of the blow which can affect material several feet below the bottom of the hole † Allows well construction with low chance of contamination † Borehole can be bailed at any time to determine approximate yield of the formation at a given depth † Easy access to rough terrain Cons: † Slow penetration rate † Due to the constant mixing of water, it is not possible to obtain groundwater samples during drilling
(Continued) q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-27
Table 6C.11
(Continued)
† Expensive casing for larger diameters † Difficult to pull back casing in some geologic conditions Air Percussion Down-the-Hole Hammer Pros: † † † † † Cons: †
Rapid removal of cuttings No use of drilling mud High penetration rate, especially in resistant rock formation (e.g. basalt) Easy soil and groundwater sampling during drilling Possible to measure yield estimate at selected depth in the formation Restricted to semi-consolidated to consolidated formations
Air Percussion Casing Hammer Pros: † Wells can be drilled in unconsolidated materials that could be difficult to drill with cable-tool or direct rotary method † No water-based fluid (drilling mud) is required in unconsolidated materials † Representative formation and groundwater samples can be collected † Borehole is fully stabilized during drilling operations through the use of casing † Rapid penetration rates even in difficult drilling conditions † Lost circulation problem is rarely a concern, except in very loose materials (e.g. mine waste rock) † Operates well in cold weather Cons: † Method does not permit yield measurements during drilling † When groundwater static levels are low, the high air pressure in the hole can prevent water from entering the borehole; a “rest” period is necessary to assess the true static level † Relatively expensive method (increased cost of driving casing in) † Very noisy (driving of casing) † Borehole diameter limited to 12 in. ODEX Percussion Down-the-Hole Hammer (Odex, Stratex, and Tubex are Trade Names) Pros: † † † † † †
Rapid removal of cuttings No use of drilling mud High penetration rate, especially in resistant rock formation (e.g. basalt) Easy soil and groundwater sampling during drilling Possible to measure yield estimate at selected depth in the formation Advantageous in unconsolidated formations with a high risk of caving (this is the probably the most important feature)
Cons: † Practically restricted to unconsolidated formations † Relatively a more expensive method Copyright 1990–2005 InfoMine Inc. Developed and maintained by InfoMine Inc.
Source: From technologyinfomine.com. With permission.
q 2006 by Taylor & Francis Group, LLC
6-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.12 Data on Standard and Line Pipe Commonly Used for Water Well Casing Schedule or Classa
Wall Thickness (in.)
Weight per Foot-Plain End (Pounds)
Inside Diameter (in.)
Suggested Maximum Setting (ft)b
5.200
— 40
0.219 0.237
10.10 10.79
4.062 4.026
1,190 1,060
6.625
7.390
— 40(S)
0.250 0.280
17.02 18.97
6.125 6.065
705 850
8
8.625
9.625
20 30 40(S)
0.250 0.277 0.322
22.36 24.70 28.55
8.125 8.071 7.981
420 525 695
10
10.750
11.750
20 30 40(S)
0.250 0.307 0.365
28.04 34.24 40.48
10.250 10.136 10.020
235 410 580
12
12.750
14.000
20 30 S 40c
0.250 0.330 0.375 0.406
33.38 43.77 49.56 53.56
12.250 12.090 12.000 11.938
140 320 435 515
14
14.000
15.000
10 20 30(S) 40
0.250 0.312 0.375 0.438
36.71 45.68 54.57 63.37
13.500 13.376 13.250 13.124
105 195 350 495
16
16.000
17.000
10 20 30(S) 40
0.250 0.312 0.375 0.500
42.05 52.36 62.58 82.77
15.500 15.376 15.250 15.000
70 140 240 495
18
18.000
19.000
10 20 S 30 40
0.250 0.312 0.375 0.438 0.562
47.39 59.03 70.59 82.06 104.76
17.500 17.376 17.250 17.124 16.876
50 100 170 270 495
20
20.000
21.000
10 20(S) 30 40c
0.250 0.375 0.500 0.594
52.73 78.60 104.13 123.06
19.500 19.250 19.000 18.802
35 125 295 445
22
22.000
—
10 20(S) 30
0.250 0.375 0.500
58.07 86.61 114.81
21.500 21.250 21.000
30 95 220
24
24.000
—
10 20(S) 30 40
0.250 0.375 0.562 0.688
63.41 94.62 140.80 171.17
23.500 23.250 22.876 22.624
20 70 240 410
26
26.000
—
10 S 20
0.312 0.375 0.500
85.73 102.63 136.17
25.376 25.250 25.000
30 55 135
28
28.000
—
10c (S) 20 30
0.312 0.375 0.500 0.625
92.41 110.41 146.85 182.73
27.376 27.250 27.000 26.750
25 45 105 210
30
30.000
—
10c (S) 20 30
0.312 0.375 0.500 0.625
99.08 118.65 157.53 196.08
29.376 29.250 29.000 28.750
20 35 85 170
Outside Diameter (in.)
Outside Diameter Couplings (in.)
4
4.500
6
Nominal Size (in.)
(Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6C.12 Nominal Size (in.)
6-29
(Continued) Outside Diameter (in.)
Outside Diameter Couplings (in.)
Schedule or Classa
Wall Thickness (in.)
Weight per Foot-Plain End (Pounds)
Inside Diameter (in.)
Suggested Maximum Setting (ft)b
32
32.000
—
10c (S) 20 30
0.312 0.375 0.500 0.625
105.76 126.66 168.21 209.43
31.376 31.250 33.000 32.750
20 30 70 140
34
34.000
—
10c S 20 30
0.312 0.375 0.500 0.625
112.43 134.67 178.89 222.78
33.376 33.250 33.000 32.750
15 25 60 115
36
36.000
—
10c (S) 20 30
0.312 0.375 0.500 0.625
119.11 142.68 189.57 236.13
35.376 35.250 35.000 34.750
10 20 50 100
a
ASA Standard B36.10 schedule numbers (S) indicates standard weight pipe. Maximum settings were estimated for the worst possible conditions in unconsolidated formation. A design factor of approximately 1.5 was used for steel with yield strength less than 40,000 lb/in2. A 50-percent increase in depth of setting beyond those given is considered safe under favorable conditions. c Indicates a non-API standard. Source: From Bureau of Reclamation, Groundwater Manual, 1977. b
Table 6C.13 Recommended Casing Diameters for Water Wells Yield, Gallons per Minute Less than 100 75–175 150–400 350–600 600–1,300 1,300–1,800 1,800–3,000 3,000–4,500 Over 4,500
Recommended Casing Size (in.) 6 8 10 12 16 20 24 30 30
I.D.a I.D. I.D. I.D. O.D.b O.D. O.D. O.D. O.D.
Note: For line shaft vertical turbine pumps 1800 rpm. a b
I.D., Inside Diameter. O.D., Outside Diameter.
Source: From U.S. Environmental Protection Agency, Manual of Water Well Construction Practices, EPA-570/ 9–75–001. q 2006 by Taylor & Francis Group, LLC
6-30
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.14 Recommended Casing Sizes for Domestic Water Wells Yield at 50 00 Drawdown
Recommended Casing Diameter (in.)
Less than 8 gpm
2 3 4 5 6 2 3 4 5 6 3 4 5 6
8–16.5 gpm
Greater than 16.5 gpm
Pump Type Jet
Double Jet
X X X
X X X X
X X X
X X X X
X X
Submersible X X X X X X X X
X X
X X X
Source: From U.S. Environmental Protection Agency, Manual of Water Well Construction Practices, EPA-570/9–75–001. Table 6C.15 Recommended Maximum Depth of Setting for California Stovepipe Casing Gaugea Diameter (in.) 8 10 12 14 16 18 20 22 24 26 30
12
10
D
S
D
S
340 150 100 60 40 30 20
125 60 35 20 15
750 390 225 140 90 65 45 35 25 20 10
260 135 75 45 30 20
Thickness (in.)
8 D
6 D
3/16
1/4
5/16
3/8
X X 390 250 165 115 85 60 45 35 25
X X X X 275 190 140 105 80 60 40
X 320 180 115 75 55 35 X 20 X 10
X 750 435 270 180 125 90 X 50 X 25
X X 875 530 360 260 180 X 100 X 50
X X X X 630 445 320 X 185 X 95
Note: D, Telescoping; S, Single thickness; X, Not commonly made in these sizes. Includes similar sheet steel and steel-plate fabricated casing; in feet. a
U.S. Standard Gauge.
Source: From Bureau of Reclamation, Groundwater Manual, 1977. Table 6C.16 Recommended Diameter and Thickness of PVC Casing for Water Wells Nominal Size 1.5 2 2.5 3 4
Outside Diameter
Inside Diameter
Minimum Wall Thickness
Well Diameters 1.5 in. Through 4 in.-ASTMD 2241-73a SDR 21 (Type 1120–1220) 1.900 1.720 0.090 2.375 2.149 0.113 2.875 2.601 0.137 3.500 3.166 0.177 4.500 4.072 0.214 Well Diameters 5 in. Through 12 in.-ASTMD 1785-73a Schedule 40 (Type 1120–1220)
5 6 8 10 12 a
5.563 6.625 8.625 10.750 12.750
5.047 6.065 7.981 10.020 11.938
0.258 0.280 0.322 0.365 0.406
New ASTM Standards are currently under view.
Source: From U.S. Environmental Protection Agency, Manual of Water Well Construction Practices, EPA-570/9–75–001. q 2006 by Taylor & Francis Group, LLC
Gradation of Sand Very Fine Sand 6–7–8 Slot About the finest material that can be utilized for a water supply. A line composed of 12 grains would measure about 1/16 00 Fine Sand 9–10–12 Slot Often called “sugar sand.” Line of 6 or 7 average grains measures 1/16 00 Medium Sand 16–18–20 Slot Average grain size is about 4 grains 1/16 00 Medium and Coarse Sand Mixed Average grain size a little less than 1/32 00 , or between 2 and 3 grains to 1/16 00 Coarse Sand Average grain size a little over 1/30 (2 grains to 1/16 00 ) Coarse Sand and Fine Gravel Mixed Average grain size about 1/16 00 . In coarser gravels, No. 80 and No. 100 slot are often used a
Average Slot Size Thousandths of an inch
Minimum Suggested Length for Corresponding Screen Diametera and Desired Well Yield 11⁄4 00 Screen
2 00 Screen
3 00 Screen
4 00 Screen
5 00 Screen
6 00 Screen
7
300 gph– 5 ft 450 gph– 8 ft 600 gph–12 ft
450 gph– 6 ft 600 gph– 9 ft 900 gph–13 ft
600 gph– 8 ft 900 gph–11 ft 1200 gph–14 ft
600 gph– 6 ft 1200 gph–10 ft 1800 gph–14 ft
900 gph– 6 ft 1200 gph– 9 ft 1800 gph–11 ft
1200 gph– 8 ft 2000 gph– 2 ft 2400 gph–15 ft
10
300 gph–4 ft 450 gph–6 ft 600 gph–9 ft
450 gph–4 ft 600 gph–6 ft 900 gph–9 ft
600 gph–6 ft 900 gph–8 ft 1200 gph–10 ft
600 gph–4 ft 1200 gph–7 ft 1800 gph–10 ft
900 gph–5 ft 1200 gph–7 ft 1800 gph–8 ft
1200 gph–6 ft 1200 gph–9 ft 2400 gph–11 ft
18
300 gph–4 ft 450 gph–5 ft 600 gph–7 ft
600 gph–5 ft 900 gph–7 ft 1200 gph–9 ft
600 gph–4 ft 1200 gph–9 ft 1800 gph–13 ft
600 gph–3 ft 1200 gph–6 ft 1800 gph–9 ft
900 gph–4 ft 1200 gph–6 ft 1800 gph–7 ft
1200 gph–5 ft 2000 gph–8 ft 2400 gph–10 ft
25
300 gph–3 ft 450 gph–5 ft 600 gph–6 ft
600 gph–5 ft 900 gph–6 ft 1200 gph–8 ft
600 gph–4 ft 1200 gph–7 ft 1800 gph–11 ft
600 gph–3 ft 1200 gph–5 ft 1800 gph–8 ft
900 gph–4 ft 1200 gph–5 ft 1800 gph–6 ft
1200 gph–5 ft 2000 gph–7 ft 2400 gph–91 ft
35
450 gph–4 ft 600 gph–5 ft 900 gph–7 ft
600 gph–4 ft 900 gph–5 ft 1200 gph–7 ft
900 gph–4 ft 1200 gph–6 ft 1800 gph–10 ft
900 gph–3 ft 1200 gph–4 ft 1800 gph–7 ft
1200 gph–4 ft 1800 gph–6 ft 2000 gph–8 ft
1200 gph–4 ft 2000 gph–7 ft 2400 gph–8 ft
50
450 gph–4 ft 600 gph–5 ft 900 gph–7 ft
600 gph–4 ft 900 gph–5 ft 1200 gph–6 ft
900 gph–4 ft 1200 gph–6 ft 1800 gph–10 ft
900 gph–3 ft 1200 gph–4 ft 1800 gph–7 ft
1200 gph–4 ft 1800 gph–6 ft 2000 gph–7 ft
1200 gph–4 ft 2000 gph–6 ft 2400 gph–8 ft
GROUNDWATER
Table 6C.17 Well Screen Selection Chart for Small-Capacity Wells
Nominal size of screen.
Source: From Edward E. Johnson, Inc. With permission.
6-31
q 2006 by Taylor & Francis Group, LLC
6-32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.18 Recommended Minimum Screen Assembly Diameters Minimum Nominal Screen Assembly Diameter (in.)
Discharge (gal/min) Up to 50 50 to 125 125 to 350 350 to 800 800 to 1,400 1,400 to 2,500 2,500 to 3,500 3,500 to 5,000 5,000 to 7,000 7,000 to 9,000 Source:
2 4 6 8 10 12 14 16 18 20
From U.S. Bureau of Reclamation, Groundwater Manual, 1977.
Table 6C.19 Cost of Water Well Screens 304SS Drive Points 1–1/4 00 PS 1.71 00 OD!1 00 ID
2 00 PS 2.38 00 OD ! 1.75 00 ID
3 00 PS All Drive 3.7 00 OD ! 3 00 ID
Price Model Number
Screen Length
Ship Wt/pc
W60
24 00 36 00 48 00 60 00
5 7 9 11
$106 $133 $160 $186
824 836 848 860
4 00 PS All Drive 4.69 00 OD ! 4 00 ID
Price W90
Model Number
Screen Length
Ship Wt/pc
W60
W90
Screen Length
Ship Wt/pc
Price W60
Screen Length
Ship Wt/pc
Price W60
$96 $120 $144 $169
924 936 948 960
24 00 36 00 48 00 60 00
8 11 14 16
$129 $159 $190 $220
$117 $144 $172 $200
24 00 36 00 48 00 60 00
10 14 17 22
$176 $224 $272 $320
24 00 36 00 48 00 60 00
13 17 21 25
$217 $279 $340 $404
Fittings are 304 SS MIP X Carbon Steel Point w/guardian plate or 304 SS MIP X MIP for open end extensions. For other screen lengths add $30/ft for 1 1⁄4 00 , $34/ft for 2 00 , $38/ft for 3 00 , and $49/ft for 4 00 . All Drive screens are MIPXFIP only, if cast iron point is required add; 3 00 PS-$80.00, 4 00 PS-$85.00 to the list price above. 304 SS Small Diameter Waterwell Screens a
Direct Attached Standard Fittings Per End
Dimensions
Screen OD Dima
Price per foot
Flush Threads
Misc Attach
Plate Btm w/WR
Sch40
Sch80
Clean and Bag
Ball Loopd
SS Pointe
Type-Max Depth Based on Collapse Strengtha
Nom Dia Wt/ft
W60
W90
ID
60
90
Weld Ringc
NPT Thd
Fig K Pkr w/WR
2P/3T 3.0#
2.60
2.50
2.02
$34
$31
$41
$39
n/a
$61
$37
$39
$13
$41
$79
W60–1000 W90–500
3P/4T 4.0#
3.74
3.64
3.16
$38
$34
$43
$41
n/a
$64
$39
$41
$21
$48
$92
4P/5T 5.0#
4.74
4.64
4.16
$49
$45
$49
$49
n/a
$72
$47
$49
$21
$50
$151
5P/6T 6.0#
5.63
5.53
5.05
$57
$52
$51
$60
$161
$86
$58
$60
$32
$61
n/a
W60–900 W90–300 W60–500 W90–200 W60–300 W90–100b
304 SS Small Diameter Environmental Screens a
Dimensions OD Dim
Direct Attached Standard Fittings Per End Screen Price per foot
a
Flush Threads
Misc Attach Type-Max Depth Based on Collapse Strengtha
Nom Dia Wt/ft
W60
W90
ID
60
90
Weld Ringc
NPT Thd
Fig K Pkr w/WR
1/2 00 PSb 1.0#
0.89
0.83
0.53
$30
$27
$20
$19
n/a
$30
$73
$80
$13
n/a
n/a
W60-2000 W90-1500
3/4 00 PSb 1.5#
1.09
1.06
0.73
$31
$28
$21
$21
n/a
$32
$73
$80
$13
n/a
n/a
W60-2000 W90-1000
Plate Btm w/WR
Sch40
Sch80
Clean and Bag
Ball Loopd
SS Pointe
(Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6C.19
6-33
(Continued) 304 SS Small Diameter Environmental Screens a
Direct Attached Standard Fittings Per End
Dimensions
Screen Price per foot
a
OD Dim
Flush Threads Fig K
Plate
Misc Attach Type-Max Depth Based
Nom Dia Wt/ft
W60
W90
ID
60
90
Weld Ringc
NPT Thd
Pkr w/WR
Btm w/WR
Sch40
Sch80
Clean and Bag
Ball Loopd
SS Pointe
on Collapse Strengtha
1 00 PSb 2.0#
1.33
1.27
0.88
$31
$28
$22
$28
n/a
$35
$66
$72
$13
n/a
$53
W60-2000 W90-1000
1-1/4 00 PS 1.5#
1.67
1.60
1.19
$30
$29
$24
$36
n/a
$36
$33
$36
$13
$38
$58
W60-1000 W90-600
1-1/2 00 PS 3.0#
2.01
1.95
1.54
$33
$31
$25
$38
n/a
$37
$36
$38
$13
$38
$62
W60-1000 W90-600
2 00 PS 3.0#
2.47
2.41
1.99
$34
$31
$41
$39
n/a
$61
$37
$39
$13
$41
$79
E60-1000 E90-600
2-1/2 00 PS 4.0#
3.03
2.93
2.45
$39
$35
$41
$39
n/a
$61
$37
$39
$21
$44
$81
W60-1000 W90-600
3 00 PS 4.0#
3.56
3.46
2.98
$38
$34
$43
$41
n/a
$64
$39
$41
$21
$48
$92
E60-1000 E90-300
4 00 PS 5.0#
4.56
4.46
3.98
$49
$45
$49
$49
n/a
$72
$47
$49
$21
$50
$151
6 00 PS 7.0#
6.64
6.54
6.02
$81
$80
$79
$106
n/a
$126
$104
$106
$32
$66
n/a
E60-500 E90-200
E60-250 E90-50 Minimum billing length is 3 ft for all diameters. For Tightwind or Super Construction Screen: Add 25% to Screen Price/Feet. Please specify water well or environmental when ordering. Must add “Clean & Bag” charge for environmental screen. Environmental screens supplied in “Shoulder to Shoulder” lengths. For loose plate bottom deduct (1) weld righ from plate bottom assembly.
a
Dimensions, weights and collapse strength are approximate (based on an average slot and depth).
b
Minimum order requirement for 1⁄2 00 through 1 00 PS is $300 (net). Standard weld ring length 2PS 00 through 6PS 00 is 1-1/2 00 . Bail Loop prices Do Not include plate. SS point is weld on. For threaded point add appropriate thread price.
c d e
Large Diameter “Free Flow” 304 Stainless Steel Direct Attached Standard Fittings Per End Standard Dimensionsf
Nom Diam 00
OD
ID
Screen Price Per Foot Max Depth Based on Collapse Strengthf
Weld Rings
Threads
100 ft
250 ft
600 ft
1000 ft
Std
4 00
6 00
Npt
Jws
Flush Sch40
Misc Attachments
Flush Sch80
Fig “K” Pkr w/WR
Plate Btm w/WR
Bail Loopg
Lift Lugsh
4 00 WR W/4 00 Collar $279
6 PS
6.70 6.00 Wt/Foot 6#
$81
$83
$85
$93
$79
$107
$131
$106
n/a
$104
$106
n/a
$126
$66
$84
8 00 Tel
7.50 6.75 Wt/Foot 10#
$88
$88
$96
$96
$108
$141
$173
n/a
$154
n/a
n/a
$435
$173
$70
$93
8 00 PS
8.63 7.88 Wt/Foot 12#
$95
$95
$99
$99
$126
$148
$183
$196
n/a
$193
$290
n/a
$202
$70
$93
10 00 Tel
9.50 8.68 Wt/Foot 13#
$119
$119
$129
$129
$144
$187
$230
n/a
$300
n/a
n/a
$460
$245
$70
$105
10 00 PS
10.75 9.88 Wt/Foot 14#
$135
$135
$135
$162
$149
$194
$238
$254
n/a
$292
$440
n/a
$253
$70
$105
12 00 Tel
11.25 10.40 Wt/Foot 18#
$143
$143
$143
$170
$169
$223
$276
n/a
n/a
n/a
N/a
$605
$287
$70
$116
12 00 PS
12.75 11.80 Wt/Foot 23#
$146
$146
$169
$192
$196
$249
$304
$387
n/a
$623
$924
n/a
$333
$70
$116
14 00 Tel
12.50 11.60 Wt/Foot 25#
$145
$145
$164
$189
$215
$280
$344
n/a
n/a
n/a
N/a
$809
$366
$76
$121
$338
$410
$512
(Continued) q 2006 by Taylor & Francis Group, LLC
6-34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.19
(Continued) Large Diameter “Free Flow” 304 Stainless Steel Direct Attached Standard Fittings Per End
Standard Dimensionsf
Screen Price Per Foot Max Depth Based on Collapse Strengthf
Weld Rings
Threads
Misc Attachments Fig
Nom Diam
OD
ID
100 ft
250 ft
600 ft
1000 ft
Std
4 00
6 00
Npt
Jws
Flush Sch40
Flush Sch80
“K” Pkr w/WR
Plate Btm w/WR
Bail Loopg
Lift Lugsh
4 00 WR W/4 00 Collar
14P/16T
14.00 13.00 Wt/Foot 30#
$175
$175
$192
$209
$252
$329
$404
n/a
n/a
na
na
$923
$441
$76
$121
$601
16P/18T
16.00 15.00 Wt/Foot 35#
$185
$202
$215
$235
$302
$377
$464
n/a
n/a
n/a
N/a
$1,014
$529
$76
$128
$670
18P/20T
18.00
$214
$224
$255
$304
$360
$468
$576
n/a
n/a
n/a
N/a
$1,045
$630
$76
$128
$755
$845
16.70
Wt/Foot 40# 20 00 PS
20.00 18.80 Wt/Foot 42#
$252
$272
$295
$320
$382
$497
$611
n/a
n/a
n/a
N/a
n/a
$669
$76
$139
24 00 Tel
22.00 20.70 Wt/Foot 46#
$342
$348
$391
$407
$404
$525
$646
n/a
na
n/a
N/a
n/a
$707
$87
$139
24P/26T
24.00 22.75 Wt/Foot 58#
$369
$415
$493
$493
$462
$601
$739
n/a
n/a
n/a
N/a
n/a
$809
$87
$151
$998
26 00 PS
26.00
$436
$436
$527
$627
$539
$674
$830
n/a
n/a
n/a
n/a
n/a
$943
$87
$151
$1,102
24.40
Wt/Foot 62# 30 00 Tel
27.25 25.75 Wt/Foot 65#
$450
$490
$570
Call
$595
$774
$952
n/a
n/a
n/a
n/a
n/a
$1,041
$105
$169
30P/36T
30.00 28.30 Wt/Foot 74#
$530
$593
$633
Call
$671
$872
$1,074
n/a
n/a
n/a
n/a
n/a
$1,174
$105
$169
36 00 PS
36.00 34.30 $610 $696 $696 Call $773 $1,005 $1,237 n/a n/a n/a n/a n/a $1,353 $105 $169 Wt/Foot 90# Call for pricing on screens deeper than 1000 feet. Standard weld ring lengths: 6 00 PS-16P/18T are 1-1/2 00 long; 18P/20T and larger are 2 00 long. To price Weld Rings longer than 6 00 , combine prices shown above. For Tightwind: Add 25% to Screen Price/Ft (Min TW slot !Z0.010 Inch). Minimum billing length for LG Diam SS is 3 feet. Furnished in Full Screen Lengths, unless specified otherwise at the time of order. f
Dimensions, weights and collapse strength are approximate (based on an average slot and depth). Standard weld ring length 2PS 00 through 6PS 00 is 1-1/2 00 . Bail Loop prices Do Not include plate.
g h
Large Diameter 304 Stainless Steel High Flow (HIQ) and Remediationi Direct Attached Standard Fittings Per End Standard Dimensionsi
Screen Price Per Foot Max Depth Based on Collapse Strengthi
Weld Rings
Threads
Misc Attachments
Flush Sch80
Fig “K Pkr w/WR
Plate Btm w/WR
Bail Loopj
Lift Lugsk
4 00 WR W/4 00 Collar $279
00
Nom Diam 00
OD
ID
100 ft
250 ft
600 ft
1000 ft
STD
4 00
6 00
NPT
JWS
Flush Sch40
6 PS
6.70 6.00 Wt/Foot 6#
$81
$89
$96
$96
$79
$107
$131
$106
n/a
$104
$106
n/a
$126
$66
$84
8 00 Tel
7.50 6.75 Wt/Foot 10#
$96
$105
$105
$110
$108
$141
$173
n/a
$153
n/a
n/a
$435
$173
$70
$93
8 00 PS
8.63 7.88 Wt/Foot 12#
$116
$116
$125
$125
$126
$148
$183
$196
n/a
$193
$290
n/a
$202
$70
$93
10 00 Tel
9.50
$131
$131
$141
$141
$144
$187
$230
n/a
$301
n/a
n/a
$460
$245
$70
$105
8.68
$338
Wt/Foot 13# 10 00 PS
10.75 9.88 Wt/Foot 14#
$155
$155
$186
$186
$149
$194
$238
$255
n/a
$292
$440
n/a
$253
$70
$105
12 00 Tel
11.25 10.40 Wt/Foot 18#
$163
$163
$194
$194
$179
$233
$276
n/a
n/a
n/a
n/a
$605
$304
$70
$116
$410
(Continued) q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6C.19
6-35
(Continued) Large Diameter 304 Stainless Steel High Flow (HIQ) and Remediationi Direct Attached Standard Fittings Per End Screen Price Per Foot Max Depth Based on Collapse Strengthi
Standard Dimensionsi
Nom Diam
OD
ID
Weld Rings
Threads
Misc Attachments
100 ft
250 ft
600 ft
1000 ft
STD
4 00
6 00
NPT
JWS
Flush Sch40
Flush Sch80
Fig “K 00 Pkr w/WR
Plate Btm w/WR
Bail Loopj
Lift Lugsk
4 00 WR W/4 00 Collar $512
00
12 PS
12.75 11.80 Wt/Foot 23#
$178
$178
$217
$217
$196
$249
$304
$388
n/a
$623
$924
n/a
$333
$80
$116
14 00 Tel
12.50 11.60 Wt/Foot 25#
$176
$176
$215
$215
$215
$280
$344
n/a
n/a
n/a
n/a
$809
$366
$76
$121
14P/16T
14.00
$206
$206
$226
$226
$252
$329
$404
n/a
n/a
na
na
$923
$441
$76
$121
$601
13.00
Wt/Foot 30# Large Diameter 304 Stainless Steel High Flow (HIQ)k 16P/18T
16.00
15.00
$210
$230
$230
$235
$302
$377
$464
n/a
n/a
n/a
n/a
$1,014
$529
$76
$128
$670
Wt/Foot 35# 18P/20T
18.00 16.70 Wt/Foot 40#
$285
$285
$285
$330
$360
$468
$576
n/a
n/a
n/a
n/a
$1,045
$630
$76
$128
$755
20 00 PS
20.00 18.80 Wt/Foot 42#
$340
$340
$355
$400
$382
$497
$611
n/a
n/a
n/a
n/a
n/a
$669
$76
$139
$845
24 00 Tel
22.00 20.70 Wt/Foot 46#
$380
$380
$421
$446
$404
$525
$646
n/a
n/a
n/a
n/a
n/a
$707
$87
$139
24P/26T
24.00
$420
$420
$488
$488
$462
$601
$739
n/a
n/a
n/a
n/a
n/a
$809
$87
$151
$998
$1,102
22.75
Wt/Foot 58# 26 00 PS
26.00 24.40 Wt/Foot 62#
$436
$436
$516
$527
$539
$674
$830
n/a
n/a
n/a
n/a
n/a
$943
$87
$151
30 00 Tel
27.25 25.75 Wt/Foot 65#
$525
$525
$570
Call
$595
$774
$952
n/a
n/a
n/a
n/a
n/a
$1,041
$105
$169
30P/36T
30.00 28.30 Wt/Foot 74
$575
$580
$610
Call
$671
$872
$1,074
n/a
n/a
n/a
n/a
n/a
$1,174
$105
$169
36 00 PS
36.00
$610
$680
$696
Call
$773
$1,005
$1,237
n/a
n/a
n/a
n/a
n/a
$1,353
$105
$169
34.30
Wt/Foot 90# Call for pricing on screens deeper than 1000 feet. Standard weld ring lengths: 6 00 PS-16P/18T are 1-1/2 00 long; 18P/20T and larger are 2 00 long. To price Weld Rings longer than 6 00 , combine prices shown above. For Tightwind: Add 25% to Screen Price/Ft (Min TW slot !Z0.010 Inch). Minimum billing length for LG Diam SS is 3 feet. Furnished in Full Screen Lengths, unless specified otherwise at the time of order. i j k
Dimensions, weights and collapse strength are approximate (based on an average slot and depth). Standard weld ring length 2PS 00 through 6PS 00 is 1–1/2 00 . Bail Loop prices do not include plate. 304 Stainless Steel Casingl Direct Attached Std Fittings Per End Dimensions
Loose Fittings
Flush Threads
Threaded
Sch
OD
ID
Wt Per ft
List Price per Foot
Sch 40
Sch 80
Thread
Ring
Bottom
Point
Cap/Plug
Cap
Cln and Bag
1 00 PS
5 10 40
1.315
1.185 1.097 1.049
0.88 1.42 1.70
$12 $15 $16
$66
$72
$28
$22
$28
$96
$94
$31
$13
1-1/4 00 PS
5 10 40
1.660
1.530 1.442 1.380
1.12 1.82 2.29
$15 $16 $18
$33
$36
$36
$24
$29
$56
$49
$34
$13
1-1/2 00 PS
5 10 40
1.90
1.770 1.682 1.610
1.29 2.10 2.74
$14 $16 $19
$36
$38
$38
$25
$30
$60
$52
$35
$13
Nom Diam
Npt
Weld
Plate
Locking
Add/Joint
(Continued) q 2006 by Taylor & Francis Group, LLC
6-36
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.19
(Continued) 304 Stainless Steel Casingl Direct Attached Std Fittings Per End Dimensions
Flush Threads
00
2 PS
3 00 PS
6 PS
Plate
Locking
Add/Joint
ID
Wt Per ft
Foot
Sch 40
Sch 80
Thread
Ring
Bottom
Point
Cap/Plug
Cap
Cln and Bag
5 10 40
2.375
2.245 2.157 2.067
1.62 2.66 3.69
$16 $21 $25
$37
$39
$39
$41
$34
$67
$52
$36
$13
5
3.50
$39
$41
$41
$43
$44
$90
$64
$43
$21
$47
$49
$49
$49
$48
$108
$65
$56
$21
$58
$60
$60
$54
$70
n/a
$92
$73
$32
$104
$106
$106
$79
$82
n/a
$101
$90
$32
5
4.50
5 10
5 10
10 40
10 00 PS
10 40
$29 $34 $40
3.95
$31
5.67 10.90
$38 $60
5.345 2.295
6.41 7.84
$49 $59
5.047
14.75
$92
6.407 6.357
7.66 9.38
$56 $65
6.065
19.15
$109
8.329 7.981
13.53 28.82
$104 $190
$193
$290
$196
$126
$88
n/a
$188
$186
n/a
10.420 10.020
18.83 40.86
$130 $255
$292
$440
$254
$149
$148
n/a
$316
$281
n/a
5.563
6.625
8.625
10.75
3.06 4.37 7.65
4.334
40 8 00 PS
3.334 3.260 3.068
4.260 4.026
40 00
Weld
OD
10 40 5 00 PS
Npt
Sch
10 40 4 00 PS
Threaded
List Price per
Nom Diam
Loose Fittings
12 00 PS
10 12.75 12.390 24.39 $172 $623 $924 $387 $196 $218 n/a $448 $372 n/a 40 12.000 50.03 $340 Minimum billing length is 3 ft. Sumps: Add Weld Ring and Plate Bottom price to the sump length needed (minimum billing is 3 ft). Sch40 & Sch80 Threads: 1 00 Z8 TPI; 1.25 & 1.5Z4 TPI; 2 00 O 2 TPI. Locking Cap Lugs are $7.00 and shipped loose. (Part Number 248242). 1 For Slip Cap deduct $7.00 from Locking Cap Price. * Price per foot includes beveling l
Must add “Clean & Bag” charge for environmental casing.
Table 6C.20 Intake Areas of Well Screens Wire-Wound Telescopic Screens Intake Areas (sq. in. per ft of Screen) Slot Opening Size Nom Diam (in.) 3 4 5 6 8 10 12 14 16 18 20 24 26
10-Slot
20-Slot
40-Slot
60-Slot
80-Slot
100-Slot
150-Slot
250-Slot
15 20 26 30 28 36 42 37 42 36 41 61 63
26 35 45 53 51 65 77 68 60 69 77 113 118
41 57 72 85 87 108 130 97 108 124 139 131 138
52 71 90 106 113 141 143 132 148 169 189 182 191
59 81 102 100 133 166 171 161 180 206 229 226 237
65 88 112 112 149 186 195 185 208 237 264 265 278
73 101 112 132 160 200 237 232 261 298 280 343 360
82 115 132 156 194 243 265 292 327 375 366 449 471 (Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6C.20
6-37
(Continued) Wire-Wound Telescopic Screens Intake Areas (sq. in. per ft of Screen) Slot Opening Size
Nom Diam (in.) 30 36
10-Slot
20-Slot
40-Slot
60-Slot
80-Slot
100-Slot
150-Slot
250-Slot
75 84
138 157
161 184
224 255
278 317
325 371
422 481
552 629
PVC Plastic Screens Intake areas (sq. in. per ft of screen) Slot Opening Size Size (in.) 1 ⁄4 11⁄2 2 3 4 5 6 8 1
6-Slot
8-Slot
10-Slot
12-Slot
15-Slot
20-Slot
25-Slot
30-Slot
35-Slot
40-Slot
3.0 3.4 4.3 5.4 7.0 8.1 8.1 13.4
3.4 4.5 5.5 7.1 9.0 10.6 10.6 17.6
4.8 5.5 6.8 8.8 11.3 13.1 13.2 21.7
3.0 6.5 8.1 10.4 13.5 15.5 15.6 25.7
7.0 8.1 10.0 12.8 16.5 19.1 19.2 31.5
8.9 10.2 12.8 16.5 21.2 24.7 25.0 40.6
10.8 12.3 15.4 20.0 25.8 30.0 30.5 49.3
12.5 14.2 17.9 23.2 30.0 34.9 35.8 57.4
14.1 16.2 20.3 26.5 3.9 39.7 40.7 65.0
15.6 17.9 22.4 29.3 37.7 44.2 45.4 72.3
Note: The maximum transmitting capacity of the screen can be derived from these figures. To determine GPM per feet of screen, multiply the intake area in square inches by 0.31. It must be remembered that this is the maximum capacity of the screen under ideal conditions with an entrance velocity of 0.1 ft/sec. Source: From Johnson Division of Signal Environmental Systems, Inc., St. Paul, MN. Table 6C.21 Optimum Well Screen Entrance Velocities Coefficient of Permeability (gallons per day per square foot)
Optimum Screen Entrance Velocities (ft/min) 12 11 10 9 8 7 6 5 4 3 2
O6000 6000 5000 4000 3000 2500 2000 1500 1000 500 !500 Source: From Illinois State Water Survey, 1962. Table 6C.22 Chlorinated Lime Required to Disinfect a Well or Spring Capacity of Well or Spring in Gallons 50 100 200 300 400 500 1,000 2,000 3,000
Chlorinated Lime Required (25% Available Chlorine)
Approximate Volume of Water, in Gallons to be Used in Preparing Chlorine Solution
Pounds and Ounces — 1.5 — 3.0 — 6.0 — 9.0 — 12.0 — 15.0 1 14.0 3 12.0 5 10.0
5 5 5 5 5 5 10 15 20
Note: Values provide a dosage of approximately 50 parts per million of available chlorine. Source: From U.S. Public Health Service. q 2006 by Taylor & Francis Group, LLC
6-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6C.23 Volume of Water in Well Per Foot of Depth Nominal Casing Size (in.) 4 5 6 8 10 12 14 16 18 20 22 24
Schedule No.
Volume (Gallons per Foot of Depth)
40 40 40 30 30 30 30 30 30 30 30 30
0.66 1.04 1.50 2.66 4.19 5.80 7.16 9.49 11.96 14.73 17.99 21.58
Source: From U.S. Bureau of Reclamation, Groundwater Manual 1977.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-39
SECTION 6D
INJECTION WELLS
Table 6D.24 Statistical Analysis of Injection Well Data Distribution of Injection Wells by Industry Type Type of Industry
Percentage of Existing Wells (%)
Refineries and natural gas plants Chemical, petrochemical, and pharmaceutical companies Metal products companies Other
20 55 7 18
Total Depth of Injection Wells Total Well Depth
Percentage of Wells (%)
0–1,000 ft 1,001–2,000 ft 2,001–4,000 ft 4,001–6,000 ft 6,001–12,000 ft over 12,000 ft
5 32 27 28 6 2 Type of Rock Used for Injection
Rock Type
Percentage of Wells (%)
Sand Sandstone Limestone and dolomite Other
33 41 22 4 Rate of Injection
Injection Rate
Percentage of Wells (%)
0–50 gpm 51–100 gpm 101–200 gpm 201–400 gpm 401–800 gpm over 800 gpm Unknown
23 11 25 19 3 1 18 Pressure at Which Waste Is Injected
Injection Pressure Gravity flow Gravity–150 psi 151–300 psi 301–600 psi 601–1,500 psi over 1,500 psi Unknown Source: From Water Well Journal, 1968.
q 2006 by Taylor & Francis Group, LLC
Percentage of Wells (%) 11 19 15 6 13 2 34
6-40
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
EPA
THE UNDERGROUND INJECTION CONTROL PROGRAM
United States Environmental Protection Agency
30 Years Protecting Groundwater Through the safe Drinking Water Act
The Underground Injection Control (UIC) Program
District of columbia, Puerto Rico, U.S. Virgin Islands
On December 16, 1974, President Ford signed the safe Drinking Water Act (SDWA) into law. An original provision of the SDWA established the UIC Program to protect underground sources of drinking water from unsafe injection practices. This regulatory program ensures that injection activities: ate performed safely, protect current underground sources of drinking water that supply 90% of all public water systems: and preserve future underground water resources. Today, the UIC Program regulates more than 800,000 injection wells
Pacific Island Temtones
Represent well classes that are in operation
These five classes of injection wells protect source waters by:
Class II
Class III
Isolating hazardous, industrial and municipal waste through deep injection
Class I
Preserving drinking water resources by injecting oil and gas production waste.
Minimizing environmental impacts from solution mining operations.
US facilities produce billions of gallons of hazardous, industrial and municipal waste every year. Some of this waste is injected deep below any drinking water source, protecting the public. In the 30 years of the SDWA, Class I wells have isolated more than 4 trillions gallons of waste fluid - the amount of water that flows down the Mississippi River into the Gulf of Mexico every 17 days.
Each gallon of oil produced in the US results in an average of ten gallons of wastewater (brine). Most brine, about 1trillion gallons a year, is injected back into oil-bearing formations, preserving streams and rivers, and shallow drinking water resources.
Solution mining operation produce 50% of the salt used in the US as well as uranium. copper and sulfur. These injection wells provide needed minerals while limiting the impact to the environment.
In the 30 years of the SDWA, Class II wells have injected 30 trillions gallons of brine, which would fill enough 55 gallon oil drums to stretch from Earth to mars 10 times.
In the 30 years of the SDWA, Class III wells have safely mined 330 millions tons of salt, or enough salt to film salt shaker 7 times higher than the Statue of Liberty.
United States Environmental Protection Agency
Preventing ground water contamination by prohibitihg the shallow injection of hazardous waste (except as part of an authorized cleanup) Shallow injection wells used by large and small businesses to dispose of hazardous and radioactive wste threaten drinking water resources. About 50% of Americans rely on groundwater for drinking water, and the need for safe, reliable source in the future is increasing. Therefore, Class IV injection is prohibited outside approved remediation programs. * Few states authorize Class IV wells, therefore, they are not shown on the map.
For more information contact the safe Drinking Water Hotline at 1-800-426-4791 or visit WWW.epa.gov/safewater/uic
Figure 6D.10 The underground injection control program. (From www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
Class IV*
Class V Managing the injection of all other fluids to prevent contamination of drinking water resources. More than 600,000 shallow injection wells are used for disposal, groundwater storage and prevention of salt water intrusion. When properly manged, these wells offer communities an option for wastewater disposal. In the 30 years of the SDWA, the Class V Program has identified and managed more than 300,000 injection wells. The challenge for the future is to identify the remaining wells and work with thier oweners to keep injection safe.
Office of Water EPA 816-H-05_001A January 2005
GROUNDWATER
6-41
Table 6D.25 Classes of Injection Wells Regulatory Definitions of Injection Wells (§144.6) The UIC Program provides standards, technical assistance and grants to State governments to regulate injection wells in order to prevent them from contaminating drinking water resources. EPA defines the five classes of wells according to the type of fluid they inject and where the fluid is injected. EPA has published regulations related to the sitting, drilling, construction and operation of many types of injection wells Class I wells are technologically sophisticated and inject hazardous In general, owners and operators of most new Classes I, II and III injection wells are required to: and non-hazardous wastes below the lowermost underground † Site the wells in a location that is free of faults and other adverse source of drinking water (USDW). Injection occurs into deep, geological features isolated rock formations that are separated from the lowermost USDW by layers of impermeable clay and rock † Drill to a depth athat allows the injection into formations that do not Class I wells are oil and gas production brine disposal and other related wells. Operators of these wells inject fluids associated with contain water that can potentially be used as a source of drinking oil and natural gas production. Most of the injected fluid is brine water. These injection zones are confined from any formation that that is produced when oil and gas are extracted from the earth may contain water that may potentially be used as a source of (about 10 barrels of brine for every barrel of oil) drinking water † Build to inject through an internal pipe (tubing) that is located Class III wells are wells that inject superheated steam, water, or inside another pipe (casing). This outer pipe has cement on the other fluids into formations in order to extract minerals. The outside to fill any voids occurring between the outside pipe and the injected fluids are then pumped to the surface and the minerals in hole that was bored for the well (borehole). This allows for multiple solution are extracted. Generally, the fluid is treated and layers of containment of the potentially contaminating injection re-injected into the same formation. More than 50 percent of the fluids salt and 80 percent of the uranium extraction in the U.S. is produced this way Class IV wells inject hazardous or radioactive wastes into or above † Test for integrity at the time of completion and every five years thereafter (more frequently for hazardous waste wells, underground sources of drinking water. These wells are banned §146.68(d)) under the UIC program because they directly threaten public † Monitor continuously to assure the integrity of the well health Class V wells are injection wells that are not included in the other Operators of Class I wells injecting hazardous waste are required to demonstrate that the waste will never return to the surface or classes. Some Class V wells are technologically advanced impact an underground source of drinking water (for 10,000 years). wastewater disposal systems used by industry, but most are “lowThese wells inject at 4,000 ft below the surface or more. Over 9 tech” wells, such as septic systems and cesspools. Generally, billion gallons of hazardous waste is injected into wells each year in they are shallow and depend upon gravity to drain or “inject” liquid the US waste into the ground above or into underground sources of The largest number of injection wells are shallow wells that inject nondrinking water. Their simple construction provides little or no hazardous fluids into very shallow aquifers that are or can be used protection against possible groundwater contamination, so it is as sources of drinking water. Some of the wells in this category are: important to control what goes into them † Drainage wells in industrial setting that can receive surface runoff contaminated with a variety of pollutants; † Septic tank systems and dry-wells used in automotive shops that receive fluids from repair and maintenance bays; † Cesspools that receive sewage from a community; † Agricultural drainage wells that may receive water contaminated with pesticides and fertilizers Source: From www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
6-42
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6D.26 Underground Injection Control Program — Inventory of Wells
Class I Hazardous Waste Wells AK AL AR AZ CA CO FL IA IL IN KS KY LA MI MO MS MT ND NE NM NV NY OH OK OR PA SD TN TX UT VA WA WV WY EPA R2 EPA R6 EPA R8 EPA R9
Class I nonHazardous Waste Wells 6
6
10
1
6 5 136
3 4 6 17 9
1 7 44 1 28 15
6
1 2 1 5
10
1 2 11 10
60
46 3
23 tribal tribal tribal tribal
1
122
364
Class II Wells 925 347 1,078 24,955 787 64 1 8,949 1,340 16,371 3,429 3,824 1,459 211 881 897 377 704 5,577 12 503 2,890 11,448 2 1,897 63 14 51,998 256 252 1 700 4,666 12 2,674 723 542 146,878
Class III Facilities (Which May Contain Multiple Wells)
Class III Wells
Class IV Facilities (Which May Contain Multiple Wells)
1
3
3 1 2
15 73 35
5
157
15 3
67 22
1 19
1,879 104
6 3 1
126 47 1
1
10
86 1 1
5,789 4 3
2 1
3 12
31 8,211
1
164
16,577
5
1
Note: Types of wells: Class I, Deep industrial waste disposal; Class II, For oil and natural gas production; Class III, Related to mineral recovery; Class IV, Banned, inject hazardous or radioactive waste above USDWs; Class V, Generally shallow disposal wells. There are an estimated 650,000 Class V wells nationally. Class I through IV data from annual reporting by states and EPA Regions. The Class V estimate is based on state estimates and modeling of storm water and large capacity septics. Source: From www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-43
0/2
9/15
0/28 0/1 0/6
0/12
4/1
4/7
10/3 0/3
5/41
0/3 1/0
0/12
6/10
0/1
2/5 64/49 17/25
1/122
0/4
Primacy State* Direct Implementation State* *See Section IV.B for explanation EPA Regions are outlined Number of wells in State denoted: Hazardous/Non hazardous Figure 6D.11 Number of class I wells by state. (From www.epa.gov EPA’s class I well inventory, 1999.)
VT WA
ME MT
OR
ND
MN WI
SD
ID
IA
NE UT
IL CO
KS OK
NM
AK
IN OH
AR
AL
DE DC
NC SC GA
No HW Wells 1–10 HW Wells
LA FL
HI
Figure 6D.12 UIC class I deep/high technology hazardous waste wells. (From www.epa.gov.) q 2006 by Taylor & Francis Group, LLC
NJ MD
WV VA TN
MS TX
PA
KY
MO
CA AZ
NY MI
WY NV
NH MA CT
11–20 HW Wells > 70 HW Wells
RI
6-44
Plugged
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Proposed
Existing
Type Municipal Industrial Reverse Osmosis (RO) Concentrate Combined Municipal & Nonmunicipal
Class I Facilities 1. Solutia (Monsanto) 2. Sterling Fibers (Cytec) 3. NW Pinellas County (exploratory) 4. Clearwater East 5. St. Petersburg NE 6. Albert Whitted 7. McKay Creek 8. South Cross Bayou 9. St. Petersburg NW 10. St. Petersburg SW 11. Kaiser 12. Manatee County SW 13. Atlantic Utillities 14. Miami-Dade North District Reg. 15. Knight's Trail Park RO (exploratory) 16. Venice Gardens RO 17. Englewood RO 18. Plantation RO (Sarasota CO.) 19. Gasparilla Island 20. North Port 21. North Fort Myers 22. Gulf Environmental Services 23. Sykes Creek (Merritt Island) 24. West Melbourne 25. Melbourne-D.B.Lee 26. Intercil (Harris Corporation) 27. Palm Bay (GDU-Port Malabar) 28. South Beaches 29. Ocean Spray (Hercules) 30. North Port St. Lucie 31. South Port St. Lucie 32. Stuart 33. Pratt & Whitney 34. Q.O. Chemicals 35. Encon 36. Palm Beach County RRF 37. East-Central Regional 38. Acme Improvement Dist. 39. Palm Beach Co. Sys. #3 40. Palm Beach Co. Sys. #9 41. Coral Springs Improvement Dist. 42. Margate 43. Royal Palm Beach 44. Sunrise 45. Plantation Utilites 46. G.T. Lohmeyer 47. Pembroke Pines (Century Village)
48. Sunset Park 49. Kendale Lakes 50. Miami-Dade South District Reg. 51. Broward County-North District Reg. 52. Gasparilla Island RO 53. North Martin County 54. Seacoast Utilities 55. East Port 56. Melbourne-Grant Street 57. City of Sarasota (exploratory) 58. Pahokee 59. Belle Glade 60. Fort Myers Beach 61. Charlotte County West Port 62. Rockledge 63. Palm Beach Co. Southern Regional 64. Plantation East RO 65. Burnt Store 66. Boynton Beach RO 67. Plantation RO (Broward Co.) 68. Marco Island RO 69. North Collier County 70. Zemel Road Landfil 71. Hollywood 72. Sarasota County Center Road 73. Fort Pierce Utilities Auth. 74. Miramar RO 75. Sanibel Island 76. Miramar 77. Venice Gardens East 78. South Collier County 79. Sunrise Sawgrass RO 80. Port St. Lucie Western LTC WTP 81. Cooper City RO 82. Fort Myers RO 83. Punta Gorda 84. Pompano Beach RO 85. Immokalee 86. South Collier County RO 87. Fort Pierce RO 88. Bonita Springs WRF 89. Port St. Lucie Westport 90. North Collier County WRF 91. Bonita Springs RO 92. Palm Bay RO 93. CPV Cana Power Plant 94. North Lee County WTP
23 62 3
0
Miles 95. Tropical Farms 96. Wellington 97. North Miami Beach RO 98. Pine Island 99. Tropicana 100. Peele-Dixie WTP 101. Deerfield Beach West WTP 102. Three Oaks
Figure 6D.13 Class I injection facilities. (From www.dep.state.fl.us.)
q 2006 by Taylor & Francis Group, LLC
50
11
5 6 10
8 9
N
24 20 92 21
4
7
12 57
29 13
15 18 72 20 55 16 83 77 17 61 70 52 19 85 94 21 102 98 22 91 75 69 88 60 86 98 78 68
100
25 56 28
31 95
89
33
58 34 59 63
85
99 73 30
87
80 93
43 38
51 40 41
42 44,79 81 47 76
74 4897 49 50
53 32 35 54 36 37
96 66 39 101 84 45,64,67 100 46 71 14
GROUNDWATER
6-45
Table 6D.27 Class I Injection Well Status Status — November 2003 Map 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Facility Solutia (Monsanto) (I) Sterling Fibers (Cytec) (I) NW Pinellas County (EX) Clearwater East St. Petersburg NE Albert Whitted McKay Creek South Cross Bayou St. Petersburg NW St. Petersburg SW K.C. Industries (Kaiser) (HW) Manatee County SW Subregional Atlantic Utilities MDW&SA North District Regional Knight’s Trail (EX) Venice Gardens (RO) Englewood (RO) Plantation RO (Sarasota Co.) Gasparilla Island North Port North Fort Myers Utilities Gulf Environmental Services (MN) Sykes Creek (Merritt Island) West Melbourne Melbourne-D.B. Lee Intercil (Harris Corporation) (I) Palm Bay (GDU-Port Malabar) South Beaches Ocean Spray (Hercules) (I) North Port St. Lucie (MN) South Port St. Lucie Stuart Pratt and Whitney (I) QO Chemicals (I) Encon Palm Beach County RRF (I) East-Central Regional Acme Improvement District (MN) Palm Beach County System #3 (MN) Palm Beach County System #9 (MN) Coral Springs Improvement District Margate Royal Palm Beach Sunrise Plantation Regional (Broward Co.) G. T. Lohmeyer Pembroke Pines Sunset Park Kendale Lakes MDW&SA South District Regional Broward County-North District Regional Gasparilla Island RO North Martin County (MN) Seacoast Utilities East Port (Charlotte) Melbourne-Grant St. City of Sarasota (EX) Pahokee Belle Glade
Proposed
Active
Other
Total Wells
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
3 1 0 0 3 2 0 3 2 3 1 1 1 2 0 1 1 0 1 1 1 0 2 1 0 2 1 1 1 1 1 2 1 0 1 2 6 1 1 1 2 2 1 3 2 5 2 0 0 13 6 1 2 1 2 1 0 1 1
0 1SB 3PA 1PA 0 0 2PA 1PA 0 0 0 1EXM 1EXM 2IA 1EXM 0 1UC 1IA 0 0 1EXM 0 1EXM 0 1TA 0 0 0 0 0 0 0 0 4PA 0 0 1UC 0 0 0 0 0 0 0 0 0 0 1PA 1PA 4IA 0 0 0 0 0 0 1EXM 0 0
3 2 3 1 3 2 2 4 2 3 1 2 2 4 1 1 2 1 1 1 2 1 3 1 1 2 1 1 1 1 1 2 1 4 1 2 7 1 1 1 2 2 1 3 2 5 2 1 1 17 8 1 2 1 2 1 1 1 1 (Continued)
q 2006 by Taylor & Francis Group, LLC
6-46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6D.27
(Continued) Status — November 2003
Map 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
Facility Fort Myers Beach West Port (Charlotte) Rockledge Palm Beach County Southern Regional Plantation East RO (Broward County) Burnt Store (RO) Boynton Beach (RO) Plantation RO (Broward Co.) Marco Island (MN) North Collier County (RO) Zemel Road Landfill (I) Hollywood Sarasota County Center Road Fort Pierce Utility Authority Miramar RO Sanibel Island (MN) Miramar Venice Gardens East RO South Collier County Sunrise Sawgrass RO Port St. Lucie Western LTC WTP Cooper City RO Fort Myers RO Punta Gorda Pompano Beach RO Immokalee South Collier County RO Fort Pierce RO Bonita Springs RO Port St. Lucie Westport North Collier County WRF Bonita Springs WRF Palm Bay RO CPV Cana Power Plant North Lee County WTP Tropical Farms Wellington (MN) North Miami Beach RO Pine Island (MN) Tropicana Peele-Dixie WTP Deerfield Beach West WTP Three Oaks TOTAL
Proposed
Active
Other
Total Wells
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 13
1 1 1 2 1 1 1 1 1 2 1 0 1 1 2 1 2 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 126
0 0 0 0 0 0 0 0 0 0 0 2UC 0 0 0 0 0 0 0 0 0 0 0 1 EXM 0 0 2 UC 0 1UC 1UC 2UC 1UC 1 EX 0 1UC 2UC 0 0 0 0 0 0 0 45
1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 2 1 1 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 184
Key to Abbreviations Facility EX — Exploratory well only HW — Hazardous waste I — Industrial (non-hazardous) RO — Reverse osmosis concentrate RRF — Resource recovery facility. Status TA — Temporarily abandoned well PA — Permanently abandoned well IA — Inactive well SB — Standby well UC — Under Construction/testing Source: From www.dep.state.fl.us.
q 2006 by Taylor & Francis Group, LLC
EX — Exploratory well EXI — Inactive exploratory well EXW — Exploratory well converted to an injection well EXM — Exploratory well converted to a monitor well EXP — Exploratory well plugged and abandoned.
GROUNDWATER
6-47
83° 28°
82°
81°
HILLSBOROUGH OSCEOLA
BREVARD
N CEA IC O ANT ATL
POLK
80°
INDIAN RIVER 20 MANATEE
OKEECHOBEE
HARDEE
ST. LUCIE 27
HIGHLANDS
23 DE SOTO
SARASOTA
21 MARTIN
27°
GLADES CHARLOTTE
19
15
GU
26 9
LF
LEE 4.6
24
LAKE OKEECHOBEE
HENDRY
11 13
PALM BEACH
OF
3
ME
5
XIC
8
1
O
7
18
10
BROWARD 28
COLLIER
26°
12 25 16
17
2 EXPLANATION DADE 14 SITE NUMBER IN TEXT
E
OILFIELD
R
0
MUNICIPAL WASTEWATER DEEP-WELL INJECTION SYSTEM
FRESHWATER INJECTION PILOT PROJECT 0 0
50 MILES 50 KILOMETERS
Figure 6D.14 Deep well injection systems. (From www.sofia.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
M
O
N
INDUSTRIAL DEEP-WELL INJECTION SYSTEM
25°
14
22
6-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6D.28 Summary of Deep-Well Injection Systems in Florida Injection Wells Injected Effluent Location Belle Glade, Palm Beach County Sunset Park, South Miami Mulberry, Polk County Kendale Lakes, South Miami Margate, Broward County St. Petersburg, Southwest plant Gainesville, Kanapaha plant West Palm Beach Vero Beach, Indian River County Miami-Dade Water and Sewer Authority a
Type
Pretreatment
Design Capacity First Year of Operation
Well Casings
Depth
ML/d
mgd
Number of Wells
m
Depth
ft
Number of Casings
m
fta
a
Industrial
Cooling
1966
5.6
1.5
2
975
3200
4
883
2900
Municipal
Secondary
1971
22.7
6.0
1
914
3000
3
563
1850
Industrial
None
1971
1.3
0.35
1
1371
4500
3
1219
4000
Municipal
Secondary
1973
22.7
6.0
1
975
3200
3
670
2200
Municipal
Secondary
1975
56.7
15.0
1
975
3200
3
731
2400
Municipal
Tertiary
1976
75.7
20.0
3
304
1000
3
274
900
Municipal
1976
28.3
7.5
3
304
1000
3
152
500
Municipal Industrial
Advanced wastewater treatment Secondary Neutralization
1978 1979
302.8 1.1
80.0 0.3
5 1
1097 914
3600 3000
4 4
914 731
3000 2400
Municipal
Secondary
1983
423.9
112.0
9
944
3100
4
792
2600
Rounded to nearest 100 ft.
Source: From Garcia-Bengochea, J.I., Protecting water supply aquifers in areas using deep-well wastewater disposal, J. Am. Water Works Assoc., 75, 6, 1983. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-49
SECTION 6E
PUMPING OF WATER
Table 6E.29 Useful Factors in Preliminary Planning of Small Pumping Plants
Pump or Pipe Size (in.) 6 6 6 6 8 8 8 8 10 10 10 10 12 12 12 12 14 14 14 14 16 16 16 16 18 18 18 18 20 20 20 20 24 24 24 24 30 30 30 30
Gallons/min
Acre-Inches per 24 hr
Pipe Velocity (ft/sec)
Velocity Head (V2/2g ft)
Friction in Feet Per 100 Feet of Pipe
Horsepower Required for 10 ft Total Head. Pump and Transmission EfficiencyZ70 Percent
400 600 800 1,000 900 1,100 1,300 1,500 1,200 1,600 2,000 2,400 2,000 2,500 3,000 3,500 2,000 3,000 4,000 5,000 3,600 4,400 5,200 6,000 4,500 5,500 6,500 8,000 5,000 6,500 8,000 10,000 8,000 10,000 12,000 14,000 12,000 16,000 20,000 24,000
21.2 31.8 42.4 53.0 47.7 58.3 68.9 79.5 63.6 84.8 108.1 127.3 106.1 132.6 159.1 185.6 106.1 159.1 212.1 265.2 190.9 233.3 275.8 318.2 238.6 291.7 344.7 424.2 265.2 344.7 424.2 530.3 424.2 630.3 636.4 742.4 636.4 848.5 1061.0 1273.0
4.54 6.72 9.08 11.32 5.75 7.03 8.32 9.60 4.91 6.56 8.10 9.73 5.60 7.00 8.40 9.80 4.20 6.30 8.40 10.50 5.74 7.01 8.29 9.56 5.70 6.96 8.22 10.02 5.13 6.66 8.17 10.40 5.68 7.07 8.50 9.95 5.44 7.36 9.09 10.90
0.32 0.70 1.28 1.99 0.52 0.77 1.07 1.43 0.38 0.67 1.02 1.47 0.48 0.77 1.10 1.49 0.27 0.61 1.09 1.71 0.51 0.76 1.06 1.42 0.50 0.75 1.05 1.56 0.41 0.69 1.03 1.68 0.50 0.78 1.12 1.54 0.46 0.84 1.29 1.86
2.21 4.7 8.0 12.0 2.46 3.51 4.72 6.27 1.46 2.35 3.65 5.04 1.43 2.28 3.15 4.10 0.66 1.47 2.47 3.92 1.10 1.58 2.16 2.60 0.93 1.32 1.82 2.65 0.68 1.06 1.63 2.53 0.66 0.98 1.40 1.87 0.47 0.83 1.22 1.71
1.4 2.2 2.9 3.6 3.2 4.0 4.7 5.4 4.3 5.8 7.2 8.7 7.2 9.0 10.8 12.6 7.2 10.8 14.4 18.0 13.0 15.9 18.8 21.6 16.2 19.8 23.4 28.9 18.0 23.4 28.9 36.1 28.9 36.1 43.3 50.5 43.3 57.7 72.2 86.6
Source: From U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
6-50
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6E.30 Characteristics of Pumps Frequently Employed in Wells
Type of Pump
Practical Suction Lifta
Usual WellPumping Depth
Usual Pressure Heads
Reciprocating Shallow well
6–7 m
6–7 m
30–60 m
Deep well
6–7 m
Up to 180 m
Up to 180 m above cylinder
6 m max
3–6 m
30–45 m
Regenerative vane turbine type (single impeller) Deep well Vertical line shaft turbine (multistage)
8 m max
8m
30–60 m
Impellers submerged
15–90 m
Submersible turbine (multistage)
Centrifugal Shallow well straight centrifugal (single stage)
Jet Shallow well
Deep well Rotary Shallow well (gear type)
Disadvantages
Positive action; discharge against variable heads; pumps water containing sand and silt; especially adapted to low capacity and high lifts
Pulsating discharge; subject to vibration and noise; maintenance cost may be high; may cause destructive pressure if operated against closed valve
Smooth, even flow; pumps water containing sand and silt; pressure on system is even and free from shock; lowstarting torque; usually reliable and good service life Same as straight centrifugal except not suitable for pumping water containing sand or silt; self-priming
Loses prime easily; efficiency depends on operating under design heads and speed
30–250 m
Same as shallow well turbine
Pump and motor 15–120 m submerged
15–120 m
Same as shallow well turbine; easy to frostproof installation; short pump shaft to motor
Efficiency depends on operating under design head and speed; requires straight well large enough for turbine bowls and housing; lubrication and alignment of shaft critical; abrasion from sand Repair to motor or pump requires pulling from well; sealing of electrical equipment from water vapor critical; abrasion from sand
4–6 m below ejector
Up to 4–6 m below ejector
25–45 m
4–6 m below ejector
7–35 m 60 m 25–45 m max.
High capacity at low heads; simple in operation; does not have to be installed over well; no moving parts in well Same as shallow well jet
7m
7m
15–75 m
15–150 m
30–150 m
Usually Deep well submerged (helical rotary type) a
Advantages
Positive action; discharge constant under variable heads; efficient operation Same as shallow well/rotary; only one moving pump device in well
Same as straight centrifugal except maintains priming easily
Capacity reduces as lift increases; air in suction or return line will stop pumping Same as shallow well jet
Subject to rapid wear if water contains sand or silt; wear of gears reduces efficiency Same as shallow well rotary except no gear wear
Practical suction lift at sea level. Reduce lift 0.3 m for each 300 m above sea level.
Source: From U.S. Public Health Service, Manual of Individual Water-Supply Systems, Publication. 24, 1962.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-51
Table 6E.31 Selection of Pump Size and Diameter of Wells Anticipated Well Yield L1
In gal min
Less than 100 75–175 150–400 350–650 600–900 850–1,300 1,200–1,800 1,600–3,000
In ft3 minL1
In m3 minL1
Nominal Size of Pump Bowls (in.)
Optimum Well Diameter (in.)
Less than 13 10–23 20–53 47–87 80–120 113–173 160–240 213–400
Less than 0.38 0.28–0.66 0.57–1.52 1.33–2.46 2.27–3.41 3.22–4.93 4.55–6.82 6.06–11.37
4 5 6 8 10 12 14 16
6 ID 8 ID 10 ID 12 ID 14 OD 16 OD 20 OD 24 OD
Note: ID, inside diameter; OD, outside diameter. Source: From Health, R.C., Basic Ground-Water Hydrology, U.S. Geological Survey Water-Supply Paper 2220, 1983.
Table 6E.32 Pumping Plant Performance Standards Standard Consumption of Fuel or Energy per Water Horsepowera
Type of Power Unit
0.091 gal hrK1 0.116 gal hrK1 0.145 gal hrK1 160 ft3 hrK1 0.885 kw-hr hrK1
Diesel engine Gasoline engine Propane engine Natural gas Electric motor a
Based on pump efficiency of 75 percent.
Source: From College of Agriculture, University of Nebraska.
Table 6E.33 Standard Fuel Requirements for Good Pumping Plants Fuel or Energy Required Pumping Rate (in gpm) 500
700
800
1000
Head (in ft)
Water Horsepower
Diesel (gal hrL1)
Gasoline (gal hrL1)
Propane (gal hrL1)
Natural Gas (ft hrL1)
Electricity (kwh hrL1)
100 150 200 100 150 200 100 150 200 100 150 200
13 19 25 18 27 35 20 30 40 25 38 50
11⁄4 13⁄4 21⁄4 13⁄4 21⁄2 31⁄4 13⁄4 23⁄4 33⁄4 21⁄4 31⁄2 41⁄2
11⁄2 21⁄4 3 2 31⁄4 41⁄4 21⁄2 31⁄2 43⁄4 3 41⁄2 6
2 23⁄4 33⁄4 23⁄4 4 51⁄4 3 41⁄2 6 33⁄4 53⁄4 71⁄2
190 280 380 270 400 530 300 450 610 380 570 760
14 21 29 20 30 40 23 34 46 29 43 57
Note: Based on performance standards in Table 6E.32. Source: From College of Agriculture, University of Nebraska. q 2006 by Taylor & Francis Group, LLC
6-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6E.34 Pumping Costs in the Texas High Plains (THP) and in South/Central Texas (SCT) Per Acre-inch of Water at 100 ft Total Head from Irrigation Pumping Plant Efficiency Tests Conducted by the Texas Agricultural Extension Service Cost ($) Per Acre-Inches per 100 ft Head a
b
Type and Price
Region
Lowest
Highest
Average
Natural Gas @ $3.00 MCF Electricity @ $0.07/KWH Diesel @ $0.65/gal
THP SCT THP SCT THP SCT
0.40 0.31 0.49 0.29 0.57 0.36
3.93 1.96 3.10 20.20 1.91 3.43
0.81 0.76 1.35 1.49 0.77 0.83
a b
Assumed price — actual prices varied in each region. THP (Texas High Plains) results are from more than 240 efficiency tests. SCT (South/Central Texas) results are from 240 efficiency tests.
Source: From Texas Agricultural Extension Service, the Texas A&M University.
Table 6E.35 Irrigation Pumping Equipment Efficiency Equipment
Attainable Efficiency (Percent)
Pumps (centrifugal, turbine) Right-angle pump drives (gear head) Automotive-type engines Industrial engines Diesel Natural gas Electric motors Small Large
75–82 95 20–26 25–37 24–27 75–85 85–92
Source: From New L.L. Pumping plant efficiency and irrigation cost L-2218, Texas Agricultural Extension Service.
Table 6E.36 Typical Values of Overall Efficiency for Representative Pumping Plants, Expressed as Percent Power Source Electric Diesel Natural gas Butane, propane Gasoline
Recommended as Acceptable
Average Values from Field Testsa
72–77 20–25 18–24 18–24 18–23
45–55 13–15 9–13 9–13 9–12
Ranges are given because of the variation in efficiencies of both pumps and power units. The difference in efficiency for high and low compression engines used for natural gas, propane and gasoline must be considered especially. The higher value of efficiency can be used for higher compression engines. a Typical average observed values reported by pump efficiency test teams. Source: From New L.L. Pumping plant efficiency and irrigation cost L-2218, Texas Agricultural Extension Service. q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-53
Table 6E.37 Nebraska Performance Criteria for Pumping Plants. Fuel Use by New or Reconditioned Plants Should Equal or Exceed These Rates
Energy Source
Water Horsepowerhoursa Per Unit of Energy
Energy Units
12.5 8.7 66.7c 0.885d
gal gal 1000 ftc Kwh
Diesel Gasolineb Natural gas Electricity a b c d
Based on 75 percent efficiency. Includes drive losses and assumes no cooling fan. Assumes natural gas content of 1000 btu ftK3 Direct connection-no drive.
Source: From College of Agriculture, University of Nebraska.
Table 6E.38 Approximate Maximum Flow Rate in Different Pipe Sizes to Keep Velocity%5 ft secL1 Pipe Diameter
Flow Rate (gpm)
1
6 10 15 25 35 50 110 200 310 440 780 1225 1760 3140
⁄2 ⁄4 1 11⁄4 11⁄2 2 3 4 5 6 8 10 12 16 3
Source: From Texas Agricultural Extension Service, the Texas A&M University.
Table 6E.39 Friction Losses in Feet of Head Per 100 ft of Pipe (for Pipes with Internal Diameters Shown) 4-inch
6-inch
8-inch
10-inch
12-inch
Pipe Size Flow rate (gpm)
Steel
Alum.
PVC
Steel
Alum.
PVC
Steel
Alum.
PVC
Steel
Alum.
PVC
Steel
Alum.
PVC
100 150 200 250 300 400 500 750 1000 1250 1500 1750 2000
1.2 2.5 4.3 6.7 9.5 16.0 24.1 51.1 87.0 131.4 184.1 244.9 313.4
0.9 1.8 3.0 4.8 6.2 10.6 17.1 36.3 61.8 93.3 130.7 173.9 222.5
0.6 1.2 2.1 3.2 4.3 7.2 11.4 24.1 41.1 62.1 87.0 115.7 148.1
— 0.3 0.6 0.9 1.3 2.2 3.4 7.1 12.1 18.3 25.6 34.1 43.6
— 0.2 0.4 0.6 0.8 1.5 2.4 5.0 8.6 13.0 18.2 24.2 31.0
— 0.2 0.3 0.4 0.6 1.0 1.6 3.4 5.7 8.6 12.1 16.1 20.6
— — 0.1 0.2 0.3 0.5 0.8 1.8 3.0 4.5 6.3 8.4 10.8
— — 0.1 0.1 0.2 0.3 0.6 1.3 2.1 3.2 4.5 6.0 7.7
— — 0.1 0.1 0.1 0.2 0.4 0.8 1.4 2.1 3.0 4.0 5.1
— — — 0.1 0.1 0.2 0.3 0.6 1.0 1.5 2.1 2.8 3.6
— — — 0.1 0.1 0.1 0.2 0.4 0.7 1.1 1.5 2.0 2.6
— — — — 0.1 0.1 0.3 0.5 0.7 1.0 1.3 1.7
— — 0.1 0.1 0.2 0.4 0.6 0.9 1.2 1.5
— — — 0.1 0.1 0.3 0.4 0.6 0.9 1.1
— — 0.1 0.1 0.2 0.3 0.4 0.6 0.7
Note: Flow rates below horizontal line for each pipe size exceed the recommended 5-feet-per-second velocity. Source: From Texas Agricultural Extension Service, the Texas A&M University. q 2006 by Taylor & Francis Group, LLC
6-54
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6E.40 Friction Loss in Fittings. Friction Loss in Terms of Equivalent Length of Pipe (ft) of Same Diameter Inside Pipe Diameter (in.) Type of Fitting 45-degree elbow Long-sweep elbow Standard elbow Close return bend Gate value (open) Gate value (1/2 open) Check valve
4
5
5 7 11 24 2 65 100
6 9 13 30 3 81 110
6
8
10
12
7 11 16 36 3.5 100 30
10 14 20 50 4.5 130 40
12.5 17 25 61 5.5 160 45
15 20 32 72 7 195 35
Source: From Texas Agricultural Extension Service, the Texas A&M University.
Table 6E.41 Pumping Capacities of Aermotor Windmills Shown in the Table Below are Approximate, Based on the Mill Set on the Long Stroke, Operating in a 15 to 20 Mile Per Hour Wind Elevation in Feet to Which Water Can Be Raised a
Capacity Per Hour Gallons
Size of Aermotor Windmill
Size of Cylinder (in.)
6 ft
8–16 ft
6 ft
8 ft
10 ft
12 ft
14 ft
16 ft
1–7/8 2 2–1/4 2–1/2 2–3/4 3 3–1/2 3–3/4 4 5 6
125 130 180 225 265 320 440
180 190 260 325 385 470 640 730 830 1300 1875
120 95 77 65 56 47 35
175 140 112 94 80 68 50
27 17
37 25 17
260 215 170 140 120 100 76 65 58 37 25
390 320 250 210 180 155 115 98 86 55 38
560 460 360 300 260 220 160 143 125 80 55
920 750 590 490 425 360 265 230 200 130 85
570 900
The short stroke increases elevation by one-third, and reduces pumping capacities by one-fourth. a
Approximate Capacity.
Source: From Aermotor company. With permission.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Overdraft of groundwater occurs when water is withdrawn from sources that cannot be renewed or is withdrawn more quickly than they can be recharged. Of the 106 Water Resources Council subregions, the overdraft in 8 is considered critical–that is, more than, 500 million gallons of water are withdrawn per day; and in 30, groundwater overdraft is moderate–21 to 500 million gallons per day. Groundwater overdraft is a serious problem in the High Plains from Nebraska to Texas and in parts of Arizona and California.
6-55
Groundwater overdraft in million gallons per day Critical (more than 500) Moderate (21–500) No overdraft
Figure 6E.15 Groundwater overdraft in the United States [Data as of 1975; by water resource subregion]. (From council on environmental quality, 1981, Environmental trends.)
q 2006 by Taylor & Francis Group, LLC
6-56
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 6E.16 Areas of water-table or Artesian water-level decline in excess of 40 ft in the United States [Decline in at least one aquifer since predevelopment]. (From U.S. Geological Survey, 1984, National Water Summary 1983—Hydrologic Events and Issues, Water-Supply Paper 2250.)
Water-level decline, in ft More than 200
NEVADA
100 to 200
UTAH
50 to 100
CALIFORNIA
ARIZONA NEW MEXICO
0 0
100
200 Miles
100 200 300 km
Figure 6E.17 Locations in the basins of Southern California, Nevada, Utah, Arizona, and New Mexico where substantial groundwater level declines have been measured. (From http://water.usgs.gov.) q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-57
G
West Salt Harquahala Plain
Luke AFB
I
L
Water-level decline greater than 100 ft
A
Areas with fissures
Phoenix
0
Apache Junction
Mesa
River Basin East Salt River Basin
50 Miles
0
50 km
Queen Creek
L
A
P
A
Z M
A
R
I
C
O
P
Stanfield A Basin
Picacho Basin Casa Grande
Stanfield
P
I
N
Eloy
Picacho earth fissure
Avra Valley
ARIZONA
P
I
M
A
L G
Picacho Mts Picacho Pk
R
A
H
A
M
San Simon Tucson
Willcox
Tucson
Basin
A
Valley
Basin
MAP AREA
C
O
C
H
I
S
E
Figure 6E.18 Water-level decline greater than 100 ft and areas with fissures in Picacho, Arizona. (From http://water.usgs.gov.)
Water-level decline, 1864-1980, in ft Groundwater divide WISCONSIN
375
Milwaukee
350
Roc
k
L a ke
R.
Mi ch
i ga n
0
800
20
Chicago
ILLINOIS
x
Fo
50 Des
R.
600
R. P laines
INDIANA
400 0 0
50 Miles 100 Kilometers
Figure 6E.19 Chicago, Illinois water-level decline, 1864–1980, in ft. (From http://water.usgs.gov.) q 2006 by Taylor & Francis Group, LLC
6-58
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
0
Continuing subsidence 1974–1997
-40 -80 A
0.0
-12
-160
0 -8 0
Areas with declining water levels
Houston
Baytown
160
C B
Areas with rising water levels
-40 B 0 0 4 80 120
D
0.0 Subsidence C (ft) 0.8 1975
Line of equal groundwater Texas City E level change (interval 40 ft)
Subsidence 1.2 (ft) A
(Modified from Kasmarek and others, 1997)
2.4
1975
1985
1995
Some arrested subsidence 1974–1997
E D 1985
1995
Extensometer sites for measuring subsidence A B C D E
Addicks Lake Houston Baytown Clear Lake Texas City
Figure 6E.20 Change in groundwater levels in wells in the Evangeline aquifer, 1977–1997. (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-59
SECTION 6F
Nevada
Las Vegas Valley
Idaho
Colorado
Raft River area Denver area
SUBSIDENCE
New Jersey
Atlantic City-Oceanside area Barnegat Bay-New York Bay Coastal area
Delaware
California Antelope Valley Coachella Valley Elsinore Valley La Verne Valley Lucerne Valley Mojave River Basin Oxnard Plain Pomona Basin Sacramento Valley Salinas Valley San Benito Valley San Bemardino area San Gabriel Valley San Jacinto Basin San Joaquin Valley San Luis Obispo area Santa Clara Valley Temecula Valley Wolf Valley
Bowers area Dover area
Virginia
Franklin-Suffolk area Williamsburg-West Point area
New Mexico
Albuquerque Basin Mimbres Basin
Arizona
Avra Valley East Salt River Valley Eloy Basin Gila Bend area Harquahala Plain San Sirman Valley Stanfield Basin Tucson Basin West Salt River Valley Willicox Basin
Louisiana
Baton Rouge area New Orleans area
Texas
Major unconsolidated aquifer system in the conterminous United States
Georgia
(modified from Clawges and Price, 1999)
Savannah area
Houston-Galveston Hueco Bolson-El Paso, Juarez
Figure 6F.21 Areas where subsidence has been attributed to the compaction of aquifer system due to groundwater pumpage (modified from Clawges and Price, 1999). (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
6-60
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6F.42 Areas of Major Land Subsidence Due to Groundwater Overdraft
Location
Depositional Environment and Age
Japan Osaka Tokyo
Alluvial and shallow marine; Quaternary As above
Mexico Mexico City
Alluvial and lacustrine; late Cenozoic
Taiwan Taipei basin
Alluvial and lacustrine; Quaternary
United States Arizona, central California Santa Clara Valley San Joaquin Valley (three subareas) Lancaster area Nevada Las Vegas Texas Houston-Galveston area
Depth Range of Compacting Beds (m)
Maximum Subsidence (m)
Areas of Subsidence (sq km)
Time of Principal Occurrence
10–400 10–400
3 4
190 190
1928–1968 1920–1970C
10–50
9
130
1938–1970C
10–240
1.3
130
1961–1969C
Alluvial and lacustrine; late Cenozoic
100–550
2.3
650
1948–1967
Alluvial and shallow marine; late Cenozoic Alluvial and lacustrine; late Cenozoic
55–300 60–1000
4 2.9–9
Alluvial and lacustrine; late Cenozoic Alluvial; late Cenozoic Fluvial and shallow marine; late Cenozoic
650 11,000
1920–1970 1935–1970C
60–300(?)
1
(O0.3 ml) 400
1955–1967C
60–300
1
500
1935–1963
60–600(?)
1–1.5
6,860
1943–1964C
(O0.15 m) Louisiana Baton Rouge
Fluvial and shallow marine; Miocene to Holocene
50–600(?)
0.3
650
1934–1965C
Source: From Poland, J.F., Subsidence and its control, in underground waste management and environmental implications, Amer Assoc. Petr. Geologists, Memoir 18, 1972.
Table 6F.43 Amounts of Subsidence in Selected Areas in the Southwest Arizona Eloy West of Phoenix Tucson
Nevada 15 ft 18 ft !1 ft
Las Vegas
6 ft New Mexico Albuquerque “!” 1 ft Mimbres Basin 2 ft
Source: From http://geochange.er.usgs.gov. q 2006 by Taylor & Francis Group, LLC
California Lancaster South west of Mendota Davis Santa Clara Valley Ventura
Texas 6 ft 29 ft 4 ft 12 ft 2 ft
El Paso Houston
1 ft 9 ft
GROUNDWATER
6-61
Area 0 Savannah New Orleans
2
Subsidence in meters 4 6
330
8
10
Georgia
150 Louisiana
Baton Rouge
650
Luke Queen Creek
Texas
12,000
Houston-Galveston 400
600 Arizona 700
Stanfield
1,000
Eloy Las Vegas Valley Raft River
300
Nevada Idaho
260
Sacramento Valley Santa clara Valley
500 650
Los Banos-Kettleman City Tulare-Wasco Arvin-Maricopa Lancaster
6,200 3,700
California
1,800 1,200
San Jacinto Valley 10+ Figure 6F.22 Magnitude of land subsidence from groundwater withdrawal in the United States [numbers in columns represent area in square kilometers]. (From Poland, J.F., Irrigation and Drainage division ASCE, 107,1981, IR2. Copyright American Society of Civil Engineers. Reprinted with permission.)
q 2006 by Taylor & Francis Group, LLC
6-62
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Quatamary faults
La
sV eg
as
Ra
Line of approximately equal subsidence (meters); contour interval variable
ng
e
0
-0
-0.1 5
Northwest Bowl
.3
Eglington Fault 6
-0.
1.7
N
Line 1
-1.7
g Ve as l L w th or Bo
as
-0.09
-0.01
36°15 ′
-0.3 -0
Spring Mountains
3
-0 .
-0.
Line 3 Central -0.85 Bowl Line 10
6
-0.67
-0.5
-0.78
Line 6 Southern Bowl
hman Mounta in Frenc
.6
Line 2
.3 -0 15 -0.
6
-0.
0
Henderson
36°00′
0 0
2 1
4 2
McCullough Range
6 Kilometers 3
4Miles
115°15′
115°00′
Figure 6F.23 Revised subsidence contour map for Las Vegas Valley, 1963–2000, showing maximum subsidence measured in four localized bowls and location of level lines. (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-63
95°15′
95°30′
95°45′
96°
Explanation
2
Line of equal land-surface subsidence — Interval 1 foot
95°
1
HARRIS-GALVESTON 2 COASTAL SUBSIDENCE DISTRICT 3
30°
94°45′
4
Houston Ship Channel
5
Houston
29°45′
FORT BEND SUBSIDENCE DISTRICT
6 7
8 9
94°30′ 29°30′
4 3 3
2
29°15′
5
1
TEXAS Study area
Galveston 0 29o30 30'
5
10
15
20 MILES
96o
29o15' 29 15'
95 9 5o
Figure 6F.24 Subsidence occurring between 1906 and 1987 in the Houston-Galveston region, Texas. (From http://water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
6-64
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 6G
AQUIFER CHARACTERISTICS
Explanation Pores in sand and gravel Pores and fractures in sand stones Solution-enlarged openings in carbonate rocks
ALASKA
Fractures and other openings in basalt HAWAII
Fractures in igneous, metamorphic, and consolidated sedimentary rocks exclusive of sandstones and carbonate rocks 0
500 Mt
0
800 KM
Figure 6G.25 Types of water-bearing openings in dominant aquifers of the United States. (From Heath, R.C., Classification of groundwater regions of the United States, Groundwater, 20, 4, 1982, Reprinted with permission.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-65
Table 6G.44 Features of Groundwater Systems Useful in the Classification of Groundwater Regions Feature Component of the system
Water-bearing openings of dominant aquifer
Aspect Unconfined aquifer
Thin, discontinuous, hydrologically insignificant Minor aquifer, serves primarily as a storage reservoir and recharge conduit for underlying aquifer The dominant aquifer
Confining beds
Not present, or hydrologically insignificant Thin, markedly discontinuous, or very leaky Thick, extensive, and impermeable Complexly interbedded with aquifers or productive zones
Confined aquifers
Not present, or hydrologically insignificant Thin or not highly productive Multiple thin aquifers interbedded with non productive zones The dominant aquifer — thick and productive
Presence and arrangement of components
A single, hydrologically-dominant, unconfined aquifer Two interconnected aquifers of essentially equal hydrologic importance A three-unit system consisting of an unconfined aquifer, a confining bed, and a confined aquifer A complexly interbedded sequence of aquifers and confining beds
Primary openings
Pores in unconsolidated deposits Pores in semiconsolidated rocks Pores, tubes, and cooling fractures in volcanic (extrusive-igneous) rocks
Secondary openings
Fractures and faults in crystalline and consolidated sedimentary rocks Solution-enlarged openings in limestones and other soluble rocks
Composition of Insoluble rock matrix of dominant aquifer Soluble
Storage and transmission characteristics of dominant aquifer
Range in Conditions
Porosity
Significance of Feature Affects response of the system to pumpage and other stresses. Affects recharge and discharge conditions for the system. Determines susceptibility of the system to pollution
Controls water-storage and transmission characteristics. Affects dispersion and dilution of wastes
Essentially insoluble Both relatively insoluble and soluble constituents Relatively soluble
Affects water-storage and transmission characteristics. Has major influence on water quality
Large, as in well-sorted, unconsolidated deposits Moderate, as in poorly-sorted unconsolidated deposits and semiconsolidated rocks Small, as in fractures crystalline and consolidated sedimentary rocks
Controls response to pumpage and other stresses. Determines yield of wells. Affects long-term yield of system. Affects rate at which pollutants move
(Continued)
q 2006 by Taylor & Francis Group, LLC
6-66
Table 6G.44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Feature
Aspect
Range in Conditions
Transmissivity
Recharge and discharge conditions of dominant aquifer
Significance of Feature
Large, as in cavernous limestones, lava flows with flow tubes, and clean gravels Moderate, as in well-sorted, coarsegrained sands, and semiconsolidated limestones Small, as in poorly-sorted, fine-grained deposits and fractures rocks Very small, as in confining beds, which are commonly clay-rich In upland areas between streams Through channels of losing streams Largely or entirely by leakage across confining beds from adjacent aquifers
Recharge
Discharge
Affects (a) response to stress and (b) longterm yields. Determines susceptibility to pollution. Affects water quality
Through springs or by seepage to stream channels, lakes, estuaries, or the ocean By evaporation on flood plains and in basin “sinks” By seepage across confining beds into adjacent aquifers
Source: From Heath, R.C., Classification of ground-water systems of the United States, Ground-Water, 20, 4, 1982.
Table 6G.45 Geologic Origin of Aquifers Based on Type of Porosity and Rock Type Sedimentary Type of Porosity
Consolidated
Intergranular
Intergranular and fracture
Unconsolidated Gravelly sand Clayey sand Sandy clay
Breccia Conglomerate Sandstone Slate
Fracture
Volcanic Igneous and Metamorphic
Consolidated
Weathered zone of granitegneiss
Weathered zone of basalt
Zoogenic limestone Oolitic limestone Calcareous grit Limestone Dolomite Dolomitic limestone
Volcanic tuff Cinder Volcanic breccia Pumice Basalt Andesite Rhyolite
Granite Gneiss Gabbro Quartzite Diorite Schist Mica schist
Unconsolidated Volcanic ejecta, blocks, and fragments Ash
Source: From United Nations Department of Economic and Social Affairs, 1975, Ground-water storage and artificial recharge, Natural Resources, Water Series No.2. q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-67
Table 6G.46 Rocks of Greatest Importance in Groundwater Hydrology Sedimentary Rocks
Igneous Rocks
Unconsolidated (Pores)
Consolidated (Pores, Fractures, and Solution Openings)
GRAVELa
Conglomerateb
Gneiss
SAND Silt Clay c Till Marl
SANDSTONE Siltstone Shale Tillite (rare) LIMESTONEDOLOMITE
Quartzite-schist Schist Slate-schist
Metamorphic Rocks (Fractures)
Intrusive (Fractures)
Extrusive (Pores, Tubes, Rubble Zones, and Fractures)
Granite and other coarse- BASALT and other finegrained igneous rocks grained igneous rocks
Marble
Coquina a b c
Capitalized names indicate rocks that are major sources of large groundwater supplies. Lowercase names indicate rocks of relatively wide extent that are sources of small to moderate groundwater supplies. Italic names indicate rocks that function primarily as confining beds.
Source: From Heath, R.C., Ground-water, in Perspectives on Water, Uses and Abuses, D. Speidel, editor, Copyright Oxford University Press, 1988. Reprinted With permission.
q 2006 by Taylor & Francis Group, LLC
6-68
Table 6G.47 Common Ranges in Hydraulic Characteristics of Groundwater Regions in the United States Common Ranges in Hydraulic Characteristics of the Dominant Aquifers
Transmissivity Region No 1
2
3
5 6 7 8 9 10 11
12
13
14
Geologic Situation
m2 dayL1
0.5–100 Mountains with thin soils over fractured rocks, alternating with narrow alluvial and, in part, glaciated valleys Alluvial basins Thicka alluvial (locally glacial) 20–20,000 deposits in basins and valleys bordered by mountains 2,000–500,000 Columbia lava Thick lava sequence interbedded plateau with unconsolidated deposits and overlain by thin soils Colorado plateau and Thina soils over fractured 0.5–100 Wyoming basin sedimentary rocks High plains Thick alluvial deposits over 1,000–10,000 fractured sedimentary rocks Nonglaciated central Thin regolith over fractured 300–10,000 region sedimentary rocks Glaciated central Thick glacial deposits over 100–2,000 region fractured sedimentary rocks Piedmont and Blue Thick regolith over fractured 9–200 Ridge crystalline and metamorphosed Northeast and Thick glacial deposits over 50–500 superior uplands fractured crystalline rocks Atlantic and gulf Complexly interbedded sands, silts 500–10,000 coastal plain and clays Southeast coastal plain Thick layers of sand and clay over 1,000–100,000 semi-consolidated carbonate rocks 200–50,000 Alluvial valleys Thick and gravel deposits beneath flood-plains and terraces of streams 10,000–100,000 Hawaiian islands Lava flows segmented by dikes, interbedded with ash deposits, and partly overlain by alluvium 100–10,000 Alaska Galcial and alluvial deposits in part perennially frozen and overlying crystalline, metamorphic, and sedimentary rocks
m dayL1
ft dayL1
mm yrL1
in yrL1
m3 minL1
gal minL1
5–1,000
0.0003–15
0.001–50
3–50
0.1–2
0.04–0.4
10–100
2,000–200,000
30–600
100–2,000
0.03–30
0.001–1
0.4–20
100–5,000
20,000–5,000,000
200–3000
500–10,000
5–300
0.2–10
0.4–80
100–20,000
5–1,000
0.003–2
0.01–5
0.3–50
0.01–2
0.04–2
10–1,000
10,000–100,000
30–300
100–1,000
5–80
0.2–3
0.4–10
100–3,000
3,000–100,000
3–300
10–1,000
5–500
0.2–20
0.4–20
100–5,000
1,000–20,000
2–300
5–1,000
5–300
0.2–10
0.2–2
50–500
100–2,000
0.001–1
0.003–3
30–300
1–10
0.2–2
50–500
500–5,000
2–30
5–100
30–300
1–10
0.1–1
20–200
5,000–100,000
3–100
10–400
50–500
2–20
0.4–20
100–5,000
10,000–1,000,000
30–3000
100–10,000
30–500
1–20
4–80
1,000–20,000
2,000–50,000
30–2000
100–5,000
50–500
2–20
0.4–20
100–5,000
100,000–1,000,000
200–3000
500–10,000
30–1,000
1–40
0.4–20
100–5,000
1,000–100,000
30–600
100–2,000
3–300
0.1–10
0.04–4
10–1,000
Note: All values rounded to one significant figure; for map of regions, see Figure 6A.3. An average thickness of about 5 m was used as the break point between thick and thin. Source: From Heath, R.C., Classification of groundwater regions of the United States, Groundwater, 20, 4, 1982.
q 2006 by Taylor & Francis Group, LLC
Well Yield
ft2 dayL1
Western mountain ranges
a
Recharge Rate
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
4
Region
Hydraulic Conductivity
GROUNDWATER
6-69
Table 6G.48 Representative Values of Porosity Material
Porosity, Percent 28a 32a 34a 39 39 43 46 42 33 37 30 26 45 49 92 38 35 43 6 34 31 41 17 43 45
Gravel, coarse Gravel, medium Gravel, fine Sand, coarse Sand, medium Sand, fine Silt Clay Sandstone, fine-grained Sandstone, medium-grained Limestone Dolomite Dune sand Loess Peat Schist Siltstone Claystone Shale Till, predominantly silt Till, predominantly sand Tuff Basalt Gabbro, weathered Granite, weathered a
These values are for repacked samples; all others are undisturbed.
Source: From Johnson, A. I., Specific Yield-Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water-Supply Paper 1662-D, 1967.
Table 6G.49 Representative Values of Specific Yield Material Gravel, coarse Gravel, medium Gravel, fine Sand, coarse Sand, medium Sand, fine Silt Clay Sandstone, fine-grained Sandstone, medium-grained Limestone Dune sand Loess Peat Schist Siltstone Till, predominantly silt Till, predominantly sand Till, predominantly gravel Tuff
Specific Yield, Percent 23 24 25 27 28 23 8 3 21 27 14 38 18 44 26 12 6 16 16 21
Source: From Johnson, A.I., Specific Yield-Compilation of Specific Yields for Various Materials, U.S. Geological Survey Water-Supply Paper 1662-D, 1967.
q 2006 by Taylor & Francis Group, LLC
6-70
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6G.50 Drillers’ Terms Used in Estimating Specific Yield Crystalline Bedrock (fresh) Specific yield zero Granite Hard boulders Hard granite
Hard rock Graphite and rocks Rock (if in area of known crystalline rocks) Clay and Related Materials Specific yield 3 percent
Adobe Brittle clay Caving clay Cement Cement ledge Choppy clay Clay Clay, occasional rock Crumbly clay Cube clay Decomposed granite Dirt Good clay Gumbo clay Hard clay Hardpan (H.P.) Hardpan shale Hard shell Joint clay
Lava Loose shale Muck Mud Packed clay Poor clay Shale Shell Slush Soapstone Soapstone float Soft clay Squeeze clay Sticky Sticky clay Tiger clay Tule mud Variable clay Volcanic rock
Clay and Gravel, Sandy Clay, and Similar Materials Specific yield 5 percent Cemented gravel (cobbles) Cemented gravel and clay Cemented gravel, hard Cement and rocks (cobbles) Clay and gravel (rock) Clay and boulders (cobbles) Clay, pack sand, and gravel Cobbles in clay Conglomerate Dry gravel (below water table) Gravel and clay Gravel (cement) Gravel and sandy clay Gravel and tough shale Gravelly clay Rocks in clay Rotten cement Rotten concrete mixture Sandstone and float rock Silt and gravel Soil and boulders
Cemented sand Cemented sand and clay Clay sand Dry hard packed sand Dry and (below water table) Dry sand and dirt Fine muddy sand
Clay and sandy clay Cay and silt Clay, cemented sand Clay, compact loam and sand Clay to coarse sand Clay, streaks of hard packed Sand Clay, streaks of sandy clay Clay, water Clay with sandy pocket Clay with small streaks of sand Clay with some sand Clay with streaks of fine sand Clay with thin streaks of sand Porphyry clay Quicksandy clay Sand — clay Sand shell Shale and sand Solid clay with strata of cemented sand Sticky sand clay Tight muddy sand Very fine tight muddy sand Dry sandy silt Fine sandy loam Fine sandy silt Ground surface Loam Loam and clay Sandy clay loam
(Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-71
Table 6G.50
(Continued) Clay and Gravel, Sandy Clay, and Similar Materials Specific yield 5 percent
Fine sand, streaks of clay Fine tight muddy sand Hard packed sand, streaks of clay Hard sand and clay Hard set sand and clay Muddy sand and clay Packed sand and clay Packed sand and shale Sand and clay mix Sand and tough shale Sand rock Sandstone Sandstone and lava Set sand and clay Set sand, streaks of clay Cemented sandy clay Hard sandy clay (tight) Sandy clay Sandy clay with small sand streaks, very fine Sandy shale Set sandy clay Silty clay Soft sandy clay Clay and fine sand Clay and pumice streaks Ash Caliche Chalk Hard lava formation
Sediment Silt Silty and clay Silty clay loam Silty loam Soft loam Soil Soil and clay Soil and mud Soil and sandy shale Surface formation Top hardpan soil Topsoil Topsoil and sandy silt Topsoil — silt
Decomposed hardpan Hardpan and sandstone Hardpan and sandy clay Hardpan and sandy shale Hardpan and sandy stratas Hard rock (alluvial) Sandy hardpan Semi-hardpan Washboard Hard pumice Porphyry Seepage soft clay Volcanic ash
Fine Sand, Tight Sand, Tight Gravel, and Similar Materials Specific yield 10 percent Sand and clay Sand and clay strata (traces) Sand and dirt Sand and hardpan Sand and hard sand Sand and lava Sand and pack sand Sand and sandy clay Sand and soapstone Sand and soil Sand and some clay Sand, clay, and water Sand crust Sand-little water Sand, mud, and water Sand (some water) Sand streaks, balance clay Sand, streaks of clay Sand with cemented streaks Sand with thin streaks of clay Coarse, and sandy Loose sandy clay Medium sandy
Sandy loam Sandy loam, sand, and clay Sandy silt Sandy soil Surface and fine sand Cloggy sand Coarse pack sand Compacted sand and silt Dead sand Dirty sand Fine pack sand Fine quicksand with alkali streak Fine sand Fine sand, loose Hard pack sand Hard sand Hard sand and streaks of sandy clay Hard sand rock and some water sand Hard sand, soft streaks Loamy fine sand Medium muddy sand Milk sand
(Continued)
q 2006 by Taylor & Francis Group, LLC
6-72
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6G.50
(Continued) Fine Sand, Tight Sand, Tight Gravel, and Similar Materials Specific yield 10 percent
Sandy Sandy and sandy clay Sandy clay, sand, and clay Sandy clay — water bearing Sandy clay with streaks of sand Sandy formation Sandy muck Sandy sediment Very sandy clay
More of less sand Muddy sand Pack sand Poor water sand Powder sand Pumice sand Quicksand Sand, mucky or dirty Set sand Silty sand Sloppy sand Sticky sand Streaks fine and coarse sand Surface sand and clay Tight sand
Boulders, cemented sand Cement, gravel, sand, and rocks Clay and gravel, water bearing Brittle clay and sand Clay & rock, some loose rock Clay and sand Clay, sand and gravel Clay, sand, and water Clay, silt, sand, and gravel Clay with sand Conglomerate, gravel, and Clay with sand streaks boulders More or less clay, hard sand Conglomerate, sticky clay, and boulders sand and gravel Mud and sand Dirty gravel Mud, sand, and water Fine gravel, hard Sand and mud with chunks Gravel and hardpan strata of clay Gravel, cemented sand Silt and fine sand Gravel with streaks of clay Silt and sand Hard gravel Soil, sand, and Hard sand and gravel clay Packed gravel Topsoil and light Packed sand and gravel sand Quicksand and cobbles Water sand sprinkled with Rock sand and clay clay Sand and gravel, cemented Streaks Float rock (stone) Sand and silt, many gravel Laminated Sand, clay, streaks of gravel Pumice Sandy clay and gravel Seep water Set gravel Soft sandstone Silty sand and gravel (cobbles) Strong seepage Tight gravel Gravel, Sand, Sand and Gravel, and Similar Materials Specific yield 25 percent Boulders Coarse gravel Coarse sand Cobbles Cobbles stones Dry gravel (if above water table Float rocks Free sand Gravel Loose gravel Loose sand Rocks
Source: From U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
Gravel and sand Gravel sand sandrock Medium sand Rock and gravel Running sand Sand Sand, water Sand and boulders Sand and cobbles Sand and fine gravel Sand and gravel Sand gravel Water gravel
GROUNDWATER
6-73
Table 6G.51 Representative Values of Hydraulic Conductivity Hydraulic Conductivity Material Gravel, coarse Gravel, medium Gravel, fine Sand, coarse Sand, medium Sand, fine Silt Clay Sandstone, finegrained Sandstone, mediumgrained Limestone Dolomite Dune sand Loess Peat Schist Slate Till, predominantly sand Till, predominantly gravel Tuff Basalt Gabbro, weathered Granite, weathered a
ft dayL1 490 890 1,500 150 40 8.2 0.62 0.00068 0.66 10 3 0.0033 66 0.26 19 0.66 0.00026 1.6 100
m dayL1 150 270 450 45 12
Type of Measurementa R R R R R
2.5 0.08 0.0002 0.2
R H H V
3.1
V
0.94 0.001 20 0.08 5.7
V V V V V
0.2 0.0008 0.49 30
V V R R
0.66
0.2
V
0.033 0.66 4.6
0.01 0.2 1.4
V V V
H is horizontal hydraulic conductivity, R is repacked sample, and V is vertical hydraulic conductivity.
Source: From Morris, D.A. and Johnson, A.I., U.S. Geological Survey Water-Supply Paper 1839-D, 1967.
q 2006 by Taylor & Francis Group, LLC
6-74
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
IGNEOUS AND METAMORPHIC ROCKS Unfractured
Fractured BASALT
Unfractured
Fractured SANDSTONE Fractured
Lava flow
Semiconsolidated
SHALE Unfractured
Fractured CARBONATE ROCKS Fractured SILT, LOESS
CLAY
Covernous
SILTY SAND CLEAN SAND Fine
Coarse GRAVEL
GLACIAL TILL
10−8
10−7
10−6
10−5 10−4
10−3
10−2 10−1
1
10
102
103
104
m d−1 10−7 10−6 10−5
10−7 10−6 10−5
10−4
10−4
10−3
10−3
10−2
10−2 10−1 ft d−1 10−1 gat
1
1
10
10
102
102
103
103
104
104
105
105
d−1 ft+x
Figure 6G.26 Hydraulic conductivity of selected consolidated and unconsolidated aquifers. (From Heath, R.C., Basic Ground-Water Hydrology, U.S. Geological Survey Water-Supply Paper 2220, 1983.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-75
Table 6G.52 Representative Permeability Ranges for Sedimentary Materials Material
Permeability, gal dayL1 ftL2
Material
Permeability, gal dayL1 ftL2
10K5–10K3 10K5–10K3 10K4–10K2 10K3–10K1 10K2–1 10K2–1 10K2–1 10K2–1 10K1–101
Very fine sand Fine sand Medium sand Coarse sand Gravel and sand Gravel Sandstone Limestonea Shale
1–102 101–103 102–103 102–104 102–104 102–104 101–103 1–102 1–102
Clay Silty clay Sandy clay Silty clay loam Sandy clay loam Silt Silt loam Loam Sandy loam a
Excluding cavernous limestone.
Table 6G.53 Temperature Correction for Permeability 8F
TC
8F
TC
8F
TC
8F
TC
40 41 42 43 44 45 46 47 48 49 50 51 52
1.37 1.35 1.33 1.31 1.28 1.26 1.24 1.22 1.20 1.18 1.16 1.15 1.13
53 54 55 56 57 58 59 60 61 62 63 64 65
1.11 1.09 1.08 1.06 1.04 1.03 1.01 1.00 0.99 0.97 0.96 0.95 0.93
66 67 68 69 70 71 72 73 74 75 76 77 78
0.92 0.91 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.79
79 80 81 82 83 84 85 86 87 88 89 90
0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.67
Note: To convert coefficient of permeability computed at water temperature shown in table to coefficient of permeability at 608F, multiply by appropriate factor Tc.
Flow Velocities (cm/sec) Aquifer Type:
100
10
1
0.1
0.01
0.001
0.0001
0.00001
10−6
Conduit Flow Karst Diffuse Flow Karst
Sandstone (fractured and jointed) Volcanic Basalts (fractured and jointed) Fractured Metamorphic
Gravels and Conglomerates Alluvial Sand and Gravel Unconsolidated Sands Consolidated Sandstones Saprolite Glacial Till
LEGEND: Measured data point reported in literature Velocity ranges reported in literature Extrapolated velocity range interpreted from literature
Figure 6G.27 Groundwater flow velocity ranges. (From U.S. Environmental Protection Agency, 1987, Guidelines for Delineation of Wellhead Protection Areas, PB88-111430. Original Everett, A.G., 1987.) q 2006 by Taylor & Francis Group, LLC q 2006 by Taylor & Francis Group, LLC
6-76
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 6H
SOIL MOISTURE
Table 6H.54 Guide for Judging How Much of the Available Moisture Has Been Removed from Soil Feel or Appearance of Soil and Moisture Deficiency in Inches of Water Per Feet of Soil Soil Moisture Deficiency
Coarse Texture
Moderately Coarse Texture
Medium Texture
Fine and Very Fine Texture
0% (Field capacity)
Upon squeezing, no free Upon squeezing, no free Upon squeezing, no free Upon squeezing, no free water appears on soil water appears on soil water appears on soil water appears on soil but wet outline of ball is but wet outline of ball is but wet outline of ball is but wet outline of ball is left on hand left on hand left on hand left on hand 0.0 0.0 0.0 0.0
0–25%
Tend to stick together slightly, sometimes forms a very weak ball under pressure 0.0–0.2
25–50%
Appears to be dry, will not Tends to ball under pressure but seldom form a ball with holds together pressure
50–75%
Appears to be dry, will not Appears to be dry, will not Somewhat crumbly but form a balla holds together from form a ball with pressure pressurea 0.5–0.8 0.8–1.2 1.0–1.5
75–100% (100% is permanent wilting)
Dry, loose, single-grained, Dry, loose, flows through flows through fingers fingers
Forms weak ball, breaks easily, will not slick
0.2–0.5
0.0–0.4
0.4–0.8
0.8–1.0 a
Forms a ball, is very pliable, slicks readily if relatively high in clay
Easily ribbons out between fingers, has slick feeling
0.0–0.5
0.0–0.6
Forms a ball somewhat plastic, will sometimes slick slightly with pressure. 0.5–1.0
Forms a ball, ribbons, out between thumb and forefinger 0.6–1.2 Somewhat pliable, will ball under pressurea 1.2–1.9
Powdery, dry, sometimes Hard, baked, cracked, sometimes has loose slightly crusted but crumbs on surface easily broken down into powdery condition
1.2–1.5
1.6–2.0
1.9–2.5
Ball is formed by squeezing a handful of soil very firmly.
Source: From Israelson and Hansen, Irrigation Principles and Practices, John Wiley & Sons, Copyright 1962. With permission.
Table 6H.55 Approximate Limits of Moisture Conditions in Most Irrigation Soils Approximate Limits, percent by Weight Item 1 2 3 4 5 6 7 8 9 10 11 a
Soil-Moisture Condition Hygroscopic moisture content Hygroscopic coefficient Saturation capacity Field capacity Moisture equivalent Permanent wilting point Ultimate wilting point Moisture in wilting range Available moisture capacity Maximum available storage Gravity water in saturated soils
Lower
Upper
1– 1– 15 7 5
15 15 60 40 50 30 25 5 20 3 40
1 1– 5 1a 8
Inches per feet of soil depth. Source: From Houk, Irrigation Engineering, 1, John Wiley & Sons, Copyright 1951. q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-77
Table 6H.56 Water-Holding Characteristics of Various Soils Approximate Depth of Water Per Feet Depth of Soil in Plant Root Zone (in.) Soil Type
Field Capacity
Irrigation Desirable
Wilting Point
1.2 1.5 1.9 2.5 3.2 3.5 3.7 3.8 3.8 3.9
0.6 0.7 1.0 1.3 1.7 2.0 2.2 2.4 2.6 2.8
0.3 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2.1 2.4
Sand Fine sand Sandy loam Fine sandy loam Loam Silt loam Light clay loam Clay loam Heavy clay loam Clay
Source: From U.S. department of agriculture.
Table 6H.57 Representative Physical Properties of Soils Total Available Moistureb Infiltrationa and Permeability (in./hr)
Total Pore Space (%)
Apparent Specific Gravity
Field Capacity (%)
Permanent Wilting (%)
Dry Weight Basis (%)
Volume Basis (%)
Inches Per Foot
Sandy
2 (1–10)
38 (32–42)
1.65 (1.55–1.80)
9 (6–12)
4 (2–6)
5 (4–6)
8 (6–10)
1.0 (0.8–1.2)
Sandy loam
1 (0.5–3)
43 (40–47)
1.50 (1.40–1.60)
14 (10–18)
6 (4–8)
8 (6–10)
12 (9–15)
1.4 (1.1–1.8)
Loam
0.5 (0.3–0.8)
47 (43–49)
1.40 (1.35–1.50)
22 (18–26)
10 (8–12)
12 (10–14)
17 (14–20)
2.0 (1.7–2.3)
Clay loam
0.3 (0.1–0.6)
49 (47–51)
1.35 (1.30–1.40)
27 (23–31)
13 (11–15)
14 (12–16)
19 (16–22)
2.3 (2.0–2.6)
Silty clay
0.1 (0.01–0.2)
51 (49–53)
1.30 (1.25–1.35)
31 (27–35)
15 (13–17)
16 (14–18)
21 (18–23)
2.5 (2.2–2.8)
Clay
0.2 (0.05–0.4)
53 (51–55)
1.25 (1.20–1.30)
35 (31–39)
17 (15–19)
18 (16–20)
23 (20–25)
2.7 (2.4–3.0)
Soil Texture
Note: Normal ranges are shown in parentheses. a b
Intake rates vary greatly with soil structure and structural stability, even beyond the normal ranges shown above. Readily available moisture is approximately 75% of the total available moisture.
Source: From Israelson and Hansen, Irrigation Principles and Practices, John Wiley & Sons, Copyright 1962. With permission. q 2006 by Taylor & Francis Group, LLC
6-78
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
40 Saturated soil
Moisture content, percent by weight
Saturation capacity
Gravity water
30
Percolates following irrigation Available water * Field capacity, Moisture equivalent
20
Capillary storage for plant growth between irrigations
Capillary water Permanent wilting point
10
Hygroscopic water 0
Ultimate wilting point Hygroscopic coefficient
Wilting range † Unavailable water
Zero vapor pressure
Not available for plant use
Comb. water Ignition point * Part above field capacity available only temporarily. † Sustains plant life but not available for plant growth.
Figure 6H.28 Soil-moisture forms and properties for an assumed fine sandy loam soil. (From Houk, Irrigation Engineering, 1, John Wiley & Sons, Copyright 1951. With permission.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-79
SECTION 6I SPRINGS
Table 6I.58 Classification of Springs According to Magnitude of Discharge Magnitude First Second Third Fourth Fifth Sixth Seventh Eighth
Old System English Units
New System Metric Units
3
O10 m3/sec 1–10 m3/sec 0.1–1 m3/sec 10–100 L/sec 1–10 L/sec 0.1–1 L/sec 10–100 mL/sec !10 mL/sec
Greater than 100 ft sec 10 to 100 ft3 sec 1 to 10 ft3 sec 100 gal/min to 1 ft3/sec 10 to 100 gal/min 1 to 10 gal/min 1 pt/min to 1 gal/min Less than 1 pt/min
Source: From U.S. Geological Survey.
Table 6I.59 Number of First Magnitude Springs in the United States, by State Number
Rock type
Referencesa
Florida Idaho
27 14
— 3, 5
Oregon Missouri California Hawaii Montana Texas Arkansas
15 8 4 3 3 2 1
Limestone Limestone and basalt Balsalt Limestone Basalt do. Sandstone Limestone Basalt
State
a
3 3, 8 3 2, 6, 7 3, 4 1, 3 3
References are listed at back of book. 1, Brune (1975); 2, Hirashima (1967); 3, Meinzer (1927); 4, Moore, L. Grady, U.S. Geological Survey, written commun., January 1977; 5, Ray, Herman A., U.S. Geological Survey, written commun., January 1977; 6, Stearns (1966); 7, Stearns and Macdonald (1946); 8, Vineyard and Feder (1974). Source: From www.flmnh.ufl.edu.
q 2006 by Taylor & Francis Group, LLC
6-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 6I.29 First magnitude springs of Florida. (From www.dep.state.fl.us.)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-81
Table 6I.60 The 27 First-Magnitude Springs and Spring Groups of Florida — with Period of Record, Discharge and Representative Temperatures and Dissolved Solids — Known through December 1976 Spring and Number by County (Refer to Figures 11–15 and Figure 17) 9. 1. 2. 4. 5. 4. 3. 4. 19. 3. 1. 11. 1. 2. 4. 3. 5. 1. 5. 7. 8. 8. 1. 2. 5. 6. 13. a b c d
Alachua County Hornsby Spring Bay County Gainer Springs Citrus County Chassahowitzka Springs Crystal River Springs Homosassa Springs Columbia County Ichetucknee Springs Hamilton County Alapaha Rise Holton Spring Hernando County Weeki Wachee Springs Jackson County Blue Springs Jefferson County Wacissa Springs Group Lafayette County Troy Spring Lake County Alexander Springs Leon County Natural Bridge Spring St. Marks Spring Levy County Fannin Springs Manatee Spring Madison County Blue Spring Marion County Rainbow Springs Silver Glen Springs Silver Springs Suwannee County Falmouth Spring Volusia County Blue Spring Wakulla County Kini Spring River Sink Spring Wakulla Springs Spring Creek Springsa,d
Average Period of Record
Average (ft3/sec)
Number of Measurements
Water Temperature C
F
Dissolved Solids (mg/L)
1972–1975
163
76–250
2
22.5
73
230
1941–1972
159
131–185
7
22.0
72
60
1930–1972
139
32–197
81
23.5
74
740
1964–1975 1932–1974
916 175
b
125–257
90
25.0 23.0
75 73
144 1800
1917–1974
361
241–578
375
22.5
73
170
1975–1976 1976
608 288
508–699 69–482
4 3
19.0 —
66 —
130 —
1917–1974
176
101–275
364
23.5
74
150
1929–1973
190
56–287
10
21.0
70
116
1971–1974
389
280–605
20
20.5
69
150
1942–1973
156
148–205
4
22.0
72
171
1931–1972
120
74–162
13
23.5
74
512
1942–1973 1956–1973
106 519
79–132 310–950
5 130
20.0 20.5
68 69
138 154
1930–1973 1932–1973
103 181
64–139 110–238
8 9
22.0 22.0
72 72
194 215
1932–1973
115
75–145
6
21.0
70
146
1898–1974 1931–1972 1906–1974
763 112 820
487–1,230 90–129 539–1,290
402 11 155
23.0 23.0 23.0
73 73 73
93 1,200 245
1908–1973
158
60–220c
8
21.0
70
190
1932–1974
162
63–214
360
23.0
73
826
1972 1942–1973 1907–1974 1972–1974
176 164 390 2,003
— 102–215 25–1,920
1 6 276 1
20.0 20.0 21.0 19.5
68 68 70 67
110 110 153 2,400
Tidal affected. Continuous record, vane gage. Reverse flow of 365 ft3/sec measured on 02-10-33. See Figure 11.17.
Source: From www.flmnh.ufl.edu.
q 2006 by Taylor & Francis Group, LLC
Discharge Range (ft3/sec)
a
a
6-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Twenty-three states in the United States have Thermal Springs that are included in the database. This table shows the number of Thermal Springs in each state. The first column shows the state abbreviation, the second shows the number of thermal spring in the state, and the third shows a graph of those counts. Nevada has 312 thermal springs, the largest number in any state. State Number of Springs AK
108
AR
6
AZ
60
CA
304
CO
47
FL
2
GA
7
HI
11
ID
232
MA
1
MT
61
NC
1
NM
77
NV
312
NY
1
OR
126
SD
2
TX
9
UT
116
VA
11
WA
30
WV
5
WY
132
Graph
Figure 6I.30 Thermal springs in the United States. (From www.ngdc.noaa.gov.)
Table 6I.61 Major Springs Reported in Other Countries
Spring Ras-El-Ain Stella Spring Rio Maule Spring Fontaine de Vaucluse Timaso Spring Komishimigawa Ain Zarka Sinn River El Gato Lanza a
Country
Average Discharge (ft3/sec)
Rock Type
Referencea
Syria Italy Chile France
1,370 1,290 1,000 800
Limestone do. Basalt Limestone
1,2 6 2 3, 6
Italy Japan Syria Syria Mexico Bolivia
800 700 490 430 185 135
do. Basalt Limestone do. Basalt do.
5 5 5 5 4, 7 5
References are listed at back of book. 1, Burdon and Safadi (1963); 2, Davis and DeWiest (1966, p. 63, 367–369); 3, Meinzer (1927, p. 91–92, 94); 4, Thomas (1975); 5, Thomas, H. E. (written commun., October 1974); 6, Vineyard and Feder (1974, p. 14); 7, Waring (1965, p. 61);
Source: From www.flmnh.ufl.edu. q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-83
Table 6I.62 Natural Heat Flows of Some Hot Spring Areas of the World Area
Approximate Sizea (km2)
Maximum Recorded Temperatureb (8C)
British West Indies Qualibou, St. Lucia St. Vincent Dominica Montserrat
w0.1 w1 w1 w0.1
(S) 185 (S)O27 (S) 90 (S) 97
El Salvador Total of country Northern belt, total Southern belt, total Ahuachapa´n group El Playo´n de Ahuachapa´n Agua Shuca
— — — 80 w0.25 w0.25
— — — (D) 174 (S) boiling (S) boiling
Fiji Islands Savusavu
w1
(S) 100
Iceland Steam fields, total heat flow Hengill, total Do Hengill, southern part only Torfajo¨kull Reykjanes Tro¨lladyngja Krysuvik Kerlingafjo¨ll Vonarskard Grimsvo¨tn Kverkfjo¨ll Askja Na´mafjall Krafla Theistareykir Low temperature areas; about 250 areas Six lines of thermal springs, each Reykjavik Reykir Deilartunga line, total Deliartunga spring Italy (Larderello) Ischia and Flegreian Fields (Monta Amiata) Vulcano Japan Otaki, Kyushu Atami, Shizuoka-ken Do Ito, Shizuoka-ken Obama, Nagasaki-ken Beppu, Oita-ken Kawayu, Hokkaido Yunokawa, Hokkaido Yachigashira, Hokkaido Shikabe, Hokkaido Toyako, Hokkaido Noboribetsu, Hokkaido: Hot Lake area, total Jigokudani Valley (variable) Matsukawa, N. Honshu
—
—
50 — — 100 1 5 10 5 ? 12 10 25 2.5 0.5 2.5 —
(D) 230 — (D) 230 (S) boiling ? ? (D) 230 (S) boiling ? ? ? ? ? (S) boiling (S) boiling (D) 146
— w5 w5 — —
(S) 100 (D) 146 (D) 98 (S) 100 (S) 100
(w50) w10 (w3) w1
Total Heat Flowc (106 cal/sec) 8.6 18 17 1.6 200 50 O150 80 0.46 0.32 2 630 55–80 25–125 28 500 5–25 5–25 5–25 25–125 5–125 125–750 25–125 5–25 25–125 5–25 5–25 100 5–25 1.7 11 25–125 24
((D) 240) (D) 296 ((D) 165) (D) 194
(5) ? (?) ?
— 5 — — 1.5 w10 0.7 w1 ? w0.5 w3
(D) 185 (D) 180 — — (D) 180 (D) 150 (S) 65 (S) 66 (S) 69 (D) 113 (S) 55
? 16 22 44 57 19 8 4.0 0.5 1.2 2.2
w0.2 w0.3 —
(D) 112 (D) 160 (D) 189
14 w6–11.2 ?
(Continued)
q 2006 by Taylor & Francis Group, LLC
6-84
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6I.62
(Continued) Approximate Sizea (km2)
Area Onikobe, N. Honshu Narugo, N. Honshu
(D) 185 (D) 175
? ?
w2 —
(D) 155 (D) 150
? ?
7 7 7 7 7
(D) 266 (D) 266 (D) 266 (D) 266 (D) 266
133 82 143 163 101
w15 w5 5 — —
(D) 295 (S) boiling (S) boiling — (S) 91
272 130 40 30 20
w1 w5 w1 w3 ? ? ?
(S) hot (S) boiling (S) boiling (S) boiling? (D) 277 (D) 285 (D)O160
New Zealand Wairakei, 1951, 1952 1954 1956? 1958, 1959 1958
Ngatamariki Rotokaua Ohaki Taupo Spa Kawerau (Onepu) 1959? 1962 Rotorua Union of South Africa Seven scalding springs United States California The Geysers Sulphur Bank Wilbur Springs area Casa Diablo — Hot Creek Alkali Lakes area (Salton Sea)
?
w1 w2 w5 O25(?) — (w50)
Nevada Steamboat Springs Bradys Springs Beowawe Wyoming Yellowstone Park, Wyoming Total, discharging water Total, calculated Norris Geyser Basin Upper Geyser Basin Mammoth-Hot River
b c
(S) 64
(D) 208 (D) 136 (S) 69 (D) 180 — (D)O270
12.6 52 12.8 36 25 18 — 1.7
0.4 0.2 0.4 70 — (4)
5 w2 w3
(D) 187 (D) 168 (D) 207
7 ? ?
9,000 w70 w70 w3 w10 w8
— (S) 138 (D) 205 (D) 205 (D) 180 (S) 73
— 207 500 8 90 34
w1
(D) 195
18 w2700
U.S.S.R. Pauzhetsk, Kamchatka Total a
Total Heat Flowc (106 cal/sec)
w80 —
Mexico Pathe´, Hidalgo Ixtlan, Michoacan
Waiotapu Orakei Korako Tikitere Tokopia Waikiti
Maximum Recorded Temperatureb (8C)
The limits of a hydrothermal area are very difficult to define and meaningful criteria are difficult to apply. Depending upon the definition, the “limits” of an area can vary by at least an order of magnitude. The definition used here is: “The rather broad boundaries containing specific areas with some surface evidence for abnormally high temperatures at depth. The evidence can consist of one or more of the following: hot springs, fumaroles, active hydrothermal alteration, and abnormally high near-surface geothermal gradient. Closely spaced ‘hot spots’ not separated by areas of approximately ‘normal’ gradient for the region are included in a single thermal area”. (S) indicates temperatures measured at the surface; (D) temperatures from drill holes. Most heat flows are relative to mean annual surface temperatures but a few are relative to 08 or 48C; such differences are small compared to the uncertainties and have not been modified. 1!106 cal/cm2/sec approximates the “normal” heat flow from 60 to 70 km2.
Source:
From U.S. Geological Survey, 1965.
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
6-85
SECTION 6J
ARTIFICIAL RECHARGE
Table 6J.63 Artificial Recharge Projects in the United States and Other Countries United States Alabama Arizona Arkansas California Colorado Connecticut Florida Georgia Hawaii Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota
2 3 2 42 3 1 1 2 1 1 2 1 2 1 3 1 5 3 3 2
Mississippi Missouri Montana Nebraska Nevada New Jersey New Mexico New York North Carolina Ohio Oklahoma Pennsylvania South Carolina Tennessee Texas Utah Virginia Washington Wisconsin
Other Countries Denmark Fed. Rep. of Germany Finland Greece India Israel Italy Jamaica Japan
1 10 1 4 3 2 5 1 3
Morocco Namibia Netherlands New Zealand Oman Qatar Switzerland Thailand
Note:
1 1 2 4 1 3 1 1 3 3 4 3 2 1 9 1 4 4 1
1 1 20 2 1 1 1 2
Number of projects reported based on return of American Society of Civil Engineers’ questionnaires, 1988.
Source: From Johnson, A.I., Personal communication, October 30, 1988.
q 2006 by Taylor & Francis Group, LLC
6-86
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 6J.64 Operation and Maintenance Problems of Artificial Recharge Projects Problem
Manifestation
Silt
Lodging of particles within interstices of soil near the surface area, reducing the infiltration rate
Weeds
Increases percolation rate and shortens drying period required for working an area or removing silt from the basin. There is a disadvantage in that vegetative growth may be a fire hazard
Rodents
Leaks and failures of dikes and levees. Public nuisance near urban area Rodents and mosquito problem and possible injury to individuals. Potential problems of injury is greatest when depth of water is large in basins and pits
Public health and safety
Corrective Actions to be Considered (1) Desilt in retention reservoir and/or in uppermost series of basins. Flocculating agent such as “Separan” has been used with success. (2) Bypass water until concentration of silt will not be detrimental, with concentration depending upon soil condition. Ditches and furrows generally can accept waters containing higher concentrations of silt if sufficient velocity is maintained through the project to carry silt back to the main canal. (3) Scrape, harrow, and/or disc after proper drying. Period of drying usually ranges from one to seven days depending upon soil and weather conditions. (4) Remove silt after drying. Silt may be used to build up levees of basins or bridges of ditches or furrows. (5) Sustain vegetative growth. (6) Sluice the silt out of ditches and furrows, and from channels, with due regard to erosion problems. (7) Pump injection well to loosen silt from interstices and remove silt from the well. (1) Control by chemical means and/or remove when weeds become a fire hazard, especially around structures. Consider use of hand labor instead of mechanical means in order to maintain infiltration rates. However, if possible, leave vegetation undisturbed in wetted area. (2) Prolonged deep submergence will kill vegetation. (3) The control of weeds is generally not considered a problem in the operation of pits and shafts, or injection wells. (1) Set out poison about twice a year. (2) Use of traps. (1) Enclose area with fence and gates with locks. (2) Patrol area with particular attention to children and structural failures, before and during oper-ation, especially near inhabited area. (3) Vector control by use of mosquito fish, chemicals, and/or drying. (4) Rodent control by poisoning or traps. (5) Proper posting of signs when using chemical which is poisonous. (Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6J.64
6-87
(Continued)
Problem
Manifestation
Maintaining of percolation rates
Reduction of percolation rates will decrease efficiency of system, increasing the unit cost of the amount of water actually recharged
Maintenance to diversion structures
Breakdown of spreading operations
Corrective Actions to be Considered (1) Proper treatment of water. Desilt water to concentration desired. Use chlorine or copper sulfate for control of bacterial slime and algae. Use of chemicals to reduce the possibility of chemical incrustation, which is usually deposition of calcium carbonate. (2) Schedule intermittent drying periods to prevent problems due to swelling of soil particles. Permit growth of vegetation to decrease the drying period by removing the water in the root zone and loosening the soil. Studies have shown that bermuda grass has been successfully used to maintain rates, even under prolonged periods of deep submergence. (3) Prevent aeration of water, especially when operating recharge wells, pits, and shafts. (4) Increase head of water generally by increasing depth of water. (5) Use hand labor whenever possible to decrease the possibility of using heavy equipment which will cause surface compaction especially when soil is wet. (6) Scrape, harrow, and/or disc after proper drying. (7) Remove silt, chemical incrustation, and/or any material decreasing infiltration rates after proper drying period. (8) Maintain the design velocity to reduce silting to a minimum in use of ditches and furrows. (9) Recondition injection wells by use of dry ice, hydrochloric acid, and/or sulfuric acid. (10) Prevent freezing of water during winter by continuous spreading. (11) Check the possibility of base exchange reactions. (12) Soil can be reconditioned by using organic material such as cotton gin trash, or chemical agents, such as krilium. (1) Systematic and routine maintenance check as well as patrolling when in operation. Attention should be given to wooden structures since they deteriorate faster due to frequent wetting and drying cycles. Also attention should be given to settlement of structures thus changing flow condition. (2) Attention should be given to undercutting of structure particularly on the downstream end with preventive maintenance primarily in the form of riprapping. (3) Sluicing of channel to remove silt and debris which have accumulated near and at diversion structure.
Source: From Richter and Chun, Proc. Am. Soc. Civil Eng., 1959. With permission. q 2006 by Taylor & Francis Group, LLC
6-88
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 6K
GEOPHYSICAL LOGGING
Table 6K.65 Borehole Geophysical Logging Methods and Their Uses in Hydrologic Studies Method
Uses
Electric logging: Single-electrode resistance Determining depth and thickness of thin beds. Identification of rocks, provided general lithologic information is available, and correlation of formations. Determining casing depths Short normal (electrodes spacing of 16 in.) Picking tops of resistive beds. Determining resistivity of the invaded zone. Estimating porosity of formations (deeply invaded and thick interval). Correlation and identification, provided general lithologic information is available Long normal (electrode spacing of 64 in.) Determining true resistivity in thick beds where mud invasion is not too deep. Obtaining data for calculation of formationwater resistivity Deep lateral (electrode spacing Determining true resistivity where mud approximately 19 ft) invasion is relatively deep. Locating thin beds Limestone sonde (electrode spacing of 32 in.) Laterolog
Microlog
Microlaterolog
Spontaneous potential
Recommended Conditions Fluid-filled hole. Fresh mud required. Hole diameter less than 8 to 10 in. Log only in uncased holes
Fluid-filled hole. Fresh mud. Ratio of mud resistivity to formation-water resistivity should be 0.2 to 4. Log only in uncased part of hole
Fluid-filled hole. Ratio of mud resistivity to formation-water resistivity should be 0.2 to 4. Log only in uncased part of hole
Fluid-filled uncased hole. Fresh mud. Formations should be of thickness different from electrode spacing and should be free of thin limestone beds Detecting permeable zones and determining Fluid-filled uncased hole. May be salty mud. Uniform hole size. Beds thicker than 5 ft porosity in hard rock. Determining formation factor in situ Investigating true resistivity of thin beds. Fluid-filled uncased hole. Salty mud Used in hard formations drilled with very satisfactory. Mud invasion not too deep salty muds. Correlation of formations, especially in hard-rock regions Determining permeable beds in hard or well- Fluid required in hole. Log only in uncased consolidated formations. Detailing beds in part of hole. Bit-size hole (caved sections moderately consolidated formations. may be logged, provided hole Correlation in hard-rock country. enlargements are not too great) Determining formation factor in situ in soft or moderately consolidated formations. Detailing very thin beds Determining detailed resistivity of flushed Fluid-filled uncased hole. Thin mud cake. formation at wall of hole when mudcake Salty mud permitted thickness is less than three-eighths inch in all formations. Determining formation factor and porosity. Correlation of very thin beds Helps delineate boundaries of many Fluid-filled uncased hole. Fresh mud formations and the nature of these formations. Indicating approximate chemical quality of water. Indicate zones of water entry in borehole. Locating cased interval. Detecting and correlating permeable beds (Continued)
q 2006 by Taylor & Francis Group, LLC
GROUNDWATER
Table 6K.65
6-89
(Continued)
Method Radiation logging: Gamma Ray
Neutron
Induction logging
Sonic logging
Temperature logging
Fluid-conductivity logging
Uses
Recommended Conditions
Differentiating shale, clay, and marl from other formations. Correlations of formations. Measurement of inherent radioactivity in formations. Checking formation depths and thicknesses with reference to casing collars before perforating casing. For shale differentiation when holes contain very salty mud. Radioactive tracer studies. Logging dry or cased holes. Locating cemented and cased intervals. Logging in oil-base muds. Locating radioactive ores. In combination with electric logs for locating coal or lignite beds Delineating formations and correlation in dry or cased holes. Qualitative determination of shales, tight formations, and porous sections in cased wells. Determining porosity and water content of formations, especially those of low porosity. Distinguishing between water- or oil-filled and gas-filled reservoirs. Combining with gamma-ray log for better identification of lithology and correlation of formations. Indicating cased intervals. Logging in oilbase muds Determining true resistivity, particularly for thin beds (down to about 2 feet thick) in wells drilled with comparatively fresh mud. Determining resistivity of formations in dry holes. Logging in oil-base muds. Defining lithology and bed boundaries in hard formations. Detection of water-bearing beds Logging acoustic velocity for seismic interpretation. Correlation and identification of lithology. Reliable indication of porosity in moderate to hard formations; in soft formations of high porosity it is more responsive to the nature rather than quantity of fluid contained in pores Locating approximate position of cement behind casing. Determining thermal gradient. Locating depth of lost circulation. Locating active gas flow. Used in checking depths and thickness of aquifers. Locating fissures and solution openings in open holes and leaks or perforated sections in cased holes. Reciprocal-gradient temperature log may be more useful in correlation work Locating point of entry of different quality water through leaks or perforations in casing or opening in rock hole. (Usually resistivity is determined and must be converted to conductivity.) Determining quality of fluid in hole for improved interpretation of electric logs. Determining fresh-water-salt-water interface
Fluid-filled or dry cased or uncased hole. Should have appreciable contrast in radioactivity between adjacent formations
Fluid-filled or dry cased or uncased hole. Formations relatively free from shaly material. Diameter less than 6 inches for dry holes. Hole diameter similar throughout
Fluid-filled or dry uncased hole. Fluid should not be too salty
Not affected materially by type of fluid, hole size, or mud invasion
Cased or uncased hole. Can be used in empty hole if logged at very slow speed, but fluid preferred in hole. Fluid should be undisturbed (no circulation) for 6 to 12 hr minimum before logging; possibly several days may be required to reach thermal equilibrium
Fluid required in cased or uncased hole. Temperature log required for quantitative information
(Continued)
q 2006 by Taylor & Francis Group, LLC
6-90
Table 6K.65
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Method Fluid-velocity logging
Casing-collar locator
Caliper (section gage) survey
Dipmeter survey
Directional (inclinometer) survey
Magnetic logging
Uses
Recommended Conditions
Locating zones of water entry into hole. Determining relative quantities of water flow into or out of these zones. Determine direction of flow up or down in sections of hole. Locating leaks in casing. Determine approximate permeability of lithologic sections penetrated by hole, or perforated section of casing Locating position of casing collars and shoes for depth control during perforating. Determining accurate depth references for use with other types of logs Determining hole or casing diameter. Indicates lithologic character of formations and coherency of rocks penetrated. Locating fractures, solution opening, and other cavities. Correlation of formations. Selection of zone to set a packer. Useful in quantitative interpretation of electric, temperature, and radiation logs. Used with fluid-velocity logs to determine quantities of flow. Determining diameter of underreamed section before placement of gravel pack. Determining diameter of hole for use in computing volume of cement to seal annular space. Evaluating the efficiency of explosive development of rock wells. Determining construction information on abandoned wells Determining dip angle and dip direction (from magnetic north) in relation to well axis in the study of geologic structure. Correlation of formations
Fluid-filled cased or uncased hole. Injection pumping, flowing, or static (at surface) conditions. Flange or packer units required in large diameter holes. Caliper (section gage) logs required for quantitative interpretation
Fluid-filled or dry cased or uncased hole. (In cased holes does not give information on beds behind casing.)
Fluid-filled uncased hole. Carefully picked zones needing survey, because of expense and time required. Directional survey required for determination of true dip and strike (generally obtained simultaneously with dipmeter curves) Fluid-filled or dry uncased hole
Locating points in a hole to determine deviation from the vertical. Determining true depth. Determining possible mechanical difficulty for casing installation or pump operation. Determining true dip and strike from dipmeter survey Determining magnetic field intensity in bore- Fluid-filled or dry uncased hole hole and magnetic susceptibility of rocks surrounding hole. Studying lithology and correlation, especially in igneous rocks
Source: From U.S. Geological Survey, 1968.
q 2006 by Taylor & Francis Group, LLC
Cased hole
GROUNDWATER
Table 6K.66 Geophysical Logging Quick Reference Guide
Source: From www.welenco.com.
q 2006 by Taylor & Francis Group, LLC
6-91
CHAPTER
7
Water Use Katherine L. Thalman
CONTENTS Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section
7A 7B 7C 7D 7E 7F 7G 7H 7I 7J 7K 7L 7M 7N 7O 7P
Water Use — United States . . . . . . . . . . . . . . . . . . . . Water Use — World . . . . . . . . . . . . . . . . . . . . . . . . . . Public Water Supply — United States . . . . . . . . . . . . . Public Water Supply — World . . . . . . . . . . . . . . . . . . Domestic Water Consumption . . . . . . . . . . . . . . . . . . . Bottled Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Industrial and Commercial Water Use — United States Industrial Water Use — World . . . . . . . . . . . . . . . . . . Irrigation — United States . . . . . . . . . . . . . . . . . . . . . Irrigation — World. . . . . . . . . . . . . . . . . . . . . . . . . . . Livestock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Navigation and Waterways . . . . . . . . . . . . . . . . . . . . . Waterborne Commerce . . . . . . . . . . . . . . . . . . . . . . . . Water–Based Recreation . . . . . . . . . . . . . . . . . . . . . . . Fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Water in Foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. .............................. ..............................
7-2 7-18 7-46 7-70 7-98 7-108 7-115 7-157 7-167 7-204 7-215 7-217 7-233 7-240 7-251 7-275
7-1 q 2006 by Taylor & Francis Group, LLC
7-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7A
WATER USE — UNITED STATES
Farm Pond Recreation Irrigation
Hydroelectric Plant
Municipal Water Works Steam Power Plant
City Sewage Treatment Plant
Navigation
Factory
Factory Rural Home
Well
Recharge Well
Well Septic Tank
Figure 7A.1 The many uses of water. (From Laas and Beicos, The Water in Your Life, Popular Library In 2nd Edition, 1967.)
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-3
Figure 7A.2 Total water withdrawals for all off-stream water-use categories in the United States, 2000. (From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov/ pubs/circ/2004/circ1268.)
q 2006 by Taylor & Francis Group, LLC
7-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Groundwater withdrawals (bill gal/day)
250
200 er Th
tric lec e mo
power
150 tion
Irriga
100 Other industrial
50
Public supp 0 1950
1955
1960
ly Rural 1965
1970
1975
1980
1985
1990
1995
2000
Year Note: The 2000 data for rural domestic and livestock and other industrial are partial totals. Figure 7A.3 Total water withdrawal for public supply, rural, irrigation, thermoelectric power, and other industries in the United States, 1950–2000. (Based on data from Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
Year
Population (million) Offstream use Total withdrawals Public supply Rural domestic and livestock Self-supplied domestic Livestock and aquaculture Irrigation Industrial Thermoelectric power use Other industrial use Source of water Ground Fresh Saline Surface Fresh Saline
1950a
1955b
1960c
1965d
1970d
1975c
1980c
150.7
164
179.3
193.8
205.9
216.4
229.6
180 14
240 17
270 21
310 24
370 27
420 29
440 34
2.1 1.5
2.1 1.5
2 1.6
2.3 1.7
2.6 1.9
2.8 2.1
3.4 2.2
1985c
Percentage Change 1995–2000
1990c
1995c
2000c
242.4
252.3
267.1
285.3
7
399 36.5
408 38.5
402 40.2
408 43.3
2 8
3.32 4.47e
3.39 4.5
3.39 5.49
3.59 f
6 —
89
110
110
120
130
140
150
137
137
134
137
2
40
72
100
130
170
200
210
187
195
190
195
3
37
39
38
46
47
45
45
30.5
29.9
29.1
g
—
34
47 0.6
50 0.4
60 0.5
68 1
82 1
83 0.9
73.2 0.65
79.4 1.22
76.4 1.11
250 53
260 69
h
140 10
180 18
190 31
210 43
290 71
265 59.6
259 68.2
264 59.7
83.3 1.26 262 61
WATER USE
Table 7A.1 Trends in Estimated Water Use in the United States, 1950–2000
9 14 K1 2
Note: Data for 1995 and earlier from Solley and others (1998). The water-use data are in billion gallons per day (thousand million gallons per day) and are rounded to two significant figures for 1950–80, and to three significant figures for 1985–2000; percentage change is calculated from unrounded numbers. —, not available. a b c d e f g h
48 States and district of Columbia, and Hawaii. 48 States and district of Columbia. 50 States and district of Columbia, Puerto Rico, and U.S. Virgin Islands. 50 States and district of Columbia, and Puerto Rico. From 1985 to present this category includes water use for fish farms. Data not available for all States; partial total was 5.46. Commercial use not available; industrial and mining use totaled 23.2. Data not available.
Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, http://water.usgs.gov.
7-5
q 2006 by Taylor & Francis Group, LLC
7-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
90
70
n
o
s
io
gr
a
ith
al
at
To
50
l ta
w
w
w
ig
60
d un
r te
a dr
Irr
Groundwater withdrawals (bill gal/day)
80
40 30 20
Public supply Self-supplied industria l Thermoelectric
10 Self-supplied domestic 0 1950
1955
1960
1965
1970
1975 Year
1980
1985
1990
1995
2000
Figure 7A.4 Trends in groundwater use in the United States, 1950–2000. (Based on information from Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995 University of lllinois at Urbana-Champaign, Illinois Water Resources Center, Special Report 28, February 2002, environ.uivc.edu/iwrc and Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.)
Table 7A.2 Changes in Sectoral Withdrawals in the United States, 1950–1995 Withdrawals (bgd)
Change (bgd)
Percent Change
Sector
1950
1980
1995
1980–1995
1980–1995
1950–1980
1980–1995
Domestic Irrigation Thermoelectric Industrial Total
17.6 89.0 40.0 37.0 183.6
39.6 150.0 210.0 45.0 444.6
49.1 134.0 190.0 29.1 402.2
22.0 61.0 170.0 8.0 261.0
9.5 K16.0 K20.0 K15.9 K42.4
C125.0 C68.5 C425.0 C21.6 C142.2
C24.0 K10.7 K9.5 K35.3 K9.5
Note: This sectoral breakdown of the 1980–1995 change in total withdrawals shows a consistent decline in off-stream withdrawals for all sectors, with the exception of public supply and domestic use. Source:
From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995. Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002. Reprinted with permission, http://info.geography.siu.edu/ geography_info/research/.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-7
Table 7A.3 Percent of United States Population Relying on Groundwater as a Source of Drinking Water, 1995 Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total United States Including P.R. and V.I. Source:
q 2006 by Taylor & Francis Group, LLC
40 42 57 42 43 14 41 57 92 28 96 94 24 51 71 45 14 56 31 16 41 25 72 91 43 37 84 26 37 46 88 27 24 44 35 26 17 22 17 26 63 37 42 55 35 12 52 21 57 42 41
Abstracted from Solley, W.B. et al., 1998, Estimated use of water in the United States in 1995, U.S. Geological Survey Circular 1200.
7-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Use
Source Surface water
Disposition
Domestic-commercial 0.8%
4.8%
19.2%
6.9% 84.9%
41,700 Mgal/d 12.2%
8.0% 4.1% 3.3%
80.8% 100,000 Mgal/d
10.3%
Public supply
Consumptive use
84.6%
29.3%
Industrial-mining 14.8%
62.5% 49.6%
40,200 Mgal/d
64.7%
87.9%
16.9%
37.5% 11.8%
28,000 Mgal/d
85.2%
8.2% Return flow
18.4%
0.3% 264,000 Mgal/d
14.0%
Thermoelectric 2.5%
77.6%
9.9%
99.5%
132,000 Mgal/d 38.7%
97.5%
33.2%
53.4% 0.1% 0.4%
241,000 Mgal/d 70.7%
Irrigation-livestock 9.5%
Groundwater
60.7% 63.2%
19.7% 5.6% 6.7% 0.7%
76,400 Mgal/d 22.4%
139,000 Mgal/d 40.9% 22.7%
67.3%
39.3% 36.8%
Figure 7A.5 Source, use, and disposition of freshwater in the United States, 1995. For each water-use category, this diagram shows the relative proportion of water source and disposition and the general distribtion of water from source to disposition. The lines and arrows indicate the distribution of water from source to disposition for each category; for example, surface water was 77.6 percent of total freshwater withdrawn, and going from "Source" to "Use" columns, the line from the surface-water block to the domestic and commercial block indicates that 0.8 percent of all surface water withdrawn was the source for 4.8 percent of total water (self-supplied withdrawals, public-supply deliveries) for domestic and commercial purposes. In addition, going from the "Use" to "Disposition" columns, the line from the domestic and commercial block to the consumptive use block indicates that 19.2 percent of the water for domestic and commercial purposes was consumptive use; this represents 8.0 percent of total consumptive use by all water-use categories. (From Solley, W.B. et al., 1998, Estimated use of water in the United States in 1995, U.S. Geological Survey Circular 1200, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania
Thermoelectric Power
Public Supply Fresh
Domestic Fresh
Irrigation Fresh
Livestock Fresh
553 50.7 613 289 3,320 846 358 49.8 0
0 0.25 0 0 28.6 0 0 0 0
28.7 0.02 2,660 1,410 18,900 9,260 13.4 7.89 0.18
— — — — 227 — — 0.22 —
1.44 — — 10.4 380 — — 0 —
777 3.8 0 66.8 5.65 96.4 6.61 42.5 0
0 3.86 0 0 13.6 0 0 3.25 0
— 27.4 4.43 2.57 2.71 — — — —
— 49.5 0 0 0.46 — — — —
237 968 7.6 25.3 1,410 326 79.8 244 455 404 72.5 740 542 896 171 40.4 594 92.4 63.8 478 64.1 650 33.8 1,980 779 31.2 966 562 447 1,250
0 0 7.22 0 0 0 0 0 8 0 0 0 0 0 0 0 0 1.29 0 0 0.16 0 0 0 0 0 2.71 0 7.97 0
2,110 392 193 13,300 4.25 45.4 1.08 288 28.2 232 5.23 12.6 106 73.2 36.6 99.1 48.1 7,870 1,370 1,540 4.25 117 1,630 12.1 221 73.2 17.8 151 5,290 12.5
1.51 17.7 — 7.2 0 14.6 27.1 23.5 — 3.31 — 3.18 — 1.15 0 — 54.1 — 17.4 — — 0 — — 32.3 — 17.1 97.2 — —
0.21 7.72 — 1,920 — — — 2.27 — 115 — 14.8 — — — 49.8 81.3 — — — 13.1 0 — — 0 — 0 16.1 — —
74.7 333 0 19.7 259 2,300 11.7 6.74 222 2,400 237 49.9 26.2 589 97.8 124 33.5 29.3 2.6 5 37.9 66.2 1.67 152 267 10.7 645 19.1 183 1,030
1.18 30 0 0 0 0 0 0 0 0 0 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57.8 2.05 — — — 78.3 30.3 17.4 — — — 4.1 — — 581 — 12.8 — 122 — 6.72 104 — — — — 35.5 0.23 — 20.9
0 0 — — — 0 0 0 — — — 0.02 — — 0 — 0 — 0 — 0 0 — — 0 — 0 0 — 0
Aquaculture Fresh
Industrial Fresh
Saline
Mining Fresh
Saline
Fresh
Saline
8,190 0 28.9 0 26.2 0 2,170 0 349 12,600 122 0 186 3,440 366 738 9.69 0
Total Fresh
Saline
9,550 0 111 53.4 3,300 0 3,950 0 23,200 12,600 10,300 0 565 3,440 466 741 9.87 0
629 12,000 3,110 3,240 61.7 4,960 0 0 208 0 0 15,300 11,300 0 12,900 6,700 0 9,460 2,530 0 2,680 2,240 0 2,820 3,250 0 3,970 5,580 0 8,730 108 295 423 377 6,260 1,200 108 3,610 783 7,710 0 9,260 2,260 0 3,150 318 148 632 5,620 0 6,450 110 0 8,100 2,810 0 4,390 24.7 0 2,050 235 761 362 648 3,390 1,590 45 0 1,710 4,040 5,010 6,190 7,850 1,620 9,150 902 0 1,020 8,590 0 10,300 143 0 990 12.8 0 5,940 6,970 0 9,290
12,000 91.7 0 0 0 0 0 0 0 0 295 6,490 3,610 0 0 148 0 0 0 0 761 3,390 0 5,010 1,620 0 0 0 0 0
Total 9,550 164 3,300 3,950 35,800 10,300 4,010 1,210 9.87 15,100 5,060 208 15,300 12,900 9,460 2,680 2,820 3,970 8,730 718 7,690 4,390 9,260 3,150 781 6,450 8,100 4,390 2,050 1,120 4,980 1,710 11,200 10,800 1,020 10,300 990 5,940 9,290
7-9
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7A.4 Surface Water Withdrawals by Water-Use Category, 2000
(Continued)
State
Public Supply Fresh
Domestic Fresh
Irrigation Fresh
Livestock Fresh
Aquaculture Fresh
102 462 39.1 569 2,970 274 40.6 650 552 149 293 49.4 425 5.57
0 0 0.01 0 0 0 0.25 0 0.02 0.81 0 0 0 1.69
2.99 162 236 15.1 2,130 3,390 3.45 22.8 2,290 0.02 1.57 4,090 57.5 0.21
—
— — — —
27,300
58.9
80,000
25.2 172 — — — — — 6.02 — — — 747
0 — — — — 30.4 — — — 2,640
Industrial
Mining
Fresh
Saline
Fresh
2.09 514 1.96 785 1,200 8.38 4.86 365 439 958 364 1.47 0 3.12
0 0 0 0 906 0 0 53.3 39.9 0 0 0 0 0
— — — — 91.5 17.7 — — — — — 20.7 — —
14,900
1,280
1,240
Thermoelectric Power
Saline
Fresh
— — — — 0 177 — — — — — 0 — —
2.4 290 5,700 0 4.01 0 9,040 0 9,760 3,440 49.2 0 355 0 3,850 3,580 518 0 3,950 0 6,090 0 242 0 0 2,190 0 136
227
135,000
Saline
59,500
Total Fresh
Saline
110 6,840 306 10,400 16,300 3,740 404 4,880 3,800 5,060 6,780 4,400 483 10.6
290 0 0 0 4,350 177 0 3,640 39.9 0 0 0 2,190 136
262,000
61,000
Total 400 6,840 306 10,400 20,700 3,920 404 8,520 3,840 5,060 6,780 4,400 2,670 147 323,000
Figures may not sum of totals because of independent rounding. All values are in million gallons per day. —, data not collected.
Source: From Hutson, S.S. et al., Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, 2004, http://water.usgs.gov/pubs/circ/2004/circ1268/.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total Note:
7-10
Table 7A.4
State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania
Public Supply Fresh
Domestic Fresh
Irrigation Fresh
Livestock Fresh
281 29.3 469 132 2,800 53.7 66 45 0
78.9 10.9 28.9 28.5 257 66.8 56.2 13.3 0
14.5 0.99 2,750 6,510 11,600 2,160 17 35.6 0
— — — — 182 — — 3.7 —
2,200 278 243 219 353 345 303 172 71 349 29.6 84.6 197 247 329 319 278 56.1 266 151 33 400 262 583 166 32.4 500 113 118 212
199 110 4.82 85.2 135 122 33.2 21.6 19.5 41.2 35.7 77.1 42.2 239 80.8 69.3 53.6 17.3 48.4 22.4 40.9 79.7 31.4 142 189 11.9 132 25.5 68.3 132
2,180 750 171 3,720 150 55.5 20.4 3,430 1.14 791 0.61 29.8 19.7 128 190 1,310 1,380 83 7,420 567 0.5 22.8 1,230 23.3 65.8 72.2 13.9 566 792 1.38
31 1.66 — 27.7 37.6 27.3 81.8 87.2 — 4.03 — 7.18 — 10.2 52.8 — 18.3 — 76 — — 1.68 — — 89.1 — 8.2 53.6 — —
Aquaculture Fresh
Industrial Fresh
Mining
Saline
Fresh
Saline
ThermoElectric Power Fresh
Fresh
Total Saline
8.93 — — 187 158 — — 0.07 —
56 4.32 19.8 67 183 23.6 4.13 17 0
0 0 0 0.08 0 0 0 0 0
— 0.01 81.2 0.21 21 — — — —
— 90.4 8.17 0 152 — — — —
0 4.65 74.3 2.92 3.23 16.1 0.08 0.47 0
440 50.2 3,420 6,920 15,200 2,320 143 115 0
0 90.4 8.17 0.08 152 0 0 0 0
7.81 7.7 — 51.5 — — — 3.33 — 128 — 4.81 — — — 321 2.01 — — — 3.12 6.46 — — 7.88 — 1.36 0.29 — —
216 290 14.5 35.8 132 99.7 226 46.6 95.2 285 9.9 15.9 10.7 110 56.3 118 29.2 31.9 35.5 5.29 6.95 65.3 8.8 145 25.6 6.88 162 6.83 12.1 155
0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
160 7.75 — — — 4.2 2.49 14 — — — 4.21 — — 6.9 — 4.1 — 5.64 — 0.08 6.12 — — 36.4 — 53.1 2.25 — 162
0 0 — — — 0 0 0 — — — 0 — — 0 — 0 — 4.55 — 0 0 — — 0 — 0 256 — 0
29.5 1.03 0 0 5.75 2.58 11.9 14.9 2.71 28.4 4.92 1.8 0 0 4.17 43.5 12.2 0 6.87 12 0.71 2.24 11.4 0 0.09 0 7.57 3.27 2.47 3.98
5,020 1,450 433 4,140 813 656 679 3,790 189 1,630 80.8 225 269 734 720 2,180 1,780 188 7,860 757 85.2 584 1,540 893 580 123 878 771 993 666
0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.55 0 0 0 0 0 0 0 0 256 0 0
Total 440 141 3,430 6,920 15,400 2,320 143 115 0 5,020 1,450 434 4,140 813 656 679 3,790 189 1,630 80.8 225 269 734 720 2,180 1,780 188 7,860 757 85.2 584 1,540 893 580 123 878 1,030 993 666
7-11
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7A.5 Groundwater Withdrawals for Off-Stream Water-Use Categories in the United States, 2000
7-12
Table 7A.5
(Continued)
State
16.9 105 54.2 321 1,260 364 19.5 70.7 464 41.6 330 57.2 88.5 0.52 16,000
Domestic Fresh 8.99 63.5 9.52 32.6 131 16.1 20.7 133 125 39.6 96.3 6.57 0.88 0 3,530
Irrigation Fresh
Livestock Fresh
Aquaculture Fresh
0.46 106 137 7.33 6,500 469 0.33 3.57 747 0.02 195 413 36.9 0.29
— — 16.9 — 137 — — — — — 60.3 — — —
— — — — — 116 — — — — 39.8 — — —
56,900
1,010
1,060
Saline
Fresh
Saline
ThermoElectric Power Fresh
0 0 0 0 0.5 5.08 0 0 0 0 0 0 0 0
— — — — 129 8.6 — — — — — 58.8 — —
— — — — 504 21.5 — — — — — 222 — —
0 5.83 1.23 0 60.2 13.1 0.66 1.5 0.92 0 8.99 1.13 0 0
6.51
767
Industrial Fresh 2.19 50.9 3.16 56.3 244 34.3 2.05 104 138 9.7 83 4.31 11.2 0.22 3,570
Mining
1,260
409
Note: Figures may not sum to totals because of independent rounding. All values are in million gallons per day. —, data not collected. Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
Total Fresh
Saline
Total
28.6 330 222 417 8,470 1,020 43.2 314 1,470 90.9 813 541 137 1.03
0 0 0 0 504 26.5 0 0 0 0 0 222 0 0
28.6 330 222 417 8,970 1,050 43.2 314 1,470 90.9 813 763 137 1.03
83,300
1,260
84,500
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Public Supply Fresh
WATER USE
Table 7A.6 Total Off-Stream Water Withdrawals by Source and State in the United States, 2000 Withdrawals (thousand acre-feet/yr)
Withdrawals (mil gal/day) By Source and Type Groundwater State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio
Population (thousands)
Fresh
4,450 627 5,130 2,670 33,900 4,300 3,410 784 572
440 50.2 3,420 6,920 15,200 2,320 143 115 0
0 90.4 8.17 0.08 152 0 0 0 0
16,000 8,190 1,210 1,290 12,400 6,080 2,930 2,690 4,040 4,470 1,270 5,300 6,350 9,940 4,920 2,840 5,600 902 1,710 2,000 1,240 8,410 1,820 19,000 8,050 642 11,400
5,020 1,450 433 4,140 813 656 679 3,790 189 1,630 80.8 225 269 734 720 2,180 1,780 188 7,860 757 85.2 584 1,540 893 580 123 878
0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.55 0 0 0 0 0 0 0 0
Saline
Surface Water Total 440 141 3,430 6,920 15,400 2,320 143 115 0 5,020 1,450 434 4,140 813 656 679 3,790 189 1,630 80.8 225 269 734 720 2,180 1,780 188 7,860 757 85.2 584 1,540 893 580 123 878
Total
Total
Fresh
Saline
Total
Fresh
Saline
Total
Fresh
Saline
Total
9,550 111 3,300 3,950 23,200 10,300 565 466 9.87
0 53.4 0 0 12,600 0 3,440 741 0
9,550 164 3,300 3,950 35,800 10,300 4,010 1,210 9.87
9,990 161 6,720 10,900 38,400 12,600 708 582 9.87
0 144 8.17 0.08 12,800 0 3,440 741 0
9,990 305 6,730 10,900 51,200 12,600 4,150 1,320 9.87
11,200 181 7,530 12,200 43,100 14,200 794 652 11.1
0 161 9.16 0.09 14,300 0 3,860 831 0
11,200 342 7,540 12,200 57,400 14,200 4,650 1,480 11.1
3,110 4,960 208 15,300 12,900 9,460 2,680 2,820 3,970 8,730 423 1,200 783 9,260 3,150 632 6,450 8,100 4,390 2,050 362 1,590 1,710 6,190 9,150 1,020 10,300
12,000 91.7 0 0 0 0 0 0 0 0 295 6,490 3,610 0 0 148 0 0 0 0 761 3,390 0 5,010 1,620 0 0
15,100 5,060 208 15,300 12,900 9,460 2,680 2,820 3,970 8,730 718 7,690 4,390 9,260 3,150 781 6,450 8,100 4,390 2,050 1,120 4,980 1,710 11,200 10,800 1,020 10,300
8,140 6,410 640 19,500 13,700 10,100 3,360 6,610 4,160 10,400 504 1,430 1,050 10,000 3,870 2,810 8,230 8,290 12,200 2,810 447 2,170 3,260 7,080 9,730 1,140 11,100
12,000 91.7 0.85 0 0 0 0 0 0 0 295 6,490 3,610 0 0 148 0 0 4.55 0 761 3,390 0 5,010 1,620 0 0
20,100 6,500 641 19,500 13,700 10,100 3,360 6,610 4,160 10,400 799 7,910 4,660 10,000 3,870 2,960 8,230 8,290 12,300 2,810 1,210 5,560 3,260 12,100 11,400 1,140 11,100
9,120 7,190 718 21,800 15,400 11,300 3,770 7,410 4,660 11,600 565 1,600 1,180 11,200 4,340 3,150 9,220 9,300 13,700 3,140 501 2,430 3,650 7,940 10,900 1,280 12,500
13,400 103 0.95 0 0 0 0 0 0 0 330 7,270 4,050 0 0 166 0 0 5.1 0 854 3,800 0 5,610 1,810 0 0
22,500 7,290 719 21,800 15,400 11,300 3,770 7,410 4,660 11,600 895 8,870 5,220 11,200 4,340 3,320 9,220 9,300 13,700 3,140 1,350 6,230 3,650 13,600 12,700 1,280 12,500
q 2006 by Taylor & Francis Group, LLC
7-13
(Continued)
7-14
Table 7A.6
(Continued) Withdrawals (thousand acre-feet/yr)
Withdrawals (mil gal/day) By Source and Type Groundwater State
Fresh
Saline
Total
Fresh
Saline
3,450 3,420 12,300 1,050 4,010 755 5,690 20,900 2,230 609 7,080 5,890 1,810 5,360 494 3,810 109
771 993 666 28.6 330 222 417 8,470 1,020 43.2 314 1,470 90.9 813 541 137 1.03
256 0 0 0 0 0 0 504 26.5 0 0 0 0 0 222 0 0
1,030 993 666 28.6 330 222 417 8,970 1,050 43.2 314 1,470 90.9 813 763 137 1.03
990 5,940 9,290 110 6,840 306 10,400 16,300 3,740 404 4,880 3,800 5,060 6,780 4,400 483 10.6
0 0 0 290 0 0 0 4,350 177 0 3,640 39.9 0 0 0 2,190 136
285,000
83,300
1,260
84,500
262,000
61,000
Total Total 990 5,940 9,290 400 6,840 306 10,400 20,700 3,920 404 8,520 3,840 5,060 6,780 4,400 2,670 147 323,000
Total
Fresh
Saline
Total
Fresh
1,760 6,930 9,950 138 7,170 528 10,800 24,800 4,760 447 5,200 5,270 5,150 7,590 4,940 620 11.6
256 0 0 290 0 0 0 4,850 203 0 3,640 39.9 0 0 222 2,190 136
2,020 6,930 9,950 429 7,170 528 10,800 29,600 4,970 447 8,830 5,310 5,150 7,590 5,170 2,810 148
1,970 7,770 11,200 155 8,040 592 12,100 27,800 5,340 501 5,830 5,910 5,770 8,510 5,540 695 13
408,000
387,000
345,000
62,300
Saline 287 0 0 326 0 0 0 5,440 228 0 4,080 44.7 0 0 248 2,460 153 69,800
Note: Figures may not sum to totals because of independent rounding. Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, usgs.gov/pubs/circ/2004/circ1268.
q 2006 by Taylor & Francis Group, LLC
Total 2,260 7,770 11,200 481 8,040 592 12,100 33,200 5,570 501 9,900 5,960 5,770 8,510 5,790 3,150 166 457,000
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Surface Water
Population (thousands)
7-15
Percent of total water withdrawal
WATER USE
90 80 70 60 50 40 30 20 10 0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 Ground fresh
Surface water
Surface saline
Figure 7A.6 Total off-stream withdrawals by source in the United States, 1950–1995. (From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/research/.)
q 2006 by Taylor & Francis Group, LLC
7-16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7A.7 Total and Percent of Withdrawals by Source in the United States, 1950–1995
Year
Total Withdrawals (bgd)
Groundwater Fresh (bgd)
Surface Water Fresh (bgd)
Surface Water Saline (bgd)
Groundwater Fresh (%)
Surface Water Fresh (%)
Surface Water Saline (%)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
180 240 270 310 370 420 440 399 408 402
34 47 50 60 68 82 83 73 79 76
140 180 190 210 250 260 290 265 259 264
10 18 31 43 53 69 71 60 68 60
19 20 19 19 18 20 19 18 19 19
78 75 70 68 68 62 66 66 63 66
6 8 11 14 14 16 16 15 17 15
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002. Reprinted with Permission. http://info.geography.siu.edu/geography_info/ research/.
Table 7A.8 Common Uses of Water in Relation to Consumptive and Nonconsumptive Uses Common Uses of Water Steam generation (locomotive or stationary) Air conditioning Evaporative Recirculating Other cooling (recirculating) Storage in surface reservoirs Irrigation by sprinkling Irrigation by flooding Cooking Processing foods, beverages, plastics Processing Petroleum products Paper and pulp Chemicals Metal products Atomic fission Stock watering Drinking Irrigation by furrow Washing Mining (metals, coal, oil)
Consumptive Steam released to atmosphere Cooling achieved by evaporation Some water evaporated with each use Some water evaporated with each use Evaporation from water surface Evaporation and transpiration Evaporation from ponds, transpiration Steam to atmosphere Some water goes into manufactured products
a
Proportion of consumptive use is increased by reuse of the nonconsumptive water Proportion of consumptive use is increased by reuse of the nonconsumptive water Proportion of consumptive use is increased by reuse of the nonconsumptive water Proportion of consumptive use is increased by reuse of the nonconsumptive water Evaporation from tanks Evaporation from tanks and ponds Perspiration Evapotranspiration Evaporation in drying
Cooling (once-through) Air conditioning (once-through) Fish culture Steam heating Year-round heat exchange
b
Sanitation (bath, toilet, dishwasher) Hydroelectric power Navigation
d
a b c d e
Nonconsumptive a
b
a a
Seepage underground Little seepage Seepage varies Contributes to sewage Carries organic compounds Carries chemicals Carries pulp and chemicals Carries toxic or other chemicals Carries sludge and soluble chemicals Carries radioactive materials Organic wastes into ground Organic wastes into sewage Dissolves chemicals from soil Carries sediment and soluble matter Carries natural brines and acids, sediments Water temperature increased by use Water temperature increased by use
c d d
e e
Steam condenses and is reused Requires storage of water and heat from one season to another Sewage carries chiefly organic wastes Takes water toward oceans Inland waterways require maintenance of flow
With efficient operation, nonconsumptive use is limited to that required for cooling and/or cleaning equipment. Increase in water temperature may cause increased evaporation. Consumptive use by evaporation from water surfaces; may be increased by aerators. Consumptive use is limited to losses through leaking pipes, valves, etc. Consumptive use is limited to evaporation from lakes, reservoirs, etc. that are required for continuous operation.
Source: From House of Representatives, U.S. Congress. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-17
Table 7A.9 United States Water Withdrawals and Consumptive Use Per Day by End Use, 1940–1995 Public supplya
Year Withdrawals 1940 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 Consumptive Use 1960 1965 1970 1975 1980 1985 1990 1995 a b c d e
f
Total (bil gal)
b
Per Capita (gal)
Irrigation (bil gal)
140 180 240 270 310 370 420 440 399 408 402
1,027 1,185 1,454 1,500 1,602 1,815 1,972 1,953 1,650 1,620 1,500
71 89 110 110 120 130 140 150 137 137 134
61 77 87 96 100 92 94 100
339 403 427 451 440 380 370 374
52 66 73 80 83 74 76 81
Total (bil gal) 10 14 17 21 24 27 29 34 38 41 43 3.5 5.2 5.9 6.7 7.1
Rural (bil gal)
Industrial and Misce (bil gal)
75 145 148 151 155 166 168 183 189 195 192
3.1 3.6 3.6 3.6 4.0 4.5 4.9 5.6 7.8 7.9 8.9
29 37 39 38 46 47 45 45 31 30 26
25 34 36 38 38
2.8 3.2 3.4 3.4 3.9 9.2 8.9 9.9
c
Per Capita (gal)
f
f
f
f
f
f
d
3.0 3.4 4.1 4.2 5.0 6.1 6.7 4.8
Steam Electric Utilities (bil gal) 23 40 72 100 130 170 200 210 187 195 190 0.2 0.4 0.8 1.9 3.2 6.2 4.0 3.7
Includes commercial water withdrawals. Based on U.S. Census Bureau resident population as of July 1. Based on population served. Rural farm and nonfarm household and garden use, and water for farm stock and dairies. For 1940 to 1960, includes manufacturing and mineral industries, rural commercial industries, air-conditioning, resorts, hotels, motels, military and other state and Federal agencies, and miscellaneous; thereafter, includes manufacturing, mining and mineral processing, ordnance, construction, and miscellaneous. Public supply consumptive use included in end-use categories.
Source: From U.S. Census Bureau, Statistical Abstracts of the United States: 2000, www.census.gov. Original Source: From 1940–1960, U.S. Bureau of Domestic Business Development, based principally on committee prints, Water Resources Activities in the United States, for the Senate Committee on National Water Resources, U.S. Senate, thereafter, U.S. Geological Survey, Estimated Use of Water in the United States in 1995, circular 1200, and previous quinquennial issues.
q 2006 by Taylor & Francis Group, LLC
7-18
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7B
q 2006 by Taylor & Francis Group, LLC
WATER USE — WORLD
Total Intakea
Mining
Other primary resource industries
Manufacturing industries Paper and allied products
Primary metal
Chemical and chemical products
Other manufacturing industries
Electric power and other utilities
Gross Water Usec
Total Discharged
Consumptione
Year
Quantity (mill m3)
Change from Previous Period (Percent)
1981 1986 1991 1996 1981 1986 1991 1996 1981 1986 1991 1996
3,125 3,559 3,991 4,098 624 544 489 681 251 180 183 231
— 13.9 12.1 2.7 — K12.8 K10.1 39.3 — K28.3 1.7 26.2
0 0 0 0 1,742 1,159 1,221 1,196 1,050 873 735 1,013
— — — — — K33.5 5.3 K2.0 — K16.9 K15.8 37.8
3,125 3,559 3,991 4,098 2,366 1,703 1,710 1,878 1,302 1,054 918 1,244
— 13.9 12.1 2.7 — K28.0 0.4 9.8 — K19.0 K12.9 35.5
713 807 902 1,062 621 542 489 672 188 118 111 138
— 13.2 11.8 17.7 — K12.7 K9.8 37.4 — K37.2 K5.9 24.3
2,412 2,752 3,089 3,036 3 2 1 9 63 62 71 92
— 14.1 12.2 K1.7 — K33.3 K50.0 800.0 — K1.6 14.5 29.6
1981 1986 1991 1996 1981 1986 1991 1996 1981 1986 1991 1996 1981 1986 1991 1996 1981 1986 1991 1996
3,170 3,082 2,943 2,505 2,074 2,057 1,610 1,428 3,188 1,694 1,326 1,182 1,721 1,548 1,532 1,282 18,166 24,963 28,288 28,664
— K2.8 K4.5 K14.9 — K0.8 K21.7 K11.3 — K46.9 K21.7 K10.9 — K10.1 K1.0 K16.3 — 37.4 13.3 1.3
4,612 3,121 2,206 3,141 1,325 1,945 1,689 1,416 1,285 1,494 979 1,357 2,286 1,880 1,808 1,067 1,868 3,776 3,374 11,617
— K32.3 K29.3 42.4 — 46.8 K13.2 K16.2 — 16.3 K34.5 38.6 — K17.8 K3.8 K41.0 — 102.1 K10.6 244.3
7,782 6,203 5,149 5,646 3,399 4,002 3,298 2,845 4,473 3,189 2,305 2,539 4,007 3,427 3, 340 2,349 20,034 28,740 31,662 40,281
— K20.3 K17.0 9.7 — 17.7 K17.6 K13.7 — K28.7 K27.7 10.2 — K14.5 K2.5 K29.7 — 43.5 10.2 27.2
2,989 2,876 2,758 2,277 2,003 2,014 1,518 1,308 2,963 1,630 1,231 1,083 1,588 1,422 1,357 1,131 18,084 24,702 28,183 28,183
— K3.8 K4.1 K17.4 — 0.5 K24.6 K13.8 — K45.0 K24.5 K12.0 — K10.5 K4.6 K16.7 — 36.6 14.1 0.0
181 206 185 228 71 43 92 120 225 64 95 99 133 126 175 151 82 261 105 481
— 13.8 K10.2 23.2 — K39.4 114.0 30.4 — K71.6 48.4 4.2 — K5.3 38.9 K13.7 — 218.3 K59.8 358.1
Sector/industry Business sector Primary resource industries Agriculture
Recirculationb
Quantity (mill m3)
Change from Previous Period (Percent)
Quantity (mill m3)
Change from Previous Period (Percent)
Quantity (mill m3)
Change from Previous Period (Percent)
Quantity (mill m3)
Change from Previous Period (Percent)
WATER USE
Table 7B.10 Major Withdrawal Uses of Water in Canada, 1981, 1986, 1991, and 1996
(Continued) 7-19
q 2006 by Taylor & Francis Group, LLC
(Continued) Total Intakea
Year Sector/industry 1981 1986 1991 1996
638 736 816 880
— 15.4 10.9 7.8
0 0 0 0
Subtotal, business sector
1981 1986 1991 1996
32,957 38,363 41,178 40,951
— 16.4 7.3 K0.6
14,168 14,248 12,012 20,807
Personal and government sectors
1981 1986 1991 1996
3,760 3,719 3,802 3,922
— K1.1 2.2 3.2
0 0 0 0
Total, whole economy
1981 1986 1991 1996
36,717 42,083 44,979 44,873
— 14.6 6.9 K0.2
14,169 14,248 12,012 20,807
c d e
Change from Previous Period (Percent) — — — —
Gross Water Usec
Quantity (mill m3)
Change from Previous Period (Percent)
Total Discharged
Quantity (mill m3)
Change from Previous Period (Percent)
Consumptione
Quantity (mill m3)
Change from Previous Period (Percent)
638 736 816 880
— 15.4 10.9 7.8
575 660 737 796
— 14.8 11.7 8.0
63 76 79 84
— 20.6 3.9 6.3
— 0.6 K15.7 73.2
47,126 52,613 53,189 61,760
— 11.6 1.1 16.1
29,724 34,771 37,286 36,650
— 17.0 7.2 K1.7
3,233 3,592 3,892 4,300
— 11.1 8.4 10.5
— — — —
3,760 3,719 3,802 3,922
— K1.1 2.2 3.2
3,363 3,338 3,374 3,482
— K0.7 1.1 3.2
397 381 428 440
— K4.0 12.4 2.8
— 0.6 K15.7 73.2
50,886 56,330 56,991 65,682
— 10.7 1.2 15.2
33,087 38,109 40,659 40,132
— 15.2 6.7 K1.3
3,630 3,973 4,320 4,740
— 9.4 8.7 9.7
Figures may not add up to totals due to rounding.
The quantity of water withdrawn from a water source. The amount of water used more than once in an industrial application. Gross water use equals total water intake plus recirculation. The quantity of water returned to the water source. Consumption is that part of water intake that is evaporated, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the local hydrologic environment.
Source: From Statistics Canada, “Human Activity and the Environment”, Annual Statistics 2003, Catalogue 16-201-XPE released December 3, 2003, page 12. Statistics Canada information is used with the permission of Statistics Canada. Users are forbidden to copy this material and/or redisseminate the data, in an original or modified form, for commercial purposes, without the expressed permission of Statistics Canada. Information on the availability of the wide range of data from Statistics Canada can be obtained from Statistics Canada’s Regional Offices, its World Wide Web site at www.statcan.ca, and its toll-free access number 1-800-263-1136. With permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
b
Quantity (mill m3)
Other industries
Note: a
Quantity (mill m3)
Change from Previous Period (Percent)
Recirculationb
7-20
Table 7B.10
WATER USE
7-21
Water withdrawal: World
3200 Assessment
Water withdrawal (km3)
2800 2400 Forecast
2000 1600 1200 800 400
(a)
0 1900
1925
Agricultural use
1950
1975
Industrial use
Water consumption:
Municipal use
Assessment
Water consumption (km3)
2025 Reservoirs
World
2500
(b)
2000
Forecast
2000
1500
1000
500 0 1900
1925
Agricultural use
1950 Industrial use
1975
2000 Municipal use
2025 Reservoirs
Figure 7B.7 Dynamics of water use in the world by kind of economic activity. (From Shiklomanov, I.A., 1999, Summary of the Monograph “World Water Resources at the Beginning of the 21st Century” Prepared in the Framework of IHP UNESCO, International Hydrological Programme, UNESCO’s Intergovernmental Scientific Programme in Water Resources, World Water Resources and Their Use a Joint State Hydrological Institute (SHI)/UNESCO Product, http://webworld.unesco.org/ water/ihp/db/shiklomanov/. Copyright q UNESCO 1999. Reproduced by permission of UNESCO.)
q 2006 by Taylor & Francis Group, LLC
7-22
Table 7B.11 World Wide Freshwater Resources Availability and Use Renewable Water Resources (annual)a
Water Withdrawals (annual)
Internal Renewable Water Resources (IRWR)
Groundwater Recharge (km3)d World Asia (Excl. Middle
Surface Water (km3)d
Overlap (km3)
Natural Renewable Water Resourcesb
e
Total (km3)
Total (km3)
Sectoral Share (Percent)c
Per Capita (m2 person)f
Year
11,358
40,594
10,067
43,219
—
—
1990
2,472
10,985
2,136
11,321
—
—
—
Total (mill m3)
Per Capita (m3 person)
as a % of Renewable Water Resources
Agriculture
Domestic
Industry
Desalinated Water Production (mill m3)gg
3,414,000
650
—
71
9
20
—
—
—
—
—
—
—
— 0
East) Armenia
4.2
6.3
1.4
9.1
11
2,778
1994
2,925
784
28
66
30
4
Azerbaijan
6.5
6.0
4.4
8.1
30
3,716
1995
16,533
2,151
58
70
5
25
0
1,211
8,444
1990
14,636
133
2
86
12
2
0
Bangladesh
21
84
0
105
—
95
—
95
95
43,214
1987
20
13
0
54
36
10
0
Cambodia
18
116
13
121
476
34,561
1987
520
60
0
94
5
1
0
829
2,712
728
2,812
2,830
2,186
1993
525,489
439
20
78
5
18
0
17
57
16
58
63
12,149
1990
3,468
635
5
59
21
20
0
India
419
1,222
380
1,261
1,897h
1,822h
1990
500,000
592
32
92
5
3
0
Indonesia
455
2,793
410
2,838
2,838
13,046
1990
74,346
407
3
93
6
1
0
27
420
17
430
430
3,372
1992
91,400
735
22
64
19
17
0
China Georgia
Japan
Kazakhstan
69
0
75
110
6,839
1993
33,674
2,010
29
81
2
17
1,328
13
66
12
67
77
3,415
1987
14,160
742
22
73
11
16
0
Korea, Rep
13
62
11
65
70
1,471
1994
23,668
531
36
63
26
11
0
Kyrgyzstan
14
44
11
46
21h
4,078h
1994
10,086
2,231
55
94
3
3
0
Lao People’s Dem
38
190
38
190
334
60,318
1987
990
259
0
82
8
10
0
64
566
50
580
580
25,178
1995
12,733
636
3
77
11
13
0
35
35
13,451
1993
428
182
1
53
20
27
0
Korea, Dem
6.1
People’s Rep
Rep Malaysia Mongolia Myanmar
6.1
33
4.0
156
875
150
881
1,046
21,358
1987
3,960
103
0
90
7
3
0
Nepal
20
198
20
198
210
8,703
1994
28,953
1,451
17
99
1
0
0
Pakistan
55
47
50
52
223h
2,812h
1991
155,600
1,382
100
97
2
2
0
Philippines
180
444
145
479
479
6,093
1995
55,422
811
13
88
8
4
0
Singapore
—
—
—
—
—
—
1975
—
—
—
4
45
51
—
Sri Lanka
7.8
49
7.0
50
50
2,592
1990
9,770
574
22
96
2
2
0
Tajikistan
6.0
63
3.0
66
16h
2,587h
1994
11,874
2,096
81
92
3
4
0
210
410
6,371
1990
33,132
605
10
91
5
4
0
25h
5,015h
1994
23,779
5,801
116
98
1
1
0
50h
1,968h
1994
58, 051
2,598
132
94
4
2
0
Thailand
42
199
31
Turkmenistan
0.4
1.0
0
Uzbekistan
8.8
9.5
2
q 2006 by Taylor & Francis Group, LLC
1.4 16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Bhutan
48
354
35
367
Europe
1,318
6,223
986
891
11,109
1990
822
7
87
4
10
0
—
6,590
—
—
—
—
—
—
—
—
Albania
6.2
23
2.4
27
42
13,178
1995
1,400
440
3
71
29
0
—
Austria
6.0
55
6.0
55
78
9,629
1991
2,360
303
3
9
33
58
—
37
58
5,739
1990
2,734
266
5
35
22
43
0
12
18
1,781
—
—
—
—
—
—
—
—
36
38
9,088
1995
1,000
292
3
60
30
10
—
Belarus Belgium Bosnia and
18 0.9 —
37 12 —
18 0.9 —
—
54,330
WATER USE
Vietnam
Herzegovina
Bulgaria Croatia
6.4 11
Czech Rep
1.4
Denmark
4.3
Estonia
4.0
Finland
5.5
21
21
2,734
1988
13,900
1,573
58
22
3
75
—
0.5
38
105
22,654
1996
764
164
1
0
50
50
—
13
1.4
13
13
1,283
1991
2,740
266
21
2
41
57
—
1,123.0
1990
1,200
233
21
43
30
27
—
13
9,413
1995
158
106
1
5
56
39
0
—
3.7 12
3.0
13
6
107
110
21,223
1991
2,200
439
2
3
12
85
98
179
204
3,414
1999
32,300
547
16
10
18
72
—
Germany
46
106
45
107
154
1,878
1991
46,270
579
31
20
11
69
—
Greece
10
56
6.0
6.0
2.0
6.0
177
Hungary
107
2.0
100
France
2.2
20 27
7.8 6.0
58 6.0
74
6,984
1997
8,700
826
12
87
10
3
—
104
10,541
1991
6,810
659
6
36
9
55
—
Iceland
24
166
20
170
170
599,944
1991
160
622
0
6
31
63
—
Ireland
11
48
10
49
52
13,408
1980
790
232
2
10
16
74
—
Italy
43
171
31
—
183
191
3,330
1998
42,000
730
22
48
19
34
Latvia
2.2
17
2.0
17
35
14,820
1994
285
112
1
13
55
32
0
Lithuania
1.2
15
1.0
16
25
6,763
1995
254
68
1
3
81
16
0
—
Macedonia, FYR
—
Moldova, Rep
0.4
Netherlands
4.5
5.4 1.0 11
— 0.4 4.5
5.4
6
3,120.6
1996
1,850
936
30
74
12
15
1.0
12
2,726
1992
2,963
678
25
26
9
65
0
11
91
5,691
1991
7,810
519
9
34
5
61
—
Norway
96
376
90
382
382
84,787
1985
2,030
489
1
8
20
72
—
Poland
13
53
12
54
62
1,598
1991
12,280
321
20
11
13
76
—
Portugal
4.0
38
4.0
38
69h
6,837h
1990
7,290
736
11
48
15
37
—
Romania
8.3
42
8.0
42
212
9,486
1994
26,000
1,141
12
59
8
33
—
4,313i
4,507i
31,354i
1994
77,100
519
2
20
19
62
0
Russian Federation Serbia and
788
4,037i
512
3.0
42
1.4
44
209
19,815
1995
13,000
1,233
6
8
6
86
—
1.7
13
1.7
13
50
9,265
1991
1,780
337
4
—
—
—
—
—
Montenegro Slovakia
Slovenia
14
19
13
19
32
16,070
1996
1,280
642
4
1
20
80
Spain
30
110
28
111
112
2,793
1997
35,210
884
32
68
13
19
—
Sweden
20
170
19
171
174
19,721
1991
2,930
340
2
9
36
55
—
q 2006 by Taylor & Francis Group, LLC
7-23
(Continued)
7-24
Table 7B.11
(Continued) Renewable Water Resources (annual)a
Water Withdrawals (annual)
Internal Renewable Water Resources (IRWR)
Groundwater Recharge (km3)d Switzerland Ukraine United Kingdom
Middle East & N.
2.5 20 9.8
149
Surface Water (km3)d 40 50 144
Overlap (km3) 2.5 17 9.0
374
60
—
—
Sectoral Share (Percent)c
Natural Renewable Water Resourcesb
Totale (km3)
Total (km3)
Per Capita (m2 person)f
Year
Total (mill m3)
Per Capita (m3 person)
as a % of Renewable Water Resources
Agriculture
Domestic
Industry
Desalinated Water Production (mill m3)gg
40
54
7,464
1991
1,190
172
2
4
23
73
53
140
2,868
1992
25,991
500
17
30
18
52
0
145
147
2,464
1991
11,790
204
8
3
20
77
—
518
—
—
—
—
—
—
—
—
—
55
65
2,790
1987
26,110
2,007
72
99
1
0
0
14
14
460
1995
5,000
181
39
52
34
14
64 25
—
—
Africa Afghanistan Egypt Iran, Islamic Rep Iraq
— 1.7 1.3 49 1.2
13
1.0
58h
830h
1996
66,000
1,055
127
82
7
11
97
18
129
138
1,900
1993
70,034
1,122
59
92
6
2
2.9
34
0
35
75h
3,111h
1990
42,800
2,478
80
92
3
5
0
—
0.5
0
1.8
Israel
0.5
0.3
0
0.8
2
265.0
1997
1,620
287
108
54
39
7
Jordan
0.5
0.4
0.2
0.7
1
169.4
1993
984
255
151
75
22
3
Kuwait
0
0
0
0
0.02
9.9
1994
538
306
3,097
60
37
2
2.0 231
Lebanon
3.2
4.1
2.5
4.8
4h
1,219.5h
1996
1,300
400
33
68
27
6
0
Libyan Arab
0.5
0.2
0.1
0.6
1
108.5
1999
4,500
870
801
84
13
3
70
936
1998
11,480
399
43
89
10
2
363.6
1991
1,223
658
181
94
5
2
34
Jamahiriya
Moroco Oman
10 1.0
22 0.9
3.0 0.9
29 1.0
29 1
Saudi Arabia
2.2
2.2
2.0
2.4
2
Syrian Arab Rep
4.2
4.8
2.0
7.0
26h
Tunisia
1.5
3.1
0.4
4.2
5
Turkey United Arab
69
186
28
227
229h
110.6 1,541h 576.5
3,344h
3.4
1992
17,018
1,056
955
90
9
1
714
1995
12,000
844
55
90
8
2
0
1996
2,830
312
54
86
13
1
8.3
1997
35,500
558
17
73
16
12
0.1
0.2
0.1
0.2
0
55.5
1995
2,108
896
1,614
67
24
9
385
0.5
1.5
4.0
1.4
4.1
4
205.9
1990
2,932
253
123
92
7
1
10
—
—
—
—
—
—
—
Emirates Yemen
Sub-Saharab
1,549
3,812
1,468
3,901
—
—
—
72
182
70
184
184
1,3203
1987
480
54
0
76
14
10
0
10
25
3,741
1994
145
27
1
67
23
10
0
14
9,209
1992
113
86
1
48
32
20
0
Africa Angola Benin
1.8
Botswana
1.7
q 2006 by Taylor & Francis Group, LLC
10 1.7
1.5 0.5
2.9
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Algeria
9.5
8.0
5.0
Burundi
2.1
3.5
2.0
Cameroon
13 3.6
13 4
1,024 538.3
1992
376
40
4
81
19
0
0
1987
100
19
4
64
36
0
0
0
100
268
95
273
286
18,378
1987
400
38
0
35
46
19
Central African Rep
56
141
56
141
144
37,565
1987
70
25
0
74
21
5
0
Chad
12
14
10
15
43
5,125
1987
180
34
1
82
16
2
0
Congo
198
222
198
222
832
259,547
1987
40
20
0
11
62
27
0
Congo, Dem Rep
421
899
420
900
1,283
23,639
1990
357
10
0
23
61
16
0
35
77
81
4,853
1987
709
62
1
67
22
11
0
26
26
53,841
1987
10
30
0
6
81
13
0
—
—
—
—
—
—
—
0
Coˆte d’Ivoire
38
74
Equatorial Guinea
10
25
Eritrea
—
—
9.0 —
2.8
6
1,577.7
Ethiopia
40
110
40
110
110
1,666
1987
2,200
51
3
86
11
3
0
Gabon
62
162
60
164
164
126,789
1987
60
70
0
6
72
22
0
Gambia
0.5
3.0
0.5
3.0
8
Ghana
26
29
25
30
53
Guinea
38
226
38
226
226
Guinea-Bissau
14
12
10
16
31
17
0
20
30
Kenya
Lesotho
3.0
0.5
5.2
0.5
5.2
3h
5,836.0
1982
20
29
1
91
7
2
0
2,637
1970
300
35
1
52
35
13
0
26,964
1987
740
132
0
87
10
3
0
24,670
1991
17
17
0
36
60
4
0
947
1990
2,050
87
9
76
20
4
0
1,455.6h
0
1987
50
32
2
56
22
22
Liberia
60
200
60
200
232
70,348
1987
130
59
0
60
27
13
0
Madagascar
55
332
50
337
337
19,925
1984
16,300
1,611
8
99
1
—
0
16
17
1,461
1994
936
95
6
86
10
3
0
60
100
8,320
1987
1,360
167
2
97
2
1
0
Malawi Mali
Mauritania Mozambique
1.4 20
0.3 17
16 50
0.1 97
1.4 10
0 15
0.4 99
11
4,029
1985
1,630
923
23
92
6
2
1.7
216
11,382
1992
605
42
0
89
9
2
0
Namibia
2.1
4.1
0.04
6.2
18h
9,865h
1991
249
175
2
68
29
3
0
Niger
2.5
1.0
0
3.5
34
2,891
1988
500
69
2
82
16
2
0
286
2,384
1987
3,630
46
2
54
31
15
0
Nigeria
87
Rwanda
3.6
Senegal
7.6
Sierra Leone
50
Somalia
3.3
South Africa
4.8
Sudan Tanzania, United
7.0 30
214
5.2 24 150 5.7 43
28 80
80
3.6 5.0 40 3.0 3.0
5.0 28
221
5.2
5
638.2
1993
768
141
22
94
5
2
0
1987
1,360
202
5
92
5
3
0
26
39
3,977
160
160
33,237
1987
370
98
0
89
7
4
0
14
1,413
1987
810
119
8
97
3
0
0.1
45
50
1,131
1990
13,309
366
32
72
17
11
30
65h
1,981h
1995
17,800
637
32
94
4
1
0.4
82
91
2,472
1994
1,165
39
2
89
9
2
0
6.0
WATER USE
Burkina Faso
0
Rep Togo Uganda
5.7 29
11 39
5.0 29
12
15
3,076
1987
91
29
1
25
62
13
0
39
66
2,663
1970
200
21
1
60
32
8
0
q 2006 by Taylor & Francis Group, LLC
7-25
(Continued)
7-26
Table 7B.11
(Continued) Renewable Water Resources (annual)a
Water Withdrawals (annual)
Internal Renewable Water Resources (IRWR)
Groundwater Recharge (km3)d Zambia Zimbabwe
North America
47 5.0
Surface Water (km3)d 80 13
Overlap (km3) 47 4.0
Sectoral Share (Percent)c
Natural Renewable Water Resourcesb
Totale (km3)
Total (km3)
Per Capita (m2 person)f
80
105
9,676
1994
1,706
190
14
20
1,530
1987
1,220
131
Year
Per Capita (m3 person)
Desalinated Water Production (mill m3)gg
Agriculture
Domestic
Industry
2
77
16
7
0
9
79
14
7
0
—
4,702
1,522
4,850
—
—
—
—
—
—
—
—
370
2,840
360
2,850
2,902
92,810
1991
45,100
1,607
2
12
18
70
—
United States
1,300j
1,862j
1,162j
2,800
3,051
10,574
1990
467,340
1,834
26
42
13
45
—
C. America &
359
1,050
231
1,186
—
—
—
—
—
—
—
—
— 0
—
Caribean Belize
—
—
—
16
19
78,763
1993
95
485
1
0
12
88
Costa Rica
37
75
0
112
112
26,764
1997
5,772
1,540
6
80
13
7
0
32
0
38
38
3,382
1995
5,211
475
14
51
49
0
0
Cuba Dominican Rep El Salvador
Guatemala Haiti Honduras Jamaica Mexico
6.5 12 6.2
34 2.2 39 3.9 139
21
12
21
21
2,430
1994
8,339
1,102
45
89
11
0
0
18
6
18
25
3,872
1992
729
137
4
46
34
20
0
101
25
109
111
9,277
1992
1,158
126
1
74
9
17
0
11
—
13
14
1,670
1991
980
139
8
94
5
1
0
87
30
96
96
14,250
5.5 361
0 91
9.4 409
9 457
1992
1,520
294
2
91
4
5
0
3,587.5
1993
900
371
10
77
15
7
0
4,490
1998
77,812
812
18
78
17
5
0
Nicaragua
59
186
55
190
197
36,784
1998
1,285
267
1
84
14
2
0
Panama
21
144
18
147
148
50,299
1990
1,643
685
1
70
28
2
0
Trinidad and Tobago
—
—
—
1997
297
233
8
6
68
26
0
—
South America
3.8
4
2,940.4
3,693
12,198
3,645
12,246
—
—
—
—
—
—
—
—
Argentina
128
276
128
276
814
21,453
1995
—
28,583
822
4
75
16
9
0
Bolivia
130
277
104
304
623
71,511
1987
1,210
197
0
87
10
3
0
Brazil
1,874
5,418
1,874
5,418
8,233
47,125
1992
54,870
359
1
61
21
18
0
Chile
140
884
140
884
922
59,143
1987
20,289
1,629
3
84
5
11
0
Colombia
510
2,112
510
2,112
2,132
49,017
1996
8,938
228
0
37
59
4
0
Ecuador
134
432
134
432
432
32,948
1997
16,985
1,423
4
82
12
6
0
Guyana
103
241
103
241
241
314,963
1992
1,460
1,993
1
99
1
1
0
Paraguay Peru
41
94
41
94
336
58,148
1987
430
112
0
78
15
7
0
303
1,616
303
1,616
1,913
72,127
1992
18,973
849
1
86
7
7
0
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1,670
Canada
—
Total (mill m3)
as a % of Renewable Water Resources
Uruguay
80
88
80
88
122
289,848
1987
460
1,171
0
89
6
5
0
23
59
23
59
139
41,065
1965
650
—
—
91
6
3
0
227
700
205
722
1,233
49,144
1970
4,100
382
1
46
44
10
0
Oceania
—
1,241
20
1,693
—
—
—
—
—
—
—
—
—
Australia
72
440
20
492
492
25,185
1985
14,600
933
4
33
65
2
—
Fiji
—
—
—
29
29
34,330
1987
30
42
0
60
20
20
—
New Zealand
—
—
—
327
327
85,221
1991
2,000
588
1
44
46
10
—
Papua New Guinea
—
801
—
801
801
159,171
1987
100
29
0
49
29
22
0
Solomon Islands
—
—
—
45
45
93,405
1987
—
—
—
40
40
20
—
Developed
3,153
12,084
2,584
13,016
—
—
—
—
—
—
—
—
—
—
Developing
8,128
28,500
7,483
29,289
—
—
—
—
—
—
—
—
—
—
Venezuela
—
WATER USE
Suriname
Variable Definitions and Methodology: Internal Renewable Water Resources (IRWR) include the average annual flow of rivers and the recharge of groundwater (aquifers) generated from endogenous precipitation — precipitation occurring within a country’s borders. IRWR are measured in cubic kilometers per year (km3/year). Groundwater recharge is the total volume of water entering aquifers within a country’s borders from endogenous precipitation and surface water flow. Groundwater resources are estimated by measuring rainfall in arid areas where rainfall is assumed to infiltrate into aquifers. Where data are available, groundwater resources in humid areas have been considered as equivalent to the base flow of rivers. Surface water produced internally includes the average annual flow of rivers generated from endogenous precipitation and base flow generated by aquifers. Surface water resources are usually computed by measuring or assessing total river flow occurring in a country on a yearly basis. Overlap is the volume of water resources common to both surface and groundwater. It is subtracted when calculating IRWR to avoid double counting. Two types of exchanges create overlap: contribution of aquifers to surface flow, and recharge of aquifers by surface run-off. In humid temperate or tropical regions, the entire volume of groundwater recharge typically contributes to surface water flow. In karstic domains (regions with porous limestone rock formations), a portion of groundwater resources are assumed to contribute to surface water flow. In arid and semiarid countries, surface water flows recharge groundwater by infiltrating through the soil during floods. This recharge is either directly measured or inferred by characteristics of the aquifers and piezometric levels. Total internal renewable water resources is the sum of surface and groundwater resources minus overlap; in other words, IRWR Z Surface Water Resources C Groundwater Recharge — Overlap. Natural Renewable Water Resources, measured in cubic kilometers per year (km3/year), is the sum of internal renewable water resources and natural flow originating outside of the country. Natural Renewable Water Resources are computed by adding together both internal renewable water resources (IRWR — see above) and natural flows (flow to and from other countries). Natural incoming flow is the average amount of water which would flow into the country without human influence. In some arid and semi-arid countries, actual water resources are presented instead of natural renewable water resources. These actual totals, labeled with a footnote in the freshwater data table, include the quantity of flows reserved to upstream and downstream countries through formal and informal agreements or treaties. The actual flows are often much lower than natural flow due to water scarcity in arid and semi-arid regions. Per Capita Natural Renewable Water Resources are measured in cubic meters per person per year (m3/person/year). Per capita values were calculated by using national population data for 2002. Water Withdrawals (annual), measured in million cubic meters, refers to total water removed for human uses in a single year, not counting evaporative losses from storage basins. Water withdrawals also include water from nonrenewable groundwater sources, river flows from other countries, and desalination plants. Per Capita Annual Withdrawals were calculated using national population data for the year the withdrawal data were collected. Water Withdrawals as a Percent of Renewable Water Resources is the proportion of renewable water resources withdrawn on a per capita basis, expressed in cubic meters per person per year (m3/person/year). The value is calculated by dividing water withdrawals per capita by actual renewable water resources per capita. Sector Share of water withdrawals, expressed as a percentage, refers to the proportion of water used for one of three purposes: agriculture, industry, and domestic uses. All water withdrawals are allocated to one of these three categories. Agricultural uses of water primarily include irrigation and, to a lesser extent, livestock maintenance. Domestic uses include drinking water plus water withdrawn for homes, municipalities, commercial establishments, and public services (e.g. hospitals). Industrial uses include cooling machinery and equipment, producing energy, cleaning and washing goods produced as ingredients in manufactured items, and as a solvent. (Continued) 7-27
q 2006 by Taylor & Francis Group, LLC
(Continued)
a b c d e f g h i j
Although data were obtained from FAC in 2002, they are long-term averages originating from multiple sources and years. For more information, please consult the original source at fao.org/waicent/faoinfo/agricult/agl/aglw/aquastat/water_res/index.stm. Natural renewable water resources include internal renewable water resources plus or minus the flows of surface and groundwater entering or leaving the country. Sectoral withdrawal data may not add up to 100 because of rounding. Groundwater and surface water cannot be added together to calculate total available water resources because of overlap — water that is counted in both the groundwater and surface water totals. At the country level, total internal renewable water resourcesZsurface waterCgroundwater — overlap. Regional and global totals represent a sum of available country-level data. Calculation is based on withdrawals from various years, and population data from 2002. Data on desalinated water originate from FAO country surveys conducted in various regions between 1992 and 2000. Data account for the portion of flow secured through treaties or agreements to other countries. River discharges in Siberia are not well documented and highly uncertain. Data are for the continental United States.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Desalinated Water Production, expressed in million cubic meters, refers to the amount of water produced by the removal of salt from saline waters — usually seawater — using a variety of techniques including reverse osmosis. Most desalinated water is used for domestic purposes. Most Freshwater resources data were provided by AQUASTAT, a global database of water statistics maintained by the Food and Agriculture Organization of the United Nations. AQUASTAT collects its information from a number of sources — national water resources and irrigation master plans; national yearbooks, statistics and reports; FAO reports and project documents; international surveys; and, results from surveys done by national or international research centers. In most cases, a critical analysis of the information was necessary to ensure consistency among the different data collected for a given country. When possible, cross-checking of information among countries was used to improve assessment in countries where information was limited. When several sources gave different or contradictory figures, preference was always given to information collected at the national or sub-national level. This preference is based on the assumption by FAO that no regional information can be more accurate than studies carried out at the country level. Unless proven to be wrong, official rather than unofficial sources were used. In the case of shared water resources, a comparison among countries was made to ensure consistency at river-basin level. For more information on the methodology used to collect these data, please refer to the original source or: Food and Agriculture Organization of the United Nations (FAO): Water Resources, Development and Management Service. October, 2001. Statistics on Water Resources by Country in FAO’s AQUASTAT Programme (available on-line at fao.org/ag/agl/aglw/aquastat/water_res/index.stm). Rome: FAO. Frequency of Update by Data Providers: AQUASTAT was developed by the Food and Agriculture Organization of the United Nations in 1993; data have been available on-line since 2001. Most freshwater data are not available in a time series, and the global data set contains data collected over a time span of up to 30 years. AQUASTAT updates their website as new data become available, or when FAO conducts special regional studies. Studies were conducted in Africa in 1994, the Near East in 1995–96, the former Soviet republics in 1997, selected Asian countries in 1998–99, and Latin America & the Caribbean in 2000. Data from the Blue Plan on Mediterranean water withdrawals were last updated in 2002. Most data updates include revisions of past data. Data Reliability and Cautionary Notes: While AQUASTAT represents the most complete and careful compilation of country-level water resources statistics to date, freshwater data are generally of poor quality. Information sources are various but rarely complete. Some governments will keep internal water resources information confidential because they are competing for water resources with bordering countries. Many instances of water scarcity are highly localized and are not reflected in national statistics. In addition, the accuracy and reliability of information vary greatly among regions, countries, and categories of information, as does the year in which the information was gathered. As a result, no consistency can be ensured among countries on the duration and dates of the period of reference. All data should be considered order-of-magnitude estimates. Groundwater Recharge tends to be overestimated in arid areas and underestimated in humid areas. Natural Renewable Water Resources vary with time. Exchanges between countries are complicated when a river crosses the same border several times. Part of the incoming water flow may thus originate from the same country in which it enters, making it necessary to calculate a “net” inflow to avoid double counting of resources. In addition, the water that is actually accessible to humans for consumption is often much smaller than the total renewable water resources indicated in the data table. Renewable Water Resources Per Capita contains water resources data from a different set of years than the population data used in the calculation. While the water resources data are usually long-term averages, inconsistencies may arise when combining it with 2002 population data. Water Withdrawals as a Percentage of Actual Water Resources are also calculated using per capita data from two different years. While this ratio can indicate that some countries are depleting their water resources, it does not accurately reflect localized over-extraction from aquifers and streams. In addition, the calculation does not distinguish ground and surface water. Sectoral Withdrawal Data may not add to 100 because of rounding. Evaporative losses from storage basins are not considered; users should keep in mind, however, that in some parts of the world up to 25 percent of water that is withdrawn and placed in reservoirs evaporates before it is used by an sector. Desalinated Water Production may exist in some countries where the volume of production is indicated to be zero, since AQUASTAT assumes that production is zero if no value has been given for those countries where information on water use is available.
7-28
Table 7B.11
Original Source:
Renewable Water Resources: Food and Agriculture Organization of the United Nations (FAO): Water Resources, Development and Management Service. 2002. AQUASTAT Information System on Water in Agriculture: Review of Water Resource Statistics by Country. Rome: FAO. Available on-line at fao.org/waicent/faoinfo/agl/ aglw/aquastat/water_res/index.htm. Water Withdrawals: Food and Agriculture Organisation of the United Nations (FAO): Water Resources, Development and Management Service.2002. AQUASTAT Information System on Water in Agriculture. Rome: FAO. Avaliable on-line at www.fao.org/waicent/faoinfo/agricult/agl/aglw/aquastat/dbase/index.htm. Data for Mediterranean countries were provided directly to WRI from: J. Margat, 2002. Present Water Withdrawals in Mediterranean Countries. Paris: Blue Plan. Population Data (for per capita calculations): Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2002.World Population prospects: The 2000 Revision. New York: United Nations. Data set on CD-ROM.
WATER USE
Source: From World Resources Institute, Earth trends environmental information, Water Resources and Freshwater Ecosystems, Data Tables, Freshwater Resources, www.earthtrends. wri.org. With permission.
7-29
q 2006 by Taylor & Francis Group, LLC
7-30
Table 7B.12 Worldwide Freshwater Withdrawal, by Country and Sector
Region and Country
2000 2000 2000 2000 2000 2000 2000 2000 2000
6.07 0.34 0.25 0.14 0.78 0.23 0.73 0.03 0.02
192 27 40 86 65 33 48 68 5
22 22 15 38 11 17 18 15 77
13 16 11 19 0 1 8 3 19
65 61 74 43 88 82 74 83 4
42 6 6 33 7 6 9 10 4
25 4 4 16 0 0 4 2 1
125 16 30 37 57 27 36 56 0
a
2000 1987 2000
0.23 0.01 0.36
32 14 7
19 48 52
1 5 16
80 47 31
6 7 4
0 1 1
25 7 2
a
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
0.04 0.93 0.01 68.65 0.11 0.30 2.65 0.13 0.03 0.52 1.52 0.11 1.58 0.05 0.11 4.81 14.97 1.01 6.93 1.70 0.61 12.76 0.64 0.27 2.19 8.00
13 61 15 1,008 243
59 23 11 8 83 4 1 48 22 37 8 9 30 40 28 8 3 15 1 9 25 8 11 33 4 21
30 12 0 14 16 1 6 11 11 15 2 1 6 41 15 3 2 5 0 3 14 2 2 5 1 10
10 65 89 78 1 95 93 40 67 48 90 91 64 19 56 89 96 81 99 88 60 90 87 63 95 69
8 14 2 77 202
4 7 0 140 39
1 40 13 791 2
a
q 2006 by Taylor & Francis Group, LLC
USE Per-Capita Withdrawal (m3/p/yr)
38 105 24 26 193 93 52 22 34 753 861 92 552 659 517 440 33 156 203 62
Domestic (%)
Industrial (%)
Agricultural (%)
Domestic (m3/p/yr)
Industrial (m3/p/yr)
Agricultural (m3/p/yr)
Source
a a a a a a a a
b a
a a a a
2000 Population (millions)
31.60 12.80 6.20 1.62 12.06 6.97 15.13 0.44 3.64 7.27 0.71 2.98
51.75 15.14 0.69 68.12 0.45
a
0 51 5 10 15 8 16 9 10 62 24 14 4 58 132 37 4 51 9 13
2 12 3 4 4 1 3 9 5 23 13 4 1 19 74 7 1 7 1 6
35 43 16 13 174 84 33 4 19 668 823 74 547 582 312 396 28 98 193 43
a a a a a a a a a a a a a a a a a a a a
69.99 1.24 1.24 19.93 7.86 1.18 30.34 2.29 3.26 6.39 17.40 10.98 12.56 2.58 1.18 28.98 19.56 1.733 10.81 128.79
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Congo, Democratic Republic (formerly Zaire) Congo, Republic of Coˆte d’Ivoire Djibouti Egypt Equatorial Guinea Eritrea Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco Mozambique Namibia Niger Nigeria
Year
Total Freshwater Withdrawal (km3/yr)
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
0.08 1.59 0.38 3.30 15.31 37.31 0.83 2.00 0.17 2.73 0.30 1.74 2.61
10 167 78 286 331 1,251 843 59 36 278 13 191 210
48 6 5 0 17 3 3 6 45 16 45 16 10
14 4 2 0 10 1 6 1 8 2 15 8 5
39 90 93 100 73 97 92 93 47 82 39 76 86
5 10 4 1 56 33 23 4 16 44 6 31 20
1 6 1 0 35 9 48 1 3 7 2 14 10
4 151 73 285 241 1,209 773 55 17 227 5 145 180
a
1990 2000 2000 1990 2000 2000 1996 2000 2000 2000 2000 2000 2000 2000 2000 2000 1997 1995
0.005 0.08 0.12 43.89 2.68 8.20 0.02 3.39 1.27 2.00 0.98 0.86 0.41 78.22 1.30 0.82 0.01 0.01
75 308 500 1,431 706 732 239 399 201 164 125 133 158 791 277 287 89 88
60 33 11 20 29 19 — 32 25 6 5 8 34 17 14 66 — —
20 44 89 69 17 12 — 2 16 13 1 11 17 5 3 5 — —
20 23 0 12 53 69 — 66 59 80 94 81 49 77 83 28 — —
45 103 56 280 208 139
15 136 443 982 120 89
15 69 1 168 377 504
g
a a a a a a a a a a a a
a a d a a h
128 50 11 6 11 54 137 40 191
7 32 22 1 15 27 43 7 15
264 119 131 118 107 77 610 230 81
a a a a a a a a a g g
2000 2000
0.30 563.00
221 2,026
67 13
27 46
6 41
149 257
60 933
12 836
2000 2000 2000 2000 2000 2000 2000 2000
29.07 1.39 59.30 12.54 10.71 16.98 1.64 0.49
785 167 350 824 275 1,343 1,876 89
16 13 20 11 50 12 2 20
9 3 18 25 4 5 1 9
74 83 62 64 46 82 97 72
129 22 71 93 138 167 32 18
74 6 63 208 10 71 17 8
581 139 216 524 126 1,104 1,828 64
a m
a a a a a a a a
7.67 9.50 4.87 11.53 46.26 29.82 0.98 33.69 4.68 9.84 22.46 9.13 12.42
0.07 0.26 0.24 30.68 3.80 11.20 0.07 8.50 6.32 12.22 7.82 6.49 2.59 98.88 4.69 2.86 0.15 0.11 1.34 277.83
37.03 8.33 169.20 15.21 38.91 12.65 0.87 5.50
7-31
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Rwanda Senegal Sierra Leone Somalia South Africa Sudan Swaziland Tanzania Togo Tunisia Uganda Zambia Zimbabwe North and Central America Antigua and Barbuda Barbados Belize Canada Costa Rica Cuba Dominica Dominican Republic El Salvador Guatemala Haiti Honduras Jamaica Mexico Nicaragua Panama St. Lucia St. Vincent and the Grenadines Trinidad and Tobago United States of America South America Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay
7-32
Table 7B.12
(Continued) USE
Year
Peru Suriname Uruguay Venezuela Asia Afghanistan Armenia Azerbaijan Bahrain Bangladesh Bhutan Brunei Cambodia China Cyprus Georgia India Indonesia Iran Iraq Israel Japan Jordan Kazakhstan Korea Democratic People’s Republic Korea Rep Kuwait Kyrgyz Republic Lao People’s Dem Rep Lebanon Malaysia Maldives Mongolia Myanmar Nepal Oman Pakistan Philippines Qatar Saudi Arabia
2000 2000 2000 2000
20.13 0.67 3.15 8.37
784 1,482 962 346
8 4 2 45
10 3 1 7
82 93 96 47
66 67 23 158
79 43 11 24
640 1,373 928 164
a
2000 2000 2000 2000 2000 2000 1994 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
23.26 2.95 17.25 0.30 76.39 0.42 0.92 4.09 549.76 0.18 3.61 645.84 82.77 72.88 42.70 2.04 88.43 1.02 35.01 9.02
909 806 2,204 485 595 207 2,788 365 431 228 666 641 389 954 1,848 336 699 161 2,068 377
2 30 5 40 3 4 nd 2 7 27 20 8 8 7 3 31 20 21 2 20
0 4 28 4 1 1 nd 1 26 1 21 5 1 2 5 7 18 4 17 25
98 66 68 57 96 95 nd 98 68 71 59 86 91 91 92 63 62 75 82 55
16 241 106 192 19 8
0 35 609 17 4 2
893 529 1,488 276 572 197
a
6 28 62 133 52 31 65 58 103 138 33 35 75
2 111 3 140 35 3 22 85 23 125 7 342 95
357 292 163 393 555 356 867 1,704 210 437 121 1,691 207
a
2000 2000 2000 2000
18.59 0.45 10.08 2.99
397 229 2,219 525
36 45 3 4
16 3 3 6
48 52 94 90
141 102 70 22
65 7 69 30
190 120 2,081 473
a
2000 2000 1987 2000 2000 2000 2000 2000 2000 2000 2000
1.37 9.02 0.003 0.44 33.22 10.18 1.35 169.38 28.52 0.29 17.32
417 405 10 161 673 418 497 1,086 380 484 800
33 17 98 20 1 3 7 2 17 25 10
1 21 2 28 1 1 2 2 9 3 1
67 62 0 52 98 96 91 96 74 72 89
136 68 10 33 8 12 35 21 63 122 78
2 85 0 45 4 3 10 22 36 14 9
278 251 0 83 661 403 452 1,043 281 348 712
a
q 2006 by Taylor & Francis Group, LLC
Per-Capita Withdrawal (m3/p/yr)
Domestic (%)
Industrial (%)
Agricultural (%)
Domestic (m3/p/yr)
Industrial (m3/p/yr)
Agricultural (m3/p/yr)
Source
a a a
a a a a a e
k p a a a a a a a a a a
a a a
a e a a a a a a a a
2000 Population (millions) 25.66 0.45 3.27 24.17 25.59 3.66 7.83 0.62 128.31 2.03 0.33 11.21 1,276.30 0.79 5.42 1,006.77 212.57 76.43 23.11 6.08 126.43 6.33 16.93 23.91 46.88 1.97 4.54 5.69 3.29 22.30 0.29 2.74 49.34 24.35 2.72 156.01 75.04 0.60 21.66
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Region and Country
Total Freshwater Withdrawal (km3/yr)
1975 2000 2000 2000 2000 2001 2000 2000 2000 2000 2000
0.19 12.60 19.95 11.96 87.07 39.78 24.64 2.31 58.33 71.39 6.63
53 669 1,237 1,869 1,439 605 5,501 945 2,332 886 366
45 2 3 4 2 15 2 23 5 8 4
51 2 2 5 2 11 1 9 2 24 1
4 95 95 92 95 74 98 68 93 68 95
24 16 41 69 36 90 93 218 111 69 15
27 16 23 87 35 66 42 82 48 214 2
2 637 1,174 1,713 1,368 449 5,366 645 2,173 604 349
2000 1997 2000 1998 2002 2002 2002 2002 1999 2000 2001 1997 2001 2002 1980 1998 2001 2002 1999 2000 2000 2001 1996 2002 1990 2002 2000 2002 2001 2001 2002 2001 2000 1994 1980
1.70 3.56 2.79 7.44 6.59 1.91 0.67 1.41 2.33 30.90 38.00 8.70 4.55 0.16 1.07 42.00 0.26 3.13 0.06 0.02 2.31 8.80 2.40 11.73 7.29 7.24 76.69 1.09 0.30 38.60 2.69 2.54 37.52 11.75 8.77
487 429 271 725 793 187 127 994 450 523 460 821 464 567 299 734 108 848 133 53 518 554 545 303 745 322 525 203
27 35 23 13 3 41 32 56 14 16 12 16 9 34 23 18 55 78 42 74 9 6 23 13 10 9 19
11 64 46 85 78 57 26 39 84 74 68 3 59 66 77 37 33 15 45 1 58 60 67 79 12 34 63
62 1 30 1 19 2 42 5 3 10 20 81 32 0 0 45 12 7 13 25 33 34 10 8 78 57 18
130 151 64 96 24 76 41 554 61 82 57 134 43 193 68 134 60 662 56 39 49 34 123 39 72 28 98
54 274 126 620 621 107 32 392 377 390 312 26 272 374 232 270 36 131 60 0 298 333 364 238 90 111 333
302 4 82 9 149 4 54 49 12 51 91 661 149 1 0 331 13 56 17 13 171 188 57 25 583 183 93
670 302 343 739 201 368
13 37 24 12 22 16
c a a a a p a a a a a
a p a p p p p p p p p p p p p p p p p p a p p p p p a p
3.59 18.82 16.13 6.40 60.50 65.73 4.48 2.44 25.02 80.55 18.12 3.49 8.29 10.28 10.26 8.31 10.20 5.27 1.42 5.18 59.06 82.69 10.60 9.81 0.28 3.57 57.19 2.40 3.69 0.43 0.38 4.46 15.87 4.41 38.73 9.79 22.51 146.20 5.37
p
68 9 2 52 3 12
130 111 83 90 44 59
180 164 253 261 152 265
660 27 7 388 6 44
p p p a d c
39.80 8.90 7.41 50.80 58.34 23.81
7-33
19 54 74 35 75 72
(Continued) q 2006 by Taylor & Francis Group, LLC
WATER USE
Singapore Sri Lanka Syria Tajikistan Thailand Turkey Turkmenistan United Arab Emirates Uzbekistan Vietnam Yemen Europe Albania Austria Belarus Belgium Bulgaria Czech Republic Denmark Estonia Finland France Germany Greece Hungary Iceland Ireland Italy Latvia Lithuania Luxembourg Malta Moldova Netherlands Norway Poland Portugal Romania Russian Federation Slovak Republic Slovenia Spain Sweden Switzerland Ukraine United Kingdom Yugoslavia,q former
(Continued)
Region and Country
Year
Oceania Australia Fiji New Zealand Papua New Guinea Solomon Islands
1995 2000 2000 1987 1987
Note:
7-34
Table 7B.12
Total Freshwater Withdrawal (km3/yr)
17.80 0.07 2.11 0.10
USE Per-Capita Withdrawal (m3/p/yr)
945 83 561 21
Domestic (%)
Industrial (%)
Agricultural (%)
Domestic (m3/p/yr)
Industrial (m3/p/yr)
15 11 49 56 40
10 11 9 43 20
75 78 42 1 40
139 9 272 12 0
95 9 53 9 0
Agricultural (m3/p/yr)
711 65 236 0 0
Source
f a a c c
2000 Population (millions)
18.84 0.85 3.76 4.81 0.44
Figures may not add to totals due to independent rounding. 2000 Population numbers: medium United Nations variant.
Source : From World’s Water 2004–2005 by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Limitations: Extreme care should be used when applying these data — they are often the least reliable and most inconsistent of all water resources information. They come from a wide variety of sources and are collected using different approaches with few formal standards. Consistent data collection is needed in this area, using standard methods and assumptions. As a result, this table includes data that are actually measured, estimated, modeled using different assumptions, or derived from other data. The data also come from different years, making direct comparisons difficult, though the effort of FAO to standardize water-use data for 2000 has somewhat reduced this problem. Industrial withdrawals for Panama, St. Lucia, St. Vincent, and the Grenadines are included in the domestic category. Another major limitation of these data is that they do not include the use of rainfall in agriculture. Many countries use a significant fraction of the rain falling on their territory for agricultural production, but this water use is neither accurately measured nor reported. a New FAO Aquastat estimates from www.fao.org. March 2004. b World Resources Institute, 1990, World resources 1990–1991, New York: Oxford University Press. c World Resources Institute, 1994, World resources 1994–1995, in collaboration with the United Nations Environment Programme and the United Nations Development Programme, New York: Oxford University Press. d Eurostat Yearbook, 1997. Statistics of the European Union, EC/C/6/Ser.26GT, Luxembourg. e UNFAO 1999. Irrigation in Asia in figures. Food and Agriculture Organization, United Nations, Rome. f Nix, H. 1995. Water/Land/Life, Water Research Foundation of Australia, Canberra. g UNFAO. 2000. Irrigation in Latin America and the Caribbean. Food and Agricultural Organization, United Nations, Rome. h AQUASTAT web site January 2002. www.fao.org. k Ministry of Water Resources, China. 2001. Water resources bulletin of China, 2000. People’s Republic of China, Beijing, September. m Hutson, S. S., Barber, N. L., Kenny, J. E., Linsey, K. S., Lumia, D. S., and Maupin, M. A. 2004. Estimated use of water in the United States in 2000. United States Geological Survey, Circular 1268. Reston, Virginia. p See Wieland, U. 2003. Water use and waste water treatment in the European Union and in candidate countries. Eurostat Statistics in Focus, Theme 8. European Communities. And Eurostat. 2004. Statistics in Focus. europa.eu.int/comm/eurostat europa.eu.int/comm/eurostat/newcronos/queen/display.do?screenZdetail&languageZen&productZTHEME8&rootZ THEME8_ copy_151979619462/yearlies_copy_1067300085946/dd_copy_251110364103/dda_copy_649289610368/dda10512_copy_729379227605. q Includes Bosnia and Herzegovina, Macedonia, Croatia.
WATER USE
7-35
Table 7B.13 Freshwater Abstractions by Major Use in Selected Countries, 1980–1999 Public Water Supply (b)
Canada Mexico U.S.A. Japan Korea Australia New Zealand Austria Belgium Czech Rep. Denmark Finland France Germany Greece Hungary Iceland Ireland Italy Luxembourg The Netherlands Norway Poland Portugal Slovak Rep. Spain Sweden Switzerland Turkey UK Russian Fed.
Irrigation (b)
Manufacturing Industry No Cooling (b)
Electrical Cooling (b) Percent
1980
1985
1990
1999 (c)
1980
1985
1990
1999 (c)
1980
1985
1990
1999 (c)
1980
1985
1990
1999 (c)
11.3 7.5 9.1 14.9 10.9 — — 16.7 — 28.0 58.1 10.5 17.5 12.0 12.2 16.7 85.2 34.0 14.2 — 11.2 — 19.2 — — 11.8 23.3 42.6 — 43.7 9.7
11.1 — 10.8 16.5 14.8 12.3 — 17.8 — 32.1 — 10.2 16.9 12.4 11.9 14.8 85.7 — — — 11.9 30.1 18.9 — 28.3 11.6 32.8 43.2 14.4 52.8 —
11.3 — 11.4 17.7 21.8 — — 16.4 — 35.0 45.3 18.1 16.2 13.6 — 16.0 50.9 — 14.1 95.0 16.4 — 21.1 4.7 30.4 11.9 32.9 43.6 14.2 55.5 12.0
— 12.6 — 18.5 27.0 — — 17.0 9.8 42.0 58.4 17.4 19.4 13.7 9.9 12.7 47.4 — 18.0 62.6 28.6 — 21.2 6.8 37.5 13.2 35.1 41.4 14.7 53.1 18.7
7.4 82.1 38.7 67.4 80.5 74.3 — 1.5 — 1.1 7.5 — 14.1 — 82.5 7.0 — 12.1 57.3 — — — 2.0 — — 65.7 1.6 — — 0.6 —
7.0 — 40.5 67.1 76.4 69.9 — 1.6 — 1.4 — 0.5 12.8 — 83.7 4.6 — — — — — 3.4 3.4 — 5.9 65.7 3.2 — 73.7 0.7 —
7.1 — 40.2 65.9 68.4 — — 1.3 — 2.7 15.4 0.9 13.0 3.3 — 8.5 — — — 0.3 — — 3.3 59.3 12.6 64.2 3.2 — 53.9 1.5 —
— 82.7 — 66.1 60.1 74.6 — 1.5 0.1 0.4 18.6 1.7 11.0 0.4 87.4 1.2 — — 46.0 0.3 — — 0.8 79.1 0.8 68.2 3.7 — 75.1 1.1 —
8.6 10.4 10.4 17.6 8.6 — — 46.7 — 28.4 3.7 — 17.9 6.8 2.7 2.2 9.3 23.4 14.2 — 2.1 — 12.9 — — — 43.3 — — 13.8 —
8.9 — 6.6 16.6 8.8 5.5 — 45.7 — 26.7 — — 14.7 5.8 2.4 1.4 8.9 — — — 2.0 64.6 10.6 — 63.7 — 37.4 — 11.9 9.1 —
7.9 — 5.7 16.3 9.7 — — 39.0 — 24.5 17.8 69.0 11.8 15.8 — 1.4 6.0 — — 4.7 2.5 — 9.7 12.8 53.5 5.1 37.5 — 7.6 7.4 12.9
— 4.5 — 15.4 12.9 — — 36.1 5.1 21.7 8.4 67.4 12.8 14.3 1.3 0.2 6.4 — 17.0 23.2 4.3 — 4.7 3.4 58.4 4.7 28.3 — 10.3 5.4 12.0
39.9 0.1 40.4 — — — — 33.9 — 33.6 — — 50.4 60.4 1.8 49.7 — 25.9 12.5 — 65.4 — 50.7 — — 22.5 — 57.4 — 28.1 —
56.9 — 38.7 — — — — 33.7 — 31.3 — — 55.5 62.0 2.0 60.0 — — — — 70.4 — 53.1 — — 22.7 0.9 56.8 — 21.6 —
59.7 — 38.6 — — — — 41.9 — 29.3 — 10.6 59.1 60.1 — 62.2 — — — — 65.9 — 51.3 23.3 — 12.2 0.9 56.4 — 20.0 24.5
— 0.2 — — — — — 44.1 57.0 27.6 — 11.0 56.7 65.0 1.4 75.4 0.0 — 19.0 — 54.5 — 60.1 11.2 — 13.9 1.0 58.6 0.1 11.3 27.9
Note:
a) In general, the data for the four sectors will not sum to 100%, since “agricultural uses other than irrigation”, “agricultural uses other than irrigation”, “industrial cooling”, and “other uses” are not covered here. Exceptions occur when the % are based on partial totals or the categories presented include other uses. b) “Public water supply” refers to water supply by waterworks, and may include other uses besides the domestic sector. “Irrigation”, “Industry no cooling” and “Electrical cooling” refer to self supply (abstraction for own final use). c) Data refer to 1999 or latest available year. Data prior to 1995 have not been considered.
Note:
CAN, 1980, 1985 and 1990: 1981, 1986 and 1991 data; MEX, 1980: % based on totals excluding agricultural uses other than irrigation. Industry no cooling: includes cooling. Electrical cooling 1980: data include Secretariat estimates; U.S.A., Industry no cooling: includes cooling; JPN, Industry no cooling: includes industrial and electrical cooling; KOR, % based on partial totals: electrical cooling excluded. Public supply: data refer to domestic sector. Irrigation: includes other agric, uses. Industry no cooling includes cooling, 1999: 1997 data; AUS, 1980: 1977 data adjusted for average climatic year. 1985: data refer to fiscal year 1983/84 and to both waterworks and self-supply; public supply: data refer to domestic sector; industry no cooling: may include industrial and electrical cooling, 1999: 1996/97 data; NZL, % based on partial totals; AUT, % based on partial totals. Irrigation and industry no cooling: groundwater only. Electrical cooling (includes all industrial cooling): surface water only. 1990:1992 data; irrigation includes other agricultural abstractions. 1999: 1997 data; BEL, 1999: 1998 data including Secretariat estimates; CZE, Industry no cooling: includes cooling; DNK, 1980: 1977 data. 1990; % based on totals referring to groundwater abstractions only, which represent the majority of total freshwater abstractions (e.g. 95–99% for 1995). Industry no cooling: includes some industrial and electrical cooling (self-supply). 1999: 1998 data, Irrigation: 1995 data; FIN, % based on partial total: 1985 and 1990 exclude agricultural uses besides irrigation (1985 data); industry no cooling: includes cooling. Irrigation: 1999 data is country estimate; FRA, 1980 and 1999: 1981 and 1997 data. Irrigation: includes other agricultural uses, but irrigation is the main use. Industry no cooling: includes cooling. 1997: break in time series; DEU, % based on totals excluding agricultural uses other than irrigation. Industry no cooling: includes cooling. 1980 and 1985: 1979 and 1983 data, for western Germany only. 1990 and 1999: 1991 and 1998 data for total Germany; GRC, % based on partial totals excluding agricultural uses other than irrigation, 1999: 1997 data. Public water supply: supply by 42 out of 75 great water distribution enterprises; HUN, 1999: 1998 data; ISL, Public supply: includes the domestic use of geothermal water. Industry no cooling: includes cooling. After 1985, fish farming is a major user of abstracted water, explaining the change in the relative contribution of other sectors. 1990: 1992 data; IRL, Industry no cooling: includes cooling. Irrigation: includes other agricultural uses (e.g. rural domestic use). % based on totals including 1980 data for electrical cooling; ITA, % based on totals excluding agricultural uses besides irrigation. 1990 and 1999: 1989 and 1998 data; LUX, Industry no cooling: includes cooling. 1990: 1989 data, except for industry and electrical cooling (1983 data); irrigation; estimated data; NLD, % based on partial totals excluding all agricultural uses. 1980, 1985, 1990 and 1999: 1981, 1986, 1991 and 1996 data; NOR, Data include 1978 data for industry. 1985: 1983 data. Industry no cooling: includes industrial cooling; POL, % based on totals including abstractions for agriculture, which include aquaculture (areas over 10 ha) and irrigation (Arabic land and forest areas greater than 20 ha); animal production and domestic needs of rural inhabitants are not covered (selfsupply); PRT, % based on totals excluding agricultural uses besides irrigation. 1990 and 1999: 1991 and 1998 data; SLO, Irrigation: Secretariat estimates. Industry no cooling: includes cooling; ESP, % based on totals excluding agricultural uses other than irrigation. Industry no cooling: surface water only; includes industrial cooling. Electrical cooling: until 1990 data include total industrial use. 1990 and 1999: 1991 and 1997 data; SWE, Irrigation: 1980 and refer to 1976; since 1985 data are estimates for dry year. Industry no cooling: 1980 data refer to 1974 and include mining and quarrying and electrical cooling: 1985 and 1990 data refer to 1983. Electrical cooling: 1985 and 1990 data refer to 1983. 1999: 1995 data; CHE, % based on partial totals excluding all agricultural uses. Public supply: includes industry (total industry—ISIC 10–45 rev. 3), which totals 215 million m3 (1994), and other activities (101 million m3 (1994)). 1999: 1998 data; TUR, % based on totals excluding agricultural uses other than irrigation. 1985: % based on partial totals excluding electrical cooling. Industry no cooling: includes cooling. 1990: 1991 data. Electrical cooling 1999: estimation (1995 data); UKD, England and Wales only. Data include miscellaneous uses for power generation, but exclude hydroelectric power water use; RUS, 1990 and 1999: 1991 and 1996 data.
Source :
From Table 3.1C, OECD Environmental Data Compendium 2002, q OCED 2002, www.oecd.org.
q 2006 by Taylor & Francis Group, LLC
7-36
Table 7B.14 Worldwide Fresh Water Utilization by Purpose, 2000 Fresh Water Utilization by Purpose
World/ Continent
Total Volume of Fresh Water Utilization (km3/yr)
(km3/yr)
%
(km3/yr)
%
(km3/yr)
%
Utilization a as % of Resources
3820.3 1239.2 893.5 345.7 2581.1 265.1
377.4 165.2 131.3 33.9 212.2 50.4
9.9 13.3 14.7 9.8 8.2 19.0
790.7 509.1 395.6 113.5 281.6 27.4
20.7 41.1 44.3 32.8 10.9 10.3
2 652.2 564.9 366.6 198.3 2 087.3 187.3
69.4 45.6 41.0 57.4 80.9 70.7
8.9 9.0 10.2 7.1 8.9 2.0
322.6
25.1
7.8
19.5
6.0
278.0
86.2
62.5
98.1 977.4 917.8 0.1
6.9 71.2 58.7 0.0
7.0 7.3 6.4 34.2
2.8 192.3 39.6 0.0
2.9 19.7 4.3 27.6
88.3 714.0 819.6 0.1
90.1 73.0 89.3 38.2
2.5 11.2 52.1 0.0
—
—
—
—
—
208.4 2377.1 251.7 13.4 525.3 26.2 418.2
17.9 171.5 47.3 3.1 69.8 4.6 63.2
84.1 81.4 70.8 67.7 38.7 72.4 31.6
5.3 20.4 1.9 15.7 9.3 1.6 6.5
Industrial Use
8.6 7.2 18.8 22.9 13.3 17.6 15.1
—
15.2 270.2 26.1 1.3 252.3 2.6 223.0
Source: From FAO, 2003, Summary of Food and Agricultural Statistics, www.fao.org. With permission.
q 2006 by Taylor & Francis Group, LLC
Agricultural Use
—
7.3 11.4 10.4 9.4 48.0 10.1 53.3
—
175.2 1 935.5 178.3 9.1 203.2 19.0 132.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
World Developed countries Industrialized countries Transition economies Developing countries Latin America and the Caribbean Near East and North Africa Sub-Saharan Africa East and Southeast Asia South Asia Oceania developing North America developing Continental groupings Africa Asia Latin America Caribbean North America Oceania Europe
Domestic Use
WATER USE
7-37
Water consumption:
World
2000
Water consumption (km3)
Assessment 1600
1200 Forecast 800
400
0 1900
(a)
1925
1950
2000
2025
Europe
North America
Africa
Asia
South America
Australia & Oceania
Water withdrawal: 3500 Assessment 3000 Water withdrawal (km3)
1975
World
2500 2000 Forecast 1500 1000 500
(b)
0 1900
1925
1950
1975
2000
Europe
North America
Africa
Asia
South America
Australia & Oceania
2025
Figure 7B.8 Dynamics of water use in the world by continents. (From Shiklomanov, I.A., 1999, Summary of the Monograph “World Water Resources at the Beginning of the 21st Century” Prepared in the Framework of IHP UNESCO, International Hydrological Programme, UNESCO’S, Intergovernmental Scientific Programme in Water Resources, World Water Resources and Their Use a Joint State Hydrological Institute (SHI)/UNESCO Product, http://webworld.unesco.org/water/ihp/db/shiklomanov/. Copyright q UNESCO 1999. Reproduced by permission of UNESCO.)
q 2006 by Taylor & Francis Group, LLC
7-38
Table 7B.15 Freshwater Abstractions by Source, in Selected Countries 1980–1999 Surface Water (mill m3)
Groundwater (mill m3)
As % of Resources/ (a) (b)
1980
1985
1990
1999 (c)
1980
1985
1990
1999 (c)
1980
1985
1990
1999 (c)
1610 800 1870 710 540 1300 570 440 730 190 140 450 520 490 830 560 560 980 140 290 600 290 1110 210 1040 300 360 590 210 560 1600 560 600 950
1.7 16.2 19.9 21.2 34.3 6.8 0.6 4.2 45.1 12.4 12.3 2.1 15.9 22.3 12.1 4.7 0.1 32.1 3.7 4.9 0.7 17.9 15.2 1.4 36.8 1.5 4.8 16.6 17.4 1.9 11.0 13.9 19.4 11.8
37594 56003 517720 86000 17510 10900 1200 3342 — 3622 1205 3700 30972 42206 5040 4805 108 56200 — 9198 — 14184 — 2232 39920 4106 2589 16200 13514 113178 611300 271400 225600 998300
42383 — 467335 87200 18580 14600 1900 3363 — 3679 — 4000 34887 41216 5496 6267 112 52000 67 9302 2025 15453 — 2061 46250 2970 2646 19400 11533 117273 572000 282700 231000 977000
45096 — 468620 88900 20600 — — 3734 — 3623 1261 2347 37687 47873 — 6293 167 56200 59 7806 — 14248 8600 2116 36900 2968 2665 32200 12052 126083 581700 299100 235400 1006800
47250 78402 492260 89100 24800 24071 2000 3561 7442 1976 754 2328 30341 40591 8695 5653 156 56200 60 4425 2588 11275 11090 1149 40855 2668 2566 38900 11162 82064 617900 285600 221300 1043500
36733 39374 402750 74100 — — — 2207 — 2820 45 3510 25268 35344 3470 3551 5 — — 8190 — 11899 — 1575 34800 3511 1667 11800 11024 101799 — — — —
41486 — 366095 75300 — 12360 — 2195 — 2873 — 3680 28714 34225 — 4880 8 4000 22 8231 1620 13076 — 1390 40840 2348 1693 14100 9012 103407 — — — —
44059 — 358790 76600 — — — 2561 — 2787 — 2107 31486 — — 5266 7 — 32 6757 — 11928 — 1388 31400 2360 1724 25600 9344 111297 — — — —
— 53017 — 77300 22200 19109 1200 2496 6802 1419 20 2043 24240 33880 5023 4822 4 — 29 3427 — 9339 4800 684 35323 2026 1689 29552 8658 72420 — — — —
861 16629 114970 11900 — — — — — 802 1160 190 5704 6862 1570 1254 103 — — 1008 — 2285 — 657 5120 595 922 4400 2490 11379 — — — —
897 23500 101420 11900 — 2240 — 1168 — 806 — 320 6173 6991 — 1386 104 12000 45 1071 405 2377 — 671 5410 622 953 5300 2521 13866 — — — —
1037 24453 109830 12200 — — — 1135 — 836 1261 240 6201 — — 1026 160 — 27 1049 — 2320 — 728 5500 608 941 6600 2709 14786 — — — —
— 25385 — 11900 2600 4962 800 1065 641 557 734 285 6101 6710 3563 831 152 — 32 998 — 1936 6290 465 5532 642 877 6000 2504 11624 — — — —
Source: From Table 3.1C, OECD Environmental Data Compendium 2002, q OECD 2002, www.oecd.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Canada Mexico U.S.A. Japan Korea Australia N. Zealand Austria Belgium Czech Rep. Denmark Finland France Germany Greece Hungary Iceland Italy Luxembourg The Netherlands Norway Poland Portugal Slovak Rep. Spain Sweden Switzerland Turkey UK Russian Fed. N. America OECD/Europe EU-15 OECD
Total Abstractions (mill m3)
Per Capita/ (m3/Capita) (b)
a b c
CAN, 1980, 1985, and 1990: 1981, 1986, and 1991 data. 1999: WWF estimate for 1995; MEX, 1980: excluding agricultural uses besides irrigation. Data include Secretariat estimates for electrical cooling based on electricity generated in power stations in 1980. 1999: Total gross abstraction excluding 143 km3 used in hydroelectric energy generation; U.S.A., 1999: WWF estimate for 1995; JPN, 1999: 1997 data; KOR, Partial totals excluding electrical cooling. 1999: 1997 data; AUS, 1980: 1977 data adjusted for an average climatic year. 1985: fiscal year 1983/84. 1999: 1996/97 data; NZL, Partial totals excluding industrial and electrical cooling. 1980: composite total based on data for various years. 1999: 1993 estimates; AUT, Partial totals. Surface water: excluding agriculture, irrigation and industry except cooling. Groundwater: excluding industry and electrical cooling. 1999: 1997 data; BEL, 1999: 1998 data; data include Secretariat estimates; DNK, 1980 and 1999: 1977 and 1998 data. 1990 refer only to groundwater abstractions, which represent the majority of total freshwater abstractions (e.g. 95–99% for 1995); FIN, Partial totals. 1985 and 1990: exclude agricultural uses besides irrigations. 1999: includes country estimate for agriculture; FRA, 1980 and 1999: 1981 and 1997 data. 1997: Break in time series; DEU, Excluding agricultural uses besides irrigation. 1980 and 1985: 1979 and 1983 data for western Germany only. 1990 and 1999: 1991 and 1998 data for total Germany. Data include electrical cooling; GRC, Partial totals excluding agricultural uses besides irrigation. 1999: 1997 data including, for public water supply, data from 42 out of 75 great water distribution enterprises; HUN, 1999: 1998 data; ISL, Totals include the domestic use of geothermal water. 1990: 1992 data; IRL, 1999: 1994 data; totals include 1980 data for electrical cooling; ITA, Excluding agricultural uses besides irrigation. 1980: including 1973 estimates for industrial cooling. 1990 and 1999: 1989 and 1998 data; LUX, 1990: 1989 data, including 1983 data; NLD, Partial totals excluding all agricultural uses. 1980, 1985, 1990 and 1999: 1981, 1986, 1991 and 1996 data; NOR, Data include 1978 data for industry. 1985: 1983 data. 1999: data are estimates for 1994; POL, Totals include abstractions for agriculture, which refer to aquaculture (areas over 10 ha) and irrigation (arable land and forest areas greater than 20 ha); animal production and domestic needs of rural inhabitants are not covered (selfsupply); PRT, Excluding agricultural uses besides irrigation. 1990: 1991 data. 1999: 1998 data; ESP, Excluding agricultural uses besides irrigation. Groundwater: excluding industry. 1990 and 1999: 1991 and 1997 data; SWE, 1980, 1985 and 1990: include data from different years. 1999: 1995 data; CHE, Partial totals excluding all agricultural uses. 1999: 1998 data; TUR, Partial totals. Excluding agricultural uses besides irrigation. 1980 and 1985: excluding electrical cooling. 1990: 1991 data. 1999: total: country estimates; surface and groundwater: 1997 data; UKD, Partial totals. England Wales only. Data include miscellaneous uses for power generation, but exclude hydroelectric power water use; RUS, 1990: 1991 data; Totals, Rounded figures, including Secretarial estimates. OECD and EU until 1985: western Germany only. % of renewable resources: calculated using the estimated totals for internal resources (not total resources as for countries), and considering England and Wales only.
WATER USE
Note:
Data refer to total abstraction divided by total renewable resources, except for regional totals, where the internal resource estimates were used to avoid double counting. Total renewable resources represent the maximum quantity of water available on average. Data refer to 1999 or latest available year. Data prior to 1994 have not been considered. Data refer to 1999 or latest available year.
Source: From Table 3.1B, OECD Environmental Data Compendium 2002, q OCED 2002, www.oecd.org.
7-39
q 2006 by Taylor & Francis Group, LLC
7-40
Table 7B.16 Worldwide Annual Groundwater Withdrawals and Desalinization Average Annual Groundwater Recharge
3
Total (km ) Years Vary X X
3
Per Capita (m ) Year 2000
Year
Total (km3)
X X
Sectoral Share (percent) Per Capita (m3) 106–124 X
a
Domestics
Industry
Agriculture
65 X
15 X
20 X
Desalinated Water Production (mill m3) 1990
X X
1995 X
4.2 6.5 21.0 X 17.6 828.8 17.2 418.5 455.0 27.0n 35.9 21.0b
1,193 842 163 X 1,576 649 3,469 413 2,145 213 2,211 874
X X 1990 X X 1988 1990 1990 X 1995h 1993q X
X X 10.7 X X 52.9 3.0 190.0 X 13.6 2.4 X
X X 50.9 X X 6.4 17.4 45.4 X 50.3 6.7 X
X X 97.6 X X 47.1 549.5 223.3 X 108.2 143.9 X
X X 13 X X X X 9 X 29 21 X
X X 1 X X X X 2 X 41 71 X
X X 88l X X 54 X 89m X 30o 8q X
X X X X X X X X X 40.0p 1,328.0r X
13.3b 13.6 38.0
284 2,894 6,994
1995h 1994t X
2.5 0.6 X
18.6 4.4 X
55.1 132.0 X
X 50 X
X 25 X
17s 25t X
X X X
64.0 6.1 156.0b X 55.0 180.0b X 7.8 6.0 41.9b 3.4 19.7 48.0
2,877 2,291 3,420 X 351 2,369 X 414 970 682 753 809 601
1995 1993 X X 1991 1980 X X 1994 1980 1994 1994 1990
0.4 0.4 X X 60.0 4.0 X X 2.3 0.7 0.4 7.4 0.8
0.6 5.8 X X 109.1 2.2 X X 37.7 1.7 11.9 37.6 1.7
19.0 149.1 X X 489.5 82.8 X X 398.7 15.0 100.3 334.3 11.9
62 X X X X 50 X X X 60 53 33 X
33 X X X X 50 X X X 26 9 11 X
5 X X X 90u X X X X 14 38 57v X
X X X X X X X X X X X X X
X 7.0 22.3b 18.0 0.9c X
X 2,248 2,716 1,758 89 X
X 1989 1995h 1989 1980 X
X 0.6 1.4 1.2 0.8 X
X 9.0 6.2 6.6 86.4 X
X 193.6 172.5 115.7 79.0 X
X 48 52 52 55 X
X X 43 13 22 X
X 52 5w 28x 4 X
X X X X X X
13.4y 11.0 X
1,629 2,459 X
1988 X 1995h
5.0 X 0.5
37.3 X X
566.1 X 48.0
X X X
X X X
X X X
X X X
q 2006 by Taylor & Francis Group, LLC
600–700 X
Percentage of Annual Recharge
X X
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
World Asia (Excl Middle East Armenia Azerbaijan Bangladesh Bhutan Cambodia China Georgia India Indonesia Japan Kazakhstan Korea, Dem People’s Rep Korea, Rep Kyrgyzstan Lao People’s Dem Rep Malaysia Mongolia Maynmar Nepal Pakistan Philippines Singapore Sri Lanka Tajikistan Thailand Turkmenistan Uzbekistan Vietnam Europe Albania Austria Belarus Belgium Bosnia and Herzegovina Bulgaria Croatia Czech Rep
Annual Groundwater Withdrawals
30.0z 4.0 1.9bb 100.0dd 45.7b 10.3 6.8c 24.0b 3.5c 43.0 2.2 1.2 X 0.4 4.5hh 96.0b 36.0 5.1c 8.3hh 788.0 X X 28.9 20.0c 2.7 20.0 9.8 3.0 X
5,668 2,865 367 1,693 556 968 678 85,419 928 750 934 327 X 91 285 21,502 929 516 372 5,363 X X 729 2,245 366 396 167 282 X
1995h X 1995h 1994 1990 1990 1995h 1995h 1995 1992 X 1995 X X 1990 1985 1995h 1995 1993 1988 1995h 1994 1995h 1995h 1995h 1989 1995h X X
0.9 X 0.2 6.0 7.1 2.0 1.0 0.2 0.2 13.9 X 0.2 X X 1.0 0.4 2.0 3.1 3.6 12.6 0.6 0.2 5.4 0.6 0.9 4.0 2.5 X X
3.0 X 12.8 6.0 15.5 19.4 14.5 0.6 6.5 32.3 X 17.1 X X 23.3 0.4 5.5 60.1 43.7 1.6 X X 18.8 3.2 33.4 20.1 25.2 X X
169.8 X 47.8 103.8 89.4 195.7 96.5 558.9 62.3 243.2 X 55.1 X X 70.2 97.5 51.5 311.0 158.0 85.5 113.0 88.9 137.2 72.8 126.3 77.5 42.4 X X
40 X 65 56 48 37 35 X 35 39 X X X X 32 27 70 39 61 X X X 18 92 72 30 51 X X
22 X 11 27 47 5 48 X 38 4 X X X X 45 73 30 23 38 X X X 2 8 40 18 47 X X
38aa X 24cc 17 4ee 58 18ff X 29gg 58 X X X X 23ii Xjj Xkk 39ll 1mm X X X 80 Xnn Xoo 52pp 2qq X X
29.0b 1.7c 1.3c 42.0c 13.0c 0.5 0.6c X 4.8 0.7
1,276 54 19 620 562 80 87 X 1,463 116
X 1989 1995 1980 1985 1996 1993 1994 1991 1995
X 2.9 5.3 29.0 0.2 1.2 0.5 0.3 0.4 3.7
X 167.6 407.7 69.0 1.5 234.0 91.4 X 8.3 561.5
X 117.1 85.1 738.8 13.1 204.5 100.7 142.7 153.2 734.9
X 46 58 X 50 18 30 0 13 9
X 5 0 X 40 2 4 0 9 4
X 49 42rr X X 80tt 66vv 100ww 78 87yy
X 64.0 25.0 2.9ss X 20.0uu 2.0r 231.0r X 70.0xx
9.0 1.0 1.0c 6.6 4.2 20.0 0.1
317 376 44 409 433 300 49
1998 1985 1990 1993 1995 1995h 1995
2.7 0.4 14.4 1.8 1.6 7.6 1.6
29.8 41.9 1518.9 27.3 39.2 38.0 1333.3
97.9 280.7 899.3 133.5 181.8 124.0 724.1
16 X 10 13 10 31 X
X X X 4 4 9 19j
84zz X 90 83ddd 86 60ddd 81ccc
3.4aaa 34.0bbb 714.0bbb X 8.3 0.5 385.0bbb
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
q 2006 by Taylor & Francis Group, LLC
7-41
(Continued)
WATER USE
Denmark Estonia Finland France Germany Greece Hungry Iceland Ireland Italy Latvia Lithuania Macedonia, FYR Moldova, Rep Netherlands Norway Poland Portugal Romania Russian Federation Slovakia Slovenia Spain Sweden Switzerland Ukraine United Kingdom Yugoslavia Middle East & N. Africa Afghanistan Algeria Egypt Iran, Islamic Rep Iraq Israel Jordan Kuwait Lebanon Libyan Arab Jamahiriya Morocco Oman Saudi Arabia Syrian Arab Rep Tunisia Turkey United Arab Emirates
(Continued)
7-42
Table 7B.16
Average Annual Groundwater Recharge
Total (km3) Years Vary 1.5 X 72.0b 1.8c 1.7c 9.5c 2.1b 100.0b 56.0b 11.5b 198.0b 421.0b 37.7c 10.0b X 44.0b 62.0b 0.5b 26.3c 38.0b 14.0b 3.0c 0.5b 60.0b 55.0b 1.4b 20.0c 0.3c 17.0b 2.1b 2.5c 87.0b 3.6b 7.6b 50.0b 3.3b 4.8 7.0 30.0b
84 X 5,591 295 1,048 796 314 6,629 15,490 1,503 67,268 8,150 2,550 22,097 X 703 50,566 383 1,301 5,114 11,541 100 232 19,023 3,450 128 1,780 112 864 1,217 233 780 466 802 10,300 327 119 237 895
5.7c 29.0b
1,231 1,332
q 2006 by Taylor & Francis Group, LLC
Year 1985
eee
X X X X X X X X 1990 X X X X X X 1989 X X X X X X X 1984 X 1989 1985 X X 1988 X X 1985 X 1985 1980 1985 X X X
Total (km3) 1.4 X X X X X X X X 0.1 X X X X X X 0.0 X X X X X X X 4.8 X 0.1 0.9 X X 0.1 X X 0.3 X 0.3 1.8 0.3 X X X
Percentage of Annual Recharge
Sectoral Share (percent) Per Capita (m3)
88.5 X X X X X X X X 0.8 X X X X X X 0.0 X X X X X X X 8.7 X 0.5 293.3 X X 5.2 X X 3.3 X 9.1 37.3 4.0 X
139.2 X X X X X X X X 15.7 X X X X X X 0.6 X X X X X X X 482.9 X 11.6 498.3 X X 17.9 X X 39.2 X 45.8 64.9 13.0 X
X X
X X
Domestics
Industry
a
Agriculture
X X X X X X X X X 29 X X X X X X 100 X X X X X X X 0 X X X X X 58 X X 24 X X 11 X X
X X X X X X X X X X X X X X X X 0 X X X X X X X X X X X X X 4 X X X X X 6 X X
X X X X X X X X X 71 X X X X X X 0 X X X X X X X Xd X X X X X 39 X X 72 X X 84 X X
X X
X X
X X
Desalinated Water Production (mill m3) 1990 10.0fff X X X X X X X X X 0.2 X X X X X X X X X X X X X X X X 1.7 0.1 3.0 X 3.0 X 0.1 X 0.1 17.5 0.4 X X X
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Yemen Sub-Saharan Africa Angola Benin Botswana Burkina Faso Burundi Cameron Central African Rep Chad Congo Congo, Dem Rep Coˆte d’Ivoire Equatorial Guinea Eritrea Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Kenya Lesotho Liberia Madagascar Malawi Mali Mauritania Mozambique Namibia Niger Nigeria Rwanda Senegal Sierra Leone Somalia South Africa Sudan Tanzania, United Rep Togo Uganda
Per Capita (m3) Year 2000
Annual Groundwater Withdrawals
a b c d e f g h
47.1 5.0b XX 370.0b 1,514.0f X X 21.0b 8.0b 3.0b X 31.0b 2.5b 39.0b X 139.0b 59.0b 42.0b X X 128.0b 130.0b 1,874.0b 140.0b 510.0b 134.0b 103.0b 41.0b 303.0b 80.0b 23.0b 227.0b X 72.0c X 198.0b X X
5,137 428 X 11,878 5,439 X X 5,219 714 353 X 2.723 304 6,013 X 1,406 11,627 14,708 X X 3,456 15,609 11,016 9,204 12,051 10,596 119,582 7,459 11,807 191,787 6,892 9,392 X 3,812 X 51,270 X X
X X X 1889 1990 X
X X X 1.0 109.8 X
X X X 0.3 7.3 X
X X X 37.3 432.3 X
X X X 34 20 X
X X X 11 5 X
X X X 34e 62g X
X X X X X X
X X 1975 X X X X X X 1995h X X X X 1975 X 1987 X X X X X 1973 X X X X 1985 X X X X
X X 3.8 X X X X X X 25.1 X X X X 4.7 X 8.0 X X X X X 2.0 X X X X 2.2 X X X X
X X 47.5 X X X X X X 18.1 X X X X 3.7 X 0.4 X X X X X 0.7 X X X X 3.1 X X X X
X X 408.3 X X X X X X 275.4 X X X X 180.4 X 57.0 X X X X X 139.4 X X X X 143.2 X X X X
X X X X X X X X X 13 X X X X 11 X 38 X X X X X 25 X X X X X X X X X
X X X X X X X X X 23 X X X X 19 X 25 X X X X X 15 X X X X 20j X X X X
X X X X X X X X X 64I X X X X 70 X 38 X X X X X 60 X X X X 57k X X X X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
WATER USE
Zambia Zimbabwe North America Canada United States C. America & Caribbean Belize Costa Rica Cuba Dominican Rep El Salvador Guatemala Haiti Honduras Jamaica Mexico Nicaragua Panama Trinidad and Tobago South America Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay Peru Suriname Uruguay Venezuela Oceania Australia Fiji New Zealand Papua New Guinea Solomon Islands
Estimates are typically approximate and therefore the sum of the sectoral data may not add to 100 percent. Sum of all groundwater flows, including base flow (as a constituent of surface water flows). Sum of all aquifer recharge flows. Sectoral data for Madagascar equal 0.32 percent for domestic for 1984 as reported by Margat 1990. Sectoral data for Canada are calculated using a groundwater withdrawal value of 1.6 km3 from 1985 as reported by Margat 1990. Data for the United States are from Economic Commission for Europe (1992) without a specific date. Data reported by Margat (1990) are 660 km3 from a source dated 1974 and refer to the U.S. Including the 50 states and Puerto Rico. Sectoral data for the U.S. are calculated using a groundwater withdrawal value of 101.3 km3 from 1985 as reported by Margat 1990. Data refer to 1995 or latest available year (generally from 1991, 1992, 1993, or 1994).
q 2006 by Taylor & Francis Group, LLC
7-43
(Continued)
(Continued)
i
Sectoral data are calculated using a groundwater withdrawal value of 23.5 km3 from around 1985 as reported by Margat 1990. Domestic and industrial withdrawals have been combined. k Sectoral data for Australia are calculated using a groundwater withdrawal value of 2.46 km3 from 1983 as reported by Margat 1990. l Sectoral data for Bangladesh are calculated using a groundwater withdrawal value of 3.4 km3 from 1979 as reported by Margat 1990. m Sectoral data are from around 1990 as provided by Shiklomonov; total withdrawal data also are from 1990 but are from FAO, Irrigation in Asia in Figures, p. 95. n Data are from FAO, Irrigation in Asia in Figures (1999) which states “The renewable potential of groundwater resources is estimated at about 27 km3/yr—.” A value of 185 km3/yr is provided by Margat (1990) cited from L’vovich 1974. o Sectoral data for Japan are from 1987 as provided by Shiklomonov 1997 based on groundwater withdrawal of 12.88 km3. p Data are from 1996. q Both withdrawal and sectoral data are estimated from a bar graph from FAO Report: Irrigation in the Former Soviet Union Countries in Figures, p. 116. r Data are from 1993. s Sectoral data for the Republic of Korea are calculated using a groundwater withdrawal value of 1.2 km3 from around 1985 as provided by Margat 1990. t Kyrgystan data: FAO Irrigation in the Former Soviet Union Countries in Figures, p. 129, “In 1994, more than 0.6 km3 of water was withdrawn from groundwater.” We have entered a value of 0.6 but the figure may be higher; we have calculated the sectoral data from the figure in this report on page 129, using the 0.6 figure for total withdrawal. u Sectoral data for Pakistan are from Shiklomonov who reports “approximately 90 percent” for agriculture share; total withdrawal also is approximately 60 km3/yr for around 990 (table p. 57). v Sectoral data for Uzbekistan are from 1994 FAO Irrigation in the Former Sovet Union Countries in Figures estimated from a bar graph, p. 217. w Sectoral data for Austria are calculated using a groundwater withdrawal value of 1.17 km3 from 1980 as reported by Margat 1990. x Sectoral data Belarus are calculated using a groundwater withdrawal value of 1.06 km3 from 1985 as reported by Margot 1990. y Data for Bulgaria are from ECE (1992) and refer to the year 1988; Margat (1990) reports data from a 1989 source (Anonyme 1989) as 3.1 km3. z Data for Denmark are from ECE (1992) and refer to the year 1985; Margat (1990) reports data from a 1981 source (Anonyme 1981) as 4.3 km3. aa Sectoral data are calculated using a groundwater withdrawal value of 1.32 km3 from 1977 as reported by Margat 1990. bb Data for Finland are from ECE (1992) without a year specified; Margat (1990) reports data from a 1989 source (Anonyme 1989) as 2.2 km3. cc Sectoral data are calculated using a groundwater withdrawal value of 0.37 km3 from 1980 as reported by Margat 1990. dd Data are from Margat (1990) and refer to a source dated 1989 (Margat 1989); data reported from ECE (1992) is 26.0 km3 for 1981. ee Sectoral data are from Margat (1990) and combine his data for both Germanys. Margat’s total withdrawal data are from different dates for the two Germanys. Germany—RFA is 7.77 km3 from 1981 and Germany—ex DDR is from 1975; the combined total is 9.55 which is used to calculate the sectoral percentage. The sectoral data also are from 1981 (Germany RFA) and 1975 (Germany—ex DDR). ff Sectoral data are calculated using a groundwater withdrawal value of 1.6 km3 from 1972 as reported by Margat 1990. gg Sectoral data for Ireland are calculated using a groundwater withdrawal value of 0.17 km3 from 1980 as reported by Margat 1990. hh Sum of the total groundwater flow that is exploitable. ii Sectoral data are calculated using a groundwater withdrawal value of 1.28 km3 from 1981 as reported by Margat 1990. jj Sectoral data for Norway are calculated using a groundwater withdrawal value of 0.11 km3 from 1985 as reported by Margat 1990. kk Sectoral data are calculated using a groundwater withdrawal value of 2.0 km3 from 1980–81 as reported by Margat 1990. ll Sectoral data are calculated using a groundwater withdrawal value of 2.0 km3 from 1980 as reported by Margat 1990. mm Sectoral data are calculated using a groundwater withdrawal value of 1.18 km3 from 1975 as reported by Margat 1990. nn Sectoral data for Sweden are calculated using a groundwater withdrawal value of 0.48 km3 from 1985 as reported by Margat 1990. oo Sectoral data for Switzerland are calculated using a groundwater withdrawal value of 1.0 km3 from 1983 as reported by Margat 1990. pp Sectoral data are calculated using a groundwater withdrawal value of 4.22 km3 from 1985 at reported by Margat 1990. qq Sectoral data are calculated using a groundwater withdrawal value of 2.38 km3 from 1975 as reported by Margat 1990. rr Sectoral data are from 1992, Margat Blue Plan. ss Data are from 1991. tt Sectoral data are from 1994, Margat Blue Plan. uu Data are from Margat, personal communication February 2000. vv Groundwater withdrawal and sectoral data are estimated from a bar graph for 1993 from FAD water Report: Irrigation in the Near East Region in Figures, Rome, 1997, p. 115. ww Groundwater withdrawal and sectoral data are estimated from a bar graph for 1994 from FAD Water Report: Irrigation in the Near East Region in Figures, Rome, 1997, p. 124. xx Data are from 1994; from FAD irrigation in the Near East Region in Figures, p. 29. yy Sectoral percentages are calculated using groundwater withdrawal of 3.81 km3 which is an estimate provided with sectoral data for 1995 in Margat Blue Plan. zz Sectoral data are from 1991, Margat Blue Plan. aaa Data are from 1992. bbb Data are from 1995. ccc Sectoral percentage for UAE are a combination of data from text and a bar graph for 1995 from FAO Water Report: Irrigation in the Near East Region in Figures, Rome 1997, p. 266.
7-44
Table 7B.16 j
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
Sectoral data are from 1990, Margat Blue Plan. Groundwater withdrawal data are from Margat 1990, presented as two separate values, one for Yemen du Nord for around 1985 equal to 1 bill m3/yr; the other for Yemen du Sud for 1975 equal to 0.35 billion m3 per year. These two figures have been added. fff Data are from 1989. ggg Sectoral data are from Margat Blue Plan for 1989. hhh Sectoral data refer only to Mauritius Island only. eee
WATER USE
ddd
Technical Notes Source: From World Resources Institute, Earth Trends Environmental Information, Water Resources and Freshwater Ecosystems, Data Tables, Table FW.2 Groundwater and Desalinization, www.earthtrends.wri.org. Original Source: From Groundwater resources and withdrawal data: J. Margat, Les eau — souterraines sand le monde (Bureau de recherches ge´ologiques et minie`res [BRGM], De´partement eau, Orie´ans, France, December 1990); J. Margat and D. Valle´e, Water Resources and Uses in the Mediterranean Countries (Blue Plan, Sophia Antipolis, 1999); I.A. Shiklomanov, Comprehensive Assessment of the Freshwater Resources of the World (Stockholm Environment Institute, Stockholm, 1997); Organisation for Economic Co-Operation and Development (OECD), OECD Environmental Data Compendium 1997 (OECD, Paris, 1997); and Economic Commission for Europe, The Environment in Europe and North America (United Nations, New York, 1992). Groundwater resources and desalinization activities: J. Margat, Le — Eau — Souterraines Dans Le Bassin Mediterraneen. Resources et Utilisations Plan Bleu, Doc. BRGM 282 (Ed. BRGM, Orle´ans, France, 1998); Food and Agriculture Organization of the United Nations (FAO), Irrigation in Africa in Figures, Water Reports No. 7 (FAO, Rome, 1995); FAO, Irrigation in the Near East Region in Figures, Water Reports No. 9 (FAO, Rome, 1997); FAO, Irrigation in the Former Soviet Union in Figures, Water Report No. 15 (FAO, Rome, 1997); FAO, Irrigation in Asia in Figures, Water Reports No. 18 (FAO, Rome, 1999); and FAO, Irrigation in Latin America in Figures, Water Reports (FAO, Rome, in preparation). Population data: United Nations (U.N.) Population Division, World Population Prospects, 1950–2050 (The 1998 Revision), on diskette (U.N., New York, 1999). Average annual groundwater recharge is the amount of water that is estimated to annually infiltrate soils, including water from rivers and streams that lose it to underlying strata. In general, this figure would represent the maximum amount of water that could be withdrawn annually without ultimately depleting the groundwater resource. These data are estimated in a variety of ways and caution should be used in comparing values for different countries. Per capita recharge is the amount of water that annually infiltrates soils on a per person basis, using 2000 population estimates from the U.N. Population Division. Annual total groundwater withdrawals refers to abstractions from all groundwater sources — even nonrenewable sources. The percentage of annual recharge refers to total groundwater withdrawals. Per capita annual withdrawals were calculated using national population data for the year of data shown. Sectoral share of withdrawals of groundwater is classified as domestic (drinking water, homes, commercial establishments, public services, and municipal use), industry including water withdrawn to cool thermoelectric plants), and agriculture (irrigation and livestock). Desalinated water production refers to the removal of salt from saline waters — usually seawater — using a variety of techniques including reverse osmosis. Most desalinated water is used for domestic purposes. Totals may not add due to rounding.
7-45
q 2006 by Taylor & Francis Group, LLC
7-46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7C
q 2006 by Taylor & Francis Group, LLC
PUBLIC WATER SUPPLY — UNITED STATES
WATER USE
Table 7C.17 Public Water Supply Supreme in the United States, 2003 System Size by Population Served
CWS
NTNCWS
TNCWS
Note:
# systems Pop. served % of systems % of pop # systems Pop. served % of systems % of pop # systems Pop. served % of systems % of pop Total # systems Total Population Served
Very Small 500 or Less
Small 501–3,300
Medium 3,301–10,000
Large 10,001–100,000
30,417 5,010,834 57% 2% 16,785 2,327,575 85% 37% 85,366 7,315,647 97% 31% 132,568
14,394 20,261,508 27% 7% 2,786 2,772,334 14% 44% 2,657 2,602,706 3% 11% 19,837
4,686 27,201,137 9% 10% 97 506,124 0% 8% 96 528,624 0% 2% 4,879
3,505 98,706,485 7% 36% 16 412,463 0% 7% 29 619,248 0% 3% 3,550
Water Source Type Very Large O100,000 361 122,149,436 1% 45% 2 279,846 0% 4% 4 12,269,000 0% 53% 367
Groundwater
Surface Water
Total
41,499 86,348,074 78% 32% 18,908 5,568,192 96% 88% 86,061 10,527,089 98% 45% 146,468 102,443,355
11,864 186,981,326 22% 68% 778 730,150 4% 12% 2,091 12,808,136 2% 55% 14,733 200,519,612
53,363 273,329,400 100% 100% 19,686 6,298,342 100% 100% 88,152 23,335,225 100% 100% 161,201
Active, current systems, from Safe Drinking Water Information System/Federal version (SDWIS/FED) 03Q4 frozen inventory table. CWS, Community Water System: A public water system that supplies water to the same population year-round; NTNCWS, Non-Transient Non-Community Water System: A public water system that regularly supplies water to at least 25 of the same people at least six months per year, but not year-round. Some examples are schools, factories, office buildings, and hospitals which have their own water systems; TNCWS, Transient Non-Community Water System: A public water system that provides water in a place such as a gas station or compground where people do not remain for long periods of time. Groundwater systems, groundwater (GW), purchased groundwater (GWP); Surface water systems, surface water (SW), purchased surface water (SWP), groundwater under the direct influence of surface water (GU), purchased groundwater under the direct influence of surface water (GUP).
Source:
From USEPA, FACTOIDS: Drinking Water and Groundwater Statistics for 2003, www.epa.gov.
7-47
q 2006 by Taylor & Francis Group, LLC
7-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total public water systems in the United States 161,201
Non-community 107,838 (67%)
Community 53,363 (23%)
Surface water 11,864 (22%)
Groundwater 41,499 (78%)
68% of population served (community)
Groundwater 104,969 (97%)
Surface water 2,869 (3%)
32% of population served (community)
Figure 7C.9 Number and type of public water systems in the United States in 2003. (From American Water Works Association, 1988, New Dimensions in Safe Drinking Water, Copyright AWWA modified with data from USEPA, FY2003, Drinking Water Factors, www.epa.gov.)
60
57
Population served Number of community water systems
50
Percent distribution
45 40
36
30
27
20 10
10
9
7
7
3
1
0 Very small (500 or less)
Small (501−3,300)
Medium (3,301−10,000) Large (10,001−100,000) Very large (> 100,000)
Size of water system Figure 7C.10 Size distribution of community water systems in the United States in 2003. (From American Water Works Association, 1988, New Dimensions in Safe Drinking Water, modified with data from USEPA, FACTOIDS: Drinking Water and Groundwater Statistics for 2003, www.epa.gov.) q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7C.18 Average Daily Production (MGD) by Primary Water Source in Public Supply Systems in the United States in 2000 (Based on a Survey of 1246 Systems) System Service Population Category 100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
0.011 G0.009
0.034 G0.009
0.158 G0.034
1.058 G0.193
2.628 G0.382
11.892 G1.643
17.631 G13.186
125.642 G23.115
0.313 G0.052
0.003 G0.004
0.019 G0.000
0.524 G0.552
0.872 G0.365
3.718 G1.154
11.225 G1.490
29.778 G4.390
144.963 G32.023
3.587 G1.236
% Groundwater Confidence Interval
66.7 G0.0
83.3 G0.0
58.1 G4.9
78.0 G11.1
84.5 G9.3
74.1 G3.6
73.0 G5.5
83.5 G14.8
78.6 G5.9
% Surface Water Confidence Interval
0.0 G0.0
0.0 G0.0
41.9 G4.9
7.4 G7.3
2.1 G3.9
12.4 G6.1
6.1 G3.1
0.0 G0.0
6.0 G3.9
33.3 G0.0 86
16.7 G0.0 88
0.0 G0.0 88
14.7 G9.6 53
13.4 G8.8 35
13.5 G6.4 20
20.9 G5.8 20
16.5 G14.8 5
15.4 G5.3 395
0.010 G0.007
0.071 G0.031
0.279 G0.059
0.935 G0.153
4.766 G1.430
11.041 G2.681
31.875 G2.733
271.287 G79.561
4.280 G0.995
0.014 G0.012
0.013 G0.010
0.269 G0.141
0.779 G0.318
4.253 G1.325
11.537 G1.682
42.431 G5.065
219.892 G96.067
8.636 G4.026
% Groundwater Confidence Interval
35.2 G19.6
24.0 G6.5
13.5 G10.3
18.9 G10.6
14.3 G6.5
10.4 G4.7
14.0 G2.9
8.9 G4.1
15.6 G4.1
% Surface Water Confidence Interval
64.8 G19.6
76.0 G6.5
69.4 G8.0
76.7 G8.5
81.5 G5.8
85.4 G5.0
82.8 G3.0
86.4 G4.1
77.7 G3.6
% Purchased Water 0.0 Confidence Interval G0.0 Observations 41 Primarily Purchased Water Systems 100% Purchased Water Average Daily Production 0.008 Confidence Interval G0.008 Mostly Purchased Water
0.0 G0.0 49
17.0 G13.0 56
4.4 G4.4 63
4.1 G4.3 64
4.3 G3.4 35
3.3 G1.6 70
4.7 G2.3 26
6.6 G3.7 404
0.017 G0.004
0.150 G0.046
0.886 G0.445
2.302 G0.918
9.595 G1.417
23.975 G3.277
129.602 G69.896
0.866 G0.309
Primary Source of Water Primarily Groundwater Systems 100% Groundwater Average Daily Production Confidence Interval Mostly Groundwater Average Daily Production Confidence Interval
% Purchased Water Confidence Interval Observations Primarily Surface Water Systems 100% Surface Water Average Daily Production Confidence Interval Mostly Surface Water Average Daily Production Confidence Interval
q 2006 by Taylor & Francis Group, LLC
7-49
(Continued)
7-50
Table 7C.18
(Continued) System Service Population Category
Primary Source of Water
100 or Less
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
Average Daily Production Confidence Interval
* *
0.016 G0.000
0.103 G0.093
1.407 G0.490
5.595 G1.969
16.498 G8.407
32.220 G4.606
280.185 G68.668
5.538 G3.383
% Groundwater Confidence Interval
* *
33.3 G0.0
42.8 G4.6
28.4 G10.9
12.8 G7.3
22.4 G10.8
19.5 G4.4
11.2 G5.8
31.0 G7.3
% Surface Water Confidence Interval
* *
0.0 G0.0
0.0 G0.0
3.9 G6.1
6.9 G8.0
8.1 G9.2
8.3 G3.6
13.1 G6.0
2.8 G2.5
* * 6
66.7 G0.0 22
57.2 G4.6 47
67.7 G9.7 19
80.3 G10.3 17
69.5 G7.2 22
72.2 G4.7 23
75.7 G8.2 7
66.2 G6.1 163
0.011 G0.008 138
0.033 G0.007 166
0.166 G0.024 208
0.995 G0.131 170
3.589 G0.518 159
11.305 G1.093 116
28.811 G5.427 201
222.672 G41.741 58
% Purchased Water Confidence Interval Observations All Systems Average Daily Production Confidence Interval Observations Note:
1.103 G0.124 1,216
*No purchased water systems of this size in sample. Definitions: Production is the amount of water drawn from each source. It includes water delivered to customers and system losses. The tabulations presented in the Community Water System Survery 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States. A confidence interval is one way to gauge how precisely a given tabulation of survey data can be generalized to the entirety of U.S. Systems represented by the surveyed systems. Any result presented in the table must be viewed as the center of a range that would encompass the precise number that would be found if every U.S. water system could have been included in the tabulation, and not only those who were sampled and responded to the 2000 Community Water System Survey. The confidence interval expresses the range as a “plus/minus,” that is, an amount to be added to and subtracted from the calculated data point actually presented in the table. The confidence interval is designed to include the true value in the stated rage 95 perecent of the time. Source: From USEPA, 2002, Community Water System Survery 2000, EPA 815-R-02-005A, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
101– 500
WATER USE
7-51
Table 7C.19 Number and Percentage of Systems by Primary Source of Water in Public Supply Systems in the United States in 2000 (Based on a Survey of 1246 September) System Service Population Category Primary Source of Water
100 or Less
Primary Groundwater Systems 100% Groundwater Number 10,358 Percent 82 Mostly Groundwater Number 1,398 Percent 11 Primarily Surface Water Systems 100% Surface Water Number 790 Percent 6 Mostly Surface Water Number 43 Percent 0 Primarily Purchased Water Systems 100% Purchased Water Number 69 Percent 1 Mostly Purchased Water a Number a Percent All Number 12,658 Percent 100
101– 500
501– 3,300
3,301– 10,000
12,521 76
8,687 62
2,576 51
624 4
283 2
897 5
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
971 32
80 17
108 25
7 8
35,308 68
495 10
368 12
56 12
53 12
3 4
3,280 6
1,015 7
835 17
769 26
140 30
113 26
36 43
4,595 9
239 1
197 1
173 3
220 7
70 15
65 15
17 20
1,024 2
2,050 12
3,412 24
773 15
476 16
94 20
46 11
13 15
6,933 13
130 1
423 3
200 4
209 7
31 7
45 10
8 10
1,046 2
16,461 100
14,017 100
5,052 100
3,013 100
471 100
430 100
84 100
52,186 100
All Sizes
Note: The tabulations presented in the Community Water System Survey 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States. a
No purchased water systems of this size in sample.
Source: From USEPA, 2002, Community Water Systems Survey 2000, EPA 815-R-02-005A, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
7-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7C.20 Public Water Supply Systems in United States by State, 2003 Water System Type CWS AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE
434 461,264 607 5,167,519 730 2,482,867 799 4,766,531 3,140 36,207,653 836 4,923,405 573 2,660,903 2 595,000 226 790,178 1,925 16,281,037 1,678 7,119,376 116 1,285,174 1,140 2,526,314 748 924,721 1,797 11,300,507 853 4,499,532 912 2,581,726 424 4,588,463 1,131 4,878,378 517 8,955,179 501 4,502,328 395 615,264 1,447 7,197,342 963 4,040,822 1,456 4,864,516 1,168 3,007,045 667 659,667 2,430 6,431,967 321 551,709 610
NTNCWS
Water Source Type
TNCWS
Total
Groundwater
Surface Water
213 43,412 32 19,448 61 12,622 210 132,626 1,413 495,441 170 91,311 667 129,913
936 91,513 72 7,399 329 17,365 644 132,193 3,017 11,031,005 1,004 264,435 1,754 60,447
1,337 294,193 417 1,476,656 705 920,088 1,442 1,440,327 6,488 10,688,260 1,569 782,198 2,924 501,499
102 25,247 1,045 263,623 251 72,646 9 6,385 146 45,068 245 52,667 416 150,302 715 210,497 58 23,945 57 21,968 185 72,684 250 71,673 569 162,742 373 72,052 1,689 471,246 565 84,158 254 79,159 94 81,400 225 59,886 576 159,401 28 4,102 181
176 57,545 3,433 298,672 559 88,806 4 500 688 88,128 1,048 114,320 3,370 374,357 2,928 417,480 102 4,054 138 11,453 323 74,731 920 142,832 2,687 167,496 1,211 197,391 8,986 1,063,724 6,257 490,353 1,001 133,877 116 24,648 1,129 176,587 4,492 377,666 179 15,523 586
1,583 596,189 711 5,194,366 1,120 2,512,854 1,653 5,031,350 7,570 47,734,099 2,010 5,279,151 2,994 2,851,263 2 595,000 504 872,970 6,403 16,843,332 2,488 7,280,828 129 1,292,059 1,974 2,659,510 2,041 1,091,708 5,583 11,825,166 4,496 5,127,509 1,072 2,609,725 619 4,621,884 1,639 5,025,793 1,687 9,169,684 3,757 4,832,566 1,979 884,707 12,122 8,732,312 7,785 4,615,333 2,711 5,077,552 1,378 3,113,093 2,021 896,140 77,498 6,969,034 528 571,334 1,377
246 301,996 294 3,717,710 415 1,592,766 211 3,591,023 1,082 37,045,839 441 4,496,953 70 2,349,764 2 595,000 3 276,130 75 2,620,571 220 5,681,134 16 122,769 160 1,185,876 72 251,870 723 8,527,224 132 2,305,481 327 1,779,030 359 4,256,891 83 2,003,502 183 7,011,834 96 3,957,819 79 429,986 307 5,529,190 110 1,430,523 236 3,292,352 4 323,951 218 393,416 668 5,005,158 84 306,669 75
501 596,840 6,328 14,222,761 2,268 1,599,694 113 1,169,290 1,814 1,473,634 1,969 839,838 4,860 3,297,942 4,364 2,822,028 745 830,695 260 364,993 1,556 3,022,291 1,504 2,157,850 3,661 874,747 1,900 454,721 11,815 3,203,122 7,675 3,184,810 2,475 1,785,200 1,374 2,789,142 1,803 502,724 6,830 1,963,876 444 264,665 1,302
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7C.20
7-53
(Continued) Water System Type CWS
NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY
Total
NTNCWS
Water Source Type
TNCWS
Total
Groundwater
Surface Water
1,424,246 688 794,419 607 7,891,239 657 1,602,714 256 1,941,253 2,849 17,784,525 1,334 10,025,325 1,151 3,429,060 883 2,867,570 2,162 10,399,770 83 1,273,301 655 3,343,194 468 653,374 675 5,308,927 4,516 22,148,772 454 3,688,604 1,309 5,946,179 438 497,717 2,282 5,389,076 1,096 3,824,455 547 1,425,835 279 437,627
42,530 441 91,054 870 217,056 152 40,246 107 34,981 759 337,668 1,018 249,361 110 18,197 332 76,404 1,224 522,640 74 26,827 185 61,982 30 12,166 50 30,945 788 322,457 61 42,442 618 274,867 227 41,013 309 253,867 937 196,102 169 55,375 87 19,379
113,001 1,054 220,026 2,644 381,246 509 187,878 260 28,731 6,564 2,917,223 3,221 490,709 376 28,498 1,454 222,081 6,627 843,251 322 56,259 575 35,559 195 26,706 435 59,727 1,245 248,086 438 74,740 1,309 218,251 695 132,407 1,559 261,297 9,389 694,934 560 35,435 381 75,824
1,579,777 2,183 1,105,499 4,121 8,489,541 1,318 1,830,838 623 2,004,965 10,172 21,039,416 5,573 10,765,395 1,637 3,475,755 2,669 3,166,055 10,013 11,765,661 479 1,356,387 1,415 3,440,735 693 692,246 1,160 5,399,599 6,549 22,719,315 953 3,805,786 3,236 6,439,297 1,360 671,137 4,150 5,904,240 11,422 4,715,491 1,276 1,516,645 747 532,830
803,980 2,127 582,034 4,019 3,128,541 1,242 1,595,947 590 303,722 8,983 5,566,889 5,148 3,430,287 912 675,542 2,365 828,976 9,433 2,825,638 454 212,598 1,202 600,670 560 295,907 602 1,450,421 5,379 6,728,199 828 774,271 2,846 847,878 1,223 310,621 3,884 2,876,867 11,373 2,969,519 897 310,377 634 189,996
775,797 56 523,465 102 5,361,000 76 234,891 33 1,701,243 1,189 15,472,527 425 7,335,108 725 2,800,213 304 2,337,079 580 8,940,023 25 1,143,789 213 2,840,065 133 396,339 558 3,949,178 1,170 15,991,116 125 3,031,515 390 5,591,419 137 360,516 266 3,027,373 49 1,745,972 379 1,206,268 113 342,834
51,935 266,963,569
19,347 6,083,183
87,901 23,276,369
159,183
145,144 100,832,964
14,039 195,490,157
Note: First row is number of systems; Second row is population served. CWS, Community Water System; NTNCWS, Non-Transient Non-Community Water System; TNCWS, Transient NonCommunity Water System. Source: From USEPA, FACTOIDS: Drinking Water and Groundwater Statistics for 2003, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
7-54
Table 7C.21 Public Supply Freshwater Use in the United States, 2000 (Figures May Not Sum to Totals Because of Independent Rounding) Population (thousands)
Withdrawals (mill gall/day)
Served by Public Supply
Withdrawals (thousand Acre-Feet/yr)
By Source
By Source
Total
Population
Population (Percent)
Groundwater
Surface Water
Total
Groundwater
Surface Water
Total
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island
4,450 627 5,130 2,670 33,900 4,300 3,410 784 572 16,000 8,190 1,210 1,290 12,400 6,080 2,930 2,690 4,040 4,470 1,270 5,300 6,350 9,940 4,920 2,840 5,600 902 1,710 2,000 1,240 8,410 1,820 19,000 8,050 642 11,400 3,450 3,420 12,300 1,050
3,580 421 4,870 2,320 30,100 3,750 2,660 617 572 14,000 6,730 1,140 928 10,900 4,480 2,410 2,500 3,490 3,950 726 4,360 5,880 7,170 3,770 2,190 4,770 664 1,390 1,870 756 7,460 1,460 17,100 5,350 493 9,570 3,150 2,730 10,100 922
80 67 95 87 89 87 78 79 100 88 82 94 72 88 74 83 93 86 88 57 82 93 72 77 77 85 74 81 94 61 89 80 90 66 77 84 91 80 82 88
281 29.3 469 132 2,800 53.7 66 45 0 2,200 278 243 219 353 345 303 172 71 349 29.6 84.6 197 247 329 319 278 56.1 266 151 33 400 262 583 166 32.4 500 113 118 212 16.9
553 50.7 613 289 3,320 846 358 49.8 0 237 968 7.6 25.3 1,410 326 79.8 244 455 404 72.5 740 542 896 171 40.4 594 92.4 63.8 478 64.1 650 33.8 1,980 779 31.2 966 562 447 1,250 102
834 80 1,080 421 6,120 899 424 94.9 0 2,440 1,250 250 244 1,760 670 383 416 525 753 102 824 739 1,140 500 359 872 149 330 629 97.1 1,050 296 2,570 945 63.6 1,470 675 566 1,460 119
315 32.9 526 148 3,140 60.2 74 50.5 0 2,470 311 272 245 396 386 340 193 79.5 392 33.2 94.8 220 277 369 357 311 62.9 299 169 37 449 294 653 186 36.3 560 127 133 237 19
620 56.9 688 324 3,730 948 402 55.9 0 266 1,090 8.52 28.3 1,580 365 89.5 273 510 453 81.3 829 608 1,000 192 45.3 666 104 71.6 536 71.9 729 37.9 2,220 873 35 1,080 631 501 1,400 115
935 89.7 1,210 472 6,860 1,010 476 106 0 2,730 1,400 281 274 1,970 751 429 466 589 844 115 924 828 1,280 561 402 978 167 370 705 109 1,180 332 2,880 1,060 71.3 1,640 757 634 1,640 134
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
State
4,010 755 5,690 20,900 2,230 609 7,080 5,890 1,810 5,360 494 3,810 109 285,000
3,160 625 5,240 19,700 2,180 362 5,310 4,900 1,300 3,620 406 3,800 53.4 242,000
79 83 92 94 97 59 75 83 72 67 82 100 49 85
105 54.2 321 1,260 364 19.5 70.7 464 41.6 330 57.2 88.5 0.52 16,000
462 39.1 569 2,970 274 40.6 650 552 149 293 49.4 425 5.57 27,300
566 93.3 890 4,230 638 60.1 720 1,020 190 623 107 513 6.09 43,300
117 60.7 360 1,420 408 21.8 79.3 520 46.6 370 64.1 99.2 0.58 17,900
517 43.9 638 3,330 307 45.6 728 619 167 329 55.3 476 6.24 30,600
635 105 997 4,740 715 67.4 808 1,140 213 699 119 576 6.83 48,500
WATER USE
South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Source: From Hutson, S.S. et al., 2004, Estimated Use of Water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
7-55
q 2006 by Taylor & Francis Group, LLC
7-56
Table 7C.22 Water Produced by Selected Public Systems in the United States City/Countya Alaska Anchorage, AK Juneau, AK Fairbanks, AK Alabama Birmingham, AL Mobile Area, AL
Sheffield, AL Arkansas Little Rock, AR North Little Rock, AR Jonesboro, AR Russellville, AR Arizona Phoenix, AZ Tucson, AZ Scottsdale, AZ Tempe, AZ Peoria, AZ Tuscon Area, AZ
Flagstaff, AZ California Los Angeles, CA San Francisco, CA Oakland, CA
q 2006 by Taylor & Francis Group, LLC
Anchorage Water and Wastewater Utility City & Borough of Juneau Water Utility Golden Heart Utilities Birmingham Water Works Board Mobile Area Water and Sewer System Decatur Utilities Huntsville Utilities Madison County Water Department Sheffield Utilities Central Arkansas Water Central Arkansas Water, North Little Rock City Water and Light City Corporation City of Phoenix —Water Services Department Tucson Water City of Scottsdale Water Resources City of Tempe—Water Utilities Department City of Peoria Metropolitan Domestic Water Improvement District City Of Flagstaff Los Angeles Dept. of Water and Power San Francisco Public Utilities Commission East Bay Municipal Utility District
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
B
217
53,432
City
21.75
79
49
C
30
8,430
City
3.29
10
6
C
48
6,146
Private
3.04
8
6
A
700
195,321
Dist./Auth.
77.53
188
140
B
259
89,168
Dist/Auth.
60.78
70
57
B B C
103 280 67
23,871 73,707 22,481
City City County
27.78 27.58 5.16
48 90 12
37 60 10
C
14
4,792
City
1.78
3
3
B C
366 N/R
132,267 N/R
Other N/R
53.91 N/R
174 N/R
106 N/R
C C
56 25
24,958 11,036
Other City
10.88 6.13
31 20
22 11
A
1,591
355,202
City
284.00
670
421
A B
680 219
211,337 81,598
City City
98.40 61.25
N/R 137
160 92
B
164
41,681
City
49.31
120
74
B C
106 45
37,300 16,974
City Dist./Auth.
20.27 8.59
54 20
28 14
C
60
16,948
City
7.50
22
12
A
3,890
673,542
City
539.38
600
417
A
2,390
170,653
City
246.99
400
381
A
1,300
377,094
Dist./Auth.
208.99
211
312
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Decatur, AL Huntsville, AL Madison County, AL
Utility
Contra Costa, CA Sacramento, CA Santa Clara, CA Riverside County, CA Long Beach, CA Riverside, CA Alameda County, CA San Bernardino,CA
Santa Ana, CA Palm Springs, CA Glendale, CA Oceanside, CA Escondido, CA Covina Area, CA Covina, CA Chula Vista, CA Azusa, CA Burbank, CA Mesa, CA Manteca, CA Mllpitas, CA Santa Cruz, CA Marin County, CA Colorado Denver, CO Colorado Springs, CO Arvada, CO
City of San Diego Water Department Contra Costa Water District City of Sacramento, Department of Utilities Santa Clara Valley Water District Eastern Municipal Water District Long Beach Water Department Riverside Public Utilities Alameda County Water District San Bernardino Municipal Water Department City of Santa Ana, Public Works Agency Desert Water Agency Glendale Water and Power City of Oceanside City of Escondido Suburban Water Systems Suburban Water Systems Sweetwater Authority Azusa Light & Water Burbank Water and Power Mesa Consolidated Water District City of Manteca City of Milpitas City of Santa Cruz Water Department North Marin Water District Denver Water Colorado Springs Utilities City of Arvada
A
1,357
261,348
City
207.36
294
274
A
430
60,019
Dist./Auth.
170.14
75
64
A
435
125,780
City
123.42
275
185
A
1,700
8
Dist./Auth.
118.63
220
N/A
A
501
89,576
Dist./Auth.
96.48
43
43
B
461
89,139
City
62.23
N/R
N/R
B B
319 323
59,178 78,274
City Dist/Auth.
60.29 45.29
72 91
102 75
B
160
41,218
City
42.27
70
70
B
344
47,468
City
40.38
132
57
B B
65 200
19,805 32,478
Dist/Auth. City
37.02 27.61
N/R 9
N/R 38
B B B
167 130 170
40,257 24,285 34,297
City City Private
27.15 27.08 23.65
28 67 7
28 67 N/A
B
128
32,601
Private
21.49
17
33
B C C
176 110 106
33,785 N/R 26,240
Dist./Auth. N/R City
21.04 19.44 19.02
36 8 9
31 N/R 38
C
111
23,530
Dist./Auth.
18.48
25
25
C C C
55 64 90
14,723 15,164 23,590
City City City
11.33 10.42 9.91
34 N/R 26
26 20 15
C
58
18,500
Dist./Auth.
9.66
25
19
A B
1,081 400
217,607 115,000
City City
197.86 64.98
645 232
419 182
C
105
31,855
City
15.70
52
38
WATER USE
San Diego, CA
q 2006 by Taylor & Francis Group, LLC
7-57
(Continued)
7-58
Table 7C.22
(Continued)
City/Countya Longmont, CO
Grand Junction, CO Connecticut Bridgeport, CT New Haven, CT
Waterbury, CT
District of Columbia Greater Washington, DC Delaware New Castle County, DE Florida Miami, FL Orlando, FL Pinellas County, FL Orange County, FL Jacksonville, FL Fort Lauderdale, FL Palm Beach County, FL
Manatee County, FL Escambia County, FL Pompano Beach, FL Tallahassee, FL Hollywood, FL Cocoa, FL
q 2006 by Taylor & Francis Group, LLC
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
City of Longmont Water/Wastewater Utilities City of Grand Junction Water
C
79
23,717
City
12.22
30
32
C
26
9,193
City
5.25
16
12
Aquarion Water Company of CT South Central Connecticut Regional Water Authority City of Waterbury Bureau of Water The Metropolitan District Manchester Water Department
A
575
172,000
Private
96.27
99
151
B
391
106,467
Dist/Auth.
45.41
119
84
C
120
26,873
City
11.86
19
19
C C
359 56
93,520 15,301
Dist./Auth. City
4.98 4.77
105 12
88 9
Washington Aqueduct
A
1,000
3
Federal Gov.
178.42
350
229
United Water Delaware
C
106
35,185
Private
18.10
36
27
Miami-Dade Water and Sewer Department Orlando Utilities Commission Pinellas County Utilities Orange County Utilities JEA City of Fort Lauderdale Palm Beach County Water Utilities Department Manatee County Utility Operations Escambia County Utilities Authority Office of Environmental Services City of Tallahassee, Water Utility City of Hollywood City of Cocoa Utilities
A
2,343
408,187
County
271.89
434
363
A
395
123,464
City
78.13
183
107
B B B B B
636 596 860 168 440
109,602 98,001 240,469 55,553 140,188
County County City City County
67.50 46.69 42.99 41.15 39.40
86 110 60 90 73
80 80 46 64 61
B
340
79,840
County
36.76
51
61
B
216
91,298
Dist./Auth.
34.22
75
58
B
207
51,359
Dist/Auth.
27.17
46
32
B
252
70,688
City
26.87
59
49
B B
N/R 195
38,400 70,264
City City
23.38 23.37
41 60
28 34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Hartford, CT Manchester, CT
Utility
City of Lakeland, FL
Osceola County, FL Jupiter, FL Cape Coral, FL Martin County, FL Winter Springs, FL Georgia Gwinnett County, GA DeKalb County, GA Augusta, GA Columbus, GA Macon, GA Savannah, GA Douglas County, GA
Hawaii Honolulu, HI Maui, HI
Hawaii County, HI Iowa Council Bluffs, IA Cedar Rapids, IA Des Moines, IA Waterloo, IA Ames, IA Idaho Boise, ID
Gainesville Regional Utilities City of Lakeland, Department of Water Utilities Tohopekaliga Water Authority Town of Jupiter Utilities City of Cape Coral Martin County Utilities City of Winter Springs
B
168
60,348
City
22.77
54
’ 37
B
156
50,116
City
22.67
51
34
C
151
40,931
Dist./Auth.
16.71
44
27
C C C C
62 100 67 30
23,397 40,000 20,626 14,500
City City County City
15.96 6.96 6.45 4.30
27 15 14 12
20 11 8 6
B B
700 659
202,198 180,673
County County
71.45 70.03
150 128
123 111
B
201
66,820
City
40.50
84
58
B B B
187 130 248
63,665 54,262 81,062
City Dist./Auth. City
N/R 26.08 22.18
90 76 113
49 43 87
C
76
31,277
Dist./Auth.
8.48
16
14
Honolulu Board of Water Supply County of Maui— Department of Water Supply Department of Water Supply
A
878
158,141
City
143.57
30
N/R
B
128
31,021
County
33.73
27
20
B
111
37,000
County
24.45
25
37
Council Bluffs Water Works Cedar Rapids Water Department Des Moines Water Works Waterloo Water Works City of Ames Water and Pollution Control
C
61
20,035
City
9.37
20
18
B
126
44,266
City
33.02
65
50
B
390
72,428
City
40.96
125
82
C C
100 51
24,497 14,035
City City
12.02 5.33
50 11
29 8
B
190
73,862
Private
41.14
100
91
Gwinnett County DPU DeKalb County Water & Sewer Augusta Utilities Department Columbus Water Works Macon Water Authority City of Savannah, Georgia Douglasville-Douglas County Water and Sewer Authority
United Water Idaho
WATER USE
Gainesville, FL
(Continued) 7-59
q 2006 by Taylor & Francis Group, LLC
7-60
Table 7C.22
(Continued)
City/Countya Idaho Falls, ID Twin Falls, ID Illinois Chicago, IL Evanston, IL Rockford, IL Decatur, IL Lake Bluff Village, IL
South Bend, IN Columbus, IN Kansas Wichita, KS Johnson County, KS Kansas City, KS Leavenworth, KS Olathe, KS Kentucky Campbell County, KY Owensboro, KY Paducah, KY Winchester, KY Campbellsville, KY Louisiana Jefferson Parish, LA
q 2006 by Taylor & Francis Group, LLC
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
City of Idaho Falls City of Twin Falls Water Department
B C
52 36
23,500 13,097
City City
22.93 12.51
82 40
57 24
Chicago Department of Water City of Evanston City of Rockford Water Division City of Decatur Central Lake County Joint Action Water Agency City of Naperville
A
5,306
490,689
N/R
N/R
N/R
1,346
B B
357 155
14,327 52,100
City City
N/R 21.01
N/R 65
N/R 46
C C
90 180
31,515 9
City Dist./Auth.
19.39 19.17
36 38
31 32
C
139
39,906
City
15.48
33
N/A
B
155
58,068
City
22.58
50
38
B
103
43,441
City
21.53
64
47
C
36
15,455
City
N/R
28
19
B
414
135,552
City
55.53
160
115
B
369
123,386
Dist./Auth.
53.41
165
130
B
157
51,793
City
22.54
45
42
C
44
10,000
City
4.81
12
7
C
108
31,412
City
11.44
21
25
B
N/R
70,966
N/R
N/R
N/R
N/R
C
92
23,861
City
11.51
30
17
C C
70 33
22,180 10,974
City City
7.07 2.77
12 6
11 5
C
9
8,600
City
2.23
9
4
B
427
142,172
N/R
54.95
148
95
Evansville Water & Sewer Utility South Bend Water Works Columbus City Utilities Wichita Water & Sewer Utility Water District No. 1 of Johnson County, KS Kansas City Board of Public Utilities Leavenworth Water Department City of Olathe Northern Kentucky Water District Owensboro Municipal Utilities Paducah Waterworks Winchester Municipal Utilities Campbellsville Water Co. Jefferson Parish Water Department
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Naperville, IL Indiana Evansville, IN
Utility
Terrebonne Parish, LA
Lafourche Parish, LA Baton Rouge Area, LA Massachusetts Greater Boston Area, MA Boston, MA Cambridge, MA Maryland Laurel, MD Anne Arundel County, MD Frederick, MD Ocean City, MD Maine Portland, ME Kennebec ME Michigan Lansing, MI Kalamazoo, MI Ann Arbor, MI Port Huron, MI Grand Rapids, Ml Waterford, Ml
Minnesota Saint Paul, MN Dututh, MN Rochester, MN
Lafayette Utilities System Consolidated Waterworks District No. 1, Terrebonne Parish Lafourche Parish Water District No. 1 Louisiana Water Company
C
191
44,448
City
19.18
47
27
C
104
39,138
Dist./Auth.
10.94
24
20
C
78
28,087
County
9.11
18
12
C
88
31,794
Private
8.71
18
13
Massachusetts Water Resources Authority Boston Water and Sewer Commission Cambridge Water Department
A
2,200
47
Dist/Auth.
231.40
405
310
B
589
87,160
City
N/R
N/R
N/R
C
101
15,057
City
14.50
24
24
A
1,557
433,555
Dist./Auth.
138.73
315
253
B C C
324 55 30
98,469 16,582 7,030
County City City
34.27 4.92 3.99
42 10 18
N/R 8 12
Portland Water District Kennebec Water District
C C
200 25
48,421 8,853
Dist./Auth. Dist./Auth.
19.81 2.63
52 12
43 5
Lansing Board of Water S Light City of Kalamazoo Dept. of Public Utilities City of Ann Arbor Water Utilities City of Port Huron City of Grand Rapids Water System Waterford Township Water and Sewer Dept.
B
235
56,088
City
22.12
50
39
C
120
36,601
City
18.51
67
41
C
150
27,502
City
17.05
50
26
C B
57 280
12,774 76,540
City City
7.67 34.74
20 135
15 80
C
75
23,430
City
N/R
9
21
B
417
92,959
City
40.95
150
80
C C
99 90
27,555 32,400
N/R City
14.74 11.70
32 31
28 28
Washington Suburban Sanitary Commission Anne Arundel County City of Frederick Ocean City, MD Water Department
Saint Paul Regional Water Services City of Duluth Rochester Public Utilities
WATER USE
Lafayette, LA
q 2006 by Taylor & Francis Group, LLC
7-61
(Continued)
7-62
Table 7C.22
(Continued)
City/Countya Missouri Louisville, MO Kansas City, MO
Springfield, MO Columbia, MO Cape Girardeau, MO Montana Great Falls, MT
Kalispell, MT North Carolina Charlotte, NC Greensboro, NC
Durham, NC Fayetteville, NC Asheville, NC Wilmington, NC Cary, NC Rocky Mount, NC Greenville, NC Chapel Hill, NC Dare County, NC North Dakota Bismarck, ND Fargo, ND Grand Forks, ND
q 2006 by Taylor & Francis Group, LLC
Louisville Water Company City of Kansas City, Missouri, Water Services Department City Utilities of Springfield, MO City of Columbia Water Department City of Cape Girardeau City of Great Falls Utilities Mountain Water Company City of Kafispell Charlotte-Mecklenburg Utilities City of Greensboro Water Resources Department City of Durham, Env. Res. Dept. Public Works Commission City of Asheville—Water Resources Dept. City of Wilmington Town of Cary City of Rocky Mount Greenville Utilities Commission Orange Water and Sewer Authority Dare County Water Department City of Bismarck Fargo Water Treatment Plant Grand Forks Water
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
A
820
258,548
City
110.15
240
191
A
600
167,035
City
86.30
240
200
B
195
74,946
City
26.02
61
50
C
90
37,702
City
10.87
24
19
C
35
15,000
City
N/R
8
7
C
57
19,413
City
9.99
66
32
C
60
20,935
Private
7.79
60
38
C
22
6,427
City
1.89
9
8
A
700
212,503
City
93.97
242
156
B
250
93,215
City
26.11
54
41
B
181
69,794
City
25.52
61
38
B
138
73,783
City
20.01
50
40
C
126
46,666
Dist./Auth.
14.50
36
26
C C C C
103 114 68 68
40,400 33,900 24,006 28,381
City City City City
11.99 11.75 10.45 8.98
29 40 26 24
21 26 20 15
C
70
18,844
Dist./Auth.
7.27
20
14
C
32
13,706
County
4.62
13
12
C C
61 96
16,251 24,208
City City
9.60 9.33
30 30
29 24
C
50
12,754
City
6.80
17
11
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Missoula, MT
Utility
Lincoln, NE New Hampshire Concord, NH Manchester, NH New Jersey Morris County, NJ
New Mexico Albuquerque, NM
Nevada Reno, NV Washoe County, NV
New York New York, NY Suffolk County, NY New Rochelle, NY Rockland County, NY Onondaga County, NY Niagara Falls, NY Nassau County, NY Mohawk Valley, NY Elmira, NY Canton, NY Ohio Cleveland, OH Columbus, OH
Metropolitan Utilities District of Omaha Lincoln Water System
WATER USE
Nebraska Omaha, NE
A
550
180,540
Dist./Auth.
91.62
234
205
B
236
72,260
City
35.08
110
79
City of Concord Manchester Water Works
B C
41 150
11,000 27,114
City City
23.46 15.82
10 40
8 31
Southeast Morris County Municipal Utilities Authority
C
63
17,333
Dist./Auth.
6.90
21
21
City of Albuquerque Public Works Department
A
509
155,213
City
87.81
294
160
Truckee Meadows Water Authority Washoe County Department of Water Resources
B
290
82,904
Dist./Auth.
35.56
159
150
C
44
16,323
County
7.60
N/R
15
A
9,000
827,072
Dist./Auth.
1,236.16
1,661
1,650
A
1,200
357,614
Dist./Auth.
185.21
700
470
A
137
30,941
Private
150.79
50
31
B B
260 340
68,638 80,957
Private Dist/Auth.
N/R 38.94
N/R 70
N/R 59
C
55
19,503
Dist./Auth.
17.57
35
21
C
170
45,800
Private
15.62
50
33
C
120
37,800
Dist/Auth.
11.45
32
20
C C
65 8
17,575 1,400
City City
4.88 0.90
17 1
9 1
A
1,500
414,012
City
167.50
545
395
A
1,070
257,697
City
122.12
265
216
New York City Water Board Suffolk County Water Authority United Water New Rochelle United Water New York Onondaga County Water Authority Niagara Falls Water Board New York Water Service Corporation Mohawk Valley Water Authority Elmira Water Board Village of Canton Cleveland Division of Water City of Columbus, Division of Water
q 2006 by Taylor & Francis Group, LLC
7-63
(Continued)
7-64
Table 7C.22
(Continued)
City/Countya Cincinnati, OH Akron, OH Canton, OH Dayton, OH Newark, OH
Oklahoma Tulsa, OK
Broken Arrow, OK Midwest City, OK Oregon Portland, OR Eugene, OR Salem, OR Medford, OR Washington County, OR Corvallis, OR Pennsylvania Philadelphia, PA Delaware County, PA Westmoreland County, PA
Chester, PA Lancaster, PA Bucks County, PA Allentown, PA
q 2006 by Taylor & Francis Group, LLC
Greater Cincinnati Water Works City of Akron, Public Utilities Bureau City of Canton Water Department City of Dayton, Department of Water City of Newark, OH Division of Water and Wastewater Tulsa Metropolitan Utility Authority Oklahoma City Water Utility Broken Arrow City of Midwest City Portland Bureau of Water Works Eugene Water & Electric Board Salem Public Works Medford Water Commission Tualatin Valley Water District City of Corvallis Philadelphia Water Department Aqua Pennsylvania, Inc. Municipal Authority of Westmoreland County Chester Water Authority City of Lancaster, Bureau of Water Bucks County Water and Sewer Authority City of Allentown
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
A
1,100
236,017
City
112.26
260
220
B
281
82,939
City
29.90
67
54
B
140
N/R
City
22.23
41
28
C
420
57,420
City
7.04
196
114
C
47
18,600
City
5.88
15
12
A
655
142,753
City
94.03
220
176
A
1,200
177,016
City
76.71
190
185
C C
88 55
30,286 18,060
City City
10.98 5.81
6 13
0 12
A
787
163,819
City
105.21
325
187
B
140
55,629
City
27.32
72
63
B B
170 114
40,760 25,385
City City
25.70 24.58
85 66
55 54
B
222
51,963
Dist./Auth.
23.13
N/A
N/A
C
52
15,217
City
5.59
25
14
A
1,665
476,931
City
177.60
540
334
A B
1,200 400
340,013 114,219
Private N/R
95.79 N/R
176 84
150 58
B C
200 115
38,617 42,886
Dist./Auth. City
29.45 15.63
60 34
41 26
C
194
15,671
County
15.40
35
21
C
123
32,670
City
12.28
39
26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oklahoma City, OK
Utility
North Wales, PA Williamsport, PA Lebanon, PA State College, PA Carlisle, PA Rhode Island Providence, RI South Carolina Greenville, SC Charleston, SC
Spartanburg, SC Horry County, SC Mount Pleasant, SC Georgetown County, SC
South Dakota Sioux—Falls, SD Tennessee Nashville, TN Erwin, TN Seliner, TN Texas Dallas, TX Houston, TX
San Antonio, TX Fort Worth, TX Austin, TX
City of Harrisburg, Bureau of Water North Wales Water Authority Williamsport Municipal Water Authority City of Lebanon Authority State College Water Authority Borough of Carlisle Municipal Authority
C
66
19,997
Dist./Auth.
8.92
20
11
C
90
26,923
Dist./Auth.
7.94
17
14
C
54
18,726
Dist./Auth.
6.91
13
8
C
57
17,152
City
4.79
8
9
C
65
12,341
Dist/Auth.
4.44
9
7
C
20
6,205
Dist./Auth.
1.75
7
5
Providence Water
B
600
73,493
City
57.91
144
120
Greenville Water System Commissioners of Public Works, Charleston, SC Spartan burg Water System Grand Strand Water & Sewer Authority Mount Pleasant Waterworks Georgetown County Water & Sewer District
B B
400 409
144,015 90,121
City Dist/Auth.
50.71 43.86
142 118
106 67
B
125
45,780
Dist/Auth.
23.55
N/R
N/R
C
160
41,552
Dist./Auth.
19.81
45
34
C
66
26,395
Dist./Auth.
5.90
7
11
C
46
14,455
Dist./Auth.
3.87
8
7
City of Sioux —Falls
C
139
38,853
City
19.53
55
52
Metro Water Services Erwin Utilities Setmer Utility Division
A C C
458 13 26
155,712 4,858 6,884
City City City
613.70 1.83 1.55
180 3 5
104 3 2
Dallas Water Utilities City of Houston, Public Works and Engineering San Antonio Water System Fort Worth Water Department Austin Water Utility
A A
1,979 1,954
314,722 412,000
City City
348.39 309.96
815 884
641 440
A
1,145
304,340
City
142.06
964
230
A
838
171,828
City
133.39
380
274
A
770
184,608
City
120.56
260
214
WATER USE
Harrisburg, PA
(Continued) 7-65
q 2006 by Taylor & Francis Group, LLC
7-66
Table 7C.22
(Continued)
City/Countya El Paso, TX Arlington, TX Plano, TX Amarillo, TX Irving, TX Garland, TX Laredo, TX Midland, TX Waco, TX
Denton, TX Sugar Land, TX College Station, TX Bell County, TX Utah Salt Lake City, UT Salt Lake City, UT Provo, UT Virginia Richmond, VA Virginia Beach, VA Chesterfield County, VA Chesapeake, VA Charlottesville, VA Vermont Burlington, VT South Burlington, VT Washington Seattle, WA
q 2006 by Taylor & Francis Group, LLC
El Paso Water Utilities City of Arlington Water Utilities City of Plano—Utility Operations City of Amarillo TX City of Irving Water Utilities City of Garland City of Laredo City of Midland City of Waco Water Utilities City of Tyler Water Utilities Denton Municipal Utilities City of Sugar Land College Station Utilities Central Texas WSC
AWWA Study Groupc
Service Pop.b(000)
Total Number of Accounts
System Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
A B
696 346
173,653 92,755
City City
96.91 52.17
235 174
174 113
B
250
75,100
City
51.97
N/A
109
B B
175 198
63,360 43,584
City City
45.60 35.66
N/R 73
N/R 69
B B B B
221 178 96 150
62,068 56,203 32,494 37,206
City City City City
28.60 27.07 23.65 23.64
44 65 57 66
N/A 58 37 53
C
175
27,726
City
17.61
40
37
C
92
24,053
City
12.99
50
26
C C C
65 79 50
20,940 29,360 15
City City N/R
11.52 8.51 5.43
43 23 14
23 21 12
Salt Lake City Public Utilities Jordan Valley Water Conservancy District Provo City Water Resources
A
325
91,283
City
82.54
282
206
B
845
8,541
Dist./Auth.
62.64
200
159
B
112
17,372
City
21.64
73
53
City of Richmond City of Virginia Beach Public Utilities Chesterfield County Department of Utilities City of Chesapeake Public Utilities City of Charlottesville
A B
502 421
59,747 127,314
City City
83.70 31.90
132 60
127 31
B
250
88,001
County
29.24
12
11
C
167
57,613
City
16.02
10
12
C
40
13,153
City
5.48
N/A
N/A
Burlington Public Works South Burlington Water Department
C C
44 15
9,800 5,300
City City
4.59 N/R
12 N/R
7 N/R
Seattle Public Utilities
A
1,330
176,359
City
126.69
405
223
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Tyler, TX
Utility
Lakehaven, WA Olympia, WA Kennewick, WA Renton, WA Kent, WA Snohomish County, WA Wisconsin Green Bay, WI Oak Creek, WI Milwaukee, WI Kenosha, WI Janesville, WI River Falls, WI West Virginia Lubeck, WV Wyoming Cheyenne, WY Casper, WY Note: a b
Tacoma Public Utilities, Water Division Lakehaven Utility District City of Olympia City of Kennewick City of Renton Highline Water District Snohomish County PUD #1
B
300
91,376
City
52.66
134
93
C C C C C C
112 51 62 54 66 53
27 17,064 18,881 15,042 18,078 15,162
Dist./Auth. City City City Dist./Auth. Dist./Auth.
11.13 9.00 8.86 6.40 6.33 3.95
34 25 22 22 2 20
21 13 18 14 2 8
C C
103 60
35,466 9,503
City City
15.95 6.61
28 20
31 15
A C C C
831 118 61 13
160,976 28,319 22,299 3,755
City City City City
109.35 11.67 11.10 0.95
380 42 29 7
170 25 22 3
Lubeck Public Service District
C
11
3,794
Dist./Auth.
0.73
3
1
Cheyenne Board of Public Utilities City of Casper Public Utilities
C
53
19,998
City
13.71
32
N/R
C
54
18,785
City
9.21
52
28
Green Bay Water Utility Oak Creek Water and Sewer Utility Milwaukee Water Works Kenosha Water Utility Janesville Water Utility River Falls Municipal Utility
WATER USE
Tacoma, WA
Group A O75 mgd sold; Group B 20–75 mgd sold; Group C !20 mgd sold.
The primary city, county, or area served by the responding utility is listed. Includes retail and wholesale population.
Source: Adapted from 2004 Water and Wastewater Rate Survey by permission. Copyright q 2004, American Water Works Association. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
7-67
q 2006 by Taylor & Francis Group, LLC
7-68
Table 7C.23 Summary of 2004 Residential and Industrial Water Charges by Public Water Systems (Based on a Survey of 266 Systems) Monthly Water Charges 5/8-inch Meter
Summary Statisticsa (11,220,000 gal)
Effective Date
Residential 0 cf (0 gal)
a b
4-inch Meter
8-inch Meter
Residential 500 cf (3,740 gal)
Residential 1,000 cf (7,480 gal)
Residential 1,500 cf (11,220 gal)
Residential 3,000 cf (22,440 gal)
Nonmanuf./ Commercial 3,000 cf (22,440 gal)
Commercial/ Light Industrial 50,000 cf (374,000 gal)
Industrial 1,000,000 cf (7,480,000 gal)
Industrial 1,500,000 cf
$12.29 $11.67 255
$19.85 $19.08 256
$28.12 $27.15 255
$53.35 $51.37 255
$52.81 $49.85 254
$759.42 $732.40 253
$13.734.00 $12,954.04 251
$20,611.53 $19,265.80 240
$12.00 $10.72 42
$19.31 $18.66 43
$27.63 $26.21 42
$54.77 $49.45 42
$52.57 $49.86 42
$772.28 $755.55 42
$13,943.78 $13,516,66 42
$20,993,93 $20,503.95 42
$11.47 $10.76 93
$18.11 $16.37 93
$25.66 $25.07 93
$48.42 $46.17 93
$45.84 $42.95 92
$689.73 $672.88 92
$12,681.52 $11,747.97 91
$18,248.64 $17,137.98 89
$13.03 $12.60 120
$21.40 $21.21 120
$30.19 $29.85 120
$56.68 $54.53 120
$58.24 $54.69 120
$808.76 $758.86 119
$14,470.99 $13,069.17 118
$22,393.52 $20,134.83 109
$15.10 $15.60 10
$23.74 $24.00 10
$62.05 $69.64 10
$104.96 $119.89 9
$104,96 $119.89 9
$623.62 $736.26 10
$13,995.92 $15,062,03 10
$22,312.50 $24,033.88 10
Seasonal and zonal water charges are not included in average and median charge calculations. The number of systems indicates the size of sample for which data was provided. Water charges for Canadian systems are presented in Canadian dollars. The exchange rate on July 21, 2004, was 1.3242 Canadian dollars to 1 US dollar.
Source: Adapted from 2004 Water and Wastewater Rate Survey by permission. Copyright q 2004, American Water Works Association. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
All Systems (excluding Canadian systems) Average 11/26/01 $6.37 Median 1/1/03 $5.55 Number of Systems 263 257 Group A Systems (75-MGD Sold) Average 8/16/02 $5.76 Median 3/3/03 $4.75 Number of Systems 47 43 Group B Systems (20–75 MGD Sold) Average 11/24/01 $6.21 Median 1/1/03 $5.60 Number of Systems 93 93 Group C Systems (20 MGD Sold) Average 8/18/01 $6.71 Median 1/1/03 $5.85 Number of Systems 123 121 Canadian Systemsb Average 12/28/02 $7.76 Median 1/1/03 $6.71 Number of Systems 11 8
2-inch Meter
WATER USE
7-69
Table 7C.24 Unaccounted for Water by Ownership in Public Supply Systems in the United States in 2000 (Based on a Survey of 1246 Systems) System Service Population Category
Ownership Type
Public Systems Average Unaccounted for Water Confidence Interval % of Total Water Produced Confidents Interval Private Systems Average Unaccounted for Water Confidence Interval % of Total Water Produced Confidence Interval All Systems Average Unaccounted for Water Confidence Interval % of Total Water Produced Confidence interval
100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
0.003 G0.006 1.140 G1.419
0.001 G0.000 5.990 G7.067
0.017 G0.006 9.935 G3.763
0.113 0.296 G0.032 G0.074 11.562 8.528 G3.161 G1.861
1.166 G0.268 9.693 G2.044
2.152 G0.567 6.306 G1.556
18.272 G4.405 7.959 G1.027
0.188 G0.032 8.949 G2.211
0.000 G0.000 0.187 G0.269
0.001 G0.000 2.188 G2,660
0.012 G0.009 6.237 G3.940
0.100 0.287 1.055 3.050 G0.061 G0.110 G0.395 G0.835 10.686 12.330 11.093 10.636 G4.252 G4.511 G4.317 G2.582
7.347 G2.972 7.744 G4.017
0.019 G0.006 2.323 G1.237
0.000 G0.000 0.258 G0.269
0.001 G0.000 3.355 G2.859
0.016 G0.006 9.136 G3.218
0.111 0.294 G0.028 G0.064 11.435 9.135 G2.724 G1.747
17.258 G4.031 7.939 G1.001
0.098 G0.012 5.561 G1.305
1.152 G0.238 9.867 G1.864
2.227 G0.536 6.670 G1.508
Note: Unaccounted for water includes system losses, water for fire suppression, and water used in the treatment process. The tabulations presented in the Community Water System Survery 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States. A confidence interval is one way to gauge how precisely a given tabulation of survey data can be generalized to the entirety of U.S. Systems represented by the surveyed systems. Any result presented in the table must be viewed as the center of a range that would encompass the precise number that would be found if every U.S. water system could have been included in the tabulation, and not only those who were sampled and responded to the 2000 Community Water System Survey. The confidence interval expresses the range as a “plus/minus,” that is, an amount to be added to and subtracted from the calculated data point actually presented in the table. The confidence interval is designed to include the true value in the stated range 95 percent of the time. Source: From USEPA, 2002, Community Water System Survery 2000, EPA 815-R-02-005A, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
7-70
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7D
PUBLIC WATER SUPPLY—WORLD
Table 7D.25 Groundwater Use in Canada, 1996
Province/Territory Newfoundland and Labrador Prince Edward Island Nova Scotia New Brunswick Quebec Ontario Manitoba Saskatchewan Alberta British Columbia Yukon Territory Northwest Territoriesc Canada a b c
Municipal Water Systems Reliant on Groundwaterb
Population Reliant on Groundwatera Number
Percent
Number
Percent
189,921 136,188 426,433 501,075 2,013,340 3,166,662 342,601 435,941 641,350 1,105,803 15,294 18,971 8,993,579
33.9 100.0 45.8 66.5 27.7 28.5 30.2 42.8 23.1 28.5 47.9 28.1 30.3
19 5 15 40 142 132 22 44 36 63 4 0 522
23.5 100.0 41.7 72.7 36.7 42.7 50.0 65.7 29.0 45.3 100.0 0.0 41.2
It is assumed that the population not covered by the Municipal Water Use Database is rural and that 90% of this population is groundwater reliant (except in Prince Edward Island, where 100% of the population is known to be groundwater reliant). Includes population and municipal water systems that are reliant on groundwater only, as well as those that are reliant on groundwater and surface water. Includes Nunavut.
Source: Statistics Canada, Human Activity and the Environment Annual Statistics 2003, Catalogue 16-201-XPE, released December 3, 2003, page 25. Statistics Canada information is used with the permission of Statistics Canada. Users are forbidden to copy this material and/or redisseminate the data, in an original or modified form, for commercial purposes, without the expressed permission of Statistics Canada. Information on the availability of the wide range of data from Statistics Canada can be obtained from Statistics Canada’s Regional Offices, its World Wide Web site at www.statcan.ca, and its toll-free access number 1-800263-1136. Original Source: From Statistics Canada, Environment Accounts and Statistics Division, special compilation using data from Environment Canada, Municipal Water Use Database; Statistics Canada, 1996, Quarterly Estimates of the Population of Canada, the Provinces and the Territories, 11:3, Catalogue no. 91–001, Ottawa.
Table 7D.26 Water Flows and Metering Rates in Canada, by Province / Territory and Municipal Population
Province/Territory Newfoundland P.E.I. Nova Scotia New Brunswick Quebec Ontario Manitoba Saskatchewan Alberta British Columbia Yukon N.W.T. Nunavut
Percentage of Flow from Surface Water 95.1 0.0 91.4 79.7 93.4 88.4 81.6 87.5 93.9 84.6 69.0 100.0 100.0
Total Average Daily Flow (Litres Per Capita) 971 529 667 1,314 777 533 410 517 519 651 803 424 105
Average Daily Residential Flow (Litres Per Capita) 664 218 351 416 395 285 223 236 282 425 556 204 88
Percentage of Residential Clients That Are Metered 0.0 13.4 89.1 49.6 16.2 89.9 96.6 98.5 82.3 26.5 52.8 97.3 76.7
Percentage of Business Clients That Are Metered 47.4 100.0 99.4 89.5 32.8 98.4 98.6 99.6 98.9 93.9 100.0 n/a 20.0 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7D.26
7-71
(Continued) Percentage of Flow from Surface Water
Province/Territory Municipal Population Under 2,000 2,000–5,000 5,000–50,000 50,000–500,000 More than 500,000 Total Responding Population
Total Average Daily Flow (Litres Per Capita)
Average Daily Residential Flow (Litres Per Capita)
715 732 665 596 614 622 23,822,869
446 466 397 326 300 335 23,822,869
61.2 57.3 78.9 88.9 99.6 89.2 21,634,144
Percentage of Residential Clients That Are Metered 42.4 35.4 47.5 61.7 69.0 60.6 24,235,565
Percentage of Business Clients That Are Metered 53.2 55.5 75.0 91.3 81.8 83.1 16,075,854
Note: n/aZnot applicable. Source: From Environment Canada, 2005, 2004 Municipal Water Use Report, Municipal Water Use 2001 Statistics, www.ec.gc.ca/ water/en/manage/use/e_data.htm, Environment Canada, 2005. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. Original Source: From values derived from the 2001 Municipal Water Use Database, Sustainable Water Use Branch, Environment Canada.
Daily water use (billions of liters per day)
9 8 7 6 5 4 3 2 1 0
Residential 1983
Note:
Commercial 1986
1989
Industrial 1991
1994
1996
Other** 1999
*Water use values are based on (1) municipalities that responded in a given year, and (2) a national level estimate for all municipalities that did not respond, or in earlier years, were not surveyed. **The “Other” category includes: water lost through leakage; unaccounted water uses, such as water used in firefighting or to flush out pipes; and water that a municipality was unable to one of the other three sectoral categories.
Figure 7D.11 Canada—total daily municipal water use* by sector, 1983–1999. (From www.ec.gc.ca. Environment Canada, 2001, Urban Waler Indicators: Municipal Water Use and Wastewater Treatment, SOE Bulletin No. 2001-1, Environment Canada, 2001. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.)
Sources of municipal water
Municipal water use by sector
11% 31%
56% 13%
89%
Industrial, commercial, institutional System losses
(a)
Residential (single and multi-family)
(b)
Groundwater
Surface water
Figure 7D.12 Canada—municipal water use by sector and sources of municipal water, 2001. (From Environment Canada, 2005, 2004, Municipal Water Use Report, Municipal Water Use 2001 Statistics, www.ec.gc.ca/water/en/manage/use/e_data.htm, Environment Canada, 2005. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.) q 2006 by Taylor & Francis Group, LLC
7-72
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7D.27 Water Use (as a Percentage of Water Served) in Canada, by Province/Territory, by Sector, and Responding Population Province/Territory
Residential (%)
Commercial/Industrial (%)
System Losses (%)
Responding Population
73 42 59 50 56 53 55 46 56 65 68 45 78
21 41 25 41 25 35 36 44 35 28 32 30 16
6 17 16 9 19 12 9 10 9 6 n/a 25 6
279,376 43,037 462,020 309,203 5,892,601 8,157,365 775,398 613,659 2,327,245 2,986,953 17,635 23,135 6,204
70 68 61 57 51 56 52
24 27 31 33 31 31 35
5 6 9 10 18 13 13
243,218 662,738 4,035,190 8,344,616 8,608,069 21,893,832
Newfoundland P.E.I. Nova Scotia New Brunswick Quebec Ontario Manitoba Saskatchewan Alberta British Columbia Yukon N.W.T. Nunavut Municipal Population Under 2,000 2,000–5,000 5,000–50,000 50,000–500,000 More than 500,000 Total, 2001 Total, 1999 Note: n/aZnot applicable.
Source: From Environment Canada 2005, 2004 Municipal Water Use Report, Municipal Water Use 2001 Statistics, www.ec.gc.ca/ water/en/manage/use/e_data.htm, Environment Canada, 2005. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. Original Source: From values derived from the 2001 Municipal Water Use Database, Sustainable Water Use Branch, Environment Canada.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-73
Table 7D.28 Public Water System Characteristics of Selected Water Systems in Canada
City/County (a) Canadian Water Systems (d) Montreal, PQ
Vancouver, BC Edmonton, AB Winnipeg, MB
Regina, SK Barrie, ON Coquitlam, BC Victoria, BC Sault Ste Marie, ON
Strathcona County, AB Prince Albert, SK
Utility
Service de la gestion des infrastructures et de I’environnement Greater Vancouver Water District EPCOR Water Services Inc City of Winnipeg — Water and Waste Department City of Regina City of Barrie Water Section City of Coquitlam City of Victoria City of Sault Ste Marie Public Utilities Commission Strathcona County City of Prince Albert
Service Pop. (b) (000)
Total Number of System Accounts Ownership
Daily Gallons Sold
Daily Capacity (MGD)
Max-Day Prod. (MGD)
City
314.84
766
608
Dist/Auth.
306.34
N/R
406
1,845
335,255
2,021
17
872
198,707
Private
91.63
114
133
631
183,803
City
51.86
N/R
166
190 135
59,045 36,000
City City
17.37 9.26
53 26
39 26
114 90 75
33,647 18,843 25,366
City City City
15.19 12.93 7.73
N/R N/R 21
N/R N/R 17
76 40
18,077 10,500
City City
7.87 N/R
N/R 12
N/R 10
Note: N/R, Not Reported (a) The primary city, county, or area served by the responding utility is listed. (b) Includes retail and wholesale population. (d) Daily gallons sold, daily capacity, and max-day production for the Canadian systems have been converted to U.S. gallons (1 U.S. gallonZ0.8327 imperial gallons s 0.003785 m3). N/RZNot Reported. Source: Adapted from 2004 Water and Wastewater Rate Survey by permission. Copyright q 2004, American Water Works Association. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
q 2006 by Taylor & Francis Group, LLC
7-74
Table 7D.29 International Public Water System Characteristics, 2004 City/Service Area Osaka City, Japan Taichung, Chinese Taiwan Sao Paulo, Brazil
Rijswijk, Netherlands Seoul, South Korea
Alexandria, Egypt Yokohama, Japan Curitiba, Brazil Denmark Busan, South Korea Nagoya, Japan Leederville, Australia Leederville, Australia Adelaide, Australia Lisbon, Portugal Barcelona, Spain Sapporo, Japan Turin, Italy Concepcion, Chile Dublin, Ireland Bristol, United Kingdom Helsinki, Finland
q 2006 by Taylor & Francis Group, LLC
Osaka Municipal Waterworks Bureau Taiwan Water Supply Corporation Companhia de Saneamento Basico do Estado de Sao Pauto —SABESP VEWIN, The Netherlands Waterworks Association Office of Waterworks Seoul Metropolitan Government Water Supplies Department Sydney Water Provincial Waterworks Authority (PWA) Alexandria Water General Authority (AWGA) Yokohama Waterworks Bureau SANEPAR —Companhia de Saneamento do Parana’ DANVA — Danish Water and Waste Water Association Busan Metropolitan Waterworks Headquarters Nagoya Waterworks & Sewerage Bureau Water Corporation of Western Australia Water Corporation South Australia Water Corporation EPAL—Empressa Portuguesa das Aguas Livres Aguas de Barcelona Sapporo Waterworks Bureau Societa Metropolitana Acque Torino Spa Empresas de servicios sanrtarios del Bio–Bio Dublin City Council Bristol Water pic Helsinki Water
Service Pop.a(000) 2,619,494
System Ownership City
Gallons Sold (MGD)b
Active Water Accounts
Water Sourcec(%) Groundwater
Surface
Purchased
53,814.94
887,735
N/R
100
N/R
16,548,877
Dist/Auth.
1,421.59
5,424,515
19
79
2
24,972,000
State Owned
1,281.07
5,305,883
6
94
2
16,109,000
Dist/Auth.
831.31
7,231,025
61
39
0
10,280,183
Dist./Auth.
794.48
1,939,847
0
89
11
6,809,000 4,198,000 10,000,000
Dist./Auth. Dist./Auth. Dist./Auth.
N/R 376.57 372.74
2,545,717 1,638,000 1,897,758
0 0 14
25 0 60
75 100 26
4,500,000
Dist./Auth.
364.63
1,119,023
0
0
100
3,506,966 7,761,171
City Dist/Auth.
317.25 300.51
1,200,908 2,020,030
0 17
44 83
57 0
5,370,000
Private
280.91
1,287,000
98
2
0
3,701,000
Dist/Auth.
254.33
331,350
0
100
0
2,283,381
City
203.1
1,129,695
0
100
0
1,790,953
Dist/Auth.
180.11
754,810
62
38
0
1,817,750 1,492,000
Private Dist./Auth.
171.43 169.84
805,988 645,431
61 17
39 83
0 0
2,203,386
Dist./Auth.
158.76
334,544
13
87
0
2,848,869 1,836,629 1,437,536
City City City
138.17 129.9 121.26
208,021 809,456 144,627
38 0 81
11 100 19
51 0 1
1,962,726
Private
84.36
545,202
53
47
0
1,033,000 1,110,000 882,000
City Private City
65.78 56.25 52.26
221,005 473,001 25,809
0 20 0
21 80 100
79 0 0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Wan Chai, Hong Kong Sydney, Australia Bangkok, Thailand
Utility
Oslo Water and Sewage Works Addis Ababa Water and Sewerage Authority Angered, Sweden Gothenburg Water and Sewage Works Cluj, Romania R.A.J.A.C. CIuj Yucatan, Mexico Junta de Agua Potable y Alcantarillado de Yucatan Cebu City, Philippines Metropolitan Cebu Water District Uijeongbu, South Korea Uijeongbu City lasi, Romania Regia Aittonoma Judeteana Apa Canal Manukau City, New Zealand Manukau Water Timisoara, Romania Reg1a Autonoma Apa Si Canal Aquatim Timisoara Davao, Philippines Davao City Water District Wellington, New Zealand Wellington City Council Ljubljana, Slovenia Javno podjetje VodovodKanalizacija Zamboanga, Philippines Zamboanga City Water District Nicosia, Cyprus Water Board of Nicosia — Lemesos, Cyprus Water Board of Lemesos Bistrita, Romania Raja Aquabis Larnaca, Cyprus Water Board of Larnaca Kiev, Ukraine Ukrainian Water Association
521,000 2,600,000
City Dist./Auth.
39.28 36.92
51,300 210,000
0 11
100 89
0 0
471,500
City
34.31
39,500
0
100
0
410,000 652,000
County State Owned
28.51 26.20
26,058 215,679
0 100
0 0
100 0
785,760
Dist./Auth.
24.81
88,271
93
4
3
364,530 348,951
Dist./Auth. County
23.11 21.75
36,672 18,660
0 0
5 0
95 100
305,000 320,000
City City
21.12 18.82
91,594 21,643
0 31
0 69
100 0
Dist./Auth. City City
18.79 18.00 17.08
133,537 66,010 44,417
98 0 99
2 0 1
0 100 0
Dist./Auth. State Owned Dist./Auth. County Dist./Auth. Dist./Auth.
12.33 7.98 7.06 5.97 2.60 N/R
39,288 80,760 57,742 10,911 27,970 N/R
16 0 30 2 25 N/R
84 100 0 98 0 N/R
0 0 70 0 75 N/R
1,271,436 177,348 322,800 350,000 200,000 150,000 89,132 55,000 N/R
WATER USE
Oslo, Norway Addis Ababa, Ethiopia
Note: N/R, not reported. a b c
Includes retail and wholesale population. Gallons sold has been converted to U.S. gallons. Due to rounding, water source percentages may not total 100.
Source: Adapted from 2004 Water and Wastewater Rate Survey by permission. Copyright q 2004, American Water Works Association. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
7-75
q 2006 by Taylor & Francis Group, LLC
7-76
Table 7D.30 International Public Water System Charges, 2004 Monthly Water Charges (U.S. Dollarsa)
City/Service Area
6/1/97 7/1/94 8/28/03 1/1/03 5/20/02 2/1/95 7/1/03 6/9/98 1/1/03 4/1/01 12/13/03 N/R 7/1/01 4/1/97 7/1/01 7/1/03 7/1/03 12/31/02 12/31/03 4/1/97 1/1/03 11/14/03 12/31/03 4/1/03 12/12/03 1/1/03 7/7/03 11/21/03 7/1/03 9/19/99 7/1/01 1/1/02 8/1/03 N/R 11/1/03 6/1/00 6/30/03
q 2006 by Taylor & Francis Group, LLC
Rate Structure
0 m3 (0 gal)
15 m3 (3,960 gal)
30 m3 (7,920 gal)
85 m3 (22,400 gal)
150 m3 (39,600 gal)
1,000 m3 (264,000 gal)
25,000 m3 (6,600,000 gal)
IB-7 IB-4 IB-4 N/R Uniform IB-4 Uniform IB-11 IB-2 IB-7 IB-3 Uniform Uniform Flat IB-9 IB-7 IB-2 IB-4 IB-3 IB-7 IB-5 Flat Flat Uniform DB-3 Uniform IB-3 Uniform Uniform IB-11 IB-4 Uniform Uniform Uniform Uniform IB-5 Uniform
$8.98 0.50 3.24 N/R N/R N/R 5.05 N/R 0.18 7.31 5.06 127.01 N/R 6.65 8.43 29.91 8.65 0.87 9.25 12.13 N/R 1.02 N/R 2.43 2.50 6.40 0.15 7.68 N/R 1.79 1.94 N/R N/R 0.74 N/R 1.42 N/R
$13.57 1.00 5.77 N/R 4.90 7.71 16.69 3.74 0.21 15.43 8.86 N/R 7.75 17.92 13.11 N/R 15.54 5.02 20.60 21.31 53.28 6.49 N/R 18.29 29.03 16.85 0.24 45.37 N/R 1.79 3.01 6.75 6.91 N/R 4.50 2.17 N/R
$29.89 1.85 20.94 N/R 15.25 25.02 28.33 N/R 0.30 43.67 20.26 N/R 18.08 49.62 20.10 N/R 27.08 17.15 44.90 63.75 170.81 11.97 N/R 34.14 58.00 27.30 0.34 78.44 N/R 6.43 6.59 18.00 13.82 N/R 8.99 4.85 N/R
$137.82 5.50 87.99 N/R 60.29 88.83 71.01 N/R 0.73 188.44 91.39 N/R 54.54 241.93 58.59 N/R 69.38 N/R 120.54 185.51 270.64 32.05 N/R 92.71 163.76 65.60 N/R 140.29 N/R 23.85 44.51 96.33 39.14 N/R 25.48 24.22 N/R
$309.04 10.00 345.75 N/R 149.17 88.08 121.44 N/R 2.60 377.28 152.83 N/R 135.83 459.43 232.33 N/R 110.73 N/R 182.39 N/R 824.18 55.78 183.06 161.71 287.83 112.23 0.34 330.34 N/R 71.17 90.53 162.50 69.08 N/R 44.96 48.50 N/R
$3,035.73 53.52 2,500.48 N/R 1,280.83 587.18 783.82 N/R 15.87 3,213.39 1,025.50 N/R 1,295.83 3,115.09 679.76 N/R 764.58 N/R 1,214.10 N/R 5,472.69 366.11 1,175.08 1,064.00 1,817.02 708.29 0.34 934.64 N/R N/R 712.45 1,666.67 460.50 N/R 299.74 366.00 N/R
$86,581.68 295.09 40,873.08 N/R 26,562.50 14,679.49 19,682.38 25,794.07 416.55 94,102.28 25,665.50 N/R 30,326.67 7,864.15 13,781.67 N/R 19,240.31 N/R 30,292.45 N/R 129,604.52 9,128.35 28,914.13 20,404.29 43,428.81 17,438.15 0.34 15,068.47 N/R N/R 17,360.93 41,666.67 11,512.50 N/R 7,493.38 9,330.78 N/R
40,000 m3 (10,570,000 gal) $138,797.89 817.74 60,812.41 N/R 42,387.50 23,487.18 31,321.33 N/R 666.23 150,907.83 41,065.50 N/R 48,494.17 123,770.75 21,677.54 N/R 30,778.77 N/R 48,371.20 N/R 207,354.88 14,604.76 46,290.60 29,607.14 69,486.09 27,897.72 N/R 24,171.01 N/R N/R 27,772.94 66,666.67 18,420.00 N/R 11,989.41 14,933.77 N/R
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Osaka City, Japan Taichung, Chinese Taiwan Sao Paulo, Brazil Rijswijk, Netherlands Seoul, South Korea Wan Chai, Hong Kong Sydney, Australia Bangkok, Thailand Alexandria, Egypt Yokohama, Japan Curitiba, Brazil Danva, Denmark Busan, South Korea Nagoya, Japan Leederville, Australia Leederville, Australia Adelaide, Australia Lisbon, Portugal Barcelona, Spain Sapporo, Japan Turin, Italy Concepcion, Chile Dublin, Ireland Bristol, United Kingdom Helsinki, Finland Oslo, Norway Addis Ababa, Ethiopia Angered, Sweden Cluj, Romania Yucatan, Mexico Cebu City, Philippines Uijeongbu, South Korea Iasi, Romania Manukau City, New Zealand Timisoara, Romania Davao, Philippines Wellington, New Zealand
Effective Date
Note: a
12/31/02 11/1/02 1/1/02 1/1/02 11/1/03 1/1/02 N/R
Uniform IB-6 IB-7 IB-4 Uniform IB-5 N/R
$6.01 1.81 2.75 6.00 N/R 2.16 N/R
$8.32 2.78 14.84 13.00 5.28 7.80 N/R
$23.33 5.34 30.22 28.88 10.57 21.99 N/R
$34.87 13.02 162.09 131.04 29.94 107.68 N/R
$8.61 3.63 208.79 106.60 52.84 105.73 N/R
$35.16 10.66 1,483.52 1,644.60 352.24 964.08 N/R
$92.87 64.48 50,054.95 32,853.92 8,805.88 23,580.61 N/R
$346.81 115.73 81,373.63 492,780.28 14,089.41 N/R N/R
WATER USE
Ljubljana, Slovenia Zambonga, Philippines Nicosia, Cyprus Lemesos, Cyprus Bistrita, Romania Larnaca, Cyprus Kiev, Ukraine
N/R, not reported.
All charges have been converted to U.S. dollars based on conversion data provided by the utility.
Source: Adapted from 2004 Water and Wastewater Rate Survey by permission. Copyright q 2004, American Water Works Association. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
7-77
q 2006 by Taylor & Francis Group, LLC
Current Exchange Rates (USD/m3)
Canada
U.S.A.
Korea
Australia
N.Zealand
Austria
Belgium
Czech R.
Denmark
q 2006 by Taylor & Francis Group, LLC
Current PPPs (USD/m3)
1996
1998
1996
1998
1.70 0.63 0.75 — 1.02 0.93 0.80 0.88 0.60 0.29 — — — 1.16 0.70 1.29 0.95 1.13 0.36 — — — — — 0.93 0.80 0.80 — 0.76 0.98 — — 1.75 1.59 1.11 1.80 0.97 1.50 0.37 0.29 0.38 1.34
0.34 0.31 0.73 0.35 0.72 0.90 — 0.43 0.58 — 0.36 0.88 0.35 0.92 0.68 1.13 0.74 0.72 — 0.18 0.19 0.18 0.14 0.22 0.73 0.68 0.59 0.63 0.64 0.63 0.46 0.59 1.48 1.43 1.12 1.51 0.88 1.48 0.45 0.37 0.44 1.68
1.95 0.73 0.87 — 1.18 1.07 0.80 0.88 0.60 0.29 — — — 0.76 0.46 0.85 0.63 0.74 0.46 — — — — — 0.91 0.79 0.79 — 0.75 1.01 — — 1.36 1.24 0.87 1.51 0.82 1.26 0.86 0.67 0.88 0.93
0.43 0.39 0.92 0.45 0.92 1.14 — 0.43 0.58 — 0.36 0.88 0.35 0.74 0.54 0.90 0.59 0.58 — 0.38 0.41 0.37 0.29 0.46 0.89 0.82 0.72 0.76 0.78 0.80 0.58 0.75 1.35 1.30 1.01 1.45 0.84 1.42 1.06 0.88 1.05 1.32
Current Exchange Rates (USD/m3)
Germany
Greece
Hungary
Iceland Italy
Luxembourg Netherlands
Norway
Ponugal
Spain
Sweden
Switzerland
(national average) Berlin Dosseldorf Gelsenkirchen Hamburg Monchen Stuttgart Athens Thessaloniki Chanea Patras Budapest Debrecen Pecs Miskolc Reykjavik Hafnarflorour Rome Bologna Milan Naples Turin Luxembourg Amsterdam The Hague Utrecht Oslo Bergen Trondheim Lisbon Coimbra Porto Madrid Barcelona Bilbao Seville Stockholm Goteborg Malmo Beme Geneva Zurich
Current PPPs (USD/m3)
1996
1998
1996
1998
1.70 — — — — — — 0.77 0.82 — — 0.28 0.55 0.69 0.55 0.61 0.51 0.33 0.65 0.13 0.65 0.28 1.64 1.20 1.92 0.94 0.32 1.14 1.05 0.99 1.02 0.98 0.85 0.81 0.48 0.69 0.86 0.58 0.99 1.22 2.25 2.26
— 1.94 1.92 1.47 1.74 1.35 1.46 0.86 0.55 1.02 0.77 0.32 0.37 0.61 0.44 — — 0.28 0.61 0.13 0.57 0.28 1.60 1.02 1.91 0.94 0.47 1.30 0.80 0.97 0.72 1.02 0.81 0.78 0.41 0.57 0.76 0.59 0.54 1.33 2.14 1.88
1.47 — — — — — — 0.87 0.94 — — 0.58 1.16 1.45 1.16 0.53 0.44 0.32 0.63 0.13 0.64 0.27 1.28 0.99 1.59 0.78 0.22 0.81 0.74 1.24 1.28 1.23 0.87 0.83 0.49 0.70 0.60 0.40 0.69 0.74 1.35 1.36
— 1.70 1.68 1.29 1.53 1.19 1.28 1.05 0.68 1.25 0.94 0.71 0.83 1.35 0.98 — — 0.29 0.64 0.13 0.59 0.29 1.40 0.99 1.85 0.92 0.39 1.07 0.65 1.39 1.04 1.46 0.94 0.91 0.48 0.67 0.62 0.48 0.44 0.97 1.56 1.37
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Japan
Ottawa Toronto Winnipeg Vancouver London Edmonton Washington New York Los Angeles Orlando Miami Indianapolis Detroit Tokyo Osaka Sapporo Yokohama Nagoya (national average) Seoul Daegu Daeieon Inchon Pusan Sydney Brisbane Melbourne Canberra Perth Wellington Auckland North Shore City Vienna Salzburg Linz Brussels Antwerp Lie`ge Praha Brno Ostrava Copenhagen
7-78
Table 7D.31 Water Prices in Capitals or Major International Citiesa, 1996, 1998
Finland
France
Note:
0.89 0.98 0.85 0.90 1.32 1.36 — 0.93 1.73 1.39 1.33 1.78
1.26 1.32 0.76 0.86 — 1.19 1.35 0.87 1.46 1.16 1.06 1.45
0.62 0.68 0.66 0.70 1.03 1.06 — 0.73 1.35 1.08 1.03 1.38
0.98 1.03 0.66 0.75 — 1.04 1.17 0.76 1.28 1.02 0.93 1.27
Turkey
UK
Ankara Canakkale Eskisehir London Bristol Manchester Newcastle Cardiff
0.18 0.20 0.19 0.78 0.78 0.93 0.74 1.08
— — — 0.62 0.57 0.55 0.76 0.56
0.37 0.41 0.40 0.78 0.78 0.93 0.74 1.08
— — — 0.57 0.52 0.51 0.69 0.52
WATER USE
Aarhus Odense Helsinki Tampere Vaasa Turku Espoo Paris Banlieue Paris Bordeaux Lille Lyon a
Prices calculated on the basis of a family of four (two adults and two children) living in a house with garden rather than an apartment. Where there are water meters, the price is based on annual consumption of 200 m3. Where supply is normally unmeasured the average price has been used (Norway and UK). VAT is not included. KOR, 1996: national data. NZL, 1996: Secretariat estimates based on country data for water meter charges for the 1997/98 fiscal year, and considering an annual consumption of 200 m3. DEU, 1996: country data which refer to 1997 and are provisional. GRC, 1996 data refer to 1995; source: Ministry of Development. NOR, Unmeasured data: refer to the average price. TUR, 1996 data refer to 1995. UKD, Unmeasured data: refer to the average price.
Source: Table 3.2, OECD Environmental Data Compendium 2002, q OCED 2002, www.oecd.org.
7-79
q 2006 by Taylor & Francis Group, LLC
7-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7D.32 Worldwide Unccounted for Water Location Africa (large city average) Algiers, Algeria Amman, Jordan Asia (large city average) Bahrain Bahrain Barbados Buenos Aires, Argentina Buenos Aires, Argentina Canada (average) Casablanca, Morocco Damascus, Syria Dubai, United Arab Emirates Gaza Gaza Haiphong, Vietnam Hanoi, Vietnam Hebron Johor Bahru, Malaysia Kansas, United States (average) Kansas, United States (range) Lae, Papua New Guinea Latin America and Caribbean (large city average) Lebanon (average) Male, Maldives Mandalay, Myanmar Mexico City, Mexico Mexico City, Mexico Nairobi, Kenya Nicosia, Cyprus North America (large city average) Oran, Algeria Penang, Malaysia Phnom Penh, Vietnam Poland (medium utility range) Rabat, Morocco Ramallah Rarotonga, Cook Islands Sana’a, Yemen Seoul, South Korea Singapore Singapore Sydney, Australia Tamir, Yemen Teheran, Iran Tunisia (large utility range) United Kingdom (small utility range)
Percent 1990 1990 1990 1990 1993 2000 1996 1993 1996 1990 1990 1995 1990 1995 1999 1998 1995 1990 1995 1997 1997 1995
1995 1995 1997 1999 2000 1990 1990 1990 1995 1995 1990 1990 1990 1995 1990 1996 1990 1995 1990 1990 1990 1990 1990
39 51 52 35–42 36 24 43 43 31 15 34 64 15 47 31 70 63 48 21 15 3–65 61 42 40 10 60 37 32 50 16 15 42 20 61 19–51 18 25 70 50 35 11 6 13.4 28 35 8–21 14–30
Source e a a e, f o o j n n b a, b a a a a m f a f h h f e a f f l l g b e a f f d b a f a p b f c b a a, d d
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7D.32
7-81
(Continued)
Location United States (average) Vietnam (average) Washington, DC, area suppliers a
b c d e f g h i j k l m n o p
Percent 1990s 1998 1999
12 50 10–28
Source b m k
Saghir, J., Sehiffler, M., and Woldu, M., 1999, World Bank Urban Water and Sanitation in the Middle East and North Africa Region: The Way Forward, the World Bank, Middle East and North Africa Region Infrastructure Development Group, December, available at worldbank.org/wbi/mdf/mdf3/papers/fnance/Saghir.pdf. Saghir, J., World Bank compilation. www.sydneywater.com.au/html/tsr/performanceindicators/esd2.html. World Bank benchmarking data, www.worldbank.org/watsan/topics/bench/bench_network_iup.html. World Health Organization, 2000, Global Water Supply and Sanitation Assessment 2000 Report, available at www.who.int/ water_sanitation_health/Globassessment/Global4-4.htm. Asian Development Bank, 1997, Second Water Utilities Data Book, Manila, Philippines, available at www.adb.org/Documents/ News/1997/nr1997111.asp. Makuro, M., 2000, Nairobi’s Response to the Water Crisis, UNCHS (Habitat) United Nations Centre for Human Settlements, Vol. 6, No. 3, available at unchs.org/unchs/english/hdv6n3/nairobi_response.htm. Kenny, J.F., 2000, Public Water-Supply Use in Kansas, 1987–97, USGS Fact Sheet 187-99, January, United States Geological Survey, available at ks.water.usgs.gov/Kansas/pubs/fact-sheets/fs.187-99.htm1#HDR2. AWWA recommends the use of audits to reduce unaccounted-for water, awwa.org/govtaff/watcopap.htm. Barbados Water, 1999, Managing Water Resources in an Integrated and Participatory Way Report of the First Stakeholder Meeting in Barbados, September 29–30, 1999, available at commonwealthknowledge.net/Thanni/wwevh.htm. League of Women Voters, 1999, Drinking Water Supply in the Washington DC Metropolitan Area: Prospects and Options for the 21st Century, available at www.dcwatch.com/lwvdc/lwv9903b.htm. Adelson, N., 2000, Water Woes: Private Investment Plugs Leaks in Water Sector, Business Mexico, available at mexconnect. com/mex_/travel/bzm/bzmwaterwoes.html. Trung, D.Q., Snow, R., Doukas, L., Thanh, N., and Trung, N., 1998, Water-loss reduction program in Vietnam, 24th WECD Conference, Water and Sanitation for All, Islamabad, Pakistan, available at Iboro.ac.uk/departments/cv/wedc/papers/24/S/trung.pdf. Esmay, J., 1998, Roundtable on Municipal Water, Vancouver, Canada, available at idrc.ca/industry/canada_e7.html. Qamber, M., 2000, Water Demand Management in State of Bahrain, Bahrain Ministry of Electricity & Water, available at emro.who.int/ceha/AmmanConferenceWaterDemandManagement.pdf. metro.seoul.kr/eng/smg/agenda/2-3.html.
Source: From World’s Water 2002–2003, by Peter H. Gleick. Copyright q 2002 Island Press. Reproduced by permission of Island Press, Washington DC.
q 2006 by Taylor & Francis Group, LLC
7-82
Table 7D.33 Population Supplied with Safe Drinking Water, by Country 1970–2000 Fraction of Population with Access to Drinking Water Region and Country
1970
1975
1980
1985
a,b
a,b
a,b
a,b
66 84
68 100
69
77 85 87 80 84 43 98 43 83 13
83 71 35 77 77
100 95 50
85 26 27 90 100
47
43
63 33
81 38
58
97 86 68
86 69
100 100 100 100 67 29 98 100 92
100 65 100 76
100
q 2006 by Taylor & Francis Group, LLC
1994
c
d
73 73 100
69 41
92 42
92
19
70 18
52
100 80 77 37 80 100 100
88 34 74 100 84 96 82 64 80
37
57
59 77 82 88
90 100 96 45
50 95 65
97 93 41 17
e
68
69 85 72 69 18 85 37
2000
31 98 71 89
42
50 88 47
61
1990
48
98 94
Rural
100 63 100
65 100
70 61 38 67 14 58
81 97 46 73 100 100 38
83 52 36 84 95 98 17
41 100 100
63 77 73 80 87 72 29 87 98 72 85 95 74 34 100 100 86
1970 a,b
1975 a,b
1980 a,b
61 20 26 10
20 39 26
10 15 31 20
21 21
1985
Total 1990
23
6 4
9 12
29
d
e
55 15 34 46 69 21 24 50
20 43 88 70 43 45
15 53
94 40 55
93
1
2 1 6 42 1
10 29 28
4 14 82 14
22
33 2 8 15 11 90 7 37 85 98
50 39 12 22
17 50 10
48
100 25 9
4 100 18
34 45 25
38 19
44
65 100 94 42
30 23
29 29 12
27 11
81 100 50 100
49 62 57 49 64 8 10 44 38 69 100 14 40
42 13 55 53 49 36 55 31 88 68 31 44 61 40 100 58 43
1980 a,b
77
26
80
37
a,b
27
23
86 18
1975
32
24
20
a,b
42 89 43 26 95 17 26
9
3 14
34 18
7 21
1970
49
17
20 64
2000
c
26 24
1994
a,b
26 18 31 23 25
1985 a,b
68 33 50 53 67 25 32 52
1990
e
35 54 91
32 50
94 38 63
45 44
6 12 35
15 3 15 58 11
17 61 51
8
17 17 87 25
60
51 18
36
27
71
72 90 64 95
77 100 95 43
45 90 32
16
45 15 10 26 15 96 21 41 84 99
59 56 18 21
60 21 53
36 53 31 56 16 100 59 15
62 74 60 27 96 51 45
20
43 84
35 14
78 52
24
32
2000
d
23
93
1994
c
13 100 56
76 56 62 53 53 52 30 29 45 37 76 98 52 32
46 24 70 62 64 48 49 49 91 72 47 57 65 37 100 82 60
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Data Source Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Congo Congo, Democratic Rep. Coˆte d’Ivoire Djibouti Egypt Equatorial Guinea Eritrea Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco Mozambique
Urban
35 100
90 98 100
79
84
79
65
82
92
68 58
80
58
23
100 90 100 100 37 76
87 46 63
66 41
60
74 100 47 64
95
100 100 100
98 100 95 100
96
100 70 81
19
26
32
49 20
60
66
68
55
48 45
67
25
38 95 7 22
26
28
65
20
21
31
92 86 80 85 72 88 100
99 100 83
1 14 13 9 5 17 17 22
12 100
2 22 43 29 36 10
31
31 17
29 16
13 100
37 45 22
98 36
7 42 41 31 18 41 32
99 26
42 55 26
45 44
30
58 89 32 27
80
75 100 53 100
82
100
67 56 39
20
27
33
47 38
40
67
68
55
50 45
68
43
53 95 24 34
42
50
78
39
34
28
70 50 43
86 75
80 69 42 38 46 48 77
86 100 69
12 15 19 13 17 49 22 37
65 98
14 38 50 37 39 16
51
38 60
35 42
65 100
52 56 49
100 99 68
31 53 54 70 20 58
100 99 64
33
57 53 39
77 59 57 41
63 99 34 43
54 54
84
50 64 85
90 100 74
96 100 76
89
99
100
98 100
85 96 74
68
87
78
72 59 56 99
92 56 85
37 81
99
94
91
98 99 83
59 15 14
56 27
34
20 47
28 77
12
100 88 97 94 97 46 97 81
10 48
14 3 13 79
94
29
49
82
83 33
91 45
99 85 67
40
40
15
37
18 8 40 46
14 30 45 93
43 35 48
23 53
40
47
62
98 82 70
74 56 37
72 55
60
40
53
38
100 61 93 94 88 45 82 59
34 62
39 12 41 86
63
54
62
90
91 62
98 67
92 93 71
50
51
47
55
46 19 59 51
37 38 49 96
62 41 64
28 65
73
83
69
83
98 95 79 100 74 94 94 92 46 90 71 86
7-83
85
100 82
(Continued) q 2006 by Taylor & Francis Group, LLC
WATER USE
Namibia Niger 37 36 41 Nigeria Reunion Rwanda 81 84 48 Sao Tome and Principe Senegal 87 56 77 Seychelles Sierra Leone 75 50 Somalia 17 77 South Africa Sudan 61 96 100 Swaziland 83 Tanzania 61 88 Togo 100 49 70 Tunisia 92 93 100 Uganda 88 100 Zambia 70 86 Zimbabwe North & Central America & Caribbean Anguilla Antigua and Barbuda Aruba Bahamas 100 100 100 Barbados 95 100 99 Belize 99 British Virgin Islands Canada Cayman 100 Islands Costa Rica 98 100 100 Cuba 82 96 Dominican 72 88 85 Republic Dominica El Salvador 71 89 67 Grenada 100 100 Guadeloupe Guatemala 88 85 90 Haiti 46 51 Honduras 99 99 93 Jamaica 100 100 55 Martinique Mexico 71 70 90
7-84
Table 7D.33
(Continued) Fraction of Population with Access to Drinking Water
Region and Country
1970
1975
1980
1985
58 100
100 100
67 100
76 100
100
79
100
100
Rural 1990
1994
2000
1970
1975
1980
1985
81
95 88
16 41
14 54
6 62
11 64
95
100
93
95
100
87
Total 1990
1994
2000
1970
1975
1980
1985
27
59 86
35 69
56 77
39 81
48 82
96
93
97
98
88
68
76 81 87 78 86 67
61 69 83 100 93 79
63 75 85 98 100 81
100 22 58
100 25 72 100
100 53 73 71 95 93
100 61 68
100 92
100 39 68 100 96 93
18
40
28
38
40
100
100
100
100
q 2006 by Taylor & Francis Group, LLC
76 95 87 63
78 85 94 88 82
85 93 95 99 98 81
80
88 98 95 87 94 98 88
39
19
90 74
100
1994
2000
61 83
79 87
96
86
77
100
69 92 78 67 88 76
1990
100
12 2 28 13 28 7
26 6 28 33 8
63 5 8
75 5 15
59 38
87
1
5
94
100
17 10 51 17 73 20
17 13 56 29 76 31
60 9 18 79 2 53
65 8 17 94 27 65
71 9 24
45
36
75
71 91 58 51 96 93 58
8
17
19
5
11
100
0
30 61 82 44
22 31 37 48 55
24
30 55 54 66 73 51
100
56 33 55 56 63 34
66 34 70 64 36
75 11 35
84 13 47
92 75
98
3
9
99
100
54 36 72 84 86 50
56 43 77 87
72 21 50 88 81 86
76 28 55 83 85 89
81 34 55
8
17
23
57
100
53 87 86 55
55 72 85 76 70
79 79 87 94 91 71
79
84 94 79 77 95 98 84
12
13
61 60
89
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Montserrat The Netherlands Antilles Nicaragua Panama Puerto Rico St. Kitts St. Lucia St. Vincent Trinidad/ Tobago Turks/Caicos Islands United States of America United States Virgin Islands South America Argentina Bolivia Brazil Chile Colombia Ecuador Falkland Islands (Malvinas) French Guiana Guyana Paraguay Peru Suriname Uruguay Venezuela Asia Afghanistan Armenia Azerbaijan Bahrain
Urban
13
22
100
94
60 10 68 83
80 41 76 100
98
26 50 100
24
100
100 77 35 82
53 94 100
92
96
92 91 99 96
6 1 11 7
18 4 30 11
100 98 100 97
59
100
90 97
100
100
28
100
100
90 11
76 43
47
96 58
35
31
38
36
53
85 100 75 82 100 97
83
70 90 83 49
69
93
100
97
60
87 100
100
86 86
36
99 86
100
95 100
46 98
100 75
100 86 35 100 93
84 60
77 67 100 100
39 60
72 49 76 92 100 65 98 65 95
100 100 82
56
96 77 100 79
85 78 89
40 100
98 36
98 59 100
100 77 88
66
66
82 93 100
77 93
85 41 96 92
43 92
100 100 91 94
100 80
89 82
47
61
40 5 95
95 31 19 50 54
49 19
89 30
97 54
97 60
89
100
68 100
25 66 100
95
95
86 65 89 48
17 3 35 51
31 11 51 66
84 82 100 71
77
54
96 69 33 75 41
65
88
97
48
76
38
33
61 100
39
32
20
1
6
49 3
50 36
25
76 12
13
14
15
24
7
4 20 75 37
5 48 5 31 83 56
25 49 27 54
20 43 43 87
66 68 58 72
79 54 77
39 100
86 39
34
41
42 72
52 77
88
13
18 54
29
55
10
16
63 62
66
85
47 78
56
39 7
46
81 32
97 64
97 62
73 100
90
30 75 100
86
100 73 34 89 78
81 62 83 44
88 76 95 85
86
96
99
89
75
93
96 91 100 92
100
42 23 66
56 38
58 51
66 89
75 87
48
41
21
94 100 30 60
29
34
63 2
18
17
21
27
80 30 84 80
2
8 52 25 50 97 64
11
28 53 44 52
55 81
94 100 40
100 60
66 100 100
64
14 50
45
21 36 95 49
80 64
21 71
19
77 84
17
25
35 45 71 90 100 28 74 63 76
29
84 21
64
39 100
WATER USE
Bangladesh Bhutan Brunei Darus Cambodia China Cyprus East Timor Gaza Strip Georgia Hong Kong India Indonesia Iran Iraq Israel Japan Jordan Kazakhstan Korea DPR Korea Rep Kuwait Kyrgyzstan Laos Lebanon Macau Malaysia Maldives Mongolia Myanmar (Burma) Nepal Oman Pakistan Philippines Qatar Saudi Arabia Singapore Sri Lanka Syria Tajikistan Thailand Turkey
77 90 100
79 89 82 74 38
38
100 60 68
44 63 60 85
81 39 88 87
46 85
95 100 83 80 80 83
(Continued)
7-85
q 2006 by Taylor & Francis Group, LLC
7-86
Table 7D.33
(Continued) Fraction of Population with Access to Drinking Water
Region and Country
1970
1975
1980
1985
Rural 1990
1994
2000
1970
1975
95
45 88
100 85
1980
1985
Total 1990
1994
78
89
70 100
99
93
47
100 96 100
53
100
91 100
0 100
30
55
86
100
97 96
100
100
q 2006 by Taylor & Francis Group, LLC
86 65
1975
96 81 85 85
32 18 25
2 43
100 100 43 100
95
100 94
100 100
84
100 88
100 82
99 100 95
92
39 25
88 15
56
66
25
33
32
72
100 100 63
53
19
10
23
94 45
71
70 53
100 69 18
100
63 45
100
95 94 100 100 100
1985
1990
1994
78 50 64 64
45 40
36
36
4 57
31 52
100
82
100
1980
2000
92
100
44
1970
81
100
100 94
2000
15
38
100
100 0
100
100
17
20 32
97 20
98
100
92 37
69
77
80
100
25
77 58 100 99 100 54
100 100 51 100
100 100 95
85 56 69 69
100 100 47 100
47
100
70
20
100 65
17
43
100 100 94
63
16
26
32
100
100
28
79 42
99 71
62
83
17
99 64
96
100 100 98
100 100 88
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Turkmenistan United Arab Emirates Uzbekistan Vietnam Yemen A R Yemen Dem Oceania American Samoa Australia Cook Islands Fiji French Polyneisa Guam Kiribati Marshall Islands Micronesia Nauru New Caledonia New Zealand Niue Northern Mariana Islands Palau Papua New Guinea Pitcairn Samoa Solomon Islands Tokelau Tonga Tuvalu Vanuatu
Urban
a b c d e
97
75
94
67
69
WATER USE
Wallis and Futuna Islands Western Samoa
United Nations Environment Programme, 1989, Environmental Data Report, GEMS Monitoring and Assessment Research Centre, Basil Blackwell, Oxford. WRI 1988, World Health Organization data, cited by the World Resources Institute, 1988, World Resources 1988–89, World Resources Institute and the International Institute for Environment and Development in collaboration with the United Nations Environment Programme, Basic Books, New York. United Nations Environment Programme, 1993–94, Environmental Data Report, GEMS Monitoring and Assessment Research Centre in cooperation with the World Resources Institute and the UK Department of the Environment, Basil Blackwell, Oxford. WHO 1996, Water Supply and Sanitation Sector Monitoring Report: 1996 (Sector Status as of 1994), in collaboration with the Water Supply and Sanitation Collaborative Council and the United Nations Children’s Fund, UNICEF, New York. WHO 2000, Global Water Supply and Sanitation Assessment 2000 Report, available in full at who.int/water_sanitation_health/Globassessment/GlobalTOC.htm.
Source: From World’s Water 2002–2003, by Peter H. Gleick. Copyright q 2002 Island Press. Reproduced by permission of Island Press, Washington, DC.
7-87
q 2006 by Taylor & Francis Group, LLC
7-88
Table 7D.34 Population Supplied with Access to Sanitation, by Country, 1970–2000 Fraction of Population with Access to Sanitation Region and Country
1970 1975
1980
1985
a,b
a,b
a,b
a,b
47 13
75 100
57 80 40 48
75
83 49 96
47
38 40 34
64
100
7
9
8 5
10 65
29 58 93 44 84 100 32
Rural 1990 c
25 60 100 64
92 70
95
85 44 100 100 88
98 51
63 100 51 75
100
63
q 2006 by Taylor & Francis Group, LLC
90 34 54
6 70 46
50
42 60
88 79 99 95 43
46
23
81 98 14 53
81
59 77 20 61
99 98 60
80 54
56
a,b
40
78
96
47 54 21 89 13 100 9 100 79 5 100
51
100 63
29
55 90 8 100 62
83 53 32 69 1 38
22 6
1970
e
73
43
2000
d
45
23
67
1994
81
50 70 58
100 100
100 69
66 58 25 41 62 94 88 96 93 97 70 96 93 44 100 100
1975 a,b
1980 a,b
40 15 4
1
5 35 10 96
1985
Total 1990
a,b
c
16 20 28 6 56 1 9
20 35 85
100
16
9
20 10
8
8
40 2
40
45 10 9 54
48 12 69 9
100
47 8 6
9 30 6
67
11 50
16
4
11
4
6
100
51 100 5 48
50 91 46
26 24
96
17 1 13 19 14
16
27 60 0
18
23 36
14 2
17 81 7 2
3
10
3 51 21
86 16
100
72
90
85 32 23 13 98
81
99 4
a,b
7
17
1970
e
46
9 6
2000
d
10
1 6 5
1994
100 18
1975 a,b
1980 a,b
57 20 16
14 4
7 35 11
72
100
1
1
6 5
9 22
1985
c
19 33 40 9 58 43 10
21 45 89
5
1 6 4 35 64 41 34 81 96 30 70 98 100 19 99 42
39
1990
a,b
14
55 13
56
50 11 19 67
55 13
26 11 15 30 14
79
88
82
94
73 16 20
44 23
46
24 46
29 92 71 31
21
29 98
21
9
20
92
54 90 11 54
91 94 53
44 61
21 15
83 8 7 77 29
e
18 51
64
30
2000
d
18
50 33
14
1994
19
27
92
100
37 42 70 20 77 6 18 15 53 31 100 40
13 15 21 37 63 58 47 86 92 97 42 77 69 33 99 75
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Data Source Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Congo Congo, Democratic Republic Cote D’Ivoire Djibouti Egypt Equatorial Guinea Eritrea Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Morocco
Urban
70 24 71 80
71 61
88
69 96 79 85 12
57
83
94
55
17
23
12 1
3 5
52
56
50
2 6 35
79 79 36
32
57 100 75 40
95
98 100 76 100
23
99 87
4
98 69 96 99 99
93 100 59
55 15
34 76 18
13 100
10 25 14 12
10
95 46
10 5
25 58 9 16 30 34 15
13 100 75
45
84
94 89
70 11 4 11
4 21
17
26 17 5 45 8
38
40
48
31
8
31
20 1
3
7
53
57
51
60
13 85 55 10
22
2 100 22 100
87
100
73 48 86 17 72 64 51
94 100 21
56 15
36 12 47
12 4 37
15 17 35
16
1 62 76 16
66 100
22 36 17 15
66 13
94 42
65 100
15 36
21
8
46
58
70
39
11
28 86 62
45
46 22 36
14 55 30 55
26 96 57 23
24 18
88
100
69
66
57
85 71 76
98 96 75
43
93
10
68 75
99 51 83
95 91 64
54
16
4
85
78
18
17
72 44
42
88 96 61 98 50
26
43
38
59
20 10
12 13
52 17
16
78 97 61 76 16
11 43
16 1
90 34
43
75 78 68
63 100 50
93 100 42
57
99
100 95
43 41 20 63
WATER USE
Mozambique 53 Namibia Niger 10 30 36 Nigeria Reunion Rwanda 83 87 60 77 Sao Tome and Principe Senegal 100 87 Seychelles Sierra Leone 31 60 Somalia 77 44 South Africa Sudan 100 100 73 73 Swaziland 99 100 Tanzania 88 93 Togo 4 36 24 31 Tunisia 100 100 84 Uganda 84 82 32 Zambia 12 87 76 Zimbabwe North & Central America & Caribbean Anguilla Antigua and Barbuda Aruba Bahamas 100 100 88 100 Barbados 100 100 100 Belize 62 87 British Virgin Islands Canada Cayman Islands 94 96 Costa Rica 66 94 99 99 Cuba 57 100 Dominican 63 74 25 41 Republic Dominica El Salvador 66 71 48 82 Grenada Guadeloupe Guatemala 45 41 Haiti 42 42
100 96 52
93
91
95
92 66 78
96 95 71
83 97 61 85 28
58
42
15
23
92 87
37
39
35
58
59
68
30 19
24 21
60 25
24
(Continued) 7-89
q 2006 by Taylor & Francis Group, LLC
7-90
Table 7D.34
(Continued) Fraction of Population with Access to Sanitation
Region and Country
1970 1975 64 100
87
53 100
78
Rural
1980
1985
1990
1994
2000
1970
1975
1980
1985
1990
1994
2000
1970
1975
1980
1985
1990
1994
2000
49 12
24 92
89
81
94 98
9 92
13 91
26 2
34 90
42
53
57 66
24 94
26 94
35 7
30 91
63
65
77 84
77
77
85
81
87
13
14
12
13
26
32
55
58
66
73
34 83
35 99
34
96 87
8 69
24 76
16 61
27
59
68 94
71
27 81
31 86
84 99
100 51
83
Total
96
100
36 73
95 16 52
99 28
97
97
69
63
q 2006 by Taylor & Francis Group, LLC
80 37
100
96
100 93 73
75 33 86 100 96 98
73 95 57 100 59 60
100 89 67 78 59 57
97 31 76
5
13
38 84 84 56
77
92 97
88
97
95
81
100
87 25 85 33 75
78
58 55 82 76 87
89 82 85 98 97 70
64
85 97 95 90 100 96 86
38
25
62
92
93
88
98
100
79 4 24 10 8
92
83 9 11 13 7
94
16 13 45
17
16
15
35 4 1 10 4 17
35 10 1 4 13 29
80 80 0 79 6 12
79 83 12 48 59 5
14 32
16 3
18 38
33 34
48 38 40 93 51 37
81 60 20
10
72
30
57 81 95 40 34 89 69
1
8
100
85 12 58 29 47
97 18 32 48
93 6 36
96 10
82
83
21
21
83 61 43
78 86 36 88 51 52
69 21 63 84 65
86 85 49 62 59 50
26 71
41 44
64 48
63 64
86 46 59
85 66 77 97 85 59
58
79 87 95 76 83 95 74
8
12
44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Honduras Jamaica Martinique Mexico Montserrat The Netherlands Antilles Nicaragua Panama Puerto Rico St. Kitts St. Lucia St. Vincent Trinidad/ Tobago Turks/Caicos Islands United States of America United States Virgin Islands South America Argentina Bolivia Brazil Chile Colombia Ecuador Falkland Islands (Malvinas) French Guiana Guyana Paraguay Peru Suriname Uruguay Venezuela Asia Afghanistan
Urban
87
40
21
100 24
100 40 80
77 66
82 65
1
58 68 100
76
58
100 100
94
85 50 100 82
87 60 100 75
59
100
100
100 96
100
90 44 79 100 96
94
92
100
80
100 100
100 100
67
10
13
100 21
27 29 96
100 60
31 33
30
100 100
45
38
38
33
14 100 12 90 100 67
14 100 21 76 100 91
16
17 88 51 83
76
68
65
58
42 81 81 80 80 74
100 99 65
64 56
78
94 95 100 50 34 53 79 100 99 68
70 73 89
73 87 86 93
92
95
1 4 48
2 5 59 1
100
1 21 43
50
100 100
70
100 84
2
4
100
100
95
100 46 65
34
43
51 53
33 77
75 98 94 92 100 100 91 98 97 98
2 38
43
0 4 3
81 100
50 3 30 35
55 1
1
100
8
60 2
94 4 47 13
50
33
55
63 28
39
45
36
41
46
86
61
8
7
10 24 100
95
95
14 52 74 31
18 12 70 47
20 15 78 47
14 40 37
98 98 100 4
12
2 67
44 100 35
44 70
100
1 25 6 56
5 40 16 11
30 18
11
100 100 99 76
42
100 3
3 12 63 85
13
100 34
100
92
26 40 16 19
5
3
100 5
100
7 23 69
9 37
70
25
64
100 100
3
5
60 3
10 7
35 41
53 69
86 98
21
18 38 100
29 51 67 36
31 66 81 79
95
99 99 99 63
88 14 44 72
74
41 58 2 39
59
35
33
20
20 61 42 71
1
1
3 57 83 21
1 12 6 56 100 47
80 81
64
59
96 70
17
40
100 58 35
6
70 13
13 75
100
100
52
12
75 22 24
70 80 67 50
82 99 44
45
52
100 46
100
99
44
56 30 46
94 78 22 6
31 19 67
24
25 70
50
41 20 76 30
52 56
27 92 61 83 100 100 83 90 96 91 7-91
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Armenia Azerbaijan Bahrain Bangladesh Bhutan Brunei Darus Cambodia China Cyprus East Timor Gaza Strip Georgia Hong Kong India Indonesia Iran Iraq Israel Japan Jordan Kazakhstan Korea DPR Korea Rep Kuwait Kyrgyzstan Lao People’s Dem Rep Lebanon Macau Malaysia Maldives Mongolia Myanmar (Burma) Nepal Oman Pakistan Philippines Qatar Saudi Arabia Singapore Sri Lanka Syria Tajikistan Thailand Turkey
7-92
Table 7D.34
(Continued) Fraction of Population with Access to Sanitation
Region and Country
1970 1975
1980
1985
Rural 1990
1994
2000
1970
1975
93
23
100
60 70
83
100 85
100
100
100
96
100
100
86 80
100
100
q 2006 by Taylor & Francis Group, LLC
97 100 95
1985
1990
1994
2000
1970
1975
22
100
100
1980
Total
99
100 91 98
43
100
100 100 75 99
91 100 99
100
0 100
100
100
82
100 92
95 57
88
2
55
10
87
93
99
54
95 98 100 100 90
100
100 65 95
85
49 45 46
100
5
3
80
99
83 21 41 94 80 68
100
1990
1994
100 71
100
35
11
92 2 40 73 25
78
100 70 31 31
100 100 12 97
26
13
21
35
99 91
96
70
75
44
17 100 100 85
92
100
100
100 5
100 100 100
15
15
76 60
1985
2000
80
100
100 73 99 81 86
100 87 99 99
1980
100 73 45 45
100 100 43 98
48
100
100 92
100 80
100 18
14
18
84
99
44
100
22
100 82
99 34
13 100
100 100
15
100
100
19
52 40
82
100 100 87
100 100
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Turkmenistan United Arab Emirates Uzbekistan Vietnam Yemen A R Yemen Dem Oceania American Samoa Australia Cook Islands Fiji French Polyneisa Guam Kiribati Marshall Islands Micronesia Nauru New Caledonia New Zealand Niue Northern Mariana Islands Palau Papua New Guinea Pitcairn Samoa Solomon Islands Tokelau Tonga Tuvalu Vanuatu
Urban
a b c d e
86
88
83
83
84
WATER USE
Wallis and Futuna Islands Western Samoa
United Nations Environment Programme, 1989, Environmental Data Report, GEMS Monitoring and Assessment Research Center, Basil Blackwell, Oxford. WRI 1988, World Health Organization data, cited by the World Resources Institute, 1988, World Resources 1988–89, World Resources Institute and the International Institute for Environment and Development in collaboration with the United Nations Environment Programme, Basic Books, New York. United Nations Environment Programme, 1993–94, Environmental Data Report, GEMS Monitoring and Assessment Research Centre in cooperation with the World Resources Institute and the UK Department of the Environment, Basil Blackwell, Oxford. WHO 1996, World Health Organization, 1996, Water Supply and Sanitation Sector Monitoring Report: 1996 (Sector Status as of 1994), in collaboration with the Water Supply and Sanitation Collaborative Council and the United Nations Children’s Fund, UNICEF, New York. WHO 2000, World Health Organization, 2000, Global Water Supply and Sanitation Assessment 2000 Report, available in full at www.who.int/water_sanitation_health/ Globassessment/GlobalTOC.htm.
Source: From World’s Water 2002–2003, by Peter H. Gleick. Copyright q 2002 Island Press. Reproduced by permission of Island Press, Washington, DC.
7-93
q 2006 by Taylor & Francis Group, LLC
7-94
Table 7D.35 Water Supply and Sanitation Coverage by Region, 1990 and 2000 1990 Population (millions) Population Served
Region
Total Population
Global Urban water supply Rural water supply Total water supply
(76% of regional population represented) 2,292 2,179 2,974 1,961 5,266 4,140
Urban sanitation Rural sanitation Total sanitation
(72% of regional population represented) 197 166 418 183 615 349
Urban sanitation Rural sanitation Total sanitation Asia Urban water supply Rural water supply Total water supply
197 418 615
1,029 2,151 3,180
690 496 1,186
% Serveda
113 1,013 1,126
95 66 79
415 1,946 2,361
82 35 55
31 235 266
84 44 57
30 212 242
85 49 61
57 718 775
94 67 76
339 1,655 1,994
67 23 37
(77% of regional population represented)
Urban sanitation Rural sanitation Total sanitation Oceania Urban water supply Rural water supply Total water supply
167 206 373
(88% of regional population represented) 1,029 972 2,151 1,433 3,180 2,405
Urban sanitation Rural sanitation Total sanitation Latin American and the Caribbean Urban water supply Rural water supply Total water supply
1,877 1,028 2,905
Population Unserved
q 2006 by Taylor & Francis Group, LLC
Population Served
(89% of regional population represented) 2,845 2,672 3,210 2,284 6,055 4,956 2,845 3,210 6,055
2,442 1,210 3,652
(96% of regional population represented) 297 253 487 231 784 484 297 487 784
251 220 471
(94% of regional population represented) 1,352 1,254 2,331 1,736 3,683 2,990 1,352 2,331 3,683
1,055 712 1,767
Population Unserved
% Serveda
173 926 1,099
94 71 82
403 2,000 2,403
86 38 60
44 256 300
85 47 62
46 267 313
84 45 60
98 595 693
93 75 81
297 1,619 1,916
78 31 48
(99% of regional population represented)
313 128 441
287 72 359
26 56 82
92 56 82
391 128 519
362 79 441
29 49 78
93 62 85
313 128 441
267 50 317
46 78 124
85 39 72
391 128 519
340 62 402
51 66 117
87 49 78
0 3 3
98 63 88
0 2
99 81
(64% of regional population represented) 18 18 8 5 26 23
Urban sanitation Rural sanitation
Total Population
18 8
18 7
0 3 3
100 62 88
0 1
99 89
(85% of regional population represented) 21 21 9 6 30 27 21 9
21 7
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Africa Urban water supply Rural water supply Total water supply
2,292 2,974 5,266
2000 Population (millions)
Europe Urban water supply Rural water supply Total water supply
26
(15% of regional population represented) 522 522 200 199 722 721
Urban sanitation Rural sanitation Total sanitation Northern America Urban water supply Rural water supply Total water supply
522 200 722
522 199 721
(99.9% of regional population represented) 213 213 69 69 282 282
Urban sanitation Rural sanitation Total sanitation a
25
213 69 282
213 69 282
1
96
0 1 1
100 100 100
0 1 1
100 100 100
0 0 0
100 100 100
0 0 0
100 100 100
30
28
(44% of regional population represented) 545 542 184 161 729 703 545 184 729
537 137 674
(99.9% of regional population represented) 239 239 71 71 310 310 239 71 310
239 71 310
2
93
3 23 26
100 87 96
8 47 55
99 74 92
0 0 0
100 100 100
0 0 0
100 100 100
WATER USE
Total sanitation
Due to rounding, coverage figures might not total 100% even if the population unserved is shown as 0.
Source: From World Health Organization and United Nations Children’s Fund Global Water Supply and Sanitation Assesment Report 2000, Copyright q 2000 World’ Health Organization and United Nations Children’s Fund, www.wssinfo.org.
7-95
q 2006 by Taylor & Francis Group, LLC
7-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Water Supply Actual and target global urban water supply coverage Population (billions)
8
Served
Target served
Unserved
Still unserved
Actual and target global rural water supply coverage Population (billions)
8
6
Target served
Unserved
Still unserved
6 0.127
4 0.113 2
Served
2.179
0.173
4
4.536
3.69
2.672
2
0
1.013 1.961
0.926 2.284
0.484 2.853
3.286
0 1990 1995 2000 2005 2010 2015 2020 2025
1990 1995 2000 2005 2010 2015 2020 2025
Sanitation Actual and target global urban sanitation coverage Population (billions)
8
Served
Target served
Unserved
Still unserved
6
Actual and target global rural sanitation coverage Population (billions)
8
Served
Target served
Unserved
Still unserved
6 0.289
4 0.415 2 1.877
0.403
4.536
4
3.528
2.442
0
2.00
1.043 3.286
2 0
1990 1995 2000 2005 2010 2015 2020 2025
1.946
2.294 1.028
1.21
1990 1995 2000 2005 2010 2015 2020 2025
Figure 7D.13 Actual and target global urban and rural water supply and sanitation coverage. (From World Health Organization and UNICEF, 2000, Global Water Supply and Sanitation Assessment Report 2000, Copyright q 2000 World’ Health Organization and United Nations Children’s Fund, www.wssinfo.org/en/welcome.html. With permission.)
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-97
Table 7D.36 Constraints in Improving Water Supply and Sanitation Services in Developing Countries Number of Countries Indicting Constraint Constraints Insufficiency of trained personnel (professional) Funding limitations Insufficiency of trained personnel (sub-professional) Operation and maintenanceb Logisticsb Inadequate cost-recovery framework Inappropriate institutional framework Insufficient health education efforts Intermittent water service Lack of planning and design criteria Noninvolvement of communities Inadequate or outmoded legal framework Inappropriate technology Insufficient knowledge of water resources Inadequate water resources Lack of definite government policy for sector Import restrictions
Very Severe
Severe
Moderate
Ranking Indexa
16
40
27
155
21 16
31 38
30 29
155 153
16 11 11
36 35 34
23 23 22
143 126 123
6 7 10 6 6 10
30 24 19 17 15 14
35 43 32 41 44 34
113 112 100 93 92 92
5 1
18 20
33 39
84 82
5 4
11 10
40 44
77 76
5
12
21
60
Note: Ranking and frequency of constraints as reported by 87 countries. a b
Ranking indexZ(No. very severe!3)C(No. severe!2)C(No. moderate!1). “Logistics” is ranked ahead of “Operation and maintenance” in the group of Least Developed Countries.
Source: World Health Organization, 1984. The International Drinking Water Supply and Sanitation Decade, WHO Publ. 85. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
7-98
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7E
q 2006 by Taylor & Francis Group, LLC
DOMESTIC WATER CONSUMPTION
Population (thousands)
State
Total
Served by Public Supply Total
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania
4,450 627 5,130 2,670 33,900 4,300 3,410 784 572 16,000 8,190 1,210 1,290 12,400 6,080 2,930 2,690 4,040 4,470 1,270 5,300 6,350 9,940 4,920 2,840 5,600 902 1,710 2,000 1,240 8,410 1,820 19,000 8,050 642 11,400 3,450 3,420 12,300
3,580 421 4,870 2,320 30,100 3,750 2,660 617 572 14,000 6,730 1,140 928 10,900 4,480 2,410 2,500 3,490 3,950 726 4,360 5,880 7,170 3,770 2,190 4,770 664 1,390 1,870 756 7,460 1,460 17,100 5,350 493 9,570 3,150 2,730 10,100
Withdrawals (mil gal/day)
Self-Supplied Domestic Population
Population (Percent)
868 206 265 351 3,810 555 749 166 0 1,950 1,450 72.9 366 1,500 1,600 511 193 552 523 549 932 473 2,770 1,150 654 824 238 324 124 479 952 360 1,890 2,700 149 1,790 299 692 2,190
20 33 5 13 11 13 22 21 0 12 18 6 28 12 26 17 7 14 12 43 18 7 28 23 23 15 26 19 6 39 11 20 10 34 23 16 9 20 18
Withdrawals (thousand acre-feet/yr)
By Source Groundwater 78.9 10.9 28.9 28.5 257 66.8 56.2 13.3 0 199 110 4.82 85.2 135 122 33.2 21.6 19.5 41.2 35.7 77.1 42.2 239 80.8 69.3 53.6 17.3 48.4 22.4 40.9 79.7 31.4 142 189 11.9 132 25.5 68.3 132
By Source
Surface Water
Total
Groundwater
Surface Water
Total
0 0.25 0 0 28.6 0 0 0 0 0 0 7.22 0 0 0 0 0 8 0 0 0 0 0 0 0 0 1.29 0 0 0.16 0 0 0 0 0 2.71 0 7.97 0
78.9 11.2 28.9 28.5 286 66.8 56.2 13.3 0 199 110 12 85.2 135 122 33.2 21.6 27.5 41.2 35.7 77.1 42.2 239 80.8 69.3 53.6 18.6 48.4 22.4 41 79.7 31.4 142 189 11.9 134 25.5 76.2 132
88.4 12.2 32.4 31.9 288 74.9 63 14.9 0 223 123 5.4 95.6 152 137 37.2 24.2 21.9 46.2 40 86.4 47.2 268 90.6 77.7 60.1 19.4 54.3 25.2 45.8 89.3 35.2 159 212 13.3 148 28.5 76.5 148
0 0.28 0 0 32 0 0 0 0 0 0 8.09 0 0 0 0 0 8.97 0 0 0 0 0 0 0 0 1.45 0 0 0.18 0 0 0 0 0 3.04 0 8.93 0
88.4 12.5 32.4 31.9 320 74.9 63 14.9 0 223 123 13.5 95.6 152 137 37.2 24.2 30.8 46.2 40 86.4 47.2 268 90.6 77.7 60.1 20.8 54.3 25.2 46 89.3 35.2 159 212 13.3 151 28.5 85.5 148
q 2006 by Taylor & Francis Group, LLC
7-99
(Continued)
WATER USE
Table 7E.37 Domestic Freshwater Use in the United States, 2000
(Continued) Population (thousands)
State
Self-Supplied Domestic
Withdrawals (thousand acre-feet/yr)
By Source
By Source
Total
Served by Public Supply Total
Population
Population (Percent)
Groundwater
Surface Water
Total
Groundwater
Surface Water
Total
1,050 4,010 755 5,690 20,900 2,230 609 7,080 5,890 1,810 5,360 494 3,810 109 285,000
922 3,160 625 5,240 19,700 2,180 362 5,310 4,900 1,300 3,620 406 3,800 53.4 242,000
127 847 129 453 1,190 56.2 247 1,770 993 505 1,750 87.5 12.8 55.2 43,500
12 21 17 8 6 3 41 25 17 28 33 18 0 51 15
8.99 63.5 9.52 32.6 131 16.1 20.7 133 125 39.6 96.3 6.57 0.88 0 3,530
0 0 0.01 0 0 0 0.25 0 0.02 0.81 0 0 0 1.69 58.9
8.99 63.5 9.53 32.6 131 16.1 21 133 125 40.4 96.3 6.57 0.88 1.69 3,590
10.1 71.2 10.7 36.6 147 18 23.2 150 140 44.4 108 7.36 0.99 0 3,960
0 0 0.01 0 0 0 0.28 0 0.02 0.91 0 0 0 1.89 66.1
10.1 71.2 10.7 36.6 147 18 23.5 150 140 45.3 108 7.36 0.99 1.89 4,030
Note: Figures may not sum to totals because of independent rounding. Source:
From Hutson, S.S. et al., 2004, Estimated Use of Water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Withdrawals (mil gal/day)
7-100
Table 7E.37
WATER USE
7-101
Table 7E.38 Groundwater and Surface Water Withdrawals in Public Supply and Rural Domestic Sectors, 1950–1995 Public Supply
Self-Supplied Domestic
Year
Total Withdrawals (bgd)
Groundwater (%)
Surface Water (%)
Total Withdrawals (bgd)
Groundwater (%)
Surface Water (%)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
14.0 17.0 21.0 24.0 27.0 29.0 34.0 36.5 38.5 40.2
26 28 30 33 34 36 34 40 39 37
74 72 70 67 66 64 66 60 61 63
3.6 2.5 2.1 2.3 2.6 2.8 3.5 3.3 3.4 3.4
80 72 93 95 96 95 95 98 96 99
20 28 7 5 4 5 5 2 4 1
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995. Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
Table 7E.39 Population and Domestic Withdrawals, 1950–1995 Year
Domestic Withdrawals (bgd)
Population (millions)
Per Capita Withdrawals (gpcd)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
17.6 20.6 24.6 28.0 31.5 33.9 39.6 44.3 46.4 49.1
150.7 164.0 179.3 193.8 205.9 216.4 229.6 242.4 252.3 267.1
116.8 125.6 137.2 144.5 153.0 156.7 172.5 182.7 183.9 183.8
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995. Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
Table 7E.40 Typical Urban Water Use by a Family of Four Daily Use Per Family
Drinking and water used in kitchen Dishwasher (3 loads per day) Toilet (16 flushes per day) Bathing (4 baths or showers per day) Laundering (6 loads per week) Automobile washing (2 car washes per month) Lawn watering and swimming pools (180 hr/yr) Garbage disposal unit (1 percent of all other uses) Total
Gal/day
%
Per Capita gal/day
8 15 96 80 34 10 100 3 346
2 4 28 23 10 3 29 1 100
2.00 3.75 24.00 20.00 8.50 2.50 25.00 0.75 86.50
Note: Assuming no water delivery losses. Source: From U.S. Water Resources Council, Second National Water Assessment, The Nation’s Water Resources 1975–2000; percentage added. q 2006 by Taylor & Francis Group, LLC
7-102
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7E.41 Flow Rates for Certain Plumbing, Household, and Farm Fixtures Flow Pressurea (psi)
Location Ordinary basin faucet Self-closing basin faucet Sink faucet, 3/8 in. Sink faucet, 1/2 in. Bathtub faucet Laundry tub faucet, 1/2 in. Shower Ball-cock for closet Flush valve for closet (toilet) Flushometer valve for closet (toilet) Garden hose (50 ft, 3/4 in. sill cock) Garden hose (50 ft, 5/8 in. outlet) Drinking fountains Fire hose 1 1/2 in., 1/2 in. nozzle a b
Flow Rate (gpm)
8 8 8 8 8 8 8 8 15 15 30 15 15 30
2.0 2.5 4.5 4.5 6.0 5.0 5.0 3.0 15–40b 15.0 5.0 3.33 0.75 40.0
Flow pressure is the pressure in the supply near the faucet or water outlet while the faucet or water outlet is wide open and flowing. Wide Range due to variation in design and type of closet (toilet) flush valves.
Source: From U.S. Public Health Service, 1962, Manual of Individual Water Supply Systems.
Table 7E.42 Summary of California and Federal Plumbing Fixture Requirements California (Covers Sale and Installation)
Plumbing Device Showerheads Lavatory Faucetsa
a
Sink Faucets
Metering (self-closing) Faucetsb (public restrooms) Tub Spout Divertera Toilets (residential)
Flushometer valvesa
Toilets (Commercial)a
Urinals
a b c
Effective Date
CA 3/20/92 US 1/1/94 2.75 gpm CA 12/22/78 2.2 gpm CA 3/20/92 US 1/1/94 2.2 gpm CA 3/20/92 US 1/1/94 CA 7/1/92 Hot water maximum flow rates range from 0.25 to 0.75 gal/cycle and/or from US 1/1/94 0.5 gpm to 2.5 gpm, depending on controls and hot water system 0.1 (new), to 0.3 gpm (after 15,000 cycles CA 3/20/92 of diverting) 1.6 gpf CA 1/1/92 (new construction) CA 1/1/94 (all toilets for sale or installation) US 1/1/94 (non-commercial) 1.6 gpf CA 1/1/92 (new construction) CA 1/1/94 (all toilets) US 1/1/94 (commercial) US 1/1/97 (commercial) 1.6 gpf CA 1/1/94 (all toilets for sale or installation) US 1/1/97 1.0 gpf CA 1/1/92 (new) CA 1/1/94 (all) US 1/1/94
Energy Policy Act of 1992 (Covers Only Manufacture)
2.5 gpm
2.5 gpmc
2.5 gpmc 2.5 gpmc 0.25 gal/cycle (maximum water delivery per cycle)c (does not appear to be included in EPA)
1.6 gpf
3.5 gpf 1.6 gpf
1.6 gpf
1.0 gpf
California requirements are pre-existing and more stringent than federal law; therefore California requirements prevail in California. Federal law is more stringent than California requirements. Measured at a flowing water pressure of 80 pounds/sq.in.
Source: From California Department of Water Resources, 1998, “Urban, Agricultural and Environmental Water Use,” Californaia Water Plan Update Bulletin-160-98, California Dept. of Water Resources, Sacremento, CA, November 1998, www.water.ca.gov. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-103
Leaks 13.7% 9.5 gpcd
Other domestic 2.3% 1.6 gpcd Toilet 26.7% 18.5 gpcd
Faucets 15.7% 10.9 gpcd
Dishwasher 1.4% 1.0 gpcd
Total gpcd = 69.3
Clothes washer 21.7% 15.0 gpcd
Shower 16.8% 11.6 gpcd Bath 1.7% 1.2 gpcd
Figure 7E.14 From United States Environmental Protection Agency, 2002. Onsite Wastewater Treatment Systems Manual, EPA/ 625-R-00/008, February 2002. Original Soure: Mayer, P.W., DeOreo, W.B. et al., 1999. Residential End Uses of Water, American Water Works Association Research Foundation, Denver, Colorado.
Faucets10.8 gcd, 21.9%
Leaks5.0 gcd, 10.1%
Showers10.0 gcd,20.1%
Other domestic1.5 gcd, 3.1% Baths1.2 gcd, 2.4% Dish washers1.0 gcd, 2.0%
Clothes washer10.6 gcd, 21.4% Toilets9.6 gcd, 19.3% Total: 49.6 Gallons per capita per day (gcd) Presented by waterwiser - ®1999 American Water Works Association
Figure 7E.15 Typical single family home water use—with conservation. (Reprinted from Waterwiser www.waterwiser.org, by permission. Copyright q 1999, American Water Works Association.) q 2006 by Taylor & Francis Group, LLC
7-104
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7E.43 Indoor Residential Water Use by Fixture or Appliance Gal/Use: Average Range
Uses/Person/Day: Average Range
Gal/Person/Day: Average Rangea
% Total: Average Range
3.5 2.9–3.9 17.2b 14.9–18.6 See shower
5.05 4.5–5.6 0.75b 0.6–0.9 See shower
Leaks
40.5 — 10.0 9.3–10.6 1.4c — NA
0.37 0.30–0.42 0.10 0.06–0.13 8.1d 6.7–9.4 NA
Other domestic
NA
NA
Total
NA
NA
18.5 15.7–22.9 11.6 8.3–15.1 1.2 0.5–1.9 15.0 12.0–17.1 1.0 0.6–1.4 10.9 8.7–12.3 9.5 3.4–17.6 1.6 0.0–6.0 69.3 57.1–83.5
26.7 22.6–30.6 16.8 11.8–20.2 1.7 0.9–2.7 21.7 17.8–28.0 1.4 0.9–2.2 15.7 12.4–18.5 13.7 5.3–21.6 2.3 0.0–8.5 100
Fixture/Use Toilet Shower Bath Clothes washer Dishwasher Faucets
Note: Results from AWWARF REUWS at 1,188 homes in 12 metropolitan areas. Homes surveyed were served by public water supplies, which operate at higher pressure than private water sources. Leakage rates might be lower for homes on private water supplies. Results are averages over range. Range is the lowest to highest average for 12 metropolitan areas. a Gal/person/day might not equal gal/use multiplied by uses/person/day because of differences in the number of data points used to calculate means. b Includes shower and bath. c Gallons per minute. d Minutes of use per person per day. Source: United States Environmental Protection Agency, 2002, Onsite Wastewater Treatment Systems Manual, EPA/625-R-00/008, February 2002. Original Source:
Adapted from Residential End Uses of Water, by permission. Copyright q 1999 American Water Works Association and AWWA Research Foundation, www.awwa.org.
Table 7E.44 Household End Use of Water with and without Conservation Without Conservation Type of Use Toilets Clothes washers Showers Faucets Leaks Baths Dish washers Total indoor water use
With Conservation
Amount (gpcd)
Percent of Total (%)
Amount (gpcd)
Percent of Total (%)
Savings (%)
18.3 14.9 12.2 10.3 6.6 1.2 1.1 64.6
28.4 23.1 18.8 16.0 10.2 1.9 1.6 100
10.4 10.5 10.0 10.0 1.5 1.2 1.1 44.7
23.2 23.4 22.4 22.5 3.4 2.7 2.4 100
44 30 18 2 77 0 0 31
Note: These data are provided for illustrative purposes only and may not be applicable to a given situation. To the extent practical, planners use system-specific assumptions and estimates. gpcd, gallons per capita per day. Source: From USEPA, 1998 Water Conservation Plan Guidelines, August 6, 1998. Original Source: From AWWA Waterwiser, “Household End Use of Water without and with Conservation,” 1997 Residential Water Use Summary — Typical Single Family Home. With permission (waterwiser.org/wateruse/tables.htm.) q 2006 by Taylor & Francis Group, LLC
WATER USE
7-105
Table 7E.45 Potential Water Savings from Efficient Fixtures Fixturea
Fixture Capacityb
Water Use (gpd) Per Capita
Water Savings (gpd)
2.7-Person Household
2.7-Person Household
Per Capita
Toiletsc Efficient Low-flow Conventional Conventional Showerheadsd
1.5 gallons/flush 3.5 gallons/flush 5.5 gallons/flush 7.0 gallons/flush
6.0 14.0 22.0 28.0
16.2 37.8 59.4 75.6
na 8.0 16.0 22.0
na 21.6 43.2 59.4
Efficient Low-flow Conventional Faucetse
2.5 [1.71 gal/min 3.0 to 5.0 f2.61 gal/min 5.0 to 8.0 [3.4] gal/min
8.2 12.5 16.3
22.1 33.8 44.0
na 4.3 8.1
na 11.7 22.0
Efficient 2.5 [1.7] gal/min Low-flow 3.0 [2.0] gal/min 3.0 to 7.0 [3.3] gal/min Conventional Toilets, Showerheads, and Faucets Combined
6.8 8.0 13.2
18.4 21.6 36.6
na 1.2 6.4
na 3.2 17.2
Efficient Low-flow Conventional
21.0 34.5 54.5
56.7 93.2 147.2
na 13.4 33.5
na 36.4 90.4
na na na
Note: naZnot applicable a EfficientZpost-1994 Low-flowZpost-1980 ConventionalZpre-1980 b For showerheads and faucets: maximum rated fixture capacity (measured fixture capacity). Measured fixture capacity equals about twothirds the maximum. c Assumes four flushes per person per day; does not include losses through leakage. d Assumes 4.8 shower-use-minutes per person per day. e Assumes 4.0 faucet-use-minutes per person per day. Source:
From United States Environmental Protection Agency, 1998, Water Conservation Plan Guidelines, August 6, 1998, www.epa.gov.
Original Source: From Amy Vickers, “Water Use Efficienty Standards for Plumbing Fixtures: Benefits of National Legislation,” American Water Works Association Journal. Vol. 82 (May 1990): 53.
q 2006 by Taylor & Francis Group, LLC
7-106
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7E.46 Various Water Requirements in Developing Countries Category
Typical Water Use
Schools Day schools Boarding schools Hospitals (with laundry facilities) Hostels Restaurants Cinema houses, concert halls Offices Railway and bus stations Livestock Cattle Horses and mules Sheep Pigs Poultry Chicken Source:
25–35 L/day per head 20–25 L/day per head 15–25 L/day per head 10–15 L/day per head 15–25 L/day per 100
From Vigneswaran, S., 1995, Water Treatment Processes: Simple Options, CRC Press, Inc., Boca Raton.
Original Source: IRC, 1981.
q 2006 by Taylor & Francis Group, LLC
15–30 L/day per pupil 90–140 L/day per pupil 220–300 L/day per bed 80–120 L/day per resident 65–90 L/day per seat 10–15 L/day per seat 25–40 L/day per person 15–20 L/day per user
WATER USE
7-107
Table 7E.47 Water Requirements for Various Types of Establishments in the United States Types of Establishments
Gal/day
Airports (per passenger) Apartments, multiple family (per resident) Bath houses (per bather) Camps: Construction, semipermanant (per worker) Day with no meals served (per camper) Luxury (per camper) Resorts, day and night, with limited plumbing (per camper) Tourist with central bath and toilet facilities (per person) Cottages with seasonal occupancy (per resident) Courts, tourist with individual bath units (per person) Clubs: Country (per resident member) Country (per nonresident member) Dwelling: Boardinghouse (per boarder) Luxury (per person) Multiple-family apartments (per resident) Rooming houses (per resident) Single family (per resident) Estates (per resident) Factories (gallons per shift) Highway rest area (per person) Hotels with private baths (2 persons per room) Hotels without private baths (per person) Institutions other than hospitals (per person) Hospitals (per bed) Laundaries, self-serviced (gallons per washing, i.e., per customer) Motels with bath, toilet, and kitchen facilities (per bed space) With bed and toilet (per bed space) Parks: Overnight with flush toilets (per camper) Trailers with individual bath units, no sewer connections (per trailer) Trailers with individual baths, connected to sewer (per person) Picnic: With bathhouses, showers, and flush toilets (per picnicker) With toilet facilities only (gallons per picnicker) Resturants with toilets facilities (per patron) Without toilet facilities (per patron) With bars and cocktail lounge (additional quantity per patron) Schools: Boarding (per pupil) Day with cafeteria, gymnasiums, and showers (per pupil) Day with cafeteria but no gymnasium or showers (per pupil) Day without cafeteria, gymnasiums, or showers (per pupil) Service stations (per vehicle) Stores (per toilet room) Swimming pools (per swimmer) Theaters (per seat) Workers: Construction (per person per shift) Day (school or offices per person per shift)
3–5 60 10 50 15 100–150 50 35 50 50 100 25 50 100–150 40 60 50–75 100–150 15–30 5 60 50 75–125 250–400 50 50 40 25 25 50 20 10 7–10 2 1/2–3 2 75–100 25 20 15 10 400 10 5 50 15
Source:
q 2006 by Taylor & Francis Group, LLC
From USEPA, 1991, Manual of Individual and Non-Public Water Supply-Systems (EPA 570991004).
7-108
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7F
BOTTLED WATER
Table 7F.48 Consumption of Bottled Water in the United States Ranked by Leading States, 1994–1999 Millions of Gallons State California Texas Florida New York Arizona Massachusetts Illinois Pennsylvania Louisiana Maryland/DC Total Top 10 New Jersey Ohio Connecticut Michigan Colorado Total Top 15 All Others Total U.S.
1999 Rank
1994
1995
1996
1997
1998
1999
1 2 3 4 5 6 7 8 9 10
882.2 290.2 179.9 179.9 107.4 95.8 110.3 87.1 84.2 81.3 2,098.10 66.7 58 40.6 34.8 20.3 2,318.60 583.3 2,901.90
928.1 326.3 202.7 193.2 117.2 104.5 117.2 95 95 91.9 2,271.10 72.9 63.4 44.3 38 25.3 2,515.00 652.5 3,167.50
1,003.70 362.2 231.1 210.4 131.1 110.4 124.2 103.5 103.5 96.6 2,476.60 79.3 69 48.3 41.4 24.1 2,738.70 710.6 3,449.30
1,038.30 400.2 256.8 237.9 143.5 124.6 128.4 113.3 113.3 101.9 2,658.20 86.8 71.7 52.9 45.3 26.4 2,941.30 834.5 3,775.80
1,048.90 451.9 298.5 269.5 153.4 141 136.8 124.8 120.2 111.9 2,857.00 99.5 78.8 62.2 49.8 33.2 3,180.40 965.6 4,146.00
1,130.70 519.2 339.4 303.2 176.1 158.9 156.8 141 136.5 125.4 3,187.20 111.1 88.9 70.5 57.1 40.1 3,554.90 1,091.20 4,646.10
11 12 13 14 15
Note: (r) Revised. Source: From International Bottled Water Association, www.bottledwater.org. Original Source: From Beverage Marketing Corp., www.beveragemarketing.com. Reprinted with permission.
Table 7F.49 Per Capita Consumption of Bottled Water in the United States by Region, 1994–1999 Gallons Per Person Region
1994
1995
1996
1997
1998
1999
Pacific Southwest Northeast South West West Central East Central Total
23.5 17.1 12.4 6.7 5.9 4.8 5 11.3
23.5 18.9 13.3 7.6 6.8 5.2 5.3 12
25.3 20.9 14.1 8.5 7.7 5.8 5.6 13
25.9 22.8 16.1 9.4 8 6.1 5.8 14
27.4 24.7 18.4 10.5 8 6.7 6.5 15.3
29.2 27.7 20.6 11.8 9.6 7.7 7.4 17
Note: (r) Revised. Source: From International Bottled Water Association, www.bottledwater.org. copyright 1999–2004 IBWA. Original Source: From Beverage Marketing Corp., U.S. Bureau of Census, www.beveragemarketing.com. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-109
Table 7F.50 Bottled Water Market Volume, Growth, and Consumption in the United States, 1976–1999 Year
Millions of Gallons
Volume Change (%)
Gallons Per Capita
Annual Change (%)
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
354.3 388.6 468.1 547.2 605 691.1 782.6 910.1 1,058.50 1,214.20 1,365.70 1,554.00 1,777.20 2,029.40 2,237.60 2,286.50 2,422.00 2,623.90 2,901.90 3,167.50 3,449.30 3,775.80 4,146.00 4,646.10
— 9.70 20.50 16.90 10.60 14.20 13.20 16.30 16.30 14.70 12.50 13.80 14.40 14.20 10.30 2.20 5.90 8.30 10.60 9.20 8.90 9.50 9.80 12.10
1.6 1.8 2.1 2.4 2.7 3 3.4 3.9 4.5 5.1 5.7 6.4 7.2 8.2 9 9.1 9.5 10.3 11.3 12 13 14 15.3 17
— — — — — — — — — — — — — — 9.30 1.30 5.10 7.50 9.70 6.80 8.00 8.30 9.20 11.10
Note: (r) Revised. Source: From International Bottled Water Association, www.bottledwater.org. Copyright 2002 International Bottled Water Association. Original Source: From Beverage Marketing Corp., U.S. Bureau of Census, www.beveragemarketing.com. Reprinted with permission.
Table 7F.51 Consumption of Bottled Water in the United States by Type of Water, 1993–2003(P) Nonsparkling a
Sparkling a
Year
Volume
Change (%)
Volume
Change (%)
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003(P)
2,422.20 2,687.60 2,965.60 3,224.30 3,491.40 3,823.80 4,286.30 4,622.40 5,104.20 5,677.50 6,115.80
8.70 11.00 10.30 8.70 8.30 9.50 12.10 7.80 10.40 11.20 7.70
174.7 174.8 164.2 159 153.8 146.1 146 144.2 144 149.5 149.5
1.40 0.10 K6.10 K3.20 K3.30 K5.00 K0.10 K1.20 K0.10 3.80 0.00
Imports a
Volume 92.5 104 97.1 111.8 149.1 160.8 151.1 137.8 123.9 123.7 129.7
Total a
Change (%)
Volume
Change (%)
7.20 12.40 K6.60 15.10 33.40 7.80 K6.00 K8.80 K10.10 K0.20 4.90
2,689.40 2,966.40 3,226.90 3,495.10 3,794.30 4,130.70 4,583.40 4,904.40 5,372.10 5,950.70 6,395.00
8.20 10.30 8.80 8.30 8.60 8.90 11.00 7.00 9.50 10.80 7.50
Note: (P) Preliminary. a Millions of gallons. Source: From International Bottled Water Association, www.bottledwater.org. Original Source: From Beverage Marketing Corp., www.beveragemarketing.com. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
7-110
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7F.52 Bottled Water Volume Producer Revenues and Per Capita Consumption in the United States, 1993–2003(P) Year
Millions of Gallons
Annual Change (%)
Millions of Dollars
Annual Change (%)
Gallons Per Capita
Annual Change (%)
2,689.40 2,966.40 3,226.90 3,495.10 3,794.30 4,130.70 4,583.40 4,904.40 5,372.10 5,950.70 6,395.00
8.20 10.30 8.80 8.30 8.60 8.90 11.00 7.00 9.50 10.80 7.50
$2,876.70 $3,164.30 $3,521.90 $3,835.40 $4,222.70 $4,666.10 $5,314.70 $5,809.00 $6,880.00 $7,725.00 $8,277.20
8.20 10.00 11.30 8.90 10.10 10.50 13.90 9.30 18.40 12.30 7.10
10.5 11.5 12.2 13.1 14.1 15.3 16.8 17.8 19.3 21.2 22.6
— 9.40 6.40 7.40 7.40 8.30 10.00 6.00 8.50 9.80 6.30
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003(P) Note: (P) Preliminary.
Source: From International Bottled Water Association, www.bottledwater.org. Original Source: From Beverage Marketing Corp., www.beveragemarketing.com. Reprinted with permission.
Table 7F.53 Global Bottled Water Market, Leading Countries’ Consumption and Compound Annual Growth Rates 1998–2003(P) 2003 Rank 1 2 3 4 5 6 7 8 9 10
Millions of Gallons Countries
1998
2003(P)
CAGR 1998/03(P) (%)
United States Mexico Brazil China Italy Germany France Indonesia Thailand Spain Top 10 Subtotal All Others World Total
4,130.70 2,873.00 1,251.80 934.6 2,038.70 2,169.10 1,733.20 722.2 1,014.40 981.1 17,848.80 5,340.70 23,189.50
6,395.00 4,354.70 2,840.10 2,805.80 2,791.00 2,727.20 2,351.40 1,963.30 1,302.50 1,213.90 28,744.90 9,278.40 38,023.30
9.10 8.70 17.80 24.60 6.50 4.70 6.30 22.10 5.10 4.40 10.00 11.70 10.40
Note: (P) Preliminary. CAGR, Compound annual growth rate. Source: From International Bottled Water Association, www.bottledwater.org. Original Source: From Beverage Marketing Corp., www.beveragemarketing.com. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-111
Table 7F.54 Global Bottled Water Market, Per Capita Consumption by Leading Countries 1998–2003(P) Gallons Per Capita
2003 Rank
Countries
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Italy Mexico France United Arab Emirates Belgium-Luxembourg Germany Spain Switzerland Lebanon Saudi Arabia Cyprus Austria United States Czech Republic Portugal Global Average
1998
2003(P)
35.9 29.2 29.5 28.1 30.7 26.4 25.1 23.8 16.2 18.9 17.2 19.8 15.3 15.4 17.2 3.9
48.1 41.5 39.1 38.1 35.1 33.1 30.2 25.4 25.3 23.3 22.8 22.7 22.6 22.2 20.6 6
Note: (P) Preliminary. Source: From International Bottled Water Association, www.bottledwater.org. Original Source: From Beverage Marketing Corp., www.beveragemarketing.com. Reprinted with permission.
Table 7F.55 Bottled Water Consumption by Country in North America and South America, 1997–2002 Year (1000 m3) Region North America North America South America North America South America South America South America South America South America South America South America South America North America
Country United States Mexico Brazil Canada Argentina Colombia Venezuela, Republic of Bolivia Peru Chile Paraguay Uruguay Nicaragua Cuba
1997
1998
1999
2000
2001
2002(P)
14,361.6 10,484.1 3,931.7 541.2 568.9 562.8 201.6
15,634.8 10,882.5 4,741.7 650.5 575.2 579.0 220.9
17,348.2 11,579.0 5,658.3 754.6 594.2 560.0 230.3
18,563.2 12,424.3 6,816.6 847.9 598.9 549.0 247.9
20,534.8 13,244.3 8,166.3 938.6 600.1 548.4 263.3
22,893.4 14,767.4 9,628.1 1,027.3 603.1 556.7 289.6
75.6 66.8 46.2 17.3 13.2 10.7
80.9 80.6 50.2 18.7 14.5 12.0
89.1 88.6 53.5 20.5 15.7 13.2
103.5 95.8 56.9 21.9 17.2 14.9
118.0 103.8 60.6 23.2 19.0 16.8
132.1 113.0 64.5 24.5 20.4 18.7
Note: (P) Preliminary. Not all of the water put into a water system reaches customers or is paid for by water users. This water is typically called “unaccounted-for water,” but it is measured and define in a variety of ways. Many in the water industry consider all water that is not metered and billed to customer accounts to be unaccounted-for water. High rates of unaccounted-for water result in financial losses and poor performance of the water agency. Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC. Original Source: Data were provided by the Beverage Marketing Corporation (BMC) to the author in 2003 and were used with permission, www.worldwater.org. q 2006 by Taylor & Francis Group, LLC
7-112
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7F.56 Bottled Water Consumption by Country in Europe, 1997–2002 Year (1000 m3) Region Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe Europe
Country Italy Germany France Spain Turkey Poland Russian Federation United Kingdom Belgium-Luxembourga Czech Republic Portugal Romania Switzerland Austria Hungary Greece Ukraine Netherlands Croatia Slovakia Bulgaria Sweden Slovenia Ireland Norway Denmark Finland Cyprus Lithuania Estonia Latvia
1997
1998
1999
2000
2001
2002(P)
7,558.5 8,207.2 6,053.1 3,542.6 931.7 828.6 524.5 724.1 1,213.0 555.1 647.1 406.2 622.7 569.3 202.1 392.8 241.8 248.8 135.8 158.9 53.9 126.8 67.9 50.5 67.3 71.6 45.2 48.4 15.0 15.2 2.4
7,722.5 8,216.2 6,565.2 3,716.1 1,185.4 943.7 610.6 812.8 1,233.6 598.1 645.8 447.6 653.4 610.0 245.0 410.1 274.2 240.7 157.7 161.8 67.2 127.1 80.9 61.5 76.3 72.0 51.0 48.7 17.6 18.5 3.0
8,924.6 8,602.9 6,947.3 3,879.7 1,368.8 1,106.3 790.7 967.5 1,299.0 639.0 705.9 504.4 651.8 605.1 300.4 436.3 315.6 273.3 176.9 168.8 88.1 143.7 93.2 75.1 76.9 71.8 58.3 50.8 20.4 20.9 3.7
9,221.5 8,693.7 7,462.2 4,003.8 1,667.2 1,279.0 967.8 1,071.6 1,262.4 701.5 719.3 553.9 653.6 609.8 397.6 450.3 362.0 286.1 199.9 170.2 112.2 150.8 108.5 83.5 77.2 72.0 62.0 54.9 23.8 23.9 4.6
9,479.9 8,850.2 7,820.4 4,133.9 1,870.6 1,460.6 1,162.4 1,195.9 1,264.9 763.2 735.8 620.9 656.9 631.5 467.2 463.3 420.6 296.1 223.7 173.5 142.1 158.1 124.3 92.4 80.5 72.3 65.6 58.3 28.6 26.8 5.6
9,690.1 8,983.0 8,430.4 4,294.3 2,007.2 1,722.7 1,406.4 1,339.4 1,329.7 820.5 761.1 698.5 668.1 645.4 514.8 483.3 479.1 316.8 247.2 178.2 177.8 164.2 137.9 99.4 82.8 74.1 68.4 62.3 34.6 30.2 6.9
Note: (P) Preliminary. Not all of the water put into a water system reaches customers or is paid for by water users. This water is typically called “unaccounted-for water,” but it is measured and define in a variety of ways. Many in the water industry consider all water that is not metered and billed to customer accounts to be unaccounted-for water. High rates of unaccounted-for water result in financial losses and poor performance of the water agency. Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC. Original Source: Data were provided by the Beverage Marketing Corporation (BMC) to the author in 2003 and were used with permission, www.worldwater.org.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-113
Table 7F.57 Bottled Water Consumption by Country in Asia, 1997–2002 Year (1000 m3) Region Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia Asia
Country China Indonesia Thailand India Japan Korea, Republic of Philippines Pakistan China, Hong Kong SAR Malaysia Viet Nam Singapore Brunei Darussalam Bangladesha Fiji Islandsb
1997
1998
1999
2000
2001
2002(P)
2,750.0 2,261.5 3,567.1 1,047.0 646.6 892.5 727.8 69.3 191.0 137.5 114.9 57.2 9.9 0.0 0.0
3,540.1 2,735.7 3,842.4 1,364.2 789.5 1,008.8 837.2 108.2 222.1 157.9 139.5 63.5 11.1 0.0 0.0
4,610.0 3,435.9 4,063.7 1,681.8 922.7 1,110.3 999.1 157.6 245.4 179.6 159.3 69.7 12.2 0.0 0.0
5,993.0 4,300.3 4,286.2 2,149.7 1,149.0 1,191.5 1,119.0 242.3 271.1 199.1 179.6 75.6 13.6 0.0 0.0
7,605.1 5,121.6 4,539.0 2,667.8 1,230.6 1,273.7 1,213.0 360.3 298.2 217.9 199.9 81.8 14.9 0.0 0.0
9,886.7 6,145.9 4,837.0 3,361.4 1,461.3 1,359.0 1,291.8 547.7 331.1 236.8 219.4 88.2 16.3 0.0 0.0
Note: (P) Preliminary. Not all of the water put into a water system reaches customers or is paid for by water users. This water is typically called “unaccounted-for water,” but it is measured and define in a variety of ways. Many in the water industry consider all water that is not metered and billed to customer accounts to be unaccounted-for water. High rates of unaccounted-for water result in financial losses and poor performance of the water agency. a b
Commercial bottled water essentially does not exist in Bangladesh. Consumption in Fiji is virtually nil, immeasurable in terms of thousands of cubic meters.
Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC. Original Source: Data were provided by the Beverage Marketing Corporation (BMC) to the author in 2003 and were used with permission, www.worldwater.org.
Table 7F.58 Bottled Water Consumption by Country in Africa/Mideast/Oceania, 1997–2002 Year (1000 m3) Region Mideast Oceania Mideast Mideast Mideast Mideast Mideast Africa Mideast Mideast Mideast Mideast Oceania All Others
Country Saudi Arabia Australia Lebanon United Arab Emirates Israel Egypt Kuwait South Africa Qatar Jordan Bahrain Oman Pacific Islandsa
1997
1998
1999
2000
2001
2002(P)
1,297.7 304.2 180.7 229.9 100.2 133.7 68.2 30.9 33.0 27.9 26.7 16.1 10.2 507.9
1,490.1 354.9 214.8 245.3 111.7 145.7 77.5 41.1 38.1 31.1 28.4 18.2 10.9 595.3
1,610.0 389.6 239.8 256.1 132.6 167.7 95.6 57.9 42.8 35.7 31.4 20.3 12.0 737.1
1,769.9 443.3 275.3 269.9 170.3 188.4 112.5 68.8 47.2 40.3 34.1 23.2 12.9 891.0
1,938.0 488.0 309.7 285.2 224.9 208.6 128.4 81.2 51.6 44.4 36.7 26.2 14.0 1,032.7
2,116.3 566.5 346.2 326.4 283.4 234.6 144.0 96.3 56.2 48.5 39.5 29.5 15.1 1,233.6
Note: (P) Preliminary. Not all of the water put into a water system reaches customers or is paid for by water users. This water is typically called “unaccounted-for water,” but it is measured and define in a variety of ways. Many in the water industry consider all water that is not metered and billed to customer accounts to be unaccounted-for water. High rates of unaccounted-for water result in financial losses and poor performance of the water agency. a
Includes the Caroline Islands (Micronesia excluding Palau), the Marshall Islands, and the Northern Marianas (excluding Guam).
Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC. Original Source: Data were provided by the Beverage Marketing Corporation (BMC) to the author in 2003 and were used with permission, www.worldwater.org. q 2006 by Taylor & Francis Group, LLC
7-114
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7F.59 Global Bottled Water Production Volume and Value and Per Capita Consumption, 2000–2003 Production Volume (mil L)
Region 2003
2002
2001
Production Value (mil USD) 2000
Africa & 12,400 11,220 9,200 8,720 Middle East Asia 33,465 30,100 24,030 19,990 Australia 695 650 850 740 Canada 1,490 1,310 920 820 East Europe 9,500 8,330 6,770 6,010 Latin 27,050 26,060 26,950 25,150 America 24,463 23,803 24,414 22,020 U.S.A.a West 44,020 39,970 38,210 36,350 Europe Total 153,083 141,443 131,344 119,800
Per Capita Consumption (L)
2003
2002
2001
2000
2003
2002
2001
2000
2,110
1,825
1,450
1,250
11
10
9
9
7,395 440 650 2,630 3,970
6,490 340 525 2,250 3,800
4,500 400 350 1,500 5,050
3,650 350 310 1,400 5,809
10 35 47 24 51
9 33 41 21 50
7 37 29 17 53
6 33 26 15 50
8,277 20,300
7,724 15,200
14,500 14,500
13,600 14,600
90 112
85 102
74 97
67 93
45,772
38,154
34,227
30,819
a
Beverage Marketing Corporation. Source: From International Council of Bottled Water Associations, Bottled Water Statistics.
Original Source: From Zenith International and Beverage Marketing Corporation, www.icbwa.org. Reprinted with permission.
Table 7F.60 Global Projected Bottled Water Sales Country/Region
1996 Sales (mil L)
Projected 2006 Sales (mil L)
Annual Percentage of Growth (%)
Australia Africa CIS Asia East Europe Middle East South America Pacific Rim Central America North America West Europe Total
500 500 600 1,000 1,200 1,500 1,700 4,000 6,000 13,000 27,000 57,000
1,000 800 1,500 5,000 8,500 3,000 4,000 37,000 25,000 25,000 33,000 143,800
11 4 13 12 14 3 7 18 11 4.5 2.5
Source: From World’s Water 2002–2003, by Peter H. Gleick. Copyright q 2002 Island Press. Reproduced by permission of Island Press, Washington, DC. Original Source: Modified from soc.duke.edu/-s142tm16/World%20Markets.htm. q 2006 by Taylor & Francis Group, LLC
WATER USE
SECTION 7G
q 2006 by Taylor & Francis Group, LLC
7-115
INDUSTRIAL AND COMMERCIAL WATER USE — UNITED STATES
Withdrawals (mill gal/day)
Withdrawals (thousand acre-feet/yr)
By Source and Type Groundwater State
56 4.32 19.8 67 183 23.6 4.13 17 0 216 290 14.5 35.8 132 99.7 226 46.6 95.2 285 9.9 15.9 10.7 110 56.3 118 29.2 31.9 35.5 5.29 6.95 65.3 8.8 145 25.6 6.88 162 6.83 12.1 155
q 2006 by Taylor & Francis Group, LLC
Saline 0 0 0 0.08 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
By Type
Surface Water Total 56 4.32 19.8 67.1 183 23.6 4.13 17 0 216 290 15.4 35.8 132 99.7 226 46.6 95.2 285 9.9 15.9 10.7 110 56.3 118 29.2 31.9 35.5 5.29 6.95 65.3 8.8 145 25.6 6.88 162 6.83 12.1 155
Fresh 777 3.8 0 66.8 5.65 96.4 6.61 42.5 0 74.7 333 0 19.7 259 2,300 11.7 6.74 222 2,400 237 49.9 26.2 589 97.8 124 33.5 29.3 2.6 5 37.9 66.2 1.67 152 267 10.7 645 19.1 183 1,030
Saline 0 3.86 0 0 13.6 0 0 3.25 0 1.18 30 0 0 0 0 0 0 0 0 0 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 777 7.66 0 66.8 19.3 96.4 6.61 45.7 0 75.9 363 0 19.7 259 2,300 11.7 6.74 222 2,400 237 277 26.2 589 97.8 124 33.5 29.3 2.6 5 37.9 66.2 1.67 152 267 10.7 645 19.1 183 1,030
Fresh 833 8.12 19.8 134 188 120 10.7 59.4 0 291 622 14.5 55.5 391 2,400 237 53.3 317 2,680 247 65.8 36.8 698 154 242 62.7 61.3 38.1 10.3 44.9 132 10.5 297 293 17.6 807 25.9 195 1,190
Saline 0 3.86 0 0.08 13.6 0 0 3.25 0 1.18 30 0.85 0 0 0 0 0 0 0 0 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 833 12 19.8 134 202 120 10.7 62.7 0 292 652 15.4 55.5 391 2,400 237 53.3 317 2,680 247 292 36.8 698 154 242 62.7 61.3 38.1 10.3 44.9 132 10.5 297 293 17.6 807 25.9 195 1,190
Fresh 934 9.1 22.2 150 211 135 12 66.6 0 326 698 16.2 62.2 438 2,690 266 59.8 356 3,010 277 73.8 41.3 782 173 271 70.3 68.7 42.7 11.5 50.3 147 11.7 333 329 19.7 905 29.1 218 1,330
Saline 0 4.33 0 0.09 15.3 0 0 3.64 0 1.32 33.6 0.95 0 0 0 0 0 0 0 0 254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total 934 13.4 22.2 150 226 135 12 70.3 0 328 731 17.2 62.2 438 2,690 266 59.8 356 3,010 277 328 41.3 782 173 271 70.3 68.7 42.7 11.5 50.3 147 11.7 333 329 19.7 905 29.1 218 1,330
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania
Fresh
Total
7-116
Table 7G.61 Industrial Self-Supplied Water Withdrawals in the United States, 2000
2.19 50.9 3.16 56.3 244 34.3 2.05 104 138 9.7 83 4.31 11.2 0.22 3,570
0 0 0 0 0.5 5.08 0 0 0 0 0 0 0 0 6.51
2.19 50.9 3.16 56.3 244 39.4 2.05 104 138 9.7 83 4.31 11.2 0.22 3,580
2.09 514 1.96 785 1,200 8.38 4.86 365 439 958 364 1.47 0 3.12 14,900
0 0 0 0 906 0 0 53.3 39.9 0 0 0 0 0 1,280
2.09 514 1.96 785 2,110 8.38 4.86 419 479 958 364 1.47 0 3.12 16,200
4.28 565 5.12 842 1,450 42.7 6.91 470 577 968 447 5.78 11.2 3.34 18,500
0 0 0 0 907 5.08 0 53.3 39.9 0 0 0 0 0 1,280
4.28 565 5.12 842 2,350 47.8 6.91 523 617 968 447 5.78 11.2 3.34 19,700
4.8 633 5.74 944 1,620 47.8 7.75 526 647 1,090 501 6.48 12.5 3.74 20,700
0 0 0 0 1,020 5.69 0 59.7 44.7 0 0 0 0 0 1,440
4.8 633 5.74 944 2,640 53.5 7.75 586 692 1,090 501 6.48 12.5 3.74 22,100
WATER USE
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Note: Figures may not sum to totals because of independent rounding. Source:
From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
7-117
q 2006 by Taylor & Francis Group, LLC
7-118
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.62 Self-Supplied Industrial Withdrawals by Source, 1950–1995 Year
Groundwater Fresh (%)
Groundwater Saline (%)
Groundwater Total (%)
Surface Water Fresh (%)
Surface Water Saline (%)
Surface Water Total (%)
Reclaimed Sewage (%)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
— 93 94 93 88 91 92 89 83 84
— 7 6 7 12 9 8 11 17 16
7 9 17 16 18 24 25 20 26 23
— 82 85 78 83 84 87 84 83 91
— 18 15 22 17 16 13 16 17 9
93 91 83 84 82 76 75 80 74 77
— 0.1 0.2 0.3 0.3 0.4 0.4 0.5 0.3 0.5
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
Table 7G.63 Self-Supplied Industrial Withdrawals and Manufacturing Employment, 1950–1995
Year
Self-Supplied Industrial Withdrawals (bgd)
Industrial Withdrawals Per Capita (gpcd)
Total Manufacturing Employment (1,000s)
Per-Employee Withdrawals (gped)
Employment in Primary Metal Industries (1,000s)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
37.0 39.0 38.0 46.0 47.0 45.0 45.0 30.5 29.9 29.1
246 238 212 237 228 208 196 126 119 109
15,241 16,882 16,796 18,062 19,367 18,323 20,285 19,248 19,076 18,469
2,428 2,310 2,262 2,547 2,427 2,456 2,218 1,585 1,567 1,576
1,276 1,321 1,073 1,243 1,206 1,115 1,140 788 746 713
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-119
Table 7G.64 Commercial Freshwater Use in the United States, 1995 Self-Supplied Withdrawals Source State
Total
Groundwater
Surface Water
4.9 11 21 0.4 77 7.7 25 2.8 0 50 33 45 9.8 16 45 18 4.9 8.0 10 9.8 19 12 16 46 18 13 0 0.3 7.1 12 17 18 136 7.3 0.1 28 6.6 4.4 16 1.5 1.7 6.1 2.0 33 3.8 9.6 28 24 36 17 0.9 1.2 0.1 939
0 0.1 0 100 309 0.9 1.5 0 0 0.2 13 0.4 297 88 48 25 0.3 14 0.7 1.7 14 0 25 20 0 0.5 0 0 14 18 1.2 1.6 65 0.3 0.2 41 16 752 14 0 0 4.1 18 11 0 16 13 0.4 9.2 0 0.6 1.5 0.6 1,950
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware DC Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico Virgin Islands Total
Total Use
4.9 11 21 100 385 8.6 27 2.8 0 50 46 46 306 104 93 43 5.2 22 11 11 33 12 41 66 18 14 0 3 21 30 18 20 200 7.6 0.2 68 23 756 30 1.5 1.7 10 20 44 3.8 26 41 24 46 17 1.6 2.7 0.8 2,890
Public-Supply Deliveries
Withdrawals and Deliveries
Consumptive Use
122 23 135 58 994 101 89 20 50 386 168 47 18 440 119 65 67 23 55 25 85 188 253 103 33 59 26 79 116 21 179 78 409 138 15 355 170 79 218 20 50 21 214 130 115 7.7 152 161 23 111 16 61 3.3 6,690
127 34 155 158 1,380 109 116 22 50 436 215 92 324 544 212 108 72 45 66 37 118 200 294 169 51 73 26 79 137 51 197 97 609 146 15 424 193 835 247 21 52 31 234 174 119 33 193 185 68 128 18 64 4.1 9,590
28 5.1 78 12 259 16 12 2.2 5.0 54 39 43 1.4 44 32 14 38 1.6 8.8 3.7 11 25 31 18 8.6 5.3 9.6 30 24 3.5 7.5 56 61 7.2 2.3 66 18 0.7 11 2.1 7.8 3.1 21 35 35 2.4 23 37 10 26 2.7 19 0.6 1,310
Note: Figures may not add to totals because of independent rounding. All values in million gallons per day. Source: From Salley, W.B. et al., 1998, Estimated use of water in the United States in 1995, U.S. Geological Survey Circular 1200, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
7-120
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.65 Average Rates of Nonresidential Water Use from Establishment Level Data SIC Code
Use Rate (gal/employee day)
Sample Size
Construction General building contractors Heavy construction Special trade contractors
— 15 16 17
31 118 20 25
246 66 30 150
Manufacturing Food and kindred products Textile mill products Apparel and other textile products Lumber and wood products Furniture and fixtures Paper and allied products Printing and publishing Chemicals and allied products Petroleum and coal products Rubber and miscellaneous plastics products Leather and leather products Stone, clay, and glass products Primary metal industries Fabricated metal products Industrial machinery and equipment Electronic and other electrical equipment Transportation equipment Instruments and related products Miscellaneous manufacturing industries
— 20 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
164 469 784 26 49 36 2614 37 267 1045 119 148 202 178 194 68 95 84 66 36
2790 252 20 91 62 83 93 174 211 23 116 10 83 80 395 304 409 182 147 55
Transportation and public utilities Railroad transportation Local and interurban passenger transit Trucking and warehousing U.S. postal service Water transportation Transportation by air Transportation services Communications Electric, gas, and sanitary services
— 40 41 42 43 44 45 47 48 49
50 68 26 85 5 353 171 40 55 51
226 3 32 100 1 10 17 13 31 19
Wholesale trade Wholesale trade—durable goods Wholesale trade—nondurable goods
— 50 51
53 46 87
751 518 233
Retail trade Building materials and garden supplies General merchandise stores Food stores Automotive dealers and service stations Apparel and accessory stores Furniture and homefurnishings stores Eating and drinking places Miscellaneous retail
— 52 53 54 55 56 57 58 59
93 35 45 100 49 68 42 156 132
1044 56 50 90 198 48 100 341 161
Finance, insurance, and real estate Depository institutions Nondepository institutions Security and commodity brokers Insurance carriers Insurance agents, brokers, and service Real Estate Holding and other investment offices
— 60 61 62 63 64 65 67
192 62 361 1240 136 89 609 290
238 77 36 2 9 24 84 5
Services Hotels and other lodging places Personal services Business services
— 70 72 73
137 230 462 73
1878 197 300 243
Category
(Continued) q 2006 by Taylor & Francis Group, LLC
WATER USE
7-121
Table 7G.65
(Continued) SIC Code
Use Rate (gal/employee day)
Sample Size
Auto repair, services, and parking Miscellaneous repair services Motion pictures Amusement and recreation services Health services Legal services Educational services Social services Museums, botanical, zoological gardens Membership organizations Engineering and management services Services, NEC
75 76 78 79 80 81 82 83 84 86 87 89
217 69 110 429 91 821 117 106 208 212 58 73
108 42 40 105 353 15 300 55 9 45 5 60
Public administration Executive, legislative, and general Justice, public order, and safety Administration of human resources Environmental quality and housing Administration of economic programs National security and international affairs
— 91 92 94 95 96 97
106 155 18 87 101 274 112
25 2 4 6 6 5 2
Category
Source: From Mays, L.W. ed., 1996, Water Resources Handbook, Copyright q The McGraw-Hill, Companies, Inc., NY. Reprinted with permission. Original Source:
From Planning and Management Consultants, Ltd. (1994; unpublished data).
Table 7G.66 Selected Commercial and Institutional Unit Use Coefficients CI Category
Unit
Barber shops Beauty shops Bus/rail depots Car washes Churches Golf/swim clubs Bowling alleys Residential colleges Hospitals Hotels Laundromats Laundry Medical offices Motels Drive-in movies Nursing homes New office buildings Old office buildings Jails and prisons Restaurants Drive-in restaurants Night clubs Retail space Elementary schools High schools YMCA/YWCA Service stations Theaters
Chairs Station Square foot Inside square foot Member Member Alley Student Bed Square foot Square foot Square foot Square foot Square foot Car stall Bed Square foot Square foot Person Seat Car stall Person served Sale square foot Student Student Person Inside square foot Seat
Gal/Unit/Day 54.60 269.00 3.33 4.78 0.14 22.20 133.00 106.00 346.00 0.26 2.17 0.25 0.62 0.22 5.33 133.00 0.19 0.14 133.00 24.20 109.00 1.33 0.11 3.83 8.02 33.30 0.25 3.33
Source: From Dziegielewski, B. et al., 2000, Commercial and Institutional End Uses of Water, AWWA. Original Source:
q 2006 by Taylor & Francis Group, LLC
From Crews, J.E. and Miller, M.A., 1983. Forecasting Municipal and Industrial Water Use. IWR Research Report 83R-3. U.S. Army Corps of Engineers, Fort Belvoir, Virginia, www.awwa.org.
7-122
Table 7G.67 Distribution of Commercial Water Use by Category in Selected Cities (Percent of CI Sector Use)
Commercial Users Reporting Year
Buffalo NY 1995
13.26 1.79 13.97 2.18
20.94 10.83 15.81 5.13
Burbank EB- MUD Glendale CA CA CA 1995 1994 1995 11.75 11.37
7.94 30.77 7.09 21.94
13.45 0.45 12.78 5.12
0.90
18.15 0.22 3.41 3.39
0.96
Santa Monica CA 1995
5.45 2.78 5.69 1.57
34.28 0.03 7.59 4.25 0.06
38.55
2.99 0.75 1.10 0.50
7.23 13.07
6.59
2.63
3.91 0.57
0.01
2.17 2.97
Orlando FL 1995
Portland OR 1995
17.53 6.73 12.29
34.86 30.94 9.7 0.8 0.45
31.05 6.82 5.64
San Diego CA 1995
Miami FL 1995
9.36 0.59 3.52 0.24
3.91 2.61 2.53 0.59
3.54 4.97
8.29
4.17
2.89 0.95
2.32 0.45 2.13 2.11
2.48
2.13
9.59
0.26
0.53
0.11
0.06
27.84
0.15
7.77
1.04
0.05
2.26 1.15
1.01
0.42 1.40
0.58
0.15 0.74
1.63 0
2.15 1.17 84.67
1.17 2.31 76.64
0.40 0.05 62.87
0.20 0.01 86.43
0.30 22.77
0.45 46.13
0.38 81.86
79.99
0.77 0.22 75.27
St. Paul MN 1994–95
Santa Rosa CA 1994
Weighted Average 1992–1995
15.96 16.87 13.03 3.12 0.46
28.12 0.25 15.4 0.3
14.80 12.40 9.20 6.15 5.72
11.97 0.21 3.37
7.54 0.43 5.88 4.83
5.48 2.36 1.73 1.15
3.14
4.98
0.44
1.11
1.43
0
0.26
0.72
0.61
0.3 1.12
0.58 0.43
1.23
0.28 0.20 62.28
10.32
2.54 0.33 67.38
1.24 0.16 71.98
66.9
Note: Tabular Valves are in percentages. a b c d e f g h
Hospitality includes restaurant/bar, overnight accommodations, and other group shelter. Office includes finance, insurance, real estate, and government. Irrigation includes parks, gardens, botanical, zoological, cemeteries, and open land. Miscellaneous commercial includes warehousing, warehouse-cold storage, and boat dock. Sales include grocery stores, convenience stores, and dry goods. Services include miscellaneous repair services, crematories, funeral homes, laboratories, and printing. Meeting and recreation include convention center, recreation and theaters, and amusement parks. Landscape includes landscape horticultural service, agriculture, soil preparation, crop services, veterinary, equestrian, livestock, poultry, and game propagation.
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/research/. Original Source: Derived from U.S. Environmental Protection Agency (1997). Table 2.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Hospitalitya Warehousing Officesb Irrigationc Miscellaneous commerciald Salese Servicesf Laundries Vehicle dealers and services Meeting and recreationg Communication and research Landscapeh Transportation and fuels Car wash Passenger terminals Share of Reported CI Use
Austin TX 1992
Customer Category Description Urban irrigation Schools and colleges Hotels and motels Laundries and laundromats Office buildings Hospitals and medical offices Restaurant Food stores Auto shops Membership organizations Car washes a b c d e
Average Annual Daily Use (gpdc)a
Coefficient of Variation in Daily Use (gpdc)b
Percent of Total CI Use (%)
Percent of CI Customers (%)c
Percent Seasonal Use (%)d
Scaled Average Daily Use (gpdc)e
2,596 2,117 7,113 3,290 1,204 1,236
8.73 12.13 5.41 8.85 6.29 78.50
28.48 8.84 5.82 3.95 10.19 3.90
30.22 4.79 1.92 1.38 11.67 4.19
86.90 57.99 23.07 13.35 29.04 23.16
739.0 187.0 414.0 130.0 123.0 48.0
906 729 687 629 3,031
7.69 16.29 7.96 6.42 3.12
8.83 2.86 1.97 1.95 0.82
11.18 5.20 6.74 5.60 0.36
16.13 19.37 27.16 46.18 14.22
80.0 21.0 14.0 12.0 25.0
WATER USE
Table 7G.68 Characteristics of Significant Commercial and Institutional Categories in Five Participating Agencies
gpdc: gallons per day per customer. Coefficient of variation in daily use: The ratio of standard deviation of daily use to average of daily use. Percent of CI customers pertains to CI customers in agencies that have respective category only. Percent seasonal useZ[(total annual use —12!minimum month use]/total annual use. Scaled average daily useZaverage annual daily use in category!percent of total CI use attributed to the category.
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/research/.
7-123
q 2006 by Taylor & Francis Group, LLC
Gross Water Used
Water Discharged
Water Pollutants Abatement
7-124
Table 7G.69 Water Use in Mining and Manufacturing in the United States, 1968–1983, and by Industry Group, 1983
Total
Industry
Percent Untreated
Capital Expenditures (mil dol)
Operating Cost (mil dol)
(NA) 2,300 2,430 2,131 564 3 73
1,365 1,605 1,592 1,037 133 8 116
78.8 54.3 67.3 31.9 39.8 12.5 26.7
(NA) 38 244 189 22 (Z) 14
(NA) 124 201 499 65 1 69
602 378
850 640
476 304
31.1 32.6
131 22
318 46
3,797 4,069 4,632 3,297 529 1,700 438 978 106 12,393 7,323
15,467 15,024 12,992 10,039 648 5 133 86 3 1,899 3,401
(NA)
34,199 23,796 759 29 200 132 3 5,537 6,229
14,276 14,144 11,682 8,914 552 4 116 71 3 1,768 2,980
69.5 56.5 59.7 54.9 64.5 (D) 52.6 63.4 100.0 27.1 67.0
(NA) 511 1,249 819 105 (D) (D) 4 2 66 187
(NA) 866 2,119 3,259 187 5 25 23 4 438 1,013
6,177 328
23,758 875
818 76
5,359 252
699 63
46.2 63.5
165 4
543 37
69
7
101
6
1
6
(D)
(S)
6
602
337
560
155
182
133
75.2
10
38
776 724 523 678
5,885 258 307 335
7,584 356 587 494
2,363 65 120 74
3,523 193 186 261
2,112 61 105 70
58.1 49.2 67.6 61.4
100 33 19 45
421 100 76 108
380 154
1,011 112
2,661 727
153 30
859 82
139 28
67.6 50.0
55 10
171 45
80
15
188
4
11
4
2
7
Quantity (bil gal)
Average per Establishment (mil gal)
Water Intake (bil gal)
1,801 1,687 1,056 1,534 135 16 275
3,694 3,965 3,554 3,328 735 5 119
2,051 2,350 3,366 2,169 5,444 313 433
1,408 1,665 1,473 1,197 170 2 45
555 553
1,452 1,018
2,616 1,841
9,402 10,668 9,605 10,262 2,656 20 761 223 66 600 1,315
35,701 43,413 44,494 33,835 1,406 34 333 218 7 7,436 9,630
260 375
Water Recycledb (bil gal)
c
(D)
Note: Based on establishments reporting water intake of 20 mil gal. This represented 95 percent and 96 percent of the total water use estimated for mining and manufacturing industries. Water intake refers to that which is used/consumed in the production and processing operations and for sanitary services. D, Withheld to avoid disclosing individual company data; NA, Not available; S, Figure does not meet publication standards; Z, Less than $500,000. a b c
Establishments reporting water intake of 20 million gallons or more. These counts do not apply to water pollutants abatement columns for manufacturing in 1983. Refers to water recirculated and water reused. Data estimated; not strictly comparable to other years.
Source: From U.S. Department of Commerce, Statistical Abstract of the United States, 1987. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Mining 1968 1973 1978 1983, total Metal mining Anthracite mining Bituminous coal, lignite mining Oil and gas extraction Nonmetallic minerals, exc. fuels Manufacturing 1968 1973 1978 1983, total Food and kindred products Tobacco products Textile mill products Lumber and wood products Furniture and fixtures Paper and allied products Chemicals and allied products Petroleum and coal products Rubber, misc. plastic products Leather and leather products Stone, clay, and glass products Primary metal products Fabricated metal products Machinery, exc. electrical Electric and electronic equipment Transportation equipment Instruments and related products Miscellaneous manufacturing
Quantity (bil gal)
Establishments Reportinga
WATER USE
Table 7G.70 Mining Water Use in the United States, 2000
Groundwater State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio
Withdrawals (mil gal/day)
Withdrawals, (thousand acre-feet/yr)
By Source and Type
By Type
Surface Water
Total
Fresh
Saline
Total
Fresh
Saline
Total
Fresh
Saline
Total
Fresh
Saline
Total
— 0.01 81.2 0.21 21 — — — —
— 90.4 8.17 0 152 — — — —
— 90.4 89.4 0.21 173 — — — —
— 27.4 4.43 2.57 2.71 — — — —
— 49.5 0 0 0.46 — — — —
— 76.9 4.43 2.57 3.17 — — — —
— 27.4 85.7 2.78 23.7 — — — —
— 140 8.17 0 153 — — — —
— 167 93.8 2.78 177 — — — —
— 30.7 96 3.12 26.6 — — — —
— 157 9.16 0 171 — — — —
— 188 105 3.12 198 — — — —
160 7.75 — — — 4.2 2.49 14 — — — 4.21 — — 6.9 — 4.1 — 5.64 — 0.08 6.12 — — 36.4 — 53.1
0 0 — — — 0 0 0 — — — 0 — — 0 — 0 — 4.55 — 0 0 — — 0 — 0
160 7.75 — — — 4.2 2.49 14 — — — 4.21 — — 6.9 — 4.1 — 10.2 — 0.08 6.12 — — 36.4 — 53.1
57.8 2.05 — — — 78.3 30.3 17.4 — — — 4.1 — — 581 — 12.8 — 122 — 6.72 104 — — 0 — 35.5
0 0 — — — 0 0 0 — — — 0.02 — — 0 — 0 — 0 — 0 0 — — 0 — 0
57.8 2.05 — — — 78.3 30.3 17.4 — — — 4.12 — — 581 — 12.8 — 122 — 6.72 104 — — 0 — 35.5
217 9.8 — — — 82.5 32.8 31.4 — — — 8.31 — — 588 — 16.9 — 128 — 6.8 110 — — 36.4 — 88.5
0 0 — — — 0 0 0 — — — 0.02 — — 0 — 0 — 4.55 — 0 0 — — 0 — 0
217 9.8 — — — 82.5 32.8 31.4 — — — 8.33 — — 588 — 16.9 — 132 — 6.8 110 — — 36.4 — 88.5
244 11 — — — 92.5 36.8 35.2 — — — 9.32 — — 659 — 19 — 143 — 7.62 124 — — 40.8 — 99.2
0 0 — — — 0 0 0 — — — 0.02 — — 0 — 0 — 5.1 — 0 0 — — 0 — 0
244 11 — — — 92.5 36.8 35.2 — — — 9.34 — — 659 — 19 — 148 — 7.62 124 — — 40.8 — 99.2
q 2006 by Taylor & Francis Group, LLC
7-125
(Continued)
(Continued)
Groundwater State
Withdrawals (mil gal/day)
Withdrawals, (thousand acre-feet/yr)
By Source and Type
By Type
Surface Water
Total
Fresh
Saline
Total
Fresh
Saline
Total
Fresh
Saline
Total
Fresh
Saline
Total
2.25 — 162 — — — — 129 8.6 — — — — — 58.8 — — 767
256 — 0 — — — — 504 21.5 — — — — — 222 — — 1,260
258 — 162 — — — — 633 30.1 — — — — — 280 — — 2,030
0.23 — 20.9 — — — — 91.5 17.7 — — — — — 20.7 — — 1,240
0 — 0 — — — — 0 177 — — — — — 0 — — 227
0.23 — 20.9 — — — — 91.5 194 — — — — — 20.7 — — 1,470
2.48 — 182 — — — — 220 26.3 — — — — — 79.5 — — 2,010
256 — 0 — — — — 504 198 — — — — — 222 — — 1,490
258 — 182 — — — — 724 225 — — — — — 301 — — 3,490
2.78 — 205 — — — — 247 29.4 — — — — — 89.1 — — 2,250
287 — 0 — — — — 565 222 — — — — — 248 — — 1,660
290 — 205 — — — — 812 252 — — — — — 338 — — 3,920
Note: Figures may not sum to totals because of independent rounding; —, data not collected. From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Source:
7-126
Table 7G.70
WATER USE
7-127
Table 7G.71 Changes in Manufacturing and Mining Employment and Industrial Withdrawals (Selected States), 1980–1995 State Decreasing Withdrawals/Decreasing Employment New York Pennsylvania Illinois New Jersey California Massachusetts Ohio Connecticut Michigan Increasing Withdrawals/Decreasing Employment Virginia South Carolina West Virginia Oregon Texas
Change in Industrial Withdrawals (mgd)
Change in Manufacturing Employment (employees)
K711 K1,687 K1,217 K1,247 K88 K277 K1,252 K240 K128
K578,907 K465,730 K305,198 K262,443 K265,131 K239,587 K248,244 K177,407 K112,866
112 218 543 635 1,131
K24,057 K26,298 K68,941 9,667 K111,709
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
q 2006 by Taylor & Francis Group, LLC
7-128
Table 7G.72 Water Use by Mineral Industries in the United States, 1983 Gross Water Useda Total
Industry Group and Industry
q 2006 by Taylor & Francis Group, LLC
Quantity (bil gal)
Percent of All Mineral Industries
Water Re-Circulated and Reused (bil gal)
Total (bil gal)
Untreated (bil gal)
Treated (bil gal)
100 22 13 7 (D) (Z) (D) (D) 1 (Z) 1 (Z) (Z) 4 4 4 44 20 23 1 1 (Z) 31 (D) 2 2 (Z) (Z) 6 4 2 (D) (Z) (Z)
1,197.1 170.2 45.7 89.7 (D) 7.3 5.8 1.6 14.4 10.5 3.9 2.2 2.2 45.3 45.3 45.3 601.6 436.6 146.7 18.4 17.5 0.8 377.8 1.3 46.5 39.0 3.3 4.2 123.1 85.1 38.0 (D) 15.0 4.4
100 14 4 7 (D) 1 (Z) (Z) 1 1 (Z) (Z) (Z) 4 4 4 50 36 12 2 1 (Z) 32 (Z) 4 3 (Z) (Z) 10 7 3 (D) 1 (Z)
2,131.1 564.3 375.9 133.7 (D) 5.0 (D) (D) 31.6 5.0 26.6 3.2 3.2 73.3 73.3 73.3 850.1 236.2 604.1 9.8 9.7 0.1 640.2 (D) 16.6 13.9 1.8 0.9 78.3 38.4 39.8 (D) 1.2 7.0
1,036.7 133.0 51.2 17.7 26.6 5.5 4.0 1.5 16.2 11.3 4.9 7.5 7.5 116.2 116.2 116.2 475.6 318.8 (D) (D) 16.7 (D) 304.3 1.0 45.6 39.7 2.6 3.3 67.0 57.3 9.7 (D) 13.4 2.6
331.2 52.8 40.3 (D) 0.7 1.2 (D) (D) 6.6 6.5 (Z) 0.9 0.9 30.5 30.5 30.5 147.5 84.7 (D) (D) 8.1 (D) 99.3 (D) 19.2 15.7 (D) (D) 25.6 23.3 2.3 (D) (D) (D)
705.5 80.2 11.0 (D) 25.9 4.3 (D) (D) 9.7 4.8 4.9 6.5 6.5 85.7 85.7 85.7 328.1 234.1 (D) (D) 8.5 (D) 205.0 (D) 26.4 24.1 (D) (D) 41.4 34.1 7.4 (D) (D) (D)
21 (Z) 4 15
149.6 (D) 26.9 60.2
12 (D) 2 5
535.1 (D) 98.6 429.3
141.3 (D) 12.4 63.4
(D) (D) (D) 0.3
(D) (D) (D) 63.1
Quantity (bil gal)
Percent of All Mineral Industries
1,534 135 15 29 14 28 20 8 42 34 8 16 16 275 275 275 555 312 161 82 67 14 553 3 178 97 46 35 248 215 33 35 11 16
3,328.3 734.5 421.6 223.4 (D) 12.4 (D) (D) 46.0 15.5 30.5 5.4 5.4 118.6 118.6 118.6 1,451.8 672.8 750.7 28.2 27.3 0.9 1,018.1 (D) 63.1 52.9 5.1 5.1 201.4 123.5 77.8 (D) 16.2 11.4
71 10 20 19
684.8 2.7 125.5 489.5
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
All mineral industries Metal mining Iron ores Copper ores Lead and zinc ores Gold and silver ores Gold ores Silver ores Miscellaneous metal ores Uranium-radium-vanadium ores Metallic ores, n.e.c. Anthracite mining Anthracite Bituminous coal and lignite mining Bituminous coal and lignite mining Bituminous coal and lignite Oil and gas extraction Crude petroleum and natural gas Natural gas liquids Oil and gas field services Drilling oil and gas wells Oil and gas field services, n.e.c. Nonmetallic minerals, except fuels Dimension stone Crushed and broken stone, including riprap Crushed and broken limestone Crushed and broken granite Crushed and broken stone, n.e.c. Sand and gravel Construction sand and gravel Industrial sand Clay, ceramic, and refractory minerals Kaolin and ball clay Clay, ceramic, and refractory minerals, n.e.c. Chemical and fertilizer mineral mining Barite Potash, soda, and borate minerals Phosphate rock
Establishments Reporting Water Intake of 20 bil gal or More During 1982 (Number)
Water Dischargedb
Water Intake
17 5 12
(D) (D) (D)
(D) (D) (D)
(D) 0.4 (D)
(D) (Z) (D)
1.4 (D) (D)
Note: D, Withheld to avoid disclosing data for individual companies; Z, Less than half the unit shown; n.e.c., not elsewhere classified. a b
(D) 0.3 (D)
(D) (D) (D)
0.7 (D) (D)
WATER USE
Miscellaneous nonmetallic minerals Talc, soapstone, and pyrophyllite Miscellaneous nonmetallic minerals, n.e.c.
Total gross water used is equal to sum of water intake plus water reciruclated and reused without regard to evaporation. Volume of water discharged may be greater than water intake due to mine water that is drained and discharged.
Source: From 1982 Census of Mineral Industries, U.S. Dept. of Commerce Bureau of the Census, 1985.
7-129
q 2006 by Taylor & Francis Group, LLC
7-130
Table 7G.73 Water Use by Manufacturing Industries in the United States, 1983 (Bil Gal) Gross Water Useda Water Intake Establishments Reporting Water Intake of 20 Mil Gal or More During 1982
Industry Group and Industry b
q 2006 by Taylor & Francis Group, LLC
10,262 2,656 552 205 104 217 26 498 17 111 67 40 263 489 52 224 26 36 117 34 119 19 19 10 4 21 32 14 76 61 15 151 35 20 37 44 10 154
33,835.2 1,406.2 119.5 56.5 13.9 47.3 1.8 69.8 1.3 15.2 14.2 2.0 37.0 201.4 21.5 81.3 (D) 7.2 70.4 (D) 147.0 0.9 12.7 (D) (D) 126.9 (D) 1.1 7.6 2.8 4.8 377.2 198.9 76.0 65.3 (D) (D) 103.3
Total 10,038.9 647.7 92.7 44.7 11.3 35.2 1.5 38.8 1.0 10.2 9.5 1.4 16.7 100.1 17.4 30.6 5.6 2.4 40.0 4.1 79.3 0.8 5.9 0.6 0.1 68.3 2.9 0.8 3.0 1.9 1.1 178.7 83.1 62.8 14.6 (D) (D) 34.1
1,310.7 219.0 49.5 16.9 7.8 24.0 0.8 17.9 0.3 3.9 2.4 1.1 10.3 38.6 10.3 13.9 1.8 2.1 8.1 2.5 19.7 0.5 3.6 0.6 0.1 12.9 1.9 0.3 2.3 (D) (D) 12.7 (D) (D) 0.9 2.1 1.0 10.4
Water Re-Circulated and Reused 23,796.3 758.6 26.8 11.8 2.6 12.1 0.3 30.9 0.2 5.1 4.8 0.6 20.3 101.3 4.1 50.7 (D) 4.9 30.4 (D) 67.6 0.1 6.9 (D) (D) 58.6 (D) 0.3 4.6 0.9 3.7 198.5 115.8 13.3 50.7 15.2 3.4 69.2
Total 8,913.7 552.0 85.5 41.9 9.8 32.4 1.4 35.9 0.9 9.3 8.6 1.1 16.0 88.6 13.4 26.3 4.9 1.9 38.8 3.4 74.3 0.5 3.8 0.4 0.1 66.6 2.1 0.7 2.0 1.1 0.9 142.0 63.0 54.9 9.6 (D) (D) 28.9
Untreated 4,889.8 355.8 28.7 14.7 4.1 9.0 0.9 29.4 0.8 6.6 7.1 1.1 13.9 46.7 7.0 13.8 1.8 0.8 21.5 1.8 65.7 (D) (D) (D) 0.1 59.7 1.1 0.6 1.7 1.0 0.8 93.8 40.1 39.1 (D) (D) (D) 18.4
Treated 4,023.9 196.1 56.8 27.2 5.6 23.4 0.6 6.4 0.1 2.7 1.5 0.1 2.1 41.9 6.5 12.5 3.0 1.1 17.3 1.6 8.6 (D) (D) (D) – 7.0 1.1 0.2 0.3 0.1 0.1 48.3 23.0 15.9 (D) (D) 0.3 10.6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
All manufacturing industries Food and kindred productions Meat products Meat packing plants Sausages and other prepared meats Poultry dressing plants Poultry and egg processing Dairy products Creamery butter Cheese, natural and processed Condensed and evaporated milk Ice cream and frozen desserts Fluid milk Preserved fruits and vegetables Canned specialties Canned fruits and vegetables Dehydrated fruits, vegetables, and soups Pickles, sauces, and salad dressings Frozen fruits and vegetables Frozen specialties Grain mill products Flour and other grain mill products Cereal breakfast foods Rice milling Blended and prepared flour Wet corn milling Dog, cat, and other pet food Prepared feeds, n.e.c. Bakery products Bread, cake, and related products Cookies and crackers Sugar and confectionery products Raw cane sugar Cane sugar refining Beet sugar Confectionery products Chocolate and cocoa products Fats and oils
Total
From Public Water System
Water Discharged
2.8 70.4 0.8 6.3 23.0 308.7 (D) 19.5 2.7 17.2 14.3 (D) 71.9 (D) 4.5 (D) (D) (D) (D) 33.9 (D) 332.9 70.9 67.7 2.9 0.5 48.2 (D) 2.8 2.6 (D) 26.2 (D) 62.3 8.9 45.4 8.1 14.1 (D) (D) 40.5 30.2 (D) (D) 25.7 (D) 0.2
1.2 20.1 0.5 2.8 9.5 88.5 53.3 7.3 2.6 10.3 12.3 2.7 32.6 3.0 4.4 (D) 1.2 0.1 (D) 5.3 (D) 132.6 20.7 18.1 2.7 0.5 27.2 0.7 0.9 2.2 0.6 17.2 5.6 39.0 6.8 26.9 5.4 11.3 10.4 1.0 8.1 4.6 1.8 (D) 5.0 1.4 0.2
(D) (D) (D) 0.5 3.0 46.9 32.1 0.8 0.3 1.5 10.9 1.4 20.9 (D) (D) — 0.4 01 8.7 (D) (D) 70.2 (D) 11.0 0.7 (D) 20.6 (D) 08 (D) (D) 13.0 4.1 15.4 1.9 9.2 4.2 8.8 (D) (D) 5.7 3.2 1.4 1.1 2.3 0.2 0.2
1.5 50.4 0.3 3.6 13.5 220.3 (D) 12.1 0.1 6.9 2.0 (D) 39.3 (D) 0.1 30.4 (D) (D) 8.5 28.6 (D) 200.3 50.2 49.6 0.2 0.1 21.0 (D) 1.9 0.4 (D) 9.0 (D) 23.3 2.1 18.5 2.7 2.8 (D) (D) 32.4 25.6 (D) (D) 20.7 (D) —
(D) 18.2 (D) 1.5 7.8 68.2 41.4 6.5 2.3 9.0 6.8 2.3 26.5 (D) 4.3 (D) 0.9 (D) 11.3 4.0 3.1 115.6 17.9 14.5 2.6 0.4 25.3 0.7 0.8 2.1 0.5 16.2 4.9 33.6 6.2 22.5 4.8 9.8 (D) (D) 7.4 4.2 1.6 1.5 4.3 1.4 (D)
(D) 13.5 (D) 0.8 3.3 50.9 30.8 4.7 0.8 (D) 5.1 (D) 20.6 (D) 3.0 (D) 0.8 (D) 7.4 (D) (D) 61.2 13.2 9.4 (D) (D) 15.9 0.7 (D) 1.5 (D) 9.9 2.8 11.5 1.0 7.6 2.8 4.7 (D) (D) 4.0 2.8 0.9 0.4 1.6 0.1 (D)
(D) 4.7 (D) 8 4.5 17.3 10.7 1.8 1.5 (D) 1.7 (D) 5.9 (D) 1.3 (D) 0.1 — 3.8 (D) (D) 54.4 4.7 5.1 (D) (D) 9.3 (Z) (D) 0.7 (D) 6.3 2.1 22.1 5.2 14.9 2.0 5.1 (D) (D) 3.3 1.4 0.7 1.1 2.7 1.2 — (Continued)
q 2006 by Taylor & Francis Group, LLC
7-131
18 60 5 31 40 406 56 20 27 28 247 28 211 10 43 9 24 7 118 20 11 761 69 135 23 12 191 11 20 23 12 89 36 125 27 69 29 65 61 4 77 49 15 11 64 10 4
WATER USE
Cottonseed oil mills Soybean oil mills Vegetable oil mills, n.e.c. Animal and marine fats and oils Shortening and cooking oils Beverages Malt beverages Malt Wines, brandy, and brandy spirits Distilled liquor, except brandy Bottled and canned soft drinks Flavoring extracts and syrups, n.e.c. Miscellaneous foods and kindred products Canned and cured seafoods Fresh or frozen packaged fish Roasted coffee Manufactured ice Macaroni and spaghetti Food preparations, n.e.c. Tobacco products Cigarettes Textile mill products Weaving mills, cotton Weaving mills, manmade fiber and silk Weaving and finishing mills, wool Narrow fabric mills Knitting mills Women’s hosiery, except socks Hosiery, n.e.c. Knit outerwear mills Knit underwear mills Circular knit fabric mills Warp knit fabric mills Textile finishing, except wool Finishing plants, cotton Finishing plants, manmade Finishing plants, n.e.c. Floor covering mills Tufted carpets and rugs Carpets are rugs, n.e.c. Yarn and thread mills Yarn mills, except wool Throwing and winding mills Thread mills Miscellaneous textile goods Felt goods, except woven felts and hats Processed textile waste
7-132
Table 7G.73
(Continued) Gross Water Useda Water Intake
Industry Group and Industry
q 2006 by Taylor & Francis Group, LLC
9 8 22 7 223 9 89 89 78 3 10 64 42 7 8 27 66 26 15 6 11 10 17 13 8 7 600 36 234 151 104 41 16 11 20 12 57
Total (D) (D) (D) (D) 218.2 (D) 168.5 168.5 25.9 (D) 0.4 (D) (D) 0.4 (D) 21.2 6.8 3.6 1.7 (D) (D) (D) (D) (D) (D) (D) 7,435.8 1,020.0 3,908.6 2,353.9 125.2 16.0 26.2 (D) (D) (D) 16.8
Total 0.6 0.3 1.5 (D) 86.0 0.2 68.4 68.4 7.6 0.4 0.3 6.9 9.6 (D) (D) 8.5 3.4 1.9 1.5 0.2 0.6 0.6 0.5 (D) (D) (D) 1,899.3 283.2 1,009.5 538.7 56.5 6.5 5.6 32.1 8.9 3.3 6.6
From Public Water System 0.3 (D) 1.1 0.1 (D) 0.1 (D) (D) 1.9 (Z) 0.1 1.7 (D) — (D) 1.3 2.2 (D) (D) 0.2 (D) (D) 0.5 (D) (D) (D) 257.3 49.1 92.1 107.2 (D) (D) (D) (D) (D) (D) (D)
Water Re-Circulated and Reused (D) (D) (D) (D) 132.2 (D) 100.1 100.1 18.3 (D) 0.1 (D) (D) (D) (D) 12.7 3.4 1.7 0.2 (D) (D) (D) (D) (D) (Z) (Z) 5,536.5 736.8 2,899.0 1,815.2 68.7 9.4 20.6 (D) (D) (D) 10.3
Total 0.6 0.2 1.0 (D) 71.0 0.3 58.9 58.9 4.4 0.4 0.1 3.9 7.3 (D) (D) 6.6 3.3 1.8 1.5 0.2 0.6 0.6 0.5 (D) (D) (D) 1,768.1 282.7 958.2 462.3 55.0 6.2 5.5 (D) 9.4 3.2 5.9
Untreated (D) (D) 0.6 (Z) 44.9 (D) 39.4 39.4 (D) (Z) (D) (D) (D) (D) (D) (D) 2.9 (D) (D) (D) 0.4 0.4 (D) (D) (D) (D) 479.0 45.7 304.3 85.4 36.9 3.7 (D) (D) (D) (D) 4.5
Treated (D) (D) 0.5 (D) 26.1 (D) 19.5 19.5 (D) 0.3 (D) (D) (D) (D) (D) (D) 0.4 (D) (D) (D) 0.2 0.2 (D) (D) (D) (D) 1,289.1 237.0 653.9 377.0 18.1 2.4 (D) (D) (D) (D) 1.4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Coated fabrics, not rubberized Tire cord and fabric Nonwoven fabrics Textile goods, n.e.c. Lumber and wood products Logging camps and logging contractors Sawmills and planning mills Sawmills and planning mills, general Millwork, plywood, and structural members Millwork Hardwood veneer and plywood Softwood veneer and plywood Miscellaneous wood products Wood preserving Particleboard Wood products, n.e.c. Furniture and fixtures Household furniture Wood household furniture Metal household furniture Office furniture Metal office furniture Partitions and fixtures Metal partitions and fixtures Miscellaneous furniture and fixtures Drapery hardware and blinds and shades Paper and allied products Pulp mills Paper mills, except building paper Paperboard mills Miscellaneous converted paper products Paper coating and glazing Bags, except textile bags Pressed and molded pulp goods Sanitary paper products Converted paper products, n.e.c. Paperboard containers and boxes
Establishments Reporting Water Intake of 20 Mil Gal or More During 1982
Water Discharged
6.2 0.9 (D) (D) 11.3 9,630.1 2,164.0 287.0 492.4 96.0 1,289.1 1,435.7 580.5 236.6 133.4 485.2 240.1 3.3 122.9 113.8 103.6 42.0 (D) (D) (D) 3.5 4,122.3 (D) (D) 3,765.5 1,381.4 757.4 559.0 64.9 178.9 (D) 53.4 (D) 93.6 6,177.3 6,170.3 4.9 1.8 3.0 2.2 (D) (D)
4.1 0.4 0.9 1.1 4.8 3,400.7 885.0 157.4 18.6 48.9 660.1 427.1 132.7 62.9 71.7 159.9 90.5 0.8 55.3 34.4 64.8 16.6 (D) (D) 2.3 2.1 1,515.9 (D) (D) 1,467.6 305.0 70.5 216.1 18.4 110.3 (D) (D) 1.6 63.3 818.4 814.4 2.6 0.8 1.8 1.4 0.2 1.3
04 0.4 0.4 (D) (D) 210.5 57.0 (D) 8.9 (D) 28.6 23.4 16.0 (D) (D) 4.1 19.9 0.8 5.3 13.9 8.5 4.3 (D) 1.3 (D) 1.5 78.6 (D) 7.0 (D) 14.5 12.1 (D) (D) 7.1 0.6 — (D) 5.8 137.7 135.9 1.0 (D) (D) 0.8 0.2 0.6
2.1 0.5 (D) (D) 6.5 6,229.4 1,279.6 129.6 473.8 47.1 629.0 1,008.6 447.9 173.7 61.7 325.3 149.6 2.5 67.7 79.4 38.8 25.4 (D) 8.0 (D) 1.4 2,606.4 21.3 287.2 2,297.9 1,076.4 686.9 342.9 46.5 68.6 (D) (D) (D) 30.3 5,358.9 5,355.9 2.3 1.0 1.3 0.7 (D) (D)
(D) 0.4 0.9 (D) 3.9 2,979.8 758.4 142.9 11.9 49.5 554.0 391.7 108.0 58.5 67.6 157.5 87.1 0.5 54.9 31.6 61.2 14.3 3.8 (D) (D) 2.1 1,381.0 6.5 30.9 1,343.5 202.7 45.2 142.2 15.3 95.7 (D) (D) 0.3 52.4 699.3 695.1 3.3 1.9 1.4 0.9 0.1 07
(D) 0.3 0.8 (D) 2.2 1,996.3 556.3 40.8 7.3 26.0 482.2 277.0 62.3 (D) (D) 123.1 55.8 0.3 (D) (D) 53.7 (D) (D) (D) (D) 1.7 815.2 (D) (D) 798.5 154.6 (D) (D) (D) 82.0 (D) (D) (D) (D) 323.4 321.0 (D) (D) (D) (D) (D) (D)
(D) 0.1 (Z) (D) 1.7 983.6 202.1 102.1 4.6 23.5 71.9 114.6 45.8 (D) (D) 34.3 31.3 0.2 (D) (D) 7.5 (D) (D) (D) (D) 0.3 565.8 (D) (D) 545.0 48.1 (D) (D) (D) 13.7 0.9 (D) (D) (D) 375.9 374.1 (D) (D) (D) (D) (D) (D) (Continued)
q 2006 by Taylor & Francis Group, LLC
7-133
17 21 14 5 18 1,315 301 32 76 22 171 206 143 22 7 34 112 17 23 72 108 32 22 25 29 41 296 10 75 211 116 59 34 18 135 31 13 14 73 260 202 39 15 24 19 7 12
WATER USE
Folding paperboard boxes Corrugated and solid fiber boxes Sanitary food containers Fiber cans, drums, and similar products Building paper and board mills Chemicals and allied products Industrial inorganic chemicals Alkalies and chlorine Industrial gases Inorganic pigments Industrial inorganic chemicals, n.e.c. Plastics materials and synthetics Plastics materials and resins Synthetic rubber Cellulosic manmade fibers Organic fibers, noncellulosic Drugs Biological products Medicinals and botanicals Pharmaceutical preparations Soaps, cleaners, and toilet goods Soap and other detergents Polishes and sanitation goods Surface active agents Toilet preparations Paints and allied products Industrial organic chemicals Gum and wood chemicals Cyclic crudes and intermediates Industrial organic chemicals, n.e.c. Agricultural chemicals Nitrogenous fertilizers Phosphatic fertilizers Agricultural chemicals, n.e.c. Miscellaneous chemical products Adhesives and sealants Explosives Carbon black Chemical preparations, n.e.c. Petroleum and coal products Petroleum refining Paving and roofing materials Paving mixtures and blocks Asphalt felts and coatings Miscellaneous petroleum and coal products Lubricating oils and greases Petroleum and coal products, n.e.c.
7-134
Table 7G.73
(Continued) Gross Water Useda Water Intake
Industry Group and Industry
q 2006 by Taylor & Francis Group, LLC
Total
Total
From Public Water System
Water Re-Circulated and Reused
Total
Untreated
Treated
375
327.8
76.0
27.4
251.8
62.6
39.8
22.8
47 3 24 82 219 69 65 602 16 120 75 45 26 100 10 4 5 30 9 5 11 160 20 65 23 51 15 125 17 13 12 22 42 12 7 776
121.5 0.1 58.0 26.8 121.4 6.5 (D) 336.7 20.9 92.2 38.3 53.9 (D) 115.2 (D) (D) (D) 2.1 (D) 0.4 0.9 16.7 (D) 4.5 7.0 4.3 (D) 70.4 (D) 8.2 3.6 22.2 27.4 2.4 (D) 5,885.2
(D) 0.1 (D) 8.3 41.9 6.1 (D) 154.7 4.8 13.3 7.1 6.2 7.2 80.0 1.4 (D) (D) 1.5 0.5 0.3 0.6 10.8 (D) 2.1 4.3 3.7 1.1 34.5 3.5 1.8 1.8 18.7 6.2 2.0 0.5 2,362.5
4.2 (Z) 3.0 4.6 15.6 2.7 (D) 24.0 (D) 8.7 4.0 4.7 (D) 2.4 0.8 — — 1.1 0.3 0.3 0.4 2.7 0.1 0.7 (D) (D) 0.5 (D) 1.0 0.8 0.5 0.8 (D) 0.3 (D) 108.7
(D) (Z) (D) 18.4 79.5 0.4 0.4 181.9 16.0 78.9 31.2 47.7 (D) 35.2 (D) (D) (D) 0.6 (D) 0.1 0.3 5.8 (D) 2.4 2.8 0.6 (D) 35.9 (D) 6.3 1.7 3.5 21.2 0.3 (D) 3,522.8
16.5 0.1 5.0 7.4 33.6 5.7 (D) 132.8 4.7 11.4 5.9 5.5 7.1 68.7 0.7 (D) (D) 1.1 0.4 0.3 0.4 6.5 0.3 1.5 3.2 1.5 1.1 31.5 3.5 1.4 0.9 18.8 4.4 2.0 0.5 2,112.0
8.2 0.1 (D) (D) 22.9 (D) (D) 99.5 (D) 7.1 3.8 3.3 (D) 58.6 0.5 (D) (D) 0.5 0.1 0.1 0.3 3.9 (D) 1.0 (D) 1.0 (D) 22.7 2.6 1.0 0.6 (D) 2.7 (D) (D) 1,227.9
8.3 (Z) (D) (D) 10.8 (D) (D) 33.3 (D) 4.3 2.1 2.2 (D) 10.1 0.2 (D) (D)/ 0.6 0.3 0.2 0.2 2.7 (D) 0.4 (D) 0.5 (D) 8.7 0.9 0.3 0.2 (D) 1.7 (D) (D) 884.1
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Rubber and miscellaneous plastics products Tires and inner tubes Rubber and plastics footwear Rubber and plastics hose and belting Fabricated rubber products, n.e.c. Miscellaneous plastics products Leather and leather products Leather tanning and finishing Stone, clay, and glass products Flat glass Glass and glassware, pressed or blown Glass containers Pressed and blown glass, n.e.c. Products of purchased glass Cement, hydraulic Structural clay products Ceramic wall and floor tile Clay refractories Pottery and related products Vitreous plumbing fixtures Vitreous china food utensils Porcelain electrical supplies Concrete, gypsum, and plaster products Concrete products, n.e.c. Ready-mixed concrete Lime Gypsum products Cut stone and stone products Miscellaneous nonmetallic mineral products Abrasive products Asbestos products Gaskets, packing, and sealing devices Minerals, ground or treated Mineral wool Nonclay refractories Nonmetallic mineral products, n.e.c. Primary metal industries
Establishments Reporting Water Intake of 20 Mil Gal or More During 1982
Water Discharged
4,990.5 4,908.4 11.3 4.5 18.0 48.3 218.1 200.8 (D) (D) 7.4 417.1 77.0 5.1 18.7 (D) (D) 13.5 213.2 43.8 93.5 9.1 12.0 30.6 24.3 15.5 14.2 (D) (D) 17.3 1.9 15.4 257.9 62.1 (D) (D) 30.8 (D) (D) (D) (D) 3.7 (D) (D) (D) 28.3 (D)
2,077.6 2,038.9 1.2 2.1 11.3 24.1 69.1 63.0 (D) (D) 4.2 125.6 (D) 0.7 7.2 67.8 (D) 3.7 79.9 18.6 37.0 3.9 7.1 6.6 6.8 2.4 1.7 0.2 0.5 4.1 1.5 2.6 65.4 6.6 6.2 0.4 14.9 (D) 1.0 0.4 (D) 3.0 0.6 2.1 0.3 7.0 1.2
62.2 53.9 0.4 1.4 1.4 5.2 22.6 18.8 1.4 0.4 2.0 3.6 (D) (D) 0.5 1.1 0.5 1.3 15.7 5.2 2.1 2.6 0.5 3.0 2.5 1.6 1.2 (D) (D) 1.8 1.3 0.4 38.1 5.6 5.2 0.4 4.0 0.2 0.8 (D) (D) 2.5 (D) (D) 0.3 4.4 (D)
2,912.9 2,869.5 10.1 2.5 6.7 24.1 149.0 137.8 (D) (D) 3.2 291.4 (D) 4.4 11.5 (D) 0.8 9.8 133.3 25.2 56.4 5.3 4.9 24.0 17.5 13.1 12.5 (D) (D) 13.2 0.4 12.8 192.5 55.5 (D) (D) 15.8 (D) (D) (D) (D) 0.7 (D) (D) (D) 21.4 (D)
1,868.1 1,.829.8 1.5 2.1 11.0 23.7 51.5 45.7 1.4 0.5 3.9 111.6 10.6 0.3 (D) 62.9 (D) 3.1 71.4 14.8 34.6 3.7 6.9 4.9 6.5 2.2 (D) (D) 0.5 4.0 1.5 2.6 61.4 6.0 5.6 0.4 14.5 (D) 0.9 (D) 2.9 3.0 0.7 2.1 0.2 6.0 1.1
1,113.7 1,090.9 (D) (D) 5.8 (D) 24.2 18.7 1.4 (D) (D) 51.6 8.0 (D) (D) (D) (D) 2.2 32.9 8.0 12.4 2.1 3.6 1.5 5.3 1.1 (D) (D) 0.1 2.1 0.5 1.6 29.7 1.5 (D) (D) (D) (D) (D) (D) 1.2 (D) (D) (D) 0.2 3.8 (D)
754.3 739.0 (D) (D) 5.2 (D) 27.3 27.0 — (D) (D) 60.0 2.5 (D) (D) (D) (D) 0.9 38.6 6.8 22.2 1.6 3.3 3.4 1.2 1.1 (D) (D) 0.4 1.9 1.0 1.0 31.7 4.4 (D) (D) (D) (D) (D) (D) 1.7 (D) (D) (D) — 2.2 (D) (Continued)
q 2006 by Taylor & Francis Group, LLC
7-135
259 137 13 34 32 43 154 93 7 10 44 71 20 5 5 24 17 34 170 29 23 40 6 26 46 46 29 6 11 42 28 14 724 89 80 9 72 4 28 4 36 25 6 12 7 76 11
WATER USE
Blast furnace and basic steel products Blast furnaces and steel mills Electrometallurgical products Steel wire and related products Cold finishing of steel shapes Steel pipe and tubes Iron and steel foundries Gray iron foundries Malleable iron foundries Steel investment foundries Steel foundries, n.e.c. Primary nonferrous metals Primary copper Primary lead Primary zinc Primary aluminum Primary nonferrous metals, n.e.c. Secondary nonferrous metals Nonferrous rolling and drawing Copper rolling and drawing Aluminum sheet, plate, and foil Aluminum extruded products Aluminum rolling and drawing, n.e.c. Nonferrous rolling and drawing, n.e.c. Nonferrous wire drawing and insulating Nonferrous foundries Aluminum foundries Brass, bronze, and copper foundries Nonferrous foundries, n.e.c. Miscellaneous primary metal products Metal heat treating Primary metal products, n.e.c. Fabricated metal products Metal cans and shipping containers Metal cans Metal barrels, drums, and pails Cutlery, hand tools, and hardware Cutlery Hand and edge tools, n.e.c. Hand saws and saw blades Hardware, n.e.c. Plumbing and heating, except electric Metal sanitary ware Plumbing fittings and brass goods Heating equipment, except electric Fabricated structural metal product Fabricated structural metal
7-136
Table 7G.73
(Continued) Gross Water Useda Water Intake
Industry Group and Industry
q 2006 by Taylor & Francis Group, LLC
10 30 11 5 8 49 5 44 122 36 6 42 4 34 138 126 12 35 7 14 6 8 118 4 54 4 8 11 9 28 523 47 35 41 28 13 69 31 8
Total (D) 22.2 0.7 (D) 1.6 8.4 (D) (D) 81.5 12.0 3.7 62.4 0.3 3.1 7.8 (D) (D) 9.5 (D) (D) (D) (D) 25.8 (D) 10.4 0.9 (D) (D) 0.2 (D) 306.5 66.2 (D) 40.1 39.2 0.9 51.2 42.6 0.3
Total 0.6 4.0 0.3 (D) 0.6 2.8 0.1 2.7 10.1 2.8 1.4 3.3 0.3 2.3 6.9 6.0 0.9 6.7 1.4 2.2 0.8 2.3 7.5 0.2 2.9 0.1 0.2 1.7 0.2 2.2 120.0 32.0 (D) 32.8 32.1 0.7 11.4 10.3 (D)
From Public Water System 0.6 2.6 0.2 (D) — 1.8 0.1 1.7 8.0 2.3 1.4 2.8 (D) (D) 4.8 (D) (D) 2.7 (D) (D) (D) 1.7 4.3 0.2 2.0 0.1 0.2 (D) 0.1 (D) 52.5 (D) 3.8 (D) (D) (D) 3.5 (D) (D)
Water Re-Circulated and Reused (D) 18.2 0.4 — 1.0 5.6 (D) (D) 71.5 9.2 2.3 59.2 — 0.8 1.0 (D) (D) 2.8 (D) (D) (D) (D) 18.3 (D) 7.4 0.8 (D) (D) (Z) (D) 186.4 34.1 (D) 7.3 7.1 0.2 39.8 32.3 (D)
Total 0.6 3.3 0.3 (D) 0.6 2.7 0.1 2.6 9.7 2.8 1.4 3.0 0.3 2.2 6.7 5.8 0.9 6.0 1.2 2.0 0.8 2.0 6.8 (D) 2.8 0.1 0.2 1.4 (D) 2.1 104.9 20.7 (D) 32.0 31.3 0.7 11.8 10.8 0.1
Untreated 0.2 1.7 0.2 (D) (D) 1.6 (D) (D) 7.7 1.9 1.1 (D) (D) 1.7 2.9 2.6 0.3 3.5 (D) 0.7 (D) 1.6 (D) (D) 2.1 (D) (D) 1.0 (D) (D) 71.2 12.8 (D) (D) (D) (D) 6.8 6.2 0.1
Treated 0.3 1.6 0.1 (D) (D) 1.1 (D) (D) 2.1 0.9 0.3 (D) (D) 0.5 3.8 3.2 0.5 2.6 (D) 1.3 (D) 0.4 (D) (D) 0.7 (D) (D) 0.4 (D) (D) 33.8 7.9 (D) (D) (D) (D) 5.1 4.6 (Z)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Metal doors, sash, and trim Fabricated plate work (boiler shops) Sheet metal work Prefabricated metal buildings Miscellaneous metal work Screw machine products, bolts, etc. Screw machine products Bolts, nuts, rivets, and washers Metal forgings and stampings Iron and steel forgings Nonferrous forgings Automotive stampings Crowns and closures Metal stampings, n.e.c. Metal services, n.e.c. Plating and polishing Metal coating and allied services Ordnance and accessories, n.e.c. Small arms ammunition Ammunition, except for small arms, n.e.c. Small arms Ordnance and accessories, n.e.c. Miscellaneous fabricated metal products Steel springs, except wire Valves and pipe fittings Wire springs Miscellaneous fabricated wire products Metal foil and leaf Fabricated pipe and fittings Fabricated metal products, n.e.c. Machinery, except electrical Engines and turbines Internal combustion engines, n.e.c. Farm and garden machinery Farm machinery and equipment Lawn and garden equipment Construction and related machinery Construction machinery Mining machinery
Establishments Reporting Water Intake of 20 Mil Gal or More During 1982
Water Discharged
(D) (D) 3.2 (D) (D) (D) (D) (D) (D) (D) (D) (D) 38.5 (D) 26.5 (D) (D) (D) 1.1 (D) 39.7 (D) (D) 32.5 (D) (D) (D) 18.3 17.8 0.5 334.8 (D) (D) 3.3 18.5 6.7 (D) 0.4 9.8 (D) 24.1 2.8 (D) 4.5 1.6 (D) (D)
0.8 4.0 3.0 (D) 0.2 (D) 0.3 6.4 (D) (D) (D) (D) 7.1 1.6 2.6 1.4 (D) 0.4 0.7 0.2 15.0 (D) (D) 9.6 9.2 0.2 (D) 1.7 1.5 0.2 74.1 3.4 1.6 1.9 9.5 4.8 (D) 0.2 3.8 (D) 9.4 1.8 2.6 2.1 1.0 (D) 1.5
(D) 1.8 (D) — 0.2 — 0.2 (D) — (D) — 0.3 4.1 0.8 1.4 1.0 — (D) 0.3 0.2 6.0 — — 8.7 8.4 0.2 — (D) (D) (D) 55.1 3.2 (D) (D) 6.6 (D) — 0.2 3.6 (D) 8.8 1.5 (D) 2.1 (D) — 1.5
(D) (D) 0.2 — (D) (D) (D) (D) (Z) 0.2 (D) (D) 31.4 (D) 23.9 (D) 0.1 (D) 0.4 (D) 24.7 (D) (D) 23.0 (D) (D) — 16.5 16.3 0.2 260.7 (D) (D) 1.4 9.1 2.0 (D) 0.2 6.1 (D) 14.7 1.0 (D) 2.3 0.6 (D) (D)
(D) 3.7 2.7 (D) (D) 0.4 0.3 6.2 0.3 0.1 0.1 (D) 6.1 1.5 2.4 0.7 (D) 0.4 0.7 0.2 13.3 12.3 (D) 9.6 9.3 0.2 0.1 1.5 1.3 0.2 70.3 4.7 2.9 1.8 9.4 5.0 0.6 0.2 3.5 0.1 9.1 1.7 2.5 2.2 0.9 0.2 1.5
(D) 3.6 (D) (D) (D) (D) 0.2 (D) 0.2 0.1 (D) (D) 4.7 1.2 1.7 (D) (D) (D) (D) (D) 12.0 (D) (D) (D) (D) 0.2 0.1 0.8 0.6 0.2 42.5 (D) (D) (D) 7.4 4.5 0.5 0.1 2.2 0.1 5.7 (D) (D) 1.4 0.8 0.1 1.1
(D) 0.2 (D) — — (D) 0.1 (D) (Z) (Z) (D) (D) 1.4 0.3 0.7 (D) (Z) (D) (D) (D) 1.3 (D) (D) (D) (D) — — 0.7 0.7 (Z) 27.8 (D) (D) (D) 1.9 0.5 0.1 (Z) 1.3 — 3.4 (D) (D) 0.9 0.2 0.1 0.4 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-137
21 57 22 3 6 14 10 36 9 5 4 13 101 26 22 15 9 5 15 7 71 57 12 70 61 4 3 31 18 13 678 43 14 29 76 30 18 6 19 3 75 15 11 10 17 4 15
WATER USE
Oil field machinery Metalworking machinery Machine tools, metal cutting types Machine tools, metal forming types Special dies, tools, jigs, and fixtures Machine tool accessories Power driven hand tools Special industry machinery Food products machinery Paper industries machinery Printing trades machinery Special industry machinery, n.e.c. General industrial machinery Pumps and pumping equipment Ball and roller bearings Air and gas compressors Blowers and fans Speed changers, drives, and gears Power transmission equipment, n.e.c. General industrial machinery, n.e.c. Office and computing machines Electronic computing equipment Office machines, n.e.c. and typewriters Refrigeration and service machinery Refrigeration and heating equipment Measuring and dispensing pumps Service industry machinery, n.e.c. Miscellaneous machinery, except electrical Carburetors, pistons, rings, valves Machinery, except electrical, n.e.c. Electric and electronic equipment Electric distributing equipment Transformers Switchgear and switchboard apparatus Electrical industrial apparatus Motors and generators Industrial controls Welding apparatus, electric Carbon and graphite products Electrical industrial apparatus, n.e.c. Household appliances Household cooking equipment Household refrigerators and freezers Household laundry equipment Electric housewares and fans Household vacuum cleaners Household appliances, n.e.c.
7-138
Table 7G.73
(Continued) Gross Water Useda Water Intake
Industry Group and Industry
q 2006 by Taylor & Francis Group, LLC
75 15 15 20 10 5 4 22 12 10 122 26 96 193 19 65 12 8 21 68 72 36 8 13 7 380 194 55 6 130 93 26 34 33 30 30 16
Total
Total
From Public Water System
Water Re-Circulated and Reused
Total
Untreated
Treated
17.8 1.2 2.7 2.8 0.4 (D) (D) (D) 2.6 (D) 61.4 9.2 52.2 166.0 (D) 78.0 (D) (D) 1.5 63.3 26.7
6.9 (D) 2.1 1.7 0.3 0.1 0.2 2.3 1.7 0.6 13.3 3.5 9.8 23.6 2.8 11.6 3.0 0.4 1.4 4.6 5.6
4.2 — 1.4 1.2 0.3 0.1 0.2 (D) (D) (D) 9.1 2.3 6.8 17.6 (D) 9.6 0.5 (D) 0.7 4.1 (D)
10.9 (D) 0.5 1.1 0.1 (D) (D) (D) 0.8 (D) 48.1 5.7 42.4 142.4 (D) 66.4 (D) (D) 0.2 58.7 21.0
6.0 0.8 2.1 1.6 0.3 0.1 (D) 2.4 1.8 0.5 11.7 3.2 8.5 21.9 2.6 10.7 2.9 0.4 1.2 4.2 5.1
4.3 0.6 1.7 1.0 0.2 (D) (Z) (D) (D) (D) 8.3 2.0 6.3 10.3 1.8 3.3 2.4 (D) (D) 1.8 (D)
1.7 0.1 0.4 0.6 0.1 (D) (D) (D) (D) (D) 3.5 1.3 2.2 11.6 0.8 7.3 0.6 (D) (D) 2.4 (D)
(D) 0.6
1.9 0.4
(D) 0.4
(D) 0.3
1.5 (D)
0.7 (D)
0.8 (D)
17.0 (D) 1,011.3 (D) (D) (D) 229.7 (D) 54.2 (D) (D) 27.6 27.6 8.1
2.7 (D) 152.8 66.4 22.6 (D) 43.5 58.4 18.0 (D) (D) 16.3 16.3 3.1
(D) — 82.3 42.8 (D) — 22.0 (D) (D) 6.9 4.2 (D) (D) 2.4
14.2 (D) 858.6 (D) (D) (D) 186.2 (D) 36.2 (D) 21.5 11.3 11.3 5.0
2.7 0.2 139.2 59.6 21.0 0.2 38.4 54.1 (D) (D) 4.5 15.8 15.8 2.8
(D) 0.2 94.0 30.7 (D) (D) 19.2 43.6 (D) (D) (D) 12.6 12.6 1.8
(D) (Z) 45.2 28.9 (D) (D) 19.2 10.5 2.8 (D) (D) 3.2 3.2 1.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Electric lighting and wiring equipment Electric lamps Current-carrying wiring devices Noncurrent-carrying wiring devices Residential lighting fixtures Commercial lighting fixtures Lighting equipment, n.e.c. Radio and TV receiving equipment Radio and TV receiving sets Phonograph records and prerecorded tape Communication equipment Telephone and telegraph apparatus Radio and TV communication equipment Electronic components and accessories Electron tubes, all types Semiconductors and related devices Electronic capacitors Electronic resistors Electronic connectors Electronic components, n.e.c. Miscellaneous electrical equipment and supplies Storage batteries X-ray electromedical, and electrotherapeutic apparatus Engine electrical equipment Electrical equipment and supplies, n.e.c. Transportation equipment Motor vehicles and equipment Motor vehicles and car bodies Truck and bus bodies Motor vehicle parts and accessories Aircraft and parts Aircraft Aircraft engines and engine parts Aircraft equipment, n.e.c. Ship and boat building and repairing Ship building and repairing Railroad equipment
Establishments Reporting Water Intake of 20 Mil Gal or More During 1982
Water Discharged
3 34 17 12 5 10 5 4 154 5 57 10 12 11 14 10 15 40 16 23 25 5 80 28 13 14 8 3 22 8 13 15 7
5.0 30.2 19.7 5.2 5.4 5.3 5.2 (D) 112.0 (D) 21.6 (D) (D) (D) (D) (D) 2.1 4.2 (D) (D) 77.7 (D) 15.4 (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)
1.0 6.5 2.8 3.3 0.4 1.2 1.1 (D) 29.8 0.2 4.2 1.0 0.8 0.4 1.7 0.3 (D) 2.2 (D) 1.4 17.3 (D) 4.3 1.5 (D) 1.0 0.6 (D) 0.8 (D) 0.6 1.2 0.6
0.9 6.0 (D) (D) 0.4 0.9 0.8 — 9.8 (D) 3.2 (D) (D) 0.3 1.3 (D) — (D) — 1.4 (D) — 3.4 1.3 — 1.0 0.3 — (D) — (D) (D) (D)
4.0 23.8 16.9 1.9 4.9 4.1 4.1 — 82.3 (D) 17.4 (D) (D) (D) (D) (D) (D) 2.0 (D) (D) 60.4 (D) 11.1 (D) (D) (D) (D) (D) (D) — (D) (D) (D)
0.9 4.9 2.2 2.3 0.4 1.1 1.0 (Z) 27.6 0.2 3.8 1.0 0.7 0.3 1.5 0.3 0.4 2.1 0.8 1.3 15.7 (D) 4.0 1.4 0.4 0.9 0.6 (D) 0.8 (D) (D) 1.1 (D)
0.6 4.0 1.8 1.9 0.3 0.7 0.7 (Z) 13.6 (D) 2.6 (D) (D) 0.3 0.7 0.2 (D) 1.5 (D) (D) (D) (D) (D) 1.2 (D) (D) 0.6 (D) (D) (D) (D) (D) (D)
0.3 0.9 0.4 0.5 (Z) 0.3 0.3 (Z) 13.9 (D) 1.2 (D) (D) (Z) 0.9 0.1 (D) 0.5 (D) (D) (D) (D) (D) 0.2 (D) (D) (Z) (D) (D) (D) (D) (D) (D)
WATER USE
Motorcycles, bicycles, and parts Guided missiles and space vehicles, parts Guided missiles and space vehicles Space propulsion units and parts Space vehicle equipment, n.e.c. Miscellaneous transportation equipment Tanks and tank components Transportation equipment, n.e.c. Instruments and related products Engineering and scientific instruments Measuring and controlling devices Environmental controls Process control instruments Fluid meters and counting devices Instruments to measure electricity Measuring and controlling devices, n.e.c. Optical instruments and lenses Medical instruments and supplies Surgical and medical instruments Surgical appliances and supplies Photographic equipment and supplies Watches, clocks, and watchcases Miscellaneous manufacturing industries Toys and sporting goods Games, toys, and children’s vehicles Sporting and athletic goods, n.e.c. Pens, pencils, and office and art supplies Pens and mechanical pencils Costume jewelry and notions Costume jewelry Needles, pins, and fasteners Miscellaneous manufactures Manufacturing industries, n.e.c.
Note: Billion gallons. D., Withheld to avoid disclosing data for individual companies; Z, Less than half the unit shown; n.e.c., not elsewhere classified. a
Total gross water used is equal to sum of water intake plus water recirculated and reused without regard to evaporation. Excludes data for establishments classified as Apparel and Other Textile Products; Printing and Publishing; and Publishing; and administrative and auxiliary establishments for all major groups. Source: From 1982 Census of Manufacturers, U.S. Dept. of Commerce Bureau of the Census, 1986. National Aluminate Corp. With permission.
b
7-139
q 2006 by Taylor & Francis Group, LLC
7-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.74 Make-Up Water Required in Industrial Cooling Systems Temperature Drop Cycles of Concentration 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
158F (gal)
208F (gal)
258F (gal)
308F (gal)
358F (gal)
45 30 25 22.5 21 20 19.2 18.7 18.3 18 17.7 17.5
60 40 33 30 28 26.7 25.7 25.0 24.5 24 23.7 23.3
75 50 42 37.5 35 33.2 32.0 31.8 30.7 30 29.5 29.1
90 60 50 45 42 40 38.7 37.5 36.8 36.1 35.5 35
105 70 58.5 52.5 49.1 46.9 45.1 44 43 42.1 41.5 40.9
Note: Estimated amounts in gallons per 1,000 gal/min recirculation. Source: From National Aluminate Corp.
Table 7G.75 Geographic Distribution of Water-Intensive Manufacturing Industries in the United States Paper Water Resource Region New England Mid-Atlantic South Atlantic Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-White-Red Texas Gulf Rio Grande Upper Colorado Lower Colorado Great Basin Columbia-North Pacific California Alaska Hawaii Total
Chemicals
Petroleum Refining
Primary Metals
ML/daya
mgd
ML/day
mgd
ML/day
mgd
ML/day
mgd
9,401 7,104 31,627 8,156 2,471 4,151 2,101 6,471 510 99 1,809 3,814
2,541 1,920 8,548 2,196 668 1,122 568 1,749 138 27 489 1,031
1,598 15,736 13,590 10,859 21,108 1,342 2,882 19,920
432 4,253 3,673 2,935 5,705 2,525 779 5,384
10,704 1,417 6,389 3,193 973 2,638 10,744
2,893 383 1,727 863 263 713 2,904
643 10,341 4,329 38,298 33,562 395 2,752 2,186
174 2,795 1,170 10,351 9,071 107 744 591
2,527 3,455 41,425 1,010
683 934 11,196 273
1,986 7,425 32,996
537 2,007 8,918
381 1,653 4,495 103
103 447 1,215 28
432
117
13,819
3,735
399 48 1,798
108 13 486
44 40 614 1,017
12 11 166 275
136 1,949 1,646
37 527 445
4,310 1,306
1,165 353
2,682 162
725 44
215
26,124
148,543
40,147
2,170 14 84 23,676
795
96,658
8,029 51 310 87,601
104,251
28,176
Note: 1975 Data. a
Million liters per day.
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-141
Table 7G.76 Percentage of Gross Industrial Water Use by Purpose in the United States
Industry Meatpacking Poultry dressing Dairy products Canned fruits and vegetables Frozen fruits and vegetables Wet corn milling Cane sugar Beet sugar Malt beverages Textile mills Sawmills Pulp and paper mills Paper converting Alkalis and chlorine Industrial gases Inorganic pigments Industrial inorganic chemicals Plastic materials and resins Synthetic rubber Cellulosic man-made fibers Organic fibers, noncellulosic Paints and pigments Industrial organic chemicals Nitrogenous fertilizers Phosphatic fertilizers Carbon black Petroleum refining Tires and inner tubes Hydraulic cement Steel Iron and steel foundries Primary copper Primary aluminum Automobiles
Parameters of Water Use
Gross Water Use by Unit of Production
Percentage Noncontact Cooling
Percentage Process and Related
Percentage Sanitary and Miscellaneous
gal/lb carcass weight gal/bird poultry slaughter gal/lb milk processed gal/case 24–303 cans eq gal/lb frozen product gal/lb corn grind gal/ton cane sugar gal/ton beet sugar gal/barrel malt beverage gal/lb fiber consumption gal/bd ft lumber gal/ton pulp and paper gal/ton paper converted gal/ton chlorine gal/1,000 cu ft industrial gases gal/ton inorganic pigments gal/ton chemicals 100 percent basic gal/lb plastic gal/lb synthetic rubber gal/lb fibers gal/lb fibers gal/gal paint gal/ton chemical building blocks gal/ton fertilizer gal/ton fertilizer gal/lb carbon black gal/barrel crude oil input gal/tire car and truck tires gal/ton cement gal/ton steel net production gal/ton ferrous castings gal/lb copper gal/lb aluminum gal/car domestic automobiles
3.6 gal/lb 11.6 gal/bird 0.85 gal/lb 225 gal/case 11.2 /gal/lb 416 gal/bu 28,100 gal/ton 33,100 gal/ton 1,500 gal/bbl 34 gal/lb 5.4 gal/bd ft 130,000 gal/ton 6,600 gal/ton 29,800 gal/ton 636 gal/mcf 97,800 gal/ton 14,500 gal/ton 24 gal/lb 55 gal/lb 231 gal/lb 101 gal/lb 13 gal/gal 125,000 gal/ton 28,506 gal/ton 35,602 gal/ton 4.6 gal/lb 1,851 gal/bbl 518 gal/tire 1,360 gal/ton 62,600 gal/ton 12,400 gal/ton 53 gal/lb 49 gal/lb 36,500 gal/car
42 12 53 19 19 36 30 31 72 57 58 18 18 85 86 41 83 93 83 69 94 79 91 92 71 57 95 81 82 56 34 52 72 28
46 77 27 67 72 63 69 67 13 37 36 80 77 14 13 58 16 7 17 30 6 17 9 8 28 38 5 16 17 43 58 46 26 69
12 12 19 13 8 1 1 2 15 6 6 1 5 1 1 1 1 Z 1 1 4 1 Z 1 6 Z 3 1 1 8 2 2 3
Note: ZZless than 0.5 percent of gross water use; percentages may not add evenly due to rounding. Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
7-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.77 Industrial Water Use Per Employee in the United States Gross Water Use Per Employee Industry Group Food and kindred products Tobacco manufacturers Textile mill products Apparel and related products Lumber and wood products Furniture and fixtures Paper and allied products Printing and publishing Chemicals and allied products Petroleum and coal products Rubber and plastic products Leather and leather products Stone, clay, and glass products Primary metal industries Fabricated metal products Machinery, except electrical Electrical machinery Transportation equipment Instruments and related products Miscellaneous manufacturing
Intake Per Employee
L/day
gal/d
L/day
gal/d
15,540 22,570 6,660 370 5,920 440 43,930 370 149,110 603,100 10,730 740 11,470 78,440 2,960 3,700 9,250 17,020 4,440 1,110
4,200 6,100 1,800 100 1,600 120 38,900 100 40,300 163,000 2,900 200 3,100 21,200 800 1,000 2,500 4,600 1,200 300
10,360 1,480 2,960 370 3,700 370 42,920 370 56,240 94,350 3,700 703 5,550 44,030 1,110 1,480 1,110 2,220 1,110 2,960
2,800 400 800 100 1,000 100 11,600 100 15,200 25,500 1,000 190 1,500 11,900 300 400 300 600 300 200
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-143
Table 7G.78 Water Use Versus Industrial Units of Production in the United States
Industry Meatpacking Poultry dressing Dairy products Canned fruits and vegetables Frozen fruits and vegetables Wet corn milling Cane sugar Beet sugar Malt beverages Textile mills Sawmills Pulp and paper mills Paper converting Alkalis and chlorine Industrial gases Inorganic pigments Industrial inorganic chemicals Plastic materials and resins Synthetic rubber Cellulosic man-made fibers Organic fibers, noncellulosic Paints and pigments Industrial organic chemicals Nitrogenous fertilizers Phosphatic fertilizers Carbon black Petroleum refining Tires and inner tubes Hydraulic cement Steel Iron and steel foundries Primary copper Primary aluminum Automobiles
Parameters of Water Use gal/lb carcass weight gal/bird poultry slaughter gal/lb milk processed gal/case 24–303 cans eq gal/lb frozen product gal/lb corn grind gal/ton cane sugar gal/ton beet sugar gal/barrel malt beverage gal/lb fiber consumption gal/bd ft lumber gal/ton pulp and paper gal/ton paper converted gal/ton chlorine gal/1,000 cu ft industrial gases gal/ton inorganic pigments gal/ton chemicals 100 percent basic gal/lb plastic gal/lb synthetic rubber gal/lb fibers gal/lb fibers gal/gal paint gal/ton chemical building blocks gal/ton fertilizer gal/ton fertilizer gal/lb carbon black gal/barrel crude oil input gal/tire car and truck tires gal/ton cement gal/ton steel net production gal/ton ferrous castings gal/lb copper gal/lb aluminum gal/car domestic automobiles
Gross Water Used by Unit of Production
Intake by Unit of Production
Consumption by Unit of Production
Discharge by Unit of Production
3.6 gal/lb 11.6 gal/bird 0.85 gal/lb 225 gal/case 11.2 gal/lb 416 gal/bu 28,100 gal/ton 33,100 gal/ton 1,500 gal/bbl 34 gal/lb 5.4 gal/bd ft 130,000 gal/ton 6,600 gal/ton 29,800 gal/ton 636 gal/mcf 97,800 gal/ton 14,500 gal/ton 24 gal/lb 55 gal/lb 231 gal/lb 101 gal/lb 13 gal/gal 125,000 gal/ton 28,506 gal/ton 35,602 gal/ton 4.6 gal/lb 1,851 gal/bbl 518 gal/tire 1,360 gal/ton 62,600 gal/ton 12,400 gal/ton 53 gal/lb 49 gal/lb 36,500 gal/car
2.2 gal/lb 10.3 gal/bird 0.52 gal/lb 107 gal/case 7.1 gal/lb 223 gal/bu 18,250 gal/ton 11,100 gal/ton 420 gal/bbl 14 gal/lb 3.3 gal/bd ft 38,000 gal/ton 3,900 gal/ton 22,200 gal/ton 226 gal/mcf 49,400 gal/ton 4,750 gal/ton 6.7 gal/lb 6.5 gal/lb 68 gal/lb 38 gal/lb 7.8 gal/gal 54,500 gal/ton 4,001 gal/ton 8,461 gal/ton 3.9 gal/lb 289 gal/bbl 153 gal/tire 830 gal/ton 38,200 gal/ton 3,030 gal/ton 17 gal/lb 12 gal/lb 11,464 gal/car
0.1 gal/lb 0.5 gal/bird 0.03 gal/lb 10 gal/case 0.2 gal/lb 18 gal/bu 950 gal/ton 390 gal/ton 90 gal/bbl 1.4 gal/lb 0.6 gal/bd ft 1,800 gal/ton 270 gal/ton 700 gal/ton 31 gal/mcf 1,600 gal/ton 470 gal/ton 0.6 gal/lb 1.4 gal/lb 4.6 gal/lb 1.1 gal/lb 0.4 gal/gal 2,800 gal/ton 701 gal/ton 1,277 gal/ton 0.9 gal/lb 28 gal/bbl 14 gal/tire 150 gal/ton 1,400 gal/ton 260 gal/ton 4.1 gal/lb 0.2 gal/lb 649 gal/car
2.1 gal/lb 9.8 gal/bird 0.48 gal/lb 98 cal/case 6.9/gal/lb 205 gal/bu 17,300 gal/ton 10,700 gal/ton 330 gal/bbl 12.8 gal/lb 2.7 gal/bd ft 36,200 gal/ton 3,600 gal/ton 21,600 gal/ton 193 gal/mcf 47,800 gal/ton 4,300 gal/ton 6.1 gal/lb 5.1 gal/lb 63 gal/lb 37 gal/lb 7.4 gal/gal 51,700 gal/ton 3,299 gal/ton 7,184 gal/ton 3.1 gal/lb 261 gal/bbl 139 gal/tire 680 gal/ton 36,800 gal/ton 2,760 gal/ton 13 gal/lb 11.8 gal/lb 10,814 gal/car
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
7-144
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.79 Water Use Versus Standardized Units of Production in the United States
Parameters of Water Use
Gross Water Used by Unit of Production
Intake by Unit of Production
Consumption by Unit of Production
Discharge by Unit of Production
gal/lb carcass weight gal/ton ready-to-cook weight gal/lb milk processed gal/ton vegetables canned gal/ton vegetables frozen gal/lb corn grind gal/ton cane sugar gal/ton beet sugar gal/beer and malt liquor gal/ton textile fiber input gal/bd ft lumber gal/ton paper gal/ton paper converted gal/ton chlorine gal/ton weight of gas gal/ton pigments gal/ton chemical products gal/ton plastics gal/ton synthetic rubber gal/ton fibers gal/ton fibers gal/gal paint gal/ton chemical building blocks gal/ton fertilizer gal/ton fertilizer gal/ton carbon black gal/gal crude petroleum input gal/tire car and truck tires gal/ton cement gal/ton steel net tons gal/ton ferrous castings gal/ton copper gal/ton aluminum gal/car automobiles
7,194 gal/ton 7,389 gal/ton 1,692 gal/ton 19,700 gal/ton 22,500 gal/ton 14,869 gal/ton 28,102 gal/ton 33,145 gal/ton 49 gal/gal 69,808 gal/ton 5.4 gal/bd ft 130,047 gal/ton 6,584 gal/ton 29,840 gal/ton 16,080 gal/ton 97,800 gal/ton 14,500 gal/ton 47,061 gal/ton 110,600 gal/ton 462,230 gal/ton 202,123 gal/ton 13.2 gal/gal 124,700 gal/ton 28,506 gal/ton 35,602 gal/ton 9,200 gal/ton 44 gal/gal 518 gal/tire 1,355 gal/ton 62,601 gal/ton 12,407 gal/ton 106,000 gal/ton 96,300 gal/ton 36,500 gal/car
4,331 gal/ton 6,542 gal/ton 1,035 gal/ton 9,400 gal/ton 14,100 gal/ton 7,988 gal/ton 18,256 gal/ton 11,118 gal/ton 14 gal/gal 30,016 gal/ton 3.3 gal/bd ft 37,971 gal/ton 3,861 gal/ton 22,302 gal/ton 5,700 gal/ton 49,400 gal/ton 4,700 gal/ton 13,338 gal/ton 13,200 gal/ton 135,100 gal/ton 76,523 gal/ton 7.8 gal/gal 54,500 gal/ton 4,001 gal/ton 8,461 gal/ton 7,885 gal/ton 6.9 gal/gal 153 gal/tire 831 gal/ton 38,200 gal/ton 3,024 gal/ton 34,000 gal/ton 23,900 gal/ton 11,464 gal/car
78 gal/ton 296 gal/ton 63 gal/ton 850 gal/ton 300 gal/ton 643 gal/ton 944 gal/ton 386 gal/ton 3 gal/gal 3,008 gal/ton 0.63 gal/bd ft 1,178 gal/ton 273 gal/ton 676 gal/ton 780 gal/ton 1,600 gal/ton 470 gal/ton 1,078 gal/ton 2,800 gal/ton 9,200 gal/ton 2,153 gal/ton 0.4 gal/gal 2,800 gal/ton 701 gal/ton 1,277 gal/ton 1,771 gal/ton 0.7 gal/gal 14 gal/tire 146 gal/ton 1,400 gal/ton 260 gal/ton 8,200 gal/ton 381 gal/ton 649 gal/car
4,253 gal/ton 6,246 gal/ton 964 gal/ton 8,550 gal/ton 13,800 gal/ton 7,345 gal/ton 17,312 gal/ton 10,731 gal/ton 11 gal/gal 27,008 gal/ton 2.7 gal/bd ft 36,193 gal/ton 3,588 gal/ton 21,626 gal/ton 4,900 gal/ton 47,800 gal/ton 4,300 gal/ton 12,278 gal/ton 10,373 gal/ton 125,846 gal/ton 74,369 gal/ton 7.4 gal/gal 51,700 gal/ton 3,299 gal/ton 7,184 gal/ton 6,114 gal/ton 6.2 gal/gal 139 gal/tire 685 gal/ton 36,800 gal/ton 2,764 gal/ton 26,000 gal/ton 23,500 gal/ton 10,814 gal/car
Industry Meatpacking Poultry dressing Dairy products Canned fruits and vegetables Frozen fruits and vegetables Wet corn milling Cane sugar Beet sugar Malt beverages Textile mills Sawmills Pulp and paper mills Paper converting Alkalis and chlorine Industrial gases Inorganic pigments Industrial inorganic chemicals Plastic materials and resins Synthetic rubber Cellulosic man-made fibers Organic fibers, noncellulosic Paints and pigments Industrial organic chemicals Nitrogenous fertilizers Phosphatic fertilizers Carbon black Petroleum refining Tires and inner tubes Hydraulic cement Steel Iron and steel foundries Primary copper Primary aluminum Automobiles
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-145
Table 7G.80 Typical Water Uses in Paper Mills Intake Requirement (Low Reuse)
Gross Water Use Purpose Kraft pulping (process use) Kraft pulping (cooling system) Bleaching Paper forming (process system) Paper forming (cooling system) Electric power coolinga Net totalsb
Intake Requirement (High Reuse)
ML/day
mgd
ML/day
mgd
ML/day
mgd
118 44 140 129 14 51 499
32 12 38 35 4 14 135
51 44 70 44 14 51 225
14 12 19 12 4 14 61
22 1.5 18 22 0.7 1.8 44
6 0.4 5 6 0.2 0.5 12.1
Note: 1,000 ton per day integrated bleached kraft paper mill. a b
Condenser cooling requirements for a steam electric plant producing half of the total electric power needs. Intake net totals are less than the sum of the individual components because much of the wastewater from high quality uses is cascaded to lower quality uses.
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
7-146
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.81 Water Intake Requirements in the United States — Average Plants Versus High Recycling Plants Recycling Ratea
Intake
Parameters of Water Use
1973 Industry Average
BATb with Maximum Feasible Recycling
gal/lb carcass weight gal/bird poultry slaughter gal/lb milk processed gal/case 24–303 cans eq gal/lb frozen product gal/bu corn grind gal/ton cane sugar gal/ton beet sugar gal/barrel malt beverage gal/lb fiber consumption gal/bd ft lumber gal/ton pulp and paper gal/ton paper converted gal/ton chlorine gal/1,000 cu ft industrial gases gal/ton inorganic pigments gal/ton chemicals 100 percent basis gal/lb plastic gal/lb synthetic rubber gal/lb fibers gal/lb fibers gal/gal paint gal/ton chemical building blocks gal/ton fertilizer gal/ton fertilizer gal/lb carbon black gal/barrel crude oil input gal/tire car and truck tires gal/ton cement gal/ton steel net production gal/ton ferrous castings gal/lb copper gal/lb aluminum gal/car domestic automobiles
2.2 gal/lb 10.3 gal/bird 0.52 gal/lb 107 gal/case 7.1 gal/lb 223 gal/bu 18,250 gal/ton 11,100 gal/ton 420 gal/bbl 14 gal/lb 3.3 gal/ft 38,000 gal/ton 3,900 gal/ton 22,200 gal/ton 226 gal/mcf 49,400 gal/ton 4,750 gal/ton 6.7 gal/lb 6.5 gal/lb 68 gal/lb 38 gal/lb 7.8 gal/gal 54,500 gal/ton 4,000 gal/ton 8,500 gal/ton 3.9 gal/lb 289 gal/bbl 153 gal/tire 830 gal/ton 38,200 gal/ton 3,030 gal/ton 17 gal/lb 12 gal/lb 11,500 gal/car
0.5 gal/lb 1.7 gal/bird 0.13 gal/lb 29 gal/case 1.6 gal/lb 46 gal/bu 5,300 gal/ton 6,200 gal/ton 105 gal/bbl 1.8 gal/lb 0.8 gal/ft 10,700 gal/ton 750 gal/ton 860 gal/ton 18 gal/mcf 6,100 gal/ton 470 gal/ton 0.7 gal/lb 1.6 gal/lb 8.4 gal/lb 5.0 gal/lb 0.8 gal/gal 4,000 gal/ton 900 gal/ton 2,400 gal/ton 0.3 gal/lb 55 gal/bbl 18 gal/tire 180 gal/ton 5,300 gal/ton 1,080 gal/ton 4.5 gal/lb 2.9 gal/lb 2,200 gal/car
Industry Meatpacking Poultry dressing Dairy products Canned fruits and vegetables Frozen fruits and vegetables Wet corn milling Cane sugar Beet sugar Malt beverages Textile mills Sawmills Pulp and paper mills Paper converting Alkalis and chlorine Industrial gases Inorganic pigments Industrial inorganic chemicals Plastic materials and resins Synthetic rubber Cellulosic man-made fibers Organic fibers, noncellulosic Paints and pigments Industrial organic chemicals Nitrogenous fertilizers Phosphatic fertilizers Carbon black Petroleum refining Tires and inner tubes Hydraulic cement Steel Iron and steel foundries Primary copper Primary aluminum Automobiles a b
1973 Industry Average
BATb with Maximum Feasible Recycling
1.66 1.13 1.64 2.10 1.60 1.86 1.54 2.98 3.50 2.23 1.64 3.42 1.70 1.34 2.82 1.98 3.08 3.53 8.38 3.42 2.64 1.69 2.29 7.12 4.21 1.17 6.38 3.39 1.63 1.64 4.10 3.12 4.11 3.18
6.67 6.71 6.67 7.75 7.25 9.09 5.26 5.38 14.3 18.2 6.85 12.2 8.93 34.5 34.5 16.1 31.2 33.3 33.3 27.8 20.0 16.1 31.2 31.2 14.7 16.1 33.3 29.4 7.41 11.9 11.5 11.9 16.9 16.3
The recycling rate is obtained by dividing gross water use by intake. Best available technology economically achievable as defined by Water Pollution Control Act amendments of 1972.
Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-147
Table 7G.82 Water Recycling in the 20 Plants with the Highest Rates in 34 Major Water-Using Industries in the United States, 1970
Industry Meat packing plants Poultry dressing Fluid milk Canned fruit and vegetables Frozen fruit and vegetables Wet corn milling Beet sugar Malt liquors Shortening and cooking oils Cigarettes Weaving mills, cotton Weaving mills, synthetics Weaving and finishing, wool Pulp mills Papermills, except building paper Paperboard mills Alkalis and chlorine Industrial gases Cyclic intermediate and crudes Inorganic pigments Industrial organic chemicals Industrial inorganic chemicals Plastic materials and resins Cellulosic man-made fibers Organic fibers, noncellulosic Pharmaceutical preparations Fertilizers Petroleum refining Cement, hydraulic Blast furnaces and steel mills Electrometallurgical products Gray iron foundaries Primary copper Primary aluminum
Intakea
Mean Recycling Rateb
Highest Recycling Rateb
Tenth Highest Recycling Rateb
Twentieth Highest Recycling Rateb
49.732 3.473 8.118 10.673 17.353 53.986 58.949 64.350 48.106 60.765 74.289 88.114 19.163 713.440 723.008
20.335 1.990 0.859 3.419 9.259 32.109 16.829 12.675 5.425 2.292 1.186 0.717 2.637 208.179 71.057
2.45 1.75 9.45 3.12 1.87 1.68 3.50 5.08 8.87 26.51 62.64 122.89 7.27 3.43 10.18
7.05 4.28 71.71 18.24 7.13 11.91 22.24 10.00 113.53 33.39 285.31 558.25 93.44 7.57 76.54
2.41 1.30 7.92 2.50 1.97 2.31 2.97 2.85 8.23 15.31 64.25 111.27 24.19 3.84 8.96
1.85 1.14 3.96 1.76 1.39 1.11 1.84 1.11 1.30 1.11 27.99 48.53 1.18 1.41 6.06
272.670 198.798 141.450 327.354
14.515 87.167 1.490 55.446
18.79 2.28 94.93 5.90
50.00 25.11 157.80 160.00
14.68 1.79 84.83 13.45
8.22 1.12 46.23 2.24
120.387 962.830 505.919
50.222 35.142 16.670
2.40 27.40 30.35
15.22 48.18 70.95
1.53 23.20 30.10
1.11 15.80 23.81
704.229 209.801 392.335 70.621
5.131 48.088 151.969 15.385
137.25 4.36 2.58 4.59
613.60 20.83 28.06 104.73
27.37 4.30 2.82 7.36
13.81 1.37 1.16 1.11
282.251 2,026.521 20.868 394.549
23.373 30.221 4.320 29.050
12.08 67.06 4.83 13.58
90.60 251.05 97.35 95.13
9.72 44.08 2.58 18.66
2.45 34.36 1.77 6.76
22.732
1.827
12.44
65.81
25.64
5.07
35.396 78.473 65.519
10.254 33.218 15.723
3.45 2.36 4.17
15.23 9.85 10.10
2.86 2.23 3.50
1.82 1.18 1.66
Gross Water Usea
a
Billions of gallons per year: 1 bil galZ3.7 GL. The recycling rate is obtained by dividing gross water use by intake. Source: From Kollar, K.L. and MacAuley, P., 1980, Water requirements for industrial development, J. Am. Water Works Assoc., vol. 72, no. 1. Copyright AWWA. Reprinted with permission.
b
q 2006 by Taylor & Francis Group, LLC
7-148
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.83 Typical Unit Water Requirements for Energy Production in the United States Fuel and Process
Standard Unit
Coal Western coal mining Eastern coal mining Coal gasification Coal liquefaction Petroleum Oil and gas production Oil refining Oil shale production
Gas processing Nuclear fuels Power generation Fossil fuels Nuclear fuels Geothermal a
Gallons per Standard Unit
Gallons per Million Btu
Major Use
ton Ton MSCFa Barrel
6.0–14.7 15.8–18.0 72.0–158 1,134.0–1,750
0.25–0.61 0.66–0.75 72–158 31–200
Dust control and washing Dust control and washing Process and cooling Process and cooling
Barrel Barrel Barrel
1.7–3.0 43.0 145.4
3.05 7.58 30.1
MSCFa —
1.67 —
1.67 14.3
Well drilling and recovery Process and cooling Mining, cooling, processing, and waste disposal Cooling Mining and processing
kWh kWh —
0.41 0.80 —
120.16 234.46 527
Cooling Cooling Cooling and extraction
Million standard cubic feet.
Source: From United States Federal Energy Administration, 1974, “Project Independence,” Project Independence Report, p. 304: U.S. Government Printing Office, Washington, DC, 20402.
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7G.84 Thermoelectric Power Water Use by Energy Source and State, 1995 Fossil Fuel
Nuclear
Withdrawals, by Source and Type
State
Fresh
Saline
6.0 4.2 42 5.2 3.5 22 0.1 0.2 0
4,330 26 20 798 190 93 276 534 9.7
0 0 0 0 4,730 0 882 740 0
21 3.9 67 0 9.5 11 13 14 38 31 0.7 1.6 46 3.0 1.8 10 9.1 0 4.4 6.2 0.8 1.2 9.3 0 0.1 0 19 3.5
615 2,910 0 0 9,570 5,680 2,100 1,230 3,410 4,430 30 358 150 6,030 1,210 220 5,520 22 1,290 21 228 578 46 5,140 3,210 879 8,040 121
9,140 33 903 0 0 0 0 0 0 0 105 2,780 3,910 0 0 112 0 0 0 0 292 980 0 5,470 0 0 0 0
Surface Water
Saline
Groundwater Fresh
Fresh
Saline
30 3.1 54 27 9.4 41 5.9 0.2 0.8
0 0 0 0 2.8 0 74 2.9 0
0 0 0 0 0.1 0 0.1 0 0
862 0 0 967 12 0 484 0 0
0 0 0 0 4,690 0 2,300 0 0
862 0 0 967 4,710 0 2,780 0 0
54 52 0.7 0 144 114 7.8 45 203 212 3.5 3.7 0 50 28 8.0 40 22 12 28 4.3 3.7 48 103 56 25 309 60
0 0 9.0 0 0 0 0 0 0 0 1.7 32 0 0 0 3.6 0 0 0 0 0 9.9 0 109 0 0 0 0
0.3 1.0 0 0 1.3 0 2.0 0 0 0.1 0 0.2 0 0.1 0.1 32 0.4 0 0 0 0 0.7 0 0 0 0 0 0
0 122 0 0 7,520 0 8.1 22 0 1,020 0 0 0 2,340 886 0 21 0 1,060 0 0 0 0 1,420 2,660 0 137 0
1,810 0 0 0 0 0 0 0 0 0 0 3,220 454 0 0 0 0 0 0 0 585 2,800 0 1,010 1,550 0 0 0
1,810 122 0 0 7,520 0 8.1 22 0 1,020 0 3,220 454 2,340 886 0 21 0 1,060 0 585 2,800 0 2,440 4,210 0 137 0
Consumptive Use Total 4,330 26 20 798 4,920 93 1,160 1,270 9.7 9,760 2,950 903 0 9,570 5,680 2,100 1,230 3,410 4,430 135 3,140 4,060 6,030 1,210 333 5,520 22 1,290 21 521 1,560 46 10,600 3,210 879 8,040 121
Fresh
Surface Water
Consumptive Use Total
Fresh
Saline
1.7 0 0 1.2 0.3 0 0 0 0
0 0 0 0 1.3 0 0 0 0
1.2 93 0 0 263 0 2.6 13 0 10 0 0 0 76 20 19 11 0 0 0 0 0.7 0 68 1.5 0 27 0
0 0 0 0 0 0 0 0 0 0 0 16 6.0 0 0 0 0 0 0 0 0 22 0 20 17 0 0 0 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-149
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma
Groundwater Fresh
Withdrawals, by Source and Type
(Continued) Fossil Fuel
Nuclear
Withdrawals, by Source and Type
State
Withdrawals, by Source and Type
Groundwater Fresh
Fresh
Saline
Total
Fresh
Saline
Groundwater Fresh
0 6.2 0 0.4 2.6 0 58 0 0.4 0.1 0.4 0.5 5.6 1.0 2.2 0 486
9.0 3,870 0 1,290 1.9 6,830 6,710 48 0.5 1,820 17 3,010 3,860 219 0 0 97,000
0 0 275 0 0 0 3,870 0 0 973 0 0 0 0 2,260 173 37,600
9.0 3,870 275 1,290 1.9 6,830 10,600 48 0.5 2,790 17 3,010 3,860 219 2,260 173 135,000
7.8 120 0 23 0.1 0.5 271 47 0.7 8.8 0.4 122 39 50 0.7 0.2 2,500
0 0 5.5 0 0 0 12 0 0 0 0 0 0 0 0 0 263
0 0 0 39 0 0 0.8 0 0 0.3 0.1 0 0.1 0 0 0 78
Surface Water
Consumptive Use
Surface Water
Consumptive Use
Fresh
Saline
Total
Fresh
0 2,050 0 3,470 0 1,470 2,820 0 452 2,080 358 0 1,970 0 0 0 34,300
0 0 0 0 0 0 0 0 0 1,760 0 0 0 0 0 0 20,200
0 2,050 0 3,470 0 1,470 2,820 0 452 3,830 358 0 1.970 0 0 0 54,500
0 119 0 28 0 0 26 0 3.2 0 9.8 0 20 0 0 0 815
Note: Figures may not add to totals because of independent rounding. All values in million gallons per day. Source: From Solley, W.B. et al., 1998. Esimated Use of Water in the United States in 1995, U.S. Geological Survey Circular 1200, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
Saline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico Virgin Islands Total
7-150
Table 7G.84
WATER USE
7-151
Table 7G.85 Thermoelectric Generation from Different Sources, 1960–1995
Year
Generation by Coal (%)
Generation by Petroleum (%)
Generation by Gas (%)
Generation by Nuclear (%)
Generation by Conventional Steam (%)
Generation by Internal Combustion (%)
1960 1965 1970 1975 1980 1985 1990 1995
65.88 66.50 55.25 51.20 58.23 64.67 62.21 61.56
7.37 7.25 13.84 16.94 11.93 4.29 4.33 2.01
26.49 25.82 29.20 17.93 17.26 13.34 10.43 11.35
0.26 0.43 1.71 10.33 12.59 17.70 23.03 25.08
99.31 99.04 97.90 85.96 87.53 82.74 77.40 75.12
0.72 0.58 0.46 0.32 0.15 0.05 0.04 0.03
Source: From Dziegielewski, B. et al., 2002. Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002. Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
q 2006 by Taylor & Francis Group, LLC
7-152
Table 7G.86 Thermoelectric Power Water Withdrawals by Cooling Type in the United States, 2000 Withdrawals for Once-Through Cooling Surface Water Fresh
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania
8,020 28.9 0 1,690 344 90.2 115 0 0 559 2,800 0 0 11,000 6,450 2,510 2,210 824 4,500 90.8 377 108 7,710 1,330 307 5,200 84.4 2,390 0 234 648 0 4,040 7,850 887 7,790 37.9 0 4,330
q 2006 by Taylor & Francis Group, LLC
Surface Water
Total
Groundwater Fresh
0 0 0 0 12,600 0 3,440 0 0
8,020 28.9 0 1,690 12,900 90.2 3,560 0 0
0 4.65 74.3 2.92 3.23 16.1 0.08 0.47 0
167 0 26.2 478 5.41 31.8 71.7 366 9.69
11,800 61.7 0 0 0 0 0 0 0 0 295 5,670 3,610 0 0 148 0 0 0 0 761 3,330 0 5,010 1,620 0 0 0 0 0
12,400 2,860 0 0 11,000 6,450 2,510 2,210 824 4,500 385 6,050 3,720 7,710 1,330 456 5,200 84.4 2,390 0 995 3,980 0 9,050 9,470 887 7,790 37.9 0 4,330
29.5 1.03 0 0 5.75 2.58 11.9 14.9 2.71 28.4 4.92 1.8 0 0 4.17 43.5 12.2 0 6.87 12 0.71 2.24 11.4 0 0.09 0 7.57 3.27 2.47 3.98
69.8 444 0 0 239 252 15.6 29.1 2,430 1,080 17.2 0 0.45 0 935 11.2 422 25.6 418 24.7 1.37 0 45 0 0 14.5 799 105 12.8 2,650
Saline
Fresh
Total
Saline
Total
Fresh
0 0 0 0 0 0 0 738 0
167 0 26.2 478 5.41 31.8 71.7 1,100 9.69
167 4.65 100 481 8.64 48 71.8 366 9.69
150 0 0 0 0 0 0 0 0 0 0 589 0 0 0 0 0 0 0 0 0 57.6 0 0 0 0 0 0 0 0
219 444 0 0 239 252 15.6 29.1 2,430 1,080 17.2 589 0.45 0 935 11.2 422 25.6 418 24.7 1.37 57.6 45 0 0 14.5 799 105 12.8 2,650
99.3 445 0 0 245 254 27.6 44 2,430 1,110 22.2 1.8 0.45 0 939 54.7 434 25.6 424 36.7 2.08 2.24 56.4 0 0.09 14.5 806 109 15.3 2,650
Saline
Total
0 0 0 0 0 0 0 738 0
167 4.65 100 481 8.64 48 71.8 1,100 9.69
150 0 0 0 0 0 0 0 0 0 0 589 0 0 0 0 0 0 0 0 0 57.6 0 0 0 0 0 0 0 0
249 445 0 0 245 254 27.6 44 2,430 1,110 22.2 591 0.45 0 939 54.7 434 25.6 424 36.7 2.08 59.9 56.4 0 0.09 14.5 806 109 15.3 2,650
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
State
Withdrawals for Closed-Loop Cooling by Source and Type
0 3,860 0 8,860 6,990 0 354 3,850 444 3,790 6,090 179 0 0 119,000
290 0 0 0 3,440 0 0 3,580 0 0 0 0 2,190 136 58,000
290 3,860 0 8,860 10,400 0 354 7,430 444 3,790 6,090 179 2,190 136 177,000
0 5.83 1.23 0 60.2 13.1 0.66 1.5 0.92 0 8.99 1.13 0 0 409
2.4 1,850 4.01 174 2,770 49.2 0.55 0 74.2 163 0 63.4 0 0 16,300
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,530
2.4 1,850 4.01 174 2,770 49.2 0.55 0 74.2 163 0 63.4 0 0 17,900
2.4 1,850 5.24 174 2,830 62.2 1.21 1.5 75.1 163 8.99 64.6 0 0 16,800
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,530
2.4 1,850 5.24 174 2,830 62.2 1.21 1.5 75.1 163 8.99 64.6 0 0 18,300
WATER USE
Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Note: Figures may not sum to totals because of independent rounding. All values are in million gallons per day. Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
7-153
q 2006 by Taylor & Francis Group, LLC
Withdrawals (mil gal/day)
Withdrawals (thousand acre-feet/yr)
By Source and Type
State
0 4.65 74.3 2.92 3.23 16.1 0.08 0.47 0 29.5 1.03 0 0 5.75 2.58 11.9 14.9 2.71 28.4 4.92 1.8 0 0 4.17 43.5 12.2 0 6.87 12 0.71 2.24 11.4 0 0.09 0 7.57 3.27 2.47
q 2006 by Taylor & Francis Group, LLC
By Type
Surface Water Fresh 8,190 28.9 26.2 2,170 349 122 186 366 9.69 629 3,240 0 0 11,300 6,700 2,530 2,240 3,250 5,580 108 377 108 7,710 2,260 318 5,620 110 2,810 24.7 235 648 45 4,040 7,850 902 8,590 143 12.8
Saline
Total Total
0 0 0 0 12,600 0 3,440 738 0
8,190 28.9 26.2 2,170 12,900 122 3,630 1,100 9.69
12,000 61.7 0 0 0 0 0 0 0 0 295 6,260 3,610 0 0 148 0 0 0 0 761 3,390 0 5,010 1,620 0 0 0 0
12,600 3,310 0 0 11,300 6,700 2,530 2,240 3,250 5,580 403 6,640 3,720 7,710 2,260 467 5,620 110 2,810 24.7 997 4,040 45 9,050 9,470 902 8,590 143 12.8
Fresh 8,190 33.6 100 2,180 352 138 187 366 9.69 658 3,250 0 0 11,300 6,700 2,540 2,260 3,260 5,610 113 379 108 7,710 2,270 362 5,640 110 2,820 36.7 236 650 56.4 4,040 7,850 902 8,590 146 15.3
Saline
Total
Fresh
0 0 0 0 12,600 0 3,440 738 0
8,190 33.6 100 2,180 12,900 138 3,630 1,100 9.69
9,180 37.6 113 2,440 395 155 209 411 10.9
12,000 61.7 0 0 0 0 0 0 0 0 295 6,260 3,610 0 0 148 0 0 0 0 761 3,390 0 5,010 1,620 0 0 0 0
12,600 3,310 0 0 11,300 6,700 2,540 2,260 3,260 5,610 408 6,640 3,720 7,710 2,270 510 5,640 110 2,820 36.7 997 4,040 56.4 9,050 9,470 902 8,590 146 15.3
738 3,640 0 0 12,600 7,510 2,850 2,530 3,650 6,290 127 425 121 8,640 2,540 406 6,320 123 3,160 41.1 265 729 63.2 4,530 8,800 1,010 9,630 164 17.2
Saline
Total
0 0 0 0 14,100 0 3,860 827 0
9,180 37.6 113 2,440 14,500 155 4,070 1,240 10.9
13,400 69.2 0 0 0 0 0 0 0 0 330 7,020 4,050 0 0 166 0 0 0 0 854 3,800 0 5,610 1,810 0 0 0 0
14,100 3,710 0 0 12,600 7,510 2,850 2,530 3,650 6,290 457 7,440 4,170 8,640 2,540 572 6,320 123 3,160 41.1 1,120 4,530 63.2 10,100 10,600 1,010 9,630 164 17.2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon
Groundwater Fresh
7-154
Table 7G.87 Thermoelectric Power Water Use in the United States, 2000
3.98 0 5.83 1.23 0 60.2 13.1 0.66 1.5 0.92 0 8.99 1.13 0 0 409
6,970 2.4 5,700 4.01 9,040 9,760 49.2 355 3,850 518 3,950 6,090 242 0 0 135,000
0 290 0 0 0 3,440 0 0 3,580 0 0 0 0 2,190 136 59,500
6,970 293 5,700 4.01 9,040 13,200 49.2 355 7,430 518 3,950 6,090 242 2,190 136 195,000
6,980 2.4 5,710 5.24 9,040 9,820 62.2 355 3,850 519 3,950 6,090 243 0 0 136,000
0 290 0 0 0 3,440 0 0 3,580 0 0 0 0 2,190 136 59,500
6,980 293 5,710 5.24 9,040 13,300 62.2 355 7,430 519 3,950 6,090 243 2,190 136 195,000
7,820 2.69 6,400 5.87 10,100 11,000 69.8 398 4,310 582 4,430 6,830 273 0 0 152,000
0 326 0 0 0 3,860 0 0 4,020 0 0 0 0 2,460 153 66,700
7,820 328 6,400 5.87 10,100 14,900 69.8 398 8,330 582 4,430 6,830 273 2,460 153 219,000
WATER USE
Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
Note: Figures may not sum to totals because of independent rounding. Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
7-155
q 2006 by Taylor & Francis Group, LLC
7-156
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7G.88 Self-Supplied Thermoelectric Withdrawals and Production, 1950–1995
Year
Self-supplied Thermoelectric Withdrawals (bgd)
Withdrawals Per Capita (gpcd)
Thermoelectric Production (bil kWh)
Annual Growth Rate in Production (%)
Energy Production Per Capita (kWh/Capita/d)
Withdrawals Per Unit Production (gal/kWh)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
40 72 100 130 170 200 210 187 195 190
264.5 438.2 560.4 674.3 841.1 938.8 934.5 788.8 789.3 726.8
232.8 433.8 609.6 861.0 1,283.3 1,614.2 2,004.9 2,177.9 2,517.6 2,694.4
— 13.26 7.04 7.15 8.31 4.69 4.43 1.67 2.94 1.37
4.2 7.2 9.4 12.2 17.4 20.8 24.4 25.2 27.9 28.2
62.7 60.6 59.9 55.1 48.4 45.2 38.2 31.3 28.3 25.7
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL February 28, 2002, Reprinted with permission. http://info.geography.siu.edu/geography_info/ research/.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-157
SECTION 7H
INDUSTRIAL WATER USE — WORLD
Table 7H.89 Water Intake in Manufacturing (MCM/yr) by Purpose of Initial Use and Industry in Canada, 1996
Industry Group
Number of Plants
Processing
1,264 121 96 486 87 47 454 292 217 543 547
128.6 38.4 3.6 5.9 15.5 12.8 9.7 1,847.5 557.6 11.3 28.5
726
Food Beverages Rubber products Plastic products Primary textiles Textile products Wood products PaperCallied products Primary metals Fabricated metals Transportation equipment Nonmetallic mineral products PetroleumCcoal products ChemicalsCchemical products Total %
Cooling, Condensing, and Steam
Sanitary Services
Other
Total Intake
%
107.3 29.0 7.7 5.9 64.6 1.8 24.4 508.3 830.1 6.4 25.0
27.8 4.6 0.9 1.3 6.5 0.4 2.2 49.1 21.5 1.6 11.1
5.9 1.1 0.1 0.2 0.0 0.1 8.8 16.4 13.8 0.1 0.4
269.5 73.1 12.3 13.3 86.7 15.0 45.1 2,421.3 1,423.0 19.4 65.0
4.5 1.2 0.2 0.2 1.4 0.2 0.7 40.1 23.6 0.3 1.1
21.6
44.9
3.5
32.1
102.1
1.7
27
34.4
324.6
4.9
6.6
370.5
6.1
599
220.9
879.8
10.9
9.7
1,121.3
18.6
5,506
2,936.3 48.6
2,859.6 47.4
146.3 2.4
95.3 1.6
6,037.5 100.0
100.0
Source: From Scharf, D., Burke, D., Villeneuve, and Leigh, L., 1996. Industrial Water Use 1996, Scharf, D., Burke, D.W., Villeneuve, M., and Leigh, L., Environmental Economics Branch, Environment Canada, 2002. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. Table 7H.90 Water Intake in Manufacturing (MCM/yr) by Source and Industry Group in Canada, 1996 Brackish Water
Fresh Water
Industry Group Food Beverages Rubber products Plastic products Primary textiles Textile products Wood products PaperCallied products Primary metals Fabricated metals Transportation equipment Non-metallic mineral products PetroleumCcoal products ChemicalsC chemical products Total %
Self-Supplied
Self-Supplied
Number of Plants
Public Supplied Municipal
Surface
Ground
Other
Ground
Tidewater
Other
Total Intake
1,254 121 96 482 87 47 454 292
118.7 49.0 8.2 7.0 34.6 13.1 18.8 70.4
61.8 16.1 1.3 4.8 51.4 0.0 16.4 2,240.0
44.6 8.1 2.4 1.2 0.1 2.0 9.5 65.8
3.4 0.0 0.5 0.1 0.0 0.0 0.2 45.3
1.9 0.0 0.0 0.1 0.1 0.0 0.1 0.0
38.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0
0.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0
269.3 73.1 12.3 13.2 86.7 15.0 45.1 2,421.3
217 543 547
61.2 12.1 59.5
1,314.0 6.8 4.7
22.9 0.5 0.7
12.8 0.0 0.0
0.0 0.0 0.0
12.1 0.0 0.0
0.0 0.0 0.0
1,423.0 19.4 65.0
725
19.5
36.3
9.9
36.0
0.0
0.4
0.0
102.1
27
11.4
249.0
2.5
1.3
0.0
102.1
4.2
370.5
599
66.1
940.1
7.2
67.2
0.1
40.5
0.1
1,121.3
5,491
549.6 9.1
4,942.5 81.9
177.3 2.9
166.8 2.8
2.3 0.0
193.9 3.2
5.0 0.1
6,037.4 100.0
Source: From Scharf, D., Burke, D., Villeneuve, and Leigh, L., 1996. Industrial Water Use 1996, Scharf, D., Burke, D.W., Villeneuve, M., and Leigh, L., Environmental Economics Branch, Environment Canada, 2002. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. q 2006 by Taylor & Francis Group, LLC
7-158
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7H.91 Competing Water Uses for Main Income Groups of Countries
World Low income Middle income Lower middle income Upper middle income Low and middle income East Asia and Pacific Europe and central Asia Latin America and Caribbean Middle East and North Africa South Asia Sub-Saharan Africa High income Europe Economic and Monetary Union (EMU)
Agricultural Use (%)
Industrial Use (%)
Domestic Use (%)
70 87 74 75 73 82 80 63 74 89 93 87 30 21
22 8 13 15 10 10 14 26 9 4 2 4 59 63
8 5 12 10 17 8 6 11 18 6 4 9 11 16
Source: From Water for People Water for Life, The United Nations World Water Development Report. Copyright q United Nations Educational, Scientific, and Cultural Organization - World Water Assessment Programme (UNESCO-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: From World Bank, 2001, World Development Indicators (WDI), Washington, DC, Available on CD-ROM, Copyright q International Bank for Reconstruction and Development/The World Bank, www.worldbank.org. Reprinted with permission.
Domestic use 8%
Domestic use 11%
Domestic use 8% Industrial use 10%
Agricultural use 30%
Industrial use 22% Agricultural use 70%
World
Industrial use 59%
High-income countries
Agricultural use 82%
Low- and middleincome countries
Figure 7H.16 Industrial use of water increases with country income. (From Water for People Water for Life, The United Nations World Water Development Report. Copyright q United Nations Educational, Scientific, and Cultural Organization - World Water Assessment Programme (UNESCO-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: World Bank, 2001, World Development Indicators (WDI), Washington, DC, Available on CD-ROM, Copyright q International Bank for Reconstruction and development/The World Bank, www.worldbank.org. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-159
Table 7H.92 World-Industrial Water Efficiency
Country Algeria Angola Argentina Armenia Austria Azerbaijan Bangladesh Belarus Benin Bolivia Botswana Brazil Cameroon Central African Republic Chad Chile China Colombia Congo Dem Rep. Costa Rica Coˆte d’Ivoire Croatia Czech Republic Denmark Dominican Republic Ecuador Egypt, Arab Rep. El Salvador Estonia Ethiopia Finland Gabon Gambia Georgia Germany Ghana Guatemala Guinea Guinea Bissau Haiti Honduras India Indonesia Iran, Islamic Rep. Italy Jamaica Jordan Kenya Korea, Rep. Kyrgyztan Latvia Lithuania Malawi Malaysia Mali Mauritania Mauritius Mexico
Total Annual Freshwater Withdrawal (bill m)3a 4.5 0.5 28.6 2.9 2.2 16.5 14.6 2.7 0.2 1.4 0.1 54.9 0.4 0.1 0.2 21.4 525.5 8.9 0.0 5.8 0.7 0.1 2.5 0.9 8.3 17.0 55.1 0.7 0.2 2.2 2.4 0.1 0.0 3.5 46.3 0.3 1.2 0.7 0.0 1.0 1.5 500.0 74.3 70.0 57.5 0.9 1.0 2.0 23.7 10.1 0.3 0.3 0.9 12.7 1.4 16.3 0.4 77.8
% for Industryb
Industrial Value Added (IVA) (mi US$)c
Population (mi)d
IVA/Industrial Annual Withdrawal (US$/m3/Capita)e
15 10 9 4 60 25 2 43 10 20 20 18 19 6 2 11 18 4 27 7 11 50 57 9 1 6 8 20 39 3 82 22 2 20 86 13 17 3 4 1 5 3 1 2 37 7 3 4 11 3 32 16 3 13 1 2 7 5
22,618 4,182 77,171 1,029 76,386 1,213 11,507 9,543 333 1,529 2,593 231,442 2,360 211 233 24,385 498,292 23,120 852 4,456 3,039 4,995 20,512 40,142 5,530 6,535 22,221 3,158 1,494 726 48,807 2,752 50 378 760,536 1,927 3,468 1,431 46 641 1,234 113,041 85,633 34,204 323,494 1,619 1,738 1,325 249,268 699 1,627 2,156 288 43,503 580 284 1,419 96,949
30 12 37 4 8 8 128 10 6 8 2 168 15 4 7 15 1,254 42 3 4 16 4 10 5 8 12 63 6 1 63 5 1 1 5 82 19 11 7 1 8 6 998 207 63 58 3 5 29 23 6 2 4 11 23 11 3 1 97
1.11 7.26 0.84 2.14 7.14 0.04 0.31 0.81 3.59 0.68 58.94 0.14 2.07 13.46 8.75 0.70 0.00 1.40 26.29 2.88 2.47 31.22 1.42 100.23 16.58 0.57 0.08 3.57 23.88 0.17 4.89 208.45 83.74 0.11 0.23 2.60 1.60 9.21 63.33 13.62 2.71 0.01 0.56 0.37 0.27 8.33 10.43 0.57 4.16 0.46 8.71 13.56 0.82 1.14 3.88 0.32 57.13 0.25 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-160
Table 7H.92
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Country Moldova Mongolia Morocco Mozambique Namibia The Netherlands New Zealand Nicaragua Niger Nigeria Norway Pakistan Panama Papua New Guinea Paraguay Peru Philippines Poland Russian Federation Rwanda Senegal Sierra Leone Slovak Republic Slovenia South Africa Sri Lanka Sweden Tanzania, United Republic of Thailand Togo Tunisia Turkey Turkmenistan Uganda Ukraine United Kingdom Uruguay Uzbekistan Venezuela Vietnam Yemen Zambia Zimbabwe
Total Annual Freshwater Withdrawal (bill m)3a
% for Industryb
Industrial Value Added (IVA) (mi US$)c
3.0 0.4 11.1 0.6 0.3 7.8 2.0 1.3 0.5 4.0 2.0 155.6 1.6 0.1 0.4 19.0 55.4 12.1 77.1 0.8 1.5 0.4 1.4 0.5 13.3 9.8 2.7 1.2 33.1 0.1 2.8 35.5 23.8 0.2 26.0 9.3 4.2 58.0 4.1 54.3 2.9 1.7 1.2
65 27 3 2 3 68 13 2 2 15 68 2 2 22 7 7 4 67 62 1 3 4 50 50 11 2 30 2 4 13 2 11 1 8 52 8 3 2 10 10 1 7 7
508 362 12,558 1,020 971 116,700 15,683 538 376 14,918 47,599 14,685 1,561 1,779 2,334 20,714 26,364 47,846 97,800 356 1,235 170 7,036 7,337 49,363 3,862 74,703 928 64,800 309 6,297 51,575 2,957 1,191 17,854 330,097 5,703 4,340 30,083 9,052 1,683 996 2,005
Population (mi)d 4 2 28 17 2 16 4 5 10 124 4 135 3 5 5 25 74 39 146 8 9 5 5 2 42 19 9 33 60 5 9 64 5 21 50 60 3 24 24 78 17 10 12
IVA/Industrial Annual Withdrawal (US$/m3/Capita)e 0.07 1.56 1.40 4.92 57.12 1.37 15.08 3.97 3.76 0.20 8.61 0.04 19.84 16.17 15.51 0.61 0.16 0.15 0.01 4.13 3.05 2.30 2.01 14.67 0.81 1.04 10.07 1.15 0.81 5.21 13.01 0.20 2.49 3.55 0.03 7.10 15.61 0.16 3.12 0.02 3.07 0.84 1.96
Note: The industrial water productivity shows the economic value (US$) obtained annually by industry per cubic meter of water used. Very high differences can be noted, between high-income countries such as the United Kingdom, showing a per capita industrial water efficiency of US$ 7.10/m3, and many low-income countries, such as Moldova, with only US$ 0.07/m3. Observe, however, that countries having small populations or highly specialized industries (high-value gems tourism)—such as Gabon, Namibia, or Mauritius—have also achieved high productivity. a b c d e
Data refer to any year from 1980 to 1999. Withdrawal shares are mostly estimated for 1987. US constant dollar 1995, data for 1999. Data estimated for 1999. Population is expressed in millions, U.S. constant dollar 1995.
Source: From Water for People Water for Life, The United Nations World Water Development Report. Copyright q United Nations Educational, Scientific, and Cultural Organization - World Water Assessment Programme (UNESCO-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: From World Bank, 2001, World Development Indicators (WDI), Washington, DC, Available on CD-ROM, Copyright q International Bank for Reconstruction and Development/The World Bank, www.worldbank.org. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-161
Table 7H.93 Water Requirements for Selected Industries in the World
Industry, Product, and Country Food Products Bread or pastry, Belgium Bread, United States Bread, Cyprusa Canned food Belgium Fish, canned Fish, preserved Fruit Vegetables Canada Fruits and vegetablesa Cyprus Citrus/tomato juicea Grapefruit sectionsa Peaches/pearsa Grapesa Tomatoes, wholea Tomato pastea Peasa Carrotsa Spinacha Israel Citrus fruitsa Vegetablesa United States Apricots Asparagus Beans, green Beans, lima Beets, corn and peas Grapefruit juice Grapefruit sections Peaches and pears Pork and beans Pumpkin and squash Sauerkraut Spinach Succotash Tomato products Tomatoes, whole Industry average, fruits, vegetables, and juices (1965)a Meat Meat freezing, Cyprusa Meat freezing, New Zealand Meat packing, United Statesa Meat packing, Canadaa Meat products, Belgium Sausage factory, Finland Sausage factory, Cyprusa Slaughtering, Finland Slaughtering, Cyprusa Meat preserving, Israela Fish Fresh and frozen fish, Canadaa Canned fish, Canadaa Canning and preserving fish, Israela Poultry Poultry, Canadaa Chickens, Israela Chickens, United Statesa Turkeys, United Statesa Milk and Milk Products Butter New Zealanda
Unit of Product (Ton, Except as Specified)
Water Required per Unit (L) 1,100 2,100–4,200 600 400 1,500 15,000 8,000–80,000 10,000–50,000 2,800 16,000 10,000–15,000 30,000 2,000 21,000 10,000 16,000 30,000
Ton of raw citrus
4,000 10,000–15,000 21,200 20,500 9,300 69,800 7,000 2,800 15,600 18,100 9,300 7,000 950 49,400 34,800 20,500 2,200 24,000
Ton of carcass Ton of prepared meat Ton of carcass Ton of prepared meat Ton, live weight Ton of carcass Ton of prepared meat
Ton of raw fish Ton Ton of dressed chicken Per bird Per bird
500 3,000–8,600 23,000 8,800–34,000 200 20,000–35,000 25,000 4,000–9,000 10,000 10,000 30,000–300,000 58,000 16,000–20,000 6,000–43,000 33,000 25 75 20,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-162
Table 7H.93
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Industry, Product, and Country Cheese Cyprusa New Zealanda United Statesa Milk Belgium Finland Israela Sweden United Statesa Milk powder New Zealanda South Africa Whey, United Statesa Dairy products, general, Canadaa Ice cream, United Statesa Yogurt, Cyprusa Sugar Denmarka Finland Francea Germany, Federala Great Britaina Israela Italya Republic of Chinaa United Statesa United Statesa Beverages Beer Belgium Canadaa Cyprusa Finland Francea Israela United Kingdoma United States Whiskey, United Statesa Distilled spirits, Israela Wine, Francea Wine, Israela Miscellaneous Food Products Chocolate confectionery, Belgium Gelatin (edible), United States Maize (wet milling), United States Maize syrup, United States Wheat milling, Cyprusa Wheat milling, Israela Potato flour, Finland Potato starch, Canadaa Macaroni, Cyprusa Molasses, Belgium Molasses, United States Pulp and Paper Groundwood pulp Finland Sulphate pulp China, Republic ofa China, Republic ofa Finland Swedena Swedena Sulphite pulp
Unit of Product (Ton, Except as Specified)
Water Required per Unit (L) 10,000 2,000 27,500
1,000 L
7,000 2,000–5,000 2,700 2,000–4,000 3,000 45,000 200,000 10,000 12,200 10,000 20,000
Ton of sugar beets Ton of sugar beets Ton of sugar beets Ton of sugar beets Ton of sugar beets Ton of sugar beets Ton of sugar beets Ton of sugar cane Ton of sugar beets (range) Ton of sugar beets (average)
4,800–15,800 10,000–20,000 10,900 10,400–14,000 14,900 1,800 10,500–12,500 15,000 3,200–8,300 6,000
Kiloliter Kiloliter Kiloliter (incl. cleaning bottles) Kiloliter Kiloliter Kiloliter Kiloliter Kiloliter Kiloliter of proof spirit Kiloliter Kiloliter Kiloliter
7,000–20,000 10,000–20,000 22,000–30,000 10,000–20,000 14,500 13,500 6,000–10,000 15,200 2,600–76,000 30,000 2,900 500
Liter of maize Liter of maize Ton of potatoes Ton of starch Hectoliter of raw material Hectoliter of 100 proof Ton of wood-pulp Ton of bleached pulp Ton of unbleached pulp Ton of pulp Ton of unbleached pulp Ton of bleached pulp
15,000–17,000 55,100–83,500 15.0–25.5 3.8–4.3 2,000 700–1,300 10,000–20,000 80,000–150,000 1,200 1,000–12,000 840 30,000–40,000 340,000 230,000 250,000–350,000 75,000–300,000 170,000–500,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7H.93
7-163
(Continued)
Unit of Product (Ton, Except as Specified)
Industry, Product, and Country Finland Finland Swedena Swedena Wood pulp Swedena South Africa Blotting paper, Sweden Craft, printing and fine paper, Finland Printing paper, Republic of Chinaa Newsprint, Republic of Chinaa Newsprint, Canadaa Fine paper, Republic of Chinaa Fine paper, Sweden Newsprint paper, Sweden Packing and cartridge paper, Sweden Press paper, Finland Printing paper, Sweden Cardboard, Finland Paperboard, United States Paper and cardboard, Belgium Strawboard, United States Wallboard, Finland Wallboard, Swedena Industry average, United Statesa Industry average, United Kingdoma Industry average, Francea Petroleum and Synthetic Fuels Aviation gasoline, United States Aviation gasoline, Republic of Chinaa Gasoline, United States Gasoline, Republic of Chinaa Gasoline, polymerization, United States Kerosene, Belgium Synthetic gasoline, United States Oilfields, United States Oil refineries Belgiuma China, Republic ofa Sweden United Statesa Synthetic fuel From coal South Africa United States From natural gas, United States From shale, United States Chemicals Acetic acid, United States Alcohol, 100 proof, United States Alcohol, 190 proof, United States Alumina (Bayer process), United States Ammonia, synthetic, United States Ammonia (Naphtha, reforming), Japana Ammonium nitrate, Belgium Ammonium sulphate, United States Calcium carbide, United States Calcium metaphosphate, United States Carbon dioxide, United States Caustic soda and chlorine, Canadaa Caustic soda (Solvay process), United Statesa Caustic soda (Dual process), Federal Republic of Germanya Caustic soda (Dual process), Republic of Chinaa
Ton of bleached pulp Ton of unbleached pulp Ton of bleached pulp Ton of unbleached pulp Ton of dry pulp
Ton of pulp and paper Ton of paper and board Ton of pulp and paper Kiloliter Kiloliter Kiloliter Kiloliter Kiloliter Ton Kiloliter Kiloliter of crude petroleum Ton of crude petroleum Ton of crude petroleum
Kiloliter Kiloliter Kiloliter Liter Liter Ton of liquid NH3
Water Required per Unit (L) 450,000–500,000 250,000–300,000 300,000–700,000 140,000–500,000 50,000–100,000 150,000 350,000–400,000 375,000 340,000 190,000 165,000–200,000 800,000 900,000–1,000,000 200,000 125,000 200,000 500,000 125,000 62,000–376,000 180,000 109,000 125,000 50,000 236,000 90,000b 150,000 25,000 25,000 7,000–10,000 8,000 34,000 40,000 377,000 4,000 30,500 10,000
50,100 265,500 88,900 20,800 417,000–1,000,000 138 52–100 26,300 129,000 255,000 52,000 835,000 125,000 16,700 83,500 125,000 60,500 160,000 200,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-164
Table 7H.93
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Industry, Product, and Country Caustic soda (Solvay process), Republic of Chinaa Cellulose nitrate, United States Charcoal and wood chemicals, United States Chlorine, Federal Republic of Germanya Ethylene, Israela Gases, compressed and liquified, Canadaa Glycerine, United States Gunpowder, United States Hydrochloric acid (salt process), United States Hydrochloric acid (synthetic process), United States Hydrogen, United States Lactose, United States Magnesium carbonate, basic United States Oxygen, United States Polyethylene, Federal Republic of Germanya Polyethylene, Israela Potassium chloride (sylvinite), United States Smokeless powder, United States Soap, Belgium Soap, Cyprusa Soap (laundry), United States Soda ash (ammonia soda process), 58 percent, United States Sodium chlorate, United States Sodium silicate, United States Stearine, soap and washing agents, Sweden Sulfuric acid, Belgium Sulfuric acid (chamber process), United States Sulfuric acid (contact process), United States Sulfuric acid, Federal Republic of Germanya Textiles Steeping, dressing, scouring and bleaching Steeping flax, Belgium Dressing flax, Sweden Scouring wool, Belgium Washing wool, Sweden Bleaching textiles, Belgium Dyeing Textiles, Belgium Textiles, France (range)a Textiles, France (average)b Finishing Wet finishing of textiles, Belgium Dyeing and finishing Cotton yarn, Israela Synthetic yarn, Israela Wool yarn, Israel Fabrics, Israela Mills Cotton Finland Sweden Canadaa Wool Finland Sweden Synthetic fibers Artificial silk, Sweden Rayon Belgium Finland Rayon staple, Belgium
Unit of Product (Ton, Except as Specified)
Ton of crude CaAc2 Cubic meter Ton of 20 Be HCI Ton of 20 Be HCI Ton of basic MgCO3 Ton of MgCO3 Cubic meter of O2
Ton of 40 Be water-glass Ton of fat Ton of 100 percent H2SO4 Ton of 100 percent H2SO4 Ton of SO3
Water Required per Unit (L) 150,000 41,700 271,000 12,600 16,000 60–70 4,600 401,000–835,000 12,100 2,000–4,200 2,750,000 835,000–918,000 18,000 163,000 243 231,000 (incl. 225,000 cooling water) 8,400 167,000–209,000 209,000 37,000 4,500 960–2,100 62,600–75,100 250,000 670 70,000–200,000 20,000–25,000 10,400 2,700–20,300 83,500 30,000–40,000 30,000–40,000 240,000–250,000 10,000 180,000 200,000 52,000–560,000 180,000 100,000–150,000 60,000–180,000 90,000–180,000 70,000–140,000 60,000–100,000
Square yard Ton of cloth or yarn Ton of wool
50,000–150,000 10,000–250,000 1.0 150,000–350,000 400,000 2,000,000 2,000,000 1,000,000–2,000,000 550,000 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7H.93
7-165
(Continued)
Industry, Product, and Country Industrial duck products, Canadaa Carpets, Canadaa Mining and Quarrying Gold, South Africa Iron ore (brown), United States Bauxite, United Statesa Sulfur, United States Copper, Finland Copper, Israela Gravel, Israela Limestone and by-products, Belgium Iron and Steel Products Belgium Blast furnace, no recycling Blast furnace, with recycling Finished and semi-finished steel, no recyclinga Finished and semi-finished steel, with recycling Canada Pig ironb Open hearth steela France Smeltinga Martin process (Open hearth)a Thomas process (Bessemer converter)a Electric furnace steela Rolling millsa Germany, Federal Republic Steel worksa South Africa Steel Sweden Iron and steel works United States (average) Fully integrated millsa Rolling and drawing millsa Blast furnace smeltinga Electrometallurgical ferroalloysa Industry, consumptive use (est.)a Miscellaneous Products Automobiles, United Statesa Boilers, steam, United States Casein, New Zealanda Cement, Portland Belgiuma Cyprus (dry process)a Finland United States (wet process)a Ceramics and tiles, Belgium Coal:c Ruhr (Fed. Rep. Of Germany)a Great Britaina Netherlandsa Coal, Belgium Coal, coke and by-product coke, United States Coal washing, United States Condensers, surface, United States Distilling, grain Belgium United States Distilling, Sweden Electric power (conventional thermal) Sweden South Africa United Statesa
Unit of Product (Ton, Except as Specified) Square yard Ton of ore Ton of ore
Water Required per Unit (L) 22,000 20 1,000 4,200 300 12,500 3,750 3,100 400 200–6,500 58,000–73,000 50,000 61,000 27,000 130,000 22,000 46,000 15,000 10,000 40,000 30,000 8,000–12,000 12,500 10,000–30,000 86,000 14,700 103,000 72,000 3,800
Vehicle Horsepower-hour
38,000 15 55,000 1,900 550 2,500 900 1,800–2,000
Pound of condensed steam Hectoliter of grain treated Hectoliter of grain treated Kiloliter of 100 percent alcohol Ton of coal Kilowatt-hour (consumptive use) Kilowatt-hour
1,000 (min.)– 1,750 (avg.) !3,000 2,650 5,000–6,000 6,300–15,000 840 9.1–27.3 6,000–7,000 6,450 15,000–100,000 200,000–400,000 5 200 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-166
Table 7H.93
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Industry, Product, and Country Republic of Chinaa Explosives Sweden United States Fertilizer plant, Finland Glass, Belgium Laundry Cyprusa Finland Sweden Leather, South Africa Leather factory, Finland Leather tanning, United Statesa Leather tanning, United Statesa Leather tanning, Cyprusa Non-ferrous metals, raw and semi-finished, Belgium Rock wool, United States Rubber, synthetic, United States Butadiene Buna S Grade GR-S Starch Belgium Sweden
Unit of Product (Ton, Except as Specified) Kilowatt-hour
Ton of saltpeter (25 percent nitrogen) Ton of washed goods Ton of washed goods Ton of washed goods Ton of hides Sq. meter of hide Sq. meter of hide Sq. meter of small animal skins
b c
Ton of maize Ton of potatoes
Figures based on newer data (post-1960). Does not include cooling water for power generating plants. Includes generation of electricity. If this is not included, the quantities above are reduced by about one-half.
Source: From Dept. of Economic and Social Affairs, United Nations, 1969.
q 2006 by Taylor & Francis Group, LLC
230 800,000 835,000 270,000 68,000 45,000 20,000 30,000–50,000 50,100 50,000–125,000 20–2,550 (range) 440 (average) 110 80,000 16,700–20,900 83,500–2,750,000 125,000–2,630,000 117,000–2,800,000
Note: Water requirements for unit of product produced. Other figures based on older data (pre-1950). a
Water Required per Unit (L)
13,000–18,000 10,000
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-167
SECTION 7I IRRIGATION — UNITED STATES (Percent of diversions; bill gall / day) Net depletions 54% 86.4 Crop consumptive use 41% 65.6
Farm 37% losses 58.4 Farm 78% delivery 124.0 Gross 100% diversions 158.7
Total 59% losses 93.1
Delivery losses and spills 22% 34.7
Incidental losses 13% 20.8
Return flow 46% 72.3
Water supply sources Figure 7I.17 Irrigation water budget of the United States. (From Soil Conservation Service, America’s Soil and Water: Condition and Trends, 1981.)
q 2006 by Taylor & Francis Group, LLC
7-168
Table 7I.94 Acreage Irrigated with On-Farm and Off-Farm Pumped Water in the United States, 1994, 1998, and 2003 Groundwater 1994
— — — — — — — — — — —
2003
1994
1998
2003
1,699 11,207 17,331 22,006 15,696 542 26,853 19,024 14,418 317 537
1,523 4,803 15,278 13,124 13,972 592 21,219 33,598 13,103 567 509
172 67,262 700 33,427 779 117 37,406 9,762 3,469 33 42
290 64,840 1,480 40,131 1,289 162 26,487 12,289 5,230 52 208
184,943 292,643 270,362
228,137 301,550 315,241
286,450 400,925 345,408
116,109 24,929 35,196
134,858 16,382 37,668
140,338 23,335 45,436
251,551 — — 650,580 —
280,060 176,427 62,718 783,174 4,718
360,740 227,750 127,128 961,231 6,995
18,428 — — 56,363 —
12,347 42,329 4,109 49,155 5,428
2,446,630 5,408,543 93,983 178,827
2,577,611 5,069,036 103,714 137,788
2,430,557 6,974,942 152,714 233,600
18,945 133,254 27,321 54,117
11,005 13,209 16,387 6,411 207
10,264 14,559 25,636 6,619 247
— 746,071 450,029 —
14,079 1,032,746 435,770 28,515
24,451 772,907 518,239 31,157
2,581,693 557,431 624,182
3,722,635 709,207 1,078,511
3,421,365 633,455 1,115,676
— — — — —
q 2006 by Taylor & Francis Group, LLC
— — — — — — — — — — —
Off-Farm Surface Water 1994
2003
55 (D) (D) 401 251 62 996 2,355 199 58 —
409 375 1 891 954 64 289 2,712 1,594 29 108
7,827 9,729 1,928
5,598 5,448 1,834
6,533 10,240 1,279
12,905 48,533 4,909 55,341 5,126
1,760 — — 1,744 —
289 960 1,138 2,702 2,037
46,457 183,012 14,846 52,406
75,062 121,860 25,381 39,400
59,251 544,246 37,272 72,576
14,032 120,610 6,256 60,221 939
10,386 85,237 9,119 28,077 532
— 246,527 169,433 —
33,087 274,388 218,532 32,306
26,994 418,190 194,926 22,017
271,512 240,593 25,361
349,574 219,653 39,012
509,914 186,544 46,834
— — — — —
— — — — — — — — — — —
1998
Total 1994
2003
1,913 77,382 18,324 55,150 16,367 718 63,508 29,176 17,916 408 579
2,213 69,088 18,163 53,734 16,151 818 46,679 48,545 19,633 648 825
305,481 326,781 306,096
367,992 322,346 351,023
432,665 434,500 391,763
1,274 129 2,147 4,156 2,355
271,725 — — 702,183 —
290,825 217,197 67,852 832,591 12,037
374,919 276,294 134,164 1,020,728 14,476
34,520 534,208 46,355 110,822
60,901 443,354 30,400 117,406
2,501,925 5,979,661 157,426 304,454
2,650,486 5,692,215 164,741 297,205
2,543,950 7,516,171 207,772 390,406
526 1,713 98 692 65
280 3,109 574 496 22
25,454 134,468 22,741 65,734 1,211
20,685 101,055 34,429 33,635 801
— 447,724 1,000 —
465 340,507 1,871 584
1,333 319,598 56 232
— 1,416,019 619,536 —
46,811 1,613,719 647,749 61,015
52,722 1,497,653 711 52,046
13,196 34,880 378
23,485 9,810 1,245
26,793 23,596 9,213
2,853,929 820,816 646,761
4,043,382 920,823 1,109,079
3,944,867 838,717 1,169,793
— — — — —
— — — — — — — — — — —
1998
— — — — —
WATER USE
Northeast Connecticut Delaware Maine Maryland Massachusetts New Hampshire New Jersey New York Pennsylvania Rhode Island Vermont Lake States Michigan Minnesota Wisconsin Corn Belt Illinois Indiana Iowa Missouri Ohio Northern Plains Kansas Nebraska North Dakota South Dakota Appalachia Kentucky North Carolina Tennessee Virginia West Virginia Southeast Alabama Florida Georgia South Carolina Delta States Arkansas Louisiana Mississippi
1998
On-Farm Surface Water
392,063 4,319,337
355,414 4,576,456
413,067 4,174,840
34,105 203,619
33,189 246,693
62,572 184,173
48,579 606,841
66,743 488,571
36,513 588,932
474,201 5,100,979
451,788 5,237,584
508,842 4,947,745
340,306 1,357,765 1,307,688 136,969 202,566 381,244 196,191 78,842
243,313 1,331,615 1,226,924 46,606 223,747 425,530 139,693 90,730
291,025 1,095,601 1,202,870 96,469 259,721 502,021 191,842 114,676
26,012 517,976 352,423 691,982 184,808 56,803 162,912 556,782
6,412 559,887 388,335 695,480 296,811 49,881 170,750 700,511
72,213 694,262 352,666 724,542 241,713 89,790 104,527 512,153
492,398 1,383,255 1,643,919 1,134,537 155,591 275,091 741,809 774,364
683,637 1,211,561 1,656,908 1,015,467 191,692 281,300 791,945 771,299
516,422 810,713 1,609,148 1,313,763 145,684 206,658 790,434 794,498
752,019 2,998,888 3,183,733 1,936,292 519,507 685,695 1,085,083 1,374,447
873,589 2,942,230 3,188,406 1,740,873 694,930 720,319 1,076,346 1,533,468
836,587 2,562,329 3,126,857 2,131,955 639,310 769,787 1,082,213 1,415,037
3,876,870 501,297 501,662 — — 28,816,442
3,071,740 304,579 445,927 2,424 43,996 32,222,665
3,823,115 421,642 484,392 2,128 33,938 32,342,820
628,817 564,577 163,723 — — 5,926,902
745,056 622,453 190,423 191 34,850 7,402,653
1,045,025 629,850 292 113 17,036 7,277,527
3,910,823 682,894 827,817 — — 13,919,132
5,120,793 650,475 963,804 3 46,893 16,408,547
4.166,854 720,621 1,041,882 11 50,999 13,867,438
7,245,487 1,587,152 1,434,800 — — 46,418,380
8,139,834 1,534,961 1,554,813 2,618 96,543 54,249,965
8,471,936 1,731,660 1,806,782 2,252 78,538 52,583,431
Source: Abstracted from: USDA, 2004, Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1,—2002; Census of Agriculture; USDA, 1999, 1998 Farm and Ranch Irrigation Survey, Vol. 3, Special Studies, Part 1—1997 Census of Agriculture and USDA, 1994 Farm and Ranch Irrigation Survey—1992, Census of Agriculture; (D) Withheld to avoid disclosing data for individual farms, www.nass.usda.gov.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Southern Plains Oklahoma Texas Mountain Arizona Colorado Idaho Montana Nevada New Mexico Utah Wyoming Pacific California Oregon Washington Alaska Hawaii Total
7-169
q 2006 by Taylor & Francis Group, LLC
7-170
WATER USE
Table 7I.95 Growth of Irrigated Farmland in the United States, 1889–2002 Acreage Irrigated per Farm Irrigated (acres)
Change In Irrigated Acreage (mil acres)
Average Annual Growth in Irrigated Acreage (percent)
Year
Land in Farmsa (mil acres)
Irrigated Land in Farms (mil acres)
Share of Farmland Irrigated (percent)
1889 1900 1910 1920 1930 1939 1949 1959 1969 1974 1978 1982 1987 1992 1997
623 839 879 956 987 1,065 1,161 1,123 1,063 1017 1,015 987 964 946 932
3.6 7.5 14.4 19.2 19.5 18 25.8 33 39.1 41.2 50.3 49 46.4 49.4 55.1
0.6 0.9 1.6 2.0 2 1.7 2.2 3 3.7 4.1 5 4.9 4.8 5.2 5.9
67 70 89 83 74 60 84 108 152 174 179 176 159 177 197
NA 3.9 6.9 4.8 0.3 K1.5 7.8 7.2 6.0 2.1 9.1 K1.3 K2.6 3.0 5.7
NA 6.9 6.7 2.9 0.2 K0.9 3.7 2.5 1.7 1.1 2.8 K0.7 K1.1 1.3 2.2
955 938
56.3 55.3
5.9 5.9
182 184
NA K1.0
NA K0.4
Adjusted for coverageb 1997 2002
Note: NA, Not applicable. a b
Land in Farms includes agricultural land used for crops, pasture, or grazing. It also includes woodland and wasteland not actually under cultivation or used for pasture or grazing, provided it is part of the farm operator’s total operation. The 2002 Census of Agriculture estimates include an area-frame adjustment for incompleteness of the list frame. Similar estimates were calculated for 1997 for the purpose of comparison with the 2002 Census estimates.
Source: From U.S. Dept. of Commerce and U.S. Dept of Agriculture, Census of Agriculture, www.usda.gov.
Million acres 60
50
Inches 30 Million acres: ERS estimates Million acres: Census of agriculture Inches applied: National average Inches applied: Field index*
28
40
26
30
24
20
22
10
20
0 1900
1920
1940
1960
1980
18 2000
Year Figure 7I.18 Irrigation trends-in the United States, 1900–2000. (From Heimlich, R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003.) www.ers.usda.gov. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-171
Table 7I.96 Irrigated Land in Farms, by Region and Crop, 1900–2000 Region
1900a
USDA Production Region Atlantic Regionsc — North Centrald — Northern Plains 200 Delta States 200 Southern Plains 100 Mountain States 5,300 Pacific Coast 2,000 United Statese 7,800 Irrigated Crop Corn for Grain Sorghum for grain Barley Wheat Rice Soybeans Cotton Alfalfa hay Other hay Vegetables Land in orchards Other irrigated land in farms
1949a
1969a
1978a
1982a
1987a
1992a
1997a
1998b
1999b
2000b
500 — 1,100 1,000 3,200 11,600 8,300 25,800
1,800 500 4,600 1,900 7,400 12,800 10,000 39,100
2,900 1,400 8,800 2,700 7,500 14,800 12,000 50,300
2,700 1,700 9,300 3,100 6,100 14,100 11,900 49,000
3,000 2,000 8,700 3,700 4,700 13,300 10,800 46,400
1,000 acres 3,200 2,500 9,600 4,500 5,400 13,300 10,800 49,400
3,600 2,800 10,200 5,700 6,000 14,400 12,400 55,100
3,600 2,800 10,100 6,300 5,900 14,300 12,200 55,200
3,500 2,900 10,200 6,000 5,900 14,400 12,300 55,300
3,500 3,000 10,500 5,900 5,800 14,200 12,400 55,300
3,200 3,500 1,600 1,900 2,200 700 3,100 5,000 2,900 1,500 2,400 11,100
8,700 2,000 2,000 3,000 3,000 1,300 4,700 5,900 3,000 1,900 3,000 11,800
8,500 2,200 1,900 4,600 3,200 2,300 3,400 5,500 3,000 1,900 3,300 9,200
8,000 1,300 1,300 3,700 2,400 2,600 3,500 5,500 3,100 2,000 3,400 9,500
10,600 900 1,100 4,000 3,100 4,200 4,900 6,000 3,600 2,400 4,100 10,300
10,700 600 1,000 3,700 3,400 4,400 4,600 6,300 3,400 2,500 4,100 10,500
9,900 800 1,000 3,400 3,500 4,800 4,800 6,400 3,500 2,600 4,200 10,400
10,200 600 1,000 3,300 3,100 5,200 5,300 6,300 3,300 2,700 4,300 10,300
9,700 1,600 1,100 4,100 3,100 2,500 3,700 5,700 2,900 2,200 3,600 9,100
Note: Indicates none or fewer than 5,000 acres. a b c d e
Census of Agriculture. Estimates constructed from the Census of Agriculture and other USDA sources. Northeast, Appalachian, and Southeast farm production regions. Lake States and Corn Belt production regions. Includes Alaska and Hawaii.
Source: From Heimlich, R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003, www.ers.usda.gov. Original Source: USDA, ERS, based on Census of Agriculture, various years (USDA, 1999a; USDC, 1994; and previous versions); and USDA, ERS data.
q 2006 by Taylor & Francis Group, LLC
7-172
WATER USE
Table 7I.97 Acreage and Value of Irrigated Cropland in the United States, 1982 Acreage
Value
Irrigated (million dollars)
Irrigated Share of Crop Value (percent)
Irrigated Share of Total Crop Valueb (percent)
2.8 0.7 1.4 0.6 1.0 1.0 0.7
3,440 901 1,144 375 1,226 1,883 491
17.2 53.2 16.7 20.0 100.0 58.4 4.4
4.5 1.2 1.4 0.5 1.7 2.5 0.6
358 393 246 179 379 549 211
235 66 84 93 NA 200 17
64.0 15.0 60.7
0.2 2.5 0.6
1,261 2,275 3,375
81.7 27.7 79.7
1.7 3.0 4.5
1,553 267 1,663
546 120 591
70.4 53.2 17.9
1.0 0.2 0.7
4,732 491 2,424
85.1 77.7 25.4
6.2 0.6 3.1
1,415 893 998
502 262 638
13.4
24,047
Irrigated (1,000 acres)
Share of Crop Irrigated (percent)
Share of Total Croplanda (percent)
Corn Sorghum Wheat Barley and oats Rice Cotton Soybeans
9,604 2,295 4,650 2,098 3,233 3,424 2,321
12.3 17.0 6.6 11.8 100.0 35.0 3.6
Irish potatoes Hay Vegetables and melons
812 8,507 2,029
Orchard crops Sugar beets Other cropsc
3,343 550 2,428
Totald
45,289
NA
NA
31.8
Irrigated Value per Acre (dollars)
531e
Rainfed Value per Acre (dollars)
176e
Note: NA, Not applicable. By crop; contiguous United States. a b c d e
This is the share each irrigated crop represents of the total acreage of crops produced in the 48 States in 1982. This is the share each irrigated crop represents of the total value of crops produced in the 48 States in 1982. Includes peanuts, tobacco, dry edible beans, and the minor acreage crops rye, flax, sugarcane, and dry edible pears. Includes about 932,000 acres of double-cropped land. Figures might not add to totals due to rounding. Average weighted by acreage.
Source: From Day, J.C. and Horner, G.L., 1987, U.S. Irrigation, extent and economic importance, U.S. Department of Agriculture Information Bulletin 523.
q 2006 by Taylor & Francis Group, LLC
Irrigated Land (1000 acres)
Withdrawals (1000 mil gal/day)
By Type of Irrigation State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon
By Source
Sprinkler
Micro-Irrigation
Surface
Total
Groundwater
68.7 2.43 183 631 1,660 1,190 20.6 81.1 0.32 515 1,470 16.7 2,440 365 250 84.5 2,660 66.6 110 35 57.3 26.6 401 546 455 532 506 4,110 192 6.08 109 461 70 193 200 61 392 1,160
1.3 0 14 0 3,010 1.16 0.39 0.71 0 704 73.8 105 4.7 0 0 0 2.14 0 0 0.95 3.32 2.35 8.67 0 0 1.43 0 0 0 0 15.7 7.17 8.73 3.7 0 0 1.5 4.02
0 0.07 779 3,880 5,470 2,220 0 0 0 839 0 0 1,300 0 0 0 647 0 830 0.03 0 0 4.87 26.9 966 792 1,220 3,710 456 0 3.7 530 1.84 0 26.7 0 113 1,000
70 2.5 976 4,510 10,100 3,400 21 81.8 0.32 2,060 1,540 122 3,750 365 250 84.5 3,310 66.6 940 36 60.6 29 415 573 1,420 1,330 1,720 7,820 647 6.08 128 998 80.6 196 227 61 507 2,170
14.5 0.99 2,750 6,510 11,600 2,160 17 35.6 0 2,180 750 171 3,720 150 55.5 20.4 3,430 1.14 791 0.61 29.8 19.7 128 190 1,310 1,380 83 7,420 567 0.5 22.8 1,230 23.3 65.8 72.2 13.9 566 792
Surface Water 28.7 0.02 2,660 1,410 18,900 9,260 13.4 7.89 0.18 2,110 392 193 13,300 4.25 45.4 1.08 288 28.2 232 5.23 12.6 106 73.2 36.6 99.1 48.1 7,870 1,370 1,540 4.25 117 1,630 12.1 221 73.2 17.8 151 5,290
Withdrawals (1000 acre-feet/yr) By Source
Total
Groundwater
Surface Water
Total
Application Rate (acrefeet/acre)
43.1 1.01 5,400 7,910 30,500 11,400 30.4 43.5 0.18 4,290 1,140 364 17,100 154 101 21.5 3,710 29.3 1,020 5.84 42.4 126 201 227 1,410 1,430 7,950 8,790 2,110 4.75 140 2,860 35.5 287 145 31.7 718 6,080
16.2 1.11 3,080 7,290 13,100 2,420 19 39.9 0 2,450 841 191 4,170 168 62.2 22.9 3,840 1.28 887 0.68 33.4 22.1 144 213 1,470 1,550 93 8,320 635 0.56 25.5 1,380 26.1 73.8 80.9 15.6 635 887
32.2 0.02 2,980 1,580 21,100 10,400 15 8.84 0.2 2,370 439 216 15,000 4.76 51 1.21 323 31.6 261 5.86 14.1 119 82 41.1 111 53.9 8,820 1,540 1,730 4.76 131 1,830 13.6 248 82.1 19.9 170 5,920
48.4 1.13 6,060 8,870 34,200 12,800 34 48.7 0.2 4,810 1,280 407 19,100 173 113 24.1 4,160 32.9 1,150 6.55 47.6 141 226 254 1,580 1,600 8,920 9,860 2,360 5.32 156 3,210 39.8 322 163 35.5 804 6,810
0.69 0.45 6.21 1.97 3.37 3.76 1.62 0.6 0.63 2.34 0.83 3.35 5.1 0.47 0.45 0.28 1.26 0.49 1.22 0.18 0.78 4.88 0.54 0.44 1.11 1.21 5.18 1.26 3.65 0.88 1.22 3.22 0.49 1.64 0.72 0.58 1.59 3.14
q 2006 by Taylor & Francis Group, LLC
7-173
(Continued)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.98 Irrigation Water Use in the United States, 2000
7-174
Table 7I.98
(Continued) Irrigated Land (1000 acres)
Withdrawals (1000 mil gal/day)
By Type of Irrigation
By Source
State
Sprinkler
Micro-Irrigation
Surface
Total
Groundwater
Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
28.9 4.48 166 276 51.2 4,010 526 4.95 64.3 1,270 2.21 355 190 15.5 0.2 28,300
7.17 0.29 3.66 0 5.35 89.4 1.68 0 13.9 49.9 0 0 4.73 33 0 4,180
0 0.05 17.5 78.3 3.96 2,390 880 0 0 252 0.98 0 964 5.35 0 29,400
36 4.82 187 354 60.5 6,490 1,410 4.95 78.2 1,570 3.19 355 1,160 53.8 0.2 61,900
1.38 0.46 106 137 7.33 6,500 469 0.33 3.57 747 0.02 195 413 36.9 0.29 56,900
Surface Water 12.5 2.99 162 236 15.1 2,130 3,390 3.45 22.8 2,290 0.02 1.57 4,090 57.5 0.21 80,000
Withdrawals (1000 acre-feet/yr) By Source
Total
Groundwater
Surface Water
Total
Application Rate (acrefeet/acre)
13.9 3.45 267 373 22.4 8,630 3,860 3.78 26.4 3,040 0.04 196 4,500 94.5 0.5 137,000
1.55 0.52 118 153 8.22 7,290 526 0.37 4 837 0.02 218 463 41.4 0.33 63,800
14 3.35 181 264 16.9 2,390 3,800 3.87 25.6 2,570 0.02 1.76 4,580 64.5 0.24 89,700
15.6 3.87 300 418 25.1 9,680 4,330 4.24 29.6 3,400 0.04 220 5,050 106 0.56 153,000
0.43 0.8 1.6 1.18 0.41 1.49 3.08 0.86 0.38 2.16 0.01 0.62 4.36 1.97 2.8 2.48
Note: Figures may not sum to totals because of independent rounding. Source: From Hutson, S.S. et al., 2004, Estimated use of water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
WATER USE
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-175
Table 7I.99 Irrigation Withdrawals by Source in the United States, 1950–1995 Year
Irrigation Withdrawals (bgd)
Percent from Surface Water Sources (%)
Percent of Total from Reclaimed (%)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
89 110 110 120 130 140 150 137 137 134
77.5 72.8 63.8 64.3 64.5 59.5 59.2 66.7 62.6 63.3
— 0.10 0.68 0.44 0.28 0.26 0.19 0.32 0.38 0.54
Note: bgd, billion gallons per day. Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002, http://info.geography.siu.edu/ geography_info/research/. Reprinted with permission. Table 7I.100 Total Irrigation Withdrawals and Irrigated Acres in the United States, 1950–1995
Year
Total Irrigation Withdrawals (bgd)
USGS Estimated Total Irrigated Acres (thousands)
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
89 110 110 120 130 140 150 137 137 134
25,000 34,000 39,000 44,000 50,000 54,000 58,000 57,275 57,400 57,900
Average Depth of Water applied (ft/yr) (USGS Acreage Estimate)
Interpolated US Census Bureau Estimated Total Irrigated Acres (thousands)
Average Depth of Water Applied (ft/yr) (USCB Acreage Estimate)
3.20 2.68 2.41 2.95 2.80 2.96 2.93 2.68 2.67 2.59
26,634 30,274 33,942 37,470 39,546 43,519 49,676 47,432 48,196 52,796
3.00 3.01 2.77 3.47 3.54 3.68 3.42 3.24 3.17 2.84
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002, http://info.geography.siu.edu/geography_info/research/. Reprinted with permission. Table 7I.101 Changes in Irrigation Withdrawals in Selected States, 1960–1995 and 1980–1995 State
1960–1995 Change (mgd)
1980–1995 Change (mgd)
California Nebraska Arkansas Colorado Wyoming Montana Florida Washington Idaho Kansas Oregon Mississippi New Mexico Arizona
10,894 5,350 5,016 3,735 3,495 3,446 2,809 2,769 2,048 1,583 1,368 1,232 1,193 972
K8,106 K1,750 836 K1,265 1,695 K2,454 469 69 K2,952 K2,217 268 762 K607 K1,428
Lower 48 States
49,960
K17,589
Note: mgd, million gallons per day. Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002, http://info.geography.siu.edu/geography_info/research/. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
7-176
Table 7I.102 Number of Farms Supplied with Off-Farm Water from the Bureau of Reclamation and Other Federal Agencies, 2003 Farms Using Any Off-Farm Water
Farms Using Only Off-Farm Water
Supplier of Off-Farm Watera (Number of Farms)
Geographic Area Corn Belt Ohio Northern Plains Kansas Nebraska North Dakota South Dakota Southern Plains Oklahoma Texas Mountain Arizona Colorado Idaho Montana Nevada New Mexico Utah Wyoming Pacific California Oregon Washington Other States U.S. Total (all states) a
Supplier of Off-Farm Watera (Number of Farms)
Farms
Acres Irrigated with OffFarm Water
Quantity of OffFarm Water (acre-ft)
36
198
637
258
16
16 19 22 40
43 451 16 90
204 493 79 465
30,554 197,822 26,632 109,780
26,836 193,616 43,352 732,712
62 277 36 282
— 20 38
173 14 84
46 1,474
2 33
9 1,342
55 3,911
27,481 501,965
29,431 711,220
44 1,423
33
5 1,190
2,332,795 1,365,054 3,360,210 1,855,914 366,463 492,319 1,604,167 1,329,559
619 1,684 4,884 1,886 249 1,692 1,381 1,075
91 99 520 419 — 4 549 121
568 3,004 3,193 821 168 776 4,596 1,031
1,601 6,034 10,123 4,637 576 2,670 7,856 2,876
397,087 676,181 1,159,032 1,211,250 97,238 178,546 704,474 743,246
1,835,249 1,172,001 2,510,827 1,696,914 256,905 433,484 1,410,309 1,248,919
551 1,567 4,425 1,772 233 1,490 1,339 1,041
66 61 394 406 — 4 393 117
532 2,752 2,924 762 146 707 4,379 971
12,189,829 1,450,562 2,464,111 536,895 31,638,466
6,737 2,552 5,185 — 31,210
1,541 173 139 43 3,832
10,491 1,602 1,692 1,326 31,255
17,810 5,306 7,517 3,365 75,776
2,383,051 548,155 842,209 335,129 10,170,469
7,563,592 1,074,139 2,024,760 318,623 23,283,147
4,802 2,350 4,584 — 26,294
1,215 151 69 31 2,998
8,625 1,510 1,601 2,371 27,589
Farms
Acres Irrigated with OffFarm Water
Quantity of OffFarm Water (acre-ft)
203
2,355
1,234
16
1
315 1,736 90 491
60,901 443,354 30,400 117,406
56,658 488,295 46,896 740,110
114 1,268 46 302
64 4,208
36,513 588,932
40,668 916,727
1,726 6,476 11,059 4,861 623 2,944 8,429 2,999
516,422 810,713 1,609,148 1,313,763 145,684 206,658 790,434 794,498
22,558 5,615 8,271 3,737 86,405
4,166,854 720,621 1,041,882 470,900 13,867,438
Bureau of Reclamation
Other Federal Agencies
All Other Suppliers
Bureau of Reclamation
Other Federal Agencies
—
All Other Suppliers
33
Counts only include those reporting some or all of their water from a given source. Those reporting an unknown water supplier are excluded.
q 2006 by Taylor & Francis Group, LLC
WATER USE
Source: Abstracted from USDA, 2004, Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1, 2002; Census of Agriculture, www.nass.usda.gov.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-177
Table 7I.103 Irrigation in Areas of the United States with Declining Groundwater Supplies
Total Groundwater Irrigation State Arizona Arkansas California Colorado Florida Idaho Kansas Nebraska New Mexico Oklahoma Texas Total
1977 940 1,400 4,388 1,650 1,076 1,149 3,083 5,855 760 730 7,846 28,877
Irrigated Area with Declining Watera
1983 1,000 acres 938 2,337 4,265 1,660 1,610 1,450 3,504 7,025 805 645 6,685 30,924
1977
1983
—b —b —b 570 —b —b 1,950 1,842 560 507 6,425 —a
606 425 2,068 590 250 223 2,180 2,029c 560 523 4,565c 14,029
Percent of Irrigated Land Experiencing Declining Water Levels in 1983
65 18 48 36 16 15 62 29 70 81 73 45
Note: In 11 states with major groundwater irrigation. Total groundwater area irrigated was estimated for 1977 and 1983. Decline area irrigated was estimated from data for the latest year available. a b c
Only areas experiencing at least a six-inch average annual decline are included in these estimates. Data insufficient to make time comparisons. Data for 1984.
q 2006 by Taylor & Francis Group, LLC
Source: From Ogg, C.W., Hostetter, J.E., and Lee, D.J., 1988, Expanding the conservation reserve to achieve multiple environmental goals, J. of Soil and Water Conservation. Copyright 1988. Soil and Water Conservation Society. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
7-178
WATER USE
U.S. harvested acres and crop sales, 1997 Cropland harvested 309 million acres
Crop sales $98 billion
16% 51%
49%
84%
Irrigated Nonirrigated
Irrigated Nonirrigated
Western harvested acres and crop sales, 1997 Cropland harvested 142 million acres
27%
Crop sales $45 billion
28%
73%
72%
Irrigated Nonirrigated
Irrigated Nonirrigated
Eastern harvested acres and crop sales, 1997 Acres 167 million
Crop sales $53 billion
7%
29% 93% 71%
Irrigated Nonirrigated
Irrigated Nonirrigated
Figure 7I.19 Percent of United States harvested acres and crop sales irrigated, 1997. (From United States Department of Agriculture, Economic Research Service, www.ers.usda.gov, from 1997 census of Agriculture Data.)
q 2006 by Taylor & Francis Group, LLC
Ranking by State Item
Unit
Number of farms in 2002 All farms
1000
Irrigated farms 2003
do
Percentage of farms with irrigated land in 2003
Percent
Irrigated land in 2003
Mil acre
Percentage of harvested cropland irrigated in 2003
Percent
Market value of crops sold in 2002 All farms
$bil
Major irrigated crops in 2003 Corn (all)
1000 acres
Wheat
do
Hay (all)
do
Energy expense for on-farm pumping of irrigation water in 2003 Total $mil Electricity
do
Natural gas
do
Acres irrigated by source of water in 2003 Wells
Thous. acre
On-farm surface
do
Off-farm suppliers
do
Water applied in irrigation by source in 2003 Total
Mil acre-feet
1
2
3
4
5
6
7
8
9
10
TX 230 CA 46.8 UT 67.1 CA 8.5 AZ 100
MO 107 NE 16.3 ID 59.6 NE 7.5 NV 96.8
IA 92.5 TX 15.4 NV 57.4 TX 4.9 CA 96.6
TN 90 ID 14.3 CA 55.8 AR 3.9 NM 94.3
KY 89 OR 14.2 WY 52.4 ID 3.1 FL 93.1
OK 87 WA 12.9 NM 44.9 CO 2.6 ID 92.1
CA 84 CO 11.6 CO 38.6 KS 2.5 WY 90.3
MN 79 UT 10.1 AZ 38.0 MT 2.1 WA 88.8
OH 78 MT 8.6 OR 34.6 WA 1.8 UT 88.0
WI 77 FL 8.3 WA 33.0 OR 1.7 HI 85.3
CA
IA
IL
FL
MN
TX
WA
NE
IN
ND
19.2
6.1
5.9
5.0
4.6
3.7
3.6
3.4
3.0
2.5
NE 4684 TX 657 CA 1353
KS 1298 ID 501 CO 1102
TX 831 KS 415 MT 1098
CA 665 CA 407 ID 862
CO 633 WA 278 WY 833
MO 307 CO 156 OR 741
IL 223 OR 143 UT 623
MI 200 OK 132 WA 510
AR 195 AZ 122 NE 483
MN 187 MT 119 NV 455
CA 378.0 CA 304.4 TX 123.5
TX 246.8 TX 105.0 KS 70.0
NE 219.2 ID 100.3 NE 47.8
KS 105.4 NE 83.1 CA 15.3
ID 102.8 WA 69.9 OK 8.2
WA 70.7 CO 52.4 AZ 5.3
AR 68.7 OR 31.6 NM 3.8
CO 58.8 NM 29.0 CO 3.7
NM 34.8 AR 24.6 AR 2.1
OR 32.8 AZ 22.7 LA 0.4
NE 6975 CA 1045 CA 4167
TX 4175 MT 725 ID 1609
CA 3823 CO 694 MT 1314
AR 3421 OR 630 WA 1042
KS 2431 WY 512 CO 811
ID 1203 AR 510 WY 794
MS 1116 FL 418 UT 790
CO 1096 ID 353 OR 721
MO 961 WA 292 TX 589
FL 773 NV 242 AZ 516
CA 24.8
NE 8.5
ID 6.1
TX 6.0
AR 4.3
CO 4.0
WA 3.9
AZ 3.8
OR 3.3
KS 3.1
q 2006 by Taylor & Francis Group, LLC
7-179
(Continued)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.104 Top 10 States in Irrigated Agriculture in the United States
7-180
Table 7I.104
(Continued) Ranking by State
Item
Unit
Wells
do
On-farm sources
do
Off-farm suppliers
do
Irrigation water applied per acre in 2003
Acre-feet
1
2
3
4
5
6
7
8
9
10
CA 9.7 CA 3.0 CA 12.2 MA 5.6
NE 7.9 OR 1.1 ID 3.4 AZ 4.5
TX 4.8 CO 1.1 WA 2.5 HI 4.0
AR 3.5 MT 0.8 AZ 2.3 CA 2.9
KS 3.0 AR 0.7 MT 1.9 NV 2.5
ID 2.1 WY 0.7 UT 1.6 SD 2.5
CO 1.5 FL 0.7 OR 1.5 NM 2.4
NM 1.2 ID 0.6 CO 1.4 WA 2.2
AZ 1.2 WA 0.6 WY 1.3 UT 2.1
MS 0.9 NV 0.5 TX 0.9 ID & OR 1.9
CA 6300 FL 2670
AZ 6000 GA 2200
FL 4180 CA 2000
UT 3500 MO 1540
WA 3200 LA 1280
NM 2650 OR 1200
OR 2250 MS 1140
ID 2200 AR 1100
MO 2150 NE 980
CO 2000 WA 950
Average land value per acre in 2003 Irrigated land
$ per acre
Nonirrigated cropland
do
Note: In selected categories. Source: Abstracted from: USDA, 2004, Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1, 2002; Census of Agriculture; USDA, Farms and Land in Farms, February 2003; USDA, Census of Agriculture State Data, State Summary Highlights 2002, USDA-NASS, Agricultural Statistics, 2003, www.nass.usda.gov.
WATER USE
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.105 Standards for Classification of Lands as Irrigable Land Characteristics Soils Texture Depth To sand, gravel, or cobble To bedrock Topography Slopes
Rock cover
Erosion Drainage Soil and topography Salinity Alkalinity
Minimum Requirements Loamy sand to permeably clay 18 in. of good free-working soil of the fine sandy loam or heavier, or from 24–30 in. of lighter textured soil At least 18 inches over shattered bedrock or tilted shale bedrock; or 24 in. over massive bedrock or hardpan Smooth slopes up to no more than 30 percent in general gradient in reasonably large-sized bodies sloping in the same plane; or undulating slopes which are less than 20 percent in general gradient No more than enough loose rock and rock outcroppings to moderately reduce productivity and interfere with cultural practices. Varies with soil depth and topographic conditions No more than moderate erosion, with very few gullies which are not crossable by tillage implements Such that moderate farm drainage may be required, but without excessive cost Total salts in the soil solution do not exceed 0.5 percent, except in readily drained soils where reclamation appears feasible The pH value is 9.0 or less, unless the soil is calcareous in which case higher values may be allowed. If there is evidence of black alkali a lower pH value may be limiting
Source: From California State Water Resources Board, 1955.
Table 7I.106 Summary of Losses and Waste of Irrigation Water During Delivery Average field evaporation before topsoil dries Surface waste, allowance for large projects Seasonal percolation losses, except on porous soils Losses of flow in farm ditches Deliveries to farms Consumptive use, diversified crops Irrigation efficiencies, common farm crops Irrigation efficiencies, fruit, and special crops Average irrigation efficiencies on large projects
0.5 in. per irrigation 10 per cent of diversions 0–1.5 acre-ft per acre 5–50 per cent per mile 1–7 acre-ft per acre 1–3.5 acre-ft per acre 20–50 per cent 35–70 per cent 30–50 per cent During Conveyance
Evaporation from canal surfaces Evapotranspiration at canal banks Canal seepage, large projects, mostly unlined canals Seepage losses, most canals lined Waste on large projects, ample water supplies Waste on large projects, limited water supplies Over-all efficiencies, large projects Diversions for large projects
Negligible Negligible 15–45 per cent of diversions 5–15 per cent of diversions 5–30 per cent of diversions 1–10 per cent of diversions 20–35 per cent 2–10 acre-ft per acre
Source: From Houk, Irrigation Engineering, vol.1, John Wiley & Sons, Copyright 1951. q 2006 by Taylor & Francis Group, LLC
7-181
7-182
WATER USE
Table 7I.107 Typical Water-Application Losses and Irrigation Efficiencies for Different Soil Conditions General Soil Type Item a
Farm-lateral loss Surface runoff loss Deep percolation loss Field-irrigation efficiencyb Farm-irrigation efficiencyc a b c
Open, Porous (%)
Medium Loam (%)
Heavy Clay (%)
15 5 35 60 45
10 10 15 75 65
5 25 10 65 60
Unlined ditches (loss in new-lined ditches and pipelines is usually about one percent). For water measured at the field. For water measured at the farm headgate.
Source: From U.S. Department of Agriculture.
q 2006 by Taylor & Francis Group, LLC
Suitabilities and Conditions of Use Irrigation Method
Crops
Topography
Water Supply
Soils
Remarks
Small rectangular basins
Grain, field crops, orchards, rice
Relatively flat land; area within each basin should be levelled
Can be adapted to streams of various sizes
Suitable for soils of high or low intake rates; should not be used on soils that tend to puddle
High installation costs. Considerable labor required for irrigating. When used for close-spaced crops, a high percentage of land is used for levees and distribution ditches. High efficiencies of water use possible
Large rectangular basins
Grain, field crops, rice
Flat land; must be graded to uniform plane
Large flows of water
Soils of fine texture with low intake rates
Lower installation costs and less labor required for irrigation than with small basins. Substantial levees needed
Contour checks
Orchards, grain, rice, forage crops
Irregular land; slopes less than 2 percent
Flows greater than 30 L (1 cubic foot) per second
Soils of medium to heavy texture which do not crack on drying
Little land grading required. Checks can be continuously flooded as for rice, water ponded as for orchards, or intermittently flooded as for pastures
Narrow borders up to 5 m (16 ft) wide
Pasture, grain, lucerne, vineyards, orchards
Uniform slopes less than 7 percent
Moderately large flows
Soils of medium to heavy texture
Borders should be in direction of maximum slope. Accurate crosslevelling required between guide levees
Wide borders up to 30 m (100 ft) wide
Grain, lucerne, orchards
Large flows, Land graded to uniform up to 600 L plane with maximum slope less than 0.5 percent (20 cubic feet) per second
Deep soils of medium to fine texture
Very careful land grading necessary. Minimum of labor required for irrigation. Little interference with use of farm machinery
Wild flooding
Pasture, grain
Irregular surfaces with slopes up to 20 percent
Can utilize small continuous flows on steeper land or large flows or large flows on flatter land
Soils of medium to fine texture with stable aggregate which do not crack on drying
Little land grading required. Low initial cost for system. Best adapted to shallow soils since percolation losses may be high on deep permeable soils
Benched terraces
Grain, field crops, forage crops, orchards, vineyards
Slopes up to 20 percent
Streams of small to medium size
Soils must be sufficiently deep that grading operations will not impair crop growth
Care must be taken in constructing benches and providing adequate drainage channels for excess water. Irrigation water must be properly managed. Misuse of water can result in serious soil erosion
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.108 Adaptations and Limitations of Common Irrigation Methods
(Continued) 7-183
q 2006 by Taylor & Francis Group, LLC
7-184
Table 7I.108
(Continued) Suitabilities and Conditions of Use
Irrigation Method
Crops
Topography
Water Supply
Soils
Remarks
Straight furrows
Vegetables, row crops, orchards, vineyards
Uniform slopes not exceeding 2 percent for cultivated crops
Flows up to 350 L (12 cubic ft) per second
Can be used on all soils if length of furrows is adjusted to type of soil
Best suited for crops which cannot be flooded. High irrigation efficiency possible. Well adapted to mechanized farming
Graded contour furrows
Vegetables, field crops, orchards, vineyards
Undulating land with slopes up to 8 percent
Flows up to 100 L (3 cubic ft) per second
Soils of medium to fine texture which do not crack on drying
Rodent control is essential. Erosion hazard from heavy rains or water breaking out of furrows. High labor requirement for irrigation
Corrugations
Close-spaced crops such as grain, pasture, lucerne
Uniform slopes of up to 10 percent
Flows up to 30 L (1 cubic foot) per second
Best on soils of medium to fine texture
High water losses possible from deep percolation or surface run-off. Care must be used in limiting size of flow in corrugations to reduce soil erosion. Little land grading required
Basin furrows
Vegetables, cotton, maize Relatively flat land and other row crops
Flows up to 150 L (5 cubic ft) per second
Can be used with most soil types
Similar to small rectangular basins, except crops are planted on ridges
Zigzag furrows
Vineyards, bush berries, orchards
Flows required are usually Used on soils with low less than for straight intake rates furrows
Land graded to uniform slopes of less than 1 percent
This method is used to slow the flow of water in furrows to increase water penetration into soil
Source: From Bouher, L.J., 1974, Surface irrigation, FAO Agricultural Development Paper 95. Reprinted With permission.
WATER USE
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-185
Table 7I.109 Water Application Efficiencies of Irrigation Systems Type of System Surface Irrigation Basin Border Furrow Sprinkler Irrigation Hand move or portable Traveling gun Center pivot & linear move Solid set or permanent Trickle Irrigation With point source emitters With line source products
Attainable Efficiencies (%) 80–90 70–85 60–75 65–75 60–70 75–90 70–80 75–90 70–85
Source: From Solomon, K.H., 1998, Irrigation Systems and Water Application Efficiencies, Center of Irrigation Technology, Irrigation Notes, California State University, January 1998, www.wateright.org. Reprinted with permission.
Table 7I.110 Irrigation Efficiencies A. Field Efficiencies by Method of Irrigation Method of Irrigation Graded borders Basins and level borders Contour ditch Furrows Corrugations Subsurface
Range of Efficiency (percent) 60–75 60–80 50–55 55–70 50–70 Up to 80
B. Average Efficiencies for Selected Crops in California Crop Alfalfa and irrigated pasture Citrus Deciduous Truck Vineyard Walnuts
Average Efficiency (percent) 85 80 85 70 80 85
C. Sprinkler Efficiencies Climate Hot dry Moderate Humid or cool
Efficiency (percent) 60 70 80
Source: From U.S. Soil Conservation Service and California State Water Rights Board. q 2006 by Taylor & Francis Group, LLC
7-186
WATER USE
Table 7I.111 Crop Irrigation Depths Crop
Humid Areas
Semiarid to Arid Areasa
Alfalfa Beans Beets (sugar) Broccoli Cabbage Clover (ladino) Corn (maize) Cotton Grapes
36–42 — — — — — 24–36 24–36 24–30
60–120 36–48 48–72 24 24 24 48–60 48–72 48–72
Orchards Citrus Deciduous
— 36–60
48–72 72–96
Pasture Peas Potatoes (white) Small grain Sorghum Soybeans Tobacco Tomatoes
18–36 — 12–24 18–30 20–30 18–36 15–24 —
36–48 36–48 26–48 48 — — — 72–120
Truck crops Shallow-rooted Medium-rooted Deep-rooted
9–12 12–24 24–30
— — —
Note: Soil depth in inches. a
Larger figure applies to arid areas.
Source: From U.S. Soil Conservation Service.
q 2006 by Taylor & Francis Group, LLC
Coarse Sandy Soils
Light Sandy Loam
Medium Silt Loam
Clay Loam Soils
Slope Land Percent
Q per Unit
0–2
20 cfs per acre
Bordera or checks
0–2
1.5 cfs per 10 0 width
220 0
0.75 cfs per 10 0 width
440 0
0.5 cfs per 10 0 width
550 0 –880 0
0.33 cfs per 10 0 width
Furrows
0–2
220 0
0.01 cfs per each 0.005 each —
330 0
0.01 cfs per each 0.005 per each 0.002 per each
440 0 –660 0
0.008 cfs each
660 0
2–5 5–8
0.2 cfs per each — —
220 0 –440 0 110 0 –220 0
0.003 per each 0.001 per each
440 0 330 0
0–2 2–5 5–8 8–12
2 0 0 per hour 2 0 0 per hour 1.5 0 0 per hour 1.0 0 0 per hour
Irrigation Type Basins
a
Sprinkling
a
Length of Run
Q per Unit
Length of Run
7.5 cfs per acre
0.75 0 0 per hour 0.75 0 0 per hour 0.5 0 0 per hour 0.4 0 0 per hour
Q per Unit
Length of Run
5 cfs per acre
220 0
0.5 0 0 per 0.5 0 0 per 0.4 0 0 per 0.3 0 0 per
hour hour hour hour
Q per Unit
Length of Run
3 cfs per acre
Very Heavy Clay Soils
Q per Unit
Length or Run
2 cfs per acre 660 0 –880 0
3 cfs per 10 0 width 0.005 cfs per each 0.003 per each 0.001 per each
1,000 0
880 0 550 0 330 0
0.2 0 0 per hour 0.2 0 0 per hour 0.15 0 0 per hour
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.112 Water Requirements for Various Irrigation and Soil Types
The range in slope 0–2 per cent is in itself a very rough picture of field practices where the actual slopes, particularly with borders, tend to be closer to 0.2 or 0.3 per cent rather than this higher limit 2 per cent.
Source: From Calif. Agric. Exp. Station.
7-187
q 2006 by Taylor & Francis Group, LLC
7-188
WATER USE
Table 7I.113 Border Irrigation Relationships for Various Soils, Slopes, and Depths of Application Suggested Borderstrip Size Soil Texture
Slope of Land (percent)
Depth of Application (in.)
Width (ft)
Length (ft)
Size of Irrigation Stream (ft3/s)
0.25
2 4 6 2 4 6 2 4 6
50 50 50 40 40 40 30 30 30
500 800 1,320 300 500 900 200 300 600
8.0 7.0 6.0 2.75 2.50 2.50 1.25 1.00 1.00
2 4 6 2 4 6 2 4 6
50 50 50 40 40 40 30 30 30
800 1,320 1,320 500 1,000 1,320 300 600 1,000
7.0 6.0 3.5 2.5 2.5 2.5 1.0 1.0 1.0
2 4 6 2 4 6 2 4 6
50 50 50 40 40 40 30 30 30
1,320 1,320 1,320 1,320 1,320 1,320 660 1,320 1,320
4.0 2.5 1.5 2.5 1.25 0.75 1.0 1.0 0.67
Coarse
1.00
2.00
Medium
0.25
1.00
2.00
Fine
0.25
1.00
2.00
Source: From U.S. Dept. of Agriculture.
Table 7I.114 Irrigation Frequency in Relation to Soil Texture and Depth of Root Zone Wetted Soil Type Soil Depth Irrigated (in.) 6 12 18 24 30 36 42 48
Sands
Loams
Clays
3 5 8 10 13 15 18 20
5 10 16 21 26 31 36 —
8 17 25 35 — — — —
Note: Approximate number of days between irrigations assuming water use to be 1 in./wk. Source: From U.S. Dept. of Agriculture.
q 2006 by Taylor & Francis Group, LLC
Soil Texture
Furrow Slope (percent)
Coarse
Medium
Maximum Allowable Nonerosive Furrow Stream (gal/min)
2
4
6
8
40 20 13 10 7 5 3 2
500 345 270 235 190 160 125 95
720 480 380 330 265 225 180 135
875 600 480 400 330 275 220 165
1,000 680 550 470 375 320 250 190
0.25 0.50 0.75 1.00 1.50 2.00 3.00 5.00
Source: From U.S. Dept. of Agriculture.
Fine
Depth or Irrigation Application (in.) 2 4 6 8 Maximum Allowable Length of Run (ft) 820 560 450 380 310 260 210 160
1,150 800 630 540 430 370 295 225
1,450 975 775 650 530 450 360 270
1,650 1,120 900 760 620 530 420 320
2
4
6
8
1,050 730 580 500 400 345 270 210
1,500 1,020 820 750 570 480 385 290
1,750 1,250 1,000 850 700 600 470 350
2,140 1,460 1,150 990 800 675 550 410
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.115 Furrow Irrigation Relationships for Various Soils, Slopes, and Depths of Application
7-189
q 2006 by Taylor & Francis Group, LLC
Type Point-source emitters (drip/trickle/bubbler)
Surface or subsurface line-source emitter systems
Basin bubblers
Spray or mini sprinkler
Description Water is applied to the soil surface as discrete or continuous drops, tiny streams, or low volume fountain through small openings
Microtubes (spaghetti tubing) are classed as point-source emitters even though they are actually tubes rather than emitters. Microtubes consist of various lengths of flexible tubing that is small in diameter (0.020–0.040 in.). Typically, no other water control device is used. Because discharge orifices are small, complete filtration of water is required This type of irrigation uses surface or buried flexible tubing with uniformly spaced emitter points (or porous tubing). The tubing comes as layflat tubing, flexible tubing or as a semirigid tubing that retains its shape. Because discharge orifices are small, complete filtration of water is required The basin bubbler microirrigation system applies water to the soil surface in small fountain type streams. The discharge rate normally exceeds the infiltration rate of the soil, so small basins are used to contain the water until infiltration occurs. Discharge is generally from a small diameter (3/8–1/2 in.) flexible tube that is attached to a buried or surface lateral and located at each plant vine or tree. The typical emitter device is not used, and discharge pressures are very low (!5 Ib/in2) The discharge orifice is larger than that of the other systems, so little or no water filtration is required. Generally, screening of coarse debris and small creatures is sufficient. Drains must be provided to allow discharge of any collected sediment. Bubbler basins apply water to a larger soil volume than do drip emitters; therefore, only one outlet device is needed per plant or tree With spray or mini sprinkler micro irrigation systems, water is applied to the soil surface as spray droplets from small, low-pressure heads. The typical wetted diameter is 2–7 ft. The wetted pattern is larger than that of typical drip emitter devices, and generally fewer application devices are needed per plant. Spray and mini sprinklers also have less plugging problems and less filtration required than point-source emitters (drippers). Many spray heads only require the replacement of the orifice to change discharge rate. If an orifice becomes plugged, it is easily removed and cleaned or replaced. Spray or mini sprinkler head application patterns can be full, half circle, or partial circle (both sides)
Discharge Rate Discharge is in units of gallons per hour (gph) or gallons per minute (gpm) over a specified pressure range. Discharge rates typically range from 0.5 gph to nearly 0.5 gpm for individual drip emitters. Discharge rates are adjusted by varying the length of the tubing. The longer the tube, the greater the friction loss, which decreases the discharge rate. Flows for bubblers are generally less than 1 gal/min
Surface or subsurface line-source emitter systems have a uniform discharge units of gallons per hour per foot (gph/ft) or gallons per minute per 100 feet (gpm/100 ft) over a specified pressure range The streams have a point discharge rate greater than that for a typical drip or line source system, but generally less than 1 gal/min
Discharge rates are generally less than 30 gallons per hour (0.5 gph)
WATER USE
Source: From USDA, National Resources Conservation Service (NRCS) Irrigation — Handbooks and Manuals — National Engineering Handbook Part 652—Irrigation Guide, www.info.usda.gov.
q 2006 by Taylor & Francis Group, LLC
7-190
Table 7I.116 Types of Microirrigation Systems
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-191
Table 7I.117 Advantages and Disadvantages of Microirrigation Advantages
Disadvantages
Little if any run-off and little evaporation occur, and deep percolation can be controlled with good water management. Water is applied at the point of use (plant transpiration) Systems are easily automated with soil moisture sensors and computer controlled for low labor requirements Soil moisture levels can be maintained at predetermined levels for start-stop operation
Microirrigation is considered expensive to install and maintain. In general, the cost of micro systems is greater than that for sprinkle or surface systems
Fertilizer can be efficiently added to irrigation water. With proper water management, there is minimum waste caused by deep percolation, and less opportunity for groundwater pollution Much of the soil surface remains dry, reducing weed growth and soil surface evaporation
The soil surface remains firm for use by farm workers and equipment
Frequent irrigations can be used to keep salts in the soil water more diluted and moved away from plant roots. Irrigation with water of higher salinity is possible (requires a high level of management). Where salts are present, soil-water movement must always be toward the edges of the wetted bulb (away from roots). A common mistake is to shut the system down when precipitation occurs, often creating soil-water movement into the plant root zone Microirrigation can be used on all terrain and most agricultural crops and soils and is often used on steep, rocky ground that is unsuitable for other forms of irrigation Low tension water availability to plants enhances growth and improves crop yield and quality
Frequent maintenance is essential, and a high level of management is required to obtain optimum application efficiencies Clogging is a major problem in all micro systems. Emitter outlets are very small, and can be easily clogged with chemical precipitates, soil particles, or organic materials. Clogging can reduce or stop water emission. Chemical treatment of the water is often necessary, and filters are almost always required. Filtration and treatment can be costly, especially where water is taken from surface sources containing sediment and debris. During installation, care should be taken to clean all construction debris from the inside of pipelines as this material can cause plugging Animals, especially rodents, can damage surface (and shallow subsurface) installed plastic pipe less than 4 in. in diameter
With low operating pressures, poor distribution uniformity can result because of elevation differences on undulating ground. Pressure regulators or pressure compensated emitters are then necessary. However, they require about 2 pounds per square inch for operation On steep terrain, automatic gravity draining of laterals to a low point within the field can cause low distribution uniformity, especially in low pressure, high volume systems. This problem is aggravated by frequent on-off cycles, but can be overcome by installing air-vacuum valves in a raised pipe arch (i.e., dog leg) at one or more locations in the lateral. Drains are installed just upstream of each pipe arch. This increases the number of sites affected by lateral pipe drainage, thus decreasing effects on distribution uniformity because each drain discharges less water When soil water is reduced in the plant root zone, light rains can move salts in surrounding soil into the plant root zone, which can constitute a potential hazard. Salts also concentrate below the soil surface at the perimeter of the soil volume wetted by each emitter. If the soil dries between irrigations, reverse movement of soil water can carry salts from the perimeter back into the root zone. To avoid salt damage to roots, water movement must always be away from the emitter and from the plant root zone. In high soil salinity areas or when using high saline or sodic water for irrigation, one may need to irrigate when it rains A smaller volume of soil is wetted at each plant. Plants can be quickly stressed if the system fails (i.e., pump failure, water source cutoff, pipeline or valve failure). Daily checking of the system is necessary even when all or part is automated. Storing a 3-day plant-water supply in the soil is recommended along with daily replacement of water used Multiple emitters at each plant are recommended to decrease effects of manufacturer variability, to increase area of root development, and to reduce risk of plant damage should an emitter become plugged
Source: From USDA, National Resources Conservation Service (NRCS) Irrigation — Handbooks and Manuals — National Engineering Handbook Part 652—Irrigation Guide, www.info.usda.gov.
q 2006 by Taylor & Francis Group, LLC
7-192
WATER USE
Table 7I.118 Percentage of Water Obtained by Plants from Various Depths in the Soil Water Obtained from Item
Crop
1 2 3 4
Cotton .do .do Alfalfa
5
Orange trees, mature
Soil Heavy clay Sandy loam Clay loam Fine sandy loam Sandy loam
First Foot (Percent)
Second Foot (Percent)
Third Foot (Percent)
Fourth Foot (Percent)
Fifth Foot (Percent)
Sixth Foot (Percent)
66.0 34.6 33.2 47.0
15.9 27.2 25.6 15.0
6.1 20.7 17.3 15.0
5.2 12.5 12.6 12.0
5.7 4.9 6.7 8.0
1.1 — 4.5 3.0
37.0
30.0
15.0
11.0
4.0
3.0
Source: From Univ. of California Agric. Extension and U.S. Dept. of Agriculture.
Table 7I.119 Irrigation Frequency and Amount of Water to Be Applied by Sprinkling Irrigation When Varying Amounts of Available Water Remain on the Soil Interval in Days between Irrigations and Depth in Inches to Be Applied When Different Amounts of Available Water Remain in the Soil Time Since Planting in Days 0–9 9–18 18–27 27–36 36–45 45–54 54–63 63–72 72–81 81–90
Consumptive Use of Water (in./day)
Maximum Depth of Average Available Root Depth of Zone (in.) Rooting (in.)
0.05 0.07 0.08 0.09 0.10 0.11 0.11 0.10 0.09 0.05
2 6 11 16 21 26 31 35 38 41
0.2 0.6 1.1 1.6 2.1 2.6 3.1 3.5 3.8 4.2
75%
50%
25%
0%
Days
Depth Inches
Days
Depth Inches
Days
Depth Inches
Days
Depth Inches
1 2 3 4 5 6 7 8 11 20
0.3 0.5 0.6 0.8 1.0 1.1 1.3 1.5 1.6 1.7
2 5 7 8 10 12 14 17 21 41
0.4 0.7 1.1 1.4 1.7 2.1 2.4 2.7 2.9 3.1
3 8 10 13 15 17 21 25 33 61
0.5 1.0 1.5 2.0 2.5 2.9 3.3 3.7 4.0 4.2
4 10 13 17 20 24 28 34 44 82
0.6 1.3 1.9 2.5 3.1 3.7 4.2 4.7 5.1 5.5
Note: Length of growing period is 3 months; soil texture is coarse. Source: From Israelson and Hansen, Irrigation Principles and Practices, John Wiley & Sons, Copyright 1962. With permission. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-193
Table 7I.120 Acres Irrigated by Method of Irrigation and Irrigation Water Used by Source in the United States, 1998 and 2003 1998 Irrigation Method (acres irrigated) Sprinklers Center pivot — low pressure Center pivot — medium pressure Center pivot — high pressure Linear move towers Solid set and permanent Side roll Big gun or traveler Hand move Gravity flow Down rows or furrows Controlled flooding Uncontrolled flooding Other gravity Drip, trickle, or low-flow Subirrigation Irrigation Water Used by Source Total: Acre-feet (million) Wells: Acre-feet (million) Percent On-farm: Acre-feet (million) Percent Off-farm: Acre-feet (million) Percent Average Acre-Feet of Water Applied
2003
24,865,142 9,292,022 7,419,409 1,983,869 284,756 1,222,683 2,033,825 765,794 1,862,784 27,273,419 14,025,125 8,472,646 3,273,796 1,501,852 2,259,176 549,655
Percent Change
26,937,835 9,696,930 9,657,353 1,938,808 344,162 1,177,953 1,825,901 633,188 1,663,540 23,124,131 11,723,084 8,847,392 2,297,956 255,699 2,988,101 279,522
97.3 43.8 45 11.9 12 41.5 43 1.79
C8.3 C4.4 30.2 K2.3 20.9 K3.7 K10.3 K17.3 K10.7 K15.2 K16.4 C4.4 K29.8 K83 C32.3 K49.2
86.9 43.5 50 11.8 14 31.6 36 1.65
Source: From USDA, 2004, Farm and Ranch Irrigation Survey (2003) Vol. 3, Special Studies, Part 1, 2002; Census of Agriculture, www.nass.usda.gov.
Table 7I.121 Sprinkler Irrigation in the United States, 1998 and 2003 Region and State Eastern states Arkansas Florida Georgia IIlinois Indiana Iowa Louisiana Michigan Minnesota Mississippi Missouri Wisconsin All other states Subtotal Western states Arizona California Colorado Idaho Kansas Montana Nebraska Nevada New Mexico North Dakota
1998 (Acres)
2003 (Acres)
Share of Total in 2003 (Percent)
Acreage Change, 1998–2003 (Percent)
579,218 301,735 613,379 288,513 212,606 65,879 105,525 354,350 311,627 350,358 342,009 352,699 602,638 4,480,536
550,123 176,384 596,133 372,212 271,231 128,824 99,285 418,778 416,901 377,268 412,214 389,434 500,499 4,709,286
2.0 0.7 2.2 1.4 1.0 0.5 0.4 1.6 1.5 1.4 1.5 1.4 1.9 17.5
K5.0 K41.5 K2.8 29.0 27.6 95.5 K5.9 18.2 33.8 7.7 20.5 10.4 K16.9 5.1
81,385 1,528,038 1,290,045 2,186,806 2,054,238 570,550 3,686,495 179,859 346,535 121,389
152,754 1,723,040 1,246,601 2,202,917 2,283,103 773,008 5,605,283 211,890 389,774 171,673
0.6 6.4 4.6 8.2 8.5 2.9 20.8 0.8 1.4 0.6
87.7 12.8 K3.4 0.7 11.1 35.5 52.0 17.8 12.5 41.4 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-194
Table 7I.121
WATER USE
(Continued)
Region and State Oklahoma Oregon South Dakota Texas Utah Washington Wyoming Subtotal U.S. Total (excluding Hawaii and Alaska)
1998 (Acres)
2003 (Acres)
Share of Total in 2003 (Percent)
335,014 769,310 199,855 3,195,982 427,319 1,263,572 234,847 18,471,239 22,951,775
433,099 1,048,211 287,014 3,506,636 472,180 1,450,274 262,994 22,220,451 26,929,737
1.6 3.9 1.1 13.0 1.8 5.4 1.0 82.5 100.0
Acreage Change, 1998–2003 (Percent) 29.3 36.3 43.6 9.7 10.5 14.8 12.0 20.3 17.3
Source: From USDA, 1999, 1998 Farm and Ranch Irrigation Survey, vol. 3, Special Studies, Part 1 1997 Census of Agriculture, USDA, 2004, Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1, 2002 Census of Agriculture, www.nass.usda.gov.
Table 7I.122 Water Applications for Selected Crops in the United States, 2003
Crop Corn for grain or seed Corn for silage or greenchop Sorghum for grain or seed Wheat for grain or seed Barley for grain or seed Rice Cotton Soybeans for beans Beans, dry edible Alfalfa and alfalfa mixtures (dry hay, haylage and greenchop) All other hay (dry hay, haylage, grass silage, and greenchop) Sugarbeets for sugar Potatoes Vegetables Orchards Total
Average Application Rate AF/Acre
Irrigated Acreage Harvested 1000 Acres
Estimated Water Use Million AF
Share of Total Water Used Percent (%)
1.2 2.2 1.0 1.5 1.5 2.3 1.4 0.8 1.6 2.3
9,750 1,313 1,108 3,269 991 2,995 4,080 5,347 458 6,222
11.7 2.9 1.1 4.9 1.5 6.9 5.7 4.3 0.7 14.3
15 4 1 6 2 9 7 6 1 19
1.7
3,254
5.5
7
2.7 1.8 2.1 2.2
562 1,033 2,081 4,105 46,567
1.5 1.9 4.4 9.0 76
2 2 6 12 100
Source: Abstracted from Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1, 2002; Census of Agriculture issued November 2004, www.nass.usda.gov. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-195
Table 7I.123 Depth of Irrigation Water Applied, by Region and Crop, 1969–1998 1969a
1974a
1979b
1984b
1988b
1994b
1998b
Inchesc Region Atlanticd North Centrale Northern Plains Delta States Southern Plains Mountain States Pacific Coast United Statese Crop Corn for grain Sorghum for grain Barley Wheat Rice Soybeans Cotton Alfalfa Other hays Vegetables Land in orchards a b c d e
8.0 7.5 16.0 15.5 18.0 30.5 32.5 25.2
11.0 8.0 17.5 17.0 18.5 28.5 33.5 25.0
13.0 8.5 15.0 17.5 17.5 26.5 33.5 23.2
14.0 9.0 13.5 17.5 16.5 24.5 33.5 22.1
12.5 10.0 14.5 18.0 17.0 24.5 34.5 22.3
10.5 7.5 12.0 13.0 17.0 24.0 32.5 20.2
13.0 8.0 12.0 16.5 17.0 24.5 33.0 20.9
18.5 19.0 30.0 23.5 28.0 12.0 23.0 32.5 22.0 25.0 29.0
19.5 19.0 26.5 24.0 28.5 11.0 25.5 30.5 21.0 25.5 30.0
16.5 16.5 23.0 21.0 30.0 10.5 26.0 28.0 20.0 25.5 30.0
16.0 14.5 18.5 16.5 33.5 9.5 24.5 28.0 21.0 27.0 31.0
16.0 14.5 18.0 16.0 32.5 10.0 24.0 29.0 19.5 26.5 31.5
13.5 13.5 19.0 17.0 27.0 8.5 20.0 26.5 20.5 24.0 27.0
14.5 12.5 19.5 17.0 28.5 10.0 19.0 29.0 24.5 24.0 28.0
Census of Agriculture. Estimates constructed by State/crop from the Farm and Ranch Irrigation Survey and ERS estimates of irrigated area. Includes Alaska and Hawaii. Northeast, Appalachian, and Southeast production regions. Lake States and Corn Belt farm production regions.
Source: From Heimlict. R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003, www.ers.usda.gov. Original Source: USDA, ERS, based on USDC Census of Agriculture, various years; Farm and Ranch Irrigation Surveys (USDA, 1999b; USDC, 1996; USDC, 1990, and previous versions).
Table 7I.124 Irrigation System versus Crops Grown Crop Category Irrigation System Surface Basins, borders Furrows, corrugations Contour levee-rice Sprinkler Side (wheel) roll lateral Hand move Iateral Fixed (solid) set Center pivot, linear move Big guns-traveling, stationary Micro Point source Line source Basin bubbler Mini sprinklers & spray heads Subirrigation a b c d
a
2b
3c
4d
X X X
X
X
X X
1
X X X X
X
X X X X X
X X
X
X
X
X
X X X X X
Row or bedded crops: sugar beets, sugarcane, potatoes, pineapple, cotton, soybeans, corn, sorghum, milo, vegetables, vegetable and flower seed, melons, tomatoes, and strawberries. Close-growing crops (sown, drilled, or sodded): small grain, alfalfa, pasture, and turf. Water flooded crops: rice and taro. Permanent crops: orchards of fruit and nuts, citrus groves, grapes, cane berries, blueberries, cranberries, bananas and papaya plantations, hops, and trees and shrubs for windbreaks, wildlife, landscape, and ornamentals.
Source: From USDA, National Resources Conservation Service (NRCS) Irrigation-Handbook and Manuals – National Engineering Handbook Part 652-Irrigation Guide, www.info.usda.gov. q 2006 by Taylor & Francis Group, LLC
7-196
WATER USE
Table 7I.125 Typical Life and Annual Maintenance Cost Percentage for Irrigation System Components System and Components
Life (yr)
Annual Maint. (% of Cost)
10–15 15C 15C 10C 15C 15C 15C 15C 10C 15C 10C
2–6 2 2 3 4 2 5 6 6 6 6
Sprinkler systems Handmove Side or wheel roll End tow Side move w/drag lines Stationary gun type Center pivot—standard Linear move Cable tow Hose pull Traveling gun type Fixed or solid set Permanent Portable Sprinkler gear driven, impact & spray heads Valves
20C 15C 5–10
1 2 6
10–25
3
Micro systema Drip Spray Bubbler Semi-rigid, buried Semi-rigid, surface Flexible, thin wall, buried Flexible, thin wall, surface Emitters & heads Filters, injectors, valves
1–20 5–10 5–10 15C 10–20 10 10 1–5 5–10 10C
2–10 3 3 2 2 2 2 10 6 7
a b c
System and Components
Life (yr)
Surface & subsurface systems
Annual Maint. (% of Cost)
15
5
Related components Pipelines buried thermoplastic buried steel surface aluminum surface thermoplastic buried nonreinforced concrete buried galv. steel buried corrugated metal buried reinforced PMP gated pipe, rigid, surface surge valves
25C 25 20C 5C 25C 25C 25C 25C 10C 10C
1 1 2 4 1 1 1 1 2 6
Pumps pump only w/electric motors w/internal combustion engine
15C 10C 10C
3 3 6
25C
1
15C 10 20C
5 5 1
Wells Linings nonreinforced concrete flexible membrane reinforced concrete
b
Land grading, leveling Reservoirs
c
With no disturbance from tillage and harvest equipment. Indefinite with adequate maintenance. Indefinite with adequate maintenance of structures, watershed.
Source: From USDA, National Resources Conservation Service (NRCS) Irrigation-Handbook and Manuals – National Engineering Handbook Part 652-Irrigation Guide, wcc.nrcs.usda.
Table 7I.126 Energy Requirement and Energy Costs for Various Irrigation Systems in the United States Cost of Energy (Dollars)
Traveling big guns Center-Pivot (High) 75 (Low) 50 Skid-Tow Gated pipe without reuse Gated pipe with reuse Auto-surface Drip trickle
Total Lift (Feet)
Field Efficiency (Percent)
Potential Efficiency
Water Per Acre (Inches)
Fuel Per Acre (Gallons)
1973
1979
1980
389
70
75
17
91.1
$13.67
$74.70
$113.88
273 215 215 120
80 80 75 60
85 85 80 70
15 15 16 20
56.4 44.4 47.4 33.1
8.46 6.66 7.11 4.97
46.25 36.41 38.87 27.14
70.50 55.50 59.25 41.38
120
70
85
17
28.1
4.22
23.04
35.13
120 150
85 85
92 92
14 14
23.1 28.9
3.47 4.34
18.94 23.70
28.88 36.13
Note: Diesel fuel only. Based on 100 foot of lift from groundwater reservoir; 12 in. net of water; pumping plant operating at 75% of Nebraska performance standard of 10.94 water horsepower hours per gallon of diesel fuel or 14.6 brake horsepower hours per gallon of diesel fuel. Fuel cost per gallon: $0.15–1973, $0.82–1979; $1.25–1980. Source: From Fischbach, P.E., 1980, Energy Requirements of Auto-Surface Irrigation, Copyright, The Irrigation Assoc., 1980 Technical Conference Proceedings. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-197
Table 7I.127 On-Farm Energy Expense in the United States, 1998 and 2003 1998
2003
On-Farm Energy Pumping Expenses
Expenses ($1,000)
Expenses Per Acre Irrigated (Dollars) Wells and Surface Water
Total energy expenses for pump Electricity Natural gas LP gas, propane, and butane Diesel fuel Gasoline and gasohol
1,223,106
31.92
801,184 206,900 27,716 182,832 4475
39.75 33.99 16.99 17.78 28.14
Expenses Per Acre Irrigated (Dollars) Expenses ($1,000)
Water from Wells
Surface Water
1,551,847
39.50
26.39
953,247 281,029 34,053 281,490 2,027
42.64 57.25 27.21 25.09 11 60
29.84 33.67 22.68 16.27 18.05
Source: Abstracted from USDA, 1999, 1998 Farm and Ranch Irrigation Survey, vol. 3, Special Studies, Part 1, 1997 Census of Agriculture. USDA, 2004, Farm and Ranch Irrigation Survey (2003), vol. 3, Special Studies, Part 1, 2002; Census of Agriculture, nass.usda.gov.
Table 7I.128 Supply Sources and Variables Costs of Irrigation Water, 1998a
Water Source Groundwater Only sourcee Combined sources Onfarm surface water Only source Combined sources Off-farm surface waterg Only source Combined sources Total Only source Combined sources
Acre Irrigated (Million)
Share of Acres Irrigatedb (Percent)
23.5 6.3
47 13
4.2 2.7
Average costb ($/Acre)
Cost Rangeb ($/Acre)
32c
7–69d
Pumping cost varies with energy prices, depth to water, and efficiency of pumping system
n/a
0–15f
Costs are very low in most cases. Some water is pumped from surface sources at higher costs, since energy is required
41h
10–85i
Most actress relying on off-farm sources are located in West
n/a
n/a
The sum of acres is greater than the irrigated total in the Farm and Ranch Irrigation Survey due to double counting of combined water sources
8 5
10.3 4.8
21 10
37.9 13.8
76 27
Comments
Note: n/a indicates data not available. a b c d e f g h i
These values include only energy costs for pumping or purchased water costs. Management and labor costs associated with irrigation decisions, system maintenance, and water distribution are not included. Available data are from the 1998 Farm and Ranch Irrigation Survey. Reported national average energy expense for the on-farm pumping of irrigation water. Range in State energy expenses for the onfarm pumping of irrigation water. Only source means that farms used no other irrigation water source. Cost estimates based on engineering formulas with an efficient electric system. Included a minor amount of groundwater supplied from off-farm suppliers. Reported average cost for off-farm supplies. Range in reported State average cost of water from off-farm suppliers for State irrigating 50,000 or more acres from off-farm sources. If all States are included, the range expands to $2–$175 per acre.
Source: From Helmich, R., 2003, Agricultural Resource and Environmental Indicators 2003, Agricultural Handbook No (AH 777) February 2003, ers.200usda.gov. Original Source: USDA, ERS based on USDA (1999), 1998 Farm and Ranch Irrigation Survey. q 2006 by Taylor & Francis Group, LLC
7-198
WATER USE
Table 7I.129 Distribution of Irrigation Withdrawals, Acres, Annual Application and Estimated Pumping Costs: 1995
State California Idaho Colorado Texas Montana Nebraska Wyoming Washington Oregon Arkansas Arizona Utah Florida Kansas New Mexico Mississippi Nevada 48-State Total/Average
Irrigation Withdrawals (mgd)
Irrigated Acres (1,000)
Irrigation Depth (ft/yr)
Surface Irrigation (% area)
Estimated Pumping Cost ($1995/ac/yr)
28,894 13,048 12,735 9,451 8,546 7,550 6,595 6,469 6,168 5,936 5,672 3,533 3,469 3,383 2,993 1,742 1,644 132,969
9,484 3,011 3,307 6,313 1,810 7,449 1,991 2,120 1,844 3,511 1,088 1,143 2,134 3,086 959 1,374 560 58,066
3.42 4.86 4.32 1.68 5.29 1.14 3.71 3.42 3.75 1.90 5.84 3.47 1.82 1.23 3.50 1.42 3.29 2.57
47.4 33.2 75.9 55.7 71.0 47.1 85.3 24.1 41.6 85.0 73.5 63.2 48.9 32.0 56.7 71.7 75.7 54.9
76.38 39.02 34.74 40.48 16.24 18.99 20.83 41.83 30.83 20.10 71.62 28.91 19.81 24.55 53.55 17.43 49.96 34.63
Source: From Dziegielewski, B. et al., 2002, Analysis of Water Use Trends in the United States: 1950–1995, Southern Illinois University at Carbondale, Carbondale, IL, February 28, 2002, http://info.geography.siu.edu/geography_info/research/. Reprinted with permission.
Table 7I.130 Fuel Energy Requirements for Pumping One Acre-Foot of Water at One Pound Per Square Inch Percentage of Water Pump Efficiency (Unit Fuel Per Acre-Foot Per psi) Energy Electricity Diesel Gasoline Natural gas LPG a
Horsepower Hoursa 1.206 per kWh 12.35 per gal 9.875 per gal 79 per MCFb 7.9 per gal
65
60
55
4.0503 0.4000 0.5004 0.0625 0.6254
4.3876 0.4330 0.5417 0.0677 0.6771
4.7866 0.4659 0.5830 0.0729 0.7287
This column refers to the assumed number of horsepower hours produced per unit of fuel. MCF equals 1,000 ft3. Source: From Sloggett, G., 1985, Energy and U.S. Agriculture: Irrigation Pumping, 1974–83, U.S. Dept. of Agriculture Economic Report 545.
b
q 2006 by Taylor & Francis Group, LLC
Year 1995 1996 1997 1998 1999 2000 2001 2002 2003
Natural Gas (cents/ft3)
Electricity (cents/kwh)
Industriala Prices
Industrialb Prices
Realc
Nominal 0.271 0.342 0.359 0.314 0.312 0.445 0.524 0.402 0.578
[R] [R] [P]
0.294 0.364 0.376 0.325 0.319 0.445 0.512 0.387 0.547
Nominal [R] [R] [R] [R] [R] [R] [R] [R] [P]
4.66 4.60 4.53 4.48 4.43 4.64 5.04 4.88 4.95
[R]
Petroleum (dollars/gal) All Grades Nominal
Realc 5.06 4.90 4.75 4.64 4.53 4.64 4.92 4.69 4.68
[R] [R] [R] [R] [R] [R] [R] [R]
1.21 1.29 1.29 1.12 1.22 1.56 1.53 1.44 1.64
On-Highway Diesel Fueld
Realc 1.31 1.37 1.35 1.16 1.25 1.56 1.50 1.39 1.55
[R] [R] [R] [R] [R] [R] [R] [R]
1.11 1.24 1.20 1.04 1.12 1.49 1.40 1.32 1.51
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7I.131 Natural Gas, Electricity, and Petroleum Prices by Sector in the United States, 1995–2003
Note: RZRevised, PZPreliminary. a Residential, commercial, and industrial prices do not include the price of natural gas delivered to consumers on behalf of third parties. b Retail customers are classified as “Commercial” or “Industrial” based on NAICS (North American Industry Classification System) codes or usage falling within specified limits by rate schedule. c In chained (2000) dollars, calculated by using gross domestic product implicit price deflators. Corrected for inflation. d Nominal dollars. Source: DOE, Annual Energy Review 2003, www.eia.doe.gov.
7-199
q 2006 by Taylor & Francis Group, LLC
7-200
WATER USE
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1970
1974
1978
1982
1986
1990
1994
1998
2002
Diesel (dollars per gall)
Gasoline (dollars per gall)
Electricity (*10 cents per kWh)
Natural gas (cents per ft3)
Figure 7I.20 Nominal prices of major fuel sources: 1970–2002. (From Miranowski, J.A., Energy Demand and Capacity to Adjust in Agricultural Production, U.S. Department of Agriculture, Agricultural Outlook Forum 2005 on Feb. 24 and 25, 2005.) www.usda.gov.
2.5 2.0 1.5 1.0 0.5 0.0 1970
1974
1978
1982
1986
1990
1994
1998
2002
Diesel (dollars per gall)
Gasoline (dollars per gall)
Electricity (*10 cents per kWh)
Natural gas (cents per ft3)
Figure 7I.21 Real prices of major fuel sources: 1970–2002 (1996 dollars). (From Miranowski, J.A., Energy Demand and Capacity to Adjust in Agricultural Production, U.S. Department of Agriculture, Agricultural Outlook Forum 2005 on Feb. 24 and 25, 2005.) www.usda.gov. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-201
3 Quadrillion BTUs
Electricity
LP gas
Natural gas 2 Diesel 1
Gasoline
0 1965
Fertilizers and pesticides 1975
1970
1980
1985
1990
1995
2000
80 63
70 60
33
40
45
50 32
20
19
30 19
Dollars per acre (current dollars)
Figure 7I.22 Total energy used on farms, 1965–2002. (From Miranowski, J.A., Energy Demand and Capacity to Adjust in Agricultural Production, U.S. Department of Agriculture, Agricultural Outlook Forum 2005 on Feb. 24 and 25, 2005.) www.usda.gov.
10 0 US
California Nebraska Texas Arkansas Total Electricity Natural gas, LP gas, propane and butane Diesel and gasoline
Idaho
Figure 7I.23 Average irrigation costs per acre—by energy source. (From Miranowski, J.A., Energy Demand and Capacity to Adjust in Agricultural Production, U.S. Department of Agriculture, Agricultural Outlook Forum 2005 on Feb. 24 and 25, 2005.) usda.gov/oce/forum/Archives/pastyears.htm.
q 2006 by Taylor & Francis Group, LLC
7-202
WATER USE
Table 7I.132 Irrigation Technology and Water Management: Conventional Methods and Improved Practices System and Aspect Onfarm conveyance Gravity application systems Release of water Length of irrigation run Field gradient Field runoff Furrow management Pressurized application systems Pressure requirements Water distribution
Automation Versatility Water management Assessing crop needs
Conventional Technology or Management Practice Open earthen ditches
Concrete or other ditch linings; aboveground pipe; belowground pipe
Dirt or canvas checks with siphon tubes Length of field, often one-half mile or more Natural field slope, often substantial; uneven field surface Water allowed to move off field
Ditch portals or gates; gated pipe; gated pipe with surge flow or cablegation Shorter runs, one-quarter mile or less
Full furrow wetting; furrow bottoms uneven High pressure, typically above 60 pounds per square inche (psi) Large water dispersal pattern
Handmove systems; manually operated systems Limited to specific crops; used only to apply irrigation Judgment estimates
Timing of applied water
Fixed calendar schedule
Measurement of water
Not metered
Drainage
Source: From USDA, ERS.
q 2006 by Taylor & Francis Group, LLC
Improved Technology or Management Practice
Runoff to surface-water system or Evaporation ponds; percolation to aquifers
Land leveled to reduce and smooth field surface gradient Applications controlled to avoid runoff; tailwater return systems Alternate furrow wetting; furrow bottoms smooth and consistent Reduced pressure requirements, often 10–30 psi More narrow water dispersal through sprinkler droptubes, improved emitter spacing, and low-flow systems Self-propelled systems; computer control of water applications Multiple crops; various uses—irrigation, chemigation, manure applications, frost protection, crop cooling Soil moisture monitoring; plant tissue monitoring; weather-based computations Water applied at needed by crop; managed for profit (not yield); managed for improved effectiveness of rainfall Measured using canal flumes, weirs, and meters; external and in-pipe flow meters Applications managed to limit drainage; reuse through tailwater pumpback; dual-use systems with subirrigation
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
7-203
Table 7I.133 Efficient Water Management Practices for Agricultural Water Suppliers in California List A-Generally Applicable EWMPs Prepare and adopt and water management plan Designate a water conservation coordinator Support the availability of water management services to water users Improve communication and among water suppliers, water users, and other agencies Evaluate the need, if any for change in institutional policies to which the water supplier is subject Evaluate and improve efficiencies of the water supplier’s pumps List B-Conditionally Applicable EWMPs Facilitate alternative land use Facilitate using available recycled water that otherwise would not be used beneficially, meets all health and safety criteria and does not cause harm to crops or soil Facilitate financing capital improvements for on-farm irrigation systems Facilitate voluntary water transfers that do not unreasonably affect the water user, water supplier, the environment, or third parties Line or pipe ditches and canals Increase flexibility in water ordering by, and delivery to, water users within operational limits Construct and operate water supplier spill and tailwater recovery systems Optimize conjunctive use of surface and groundwater Automate canal structures List C-Other EWMPs Water measurement and water use reporting Pricing or other incentives Source: From California Department of Water Resources 1998, “Urban, Agricultural and Environmental Water Use,” California Water Plan Update Bulletin-160-98, California Dept. of Water Resources, Sacremento, Calif., November 1998, water.ca.gov.
q 2006 by Taylor & Francis Group, LLC
7-204
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7J
IRRIGATION — WORLD
Table 7J.134 Water Use in the Agriculture Industry by Province, in Canada, 1996 Province Newfoundland and Labrador Prince Edward Island Nova Scotia New Brunswick Quebec Ontario Manitoba Saskatchewan Alberta British Columbia Canada
Livestock Watering (1000 m3)
Irrigation (1000 m3)
Total (1000 m3)
483 1,904 3,199 2,369 45,001 59,233 23,843 39,890 61,468 14,682 252,071
144 1,715 2,272 1,443 58,394 114,000 24,670 271,370 2,609,000 763,110 3,846,117
627 3,618 5,471 3,812 103,395 173,233 48,513 311,260 2,670,468 777,791 4,098,188
Note: There is no significant agricultural activity in the Territories. Source: From Statistics Canada “Human Activity and the Environment,” Annual Statistics 2003, page 14.Statistics Canada information is used with the permission of Statistics Canada. Users are forbidden to copy this material and/or redisseminate the data, in an original or modified form, for commercial purposes, without the expressed permissionof Statistics Canada. Information on the availability of the wide range of data from Statictics Canada can be obtained from Statistics Canada’s Regional Offices, its World Wide Web site at statcan.ca, and its toll-free access number 1-800-263-1136.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-205
Table 7J.135 Land Areas under Irrigation in Various Countries of the World, 1961–1997 Country and Region
1961
Africa Algeria 229 Angola 75 Benin 0 Botswana 1 Burkina Faso 2 Burundi 3 Cameroon 2 Cape Verde 2 Chad 5 Congo 0 Congo, Dem. Rep. (formerly Zaire) Coˆte d’Ivoire 4 Djibouti 1 Egypt 2,568 Eritrea Ethiopia 150 Gabon 4 Gambia 1 Ghana 0 Guinea 20 Guinea Bissau 17 Kenya 14 Lesotho 3 Liberia 0 Libya 121 Madagascar 300 Malawi 1 Mali 60 Mauritania 20 Mauritius 8 Morocco 875 Mozambique 8 Namibia 4 Niger 16 Nigeria 200 Reunion 3 Rwanda 4 Sao Tome and 10 Principe Senegal 70 Sierra Leone 1 Somalia 90 South Africa 808 Sudan 1,480 Swaziland 36 Tanzania 20 Togo 2 Tunisia 100 Uganda 2 Zambia 2 Zimbabwe 22 North and Central America Barbados 1 Belize 0 Canada 350 Costa Rica 26 Cuba 230
1965
1970
1975
1980
1985
1990
1995
1997
233 75 2 2 2 5 4 2 5 0
238 75 2 1 4 5 7 2 5 1
244 75 4 1 8 5 10 2 6 2 0
253 75 5 2 10 10 14 2 6 1 7
338 75 6 2 12 14 21 2 10 1 9
384 75 6 2 20 14 21 3 14 1 10
555 75 10 1 25 14 21 3 17 1 11
560 75 20 1 25 14 21 3 20 1 11
6 1 2,672
20 1 2,843
34 1 2,825
44 1 2,445
54 1 2,497
66 1 2,648
150 4 1 0 20 17 14 3 0 130 330 1 60 20 12 895 16 4 16 200 5 4 10
155 4 1 7 50 17 29 3 2 175 330 4 61 30 15 920 26 4 18 200 5 4 10
158 4 1 7 50 17 40 3 2 200 465 13 60 30 15 1,060 40 4 18 200 5 4 10
160 4 1 7 90 17 40 3 2 225 645 18 60 49 16 1,217 65 4 23 200 5 4 10
162 4 1 7 90 17 42 3 2 300 826 18 60 49 17 1,245 93 4 30 200 8 4 10
162 4 1 6 90 17 54 3 2 470 1,000 20 78 49 17 1,258 105 4 66 230 11 4 10
73 1 3,283 28 190 7 2 11 93 17 67 3 2 470 1,087 28 85 49 18 1,258 107 7 66 235 12 4 10
73 1 3,300 28 190 7 2 11 95 17 67 3 2 470 1,090 28 86 49 18 1,251 107 7 66 233 12 4 10
85 2 90 890 1,550 40 28 2 100 3 2 34
78 6 95 1,000 1,625 47 38 4 200 4 9 46
78 13 100 1,017 1,700 56 52 6 200 4 18 70
62 20 125 1,128 1,800 58 120 6 243 6 19 80
90 28 180 1,128 1,946 62 127 7 300 9 28 90
94 28 180 1,290 1,946 67 144 7 300 9 30 100
71 29 200 1,270 1,946 69 150 7 361 9 46 150
71 29 200 1,270 1,950 69 155 7 380 9 46 150
1 0 380 26 330
1 1 421 26 450
1 1 500 36 580
1 1 596 61 762
1 2 748 110 861
1 2 718 118 900
1 3 720 126 910
1 3 720 126 910
(Continued)
q 2006 by Taylor & Francis Group, LLC
7-206
Table 7J.135 Country and Region Dominican Republic El Salvador Guadeloupe Guatemala Haiti Honduras Jamaica Martinique Mexico Nicaragua Panama Puerto Rico Saint Lucia St. Vincent Trindad and Tobago United States South America Argentina Bolivia Brazil Chile Colombia Ecuador French Guiana Guyana Paraguay Peru Suriname Uruguay Venezuela Asia Afghanistan Armenia Azerbaijan Bahrain Banglaesh Bhutan Brunei Darsm Cambodia China Cyprus Gaza Strip Georgia Hong Kong India Indonesia Iran Iraq Israel Japan Jordan Kazakstan Korea, DPR Korea, Rep. Kuwait Kyrgyzstan Laos
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) 1961
1965
1970
1975
1980
1985
1990
1995
1997
110
115
125
140
165
198
225
259
259
18 1 32 35 50 22 1 3,000 18 14 39 1 0 11
20 1 43 40 66 24 1 3,200 18 18 39 1 1 11
20 2 56 60 66 24 1 3,583 40 20 39 1 1 15
33 1 72 70 70 32 2 4,479 67 23 39 1 1 18
110 2 87 70 72 33 5 4,980 80 28 39 1 1 21
110 2 102 70 72 33 4 5,285 83 30 39 1 1 22
120 2 117 75 74 33 4 5,600 85 31 39 2 1 22
120 2 125 90 74 33 3 6,100 88 32 40 3 1 22
120 2 125 90 74 33 3 6,500 88 32 40 3 1 22
14,000
15,200
16,000
16,690
20,582
19,831
20,900
21,400
21,400
980 72 490 1,075 226 440 1 90 30 1,016 14 27 60
1,110 75 610 1,100 235 450 1 109 30 1,060 15 35 62
1,280 80 796 1,180 250 470 1 115 40 1,106 28 52 70
1,440 120 1,100 1,242 300 506 1 120 55 1,130 33 57 90
1,580 140 1,600 1,255 400 500 1 125 60 1,160 42 79 137
1,620 125 2,100 1,257 465 300 2 127 65 1,210 55 97 171
1,680 110 2,700 1,265 680 290 2 130 67 1,450 59 120 180
1,700 78 3,169 1,265 1,037 240 2 130 67 1,753 60 140 200
1,700 88 3,169 1,270 1,061 250 2 130 67 1,760 60 140 205
2,160 2,260 2,340 Formerly included in Soviet Union Formerly included in Soviet Union 1 1 1 426 572 1,058 8 10 18
2,430
2,505
2,586
3,000
1 1,441 22 0 89 42,776 30 10
1 1,569 26 1 100 45,467 30 10
1 2,073 30 1 130 44,581 30 11
2 2,936 39 1 160 47,965 36 11
6 33,730 3,900 5,900 1,567 180 3,171 36
3 38,478 4,301 4,948 1,750 203 3,055 37
3 41,779 4,300 6,800 1,750 233 2,952 48
2 45,144 4,410 7,000 3,525 206 2,846 63
900 1,277 1
1,120 1,307 1
1,270 1,325 2
1,420 1,345 3
40
115
119
130
2,800 290 1,453 4 3,429 39 1 270 49,857 40 12 469 2 53,000 4,687 7,264 3,525 199 2,745 75 2,380 1,460 1,206 5 1,077 155
2,800 290 1,455 5 3,693 40 1 270 51,819 40 12 470 2 57,000 4,815 7,265 3,525 199 2,701 75 2,149 1,460 1,163 5 1,074 164
62 100 89 30,402 33,579 38,113 30 30 30 8 8 9 Formerly included in Soviet Union 9 8 8 24,685 26,510 30,440 3,900 3,900 3,900 4,700 4,900 5,200 1,250 1,350 1,480 136 151 172 2,940 2,943 3,415 31 32 34 Formerly included in Soviet Union 500 500 500 1,150 1,199 1,184 0 0 1 Formerly included in Soviet Union 12 13 17
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7J.135 Country and Region Lebanon Malaysia Mongolia Myanmar (Burma) Nepal Oman Pakistan Philippines Qatar Saudi Arabia Sri Lanka Syria Tajikistan Thailand Turkey Turkmenistan United Arab Emirates Uzbekistan Vietnam West Bank Yemen Europe Albania Austria Bel-Lux Belarus Bulgaria Bosnia Herzegovina Croatia Czechoslovakia Czech Republic Denmark Estonia Finland France Germany Greece Hungary Italy Latvia Lithuania Macedonia Malta Moldova Rep. Netherlands Norway Poland Portugal Romania Russia Slovakia Slovenia Spain Sweden Switzerland Ukraine United Kingdom
7-207
(Continued) 1961
1965
1970
1975
1980
1985
1990
1995
1997
41 61 68 228 236 262 5 5 10 536 753 839 70 86 117 20 23 29 10,751 11,472 12,950 690 730 826 1 1 1 343 353 365 335 341 465 558 522 451 Formerly included in Soviet Union 1,621 1,768 1,960 1,310 1,400 1,800 Formerly included in Soviet Union 30 35 45
86 308 23 976 230 34 13,630 1,040 1 375 480 516
86 320 35 999 520 38 14,680 1,219 3 600 525 539
86 334 60 1,085 760 41 15,760 1,440 5 800 583 652
86 335 77 1,005 900 58 16,940 1,560 6 900 520 693
2,419 2,200
3,015 2,700
3,822 3,200
4,238 3,800
50
53
58
63
105 340 84 1,555 1,134 62 17,200 1,550 13 1,620 570 1,089 719 4,642 4,186 1,750 68
117 340 84 1,556 1,135 62 17,580 1,550 13 1,620 600 1,168 720 5,010 4,200 1,800 72
1,000 8 282
1,542 9 289
1,770 10 302
1,840 10 348
4,281 2,000 9 485
4,281 2,300 9 485
331 4 1
371 4 1
399 4 1
423 4 1
1,128
1,197
1,229
1,263
340 4 24 115 800 2
340 4 35 115 800 2
3
3
136
123
187
282
180
391
410
430
40 680 448 875 156 2,400
60 870 460 961 134 2,400
62 1,050 470 1,099 138 2,425
64 1,300 482 1,195 204 2,711
1
1
1
1
430 40 231 625 1,474
480 74 100 630 2,301
530 90 100 630 2,956
555 97 100 630 3,109
2,818 45 25
3,029 70 25
3,217 99 25
3,402 114 25
86
140
152
164
24 481 4 64 1,630 475 1,325 210 2,698 20 9 61 1 309 565 127 100 632 3,110 5,362 217 2 3,527 115 25 2,585 108
24 476 4 64 1,670 475 1,385 210 2,698 20 9 55 2 309 565 127 100 632 3,089 4,990 190 2 3,603 115 25 2,466 108
Formerly included in Soviet Union 1,000 980 980 10 10 9 207 231 260 156 4 1 Formerly included 720 Formerly included
205 284 4 4 1 1 in Soviet Union 945 1,001 in Yugoslavia
Formerly included in Yugoslavia 108 116 126 Formerly included in Czechoslovakia 40 65 90 Formerly included in Soviet Union 2 7 16 360 440 539 321 390 419 430 576 730 133 100 109 2,400 2,400 2,400 Formerly included in Soviet Union Formerly included in Soviet Union Formerly included in Yugoslavia 1 1 1 Formerly included in Soviet Union 290 330 380 18 25 30 295 275 213 620 621 622 206 230 731 Formerly included in Soviet Union Formerly included in Czechoslovakia Formerly included in Yugoslavia 1,950 2,226 2,379 20 22 33 20 23 25 Formerly included in Soviet Union 108 105 88
(Continued)
q 2006 by Taylor & Francis Group, LLC
7-208
Table 7J.135 Country and Region Yugoslavia Yugoslav SFR Former Soviet Union Oceania Australia Fiji New Zealand Total Irrigated Area (000 ha) Rate of Change over Period Average Annual Change (%)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) 1961
1970
1975
1980
1985
1990
121 118 130 Formerly included in Yugoslavia 9,400 9,900 11,100
133
145
164
170
14,500
17,200
19,689
20,800
1,469 1 150 187,559
1,500 1 183 209,233
1,700 1 256 223,304
1,832 1 280 242,185
1,001 1 77 138,813
1965
1,274 1 93 149,740
1,476 1 111 167,331
1995
1997
65
65
2,500 3 285 260,083
2,700 3 285 267,727
0.08
0.12
0.12
0.12
0.07
0.08
0.07
0.03
1.97
2.35
2.42
2.31
1.35
1.69
1.48
1.47
Note: Data for the former Soviet Union after 1990 are split among the separate independent states, now included in Asia and Europe. Data from Yugoslavia and Czechoslovakia after 1990 are now split among several independent states. Original Source Food and Agriculture Organization, 1999. Web site at www.fao.org. Source: From World’s Water 2000–2001, by Peter H. Gleick. Copyright q 2000 Island Press. Reproduced by permission of Island Press, Washington, DC.
q 2006 by Taylor & Francis Group, LLC
Canada Mexico U.S.A. Japan Korea Australia N.Zealand Austria Belgium Czech R. Denmark Finland France Germany Greece Hungary Iceland Ireland Italy The Netherl. Norway Poland Portugal Slov.R. Spain Sweden Switzerland Turkey UK Russ.F. N.America Australia OECD EU OECD World
1980
1985
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
5,960 49,800 205,820 30,550 13,070 15,000 1,830 40 130 — 3,910 600 8,700 4,600 9,610 1,340 — — 24,000 4,800 740 1,000 6,300 — 30,290 700 250 27,000 1,400 49,940 261,580 16,830 126,640 95,080 448,670 2,097,160
7,480 52,850 198,310 29,520 13,250 17,000 2,560 40 170 — 4,100 620 10,500 4,700 11,240 1,380 — — 24,250 5,300 900 1,000 6,300 — 32,170 990 250 32,000 1,520 58,050 258,640 19,560 139,300 101,900 460,270 2,251,380
7,180 56,000 209,000 28,460 13,450 18,320 2,800 40 180 — 4,300 640 13,000 4,820 11,950 2,040 — — 27,110 5,550 970 1,000 6,310 — 34,020 1,140 250 38,000 1,640 61,220 272,180 21,120 155,780 110,700 490,990 2,443,060
7,200 58,000 209,000 28,250 13,350 20,120 2,830 40 180 — 4,350 640 13,500 4,820 12,020 2,100 — — 27,100 5,570 970 1,000 6,310 — 33,880 1,160 250 40,000 1,360 60,540 274,200 22,950 156,950 110,930 495,700 2,479,660
7,200 61,000 214,000 28,020 13,000 20,690 2,850 40 180 — 4,350 640 14,000 4,820 12,890 2,240 — — 27,000 5,600 970 1,000 6,310 — 34,030 1,150 250 40,000 1,080 55,530 282,200 23,540 157,900 112,090 504,660 2,514,540
7,200 62,000 215,000 27,820 12,700 21,070 2,850 40 180 240 4,550 640 14,770 4,850 13,300 2,060 — — 27,000 5,600 1,000 1,000 6,310 2,990 34,530 1,150 250 40,000 1,080 52,980 284,200 23,920 161,540 114,000 510,180 2,555,470
7,200 63,000 217,000 27,640 12,350 24,080 2,850 40 180 240 4,650 6,40 15,000 4,850 13,520 2,100 — — 27,000 5,650 1,100 1,000 6,310 2,350 36,570 1,150 250 41,860 1,080 51,580 287,200 26,930 165,540 116,640 519,660 2,579,820
7,200 64,000 218,000 27,450 12,060 24,000 2,850 40 240 240 4810 640 16,300 4,850 13,830 2,100 — — 26,980 5,650 1,270 1,000 6,320 2,170 35,270 1,150 250 41,860 1,080 53,620 289,200 26,850 166,050 117,160 521,610 2,614,280
7,200 65,000 220,000 27,240 11,760 23,900 2,850 40 300 240 4,810 640 17,500 4,850 14,140 2,100 — — 26,980 5,650 1,270 1,000 6,500 1,940 36,030 1,150 250 42,000 1,080 51,080 292,200 26,750 168,470 119,670 526,420 2,638,870
7,200 65,000 222,820 27,010 11,630 23,800 2,850 40 350 240 4,760 640 1,9070 4,850 1,4820 2,100 — — 26,980 5,650 1,270 1,000 6,500 1,710 36,340 1,150 250 42,000 1,080 49,900 295,020 26,650 170,800 122,230 531,110 2,673,220
7,200 65,000 223,000 26,790 11,590 23,650 2,850 40 350 240 4,600 640 20,000 4,850 14,220 2,100 — — 26,980 5,650 1,270 1,000 6,500 1,740 36,520 1,150 250 43,800 1,080 46,630 295,200 26,500 172,980 122,580 533,060 2,686,880
7,200 65,000 224,000 26,590 11,530 22,510 2,850 40 350 240 4,470 640 21,000 4,850 14,410 2,100 — — 26,980 5,650 1,270 1,000 6,500 1,780 36,550 1,150 250 45,000 1,080 46,000 296,200 25,360 175,310 123,670 534,990 2,699,340
7,200 65,000 224,000 26,410 11,490 23,850 2,850 40 350 240 4470 640 22,000 4,850 14,510 2,100 — — 27,000 5,650 1,270 1,000 6,500 1,830 36,550 1,150 250 45,000 1,080 46,000 296,200 26,700 176,480 124,790 537,280 2,716,890
WATER USE
Table 7J.136 Irrigated Areas for Selected Countries of the World, 1980–2000
Note: Units are given in km2. a. Areas equipped to provide water to the crops. These include areas equipped for full and partial control irrigation, spate irrigation areas, and equipped wetland or inland valley bottoms. All figures are rounded to the nearest 10 km2. † JPN, Rice irrigation only; † KOR, Rice irrigation only; † BEL, Data for Belgium include Luxembourg.
q 2006 by Taylor & Francis Group, LLC
7-209
Source: Table 10.2, OECD Environment Data Compendium 2002, q OECD 2002, www.oecd.org.
7-210
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7J.137 Irrigation Water Use Per Country in the Year 2000 Total Renewable Water Resources (km3)
Irrigation Water Requirements (km3)
Water Requirement Ratio in Percentages (%)
Water Withdrawal for Agriculture (km3)
Water Withdrawal as Percentage of Renewable Water Resources (%)
65 14.32 184 814 1210.644 24.8 622.531 14.4 8233 12.5 3.6 476.11 285.5 43 922 2829.569 2132 832 1283 112.4 81 38.12 20.995 432 58.3 25.23 6.3 110 164 8 53.2 111.27 226 241 14.025 95.929 1896.66 2838 137.51 75.42 9.404 0.88 30.2 77.135 69.7 333.55 4.407 0.6 337 17.28 580 100 11.4 457.222 29 216.11 1045.601 17.94
8.78 1.45 0.04 3.43 19.09 0.06 0.26 0.02 6.21 0.21 0.06 1.2 0.22 0.07 1.59 153.9 1.23 0 0.03 0.36 0.17 1.41 0.56 2.67 28.43 0.19 0.09 0.56 0.02 0.01 0.06 0.4 0.41 0.45 0.18 0.17 303.24 21.49 21.06 11.2 0.01 0.29 0.3 1.49 2.67 0.81 0.37 2.56 3.58 0.2 1.68 2.06 0.44 18.53 4.28 0.22 9.79 0.07
38 37 20 16 25 30 23 30 17 30 30 30 30 35 20 36 25 30 30 25 28 25 25 19 53 25 32 22 30 30 26 25 30 28 20 25 54 28 32 28 25 39 30 30 30 30 40 60 25 25 30 30 29 31 37 39 30 40
22.84 3.94 0.21 21.52 76.35 0.19 1.16 0.06 36.63 0.69 0.19 4 0.73 0.19 7.97 426.85 4.92 0 0.11 1.43 0.6 5.64 2.24 13.96 53.85 0.76 0.29 2.47 0.05 0.02 0.25 1.61 1.36 1.6 0.93 0.69 558.39 75.6 66.23 39.38 0.02 0.76 1.01 4.96 8.92 2.7 0.92 4.27 14.31 0.81 5.6 6.87 1.5 60.34 11.48 0.55 32.64 0.17
35 27 0 3 6 1 0 0 0 5 5 1 0 0 1 15 0 0 0 1 1 15 11 3 92 3 5 2 0 0 0 1 1 1 7 1 29 3 48 52 0 86 3 6 13 1 21 712 4 5 1 7 13 13 40 0 3 1
Afghanistan Algeria Angola Argentina Bangladesh Benin Bolivia Botswana Brazil Burkina Faso Burundi Cambodia Cameroon Chad Chile China Colombia Congo, Republic of Congo, Dem Republic of Costa Rica Coˆte d’Ivoire Cuba Dominican Republic Ecuador Egypt El Salvador Eritrea Ethiopia Gabon Gambia Ghana Guatemala Guinea Guyana Haiti Honduras India Indonesia Iran, Islamic Rep of Iraq Jamaica Jordan Kenya Korea, Dem People’s Rep Korea, Republic of Laos Lebanon Libyan Arab Jamahiriya Madagascar Malawi Malaysia Mali Mauritania Mexico Morocco Mozambique Myanmar Namibia
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7J.137
7-211
(Continued) Total Renewable Water Resources (km3)
Irrigation Water Requirements (km3)
Water Requirement Ratio in Percentages (%)
Water Withdrawal for Agriculture (km3)
Water Withdrawal as Percentage of Renewable Water Resources (%)
210.2 196.69 33.65 286.2 222.67 147.98 336 1913 479 5.2 2.4 39.4 160 13.5 50 50 64.5 122 4.51 26.26 91 409.944 14.7 4.56 229.3 66 139 1233.17 891.21 4.1 105.2 20
2.45 0.3 0.62 1.65 72.14 0.05 0.08 5.07 6.33 0.01 6.68 0.43 0.12 0.98 2.34 2.92 14.43 0.18 0.12 8.52 0.56 24.83 0.02 1.21 11.27 0.03 0.66 1.24 15.18 2.53 0.26 0.67
25 27 30 30 44 20 23 31 30 30 43 30 33 30 21 24 40 30 16 45 30 30 30 54 40 30 22 31 31 40 19 30
9.82 1.08 2.08 5.51 162.65 0.23 0.35 16.42 21.1 0.03 15.42 1.43 0.35 3.28 11.12 12 36.07 0.62 0.76 18.93 1.85 82.75 0.08 2.23 27.86 0.12 3.03 3.97 48.62 6.32 1.32 2.24
5 1 6 2 73 0 0 1 4 1 643 4 0 24 22 24 56 1 17 72 2 20 1 49 12 0 2 0 5 154 1 11
Nepal Nicaragua Niger Nigeria Pakistan Panama Paraguay Peru Philippines Rwanda Saudi Arabia Senegal Sierra Leone Somalia South Africa Sri Lanka Sudan Suriname Swaziland Syrian Arab Republic Tanzania, United Rep of Thailand Togo Tunisia Turkey Uganda Uruguay Venezuela, Boliv Rep of Vietnam Yemen Zambia Zimbabwe
Source: From Food and Agriculture Organization of the United Nations (FAO). AQUASTAT - FAO’s Information System on Water and Agriculture, www.fao.org. Reprinted with permission.
Table 7J.138 Summary Results of Agricultural Water Use and Comparison with Water Resources, 2000 Total Renewable Water Resources (km3)
Irrigation Water Requirements (km3)
Water Requirement Ratio (%)
Water Withdrawal for Agriculture (km3)
Water Withdrawal as Percentage of Renewable Water Resources (%)
13,409 541 3,518 8,609 2,469 28,545
45 109 31 232 397 814
24 40 32 34 44 38
187 274 97 693 895 2146
1 51 3 8 36 8
Latin America Near East and North Africa Sub-Saharan Africa East Asia South Asia 90 developing countries
Source: From Food and Agriculture Organization of the United Nations (FAO), AQUASTAT - FAO’s Information System on Water and Agriculture, www.fao.org. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
7-212
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7J.139 Irrigated Area, by World Region, 1961–2001 Thousand Hectares Region
1961
1965
1970
1975
1980
Africa Asia Europe North & Central America Oceania South America U.S.S.R. World
7,410 90,166 8,468 17,950 1,079 4,661 9,400 139,134
7,795 97,093 9,401 19,526 1,368 5,070 9,900 150,153
8,483 109,666 10,583 20,939 1,588 5,673 11,100 168,032
9,010 121,565 12,704 22,833 1,620 6,403 14,500 188,635
9,491 132,377 14,479 27,597 1,684 7,392 17,200 210,220
Region Africa Asia Europe North & Central America Oceania South America U.S.S.R. World
1985 10,331 141,922 16,018 27,471 1,957 8,296 19,689 225,684
1990 11,235 155,009 17,414 28,913 2,114 9,499 20,800 244,984
1995 12,383 180,508 26,104 30,473 2,689 10,086
2000 12,700 190,014 25,382 31,223 2,674 10,489
2001 12,813 190,385 25,347 31,344 2,674 10,489
262,243
272,482
273,052
Note: After 1990, all irrigated area in the former U.S.S.R. is split among Europe and Asia. Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC.
Table 7J.140 Agricultural Land Use for Developing Countries Arable Land (mi ha) Total Developing countries 1997–99 956 2015 1,017 2030 1,076 Sub-Saharan Africa 1997–99 228 2015 262 2030 288 Near East and North Africa 1997–99 86 2015 89 2030 93 Latin America and Caribbean 1997–99 203 2015 223 2030 244 South Asia 1997–99 207 2015 210 2030 216 East Asia 1997–99 232 2015 233 2030 237 Source:
Rainfed 754 796 834 223 256 281
Harvested Land (mi ha)
Irrigated 202 221 242 5.3 6 6.8
Total
Rainfed
885 977 1,063
628 671 722
154 185 217
150 179 210
Cropping Intensity (%)
Irrigated 257 306 341 4.5 5.7 7
Total
Rainfed
Irrigated
93 96 99
83 84 87
127 138 141
68 71 76
67 70 75
86 95 102
60 60 60
26 29 33
70 77 84
43 45 46
27 32 37
81 86 90
72 75 78
102 110 112
185 203 222
18 20 22
127 150 172
112 131 150
16 19 22
63 67 71
60 64 68
86 95 100
126 123 121
81 87 95
230 248 262
131 131 131
100 117 131
111 118 121
103 106 109
124 134 137
161 155 151
71 78 85
303 317 328
193 186 184
110 131 144
130 136 139
120 120 122
154 168 169
Food and Agriculture Organization of the United Nations (FAO), World Agricultrure: towards 2015/2030 Summary Report, www.fao.org. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-213
Table 7J.141 Irrigated Land and Percentage of Arable Land That Is Irrigated Irrigated Land Area (1000 ha) 1980
1990
2001
1980
1990
2001
210,220 58,926 37,355 21,571 151,294 13,811 17,982 3,980 59,722 55,798 1 —
244,984 66,286 39,935 26,351 178,698 16,794 24,864 4,885 65,624 66,529 2 —
273,052 67,988 43,226 24,762 205,064 18,613 27,808 5,221 74,605 78,813 4 —
15.7 9.0 9.9 7.9 21.9 10.8 21.8 3.2 37.0 28.6 0.2 —
17.6 10.2 10.5 9.8 24.1 12.5 28.8 3.7 33.9 33.9 0.4 —
19.5 11.1 11.8 10.0 26.0 12.5 32.3 3.6 35.0 40.3 0.7 —
9,491 132,377 1,074 12,737 21,178 1,684 14,479
11,235 155,009 1,269 15,525 21,618 2,114 17,414
12,813 190,385 1,308 17,305 23,220 2,674 25,347
6.0 31.3 22.0 10.4 9.0 3.6 11.5
6.7 33.8 23.3 12.0 9.3 4.2 14.0
7.0 37.4 22.2 12.1 10.5 5.1 8.8
World/Continent World Developed countries Industralized countries Transition economies Developing countries Latin America and the Caribbean Near East and North Africa Sub-Saharan Africa East and Southeast Asia South Asia Oceania developing North America developing Continental groupings Africa Asia Caribbean Latin America North America Oceania Europe
As % of Arable Land
Source: From Food and Agriculture Organization of the United Nations (FAO), 2003, Summary of Food and Agricultural Statistics, www.fao.org. Reprinted with permission.
Table 7J.142 Irrigated (Arable) Land: Past and Projected Annual Growth (% p.a.)
Irrigated Land in Use (mi ha)
Land in Use as % of Potential (%)
Balance (mi ha)
1961/63 (1)
1979/81 (2)
1997/99 (3)
2015 (5)
2030 (6)
1961– 1999 (7)
1997/99– 2030 (8)
1997/99 (9)
2030 (10)
1997/99 (11)
2030 (12)
3 15
4 18
5 26
6 29
7 33
2.0 2.3
0.9 0.6
14 62
19 75
32 17
30 11
Sub-Saharan Africa Near East/North Africa Latin America and the Caribbean South Asia excl. India East Asia excl. China
8
14
18
20
22
1.9
0.5
27
32
50
46
37 12 40 10
56 17 59 14
81 23 71 19
87 24 78 22
95 25 85 25
2.2 1.9 1.5 2.1
0.5 0.2 0.6 0.9
57 84 64 40
67 89 76 53
61 4 41 29
47 3 27 23
All above excl. China excl. China/India
103 73 48
151 106 67
202 150 93
221 165 102
242 182 112
1.9 2.1 2.0
0.6 0.6 0.6
50 44 41
60 54 50
200 188 132
161 157 114
Industrial countries Transition countries World
27 11 142
37 22 210
42 25 271
1.3 2.6 1.8
Source: From Food and Agriculture Organization, of the United Nations (FAO), World Agriculture Towards 2015/2030, www.fao.org. Reprinted with permission. Original Source: From Columns (1)–(3): FAOSTAT, November 2001. q 2006 by Taylor & Francis Group, LLC
7-214
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7J.143 Irrigation Lending by Continent and Decade Irrigation Lending (% of global amount) Decade
Asia
America
Africa
1950 1960 1970 1980 1990–91 Total
75 75 66 73 61 69
25 12 12 12 23 13
13 13 11 16 12
Projects (% of global number)
Europe
Asia
America
Africa
9 4
67 71 47 47 60 50
33 20 14 13 17 14
10 31 34 23 30
5
Average Irrigation Lending Amount (1991 US$M)
Europe
Asia
America
Africa
7 5
70 89 61 76 69 71
47 51 37 44 93 47
112 18 16 47 21
5
Europe
World
55 39
62 84 44 49 68 51
48
Source: From Jones, W.I., 1995, The World Bank and Irrigation, The World Bank, Washington, DC, Copyright q International Bank for Reconstruction and Development/The World Bank, www.worldbank.org. Reprinted with permission.
Table 7J.144 Average Unit Costs for World Bank Irrigation Projects
All Satisfactory Unsatisfactory Gravity Pump (mostly from groundwater) Mixed New construction Rehabilitation Rehabilitation and extension Paddy Nonpaddy Selected areas East and South Asia East Asia South Asia India Europe Middle East Africa North Africa Sub-Saharan Africa Latin America and Caribbean
Unit Cost ($/ha)
Number
Adjusted Unit Cost ($/ha)
Number
Adjusted/ Unadjusted Ratio
4,837 2,643 9,294 5,584 3,766
191 128 63 113 52
7,950 2,906 18,637 10,355 4,415
184 125 59 112 46
1.64 1.10 2.01 1.85 1.17
3,727 7,740 1,633 3,171 6,374 3,886
26 86 34 55 73 118
3,846 12,915 5,258 3,834 11,063 5,950
26 81 34 54 72 112
1.03 1.67 3.22 1.21 1.74 1.53
2,831 4,291 1,370 1,421 4,743 5,062 12,925 4,911 18,269 3,923
112 56 56 30 17 9 30 12 18 20
4,694 7,379 1,746 1,596 4,759 4,663 20,833 5,226 31,238 10,283
107 56 51 27 17 7 30 12 18 20
1.66 1.72 1.27 1.12 1.00 0.92 1.61 1.06 1.71 2.62
Note: Two measures of unit cost are used. “Unit cost” is defined as the actual project cost ($US) measured at evaluation divided by the completion command area (hectares) measured at evaluation. “Adjusted unit cost” is “unit cost” with the denominator adjusted by the completion achievement of construction target (%) measured at evaluation. Two projects, Lake Chad Polders (Chad) and Black Bush Irrigation (Guyana), had completion command areas measured at evaluation equal to zero. This resulted in infinite measures of unit cost, and thus they were not included in the calculation of averages. Source: From Jones, W.I., 1995, The World Bank and Irrigation, The World Bank, Washington, DC, Copyright q International Bank for Reconstruction and Development/The World Bank, www.worldbank.org. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-215
SECTION 7K
LIVESTOCK
Table 7K.145 Water Requirements for Farm Animals and Poultry Horse, work Mule Cattle Holstein calves (liquid milk or dried milk and water supplied) 4 weeks of age 8 weeks of age 12 weeks of age 16 weeks of age 20 weeks of age 26 weeks of age Dairy heifers—Pregnant Steers Maintenance ration Fattening ration Range cattle Jersey cowsa Milk production 5–30 lbs/day Holstein cowsa Milk production 20–50 lbs/day Milk production 80 lbs/day Dry Pigs Body weight—30 lbs Body weight—60–80 lbs Body weight—75–125 lbs Body weight—200–380 lbs Pregnant sows Lactating sows Sheep On range of dry pasture On range (salty feeds) On rations of hay and grain or hay, roots and grain On good pasture Chickens (100 birds) 1–3 weeks of age 3–6 weeks of age 6–10 weeks of age 9–13 weeks of age Pullets Nonlaying hens Laying hens (moderate temperatures) Laying hens (temperature 90 8F) Turkeys (100 birds) 1–3 weeks of age 7–4 weeks of age 9–13 weeks of age 15–19 weeks of age 21–26 weeks of age
12 12
1.2–1.4 1.6 2.2–2.4 3.0–3.4 3.8–4.3 4.0–5.8 7.2–8.4 4.2 8.4 4.2–8.4 7.2–12 7.8–22 23 11 0.6–1.2 0.8 1.9 1.4–3.6 3.6–4.6 4.8–6.0 0.6–1.6 2.0 0–0.7 Little, if any 0.4–2.0 1.4–3.0 3.0–4.0 4.0–5.0 3.0–4.0 5.0 5.0–7.5 9.0 1.1–2.6 3.7–8.4 9–14 17 14–15
Note: Gallons per day. Allow 15–20 additional gallons per day for each cow for flushing stables and washing dairy utensils. Source: From U.S. Dept. of Agriculture.
a
q 2006 by Taylor & Francis Group, LLC
7-216
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7K.146 Livestock Freshwater Use in the United States, 2000 Withdrawals (mi/gal/day)
Withdrawals (thousand acre-feet/yr)
By Source Groundwater Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
— — — — 182 — — 3.7 — 31 1.66 — 27.7 37.6 27.3 81.8 87.2 — 4.03 — 7.18 — 10.2 52.8 — 18.3 — 76 — — 1.68 — — 89.1 — 8.2 53.6 — — — — 16.9 — 137 — — — — — 60.3 — — — 1,010
By Source
Surface Water — — — — 227 — — 0.22 — 1.51 17.7 — 7.2 0 14.6 27.1 23.5 — 3.31 — 3.18 — 1.15 0 — 54.1 — 17.4 — — 0 — — 32.3 — 17.1 97.2 — — — — 25.2 — 172 — — — — — 6.02 — — — 747
Total — — — — 409 — — 3.92 — 32.5 19.4 — 34.9 37.6 41.9 109 111 — 7.34 — 10.4 — 11.3 52.8 — 72.4 — 93.4 — — 1.68 — — 121 — 25.3 151 — — — — 42 — 308 — — — — — 66.3 — — — 1,760
Groundwater — — — — 204 — — 4.15 — 34.7 1.86 — 31 42.1 30.6 91.8 97.7 — 4.52 — 8.05 — 11.4 59.2 — 20.5 — 85.2 — — 1.88 — — 99.9 — 9.19 60 — — — — 18.9 — 153 — — — — — 67.6 — — — 1,140
Surface Water — — — — 255 — — 0.25 — 1.69 19.9 — 8.07 0 16.4 30.4 26.3 — 3.71 — 3.56 — 1.29 0 — 60.6 — 19.5 — — 0 — — 36.2 — 19.2 109 — — — — 28.2 — 192 — — — — — 6.75 — — — 838
Total — — — — 458 — — 4.39 — 36.4 21.7 — 39.1 42.1 47 122 124 — 8.23 — 11.6 — 12.7 59.2 — 81.1 — 105 — — 1.88 — — 136 — 28.4 169 — — — — 47.1 — 346 — — — — — 74.4 — — — 1,980
Note: Figures may not sum to totals because of independent rounding. —, data not collected. Source:
From Hutson, S.S. et al., 2004, Estimated Use of Water in the United States in 2000, U.S. Geological Survey Circular 1268, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-217
SECTION 7L
NAVIGATION AND WATERWAYS
Table 7L.147 Projected Flows Required for Efficient Navigation on Inland Waterways of the United States Critical Flowa (ft3/s) Waterway
1,959
New England, existing waterways: all Middle Atlantic, existing waterways Great Lakes to Hudson River and Champlain Canals Delaware
South Atlantic Existing waterways Cape Fear River above Wilmington, NC Savannah River below Augusta, GA Altamaha River below junction of Ocmulgee and Oconee Rivers Okeechobee Waterway Apalachicola below Jim Woodruff lock and dam Alabama River below Selma, AL Warrior system Possible future waterways Santee-Congaree
Ocmulgee River below Macon, GA Cross-Florida Barge Canal Chattahoochee River below Atlanta, GA Flint River below Albany, GA Coosa River Tennessee-Tombigbee
Arkansas-White-Red Existing waterways White River (to mile 168.7) Ouachita-Black Waterways under construction Verdigris River (at Catoosa, OK)
Arkansas (at Webber Falls) Arkansas (at Short Mountain) Arkansas (at Dardanelle) Arkansas (Dardenelle to mouth) Possible future waterways: Overton-Red Waterway Gulf-Southwest Waterways under construction: Guadalupe to Victoria
1,980
2,000
Comments
0
0
0
2,000
2,000
2,000
b
b
b
50 5,000 1,000
100 5,800 5,000
c
50 9,300
50 9,300
c
3,000 540
3,000 540
c
—
5,200
c
— — — — — —
300 700 300 200 300 1,246
c
6,500 100
10,000 100
10,000 100
—
115
115
— — — — —
300 530 505 1,000 300
300 530 505 1,000
—
0–1,800
0–1,800
All waterways are in tidal reaches Available flow 13,000 c.f.s. If depth increased to 45 ft minimum flow will have to be increased by 2,900, c.f.s. to repel salinity
c c
c
c
c
Project might be found feasible if river developed for power Authorized project
c c c c
Do Completed project. (1,246 c.f.s. to be diverted from the Tennessee River.)
Provision of 9-ft waterway as part of multiplepurpose development of the Arkansas River Do Do Do Do Authorized project
For periodic flushing (Continued)
q 2006 by Taylor & Francis Group, LLC
7-218
Table 7L.147
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Critical Flowa (ft3/s)
Waterway Possible future waterways Trinity River (below Dallas) Trinity River (above Dallas) Missouri River Basin, existing waterways Missouri at Sioux Cityd Missouri at Omahad Missouri at Nebraska City Missouri at Kansas Cityd Missouri at mouthd Upper Mississippi Basin Existing waterways Main stem, pools 1–10 Main stem, pools 11–22 Main stem, pools 24–26 Main stem, Missouri to Ohio Minnesota St. Croix Illinois Waterway Fox River Possible future waterways Kaskaskia River Big Muddy River Tittabawassee River Ohio River Basin Existing waterways Ohio River (main stem) Allegheny River Monongahela River Kanawha River Kentucky River Green River Cumberland River Possible future waterways Big Sandy River (main stem) Big Sandy River (Levisa Fork) Lake Erie-Ohio River Canal Lower Mississippi River Existing waterways Main stem at Cairo Main stem below Arkansas Ouachita-Black Possible future waterways Yazoo below Greenwood Columbia River Basin Existing waterways Main stem at Bonneville Main stem at The Dallas Willamette, mouth to Salem Willamette, Salem to Corvallis Snake, mouth to Ice Harbor Waterways under construction Main stem John Day to McNary Snake, Ice Harbor to Lewiston Possible future waterways Main stem head McNary Pool to Rock Island Snake, Lewiston to mile 174
1,959
1,980
2,000
Comments
— —
400 150
800 325
—
30,000
30,000
28,000 31,000 35,000
28,000 31,000 32,500
28,000 31,000 32,500
—
35,000
35,000
375 2,000 70,000 54,000 0 0 720e 300
750 2,000 25,000 75,000 0 0 1,826e,f 300
940 2,000 25,000 75,000 0 0 1,826e,f 300
0 0 0
200 200 200
300 400 200
c
c
c
100 340 300 100 150 100
140 440 400 150 250 150
150 670 400 200 400 250
0 0 0
329 176 430
329 176 430
100,000 140,000 100
120,000 150,000 150
120,000 150,000 150
100
100
40,000 700 6,000 5,000 300
40,000 1,500 6,000 5,000 1,000
40,000 2,500 6,000 5,000 2,000
110,000 —
1,500 1,000
2,500 2,000
—
36,000
—
—
500
—
1,000
Authorized project Do Could be reduced to 25,000 by dredging
Could be reduced to 27,500 by dredging
Not required in winter Do Required all year Do Mississippi backwater Do Not required in winter
River canalized
Under study Do (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7L.147
7-219
(Continued) Critical Flowa (ft3/s)
Waterway Snake, mile 174 to mile 188 Snake, mile 188 to mile 232 North Pacific Coast, Possible future waterways Skagit, mouth to Concrete Central Valley, existing waterways Sacramento San Joaquin above Mossdale a b c d e f
1,959
1,980
2,000
— — —
500 350 10,000
1,000 700 10,000
5,000 100
5,000 100
5,000 100
Comments
Shallow draft Do
Rate below which streamflow cannot drop without reducing the efficiency of navigation. Anticipated flows will meet the needs of navigation. Estimates not available. Flows required from April through November, assuming continuation of open river navigation. Canalization now being studied. If Missouri canalized these flows would be greatly reduced. Average annual flow required at Lockport, III. Includes 250 c.f.s. to prevent reversal of flow into Lake Michigan when storm runoff occurs. Excludes 120 c.f.s. of present industrial usage which bypasses Lockport lock. Requirements for recommended duplicate lock system.
Source: From Select Committee on National Water Resources, U.S. Senate, 1960; amended.
q 2006 by Taylor & Francis Group, LLC
7-220
Table 7L.148 Navigation Locks and Dams in the United States (Operable as of May 2005) Locks Depth of Miter Sill
Project
River Mile
Type of Structurea
q 2006 by Taylor & Francis Group, LLC
Status
Community in Vicinity
Width of Chamber
Chamber Useable Length
Upper
Lower
Authorized Channel
Dam
Type
Length (ft)
Year Opened
Length (miles)
Depth (ft)
Width (above) (ft)
Width (below) (ft)
1 1 1
Claiborne, AL Camden, AL Benton, AL
84 84 84
600 600 600
30 45 45
16 16 16
13 13 13
Moveable Moveable Moveable
1,603.0 9,900.0 1,496.0
1973 1969 1974
61 103 88
9 9 9
200 200 200
200 200 200
1 1 1 2 2 2 2 3
Aspinwall, PA Cheswick, PA Natrona, PA Freeport, PA Clinton, PA Kittanning, PA Templeton, PA Rimer, PA
56 56 56 56 56 56 56 56
360 360 360 360 360 360 360 360
11 14 11 12 12 13 18 22
11 12 9 10 11 11 14 11
12 11 10 11 11 10 10 11
Miter Miter Miter Miter Miter Miter Miter Miter
1,393.0 1,436.0 876.0 780.0 1,140.0 916.0 984.0 950.0
1934 1934 1927 1927 1928 1930 1931 1938
8 10 6 6 9 7 10 10
9 9 9 9 9 9 9 9
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200
1 1 1
Chattahoochee, FL Gordon, GA Fort Gaines, GA
82 82 82
450 450 450
33 25 88
14 19 18
14 13 13
Moveable Moveable Moveable
6,359.0 750.0 1,325.0
1957 1963 1963
47 29 85
6 9 9
100 100 100
100 100 100
1 1 1
Chesapeake, VA Chesapeake, VA South Mills, NC
72 52 52
530 300 300
3 12 12
16 12 12
16 12 12
Miter Miter Miter
NA NA NA
1932 1940 1941
6 22 22
12 50 6
200 50 50
200 50 50
2 1 2 1
Berwick, LA New Iberia, LA Charenton, LA Berwick, LA
45 36 45 45
90 160 0 300
0 8 0 14
0 9 0 9
0 8 0 9
Sector Miter Sector Sector
NA 175.0 NA NA
1950
80 35 80 125
8 6 8 8
80 80 80 80
80 80 80 80
1
Buffalo, NY
70
625
5
22
22
Fixed
NA
1914
6
21
200
200
1 1 1 1 1 1
Coffeeville, AL Demopolis, AL Eutaw, AL Tuscaloosa, AL Holt, AL Adger, AL
110 110 110 110 110 110
600 600 600 600 600 600
34 40 22 28 64 68
13 13 13 18 19 13
13 13 13 18 13 13
Moveable Moveable Moveable Moveable Moveable Moveable
1,185.0 1,485.0 1,832.0 800.0 1,138.0 1,170.0
1965 1962 1962 1991 1969 1975
97 48 77 43 18 43
9 9 9 9 9 9
200 200 200 200 200 200
200 200 200 200 200 200
1
West Lake, LA
56
575
0
0
0
Sector
450.0
1968
15
13
56
56
1
Cape Canaveral, FL
90
600
3
13
13
Sector
NA
1965
6
12
100
100
1 1 1
Kings Bluff, NC Browns Landing, NC Tolars Landing, NC
40 40 40
200 200 300
11 9 9
9 12 9
9 12 9
Miter Miter Miter
275.0 229.0 220.0
1915 1917 1935
32 24 20
8 8 8
100 100 100
100 100 100
1913
1
Chicago, IL
80
600
4
27
23
Sector
NA
1939
1
21
470
190
1 1
Matagorda, TX Matagorda, TX
75 75
1,180 1,180
12 12
15 15
15 15
Sector Fixed
520.0 520.0
1944 1944
3,700 3,700
12 12
125 125
125 125
1 1 1 1
Cascade Locks, OR The Dalles, WA Rufus, WA Plymouth, WA
86 86 86 86
650 650 650 650
65 88 110 103
19 15 15 15
24 15 15 21
Miter Vertical Vertical Miter
2,680.0 8,735.0 5,900.0 7,365.0
1938 1957 1968 1953
1,080 1,000 1,600 64
14 14 14 14
300 250 250 250
300 250 250 250
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama-Coosa Rivers Claiborne Lock & Dam 117.5 L Millers Ferry Lock & Dam 178 L Jones Bluff Lock & Dam 281.2 L Allegheny River, PA and NY Lock & Dam 2 6.7 L Lock & Dam 3 14.5 L Lock & Dam 4 24.2 L Lock & Dam 5 30.4 L Lock & Dam 6 36.3 L Lock & Dam 7 45.7 L Lock & Dam 8 52.6 L Lock & Dam 9 62.2 L Apalachicola, Chattahoochee, & Flint Rivers, GA, AL and FL Jim Woodruff Lock & Dam 106.3 L Gordon, GA (no name given) 46.7 L Walter F George Lock & Dam 75.1 L Atlantic Intracoastal Waterway between Norfolk, VA & St. Johns River, FL Great Bridge Guard Lock 12.2 L Deep Creek Lock 10.6 L South Mills Lock 33.2 L Bayou Teche, LA Bayou Teche, LA (FCMR&T) 4 F Keystone Lock 72 L Bayou Teche, LA (FCMR&T)–Grand Lake 35.7 F Berwick Lock 1.5 L Black Rock Channel & Tonawanda Harbor, NY Black Rock Lock 4 L Black Warrior & Tombigbee Rivers, AL Coffeeville Lock 116.6 L Demopolis Lock & Dam 213.2 L Warrior Lock & Dam 262 L William Bacon Oliver Lock & Dam 337.6 L Holt Lock and Dam 347 L John Hollis Bankhead Lock & Dam 366 L Calcasieu River And Pass, LA Calcasieu Salt Wtr Barrier 38.9 B Canaveral Harbor, FL Canaveral Lock 3 L Cape Fear River, NC Lock & Dam 1 39 L Lock & Dam 2 71 L William O. Huske Lock & Dam 95 L Chicago Harbor Chicago Lock 327.2 L Colorado River, TX Colorado River East Lock 441.1 L Colorado River West Lock 441.8 L Columbia River, OR and WA Bonneville Lock & Dam 145.3 L The Dalles Dam 191.7 L John Day Lock & Dam 216.5 L McNary Lock & Dam 292 L
b
Lift at Normal Pool Level
1 3
Palatka, FL Inglis, FL
84 84
600 600
20 28
14 18
15 15
Miter Miter
5,100.0
1968 1968
21 11
12 12
0 0
0 0
1 1 1 1
Grand Rivers, KY Ashland City, TN Carthage, TN Old Hickory, TN
110 110 84 84
800 798 400 397
57 26 59 60
24 14 14 14
13 12 13 13
Miter Miter Miter Miter
9,959.0 801.0 1,138.0 3,605.0
1964 1956 1973 1957
118 68 72 97
9 9 9 9
300 200 150 150
300 200 150 150
1
Ocklawaha, FL
30
125
22
8
8
50.0
1969
0
8
0
0
1
Intracoastal City, LA
84
590
4
16
16
Sector
401.0
1968
250
12
120
120
1 1 1 1 1 1 1 1 1 1
Algiers, LA Harvey, LA New Orleans, LA Plaquemine, LA Port Allen, LA Morgan City, LA Abbeville, LA Lake Charles, LA Freeport, TX Freeport, TX
75 75 75 56 84 75 110 75 75 75
797 415 626 790 1,188 1,148 1,190 1,194 750 750
18 20 17 21 45 11 5 4 0 0
13 12 31 14 13 13 11 13 15 15
13 12 31 14 14 13 11 13 15 15
Sector Miter Miter Sector Miter Sector Sector Sector Sector Sector
NA NA NA NA NA NA NA NA 520.0 520.0
1956 1935 1923 1952 1961 1956 1934 1950 1943 1944
384 384 384 64 64 384 384 384 3,700 3,700
16 12 12 12 12 16 16 16 12 12
150 120 150 120 120 150 200 200 125 125
150 120 150 120 120 150 200 200 125 125
1 1
Spottsville, KY Calhoun, KY
84 84
600 600
8 14
12 12
15 12
Miter Miter
760.0 512.0
1956 1956
54 45
9 9
150 150
150 150
1
Troy, NY
45
493
17
16
13
Fixed
1,495.0
1916
2
14
200
200
1 1 1 1 1 1
Beardstown, IL Creve Coeur, IL Utica, IL Marseilles, IL Morris, IL Lockport, IL
110 110 110 110 110 110
600 600 600 600 600 600
10 11 19 24 22 39
16 15 17 19 17 20
13 12 14 14 12 15
Miter Miter Miter Miter Miter Miter
1,066.0 3,446.0 1,280.0 778.5 1,615.5 500.0
1939 1938 1933 1933 1933 1933
78 73 14 27 15 35
9 9 9 9 9 9
300 300 300 300 300 300
300 300 300 300 300 300
1
Chicago, IL
110
1,000
4
18
18
Sector
1960
7
9
300
300
1
Joliet, IL
110
600
34
18
14
Miter
2,373.0
1933
5
9
160
160
1 1 1 1 1 1 1
Winfield, WV Winfield, WV Winfield, WV Marmet, WV Marmet, WV London, WV London, WV
110 56 56 56 56 56 56
800 360 360 360 360 360 360
28 28 28 24 24 24 24
18 18 18 18 18 18 18
18 12 12 12 12 12 12
Miter Miter Miter Miter Miter Miter Miter
700.0 700.0 700.0 557.0 557.0 557.0 557.0
1936 1,935 1935 1934 1934 1934 1934
37 37 37 16 16 8 8
9 9 9 9 9 9 9
300 300 300 150 150 150 150
300 300 300 150 150 150 150
1
Modoc, IL
84
600
29
19
11
Miter
120.0
1973
35
9
225
225
1 1 1 1 2 2 2 2 2 2 2
Carrollton, KY Lockport, KY Gest, KY Frankfort, KY Tyrone, KY High Bridge, KY High Bridge, KY Camp Nelson, KY Valley View, KY Ford, KY Irvine, KY
38 38 38 38 38 52 52 52 52 52 52
145 145 145 145 145 147 147 146 148 148 148
8 14 13 13 15 14 15 19 17 17 18
8 8 9 6 10 9 9 11 11 9 10
15 6 6 7 6 6 7 6 7 6 6
Miter Fixed Miter Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed
424.0 400.0 465.0 534.0 556.0 413.0 350.0 257.0 362.0 472.0 208.0
1839 1839 1844 1844 1844 1891 1897 1900 1907 1907 1906
27 11 23 17 14 21 23 18 19 25 20
6 6 6 6 6 6 6 6 6 6 6
150 150 150 150 100 100 100 100 100 100 100
150 150 150 150 100 100 100 100 100 100 100
Moveable
256.75
q 2006 by Taylor & Francis Group, LLC
7-221
(Continued)
WATER USE
Cross Florida Barge Canal Henry Holland Buckman Lock 20 L Inglis Lock Dam And and Spillway 92 L Cumberland River, TN & KY Barkley Lock & Dam 30.6 L Cheatham Lock & Dam 148.7 L Cordull Hull Lock & Dam 313.5 L Old Hickory Lock & Dam 216.2 L Four Rivers Basins Oklawaha River [no name] 66.9 L Freshwater Bayou, LA Freshwater Bayou Lock 1.2 L Gulf Intracoastal Waterway between Apalachee Bay, FL & Mexican Border Algiers Lock 0 L Harvey Lock 0 L Inner Harbor Nav Canal Lock 7 L Bayou Sorrel Lock 37.5 L Port Allen Lock 64.1 L Bayou Boeuf Lock 93.3 L Leland Bowman Lock 162.7 L Calcasieu Lock 238.5 L Brazos East Gate 400.8 F Brazos West Gate 401.1 F Green & Barren Rivers, KY Green River Lock & Dam 1 9.1 L Green River lock Lock & Dam 2 63.1 L Hudson River, NY Troy Lock & Dam 153.8 L Illinois Waterway, IL Lagrange Lock & Dam 80.2 L Peoria Lock & Dam 157.7 L Starved Rock Lock & Dam 231 L Marseilles Lock & Dam 244.6 L Dresden Island Lock & Dam 271.5 L Lockport Lock 291.1 L Thomas J. O’Brien Lock & Dam–Calumet River Thomas J. O’Brien Lock & Dam 326.5 L Brandon Road Lock &Dam–Illinois River Brandon Road Lock & Dam 286 L Kanawha Lock & Dam, WV Winfield Locks & Dam Main 800 31.1 L Winfield Locks & Dam Main 1 31.1 L Winfield Locks & Dam Main 2 31.1 L Marmet Locks & Dam Main 1 67.7 L Marmet Locks & Dam Main 2 67.7 L London Locks & Dam Main 1 82.8 L London Locks & Dam Main 2 82.8 L Kaskaskia River, IL Kaskaskia River Navigation Lock 0.8 L Kentucky River, KY Lock & Dam 1 4 L Lock & Dam 2 31 L Lock & Dam 3 42 L Lock & Dam 4 65 L Lock & Dam 5 82.2 L Lock & Dam 6 96.2 L Lock & Dam 7 117 L Lock & Dam 8 139.9 L Lock & Dam 9 157.5 L Lock & Dam 10 176.4 L Lock & Dam 11 201 L
7-222
Table 7L.148
(Continued) Locks Depth of Miter Sill
Project
River Mile
2006by byTaylor Taylor&&Francis FrancisGroup, Group,LLC LLC qq2006
Upper
Lower
Type of Structurea
Status
L L L
2 2 2
Ravenna, KY Willow, KY Heidelberg, KY
52 52 52
148 148 148
17 18 17
10 10 9
6 6 6
L L
1 1
Seattle, WA Seattle, WA
28 80
123 760
26 26
16 36
L L L L L L L L L
1 1 1 1 1 1 1 1 1
Arkansas Post, AR Arkansas Post, AR Grady, AR Pine Bluff, AR Redfield, AR Little Rock, AR Little Rock, AR Conway, AR Morrilton, AR
110 110 110 110 110 110 110 110 110
600 600 600 600 600 600 600 600 600
30 20 20 14 17 18 18 16 19
L L L L L L L L L
1 1 1 1 1 1 1 1 1
Russellville, AR Ozark, AR Fort Smith, AR Spiro, OK Salisaw, OK Webber Falls, OK Muskogee, OK Inola, OK Tichnor, AR
110 110 110 110 110 110 110 110 110
600 600 600 600 600 600 600 600 600
C C
1 1
Abbeville, LA Creole, LA
75 56
L L L L L L L L L L L L L L L L L L L L L L L L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 2
Granite City, IL Granite City, IL East Alton, IL East Alton, IL Winfield, MO Clarksville, MO Saverton, MO Quincy, IL Canton, MO Keokuk, IA Gladstone, IL New Boston, IL Muscatine, IL Rock Island, IL Rock Island, IL LeClaire, IA LeClaire, IA Clinton, IL Bellevue, IA Dubuque, IA Guttenburg, IA Lynxville, WI Genoa, WI Dresbach, MN
110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 80 110 110 110 110 110 110 110
b
Community in Vicinity
Width of Chamber
Authorized Channel
Dam
Depth (ft)
Width (above) (ft)
Width (below) (ft)
19 9 26
6 6 6
100 100 100
100 100 100
1916 1916
0 8
30 30
0 100
0 150
277.0 1,120.0 1,260.0 1,190.0 1,050.0 1,190.0 980.0 1,200.0 1,797.0
1967 1967 1968 1968 1968 1968 1969 1969 1969
3 37 16 20 22 17 31 21 29
9 9 9 9 9 9 9 9 9
300 300 250 250 250 250 250 250 250
300 300 250 250 250 250 250 250 250
1,210.0 900.0 1,050.0 840.0 1,090.0 720.0 210.0 210.0 300
1969 1969 1969 1970 1970 1970 1970 1970 2004
51 36 27 17 30 35 20 23 10
9 9 9 9 9 9 9 9 9
250 250 250 250 250 250 150 150 300
250 250 250 250 250 250 150 150 300
11 5
6 15
60 200
60 200
15 15 40 40 32 27 24 18 21 46 27 20 26 10 0 29 29 34 26 32 33 31 23 12
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
350 350 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
350 350 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
Length (ft)
Year Opened
Fixed Fixed Fixed
240.0 248.0 248.0
1910 1915 1917
16 29
Miter Miter
235.0 235.0
16 18 18 18 18 18 18 18 18
15 14 14 14 14 14 14 14 14
Fixed Tainter Tainter Tainter Tainter Tainter Tainter Tainter Tainter
55 34 20 21 48 30 21 21 20
18 18 18 14 16 16 15 15 18
14 15 14 14 14 14 14 14 15
Tainter Tainter Tainter Moveable Moveable Moveable Moveable Moveable Miter
525 500
0 0
0 0
0 0
Sector Sector
NA NA
1,200 600 1,200 600 600 600 600 600 600 1,200 600 600 600 600 360 600 320 600 600 600 600 600 600 600
21 21 24 24 15 15 10 10 10 38 10 8 9 16 16 11 11 11 9 12 8 9 11 8
15 15 23 42 19 19 18 17 15 15 17 16 17 27 27 20 21 19 17 19 15 16 22 18
15 15 18 18 12 12 14 12 12 13 14 13 12 11 11 13 14 13 13 13 12 13 14 12
Vertical Miter Vertical Miter Miter Miter Miter Miter Miter Vertical Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter
3,000.0 3,000.0 990.0 990.0 1,140.0 1,200.0 3,084.0 2,955.0 2,144.0 8,809.0 6,960.0 3,196.0 3,555.0 1,203.0 1,203.0 2,703.0 2,703.0 1,407.0 8,369.0 4,784.0 763.0 811.0 935.0 940.0
Type
1962 1962 1989 1989 1939 1940 1938 1938 1936 1913 1937 1939 1937 1934 1934 1922 1939 1939 1938 1937 1937 1937 1937 1937
Length (miles)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Lock & Dam 12 220.9 Lock & Dam 13 239.9 Lock & Dam 14 249 Lake Washington Ship Canal Hiram M. Chittenden Lock AUX —1 [Ballard Locks] 0 Hiram M. Chittenden Lock [Ballard Locks] 0 McClellan-Kerr Arkansas River Navigation System, AR and OK Norrell Lock & Dam [Lock & Dam 1] 10.3 Lock & Dam 2 13.3 Joe Hardin L & D [Lock & Dam 3] 50.2 Emmett Sanders Lock & Dam [Lock & Dam 4] 66 Lock & Dam 5 86.3 David D. Terry Lock & Dam [Lock & Dam 6] 108.1 Murray Lock & Dam [Lock & Dam 7] 125.4 Toad Suck Ferry Lock & Dam [Lock & Dam 8] 155.9 Arthur V. Ormond L & D [Lock & 176.9 Dam 9] Dardanelle Lock & Dam [Lock & Dam 10] 205.5 Ozark Lock & Dam [Lock & Dam 12] 256.8 James W. Trimble Lock & Dam [Lock & Dam 13] 292.8 W.D. Mayo Lock & Dam [Lock & Dam 14] 319.6 Robert S. Kerr Lock & Dam & Res [Lock & Dam 15] 336.2 Webbers Falls Lock & Dam [Lock & Dam 16] 366.6 Chouteau Lock & Dam [Lock & Dam 17] 5 Newt Graham Lock & Dam [Lock & Dam 18] 26 Montgomery Point Lock & Dam 0.5 Mermentau River, LA Schooner Bayou Control Structure 3.4 Catfish Point Control Structure 25 Mississippi River between Missouri River & Minneapolis, MN Chains Of of Rocks L/D 27 185.5 Chains Of of Rocks L/D 27 AUX —1 185.5 Mel Price Lock & Dam [Locks No 26 Main) 200.8 Mel Price Lock & Dam [Locks No 26 AUX) 200.8 Lock & Dam 25 241.4 Lock & Dam 24 273.4 Lock & Dam 22 301.2 Lock & Dam 21 324.9 Lock & Dam 20 343.2 Lock & Dam 19 364.3 Lock & Dam 18 410.5 Lock & Dam 17 437.1 Lock & Dam 16 457.2 Lock & Dam 15 482.9 Lock & Dam 15 AUX —1 482.9 Lock & Dam 14 493 Lock & Dam 14 AUX —1 493 Lock & Dam 13 522.5 Lock &Dam 12 556.7 Lock & Dam 11 583 Lock & Dam 10 615.1 Lock & Dam 9 647.9 Lock & Dam 8 679.2 Lock & Dam 7 702.5
Chamber Useable Length
Lift at Normal Pool Level
& Dam 6 & Dam 5A & Dam 5 & Dam 4 & Dam 3 & Dam 2 & Dam 1 Main Chamber 1
St. Anthony Falls Lower Lock & Dam St. Anthony Falls Upper Lock & Dam Monongahela River, PA and WV Lock & Dam 2 Lock & Dam 2 AUX Lock & Dam 3 Lock & Dam 3 AUX Lock & Dam 4 Lock & Dam 4 AUX Maxwell Lock & dam Maxwell Lock & dam AUX Grays Landing Lock & Dam L&D8 Morgantown Lock & Dam Hildebrand Lock & Dam Opekiska Lock & Dam Ohio River Emsworth Lock & Dam Emsworth Lock & Dam AUX Dashields Lock & Dam Dashields Lock & Dam AUX Montgomery Lock & Dam Montgomery Lock & Dam AUX New Cumberland Lock & Dam New Cumberland Lock & Dam AUX Pike Island Lock & Dam Pike Island Lock & Dam Hannibal Locks & Dam Hannibal Locks & Dam AUX Willow Island Locks & Dam Willow Island Locks & Dam AUX Belleville Locks & Dam Belleville Locks & Dam AUX Racine Locks & Dam Racine Locks & Dam AUX Robert C. Byrd Robert C. Byrd AUX Greenup Locks & Dam Greenup Locks & Dam AUX Capt Anthony Meldahl Lock & Dam Capt Anthony Meldahl Lock & Dam AUX Markland Locks & Dam Markland Locks & Dam AUX Mcalpine Locks & Dam Mcalpine Locks & Dam AUX Cannelton Lock & Dam Cannelton Lock & Dam AUX Newburgh Lock & Dam Newburgh Lock & Dam AUX John T. Myers Lock & Dam John T. Myers Lock & Dam AUX Smithland Lock & Dam Smithland Lock & Dam AUX
714.3 728.5 738.1 752.8 796.9 815.2 847.6 847.6 853.3 853.9
L L L L L L L L L L
2 2 2 2 2 2 2 2 2 2
Trempealeau, WI Winona,MN, MN Minneiska, MN Alma, WI Red Wing, MN Hastings, MN Minn. St. Paul, MN Minn. St. Paul, MN Minneapolis, MN Minneapolis, MN
110 110 110 110 110 110 56 56 56 56
600 600 600 600 600 500 400 400 400 400
6 5 9 7 8 12 38 38 25 49
17 18 18 17 17 22 13 13 14 16
13 13 12 13 14 13 8 10 10 14
Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter
893.0 682.0 1,619.0 1,367.0 365.0 822.0 574.0 579.0 188.0 NA
1936 1936 1935 1935 1938 1948 1932 1917 1956 1963
14 10 15 44 18 32 6 6 1 4
9 9 9 9 9 9 9 9 9 9
300 300 300 300 300 300 300 300 200 100
300 300 300 300 300 300 300 300 200 100
11.2 11.2 23.8 23.8 41.5 41.5 61.2 61.2 82 90.8 102 108 115.4
L L L L L L L L L L L L L
1 1 1 1 1 1 1 1 1 1 1 1 1
Braddock, PA Braddock, PA Elizabeth, PA Elizabeth, PA Monessen, PA Monessen, PA Maxwell, PA Maxwell, PA Grays Landing, PA Point Marion, PA Morgantown, WV Morgantown, WV Opekiska, WV
110 56 56 56 56 56 84 84 84 84 84 84 84
720 360 720 360 720 360 720 720 720 720 600 600 600
9 9 8 8 17 17 20 20 15 19 17 21 22
15 15 11 11 20 20 20 20 27 16 17 14 18
16 16 11 11 10 10 14 14 18 35 14 15 14
Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter
748.0 748.0 670.0 670.0 535.0 535.0 460.0 460.0 576.0 682.0 410.0 530.0 366.0
1951 1951 1907 1907 1932 1932 1964 1964 1995 1925 1950 1959 1964
13 13 18 18 20 20 24 24 21 11 6 7 7
9 9 9 9 9 9 9 9 9 9 9 9 9
300 300 300 300 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 300 300 300 300 300 300
6.2 6.2 13.3 13.3 31.7 31.7 54.4 54.4 84.2 84.2 126.4 126.4 161.7 161.7 203.9 203.9 237.5 237.5 279.2 279.2 341 341 436.2 436.2 531.5 531.5 606.8 606.8 720.7 720.7 776.1 776.1 846 846 918.5 918.5
L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Emsworth, PA Emsworth, PA Glenwillard, PA Glenwillard, PA Monaca, PA Monaca, PA Stratton, OH Stratton, OH Warwood, WV Warwood, WV Hannibal, OH Hannibal, OH Newport, OH Newport, OH Reedsville, OH Reedsville, OH Letart, WV Letart, WV Hogsett, WV Hogsett, WV Greenup, KY Greenup, KY Chilo, OH Chilo, OH Warsaw, KY Markland, KY Louisville, KY Louisville, KY Cannelton, IN Cannelton, IN Newburgh, IN Newburgh, IN Mount Vernon, IN Mount Vernon, IN Hamletsburg, IL Hamletsburg, IL
110 56 110 56 110 56 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110
600 360 600 360 600 360 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 600 1200 1200
18 18 10 10 18 18 21 21 18 18 21 21 20 20 22 22 22 22 23 23 30 30 30 30 35 35 37 37 25 25 16 16 18 18 22 22
17 16 13 13 16 16 17 17 17 17 38 38 35 35 37 37 37 37 41 41 45 45 45 45 50 50 49 19 40 40 31 31 34 34 34 34
13 13 18 18 15 15 15 15 18 18 17 17 15 15 15 15 15 15 18 18 15 15 15 15 15 15 12 11 15 15 15 15 16 16 12 12
Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter
1,717.0 1,717.0 1,585.0 1,585.0 1,379.0 1,379.0 1,315.0 1,315.0 1,315.0 1,315.0 1,098.0 1,098.0 1,128.0 1,128.0 1,206.0 1,206.0 1,173.0 1,173.0 1,132.0 1,132.0 1,287.0 1,287.0 1,756.0 1,756.0 1,395.0 1,395.0 8,725.0 8,725.0 2,054.0 2,054.0 2,275.6 2,275.6 3,504.0 3,504.0 2,962.0 2,962.0
1921 1921 1929 1929 1936 1936 1961 1961 1965 1965 1972 1972 1973 1973 1969 1969 1970 1970 1937 1937 1962 1962 1962 1962 1963 1963 1963 1963 1971 1971 1975 1975 1975 1975 1980 1980
6 6 7 7 18 18 23 23 30 30 36 36 35 35 36 36 34 34 42 42 62 62 95 95 95 75 75 75 114 114 55 55 70 70 73 73
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
q 2006 by Taylor & Francis Group, LLC
7-223
(Continued)
WATER USE
Lock Lock Lock Lock Lock Lock Lock
7-224
Table 7L.148
(Continued) Locks Depth of Miter Sill
Project
Gen Jos Wheeler Lock Gen Jos Wheeler Lock AUX Guntersville Lock [Lock 5, CH 1, Main Channel] Guntersville Lock [Lock 5, CH 1, AUX] Nickajac Lock Chickamauga Lock Watts Bar Lock
q 2006 by Taylor & Francis Group, LLC
Chamber Useable Length
110 110 110 110
1200 600 1200 600
12 12 12 12
15 15 15 15
11 11 10 10
LaBelle, FL Fort Myers, FL Port Mayaca, FL
50 56 56
225 400 400
11 3 2
12 13 17
1
Stuart, FL
50
225
13
L
1
Moore Haven, FL
50
250
1
L
1
Simmesport, LA
75
117.2 226.8 281.7 25
L L L L
1 1 1 1
Columbia, LA Felsenthal, AR Calion, AR Jonesville, LA
29.7 40.8 43.9
L L L
1 1 1
44 74 116.4 169 200
L L L L L
1 1 1 1 1
Community in Vicinity
Width (above) (ft)
Width (below) (ft)
20 20 24 24
9 9 9 9
300 300 300 300
300 300 300 300
1937 1965 1977
16 8 5
8 8 8
90 90 100
90 90 100
170.0
1944
15
8
80
80
89.8
1953
16
8
90
90
Miter
1,100.0
1963
7
12
120
120
18 13 13 15
Miter Miter Miter Miter
400.0 350.0 350.0 450.0
1972 1984 1984 1972
109 55 50 92
9 9 7 9
100 100 100 100
100 100 100 100
10 10 10
10 10 10
Miter Miter Miter
NA NA NA
1951 1951 1951
11 3 5
7 7 7
80 80 80
80 80 80
22 23 25 25 22
13 23 18 18 23
Miter Miter Miter Miter Miter
630.0 348.0 432.0 690.0 663.0
1984 1986 1992 1994 1994
30 42 40 31 28
9 9 9 9 9
200 200 100 200 200
200 200 100 200 200
Year Opened
Miter Miter Miter Miter
2,998.0 2,978.0 3,560.0 3,560.0
1928 1928 1929 1929
15 13 17
Sector Sector Sector
104.0 1,150.0 116.0
15
13
Sector
2
10
11
Sector
1190
35
11
11
84 84 84 84
600 600 600 600
18 18 12 30
18 18 18 18
Pearl River, LA Bush, LA Sun, LA
65 65 65
274 274 274
27 15 11
Larto, LA Ruby, LA Colfax, LA Coushatta, LA Caspiana, LA
84 84 84 84 84
685 685 685 685 685
36 24 31 25 25
Type of Structurea
Status
938.9 938.9 962.6 962.6
L L L L
1 1 1 1
Brookport, IL Brookport, IL Mound City, IL Mound City, IL
93.6 122 38.5
L L L
1 1 1
15.3
L
78
b
Depth (ft)
Length (ft)
River Mile
Authorized Channel
Dam
Upper
Lower
Type
Length (miles)
187.2
L
1
Augusta, GA
56
360
15
14
12
Miter
360.0
1937
16
9
90
90
9.7 41.6 70.3 107.5
L L L L
1 1 1 1
Pasco, WA Kahlotus, WA Starbuck, WA Pomeroy, WA
86 86 86 86
650 650 650 650
103 103 101 105
15 15 15 15
14 15 15 15
Vertical Vertical Miter Miter
2,790.0 3,800.0 2,655.0 3,200.0
1962 1969 1970 1975
32 29 37 38
14 14 14 14
250 250 250 250
250 250 250 250
47 47 47
L L L
1 2 1
Sault Ste. Marie, MI Sault Ste. Marie, MI Sault Ste. Marie, MI
80 80 110
780 1320 1200
22 22 22
31 24 32
31 23 32
Leaf Leaf Leaf
1,300.0 1,300.0 1,300.0
1914 1914 1914
0 0 0
27 0 0
300 300 300
300 300 300
22.4 206.7 206.7 259.4 259.4 259.4 274.9 274.9 349 349 424.7 471 529.9
L L L L L L L L L L L L L
1 1 1 1 1 1 1 1 1 1 1 1 1
Grand Rivers, KY Pickwick Dam, TN Pickwick Dam, TN Florence, AL Florence, AL Florence, AL Rogersville, AL Rogersville, AL Guntersville, AL Guntersville, AL Jasper, TN Chattanooga, TN Breendenton, TN
110 110 110 110 60 60 110 60 110 60 110 60 60
600 1000 600 600 300 300 600 400 600 360 600 360 360
57 55 55 94 49 45 48 48 39 39 39 49 58
24 19 16 11 13 11 15 15 17 17 13 10 12
13 17 17 11 13 11 13 13 18 18 11 14 12
Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter Miter
7,976.0 7,385.0 7,385.0 3,728.0 3,728.0 3,728.0 5,738.0 5,738.0 3,837.0 3,837.0 3,763.0 5,654.0 2,646.0
1944 1984 1937 1959 1927 1927 1933 1933 1939 1939 1967 1940 1942
184 53 53 16 16 16 74 74 76 76 46 59 72
9 9 9 9 9 9 9 9 9 9 9 9 9
300 300 300 300 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 300 300 300 300 300 300
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Lock & Dam 52 Lock & Dam 52 AUX Lock & Dam 53 Lock &Dam 53 AUX Okeechobee Waterway, FL S-78 Waterway (Ortona Lock & Dam) W.P.Franklin Lock/Cntl Strct [Olga Lock] S-308-B St. Lucie Lock & Dam St. Lucie Lock & Dam Moore Haven Lock Moore Haven Lock Old River, LA (MR&T) Old River Lock Ouachita & Black Rivers Below Camden, AR & LA Columbia Lock & Dam Felsenthal Lock & Dam [Lock & Dam No 3] H. K. Thatcher Lock & Dam [Lock & Dam No 4] Jonesville Lock & Dam Pearl River Lateral Canal Lock 1 Lock 2 Lock 3 Red River WW-Mississippi R to Shreveport, LA Lindy Claiborne Boggs [Red River Lock & Dam No. 1] John H.Overton [Red River Lock & Dam No. 2] Red River Lock & Dam No. 3 Red River Lock & Dam No. 4 Joe D. Waggonner Lock & Dam [5] Savannah River, GA New Savannah Bluff Lock & Dam Snake River, WA Ice Harbor Lock & Dam Lower Monumental Lock & Dam Little Goose Lock & Dam Lower Granite Lock & Dam St. Marys River, MI Macarthur Lock Davis Lock New Poe Lock Tennessee River, TN, AL, & KY Kentucky Lock Pickwick Landing Lock Pickwick Landing Lock AUX Wilson Lock Wilson Lock
Width of Chamber
Lift at Normal Pool Level
a b
602.3 23.1
L L
1 1
Lenoir City, TN Kingston, TN
60 75
360 400
72 58
12 13
12 13
Miter Miter
3,687.0 1,072.0
1943 1963
50 38
9 9
300 300
300 300
266.1 306.8 334.7 357.5 371.1 376.3 391 398.4 406.7 411.9
L L L L L L L L L L
1 1 1 1 1 1 1 1 1 1
Gainesville, AL Aliceville, AL Columbus, MS Aberdeen, MS Amory, MS Smithville, AL Fulton, MS Fulton, MS Belmont, MS Tupelo, MS
110 110 110 110 110 110 110 110 110 110
600 600 600 600 600 600 600 600 600 600
36 27 27 27 30 25 25 30 30 84
15 15 15 15 15 18 18 18 18 18
15 15 15 15 15 18 18 18 18 18
Moveable Moveable Moveable Moveable Moveable Moveable Moveable Moveable Moveable Moveable
817.0 647.0 573.0 641.0 284.0 779.0 396.0 282.0 449.0 2,750.0
1978 1979 1981 1984 1985 1985 1985 1985 1985 1985
49 41 28 23 14 15 7 8 5 65
9 9 9 9 9 9 9 9 9 9
300 300 300 300 300 300 300 300 300 300
300 300 300 300 300 300 300 300 300 300
26 26 26 26 26
L L L L L
1 1 1 1 1
West Linn, West Linn, West Linn, West Linn, West Linn,
40 40 40 40 40
198 198 198 198 198
10 10 10 20 10
6 6 6 6 6
8 8 8 8 8
NA NA NA NA NA
1872 1872 1872 1872 1872
0 0 0 0 24
6 6 6 6 6
150 150 150 150 150
150 150 150 150 150
OR OR OR OR OR
Leaf Leaf Leaf Leaf Leaf
WATER USE
Fort Loudon Lock Melton Hill Lock & Dam (Clinch River) Tennessee-Tombigbee Waterway AL, MS Howell Heflin Lock & Dam [Gainesville Lock & Dam] Tom Bevill Lock & Dam [Aliceville Lock & Dam] John C. Stennis Lock & Dam [Columbus Lock & Dam] Aberdeen Lock & Dam Amory Lock [Lock A] Glover Wilkins Lock [Lock B] Fulton Lock [Lock C] John Rankin Lock [Lock D] G.V. “Sonny” Montgomery Lock [Lock E] Jamie Whitten Lock & Dam [Bay Springs Lock & Dam] Willamette River at Willamette Falls 2 3 4 Willamette River At at Willamette Falls Willamette Falls Guard Lock
L, Lock & Dam; F-Flood Gate; B-Barrier; C-Control Structure.
1, Operational; 2, Seasonal; 3, Operational Weekend/Summer.
Source:
From USACE, Navigation Data Center, U.S. Waterway Data Lock Characteristics, www.iwr.usace.army.mil.
7-225
q 2006 by Taylor & Francis Group, LLC
7-226
Table 7L.149 Lock Characteristics Operational Statistics—1999 Average Tow Size
River/ Lock
q 2006 by Taylor & Francis Group, LLC
Total Tonnage
Barges/ Tow
Tons/ Tow
Percent Chamber Available
Total Number
Avg Timeb
Chamber
River Mile
Main
117.5
1969
23
236,895
4
2,096
100.00
0
0.00
Main
11.5
1932
18
545,630
1
610
99.72
8
3.05
Main Main Main Main Main Main Main Main
6.7 14.5 24.2 30.4 36.3 45.7 52.6 62.2
1934 1934 1927 1927 1928 1930 1931 1938
30 32 28 24 20 19 22 15
2,611,580 2,567,580 1,612,797 766,237 161,199 133,662 673,120 0
3 3 2 4 2 2 1 0
1,687 1,691 1,122 1,593 844 941 784 0
93.47 97.63 99.76 94.25 87.77 70.99 68.80 48.22
9 2 9 4 3 6 5 7
63.53 103.93 2.35 125.85 357.13 423.52 546.67 647.97
Main
106.3
1954
29
337,305
2
799
100.00
0
0.00
Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main
10.3 13.3 50.2 66.0 86.3 108.1 125.4 155.9 176.9 205.5 256.8 292.8 319.6 336.2 366.6
1967 1967 1968 1968 1968 1968 1969 1969 1969 1969 1969 1969 1970 1970 1970
37 44 45 43 40 39 41 51 53 50 46 38 57 53 54
8,797,103 8,826,997 8,048,954 8,043,052 7,431,516 7,387,876 6,490,453 6,364,044 5,973,962 5,993,626 4,361,324 4,608,165 4,132,431 4,155,658 4,007,128
6 6 7 7 7 7 7 7 7 7 6 3 5 5 5
5,215 5,239 6,211 6,274 6,219 6,224 6,193 6,137 6,322 6,336 6,500 3,278 6,477 6,544 6,232
99.63 98.59 99.95 100.00 100.00 99.99 99.75 100.00 99.70 99.94 99.95 99.94 100.00 100.00 100.00
13 188 1 0 0 1 14 0 9 2 1 4 0 0 0
2.47 0.67 4.33 0.00 0.00 0.58 1.53 0.00 2.93 2.72 4.00 1.22 0.00 0.00 0.00
Main
1.5
1950
10
169,881
1
504
99.96
1
3.65
Main
25.0
1972
30
1,573,714
2
2,377
100.00
0
0.00
Main
4.0
1914
14
285,595
1
4,327
39.50
251
21.12
Main
262.0
1957
51
9,458,220
5
5,753
100.00
0
0.00
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama Claiborne Albemarle & Chesapeake Canal Great Bridge Allegheny 2 3 4 5 6 7 8 9 Apalachicola Jim Woodruff Arkansas Norrell 2 Joe Hardin Emmett Sanders 5 David D. Terry Murray Toad Suck Ferry Arthur V. Ormond Dardanelle Ozark—Jeta Taylor James W. Trimble W.D. Mayo Robert S. Kerr Webbers Falls Atchafalaya Berwick Black Jonesville Black Rock Channel Black Rock Black Warrior Armistead I. Seldon
Year Open
Average Processing Timea
Lock Closures
1968
3
627,857
2
1,618
100.00
0
0.00
78.0 122.0
1953 1965
15 15
21,326 14,285
1 1
117 121
64.70 65.71
384 367
8.05 8.18
3.0
1965
14
873,290
1
1,078
66.99
391
7.40
39.0 71.0 95.0
1915 1917 1935
20 19 20
0 0 0
0 0 0
0 0 0
100.00 85.96 85.48
0 2 3
0.00 614.98 423.98
327.2
1939
17
315,530
1
1,005
75.31
19
113.85
145.3 191.7 216.5 292.0
1993 1957 1968 1953
37 31 39 26
9,678,824 9,271,751 8,600,616 7,604,466
3 3 3 3
4,228 4,259 4,379 4,282
97.77 97.93 97.85 96.95
8 3 3 4
24.38 60.52 62.67 66.70
30.6 148.7 216.2
1964 1952 1954
56 61 55
9,072,278 9,542,172 3,933,051
8 8 5
5,305 6,101 4,733
99.07 95.94 94.45
33 112 27
2.47 3.17 18.00
10.6 33.2
1940 1941
20 23
300 0
0 0
300 0
78.31 80.60
5 6
379.95 283.18
1.2
1968
26
4,482,515
38
8,379
100.00
0
0.00
0.0 5.6 93.3 162.7 238.5
1935 1923 1954 1985 1950
35 46 38 30 36
4,215,364 19,416,663 22,193,235 40,563,247 39,525,354
2 3 2 3 3
880 2,143 1,689 2,895 2,948
98.98 90.23 98.53 95.65 96.07
32 479 23 40 59
2.78 1.78 5.62 9.53 5.83
0.0
1956
48
19,222,359
3
2,878
86.51
132
8.95
37.5 64.1
1952 1961
55 81
23,157,835 24,167,141
3 3
3,742 3,436
95.03 98.02
68 59
6.40 2.93
400.4 400.9 441.1 441.8
1943 1943 1944 1944
0 0 13 3
21,131,151 21,184,202 21,110,876 20,783,851
2 2 2 2
1,938 1,981 2,097 2,168
99.98 100.00 97.84 97.32
1 0 21 26
1.50 0.00 9.02 9.03
9.1 63.1
1956 1956
18 22
4,353,350 1,491,500
3 3
3,049 2,302
96.00 100.00
4 0
87.67 0.00 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-227
38.9
WATER USE
Calcasieu River Calcasieu Barrier Cntrl Caloosahatchee Moore Haven Main W. P. Franklin Main Canaveral Barge Canal Canaveral Main Cape Fear 1 Main 2 Main William O. Huske Main Chicago Harbor Channel Chicago Main Columbia Bonneville Main The Dalles Main John Day Main Mcnary Main Cumberland Barkley Main Cheatham Main Old Hickory Main Dismal Swamp Canal Deep Creek Main South Mills Main Freshwater Bayou Freshwater Bayou Main GIWW Harvey Main Inner Harbor Nvg Chnl Main Bayou Boeuf Main Leland Bowman Main Calcasieu Main Giww Algiers Canal Algiers Main Giww Port Allen–Morgan Cty Alt. Rte Bayou Sorrel Main Port Allen Main Giww Texas Brazos East Main Brazos West Main Colorado River East Main Colorado River West Main Green 1 Main 2 Main
7-228
Table 7L.149
(Continued) Average Tow Size
River/ Lock
q 2006 by Taylor & Francis Group, LLC
Total Tonnage
Barges/ Tow
Tons/ Tow
Percent Chamber Available
Total Number
Avg Timeb
Chamber
River Mile
Main
153.8
1916
23
13,819
1
494
58.56
6
604.97
Main Main Main Main
80.2 157.7 291.1 326.5
1939 1938 1933 1960
64 73 82 22
35,597,851 31,128,998 16,039,564 7,371,509
10 9 6 3
11,435 9,427 5,443 2,913
97.73 98.70 98.36 99.65
47 43 32 17
4.23 2.65 4.48 1.82
Main8 Main2 Main1 Main2 Main1 Main2 Main1
31.1 31.1 31.1 67.7 67.7 82.8 82.8
1997 1937 1937 1934 1934 1934 1933
56 0 0 161 172 85 119
19,521,262 0 0 7,801,139 6,928,584 2,315,757 4,184,898
9 0 0 6 6 4 5
6,711 0 0 3,807 3,739 1,722 3,864
99.01 100.00 100.00 98.19 95.06 96.99 97.44
50 0 0 60 47 211 216
1.73 0.00 0.00 2.65 9.20 1.25 1.03
Main
0.8
1973
14
583,183
2
1,122
99.46
4
11.80
Main Aux 1
1.3 1.3
1916 1916
28 13
1,816,245 1,931
2 2
1,408 149
96.19 96.88
3 1
111.38 273.00
Cntrl
25.0
1951
7
84,226
1
354
99.93
2
3.27
Main Aux 1 Main Aux Main Main Main Main Main Main Main Main Main Main Aux 1 Main Aux 1 Main
185.5 185.5 200.8 200.8 241.4 273.4 301.2 324.9 343.2 364.2 410.5 437.1 457.2 482.9 482.9 493.0 493.0 523.0
1953 1953 1990 1994 1939 1940 1938 1938 1936 1957 1937 1939 1937 1934 1934 1939 1922 1938
40 30 44 30 79 85 92 80 80 55 71 89 68 98 20 78 17 58
79,858,929 3,519,785 69,623,228 7,957,608 39,536,830 39,296,994 38,074,304 37,863,139 36,512,515 35,803,139 35,707,505 34,170,210 33,139,184 30,582,032 627,728 30,839,734 0 24,803,042
11 4 13 6 13 13 13 12 12 12 12 12 11 11 1 11 0 12
11,810 3,520 13,236 6,140 12,870 12,846 12,500 12,047 12,058 12,088 11,883 11,591 10,534 10,645 890 9,803 0 11,552
96.89 91.82 91.06 85.47 81.55 82.07 98.78 97.69 82.57 83.02 99.21 98.67 98.87 98.55 99.91 97.78 100.00 99.65
29 31 49 10 61 60 49 25 58 33 34 39 52 150 19 85 0 13
9.40 23.10 15.98 127.28 26.50 26.17 2.18 8.08 26.32 45.08 2.02 3.00 1.90 0.85 0.43 2.30 0.00 2.35
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Hudson Troy Illinois Lagrange Peoria Lockport Thomas J. O’Brien Kanawha Winfield Winfield Winfield Marmet Marmet London London Kaskaskia Kaskaskia Lake Washington Ship Canal Hiram M. Chittenden Hiram M. Chittenden Mermentau Catfish Point Mississippi 27 27 Melvin Price Melvin Price 25 24 22 21 20 19 18 17 16 15 15 14 14 13
Year Open
Average Processing Timea
Lock Closures
Main Main Main Main Main Main Main Main Main Main Main Main Main Main Main
556.0 583.0 615.0 647.0 679.0 702.0 714.0 728.5 738.1 752.8 796.9 815.0 847.6 853.3 853.9
1938 1937 1936 1938 1937 1937 1936 1936 1935 1935 1938 1930 1930 1959 1963
56 52 48 47 47 38 42 33 39 35 30 36 20 24 20
24,426,919 22,495,873 22,005,796 18,820,219 16,826,021 15,856,894 15,793,578 12,760,903 12,770,886 12,340,409 11,549,156 11,539,256 2,071,780 2,066,980 2,064,130
12 11 11 11 11 11 11 10 10 10 10 9 2 2 2
11,555 10,621 11,182 11,800 11,195 10,592 10,593 10,266 10,274 10,033 9,616 9,490 1,734 1,733 1,727
86.96 87.19 77.79 78.06 78.01 78.53 78.02 77.56 74.76 73.85 74.13 73.86 69.07 69.05 69.04
22 18 4 14 7 7 6 6 4 5 5 6 5 5 5
51.95 62.35 486.32 137.28 275.15 268.70 320.88 327.68 552.83 458.12 453.30 381.63 541.97 542.27 542.40
Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Main Main Main Main
11.2 11.2 23.8 23.8 41.5 41.5 61.2 61.2 82.0 90.8 102.0 108.0 115.4
1905 1905 1907 1907 1932 1932 1963 1963 1993 1994 1950 1959 1964
57 18 37 25 45 25 33 37 30 30 26 24 23
20,725,032 399,555 15,810,950 2,180,600 12,824,375 387,050 4,114,250 9,265,800 5,772,720 5,211,735 383,435 26,235 27,910
7 1 4 2 5 2 5 5 5 5 4 3 2
6,032 249 2,800 1,458 2,933 732 2,033 4,520 3,090 3,192 2,062 1,093 1,469
99.92 98.59 91.13 98.93 99.15 99.96 95.76 99.86 99.97 99.86 100.00 100.00 100.00
1 2 7 35 6 3 1 3 5 3 0 0 0
6.73 61.63 111.02 2.68 12.42 1.20 371.33 4.12 0.50 4.13 0.00 0.00 0.00
Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Aux Main Aux 1
6.2 6.2 13.3 13.3 31.7 31.7 54.4 54.4 84.2 84.2 126.4 126.4 161.7 161.7 203.9 203.9
1921 1921 1929 1929 1936 1936 1959 1959 1965 1965 1973 1973 1972 1972 1969 1969
70 24 68 23 73 26 61 36 56 36 52 38 57 54 57 36
22,529,859 1,021,740 24,019,078 494,215 25,975,596 568,956 31,846,533 2,051,242 39,404,927 1,866,363 46,249,423 1,001,031 38,901,384 5,413,991 47,457,409 521,700
7 1 8 1 8 2 11 3 11 2 12 3 12 6 12 3
5,726 866 6,157 619 6,550 791 9,796 1,784 10,381 1,637 12,104 1,738 12,452 6,166 12,525 1,793
98.02 99.48 99.72 97.29 97.82 84.04 99.46 99.49 99.56 99.78 99.96 97.02 89.87 99.70 99.83 100.00
13 2 21 3 68 11 18 15 21 5 2 7 4 7 8 0
13.33 22.93 1.18 79.27 2.82 127.13 2.62 2.95 1.83 3.82 1.75 37.33 221.90 3.77 1.90 0.00
q 2006 by Taylor & Francis Group, LLC
7-229
(Continued)
WATER USE
12 11 10 9 8 7 6 5A 5 4 3 2 1 Lower Saint Anthony Falls Upper Saint Anthony Falls Monongahela 2 2 3 3 4 4 Maxwell Maxwell Grays Landing Pt. Marion Morgantown Hildebrand Opekiska Ohio Emsworth Emsworth Dashields Dashields Montgomery Montgomery New Cumberland New Cumberland Pike Island Pike Island Hannibal Hannibal Willow Island Willow Island Belleville Belleville
7-230
Table 7L.149
(Continued) Average Tow Size
River/ Lock
q 2006 by Taylor & Francis Group, LLC
Average Processing Timea
Total Tonnage
Barges/ Tow
Tons/ Tow
Percent Chamber Available
Total Number
Avg Timeb
Chamber
River Mile
Main Aux 1 Main Aux Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Aux Main Aux 1 Main Aux 1 Main Aux 1 Main Aux 1 Main Aux
237.5 237.5 279.2 279.2 341.0 341.0 436.2 436.2 531.5 531.5 606.8 606.8 720.7 720.7 776.1 776.1 846.0 846.0 918.5 918.5 938.9 938.9 962.6 962.6
1969 1969 1993 1993 1959 1959 1962 1962 1959 1959 1961 1961 1971 1971 1975 1975 1975 1975 1980 1980 1969 1928 1980 1929
58 34 58 37 51 49 58 27 57 35 58 145 59 45 53 30 52 21 43 43 35 56 19 46
47,763,667 878,229 55,188,585 784,300 63,998,888 6,040,145 62,006,780 772,018 52,796,082 2,053,048 52,983,711 1,846,382 55,135,133 1,516,795 63,546,772 963,038 70,689,316 704,872 36,106,180 46,005,193 87,088,317 8,034,188 84,347,119 3,421,135
12 3 12 2 12 6 12 3 11 4 10 10 11 6 12 2 12 2 10 11 11 4 11 3
12,599 1,807 12,302 1,491 11,420 5,541 12,033 2,347 11,972 3,733 11,451 12,734 12,588 5,767 12,303 1,351 12,790 1,500 10,387 11,912 11,533 3,881 11,705 3,719
99.98 100.00 99.25 99.98 89.24 93.62 98.92 98.31 96.53 99.90 94.58 99.96 96.20 66.04 99.89 100.00 99.48 99.87 99.00 99.56 98.62 98.19 99.29 99.84
1 0 33 1 153 80 25 6 23 4 56 3 74 12 6 0 60 16 130 16 48 22 34 10
2.00 0.00 1.98 1.58 6.17 6.98 3.80 24.60 13.22 2.20 8.48 1.18 4.50 247.88 1.58 0.00 0.77 0.70 0.67 2.40 2.52 7.20 1.83 1.37
Main Main Main
15.3 38.5 93.6
1941 1977 1937
22 11 21
54,561 20,922 19,920
1 1 1
134 176 150
64.39 77.36 64.31
368 240 384
8.48 8.27 8.15
Main
304.0
1963
35
8,348,430
3
2,882
99.92
2
3.62
Main Main Main
117.2 226.8 281.7
1972 1984 1984
20 11 11
1,064,862 225,329 214,300
2 1 1
2,223 1,587 1,520
100.00 100.00 100.00
0 0 0
0.00 0.00 0.00
Main Main Main Main Main
44.0 74.0 116.4 169.0 200.0
1984 1987 1992 1994 1994
23 31 22 27 17
2,119,661 2,005,959 1,168,038 753,684 643,066
4 4 3 3 3
2,423 2,452 2,364 2,054 1,991
100.00 99.98 100.00 100.00 100.00
0 2 0 0 0
0.00 0.95 0.00 0.00 0.00
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Racine Racine Robert C. Byrd Robert C. Byrd Greenup Greenup Captain Anthony Meldahl Captain Anthony Meldahl Markland Markland Mcalpine Mcalpine Cannelton Cannelton Newburgh Newburgh John T. Myers John T. Myers Smithland Smithland 52 52 53c 53c Okeechobee St. Lucie Port Mayaca Ortona Old River Old River Ouachita Columbia Felsenthal H. K. Thatcher Red Lindy Claiborne Boggs John H. Overton 3 4 Joe D. Waggonner
Year Open
Lock Closures
a b c
Cntrl
3.4
1950
4
51,265
4
276
86.24
6
200.85
Main Main Main Main
9.7 41.6 70.3 107.5
1962 1969 1970 1975
33 37 25 28
4,067,370 3,495,982 3,127,538 1,987,253
2 3 3 2
3,345 3,800 3,612 2,843
95.75 96.13 95.39 93.94
20 10 3 2
18.62 33.88 134.60 265.48
Main Main Main
47.0 47.0 47.0
1914 1943 1963
41 40 54
0 16,043,560 66,372,865
1 5 11
0 42,783 214,106
54.16 68.64 81.13
7 15 18
573.68 183.17 91.82
Main
602.3
1943
63
636,791
3
2,367
95.58
34
11.38
Main Main
266.1 411.9
1978 1985
39 41
8,274,930 5,775,215
5 6
3,927 4,170
99.86 99.87
4 8
2.98 1.42
Main
213.2
1954
46
15,472,123
5
4,670
100.00
0
0.00
Main Main
401.4 421.6
1970 1970
42 44
3,508,854 3,350,217
5 4
5,316 4,956
100.00 100.00
0 0
0.00 0.00
Main Main Main
29.7 40.8 43.9
1949 1950 1950
0 0 0
0 0 0
0 0 0
0 0 0
100.00 100.00 100.00
0 0 0
0.00 0.00 0.00
WATER USE
Schooner Bayou Schooner Bayou Snake Ice Harbor Lower Monumental Little Goose Lower Granite St. Marys Davis Macarthur New Poe Tennessee Ft. Loudon Tenn–Tombigbee Howell Heflin Jamie Whitten Tombigbee Demopolis Verdigris Chouteau Newt Graham Lock West Pearl 1 2 3
Average time from start of lockage to end of lockage; expressed in minutes. Average time lock is closed (unavailable) expressed in hours. LPMS data not collected at this site.
Source: From www.iwr.usace.army.mil.
7-231
q 2006 by Taylor & Francis Group, LLC
7-232
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7L.150 Important Ship Canals of the World Length Canal Albert Amsterdam-Rhine Cape Cod Chesapeake and Delaware Chicago Sanitary and Ship Corinth Erie Canal Grand Canal Kiel (Nord-Ostsee) Manchester Ship McClellan-Kerr Arkansas River System Moscow North Sea Panama Sabine-Neches Waterway Saint Lawrence Seawaya Soo (Sault Sainte Marie) Soo (St. Marys Falls Canal and Locks) Suezb Tennessee-Tombigbee Waterway Volga-Baltic Welland Ship White Sea-Baltic
Location
Minimum Width
ft
m
Number of Locks
Year Opened
102 75 152 137
15 7.2 32 35
4.5 2.2 10 10.7
6 4 0 0
1939 1952 1914 1829
175 81 120 100 336.3 120 150
53.3 24.6 36.6 30.5 102.5 36.6 45.7
9 26 12 2 36 22 9
2.7 8 3.7 0.6 11 6.7 2.7
1 0 57 24 8 5 17
1900 1893 1825 610 1895 1894 1970
128 24.7 81.6 150.8 293 2.2 2.9
98 525 550 200 200 61 300
30 160 168 61 61 18.6 91.4
18 49.5 45 30 27 19 25.5
5.5 15.1 13.7 9.1 8.2 5.8 7.8
7 4 12 0 7 1 4
1937 1876 1914 1916 1959 1895 1855
117.9 234
189.7 377
741 300
226 91.4
64 9
19.5 2.7
0 10
1869 1985
528 26 138
850 42 222
70 200 46
21.4 61 14
11 27 10
3.5 8.2 3.2
7 8 19
1964 1932 1933
mi
km
80.8 45 17.5 46
130 72.4 28.2 74
30.6 3.9 363 1000 61.3 36 445
49.2 6.3 584 1609 98.6 58 716
Russia Netherlands Panama Texas Canada, New York Canada Michigan
80 15.3 50.7 93.7 182 1.4 1.8
Egypt Alabama, Mississippi Russia Canada Russia
Belgium The Netherlands Massachusetts Delaware, Maryland Illinois Greece New York China Germany England Arkansas, Oklahoma
a
Minimum Depth
ft
m
335 246 500 450
Excludes passage through Lake Ontario and Welland Ship Canal. Includes entrance channels at both ends. Source: From The World Book Encyclopedia q 2006 World Book, Inc. By permission of the publisher, www.worldbook.com.
b
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-233
SECTION 7M
WATERBORNE COMMERCE
Table 7M.151 Waterborne Commerce of the United States, 1984–2003 Foreign
Domestic
Year
Grand Total
Total
Great Lakes
Coastal
Total
Coastwise
Lakewise
Internal
Intraport
Tons. (millions) 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1,832.6 1,785.0 1,870.5 1,962.8 2,082.9 2,135.2 2,159.3 2,087.6 2,127.9 2,123.3 2,208.8 2,233.5 2,276.7 2,326.9 2,332.3 2,316.7 2,419.1 2,387.4 2,335.2 2,387.9
803.3 774.3 837.2 891.0 976.2 1,037.9 1,041.6 1,013.6 1,037.5 1,060.0 1,115.7 1,147.4 1,183.4 1,220.6 1,245.4 1,260.8 1,354.8 1,350.8 1,319.3 1,378.1
58.8 51.3 45.8 45.9 52.5 54.8 50.5 41.8 45.5 43.6 50.1 51.9 56.4 57.7 62.4 62.4 64.0 62.5 59.6 56.3
744.6 723.0 791.4 845.1 923.7 983.1 991.1 971.8 992.0 1,016.4 1,065.6 1,095.5 1,127.0 1,162.9 1,183.0 1,198.3 1,290.7 1,288.3 1,259.7 1,321.8
1,029.3 1,010.7 1,033.2 1,071.8 1,106.6 1,097.3 1,117.8 1,074.0 1,090.4 1,063.2 1,093.1 1,086.2 1,093.4 1,106.3 1,086.9 1,055.9 1,064.3 1,036.6 1,015.9 1,009.7
307.7 309.8 308.0 323.5 325.2 302.0 298.6 294.5 285.1 271.7 277.0 266.6 267.4 263.1 249.6 228.8 226.9 223.6 216.4 223.5
98.0 92.0 87.4 96.5 109.7 109.1 110.2 103.4 107.4 109.8 114.8 116.1 114.9 122.7 122.2 113.9 114.4 100.0 101.5 89.8
542.5 534.7 560.5 569.8 588.1 606.0 622.5 600.4 621.0 607.3 618.4 620.3 622.1a 630.6 625.0 624.6 628.4 619.8 608.0 609.6
81.1 74.3 77.4 82.0 83.7 80.2 86.4 75.6 76.8 74.4 82.9 83.1 89.0a 89.8 90.1 88.60 94.6 93.2 90.0 86.9
a
Beginning in 1996, fish was excluded.
Source: From U.S. Army Corps of Engineers, 2003 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V National Summaries of Domestic and Foreign Waterborne Commerce, www.iwr.usace.army.mil.
Table 7M.152 Freight Carried on Inland Waterways of the United States, 2001–2003
Waterway Atlantic Coast Atlantic Intracoastal Waterway, VA-FL Intracoastal Wtwy, Jacksonville to Miami, FL Gulf Coast Bayou Teche, LA Black Warrior and Tombigbee Rivers, AL Chocolate Bayou, TX Gulf Intracoastal Waterway, TX-FL GIWW: Morgan City-Port Allen Route, LA Petit Anse, Tigre, Carlin Bayous, LA Tennessee-Tombigbee Waterway, AL and MS Mississippi River System Allegheny River, PA Atchafalaya River, LA Big Sandy River, KY and WV Cumberland River, KY and TN Green and Barren Rivers, KY Illinois Waterway, IL Kanawha River, WV McClellan-Kerr Arkansas R. Nav. Sys., AR/OK Mississippi River Mpls, MN to Mouth of Passes Minneapolis, MN to Mouth of Missouri River
Tons
Tons
Tons
Length (miles)
2001
793 349
2.5 1.0
K20.1 18.5
1.9 0.5
K26.1 K43.2
1.9 0.9
3.5 69.5
107 449 13 1,109 64 16 234
1.7 18.9 3.4 112.2 23.3 3.1 6.8
10.4 K19.4 K11.4 K1.4 1.0 19.7 K3.6
1.6 19 2.9 107.7 20.8 2.2 6.2
K9.3 K0.5 K14.0 K4.0 K10.6 K27.8 K8.1
1.4 21.0 3.3 117.8 24.3 2.5 6.2
K10.0 10.3 13.8 9.5 16.6 13.1 K0.2
72 121 27 381 109 357 91 462 1,814 663
3.0 11.6 24.2 23.2 7.8 43.5 22.2 11.2 316.5 78.8
K21.9 K14.0 3.0 2.2 88.7 K1.7 K1.4 4.4 K3.3 K5.4
2.8 10.7 25.1 22.6 10.4 43.0 19.2 11.9 316.2 84.1
K4.6 K7.3 3.7 K2.5 33.9 K1.0 K13.2 6.2 K0.1 6.7
3.3 9.8 22.6 20.6 7.9 45.0 19.4 13.0 308.2 77.8
17.7 K8.8 K9.9 K8.7 K24.2 4.6 0.8 9.1 K2.5 K7.4
%
a
2002
b
%
2003
%c
(Continued)
q 2006 by Taylor & Francis Group, LLC
7-234
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7M.152
(Continued)
Waterway Mouth of Missouri R. to Mouth of Ohio R. Mouth of Ohio River up to Baton Rouge, LA Baton Rouge up to New Orleans, LAd New Orleans, LA to Mouth of Passesd Missouri R. (MO, KS, NE & IA) to Sioux City, IA Monongahela River, PA and WV Ohio River, PA, WV, OH, KY, IN, and IL Ouachita and Black Rivers, AR and LA Red River, LA Tennessee River, TN, KY, MS and AL Pacific Coast Columbia River System, OR, WA, and ID Columbia River and Willamette River below Vancouver, WA and Portland, ORd Vancouver, WA to The Dalles, OR The Dalles Dam to McNary Lock and Dam Above McNary L & D to Kennewick, WA Snake River (WA and ID) to Lewiston, ID Willamette River above Portland, OR a b c d
Tons
Tons
Length (miles)
2001
%
2002
%
195 720 130 106 732 129 981 332 212 652
119.1 200.7 220.0 116.7 9.7 38.1 242.5 1.6 3.7 47.9
K2.1 K1.8 K2.7 K3.8 11.4 2.1 2.6 6.7 K2.1 K3.3
121.5 198.3 222.4 114.8 8.3 38.2 248.2 1.4 3.7 43.9
596 113
20.2 19.8
K12.2 K11.6
85 100 39 141 118
9.8 8.9 6.7 5.6 1.6
K8.2 K9.2 K14.6 K15.9 83.7
a
Tons b
2003
%c
2.0 K1.2 1.1 K1.6 K15.1 0.4 0.3 K11.5 0.6 K8.3
111.5 185.5 212.9 115.8 8.1 27.6 228.3 2.2 4.2 49.8
K8.2 K6.5 K4.3 K0.8 K2.6 K27.8 K5.9 57.7 12.6 13.4
16.5 15.9
18.5 K19.4
16.5 16.2
0.5 1.5
8.0 7.3 5.1 4.3 1.6
K18.4 K18.2 K24.5 K24.0 1.4
9.4 8.5 6.5 5.3 1.3
18.0 17.5 27.0 24.6 K22.3
Percent change from 2000 Percent change from 2001 Percent change from 2002 Includes deep draft waterways (2001, 2002). Includes coastwise entrance channel miles.
Source:
From U.S., Army Corps of Engineers, 2003 Waterborne Commerce of United States (WCUS) Waterways and Harbors on the: Part V - Natinal summaries of Domestic and Foreign Waterbome Commerce: U.S. Army Corps of Engineers, 2002 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V - National Summaries of Domestic and Foreign Waterborne Commerce: U.S. Army Corps of Engineers, 2001 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V - national Summaries of Domestic and Foreign Waterborne commer commerce, www.iwr.usace.army.mil.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-235
Total commerce All others 102.9 4.3%
Food & farm prod 265.7 11.1%
Primary manuf goods 134.7 5.6%
Crude materials 358.0 15.0%
Coal 281.2 11.7%
Petro & petro prod 1,080.5 45.1%
Chem & rel prod 171.3 7.2%
Foreign commerce
Domestic commerce
All others 80.8 5.9%
Food & farm prod 174.8 12.7%
All others 21.9 2.2% Coal 67.6 4.9%
Primary manuf goods 41.7 4.1%
Primary manuf goods 93.0 6.7% Crude materials 146.4 10.6%
Chem & rel prod 95.6 6.9%
Petro & petro prod 719.7 52.2%
Food & farm prod 90.9 8.9%
Coal 213.5 21.0%
Crude materials 211.6 20.8%
Chem & rel prod 75.7 7.5%
Petro & petro prod 360.8 35.5%
Note: Million short tons and percentage of short tons. Figure 7M.24 Principal commodities carried on waterways of the United States in 2003. (From U.S. Army Corps of Engineers, 2003 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V National Summaries of Domestic and Foreign Waterborne Commerce, www.iwr.usace.army.mil.)
q 2006 by Taylor & Francis Group, LLC
7-236
Table 7M.153 Domestic and Foreign Waterborne Commerce by Type of Commodity in the United States, 2000–2003 2000
2001 Foreign
2002 Foreign
2003 Foreign
Foreign
Domestic
Imports
Exports
Domestic
Imports
Exports
Domestic
Imports
Exports
Domestic
Imports
Exports
Total, all commodoties Coal and lignite Petroleum and petroleum productsa Crude Petroleum Gasoline Distillate fuel oil Residual fuel oil Chemicals and Related Products Crude Materials, inedible except fuelsa,b Forest products, wood and chips Soil, sand, gravel, rock and stoneb Limestone Phosphate rock Sand and gravel Iron ore and scrap Nonferrous ores and scrap Primary manufactured goods Food and farm productsa,c Wheat Corn Soybeans Other agricultural productsd All manufactured equipment, machinery and products Waste and scrap nec Unknown or not elsewhere classified
1,069,798 220,679 370,603
976,784 15,462 651,650
415,042 60,879 58,696
1,042,472 227,718 369,745
945,075 19,857 620,556
399,011 55,764 58,292
1,021,001 227,011 348,671
934,941 16,671 609,289
384,350 43,252 59,929
1,016,136 213,517 360,809
1,004,791 25,015 661,540
373,324 42,624 58,199
83,806 94,658 65,695 78,534 75,996
521,619 24,157 21,111 40,361 38,479
3,064 6,434 4,953 12,693 57,888
85,971 93,098 65,591 78,742 71,080
486,249 27,732 20,589 40,891 43,830
1,344 6,906 4,982 14,032 54,741
85,506 86,602 62,651 69,420 73,063
479,318 29,282 19,936 35,411 39,572
1,208 6,726 5,861 12,129 54,962
87,491 87,524 65,569 75,958 75,718
515,747 32,294 29,115 31,330 42,007
1,248 6,630 7,046 9,420 53,575
234,210
97,350
48,753
213,673
95,041
45,283
214,745
92,225
44,983
211,563
102,215
44,235
13,475
5,505
14,131
10,222
6,119
10,725
9,243
7,024
8,853
8,090
7,415
8,090
132,275
29,061
3,635
129,267
29,793
3,534
128,777
33,691
3,657
130,829
37,453
2,539
54,185 3,418 71,447 69,215 6,730
10,703 — 6,611 19,412 19,370
2,476 7 850 9,281 3,135
56,034 1,736 68,510 54,006 6,159
10,439 — 8,144 13,431 17,117
2,422 — 864 9,319 2,430
54,418 3,497 67,474 58,471 6,594
11,706 2,670 7,929 15,513 15,505
2,709 1 639 11,818 2,243
50,340 3,141 73,651 52,918 6,869
12,483 2,547 11,103 16,886 16,870
1,838 6 519 11,107 2,443
45,788
91,959
15,256
40,336
82,854
13,892
42,426
83,922
14,502
41,695
76,428
16,537
96,940
30,026
156,333
96,514
30,766
154,577
97,556
32,150
150,323
90,923
32,793
142,003
12,885 37,960 20,242 7,489
147 163 30 15,920
30,378 50,048 27,013 22,724
12,074 38,999 20,034 7,302
155 99 31 22,905
28,039 48,772 29,352 15,887
9,677 41,720 21,538 7,322
248 95 39 24,213
26,066 47,936 28,175 15,697
10,758 36,673 20,378 7,073
230 83 33 24,985
26,358 41,447 29,270 15,454
21,245
48,598
13,762
19,870
47,726
12,753
14,576
54,865
12,419
18,714
58,502
12,809
4,267 71
— 3,259
— 3,474
3,469 67
— 4,445
— 3,708
2,745 208
— 6,247
— 3,981
3,108 89
— 6,293
— 3,342
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Commodity
a b c d
Thousand of short tons.
Includes commodities not shown seperately. Dose not include waterways improvement material, 2000-5.3 million short tons, 2001-6.5 million short tons, 2002-6.4 million short tons, 2003-4.4 million short tons. Does not include fish landings. Food, alcoholic beverages, tobacco products, cotton, etc.
WATER USE
Note:
Source: From U.S. Army Corps of Engineers, 2003 Waterborns Commerce of the United Sates (WCUS) Waterways and Harbors on the: Part V-National Summaries of Domestic and Foreign Waterborne Commerce; U.S. Army Corps of Engineers, 2002 Waterborne Commerce of the United States Domestic and Foreign Waterborne Commerce; U.S. Army Corps of Engineers, 2001 Waterborne Commerce of the United States (WCUS) Waterways and Harborne Commerce; U.S. Army Corps of Engineers, 2000 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V-National Summaries of Domestic and Foreign Waterborne Commerce, www.iwr.usace.army.mil.
7-237
q 2006 by Taylor & Francis Group, LLC
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
543.5
527.8
556.4
583.4
601.6
626.4
659.1
646.6
673.1
660.4
693.3
707.2
701.8
707.1
707.4
716.9
715.5
714.8
712.8
676.8
Inbound
34.1
27.0
35.1
38.1
45.3
59.9
63.1
60.1
63.0
76.9
89.8
81.5
77.3
83.5
85.2
83.5
87.7
87.8
86.3
78.4
Outbound
85.9
81.0
81.1
93.7
97.5
104.0
106.0
109.9
112.3
100.0
92.4
115.8
108.7
98.5
94.7
99.2
100.5
99.8
99.2
91.3
Total
7-238
Table 7M.154 Freight Carried on the Mississippi River System by Type of Traffic, 1984–2003
Foreign
Domestic Coastwise Internal
36.7
40.9
37.4
37.4
35.8
31.1
32.6
31.3
32.3
31.8
32.4
30.6
33.0
36.3
36.7
34.6
34.1
30.9
33.0
31.8
386.6
378.9
402.8
414.2
423.0
431.5
457.5
445.1
465.4
451.7
478.7
479.4
482.8
488.9
490.7
499.6
493.1
496.3
494.3
475.2
Note: Million short tons. Foreign Inbound includes Upbound Thru Traffic. Foreign Outbound includes Downbound Thru Traffic. Source:
From U.S. Army Corps of Engineers, 2003 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V National Summaries of Domestic and Foreign Waterborne Commerce, www.iwr.usace.army.mil.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
Total Foreign Inbound Outbound Domestic Coastwise Lakewise Internal Intraport Note:
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
162.8
148.1
137.9
148.1
168.8
168.9
167.1
151.1
159.9
159.6
175.3
177.8
181.8
188.6
192.2
182.9
187.5
171.4
167.2
156.5
17.8 40.9
17.1 34.2
13.8 32.0
13.9 32.1
15.9 36.6
17.8 37.1
17.6 32.9
14.2 27.5
15.4 30.4
18.1 25.8
23.1 27.8
18.9 33.5
24.5 32.8
24.5 33.7
25.6 37.9
22.2 40.8
23.9 42.9
22.0 43.6
21.5 38.4
23.3 33.1
0.0 98.0 1.8 4.2
0.0 92.0 2.2 2.7
— 87.4 1.7 3.0
0.0 96.5 1.4 4.3
— 109.7 1.6 5.0
0.0 109.1 1.7 3.3
0.0 110.2 3.1 3.4
— 103.4 3.2 2.7
0.0 107.4 3.4 3.3
0.0 109.9 3.1 2.8
0.0 114.8 4.6 5.0
— 116.2 3.6 5.5
— 115.0 3.3 6.2
— 122.8 2.3 5.2
— 122.2 2.3 4.3
— 113.4 1.5 4.4
0.0 114.4 2.1 4.2
— 100.1 1.7 4.0
— 101.6 2.5 3.2
0.0 89.8 2.8 7.4
WATER USE
Table 7M.155 U.S. Freight Carried on the Great Lakes by Type of Traffic, 1984–2003
Million Short Tons. Foreign Outbound includes Great Lakes Thru Foreign Traffic.
Source:
From U.S. Army Corps of Engineers, 2003 Waterborne Commerce of the United States (WCUS) Waterways and Harbors on the: Part V. National Summaries of Domestic and Foreign Waterborne Commerce, www.iwr.usace.army.mil.
7-239
q 2006 by Taylor & Francis Group, LLC
7-240
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 7N
q 2006 by Taylor & Francis Group, LLC
WATER–BASED RECREATION
Estimates of Retail Expenditures on Recreational Boating 1997–2003 New Boats Total New Boat Retail dollars Average New Boat Retail Price Used Boats Total Used Boat Retail Dollars Average Used Boat Retail Price New Outboard Motors Total New Outboard Motor Retail Dollars Average New Outboard Motor Retail Price Used Outboard Motors Total Used Outboard Motor Retail Dollars Average Used Outboard Motor Retail Price New Boat Trailers Total New Boat Retail Dollars Average New Boat Trailer Retail Price Estimated Boat/Motor/Trailer Dollars Estimated Accessory Aftermarket Sales Sub Total Estimated Other (fuel, finance, insurance, docking, maintenance etc) Total Expenditures Percent Change New Boat/Motor Expenditures Percent Change Recreational Boats in Use by Boat Type 1997–2003 Outboard boats (millions) Inboard boats (millions) Sterndrive boats (millions) Personal Watercraft (millions) Sailboats (millions) Others (millions) Total (millions) a b
1997
1998
1999
2000
2001
2002
2003
610,100 $6,636,856,000 $10,878 1,038,819 $4,067,750,452 $3,916 302,000 $2,006,186,000 $6,643 514,216 $1,229,597.871 $2,391 181,000 $190,050,000 $1,050 $14,130,440,323 1,214,057,000 $15,344,497,323 $3,573,140,718
575,300 $6,308,685,000 $10,966 979,565 $3,866,613,387 $3,947 314,000 $2,155,610,000 $6,865 534,649 $1,321,180,323 $2,471 174,000 $189,660,000 $1,090 $13,841,748,710 1,650,000,000 $15,491,748,710 $3,500,139,754
584,900 $7,711,369,000 $12,176 995,911 $4,365,102,290 $4,383 331,900 $2,602,096,000 $7,840 565,127 $1,594,833,032 $2,822 168,000 $190,008,000 $1,131 $16,463,408,323 1,848,000,000 $17,722,048,323 $4,014,043.945
576,900 $9,515,192,800 $16,494 982,289 $5,831,892,361 $5,937 348,700 $2,901,861,400 $8,322 393,732 $1,778,572,471 $2,996 158,500 $184,494,000 $1,164 $20,212.033,032 2,032,800,000 $22,244,833,032 $5,625,013,577
882,300 $10,223,862,700 $11,588 1,502,295 $6,266,238,429 $4,171 299,100 $2,411,045,100 $8,061 509,278 $1,477,737,319 $2,902 135,900 $181,698,300 $1,337 $20,560,581,848 1,937,268,400 $22,497,840,248 $6,058,281,452
846,000 $10,898,635,200 $12,883 1,440,486 $6,679,808,671 $4,637 302,100 $2,479,938,900 $8,209 514,386 $1,519,962,552 $2,955 141,200 $200,645,200 $1,421 $21,778,990,523 2,028,309,545 $23,807,300,067 $6,554,969,366
840,800b $10,603,725,600 $12,611 1,431,632 $6,499,057,626 $4,540 305,400 $2,554,533,570 $8,365 520,005 $1,565,681,865 $3,011 130,600 $202,012,080 $1,547 $21,425,010,741 2,123,640,093 $23,548,650,835 $6,448,429,689
$18,917,638,040
$18,991,888,464 0.39% $8,464,295,000 –2.07%
$21,736,092,268 14.45% $10,313,465,000 21.85%
$27,869,846,610 28.22% $12,417,074,200 20.40%
$28,556,121,701 2.46% $12,634,907,800 1.75%
$30,362,269,433 6.32% $13,378,574,100 5.89%
$29,997,080,523 –1.20% $13,158,259,170 –1.65%
8.21 1.63 1.67 1.18 1.65 2.49 16.82
8.29 1.66 1.71 1.24 1.64 2.50 17.03
8.34 1.69 1.74 1.29 1.63 2.51 17.20
8.38 1.71 1.77 1.35 1.61 2.53 17.36
$8,643,042,000
8.13 1.59 1.58 1.00 1.65 2.29 16.23
8.19 1.61 1.62 1.10 1.67 2.45 16.65
a
WATER USE
Table 7N.156 Recreational Boats in Use by Boat Type 1997–2003 and Estimates of Retail Expenditures on Recreational Boats
8.42 1.74 1.79 1.42 1.60 2.53 17.49
Includes 357,100 kayaks not previously reported. Includes 30,580 inflatables not previously reported.
Source: From National Marine Manufactures Association, 2003 Recreational Statistical Abstract, www.nmma.org. Reprinted with permission. Original Source: From Recreational Boats in Use by Type 1997 to 2003 data USCG/NMMA.
7-241
q 2006 by Taylor & Francis Group, LLC
7-242
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7N.157 The Retail Boating Market 1997–2003 Total Units Sold, Total Retail Value, and Average Retail Unit Cost 1997 Outboard Boats Total units sold 20,000 Retail value $1,421,400,000 Average unit cost $7,107 Outboard Motors Total units sold 302,000 Retail value $2,006,186,000 Average unit cost $6,643 Boat Traillers Total units sold 181,000 Retail value $190,050,000 Average unit cost $1,050 Inboard Boats-Ski/Wakeboard Boats Total units sold 6,100 Retail value $136,408,200 Average unit cost $22,362 Inboard Boats-Cruisers Total units sold 6,300 Retail value $1,669,103,100 Average unit cost $264,937 Stemdrive Boats Total units sold 92,000 Retail value $2,068,528,000 Average unit cost $22,484 Canoes Total units sold 103,600 Retail value $61,124,000 Average unit cost $590 Kayaks Total units sold N/A Retail value N/A Average unit cost N/A Inflatables Total units sold N/A Retail value N/A Average unit cost N/A Personal Water Craft Total units sold 176,000 Retail value $1,135,904,000 Average unit cost $6,454 Jet Boats Total units sold 11,700 Retail value $144,389,700 Average unit cost $12,341 Sailboatsa Total units sold 14,400 Retail value N/A Average unit cost N/A
Note: Source:
1998
1999
2000
2001
2002
2003
213,700 $1,547,188,000 $7,240
230,200 $1,988,928,000 $8,640
241,200 $2,306,577,000 $9,563
217,800 $2,195,859,600 $10,082
212,000 $2,280,908,000 $10,759
207,100 $2,742,825,960 $13,244
314,000 $2,155,610,000 $6,865
331,900 $2,602,096,000 $7,840
348,700 $2,901,881,400 $8,322
299,100 $2,411,045,100 $8,061
302,100 $2,478,838,900 $8,205
305,400 $2,554,533,570 $8,365
174,000 $189,660,000 $1,090
168,000 $190,008,000 $1,131
158,500 $184,494,000 $1,164
135,900 $181,698,300 $1,337
141,200 $200,645,200 $1,421
130,600 $202,012,080 $1,547
10,900 253,348,700 23,243
12,100 $308,429,000 $25,490
13,600 $366,438,400 $26,944
11,100 $352,569,300 $31,763
10,500 $398,811,000 $37,982
11,100 $403,289,640 $36,332
6,700 $1,704,245,500 $254,365
7,000 $1,799,420,000 $257,060
10,300 $2,925,756,200 $284,054
10,800 $3,758,475,600 $348,007
11,800 $4,336,559,000 $367,505
9,300 $3,467,322,720 $372,830
77,700 $1,746,696,000 $22,480
79,600 $2,054,476,000 $25,810
78,400 $2,253,843,200 $28,748
72,000 $2,216,448,000 $30,784
69,300 $2,192,929,200 $31,644
69,200 $2,221,116,840 $32,097
107,800 $64,033,200 $594
121,000 $67,034,000 $554
111,800 $64,508,600 $577
105,800 $57,449,400 $543
100,000 $56,900,000 $569
86,700 $49,644,420 $573
N/A N/A N/A
N/A N/A N/A
N/A N/A N/A
357,100 $176,764,500 $495
340,300 $157,558,900 $463
324,000 $151,048,800 $465
N/A N/A N/A
N/A N/A N/A
N/A N/A N/A
N/A N/A N/A
N/A N/A N/A
30,500 $67,417,200 $2,210
130,000 $868,530,000 $6,681
106,000 $771,044,000 $7,274
92,000 $720,176,000 $7,828
80,900 $641,456,100 $7,929
79,300 $697,681,400 $8,798
80,600 $716,501,760 $8,890
10,100 $167,033,800 $16,538
7,800 $132,678,000 $17,010
7,000 $123,641,000 $17,663
6,200 $118,692,800 $19,144
5,100 $107,997,600 $21,176
5,600 $115,268,160 $20,584
18,400 N/A N/A
21,600 N/A N/A
22,600 $754,252,400 $33,374
20,600 $706,139,303 $34,279
17,700 $669,290,100 $37,813
16,700 $669,290,100 $40,077
a
The Sailing Company’s Annual Sailing Business Review. From National Marine Manufactures Association, 2003 Recreational Statistical Abstract, www.nmma.org. Reprinted with permission.
Original Source: From The Sailing Company’s Annual Sailing Business Review.
q 2006 by Taylor & Francis Group, LLC
Boat Registration Data by Statea Nonpowered
Other
Total
Sail Only
Other Boats
Total
Inboard
Outboard
Sterndrive
Auxiliary Sail
PWC
Rowboat
Canoe or Kayak
1,457,376 17,582 4,195 45,865 29,704 115,697 21,496 7,746 6,193 543
8,003,686 205,393 31,284 65,061 148,573 356,955 49,595 68,915 32,037 614
1,601,156 20,256 4,337 0 0 209,788 7,715 16,998 11,190 337
139,885 994 607 1,572 0 20,414 0 4,997 0 150
744,473 14,141 1,673 28,081 0 184,105 17,136 8,433 0 39
118,295 534 8,767 0 0 8,691 0 302 0 262
282,612 375 0 0 0 6,863 0 56 0 13
146,084 2,631 193 0 472 35,853 3,937 207 0 150
301,049 343 360 6,634 17,466 25,013 696 253 515 44
12,794,616 262,249 51,416 147,213 196,215 963,379 100,575 107,907 49,935 2,152
66,694 17,839 7,860 17,579 30,268 25,293 19,569 7,177 15,750 21,225 7,021 15,493 8,361 268,629 23,735 17,109 9,326 19,125 5,939 3,574 15,887 18,623 3,284 99,062 16,929 2,909 31,626 40,787
624,342 218,634 3,267 40,559 225,527 129,966 131,236 65,842 119,450 262,311 73,542 110,726 98,952 577,579 510,654 168,113 227,118 33,596 47,034 21,223 53,193 112,269 21,246 280,721 245,772 36,549 189,359 164,219
92,408 36,247 2,217 16,160 50,920 35,494 23,592 9,816 17,224 10,583 9,570 36,046 27,392 41,288 56,709 12,305 43,244 0 9,968 18,681 16,282 38,683 7,035 132,021 44,575 4,295 66,634 22,950
9,932 0 1,246 838 3,032 713 471 406 342 0 0 10,318 6,565 13,569 2,864 3,930 155 152 24 483 2,324 7,174 182 6,687 3,583 130 1,923 1,822
106,783 37,673 0 4,634 13,995 0 0 12,731 8,298 12,932 0 16,753 8,503 0 40,394 0 0 0 8,819 13,524 0 22,589 6,821 0 39,759 4,457 42,849 0
4,224 0 0 0 16,012 0 956 1,305 0 0 0 0 0 26,408 12,791 0 500 147 75 233 0 6,011 0 0 0 0 11,721 0
3,511 0 0 0 0 0 23,379 272 0 0 0 0 0 0 169,933 0 502 18 191 0 0 0 0 0 0 513 52,339 0
7,657 4,414 690 800 8,078 1,308 4,324 2,618 0 0 0 483 0 26,081 15,622 0 1,948 346 155 165 4,183 1,793 1,291 0 1,788 67 9,418 0
24,417 11,911 320 2,106 12,420 23,371 7,309 296 12,354 0 471 8,576 6,348 0 12,677 0 43,360 0 3,558 697 8,966 446 435 9,603 7,451 329 7,179 0
939,968 326,718 15,600 82,676 360,252 216,145 210,836 100,463 173,418 307,051 90,604 198,395 156,121 953,554 845,379 201,457 326,153 53,384 75,763 58,580 100,835 207,588 40,294 528,094 359,857 49,249 413,048 229,778 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-243
Totals Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma
Powered
WATER USE
Table 7N.158 Boat Registration Data by State, 2003
7-244
Table 7N.158
(Continued) Boat Registration Data by Statea
a
b
Nonpowered
Inboard
Outboard
Sterndrive
Auxiliary Sail
PWC
Rowboat
Canoe or Kayak
64,352 30,445 4,824 13,464 1,877 41,701 117,514 11,527 8,517 6,261 0 4,419 42,696 14,977 0 8,195 809 19 85
125,047 237,196 22,502 278,142 36,069 188,816 404,827 29,363 24,743 156,813 156,447 39,239 514,895 1,962 0 33,993 1,834 75 297
0 47,972 9,983 36,498 10,739 28,864 87,257 19,329 0 43,019 98,586 5,566 52,881 5,599 0 1,804 96 0 3
4,971 344 3,372 5,345 244 525 0 0 0 4,602 10,740 0 0 0 0 967 1,168 8 0
0 0 2,326 25,421 0 0 0 14,645 0 25,968 0 2,405 0 2,555 0 15,949 14 0 68
0 2,082 0 17,226 0 0 0 0 0 0 0 0 0 0 0 0 46 0 2
0 24,337 0 180 0 0 0 0 0 0 0 0 0 89 0 0 41 0 0
Other
Total
Sail Only
Other Boats
Total
0 1,801 0 1,782 0 1,730 2,398 1,314 0 234 0 0 0 100 0 0 53 0 0
3,221 11,058 0 2,256 4,540 0 7,092 0 0 5,096 0 7,088 328 443 4,000 3 0 0 0
197,591 355,235 43,007 380,314 53,469 261,636 619,088 76,178 33,260 241,993 265,773 58,717 610,800 25,725 4,000 60,911 4,061 102 455
The figures in this table are derived from reports from the State and jurisdictions. There are a total of 12,794,616 registered recreational vessels. This table classifies registered motorboats and registered nonpowered boats for each State and jurisdiction. Please note that the scope of the boat registration system for each State and jurisdiction is not the same. This explains why some States report the number of non-powered vessels such as rowboats, canoes, and non-powered sailboats and others do not. Also notice that some State and jurisdictions report Personal Watercraft (PWC) as a separate vessel category and others report PWC as an inboard motorboat. An accurate figure on the number of PWC will be provided when all States and jurisdictions classify and report PWC as a separate as a separate vessel category. Estimate.
Source: From U.S. Department of Homeland Security, United States Coast Guard, 2004, Boating Statistics 2003, COMDTPUB P16754017, www.uscgboating.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Guamb Puerto Rico Virgin Islands Amer Samoa No. Marianas
Powered
WATER USE
7-245
Table 7N.159 Fatality Rate in Recreational Boating in the United States, 1991–2003
Year
Fatalities
Number of Registered Boats
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
924 816 800 784 829 709 821 815 734 701 681 750 703
11,068,440 11,132,386 11,282,736 11,429,585 11,734,710 11,877,938 12,312,982 12,565,930 12,738,271 12,782,143 12,876,346 12,854,054 12,794,616
Fatalities Per 100,000 Registered Boats 8.3 7.3 7.1 6.9 7.1 5.9 6.7 6.5 5.8 5.5 5.3 5.8 5.5
Source : From U.S. Department of Homeland Security, United States Coast Guard, 2004, Boating Statistics 2003, COMDTPUB P16754.17, www.uscgboating.org.
Table 7N.160 Types of Boating Accidents in the United States, 2003 Types of Boating Accidents
Total Capsizing Collision with fixed object Collision with floating object Collision with another vessel Falls within boat Falls overboard Fire/explosion (fuel) Fire/explosion (other than fuel) Flooding/swamping Grounding Sinking Skier mishap Struck by boat Struck by motor or propeller Struck submerged object Other (not specified) Carbon monoxide poisoning Departed vessel (swimming) Departed vessel (other) Ejected from vessel Falls on PWC Not reported
Accidents
Vessels Involved
Drowning Deaths
Other Deaths
Total Fatalities
5,438 514 558 152 1,469 233 509 142 68
7,363 576 629 215 2,972 249 530 163 79
481 170 19 1 9 3 169 4 0
22 36 31 2 61 3 32 3 2
703 206 50 3 70 6 201 7 2
274 291 128 451 89 107 128 80 20 34 11 7 15 158
293 297 135 477 128 120 129 88 20 34 11 7 18 193
36 2 6 1 1 1 2 1 0 28 10 3 0 15
5 6 2 5 8 5 2 3 7 1 0 2 1 5
41 8 8 6 9 6 4 4 7 29 10 5 1 20
Source: From U.S. Department of Homeland Security, United States Coast Guard, 2004, Boating Statistics 2003, COMDTPUB P16754.17, www.uscgboating.org. q 2006 by Taylor & Francis Group, LLC
7-246
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7N.161 Boating Accidents in the United States, 2003
Time of Day
Month of Year
Day of Week
Time Period
Accidents
Fatalities
Midnight to 2:30 am 2:31 am to 4:30 am 4:31 am to 6:30 am 6:31 am to 8:30 am 8:31 am to 10:30 am 10:31 am to 12:30 pm 12:31 pm to 2:30 pm 2:31 pm to 4:30 pm 4:31 pm to 6:30 pm 6:31 pm to 8:30 pm 8:31 pm to 10:30 pm 10:31 pm to midnight Unknown January February March April May June July August September October November December Monday Tuesday Wednesday Thursday Friday Saturday Sunday
174 54 65 131 305 579 878 1,163 973 575 297 132 112 70 98 180 225 638 849 1,480 1,075 383 235 127 78 485 393 395 397 768 1,560 1,440 5,438
44 9 11 22 33 65 90 124 104 85 61 21 34 24 18 34 47 87 95 112 109 67 50 35 25 76 62 66 62 113 159 165 703
Totals
Source: U.S. Department of Homeland Security, United States Coast Guard, 2004, Boating Statistics 2003, COMDTPUB P16754.17, www.uscgboating.org.
Table 7N.162 Life Expectancy in Water Water Temperature Duration, Hours
308F
408F
508F
608F
708F
1 2 3 4
M L L L
M L L L
M M M L
S M M M
S S S S
Note: Exposure by immersion in low temperature water can have serious consequences. Life expectancies for various durations of exposure are indicated by: L — Lethal, 100 percent expectancy of death; M — Marginal, 50 percent expectancy of unconsciousness which will probably result in drowning; S — Safe. It should also be noted that sudden immersion in ice cold water can cause temporary paralysis with resulting helplessness and loss of buoyancy, causing the victim to sink to the bottom. Source: Pan American Airways and Calif. Dept. of Harbors and Watercraft. With permission. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-247
The effects of cold weather on fatal accident risk - 2003
Percent of accidents that are fatal
.30 .25 .20 .15 .10 .05 0 Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Boaters are more likely to perish if they are involved in a reported accident during the fall & winter months
Month
Fatal accidents
Non-fatal accidents 55
Fatal accident risk
Total fatalities
70
21%
24
Total accidents
January
15
February
17
81
98
17%
18
March
29
151
180
16%
34
April
41
184
225
18%
47
May
81
557
638
13%
87
June
90
759
849
11%
95
July
106
1,374
1,480
7%
112
August
96
979
1,075
9%
109
September
56
327
383
15%
67
October
42
193
235
18%
50
November
29
98
127
23%
35
December
19
59
78
24%
25
621
4,817
5,438
Total
703
Figure 7N.25 The effects of cold water on fatal accidents, 2002. U.S. Department of Homeland Security, United States Coast Guard, 2004, Boating Statistics 2003, COMDTPUB P16754.17, uscgboating.org/statistics/Boating_Statistics_2003.pdf. http://library.fws. gov/nat_survey2001_trends.pdf.
q 2006 by Taylor & Francis Group, LLC
7-248
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7N.163 Number of Fishing Participants, Days, and Expenditures of Sport Fishermen in the United States, 1991, 1996, and 2001 1991 Number Participants Anglers, Total 35,578 All freshwater 31,041 Freshwater, except 30,186 Great Lakes Great Lakes 2,552 Saltwater 8,885 Days Total 511,329 All freshwater 439,536 Freshwater, except 430,922 Great Lakes Great Lakes 25,335 Saltwater 74,696 Expenditures (in 2001 dollars) Fishing, Total $31,175,168 Trips 15,396,151 Equipment 12,170,062 Fishing equipment 4,860,266 Auxiliary 804,953 equipment Special equipment 6,504,844 Other 3,608,953
1996 Percent
Number
2001 Percent
Number
1991–2001 Percent
1996–2001
%change
%change
100 87 85
35,246 29,734 28,921
100 84 82
34,067 28,439 27,913
100 83 82
K4 K8 K8
K3 K4 K3a
7 25
2,039 9,438
6 27
1,847 9,051
5 26
K28 2a
K9a K4a
100 86 84
625,893 515,115 485,474
100 82 78
557,394 466,984 443,247
100 84 80
9 6 3a
K11 K9 K9
5 15
20,095 103,034
3 17
23,138 90.838
4 16
K9a 22
15a K12a
100 49 39 16 3
$42,710,679 17,380,775 21,666,341 5,998,802 1,171,540
100 41 51 14 3
$35,632,132 14,656,001 16,963,398 4,617,488 721,048
100 41 48 13 2
14 K5a 39 K5a K10a
K17 K16 K22 K23 K38
21 12
14,495,999 3,663,563
34 9
11,624,862 4,012,733
33 11
79 11
K20a 10a
Note: U.S. Population 16 Years Old and Older, Numbers in Thousands. a
Not different from zero at the 5 percent level.
Source: From U.S. Department of Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau, 2002,2001 National Survey of Fishing, Hunting and Wildlife-Associated Recreation, cenovs.gov.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-249
Table 7N.164 Number and Cost of Sport Fishing Licenses in the United States, 1991, 1996, and 2001 1991
1996
2001
Number (Thousands)
Percent
Number (Thousands)
Percent
Number (Thousands)
Percent
Total anglers Total license purchasersa Anglers purchasing licenses: In state of residence In other states Total exempt from purchasing licenses Anglers exempt from license purchase: In state of residence In other states Otherb Not reported
35,578 23,302 21,445
100 65 60
35,246 23,203 21,437
100 66 61
34,071 21,396 20,004
100 63 59
3,653 3,037
10 9
4,356 3,281
12 9
3,781 4,284
11 13
2,596
7
2,365
7
3,959
12
375 6,586 3,329
1 19 9
427 9,143 558
1 26 2
608 10,268 448
2 30 1
Expenditures Total, all licenses, stamps, tags and permits Licenses Stamps, tags, permits
1991 Thousands of Dollars 486,700
1996 Thousands of Dollars 579,753
2001 Thousands of Dollars 639876
443,287 43,414
519,061 60,692
597,210 42,666
Anglers
Note: a b
Detail does not add to total because of multiple responses and nonresponse. Respondents could have been licensed in one state and exempt in another.
Includes persons who had license bought for them. Does not include persons who purchase license and did not fish in 1991, 1996, and 2001. Includes persons engaged in activities requiring to license or exemptions and those who failed to buy a license for activities requiring a license.
Source:
From U.S. Department of Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau, 2002, 2001 National Survey of Fishing, Hunting and Wildlife-Associated Recreation; U.S. Department of Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau, 1998, 1996 National Survey of Fishing, Hunting, and WildlifeAssociated Recreation; U.S. Department of Interior, Fish and Wildlife Service and U.S. Department of Commerce, U.S. Census Bureau, 1993, 1991 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation, www.census.gov.
q 2006 by Taylor & Francis Group, LLC
7-250
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7N.165 Fish Trips and Fish Harvested: Estimated Number of Fishing Trips Taken by Marine Recreational Fisherman by Subregion and Year, Atlantic and Pacific Coasts, 1998–2001 1998 Subregion North Atlantic Mid-Atlantic South Atlanticb Gulfb Total Pacific:c Southern California Northern California Oregon Washington Total
Fish Trips
Fish Harvested
1999 Fish Trips
Fish Harvested
2000 Fish Trips
Fish Harvested
2001 Fish Trips
Fish Harvested
6,796 14,453 16,837 16,703 54,789
6783 29447 24704 60561 121495
6,478 14,105 14,435 15,894 50,912
8841 24756 33914 55525 123036
8,765 19,451 20,075 21,018 69,309
17185 50,652 40,414 67385 175,616
9,035 21,206 21,596 22,890 74,727
12153 34704 43824 76571 167252
2,973 1,932 649 1,463 7,017
5827 6123 1712 5220 18882
2,437 1,713 554 1,256 5,960
5098 3909 1153 2486 12646
3,787 2,158 930 1,643 8,518
7494 3787 1848 3288 16,367
4,052 2,208 1,170 2,191 9,621
7726 4799 21283 4796 19,446
Note: “Harvested” includes dead discards and fish used for bait but does not include fish released alive. Numbers in thousands. a b c
1998–2000 were revised. Data do not include recreational catch in Texas. Does not include catch from headboats (party boats) in the South Atlantic and Gulf of Mexico. Data do not include recreational catch in Hawaii or Alaska. Pacific state estimates do not include salmon data collected by recreational surveys.
Source: From USDA–NASS, Agricultural Statistics 2003, Miscellaneous, Agricultural Statistics, www.usda.gov. Original Source: U.S. Department of Commerce, NOAA, NMFS, Fisheries Statistics and Economics Division, www.nass.usda.gov.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-251
SECTION 7O
FISHERIES
Table 7O.166 United States Fisheries—Quantity and Value of Catch, by Region and by State, 1999–2003 1999 Regions and States New England Maine New Hampshire Massachusetts Rhode Island Connecticut Middle Atlantic New York New Jersey Delaware Chesapeake Maryland Virginia South Atlantic North Carolina South Carolina Georgia Florida, East Coast Gulf Florida, West Coast Alabama Mississippi Louisiana Texas Pacific Coast Alaska Washington Oregon California Great Lakes Illinois Indiana Michigan Minnesota New York Ohio Pennsylvania Wisconsin Hawaii Utah Total, United States
2000
2001
2002
2003
Thousand Pounds
Thousand Dollars
Thousand Pounds
Thousand Dollars
Thousand Pounds
Thousand Dollars
Thousand Pounds
Thousand Dollars
Thousand Pounds
Thousand Dollars
583,863 229,633 11,258 198,336 126,206 18,430 225,278 48,175 168,676 8,427 527,407 67,118 460,289 230,971 154,869 17,773 11,234 47,095
655,377 265,236 12,542 260,239 79,270 38,090 180,673 76,049 97,731 6,893 172,012 63,759 108,253 198,347 97,304 29,265 21,100 50,678
570,728 226,849 17,160 187,861 119,295 19,563 219,661 41,181 171,804 6,676 492,110 48,913 443,197 221,350 155,214 15,835 9,694 40,607
681,092 275,107 13,951 288,263 72,544 31,227 173,296 59,426 107,163 6,707 172,210 53,874 118,336 204,480 95,305 30,344 21,331 57,500
635,162 239,868 18,584 242,066 115,957 18,687 217,975 42,422 168,430 7,123 617,244 55,536 561,708 199,554 139,277 14,111 9,036 37,130
646,447 251,441 17,865 281,059 65,457 30,625 172,503 55,038 109,820 7,645 174,968 55,586 119,382 176,488 90,202 23,398 14,752 48,136
583,915 197,057 23,201 243,824 103,656 16,177 206,697 38,665 162,175 5,857 495,675 53,185 442,490 214,799 159,557 13,458 9,563 32,221
685,428 279,396 16,691 297,312 64,250 27,779 170,134 51,334 112,733 6,067 172,320 49,013 123,307 173,429 98,723 20,760 15,068 38,878
666,179 232,284 27,410 294,477 95,727 16,281 214,454 39,409 170,017 5,018 10 496,178 49,350 446,828 203,566 139,215 22,043 7,453
683,395 283,802 15,125 291,596 63,054 29,818 177,404 51,628 120,556 5,204 16 179,701 49,038 130,663 161,445 82,960 29,075 13,510
1,945,063 83,792
757,857 146,976
1,759,993 79,415
910,685 155,200
1,605,564 78,105
798,319 143,810
1,716,140 78,975
692,717 138,968
34,855 1,600,481
35,900 683,276
27,399 267,546 1,480,045 86,281 5,765,700 4,492,649 392,555 233,177 647,319 23,843 86 — 13,546 443 1 3,932 32 5,803 36,907 — 9,339,032
50,415 48,526 302,735 209,205 1,422,258 1,105,946 98,471 67,590 150,251 16,009 50 — 9,339 197 2 2,186 43 4,192 64,557 — 3,467,090
29,931 217,744 1,344,913 87,990 5,750,364 4,465,987 380,223 262,917 641,237 22,245 49 — 12,704 377 49 3,497 20 5,549 32,531 — 9,068,982
63,275 58,715 401,095 232,400 1,320,763 956,990 145,311 79,351 139,111 18,508 35 — 8,963 172 75 2,442 29 6,792 68,447 — 3,549,481
24,740 213,889 1,191,460 97,370 6,173,671 5,036,338 337,231 234,097 526,005 18,818 16 — 10,322 501 71 3,535 25 4,348 23,870 — 9,491,858
43,170 50,561 342,748 218,030 1,187,106 869,885 134,454 72,516 110,251 17,844 14 — 9,235 202 113 3,287 44 4,949 54,561 — 3,228,236
23,380 217,053 1,308,531 88,201 6,138,249 5,066,263 362,049 211,183 498,754 17,848 – — 9,459 449 47 3,427 15 4,451 23,841 — 9,397,164
35,102 46,093 305,534 167,020 1,130,633 811,545 142,521 68,431 108,136 15,544 – — 7,362 180 81 3,093 37 4,791 52,113 — 3,092,318
76,448 25,344 213,116 1,189,448 96,125 6,277,566 5,305,960 379,732 225,528 366,346 17,471 — 8,690 435 43 3,994 11 4,298 23,556 5,997 9,505,448
135,912 39,521 45,508 294,011 168,324 1,375,763 989,781 170,158 85,549 130,275 13,174 — 5,702 228 50 3,037 23 4,134 52,433 15,593 3,342,184
Note: Landings are reported in round (live) weight for all items except univalve and bivalve mollusks such as clams, oysters, scallops, which are reported in weight of meats (excluding the shell). Landings for Mississippi River drainage area States are not available. Data are preliminary. Landings of Alaska pollock, Pacific whiting, and other Pacific groundfish that are caught in waters off Washington, Oregon, and Alaska and are processed at-sea aboard U.S. vessels are credited to the State nearest to the area of capture. Totals may not add due to roundings. Data do not include landings by U.S.-flag vessels at Puerto Rico and other ports outside the 50 States. Data do not include aquaculture products, except oysters and clams. Source: From U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2004, Fisheries of the United States 2003; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2003, Fisheries of the United States 2002; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2002, Fisheries of the United States 2001; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2001, Fisheries of the United States 2000, www.st.nmfs.gov.
q 2006 by Taylor & Francis Group, LLC
7-252
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7O.167 Major U.S. Domestic Species Landed in 2003 Ranked by Quantity and Value Rank
Species
1 2 3 4 5 6 7 8 9 10
Pollock Menhaden Salmon Cod Flatfish Hakes Crabs Shrimp Herring (sea) Sardines
Pounds
Rank
3,372,338 1,599,444 674,096 591,130 444,075 339,944 338,854 313,624 286,050 159,493
1 2 3 4 5 6 7 8 9 10
Species
Dollars
Crabs Shrimp Lobsters Flatfish Scallops Pollock Salmon Cod Clams Oysters
483,586 424,027 308,005 266,618 229,240 208,581 200,838 187,113 162,838 103,045
Note: Numbers in thousands. Source: From U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2004, Fisheries of the United States 2003, www.st.nmfs.gov.
Table 7O.168 United States Domestic Fish and Shellfish Catch and Value by Major Species Caught, 1990–2002 Quantity (1,000 lb)
Value ($1,000)
Species
1990
2000
2001
2002
1990
2000
2001
2002
Cod: Atlantic Pacific Flounder Halibut Herring, sea; Atlantic Herring, sea; Pacific Menhaden Pollock, Alaska Salmon Tuna Whiting (Atlantic, silver) Whiting (Pacific, hake) Shellfish, totala Clams Crabs Lobsters: American Oysters Scallops, sea Shrimp Squid, Pacific Total Fish, totala
95,881 526,396 254,519 70,454 113,095
25,060 530,505 412,723 75,190 160,269
33,211 471,711 352,363 77,978 209,191
29,841 512,827 372,697 82,044 135,871
61,329 91,384 112,921 96,700 5,746
26,384 142,330 109,910 143,826 9,972
32,086 118,071 105,240 115,169 12,717
30,715 96,206 102,370 135,603 9,106
108,120
74,835
91,297
78,408
32,178
12,043
13,213
11,534
1,962,160 3,108,031 733,146 62,393 44,500
1,760,498 2,606,802 628,638 50,779 26,855
1,741,430 3,179,407 722,832 51,854 28,479
1,750,609 3,341,105 567,179 49,358 17,622
93,896 268,344 612,367 105,040 11,281
112,403 160,525 270,213 95,176 11,370
102,690 230,723 208,926 93,497 13,232
105,102 203,696 155,010 84,116 7,454
21,232
452,718
379,304
285,714
1,229
18,809
16,147
13,584
1,312,503 139,198 499,416 61,017 29,193 39,917 346,494 36,082 9,403,571 8,091,068
1,379,324 118,482 299,006 83,180 41,146 32,747 332,486 259,508 9,068,985 7,689,661
1,138,512 122,764 272,246 73,637 32,673 46,958 324,481 191,532 9,491,836 8,242,490
1,178,590 130,076 307,601 82,252 34,397 53,056 316,727 160,677 9,397,164 8,089,987
1,621,898 130,194 483,837 154,677 93,718 153,696 491,433 2,636 3,521,995 1,900,097
1,954,666 153,973 405,006 301,300 90,667 164,609 690,453 27,077 3,549,481 1,594,815
1,711,391 161,992 381,667 254,334 80,946 175,349 568,547 17,834 3,228,285 1,479,988
1,706,426 167,215 397,695 293,329 89,071 203,707 460,878 18,262 3,092,318 1,359,392
a
Includes other types of fish and shellfish, not shown separately.
Source: From U.S. Census Bureau, Statistical Abstract of the United States. 2004–2005, www.census.gov. Original Source: National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Fisheries of the United States, annual. q 2006 by Taylor & Francis Group, LLC
WATER USE
7-253
Volume of domestic commercial landings and aquaculture production Note: The 2003 aquaculture production is estimated 12
Billions of pounds
10
8
6
4
2
0 1987
1989
1991
1993
1995
Aquaculture
1997
1999
2001
2003
Landings
Value of domestic commercial landings and aquaculture production
4
Billions of dollars
3
2
1
0 1987
1989
1991
1993
1995
Aquaculture
1997
1999
2001
2003
Landings
Figure 7O.26 Quantity and volume of domestic commercial landings and aquaculture production in the United States, 2003. (From U.S. Department of Commerce, NOAA, and National Marine Fisheries Service, 2004, Fisheries of the United States 2003, www.st.nmfs.gov.)
q 2006 by Taylor & Francis Group, LLC
7-254
Table 7O.169 United States Fisheries Estimated Number of Commercial Fishing Vessels and Fishing Boats by Region and State, 1998–2002 1998 Area and State
Vessels
Total
Vessels
Boats
2000 Total
Vessels
Boats
2001 Total
Vessels
Boats
2002 Total
Vessels
Boats
Total
318 NA 5,799 NA 4,500 461 1,147 2,931 2,401 NA
563 175 7,441 33 5,215 576 1,534 3,620 2,713 122
232 178 1,653 34 700 121 421 678 330 241
281 NA 5,821 NA 4,520 468 NA 2,825 2,239 NA
513 NA 7,474 NA 5,220 589 NA 3,503 2,569 NA
182 184 1,656 32 695 109 397 NA 344 261
243 NA 5,836 NA 4,540 471 NA NA 2,920 NA
425 NA 7,492 NA 5,235 580 NA NA 3,264 NA
182 184 1,656 32 695 109 397 NA 344 261
243 NA 5,836 NA 4,540 471 NA NA 2,920 NA
425 NA 7,492 NA 5,235 580 NA NA 3,264 NA
NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA
NA NA NA 6,157 1,338 688 11,637 NA
891 569 350 8,541 1,736 1,142 14,172 NA
667 577 350 2,214 454 502 2,450 NA
NA NA NA 5,602 1,231 707 11,414 NA
NA NA NA 7,816 1,685 1,209 13,864 NA
773 520 265 2,136 443 504 2,393 NA
NA NA NA 5,502 1,328 743 11,830 NA
NA NA NA 7,638 1,771 1,247 14,223 NA
773 520 265 2,136 443 504 2,393 NA
NA NA NA 5,502 1,328 743 11,830 NA
NA NA NA 7,638 1,771 1,247 14,223 NA
763 556 226 1,934 425 522 2,084 NA
NA NA NA 4,438 1,350 843 8,874 NA
NA NA NA 6,372 1,775 1,365 10,958 NA
9,445 428 296 1,191 NA
15,829 1,332 964 2,583 2,855
6,232 783 643 1,438 NA
9,374 343 308 1,142 NA
15,606 1,126 951 2,580 NA
6,169 726 721 1,307 347
9,461 355 376 1,132 2,467
15,630 1,081 1,097 2,439 2,901
6,126 726 721 1,307 347
9,062 355 376 1,132 2,467
15,188 1,081 1,097 2,439 2,814
5,494 695 639 1,201 NA
8,541 329 359 997 NA
14,035 1,024 998 2,198 NA
NA NA 74 22 NA 19 1 16
5 NA 135 23 2 59 3 105
5 NA NA 1 2 34 2 68
NA NA NA 24 NA 21 1 18
NA NA NA 25 NA 55 3 86
5 NA NA 1 1 31 2 78
NA NA NA 24 NA 19 1 18
NA NA NA 25 NA 50 3 96
5 NA NA 1 1 31 2 78
NA NA NA 24 NA 19 1 18
NA NA NA 25 NA 50 3 96
NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA
Note: NA, Data not available or provided seperately. Vessels are documented craft greater than 5 net registered tons. Boats are craft less than 5 net registered ton. a b c
Only federally collected data are available. Inshore data are not available. Excludes vessels and boats in the Great Lakes. Commercial fishing fleet size of the Great Lakes states represent only the number of licenses issued by the State; therefore, may not be an accurate total. Tribal data are not included in this table.
Source: From U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2004, Fisheries of the United States 2003; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2003, Fisheries of the United States 2002; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2002, Fisheries of the United States 2001; U.S. Department of Commerce, NOAA, and National Marine Fisheries Services, 2001, Fisheries of the United States 2000, www.st.nmfs.gov. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Northeast Connecticut 245 Delaware 175 Maine 1,642 Marylanda 33 Massachusetts 715 New Hampshire 115 New Jersey 387 689 New Yorkb Rhode Island 312 Virginiaa 122 South Atlantic and Gulf North Carolina 891 South Carolina 569 Georgia 350 Florida 2,384 Alabama 398 Mississippi 454 Louisiana 2,535 Texas NA West Coast Alaska 6,384 Washington 904 Oregon 668 California 1,392 Hawaii 2,855 Great Lakesc Illinois 5 Indiana NA Michigan 61 Minnesota 1 New York 2 Ohio 40 Pennsylvania 2 Wisconsin 89
Boats
1999
WATER USE
7-255
Table 7O.170 Aquaculture Water Withdrawals in the United States, 2000 Withdrawals (mil gal/day)
Withdrawals (thousand acre-feet yr)
By Source State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico U.S. Virgin Islands Total
By Source
Groundwater
Surface Water
Total
Groundwater
Surface Water
Total
8.93 — — 187 158 — — 0.07 — 7.81 7.7 — 51.5 — — — 3.33 — 128 — 4.81 — — — 321 2.01 — — — 3.12 6.46 — — 7.88 — 1.36 0.29 — — — — — — — 116 — — — — 39.8 — — — 1,060
1.44 — — 10.4 380 — — 0 — 0.21 7.72 — 1,920 — — — 2.27 — 115 — 14.8 — — — 49.8 81.3 — — — 13.1 0 — — 0 — 0 16.1 — — — — — — — 0 — — — — 30.4 — — — 2,640
10.4 — — 198 537 — — 0.07 — 8.02 15.4 — 1,970 — — — 5.6 — 243 — 19.6 — — — 371 83.3 — — — 16.3 6.46 — — 7.88 — 1.36 16.4 — — — — — — — 116 — — — — 70.2 — — — 3,700
10 — — 210 177 — — 0.08 — 8.76 8.63 — 57.7 — — — 3.73 — 144 — 5.39 — — — 360 2.25 — — — 3.5 7.24 — — 8.83 — 1.52 0.33 — — — — — — — 130 — — — — 44.6 — — — 1,180
1.61 — — 11.6 426 — — 0 — 0.24 8.65 — 2,150 — — — 2.54 — 129 — 16.6 — — — 55.9 91.2 — — — 14.7 0 — — 0 — 0 18.1 — — — — — — — 0 — — — — 34.1 — — — 2,960
11.6 — — 222 603 — — 0.08 — 8.99 17.3 — 2,210 — — — 6.28 — 273 — 22 — — — 416 93.4 — — — 18.2 7.24 — — 8.83 — 1.52 18.4 — — — — — — — 130 — — — — 78.7 — — — 4,150
Note: Figures may not sum to totals because of independent rounding; —, data not collected. Source: From Hutson, S.S. and others, 2004, Estimated Use of Water in the United States in 2003. U.S. Geological Survey Circular 1268, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
7-256
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7O.171 U.S. Private Aquaculture — Trout and Catfish Production and Value: 1990–2002 Item Trout Foodsize Number sold Total weight Total value of sales Average price received Percent sold to processors Catfish Foodsize Number sold Total weight Total value of sales Average price received Fish sold to processors Avg. price paid by processors Processor sales Avg. price received by processors Inventory (Jan 1)
Unit
1990
1995
1997
1998
1999
2000
2001
2002
Millions Mil lb Mil dol Dol lb
67.8 56.8 64.6 1.14
60.2 55.6 60.8 1.09
59.3 56.9 60.7 1.07
57.6 57.9 60.3 1.04
61.0 60.2 64.7 1.07
58.5 59.2 63.7 1.08
54.5 56.9 64.4 1.13
50.2 54.5 58.3 1.07
Percent
58
68
63
62
68
70
68
69
Millions Mil lb Mil dol Dol /lb
272.9 392.4 305.1 0.78
321.8 481.5 378.1 0.79
391.8 569.6 406.8 0.71
409.8 601.4 445.4 0.74
424.5 635.2 464.7 0.73
420.1 633.8 468.8 0.74
406.9 647.5 410.7 0.63
405.8 673.7 378.5 0.56
Mil lb
360.4
446.9
524.9
564.4
596.6
593.6
597.1
630.6
Cents/lb
75.8
78.6
71.2
74.3
73.7
75.1
64.7
56.8
Mil lb Cents/lb
183.1 224.1
227.0 240.3
261.8 226.0
281.4 229.0
292.7 234.0
297.2 236.0
296.4 226.0
317.6 207.0
9.4
10.9
11.9
10.8
12.6
13.6
15.0
12.3
Mil lb
Note: 67.8 represents 67,800,000. Periods are from Sept 1 of the previous year to Aug 31 of stated year. Data are for foodsize fish, those over 12 in. long. Source:
From U.S. Census Bureau, Statistical Abstract of the United States. 2004–2005, www.census.gov.
Original Source:
From U.S. Dept. of Agriculture, National Agricultural Statistics Service, Trout Production released February; Catfish Production released February; and Catfish Processing released February. Also in annual.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-257
Top Ten Recreational Species - Harvest (A1 + B1) Versus Commercial Harvest - 2003 Striped Bass Dolphinfish Red Drum(1) Bluefish Spotted Seatrout Summer Flounder Atlantic Croaker Scup Sheephead King Mackerel 0%
20%
40% Commercial
60%
80%
100%
Recreational
Top Ten Commercial Species Versus Recreational Harvest - 2003 Atlantic Mackerel Goosefish(1) Albacore Tuna(1) Skates(1) Atlantic Croaker Atlantic Cod Silver Hake King Salmon Haddock Summer Flounder 0%
20%
40% Commercial
60% 80% Recreational
100%
Figure 7O.27 Top ten recreational species versus commercial harvest/top ten commercial species versus recreational harvest, 2003. (From U.S. Department of Commerce, NOAA, and (1) less than 1 percent National Marine Fisheries Service, 2004, Fisheries of the United States 2003, www.st.nmfs.gov.)
q 2006 by Taylor & Francis Group, LLC
7-258
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7O.172 World Aquaculture and Commercial Catches by Area of Fish, Crustaceans, and Mollusks, 2001–2002 2001 Country Marine Areas Atlantic Ocean Northeast Northwest Eastern central Western central Southeast Southwest Mediterranean and Black Sea Indian Ocean Eastern Western Pacific Ocean Northeast Northwest Eastern central Western central Southeast Southwest Antarctic Inland Areas Africa Asia Europe North America South America Oceania Total
Aquaculture
2002
Catch
Total
Aquaculture
Metric tons Live-Weight
Catch
Total
Metric tons Live-Weight
1,315,707 108,149 251 85,094 2,680 52,877 367,777
11,143,204 2,240,365 3,929,630 1,686,404 1,648,084 2,287,502 1,570,335
12,458,911 2,348,514 3,929,881 1,771,498 1,650,764 2,340,379 1,938,112
1,307,923 104,761 342 99,919 2,675 71,793 339,264
11,048,962 2,245,008 3,373,623 1,764,352 1,701,440 2,089,660 1,550,099
12,356,885 2,349,769 3,373,965 1,864,271 1,704,115 2,161,453 1,889,363
432,253 30,563
4,877,380 3,981,292
5,309,633 4,011,855
432,048 44,074
5,100,261 4,243,330
5,532,309 4,287,404
134,724 11,286,336 60,875 640,227 633,595 93,343 —
2,759,090 22,550,874 1,860,373 10,103,215 12,653,427 752,661 120,159
2,893,814 33,837,210 1,921,248 10,743,442 13,287,022 846,004 120,159
141,812 12,063,628 63,540 538,639 611,092 106,053 —
2,702,885 21,436,229 2,037,267 10,510,202 13,765,143 739,868 144,158
2,844,697 33,499,857 2,100,807 11,048,841 14,376,235 845,921 144,158
366,787 21,053,159 479,242 414,512 227,141 3,803 37,789,095
2,051,183 5,734,686 347,242 174,959 368,803 21,219 92,862,087
2,417,970 26,787,845 826,484 589,471 595,944 25,022 130,651,182
405,320 22,295,148 467,769 448,661 250,864 3,246 39,798,571
2,092,924 5,722,141 354,270 170,614 377,313 20,905 93,190,654
2,498,244 28,017,289 822,039 619,275 628,177 24,151 132,989,225
Note: Data for marine mammals and aquatic plants are excluded. Source: From U.S. Census Bureau, Statistical Abstract of the United States. 2004–2005, www.census.gov. Original Source: From Food and Agrculture Organizaiton of the United Nations (FAO).
q 2006 by Taylor & Francis Group, LLC
Total Capture and Aquaculture Production for All Species (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Marine Aquaculture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Aquaculture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Marine Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
72,900
99,449
129,429
2,136
5,020
14,240
2,632
8,025
21,372
63,018
80,101
85,153
5,114
6,303
8,665
Asia (Excl. Middle East) Armenia Azerbaijan Bangladesh Bhutan
29,517
44,556
74,156
1,404
3,700
11,481
1,973
6,774
19,663
23,602
30,786
37,521
2,539
3,296
5,491
— — 648 0.3
7 45 862 0.3
2 17 1,643 0.3
— — 6 —
— — 19 —
— — 66 —
— — 86 —
4 2 177 0.03
1 0.1 588 0.03
— — 116 —
— — 255 —
— — 325 —
— — 441 0.3
2 44 412 0.3
1 17 663 0.3
Cambodia China Georgia India Indonesia Japan
34 4,437 — 2,412 1,812 10,377
104 13,200 105 3,830 3,072 10,279
332 41,392 2 5,752 4,889 5,738
— 422 — 4 25 461
0 2,051 — 34 115 700
1 9,361 — 94 147 714
0.1 910 — 363 164 94
6 4,418 1 1,048 373 97
14 15,113 0.1 1,999 654 60
3 2,743 — 1,493 1,366 9,691
34 5,833 103 2,258 2,291 9,374
38 14,696 2 2,784 3,775 4,896
30 362 — 552 256 131
63 898 0.1 490 292 107
279 2,223 0.02 875 313 68
Kazakhstan Korea, Dem People’s Rep Korea, Rep Kyrgyzstan Lao People’s Dem Rep
— 1,410
86 1,394
35 270
— 6
— 48
— 63
— 3
11 6
1 4
— 1,332
— 1,290
— 184
— 69
76 50
34 20
2,207 — 24
2,733 1 28
2,274 0.1 71
299 — —
361 — —
285 — —
1 — 1
14 1 10
12 0.1 41
1,868 — —
2,334 — —
1,970 — —
39 — 23
24 0.3 19
6 0.1 30
Malaysia Mongolia Myanmar Nepal Pakistan
750 0.4 580 4 299
977 0.2 738 14 480
1,418 0.4 1,156 30 643
85 — — — 0
47 — 0 — 0.04
109 — 5 — 0.1
4 — 3 1 5
10 — 8 9 11
46 — 99 15 17
655 — 429 — 251
919 — 593 — 369
1,259 — 857 — 446
6 0.4 148 2 43
1 0.2 137 5 101
3 0.4 195 15 179
Philippines Singapore Sri Lanka Tajikistan Thailand
1,586 16 186 — 1,194
2,209 13 191 4 2,822
2,300 10 294 0.2 3,631
13 0.2 0.01 — 74
81 2 1 — 198
82 4 5 — 445
195 0 1 — 44
302 0 5 4 104
312 1 4 0.1 271
1,153 16 164 — 1,691
1,595 11 158 — 2,389
1,761 5 252 — 2,709
224 1 21 — 105
231 0.1 27 0.3 131
145 0 33 0.1 206
Turkmenistan Uzbekistan
— —
47 27
11 8
— —
— —
— —
— —
2 22
0.1 5
— —
— —
— —
— —
45 4
11 3 (Continued)
7-259
World
q 2006 by Taylor & Francis Group, LLC
WATER USE
Table 7O.173 Capture and Aquaculture Production Totals for Marine and Inland Fisheries
7-260
Table 7O.173
(Continued) Total Capture and Aquaculture Production for All Species (thousand metric tons) 1979– 1981
1989– 1991
Inland Aquaculture Production (thousand metric tons)
Marine Aquaculture Production (thousand metric tons)
1999– 2001
1979– 1981
1989– 1991
1999– 2001
1979– 1981
1989– 1991
1999– 2001
Marine Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
585
963
1,941
7
39
97
91
124
402
403
665
1,273
84
135
170
Europe Albania Austria Belarus Belgium Bosnia and Herzegovina
12,622 9 4 — 47 —
21,829 10 4 19 41 —
18,138 3 3 6 32 3
546 0.1 — — — —
871 2 — — — —
1,608 0.2 — — — —
198 0.2 3 — 0.1 —
601 0.5 4 16 1 —
459 0.1 3 6 2 —
11,713 6 — — 47 —
19,798 6 — — 40 —
15,661 2 — — 29 0
165 3 1 — 0.00 —
559 2 1 2 1 —
410 1 0.4 1 1 3
Bulgaria Croatia Czech Rep Denmark Estonia
108 — — 1,878 —
73 — — 1,747 377
12 29 24 1,526 110
0 — — 0.4 —
0 — — 6 0.1
0.04 4 — 7 0
11 — — 19 —
9 — — 33 1
4 4 19 36 0.3
95 — — 1,858 —
62 — — 1,707 372
6 21 — 1,483 107
1 — — 0.2 —
2 — — 0.4 4
2 0.02 4 0.2 3
Finland France Germany Greece Hungary
157 787 579 105 35
159 854 371 143 31
171 867 285 197 20
2 174 9 0.02 —
14 197 23 7 —
13 207 25 89 —
3 24 25 2 24
5 45 45 2 18
3 54 42 3 13
99 586 526 94 —
91 608 293 131 —
120 603 196 101 —
53 2 21 9 12
49 4 9 3 13
35 2 23 3 7
Iceland Ireland Italy Latvia Lithuania
1,534 145 498 — —
1,354 237 548 479 416
1,904 358 512 129 103
0.03 5 52 — —
2 24 109 — —
3 51 164 — —
0.02 0.5 24 — —
0.2 1 42 4 5
1 1 49 0 2
1,533 140 413 — —
1,350 208 385 474 407
1,900 305 293 128 99
0.5 0.1 8 — —
1 4 13 0.3 4
0.2 1 5 1 2
Macedonia, FYR Moldova, Rep Netherlands Norway Poland
— — 381 2,540 625
— 8 499 1,945 498
2 1 588 3,166 261
— — 95 9 —
— — 86 142 —
— — 73 493 —
— — 0.1 — 11
— 6 1 — 27
1 1 6 — 35
— — 285 2,530 603
— — 408 1,803 456
— — 507 2,672 210
— — 2 0.4 10
— 1 3 1 15
0.2 0.3 2 1 16
Portugal Romania
260 182
327 159
203 17
0.1 —
5 —
6 —
0.5 36
2 37
1 10
259 129
321 107
196 2
0 16
0 15
0 5
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Vietnam
7,733
3,992
—
0.3
1
—
179
77
—
7,196
3,646
—
358
269
—
—
4
—
—
0.01
—
—
3
—
—
0.4
—
—
1
—
—
2
—
—
—
—
—
1
—
—
—
—
—
1
Slovenia Spain Sweden Switzerland Ukraine United Kingdom
— 1,371 230 4 0 867
— 1,378 254 5 1,016 856
3 1,415 340 3 146 936
— 198 0.2 — 0 1
— 196 5 — 0.5 38
0.1 282 3 — 0.04 146
— 11 1 0.2 0 2
— 21 4 1 77 15
1 33 3 1 32 13
— 1,144 226 — — 862
— 1,151 244 — 901 800
2 1,091 332 — 379 773
— 18 2 4 — 1
— 10 2 3 38 3
0.2 9 1 2 5 4
Middle East & N. Africa Afghanistan Algeria Egypt Iran, Islamic Rep Iraq
1,407
2,148
3,432
0.1
4
76
45
111
385
1,220
1,765
2,535
141
268
437
1 48 140 60 45
1 90 302 268 21
1 101 701 414 23
— 0 — —
— 0.03 0.5 — —
— 0.04 30 4 —
— — 19 9 4
— 0.3 61 24 2
— 0.2 273 40 2
— 48 34 47 27
— 90 79 201 2
— 101 140 256 13
1 0 86 4 14
1 0 162 42 17
1 0 258 114 9
Israel Jordan Kuwait Lebanon Libyan Arab Jamahiriya
29 0.04 3 2 10
24 0.4 5 2 24
25 1 6 4 33
— — — — —
0.1 — 0 — —
3 — 0.2 — —
12 — — 0.05 —
15 0.05 0 0.1 0.1
17 1 0.04 0.3 0.1
13 0.04 3 2 10
7 0.01 5 2 24
4 0.2 6 4 33
4 0 0 0 0
2 0.4 0 0.01 0
2 0.4 0 0.02 0
Morocco Oman Saudi Arabia Syrian Arab Rep Tunisia
335 80 26 4 60
562 118 44 6 90
910 121 55 14 97
0.1 — 0 — 0.1
0.4 0 0.1 — 1
1 2 3 — 1
0.01 — — 1 0
0.05 — 2 3 0.1
1 — 4 6 1
335 80 26 1 60
560 118 43 2 89
907 119 48 3 95
1 0 0 2 0
2 0 0 2 0
2 0 0 5 1
Turkey United Arab Emirates Yemen
417 66
401 93
605 113
0 0
2 0
30 0
1 —
4 0
40 0
387 66
356 93
490 113
29 0
40 0
45 0
73
77
127
—
—
—
—
—
—
73
77
127
0
0
0
Sub-Saharan Africa Angola Benin Botswana Burkina Faso
3,173
3,929
5,122
0.4
3
8
7
23
44
1,999
2,309
3,296
1,166
1,594
1,775
110 37 1 7
129 38 1 7
222 37 0.1 8
— — — —
— — — —
— — — —
— — — 0
— — — 0.01
— — — 0.01
102 4 — —
122 8 — —
216 8 — —
7 33 1 7
8 30 1 7
6 29 0.1 8 (Continued)
q 2006 by Taylor & Francis Group, LLC
7-261
—
WATER USE
Russian Federation Serbia and Montenegro Slovakia
7-262
Table 7O.173
(Continued) Total Capture and Aquaculture Production for All Species (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Aquaculture Production (thousand metric tons)
Marine Aquaculture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
1979– 1981
1989– 1991
1999– 2001
Marine Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Capture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
13
16
12
—
—
—
—
0.04
0.1
—
—
—
13
16
12
Cameroon Central African Rep Chad Congo Congo, Dem Rep
81 13
70 13
111 15
— —
— —
— —
0.04 0.1
0.1 0.1
0.1 0.1
61 —
48 —
59 —
20 13
22 13
53 15
62 30 107
65 47 165
84 43 209
— — —
— — —
— — —
— 0 —
— 0.2 1
— 0.2 0.4
— 19 1
— 21 3
— 18 4
62 11 106
65 26 162
84 25 205
Coˆte d’Ivoire Equatorial Guinea Eritrea Ethiopia Gabon
88 3 — 3 20
92 4 — 5 21
76 5 10 16 47
— — — — —
— — — — —
— — — — —
— — — — 0
0.2 — — 0.04 0
1 — — 0 0.4
71 3 — 0.2 19
68 3 — 1 19
64 4 10 0 36
18 0 — 3 2
24 0.4 — 4 2
11 1 0 16 10
Gambia Ghana Guinea Guinea-Bissau Kenya
13 237 20 4 53
22 374 45 5 183
31 468 90 5 196
— — — — 0.0
0.1 — — — 0.1
— — — — 0
— 0.3 — — 0.2
0 0.4 0 — 1
0 5 0 — 1
10 197 19 4 5
19 316 42 5 9
29 389 86 5 7
3 40 1 0.01 47
3 58 3 0.2 173
3 75 4 0.2 189
Lesotho Liberia Madagascar Malawi Mali
0.02 13 56 59 82
0.03 10 100 70 70
0.04 13 139 44 103
— — — — —
— — 0.02 — —
— — 5 — —
0.02 0 0.1 0.1 —
0.02 0 0.2 0.2 0.02
0.01 0.02 2 1 0.05
— 9 17 — —
— 6 71 — —
— 9 102 — —
0 4 39 59 82
0.01 4 29 69 70
0.03 4 30 43 103
Mauritania Mozambique Namibia Niger Nigeria
35 34 10 9 263
70 32 163 4 295
80 35 573 16 474
— — — — 0.2
— — 0.02 — 1
— — 0.04 — —
— — — — 6
— 0.02 — 0.03 15
— 0 0.01 0.02 24
29 31 10 — 149
64 29 162 — 192
75 25 571 — 308
6 4 0.1 9 108
6 4 1 4 86
5 10 2 16 142
Rwanda Senegal Sierra Leone Somalia
1 228 52 12
3 307 58 23
7 407 70 20
— 0.1 — —
— — — —
— — — —
0.02 0 0 —
0.1 0.01 0.02 —
0.3 0.2 0.03 —
— 213 38 12
— 290 43 22
— 381 56 20
1 15 14 0.1
2 18 15 0.4
7 25 14 0.2
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Burundi
905
639
666
0.01
2
3
—
2
2
904
635
661
1
1
1
Sudan Tanzania, United Rep Togo Uganda Zambia Zimbabwe
28 213
32 373
55 327
— —
— —
— —
— —
0.2 0.4
1 0.2
1 37
1 54
5 52
27 176
30 319
48 274
9 171 47 13
15 224 68 24
23 223 71 13
— — — —
— — — —
— — — —
— — 0.03 0.1
0.02 0.1 2 0.2
0.1 1 4 0.2
6 — — —
10 — — —
18 — — —
4 171 47 13
5 224 66 24
5 222 66 13
North America Canada United States
5,225 1,395 3,718
7,485 1,608 5,713
6,596 1,160 5,270
100 3 97
142 35 107
242 118 123
83 1 82
248 5 242
345 13 333
4,926 1,340 3,474
7,005 1,519 5,321
5,939 990 4,784
116 51 65
91 48 42
69 39 30
C. America & Caribbean Belize Costa Rica Cuba Dominican Rep El Salvador
1,742
1,912
1,972
1
16
63
10
28
92
1,676
1,721
1,703
54
147
115
2 18 168 10 16
2 18 184 20 10
44 43 114 13 15
— — 1 — —
0.3 0.3 2 0.1 0.5
4 2 1 0.3 0.2
— 0.03 1 0 —
0 1 6 0.3 0.01
— 8 53 2 0.1
2 17 160 8 14
2 17 161 18 6
40 32 55 10 12
0.03 0.3 6 2 2
0 0.4 14 1 4
0 1 5 1 2
Guatemala Haiti Honduras Jamaica Mexico
4 5 7 9 1,280
6 5 19 45 1,416
27 5 19 44 1,367
— — 0.1 — 0
1 — 3 0 6
2 — 8 0 39
0.01 — 0.01 0.03 9
0.2 — 0.2 3 16
3 — 1 4 21
4 5 6 9 1,228
4 5 16 8 1,269
16 5 11 6 1,210
0.5 0.3 0.1 0.2 43
2 0.4 0.04 0.4 125
7 0.5 0.1 0.5 97
Nicaragua Panama Trinidad and Tobago
7 175 4
5 162 9
30 196 10
0 0.2 —
0.1 3 —
5 2 —
0 0 —
0 0.3 0
0.01 1 0.01
7 175 4
4 158 9
24 193 10
0.1 0 0
0.2 0.02 0
1 0.02 0
South America Argentina Bolivia Brazil Chile Colombia Ecuador Guyana Paraguay Peru
8,237 438 5 801 2,948 78 595 33 3 3,027
15,274 561 6 814 5,885 113 496 38 12 6,878
17,226 973 6 923 4,793 184 645 53 25 9,033
10 — — 0.2 1 0.03 9 — — 1
123 0 — 2 28 5 84 0.02 — 4
549 0.02 — 37 409 11 79 0.2 — 4
5 0.1 — 4 0.1 0.2 0.4 0 — 0.5
32 0.3 0.4 19 4 4 1 0.03 0.1 2
208 1 0.4 139 2 49 7 0.4 0.1 4
7,960 427 — 630 2,947 30 585 32 — 3,011
14,810 550 — 601 5,853 74 410 37 — 6,837
16,124 944 — 552 4,383 98 559 51 — 8,990
262 11 5 167 0 48 0.2 1 3 15
309 10 6 193 0.02 30 1 1 12 35
345 27 6 195 0.00 26 0.4 1 25 35
WATER USE
South Africa
(Continued) 7-263
q 2006 by Taylor & Francis Group, LLC
7-264
Table 7O.173
(Continued) Total Capture and Aquaculture Production for All Species (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
Inland Aquaculture Production (thousand metric tons)
Marine Aquaculture Production (thousand metric tons) 1979– 1981
1989– 1991
1999– 2001
1979– 1981
1989– 1991
Marine Capture Production (thousand metric tons)
1999– 2001
1979– 1981
1989– 1991
Inland Capture Production (thousand metric tons)
1999– 2001
1979– 1981
1989– 1991
1999– 2001
3
7
18
—
—
0.2
—
0
0.1
3
6
17
0.1
0.4
0.2
Uruguay Venezuela
125 179
119 335
108 405
— 0
— 0.3
0 8
— 0.3
0 0.5
0.04 5
125 167
118 313
106 364
0.4 12
0.3 21
2 28
Oceania Australia Fiji New Zealand Papua New Guinea Solomon Islands
419 136 21 149 42
788 215 30 379 26
1,246 240 43 654 95
11 8 — 3 —
47 12 0.01 35 0
124 37 1 84 0
1 1 0 — —
2 1 0.02 0.2 0.01
4 3 0.3 0.5 0.01
396 126 21 146 34
718 199 26 344 12
1,095 199 35 568 81
11 1 1 1 8
22 2 4 1 14
22 2 6 1 14
35
51
38
—
0
0.01
—
0
0
35
51
38
0
0
0
Developed Developing
29,330 33,012
41,007 56,915
31,968 95,919
1,118 954
1,762 3,145
2,689 11,459
387 1,935
1,011 6,808
894 20,306
27,407 26,087
37,300 41,612
27,765 56,110
418 4,035
935 5,350
620 8,044
Note: All figures are three year averages for the range of years specified. Numbers in this table are reported with varying precision: values greater than 0.5 thousand metric tons are rounded to the nearest whole number, values between 0.05 and 0.5 thousand metric tons are rounded to the nearest tenth (one decimal place), value between 0.005 and 0.05 are rounded to the nearest hundredth (two decimal places), and “0” represents a value of less than 0.005 thousand metric tons. Variable Definitions and Methodology. Total Capture and Aquaculture Production for All Species includes both capture and aquaculture production of fish, crustaceans, molluscs, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from inland, brackish and marine waters. For each country, the four sub-categories of production (Marine Aquaculture, Inland Aquaculture, Marine Capture, and Inland Capture) listed in this table should sum to Total Capture and Aquaculture Production for All Species. Marine Aquaculture Production data include fish, crustaceans, molluscs, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from marine and brackish environments. The harvest from inland waters is not included. Aquaculture production is defined by FAO as “the farming of aquatic organisms, including fish, molluscs, crustaceans, and aquatic plants. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators, etc. [It] also implies ownership of the stock being cultivated.” Aquatic organisms that are exploitable by the public as a common property resource are not included in the aquaculture production. Inland Aquaculture production data include fish, molluscs, crustaceans, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from inland waters, such as lakes and rivers. The harvest from marine areas is not included. Some inland lakes are saltwater, thus the data include not only freshwater species but also saltwater species. Aquaculture production is defined by FAO as “the farming of aquatic organisms, including fish, molluscs, crustaceans, and aquatic plants. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators, etc. [It] also implies ownership of the stock being cultivated.” Aquatic organisms that are exploitable by the public as a common property resource are not included in the aquaculture production. Marine Capture Production data include fish, crustaceans, molluscs, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from marine and brackish environments. The harvest from inland waters is not included. Capture production data refer to the nominal catch of fish, crustaceans, molluscs, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from marine, brackish, and inland waters. The harvest from aquaculture and other kind of farming are excluded. Inland Capture Production data include fish, molluscs, crustaceans, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from inland waters, such as lakes and rivers. The harvest from marine areas is not included. Some inland lakes are saltwater, thus the data include not only freshwater species but also saltwater species. Capture production data refer to the nominal catch of fish, crustaceans, molluscs, aquatic mammals, and other aquatic animals, taken for commercial, industrial, recreational and subsistence purposes from marine, brackish, and inland waters. The harvest from aquaculture and other kind of farming are excluded. q 2006 by Taylor & Francis Group, LLC q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Suriname
WATER USE
Statistics for aquatic plants are excluded from country totals. For a more detailed listing of species groups represented in the table, please refer to the original source at fao.org/waicent/faostat/agricult/fishitems-e-e.html. Data include all quantities caught for both food and feed purposes but exclude discards. The harvest of fish, crustaceans and molluscs are expressed in live weight, that is the nominal weight of the aquatic organisms at the time of capture. Aquatic organisms included in the FAO FISHSTAT capture production database have been classified according to approximately 1290 commercial species items, further arranged within the 50 groups of species constituting the nine divisions of the FAO International Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP). Most fisheries statistics are collected by FAO from official national reports. When these data are missing or considered unreliable, FAO estimates fishery production based on regional fishery organizations, project documents, industry magazines, or statistical interpolations. Fishery production statistics were revised completely by FAO in the 1990s. At this time, FAO estimated missing data points, updated taxonomical classifications, and discriminated more clearly between aquaculture and capture fisheries production. Fisheries production statistics typically refer to the calendar years (January 1–December 31) with exception of data from Antarctic waters, which use a split year (July 1–June 30). Frequency of Update by Data Providers. FAO publishes updated data sets annually for FishStat. This table represents data through the year 2001; data were acquired by WRI in May, 2003. Data Reliability and Cautionary Notes. While the FAO data set provides the most extensive, global time series of fishery statistics since 1970, there are some problems associated with the data. Funding for the development and maintenance of fisheries statistics at the national level has been decreasing in real terms since 1992, while the demand is growing for a variety of global statistics on discards, fish inventories, aquaculture, and illegal activites. Country-level data are often submitted with a 1–2 year delay, and countries are declaring an increasing percentage of their catch as “unidentified fish.” As a result, species-item totals frequently underestimate the real catch of individual species. Stock assessment working groups can more accurately estimate the composition of a catch; however, due to financial constraints, these groups are rare, especially in developing countries. Statistics from smaller artisanal and subsistence fisheries are particularly sparse. FAO states that “general trends are probably reliably reflected by the available statistics.but the annual figures and the assessments involve a certain degree of uncertainty and small changes from year to year are probably not statistically significant.” These statistics provide a good overview of regional fisheries trends. However, when reviewing the state of fisheries stocks, evaluating food security, etc., these data should be used with caution and supplemented with estimates from regional organizations, academic literature, expert consultations, and trade data. For more information, please consult Fishery Statistics: Reliability and Policy Implications, published by the FAO Fisheries Department and available on-line at fao.org/fi/statist/ naturechina/30jan02.asp. Source: From World Resources Institute, Earth Trends Environmental Information, Coastal and Marine Ecosystems, www.earthtrends.wri.org. Original Source: Fishery Information, Data and Statistics Unit, Food and Agriculture Organization of the United Nations (FAO). 2003. FISHSTAT Plus: Universal software for fishery statistical time series, Version 2.3 (available on-line at fao.org/fi/statist/FISOFT/FISHPLUS.asp); Total production dataset. Rome: FAO.
7-265
q 2006 by Taylor & Francis Group, LLC
7-266
Table 7O.174 World-Fisheries and Aquaculture
Marine Catcha (annual average)
State
Metric Tons (000) 1998–2000
Percent Change since 1988–1990
Metric Tons (000) 1998–2000
Percent Change since 1988–1990
Trade in Fish and Fish Productsc (annual average mil US$)
Total Aquaculture Production (annual average)
Freshwater Catchb (annual average)
Metric Tons (000) 1998–00
Percent Change since 1988–1990
Exports 1998–2000
Imports 1998–2000
Food Supply from Fish and Fish Products (kg/person/yr)d 1997–1999
Fish Protein as a Percent of All Animal Protein 1997–1999
Number of Fishers 2000
Number of Decked Fishery Vessels 1995e
Population within 100 km of the Coast (Percent) 1995
81,601.9 36,527.8
2 20
9,550.7 5,751.2
31 61
33,179.7 26,625.3
63 62
52,548.9 15,235.0
57,624.7 20,418.1
16.0 18.0
16 28
34,501,411 28,890,352
1,256,841 1,057,966
39 38
— 0.0 179.6 — 36.4
— (67) 27 — 25
1.0 14.8 754.6 0.3 184.1
(63) (70) 47 — 212
0.7 0.2 597.4 0.0 14.5
— — 69 67 62
0.3 1.7 313.6 — 35.3
1.0 1.3 2.5 — 3.1
0.5 0.9 10.2 — 12.0
1 1 47 — 35
244f 1,500f 1,320,480 450f 73,425g
6 — 61 — —
0 56 55 0 24
China Georgia India Indonesia Japan
14,395.9 2.2 2,726.5 3,624.7 4,836.3
170 (99) 33 69 (52)
2,367.1 0.2 753.5 375.3 285.1
188 (60) 48 18 (3)
22,722.0 0.1 2,039.2 722.5 763.0
73 — 52 37 (5)
3,081.3 0.3 1,221.4 1,582.2 756.2
1,315.0 1.6 24.0 69.7 14,406.3
24.5 1.3 4.7 19.0 65.4
21 2 14 56 45
12,233,128h 1,900f 5,958,744f 5,118,571 260,200
432,674 82 56,600 67,325 360,747
24 39 26 96 96
Kazakhstan Korea, Dem People’s Rep Korea, Rep Kyrgyzstan Lao People’s Dem Rep
0.0 190.2 1,968.3 — —
(83) (87) (16) — —
23.3 20.0 16.4 0.1 26.3
(70) (66) (59) (79) 34
1.2 67.9 317.9 0.1 31.2
— 23 (30) — 73
13.2 69.6 1,346.6 — 0.0
13.3 5.6 1,037.6 2.0 1.4
1.9 9.4 47.3 0.7 10.0
2 36 39 1 31
16,000f 129,000f 176,928j 154f 15,000f
1,970 2,900 76,801 — —
4 93 100 0 6
Malaysia Mongolia Myanmar Nepal Pakistan
1,201.8 — 772.7 — 448.3
42 — 33 — 28
20.4 0.4 166.2 13.8 173.9
74 91 21 131 78
146.8 — 90.7 13.6 17.6
65 — 93 48 50
189.6 0.2 162.0 0.2 141.9
262.6 0.0 1.0 0.3 0.4
57.0 0.1 16.0 1.1 2.5
35 0 45 3 3
100,666f 0 610,000f 50,000f 272,273
17,965 — 140 — 5,064
98 0 49 0 9
Philippines Singapore Sri Lanka Tajikistan Thailand
1,719.0 6.5 255.3 — 2,654.6
14 (44) 67 — 14
146.4 0.04 32.7 0.1 206.5
(37) (68) 4 (81) 77
342.7 4.3 10.2 0.1 664.5
(5) 55 45 — 61
408.7 413.6 103.5 — 4,180.5
109.2 483.9 66.5 0.2 841.3
29.6 — 21.2 0.1 28.2
42 — 54 0 37
990,872f 364 146,188 200f 354,495
3,220 110 2,990 — 17,600
100 100 100 0 39
Turkmenistan Uzbekistan Vietnam
0.0 — 1,217.6
(93) — 92
9.4 3.0 156.3
(79) (40) 19
0.6 5.9 463.6
(338) (257) 66
0.4 0.0 1,080.4
0.1 2.0 12.1
1.7 0.5 18.1
2 1 37
611i 4,800 1,000,000
45 — 140
8 3 83
Europe Albania Austria Belarus Belgium Bosnia and Herzegovina
15,710.1 2.1 — — 29.7 0.0
(24) (73) — — (27) —
674.7 0.8 0.6 0.5 0.5 2.5
(18) (64) 4 (84) 4 —
1,726.0 0.2 2.9 5.6 1.4 —
13 — (37) (203) 49 —
19,063.8 6.5 9.0 16.4 471.9 —
22,875.8 4.5 189.7 72.8 1,059.0 8.3
20.6 2.4 14.3 8.5 — 1.9
10 1 4 4 — 2
855,333 1,590j 2,300 5,000f 544j 3,500f
105,324 2 — — 156 —
40 97 2 0 83 47
Bulgaria Croatia Czech Rep Denmark
10.2 20.6 — 1,497.3
(87) — — (15)
1.9 0.4 4.3 1.5
37 — — (71)
5.2 6.3 18.5 42.9
(102) — — 19
7.2 40.9 27.7 2,856.3
15.5 38.1 79.4 1,804.9
4.2 5.2 12.7 26.0
3 5 5 10
1,483f 65,151l 2,243 6,711j
30 305 — 4,285
q 2006 by Taylor & Francis Group, LLC
29 38 0 100
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
World Asia (Excl. Middle East) Armenia Azerbaijan Bangladesh Bhutan Cambodia
110.2
(72)
4.4
(36)
0.2
(286)
86.6
37.6
19.7
12
13,346
186
86
Finland France Germany Greece Hungary
108.7 573.2 212.6 104.4 —
28 (10) (33) (16) —
56.4 3.3 24.5 4.4 7.3
(16) (40) 96 15 (58)
15.6 266.8 66.8 73.1 11.7
(14) 11 (1) 92 (60)
19.1 1,104.7 1,044.5 248.5 8.1
127.5 3,275.8 2,403.1 301.0 45.7
33.6 31.3 14.9 26.0 4.3
14 9 7 11 2
5,879 26,113g 4,358 19,847 4,900
3,838 6,586 2,406 18,375 —
73 40 15 99 0
Iceland Ireland Italy Latvia Lithuania
1,799.9 290.2 298.7 120.2 57.8
13 38 (24) (77) (85)
0.3 2.6 5.2 1.2 1.9
(57) (52) (61) (43) (63)
3.8 45.8 208.8 0.4 1.7
50 52 34 (853) (152)
1,352.0 356.4 370.5 54.4 40.0
80.3 113.5 2,705.7 35.9 56.1
93.1 16.0 24.2 15.4 22.0
30 6 11 11 15
6,100 8,478i 48,770 6,571 4,700
826 1,353 16,000 351 131
100 100 79 75 23
Macedonia, FYR Moldova, Rep Netherlands Norway Poland
— — 513.6 2,726.8 211.1
— — 27 59 (60)
0.2 0.3 2.1 1.4 19.5
— (86) (47) (56) 23
1.5 1.1 101.4 458.2 33.1
— (537) 5 74 21
0.6 2.0 1,490.2 3,668.3 266.8
8.8 4.6 1,237.0 635.4 293.7
5.1 3.3 19.7 52.2 12.8
5 4 9 26 11
8,472 40f 3,743 23,552 8,640i
— — 1,008 8,664 445
14 9 93 95 14
Portugal Romania Russian Federation Serbia and Montenegro Slovakia
206.6 3.0 3,700.0 0.4 —
(37) (98) (50) — —
0.04 5.1 488.3 1.2 1.7
(23) (75) (10) — —
7.1 9.4 68.6 4.3 0.8
(12) (369) (179) — —
276.6 5.4 1,269.1 0.8 2.2
936.1 38.8 230.6 44.0 36.3
65.7 2.5 21.7 2.9 8.3
23 2 15 1 5
25,021 8,519 316,300 1,429f 215
9,265 33 3,584 5 —
93 6 15 8 0
Slovenia Spain Sweden Switzerland Ukraine United Kingdom
1.8 1,133.8 363.2 — 409.3 830.6
— (8) 51 — (57) (1)
0.2 8.9 3.6 1.8 11.6 4.2
— (6) (46) (49) (81) 81
1.1 316.3 5.5 1.1 31.0 148.2
— 26 (55) 26 (193) 69
6.4 1,582.1 472.0 3.1 56.4 1,421.8
28.5 3,399.6 688.9 374.1 109.6 2,294.9
6.9 44.4 30.4 18.3 11.4 21.8
3 18 14 7 10 10
231 75,434f 2,783 522 120,000f 17,847
11 15,243 1,240 — 444 9,562
61 68 88 0 21 99
Middle East & N. Africa Afghanistan Algeria Egypt Iran, Islamic Rep Iraq
2,348.0 — 98.2 156.0 248.3 12.5
24 — (1) 81 23 204
411.0 1.1 0.0 219.8 140.3 10.1
74 10 — 44 424 (43)
355.9 — 0.3 235.3 35.2 3.8
62 — (35) 75 25 16
— — 2.7 1.6 48.2 —
756.3 — 11.2 157.3 56.1 0.6
7.2 — 3.5 11.2 4.4 1.5
9 — 6 19 7 8
746,955 1,500f 26,151i 250,000 138,965 12,000f
21,990 — 2,184 — 900 8
47 0 69 53 24 6
Israel Jordan Kuwait Lebanon Libyan Arab Jamahiriya
4.2 0.1 5.8 3.6 33.0
(57) — (19) 122 45
1.8 0.4 1.0 0.0 0.0
8 10 127 — —
19.1 0.5 0.3 0.4 0.1
23 87 — 75 50
8.2 — 5.3 — 35.0
133.2 23.4 16.4 24.2 11.3
23.4 5.1 12.1 8.0 6.1
9 5 5 7 7
1,535f 721 670j 9,825 9,500f
384 — 917 5 93
97 29 100 100 79
Morocco Oman Saudi Arabia Syrian Arab Rep Tunisia
782.3 110.1 49.1 2.6 90.9
43 (18) 10 81 (4)
1.8 0.0 0.1 4.6 1.0
16 — — 282 291
2.2 5.1 5.4 6.7 1.5
89 22 78 58 37
815.3 46.6 8.6 — 94.7
11.3 5.3 108.5 48.9 13.1
8.4 — 7.6 1.8 9.4
17 — 6 2 12
106,096f 28,003j 25,360 11,292 50,815
3052 390 23 5 17
65 88 30 34 84
Turkey United Arab Emirates Yemen Sub-Saharan Africa Angola
491.3 112.5 122.3 2806.5 186.4
5 22 64 15 50
28.9 0.1 0.0 1808.0 6.0
(12) 82 — 13 (25)
66.2 0.0 — 37.2 —
93 — — 25 —
96.4 36.8 26.1 1,691.4 10.8
62.7 27.5 4.8 845.5 14.3
8.0 25.9 6.8 7.6 10.4
10 12 22 25 28
33,614f 15,543 12,200 1,995,694i 30,364f
9,710 4,050 71 71 580
58 85 63 21 29
n
q 2006 by Taylor & Francis Group, LLC
7-267
(Continued)
WATER USE
Estonia
(Continued)
Marine Catcha (annual average)
State
7-268
Table 7O.174
Metric Tons (000) 1998–2000
Percent Change since 1988–1990
Metric Tons (000) 1998–2000
Trade in Fish and Fish Productsc (annual average mil US$)
Total Aquaculture Production (annual average)
Freshwater Catchb (annual average)
Percent Change since 1988–1990
Metric Tons (000) 1998–00
Percent Change since 1988–1990
Exports 1998–2000
Imports 1998–2000
Food Supply from Fish and Fish Products (kg/person/yr)d 1997–1999
Fish Protein as a Percent of All Animal Protein 1997–1999
Number of Fishers 2000
Number of Decked Fishery Vessels 1995e
Population within 100 km of the Coast (Percent) 1995
13.8 — — —
6 — — —
24.5 0.2 8.1 10.9
(6) (89) 7 (18)
0.0 — 0.0 0.1
— — — 60
2.2 0.1 0.0 0.2
4.7 5.3 1.4 0.1
8.7 6.1 1.9 2.3
26 5 6 23
61,793 2,620f 8,300 7,030j
5 — — —
62 0 0 0
Cameroon Central African Rep Chad Congo Congo, Dem Rep
59.6 — — 20.6 3.9
21 — — (6) 97
50.0 14.8 84.0 25.5 194.4
138 14 31 10 21
0.1 0.1 — 0.2 0.4
(117) 20 — (29) (66)
2.7 — — 2.4 0.5
30.2 0.4 — 19.7 42.5
12.3 4.2 6.9 21.4 6.7
31 9 14 46 34
24,500 5,410 300,000g 10,500 108,400
25 — — 26 23
22 0 0 25 3
Coˆte d’Ivoire Equatorial Guinea Eritrea Ethiopiak Gabon
65.5 4.5 7.0 — 40.4
(2) 34 — — 114
11.5 1.0 0.0 15.2 10.1
(59) 162 — 365 421
1.0 — — 0.0 0.4
86 — — — —
171.0 2.8 1.0 — 14.0
171.7 2.1 0.1 — 7.1
14.2 — 0.9 0.2 49.6
42 — 3 1 37
19,707f 9,218 14,500f 6,272 8,259g
63 5 — — 39
40 72 73 1 63
Gambia Ghana Guinea Guinea-Bissau Kenya
26.5 384.6 78.9 5.1 6.0
69 24 108 3 (29)
2.5 77.9 4.0 — 191.7
(7) 24 33 — 25
0.0 0.5 0.0 — 0.3
— 18 — — (188)
4.9 81.1 23.1 3.1 36.8
1.3 97.3 14.3 0.4 6.3
24.1 28.1 11.2 4.4 5.4
64 66 51 14 10
2,000f 230,000f 10,707f 2,500f 59,565
— 500 15 8 32
91 42 41 95 8
Lesotho Liberia Madagascar Malawi Mali
— 8.5 98.9 — —
— 3 47 — —
0.0 4.1 30.0 43.8 102.1
494 (1) (10) (41) 55
0.00 0.0 5.9 0.4 0.1
— — 96 55 80
— 0.0 77.0 0.2 0.4
— 1.9 6.4 0.3 2.2
0.0 5.9 7.5 4.5 8.8
0 26 16 34 15
60f 5,143 83,310j 42,922j 70,000i
— 14 65 57 —
0 58 55 0 0
Mauritania Mozambique Namibia Niger Nigeria
32.9 25.8 305.0 — 316.4
(51) (16) 191 — 66
5.0 10.8 1.5 11.4 136.9
(17) 215 49 226 46
— 0.0 0.0 0.0 22.6
— — 50 (100) 35
70.1 84.0 266.1 0.7 4.8
0.5 8.8 — 0.6 231.6
10.6 2.7 11.6 0.9 8.8
11 21 20 3 32
7,944g 20,000f 2,700f 7,983f 481,264g
126 291 218 — 318
40 59 5 0 26
Rwanda Senegal Sierra Leone Somalia South Africa
— 378.8 49.5 20.7 596.4
— 42 32 (2) (34)
6.6 27.3 16.3 0.2 0.9
287 47 (0) (50) 10
0.2 0.1 0.03 — 4.4
65 82 33 — 47
— 287.6 14.6 3.7 259.0
0.1 7.0 3.3 — 64.1
1.0 32.1 13.6 2.9 6.9
7 45 61 2 8
5,690 55,547j 17,990f 18,900f 10,500f
— 180 27 12 600
0 83 55 55 39
Sudan Tanzania, United Rep Togo Uganda Zambia Zimbabwe
5.7 49.6 15.4 — — —
336 (4) 34 — — —
44.0 280.0 5.2 267.5 68.0 14.0
52 (18) 20 19 6 (41)
1.0 0.2 0.1 0.2 4.2 0.2
88 (30) 89 80 70 11
0.4 66.8 1.8 33.8 0.4 2.2
0.4 0.4 14.2 0.1 0.9 9.3
1.7 8.9 13.4 8.9 7.4 2.7
2 32 51 28 25 10
27,700j 92,529 14,120 57,862j 23,833f 1,804i
— 30 3 — 235 —
3 21 45 0 0 0
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Benin Botswana Burkina Faso Burundi
5457.1 933.5 4365.8
(19) (37) (15)
419.4 68.9 350.5
(19) (56) (3)
559.8 109.1 450.7
32 70 23
5,682.6 2,575.9 2,847.5
10,840.9 1,318.9 9,511.3
21.5 23.8 21.3
12 10 7
303,784 8,696 290,000f
45,480 18,280 27,200
41 24 43
C. America & Caribbean Belize Costa Rica Cuba Dominican Rep El Salvador
1582.5 37.8 23.2 58.4 9.2 7.5
(7) — 40 (68) (44) 2
117.0 0.0 1.0 5.0 0.6 2.6
(25) (50) 233 (61) (57) (5)
132.8 2.5 9.0 51.5 1.2 0.3
(697) 92 95 86 80 (119)
1,529.2 27.7 177.4 90.1 0.9 31.9
423.0 2.4 27.4 26.9 52.4 6.9
8.8 13.0 5.9 13.1 12.6 2.9
14 13 5 16 10 4
446,390 1,872 6,510j 11,865f 9,286 24,534
7,161 12 1,003 1,250 — 80
55 100 100 100 100 99
Guatemala Haiti Honduras Jamaica Mexico
13.7 4.6 10.8 6.5 1130.8
324 (9) (25) (18) (9)
6.9 0.5 0.1 0.5 98.5
477 58 115 1 (27)
4.0 — 8.3 4.0 47.7
79 — 62 23 60
29.9 3.4 40.2 13.0 694.0
7.6 7.4 14.8 56.0 125.2
1.6 3.1 2.9 25.5 9.6
3 11 3 20 8
17,275 4,700f 21,000i 23,465 262,401
85 1 280 5 3,100
61 100 65 100 29
Nicaragua Panama Trinidad and Tobago
21.7 182.2 9.1
444 27 12
1.2 0.0 0.0
813 21 —
4.8 5.3 0.02
99 28 —
87.1 232.8 11.8
6.5 15.4 7.7
3.3 11.0 14.2
7 8 14
14,502 13,062 7,297
280 695 19
72 100 100
South America Argentina Bolivia Brazil Chile Colombia
14649.6 1006.7 0.9 520.5 4150.8 101.7
1 101 (64) (16) (26) 71
345.7 24.7 5.2 180.9 0.0 25.1
6 133 59 (6) (97) (37)
318.2 1.3 0.4 132.7 319.6 53.6
61 77 21 86 94 88
4,980.1 824.7 0.1 168.7 1,694.4 195.1
687.7 86.5 5.6 357.0 54.1 86.5
8.9 8.5 1.7 6.5 17.6 4.5
12 4 2 4 10 5
784,051 12,320 7,754f 290,000f 50,873 129,410i
13,106 800 — 1,450 563 167
49 45 0 49 82 30
Ecuador Guyana Paraguay Peru Suriname
466.4 51.2 — 7773.0 16.0
(18) 44 — 15 209
0.4 0.7 25.0 34.6 0.2
(32) (16) 124 2 (27)
112.0 0.5 0.1 7.6 0.2
33 92 44 34 —
915.7 38.6 0.1 852.2 6.9
16.1 0.7 2.3 15.4 4.1
7.0 59.9 5.5 20.3 24.6
9 47 4 21 24
162,870g 6,571 4,469g 66,361 3,628f
515 55 — 7,710 22
61 77 0 57 87
Uruguay Venezuela
117.9 389.9
11 37
2.2 46.7
878 41
0.0 11.1
— 94
115.0 126.9
13.4 45.5
8.6 18.3
4 19
4,023 44,302i
958 866
78 73
Oceania Australia Fiji New Zealand Papua New Guinea Solomon Islands
1110.1 214.6 27.9 594.9 47.1 46.8
75 13 17 97 271 (0)
23.0 4.1 5.5 1.6 11.7 0.0
(1) 9 18 (20) (7) —
127.6 33.9 1.3 90.4 0.0 0.0
62 62 99 69 — —
1,681.7 885.7 28.5 682.2 31.7 10.2
629.9 518.8 16.8 55.9 11.5 0.2
22.7 21.3 32.1 30.3 15.1 52.5
25 7 21 13 31 82
85,324 13,800i 8,985j 1,928 16,000f 11,000m
1,917 246 — 1,375 35 130
Developed Developing
27258.0 53010.2
(30) 32
1439.3 8110.6
(21) 49
3180.4 26702.3
12 60
27,094.4 24,010.7
48,905.7 8,571.6
23.7 13.8
10 20
1,467,401 32,640,482
516,259 740,322
WATER USE
North America Canada United States
87 90 100 100 61 100
45
Note: Negative values are shown in parentheses.
q 2006 by Taylor & Francis Group, LLC
7-269
(Continued) Variable Definitions and Methodology Marine and Freshwater Catch data refer to marine and freshwater fish caught or trapped for commercial, industrial, and subsistence use (catches from recreational activities are included where available); they include fish caught by a country’s fleet anywhere in the world. Statistics for mariculture, aquaculture, and other kinds of fish or shellfish farming are not included in the country totals. Marine fish includes demersal fish (flounders, halibuts, soles, etc; cods, hakes, haddocks, etc; redfishes, basses, congers, etc; and sharks, rays, chimeras, etc.), pelagic fish (jacks, mullets, sauries, etc; herrings, sardines, anchovies, etc; tunas, bonitos, billfishes, etc; and mackerels, snooks, cutlassfishes, etc.), and diadromous fish caught in marine areas (i.e. sturgeons, paddlefishes, river eels, salmons, trouts, smelt, shads, and miscellaneous diadromous fishes), marine molluscs (squids, cuttlefishes, octopuses, etc; abalones, winkles, conchs, etc; oysters; mussels; scallops, pectens, etc; clams, cockles, arkshells, etc; and miscellaneous marine molluscs) and marine crustaceans (sea-spiders, crabs, etc; lobsters, spiny-rock lobsters, etc; squat lobsters; shrimps, prawns, etc; krill, planktonic crustaceans, etc; and miscellaneous marine crustaceans).
7-270
Freshwater fish includes fish caught in inland waters (i.e. carps, barbels, and other cyprinids; tilapias and other cichlids; and miscellaneous and freshwater fishes), and diadromous fish caught in inland waters, as well as freshwater molluscs and crustaceans. Catch figures are the national totals averaged over a 3-year period. Data are represented as nominal catches, which are the landings converted to a live-weight basis, that is, the weight when caught. Fish catch does not include discards. Landings for some countries are identical to catches. Catch data are provided annually to the FAO Fisheries Department by national fishery offices and regional fishery commissions. Some recent data are provisional. If no data are submitted, FAO uses the previous year’s figures or makes estimates based on other information. Aquaculture is defined by FAO as "the farming of aquatic organisms, including fish, molluscs, and crustaceans. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, and protection from predators, etc. [It] also implies ownership of the stock being cultivated¥" Aquatic organisms that are exploitable by the public as a common property resource are included in the harvest of fisheries. FAO’s global collection of aquaculture statistics from questionnaires to national fishery offices was begun in 1984. FAO’s aquaculture database has 337 "species items" that are grouped into six categories. Total Aquaculture Production includes marine, freshwater, and diadromous fishes, molluscs and crustaceans cultivated in marine, inland, or brackish environments. For a detailed listing of species, please refer to the original source. Aquaculture production is expressed as an annual average over a 3-year period.
Food Supply from Fish and Fish Products is defined as the quantity of both freshwater and marine fish, seafood and derived products available for human consumption. Data were calculated by taking a country’s fish production plus imports of fish and fishery products, minus exports, minus the amount of fishery production destined to non-food uses (i.e. reduction to meal, etc.), and plus or minus variations in stocks. The quantity of fish and fish products consumed include the bones and all parts of the fish. Fish Protein as a Percent of Animal Protein Supply is defined as the quantity of protein from both freshwater and marine fish, seafood and derived products available for human consumption as a percentage of all available animal protein. FAO calculates food supply for all products, including fish, in its food balance sheets. FAOSTAT maintains statistics on apparent consumption of fish and fishery products, in live weight, for 220 countries in a collection of Supply/Utilization Accounts (SUAs). For each product, the SUA traces supplies from production, imports, and stocks to its utilization in different forms–addition to stocks; exports; animal feed; seed; processing for food and non-food purposes; waste (or losses); and lastly; as food available for human consumption, where appropriate. For more detailed information, please refer to the following article: "Supply Utilization Accounts and Food Balance Sheets in the Context of a National Statistical System", maintained on-line by FAO at fao.org/es/ESS/Suafbs.htm. Number of Fishers includes the number of people employed in commercial and subsistence fishing (both personnel on fishing vessels and on shore), operating in freshwater, brackish and marine areas, and in aquaculture production activities. Data on people employed in fishing and aquaculture are collected by the FAO through annual questionnaires submitted to the national reporting offices of the member countries. When possible, other national and/or regional published sources are also used to estimate figures. Please refer to the original source for further information on collection methodologies (available online at fao.org/fi/statist/fisoft/fishers.asp) or to the following publication: Numbers of Fishers 1970–1997, FAO Fisheries Circular N.929 Revision 2, Fishery Information, Data and Statistics Unit (FAO, Rome, 1999). Decked Fishery Vessels include trawlers, purse seiners, gill netters, long liners, trap setters, other seiners and liners, multipurpose vessels, dredgers, and other fishing vessels. Data on undecked vessels are being collected by FAO, but are not yet available. Fleet data are collected by the FAO through questionnaires submitted to the national reporting offices of the member countries. Other national or regional published sources, such as the registry of fishing vessels, are also used to estimate fleet size. The flag of the vessel is used to assign its nationality. However, in many cases vessels are flagged in one country, while the ownership, landings, and trade resides with another nation. This approach is referred to as a "flag of convenience," and fishers or corporations use this method to facilitate registration of a vessel (i.e. some countries have fewer registration restrictions), to gain access to fish in different Exclusive Economic Zones, or to avoid having to follow set fishing quotas in their own nation, among other reasons. Population within 100 km of the Coast refers to estimates of the percentage of the population living within the coastal area based on 1995 population figures. These estimates were calculated using a data set that provides information on the spatial distribution of the world’s human population on a 2.5-minute grid. Populations are distributed according to administrative districts, which vary in scale, level, and size from country to country. A 100-km coastal buffer was used to calculate the number of people in the coastal zone for each country. The percentage of the population in the coastal zone was calculated from 1995 United Nations Population Division totals for each country.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Trade in Fish and Fish Products expresses the value associated with imports and exports of fish that are live, fresh, chilled, frozen, dried, salted, smoked, or canned, and other derived products and preparations. Trade includes freshwater and marine fish, aquaculture, molluscs and crustaceans, meals, and solubles. Aquatic plants are not included. Figures are the national totals averaged over a 3-year period in millions of U.S. dollars. Exports are generally on a free-on-board basis (i.e. not including insurance or freight costs). Imports are usually on a cost, insurance, and freight basis (i.e. insurance and freight costs added in). Regional totals are calculated by adding up imports or exports of each country included in that region. Therefore, the regional totals should not be taken as a net trade for that region, since there may also be trade occurring within a region. To collate national data, FAO uses its International Standard Statistical Classification of Fishery Commodities. Commodities produced by aquaculture and other kinds of fish farming are also included.
Data Reliability and Cautionary Notes Marine Catch, Freshwater Catch, Total Aquaculture Production, and Trade in Fish and Fishery Products. While the FAO data set provides the most extensive, global time series of fishery statistics since 1 970, there are some problems associated with the data. Funding for the development and maintenance of fisheries statistics at the national level has been decreasing in real terms since 1992, while the demand is growing for a variety of global statistics on discards, fish inventories, aquaculture, and illegal activities. Country-level data are often submitted with a 1–2 year delay, and countries are declaring an increasing percentage of their catch as "unidentified fish." Stock assessment working groups can more accurately estimate the composition of a catch; however, due to financial constraints, these groups are rare, especially in developing countries. Statistics from smaller artisanal and subsistence fisheries are particularly sparse. In addition, fishers sometimes underreport their catches because they have not kept within harvest limits established to manage the fishery. In some cases, catch statistics are inflated to increase the importance of the fishing industry to the national economy. FAO states that "general trends are probably reliably reflected by the available statistics¥ but the annual figures and the assessments involve a certain degree of uncertainty and small changes from year to year are probably not statistically significant." The quality of the aquaculture production estimates varies because many countries lack the resources to adequately monitor landings within their borders. These statistics provide a good overview of regional fisheries trends. However, when reviewing the state of fisheries stocks, evaluating food security, etc., these data should be used with caution and supplemented with estimates from regional organizations, academic literature, expert consultations, and trade data. For more information, please consult Fishery Statistics: Reliability and Policy Implications, published by the FAO Fisheries Department and available on-line at fao.org/fi/statist/nature-china/30janO2.asp.
WATER USE
Frequency of Update by Data Providers The Food and Agriculture Organization updates the FishStat database annually. Updates can be found on the FishStat website at fao.org/fi/statist/FISOFT/FISHPLUS.asp. The FAO updates the data on Food Supply variables annually; the most recent updates incorporated in these tables are from July 2002. Data on the number of fishers and decked fishery vessels are updated by the Fishery Information, Data and Statistics Unit (FIDI) of FAO.
Food Supply from Fish and Fishery Products and Fish Protein as a Percent of Total Protein: Food supply is different from actual consumption. Figures do not account for discards (including bones) and losses during storage and preparation. Supply data should only be used to assess food security if it is combined with an analysis of food availability and accessibility. Per capita supply averages can also mask disparate food availability within a particular country. Nonetheless, the data are subject to "vigorous consistency checks." According to FAO, the food supply statistics, "while often far from satisfactory in the proper statistical sense, do provide an approximate picture of the overall food situation in a country and can be useful for economic and nutritional studies, for preparing development plans and for formulating related projects." For more information see Food Balance Sheets: A Handbook, maintained on-line by FAO at fao.org/DOCREP/003/X9892E/X9892E00.htm. Number of Fishers: Numbers presented in this table are gross estimates. Many countries do not submit data on fishers, or submit incomplete information; therefore the quality of these data is poor. Apart from the gaps and the heavy presence of estimates due to non-reporting, the information provided by national statistical offices may not be strictly comparable since different definitions and methods are used in assessing the number of people engaged in fishing and aquaculture. FAO recognizes that these statistics are incomplete and may not accurately reflect the current level of employment in the fishing sector. Specifically, it is aware that some countries failed to report for several years, that those which reported regularly have occasionally omitted fish farmers from the total or included subsistence and sport fishers as well as family members living on fishing. Decked Fishery Vessels: As with the number of fishers, FAO recognizes that these fleet statistics are incomplete and may not accurately reflect current world fishing capacity. These data may include vessels that are no longer in operation. The quality of the estimates varies because many countries lack the resources to adequately monitor and report on fleet size. For further information, please refer to the original source or to "Fishery Fleet Statistics, 1970 1975, 1980 1985, 1989–95" Bulletin of Fishery Statistics No. 35 (FAO, Rome, 1998). a b c d e f g h i j k m n
q 2006 by Taylor & Francis Group, LLC
(Continued)
7-271
l
Includes marine fish and diadromous fish caught in marine areas, as well as molluscs and crustaceans. Includes freshwater fish and diadromous fish caught in inland waters or low-salinity marine areas, as well as molluscs and crustaceans. Includes trade of all marine and freshwater catch, and total aquaculture production, excluding aquatic plants. Per capita values are expressed on a live-weight equivalent basis, which means that all parts of the fish, including bones, are taken into account when estimating consumption of fish and fishery products. Includes fishing vessels such as trawlers, long liners, etc., and nonfishing vessels such as motherships, fish carriers, etc. Data were collected between 1991 and 1996. Data are for 1997. Does not include Taiwan or Hong Kong. Data are for 1998. Data are for 1999. Data for Ethiopia before 1993 include Eritrea. Since independence, data include a substantial but unquantifiable number of sport fishers. Data are for 1980. Per capita fish consumption in Iceland includes quantities of fish and fish products destined for the export market.
Original Source:
Catch, Aquaculture Production, and Trade in Fish and Fishery Products data produced by the Fishery Information, Data and Statistics Unit, Food and Agriculture Organization of the United Nations (FAO). 2002. FISHSTAT Plus: Universal software for fishery statistical time series, Version 2.3 Rome: FAO. Available on-line at: fao.org/fi/statist/FISOFT/FISH PLUS. asp Food Supply Variables are from the Food and Agriculture Organization of the United Nations (FAO), FAOSTAT on-line statistical service. 2002. Rome: FAO. Available on-line at: http://apps.fao.org. Data on the Number of Fishers are from the Food and Agriculture Organization of the United Nations (FAO), Fishery Information, Data and Statistics Unit (FIDI) December, 1999. Number of People within 100 km of the Coast is derived from the Center for International Earth Science Information Network (CIESIN), World Resources Institute, and International Food Policy Research Institute. 2000. Gridded Population of the World, Version 2 alpha Columbia University, Palisades, NY. Available online at: sedac.ciesin.org/plue/gwp. Population (used to calculate per capita values): Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2002. World Population Prospects: The 2000 Revision. Data set on CD-ROM New York: United Nations.
7-272
Source: From World Resources Institute, Earth Trends Environmental Information, Coastal and Marine Ecosystems, www.earthtrends.wri.org.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-273
Table 7O.175 World Aquaculture Production (thousand MT)
Average Annual Rate of Growth (%)
World/Region
1980
1990
2001
1980–1990
1990–2001
World Developed countries Industrialized countries Transition economies Developing countries Latin America and the Caribbean Near East and North Africa Sub-Saharan Africa East and Southeast Asia South Asia Oceania developing North America developing Continental groupings Africa Asia Latin America Caribbean North America Oceania Europe
4,707 1,685 1,419 266 3,022 27
13,080 2,867 2,327 540 10,212 193
37,851 3,652 3,419 233 34,199 1,112
10.8 5.5 5.1 7.3 12.9 21.7
10.1 2.2 3.6 K7.3 11.6 17.3
34 7 2,490 464 0 0
104 13 8,668 1,235 1 0
498 50 29,603 2,931 4 0
11.8 6.6 13.3 10.3 0.0 0.0
15.4 12.8 11.8 8.2 13.8 0.0
26 3,553 25 2 172 12 916
81 10,806 179 13 357 42 1,602
402 33,514 1,051 62 613 124 2,086
12.0 11.8 22.0 18.9 7.6 13.1 5.7
15.7 10.8 17.4 15.1 5.1 10.3 2.4
Note: Aquaculture excludes aquatic plants. Source: From Food and Agriculture Organization of the United Nations (FAO), 2003, Summary of Food and Agricultural Statistics, www.fao.org. Reprinted with permission.
Table 7O.176 World Capture Fisheries Production (thousand MT) World/Region World Developed countries Industralized countries Transition economies Developing countries Latin America and the Caribbean Near East and North Africa Sub-Saharan Africa East and Southeast Asia South Asia Oceania developing North America developing Continental groupings Africa Asia Latin America Caribbean North America Oceania Europe
Average Annual Rate of Growth (%)
1980
1990
2001
1980–1990
1990–2001
67,706 37,476 26,873 10,603 30,229 9,530
85,507 38,138 27,414 10,725 47,368 16,082
92,356 28,428 23,546 4,881 63,928 16,800
2.4 0.2 0.2 0.1 4.6 5.4
0.7 K2.6 K1.4 K6.9 2.8 0.4
1,360 2,233 13,720 3,136 133 116
2,027 3,517 21,235 4,157 184 167
3,174 4,391 33,254 5,792 355 163
4.1 4.6 4.5 2.9 3 4
4.2 2.0 4.2 3.1 6.1 K0.2
3,663 27,519 9,279 251 5,001 411 21,284
5,075 36,226 15,818 264 7,359 741 19,947
6,890 45,262 16,620 180 6,157 1,108 15,963
3.3 2.8 5.5 0.5 3.9 6.1 K0.6
2.8 2.0 0.5 K3.4 K1.6 3.7 K2.0
Source: From Food and Agriculture Organization of the United Nations (FAO), 2003, Summary of Food and Agricultural Statistics, www.fao.org. Reprinted with permission. q 2006 by Taylor & Francis Group, LLC
7-274
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 7O.177 Capture Fisheries and Aquaculture — Leading Species in 2001 Species Capture Fisheries Anchoveta (Peruvian anchovy) Alaska pollock (Walleye poll.) Chilean jack mackerel Atlantic herring Japanese anchovy Skipjack tuna Blue whiting (Poutassou) Chub mackerel Capelin Largehead hairtail Other species Aquaculture Pacific cupped oyster Grass carp (White amur) Silver carp Common carp Japanese carpet shell Bighead carp Crucian carp Yesso scallop Nile tilapia Atlantic salmon Other species
Production (thousand MT)
% of World Production
7,213 3,136 2,509 1,953 1,837 1,836 1,823 1,799 1,671 1,472 67,107
7.8 3.4 2.7 2.1 2.0 2.0 2.0 1.9 1.8 1.6 72.7
4,110 3,636 3,546 2,849 2,091 1,663 1,527 1,196 1,109 1,025 15,097
10.9 9.6 9.4 7.5 5.5 4.4 4.0 3.2 2.9 2.7 39.9
Source: From Food and Agriculture Organization of the United Nations (FAO), 2003, Summary of Food and Agricultural Statistics, www.fao.org. With permission.
q 2006 by Taylor & Francis Group, LLC
WATER USE
7-275
SECTION 7P
WATER IN FOODS
Table 7P.178 Water Content in Various Foods Tortilla chips Potato chips Peanut butter Popcorn Margarine Butter Croissant Jam Bagel Parmesan cheese Angel food cake Maple syrup Swiss cheese Whole wheat bread English muffin Cheese cake Pizza Brie Apple pie Frankfurter Cream cheese Hamburger Whipping cream Flounder, baked Veal, chuck Chicken, roasted Ice cream Turkey, roasted Tuna, in water Salmon, broiled Ham, smoked, cooked Halibut, broiled Liver, beef, raw Sour cream Lima beans, cooked Avocado Corn, cooked Ricotta cheese Banana Egg, boiled Cottage cheese Potato, raw Clams Grapes Pear Oysters Orange Beets, raw Apple juice Milk, whole Yoghurt, whole milk Carrots, raw Broccoli, raw Mushroom, raw Cantaloupe Milk, skim Beer Asparagus, cooked Tomato, raw Squash, boiled Lettuce, raw
1 2 2 4 14 16 23 29 29 30 32 33 38 38 42 46 48 49 51 54 54 55 58 58 59 60 61 62 62 63 66 67 70 71 71 73 74 74 74 75 79 80 81 81 84 85 87 87 88 88 88 88 89 90 90 91 92 94 94 96 96
Note: Percentage by Weight. Source: From Calculated from weight and water content values given in Bowes and Church’s Food Values of Portions Commonly Used, 14th ed., Harper & Row. q 2006 by Taylor & Francis Group, LLC
CHAPTER
8
Water Quality Katherine L. Thalman and James M. Bedessem
CONTENTS Section Section Section Section Section Section Section Section Section Section Section
8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K
Water Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . Drinking Water Quality Standards United States . Drinking Water Standards — World . . . . . . . . . . Municipal Water Quality. . . . . . . . . . . . . . . . . . . Industrial Water Quality . . . . . . . . . . . . . . . . . . . Irrigation Water Quality . . . . . . . . . . . . . . . . . . . Water Quality for Aquatic Life . . . . . . . . . . . . . . Recreational Water Quality . . . . . . . . . . . . . . . . . Water Quality for Livestock and Aquaculture . . . Water Treatment Processes . . . . . . . . . . . . . . . . . Water Treatment Facilities . . . . . . . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . .
. . . . . . . . . . .
.. .. .. .. .. .. .. .. .. .. ..
8-1 8-33 8-54 8-71 8-105 8-115 8-129 8-176 8-183 8-189 8-218
8-1
q 2006 by Taylor & Francis Group, LLC
8-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 8A
WATER QUALITY
Table 8A.1 Summary of Quality Inputs to Surface and Groundwaters Contributing Factor
Principal Quality Input to Surface Waters
Meteorological water
Dissolved gases native to atmosphere Soluble gases from man’s industrial activities Particulate matter from industrial stacks, dust, and radioactive particles Material washed from surface of earth, e.g., Organic matter such as leaves, grass, and other vegetation in all stages of biodegradation Bacteria associated with surface debris (including intestinal organisms) Clay, silt, and other mineral particles Organic extractives from decaying vegetation Insecticide and herbicide residues
Domestic use (exclusive of industrial)
Undecomposed organic matter, such as garbage ground to sewer, grease, etc. Partially degraded organic matter such as raw wastes from human bodies Combination of above two after biodegradation to various degrees of sewage treatment Bacteria (including pathogens), viruses, worm eggs Grit from soil washings, eggshells, ground bone, etc. Miscellaneous organic solids, e.g., paper, rags, plastics, and synthetic materials Detergents
Industrial use
Biodegradable organic matter having a wide range of oxygen demand Inorganic solids, mineral residues Chemical residues ranging from simple acids and alkalis to those of highly complex molecular structure Metal ions
Agricultural use
Increased concentration of salts and ions Fertilizer residues Insecticide and herbicide residues Silt and soil particles Organic debris, e.g., crop residue
Consumptive use (all sources)
Increased concentration of suspended and dissolved solids by loss of water to atmosphere Principal Quality Input to Groundwater
Contributing Factor Meteorological water
Gases, including O2 and CO2, N2, H2S, and H Dissolved minerals, e.g.: Bicarbonates and sulfates of Ca and Mg dissolved from earth minerals Nitrates and chlorides of Ca, Mg, Na and K dissolved from soil and organic decay residues Soluble iron, Mn, and F salts
Domestic use (principally via septic tank systems and seepage from polluted surface waters)
Detergents Nitrates, sulfates, and other residues of organic decay Salts and ions dissolved in the public water supply Soluble organic compounds
Industrial use (not much direct disposal to soil)
Soluble salts from seepage of surface waters containing industrial wastes
Agriculture use
Concentrated salts normal to water applied to land Other materials as per meteorological waters
Land disposal of solid wastes (not properly installed)
Hardness-producing leaching from ashes Soluble chemical and gaseous products or organic decay
Note: This list includes the types of things that may come from any contributing factor. Not all are present in each specific instance. Source: From McGauhey, Engineering Management of Water Quality, McGraw-Hill, Copyright 1968.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-3
Table 8A.2 Conditions That May Cause Variations in Water Quality Climatic conditions
Runoff from snowmelt—muddy, soft, high bacterial count Runoff during drought—high mineral content, hard, groundwater characteristics Runoff during floods—less bacteria than snowmelt, may be muddy (depending upon other factors listed below)
Geographic conditions
Steep headwater runoff differs from lower valley areas in ground cover, gradients, transporting power, etc.
Geologic conditions
Clay soils produce mud Organic soils or swamps produce color Cultivated land yields silt, fertilizers, herbicides, and insecticides Fractured or fissured rocks may permit silt, bacteria, etc., to move with groundwater Mineral content dependent upon geologic formations
Season of year
Fall runoff carries dead vegetation—color, taste, organic extractives, bacteria Dry season yields dissolved salts Irrigation return water, in growing season only Cannery wastes seasonal Aquatic organisms seasonal Overturn of lakes and reservoirs seasonal Floods generally seasonal Dry period, low flows, seasonal
Resource management practices
Agricultural soils and other denuded soils are productive of sediments, etc. (See third item under Geologic conditions.) Forested land and swampland yield organic debris Overgrazed or denuded land subject to erosion Continuous or batch discharge of industrial wastes alters shock loads Inplant management of waste streams governs nature of waste
Diurnal variation
Production of oxygen by planktonic algae varies from day to night Dissolved oxygen in water varies in some fashion Raw sewage flow variable within 24-hr period; treated sewage variation less pronounced Industrial wastes variable—process wastes during productive shift; different material during washdown and cleanup
Source: From McGauhey, Engineering Management of Water Quality, McGraw-Hill, Copyright 1968.
q 2006 by Taylor & Francis Group, LLC
8-4
Table 8A.3 Principal Chemical Constituents in Water — Their Sources, Concentrations, and Effects upon Usability Major Sources
Concentration in Natural Water
Effect upon Usability of Water
Silica (SiO2)
Feldspars, ferromagnesium and clay minerals, amorphous silicachert, opal
Ranges generally from 1.0 to 30 mg/L, although as much as 100 mg/L is fairly common; as much as 4,000 mg/L is found in brines
In the presence of calcium and magnesium, silica forms a scale in boilers and on steam turbines that retards heat; the scale is difficult to remove. Silica may be added to soft water to inhibit corrosion of iron pipes
Iron (Fe)
1. Natural sources Igneous rocks: Amphiboles, ferromagnesian micas, ferrous sulfide (FeS), ferric sulfide or iron pyrite (FeS2), magnetite (Fe3O4) Sandstone rocks: Oxides, carbonates, and sulfides or iron clay minerals 2. Man-made sources: Well casing, piping, pump parts, storage tanks, and other objects of cast iron and steel which may be in contact with the water Industrial wastes
Generally less than 0.50 mg/L in fully aerated water. Groundwater having a pH less than 8.0 may contain 10 mg/L; rarely as much as 50 mg/L may occur. Acid water from thermal springs, mine wastes and industrial may contain more than 6,000 mg/L
More than 0.1 mg/L precipitates after exposure to air; causes turbidity, stains plumbing fixtures, laundry and cooking utensils, and imparts objectionable tastes and colors to foods and drinks. More than 0.2 mg/L is objectionable for most industrial uses
Manganese (Mn)
Manganese in natural water probably comes most often from soils and sediments. Metamorphic and sedimentary rocks and mica biotite and amphibole hornblende minerals contain large amounts of manganese
Generally 0.20 mg/L or less. Groundwater and acid mine water may contain more than 10 mg/L. Reservoir water that has “turned over” may contain more than 150 mg/L
More than 0.2 mg/L precipitates upon oxidation; causes undesirable tastes, deposits on foods during cooking, stains plumbing fixtures and laundry and fosters growths in reservoirs, filters, and distribution systems. Most industrial users object to water containing more than 0.2 mg/L
Calcium (Ca)
Amphiboles, feldspars, gypsum, pyroxenes, aragonite, calcite, dolomite, clay minerals
As much as 600 mg/L in some western streams; brines may contain as much as 75,000 mg/L
Magnesium (Mg)
Amphiboles, olivine, pyroxenes, dolomite, magnesite, clay minerals
As much as several hundred mg/L in some western streams; ocean water contains more than 1,000 mg/L and brines may contain as much as 57,000 mg/L
Calcium and magnesium combine with bicarbonate, carbonate, sulfate, and silica to form heat-retarding, pipe-clogging scale in boilers and in other heat-exchange equipment. Calcium and magnesium combine with ions of fatty acid in soaps to form soap suds; the more calcium and magnesium, the more soap required to form suds. A high concentration of magnesium has a laxative effect, especially on new users of the supply
Sodium (Na)
Feldspars (albite), clay minerals, evaporates, such as halite (NaCl) and mirabilite (Na2SO410H2O), industrial wastes
As much as 1,000 mg/L in some western streams; about 10,000 mg/L in sea water; about 25,000 mg/L in brines
More than 50 mg/L sodium and potassium in the presence of suspended matter causes foaming, which accelerates scale formation
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Constituent
Feldspars (orthoclase and microcline), feldspathoids, some micas, clay minerals
Carbonate (CO3)
Generally less than about 10 mg/L; as much as 100 mg/L in hot springs; as much as 25,000 mg/L in brines
and corrosion in boilers. Sodium and potassium carbonate in recirculating cooling water can cause deterioration of wood in cooling towers. More than 65 mg/L of sodium can cause problems in ice manufacture
Commonly 0 mg/L in surface water; commonly less than 10 mg/L in groundwater. Water high in sodium may contain as much as 50 mg/L of carbonate Commonly less than 500 mg/L; may exceed 1,000 mg/L in water highly charged with carbon dioxide
Upon heating, bicarbonate is changed into steam, carbon dioxide, and carbonate. The carbonate combines with alkaline earths— principally calcium and magnesium—to form a crustlike scale of calcium carbonate that retards flow of heat through pipe walls and restricts flow of fluids in pipes. Water containing large amounts of biocarbonate and alkalinity are undesirable in many industries
Bicarbonate (HCO3)
Limestone, dolomite
Sulfate (SO4)
Oxidation of sulfide ores; gypsum; anhydrite; industrial wastes
Commonly less than 1,000 mg/L except in streams and wells influenced by acid mine drainage. As much as 200,000 mg/L in some brines
Sulfate combines with calcium to form an adherent, heat-retarding scale. More than 250 mg/L is objectionable in water in some industries. Water containing about 500 mg/L of sulfate tastes bitter; water containing about 1,000 mg/L may be cathartic
Chloride (Cl)
Chief source is sedimentary rock (evaporates); minor sources are igneous rocks. Ocean tides force salty water upstream in tidal estuaries
Commonly less than 10 mg/L in humid regions; tidal streams contain increasing amounts of chloride (as much as 19,000 mg/L) as the bay or ocean is approached. About 19,300 mg/L in seawater, and as much as 200,000 mg/L in brines
Chloride in excess of 100 mg/L imparts a salty taste. Concentrations greatly in excess of 100 mg/L may cause physiological damage. Food processing industries usually require less than 250 mg/L. Some industries—textile processing, paper manufacturing, and synthetic rubber manufacturing—desire less than 100 mg/L
Fluoride (F)
Amphiboles (hornblende), apatite, fluorite, mica
Concentrations generally do not exceed 10 mg/L in groundwater or 1.0 mg/L in surface water. Concentrations may be as much as 1,600 mg/L in brines
Fluoride concentration between 0.6 and 1.7 mg/L in drinking water has a beneficial effect on the structure and resistance to decay of children’s teeth. Fluoride in excess of 1.5 mg/L in some areas causes “mottled enamel” in children’s teeth. Fluoride in excess of 6.0 mg/L causes pronounced mottling and disfiguration of teeth
WATER QUALITY
Potassium (K)
(Continued)
8-5
q 2006 by Taylor & Francis Group, LLC
8-6
Table 8A.3
(Continued)
Constituent
Major Sources
Concentration in Natural Water
Effect upon Usability of Water
Atmosphere; legumes, plant debris, animal excrement, nitrogenous fertilizer in soil and sewage
In surface water not subjected to pollution, concentration of nitrate may be as much as 5.0 mg/L but is commonly less than 1.0 mg/L. In groundwater the concentration of nitrate may be as much as 1,000 mg/L
Water containing large amount of nitrate (more than 100 mg/L) is bitter tasting and may cause physiological distress. Water from shallow wells containing more than 45 mg/L has been reported to cause methemoglobinemia in infants. Small amounts of nitrate help reduce cracking of high-pressure boiler steel
Dissolved solids
The mineral constituents dissolved in water constitute the dissolved solids
Surface water commonly contains less than 3,000 mg/L; streams draining salt beds in arid regions may contain in excess of 15,000 mg/L. Groundwater commonly contains less than 5,000 mg/L; some brines contain as much as 300,000 mg/L
More than 500 mg/L is undesirable for drinking and many industrial uses. Less than 300 mg/L is desirable for dyeing of textiles and the manufacture of plastics, pulp paper, rayon. Dissolved solids cause foaming in steam boilers; the maximum permissible content decreases with increases in operating pressure
Source: From U.S. Geological Survey, 1962; amended.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Nitrate (NO3)
WATER QUALITY
8-7
Table 8A.4 Relative Abundance of Dissolved Solids in Potable Water Major Constituents (1.0 to 1000 mg/L) Sodium Calcium Magnesium Bicarbonate Sulfate Chloride Silica
a
Secondary Constituents (0.01 to 10.0 mg/L)
Minor Constituents (0.0001 to 0.1 mg/L) Antimonya Aluminum Arsenic Barium Bromide Cadmiuma Chromiuma Cobalt Copper Germaniuma Iodide Lead Lithium Manganese Molybdenum Nickel Phosphate Rubidiuma Selenium Titaniuma Uranium Vanadium Zinc
Iron Strontium Potassium Carbonate Nitrate Fluoride Boron
Trace Constituents (generally less than 0.001 mg/L) Beryllium Bismuth Ceriuma Cesium Gallium Gold Indium Lanthanum Niobiuma Platinum Radium Rutheniuma Scandiuma Silver Thalliuma Thoriuma Tin Tungstena Ytterbium Yttriuma Zirconium
These elements occupy an uncertain position in the list.
Source: From Davis and DeWiest, Hydrogeology, John Wiley & Sons, Copyright 1966.
Table 8A.5 Characteristics of Water That Affect Water Quality Characteristic
Principal Cause
Hardness
Calcium and magnesium dissolved in the water
pH (or hydrogen-ion activity)
Dissociation of water molecules and of acids and bases dissolved in water
Significance
Remarks
Calcium and magnesium combine with soap to form an insoluble precipitate (curd) and thus hamper the formation of a lather. Hardness also affects the suitability of water for use in the textile and paper industries and certain others and in steam boilers and water heating The pH of water is a measure of its reactive characteristics. Low values of pH, particularly below pH 4, indicate a corrosive water that will tend to dissolve metals and other substances that it contacts. High values of pH, particularly above pH 8.5, indicate an alkaline water that, on heating, will tend to form scale. The pH significantly affects the treatment and use of water
USGS classification of hardness (mg/L as CaCO3) 0–60: Soft 61–120: Moderately hard 121–180: Hard More than 180: Very hard
pH values: less than 7, water is acidic; value of 7, water is neutral; more than 7, water is basic
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-8
Table 8A.5
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Characteristic
Principal Cause
Significance
Remarks
Specific electrical conductance
Substances that form ions when dissolved in water
Conductance values indicate the electrical conductivity, in micromhos, of 1 cm3 of water at a temperature of 258C
Total dissolved solids
Mineral substances dissolved in water
Most substances dissolved in water dissociate into ions that can conduct an electrical current. Consequently, specific electrical conductance is a valuable indicator of the amount of material dissolved in water. The larger the conductance, the more mineralized the water Total dissolved solids is a measure of the total amount of minerals dissolved in water and is, therefore, a very useful parameter in the evaluation of water quality. Water containing less than 500 mg/L is preferred for domestic use and for many industrial processes
USGS classification of water based on dissolved solids (mg/L) Less than 1,000: Fresh 1,000–3,000: Slightly saline 3,000–10,000: Moderately saline 10,000–35,000: Very saline More than 35,000: Briny
Source: From Heath, R.C., 1984, Basic groundwater hydrology, U.S. Geological Survey Water-Supply Paper 2220.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-9
Less than 120 PPM 120 to 350 PPM More than 350 PPM
ALASKA
PUERTO RICO HAWAII Regional data not available
Regional data not available
Figure 8A.1 Dissolved solids in surface water. (From U.S. Water Resources Council, 1968.)
150 140 130 120 110 100 700 630 560 490 420 350 140 130 120 110 100 90
Stn 028015 Tennessee R. United States
J F MAM J J A S ON D Stn 075006 Ebro En Mendavia Spain
J F MAM J J A S ON D Stn 080007 Sagami R. Japan
J F MAM J J A S ON D
3050 2520 1990 1460 930 400
215 190 165 140 115 90
225 190 155 120 85 50
165 150 135 120 105 90
100 80 60 40 20 0
TDS (mg L–1)
Stn 001005 R. de la Plata Argentina J F MAM J J A S ON D Stn 054002 Chao Phrya R. Thailand
J F MAM J J A S ON D 450 380 310 Stn 033004 240 Murray Darling Australia 170 100 J F MAM J J A S ON D
33100 29240 25380 21520 17660 13800 1400 1150 900 650 400 150 1225 980 735 490 245 0
Discharge (m3 s–1)
Figure 8A.2 Seasonal variation of total dissolved solids (TDS) and water discharge at selected world river stations for selected years. (From United Nations Environment Programme, Global Environment Monitoring System Water Programme (GEMS/WATER), The annotated digital atlas of global water quality, www.gemswater.org. Reprinted with permission.)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Dissolved Oxygen
Explanation Trend in concentration in percent
0
Upward, >15
0
Upward, 0–150
500 Miles 500 km
None Downward, 0–15
Percentage of stations where 20 percent Percentage of stations where 20 percent or more of the concentrations were or more of the concentrations were less less than 6.5 mg/L than or greater than the values shown
8-10
100 90 80 70 60 50 40 30 20 10 0
Nationwide
Concentration < 6.5 mg/L Concentration deficit > 4.0 mg/L
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year 100 90 80 70 60 50 40 30 20 10 0
Land use Agriculture, 119 stations Urban, 26 stations Forest, 98 stations Range, 100 stations
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year
Downward, >15
Fecal Coliform
Explanation Trend in concentration in percent Upward, >50
0
Upward, 0−50
0
None Downward, 0−50
500 Miles 500 km
Percentage of stations where the annual average concentration was greater than 200 colonies per 100 millieliters
Percentage of stations where the annual average concentration was greater than the concentration shown
Concentration and trends in dissolved oxygen in stream water at 424 selected water-quality monitoring stations in the conterminous United States, water years 1980−89. Nationwide 100 200 colonies per 90 100 milliliters 80 1,000 colonies per 70 100 milliliters 60 50 40 30 20 10 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 Water year
Land use 100 90 80 70 60 50 40 30 20 10 0
Agriculture, 83 stations Urban, 20 stations Forest, 77 stations Range, 80 stations
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year
Downward, >50
Concentration and trends in fecal coliform bacteria in stream water at 313 selected water-quality monitoring stations in the conterminous United States, water years 1980−89.
Figure 8A.3 Concentration trends in dissolved oxygen and fecal coliform bacteria in United States rivers, 1980–1989. (From USDA, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, www.nrcs.usda.gov. Original Source: Smith, R.A., Alexander, R.B., and Lanfear, K.J., 1993, Stream water quality in the conterminous United States – status and trends of selected indicators during the 1980’s in National Water Summary 1990–91 – Stream water quality, U.S. Geological Survey Water-Supply Paper 2400, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-11
Percentage of stations where the annual average concentration was greater than the concentration shown
Total Phosphorous
Nationwide 100 90 80 70 60 No data
50
0.1 mg/L
40 30 20 10 0
No data
0.5 mg/L
1980 19811982 1983 1984 1985 1986 1987 1988 1989
Percentage of stations where the annual average concentration was greater than 0.1 mg/L
Water year
Explanation Trend in concentration in percent Upward, >50 Upward, 0−50 None Downward, 0−50 Downward, >50
0 0
500 Miles 500 km
Land use
100 90 80 No data
70 60
Agriculture,110 stations Urban, 28 stations Forest, 98 stations Range, 100 stations
No data
50 40 30 20
No data
10 0 1980 1981 1982 1983 1984 1985 1986 19871988 1989
Water year
Nitrate
HDSN
Percentage of stations where the annual average concentration was greater than the concentration shown
Concentration and trends total phosphorus in stream water at 410 selected water-quality monitoring stations in the conterminous United States, water years 1982−1989. 100
Nationwide
90 80 70 60 50 40 30
1 mg/L
20
3 mg/L
10 0
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Explanation Trend in concentration in percent Upward, >50 Upward, 0–50 None Downward, 0–50 Downward, >50
0 0
500 Miles 500 km
Percentage of stations where the annual average concentration was greater than 1 milligram per liter
Water year 100 90 80 70
Land use Agriculture, 88 stations Urban, 24 stations Forest, 82 stations Range, 89 stations
60 50 40 30 20 10 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year
Concentration and trends in nitrate in stream water at 344 selected water-quality monitoring stations in the conterminous United States, water years 1980−1989.
Figure 8A.4
Concentration trends in phosphorous, nitrate, and suspended solids in United States rivers, 1980 to 1989. (From USDA, Natural Resources Conservation Services, 1997, Water quality and agriculture, status, conditions, and trends, www.nrcs.usda.gov. Original Source: Smith, R.A., Alexander, R.B., and Lanfear, K.J., 1993, Stream water quality in the conterminous United States – status and trends of selected indicators during the 1980’s in National Water Summary 1990–91–Stream water quality, U.S. Geological Survey Water-Supply Paper 2400, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
8-12
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Percentage of stations where the annual average concentration was greater than the concentration shown
Suspended Sediment 100
Nationwide
90 80 70 60 50 40 30 20 10 0
100 mg/L 500 mg/L 1,000 mg/L
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year
Explanation Trend in concentration in percent Upward, >50 Upward, 0−50
0 0
500 Miles 500 km
None
Percentage of stations where the annual average concentration was greater than 500 mg/L
Land use 100 90 80
Agriculture, 86 stations Urban, 21 stations Forest, 77 stations Range, 81 stations
70 60 50 40 30 20 10 0
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
Water year
Downward, 0−50 Downward, >50
Concentration and trends in suspended sediment in stream water at 324 selected water-quality monitoring stations in the conterminous United States, water years 1980−1989.
Figure 8A.4
q 2006 by Taylor & Francis Group, LLC
(Continued)
WATER QUALITY
8-13
Table 8A.6 Trends of Surface-Water Quality in the United States, 1974–1981 Number of Stations with— Constituents and Properties Temperature pH Alkalinity Sulfate Nitrate-nitrite Ammonia Total organic carbon Phosphorus Calcium Magnesium Sodium Potassium Chloride Silica Dissolved solids Suspended sediment Conductivity Turbidity Fecal coliform bacteria Fecal streptococcus bacteria Phytoplankton Dissolved trace metals Arsenic Barium Boron Cadmium Chromium Copper Iron Lead Manganese Mercury Selenium Silver Zinc Note:
Increasing Trends
No Change
Decreasing Trends
Total Stations
39 74 18 82 76 31 36 39 23 50 103 69 104 48 68 44 69 42 19 2 22
218 174 207 182 203 221 230 232 198 208 173 193 164 213 183 204 193 199 216 190 234
46 56 79 40 25 30 13 30 83 46 28 42 36 41 51 41 43 18 34 78 44
303 304 304 304 304 282 279 301 304 304 304 304 304 302 302 289 305 259 269 270 300
68 4 2 32 12 6 28 5 30 8 2 1 19
228 81 15 264 152 83 258 232 250 194 201 32 251
11 1 3 7 2 6 21 76 19 2 21 0 32
307 86 20 303 166 95 307 313 299 204 224 33 302
Selected water-quality constituents and properties at NASQAN stations.
Source: From U.S. Geological Survey Water-Supply Paper 2250.
q 2006 by Taylor & Francis Group, LLC
8-14
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Suspended sediment
Suspended sediment concentration_ milligrams per liter 5685.231 to 217000.0 522.836 to 5685.231 0.0 to 522.836 0.0 to 0.0 0.0 to 0.0
Lead
Lead_water_filtered_micrograms per liter 3.249 to 29.777 0.633 to 3.249 0.0 to 0.633 0.0 to 0.0 0.0 to 0.0
Chloride
Chloride_water_filtered_milligrams per liter 272.212 to 4742.1 55.944 to 272.212 0.0 to 55.944 0.0 to 0.0 0.0 to 0.0
Nitrite plus nitrate
Nitrite plus nitrate_water_filtered_milligrams per liter as nitrogen 6.408 to 44.686 2.404 to 6.408 0.0 to 2.404 0.0 to 0.0 0.0 to 0.0
Arsenic
Arsenic_water_filtered_micrograms per liter 19.974 to 284.0 4.079 to 19.974 0.0 to 4.079 0.0 to 0.0 0.0 to 0.0
Phosphorous
Phosphorus_water_filtered_milligrams per liter 0.768 to 11.0 0.186 to 0.768 0.0 to 0.186 0.0 to 0.0 0.0 to 0.0
Figure 8A.5 United States Geological Survey NAWQA water quality thematic maps showing maximum concentrations of suspended sediment, nitrite plus nitrate, lead, arsenic, chloride, and phosphorous detected in rivers of the United States. (From United States Geological Survey, NAWQA Date Warehouse Mapper, www.maptrek.er.usgs.gov/NAWQAMapTheme/index.jsp, Maps generated in May 2005.) q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-15
Table 8A.7 Estimates of National Background Nutrient Concentrations in the United States
Nutrient Total nitrogen in streams (Data from 28 watersheds in first 20 study units) Nitrate in streams(26) Ammonia in streams(26) Nitrate in shallow groundwater(27) Total phosphorus in streams(26) Orthophosphate in shallow groundwater (Data from 47 wells in first 20 study units)
Background Concentration (mg/L) 1.0 0.6 0.1 2.0 0.1 0.02
Source: From U.S. Geological Survey, 1999, The quality of our nation’s waters, nutrients and pesticides, U.S. Geological Survey Circular 1225, http://usgs.gov.
q 2006 by Taylor & Francis Group, LLC
8-16
Table 8A.8 Water Quality of Great Salt Lake, Utah, 1850–1998 Silica (SiO2)
Calcium (Ca)
Magnesium (Mg)
Sodium (Na)
Potassium (K)
38.29 33.15 33.22 33.17 32.90
— 1.60 1.71 1.66 1.61
Lithium (Li)
— — — — —
0.17 1.05 0.16 0.17
0.27 2.52 1.23 2.76 2.75
April 1960 December 1963 May 1966 June 1976 July 1998
0.00 0.00 0.00 — —
0.12 0.09 0.09 0.17 0.23
2.91 3.29 3.80 3.47 3.52
32.71 31.02 30.56 31.29 31.67
1.71 1.86 2.22 2.66 2.16
— — 0.02 0.02 —
December 1963 May 1966 June 1976 July 1998
0.00 — — —
0.09 0.05 0.13 0.11
4.66 4.38 3.17 3.09
29.08 29.67 32.04 32.59
2.75 2.61 2.58 1.53
— 0.02 0.02 —
Note:
— — — — —
Precauseway — — — 0.09 0.05 South of causeway 0.06 0.07 0.10 — — North of causeway 0.09 0.09 — —
Sulfate (SO4)
Chloride (Cl)
Fluoride (F)
Boron (B)
Bromlum (Br)
Total Percent
5.57 6.57 6.57 6.68 5.47
55.87 55.99 56.22 55.48 57.05
— — — — —
— — — — —
— — — — —
100 100 100 100 100
6.60 9.02 7.99 7.22 6.36
55.88 54.64 65.21 55.11 56.07
— 0.00 — —
0.01 0.01 0.01 0.01 —
— — — 0.04 —
100 100 100 100 100
7.28 8.58 6.62 6.40
56.04 54.59 55.39 56.29
— 0.00 — —
0.01 0.01 0.01 —
— — 0.04 —
100 100 100 100
Composition, in percentage by weight, of dissolved ions in brine.
Source: From Modified from Arnow, Ted, 1984, Water-level and water-quality changes in Great Salt Lake, Utah, 1847–1983, U.S. Geological Survey Circ. 913; 1998 Data Utah Geological Survey met.utah.edu/jhorel/homepages/jhorel/saltlake/chemistry.html.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1850 1869 August 1892 October 1913 March 1930
Bicarbonate (AsCO3)
WATER QUALITY
8-17
30 27 Gunnison Bay at Saline gage
Salinity (percent)
24 21 18 15 12 9 6 3
Measurements made in nonconsecutive years Railroad causeway constrcted Pre-causeway
Gilbert Bay at Saltair Boat Harbor gage Post-causeway
1850 1873 1879 1889 1894 1900 1903 1907 1930 1958 1961 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
0
Figure 8A.6 Salinity in the Great Salt Lake, Utah 1950–1998. The Salinity of Great Salt Lake is determined by the amount of inflow (and its salt content) and the amount of evaporation. When there is a lot of inflow, the lake elevation increases and the salinity of the water decreases. When there is less inflow or the evaporation rate is high, the lake elevation declines and the water becomes saltier. In 1959, a solid-fill railroad causeway was constructed across the middle of the lake. The causeway divides the lake into two parts: the north part (Gunnison Bay), which receives little freshwater inflow, and the south part (Gilbert Bay), which receives almost all the inflow. For any given lake elevation, the salinity of Gunnison Bay is always greater than the salinity of Gilbert Bay. The USGS measures salinity periodically at Saltair Boat Harbor and at Promontory (Gilbert Bay) and at Saline (Gunnison Bay). (From U.S. Geological Survey, http://ut.water.usgs.gov/salinity/index.html.)
q 2006 by Taylor & Francis Group, LLC
8-18
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Atmosphere Condensation Nitrogen, oxygen carbon dioxide dissolved
Precipitation
Chlorides and sulfates of sodium, magnesium, calcium, and potassium carried with water vapor
Runoff Evporation Mineral matter retained in soil
Soil water 1. CO2 added, forming carbonic acid 2. Reaction of soil minerals with carbonic acid to form soluble bicarbonates 3. Precipitation of colloidal iron, aluminum, and silica, of carbonates as solubility limit is reached 4. Cation exchange
Outflow to ocean Carries mineral matter back Ocean Subsurface outflow to ocean
Effluent seepage
Groundwater 1. Cation exchange 2. Sulfate reduction by anaerobic bacteria substituting bicarbonate for the sulfate
Figure 8A.7 Geochemical cycle of surface and groundwater. (From U.S Geological Survey.)
q 2006 by Taylor & Francis Group, LLC
Transpiration Mineral matter largely retained in soil, partly carried off in crop plants
Phreatophytes
Evaporation
Temporary retention in mountain areas as soil water 1. CO2 dissolved in soil, Ca, Mg, Na bicarbonates added to water 2. SO4 dissolved in areas, where oxidation of sulfides is occuring 3. Connate water or soluble compounds of marine sediments added
WATER QUALITY
8-19
Table 8A.9 Natural Inorganic Constituents Commonly Dissolved in Groundwater That Are Most Likely to Affect Use of the Water Substance
Concentrations of Significance (mg/L)a
Major Natural Sources
Effect on Water Use
Bicarbonate (HCO3) and carbonate (CO3)
Products of the solution of carbonate rocks, mainly limestone (CaCO3) and dolomite (CaMgCO3), by water containing carbon dioxide
Control the capacity of water to neutralize strong acids. Bicarbonates of calcium and magnesium decompose in steam boilers and water heaters to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness
150–200
Calcium (Ca) and magnesium (Mg)
Soils and rocks containing limestone, dolomite, and gypsum (CaSO4). Small amounts from igneous and metamorphic rocks
Principal cause of hardness and of boiler scale and deposits in hotwater heaters
25–50
Chloride (Cl)
In inland areas, primarily from seawater trapped in sediments at time of deposition; in coastal areas, from seawater in contact with freshwater in productive aquifers
In large amounts, increase corrosiveness of water and, in combination with sodium, gives water a salty taste
250
Fluoride (F)
Both sedimentary and igneous rocks. Not widespread in occurrence
In certain concentrations, reduces tooth decay; at higher concentrations, causes mottling of tooth enamel
0.7–1.2b
Iron (Fe) and manganese (Mn)
Iron present in most soils and rocks; manganese less widely distributed
Stain laundry and are objectionable in food processing, dyeing, bleaching, ice manufacturing, brewing, and certain other industrial processes
FeO0.3, MnO0.05
Sodium (Na)
Same as for chloride. In some sedimentary rocks, a few hundred milligrams per liter may occur in freshwater as a result of exchange of dissolved calcium and magnesium for sodium in the aquifer materials
See chloride. In large concentrations, may affect persons with cardiac difficulties, hypertension, and certain other medical conditions. Depending on the concentrations of calcium and magnesium also present in the water, sodium may be detrimental to certain irrigated crops
69 (irrigation), 20–170 (health)c
Sulfate (SO4)
Gypsum, pyrite (FeS), and other rocks containing sulfur (S) compounds
In certain concentrations, gives water a bitter taste and, at higher concentrations, has a laxative effect. In combination with calcium, forms a hard calcium carbonate scale in steam boilers
300–400 (taste), 600–1,000 (laxative)
a b c
A range in concentration is intended to indicate the general level at which the effect on water use might become significant. Optimum range determined by the U.S. Public Health Service, depending on water intake. Lower concentration applies to drinking water for persons on a strict diet; higher concentration is for those on a moderate diet.
Source: From Heath, R.C., 1982, Basic groundwater hydrology, U.S. Geological Survey Water-Supply Paper 2220.
q 2006 by Taylor & Francis Group, LLC
8-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8A.10 Inorganic Substances Found in Groundwater Concentration (mg/L) Aluminum Ammonia Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chlorides Chromium Cobalt Copper Cyanides Fluorides Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Nitrates Nitrites Palladium Potassium Phosphates Selenium Silver Sodium Sulfates Sulfites Thallium Titanium Vanadium Zinc Source:
q 2006 by Taylor & Francis Group, LLC
0.1–1,200 1.0–900 — 0.01–2,100 2.8–3.8 less than 0.01 — 0.01–180 0.5–225 1.0–49,500 0.06–2,740 0.01–0.18 0.01–2.8 1.05–14 0.1–250 0.04–6,200 0.01–5.6 — 0.2–70 0.1–110 0.003–0.01 0.4–40 0.05–0.5 1.4–433 — — 0.5–2.4 0.4–33 0.6–20 9.0–330 3.1–211 0.2–32,318 — — — 243.0 0.1–240
From Office of Technology Assessment 1984, Protecting the nation’s groundwater from contamination, U.S. Congress, Washington DC.
WATER QUALITY
8-21
Table 8A.11 Summary of Inorganic Elements Found in Rural Water Supplies In % of Rural Households Element Mercury Iron Cadmium Lead Manganese Sodium Selenium Silver Sulfates Nitrate-N Fluoride Arsenic Barium Magnesium Chromium Boron Note: a b c
Level Exceeded (mg/L) 0.002 0.3 0.01 0.05 0.05 100 0.01 0.05 250.0 10.0 1.4 0.05 1.0 125.0 0.05
Nationwide
West
North-Central
Northeast
South
24.1 18.7 16.8 16.6 14.2 14.2 13.7 4.7 4.0 2.7 2.5 0.8 0.3 0.1
10.4 7.0 27.1 16.9a 4.7 15.0 41.3 2.1 11.7 4.0 6.2 2.1 0.0 0.5 0.0
31.8 28.2 20.7 10.8a 19.9 19.2 25.7 3.7 7.4 5.8 1.8 1.8 0.0 0.1 0.0
22.0 16.0 1.6 9.6a 16.9 6.0 0.0 4.8 0.5 0.3 0.0 0.0 0.0 0.0 0.0
25.0 17.0 17.3 23.1a 12.3 14.1 2.1 4.8 0.7 1.3 2.7 0.0 0.7 0.0 0.0
b
c
According to survey conducted by United States Environmental Protection Agency.
May be distorted upwards. Not detected. Not tested.
Source: From U.S Environmental Protection Agency, 1984, National Statistical Assessment of Rural Conditions, Executive Summary. Office of Drinking Water.
q 2006 by Taylor & Francis Group, LLC
8-22
Table 8A.12 Water Quality in Selected Rivers in the World, 1996–1999 Dissolved Oxygen (DO) (mg/L)
1997
X 8.8 X X
X 9.2 X X
7.5 5.8 6.6 5.1
8.0 3.5 7.6 6.4
7.7 0.7 6.5 6.2
10.6 8.4
11.8 8.5
11.9 8.2
11.0 9.6 9.5
11.0 9.4 9.4
9.9
Average Last 3 yrs (b)
1996
1997
1998
Nitrates (c) (mg/L)
1999
Average Last 3 yrs (b)
1996
1997
1998
1999
Average Last 3 yrs (b)
1998
1999
X — X X
X — X X
X 9.1 X X
X X X X
X X X X
X X X X
X X X X
X X X X
X 0.14 0.11 —
X 0.15 0.10 —
X — 0.08 —
X — — —
X 0.14 0.10 —
— — — —
7.7 3.3 6.9 5.9
3.1 17.0 1.7 4.4
2.0 12.0 1.6 4.3
2.4 92.3 1.1 5.4
— — — —
2.5 40.4 1.4 4.7
0.15 0.78 0.13 —
0.18 0.30 1.06 0.10
0.16 0.82 0.19 0.14
— — — —
0.16 0.63 0.46 0.10
11.1 8.8
11.6 8.5
1.6 0.9
1.9 1.1
1.3 1.2
2.6 1.4
1.9 1.2
— —
— —
— —
— —
— —
11.0 9.4 9.4
11.0 9.3 9.5
11.0 9.4 9.4
1.2 2.0 2.3
1.2 1.6 1.5
1.2 1.7 1.5
0.9 1.6 2.0
1.1 1.6 1.7
X X X
X X X
X X X
X X X
X X X
9.8
9.8
10.0
9.9
1.4
1.2
1.3
1.4
1.3
X
X
X
X
X
8.7 9.3 9.4 8.7
8.9 9.7 9.7 9.1
9.8 9.8 9.8 10.0
10.0 10.5 9.5 8.3
9.6 10.0 9.7 9.1
3.9 3.6 2.1 3.9
2.7 3.4 2.1 4.1
2.6 2.2 2.2 3.6
3.0 2.9 2.0 3.3
2.8 2.8 2.1 3.7
2.15 3.01 1.89 1.39
2.09 2.88 2.87 2.05
2.05 2.78 3.23 2.36
2.36 2.91 2.89 2.44
2.17 2.86 3.00 2.29
11.0 11.5 11.7
11.5 11.3 11.2
10.8 11.0 —
— — —
11.1 11.3 11.3
3.7 2.4 1.2
2.5 2.2 1.1
2.8 2.4 —
— — —
3.0 2.3 1.4
2.29 1.48 0.73
2.21 1.29 0.68
0.85 1.26 —
— — —
11.0 7.4
— —
— —
— —
— —
2.5 5.7
— —
— —
— —
— —
10.3 9.7 11.2 10.3
10.3 9.5 11.0 10.4
9.9 9.9 11.0 10.5
10.3 10.2 10.9 11.2
10.1 9.9 11.0 10.7
3.5 4.9 5.0 4.5
3.9 4.2 5.4 5.1
3.7 3.9 4.4 6.4
X 10.5 X X
X 9.7 X X
X 8.7 X X
X 9.6 X X
2.4 1.3 1.9 2.0
3.0 1.6 2.7 1.9
2.3 1.3 — —
q 2006 by Taylor & Francis Group, LLC
X — X X
— —
3.7 4.8 5.5 4.5 — — — —
— —
2.00 4.67
— —
3.8 4.3 5.1 5.4
4.57 3.77 3.98 5.43
4.31 2.35 3.27 4.44
3.89 3.24 3.29 3.63
2.6 1.4 2.1 1.9
0.98 2.29 1.01 4.22
1.36 2.33 1.18 3.69
1.50 2.90 — 5.98
4.02 3.03 3.46 3.55 — — — —
1.78 1.35 0.72 — — 4.07 2.87 3.34 3.87 1.28 2.50 1.83 4.63
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Canada Mackenzie Saskatchewan Columbia Saint John Mexico Bravo Lerma Pa´nuco Grijalva U.S.A Delaware Mississippi Japan Ishikari Yodo Tone {Sakaehashi} Chikugo Korea Keum NakDong YoungSan Han Austria Donau Inn Grossache Belgium Meuse Escaut Czech R. Labe Odra Morava Dyje Denmark Gudena´ Skjerna´ Susa´ Odense
1996
Biological Oxygen Demand (BOD) (mg/L)
11.8 8.6 10.8
11.7 12.1 10.6
— — —
— — —
11.6 10.6 10.7
X X X
X X X
X X X
X X X
X X X
0.07 0.32 0.53
0.06 0.19 0.71
— — —
— — —
0.06 0.25 0.58
10.1 4.2 9.5 9.1
10.3 4.6 9.6 9.9
10.7 5.9 9.3 9.7
9.9 7.1 8.5 10.5
10.3 5.8 9.1 10.0
5.8 4.7 1.1 2.1
5.9 5.3 1.4 1.3
5.9 4.4 1.4 1.3
4.6 3.4 1.7 1.5
5.4 4.4 1.5 1.4
2.32 6.62 1.92 1.44
2.53 6.27 2.14 1.50
2.65 5.90 1.85 1.59
3.03 5.77 2.22 1.41
2.74 5.98 2.07 1.50
10.0 11.6 9.7 11.1 11.1
9.9 11.2 10.8 11.1 11.1
9.7 11.3 10.1 10.9 10.9
10.3 11.6 9.9 11.1 11.1
10.0 11.4 10.3 11.0 11.9
X X 3.8 2.2 X
X X 2.9 2.4 X
X X 2.1 2.2 X
X X 2.4 2.1 X
X X 2.5 2.2 X
3.49 4.29 4.52 2.34 X
3.15 3.92 4.52 2.22 X
3.15 3.57 4.20 2.07 X
2.59 3.41 4.43 2.10 X
2.96 3.63 4.38 2.13 X
— — — —
— — — —
9.8 8.3 — —
11.1 8.5 — —
10.8 9.6 — —
X X X X
X X X X
X X X X
X X X X
X X X X
0.87 1.13 X X
2.29 2.31 X X
1.04 0.66 X X
1.52 1.24 X X
1.62 1.40 X X
9.9 9.7 10.6 11.1
9.7 10.8 10.1 12.6
9.9 9.5 9.8 12.1
10.1 10.1 9.8 12.7
9.9 10.1 9.9 12.5
4.3 2.6 3.1 1.5
2.9 2.7 3.3 2.0
3.3 2.6 3.0 2.6
3.7 2.1 2.9 3.6
3.3 2.5 3.1 2.7
1.95 2.59 1.64 0.77
2.06 2.59 1.37 0.66
2.16 1.90 1.63 0.77
2.34 2.12 1.47 0.64
2.19 2.20 1.49 0.69
10.9 11.6 11.4 10.7
10.9 10.9 10.8 10.2
11.0 10.3 10.9 10.8
10.7 10.7 11.0 10.5
10.9 10.6 10.9 10.5
2.0 1.6 2.4 1.9
1.5 1.1 1.6 2.0
1.9 1.5 1.8 2.1
1.6 2.5 1.5 2.7
1.7 1.7 1.6 2.2
3.69 1.82 5.22 2.89
3.25 1.97 4.58 2.76
3.14 1.80 4.95 2.74
2.48 1.40 4.14 2.20
2.96 1.72 4.55 2.57
X 10.4 9.2 9.9
X — 13.0 10.2
X 10.7 7.2 9.9
X 8.3 8.1 10.0
X 9.8 9.4 10.0
X X X X
X X X X
X X X X
X X X X
X X X X
2.89 1.26 X —
2.21 1.37 X —
2.05 1.22 X —
2.10 1.15 X 1.53
2.12 1.25 X —
9.4 10.0
9.1 10.2
9.1 10.4
9.2 10.6
9.1 10.4
2.6 3.1
2.6 2.9
2.2 2.7
2.6 3.1
2.5 2.9
3.07 5.0
2.88 5.45
2.92 5.74
2.62 4.90
2.81 5.36
9.8 X 11.9 10.2 10.0
9.2 X 11.4 10.0 9.6
9.2 X 10.5 10.3 9.5
— X — — —
9.4 X 11.3 10.2 9.7
X 3.0 X 3.0 X
X 2.0 X 5.0 X
X 3.6 X — X
X — X — X
X 2.9 X 3.3 X
X X 3.64 3.64 4.02
X X 3.03 3.55 3.55
X X 3.55 3.55 3.95
X X 2.55 2.53 2.64
X X 3.04 3.14 3.38
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
0.21 0.40 0.28
0.20 0.39 0.29
0.21 0.38 0.27
0.20 0.36 0.26
0.20 0.38 0.27
q 2006 by Taylor & Francis Group, LLC
8-23
(Continued)
WATER QUALITY
Finland Torniojoki Kymijoki Kokema¨enjoki France Loire Seine Garonne Rho¨ne German Rhein Elbe Weser Donau Donar Greece Strimonas Axios Akeloos Nestos Hungary Maros Duna Dra´va Tisza Ireland Boyne Clare Barrow Blackwater Italy Po Adige Arno Metauro Luxembourg Moselle Su¨re The Netherlands Maas-Keizersveer Maas-Eysden Rijn/Maas Delta Rijn-Lobith Ijssel-Kampen Norway Skienselva Glomma Drammenselva
8-24
Table 8A.12
(Continued) Dissolved Oxygen (DO) (mg/L)
Nitrates (c) (mg/L)
1996
1997
1998
1999
Average Last 3 yrs (b)
X
X
X
X
X
10.2 9.8
10.6 9.6
10.8 11.6
10.5 10.9
10.6 10.7
3.9 3.7
4.6 5.1
3.4 5.5
3.4 4.0
3.8 4.9
1.62 2.20
1.37 1.89
1.84 2.63
1.42 2.51
1.54 2.34
9.1 10.1 10.4 9.6
10.5 9.7 10.9 9.9
9.5 9.9 10.5 9.5
9.6 9.3 — 9.6
9.8 9.6 10.6 9.7
2.6 4.5 3.9 6.8
3.7 3.9 3.3 5.4
2.9 2.6 3.2 3.1
3.1 2.1 — 2.7
3.2 2.9 3.5 3.7
2.55 2.41 1.86 2.85
2.27 2.12 1.96 3.06
2.31 1.71 1.89 2.64
2.48 2.06 — 2.62
2.35 1.97 1.90 2.77
7.0 7.0 9.6 9.9
5.0 7.0 9.5 9.3
6.0 9.0 10.0 8.0
4.0 10.0 10.0 —
5.0 8.7 9.8 9.1
14.5 3.8 5.2 2.9
2.6 2.5 5.5 1.8
3.4 2.1 4.3 2.9
6.6 3.7 — —
4.2 2.8 5.0 2.6
3.67 1.79 2.26 2.10
6.55 1.81 2.75 1.97
6.08 2.37 2.42 1.82
5.65 1.31 — —
6.09 1.83 2.48 1.96
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
0.12 0.04 0.16 1.35
0.10 0.04 0.12 1.74
0.12 0.03 0.16 1.59
0.12 0.03 0.19 1.30
0.11 0.03 0.16 1.54
10.6 10.1 11.2
10.4 10.5 11.5
10.4 10.6 11.5
11.1 10.4 11.6
10.6 10.5 11.5
X X X
X X X
X X X
X X X
X X X
1.56 1.99 X
1.40 1.77 X
1.37 1.78 X
1.34 1.49 X
1.37 1.68 X
9.2 8.8 10.2 3.9
9.5 9.1 9.6 4.9
8.7 9.3 9.6 6.3
8.2 8.6 8.8 5.5
8.8 9.0 9.3 5.6
1.3 3.7 2.0 2.2
1.1 3.2 2.7 2.0
1.3 3.5 2.4 5.5
1.3 3.4 2.2 3.3
1.2 3.4 2.4 3.6
1.45 1.37 2.90 1.15
1.20 1.42 1.70 0.57
1.15 1.43 7.53 0.29
1.21 1.50 5.05 0.06
1.19 1.45 4.76 0.31
10.2 10.7 8.5 8.1 9.8
11.0 10.8 8.0 7.7 9.1
10.8 10.3 9.6 8.2 —
10.5 — 8.7 8.2 —
10.8 10.6 8.8 8.0 9.2
3.0 2.8 3.9 3.9 3.8
2.7 2.0 2.1 3.6 2.8
1.7 1.9 2.5 3.1 —
1.7 7.9 2.3 2.8 —
2.0 3.9 2.3 3.2 3.4
8.13 6.95 1.95 4.83 0.80
7.85 6.64 1.88 4.43 1.09
7.68 6.70 2.06 4.73 —
6.79 6.20 1.70 5.64 —
7.44 6.51 1.88 4.94 1.01
q 2006 by Taylor & Francis Group, LLC
1999
Average Last 3 yrs (b)
1996
1997
1998
1999
Average Last 3 yrs (b)
X
X
X
0.16
0.14
0.14
0.14
0.14
1996
1997
1998
X
X
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Otra Poland Wisia Odra Slovak R. Maly Dunaj Vah Hron Hornad Spain Guadalquivir Duero Ebro Guadiana Sweden Dela`lven Ra`ne alv Mo`numsa´n Ro`nnea`n Switzerland Rhin Aare Rho¨ne Turkey Porsuk Sakarya Yesilirmak Gediz UK Thames Severn Clyde Mersey Lower Bann (N. Ireland)
Biological Oxygen Demand (BOD) (mg/L)
Lead (c) (mg/L) Average Last 3 yrs (b)
1996
1997
1998
1999
Average Last2 3 yrs (b)
1.63 0.87 0.96 —
— 2.57 0.76 —
— — 0.42 —
— — 0.34 —
— 1.39 0.51 —
1996
1997
1998
1999
Average Last 3 yrs (b)
0.07 0.04 0.01 —
— 0.05 0.01 —
— — 0.01 —
— — 0.01 —
— 0.044 0.009 —
X 0.041 X X
X 0.041 X X
X — X X
X — X X
X 0.039 X X
0.11 — — 0.19
0.13 2.60 — 0.03
0.10 5.63 0.03 0.04
— — — —
0.113 — — 0.085
0.030 — 0.020 —
0.030 1.350 0.060 0.080
0.030 18.450 0.030 0.120
— — — —
0.030 — 0.037 0.067
X X X X
X X X X
X X X X
X X X X
X X X X
0.05 0.19
0.06 0.15
0.05 0.18
0.09 0.24
0.067 0.190
0.030 0.020
0.040 0.020
0.030 0.060
0.040 0.020
0.037 0.033
— —
— —
— —
— —
— —
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0.13 0.07 0.15 0.28
0.10 0.14 0.07 0.37
0.05 0.08 0.14 0.21
0.04 0.04 0.10 0.21
0.064 0.086 0.105 0.264
0.838 0.901 0.510 2.368
0.922 0.516 0.230 2.416
0.530 0.283 0.236 1.624
0.411 0.124 0.317 1.540
0.621 0.308 0.261 1.860
— — — —
— — — —
— — — —
— — — —
0 0 0 0
0.04 0.04 0.08
0.11 0.18 0.07
0.16 0.14 —
— — —
0.104 0.117 0.070
0.160 0.098 0.015
0.124 0.101 0.030
0.150 0.080 —
— — —
5.00 1.60 —
— — —
2.06 1.17 2.40
— —
— —
— —
— —
— —
— —
0.15 0.80
— —
— 0.44 0.31 0.32
0.23 0.45 0.25 0.38
0.23 0.39 0.20 0.51
0.10 0.05 0.32 0.14
0.11 0.05 0.36 0.14
0.10 0.06 — 0.16
0.01
0.02
—
0.21 0.33 0.28 0.37
— —
1996
1997
0.050 4.450
— —
1998
1999
— —
0.223 0.389 0.243 0.420
0.505 1.912 0.688 0.462
0.429 1.336 0.660 0.475
0.300 0.590 0.390 0.340
— — — —
0.101 0.053 0.278 0.145
0.089 0.119 0.096 0.154
0.095 0.106 0.103 0.076
0.047 0.094 — 0.076
— — — —
0.077 0.106 0.097 0.102
—
0.017
0.017
—
—
0.017
—
0.250 0.500 0.440 0.390
0.145 0.093 0.025
0.326 0.809 0.497 0.402
0.64 0.58 3.20 3.90 8.50 2.00 17.50 2.67 X
0.54 1.34 4.00 — —
— —
1.20 6.38 2.42 X
0.85 1.90 1.18 X
1.10 1.30 2.20 X
1.05 3.19 1.93 X
X X X X
X X X X
X X X X
X X X X
X X X X
0.12
0.23
—
—
0.15
(Continued) q 2006 by Taylor & Francis Group, LLC
8-25
Canada Mackenzie Saskatchewan Columbia Saint John Mexico Bravo Lerma Panuco Grijalya USA Delaware Mississippi Japan Ishikari Yodo Tone {Sakaehashi} Chikugo Korea Keum NakDong YoungSan Han Austria Donau Inn Grossache Belgium Meuse Escaut Czech R. Labe Odra Morava Dyje Denmark Gudena´ Skjerna´ Susa´ Odense Finland Torniojoki
Ammonium (c) (mg/L)
WATER QUALITY
Total Phosphorus (c) (mg/L)
8-26
Table 8A.12
(Continued) Total Phosphorus (c) (mg/L)
— —
1997
0.019 0.048
0.035 0.079
0.004 0.075
1996
1997
0.022 0.074
0.19 1.00
1997
0.03 0.04
0.01 0.05
0.25 1.23 0.11 0.13
0.27 1.22 0.15 0.11
0.17 1.06 0.13 0.08
0.22 0.82 0.34 0.06
0.220 1.031 0.208 0.084
0.060 0.278 0.130 0.102
0.160 0.484 0.152 0.126
0.043 0.275 0.071 0.122
0.062 0.164 0.080 0.095
0.088 0.308 0.101 0.114
0.16 0.23 0.24 0.09
0.16 0.22 0.21 0.08
0.16 0.21 0.24 0.08
0.14 0.19 0.16 0.08
0.153 0.207 0.203 0.079
0.160 0.300 0.400 0.080
0.130 0.210 0.240 0.067
0.110 0.140 0.100 0.069
0.079 0.130 0.100 0.078
0.106 0.160 0.147 0.071
0.06 0.90 X X
0.06 0.52 X X
0.078 0.700 X X
0.141 0.404 X 0.233
0.093 0.179 X 0.095
0.091 0.229 X 0.118
X X X X
— — X X
— —
1996
Average Last 3 yrs (b)
1996
— — X X
1999
Average Last 3 yrs (b)
Lead (c) (mg/L)
— — X —
— — X —
1998 — —
1999 — —
Average Last2 3 yrs (b)
1998
1999
0.15 0.95
— —
— —
0.20 1.00
X X 1.08 X
X X 0.11 X
X X — X
X X — X
X X 1.03 X
3.00 — 4.10 1.00
3.70 — 4.60 1.00
3.90 3.50 6.10 1.00
4.70 2.63 3.86 1.00
4.10 2.38 4.85 1.00
X X X X
X X X X
X X X X
X X X X
0.26 0.09 0.16 X
0.30 0.11 0.14 X
0.23 0.10 0.12 X
0.26 0.12 0.14 X
0.263 0.108 0.133 X
0.240 0.086 0.053 0.032
0.130 0.078 0.067 0.080
0.080 0.074 0.055 0.060
0.140 0.072 0.047 0.068
0.117 0.075 0.056 0.069
0.50 3.20 1.30 X
0.90 2.50 1.30 X
0.70 2.80 1.70 X
0.50 1.30 1.10 X
0.70 2.20 1.37 X
0.09 0.07 0.11 0.17
— 0.06 0.08 0.10
0.08 0.05 0.10 0.09
0.06 0.14 0.08 0.09
0.046 0.084 0.087 0.092
0.053 0.042 0.057 0.039
0.043 0.022 0.039 0.048
0.068 0.039 0.031 0.086
0.047 0.078 0.031 0.109
0.053 0.046 0.034 0.081
X X X X
X X X X
X X X X
X X X X
X X X X
0.18 — — 0.13
0.14 0.05 0.16 0.22
0.15 0.05 0.16 0.11
0.18 — 0.23 0.18
0.157 0.048 0.183 0.170
0.140 0.062 X —
0.086 0.062 X —
0.163 0.054 X —
0.130 0.110 X —
0.126 0.076 X —
X X X X
X X X X
X X X X
X X X X
X X X X
0.61 0.52
0.55 0.45
0.57 0.56
0.17 0.18
0.429 0.394
0.184 0.224
0.165 0.220
0.284 0.211
0.174 0.162
0.208 0.198
3.90 4.10
2.00 2.00
2.10 2.00
2.20 2.30
2.10 2.10
0.28 X 0.14 0.22
0.39 X 0.16 0.21
0.24 X 0.14 0.22
0.22 X 0.19 0.18
0.283 X 0.163 0.203
X X X 0.220
X X X 0.100
X X X 0.110
X X X 0.143
4.90 X 1.10 4.50
2.30 X 1.50 3.90
4.11 X 1.90 4.60
3.83 X 2.20 3.60
3.41 X 1.87 4.03
q 2006 by Taylor & Francis Group, LLC
X X X —
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Kymijoki Kokema¨enjoki France Loire Seine Garonne Rho¨ne German Rhein Elbe Weser Donau Greece Strimonas Axios Akeloos Nestos Hungary Maros Duna Drava Tisza Ireland Boyne Clare Barrow Blackwater Italy Po Adige Amo Metauro Luxembourg Moselle Su¨re The Netherlands Maas-Kezersveer Maas-Eysden Rijn/Maas Delta Rijn-Lobith
1998
Ammonium (c) (mg/L)
0.20
0.20
0.19
0.17
0.187
X
X
X
X
X
3.10
3.80
2.60
3.30
3.23
0.00 0.02 0.01 0.00
0.01 0.02 0.01 0.00
0.00 0.01 0.00 0.00
0.01 0.03 0.01 0.01
0.005 0.021 0.007 0.003
0.017 0.045 0.015 0.016
0.015 0.033 0.017 0.015
0.014 0.032 0.016 0.013
0.015 0.035 0.019 0.018
0.015 0.033 0.017 0.015
0.11 0.50 0.17 0.34
0.07 0.55 0.12 0.27
0.19 3.70 0.13 0.30
0.07 0.40 0.15 0.30
0.11 1.55 0.13 0.29
0.14 0.34
0.21 0.31
0.20 0.30
0.23 0.26
0.212 0.291
0.449 0.605
0.225 0.330
0.210 0.120
0.368 0.091
0.268 0.180
0.45 1.37
0.60 0.50
1.00 0.20
0.40 0.10
0.67 0.27
0.28 0.24 0.23 0.26
0.29 0.15 0.21 0.18
0.27 0.12 0.18 0.18
0.24 0.15 — 0.14
0.265 0.140 0.205 0.170
0.423 0.626 0.456 0.840
0.274 0.539 0.303 0.528
0.246 0.371 0.313 0.637
0.109 0.378 — 0.534
0.210 0.429 0.357 0.566
1.40 0.58 X 8.42
— 1.15 X 13.62
2.29 1.10 X 4.45
0.81 0.85 X 3.40
1.50 1.03 X 7.16
0.67 0.19 0.28 0.25
— 0.20 0.19 0.19
— 0.15 0.12 —
— 0.15 — —
— 0.165 0.199 0.316
0.414 0.288 0.167 0.151
0.143 0.266 0.023 0.100
— 0.266 0.041 0.106
— — — —
0.285 0.273 0.077 0.119
3.00 — — —
— 1.00 1.67 —
— 1.00 — —
0.02 0.01 0.02 0.04
0.02 0.02 0.02 0.04
0.01 0.01 0.02 0.45
0.01 0.01 0.02 0.71
0.015 0.015 0.022 0.402
0.020 0.013 0.026 0.060
0.017 0.016 0.019 0.076
0.018 0.012 0.017 0.061
0.020 0.012 0.027 0.050
0.018 0.013 0.021 0.062
0.39 0.12 0.35 0.23
0.42 0.26 0.28 0.37
0.49 0.15 0.38 0.44
0.44 0.09 0.47 0.57
0.45 0.17 0.38 0.46
0.05 0.07 0.12
0.05 0.07 0.14
0.05 0.06 0.14
0.04 0.04 0.14
0.047 0.055 0.138
X X X
X X X
X X X
X X X
X X X
0.60 X 3.00
0.60 X 4.50
0.80 X 4.60
0.70 X 4.10
0.70 X 4.40
— 0.50 0.27 0.32
— 0.49 0.42 0.42
0.04 0.16 0.10 0.05
0.09 0.27 0.07 0.02
0.061 0.307 0.197 0.163
0.045 0.340 0.190 0.013
0.068 0.340 0.750 —
0.100 0.260 0.290 —
0.170 0.300 0.210 —
0.113 0.300 0.417 0.004
5.00 13.00 X —
8.00 12.00 X —
5.00 6.00 X —
4.33 6.00 X —
1.69 0.86 0.59 1.54 0.16
1.88 1.08 0.56 1.16 0.16
1.03 0.72 0.40 1.02 —
1.16 0.47 0.41 1.09 —
1.357 0.753 0.458 1.089 0.161
0.313 0.198 1.404 4.342 0.105
0.198 0.174 0.867 3.705 0.077
0.176 0.127 0.657 2.073 —
0.187 0.114 0.727 1.445 —
0.187 0.138 0.750 2.408 0.108
3.50 6.80 7.20 4.80 0.40
3.10 4.10 2.40 6.60 —
4.10 4.50 3.50 5.60 —
3.30 4.30 2.97 5.73 0.41
— — X — 2.70 4.30 3.00 5.00 0.41
— — — —
WATER QUALITY
Ijssel-Kampen Norway Skienselva Glomma Drammenselva Otra Poland Wisia Odra Slovak R. Maly Dunaj Vah Hron Hornad Spain Guadalquivir Duero Ebro Guadiana Sweden Dala`lven Ra`ne alv Mo`numsa´n Ro`nnea`n Switzerland Rhin Aare Rho¨ne Turkey Porsuk Sakarya Yesilinmak Gediz UK Thames Severn Clyde Mersey Lower Bann (N. Ireland)
0.00 0.67 0.56 0.00
(Continued)
8-27
q 2006 by Taylor & Francis Group, LLC
Cadmium (c) (mg/L)
1996
1997
1998
1999
Average Last 3 yrs (b)
0.250 0.325 0.075 —
— 0.730 0.079 —
— — 0.102 —
— — 0.100 —
— 0.412 0.094 —
X X X X — 1.000
X X X X — 1.000
X X X X — 1.000
X X X X — 1.000
X X X X — 1.000
1996
1997
1998
1.58 1.38 0.36 X
— 1.86 0.22 X
— — 0.21 X
Copper (c) (mg/L)
1999
Average Last 3 yrs (b)
1996
1997
1998
1999
Average Last 3 yrs (b)
— — 0.21 X
— 1.49 0.21 X
3.52 3.05 1.21 —
— 2.61 1.03 —
— — 0.86 —
— — 0.86 —
— 2.69 0.92 —
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
— —
— —
— —
— —
— —
— —
— —
— —
— —
— —
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
— — — —
— — — —
— — — —
— — — —
0.000 0.000 0.000 0.000
— — — —
— — — —
— — — —
— — — —
0.00 0.00 0.00 0.00
X X X X
X X X X
X X X X
X X X X
X X X X
— — 0.200
— — 0.200
— — —
0.000 0.033 0.133
0.27 0.25 2.00
— 0.91 4.00
1.00 0.80 —
— — —
0.42 0.65 2.00
2.00 2.33 3.80
2.35 3.10 5.00
1.00 2.80
— —
— —
— —
0.100 0.300
— —
!0.20 0.100 — — —
— —
— —
0.312 2.583 0.150 X
0.154 0.090 0.108 X
0.230 0.080 0.130 X
0.160 0.060 0.120 X
0.181 0.077 0.119 X
X X X
X X X
X X X
X X X
X X X
q 2006 by Taylor & Francis Group, LLC
1.80 — 1.92 — X X X
— —
1.80 16.20
— —
2.42 1.92 2.82 0.94
2.27 2.25 1.10 0.80
2.19 1.79 0.50 0.30
2.29 1.99 1.47 0.68
9.79 8.83 3.79 X
9.23 3.58 2.80 X
X X X
X X X
X X X
X X X
X X X
X X X
2.40 2.80 —
— — —
— —
— —
— —
12.77 5.42 2.32 X
12.15 6.75 3.30 X
11.38 5.25 2.81 X
X X X
X X X
2.25 2.74 2.93
X X X
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Canada Mackenzie Saskatchewan Columbia Saint John Mexico Bravo Lerma Pa´nuco Grijalva USA Delaware Mississippi Japan Ishikari Yodo Tone {Sakaehashi} Chikugo Korea Keum NakDong YoungSan Han Austria Donau Inn Grossache Belgium Meuse Escaut Czech R Labe Odra Morava Dyje Denmark Gudena´ Skjerna´ Susa´
Chromium (c) (mg/L)
8-28
Table 8A.12 (Continued)
X
X
X
X
X
X
X
0.030 0.034 0.074
0.030 0.030 0.138
— — —
— X 0.389 X
— X 0.000 X
— X — X
0.200 — 0.200 0.100
0.200 — 0.200 0.100
0.200 0.320 0.200 0.100
0.140 0.110 0.200 0.200
0.140 0.270 — 0.200
0.140 0.630 0.090 X
— — —
0.033 0.032 0.096
0.34 0.61 1.78
— X — X
— X 0.184 X
0.200 0.243 0.200 0.100
0.200 0.248 0.200 0.100
0.040 1.200 — 1.800
1.600 0.400 — 0.470
0.593 0.623 — 0.823
0.170 0.700 0.060 X
0.150 0.980 0.070 X
0.100 0.580 0.070 X
0.140 0.753 0.067 X
0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200
0.200 0.200 0.200 0.200
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X !0.0002
X X X !0.0002
X X X !0.0002
X X X 0.000
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
0.100 0.100
0.100 0.100
0.100 0.100
0.100 0.100
0.100 0.100
1.50 1.50
1.10 1.00
1.10 1.00
1.10 1.00
1.10 1.00
4.30 2.70
3.40 2.40
4.00 2.60
3.70 2.50
3.70 2.50
0.290 X 0.500 0.070 0.080
0.140 X 0.040 0.060 0.100
0.300 X 0.060 0.080 0.050
0.200 X 0.140 0.080 0.090
0.213 X 0.080 0.073 0.080
2.98 X — 2.90 —
2.06 X 1.30 3.57 3.26
2.16 X 1.81 3.76 2.42
1.95 X 1.40 2.40 2.00
2.06 X 1.50 3.24 2.56
4.15 X 3.30 5.20 5.30
3.35 X 3.10 5.00 5.50
4.72 X 3.60 5.30 4.20
4.67 X 2.80 4.70 11.10
4.25 X 3.17 5.00 6.93
0.060 0.080
0.020 0.030
0.020 0.160
0.010 0.020
0.017 0.070
0.50 0.50
0.50 0.50
0.50 0.50
0.13 0.62
0.38 0.54
1.79 2.20
0.90 2.10
0.70 3.20
0.54 2.01
0.71 2.44
X X X —
X
X
0.55 0.53 1.61
— — —
— — —
0.45 0.53 1.82
0.84 1.34 15.53
X X 3.21 X
X X 1.17 X
X X — X
X X — X
X X 2.33 X
2.70 — 2.00 1.00
3.10 — 2.00 1.00
X X X X 15.00 1.60 0.50 1.40
X X X X 15.60 4.00 0.50 1.20
X
3.30 2.10 2.10 1.00
3.87 1.93 2.00 1.00
3.42 1.68 2.03 1.00
X X X X
X X X X
X X X X
16.90 2.10 0.60 0.70
26.80 1.20 0.70 1.00
19.77 2.43 0.60 0.97
X
X
X
0.71 1.13 20.60
— — —
— — —
0.79 1.18 28.38
X X 5.62 X
X X 3.56 X
X X — X
X X — X
X X 4.71 X
6.30 — 4.60 3.30
10.40 — 4.80 2.70
X X X X 5.30 13.40 1.50 X
X
X X X X 7.30 8.40 1.80 X
12.00 6.40 5.10 3.00 X X X X 10.10 9.40 2.40 X
8.55 6.44 4.33 3.07 X X X X 4.80 10.10 2.80 X
X
WATER QUALITY
Odense Finland Torniojoki Kymijoki Kokema¨enjoki France Loire Seine Garonne Rho¨ne German Rhein Elbe Weser Donau Greece Strimonas Axios Akeloos Nestos Hungary Maros Duna Drava Tisza Ireland Boyne Clare Barrow Blackwater Italy Po Adige Arno Metauro Luxembourg Moselle Su¨re The Netherlands Maas-Keizersveer Maas-Eysden Rijn/Maas Delta Rijn-Lobith Ijssel-Kampen Norway Skienselva Glomma
10.32 4.98 4.74 2.92 X X X X 7.40 9.30 2.33 X
(Continued) 8-29
q 2006 by Taylor & Francis Group, LLC
8-30
Table 8A.12
(Continued) Cadmium (c) (mg/L)
Note:
Copper (c) (mg/L)
1996
1997
1998
1999
Average Last 3 yrs (b)
0.020 0.030
0.020 0.030
0.020 0.030
0.020 0.030
0.020 0.030
0.50 0.50
0.50 0.50
0.50 0.50
0.46 0.19
0.49 0.40
0.91 0.50
1.00 0.50
0.80 0.50
1.03 0.62
0.94 0.54
0.070 0.096
0.100 0.040
0.100 0.020
0.100 0.000
0.100 0.020
0.22 0.30
0.00 0.00
1.00 0.10
0.10 0.00
0.37 0.03
1.47 2.77
1.30 2.30
2.00 2.00
2.00 3.00
1.77 2.43
0.032 0.055 X 1.267
0.024 0.092 X 1.333
0.080 0.040 X 0.820
0.070 0.060 X 0.670
0.058 0.064 X 0.941
0.52 0.65 X 0.14
— 1.02 X 4.79
0.26 1.65 X 2.34
0.17 1.53 X 2.19
0.32 1.40 X 3.11
17.45 2.02 X X
3.32 1.73 X X
3.37 2.33 X X
3.51 2.68 X X
3.40 2.25 X X
1.500 0.680 0.030 —
— 0.240 0.040 —
— 0.010 — —
— 0.030 — —
0.000 0.093 0.023 0.000
— 0.10 1.67 —
— 0.50 0.25 —
— 2.00 — —
0.00 0.87 0.64 0.00
5.61 — 0.83 —
— 0.70 0.83 —
— 6.00 1.00 —
— — 3.00 —
0.00 2.23 1.61 0.00
0.016 0.008 0.011 0.022
0.018 0.012 0.013 0.027
0.017 0.024 0.009 0.040
0.016 0.006 0.012 0.032
0.017 0.014 0.011 0.033
0.30 0.11 0.35 0.55
0.29 0.13 0.41 0.62
0.35 0.19 0.36 0.59
0.38 0.17 0.45 0.61
0.34 0.16 0.41 0.61
1.30 0.80 1.10 1.20
1.20 1.70 1.40 1.40
1.40 0.80 1.30 1.70
1.40 0.40 1.60 1.70
1.33 0.97 1.43 1.60
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X 1.60 X X
X 1.50 X X
X 1.70 X X
X 1.70 X X
X 1.63 X X
1996
1997
1998
— — — —
1999
Average Last 3 yrs (b)
1996
1997
1998
1999
Average Last 3 yrs (b)
0.000 — — —
5.000 — — —
5.000 5.000 — —
5.000 — — —
5.000 1.667 — —
0.00 — X —
9.00 — X —
5.00 6.00 X —
5.00 — X —
6.33 2.00 X —
3.00 14.00 — X
5.00 — — X
5.00 8.00 — X
5.00 15.00 — X
5.00 7.67 — X
0.100 0.100 0.000 0.100 0.100
0.100 0.100 0.000 0.100 0.100
0.100 0.100 0.100 0.100 —
0.100 0.100 0.000 0.100 —
0.100 0.100 0.033 0.100 0.100
1.30 2.80 17.00 5.70 1.00
1.20 1.90 13.00 4.90 1.00
1.30 1.80 14.70 5.30 —
1.30 2.30 12.30 4.40 —
1.27 2.00 13.33 4.87 1.00
6.30 5.50 4.90 7.60 3.53
7.10 5.10 4.30 6.90 3.37
6.30 4.90 3.60 7.50 —
6.50 5.50 3.70 7.40 —
6.63 5.17 3.87 7.27 3.28
a) Measured at the mouth or downstream frontier of river; b) Average over the last 3 years available: data prior to 1993 have not been taken into account; c) Data refer to total concentrations unless otherwise specified. DO: Concentrations are annual mean conventration; x=Data not available; JPN) Data refer to fiscal year (April to March); KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) 1985: 1984 data; FRA) Data refer to hydrological year (September-August). Seine: station under marine influence. Rho¨ne since 1987 data refer to another station; DEU) Elbe: Measuring station—Elbel/Geestacht; 1988 Elbe/Brunsbuttel; since 1989 Elbel/Zollenspieker; GRC) 1980: 1982 data; ESP) Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; TUR) 1980: 1982 data.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Drammenselva Otra Poland Wisla Odra Slovak Maly Dunaj Vah Hron Hornad Spain Guadalquivir Duero Ebro Guadiana Sweden Dala`lven Ra`ne alv Mo`rrumsa´n Ro`nnea`n Switzerland Guadiana Rhin Aare Rho¨ne Turkey Porsuk Sakarya Yesilirmak Gediz UK Thames Severn Clyde Mersey Lower Bann (N. Ireland)
Chromium (c) (mg/L)
WATER QUALITY
BOD: MEX) 1985: 1984 data. 1998: the data’s variations can be explained by fluctuations of meteorological conditions and the CNA’s actions on control of residual water discharges; JPN) Data refer to fiscal year (April to March); KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; FRA) Data refer to hydrological year (September–August). Seine: station under marine influence. Rho¨ne since 1987 data refer to another station; DEU) Weser: 1990–1997—BOD7 (208); NLD) Mass-Eijsden 1990 and 1993–1994; Rijn-Lobith 1993–1996: average include limit of detection values; ESP) Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and further away from Sevilla influence; TUR) 1980: 1982 data; UKD) When the parameter is unmeasurable (quantity is too small), the limit of detection values are used when calculating annual averages. Actual averages may therefore to lower. Clyde 1980: 1982 data. Nitrates: CAN) Saskatchewan: N02CN03; U.S.A.) Delaware 1985: 1984 data; KOR) Han: samples were taken at 26 km upstream from the mouth of the rivers due to the tidal influence; AUT) 1985: 1984 data; DNK) Data refer to N02CN03; FRA) Data refer to hydrological year (September–August). Loire and Seine: dissolved concentrations. Seine: station under marine influence. Rho¨ne: since 1987 data refer to another station; DEU) Dissolved concentrations; ITA) Po: until 1986 data refer to Ponte Polesella (76 km far from the mouth); since 1989 data refer to Pontelagoscuro (91 km far from the mouth). Metaure 1985: 1984 data; NLD) Rijn-Lobith: dissolved concentrations; NOR) Skienselva and Drammenselva: until 1990 data refer to stations which may have marine influence; from 1990 onwards, data refer to new stations further away from the outlet Skienselva and Glomma 1985: 1983 data. Drammenselva 1985: 1984 data; SPAIN) Dissolved concentrations. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence. Ebro 1980: 1981 data; UKD) When the parameter is unreasonable (quantity too small) the limit of detection values are used when calculating annual averages. Actual averages may therefore be lower. Phosphorus: CAN) Columbia 1980: 1981 data; MEX) Orthophosphate concentrations; U.S.A.) Mississippi 1985 and 1990 and Delaware 1998 and 1999: annual averages include estimated values; KOR) Han samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) 1985: 1984 data; FRA) Data refer to hydrological year (September–August). Loire—1980: 1982 data: since 1982 data refer to another station. Seine: station under marine influence. Rho¨ne: sicne 1987 data refer to another station; GRC) Strimonas: 1998 and 1999 data refer to ortho-phosphate; IRL) Boyne: Data refers to ortho-phosphate; ITA) Po: Data until 1988 refer to Ponte Polesella (76 km from the mouth); since 1989 data refer to Pontelagoscuro (91 km from the mouth); Metauro 1985: 1984 data; NOR) Skienselva and Drammenselva: until 1990 data refer to stations which may have marine influence; from 1990 onwards, data refer to new stations further away from the outlet; Skienselva and Glomma 1985: 1983 data; SLO) Maly Dunaj: orthophosphate concentrations; 1980: 1981 data; SPAIN) Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; TUR) Orthophosphate concentrations; Yesilirmak 1980 and Gediz 1980: 1982 and 1981 data; UKD) Orthophosphate concentrations. When a parameter is unmeasurable (quantity too small), limit of detection values are used when calculating annual averages. Actual averages may therefore be lower. Ammorium: CAN) Dissolved concentrations. 1980: 1981 data; U.S.A.) Delaware and Mississippi: dissolved concentrations; Mississippi: 1980, 1985 and 1999 data include limit of detection values; Delaware: 1982, 1983, 1985, 1988, 1992–1999 include limit of detection values; KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) 1985: 1984 data; FRA) Data refer to hydrological year (September–August). Loire and Seine: data refer to dissolved concentrations. Seine: station under marine influence. Rho¨ne: since 1987 data refer to another station; DEU) Dissolved concentrations; GRC) 1980: 1982 data; ITA) Po: until 1988 data refer to Ponte Polesella (76 km from the mouth): since 1989 data refer to Pontelagoscuro (91 km from the mouth). Adige 1988 and Metauro 1995: averages represent upper limits. Adige 1985: 1984 data; LUX) Moselle 91, 96 to 99: upper limits; Su¨re-Wasserbillig: 1985, 1990–1992, 1994–1999: upper detection limits; NLD) Rhine-Lobith: dissolved concentrations; NOR) Skienselva: until 1990 data refer to a station which may have marine influence; from 1990 onwards, data refer to a different station further away from the outlet; ESP) Dissolved concentrations. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; TUR) Excepted for 1990–1991 data refer to NH3. Yesihrmak 1980: 1982 data; UKD) When the parameter is unmeasurable (quantity too small) the limit of detection values are used when calculating annual averages. Actual averages may therefore be lower. Lead: U.S.A.) Delaware: 1988 data represent upper limits: dissolved concentrations. Mississippi: dissolved concentrations; KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) 1985: 1984 data. Donau 1980, 82, 86, Inn 1982, 84 and Grossache 1980, 86: limit of detection values; CZE) Labe: from 1988 to 1993 data are upper limit values. Morava: 1995 data is an upper limit value; FIN) Tornionjoki and Kymijoki: include limit of detection values; Kokema¨enjoki 1980: 1981 data; FRA) Data refer to hydrological year (September–August); DEU) Elbe: dissolved concentrations: 1988–1989, 1991–1993 and 1995: include limit of detection values. Rhein 1994, 95, Weser 1988–1991 and Donau 1996, 97: include limit of detection values; HUN) Until 1994: total concentrations: 1994–1999: dissolved concentrations; LUX) Moselle and Su¨re all years: include limit of detection values; Both analysis methods and limit of detection have changed over the years; NLD) Rijn-Maas Delta 1992 and 1996, and Rijn-Lobith 1995: include limit of detection values; NOR) Glomma 1985: 1983 data. Drammenselva: until 1990 data refer to a station which may have marine influence; from 1990 onwards, data refer to a new station further away from the outlet. All rivers: from 1991 heavy metal concentrations have been determined by a different analysing method; SPAIN) Dissolved concentration. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; SWE) Dissolved concentrations based on analysis of unfiltered samples; TUR) Porsuk 1999: upper limit; UKD) When the parameter is unmeasurable (quantity too small), the limit of detection values are used when calculating annual averages; actual averages may therefore be lower. (Continued)
8-31
q 2006 by Taylor & Francis Group, LLC
Source: From Tables 3.4A through 3.4I (data from 1996, 1997, 1998, 1999, and average last 3 years), OECD Environmental Data Compendium 2002, q OECD 2002, www.oecd.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Cadmium: U.S.A.) Delaware and Mississippi dissolved concentrations. Delaware 1982–1989, 1992–1993, and Mississippi 1980, 1989–1999; include limit of detection values; KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) Donau 1980: figure is approximate: Donau 1982, 86–87, 91 and 93, Inn 1984, 86, 88–90, 94 and Grossache 1980, 82 and 84: upper limits. 1985: 1984 data; BEL) Meuse (Agimont): 1994–1996 are upper limits; CZE Labe:from 1990 to 1993 data are upper limit values. Morava: 1993 figure is an upper limit value; FIN) Tornionjoki and Kymijoki: upper limits; 1985: 1984 data; FRA) Data refer to hydrological year (September–August). Loire: since 1988 data refer to another station; 1980 and 1985; 1982 and 1984 data; DEU) Rhein 1984–1989 and 95–97: upper limits: Elbe: data refer to dissolved concentrations; 1990– 1991: upper limits. Weser 1988–1997, and Donau: upper limits; GRC) Strimonas 1986–1987, 92–94, Axios 1986–1987, Axeloos 1990, 92–96 and Nestos 1986, 92–97: include limit of detection values. Akeloos and Nestlos 1980: 1982 data; HUN) Until 1994. total concentrations; 1994–1999: dissolved concentrations; Duna: until 1996 total concentrations, 1996– 1999 dissolved concentrations; IRL) Data represent upper limits; ITA) Metauro 1996: upper limits; LUX) Moselle and Su¨re 90 to 99 and Su¨re 1980, 1985, 1989: upper limits; NLD) Rijn/Maas, Delta 1993–1996, Rijn-Lobith 1993–1996 and Ijssel-Kampen 1993, 95–96: upper limits; NOR) Skienselva and Drammenselva: until 1990 data refer to stations which may have marine influence; from 1990 onwards, data refer to new stations further away from the outlet. Drammenselva 1980 (1981 data): refers to median values, and represents an upper limit; 1986 figure is a time-weighted average. All rivers: from 1991 heavy metal concentrations have been determined by a different analysing method; SPAIN) Dissolved concentrations. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; Guadiana 1980: 1981 data; SWE) Dala`ven and Morrumsa`n: dissolved concentrations based on analysis of unifiltered samples; TUR) Porsak 1991–1993, 1995, 1997–1999. Sakarya 1989, 1991–1992, 1995, 1998 and Gediz 1995: upper limits; UKD) When the parameter is unmeasurable (quantity is too small), limit of detection values are used when calculating annual averages. Actual averages may therefore be lower. Chromium: U.S.A.) Dissolved concentrations. Delaware 1980–1982, 1986–1988 and Mississippi 1985, 1988–1989: included limit of detection values; KOR) Han: samples were taken at 26 km upstream from the mouth of the river due to the tidal influence; AUT) Donau 1982, Inn 1994 and Grossache 1980, 82: include limit of detection values. 1985: 1984 data; BEL) Meuse (Agimont): 1994–1995 are upper limits; CZE) Labe 1988–1993: upper limits. Odra 1991–1992, 94–95: upper limits. Morava 1991–1992 and 1995: upper limits; FIN) Tornionjoki: include limit of detection values. Kymijoki 1985: 1984 data; FRA) Data refer to hydrological year (September–August); DEU) Elbe: dissolved concentrations. Elbe 1988, 90, 92, Weser 1987–1997, and Donau 1989–1997: include limit of detection values; HUN) Until 1994: total concentrations; 1994–1999; dissolved concentrations; Duna: until 1996 total concentrations, 1996–1999 dissolved concentrations; LUX) Moselle 91, 92, 95 to 99 and Su¨re 1991, 93, 95 to 99: include limit of detection values; NOR) Glomma 1985: 1983 data Drammenselva—1980: 1982 data; until 1990 data refer to a station which may have marine influence; from 1990 onwards, data refer to new station further away from the outlet. All rivers: since 1991 heavy metal concentrations have been determined by a different analysing method. Average of last 3 years represent or include the detection limit value (including 1998: the detection limit for Cr was 0.5); SPAIN) Dissolved concentrations. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; Guadiana 1985: 1983 data; TUR) Porsuk 1998–1999: upper limits; UKD) When the parameter is unmeasarable (quantity is too small), limit of detection values are used when calculating annual averages. Actual averages may therefore be lower. Lower Bann: dissolved concentrations. Copper: U.S.A.) Delaware and Mississippi dissolved concentrations; AUT) 1985: 1984 data. Grossache 1980: includes limit of detection values; CZE) Morava 1995: upper limit; FRA) Data refer to hydrological year (September–August); DEU) Elbe: dissolved concentrations; HUN) Until 1994: total concentrations; 1994–1999: dissolved concentrations; Duna: until 1996 total concentrations, 1995–1999 dissolved concentrations; LUX) Moselle 91 to 94, 96 to 98 and Su¨re 1990–1991, 93, 95, 99: upper limits; NOR) Skienselva and Drammenselva: until 1990 data refer to stations which may have marine influence: from 1990 onwards, data refer to new stations further away from the outlets. Glomma 1985: 1983 data. Drammenselva 1980 (1981data): include limits of detection values and represent a median value. All rivers: from 1991 heavy metal concentrations have been determined by a different analysing method; SPAIN) Dissolved concentrations. Guadalquivir: from 1990 onwards data refer to another station closer to the mouth and farther away from Sevilla influence; SWE) Data refer to dissolved concentrations based on analysis of unfiltered samples; TUR) Porsuk 1988–1998: upper limits; UKD) When the parameter is unreasonable (quantity is too small), limit of detection values are used when calculating annual averages. Actual averages may therefore be lower.
8-32
Table 8A.12 (Continued)
WATER QUALITY
SECTION 8B
8-33
DRINKING WATER QUALITY STANDARDS UNITED STATES
The U.S. Environmental Protection Agency’s National Primary Drinking-Water Regulations and National Secondary Drinking-Water Regulations are summarized in the following tables. The primary regulations specify maximum contaminant levels (MCLs), and health advisories. The MCLs, which are the maximum permissible level of a contaminant in water at the tap, are health related and are legally enforceable. If these concentrations are exceeded or if required monitoring is not performed the public must be notified. The secondary drinking-water regulations specify the secondary maximum contaminant levels (SMCL). The SMCLs are for contaminants in drinking water that primarily affect the esthetic qualities related to public acceptance of drinking water; they are intended to be guidelines for the States and are not federally enforceable. Health advisories are guidance contaminant levels that would not result in adverse health effects over specified short-time periods for most people. As provided by the Safe Drinking Water Act of 1974, the U.S. Environmental Protection Agency has the primary responsibility for establishing and enforcing regulations. However, States may assume primacy if they adopt regulations that are at least as stringent as the Federal regulations in levels specified for protection of public health and in provision of surveillance and enforcement. The States may adopt more stringent regulations and may establish regulations for other constituents.
q 2006 by Taylor & Francis Group, LLC
Contaminants Regulated under the Safe Drinking Water Act 1979 1986 1987 1989 1991 TTHMs Fluoride Phase 1 (VOCs) TCR SWTR Phase II 11/79 4/86 7/87 6/89 6/89 1/91; 7/91 New reg Revision New regs 38 SOCs & IOCs; Revision 1Revision 4 New regs 11Revisions 27 New regs 1 1 8 1 5 39
1976 NPD WRs 12/75; 7/76 New regs
Final Regulations Summary of Final Actions
22 # in Regulation Cumulative # of 22 regulated contaminants 2,4-D Contaminants 2,4,5-TP (Silvex) regulated
23
23
31
31
35
61 4
carbofuran chlordane
1995
1998 Stage 1 DBPR 12/98
Final Regulations Summary of Final Actions # in Regulation Cumulative # of regulated contaminants Contaminants regulated
Remand 1
1 Revision 6 New regs 1
83
89
nickel
2000 Radionuclides Interim 12/00 ERSWTR 12/98 2 Revisions 4 Revisions 1 New reg 1 new reg 3 5 90
bromate Cryptosporidium chloramine Glardia chlorine turbidity chlorine dioxide chlorine haloacetic acids (HAAS)2 TTHMs
q 2006 by Taylor & Francis Group, LLC
heptachlor epoxide lindane mercury (inorganic)
LCR 6/91 1Revision 1 New reg
2 62
1992 Phase V 7/92 23 SOCs & IOCs; 1Revision 22 New regs 23 84
4
hexachlorobenzene methoxychlor copper Adupate di(2ethylhexyl) hexachlorocyclopentadiene nitrate nitrite total lead 4 antimony nickel nitrate/nitrite oxamyl (vydate) beryilium PCBs eyanide PAHs (benzo(a) pyrene) pentachlorophenol dalapon phthalate, di(2-ethylhexyl) selenium styrene 4 picloram dichloromethane tetrachlorethylene dinoseb simazine toluene toxophene dioxin 2,3,7,8thalium xylenes TCDD) 1,2,4-trichlorobenzene diqual 1,1,2-trichloroethane endothall endrin glyphosate
2001 Arsenic 1/01
1 Revision 1
91
91
grass alpha gross-beta radium-2261 radium-2281 uranium
arsenic
Notes: 1. Radium-226 and radium-228 arecontrol as two contaminants althoughtheir standard is combined. 2. Total THMs, haloacetic acids, and total coliforms are counted as one contaminant although both are combined standards: THMs (chloroform, bromodichloromethane, dibromochloromethane, bromoform), TC (total coliform bacteria including fecal coliform and E coli); HAAS (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid). 3. Vinyl chloride is also known aschloroethylene & monochloroethylene. 4. These nine contaminants have a treatment technique instead of aMCL. 5. Aldicarb, aldicarb sulfone, and aldicarb sulfoxide are considered regulated contaminants although their MCLs are strayed. 6. Dichloromethane is also known as methylene chloride.
Updated 13 February 2001 www.epa.gov/safowater/mcl.html.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
total benzone Giardia 2-4-D total fluoride (mono) chlorobenzene lead 2 carbon tetrachloride coliforms turbidity 4 2,4,5-TP chromium lindane THMs2 4 1,2-dichloroethane HPC acrylamide arsenic dibromochloropropane mercury 4 bacteria p-dichlorobenzene alachlor barium o-dichlorobenzene methoxychlor Legionella4 aldicarb5 1,1-dichloroethylene cadmium cis-1,2-dichloroethylene nitrate 5 4 1 aldicarb sulfone trans-1,2-dichloroethylene viruses 1,1,1-trichloroethlane chromium radium-226 aldicarb sulfoxide5 trichloroethylene coliform bacterial radium-2281 1,2-dichloropropane 3 asbestos selenium vinyl chloride cadrin epichlorohydrin4 atrazinc silver fluoride ethylbenzene barium toxaphene gross alpha ethylene dibromide cadmium turbidity gross beta heptachlor
8-34
Table 8B.13 Contaminants Regulated under the Safe Drinking Water Act
WATER QUALITY
8-35
Table 8B.14 National Primary Drinking Water Standards MCLG1 (mg/L)2 Microorganisms Cryptosporidium Giardia lamblia Heterotrophic plate count Legionella Total Coliforms (including fecal coliform and E. Coli) Turbidity Viruses (enteric)
MCL or TT1 3(mg/L)2
zero zero n/a zero zero
TT3 TT3 TT3 TT3 5.0%4
n/a zero
TT3 TT3
Disinfection Byproducts Constituent Bromate Chlorite Haloacetic acids (HAA5) Total Trihalomethanes (TTHMs)
MCLG1 (mg/L)2 zero 0.8 n/a6 none7 — n/a6
MCL or TT1 (mg/L)2 0.01 1 0.06 0.1 — 0.08
Disinfectants Constituent Chloramines (as Cl2) Chlorine (as Cl2) Chlorine dioxide (as ClO2)
MCLG1 (mg/L)2 MRDLGZ41 MRDLGZ41 MRDLGZ0.81
MCL or TT1 (mg/L)2 MRDLZ4.01 MRDLZ4.01 MRDLZ0.81
Inorganic Chemicals Constituent
MCLG1 (mg/L)2
Antimony Arsenic
0.006 7
Asbestos (fiber O10 mm) Barium Beryllium Cadmium Chromium (total) Copper
7 million fibers/L 2 0.004 0.005 0.1 1.3
Cyanide (as free cyanide) Fluoride Lead
0.2 4 zero
Mercury (inorganic) Nitrate (measured as Nitrogen) Nitrite (measured as Nitrogen) Selenium Thallium
0.002 10 1 0.05 0.0005
MCL or TT1 (mg/L)2 0.006 0.01 as of 01/23/06 7 MFL 2 0.004 0.005 0.1 TT8; Action LevelZ1.3 0.2 4 TT8; Action LevelZ0.015 0.002 10 1 0.05 0.002 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-36
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8B.14
(Continued)
Constituent Organic Chemicals Acrylamide Alachlor Atrazine Benzene Benzo(a)pyrene (PAHs) Carbofuran Carbon tetrachloride Chlordane Chlorobenzene 2,4-D Dalapon 1,2-Dibromo-3-chloropropane (DBCP) o-Dichlorobenzene p-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane Di(2-ethylhexyl) adipate Di(2-ethylhexyl) phthalate Dinoseb Dioxin (2,3,7,8-TCDD) Diquat Endothall Endrin Epichlorohydrin Ethylbenzene Ethylene dibromide Glyphosate Heptachlor Heptachlor epoxide Hexachlorobenzene Hexachlorocyclopentadiene Lindane Methoxychlor Oxamyl (Vydate) Polychlorinated biphenyls (PCBs) Pentachlorophenol Picloram Simazine Styrene Tetrachloroethylene Toluene Toxaphene 2,4,5-TP (Silvex) 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl chloride Xylenes (total)
MCLG1 (mg/L)2
zero zero 0.003 zero zero 0.04 zero zero 0.1 0.07 0.2 zero 0.6 0.075 zero 0.007 0.07 0.1 zero zero 0.4 zero 0.007 zero 0.02 0.1 0.002 zero 0.7 zero 0.7 zero zero zero 0.05 0.0002 0.04 0.2 zero zero 0.5 0.004 0.1 zero 1 zero 0.05 0.07 0.2 0.003 zero zero 10
MCL or TT1 (mg/L)2
TT9 0.002 0.003 0.005 0.0002 0.04 0.005 0.002 0.1 0.07 0.2 0.0002 0.6 0.075 0.005 0.007 0.07 0.1 0.005 0.005 0.4 0.006 0.007 0.00000003 0.02 0.1 0.002 TT9 0.7 0.00005 0.7 0.0004 0.0002 0.001 0.05 0.0002 0.04 0.2 0.0005 0.001 0.5 0.004 0.1 0.005 1 0.003 0.05 0.07 0.2 0.005 0.005 0.002 10 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8B.14
8-37
(Continued)
Constituent
MCLG1 (mg/L)2
MCL or TT1 (mg/L)2
Radionuclides Alpha particles
none7
15 picocuries per Liter (pCi/L)
Beta particles and photon emitters
Radium 226 and Radium 228 (combined)
Uranium
— zero none7 — zero none7 — zero zero
4 millirems/yr
5 pCi/L
30 ug/L as of 12/08/03
Note: 1
Definitions: Maximum Contaminant Level (MCL)—The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG)—The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Maximum Residual Disinfectant Level (MRDL)—The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG)—The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Treatment Technique—A required process intended to reduce the level of a contaminant in drinking water.
2
Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million.
3
EPA’s surface water treatment rules require systems using surface water or groundwater under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels: Cryptosporidium: (as of 1/1/02 for systems serving O10,000 and 1/14/05 for systems serving !10,000) 99% removal; Giardia lamblia: 99.9% removal/inactivation; Viruses: 99.99% removal/inactivation; Legionella: No limit, but EPA believes that if Giardia and viruses are Turbidity: At no time can turbidity (cloudiness of water) go above 5 nephelolometric HPC: No more than 500 bacterial colonies per milliliter. Long Term 1 Enhanced Surface Water Treatment (Effective Date: January 14, 2005); Surface water systems or (GWUDI) systems serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, Cryptosporidium removal requirements, updated watershed control requirements for unfiltered systems). Filter Backwash Recycling; The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system’s existing conventional or direct filtration system or at an alternate location approved by the state.
4
More than 5.0% samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli if two consecutive TC-positive samples, and one is also positive for E.coli fecal coliforms, system has an acute MCL violation.
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8A.14 (Continued) 5
Fecal coliform and E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Disease-causing microbes (pathogens) in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms. These pathogens may pose a special health risk for infants, young children, and people with severely compromised immune systems. 6 Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants: Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L). Chloroform is regulated with this group but has no MCLG. Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L). Monochloroacetic acid, bromoacetic acid, and dibromoacetic acid are regulated with this group but have no MCLGs. 7
MCLGs were not established before the 1986 Amendments to the Safe Drinking Water Act. Therefore, there is no MCLG for this contaminant.
8
Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.
9
Each water system must certify, in writing, to the state (using third-party or manufacturer’s certification) that when acrylamide and epichlorohydrin are used in drinking water systems, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide Z0.05% dosed at 1 mg/L (or equivalent); Epichlorohydrin Z0.01% dosed at 20 mg/L (or equivalent)
Source: From United States Environmental Protection Agency, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-39
Table 8B.15 National Secondary Drinking Water Standards Constituent
SMCL Level
Aluminum Chloride Color Copper Corrosivity Fluoride Foaming Agents Iron Manganese Odor pH Silver Sulfate Total Dissolved Solids Zinc
0.05 to 0.2 mg/L 250 mg/L 15 (color units) 1.0 mg/L Noncorrosive 2.0 mg/L 0.5 mg/L 0.3 mg/L 0.05 mg/L 3 threshold odor number 6.5–8.5 0.10 mg/L 250 mg/L 500 mg/L 5 mg/L
Note: National Secondary Drinking Water Regulations (NSDWRs or secondary standards) are nonenforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, states may choose to adopt them as enforceable standards. Source: From United States Environmental Protection Agency, www.epa.gov.
Table 8B.16 National Proposed MRDLGs, MRDLs, MCLGs, MCLs, AND AMCLs for Radon, Disinfectanct Residuals, and Disinfection Byproducts Radon
MCLG
MCL
AMCL
Radon
zero
300 pCi/L
4000 pCi/L
Stage 1 Disinfectants and Disinfection Byproducts Rule Disinfectant Residual Chlorine Chloramine Chlorine Dioxide Disinfection Byproducts
MRDLG (mg/L)
MRDL (mg/L)
Compliance Based on
4 (as Cl2) 4 (as Cl2) 0.8 (as ClO2)
4.0 (as Cl2) 4.0 (as Cl2) 0.8 (as ClO2)
Annual Average Annual Average Daily Samples
MCLG (mg/L) a
Total trihalomethanes (TTHM) Chloroform Bromodichloromethane Dibromochloromethane Bromoform Haloacetic acids (five) (HAA5)b Dichloroacetic acid Trichloroacetic acid Chlorite Bromate
N/A *** 0 0.06 0 N/A 0 0.3 0.8 0
MCL (mg/L)
Compliance Based on
0.080
Annual Average
0.060
Annual Average
1.0 0.010
Monthly Average Annual Average
Notes: N/A-Not applicable because there are individual MCLGs for TTHMs or HAAs; MRDLGs, Maximum residual disinfectant level goals; MRDLs, Maximum residual disinfectant level; MCLGs, Maximum contaminant level goal; MCLs, Maximum contaminant level; AMCL, Alternate Maximum Contaminant Level; pCi/L, picoCuries per liter; mg/L, milligrams per liter. a b
Total trihalomethanes is the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Haloacetic acids (five) is the sum of the concentrations of mono-, di-, and trichloroacetic acids and mono—and dibromoacetic acids.
Source:
From United States Environmental Protection Agency, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
8-40
Table 8B.17 Summary of State Drinking Water Quality Standards That Differ from USEPA Standards New Compound (mg/L)
Alabama
California
Connecticut
Delaware
Florida
Hawaii
Iillinois
Massachusetts
Hampshire
North New Jersey
New York
Carolina
Pennsylvania
Utah
Wisconsin
aldicarb
0.003
—
—
—
—
—
0.002
—
—
—
0.003
0.002
—
—
—
aldicarb sulfone
0.002
—
—
—
—
—
0.002
—
—
—
0.002
0.003
—
—
—
aldicarb sulfoxide
0.004
—
—
—
—
—
0.004
—
—
—
0.004
0.004
—
—
—
aldrin
—
—
—
—
—
—
0.001
—
—
—
—
—
—
—
—
aluminum
—
1
—
—
—
—
—
—
—
—
—
—
—
—
atrazine
—
0.003
—
—
—
—
—
—
—
—
—
—
—
—
—
barium
—
1
—
—
—
—
—
—
—
—
—
—
—
—
—
bentazon
—
0.018
—
—
—
—
—
—
—
—
—
—
—
—
—
benzene
—
0.001
—
—
0.001
—
—
—
—
0.001
—
—
—
—
—
bis(2-ethylhexyl)phthalate
—
0.004
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.018
—
—
—
—
—
—
—
—
—
—
—
—
—
carbon tetrachloride
—
0.0005
—
—
0.003
—
—
—
—
0.002
—
—
—
—
—
chlordane
—
0.0001
—
—
—
—
—
—
—
0.0005
—
—
—
—
—
chlorobenzene
—
0.07
—
—
—
—
—
—
—
0.05
—
—
—
—
—
chromium
—
0.05
—
—
—
—
—
—
—
—
—
—
—
—
—
cis-1,
—
0.006
—
—
—
—
—
—
—
—
—
—
—
—
—
2,4-D
—
—
—
—
—
—
0.01
—
—
—
0.05
—
—
—
—
DDT
—
—
—
—
—
—
0.05
—
—
—
—
—
—
—
—
1, 2-dibromo-
—
0.0002
—
—
—
0.00004
—
—
—
—
—
—
—
—
—
1,2-dichlorobenzene
—
—
—
—
—
—
—
—
—
0.6
—
—
—
—
—
1,3-dichlorobenzene
—
—
—
—
—
—
—
—
—
0.6
—
—
—
—
—
1,4-dichlorobenzene
—
0.005
—
—
—
—
—
0.005
—
—
—
—
—
—
—
1,1-dichloroethane
—
0.005
—
—
—
—
—
—
—
0.05
—
—
—
—
—
1,2-dichloroethane
—
0.0005
—
—
0.003
—
—
—
—
0.002
—
—
—
—
—
1,1-dichloroethylene
—
0.006
—
—
—
—
—
—
—
0.002
—
—
—
—
—
dichloromethane
—
—
—
—
—
—
—
—
—
0.002
—
—
—
—
—
1,2-dichloropropane
—
0.005
—
—
—
—
—
—
—
—
—
—
—
—
—
1,3-dichloropropene
—
0.0005
—
—
—
—
—
—
—
—
—
—
—
—
—
dieldrin
—
—
—
—
—
—
0.001
—
—
—
—
—
—
—
—
endrin
—
—
—
—
—
—
—
—
—
—
0.0002
—
—
—
—
2-dichloroethylene
3-chloropropane
ethion
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
ethylene dibromide
—
—
—
—
0.00002
0.00004
—
0.00002
—
—
—
—
—
—
—
fluoride
—
2
—
1.8
—
1.4–2.4
—
—
—
—
—
4
2
—
—
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
carbofuran
—
0.03
—
—
—
—
—
—
—
—
—
—
—
—
—
heptachlor
—
0.00001
—
—
—
—
0.0001
—
—
—
—
—
—
—
—
heptachlor epoxide
—
0.00001
—
—
—
—
0.0001
—
—
—
—
—
—
—
—
iron
—
—
—
—
—
—
1
—
—
—
—
0.3
—
—
—
isopropanol
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
manganese
—
—
—
—
—
—
0.15
—
—
—
0.3
0.05
—
—
—
methyl t-butyl ether
—
0.005
—
—
—
—
—
—
—
0.07
—
—
—
—
—
molinate
—
0.02
—
—
—
—
—
—
—
—
—
—
—
—
—
naphthalene
—
—
—
—
—
—
—
—
—
0.3
—
—
—
—
—
polychlorinated biphenyls
—
—
—
—
—
—
—
—
—
0.0005
—
—
—
—
—
silver
—
—
0.05
—
—
—
—
—
—
—
—
—
—
—
—
sodium
—
—
—
—
0.16
—
—
—
—
—
—
—
—
—
—
0.008
0.008
0.008
—
—
—
0.008
—
0.008
—
—
—
—
—
0.008
500
—
—
—
—
—
—
—
—
—
—
—
—
1,000
—
tetrachloroethylene
—
—
—
—
0.003
—
—
—
—
0.001
—
—
—
—
—
1,1,2,2-tetrachloroethane
—
0.001
—
—
—
—
—
—
—
0.001
—
—
—
—
—
thiobencarb
—
0.07
—
—
—
—
—
—
—
—
—
—
—
—
—
0.01
strontium 90 sulfate
2,4,5-TP
—
—
—
—
—
—
—
—
—
—
toluene
—
0.15
—
—
—
—
—
—
—
—
—
—
—
—
1
1,2,4-trichloro-
—
—
—
—
—
—
—
—
—
0.009
—
—
—
—
—
1,1,1-trichloroethane
—
—
—
—
—
—
—
—
—
0.03
—
—
—
—
—
1,1,2-trichloroethane
—
—
—
—
—
—
—
—
—
0.003
—
—
—
—
—
trans-1,2-dichloroethylene
—
0.01
—
—
—
—
—
—
—
—
—
—
—
—
—
trichloroethylene
—
—
—
—
0.003
—
—
—
—
0.001
—
—
—
—
—
trichlorofluoro-
—
0.15
—
—
—
—
—
—
—
—
—
—
—
—
—
WATER QUALITY
formaldehyde
benzene
methane 1,2,3-trichloropropane
—
—
—
—
—
0.0008
—
—
—
—
—
—
—
—
—
1,1,2-trichloro-1,
—
1.2
—
—
—
—
—
—
—
—
—
—
—
—
—
20
2,2wtrifluoroethane
tritium
20
20
20
—
—
—
20
—
20
—
—
—
—
—
uranium
—
0.02
—
—
—
—
—
—
—
—
—
—
—
—
—
vinyl chloride
—
0.0005
—
—
0.001
—
—
—
—
0.002
—
—
—
—
0.0002
(Continued)
8-41
q 2006 by Taylor & Francis Group, LLC
8-42
Table 8B.17
(Continued) New
Compound (mg/L)
North
Alabama
California
Connecticut
Delaware
Florida
Hawaii
Iillinois
Massachusetts
Hampshire
New Jersey
New York
Carolina
Pennsylvania
Utah
Wisconsin
2-xylene
—
1.75
—
—
—
—
—
—
—
—
—
—
—
—
—
3-xylene
—
1.75
—
—
—
—
—
—
—
—
—
—
—
—
—
4-xylene
—
1.75
—
—
—
—
—
—
—
—
—
—
—
—
—
xylene
—
—
—
—
—
—
—
—
—
1
—
—
—
—
10
zinc, elemental
—
—
—
—
—
—
5
—
—
—
—
—
—
—
—
Note: Concentrations are in milligram per liter (mg/L). Source: From Data Bank Update Committee, Federal-State Toxicology and Risk Analysis Committee (FSTRAC), Summary of State and Federal Drinking Water Standards and Guidelines 1998–1999, www.sis.nlm.nih.gov.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
Table 8B.18 Public Water Supply Standard WATER QUALITY 8-43
q 2006 by Taylor & Francis Group, LLC
(Continued) Third Cycle 2nd Period
2019
*
*
*
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
* ****
**** **** ****
Waiver
****
* ****
*
*
****
****
****
****
* ****
****
****
* ****
****
****
* ****
****
*** *
* ****
****
06
07
08
09
10
11
12
13
14
15
16
17
18
19
*
05
*
×
×
×
×
* ****
* ****
****
×
No Waiver, Reliably and Consistently ≤ MCL, or Vulnerable to Asbestos Contamination10 > MCL
* ****
04
03
!
* ****
#
19
02 < Detection Limit ≥ Detection Limit but ≤ 1/2 MCL > 1/2 MCL but ≤ MCL > MCL
19
2018
*
18
*
18
2017
*
17
*
17
2016
*
16
*
16
2015
*
15
*
15
2014
*
14
*
14
2013
*
13
*
13
2012
*
12
*
12
2011
*
11
* * ****
11
2010
* * ****
10
* * ****
10
2009
* * ****
09
* * ****
09
2008
* * ****
08
* * ****
08
2007
* * ****
07
* * ****
07
2006
* * ****
06
* * ****
06
2005
* * ****
05
* * ****
05
2004
* * ****
04
* * ****
04
* * ****
03
* * ****
03
* * ****
#
< 1/2 MCL Reliably and Consistently < MCL9 ≥ 1/2 MCL or Not Reliably and Consistently < MCL
3rd Period
2003
1st Period
2002
3rd Period
02
CWSs & NTNCWSs Surface Water with 4 Quarters of Results < 1/2 MCL9 Groundwater Reliably and Consistently < MCL9 ≥ 1/2 MCL TNCWSs Standard Monitoring
02
Asbestos
Second Cycle 2nd Period
1st Period
****
****
****
×
* ****
****
****
****
****
****
****
****
****
****
****
****
****
Legend
1
Until January 22, 2006 the maximum contaminant level (MCL) for arsenic is 50 µg/L; on January 23, 2006 the MCL for arsenic becomes 10 µg/L.
* = 1 sample at each entry point to distribution system (EPTDS).
2
Based on 3 rounds of monitoring at each EPTDS with all analytical results below the MCL. Waivers are not permitted under the current arsenic requirements, however systems are eligible for arsenic waivers after January 23, 2006.
** = 2 quarterly samples at each EPTDS. Samples must be taken during 1 calendar year during each 3year compliance period.
3
A system with a sampling point result above the MCL must collect quarterly samples, at that sampling point, until the system is determined by the primacy agency to be reliably and consistently below the MCL. Samples must be taken during the quarter which previously resulted in the highest analytical result. Systems can apply for a waiver after 3 consecutive annual sampling results are below the detection limit. .
4
**** = 4 quarterly samples at each EPTDS within time frame designated by the primacy agency.
5
× = No sampling required unless required by the primacy agency.
6
# = Systems must monitor at a frequency specified by the primacy agency.
7
! = When allowed by the primacy agency, data collected between June 2000 and December 8, 2003 may be grandfathered to satisfy the initial monitoring requirements due in 2004 for gross alpha, radium 226/228, and uranium.
8
q 2006 by Taylor & Francis Group, LLC
Groundwater systems must update their vulnerability assessments during the time the waiver is effective. Primacy agencies must re-confirm that the system is nonvulnerable within 3 years of the initial determination or the system must return to annual sampling.
If all monitoring results during initial quarterly monitoring are less than the detection limit, the system can take annual samples. If after a minimum of 3 years of annual sampling with all analytical results less than the detection limit, the primacy agency can allow a system to take 1 sample during each compliance period. Systems are also eligible for a waiver. Primacy agencies must determine that a surface water system is nonvulnerable based on a vulnerability assessment during each compliance period or the system must return to annual sampling.
If all monitoring results during initial quarterly monitoring are less than the detection limit, the system can take annual samples. Systems are also eligible for a waiver.
9
Samples must be taken during the quarter which previously resulted in the highest analytical result.
10
Systems are required to monitor for asbestos during the first 3-year compliance period of each 9-year compliance cycle. A system vulnerable to asbestos contamination due solely to corrosion of asbestos-cement pipe must take 1 sample at a tap served by that pipe. A system vulnerable to asbestos contamination at the source must sample at each EPTDS.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Radio nuclides
Nitrite
Nitrate
EXCEPTIONS
8-44
Table 8B.18
WATER QUALITY
Note: The Standardized Monitoring Framework (SMF), was promulgated in the Phase II Rule on January 30, 1991 (56 FR 3526). The purpose of the SMF is to standardize, simplify, and consolidate monitoring requirements across contaminant groups. The SMF increases public health protection by simplifying monitoring plans and synchronizing monitoring schedules leading to increased compliance with monitoring requirements. The SMF reduces the variability within monitoring requirements for chemical and radiological contaminants across system sizes and types. The SMF summarizes existing systems’ ongoing federal monitoring requirements only. Primacy agencies have the flexibility to issue waivers, with EPA approval, which take into account regional and state specific characteristics and concerns. To determine exact monitoring requirements, the SMF must be used in conjunction with any EPA approved waiver and additional requirements as determined by the primacy agency. New water systems may have different and additional requirements as determined by the primacy agency. Regulated Contaminants: Inorganic Contaminants (IOCs) — Fifteen (15) (Nitrate, Nitrite, total Nitrate/Nitrite, and Asbestos are exceptions to SMF) Synthetic Organic Contaminants (SOCs) & Volatile Organic Contaminants (VOCs) — Fifty-One (51) Radionuclides — Four (4) Utilities Covered: All PWS must monitor for Nitrate and Nitrite CWSs must monitor for IOCs, SOCs, VOCs, and Radionuclides NTNCWSs must monitor for IOCs SOCs, and VOCs. Source: From United States Environmental Protection Agency, www.epa.gov.
8-45
q 2006 by Taylor & Francis Group, LLC
8-46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8B.19 Drinking Water Priority Rulemaking: Microbial and Disinfection Byproduct Rules Summary Existing M–DBP Regulations † Microbial Contaminants: The Surface Water Treatment Rule (SWTR), promulgated in 1989, applies to all public water systems using surface water sources or groundwater sources under the direct influence of surface water. It establishes maximum contaminant level goals (MCLGs) for viruses, bacteria and Giardia lamblia. It also includes treatment technique requirements for filtered and unfiltered systems that are specifically designed to protect against the adverse health effects of exposure to these microbial pathogens. The Total Coliform Rule, revised in 1989, applies to all PWSs and establishes a maximum contaminant level (MCL) for total coliforms † Disinfection Byproducts: In 1979, EPA set an interim MCL for total trihalomethanes of 0.10 mg/L as an annual average. This applies to any community water system serving at least 10,000 people that adds a disinfectant to the drinking water during any part of the treatment process Information Collection Rule (ICR): To support the M–DBP rulemaking process, the ICR required large public water systems serving at least 100,000 people to monitor and collect data on microbial contaminants, disinfectants and disinfection byproducts for 18 months. The data provide EPA with information about disinfection byproducts, disease-causing microorganisms, including Cryptosporidium, and engineering data to control these contaminants Interim Enhanced Surface Water Treatment Rule (IESWTR): The IESWTR applies to systems using surface water, or groundwater under the direct influence of surface water, that serve 10,000 or more persons. The rule also includes provisions for states to conduct sanitary surveys for surface water systems regardless of system size. The rule builds upon the treatment technique requirements of the SWTR with the following key additions and modifications † † † † † † † † †
Maximum contaminant level goal (MCLG) of zero for Cryptosporidium 2-log Cryptosporidium removal requirements for systems that filter Strengthened combined filter effluent turbidity performance standards Individual filter turbidity monitoring provisions Disinfection profiling and benchmarking provisions Systems using groundwater under the direct influence of surface water now subject to the new rules dealing with Crypdosporidium Inclusion of Cryptosporidium in the watershed control requirements for unfiltered public water systems Requirements for covers on new finished water reservoirs Sanitary surveys, conducted by states, for all surface water systems regardless of size
The IESWTR, with tightened turbidity performance criteria and required individual filter monitoring, is designed to optimize treatment reliability and to enhance physical removal efficiencies to minimize the Cryptosporidium levels in finished water. In addition, the rule includes disinfection benchmark provisions to assure continued levels of microbial protection while facilities take the necessary steps to comply with new DBP standards Stage 1 Disinfectants and Disinfection Byproducts Rule (DBPR): The final Stage 1 DBPR applies to community water systems and nontransient noncommunity systems, including those serving fewer than 10,000 people, that add a disinfectant to the drinking water during any part of the treatment process The final Stage 1 DBPR includes the following key provisions † Maximum residual disinfectant level goals (MRDLGs) for chlorine (4 mg/L), chloramines (4 mg/L), and chlorine dioxide (0.8 mg/L) † Maximum contaminant level goals (MCLGs) for four trihalomethanes (chloroform (zero), bromodichloromethane (zero), dibromochloromethane (0.06 mg/L), and bromoform (zero)), two haloacetic acids (dichloroacetic acid (zero) and trichloroacetic acid (0.3 mg/L)), bromate (zero), and chlorite (0.8 mg/L); EPA subsequently removed the zero MCLG for chloroform from its National Primary Drinking Water Regulations, effective May 30, 2000, in accordance with an order of the U.S. Court of Appeals for the District of Columbia Circuit † MRDLs for three disinfectants (chlorine (4.0 mg/L), chloramines (4.0 mg/L), and chlorine dioxide (0.8 mg/L)) † MCLs for total trihalomethanes—a sum of the four listed above (0.080 mg/L), haloacetic acids (HAA5) (0.060 mg/L)—a sum of the two listed above plus monochloroacetic acid and mono—and dibromoacetic acids), and two inorganic disinfection byproducts (chlorite (1.0 mg/L)) and bromate (0.010 mg/L)); and † A treatment technique for removal of DBP precursor material The terms MRDLG and MRDL, which are not included in the SDWA, were created during the negotiations to distinguish disinfectants (because of their beneficial use) from contaminants. The final rule includes monitoring, reporting, and public notification requirements for these compounds. This final rule also describes the best available technology (BAT) upon which the MRDLs and MCLs are based (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8B.19
8-47
(Continued)
Filter Backwash Recycling Rule (FBRR) The FBRR requires public water systems (PWSs) to review their backwash water recycling practices to ensure that they do not compromise microbial control. Under the FBRR, recycled filter backwash water, sludge thickener supernatant, and liquids from dewatering processes must be returned to a location such that all processes of a system’s conventional or direct filtration including coagulation, flocculation, sedimentation (conventional filtration only) and filtration, are employed. Systems may apply to the State for approval to recycle at an alternate location. The Filter Backwash Rule applies to all public water systems, regardless of size
Long-Term 1 Enhanced Surface Water Treatment Rule (Long-Term 1 ESWTR) While the Stage 1 DBPR applies to systems of all sizes, the IESWTR only applies to systems serving 10,000 or more people. The Long Term 1 ESWTR, promulgated in January 2002, will strengthen microbial controls for small systems i.e. those systems serving fewer than 10,000 people. The rule will also prevent significant increase in microbial risk where small systems take steps to implement the Stage 1 DBPR EPA believes that the rule will generally track the approaches in the IESWTR for improved turbidity control, including individual filter monitoring and reporting. The rule will also address disinfection profiling and benchmarking. The Agency is considering what modifications of some large system requirements may be appropriate for small systems Future M–DBP Rules Groundwater Rule EPA has proposed a Groundwater Rule that specifies the appropriate use of disinfection while addressing other components of groundwater systems to ensure public health protection. There are more than 158,000 public groundwater systems. Almost 89 million people are served by community groundwater systems, and 20 million people are served by noncommunity groundwater systems. Ninetynine percent (157,000) of groundwater systems serve fewer than 10,000 people. However, systems serving more than 10,000 people serve 55% (more than 60 million) of all people who get their drinking water from public groundwater systems. The Groundwater Rule will be promulgated summer 2001
Long-Term 2 Enhanced Surface Water Treatment Rule (Long-Term 2 ESWTR) EPA is proposing the Long-Term 2 ESWTR to reduce disease incidence associated with Cryptosporidium and other pathogenic microorganisms in drinking water. The Long-Term 2 ESWTR will supplement existing regulations by targeting additional Cryptosporidium treatment requirements to higher risk systems. This proposed regulation also contains provisions to mitigate risks from uncovered finished water storage facilities and to ensure that systems maintain microbial protection as they take steps to reduce the formation of disinfection byproducts. The Long-Term 2 ESWTR will apply to all systems that use surface water or groundwater under the direct influence of surface water
Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) The Stage 2 DBPR is one part of the Stage 2 Microbial and Disinfection Byproducts Rules (M–DBP), which are a set of interrelated regulations that address risks from microbial pathogens and disinfectants/disinfection byproducts (D/DBPs). The Stage 2 M–DBP Rules are the final phase in the M–DBP rulemaking strategy, affirmed by Congress as part of the 1996 Amendments to the SDWA. The Stage 2 DBPR focuses on public health protection by limiting exposure to DBPs, specifically total trihalomethanes (TTHM) and five haloacetic acids (HAA5), which can form in water through disinfectants used to control microbial pathogens. This rule will apply to all community water systems (CWSs) and nontransient noncommunity water systems (NTNCWSs) that add a primary or residual disinfectant other than ultraviolet (UV) light or deliver water that has been disinfected by a primary or residual disinfectant other than UV Source: From United States Environmental Protection Agency, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
8-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 8B.8 Public water supply rule implementation and milestone timeline. (From United States Environmental Protection Agency, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
q 2006 by Taylor & Francis Group, LLC
8-49
8-50
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8B.20 Unregulated Chemical Contanminents (1999 List) to Be Monitored in Public Supply Systems in the United States List 1 Contaminants—Assessment Monitoring 2,4-dinitrotoluene 2,6-dinitrotoluene Acetochlor DCPA di-acid degradate List 2 Contaminants—Screening Surveys 1,2-diphenylhydrazine 2-methyl-phenol 2,4-dichlorophenol 2,4-dinitrophenol 2,4,6-trichlorophenol Alachlor ESA List 3 Contaminants—Pre-Screen Testing Lead-210
Polonium-210 Adenoviruses a
DCPA mono-acid degradate DDE EPTC Molinate
MTBE Nitrobenzene Perchlorate Terbacil
Diazinon Disulfoton Diuron Fonofos Linuron Nitrobenzene (low-level)a
Prometon RDX Terbufos Aeromonas
Cyanobacteria (blue–green algae), other fresh water algae, and their toxins Caliciviruses Coxsackieviruses
Echoviruses
Helicobacter pylori Microsporidia
Nitrobenzene has been added to List 2 from the original UCMR (1999) List to track its occurrence at a concentration lower than the List 1 nitrobenzene minimum reporting level.
Source: From USEPA, 2001, Unregulated Contaminant Monitoring Regulation Reporting Guidance, (EPA 815-R-01-029, November 2001), www.epa.gov.
Table 8B.21 Monitoring Requirements for Unregulated Contaminant Program Contaminant Type Chemical
Microbiological
a
b c
d
Water Source Type
Timeframe
Surface water
Twelve (12) months
Groundwater
Twelve (12) months
Surface and groundwater
Twelve (12) months
Frequency Four (4) quarterly samples taken as follows: Select either the first, second, or third month of a quarter and sample in that same month of each of four (4) consecutive quartersa to ensure that one of those sampling events occurs during the vulnerable timeb Two (2) times in a year taken as follows: Sample during one (1) month of the vulnerable timeb and during one (1) month five (5) to seven (7) months earlier or laterc Six (6) times in a year taken as follows: Select either the first, second, or third month of a quarter and sample in that same month of each of four (4) quarters, and sample an additional two (2) months during the warmest (vulnerable) quarter of the yeard
“Select either the first, second, or third month of a quarter and sample in that same month of each of four consecutive quarters” means that the system must monitor during each of the 4 months of either: January, April, July, October; or February, May, August, November; or March, June, September, December. “Vulnerable time” means May 1 through July 31, unless the State or EPA informs the system that it has selected a different time period for sampling as its vulnerable time. “Sample during one month of the vulnerable time and during one month five to seven months earlier or later” means, for example, that if the system selects May as its “vulnerable time” month to sample, then one month five to seven months earlier would be either October, November, or December of the preceding year, and one month five to seven months later would be either, October, November, or December of the same year. This means that the system must monitor during each of the six months of either: January, April, July, August, September, October, or February, May, July, August, September, November, or March, June, July, August, September, December; unless the State or EPA informs the system that a different vulnerable quarter has been selected for it.
Source: From USEPA, 2001, Reference Guide for the Unregulated Contaminant Monitoring Program, (EPA 815-R-01-023, October 2001), www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-51
UCMR(1999): IMPLEMENTATION TIMELINE 1999
2000
2001
2002
2003
2004
2005
Programmatic Activities UCMR Issued, Guidance Available
Perchloate, Acetochlor Methods Approved
Assess Data Quality
Analyze Results
National Drinking Water Contaminant Occurrence Database Operational
Representative Sample Selected State PAs And State Plans Developed: Inform PWSs
Next Candidate Contaminant List Issued
EPA Contract Laboratories Operational (for small systems) Next UCMR List Issued
UCMR(1999) List 2 Rule Promulgated Monitoring Activities
Assessment Monitoring List 1 (1999) Contaminants All large and 800 small PWSs
Index System Monitoring 30 small PWSs
Screening surveys List 2 (1999) contaminants Screening Survey Chemical (180 small PWSs only)
Screening Survey Chemical (120 large PWSs only)
Screening Survey Micro (300 large and small PWSs )
Figure 8B.9 Unregulated chemical contaminant monitoring regulation (1999) timeline and related activities. (From USEPA, 2001, Reference Guide for the Unregulated Contaminant Monitoring Program, (EPA 815-R-01-023, October 2001), www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
8-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8B.22 Drinking Water Contaminant Candidate List 2 Microbial Contaminant Candidates Adenoviruses Aeromonas hydrophila Caliciviruses Coxsackieviruses Cyanobacteria (blue–green algae), other freshwater algae, and their toxins Echoviruses Helicobacter pylori Microsporidia (Enterocytozoon & Septata) Mycobacterium avium intracellulare (MAC) Chemical Contaminant Candidates 1,1,2,2-tetrachloroethane 1,2,4-trimethylbenzene 1,1-dichloroethane 1,1-dichloropropene 1,2-diphenylhydrazine 1,3-dichloropropane 1,3-dichloropropene 2,4,6-trichlorophenol 2,2-dichloropropane 2,4-dichlorophenol 2,4-dinitrophenol 2,4-dinitrotoluene 2,6-dinitrotoluene 2-methyl-Phenol (o-cresol) Acetochlor Alachlor ESA & other acetanilide pesticide degradation products Aluminum Boron Bromobenzene DCPA mono-acid degradate DCPA di-acid degradate DDE Diazinon Disulfoton Diuron EPTC (s-ethyl-dipropylthiocarbamate) Fonofos p-Isopropyltoluene (p-cymene) Linuron Methyl bromide Methyl-t-butyl ether (MTBE) Metolachlor Molinate Nitrobenzene Organotins Perchlorate Prometon RDX Terbacil Terbufos Triazines & degradation products of triazines including, but not limited to Cyanazine and atrazine-desethyl Vanadium Source: From United States Environmental Protection Agency, Office of Water (4607m), EPA 815-F-05-001, February 2005, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-53
Complete Unfinished Priority Rulemakings Unregulated Contaminant Contaminant Monitoring Candidate Rule 1 List 1
Regulatory Determinations
Proposed Rule
Final Rule
Start New Work 97
98
99
00
01
02
03
04
05
06
Research & Occurrence Data Collection for CCL1 Contaminants
Safe Drinking Water Act 96
Regulatory Determinations
Unregulated Contaminant Monitoring Rule 2 Contaminant Candidate List 2
Review & Update Existing Maximum Contaminant Levels
Figure 8B.10 Contaminant candidate identification and selection cycle. (From United States Environmental Protection Agency), www.epa.gov.) D1 D27
Arom Solvent
D26 Aliph solvent
D2 Musky
Earthy
Metallic
D3 C8 Metallic
Mushroom D4
D25
Peaty B1
Plasticizer
D5
Solvent/Paint
D24
Grassy
Earthy C7
Exhaust Gas D23
D6 C1 Chemical
Petroleum Products
Petroleum
A1
D22
C6
B2
No
GeraniumLike
Floral
D7
B5
Violet Like
B4
Soapy D21
A2 Yes
Chlorinous B3
D20
C2
Natural
Medicinal / Disinfectant
Pleasant
Natural Unpleasant
D8 Green Apple
Fruity/ Vegetable Like
D9 Cucumber
Phenolic (Medicinal) Citrus
D19 DMS D18
D10
Spicy
Putrid D17
C3
Fishy
Rotten/Offensive C5 Potato
Onion Spec. spice
Fishy Rancid
D16 D15
Sulphide
D11
C4 D12
D13
D14
Figure 8B.11 Flavor wheel for drinking water. (From International Association of Water Pollution Research and Control; Water Quality Bulletin, Vol. 13, no. 2–3, April–July 1998.) q 2006 by Taylor & Francis Group, LLC
8-54
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 8C
DRINKING WATER STANDARDS — WORLD
Table 8C.23 World Health Organization Drinking Water Guideline Values for Chemicals That Are of Health Significance Chemical
Guideline Valuea (mg/L)
Remarks
b
Acrylamide Alachlor Aldicarb
0.0005 0.02b 0.01
Aldrin and dieldrin Antimony Arsenic Atrazine Barium Benzene Benzo[a]pyrene Boron Bromate Bromodichloromethane Bromoform Cadmium Carbofuran Carbon tetrachloride Chloral hydrate (trichloroacetaldehyde) Chlorate Chlordane Chlorine
0.00003 0.02 0.01 (P) 0.002 0.7 0.01b 0.0007b 0.5 (T) 0.01b (A, T) 0.06b 0.1 0.003 0.007 0.004 0.01 (P) 0.7 (D) 0.0002 5 (C)
Chlorite Chloroform Chlorotoluron Chlorpyrifos Chromium Copper
0.7 (D) 0.2 0.03 0.03 0.05 (P) 2
Cyanazine Cyanide Cyanogen chloride
0.0006 0.07 0.07
2,4-D (2,4-dichlorophenoxyacetic acid) 2,4-DB DDT and metabolites Di(2-ethylhexyl)phthalate Dibromoacetonitrile Dibromochloromethane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane Dichloroacetate Dichloroacetonitrile Dichlorobenzene, 1,2K Dichlorobenzene, 1,4K Dichloroethane, 1,2K Dichloroethene, 1,1K Dichloroethene, 1,2K Dichloromethane 1,2-Dichloropropane (1,2-DCP) 1,3-Dichloropropene Dichlorprop Dimethoate Edetic acid (EDTA) Endrin
0.03 0.09 0.001 0.008 0.07 0.1 0.001b 0.0004b (P) 0.05 (T, D) 0.02 (P) 1 (C) 0.3 (C) 0.03b 0.03 0.05 0.02 0.04 (P) 0.02b 0.1 0.006 0.6 0.0006
Applies to aldicarb sulfoxide and aldicarb sulfone For combined aldrin plus dieldrin
For effective disinfection, there should be a residual concentration of free chlorine ofR0.5 mg /L after at least 30 min contact time at pH !8.0
For total chromium Staining of laundry and sanitary ware may occur below guideline value
For cyanide as total cyanogenic compounds Applies to free acid
Applies to the free acid (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8C.23
8-55
(Continued)
Chemical
Guideline Valuea (mg/L)
Epichlorohydrin Ethylbenzene Fenoprop Fluoride
0.0004 (P) 0.3 (C) 0.009 1.5
Formaldehyde Hexachlorobutadiene Isoproturon Lead Lindane Manganese MCPA Mecoprop Mercury
0.9 0.0006 0.009 0.01 0.002 0.4 (C) 0.002 0.01 0.001
Methoxychlor Metolachlor Microcystin-LR
0.02 0.01 0.001 (P)
Molinate Molybdenum Monochloramine Monochloroacetate Nickel Nitrate (as NOK 3 ) Nitrilotriacetic acid (NTA) Nitrite (as NOK 2 )
0.006 0.07 3 0.02 0.02 (P) 50 0.2 3 0.2 (P) 0.02 0.009b (P) 0.3 0.01 0.002 0.02 (C) 0.009 0.007 0.04 0.7 (C) 0.2 0.07 (P) 0.2b (C) 0.02
Pendimethalin Pentachlorophenol Pyriproxyfen Selenium Simazine Styrene 2,4,5-T Terbuthylazine Tetrachloroethene Toluene Trichloroacetate Trichloroethene Trichlorophenol, 2,4,6K Trifluralin Trihalomethanes
Uranium
0.015 (P, T)
Vinyl chloride Xylenes
0.0003b 0.5 (C)
a
Remarks
Volume of water consumed and intake from other sources should be considered when setting national standards
For total mercury (inorganic plus organic)
For total microcystin-LR (free plus cell-bound)
Short-term exposure Short-term exposure Long-term exposure
The sum of the ratio of the concentration of each to its respective guideline value should not exceed 1 Only chemical aspects of uranium addressed
P, provisional guideline value, as there is evidence of a hazard, but the available information on health effects is limited; T, provisional guideline value because calculated guideline value is below the level that can be achieved through practical treatment methods, source protection, etc.; A, provisional guideline value because calculated guideline value is below the achievable quantification level; D, provisional guideline value because disinfection is likely to result in the guideline value being exceeded; C, concentrations of the substance at or below the health-based guideline value may affect the appearance, taste or odour of the water, leading to consumer complaints. b For substances that are considered to be carcinogenic, the guideline value is the concentration in drinking water associated with an upper-bound excess lifetime cancer risk of 10K5 (one additional cancer per 100000 of the population ingesting drinking-water containing the substance at the guideline value for 70 years). Concentrations associated with upper-bound estimated excess lifetime cancer risks of 10K4 and 10K6 can be calculated by multiplying and dividing, respectively, the guideline value by 10. Source: From World Health Organization, 2004, Guidelines for Drinking-Water Quality, Third Edition, Volume 1, Recommendations. Copyright q World Health Organization 2004, www.who.int. q 2006 by Taylor & Francis Group, LLC
8-56
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8C.24 World Health Organization Drinking Water Guideline Levels for Radionuclides Radionuclides 3
H Be 14 C 22 Na 32 P 33 P 35 S 36 Cl 45 Ca 47 Ca 46 Sc 47 Sc 48 Sc 48 V 51 Cr 52 Mn 53 Mn 54 Mn 55 Fe 59 Fe 56 Co 57 Co 58 Co 60 Co 59 Ni 63 Ni 65 Zn 71 Ge 73 As 74 As 76 As 77 As 75 Se 82 Br 86 Rb 85 Sr 89 Sr 90 Sr 90 Y 91 Y 93 Zr 95 Zr 93m Nb 94 Nb 95 Nb 224 Rab 225 Ra 226 Rab 228 Rab 227 Thb 228 Thb 229 Th 230 Thb 231 Thb 232 Thb 234 Thb 230 Pa 231 Pab 233 Pa 230 U 7
Guidance Level (Bq/L)a 10000 10000 100 100 100 1000 100 100 100 100 100 100 100 100 10000 100 10000 100 1000 100 100 1000 100 100 1000 1000 100 10000 1000 100 100 1000 100 100 100 100 100 10 100 100 100 100 1000 100 100 1 1 1 0.1 10 1 0.1 1 1000 1 100 100 0.1 100 1
Radionuclides 93
Mo Mo 96 Tc 97 Tc 97m Tc 99 Tc 97 Ru 103 Ru 106 Ru 105 Rh 103 Pd 105 Ag 110m Ag 111 Ag 109 Cd 115 Cd 115m Cd 111 In 114m In 113 Sn 125 Sn 122 Sb 124 Sb 125 Sb 123m Te 127 Te 127m Te 129 Te 129m Te 131 Te 131m Te 132 Te 125 I 126 I 129 I 131 I 129 Cs 131 Cs 132 Cs 134 Cs 135 Cs 136 Cs 137 Cs 131 Ba 140 Ba 235 b U 236 b U 237 U 238 b,c U 237 Np 239 Np 236 Pu 237 Pu 238 Pu 239 Pu 240 Pu 241 Pu 242 Pu 244 Pu 241 Am 99
Guidance Level (Bq/L)a 100 100 100 1000 100 100 1000 100 10 1000 1000 100 100 100 100 100 100 1000 100 100 100 100 100 100 100 1000 100 1000 100 1000 100 100 10 10 1000 10 1000 1000 100 10 100 100 10 1000 100 1 1 100 10 1 100 1 1000 1 1 1 10 1 1 1
Radionuclides 140
La Ce 141 Ce 143 Ce 144 Ce 143 Pr 147 Nd 147 Pm 149 Pm 151 Sm 153 Sm 152 Eu 154 Eu 155 Eu 153 Gd 160 Tb 169 Er 171 Tm 175 Yb 182 Ta 181 W 185 W 186 Re 185 Os 191 Os 193 Os 190 Ir 192 Ir 191 Pt 193 M 198 Au 199 Au 197 Hg 203 Hg 200 Tl 201 Tl 202 Tl 204 Tl 203 Pb 206 Bi 207 Bi 210 b Bi 210 Pbb 210 Pob 223 Rab 242 Cm 243 Cm 244 Cm 245 Cm 246 Cm 247 Cm 248 Cm 249 Bk 246 Cf 248 Cf 249 Cf 250 Cf 251 Cf 252 Cf 253 Cf 139
Guidance Level (Bq/L)a 100 1000 100 100 10 100 100 1000 100 1000 100 100 100 1000 1000 100 1000 1000 1000 100 1000 1000 100 100 100 100 100 100 1000 1000 100 1000 1000 100 1000 1000 1000 100 1000 100 100 100 0.1 0.1 1 10 1 1 1 1 1 0.1 100 100 10 1 1 1 1 100 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8C.24
(Continued)
Radionuclides 231
U U 233 U 234 b U 232
8-57
Guidance Level (Bq/L)a 1000 1 1 10
Radionuclides 242
Am Am 243 Am 242m
Guidance Level (Bq/L)a
Radionuclides 254
1000 1 1
Cf Es 254 Es 254m Es 253
Guidance Level (Bq/L)a 1 10 10 100
a
Guidance levels are rounded according to averaging the log scale values (to 10n if the calculated value was below 3!10n and above 3!10nK1). b Natural radionuclides. c The provisional guideline value for uranium in drinking-water is 15 mg/litre based on its chemical toxicity for the kidney (www.ec.gc.ca). Source: From World Health Organization, 2004, Guidelines for Drinking-Water Quality, Third Edition, Volume 1, Recommendations. Copyright q World Health Organization 2004, www.who.int. Table 8C.25 Canadian Guidelines for Drinking Water Quality — Chemical and Physical Parameters Parameter Aldicarb AldrinCdieldrin Aluminuma Antimony Arsenic AtrazineCmetabolites Azinphos-methyl Barium Bendiocarb Benzene Benzo[a]pyrene Boron Bromate Bromoxynil Cadmium Carbaryl Carbofuran Carbon tetrachloride Chloramines (total) Chloride Chlorpyrifos Chromium Colour Copperb Cyanazine Cyanide Cyanobacterial toxins (as microcystin-LR)c Diazinon Dicamba Dichlorobenzene, 1,2Ke Dichlorobenzene, 1,4Ke Dichloroethane, 1,2K Dichloroethylene, 1,1K Dichloromethane Dichlorophenol, 2,4K Dichlorophenoxyacetic acid, 2,4K (2,4KD) Diclofop-methyl Dimethoate Dinoseb Diquat Diuron Ethylbenzene Fluoridef Glyphosate Iron Leadb Malathion
Maximum Acceptable Concentration (mg/L)
Aesthetic Objectives (mg/L)
0.009 0.0007 0.006b 0.025 0.005 0.02 1.0 0.04 0.005 0.00001 5 0.01 0.005 0.005 0.09 0.09 0.005 3.0 %250 0.09 0.05 %15 TCUd %1.0 0.01 0.2 0.0015 0.02 0.12 0.20 0.005 0.005 0.014 0.05 0.9 0.1 0.009 0.02 0.01 0.07 0.15
%0.003 %0.001
%0.0003
%0.0024 1.5 0.28 %0.3 0.010 0.19
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-58
Table 8C.25
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Parameter Manganese Mercury Methoxychlor Metolachlor Metribuzin Monochlorobenzene Nitrateg Nitrilotriacetic acid (NTA) Odour Paraquat (as dichloride) Parathion Pentachlorophenol pH Phorate Picloram Selenium Simazine Sodiumj Sulphatek Sulphide (as H2S) Taste Temperature Terbufos Tetrachloroethylene Tetrachlorophenol, 2,3,4,6K Toluene Total dissolved solids (TDS) Trichloroethylene Trichlorophenol, 2,4,6K Trifluralin Trihalomethanes (total)l Turbidity Uranium Vinyl chloride Xylenes (total) Zincb a
Maximum Acceptable Concentration (mg/L)
Aesthetic Objectives (mg/L) %0.05
0.001 0.9 0.05 0.08 0.08 45 0.4
%0.03
Inoffensive 0.01h 0.05 0.06
%0.030 6.5–8.5i
0.002 0.19 0.01 0.01 %200 %500 %0.05 Inoffensive %158C 0.001 0.03 0.1
0.05 0.005 0.045 0.1 1 NTUm 0.02 0.002
%0.001 %0.024 %500 %0.002
%5 NTUm,n
%0.3 %5.0
A health-based guideline for aluminum in drinking water has not been established. However, water treatment plants using aluminumbased coagulants should optimize their operations to reduce residual aluminum levels in treated water to the lowest extent possible as a precautionary measure. Operational guidance values of less than 100 mg/L total aluminum for conventional treatment plants and less than 200 mg/L total aluminum for other types of treatment systems are recommended. Any attempt to minimize aluminum residuals must not compromise the effectiveness of disinfection processes or interfere with the removal of disinfection by-product precursors. b Because first-drawn water may contain higher concentrations of metals than are found in running water after flushing, faucets should be thoroughly flushed before water is taken for consumption or analysis. c The guideline is considered protective of human health against exposure to other microcystins (total microcystins) that may also be present. d TCUZtrue colour unit. e In cases where total dichlorobenzenes are measured and concentrations exceed the most stringent value (0.005 mg/L), the concentrations of the individual isomers should be established. f It is recommended, however, that the concentration of fluoride be adjusted to 0.8–1.0 mg/L, which is the optimum range for the control of dental caries. g Equivalent to 10 mg/L as nitrate-nitrogen. Where nitrate and nitrite are determined separately, levels of nitrite should not exceed 3.2 mg/L. h Equivalent to 0.007 mg/L for paraquation. i No units. j It is recommended that sodium be included in routine monitoring programmes, as levels may be of interest to authorities who wish to prescribe sodium-restricted diets for their patients. k There may be a laxative effect in some individuals when sulphate levels exceed 500 mg/L. l The IMAC for trihalomethanes is expressed as a running annual average. It is based on the risk associated with chloroform, the trihalomethane most often present and in greatest concentration in drinking water. The guideline is designated as interim until such time as the risks from other disinfection by-products are ascertained. The preferred method of controlling disinfection byproducts is precursor removal; however, any method of control employed must not compromise the effectiveness of water disinfection. m NTUZNephelometric turbidity unit. n At the point of consumption. Source: From Health Canada, 2004, Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal-ProvincialTerritorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, April 2004, ec.gc.ga.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-59
Table 8C.26 Canadian Guidelines for Drinking Water Quality—Radionuclides Radionuclide
Half-life t1/2
Primary List of Radionuclides—Maximum Acceptable Concentrations (MACs) Natural Radionuclides 210 Pb 22.3 yrs Lead-210 224 Ra 3.66 d Radium-224 226 Radium-226 Ra 1600 yrs 228 Ra 5.76 yrs Radium-228 228 Thorium-228 Th 1.91 yrs 230 Th 7.54!104 yrs Thorium-230 232 Thorium-232 Th 1.40!1010 yrs 234 Th 24.1 d Thorium-234 234 Uranium-234 U 2.45!105 yrs 235 Uranium-235 U 7.04!108 yrs 238 Uranium-238 U 4.47!109 yrs Artificial Radionuclides 134 Cesium-134 Cs 2.07 yrs 137 Cs 30.2 yrs Cesium-137 125 I 59.9 d Iodine-125 131 I 8.04 d Iodine-131 99 Molybdenum-99 Mo 65.9 hr 90 Strontium-90 Sr 29 yrs b 3 H 12.3 yrs Tritium Secondary List of Radionuclides—Maximum Acceptable Concentrations (MACs) Natural Radionuclidesc 7 Beryllium-7 Be 53.3 d 210 Bismurh-210 Bi 5.01 d 210 Po 138.4 d Polonium-210 Artificial Radionuclides 241 Americium-241 Am 432 yrs 122 Antimony-122 Sb 2.71 d 124 Sb 60.2 d Antimony-124 125 Antimony-125 Sb 2.76 yrs 140 Ba 12.8 d Barium-140 82 Br 35.3 hr Bromine-82 45 Calcium-45 Ca 165 d 47 Ca 4.54 d Calcium-47 14 C 5730 yrs Carbon-14b 141 Cerium-141 Ce 32.5 d 144 Cerium-144 Ce 284.4 d 131 Cs 9.69 d Cesium-131 136 Cesium-136 Cs 13.1 d 51 Cr 27.7 d Chromium-51 57 Cobalt-57 Co 271.8 d 58 Co 70.9 d Cobalt-58 60 Cobalt-60 Co 5.27 yrs 67 Ga 78.3 hr Gallium-67 198 Gold-198 Au 2.69 d 111 In 2.81 d Indium-111 129 Iodine-129 I 1.60!107 yrs 55 Fe 2.68 yrs Iron-55 59 Fe 44.5 d Iron-59 54 Mn 312.2 d Manganese-54 197 Mercury-197 Hg 64.1 hr 203 Hg 46.6 d Mercury-203 239 Np 2.35 d Neptunium-239 95 Nb 35.0 d Niobium-95 32 Phosphorus-32 P 14.3 d 238 Pu 87.7 yrs Plutonium-238 239 Plutonium-239 Pu 2.41!104 yrs 240 Plutonium-240 Pu 6560 yrs 241 Pu 14.4 yrs Plutonium-241
DCF (Sv/Bq)
1.3!10K6 8.0!10K8 2.2!10K7 2.7!10K7 6.7!10K8 3.5!10K7 1.8!10K6 5.7!10K9 3.9!10K8 3.8!10K8 3.6!10K8
MAC (Bq/L)
0.1 2 0.6 0.5 2 0.4 0.1 20 4a 4a 4a
1.9!10K8 1.3!10K8 1.5!10K8 2.2!10K8 1.9!10K9 2.8!10K8 1.8!10K11
7 10 10 6 70 5 7000
3.3!10K11 2.1!10K9 6.2!10K7
4000 70 0.2
5.7!10K7 2.8!10K9 3.6!10K9 9.8!10K10 3.7!10K9 4.8!10K10 8.9!10K10 2.2!10K9 5.6!10K10 1.2!10K9 8.8!10K9 6.6!10K11 3.0!10K9 5.3!10K11 3.5!10K9 6.8!10K9 9.2!10K8 2.6!10K10 1.6!10K9 3.9!10K10 1.1!10K7 4.0!10K10 3.1!10K9 7.3!10K10 3.3!10K10 1.8!10K9 1.2!10K9 7.7!10K10 2.6!10K9 5.1!10K7 5.6!10K7 5.6!10K7 1.1!10K8
0.2 50 40 100 40 300 200 60 200b 100 20 2000 50 3000 40 20 2 500 90 400 1 300 40 200 400 80 100 200 50 0.3 0.2 0.2 10 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-60
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8C.26
(Continued)
Radionuclide Rhodium-105 Rubidium-81 Rubidium-86 Ruthenium-103 Ruthenium-106 Selenium-75 Silver-108m Silver-110m Silver-111 Sodium-22 Strontium-85 Strontium-89 Sulphur-35 Technetium-99 Technetium-99m Tellurium-129m Tellurium-131m Tellurium-132 Thallium-201 Ytterbium-169 Yttrium-90 Yttrium-91 Zinc-65 Zirconium-95 a b c d
Half-life t1/2 105
Rh Rb 86 Rb 103 Ru 106 Ru 75 Se 108m Ag 110m Ag 111 Ag 22 Na 85 Sr 89 Sr 35 S 99 Tc 99m Tc 129m Te 131m Te 132 Te 201 Tl 169 Yb 90 Y 91 Y 65 Zn 95 Zr 81
DCF (Sv/Bq)
MAC (Bq/L)
K10
35.4 hr 4.58 hr 18.6 d 39.2 d 372.6 d 119.8 d 127 yrs 249.8 d 7.47 d 2.61 yrs 64.8 d 50.5 d 87.2 d 2.13!105 yrs 6.01 hr 33.4 d 32.4 hr 78.2 hr 3.04 d 32.0 d 64 hr 58.5 d 243.8 d 64.0 d
5.4!10 5.3!10K11 2.5!10K9 1.1!10K9 1.1!10K8 2.1!10K9 2.1!10K9 3.0!10K9 2.0!10K9 3.0!10K9 5.3!10K10 3.8!10K9 3.0!10K10 6.7!10K10 2.1!10K11 3.9!10K9 3.4!10K9 3.5!10K9 7.4!10K11 1.1!10K9 4.2!10K9 4.0!10K9 3.8!10K9 1.3!10K9
300 3000 50 100 10 70 70 50 70 50 300 40 500 200 7000 40 40 40 2000 100 30 30 40 100
The activity concentrations of natural corresponding to the guideline of 0.02 mg/L is about 0.5 Bg/L. Tritium is also produced naturally in the atmosphere in significant quanties. The activity concentration of natural uranium corresponding to the chemical guideline of 0.1 mg/L (see separate criteria summary on uranium in the Supporting Documentation) is about 2.6 Bq/L. Tritium and 14C are also produced naturally in the atmosphere in significant quantities.
Source: From Health Canada, 2004, Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal-ProvincialTerritorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, April 2004, ec.gc.ga.
Table 8C.27 Australian Drinking Water Guideline Values for Physical and Chemical Characteristics Guideline Valuesa Characteristic Acrylamide Aluminum (acid-soluble) Ammonia (as NH3) Antimony Arsenic Asbestos Barium Benzene Beryllium Boron Bromate Cadmium Carbon tetrachloride Chloramine—see monochloramine Chlorate Chloride Chlorinated furanones (MX) Chlorine Chlorine dioxide Chlorite Chloroacetic acids Chloroacetic acid Dichloroacetic acid
Health
Aestheticb
0.0002 c c
0.2 0.5
0.003 0.007 c
0.7 0.001 c
4 0.02 0.002 0.003 c e
250
c
5 1 0.3
0.6 0.4
0.15 0.1
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8C.27
8-61
(Continued) Guideline Valuesa
Characteristic Trichloroacetic acid Chlorobenzene Chloroketones 1,1-Dichloropropanone 1,3-Dichloropropanone 1,1,1-Trichloropropanone 1,1,3-Trichloropropanone Chlorophenols 2-Chlorophenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol Chloropicrin Chromium (as Cr(VI)) Copper Cyanide Cyanogen chloride (as cyanide) Dichlorobenzenes 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichloroethanes 1,1-Dichloroethane 1,2-Dichloroethane Dichloroethenes 1,1-Dichloroethene 1,2-Dichloroethene Dichloromethane (methylene chloride) Dissolved oxygen Epichlorohydrin Ethylbenzene Ethylenediamine tetraacetic acid (EDTA) Fluoride Formaldehyde Haloacetonitriles Dichloroacetonitrile Trichloroacetonitrile Dibromoacetonitrile Bromochloroacetonitrile Hardness (as CaCO3) Hexachlorobutadiene Hydrogen sulfide Iodine Iodide Iron Lead Manganese Mercury Molybdenum Monochloramine Nickel Nitrate (as nitrate) Nitrite (as nitrite) Nitrilotriacetic acid Organotins Dialkyltins Tributyltin oxide Ozone pH Plasticisers Di(2-ethylhexyl) phthalate Di(2-ethylhexyl) adipate Polycyclic aromatic hydrocarbons (PAHs) Benzo-(a)-pyrene Selenium Silver
Health 0.1 0.3
Aestheticb 0.01
c c c c
0.3 0.2 0.02
0.0001 0.0003 0.002
c
0.05 2 0.08 0.08 1.5 c
0.04
1
0.001 0.02 0.003
c
0.003 0.03 0.06 0.004 Not necessary 0.0005d 0.3 0.25 1.5 0.5
O 85% 0.003
c c c c
Not necessary 0.0007
200
c
0.05
c
0.1 c
0.01 0.5 0.001 0.05 3 0.02 50 3 0.2
0.3 0.1
0.5
c
0.001 c
pH 6.5–8.5
0.01 c
0.00001 (10 ng/L) 0.01 0.1
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-62
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8C.27
(Continued) Guideline Valuesa
Characteristic
Health
Sodium Styene (vinylbenzene) Sulfate Taste and odor
e
Temperature Tetrachloroethene Tin Toluene Total dissolved solids Trichloroacetaldehyde (chloral hydrate) Trichlorobenzenes (total) 1,1,1-Trichloroethane Trichloroethylene Trihalomethanes (THMs) (Total) True Color Turbidity Uranium Vinyl chloride Xylene Zinc
Not necessary 0.05
Note:
a b c d e
0.03 500 Not necessary
Aestheticb 180 0.004 250 Acceptable to most people No value set
e
0.8 Not necessary 0.02 0.03
0.025 500 0.005
c c
0.25 Not necessary c
0.02 0.0003 0.6 c
15 HU 5 NTU
0.02 3
All values are as “total” unless otherwise stated; Routine monitoring for these compounds is not required unless there is potential for contamination of water supplies (e.g. accidental spillage); The concentration of all chlorination byproducts can be minimized by removing naturally occurring organic matter from the source water, reducing the amount of chlorine added, or using an alternative disinfectant (which may produce other byproducts). Action to reduce trihalomethanes and other byproducts is encouraged, but must not compromise disinfection. HU, Hazen units; NTU, Nephelometric turbidity units; THMs, trihalomethanes.
All values mg/L unless otherwise stated. Aesthetic values are not listed if the compound does not cause aesthetic problems, or if the value determined from health considerations is the same or lower. Insufficient data to set a guideline value based on health considerations. The guideline value is below the limit of determination. Improved analytical procedures are required for this compound. No health-based guideline value is considered necessary.
Source: From Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Australian Drinking Water Guidelines, 2004, www.waterquality.crc.org.au. With permission.
Table 8C.28 Australian Drinking Water Guideline Values for Pesticides Pesticide Acephate Aldicarb Aldrinc (and dieldrin) Ametryn Amitrolec Asulam Atrazinec Azinphos-methyl Benomyl Bentazone Bioresmethrin Bromacil Bromophos-ethyl Bromoxynil Carbaryl Carbendazim Carbofuran Carbophenothion Carboxin Chlordanec Chlorfenvinphos
Guideline Valuea (mg/L) 0.001 0.00001 0.005 0.001 0.0001 0.002
0.01
0.005 0.005 0.002 0.00001
Health Valueb (mg/L) 0.01 0.001 0.0003 0.05 0.01 0.05 0.04 0.003 0.1 0.03 0.1 0.3 0.01 0.03 0.03 0.1 0.01 0.0005 0.3 0.001 0.005
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8C.28
8-63
(Continued)
Pesticide Chlorothalonil Chloroxuron Chlorpyrifosc Chlorsulfuron Clopyralidc 2,4-Dc DDTc Diazinon Dicamba Dichlobenil Dichlorvos Diclofop-methyl Dicofol Dieldrinc(see aldrin) Difenzoquat Dimethoate Diphenamid Diquatc Disulfoton Diuronc DPA (2,2-DPA) EDB Endosulfanc Endothal EPTC Ethion Ethoprophos Etridiazole Fenamiphos Fenarimol Fenchlorphos Fenitrothion Fenoprop Fensulfothion Fenvalerate Flamprop-methyl Fluometuron Formothion Fosaminec Glyphosate Heptachlorc(including its epoxide) Hexaflurate Hexazinonec Lindanec Maldison Methidathion Methiocarb Methomyl Methoxychlor Metolachlor Metribuzin Metsulfuron-methyl Mevinphos Molinatec Monocrotophos Napropamide Nitralin Norflurazon Oryzalin Oxamyl Paraquatc Parathion Parathion methyl Pebulate Pendimethalin Pentachlorophenol Permethrin Picloramc
Guideline Valuea (mg/L)
Health Valueb (mg/L)
0.0001
0.03 0.01 0.01 0.1 1 0.03 0.02 0.003 0.1 0.01 0.001 0.005 0.003 0.0003 0.1 0.05 0.3 0.005 0.003 0.03 0.5 0.001 0.03 0.1 0.03 0.003 0.001 0.1 0.0003 0.03 0.03 0.01 0.01 0.01 0.05 0.003 0.05 0.05 0.03 1 0.0003 0.03 0.3 0.02 0.05 0.03 0.005 0.03 0.3 0.3 0.05 0.03 0.005 0.005 0.001 1 0.5 0.05 0.3 0.1 0.03 0.01 0.1 0.03 0.3 0.01 0.1 0.3
1 0.0001 0.00006 0.001
0.001
0.00001
0.002 0.0005 0.001
0.001 0.00005 0.01 0.001 0.001 0.0001 0.001
0.01
0.01 0.00005 0.002 0.00005
0.005 0.005 0.0002 0.002 0.001 0.005 0.0005 0.001 0.002 0.005 0.001 0.0003 0.0005 0.00001 0.001
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-64
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8C.28
(Continued)
Pesticide Piperonyl butoxide Pirimicarb Pirimiphos-ethyl Pirimiphos-methyl Profenofos Promecarb Propachlor Propanil Propargite Propazine Propiconazolec Propyzamide Pyrazophos Quintozene Simazine Sulprofos Silvex (see Fenoprop) 2,4,5-T Temephosc Terbacil Terbufos Terbutryn Tetrachlovinphos Thiobencarb Thiometon Thiophanate Thiram Triadimefon Trichlorfon Triclopyrc Trifluralin Vernolate
Note: a
b c
Guideline Valuea (mg/L)
0.001 0.0001 0.0005 0.0001 0.002
0.0005
0.00005 0.3 0.01 0.0005 0.001 0.002
0.1
0.0001 0.0005
Health Valueb (mg/L) 0.1 0.005 0.0005 0.05 0.0003 0.03 0.05 0.5 0.05 0.05 0.1 0.3 0.03 0.03 0.02 0.01 0.1 0.3 0.03 0.0005 0.3 0.1 0.03 0.003 0.005 0.003 0.002 0.005 0.01 0.05 0.03
Routine monitoring for pesticides is not required unless potential exists for contamination of water supplies.
These are generally based on the analytical limit of determination (the level at which the pesticide can be reliably detected using practicable, readily available and validated analytical methods). If a pesticide is detected at or above this value the source should be identified and action taken to prevent further contamination. Based on 10% of acceptable daily intake (ADI). These pesticides have either been detected on occasions in Australian drinking water or their likely use would indicate that they may occasionally be detected.
Source: From Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Australian Drinking Water Guidelines, 2004, www.waterquality.crc.org.au. With permission. Table 8C.29 Australian Drinking Water Guideline Values for Radiological Quality Guideline value The total estimated dose per year from all radionuclides in drinking water, excluding the dose from potassium-40, should not exceed 1.0 mSv If this guideline value of exceeded, the water provider, in conjunction with the relevant health authority, should evaluate possible remedial actions on a cost-benefit basis of assess what action can be justified to reduce the annual exposure Screening of water supplies Compliance with the guideline for radiological quality of drinking water should be assessed, initially, by screening for gross alpha and gross beta activity concentration. The recommended screening level for gross alpha activity is 0.5 Bq/L. The recommended screening level for gross beta activity is 0.5 Bq/L after subtraction of the contribution form potassium-40 If either of these activity concentrations is exceeded, specific radionuclides should be identified and their activity concentrations determined. The concentration of both radium-226 and radium-228 should always be determined, as these are the most significant naturally occurring radionuclides in Australian water supplies. Other radionuclides should be identified in necessary of ensure all gross alpha and beta activity is accounted for, after taking into account the counting and other analytical uncertainties involved in the determination Source: From Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Australian Drinking Water Guidelines, 2004, www.waterquality.crc.org.au. With permission.
q 2006 by Taylor & Francis Group, LLC
Inorganics (mg/L)
WHO (2004)
Antimony Arsenic
0.02 0.01(P)
Barium Boron Cadmium Chromium Copper
0.7 0.5 (T) 0.003 0.05 (P) 2
Cyanide Fluoride Lead
0.07 1.5 0.01
Manganese Mercury (total) Molybdenum Nickel Nitrate
0.4 (C) 0.001 0.07 0.02 (P) 50 (acute) as NO3 3 (acute), 0.2 (P) (chronic) as NO2 0.01 0.015 (P,T)
Nitrite
Selenium Uranium
U.S.A. (2005)
Canada (2004)
Australia (2000)
0.006 0.025
0.003 0.007
1 5 0.005 0.05
0.7 4 0.002 0.05 (VI) 2
1
0.05 1.5 0.025, 0.01a
0.2 1.5 0.01
0.08 1.5 0.01
0.002
0.001
0.001
10 as N
0.02 50 as NO3
10 as N
0.5 0.001 0.05 0.02 50 as NO3
0.006 7; 0.01 as of 01/23/06 2 0.005 0.1 TT, Action LevelZ1.3 0.2 4 TT, Action Level Z0.015
EEC (1998) 0.005 0.01
1 0.005 0.05 2.0
1 as N
0.5 as NO2 (tap)
3.2 as N
3 as NO2
0.05
0.01
0.01 0.02
0.01 0.02
Thailand (1978)
0.05
Vietnam (2002) 0.005 0.01
Korea (2000)
0.05
0.7 0.3 0.003 0.05 2
0.3 0.01 0.05 (VI)
0.2 0.7 0.05
0.07 0.7–1.5 0.01
0.002
0.001 0.07 0.02 50 as NO3
0.01 0.05 (VI)
45 as NO3
0.01
0.05
Japan (2004)
China (1985)
0.002 0.01
0.05
South Africa (1996)
0.01
Chile (1984)
0.05
1
Brazil (2004) 0.005 0.01 0.7
0.005 0.05 (VI) 1.0
1 0.01 0.05 (VI) 1.0
0.01 0.05 (VI) 1.0
5 0.05 (VI) 1.0
0.01 0.05 (VI) 1.0
0.005 0.05 2
0.01 1.5 0.05
0.1 0.5 0.05
0.01 0.8 0.01
0.05 1.0 0.05
1.0 0.01
0.2 1.5 0.05
0.07 1.5 0.01
0.001
0.001
0.05 0.0005
0.001
0.001
0.1 0.001
0.001
10 as N
10 as N
0.01 10 as N
20 as N
6 as N
10 as N
10 as N
1 as N
10 as N
6 as N
1 as N
1 as N
0.01
0.01 0.002
0.02
0.01
0.01
3 as NO2
0.01
Indonesia (1995)
0.01
0.01
WATER QUALITY
Table 8C.30 Comparison of Inorganic Drinking Water Guidelines Recommended by WHO and Standards for Several Developed and Developing Countries
Note: P, provisional guideline value, as there is evidence of a hazard, but the available information on health effects is limited; T, provisional guideline value because calculated guideline value is below the level that can be achieved through practical treatment methods, source protection, etc; A, provisional guideline value because calculated guideline value is below the achievable quantification level; D, provisional guideline value because disinfection is likely to result in the guideline value being exceeded; C, concentrations of the substance at or below the health-based guideline value may affect the appearance, taste or odour of the water, leading to consumer complaints; TT, Treatment Technique—A required process intended to reduce the level of a contaminant in drinking water. a 0.025 (12/25/03–12/25/13), 0.01 (2/25/13C). Source:
Modified from Vigneswaran, Saravanamuthu, 1995, Water Treatment Processes: Simple Options, CRC Press, Inc., Boca Raton. WHO, World Health Organization, 2004, Guidelines for Drinking-Water Quality, Third Edition, Volume 1, Recommendations. www.who.int/water_sanitation_health/dwq/gdwq3/en/index.html. U.S.A., United States Environmental Protection Agency, www.epa.gov/OGWDW/mcl.html. Australia, Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Austrlian Drinking Water Guidelines, 2004. www.waterquality.crc.org.au. EEC, Lenntech Drinking Water Standards, www.lenntech.com. Canada, Health Canada, 2004, Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, April 2004. ec.gc.ga. Thailand, Notification of the Ministry of Industry, No. 322, B.E. 2521 (1978), issued under the Industrial Products Standards Act B.E. 2511 (1968), published in the Royal Gazette, Vol. 95, Part 68, dated July 4, B.E. 2521 (1978). pcdv1.pcd.go.th/Information/Regulations/WaterQuality/WaterQualityStandards.cfm. Vietnam, Hue, N.D. and Viet, P.H., 2003, Environmental Quality Standards in Vietnam, in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Korea, Oh, J.R, 2003, Environmental Standards of Korea in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Indonesia, Vigneswaran, Saravanamuthu, 1995, Water Treatment Processes: Simple Options, CRC Press, Inc., Boca Raton (Criteria of Water Quality, Category A). Japan, Japan Ministry of Health, Labour and Welfare jwwa.or.jp/water-e07.html. China, Chinese Drinking Water Standards (GB 5749–85). South Africa, Republic of South Africa, Department of Water Affairs and Forestry, 1996, South African Water Quality Guidelines, Volume 8, Field Guide, First Edition 1996, dwaf.pwv.gov.za/IWQS/wq_guide/field.pdf#searchZ ‘Recreation%20Water%20Quality%20Guidelines’. Chile, Normas oficiales para la calidad del agua Chile, NORMA CHILENA OFICIAL 409/1.Of.84, Agua Potable Parte 1: Requisitos cepis.ops-oms.org/bvsacg/e/normas2/Norma-Chi.pdf#searchZ“NORMA%20CHILENA%20OFICIAL%20409/1.Of.84”. Brazil, Ministerio da Saude, Portaria N.o 518, DE 25 De Marco De 2004 www.saneago.com.br/novasan/leis/port518.pdf#searchZ“Ministerio%20da%20Saude%2C%20Portaria%20N.%20518”. 8-65
q 2006 by Taylor & Francis Group, LLC
8-66
Table 8C.31 Comparison of Organic Compound Drinking Water Guidelines Recommended by WHO and Standards for Several Developed and Developing Countries U.S.A. (2005)
EEC (1998)
Organic Compounds (mg/L) Acrylamide Benzene Benzo[a]pyrene Carbon tetrachloride 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene
0.0005 0.01 0.0007 0.004 1(C) 0.3(C) 0.03 0.03 0.05
0.0001 0.001 0.00001
Dichloromethane Di(2-ethylhexyl)phthalate Edetic acid (EDTA) Epichlorohydrin Ethylbenzene Hexachlorobutadiene Microcystin-LR Monochlorobenzene Nitrilotriacetic acid Styrene Tetrachloroethene Toluene Trichloroethene Vinyl chloride Xylenes
TT9 0.005 0.0002 0.005 0.6 0.075 0.005 0.007 0.07 (cis), 0.1 (trans) 0.005 0.006
0.02 0.008 0.6 0.0004 (P) TT9 0.3 0.7 0.0006 0.001 (P) 0.1 0.2 0.02 0.1 0.04 0.005 0.7 1 0.07 (P) 0.005 0.0003 0.002 0.5 10
Pesticides (mg/L) Alachlor Aldicarb Aldrin/dieldrin Atrazine Carbofuran Chlordane Chlorpyrifos Chlorotoluron Cyanazine DDT and metabolites 1,2-Dibromo-3chloropropane 1,2-Dibromoethane 2,4-Dichlorophenoxyacetic acid (2,4-D) 1,2-Dichloropropane (1,2DCP) 1,3-Dichloropropane 1,3-Dichloropropene
0.02 0.01 0.00003 0.002 0.007 0.0002 0.03 0.03 0.0006 0.001 0.001
0.04 0.02
q 2006 by Taylor & Francis Group, LLC
Australia (2000)
0.005 0.00001 0.005 0.2 0.005 0.005 0.014
0.0002 0.001 0.00001 0.003 1.5 0.04 0.003 0.03 0.06
0.0005 0.01 0.0007 0.002 1 0.3 0.03 0.03 0.05
0.004 0.01 0.25 0.0005 0.3 0.0007
0.02 0.008 0.2 0.0004 0.3 0.0006
0.3 0.2 0.03 0.05 0.8
0.3 0.2 0.02 0.04 0.7 0.07 0.005 0.5
0.05
0.0001
0.0015 0.08 0.4 0.01a
0.03
0.01a 0.0005
0.05 0.002
0.0003 0.003 0.04 0.002
0.009 0.0007 0.005 0.09 0.09
Thailand (1978)
Vietnam (2002)
Korea (2000)
Indonesia Japan (1995) (2004)
0.01
0.01 0.00001
0.002
China (1985)
South Africa (1996)
Chile (1984)
0.0005 0.005 0.0007 0.002
0.01 0.002
0.00001 0.003
0.01 0.03
0.02 0.04 (cis)
0.02 0.08
0.02
Brazil (2004)
0.01 0.03
0.02
0.3 0.001
0.0003 0.6
0.002 0.001 0.0003 0.04 0.01 0.001 0.01
0.02 0.01 0.0003 0.002 0.005 0.0002
0.01 0.7 0.03
0.02 0.04
0.01 0.03
0.07 0.005
0.5
0.02 0.0007
0.00003
0.00003 0.002
0.0003
0.0002
0.001
0.002
0.1
0.03
0.002 0.0003
0.03 0.01 0.02
0.002 0.001
0.03
0.03
0.03
0.1
0.0002
0.0004 (P) 0.03 0.07 0.04 (P)
0.003
Canada (2004)
0.005
0.1
0.02
0.001
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WHO (2004)
0.009 0.002 0.002 0.02 0.01 0.006 0.02 0.009 (P)
0.0002 0.04
0.9 0.05
0.001
0.06
0.3 0.3 0.0005 0.3 0.01 0.001
0.3 0.002 0.007 0.02
0.004
Chlorophenoxy herbicides other than 2,4-D and CPA (mg/L) 2,4-DB 0.09 Dichlorprop 0.1 Dimethoate 0.006 Endrin 0.0006 0.002 Fenoprop 0.009 Mecoprop 0.01 2,4,5-T 0.009 Disinfectants and disinfectant by-products (mg/L) Monochloramine 3 4.01 Chlorine 5 (C) 4.01
Disinfectant by-products Bromate Chlorate Chlorite 2,4,6-Trichlorophenol Formaldehyde Trihalomethanes Bromoform Dibromochloromethane Bromodichloromethane Chloroform Chlorinated acetic acids Monochloroacetic acid Dichloroacetic acid Trichloroacetic acid Chloral hydrate (trichloroacetaldehyde)
0.009 0.002 0.002 0.02 0.01 0.006 0.02 0.009
0.02
0.01 (A,T) 0.7 (D) 0.7 (D) 0.2 (C) 0.9 0.001 0.1 0.1 0.06 0.2 0.02 0.05 (T,D) 0.2 0.01 (P)
0.01
0.06 0.06
0.1
0.002
0.03
0.03
0.02 0.01 0.006 0.02 0.009
0.01 0.005
0.005
0.002
1
0.002
0.02
0.02
0.002
0.045
0.05
0.02
0.02
0.09 0.1 0.02
0.05 0.01 0.1
0.0002 0.01
0.009 0.01 0.009
3 5
3 0.003– 0.005 (active)
0.01
0.02
0.025
0.005
0.3 0.02 0.5
0.2 0.2 0.9
0.25
0.1 0.1 0.06 0.2
1
0.1
0.003
0.01
3 (total)
0.01
0.004
WATER QUALITY
Isoproturon Lindane MCPA Methoxychlor Metolachlor Molinate Pendimethalin Pentachlorophenol Phenol Pyriproxyfen Simazine Terbuthylazine (TBA) Trifluralin
0.1
0.2 (free)
0.01
0.15 0.1 0.1 0.02
0.05 0.1 0.01
0.08
0.03
3 5
0.025 0.2
0.01 0.1
0.0006
0.2 0.08 0.01 0.09 0.1 0.03 0.06
0.1
0.06
0.02 0.04 0.02
(Continued)
8-67
q 2006 by Taylor & Francis Group, LLC
(Continued) WHO (2004)
Halogenated acetonitriles Dichloroacetonitrile Dibromoacetonitrile Cyanogen chloride (as CN)
U.S.A. (2005)
20 0.07 0.07
EEC (1998)
Canada (2004)
Australia (2000)
0.08
Thailand (1978)
Vietnam (2002)
Korea (2000)
0.09 0.1 0.01
0.01
Indonesia Japan (1995) (2004)
China (1985)
South Africa (1996)
8-68
Table 8C.31
Chile (1984)
Brazil (2004)
Note: PZprovisional guideline value, as there is evidence of a hazard, but the available information on health effects is limited; TZprovisional guideline value because calculated guideline value is below the level that can be achieved through practical treatment methods, source protection, etc; AZprovisional guideline value because calculated guideline value is below the achievable quantification level; DZprovisional guideline value because disinfection is likely to result in the guideline value being exceeded; CZconcentrations of the substance at or below the health-based guideline value may affect the appearance, taste or odour of the water, leading to consumer complaints; TTZTreatment Technique—A required process intended to reduce the level of a contaminant in drinking water. a
Sum of trichloroethene and tretrachloroethene.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Source: From WHO, World Health Organization, 2004, Guidelines for Drinking-Water Quality, Third Edition, Volume 1, Recommendations. who.int/water_sanitation_health/dwq/ gdwq3/en/index.html. U.S.A., United States Environmental Protection Agency, www.epa.gov/OGWDW/mcl.html. Australia, Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Australian Drinking Water Guidelines, 2004, www.waterquality.crc.org.au. EEC, Lenntech Drinking Water Standards, www.lenntech.com. Canada, Health Canada, 2004, Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial committee on Health and the Environment, April 2004, ec.gc.ga. Thailand, Notification of the Ministry of Industry, No. 322, B.E. 2521 (1978), issued under the Industrial Products Standards Act B.E. 2511 (1968), published in the Royal Gazette, Vol. 95, Part 68, dated July 4, B.E. 2521 (1978). pcdv1.pcd.go.th/Information/Regulations/WaterQuality/WaterQualityStandards.cfm. Vietnam, Hue, N.D. and Viet, P.H., 2003, Environmental Quality Standards in Vietnam, in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Korea, Oh, J.R, 2003, Environmental Standards of Korea in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Indonesia, Vigneswaran, Saravanamuthu, 1995, Water Treatment Processes: Simple Options, CRC Press, Inc., Boca Raton (Criteria of Water Quality, Category A). Japan, Japan Ministry of Health, Labour and Welfare jwwa.or.jp/water-e07.html. China, Chinese Drinking Water Standards (GB 5749–85). South Africa, Republic of South Africa, Department of Water Affairs and Foresty, 1996, South African Water Quality Guidelines, Volume 8, Field Guide, First Edition 1996, dwaf.pwv.gov.za/IWQS/wq_guide/field.pdf#searchZ‘Recreation%20Water%20Quality%20Guidelines’. Chile, Normas oficiales para la calidad del agua Chile, NORMA CHILENA OFICIAL 409/1.Of.84;, Agua Potable Parte 1: Requisitos cepis.ops-oms.org/bvsacg/e/normas2/NormaChi.pdf#searchZ“NORMA%20CHILENA%20OFICIAL%20409/1.Of.84”. Brazil, Ministerio da Saude, Portaria N.o 518, DE 25 De Marco De 2004 saneago.com.br/novasan/ leis/port518.pdf#searchZ“Ministerio%20da%20Saude%2C%20Portaria%20N.%20518”.
Physical parameters Color
Taste and odor
Turbidity
pH (standard units) Inorganic constituents (mg/L) Aluminum Ammonia Chloride Copper Hydrogen sulphide Iron Manganese Dissolved oxygen Sodium Sulfate Total dissolved solids Zinc Organic constituents (mg/L)a Toluene Xylene Ethylbenzene Styrene Monochlorobenzene 1,2-dichlorobenzene 1,4-dichlorobenzene Trichlorobenzenes (total) Synthetic detergents
WHO (2004)
U.S.A. (2005)
15 TCU
15 (color units)
Should be acceptable
3 threshold odor number
5 NTU
!8.0 0.1–0.2 1.5 (odor), 35 (taste) 250 1 0.05 0.3 0.1 Narrative 200 250 1000 3
0.024–0.17 0.020–1.80 0.002–0.20 0.004–2.6 0.010–0.120 0.001–0.01 0.0003–0.03 0.005–0.05 no foam or taste problems Disinfectants and disinfectant by-products (mg/L) Chlorine 0.6–1.0 Chlorophenols 2-chlorophenol 0.0001–0.010 2,4-dichlorophenol 0.0003–0.040 Monochloramine 0.3 2,4,6-trichlorophenol 0.002–0.3
5 NTU
6.5–8.5 0.05 to 0.2
250 1 0.3 0.05
250 500 5
EEC (1998)
Acceptable to consumers and no abnormal change Acceptable to consumers and no abnormal change Acceptable to consumers and no abnormal change 6.5–9.5
Canada (2004)
Australia (2000)
Thailand (1978)
Vietnam (2002)
15 TCU
15 HU
5 Pt–Co
15 TCU
Inoffensive
Acceptable to most people
Nil
Not abnormal
15 TCU
Japan (2004)
China (1985)
5 Degrees
!15 8
Odorless, Not tasteless Abnormal
South Africa (1996)
Chile (1984)
Brazil (2004)
20 Pt–Co
15
1 (odour)
Tasteless, odorless
Not objectionable
1 NTU
5
5
0.15 1
0.25
0.2 1.5
100
250
250
5 NTU
5 SSU
2 NTU
1 NTU, 0.5 NTU for Tap Water
5 NTU
2 Degrees
Less than 3 8 not to exceed 5
6.5–8.5
6.5–8.5
5.8–8.5
6.5–8.5
5.8–8.6
6.5–8.5
0.2 1.5
0.2 0.5
0.2
0.2
250
250 1
0.3 0.05
0.3 0.1
0.1 0.05
0.3 0.1
0.05 0.3 0.1
200 200 500 1
250 1000 1
100 200 450 3
250 1000 5
200 250 1000 5
6.5–8.5
6.5–8.5
0.1
0.2 0.5
250 2
250 1 0.3 0.005 0.05
200 250
5
Indonesia (1995)
1 NTU (MAC) 5 NTU (AO)
0.2 0.5
0.2 0.05
Non objectionable
Korea (2000)
200 500 500 5 0.024 0.3 0.0024 0.3 0.003 0.001
250 1 0.05 0.3 0.1 O85% 180 250 500 3 0.025 0.02 0.003 0.004 0.01 0.001 0.003 0.005
0.6
0.0003 0.002
0.0001 0.0003 0.0002 0.002
250 1 0.5 0.3
0.05 0.5 0.5
0.3 0.3
250 1 0.05 0.3 0.1
200 500 5
200 250 1000 3
200 500 1
200 400 1000 5
200 1
250 1
WATER QUALITY
Table 8C.32 Comparison of Aesthetic Drinking Water Guidelines Recommended by WHO and Standards for Several Developed and Developing Countries
6–9
0.17 0.3 0.2 0.12
0.020
0.02
0.2 5
3 0.2
(Continued)
8-69
q 2006 by Taylor & Francis Group, LLC
Table 8C.32
(Continued)
a
U.S.A. (2005)
EEC (1998)
Canada (2004)
Australia (2000)
Thailand (1978)
Vietnam (2002)
Korea (2000)
Indonesia (1995)
Japan (2004)
China (1985)
South Africa (1996)
Chile (1984)
Brazil (2004)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
The levels indicated are not precise numbers. Problems may occur at lower or higher values according to local circumstances. A range of taste and odour threshold concentrations is given for organic constituents. Source: From WHO, World Health Organization, 2004, Guidelines for Drinking-Water Quality, Third Edition, Volume 1, Recommendations. www.who.int/water_sanitation_health/dwq/ gdwq3/en/index.html. U.S.A., United States Environmental Protection Agency, www.epa.gov/OGWDW/mcl.html. Australia, Australian Government, National Health and Medical Research Council and Natural Resource Management Ministerial Council, National Water Quality Management Strategy, Austrailian Drinking Water Guidelines, 2004. www.waterquality.crc.org.au. EEC, Lenntech Drinking Water Standards, www.lenntech.com. Canada, Health Canada, 2004, Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, April 2004, ec.gc.ga. Thailand, Notification of the Ministry of Industry, No. 322, B.E. 2521 (1978), issued under the Industrial Products Standards Act B.E. 2511 (1968), published in the Royal Gazette, Vol. 95, Part 68, dated July 4, B.E. 2521 (1978). pcdv1.pcd.go.th/Information/Regulations/WaterQuality/WaterQualityStandards.cfm. Vietnam, Hue, N.D. and Viet, P.H., 2003, Environmental Quality Standards in Vietnam, in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Korea, Oh, J.R, 2003, Environmental Standards of Korea in United Nations University, Capacity Development Training for Monitoring of POPs in the East Asia Hydrosphere, 1–2 September 2003, Tokyo. Indonesia, Vigneswaran, Saravanamuthu, 1995, Water Treatment Processes: Simple Options, CRC Press, Inc., Boca Raton (Criteria of Water Quality, Category A). Japan, Japan Ministry of Health, Labour and Welfare jwwa.or.jp/water-e07.html. China, Chinese Drinking Water Standards (GB 5749–85). South Africa, Republic of South Africa, Department of Water Affairs and Foresty, 1996, South African Water Quality Guidelines, Volume 8, Field Guide, First Edition 1996, dwaf.pwv.gov.za/IWQS/wq_guide/field.pdf#searchZ“Recreation%20Water%20Quality%20Guidelines”. Chile, Normas oficiales para la calidad del agua Chile, NORMA CHILENA OFICIAL 409/1.Of.84, Agua Potable Parte 1: Requisitos cepis.ops-oms.org/bvsacg/e/normas2/Norma-Chi.pdf#searchZ“NORMA%20CHILENA%20OFICIAL%20409/1.Of.84”. Brazil, Ministerio da Saude, Portaria N.o 518, DE 25 De Marco De 2004 saneago.com.br/novasan/leis/port518.pdf#searchZ“Ministerio%20da%20Saude%2C% 20Portaria%20N.%20518”.
8-70
Table 8C.32 (Continued)
WHO (2004)
WATER QUALITY
8-71
SECTION 8D
MUNICIPAL WATER QUALITY
Table 8D.33 Range in Quality of Finished Water in Public Water Supplies of the 100 Largest Cities in the United States Constituent or Property Chemical Analyses (parts per million) Silica (SiO2) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO3) Carbonate (CO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (NO3) Dissolved solids Hardness as CaCO3 Noncarbonate hardness as CaCO3 Specific conductance micromhos at 258C pH, pH units Color, color units Turbidity Spectrographic Analyses (mg/L) Silver (Ag) Aluminum (Al) Boron (B) Barium (Ba) Chromium (Cr) Copper (Cu) Iron (Fe) Lithium (Li) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Lead (Pb) Rubidium (Rb) Strontium (Sr) Titanium (Tl) Vanadium (V) Radiochemical Analyses Beta activity picocuries per liter Radium (Ra) picocuries per liter Uranium (U) micrograms per liter Note:
Maximum
Median
Minimum
72 1.30 2.50 145 120 198 30 380 26 572 540 7.0 23 1,580 738 446 1,660
7.1 0.02 0.00 26 6.25 12 1.6 46 0 26 13 0.4 0.7 186 90 34 308
0.0 0.00 0.00 0.0 0.0 1.1 0.0 0 0 0.0 0.0 0.0 0.0 22 0 0 18
7.5 2 0
5.0 0 0
10.5 24 13 7.0 1,500 590 380 35 250 1,700 170 1,100 68 34 62 67 1,200 49 70
0.23 54 31 43 0.43 8.3 43 2.0 5.0 1.4 !2.7 3.7 1.05 110 !1.5 !4.3
ND 3.3 2.5 1.7 ND !0.61 1.9 ND ND ND ND ND ND 2.2 ND ND
130 2.5 250
7.2 !0.1 0.15
!1.1 !0.1 !0.1
Maximum, median, and minimum values of as of 1962; ND means not detected.
Source: From U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
8-72
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.34 Quality Limits of Finished Water in Public Water Supplies of the 100 Largest Cities in the United States Water Supplies Having Less Than Stated Concentration Constituent or Property Chemical Analyses (parts per million) Silica (SiO2) Iron (Fe) Manganese (Mn) Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K) Bicarbonate (HCO3) Carbonate (CO3) Sulfate (SO4) Chloride (Cl) Fluoride (F) Nitrate (NO3) Dissolved solids Hardness as CaCO3 Noncarbonate hardness as CaCO3 Specific conductance (micro mhos at 258C) pH, pH units Color, color units Turbidity Spectrographic Analyses (mg/L) Silver (Ag) Aluminum (Al) Boron (B) Barium (Ba) Chromium (Cr) Copper (Cu) Iron (Fe) Lithium (Li) Manganese (Mn) Molybdenum (Mo) Nickel (Ni) Phosphorus (P) Lead (Pb) Rubidium (Rb) Strontium (Sr) Titanium (Ti) Vanadium Radiochemical Analyses Beta activity picocuries per liter Radium (Ra) picocuries per liter Uranium (U) micrograms per liter Note:
Data as of 1962; ND means not detected.
Source: From U.S. Geological Survey.
q 2006 by Taylor & Francis Group, LLC
Concentration
Percent of Water Supplies
30 0.25 0.10 50 20 50 5.0 150 1.0 100 50 1.0 5.0 500 250 200
94 98 95 93 96 93 93 91 86 93 93 92 93 97 86 94
75 500
94 93
9.0 10 3
90 96 94
0.50 500 100 100 5.0 100 150 50 100 10 10 ND 10 5.0 500 5.0 10
95 87 94 94 95 94 94 96 97 96 95 92 95 91 96 96 91
20 0.2 2.0
92 91 93
WATER QUALITY
8-73
Table 8D.35 Quality of Raw and Treated Water in Public Water Supplies of the 100 Largest Cities in the United States Raw-Water Suppliesa Population Served (millions) Hardness (ppm) Less than 61 61–120 21–180 More than 180 Dissolved solids (ppm) Less than 100 101–250 251–500 More than 500 pH Less than 7.0 7.0–9.0 More than 9.0 Note:
Treated-Water Supplies
Number of Cities
Population Served (millions)
Number of Cities
21 15 16 8
29 16 22 27
23 22 11 3.7
30 41 16 13
21 23 11 1.5
27 38 29 6
21 28 8 1
27 48 22 3
16 42
18 80
14 38 7
9 74 17
Data as of 1962.
a
A few cities are not included because data are lacking. Source: From U.S. Geological Survey.
Table 8D.36 Standards for Raw Water Used as Sources of Domestic Water Supply Excellent Source of Water Supply, Requiring Disinfection Only, as Treatment
Constituents B.O.D. (5-day) ppm
Coliform MPN per 100 mL
Dissolved oxygen pH Chlorides, max Iron and manganese together Fluorides Phenolic compounds Color Turbidity
Monthly Average Maximum Day, or sample Monthly Average Maximum Day, or sample
Good Source of Water Supply Requiring Usual Treatment Such as Filtration and Disinfection
Poor Source of Water Supply, Requiring Special or Auxiliary Treatment and Disinfection
0.75 1.0
1.5–2.5 3.0–3.5
2.0–5.5 4.0–7.5
50–100 —
240–5,000 !20%O5,000 !5%O20,000
10,000–20,000
ppm. average % saturation Average ppm. Max. ppm.
4.0–7.5 50–75 6.0–8.5 50 0.3
2.5–7.0 25–75 5.0–9.0 250 1.0
2.5–6.5 — 3.8–10.5 500 15
ppm. Max. ppm ppm. ppm.
1.0 none 0–20 0–10
1.0 0.005 20–70 40–250
1.0 0.025 150 —
Source: From Calif. State Water Pollution Control Board, 1952.
q 2006 by Taylor & Francis Group, LLC
8-74
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.37 Summer Temperatures of Selected Municipal Water Supplies in the United States Temperature at Main Outlet, 8F
Location Surface Water Sources Atlanta, GA Baltimore, MD Birmingham, AL Boston, MA Buffalo, NY Chicago, IL Cincinnati, OH Cleveland, OH Detroit, MI Kansas City, MO Louisville, KY Nashville, TN New Orleans, LA Oakland, CA Philadelphia, PA Pittsburgh, PA Sacramento, CA St. Louis, MO Washington, DC Groundwater Sources Albuquerque, NM Aurora, CO Camden, NJ El Paso, TX Fresno, CA Houston, TX Jacksonville, FL Kalamazoo, MI Lafayette, LA Lansing, MI Lincoln, NE Lowell, MA Madison, WI Marion, FL Montgomery, AL Pensacola, FL Peoria, IL Pontiac, MI San Antonio, TX Sioux Falls, SD
June
July
August
September
78.1 61.0 78.0 68.3 62.0 55.4 76.0 58.0 64.0 84.0 77.0 84.0 86.0 59.0 71.0 75.2 70.7 77.0 43.0
83.5 66.0 82.0 74.3 71.0 68.0 82.0 68.0 75.0 93.0 82.0 88.0 89.0 62.0 79.0 80.6 70.7 85.0 67.0
79.5 70.0 81.0 73.4 73.0 69.4 81.0 73.5 74.0 91.0 82.0 88.0 90.0 64.0 77.0 80.6 80.6 83.0 73.0
77.8 64.0 79.0 69.4 66.0 62.5 77.0 71.0 68.0 85.0 77.0 84.0 90.0 64.0 72.0 75.2 77.0 75.0 75.0
72.0 60.0 58.0 84.0 72.0 84.0 84.8 52.0 53.0 57.5 58.0 50.0 53.0 54.0 70.0 70.0 56.0 55.0 76.0 55.0
72.0 60.0 58.0 85.0 72.0 84.0 86.3 52.0 53.0 58.0 59.0 50.0 52.0 54.0 70.0 70.0 56.0 55.0 76.0 55.0
72.0 60.0 58.0 85.0 72.0 84.0 86.7 52.0 53.0 59.0 59.0 50.0 52.0 55.0 71.0 70.0 56.0 55.0 76.0 55.0
72.0 60.0 58.0 84.0 72.0 84.0 82.4 52.0 53.0 59.0 59.0 50.0 53.0 55.0 71.0 70.0 54.0 55.0 76.0 55.0
Source: From U.S. Dept. of Commerce.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-75
Table 8D.38 Quality of Water Supplied by Municipal Water Systems in the United States–1984
State and Water Utility Alabama Birmingham Montgomery Alaska Anchorage Arizona Phoenix/Phoenix Wtr & Swr Dept Tucson Arkansas Fort Smith Little Rock California Anaheim Burbank Concord/Contra Costa Water Dept Corte Madera/Marin Munic Wtr Dist Fremont/Alameda Cnty Wtr Dist Fresno Glendale La Mesa/Helix Wtr District La Puente/Southwest Suburban Wtr Los Angeles/Los Angeles Wtr & Power Oakland/East Bay Munic Util Dist Palm Springs/Desert Wtr Agency San Diego San Jose/California Wtr Serv Co Santa Barbara/Santa Barbara Pub Santa Monica Sunnyvale Colorado Boulder Colorado Spgs Denver Greeley Connecticut Bridgeport Hartford New Britain New Haven/Regional Wtr Authority Delaware Newark/Artesian Wtr Co District of Columbia Washington/Washington Aqueduct Florida Clearwater/Pinellas Cnty Wtr Sys Fort Lauderdale Jacksonville Miami Orlando Pompano Beach Tallahassee Tampa W. Palm Beach/City of West Palm Winter Haven Georgia Acworth/Wyckoff Treatment Div Marietta/Quarles Treatment Div Stone Mountain/Dekalb Cnty Wtr Hawaii Honolulu Pearl Harbor Idaho Boise
Hardness (CaCO3)
Alkalinity (CaCO3)
pH
Avg Temp Raw (8F)
Raw (mg/L)
Finished (mg/L)
Raw (mg/L)
Finished (mg/L)
Raw
Finished
60.8 54.0
75 18
104 30
73 15
77 32
7.9 6.7
8.2 8.6
37.4
63
61
52
42
7.6
7.2
60.1 75.2
190 141
190 141
125 150
105 150
8.2 7.5
7.6 7.5
56.5 64.2
39 9
18 19
14 7
28 11
6.6 6.7
9.0 7.7
64.0 60.0 63.0 58.1 62.1 70.0 69.8 71.6 68.0 58.1 60.4 64.9 66.2 68.0 66.2 68.0 60.1
331 165 80 57 97 119 190 300 220 69 26 150 224
345
186
8.3 7.6 8.0 7.4 7.6 7.8 7.9 7.7 7.4 7.9 8.9 7.0 8.0
7.7
550 400 300
68 67 97 119 296 300 220 69 27 150 235 181 550 180 140
123 159 64 58 65 123 156 115 180 89 22 120 131
54.5 42.3 50.0 50.5
13 34 102 34
23 36 99 36
55.8 55.4 50.0 53.6
28
210 220 200
59 71 65 123 108 115 180 89 22 120 135 134 200 220
8.1 7.8 8.0
8.5 8.7 8.7 7.8 8.0 8.0 7.4 7.9 8.9 7.0 8.2 7.9 7.9 8.1 7.3
22 72 42
29 63 41
7.0 7.5 8.0 7.4
7.2 7.7 7.5 7.1
14
50 50
45 20 35 69
12 46
19 8 14 53
6.7 6.5 6.5 7.1
7.1 7.1 8.3 6.9
55.4
77
77
40
45
5.8
7.4
62.6
127
137
77
70
8.0
7.7
75.2 78.8 79.0 77.0 75.2 68.0 68.0 72.5 68.2 74.5
215 259 248 250 125 240
200 231 139 224 120 198
210 59 138 37 120 30
7.2 7.6 7.5 7.3 7.8 7.1
107 71 140
215 90 248 66 125 63 143 151 102 140
90 58 125
85 58 125
7.5 8.1 8.1
7.8 9.6 7.5 9.0 7.4 8.8 7.8 7.7 8.4 7.8
61.3 53.6 64.4
17 15 14
30 25 28
15 10 11
22 18 17
6.7 6.8 6.8
7.5 8.7 8.9
72.0
121
60
60 69
117
8.0 6.9
223
7.6
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-76
Table 8D.38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
State and Water Utility Illinois Champaign/Northern Illinois Wtr East St. Louis/Interurban Dist Peoria/Peoria Dist/IL-Amer Wtr Springfield Indiana Bloomington Fort Wayne Indianapolis South Bend Iowa Cedar Rapids Davenport/Davenport Water Co Des Moines Sioux City Kansas Kansas City Mission/Johnson Cnty Wtr Dist 1 Topeka Kentucky Lexington/Kentucky–American Wtr Louisville Louisiana Baton Rouge/Baton Rouge Wtr Wks Jefferson Lake Charles New Orleans Maine Portland Maryland Annapolis/City of Annapolis Wtr Baltimore Glen Burnie/Anne Arundel Cnty Massachusetts Fall River Springfield Weymouth Michigan Ann Arbor Grand Rapids Lansing Saginaw Minnesota Bloomington Duluth St. Paul Mississippi Jackson Missouri Independence/Missouri Wtr Co Kansas City/Kansas City, Mo Wtr Springfield St. Louis/St. Louis Cnty Wtr Co Lincoln Omaha Nevada Las Vegas Reno/Sierra Pacific Power Co New Hampshire Manchester Nashua/Pennichuck Wtr Wks New Jersey Clifton/Passaic Valley Wtr Comm East Orange
Hardness (CaCO3)
Alkalinity (CaCO3)
pH
Avg Temp Raw (8F)
Raw (mg/L)
Finished (mg/L)
Raw (mg/L)
Finished (mg/L)
Raw
Finished
53.6 60.8 53.6 60.8
258 228 250 195
80 228 250 105
336 159 170 140
110 144 161 25
7.7 7.7 8.0 8.2
9.0 7.2 7.6 9.8
59.0 55.4 57.2 51.8
64 272 340
80 97 252 340
28 200 170 260
34 25 159 260
7.3 7.9 8.1 8.5
8.0 9.7 7.6 7.8
53.6 55.9 51.1 54.0
276 200 304 445
129 200 145 445
217 155 239 267
67 129 63 267
7.7 8.2 8.3 7.2
9.5 7.1 9.3 7.5
62.6 59.0 57.2
294 245 250
272 121 114
205 191 195
215 54 79
8.1 7.8 8.2
8.0 9.1 9.4
59.9 57.2
165 138
148 148
66 66
72 65
7.7 7.5
8.1 8.5
64.4 69.8 64.0
5 154 110 161
5 152 110 117
104 160 106
175 99 175 61
8.7 7.5 7.1 8.0
8.5 7.4 8.0 10.1
50.0
9
9
4
6.9
6.7
64.4
70 70 56
20 40
50 46
53.6
25 47 41
6.0 7.3 5.1
8.7 8.0 8.5
46.0 45.7 55.0
2 11 21
3 11 47
1 8 7
5 11 11
5.7 6.4 6.5
8.5 6.9 8.4
55.8 45.9 51.8
269 140 412 96
142 141 88 106
210 115 318 82
60 106 39 84
8.0 8.4 7.0 8.0
9.3 7.6 9.4 8.2
50.0 39.6 51.8
310 45 175
90 45 92
315 43 166
92 36 62
7.6 7.9 8.1
8.3 7.1 8.4
65.7
19
52
15
17
6.5
8.8
59.5 55.0 61.5 57.2 54.0 53.2
297 261 150 221 240 286
119 173 152 124 240 185
227 182 132 155 180 177
48 85 123 48 180 68
7.3 8.2 7.6 8.3 7.8 8.2
9.6 9.5 7.3 9.5 7.8 9.0
59.4 53.6
288 40
287 40
128 40
130 27
8.0 7.7
7.9 6.9
59.0 59.0
11 30
11 50
3 9
4 16
6.3 6.4
7.2 7.3
54.0 50.0
86 280
85 280
58 158
55 158
7.2 7.7
7.1 7.7
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8D.38
8-77
(Continued)
State and Water Utility Elizabeth/Elizabethtown Wtr Co Harrington Park/Hackensack Wtr Parsippany Short Hills/Commonwealth Wtr Co Toms River Wanaque/North NJ Dist Wtr Supply New Mexico Albuquerque Santa Fe/Sangre De Cristo Wtr Co New York Albany Buffalo/Tonawanda Wtr Dept East Meadow/Hempstead Wtr Dept Lake Success/Jamaica Water Co. Massapequa New York/New Bur Wtr Supply Rochester/Monroe Cnty Wtr Auth Syracuse Yonkers North Carolina Charlotte Greensboro Raleigh Winston-Salem/Cnty Util Com North Dakota Fargo Ohio Akron Cincinnati Cleveland Dayton Toledo Oklahoma Oklahoma City Tulsa Oregon Eugene Medford Portland Pennsylvania Allentown Bryn Mawr/Philadelphia Suburban Hershey/Riverton Consol Wtr Co Lancaster Philadelphia Pittsburgh/Western Pennsylvania Rhode Island Newport West Warwick/Kent Cnty Wtr Auth South Carolina Anderson Charleston Spartanburg South Dakota Rapid City Tennessee Chattanooga/Tennessee-American Knoxville/Knoxville Utils Brd Memphis Nashville/Metro Dept Wtr & Swr Texas Arlington Dallas El Paso
Hardness (CaCO3)
Alkalinity (CaCO3)
pH
Avg Temp Raw (8F)
Raw (mg/L)
Finished (mg/L)
Raw (mg/L)
Finished (mg/L)
Raw
Finished
51.8 55.4 52.0 55.0 65.3 50.0
73 120 177 72 12 28
86 120 177 135 60 36
47 85 139 42 38 16
40 80 139 77 70 20
7.5 7.4 7.1 7.8 6.2 6.7
7.2 7.9 7.1 7.4 7.4 7.4
69.8 59.0
120 150
120 150
138 200
138 200
7.3 7.8
7.3 7.8
48.4 55.4
62.1
43 140 30 50 8
90 100 65
7.3 8.2 5.6 6.3 5.8 7.3 7.8 8.2 7.1
8.9 7.8 8.6 7.2 7.2
130 120 110
38 95 5 30 6 37 95 100 80
48 90 30 50 30
55.9 52.0 59.0
54 135 30 50 13 65 130 120 100
7.4 8.1 6.5
64.9 64.4 68.0 60.8
13 27 20 16
28 44 40 30
12 24 29 16
19 26 30 20
7.2 7.0 6.8 7.0
9.2 7.7 7.4 7.4
44.6
289
123
203
84
8.1
9.1
54.3 60.1 50.9
112 112 125 362 127
112 130 125 149 74
78 44 92 278 93
74 54 84 62 38
7.6 7.6 8.0 7.5 8.1
7.3 8.5 7.5 8.6 9.2
63.9 66.2
154 140
101 136
97 97
40 102
8.2 8.0
10.3 8.2
55.4 44.6 50.0
24 33 12
22 33 12
23 35 12
22 35 10
7.5 6.8 7.1
7.3 6.8 6.8
55.9 58.3 58.6 57.2 55.4 56.8
176 109 145 195 148 111
199 208 145 208 132 122
128 35 121 135 64 21
144 38 110 126 53 31
7.7 7.0 8.0 7.8 7.6 7.3
7.6 7.4 7.4 7.6 7.0 7.3
60.8
60 32
70 32
22 13
26 13
6.5 5.8
7.5 6.8
66.0 68.0 62.6
6 29 11
6 29 20
9 24 11
10 30 11
7.0 6.8 6.9
7.1 8.2 7.1
55.0
283
283
180
180
7.7
7.5
64.9 60.8 63.3 60.8
68 81 47 90
77 83 47 90
53 78 55 65
50 70 55 65
7.1 7.6 6.4 7.6
7.2 7.5 7.2 8.0
69.8 64.4 68.0
109 130 250
110 86 150
90 110 192
90 50 80
8.0 8.0 8.2
8.2 8.9 8.7
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-78
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.38
(Continued)
State and Water Utility Fort Worth Lubbock San Antonio Wichita Falls Utah Ogden Salt Lake City/Salt Lake Cnty Co Vermont Burlington Virginia Merrifield/Fairfax Cnty Wtr Auth Newport News Norfolk Richmond/City of Richmond Washington Everett Seattle/Seattle Wtr Dept Tacoma Vancouver West Virginia Charleston/W VA Wtr Co - Kanawha Huntington Wheeling Wisconsin Green Bay Madison Milwaukee Racine Wyoming Casper Cheyenne
Note:
Hardness (CaCO3)
Alkalinity (CaCO3)
Avg Temp Raw (8F)
Raw (mg/L)
Finished (mg/L)
Raw (mg/L)
Finished (mg/L)
66.2 60.1 75.7 69.8
105 223 250 125
107 222
93 166
70
87 177 215 125
53.6 46.0
170 159
125 156
50.0
69
59.0 60.8 64.9 57.2
pH
Raw
Finished 8.5 7.8
50
8.0 8.3 7.2 8.1
9.4
131 137
118 132
7.4 7.4
7.1 7.3
59
47
47
7.6
8.0
60 80 45 70
90 80 69 70
33 55 40 45
44 50 37 35
7.3 7.4 6.8 7.6
7.5 7.1 7.0 7.5
51.1 47.3 50.0 53.0
12 15 15 98
12 17 15 98
11 11 20
20 16 20
6.5 7.2 6.9 6.7
7.2 7.7 6.9 6.7
57.9 69.0 56.5
47 109 109
62 121 129
19 39 32
26 38 40
6.8 7.4 7.4
8.7 7.3 8.9
44.3
350 93 140
130 350 93 140
132 300 112 112
118 300 104 107
8.2 7.4 8.2 8.3
7.6 7.4 7.5 7.7
48.9 61.9
175 110
208 110
63
124 65
8.1 7.2
7.4 7.1
46.4 50.0
Average temperature, hardness, alkalinity, and pH; selected systems only. The quality of water supplied by municipal water systems in 1996 is available from the American Water Works Association, American Water Works Association WaterStats2ev2, Water:\STATS 1996 Survey, Water Quality, www.awwa.org.
Source: From American water works association 1984 Water Utility Operating Data. Copyright AWWA.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-79
Table 8D.39 Radium-226, Radium-228, Radon-222, and Uranium in Public Drinking Water Supplies in the United States (Population-Weighted Average Activates) State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming United States Note:
Radium-226 (pCi/L)
Radium-228 (pCi/L)
Radon-222 (pCi/L)
Uranium (mg/L)
0.202 0.180 0.180 0.285 0.332 0.199 0.206 0.180 0.341 1.274 — 0.181 5.290 0.347 0.390 0.195 0.184 0.218 0.180 0.486 0.180 0.357 1.899 0.390 1.283 0.244 0.281 0.180 0.255 0.181 0.396 0.185 0.389 0.194 0.373 0.383 0.180 0.227 0.180 0.250 0.185 0.228 0.327 0.252 0.189 0.215 0.180 0.189 2.688 0.770 0.905
1.00 1.00 1.03 1.01 1.02 1.00 1.00 1.62 1.01 1.01 — 1.00 4.24 1.22 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.82 1.10 1.13 1.00 1.04 1.00 1.00 1.00 1.15 1.01 1.14 1.02 1.02 1.00 1.00 1.00 1.00 1.06 1.00 1.01 1.03 1.00 1.00 1.00 1.00 1.00 3.32 1.41 1.41
420.1 128.5 1435.1 100.0 228.4 329.9 1208.9 123.3 127.3 563.4 — 437.4 193.2 187.4 136.4 396.1 205.5 108.2 1228.4 266.1 587.8 185.2 388.7 104.3 143.7 344.6 351.6 743.2 2673.5 137.1 309.1 223.7 2277.7 114.0 175.2 158.0 118.2 507.8 1170.0 557.7 281.6 113.7 150.5 226.8 997.1 485.4 432.5 263.6 367.2 558.0 249.0
0.30 0.16 3.65 0.15 1.54 6.81 1.24 0.10 0.22 1.31 — 2.60 0.36 1.05 0.96 3.39 0.38 0.12 0.42 0.08 0.48 0.23 0.87 0.10 1.27 1.95 3.56 2.85 1.70 0.09 7.99 0.24 1.13 0.90 0.91 4.02 0.14 0.83 0.10 0.52 3.84 0.16 0.86 2.94 0.42 0.61 1.52 0.22 0.95 1.32 0.82
Minimum Reporting Limit (MRL) was used in the average for those cases in which the activity or concentration was les than the MRL. The international unit of activity is the Becquerel (Bq), which is approximately equal to 27 pCi.
Source: From Longtin, J., 1990, Chapter 8, Occurrence of radionuclides in drinking water, a national study In Cothern, R. and Rebers, P (Editors), 1990, Radon, Radium, and Uranium in Drinking Water, Lewis Publishers, Inc, Chelsea, Michigan. Original Source: From Longtin, J., 1988.
q 2006 by Taylor & Francis Group, LLC
8-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.40 Occurrence of Selected Radionuclides in Groundwater Used for Drinking Water in the United States Concentration (Picocuries/L) Radionuclide Ra-224 Ra-226 Ra-228 Pb-210 Po-210 Source:
Mean
Median
Standard Deviation
Maximum
Number of Samples
3.2 1.6 2.1 0.6 0.1
0.3 0.4 0.5 0.5 0.01
10.1 2.8 7.9 0.5 0.5
73.6 16.9 72.3 4.1 4.9
99 99 99 96 96
From Focazio, M.J., et al., 2001, Occurrence of Selected Radionuclides in Groundwater Used for Drinking Water in the United States: A Reconnaissance Survey, 1998, USGS Water-Resources Investigations Report 00-4273, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
Concentration (mBq kgL1) Region/country
238
North America United States Asia China India Europe Finland France Germany Italy Poland Romania Switzerland Spain UK Reference value
0.3–77
U
230
Th
0.1
226
Ra
0.4–1.8
0.1–700 0.09–1.5
0.2–120
0.5–150,000 4.4–930 0.4–600 0.5–130 7.3 0.4–37 0–1,000 3.7–4.4
10–49,000 7–700 1–1,800 0.2–1,200 1.7–4.5 0.7–21 0–1,500 !20–4,000 0–180 0.5
1
1.4
0.1
210
Pb
210
Po
0.1–1.5
232
228
0.05
0–0.5
Th
Ra
228
Th
235
U
0.04
WATER QUALITY
Table 8D.41 Concentrations of Uranium and Thorium Series Radionuclides in Drinking Water in the United States, Asia, and Europe
0.04–12
0.2–21,000
0.2–7,600
18–570 0–4.2
0.2–200
0.1–200
1.6 7–44
0.5 7–44
0.06 0.04–9.3 0–200
40–200 10
5
0.05
0.5
0–50
0.05
0.04
Source: From The United Nations is the author of the original material. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000, UNSCEAR 2000 Report Vol. I, Sources and Effects of Ionizing Radiation.
8-81
q 2006 by Taylor & Francis Group, LLC
8-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.42 Radon in Public Drinking Water Supplies in the United States (Population-Weighted Average Activities (pCi/L)) Sites with%1000 People State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico United States Note:
Sites withO1000 People
Cothern
NIRS
Cothern
NIRS
160 (40) 100 (47) 120 (44) 75 (51) 500 (18) 380 (23) 1,500 (3) 100 (48) 1,000 (9) 1,100 (6) 50 (52) 256 (30) 100 (49) 105 (45) 250 (31) 250 (32) 250 (33) 180 (39) 10,000 (1) 700 (15) 1,500 (4) 105 (46) 210 (36) 150 (41) 300 (24) 500 (19) 300 (25) 550 (17) 1,400 (5) 150 (42) 200 (37) 500 (20) 1,100 (7) 300 (26) 200 (38) 250 (34) 300 (27) 1,000 (10) 3,400 (2) 1,100 (8) 300 (28) 100 (50) 150 (43) 500 (21) 250 (35) 700 (16) 300 (29) 1,000 (11) 750 (14) 880 (12) 500 (22) 780 (13)
2,025 (5) 129 (44) 1,302 (7) — 538 (18) 336 (29) 3,328 (1) 116 (48) 393 (25) 419 (24) — 431 (22) 136 (40) 136 (41) 166 (35) 365 (27) 148 (39) 116 (49) 1,228 (9) 2,161 (4) 253 (33) 370 (26) 342 (28) 133 (42) 125 (46) 535 (19) 291 (31) 743 (12) 2,674 (3) 737 (13) 423 (23) 647 (14) 2,876 (2) 125 (47) 164 (36) 164 (37) 130 (43) 467 (20) 1,170 (10) 1,260 (8) 334 (30) 128 (45) 264 (32) 157 (38) 1,533 (6) 952 (11) 238 (34) 459 (21) 540 (17) 558 (16) — 602 (15)
160 (35) 100 (47) 320 (17) 75 (50) 500 (10) 380 (14) 770 (4) 126 (42) 148 (40) 150 (37) 50 (51) 256 (25) 167 (34) 105 (45) 200 (29) 106 (44) 110 (43) 180 (31) 2,000 (1) 450 (11) 770 (5) 105 (46) 210 (28) 82 (49) 100 (48) 328 (16) 290 (19) 550 (9) 1,183 (2) 300 (18) 180 (32) 132 (41) 278 (21) 150 (38) 169 (33) 160 (36) 264 (23) 720 (6) 1,151 (3) 276 (22) 290 (20) 24 (52) 150 (39) 360 (15) 656 (8) 450 (12) 264 (24) 720 (7) 234 (27) 415 (13) 200 (30) 240 (26)
171 (26) — 1,610 (1) 100 (42) 161 (28) 317 (12) 646 (2) 126 (33) 118 (35) 583 (4) — 438 (9) 198 (20) 195 (22) 130 (32) 370 (11) 220 (19) 107 (41) — 112 (36) 596 (3) 164 (27) 397 (10) 100 (43) 148 (33) 112 (37) 444 (8) — — 125 (34) 250 (16) 173 (25) 100 (44) 109 (40) 177 (24) 158 (29) 112 (38) 535 (5) — 196 (21) 273 (15) 112 (39) 138 (31) 238 (18) 497 (7) 313 (13) 520 (6) 240 (17) 300 (14) — — 194 (23)
Numbers in parentheses are relative rankings; The international unit of activity is the Becquerel (Bq), which is approximately equal to 27 pCi. Source: From Longtin, J., 1990, Chapter 8, Occurrence of radionuclides in drinking water, a national study In Cothern, R. and Rebers, P (Editors), 1990, Radon, Radium, and Uranium in Drinking Water, Lewis Publishers, Inc, Chelsea, Michigan. Original Source: Longtin, J., 1988.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-83
Table 8D.43 Number of Public Drinking Water Supplies in the United States Exceeding Various Levels of Radon Estimated Numbers That Exceed the Concentration in Column 2 Lifetime Risk Level
Radon Concentration (pCi/L)
Public Drinking Water Supplies
Population thousands
10,000 1,000 100 10
500–4000 1000–10,000 5000–30,000 10,000–40,000
20–300 200–4000 10,000–100,000 50,000–100,000
10K3 10K4 10K5 10K6 Note:
Rounded off to one significant figure.
Source: From Cothern, C.R., 1987, Estimating the health risk of radon in drinking water, J. Am. Water Works Assoc., vol. 79, no. 4. Copyright AWWA. Reprinted with permission.
Table 8D.44 Occurrence of Radon in Well Water in the United States State Arizona California Connecticut Iowa Illinois Indiana Massachusetts New Hampshire New Jersey New Mexico Ohio Pennsylvania Rhode Island Virginia West Virginia Cumulative Note:
Number of Wells Sampled
Range of Detected Radon Levels (pCi/L)
Mean Radon Concentration (pCi/L)
Associated ErrorGpCi/L
5 44 3 6 16 28 28 12 113 36 10 64 3 2 7 377
434–681 !100–2,003 757–984 All!100 182–714 !100–624 !100–3,288 880–4,609 !100–3,805 !100–678 !100–343 !100–4,622 640–787 465–468 !100–281 !100–4,622
582 589 841 12 449 324 1,145 1,716 394 253 148 1,570 702 467 93 686
105 91 98 75 115 106 101 134 79 266 116 89 61 53 42 104
Range of detected radon concentrations and corresponding mean radon levels.
Source: From Dixon, K.L., and Lee, R.G., 1988, Occurrence of radon in well supplies, J. Am. Water Works Assoc., vol. 80, no. 7. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
8-84
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
50 Longtin (1988) Horton (1983)
Percent abundance
40
Hess et al. (1985)
30
20
10
0 < 3700
3700 to < 18500
64750 to < 185000
18500 to < 64750 222Rn
185000 to > 370000 370000
(Bq m3)
Figure 8D.12 Distributions of radon in drinking water in several studies in the United States. (Reprinted with permission from (Risk Assessment of Radon in Drinking Water) q (1999) by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, DC)
Table 8D.45 Aluminum in Public Drinking Water Supplies in the United States
Category Region I II III IV V VI VII VIII IX X Population served 25–9999 10,000–99,999 100,000–999,999 R1,000,000
Samples with Concentrations O0.014 mg/L
Samples
Samples With Concentrations O0.05 mg/L percent
Percent
46 71 123 80 100 35 53 105 89 14
13 25 37 54 51 29 2 30 29 0
286 92 222 116
15 39 48 38
Overall Median (mg/L)
Median (mg/L)
Maximum (mg/L)
33 44 54 68 64 60 13 47 52 7
0.043 0.066 0.070 0.161 0.082 0.040 0.026 0.083 0.053
0.179 0.249 2.670 0.449 2.160 0.889 0.051 2.580 1.167
!0.014 !0.014 0.022 0.060 0.051 0.029 !0.014 !0.014 0.020 !0.014
28 61 66 62
0.051 0.087 0.094 0.058
1.167 2.580 2.670 0.402
!0.014 0.023 0.045 0.033
Note: Finished water; by USEPA region and population category. Source: From Miller, R.G. and others, 1984. The occurrence of aluminum in drinking water, J. Am. Water Works Assoc., vol. 76, no. 1. Copyright Am. Water Works Assoc. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-85
Small systems
Percent exceedance
Percent exceedance
Large systems 50 45 40 35 30 25 20 15 10 5 0
USGS NAOS
1
2
5 10 Arsenic (ug/L)
20
50
50 45 40 35 30 25 20 15 10 5 0
USGS NAOS
1
2
5 10 Arsenic (ug/L)
20
50
Figure 8D.13 Exceedance frequency of arsenic concentrations in small and large regulated water supply systems in the United States. (From Welch, A.H., et al. 1999, Arsenic in groundwater supplies of the United States, In: Arsenic Exposure and Health Effects, W.R. Chappell, C.O. Abernathy and R.L. Calderon, Eds., Elsevier Science, New York, pp. 9–17, http://water.usgs. gov.)
q 2006 by Taylor & Francis Group, LLC
8-86
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.46 Statistical Results of Differences in Arsenic Concentrations in Water Collected from Public Water-Supply Wells and Other Types of Wells, by Physiographic Provinces in the United States
Physiographic Province
Number of Samples Public WaterSupply Wells All Other Wells
Mean (mg/L) Public WaterSupply wells All Other Wells
Median (mg/L) Public WaterSupply Wells All Other Wells
95th Percentile (mg/L) Public WaterSupply Wells All Other Wells
99th Percentile (mg/L) Public WaterWupply Wells All Other Wells
1. Appalachian Highlands
376 2,212
1 3
%1 %1
5 8
10 25
0.6552
2. Atlantic Coast Plain
646 2,047
1 2
%1 %1
2 6
7 21
0.0067
3. Interior Highlands, Interior Plains, and Laurentian Upland
342 3,947
5 5
%1 %1
19 16
75 48
0.3289
4. Intermontane Plateaus
458 4,640
9 15
3 3
39 44
100 200
0.1389
5. Pacific Mountain System
303 2,401
6 9
2 2
21 27
92 82
0.7159
6. Rocky Mountain System
74 1,028
2 7
%1 %1
6 20
30 100
0.6444
Note: a
Wilcoxon Test Statistica (pO/z/)
mg/L, micrograms per liter; R, greater than or equal to; !, less than.
A value!0.05 indicates the two data sets are different.
Source: From Focazio, M.J., et al., 2000, A Retrospective Analysis on the Occurrence of Arsenic in Groundwater Resources of the United States and Limitations in Drinking-Water-Supply Characterizations, USGS, Water Resources Investigations Report 99-4279, www.usgs.gov. With permission. Locations of major physiographic provinces of the United States
(RMS) Rocky mountain (IP) system Interior plains
Appalachian highlands (AH)
Pacific mountain system (PMS) Intermontane plateaus (IMP)
q 2006 by Taylor & Francis Group, LLC
Atlantic plain (AP)
WATER QUALITY
8-87
0
300 Miles
0
300 km
Explanation Arsenic in water from 18,850 wells and springs 0 0
400 Miles
0
400 km 0
200 Miles 200 km
Greater than 10 µg/L 5 to 9.9 µg/L 3 to 4.9 µg/L Less than 2.9 µg/L
Figure 8D.14 Locations and concentration ranges of samples in the USGS arsenic point data base. (From Focazio, M.J., et al. A Retrospective Analysis on the Occurrence of Arsenic in Groundwater Resources of the United States and Limitations in Drinking-Water-Supply Characterizations, USGS, Water Resources Investigations Report 99–4279, 2000, http://water. usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
8-88
Table 8D.47 Estimated Arsenic Occurrence in United States Groundwater Community Water Systems Number of Systems with Arsenic Concentrations (mg/L) System Size (Population Served)
Note: a b
178 14,025 14,991 4,671 5,710 2,459 1,215 131 61 2 434,43
O2
O3
O5
O10
O15
O20
O25
O30
O40
O50
49 3,833 4,097 1,277 1,561 672 332 36 17 1 11,873 11,543 13,007
35 2,788 2,980 929 1,135 489 242 26 12 0 8,636 8,363 9,501
22 1,696 1,812 565 690 297 147 16 7 0 5,252 5,100 5,665
9 743 795 248 303 130 64 7 3 0 2,302 2,250 2,567
5 429 459 143 175 75 37 4 2 0 1,329 1,269 1,499
4 281 300 93 114 49 24 3 1 0 869 821 995
3 199 213 66 81 35 17 2 1 0 617 573 712
2 147 157 49 60 26 13 1 1 0 456 421 534
1 90 96 30 37 16 8 1 0 0 278 252 335
1 60 64 20 25 11 5 1 0 0 187 165 226
CI, confidence interval.
Based on 1998 Baseline SDWIS data for purchased and non-purchased systems. Systems characterized as GW under the influence of SW are considered to be surface water systems. Totals may not add up due to rounding of the number of systems to the nearest whole number.
Source:
From USEPA, 2000, Arsenic Occurrence in Public Drinking Water Supplies, EPA-815-R-00-023, December 2000, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
!25 25–100 101–500 501–1,000 1,001–3,300 3,301–10,000 10,001–50,000 50,001–100,000 100,001–1,000,000 O 1,000,000 Total Systemsb Lower 95% CI Upper 95% CI
Total Number of Systemsa
Number of Systems with Arsenic Concentrations (mg/L) System Size (Population Served) !25 25–100 101–500 501–1,000 1,001–3,300 3,301–10,000 10,001–50,000 50,001–100,000 100,001–1,000,000 O 1,000,000 Total Systems Lower 95% CI Upper 95% CIb Note: a b
Total Number of Systemsa 74 1,001 1,983 1,219 2,420 1,844 1,606 300 261 13 10,721
O2
O3
O5
O10
O15
O20
O25
O30
O40
O50
7 98 195 120 238 181 158 29 26 1 1,052 973 2,730
4 56 110 68 135 103 89 17 15 1 597 514 2,212
2 30 60 37 73 56 49 9 8 0 325 193 1,036
1 8 16 10 19 15 13 2 2 0 86 56 167
0 5 9 6 11 9 7 1 1 0 50 25 107
0 3 6 4 8 6 5 1 1 0 34 14 88
0 2 5 3 6 4 4 1 1 0 26 9 77
0 2 4 2 5 3 3 1 0 0 20 6 71
0 1 3 2 3 2 2 0 0 0 14 3 65
0 1 2 1 2 2 2 0 0 0 10 2 63
WATER QUALITY
Table 8D.48 Estimated Arsenic Occurrence in United States Surface Water Community Water Systems
CI, confidence interval.
Based on 1998 Baseline SDWIS data for purchased and non-purchased systems. Systems characterized as GW under the influence of SW are considered to be surface water systems. Totals may not add up due to rounding of the number of systems to the nearest whole number.
Source:
From USEPA, 2000, Arsenic Occurence in Public Drinking Water Supplies, EPA-815-R-00-023, December 2000, www.epa.gov.
8-89
q 2006 by Taylor & Francis Group, LLC
8-90
Table 8D.49 Summary of Documented Cases of Naturally-Occurring Arsenic Problems in World Groundwaters Area (km2)
Country/Region
Population Exposeda
Concentration Ranges (mg L)
Aquifer Type
Bangladesh
150,000
ca. 3!107
!0.5–2,500
West Bengal
23,000
6!106
!10–3,200
China Taiwan
4000
5.6!106 105 (formerly)
10–1820
Sediments, including black shale
Groundwater Conditions
Holocene alluvial/deltaic Strongly reducing, neutral sediments. Abundance of pH, high alkalinity, slow solid organic matter groundwater flow rates As Bangladesh As Bangladesh
4300 (HB) 30,000 total
ca. 105 in HB
!1–2400
Holocene alluvial and lacustrine sediments
Xinjiang (Tianshan Plain) Shanxi
38,000
(500 diagnosed)
40–750
Holocene alluvial plain Alluvial plain
DPHE/BGS/MML (1999) CGWB (1999); POA (1999) Sun et al. (2000) Kuo (1968), Tseng et al. (1968)
Luo et al. (1997), Zhai et al. (1998), Ma et al. (1999), Sun et al. (1999), Smedley et al. (2000b, 2001b)
Wang and Huang (1994) Sun et al. (1999)
29,000
!2–176
Quaternary alluvial plain
Reducing groundwater, some artesian. Some high in humic acid
Varsa´nyi et al. (1991); Gurzau (2000)
2!106
!1–5300 (7800 in some porewaters)
Nicolli et al., 1989; Nicolli and Merino (2001); Smedley et al. (2001a); Sancha and Castro (2000)
Northern Chile (Antofagasta) 125,000
500,000
100–1000
Holocene and earlier loess Oxidizing, neutral to high pH, with rhyolitic volcanic ash high alkalinity. Groundwaters often saline. As(V), accompanied by high B, V, Mo, U. Also high As concentrations in some river waters Quaternary volcanogenic Generally oxidizing. Arid sediment conditions, high salinity, high B. Also high-As river waters
Southwest U.S.A. Basin & Range, Arizona
3.5 ! 105 (tot)
Hungary, Romania (Danube 110,000 Basin)
Argentina (Chaco-Pampean Plain
106
200,000
q 2006 by Taylor & Francis Group, LLC
up to 1300
Alluvial basins, some evaporites
Oxidizing, high pH. As (mainly As (V)) correlates positively with Mo, Se, V, F
Ca´ceres et al. (1992), Karcher et al. (1999); Sancha and Castro (2000)
Smith et al. (1992) Robertson (1989)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Inner Mongolia (Huhhot Basin (HB), Bayingao, Hexi, Ba Meng, Tumet Plain)
Strongly reducing, artesian conditions, some groundwaters contain humic acid Strongly reducing conditions, neutral pH, high alkalinity. Deep groundwaters often artesian, some have high concentrations of humic acid Reducing, deep wells (up to 660 m) are artesian Reducing
Reference
5000
!1–2600
Southern Carson Desert, Nevada
1300
up to 2600
Salton Sea Basin
Mexico (Lagunera)
32,000
4!105
8–620
Some problem areas related to mining activity and mineralized areas Thailand (Ron Phibun) 100 15,000 1–5000
Greece (Lavrion) Fairbanks, Alaska, U.S.A. Moira Lake, Ontario, Canda
up to 10,000 100
50–3000
Coeur d’Alene, Idaho, U.S.A.
up to 1400
Lake Oahe, South Datoka, U.S.A.
up to 2000
Bowen Island, British Colombia a
50
0.5–580
Holocene and older basin-fill Internally-drained basin. sediments Mixed redox conditions. Proportion of As(III) increases with well depth. High salinity in some shallow groundwaters. High Se, U, B, Mo Largely reducing, some high Holocene mixed aeolian, pH. Some with high alluvial, lacustrine salinity due to sediments, some thin evaporation. Associated volcanic ash bands high, U, P, Mn, DOC (Fe to a lesser extent) Some saline groundwaters, with high U Volcanic sediments
Oxidising, neutral to high pH, As mainly as As(V)
Dredged quatemary alluvium Oxidation of disseminated (some problems in arsenopyrite due to former limestone), tailings tin mining, subsequent groundwater rebound Mine tailings Mining Gold mining, arsenopyite, Schist, alluvium, mine tailings possibly scorodite Mine tailings Ore mining (gold, hematite, magnetite, lead, cobalt) Valley-fill deposits River water and groundwater affected by lead-zincsilver mining Lake sediments As in sediment porewaters from gold mining in the Black Hills Sulphide mineral veins in Neutral to high-pH volcanic country rocks groundwaters (up to 8.9), As correlated with B, F
Fujii and Swain (1995)
WATER QUALITY
Tulare Basin, San Joaquin Valley, California
Welch and Lico (1998)
Welch and Lico (1998)
Del Razo et al. (1990)
Williams et al. (1996), Williams (1997)
Wilson and Hawkins (1978); Welch et al. (1988) Azcue and Nriagu (1995) Welch et al. (1988). Mok and Wai (1990) Ficklin and Callender (1989)
Boyle et al. (1998)
Exposed refers to population drinking water with AsO50 mg LK1 (drinking-water standard of most countries).
Source:
From Smedley, P.L. and Kinniburgh, D.G., Chapter 1, Source and Behavior of Arsenic in Natural Waters in WHO, 2001, United Nations Synthesis Report on Arsenic in Drinking Water Developed on Behalf of the United Nations Administrative Committee on Cooperation Sub-Committee on Water Resources, with active participation of UNICEF, UNIDO, IAEA and the World Bank, April 20, 2001, www.who.int.
8-91
q 2006 by Taylor & Francis Group, LLC
8-92
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
27° Arsenic (µg L−1) 300
25°
24° India
India 23°
22° Bay of Bengal
21°
20°
200 km 'Groundwater studies of arsenic contamination in Bangladesh' DPHE/BGS/DFID(2000)
88°
89°
90°
91°
92°
93°
Figure 8D.15 Smoothed map showing the regional trends in groundwater arsenic concentrations in shallow wells in Bangladesh. (From British Geological Survey (BGS) and Government of the People’s Republic of Bangladesh, Ministry of Local Government, Rural Development Co-operatives, Department of Public Health Engineering, 2001, Arsenic Contamination of Groundwater in Bengladesh, Kinniburgh, D.G. and Smedley, P.L. (eds), vol. 1: Summary, British Geological Survey (BGS) technical Report WC/00/19, British Geological Survey, Keyworth, www.bgs.ac.uk.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-93
[Total number of arsenic affected districts 9 and blocks 85]
AFFECTED BLOCKS
Sikkim N
Arsenic affected districts
DARJILING
MURSHIDABAD MALDAH NADIA NORTH 24-PARGANAS SOUTH 24- PARGANAS BARDDHAMAN HOWRAH HOOGHLY KOLKATA
3 JALPAIGURI
PU R
KOCHBIHAR 3
DI NA J
1 2 3 4 5 6 7 8 9
Bhutan
SOUTH 24 PARGANAS AFFECTED BLOCKS MURSHIDABAD
UT TA R So far patients have been registered in red colored blocks Arsenic >50 µg/L
2-
Arsenic 10–50 µg/L
3-
Arsenic 3–40 µg/L
4-
Arsenic 75%
Data unavailable
Figure 8D.18 Percent of United States population on fluoridated water, 2002. (From Center of Disease Control, cdc.gov/nohss/ FluoridationMapV.asp?YearZ2002.)
Geographical belts of high fluoride concentrations in groundwater extend from Syria through Jordan, Egypt, Libya, Algeria, Morocco and the Rift Valley of Western Africa through the Sudan and Kenya. Another belt stretches from Turkey through Iraq, Iran and Afghanistan to India, Northern Thailand and China. The highest natural fluoride concentration ever found in water (2,800 mg/L) was recorded in Lake Nakuru in the Rift Valley in Kenya. High groundwater fluoride concentrations are associated with igneous and metamorphic rocks such as granites and gneisses, volcanic rocks, and salt deposits of marine origin.
Iraq Turkey Syria Jordan Palestine Morocco Japan
Algeria
China
Libya
Bangladesh
Egypt Mexico
Senegal
United Arab Emirates
Iran India Pakistan Ethiopia Sri Lanka Uganda Kenya Tanzania
Thailand
Australia Argentina New Zealand Figure 8D.19 Countries with endemic fluorosis due to excess fluoride in drinking water. (From UNICEF, Fluoride and Fluoridation, UNICEF Questions Benefits and Safety, rvi.net/wFlouride/000133.htm.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-99
Table 8D.54 Summary of Concentrations of Naturally-Occurring Fluoride Detected in Selected Countries with Endemic Fluorosis Country Africa Ghana Ethiopia Ethiopia (Lake Ziway) Kenya Tanzania South Africa (Port Elizabeth) Australia
Fluoride Concentrations in Groundwater
BGS, 2000 Alem, 1998 Haile, 1999
up to 11 mg/L
Nyanchaga and Bailey, 2003 WHO 2004a, EHC 227
30% of drinking water O1.5 mg/L, up to 8.0 mg/L 0.05–14.00 mg/L
Maclear et al., 2003
WHO, 2004a
50% groundwater boreholes O1.5 mg/L with several in range of 3 to 9 mg/L Over 26 million-dental fluorosis 1 million-skeletal fluorosis
WHO, 2004b WHO, 2004b Xu et al., 1997
66 million consume drinking water with elevated Fluoride-15 of India’s 32 States
UNICEF
0.4–6.9 mg/L
India
Rajasthan Punjab Karnataka State
Reference
up to 3.8 mg/L 0.8–24.5 mg/L 0.1–23.3 mg/L
China Inner Mongolia
Population Affected
0.2–5.1 mg/L 0.5–16.2 mg/L 0.97–7.40 mg/L
Mexico
Choubisa, 2001 Jolly, 1968 Latha et al., 1998 5 million (about 6% of population) affected by fluoride in groundwater
UNICEF, WHO, 2004b
Los Altos de Jalisco Durango
0.14–12.97 mg/L 1–5.67 mg/L
Hurtado et al., 2000 Oritz et al., 1998
Argentina La Pampa
0.3–29 mg/L
Smedley et al., 2000
Source: From Alem, Getachew, 1998, Groundwater for rural water supply in the Rift Valley, 24th WEDC Conference, Sanitation and Water for All. British Geological Survey, 2000, Water Aid Country Information Sheet: Ghana. Choubisa, SL., 2001, Endemic Fluorosis in Southern Rajasthan, India, Fluoride 34: 61–70. Haile, G., 1999, Hydrogeochemistry of the Waters in the Lake Ziway Area, 25th WEDC Conference, Integrated Development for Water Supply and Sanitation. Hurtado, R., Gardea-Torresdey, J, and Tiemann, K.J., 2000, Fluoride Occurrence in Tap Water at “Los Altos de Jalisco” in the Central Mexico Region, Proceedings of the 2000 Conference on Hazardous Waste Research. Jolly SS, 1968, Fluoride 1: 65–75. Latha, S.S, Ambika, S.R., and Prasad, S.J, 1998, Fluoride Contamination Status of Groundwater in Karnataka iisc. ernet.in/currsci/mar25/articles13.htm. Nyanchaga, E.N. and Bailey, T., 2003, Flouride contamination in drinking water in the Rift Valley, Kenya and evaluation of the efficiency of locally manufactured defluoridation filter, Journal of Civil Engineering, JKUAT Vol 8, pp. 79–88. Maclear, LGA, Adlem, M, and Libala, M.B., 2003, COEGA Water Quality Monitoring, Trend Analysis of Fluoride Concentrations in Surface Water and Groundwater: 2000–2003, SRK Consulting. Ortiz, D., Castro, L., Turrubiartes, F., Milan, J., Diaz-Barriga, F., 1998, Assessment of the exposure to fluoride from drinking water in durango, Mexico, using a geographic information system, Fluoride 31 (4), pp 183–187. Smedley, P, Nicolli, H, and MacDonald, D., 2000, Hydrogeochemisty of arsenic and other problem constituents in groundwaters from La Pampa, Argentina, Journal of Conference Abstracts, Volume 5(2), 936, Cambridge Publications. UNICEF, Fluorides and Fluoridation, UNICEF Questions Benefits and Safety, Fluoride in Water: An Overview, rvi.net/wFlouride/ 000133.htm Printed 7/17/05. WHO, 2004a, Fluoride in Drinking Water Background Document for the Development of WHO Guidelines for Drinking-water Quality, WHO/SDE/WSH/03.04/96. WHO, 2004b, WHO Issues Revised Drinking Water Guidelines to Help Prevent Water-Related Outbreaks and Disease, Press Release WHO/67, September 21, 2004. WHO, 2002, Fluorides, Environmental Health Criteria, 227. Xu RQ, Wu DQ, Xu RY, 1997, Water Fluoride and Skeletal Fluorosis-Inner Mongolia, Fluoride 30: 26–28.
q 2006 by Taylor & Francis Group, LLC
8-100
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.55 Detections of Giardia Cysts in Source Waters of Public Drinking Water Supplies in the United States Percent Classification Creeks Rivers Lakes Springsa Wellsa a
Samples
No. of Sites
No. of Positive Samples
No. of Positive Sites
Positive of Samples
Positive of Sites
444 449 829 84 63
75 74 49 6 40
181 163 138 16 2
38 38 19 2 2
41 36 17 19 3
51 51 39 33 5
Samples represent finished water. Most water from springs and wells is unfiltered and may or may not be disinfected before consumption.
Source: From U.S. Environmental Protection Agency, 1987; Hibler, 1987.
Table 8D.56 Detections of Giardia Cysts in Finished Drinking Waters Supplies of the United States Percent Classification Unfiltered, chlorinated Direct filtrationa Conventional treatment Slow sand and diatomaceous earth filtration Commercial filters and/or pressure filters Cartridge filters Infiltration galleries Filter type unknown a
Samples
No. of Sites
No. of Positive Samples
No. of Positive Sites
Positive of Samples
1,214
94
80
16
6.6
615 357
92 86
148 12
17 5
24.0 3.4
18.5 5.8
18
3
0
0
0
0
33
12
4
2
12.1
16.7
51 37 83
13 16 24
11 7 15
7 5 6
21.6 18.9 18.0
53.8 31.3 25.0
Positive of Sites 17
May or may not include coagulation or disinfection. Number of systems applying coagulant and/or polymer, or whether disinfection was interrupted, could not be determined.
Source: From U.S. Environmental Protection Agency, 1987; Based on data collected from 1979–1986, Hibler, 1987.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-101
Table 8D.57 United States National Source Water (Untreated) Levels of Giardia, January to December 1998 Level of Total Giardia (#cysts/100 mL)
Jan
0 0.1–0.9 1–9 10–99 100–999 1,000–9,999
220
Note:
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
290
265 1 7 33 21 1
264
233 1 11 26 28
Number of Water Treatment Plants
18 45 37
232 1 18 35 38 2
248 1 10 39 28 3
268 1 13 25 23
262
281 1 9 25 15 1
14 20 24 2
276 1 14 24 10
280 2 6 20 21 1
6 19 13
8 32 16 3
Data Purpose, The Information Collection Rule (ICR) data were collected as part of a national research project to support development of national drinking water standards. They should NOT be used to determine local water systems compliance with drinking water standards, nor should they be used to make personal judgements about health risks. Results of Zero: A measurement of zero means that no Giardia was found in the sample volume that was analyzed. Zero results do not indicate the absence of Giardia in the source water because the method recovery is low and the amount of sample analyzed is small. In other words, Giardia may be present in source water even if no oocysts are counted for the sample volume analyzed. The presence of Giardia may also be mistakenly identified as other organic material such as algae. The current ICR method for detecting Giardia and Cryptosporidium has significant technical limitations: Better detection methods are currently being developed to detect and count protozoa. It is difficult to accurately estimate the numbers of protozoan cysts without testing large quantities of water, and this is not always feasible. The actual levels of these pathogens in source water may be much higher than those found by the tests. However, the current ICR detection method does not distinguish between species of Giardia and Cryptosporidium that may cause illness and those that do not. The method may also misidentify algae as a Cryptosporidium. With the ICR detection method, both false positive (microbe is counted when it is not actually present) and false negative (microbe is not counted when it is present) results are possible. The ICR detection method cannot determine whether the microbes are alive or whether they are able to cause illness.
Source: From United States Environmental Protection Agency, www.epa.gov.
Table 8D.58 Occurrence of Cryptosporidium in Surface and Groundwaters Samples (n)
Water Type a
% Positive
Range of Oocyst Concentration (oocysts/L)
Mean Concentration (oocysts/L)
Reference
Stream/river N Amer Rivera (2 sites) UK
6 375
100 4.5
0.8–5,800 0.07–4
1920 0.95(g)
Rivera (4 sites) UK
691
55.2
0.04–3.0
0.38(g)
Rivera (4 sites) UK
430
4.4
0.007–2.75
0.5(g)
6 Riversa N Amer Stream N Amer Stream/river N Amer Stream/river N Amer River/lake N Amer River/lake N Amer
11 19 58 38 85 262
100 73.7 77.6 73.7 87.1 51.5
2–112 0–240 0.04–18 !0.001–44 0.07–484 0.065–65.1
25(adj) 1.09(g) 0.94(g) 0.66(g) 2.7(g) 2.4(g)
22 41 1173 NR 18 84
31.8 78.8 4.5 18(?) NR 40.5
0.01–75.7 !0.02–2.25 NR 0–25/L 7.1–28.5 0.006–2.3
0.58(g) 0.26 NR 0.6 17.8 NR
Madore et al., 1987c The National Cryptosporidium Survey Group, 1992c The National Cryptosporidium Survey Group, 1992c The National Cryptosporidium Survey Group, 1992c Ongerth and Stibbs, 1987c Rose et al., 1988c Rose, 1988c Rose et al., 1991c LeChevallier et al., 1991ac LeChevallier and Norton, 1995 Stetzenbach et al., 1988c Chauret et al., 1995b Wallis et al., 1996 Kfir et al., 1995 Rose et al., 1988c Smith et al., 1991c
20 32 24 44
70.7 75 58.3 27.3
0–22 1.1–8.9 !0.001–3.8 0.11–251.7
0.58(g) 0.91(g) 1.03(g) 4.74
Rose et al., 1988c Rose, 1988c Rose et al., 1991c Stetzenbach et al., 1988c
River N Amer 3 Riversa Ottawa, Canada Surface waters Canada Surface waters South Africa River/lake N Amer Stream/lake (impact if any, NR) UK Lake N Amer Lake/reservoir N Amer Lake N Amer Lake N Amer
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-102
Table 8D.58
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Water Type Pristine river N Amer Pristine river N Amer Pristine lake N Amer Pristine spring N Amer Pristine lake Yukon, Canada Groundwater well N Amer
Samples (n)
% Positive
Range of Oocyst Concentration (oocysts/L) NR NR NR !0.003–0.13 0–0.003 NR
Mean Concentration (oocysts/L)
3 59 34 7 11 18
NR 32.2 52.9 28.6 9.1 5.6
Deep pristine groundwater well UK
120
0
—
0.08(g) 0.29 0.093(g) 0.04(g) 0.003 0.003 (single value) —
Groundwater wellb UK
138
5.8
0.004–0.922
0.23(g)
Reference Rose et al., 1988c Rose et al., 1991c Rose et al., 1991c Rose et al., 1991c Roach et al., 1993c Rose et al., 1991c The National Cryptosporidium Survey Group, 1992c The National Cryptosporidium Survey Group, 1992c
Note: PristineZlittle or no human activity in the watershed or water, restricted access, no agricultural activity within the watershed and no sewage treatment facility discharges impacting the water upstream from the sampling site (Lisle and Rose, 1995); NRZnot recorded; (g)Zgeometric mean; (adj)Zdata adjusted for recovery efficiencies; (?) legend is missing from the relevant figure in Kfir et al. a b c
Affected by domestic or agricultural waste. History of coliform contamination. As cited by Lisle and Rose (1995).
Source: From Butler, B.J. and Mayfield, C.I., 1996, Cryptospordium spp. A review of the organism. Disease and Implications of Managing Water Resources, Prepared for Waterloo Centre of Groundwater Research, Waterloo, Ontario, Canada, www.inweh.unu.edu. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-103
Table 8D.59 United States National Source Water (Untreated) Levels of Cryptosporidium, January to December 1998 Level of Total Cryptosporidium (oocysts/100 L)
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
283 1 4 9 2
Number of Water Treatment Plants 0 0.01–0.9 1–9 10–99 100–999 1,000–9,999 Note:
293 1 4 17 5
292
304
312
305
307
310
309
301
306
302
6 21 7
4 16 5
6 6 6
3 10 4
2 17 6
1 12 2
1 12 8
2 15 10
7 11 4
2 17 2
Data Purpose, The Information Collectin Rule (ICR) data were collected as part of a national research project to support development of national drinking water standards. They should NOT be be used to determine local water systems compliance with drinking water standards, nor should they be used to make personal judgements about health risks. Results of Zero: A measurement of zero means that no Cryptosporidium was found in the sample volume that was analyzed. Zero results do not indicate the absence of Cryptosporidium in the source water because the method recovery is low and the amount of sample analyzed is small. In other words, Cryptosporidium may be present in source water even if no oocysts are counted for the sample volume analyzed. The presence of Cryptosporidium may also be mistakenly identified as other organic material such as algae. The current ICR method for detecting Giardia and Cryptosporidium has significant technical limitations: It is difficult to accurately estimate the numbers of protozoan cysts without testing large quantities of water, and this is not always feasible. The actual levels of these pathogens in source water may be much higher than those found by the tests However, the current ICR detection method does not distinguish between species of Giardia and Cryptosporidium that may cause illness and those that do not. The method may also misidentify algae as a Cryptosporidium. With the ICR detection method, both false positive (microbe is counted when it is not actually present) and false negative (microbe is not counted when it is present) results are possible. The ICR detection method cannot determine whether the microbes are alive or whether they are able to cause illness. Better detection methods are currently being developed to detect and count protozoa.
Source: From United States Environmental Protection Agency, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
8-104
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8D.60 Occurrence of Cryptosporidium in Treated Drinking Water
Filtration
Samples (n)
% Positive
Range of Oocyst Concentration (oocysts/L)
U.S.A. U.S.A.
yes yes
28 82
14.3 26.8
0.005–0.007 0.001–0.48
0.001(g) 0.015(g)
U.S.A. Yukon, Canada
no no
6 42
33.3 3.8
0.001–0.017 0.002–0.005
0.002(g) NR
Scotland
NR
142
40.1
0.007–0.72
NR
South Africa
NR
NR
1.1
Study Site
Note: a
0–1
Mean Concentration (oocysts/L)
0
Reference Rose et al., 1991a LeChevallier et al., 1991ba Rose et al., 1991a Roach et al., 1993a Smith et al., 1991a Kfir et al., 1995
NRZnot recorded; (g)Zgeometric mean.
As cited by Lisle and Rose, 1995.
Source: From Butler, B.J. and Mayfield, C.I., 1996, Cryptospordium spp. A review of the organism. Disease and Implications of Managing Water Resources, Waterloo Centre of Groundwater Research, Waterloo, Ontario, Canada, www.inweh.unu.edu. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-105
SECTION 8E
q 2006 by Taylor & Francis Group, LLC
INDUSTRIAL WATER QUALITY
8-106
Table 8E.61 Water Quality Tolerance for Certain Industrial Applications Na2SO4 to
Color DO2 Industry
Turbidity
Color
Consumed
D.O.
a
(mL/L)
Total Odor
Hardness
Alkalinity
pH
Solids
Na2SO3
FeD Fe
Mn
Mn
Al2O3
SiO2
Cl
F
CO3
HCO3
OH
(ratio)
Generalb
Air Conditioningc
—
—
—
—
—
—
—
—
0.5
0.5
0.5
—
—
—
—
—
—
—
—
A,B
10
—
—
Low
—d
—
—
—
0.2
0.2
0.2
—
—
—
—
—
—
—
—
C
0–150
20
80
100
2
—
80
—
8.0C
3000–1000
—
—
—
5
40
—
—
200
50
50
1–1
—
150–250
10
40
50
0.2
—
40
—
8.5C
2500–500
—
—
—
0.5
20
—
—
100
30
40
2–1
—
250–400
5
5
10
0.0
—
10
—
9.0C
1500–100
—
—
—
0.05
5
—
—
40
5
30
3–1
—
400–over
1
2
0.0
—
2
—
9.6C
50
—
—
—
0.01
1
—
—
20
0
15
3–1
—
Light
10
10
—
—
Low
—
75
6.5–7.0
500
0.1
0.1
0.1
—
50
100
1.0
50
—
—
—
C,D,G
Dark
10
10
—
—
Low
—
150
7.0C
1000
0.1
0.1
0.1
—
50
100
1.0
50
—
—
—
C.D,H
Legumes
10
—
—
—
Low
25–75
—
7.5C
850
0.2
0.2
0.3
—
—
—
1.0
—
—
—
—
C
General
10
—
—
—
Low
50–400
—
7.5C
850
0.2
0.2
0.3
—
—
—
1.0
—
—
—
—
C C
Boiler Feed (pounds per sq. in.)
Brewinge
Canning
Carbonated Beveragesf
2
10
10
—
Low
250
125
—
850
0.2
0.2
0.3
—
—
250
0.2–1.0
—
—
—
—
Confectionery
—
—
—
—
Low
—
—
—g
100
0.2
0.2
0.2
—
—
—
—
—
—
—
—
—
Coolingh
50
—
—
—
—
50
—
—
—
0.5
0.5
0.5
—
—
—
—
—
—
—
—
A,B C
Food 10
5–10
—
—
Low
10–250
30–250
—
850
0.2
0.2
0.2
—
—
—
1.0
—
—
—
—
Ice (raw water)i
general
1–5
5
—
—
—
—
30–50
—
300
0.2
0.2
0.2
—
10
—
—
—
—
—
—
C
Laundering
—
—
—
—
—
50
60
6.0–6.8
—
0.2
0.2
0.2
—
—
—
—
—
—
—
—
—
2
2
—
—
—
—
—
—
200
0.02
0.02
0.02
—
—
—
—
—
—
—
—
—
Groundwood
50
30
—
—
—
200
150
—
500
0.3
0.1
0.3
—
50
75
—
—
—
—
—
E
Kraft, paper,
40
25
—
—
—
100
75
—
300
0.2
0.1
0.2
—
50
200
—
—
—
—
—
E
25
5
—
—
—
100
75
—
250
.01
0.05
0.1
—
20
75
—
—
—
—
—
E
10
5
—
—
—
100
75
—
200
.01
0.05
0.1
—
20
—
—
—
—
—
—
E
5
5
—
—
—
8
50
—
100
0.05
0.03
0.05
8.0
25
5
—
—
—
—
—
F
Plastics, clear uncolored Paper and Pulpj
bleached Soda and sulfite pulps Fine paper Rayon (viscose) Pulp: Production Manufacture
0.3
—
—
—
—
55
—
7.8–8.3
—
—
—
—
—
—
—
—
—
—
—
—
—
20
10–100
—
—
—
50–135
135
6.0–8.0
—
0.2
0.2
0.2
—
—
—
—
—
—
—
—
—
General
5
20
—
—
—
20
—
—
—
0.25
0.25
—
—
—
100
—
—
—
—
—
—
Dyeingl
5
5–20
—
—
—
20
—
—
—
0.25
0.25
0.25
—
—
—
—
—
—
—
—
—
Tanningk Textiles
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
— 10
Baking
70
—
—
—
20
—
—
5
—
—
Low
20
—
—
1.0
1.0
1.0
—
—
—
—
—
—
—
—
—
0.2
0.2
0.2
—
—
—
—
—
—
—
—
—
scouringm Cotton
5
—
bandagem
Note: a b c d e f g h i j k l m
Milligrams per liter, except as indicated.
Abbreviations as follows: D.O., dissolved oxygen; ppm, parts per million; pH, hydrogen-ion concentration. A—no corrosiveness; B—no slime formation; C—conformity with federal drinking water standards necessary; D—NaCl, 275 ppm; E—free CO2 less than 10 mg/L; F—copper less than 5 mg/L; G—calcium 100–200 mg/L; H—calcium 200–500 mg/L Water with algae, or hydrogen sulphide odors, is most unsuitable for air conditioning. Some hardness desirable. Water for distilling must meet the same general requirements as for brewing (gin and spirits mashing water of light-beer quality, whiskey mashing water of dark-beer quality). Clear, odorless, sterile water for syrup and carbonization. Water consistent in character. Most high quality filtered municipal water not satisfactory for beverages. Hard candy requires pH of 7.0 or greater, as low value favors inversion of sucrose, causing sticky products. Control of corrosiveness is necessary, as is also control of organisms, such as sulphur and iron bacteria, which tend to form slimes. Ca (HCO3)2 particularly troublesome. Mg(HCO3)2 tends to greenish color. CO2 assists in preventing cracking. Sulphates and chlorides of Ca, Mg, Na should each be less than 300 ppm (white butts). Uniformity of composition and temperature desirable. Iron objectionable since cellulose absorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is oxidized to permanganates by chlorine, causing reddish color. Excessive iron, manganese, or turbidity creates spots and discoloration in tanning of hides and leather goods. Constant composition; residual alumina !0.5 ppm. Calcium, magnesium, iron, manganese, suspended matter, and soluble organic matter may be objectionable.
WATER QUALITY
Wool
Source: From American Water Works Association, Water Quality and Treatment, second edition (New York, 1950). Water Quality Criteria, California State Water Quality Control Board, second edition (Sacramento, 1963.)
8-107
q 2006 by Taylor & Francis Group, LLC
8-108
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8E.62 Water Quality Guidelines for the Pulp and Paper Industry Concentration (mg/L)
Parameter pH Color (HU) Turbidity (NTU) Calcium Magnesium Iron Manganese Chloride Silica Hardness Alkalinity Dissolved solids Suspended solids Temperature (8C) CO2 Corrosion tendency Residual chloride
Kraft
Chem. Pulp & Paper
Fine Paper
Ground Wood
Bleached
Unbleached
— !40 !10 !20 !12 !0.1 !0.3 — !20 !100 40–75 !200 !10 — !10 NIL !2.0
6–8 !100 !20 !20 !12 !0.1 !0.1 25–75 !100 !100 !150 !250 — — !10 NIL —
— !25 !40 — — !0.2 !0.1 !200 !50 !100 !75 !300 — — !10 NIL —
— !100 !100 — — !1.0 !0.5 !200 !100 !100 !150 !500 — — !10 NIL —
Bleached
Unbleached
6–8 !50 !10 !20 !12 !0.1 !0.5 !200 !50 !100 — !200 !10 !36 — NIL —
6–8 !100 !20 !20 !12 !1.0 !0.5 !200 !50 !100 — !250 !10 — — NIL —
Source: From Canadian Council of Resource and Environment Ministers, Canadian Water Quality Guidelines, March 1987.
Table 8E.63 Water Quality Guidelines for the Iron and Steel Industry Concentration (mg/L)
Parameter
Hot-Rolling, Quenching, Gas Cleaning
pH Suspended solids Dissolved solids Settleable solids Dissolved oxygen Temperature (8C) Hardness Alkalinity Sulfate Chloride Oil Floating material a b c
Rinse Water Cold-Rolling
5.0–9.0 !25 !1000 !100
5.0–9.0 !10 !1000 !5.0
!38 NSb,c NSc !200 !150 NS NS
!38 NSb NSc !200 !150 ND ND
Softened
Demineralized
6.0–9.0 NDa ND ND minimum for aerobic conditions !38 !100 NSc !200 !150 ND ND
Steel Manufacturing
— ND ND ND
6.8–7.0 — — —
!38 !0.1 !0.5 — ND ND ND
!38 !50 — !175 !150 ND ND
NDZnot detected. Controlled by other treatments. NSZnot specified; the parameter has never been a problem at concentrations encountered.
Source:
From Canadian Council of Resource and Environment Ministers, Canadian Water Quality Guidelines, March 1987; U.S. Environmental Protection Agency, 1973.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-109
Table 8E.64 Water Quality Guidelines for the Petroleum Industry Parameter
Concentration (mg/L)a
pH units Color Calcium Magnesium Iron Bicarbonate Sulphate Chloride Nitrate Fluoride Silica Hardness (as CaCO3) Dissolved solids Suspended solids
6.0–9.0 NSb !75 !25 !1 NS NS !200 NS NS NS !350 !750 !10
a b
Unless otherwise indicated. NSZnot specified. The parameter has never been a problem at concentrations encountered.
Source:
From Canadian Water Quality Guidelines 1987; Federal Water Pollution Control Administration 1968; Ontario Ministry of the Environment 1974.
Table 8E.65 Water Quality Guidelines for Power Generation Stations Concentration (mg/L) Cooling Once-Through
Boiler Feedwater (10.35–34.48 MPa)
Miscellaneous Uses
Parameter
Fresh
Brackisha
Silica Aluminum Iron Manganese Calcium Magnesium Ammonia Bicarbonate Sulphate Chloride Dissolved solids Copper Hardness Zinc Alkalinity (as CaCO3) pH units Organic material Methylene blue active substances Carbon tetrachloride extract Chemical oxygen demand (COD) Dissolved oxygen Suspended solids
!50 NSb NS NS !200 NS NS !600 !680 !600 !1000 NS !850 NS !500 5.0–8.3
!25 NS NS NS !420 NS NS !140 !2,700 !19,000 !35,000 NS !6250 NS !115 6.0–8.3
!0.01 !0.01 !0.01 !0.01 !0.01 !0.01 !0.07 !0.5 NSc NSc !0.5 !0.01 !0.07 !0.01 !1 8.8–9.4
— — !1.0 — — — — — — — !1000 — — — — 5.0–9.0
NS NSd !75 — !5000
NS NSd !75 — !2500
!0.1 NS !1.0 !0.007 !0.05
!10 !10 — — !5
a b c d
Brackish water—dissolved solids more than 1000 mg/L. NSZnot specified; the parameter has never been a problem at concentrations encountered. Controlled by treatment for other constituents. No floating oil.
Source:
From Canadian Council of Resource and Environment Ministers, Canadian Water Quality Guidelines, March 1987; Krisher, A.S., 1978, Raw water treatment in the CPI. Chem. Eng. (N.Y.), vol. 85, pp. 78–98. Chemical Engineering, Aug. 28, 1978. q McGraw-Hill, Inc.
q 2006 by Taylor & Francis Group, LLC
8-110
Table 8E.66 Water Quality Guidelines for the Food and Beverage Industry Concentration (mg/L)
Baking
Brewing
Carbonate Beverages
Confectionary
Dairy
pH Color (HU) Turbidity (NTU) Taste, odor (units) Suspended solids Dissolved solids Calcium Magnesium Iron Manganese Copper Ammonium Bicarbonate Carbonate Sulphate Chloride Nitrate Fluoride Silica Hardness Alkalinity Hydrogen sulphide Oxygen consumed Carbon tetrachloride extract Chloroform extract Acidity Phenol Nitrite Organic matter
— !10 !10 low — — NSb,c — !0.2 !0.2d — — — — — — — — — NSb — !0.2 — — — — — — —
6.5–7.0 !5 !10 low — !800 !100 !30 0.1–1.0 !0.1d — — ND !50 !100 20–60 !10 !1 !50 !70 !85 !0.2 — — — — ND — trace
!6.9 !10 1–2 NDa — !850 — — !0.1 !0.05 — — — !5 !200 !250 — 0.2–1.0 ND 200–250 50–128 !0.2 !15 Slight !0.2 — ND — trace
O7.0 — — low 50–100 50–100 — — !0.2 !0.2d — — — — — !250 — — — — — !0.2 — — — — — — —
— ND — ND !500 !500 — — 0.1–0.3 0.03–0.1 ND Trace — — !60 !30 !20 — — !180 — — — !10 — — — — —
6.5–8.5 !5 !5 ND !10 !500 !100 — !0.2 !0.2d — !0.5 — — !250 !250 !10 !1 !50 !250 30–250 — !1 !0.2 — ND ND ND —
a
NDZnot detected. Some required for yeast action; excess retards fermentation. NSZnot specified. d Total Fe and Mn. Source: From Canadian Council of Resource and Environment Ministers, Canadian Water Quality Guidelines, March, 1987. b c
q 2006 by Taylor & Francis Group, LLC
Food Process (General) — 5–10 1–10 low — !850 — — !0.2 !0.2 — — — — — — — !1 — 10–250 30–250 — — — — — — — —
Sugar Manufacturing — — — — ND — !20 !10 !1 !0.1 — — !100 — !20 !20 — — — !100 — — — — — — ND — trace
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Parameter
Food Canning, Freezing, Dried, Frozen Fruits, Vegetables
WATER QUALITY
8-111
Table 8E.67 International Council of Bottled Water Associations Standard of Quality Monitoring Parameter Group
Standard
Inorganic Chemicals (IOCs) Antimony Arsenic Barium Boron Bromate Cadmium Chlorine Chloramine Chlorite Chromium Cyanide Fluoride Lead Mercury Molybdenum Nickel Nitrate-N Nitrite-N Selenium Secondary Inorganic Parameters Copper Manganese Volatile Organic Chemicals (VOCs) 1,1,1-Trichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropene Benzene Carbon tetrachloride 1,2-Dichloroethylene Ethylbenzene Methylene chloride (Dichloromethane) Monochlorobenzene o-Dichlorobenzene p-Dichlorobenzene Styrene Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride Xylenes (total) Bromodichloromethane Chlorodibromomethane Chloroform Bromoform Semivolatile Organic Chemicals (SVOCs) Benzo(a)pyrene Di(2-ethyhexyl)adipate Di(2-ethyhexyl)phthalate Hexachlorobenzene Synthetic Organic Chemical (SOCs) Alachlor Aldicarb Aldrin/Dieldrin Atrazine Bentazone Carbofuran
Standard 0.005 0.01 0.7 0.3 0.010 0.003 5.0 3.0 0.2 0.05 0.07 1.5 0.01 0.001 0.07 0.02 50 3 0.01 2 0.05 2 0.03 0.02 0.03 0.02 0.02 0.01 0.002 0.05 0.3 0.02 0.3 1 0.3 0.02 0.04 0.7 0.07 0.005 0.5 0.06 0.1 0.2 0.1 0.0007 0.08 0.008 0.001 0.02 0.01 0.00003 0.002 0.03 0.005 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-112
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8E.67
(Continued)
Monitoring Parameter Group
Standard
Chlordane Chlorotoluron DDT Dibromochloropropane (DBCP) 2,4-D 2,4-DB Dichlorprop Fenoprop Heptachlor Heptachlor epoxide Isoproturon Lindane Methoxychlor MCPA Mecoprop Metolachlor Molinate Pendimethalin Pentachlorophenol Permethrin Propanil Pyridate Simazine 2,4,5-T Trifluralin Additional Regulated Conlaminants Acrylamide Cyanogen chloride Epichlorohydrin Hexachlorobutadiene Edetic acid (EDTA) Nitrilotriacetic acid 2,4,6-Trichlorophenol (DBP) Dichloroacetic acid Trichloroacetic acid Formaldehyde (DBP) Chloral hydrate (Trichloroacetaldehyde) Dichloroacetonitrile Dibromoacetonitrile Trichloroacetonitrile Tributyltin oxide Microbiological Contaminants Total coliform / E. coli Radiological Contaminants Gross alpha Gross beta Water Properties Color Turbidity PH Odor
0.0002 0.03 0.002 0.001 0.03 0.09 0.1 0.009 0.03 0.03 0.009 0.002 0.02 0.002 0.01 0.01 0.006 0.02 0.009 0.02 0.02 0.1 0.002 0.009 0.02
Note:
0.0005 0.07 0.0004 0.0006 0.2 0.2 0.2 0.05 0.1 0.9 0.01 0.09 0.1 0.07 0.002 0 Standard 0.1 Bq/l 1.0 Bq/l Standard 15 TCU 5 NTU 6.5–8.0 Not Offensive
All Standards are in mg/L (ppm) except as noted.
Source: From International Council of Bottled Water Associations, ICBWA Model Code, September 27, 2004, www.icbwa.org. With permission.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-113
Table 8E.68 United States Bottled Water Standards Physical Color (units) Odor Turbidity (units) Total Dissolved Solids Inorganic Substances Aluminum Antimony Arsenic Barium Beryllium Cadmium Chloride Chromium Copper Cyanide Fluoride Iron Lead Manganese Mercury Nickel Nitrate (as nitrogen) Nitrite (as nitrogen) Total Nitrate & Nitrite (sum as nitrogen) Phenols Selenium Silver Sulfate Thallium Zinc Volatile Organic Chemicals or VOCs Benzene Carbon Tetrachloride o-Dichlorobenzene p-Dichlorobenzene 1,2-Dichloroethane 1,1-Dichloroethylene cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene Dichloromethane 1,2-Dichloropropane Ethylbenzene Monochlorobenzene Styrene Tetrachloroethylene Toluene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl chloride Xylenes Pesticides and Other Synthetice Organic Chemicals Alachlor Atrazine Benzo(a)pyrene Carbofuran Chlordane Dalapon 1,2-Dibromochloropropane (DBCP) 2, 4-D Di(2-ethylhexyl)adipate Dinoseb Diquat
Maximum 15 Threshold Odor No.3 5 500a Maximum (mg/L) 0.2 0.006 0.05 2 0.004 0.005 250a 0.1 1 0.2 b
0.3a 0.005 0.05a 0.002 0.1 10 1 10 0.001 0.05 0.1 250a 0.002 5a Maximum (mg/L) 0.005 0.005 0.6 0.075 0.005 0.007 0.07 0.1 0.005 0.005 0.7 0.1 0.1 0.005 1 0.07 0.2 0.005 0.005 0.002 10 Maximum (mg/L) 0.002 0.003 0.0002 0.04 0.002 0.2 0.0002 0.07 0.4 0.007 0.02
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-114
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8E.68
(Continued)
Pesticides and Other Synthetice Organic Chemicals
Maximum (mg/L)
Endothall Endrin Ethyiene Dibromide (EDB) Glyphosate Heptachlor Heptachlor Epoxide Hexachlorobenzene Hexachlorocyclopentadiene Lindane Methoxychlor Oxamyl Pentachlorophenol PCB’s (as decachiorobiphenyls) Picloram Simazine 2,3,7,8-TCDD (Dioxin) Toxaphene 2,4,5-TP(Si!vex)
0.1 0.002 0.00005 0.7 0.0004 0.0002 0.001 0.05 0.0002 0.04 0.2 0.001 0.0005 0.5 0.004 3!10K8 0.003 0.05
Radioactivity
Maximum
Combined Radium-226 and Radium-228 Gross alpha particle activity (including Radium-226 but excluding Radon and Uranium) Gross beta particle activity Uranium
5 pCi/L 15 pCi/L 50 pCi/L 30 ug/L
Bacteriological
Maximum
Coliforms: Multiple Tube Fermentation Method Membrane Filter Method
2.2MPN/100mL 1c/100mL
Disinfection Byproducts (DBp’s)
Maximum (mg/L)
Bromate Chlorite Haloacetic acids (five)(HAA5) Total Trihalomethanes (THMs)b
0.01 1 0.06 0.08
Residual Disinfectants
Maximum (mg/L)
Chloramine (as Cl2) Chlorine (as Cl2) Chlorine dioxide (as CIO2)
4 4 0.8 Fluoride Maximum (mg/L)
Annual Average of Maximum Daily Air Temperatures (8F) at the Location Where the Bottled Water Is Sold at Retail 53.7 and below 53.8–58.3 58.4–63.8 63.9–70.6 70.7–79.2 79.3–90.5 Imported bottled water with no fluoride added: a b c
No Fluoride Added 2.4 2.2 2 1.8 1.6 1.4
Fluoride Added 1.7 1.5 1.3 1 1 0.8
1.4 mg/L Fluoride
Mineral water is exempt from allowable level. The exemptions are aesthetically based allowable levels and do not relate to a health concern. Fluoride standards: Bottled water packaged in the United States. Total Trihalomethanes (TTHM): Sum of chloroform, bromodichloromethane, chiorodibromomethane, and bromoform. 10 ppb Pursuant to H&SC 111080(b).
Source:
From United States Food and Drug Administration 21 CFR 165 Beverages: Title 21—Food and Drugs, Chapter 1, Food and Drug Adminstration Department of Health and Human Services, Subchapter B, Food for Human Consuption, Subpart B, Requirements for Specifics Standardized Beverages, Section 165.110 Bottled Water, www.accessdata.fda.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-115
SECTION 8F
IRRIGATION WATER QUALITY
Table 8F.69 Relative Tolerance of Crop Plants to Salt Field Crops 3
EC!10 Z16 Barley (grain) Sugar beet Rape Cotton
EC!103Z10 EC!103Z12 Garden beets Kale Asparagus Spinach
EC!103Z10 High Salt Tolerance Date palm
EC!103Z10 Rye (grain) Wheat (grain) Oats (grain) Rice Sorghum (grain) Corn (field) Flax Sunflower Castorbeans EC!103Z6 Vegetable Crops EC!103Z10 Tomato Broccoli Cabbage Bell pepper Cauliflower Lettuce Sweet corn Potatoes (white rose) Carrot Onion Peas Squash Cucumber EC!103Z4 Fruit and Nut Crops Medium Salt Tolerance Cantaloupe Fig Grape Jujube Olive Papaya Pineapple Pomegranate
EC!103Z4 Field beans
EC!103Z4 Radish Celery Green beans
EC!103Z3 Low Salt Tolerance Almond Apple Apricot Avocado Blackberry Boysenberry Cherimoya Cherry, sweet Cherry, sand Currant Gooseberry Grapefruit Lemon Lime Loquat Mango Orange Passion fruit Peach Pear Persimmon Plum: prune (Continued)
q 2006 by Taylor & Francis Group, LLC
8-116
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.69
(Continued)
High Salt Tolerance
Medium Salt Tolerance
Low Salt Tolerance Pummelo Raspberry Rose, apple Sapote, white Strawberry Tangerine
Forage Crops EC!103Z18 Alkali sacaton Saltgrass Nuttall alkaligrass Bermuda grass Rhodes grass Fescue grass Canada wild rye Western wheatgrass Barley (hay) Bridsfoot trefoil
EC!103Z12
EC!103Z12 White sweetclover Yellow sweetclover Perennial ryegrass Mountain brome Strawberry clover Dallis grass Sudan grass Hubam clover Alfalfa (California common) Tall fescue Rye (hay) Wheat (hay) Oats (hay) Orchardgrass Blue grama Meadow fescue Reed canary Big trefoil Smooth brome Tall meadow oat-grass Cicer milkvetch Sourclover Sickle milkvetch EC!103Z4
EC!103Z4 White Dutch clover Meadow foxtail Alsike clover Red clover Ladino clover Burnet
EC!103Z2
Note: The numbers following EC!103 are the electrical conductivity values of the saturation extract in millimhos per centimeter at 258C associated with a 50-percent decrease in yields. The saturation extract is the solution extracted from a soil at its saturation percentage. Source: From U.S. Department of Agriculture, 1954; Kandiah, A., FAO, 1987.
q 2006 by Taylor & Francis Group, LLC
8-117
S4
Very high
WATER QUALITY
30
28
C1-S4
C2-S4
S3
High
26
24
22
C3-S4
20
C1-S3
Sodium Adsorption Ratio (Sar)
S2
18
Medium
Sodium (Alkali) Hazard
C4-S4
C2-S3
16
14 C1-S2
12
C3-S4
10
C1-S2 C4-S3
8
S1
Low
C3-S2 6 C4-S2 C1-S1
4
C2-S1 2
C3-S1 C4-S1
0 100
250
750
as Cl
Micromhos/cm (EC X 106) at 250
s
Conductivity C1 Low
2250
C2
C3
Medium
High
C4 Very high
Salinity Hazard
Figure 8F.20 Quality criteria for irrigation water. Note: Sodium Adsorption Ratio SAR Z Na/(Ca C Mg)/2 where concentrations are expressed in millequivalents per liter. Conductivity Low-salinity water (C1) can be used for irrigation with most crops on most soils with little likelihood that soil salinity will develop. Some leaching is required, but this occurs under normal irrigation practices except in soils of extremely low permeability. Medium-salinity water (C2) can be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control. High-salinity water (C3) cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected. Very high-salinity water (C4) is not suitable for irrigation under ordinary conditions, but may be used occasionally under very special
q 2006 by Taylor & Francis Group, LLC
8-118
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
circumstances. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching, and very salt-tolerant crops should be selected. Sodium Low-sodium water (S1) can be used for irrigation on almost all soils with little danger of the development of harmful levels of exchangeable sodium. However, sodium-sensitive crops such as stone-fruit trees and avocados may accumulate injurious concentrations of sodium. Medium-sodium water (S2) will present an appreciable sodium hazard in fine-textured soils having high cation-exchange-capacity, especially under low-leaching conditions, unless gypsum is present in the soil. This water may be used on coarse-textured or organic soils with good permeability. High-sodium water (S3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management-good drainage, high leaching, and organic matter additions. Gypsiferous soils may not develop harmful levels of exchangeable sodium from such waters. Chemical amendments may be required for replacement of exchangeable sodium, except that amendments may not be feasible with waters of very high salinity. Very high sodium water (S4) is generally unsatisfactory for irrigation purposes except at low and perhaps medium salinity, where the solution of calcium from the soil or use of gypsum or other amendments may make the use of these waters feasible. Another criterion for the evaluation of irrigation water is: Residual Sodium Carbonate (RSC) Z (CO3 C HCO3) K (Ca C Mg) where concentrations are expressed in meq/liter. When RSCO2.5 Probably not suitable for irrigation 1.25-2.5 Marginal !1.25 Probably safe for irrigation. (From U.S. Department of Agriculture.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-119
Table 8F.70 Guides for Evaluating the Quality of Water Used for Irrigation Threshold Concentrationa
Quality Factor Coliform organisms, MPN per 100 mL Total dissolved solids (TDS), mg/L Electrical conductivity, mmhos/cm Range of pH Sodium adsorption ratio (SAR) Residual sodium carbonate (RSC), meq Arsenic, mg/L Boron, mg/L Chloride, mg/L Sulfate, mg/L Copper, mg/L Note:
a b c d
Limiting Concentrationb —d 1500c 2250c 6.0–9.0 15 2.5 5.0 2.0 350 1000 1.0
1000cc 500 750c 7.0–8.5 6.0c 1.25c 1.0 0.5c 100c 200c 0.1c
MPN is most probable number. Sodium absorption ratio is defined by the formula SARZNa/ (CaCMg)/2 where the concentrations are expressed in milliequivalents per liter. Residual sodium carbonate is the sum of the equivalents of normal carbonate and bicarbonate minus the sum of the equivalents of calcium and magnesium.
Threshold values at which irrigator might become concerned about water quality and might consider using additional water for leaching. Below these values, water should be satisfactory for almost all crops and almost any arable soil. Limiting values at which the yield of high-value crops might be reduced drastically, or at which an irrigator might be forced to less valuable crops. Values not to be exceeded more than 20 percent of any 20 consecutive samples, nor in any 3 consecutive samples. The frequency of sampling should be specified. Aside from fruits and vegetables which are likely to be eaten raw, no limits can be specified. For such crops, the threshold concentration would be limiting.
Source: From Calif. State Water Quality Control Board, 1963.
Table 8F.71 FAO Guidelines for Evaluating the Quality of Water for Irrigation Degree of Restriction on Use Potential Irrigation Problem
Units
None
Slight to Moderate
Severe
a
Salinity (affects crop water availability) ECW or TDS Infiltration (affects infiltration rate of water into the soil. Evaluate using ECW and SAR together)b SAR Z0–3 and ECW Z Z3–6 Z Z6–12Z Z12–20Z Z20–40Z Specific Ion Toxicity (affects sensitive crops) Sodium (Na) Surface irrigation Sprinkler irrigation Chloride (CI) Surface irrigation Sprinkler irrigation Boron (B) Trace elements (see Table 8F–77) Miscellaneous Effects (affects susceptible crops) Nitrogen (NO3-N) Bicarbonate (HCO3)(overhead sprinkling only) pH a b
dS/m mg/L
!0.7 !450
0.7–3.0 450–2000
O3.0 O2000
O0.7 O1.2 O1.9 O2.9 O5.0
0.7–0.2 1.2–0.3 1.9–0.5 2.9–1.3 5.0–2.9
!0.2 !0.3 !0.5 !1.3 !2.9
SAR me/L
!3 !3
3–9 O3
O9
me/L me/L mg/L
!4 !3 !0.7
4–10 !3 0.7–3.0
O10
mg/L me/L
!5 !1.5
5–30 1.5–8.5 Normal range 6.5– 8.4
O30 O8.5
O3.0
ECW means electrical conductivity, a measure of the water salinity, reported in deciSiemens per meter at 258C (dS/m) or in units millimhos per centimeter (mmho/cm). Both are equivalent. TDS means total dissolved solids, reported in milligrams per liter (mg/L). SAR means sodium absorption ratio.
Source: From Food and Agriculture Organization of the United Nations, 1985, Water quality for agriculture, irrigation, and drainage paper no. 29. Kandiah, A., Water Quality in Food Production, Water Quality Bulletin, vol. 12, no. 1, Jan. 1987.
q 2006 by Taylor & Francis Group, LLC
8-120
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.72 Chloride Concentrations (mg/L) Causing Foliar Injury in Crops of Varying Sensitivity Sensitivity !175 Almond Apricot Citrus Plum Grape Source:
Moderately Sensitive 175–350
Moderately Tolerant 350–700
Pepper Potato Tomato
Barley Maize Cucumber Luceme Safflower Sorghum
Tolerant O700 Cauliflower Cotton Sugar beet Sunflower
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Original Source: From Mass (1990).
Table 8F.73 Risks of Increasing Cadmium Concentrations in Crops Due to Chloride in Irrigation Waters Irrigation Water Chloride Concentration (mg/L) 0–350 350–750 O750
Risk of Increasing Crop Cadmium Concentrations Low Medium High
Note: If high chloride concentrations are present in irrigation water, it is recommended that produce is tested for cadmium concentration in the edible portions (e.g., tubers for potatoes, leaves for leafy vegeatables, grain for cereals, etc). Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Orginal Source: From McLaughlin et al. (1999).
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-121
Table 8F.74 Sodium Concentration (mg/L) Causing Foliar Injury in Crops of Varying Sensitivity Sensitivity !115
Moderately Sensitive 115–230
Moderately Tolerant 230–460
Pepper Potato Tomato
Barley Maize Cucumber Lucerne Safflower Sesame Sorghum
Almond Apricot Citrus Plum Grape
Tolerant O460 Cauliflower Cotton Sugar beet Sunflower
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au. Original Source: From Mass (1990).
Table 8F.75 Effect of Sodium Expressed as Sodium Adsorption Ratio (SAR) on Crop Yield and Quality under Nonsaline Conditions Tolerance to SAR and Range at Which Affected Extremely sensitive SAR Z 2–8
Sensitive SAR Z 8–18 Medium SAR Z 18–46
High SAR Z 46–102
Note:
Crop Avocado Deciduous fruits Nuts Citrus Beans Clover Oats Tall fescue Rice Dallis grass Wheat Cotton Lucerne Barley Beets Rhodes grass
Growth Response under Field Conditions Leaf tip burn, leaf scorch
Stunted growth Stunted growth, possible sodium toxicity, possible calcium or magnesium deficiency Stunted growth
SAR Z Sodium Adsorption Ratio.
Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Original Source: From Pearson (1960).
q 2006 by Taylor & Francis Group, LLC
8-122
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.76 Limits of Boron in Irrigation Water A. Permissible Limits (Boron in parts per million) Crop Group Class of Water
Sensitive
!0.33 0.33–0.67 0.67–1.00 1.00–1.25 O1.25 B. Crop Groups of Boron Tolerance (In each group, the plants first named are considered as being more tolerant; the last named, more sensitive.) Sensitive
!0.67 0.67–1.33 1.33–2.00 2.00–2.50 O2.50
Semitolerant !1.00 1.00–2.00 2.00–3.00 3.00–3.75 O3.75
Semitolerant
Pecan Walnut (Black; and Persian, or English) Jerusalem-artichoke Navy bean American elm Plum Pear Apple Grape (Sultanina and Malaga) Kadota fig Persimmon Cherry Peach Apricot Thornless blackberry Orange Avocado Grapefruit Lemon
Tolerant Excellent Good Permissible Doubtful Unsuitable
Tolerant
Sunflower (native) Potato Cotton (Acala and Pima) Tomato Sweetpea Radish Field pea Ragged robin rose Olive Barley Wheat Corn Milo Oat Zinnia Pumpkin Bell pepper Sweet potato Lima bean
Athel (Tamarix aphylla) Asparagus Palm (Phoenix canariensis) Date palm (P. dactylifera) Sugar beet Mangel Garden beet Alfalfa Gladiolus Broadbean Onion Turnip Cabbage Lettuce Carrot
Source: From U.S. Dept. of Agriculture.
Table 8F.77 FAO Recommended Maximum Concentrations of Trace Elements in Irrigation Water Element
Recommended Maximum Concentrationa (mg/L)
Al
5.0
As
0.10
Be Cd
0.10 0.01
Co
0.05
Cr
0.10
Cu F
0.20 1.0
Remarks Can cause nonproductivity in acid soils (pH !5.5), but more alkaline soils at OpH 7.0 will precipitate the lon and eliminate any toxicity Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L for bush beans Toxic to beans, beets and turnips at concentrations as low as 0.1 mg/L in nutrient solutions. Conservative limits recommended due to its potential for accumulation in plants and soils to concentrations that may be harmful to humans Toxic to tomato plants at 0.1 mg/L in nutrient solution. Tends to be inactivated by neutral and alkaline soils Not generally recognized as an essential growth element. Conservative limits recommended due to lack of knowledge on its toxicity to plants Toxic to a number of plants at 0.1 to 1.0 mg/L in nutrient solutions Inactivated by neutral and alkaline soils (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8F.77 Element
8-123
(Continued) Recommended Maximum Concentrationa (mg/L)
Fe
5.0
Li
2.5
Mn Mo
0.20 0.01
Ni
0.20
Pd Se
5.0 0.02
Sn Ti W V Zn
Remarks Not toxic to plants in aerated soils, but can contribute to soil acidification and loss of availability of essential phosphorus and molybdenum. Overhead sprinkling may result in unsightly deposits on plants, equipment and buildings Tolerated by most crops up to mg/L; mobile in soil. Toxic to citrus at low concentrations (0.075 mg/L). Acts similarly to boron Toxic to a number of crops at a few-tenths to a few mg/L, but usually only in acid soils Not toxic to plants at normal concentrations in soil and water. Can be toxic to livestock if forage is grown in soils with high concentrations of available molybdenum Toxic to a number of plants at 0.5 mg/L to 1.0 mg/L; reduced toxicity at neutral or alkaline pH Can inhibit plant cell growth at very high concentrations Toxic to plants at concentrations as low as 0.025 mg/L and toxic to livestock if forage is grown in soils with relatively high levels of added selenium. An essential element to animals but in very low concentrations Effectively excluded by plants; specific tolerance unknown
0.10 2.0
Toxic to many plants at relatively low concentrations Toxic to many plants at widely varying concentrations; reduced toxicity at pH O6.0 and in fine textured or organic soils
a
The maximum concentration is based on a water application rate which is consistent with good irrigation practices (10000 m3/ha/yr). If the water application rate greatly exceeds this, the maximum concentrations should be adjusted downward accordingly. No adjustment should be made for application rates less than 10000 m3/ha/yr. The values given are for water used on a continuous basis at one site. Source: From Food and Agriculture Organization of the United Nations, 1985, Water quality for agriculture, irrigation, and drainage paper no. 29. Kandiah, A., Water Quality in Food Production, Water Quality Bulletin, vol. 12, no. 1, Jan. 1987.
Table 8F.78 Australian Agricultural Irrigation Water Long-Term Trigger Value (LTV), Short-Term Trigger Value (STV), and Soil Cumulative Contaminant Loading Limit (CCL) Triggers for Heavy Metals and Metalloids
Element
Suggested Soil CCLa (kg/ha)
Aluminum Arsenic Beryllium Boron Cadmium Chromium Cobalt Copper Fluoride Iron Lead Lithium
ND 20 ND ND 2 ND ND 140 ND ND 260 ND
Manganese Mercury Molybdenum Nickel
ND 2 ND 85
LTV in Irrigation Water (Long-Term Use—Up to 100 yrs) (mg/L) 5 0.1 0.1 0.5 0.01 0.1 0.05 0.2 1 0.2 2 2.5 (0.075 Citrus crops) 0.2 0.002 0.01 0.2
STV in Irrigation Water (Short-Term Use—Up to 20 yrs) (mg/L) 20 2.0 0.5 Refer to table 9.2.18 (Volume 3) 0.05 1 0.1 5 2 10 5 2.5 (0.075 Citrus crops) 10 0.002 0.05 2 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-124
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.78
(Continued) Suggested Soil CCLa (kg/ha)
Element Selenium Uranium Vanadium Zinc
10 ND ND 300
LTV in Irrigation Water (Long-Term Use—Up to 100 yrs) (mg/L) 0.02 0.01 0.1 2
STV in Irrigation Water (Short-Term Use—Up to 20 yrs) (mg/L) 0.05 0.1 0.5 5
Note: Trigger values should only be used in conjunction with information on each individual element and the potential for off-site transport of contaminants. a
ND Z Not determined; in sufficient background data to calculate CCL.
Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8F.79 Canadian Water Quality Guidelines for the Protection of Agricultural Uses—Irrigation Parametera Aldicarb Aluminumd Arsenice Atrazine Berylliumd Borond Bromacil Bromoxynil Cadmium Chlorided Chlorothalonil Chromium Trivalent chromium (Cr(III)) Hexavalent chromium (Cr(VI)) Cobaltd Coliforms, fecal d Coliforms, totald Copperd Cyanazine Dicamba Diclofop-methyl Diisopropanolinine Dinoseb Fluorided Irond Leadd Linuron Lithiumd Manganesed MCPA (4-chloro-2-methyI phenoxy acetic acid; 2-MethyI-4-chloro phenoxy acetic acid) Metolachlor Metribuzin Molybdenumd Seleniumd Simazine Nickeld
Irrigation Water Quality Guideline (mg/L) 54.9c 5000 100f 10f 100 500–6000h 0.2f 0.33i 5.1i,f 100,000–700,000k 5.8f (other crops)
Date b
4.9f,n 8n 50 100 per 100 mL 1000 per 100 mL 200–1000o 0.5f 0.006 0.18 2000f 16j 1000 5000 200 0.071f 2500 200 0.0025
1993 1987 1997 1989 1987 1987 1997 1993 1996 1987 1984 1997 1997 1987 1987 1987 1987 1987 1990 1993 1993 2005 1982 1987 1987 1987 1995 1987 1987 1995
28f 0.5f 10–50r 20–50s 0.5f 200
1991 1990 1987 1987 1891 1987 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8F.79 Parameter
(Continued)
a
Sulfolane Tebuthiuron Total dissolved solids (salinity)d Uraniumd Vanadiumd Zincd Note: a b
c d e f h
i j k
n o
r s t
u
8-125
Irrigation Water Quality Guideline (mg/L) 500f 0.27 f (cereals) 500,000– 3,500,000t 10f 100 1,000–5,000u
Date b 2005 1995 1887 1987 1987 1987
ug/L—Micrograms per liter.
Unless otherwise indicated, supporting documents are available from the guidelines and Standards Division, Environment Canada. The guidelines dated 1987 have been carried over from Canadian Water Quality Guidelines (CCREM 1987) and no fact sheet was prepared. The guidelines dated 1989 to 1997 were developed and initially published in CCREM 1987 as appendixes on the date indicated. They are published as fact sheets in this document. Other guidelines dated 1997 and those dated 1999 are published for the first time in this document. Concentration of total aldicarb residues. No fact sheet created. The technical document for the guideline is available from the Ontario Ministry of the Environment. Interim guideline. Boron guideline =500 mg LK1 for blackberries =500–1000 mg LK1 for peaches, cherries, plums, grapes, cowpeas, onions, garlic, sweet potatoes, wheat, barley, sunflowers, mungbeans, sesame, lupins, strawberries, Jerusalem artichokes, kidney beans, and lima beans =1000–2000 mg LK1 for red peppers, peas, carrots, radishes, potatoes, and cucumbers =2000–4000 mg LK1 for lettuce, cabbage, celery, turnips, Kentucky bluegrass, oats, corn, artichokes, tobacco, mustard, clover, squash, and muskmelons =4000–6000 mg LK1 for sorghum, tomatoes, alfalfa, purple vetch, parsley, red beets, and sugar beets =6000 mg LK1 for asparagus. Guideline value slightly modified from CCREM 1987 + Appendixes due to re-evaluation of the significant figures. Guideline is crop-specific (see fact sheet). Chloride guideline Foliar damage =100–178 mg LK1 for almond, apricots, and plums =178–355 mg LK1 for grapes, peppers, potatoes, and tomatoes =355–710 mg LK1 for alfalfa, barley, corn, and cucumbers O710 mg LK1 for cauliflower, cotton, safflower, sesame, sorghum, sugar beets, and sunflowers Rootstocks =180–600 mg LK1 for stone fruit (peaches, plums, etc) =710–900 mg LK1 for grapes Cultivars =110–180 mg LK1 for strawberries =230–460 mg LK1 for grapes =250 mg LK1 for boysenberries, blackberries, and raspberries. Substance has been re-evaluated since CCREM 1987 + Appendixes. Either a new guideline has been derived or insufficient data existed to derive a new guideline. Copper guideline = 200 mg LK1 for cereals = 1000 mg LK1 for tolerant crops Molybdenum guideline = 50 mg LK1 for short-terms use on acidic soils Selenium guideline = 20 mg LK1 for continuous use =50 mg LK1 for intermittent use Total dissolved solids guideline =500 mg LK1 for strawberries, raspberries, beans, and carrots =500–800 mg LK1 for boysenberries, currants, blackberries, gooseberries, plums, grapes, apricots, peaches, pears, cherries, apples, onions, parsnips, radishes, peas, pumpkins, lettuce, peppers, muskmelons, sweet potatoes, sweet corn, potatoes, celery, cabbage, kohlrabi, cauliflower, cowpeas, broadbeans, flax, sunflowers, and corn =800–1500 mg LK1 for spinach, cantaloupe, cucumbers, tomatoes, squash, brussels sprouts, broccoli, turnips, smooth brome, alfalfa, big trefoil, beardless wild rye, vetch, timothy, and crested wheat grass =1500–2500 mg LK1 for beets, zucchini, rape, sorghum, oat hay, wheat hay, mountain brome, tall fescue, sweet clover, reed canary grass, birdsfoot trefoil, perennial ryegrass =3500 mg LK1 for asparagus, soybeans, safflower, oats, rye, wheat, sugar beets, barley, barley hay, and tall wheat grass Zinc guideline =1000 mg LK1 when soil pH ! 6.5 K1 =5000 mg L when soil pH O 6.5
Source: From Canadian Council of Ministers of the Environment, 2005, Canadian water quality guidelines for the protection of agricultural water uses: summary table, Updated October 2005. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.
q 2006 by Taylor & Francis Group, LLC
8-126
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.80 Australian Trigger Values for Thermotolerant Coliforms in Irrigation Water Used for Food and Nonfood Crops Level of thermotolerant coliformsa (mL)
Intended use Raw human food crops in direct contact with irrigation water (e.g. via sprays, irrigation of salad vegetables) Raw human food crops not in direct contact with irrigation water (edible product separated from contact with water, e.g. by peel, use of trickle irrigation); or crops sold to consumer cooked or processed Pasture and fodder for dairy animals (without withholding period) Pasture and fodder for dairy animals (with withholding period of 5 days) Pasture and fodder (for grazing animals except pigs and dairy animals, i.e. cattle, sheep, and goats) Silviculture, turf, cotton, etc (restricted public access) a b
!10 cfub / 100 !1000 cfu / 100
!100 cfu / 100 !1000 cfu / 100 !1000 cfu / 100 !10 000 cfu / 100
Median values. cfu Z colony forming units.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au. Original Source: Adapted from ARMCANZ, ANZECC & NHMRC (1999).
Table 8F.81 Australian Agricultural Irrigation Water Long-Term Trigger Value (LTV) and ShortTerm Trigger Value (STV) Guidelines for Nitrogen and Phosphorus Element Nitrogen Phosphorus a
LTV in Irrigation Water (LongTerm—up to 100 yrs) (mg/L)
STV in Irrigation Water (ShortTerm—up to 20 yrs) (mg/L)
5 0.05 (To minimise bioclogging of irrigation equipment only)
25–125a 0.8–12a
Requires site-specific assessment.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8F.82 Interim Trigger Value Concentrations for a Range of Herbicides Registered in Australia for Use in or Near Waters Herbicide
Residue Limits in Irrigation Water (mg/L)a
Hazard to Crops from Residue in Waterb
Crop Injury Threshold in Irrigation Water (mg/L) Flood or furrow: beans 60, corn 60, cotton 80, soybeans 20, sugarbeets 60 Sprinkler: corn 60, soybeans 15, sugar-beets 15, beets (rutabaga) 3.5, corn 3.5, lucerne 1600, beans 1200, carrots 1600, corn 3000, cotton 1600, grains sorghum 800, oats 2400, potatoes 1300, wheat 1200
Acrolein
0.1
C
AF 100 Amitrol
0.002
C CC
Aromatic solvents (Xylene)
C
Asulam Atrazine Bromazil Chlorthiamid Copper sulfate
CC CC CCC CC C
2,4-D
CC
Dicamba
CC
Apparently above concentrations used for weed control Field beans 3.5–10, grapes 0.7– 1.5, sugar-beets 1.0–10 Cotton 0.18 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8F.82
8-127
(Continued) Residue Limits in Irrigation Water (mg/L)a
Herbicide Dichlobenil
Hazard to Crops from Residue in Waterb
Crop Injury Threshold in Irrigation Water (mg/L) Lucerne 10, corn 10, soybeans 1.0, sugar-beets 1.0–10, corn 125, beans 5
CC
Diquat Diuron 2,2-DPA (Dalapon) Fosamine Fluometuron
0.002 0.004
C CCC CC CCC CC
Glyphosate Hexazinone Karbutilate Molinate Paraquat
C CCC CCC CC C
Picloram Propanil
CCC CC
Simazine 2,4,5-T
CC CC
TCA (Trichloroacetic acid) Terbutryne Triclopyr
CCC CC CC
Beets 7.0, corn 0.35 Sugar-beets, alfalfa, tomatoes, squash 2.2
Corn 10, field beans 0.1, sugarbeets 1.0 Alfalfa 0.15, brome grass (eradicated) 0.15 Potatoes, alfalfa, garden peas, corn sugar-beets, wheat, peaches, grapes, apples, tomatoes 0.5
Note: These should be regarded as interim trigger values only. a b
Guidelines have not been set for all herbicides where specific residue limits are not provided, except for a general limit of 0.01 mg/L for herbicides in NSW. Hazard from residue at maximum concentration likely to be found in irrigation water: C, low; CC, moderate; CCC, high.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au. Original Source: From ANZECC (1992).
Table 8F.83 Australian Trigger Values for Radioactive Contaminants for Irrigation Water Radionuclide Radium 226 Radium 228 Uranium 238 Gross alpha Gross beta (excluding K-40)
Trigger Concentration (Bq/L) 5 2 0.2 0.5 0.5
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
8-128
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8F.84 Corrosion Potential of Waters on Metal Surface and Fouling Potential as Indicated by pH, Hardness, Langelier Index, Ryznar Index, and the Log of Chloride Carbonate Ratio Parametera
Value
Corrision Potential pH
Hardness Langelier index Ryznar index Log of chloride to carbonate ratio Fouling potential pH
Comments
!5 5–6 O6 !60 mg/L CaCO3 !K0.5 K0.5–0.5 !6 O7 O2
High corrosion potential Likelihood of corrosion Limited corrosion potential Increased corrosion potential Increased corrosion potential Limited corrosion potential Limited corrosion potential Increased corrosion potential Increased corrosion potential
!7 7–8.5
Limited fouling potential Moderate fouling potential (groundwater)b Increased fouling potential (groundwater)c Increased fouling potential Increased fouling potential Limited fouling potential Increased fouling potential Limited fouling potential Increased fouling potential
O8.5 Hardness Langelier index
!350 mg/L CaCO3 O0.5 K0.5–0.5 !6 O7 !2
Ryznar index Log of chloride to carbonate ratio a b c
For further information on these parameters refer to Volume 3, Section 9.2.9.1. For surface waters, pH range 7 to 9. For surface waters, pH O9.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8F.85 Influence of Water Quality on the Potential for Clogging Problems in Localized (Drip) Irrigation Systems Degree of Restriction on Use Potential Problem Physical Suspended solids Chemical pH Dissolved solids Manganesea Ironb Hydrogen sulphide Biological Bacterial populations a b
Units
None
Slight to Moderate
Severe
mg/L
!50
50–100
O100
mg/L mg/L mg/L mg/L
!7.0 !500 !0.1 !0.1 !0.5
7.0–8.0 500–2000 0.1–1.5 0.1–1.5 0.5–2.0
O8.0 O2000 O1.5 O1.5 O2.0
!10000
10000–50000
O50000
Maximum number/ML
While restrictions in use of localized (drip) irrigation systems may not occur at these manganese concentrations, plant toxicities may occur at lower concentrations. Iron concentrations O5.0 mg/L may cause nutritional imbalances in certain crops. www.fao.org/icatalog/inter-e.htm
Source: From Food and Agriculture Organization of the United Nations, 1994, Water Quality for Agriculture, Irrigation, and Drainage Paper No 29, Rev. 1, www.fao.org. Reprinted with permission. Original Source: Adapted from Nakayama (1982).
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-129
SECTION 8G
WATER QUALITY FOR AQUATIC LIFE
United States National Recommended Water Quality Criteria for Priority Toxic Pollutants Section 304(a)(1) of the Clean Water Act requires the United States Environmental Protection Agency (EPA) to develop criteria for water quality that accurately reflects the latest scientific knowledge. These criteria are based solely on data and scientific judgments on pollutant concentrations and environmental or human health effects. Section 304(a) also provides guidance to states and tribes in adopting water-quality standards. Criteria are developed for the protection of aquatic life as well as for human health. The Criteria Maximum Concentration (CMC) is an estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed briefly without resulting in an unacceptable effect. The Criterion Continuous Concentration (CCC) is an estimate of the highest concentration of a material in surface water to which an aquatic community can be exposed indefinitely without resulting in an unacceptable effect. The CMC and CCC are just two of the six parts of an aquatic life criterion; the other four parts are the acute averaging period, chronic averaging period, acute frequency of allowed exceedence, and chronic frequency of allowed exceedence. Because 304(a) aquatic life criteria are national guidance, they are intended to be protective of the vast majority of the aquatic communities in the United States. The tables below lists all priority toxic pollutants and some non priority toxic pollutants, and both human health effect and organoleptic effect criteria issued pursuant to CWA §304(a). Blank spaces indicate that EPA has no CWA §304(a) criteria recommendations. For a number of nonpriority toxic pollutants not listed, CWA §304(a) “water C organism” human health criteria are not available, but EPA has published MCLs under the SDWA that may be used in establishing water-quality standards to protect water supply designated uses. The human health criteria for the priority and nonpriority pollutants are based on carcinogenicity of 10K6 risk. Alternate risk levels may be obtained by moving the decimal point (e.g., for a risk level of 10K5, move the decimal point in the recommended criterion one place to the right). The compilation contains 304(a) criteria for pollutants with toxicity-based criteria as well as nontoxicity based criteria. The basis for the nontoxicity based criteria are organoleptic effects (e.g., taste and odor) which would make water and edible aquatic life unpalatable but not toxic to humans. The table includes criteria for organoleptic effects for 23 pollutants. Pollutants with organoleptic effect criteria more stringent than the criteria based on toxicity (e.g., included in both the priority and nonpriority pollutant tables) are footnoted as such.
q 2006 by Taylor & Francis Group, LLC
Freshwater
Priority Pollutant
CAS Number
CMC (acute) (mg/L)
CCC (chronic) (mg/L)
Human Health for the Consumption of
Saltwater CMC (acute) (mg/L)
8-130
Table 8G.86 United States National Recommended Water Quality Criteria for Priority Toxic Pollutants
CCC (chronic) (mg/L)
Water D Organism (mg/L) A
Organism Only (mg/L)
FR Cite/Source
Antimony Arsenic
7440360 7440382
3 4
Beryllium Cadmium
7440417 7440439
2.0C,D,E,J
0.25C,D,E,J
5a
Chromium (III)
16065831
570C,J,D
74C,J,D
5b 6 7 8a 8b 9 10
Chromium (VI) Copper Lead Mercury Methylmercury Nickel Selenium
18540299 7440508 7439921 7439976 22967926 7440020 7782492
16C,D 13C,D,J,K 65C,E,J,N 1.4C,D,O
11C,D 9.0C,D,J,K 2.5C,E,J,N 0.77C,D,O
1,100C,E 4.8C,K,L 210C,E 1.8C,O,P
50C,E 3.1C,K,L 8.1C,E 0.94C,O,P
Totali 1,300M
470C,J,D —R,S,T
52C,J,D
74C,E
8.2C,E
610A
0.3 mg/kgQ 4,600A
5.0T
290C,E,U
71C,E,U 170i
4200
0.24
0.47
7,400M
26,000M
140X 7 million fibers/LYX 5.0EK9F 190 0.051A,F 2.2A,F 4.3A,F 0.23A,F
140X 5.1EK9F 290 0.25A,F 51A,F 140A,F 1.6A,F
65FR66443 65FR31682 57FR60848 65FR31682 EPA-822-R-01–001 65FR31682 EPA820/B-96–001 65FR31682 65FR31682 65FR31682 65FR31682 62FR42160 EPA823-R-01–001 65FR31682 62FR42160 65FR31682 65FR66443 65FR31682 68FR75510 65FR31682 65FR66443 EPA820/B-96–001 57FR60848 68FR75510 57FR60848 65FR66443 65FR66443 65FR66443 IRIS 01/19/00 &65FR66443 65FR66443 65FR66443
108907 124481
130I,M 0.40A,F
1,600M 13A,F
68FR75510 65FR66443
75003 110758 67663 75274
5.7F,Z 0.55A,F
470F,Z 17A,F
62FR42160 65FR66443
75343 107062 75354 78875 542756 100414
0.38A,F 330 0.50A,F 0.34F 530
37A,F 7,100 15A,F 21F 2,100
65FR66443 68FR75510 65FR66443 68FR75510 68FR75510
5.6 150B,C,D
69B,C,D,E
36B,C,D,E 0.018F,G,H
11 12 13
Silver Thallium Zinc
7440224 7440280 7440666
14
Cyanide
57125
3.2C,J,V
40C,E
22 23 24 25 26 27 28 29 30 31 32 33
Asbestos 2,3,7,8-TCDD (Dioxin) Acrolein Acrylonitrile Benzene Bromoform Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethylvinyl Ether Chloroform Dichlorobromomethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropene Ethylbenzene
q 2006 by Taylor & Francis Group, LLC
1332214 1746016 107028 107131 71432 75252 56235
8.8C,E
i
Totali
1.9C,V
120C,J,D
120C,J,D
22D,W
5.2D,W
90C,E
1E,W 15 16 17 18 19 20 21
0.14F,G,H
i
81C,E
1E,W
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1 2
340B,C,D
640
A
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Methyl Bromide Methyl Chloride Methylene Chloride 1,1,2,2Tetrachloroethane Tetrachloroethylene Toluene 1,2-TransDichloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2-Methyl-4,6Dinitrophenol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol 3-Methyl-4-Chlorophenol Pentachlorophenol Phenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a) Anthracene Benzo(a) Pyrene Benzo(b) Fluoranthene Benzo(ghi) Perylene Benzo(k) Fluoranthene Bis(2-Chloroethoxy) Methane Bis(2-Chloroethyl) Ether Bis(2-Chloroisopropyl) Ether Bis(2-Ethylhexyl) Phthalatedd 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalateee 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h) Anthracene 1,2-Dichlorobenzene
47A
74839 74873 75092 79345
1,500A
4.6 0.17A,F
590 4.0A,F
65FR66443 65FR31682 65FR66443 65FR66443
127184 108883 156605
0.69F 1,300I 140I
3.3F 15,000 10,000
65FR66443 68FR75510 68FR75510
71556 79005 79016 75014 95578 120832 105679 534521
—I 0.59A,F 2.5F 0.025F,aa 81A,M 77A,M 380A 13
16A,F 30F 2.4F,aa 150A,M 290A,M 850A,M 280
65FR31682 65FR66443 65FR66443 68FR75510 65FR66443 65FR66443 65FR66443 65FR66443
51285 88755 100027 59507 87865
69A
5,300A
65FR66443
—M
—M
0.27A,F 21,000A,M 1.4A,F 670A,M
3.0A,F,cc 1,700,000A,M 2.4A,F,M 990A,M
65FR31682 65FR66443 65FR66443 65FR66443 65FR66443
8,300A 0.000086A,F 0.0038A,F 0.0038A,F 0.0038A,F
40,000A 0.00020A,F 0.018A,F 0.018A,F 0.018A,F
65FR66443 65FR66443 65FR66443 65FR66443 65FR66443
0.0038A,F
0.018A,F
65FR66443
111444 108601
0.030A,F 1,400A
0.53A,F 65,000A
65FR66443 65FR66443
117817
1.2A,F
2.2A,F
65FR66443
1,500A 1,000A
1,900A 1,600A
65FR66443 65FR66443
0.0038A,F 0.0038A,F 420
0.018A,F 0.018A,F 1,300
65FR66443 65FR66443 68FR75510
108952 88062 83329 208968 120127 92875 56553 50328 205992 191242 207089 111911
A,F
19D,bb
15D,bb
13E
A,F
7.9E
WATER QUALITY
34 35 36 37
101553 85687 91587 7005723 218019 53703 95501
q 2006 by Taylor & Francis Group, LLC
8-131
(Continued)
(Continued) Freshwater
Priority Pollutant 76 77 78 79 80 81 82 83 84 85
8-132
Table 8G.86
CAS Number
CMC (acute) (mg/L)
Human Health for the Consumption of
Saltwater
CCC (chronic) (mg/L)
CMC (acute) (mg/L)
CCC (chronic) (mg/L)
Water D Organism (mg/L)
Organism Only (mg/L)
FR Cite/Source
320 63 0.021A,F 17,000A 270,000 2,000A 0.11F
960 190 0.028A,F 44,000A 1,100,000 4,500A 3.4F
65FR66443 68FR75510 65FR66443 65FR66443 65FR66443 65FR66443 65FR66443
0.036A,F
0.20A,F
65FR66443
206440 86737 118741 87683
130A 1,100A 0.00028A,F 0.44A,F
140A 5,300A 0.00029A,F 18A,F
65FR66443 65FR66443 65FR66443 65FR66443
40M
1,100M
68FR75510
103 104 105
alpha-BHC beta-BHC gamma-BHC (Lindane)
319846 319857 58899
106 107
delta-BHC Chlordane
319868 57749
86 87 88 89 90 91 92 93 94 95 96 97 98
77474
A,F
67721 193395 78591 91203 98953 62759
1.4 0.0038A,F 35A,F
3.3 0.018A,F 960A,F
65FR66443 65FR66443 65FR66443
17A 0.00069A,F
690A,cc,M 3.0A,F
65FR66443 65FR66443
621647
0.0050A,F
0.51A,F
65FR66443
86306 85018 129000 120821 309002
108
4,4 0 -DDT
50293
109 110
4,4 0 -DDE 4,4 0 -DDD
72559 72548
q 2006 by Taylor & Francis Group, LLC
A,F
3.3
3.0V
2.4
1.1V,gg
A,F
6.0
65FR66443
830A 35
4,000A 70
0.000049A,F 0.0026A,F 0.0091A,F
0.000050A,F 0.0049A,F 0.017A,F
0.98
1.8
65FR66443 68FR75510 65FR31682 65FR66443 65FR66443 65FR66443 65FR31682 68FR75510
0.00080A,F
0.00081A,F
0.00022A,F 0.00022A,F 0.00031A,F
0.00022A,F 0.00022A,F 0.00031A,F
1.3V
0.95D
V
A,F
0.16V
0.0043
V,ff
0.001V,ff,gg
V
0.09
0.13V,gg
0.004
V,ff
0.001V,ff,gg
65FR31682 65FR66443 65FR31682 65FR66443 65FR66443 65FR66443
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
541731 106467 91941 84662 131113 84742 121142 606202 117840 122667
99 100 101 102
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3 0 -Dichlorobenzidine Diethyl Phthalateee Dimethyl Phthalateee Di-n-Butyl Phthalateee 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Ideno(1,2,3-cd)Pyrene Isophorone Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-n-Propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene Aldrin
Dieldrin
60571
112
Alpha-Endosulfan
113
Beta-Endosulfan
114 115
Endosulfan Sulfate Endrin
1031078 72208
116 117
Endrin Aldehyde Heptachlor
7421934 76448
118
Heptachlor Epoxide
119
Polychlorinated Biphenyls PCBs
120
Toxaphene
A B
C
D
E
F G H I
959988 33213659
1024573
0.24D 0.22
V,ii
0.22V,gg
0.086D
0.52
V
0.52
V,jj
0.056D,hh 0.056
0.056V,ii
0.73
0.0019V,ff V,ii
0.034
0.0087
0.034V,ii
0.0087V,ii
0.037V
0.0023V,ff
0.0038
V,ff
V
0.0036
V,ff
0.0038
V,ff,jj
0.0036
V,ff,jj
0.053
V,jj
0.053
ff
0.0002
0.000052A,F
0.000054A,F
62A
89A
62A 62A
89A 89A
0.059 0.29A
0.060 0.30A,cc
0.000079A,F
0.000079A,F
0.000039A,F
0.000039A,F
0.000064A,F,ii
0.000064A,F,ii
0.00028A,F
0.00028A,F
V,ii
0.036D,hh
0.014
8001352
V,ii
0.71V
0.03ff,kk
0.21ff
0.0002ff
WATER QUALITY
111
65FR31682 65FR66443 65FR31682 65FR66443 65FR31682 65FR66443 65FR66443 65FR31682 68FR75510 65FR66443 65FR31682 65FR66443 65FR31682 65FR66443 65FR31682 65FR66443 65FR31682 65FR66443
This criterion has been revised to reflect The Environmental Protection Agency’s q1* or RfD, as contained in the Integrated Risk Information System (IRIS) as of May 17, 2002. The fish tissue bioconcentration factor (BCF) from the 1980 Ambient Water Quality Criteria document was retained in each case. This recommended water quality criterion was derived from data for arsenic (III), but is applied here to total arsenic, which might imply that arsenic (III) and arsenic (V) are equally toxic to aquatic life and that their toxicities are additive. In the arsenic criteria document (EPA 440/5–84–033, January 1985), Species Mean Acute Values are given for both arsenic (III) and arsenic (V) for five species and the ratios of the SMAVs for each species range from 0.6 to 1.7. Chronic values are available for both arsenic (III) and arsenic (V) for one species; for the fathead minnow, the chronic value for arsenic (V) is 0.29 times the chronic value for arsenic (III). No data are known to be available concerning whether the toxicities of the forms of arsenic to aquatic organisms are additive. Freshwater and saltwater criteria for metals are expressed in terms of the dissolved metal in the water column. The recommended water quality criteria value was calculated by using the previous 304(a) aquatic life criteria expressed in terms of total recoverable metal, and multiplying it by a conversion factor (CF). The term “Conversion Factor” (CF) represents the recommended conversion factor for converting a metal criterion expressed as the total recoverable fraction in the water column to a criterion expressed as the dissolved fraction in the water column. (Conversion Factors for saltwater CCCs are not currently available. Conversion factors derived for saltwater CMCs have been used for both saltwater CMCs and CCCs). See “Office of Water Policy and Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria,” October 1, 1993, by Martha G. Prothro, Acting Assistant Administrator for Water, available from the Water Resource Center and 40CFR§131.36(b)(1). Conversion Factors applied in the table can be found in Appendix A to the PreambleConversion Factors for Dissolved Metals. This recommended criterion is based on a 304(a) aquatic life criterion that was issued in the 1995 Updates: Water Quality Criteria Documents for the Protection of Aquatic Life in Ambient Water, (EPA-820-B-96-001, September 1996). This value was derived using the GLI Guidelines (60FR15393–15399, March 23, 1995; 40CFR132 Appendix A); the difference between the 1985 Guidelines and the GLI Guidelines are explained on page iv of the 1995 Updates. None of the decisions concerning the derivation of this criterion were affected by any considerations that are specific to the Great Lakes. This water quality criterion is based on a 304(a) aquatic life criterion that was derived using the 1985 Guidelines (Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, PB85–227049, January 1985) and was issued in one of the following criteria documents: Arsenic (EPA 440/5-84-033), Cadmium (EPA822-R-01-001), Chromium (EPA 440/5-84-029), Copper (EPA 440/5-84-031), Cyanide (EPA 440/5- 84-028), Lead (EPA 440/5-84-027), Nickel (EPA 440/5-86-004), Pentachlorophenol (EPA 440/5-86-009), Toxaphene, (EPA 440/5-86-006), Zinc (EPA 440/5-87- 003). This criterion is based on carcinogenicity of 10K6 risk. Alternate risk levels may be obtained by moving the decimal point (e.g., for a risk level of 10K5, move the decimal point in the recommended criterion one place to the right). EPA is currently reassessing the criteria for arsenic. This recommended water quality criterion for arsenic refers to the inorganic form only. A more stringent MCL has been issued by EPA. Refer to drinking water regulations (40 CFR 141) or Safe Drinking Water Hotline (1-800-426-4791) for values.
q 2006 by Taylor & Francis Group, LLC
8-133
(Continued)
K L M N O
P
Q R S
U
V
W X
Y Z aa bb cc
dd ee
ff
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
T
The freshwater criterion for this metal is expressed as a function of hardness (mg/L) in the water column. The value given here corresponds to a hardness of 100 mg/L. Criteria values for other hardness may be calculated from the following: CMC (dissolved) Z exp{mA [ln(hardness)]C bA} (CF), or CCC (dissolved) Z exp{mC [ln (hardness)]C bC} (CF) and the parameters specified in Appendix B- Parameters for Calculating Freshwater Dissolved Metals Criteria That Are Hardness-Dependent. When the concentration of dissolved organic carbon is elevated, copper is substantially less toxic and use of Water-Effect Ratios might be appropriate. This recommended water quality criterion was derived in Ambient Water Quality Criteria Saltwater Copper Addendum (Draft, April 14, 1995) and was promulgated in the Interim final National Toxics Rule (60FR22228–222237, May 4, 1995). The organoleptic effect criterion is more stringent than the value for priority toxic pollutants. EPA is actively working on this criterion and so this recommended water quality criterion may change substantially in the near future. This recommended water quality criterion was derived from data for inorganic mercury (II), but is applied here to total mercury. If a substantial portion of the mercury in the water column is methylmercury, this criterion will probably be under protective. In addition, even though inorganic mercury is converted to methylmercury and methylmercury bioaccumulates to a great extent, this criterion does not account for uptake via the food chain because sufficient data were not available when the criterion was derived. This recommended water quality criterion was derived on page 43 of the mercury criteria document (EPA 440/5-84-026, January 1985). The saltwater CCC of 0.025 ug/L given on page 23 of the criteria document is based on the Final Residue Value procedure in the 1985 Guidelines. Since the publication of the Great Lakes Aquatic Life Criteria Guidelines in 1995 (60FR15393–15399, March 23, 1995), the Agency no longer uses the Final Residue Value procedure for deriving CCCs for new or revised 304(a) aquatic life criteria. This fish tissue residue criterion for methylmercury is based on a total fish consumption rate of 0.0175 kg/day. The CMC Z1/[(f1/CMC1)C (f2/CMC2)] where f1 and f2 are the fractions of total selenium that are treated as selenite and selenate, respectively, and CMC1 and CMC2 are 185.9 g/L and 12.82 g/L, respectively. This value for selenium was announced (61FR58444–58449, November 14, 1996) as a proposed GLI 303(c) aquatic life criterion. EPA is currently working on this criterion and so this value might change substantially in the near future. This recommended water quality criterion for selenium is expressed in terms of total recoverable metal in the water column. It is scientifically acceptable to use the conversion factor (0.996- CMC or 0.922- CCC) that was used in the GLI to convert this to a value that is expressed in terms of dissolved metal. The selenium criteria document (EPA 440/5-87-006, September 1987) provides that if selenium is as toxic to saltwater fishes in the field as it is to freshwater fishes in the field, the status of the fish community should be monitored whenever the concentration of selenium exceeds 5.0 g/L in salt water because the saltwater CCC does not take into account uptake via the food chain. This Criterion is based on 304(a) aquatic life criterion issued in 1980, and was issued in one of the following documents: Aldrin/Dieldrin (EPA 440/5-80-019), Chlordane (EPA 440/5-80-027), DDT (EPA 440/5-80-038), Endosulfan (EPA 440/5-80-046), Endrin (EPA 440/5-80-047), Heptachlor (EPA 440/5-80-052), Hexachlorocyclohexane (EPA 440/5-80-054), Silver (EPA 440/580-071). The Minimum Data Requirements and derivation procedures were different in the 1980 Guidelines than in the 1985 Guidelines. For example, a “CMC” derived using the 1980 Guidelines was derived to be used as an instantaneous maximum. If assessment is to be done using an averaging period, the values given should be divided by 2 to obtain a value that is more comparable to a CMC derived using the 1985 Guidelines. This recommended water quality criterion is expressed as g free cyanide (as CN)/L. This recommended water quality criterion is expressed as total cyanide, even though the IRIS RFD we used to derive the criterion is based on free cyanide. The multiple forms of cyanide that are present in ambient water have significant differences in toxicity due to their differing abilities to liberate the CN-moiety. Some complex cyanides require even more extreme conditions than refluxing with sulfuric acid to liberate the CN-moiety. Thus, these complex cyanides are expected to have little or no ’bioavailability’ to humans. If a substantial fraction of the cyanide present in a water body is present in a complexed form (e.g. Fe4[Fe(CN)6]3), this criterion may be over conservative. This criterion for asbestos is the Maximum Contaminant Level (MCL) developed under the Safe Drinking Water Act (SDWA). Although a new RfD is available in IRIS, the surface water criteria will not be revised until the National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) is completed, since public comment on the relative source contribution (RSC) for chloroform is anticipated. This recommended water quality criterion was derived using the cancer slope factor of 1.4 (LMS exposure from birth). Freshwater aquatic life values for pentachlorophenol are expressed as a function of pH, and are calculated as follows: CMC Z exp(1.005(pH)K4.869); CCC Z exp(1.005(pH)K5.134). Values displayed in table correspond to a pH of 7.8. No criterion for protection of human health from consumption of aquatic organisms excluding water was presented in the 1980 criteria document or in the 1986 Quality Criteria for Water. Nevertheless, sufficient information was presented in the 1980 document to allow the calculation of a criterion, even though the results of such a calculation were not shown in the document. There is a full set of aquatic life toxicity data that show that DEHP is not toxic to aquatic organisms at or below its solubility limit. Although EPA has not published a completed criteria document for butylbenzyl phthalate it is EPA’s understanding that sufficient data exist to allow calculation of aquatic criteria. It is anticipated that industry intends to publish in the peer reviewed literature draft aquatic life criteria generated in accordance with EPA Guidelines. EPA will review such criteria for possible issuance as national WQC. This criterion is based on a 304(a) aquatic life criterion issued in 1980 or 1986, and was issued in one of the following documents: Aldrin/Dieldrin (EPA 440/5-80-019), Chlordane (EPA 440/5-80-027), DDT (EPA 440/5-80-038), Endrin (EPA 440/5-80-047), Heptachlor (EPA 440/5-80-052), Polychlorinated biphenyls (EPA 440/5-80-068), Toxaphene (EPA 440/5-86-006). This CCC is currently based on the Final Residue Value (FRV) procedure. Since the publication of the Great Lakes Aquatic Life Criteria Guidelines in 1995 (60FR15393–15399, March 23, 1995), the Agency no longer uses the Final Residue Value procedure for deriving CCCs for new or revised 304(a) aquatic life criteria. Therefore, the Agency anticipates that future revisions of this CCC will not be based on the FRV procedure.
8-134
Table 8G.86 (Continued) J
hh ii jj kk
This criterion applies to DDT and its metabolites (i.e. the total concentration of DDT and its metabolites should not exceed this value). The derivation of the CCC for this pollutant (Endrin) did not consider exposure through the diet, which is probably important for aquatic life occupying upper trophic levels. This value was derived from data for endosulfan and is most appropriately applied to the sum of alpha-endosulfan and beta-endosulfan. This value was derived from data for heptachlor and the criteria document provides insufficient data to estimate relative toxicities of heptachlor and heptachlor epoxide. This criterion applies to total pcbs, (e.g. the sum of all congener or all isomer or homolog or Aroclor analyses.)
Source: From United States Environmental Protection Agency, 2005, National Recommended Water Quality Criteria, www.epa.gov.
WATER QUALITY
gg
8-135
q 2006 by Taylor & Francis Group, LLC
8-136
Table 8G.87 United States National Recommented Water Quality Criteria for Nonpriority Pollutants Freshwater
Nonpriority Pollutant
CAS Number
CMC (acute) (mg/L)
Human Health for the Consumption of
Saltwater
CCC (chronic) (mg/L)
CMC (acute) (mg/L)
CCC (chronic) (mg/L)
— 7429905 7664417
20000 87b,c,d 750b,c Freshwater criteria are pH, temperature and life-stage dependent—see documente Saltwater criteria are pH and temperature dependent
4 5 6 7 8 9 10
Aesthetic Qualities Bacteria Barium Boron Chloride Chlorine Chlorophenoxy Herbicide (2,4,5,-TP) Chlorophenoxy Herbicide (2,4-D) Chloropyrifos Color Demeton Ether, Bis (Chloromethyl) Gases, Total Dissolved Guthion Hardness Hexachlorocyclo-hexaneTechnical Iron Malathion Manganese Methoxychlor Mirex Nitrates Nitrosamines Dinitrophenols Nitrosodibutylamine,k Nitrosodiethylamine,k Nitrosopyrrolidine,k Oil and Grease Oxygen, Dissolved Freshwater Oxygen, Dissolved Saltwater Parathion Pentachlorobenzene
— — 7440393 — 16887006 7782505 93721
Narrative statement—see document (See table notes) For primary recreation and shellfish uses—see document
20 21 22 23 24 25 26 27 28 29 30 31 32
33 34
q 2006 by Taylor & Francis Group, LLC
13
q
94757 2921882 — 8065483 542881 — 86500 — 319868
b
b
b
0.083 0.041 0.011 Narrative statement—see document (See table notes)a 0.1a Narrative statement—see documenta (See table notes) 0.01a Narrative statement—see document
7439896 121755 7439965 72435 2385855 14797558 — 25550587 924163
100f,g
Gold Book
0.0056 0.1a
0.00010h,i
0.00029h,i
0.0123
0.0414
0.01a
0.1a
0.03a 0.001a
0.03a 0.001a
930552
56382 608935
—g 10f
EPA440/5-88-004 Gold Book Gold Book Gold Book Gold Book 53FR19028 Gold Book Gold Book
b
1000a 0.1a
55185
— 7782447
Gold Book 53FR33178 EPA822-R-99–014
1,000f Narrative statement—see document 230000b 860000b 19 11
FR Cite/Source
300f
Gold Book Gold Book Gold Book 65FR66443 Gold Book Gold Book Gold Book Gold Book
10,000f 0.0008 69 0.0063f,i
1.24 5300 0.22f,i
Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book 65FR66443 65FR66443
0.0008f,I
1.24f,i
Gold Book
50f,j 100f,g
0.016
100f
i
34
i
65FR66443
Narrative statement—see documenta (See table notes) Warmwater and coldwater matrix—see documentk
Gold Book Gold Book
Saltwater—see document
EPA-822R-00–012
0.065l
0.013l 1.4h
1.5h
Gold Book 65FR66443
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alkalinity Aluminum pH 6.5–9.0 Ammonia
12 13 14 15 16 17 18 19
Organism Only (mg/L)
a
1 2 3
11
Water D Organism (mg/L)
pH Phosphorus Elemental Nutrients
— 7723140 —
38
Solids Dissolved and Salinity Solids Suspended and Turbidity Sulfide-Hydrogen Sulfide Tainting Substances Temperature Tetrachlorobenzene,1,2,4,5Tributyltin (TBT) Trichlorophenol,2,4,5-
—
39 40 41 42 43
44 45
6.5–9a
6.5–8.5a,m 5–9 0.1a,m See EPA’s Ecoregional criteria for Total Phosphorus, Total Nitrogen, Chlorophyll a and Water Clarity (Secchi depth for lakes; turbidity for streams and rivers) (& Level III Ecoregional criteria) 250,000f a
—
Narrative statement—see document (See table notes)
7783064 — — 95943
2.0a Narrative statement—see document (See table notes) Species dependent criteria—see documento
— 95954
0.46p
0.072p
0.42p
Gold Book Gold Book n
Gold Book Gold Book
2.0a
0.97h
1.1h
Gold Book Gold Book Gold Book 65FR66443
1,800h,q
3,600h,q
69FR342 65FR66443
0.0074p
WATER QUALITY
35 36 37
Appendix C — Calculation of Freshwater Ammonia Criterion 1. The one-hour average concentration of total ammonia nitrogen (in mg N/L) does not exceed, more than once every 3 years on the average, the CMC (acute criterion) calculated using the following equations Where salmonid fish are present: CMC Z
0:275 39:0 C 1 C 107:204pH 1 C 10pH7:204
CMC Z
0:411 58:4 C 1 C 107:204pH 1 C 10pH7:204
Or where salmonid fish are not present:
2A. The 30 average concentration of total ammonia nitrogen (in mg N/L) does not exceed, more than once every 3 years on the average, the CCC (chronic criterion) calculated using the following equations When fish early life stages are present: CCC Z
0:0577 2:487 C !MIN ð2:85; 1:45 !100:028ð25T Þ Þ 1 C 107:688pH 1 C 10pH7:688
When fish early life stages are absent: CCC Z
0:0577 2:487 C !1:45 !100:028ð25MAXðT ;7ÞÞ 1 C 107:688pH 1 C 10pH7:688
8-137
2B. In addition, the highest 4-day average within the 30-day period should not exceed 2.5 times the CCC. Notes: Narrative Statements: National Recommented Water Quality Criteria for Nonpriority Pollutants Aesthetic Qualities All waters free from substances attributable to wastewater or other discharges that (1) settle to form objectionable deposits (2) float as debris, scum, oil, or other matter to form nuisances (3) produce objectionable color, odor, taste, or turbidity (4) injure or are toxic or produce adverse physiological responses in humans, animals, or plants, and (Continued) q 2006 by Taylor & Francis Group, LLC
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(5) produce undesirable or nuisance aquatic life Color Waters shall be virtually free from substances producing objectionable color for aesthetic purposes the source of supply should not exceed 75 color units on the platinum-cobalt scale for domestic water supplies; and Increased color (in combination with turbidity) should not reduce the depth of the compensation point for photosynthetic activity by more than 10 percent from the seasonally established norm for aquatic life Gases, Total Dissolved To protect freshwater and marine aquatic life, the total dissolved gas concentrations in water should not exceed 110 percent of the saturation value for gases at the existing atmospheric and hydrostatic pressures Oil and Grease For aquatic life (1) 0.01 of the lowest continuous flow 96-hour LC50 to several important freshwater and marine species, each having a demonstrated high susceptibility to oils and petrochemicals (2) Levels of oils or petrochemicals in the sediment which cause deleterious effects to the biota should not be allowed (3) Surface waters shall be virtually free from floating nonpetroleum oils of vegetable or animal origin, as well as petroleum-derived oils Solids (Suspended, Settleable) and Turbidity Freshwater fish and other aquatic life Settleable and suspended solids should not reduce the depth of the compensation point for photosynthetic activity by more than 10 percent from the seasonally established norm for aquatic life Tainting Substances Materials should not be present in concentrations that individually or in combination produce undesirable flavors which are detectable by organoleptic tests performed on the edible portions of aquatic organisms a The derivation of this value is presented in the Red Book (EPA 440/9-76-023, July, 1976). b This value is based on a 304(a) aquatic life criterion that was derived using the 1985 Guidelines (Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, PB85-227049, January 1985) and was issued in one of the following criteria documents: Aluminum (EPA 440/5-86-008); Chloride (EPA 440/5-88-001); Chloropyrifos (EPA 440/5-86-005). c This value for aluminum is expressed in terms of total recoverable metal in the water column. d There are three major reasons why the use of Water-Effect Ratios might be appropriate. (1) The value of 87 ug/L is based on a toxicity test with the striped bass in water with pHZ6.5–6.6 and hardness !10 mg/L. Data in “Aluminum Water-Effect Ratio for the 3M Plant Effluent Discharge, Middleway, West Virginia” (May 1994) indicate that aluminum is substantially less toxic at higher pH and hardness, but the effects of pH and hardness are not well quantified at this time. (2) In tests with the brook trout at low pH and hardness, effects increased with increasing concentrations of total aluminum even though the concentration of dissolved aluminum was constant, indicating that total recoverable is a more appropriate measurement than dissolved, at least when particulate aluminum is primarily aluminum hydroxide particles. In surface waters, however, the total recoverable procedure might measure aluminum associated with clay particles, which might be less toxic than aluminum associated with aluminum hydroxide. (3) EPA is aware of field data indicating that many high quality waters in the U.S. contain more than 87 mg aluminum/L, when either total recoverable or dissolved is measured. e According to the procedures described in the Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, except possibly where a very sensitive species is important at a site, freshwater aquatic life should be protected if both conditions specified in Appendix C to the Preamble- Calculation of Freshwater Ammonia Criterion are satisfied. f This human health criterion is the same as originally published in the Red Book(EPA 440/9-76-023, July, 1976) which predates the 1980 methodology and did not utilize the fish ingestion BCF approach. This same criterion value is now published in the Gold Book(Quality Criteria for Water: 1986. EPA 440/5-86-001). g A more stringent Maximum Contaminant Level (MCL) has been issued by EPA under the Safe Drinking Water Act. Refer to drinking water regulations 40CFR141 or Safe Drinking Water Hotline (1-800-426-4791) for values. h This criterion has been revised to reflect EPA’s q1* or RfD, as contained in the Integrated Risk Information System (IRIS) as of May 17, 2002. The fish tissue bioconcentration factor (BCF) used to derive the original criterion was retained in each case. i This criterion is based on carcinogenicity of 10K6 risk. Alternate risk levels may be obtained by moving the decimal point (e.g., for a risk level of 10K5, move the decimal point in the recommended criterion one place to the right). j This criterion for manganese is not based on toxic effects, but rather is intended to minimize objectionable qualities such as laundry stains and objectionable tastes in beverages. U.S. EPA. 1973. Water Quality Criteria 1972. EPA-R3-73-033. National Technical Information Service, Springfield, VA.; U.S. EPA. 1977. Temperature Criteria for Freshwater Fish: Protocol and Procedures. EPA-600/3-77-061. National Technical Information Service, Springfield, VA. K U.S. EPA. 1986. Ambient Water Quality Criteria for Dissolved Oxygen. EPA 440/5-86-003. National Technical Information Service, Springfield, VA. l This value is based on a 304(a) aquatic life criterion that was issued in the 1995 Updates: Water Quality Criteria Documents for the Protection of Aquatic Life in Ambient Water (EPA-820-B96-001). This value was derived using the GLI Guidelines (60FR15393–15399, March 23, 1995; 40CFR132 Appendix A); the differences between the 1985 Guidelines and the GLI Guidelines are explained on page iv of the 1995 Updates. No decision concerning this criterion was affected by any considerations that are specific to the Great Lakes.
8-138
Table 8G.87 (Continued)
n
p q
According to page 181 of the Red Book: For open ocean waters where the depth is substantially greater than the euphotic zone, the pH should not be changed more than 0.2 units from the naturally occurring variation or any case outside the range of 6.5 to 8.5. For shallow, highly productive coastal and estuarine areas where naturally occurring pH variations approach the lethal limits of some species, changes in pH should be avoided but in any case should not exceed the limits established for fresh water, i.e. 6.5–9.0. Lakes and Reservoirs in Nutrient Ecoregion: II EPA 822-B-00-007, III EPA 822-B-01-008, IV EPA 822-B-01-009, V EPA 822-B-01-010, VI EPA 822-B-00-008, VII EPA 822-B-00-009, VIII EPA 822-B-01-015, IX EPA 822-B-00-011, XI EPA 822-B-00-012, XII EPA 822-B-00-013, XIII EPA 822-B-00-014, XIV EPA 822-B-01-011; Rivers and Streams in Nutrient Ecoregion: I EPA 822-B-01-012, II EPA 822-B-00-015, III EPA 822-B-00-016, IV EPA 822-B-01-013, V EPA 822-B-01-014, VI EPA 822-B-00-017, VII EPA 822-B-00-018, VIII EPA 822-B-01-015, IX EPA 822-B-00-019, X EPA 822-B-01-016, XI EPA 822-B-00-020, XII EPA 822-B-00-021, XIV EPA 822-B-00-022; and Wetlands in Nutrient Ecoregion XIII EPA 822-B-00-023. EPA announced the availability of a draft updated tributyltin (TBT) document on August 7, 1997 (62FR42554). The Agency has reevaluated this document and anticipates releasing an updated document for public comment in the near future. The organoleptic effect criterion is more stringent than the value presented in the nonpriority pollutants table.
WATER QUALITY
m
Source: From United States Environmental Protection Agency, 2005, National Recommended Water Quality Criteria, www.epa.gov. Original Source: From United States Environmental Protection Agency Gold Book, Quality Criteria for Water: 1986, EPA 44015-86-001.
8-139
q 2006 by Taylor & Francis Group, LLC
8-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.88 United States National Recommended Water Quality Criteria for Organoleptic Effects
Pollutant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
CAS Number
Organoleptic Effect Criteria (mg/L)
83329 108907 — 106489 — — — — 95954 88062 — — 59507 — 95578 7440508 120832 105679 77474 98953 87865 108952 7440666
20 20 0.1 0.1 0.04 0.5 0.2 0.3 1 2 1 1800 3000 20 0.1 1000 0.3 400 1 30 30 300 5000
Acenaphthene Monochlorobenzene 3-Chlorophenol 4-Chlorophenol 2,3-Dichlorophenol 2,5-Dichlorophenol 2,6-Dichlorophenol 3,4-Dichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichloropehnol 2,3,4,6-Tetrachlorophenol 2-Methyl-4-Chlorophenol 3-Methyl-4-Chlorophenol 3-Methyl-6-Chlorophenol 2-Chlorophenol Copper 2,4-Dichlorophenol 2,4-Dimethylpehnol Hexachlorocyclopentadiene Nitrobenzene Pentachlorophenol Phenol Zinc
FR Cite/Source Gold Booka Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book Gold Book 45 FR 79341
Note: These criteria are based on organoleptic (taste and odor) effects. Because of variations in chemical nomenclature systems, this listing of pollutants does not duplicate the listing in Appendix A of 40 CFR Part 423. Also listed are the Chemical Abstracts Service (CAS) registry numbers, which provide a unique identification for each chemical. a
The Gold book is Quality Crieteria for Water: 1986. EPA 440/5-86-001.
Source: From United States Environmental Protection Agency, 2005, Nutrient Recommended Water Quality Criteria, www.epa.gov.
These tables present the recommended EPA criteria for each of the aggregate nutrient ecoregions for the following parameters: Total Phosphorus (TP), Total Nitrogen (TN), Chlorophyll a, and Turbidity or Secchi. Criteria are presented for both Lakes & Reservoirs and Rivers & Streams.
Table 8G.89 United States Recommended Criteria for Each of the Aggregate Nutrients Ecoregions Lakes and Reservoirs
Parameter TP mg/L TN mg/L Chl a mg/L Secchi (m) Note:
Agg Ecor II
Agg Ecor III
Agg Ecor IV
Agg Ecor V
Agg Ecor VI
Agg Ecor VII
Agg Ecor VIII
Agg Ecor IX
Agg Ecor XI
Agg Ecor XII
Agg Ecor XIII
Agg Ecor XIV
8.75 0.10 1.90 4.50
17.00 0.40 3.40 2.70
20.00 0.44 2.00 S 2.00
33.00 0.56 2.30 S 1.30
37.5 0.78 8.59 S 1.36
14.75 0.66 2.63 3.33
8.00 0.24 2.43 4.93
20.00 0.36 4.93 1.53
8.00 0.46 2.79 S 2.86
10.00 0.52 2.60 2.10
17.50 1.27 12.35 T 0.79
8.00 0.32 2.90 4.50
Chl a, Chlorophyll a measured by Fluorometric method, unless specified; S is for Spectrophotometric and T is for Trichromatic method.
Source: From United States Environmental Protection Agency, Nutrient Water Quality Criteria, Ecoregional Criteria, www.epa.gov/ waterscience/criteria/nutrient/ecoregions.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-141
Table 8G.90 United States Recommended Criteria for Each of the Aggregate Nutrient Ecoregions Rivers and Streams
Parameter
Agg Ecor I
Agg Ecor II
Agg Ecor III
Agg Ecor IV
Agg Ecor V
Agg Ecor VI
Agg Ecor VII
Agg Ecor VIII
TP mg/L TN mg/L Chl a mg/L Turb FTU/NTU
47.00 0.31 1.80 4.25
10.00 0.12 1.08 1.30 N
21.88 0.38 1.78 2.34
23.00 0.56 2.40 4.21
67.00 0.88 3.00 7.83
76.25 2.18 2.70 6.36
33.00 0.54 1.50 1.70 N
10.00 0.38 0.63 1.30
Agg Ecor IX
Agg Ecor X
Agg Ecor XI
Agg Ecor XII
10.00 40.00 36.56 128a 0.69 0.76 0.31 0.90 0.93 S 2.10 S 1.61 S 0.40 S 5.70 17.50 2.30 N 1.90 N
Agg Ecor XIV 31.25 0.71 3.75 S 3.04
Note: Turb, Turbidity; Chl a, Chlorophyll a measured by Fluorometric method, unless specified; S is for Spectrophotometric and T is for Trichromatic method; N for NTU. Unit of measurement for Turbidity. a
This value appears inordinately high and may either be a statistical anomaly or reflects a unique condition. In any case, further regional investigation is indicated to determine the sources, i.e. measurement error, notational error, statistical anomaly, natural enriched conditions, or cultural impacts. From United States Environmental Protection Agency, Nutrient Water Quality Criteria, Ecoregional Criteria, www.epa.gov/waterscience/criteria/nutrient/ecoregions/.
Source: From United States Environmental Protection Agency, Nutrient Water Quality Criteria, Ecoregional Criteria, www.epa.gov/ waterscience/criteria/nutrient/ecoregions/.
I. Willamette and Central Valleys II. Western Forested Mountains III. Xeric West IV. Great Plains Grass and Shrublands V. South Central Cultivated Great Plains VI. Corn Belt and Northern Great Plains VII. Mostly Glacinated Dairy Region VIII. Nutrient Poor Largely Glacinated Upper Midwest and Northeast IX. Southeastern Temperate Forested Plains and Hills X. Texas-Lousiana Coastal and Mississippi Alluvial Plains XI. Central and Eastern Forested Uplands XII. Southern Coastal Plain XIII. Southern Florida Coastal Plain XIV. Eastern Coastal Plain
Figure 8G.21 United States draft aggregations of level III ecoregions for the national nutrient strategy. (From United States Environmental Protection Agency, Nutrient Water Quality Criteria, Where-You-Live, epa.gov/waterscience/criteria/nutrient/where-you-live.htm).
q 2006 by Taylor & Francis Group, LLC
8-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.91 Aquatic Life Criteria for Dissolved Oxygen (Saltwater): Cape Cod to Cape Hatteras Persistent Exposure (24 hr or Greater Continuous Low DO Conditions)
Endpoint Juvenile and adult survival (minimum allowable conditions)
Growth effects (maximum conditions required)
Episodic and Cyclic Exposure (Less Than 24 hr Duration of Low DO Conditions)
(1) a limit for continuous exposure
(4) a limit based on the hourly duration of exposure
DOZ2.3 mg/L (criterion minimum concentration, CMC)
DOZ3.70 n(t)C1.095 where: DO, allowable concentration (mg/L); t, exposure duration (hrs)
(2) a limit for continuous exposure
(5) a limit based on the intensity and hourly duration of exposure Cumulative cyclic adjusted percent daily reduction in growth must not exceed 25% n P ti !1:56!Gredi ! 25% and GrediZK23:1 !DOi C 138:1 24
DOZ4.8 mg/L (criterion continuous concentration, CCC)
1
where: Gredi, growth reduction (%); DOi, allowable concentration (mg/L); ti, exposure interval duration (hrs); i, exposure interval Larval recruitment effectsa (specific allowable conditions)
(3) a limit based on the number of days a continuous exposure can occur
(6) a limit based on the number of days an intensity and hourly duration pattern of exposure can occur
Cumulative fraction of allowable days above a given daily mean DO must not exceed 1.0 P ti ðactualÞ 13:0 ti ðallowedÞ ! 1:0 and DOi Z ð2:80C1:84eK0:10ti Þ
Maximum daily cohort mortality for any hourly duration interval of a DO minimum must not exceed a corresponding allowable days of occurrence
where: DOi, allowable concentration (mg/L); ti, exposure interval duration (d); i, exposure interval
where: Allowable number of days is a function of maximum daily cohort mortality (%)
Maximum daily cohort mortality (%) is a function of DO minimum for any exposure interval (mg/L) and the duration of the interval (hrs) a
Model integrating survival effects to maintain minimally impaired larval populations.
Source:
From USEPA, 2000, Aquatic Life Criteria Document for Dissolved Oxygen (Saltwater): Cape Cod to Cape Hatteras, EPA-822-R-00-012, November 2000, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-143
Table 8G.92 United States Sediment Quality Guidelines for Metals in Freshwater Ecosystems That Reflect Threshold Effect Concentrations (TECs) (i.e., Below Which Harmful Effects are Unlikely to Be Observed) Threshold Effect Concentrations Substance
TEL
LEL
Metals (mg/kg DW) Arsenic 5.9 6 Cadmium 0.596 0.6 Chromium 37.3 26 Copper 35.7 16 Lead 35 31 Mercury 0.174 0.2 Nickel 18 16 Zinc 123 120 Polycyclic aromatic hydrocarbons (mg/kg DW) Anthracene NG 220 Fluorene NG 190 Naphthalene NG NG Phenanthrene 41.9 560 Benz[a]anthracene 31.7 320 Benzo(a)pyrene 31.9 370 Chrysene 57.1 340 Dibenz[a,h]anthracene NG 60 Fluoranthene 111 750 Pyrene 53 490 Total PAHs NG 4,000 Polychlorinated biphenyls (mg/kg DW) Total PCBs 34.1 70 Organochlorine pesticides (mg/kg DW) Chlordane 4.5 7 Dieldrin 2.85 2 Sum DDD 3.54 8 Sum DDE 1.42 5 Sum DDT NG 8 Total DDTs 7 7 Endrin 2.67 3 Heptachlor epoxide 0.6 5 Lindane (gamma-BHC) 0.94 3
MET
ERL
7 0.9 55 28 42 0.2 35 150
33 5 80 70 35 0.15 30 120
NG NG 400 400 400 500 600 NG 600 700 NG
TEL-HA28
SQAL
11 0.58 36 28 37 NG 20 98
NG NG NG NG NG NG NG NG
ConsensusBased TEC 9.79 0.99 43.4 31.6 35.8 0.18 22.7 121
85 35 340 225 230 400 400 60 600 350 4,000
10 10 15 19 16 32 27 10 31 44 260
NG 540 470 1,800 NG NG NG NG 6,200 NG NG
57.2 77.4 176 204 108 150 166 33.0 423 195 1,610
200
50
32
NG
59.8
7 2 10 7 9 NG 8 5 3
0.5 0.02 2 2 1 3 0.02 NG NG
NG NG NG NG NG NG NG NG NG
NG 110 NG NG NG NG 42 NG 3.7
3.24 1.90 4.88 3.16 4.16 5.28 2.22 2.47 2.37
Note: TEL, threshold effect level; dry weight (Smith et al., 1996); LEL, lowest effect level, dry weight (Persaud et al., 1993); MET, minimal effect threshold; dry weight (EC and MENVIQ, 1992); ERL, effect range low; dry weight (Long and Morgan, 1991); TEL-HA28, threshold effect level for Hyalella azteca; 28 day test; dry weight (US EPA 1996a); SQAL, sediment quality advisory levels; dry weight at 1% OC (US EPA 1997a); NG, no guideline. Source : From MacDonald, D.D, Ingersoll, C.G., and Berger, T.A., 2000, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecostystems, Archives of Environmental Contamination Toxicology 39, 20–31, Table 2, q 2000 Springer-Verlag New York, Inc. With kind permission of Springer Science and Business Media.
q 2006 by Taylor & Francis Group, LLC
8-144
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.93 United States Sediment Quality Guidelines for Metals in Freshwater Ecosystems That Reflect Probable Effect Concentrations (PECs) (i.e., Above Which Harmful Effects are Unlikely to Be Observed) Probable Effect Concentrations Substance
PEL
Metals (mg/kg DW) Arsenic 17 Cadmium 3.53 Chromium 90 Copper 197 Lead 91.3 Mercury 0.486 Nickel 36 Zinc 315 Polycyclic aromatic hydrocarbons (mg/kg DW) Anthracene NG Fluorene NG Naphthalene NG Phenanthrene 515 Benz[a]anthracene 385 Benzo(a)pyrene 782 Chrysene 862 Fluoranthene 2,355 Pyrene 875 Total PAHs NG Polychlorinated biphenyls (mg/kg DW) Total PCBs 277 Organochlorine pesticides (mg/kg DW) Chlordane 8.9 Dieldrin 6.67 Sum DDD 8.51 Sum DDE 6.75 Sum DDT NG Total DDTs 4,450 Endrin 62.4 Heptachlor epoxide 2.74 Lindane (gamma-BHC) 1.38
SEL
TET
ERM 85 9 145 390 110 1.3 50 270
PEL-HA28 48 3.2 120 100 82 NG 33 540
ConsensusBased TEC
33 10 110 110 250 2 75 820
17 3 100 86 170 1 61 540
33.0 4.98 111 149 128 1.06 48.6 459
3,700 1,600 NG 9,500 14,800 14,400 4,600 10,200 8,500 100,000
NG NG 600 800 500 700 800 2,000 1,000 NG
960 640 2,100 1,380 1,600 2,500 2,800 3,600 2,200 35,000
170 150 140 410 280 320 410 320 490 3,400
845 536 561 1,170 1,050 1,450 1,290 2,230 1,520 22,800
5,300
1,000
400
240
676
60 910 60 190 710 120 1,300 50 10
30 300 60 50 50 NG 500 30 9
6 8 20 15 7 350 45 NG NG
NG NG NG NG NG NG NG NG NG
17.6 61.8 28.0 31.3 62.9 572 207 16.0 4.99
Source: From MacDonald, D.D, Ingersoll, C.G., and Berger, T.A., 2000, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Archives of Environmental Contamination Toxicology 39, 20–31, Table 3, q 2000 Springer-Verlag New York, Inc. With kind permission of Springer Science and Business Media.
Table 8G.94 United States Sediment Quality Guidelines for Marine Sediment
Chemical Aluminum (Al) (%) Antimony (Sb) Arsenic (As) Barium (Ba) Cadmium (Cd) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) (%) Lead (Pb)
CAS No.
Threshold Effects Level (TEL)
Effects Range-Low (ERL)
Probable Effects Range- Effects Level (PEL) Median (ERM)
7,240
8,200
70,000
41,600
676 52,300
1,200 81,000
9,600 370,000
4,210 160,400
18,700
34,000
270,000
108,200
30,240
46,700
218,000
112,180
Apparenta Effects Threshold (AET) 1.8% N 9,300 E 35,000 B 48,000 A 3,000 N 62,000 N 10,000 N 390,000 MO 22% N 400,000 B (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.94
8-145
(Continued)
Chemical
CAS No.
Manganese (Mn) Mercury (Hg) Nickel (Ni) Selenium (Se) Silver (Ag) Tin (Sn) Vanadium (V) Zinc (Zn) Sulfides Chlorinated dioxins and PCBs TCDD 2,3,7,8Polychlorinated biphenyls Semivolatiles Benzoic acid Benzyl alcohol Dibenzofuran Semivolatile, nitroaromatics Nitrobenzene N-nitrosodiphenylamine Semivolatile, organochlorines Aldrin Chlordane p,p-DDD (TDE) p,p-DDE p,p-DDT DDT, total Dieldrinb Heptachlor Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclohexane (BHC) Hexachloroethane Lindane Semivolatile, PAHs Acenaphthene Acenaphthylene Anthracene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benz(a)anthracene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Methylnaphthalene, 2Naphthalene Phenanthrene Pyrene LMW PAHs HMW PAHs Total PAHs Volatile, aromatic and halogenated Dichlorobenzene 1,2Dichlorobenzene 1,4-
Threshold Effects Level (TEL)
Probable Effects Range- Effects Level Median (ERM) (PEL)
130 15,900
150 20,000
710 51,600
696 42,800
730
1,000
3,700
1,770
124,000
150,000
410,000
271,000
1746016 1336363 65850 100516 132649
Effects Range-Low (ERL)
21.55
22.7
180
188.79
60571 76448 118741 87683 608731 67721 58899 83329 208968 120127 207089 50328 205992 191242 56553 218019 53703 206440 86737 193395 91576 91203 85018 129000
95501 106467
260,000 N 410 M 110,000 EL 1,000 A 3,100 B O3,400 N as TBT 57,000 N 410,000 I 4,500 MO 0.0036 N 130 M 65 O 52 B 110 E
5100 H
98953 86306 309002 57749 72548 72559 50293
Apparenta Effects Threshold (AET)
21 N 28 I
2.26 1.22 2.07 1.19 3.89 0.715
0.5 2 2.2 1 1.58 0.02
6 20 27 7 46.1 8
4.79 7.81 374.17 4.77 51.7 4.3
0.32
73 BL O4.8 N
0.99 6.71 5.87 46.85 88.81
74.83 107.77 6.22 112.82 21.17 20.21 34.57 86.68 152.66 311.7 655.34 1684.06
16 44 85.3
500 640 1100
88.9 127.87 245
430
1600
763.22
261 384 63.4 600 19
1600 2800 260 5100 540
692.53 845.98 134.61 1493.54 144.35
670 2100 1500 2600 3160 9600 44792
201.28 390.64 543.53 1397.6 1442.00 6676.14 16770.4
70 160 240 665 552 1700 4022
9.5 AE 2.8 A 16 I 9I 12 E 11 B 1.9 E 0.3 B 6B 1.3 E
130 E 71 E 280 E 1800 EI 1100 E 1800 EI 670 M 960 E 950 E 230 OM 1300 E 120 E 600 M 64 E 230 E 660 E 2400 E 1200 E 7900 E
13 N 110 IM (Continued)
q 2006 by Taylor & Francis Group, LLC
8-146
Table 8G.94
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Chemical Semivolatile, phenolics Chlorophenol 2Dichlorophenol 2,4Dimethylphenol 2,4Methyl phenol 2- [O-cresol] Methyl phenol 4- [P-cresol] Pentachlorophenol [at pH 7.8]c Phenol Trichlorophenol 2,4,5Trichlorophenol 2,4,6Semivolatile, phthalates Butyl benzyl phthalate Di[2-ethylhexyl] phthalate Diethyl phthalate Dimethyl phthalate Di-N-octyl phthalate Di-N-butyl phthalate Dichloropropene Tetrachloroethylene Trichlorbenzene 1,2,4Trichloroethylene Xylene
CAS No.
Threshold Effects Level (TEL)
Effects Range-Low (ERL)
Probable Effects Range- Effects Level Median (ERM) (PEL)
95578 120832 105679 95487 106445 87865 108952 95954 88062 85687 117817 84662 131113 117840 84742 542756 127184 120821 79016 1330207
Apparenta Effects Threshold (AET) 8A 5A 18 N 8B 100 B 17 B 130 E 3I 6I
182.16
2646.51
63 M 1300 I 6 BL 6B 61 BL 58 BL 4 EL 57 I O4.8 E 41 N 4 BL
Note: The Effects Range-Low (ERLs) and Effects Range-Median (ERMs) plus the marine Threshold Effects Levels (TELs) and Probable Effects Levels (PELs) are based upon a similar data compilations, but use different calculations. The ERL is calculated as the lower 10th percentile concentration of the available sediment toxicity data which has been screened for only those samples which were identified as toxic by original investigators. It is not an LC10. Since the ERL is at the low end of a range of levels at which effects were observed in the studies compiled, it represents the value at which toxicity may begin to be observed in sensitive species. The ERM is simply the median concentration of the compilation of just toxic samples. It is not an LC50. The TEL is calculated as the geometric mean of the 15th percentile concentration of the toxic effects data set and the median of the no-effect data set; as such, it represents the concentration below which adverse effects are expected to occur only rarely. The PEL, as the geometric mean of the 50% of impacted, toxic samples and the 85% of the non-impacted samples, is the level above which adverse effects are frequently expected. From Apparent Effect Thresholds (AETs) relate chemical concentrations in sediments to synoptic biological indicators of injury (i.e., sediment bioassays or diminished benthic infaunal abundance). Individual AETs are essentially equivalent to the concentration observed in the highest nontoxic sample. As such, they represent the concentration above which adverse biological impacts would always be expected by that biological indicator due to exposure to that contaminant alone. Conversely, adverse impacts are known to occur at levels below the AET. Only the lowest of the potential AETs is listed. AET values were developed for use in Puget Sound (Washington) and are not easily compared directly to other benchmarks based on single-chemical models and broader data sources. SquiRT cards have been updated with interim AET values which are subject to change. (All sediment and soil values in ppb dry weight, except as noted.) a b c
Entry is lowest value among AET tests. I, infaunal community impacts; A, amphipod; B, bivalve; M, microtox; O, Oyster larvae; E, Echinoderm larvae; L, larvalmax; or, N-Neanthes bioassays. EPA proposed criteria, based on equilibrium partitioning, for Dieldrin are 11,000 and 20,000, and for Endrin are 4,200 and 760 mg/kg O.C. in freshwater and marine sediment, respectively. For PCP, freshwater CMCZe1.005pHK4.869 and CCCZe1.005pHK5.134.
Source: From NOAA, 1999, Screening Quick Reference Tables (SQuiRTs), www.response.restoration.noaa.gov/cpr/sediment/squirt/ squirt.html.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-147
Table 8G.95 United States Equilibrium Partitioning Sediment Benchmarks (ESBWQCs) for Dieldrin and Endrin Using the Water Quality Criteria (WQC) FCVs as the Effect Concentration Type of Water Body Dieldrin Freshwater Saltwater Endrin Freshwater Saltwater a b c d
Log10KOW (L/kg)
Log10KOC (L/kg)
FCV (mg/L)
5.37 5.37
5.28 5.28
0.06589 0.1469
5.06 5.06
4.97 4.97
0.05805 0.01057
ESGOC (mg/gOC) 12a 28b 5.4a 0.99b
ESBWQCOCZ(105.28 L/kgOC)!(10K3 kgOC/gOC)!(0.6589 mg dieldrin/L)Z12 mg dieldrin/gOC. ESBWQCOCZ(105.28 L/kgOC)!(10K3 kgOC/gOC)!(0.1469 mg dieldrin/L)Z28 mg dieldrin/gOC. ESBWQCOCZ(104.97 L/kgOC)!(10K3 kgOC/gOC)!(0.05805 mg endrin/L)Z5.4 mg endrin/gOC. ESBWQCOCZ(104.97 L/kgOC)!(10K3 kgOC/gOC)!(0.01057 mg endrin/L)Z0.99 mg endrin/gOC.
Source: From USEPA, 2003, Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Dieldrin, EPA-600-R-02-010, August 2003; USEPA, 2003, Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Endrin, EPA-600-R-02-009, August 2003, www.epa.gov.
Table 8G.96 Canadian Water Quality Guidelines for the Protection of Aquatic Life Freshwater Parametera Acenaphthene [see Polycyclic aromatic hydrocarbons (PAHs)] Acridine [see Polycyclic aromatic hydrocarbons (PAHs)] Aldicarb AldrinCDieldrind Aluminumd Ammonia (total)h Ammonia (unionized) Aniline Anthracene [see Polycyclic aromatic hydrocarbons (PAHs)] Arsenicj Atrazine Benz(a)anthracene [see Polycyclic aromatic hydrocarbons (PAHs)] Benzenej Benzo(a)pyrene [see Polycyclic aromatic hydrocarbons (PAHs)] 2,2-Bis(p-chlorophenyl)-1,1,-trichloroethane [see DDT (total)] Bromacil Bromoform [see Halogenated methanes, tribromomethane] Bromoxynil Cadmium Captan Carbaryl Carbofuran Carbon tetrachloride [see Halogenated methanes, tetrachloromethanes] Chlordaned Chlorinated benzenes Monochlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene
Concentration (mg/L)
Marine Dateb
Concentration (mg/L)
Dateb
1c 0.004e,f 5–100g See factsheet 19 2.2i
1993 1987 1987 2001 2001 1993
0.15c
1993
Insufficient data
1993
5.0k 1.8i
1997 1989
12.5c
1997
370c,k
1999
110c
1999
5.0c,i
1997
Insufficient data
1997
5.0i 0.017c,l 1.3c 0.20i 1.8i
1993 1996 1991 1997 1989
Insufficient data 0.12i
1993 1996
0.32c,i
1997
0.006e,f
1987
1.3c,k 0.70c,k 150c,k 26c,k 8.0c,k 24c,k
1997 1997 1997 1997 1997 1997
25c,k 42c,k Insufficient datak Insufficient datak Insufficient datak 5.4c,k
1997 1997 1997 1997 1997 1997
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-148
Table 8G.96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Freshwater Concentration (mg/L)
Parametera 1,3,5-Trichlorobenzened 1,2,3,4-Tetrachlorobenzene 1,2,3,5-Tetrachlorobenzened 1,2,4,5-Tetrachlorobenzene Pentachlorobenzene Hexachlorobenzened Chlorinated ethanes 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane Chlorinated ethenes 1,1,2-Trichloroethene (Tichloroethylene; TCE) 1,1,2,2-Tetrachloroethene (Tetrachloroethylene; PCE) Chlorinated methanes [see Halogenated methanes] Chlorinated phenolsd Monochlorophenols Dichlorophenols Trichlorophenols Tetrachlorophenols Pentachlorophenol (PCP) Chlorine, reactive [see Reactive chlorine species] Chloroform [see Halogenated methanes, trichloromethane] 4-Chloro-2-methyl phenoxy acetic acid [See MCPA] Chlorothalonil Chlorpyrifos Chromium Trivalent chromium (Cr(III)) Hexavalent chromium (Cr(VI)) Chrysene [see Polycyclic aromatic hydrocarbons (PAHs)] Color Copperd Cyanazine Cyanided DDAC (Didecyl dimethyl ammonium chloride) DDT (total)d (2,2-Bis(p-chlorophenyl)-1,1,1trichloroethane; dichloro diphenyl trichloroethane) Debris (litter/settleable matter) Deltamethrin Deposited bedload sediment [see Total particulate matter] Dibromochloromethane [see Halogenated methanes] Dicamba Dichlorobenzene [see Chlorinated benzenes] Dichlorobromomethane [see Halogenated methanes] Dichloro diphenyl trichloroethane [see DDT (total)] Dichloroethane [see Chlorinated ethanes] Dichloroethylene [see Chlorinated ethanes, 1,2dichloroethane] Dichloromethane [see Halogenated methanes] Dichlorophenols [see Chlorinated phenols] 2,4-Dichlorophenoxyacetic acid [see Phenoxy herbicides] Diclofop-methyl Didecyl dimethyl ammonium chloride [see DDAC] Diethylene glycol [see Glycols] Di(2-ethylhexyl) phthalate [see Phthalate esters] Diisopropanolamine Dimethoate Di-n-butyl phthalate [see Phthalate esters]
Marine Dateb
Concentration (mg/L)
Dateb
Insufficient datak 1.8c,k Insufficient datak Insufficient datak 6.0c,k Insufficient datae,f,k
1997 1997 1997 1997 1997
Insufficient datak Insufficient datak Insufficient data Insufficient datak Insufficient data Insufficient data
1997 1997 1997 1987 1997 1997
100c,i Insufficient data Insufficient data
1991 1991 1991
Insufficient data Insufficient data Insufficient data
1991 1991 1991
21c,i 111c,i
1991 1993
Insufficient data Insufficient data
1991 1993
7 0.2 18 1 0.5
1987 1987 1987 1987 1987
0.18c 0.0035
1994 1997
0.36c 0.002c
1994 1997
8.9c,k 1.0k
1997 1997
56c,k 1.5k
1997 1997
Narrative 2–4m 2.0c,i 5 (as free CN) 1.5 0.001e,f
1999 1987 1990 1987 1999 1987
Narrative
1999
Narrativec Insufficient data
1996 1997
Insufficient data Insufficient data
2005 1993
0.0004
1997
10c,i
1993
6.1
1993
1600c 6.2c
2005 1993
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.96
8-149
(Continued) Freshwater
Parametera Di-n-octyl phthalate [see Phthalate esters] Dinoseb Dissolved gas supersaturation Dissolved oxygen Endosulfand Endrind Ethylbenzenej Ethylene glycol [see Glycols] Fluoranthene [see Polycyclic aromatic hydrocarbons (PAHs)] Fluorene [see Polycyclic aromatic hydrocarbons (PAHs)] Glycols Ethylene glycol Diethylene glycol Propylene glycol Glyphosate Halogenated methanes Monochloromethane (Methyl chloride)d Dichloromethane (Methylene chloride) Trichloromethane (Chloroform) Tetrachloromethane (Carbon tetrachloride) Monobromomethane (Methyl bromide)d Tribromomethane (Bromoform)d Dibromochloromethaned Dichlorobromomethaned HCBD [see Hexachlorobutadiene (HCBD)] Heptachlor (Heptochlor epoxide)d Hexachlorobenzene [see Chlorinated benzenes] Hexachlorobutadiene (HCBD) Hexachlorocyclohexane (Lindane)d Hypochlorous acid [see Reactive chlorine species] Inorganic fluorides 3-lodo-2-propynyl butyl carbamate [see IPBC] IPBC (3-Iodo-2-propynyl butyl carbamate) Irond Leadd Lindane [see Hexachlorocyclohexane] Linuron MCPA (4-Chloro-2-methyl phenoxy acetic acid (2-methyl4-chloro phenoxy acetic acid) Mercuryw Inorganic mercuryw Methyl mercuryw Methyl bromide [see Halogenated methanes, Monobromomethane] Methyl chloride [see Halogenated methanes, Monochloromethane] 2-Methyl-4-chloro phenoxy acetic acid [see MCPA] Methylene chloride [see Halogenated methanes, Dichloromethane] Metolachlor Metribuzin Molybdenumj Monobromomethane [see Halogenated methanes] Monochloramine [see Reactive chlorine species] Monochlorobenzene [see Chlorinated benzenes] Monochloromethane [see Halogenated methanes]
Concentration (mg/L)
Marine Dateb
0.05 Narrative 5500–9500k,n
1992 1999 1999
0.02 0.0023e,f 90c,k
1987 1987 1996
192,000k Insufficient datak 500,000k 65c
Concentration (mg/L)
Dateb
Narrative O8000 and narrativec,k
1999 1996
25c,k
1996
1997 1997 1997 1989
Insufficient data Insufficient data Insufficient data
1997 1997 1997
Insufficient data 98.1c,i 1.8c,i 13.3c,i Insufficient data Insufficient data Insufficient data Insufficient data
1992 1992 1992 1992 1992 1992 1992 1992
Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data
1992 1992 1992 1992 1992 1992 1992 1992
0.01e,f
1987
1.3c,k 0.01
1999 1987
0.12c
2002
NRGo
2002
1.9 300 1–7p
1999 1987 1987
7.0c 2.6c
1995 1995
Insufficient data 4.2c
1995 1995
0.026 0.004c,x
2003 NRG
0.016c,x
2003
7.8c 1.0c 73c
1991 1990 1999
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-150
Table 8G.96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Freshwater Concentration (mg/L)
Parametera Monochlorophenols [see Chlorinated phenols] MTBE (methyl tertiary butyl ether) Naphthalene [see Polycyclic aromatic hydrocarbons (PAHs)] Nickeld Nitrated Nitrited Nonylphenol and its ethoxylates Organotins Tributyltin Tricyclohexyltin Triphenyltin Oxygen, dissolved [see Dissolved oxygen] PAHs [see Polycyclic aromatic hydrocarbons (PAHs)] PCBs [see Polychlorinated biphenyls (PCBs)(total)] PCE [see Chlorinated ethenes, 1,1,2,2-Tetrachloroethene] PCP [see Chlorinated phenols, Pentachlorophenol] Pentachlorobenzene [see Chlorinated benzenes] Pentachlorophenol [see Chlorinated phenols] pH Phenanthrene [see Polycyclic aromatic hydrocarbons (PAHs)] Phenols (mono- & dihydric) Phenoxy herbicidesd,s Phophorous Phthalate esters Di-n-butyl phthalate Di(2-ethylhexyl) phthalate Di-n-octyl phthalate Picloram Polychlorinated biphenyls (PCBs) (total)d Polycyclic aromatic hydrocarbons (PAHs) Acenaphthene Acridine Anthracene Benz(a)anthracene Benzo(a)pyrene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene Quinoline Propylene glycol [see Glycols] Pyrene [see Polycyclic aromatic hydrocarbons (PAHs)] Quinoline [see Polycyclic aromatic hydrocarbons (PAHs)] Reactive chlorine species (hypochlorous acid and monochloramine) Salinity Seleniumd Silverd Simazine Streambed substrate [see Total particulate matter] Styrene Sulfolane
Marine Dateb
Concentration (mg/L)
Dateb
5,000c
2003
16,000c,v
2003
0.7c,r
2002
1992 1992 1992
0.001 Insufficient data Insufficient data
1992 1992 1992
6.5–9d
1987
7.0–8.7 and narrative
1996
4.0k 4.0 narrativev
1999 1987
19c 16c Insufficient data 29c 0.001e,f
1993 1993 1993 1990 1987
Insufficient data Insufficient data Insufficient data
1993 1993 1993
0.01e,f
1991
5.8c 4.4c 0.012c 0.018c 0.015c Insufficient data 0.04c 3.0c 1.1c 0.4c 0.025c 3.4c
1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999
Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data Insufficient data 1.4c Insufficient data Insufficient data Insufficient data
1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999
0.5
1999
0.5
1999
!10% fluctuationc
1996
Insufficient data
2005
10,000
2003
25–150q 13,000c,v 60 1.0r
1987 2003 1987 2002
0.008c Insufficient data 0.022c,l
1.0 0.1 10
1987 1987 1991
72c 50,000c
1999 2005
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.96
8-151
(Continued) Freshwater Concentration (mg/L)
Parametera Suspended sediments [see Total particulate matter] TCE [see Chlorinated ethenes, 1,1,2-Trichloroethene] Tebuthiuron Temperature Tetrachlorobenzene [see Chlorinated benzenes] Tetrachloroethane [see Chlorinated ethanes] Tetrachloroethene [see Chlorinated ethenes] Tetrachloroethylene [see Chlorinated ethenes, 1,1,2,2Tetrachloroethene] Tetrachloromethane [see Halogenated methanes] Tetrachlorophenols [see Chlorinated phenols] Thalliumj Toluene Total particulate matteru Deposited bedload sediment Streambed substrate Suspended sediments Turbidity Toxaphened Triallate Tribromomethane [see Halogenated methanes] Tributyltin [see Organotins] Trichlorobenzene [see Chlorinated benzenes] Trichloroethane [see Chlorinated ethanes] Trichloroethene [see Chlorinated ethenes] Trichloroethylene [see Chlorinated ethenes, 1,1,2Trichloroethene] Trichloromethane [see Halogenated methanes] Trichlorophenols [see Chlorinated phenols] Tricyclohexyltin [see Organotins] Trifluralin Triphenyltin [see Organotins] Turbidity [see Total particulate matter] Zincd a b
c d e
f
g h i j k l m n o
Marine Dateb
1.6c Narrativet
1995 1987
0.8 2.0c,j,k
1999 1996
Insufficient data Narrative Narrative Narrative 0.008e,f 0.24c
1999 1999 1999 1999 1987 1992
0.20i
1993
30
1987
Concentration (mg/L)
Dateb
Insufficient data Not to exceed G 18Cc
1995 1996
215c,k
1996
Insufficient data Narrative Narrative Narrative
1999 1999 1999 1999
Unless otherwise indicated, supporting documents are available from the Guidelines and standards division, environment Canada. The guidelines dated 1987 have been carried over from Canadian Water Quality Guidelines (CCREM 1987) and no fact sheet was prepared. The guidelines dated 1989 to 1997 were developed and initially published in CCREM 1987 as appendixes on the date indicated. They are published as fact sheets in this document. Other guidelines dated 1997 and those dated 1999 are published for the first time in this document. Interim guideline. No fact sheet created. For more information on this guideline, please refer to Canadian Water Quality Guidelines (CCREM 1987). This guideline (originally published in Canadian Water Quality Guidelines [CCREM 1987 C Appendixes] in 1987 or 1991 [PCBs in marine water]) is no longer recommended and the value is withdrawn. A water quality guideline is not recommended. Environmental exposure is predominantly via sediment, soil, and/or tissue, therefore, the reader is referred to the respective guidelines for these media. This substance meets the criteria for Track 1 substances under the national CCME Policy for the Management of Toxic Substances (PMTS) (i.e., persistent, bioaccumulative, primarily the result of human activity, and CEPA-toxic or equivalent), and should be subject to virtual elimination strategies. Guidelines can serve as action levels or interim management objectives toward virtual elimination. Aluminium guidelineZ5 mg/L at pH!6.5; [Ca2C]!4 mg/L; DOC!2 mg/L Z100 mg/L at pHR6.5; [Ca2C]R4 mg/L; DOCR2 mg/L. Ammonia guideline: Guideline for total ammonia is temperature and pH dependent, please consult factsheet for more information. Guideline value slightly modified from CCREM 1987 C Appendixes due to re-evaluation of the significant figures. The technical document for the guideline is available from the Ontario Ministry of the Environment. Substance has been re-evaluated since CCREM 1987 C Appendixes. Either a new guideline has been derived or insufficient data existed to derive a new guideline. Cadmium guidelineZ10{0.86[log(hardness)]K3.2}. Copper guidelineZ2 mg/L at [CaCO3]Z0–120 mg/L;Z3 mg/L at [CaCO3]Z120–180 mg/L;Z4 mg/L at [CaCO3]O180 mg/L. Dissolved oxygen for warm-water biota: early life stagesZ6,000 mg/L; other life stagesZ5,500 mg/L; for cold-water biota: early life stagesZ9,500 mg/L; other life stagesZ6,500 mg/L No recommended guideline. (Continued)
q 2006 by Taylor & Francis Group, LLC
8-152
Table 8G.96 p q r s t
u v w x y
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Lead guidelineZ1 g/L at [CaCO3]Z0–60 mg/L;Z2 mg/L at [CaCO3]Z60–120 mg/L;Z4 mg/L at [CaCO3]Z120–180 mg/L;Z7 mg/L at [CaCO3]ZO180 mg/L. Nickel guidelineZ25 mg/L at [CaCO3]Z0–60 mg/L;Z65 mg/L at [CaCO3]Z60–120 mg/L;Z110 mg/L at [CaCO3]Z120–180 mg/L;Z 150 mg/L at [CaCO3]ZO180 mg/L. Expressed on a TEQ basis using NP TEFs, see Table 2 in factsheet. The guideline of 4.0 mg/L for phenoxy herbicides is based on data for ester formulations of 2,4-dichlorophenoxyacetic acid. Temperature: (for more information, see CCREM 1987). Thermal Stratification: Thermal additions to receiving waters should be such that thermal stratification and subsequent turnover dates are not altered from those existing prior to the addition of heat from artificial origins. Maximum Weekly Average Temperature: Thermal additions to receiving waters should be such that the maximum weekly average temperature is not exceeded. Short-term Exposure to Extreme Temperature: Thermal additions to receiving waters should be such that the short-term exposures to maximum temperatures are not exceeded. Exposures should not be so lengthy or frequent as to adversely affect the important species. The technical document for the guideline is available from British Columbia Ministry of Environment, Lands and Parks. For protection from direct toxic effects; the guidelines do not consider indirect effects due to eutrophication. May not prevent accumulation of methylmercury in aquatic life, therefore, may not protect wildlife that consume aquatic life; see factsheet for details. Consult also the appropriate Canadian Tissue Residue Guideline for the Protection of Wildlife consumers of Aquatic Biota May not protect fully higher trophic level fish; see factsheet for details. Canadian Trigger Ranges (for further narrative see factsheet). Total Phosphorus (ugLK1): ultra-oligotrophic!4 oligotrophic 4–10 mesotrophic 10–20 eutrophic 35–100 hyper-eutrophicO100
Source: From Canadian Council of Ministers of the Environment, 2005. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table, Updated October 2005. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, www.ec.gc.ca/CEQG-RCQE.
Table 8G.97 Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota Parametera DDT (total) Methylmercury Polychlorinated biphenyls (PCBs) Polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans Toxaphene a
Guideline (mg/kg diet ww)b
Date
14.0 33.0 Mammalian: 0.79 ng TEQ/kg diet wwc Avian: 2.4 ng TEQ/kg diet wwd Mammalian: 0.71 ng TEQ/kg diet wwc
1997 2001 1998 1998 2001
Avian: 4.75 ng TEQ/kg diet wwd 6.3
2001 1997
Supporting documents are available from the Guidelines and Standards Division, Environment Canada. Guideline refers to the total concentration of the contaminant found in an aquatic organism on a wet weight (ww) basis that is not expected to result in adverse effects in predaceous wildlife. c TEQ refers to dioxin toxic equivalents using toxic equivalency factors (TEFs) for PCBs for mammals developed by the World Health Organization in 1998. See fact sheet or supporting document for more details. d TEQ refers to dioxin toxic equivalents using toxic equivalency factors (TEFs) for PCBs for birds developed by the World Health Organization in 1998. See fact sheet or supporting document for more details. Source: From Canadian Council of Ministers of the Environment, 2001, Canadian Tissue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Summary Table. Updated. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, www.ec.gc.ca. b
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-153
Table 8G.98 Summary of Water Quality Guidelines for Turbidity, Suspended and Benthic Sediments, British Columbia, Canada
Water Use
Drinking Water—raw untreated 1 NTU when background is less than or equal to 5 Drinking Water—raw treated 5 NTU when background is less than or equal to 50 10% when background is greater than 50 Recreation and Aesthetics Maximum 50 NTU secchi disc visible at 1.2 m 8 NTU in 24 hrs when Aquatic Life background is less than or Fresh equal to 8 Marine Estuarine Mean of 2 NTU in 30 days when background is less than or equal to 8 8 NTU when background is Aquatic Life between 8 and 80 Fresh 10% when background is Marine greater than or equal to 80 Estuarine Terrestrial Life Wildlife Livestock water Irrigation Industrial
Maximum Induced Suspended Sediments— mg/L or % of Background
Maximum Induced Turbidity—NTU or % of Background
10 NTU when background is less than or equal to 50 20% when background is greater than or equal to 50
Streambed Substrate Composition
No Guideline
No Guideline
No Guideline
No Guideline
No Guideline
No Guideline
25 mg/L in 24 hrs when background is less than or equal to 25 Mean of 5 mg/L in 30 days when background is less than or equal to 25 25 mg/L when background is between 25 and 250 10% when background is greater than or equal to 250
Fines not to exceed K10% as less than 2 mm K19% as less than 3 mm K25% as less than 6.35 mm at salmonid spawning sites Geometric mean diameter not less than 12 mm Fredle number not less than 5 mm No guideline
20 mg/L when background is less than or equal to 100 20% when background is greater than or equal to 100
Source: From British Columbia Approved Water Quality Guidelines (Criteria) 2006 Edition, Updated: August 2006, www.env.gov.bc.ca. Reprinted with Permission.
Table 8G.99 Canadian Sediment Quality Guidelines for the Protection of Aquatic Life Freshwater Parameter
a
ISQG (ug/kg)
Arsenic 5,900 Cadmium 600 Chlordane 4.50 Chromium 37,300 Copper 35,700 3.54 DDD (2,2-Bis (p-chlorophenyl)-1,1dichloroethane; Dichloro diphenyl dichloroethane)c 1.42 DDE(1,1-Dichloro-2,2-bis(pchlorophenyl)-ethene, Diphenyl dichloro ethylenec 1.19d DDT(2,2-Bis(p-chlorophenyl)-1,1,1trichloroethane; Dichloro diphenyl trichloroethane)c Dieldrin 2.85 Endrin 2.67 Heptachlor (Heptachlor epoxide} 0.60 Lead 35,000 Lindane (Hexachlorocyclohexane) 0.94 Mercury 170 Nonylphenol and its ethoxylates 1.4 mg/kg dwf,g Polychlorinated biphenyls (PCBs) Aroclor 1254 0.60 Total PCBs 34.1
Marine b
PEL (ug/kg)
ISQG (ug/kg)
PELb (ug/kg)
17,000 3,500 8.87 90,000 197,000 8.51
7,240 700 2.26 52,300 18,700 1.22
41,600 4,200 4.79 160,000 108,000 7.81
6.75
2.07
4.77e
1.19
6.67 62.4 2.74 91,300 1.38 486
340j 277
a
0.71 2.67d 0.60d 30,200 0.32 130 1.0 mg/kg dwf,h 63.3 21.5
374
4.77
4.3 62.4e 2.74e 112,000 0.99 700
709 189 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-154
Table 8G.99
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Freshwater
Parameter Polychlorinated dibenzo-pdioxins/dibenzo furans (PCDD/Fs) Polycyclic aromatic hydrocarbons (PAHs) Acenapthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene 2-MethyInaphthalene Naphthalene Phenanthrene Pyrene Toxaphene Zinc a b c d e f g h i j k l m
a
ISQG (ug/kg) 0.85 ng TEQ/kg dwk
6.71d 5.87d 46.9d 31.7 31.9 57.1 6.22d 111 21.2d 20.2d 34.6d 41.9 53.0 0.1l 123,000
Marine b
PEL (ug/kg) 21.5 ng TEQ/kg dwk
88.9e 128e 245e 385 782 862 135e 2,355 144e 201e 391e 515 875 —m 315,000
a
ISQG (ug/kg) 0.85 ng TEQ/kg dwk
6.71 5.87d 46.9 74.8 88.8 108 6.22 113 21.2 20.2 34.6 86.7 153 0.1l 124,000
PELb (ug/kg) 21.5 ng TEQ/kg dwk
88.9 128e 245 693 763 846 135 1,494 144 201 391 544 1,398 —m 271,000
ISQG: Interim sediment quality guideline Canadian Environmental Quality Guidelines Summary Table December 2003. PEL: Probable effect level. Sum of p,p 0 and o,p 0 isomers. Provisional: adoption of marine ISQG. Provisional: adoption of marine PEL. Provisional; use of equilibrium partitioning approach. Note that the incidence of adverse biological effects below the TEL, between the TEL and PEL, and above the PEL were 22%, 24%, and 65%, respectively, prior to the application of a safety factor. Expressed in a toxic equivalency (TEQ) basis using NP TEFs; assumes 1% TOC. Provisional: adoption of lowest effect level from Ontario (Persaud et al. 1993). Provisional: 1% TOC: adoption of severe effect level of 34mg.g-1TOC from Ontario (Persaud et al. 1993). Values are expressed as toxic equivalency (TEQ) units, based on WHO 1998 TEF values for fish. Provisional; 1% TOC: adoption of the chronic sediment quality criterion of 0.01 ug/gl TOC of the New York State Department of Environmental Conservation (NYSDEC 1994). No PEL derived.
Source: From Canadian Council of Ministers of the Environment, 2002, Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Summary Table, Updated 2002. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, www.ec.gc.ca/CEQG-RCQE.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-155
Table 8G.100 ECE Standard Statistical Classification of Surface Freshwater Quality for the Maintenance of Aquatic Life Variables
Class I
Class II
Oxygen regime DO (%) Epilimnion (stratified 90–110 70–90 or 110–120 waters) Hypolimnion 90–70 70–50 (stratified waters) Unstratified waters 90–70 70–50 or 110–120 DO(mg/L) O7 7-6 3-10 COD-Mn (mg O2 /L) !3 COD-Cr (mg O2/L) — — Eutrophication !10 (!15) 10–25 (15–40) Total P (mg/L)a !300 300–750 Total N (mg/L)a Chlorophyll a (mg/L)a !2.5 (!4) 2.5–10 (4–15) Acidification 9.0–6.5 6.5–6.3 pHb Alkalinity (mg O200 200–100 CaCO3/l) Metals Aluminium (mg/l; pH !1.6 1.6–3.2 6.5) Arsenic (mg/L)c !10 10–100 Cadmium (mg/L)d !0.07 0.07–0.53 !1 1-6 Chromium (mg/L)c Copper (mg/L)d !2 2-7 !0.1 0.1–1.6 Leader (mg/L)d Mercury (mg/L)d !0.003 0.003–0.007 !15 15–87 Nickel (mg/L)d Zinc (mg/L)d !45 45–77 Chlorinated micropollutants and other hazardous substances Dieldrin (mg/L) na na DDT and metabolites na na (mg/L) Endrin (mg/L) na na Heptachlor (mg/L) na na Lindane (mg/L) na na Pentachlorophenol na na (mg/L) PCBs (mg/L) na na na Free ammonia (NH3) na Radioactivity Gross-alpha activity !50 50–100 (mBq/L) Gross-beta activity !200 200–500 (mBq/L)
Class III
Class IV
Class V
50–70 or 120–130
30–50 or 130–150
!30 or O150
50–30
30–10
!10
50–30 or 120–130 6-4 10-20 —
30–10 or 130–150 4-3 20-30 —
!10 or O150 !3 O30 —
25–50 (40–75) 750–1,500 10–30 (15–45)
50–125 (75–190) 1,500–2,500 30–110 (45–165)
O125 (O190) O2,500 O110 (O165)
6.3–6.0 100–20
6.0–5.3 20–10
!5.3 !10
3.2–5
May-75
O75
100–190 0.53–1.1 6-11 7-12 1.6–3.2 0.007–0.012 87–160 77–110
190–360 1.1–3.9 11-16 12-18 3.2–82 0.012–2.4 160–1,400 110–120
O360 O3.9 O16 O18 O82 O2.4 O1,400 O120
!0.0019 !0.001
0.0019–2.5 0.001–1.1
O2.5 O1.1
!0.0023 !0.0038 !0.08 !13
0.0023–0.18 0.0038–0.52 0.08–2.0 13–20
O0.18 O0.52 O2.0 O20
!0.014 —
0.014–2.0 —
O2.0 —
100–500
500–2,500
O2,500
500–1,000
1,000–2,500
O2,500
Note: Measures falling on the boundary between two classes are to be classified in the lower class; na, Not applicable; —, No value set at present. a b c d
Data in brackets refer to flowing waters. Values O9.0 are disregarded in the classification of acidification. Applicable for hardness from about 0.5 to 8 meq/L. Arsenic V and chromium III to be converted to arsenic III and chromium VI, respectively. Applicable for hardness from about 0.5 to 8 meq/L.
Source: From Ute S. Enderlein, Rainer E. Enderlein and W. Peter Williams, 1997, Chapter 2—Water Quality Requirements, In: World Health Organization, Water Pollution Control—A Guide to the Use of Water Quality Management Principles, Copyright q 1997 WHO/UNEP. Original Source: From The United Nations is the author of the original material. United Nations Economic Commission for Europe, 1994, Standard Statistical Classification of Surface Freshwater Quality for the Maintenance of Aquatic Life. In: Readings in International Environment Statistics, United Nations Economic Commission of Europe, United Nations, New York, and Geneva.
q 2006 by Taylor & Francis Group, LLC
8-156
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.101 Water-Quality Objectives for the River Rhine Related to Organic Substances Water-Quality Variable
Water-Quality Objective (mg/L)
Basis for Elaborationa
Tetrachloromethane Trichloromethane Aldrin, Dieldrin, Endrin, Isodrin Endosulfan Hexachlorobenzene Hexachlorobutadien PCB 28, 52, 101,180, 138, 153 1-Chloro-4-nitro-Benzen 1-Chloro-2-nitro-Benzen Trichlorobenzene Pentachlorophenol Trichloroethen Tetrachloroethen 3,4-Dichloroanilin 2-Chloroanilin 3-Chloroanilin 4-Chloroanilin Parathion(-ethyl) Parathion(-methyl) Benzene 1,1,1-Trichloroethane 1,2-Dichloroethane Azinphos-methyl Bentazon Simazine Atrazine Dichlorvos 2-Chlorotoluol 4-Chlorotoluol Tributyl tin-substances Triphenyl tin-substances Trifluralin Fenthion
1.0 0.6 0.0001 (per substance) 0.003 0.0005 0.001 0.001 (per substance) 1.0 1.0 0.1 0.001 1.0 1.0 0.1 0.1 0.1 0.01 0.0002 0.01 0.1 1.0 1.0 0.001 0.1 0.1 0.1 0.001 1.0 1.0 0.001 0.001 0.1 0.01
DrwCaqL aqL aqCterrL aqL aqL aqL aqL Drw DrwCaqL aqL aqCterrL Drw Drw aqL DrwCaqL Drw aqL aqL aqL aqL Drw aqL aqL Drw DrwCaqL DrwCaqL aqL Drw Drw aqL aqL aqL aqL
a
Water-quality objectives have been set on the basis of water-quality criteria for drinking-water supply (Drw), drinking-water supply and aquatic life (DrwCaqL) and/or aquatic life (aqL), as well as on the basis of toxicity testing on selected species of aquatic and terrestrial life (aqCterrL).
Source: From Ute S. Enderlein, Rainer E. Enderlein and W. Peter Williams, 1997, Chapter 2 — Water Quality Requirements, In: Water Pollution Control — A Guide to the Use of Water Quality Management Principles. Copyright q 1997 WHO/UNEP. Original Source: From ICPR, Konzept zur Ausfu¨llung des Punktes A.2 des APR u¨ber Zielvorgaben, 1991. Lenzburg, den 2. Juli (Methodology to implement item A.2 of the Rhine Action Programme related to water quality objectives, prepared at Lenzbourg on 2 July 1991). PLEN 3/91, International Commission for the Protection of the Rhine against Pollution, Koblenz, Germany, 1991, www.who.int.
q 2006 by Taylor & Francis Group, LLC
Surface Water (ug/L) Metal Antimony(Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium (Cr) Cobalt (Co) Copper (Cu) Lead (Pb) Mercury (Hg) Methyl-mercury Molybdenum (Mo) Nickel (Ni) Selenium (Se) Thallium (Tl) Tia (Sn) Vanadium (V) Zinc (Zn) Note: a b c d
MPA (fresh)
NA (fresh)
Cb (fresh)
MPC (fresh)
NC (fresh)
6.2a 24b 150a 0.16b 0.34b 8.5b 2.6b 1.1b 11b 0.23b 0.01b 290a 1.8b 5.3b 1.6a 18a 3.5a 6.6b
0.062 0.24 1.5 0.0016 0.0034 0.085 0.026 0.011 0.11 0.0023 0.0001 2.9 0.018 0.053 0.016 0.18 0.035 0.066
0.29 0.77 73 0.02 0.08 0.17 0.20 0.44 0.15 0.01 0.01 1.4 3.3 0.04 0.04 0.0002 0.82 2.8
6.5 25 220 0.18 0.42 8.7 2.8 1.5 11 0.24 0.02 290 5.1 5.3 1.6 18 4.3 9.4
0.35 1.0 75 0.022 0.083 0.26 0.23 0.45 0.26 0.012 0.01 4.3 3.3 0.093 0.056 0.18 0.86 2.9
SED (mg/kg) Cb (marine)
MPC (marine)
NC (marine)
0.025
0.37
0.028
0.25 0.02 0.0025 0.0025
1.4 11 0.23 0.013
0.26 0.13 0.0048 0.0026
0.35
7.0
0.42
MPA (sed) (d) 16 160 150 0.096 29 1,620 10 37 4,700 26 1.1 250 9.4 2.2 1.6 22,000 14 480
NA (sed) 0.16 1.6 1.5 0.00096 0.29 16 0.10 0.37 47 0.26 0.011 2.5 0.094 0.022 0.016 220 0.14 4.8
Cb (sed)
MPC (sed)
Nc (sed)
3.0 29 155 1.1 0.8 100 9.0 36 85 0.3 0.3 0.5 35 0.7 1.0 19 42 140
19 190 300 1.2 30 1,720 19 73 4,800 26 1.4 250 44 2.9 2.6 22,000 56 620
3.2 31 157 1.1 1.1 116 9.1 36 132 0.56 0.31 3.0 35 0.72 1.0 239 42 145
WATER QUALITY
Table 8G.102 Maximum Permissible Concentrations and Negligible Concentrations for Metals, The Netherlands
MPA, maximum permissible addition; NA, Negligible Addition, Cb, background concentration; MPC, maximum permissible concentration; NC, negligible concentration for metals; fresh, freshwater; marine, saltwater.
MPA based on modified EPA-method MPA based on statistical extrapolation Values are given as concentrations in mg/kg standard soil/sediment (soil/sediment containing 10% organic matter and 25% clay) MPA based on equilibrium partitioning.
Source: From Crommentuijn, T., M. Polder, and E. van de Plassche. 1997. Maximum permissible concentrations and negligible concentrations for metals, taking background concentrations into account. Nat. Inst. Public Health and the Environ., Bilthoven, The Netherlands. RIVM Report 601501001, tivm.nl.
8-157
q 2006 by Taylor & Francis Group, LLC
8-158
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Australia and New Zealand Physico-Chemical Stressor Low-Risk Guideline Trigger Values for Ecosystems The default approach to deriving trigger values has used the statistical distribution of reference data collected within five geographical regions across Australia and New Zealand. Here, depending on the stressor, a measureable perturbation in slightly to moderately disturbed ecosystems has been defined using the 80th and/or 20th percentile of the reference data. First, New Zealand and Australian state and territory representatives used percentile distributions of available data and professional judgement to derive trigger values for each ecosystem type in their regions.Trigger values were then collated, discussed and agreed for southeast Australia (VIC, NSW, ACT, south-east QLD, and TAS,) southwest Australia (southern WA), tropical Australia (northern WA, NT, northern QLD), south central Australia —— low rainfall area (SA) and New Zealand. The default trigger values in the present guidelines were derived from ecosystem data for unmodified or slightly-modified ecosystems supplied by state agenicies. However, the choice of these reference systems was not based on any objective biological criteria. This lack of specificity may have resulted in inclusion of reference systems of varying quality, and further emphasises that the default trigger values should only be used until site- or ecosystem-specific values can be generated.
Regions
Ecosystems
South East Australia Tropical Australia South West Australia South Central Australia New Zealand
Upland rivers Lowland rivers Lakes & Reservoirs Wetlands Estuaries Inshore marine Offshore marine Note: Most of the guidelines apply everywhere, but there are separate physico-chemical guideline lists for 5 regions (including New Zealand) and for 7 ecosystem types (shown above).
Tropical
SouthEast
SouthWest
SouthCentral
New Zealand Figure 8G.22 Geographic regions of Australia and New Zealand. (From Australia Water Quality — Introduction, The Guideline Value Lists; www.ozh2o.com/ozh3a.html.)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-159
Table 8G.103 Default Trigger Values for Physical and Chemical Stressors for Southeast Australia for Slightly Disturbed Ecosystems DO (% saturation)a Ecosystem Type Upland river Lowland riverh Freshwater lakes & Reservoirs Wetlands Estuariesl Marinel Note:
a b c d e f g h i j k l m n o p
Chl a (mg/L)
TP (mg P/L)
FRP (mg P/L)
TN (mg N/L)
NOx (mg N/L)
NHD 4 (mg N/L)
Lower Limit
Upper Limit
pH Lower Limit
Upper Limit
nab 5 5j
20c 50 10k
15d 20 5
250e 500 350
15f 40i 10
13k 20 10
90 85 90
110 110 110
6.5 6.5 6.5
7.5g 8.0 8.0g
no data 4m 1o
no data 30 25o
no data 5n 10
no data 300 120
no data 15 5p
no data 15 15p
no data 80 90
no data 110 110
no data 7.0 8.0
no data 8.5 8.4
Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Australian states and territories. Chl a, chlorophyll a; TP, total phosphorus; FRP, filterable reactive phosphate; TN, total nitrogen; NOx, oxides of nitrogen; NHC 4 , ammonium; DO, dissolved oxygen; na, not applicable.
Dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may very diurnally and with depth. Monitoring programs should assess this potential variability. Monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl a mK2) to be developed. Values are 30 mg/L for Qld rivers, 10 mg/L for Vic. Alpine streams and 13 mg/L for Tas. Rivers. Values is 5 mg/L for Vic. alpine streams and Tas. rivers; Values are 100 mg/L for Vic. alpine streams and 480 mg/L for Tas. rivers. Value is 190 mg/L for Tas. rivers. Values for NSW upland rivers are 6.5–8.0, for NSW lowland rivers 6.5–8.5, for humic rich Tas. lakes and rivers 4.0–6.5. Values are 3 mg/L for Chl a, 25 mg/L for TP and 350 mg/L for TN for NSW & Vic. east flowing coastal rivers. value is 60 mg/L for Qld rivers. Values are 3 mg/L for Tas. lakes. Values is 10 mg/L for Qld. rivers. No data available for Tasmanian estuarine and marine waters. A precautionary approach should be adopted when applying default trigger values to these systems. Values is 5 mg/L for Qld estuaries. Value is 15 mg/L for Qld. estuaries. values are 20 mg/L for TP for offshore waters and 1.5 mg/L for Chl a for Old inshore waters. Values of 25 mg/L for NOx and 20 mg/L for NHC 4 for NSW are elevated due to frequent upwelling events.
Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.104 Ranges of Default Trigger Values for Conductivity (EC, salinity), Turbidity and Suspended Particulate Matter (SPM) Indicative of Slightly Disturbed Ecosystems in Southeast Australia Ecosystem type Upland rivers Lawland rivers Lakes & reservoirs Estuarine & marine Note:
Salinity (mS/cm)
Turbidity (NTU)
30–350 125–2,200 20–30
2–25 6–50 1–20 0.5–10
Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for ecosystem type, can be found in the guidance document.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
8-160
Table 8G.105 Default Trigger Values for Physical and Chemical Stressors for Tropical Australia for Slightly Disturbed Ecosystems DO (% saturation)a Ecosystem type Upland riverb Lowland riverb Freshwater lakes & Reservoirs Wetlands Estuariesb Marine
Inshore Offshore
NHD 4
pH
Chl a (mg/L)
TP (mg P/L)
FRP (mg P/L)
TN (mg N/L)
NOx (mg N/L)
(mg N/L)
Lower limit
Upper limit
Lower limit
Upper limit
nac 5 3
10 10 10
5 4 5
150 200–300d 350f
30 10e 10e
6 10 10
90 85 90
120 120 120
6.0 6.0 6.0
7.5 8.0 8.0
10 2 0.7–1.4h 0.5–0.9h
10–50g 20 15 10
5–25g 5 5 2–5h
350–1,200g 250 100 100
10 30 2–8h 1–4h
10 15 1–10h 1–6h
90e 80 90 90
120e 120 no data no data
6.0 7.0 8.0 8.2
8.0 8.5 8.4 8.2
Note: Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Australian states and territories for the Northern Territory and regions north of Carnarvon in the west and Rockhampton in the east. Chl a, chlorophyll a; TP, total phosphorus; FRP, filterable reactive phosphate; TN, total nitrogen; NOx, oxides of nitrogen; NHC 4 , ammonium; DO, dissolved oxygen; na, not applicable. b c d e f g h
Dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may vary diurnally and with depth. Monitoring programs should assess this potential variability. No data available for tropical WA estuaries or rivers. A precautionary approach should be adopted when applying default trigger values to these systems. Monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl a mK2) to be developed. Lower values from rivers draining rainforest catchments. Northern Territory values for 5 mg/L for Nox, and !80 (lower limit) and O110% saturation (upper limit) for DO. This value represents turbid lakes only. Clear lakes have much lower values. Higher values are indicative of tropical WA river pools. The lower values are typical of clear coral dominated waters (e.g. Great Barrier Reef), while higher values typical of turbid macrotidal systems (e.g. Northwest Shelf of WA).
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
a
WATER QUALITY
8-161
Table 8G.106 Ranges of Default Trigger Values for Conductivity (EC, salinity), Turbidity and Suspended Particulate Matter (SPM) Indicative of Slightly Disturbed Ecosystems in Tropical Australia Ecosystem Type Upland & lowland rivers Lakes, reservoirs & wetlands Estuarine & marine Note:
Salinity (mS/cm)
Turbidity (NTU)
20–250 90–900 —
2–15 2–200 1–20
Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for groupings of ecosystem type can be found in the guidance document.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.107 Default Trigger Values for Physical and Chemical Stressors for South-West Australia for Slightly Disturbed Ecosystems DO (% saturation)a Ecosystem type Upland riverb Lowland riverb Freshwater lakes & reservoirs Wetlandsd Estuaries Marinef,g
Note:
Inshoreh Offshore
NHD 4
pH
Chl a (mg/L)
TP (mg P/L)
FRP (mg P/L)
TN (mg N/L)
NOx (mg N/L)
(mg N/L)
Lower Limit
Upper Limit
Lower Limit
Upper Limit
nac 3–5 3–5
20 65 10
10 40 5
450 1,200 350
200 150 10
60 80 10
90 80 90
na 120 no data
6.5 6.5 6.5
8.0 8.0 8.0
30 3 0.7 0.3i
60 30 20i 20i
30 5 5i 5
1,500 750 230 230
100 45 5 5
40 40 5 5
90 90 90 90
120 110 na na
7.0e 7.5 8.0 8.2
8.5e 8.5 8.4 8.2
Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Western Australia. Chl a, chlorophyll a; TP, total phosphorus; FRP, filterable reactive phosphate; TN, total nitrogen; NOx, oxides of nitrogen; NHC 4 , ammonium; DO, dissolved oxygen; na, not applicable.
a
Dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may vary diumally and with depth. Monitoring programs should assess this potential variability. All values derived during base river flow conditions not storm events. c Monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers—values for periphyton biomass (mg Chl a mK2) to be developed. d Elevated nutrient concentrations in highly coloured wetlands (given O52 g440/m) do not appear to stimulate algal growth. e In highly coloured wetlands (given O52 g440/m) pH typically ranges 4.5–6.5. f Nutrient concentrations alone are poor indicators of marine trophic status. g These trigger values are generic and therefore do not necessarily apply in all circumstances, e.g. for some unprotected coastlines, such as Albany and Geographe Bay, it may be more appropriate to use offshore values for inshore waters. h Inshore waters defined as coastal lagoons (excluding estuaries) and embayments and waters less than 20 m depth. i Summer (low rainfall) values, values higher in winter for Chi a (1.0 mg/L), TP (40 mg P/L), FRP (10 mg P/L). Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au. b
q 2006 by Taylor & Francis Group, LLC
8-162
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.108 Ranges of Default Trigger Values for Conductivity (EC, salinity), Turbidity and Suspended Particulate Matter (SPM) Indicative of Slightly Disturbed Ecosystems in Southwest Australia Ecosystem type Upland & lowland rivers Lakes, reservoirs & wetlands Estuarine & marine
Salinity (mS/cm)
Turbidity (NTU)
120–300 300–1,500 —
10–20 10–100 1–2
Note:
Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes that provide detail on specific variability issues for ecosystem types can be found in the guidance document. Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.109 Default Trigger Values for Physical and Chemical Stressors for South-Central Australia for Slightly Disturbed Ecosystems DO (% Saturation) Ecosystem Type Upland river Lowland river Freshwater lakes & reservoirs Wetlands Estuaries Marine
Chl a (mg/L)
TP (mg P/L)
FRP (mg P/L)
TN (mg N/L)
NOx (mg N/L)
NHD 4 (mg N/L)
pH
Lower Limit
Upper Limit
Lower Limit
Upper Limit
No data No data No data
No data 100 25
No data 40 10
No data 1,000 1,000
No data 100 100
No data 100 25
No data 90 90
No data No data No data
No data 6.5 6.5
No data 9.0 9.0
No data 5 1
No data 100 100
No data 10 10
No data 1,000 1,000
No data 100 50
No data 50 50
No data 90 No data
No data No data No data
No data 6.5 8.0
No data 9.0 8.5
Note:
Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by South Australia. Chl a, chlorophyll a; TP, total phosphorus; FRP, filterable reactive phosphate; TN, total nitrogen; NOx, oxides of nitrogen; NHC 4 , ammonium; DO, dissolved oxygen. Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.110 Ranges of Default Trigger Values for Conductivity (EC, salinity), Turbidity, and Suspended Particulate Matter (SPM) Indicative of Slightly Disturbed Ecosystems in South-Central Australia Ecosystem Types Lowland rivers Upland & lowland rivers Lakes, reservoirs & wetlands Estuarine & marine Note:
Salinity (mS/cm)
Turbidity (NTU)
100–5,000 300–1,000
1–50 1–100 0.5–10
Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for groupings of ecosystem types can be found in the guidance document.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-163
Table 8G.111 Default Trigger Values for Physical and Chemical Stressors in New Zealand for Slightly Disturbed Ecosystems DOa (% Saturation)
pHa
Ecosystem Type
Chl a (mg/L)
TP (mg P/L)
FRP (mg P/L)
TN (mg N/L)
NOx (mg N/L)
NHD 4 (mg N/L)
Lower Limit
Upper Limit
Lower Limit
Upper Limit
Upland river Lowland river
nab no data
26c 33d
9c 10d
295c 614d
167c 444d
10c 21d
99 98
103 105
7.3 7.2
8.0 7.8
Note:
a b c d e
Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Chl a, chlorophyll a; TP, total phosphorus; FRP, filterable reactive phosphate; TNe, total nitrogen; NOx, oxides of nitrogen; NHC 4 , ammonium nitrogen; DO, dissolved oxygen, na, not applicable.
DO and pH percentiles may not be very useful as trigger values because of diurnal and seasonal variation—values listed are for daytime sampling. Monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers—values for periphyton biomass (mg Chl a mK2) to be developed. New Zealand is currently making routine observations of periphyton cover. Values for glacial and lake-fed sites in upland rivers are lower; Values are lower for Haast River which receives waters from alpine regions; Commonly referred to dissolved reactive phosphorus in New Zealand.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.112 Default Trigger Values for Water Clarity (Lower Limit) and Turbidity (Upper Limit) Indicative of Unmodified or Slightly Disturbed Ecosystems in New Zealand Upland rivers a,b Ecosystem types
a
b
c d
Lowland rivers
Clarity (1/m)c,d
Turbidity (NTU)c,d
Clarity (1/m)
Turbidity (NTU)
0.6
4.1
0.8
5.6
Light availability is generally less of an issue in NZ rivers and streams than is visual clarity because, in contrast to many of Australia’s rivers, most NZ rivers are comparatively clear and/or shallow. Davies-Colley et al. (1992) recommend that visual clarity, light penetration and water colour are important optical properties of an ecosystem which need to be protected. Neither turbidity nor visual clarity provide a useful estimate of light penetration—light penetration should be considered separately to turbidity or visual clarity. Clarity relates to the transmission of light through water and is measured by the visual range of a black disk (see NZ Ministry for the Environment (1994)) or a Secchi disk. Recent work has shown that at least some NZ indigenous fish are sensitive to low levels of turbidity; however, it may also be desirable to protect the naturally high turbidities of alpine glacial lakes to prevent possible ecological impacts, such as change in predator-prey relationships. Note that turbidity and visual water clarity are closely and inversely related, and the 80th percentile for turbidity is consistent with the 20th percentile for visibility and vice versa. Clarity and turbidity values for glacial sites in upland rivers are lower and higher, respectively.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
8-164
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.113 General Framework for Applying Australian Levels of Protection for Toxicants to Different Ecosystem Conditions Ecosystem Condition
Level of Protection
1 High conservation/ecological value
For anthropogenic toxicants, detection at any concentration could be grounds for source investigation and management intervention; for natural toxicants background concentrations should not be exceededa Where local biological or chemical data have not yet been gathered, apply the 99% protection levels (Table 8.114) as default values Any relaxation of these objectives should only occur where comprehensive biological effects and monitoring data clearly show that biodiversity would not be altered In the case of effluent discharges, Direct Toxicity Assessment (DTA) should also be required on the effluent Precautionary approach taken to assessment of post-baseline data through trend analysis or feedback triggers
2 Slightly to moderately disturbed ecosystems
Always preferable to use local biological effects data (including DTA) to derive guidelines If local biological effects data unavailable, apply 95% protection levels (Table 8.114) as default, low-risk trigger values.b 99% values are recommended for certain chemicals as noted in Table 8.114c Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers In the case of effluent discharges DTA may be required
3 High disturbed ecosystems a b c
Apply the same guidelines as for slightly-moderately disturbed systems. However, the lower protection levels provided in the Guidelines may be accepted by stakeholders DTA could be used as an alternative approach for deriving site-specific guidelines
This means that indicator values at background and test sites should be statistically indistinguishable. It is acknowledged that it may not be strictly possible to meet this criterion in every situation. For slightly disturbed ecosystems where the management goal is no change in biodiversity, users may prefer to apply a higher protection level. 99% values recommended for chemicals that bioaccumulate or for which 95% provides inadequate protection for key test species. Jurisdictions may choose 99% values for some ecosystems that are more towards the slightly disturbed end of the continuum.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.114
8-165
Australian Trigger Values for Toxicants at Alternative Levels of Protection Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical Metals & metalloids Aluminum pH O6.5 Aluminum pH!6.5 Antimony Arsenic (As III) Arsenic (AsV) Beryllium Bismuth Boron Cadmiumb Chromium (Cr III)b Chromium (CrVI) Cobalt Copperb Gallium Iron Lanthanum Leadb Manganese Mercury (inorganic)c Mercury (methyl) Molybdenum Nickelb Selenium (Total)c Selenium (SelV)c Silver Thallium Tin (inorganic, SnIV) Tributyltin (as mg/L Sn) Uranium Vanadium Zincb Nonmetallic Inorganics Ammoniae Chlorinef Cyanideg Nitrateh Hydrogen sulfidei Organic Alcohols Ethanol Ethylene glycol Isopropyl alcohol Chlorinated Alkanes Chloromethanes Dichloromethane Chloroform Carbon tetrachloride Chloroethanes 1,2-dichloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane Pentachloroethane Hexachloroethanec Chloropropanes 1,1-dichloropropane 1,2-dichloropropane 1,3-dichloropropane
Trigger Values for Marine Water (mg/L) Level of Protection (% Species)
99%
95%
90%
80%
99%
95%
90%
80%
27 ID ID 1 0.8 ID ID 90 0.06 ID 0.01 ID 1.0 ID ID ID 1.0 1,200 0.06 ID ID 8 5 ID 0.2 ID ID ID ID ID 2.4
55 ID ID 24 13 ID ID 370a 0.2 ID 1.0a ID 1.4 ID ID ID 3.4 1,900a 0.6 ID ID 11 11 ID 0.05 ID ID ID ID ID 8.0a
80 ID ID 94a 42 ID ID 680a 0.4 ID 6d ID 1.8a ID ID ID 5.6 2,500a 1.9a ID ID 13 18 ID 0.1 ID ID ID ID ID 15a
150 ID ID 360a 140a ID ID 1,300a 0.8a ID 40d ID 2.5a ID ID ID 9.4a 3,600a 5.4d ID ID 17a 34 ID 0.2a ID ID ID ID ID 31a
ID ID ID ID ID ID ID ID 0.7c 7.7 0.14 0.005 0.3 ID ID ID 2.2 ID 0.1 ID ID 7 ID ID 0.8 ID ID 0.0004 ID 50 7
ID ID ID ID ID ID ID ID 5.5a,c 27.4 4.4 1 1.3 ID ID ID 4.4 ID 0.4a ID ID 70a ID ID 1.4 ID ID 0.006a ID 100 15a
ID ID ID ID ID ID ID ID 14a,c 48.6 20a 14 3a ID ID ID 6.6a ID 0.7a ID ID 200d ID ID 1.8 ID ID 0.02a ID 160 23a
ID ID ID ID ID ID ID ID 36c,d 90.6 85a 150a 8d ID ID ID 12a ID 1.4a ID ID 560d ID ID 2.6a ID ID 0.05a ID 280 43a
320 0.4 4 17 0.5
900a 3 7 700 1.0
1,430a 6d 11 3,400a 1.5
2,300d 13d 18 17,000d 2.8
500 ID 2 ID ID
910 ID 4 ID ID
1,200 ID 7 ID ID
1,700 ID 14 ID ID
400 ID ID
1,400 ID ID
2,400a ID ID
4,000a ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID 5,400 ID ID 290
ID ID 6,500 ID ID 360
ID ID 7,300 ID ID 420
ID ID 8,400 ID ID 500
ID ID 140 ID ID ID
ID ID 1,900 ID ID ID
ID ID 5,800a ID ID ID
ID ID 18,000a ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID (Continued)
q 2006 by Taylor & Francis Group, LLC
8-166
Table 8G.114
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical
99%
Chlorinated Alkenes Chloroethylene ID 1,1-dichloroethylene ID 1,1,2-trichloroethylene ID 1,1,2,2-tetrachloroethylene ID 3-chloropropene ID 1,3-dichloropropene ID Anilines Aniline 8 2,4-dichloroaniline 0.6 2,5-dichloroaniline ID 3,4-dichloroaniline 1.3 3,5-dichloroaniline ID Benzidine ID Dichlorobenzidine ID Aromatic Hydrocarbons Benzene 600 Toluene ID Ethylbenzene ID o-xylene 200 m-xylene ID p-xylene 140 mCp-xylene ID Cumene ID Polycyclic Aromatic Hydrocarbons Naphthalene 2.5 Anthracenec ID ID Phenanthrenec ID Fluoranthenec Benzo(a)pyrenec ID Nitrobenzenes Nitrobenzene 230 1,2-dinitrobenzene ID 1,3-dinitrobenzene ID 1,4-dinitrobenzene ID 1,3,5-trinitrobenzene ID 1-methoxy-2-nitrobenzene ID 1-methoxy-4-nitrobenzene ID 1-chloro-2-nitrobenzene ID 1-chloro-3-nitrobenzene ID 1-chloro-4-nitrobenzene ID 1-chloro-2,4-dinitrobenzene ID 1,2-dichloro-3-nitrobenzene ID 1,3-dichloro-5-nitrobenzene ID 1,4-dichloro-2-nitrobenzene ID 2,4-dichloro-2-nitrobenzene ID 1,2,4,5-tetrachloro-3ID nitrobenzene 1,5-dichloro-2,4ID dinitrobenzene 1,3,5-trichloro-2,4ID dinitrobenzene 1-fluoro-4-nitrobenzene ID Nitrotoluenes 2-nitrotoluene ID 3-nitrotoluene ID 4-nitrotoluene ID 2,3-dinitrotoluene ID
Trigger Values for Marine Water (mg/L) Level of Protection (% Species)
95%
90%
80%
99%
95%
90%
80%
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
250d 7 ID 3 ID ID ID
1,100d 20 ID 6a ID ID ID
4,800d 60a ID 13a ID ID ID
ID ID ID 85 ID ID ID
ID ID ID 150 ID ID ID
ID ID ID 190 ID ID ID
ID ID ID 260 ID ID ID
950 ID ID 350 ID 200 ID ID
1,300 ID ID 470 ID 250 ID ID
2,000 ID ID 670 ID 340 ID ID
500a ID ID ID ID ID ID ID
700a ID ID ID ID ID ID ID
900a ID ID ID ID ID ID ID
1,300a ID ID ID ID ID ID ID
16 ID ID ID ID
37 ID ID ID ID
85 ID ID ID ID
50a ID ID ID ID
70a ID ID ID ID
90a ID ID ID ID
120a ID ID ID ID
550 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
820 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
1,300 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.114
8-167
(Continued) Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical
99%
95% a
2,4-dinitrotoluene 16 65 2,4,6-trinitrotoluene 100 140 1,2-dimethyl-3-nitrobenzene ID ID 1,2-dimethyl-4-nitrobenzene ID ID 4-chloro-3-nitrotoluene ID ID Chlorobenzenes and Chloronaphthalenes Monochlorobenzene ID ID 1,2-dichlorobenzene 120 160 1,3-dichlorobenzene 160 260 1,4-dichlorobenzene 40 60 1,2,3-trichlorobenzenec 3 10 85 170a 1,2,4-trichlorobenzenec ID ID 1,3,5-trichlorobenzenec 1,2,3,4-tetrachlorobenzenec ID ID ID ID 1,2,3,5-tetrachlorobenzenec 1,2,4,5-tetrachlorobenzenec ID ID ID ID Pentachlorobenzenec Hexachlorobenzenec ID ID 1-chloronaphthalene ID ID Polychlorinated Biphenyls (PCBs) & Dioxins Capacitor 21c ID ID ID ID Aroclor 1016c ID ID Aroclor 1221c Aroclor 1232c ID ID 0.3 0.6 Aroclor 1242c ID ID Aroclor 1248c Aroclor 1254c 0.01 0.03 ID ID Aroclor 1260c ID ID Aroclor 1262c Aroclor 1268c ID ID 2,3,4 0 -trichlorobiphenyc ID ID 4,4 0 -dichlorobiphenyl ID ID ID ID 2,2 0 ,4,5,5 0 -pentachloro-1,1 0 biphenylc 2,4,6,2 0 4,6 0 ID ID hexachlorobiphenylc ID ID Total PCBsc ID ID 2,3,7,8-TCDDc Phenols and Xylenols Phenol 85 320 2,4-dimethylphenol ID ID Nonylphenol ID ID 2-chlorphenolj 340a 490a ID ID 3-chlorophenolj 160 220 4-chlorophenolj ID ID 2,3-dichlorophenolj 2,4-dichlorophenolj 120 160a ID ID 2,5-dichlorophenolj ID ID 2,6-dichlorophenolj ID ID 3,4-dichlorophenolj 3,5-dichlorophenolj ID ID ID ID 2,3,4-trichlorophenolj 2,3,5-trichlorophenolj ID ID ID ID 2,3,6-trichlorophenolj 3 20 2,4,6-trichlorophenolc,j 2,3,4,5-tetrachlorophenolc,j ID ID 10 20 2,3,4,6-tetrachlorophenolc,j ID ID 2,3,5,6-tetrachlorophenolc,j
Trigger Values for Marine Water (mg/L) Level of Protection (% Species)
90%
80%
99%
95%
90%
80%
a
130 160 ID ID ID
a
250 210 ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID 200 350 75 16 220a ID ID ID ID ID ID ID
ID 270 520a 100 30a 300a ID ID ID ID ID ID ID
ID ID ID ID ID 20 ID ID ID ID ID ID ID
ID ID ID ID ID 80 ID ID ID ID ID ID ID
ID ID ID ID ID 140 ID ID ID ID ID ID ID
ID ID ID ID ID 240 ID ID ID ID ID ID ID
ID ID ID ID 1.0 ID 0.7 ID ID ID ID ID ID
ID ID ID ID 1.7 ID 0.2 ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID ID ID ID ID ID
ID
ID
ID
ID
ID
ID
ID ID
ID ID
ID ID
ID ID
ID ID
ID ID
600 ID ID 630a ID 280a ID 200a ID ID ID ID ID ID ID 40 ID 25 ID
1,200a ID ID 870a ID 360a ID 270a ID ID ID ID ID ID ID 95 ID 30 ID
270 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
400 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
520 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID
720 ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID (Continued)
q 2006 by Taylor & Francis Group, LLC
8-168
Table 8G.114
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical
99% c,j
Pentachlorophenol 3.6 Nitrophenols 2-nitrophenol ID 3-nitrophenol ID 4-nitrophenol ID 2,4-dinitrophenol 13 2,4,6-trinitrophenol ID Organic Sulfur Compounds Carbon disulfide ID Isopropyl ID n-propyl sulfide ID Propyl disulfide ID Tert-butyl sulfide ID Phenyl disulfide ID Bis(dimethylthiocarbamyl) ID sulfide Bis(diethylthiocarbamyl) ID disulfide 2-methoxy-4H-1,3,2ID benzodioxaphosphorium2sulfide Xanthates Potassium amyl xanthate ID Potassium ethyl xanthate ID Potassium hexyl xanthate ID Potassium isopropyl xanthate ID Sodium ethyl xanthate ID Sodium isobutyl xanthate ID Sodium isopropyl xanthate ID Sodium sec-butyl xanthate ID Phthalates Dimethylphthalate 3,000 Diethylphthaiate 900 9.9 Dibutylphthalatec ID Di(2-ethylhexyl)phthalatec Miscellaneous Industrial Chemicals Acetonitrile ID Acrylonitrile ID Poly(acrylonitrile200 co-butadiene-co-styrene) Dimethylformamide ID 1,2-diphenylhydrazine ID Diphenylnitrosamine ID Hexachlorobutadiene ID Hexachlorocyclopentadiene ID Isophorone ID Organochlorine Pesticides ID Aldrinc 0.03 Chlordanec ID DDEc 0.006 DDTc ID Dicofolc ID Dieldrinc 0.03 Endosulfanc Endosulfan alphac ID ID Endosulfan betac 0.01 Endrinc 0.01 Heptachlorc
95%
90%
80%
Trigger Values for Marine Water (mg/L) Level of Protection (% Species) 99%
95%
90%
80%
d
10
17
27
11
22
33
55d
ID ID ID 45 ID
ID ID ID 80 ID
ID ID ID 140 ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID ID ID ID ID ID ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
3,700 1,000 26 ID
4,300 1,100 40.2 ID
5,100 1,300 64.6 ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID 530
ID ID 800a
ID ID 1,200a
ID ID 200
ID ID 250
ID ID 280
ID ID 340
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID ID ID ID ID ID
ID 0.08 ID 0.01 ID ID 0.2d ID ID 0.02 0.09
ID 0.14 ID 0.02 ID ID 0.6d ID ID 0.04a 0.25
ID 0.27a ID 0.04 ID ID 1.8d ID ID 0.06d 0.7d
ID ID ID ID ID ID 0.005 ID ID 0.004 ID
ID ID ID ID ID ID 0.01 ID ID 0.008 ID
ID ID ID ID ID ID 0.02 ID ID 0.01 ID
ID ID ID ID ID ID 0.05d ID ID 0.02 ID (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.114
8-169
(Continued) Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical
99%
Lindane 0.07 Methoxychlorc ID ID Mirexc 0.1 Toxaphenec Organophosphorus Pesticides Azinphos methyl 0.01 0.00004 Chlorpyrifosc Demeton ID Demeton-S-methyl ID Diazinon 0.00003 Dimethoate 0.1 Fenitrothion 0.1 Malathion 0.002 Parathion 0.0007 ID Profenofosc Temephosc ID Carbamate & Other Pesticides Carbofuran 0.06 Methomyl 0.5 S-methoprene ID Pyrethroids Deltamethrin ID Esfenvalerate ID Herbicides & Fungicides Bypyridilium herbicides Diquat 0.01 Paraquat ID Phenoxyacetic acid herbicides MCPA ID 2,4-D 140 2,4,5-T 3 Sulfonylurea herbicides Bensulfuron ID Metsulfuron ID Thiocarbamate herbicides Molinate 0.1 Thiobencarb 1 Thiram 0.01 Triazine herbicides Amitrole ID Atrazine 0.7 Hexazinone ID Simazine 0.2 Urea herbicides Diuron ID Tebuthiuron 0.02 Miscellaneous herbicides Acrolein ID Bromacil ID Glyphosate 370 Imazethapyr ID Ioxynil ID Metolachlor ID Sethoxydim ID Trifluralinc 2.6
95%
90%
80% d
Trigger Values for Marine Water (mg/L) Level of Protection (% Species) 99%
95%
90%
80%
0.2 ID ID 0.2
0.4 ID ID 0.3
1.0 ID ID 0.5
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
0.02 0.01 ID ID 0.01 0.15 0.2 0.05 0.004a ID ID
0.05 0.11d ID ID 0.2d 0.2 0.3 0.2 0.01a ID ID
0.11d 1.2d ID ID 2d 0.3 0.4 1.1d 0.04d ID ID
ID 0.0005 ID ID ID ID ID ID ID ID 0.0004
ID 0.009 ID ID ID ID ID ID ID ID 0.05
ID 0.04d ID ID ID ID ID ID ID ID 0.4
ID 0.3d ID ID ID ID ID ID ID ID 3.6d
1.2d 3.5 ID
4d 9.5 ID
15d 23 ID
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID 0.001k
ID ID
ID ID
ID ID
ID ID
ID ID
ID ID
1.4 ID
10 ID
80d ID
ID ID
ID ID
ID ID
ID ID
ID 280 36
ID 450 100
ID 830 290d
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID ID
ID ID
ID ID
ID ID
ID ID
ID ID
ID ID
3.4 2.8 0.2
14 4.6 0.8a
57 8a 3d
ID ID ID
ID ID ID
ID ID ID
ID ID ID
ID 13 ID 3.2
ID 45a ID 11
ID 150a ID 35
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID ID ID ID
ID 2.2
ID 20
ID 160a
ID ID
ID ID
ID ID
ID ID
ID ID 1,200 ID ID ID ID 4.4
ID ID 2,000 ID ID ID ID 6
ID ID 3,600d ID ID ID ID 9d
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID
ID ID ID ID ID ID ID ID (Continued)
q 2006 by Taylor & Francis Group, LLC
8-170
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.114
(Continued) Trigger Values for Freshwater (mg/L) Level of Protection (% species)
Chemical
99%
Generic Groups of Chemicals Surfactants Linear alkylbenzene sulfonates 65 (LAS) Alcohol ethoxyolated sulfate 340 (AES) Alcohol ethoxylated 50 surfactants (AE) Oils & Petroleum ID Hydrocarbons Oil Spill Dispersants BP 1100X ID Corexit 7664 ID Corexit 8667 Corexit 9527 ID Corexit 9550 ID Note:
a
b
c d e f g h i j k
Trigger Values for Marine Water (mg/L) Level of Protection (% Species)
95%
90%
80%
99%
95%
90%
80%
280
520a
1,000a
ID
ID
ID
ID
650
850a
1,100a
ID
ID
ID
ID
140
220
360a
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID ID ID
ID ID ID 230 ID
ID ID ID 1100 ID
ID ID ID 2,200 ID
ID ID ID 4,400d ID
ID, Insufficient data to derive a reliable trigger value. Users advised to check if a low reliability value or an ECL is available Section 8.3.7. Values in grey shading are the trigger values applying to typical slightly-moderately disturbed systems; see Table 8113. And Section 3.4.2.4 of the guidance document for guidance on applying these levels to different ecosystem conditions. Where the final water quality guideline to be applied to a site is below current analytical practical quantitation limits, see Section 3.4.3.3 of guidance document. Most trigger values listed here for metals and metalloids are High reliability figures, derived from field or chronic NOEC data. The exceptions are Moderate reliability for freshwater aluminium (pH O6.5), manganese and marine chromium (III). Most trigger values listed here for non-metallic inorganices and organic chemicals are Moderate reliability figures, derived for acute LC50 data. The exceptions are High reliability for freshwater ammonia, 3,4-DCA, endosulfan chlorpyrifos, esfenvalerate, tebuthiuron, three surfactants and marine for 1, 1,2-TCE and chlorpyrifos.
Figure may not protect key test species from chronic toxicity (this refers to experimental chronic figures or geometric mean for species)— check Section 8.3.7 of guidance document for spread of data and its significance. Where grey shading and ‘C’ coincide, refer to text in Section 8.3.7. of guidance document. Chemicals for which algorithms have been provided in Table 3.4.3 of guidance document to account for the effects of hardness. The values have been calculated using a hardness of 30 mg/L CaCO3. These should be adjusted to the site-specific hardness (see Section 3.4.3) of guidance document. Chemicals for which possible bioaccumulation and secondary poisoning effects should be considered. Figure may not protect key test species from acute toxicity (and chronic)—check Section 8.3.7 for spread of data and its significance. ‘A’ indicates that trigger valueOacute toxicity figure; note that trigger value should be !1/3 of acute figure. Ammonla as TOTAL ammonia as (NH3-N) at pH 8. For changes in trigger value with ph refer to Section 8.3.7.2 of the guidance document. Chlorine as total chlorine, as [CI]. Cyanide as unionised HCN, measured as [CN] of the guidance document. Figures protect against toxicity and do not relate to eutrophication issues. Refer to Section 3.3 if eutrophication is the issue of concern. Sulfide as un-lonised H2S, measured as [S] of the guidance document. Tainting or flavour impairment of fish flesh may possibly occur at concentrations below the trigger value. High reliability figure for esfenvalerate derived form mesocosm NOEC data (no alternative protection levels available).
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Volume I, The Guidelines, October 2000, www.deh.gov.au.
Table 8G.115 Australian Guidelines for the Protection of Human Consumers of Fish and Other Aquatic Organisms from Bacterial Infection Toxicant Faecal (thermotolerant) coliforms
Note:
Guideline in Shellfishing Water
Standard in Edible Tissue
The median faecal coliform bacterial concentration should not exceed 14 MPN/100 mL, with no more than 10% of the samples exceeding 43 MPN/100 mL
Fish destined for human consumption should not exceed a limit of 2.3 MPN E. coli lg of flesh with a standard place count of 100,000 organisms/g
MPN: Most probable number, The guideline for faecal (thermotolerant) coliforms should not be used in conjunction with the data from a sanitary survey of the shellfish harvesting areas for the purpose of harvesting area classification.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-171
Table 8G.116 Australian Guidelines of Chemical Compounds in Water Found to Cause Tainting of Fish Flesh and Other Aquatic Organisms Parameter Acenaphthene Acetophenone Acrylonitrile Copper m-cresol o-cresol p-cresol Cresylic acids (meta, para) Chlorobenzene n-butylmercaptan o-sec. butylphenol p-tert. butylphenol o-chlorophenol p-chlorophenol 2,3-dinitrophenol 2,4,6-trinitrophenol 2,4-dichlorophenol 2,5-dichlorophenol 2,6-dichlorophenol 3,4-dichlorophenol 2-methyl-4-chlorophenol 2-methyl-6-chlorophenol 3-methyl-4-chlorophenol o-phenylphenol Pentachlorophenol Phenol Phenols in polluted rivers 2,3,4,6-tetrachlorophenol 2,3,5-trichlorophenol 2,4,6-trichlorophenol 2,4-dimethylphenol Dimethylamine Diphenyloxide B,B-dichlorodiethyl ether o-dichlorobenzene Ethylbenzene Ethanethiol Ethylacrylate Formaldehyde Gasoline Guaicol Kerosene Kerosene plus kaolin Hexachlorocyclopentadiene Isopropylbenzene Naphtha Naphthalene Naphthol 2-Naphthol Nitrobenzene a-methylstyrene Oil, emulsifiable Pyridine Pyrocatechol Pyrogallol Quinoline p-quinone Styrene
Estimated Threshold Level in Water (mg/L) 0.02 0.5 18.0 1.0 0.2 0.4 0.1 0.2 0.02 0.06 0.3 0.03 0.0001–0.015 0.0001 0.08 0.002 0.0001–0.014 0.02 0.03 0.0003 2.0 0.003 0.02–3.0 1.0 0.03 1.0–10.0 0.15–0.02 0.001 0.001 0.002 0.4 7.0 0.05 0.09–1 !0.25 0.25 0.2 0.6 95.0 0.005 0.08 0.1 1.0 0.001 !0.25 0.1 1.0 0.5 0.3 0.03 0.25 O15.0 5–28 0.8–5 20–30 0.5–1 0.5 0.25 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-172
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8G.116
(Continued) Estimated Threshold Level in Water (mg/L)
Parameter Toluene Outboard motor fuel as exhaust Zinc
0.25 7.2 5.0
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au. Original Source: Reproduced from ANZECC (1992), an adaptation of NAS/NAE (1973).
Table 8G.117
Australian Recommended Sediment Quality Guidelines
Contaminant Metals (mg/kg dry wt) Antimony Cadmium Chromium Copper Lead Mercury Nickel Silver Zinc Metalloids (mg/kg dry wt) Arsenic Organometallics Tributyltin (mg Sn/kg dry wt) Organics (mg/kg dry wt)a Acenaphthene Acenaphthalene Anthracene Fluorene Naphthalene Phenanthrene Low Molecular Weight PAHsb Benzo(a)anthracene Benzo(a)pyrene Dibenzo(a, h)anthracene Chrysene Fluoranthene Pyrene High Molecular Weight PAHsb Total PAHs Total DDT p.p 0 -DDE o,p 0 -Cp,p 0 -DDD Chlordane Dieldrin
ISQG-Low (Trigger Value) 2 1.5 80 65 50 0.15 21 1 200
ISQG-High 25 10 370 270 220 1 52 3.7 410
20
70
5
70
16 44 85 19 160 240 552
500 640 1,100 540 2,100 1,500 3,160
261 430 63 384 600 665 1,700
1,600 1,600 260 2,800 5,100 2,600 9,600
4,000 1.6 2.2 2 0.5 0.02
45,000 46 27 20 6 8 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-173
Table 8G.117
(Continued)
Contaminant
ISQG-Low (Trigger Value)
Endrin Lindane Total PCBs
ISQG-High
0.02 0.32 23
8 1 —
a
Normalised to 1% organic carbon; Low molecular weight PAHs are the sum of concentrations of acenaphthene, acenaphthalene, anthracene, fluorene, 2-methylnaphthalene, naphthalene and phenanthrene; high molecular weight PAHs are the sum of concentrations of benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthrancene, fluoranthene and pyrene. Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
b
Original Source: Primarily adapted from Long et al. (1995).
Table 8G.118 Maximum Concentrations of Copper Sulfate Safe for Fish Safe Copper Sulfate Concentration Fish
ppm
lb/mill gal
Trout Carp Suckers Catfish Pickerel Goldfish Perch Sunfish Black Bass
0.14 0.30 0.30 0.40 0.40 0.50 0.75 1.20 2.10
1.2 2.5 2.5 3.5 3.5 4.0 6.0 10.0 17.0
Source: From U.S. Public Health Service.
Table 8G.119 Observed Lethal Concentration of Selected Chemicals in Aquatic Environments Chemical ABS (100 percent) ABS (100 percent) Household syndets Alkyl sulfate LAS (C12) LAS (C14) Acetic acid Alum Ammonia Ammonia Sodium arsenite Sodium arsenate Barium chloride Barium chloride Cadmium chloride Cadmium nitrate CO2 CO Chloramine
Organism Tested Fathead minnow Bluegills Fathead minnow Fathead minnow Bluegill fingerlings Bluegill fingerlings Goldfish Goldfish Goldfish Perch, roach, rainbow trout Minnow Minnow Goldfish Salmon Goldfish Goldfish Various species Various species Brown trout fry
Lethal Concentration (mg/L) 3.5–4.5 4.2–4.4 39–61 5.1–5.9 3 0.6 423 100 2–2.5 NH3 3N 17.8 As 234 As 5,000 158 0.017 0.3 Cd 100–200 1.5 0.06
Exposure Time (hr) 96 96 96 96 96 96 20 12–96 24–96 2–20 36 15 12–17 — 9–18 190 — 1–10 — (Continued)
q 2006 by Taylor & Francis Group, LLC
8-174
Table 8G.119
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Chemical Chlorine Chromic acid Copper sulfate Copper nitrate Cyanogen chloride H2S HCl HCl Lead nitrate Mercuric chloride Nickel nitrate Nitric acid Oxygen Phenol Phenol Potassium chromate Potassium cyanide Sodium cyanide Silver nitrate Sodium fluoride Sodium sulfide Zinc sulfate Zinc sulfate Pesticides 1. Chlorinated hydrocarbons Aldrin DDT DDT DDT DDT DDT DDT BHC BHC Chlordane Chlordane Dieldrin Dieldrin Dieldrin Endrin Endrin Endrin Endrin Endrin Heptachlor Heptachlor Heptachlor Heptachlor Methoxychlor Methoxychlor Toxaphene Toxaphene Toxaphene Toxaphene Toxaphene Toxaphene 2. Organic phosphates Chlorothion Dipterex EPN
Organism Tested Rainbow trout Goldfish Stickleback Stickleback Goldfish Goldfish Stickleback Goldfish Minnow, stickleback, brown trout Stickleback Stickleback Minnow Rainbow trout Rainbow trout Perch Rainbow trout Rainbow trout Stickleback Stickleback Goldfish Brown trout Stickleback Rainbow trout
Goldfish Goldfish Rainbow trout Salmon Brook trout Minnow, guppy Stoneflies (species) Goldfish Rainbow trout Goldfish Rainbow trout Goldfish Bluegill Rainbow trout Goldfish Carp Fathead minnow Various species Stoneflies (species) Rainbow trout Goldfish Bluegill Redear sunfish Rainbow trout Goldfish Rainbow trout Goldfish Carp Goldfish Goldfish Minnows Fathead minnow Fathead minnow Fathead minnow
Lethal Concentration (mg/L) 0.03–0.08 200 0.03 Cu 0.02 Cu 1 10 pH 4.8 pH 4.0 0.33 Pb 0.01 Hg 1 Ni pH 5.0 3 cc/L 6 9 75 0.13 Cn 1.04 Cn 70 K 1,000 15 0.3 Zn 0.5
0.028 0.027 0.5–0.32 0.08 0.032 0.75 ppb 0.32–1.8 2.3 3 0.082 0.5 0.037 0.008 0.05 0.0019 0.14 0.001 0.03–0.05 ppb 0.32–2.4 ppb 0.25 0.23 0.019 0.017 0.05 0.056 0.05 0.0056 0.1 0.2 0.04 0.2 3.2 180 0.2
Exposure Time (hr) — 60–84 160 192 6–48 96 240 4–6 — 204 156 — — 3 1 60 2 2 154 60–102 — 120 64
96 96 24–36 36 36 29 96 96 96 96 24 96 96 24 96 48 96 — 96 24 96 96 96 24 96 24 96 — 24 170 24 96 96 96 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8G.119
8-175
(Continued)
Chemical Guthion Guthion Malathion Parathion TEPP 3. Herbicides Weedex Weeda Zol Weeda Zol T.L. Simazine (no plants present) Atrazine (A361) (plants present) Atrazine in Gesaprime 4. Bactericides Algibiol Soricide tetraminol
Organism Tested Fathead minnow Bluegill Fathead minnow Fathead minnow Fathead minnow Young roach and trench
Lethal Concentration (mg/L) 0.093 0.005 12.5 1.4–2.7 1.7
96 96 96 96 96
Minnow
40–80 15–30 20–40 0.5
1m 1m 1m !3 d
Minnow
5.0
24
Minnow
3.75
24
Minnow Minnow
20 8
Source: From McGauhey, Engineering Management of Water Quality, McGraw-Hill, copyright 1968.
q 2006 by Taylor & Francis Group, LLC
Exposure Time (hr)
24 48
8-176
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 8H
RECREATIONAL WATER QUALITY
Table 8H.120 Water Quality Characteristics Relevant to Recreational Use Characteristics
Primary Contact (e.g. swimming)
Secondary Contact (e.g. boating)
Visual Use (no contact)
X X
X X
X
X X X X X X X
X X X
X X X
X X
X
Microbiological guidelines Nulsance organisms (e.g., algae) Physical and chemical guidelines: Aesthetics Clarity Color pH Temperature Toxic chemicals Oil, debris Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1, The Guidelines, October 2000, www.deh.gov.au.
Table 8H.121 Guides for Evaluating Recreational Waters Water Contact Determination Coliforms, MPN per 100 mL Visible solids of sewage origin ABS (detergent) (mg/L) Suspended solids (mg/L) Flotable oil and grease, mg/L Emulsified oil and grease (mg/L) Turbidity, silica scale units Color, standard cobalt scale units Threshold odor number Range of pH Temperature, maximum 8C Transparency, Secchi disk (ft)
Noticeable Threshold a
1,000 None 1a 20a 0 10a 10a 15a 32a 6.5–9.0 30 —
Boating and Aesthetic
Limiting Threshold
Noticeable Threshold
Limiting Threshold
b
— None 2 100 5 20 50 100 256 6.0–10.0 50 —
None 1a 20a 0 20a 20a 15a 32a 6.5–9.0 30 20a
None 5 100 10 50 —c 100 256 6.0–10.0 50 —c
Note: Noticeable threshold represents the level at which people begin to notice and perhaps to complain. Limiting threshold in the level at which recreational use of water is prohibited or seriously impaired. a b c
Value not to be exceeded in more than 20 percent of 20 consecutive samples, nor in any 3 consecutive samples. No limiting concentration can be specified in the basis of epidemiological evidence, provided no fecal pollution is evident. No concentration likely to be found in surface waters would impede use.
Source: From California State Water Quality Control Board, 1963.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-177
Table 8H.122 United States Criteria for Bathing (Full Body Contact) Recreational Waters Freshwater Based on a statistically sufficient number of samples (generally not less than 5 samples equally spaced over a 30-day period), the geometric mean of the indicated bacterial densities should not exceed one or the other of the followinga: E. coli 126 per 100 mL; or Enterococci 33 per 100 mL; No sample should exceed a one sided confidence limit (C.L.) calculated using the following as guidance: Designated bathing beach 75% C.L. Moderate use for bathing 82% C.L. Light use for bathing 90% C.L. Infrequent use for bathing 95% C.L. based on a site-specific log standard deviation, or if site data are insufficient to establish a log standard deviation, then using 0.4 as the log standard deviation for both indicators Marine Water Based on a statistically sufficient number of samples (generally not less than 5 samples equally spaced over a 30-day period), the geometric mean of the enterococci densities should not exceed 35 per 100 mL; No sample should exceed a one sided confidence limit using the following as guidance: Designated bathing beach 75% C.L. Moderate use for bathing 82% C.L. Light use for bathing 90% C.L. Infrequent use for bathing 95% C.L. based on a site-specific log standard deviation, or if site data are insufficient to establish a log standard deviation, then using 0.7 as the log standard deviation a
Only one indicator should be used. The Regulatory agency should select the appropriate indicator for its conditions.
Source:
From United States Environmental Protection Agency, 2003, Bacterial Water Quality Standards for Recreational Waters (Freshwater and Marine Waters) Status Report, EPA-823-R-03-008, www.epa.gov.
Table 8H.123 WHO Guidelines for Safe Practice in Managing Recreational Waters Guidance Level or Situation
How Guidance Level Derived
Relatively low probability of adverse health effects From human bathing 20,000 cyanobacterial cells/mL epidemiological study or 10 mg chlorophyll-a/L with dominance of cyanobacteria
Moderate probability of adverse health effects 100,000 cyanobacterial From provisional drinkingcells/ml or 50 mg chlorophyllwater guideline value for a/L with dominance of microcystin-LRb and data concerning other cyanobacteria cyanotoxins
High probability of adverse health effects Cyanobacterial scum Inference from oral animal formation in areas where lethal poisonings Actual human illness case whole-body contact and/or histories risk of ingestion/aspiration occur
a b
Typical Actionsa
Health Risks Short-term adverse health outcomes, e.g., skin irritations, gastrointestinal illness
Post on site risk advisory signs Inform relevant authorities
Potential for long-term illness with some cyanobactieral species Short-term adverse health outcomes, e.g., skin irritations, gastrointestinal illness
Watch for scums or conditions conducive to scums Discourage swimming and further investigate hazard Post on-site risk advisory signs Inform relevant authorities
Potential for acute poisoning Potential for long-term illness with some cyanobacterial species Short-term adverse health outcomes, e.g., skin irritations, gastrointestinal illness
Immediate action to control contact with scums; possible prohibition of swimming and other water contact activities Public health follow-up investigation Inform public and relevant authorities
Actual action taken should be determined in light of extent of use and public health assessment of hazard. The provisional drinking-water guideline value for microcystin-LR is 1 mg/L (WHO, 1998).
Source: From WHO, 2003, Guidelines for Safe Recreational Water Environments, Volume 1: Coastal and Fresh Waters, Copyright q World Health Organization 2003. www.who.int. Original Source: Derived from Chorus & Bartram, 1999.
q 2006 by Taylor & Francis Group, LLC
8-178
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8H.124 WHO Guideline Values for Microbial Quality of Recreational Waters 95th Percentile Value of Intestinal Enterococci/100 mL (rounded values)
Basis of Derivation
Estimated Risk Per Exposure
%40 A
This range is below the NOAEL in most epidemiological studies
!1% GI illness risk !0.3% AFRI risk This upper 95th percentile value of 40/100 mL relates to an average probability of less than one case of gastroenteritis in every 100 exposures. The AFRI burden would be negligible
41–200 B
The 200/100 ml value is above the threshold of illness transmission reported in most epidemiological studies that have attempted to define a NOAEL or LOAEL for GI illness and AFRI
1–5% GI illness risk 0.3–1.9% AFRI risk
The upper 95th percentile value of 200/100 mL relates to an average probability of one case of gastroenteritis in 20 exposures. The AFRI illness rate at this upper value would be less than 19 per 1,000 exposures, or less than approximately 1 in 50 exposures 201–500 C
This range represents a substantial elevation in the probability of all adverse health outcomes for which dose-response data are available
5–10% GI illness risk 1.9–3.9% AFRI risk This range of 95th percentiles represents a probability of 1 in 10 to 1 in 20 of gastroenteritis for a single exposure. Exposures in this category also suggest a risk of AFRI in the range of 19–39 per 1,000 exposures, or a range of approximately 1 in 50 to 1 in 25 exposures
O500 D
Note:
Above this level, there may be a significant risk of high levels of minor illness transmission
O10% GI illness risk O3.9% AFRI risk There is a greater than 10% chance of gastroenteritis per single exposure. The AFRI illness rate of the 95th percentile point of O500/100 mL would be greater than 39 per 1,000 exposures, or greater than approximately 1 in 25 exposures
1. Abbreviations used: A–D are the corresponding microbial water quality assessment categories used as part of the classification procedure; AFRIZacute febrile respiratory illness; GIZgastrointestinal; LOAELZlowest-observed-adverse-effect level; NOAELZno observed-adverse-effect level. 2. The “exposure” in the key studies was a minimum of 10 min of swimming involving three head immersions. It is envisaged that this is equivalent to many immersion activities of similar duration, but it may underestimate risk for longer periods of water contact or for activities involving higher risks of water ingestion. 3. The “estimated risk” refers to the excess risk of illness (relative to a group of non-bathers) among a group of bathers who have been exposed to faecally contaminated recreational water under conditions similar to those in the key studies. 4. The functional form used in the dose-response curve assumes no further illness outside the range of the data (i.e. at concentrations above 158 intestinal enterococci/100 mL). Thus, the estimates of illness rate reported above this value are likely to be underestimates of the actual disease incidence attributable to recreational water exposure. 5. This estimated risks were derived from sewage-impacted marine waters. Different sources of pollution and more or less aggressive environments may modify the risks. 6. This table is derived from risk to healthy adult bathers to marine waters in temperate north European waters.
Source: From WHO, 2003, Guidelines for Safe Recreational Waters, Volume 1: Coastal and Fresh Waters. Copyright q World Health Organization 2003, www.who.int.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-179
Table 8H.125 Summary of Guidelines for Canadian Recreational Water Quality Parameter Microbiological Escherichia coli (fecal coliforms) Enterococci
Coliphages Waterborne pathogens
Cyanobacteria (blue– green algae) Chemical characteristics
Aquatic plants Aesthetics
Nuisance organisms
pH Temperature Turbidity Clarity—Light penetration Color Oil and grease
Note:
Guideline The geometric mean of at least five samples, taken during a period not to exceed 30 days, should not exceed 2,000 E. coli/L. Resampling should be performed when any sample exceeds 4,000 E. coli/L The geometric mean of at least five samples, taken during a period not to exceed 30 days, should not exceed 350 enterococci/L. Resampling should be performed when any sample exceeds 700 enterococci/L Limits on coliphages can not be specified at this time. See Health and Welfare Canada (1992) for additional information The pathogens most frequently responsible for diseases associated with recreational water use are described in Health and Welfare Canada (1992), i.e. Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella, Shigella, Aeromonas, Campylobacter jejuni, Legionella, human enteric viruses, Giardia lamblia, and Cryptosporidium Limits have not been specified. Health Canada is in the process of developing a numerical guideline for microcystin, a cyanobacterial toxin. Water with blue-green surface scum should be avoided because of reduced clarity and possible presence of toxins Limits for chemicals have not been specified because of lack of data. Decisions for use should be based on an environmental health assessment and the aesthetic quality. Dermal exposures to environmental contaminants has recently been reviewed by Moody and Chu (1995) Bathers should avoid areas with rooted or floating plants; very dense growths could affect other activities such as boating and fishing All water should be free from † materials that will settle to form objectionable deposits; † floating debris, oil, scum, and other matter; † substances producing objectionable color, odor, taste, or turbidity; and † substances and conditions or combinations thereof in concentrations that produce undesirable aquatic life Bathing areas should be as free as possible from nuisance organisms that † endanger the health and physical comfort of users or † render the area unusable Common examples include biting and nonbiting insects and poisonous organisms, for example jellyfish The pH of the waters used for total body contact recreation should be in the pH range of 6.5 to 8.5. If the water has a very low buffering capacity, pH values from 5.0 to 9.0 should be acceptable The thermal characteristics of waters used for bathing and swimming should not cause an appreciable increase or decrease in the deep body temperature of bathers and swimmers 50 Nephelometric Turbidity Units (NTU) Water should be sufficiently clear that a Secchi disc is visible at a minimum depth of 1.2 m Color should not be so intense as to impede visibility in areas used for swimming. A maximum limit of 100 platinum-cobalt (Pt-Co) units was proposed by Environment Canada (1972) Oil or petrochemicals should not be present in concentrations that † Can be detected as a visible film, sheen, or discoloration on the surface † Can be detected by odor † Can form deposits on shorelines and bottom sediments that are detectable by sight or odor (International Joint Commission 1977)
See guidance document for a complete narrative of recreational water quality guidelines.
Source: From Health and Welfare Canada, 1992, Guidelines for Canadian Recreational Water Quality, www.ccme.ca.
q 2006 by Taylor & Francis Group, LLC
8-180
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8H.126 Summary of Australian Water Quality Guidelines of Recreational Waters Parameter Microbiological Primary contacta
Secondary contacta Nuisance organisms
Physical and chemical Visual clarity & color
pH Temperature Toxic chemicals Surface films a b
Guideline The median bacterial content in fresh and marine waters taken over the bathing season should not exceed 150 fecal coliform organisms/100 mL or 35 enterococci organisms/100 mL. Pathogenic free-living protozoans should be absent from bodies of fresh waterb The median value in fresh and marine waters should not exceed 1,000 fecal coliform organisms/100 mL or 230 enterococci organisms/100 mLb Macrophytes, phytoplankton scums, filamentous algal mats, sewage fungus, leeches, etc., should not be present in excessive amountsa. Direct contact activities should be discouraged if algal levels of 15,000– 20,000 cells/mL are present, depending on the algal species. Large numbers of midges and aquatic worms should also be avoided
To protect the aesthetic quality of a waterbody: † the natural visual clarity should not be reduced by more than 20% † the natural hue of the water should not be changed by more than 10 points on the Munsell Scale † the natural reflectance of the water should not be changed by more than 50% To protect the visual clarity of waters used for swimming, the horizontal sighting of a 200 mm diameter black disc should exceed 1.6 m The pH of the water should be within the range 5.0–9.0, assuming that the buffering capacity of the water is low near the extremes of the pH limits For prolonged exposure, temperatures should be in the range 15–358C Water containing chemicals that are either toxic or irritating to the skin or mucous membranes are unsuitable of recreation. Toxic substances should not exceed values in Table 8.127 and 8.128 Oil and petrochemicals should not be noticeable as a visible film on the water nor should they be detectable by odor
Refer to Section 3.3 of this revised Australian Guidelines relating to nutrient concentrations necessary to limit excessive aquatic plant growth. Sampling frequency and maximum values are given in Section 5.2.3.1 of the guidance document.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-181
Table 8H.127 Summary of Australian Water-Quality Guidelines for Recreational Purposes: General Chemicals Parameter
Guideline Values (mg/L, Unless Otherwise Stated)
Inorganic: Arsenic Asbestos Barium Boron Cadmium Chromium Cyanide Lead Mercury Nickel Nitrate-N Nitrite-N Salenium Silver
50 NR 1,000 1,000 5 50 100 50 1 100 10,000 1,000 10 50
Organic: Benzene Benzo(a)pyrene Carbon tetrachloride 1,1-Dichloroethene 1,2-Dichloroethane Pentachlorophenol Polychlorinated biphenyls Tetrachloroethene 2,3,4,6-Tetrachlorophenol Trichloroethene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol
10 0.01 3 0.3 10 10 0.1 10 1 30 1 10
Radiological: Gross alpha activity Gross beta activity (excluding activity of 40K) Other chemicals: Aluminum Ammonia (as N) Chloride Copper Oxygen Hardness (as CaCO3) Iron Manganese Organics (CCE & CAE) pH Phenolics Sodium Sulfate Sulfide Surfactant (MBAS) Total dissolved solids Zinc
0.1 Bq/L 0.1 Bq/L
200 10 400,000 1,000 O6.5 (O80% saturation) 500,000 300 100 200 6.5–8.5 2 300,000 400,000 50 200 1,000,000 5,000
Note: NRZNo guideline recommended at this time; MBAS Methylene blue active substances. Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I, The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
8-182
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8H.128 Summary of Water-Quality Guidelines for Recreational Purposes: Pesticides
Compound Acephate Alachlor Aldrin Amitrol Asulam Azinphos-methyl Barban Benomyl Bentazone Bioresmethrin Bromazil Bromophos-ethyl Bromoxynil Carbaryl Carbendazim Carbofuran Carbophenothion Chlordane Chlordimeform Chlorfenvinphos Chloroxuron Chlorpyrifos Clopzralid Cyhexatin 2,4-D DDT Demeton Diazinon Dicamba Dichlobenil 3,6-Dichloropicolinic acid Dichlorvos Diclofop-methyl Dicofol Dieldrin Difenzoquat Dimethoate Diquat Disulfoton Diuron DPA Endosulfan Endothal Endrin EPTC Ethion Ethoprophos Fenchlorphos Fenitrothion Fenoprop Fensulfothion
Maximum Concentration (mg/L) 20 3 1 1 100 10 300 200 400 60 600 20 30 60 200 30 1 6 20 10 30 2 1,000 200 100 3 30 10 300 20 1,000 20 3 100 1 200 100 10 6 40 500 40 600 1 60 6 1 60 20 20 20
Compound Fenvalerate Flamprop-methyl Fluometuron Formothion Fosamine (ammonium salt) Glyphosate Heptachlor Hexaflurate Hexazinone Lindane Maidison Methidathion Methomyl Metolachlor Metribuzin Mevinphos Molinate Monocrotophos Nabam Nitralin Omethoate Oryzalin Paraquat Parathion Parathion-methyl Pendimethalin Perfluidone Permethrin Pioloram Piperonyl butoxide Pirimicarb Pirimiphos-ethyl Pirimiphos-methyl Profenofos Promecarb Propanil Propargite Propoxur Pyrazophos Quintozene Sulprofos 2,4,5-T Temephos Thiobencarb Thiometon Thiophanate Thiram Trichlorofon Triclopyr Trifuralin
Maximum Concentration (mg/L) 40 6 100 100 3,000 200 3 60 600 10 100 60 60 800 5 6 1 2 30 1,000 0.4 60 40 30 6 600 20 300 30 200 100 1 60 0.6 60 1,000 1,000 1,000 1,000 6 20 2 30 40 20 100 30 10 20 500
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1, The Guidelines, October 2000, www.deh.gov.au. Original Source: From NHMRC & AWRC (1987), NHMRC (1989).
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-183
SECTION 8I WATER QUALITY FOR LIVESTOCK AND AQUACULTURE
Table 8I.129 Guides for Evaluating the Quality of Water Used by Livestock Quality Factor (mg/L) Total dissolved solids (TDS) Cadmium Calcium Magnesium Sodium Arsenic Bicarbonate Chloride Fluoride Nitrate Nitrite Sulfate Range of pH a b c
Threshold Concentrationa
Limiting Concentrationb
2500 5 500 250 1000 1 500 1500 1 200 None 500 6.0–8.5
5000 1000 500c 2000c 500 3000 6 400 None 1000c 5.6–9.0
Threshold values represent concentrations at which poultry or sensitive animals might show slight effects from prolonged use of such water. Lower concentrations are of little or no concern. Limiting concentrations based on interim criteria, South Africa. Animals in lactation or production might show definite adverse reactions. Total magnesium compounds plus sodium sulfate should not exceed 50 percent of the total dissolved solids.
Source: From California State Water Quality Control Board, 1963.
Table 8I.130 Guide to the Use of Saline Waters for Livestock and Poultry Total Soluble Salts Content of Waters Less than 1,000 mg/L (EC!1.5 mmhhos/cm) 1,000–3,000 mg/L (ECZ1.5–5 mmhos/cm)
3,000–5,000 mg/L (ECZ5–8 mmhos/cm)
5,000–7,000 mg/L (ECZ8–11 mmhos/cm)
7,000–10,000 mg/L (ECZ11–16 mmhos/cm)
Over 10,000 mg/L (ECO11–16 mmhos/cm)
Uses Relatively low level of salinity. Excellent for all classes of livestock and poultry Very satisfactory for all classes of livestock and poultry. May cause temporary and mild diarrhea in livestock not accustomed to them; may cause watery droppings in poultry Satisfactory for livestock, but may cause temporary diarrhea or be refused at first by animals not accustomed to them. Poor waters for poultry, often causing watery feces, increased mortality, and decreased growth, especially in turkeys Can be used with reasonable safety for dairy and beef cattle, sheep, swine, and horses. Avoid use for pregnant or lactating animals. Not acceptable for poultry Unfit for poultry and probably for swine. Considerable risk in using for pregnant or lactating cows, horses or sheep, or for the young of these species. In general, use should be avoided although older ruminants, horses, poultry, and swine may subsist on them under certain conditions Risks with these highly saline waters are so great that they cannot be recommended for use under any condition
Source: From Soltanpour, P. N. and Raley, W. L., Livestock Drinking Water Quality, Colorado State University Cooperative Extension – Agriculture, no. 4.908, www.ext.colostate.edu. Original Source: From Environmental Studies Board, Nat. Acad. of Sci., Nat. Acad. of Eng., Water Quality Criteria, 1972. Ayers, R.S. and D.W. Westcot. Water Quality for Agriculture. Food and Agriculture Organization of the United Nations, Rome, 1976. P.N. Soltanpour, Colorado State University professor, soil and crop sciences; and W.L. Raley, former Colorado State University Cooperative Extension western district director. 10/93. Reviewed 3/99.
q 2006 by Taylor & Francis Group, LLC
8-184
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8I.131 Canadian Water-Quality Guidelines for the Protection of Agricultural Water Uses–Livestock Parametera Aldicarb Aluminumd Arsenice Atrazine Berylliumd Blue-green algae(Cyanobacteria)d Borond Bromacil Bromoxynil Cadmium Calciumd Captan Carbaryl Carbofuran Chlordane Hexachlorobenzene 1,2-Dichloroethane 1.1,2-Trichloroethene (Trichloroethylene, TCE) Chlorothalonil Chlorpyrifos Chromium Trivalent chromium (Cr(III)) Hexavalent chromium (Cr(VI)) Cobaltd Color Copperd Cyanazine Cyanobacteria (Blue-green algae) 2,4-D [See 2,4-Dichlorophenoxyacetic acid] DDT(2,2-Bis(p-chlorophenyl)-1,1,1-trichloroethane; Dichloro diphenyl trichloroethane)d Deltamethrin Dicamba 2,4-Dichlorophenoxyacetic acid (2,4-D) [See also Phenoxy herbicides] Diclofop-methyl Dimethoate Dinoseb Endrind Ethylbenzened,e Fluorided Glyphosated Dichloromethaned (Methylene chloride) Trichloromethaned (Chloroform) Tetrachloromethaned (Carbon tetrachloride) Tribromomethane (Bromoform) Dichlorobromomethane Dibromochloromethane Heptachlor (Heptachlor epoxide)d Leadd Lindane (Hexachlorocyclohexane)d MCPA (4-chloro-2-methyI phenoxy acetic acid; 2-MethyI-4-chloro phenoxy acetic acid) Mercuryd Metolachlor Metribuzin Molybdenumd Nickeld NitrateCNitrited Nitrited Tributyltin Tricyclohexyltin Triphenyltin
Livestock Water (mg/L) 11c 5,000 25f 5f,g 100f 5,000 1,100f 11f 80 1,000,000 13f,i 1,100 45 7l,m 0.52f,n 5f 50f 170f 24f 50f,n 50f,n 1,000 Narrative 500–5,000p 10f Narrative See also Phenoxy herbicides 30l,m 2.5 122 See also Phenoxy herbicides 9f 3f 150 0.2l,m 2.4 1,000–2,000n 280 50f 100g 5f 100g 100g 100g 3l,m 100 4 25f 3 50f 80 500 1,000 100,000 10,000 250 250f 820f,i (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8I.131 Parameter
(Continued)
a
d
Phenols Phenoxv herbicidesd Picloramd Seleniumd Simazine Sulphated Tebuthiuron Toluened,e Total dissolved solids (salinity)d Toxaphened Triallated Trifluralin Uraniumd Vanadiumd Zincd Note: a b
c d e f g
h i j
k
l m n o
8-185
Livestock Water (mg/L) 2 100 190 50 10f 1,000,000 130f 24 3,000,000 5l,m 230f 45f 200 100 50,000
mg/L is microgram per liter.
Unless otherwise indicated, supporting documents are available from the Guidelines and Standards Division, Environment Canada. The guidelines dated 1987 have been carried over from Canadian Water Qualify Guidelines (CCREM 1987) and no fact sheet was prepared. The guidelines dated 1989 to 1997 were developed and initially published in CCREM 1987 as appendixes on the date indicated. They are published as fact sheets in this document. Other guidelines dated 1997 and those dated 1999 are published for the first time in this document. Concentration of total aldicarb residue. No fact sheet created. The technical document for the guideline is available from the Ontario Ministry of the Environment. Interim guideline. During the initial development of this guideline, insufficient data were available to derive a livestock watering guideline value. Therefore, the Canadian drinking water quality guideline (Health and Welfare Canada 1987) was adopted. Since then, this value has been revised by Health Canada (1996). This revised drinking water quality guideline in now adopted as the guideline for livestock water. Guideline value slightly modified from CCREM 1987 + Appendixes due to re-evaluation of the significant figures. Guideline is crop-specific (see fact sheet). This guideline (originally published in Canadian Water Quality Guidelines [CCREM 1987]) is no longer recommended and the value is withdrawn. A water quality guideline is not recommended. Environmental exposure is predominantly via sediment, soil, and/or tissue, therefore, the reader is referred to the respective guidelines for these media. This substance meets the criteria for Track substances under (the national CCME Policy for the Management of Toxic Substances (PMTS) (i.e., persistent, bioaccumulative, primarily result of human activity, and CEPA-toxic or equivalent) and should be subject to virtual elimination strategies. Guidelines can serve as action levels or interim management objectives towards virtual elimination. Substance has been re-evaluated since CCREM 1987CAppendixes. Either a new guideline has been derived or insufficient data existed to derive a new guideline. Copper guideline Z500 mgL-1 for sheep, 1000 mg L-1 for cattle, 5000 mg L-1 for swine and poultry. Fluoride guideline = 1000 mg L-1 if feed contains fluoride. Molybdenum guideline = 50 mg L-1 for short-term use on acidic soils.
Source: From Canadian Council of Ministers of the Environment, 2005, Canadian water quality guidelines for the protection of agricultural water uses: summary table, Updated October 2005. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, ec.gc.ca/CEQC-RCQE.
q 2006 by Taylor & Francis Group, LLC
8-186
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8I.132 Tolerances of Livestock to Total Dissolved Solids (Salinity) in Drinking Water Total Dissolved Solids (mg/L)
Livestock
No Adverse Effects on Animals Expected
Animals May Have Initial Reluctance to Drink or There May Be Some Scouring, but Stock Should Adapt without Loss of Production
Beef cattle Dairy cattle Sheep Horses Pigs Poultry
0–4,000 0–2,500 0–5,000 0–4,000 0–4,000 0–2,000
4,000–5,000 2,500–4,000 5,000–10,000 4,000–6,000 4,000–6,000 2,000–3,000
a
Loss of Production and a Decline in Animal Condition and Health Would Be Expected. Stock may Tolerate These Levels for Short Periods if Introduced Gradually 5,000–10,000 4,000–7,000 10,000–13,000a 6,000–7,000 6,000–8,000 3,000–4,000
Sheep on lush green feed may tolerate up to 13,000 mg/L TDS without loss of condition or production.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. The Guidelines, October 2000, www.deh.gov.au. Original Source:
From ANZECC (1992), adapted to incorporate more recent information.
Table 8I.133 Recommended Water Quality Trigger Values (Low Risk) for Heavy Metals and Metalloids in Livestock Drinking Water Metal or Metalloid Aluminum Arsenic Beryllium Boron Cadmium Chromium Cobalt Copper
Fluoride Iron Lead Manganese Mercury Molybdenum Nickel Selenium Uranium Vanadium Zinc a b c
Trigger Value (low risk)a (mg/L) 5 0.5 up to 5c NDb 5 0.01 1 1 0.4 (sheep) 1 (cattle) 5 (pigs) 5 (poultry) 2 Not sufficiently toxic 0.1 Not sufficiently toxic 0.002 0.15 1 0.02 0.2 ND 20
Higher concentrations may be tolerated in some situations (details provided in Volume 3, Section 9.3.5). NDZnot determined, insufficient background data to calculate. May be tolerated if not provided as a food additive and natural levels in the diet are low.
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. I. The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-187
Table 8I.134 Australian Trigger Values for Radioactive Contaminants in Livestock Drinking Water Radionuclide
Trigger Value (Bq/L)
Radium 226 Radium 228 Uranium 238 Gross alpha Gross beta (excluding K-40)
5 2 0.2 0.5 0.5
Source: From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. The Guidelines, October 2000, www. deh.gov.au.
Table 8I.135 Australian Physico-Chemical Stressor Guidelines for the Protection of Aquaculture Species Recommended Guideline (mg/L) Measured Parameter
Freshwater Production
Saltwater Production
e
Alkalinity Biochemical oxygen demand (BODs) Chemical oxygen demand (COD) Carbon dioxide Color and appearance of water Dissolved oxygen Gas supersaturation Hardness (CaCO3) pH Salinity (total dissolved solids)
R20 !15a !40a !10 30–40b (Pt-Co units) O5c !100%f 20–100e 5.0–9.0 !3,000f
Suspended solids
!40
Temperature
!2.08C change over 1 hrd
Note: a b c d e f
O20c ND ND !15 30–40b (Pt-Co units) O5c !100%f NCf 6.0–9.0 33,000–37,000f (3,000–35,000 Brackish)f !10 (!75 Brackish) !2.08C change over 1 hrd
Unless noted, guidelines are based on professional judgements.
Schlotfeldt & Aldeman (1995). O’Connor pers. comm. Meade (1989). ANZECC (1992). DWAF (1996). Lawson (1995).
Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. The Guidelines, October 2000, www.deh.gov.au.
Table 8I.136 Australian Toxicant Guidelines for the Protection of Acquaculture Species Guideline (mg/L) Measured Parameter Inorganic Toxicants (Heavy metals and others) Aluminum Ammonia (unionized) Arsenic Cadmium (varies with hardness) Chlorine Chromium Copper (varies with hardness) Cyanide
Freshwater Production
Saltwater Production
!30 (pHO6.5)a !10 (pH!6.5) !20 (pHO8.0) coldwaterb !30 warmwaterb !50a,b !0.2–1.8b !3a !20b !5b !5a
!10a !100 !30a,b !0.5–5a !3a !20 !5c !5a
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-188
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8I.136
(Continued) Guideline (mg/L)
Measured Parameter Fluorides Hydrogen sulfide Iron Lead (varies with hardness) Magnesium Manganese Mercury Nickel Nitrate ðNOK 3Þ Nitrite ðNOK 2Þ Phosphates Selenium Silver Tributyltin (TBT) Total available nitrogen (TAN) Vanadium Zinc Organic Toxicants (nonpesticides) Detergents and surfactants Methane Oils and greases (including petrochemicals) Phenols and chlorinated phenols Polychlorinated biphenyls (PCBs) Pesticides 2,4-dichlorophenol Aldrin Azinphos-methyl Chlordane Chlorpyrifos DDT (including DDD & DDE) Demton Dieldrin Endosulfan Endrin Gunthion (see also Azinphos-methyl) Hexachlorobenzole Heptachlor Lindane Malathion Methoxychlor Mirex Paraquat Parathion Toxaphene Note: a b c d e f g h i j k
Freshwater Production d
Saltwater Production
!20 !1b !10a !1–7d !15,000a !10a,e !1 !100a !50,000f !100a,g !100b !10a !3a !0.026a !1,000a !100a !5a
ND !2 !10a !1–7d ND !10a,e !1 !100a !100,000c,g !100a,g !50 !10a !3a !0.01a !1,000a !100a !5a
!0.1h !65,000i,j !300f !0.6–1.7f !2a
ND !65,000i,j ND ND !2a
!4.0b !0.01b,c,h !0.01b !0.01k !0.001b !0.0015b !0.01k !0.005b !0.003b,k !0.002b !0.01k !0.00001f !0.005b !0.01k !0.1e,k !0.03k !0.001b,k ND 0.04k !0.002b
ND ND ND 0.004k ND ND ND ND 0.001k ND ND ND ND 0.004k ND ND ND !0.01 ND ND
ND, Not determined—insufficient information, NC, Not of concern; Unless noted, guidelines are based on professional judgements.
Meade (1989). DWAF (1996). Piliay (1990). Tebbutt (1972). Zweig et al. (1999). Schlotfeldt & Alderman (1995). Coche (1981). Langdon (1988). McKee & Wolf (1963). Boyd (1990). Lannan et al. (1986).
Source:
From Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000, National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, vol. 1. The Guidelines, October 2000, www.deh.gov.au.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-189
SECTION 8J
WATER TREATMENT PROCESSES
Table 8J.137 Common Water Quality Problems, Effects, and Treatment Probable Cause Hardness (Calcium and Magnesium)
Iron, Manganese, Copper, Zinc
Iron, Manganese, Sulfur Bacteria
Hydrogen Sulfide Gas
Turbidity
Acid Water (low pH)
Taste, Odor, Color (organic matter)
Tannins, Humic Acid
Coliform Bacteria, Cryptosporidium, Giardia Lamblia, Viruses Organic Halides (e.g., herbicides and pesticides)
General Effect Scales in pipes and water heaters; causes “soap curd” on fixtures, tiles, dishes and laundry; low sudsing characteristics Causes discolored water; red, brown, orange or black stains on fixtures, appliances and laundry; dark scale in pipes and water heaters Same general effects as above plus slimey deposits that form in pumps, pipes, softeners and toilet tanks Foul rotten-egg odor; corrosion to plumbing; tarnishes silver and stains fixtures and laundry; ruins the taste of foods and beverages Suspended matter in water; examples include mud, clay, silt and sand; can ruin seals and moving parts in appliances Corrosive water attacks piping and other metals; red and/or green staining of fixtures and laundry Makes water unpalatable; can cause staining Can impart an “iced-tea” color to water; causes light staining; can affect the taste of foods and beverages Can cause serious disease and intestinal disorders Can cause serious disease and/or poisoning
Nitrates, Chlorides and Sulfates
Can cause health-related problems if quantities are high
Sodium Salts
Imparts an alkaline or soda taste to water
Arsenica
Can cause health-related problems; Known carcinogen
Radionuclidesb
Can cause health-related problems
Synthetic Organic Compoundsa
Can cause health-related problems
a b
Probable Remedy Removal by ion exchange softener
Low level (2 ppm) removal by ion exchange softener when hardness is also present; best removed by oxidizing iron filter, aeration and/or chlorination followed by filtration in some cases Low level removal possible by oxidizing iron filter; best removed by disinfection followed by filtration Best removed by aeration, scrubbing and filtration; also removed by oxidizing filters or chlorination followed by filtration Removal by backwashing sediment filters; extra fine treatment utilizing sediment cartridge elements Best corrected by neutralizing filters or soda ash feeding Depending on the nature of contaminant, aeration followed by filtration; carbon filtration; oxidation followed by filtration Removal by special ion exchange or oxidizing agents and filtration Disinfection and filtration is most widely practiced Most are readily removed by absorption with carbon filters; some can also be removed by hydrolysis and oxidation Removal by special ion exchange, deionization process or reverse osmosis Removal by deionization process or reverse osmosis, distillation can be used Removal using conventional coagulation with iron or aluminum salts followed by filtration; may also be removed by adsorption onto activated alumina or by ion exchange Best Available Technology (BAT) identified for removal include ion exchange, reverse osmosis, lime softening, and conventional coagulation followed by filtration Removal using aeration, air stripping for volatile organic compounds; removal using granular activated carbon adsorption or chemical oxidation for volatile or non-volatile compounds
J.M. Montgomery Consulting Engineers, Inc., 1985, Water Treatment Principles and Design, John Wiley & Sons, Inc. USEPA, 2005, A Regulator’s Guide to the Management of Radioactive Residuals from Drinking Water Treatment Technologies, EPA 816-R-05-004, July 2005
Source: From Chandler, J., A comprehensive look at water treatment, Water Well Journal, May 1988. Copyright Water Well Publ. Co. Reprinted with permission. Amended. q 2006 by Taylor & Francis Group, LLC
Type or Process
Common Application
Approximate Limit of Quality Input
Principal Change in Quality Factors (Approximate)
8-190
Table 8J.138 Summary of Conventional Processes and Systems for Water Quality Control
Gravity Separation No theoretical limit: 3,000–5,000 mg/L typical maximum in flood waters Unspecified
Secondary sewage treatment Concentrating return activated sludge (secondary treatment) Concentrating or reducing suspended solids in industrial wastes, organic and inorganic Grit removal-raw sewage
Unspecified Unspecified Unspecified
Highly dependent upon nature of waste treated
Unspecified
Plain sedimentation plus skimming
Primary sewage treatment
Unspecified
Trickling filter plus plain sedimentation
Various industrial wastes Secondary sewage treatment
Unspecified 0.25-3.0 Ib BOD/cu yd/filter
Dependent upon waste treated
Activated sludge plus plain sedimentation
Organic industrial wastes (e.g., milk process) Secondary sewage treatment
Removes heavy suspended solids not transported at velocity of 1 ft/sec 25–40% reduction in BOD 40–70% reduction in suspended solids 25–75% reduction in bacteria 2% reduction in detergents Dependent upon nature of waste 80–95% reduction in BOD 70–92% reduction in suspended solids 90–95% reduction in bacteria 30–35% reduction in ABS 80–90% reduction in LAS Dependent upon nature of waste
Plain sedimentation
Sedimentation after mechanical flocculation Raw sewage (experimentally)
Industrial wastes Sedimentation after chemical coagulation
Unspecified
Unspecified
Municipal and industrial water supply water Unspecified softening Raw sewage (not common) Unspecified
Industrial wastes
q 2006 by Taylor & Francis Group, LLC
Unspecified
Dependent upon waste
Removes larger and heavier suspended solids 50% reduction in suspended solids 35–40% reduction in BOD 50% reduction in turbidity Unreported Thickens sludge to 20–25% original volume
80–95% reduction in BOD 85–95% reduction in suspended solids 95–98% reduction in bacteria 50% reduction in BAS 90–99% reduction in LAS 64% reduction in turbidity 40% reduction in suspended solids 60% reduction in BOD Variable, depending upon nature of wastes treated Seldom evaluated separate from filtration 50–85% reduction in BOD 70–90% reduction in suspended solids 40–80% reduction in bacteria Variable, dependent upon nature of waste
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Reduction in suspended solids in raw water to be pumped Primary sewage treatment
Municipal water supply
Unspecified
Phosphate removal from waste waters
Unspecified
Lime-soda softening of water supplies
Applicable to waters containing Ca and Mg sulfates and bicarbonates; Iron and Mg in natural waters (e.g. maximum from 10 mg/L; minimum, 3 mg/L)
Coalesces and precipitates dispersed clay colloids Reduces turbidity Reduces color Reduces soluble phosphates to trace amounts Reduces hardness to approximately 75 mg/L; by excess lime to 30–50 mg/L; by hot process to !10 mg/L as CaCO3 Reduces Fe to 0.1 mg/L (G) Removes CO2—requiring restabilization 80–100% reduction in bacteria by excess lime
WATER QUALITY
Chemical coagulation plus sedimentation
Filtration Slow sand (gravity)
Tertiary treatment of sewage effluent Water reclamation systems
Relatively low turbidity
Municipal water supply
Turbidity 40 mg/L
Industrial wastes Municipal and industrial water supply (little used without coagulation) Municipal and industrial water supply
Unspecified Low turbidity, e.g., 50 mg/L, maximum coliform MPN 5,000/100 mL No limit specified for maximum turbidity Maximum coliform MPN 5,000– 20,000/100 mL
Rapid sand plus chemical coagulation, chlorination, and activated carbon
Municipal and industrial water supply
No limit specified for maximum turbidity Maximum coliform MPN 5,000– 20,000/100 mL
Rapid sand (pressure) (precoat with chemical floc)
Small municipal supplies Institutional water supply Swimming pools Industrial supply and process Emergency and military use
Generally unspecified Low turbidity desirable
Rapid sand (gravity) Rapid sand plus chemical coagulation (gravity)
90–95% reduction in BOD 85–95% reduction in suspended solids 95–98% reduction in bacteria 90–99% reduction in surfactants 99% reduction in bacteria 95–100% reduction in turbidity 30% reduction in color Odors and tastes removed 60% reduction in iron Varies with nature of waste 95% reduction in bacteria 90% reduction in turbidity 90–99% reduction in bacteria 100% (K) reduction in turbidity Color reduction to less than 5 mg/L Alkali increased 7.7 mg/L/gr. alum CO2 increased 6.8 mg/L/gr. alum Slight reduction in iron Odor and taste partially removed Approximately 100% reduction in bacteria 100% reduction in turbidity Color reduced to near zero Iron and Mn reduced Taste and odor removed Similar to rapid sand filter but more variable in performance
q 2006 by Taylor & Francis Group, LLC
8-191
(Continued)
(Continued)
Type or Process
Common Application
Approximate Limit of Quality Input
Principal Change in Quality Factors (Approximate)
8-192
Table 8J.138
Filtration (Continued) Diatomaceous earth (pressure and vacuum)
Contact filters Bag filters
Microstraining
None specified, but operation depends upon nature of water
Unspecified
Primary clarification of water prior to filtration Clarification of sewage effluents
Size of particles to be removed greater than screen size Material suitable for microstraining
None specified
Treatment of industrial wastes
Fine screening
Carbon filters
Raw sewage
None specified
Industrial wastes (e.g., cannery, pulp mill, etc.) Special municipal and industrial water applications
None specified Very low turbidity, other not specified
Capable of good clarification of water; efficiency, however, not well documented 40–90% reduction in suspended solids 50% reduction in color Reduces to USPHS Standards 88% reduction in iron Strains out hair and coarser suspended solids, reduces bacteria to level controllable by chlorination practice 87–96% reduction in microscopic organisms 60–90% reduction in microscopic particulates 50–60% reduction in suspended solids trickling filter effluent 30–40% reduction on turbidity 5–10% reduction in BOD 2–20% reduction on suspended solids 10–20% reduction in bacteria Varies with nature of waste Adsorbs exotic organic chemicals, including surfactants Removes tastes and odors Adsorbs miscellaneous gases
Aeration Spray or cascade
Municipal and industrial water supply Industrial waste treatment
Pressure aerators
Treatment of sewage and industrial wastes Limits variable or unspecified
q 2006 by Taylor & Francis Group, LLC
Unspecified
Releases gases producing taste and odor Reduces CO2 in groundwaters to normal surface water levels Partial removal of H2S Partial removal of gases of decomposition Oxidation and removal of soluble iron in groundwaters; 80–97% reduction observed Grit precipitated Grease concentrated at surface Separates various solids by flotation Maintains aerobic conditions in biological systems, e.g., activated sludge, aerated ponds Reduces ABS or LAS 1–2 mg/L Reduces septicity of sewage
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Small municipal supplies Institutional water supply Swimming pools Industrial supply and process Emergency and military use Manganese removal Iron removal Swimming pools
Oxidation ponds
Treatment of domestic sewage and organic No toxic substances industrial wastes
75–96% reduction in BOD 90–99% reduction in suspended solids 98–99.9% reduction in bacteria 56–93% reduction in LAS
Deminerlization Ion exchange (natural or synthetic zeolite)
Softening of groundwater supplies for municipal or industrial use
Ion exchange (greensand or styrene base gels) Ion exchange (organic cation exchangers)
Iron or Mn removal from groundwater
Ion exchange (anion exchangers) Ion exchange (fluoride exchangers) Electrochemical desalting
Reverse osmosis
Distillation
Freezing
Hardness (Ca and Mg sulfates and bicarbonates) of natural waters O850– 1,000 mg/L CaCO3 Iron !1.5–2 mg/L Low in silica CO2!15 mg/L Iron less than approximately 2.0 mg/L
Special water conditioning for industry and Unspecified commerce Special water conditioning for industry and Unspecified commerce Defluoridation of public water supply More than 1.5 mg/L F in water supply Reclaiming water from saline sources, Applicable to highly saline or brackish public and industrial supplies waters Demineralizing municipal waste effluents Reclamation of water from brackish natural Brackish waters, upper limit not specified or waste waters (experimental)
Reclamation of water from saline sources Specialty industrial and commercial supplies Reclamation of water from saline sources Specialty industrial and commercial supplies
No limit
No limit
WATER QUALITY
Aeration (Continued)
Increases sodium content by exchange with removed Ca and Mg
90–100% removal of iron Mn partially removed Removes all cations (Na, K, Mg, Fe, Cu, Mn) Removes SO4, Cl, NO3, etc. Approximately 100% removal possible Normally reduced to !1.5 mg/L Removes anions and cations
Reduces ions depending upon concentration difference across membrane 97–98% reduction in TDS, ABS, and COD Produces distilled water (may be contamination with NH3, volatile organics, etc.) (Experimental)
Disinfection (Continued)
8-193
q 2006 by Taylor & Francis Group, LLC
(Continued)
Type or Process Liquid Cl2 and Cl2 Compounds such as chlorine dioxide and chloraminesa
Common Application
Approximate Limit of Quality Input
Public water supply Industrial water supply
Turbidity low for waters to be sterilized by CI2 Total organic carbon (TOC) concentration !2 mg/L to minimize disinfection byproduct (DBP) formation
Principal Change in Quality Factors (Approximate)
8-194
Table 8J.138
Reduces bacterial load on filters Oxidizes organic matter Reduces odor Assists in color removal 100% (—) reduction in bacteria Controls plankton growth in reservoirs Reduces Mn concentration in breakpoint
Disinfection (Continued) Unspecified
Ozonea
Public water supply
Bromide concentrations less than 0.1 mg/L to minimize potential for bromate formation
Utraviolet Radiationa
Small public water supply
Low turbidity
Assists in grease removal Controls filter fly nuisance Cleans air stones in aeration systems Removes H2S Removes NH3 Controls slime formation in sewers and cooling towers Assists in control of digester foaming Disinfects effluent; 98–99% reduction in bacteria Oxidizes organics Microbial inactivation including coliform, giardia, cryptosporidium, and viruses Reduces odor Removes color Microbial inactivation including coliform and viruses Some organic oxidation
Digestion Anaerobic digestion
a
Stabilization of sewage solids Stabilization of organic industrial wastes
pH above 6.8 Acids limited No toxic substances in significant amounts Minimum of grit
USEPA, 1999, Alternative Disinfectants and Oxidants Guidance Manual, EPA 815-R-99-014, April 1999.
Source: From McGauhey, Engineeering Management of Water Quality, McGraw-Hill, Copyright 1968. Amended.
q 2006 by Taylor & Francis Group, LLC
Reduces organic sludges to humus and relatively stable chemical compounds Produces offensive supernatant
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Municipal and industrial waste-water treatment and management.
Conventional Processes
Parameter Aldrin Antimony Arsenic Asbestos Barium Boron Cadmium Chlordane Chloride Chromium Color Copper Cyanide 2,4-D DDT Diazinon Dieldrin Endrin Fluoride Heptachlor Heptachlor Epoxide Iron Lead Lindane Manganese Mercury Methoxychlor Methyl Parathion Nitrate NTA Odor Parathion Ph Phenol Radionuclides 226 Ra 90 Sr 137 Cs 131 l Selenium Silver Sulphate Sulphide 2,4,5-TP
Aeration
Chemical Oxidation (Chlorination, etc.)
P A
P
Activated Carbon Absorption Coagulation Flocculation P X L–G G–VG P X L–G L G VG F–G
A VG P P
Lime Softening
G–VG G–VG
A A G A
PAC
GAC
G
VG X
VG A A A
P
P
A
VG VG
G
P
G–VG
VG
VG X
VG G–VG
P VG P–VG
A G
G–VG P L–G G G
F
F–VG P
Comments
Valencies important
VG X
VG X
Valencies important VG
G–VG
X X X(L) G–VG VG
VG VG
X(VG) X
G
X G–VG
VG VG X
VG VG X
A
A VG G F–G G–VG
P A P
P A
P P
G–VG G–VG P L P–F G–VG
P P–G F–G F–VG
Ozone
pH important
VG A P A A A
P L G
G–VG
G–VG
VG X VG Form important X
F A
Ion Exchange
VG
P P G–VG P–L VG
A
Air Stripping
Demineralizing (Reverse Osmosis, etc.)
VG P L–VG
A P A
Filtration
VG L
P–L L
A
Special Processes
WATER QUALITY
Table 8J.139 Potential Water Treatment Efficiences
A
F–VG
VG VG
VG L–VG
G–VG VG G–VG
G–VG
X
G–VG
A A P–F
VG
A A
P
VG VG F–G X G–VG
G–VG G–VG VG X X G–VG
Valencies important
F–VG X(F)
X(G)
pH important
X(G–VG)
(Continued) 8-195
q 2006 by Taylor & Francis Group, LLC
(Continued) Conventional Processes
Parameter
Aeration
Chemical Oxidation (Chlorination, etc.)
T. Dissolved Solids Toxaphene Trihalomethanes Turbidity Uranium Zinc
Note:
8-196
Table 8J.139
Special Processes Activated Carbon Absorption
Coagulation Flocculation
Lime Softening
Filtration
PAC
GAC
Air Stripping
Demineralizing (Reverse Osmosis, etc.) G–VG
P
P
G–VG L–G P
VG
F–G F–G
A A A
X(VG) F–G
P
Ion Exchange
Ozone
Comments
G–VG
X F–G
Process generated VG
VG, 90–100% removal; G, 70–90% removal; F, 50–70% removal; L, 25–50% removal; P, 0.25% removal; A, auxiliary process; X, possible candidate process (data lacking); PAC, Powdered activated carbon; GAC, Granular activated carbon. Treatment based on available full-scale, pilot or bench studies and should only be used as potential indicators. Treatabilty studies and/or site experience should be assessed for specific applications.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Source: From Canadian Council of Resource and Environment Ministers, March 1987. Canadian Water Quality Guidelines. Data provided by McDonald & Associates Consulting Engineers, Regina, Saskatchewan.
WATER QUALITY
8-197
Table 8J.140 Treatment Technology Removal Effectiveness Reported for Organic Contaminants (Percent) Contaminant Acrylamide Aidicarb Alactior Benzene Carbofuren Carbon tetrachloride Chlordane Chlorobenzene 2,4-D 1,2-Dichloroethane 1,2-Dichloropropane Dibroinochloropropane Dichlorobenzene o-Dichlorobenzene p-Dichlorobenzene 1,1-Dichloroethylene cis-1,2-Dichloroethylene Trans-1,2-Dichloroelhylene Epichlorohydrin Ethylbenzene Ethylene dibromide Heptachlor Heptachlor epoxide High molecular weight Hydrocarbons (gasoline, dyes, amines, humics) Lindane Methoxychlor Monochlorobenzene Natural organic material PCBs Phenol and chlorophenol Pentachlorophenol Styrene Tetrachloroethylene Trichloroethane Trichlorethane 1,1,1-Trichloroethane Toluene 2,4,5-TP Toxaphene Vinyl chloride Xylenes Note: a
Coagulation/ Filtration
GAC
PCA
PAC
Dilfused Aeration
Oxidationa
Reverse Osmosis
5 NA 0–49 0–29 54–79 0–29 NA 0–29 0–29 0–29 0–29 0–29 NA 0–29 0–29 0–29 0–29 0–29 NA 0–29 0–29 64 NA NA
NA NA 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 NA 70–100 70–100 70–100 NA W
0–29 0–29 70–100 70–100 0–29 70–100 0–29 70–100 70–100 70–100 70–100 30–69 NA 70–100 70–100 70–100 70–100 70–100 0–29 70–100 70–100 70–100 NA NA
13 NA 36–100 NA 45–75 0–25 NA NA 69–100 NA NA NA NA 38–95 NA NA NA NA NA 33–99 NA 53–97 NA NA
NA NA NA NA 11–20 NA NA NA NA 42–77 12–79 NA NA 14–72 NA 97 32–85 37–96 NA 24–89 NA NA NA NA
NA NA 70–100 70–100 70–100 0–29 NA 30–69 W 0–29 0–29 0–29 NA 30–88 30–69 70–100 70–100 70–100 0–29 70–100 0–29 70–100 25 NA
0–97 94–99 70–100 0–29 70–100 70–100 NA 70–100 0–65 15–70 10–100 NA NA 30–69 0–10 NA 0–30 0–30 NA 0–30 37–100 NA NA NA
0–29 NA NA P NA NA NA 0–29 NA 0–29 NA 0–29 0–29 63 0–29 0–29 0–29
70–100 70–100 NA P 70–100 W 70–100 NA 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100 70–100
0–29 NA NA NA 70–100 NA 0 NA NA 70–100 NA 70–100 70–100 NA 70–100 70–100 70–100
82–97 NA 14–99 P NA NA NA NA NA NA NA 40–65 0–67 82–99 40–99 NA 60–99
NA NA 14–85 NA NA NA NA NA 73–95 53–95 NA 58–90 22–89 NA NA NA 18–89
0–100 NA 86–98 W NA W 70–100 70–100 W 30–69 NA 0–29 70–100 30–69 NA 70–100 70–100
50–75 O90 50–100 P 95 NA NA NA 70–90 0–100 NA 15–100 NA NA NA NA 10–85
W, well removed; P, poorly removed; NA, not available. Little or no specific performance data were available for: 1. Multiple Tray Aeration; 2. Catenary Aeration; 3. Higee Aeration; 4. Resins; 5. Ultrafiltration; 6. Mechanical Aeration.
The specifics of the oxidation processes effective in removing each contaminant are provided in Chapter 8 of the USEPA report.
Source: From United States Environmental Protection Agency, 1990, Technologies for Upgrading Existing or Designing New Drinking Water Treatment Facilities, EPA/625/4-89/023, March 1990, http://nepis.epa.gov.
q 2006 by Taylor & Francis Group, LLC
8-198
Table 8J.141 Removal Effectiveness for Inorganic Contaminant Contaminant Treatment
V
III
VI
Ag
As
As
AS
Ba
Cd
Cr
Cr
Cr
F
Hg
Hg(0)
HgIII
NO3
Pb
Ra
Rn
Se
Se(V)
Se(II)
U
H
—
M
H
L
H
—
H
H
L
—
M
M
L
H
L
—
—
M
L
M
H
—
—
H
—
M
—
H
—
—
M
—
—
—
H
—
—
—
—
—
—
M — H
— — —
— M M
H H H
— H H
— H H
— — H
H H —
H L —
— M H
— — H
— L —
— M —
— L M
— H H
— H H
— — —
— — H
— M —
— L —
— H H
— — — L
L — — —
— — H —
— — — —
H M L L
H M L M
— — — —
H M — L
L H — —
L — H L
— — — —
— — — M
— — — M
L H — L
H M — —
H M L L
— — — —
L H H —
— — — —
— — — —
H H — —
—
—
—
—
L
M
—
L
—
L
—
H
H
L
—
L
H
—
—
—
—
Note: H, HighR80% removal; M, Medium 20–80% removal; L, Low %20% removal; “—“, indicate no data were provided. Source: From United States Environmental Protection Agency, 1990, Technologies for Upgrading Existing or Designing New Drinking Water Treatment Facilities, EPA/625/4-89/023, March 1990, http://nepis.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Conventional treatment Coagulationaluminum Coagulation-Iron Lime softening Reverse osmosis and electrodialysis Cation exchange Anion exchange Activated alumina Powdered activated carbon Granular activated carbon
III
WATER QUALITY
8-199
Table 8J.142 Arsenic Treatment Technologies Summary Comparison Sorption Processes Ion Exchange IX
Factors USEPA BATb USEPA SSCTb System Sizeb,d SSCT for POUb POU System Sizeb,d Removal Efficiency Total Water Loss Pre-Oxidation Requiredf Optimal Water Quality Conditions
Yes Yes 25–10,000 No — 95%e 1–2% Yes pH 6.5–9 e i !5 mg/L NOK 3 2 j !50 mg/L SO4 !500 mg/L TDS k !0.3 NTU Turbidity
Operator Skill Required Waste Generated
High Spent Resin, Spent Brine, Backwash Water Possible pre & post pH adjustment. Pre-filtration required Potentially hazardous brine waste, Nitrate peaking Carbonate peaking affects pH Medium —
Other Considerations
Centralized Cost POU Cost
Membrane Processes
a
Activated Alumina AA
Iron Based Sorbents IBS
Reverse Osmosis RO
Yes Yes 25–10,000 Yes 25–10,000 95%e 1–2% Yes pH 5.5–6 i pH 6–8.3 l !250 mg/L ClK i !2 mg/L FK i k !360 mg/L SO2K 4 !30 mg/L Silicam !0.5 mg/L FeC3 j !0.05 mg/L MnC2 I !1,000 mg/L TDSk !4 mg/L TOCk !0.3 NTU Turbidity Lowa Spent Media, Backwash Water
Noc Noc 25–10,000 Noc 25–10,000 up to 98%e 1–2% Yesg pH 6–8.5 n !1 mg/L POK3 4 !0.3 NTU Turbidity
Yes Yes 501–10,000 Yes 25–10,000 O95%e 15–75% Likelyh No Particulates
Low Spent Media, Backwash Water
Medium Reject Water
Possible pre & post pH adjustment Pre-filtration may be required Modified AA available
Media may be very expensiveo Pre-filtration may be required
High water loss (15–75% of feed water)
Medium Medium
Medium Medium
High Medium
Precipitative Processes
Factors USEPA BATb USEPA SSCTb System Sizeb,d SSCT for POUb POU System Sizeb,d Removal Efficiency Total Water Loss Pre-Oxidation Requiredf Optimal Water Quality Conditions Operator Skill Required
Enhanced Lime Softening LS Yes No 25–10,000 No — 90%
p
0% Yes pH 10.5–11 i O5 mg/L FeC3 High
Enhanced (Conventional) Coagulation Filtration CF
Coagulation Assisted MicroFiltration CMF
Yes No 25–10,000 No —
No Yes 500–10,000 No —
95% (w/FeCl3)p !90%(w/Alum)p 0% Yes
90%
pH 5.5–8.5
q
p
5% Yes pH 5.5–8.5
q
CoagulationAssisted Direct Filtration CADF Yes Yes 500–10,000 No —
Yes Yes 25–10,000 No —
90%p
50–90%p
1–2% Yes
1–2% Yes
pH 5.5–8.5
i
High
High
Oxidation Filtration OxFilt
High
q
pH 5.5–8.5 !0.3 mg/L Fe Fe:As Ratio O20:1 Medium (Continued)
q 2006 by Taylor & Francis Group, LLC
8-200
Table 8J.142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Precipitative Processes
Factors Waste Generated
Other Considerations Centralized Cost POU Cost a b c d e f g h i j k l m n o p q r
Enhanced Lime Softening LS Backwash Water, Sludge (high volume) Treated water requires pH adjustment Lowr N/A
Enhanced (Conventional) Coagulation Filtration CF
Coagulation Assisted MicroFiltration CMF
CoagulationAssisted Direct Filtration CADF
Backwash Water, Sludge
Backwash Water, Sludge
Backwash Water, Sludge
Oxidation Filtration OxFilt Backwash Water, Sludge
Possible pre & post Possible pre & post Possible pre & post pH adjustment pH adjustment pH adjustment
None
Lowr N/A
Medium N/A
High N/A
Medium N/A
Activated alumina is assumed to operate in a nonregenerated mode. USEPA 2002a. IBS’s track record in U.S. was not established enough to be considered as Best Available Technology (BAT) or Small System Compliance Technology (SSCT) at the time the rule was promulgated. Affordable for systems with the given number of people served. USEPA, 2000. Pre-oxidation only required for As(III). Some iron based sorbents may catalyze the As(III) to As(V) oxidation and therefore would not require a pre-oxidation step. RO will remove As(III), but its efficiency is not consistent and pre-oxidation will increase removal efficiency. AwwaRF, 2002. Kempic, 2002. Wang, 2000. AA can be used economically at higher pHs, but with a significant decrease in the capacity of the media. Clifford, 2001. Tumalo, 2002. With increased domestic use, IBS cost will significantly decrease. Depends on arsenic and iron concentrations. Fields, et al., 2002a. Cost for enhanced LS and enhanced CF are based on modification of an existing technology. Most small systems will not have this technology in place.
Source: From United States Environmental Protection Agency, 2003, Arsenic Treatment Technology Evaluation Handbook for Small Systems, EPA-816-R-03-014, July 2003, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-201
Table 8J.143 Treatment Utilized by Major Water Utilites in the United States in 1996
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-202
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-203
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-204
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-205
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-206
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-207
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-208
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-209
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-210
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-211
Table 8J.143 (Continued)
(Continued)
q 2006 by Taylor & Francis Group, LLC
8-212
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.143 (Continued)
Note:
Selected utilities serving a population of 100,000 or more.
Source: Adapted from water:\Stats: 1996 Survey, by permission. Copyright q 2000, American Water Works Associations. (Updated information available electronically from AWWA at 800-926-7337), www.awwa.org.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-213
Table 8J.144 Water Treatment Processes Considered for Best Available Technology Conventional Processes Coagulation, sedimentation, filtration Direct filtration Diatomaceous earth filtration Slow sand filtration Lime softening Ion exchange Oxidation-disinfection Chlorination Chorine dioxide Chloramines Ozone Bromine Others
Advanced Processes Activated alumina Adsorption GAC Powdered activated carbon Resins Aeration Packed column Diffused air Spray Slat tray Mechanical Cartridge filtration Electrodialysis Reverse osmosis Ultrafiltration Ultraviolet light (UV) UV with other oxidants
Source: From Dyksen, J.E., Hiltebrand, D.J., and Raczko. R.F., 1988, SDWA amendments: effects on the water industry. J. Am. Water Works Assoc., vol. 80, no. 1. Copyright AWWA. Reprinted with permission.
Table 8J.145 Chemicals Used for Treatment by Public WaterSupply Systems in the United States and Canada Chemical Quick lime Aluminum sulfate Chlorine Hydrated lime Caustic soda Carbon dioxide Soda ash Ferrous sulfate Powdered activated carbon Ferric sulfate Sodium silicofluoride Polyelectrolytes Ammonia Phosphate Copper sulfate Granular activated carbon Potassium permanganate Sodium aluminate Hypochlorites Sodium chloride Clays Note:
Total Use Tons 330,988 188,986 79,034 44,679 39,030 18,111 13,750 10,590 9,016 7,956 7,903 5,915 5,232 3,970 2,825 2,587 1,231 1,129 1,112 828 133
Based on data from 430 of the largest U.S. utilities and 24 of the 75 largest Canadian utilities. Source: From American Water Works Association, 1988. Grigg, N.S., 1984 Water Utility Operating Data, Summary Report. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
8-214
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.146 Costs of Some Water Treatment Technologies Population Range
Type of Treatment
501–1,000 50,001–75,000 O1,000,000
Cost per Family per Year
conventional coagulation filtration and disinfection to control microbial contaminants corrosion control (stabilization with lime) to control lead and other corrosion products packed tower aeration to control organic chemicals
501–1,000 50,001–75,000 O1,000,000 501–1,000 50,000–75,000 O1,000,000 501–1,000 50,001–75,000 O1,000,000
$125 $ 50 $ 25 $ 60 $ 15 !$ 10 $ 55 $ 28 $ 20 $190 $130 $ 40
granular activated carbon to control synthetic organic chemicals
Note:
Basic Assumptions: 3.2 persons per household; each person using 180 gallons per day; total cost per household including operation, maintenance and amortization of capital at 10 percent per year for 20 years. Source: From U.S. Environmental Protection Agency; League of Women Voters Education Fund, 1987, Safety on Tap. Reprinted with permission.
Table 8J.147 Cost of Treating Contaminated Groundwater (Portable Treatment Systems, 1987) Cost (dollars/unita)
Unit type In situ biological treatment (suspended growth reactor) Rotating biodisks Trickling filter Activated sludge Packed towers Aeration basins Carbon adsorption Ultraviolet/hydrogen peroxide Belt press Mixing tangs (including chemicals) Equalization tanks Clarifiers Solidification of solids in situ Note: a
$15–40/cu yd, treated 0.20–1.10 0.08–0.15 0.10–0.30 0.02–0.10 0.02–0.08 0.20–0.90 0.04–0.18 0.01–0.05 0.03–0.29 0.005–0.01 0.008–0.06 0.20–1.00
Portable treatment systems — 1987.
All costs per 1,000 gal except as noted.
Source: From Estimated by Geraghty & Miller Inc Oak Ridge, TN.
Table 8J.148 Treatment Costs for Removal of Trichloroethylene from Drinking Water [US Dollars; Cost Data as of 1984] Treatment Technique GAC absorptiona
Packed-Tower Aerationb System Size
c
Cost Component d
Capital (Thousand$) Annual O&M (Thousand $) Total (¢ per 1,000 gal) Note: a b c d
0.037 mgd
0.95 mgd
36.8 mgd
0.037 mgd
0.95 mgd
36.8 mgd
24 4.5 57.0
240 86 34.0
9,000 710 14.0
69 1.4 79.0
264 18 15.5
4,789 617 9.4
Raw water concentration 500 ug/L; assuming 99-percent removal.
Based on 10-min empty bad contact time. Does not include air pollution controls. USEPA estimates in August 1983 dollars. Includes site work, engineering, contractor overhead and profit, and contingencies.
Source: From American Water Works Association, 1988, New Dimensions in Safe Drinking Water. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-215
Table 8J.149 Cost of Removal of Volatile Organic Chemicals in Drinking Water Capacitya
Contaminant (1) Trichloroethylene
Millions of Gallons per Day (2) 0.5
1
10
Tetrachloroethylene
0.5
1
10
1.1.1-Trichloroethane
0.5
1
10
Carbon tetrachloride
0.5
1
10
Cis-1,2-Dichloroethylene
0.5
1
q 2006 by Taylor & Francis Group, LLC
Cost (Dollars per Thousand Gallons)b
mg/L (3)
Percent Removal (4)
Tower (5)
Aeration Basin (6)
100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1
90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99
0.273 0.287 0.296 0.303 0.182 0.191 0.196 0.202 0.083 0.088 0.093 0.099 0.279 0.293 0.302 0.308 0.186 0.194 0.201 0.206 0.085 0.091 0.098 0.103 0.270 0.289 0.307 0.332 0.180 0.192 0.205 0.230 0.082 0.089 0.102 0.122 0.264 0.287 0.272 0.280 0.176 0.181 0.184 0.186 0.081 0.683 0.084 0.085 0.284 0.296 0.304 0.310 0.189 0.196 0.202 0.206
0.546 0.793 1.032 1.270 0.383 0.611 0.850 1.088 0.207 0.403 0.587 0.755 0.637 0.935 1.228 1.486 0.460 1.752 1.046 1.296 0.277 0.514 0.726 0.905 0.502 0.825 1.421 2.572 0.348 0.644 1.234 2.313 0.176 0.430 0.860 1.821 0.428 0.531 0.600 0.648 0.292 0.371 0.427 0.470 0.133 0.196 0.247 0.286 0.727 1.010 1.281 1.572 0.547 0.828 1.098 1.379
Carbon Adsorption (7) 0.868 0.918 1.010 1.124 0.637 0.679 0.765 0.867 0.356 0.390 0.458 0.543 0.610 0.660 0.705 0.805 0.453 0.502 0.548 0.651 0.197 0.224 0.251 0.313 1.445 1.651 1.945 2.605 1.396 1.500 1.801 2.402 0.802 0.973 1.229 1.818 0.942 1.021 1.132 1.340 0.703 0.775 0.940 1.063 0.408 0.467 0.550 0.719 2.513 2.791 3.153 3.511 2.156 2.417 2.760 3.099 (Continued)
8-216
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8J.149
(Continued) Capacitya
Contaminant (1)
Millions of Gallons per Day (2) 10
1,2-Dichloroethane
0.5
1
10
1,1-Dichlorethylene
0.5
1
10
Note: a b
Cost (Dollars per Thousand Gallons)b
mg/L (3)
Percent Removal (4)
Tower (5)
Aeration Basin (6)
Carbon Adsorption (7)
100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1 100 10 1 0.1
90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99 90 99 99.9 99.99
0.087 0.093 0.099 0.104 0.276 0.285 0.292 0.297 0.184 0.190 0.194 0.197 0.084 0.087 0.090 0.094 0.262 0.265 0.270 0.272 0.174 0.177 0.180 0.181 0.080 0.081 0.082 0.083
0.350 0.571 0.763 0.966 0.587 0.749 0.901 1.054 0.415 0.568 0.720 0.871 0.237 0.368 0.489 0.603 0.406 0.448 0.500 0.531 0.274 0.307 0.348 0.371 0.121 0.144 0.176 0.196
1.735 1.989 2.327 2.660 1.286 1.465 1.748 2.322 1.015 1.177 1.437 2.980 0.675 0.820 1.057 1.566 0.880 0.963 1.066 1.243 0.647 0.721 0.814 0.977 0.364 0.423 0.499 0.640
US dollars; cost data as of 1984.
To convert from mgd to m3/day, multiply by 3,785. To convert from dollars/1,000 gal to dollars/m3 multiply by 0.26412.
Source: From Clark, R.M., Eilers, R.G., and Goodrich, J.A., 1984, VOC’s in Drinking Water: Cost of Removal, U.S. Environmental Protection Agency, Cincinnati, OH 45268; PB85-166429.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
Table 8J.150 Cost of Removal of MTBE from Drinking Water for Various Treatment Systems Air Stripping Flow (gpm) 60
600
6,000
Note: a
Influent (mg/L)
Effluent (mg/L)
Removal (%)
20 20 200 200 200 2,000 2,000 2,000 20 20 200 200 200 2,000 2,000 2,000 20 20 200 200 200 2,000 2,000 2,000
5 0.5 20 5 0.5 20 5 0.5 5 0.5 20 5 0.5 20 5 0.5 5 0.5 20 5 0.5 20 5 0.5
75.00 97.50 90.00 97.50 99.75 99.00 99.75 99.98 75.00 97.50 90.00 97.50 99.75 99.00 99.75 99.98 75.00 97.50 90.00 97.50 99.75 99.00 99.75 99.98
AOPs
Packed Tower
Low Profile
Packed Tower w/OGT
H2O2/ MP-UV
O3/H2O2
GAC
Resin Sorption
Lowest Unit Cost Amongst the Technologies Evaluated
$1.66 $1.75 $1.66 $1.75 $1.82 $1.79a $1.82a NE $0.30 $0.34 $0.32a $0.34a $0.37a $0.36a $0.37a NE $0.13a $0.16a $0.15a $0.16a $0.17a $0.17a $0.18a NE
NE $1.86 $1.70 $1.80 $1.89 $1.90 $2.02 NE $0.78 $0.92 $0.85 $0.96 $1.09 $0.96 $1.09 NE $0.34 $0.48 $0.41 $0.48 $0.64 NE NE NE
NR NR NR NR NR $3.08 $3.20 NE NR NR $0.57 $0.59 $0.62 $0.90 $0.91 NE $0.36 $0.39 $0.38 $0.39 $0.40 NE NE NE
$2.18 $2.50 $2.32 $2.50 $2.72 $3.07 $3.47 $4.11 $0.57 $0.91 $0.71 $0.96 $1.27 $1.52 $1.75 $2.08 $0.32 $0.52 $0.42 $0.60 $0.74 $0.65 $1.24 $1.59
$2.63 $2.68 $2.65 $2.68 $2.98 $3.29 $3.31 $3.62 $0.82 $0.90 $0.84 $0.90 $0.95 $1.07 $1.13 $1.19 $0.35 $0.43 $0.37 $0.43 $0.48 $0.56 $0.59 $0.68
NE $2.30 NE NE $3.10 NE NE $4.61 NE $0.77 NE NE $1.15 NE NE $2.37 NE $0.50 NE NE $0.97 NE NE $2.22
$2.50 $2.81 $4.16 $4.16 $4.16 $4.56 $4.57 $4.57 $1.01 $1.01 $1.16 $1.17 $1.17 $1.32 $1.36 $1.38 $0.30 $0.36 $0.39 $0.41 $0.41 $0.53 $0.54 $0.58
Packed Tower Packed Tower Packed Tower Packed Tower Packed Tower Packed Tower with OGT Packed Tower with OGT O3/H2O2 Packed Tower Packed Tower Packed Tower with OGT Packed Tower with OGT Packed Tower with OGT Packed Tower with OGT Packed Tower with OGT O3/H2O2 Resin Sorption Resin Sorption O3/H2O2 Packed Tower with OGT Packed Tower with OGT Resin Sorption Resin Sorption Resin Sorption
Costs are in 1999 dollars, total amortized costs 1,000 gallons; NE, not evaluated due to lack of data; NR, off-gas treatment not required; Bold numbers indicate the lowest unit cost amongst the technologies evaluated; OGT, off-gas treatment; AOP, Treatment Costs for byproduct and residual oxidant removal not included.
Off-gas treatment is expected to be required based on 1 lb/day emission standards.
Source: From Stocking, A. et al., 2000, Appendix 24, MTBE Treatability, Executive Summary, Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water: Air Stripping, Advanced Oxidation Processes, Granular Activated Carbon, Synthetic Resin Sorbents, Second Edition, February 2000, Written for the California Agencies MTBE Research Partnership, Center for Groundwater Restoration and Protection, National Water Research Institute, NWRI-99-08, www.nwri-usa.org.
8-217
q 2006 by Taylor & Francis Group, LLC
8-218
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 8K
q 2006 by Taylor & Francis Group, LLC
WATER TREATMENT FACILITIES
WATER QUALITY
Table 8K.151 Data on Selected Large Rapid-Sand Filter Plants in the United States Chemical Feed and Mix
City Detroit, MI Milwaukee, WI St. Louis, MO Louisville, KY Toledo, OH Denver, CO Atlanta, GA Dallas, TX New Orleans, LA Albany, NY Richmond, VA
Capacity (mgd) 320 200 160 120 80 64 54 48 40 32 30
Type Feed Dry Dry Solution Dry Dry Dry Dry Dry Solution Dry Dry
Sedimentation
Alum Used (Grains/gal)
Lime Used (Grains/gal)
Mixing Time (min)
0.74 0.5 1.2 0.65 1.12 0.1–1.0 0.59 1.0 0.75
0 0.11 4.7 0.31 0.5 0.05–0.5 0.26 5.2 5.0
3 64 45 — 40 20 23 12 60 20 10
1.5 2.0
0 0
Filtration
Time (hr)
Flow V (ft/min)
Basin Depth (ft)
Filter Rate (mgd/acre)
Unit Size (mgd)
Sand Depth (in.)
Sand Size (mm)
Gravel Depth (in.)
Wash Rate (in./min)
Wash Water (percent)
Baffles Mechanical Baffles None Mechanical Baffles Baffles Baffles Baffles
2.0 4.0 36.0 2.0 2.8 1.0 9.3 8.0 18.0
4.2 2.32 1.5 5.7 1.5 12.0 0.7 1.1 0.55
16 27 16–23 17.5 15 13.5 14–24 18 13.75
160 125 125 125 94 156 125 120 122
4 6.25 4 6 and 3 2 4.5 3 and 5 2 4
30 27 30 26–30 22 48a 24–27 30 30
0.45 0.51 0.4 0.4–0.5 0.42 0.62 0.4–0.5 0.4–0.45 0.33
17 24 12 14–24 18 15 18 18 9
26–30 24 24 22–36 20 25 30 20 24
2.0 2.2 1.67 2.0 2.43 1.4 1.3 1.5 0.3
Baffles Combined
2.25 10.0
1.5 6.0
10–18 10
125 120
18 16
24 24
Type of Mix
4 3
30 26
0.33 0.43
2.5 1.0
a
Coal. Source: From Cosens, J. Am. Water Works Assoc, 1956.
8-219
q 2006 by Taylor & Francis Group, LLC
8-220
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8K.152 Community Water System Treatment Schemes (Percentage of Plants Using Each Treatment Scheme) System Service Population Category Water Source Groundwater Plants Disinfection with no additional treatment Other chemical addition Ion exchange, activated alumina, aeration Other filtration (not direct or conventional) Direct filtration Conventional filtration Membranes Softening Observations Surface Water Plants Disinfection with no additional treatment Other chemical addition Ion exchange, activated alumina, aeration Other filtration (not direct or conventional) Direct filtration Conventional filtration Membranes Softening Observations Mixed Plants Disinfection with no additional treatment Other chemical addition Ion exchange, activated alumina, aeration Other filtration (not direct or conventional) Direct filtration Conventional filtration Membranes Softening Observations All Plants Disinfection with no additional treatment Other chemical addition Ion exchange, activated alumina, aeration Other filtration (not direct or conventional) Direct filtration Conventional filtration Membranes Softening Observations
100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
68.7
55.5
52.1
37.4
43.5
54.2
60.3
84.1
54.5
7.7 0.0
21.7 9.8
11.4 22.0
30.5 18.7
15.8 23.1
15.0 25.3
2.7 14.1
0.6 14.9
16.1 13.7
12.3
9.5
3.9
4.6
9.0
0.6
7.0
0.2
7.6
0.1 0.0 1.1 10.0 83
0.0 0.0 0.0 3.6 98
0.1 0.0 0.1 6.9 127
0.2 2.6 0.5 5.5 125
0.3 0.0 0.0 6.9 168
0.6 0.0 0.6 1.4 191
0.2 0.0 0.6 3.7 394
0.0 0.0 0.0 0.2 469
0.1 0.3 0.3 6.1 1,655
50.0
14.3
3.6
1.0
0.3
0.0
2.4
2.6
10.7
0.0 0.0
0.0 2.3
4.3 2.1
1.0 7.1
0.0 6.5
1.0 5.3
4.2 4.6
6.0 10.2
1.5 4.0
12.8
28.4
14.5
6.0
0.0
11.1
2.3
0.0
11.8
7.2 11.9 6.4 11.7 50
18.8 8.9 5.8 20.8 58
9.2 37.4 1.3 27.6 76
16.9 35.7 1.0 30.2 82
15.5 59.2 0.0 16.3 85
8.9 60.7 0.0 12.9 81
13.5 64.5 0.6 6.7 169
15.4 45.4 0.9 12.0 115
13.5 34.7 2.5 20.6 716
0.0
89.8
100.0
46.7
14.2
0.0
3.2
0.0
51.5
0.0 0.0
0.0 0.0
0.0 0.0
0.0 14.6
2.7 0.0
0.0 28.5
14.2 16.3
0.0 0.0
1.8 5.9
0.0
3.4
0.0
0.0
0.0
0.0
3.2
0.0
1.6
0.0 100.0 0.0 0.0 1
6.8 0.0 0.0 0.0 3
0.0 0.0 0.0 0.0 1
7.3 16.8 0.0 14.6 9
9.6 31.5 0.0 42.0 11
0.0 57.1 0.0 14.4 4
3.2 40.5 0.0 16.3 29
0.0 100.0 0.0 0.0 6
6.8 17.9 0.0 14.2 64
67.0
52.9
47.5
31.8
33.5
37.3
43.9
68.5
49.4
7.0 0.0
19.8 9.1
10.7 20.1
25.1 16.7
12.1 19.0
10.6 19.3
3.6 11.9
1.5 13.9
14.3 12.5
12.4
10.8
4.9
4.7
6.9
3.7
5.7
0.2
8.0
0.7 1.1 1.6 10.2 134
1.5 0.7 0.4 4.8 159
1.0 3.5 0.2 8.9 204
3.1 8.2 0.6 9.6 216
3.8 13.5 0.0 9.7 264
3.1 18.9 0.4 5.0 276
3.6 17.3 0.6 4.9 592
2.8 9.1 0.2 2.3 590
1.7 4.4 0.5 7.8 2,435
All Sizes
Note: Excludes plants that treat purchased water. The tabulations presented in the Community Water-System Survey 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States. Source: From USEPA, 2002, Community Water System Survey 2000, EPA 815-R-02-005A.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-221
Table 8K.153 Community Water System Surface Water Treatment Practices (Percentage of Plants Performing Each Treatment) System Service Population Category Surface Water Treatment Practice
100 or Less
Chlorination only 49.5 Raw water storage/ 12.5 presedimentation basin Predisinfection/oxidation prior to sedimentation Chlorine 18.6 Chlorine dioxide 0.0 Chloramines 0.0 Ozone 0.5 Potassium permanganate 0.0 Other predisinfection 0.0 Predisinfection/oxidation prior to filtration Chlorine 7.4 Chlorine dioxide 0.0 Chloramines 0.0 Ozone 0.0 Potassium permanganate 0.0 Other predisinfection 0.0 Rapid mix 7.8 Coagulation/flocculation 11.0 Polymers 15.5 Setting/sedimentation 11.9 Softening Lime/soda ash 0.0 Recarbonation 0.0 Ion exchange 11.7 Filtration Direct filtration 2.6 Micro strainer 0.0 Slow sand 4.9 Bag and cartridge 18.9 Rapid sand 0.0 Green sand 0.7 Diatomaceous earth 2.6 Dual/multi media 13.7 Pressure filtration 9.5 Other filtration 0.6 Post-disinfection after filters Chlorine 27.8 Chlorine dioxide 0.0 Chloramines 0.0 Ozone 0.0 UV 11.7 Other post disinfection 0.0 Clearwell 11.0 Membranes Reverse osmosis 2.0 Micro filtration 6.4 Ultrafiltration 0.0 Nanofiltration 0.0 Corrosion control 1.5 Miscellaneous Ion exchange 0.0 Granular activated carbon 2.2 Activated alumina 0.0 Aeration 0.0 Other Flouride 0.0 PAC 0.0
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
32.4 20.5
7.9 11.5
6.0 16.3
0.3 20.5
1.0 29.8
6.8 19.1
10.2 26.5
16.2 17.3
2.9 0.0 0.0 0.9 1.1 0.0
37.6 0.0 0.0 0.0 24.9 4.8
50.9 3.0 1.0 1.0 29.4 1.0
51.7 3.9 8.3 0.0 37.1 0.0
45.8 11.4 0.0 5.3 29.2 0.0
52.2 7.4 10.0 3.9 27.8 1.7
45.4 4.3 11.1 6.0 26.6 0.0
34.5 2.2 2.4 1.0 20.3 1.3
11.9 2.0 0.0 15.3 1.2 0.0 13.1 22.6 21.5 15.9
24.2 0.0 0.0 0.0 6.9 4.4 43.3 63.1 54.4 60.8
24.3 0.0 0.0 0.0 10.1 0.0 67.5 87.9 63.7 67.9
35.4 1.1 4.6 1.1 5.5 0.0 90.9 96.4 62.1 79.8
38.3 2.0 1.3 2.3 7.8 2.0 75.6 82.0 53.4 74.7
31.5 2.8 6.9 4.1 3.9 0.0 77.8 85.2 58.4 71.7
37.7 0.0 7.7 6.0 2.6 0.0 62.4 77.0 53.9 63.3
23.0 0.8 1.4 3.5 5.0 1.0 48.9 60.8 46.0 51.5
20.8 0.0 0.0
27.6 0.0 0.0
34.2 6.1 0.0
20.7 7.7 0.0
12.9 5.0 0.0
7.2 4.4 0.0
12.0 3.4 0.0
20.5 2.9 1.6
2.3 0.0 10.8 18.6 9.4 0.0 1.0 14.0 20.7 0.8
0.8 0.0 4.8 0.0 24.5 3.0 2.5 51.8 2.2 4.1
8.1 0.0 3.1 0.0 32.5 1.0 2.0 46.6 2.6 0.0
5.3 0.0 0.0 1.0 17.6 0.0 0.0 73.2 0.0 3.9
4.0 0.0 0.0 0.0 7.9 0.0 13.1 68.7 2.0 2.3
9.6 1.7 1.7 0.6 16.2 0.6 2.9 59.3 0.0 3.0
6.8 0.9 0.0 0.0 23.2 0.0 0.0 52.1 0.0 2.6
4.1 0.1 4.3 6.3 17.3 0.9 2.2 43.5 6.2 2.1
58.3 0.0 0.0 0.7 0.0 0.0 37.4
77.4 0.0 0.0 0.0 0.0 7.9 80.0
85.3 1.0 4.1 0.0 0.0 0.0 81.0
83.7 5.0 22.5 0.0 0.0 2.1 82.7
75.3 1.5 18.9 5.3 0.0 1.0 85.4
74.5 0.6 23.6 0.0 0.6 1.1 82.0
53.9 0.0 21.3 1.7 0.0 0.0 64.1
68.7 1.1 7.1 0.4 1.6 2.1 63.2
0.0 5.8 0.0 0.0 14.1
0.0 1.3 0.0 0.0 40.8
0.0 1.0 0.0 0.0 48.9
0.0 0.0 0.0 0.0 70.6
0.0 0.0 0.0 0.0 62.9
0.0 0.6 0.0 0.0 69.7
0.0 0.9 0.0 0.0 72.6
0.3 2.5 0.0 0.0 40.2
0.0 2.6 2.3 0.0
0.0 0.8 0.0 2.1
1.0 21.1 1.0 6.1
0.0 14.9 0.0 7.6
0.0 15.9 1.3 5.0
0.0 11.0 1.1 5.7
0.0 6.0 0.9 10.2
0.2 8.6 0.7 3.6
2.5 1.1
37.4 5.7
57.3 6.1
69.4 18.7
60.4 12.3
64.4 18.1
71.0 20.5
38.0 7.6 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-222
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8K.153
(Continued) System Service Population Category
Surface Water Treatment Practice pH adjust Iron/mag. removal/seq. Taste/odor Filter aid Clarify Blending Note:
100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
0.0 0.0 0.0 0.0 0.0 0.0
0.0 2.0 0.0 0.0 0.0 0.0
6.1 0.0 0.0 7.7 0.0 0.0
1.0 0.0 1.0 5.9 0.0 0.0
1.1 0.0 0.3 2.2 0.0 0.0
1.0 0.0 0.0 1.0 0.0 0.0
3.3 0.0 1.2 0.0 0.0 0.0
2.5 0.0 0.0 0.0 0.0 0.0
1.9 0.4 0.3 3.1 0.0 0.0
Represents treatment practices for plants treating water that comes entirely or partly from surface sources. Chlorination only is indicated when a plant chlorinated but did not filter. It includes plants that only chlorinated and plants that chlorinated and used other nonfiltration practices. The tabulations presented in the Community Water System Survey 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States. Percentages may not sum to 100 percent because systems may perform more than one treatment.
Source: From USEPA, 2002, Community Water System Survery 2000, EPA 815-R-02-005A.
q 2006 by Taylor & Francis Group, LLC
WATER QUALITY
8-223
Table 8K.154 Community Water System Groundwater Treatment Practices System Service Population Category Groundwater Treatment Practice
100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
Chlorination only 81.4 73.2 Raw water storage/ 1.5 0.0 Presedimentation basin Predisinfection/oxidation prior to sedimentation Chlorine 0.0 7.5 Chlorine dioxide 0.0 0.0 Chloramines 0.0 0.0 Ozone 0.5 0.0 Potassium permanganate 0.0 3.7 Other Predisinfection 1.3 0.0 Predisinfection/oxidation prior to filtration Chlorine 1.5 7.1 Chlorine dioxide 0.0 0.0 Chloramines 0.0 0.0 Ozone 0.0 0.0 Potassium permanganate 1.0 1.4 Other predisinfection 0.0 1.2 Rapid mix 0.0 0.0 Coagulation/flocculation 0.0 0.0 Polymers 0.1 0.0 Settling/sedimentation 0.0 0.0 Softening Lime/soda ash 3.4 2.5 Recarbonation 0.0 0.0 Ion exchange 6.6 2.2 Filtration Direct filtration 1.1 0.0 Micro strainer 0.0 0.0 Slow sand 0.0 0.0 Bag and cartridge 8.9 0.1 Rapid sand 0.0 0.9 Green sand 1.6 7.5 Diatomaceous earth 0.0 0.0 Dual/multi media 0.1 0.0 Pressure filtration 0.0 3.7 Other filtration 0.8 2.1 Post-disinfection after filters Chlorine 8.5 7.8 Chlorine dioxide 0.0 0.0 Chloramines 0.0 0.0 Ozone 0.0 0.0 UV 0.0 0.0 Other post disinfection 0.0 0.0 Clearwell 11.4 15.4 Membranes Reverse osmosis 1.1 0.0 Micro filtration 0.0 0.0 Ultrafiltration 0.0 0.0 Nanofiltration 0.0 0.0 Corrosion control 8.0 17.6 Miscellaneous Ion exchange 0.0 0.0 Granular activated carbon 0.0 0.0 Activated alumina 0.0 0.0 Aeration 0.0 9.8 Other Flouride 0.0 4.4
72.7 0.4
72.5 1.6
67.8 1.4
71.1 1.2
68.6 5.8
96.9 0.0
74.3 0.8
9.4 0.0 0.0 0.0 3.2 0.0
10.6 0.0 0.0 0.0 4.4 0.0
11.3 0.7 0.0 0.0 0.7 0.7
5.9 10.5 0.6 0.0 1.2 0.0
9.5 0.4 4.5 0.9 0.4 4.9
0.0 0.0 0.0 0.0 0.0 0.0
7.2 0.2 0.1 0.1 2.6 0.4
10.0 0.0 0.0 0.0 5.0 0.0 2.4 4.3 8.4 4.3
7.5 0.0 0.0 0.0 2.4 0.0 5.0 6.0 3.5 8.1
10.8 0.0 0.0 0.0 4.0 0.0 0.0 2.6 2.2 5.4
1.2 0.4 1.2 0.0 0.0 0.0 3.0 4.7 2.2 3.6
3.0 0.0 0.4 0.0 0.4 0.0 2.7 1.7 1.0 3.0
2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
6.9 0.0 0.0 0.0 2.6 0.4 1.3 2.1 2.9 2.6
10.3 1.0 6.0
8.2 5.1 2.3
9.1 2.2 3.6
4.7 1.8 0.6
12.7 7.1 0.0
0.4 0.2 0.0
6.1 1.2 4.1
0.0 0.0 1.0 0.4 2.7 4.2 0.0 4.6 8.1 0.0
2.5 0.0 3.4 0.0 7.2 4.4 0.0 3.4 2.6 0.3
0.0 0.0 0.0 0.0 4.4 2.9 0.3 5.7 7.2 0.3
1.2 0.0 0.0 0.0 1.2 0.0 0.0 3.2 1.2 0.8
0.2 0.0 0.2 0.2 2.0 0.4 0.0 10.5 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0
0.5 0.0 0.7 1.8 2.2 4.5 0.0 2.4 4.2 0.8
15.3 0.0 0.0 0.0 0.0 1.4 24.7
21.0 0.0 0.8 0.0 0.0 0.0 23.6
19.9 0.0 1.4 0.0 0.0 0.0 16.0
3.3 0.0 1.8 0.0 0.0 5.8 6.9
11.5 6.6 3.4 0.0 0.0 0.0 13.3
2.7 0.0 0.0 0.0 0.0 0.0 0.4
12.3 0.1 0.3 0.0 0.0 0.5 17.7
0.1 0.0 0.0 0.0 17.4
0.5 0.3 0.0 0.0 28.9
0.0 0.0 0.0 0.0 21.2
0.6 0.0 0.0 0.0 19.0
0.6 0.0 0.0 0.0 7.3
0.0 0.0 0.0 0.0 0.8
0.3 0.0 0.0 0.0 16.9
0.0 0.0 0.0 22.0
0.0 0.8 0.0 19.0
1.4 1.9 0.0 21.7
0.0 0.6 18.1 7.9
0.0 8.6 0.0 17.4
0.0 0.2 0.0 14.9
0.1 0.4 0.3 13.4
18.3
27.6
20.5
9.4
12.1
0.6
11.4 (Continued)
q 2006 by Taylor & Francis Group, LLC
8-224
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 8K.154
(Continued) System Service Population Category
Groundwater Treatment Practice
100 or Less
101– 500
501– 3,300
3,301– 10,000
10,001– 50,000
50,001– 100,000
100,001– 500,000
Over 500,000
All Sizes
PAC pH adjust Iron/mag. removal/seq. Taste/odor Filter aid Clarify Blending
0.0 0.0 2.3 0.0 0.0 0.0 0.0
0.0 1.2 3.8 0.0 0.0 0.0 2.0
0.0 4.7 3.0 0.0 3.5 0.0 0.0
0.0 0.0 4.7 1.6 0.0 0.0 6.0
0.0 2.2 1.4 0.0 0.0 0.0 0.7
0.0 0.0 0.6 0.0 0.0 0.0 1.2
0.4 0.0 0.0 0.0 5.8 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.8 3.1 0.2 1.0 0.0 1.4
Note:
Represents treatment practices for plants treating water that comes entirely or partly from ground sources. Percentages may not sum to 100 percent because systems may perform more than one treatment. Chlorination only is indicated when a plant chlorinated but did not filter. It includes plant that only chlorinated and plants that chlorinated and used other nonfiltration practices. The tabulations presented in the Commonly Water System Survery 2000 are based on data collected from a sample of U.S. Water Systems, not from a census of every water system in the United States.
Source:
From USEPA, 2002, Community Water System Survery 2000, EPA 815-R-02-005A.
q 2006 by Taylor & Francis Group, LLC
CHAPTER
9
Wastewater William H. Lynch
CONTENTS Section Section Section Section
9A 9B 9C 9D
Wastewater Characteristics.....................................................................................................................9-2 Centralized Wastewater Treatment ........................................................................................................9-20 Decentralized Wastewater Treatment ....................................................................................................9-40 Industrial Wastewater Treatment ...........................................................................................................9-49
9-1 q 2006 by Taylor & Francis Group, LLC
9-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Ratio of Q peak hourly/Q design ave
SECTION 9A
WASTEWATER CHARACTERISTICS
10.0 8.0 6.0 5.0 4.0 3.0 2.0 1.5 1.0 0.1
0.2
0.3 0.4 0.5
0.7
2
1.0
3
4
5
7
10
20
30 40 50
70
100
Population in thousands Q peak hourly: Maximum rate of wastewater flow (Peak hourly flow) Q design ave: Design average daily wastewater flow Source: Q peak hourly/Q design ave = 18 + P 4+ P
- - - (P = population in thousands)
Figure 9A.1 Ratio of peak hourly flow to design average flow. (From Board of State and Provincial Public Health and Environmental Managers, Health Education Services Division, Recommended Standards for Wastewater Facilities, Figure 1, p. 10.5, 2004 Edition. www.hes.org.)
Preliminary
Primary
Advanced
Secondary
Effluent
Effluent
Effluent
Disinfection
Disinfection
Low-rate processes Disinfection
Stabilization ponds aerated lagoons
Nitrogen removal Screening comminution grit removal
High-rate processes Sedimentation
Activated sludge trickling filters RBCs
Secondary sedimentation
Sludge processing
Nitrification–denitrification selective ion exchange breakpoint chlorination gas stripping overland flow
Phosphorus removal Chemical precipitation biological
Suspended solids removal Chemical coagulation filtration
Disposal Organics & metals removal Carbon adsorption chemical precipitation
Dissolved solids removal Reverse osmosis electrodialysis distillation ion exchange
Figure 9A.2 Generalized flow sheet for wastewater treatment. (From USEPA, Manual Guidelines Water Reuse, Office of Water, Figure 12 (EPA/625/R-92/004), September 1992.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-3
Table 9A.1 Typical Wastewater Flowrates from Urban Residential Sources in the United States Flowrate, gal/capita d
Flowrate, l/capita d
Household Size, No. of Persons
Range
Typical
Range
Typical
1 2 3 4 5 6 7 8
75–130 63–81 54–70 41–71 40–68 39–67 37–64 36–62
97 76 66 53 51 50 48 46
285–490 225–385 194–335 155–268 150–260 147–253 140–244 135–233
365 288 250 200 193 189 182 174
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.1, p. 156. With permission. Adapted in part from AWWARF (1999).
Table 9A.2 Typical Wastewater Flowrates from Recreational Facilities in the United States Flowrate, gal/unit d Facility Apartment, resort Cabin, resort Cafeteria Camp With toilets only With central toilet and bath facilities Day Cottages, (seasonal with private bath) Country club
Dining hall Dormitory, bunkhouse Fairground Picnic park with flush toilets Recreational vehicle park With individual connection With comfort station Roadside rest areas Swimming pool Vacation home Visitor center
Flowrate, l/unit d
Unit
Range
Typical
Range
Typical
Person Person Customer Employee
50–70 8–50 2–4 8–12
60 40 3 10
190–260 30–190 8–15 30–45
230 150 10 40
Person Person
15–30 35–50
25 45
55–110 130–190
95 170
Person Person
15–20 40–60
15 50
55–76 150–230
60 190
Member present Employee Meal served Person Visitor Visitor
20–40
25
75–150
100
10–15 4–10
13 7
38–57 15–40
50 25
20–50 1–3 5–10
40 2 5
75–190 4–12 19–38
150 8 19
Vehicle Vehicle Person Customer Employee Person Visitor
75–150 40–50 3–5 5–12 8–12 25–60 3–5
100 45 4 10 10 50 4
280–570 150–190 10–19 19–45 30–45 90–230 10–19
380 170 15 40 40 190 15
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.4, p. 159. With permission. Adapted from Metcalf & Eddy (1991), Salvato (1992), and Crites and Tchobanoglous (1998). q 2006 by Taylor & Francis Group, LLC
9-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9A.3 Typical Wastewater Flowrates from Commercial Sources in the United States Flowrate, gal/unit d Source Airport Apartment Automobile service station Bar/cocktail lounge Boarding house Conference center Department store Hotel Industrial building (sanitary waste only) Laundry (self-service) Mobile home park Motel (with kitchen) Motel (without kitchen) Office Public lavatory Restaurant: Conventional With bar/ cocktail lounge Shopping center Theater (Indoor)
Unit
Flowrate, l/unit d
Range
Typical
Range
Typical
Passenger Bedroom Vehicle served Employee Seat Employee Person Person Toilet room Employee Guest Employee Employee
3–5 100–150 8–15 9–15 12–25 10–16 25–65 6–10 350–600 8–15 65–75 8–15 15–35
4 120 10 13 20 13 45 8 400 10 70 10 20
11–19 380–570 30–57 34–57 45–95 38–60 95–250 40–60 1,300–2,300 30–57 150–230 30–57 57–130
15 450 40 50 80 50 170 30 1,500 40 190 40 75
Machine Customer Unit Guest Guest Employee User
400–550 45–55 125–150 55–90 50–75 7–16 3–5
450 50 140 60 55 13 4
1,500–2,100 170–210 470–570 210–340 190–290 26–60 11–19
1,700 190 530 230 210 50 15
7–10 9–12 7–13 1–3 2–4
8 10 10 2 3
26–40 34–45 26–50 4–11 8–15
Customer Customer Employee Parking space Seat
35 40 40 8 10
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.2, p. 157. With permission. Adapted from Metcalf & Eddy (1991), Salvato (1992), and Crites and Tchobanoglous (1998).
Table 9A.4 Typical Wastewater Flowrates from Institutional Sources in the United States Flowrate, gal/unit d Source Assembly hall Hospital Institutions other than hospitals Prison School, day: With cafeteria, gym, and showers With cafeteria only School, boarding
Flowrate, l/unit d
Unit
Range
Typical
Range
Typical
Guest Bed Employee Bed Employee Inmate Employee
3–5 175–400 5–15 75–125 5–15 80–150 5–15
4 250 10 100 10 120 10
11–19 660–1,500 20–60 280–470 20–60 300–570 20–60
15 1,000 40 380 40 450 40
Student Student Student
15–30 10–20 75–100
25 15 85
60–120 40–80 280–380
100 60 320
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.3, p. 158. With permission. Adapted from Metcalf & Eddy (1991), Salvato (1992), and Crites and Tchobanoglous (1998). q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-5
Table 9A.5 Terminology Used to Quantify Observed Variations in Flowrate and Constituent Concentrations Item Average dry-weather flow (ADWF) Average wet-weather flow (AWWF) Average annual daily flow Instantaneous peak
Peak hour Maximum day Maximum month Minimum hour Minimum day Minimum month Sustained flow (and load)
Description The average of the daily flows sustained during dry-weather periods with limited infiltration The average of the daily flows sustained during wet-weather periods when infiltration is a factor The average flowrate occurring over a 24-h period based on annual flowrate data Highest record flowrate occurring for a period consistent with the recording equipment. In many situations the recorded peak flow may be considerably below the actual peak flow because of metering and recording equipment limitations The average of the peak flows sustained for a period of 1 h in the record examined (usually based on 10-min increments) The average of the peak flows sustained for a period of 1 day in the record examined (the duration of the peak flows may vary) The average of the maximum daily flows sustained for a period of 1 month in the record examined The average of the minimum flows sustained for a period of 1 h in the record examined (usually based on 10-min increments) The average of the minimum flows sustained for a period of 1 day in the record examined (usually for the period from 2 a.m. to 6 a.m.) The average of the minimum daily flows sustained for a period of 1 month in the record examined The value (flowrate or mass loading) sustained or exceeded for a given period of time (e.g., 1 h, 1 day, or 1 month)
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.11, p. 179. With permission. Adapted in part from Crites and Tchobanoglous (1998).
Table 9A.6 Terminology Commonly Used in the Field of Wastewater Engineering Term Biosolids Class A biosolidsa Class B biosolidsa
Characteristics (wastewater) Composition Constituentsb Contaminants Disinfection Effluent Impurities Nonpoint sources Nutrient
Parameter Point sources
Pollutants Reclamation
Definition Primarily an organic, semisolid wastewater product that remains after solids are stabilized biologically or chemically and are suitable for beneficial use Biosolids in which the pathogens (including enteric viruses, pathogenic bacteria, and viable helminth ova) are reduced below current detectable levels Biosolids in which the pathogens are reduced to levels that are unlikely to pose a threat to public health and the environment under specific use conditions. Class B biosolids cannot be sold or given away in bags on other containers or applied on lawns or home gardens General classes of wastewater constituents such as physical, chemical, biological, and biochemical The makeup of wastewater, including the physical, chemical, and biological constituents Individual components, elements, or biological entities such as suspended solids or ammonia nitrogen Constituents added to the water supply through use Reduction of disease-causing microorganisms by physical or chemical means The liquid discharged from a processing step Constituents added to the water supply through use Sources of pollution that originate from multiple sources over a relatively large area An element that is essential for the growth of plants and animals. Nutrients in wastewater, usually nitrogen and phosphorus, may cause unwanted algal and plant growths in lakes and streams A measurable factor such as temperature Pollutional loads discharged at a specific location from pipes, outfalls, and conveyance methods from either municipal wastewater treatment plants or industrial waste treatment facilities Constituents added to the water supply through use Treatment of wastewater for subsequent reuse application or the act of reusing treated wastewater (Continued)
q 2006 by Taylor & Francis Group, LLC
9-6
Table 9A.6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Term Recycling Repurification Reuse Sludge Solids
Definition The reuse of treated wastewater and biosolids for beneficial purposes Treatment of wastewater to a level suitable for a variety of applications including indirect or direct potable reuse Beneficial use of reclaimed or repurified wastewater or stabilized biosolids Solids removed from wastewater during treatment. Solids that are treated further are termed biosolids Material removed from wastewater by gravity separation (by clarifiers, thickeners, and logoons) and is the solid residue from dewatering operations
a
U.S. EPA (1997b). To avoid confusion, the term “constituents” is used in this text in place of contaminants, impurities, and pollutants. Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 1.1, p. 4. With permission. Adapted in part from Crites and Tchobanoglous (1998). b
Table 9A.7 Levels of Wastewater Treatment Treatment Level Preliminary
Primary Advanced primary Secondary Secondary with nutrient removal Tertiary
Advanced
Description Removal of wastewater constituents such as rags, sticks, floatables, grit, and grease that may cause maintenance or operational problems with the treatment operations, processes, and ancillary systems Removal of a portion of the suspended solids and organic matter from the wastewater Enhanced removal of suspended solids and organic matter from the wastewater. Typically accomplished by chemical addition or filtration Removal of biodegradable organic matter (in solution or suspension) and suspended solids. Disinfection is also typically included in the definition of conventional secondary treatment Removal of biodegradable organics, suspended solids, and nutrients (nitrogen, phosphorus, or both nitrogen and phosphorus) Removal of residual suspended solids (after secondary treatment), usually by granular medium filtration or microscreens. Disinfection is also typically a part of tertiary treatment. Nutrient removal is often included in this definition Removal of dissolved and suspended materials remaining after normal biological treatment when required for various water reuse applications
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 1.4, p. 11. Adapted in part from Crites and Tchobanoglous (1998). q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-7
Table 9A.8 Commonly Used Treatment Processes and Optional Treatment Methods Treatment Objective Suspended solids removal
Treatment Process Sedimentation
Filtration
Soluble carbonaceous BOD and ammonium removal
Aerobic, suspended-growth reactors
Fixed-film aerobic bioreactor
Lagoons Nitrogen transformation
Biological Nitrification (N) Denitrification (D)
Ion exchange Phosphorus removal
Pathogen removal (bacteria, viruses, parasites)
Physical/Chemical
Biological Filtration/Predation/Inactivation
Disinfection Grease removal
Flotation Adsorption Aerobic biological treatment (incidential removal will occur; overloading is possible)
Treatment Methods Septic tank Free water surface constructed wetland Vegetated submerged bed Septic tank effluent screens Packed-bed media filters (incl. dosed systems) Granular (sand, gravel, glass, bottom ash) Peat, textile Mechanical disk filters Soil infiltration Extended aeration Fixed-film activated sludge Sequencing batch reactors (SBRs) Soil infiltration Packed-bed media filters (incl. dosed systems) Granular (sand, gravel, glass) Peat, textile, foam Trickling filter Fixed-film activated sludge Rotating biological contactors Facultative and aerobic lagoons Free water surface constructed wetlands Activated sludge (N) Sequencing batch reactors (N) Fixed film bio-reactor (N) Recirculating media filter (N, D) Fixed-film activated sludge (N) Anaerobic upflow filter (N) Anaerobic submerged media reactor (D) Submerged vegetated bed (D) Free water surface constructed wetland (N, D) Cation exchange (ammonium removal) Anion exchange (nitrate removal) Infiltration by soil and other media Chemical flocculation and settling Iron-rich packed-bed media filter Sequencing batch reactors Soil infiltration Packed-bed media filters Granular (sand, gravel, glass bottom, ash) Peat, textile Hypochlorite feed Ultraviolet light Grease trap Septic tank Mechanical skimmer Aerobic biological systems
Source: From USEPA, On-Site Wastewater Treatment Systems Manual, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.
q 2006 by Taylor & Francis Group, LLC
9-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9A.9 Number of Operational Treatment Facilities and Collection Systems in 2000 State Alabama Alaska Arizona Arkansas Californiaa Coloradoa Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevadab New Hampshire New Jersey New Mexico New Yorka North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakotaa Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyomingb American Samoab Guamb N. Mariana Islandsb Puerto Ricob Virgin Islandsb Total a b
Treatment Facilities
Collection Systems
272 45 118 335 586 311 91 18 1 277 352 21 168 721 404 726 634 224 355 137 156 126 396 514 303 678 194 464 85 85 156 55 588 491 282 765 489 207 779 21 186 271 246 1,363 97 81 227 235 212 592 96 2 7 2 30 12 16,255
275 46 132 367 797 391 137 42 1 317 403 21 207 1,018 482 756 673 255 382 171 201 230 663 655 352 751 204 469 117 117 575 64 1,048 617 284 1,008 495 254 1,553 34 206 274 281 1,675 164 97 290 331 289 823 121 2 7 2 30 12 21,107
California, Colorado, New York, and South Dakota did not have the resources to complete the updating of these data. Results presented in this table for American Samoa, Guam, Northern Mariana Islands, Nevada, Puerto Rico, Virgin Islands, and Wyoming are from the 1996 survey because these States and Territories did not participate in the CWNS 2000.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix C, Table C.1, p. C.2. epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-c.pdf, epa.gov/owm/mtb/ cwns/2000rtc/toc.htm. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-9
Table 9A.10 Number of Operational Treatment Facilities and Collection Systems if All Documented Needs Are Met State Alabama Alaska Arizona Arkansas Californiaa Coloradoa Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevadab New Hampshire New Jersey New Mexico New Yorka North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakotaa Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyomingb American Samoab Guamb N. Mariana Islandsb Puerto Ricob Virgin Islandsb Total a b
Treatment Facilities
Collection Systems
279 50 232 360 579 331 99 18 1 302 345 27 177 754 424 744 665 301 371 145 180 141 403 518 372 729 208 475 52 85 164 58 657 518 282 837 487 219 1,013 20 187 273 251 1,469 114 84 254 240 404 628 96 2 6 2 30 12 17,674
285 51 258 406 799 430 159 49 1 346 405 27 219 1,056 510 775 712 369 405 184 303 267 673 661 475 848 218 483 56 120 600 68 1,175 702 286 1,213 496 270 1,936 36 222 276 286 1,850 188 100 383 337 626 974 121 2 7 2 30 12 23,748
California, Colorado, New York, and South Dakota did not have the resources to complete the updating of these data. Results presented in this table for American Samoa, Guam, Northern Mariana Islands, Nevada, Puerto Rico, Virgin Islands, and Wyoming are from the 1996 survey because these States and Territories did not participate in the CWNS 2000.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix C, Table C.2, p. C.3. www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-c.pdf, www.epa.gov/owm/mtb/cwns/ 2000rtc/toc.htm. q 2006 by Taylor & Francis Group, LLC
9-10
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9A.11 Number of Treatment Facilities by Flow Range Treatment Facilities in Operation in 2000a,b Existing Flow Range (mgd)
Number of Facilities
0.001–0.100 0.101–1.000 1.001–10.000 10.001–100.000 100.001 and greater Otherc Total
Total Existing Flow (mgd)
6,583 6,462 2,665 487 46 12 16,255
290 2,339 8,328 12,741 11,201 — 34,899
Treatment Facilities in Operation in 2000 if All Documented Needs Are Meta,b Design Flow Range (mgd)
Number of Facilities
0.001–0.100 0.101–1.000 1.001–10.000 10.001–100.000 100.001 and greater Otherc Total a b
c
Total Future Design Flow Capacity (mgd)
6,112 7,223 3,525 748 64 2 17,674
298 2,750 12,081 19,873 15,040 — 50,042
California, Colorado, New York, and South Dakota did not have the resources to complete the updating of these data. Results presented in this table for American Samoa, Guam, Nevada, Northern Mariana Islands, Puerto Rico, Virgin Islands, and Wyoming are from the 1996 survey because these States and Territories did not participate in the CWNS 2000. Flow data for these facilities were unavailable.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix C, Table C.3, p. C.4. www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-c.pdf, www.epa.gov/ owm/mtb/cwns/2000rtc/toc.htm.
Table 9A.12 Improvements in Treatment Level of the Nation’s Municipal Wastewater Treatment Facilities Level of Treatment No dischargea Less than secondaryb Secondary Greater than secondary Total facilities
1992 Number of Facilities
1996 Number of Facilities
Change 1992–1996 (%)
2000 Number of Facilities
Change 1992–2000 (%)
Change 1996–2000 (%)
1,981 868
2,032 176
2.6 K79.7
1,938 47
K2.2 K94.5
K4.6 K73.3
9,086 3,678
9,388 4,428
3.3 20.4
9,156 4,892
0.8 33.0
K2.5 10.5
15,613
16,024
2.6
16,255c
4.1
1.4
Note: A secondary treatment level is defined as meeting an effluent quality of 30 mg/L for biochemical oxygen demand (BOD) and suspended solids. a b c
No discharge refers to facilities that do not discharge effluent to surface waters (e.g., spray irrigation, groundwater recharge). Includes facilities granted section 301(h) waivers from secondary treatment for discharges to marine waters. As of January 1, 2000, waivers for 34 facilities in the CWNS 2000 database had been granted or were pending. The number of facilities includes 222 facilities that provide partial treatment and whose flow goes to another facility for further treatment.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Table 3.2, p. 3–4. www.epa.gov/ owm/mtb/cwns/2000rtc/toc.htm, www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-chapter-3.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-11
Table 9A.13 Comparison of Total Needs for the 1992 Needs Survey, 1996 Clean Water Needs Survey, and CWNS 2000 (January 2000 Dollars in Billions) 1992a
Needs Category I II III-A III-B IV-A IV-B V VI VII-A VII-B VII-C VII-D VII-E
VII-F VII-G VII-H VII-I VII-J VII-K
1996a
2000
Publicly Owned Wastewater Treatment and Collection Systems and Storm Water Management Programs Secondary wastewater treatment 39.3 29.4 36.8 Advanced wastewater treatment 19.4 19.4 20.4 Infiltration/inflow correction 3.4 3.7 8.2 Sewer replacement/rehabilitation 4.6 7.7 16.8 New collector sewers and 22.5 12.0 14.3 appurtenances New interceptor sewers and 18.4 11.9 14.8 appurtenances Combined sewer overflow correction 51.7b 49.6 50.6 Storm water management programs 0.1b 8.2b 5.5 Nonpoint Source Pollution Control Projects 4.2b 0.5 Agriculture (cropland) 4.7b 2.3b 0.7 Agriculture (animals) 3.4b Silviculture 3.0b 3.9b 0.04 Urban — 1.1 4.4 Groundwater protection: unknown 1.4 1.1 0.9 source 0.01 0.04 — Estuariesc 0.04 0.01 — Wetlandsc Marinas — — 0.002 Resource extraction — — 0.04 Brownfields — — 0.4 Storage tanks — — 1.0 Sanitary landfills — — 1.8 Hydromodification — — 4.1 Total needs Treatment categories I and II only Collection and conveyance categories III and IV only Category I to V subtotal
a
172.0 58.7 48.9
154.6 48.8 35.3
181.2 57.2 54.1
159.3
133.7
161.9
The needs from 1992 and 1996 were inflated to January 2000 dollars for comparison with CWNS 2000 data. Modeled needs. Documented needs for estuaries and wetlands were provided by States during the 1992 and 1996 surveys, but they are no longer reported as individual categories. Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Table 3.4, p. 3–6. www.epa.gov/ owm/mtb/cwns/2000rtc/toc.htm, www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-chapter-3.pdf.
b c
q 2006 by Taylor & Francis Group, LLC
9-12
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9A.14 Number of Treatment Facilities by Level of Treatment Treatment Facilities in Operation in 2000a,b Level of Treatment Less than secondaryc Secondary Greater than secondary No discharged Partial treatmente Total
Number of Facilities
Present Design Capacity (mgd)
Number of People Served
Percent of U.S. Population
47 9,156 4,892 1,938 222 16,255
1,023 19,268 22,165 2,039 563 45,058
6,426,062 88,221,896 100,882,207 12,283,047 — 207,813,212f
2.3 32.0 36.6 4.5 — 75.4
Treatment Facilities in Operation in 2000 if All Documented Needs Are Meta,b Level of Treatment Less than secondaryc Secondary Greater than secondary No discharged Partial treatmente Total a b c d e f
Number of Facilities 27 9,463 5,739 2,221 224 17,674
Future Design Capacity (mgd) 481 20,008 26,239 2,579 734 50,041
Number of People Served 3,851,000 103,716,058 140,251,554 21,224,596 — 269,043,208f
Percent of U.S. Population 1.2 31.9 43.2 6.5 — 82.8
California, Colorado, New York, and South Dakota did not have the resources to complete the updating of these data. Results presented in this table for American Samoa, Guam, Nevada, Northern Mariana Islands, Puerto Rico, Virgin Islands, and Wyoming are from the 1996 survey because these States and Territories did not participate in the CWNS 2000. Less-than-secondary facilities include facilities granted or pending section 301(h) waivers from secondary treatment for discharges to marine waters. No-discharge facilities do not discharge treated wastewater to the Nation’s waterways. These facilities dispose of wastewater via methods such as industrial reuse, irrigation, or evaporation. These facilities provide some treatment to wastewater and discharge their effluents to wastewater facilities for further treatment and discharge. This table does not include the results for approximately 3.3 million people (present) and 3.5 million people (future) that are receiving centralized collection because the data related to flow and effluent levels were not complete for the CWNS 2000.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix C, Table C.4, p. C.5. www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-c.pdf, www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm.
q 2006 by Taylor & Francis Group, LLC
Category of Need State
Total
I
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio
2,720 560 6,199 500 14,402 1,340 2,349 288 1,478 9,966 2,336 1,743 207 11,888 7,222 1,954 1,419 2,797 2,370 1,102 4,779 4,675 4,092 2,319 856 4,998 516 1,194 NR 906 12,827 206 20,422 5,927 52 8,722
14 306 726 37 3,916 183 399 33 305 299 114 575 119 795 626 240 373 654 410 176 1,239 874 837 660 92 725 170 149 NR 127 2,818 94 9,853 423 27 1,219
II 951 7 2,368 117 3,748 812 923 23 37 2,853 205 19 29 103 171 22 100 101 146 7 837 249 73 101 129 22 70 56 NR 47 368 15 776 1,737 0a 391
III-A
III-B
IV-A
IV-B
V
VI
VII
Total (I–V)
135 7 126 22 111 5 85 0 14 129 1,004 471 3 27 65 23 213 193 1,167 3 94 59 107 42 156 720 14 7 NR 7 339 9 75 291 2 1,493
1,168 65 240 24 3,114 179 16 68 64 562 25 441 18 1,204 419 79 2 280 216 31 739 92 307 281 152 297 55 11 NR 33 610 42 2,072 205 17 112
386 163 319 41 82 16 170 58 0 1,191 9 88 18 95 291 36 65 756 240 88 407 662 301 45 184 301 100 11 NR 6 1,007 18 538 1,725 0 725
66 7 1,081 71 1,853 37 161 4 0 1,012 61 149 20 169 176 19 270 592 189 16 369 406 30 104 143 193 60 75 NR 135 411 21 173 1,535 1 533
0 5 0 0 426 9 500 102 1,019 0 918 0 0 9,450 5,468 1,534 396 217 0 653 396 2,324 2,437 6 0 1,180 0 861 NR 485 4,385 0 5,497 3 0 3,623
0 0 1,251 0 352 48 0 0 37 680 0 0 0 0 0 1 0 3 0 0 456 0 0 120 0 0 0 24 NR 0 89 0 16 1 4 0
0 0 88 188 800 51 95 0 2 3,240 0 0 0 45 6 0 0 1 2 128 242 9 0 960 0 1,560 47 0 NR 66 2,800 7 1,422 7 1 626
2,720 560 4,860 312 13,250 1,241 2,254 288 1,439 6,046 2,336 1,743 207 11,843 7,216 1,953 1,419 2,793 2,368 974 4,081 4,666 4,092 1,239 856 3,438 469 1,170 NR 840 9,938 199 18,984 5,919 47 8,096
WASTEWATER
Table 9A.15 Clean Watersheds Needs Survey 2000 Total Needs (January 2000 Dollars in Millions)
(Continued) 9-13
q 2006 by Taylor & Francis Group, LLC
9-14
Table 9A.15
(Continued) Category of Need
State
I
II
III-A
III-B
IV-A
IV-B
V
VI
VII
Total (I–V)
586 1,477 8,060 1,415 1,309 142 604 9,152 848 144 3,519 2,744 2,529 3,338 NR NR NR NR NR NR 181,198
85 540 845 109 551 16 66 2,009 347 45 727 1,000 298 588 NR NR NR NR NR NR 36,833
25 155 204 113 334 29 45 813 74 32 777 52 12 141 NR NR NR NR NR NR 20,419
1 4 121 12 1 0 48 235 0a 0a 111 226 134 54 NR NR NR NR NR NR 8,165
207 654 119 52 13 44 107 1,323 97 0a 358 136 47 365 NR NR NR NR NR NR 16,762
33 16 963 345 283 13 58 616 98 33 516 198 691 260 NR NR NR NR NR NR 14,265
45 34 197 119 125 6 36 1,890 217 2 570 521 478 462 NR NR NR NR NR NR 14,844
0 74 5,431 633 0 2 244 0 0 31 460 608 869 342 NR NR NR NR NR NR 50,588
190 0 17 0 0 14 0 2,225 5 0 0 0 0 16 NR NR NR NR NR NR 5,549
0 0 163 32 2 18 0 41 10 1 0 3 0 1,110 NR NR NR NR NR NR 13,773
396 1,477 7,880 1,383 1,307 110 604 6,886 833 143 3,519 2,741 2,529 2,212 NR NR NR NR NR NR 161,876
Categories I Secondary wastewater treatment II Advanced wastewater treatment III-A Infiltration/inflow correction
III-B Sewer replacement/rehabilitation V Combined sewer overflow correction IV-A New collector sewers and appurtenances VI Storm water management programs IV-B New interceptor sewers and VII NPS pollution control (see Table A.2 appurtenances for totals by subcategory)
Note: NR, not reported. American Samoa, Guam, Nevada, Northern Mariana Islands, Puerto Rico, Virgin Islands, and Wyoming did not participate in the CWNS 2000. a
Estimate is less than $0.5 million.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix A, Table A.1, p. A.2 and A.3. www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm, www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-a.pdf.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming American Samoa Guam N. Mariana Islands Puerto Rico Virgin Islands Total
Total
WASTEWATER
9-15
Table 9A.16 Number of Treatment Facilities and Population Served Per State by Level of Treatment for Year 2000 Number of Facilities Providing Listed Effluent Level
State Alabama Alaska Arizona Arkansas Californiac Coloradoc Connecticut Delaware District of Columbiad Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevadae New Hampshire New Jersey New Mexico New Yorkc North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakotac Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyominge American Samoae Guame N. Mariana Islandse Puerto Ricoe
Less than Secondarya
Secondary
Greater than Secondary
Population Served by Listed Effluent Level
Less than No Dischargeb Secondarya
Secondary
Greater than Secondary
No Dischargeb
0 5 0 0 5 0 0 0 0
130 30 17 118 182 246 49 3 0
129 0 18 207 77 38 38 11 1
8 9 81 9 309 22 4 4 0
0 207,994 0 0 4,198,270 0 0 0 0
732,009 108,879 111,767 726,471 12,159,009 1,556,854 1,266,574 10,476 0
1,994,219 0 2,215,703 803,753 7,919,130 2,142,434 813,536 728,997 1,298,601
7,593 21,920 1,378,004 12,155 3,577,181 7,788 1,210 13,070 0
0 0 2 0 0 0 0 0 0 1 12 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0 0 3 0 0 2 2 0
17 227 5 107 415 125 707 355 123 184 116 75 77 204 411 195 578 107 298 44 70 94 57 360 313 254 169 249 101 360 19 123 234 110 524 49 48 157 201 142 283 78 0 2 2
84 80 2 5 301 274 9 79 94 163 2 75 35 120 100 75 77 5 19 3 2 55 1 178 134 1 593 39 67 397 2 53 8 130 661 4 31 60 7 63 279 3 0 0 0
175 35 12 55 1 0 3 197 0 1 7 6 7 68 0 1 21 80 146 4 10 1 17 27 33 27 2 199 37 2 0 7 29 5 160 44 2 2 27 0 26 14 0 2 0
0 0 532,378 0 0 0 0 0 0 3,000 9,303 0 20,074 0 42 0 0 0 0 0 25,409 0 0 0 0 0 0 0 625 1,476 0 0 0 0 1,070 0 0 0 0 2,205 0 0 5,511 62,639 0
238,764 1,721,572 139,609 562,008 683,543 410,940 1,925,926 694,512 1,242,187 2,268,451 624,604 949,367 4,235,095 1,254,599 967,813 1,139,734 3,757,717 397,988 977,825 139,996 555,435 6,762,536 898,530 11,273,282 1,056,606 468,946 1,401,922 1,716,478 1,333,432 6,237,683 687,805 1,769,072 268,874 1,459,559 2,538,924 1,636,148 90,497 2,166,150 2,847,237 581,527 573,346 244,075 0 9,236 1,118
6,155,714 2,594,389 20,286 265,812 9,811,768 3,416,852 181,763 1,277,425 921,134 878,478 16,038 2,045,325 822,135 6,161,491 2,073,977 507,809 451,630 89,635 155,078 252,229 17,890 1,090,502 7,150 3,748,413 2,576,092 21,531 7,404,543 712,679 1,219,279 4,157,929 10,184 549,626 164,144 1,700,862 14,025,086 190,027 193,684 2,318,144 894,801 374,677 3,250,360 87,923 0 0 0
4,931,819 89,249 89,512 60,303 572 0 1,393 101,964 0 207 5,956 3,920 17,043 108,121 0 524 2,663 63,564 64,166 237,442 7,984 34,307 135,338 116,814 112,989 5,909 956 151,004 33,050 2,314 0 30,628 14,467 4,193 640,857 134,011 722 1,373 31,127 0 20,360 3,030 0 4,275 0
6
22
2
0
1,336,535
581,405
151,290
0 (Continued)
q 2006 by Taylor & Francis Group, LLC
9-16
Table 9A.16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Number of Facilities Providing Listed Effluent Level
State Virgin Islandse Total a b c d e
Less than Secondarya
Secondary
Greater than Secondary
1 47
10 9,156
1 4,892
Population Served by Listed Effluent Level
Less than No Dischargeb Secondarya 0 1,938
19,531 6,426,062
Secondary
Greater than Secondary
No Dischargeb
58,294 88,221,896
50 100,882,207
0 12,283,047
Less-than-secondary facilities include facilities granted or pending section 301(h) waivers from secondary treatment for discharges to marine waters. No-discharge facilities do not discharge treated wastewater to the Nation’s waterways. These facilities dispose of wastewater via methods such as industrial reuse, irrigation, or evaporation. California, Colorado, New York, and South Dakota did not have the resources to complete updating of these data. The reported population served for the District of Columbia includes populations from Maryland and Virginia that receive wastewater treatment at the Blue Plains facility in the District of Columbia. Results presented in this table for American Samoa, Guam, Northern Mariana Islands, Nevada, Puerto Rico, Virgin Islands, and Wyoming are from the 1996 survey because these States and Territories did not participate in the CWNS 2000.
Source: From 2000 Clean Watersheds Needs Survey Report to Congress, Published 2003, Appendix C, Table C.7, p. C.10 and C.11. www.epa.gov/owm/mtb/cwns/2000rtc/cwns2000-appendix-c.pdf, www.epa.gov/owm/mtb/cwns/2000rtc/toc.htm.
Table 9A.17 Typical Wastewater Pollutants of Concern Pollutant Total suspended solids (TSS) and turbidity (NTU)
Biodegradable organics (BOD)
Pathogens
Nitrogen
Phosphorus Toxic organics
Heavy metals
Dissolved inorganics
Reason for Concern In surface waters, suspended solids can result in the development of sludge deposits that smother benthic macroinvertebrates and fish eggs and can contribute to benthic enrichment, toxicity, and sediment oxygen demand. Excessive turbidity (colloidal solids that interfere with light penetration) can block sunlight, harm aquatic life (e.g., by blocking sunlight needed by plants), and lower the ability of aquatic plants to increase dissolved oxygen in the water column. In drinking water, turbidity is aesthetically displeasing and interferes with disinfection Biological stabilization of organics in the water column can deplete dissolved oxygen in surface waters, creating anoxic conditions harmful to aquatic life. Oxygen-reducing conditions can also result in taste and odor problems in drinking water Parasites, bacteria, and viruses can cause communicable diseases through direct/indirect body contact or ingestion of contaminated water or shellfish. A particular threat occurs when partially treated sewage pools on ground surfaces or migrates to recreational waters. Transport distances of some pathogens (e.g., viruses and bacteria) in groundwater or surface waters can be significant Nitrogen is an aquatic plant nutrient that can contribute to eutrophication and dissolved oxygen loss in surface waters, especially in lakes, estuaries, and coastal embayments. Algae and aquatic weeds can contribute trihalomethane (THM) precursors to the water column that may generate carcinogenic THMs in chlorinated drinking water. Excessive nitrate-nitrogen in drinking water can cause methemoglobinemia in infants and pregnancy complications for women. Livestock can also suffer health impacts from drinking water high in nitrogen Phosphorus is an aquatic plant nutrient that can contribute to eutrophication of inland and coastal surface waters and reduction of dissolved oxygen Toxic organic compounds present in household chemicals and cleaning agents can interfere with certain biological processes in alternative OWTSs. They can be persistent in groundwater and contaminate downgradient sources of drinking water. They can also cause damage to surface water ecosystems and human health through ingestion of contaminated aquatic organisms (e.g., fish, shellfish) Heavy metals like lead and mercury in drinking water can cause human health problems. In the aquatic ecosystem, they can also be toxic to aquatic life and accumulate in fish and shellfish that might be consumed by humans Chloride and sulfide can cause taste and odor problems in drinking water. Boron, sodium, chlorides, sulfate, and other solutes may limit treated wastewater reuse options (e.g., irrigation). Sodium and to a lesser extent potassium can be deleterious to soil structure and SWIS performance
Source: From USEPA, On-Site Wastewater Treatment Systems Manual, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008), Table 3.16, p. 3–23. www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf; Adapted in part from Tchobanoglous and Burton, 1991. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
Table 9A.18 Wastewater Constituents of Concern and Representative Concentrations in the Effluent of Various Treatment Units Tank-Based Treatment Unit Effluent Concentrations
Constituents of Concern
Example Direct or Indirect Measures (Units)
Oxygen demand Particulate solids Nitrogen Phosphorus Bacteria (e.g., Clostridium perfringens, Salmonella Shigella) Virus (e.g., hepatitis, polio, echo, coxsackie, coliphage)
BOD5 (mg/L) TSS (mg/L) Total N (mg N/L) Total P (mg P/L) Fecal coliform (organisms per 100 mL) Specific virus (pfu/mL)
Organic chemicals (e.g., solvents, petrochemicals, pesticides) Heavy metals (e.g., Pb, Cu, Ag, Hg) a b
Domestic STEa
Domestic STE with N-Removal Recycleb
Aerobic Unit Effluent
Sand Filter Effluent
Foam or Textile Filter Effluent
SWIS Percolate into Groundwater at 3 to 5 ft Depth (% Removal)
140–200 50–100 40–100 5–15 106–108
80–120 50–80 10–30 5–15 106–108
5–50 5–100 25–60 4–10 103–104
2–15 5–20 10–50 !1–104 101–103
5–15 5–10 30–60 5–154 101–103
O90 O90 10–20 0–100 O99.99
0–105 (episodically 0–105 (episodically 0–105 (episodically 0–105 (episodically 0–105 (episodically present at high present at high present at high present at high present at high levels) levels) levels) levels) levels) Specific organics or 0 to trace levels (?) 0 to trace levels (?) 0 to trace levels (?) 0 to trace levels (?) 0 to trace levels (?) totals (mg/L)
Individual metals (mg/L)
0 to trace levels
0 to trace levels
0 to trace levels
0 to trace levels
0 to trace levels
O99.9%
O99%
O99%
Septic tank effluent (STE) concentrations given are for domestic wastewater. However, restaurant STE is markedly higher particularly in BOD, COD, and suspended solids while concentrations in graywater STE are noticeably lower in total nitrogen. N-removal accomplished by recycling STE through a packed bed for nitrification with discharge into the influent end of the septic tank for denitrification.
Source: From Van Cuyk, S.M., R.L. Siegrist, and A.L. Logan. 2001. Evaluation of virus and microbiological purification in wastewater soil absorption systems using multicomponent surrogate and tracer additions. On-Site Wastewater Treatment: Proceedings of the Ninth National Symposium on Individual and Small Community Sewage Systems. American Society of Agricultural Engineers, St. Joseph, MI; USEPA, On-Site Wastewater Treatment Systems Manual, Office of Water, Office of Research and Development, EPA (EPA/625/ R-00/0008), Table 3.19, p. 3–29. www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.
9-17
q 2006 by Taylor & Francis Group, LLC
9-18
Table 9A.19 Proposed On-Site System Treatment Performance Standards in Various Control Zones Standard
TSS (mg/L)
PO.-P (mg/L)
NH.-N (mg/L)
N03-N (mg/L)
Total N (% Removed)a
Fecal Coliforms (CFU/1,000 mL)b
300 200 30 10
300 80 30 10
15 15 15 15
80 80 10 10
NA NA NA NA
NA NA NA NA
10,000,000 10,000,000 50,000 10,000
10 10
10 10
15 2
5 10
NA NA
50 25
10,000 10,000
10 10
10 10
2 15
5 10
NA NA
50 25
10,000 200
5 5
5 5
15 1
5 5
NA 10
50 75
14 !1b
Note: NA, not available. a b
Minimum percentage reduction of total nitrogen (as nitrate-nitrogen plus ammonium nitrogen) concentration in the raw, untreated wastewater. Total coliform colony densities !50 per 100 mL of effluent.
Source: From Hoover, M.T., A. Arenovski, D. Daly, and D. Lindbo. 1998. A risk-based approach to on-Site system siting, design and management. In On-Site Wastewater Treatment. Proceedings of the Eighth National Symposium on Individual and Small Community Sewage Systems. American Society of Agricultural Engineers, St. Joseph, MI; USEPA, On-Site Wastewater Treatment Systems Manual, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008), Table 3.27, p. 3–48. www.epa.gov/ord/NRMRL/ Pubs/625R00008/625R00008totaldocument.pdf.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
T81—primary treatment T81u—unfiltered T811—filtered T82—secondary treatment T83—tertiary treatment T84—nutrient reduction T84n—nitrogen reduction T84p—phosphorus reduction T84np—N & P reduction T85—bodily contact disinfection T86—wastewater reuse T87—near drinking water
BOD (mg/L)
WASTEWATER
9-19
Table 9A.20 Typical Wastewater Constituent Data for Various Countries Country/ Constituent Brazil Denmark Egypt Germany Greece India Italy Japan Palestinea Sweden Turkey Uganda United Statesb a b
BOD, g/capita d
TSS, g/capita d
TKN, g/capita d
NH3-N, g/capita d
Total P, g/capita d
55–68 55–68 27–41 55–68 55–60 27–41 49–60 40–45 32–68 68–82 27–50 55–68 50–120
55–68 82–96 41–68 82–96 ND ND 55–82 ND 52–72 82–96 41–68 41–55 60–150
8–14 14–19 8–14 11–16 ND ND 8–14 1–3 4–7 11–16 8–14 8–14 9–22
ND ND ND ND 8–10 ND ND ND 3–5 ND 9–11 ND 5–12
0.6–1 1.5–2 0.4–0.6 1.2–1.6 1.2–1.5 ND 0.6–1 0.15–0.4 0.4–0.7 0.8–1.2 0.4–2 0.4–0.6 2.7–4.5
West Bank and Gaza Strip. From Table 3.11.
Source: From Metcalf & Eddy, Inc., McGraw-Hill, Wastewater Engineering Treatment and Reuse, Fourth Edition, 2003, Table 3.14, p. 184. With permission. Adapted from Henze et al. (1997), Ozturk et al. (1992), Andreadakis (1992), and Nashashibi and van Duijl (1995).
q 2006 by Taylor & Francis Group, LLC
9-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 9B
CENTRALIZED WASTEWATER TREATMENT
Table 9B.21 Gravity Sewer Average Design Flows for Development Types Type of Development
Design Flow (GPD)
Residential General Single family Townhouse unit Apartment unit Commercial General Motel Office
100/person 370/residence 300/unit 300/unit 2,000/acre 130/unit 20/employee 0.20/net sq.ft
Industrial (varies with type of industry) General Warehouse School site (general)
10,000/acre 600/acre 16/student
Source: From Darby, 1995; USEPA, Collection Systems Technology Fact Sheet, Sewers, Conventional Gravity, Office of Water, Municipal Technology Branch, Table 1, (EPA/823/F-02/007), September 2002. epa.gov/owm/mtb/congrasew.pdf.
Table 9B.22 Minimum Slope for Gravity Sewers Minimum Slope (in ft per 100 ft Im/100 m)
Nominal Sewer Size 8 in. (200 mm) 10 in. (250 mm) 12 in. (300 mm) 14 in. (350 mm) 15 in. (375 mm) 16 in. (400 mm) 18 in. (450 mm) 21 in. (525 mm) 24 in. (600 mm) 27 in. (675 mm) 30 in. (750 mm) 33 in. (825 mm) 36 in. (900 mm) 39 in. (975 mm) 42 in. (1,050 mm)
0.40 0.28 0.22 0.17 0.15 0.14 0.12 0.10 0.08 0.067 0.058 0.052 0.046 0.041 0.037
Source: From Board of State and Provincial Public Health and Environmental Managers, Health Education Services Division, Recommended Standards for Wastewater Facilities, 2004 Edition. hes.org. Table 9B.23 Force Main Capacity VelocityZ2 fps
VelocityZ4 fps
VelocityZ6 fps
Diameter (in.)
gpm
lps
gpm
lps
gpm
lps
6 8 10 18 24 36
176 313 490 1,585 2,819 6,342
11 20 31 100 178 400
362 626 980 3,170 5,638 12,684
22 40 62 200 356 800
528 626 1,470 4,755 8,457 19,026
33 60 93 300 534 1,200
Source: From Metcalf and Eddy, 1981; USEPA, Wastewater Technology Fact Sheet Sewers, Force Main, Office of Water, Municipal Technology Branch, Table 2 (EPA /823/f-00/071), September 2000. epa.gov/own/mtb/ force_main_sewers.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-21
Table 9B.24 Common Sewer Cleaning Methods Technology Mechanical Rodding
Bucket machine
Hydraulic Balling
Flushing
Jetting
Technology Scooter
Kites, bags, and poly pigs
Silt traps Grease traps and sand/oil interceptors
Chemicals Before using these chemicals review the material safety data sheets (MSDS) and consult the local authorities on the proper use of chemicals as per local ordinance and the proper disposal of the chemicals used in the operation. If assistance or guidance is needed regarding the application of certain chemicals, contact the U.S. EPA or state water pollution control agency
Uses and Applications Uses an engine and a drive unit with continuous rods or sectional rods. As blades rotate they break up grease deposits, cut roots, and loosen debris Rodders also help thread the cables used for TV inspections and bucket machines Most effective in lines up to 300 mm (12 in.) in diameter Cylindrical device, closed on one end with 2 opposing hinged jaws at the other Jaws open and scrape off the material and deposit it in the bucket Partially removes large deposits of silt, sand, gravel, and some types of solid waste A threaded rubber cleaning ball that spins and scrubs the pipe interior as flow increases in the sewer line Removes deposits of settled inorganic material and grease build-up Most effective in sewers ranging in size from 13 to 60 cm (5–24 in.) Introduces a heavy flow of water into the line at a manhole. Removes floatables and some sand and grit Most effective when used in combination with other mechanical operations, such as rodding or bucket machine cleaning Directs high velocities of water against pipe walls. Removes debris and grease build-up, clears blockages, and cuts roots within small diameter pipes Efficient for routine cleaning of small diameter, low flow sewers Applications Round, rubber-rimmed, hinged metal shield that is mounted on a steel framework on small wheels. The shield works as a plug to build a head of water Scours the inner walls of the pipe lines Effective in removing heavy debris and cleaning grease from line Similar in function to the ball Rigid rims on bag and kite induce a scouring action Effective in moving accumulations of decayed debris and grease downstream Collect sediments at convenient locations Must be emptied on a regular basis as part of the maintenance program The ultimate solution to grease build-up is to trap and remove it These devices are required by some uniform building codes and/or sewer-use ordinances. Typically sand/oil interceptors are required for automotive business discharge Need to be thoroughly cleaned to function properly Cleaning frequency varies from twice a month to once every 6 months, depending on the amount of grease in the discharge Need to educate restaurant and automobile businesses about the need to maintain these traps Used to control roots, grease, odors (H2S gas), concrete corrosion, rodents and insects Root control — Longer lasting effects than power rodder (approximately 2–5 years) H2S gas — Some common chemicals used are chlorine (Cl2), hydrogen peroxide (H2O2), pure oxygen (O2), air, lime (Ca(OH2)), sodium hydroxide (NaOH), and iron salts Grease and soap problems — Some common chemicals used are bioacids, digester, enzymes, bacteria cultures, catalysts, caustics, hydroxides, and neutralizers
Source: From information provided by Arbour and Kerri, 1997 and Sharon, 1989; USEPA, Collection Systems, O&M Fact Sheet, Sewer Cleaning and Inspection, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/f-99/031), September 1999. www.epa.gov/owm/mtb/sewcl.pdf.
q 2006 by Taylor & Francis Group, LLC
9-22
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.25 Frequency of Maintenance Activities for Sewer Lines Activity
Average (% of system/year)
Cleaning Root removal Manhole inspection CCTV inspection Smoke testing
29.9 2.9 19.8 6.8 7.8
Source: From ASCE, 1998; USEPA, Collection Systems, O&M Fact Sheet, Sewer Cleaning and Inspection, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/f-99/031), September 1999. www.epa.gov/owm/mtb/ sewcl.pdf.
Table 9B.26 Limitations of Standard Inspection Techniques for Sewer Lines Inspection Technique Visual inspection
Camera inspection
Closed circuit television (CCTV) Lamping inspection
Limitations In smaller sewers, the scope of problems detected is minimal because the only portion of the sewer that can be seen in detail is near the manhole. Therefore, any definitive information on cracks or other structural problems is unlikely. However, this method does provide information needed to make decisions on rehabilitation When performing a camera inspection in a large diameter sewer, the inspection crew is essentially taking photographs haphazardly, and as a result, the photographs tend to be less comprehensive This method requires late night inspection and as a result the TV operators are vulnerable to lapses in concentration. CCTV inspections are also quite expensive and time-consuming The video camera does not fit into the pipe and during the inspection it remains only in the maintenance hole. As a result, only the first 10 ft of the pipe can be viewed or inspected using this method
Source: From Water Pollution Control Federation, 1989; USEPA, Collection Systems, O&M Fact Sheet, Sewer Cleaning and Inspection, Office of Water, Municipal Technology Branch, Table 3 (EPA/823/F-99/031), September 1999. www.epa.gov/owm/mtb/sewcl.pdf.
Table 9B.27 Limitations of Cleaning Methods for Sewer Lines Cleaning Method Balling, jetting, scooter
Bucket, machine
Flushing High velocity cleaner
Kite or bag Rodding
Limitations In general, these methods are only successful when necessary water pressure or head is maintained without flooding basements or houses at low elevations. Jetting—The main limitation of this technique is that caution needs to be used in areas with basement fixtures and in steep-grade hill areas. Balling—Balling cannot be used effectively in pipes with bad offset joints or protruding service connections because the ball can become distorted Scooter—When cleaning larger lines, the manholes need to be designed to a larger size in order to receive and retrieve the equipment. Otherwise, the scooter needs to be assembled in the manhole. Caution also needs to be used in areas with basement fixtures and in steep-grade hill areas This device has been known to damage sewers. The bucket machine cannot be used when the line is completely plugged because this prevents the cable from being threaded from one manhole to the next. Set-up of this equipment is time-consuming This method is not very effective in removing heavy solids. Flushing does not remedy this problem because it only achieves temporary movement of debris from one section to another in the system The efficiency and effectiveness of removing debris by this method decreases as the cross-sectional areas of the pipe increase. Backups into residences have been known to occur when this method has been used by inexperienced operators. Even experienced operators require extra time to clear pipes of roots and grease When using this method, use caution in locations with basement fixtures and steep-grade hill areas Continuous rods are harder to retrieve and repair if broken and they are not useful in lines with a diameter of greater than 300 mm (0.984 ft) because the rods have a tendency to coil and bend. This device also does not effectively remove sand or grit, but may only loosen the material to be flushed out at a later time
Source: From USEPA, 1993; USEPA, Collection Systems, O&M Fact Sheet, Sewer Cleaning and Inspection, Office of Water, Municipal Technology Branch, Table 4 (EPA/823/F-99/031), September 1999. www.epa.gov/owm/mtb/sewcl.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-23
Table 9B.28 Comparison of Various Sewer Rehabilitation Techniques Method In-line expansion Sliplining
Cured-in-place Product linings
Modified cross-sectional methods
Internal point Repair
Diameter Range (mm)
Maximum Installation (m)
Pipe bursting Segmental
100–600 (4–24 in.) 100–4,000 (4–158 in.)
230 (750 ft) 300 (1,000 ft)
Continuous Spiral wound Inverted-in-place
100–1,600 (4–63 in.) 150–2,500 (6–100 in.) 100–2,700 (4–108 in.)
300 (1,000 ft) 300 (1,000 ft) 900 (3,000 ft)
Winched-in-place
100–1,400 (4–54 in.)
150 (500 ft)
Spray-on-linings
76–4,500 (3–180 in.)
150 (500 ft)
Fold and form
100–400 (4–15 in.)
210 (700 ft)
Deformed/reformed
100–400 (4–15 in.)
800 (2,500 ft)
Drawdown Rolldown Thin-walled lining Robotic repair
62–600 (3–24 in.) 62–600 (3–24 in.) 500–1,100 (20–46 in.) 200–760 (8–30 in.)
300 (1,000 ft) 300 (1,000 ft) 960 (3,000 ft) N/A
Grouting/sealing & spray-on Link seal Point CIPP
N/A 100–600 (4–24 in.) 100–600 (4–24 in.)
N/A N/A 15 (50 ft)
Liner Material PE, PP, PVC, GRP PE, PP, PVC, GRP (KEP & KUP) PE, PP, PE/EPDM, PVC PE, PVC, PP, PVDF Thermoset Resin/fabric composite Thermoset resin/fabric composite Epoxy resins/cement mortar PVC (Thermoplastics) HDPE (thermoplastics) HDPE, MDPE HDPE, MDPE HDPE Exopy resins Cement mortar Chemical grouting Special sleeves Fiberglass/polyester, etc
Note: Spiral wound sliplining, robotic repair, and point CIPP can only be used only with gravity pipeline. All other methods can be used with both gravity and pressure pipeline. EPDM, ethylene polypelene diene monomer; GRP, glassfiber reinforced polyester; HDPE, high density polyethylene; MDPE, medium density polyethylene; PE, polyethylene; PP, polypropylene; PVC, poly vinyl chloride; PVDF, poly vinylidene chloride. Source: From Iseley and Najafi (1995); USEPA, Collection Systems, O&M Fact Sheet, Trenchless Sewer Rehabilitation, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-99/0032), September 1999. www.epa.gov/owm/mtb/rehabl.pdf.
Table 9B.29 Limitations of Trenchless Sewer Rehabilitation Techniques Method Pipe bursting
Sliplining
CIPP
Modified cross section
Limitations Bypass or diversion of flow required Insertion pit required Percussive action can cause significant ground movement may not be suitable for all materials Insertion pit required Reduces pipe diameter Not well suited for small diameter pipes Bypass or diversion of flow required Curing can be difficult for long pipe segments Must allow adequate curing time Defective installation may be difficult to rectify Resin may clump together on bottom of pipe Reduces pipe diameter Bypass or diversion of flow required The cross section may shrink or unfold after expansion Reduces pipe diameter Infiltration may occur between liner and host pipe unless sealed Liner may not provide adequate structural support
Source: From USEPA, Collection Systems, O&M Fact Sheet, Trenchless Sewer Rehabilitation, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/F-99/0032), September 1999. www.epa.gov/owm/mtb/rehabl.pdf. q 2006 by Taylor & Francis Group, LLC
9-24
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.30 Characteristics of Common Force Main Pipe Materials Material
Application
Cast or ductile iron, cement lined Steel, cement lined Asbestos cement Fiberglass reinforced epoxy pipe Plastic
Key Advantages
Key Disadvantages
High pressure available Good resistance to pressure sizes of 4–54 in. surges High pressure all pipe sizes Excellent resistance to pressure surges Moderate pressure for No corrosion slow grease 36-in. C pipe sizes buildup Moderate pressure for up to No corrosion slow grease 36-in. pipe sizes buildup Low pressure for up to 36-in. No corrosion slow grease pipe sizes buildup
More expensive than concrete and fiberglass More expensive than concrete and fiberglass Relatively brittle 350 psi max pressure Suitable for small pipe sizes and low pressure only
Source: From Sanks, 1998; USEPA, Wastewater Technology Fact Sheet Sewers, Force Main, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-99/040), September 1999. www.epa.gov/owm/mtb/force_main_sewers.pdf.
Table 9.31 Design Parameters for Static Screens Hydraulic loading, gal/min/ft of width Incline of screens, degrees from verticala Slot space, mm Automatic controls
100–180 35 250–1,600 None
Note: gal/min/ft ! 0.207Z l/m/s. a Bauer Hydrasievese have 3-stage slopes on each screen: 258, 358, 458. Source: From USEPA, Combined Sewer Overflow, Technology Fact Sheet, Screens Office of Water, Municipal Technology Brach, Table 1 (EPA/823/F/F-99/040), September 1999. www.epa.gov/own/mtb/screens.pdf.
Table 9B.32 Design Parameters for Drum Screens and Rotary Screen Parameter Screen spacing, mm Screen material Drum speed, r/min Speed range Recommended speed Peripheral speed, ft/s Submergence of drum, % Flux density, gal/ft2/min of submergence screen Hydraulic efficiency, % of inflow Headloss, in. Backwash Volume, % of inflow Pressure, lb/in.2
Drum/Band Screen
Rotary Screen
100–420
74–167 105 recommended Stainless steel or plastic
Stainless steel or plastic 2–7 5 60–70 20–50
30–65 55 14–16 70–150 75–90
6–24 0.5–3 30–50
0.02–2.5 50
Note: gal/ft2/min ! 2.44Z m3/h/m2 in. ! 2.54Z cm ft ! 0.305Z cm; lb/in.2 ! 0.0703Z kg/cm2. Source: From USEPA, Combined Sewer Overflow, Technology Fact Sheet, Screens Office of Water, Municipal Technology Brach, Table 2 (EPA/823/F/F-99/040), September 1999. www.epa.gov/owm/mtb/screens.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-25
Table 9B.33 Typical Design Parameters for Package Plant
BOD5 loading (F:M) (lb BOD5/lb MLVSS) Oxygen required avg. at 20 8C (lb/lb BOD5 applied) Oxygen required peak at 20 8C (value ! avg. flow) MLSS (mg/L) Detention time (hours) Volumetric Loading (lb BOD5/d/103 cu ft)
Extended Aeration
SBR
Oxidation Ditch
0.05–0.15 2–3 1.5–2.0 3,000–6,000 18–36 10–25
0.05–0.30 2–3 1.25–2.0 1,500–5,000 16–36 5–15
0.05–0.30 2–3 1.5–2.0 3,000–6,000 18–36 5–30
Source: Adapted from Metcalf and Eddy, 1991 and WEF, 1998; USEPA, Wastewater Technology Fact Sheet, Package Plants, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/016) September 2000. www.epa.gov/owm/mtb/ package_plant.pdf.
Table 9B.34 Extended Aeration Performance Aldie WWTP (Monthly Average)
Typical Effluent Quality BOD (mg/L) TSS (mg/L) TP (mg/L) NH3-N (mg/L) a b
!30 or !10 !30 or !10 !2a !2
5 17 b b
May require chemicals to achieve. DEQ does not require monitoring of these parameters.
Source: From Sloan, 1999 and Broderick, 1999; USEPA, Wastewater Technology Fact Sheet, Package Plants, Office of Water, Municipal Technology Brach, Table 1 (EPA/823/F-00/016) September 2000. www.epa.gov/owm/mtb/package_plant.pdf.
To solids handling, disposal, or beneficial reuse
Digestion
Thickening
Effluent
Influent Screening/ grinding
SBR
Equalization
Filtration
Disinfection
Figure 9B.3 Sequencing batch reactors key design parameters for a conventional load. (From USEPA, Wastewater Technology Fact Sheet, Sequencing Batch Reactors, Office of Water, Municipal Technology Branch, Figure 1 (EPA/823/F-99/073) September 1999. www.epa.gov/owm/mtb/sbr_new.pdf.) q 2006 by Taylor & Francis Group, LLC
9-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.35 Sequencing Batch Reactors Key Design Parameters for A Conventional Load
Food to mass (F:M) Treatment cycle duration Typically low water level mixed liquor suspended solids Hydraulic retention time
Municipal
Industrial
0.15–0.4/day 4.0 h 2,000–2,500 mg/L
0.15–0.6/day 4.0–24 h 2,000–4,000 mg/L
6–14 h
Varies
Source: From USEPA, Wastewater Technology Fact Sheet, Sequencing Batch Reactors, Office of Water, Municipal Technology Brach, Table 1 (EPA/823/F-00/073) September 1999. www.epa.gov/owm/ mtb/sbr_new pdf.
Table 9B.36 Sequencing Batch Reactors Performance Harrah WWTP
BOD (mg/L) TSS (mg/L) NH3 (mg/L)
Typical Effluent
% Removal
Effluent
10 10 !1
98 98 97
3 3 0.6
Source: From Sloan, 1999 and Reynolds, 1999; USEPA, Wastewater Technology Fact Sheet, Sequencing Batch Reactors, Office of Water, Municipal Technology Brach, Table 2 (EPA/823/F-99/073) September 1999. www.epa.gov/owm/mtb/ sbr_new pdf.
Oxidation ditch
Aerator To disinfection Clarifier Hopper
Return Activated Sludge (RAS)
Sludge pumps
From primary treatment Figure 9B.4 Typical oxidation ditch activated sludge system. (From USEPA, Wastewater Technology Fact Sheet, Oxidation Ditches, Office of Water, Municipal Technology Branch, Figure 1 (EPA /823/F-00/013) September 2000. www.epa.gov/owm/mtb/oxidation_ditch.pdf.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-27
Table 9B.37 Oxidation Ditch Performance Typical Effluent Quality With 28 Clarifier CBOD (mg/L) TSS (mg/L) TP (mg/L) N–NO3 (mg/L)
10 10 2 NA
Ocoee WWTP
With Filter 5 5 1 NA
% Removal O97 O97 NA O95
Effluent 4.8 0.32 NA 0.25
Note: 28, secondary; NA, not available. Source: From Kruger, 1999 and Holland, 1999; USEPA, Wastewater Technology Fact Sheet, Package Plants, Office of Water, Municipal Technology Branch, Table 4 (EPA/823/F-00/016) September 2000. www.epa.gov/owm/mtb/package_plant.pdf.
Table 9B.38 Trickling Filters Operational Parameters Parameter Hydraulic loading gpd/ft Organic loading lb BOD5/1000 ft3 Depth, ft Filter media
Low-Rate
High-Rate
25–100 5–25 6–8 Rock
200–1000 25–300 15–40 Plastic
Source: From USEPA, Technology Transfer, Summary Report, Small Community Water and Wastewater Treatment, Table 1, p. 20 (EPA/625/R-92/010) September 1992. q 2006 by Taylor & Francis Group, LLC
9-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Distributor arm rotation
Stay rod turn buckle Stay rod Arm-dump gate
Center well
Outlet orifice trailing edge splash plates
Speed-retarder orifice Distributor arms
Distributor bearings
Distributor base
Filter media
Retaining wall nt
lue
Inf
Outlet valve
pe Slo Support grill underdrainage system
Ventilation port
Sloped floor Underdrain channel Inlet pipe
Outlet box Outlet pipe
Figure 9B.5 Typical trickling filter. (From USEPA, Wastewater Technology Fact Sheet, Trickling Filter, Office of Water, Municipal Technology Branch, Figure 1 (EPA /823/F-00/014) September 2000. www.epa.gov/owm/mtb/trickling_filter.pdf.)
Table 9B.39 Typical Loading Rates for Single-Stage Nitrification in Trickling Filters TF Media Rock Plastic Tower TF
% Nitrification
Loading Rate lb BOD/1,000 ft3/d (g BOD/m3/d)
75–85 85–95 75–85 85–95
10–6 (160–96) 6–3 (96–48) 181–12 (288–192) 12–6 (192–96)
Source: From Metcalf & Eddy, Inc. with permission from the McGraw-Hill Companies, 1991; USEPA, Wastewater Technology Fact Sheet, Trickling Filter Nitrification, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/015) September 2000. www.epa.gov/owm/mtb/trickling_filt_nitrification.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-29
BOD5 surface loading, Lb/1,000 sq ft/d
Ammonium removal, %
100
0
1.0
2.0
3.0
4.0
60
Legend Rock media (91) 49 m2/m3 Stockton pilot study, plastic media (10) 2 3 89 m /m Stockton plant, plastic media (91)
40
Rock media (84)
80
20 0
0
5 10 15 BOD5 surface loading, g/m2/d
20
Figure 9B.6 Effect of BOD5 Surface loading on nitrification efficiency of rock and plastic media trickling filters. (From USEPA, Wastewater Technology Fact Sheet, Trickling Filter Nitrification, Office of Water, Municipal Technology Branch, Figure 2 (EPA /823/F-00/015) September 2000. www.epa.gov/owm/mtb/trickling_filt_nitrification.pdf.)
BOD5 surface loading, Lb/1,000 sq ft/d 100
0
1.0
3.0
2.0
4.0
Ammonium removal, %
Legend Cross-flow media
80
Vertical media
60 Curve for rock media (82) and garland cross-flow media
40 20
Curve for garland vertical media
0 0
5 10 15 20 BOD5 surface loading, g/m2/d
Figure 9B.7 Performance comparison of various trickling filter media. (From USEPA, Wastewater Technology Fact Sheet, Trickling Filter Nitrification, Office of Water, Municipal Technology Branch, Figure 2 (EPA /823/F-00/015) September 2000. www.epa.gov/owm/mtb/trickling_filt_nitrification.pdf.)
Raw wastewater
Primary treatment
Primary effluent
Constructed wetlands secondary treatment
Secondary effluent
Disinfection or tertiary treatment
Final discharge
Figure 9B.8 Constructed wetland in wastewater treatment train. (From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Figure 2.1, p. 22 (EPA/625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_Manual2000.pdf.) q 2006 by Taylor & Francis Group, LLC
9-30
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Floating and Inlet settling zone emergent plants
Submerged growth plants
Floating and emergent plants Outlet zone
influent
Length (L) Zone 1 fully vegetated D.O. (-) H ≤ 0.75 m
Depth (H)
W idt
h
(W
)
Pretreated (lagoon)
Zone 2 open-water surface D.O. (+) H ≥ 1.2 m
Variablelevel outlet Zone 3 fully vegetated D.O. (−) H ≤ 0.75 m
(0 p % slo - f pe la t) Tr ea t (m me ed nt z ia on ) e
e on tz ria ou bletle lev t el
O
ut
le
W i (W dth )
To
In
le
tz
on
e
Figure 9B.9 Elements of a free water surface constructed wetland. (From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Figure 2.2, p. 22 (EPA /625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_Manual2000.pdf.)
Va
Pretreated (settled) influent
Depth (H)
Effluent
Liner
Bottom slope (≤ 1%) Length (L)
Figure 9B.10 Elements of a vegetated submerged bed system. (From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Figure 2.3, p. 22 (EPA /625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_Manual2000.pdf.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-31
Outlet weir
Distribution pipe
Low permeability soil Free water surface (surface flow)
Distribution pipe Outlet weir
Lined basin Free water surface with open water zone
Distribution pipe
Outlet weir
Lined basin Floating aquatic plant system Figure 9B.11 Floating aquatic plant system. (From USEPA, Free Water Surface Wetlands for Wastewater Treatment, A Technologic Assessment, Office of Water, Figure 1.1, p. 1–4, (EPA /832/S-99/002) June 1999. www.epa.gov/owow/wetlands/pdf/FW_Surface_ wetlands.pdf.)
Optional inlet manifold warm climates
Vegetation
Outlet zone 2” to 3” gravel
Inlet zone 2” to 3” gravel Inlet manifold cold climates
Treatment zone to 11/2” gravel
1/ ” 2
Water surface
Outlet manifold
Membrane line or impermeable soils
Figure 9B.12 Subsurface flow constructed wetlands. (From USEPA, Wastewater Technology Fact Sheet, Wetlands: Subsurface Flow, Office of Water, Municipal Technology Branch, Figure 1 (EPA /823/F-00/023) September 2000. www.epa.gov/owm/mtb/wetlandssubsurface_flow.pdf.) q 2006 by Taylor & Francis Group, LLC
9-32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Emergent plants Floating plants
Open water (2)
Inlet
Variablelevel outlet Distribution pipe
Outlet collector pipe
Vegetated zone (3)
Vegetated zone (1) Submerged plants
Figure 9B.13 Profile of a three-zone free water surface constructed wetland cell. (From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Figure 2.3, p. 22 (EPA /625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_Manual2000.pdf.)
Table 9B.40 Typical Constructed Wetland Influents Constituent (mg/L) BOD Sol. BOD COD TSS VSS TN NH3 NO3 TP OrthoP Fecal coli (log/100 mL) a b c
Septic Tank Effluenta
Primary Effluentb
Pond Effluentc
129–147 100–118 310–344 44–54 32–39 41–49 28–34 0–0.9 12–14 10–12 5.4–6.0
40–200 35–160 90–400 55–230 45–180 20–85 15–40 0 4–15 3–10 5.0–7.0
11–35 7–17 60–100 20–80 25–65 8–22 0.6–16 0.1–0.8 3–4 2–3 0.8–5.6
EPA (1978), 95% confidence interval. Prior to major detergent reformulations which reduce P species by w50%. Adapted from Metcalf and Eddy, (1991) assuming typical removal by primary sedimentation-soluble BODZ35–45% total. EPA (1980).
Source: From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Table 3.1, p. 41 (EPA/625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_ Manual2000.pdf.
Table 9B.41 Loading and Performance Data for Systems Analyzed in This Document (DMDB) Pollutant Loading Rate (kg/ha-day)
Influent (mg/L)
Effluent (mg/L)
Constituent
Min
Mean
Max
Min
Mean
Max
Min
Mean
Max
BOD5 TSS NH4–N TKN TP FC
2.3 5 0.3 1.0 — —
51 41 5.8 9.5 — —
183 180 16 20 — —
6.2 12.7 3.2 8.7 0.56 42000
113 112 13.4 28.3 1.39 73000
438 587 30 51 2.41 250000
5.8 5.3 0.7 3.9 0.68 112
22 20 12 19 2.42 403
70 39 23 32 3.60 713
BOD, Biochemical Oxygen Demand (5 day); TSS, Total Suspended Solids; NH4-N, Ammonia Nitrogen; TKN, Total Kjeldahl Nitrogen; TP, Total Phosphorus; FC, Fecal Coliform, cfu/100 mL. Source: From USEPA, Manual, Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, Table 4.1, p. 67 (EPA/625/R-99/010) September 2000. www.epa.gov/owow/wetlands/pdf/Design_Manual2000.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-33
Table 9B.42 Typical Areal Loading Rates for SF Constructed Wetlands Constituent
Typical Influent Concentration mg/L
Target Effluent Concentration mg/L
Mass Loading Rate lb/ac/da
3–12b 30–175 30–150 2–35 2–10 2–40 1–10
10–30 10–30 1–10 1–10 1–10 0.5–3
60–140 40–150 1–10 3–12 3–11 1–4
Hydraulic Load (in./d) BOD TSS NH3/NH4 as N NO3 as N TN TP Note: Wetland water temperature OO 20 8C.
Source: From USEPA, Waster Technology Fact Sheet, Wetlands: Subsurface Flow, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/023) September 2000. www.epa.gov/owm/mtb/wetlands-subsurface_flow.pdf.
Table 9B.43 Typical Media Characteristics for Subsurface Wetlands Media Type
Effective Size D10 (mm)a
Porosity, n (%)
2 8 16 32 128
28–32 30–35 35–38 36–40 38–45
Coarse sand Gravelly sand Fine gravel Medium gravel Coarse rock a b
Hydraulic Conductivity ks (ft3/ft2/d)b 300–3,000 1,600–16,000 3,000–32,000 32,000–160,000 16!104–82!104
mm!0.03937Z inches. ft3/ft2/d ! 0.3047 Z m3/m2/d, or ! 7.48 Z gal/ft2/d.
Source: From Reed, S.C., R.W. Crites, E.J. Middlebrooks (1995) Natural Systems for Waste Management and Treatment - Second Edition, McGraw-‘Hill Co, New York; USEPA, Waste Water Technology Fact Sheet, Wetlands: Subsurface Flow, Office of Water, Municipal Technology Branch, Table 3 (EPA/823/F-00/023) September 2000. www.epa.gov/owm/mtb/wetlands-subsurface_ flow.pdf.
Table 9B.44 Summary of Performance for 14 Subsurface Flow Wetland Systems Constituent BOD5 TSS TKN as N NH3/NH4 as N NO3 as N TN TP Fecal coliforms (#/100 ml)
Mean Influent (mg/L) a
b
28 (5–51) 60 (23–118) 15 (5–22) 5 (1–10) 9 (1–18) 20 (9–48) 4 (2–6) 270,000 (1,200–1,380,000)
Mean Effluent (mg/L) 8a (1–15)b 10 (3–23) 9 (2–18) 5 (2–10) 3 (0.1–13) 9 (7–12) 2 (0.2–3) 57,000 (10–330,000)
Mean detention time 3 d (range 1–5 d). a b
Mean value. Range of values.
Source: From USEPA, 1993; USEPA, Wastewater Technology Fact Sheet, Wetlands: Subsurface Flow, Office of Water, Municipal Technology Branch, Table 4 (EPA/823/F-00/023) September 2000. www.epa.gov/ owm/mtb/wetlands-subsurface_flow.pdf. q 2006 by Taylor & Francis Group, LLC
9-34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.45 Typical Areal Loading Rates for Free Water Surface Wetlands Constituent
Typical Influent Conc. (mg/L)
Hydraulic Load (in./d) BOD TSS NH3/NH4 as N NO3 as N TN TP
0.4–4 5–100 5–100 2–20 2–10 2–20 1–10
Target Effluent Conc. (mg/L) 5–30 5–30 1–10 1–10 1–10 0.5–3
Mass Loading Rate (lb/ac/d) 9–89 9–100 1–4 2–9 2–9 1–4
Source: From USEPA, Wastewater Technology Fact Sheet, Free Water Surface Wetlands, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/024) September 2000. www.epa.gov/owm/mtb/free_water_surface_ wetlands.pdf.
Table 9B.46 Summary of Performance for 27 Free Water Surface Wetlands Constituent BOD5 TSS TKN as N NH3/NH4 as N NO3 as N TN TP Dissolved P Fecal coliforms (#/100 mL)
Mean Influent (mg/L)
Mean Effluent (mg/L)
70 69 18 9 3 12 4 3 73,000
15 15 11 7 1 4 2 2 1,320
Source: USEPA, 2000; USEPA, Wastewaster Technology Fact Sheet, Free Water Surface Wetlands, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/024) September 2000. www.epa.gov/owm/ mtb/free_water_surface_wetlands.pdf.
Table 9B.47 Wastewater Characteristics Affecting Chlorination Performance Wastewater Characteristic Ammonia Biochemical oxygen demand (BOD) Hardness, iron, nitrate Nitrite pH
Total suspended solids
Effects on Chlorine Disinfection Forms chloramines when combined with chlorine The degree of interference depends on their functional groups and chemical structures Minor effect, if any Reduces effectiveness of chlorine and results in THMs Affects distribution between hypochlorous acid and hypochlorite ions and among the various chloramine species Shielding of embedded bacteria and chlorine demand
Source: From Darby et al., with permission from the water environment research foundation, 1995; USEPA, Wastewater Technology Fact Sheet, Chlorine Disinfection, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/F-99/063) September 1999. www.epa.gov/owm/mtb/chlo.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-35
Table 9B.48 Wastewater Characteristics Affecting Ultraviolet Disinfection Performance Wastewater Characteristic
Effects on UV Disinfection
Ammonia Nitrite Nitrate Biochemical oxygen demand (BOD)
Minor effect, if any Minor effect, if any Minor effect, if any Minor effect, if any. Although, if a large portion of the BOD is humic and/or unsaturated (or conjugated) compounds, then UV transmittance may be diminished Affects solubility of metals that can absorb UV light. Can lead to the precipitation of carbonates on quartz tubes High absorbency of UV radiation Affects solubility of metals and carbonates Absorbs UV radiation and shields embedded bacteria
Hardness Humic materials, iron pH TSS
Source: From USEPA, Wastewater Technology Fact Sheet, Ultraviolet Disinfection, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/F-99/064) September 1999. www.epa.gov/owm/mtb/uv.pdf.
Percentage of U.S. residents served by centralized treatment 80 70 60 50 40 30 20 10 1990
1980
1970
1960
1950
1940
1930
1920
1910
1900
1890
1880
1870
1860
0
Figure 9B.14 Percentage of US residents severed by centralized treatment. (From USEPA, Draft Handbook for Management of On-Site and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Table 1.1, p. 12 (EPA /PA 823/P-03/001), February 2003.)
Table 9B.49 Comparison of Design and Operating Parameters, Land Treatment Systems Parameters
Irrigation
Overland Flow
Rapid Infiltration
Weekly application rate (in.) Annual application rate (ft) Estimated land required for 100,000 gpd (acres) Minimum preapplication treatment requirements Climate restrictions
0.5–4.0 2–18 20–25
2.4–6.0 8–40 5–10
4–96 20–410 1–7
Lagoons
Screening and grit removal
Lagoons
Storage needed for cold and wet climates
Storage needed for cold and wet climates
Slopes Soil permeability
!20% Slow to moderate
Smooth sloes of 2–8% Impermeable (clays, silts, soils with impermeable barriers)
Cold weather may reduce hydraulic loading cycles Not critical Rapid
Source: From USEPA, Wastewater Technology Transfer, Summary Report, Small Community Water and Wastewater Treatment, Table 2, p. 34 (EPA/525/R-92/010) September 1992. q 2006 by Taylor & Francis Group, LLC
9-36
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.50 Design Criteria for Rapid Land Infiltration Land Treatment Item
Range
Basin infiltration area Hydraulic loading rate BOD loading Soil depth Soil permeability Wastewater application period Drying period Soil texture Individual basin size (at least 2 basins in parallel) Height of dikes Application method Pretreatment required Source:
0.3–5.5 ha/103m3/d (3–56 acres/MGD) 6–90 m/yr (20–300 ft/yr) [6–92 m3/m2/yr (150–2250 gal/ft2/yr)] 22–112 kg/ha/d (20–100 lb/acre/d) At least 3–4.5 m (10–15 ft) At least 1.5 cm/h (0.6 in./h) 4 h to 2 wks 8 h to 4 wks Coarse sands, sandy gravels 0.4–4 ha (1–10 acres) 0.15 m (0.5 ft) above maximum expected water level flooding or sprinkling primary or secondary
From Crites, et al., 2000; USEPA, Wastewater Technology Fact Sheet, Rapid Land Infiltration Land Treatment, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-03/025) September 2003. www.epa.gov/owm/mtb/final_ rapidinfiltration.pdf.
Table 9B.51 Effluent Quality for Rapid Land Infiltration Land Treatment Parameter
% Removal
BOD5 TSS TN TP Fecal coliform Source:
95–99 95–99 25–90 0–90 99.9–99.99 C percent
From USEPA, Wastewater Technology Fact Sheet, Rapid Land Infiltration Land Treatment, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/ F-03/025) September 2003. www.epa.gov/owm/mtb/final_rapidinfiltration.pdf.
Evapotranspiration Spray or surface application
Crop Slope variable
Root zone Subsoil
Deep percolation
Figure 9B.15 Schematic of spray irrigation. (From USEPA, Technology Transfer, Summary Report, Small Community Water and Wastewater Treatment, Figure 2, p. 33 (EPA /625/R-92/010) September 1992.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-37
Table 9B.52 Design Criteria for Slow Rate Land Treatment Item
Range
Field area Application rate BOD Loading Soil depth Soil permeability Lower temperature limit Application method Pretreatment required Particle size (for sprinkler applications)
56–560 acres/MGD 2–20 ft/yr (0.5–4 in./wk) 0.2–5 lb/acre/d At least 2–5 ft 0.06–2.0 in./h 258F Sprinkler or surface Preliminary & secondary Solids less than 1/3 sprinkler nozzle
Source: From Crites, et al., 2000; USEPA, Wastewater Technology Fact Sheet, Slow Rate Land Treatment, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-02/012) September 2002. www.epa.gov/owm/mtb/sloratre.pdf.
Table 9B.53 Maximum Metal Concentrations for Land Application
Metal
Ceiling Concentration (mg/kg)
Cumulative Pollutant Loading Rates (kg/hectare)
Pollutant Concentrations (mg/kg)
75 85 4,300 840 57 75 420 100 7,500
41 39 1,500 300 17 NL 420 100 2,800
41 39 1,500 300 17 NL 420 100 2,800
Arsenic Cadmium Copper Lead Mercury Molybdenum Nickel Selenium Zinc NL, No limit.
Source: From USEPA, 1993 and 1994; USEPA, Wastewater Technology Fact Sheet, Land Application, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/064) September 2000. www.epa.gov/owm/mtb/land_ application.pdf.
Table 9B.54 Range of Expected Centrifuge Performance Type of Wastewater Solids Primary undigested WAS undigested PrimaryCWAS undigested PrimaryCWAS aerobic digested PrimaryCWAS anaerobic digested Primary anaerobic digested WAS aerobic digested Hi-Temp aerobic Hi-Temp anaerobic Lime stabilized
Feed (%TS)
Polymer (lb/DTS)
Cake (%TS)
4–8 1–4 2–4 1.5–3 2–4 2–4 1–4 4–6 3–6 4–6
5–30 15–30 5–16 15–30 15–30 8–12 20 20–40 20–30 15–25
25–40 16–25 25–35 16–25 22–32 25–35 18–21 20–25 22–28 20–28
Source: From various centrifuge manufactures; lreland and Balchunas, 1998; Henderson and Schultz, 1999; Leber and Garvey, 2000; USEPA, Biosolids Technology Fact Sheet, Centrifuge Thickening and Dewatering, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-00/053) September 2000. www.epa.gov/owm/mtb/ centrifuge_thickening.pdf. q 2006 by Taylor & Francis Group, LLC
9-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Handrailing
Baffle supports
Influent pipe
1'' Grout
Effluent weir
Turntable Max. water surface 1'3'' min.
Bridge
Effluent launder
Top of tank
Influent baffle
Center pier
Drive cage
Trussed ra
2¾'
Side water depth
Influent pipe
ke arm
12'' 2'' Grout
1½'' Blade clearance
1 ft = 0.305 m 1 in. = 2.54 cm
Scraper blades Sludge hopper
Sludge pipe
Adjustable squeegees
Hopper scrapers
Figure 9B.16 Gravity thickener. (From USEPA, Biosolids Technology Fact Sheet, Gravity Thickening and Dewatering, Office of Water, Municipal Technology Branch, Figure 2 (EPA /823/F-03/022) September 2002. www.epa.gov/owm/mtb/final_gravitythickening.pdf.)
Table 9B.55 Factors Affecting Gravity Thickening Performance Factor Nature of the solids feed Freshness of feed solids High volatile solids concentrations High hydraulic loading rates Solids loading rate Temperature and variation in temperature of thickener contents High solids blanket depth Solids residence time Mechanism and rate of solids withdrawal Chemical treatment Presence of bacteriostatic agents or oxidizing agents Cationic polymer addition Use of metal salt coagulants
Effect Affects the thickening process because some solids thicken more easily than others High solids age can result in septic conditions Hamper gravity settling due to reduced particle specific gravity Increase velocity and cause turbulence that will disrupt settling and carry the lighter solids past the weirs If rates are high, there will be insufficient detention time for settling. If rates are too low, septic conditions may arise High temperatures will result in septic conditions. Extremely low temperatures will result in lower settling velocities. If temperature varies, settling decreases due to stratification Increases the performance of the settling by causing compaction of the lower layers, but it may result in solids being carried over the weir An increase may result in septic conditions. A decrease may result in only partial settling Must be maintained to produce a smooth and continuous flow. Otherwise, turbulence, septic conditions, altered settling, and other anomalies may occur Chemicals—such as potassium permanganate, polymers, or ferric chloride—may improve settling and/or supernatant quality Allows for longer detention times before anaerobic conditions create gas bubbles and floating solids Helps thicken waste-activated solids and clarify the supernatant Improves overflow clarity but may have little impact on underflow concentration
Source: From Parsons, 2003; USEPA, Biosolids Technology Fact Sheet, Gravity Thickening and Dewatering, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/F-03/022) September 2002. www.epa.gov/owm/mtb/final_gravitythickening.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-39
Table 9B.56 Performance of Conventional Gravity Thickening Type of Solids Primary (PRI) Trickling filter (TF) Rotating biological contactor (RBC) Waste activated solids (WAS) PRICWAS PRICTF PRICRBC PRICLime PRIC(WASCiron) PRIC(WASCaluminum salts) Anaerobically digested PRICWAS
Feed (%TS)
Thickened solids (%TS)
2–7 1–4 1–3.5 0.2–1 0.5–4 2–6 2–6 3–4.5 1.5 0.2–0.4 4
5–10 3–6 2–5 2–3 4–7 5–9 5–8 10–15 3 4.5–6.5 8
Source: From WEF, 1987; USEPA, Biosolids Technology Fact Sheet, Gravity Thickening and Dewatering, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-03/022) September 2002. www.epa.gov/owm/mtb/final_ gravitythickening.pdf.
Table 9B.57 Typical Data for Various Types of Sludges Dewatered on Belt Filter Presses Type of Wastewater Sludge
Total Feed Solids (%)
Polymer (g/kg)
Total Cake Solids (%)
3–10 0.5–4 3–6 3–10 3–4 3–9 1–3 1–3 4–8
1–5 1–10 1–10 1–5 2–10 2–8 2–8 4–10 0
28–44 20–35 20–35 25–36 12–22 18–44 12–20 15–23 25–50
Raw primary Raw WAS Raw primaryCWAS Anaerobically digested primary Anaerobically digested WAS Anaerobically digested primaryCWAS Aerobically digested primaryCWAS Oxygen activated WAS Thermally conditioned primaryCWAS
Source: From USEPA, 1987; USEPA, Biosolids Technology Fact Sheet, Belt Filter Press, Office of Water, Municipal Technology Branch, Table 1 (EPA/823/F-03/057) September 2000. www.epa.gov/owm/mtb/belt_filter.pdf.
Table 9B.58 Typical Biosolids Application Scenarios Type of Site/Vegetation Agricultural land Corn Small grains Soybeans Hay Forest land Range land Reclamation sites
Schedule April, May, after harvest March–June, August, fall April–June, fall After each cutting Year round Year round Year round
Application Frequency Annually Up to 3 times per year Annually Up to 3 times per year Once every 2–5 years Once every 1–2 years Once
Application Rate 5–10 dry tons per acre 2–5 dry tons per acre 5–20 dry tons per acre 2–5 dry tons per acre 5–100 dry tons per acre 2–60 dry tons per acre 60–100 dry tons per acre
Source: From USEPA, 1994; USEPA, Wastewater Technology Fact Sheet, Land Application, Office of Water, Municipal Technology Branch, Table 2 (EPA/823/F-00/064) September 2000. www.epa.gov/owm/mtb/land_application.pdf. q 2006 by Taylor & Francis Group, LLC
9-40
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9B.59 Pipe Paint Color Scheme Recommendations Raw sludge line—brown with black bands Sludge recirculation suction line—brown with yellow bands Sludge draw off line—brown with orange bands Sludge recirculation discharge line—brown Sludge gas line—orange (or red) Natural gas line—orange (or red) with black bands Nonpotable water line—blue with black bands Potable water line—blue Chlorine line—yellow Sulfur dioxide—yellow with red bands Sewage (wastewater) line—gray Compressed air line—green Water lines for heating digesters or buildings—blue with a 6-inch (150 mm) red band spaced 30 in. (760 mm) apart Fuel oil/diesel—red Plumbing drains and vents—black Polymer-purple The contents and direction of flow shall be stenciled on the piping in a contrasting color. The use of paints containing lead or mercury should be avoided. In order to facilitate identification of piping, particularly in the large plants, it is suggested that the different lines be color-coded. Source: From Board of State and Provincial Public Health and Environmental Manager, Health Education Services Division, Recommended Standards for Wastewater Facilities, 2004 edition, p. 50–5. www.hes.org.
SECTION 9C
DECENTRALIZED WASTEWATER TREATMENT
STP
STP
Centralized wastewater treatment
STP
Decentralized approach
Figure 9C.17 Centralized wastewater treatment vs. decentralized approach. (From USEPA, Draft Handbook for Management of Onsite and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Figure 1.4 (EPA/PA 823/P-03/001), February 2003. www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-41
Septic tank Drainfield
Percolation Soil Purification
Groundwater
Manhole
Riser
Riser
To additional treatment and/or dispersal
From house Scum
Screen Inlet tee
Outlet tee Wastewater
Sludge
Figure 9C.18 Conventional system. (From USEPA website. www.epa.gov.)
Table 9C.60 Types of Decentralized Wastewater Treatment Systems Type of System Individual on-site systems Cluster systems Commercial, residential, institutional, and recreational facilities
Description Systems that serve an individual residence and can range from conventional septic tank/drainfield systems to systems composed of complex mechanical treatment trains Wastewater collection and treatment systems that serve two or more dwellings or buildings, but less than an entire community, on a suitable site near the served structures Systems designed to treat larger and sometimes more complex wastewater sources from commercial buildings (e.g. restaurants), apartments, or institutional or recreational facilities
Source: From USEPA, Draft Handbook for Management of On-Site and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Table 1.1, p. 12 (EPA/PA 823/P-03/001), February 2003. q 2006 by Taylor & Francis Group, LLC
9-42
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9C.61 Characteristics of Septage Conventional Parameters Concentration Parameter
Minimum
Total solids Total volatile solids Total suspended solids Volatile suspended Biochemical oxygen demand Chemical oxygen demand Total kjeldahl nitrogen Ammonia nitrogen Total phosphorus Alkalinity Grease PH Total coliform Fecal coliform
1,132 353 310 95 440 1,500 66 3 20 522 208 1.5 107/100 mL 106/100 mL
Maximum 130,475 71,402 93,378 51,500 78,600 703,000 1,060 116 760 4,190 23,368 12.6 109/100 mL 108/100 mL
Note: The measurements above are in mg/L unless otherwise indicted. Source: From USEPA, 1994; USEPA, Decentralized Systems, Technology Fact Sheet, Septage Treatment/Disposal, Office of Water, Table 1 (EPA/823/F-99/068), September 1999. www.epa.gov/owm/mtb/septage.pdf.
Table 9C.62 Sources of Septage Description Rate
Removal Pump-out
Characteristics
Septic tank
2–6 years, but can vary with location local ordinances
Cesspool
2–10 years
Privies/portable toilets
1 week to months
Aerobic tanks
Months to 1 year
Holding tanks (septic tank with no drain-field, typically a local requirement
Days to weeks
Dry pits (associated with septic fields) Miscellaneous may exhibit characteristics of septage Private wastewater treatment plants Boat pump-out station Grit traps
2–6 years
Concentrated BOD, solids, nutrients, variable toxins (such as metals), inorganics (sand), odor, pathogens, oil, and grease Concentrated BOD, solids, nutrients, variable toxins, inorganics, sometimes high grit, odor, pathogens, oil, and grease Variable BOD, solids, inorganics, odor, pathogens, and some chemicals Variable BOD, inorganics, odor, pathogens, and concentrated solids Variable BOD, solids, inorganics, odor, and pathogens, similar to raw wastewater solids Variable BOD, solids, inorganics, and odor
Variable Variable Variable
Grease traps
Weeks to months
Septic tank Portable toilets Oil, grease, solids, inorganics, odor, and variable BOD Oil, grease, BOD, viscous solids, and odor
Source: From Septage Handling Task Force (1997), copyright Water Environment Federation, used with permission. USEPA, Decentralized Systems, Technology Fact Sheet, Septage Treatment/Disposal, Office of Water, Table 2 (EPA/823/F-99/068), September 1999. www.epa.gov/owm/mtb/septage.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
Table 9C.63 Physical and Chemical Characteristics of Septage, as Found in the Literature, with Suggested Design Values United States (5) (9–19) Parameter TS TVS TSS VSS BODs COD TKN NH3–N Total P Alkalinity Grease pH LAS
Europe/Canada (4) (20)
Average
Minimum
Maximum
Variance
Average
Minimum
Maximum
Variance
EPA Mean
Suggested Design Value
34,106 23,100 12,862 9,027 6,480 31,900 588 97 210 970 5,600 — —
1,132 353 310 95 440 1,500 66 3 20 522 208 1.5 110
130,475 71,402 93,378 51,500 78,600 703,000 1,060 116 760 4,190 23,368 12.6 200
115 202 301 542 179 469 16 39 38 8 112 8.0 2
33,800 31,600 45,000 29,900 8,343 28,975 1,067 — 155 — — — —
200 160 5,000 4,000 700 1,300 150 — 20 — — 5.2 —
123,860 67,570 70,920 52,370 25,000 114,870 2,570 — 636 — — 9.0 —
619 422 14 13 36 88 17 — 32 — —
38,800 25,260 13,000 8,720 5,000 42,850 677 157 253 — 9,090 6.9 157
40,000 25,000 15,000 10,000 7,000 15,000 700 150 250 1,000 8,000 6.0 150
Values expressed as mg/L, except for pH. Source: From Board of State and Provincial Public Health and Environmental Managers, Health Education Services Division, Recommended Standards for Wastewater Facilities, 2004 Edition, p. A4. www.hes.org.
9-43
q 2006 by Taylor & Francis Group, LLC
9-44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9C.64 Comparison of Septage and Municipal Wastewatera Parameter
Septageb
Wastewaterc
Ratio of Septage to Wastewater
TS TVS TSS VSS BODs COD TKN NH3–N Total P Alkalinity Grease pH LAS
40,000 25,000 15,000 10,000 7,000 15,000 700 150 250 1,000 8,000 6.0 150
720 365 220 165 220 500 40 25 8 100 100
55:1 68:1 68:1 61:1 32:1 30:1 17:1 6:1 31:1 10:1 80:1
Table including footnotes is a taken from the USEPA Handbook entitled “Septage Treatment and Disposal,” 1984, EPA-625/6-84-009 and is designated in that document as “Table 3.8.” a Values expressed as mg/L, except for pH. b Based on suggested design values in Appendix-Table No.1 (USEPA Table 3.4). c From Metcalf and Eddy, 4th Edition, “Medium strength sewage.” Source: From Board of State and Provincial Public Health and Environmental Managers, Health Education Services Division, Recommended Standards for Wastewater Facilities, 2004 Edition, p. A5. www.hes.org.
Percentage of state residents using onsite wastewater systems 10 −25% 26 −40% > 40%
Figure 9C.19 On-site treatment system distribution in the United States. (From USEPA, Draft Handbook for Management of On-site and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Figure 1.1 (EPA/PA 823/P-03/001), February 2003. www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-45
Table 9C.65 Septic Tank Capacities for One- and Two-Family Dwellings Septic Tank Volume (gallons)
Number of Bedrooms
750a 750a 1,000 1,200 1,425 1,650 1,875 2,100
1 2 3 4 5 6 7 8 a
Many States have established 1,000 gallons or more as the minimum size.
Source: From USEPA, Draft Handbook for Management of On-site and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Table 1.1, p. 12 (EPA/PA 823/ 823/P-03/001), February 2003.
Table 9C.66 Treatment Performance of On-Site Septic Tank and Sand Filter Parameter BOD, mg/L SS, mg/L Total nitrogen, mg/L Ammonia-nitrogen, mg/L Nitrate-nitrogen, mg/L Total phosphorus, mg/L Fecal coliforms (#/100 mL) Viruses (#/100 mL)
Raw Waste
Septic Tank Effluent
210–530 237–600 35–80 7–40 !1 10–27 106–1010 Unknown
140–200 50–90 25–60 20–60 !1 10–30 103–106 105–107
Intermittent Sand Filter Effluent !10 !10 — !0.5 25 — 102–104 —
Source: Adapted from Tchobanoglous and Burton, 1991; USEPA, Decentralized Systems, Technology Fact Sheet, Septic Tank Polishing, Office of Water, Table 1 (EPA/823/F-02/021), September 2002. www.epa.gov/ owm/mtb/septn_pol.pdf.
Table 9C.67 Design Parameters for Continuous-Flow, Suspended Growth Systems Extended Aeration Package Plant Parameter Pretreatment (if needed) Mixed liquor suspended solids (mg/L)a F/M Load (Ib BOD/d/MLVSS), Hydraulic retention time (h) Solids retention time (days) Mixing power inpuf Clarifier overflow rate (gpd/ft2) Clarifier solids loading (lb/d/ft2) Dissolved oxygen (mg/L) Residuals generated Sludge removal
Extended Aeration Septic tank or equivalent 2,000–6,000 0.05–0.15 24–120 20–40 0.2–3.0 hp/1,000 ft3 200–400 avg., 800 peak 30 avg., 50 peak O2.0 0.6–0.9 Ib TSS/Lb BOD removed 3–6 months as needed
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 1, Table 1.1, Continuousflow, Suspended growth systems (CFSGAS), Office of Water, Office of Research and Development, EPA, (EPA/625/ R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/6250R0008totaldocument.pdf. q 2006 by Taylor & Francis Group, LLC
9-46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9C.68 Common Operational Problems of Extended Aeration Package Plants Observation
Cause
Excessive local turbulence In aeration tank White, thick, billowy foam on aeration tank Thick, scummy, dark tan foam on aeration tank Dark brown/black foam and mixed liquor in aeration tank Billowing sludge washout in clarifier Clumps of rising sludge in clarifier
Diffuser plugging Pipe breakage Excessive aeration Insufficient MLSS High MLSS Anaerobic conditions Aerator failure Hydraulic or solids overload Bulking sludge Denitrification Septic conditions in clarifier Turbulence in aeration tank Siudae age too high Excess flow and strength variations Low temperatures Excessive biocide use
Fine dispersed floc, turbid effluent Poor TSS and/or BOD removal Poor nitrification
Remedy Remove and clean Replace as required Throttle blower Avoid wasting solids Waste solids Check aeration system, aeration tank DO Waste sludge; check flow to unit See EPA, 1977 Increase sludge return rate to decrease sludge retention time in clarifier Increase return rate Reduce power input Waste sludae Install flow smoothing system Insulate, upgrade to high biomass, etc Reduce biocide loading
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 1, Table 1.2, Continuous-flow, suspended growth systems (CFGAS), Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.
Table 9C.69 Design Parameters for Fixed Film Systems Parameter
Trickling Filter
Pretreatment Surface hydraulic loading Organic loadinga Clarifier overflow rate Average flow Peak flow Clarifier TSS loading rate Average flow Peak flow Recirculation Sludge generatedb a b
RBC
Septic tank (primary clarifier) 10–25 gal/d-ft2 5–20 lb BOD/d-ft2 (3–10 Lb BOD/d-ft2 to nitrify)
Septic tank (primary clarifier) N/A 2.5 Ib SBOD/d-1,000 ff (6.4 Ib BOD/d-1,000 ft2)
600–800 gal/d-ft2 1,000–1,200 gal/d-ft2
600–800 gal/d-ft2 1,000–1,200 gal/d-ft’
0.8–1.2 LbTSS/d-ft’ 2.0 Lb TSS Id-W Optional 0.6–1.1 Lb TSS lib BOD removed
0.8–1.2 Lb TSS Id-ft2 2.0 Lb TSS Id-ft’ Optional 0.6–1.1 Lb TSS lib BOD removed
Loading rates for RBC are expressed per 1,000 ft2 of total disk surface. Sludge generated is in addition to solids removed in septic tank.
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 2, Table 1, Fixed Film Processes, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/ 625R00008/625R00008total document.pdf. Table 9C.70 Design Parameters for IF-Type Sequencing Batch Reactors Systems Treatment Systems Parameter Pretreatment Mixed liquor suspended solids (mg/L) F/M load (Lb BOD/d/MLVSS) Hydraulic retention time (h) Total cycle times (h)a Solids retention time (days) Decanter overflow ratea (gpm/ff) Sludge wasting a
SBR Systems Septic tank or equivalent 2,000–6,500 0.04–0.20 9–30 4–12 20–40 !100 As needed to maintain performance
Cycle times should be tuned to effluent quality requirements, wastewater flow, and other site constraints.
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 3,Sequencing Batch Reactors Systems, Office of Water, Office of Research and Development, EPA, (EPA/625/R00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008total document.pdf.
q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-47
Vent
Electric motor
Outlet
Inlet
Aeration compartment Settling compartment
Air discharge Sludge return
Mixing return
Figure 9C.20 Components of a typical aerobic treatment system. (From USEPA, Draft Handbook for Management of On-site and Clustered (Decentralized) Wastewater Treatment Systems, Office of Water, Figure 3 (EPA/PA 823/P-03/001), February 2003. www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008totaldocument.pdf.)
Table 9C.71 Chlorine Disinfection Dose (in mg/L) Design Guidelines for On-Site Applications Calcium Hypochlorite pH 6 pH 7 pH 8
Septic Tank Effluent
Biological Treatment Effluent
Sand Filter Effluent
35–50 40–55 50–65
15–30 20–35 30–45
2–10 10–20 20–35
Note: Contact timeZ1 h at average flow and temperature 20 8C. lncrease contact time t 02 h at 10 8C and 8 h at 5 8C for comparable efficiency. DoseZmg/L as CI. Doses assume typical chlorine demand and are conservative estimates based on fecal coliform data. Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 4, Table 1, Effluent Disinfection Processes, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008total document.pdf.
Table 9C.72 Typical Design Guidance for Aquatic System Parameter HRT (days) Power (hp/1 06gal) Depth (ft) Minimum no. of celis BOD loading (Lb/acre-day) TSS loading (Lb/acre-day)
Facultative Lagoon
Aerated Lagoon
FWS Constructed Wetland
30–180 0 3–5 3 20–60 N/A
3 (max) 30 10 2 200–600 N/A
6 (min) 0 2–5 3 40–53 27–45
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 7, Table 1, Stabilization Ponds, FWS Constructed Wetlands, and Other Aquatic Systems, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/ 0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008total document.pdf. q 2006 by Taylor & Francis Group, LLC
9-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9C.73 Typical N-Removal Ranges for Managed Systems Process
Percent TN Removal
RSF RSF (with recycle to ST or AUF) ST-FFS (with recycle to ST or AUF)a SBRa SS and removal (SS-TT R)a ISF-AUF
40–50 70–80 65–75 50–80 60–80 40–60 55–75
Note: RSF, recirculating sand filters; AUF, anaerobic upflow filter; ST, septic tank; FFS, fixed film system; SBR, sequencing batch reactor; SS, source separation; TT, treatment applied to both systems; R, recombined; ISF, intermittent sand filter. a
Commercially available systems.
Source: From USEPA, On-site Wastewater Treatment Systems Manual Technology Fact Sheet 10, Table 1, Enhanced Nutrient Removal-Nitrogen, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008total document.pdf.
Table 9C.74 Types of Mass Loadings to Subsurface Wastewater Infiltrations Systems Mass Loading Type Hydraulic Daily
Instantaneous Contour (Linear)
Constituent Organic Other pollutants
a
Units Volume per day per unit area of boundary surface
Volume per dose per unit area of boundary surface Volume per day per unit length of boundary surface contour (which can be a critical design parameter in areas with high water tables) Mass of BOD per day unit area of boundary surface Mass of specific wastewater pollutant of concern per unit area of boundary surface (e.g., number of fecal coliforms, mass of nitratre nitrogen, etc
Typical Loading Rates Septic tank effluent: 0.15–1.0 gpd/ft2 (0.6–4.0 cm/d) Secondary effluent: 0.15/2.0 gpd/ft2 (0.6/8.0 cm/d) 1/24–1/8 of the average daily wastewater volume Depends on soil Ksaia, maximum allowable thickness of saturated zone, and slope of the boundary surface (see section 5.3) 0.2–5.0 Lb BOD/1,000 ft2 (1.0–29.4.4 kg BOD/1,000 m2) Variable with the constituent, its fate and transport and the considered risk it imposes
Ksai is the saturated conductivity of the soil.
Source: From Otis, 2001; USEPA, On-site Wastewater Treatment Systems Manual, Table 5.1, Office of Water, Office of Research and Development, EPA, (EPA/625/R-00/0008). www.epa.gov/ord/NRMRL/Pubs/625R00008/625R00008total document.pdf. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-49
SECTION 9D
INDUSTRIAL WASTEWATER TREATMENT
Table 9D.75 Toxic Chemical Releases by Industry: 2001 On-Site Release
Industry Metal mining Coal mining Food and kindred products Tobacco products Textile mill products Apparel and other textile products Lumber and wood products Furniture and fixtures Paper and allied products Printing and publishing Chemical and allied products Petroleum and coal products Rubber and misc. plastic products Leather and leather products Stone, clay, glass products Primary metal industries Fabricated metals products Industrial machinery and equipment Electronic, electric equipment Transportation equipment Instruments and related products Miscellaneous Electric utilities Chemical wholesalers Petroleum bulk terminals RCRA/solvent recovery Totalc
Off-Site Releases/ Transfers to Disposal
Total Facilities (Number)
Total On and Off-Site Releases
Total
10 12 20
89 88 1,688
2,782.6 16.1 125.1
2,782.0 16.1 118.9
2.9 0.8 56.1
0.4 0.8 55.2
2,778.7 14.6 7.6
0.5 — 6.2
21 22 23
31 289 16
3.6 7.0 0.4
3.2 6.2 0.3
2.5 5.7 0.3
0.5 0.2 —
0.2 0.3 —
0.3 0.7 0.1
24
1,006
31.4
30.9
30.5
—
0.4
0.5
25 26
282 507
8.0 195.7
7.8 189.9
7.8 157.2
— 16.5
— 16.2
0.2 5.8
27 28
231 3,618
19.7 582.6
19.3 501.3
19.3 227.8
— 57.6
— 215.9
0.4 81.3
29
542
71.4
68.1
48.2
17.1
2.8
3.3
30
1,822
88.5
78.1
77.1
0.1
0.9
10.5
31
60
2.6
1.3
1.2
0.1
—
1.3
32
1,027
40.5
35.4
31.3
0.2
4.0
5.1
33 34
1,941 2,959
558.6 64.0
286.8 42.8
57.6 40.4
44.7 1.7
184.5 0.6
271.8 21.2
35
1,143
15.4
10.7
8.3
—
2.5
4.6
36
1,831
23.9
16.4
12.7
2.9
0.7
7.6
37
1,348
80.6
67.7
66.7
0.2
0.8
13.0
38
375
9.4
8.6
7.2
1.4
—
0.8
39 49 5169 5171 4953/7369 (X)
312 732 475 596 223 24,896
8.4 1,062.2 1.5 21.3 219.9 6,158.0
6.8 989.2 1.3 21.2 168.4 5,580.3
6.8 717.6 1.3 21.2 1.0 1,679.4
— 3.5 — — — 220.8
— 268.1 — — 167.4 3,680.1
1.6 73.1 0.2 0.2 51.4 577.7
1987 SICa Code
Air Emissions Surface Water Discharges
Otherb
[In millions of pounds (6,158.0 represents 6,158,000,000), except as indicated. “Original industries” include owners and operators covers facilities that are classified within standard classification code groups 20 through 39,10,12,49, 5169, 5171, and 4953/7169 that have 10 or more full-time employees, and that manufacture, process, or otherwise uses any listed toxic chemical in quantities greater than the established threshold in the course of a calendar year are covered and required to report. — Represents or rounds to zero, X, Not applicable. a Standard industrial classification, see text, section 12. b Includes underground injection for class I and class II to V wells and land releases. c Includes industries with no specific industry identified, not shown separately. Source: From Table 378 and Table 379 U.S. Environmental Protection Agency, Toxics Release Inventory, Annual. U.S. Census Bureau, Statistical Abstract of the U.S., 2003. www.census.gov/compendia/statab/.
q 2006 by Taylor & Francis Group, LLC
9-50
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9D.76 Overview of Facility, Impoundment, and Wastewater Quantity Estimates Characteristic Estimated number of facilities Estimated number of impoundments Total quantity of wastewaters managed (metric tons)a a
Direct Dischargers
Zero Dischargers
Total Population
3,944 10,987 627,218,336
512 876 27,250,309
4,457 11,863 654,468,645
The estimate of the wastewater quantity for the total population differs from the estimates shown in Table 2.2 and Table 2.15. This is due to missing data associated with this variable. Refer to Appendix A on missing data and Appendix B for the standard error associated with this variable.
Source: From USEPA, Industrial Surface Impoundments in the United States, Table 2.1 (530R01005). www.epa.gov/epaoswer/hazwaste/ Idr/icr/Idr-impd.htm.
5,000
Number of impoundments (weighted)
4,500
(4,226)
4,000 3,500 3,000 (2,382)
2,500
(2,073)
2,000 (1,446) (1,213)
1,500 1,000 (409)
500 (0) 0
(114)
Before 1900 1940–1949 1960–1969 1980–1989 1900–1939 1950–1959 1970–1979 1990–2000 Year impoundments began receiving waste
Figure 9D.21 Distribution of 11,863 impoundments by year unit began receiving waste. (From USEPA, Industrial Surface Impoundments in the United States, Figure 2.1, (530R01005). www.epa.gov/epaoswer/hazwaste/ldr/icr/ldr-impd.htm.) q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-51
Region 10 434
Region 1 437 Region 8 395
Region 9 601
Region 5 1,121
Region 7 396
Region 2 312
Region 3 1,995
Region 4 4,103
Region 6 2,068
Region 10 434
Alaska
Hawaii Region 9 601
Legend
Region 2 312
Surface impoundments per 100 square miles 0.1 - 0.2 1.3 - 0.4 0.5 - 0.7 1.1 1.6
Virgin Islands Puerto Rico
EPA Regions are labeled with estimated number of surface impoundments. The national total across all Regions is estimated to be 11,862 impoundments.
Figure 9D.22 Regional distribution of surface impoundments. (From USEPA, Industrial Surface Impoundments in the United States, Figure 2.2, (530R01005). www.epa.gov/epaoswer/hazwaste/ldr/icr/ldr-impd.htm.)
Table 9D.77 Breakdown by 2-Digit SIC Code of Surface Impoundments That Manage Chemicals/pH of Concern and of Quantities of Wastewater Managed
SIC Code Descriptor Chemical and allied products (SIC 28) Stone, clay, glass, concrete products (SIC 32) Wholesale trade-nondurable goods (SIC 51) Primary metals industry (SIC 33) Food and kindred products (SIC 20) Petroleum and coal products (SIC 29) Paper and allied products (SIC 26) All other SIC codes
Percent of 4,457 Facilities
Percent of 11,863 Impoundments
Percent of 653,314,426a Metric Tons Wastewater
19 15
23 13
9 1
12
10
4
10 8 7 6 23
8 8 11 12 15
7 5 6 66 2
SIC, standard industrial classification. a
The estimate of the wastewater quantity for the total population differs from the estimates shown in Table 2.1 and Table 2.15. This is due to missing data associated with this variable. Refer to Appendix A on missing data and Appendix B for the standard error associated with this variable. Source: From USEPA, Industrial Surface Impoundments in the United States, Table 2.2 (530R01005). www.epa.gov/ epaoswer/hazwaste/Idr/icr/Idr-impd.htm.
q 2006 by Taylor & Francis Group, LLC
9-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 9D.78 Breakdown of Chemical Categories for Wastewater and Sludge (at Different Sampling Points) on Impoundment and Volume Basis Wastewater In Impoundment
Influent
Sludge Effluent
Influent
In Impoundment
Effluent
Chemical Categories
# Imps
% Vol
# Imps
% Vol
# Imps
% Vol
# Imps
% Vol
# Imps
% Vol
# Imps
% Vol
VOCs SVOCs Metals Dioxin-like compounds Mercury Any chemicals
5,866 3,824 9,966 291
76 75 84 24
5,412 3,786 9,982 218
76 75 83 21
4,815 3,508 7,762 346
72 69 85 22
1,690 863 3,925 247
4 7 42 10
2,006 1,261 5,551 861
21 24 98 35
1,311 605 3,078 412
14 3 88 41
2,483 10,745
27 96
2,479 10,766
30 97
2,235 8,187
31 92
1,061 4,101
0.9 45
1,745 5,759
66 100
826 3,230
6 89
# Imps, number of impoundments; % Vol, percent of total volume; SVOCs , Semivolatile organic compounds; VOCs, Volatile organic compounds. Source: From USEPA, Industrial Surface Impoundments in the United States, Table 2.5 (530R01005). www.epa.gov/epaoswer/hazwaste/ Idr/icr/Idr-impd.htm.
Table 9D.79 Number and Percentage of Impoundments by Liner Status Liner Status Compacted clay Flexible membrane (FML) Composite (FML and clay) Concrete Asphalt Other Unlineda Total a
Number of Impoundments
Percentage of Impoundments
1,680 1,584 536 629 55 363 7,017 11,863
14 13 5 5 !1 3 59 100
This estimate differs from the estimate of outlined impoundments shown in Table 2.12. This is due to missing data associated with this variable. Refer to Appendix A on missing data and Appendix B for the standard error associated with this variable.
Source: From USEPA, Industrial Surface Impoundments in the United States, Table 2.10, (530R01005). www.epa.gov/epaoswer/hazwaste/Idr/icr/Idr-impd.htm. q 2006 by Taylor & Francis Group, LLC
WASTEWATER
9-53
Source
Release
Exposure medium
Exposure pathway
Exposure route
Surface impoundment
Volatilization
Airborne vapors
Inhalation Dispersion
Airborne vapors
Waste watera
Leaching
Groundwater
Ingestion
Surface waterb Aquatic organismsb
Plants Sludgea
Erosion runoff
Soil
Shaded boxes refer to components of the preliminary screening of direct exposure pathways. Unshaded boxes refer to components of the release assessment and risk modeling stages. Dashed lines indicate other indirect exposure pathways that were not modeled quantitatively.
Animals
aMedium concentration was compared directly to ecological risk screening factors. bThis indirect pathway was modeled and the results used in the indirect pathway analysis.
Figure 9D.23 Exposure pathways for active surface impoundments considered for humans and ecological receptors. (From USEPA, Industrial Surface Impoundments in the United States, Figure 3.1, (530R01005). www.epa.gov/epaoswer/hazwaste/ldr/icr/ldr-impd.htm.)
q 2006 by Taylor & Francis Group, LLC
CHAPTER
10
Environmental Problems Katherine L. Thalman
CONTENTS Section Section Section Section Section Section Section Section Section Section
10A 10B 10C 10D 10E 10F 10G 10H 10I 10J
Pollution Sources and Pathways . . . . . . . Surface Water Pollution . . . . . . . . . . . . . Groundwater Contamination . . . . . . . . . Solid Waste. . . . . . . . . . . . . . . . . . . . . . Agricultural Activities . . . . . . . . . . . . . . Urban Runoff/Deicing Materials . . . . . . . Air Emissions/Acid Rain/Sea Level Rise Offshore Waste Disposal . . . . . . . . . . . . Energy Development . . . . . . . . . . . . . . . Waterborne Diseases/Health Hazards . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
10-2 10-7 10-121 10-160 10-179 10-277 10-280 10-309 10-312 10-316
10-1
q 2006 by Taylor & Francis Group, LLC
10-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 10A
POLLUTION SOURCES AND PATHWAYS
Water
Root crop
Water
Plant crop
Moisture
Groundwater
Man
Dry soil Animal
Water
Foliage
Water
Fish
Hydro soil
Filter/ bottom feeder
Moisture
Atmosphere (vapor)
Moisture
Atmosphere (particles)
Figure 10A.1 Pollutant pathways from soil to man. (From Dacre, I.C., Rosenblatt, D.H., and Cogley, D.R., 1980, Preliminary Pollutant Limit Values for Human Health Effects, Environmental Technology 14: 778–783, Copyright American Chemical Society, Washington, DC.)
Climate change Pathogens Pesticides
Nutrients Agricultural/Forestry land use
Algal toxins Urban runoff Genetically modified organisms
Natural sources
Municipal wastewater
SOURCES Industrial discharges
Endocrine disrupting substances
Landfills and Waste Disposal Acidification CONTAMINANTS
Persisent organic pollutants
Global trends WATER QUANTITY IMPACTS
Figure 10A.2 Threats to water sources. (From Threats to Sources of Drinking Water and Aquatic Ecosystem Health in Canada, page x, Environment Canada, 2001. Reproduced with permission from the National Water Research Institute, Environment Canada, 2006.)
q 2006 by Taylor & Francis Group, LLC
Types of Waste Disease-carrying agents — human feces, warmblooded animal feces Oxygen-demanding wastes — high concentrations of biodegradable organic matter Suspended organic and inorganic material
Inorganic materials, mineral substances — metal, salts, acids, solid matter, other chemicals, oil
Synthetic organic chemicals — dissolved organic material, e.g., detergents, household aids, pesticides Nutrients — nitrogen, phosphorus
Radioactive materials Heat
Wastewater Sources Municipal discharges, watercraft discharges, urban runoff, agricultural runoff, feedlot wastes, combined sewer overflows, industrial discharges Municipal discharges, industrial discharges, combined sewer overflows, watercraft discharges, urban runoff, agricultural runoff, feedlot wastes, natural sources Mining discharges, municipal discharges, industrial discharges, construction runoff, agricultural runoff, urban runoff, silvicultural runoff, natural sources, combined sewer overflows
Water-Quality Measures Effects on Water Quality
Effects on Aquatic Life
Effects on Recreation
Fecal coliform, fecal streptococcus, other microbes
Health hazard for human consumption and contact
Inedibility of shellfish for humans
Reduced contact recreation
Biochemical oxygen demand, dissolved oxygen, volatile solids sulfides
Deoxygenation, potential for septic conditions
Fish kills
If severe, eliminated recreation
Reduced light penetration, Reduced photosynthesis, changed bottom organism deposition on bottom, population, reduced fish benthic deoxygenation production, reduced sport fish population, increased nonsport fish population Mining discharges, acid mine drainage, pH, acidity, alkalinity, Acidity, salination, toxicity Reduced biological industrial discharges, municipal dissolved solids, chlorides, of heavy metals, floating productivity, reduced flow, discharges, combined sewer overflows, sulfates, sodium, specific oils fish kills, reduced urban runoff, oil fields, agricultural metals, toxicity bioassay, production, tainted fish runoff, irrigation return flow, natural visual (oil spills) sources, cooling tower blowdown, transportation spills, coal gasification Fish kills, tainted fish, Cyanides, phenols, toxicity Toxicity of natural Industrial discharges, urban runoff, organics, biodegradable or reduced reproduction, municipal discharges, combined sewer bioassay skeletal development persistent synthetic overflow, agricultural runoff, silvicultural organics runoff, transportation spills, mining discharges Increased production, Nitrogen, phosphorus Increased algal growth, Municipal discharges, agricultural reduced sport fish dissolved oxygen runoff, combined sewer overflows, population, increased reduction industrial discharges, urban runoff, nonsport fish population natural sources Industrial discharges, mining Radioactivity Increased radioactivity Altered natural rate of genetic mutation Cooling water discharges, industrial Temperature Increased temperature, Fish kills, altered species discharges, municipal discharges, composition reduced capacity to cooling tower blowdown absorb oxygen Suspended solids, turbidity, biochemical oxygen demand, sulfides
ENVIRONMENTAL PROBLEMS
Table 10A.1 Causes of Damage to the Quality of Water Resources
Reduced game fishing, aesthetic appreciation
Reduced recreational use, fishing, aesthetic appreciation
Reduced fishing, inedible fish for humans
Tainted drinking water, reduced fishing and aesthetic appreciation Reduced opportunities Possible increased sport fishing by extended season for fish, which might otherwise migrate
Source: From Council of Environmental Quality, 1981, Environmental Trends.
10-3
q 2006 by Taylor & Francis Group, LLC
10-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10A.2 Point- and Nonpoint Sources of Water Pollution Sources POINT SOURCES Municipal sewage treatment plants Industrial facilities Combined sewer overflows
NONPOINT SOURCES Agricultural runoff Urban runoff Construction runoff Mining runoff Septic systems Landfills/spills Silvicultural runoff
Common Pollutant Categories BOD; bacteria; nutrients; ammonia; toxics Toxics; BOD BOD; bacteria; nutrients; turbidity; total dissolved solids; ammonia; toxics; bacteria Nutrients; turbidity; total dissolved solids; toxics; bacteria Turbidity; bacteria; nutrients; total dissolved solids; toxics Turbidity; nutrients; toxics Turbidity; acids; toxics; total dissolved solids Bacteria; nutrients Toxics; miscellaneous substances Nutrients; turbidity; toxics
Source: From U.S. Environmental Protection Agency, National Water Quality Inventory, 1986 Report to Congress.
q 2006 by Taylor & Francis Group, LLC
a b c d
ENVIRONMENTAL PROBLEMS
Table 10A.3 Classes of Nonpoint Source Pollution
BOD, Biological Oxygen Demand. PAH, Polycyclic Aromatic Hydrocarbons. PCB, Polycyclic Chlorinated Bi-Phenyls. COD, Chemical Oxygen Demand.
Source: From Ongley, E.D., 1996, Control of water pollution from agriculture-FAO irrigation and drainage paper 55, Food and Agriculture Organization of the United Nations, Rome. Reprinted with permission.
10-5
q 2006 by Taylor & Francis Group, LLC
10-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10A.4 Contamination Sources Reported by Public Water-Supply Systems in the United States Water-Supply Source Type of Contamination Industrial/commercial discharges Leaking underground tanks Urban runoff Landfills Synthetic or volatile organics Hazardous waste site(s) Land development Underground waste injection Agricultural runoff (pesticides, fertilizers, etc.) Algae/bacteria Overdraft Water rights disputes Natural contamination (radionuclides, salinity, etc.)
Groundwater
River/Stream
Lake/Reservoir
62 81 35 67 83 37 36 27 49
97 33 91 49 56 31 76 5 126
38 23 24 22 18 8 32 3 86
15 40 16 52
117 7 22 56
124 4 12 35
Note: Number of utilities reporting in each category. Source: From American Water Works Association, 1984 Water Utility Operating Data; Copyright AWWA.
Table 10A.5 Anthropogenic Sources of Pollutants in the Aquatic Environment
Source
Pesticides/ Herbicides
Industrial Organic Micro Pollutants
x
xxxG
xxxG
xxxG
xxx x
xxx xxxG
x
xxx xxxG
xx
x xxx xx
xxxG xx
x
xxx x x
xxx x
x xxx
xx
xxx
xxx
xx
xx
xx
x
xxx
x
xxx
x
Bacteria
Atmosphere Point sources Sewage Industrial effluents Diffuse sources Agriculture Dredging Navigation and harbors Mixed sources Urban runoff and waste disposal Industrial waste disposal sites Note:
Trace Elements
xxx
xx
Nutrients
Oils and Greases
x, Low local significance; xx, Moderate local/regional significance; xxx, High local/regional significance; G, Globally significant.
Source: From Chapman, D. (ed.), 1996, Water quality assessments-A guide to use of biota, Sediments and Water in Environmental Monitoring—Second Edition, Copyright q UNESO/WHO/UNEP, 1996, www.who.int. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-7
SECTION 10B
SURFACE WATER POLLUTION
Percent of impaired waters by 8-digit hydrologic unit code No waters listed
< 5%
5−10%
10−25%
> 25%
Figure 10B.3 Percentage of impaired waters in the United States by 8-digit hydrologic unit code. (From United States Environmental Protection Agency, 2000, Atlas of America’s Polluted Waters, EPA-840-B-00-002, May 2000, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total rivers and streams 3,692,830 miles
81% Not Assessed
ASSESSED rivers and streams 699,946 milesa
426,633 miles
19% ASSESSED
39% IMPAIRED
61% Good
269,258 miles
Leading sources b
Miles
0
10
Percent of IMPAIRED river miles 20 30 40
50 128,859
Agriculture Hydrologic modification
53,850
Habitat modification
37,654
Urban runoff/Storm sewers
34,871
Forestry
28,156
Municipal point sources
27,988
Resource extraction
27,695 0
5
10
15
20
Percent of ASSESSED river miles
Leading pollutants/stressors
0
Miles
10
Percent of IMPAIRED river miles 20 30 40 50
60
Pathogens (bacteria)
93,431
Siltation
84,503
Habitat alterations
58,807
Oxygen-Depleting substances
55,398
Nutrients
52,870
Thermal modifications
44,962
Metals
41,400
Flow alterations
25,355 0
5 10 15 Percent of ASSESSED river miles
20
Figure 10B.4 Leading pollutants and sources of river and stream impairment in the United States.a Excluding unknown and natural sources.b Includes miles assessed as not attainable. Percentages do not add up to 100% because more than one pollutant or source may impair a river segment. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-9
3.0
Detection frequency (percent) 89 81 74 69 66 64 60 48 45 44 37 32 29 27 24
Total concentration (micrograms per liter)
2.5
2.0
1.5
1.0
0.5
Non
pre
scr
Ste r iptio oids nd Inse rug cts s Det rep erg e ent llen me t tab olite s Dis infe cts Pla stic i z ers Fire reta rda nts Inse ctic ides Ant ibio tics PAH Oth s er p Hor res crip mones tion dru gs Ant ioxi dan ts Fra gra nce s Sol van t
0
EXPLANATION Maximum value 75thpencentile Median 25thpencentile Minimum value
''Maximum values not shown: Steroids: 18.3 Non prescription drugs: 17.4 Detergent metabolies: 55.6 Plasticizers: 17.4 Antibiotics: 3.6 Fragrances: 4.3
Steroids, nonprescription drugs, and an insects repellent were the three chemical groups most commonly detected in susceptible streams. Detergent and metabolites, steroids, and plasticizers generally were found at the highest concentrations. Figure 10B.5 Pharmaceuticals, hormones, and other organic wastewater contaminants in United States streams. (From Buxton, H.T. and Kolpin, D.W., 2002, Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, USGS Fact Sheet FS-027-02, June 2002, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-10
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alaska
Hawaii
Puerto Rice
Total Number of Stations: 8,348
Figure 10B.6 Sampling stations classified as tier 1 (associated adverse effects are probable). (From USEPA, 2004, The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey: Second Edition, EPA 823-R-04-007, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-11
CCPT
WILL
REDN
WMIC
USNK HDSN CONN
SPLT NVBR
WHIT CNBR
LSUS OZRK
NVBR
POTO
RIOG
SANJ
ALBE
ACFB TRIN EXPLANATION Total PCB concentration in sediment, micrograms per kilogram dry weight < 100 100 146 > 146 Study unit
GAFL
0 0
400 MILES 400 KILOMETERS
Figure 10B.7 Geographic distribution of total polychlorinated biphenyls in sediment samples in the United States. (From Wong, C.S., Capel, P.D., and Nowell, L.H., 2000, Organochlorine Pesticides and PCBs in Stream Sediment and Aquatic Biota—Initial Results from the National Water-Quality Assessment Program, 1992–1995, Water-Resources Investigations Report 004053, www.usgs.gov.)
Explanation Decreasing trend No trend Increasing trend Figure 10B.8 PAH trends throughout the United States using sediment core data from 1970 to top of core. (From USEPA, 2004, The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey: Second Edition, EPA 823-R-04-007, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-12
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Explanation Decreasing trend No trend Figure 10B.9 Lead trends throughout the United States using sediment core data from 1975 to top of core. (From USEPA, 2004, The incidence and severity of sediment contamination in surface waters of the United States, National Sediment Quality Survey: Second Edition, EPA 823-R-04-007, www.epa.gov.)
2 1.8 1.6 1.4 Ag = Agriculture A/F = Mixed agriculture and forest Bkg = Background Urb = Urban
1.2 1 0.8 0.6 0.4
HgTot sediment/100 MeHg sediment HgTot water/10 MeHg water × 10 Hg fish
0.2 0 A/F
Mine
Ag
Urb
Bkg
Figure 10B.10 Geometric mean of mercury and methylmercury in fish (mg/g wet), water (mg/L), and sediment (hg/g dry) for land use categories: mixed agriculture and forest, mine, agriculture, urban or industrial activity, and background. (Number of observationZ13, 42, 23, 15, and 34 for A/F, Mine, Ag, Bkg and Urb, respectively. Excludes South Florida Basin.) (From Brumbaugh, W.G. et al., 2001, A national pilot study mercury contamination of aquatic ecosystems along multiple gradients: Bioaccumulation in Fish, USGS, Biological Science Report USGS/BRD/BSR-2001-0009, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-13
Total estuaries 87,369 mi2
64% Not Assessed
ASSESSED estuaries 31,072 mi2
36% ASSESSED
14,873 mi2
49% Good
51% 15,676 mi2 IMPAIRED
Leading pollutants/stressors
Square miles 0
Percent of IMPAIRED estuarine square miles 10 20 30 40 50
Metals
8,077
Pesticides
5,985
Oxygen-depleting substances
5,324
Pathogens (bacteria)
4,764
Priority toxic organic chemicals
3,652
PCBs
2,622
Total dissolved solids
2,494 0
5
10
15
20
25
Percent of ASSESSED estuarine square miles
Leading sources a
Square miles Percent of IMPAIRED estuarine square miles 0
10
20
30
40
Municipal point sources
5,779
Urban runoff/storm sewers
5,045
Industrial discharges
4,116
Atmospheric deposition
3,692
Agriculture
2,811
Hydrologic modifications
2,171
Resource extraction
1,913 0
5
10
15
20
Percent of ASSESSED estuarine square miles
Figure 10B.11 Leading pollutants and sources of estuary impairment in the United States.a Excludes unknown, natural, and “other sources.” Percentages do not add up to 100% because more than one pollutant or source may impair an estuary. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-14
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total ocean shoreline 58,618 mi
ASSESSED ocean shoreline 3,221 mia
94% Not 6% Assessed ASSESSED
14% IMPAIRED 434 mi
86% Good
2,755 mi
Leading pollutants/stressors
Miles Present of IMPAIRED shoreline miles
0
10
20
30
40
50
60
70
80
90
Pathogens (bacteria)
384
Oxygen-depleting substances Turbidity
102
Suspended solids
50
Oil and grease
48
Metals
46
Nutrients
43
53
0
2
4 6 8 10 Present of ASSESSED shoreline miles
12
Leading sourcesb
Miles Present of IMPAIRED shoreline miles 0
10
20
30
40
50
60
Urban runoff/storm sewers
241
Nonpoint sources
142
Land disposal
123
Septic tanks
103
Municipal point sources
89
Industrial discharges
76
Construction
29 0
2
4
6
8
Present of ASSESSED shoreline miles
Figure 10B.12 Leading pollutants and sources of ocean shoreline water impairment in the United States.a Includes miles assessed as not attainable.b Excludes natural sources. Percentages do not add up to 100% because more than one pollutant or source may impair a segment of ocean shoreline. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-15
Sources
3 States reporting
Total
100
Nonpoint sources (general) Municipal discharges
49
Marinas
27
Industrial discharges
10 8
Combined sewer overflows 0
20
40
60
80
100
Square miles impacted Figure 10B.13 Sources associated with shellfish harvesting restrictions. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
Overall Great Lakes
Overall National Coastal Condition
Good
Good
Fair
Fair
Overall Northeast Poor
Good
Fair
Poor
Poor
Overall Southeast
Good Ecological Health Water Quality Index
Fair
Poor
Overall West Good
Fair
Poor
Sediment Quality Index Benthic Index
Overall Gulf Good
Fair
Poor
Coastal Habitat Index
Overall Puerto Rico
Fish Tissue Index
Good
Fair
Poor
* * Surveys completed, but no indicator data available until the next report
* Surveys completed, but no indicator data available until the next report
Figure 10B.14 Overall United States national coastal condition. (From United States Environmental Protection Agency, 2004, National Coastal Condition Report II, EPA-620/R-03/002, December 2004, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
The area and duration of hypoxia are tracked in the Gulf of Mexico and Long Island Sound as indicators of the natural variability in those waterbodies to determine whether actions to control nutrients are having the desired effect and how local species are affected. The largest of oxygen-depleted coastal waters in the U.S. is in the northern Gulf of Mexico on the Louisiana/Texas continental shelf. Hypoxic waters are most prevalent from late spring through late summer and are more widespread and persistent in some years that in others, depending on river flow, winds, and other environmental variables. Hypoxia occurs mostly in the lower water column, but can encompass as much as the lower half to two-thirds of the entire column. The midsummer bottom area extent of hypoxic water in the Gulf of Mexico increased from 3,500 mi 2 (9,000 km 2) in 1985 to 8,500 mi 2 (22,000 km 2) in July 2002 (Exhibit 2-3). The primary cause of the hypoxic conditions is probably the eutrophication of those waters from nutrient enrichment delivered to the Gulf by the Mississippi River and its drainage basin.13,14
Exhibit 2-3: Area extent of midsummer hypoxia in the Gulf of Mexico, 1985−2002 25,000 (9,702 mi2) 20,000
Square Kilometers
(7,772 mi2)
15,000 (5,792 mi2)
10,000 (3,861 mi2)
5,000 (1,930 mi2)
0 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Note: Hypoxia in the Gulf is defined as less than 2.0 parts per million (ppm). Annual Midsummer cruises have been conducted systematically over the past 15 years (with the exception of 1989). Hypoxia in bottom waters covered an average of 8,000−9,000 km2 in 1985−92 but increased to 16,000−20,000 km2 in 1993−99.
The maximum area of hypoxia in Long
Exhibit 2-4: Maximum area and duration of hypoxia in Long Island Sound, 1987−2001
(521
km2)
from 1987 through
450
Area of hypoxia
Duration of hypoxia
90
400
80
(1,023 km2) in 1994, and the smallest
350
70
300
60
250
50
200
40
150
30
100
20
50
10
was 30 mi2 (78 km2) in 1997 (Exhibit 2-4). The duration of hypoxia averaged 56 days during the same period, with a low of 34 days in 1996 and a high of 82 days in 1989. Hypoxia is typically more severe in the western portions of the sound, where the nitrogen load is higher and mixing of fresh and salt water is more restricted.15
Square Miles
2001. The largest area was 395 mi2
0
Days
Island Sound averaged 201 mi2
0 1987
1989
1991
1993
1995
1997
1999
2001
Note: Hypoxia in Long Island Sound is defined as less than 3.0 parts per million (ppm).
Figure 10B.15 Hypoxia in the Gulf of Mexico and Long Island Sound. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-17
Southern California
40
Gulf of Mexico
82
46 75
28 29 93
South Florida
99 53
Southeast
59
11
34
77
MidAtlantic
46
U.S.
63 75
45 40
0
20
40
Metals Pesticides PCBs
60 80 Percent area
100
120
Figure 10B.16 Regional sediment enrichment (1990–1997) in United States coastal waters due to human sources. (From United States Enviornmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.) Original Source: USEPA, National Coastal Condition Report, September 2001.
1% > ERM
1% > ERM
23% between ERL and ERM
29% between ERL and ERM
70% < ERL
Pesticides
10% between ERL and ERM
1% > ERM
76% < ERL
Metals
89% < ERL
PAHs/PCBs
Contaminant Concentrations with Adverse Effects on Organisms Below Levels Associated with Adverse Affects
Effects Possible but Unlikely
Effects Likely
Coverage: United States east coast (excluding waters north of Cape Cod) and Gulf of Mexico Figure 10B.17 Distribution of sediment contaminant concentrations in sampled estuarine sites, 1990–1997. ERL, NOAA Effects Range Low; ERM, NOAA Effects Range median. (From United States Enviornmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.) Original Source: USEPA, National Coastal Condition Report, September 2001.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Median concentration relative to 1990
10-18
3.0 2.8 LMWPAH DDT 2.6 HMWPAH PCB 2.4 Chlordane Butyltin 2.2 Dieldrin 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
Year Figure 10B.18 Trends in contaminant concentrations measured in NOAA’s mussel water project since 1986. (From United States Environmental Protection Agency, 2004, National Coastal Condition Report II, EPA-620/R-03/002, December 2004, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-19
Leading POLLUTANTS in impaired lakes* ASSESSED lakes 17.3 million acres
Total lakes 40.6 million acres
57% Not Assessed
43% ASSESSED
9.4 million acres
45% IMPAIRED 7.7 million acres
55% Good
Leading pollutants/stressors
Acres Percent of IMPAIRED lake acres
0
10
20
30
40
50
Nutrients
3,840,383
Metals
3,220,650
Siltation
1,585,383
Total dissolved solids
1,497,828
Oxygen-depleting substances
1,123,432
Excess algal growth
957,088
Pesticides
632,217 0
5
10
15
20
25
Percent of ASSESSED lake acres
Leading sources
Acres Percent of IMPAIRED lake acres 0
10
20
30
40
50
Agriculture
3,158,393
Hydrologic modifications
1,413,624
Urban runoff/storm sewers
1,369,327
Nonpoint sources
1,045,036
Atmospheric deposition
983,936
Municipal point sources
943,715
Land disposal
856,586 0
5
10
15
20
Percent of ASSESSED lake acres
* Eleven states did not include the effects of statewide fish consumption advisories when reporting the pollutants and sources responsible for impairment. Therefore, certain pollutants and sources, such as metals and atmospheric deposition, may be under represented. Excluding unknown, natural, and "other" sources. Includes acres assessed as not attainable.
Note :
Percentages do not add up to 100% because more than one pollutant or source may impair a lake.
Figure 10B.19 Leading pollutants and sources in impaired lakes in the United States. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
ASSESSED Great Lakes shoreline 5,066 mi
Total Great Lakes shoreline 5,521 mi
8% Not Assessed
92% ASSESSED
22% Good 1,095 mi
78% IMPAIRED 3,955 miles
Leading pollutants/stressors
Miles
Percent of IMPAIRED Great Lakes shoreline miles 0
2
4
6
8
10
12
14
16
Priority toxic organic chemicals
497
Nutrients
109
Pathogens (bacteria)
102
Sedimentation/siltation
98
Oxygen-depleting substances
73
Taste and odor
53
PCBs
43 0
2
4
6
8
10
12
Percent of ASSESSED Great Lakes shoreline miles
Leading sources
Miles Percent of IMPAIRED Great Lakes shoreline miles 0
2
4
6
8
10
12
14
16
Contaminated sediments
519
Urban runoff/storm sewers
152
Agriculture
75
Atmospheric deposition
71
Habitat modification
62
Land disposal
61
Septic tanks
61 0
2
4
6
8
10
12
Percent of ASSESSED Great Lakes shoreline miles
Note: Percentages do not add up to 100% because more than one pollutant or source may impair a segment of great lakes shoreline.
Figure 10B.20 Leading pollutants and sources in impaired Great Lakes shoreline waters in the United States. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-21
30
Proposed TP Guideline
TP (µg/L)
25
(Phosphorus Management Strategies Tast Force, 1980)
20 15 10 5 71 73 75 77 79 81 83 85 87 89 91 93 95 97
Superior
30
90
TP (µg/L)
25
80 70 60
20
25
30
20
25
15
20
10 5 0
15
71 73 75 77 79 81 83 85 87 89 91 93 95 97
5
Huron
0
10
71 73 75 77 79 81 83 85 87 89 91 93 95 97
5 0
50
15 10
Ontario 71 73 75 77 79 81 83 85 87 89 91 93 95 97
Michigan 40 30
TP (µg/L)
20 10 0
30
30
25
25
TP (µg/L)
TP (µg/L)
TP (µg/L)
100
30
TP (µg/L)
0
20 15 10
7173757779818385878991939597
5
Erie Western Basin
0
20 15 10 5
71 73 75 77 79 81 83 85 87 89 91 93 95 97
0
71 73 75 77 79 81 83 85 87 89 91 93 95 97
Central Basin
Eastern Basin
Erie Figure 10B.21 Total phosphorous trends in the Great Lakes from 1971 to 1997 (spring, open lake surface). (From International Joint Commission, 2004, 12th Biennial Report on Great Lakes Water Quality, September 2004, www.ijc.org.)
Wet
Trace metal depositional flux (mg/m2-yr)
CB
CB
12
Great Lakes (GL) 10
8 1,000 6
Chesapeake Bay (CB) GL
GL CB
500
4
CB GL GL GL
Lead
CB
Cadmium
GL
CB
Arsenic
Total PCBs
Phenanthrene Pyrene
2
Organic contaminant depositional flux (mg/m2-yr)
1,500
Dry
Benzo (a) Pyrene
Figure 10B.22 Comparison of Chesapeake Bay and Great Lakes atmospheric depositional fluxes. (From United States Environmental Protection Agency, 1997, Deposition of Air Pollutants to the Great Waters Second Report to Congress, EPA-453/R-97-011, www.epa.gov.) Original Source: Baker et al., 1996 (Chesapeake Bay) and Eisenreich and Strachen 1992 (Great Lakes).
q 2006 by Taylor & Francis Group, LLC
10-22
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
AIR WATER
Vapor Phase Total PCBs (pg/m3)
SEDIMENT
2000 1000 500
Water Column Diss. TotalPCBs (ng/L) 0.637 Sediment Total PCBs (ng/g)
Tributary Total PCBs (ng/L)
90 80
0.530
210
0.423
168
70 60 50 40
0.317
126
30 20
0.210 84
10 0
0.104 42
0
Figure 10B.23 Concentrations of total PCBs in the atmosphere, tributaries, water column and sediments of Lake Michigan. (From McCarty, H.B. et al., United States Environmental Protection Agency, 2004, Results of the Lake Michigan Mass Balance Study: Polychlorinated Biphenyls and trans-Nonachlor Data Report, EPA 905 R-01-011, April 2004, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-23
Lake Michigan polychlorinated biphenyls (PCBs) sources, 1970 and 1995 values in kilograms per year Atmosphere
Tributaries
Sediment
1610 350 4500
1150
12000 2500
1995
1970 Note:
This graphic was created for this report by the EPA Great Lakes National Program Office and the EPA, Office of Research and Developments Large Lakes Research Station using MICHTOX a mass balance and bio accumulation model and air, water, and sediment data drawn from the Great Lakes Environmental Monitoring Database (GLENDA). The 1970 model run was based on available data and extrapolations. The 1995 model run was based on data collected during the Lake Michigan Mass Balance Study that collected over 25,000 samples at 200 locations in 1994−1995.
Polychlorinated biphenyls (PCBs) trends in great lakes fish tissue,* 1972−2000
Atmospheric deposition of (PCBs) and DDT in the great lakes, 1992−1998
25 *Lake Trout (Walleye in Lake Erie)
Total Atmospheric Inputs (Wet + Dry + Gaseous Absorption)
L. Michigan
20
Total PCBs
1600
DDT
1400
PCB Trend Line 2 R = 0.7476
1200 1000
DDT Trend Line R2 = 0.6947
800 600 400
PCBs (parts per million)
Total atmospheric inputs (kg/yr)
1800
L. Ontario L. Huron L. Erie L. Superior
15
10
200 5
0 1992
1993
1994
1995
1996
1997
1998
Year Note:
R2 is the coefficient of determination. It gives a measure of the strength of the correlation.
0 1972
1976
1980
1984
1988
1992
1996
2000
Figure 10B.24 Bioaccumulation of PCBs and DDT in the Great Lakes. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-24
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
250
200
150
100
50
0 Superior
Michigan
1988
Huron
1992
Erie 1994
Ontario 1996
Figure 10B.25 Loading estimates of benzo(a)pyrene to the Great Lakes (kg/yr). (From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters Third Report to Congress, EPA-453/R-00-005, www.epa.gov.)
Mercury concentration (ppb dw)
1000 100 10 1 0.1 0.01 0.001 0.0001 t
er
en
at
W
Se
n
to
m di
pl
to
y Ph
k an
l
op
Zo
t
o
n
ou
oh
to
k an
Ad
ul
tC
ke
Tr
La
Figure 10B.26 Mercury concentrations in various components of the Lake Michigan ecosystem. (From McCarty, H.B., Brent, R.N., Schofield, J., and Rossmann, R., 2004, Results of the Lake Michigan Mass Balance Study: Mercury Data Report, EPA 905 R-01-012, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-25
Naubinway
N
20
Manistique Escanaba
Mackinaw City 60
Scale
20
a
100 km 150 km
20
sul
0 km 50 km
nin
Menominee
Charlevoix
60
Pe
20
Frankfort
60
20
20
Do
0
or
10
140
60
14 0
Green Bay
Manistee
100
Pentwater
Legend
100
20
20 60
Sheboygan
100
Manitowoc
Lake Michigan Mass Balance Project 1994−1996 Surficial Sediment (0−1 cm) Mercury Concentrations (ng/g)
0 60 10
60 0 14
20
220 ng/g 200 ng/g
Muskegon Grand Haven
Milwaukee 100
20
60
Saugatuck
120 ng/g 100 ng/g
0 14
Waukegan 0 10
South Haven Benton Harbor
60 20
Chicago
160 ng/g 140 ng/g
Racine 20
180 ng/g
80 ng/g 60 ng/g 40 ng/g 20 ng/g 0 ng/g
Michigan City Gary
−20 ng/g
Figure 10B.27 Mercury concentrations (mg/kg) in Lake Michigan surficial sediments (1994–1996). (From McCarty, H.B. et al., 2004, Results of the Lake Michigan Mass Balance Study: Mercury Data Report, EPA 905 R-01-012, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Mercury 2000
PCBs
1999 Chlordane
1998 1997
Dloxins
1996 1995
DDT
1994
2,400
2,200
1,800
1,600
1,400
1,200
1,000
800
600
400
200
0
2,000
1993
Others
Number of advisories Figure 10B.28 Trends in the number of fish consumption advisories issued for various pollutants. (From United States Environmental Protection Agency, 2001, Fact Sheet Update: National Listing of Fish and Wildlife Advisories, EPA-823-F-01-010, April 2001, www.epa.gov.)
Percent of total acres or miles under advisory
30 River miles Lake acres
25 20 15 10 5 0 1993
1994
1995
1996
1997
1998
1999
2000
2001
Coverage: all 50 states Figure 10B.29 Trends in percentage of river miles and lake acres under fish consumption advisory, 1993–2001. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-27
Number of stations
120
100
80
60
40
20
0 Excellent
Good
Fair
Marginal
Poor
Note: Data were taken over the period 1990 to 2002. These Water Quality Index (WQI) results are preliminary and should not be regarded as a benchmark or starting point for future trends. Rather, this pilot study provides a first approximation for a national picture of ambient fresh water quality in Canada. Improvements in consistency of application and representation will be sought in the near future. The WQI values have been calculated by each province and territory (except Quebec) using the methodology developed and endorsed by the Canadian Council of Ministers of the Environment (CCME) in September 2001. According to the CCME user’s manual,1 the specific variables, objectives and time periods used in the index are not specified by the methodology and, because of differences in local conditions, monitoring programs and water quality issues, they vary from one jurisdiction to another. In this regard, it is expected that the variables and objectives chosen to calculate the index provide relevant information about a particular site. In Quebec, water quality was evaluated using an index other than the CCME WQI: L’indice de la qualite´ bacte´riologique et physico-chimique. The results between the two indexes have a reasonable degree of comparability. The premise is that the evaluation of water quality in one jurisdiction by water quality experts familiar with the local conditions should be comparable with a similar evaluation by experts in another jurisdiction, even though the index tools may have some variation. The national portrayal of the WQI results includes information from all provinces and territories except Nunavut and the Yukon, for which suitable data were unavailable at this time. The water bodies included in the WQI calculations do not provide uniform coverage across Canada, but rather tend to be concentrated in the more populated areas of the country where the potential threats to water quality are generally greatest. The coverage and the density of sites are also higher in some provinces than in others. 1. Canadian Council of Ministers of the Environment, 2001, Canadian Water Quality Guidelines for the Protection of Aquatic Life; CCME Water Quality Index 1.0, User’s Manual. Figure 10B.30 Canadian freshwater quality indicator by quality class. Data were taken over the period 1990–2002. (From Produced by Environment Canada based on the Index values or water quality data supplied by the provinces and territories under the auspices of the Water Quality Task Group of the Canadian Council of Ministers of the Environment. Environment Canada, National Round Table on the Environment and the Economy, 2003, Environment and Sustainable Development Indicators for Canada, Ottawa.)
q 2006 by Taylor & Francis Group, LLC
10-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
2 0 22
0
33 297
10 712
1,537
0 1*
11*
*Provincewide advisories in effect in 1997 for Nova Scotia (all rivers and lakes) and New Brunswick (all lakes). Figure 10B.31 Total number of fish advisories in effect in Canada. (From United States Environmental Protection Agency, 2001, Fact Sheet Update: National Listing of Fish and Wildlife Advisories, EPA-823-F-01-010, April 2001, www.epa.gov.)
UK—Scotland (2000) Romania (2000) Bosnia and Herzegovina (2000) Finland (1997) Poland (2000) Latvia (2000) UK—England and Wales (2000) Albania (2001) UK—Northern Ireland (2000)
Biological
Slovak Rep. (2000)
Physicochemical
France (1999)
Combined
Sweden (2000) Poland (2000) Czech Rep. (1996) UK—England and Wales (2000) Ireland (1997) Germany (2000) UK—Northern Ireland (2000) Slovak Rep. (2000) Latvia (2000) 0
20
40
60
80
100
%
Figure 10B.32 Percentage of European rivers classified as less than good, by country. (From Trent, Z, European Environment Agency, Indicator Fact Sheet, National River Classification System (WEC04e), Version 13.10.03, eeaeuropa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-29
UK—Northern Ireland Albania Ireland Bosnia and Herzegovina Latvia Czech Rep. UK—Scotland Czech Rep. Slovenia Luxembourg Poland France Latvia UK—England and Wales Poland Czech Rep. UK—England and Wales Romania Austria Germany UK—Northern Ireland Spain
Biological Physcio-chemical Combined −6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
% change per year of reporting period Figure 10B.33 Rate of change in rivers classified as less than good and good as a percentage of the total river classified. (From European Environment Agency, 2003, Europe’s Water: An Indicator-Based Assessment Summary, EEA, Copenhagen, www.eea.europa.eu. Reprinted with permission q EEA.)
35
Biological quality (% of river length surveyed)
1990 1995
30
2000 25
20
15
10
5
0 Very good
Good
Fairly good
Fair
Poor
Bad
Figure 10B.34 Biological quality of United Kingdom rivers, 1990–2000. (From United Nations Educational, Scientific and Cultural Organization, 2003, Water for People Water for Life, The United Nations World Water Development, United Nations Educational, Scientific and Cultural Organization (UNESCO) and Berghahn Books, www.unesco.org. Reprinted with permission.) Original Source: Adapted from Environmental Agency, UK, 2002.
q 2006 by Taylor & Francis Group, LLC
10-30
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1.8
0.25
1.6 0.2
1.2 0.15
1 0.8
0.1
Mercury µg/L
Cadmium µg/L
1.4
Cadmium Mercury
0.6 0.4
0.05
0.2
95 19
93 19
91 19
89 19
87 19
85 19
19
83
81 19
79
0
19
19
77
0
Figure 10B.35 Trends in concentrations of cadmium and mercury at river stations included in the European Union exchange of information decision. The EU environmental quality standards for cadmium and mercury in inland waters are 5mg/L and 1mg/L as annual averages, respectively. In less polluted areas in e.g. Nordic countries concentrations of cadmium and mercury are only 10% and 1% of these values. Average of country annual average concentrations. Cadmium data from Belgium, Germany, Ireland, Luxembourg, Netherlands, UK. Mercury data from Belgium, France Germany, Ireland, Netherlands, UK. (From EEA, Indicator fact sheet, Hazardous Substances in River Water (WHS02), www.eea.europa.eu. Reprinted with permission q EEA.)
µg/L 3,0
Cadmium
µg/L 1,5
Mercury
1977–80 1980s 1991–96
2,5
1,2
2,0 0,9 1,5 0,6 1,0
0,0
0,0
U
U
Lu x
ni Den te d ma Ki r ng k do Th Be m e N lgiu et he m rla n Fr ds an c G er e m a Ire ny la nd Sp a G in re ec e Ita l Po y rtu ga l
0,3
em bo ni Be urg te d lgiu Ki ng m Th D dom e enm N a et he rk r l G an er d m s a Ire ny la nd Ita l Sp y ai Fr n an G ce re e Sw ce ed en
0,5
Figure 10B.36 Annual average concentrations of cadmium and mercury in European Union rivers between late 1970s and 1996. (From EEA, 2003, Europe’s Environment, The Third Assessment, Environmental Assessment Report No. 10, EE1, Copenhagen, eea. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-31
0.4509
Pentachlorophenol
0.0706 0.0529
1,2,4-Trichlorobenzene (TCB)
0.0117 0.0355 0.0335
Indeno (1,2,3-cd) pyrene
0.0349
Chlorpurifos Chlorfenvinphos
0.0199 0.02 0.003 0.0175
Benzo-b-fluoranthene Benzo-g,h,i-perylene Benzo-a-perylene Hexachlorobenzene (HCB) Benzo-k-fluoranthene 0.001
0.0088 0.0171 0.008 0.0123 0.007 0.0099 0.005
Mean Median
0.0091 0.0044
0.01
0.1
1
µg/L Figure 10B.37 Median and mean concentrations of the 10 most highly ranked substances in the water framework directive priority list in European rivers. (From EEA, Indicator fact sheet, Hazardous Substances in River Water (WHS02), www.eea.europa.eu. Reprinted with permission q EEA.)
µg P/L early 1990s mid 1990s late 1990s
Po la n H un d ( ga 99 ) ry Fr Th an (49 e ) ce N et he (19 rla 8) n Sl ds (1 ov en 7) G i er a (1 m an 8) D U en y (7 ni te 3) m d Ki ark ng ( do 35) m Li ( th ua 52) * ni a La (25 ) tv ia (3 Es 9 to ni ) a Sw ( ed 45) en Fi ( nl an 80) d (1 20 )
450 400 350 300 250 200 150 100 50 0
Note : Average of annual median concentrations. Number of stations in brackets: *UK figures for orthophosphate-p. Figure 10B.38 Total phosphorus concentrations in rivers, selected European Union and accession countries. (From European Environmental Agency (EEA), 2002, Environmental Signals 2002—Benchmarking the Millennium, Environmental Assessment Report No. 9, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
10-32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
µg N/L 7 6 5
early 1990s mid 1990s late 1990s
4 3 2 1 U Ki nite ng d d D om en m (48 G ar ) er k m ( an 32) H y (1 un 0 ga 4) ry Th Fr (4 e 2) N anc et e he (3 rla 2 nd 3) s Po (1 7) la nd ( Be 11 4) lg iu m Sl ( ov 26 en ) Li ia th ua (9) ni a Es (2 3) to ni a ( 21 La ) tv ia (2 Fi nl 8) an d (6 0)
0
Note: Average of annual median concentrations. Number of stations in brackets. Figure 10B.39 Nitrate concentrations in rivers, selected European Union and accession countries. (From European Environmental Agency (EEA), 2002, Environmental Signals 2002—Benchmarking the Millennium, Environmental Assessment Report No. 9, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-33
Phosphate mg P/L 160
AC (387) Western (319) Northern (127)
140 120 100
Note : Data collected by Eurowaternet: Western: Denmark, Germany, France and the UK, Northern: Finland and Sweden and AC: Slovenia, Poland, Latvia, Lithuania, Hungary, Estonia and Bulgaria. Number of stations in brackets.
80 60 40 20
(a)
19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00
0
mg NO3 /L 14
Northern (138) AC (446) Western (337)
12 10 8
Note : Data collected by Eurowaternet: Western: Denmark, Germany, France and the UK, Northern: Finland and Sweden and AC: Slovenia, Poland, Latvia, Lithuania, Hungary, Estonia and Bulgaria. Number of stations in brackets.
6 4 2
19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00
(b)
19 90
0
Figure 10B.40 Phosphate and nitrate in European rivers. (From European Environment Agency, 2003, Europe’s Water: An IndicatorBased Assessment Summary, EEA. Copenhagen. q EEA, www.eea.europa.eu.)
q 2006 by Taylor & Francis Group, LLC
10-34
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Major Issue—Greater than 33% of the draniage basin has not met phosphorus guidelines for "good" surface water quality Significant Issue—5% to 33% of the drainage basin has not met phosphorus guidelines for "good" surface water quality Not a Significant Issue—Greater than 50% of the drainage basin has monitoring coverage and less than 5% of the drainage basin exceeds phosphorus guidelines for "good" surface water quality Undetermined Issue—Less than 50% of the drainage basin has monitoring coverage. phosphorus guidelines for "good" surface water quality exceeded in less than 5% of the drainage basin No monitoring coverage/Data not available
Figure 10B.41 Australian river systems where phosphorous levels exceed state or territory guidelines for the protection of ecosystems. (From Ball, J. et al., 2001, Inland Waters, Australia State of Environment Report 2001 (Theme Report), CSIRO Publishing on behalf of the Department of the Environment and Heritage, Canberra, www.deh.gov.au. Reprinted with permission.) Original Source: National Land and Water Resources Audit, 2001a.
100% 80% Worse
60%
No change Better
40% 20% 0%
Africa
Asia
Central and Australia South America
Europe
Total
Note : This figure is based on a sample of 93 lakes. Although there has been improvement of lake water condition in some areas of all regions, the overwhelming trend illustrated here is deterioration in quality, most notably in Central and South America where close to 80 percent of sampled lakes deteriorated in the studied period. Figure 10B.42 Changes in world lake conditions, 1960–1990. (From United Nations Educational, Scientific and Cultural Organization, 2003, Water for People Water for Life, The United Nations World Water Development, United Nations Educational, Scientific and Cultural Organization (UNESCO) and Berghahn Books, www.unesco.org.) Original Source: Data collated for Loh et al., 1998.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
300
250
200
10-35
LakeComo (IT) Mälaren (SE) Bodensee (CH, DE, AT)
300
Ijsselmeer (NL) Erne (GB) Neagh (GB)
250
200
300
250
200
100
50
50
50
0
0
0 19 80 19 85 19 90 19 95 20 00
100
20 00
100
19 90 19 95
150
19 85
150
19 80
150
19 50 19 60 19 70 19 80 19 90 19 99
Cheboksarskij reservoir (RU) Lekshm (RU) Ladoga (RU)
Figure 10B.43 Trends in total phosphorous concentrations in some large European lakes. (From EEA, 2003, Europe’s Environment, The Third Assessment, Environmental Assessment Report No. 10, EE1, Copenhagen. Reprinted with permission q EEA, www.eea.europa.eu.)
q 2006 by Taylor & Francis Group, LLC
10-36
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Mercury % Relative to year 1990 level
% Relative to year 1990 level
Cadmium 140 120 100 80 60 40 20 0 1984 1986 1988 1990 1992 1994 1996 1998 2000
180 160 140 120 100 80 60 40 20 0 1984 1986 1988 1990 1992 1994 1996 1998 2000
Direct and riverine input Atmospheric input Selected sources –– Romania Lindane
200 150 100 50 0 1984 1986 1988 1990 1992 1994 1996 1998 2000 Direct and riverine input Atmospheric input
% Relative to year 1990 level
% Relative to year 1990 level
Lead
Direct and riverine input Atmospheric input
140 120 100 80 60 40 20 0 1984 1986 1988 1990 1992 1994 1996 1998 2000 Direct and riverine input
% Relative to year 1990 level
PCB 140 120 100 80 60 40 20 0 1984 1986 1988 1990 1992 1994 1996 1998 2000 Direct and riverine input
Figure 10B.44 Change (%) in direct riverine and atmospheric inputs of cadmium, mercury, lead, lindane, and PCB in the Northeast Atlantic. (From Green, N. et al., 2003, Hazardous Substances in the European Marine Environment: Trends in Metals and Persistent Organic Pollutants, European Environment Agency, Topic Report 2/2003, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-37
Mediterranean — Mytilus galloprovincialis
Cadminum Lead Mercury
Index 1990 = 100 250 200 150 100
19 99
19 97
19 95
19 93
19 91
19 89
19 87
19 85
50
Baltic — Clupea harengus Index 1990 = 100 400 350 300 250 200 150 100 50 19 99
19 97
19 95
19 93
19 91
19 89
19 87
19 85
0
NE Atlantic — Gadus morhua Index 1990 = 100 300 250 200 150 100 50
19 99
19 97
19 95
19 93
19 91
19 89
19 87
19 85
0
NE Atlantic — Mytilus edulis Index 1990 = 100 150 120 90 60 30
19 99
19 97
19 95
19 93
19 91
19 89
19 87
19 85
0
Figure 10B.45 Concentrations of selected metals and synthetic organic substances in marine organisms in the Mediterranean and Baltic Sea, and in the North East Atlantic Ocean. (From European Environmental Agency (EEA), 2003, Europe’s Environment, The Third Assessment, Environmental Assessment Report No. 10, EE1, Copenhagen, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
10-38
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
´000 tons/year 80
Phosphorus discharge in North sea
70
´000 tons/year 50
1985
45
2000
40
60
Phosphorus discharge in Baltic sea
Late 1980s 1995
35
50
30
40
25 20
30
15 20
10
10
5 0
0
e
T
ur
ult
ic gr
W
A
´000 tons/year
try
r he s Ot urce so
us
UW
Ind
Nitrogen discharge in North sea
700
e
ur
ult
ric
Ag
UW
W
T Ind
us
try u Aq
ac
ult
ur
e
Nitrogen discharge in Baltic sea
´000 tons/year 600
Late 1980s 1985
600
1995
500
2000 500 400 400 300 300 200
200
100
100 0
e
ur
lt icu
UW
r
Ag
´000 tons/year 300
W
T
u Ind
str
r he s Ot urce so
y
Nitrogen discharge in Black sea
0
25
200
20
150
15
100
10
50
5
s me
tic
u Ind
Do ´000 tons/year 900
str
y
ve Ri
rin
e
Nitrogen discharge in Caspian sea
UW
´000 tons/year 30
250
0
e
ur
ult
ric
Ag
W
T Ind
c sti me Do ´000 tons/year 100 90
700
80
try u Aq
ac
ult
ur
e
Phosphorus discharge in Black sea
0
800
us
Ind
us
try
e
rin
ve
Ri
Phosphorus discharge in Caspian sea
70
600
60 500 50 400
40
300
30
200
20
100
10
0
Ri
ve
rin
e M
un
pa ici
liti
es
Ind
us
try
0
Ri
ve
rin
e M
ic un
ipa
liti
es
Ind
us
try
Figure 10B.46 Source apportionment of nitrogen and phosphorus discharges in Europe’s seas and percentage reductions. (From European Environmental Agency (EEA), 2003, Europe’s Environment, The Third Assessment, Environmental Assessment Report No. 10, EE1, Copenhagen, www.eea.europa.eu. Reprinted with permission.) Original Source: North Sea progress report 2002; Finnish Environmental Insitute. 2002, Black Sea Commission, 2002; Caspian Environmental Program, no date. q EEA. q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Stations % 100
10-39
Phosphate
80
Decreasing
60 No trend
40 20
Increasing
0 Stations %
Nitrate
100 Decreasing 80 60
No trend
40 20 Increasing
Be lg ia n co D G u er tc ast h m co an as w D t es an tc is h oa w st es tc oa Ka st D an tte is g h es at t So ua rie ut he s B N r e n lt or Se th Ba er l n tic P a Ba r lti ope c Pr r G op ul fo er fF in la Bo nd th ni an Se a
0
Note : For each station or sampling point in the subregions of the Baltic and North Seas, a trend analysis of winter nutrient concentrations in water from 1985 to 1997/2000 was carried out.The bars in the graph show, at how many sampling points (as %) a decrease or an increase in nutrient concentrations at the 5 % significance level is observed. Figure 10B.47 Trends in nutrients in the Baltic Sea and coastal North Sea waters, 1985–1997/2000. (From European Environmental Agency (EEA), 2002, Environmental Signals 2002—Benchmarking the Millenium, Environmental Assessment Report No. 9, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
10-40
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Global average nitrate levels concentrations at major river mouths
Global dissolved phosphate levels concentrations at major river mouths
1976−1990
1976−1990
1991−2000 Insufficient data for analysis or region not included in study
0.25 0.5 1
1991−2000 2
4 NO3-N mg/L
Insufficient data for analysis or region not included in study
0.1 0.2 0.3 0.4 0.5 PO4-P mg/L
Decreased levels High Medium Low
Decreased levels High Medium Low
No change Increased levels Low Changes between Medium High 1976−1990 and 1991−2000 Insufficient data for analysis or region not included in study
No change Increased levels Low Changes between Medium High 1976−1990 and 1991−2000 Insufficient data for analysis or region not included in study
Figure 10B.48 Global average nitrate and dissolved phosphate levels. (From United Nations Environment Programme (UNEP) Vital Water Graphics, Global Average Nitrate Levels and Global Dissolved Phosphate Levels, Downloaded 9/22/05, www.unep.org.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-41
Industrial areas and seasonal zones of oxygen depleted waters
Pacific Ocean
Pacific Ocean
Indian Ocean
Arabic Ocean
Industrial areas Seasonal zones of oxygen depleted waters
Figure 10B.49 World industrial areas and seasonal zones of oxygen depleted waters. (From United Nations Environment Programme (UNEP), Vital Water Graphics, Industrial Areas and Seasonal of Oxygen Depleted Waters, Downloaded 9/22/05, www.unep.org.) Original Source: Malakoff, D., 1998, after Diaz, R.J., and Rosenberg, R., 1995, ESRI, 1990.
q 2006 by Taylor & Francis Group, LLC
10-42
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Calcium - dissolved (mg/L Ca)
Population < 500,000 500,000−1 million 1 million−2 million 15−30 30−45 > 3 million
45−60
Median value
< 15 2 million−3 million
> 60
Fecal coliform (No/100 ml MF)
Population < 500,000 500,000−1 million
2 million−3 million
< 10 10−1,000 1,001−10,000
> 3 million
10,001−100,000
Median value
1 million −2 million
> 100,000
pH (pH Units)
Population < 500,000 500,000−1 million
2 million−3 million
< 6.5 6.5 −7.0 7.0−7.5
> 3 million
7.5 −8.0
Median value
1 million−2 million
> 8.0
Figure 10B.50 Fecal coliform concentrations and pH values measured in global environment monitoring system stations. (From United Nations Environment Programe, Global Environment Monitoring System (GEMS) Water Programs, 2004 State of the UNEP GEMS/Water Global Calcium Network and Annual Report, www.unep.org.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-43
Malaysia: River basins water quality trend (1990-2001) 80 70
Number of river basins
60 50 40 30 20 10 0
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 7
6
7
11
14
14
13
25
16
13
12
13
Slightly polluted
35
44
55
73
64
53
61
68
71
72
74
47
Clean
48
37
25
32
38
48
42
24
33
35
34
60
Polluted
Year
Figure 10B.51 Malaysia: river basins water quality trend (1990–2001). (From Leong, K.H. and Mustafa, A.M., 2003, National Water Quality Standards and Status in Malaysia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unv.org.) Original Source: DOE (1991–2002).
100
800
80
600
60
400
40
Volume (metric ton) Number of spills
200
20
0
0 0L
5L
150L
500L
5000L 400000L
Canadian coast guard, environmental response, Marine Pollution Incident Reporting System (MPIRS) (r2)
Figure 10B.52 Canadian petrol and chemical spills distribution by volume (metric tonne) and number of spills, 2003, (From Marine Programs National Performance Report for 2003–2004, Environmental Response, Fisheries and Oceans Canada, Canadian Coast Guard, 2003. Reproduced with the permission of Her Majesty the Queen in Right of Canada, 2006.)
q 2006 by Taylor & Francis Group, LLC
10-44
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
60%
All spills
50%
More than 500L
40% 30% 20% 10% 0% C&A
MAR
NL
PAC
QUE
Canadian coast guard, Environmental response, Marine Pollution Incident Reporting System (MPRIS) (R2) Figure 10B.53 Regional distribution of Canadian spills in percent. (From Marine Programs National Performance Report for 2003–2004, Environmental Response, Fisheries and Oceans Canada, Canadian Coast Guard, 2003. Reproduced with the permission of Her Majesty the Queen in Right of Canada, 2006.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-45
Table 10B.6 Total Assimilative Capacity of Streams of Different Orders
Stream Order
Average Discharge (cfs)
1 2 3 4 5 6 7 8 9 10
0.6 2.8 14 65 310 1,500 7,000 33,000 160,000 700,000
Average Depth (ft)
Average Velocity (ft/sec)
Coefficient of Reaeration (day–1)
Total Length of Streams (miles)
Total Assimilative Capacity (tons per day per unit deficiency in dissolved oxygen)
— — 0.55 0.95 1.8 2.7 5
— — 1.2 1.6 1.8 2.0 2.5
— — 9.3 5.5 2.6 1.8 1.0
1,570,000 810,000 420,000 220,000 116,000 61,000 30,000
— — 16,300 19,000 20,000 30,000 31,000
3.0 4.0 5.0
0.37 0.19 0.10
14,000 6,200 1,800
21,000 18,000 9,400
12 25 45
U.S. Rivers Representative of Each Order — — — — Pecos Shenandoah, Raritan Allegheny, Kansas, Rio Grande Tennessee, Wabash Columbia, Ohio Mississippi
Source: From U.S. Geological Survey, 1967.
Table 10B.7 Surface Waters Impacted in the United States, 2000 (Assessed Waters Only)
Status Full Supporting Threatened Impaired Not Attainable Total Assessed
Rivers (thousands of miles)
Lakes (thousands of acres)
Estuaries (thousands of square miles)
Ocean (thousands of shoreline miles)
367.1 59.5 269.3 0.3 696.2
8,027.0 1,348.9 7,702.4 0.7 17,079.0
13.8 1.0 15.7 0.0 30.5
2.5 0.2 0.4 0.0 3.2
Note: Fully Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; Impaired, Partially or not supporting one or more uses; Not Attainable, Not able to support one or more uses. Source:
Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
10-46
Table 10B.8 Status of the United States Surface-Water Quality, 1990–2000 Lakesa
Rivers Item Water systems assessed
1990 36
1992 18
1994 17
1996 19
b
1998 23
c
2000 19
1990 47
1992 46
1994
1996
Estuaries b
1998
Percent of total waterd 42 40 42
c
2000
1990
1992
1994
1996
1998b
2000c
43
75
74
78
72
32
36
Percent of assessed waters
69 21
62 25
64 22
10
13
14
80 19 1
66 34 —
69 31 —
75 15 10
71 20 9
77 23 —
64 36
55 10
53 8
60 19
56 35
63 28
61
46 9
47 8
67 25
68 23
63 27
62
47 10
45 !4
35
39
21
9
9
39
45
45
8
9
9
36
44
51
68 31 —
87 13 0
61 39 —
70 30 0
69 31 —
69 31 —
69 31 —
54 46 —
61 39 —
77 23 —
78 22 0
70 30 0
69 30 0
63 37 0
47 53 —
79 20 —
69 27 5
68 32 —
82 18 —
77 22 —
81 19 —
75 25 —
69 31 —
70 30 —
88 12 —
83 17 0
85 15 —
84 16 —
88 12 0
80 20 —
Note: —, less than 1 percent of assessed waters. a b c d e f
Excluding Great Lakes. United States Environmental Protection Agency, 2000, National Water Quality Inventory: 1998 Report to Congress. United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001. Miles of rivers, acres of lakes, square miles of estuaries. Supporting—water quality meets designated use criteria; partially supporting—water quality fails to meet designated use criteria at times; not supporting—water quality frequently fails to meet designated use criteria. In 1996, the categories “Partially supporting” and “Not supporting” were combined.
Source: From Ribaudo, M.O., Horan, R.D., and Smith, M.E., 1999, Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice, Resource Economic Division, Economic Research Service, U.S. Department of Agriculture, Agricultural Economic Report No. 782 amended with 1998 and 2000 data, www.ers.usda.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Meeting designated usese Supporting Partially supportingf Not supporting Clean Water Act goals: Fishable Meeting Not meeting Not attainable Clean Water Act goals: Swimmable Meeting Not meeting Not attainable
ENVIRONMENTAL PROBLEMS
10-47
Table 10B.9 Ambient Water Quality in United States Rivers and Streams: Violation Rates, 1975–1997
Year
Fecal Coliform Bacteria
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
36 32 34 35 34 31 30 33 34 30 28 24 23 22 30 26 15 28 31 28 35 na na
Dissolved Oxygen
Total Phosphorus
Total Cadmium, Dissolved
Total Lead, Dissolved
Percent of all measurements exceeding national water quality criteria 5 5 * * 6 5 * * 11 5 * * 5 5 * * 4 3 4 13 5 4 1 5 4 4 1 3 5 3 1 2 4 3 1 5 3 4 !1 !1 3 3 !1 !1 3 3 !1 !1 2 3 !1 !1 2 4 !1 !1 3 2 !1 !1 2 3 !1 !1 2 2 !1 !1 2 2 !1 !1 !1 2 na na 2 2 na na 1 4 na na 1 1 !1 !1 1 2 !1 !1
Notes: *Base figure too small to meet statistical standards for reliability of derived figures. na, not available. Violation levels are based on the following U.S. Environmental Protection Agency water quality criteria: fecal coliform bacteria — above 200 cells per 100 ml; dissolved oxygen — below 5 milligrams per liter; total phosphorus — above 1.0 milligrams per liter; cadmium, dissolved — above 10 micrograms per liter; and total lead, dissolved — above 50 micrograms per liter. Source: From The 1997 Annual Report of the Council of Environmental Quality, www.whitehouse.gov/CEQ. Original Source: From U.S. Geological survey, national-level data, unpublished, Reston, VA, 1999.
q 2006 by Taylor & Francis Group, LLC
10-48
Table 10B.10 Major Pollutants Causing Impairment in 1998 in the United States by State
State Alabama Arkansas Arizona California Colorado Connecticut
Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts
Sedimentation
Nutrients
Pathogens
miles acres miles acres miles acres miles acres miles acres miles acres miles
576 4,084 910 3,045 959 3,973 5,768 151,677 233 160 101 772 0
385 70,606 213 4,924 80 241 1,086 470,153 42 0 525 7,577 0
587 3,628 218 35 194 19,336 755 18,027 90 119 1,237 20,554 83
280 529 45 4,413 304 3,026 2,464 709,129 1,355 9,100 625 6,723 59
281 68,083 79 0 0 0 306 332,963 0 0 615 18,532 98
70 559 555 25,853 0 3,053 303 862,749 29 1,561 53 1,019 0
98 10,147 0 0 244 212 2,773 818,002 0 144 380 4,921 0
1,642 140,041 252 1,816 346 5,877 5,717 1,450,270 442 7,928 2,777 29,010 43
acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres
0 5 0 1,219 33,248 149 132 212 7 175 18,535 6,228 84,145 4,001 269,323 0 0 317 38,291 469 1,236 1,022 94,235 6 0 2,610 442,854 208 4,253
0 775 2,334 4,007 332,502 16 0 183 7 71 10,858 2,653 110,854 4,061 270,352 78 23 1,165 64,255 521 6,885 1,566 541,140 147 33,690 5,053 904,112 332 4,874
2,998 760 3,190 2,826 82,704 2,649 45,411 10 0 565 27,113 1,539 5,184 204 7,825 1,251 47,604 9,994 19,739 1,289 20,964 3,390 590,269 682 52,291 1,138 121,256 945 138
1,250 28 0 1,045 179,598 1,918 123,012 10 0 1,447 22,228 503 28,942 1,514 101,836 673 4,695 3,635 15,589 83 536 3,242 581,092 15 0 530 86,927 376 897
2,998 76 1,056 16 135 1 0 0 0 161 97,042 105 0 582 95,491 3,194 89,953 0 0 656 134,087 592 30,201 185 8,487 7 3,333 363 934
0 0 0 1,445 226,025 250 161,96 0 0 61 5 0 0 62 5 2,431 75,516 0 0 6 0 4,911 804,207 0 0 26 13,134 0 0
0 0 0 0 0 76 225 0 0 94 9,072 134 4,850 36 12,881 93 442 435 6,446 17 0 697 74,589 0 0 32 16,916 4 150
2,125 1,234 871 5,616 333,798 5,936 229,830 13 0 3,204 79,113 7,554 229,183 4,017 375,681 1,115 4,511 8,944 39,851 835 3,276 4,862 730,729 987 85,533 467 21,958 1,908 29,454
q 2006 by Taylor & Francis Group, LLC
Toxics/ Organics
Mercury
Pesticides
Other
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
District of Columbia
Impaired
Toxics/ Metals/ Inorganics
Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas
q 2006 by Taylor & Francis Group, LLC
17 0 603 6,808 72,256 452,878 1,120 17 15,015 550,491 54 3,266 587 15,617 0 0 8 4,154 638 995 25 1,147 1,161 5,329 2,604 11,904 3,563 44,234 4,791 445,672 1,446 8,207 2,191 4,353 0 0 14 358 0 0 1,828 29,647 12,309 212,709 0
253 2,043 0 0 72,241 447,838 228 2,249 6,703 501,586 93 17,979 702 51,693 19 750 518 7,773 703 172 99 31,369 64 19,890 2,616 58,964 1,347 50,907 4,066 269,714 598 82,975 920 3,118 1 71 150 1,390 10 30,799 336 66,074 3,285 29,289 132
612 19,799 703 4,528 27,189 80,919 90 0 895 76,292 1,987 83,978 0 0 678 8,421 749 4,007 154 1,460 602 19,291 746 7,499 2,691 6,595 321 3,250 524 77,059 2,565 8,190 49 0 0 0 192 1,857 2,674 122,128 1,049 9,561 4,149 9,317 5,463
39 27 135 2,380 1,595 3,934 479 47,396 6,798 338,591 1,190 26,612 924 27,527 795 26,189 952 10,292 628 53 5 24,332 117 8,386 356 6,277 2,020 21,697 1,531 150,373 308 0 3,190 38,139 2 0 153 1,342 230 22,000 521 304 1,608 7,437 952
604 333,258 0 0 777 4,576 0 0 139 3,342 0 0 0 0 445 25,166 106 1,941 13 0 920 405,342 126 25,151 0 0 885 14,358 306 47,244 199 0 572 48,213 0 0 3 46 307 71,102 0 0 2,042 254,155 575
254 362,042 160 10,589 358 9,396 0 0 0 0 0 0 384 14,504 0 0 928 37,219 185 63,658 0 7,337 378 16,685 0 0 0 0 0 0 602 17,453 0 1 0 0 3 46 28,527 209,663 0 0 152 23,505 927
195 314,084 0 0 67,633 436,763 67 32,167 0 0 894 29,692 0 0 0 0 20 74 12 0 0 13,747 14 0 0 0 441 11,154 4,295 293,999 317 0 462 33,403 0 0 0 0 10 0 0 0 845 179,553 433
1,818 792 513 3,714 1,818 792 1,535 336,693 31,731 1,396,433 263 1,677 589 14,504 503 5,947 7,882 7,550 3,675 5,589 733 111,143 1,813 18,035 4,327 18,714 11,456 105,140 6,614 500,257 19,611 149,335 2,278 5,677 210 873 146 1,145 4,908 88,157 723 43,966 10,072 49,513 3,648 (Continued)
10-49
Minnesota
miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles
ENVIRONMENTAL PROBLEMS
Michigan
State Utah Vermont Virginia Virgin Islands Washington West Virginia
Wyoming
(Continued)
Impaired
Sedimentation
Nutrients
Pathogens
Toxics/ Metals/ Inorganics
acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres miles acres
0 1,194 4,879 102 907 0 0 3 0 18 0 0 2,849 787 41,935 238 16
131 708 109,589 133 13,755 45 18 0 0 1 5,632 0 1,899 231 4,460 47 215
201,824 402 5,215 237 349 1,691 16,125 1 0 393 1,004 174 0 49 0 517 3,862
27,823 823 7,465 42 228 2,069 3,086 0 0 63 1,357 5,276 82,124 35 0 580 5,600
Toxics/ Organics
Mercury
Pesticides
9,961 414 5,215 36 6,120 101 2,434 0 0 28 149 384 50,907 585 149,226 27 0
374,434 17 0 72 10,689 147 21 0 0 14 28 0 0 661 239,092 0 0
67,337 0 0 0 0 104 4,495 0 0 29 6,736 278 44,534 0 0 0 0
Other 399,673 5,417 152,529 314 6,248 4,171 5,547 13 0 812 148 2,633 2,947 2,050 53,827 250 12
Note: Miles include river and shoreline miles, including the Great Lakes and estuarine shorelines. Acres include lake acres, excluding the Great Lakes. Source:
From United States Environmental Protection Agency, Total Maximum Daily Loads, National Overview, Major Pollutants Causing Impairment by State, Last updated on Wednesday, February 16th, 2005, www.epa.gov/owow/tmdl/status.html.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Wisconsin
10-50
Table 10B.10
ENVIRONMENTAL PROBLEMS
10-51
Table 10B.11 Top 100 Impairments of Waters in the United States Reported in 1998 for Section 303(d) of the Clean Water Act General Impairment Name
Impairments Reported
Percent of Reported
11,538 7,902 5,586 5,047 4,405 3,178 2,906 2,389 2,200 2,116 1,576 1,468 1,140 994 969 896 884 797 681 621 476 351 286 282 221 195 184 144 98 97 85 75 48 47 47 42 22 13 12 4 2 1 1 1
19.22 13.16 9.31 8.41 7.34 5.29 4.84 3.98 3.67 3.53 2.63 2.45 1.90 1.66 1.61 1.49 1.47 1.33 1.13 1.03 0.79 0.58 0.48 0.47 0.37 0.32 0.31 0.24 0.16 0.16 0.14 0.12 0.08 0.08 0.08 0.07 0.04 0.02 0.02 0.01 0.00 0.00 0.00 0.00
Metals Pathogens Nutrients Sediment/siltation Organic enrichment/low DO Fish consumption advis. pH Other habitat alterations Thermal modifications Biological criteria Flow alteration Pesticides Turbidity Salinity/TDS/chlorides Suspended solids Cause unknown PCBs Unionized ammonia Priority organics Sulfates Algal growth/chlorophylla Noxious aquatic plants Oil and grease Unknown toxicity Other cause General WQS (benthic) Dioxins Other inorganics Chlorine Nonpriority organics Taste and odor Stream bottom deposits Total toxics Cyanide Biodiversity impacts Exotic species Radiation Natural limits (wetlands) Fish kill(s) Hydrogen sulfide Ambient water quality criteria Low nutrients RDX—Hexahydro-1,3,5-trinitro-1,3,5-triazine 1,2-Diphenylhdrazine Note: Total impairments reported nationwide: 60,027. Source:
From United States Environmental Protection Agency, National Section 303(d) List Fact Sheet, Downloaded 8/28/05, www.epa.gov/owow/tmdl/status.html.
q 2006 by Taylor & Francis Group, LLC
10-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.12 Probable Sources of Water-Quality Problems in the Nation’s Streams in 1982 Probable Source Total nonpoint source contribution Agricultural sources Natural sources Total point source contribution Silviculture/logging Municipal point sources Feed lots Individual sewage disposal Industrial point sources Urban runoff Mining (nonpoint) Combined sewers Construction activity Mining (point) Grazing Other Dam releases Landfill leachate Bedload movement Roads
Stream Miles
Percentage
367,244 281,241 212,389 117,684 71,736 63,816 59,947 47,823 47,097 40,376 31,847 29,246 29,110 28,686 21,970 19,445 19,314 5,504 5,299 3,569
38.4 29.5 22.2 12.3 7.5 6.7 6.3 5.0 4.9 4.2 3.3 3.1 3.1 3.0 2.3 2.0 2.0 0.6 0.6 0.4
Note: Expressed in total stream miles and as percentages of total miles. Source: From Judy, R.D., and others, 1984, 1982 National Fisheries Survey, U.S. Fish and Wildlife Service, FWS/OBS-84/06.
Table 10B.13 Sources of Water-Quantity Problems Adversely Affecting the Nation’s Streams in 1982 Source Natural conditions Diversions (agricultural) Dam(s) (water storage) Dam(s) (flood control) Dam(s) (power) Other Diversions (municipal) Channelization Floods/low flows Irrigation Logging Ditches Diversions (industrial)
Stream Miles
Percentage
477,791 130,223 32,901 28,002 24,821 18,851 10,694 10,629 10,527 8,897 6,271 5,335 3,292
50.1 13.6 3.5 2.9 2.6 2.0 1.1 1.1 1.1 0.9 0.7 0.6 0.3
Note: Expressed in total stream miles and as percentages of total miles. Source: From Judy, R.D., and others, 1984. 1982 National Fisheries Survey, U.S. Fish and Wildlife Service, FWS/OBS-84/06.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-53
Table 10B.14 Leading Sources Impairing Assessed Rivers and Streams in the United States in 2000 Sources
Stream Miles
Percent of Impaired
Percent of Assessed
128,859 53,850 53,067 43,469 39,056 37,654
47.9 20.0 19.7 16.1 14.5 14.0
18.4 7.7 7.6 6.2 5.6 5.4
34,871 31,033 28,156 27,988 27,695 26,830 24,616 23,795 18,040
13.0 11.5 10.5 10.4 10.3 10.0 9.1 8.8 6.7
5.0 4.4 4.0 4.0 4.0 3.8 3.5 3.4 2.6
17,912 17,821 17,667 16,137 15,988
6.7 6.6 6.6 6.0 5.9
2.6 2.5 2.5 2.3 2.3
Agriculture Hydromodification Crop-related sources Grazing related sources Source unknown Habitat modification (other than hydromodification) Urban runoff/storm sewers Natural sources Silviculture Municipal point sources Resource extraction Nonirrigated crop production Intensive animal feeding operations Channelization Bank or shoreline modification/destabilization Removal of riparian vegetation Land disposal Irrigated crop production Erosion and sedimentation Unspecified nonpoint source Source:
From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001/, www.epa.gov.
Table 10B.15 Heat Generated and Discharged to the Nation’s Fresh and Saline Surface Waters, 1975–2000 1975 Btus!1015 Electric power generation Heat generated Heat discharged to water (Fresh) (Saline) Manufacturing Heat discharged to water (Fresh) (Saline) Total heat discharged (Fresh) (Saline)
Percent of Total Discharged
1985 Btus!1015
Percent of Total Discharged
2000 Btus!1015
Percent of Total Discharged
11.0 5.7
— 66
24.3 7.8
— 98
57.1 7.4
— 98
(3.9) (1.8)
(45) (21)
(3.9) (3.9)
(49) (49)
(2.8) (4.6)
(37) (61)
3.0
34
0.2
2
0.2
2
(2.2) (0.8) 8.7
(73) (27) 100
(0.2) (0) 8.0
(2) (0) 100
(0.2) (0) 7.6
(2) (0) 100
(6.1) (2.6)
(70) (30)
(4.1) (3.9)
(51) (49)
(3.0) (4.6)
(39) (61)
Source: From U.S. Water Resources Council, 1978, The Nation’s Water Resources 1975–2000, Second National Water Assessment.
q 2006 by Taylor & Francis Group, LLC
10-54
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.16 Point Source Loadings to Receiving Waters in the United States, mid 1980s Industry
TSS
BOD
Phosphorus
Metals
Minerals & metals Chemical & manufacturing Agriculture & fisheries POTWs Total
0.355 0.086 0.277 1.594 2.312
0.006 0.125 0.404 1.830 2.365
0.255 0.267 92.800 49.555 142.877
4.931 2.919 0.000 2.838 10.688
Note: Millions of tons per year for TSS, BOD, and phosphorus and millions of pounds per year for metals; mid1980s. Minerals & metals includes aluminum forming, coal mining, copper forming, foundries, iron and steel, metal finishing, nonferrous metals mining, nonferrous metals forming, ore mining and petroleum refining industries. Chemical & manufacturing includes battery manufacturing, coil coating, electrical and electronic components, organic and inorganic chemicals, plastics, synthetic fibers, pesticide manufacturing, pharmaceuticals manufacturing, plastics molding and forming, porcelain enameling, leather tanning, pulp and paper, and textile industries. Agriculture & fisheries includes animal feedlots, fish hatcheries, food and beverages, fruits and vegetables, meat packing, and seafood industries. POTWs, publicly owned treatment works. TSS, total suspended solids, BOD, biochemical oxygen demand. Metals, cadmium, copper, lead, mercury and zinc. Industrial loadings are direct discharges based on long-term average concentrations and total industry flows at Best Available Technology (BAT) presented in U.S. EPA (1983), except as follows: loadings for electrical and electronic components reflect current level of treatment (U.S. EPA, 1983); conventional loadings for agriculture & fisheries industries represent post-BAT treatment levels; and conventional and toxic pollutant loadings for POTWs include indirect industrial and residential/commercial loadings not removed by the POTWs. Phosphorus loadings for POTWs represent effluent levels of 5 mg/L. Source: From U.S. Environmental Protection Agency, Effluent Technology Division, unpublished data. 1979. Washington, DC; U.S. Geological Survey, National Water Summary 1986.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-55
Table 10B.17 Point Source Discharges to Water in the United States, 1977 (by Sector) Total Suspended Solids
Sector
Total Dissolved Solids Million Pounds Per Year
Municipal sewage plants Powerplants
3,850.0 1,165.7
Pulp & paper mills
781.8
Feedlots Iron & steel mills Organic chemicals
422.0 254.3 144.0
Misc. food & beverages
91.9
Textiles Mineral mining Seafoods Total, top 10 sectors
61.7 52.7 50.0 6,874.1
Total, all sectors Top 10 sectors as percent of all sectors
13,746.0 50%
Sector Organic chemicals Municipal sewage plants Powerplants Pulp & paper mills Misc. chemicals Misc. food & beverages Oil & gas extraction Petroleum refining Coal mining Iron & steel mills Total, top 10 sectors Total, all sectors Top 10 sectors as percent of all sectors
Nitrogen Sector
Million Pounds Per Year 36,540.4 30,255.2 18,418.1 16,825.8 8,176.4 7,420.2 6,077.0 2,389.8 1,328.7 1,324.0 128,755.6 170,759.0 75%
Phosphorus Million Pounds Per Year
Municipal sewage plants
813.5
Pharmaceuticals
87.6
Organic chemicals
41.1
Feedlots Meat packing
39.9 36.0
Petroleum refining Misc. food & beverages Seafoods Pesticides
15.5 12.3 9.5 8.9
Leather tanning Total, top 10 sectors
7.1 1,071.4
Total, all sectors Top 10 sectors as percent of all sectors
1,237.0 87%
Sector
Municipal sewage plants Feedlots Misc. food & beverages Meat packing Laundries Fertilizers Petroleum refining Seafoods Organic chemicals Poultry Total, top 10 sectors Total, all sectors Top 10 sectors as percent of all sectors
Million Pounds Per Year
Sector Municipal sewage plants Pulp & paper mills Organic chemicals Feedlots Seafoods Misc. food & beverages Cane sugar mills Iron & steel mills Misc. chemicals Textiles Total, top 10 sectors Total, all sectors Top 10 sectors as percent of all sectors
Million Pounds Per Year 3,800.0 530.2 107.6 95.9 86.9 54.8 50.4 37.8 35.2 24.8 4,823.6 6,944.0 69%
Dissolved Heavy Metals Sector
Million Pounds Per Year
73.9
Powerplants
24.4
21.8
Municipal sewage plants Iron & steel mills
9.3
4.7 3.4 3.3 2.6 1.5 1.4 1.4 1.2 115.2 191.0 60%
Source: From Council on Environmental Quality, 1981, Environmental Trends.
q 2006 by Taylor & Francis Group, LLC
Biochemical Oxygen Demand
Petroleum refining Organic chemicals Ore mining Electroplating Machinery Oil & gas extraction Foundries Total, top 10 sectors Total, all sectors Top 10 sectors as percent of all sectors
7.6 6.0 3.6 2.5 0.5 0.5 0.4 0.1 54.9 59.0 93%
10-56
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.18 Nonpoint Source Contributions to Receiving Waters in the United States Source Cropland Pasture and rangeland Forest land Construction sites Mining sites Urban runoff Rural roadways Small feedlots Landfills Background Total
TSS 1,870.00 1,220.00 256.00 197 59 20 2 2 NA 1,260.00 4,886.00
BOD 9.00 5.00 0.80 NA NA 0.5 0.004 0.05 0.3 5.00 20.35
Nitrogen 4.30 2.50 0.39 NA NA 0.15 0.0005 0.17 0.026 2.50 10.04
Phosphorus 1.56 1.08 0.09 NA NA 0.019 0.001 0.032 NA 1.10 3.88
Note: By source; millions of tons per year; 1980. TSS, total suspended solids. BOD, biochemical oxygen demand. Excluded from the survey area are 207 million acres in public land (14% of the contiguous United States), mostly in the Rocky Mountains, because of inadequacy of information. Urban runoff includes storm water sewers only. Source: From U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Nonpoint Source Control Section. 1986. Estimated pollutant contributions to source waters from selected nonpoint sources in the contiguous 48 states (1980). Washington, DC; U.S. Geological survey, National Water Summary 1986.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-57
Table 10B.19 United States Water Quality Conditions by Type of Waterbody: 2000
Item Total size Amount accesseda Percent of total size Amount accessed as— Goodb Good but threatenedc Pollutedd Percent of accessed as— Goodb Good but threatenedc Pollutedd Amount impaired by leading sources of pollutione Agriculture Atmospheric deposition Construction Contaminated sediments Forestry Habitat modification Hydrologic modification Industrial discharges/point sources Land disposal of wastes Municipal point sources Nonpoint sources Resource extraction Septic tanks Urban runoff and storm sewers
Great Lakes Shoreline (mi)
Lakes, Reservoirs, and Ponds (acres)
Estuaries (mi2)
3,692,830 699,946 19
40,603,893 17,339,080 43
87,369 31,072 36
5,521 5,066 92
58,618 3,221 6
463,441 85,544 291,264
8,026,988 1,343,903 7,702,370
13,850 1,023 15,676
— 1,095 3,955
2,176 193 434
53 8 39
47 8 45
45 4 51
— 22 78
79 7 14
128,859 (NA) (NA) (NA) 28,156 37,654 53,850 (NA)
3,158,393 983,936 (NA) (NA) (NA) (NA) 1,413,624 (NA)
2,811 3,692 (NA) (NA) (NA) (NA) 2,171 4,116
75 71 (NA) 519 (NA) 62 (NA) (NA)
(NA) (NA) 29 (NA) (NA) (NA) (NA) 76
(NA) 27,988 (NA) 27,695 (NA) 34,871
856,586 943,715 1,045,036 (NA) (NA) 13,699,327
(NA) 5,779 (NA) 1,913 (NA) 5,045
61 (NA) (NA) (NA) 61 152
123 89 142 (NA) 103 241
Rivers and Streams (mi)
Ocean Shoreline (mi)
Note: Section 305(b) of the Clean Water Act requires states and other jurisdiction to assess the health of their waters and the extent to which their waters support quality standards. Section 305(b) requires that states submit reports describing water quality conditions to the Environment Protection Agency every two years. Water quality standard have three elements (designated uses, criteria developed to protect each use, and an antidegradation policy). For information on survey methodology and assessment criteria, see report. —, Representation zero. NA, Not available. a b c d e
Includes waterbodies accessed as not attainable for one or more uses. Most states do not assess all their waterbodies during the 2-year reporting cycle, but use a “rotating basin approach” whereby all waters are monitored over a set period of time. Based on accessment of available data, water quality supports all designated uses. Water quality meets narrative and/or numberic criteria adopted to protect and support a designated use. Although all assessed uses are currently met, data show a declining trend in water quality. Projections based on this trend indicate water quality will be impaired in the future, unless action is taken to prevent further degradation. Impaired or not attainable. The reporting state or jurisdiction has performed a “use-attainability analysis” and demonstrated that support of one or more designated beneficial uses is not attainable due to specific biological, chemical, physical, or economic/social conditions. Excludes unknown and natural sources.
Source: From U.S. Census Bureau, Statistical Abstract of the United States: 2004–2005. Original Source:
From U.S. Environmental Protection Agency, National Water Quality Inventory: 2000 Report, EPA-841-R-02-001, August 2002, www.epa.gov/305b/2000report.
q 2006 by Taylor & Francis Group, LLC
10-58
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.20 Summary of Individual Use Support for Rivers, Lakes, Estuaries, Ocean Shoreline Waters and Great Lakes in the United States in 2000 Good
Rivers and Streams Aquatic life support Fish consumption Primary contactswimming Secondary contact Drinking water supply Agriculture Lakes, Reservoirs and Ponds Aquatic life support Fish consumption Primary contactswimming Secondary contact Drinking water supply Agriculture Estuaries Aquatic life support Fish consumption Shellfishing Primary contactswimming Secondary contact Ocean Shoreline Waters Aquatic life support Fish consumption Shellfishing Primary contactswimming Secondary contact Great Lakes Aquatic life support Fish consumption Primary contactswimming Secondary contact Drinking water supply Agriculture
Impaired
Area Assessed
Full Support (%)
Threatened (%)
Partial Support (%)
Not Supporting (%)
Not Attainable
Miles 616,860 205,153 313,832
55.4 60.9 67.8
10.1 1.2 3.4
18.7 15.2 11.9
15.5 22.8 16.3
0.3 0.0 0.5
219,776 153,155 274,736 Acres
73.5 83.5 90.7
2.3 2.8 0.9
11.1 7.6 3.8
13.1 6.1 4.6
0.0 0.1 0.0
11,224,279 8,566,710 12,662,298
60.9 60.6 70.2
10.3 4.4 6.5
19.0 21.4 16.7
9.8 13.6 6.6
0.0 0.0 0.0
5,855,176 7,244,575 4,653,670 Square miles 22,047 12,940 20,967 21,169
73.5 78.5 84.1
6.9 4.9 3.0
13.9 10.4 5.3
5.6 6.2 7.6
0.0 0.0 0.0
43.7 46.6 75.7 80.0
4.7 5.0 0.6 4.7
37.1 45.3 10.5 14.3
14.5 3.1 13.2 1.0
0.0 0.0 0.0 0.0
9,524 Shoreline Miles 2,079 1,136 1,420 2,521
72.8
4.2
22.2
0.9
0.0
86.1 87.3 86.4 76.8
7.7 3.9 0.0 8.6
2.2 5.5 11.6 6.6
4.1 3.3 2.0 8.0
0.0 0.0 0.0 0.0
1,925 Shoreline Miles 1,343 4,976 3,663
87.3
4.2
4.4
4.2
0.0
3.2 0.0 89.9
78.6 0.0 7.4
16.4 33.4 2.5
1.8 66.6 0.2
0.0 0.0 0.0
99.8 97.6 100.0
0.0 0.0 0.0
0.2 0.0 0.0
0.0 2.4 0.0
0.0 0.0 0.0
3,256 3,313 3,250
Note: Water-quality conditions: Good, Fully supporting of all of their uses or fully supporting but threatened for one or more uses; Impaired, Partially or not supporting one or more uses; Not Attainable, Not able to support one or more uses. Use Support Levels: Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; Partially Supporting, Partially supporting one or more uses; Not Supporting, Not able to support one or more uses. Source: Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
Miles Alloted to Each Source
State by EPA Region
Assessed Miles
Miles Impaired
Agriculture
Hydromodification
Habitat Modification (Other than Hydromodification)
Urban Runoff/Storm Sewers
Natural Sources
Forestry/ Silviculture
1
Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont
1,207 31,752 1,496 2,677 649 5,462
389 729 969 444 217 1,169
120.5 174.8 39.6 59 35.07 688.8
177.45 — 146.1 11.1 27.62 418.3
9 23.6 29.9 11.5 7.99 771.6
188.6 101.5 361.1 13.4 151.1 367.5
7.5 — — 8 29.32 373.6
— 1 — 0
2
New Jersey New York
330 2,914
209 1,081
— 1,485.6
— 589.1
— 1,340.2
— 944
— —
3
Delaware Delaware river basin District of Columbia Maryland Pennsylvania Virginia West Virginia
2,506 206
1,765 206
984.03 206
— —
— —
304.07 206
38
38
—
8.8
17.6
8,617 35,496 9,190 11,550
3,212 7,261 4,466 5,313
351.82 2,426.95 1,105.35 1,760.29
1,136.33 186.17 18.27 346.75
Municipal Point Sources
Resource Extraction
Land Disposal
45.4
194.3 93.5 221.35 11.9 35.99 202.9
27.3 1 1.7 0 6.53 67.1
40.6 35.5 83.1 7.4 60.28 335.4
— 100
— 545.9
— 268
— 1,467.3
423.51 2
— —
118.42 206
— —
213.44 —
38.4
8.3
—
0.9
—
9.8
1,006.02 590.22 44.8 392.74
650.68 1,526.45 766.49 1,157.03
1,104.17 43.28 1,054.72 14.87
— 3.43 — 1,311.83
181.23 258.54 162.85 1,016.42
56.69 2,728.57 140.95 2,706.79
9.29 117.02 46.35 1,208.95
Alabama Florida Georgia Kentucky Mississippi North Carolina South Carolina Tennessee
2,628 10,159 9,996 9,923 14,972 37,662 15,405 24,326
1,930 3,147 5,986 3,688 10,824 2,143 4,011 7,538
111.2 1,833.4 0 1,133.2 10,471.5 1,201.71 1,462.35 3,886.6
— 1,189.6 65 172.2 224.3 166 35.55 2,672.6
— — — 235.3 177.82 8.7 — 425
282.6 1,126.6 1,925 1,053.7 634.07 900.15 2,862.6 1,030.8
12 — 433 21.3 235.4 37 — —
— 411.1 0 100.9 707.32 126.6 — 14.9
151.3 205.8 203 609.9 566.7 398.58 679.09 451.9
— 465.7 0 705.7 151.91 11.88 23.49 602.7
— 916.3 0 1,308.5 415.15 38.4 219.4 332.5
5
Illinois Indiana Michigan Minnesota Ohio Ohio river valley Wisconsin
15,587 17,541 13,117 11,403 8,232 981 23,530
7,844 4,230 2,456 7,900 3,743 — 10,029
4,395.06 124.84 1,059 6,601.2 1,820.49 981 3,539.9
2,613.12 81.91 248 3,889.7 2,887.33 — 2,693.25
795.31 38.35 108 — 47.22 — 1,483.05
1,020.47 113.25 344 2,889 556.96 — 989.7
137.19 0.3 30 35.6 301.41 — 1,082.5
— — — 279.5 11.5 — 89.3
1,640.98 71.34 423 524.3 978.19 981 1,169
1,047.79 — 24 591.4 720.22 — 153.9
37.51 71.05 9 3,630 450.74 — 51.3
6
Arkansas Louisiana New Mexico Oklahoma Texas
8,112 7,359 4,284 14,071 15,101
1,177 6,575 2,675 7,647 4,548
705.5 2,021 2,531.85 4,481.18 545
— 810 376.7 867.38 —
— 121 2,103.35 1,423.18 —
13.5 839 97.1 779.58 796
— 2,364 422.7 86.26 212.1
— 286 196 197.5 —
97.9 1,798 262.8 190.49 1,398.2
24 383 596.2 1,157.31 44
— 1,501 149.4 847.63 33.3
7
Iowa Kansas
6,390 18,236
1,903 14,819
1,018.04 13,128.31
790.99 1,171.84
399.29 5,911.66
45.05 1,295.94
98.63 6,148.69
— —
105.43 4,882.77
17.14 2,107.05
24 575.59
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-59
4
ENVIRONMENTAL PROBLEMS
Table 10B.21 Leading Sources Impairing Assessed Rivers in the United States in 2000 (Expressed in Stream Miles)
(Continued)
10-60
Table 10B.21
Miles Alloted to Each Source
State by EPA Region
Assessed Miles
Miles Impaired
Agriculture
Hydromodification
Habitat Modification (Other than Hydromodification)
Urban Runoff/Storm Sewers
Natural Sources
Forestry/ Silviculture
Municipal Point Sources
Resource Extraction
Land Disposal
21,615 6,500
10,321 3,759
7,624.4 —
3,758.9 —
21 —
44.5 —
154.5 —
— —
92.8 —
179.7 —
0.3 —
8
Colorado Montana North Dakota South Dakota Utah Wyoming
41,837 11,443 14,965 3,564 10,519 2,955
1,244 8,576 7,224 1,778 2,825 452
123.3 5,833.6 6,982.77 1,623.5 2,298.25 101.1
4.7 3,620.4 2,621.39 — 887.8 —
— 2,093.7 2,458.94 200 960.41 —
244.16 159 501.38 48.3 85.79 20.88
474.05 656.3 509.75 1,172.1 1,377.24 45.18
10.52 810.7 — 26.2 — —
145.1 371.9 556.7 — 125.39 11.7
757.46 2,534.3 489.06 2.1 205.16 17.45
— 172.7 97.25 — — —
9
Arizona California Hawaii Nevada
4,052 25,269 3,904 1,564
986 20,949 2,737 953
538.85 17,064.33 1,553.45 593.7
9,217.46 958.84 247.8
30.29 11,662.3 573.78 —
120.22 2,204.68 1,566.25 61.75
804.87 4,906.15 1,820.74 589.33
— 14,140.2 29.8 —
51.27 3,266.88 18.7 —
301 6,838.16 20 —
54.19 667.86 1 —
Alaska Idaho Oregon Washington
1,421 17,333 53,735 70,439
518 8,230 13,937 37,722
— — — 11,316.51
13 — 1,624 6,789.906
21 — 2,103 —
109.8 — 505 2,263.3
— — — 3,772.17
16.5 — 7,707 1,508.86
— — — 2,263.3
309.3 — — 1,131.65
108.6 — — 377.217
17 0
16 —
— —
— —
6.7 —
— —
— —
— —
— —
— —
— —
167 90
63 —
— —
— —
— —
— —
— —
— —
1.67 —
—
6.51 —
0 0
— 0
— —
— —
— —
— —
— —
— —
— —
— —
— —
23 5,394 35
0 4,653 35
0 699.6 15.5
— 70.1 14
0 0 —
0 556.4 8
0 0.5 23
0 0 24
0 43 —
0 63.5 14.5
0 2,079.9 10
699,946
269,258
128,859 47.9%
53,850 20.0%
37,654 14.0%
34,871 13.0%
31,033 11.5%
28,156 10.5%
27,988 10.4%
27,695 10.3%
17,821 6.6%
18.4%
7.7%
5.4%
5.0%
4.4%
4.0%
4.0%
4.0%
2.5%
10
Jurisdictions American Samoa Big Sandy Rancheria Guam Hoopa Valley Tribe La Posta Band N Mariana Islands Pauma Band Puerto Rico Round Valley Tribe Total Percent of impaired Percent of assessed
Note: Includes leading sources of River and Stream Impairment Shown on Fig. 10B.4 plus natural sources and land disposal; —, no data. Source: Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov/305b/2000report.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Missouri Nebraska
ENVIRONMENTAL PROBLEMS
10-61
Table 10B.22 Relative Impact of Pollution Sources in Rivers and Streams with Impaired Uses in the United States in 1986 (Percent) State Alaska Arizona California Connecticut Delaware Florida Georgia Idaho Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Minnesota Mississippi Missouri Montana Nebraska New Hampshire New Jersey New Mexico New York North Carolina Ohio Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Vermont Virginia West Virginia Wisconsin Wyoming Puerto Rico Guam Average (weighted)
Industrial
Municipal
Combined Sewers
Nonpoint Sources
Natural
Other/ Unknown
85 26 0 0 8 25 1 2 2 0 7 26 7 0 5 6 0 5 0 2 1 12 25 1 20 12 16 3 7 42 12 4 5 4 11 4 4 1 10 11 5 9
1 10 16 40 6 29 95 3 56 3 36 20 26 100 30 26 42 23 1 3 7 64 35 5 40 17 36 10 13 24 60 9 8 71 22 34 26 1 4 21 10 17
0 0 0 20 8 0 0 0 30 0 0 0 0 0 0 16 0 0 0 0 0 6 0 0 13 0 11 0 1 0 0 0 0 0 0 1 0 0 0 0 15 1
12 20 64 9 59 40 4 78 10 97 25 54 46 0 50 26 51 72 99 95 92 18 35 81 11 71 30 57 71 19 26 34 76 14 50 51 64 98 43 63 50 65
0 0 0 0 19 2 0 17 0 0 28 0 17 0 15 14 0 0 0 0 0 0 0 2 0 0 0 30 3 0 0 49 0 11 11 10 6 0 43 0 20 6
2 44 20 31 0 4 0 0 2 0 4 0 4 0 0 12 7 0 0 0 0 0 5 11 16 0 7 0 5 15 2 4 11 0 6 0 0 0 0 5 0 2
Source: From U.S. Environmental Protection Agency, National Water Quality Inventory, 1986 Report to Congress.
q 2006 by Taylor & Francis Group, LLC
10-62
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.23 River Miles Meeting the Fishable and Swimmable Goals of the Clean Water Act in the United States, by Jurisdiction, in 2000 Fish Consumption Jurisdiction
Total Assessed
Alabama Alaska American Samoa Arizona Arkansas Big Sandy Rancheria California Colorado Connecticut Delaware Delaware River Basin District of Columbia Florida Georgia Guam Hawaii Hoopa Valley Tribe Idaho Illinois Indiana Iowa Kansas Kentucky La Posta Band Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana N. Mariana Islands Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Ohio River Valley Oklahoma Oregon Pauma Band Pennsylvania Puerto Rico Rhode Island Round Valley Tribes South Carolina South Dakota Tennessee Texas Utah Vermont Virginia
0 0 — 3,798 8,112 0 11,842 0 1,285 67 206 24 3,771 0 — 3,887 90 0 3,969 3,030 1,892 271 2,361 0 0 31,752 8,617 644 1,402 0 1,744 21,837 9,080 — 2,056 5 279 124 93 427 0 147 451 981 10 984 23 0 0 6 — 0 170 0 3,158 16 5,201 9,183
Full Support — — — 3,632 7,739 — 1,638 — 1,175 54 0 0 1,002 — — 3,874 — 0 2,920 0 1,452 92 1,574 — — 31,325 8,617 240 — — 1,005 21,671 1,510 — 2,056 5 0 0 0 0 — — 0 0 0 84 23 — — 0 — — 170 — 2,841 0 4,956 8,716
Swimming Threatened — — — — — — 715 — 0 0 0 0 0 — — 0 90 0 0 0 441 0 0 — — — — 0 — — 322 — 8 — — — — 30 — 86 — — — — 0 103 — — — 0 — — — — 0 0 13 124
Total Assessed 0 0 0 3,714 7,629 0 17,896 14,600 1,080 2,506 206 38 9,524 0 32 3,893 90 0 2,944 7,300 836 1,697 2,810 0 7,063 31,752 8,617 933 555 6,584 442 5,405 7,066 0 3,239 1,393 2,769 176 4,134 157 0 9,707 1,536 376 5,096 5,062 23 0 5,394 574 0 14,726 1,043 9,182 9,598 518 5,310 6,510
Full Support — — — 3,457 7,596 — 2,151 14,572 619 99 194 2 5,998 — 1 3,892 90 0 742 4,510 254 — 696 — 4,030 31,576 8,617 457 — 1,727 37 5,355 3,620 — 365 1,388 2,657 30 4,103 0 — 3,484 805 21 1,112 2,777 23 — 193 434 — 7,672 342 6,117 7,084 508 4,115 3,456
Threatened — — — — — — 1,343 0 192 0 12 0 552 — — 0 0 0 0 0 149 — 71 — 74 — — 9 — 1 16 — 0 — — — — 0 — 82 — 1,938 — — 2,016 48 — — 1,008 0 — — — 0 0 0 650 5 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10B.23
10-63
(Continued) Fish Consumption
Jurisdiction
Total Assessed
Washington West Virginia Wisconsin Wyoming Total Percent of assessed for use
58,990 870 2,300 0 205,153
Note:
Full Support 15,294 201 1,077 — 124,941 60.9%
Swimming Threatened — 0 455 — 2,387 1.2%
Total Assessed 70,439 11,408 0 251 313,832
Full Support 58,892 6,790 — 0 212,659 67.8%
Threatened — 2,615 — 1 10,779 3.4%
Fully Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; —, no data.
Source: Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA841-R-02-001, www.epa.gov.
Table 10B.24 Water-Quality Factors Affecting the Nation’s Fisheries Factor Turbidity High water temperature Nutrient surplus Toxic substances Dissolved oxygen problem Nutrient deficiency Low water temperature Other pH too acidic Low flow Salinity Sedimentation Siltation Gas supersaturation Intermittent water Herbicides and pesticides pH too basic Channelization
Stream Miles
Percentage
328,261 250,187 119,519 93,602 91,022 40,603 29,877 26,685 24,793 24,364 17,217 14,378 9,644 5,500 4,839 4,356 3,998 2,937
34.4 26.2 12.5 9.8 9.5 4.3 3.1 2.8 2.6 2.6 1.8 1.5 1.0 0.6 0.5 0.5 0.4 0.3
Note: Expressed in total stream miles and as percentage of total miles. Source: From Judy, R.D., and others, 1984. 1982 National Fisheries Survey, U.S. Fish and Wildlife Service, FWS/OBS-84/06.
q 2006 by Taylor & Francis Group, LLC
10-64
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.25 Limiting Factors Adversely Affecting the Nation’s Fish Communities Factor
Stream Miles
Percentage
115,432 81,927 35,566 28,145 21,873 19,350 18,063 14,213 12,714 10,836 5,879 5,101 3,194 1,657
12.1 8.6 3.7 2.9 2.3 2.0 1.9 1.5 1.3 1.1 0.6 0.5 0.3 0.2
Fish kills Contamination Overharvest Poaching Diseases/parasites Fish stocking Other Habitat Underharvest Competition Water quality Tumors/lesions Low flow Small channel capacity
Note: Expressed in total stream miles and as percentage of total miles. Source: From Judy, R.D., and others, 1984. 1982 National Fisheries Survey, U.S. Fish and Wildlife Service, FWS/OBS-84/06.
Table 10B.26 Designated Use Support in Rivers and Streams of the United States by Jurisdiction, in 2000 Jurisdiction Alabama Alaska American Samoa Arizona Arkansas Big Sandy Rancheria California Colorado Connecticut Delaware Delaware River Basin District of Columbia Florida Georgia Guam Hawaii Hoopa Valley Tribe Idaho Illinois Indiana Iowa Kansas Kentucky La Posta Band Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri
Total River Miles 77,242.0 365,000.0 169.0 127,505.0 87,617.4 — 211,513.0 107,403.0 5,830.0 2,506.0 206.0 39.0 51,858.0 70,150.0 228.0 3,904.7 319.6 115,595.0 87,110.0 35,673.0 71,665.0 134,338.0 49,105.0 — 66,294.0 31,752.0 8,789.0 8,229.0 51,438.0 91,944.0 84,003.0 51,977.8
River Miles Assessed
Miles Fully Supporting
2,627.9 1,420.5 16.9 4,052.0 8,113.0 0 25,274.0 41,470.0 1,207.2 2,505.8 206.0 38.4 10,159.0 9,999.0 167.1 3,993.8 0.0 17,332.6 15,587.2 17,541.0 6,389.7 18,236.0 9,922.7 0.0 7,359.0 31,752.0 8,616.8 1,496.2 10,309.0 11,403.4 14,972.2 21,615.1
698.4 902.6 0.7 3,066 6,935.7 — 2,463 40,226 479.4 740.84 0 0 6,460 4,013 23.1 1,254.71 — 8,434 7,674.06 13,310 1,702.57 3,417 5,954.75 — 723 31,023 5,405.3 479.9 7,829 1,149.6 3,263.2 11,129.5
Miles Threatened 0 0 0 0 0 — 1,862.0 0 334.2 0 0 0 552.0 0 81 0 — 669.0 69.2 0 2,784.0 0 280.1 — 61 0 0 47 24 2,181.7 855.5 164.2
Miles Impaired 1,929.5 517.9 16.2 986.0 1,177.3 — 20,949 1,244.0 389.4 1,765.0 206.0 38.4 3,147.0 5,986.0 63.0 2,737.1 — 8,229.6 7,843.9 4,230.0 1,903.1 14,819.0 3,687.8 — 6,575.0 729.0 3,211.5 969.3 2,456.0 7,899.6 10,824.2 10,321.4
Miles Not Attainable 0 0 0 0 0 — 0 0 4.2 0 0 0 0 0 0 2 — 0 0 1 0 0 0 — 0 0 0 0 0 172.48 29.2 0 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10B.26
(Continued)
Jurisdiction
Total River Miles
Montana N. Mariana Islands Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pauma Band Pennsylvania Puerto Rico Rhode Island Round Valley Tribes South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total Percent of assessed for summary of use support Note:
10-65
176,750.0 59.3 83,258.0 143,578.0 10,881.2 8,050.0 110,741.0 52,337.0 37,662.0 54,427.4 29,113.0 78,778.0 115,472.0 22.9 83,161.0 5,394.2 1,383.0 384.0 29,794.0 9,937.0 61,075.0 191,228.0 85,916.0 7,099.0 49,460.2 70,439.4 32,278.0 55,000.0 108,767.0 3,692,830.0
River Miles Assessed
Miles Fully Supporting
11,442.7 0.0 6,500.0 1,564.3 2,677.4 330.0 4,284.0 2,914.0 32,072.0 14,964.5 8,231.6 14,070.8 59,735.0 22.9 35,496.0 5,394.2 648.8 34.5 15,404.6 3,564.0 24,326.4 15,101.4 10,518.7 5,462.2 9,190.0 70,439.5 11,549.6 23,530.3 2,954.8 696,207.5
2,858.2 0 2,741.0 611.5 2,233.1 121.0 1,608.8 0 29,929.0 1,656.9 3,857.2 1,558.3 22,292.0 22.9 28,235.0 150.4 431.6 0 11,394.0 1,786.0 16,755.2 10,449.6 7,693.9 3,105.3 4,088.0 32,717.8 3,091.8 6,858.0 2,124.1 367,128.7 53%
Miles Threatened 8.1 0 0 0 0 0 0 1,833.0 0 6,083.5 631.8 4,764.8 23,506.0 0 0 590.5 0 0 0 0 33.6 104.0 0 1,188.4 636.0 0 3,145.0 6,634.8 379.2 59,503.6 9%
Miles Impaired
Miles Not Attainable
8,576.4 0 3,759.0 952.8 444.3 209.0 2,675.2 1,081.0 2,143.0 7,224.2 3,742.6 7,647.4 13,937.0 0 7,261.0 4,653.3 217.2 34.5 4,010.6 1,778.0 7,537.6 4,547.8 2,824.8 1,168.5 4,466.0 37,721.7 5,312.9 10,029.3 451.5 269,257.9 39%
0 0 0 0 0 0 0 0 0 0 0 100.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.2 0 317.4 0%
Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; Impaired, Partially or not supporting one or more uses; Not Attainable, Not able to support one or more uses; —, no data.
Source: Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841R-02-001, www.epa.gov.
Table 10B.27 River and Stream Miles Supporting Uses in the United States, 1972–1982 Status Supporting uses Partially supporting uses Not supporting uses Unknown or not reported
1972 Miles
Percent
1982 Miles
Percent
272 46 30 410
36 6 4 54
488 167 35 68
64 22 5 9
Note: Thousand of miles and percentage of waters assessed. Forty-nine (49) states reported on water-quality conditions between 1972 and 1982 for 758,000 river and stream miles. Some proportion of the 1972 data unknown or not reported fell into each of the levels of use support. Source: From The Association of State and Interstate Water Pollution Control Administrators, in cooperation with the U.S. Environmental Protection Agency, 1984, America’s Clean Water: The States’ Evaluation of Progress, 1972–1982. Washington, DC; U.S. Geological Survey, National Water Summary 1986.
q 2006 by Taylor & Francis Group, LLC
10-66
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.28 Condition of Perennial Streams Related to Their Ability to Support Fish in the United States, 1977–1982 Condition (Worst to Best) 0 1 2 3 4 5 Note:
1977
1982
29.87 48.79 170.07 222.02 155.57 38.20
29.87 49.31 166.31 228.66 156.24 36.13
Thousands of miles.
Source: From U.S. Department of the Interior, Fish and Wildlife Service. 1984. 1982 National Fisheries Survey, vol. 1. FWS/OBS-84/06. Washington, DC; U.S. Geological Survey, National Water Summary 1986.
Table 10B.29 Sources of Drinking Water Use Impairment in the United States Contaminant Group Pesticides
Volatile organic chemicals
Inorganic chemicals
Microbiological contaminants
Specific Contaminant Atrazine Metolachlor Triazine Trichloroethylene Tetrachloroethylene 1,1,1-Trichloroethane cis-1,2-Dichloroethylene Trihalomethanes Carbon tetrachloride Ethylbenzene 1,1,2,2-Tetrachloroethane Arsenic Nitrates Iron Copper Chloride Exceedance of total coliform rule
Molinate Ethylene dibromide Dichloromethane 1,1-Dichloroethane 1,1-Dichloroethylene Toluene Benzene Dichlorobenzene Methyl tertiary butyl ether Xylene Fluoride Manganese Lead Sodium Exceedance of fecal coliform rule
Source: From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
River
Compound
Number of Detects
Detection Frequency
171 171 171 165
0 0 0 24
171 171 171 171 170 171 169 171 170 168
0 0 0 0 0 1 5 0 0 1
171 171 171 168
13 2 8 27
171 171 170 171 171 171 171 171 163 171 171 171 171 171 171 171
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0.58 0 0 0 0 0 0 0 0 0 0 0.58 0
163 170 171 171
0 0 0 0
0 0 0 0
0 0 0 14
0 0 0 0 0 0.58 3 0 0 0.60 7.6 1.2 4.7 16
Minimum Concentration
Maximum Concentration
Number of Samples
!0.2 !0.2 !0.2 0.2
!0.2 !0.2 !0.2 1.2
204 204 204 198
0 0 0 26
!0.2 !0.2 !0.2 !0.2 !0.2 1.2 0.2 !0.2 !0.2 0.35
!0.2 !0.2 !0.2 !0.2 !0.2 1.2 0.45 !0.2 !0.2 0.35
204 204 204 204 203 204 200 204 202 202
1 0 0 0 2 0 2 0 2 2
26 3.5 20 34
204 204 204 203
14 3 9 25
!0.2 !0.2 !0.2 0.43 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 0.93 !0.2
!0.2 !0.2 !0.2 0.43 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 0.93 !0.2
204 204 204 204 204 204 204 204 195 204 204 204 204 204 204 204
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.49 0 0 0 0 0 0 0 0 0 0 0 0
!0.2 !0.2 !0.2 0.25 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2
!0.2 !0.2 !0.2 0.25 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2 !0.2
!0.2 !0.2 !0.2 !0.2
!0.2 !0.2 !0.2 !0.2
195 203 204 204
0 0 0 0
0 0 0 0
!0.2 !0.2 !0.2 !0.2
!0.2 !0.2 !0.2 !0.2
0.39 0.53 0.25 0.20
Number of Detects
Detection Frequency 0 0 0 13
0.49 0 0 0 0.98 0 1.0 0 0.99 0.99 6.9 1.5 4.4 12
Minimum Concentration
Maximum Concentration
!0.2 !0.2 !0.2 0.2
!0.2 !0.2 !0.2 20
0.22 !0.2 !0.2 !0.2 0.26 !0.2 0.52 !0.2 0.45 0.71
0.22 !0.2 !0.2 !0.2 1.0 !0.2 1.0 !0.2 1.4 2.5
0.25 0.23 0.22 0.21
24 0,62 8.9 85
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-67
Gasoline Oxygenates tert-Amyl methyl ether Diisopropyl ether Ethyl tert-butyl ether Methyl tert-butyl ether Other Gasoline Compounds Benzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Ethylbenzene Naphthalene Toluene 1,3,5-Trimethylbenzene o-Xylene m- p-Xylene Trihalomethanes Bromodichloromethane Bromoform Chlorodibromomethane Chloroform Organic Syntheses Acrylonitrile Bromobenzene Bromochloromethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene
Number of Samples
Reservoir
ENVIRONMENTAL PROBLEMS
Table 10B.30 Frequency of Detection and Concentrations of Volatile Organic Compounds in Surface Water Source Samples Collected from United States Drinking Water Supplies between May 3, 1999 and October 23, 2000
10-68
Table 10B.30
(Continued) River
Compound
Number of Samples
Number of Detects
Detection Frequency
Minimum Concentration
Maximum Concentration
Number of Samples
Number of Detects
Detection Frequency
Minimum Concentration
Maximum Concentration
171 171 170 171 171 171 170 169 171
0 0 0 0 1 1 0 1 0
0 0 0 0 0.58 0.98 0 0.59 0
!0.2 !0.2 !0.2 !0.2 2.6 120 !0.2 2.3 !0.2
!0.2 !0.2 !0.2 !0.2 2.6 120 !0.2 2.3 !0.2
204 204 204 204 204 204 204 202 204
0 0 1.0 0 0 2 1.0 2 0
0 0 0.49 0 0 0.58 0.58 0.99 0
!0.2 !0.2 0.37 !0.2 !0.2 2.3 0.21 0.41 !0.2
!0.2 !0.2 0.37 !0.2 !0.2 9.1 0.21 0.97 !0.2
171
0
0
!0.2
!0.2
204
0
0
!0.2
!0.2
171 171 171 171 171 170 171 171 171 171
3 0 0 3 0 2 0 0 0 0
1.8 0 0 1.8 0 1.2 0 0 0 0
0.29 !0.2 !0.2 0.31 !0.2 0.43 !0.2 !0.2 !0.2 !0.2
5.5 !0.2 !0.2 2 !0.2 0.77 !0.2 !0.2 !0.2 !0.2
204 204 204 204 204 204 204 204 204 204
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.49 0 0 0 0
!0.2 !0.2 !0.2 !0.2 !0.2 0.36 !0.2 !0.2 !0.2 !0.2
!0.2 !0.2 !0.2 !0.2 !0.2 0.36 !0.2 !0.2 !0.2 !0.2
171 171 171 171
1 1 0 0
0.58 0.58 0 0
0.22 0.22 !0.2 !0.2
0.22 0.22 !0.2 !0.2
204 203 204 204
0 1 0 0
0 0.49 0 0
!0.2 0.36 !0.2 !0.2
!0.2 0.36 !0.2 !0.2
171 171
0 0
0 0
!0.2 !0.2
!0.2 !0.2
204 204
0 0
0 0
!0.2 !0.2
!0.2 !0.2
171 171
0 0
0 0
!0.2 !0.2
!0.2 !0.2
204 204
0 0
0 0
!0.2 !0.2
!0.2 !0.2
Note: Concentrations are in micrograms per liter. Source: From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, U.S. Geological Survey Water-Resource Investigations Report 02-4079, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Hexachlorobutadiene Hexachloroethane Isopropylbenzene p-Isopropyltoluene Methylene chloride Methyl ethyl ketone n-Propylbenzene Styrene 1,1,1,2Tetrachloroethane 1,1,2,2Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene Vinyl bromide Vinyl chloride 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Fumigants Bromomethane 1,4-Dichlorobenzene cis-1,3-Dichloropropene transK1,3Dichloropropene Refrigerants Chloromethane Dichlorodifluoromethane Trichlorofluoromethane l,l,2-Trichloro-l,2,2trifluoroethane
Reservoir
Chemical (Method)
CASRN
N
RL (mg/L)
freq (%)
max (mg/L)
med (mg/L)
Veterinary and Human Antibiotics 0 ND 0 ND 2.4 0.69 2.6 0.03 0 ND 0 ND 21.5 1.7
Carbodox (1) Chlortetracycline (1) Chlortetracycline (2) Ciprofloxacin (1) Doxycycline (1) Enrofloxacin (1) Erythromycin-H2O (1)
6804-07-5 57-62-5 57-62-5 85721-33-1 564-25-0 93106-60-6 114-07-8
104 115 84 115 115 115 104
0.10 0.05 0.10 0.02 0.1 0.02 0.05
Lincomycin (1) Norfloxacin (1) Oxytetracycline (1) Oxytetracycline (2) Roxithromycin (1) Sarafloxacin (1) Sulfachloropyridazine (2) Sulfadimethoxine (1) Sulfadimethoxine (2) Sulfamerazine (1) Sulfamerazine (2) Sulfamethazine (1) Sulfamethazine (2) Sulfamethizole (1) Sulfamethoxazole (1) Sulfamethoxazole (3) Sulfathiazole (1) Sulfathiazole (2) Tetracycline (1) Tetracycline (2) Trimethoprim (1) Trimethoprim (3) Tylosin (1) Virginiamycin (1)
154-21-2 70458-96-7 79-57-2 79-57-2 80214-83-1 98105-99-8 80-32-0 122-11-2 122-11-2 127-79-7 127-79-7 57-68-1 57-68-1 144-82-1 723-46-6 723-46-6 72-14-0 72-14-0 60-54-8 60-54-8 738-70-5 738-70-5 1401-69-0 21411-53-0
104 115 115 84 104 115 84 104 84 104 84 104 84 104 104 84 104 84 115 84 104 84 104 104
0.05 0.02 0.1 0.10 0.03 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.023 0.10 0.05 0.05 0.10 0.03 0.014 0.05 0.10
19.2 0.9 0 1.2 4.8 0 0 0 1.2 0 0 4.8 1.2 1.0 12.5 19.0 0 0 0 1.2 12.5 27.4 13.5 0
Albuterol (salbutamol) (3) Cimetidine (3) Codeine (3) Codeine (4) Dehydronifedipine (3) Digoxin (3) Digoxigenin (3) Diltiazem (3)
18559-94-9 51481-61-9 76-57-3 76-57-3 67035-22-7 20830-75-5 1672-46-4 42399-41-7
84 84 46 85 84 46 84 84
0.029 0.007 0.24 0.1 0.01 0.26 0.008 0.012
0 9.5 6.5 10.6 14.3 0 0 13.1
0.73 0.12 ND 0.34 0.18 ND ND ND 0.06 ND ND 0.12 0.22 0.13 1.9 0.52 ND ND ND 0.11 0.71 0.30 0.28 ND Prescription Drugs ND 0.58d 0.019 1.0d 0.03 NDd ND 0.049
ND ND 0.42 0.02 ND ND 0.1 0.06 0.12 ND 0.34 0.05 ND ND ND 0.06 ND ND 0.02 0.22 0.13 0.15 0.066 ND ND ND 0.11 0.15 0.013 0.04 ND ND 0.074d 0.012 0.2d 0.012 NDd ND 0.021
Use
MCL or HAL (23) (mg/L)
Lowest LC50 for the Most Sensitive Indicator Species (mg/L)/ No. of Aquatic Studies Identified (24)
Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Erythromycin metabolite Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic Antibiotic
— — — — — — —
-/1 88,000a/3 88,000a/3 -/0 -/0 40b/29 665,000b/35
— — — — — — — — — — — — — — — — — — — — — — — —
-/0 -/6 102,000a/46 102,000a/46 -/0 -/0 -/0 -/5 -/5 100,000c/17 100,000c/17 100,000c/17 100,000c/17 -/0 -/0 -/0 -/0 -/0 550,000b/3 550,000b/3 3,000c/4 3,000c/4 -/0 -/0
Antiasthmatic Antacid Analgesic Analgesic Antianginal Cardiac stimulant Digoxin metabolite Antihypertensive
— — — — — — — —
-/0 -/0 -/0 -/0 -/0 10,000,000a/24 -/0 -/0
ENVIRONMENTAL PROBLEMS
Table 10B.31 Summary of Analytical Results of United States Streams Sampled for 95 Pharmaceuticals, Hormones and Other Organic Wastewater Contaminants, 1999–2000
(Continued) 10-69
q 2006 by Taylor & Francis Group, LLC
(Continued)
Chemical (Method)
CASRN
N
RL (mg/L)
freq (%)
max (mg/L)
med (mg/L)
76420-72-9
84
0.15
1.2
0.046d
0.046d
Fluoxetineh (3) Gemfibrozil (3) Metformin (3) Paroxetine metabolite (3)
54910-89-3 25812-30-0 657-24-9 —
84 84 84 84
0.018 0.015 0.003 0.26
1.2 3.6 4.8 0
0.012d 0.79 0.15d NDd
0.012d 0.048 0.11d NDd
Ranitidine (3) Warfarin (3)
66357-35-5 81-82-2
84 84
0.01 0.001
Acetaminophen (3) Caffeine (3) Caffeine (4) Cotinine (3) Cotinine (4) 1,7-dimethylxanthine (3) Ibuprofen (3)
103-90-2 58-08-2 58-08-2 486-56-6 486-56-6 611-59-6 15687-27-1
84 84 85 84 54 84 84
0.009 0.014 0.08 0.023 0.04 0.018 0.018
1,4-dichlorobenzene (4) 2,6-di-tert-butylphenolh (4) 2,6-ditert-butyl-1,4benzoquinoneh (4) 5-methyl-1H-benzotriazole (4) Acetophenone (4) Anthracene (4) Benzo[a]pyreneh (4) 3-tert-butyl-4-hydroxy anisoleh (4) Butylated hydroxyl toluene (4) Bis(2-ethylhexyl) adipate (4) Bis(2-ethylhexyl) phthalateh (4)
106-46-7 128-39-2 719-22-2
85 85 85
0.03 0.08 0.10
136-85-6
54
0.10
31.5
2.4
98-86-2 120-12-7 50-32-8 25013-16-5
85 85 85 85
0.15 0.05 0.05 0.12
9.4 4.7 9.4 2.4
128-37-0
85
0.08
2.4
103-23-1 117-81-7
85 85
2.0 2.5
3.5 10.6
80-05-7 63-25-2 5103-71-9 2921-88-2 333-41-5 60-57-1 84-66-2
85 85 85 85 85 85 54
0.09 0.06 0.04 0.02 0.03 0.08 0.25
Bisphenol Ah (4) Carbarylh (4) cis-Chlordaneh (4) Chlorpyrifosh (4) Diazinonh (4) Dieldrinh (4) Diethylphthalateh (4)
q 2006 by Taylor & Francis Group, LLC
MCL or HAL (23) (mg/L)
Enalapril maleate (antihypertensive) metabolite Antidepressant Antihyperlipidemic Antidiabetic Paroxetine (antidepressant) metabolite Antacid Anticoagulant
—
-/0
— — — —
-/0 -/0 -/0 -/0
— —
-/0 16,000c/33
Antipyretic Stimulant Stimulant Nicotine metabolite Nicotine metabolite Caffeine metabolite Antiinflammatory
— — — — — — —
6,000a/14 40,000i/77 40,000i/77 -/0 -/0 -/0 -/0
Deodorizer Antioxidant Antioxidant
75 — —
1,100c/190 -/2 -/0
0.39
Antiocorrosive
—
-/0
0.41 0.11 0.24 0.2d
0.15 0.07 0.04 0.1d
Fragrance Pah Pah Antioxidant
— — 0.2 —
155,000i/21 5.4i/188 1.5a/428 870c/14
0.1d
0.1d
Antioxidant
—
1,440a/15
Plasticizer Plasticizer
400 6
480a/9 7,500a/309
Plasticizer Insecticide Insecticide Insecticide Insecticide Insecticide Plasticizer
— 700 2 20 0.6 0.2 —
3,600i/26 0.4a/1,541 7.4b/28 0.1a/1,794 0.56a/1,040 2.6c/1,540 12,000c/129
0.01d 1.2 0.01d 0 ND ND Nonprescription Drugs 23.8 10 0.11 61.9 6.0 0.081 70.6 5.7 0.1 38.1 0.90 0.024 31.5 0.57 0.05 0.11d 28.6 3.1d 9.5 1.0 0.20 Other Wastewater-Related Compounds 25.9 4.3 0.09 3.5 0.11d 0.06d 9.4 0.46 0.13
10 g 20 g
3g 7g
Other Wastewater-Related Compounds 41.2 12 0.14 16.5 0.1d 0.04d 4.7 0.1 0.02 15.3 0.31 0.06 25.9 0.35 0.07 4.7 0.21 0.18 11.1 0.42 0.2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Enalaprilat (3)
Use
Lowest LC50 for the Most Sensitive Indicator Species (mg/L)/ No. of Aquatic Studies Identified (24)
10-70
Table 10B.31
78-51-3
85
0.2
45.9
6.7
0.51
Plasticizer
—
10,400i/7
206-44-0 58-89-9 298-00-0 106-44-5 91-20-3 134-62-3 251-545-23
85 85 85 85 85 54 85
0.03 0.05 0.06 0.04 0.02 0.04 0.50
29.4 5.9 1.2 24.7 16.5 74.1 50.6
1.2 0.11 0.01 0.54 0.08 1.1 40f
0.04 0.02 0.01 0.05 0.02 0.06 0.8f
— 0.2 2 — 20 — —
74i/216 30c/1,979 12a/888 1,400a/74 910c/519 71,250c/9 130i/135
4-Nonylphenol Monoethoxylateh (4) 4-Nonylphenol diethoxylateh (4) 4-Octylphenol Monoethoxylateh (4) 4-Octylphenol diethoxylateh (4) Phenanthrene (4) Phenol (4) Phthalic anhydride (4)
—
85
1.0
45.9
20f
1f
—
85
1.1
36.5
9f
1f
—
85
0.1
43.5
2f
0.2f
—
85
0.2
23.5
1f
0.1f
85-01-8 108-95-2 85-44-9
85 85 85
0.06 0.25 0.25
11.8 8.2 17.6
0.53 1.3e 1e
0.04 0.7e 0.7e
Pyrene (4) Tetrachloroethylene (4) Triclosanh (4)
129-00-0 127-18-4 3380-34-5
85 85 85
0.03 0.03 0.05
28.2 23.5 57.6
0.84 0.70d 2.3
0.05 0.07d 0.14
Tri(2-chloroethyl) phosphate (4) Tri(dichlorisopropyl) Phosphate (4) Triphenyl phosphate (4)
115-96-8
85
0.04
57.6
0.54
0.1
PAH Insecticide Insecticide Disinfectant PAH Insect repellant Nonionic detergent metabolite Nonionic detergent metabolite Nonionic detergent metabolite Nonionic detergent metabolite Nonionic detergent metabolite PAH Disinfectant Plastic manufacturing PAH Solvent, degreaser Antimicrobial disinfectant Fire retardant
13674-87-8
85
0.1
12.9
0.16
0.1
115-86-6
85
0.1
0.04
cis-Androsteroneh (5) Cholesterol (4) Cholesterol (5) Coprostanol (4) Coprostanol (5) Equileninh (5)
53-41-8 57-88-5 57-88-5 360-68-9 360-68-9 517-09-9
70 85 70 85 70 70
0.005 1.5 0.005 0.6 0.005 0.005
14.1 0.22 Steroids and Hormones 14.3 0.214 55.3 10d 84.3 60g 35.3 9.8d 85.7 150g 2.8 0.278
Equilinh (5)
474-86-2
70
0.005
1.4
0.147
0.147
17a-ethynyl estradiolh (5) 17a-estradiolh (5)
57-63-6 57-91-0
70 70
0.005 0.005
15.7 5.7
0.831 0.074
0.073 0.03
17b-estradiolh (4)
50-28-2
85
0.5
10.6
0.2d
0.16d
17b-estradiolh (5)
50-28-2
70
0.005
10.0
0.093
0.009
50-27-1
70
0.005
21.4
0.051
0.019
h
Estriol (5)
0.017 1d 0.83 0.70d 0.088 0.14
ENVIRONMENTAL PROBLEMS
Ethanol,2-butoxy-phosphate (4) Fluoranthene (4) Lindaneh (4) Methyl parathionh (4) 4-Methyl phenol (4) Naphthalene (4) N,N-diethyltoluamide (4) 4-Nonylphenolh (4)
14,450a/4 —
5,500a/6
—
-/0
—
-/0
— 400 —
590a/192 4,000c/2,085 40,400c/5
— 5 —
90.9a/112 4,680c/147 180i/3
—
66,000b/8
Fire retardant
—
3,600b/9
Plasticizer
—
280c/66
Urinary steroid Plant/animal steroid Plant/animal steroid Fecal steroid Fecal steroid Estrogen replacement Estrogen replacement Ovulation inhibitor Reproductive hormone Reproductive hormone Reproductive hormone Reproductive hormone
— — — — — —
-/0 -/0 -/0 -/0 -/0 -/0
—
-/0
— —
-/22 -/0
—
-/0
—
-/0
—
-/0
q 2006 by Taylor & Francis Group, LLC
10-71
(Continued)
(Continued)
Chemical (Method)
CASRN
N
RL (mg/L)
freq (%)
max (mg/L)
med (mg/L)
Estroneh (5)
53-16-7
70
0.005
7.1
0.112
0.027
Mestranolh (5) 19-Norethisteroneh (5) Progesteroneh (5)
72-33-3 68-22-4 57-83-0
70 70 70
0.005 0.005 0.005
10.0 12.8 4.3
0.407 0.872 0.199
0.074 0.048 0.11
Stigmastanol (4) Testosteroneh (5)
19466-47-8 58-22-0
54 70
2.0 0.005
5.6 2.8
4d 0.214
2d 0.116
Use Reproductive hormone Ovulation inhibitor Ovulation inhibitor Reproductive hormone Plant steroid Reproductive hormone
MCL or HAL (23) (mg/L)
Lowest LC50 for the Most Sensitive Indicator Species (mg/L)/ No. of Aquatic Studies Identified (24)
—
-/11
— — —
-/0 -/0 -/0
— —
-/0 -/4
a b c d e f g h i
Daphnia magna (water flea), 48 h exposure LC50. Other species and variable conditions. Oncorhynchus mykiss (rainbow trout), 96 h exposure LC50. Concentration estimated, average recovery !60%. Concentration estimated, compound routinely detected in laboratory blanks. Concentration estimated, reference standard prepared from a technical mixture. Concentration estimated, value greater than highest point on calibration curve. Compounds suspected of being hormonally active. Pimephales promelas (fathead minnow), 96 h exposure LC50.
Source: From Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E. M., Zaugg, S. D., Barber, L.B., and Buxton, H.T., 2002, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000. A National Reconnaissance, Environmental Science & Technology, vol 36, no. 6, Web Release Date: March 15, 2002, 10.1021/es011055j S0013-936X(01)01055-0, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Note: CASRN, Chemical Abstracts service Registry Number; N, number of samples; RL, reporting level; freq, frequency of detection; max, maximum concentration; med, median detectable concentration; MCL, maximum contaminant level; HAL, health advisory level; LC50, lethal concentration with 50% mortality; Nd, not detected; —, not available; PAH, polycyclic aromatic hydrocarbon.
10-72
Table 10B.31
River Reach Evaluationa
Watershed Evaluation
EPA Region (State)
River Reaches with at Least One Tier 1 Station
River Reaches with at Least One Tier 2 Station and Zero Tier 1 Stations
River Reaches with All Tier 3 Stations
River Reaches with No Data
Total Number of Watersheds
2,764
97 (3.5%)
23 (0.8%)
5 (0.2%)
2,639 (95.5%)
62
1,845
217 (11.8%) 385 (11.4%)
102 (5.5%) 313 (9.2%)
45 (2.4%) 301 (8.9%)
1,481 (80.3%) 2,389 (70.5%)
71
10,078
444 (4.4%)
461 (4.6%)
301 (3.0%)
8,872 (88.0%)
6,151
532 (8.6%)
401 (6.5%)
316 (5.1%)
7,577
226 (3.0%) 94 (1.9%) 59 (0.4%)
222 (2.9%) 161 (3.3%) 77 (0.6%)
156 (3.3%) 177 (1.7%) 2,298 (3.6%)
63 (1.3%) 121 (1.2%) 1,891 (2.9%)
Total Number of River Reaches Region 1 (CT, ME, MA, NH, RI, VT) Region 2 (NJ, NY, PR) Region 3 (DE, DC, MD, PA, VA, WV) Region 4 (AL, FL, GA, KY, MS, NC, SC, TN) Region 5 (IL, IN, MI, MN, OH, WI) Region 6 (AR, LA, NM, OK, TX) Region 7 (IA, KS, MO, NE) Region 8 (CO, MT, ND, SD, UT, WY) Region 9 (AZ, CA, HI, NV) Region 10 (AK, ID, OR, WA) Total for United Statesb
3,388
4.915 13,860
4,686 10,462 64,591
Watersheds with at Least One Tier 1 Station
Watersheds with at Least One Tier 2 Station and Zero Tier 1 Stations
Watersheds with All Tier 3 Stations
Watersheds with No Data
9 (14.5%)
13 (21.0%)
6 (9.7%)
0 (0.0%)
34 (54.8%)
17 (23.9%) 7 (5.6%)
35 (49.3%) 96 (76.2%)
3 (4.2%) 11 (8.7%)
3 (4.2%) 4 (3.2%)
13 (18.3%) 8 (6.3%)
307
13 (4.2%)
142 (46.3%)
57 (18.6%)
25 (8.1%)
70 (22.8%)
4,902 (79.7%)
278
25 (9.0%)
144 (51.8%)
31 (11.2%)
19 (6.8%)
59 (21.2%)
289 (3.8%) 136 (2.8%) 68 (0.5%)
6,840 (90.3%) 4,524 (92.0%) 13,656 (98.5%)
402
4 (1.0%) 1 (0.4%) 1 (0.3%)
117 (29.1%) 60 (25.2%) 34 (8.8%)
69 (17.2%) 72 (30.3%) 41 (10.6%)
44 (10.9%) 29 (12.2%) 31 (8.1%)
168 (41.8%) 76 (31.9%) 278 (72.2%)
40 (0.9%) 49 (0.5%) 1,506 (2.3%)
4,427 (94.5%) 10,115 (96.7%) 58,896 (91.2%)
19 (6.6%) 10 (2.8%) 96 (4.2%)
41 (14.2%) 48 (13.5%) 658 (29.1%)
19 (6.6%) 29 (8.2%) 302 (13.3%)
15 (5.2%) 21 (5.9%) 168 (7.4%)
194 (67.4%) 247 (69.6%) 1,040 (45.9%)
126
238 385
288 355 2,264
Watersheds Containing APCs
ENVIRONMENTAL PROBLEMS
Table 10B.32 Regions 1–10: River Reach and Watershed Evaluation Summary, United States National Sediment Quality Survey
Tier 1, Associated adverse effects on aquatic life or human health are probable. Tier 2, Associated adverse effects on aquatic life or human health are possible. Tier 3, No indication of adverse effects. a b
River reaches based on EPA River Reach File (RF1). RF1 does not include data outside the contiguous United States. Because some reaches and watersheds occur in more than one region, the total number of reaches and watersheds in each category or the country might not equal the sum of reaches or watersheds in the regions.
q 2006 by Taylor & Francis Group, LLC
10-73
Source: From USEPA, 2004, The incidence and severity of sediment contamination in surface waters of the United States, National sediment contamination in surface waters of the United States, National Sediment Quality Survey: Sectond Edition, EPA 823-R-04-007, www.epa.gov.
Concentration, in mg/kg Dry Weight at the Given Percentile and Maximum Value
Compound Name
Lower Screening Value
Upper Screening Value
Percent Detection
75th
90th
95th
Maximum
mg/kg
N
mg/kg
N
530 535 533 518 533 532 535 526 521 524 498 518 500 496 506 496
10.0 12.9 22 30.7 36.8 33.1 32.9 23.4 35.7 16.8 39.8 10.4 27.8 7.7 30.8 37.9
!50 !50 !50 79 92 84 80 !50 120 !50 170 !50 63 !50 78 140
51 77 150 430 460 400 350 200 570 130 1,000 53 370 !50 500 780
94 170 520 1,100 1,400 1,100 1,000 480 1,400 280 2,700 140 710 78 1,400 2,000
1,500 1,500 4,100 12,000 12,000 10,000 9,900 6,700 16,000 4,400 26,000 6,700 8,400 4,900 15,000 21,000
6.71 5.87 57.2 108 3,600 3,600 150 720 166 33 423 77.4 690 176 204 195 1,610
53 69 106 108 5 5 101 15 111 101 78 40 25 9 82 104 105
500 640 845 1,050 — — 1,450 — 1,290 260 2,230 536 — 561 1,170 1,520 22,800
3 4 14 28 — — 17 — 31 26 27 3 — 1 31 33 14
536
30.0
98
540
1,000
17,000
182
101
2,650
6
d
0
536
5.6
!50
!50
76
2,240
900
1
11,000
505
37.8
99
430
870
4,800
670
31
—
—
516 518 487 517
0.6 1.2 0.6 0.2
!50 !50 !50 !50
!50 !50 !50 !50
!50 !50 !50 !50
86 140 79 68
50 110 28 51
3 2 7 1
340d 350d — 9,200d
0 0 — 0
Note: N, number of sites exceeding screening value; —, does not exist or apply. Data was collected from the United States Geological Survey National Water-Quality Assessment (NAWQA) Program river basins. a b c d
Marine sediment quality guidelines. Freshwater sediment quality guidelines. Lower screening value is freshwater and upper screening value is marine sediment quality guideline. Screening value assuming 1% organic carbon.
Source: Abstracted from Lopes, T.J. and Furlong, E.T., 2001, Occurrence and potential adverse effects of semivolatile organic compounds in streambed sediment, United States, 1992– 1995; Environmental Toxicology and Chemistry, vol. 20, no. 4, p. 727–737, www.usgs.gov. Printed with permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Number of Sites
Polycyclic aromatic hydrocarbons Acenaphthenea Acenaphthylenea Anthraceneb Benz[a]anthraceneb Benzo[b]fluoranthenea Benzo[k]fluoranthenea Benzo[a]pyreneb Benzo[ghi]perylenea Chryseneb Dibenz [a, h] anthracenec Fluorantheneb Fluoreneb Indeno[1,2,3-cd]pyrenea Naphthaleneb Phenanthreneb Pyreneb Total PAHsb Phthalates Bis(2-Ethylhexyl) Phthalatea Butylbenzylphthalatea Phenols p-Cresola Halo- and NitrosoCompounds 1,2-Dichlorobenzenea 1,4-Dichlorobenzenea N-Nitrosodiphenylaminea 1,2,4-Trichlorobenzenea
10-74
Table 10B.33 Statistical Summary of Semivolatile Organic Compounds in Streambed Sediment That Exceeded Sediment Quality Screening Values in the United States 1992– 1995
ENVIRONMENTAL PROBLEMS
10-75
Table 10B.34 Pollutant Discharges into Coastal Waters of the United States, 1980–1985 Coastal Region
BOD
TSS
TN
TP
Northeast Mid-Atlantic Southeast Gulf of Mexico West Coast
0.57 0.54 0.25 2.03 1.52
5.33 5.42 3.18 149.00 101.12
0.14 0.20 0.14 0.88 0.64
0.05 0.05 0.04 0.22 0.76
Note: (million tons per year) BOD, biochemical oxygen demand; TSS, total suspended solids; TN, total nitrogen; TP, total phosphorus. Source: From U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Ocean Assessments Division, Strategic Assessment Branch. 1986. Pollutant discharges from East Coast and Gulf of Mexico coastal counties, circa 1980–1985 and unpublished data compiled from the National Coastal Pollutant Discharge Inventory database. Rockville, MD; U.S. Geological Survey, National Water Summary 1986.
Table 10B.35 Point Sources of Pollutants to Coastal Waters of the United States, 1980– 1985 Coastal Region
Municipal Wastewater Treatment Facilities
Industrial Wastewater Treatment Facilities
540 666 1,053 1,651 521
1,025 1,518 458 830 920
Northeast Mid-Atlantic Southeast Gulf of Mexico West Coast
Note: Number of wastewater discharge facilities by region. Source: From U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean survey, Ocean Assessments Division, Strategic Assessment Branch. 1986. Pollutant discharges from East Coast and Gulf of Mexico coastal counties, circa 1980–1985 and unpublished data compiled from the National Coastal Pollutant Discharge Inventory database. Rockville, MD; U.S. Geological Survey, National Water Summary 1986.
Table 10B.36 United States Shellfish Growing Waters, 1966–1995 Year
1966
1971
1974
Approved for harvest Harvested limited Conditionally approved Restricted Conditionally restricted Prohibited Total
8,100 2,090 88
10,362 3,738 410
10,560 4,232 387
na na
30 na
2,002 10,190
3,298 14,100
Note:
1980
1985
1990
1995
1000 acres 10,685 3,533 587
11,402 5,435 1,463
12,304 6,398 1,571
14,853 6,721 1,695
34 na
55 na
637 na
463 0
2,106 119
3,811 14,792
2,891 14,218
3,335 16,837
4,364 18,702
2,801 21,574
Based on National Shellfish Registers published only in years indicated. Data do not include Alaska, Hawaii, or waters designated as unclassified. The total acreage of classified shellfish growing waters varies with each register. There may be several reasons why shellfish harvest is prohibited, including water-quality problems, lack of funding for complete surveying and monitoring, conservation measures, and other management/administrative actions.
Source: From The 1996 Annual Report of the Council on Environmental Quality, www.whitehouse.gov/CEQ. Orginal Source: From U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Office of Ocean Resources Conservation and Assessment, Strategic Environmental Assessments Division, The 1995 National Shellfish Register of Classified Growing Waters (DOC, NOAA, ORCA, Silver Spring, MD, 1997), www.nos.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
10-76
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.37 Assessed Estuaries and Ocean Shoreline Waters Supporting Shellfishing Use Requirements in the United States in 2000 Estuaries (mi2) State Alabama Alaska California Connecticut Delaware Delaware River District of Columbia Florida Georgia Hawaii Louisiana Maine Maryland Massachusetts Mississippi New Hampshire New Jersey New York North Carolina Oregon Puerto Rico Rhode Island South Carolina Texas Virgin Islands Virginia Washington Total Percent of assessed for use
Total Assessed 0 0 758 611 15 679 0 1,765 0 39 1,153 2,852 1,839 2,526 579 21 614 163 0 72 0 128 891 1,625 0 1,735 2,904 20,967
Ocean Shoreline Waters (mi)
Full Support
Threatened
— — 43 273 1 579 — 1,398 — 33 1,078 2,542 1,672 2,254 550 0 456 — — 4 0 96 613 1,037 — 1,642 1,274 15,545 75.7%
— — 19 0 0 0 — 111 — 0 0 0 — — 2 — 0 0 — 0 0 0 — 0 — 2 — 134 0.6%
Total Assessed 0 0 760 0 15 — — 0 0 425 0 0 32 0 89 18 0 3 0 0 0 79 0 0 0 0 0 1,420
Full Support
Threatened
— — 694 — 1 — — — — 422 — — 32 — 0 0 — — — — 0 79 — — — — — 1,227 86.4%
— — 0 — 0 — — — — 0 — — — — 0 — — 0 — — 0 — — — — — — 0 0.0%
Note: Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; —, no data. Source: From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
(Sq. Miles)
Jurisdiction Alabama Alaska American Samoa California Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Louisiana Maine Maryland Massachusetts Mississippi N. Mariana Islands New Hampshire New Jersey New York North Carolina Oregon Puerto Rico Rhode Island South Carolina Texas Virgin Islands Virginia Washington Total Note: a b c d e
Number of Waterbodies with Restrictions
Approved (mi2)
Conditionally Approveda
Restrictedb
Prohibitedc
Management Closuresd
Total Area Affectede
— — — — — — — — — — — 26 — 36 — — — 11 — — — 8 — 19 — — — — — 100
— — — — — — — — — — — — — 1,672.19 2,254.07 — — 7.18 808 1,562.5 — 15.84 — 96 613.06 — — — 341.8 7,370.64
— — — — — — — — — — — — — 58.26 — — — 0.61 — — — 16.54 — 22 7.517 — — — 46.5 151.427
— — — — — — — — — — — — — 108 40.85 — — 1.57 115 — — — — — 151.28 — — 3 — 419.7
— — — — — — — — — — — — — 0 224.2 — — 11.26 130 312.5 — — — 10 119.233 — — 148 104 1,059.193
— — — — — — — — — — — — — — 201.1 — — 0.81 — — — — — — — 346.1 — — — 548.01
— — — — — — — — — — — — — 1,838.45 2,720.22 — — 21.43 1,053 1,875 — 32.38 — 128 891.09 346.1 — 151 492.3 9,548.97
ENVIRONMENTAL PROBLEMS
Table 10B.38 Shellfish Harvesting Restrictions Due to Pathogens as Reported by States, Territories, and Commissions in 2000
—, no data.
Conditionally approved waters do not always meet criteria for harvesting shellfish, but may be harvested when criteria are met. Restricted water may be harvested if the shellfish are purified with clean water following harvest. Shellfish may not be harvested in prohibited waters. Preventative closures due to a lack of data or proximity to point sources or marinas. Includes water that are classified as conditionally approved, restricted, prohibited, and management closures.
Source: From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov. 10-77
q 2006 by Taylor & Francis Group, LLC
10-78
Table 10B.39 Summary of Fully Supporting, Threatened, and Impaired Waters Assessed in Estuaries and Ocean Shoreline Waters in the United States in 2000 Estuaries (mi2)
Jurisdiction
610 33,204 184 2,139 612 449 866 6 4,437 854 1 55 7,656 2,852 2,522 223 760 15,989 21 725 1,530 3,121 206 151 401 2,394 3 2,494 2,904 87,369
Assessed
Full Support
Threatened
Impaired
Not Attainable
541 28 0 2,033 611 0 866 6 4,037 858 11 54 4,036 2,783 2,478 128 613 1 21 614 402 3,115 54 0 151 221 1,993 0 1,991 2,904 30,548
0 3 0 35 139 0 0 0 3,055 509 0 23 318 2,473 918 46 0 0 0 456 0 3,006 8 0 103 136 1,236 0 773 611 13,850 45.3%
0 0 0 1 14 0 0 0 121 0 0 0 7 0 0 0 62 0 0 0 11 0 11 0 0 0 0 0 796 0 1,023 3.3%
541 25 0 1,997 458 0 866 6 861 349 11 31 3,711 310 1,560 82 551 1 21 158 391 109 35 0 47 85 758 0 422 2,293 15,676 51.3%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0%
Total Miles
Assessed
Full Support
Threatened
Impaired
Not Attainable
337 36,000 116 1,609 380 25 — — 8,460 100 117 1,052 397 5,296 32 1,519 245 52 18 127 120 320 362 550 79 190 624 209 120 163 58,618
0 25 53 997 0 0 — — 0 0 17 871 0 0 32 0 94 0 18 127 3 0 0 550 79 0 0 202 120 — 3,189
0 16 7 775 0 0 — — 0 0 1 834 0 0 32 0 53 0 0 127 0 0 0 302 79 0 0 173 120 — 2,518 79.0%
0 0 30 0 0 0 — — 0 0 6 8 0 0 0 0 41 0 0 0 0 0 0 131 0 0 0 21 0 — 237 7.4%
0 9 16 222 0 0 — — 0 0 10 29 0 0 0 0 0 0 18 0 3 0 0 117 0 0 0 9 0 — 434 13.6%
0 0 0 0 0 0 — — 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 — 0 0.0%
Note: Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; Impaired, Partially or not supporting one or more uses; Not Attainable, Not able to support one or more uses; —, no data. Source: Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama Alaska American Samoa California Connecticut Delaware Delaware River District of Columbia Florida Georgia Guam Hawaii Louisiana Maine Maryland Massachusetts Mississippi N. Mariana Islands New Hampshire New Jersey New York North Carolina Oregon Puerto Rico Rhode Island South Carolina Texas Virgin Islands Virginia Washington Total Percent of assessed
Total Sq. Miles
Ocean Shoreline Waters (mi)
ENVIRONMENTAL PROBLEMS
10-79
Table 10B.40 United States National Coastal Condition Rating Scores by Indicator and Region Northeast Coast
Indicator Water-quality index Sediment quality index Benthic index Coastal habitat index Fish tissue contaminants index Overall condition
Southeast Coast
Gulf Coast
West Coast
Great Lakes
Puerto Rico
United Statesa
2 1
4 4
3b 3
3 2
3 1
3 1
3.0 2.1
1 4 1
3 3 5
2 1 3
3 1 1
2 2 3
1 —c —c
2.0 1.7 2.7
1.8
3.8
2.4
2.0
2.2
1.7
2.3
Note: Rating scores are based on a 5-point system, where 1 is poor and 5 is good. a b c
The U.S. score is based on an aerially weighted mean of regional scores. This rating score does not include the impact of the hypoxic zone in offshore Gulf Coast waters. No coastal habitat index loss or fish tissue contaminants index results were available for Puerto Rico.
Source:
From United States Environmental Protection Agency, 2004, National Coastal Condition Report II, EPA-620/R-03/002, December 2004, www.epa.gov.
Table 10B.41 Percent of United States National Coastal Area in Poor Condition by Indicator (except Coastal Habitat Index) and Region Northeast Coast
Indicator a
Water-quality index Sediment quality indexc Benthic index Coastal habitat indexd Fish tissue contaminants indexe Overall conditionf
19 16 22 1.00
Southeast Coast 5 8 11 1.06
Gulf Coast b
West Coast
Great Lakes
Puerto Rico
United States
9 12
3 14
— —
9 61
11 13
17 1.30
13 1.90
— —
35 —
17 1.26
31
5
14
27
—
—
22
40g
23
40
23
—
77
35
Note: The percent area of poor condition is the percentage of total estuarine surface area in the region or the nation (proportional area information is not available for the Great Lakes). a b c d e f g
The water-quality index is based on a combination of water quality measurements (dissolved oxygen, chlorophyll a, nitrogen, phosphorus, and water clarity). The area of poor condition does not include the hypoxic zone in offshore Gulf Coast waters. The sediment quality index is based on a combination of sediment quality measurements (sediment toxicity, sediment contaminants, and sediment TOC). The coastal habitat index is based on the average of the mean long-term, decadal wetland loss (1780–1990) and the present decadal wetland loss rate (1990–2000). The fish tissue contaminants index is based on analyses of whole fish (not fillets). The overall percentage is based on the overlap of the five indicators and includes estuarine area for all of the conterminous 48 states (by region and total) and Puerto Rico. In Northeast Coast estuaries, at least one of the five indicators is rated poor at sites representing 40% of total estuarine area.
Source:
From United States Environmental Protection Agency, 2004, National Coastal Condition Report II, EPA-620/R-03/002, December 2004, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
10-80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.42 Average PCB and PAH Concentrations in Sediments from Selected Estuaries in the United States, 1984–1992 (Milligrams per Kilogram Dry Weight) Estuary Machias Bay, ME-Hog Island Machias Bay, ME-Chance Island Frenchman Bay, ME-Long Porcupine Island Penobscot Bay, ME-Colt Head Island Johns Bay, ME–Pemaquid Casco Bay, ME-Great Chebeague Island Casco Bay, ME-Cousins Island Cape Elizabeth, ME-Richmond Island Merrimack River, MA-Plum Island Salem Harbor, MA-Folger Point Boston Harbor, MA-President Roads Boston Harbor, MA-Deer Island Boston Harbor, MA-Quincy Bay Boston Harbor, MA-Hull Bay Boston Harbor, MA-Mystic River Massachusetts Bay, MA Buzzards Bay, MA-West Island New Bedford Harbor, MA-Clarks Point Narragansett Bay, Rl-Prudence Island Narragansett Bay, Rl-Conanicut Island Niantic Bay, CON-Black Point Long Island Sound, NY-New Haven Long Island Sound, NY-Norwalk Long Island Sound, NY-Long Island Shoal Long Island Sound, NY-Rock Point Long Island Sound, NY-Lloyd Point Long Island Sound, NY-Oak Neck Point Hudson River, NY-Englewood Cliffs Raritan Bay, NY-Upper Bay Raritan Bay, NY-Gravesand Bay Raritan Bay, NY-West Reach Raritan Bay, NJ-East Reach Raritan Bay, NJ-Lower Bay Great Bay, NJ-Wells Island Great Bay, NJ-Seven Island Great Bay, NJ-Intercoastal Waterway Delaware Bay, DE-Cherry Island Range Delaware Bay, DE-Brandywine Shoal Delaware Bay, DE-The Shears Baltimore Harbor, MD, Fort McHenry Channel Baltimore Harbor, MD-Brewerton Channel Chesapeake Bay, MD-Gibson Island Chesapeake Bay, MD-Chester River Chesapeake Bay, MD-Kent Island Chesapeake Bay, MD-Patuxent River Chesapeake Bay, MD-Smith Island Chesapeake Bay, VA-James River Chesapeake Bay, VA-York River Chesapeake Bay, VA-Elizabeth River Pamlico Sound, NC-Jones Bay Cape Fear River, NC-Horseshoe Shoal Charleston Harbor, SC-Coastal Charleston Harbor, SC-South Channel Savannah River, GA-Elba Island Sapelo Sound, GA-South Newport River Sapelo Sound, GA-High Point St. Johns River, FL-Trout River St. Johns River, FL-West Mill Cove St. Johns River, FL-Ortega River
Total PCBs
Total PAHs
24.07 25.40 28.90 59.31 7.46 98.28 161.75 13.88 33.19 295.81 5961.75 2671.75 599.39 128.67 1436.33 2.63 171.64 2915.50 265.00 309.11 41.72 237.33 139.70 7.92 9.13 8.78 177.36 947.33 162.37 337.67 386.30 468.64 546.87 146.00 85.00 62.87 485.12 99.05 61.10 616.08 299.23 144.45 75.43 228.75 22.40 17.36 84.10 37.14 165.41 21.89 6.63 246.28 29.05 5.97 1.05 0.00 — 98.35 —
132.20 221.03 234.99 834.41 95.90 3,138.86 3,097.25 257.17 927.98 8,100.99 16,069.24 8,267.36 15,541.18 2,941.00 51,263.33 28.97 653.93 2,438.17 2,899.00 2,152.35 704.85 3,885.00 2,693.75 93.02 42.26 51.81 5,839.20 7,843.33 5,891.03 7,697.50 7,385.70 6,711.00 6,607.25 1,086.67 895.12 444.97 3,117.17 491.28 339.67 12,282.12 13,528.33 3,691.02 2,116.03 5,296.25 489.00 355.51 2,215.33 258.50 13,649.91 443.59 21.00 14,135.00 2,082.26 274.00 26.23 466.92 23,228.20 3,368.49 4,863.00 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10B.42
10-81
(Continued)
Estuary St. Johns River, FL-Piney Point St. Johns River, FL-Orange Point St. Lucie River, FL-Stuart Biscayne Bay, FL-North Bay Biscayne Bay, FL-Chicken Key Charlotte Harbor, FL-Cape Haze Tampa Bay, FL-Northern Tampa Bay Apalachicola Bay, FL-St. George Island St. Andrew Bay, FL-Military Point Choctawhatchee Bay, FL Pensacola Bay, FL Mobile Bay, AL-North Point Pascagoula River, MS-Escatawpa River Pascagoula River, MS Round Island, MS-Round Island Heron Bay, MS-Heron Bay Mississippi River Delta, LA-Southeast Pass Mississippi River Delta, LA-Head of Passes Barataria Bay, LA-Barataria Pass Calcasieu River, LA-Prien Lake Calcasieu River, LA-West Cove Galveston Bay, TX-East Bay Galveston Bay, TX-Trinity Bay Galveston Bay, TX-Greens Bayou Galveston Bay, TX-Goat Islands Galveston Bay, TX-Morgans Point Galveston Bay, TX-Eagle Point Galveston Bay, TX-Texas City Lavaca Bay, TX San Antonio Bay, TX-Mosquito Point San Antonio Bay, TX-San Antonio Bay Corpus Christi Bay, TX-Long Reef Lower Laguna Madre, TX-Laguna Heights Lower Laguna Madre, TX-Long Island San Diego Harbor, CA-Outside San Diego Bay, CA-National City San Diego Bay, CA-28th Street San Diego Bay, CA-North San Diego Bay, CA-Harbor Island San Diego Bay, CA-Shelter Island Mission Bay, CA-Outside Dana Point Harbor, CA-Outside San Pedro Bay, CA-Seal Beach San Pedro Bay, CA-Long Beach San Pedro Bay, CA-Outer Harbor San Pedro Bay, CA-Cerritos Channel Santa Monica Bay, CA-Southeast Santa Monica Bay, CA-South Santa Monica Bay, CA-Manhattan Beach Santa Monica Bay, CA-West Santa Monica Bay, CA-Deep Santa Monica Bay, CA-North San Luis Obispo, CA-San Luis Obispo Estero Bay, CA-Estero Bay Monterrey Bay, CA-Indian Head Beach San Francisco Bay, CA-Redwood City San Francisco Bay, CA-Hunters Point San Francisco Bay, CA-Oakland Estuary San Francisco Bay, CA-Southampton Shoal San Francisco Bay, CA-Oakland Entrance
Total PCBs
Total PAHs
— — 46.67 61.20 28.33 8.86 5.54 10.77 110.33 20.43 58.19 19.33 129.13 71.50 1.10 11.72 23.80 581.80 3.18 901.67 41.67 — — 785.07 233.60 32.07 45.03 — 50.70 3.12 11.16 5.70 5.07 6.33 10.30 167.84 393.08 311.36 103.88 50.70 12.00 8.59 60.47 180.06 279.14 800.20 89.43 166.00 13.58 118.07 20.08 75.27 15.60 1.20 8.56 104.50 92.46 226.50 37.96 61.43
7,933.67 8,094.77 711.00 270.00 9.45 44.89 69.50 218.07 1,266.43 34.03 1,828.31 134.27 1,318.33 525.56 83.64 129.29 922.73 103.80 169.77 133.20 5.27 197.00 624.67 4,594.17 1,698.20 413.93 194.12 281.90 263.17 9.93 132.08 354.34 83.25 1.00 107.88 2,156.23 5,096.15 4,165.71 1,178.17 773.32 3.00 10.64 329.75 899.96 2,391.78 8,724.80 212.33 350.50 28.08 354.69 104.00 34.33 32.80 3.40 13.33 3,021.50 8,388.11 6,543.30 1,357.39 1,701.33 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.42
(Continued)
Estuary San Francisco Bay, CA-Castro Creek San Francisco Bay, CA-San Pablo Bay Bodega Bay, CA-North Coos Bay, OR-North Bend Columbia River Mouth, WA-Desdemona Sands Puget Sound, Nisqually Reach, WA Puget Sound, WA-Commencement Bay Puget Sound, WA-Elliott Bay Boca de Quadra, AK-Bacrian Point Lutak Inlet, AK-Chilkoot River Mouth Skagway, AK-Skagway River Nahku Bay, AK-East Side Prince William Sound, AK-Port Valdez Gulf of Alaska, AK-Kamishak Bay Bering Sea, AK,-Dutch Harbor Bering Sea, AK,-Port Moller Chukchi Sea, AK-Red Dog Mine Beaufort Sea, AK-Olitok Point Beaufort Sea, AK-Prudhoe Bay Note:
Total PCBs
Total PAHs
50.18 24.25 10.62 20.95 5.15 4.77 70.07 420.59 18.00 10.33 13.57 7.02 13.57 16.67 58.83 43.50 24.80 44.28 19.18
1,137.05 470.12 59.13 831.94 53.08 11.92 1,334.87 6,393.67 115.00 2.17 630.67 98.33 630.67 16.33 715.00 0.00 4.80 730.33 274.42
PCBs, Polychlorinated biphenyls; PAHs, Polycyclic aromatic hydrocarbons; ND, Not detected.
Source:
From Marmon, M.R., Gottholm, W., and Robertson, A., 1998, A Summary of Chemical Contaminant Levels at Benthic Surveillance Project Sites (1984–1992)—NOAA Technical Memorandum NOS ORCA 124, www.nos.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-83
Table 10B.43 Sewage Indicators In Sediments from Selected Estuaries in the Untied States, 1984 Estuary Casco Bay, ME Merrimack River, MA Salem Harbor, MA Boston Harbor, MA Buzzards’ Bay, MA Narragansett Bay, RI East Long Island Sound, NY West Long Island Sound, NY Raritan Bay, NJ Delaware Bay, DE Lower Chesapeake Bay, VA Pamlico Sound, NC Charleston Harbor, SC Sapelo Sound, GA St. Johns River, FL Charlotte Harbor, FL Tampa Bay, FL Apalachicola Bay, FL Mobile Bay, AL Round Island, MS Mississippi River Delta, LA Barataria bay, LA Galveston Bay, TX San Antonio Bay, TX Corpus Christi Bay, TX Lower Laguna Madre, TX San Diego Harbor, CA San Diego Bay, CA Dana Point, CA Seal Beach, CA San Pedro Canyon, CA Santa Monica Bay, CA San Francisco Bay, CA Bodega Bay, CA Coos Bay, OR Columbia River Mouth, OR/WA Nisqually Reach, WA Commencement Bay, WA Elliott Bay, WA Lutak Inlet, AK Nahku Bay, AK
Clostridium perfringens (cells/g)
Coprostanol (ng/g)
710.00 670.06 57,000.00 79,000.00 413.00 220,00 290.00 2,090.00 24,373.52 91.00 4.00 120.00 1,600.00 270.00 1,400.00 33.00 3.00 74.00 100.43 75.00 1,200.00 45.00 34.00 6.00 1.00 27.00 2,600.00 121.79 103.27 832.72 6,596.78 471.53 5,093.47 29.00 30.96 261.05 35.49 5,300.00 7,725.95 91.78 212.13
221.27 206.47 7,040.23 9,000.00 1,376.60 647.80 17.00 957.11 5,402.00 148.00 781.56 1,100.00 1,253.23 510.00 790.07 692.47 350.92 687.56 304.90 256.87 523.98 395.68 278.57 109.78 248.84 240.00 600.00 33.00 98.00 180.00 780.00 230.00 1,860.00 120.00 230.00 580.00 5.33 1,900.00 370.00 83.33 310.00
Source: From U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Ocean Assessments Division. 1987. National Status and Trends Program for Marine Environmental Quality. Progress Report on Preliminary Assessment of Findings of the Benthic Surveillance Project, 1984. Rockville, MD; U.S. Geological Survey, National Water Summary 1986.
q 2006 by Taylor & Francis Group, LLC
Estuary
q 2006 by Taylor & Francis Group, LLC
Arsenic
Cadmium
Chromium
Copper
Mercury
Nickel
Lead
Selenium
Tin
Zinc
0.13 0.06 0.09 0.24 0.11 0.19 0.25 0.03 1.49 6.12 2.87 5.52 4.02 2.41 0.04 0.64 1.79 3.24 1.18 0.17 0.08 0.05 0.92 1.58 1.69 3.62 3.60 4.68 3.85 0.25 0.69 0.36 0.19 0.05 1.94 1.12 1.12 0.40 0.18 0.08 0.33 0.36
5.90 7.89 10.34 11.29 11.12 11.91 10.20 4.25 13.89 10.23 10.12 12.34 14.25 26.20 0.95 9.55 7.46 9.65 8.29 3.58 3.62 3.34 7.13 8.01 7.96 14.94 21.67 20.25 20.07 8.68 11.69 6.85 7.57 5.66 30.43 30.23 30.23 12.68 13.59 7.80 9.48 8.13
— 0.08 0.18 — 0.12 0.33 0.20 0.11 4.87 1.86 1.30 1.20 0.66 1.81 0.02 0.18 0.97 0.85 0.41 0.15 0.10 0.06 0.47 0.87 0.84 1.73 1.61 1.51 2.63 0.38 0.53 0.28 0.34 0.13 3.11 0.68 0.68 0.46 0.77 0.24 1.03 0.33
122.64 66.71 82.97 329.93 100.33 92.20 183.94 27.70 1,671.81 232.02 121.72 213.50 136.13 120.53 2.88 67.26 79.80 119.72 95.58 50.23 42.31 30.32 67.84 123.04 59.57 120.76 138.33 154.68 230.89 98.42 107.65 45.63 46.00 226.33 515.67 196.78 196.78 81.42 83.87 52.25 — —
9.02 11.13 17.13 17.70 19.52 22.62 14.79 5.02 67.29 143.81 88.66 130.42 78.63 126.08 0.72 20.49 64.68 147.99 76.22 9.63 7.92 4.40 57.31 114.56 44.15 100.44 111.69 142.86 160.92 21.93 29.62 12.05 10.45 12.21 246.33 74.92 74.92 32.06 46.13 12.32 26.59 27.95
— 0.05 0.05 0.07 0.21 0.18 0.09 0.06 0.98 1.00 0.67 1.39 0.65 0.74 0.02 0.11 0.24 0.60 0.34 0.03 0.08 0.04 0.25 0.49 0.55 1.41 1.94 2.43 2.12 0.09 0.40 0.20 0.10 0.07 0.73 0.33 0.33 0.13 0.19 0.06 0.30 0.32
15.23 21.26 40.23 24.80 36.68 30.08 20.70 5.02 27.41 30.28 29.90 30.40 30.35 35.57 1.90 20.95 17.52 29.86 23.84 15.04 10.26 9.17 23.78 32.65 19.23 34.10 36.07 36.86 37.61 27.87 29.53 14.99 13.89 15.83 69.80 60.07 60.07 46.49 61.67 18.34 — —
21.37 19.27 27.90 28.43 31.08 37.18 39.26 21.46 186.32 110.25 95.51 120.56 101.87 158.93 5.47 31.15 58.00 112.69 61.77 20.05 18.50 18.68 52.94 77.12 74.26 124.64 160.04 158.84 157.68 47.03 43.93 26.80 21.35 27.47 172.00 123.78 123.78 53.41 61.63 17.19 38.24 44.74
0.25 0.14 0.42 0.86 0.48 0.39 0.63 0.04 0.73 0.64 0.30 0.39 0.40 0.50 0.08 0.28 0.38 0.51 0.35 0.07 0.04 0.27 0.21 0.44 0.19 0.41 0.54 0.68 0.98 0.78 0.46 0.32 0.12 0.34 1.59 1.02 1.02 0.63 1.60 0.39 — —
3.03 2.08 3.75 4.40 3.79 4.72 4.01 3.94 24.34 24.86 11.35 22.28 10.75 9.66 0.21 2.89 6.01 19.64 7.74 2.72 2.19 1.12 3.57 9.23 6.25 13.08 15.94 21.10 15.86 3.36 5.12 3.57 2.57 2.97 74.17 18.39 18.39 3.24 4.38 1.65 3.20 3.07
50.67 55.52 102.45 109.53 115.83 102.53 83.17 28.53 198.87 238.86 156.18 194.69 143.60 223.97 7.57 84.79 116.74 218.37 143.13 114.13 56.76 40.76 215.42 232.30 122.31 305.15 308.87 270.45 413.19 137.00 156.00 75.96 81.24 90.20 634.33 451.02 451.02 202.27 316.33 81.17 170.75 174.93
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Machias Bay, ME-Hog Island Machias Bay, ME-Chance Island Frenchman Bay, ME-Long Porcupine Island Penobscot Bay, ME-Job Island Penobscot Bay, ME-Colt Head Island Casco Bay, ME-Great Chebeague Island Casco Bay, ME-Cousins Island Merrimac River, MA-Plum Island Salem Harbor, MA-Folger Point Boston Harbor, MA-President Roads Boston Harbor, MA-Deer Island Boston Harbor, MA-Quincy Bay Boston Harbor, MA-Hull Bay Boston Harbor, MA-Mystic River Massachusetts Bay, MA-Plymouth Entrance Buzzards Bay, MA-West Island New Bedford Harbor, MA-Clarks Point Narragansett Bay, Rl-Prudence Island Narragansett Bay, Rl-Conanicut Island Niantic Bay, CON-Black Point Long Island Sound, NY-Long Island Shoal Long Island Sound, NY-Rocky Point Long Island Sound, NY-Lloyd Point Long Island Sound, NY-Oak Neck Point Raritan Bay, NY-Upper Bay Raritan Bay, NY-Gravesend Bay Raritan Bay, NY-West Reach Raritan Bay, NJ-East Reach Raritan Bay, NJ-Lower Bay Great Bay, NJ-Wells Island Great Bay, NJ-Seven Island Great Bay, NJ-Intercoastal Waterway Delaware Bay, DE-Brandywine Shoal Delaware Bay, DE-The Shears Baltimore Harbor, MD, Fort McHenry Channel Baltimore Harbor, MD-Brewerton Channel Chesapeake Bay, MD-Gibson Island Chesapeake Bay, MD-Chester River Chesapeake Bay, MD-Kent Island Chesapeake Bay, MD-Smith Island Chesapeake Bay, MD-Patuxent River Chesapeake Bay, VA-James River
Silver
10-84
Table 10B.44 Average Trace Metal Concentrations Detected in Sediments from Selected Estuaries in the United States, 1984–1992 (Milligrams per Kilogram Dry Weight)
5.61 10.58 8.22 12.79 3.66 4.39 3.34 8.08 4.95 3.41 5.33 3.03 4.03 1.74 1.35 1.20 18.45 13.76 38.31 19.97 20.38 17.09 6.72 7.71 6.84 8.35 5.96 5.70 6.53 3.23 5.89 38.31 7.11 6.51 6.36 4.98 3.90 6.94 6.29 4.41 6.04 2.98 6.90 6.60 5.90
0.24 1.20 0.28 0.16 0.05 0.07 0.06 0.11 0.15 0.33 0.40 0.97 0.33 0.14 0.10 0.27 0.07 0.28 3.22 0.73 0.21 0.11 0.21 0.08 0.19 0.42 0.17 0.20 0.37 0.06 0.15 3.22 0.96 0.26 0.19 0.16 0.07 0.09 0.14 0.12 0.35 0.15 0.08 0.37 —
55.24 71.97 67.70 67.21 34.47 35.89 27.02 45.81 38.38 58.96 50.72 66.23 78.63 49.66 19.34 21.52 78.75 82.28 127.75 39.78 122.26 101.34 43.43 48.97 41.18 58.66 39.89 — — 28.63 53.39 127.75 71.69 52.09 55.31 35.56 30.73 64.79 36.05 31.92 47.73 — 17.37 43.30 122.64
9.82 104.60 11.01 15.12 3.36 3.44 3.45 6.69 3.83 22.13 18.39 45.00 16.77 6.46 1.62 4.37 18.54 21.04 22.02 85.14 21.63 19.11 15.05 8.22 10.79 18.57 9.12 13.08 20.89 5.83 11.15 22.02 41.40 16.93 16.04 23.55 8.70 15.69 11.11 6.92 12.47 7.86 5.35 8.18 9.02
0.09 0.64 0.11 0.09 — — — 0.05 — — 0.16 — — — 0.04 0.07 0.10 0.21 0.27 0.19 0.17 0.12 0.11 0.08 0.08 0.07 0.05 0.11 0.14 — — 0.27 0.41 0.17 0.07 0.07 0.04 — 0.25 0.05 0.07 0.21 0.04 0.05 —
17.17 22.87 18.77 18.10 4.62 6.79 6.01 10.70 7.53 14.14 12.78 15.65 18.62 12.96 2.86 4.10 25.65 21.43 39.90 10.01 28.55 34.91 12.97 15.48 14.89 27.24 16.32 — — 11.68 20.37 39.90 23.58 20.04 20.22 15.47 10.31 22.21 14.04 10.37 15.32 — 5.48 6.03 15.23
15.49 106.23 24.96 23.11 9.48 9.11 8.84 15.18 9.09 40.84 38.30 92.30 35.37 13.89 4.21 7.65 29.48 54.15 41.48 57.37 38.75 32.59 18.22 17.01 17.05 20.02 14.83 17.57 28.11 11.23 18.06 41.48 63.65 33.53 30.82 23.47 14.24 25.43 21.38 12.96 20.41 11.04 12.35 11.35 21.37
0.18 0.29 0.73 0.44 0.15 0.15 0.09 0.29 0.14 0.52 0.57 1.28 1.51 1.46 0.30 0.28 0.55 0.65 0.70 0.55 0.81 0.53 0.28 0.26 0.31 0.33 0.21 — — 0.11 0.25 0.70 0.36 0.41 0.29 0.27 0.19 0.15 0.22 0.15 0.25 — 0.12 0.12 0.25
2.08 7.37 2.82 2.34 1.05 1.07 1.03 1.44 1.06 2.85 2.64 4.81 2.57 2.11 0.76 0.86 3.57 1.80 3.95 2.19 3.21 3.59 1.78 2.01 1.52 1.98 1.44 1.55 2.38 0.89 2.34 3.95 3.92 2.25 2.19 2.05 1.52 3.79 1.60 1.24 2.35 1.06 1.63 1.85 3.03
64.08 406.67 72.04 68.96 26.23 27.91 20.71 42.40 29.38 96.65 107.32 194.38 86.39 33.20 7.82 15.02 95.65 93.23 161.09 182.78 129.54 153.77 82.48 64.14 53.36 86.90 55.21 73.13 125.84 38.83 61.49 161.09 183.80 103.24 81.70 72.90 42.06 79.68 58.25 38.09 104.25 72.12 31.35 54.72 50.67 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-85
0.08 0.51 0.08 0.11 0.02 0.03 0.02 0.03 0.03 0.22 0.30 0.61 0.25 0.06 0.01 0.11 0.06 0.30 0.11 0.16 0.17 0.10 0.14 0.07 0.10 0.16 0.09 0.12 0.22 0.09 0.12 0.11 0.62 0.18 0.16 0.18 0.09 0.22 0.11 0.07 0.09 0.09 0.07 0.19 0.13
ENVIRONMENTAL PROBLEMS
Chesapeake Bay, VA-York River Chesapeake Bay, VA-Elizabeth River Pamlico Sound, NC-Jones Bay Charleston Harboar, SC-South Channel Sapelo Sound, GA-South Newport River Sapelo Sound, GA-Barbour Island River Sapelo Sound, GA-Sapelo Sound Inlet Sapelo Sound, GA-High Point Sapelo Sound, GA-Dog Hammock St. Johns River, FL-Trout River St. Johns River, FL-West Mill Cove St. Johns River, FL-Ortega River St. Johns River, FL-Piney Point St. Johns River, FL-Orange Point Charlotte Harbor, FL-Cape Haze Tampa Bay, FL-Northern Tampa Bay Apalachicola Bay, FL-St. George Island St. Andrew Bay, FL-Military Point Choctawhatchee Bay, FL Choctawhatchee Bay, FL-Destin Harbor Pensacola Bay, FL Mobile Bay, AL-North Point Pascagoula River, MS Round Island, MS-Round Island Herron Bay, MS-Heron Bay Mississippi River Delta, LA-Southeast Pass Barataria Bay, LA-Barataria Pass Lake Pontchartrain, LA-North Shore Lake Pontchartrain, LA-South Shore Galveston Bay, TX-East Bay Galveston Bay, TX-Trinity Bay Galveston Bay, TX-Cedar Bayou Galveston Bay, TX-Greens Bayou Galveston Bay, TX-Goat Islands Galveston Bay, TX-Morgans Point Galveston Bay, TX-Clear Lake Galveston Bay, TX-Eagle Point Galveston Bay, TX-Texas City Lavaca Bay, TX San Antonio Bay, TX-San Antonio Bay Corpus Christi Bay, TX-Long Reef Arroyo Colorado, TX-Arroyo City Lower Laguna Madre, TX-Laguna Heights San Diego Bay, CA-Outside Machias Bay, ME-Hog Island
(Continued)
Estuary
q 2006 by Taylor & Francis Group, LLC
Arsenic
Cadmium
Chromium
Copper
Mercury
Nickel
Lead
Selenium
Tin
Zinc
1.43 1.09 0.78 0.28 0.20 0.34 0.04 0.17 0.11 0.35 0.30 — 0.49 0.13 2.24 0.91 0.36 4.17 0.60 0.50 0.12 1.77 — 0.34 0.45 0.59 0.42 0.34 0.32 0.16 0.19 0.08 0.13 0.62 0.12 0.23 0.25 0.23 0.29 0.27 0.42 0.30 0.36
9.44 10.16 7.96 5.47 5.09 2.28 3.03 5.75 8.34 6.70 9.36 15.87 8.31 16.00 7.34 5.75 8.95 4.10 1.48 5.01 5.93 4.39 6.39 9.90 12.16 9.40 12.88 13.00 9.09 8.50 4.55 8.54 6.67 3.08 3.18 1.48 5.20 8.08 1.90 1.54 3.45 1.51 9.74
0.36 0.65 0.53 0.32 0.25 0.12 0.10 0.31 1.20 0.24 0.72 1.31 1.00 0.86 1.24 1.19 0.29 1.65 0.39 0.08 0.19 0.14 3.33 0.16 0.29 0.51 0.73 0.16 0.24 0.18 0.16 0.23 0.35 0.13 0.45 0.45 0.45 0.54 0.44 0.64 0.40 1.09 0.21
60.13 84.98 58.71 55.63 35.49 40.03 73.48 35.87 59.00 82.88 80.13 151.67 85.70 77.42 90.83 121.17 60.23 81.78 130.00 5,770.00 72.80 233.33 210.00 167.17 229.43 145.00 233.84 196.00 202.67 199.33 409.52 453.67 82.82 50.33 35.73 95.33 57.95 90.13 52.67 72.13 43.00 23.27 148.33
117.15 176.49 96.83 37.57 30.83 1.62 4.71 6.39 40.00 24.60 58.22 201.00 106.27 125.67 36.85 36.45 10.05 43.15 7.49 5.72 4.11 12.20 8.00 55.10 54.13 73.00 105.06 71.67 30.93 46.27 7.44 6.95 14.14 35.67 16.45 16.02 49.60 101.63 22.00 28.83 16.90 9.80 59.67
0.43 0.71 0.60 0.24 0.15 0.06 0.02 0.24 0.04 0.31 0.24 0.22 0.32 0.68 0.26 0.29 — 0.13 0.08 0.08 0.06 — 0.09 0.29 0.35 0.32 1.13 0.50 0.16 0.16 0.14 0.06 0.15 0.03 0.10 0.29 0.17 0.61 0.04 0.14 0.08 0.23 0.08
22.87 21.38 17.00 10.33 14.64 16.42 20.85 14.22 29.50 36.70 30.24 53.37 37.54 45.97 26.15 29.92 12.59 16.56 30.40 49.20 20.45 16.10 41.90 92.15 76.75 108.10 112.38 104.00 64.73 83.12 48.49 60.07 27.93 17.87 23.94 35.77 30.65 38.24 7.49 17.12 4.28 11.57 16.60
44.35 79.14 52.93 24.82 24.83 7.80 8.57 14.18 26.20 32.23 75.74 49.83 38.05 129.28 17.62 25.17 25.73 22.48 4.90 — 11.81 14.77 10.30 30.15 29.53 47.20 128.98 43.50 17.15 30.23 4.85 — 13.48 17.80 7.79 13.13 20.07 42.78 17.87 18.27 52.20 43.30 23.13
0.13 0.18 0.26 0.22 0.29 0.13 0.07 0.23 0.53 0.13 0.45 2.21 1.39 0.62 0.17 0.30 0.15 0.33 — — 0.14 0.15 0.29 0.56 0.38 0.26 0.90 0.37 0.21 0.19 0.13 0.08 0.30 0.15 0.25 0.13 0.48 0.34 0.74 0.43 0.15 0.87 0.41
4.81 10.19 10.92 6.74 11.49 2.67 2.54 2.36 3.06 1.97 6.12 — 6.57 18.73 2.30 2.97 1.12 4.33 0.80 — 1.53 1.81 2.27 6.68 3.07 2.99 16.32 1.87 2.23 4.43 2.31 — 2.45 2.71 2.60 2.54 2.29 2.35 3.21 1.62 2.76 0.21 2.79
206.52 279.33 226.33 116.00 87.64 42.29 70.87 48.94 118.00 111.17 184.61 205.67 173.93 307.83 85.33 91.73 35.48 87.70 43.60 38.50 24.18 54.67 48.00 165.50 137.71 174.50 287.50 171.67 102.14 128.53 44.86 45.60 68.16 132.33 90.79 104.09 91.45 168.03 104.33 180.17 169.33 191.33 150.00
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
San Diego Bay, CA-National City San Diego Bay, CA-28th Street San Diego Bay, CA-North San Diego Bay, CA-Harbor Island San Diego Bay, CA-Shelter Island Mission Bay, CA-Outside Ocean Side Harbor, CA-Outside Dana Point Harbor, CA-Outside Dana Point Harbor, CA-Inside Harbor San Pedro Bay, CA-Seal Beach San Pedro Bay, CA-Long Beach San Pedro Bay, CA-Mid Harbor San Pedro Bay, CA-Outer Harbor San Pedro Bay, CA-Cerritos Channel Santa Monica Bay, CA-Southeast Santa Monica Bay, CA-South Santa Monica Bay, CA-Manhattan Beach Santa Monica Bay, CA-West San Luis Obispo, CA-San Luis Obispo Estero Bay, CA-Estero Bay Monterrey Bay, CA-Indian Head Beach Monterrey Bay, CA-Moss Landing Farallon Islands, CA San Francisco Bay, CA-Redwood City San Francisco Bay, CA-Hunters Point San Francisco Bay, CA-Islais Creek Channel San Francisco Bay, CA-Oakland Sanctuary San Francisco Bay, CA-Oakland Entrance San Francisco Bay, CA-Southampton Shoal San Francisco Bay, CA-Castro Creek Bodega Bay, CA-North Humbolt Bay, CA-Indian Island Coos Bay, OR-North Bend Columbia River Mouth, OR-Youngs Bay Columbia River Mouth, WA-Desdemona Sands Puget Sound, Nisqually Reach, WA Puget Sound, Commencement Bay, WA Puget Sound, WA-Elliott Bay Boca de Quadra, AK-Bacrian Point Lutak Inlet, AK-Chilkoot River Mouth Skagway, AK-Skagway River Nahku Bay, AK-East Side Prince William Sound, AK-Port Valdez
Silver
10-86
Table 10B.44
0.13 0.26 0.11 0.06 0.26 0.04 0.13 0.17
5.90 1.75 2.22 1.67 1.75 5.69 2.33 1.34
— 0.19 0.70 0.43 0.19 — 0.32 0.26
122.64 82.33 30.67 63.00 82.33 213.33 70.85 58.53
9.02 26.67 49.67 13.33 26.67 10.00 18.29 11.83
— 0.06 0.24 0.06 0.06 0.06 0.20 0.09
15.23 9.32 5.13 5.82 9.32 32.63 23.11 17.79
21.37 14.67 12.93 9.84 14.67 8.49 14.02 7.88
0.25 0.19 0.70 0.06 0.19 0.17 0.41 0.32
3.03 2.70 2.77 3.37 2.70 2.10 1.34 2.31
50.67 89.67 85.33 100.67 89.67 51.00 80.98 72.23
Source: Abstracted from Marmon, M.R., Gottholm, W., and Robertson, A., 1998, A Summary of Chemical Contaminant Levels at Benthic Surveillance Project Sites (1984–1992)—NOAA Technical Memorandum NOS ORCA 124, www.nos.noaa.gov.
ENVIRONMENTAL PROBLEMS
Machias Bay, ME-Hog Island Gulf of Alaska, AK-Kamishak Bay Bering Sea, AK-Dutch Harbor Bering Sea, AK-Port Moller Bering Sea, AK-Kvichak Bay Chukchi Sea, AK-Red Dog Mine Beaufort Sea, AK-Olitok Point Beaufort Sea, AK-Prudhoe Bay
10-87
q 2006 by Taylor & Francis Group, LLC
10-88
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.45 Cadmium and Lead in Sediments of the Chesapeake Bay Mainstem Concentration Contaminant
a b
a
Median (ppm)
Maximum (ppm)
NOEL (ppm)
0.4
2.9
1.0
Cadmium
Lead
Aquatic Life Benchmark
35
86
Location of Maximum Concentrations
b
PEL (ppm) 7.5
21
160
Baltimore region south to the Little Choptank River; mouth of Potomac River Baltimore region
Trends Concentrations are declining
Concentrations are declining in some areas
No Observed Effect Level. Level above which impacts are considered “possible.” Probable Effect Level. Level above which impacts are considered “probable.”
Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters, Third Report to Congress, EPA-453/R-00-005. Original Source: From Eskin et al., 1996.
Table 10B.46 Temporal Trends in Chemical Concentrations Measured Nationally at 206 Mussel Watch Project Sites and at 30 Sites in the NERRS for Which Data Exist for Six Years During 1986–1999 Trend Organics* SCdane SDDTs SDiel SPCBs SPAHs SBTs HCB Lindane Mirex Note:
I 1 1(1) 4(2) 5(1) 18(3) 0 16 3 17
Trend D 85(8) 54(5) 32(4) 30 26(1) 100(10) 7 31 6
NT 120 151 170 171 162 106 183 172 183
Element As Cd Cu Hg Ni Pb Se Zn
I 9 7(4) 9 13(1) 11(2) 11(2) 14(2) 7(1)
D 15(3) 20(2) 10(1) 14(2) 6(1) 12(3) 4 15(4)
182 179 187 179 189 183 188 184
I, Increasing; D, Decreasing; NT, No trend. Increasing and decreasing trends for NERRs are given in parentheses.*Individual organic compound concentrations have been aggregated into these groups:
SBTs, the sum of the concentrations of tributyltin and its breakdown products dibutyltin and monobutyltin; SCdance, the sum of cis-chlordane, trans-nonachlor, heptachlor and heptachlorepoxide; SDDTs, the sum of concentrations of DDTs and its metabolities, DDEs and DDDs; SDield, the sum of concentrations of aldrin and dieldrin; SPAHs, the sum of concentrations of the 18 PAH compounds; SPCBs, the sum of the concentrations of homologs, which is approximately twice the sum of the 18 congeners. Source: From Lauenstein, G.G. and Cantillo, A.Y., 2002, Contaminant Trends in US National Estuaries Research Reserves, Nation Status and Trends Program for Marine Environmental Quality, NOAA NAS Technical Memorandum NCCOS 156, October 2002, www.noaa.gov.
q 2006 by Taylor & Francis Group, LLC
Assessed
Jurisdiction Alabama Alaska Arizona Arkansas California Colorado Connecticut Cortina Rancheria Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Manzanita Band Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota
Oligotrophic
Mesotrophic
Eutrophic
HyperEutrophic
Dystrophic
Number of Acreage of Number of Acreage of Number of Acreage of Number of Acreage of Number of Acreage of Number of Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Public Public Public Public Public Public Public Public Public Public Public Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes
Acreage of Significant Public Lakes
33 — 11 — — 38 — — — —
276,436 — — — — 47,530 — — — —
3 — 0 — — 7 — — — —
585 — — — — 5,272 — — — —
8 — 3 — — 14 — — — —
54,077 — — — — 15,722 — — — —
21 — 8 — — 13 — — — —
210,539 — — — — 15,957 — — — —
1 — — — — 4 — — — —
11,235 — — — — 10,579 — — — —
0 — — — — — — — — —
0 — — — — — — — — —
262 — — — 329 164 115 240 105 — — — 58 593 730 1,984 — 145 177 81 17 671 116 — — 161 124
1,571 — — — 157,408 54,153 41,190 123,632 217,480 — — — 21,010 64,688 491,931 2,131,026 — — 797,184 121,610 319,946 155,773 10,462 — — 311,236 617,330
191 — — — 6 42 — 3 15 — — — 0 8 115 309 — 8 49 2 3 199 — — — 44 0
604 — — — 180 4,761 — 140 72,143 — — — 0 25,790 172,591 210,108 — — 289,569 1,601 133,230 115,924 — — — 103,130 0
51 — — — 30 62 — 36 33 — — — 16 150 375 723 — 37 71 3 12 315 3 — — 29 20
802 — — — 3,912 37,389 — 22,052 42,972 — — — 15,172 17,057 175,307 1,099,929 — — 425,599 3,023 133,116 31,672 111 — — 75,898 503,386
13 — — — 159 41 115 129 54 — — — 42 380 207 667 — 89 46 29 2 157 113 — — 70 49
71 — — — 79,398 10,205 41,190 98,521 102,237 — — — 5,838 18,912 124,881 645,241 — — 81,495 94,393 53,600 8,177 10,351 — — 112,820 19,152
7 — — — 134 19 — 64 3 — — — 0 54 33 285 — 11 1 47 — — — — — 4 55
94 — — — 73,918 1,798 — 2,919 128 — — — 0 2,892 19,152 175,748 — — 500 22,593 — — — — — 404 94,792
— — — — — 0
— — — — — 0
0 0 — — — 0 1 — 0 — — 10 — — — — — — 14 —
0 0 — — — 0 37 — 0 — — 22 — — — — — — 18,984 —
q 2006 by Taylor & Francis Group, LLC
10-89
(Continued)
ENVIRONMENTAL PROBLEMS
Table 10B.47 Trophic Status of Lakes in the United States in 1998
10-90
Table 10B.47
(Continued) Assessed
Jurisdiction
Mesotrophic
Eutrophic
HyperEutrophic
Dystrophic
Number of Acreage of Number of Acreage of Number of Acreage of Number of Acreage of Number of Acreage of Number of Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Significant Public Public Public Public Public Public Public Public Public Public Public Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes Lakes
Acreage of Significant Public Lakes
— 199 201 66 18 62 27 112 122 — —
— 624,343 491,255 76,122 — 7,307 452,654 132,159 538,438 — —
— 14 58 — 3 21 — 2 21 — —
— 10,568 35,280 — — 1,900 — 1,199 100,346 — —
— 69 72 13 3 28 14 10 38 — —
— 105,325 75,212 6,268 — 4,089 247,414 23,205 320,408 — —
— 77 60 39 12 10 13 37 39 — —
— 342,706 191,310 44,630 — 1,199 205,240 30,526 73,338 — —
— 39 11 14 — 2 — 63 24 — —
— 165,744 189,453 25,224 — 99 — 77,229 44,346 — —
— 0 0 — — 1 — 0 — — —
— 0 0 — — 20 — 0 — — —
129 202 — — 81 — — 7,373
460,561 42,299 — — 21,423 — — 8,808,157
47 33 — — 17 — — 1,220
285,154 9,817 — — 7,724 — — 1,587,615
57 121 — — 31 — — 2,447
59,191 25,404 — — 5,335 — — 3,529,046
24 30 — — 33 — — 2,778
116,166 6,205 — — 8,365 — — 2,752,663
1 2 — — — — — 878
50 473 — — — — — 919,371
— 16 — — — — — 42
— 400 — — — — — 19,463
Note: Oligotrophic, Clear waters with little organic matter or sediment and minimum biological activity; Mesotrophic, Waters with more nutrients, and therefore, more biological productivity; Eutrophic, Waters extremely rich in nutrients, with high biological productivity. Some species may be choked out; Hypereutrophic, Murky, highly productive waters, closest to the wetland status. Many clearwater species cannot survive; Dystrophic, Low in nutrients, highly colored with dissolved humic organic material. (Not necessarily a part of the natural trophic progression.); —, no data. Source: From United States Environmental Protection Agency, 2000, National Water Quality Inventory: 1998 Report to Congress, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Torres—Martinez Desert Band Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total
Oligotrophic
ENVIRONMENTAL PROBLEMS
10-91
Table 10B.48 Lake Acres Meeting Fishable and Swimmable Goals of the Clean Water Act in the United States, by Jurisdiction, in 2000 Fishing Jurisdiction
Total Assessed
Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa (flood control reservoirs) Iowa (lakes) Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana N. Mariana Islands Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total Percent of assessed
464,815 0 0 135,451 355,954 484,834 5,975 27,601 0 238 883,840 0 0 0 0 123,702 45,540 29,850 21,067 13,684 205,712 0 987,283 21,010 10,674 889,600 0 275,720 293,305 283,747 0 114,734 0 168,002 14,245 109,909 151,557 310,727 518,175 103,867 0 31,489 0 0 175 0 31,438 0 620,092 460,642 51,739 116,565 0 48 203,704 0 8,566,710
Full Support
Swimming Threatened
Total Assessed
391,952 — — 134,896 339,004 104,952 0 26,809.30 — 0 654,720 — — — — 100,646 0 29,850
12,650 — — — — 64,678 0 0 — 0 0 — — — — 0 0 0
418,703 0 0 135,379 339,004 634,251 56,658 26,049 2,954 238 1,260,800 0 0 0 0 152,628 0 40,850
20,844 — 197,502 — 987,283 20,910 193 0 — 134,638 292,365 215,435 — 114,734 — 168,002 0 410 — 275,547.00 — 28,682 — 0 — — 0 — 31,438 — 265,599 460,642 30,781 45,487 — 48 116,474 — 5,189,844 60.6%
59 13,683 0 — 0 — 0 — — 112,579
22,924 188,506 215,646 492,913 987,283 5,069 21,015 3,770 2,591,796 19,821 262,372 508,922 0 4,083 168,354 160,406 16,820 0 125,387 209,819 687,315 78,175 530,124 507,536 0 12,146 14,493 313,306.0 48,468 494,479 480,467 162,760 52,943 109,574 0 4,430 93,663 0 12,662,298
7,550 — — — 0 114 — 0 — — 62,385 — 13,008 — — 0 — — — 0 0 0 71,078 — 0 22,504 — 380,288 4.4%
Full Support 318,593 — — 134,320 339,004 202,876 56,650 16,767 911 0 760,960 — — — — 22,129 0 40,850 16,091 — 215,427 453,343 879,314 5,069 2,022 — 1,769,686 19,821 261,757 205,107 — 4,083 168,354 158,034 11,343 — — 204,626 511,376 641 61,635 479,174 — 7,741 13,792 310,027.9 48,468 395,923 480,067 161,760 34,256 109,469 — — 3,623 — 8,885,090 70.2%
Threatened 82,955 — — — — 77,465 0 9,011 0 0 110,080 — — — — 0 0 0 1,041 47,903 0 0 71,105 — 4,190 — 557 0 — 0 — — — 1,085 0 — 32,371 — 28,881 51,921 271,024 9,428 — 1,878 0 — — 0 0 — 10,712 0 — 4,430 1,367 — 817,405 6.5%
Note: Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; —, no data Source: From Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
10-92
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.49 Summary of Acres of Fully Supporting, Threatened, Imparied Waters in Assessed Lakes in the United States by Jurisdiction, in 2000 Jurisdiction Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa (flood control reservoirs) Iowa (lakes) Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana N. Mariana Islands Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total Percent of assessed
Total Lake Acres
Assessed
490,472 12,787,200 — 400,720 514,245 1,672,684 164,029 64,973 2,954 238 2,085,120 425,382 169 2,168 700,000 309,340 142,871 —
464,811 16,376 0 135,451 355,954 754,737 62,920 27,669 0 238 1,683,000 402,849 0 0 0 154,795 71,120 40,850
161,366 188,506 228,385 1,078,031 987,283 77,965 151,173 889,600 3,290,101 500,000 293,305 844,802 — 280,000 533,239 168,017 72,235 997,467 790,782 311,071 714,910 118,461 1,041,884 618,934 161,445 12,146 21,796 407,505 750,000 538,060 1,994,600 481,638 228,920 149,982 466,296 22,373 944,000 325,048 40,603,893
43,268 188,506 217,422 518,176 987,283 21,010 67,749 891,225 2,591,796 291,721 293,305 547,929 0 127,926 168,446 160,583 18,359 154,550 402,486 310,513 0 78,175 592,147 507,536 42,421 12,146 16,554 313,865 138,857 530,619 1,547,955 460,642 53,350 116,399 243,749 21,523 230,006 0 17,078,967
Full Support 217,431 11,438 0 118,361 339,004 175,282 56,669 19,145 0 0 771,840 65,166 0 0 0 7,855 25,580 19,000 10,336 0 100,447 40,259 758,081 8,922 26,965 0 1,769,686 190,239 110,189 64,146 0 116,958 168,446 153,191 5,550 30,410 0 305,247 0 641 76,188 296,173 16,157 6,404 13,742 74,044 22,831 412,538 858,967 321,453 10,452 25,265 151,763 2,426 52,100 0 8,026,988 47.0%
Threatened 131,587 0 0 0 0 64,636 0 6,984 0 0 110,080 0 0 0 0 0 0 16,950 18,695 26,884 94,839 1,926 80,134 0 652 1,625 557 92,655 122,241 7,550 0 0 0 1,123 12,409 0 90,944 0 0 51,921 75,677 88,786 0 1,878 5 0 0 0 97,522 0 12,488 87,254 0 6,295 44,606 0 1,348,903 7.9%
Impaired 115,793 4,938 0 17,090 16,950 514,819 6,251 1,540 0 238 801,080 337,683 0 0 0 146,940 45,540 4,900 14,237 161,622 22,136 475,991 149,068 12,087 39,425 889,600 821,553 8,827 60,875 476,233 0 10,968 0 6,269 400 124,140 311,542 5,266 0 25,613 440,282 122,577 26,264 3,864 2,808 239,821 116,026 118,081 591,466 139,189 30,410 3,880 91,986 12,801 133,300 0 7,702,370 45.1%
Not Attainable 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 706 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 706 0.0%
Note: Supporting, Fully supporting of all uses; Threatened, Fully supporting all uses but threatened for one or more uses; Impaired, Partially or not supporting one or more uses; Not Attainable, Not able to support one or more uses; —, no data. Source: From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-93
Table 10B.50 Estimated Phosphorus Loadings to the Great Lakes, 1976–1991 Year
Lake Superior
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
3,550 3,661 5,990 6,619 6,412 3,412 3,160 3,407 3,642 2,864 3,059 1,949 2,067 2,323 1,750 2,709
Note:
Lake Michigan Metric Tons 6,656 4,666 6,245 7,659 6,574 4,091 4,084 4,515 3,611 3,956 4,981 3,298 2,907 4,360 3,006 3,478
Lake Huron
Lake Erie
Lake Ontario
4,802 3,763 5,255 4,881 5,307 3,481 4,689 3,978 3,452 5,758 4,210 2,909 3,165 3,277 2,639 4,460
18,480 14,576 19,431 11,941 14,855 10,452 12,349 9,880 12,874 11,216 11,118 8,381 7,841 8,568 12,899 11,113
12,695 8,935 9,547 8,988 8,579 7,437 8,891 6,779 7,948 7,083 9,561 7,640 6,521 6,728 8,542 10,475
The 1978 Great Lakes Water Quality Agreement set target loadings for each lake (in metric tons per year): Lake Superior, 3,400; Lake Michigan, 5,600; Lake Huron, 4,360; Lake Erie, 11,000; and Lake Ontario, 7,000. Data do not include loadings to the St. Lawrence River. Data analysis was discontinued after 1991.
Source: From The 1997 Annual Report of the Council of Environmental Quality. Great Lakes Water Quality Board, Great Lakes Water Quality Surveillance Subcommittee Report to the International Joint Commission, United States and Canada, (International Joint Commission, Windsor, ON, Canada, Biennial). Orignal Source: From www.whitehouse.gov/CEQ.
Table 10B.51 Summary of Fully Supporting, Threatened, and Impaired Waters in Assessed Great Lakes Shoreline in the United States in 2000 Jurisdiction Illinois Indiana Michigan Minnesota New York Ohio Pennsylvania Wisconsin Total Percent of assessed
Total Miles
Assessed
Full Support
Threatened
Impaired
63 43 3,250 272 577 236 63 1,017 5,521
63 43 3,250 0 457 220 0 1,017 5,050
0 0 0 0 0 0 0 0 0 0.0%
63 0 0 0 40 185 0 807 1,095 21.7%
0 43 3,250 0 417 35 0 210 3,955 78.3%
Not Attainable 0 0 0 0 0 0 0 0 0 0.0%
Note: Supporting, fully supporting of all uses; Threatened, fully supporting all uses but threatened for one or more uses; Impaired, partially or not supporting one or more uses; Not Attainable, not able to support one or more uses. Source:
From Abstracted from United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.
Table 10B.52 Atmospheric Input of Some Organic Contaminants to the Great Lakes Compound Total PCB Dieldrin Total PAH Total DOT p.p 0 -Methoxychlor
Lakes Superior
Lake Michigan
Lake Huron
Lake Erie
Lake Ontario
9.8 0.5 163 0.6 8.3
6.9 0.4 114 0.4 5.9
7.2 0.6 118 0.4 6.1
3.1 0.2 51 0.2 2.6
2.3 0.1 38 0.1 1.9
Note: Metric tons per Year. Source: From Great Lakes Water Quality Board, 1985 Report on Great Lakes Water Quality. Original Source: Eisenreich et al., 1981.
q 2006 by Taylor & Francis Group, LLC
10-94
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.53 Atmospheric Loading Estimates for Selected Pollutants (kg/yr) in the Great Lakes Pollutant of Concern
Superior
Michigan
Huron
Erie
Ontario
a
PCBs (wet and dry) 1988 1992 1994 1996 PCBsa (net gas transfer)b 1988 1994 DDT (wet and dry) 1988 1992 1994 1996 DDT (net gas transfer) 1988 1994 Benzo(a)pyrene (wet and dry) 1988 1992c 1994 Note: a b
c
550 160 85 50
400 110 69 42
400 110 180 N/A
180 53 37 34
140 42 64 N/A
K1900 K1,700
K5140 K2,700
K2560 —
K1100 K420
K708 K440
90 34 17 4
64 25 32 12
65 25 37 N/A
33 12 46 2
26 10 16 N/A
K681 30
K480 67
K495 —
K213 34
K162 13
69 120 200
180 84 250
180 84 —
81 39 240
62 31 120
—, Not determined or reported.
Data presented for PCB congeners 18, 44, 52, and 101 (each with 3–5 chlorines in chemical structure). The convention is to assign a negative number to loss of pollutant from the lake (i.e., volatilization). Thus, the resulting number expresses the mass of a pollutant going into or coming out of the lake per year (i.e., a positive net gas transfer indicates a net input of the pollutant to the lake and a negative net gas transfer indicates a net loss or output from the lake). Data from 1992 may represent an underestimation in the measurement of benzo(a)pyrene.
Source: Modified From United States Environmental Protection Agency, 1997, Deposition of Air Pollutants to the Great Waters Second Report to Congress, EPA-453/R-97-011. 1996; data source: United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters Third Report to Congress, EPA-453/R-00-005. Original Source: From Eisenreich and Strachan 1992; Hillery et al., 1996; Hoff et al., 1996; Strachan and Eisenreich 1988. Table 10B.54 Sources of PCBs to Lake Superior Source
kg/yr
Atmosphere Tributary Municipal discharges Industrial discharges Total
Percent of Total
6,600–8,300 1,300 66 2 8,000–9,000
82–86 13–16 1 1
Source: From Great Lakes Water Quality Board, 1985 Report on Great Lakes Water Quality. Original Source: From Eisenreich et al., 1981.
Table 10B.55 Concentration of Total PCBs in Lake Superior Water Column Year
Total PCB Concentration (mg/L)
Total Concentration of 25 PCB Congeners (mg/L)
1978 1979 1980 1983 1986 1988 1990 1992
0.00173G0.00065 0.00404G0.00056 0.00113G0.00011 0.0008G0.00007 0.00056G0.00016 0.00033G0.00004 0.00032G0.00003 0.00018G0.00002
NA NA 0.00099G0.00010 0.00073G0.00006 0.00055G0.00015 0.00020G0.00001 0.00021G0.00001 0.00009G0.00001
Note:
NA, not applicable.
Source:
From United States Environmental Protection Agency, 1997, Deposition of Air Pollutants to the Great Waters, Second Report to Congress, EPA-453/R-97-01.
Original Source: From Jeremiason et al., 1994.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-95
Table 10B.56 Comparison of Water-Quality Criteria to Pollutant Concentrations in the Great Lakes (mg/L) Total Water Column Concentratione
Pollutant
National AWQC: Fresh Water Aquatic Lifea
National AWQC: Human Healthb
Great Lakes WaterQuality Agreement Objectivec
Great Lakes WaterQuality Criteriond
Lake Superior
DDT/DDf Dieldrin
0.001 0.0019
0.00024 0.00071
0.003 0.001g
0.000011 0.0000065
!0.00006 0.00026
0.00045 —
!0.00004 NA 0.0011 0.0016
!0.00006 !0.00006 0.00032– 0.00038 0.00035 0.000072 0.000047 0.0015 0.0011
0.47 0.0000039
0.0004 0.00034 0.00018 0.00020– 0.00036 !0.00046 NA
0.00038 0.00049 0.0007– 0.00122 0.0009 !0.00046 !0.00046
HCB a-HCH Lindane Total PCBs POMh
— —
0.0072 0.092
— —
0.08 0.014
0.186 0.00079
0.01 —
—
0.028
—
—
Lake Michigan NA NA
Lake Huron
Lake Erie
Lake Ontario !0.00006 0.00028– 0.00032 0.000036 0.0008– 0.0009 0.00036 0.0012 !0.00046
Note: a b c d e
f g h
NA, No data available; Bold texts indicate exceedances of GLWQC; bold-italic texts indicate exceedances of AW/QC for human health. Values are for freshwater chronic criteria (U.S. EPA 1986). Values are for human chronic exposure through both fish consumption and drinking water (U.S. EPA 1986). Values are for protection of the most sensitive user of the water among humans, aquatic life and wildlife (IJC 1978). Values are the most stringent (i.e., lowest) among those for protection of human health, aquatic life, or wildlife (U.S. EPA 1995a). Concentrations are taken from De Vault et al. (1995) and L’Italian (1993). Concentrations of dieldrin and PCBs that are reported as ranges represent two different concentrations reported in two different studies. For a-HCH, the range of concentrations in Lake Ontario represents the range reported in a single study. Sampling data are for p,p 0 -DDE. Value for aldrin and dieldrin combined. AWQC for human health is for polycyclic aromatic hydrocarbons (PAHs), a subset of POM, sampling data are for benzo(a)pyrene, a PAH.
Source: From United States Environmental Protection Agency, 1997, Deposition of Air Pollutants to the Great Waters, Second Report to Congress, EPA-453/R-97-011, www.epa.gov.
Table 10B.57 Modeled Air Deposition, Depositional Flux, and Waterborne Inputs of Dioxins and Furans to the Great Lakes Dioxins and Furans Atmospheric deposition (g TEQ/yr) (range) Depositional flux (mg/km2/yr) Waterborne inputs (g TEQ/yr) Percent contribution from atmospheric sources
Superior
Huron
Michigan
Erie
Ontario
Total
5.6
8.6
13.7
7.3
6.4
42
(2–17) 69
(3–25) 145
(5–43) 238
(2–21) 284
(2–18) 337
(13–124) 172
1.4
1.4
1.9
11
O3.9
O19.6
80
86
88
40
w62
w68
Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters. Third Report to Congress, EPA-453/R-00-005, www.epa.gov. Orginal Source: From Cohen et al., 1995.
q 2006 by Taylor & Francis Group, LLC
10-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.58 Current Rates of Dioxins and Furans Accumulation in Great Lakes Sediments Accumulation Rates in Sediment (pg/cm2/yr)
Location
Number of Sediment Cores Analyzed
Dioxinsa
Furansa
Dioxinsa
Furansa
2 2 1
7.4–8.0 44–49 17
0.8–0.9 22–25 17
100 33–55 100
100 5–35 5–35
3
120–220
130–230
5–35
!5
Lake Superior Northern Lake Michigan Southern Lake Michigan near Chicago Urban Area Lake Ontario a
Percent Contribution from Atmospheric Sources
Includes the total of all dioxin homologs. Includes the total of all furan homologs.
Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters, Third Report to Congress, EPA-453/R-00-005, www.epa.gov. Orginal Source: From Pearson et al., 1998.
Table 10B.59 Modeled Air Deposition, Depositional Flux, and Waterborne inputs of Hexachlorobenzene to the Great Lakes HCB
Superior
Michigan
Huron
Erie
Ontario
Total
11 (4–49) 0.13
15 (5–73) 0.26
16 (6–74) 0.27
15 (6–65) 0.58
23 (9–101) 1.19
79 (30–362) 0.32
0.1
0.8
0.6
!72
35
!108.5
Total deposition (kg/yr) (range) Depositional flux (g/km2/yr) Waterborne inputs (kg/yr)
Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters, Third Report to Congress, EPA-453/R-00-005, www.epa.gov. Orginal Source: From Cohen et al., 1995.
q 2006 by Taylor & Francis Group, LLC
Atmospheric Deposition (%)
Location a
Urban Area (%)
Riverine
Groundwater
Direct Discharge
Comments
!1
Not reported
Air-water exchange and sediment burial account for the major loss pathways from the lake, but atmospheric deposition dominates inputs Over 90 percent of the mercury entering the watershed is retained in the terrestrial system and does not reach the aquatic system Tidal exchange, sediment burial, and air-water exchange are major loss pathways, 45 percent of the mercury entering the sound is re-emitted
Lake Michigan
w80
w30 (Chicago)
Chesapeake Bayb
O50 (Wet 47–53) (Dry 9–11)
Baltimore (percent not known)
w33–49
Not reported
Not reported
w10
New York New Jersey (percent not known)
w52
Not reported
w36
Long Island Soundc
w17
ENVIRONMENTAL PROBLEMS
Table 10B.60 Mercury Sources Identified for Lake Michigan, Chesapeake Bay, and Long Island Sound in Mass Balance Studies (by Percent Contribution)
Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters, Third Report to Congress, EPA-453/R-00-005, www.epa.gov. Original Source: From a Mason and Sullivan (1997); b Mason et al., (1997); c Fitzgerald (1998).
10-97
q 2006 by Taylor & Francis Group, LLC
10-98
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.61 Preliminary Estimates of Total Atmospheric Mercury Deposition to Lake Michigan Deposition Wet Aerosol Dry Reactive Gaseous Mercurya Dissolved Gaseous Mercuryb Total a
b
Annual Total (kg) 614G186 69G38 506 K460 729
Annual Mean (mg/m2) 10.6G3.2 1.2G0.7 8.8 K8.0 12.6
Reactive gaseous mercury (RGM) deposition values do not include error bars because they reflect a sensitivity analysis performed on a single measurement in place of direct measurements since no measurement method was available for RGM at the time of the study. Dissolved gaseous mercury (DGM) deposition values do not include error bars because the values reflect a single measurement taken to establish modeling parameters.
Source: From United states Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters, Third Report to Congress, EPA-453/R-00-005, www.epa.gov. Orginal Source: From Landis, 1998.
q 2006 by Taylor & Francis Group, LLC
Jurisdiction Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigana Minnesotaa Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee
Rivers
Lakes, Reservoirs, Ponds
11 — — 3 8 4 — 5 6 — 27 68 2 — 19 127 — 10 7 8 15 1 17 62 89 8 5 3 15 1 1 14 3 27 6 2 53 1 6 28 1 39 — 7
2 — — 2 10 12 11 6 5 — 52 33 — 1 11 69 1 1 1 12 — 1 83 64 850 3 — 23 20 1 3 25 23 45 7 18 9 — 7 2 1 17 1 9
Great Lakes
Estuaries
Bayous
Coastal
Canal
Wetland
Multi-class Waters
— — — — — — — — — — —
— — 1 — — 2 — 1 8 — — 3 1 — — — — — — 1 — 2 4 — — — — — — — — 6
— — — — 3 — — — — — —
1 — — — — 11 — — — — 8 1 — — — — — — — 1 1
— — — — — — — — 1 — 1
— — — — — — — — — — — 1 — — — — — — — — — — — 1 — — — — — — — — — — — — — — — — — — — —
— — — — 1 1 — — — — 10 — — — — — — — 1 1 — — 1 — — — 1 — — — — 1 — — — — — — — — — 1 — 1
— 1 1 — — — — — — — 13 1 — — — — — — — — 8 — — 1 — — 2 — — — —
3 1 — — — — 1 — — — —
— — — — — — — 6 — — — — — — — — — — — — — — — — — — — — — — — —
1 — — 1 — — — — 1 2 3 1 — — — — — 1 1 — —
— — — — — — — — — — — — — — — — 2 — — — — — — 1 — — — — — 2 — —
Regional
Statewide
1 — — — — — —
— — — — — — — 1 — 1 — — — — — 1 — — 1 — 2 — 1 1 1 — 1 — — — 1 1 — 1 1 — 1 — — — — — — —
— — — — — — — — — — — — — — — — — 1 1 — — — — — — — 1 — — — — — — — — —
Total Advisories 15 0 1 5 22 30 11 13 20 1 98 106 3 1 31 198 1 11 10 29 18 4 107 141 941 13 8 26 37 2 6 49 26 87 17 21 64 1 13 33 3 60 1 17
q 2006 by Taylor & Francis Group, LLC
10-99
(Continued)
ENVIRONMENTAL PROBLEMS
Table 10B.62 Number of Fish Consumption Advisories from the National Listing of Fish and Wildlife Advisories, 2000
(Continued)
Jurisdiction
Rivers
Lakes, Reservoirs, Ponds
Texas Utah Vermont Virginia Washington West Virginia Wisconsina Totals
4 1 1 10 1 10 101 837
15 1 9 — 1 — 364 1,831
Note: a
10-100
Table 10B.62
Great Lakes
Estuaries
Bayous
Coastal
Canal
Wetland
Multi-class Waters
Regional
Statewide
Total Advisories
— — — — — — 4 31
2 — — — 8 — — 44
— — — — — — — 9
1 — — — 2 — — 37
— — — — — — — 7
— — — — — — — 2
— — — — — — — 19
— — — — — — — —
— — 1 — — — 1 17
22 2 11 10 12 10 470 2,838
Data from the National Listing of Fish and Wildlife Advisories.
Includes Tribal and joint State/Tribal advisories; Alabama, Connecticut, Florida, Georgia, Louisiana, Maine, Mississippi, New Hampshire, New Jersey, New York, North Carolina, Rhode Island, South Carolina, and Texas the coastal advisory extends statewide.
Source: From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov. THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-101
Table 10B.63 Fish Advisories Issued for the Great Lakes Great Lakes Lake Superior Lake Michigan Lake-Huron Lake Erie Lake Ontario
PCBs
Dioxins
Mercury
Chlordane
† † † † †
† † † † †
† † † †
† † †
Mirex
DDT
†
†
Source: From United States Environmental Protection Agency, 2004, Fact Sheet Update: National Listing of Fish Advisories, EPA-823-F04 016, August 2004, www.epa.gov.
Table 10B.64 Pollution Discharges in Navigable Waters of the United States in 2001 (by Size) Petroleum Spill Size (Gallons) 1–100 101–1,000 1,001–3,000 3,001–5,000 5,001–10,000 10,001–50,000 100,001– 1,000,000 Year-End Statistics
Number of Spills
Chemical
Spill % of Spill Volume Incidents (Gallons)
Number of Spills
Other
Spill % of Spill Volume Incidents (Gallons)
Number of Spills
Spill % of Spill Volume Incidents (Gallons)
% of Spill Volume
7,256 216 45 16 11 14 1
96.00 2.90 0.60 0.20 0.10 0.20 0.00
33,276 86,955 77,447 67,241 89,224 376,057 124,320
86 10 1 1 5 1 1
81.90 9.50 1.00 1.00 4.80 1.00 1.00
624 4,680 2,000 4,006 38,390 21,680 200,049
50 3 2
90.90 5.50 3.60
259 775 4,500
4.70 14.00 81.30
7,559
100.00
854,520
105
100.00
271,429
55
100.00
5,534
100.00
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001, Annual Data and Graphics for Oil Spills (1969–2001), www.uscg.mil.
q 2006 by Taylor & Francis Group, LLC
10-102
Table 10B.65 Pollution Discharges in Navigable Waters of the United States in 2001 (by Type of Source) Oil
Detailed Source
Number of Spills
% of Spill Incidents
Chemical Spill Volume (Gallons)
% of Spill Volume
Number of Spills
% of Spill Incidents
Other
Spill Volume (Gallons)
95 246 46 562
1.30 3.30 0.60 7.40
125,217 212,298 474 122,454
14.70 24.80 0.10 14.30
Freight barge Freight ship Industrial vessel Oil recovery Passenger Public vessel
27 139 42 4 179 197
0.40 1.80 0.60 0.10 2.40 2.60
86 22,007 1,284 6 1,163 10,192
0.00 2.60 0.20 0.00 0.10 1.20
613 36 382 2,299 38 108
8.10 0.50 5.10 30.40 0.50 1.40
8,907 162 12,980 47,512 1,775 3,314
1.00 0.00 1.50 5.60 0.20 0.40
6 5 4
5.70 4.80 3.80
6 23 4,016
4 4 266
0.10 0.10 3.50
12 13 112,648
0.00 0.00 13.20
25
23.80
61 3
0.80 0.00
23,099 10
2.70 0.00
3
620 27 18 13 21 10
8.20 0.40 0.20 0.20 0.30 0.10
63,470 459 1,339 1,241 12,336 861
7.40 0.10 0.20 0.10 1.40 0.10
40 1
0.50 0.00
13,860 500
1.60 0.10
Unclassified Recreational Research vessel Towboat/Tugboat Unclassified vessel Modu OSV Public tank ship/barge Public freight Designated waterfront facility Land facility nonmarine Other onshore marine facility Fixed platform Mobile facility Municipal facility Offshore pipeline Onshore pipeline Aircraft Other land vehicle Other railroad equipment
q 2006 by Taylor & Francis Group, LLC
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
2 8
1.90 7.60
11 200,059
0.00 73.70
1 6
1.80 10.90
120 11
2.20 0.20
1
1.00
1
0.00
1
1.80
1
0.00
1
1.80
3
0.10
0.00 0.00 1.50
4 8 1 1
7.30 14.50 1.80 1.80
4 78 1 1
0.10 1.40 0.00 0.00
36,515
13.50
3
5.50
591
10.70
2.90
2,051
0.80
1
1.80
1
0.00
14 2 1
13.30 1.90 1.00
7,195 402 50
2.70 0.10 0.00
4
7.30
118
2.10
1
1.80
1,500
27.10
1
1.00
1
0.00
1
1.00
250
0.10
1
1.80
3,000
54.20
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Tankship Tankbarge Commercial vessel Fishing boat
% of Spill Volume
Bridge Factory Fleeting area Industrial facility Locks Marina Marpol reception Non-vessel common carrier Outfall/sewer/drain Permanently moored Shipyard/repair facility Shoreline Unknown or other Year-end statistics
1
0.00
5
0.00
1 12 2 28 1 50
0.00 0.20 0.00 0.40 0.00 0.70
40 95 24 7,859 5 2,207
0.00 0.00 0.00 0.90 0.00 0.30
6 1
0.10 0.00
3,042 5
0.40 0.00
7 4 20 252
0.10 0.10 0.30 3.30
20 115 4,134 23,149
0.00 0.00 0.50 2.70
10
9.50
1,073 7,559
14.20 100.00
14,141 854,520
1.70 100.00
16 105
15.20 100.00
6
5.70
1,731
10.635 8,483 271,429
0.60
1
1.80
31
0.60
3.90
1
1.80
50
0.90
3.10 100.00
20 55
36.40 100.00
24 5,534
0.40 100.00
ENVIRONMENTAL PROBLEMS
Tank truck
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001, Annual Data and Graphics for Oil Spills (1969–2001), www.uscg.mil.
10-103
q 2006 by Taylor & Francis Group, LLC
Petroleum Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
83 493 1,728 109 35 1,682 1,140 693 1,396 7,559
1.10 6.50 22.90 1.40 0.50 22.30 15.10 11.80 18.50 100.00
7,168 53,295 133,872 1,600 244 237,980 139,300 158,667 122,394 854,520
0.80 6.20 15.70 0.20 0.00 27.80 16.30 18.60 14.30 100.00
1 7 28
1.00 6.70 26.70
5 16 19,634
20 12 17 20 105
19.00 11.40 16.20 19.00 100.00
3,677 796 118
48.60 10.50 1.60
529,482 121,432 287
62.00 14.20 0.00
50 10 1
1,005
13.30
52,784
6.20
503 1,460 7,559
6.70 19.30 100.00
26,891 123,664 854,520
3.10 14.50 100.00
Other % of Spill Volume
Spill Volume (Gallons)
Number of Spills
% of Spill Incidents
0.00 0.00 7.20
17
30.90
136
2.50
20,492 1,070 206,869 23,343 271,429
7.50 0.40 76.20 8.60 100.00
13 2 8 15 55
23.60 3.60 14.50 27.30 100.00
3,075 2 213 2,108 5,534
55.60 0.00 3.80 38.10 100.00
47.60 9.50 1.00
228,432 7,173 5
84.20 2.60 0.00
22 6 1
40.00 10.90 1.80
3,289 11 1
59.40 0.20 0.00
22
21.00
12,465
4.60
10
18.20
124
2.20
2 20 105
1.90 19.00 100.00
11 23,343 271,429
0.00 8.60 100.00
1 15 55
1.80 27.30 100.00
1 2,108 5,534
0.00 38.10 100.00
% of Spill Volume
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001, Annual Data and Graphics for Oil Spills (1969–2001), www.uscg.mil.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Waterbody Atlantic Ocean Pacific Ocean Gulf of Mexico Great Lakes Lakes Rivers & canals Bays & sounds Harbors Other Year-end statistics Location Internal/headlands Coastal (0–3 Ml) Contiguous zone (3–12 Ml) Ocean (12–200 Ml) Ocean general Other Year-end statistics
Chemical
10-104
Table 10B.66 Pollution Discharges in Navigable Water in the United States (by Type of Location and Water Body)
Oil
State
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
Number of Spills
% of Spill Incidents
Other
Spill Volume (Gallons)
% of Spill Volume
350 152 65 641 21 11
4.60 2.00 0.90 8.50 0.30 0.10
47,643 2,450 2,423 24,794 2,665 5,048
5.60 0.30 0.30 2.90 0.30 0.60
6 2
5.70 1.90
15 2
0.00 0.00
3
2.90
403
0.10
1
1.00
10,000
3.70
36 554 20 44 115 2 49 10 2 58 1,487 136 154 53 62 25 8 2
0.50 7.30 0.30 0.60 1.50 0.00 0.60 0.10 0.00 0.80 19.70 1.80 2.00 0.70 0.80 0.30 0.10 0.00
1,621 11,508 47 694 5,854 3 2,034 39 65 125,917 147,740 7,794 4,095 1,607 353 309 75 2
0.20 1.30 0.00 0.10 0.70 0.00 0.20 0.00 0.00 14.70 17.30 0.90 0.50 0.20 0.00 0.00 0.00 0.00
1 1 1
1.00 1.00 1.00
1,000 2 500
10
9.50
3 3 2 1 1
119 126 22 114 156 43 67 42 52 78 58 9 1,072
1.60 1.70 0.30 1.50 2.10 0.60 0.90 0.60 0.70 1.00 0.80 0.10 14.20
2,465 2,399 42 10,854 32,114 2,123 18,765 9,003 779 1,497 1,227 334 213,653
0.30 0.30 0.00 1.30 3.80 0.20 2.20 1.10 0.10 0.20 0.10 0.00 25.00
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
1
1.80
7
0.10
0.40 0.00 0.20
1
1.80
3
0.10
15,640
5.80
21
38.20
565
10.20
2.90 2.90 1.90 1.00 1.00
256 52 2,020 4 7,600
0.10 0.00 0.70 0.00 2.80
1
1.80
3,000
54.20
1
1.80
1
0.00
2
1.90
17
0.00
4 5
3.80 4.80
109 1,554
0.00 0.60
1 2
1.80 3.60
50 2
0.90 0.00
1
1.00
1
0.00
1
1.80
1
0.00
1
1.80
1
0.00
1 11
1.80 20.00
1 277
0.00 5.00
25
23.80
206,411
76.00
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-105
Alaska Alabama American Samoa California Connecticut District of Columbia Delaware Florida Georgia Guam Hawaii Iowa Illinois Indiana Iowa Kentucky Louisiana Massachusetts Maryland Maine Michigan Minnesota Missouri N. Mariana Islands Mississippi North Carolina New Hampshire New Jersey New York Ohio Oregon Pennsylvania Puerto Rico Rhode Island South Carolina Tennessee Texas
Number of Spills
Chemical
ENVIRONMENTAL PROBLEMS
Table 10B.67 Pollution Discharges in Navigable Waters of the United States in 2001 by State
(Continued) Oil
State Virginia Virgin Islands Washington Wisconsin West Virginia Unknown or beyond state waters Year-end statistics
10-106
Table 10B.67
Chemical
Other
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
Number of Spills
132 30 465 21 14 882
1.70 0.40 6.20 0.30 0.20 11.70
21,383 1,364 24,800 10,186 543 106,209
2.50 0.20 2.90 1.20 0.10 12.40
3
2.90
21,687
8.00
1
1.80
1
0.00
5 2
4.80 1.90
73 7
0.00 0.00
1 1
1.80 1.80
1 1,500
0.00 27.10
23
21.90
4,076
1.50
10
18.20
124
2.20
7,559
100.00
854,520
100.00
105
100.00
271,429
100.00
55
100.00
5,534
100.00
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001, Annual Data and Graphics for Oil Spills (1969–2001), www.uscg.mil.
ENVIRONMENTAL PROBLEMS
10-107
Table 10B.68 Type of Oil Discharged to Navigable Waters of the United States in 2001 Oil Type Crude oils Heavy fuel oils Intermediate fuel oils Gasoline products Other petroleum oils Nonpetroleum oils Year-end statistics
Number of Spills
% of Spill Incidents
Spill Volume (Gallons)
% of Spill Volume
1,173 121 2,181 260 3,788 36 7,559
15.50 1.60 28.90 3.40 50.10 0.50 100.00
182,999 82,168 228,320 27,233 333,643 157 854,520
21.40 9.60 26.70 3.20 39.00 0.00 100.00
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001, Annual Data and Graphics for Oil Spills (1969–2001), www.uscg.mil.
Table 10B.69 Oil Spills in U.S. Water — Number and Volume: 1998–2001 Number of Spills Spill Characteristics Total Size of spill (gallons) 1–100 101–1,000 1,001–3,000 3,001–5,000 5,001–10,000 10,001–50,000 50,001–100,000 100,001–1,00,000 1,000,000 and over Waterbody Atlantic ocean Pacific ocean Gulf of Mexico Great Lakes Lakes Rivers and canals Bays and sounds Harbors Other Source Tankship Tankbarge All other vessels Facilities Piperlines All other non vessels Unknown
Spill Volume (Gallons)
1998
1999
2000
2001
1998
1999
2000
2001
8,315
8,539
8,354
7,539
885,303
1,172,449
1,431,370
854,520
7,962 259 54 15 15 8 — 2 —
8,212 240 42 18 10 12 4 1 —
8,058 219 37 12 16 6 4 2 —
7,258 216 45 16 11 14 — 1 —
38,093 86,606 96,743 64,609 108,148 216,335 — 274,769 —
38,119 86,530 74,582 73,798 66,274 301,510 245,406 285,230 —
39,355 78,779 67,529 45,512 112,415 108,400 266,380 713,000 —
33,276 86,955 77,447 67,241 89,224 376,057 — 124,320 —
109 644 2,190 119 25 1,944 891 790 1,603
148 758 1,756 129 31 1,924 1,299 907 1,587
150 623 1,838 95 32 1,816 1,248 801 1,750
83 493 1,728 109 35 1,682 1,140 893 1,396
6,674 192,775 181,372 3,006 63 280,651 24,234 97,223 99,305
29,440 150,694 45,786 906 624 504,254 136,650 105,213 198,872
135,010 36,301 112,069 4,535 349 663,404 49,783 273,095 156,824
7,168 53,295 133,872 1,600 244 237,980 139,300 158,667 122,394
104 220 4,848 937 45 571
82 227 5,361 1,019 25 571
111 229 5,220 1,054 25 566
95 246 4,680 995 34 436
56,673 248,089 316,473 166,269 47,863 32,584
8,414 158,977 409,084 367,537 36,140 147,704
608,176 133,540 291,927 311,604 17,021 45,136
125,217 212,298 232,341 201,025 13,577 55,921
1,590
1,244
1,149
1,073
17,352
44,593
23,966
14,141
Note:
Based on reported discharges into U.S. navigable waters, including territorial waters (extending 3 to 12 mi from the coastline), tributaries, the contiguous zone, onto shoreline, or into other waters that threaten the marine environment. Data found in Marine Safety Management System; — Represents or rounds to zero. Source: From U.S. Census Bureau, Statistical Abstract of the United States 2004–2005, www.census.gov. Orginal Source: From U.S. Coast Guard, www.uscg.mil/hq/g-m/nmc/response/stats/Summary.htm and uscg.mil/hq/g-m/nmc/response/ stats/chp2001.pdf (released August 2003).
q 2006 by Taylor & Francis Group, LLC
Crude Oils Year
Intermediate Fuel Oils
Gasoline Products
Other Petroleum Oils
Nonpetroleum Oils
Number
Volume
Number
Volume
Number
Volume
Number
Volume
Number
Volume
Number
Volume
4,807 5,243 4,643 4,521 4,347 4,481 4,036 3,358 3,216 3,070 3,188 2,919 2,153 875 555 660 1,183 1,992 1,712 1,728 1,598 1,549 1,467 1,783 1,642 1,593 1,352 1,283 1,173 72,127
7,219,648 10,102,280 7,138,446 5,631,995 3,331,533 3,518,825 15,411,430 7,762,112 2,440,608 4,761,261 3,763,206 4,281,504 2,012,551 1,720,405 1,768,240 1,856,136 10,997,750 4,730,679 896,683 803,160 319,467 626,821 195,857 222,976 412,747 304,424 148,654 704,259 182,999 103,266,654
915 932 826 809 863 938 873 773 627 454 448 400 291 379 325 314 371 362 316 350 234 206 223 175 163 122 116 94 121 13,020
2,068,102 1,858,340 7,342,076 9,811,141 1,151,495 925,233 950,344 275,089 4,114,826 2,906,973 409,906 2,159,878 964,056 840,040 489,686 448,387 957,043 499,347 205,063 192,638 743,447 824,254 213,949 266,034 19,710 63,885 108,408 156,135 82,168 41,047,653
1,423 1,712 1,654 1,867 1,944 2,498 2,396 2,083 1,850 1,885 1,873 1,927 1,596 1,772 1,867 1,941 2,578 2,829 2,622 2,659 2,595 2,710 2,963 2,706 2,477 2,576 2,751 2,479 2,181 64,414
2,271,442 1,189,120 1,091,283 1,033,888 1,528,183 1,653,321 1,658,465 1,328,861 850,052 911,026 2,136,142 7,224,260 1,997,320 1,025,190 858,323 3,452,480 1,173,326 1,322,094 366,201 564,314 662,415 345,726 290,186 2,206,213 193,390 299,337 305,096 274,545 228,320 38,440,519
535 684 684 735 762 854 771 604 591 620 603 664 582 439 452 447 429 479 448 542 512 468 469 422 419 423 381 314 260 15,593
1,070,803 1,763,230 2,068,473 1,127,213 993,647 3,780,524 996,134 1,601,836 841,469 815,359 854,318 891,746 721,325 471,692 272,265 597,773 258,328 756,680 98,483 124,806 99,164 219,804 46,416 267,992 124,976 82,499 77,992 32,921 27,233 21,085,101
985 1,051 1,075 1,156 1,285 1,509 1,414 1,259 1,158 1,100 1,355 1,594 1,152 1,469 1,585 1,572 1,998 2,457 3,423 4,161 3,958 3,929 3,829 4,177 3,849 3,531 3,852 4,121 3,788 67,793
2,476,361 664,618 3,763,013 571,926 1,041,758 759,190 1,340,479 1,512,769 427,372 434,293 1,109,342 3,360,784 2,617,914 139,051 158,184 203,555 84,992 603,189 307,422 184,873 217,856 414,767 344,664 147,849 182,535 70,145 520,088 262,373 333,643 25,095,005
349 377 410 334 258 364 344 306 369 355 449 754 395 59 57 64 54 58 48 51 75 98 86 72 74 70 87 63 36 6,116
147,224 121,145 116,792 341,786 142,518 227,015 536,710 116,303 246,666 515,884 106,934 87,706 123,083 85,600 62,187 27,672 7,254 3,017 2,099 5,876 25,039 57,901 707,157 6,767 9,216 65,013 12,211 1,137 157 3,908,069
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001. Cumulative date for oil spills 1973–2001, www.uscg.mil.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 2000 2001 Totals
Heavy Fuel Oils
10-108
Table 10B.70 Number and Volume of Spills by Type of Oil in the United States, 1973 to 2001
Tankship Year 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 2000 2001 Totals
Tankbarge
All Other Vessels
Facilities
Pipelines
All Other Nonvessels
Unknown
Number
Gallons
Number
Gallons
Number
Gallons
Number
Gallons
Number
Gallons
Number
Gallons
Number
Gallons
694 846 595 526 533 678 647 547 419 279 258 238 164 196 158 222 200 249 220 193 172 172 148 122 124 104 92 111 95 9,002
3,153,070 1,177,851 8,723,153 9,315,761 202,590 329,699 13,077,598 1,597,088 1,074,621 1,219,922 145,822 4,663,952 732,397 1,164,962 1,547,462 852,287 11,272,324 4,977,251 92,334 118,075 69,541 69,694 125,491 219,311 22,429 56,673 8,414 608,176 125,217 66,743,165
603 754 767 894 993 980 862 799 718 547 523 499 385 516 413 486 504 457 428 322 314 393 353 313 252 220 228 229 246 14,998
1,251,320 2,331,302 2,572,118 1,702,772 1,566,631 3,239,284 1,162,569 1,738,003 4,294,542 2,146,576 1,807,897 2,484,481 3,683,548 1,510,064 550,108 3,164,017 746,833 992,025 241,346 149,212 697,653 955,582 1,101,938 1,163,258 165,649 248,089 210,383 133,540 212,298 42,223,038
1,527 1,566 1,499 1,514 1,760 2,057 1,833 1,698 1,584 1,383 1,444 1,530 1,113 900 1,208 1,300 1,564 1,779 1,780 4,795 4,944 4,681 4,977 5,151 4,971 4,848 5,360 5,220 4,680 78,666
1,049,748 317,939 1,415,466 281,032 275,255 474,151 394,951 290,976 341,595 412,484 378,537 1,863,435 446,966 160,890 848,200 369,985 674,660 417,882 362,809 398,145 409,963 308,343 396,724 298,451 192,801 316,473 357,678 291,927 232,341 13,979,807
3,317 3,844 3,139 2,978 2,671 2,534 2,358 2,011 2,007 2,244 2,443 2,408 2,032 1,382 1,160 1,038 1,688 2,287 2,389 2,045 2,320 2,258 586 509 838 937 1,019 1,054 995 56,491
5,250,092 3,834,292 4,663,214 2,046,062 2,353,360 4,391,595 1,824,738 2,926,797 1,126,966 1,660,560 1,385,766 1,193,770 2,237,558 902,917 317,437 1,368,898 448,792 1,059,302 445,986 504,600 350,141 677,016 868,900 406,384 204,935 166,269 367,537 311,604 201,025 43,486,513
511 582 667 627 461 406 583 552 561 598 582 557 385 91 95 120 110 149 105 36 35 55 30 17 32 45 25 25 34 8,076
2,353,744 6,833,402 2,769,165 4,283,495 2,528,165 1,220,486 3,351,156 3,067,276 1,338,116 4,213,862 3,036,906 1,212,702 777,017 230,785 196,852 704,719 214,920 316,928 49,382 200,396 362,399 62,340 11,894 978,392 224,122 47,863 36,140 17,021 13,577 40,653,222
301 376 390 398 426 530 506 377 324 392 444 565 385 158 142 142 138 148 117 815 826 796 500 552 486 571 571 566 436 12,378
424,055 588,091 1,149,716 647,656 593,305 501,074 608,740 382,505 313,718 368,696 323,750 381,704 235,654 28,596 36,522 39,383 33,030 32,242 10,068 235,839 145,796 348,577 77,428 23,527 72,208 32,584 147,704 45,136 55,921 7,883,225
2,061 2,031 2,235 2,485 2,615 3,459 3,045 2,399 2,198 2,041 2,222 2,461 1,705 1,750 1,665 1,690 2,409 3,108 3,530 1,285 361 605 2,444 2,671 1,921 1,590 1,244 1,149 1,073 59,452
1,771,550 615,854 227,251 241,170 669,827 707,819 473,806 2,594,326 431,436 322,696 1,301,170 6,205,834 323,108 283,764 112,303 86,715 88,137 119,377 674,027 269,400 31,895 77,721 55,854 28,508 60,430 17,352 44,593 23,966 14,141 17,874,030
ENVIRONMENTAL PROBLEMS
Table 10B.71 Number and Volume of Oil Spills by Source in the United States, 1973–2001
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001. Cumulative data for oil spills 1973–2001, www.uscg.mil.
10-109
q 2006 by Taylor & Francis Group, LLC
10-110
Table 10B.72 Number and Volume of Oil Spills by Waterbody in the United States, 1973–2001 Atlantic Ocean Year
Number
Gallons
Pacific Ocean Number
Gallons
Gulf of Mexico Number
Gallons
Great Lakes Number
Lakes
Gallons
Number
Rivers & Canals
Gallons
Bays & Sounds
Number
Gallons
Number
Gallons
Harbors
Other
Number
Gallons
Number
Gallons
73
117
2,459,968
455
281,546
38
8,553
62
72,971
0
0
3,566
8,250,726
1,116
387,285
3,503
3,224,849
157
567,682
74
203
185,682
622
218,073
218
157,926
72
131,059
0
0
2,383
5,613,582
1,941
454,526
4,015
4,714,829
545
4,223,054
75
156
6,107,710
477
253,517
727
1,418,791
72
60,463
0
0
2,544
6,486,011
934
3,184,703
3,789
2,937,545
593
1,071,342
76
175
7,569,064
297
436,868
936
850,660
194
179,912
0
0
2,457
3,763,548
967
512,399
3,614
2,655,553
782
2,549,944
77
283
78
270
119,135
614
88,314
656
402,392
113
40,706
0
0
4,573
4,924,452
726
2,803,394
3,079
701,866
613
1,783,850
79
225
307,823
487
556,054
867
386,281
129
72,982
0
0
4,223
5,804,497
479
11,060,800
2,654
563,290
770
2,141,835
80
173
242,993
362
210,428
743
437,069
80
155,358
0
0
3,294
7,090,268
366
692,490
2,650
1,590,711
715
2,177,654
81
149
350,511
351
49,965
857
99,120
45
29,508
0
0
2,826
6,144,670
471
152,695
2,388
590,160
724
1,504,366
82
119
31,305
276
127,377
1,061
121,889
18
10,027
0
0
2,593
5,388,921
512
366,107
1,896
1,417,451
1,009
2,881,720
83
135
57,083
332
129,264
1,290
295,736
2
11
0
0
2,666
2,814,518
768
1,601,887
1,784
1,212,231
939
2,269,117
84
157
58,201
468
1,555,741
1,583
2,897,179
37
18,612
0
0
2,453
3,928,947
647
192,080
1,848
7,604,388
1,065
1,750,729
85
124
56,026
361
493,419
951
116,969
23
1,583
2
9
1,808
4,169,267
581
201,348
1,143
722,800
1,176
2,674,827
86
59
4,401
229
171,520
431
97,221
130
6,854
14
1,445
1,379
1,410,325
639
335,795
723
1,172,891
1,389
1,081,527
87
63
8,250
348
1,342,548
218
91,524
176
4,951
10
235
1,273
391,057
817
390,047
692
302,665
1,244
1,077,607
88
68
9,961
366
2,191,448
372
1,076,986
155
32,898
6
98
1,166
1,878,896
932
312,885
724
126,498
1,209
956,333
89
45
30,955
524
480,644
1,063
108,519
179
4,875
10
1,752
1,373
322,326
1,145
11,062,200
881
766,281
1,393
701,139
90
92
13,400
480
624,494
1,834
4,115,264
194
129,131
11
383
1,749
1,775,142
988
263,436
940
455,108
1,889
538,649
91
109
9,009
446
199,306
1,977
100,702
191
5,103
14
1,256
2,010
430,905
938
143,723
916
687,563
1,968
298,385
92
129
93
132
14,713
649
262,292
1,763
53,265
256
10,602
19
2,300
1,744
942,114
1,004
418,137
1,095
51,842
2,310
94
206
799,549
666
128,752
1,350
205,151
240
15,984
16
318
1,814
383,171
1,062
72,022
1,016
346,649
2,590
537,677
95
267
48,313
648
69,053
1,485
253,040
282
3,103
26
92
1,849
1,156,002
1,109
41,004
1,176
148,229
2,196
919,393
96
119
27,980
491
29,209
2,403
45,145
228
3,507
19
52
1,984
475,550
793
1,092,207
992
288,252
2,306
1,155,929
97
87
40,875
505
32,841
2,341
105,462
156
4,311
29
210,270
1,821
182,676
811
46,450
858
45,932
2,016
273,775
98
109
6,674
644
192,775
2,190
181,372
119
3,006
25
63
1,944
280,651
891
24,234
790
97,223
1,603
99,305
99
148
29,440
758
150,694
1,756
45,786
129
906
31
624
1,924
504,264
1,299
136,650
907
105,213
1,587
198,872
2000
150
135,010
623
36,301
1,838
112,069
96
4,535
32
349
1,816
663,404
1,248
49,783
801
273,095
1,750
156,824
2001
83
7,168
493
53,295
1,728
133,872
109
1,600
35
244
1,682
237,980
1,140
139,300
893
158,667
1,396
122,394
Total
4,152
19,054,638
13,728
10,653,402
35,381
15,214,328
3,925
1,192,525
320
219,867
66,676
79,244,143
26,418
36,765,442
49,642
34,240,859
38,821
36,257,796
162
731
1,974
0
229
3,763
21
1,125
1,999
2,634
969
552
1,241
2,335 312,123
Source: From U.S. Coast Guard, Pollution incidents in and around U.S. waters a spill/release compendium: 1969–2001. Cumulative data for oil spills 1973–2001, www.uscg.mil.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
594
209
ENVIRONMENTAL PROBLEMS
10-111
Table 10B.73 The World’s Major Water-Quality Issues Issue Scale Organic pollution
Pathogens
Salinization
Water Bodies Polluted a
Rivers Lakesa Groundwaterb Riversa Lakesb Groundwaterb Groundwatera Riversb
Heavy metals
Riversb Lakesb Groundwatera All bodies
Organic
All bodies
Acidification
Riversa Lakesa Groundwaterb Lakesa Riversb
Nitrate
Eutrophication
Sediment load (increase and decrease)
Riversb Lakes
Diversions, dams
Riversa Lakesb Groundwatera
Note: a b
Sector Affected
Time Lag between Cause and Effect
Effects Extent
Aquatic environment
!1 yr
Local to district
Healtha
!1 yr
Local
Most uses Aquatic environment Health Health
1–10 yrs
District to region
O10 yrs
District to region
Health Aquatic environment Ocean fluxes Health Aquatic environment Ocean fluxes Health Aquatic environment
!1 to O10 yrs
Local to global
1 to 10 yrs
Local to global
O10 yrs
District to region
O 10 yrs
Local
1–10 years
Regional
1–10 yrs
District to region
Aquatic environment Most uses Ocean fluxes Aquatic environment Most uses Ocean fluxes Aquatic environment Most uses
Pollutants of many kinds eventually find their way into water bodies at all levels. Although it may take some years for problems to become evident, poor water quality affects both human health and ecosystem health.
Very serious issue on a global scale. Series issue on a global scale.
Source: From Water for People Water for Life, The United Nations World Water Development, Copyright q United Nations Educational, Scientific and Cultural Organization (UNESCO) - World Water Assessment Programme (UNESC0-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: From WHO/UNEP (World Health Orgauization/United Nations Environment Programme), 1991. Water Quality: Progress in the Implementation of the Mar del Plata Action Plan and a Strategy for the 1990s, Nairobi, Earthwatch Global Monitoring System, World Health Organization, United Nations Environment Programme. Table 10B.74 Median Concentrations of Acidic Drugs in Raw and Finished Drinking Water (ug/L) in Ontario, Canada, Separated According to the Source of the Water Row Water
Clofibric acid Ibuprofen Gemfibrozil Fenoprofen Naproxen Ketoprofen Diclofenac Indomethacin Note:
Finished water
Wells
Lakes
Rivers
Wells
Lakes
Rivers
Nd Nd Nd Nd Nd Nd Nd Nd
0.3 0.6 1.4 Nd 1.3 0.3 Nd Nd
0.5 54.7 8.6 0.5 69.3 Nd 5.7 2.5
Nd Nd Nd Nd Nd Nd Nd Nd
0.1 0.5 Nd Nd Nd Nd Nd Nd
0.4 13 Nd Nd Nd Nd Nd Nd
Nd, not detected.
Source:
From Kummerer, K., (eds.), 2004, Pharmaceuticals in Environment, Sources, Fate, Effects and Risks, Second Edition, q Springer-Verlag, Berline Heidelberg 2004. Table 6.5. With kind permission of Springer Science and Business Media.
Original Source: From Servos M.R. et al., 2004, Presence and removal of acidic drugs in drinking water treatment plants in Ontario, Canada. Water Qual Res J Can (to be published).
q 2006 by Taylor & Francis Group, LLC
10-112
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.75 Theoretical Environmental Loads of Selected Pharmaceuticals to Italy and Concentrations Measured in the River Po
Pharmaceuticals measured in 1997 and 2001 Amoxycillin Atenolol Bezafibrate Ceftriaxone Cyclophosphamide Diazepam Erythromycin Furosemide Ibuprofen Lincomycin Ranitidine Salbutamol Spiramycin Pharmaceuticals measured only in 2001 Ciprofloxacin Clarythromycin Enalapril Hydrochlorothiazide Omeprazole Source:
Theoretical Environmental Load 1997 (tons yrL1)
Theoretical Environmental Load 2001 (tons yrL1)
Measured Concentration in 1997 (range; ng 1L1)
Measured concentration in 2001 (range; ng 1L1)
59.64 7.54 — 11.42 — — 1.00 3.49 1.00 5.11 10.46 0.034 —
125.75 19.86 3.80 5.93 — — 0.39 5.76 0.19 3.60 10.67 0.126 1.02
Nd 49.5–84.32 15.1–22.4 Nd Nd 0.5–0.7 0.7–0.9 Nd Nd-4.0 1.2–4.6 Nd Nd-4.6 Nd
Nd 3.4–39.4 0.8–2.7 Nd Nd Nd-2.1 1.4–15.9 1.7–67.2 Nd-9.7 3.1–248.9 Nd-4.0 Nd-1.7 Nd-43.8
— — — — —
Nd-26.1 0.5–20.3 Nd-0.1 Nd-24.4 Nd
— — — — —
2.96 8.47 1.47 13.93 0.67
From Kummerer, K., (eds.), 2004, Pharmaceuticals in Environment, Sources, Fate, Effects and Risks, Second Edition, q Springer-Verlag Berline Heidelberg 2004. Table 4.2. With kind permission of Springer Science and Business Media.
q 2006 by Taylor & Francis Group, LLC
Total Phosphorus (mgP/L)
Canada
Mexico
U.S.A. Japan
Korea
Austria
Denmark
Finland
France
Germany Hungary
Ireland
Italy
Average Last 3 Yrsa
1996
1997
1998
1999
Average Last 3 yrsa
— — — — — — — — — 0.008 0.020 0.091 0.014 0.019 0.036 — — — — — — — — — — — 0.076
— — — 0.397 — — 0.030 — — 0.009 0.020 0.097 0.018 0.023 0.039 0.008 0.010 0.016 0.008 — 0.212 0.107 0.385 0.012 0.006 0.006 0.065
— — 0.11 0.17 — 0.02 0.16 0.24 — 0.31 0.40 0.91 1.51 1.77 2.14 — — — — — 2.25 0.81 2.18 1.03 0.51 0.20 1.00
— — 0.11 0.12 — 0.01 0.13 0.16 — 0.32 0.42 0.89 1.52 3.06 2.39 — — — — — 2.64 0.80 1.63 1.01 0.48 0.23 0.89
— 0.11 — 0.12 — — — — — 0.33 0.40 1.30 1.44 3.38 2.24 — — — — — 2.80 0.74 1.87 — — — 1.07
— — — — — — — — — 0.32 0.40 0.93 1.60 2.59 2.24 — — — — — — — — — — — 0.88
— — 0.11 0.14 — 0.02 0.13 0.21 — 0.32 0.41 1.04 1.52 3.01 2.29 — — — — — 2.56 0.78 1.89 1.03 0.49 0.22 0.95
— — — — —
— — — — —
— — — — 0.019
— 0.85 0.55 — 0.97
0.44 — — — 0.98
— — — — —
— — — — —
— — — — 0.99
0.089 0.082 0.059 — — — 0.021 0.012 0.038 0.022 0.001 —
0.049 0.056 0.053 — — 0.032 0.019 — — — —. —
0.075 0.083 0.060 0.018 0.011 0.041 0.022 0.011 0.042 0.018 0.001 —
— 0.74 2.53 0.52 0.09 1.24 — 0.83 0.88 0.35 2.50 2.73
— 1.06 2.35 0.48 0.05 1.23 — 0.84 0.89 0.35 2.30 5.15
— 0.98 2.46 0.48 0.08 — — 0.84 0.87 0.36 2.30 3.31
— 0.94 2.12 0.29 0.05 — — — — — — 3.42
— 0.99 2.31 0.41 0.06 0.99 — 0.84 0.88 0.35 2.37 3.96
1996
1997
1998
— — 0.004 0.430 — — 0.050 — — 0.009 0.018 0.120 0.015 0.022 0.032 0.009 0.009 0.014 0.008 — 0.206 0.122 0.543 0.012 0.006 0.007 0.039
— — — 0.380 — — 0.020 — — 0.009 0.021 0.100 0.025 0.027 0.141 0.008 — 0.018 0.008 — 0.230 0.109 0.341 0.013 0.006 0.005 0.050
— 0.004 0.004 0.380 — — — — — 0.010 0.018 0.100 0.016 0.023 0.040 — 0.011 — — — 0.200 0.090 0.270 — — — 0.069
— — — — 0.019
0.013 — — — 0.017
0.130 0.075 0.071 0.017 0.011 0.042 0.023 0.010 0.042 0.017 0.001 —
0.087 0.110 0.069 0.017 0.011 0.048 0.025 0.010 0.046 0.015 0.002 —
1999
(Continued) q 2006 by Taylor & Francis Group, LLC
10-113
Luxembourg
Ontario Huron Superior Chapala Patzcuaro Catemaco Chairel Cantenano Twin-Portage (Ohio) Biwa (North) Biwa (South) Kasumigaura Chunchonho Chungjiuho Paldang lake Mondsee Ossiachersee Wallersee Zellersee Dons Norreso Arreso Fureso Sobygard Pa¨a¨ja¨rvi Pa¨ija¨nne Yli-Kitka ParentisBiscarrosse Cazaux-Sanguinet Re´servoir Marne Re´servoir-Seine Lac d’Annecy BodenseeFischbach-Uttwil Ferto Balaton Velencei Ennel Owel Derg Sheelin Maggiore Como Garda Orta EschSure
Total Nitrogen (mgN/L)
ENVIRONMENTAL PROBLEMS
Table 10B.76 Concentrations of Total Phosphorus and Total Nitrogen in Selected Lakes of the World
10-114
Table 10B.76
(Continued) Total Phosphorus (mgP/L)
Norway
Poland
Sweden
Turkey
UK
1996
1997
1998
1999
Average Last 3 Yrsa
1996
1997
1998
1999
Average Last 3 yrsa
0.100 0.007 0.006 0.004 — 0.063 — — 0.023 0.006 0.005 0.033 0.041 0.019 — — — — 0.095 — 0.077
0.500 0.007 0.007 0.004 0.043 0.025 — — 0.018 0.006 0.004 0.033 0.038 0.018 — — — — — — 0.105
0.340 0.005 0.004 — — — — 0.052 0.019 0.006 0.003 0.043 0.040 0.015 — — — — 0.158 0.000 0.065
0.119 0.152 0.003 — — — — — 0031 0.008 0.005 0.039 0.039 0.014 — — — — — 0.000 0.032
0.286 0.021 0.005 — — — — — 0.023 0.007 0.004 0.038 0.039 0.016 — — — — 0.124 0.003 0.067
2.71 0.45 0.53 0.47 — 0.94 — — 0.55 0.80 0.71 0.57 0.68 1.11 — — 1.10 1.27 0.83 — 2.12
2.48 0.44 0.53 0.42 0.90 0.68 — — 0.67 0.88 0.83 0.67 0.67 1.21 — — 1.29 1.84 — — 3.08
2.48 0.46 0.55 — — — — — 0.66 0.85 0.79 0.79 0.66 1.18 — — 0.65 2.74 0.61 0.30 2.60
2.48 0.44 0.51 — — — — 1.06 0.87 0.83 0.78 0.59 0.66 1.19 — — 0.93 1.64 — 0.37 1.29
2.48 0.44 0.53 — — — — — 0.73 0.85 0.80 0.68 0.66 1.19 — — 0.96 2.07 0.62 0.35 2.32
Total Phosphorus Note:
Total Nitrogen Note:
a
CAN, Ontario, Haron and Superior: data represent annual mean surface values from several hundred open water samples for each lake (mainly spring and summer); MEX, Orthophosphates; U.S.A., W. Twin(Ohio), samples obtained from the deepest point in each lake, generally weekly from late spring-eady fall and less frequently the rest of the year at 0.1, 2, 4, 7 and 10 m; FIN, data refer to surface measurements; DEU, Bodensee, Lac Constance (Switzerland); IRL, Derg, 1996 and 1997 data refer to mean values recorded in samples taken in Apr, Jul, Sep and Oct each year; LUX, Weiswarnpach, 96 and 98, upper limits; POL, Data refer to spring and summer surveys, and to surface measurements; CHE, Lac Constance, Bodensee (Germany); UKD, Lomond and Bewl Water: annual averages were calculated using the limit of detection values; actual average may therefore be lower. Bowl Water: 1994–1999 data refer to Total inorganic Phosphate. CAN, Ontario, Huron and Superior data represent annual mean surface values from several handed open water samples for each lake (mainly spring and summer); MEX, Data refer to nitrates only; U.S.A., W: Twin(Ohio): total inorganic nitrogen (NH4CNO3CNO2). Samples obtained from the deepest point in each lake, generally weekly from late-spring early fall, and less frequently the rest of the year at 0.1, 2, 4, 7 and 10 m; AUT, data refer to total inorganic nitrogen (NH4CNO3CNO2) measured in the epilimnion; FIN, Data refer to surface measurements; FRA, Re´servoirs Marne and Seine, and Lac d’Annecy: Kjeldhai nitrogen. Re´servoirs Marme and Seine 1980: 1981 data; DEU, Total inorganic nitrogen (NH4CNO3CNO2). Bodensee: Lac Constance (Switzerland); IRL, Nitrates and nitrites only. Ennel and Owel: 1990–99 data refer to nitrate only and to limited surveys (March–October). Derg: 1996 and 1997 data refer to mean values recorded in samples taken in Apr, Jul, Sep and Oct each year; ITA, Maggiore: total inorganic nitrogen (NH4CNO3CNO2). Average of monthly samples taken at the deepest point of the lake; LUX, Nitrates only; POL, Data refer to spring and summer surveys; CHE, Lac Constance: Bodensee (Germany); TUR, Total inorganic nitrogen (NH4CNO3CNO2); UKD, Neath and Lomond; nitrates (NO3) only. Lomond and Bewel Water: annual averages were calculated using the limit of detection values; actual averages may therefore be lower.
Average over the latest 3 years available: data prior to 1953 have not been taken into account.
Source: Table 3.5a and 3.5b (data from 1996, 1997, 1998, 1999, and average last 3 years), OECD Environmental Data Compendium 2002, q OECD 2002, www.oecd.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Switzerland
Weiswarnpach Mjoesa Randsfjorden Tyrifjorden Sriardwy Hancza Niegocin Northern Mamry Ma¨laren Va¨nern Va¨ttern Hja¨lmaren Le´man Constance Kurtbogazi Sapanca Gala Altinapa Lough Neagh Lomond Bewl Water
Total Nitrogen (mgN/L)
Substance/Year
DK
F
D
IRL
NL
NO
P
E
S
4.30 3.90 6.70 3.42 3.44 3.81 2.90 2.65 2.45 2.30
0.57 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
4.70 3.30 4.50 3.20 3.20 2.70 2.20 n.a. n.a. n.a.
8.54 7.24 10.55 9.20 8.14 7.54 5.65 6.35 6.25 4.99
4.05 1.15 0.68 2.62 3.10 0.60 0.03 0.25 0.61 0.72
0.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
5.70 2.70 8.70 0.80 1.10 0.80 0.50 n.a. n.a. n.a.
10.54 10.01 11.03 10.05 5.65 4.64 2.94 1.95 2.15 2.39
27.5 36.6 32.5 36.6 48.2 43.2 44.5 40.0 51.5 56.5
7.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
150.0 150.0 110.0 100.0 170.0 55.0 66.0 n.a. n.a. n.a.
212.8 297.5 314.9 378.1 247.7 185.5 126.5 151.5 181.5 125.4
63.4 63.4 82.1 55.5 79.6 63.3 115.6 120.5 143.0 145.0
346.5 230.0 221.8 393.8 701.8 871.8 382.9 233.0 257.5 326.0
102.0 111.0 82.5 80.0 74.5 55.5 n.a. 66.0 110.5
26.0 26.0 26.0 26.0 26.0 26.0 n.a. n.a. n.a.
175.0 175.0 175.0 175.0 175.0 175.0 100.0 n.a. n.a.
342.0 187.8 208.0 191.5 261.0 291.4 239.0 370.0 261.0
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
16.7 7.2 10.5 360.0 230.0 370.0 300.0 300.0 259.5
UK
SUM
3.39 3.39 2.31 1.76 2.44 2.17 3.94 2.55 3.45 2.91
10.30 7.00 5.70 4.70 12.76 26.60 8.40 4.05 9.70 11.90
16.21 8.31 7.90 7.18 9.23 8.99 5.85 5.20 7.75 4.60
9.00 15.00 24.00 1.70 3.93 0.20 n.a. 1.35 0.60 0.40
n.a. n.a. n.a. 0.06 0.10 0.10 n.a. 14.50 6.80 12.80
2.45 2.45 2.40 2.40 2.40 2.40 n.a. n.a. n.a. n.a.
3.18 3.30 3.26 3.46 6.41 8.06 3.28 2.70 2.15 2.33
0.85 0.50 0.53 0.49 0.38 0.54 0.47 0.40 2.86 1.46
4.90 1.75 0.04 0.26 0.85 0.35 n.a. 1.15 0.75 0.56
120.9 102.8 70.5 58.5 82.6 82.5 62.6 63.7 150.0 53.6 536.0 261.3 97.9 90.9 87.7 107.4 75.9 78.7 84.8
%
0.67 0.34 0.54 0.11 0.42 0.24 n.a. 0.47 0.56 0.90
51.30 49.35 34.69 29.30 25.87 21.31 19.11 15.35 19.75 18.00
108.97 97.83 96.89 60.62 69.52 73.67 48.05 52.47 57.31 58.80
100.00 89.80 88.90 55.60 63.80 67.60 44.10 48.10 52.60 54.00
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.60 0.40 8.60
0.11 0.13 0.13 0.11 0.10 0.15 n.a. 0.09 0.13 0.20
8.81 7.85 6.00 6.55 4.83 4.13 3.26 4.41 4.68 3.31
40.71 29.83 32.78 26.73 24.82 21.67 10.48 13.54 13.72 19.60
100.00 73.30 80.50 65.70 61.00 53.20 25.70 33.30 33.70 48.10
680.0 80.0 120.0 7.3 6.1 2.8 n.a. 43.0 4.9 2.1
n.a. 7.7 2.6 0.9 2.2 1.3 n.a. 17.0 54.0 58.0
8.3 5.3 4.3 3.2 10.5 8.2 n.a. 8.7 14.3 17.3
591.1 575.6 501.6 631.4 528.3 384.8 311.5 303.3 601.5 546.0
2,207.6 1,548.8 1,460.2 1,665.2 1,877.1 1,698.3 1,109.5 980.7 1,458.2 1,330.0
100.0 70.2 66.1 75.4 85.0 76.9 50.3 44.4 66.1 60.2
n.a. n.a. 0.7 3.4 15.0 2.8 n.a. n.a. n.a.
n.a. n.a. n.a. n.a. n.a. n.a. n.a. 203.5 15.0
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
588.4 759.5 543.0 601.8 501.8 484.7 312.4 354.5 403.8
1,786.1 1,527.8 1,143.6 1,528.6 1,371.0 1,512.8 1,027.3 1,372.7 1,134.6
100.0 85.5 64.0 85.6 76.8 84.7 57.5 76.9 63.5 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-115
Cadmium 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Mercury 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Lead 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Lindane 1990 1991 1992 1993 1994 1995 1996 1997 1998
B
ENVIRONMENTAL PROBLEMS
Table 10B.77 Country Contributions to Sum of Direct and Riverine Inputs in Tonnes Per Year of Cadmium, Mercury, Lead, Lindane and Pcb to the Northeast Atlantic
(Continued)
Substance/Year 1999 PCB7 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Note:
B
DK
F
D
77.0
n.a.
n.a.
68.0
30.5 24.5 26.5 211.0 223.5 45.9 n.a. 66.0 135.0 164.0
30.3 30.3 30.3 30.3 30.3 30.3 n.a. n.a. n.a. n.a.
100.0 160.0 130.0 130.0 160.0 130.0 100.0 n.a. n.a. n.a.
143.5 89.4 43.6 54.1 95.5 144.0 127.5 109.0 88.0 123.0
IRL
NL
NO
n.a.
279.0
9.4
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
150.0 130.0 100.0 130.0 300.0 470.0 200.0 170.0 181.0 236.0
484.5 38.0 40.5 21.6 55.0 27.8 16.6 22.6 22.4 n.a.
P
E
S
UK
SUM
%
n.a.
121.0
n.a.
324.0
877.0
49.1
n.a. n.a. 4.9 25.0 84.0 26.0 n.a. n.a. n.a. n.a.
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 158.0
n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
2,158.1 1,183.5 764.7 1,417.1 1,066.9 938.7 739.6 360.0 1,089.4 835.0
3,096.8 1,655.7 1,140.5 2,019.0 2,015.2 1,812.6 1,183.6 727.6 1,515.8 1,516.0
100.0 53.5 36.8 65.2 65.1 58.5 38.2 23.5 48.9 49.0
Source:
From Green, N. et al., 2003, Hazardous Substances in the European Marine Environment: Trends in Metals and Persistent Organic Pollutants, European Environment Agency, Topic Report 2/2003, www.eea.europa.eu. Reprinted with permission q EEA.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Belgium (B), Denmark (DK), France (F), Germany (D), Ireland (IRL), the Netherlands (NL), Norway (NO), Portugal (P), Spain (E), Sweden (S), United Kingdom (UK), n.a. indicates where data was not available. Rounded values from EEA Fact Sheet YIR01HS01, zero or near zero (!1 kg) submissions assumed as data not available; %, percent as of 1990.
10-116
Table 10B.77
ENVIRONMENTAL PROBLEMS
Table 10B.78 PCBs Concentrations in Freshwater and Seawater in China (ng/L) Water Body Freshwater
Seawater
Pearl River, Guangzhou reach Donghu Lake Wuhan Yangtse River, Nanjing section Pearl River Delta
Daya Bay Minjing River Estuary Xiamen Harbor Jiulong River Estuary Pearl River Estuary Source:
Concentration Range
Sampling Date May 24–26, 2000
Humen Hengmen Jiaomen Dourmen Surface water Pore water
May 16–17, 1998 May–June, Oct–Nov, 2000
Aug 4, 1999 Nov, 1999 July 20, 1998 Early than 1999 Early than 1999
K3
K3
0.70!10 w3.96!10 2.7!10K3 1.74!10K3w2.0!10K3 2.08!10K3w3.92!10K3 0.475!10K3w1.54!10K3 1.73!10K3w3.26!10K3 1.73!10K3w3.26!10K3 0.091w1.355 0.204w2.473 3.19w10.86 0.12!10K3w1.69!10K3 0.032w0.169 0.033w1.064
Mean 2.3!10K3 1.91!10K3 2.70!10K3 0.999!10K3 2.62!10K3 1.16!10K3 0.314 0.985 6.37 0.74!10 K3
From Yeru, H. et al., 2003, Water Quality Standards and POPs Pollution in China in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo.
10-117
q 2006 by Taylor & Francis Group, LLC
10-118
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10B.79 Polluting Incidents from Vessels in Canadian Waters, 1974–1983 Transfer Accident Year 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 Total Percent Note:
Collision, Ground, Sinking
Other
Total
Events
Tons
Events
Tons
Events
Tons
Events
Tons
60 52 53 47 51 49 68 75 58 28 541 53
371 116 206 249 154 108 145 97 199 73 1,718 6
21 13 13 11 16 6 12 13 16 7 127 12
4,277 613 1,613 931 1,343 948 121 2,296 2,106 504 14,752 51
60 28 19 38 33 33 68 33 27 22 361 35
248 886 160 294 73 8,186 213 931 989 404 12,384 43
141 93 85 96 99 88 148 121 101 57 1,029 100
4,896 1,615 1,979 1,474 1,570 9,242 479 3,324 3,294 981 28,854 100
Tankers, bulk carriers and other vessels; metric tons.
Source: From Environment Canada, Summary of Spill Events in Canada, 1974–1983, EPS 5/SP/1, www.ec.gc.ca.
Table 10B.80 Top Releases of Chemicals to Water in Canada, 2001 Release Tons
Chemical Ammonia (total)a Nitrate ion in solution at pH R6.0 Manganese (and its compounds) Methanol Zinc (and its compounds) a
26,106 22,450 1,157 697 308
Refers to the total of both ammonia (NH3) and ammonium ion ðNHC 4 Þ in solution.
Source: From Environment Canada, National Pollutant Release Inventory Database, www.ec.gc.ca/pdb/npri, 2001. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.
Table 10B.81 Water Bodies Receiving over 500 Tons of Pollutants in Canada, 2001 Water Body Fraser River Lake Ontario Bow River Ottawa River North Saskatchewan River Red River Hamilton Harbour South Saskatchewan River St. Lawrence River Saint John River Frank Lake Detroit River Kelly Lake Neroutsos Inlet
Total Release (tons)
Dominant Release
Share of Total Release (percent)
9,168 8,877 8,264 3,066 2,953 2,766 1,516 1,275 1,088 984 818 679 619 526
Ammoniaa Ammoniaa Nitrate Ion Ammoniaa Nitrate ion Ammoniaa Ammoniaa Nitrate Ion Nitrate Ion Methanol Nitrate ion Ammoniaa Nickel (and its compounds) Nitrate ion
49.2 41.6 90.8 76.6 61.3 72.7 70.6 62.4 43.6 28.6 70.3 83.8 29.6 64.4
Note: The information in this table is not intended to be an assessment of environmental impact or water quality. The totals do not include releases to tributaries of the named rivers. a
Refers to the total of both ammonia (NH3) and ammonium ion ðNHC 4 Þ in solution.
Source: From Environment Canada, Pollution Data Branch, National Pollutant Release Inventory Database, www.ec.gc.ca/pdb/npri/npri_dat_rep_e_cfm, 2001. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. Original Source: From Environment Canada, Pollution Data Branch, National Pollutant Release inventory Database, www.ec.gc.ca/pdb/ nprl/npri_dat_rep_e_cfm (accessed March 25, 2003).
q 2006 by Taylor & Francis Group, LLC
Year
a
1975
1976
1977
1978
1979
1980
Date
Showa Manu British Ambassador Jakob Maersk Corinthos/E.M. Queeny Spartan Lady Shell Barge No 2 Mitsu Maru 3 Epic Colocoltroni Saint Peter Urquiola Nepco 140 Crelan Star Boehlen Argo Merchant Irenes Challenge Borag Hawaiian Patriot Venoil/Venpet Grand Zenith Amoco Cadiz Eleni V Cabo Tamar Christos Bitas Esso Bernica Andrus Patria Betelgeuse Antonio Gransci Messlaniki Frontis Kurdistan Gino Aviles Atlantic Express Ionnis Angelicoussis Chevron Hawaii Burmah Agate Independenta Princess Anne Marie Irenes Serenade Tanio Juan A. Lavalleja
Flag Japan UK Denmark U.S.A. Liberia U.S.A. Japan Greece Liberia Spain U.S.A. Cyprus GDR Liberia Liberia Liberia Liberia Panama Liberia Panama Liberia Greece Chile Greece UK Greece France U.S.S.R. Liberia UK Liberia Liberia Greece Greece U.S.A. Liberia Romania Greece Greece Madagascar Uruguay
Country Affected Singapore Japan (Pacif.) Portugal U.S.A. (Delaware) U.S.A. U.S.A. Japan Dominican Rep. Colombia Spain Canada—U.S.A. Indian Ocean France U.S.A. (Massach.) Pacific East China Honolulu (Pacif.) Nicaragua South Africa U.S.A. (Massach.) France UK Chile UK UK (Shetland) Spaint Ireland Sweden, Finland, U.S.S.R. Greece Canada France Arabian Sea Tobago Angola U.S.A. U.S.A. (Texas) Turkey Cuba Greece France, UK Algeria
3 800 45 000 84 000 40 000 25 000 — 500 57 000 33 000 101 000 1 200 28 600 11 000 28 000 34 000 4 000 99 000 30 000 26 000 29 000 228 000 3 000 60 000 5 000 1 160 47 000 27 000 6 000 6 000 7 000 42 000 25 000 276 000 30 000 2 000 40 000 94 600 6 000 102 000 13 500 40 000
Indemnity Million/s USD (estimates) 10.9 — 2.8 5.9 — 5.7 5.7 — 0.9 19.7 11.1 — 20.3 2.5 — 15.6 — — 5.4 — — 10.6 4.2 13.1 9.8 6.4 36.2 54.1 11.5 5.1 0.8 — 1.5 — 12.0 11.5 17.2 51.7 12.5 40.0 — (Continued)
q 2006 by Taylor & Francis Group, LLC
10-119
6.1 10.1 29.1 31.1 4.4 4.1 17.4 13.5 6.2 12.5 23.6 12.7 14.10 15.12 18.1 7.1 25.2 27.5 16.12 30.12 16.3 6.5 7.7 12.10 30.12 31.12 8.1 28.2 2.3 15.3 28.4 28.6 29.7 16.8 1.9 1.11 15.11 28.1 24.2 7.3 29.12
Name of Ship
Quality Spilled (tons)
ENVIRONMENTAL PROBLEMS
Table 10B.82 Accidental Oil Spills in the World from Tankers, 1975–2000 (a)
(Continued)
Date
Name of Ship
1981
7.1 3.3 7.1 6.8 27.9 25.11 10.12 14.2 6.12 24.3 19.12 29.12 9/11.4
Jose Marti Ondina Assimi Castillo de Bellver Sivand Feoso Ambassador Pericles GC Neptunia Nova Exxon Valdez Kharg 5 Aragon Le Haven ABT Summer Maersk Navigator Braer Red Star Albinoni Maersk Navigator Sea Empress Nakhodka Orapin Global & Evoikos Erika
1985 1989
1991 1992 1993 1994
21.1 5.1 6.1 8.2 21.1 15.2 2.1 15.1 12.12
1995 1996 1997 1999 Note: a
Flag U.S.S.R. Dubai Greece Spain Iran China Greece Liberia Liberia U.S.A. .. Spain Cyprus .. Singapore Liberia .. Bahamas Denmark .. Russia Singapore Malta
Over 25,000 tons or over USD 5 million of indemnity, world.
1986–1988: no major oil spills over 25,000 tons.
Source: Table 6.1, OECD Environmental Data Compendium 2002, q OECD 2002, www.oecd.org. Original Source: From IMO, IOPC-Fund, ACOPS, IFP, TAC, TOVALOP, SIGMA.
q 2006 by Taylor & Francis Group, LLC
Country Affected Sweden Germany Oman South Africa UK China Qatar Iran Iran U.S.A. (Alaska) Morocco Madeira Italy .. Sumatra UK Portgual Caribbean Indonesia UK Japan Thailand & Cypress France
Quality Spilled (tons) 6 000 5 000 51,431 255 525 6 000 4 000 46 631 60 000 71 120 35 000 70 000 25 000 30 000 260 000 O25 000 84 000 — — — 72 000 37,000 25,000 (Evoikos) 19 800
Indemnity Million/s USD (estimates) 6.7 7.0 — 1.0 5.0 10.0 — — — 2000 37 — — — — — 14.0 50.0 33.0 30.0 1,233 O100 155
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Yeara
1983
10-120
Table 10B.82
ENVIRONMENTAL PROBLEMS
10-121
SECTION 10C
Well Disposal pond
GROUNDWATER CONTAMINATION
Deep-well injection
Wat er
Spills and leaks
Buried wastes
Well
Table
River
Alluvium Alluvium
Shale Shale Sandstone
Sandstone Figure 10C.54 Waste disposal practices and contamination of groundwater. Movement of contaminants in unsaturated zone, alluvial aquifer, and bedrock shown by dark shading. (From U.S. Geological Survey Water Fact Sheet. Toxic Waste, Groundwater Contamination, 1983.)
q 2006 by Taylor & Francis Group, LLC
10-122
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Total
Sources Storage tanks (underground)
39
Septic systems
31
Landfills
28
Spills
24
Fertilizer applications
23
Large industrial facilities
22
Hazardous waste sites
22
Animal feedlots
17
Pesticides
15
Surface impoundments
13
Storage tanks (aboveground)
12
Urban runoff
12
Salt water intrusion
11
Mining and mine drainage
10
Agricultural chemical facilities
10
Number reporting on top ten contaminant sources
Pipelines and sewer lines
10
Shallow injection wells
8
Salt storage and road salting
8
Land application of wastes
7
Irrigation practices
6 0
5
10
15
20
25
30
35
40
Number of states, tribes, and territories reporting
Figure 10C.55 Major source of groundwater contamination. (From United States Environmental Protection Agency, 2002, National Water Quality Inventory 2000 Report, EPA-841-R-02-001, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-123
0 0 Oahu, Hawaii Base from U.S. Geological survey, digital data, 1:2,000,000, 1994 Albers equal-area conic projection standard parallels : 29°30',45°30' Central meridan : 96°W
500 Miles 500 km
Explanation Sampled wells (1,926) Conterminous United States and Hawaii (no wells sampled in Alaska) Sampled wells (no detections) Detection of at least one volatile organic compound with a concentration at or above 0.2 µg/L
Figure 10C.56 Location of rural, untreated, self-supplied domestic wells in the United States where at least one volatile organic compound was detected at an assessment level of 0.2 m/L, 1986–1999. (From Moran, M.J., Lapham, W.W., Rowe, B.L., and Zogorski, J.S., 2002, Occurrence and Status of Volatile Organic Compounds in Groundwater from Rural, Untreated, Self-Supplied Domestic Wells in the Untied States, 1986–1999, United States Geological Survey, Water Resources Investigation Report 02-4085, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-124
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
16
14
Groundwater
Rivers Reservoirs
Frequency of detection (percent)
12
10
8
6
4
2
ne
r
ze
he
en ut -B
-b l hy
te
ylb
ut
yl
th ph Na
hy et m
rt
yl m -A
Di
t
t er
et
en al
th le
et yl op pr iso
e
er
r he
e en nz Be
ze en lb hy
o
Et
-X
yle
ne
ne
s yle -X
m
p
n
Et
M
et
hy
te
-&
rt
l
ne
e en lu To
-b
ut
yl
et
he
r
0
Figure 10C.57 Frequency of detection of gasoline compounds in source-water samples from groundwater, rivers, and reservoirs in the United States from May 3, 1999 through October 23, 2000. (From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey, Water-Resource Investigations Report 02-4079, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-125
80 A
Groundwater Rivers Reservoirs
70
60
A
Frequency of detection (percent)
A 50
40 A A 30
A
A A
20
A
10
A
A
A
0 Chloroform
Bromodichloromethance
Chlorodibromomethane
Bromoform
Figure 10C.58 Frequency of detection of trihalomethanes in source-water samples from groundwater, rivers, and reservoirs in the United States from May 3, 1999 through October 23, 2000 (populations that share the same letter symbol are not significantly different at the 95-perecent confidence). (From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey, Water-Resource Investigations Report 02-4079, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-126
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
4.5 4.0
Groundwater Rivers Reservoirs
3.5 Frequency of detection (percent)
3.0 2.5 2.0 1.5 1.0 0.5
e
e
an pr
ro lo
ich
lo ch 2,
3-
Tr
Di 1,
2-
op
nz be ro
lb py
-P
ro 1,
n
en
ne ze
ne et
en
ha
en
ro lo Ch
be ro
lo
ch Di 2-
nz
op pr ro
lo
ne 1,
e
e an
e rid lo ch
et le hy M
et
br Di
Ch
ne ha
ne et
om
ro lo
om
to 1,
2-
Di
ch
th le hy
et M
ha
ne
e yl
ch
on rb
ke
lo
he et te
tra
ro lo ch
Di
Ca
11,
rid
ne
ne ha
ne
ro lo
ich Tr
1,
1,
1-
11,
et
ha
ne
ro
et
he Di
ch
lo ich -D
,2
s ci
lo
ro
et
et lo
ich Tr
-1
Te
tra
ch
lo
ro
ro
et
he
he
ne
ne
0
Figure 10C.59 Frequency of detection of solvents in source-water samples from groundwater, rivers, and reservoirs in the United States from May 3, 1999 through October 23, 2000. (From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey, Water-Resource Investigations Report 02-4079, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-127
1.4 Refrigerants
Fumigants
Organic synthesis
1.2 Groundwater Rivers Reservoirs
Frequency of detection (percent)
1.0
0.8
0.6
0.4
0.2
0
e
e
an
o
or
l ch
i Tr
fl
h et
om
d
ifl
ro
or
r lo
C
ic
D
i
ch
-D
4 1,
r lo
ne
e
en
r ty
h et
S
om
be
yl
om
Br
im
Tr
,4
h et
o
pr
rid
e nz
o hl
e
lb
y op
Is
e
ne
e nz
lc
ny
Vi
1
,2
-T
2
1,
1,
o
or
hl
ric
-tr
2
2,
, -1
e
an
e nz
e
ob
u ifl
h
o hl
h et
o
om
r uo
ne
an
an
h et
om
r uo
e
e
an
h et
Figure 10C.60 Frequency of detection of refrigerants, fumigants, and organic synthesis compounds in source-water samples from groundwater, rivers, and reservoirs in the United States from May 3, 1999 through October 23, 2000. (From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey, Water-Resource Investigations Report 02-4079, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-128
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Explanation Areas with highvolume MTBE use
Groundwater source MTBE not detected MTBE detected
Surface water source MTBE not detected MTBE detected
Figure 10C.61 Distribution of methyl tert-butyl ether (MTBE) in ground- and surface-water sources in the United States and Puerto Rico in relation to high MTBE-use areas. (From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey, WaterResource Investigations Report 02-4079, www.usgs.gov.)
Urban areas
Rural areas
76.8%
76.0%
2.0%
2.2%
7.3%
4.8%
13.9%
17.0%
Explanation Solvents, Organic synthesis, and refrigerants
Oxygenates
Gasoline aromatic hydrocarbons
Furnigants
Figure 10C.62 Percent detection of selected classes of VOCs in the United States in urban and rural areas, 1985–1995. (From Squillace, P.J. et al., 1999, volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995, Environ. Sci. Technol., 33, 4167–4187.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-129
Cleanups completed: Historical average, 1999 −2003
Cleanups completed
40,000 35,000 26,000
30,000 25,000
21,000
19,000
19,000
19,000 16,000
20,000 15,000 10,000 5,000 0
Historical average 1988 −2003
1999
2000
2001
2002
2003
Year
Confirmed releases: Historical average, 1999−2003 40,000 Confirmed releases
35,000 30,000
27,000
26,000
25,000 20,000
15,000
12,000
15,000 7,000
10,000
6,000
5,000 0
Historical average 1988− 2003
1999
2000
2001
2002
2003
Year All numbers rounded to nearest thousand. Figure 10C.63 Confirmed underground storage tank releases and cleanups complete in the United States: historical average, 1999– 2003. (From United States Environmental Protection Agency, 2004, Underground Storage Tanks: Building On the Past to Protect the Future, EPA 510-R-04-001, March 2004, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-130
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
4.0 Transfers off-site to disposal On-site land releases Underground injection Surface water discharges Total air emissions
Billions of pounds
3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
1998
2000 1999 Metal mining
1998 1999 2000 Manufacturing industries
Yearly totals across industry
Millions of pounds
Billions of pounds
8.0 6.0 4.0 2.0 0
1998
1999
2000 See key above
1998 1999 2000 Electric utilities
1998 1999 2000 Hazardous waste/Solvent recovery
Change by industry, 1998− 2000
50 0 −50 −100 −150 −200 −250 −300
Metal mining
Manufacturing industries
Electric utilities
Hazardous waste/Solvent recovery
140,000
3500
120,000
3000
100,000
2500
80,000
2000
60,000
1500
40,000
1000
20,000
500
0
Number of spills
Total quantity spilled (tonnes)
Figure 10C.64 United Sates toxics release inventory (TRI) total releases and change by industry, 1998–2000. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov.)
0 84
85
86
87
88
89
Quantity
90 Year
91
92
93
94
95
Number of spills
Figure 10C.65 Petroleum sector—number of reported spills in Canada and total quantity, by year. (From Summary of Spill Events in Canada, 1984–1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.)
q 2006 by Taylor & Francis Group, LLC
Percentage of incidents
ENVIRONMENTAL PROBLEMS
100 90 80 70 60 50 40 30 20 10 0
10-131
Air
Land
Wastes, effluents, & others
Freshwater Saltwater Groundwater Environment affected Oils & hydrocarbons
Other
Chemicals
Figure 10C.66 Percent distribution of environment affected by spill category in Canada. (From Summary of Spill Events in Canada, 1984– 1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.)
Land 48%
Saltwater 5%
Air 6%
Freshwater 15% Other 26% Figure 10C.67 Percent distribution of environment affected by reported spills in Canada. (From Summary of Spill Events in Canada, 1984–1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.)
q 2006 by Taylor & Francis Group, LLC
10-132
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 10C.68 Distribution of tetrachloroethylene and trichloroethylene in groundwater throughout Canada. (From Bajjali, W., 2003, Study of the Distribution of Tetrachloroetheylene and Trichloroethylene in Groundwater Throughout Canada Using SPANS-GIS, frontpage.uwsuper.edu/bajjali/proj/can/c1.htm. With permission. Last updated on June 16, 2003.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-133
Main drinking water problems identified by national reports a) Microbiology b) Nitrates c) Toxics d) Metals No data Outside data coverage (a)
(b)
(c)
(d)
Figure 10C.69 Main drinking water problems identified in the European Union. (From European Environmental Agency, Indicator Fact Sheet Drinking Water Quality (WEU10) Verslon 13.10.03, www.eea.europa.eu. Reprinted with permission q EEA.)
Table 10C.83 Major Groundwater Contaminants Reported by States Reported as a Major Contaminant Contaminant Sewage Inorganic chemicals Nitrates Brine/Salinity Arsenic Fluorides Sulfur compounds Organic chemicals Synthetic Volatile Metals Pesticides Petroleum Radioactive materials a
No. of Statesa
% of States
46
89
42 36 19 18 7
75 69 37 35 14
37 36 34 31 21 12
71 69 65 60 40 23
Based on a total of 52 States and territories which cited groundwater contaminants in their 305(b) submittals.
Source:
From U.S. Environmental Protection Agency, National Water Quality Inventory-1986 Report to Congress, EPA-440/4-87-008.
q 2006 by Taylor & Francis Group, LLC
10-134
Table 10C.84 Activities Contributing to Groundwater Contamination in the United States Activity
Estimated Sitesa
States Citing
Contaminants Frequently Cited as Result of Activity
41
22 million
Bacteria, viruses, nitrate, phosphate, chloride, and organic compounds such as trichloroethylene
Landfills (active)
51
16,400
Surface impoundments
32
191,800
Dissolved solids, iron, manganese, trace metals, acids, organic compounds, and pesticides Brines, acidic mine wastes, feedlot wastes, trace metals, and organic compounds
Injection wells
10
280,800
Dissolved solids, bacteria, sodium, chloride, nitrate, phosphate, organic compounds, pesticides, and acids.
Land application of wastes
12
19,000 land application units
Bacteria, nitrate, phosphate, trace metals, and organic compounds
Storage and handling of materials Underground storage tanks
39
2.4–4.8 million
Benzene, toluene, xylene, and petroleum products
Above-ground storage tanks
16
Unknown
Material handling and transfers
29
10,000–16,000 spills per year
Organic compounds, acids, metals, and petroleum products Petroleum products, aluminum, iron, sulfate, and trace metals
Mining activities Mining and spoil disposal—coal mines
23
15,000 active; 67,000 inactive
q 2006 by Taylor & Francis Group, LLC
Acids, iron, manganese, sulfate, uranium, thorium, radium, molybdenum, selenium, and trace metals
Between 820 and 1,460 billion gallons per year discharged to shallowest aquifers (Office of Technology Assessment, 1984) Traditional disposal method for municipal and industrial solid waste. Unknown number of abandoned landfills Used to store oil/gas brines (125,100 sites), mine wastes (19,800), agricultural wastes (17,200), industrial liquid wastes (16,200), municipal sewage sludges (2,400), other wastes (11,100) (U.S. Environmental Protection Agency, 1987) Wells used for injecting waste below drinking-water sources (550), oil/gas brine disposal (161,400), solution mining (22,700), injecting waste into or above drinking-water sources (14), and storm-water disposal, agricultural drainage, heat pumps (69,100) (U.S. Environmental Protection Agency, 1987) Waste disposal from municipal wastetreatment plants (11,900), industry (5,600), oil/gas production (730), petroleum and wood-preserving wastes (250), others (620) (U.S. Environmental Protection Agency, 1987) Useful life of steel tanks, 15–20 yrs. About 25–30 percent of petroleum tanks may leak (Conservation Foundation, 1987) Spills/overflows may contaminate groundwater Includes coal storage piles, bulk chemical storage, containers, and accidental spills Leachates from spoil piles of coal, metal, and nonmetallic mineral mining contain a variety of contaminants. Coal mines are sources of acid drainage
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Waste disposal Septic systems
Remarks
20
550,000 production; 1.2 million abandoned
Brines
Contamination from improperly plugged wells and oil brine stored in ponds or injected underground
Agricultural activities Fertilizer and pesticide applications
44
363 million acresb
Nitrate, phosphate, and pesticides
Irrigation practices
22
376,000 wells; 49 million acres irrigatedc
Dissolved solids, nitrate, phosphate, and pesticides
Animal feedlots
17
1,900
Nitrate, phosphate, and bacteria
Fertilizer applied 1982–83, 42.3 million tons per year (U.S. Bureau of the Census, 1984); active ingredients of pesticides applied 1982, 660 million pounds (Gianessi, 1987) Salts, fertilizers, pesticides can concentrate in groundwater. Improperly plugged abandoned wells contamination source Primarily in the Corn Belt and High Plains States (Office of Technology Assessment, 1984)
Urban activities Runoff
15
47.3 million acres urban landd
Bacteria, hydrocarbons, dissolved solids, lead, cadmium, and trace metals
Deicing chemical storage and use
14
Not reported
Sodium chloride, ferric ferrocyanide, sodium ferrocyanide, phosphate, and chromate
Other Saline intrusion or upconing
29
Not reported
Dissolved solids and brines
a b c d
ENVIRONMENTAL PROBLEMS
Oil and gas activities Wells
Infiltration from detention basins, drainage wells, pits, shafts can reach groundwater. Karst areas particularly vulnerable Winter 1983, 9.35 million tons dry salts/abbrasives, 7.78 million gallons of liquid salts applied (Office of Technology Assessment 1984) Present in coastal areas and in many inland areas
Estimated number of sites from U.S. Environmental Protection Agency (1987) unless otherwise indicated. U.S. Bureau of the Census, 1984, p. 658, 1982 data. U.S. Bureau of the Census, 1984, p. 639, 1982 data. U.S. Bureau of the Census, 1984, p. 195, 1980 data.
Source: From U.S. Geological Survey, National Water Survey 1986, Water-Supply Paper 2325.
10-135
q 2006 by Taylor & Francis Group, LLC
Source Subsurface percolation systems Injection wells
Land application
Open dumps Residential disposal Surface impoundments
Waster tailings and piles
Material stockpiles
Graveyards Animal burial Aboveground storage Underground storage
q 2006 by Taylor & Francis Group, LLC
Organics, metals, nitrates, phosphates, microorganisms Organics, metals, inorganic acids, microorganisms, radionuclides
Number/Volume 22 million domestic systems 25,000 industrial systems 280,752 active wells
Nitrogen, phosphorous, metals organics, 2,463 POTWs—sludge application microorganisms 1,000 POTWs—land treatment 250 hazardous waste land treatment units 18,889 nonhazardous units Organics, inorganics, microorganisms, 16,416 landfills radionuclides 9,284 municipal 3,155 industrial Organics, inorganics, microorganisms 1,856–2,396 dumps Organics, metals, other inorganics, Unknown microorganisms Organics, metals and other inorganics, 191,822 surface impoundments microorganisms, radionuclides 16,232 industrial 2,426 municipal 17,159 agricultural 19,813 mining 125,074 oil and gas 11,118 other Arsenic, sulfuric acid, copper, selenium, Total mining—2.3 billion tons/yr molybdenum, uranium, thorium, Metal—250 million tons/yr radium, lead, manganese, vanadium Uranium—215 million tons/yr. Hazardous waste—0.39 billion tons Metals, inorganics, radionuclides Annual materials production—3.4 billion tons/yr Stockpiles—700 million tons/yr Metals, nonmetals, microorganisms Unknown Unknown Organics, inorganics, microorganisms, Unknown radionuclides Organics, inorganics, microorganisms, Steel—2.4–4.8 million tanks radionuclides Fiberglass—0.1 million tanks Total capacity—25 billion gallons Hazardous storage—2,032 tanks
Geographic Distribution Highest concentration in eastern third of country and portions of west coast Varies by well type Class I (hazardous waste)—Gulf Coast and Great Lakes Class II (oil/gas)—throughout the U.S. Class III (mining)—Southwest Class V—agricultural wells in IA, ID, TX, CA; industrial wells in NY and NJ Unknown
Urban locations nationwide
55 states and territories Nationwide 70% in hydrogeologically vulnerable areas 37% over current groundwater sources of drinking water Highest number of non-hazardous are in AR, KS, LA, MN, OH, OK, PA, TX, WV Unknown
Nationwide
Nationwide Unknown Nationwide Nationwide
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Landfills
Potential Contaminants
10-136
Table 10C.85 Profile of Sources of Groundwater Contamination in the United States
Microorganisms, organics, inorganics
Materials transport
Organics, inorganics, microorganisms
Mining/mine drainage
Acids, metals, radionuclides
Production wells
Organics, inorganics, microorganisms
Other wells (monitoring and exploration) Pesticide application
Fertilizer applications
Deicing
Irrigation practices
Percolation of atmospheric pollutants
Groundwater/surface water interaction Natural leaching Salt water intrusion
Organics, inorganics, microorganisms radionuclides Organics—1,200–1,400 active ingredients Approximately 280 million acretreatments annually Nitrates, phosphates
175,000 miles of petroleum product pipelines (1976) carrying 9.63 billion bbls 700,000 miles of sewer pipeline (1976) carrying 5.6 trillion gallons 10,000–16,000 spills per year; spills account for approximately 0.35 percent of 4 billion tons shipped annually (1984) 15,000 active coal mines (1986) 67,000 inactive coal mines phospate mines; metalic ore mines 548,000 oil wells produced approximately 3.1 billion bbls crude oil (1980) 376,000 irrigation wells for 126,000 farms Up to 1.2 million abandoned wells Unknown 552 million pounds of active ingredients applied to crops in 1982
Fertilizer use has declined from 54 million tons to 42.3 million tons (1980–1983); fertilizers in 1981–1982 contained 11 million tons of nitrogen, 4.8 million tons of phosphates, 5.6 million tons of potash Salts 9.35 million tons dry salts, and abrasives; 1.78 million gallons liquid salts applied to U.S. highways (1982–1983) Fertilizers, pesticides, naturally occurring 14 percent of cropland is irrigated contaminants (e.g., selenium), sediment Sulfhur and nitrogen compounds, Unknown asbestos, heavy metals Organics, inorganics, microorganisms, radionuclides Inorganics, radionuclides Inorganics, radionuclides
Unknown Unknown Unknown
Nationwide
Nationwide
Varies by mining type
Oil Wells—nationwide Geothermal wells—primarily CA, NV, ID Water wells—mostly in the Southwest, Central Plains, Idaho, and Florida
ENVIRONMENTAL PROBLEMS
Pipelines
Unknown 17 pesticides confirmed in 23 states (1986) due to normal agricultural application Highest fertilizer use in 1981–1982: CA, IL, IN, IO, TX
Northeast, Mid-Atlantic, Midwest
Water, Central, and South Plains, Arkansas, Florida Acid rain around Great Lakes, Northeast Distribution of other pollutants varies Unknown Unknown, very localized Predominantly coastal areas—CA, TX, LA, FL, NY, Southwest, Central Plains
Source: From U.S. Environmental Protection Agency, Office of Groundwater Protection, 1987, EPA Activities Related to Groundwater Contamination. 10-137
q 2006 by Taylor & Francis Group, LLC
Detected Concentrations (mg/L)
Volatile Organic Compound
Predominant Use
Number of Detections/Samples
q 2006 by Taylor & Francis Group, LLC
Median
Max
MCL, HA, 10L4 CR (mg/L)
Number of Concentrations Exceeding Standard of Criterion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
— — — — — 17b — 6 110 9,100 11 10 — 24 77 10 5 50,000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 — 0 1 0 — — 0 0 0
— 4.5 170 29 2.5 500 3,400 1,500 0.8 — — — 28 —
— 0 0 0 0 0 0 0 0 — — — 0 —
0 — — 0 0 0 0 2 —
50 19 — 7,000 — 4.3 910 10 —
0 0 — 0 — 0 0 1 —
— — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — — —
— — — — — — — — — — — — — — — — — —
10 (HA) 40 (10K4 CR) 40 (10K4 CR) — 10,000 (MCL) 10,000 (MCL) — 1 (HA) — 6 (10K4 CR) 100 (MCL and HA) — — 600 (MCL) 600 (HA) 1 (HA) 70 (MCL) 5 (MCL)
0.3 1.2 0.2 0.2 1.8 0.2 0.4 0.5 0.4 0.8 22 1.1 0.2 0.3
0.6 1.2 0.5 2.8 2.1 0.3 0.4 19.8 0.6 0.8 22 1.8 0.3 0.3
1.1 1.2 4.4 5.4 2.5 12 0.4 39 0.8 0.8 22 2.5 1.9 0.3
3.5 0.3 0.2 0.2 3 0.4 0.2 0.2 0.6
3.5 0.5 0.7 1.5 3.7 0.4 0.6 0.5 0.6
3.5 0.7 1.7 2.9 4.4 0.4 4 19.4 0.6
0.05 (MCL) 75 (MCL) 5 (MCL) 700 (MCL) 20 (HA) — 2 (MCL) 7 (MCL) 233 (10–4 CR) — — 3 (HA) 2,000 (HA) 2,100,000 (10–4 CR) 100 (MCL) — — 5 (MCL) 70 (MCL) 100 (MCL) 5 (MCL) 5 (MCL) —
Taste/Odor Thresholda (mg/L)
Number of Concentrations Exceeding Taste/Odor Threshold
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
VOCs Not Detected Bromomethane Fumigant 0/1,677 cisK1,3-Dichloropropene Fumigant 0/1,685 trans-1,3-Dichloropropene Fumigant 0/1,592 n-Butylbenzene Gasoline hydrocarbon 0/1,454 1,2-Dimethylbenzene Gasoline hydrocarbon 0/805 1,3/1,4-Dimethylbenzene Gasoline hydrocarbon 0/799 Bromoethene Organic synthesis 0/688 Hexachlorobutadiene Organic synthesis 0/1,347 2-Propenal Organic synthesis 0/472 2-Propenenitrile Organic synthesis 0/693c Ethenylbenzene Organic synthesis 0/1,915 1,2,3-Trichlorobenzene Organic synthesis 0/1,455 Ethyl tert-butyl ether Oxygenate 0/688 1,2-Dichlorobenzene Solvent 0/1,911 1,3-Dichlorobenzene Solvent 0/1,340 Hexachloroethane Solvent 0/698 1,2,4-Trichlorobenzene Solvent 0/1,464 1,1,2-Trichloroethane Solvent 0/1,686 Detection Frequency Greater Than 0 and Less Than or Equal to 1 Percent c 1,2-Dibromoethane Fumigant 3/1,614 1,4-Dichlorobenzene Fumigant 1/1,925 Benzene Gasoline hydrocarbon 6/1,892 Ethylbenzene Gasoline hydrocarbon 2/1,926 Naphthalene Gasoline hydrocarbon 2/1,464 1,2,4-Trimethylbenzene Gasoline hydrocarbon 6/1,415 Chloroethene Organic synthesis 1/1,917 1,1-Dichloroethene Organic synthesis 2/1,926 (1-Methylethyl) benzene Organic synthesis 2/1,371 tert-Amyl methyl ether Oxygenate 1/688 Diisopropyl ether Oxygenate 1/581 Chloromethane Refrigerant 2/1,565 Trichlorofluoromethane Refrigerant 7/1,925 Refrigerant 1/1,515 1,1,2-Trichloro-1,2,2trifluoroethane Chlorobenzene Solvent 1/1,926 Chloroethane Solvent 2/1,677 1,1-Dichloroethane Solvent 5/1,926 1,2-Dichloroethane Solvent 4/1,910 cisK1,2-Dichloroethene Solvent 2/1,705 trans-1,2-Dichloroethene Solvent 1/1,767 Dichloromethane Solvent 12/1,923 1,2-Dichloropropane Solvent 15/1,926 n-Propylbenzene Solvent 1/1,454
Min
Type of Drinking-Water Standard, Health Criterion, or Taste/Odor Threshold
10-138
Table 10C.86 Detections of Individual Volatile Organic Compounds in Groundwater from Rural, Untreated Self-Supplied Domestic Wells in the United States, 1986–1999
0.2 0.2 0.2 0.2 0.3 0.3
0.4 0.7 0.4 1.5 0.6 0.7
0.6 25 2.1 7 11 8.2
5 (MCL) 5 (MCL) 40 (HA) 80 (MCL) 80 (MCL) 80 (MCL)
0 3 0 0 0 0
520 310 — — — 300
0 0 — — — 0
0.2
1.3
3.2
0.2 (MCL)
16
—
—
0.2 0.2 0.2 0.2 0.2 0.2
0.3 0.7 0.3 0.3 0.4 0.5
12 30.2 2 29 120 74
1,000 (MCL) — 1,000 (HA) 5 (MCL) 200 (MCL) 80 (MCL)
0 — 0 3 0 0
42 20f — 190 970 2,400
0 1 — 0 0 0
ENVIRONMENTAL PROBLEMS
Tetrachloromethane Solvent 5/1,925 Trichloroethene Solvent 16/1,926 1,2,3-Trichloropropane Solvent 10/1,615 Trihalomethane 7/1,926 Bromodichloromethaned Chlorodibromomethaned Trihalomethane 7/1,926 Tribromomethaned Trihalomethane 4/1,925 Detection Frequency Greater Than 1 and Less Than or Equal to 5 Percent 1,2-Dibromo-3Fumigant 16/1,459e chloropropane Methylbenzene Gasoline hydrocarbon 21/1,882 Methyl tert-butyl ether Oxygenate 30/1,335 Dichlorodifluoromethane Refrigerant 23/1,916 Tetrachloroethene Solvent 32/1,897 1,1,1-Trichloroethane Solvent 22/1,926 Trichloromethaned Trihalomethane 83/1,926
Note: VOC, volatile organic compound; Min, minimum; Max, maximum; MCL, Maximum Contaminant Level; HA, Health-Advisory Level, lifetime 70-km adult consuming 2 L of water per day; 10K4 CR, risk of one additional 70-km adult in ten thousand (1!10–4) contracting cancer over a lifetime of exposure consuming 2 L of water per day; mg/L, micrograms per liter; —, not applicable. a
Taste/odor thresholds from bender and others, 1999. 1,3-Dimethylbenzene. No additional detections exist below 0.2 mg/L. d Bromodichloromethane, chlorodibromomethane, tribromomethane, and trichloromethane can also be classified as solvents or VOCs used in organic synthesis. e When uncensored, the number of detections equals 19. f Lower limit of U.S. Environmental Protection Agency Drinking Water Advisory. Source: From Moran, M.J. et al., Occurrence and status of volatile organic comounds in groundwater from rural, untreated, self-supplied domestic wells in the United States, 1986–1999, United States Geological Survey, Water Resources Investigation Report 02-4085, www.usgs.gov. b c
10-139
q 2006 by Taylor & Francis Group, LLC
10-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10C.87 Frequency of Detection and Concentrations of Volatile Organic Compounds in Groundwater Source Samples Collected from United States Drinking Water Supplies between May 3, 1999 and October 23, 2000 Groundwater Statistics Compound Gasoline Oxygenates tert-Amyl methyl ether Diisopropyl ether Ethyl tert-butyl ether Methyl tert-butyl ether Other Gasoline Compounds Benzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Ethylbenzene Naphthalene Toluene 1,3,5-Trimethylbenzene o-Xylene m- p-Xylene Trihalomethanes Bromodichloromethane Bromoform Chlorodibromomethane Chloroform Organic Syntheses Acrylonitrile Bromobenzene Bromochloromethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chlorotoluene 4-Chlorotoluene Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1 –Dichloroethane 1,2-Dichloroethane 1,1 –Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene Hexachlorobutadiene Hexachloroethane Isopropylbenzene p-Isopropyltoluene Methylene chloride Methyl ethyl ketone n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene 1,1,1 -Trichloroethane 1,1,2-Trichloroethane Trichloroethene 1,2,3-Trichloropropane
Number of Samples
Number of Detects
Detection Frequency
579 579 579 571
2 2 1 31
0.34 0.34 0.17 5.4
0.21 0.23 0.25 0.20
0.31 1.7 0.25 6.3
578 579 579 579 566 579 562 579 566 564
2 1 0 0 3 1 3 0 4 4
0.34 0.17 0 0 0.53 0.17 0.53 0 0.71 0.71
0.75 0.21 !0.2 !0.2 0.23 0.22 1.1 !0.2 0.26 0.33
3 0.21 !0.2 !0.2 0.63 0.22 4.2 !0.2 0.91 1.6
578 579 578 575
34 27 35 68
579 579 579 579 579 579 579 579 562 579 579 579 579 579 579 579 561 569 579 579 579 579 573 579 577 577 579 562 579 579 577 578 579 576 579
0 0 0 5 1 1 0 0 2 1 0 11 3 8 11 0 1 0 0 0 0 0 1 0 1 2 0 2 0 0 24 10 0 19 1
5.9 4.7 6.1 12 0 0 0 0.86 0.17 0.17 0 0 0.36 0.17 0 1.9 0.52 1.4 1.9 0 0.18 0 0 0 0 0 0.17 0 0.17 0.35 0 0.36 0 0 4.2 1.7 0 3.3 0.17
Min Concentration
0.2 0.21 0.21 0.21 !0.2 !0.2 !0.2 0.38 1.6 2.6 !0.2 !0.2 0.33 0.37 !0.2 0.21 0.27 0.22 0.33 !0.2 0.47 !0.2 !0.2 !0.2 !0.2 !0.2 0.38 !0.2 1.6 3.4 !0.2 0.21 !0.2 !0.2 0.2 0.21 !0.2 0.23 0.31
Max Concentration
7.4 49 9.4 22 !0.2 !0.2 !0.2 1.8 1.6 2.6 !0.2 !0.2 0.75 0.37 !0.2 10 0.65 23 14 !0.2 0.47 !0.2 !0.2 !0.2 !0.2 !0.2 0.38 !0.2 1.6 5.8 !0.2 0.83 !0.2 !0.2 36 13 !0.2 170 0.31 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10C.87
10-141
(Continued) Groundwater Statistics
Compound 1,2,4-Trimethylbenzene Vinyl bromide Vinyl chloride 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Fumigants Bromomethane 1,4-Dichlorobenzene cis-1,3-Dichloropropene trans-1,3 –Dichloropropene Refrigerants Chloromethane Dichlorodifluoromethane Trichlorofluoromethane l,l,2-Trichloro-l,2,2Trifluoroethane
Number of Samples
Number of Detects
Detection Frequency
Min Concentration
Max Concentration
571 579 579 579 579
1 0 1 0 0
0.18 0 0.17 0 0
0.46 !0.2 3.2 !0.2 !0.2
0.46 !0.2 3.2 !0.2 !0.2
579 579 579 579
1 1 0 0
0.17 0.17 0 0
6.4 0.25 !0.2 !0.2
6.4 0.25 !0.2 !0.2
579 579 579 579
3 4 5 1
0.52 0.69 0.86 0.17
0.2 1.1 0.24 0.91
0.69 18 1.3 0.91
Note: Concentrations are in micrograms per liter. Source: From Grady, S., 2003, A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking Water Sources: Results of a Random Survey, United States Geological Survey Water-Resource Investigations Report 02-4079, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
10-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10C.88 Summary Comparison of Occurrence of Phase II/V Contaminants In United States Water Systems Using Surface Water vs. Groundwater, from National Cross-Section States Percent O MRL
Contaminant
Surface Water (%)
Inorganic Chemicals (IOCs) IOCs Antimony (total) 4.2 Arsenic 13.0 Asbestos (MCL in 8.9 fibers per liter) Barium 49.1 Beryllium (total) 2.5 Cadmium 5.1 Chromium 10.5 Cyanide 5.1 Fluoride 77.8 Mercury 9.0 Nickel 11.8 Selenium 11.2 Thallium (total) 2.5 Synthetic Organic Chemicals (SOCs) 2,3,7,8-TCDD 0.0 (Dioxin) 2,4,5-TP (Silvex) 2.0 2,4-D 11.2 Alachlor (Lasso) 7.3 Atrazine 21.1 Benzo[a]pyrene 0.5 4.9 bis(2-ethylhexyl) adipate bis(2-ethylhexyl) 28.9 phthalate Carbofuran 0.8 (Furadan) Chlordane 0.0 Dalapon 9.4 Dibromo4.8 chloropropane (DBCP) Dinoseb 2.5 Diquat 3.5 Endothall 0.3 Endrin 2.1 Ethylene Dibromide 4.2 (EDB) Glyphosate 0.0 (Roundup) Heptachlor 0.4 Heptachlor 0.4 Epoxide Hexachloro0.4 benzene Hexachloro9.6 cyclopentadiene Lindane 1.2 Methoxychlor 1.0 Oxamyl (Vydate) 0.0 Penta3.1 chlorophenol Picloram (Tordon) 3.7 Simazine 15.9 Total PCBs 0.2 Aroclor 1016 0.0 Aroclor 1221 0.0 Aroclor 1232 0.0 Aroclor 1242 0.0 Aroclor 1248 0.0 Aroclor 1254 0.0 Aroclor 1260 0.0 Toxaphene 0.3 Volatile Organic Chemicals (VOCs) 1,1,17.3 Trichloroethane 1,1,25.7 Trichloroethane 1,1-Dichloroethene 2.9
Percent O 1⁄2 MCL
Percent O MCLa
Groundwater (%)
Surface Water (%)
Groundwater (%)
Surface Water (%)
Groundwater (%)
National MCL Viol.-SW (%)
National MCL Viol.-GW (%)
3.2 19.3 8.5
0.8 0.6 0.7
1.2 1.6 0.9
0.2 0.5 0.7
0.4 0.9 0.4
0.08 0.00 0.00
0.06 0.06 0.01
47.3 2.1 4.9 13.2 2.0 72.5 4.5 10.6 8.6 3.6
0.6 0.4 1.3 0.3 0.4 0.8 1.3 1.2 0.2 0.8
0.8 0.5 1.2 0.5 0.5 3.4 0.7 0.9 0.3 1.3
0.5 0.0 0.2 0.2 0.0 0.5 0.5 0.4 0.0 0.0
0.2 0.2 0.6 0.2 0.2 1.3 0.4 0.4 0.2 0.4
0.00 0.02 0.05 0.00 0.02 0.02 0.03 0.02 0.03 0.12
0.06 0.02 0.06 0.01 0.01 0.18 0.04 0.01 0.07 0.06
1.3
0.0
1.3
0.0
1.3
0.00
0.00
0.7 1.2 0.3 2.0 0.5 6.8
0.0 0.2 1.5 13.2 0.0 0.5
0.0 0.0 0.1 0.3 0.1 0.4
0.0 0.0 0.2 10.7 0.0 0.5
0.0 0.0 0.0 0.1 0.1 0.3
0.00 0.00 0.00 0.83 0.00 0.02
0.00 !0.01 0.00 0.01 0.00 0.00
14.9
3.2
2.7
2.8
1.7
0.03
0.01
0.1
0.0
0.0
0.0
0.0
0.00
0.00
0.1 0.8 2.6
0.0 0.2 1.1
0.0 0.0 2.3
0.0 0.2 1.1
0.0 0.0 2.0
0.00 0.00 0.00
0.00 0.00 !0.01
0.4 0.8 0.2 0.2 1.0
0.0 0.0 0.0 0.2 3.8
0.0 0.0 0.0 0.1 1.0
0.0 0.0 0.0 0.2 3.7
0.0 0.0 0.0 0.0 0.7
0.00 0.00 0.00 0.02 0.07
0.00 0.00 0.00 0.00 0.04
0.1
0.0
0.0
0.0
0.0
0.00
0.00
0.2 0.2
0.0 0.0
0.1 0.0
0.0 0.0
0.0 0.0
0.00 0.00
0.00 0.00
0.0
0.0
0.0
0.0
0.0
0.00
0.00
0.1
1.0
0.0
0.6
0.0
0.00
0.00
0.3 0.2 0.1 0.7
0.3 0.0 0.0 0.4
0.1 0.0 0.0 0.1
0.3 0.0 0.0 0.2
0.1 0.0 0.0 0.0
0.00 0.00 0.00 0.00
0.00 0.00 0.00 !0.01
0.5 1.4 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.1
0.0 2.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
!0.01 0.00 !0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 !0.01
3.3
0.9
1.3
0.9
1.3
0.00
0.01
0.7
0.6
0.4
0.3
0.3
0.00
0.01
1.5
0.3
1.0
0.3
0.9
0.02
0.04
(Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10C.88
10-143
(Continued) Percent O MRL
Contaminant 1,2,4Trichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane Benzene Carbon tetrachloride Chlorobenzene cis-1,2Dichloroethylene Ethyl benzene Methylene chloride (Dichloromethane) o-Dichlorobenzene p-Dichlorobenzene Styrene Tetrachloroethylene (PCE) Toluene transK1,2Dichloroethylene Trichloroethene (Trichloroethylene, TCE) Vinyl chloride Xylenes (Total) Group Summaries IOCs IOCs-All Regulated SOCs SOCs-Group 1 SOCs-Group 2 VOCs VOCs-All Regulated VOCs-Group 1 VOCs-Group 2
Note:
a
Percent O 1⁄2 MCL
Percent O MCLa
Surface Water (%)
Groundwater (%)
Surface Water (%)
Groundwater (%)
Surface Water (%)
Groundwater (%)
National MCL Viol.-SW (%)
National MCL Viol.-GW (%)
3.1
1.0
0.0
0.4
0.0
0.4
0.00
0.00
3.1 3.2 3.9 9.0 8.1 3.3
1.4 1.0 1.2 1.7 1.0 1.9
0.3 0.6 0.5 1.6 0.2 0.3
0.6 0.4 0.5 0.6 0.3 0.7
0.3 0.5 0.3 1.1 0.2 0.3
0.4 0.3 0.4 0.4 0.3 0.6
0.00 0.00 0.02 0.00 0.00 0.00
0.02 0.01 0.04 0.02 !0.01 0.01
7.3 25.6
2.2 11.1
0.3 10.4
0.3 3.3
0.3 4.7
0.1 2.3
0.00 0.03
!0.01 0.05
3.7 6.2 4.1 7.1
1.2 2.0 2.1 4.3
0.2 0.0 0.0 2.5
0.6 0.9 0.2 2.3
0.0 0.0 0.0 1.7
0.5 0.8 0.2 1.8
0.00 0.00 0.00 0.13
0.00 0.00 0.00 0.14
11.9 2.7
3.8 0.7
1.0 0.0
0.7 0.2
0.5 0.0
0.4 0.2
0.00 0.00
0.00 !0.01
5.6
3.1
1.9
1.8
1.2
1.5
0.05
0.12
3.1 12.3
0.5 3.9
0.3 0.2
0.2 0.2
0.3 0.0
0.2 0.1
0.00 0.00
0.02 0.00
83.7
83.5
6.8
9.2
2.5
4.2
0.3 1.0
0.6 0.1
21.9 20.4
2.4 13.4
13.2 1.2
0.3 1.9
10.7 0.9
0.1 1.0
41.1 19.5 11.1
19.9 6.6 6.4
15.4 1.7 4.5
7.9 1.3 3.9
8.2 0.9 2.9
6.1 0.9 3.2
0.2
0.4
IOC, Regulated: includes all the regulated IOCs; SOCs, Group 1: includes alachlor, atrazine, and simazine; SOCs, Group 2: includes bis(2-ethylhexyl)phthalate, bis(2-ethylhexyl)adipate, and benzo(a)pyrene; VOCs, Regulated: includes all the regulated VOCs; VOCs, Group 1: includes benzene, ethyl benzene, toluene, and total xylenes (LNAPLEs); VOCs, Group 2: includes cis-1, 2dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethene, tetrachloroethylene, trichloroethene, and vinyl chloride (DNAPLEs). Percent MCL Violations Derived from SDWIS Information for 1/1/93-3/31/1998.
% OMCL indicates the proportion of systems with any analytical results exceeding the concentration value of the MCL; it does not necessarily indicate an MCL violation. An MCL violation occurs when the MCL is exceeded by the average results from four quarterly samples or confirmation samples as required by the primacy State.
Source: From United States Environmental Protection Agency, 1999, A Review of Contaminant Occurrence in Public Water Systems, EPA 816-R-99-006, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
Chemical Name (Threshold in mg/L)
q 2006 by Taylor & Francis Group, LLC
# GW PWS
# SW PWS
% PWSOMRL
% GW PWSOMRL
% SW PWSOMRL
12,827 11,450
11,446 10,274
1,511 1,284
2.49 1.14
2.51 1.01
2.32 2.10
1.32 0.16
1.35 0.12
0.99 0.47
1.03 0.01
14,910 16,450 12,881 20,024 19,582 20,198 15,266 20,038 20,236 20,039 20,246 16,705 9,211 19,750 16,549 16,076
13,919 14,862 11,576 17,917 17,773 18,472 14,176 18,337 18,507 17,874 18,513 15,026 8,438 17,785 14,953 14,617
1,119 1,726 1,386 2,324 1,979 1,886 1,214 1,859 1,882 2,385 1,894 1,832 836 2,158 1,720 1,588
1.14 0.19 0.50 22.09 9.01 0.77 1.32 0.53 0.39 28.84 1.22 1.47 0.61 18.01 0.36 1.37
1.11 0.14 0.44 14.84 7.56 0.71 1.09 0.26 0.29 21.69 1.11 1.45 0.52 12.41 0.21 1.38
5.18 0.64 1.08 79.69 22.13 1.22 3.95 3.17 1.33 84.40 2.27 1.53 1.44 64.55 1.69 1.39
0.25 N/A 0.03 0.13 0.01 0.09 0.16 0.00 N/A 0.02 0.45 0.03 N/A 0.06 N/A 0.00
0.25 N/A 0.03 0.04 0.01 0.08 0.15 0.00 N/A 0.01 0.41 0.03 N/A 0.02 N/A 0.00
0.27 N/A 0.07 0.86 0.00 0.16 0.25 0.00 N/A 0.17 0.84 0.00 N/A 0.32 N/A 0.00
!2.0 !2.0 !1.0 22.00 7.32 !4.0 1.60 !1.0 !2.0 87.00 !4.0 2.18 !1.0 12.70 !2.0 0.50
20,483 15,282 15,430 19,287 19,591 16,947 16,757 16,947 9,164 20,081 12,284 12,771 20,429 11,329 12,763 12,724 13,452 15,721 19,953 13,987 15,612 15,494 12,167 10,127 12,343 16,623
18,758 14,192 14,180 17,602 17,908 15,338 15,138 15,332 8,303 18,355 10,980 11,480 18,752 10,145 11,471 11,440 12,034 14,154 18,300 12,638 14,057 14,284 10,953 8,956 11,071 14,938
1,876 1,215 1,380 1,836 1,820 1,748 1,754 1,749 898 1,884 1,385 1,359 1,819 1,276 1,371 1,363 1,502 1,702 1,795 1,450 1,689 1,334 1,282 1,230 1,337 1,832
1.14 1.16 1.17 4.05 0.67 0.12 0.15 0.13 0.16 1.62 0.35 0.27 0.25 1.55 0.35 0.33 1.18 0.20 0.28 1.76 0.17 1.25 0.25 1.58 0.23 0.57
1.09 1.10 1.06 3.31 0.66 0.12 0.14 0.10 0.12 1.40 0.30 0.28 0.20 1.47 0.29 0.34 1.08 0.16 0.20 1.69 0.15 1.11 0.26 1.49 0.23 0.45
1.55 1.73 1.45 11.06 0.77 0.11 0.23 0.40 0.56 3.66 0.72 0.22 0.77 2.12 0.88 0.22 1.93 0.53 1.00 2.41 0.36 2.70 0.08 2.36 0.22 1.53
0.18 0.19 0.20 0.77 0.08 N/A N/A N/A 0.00 0.00 0.11 N/A 0.00 N/A N/A N/A 0.01 0.00 0.00 N/A 0.00 0.00 N/A N/A N/A 0.00
0.16 0.17 0.20 0.52 0.09 N/A N/A N/A 0.00 0.00 0.06 N/A 0.00 N/A N/A N/A 0.02 0.00 0.00 N/A 0.00 0.00 N/A N/A N/A 0.00
0.37 0.41 0.22 3.27 0.00 N/A N/A N/A 0.00 0.00 0.51 N/A 0.00 N/A N/A N/A 0.00 0.00 0.00 N/A 0.00 0.00 N/A N/A N/A 0.00
0.10 !5.0 1.80 1.30 !4.0 !1.0 !2.0 !1.0 !1.0 !5.0 !5.0 !2.0 !5.0 !4.0 !2.0 !2.0 !5.0 !1.0 !5.0 !5.0 !1.0 !4.4 !2.0 !5.0 !2.0 !2.0
% PWSOThreshold
% GW PWSOThreshold
% SW PWSOThreshold
99% Value (mg/L)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Synthetic Organic Chemicals (SOCs) Dibromochloropropane (MCLZ0.2) Ethylene dibromidea (MCLZ0.05) Volatile Organic Chemicals (VOCs) Benzene (MCLZ5) Bromobenzene (N/A) Bromochloromethane (MCLZ10) Bromodichloromethane (HRLZ60) Bromoform (HRLZ400) Bromomethane (MCLZ10) Carbon tetrachloride (MCLZ5) Chlorobenzene (MCLZ100) Chloroethane (N/A) Chloroform (HRLZ600) Chloromethane (MCLZ3) cis-1,2-Dichloroethene (MCLZ70) cis-1,2-Dichloropropene (N/A) Dibromochloromethane (HRLZ60) Dibromomethane (N/A) Dichlorodifluoromethane (MCLZ1,000) 1,1-Dichloroethane (MCLZ5) 1,2-Dichloroethane (MCLZ5) Dichloroethene (MCLZ7) Dichloromethane (MCLZ5) 1,2-Dichloropropane (MCLZ5) 1,3-Dichloropropane (N/A) 2,2-Dichloropropane (N/A) 1,1-Dichloropropene (N/A) 1,3-Dichloropropene (HRLZ40) Ethyl benzene (MCLZ700) Hexachlorobutadiene (HRLZ0.9) Isopropylbenzene (N/A) m-Dichlorobenzene (HALZ600) m-Xylene (N/A) n-Butylbenzene (N/A) n-Propylbenzene (N/A) Naphthalene (HRLZ140) o-Chlorotoluene (MCLZ100) o-Dichlorobenzene (MCLZ600) o-Xylene (N/A) p-Chlorotoluene (MCLZ100) p-Dichlorobenzene (MCLZ750) p-Isopropyltoluene (N/A) p-Xylene (N/A) sec-Butylbenzene (N/A) Styrene (MCLZ100)
Total # PWS
10-144
Table 10C.89 United States Public Water System Unregulated Contaminant Monitoring Information System (UCRIS) (Round 1) 24-State Cross-Section Summary of Occurrence (1988–1992)
12,353 16,956 20,407 19,814 20,089 19,945 9,883 12,876 13,449 15,279 19,964 15,290 16,851 17,392 12,755 12,671 15,184 9,463
11,081 15,338 18,693 18,298 18,364 18,267 9,017 11,567 11,996 14,191 18,253 14,198 15,347 15,771 11,462 11,379 14,099 8,841
1,337 1,753 1,867 1,652 1,887 1,825 959 1,389 1,589 1,213 1,853 1,220 1,637 1,758 1,372 1,370 1,209 670
0.19 0.18 0.45 3.33 3.50 0.64 0.25 0.49 0.49 3.66 0.43 3.54 1.48 0.25 0.83 0.61 0.50 3.04
0.19 0.13 0.39 3.38 3.10 0.59 0.13 0.46 0.45 3.57 0.29 3.37 1.39 0.25 0.76 0.59 0.44 2.51
0.22 0.63 1.02 2.66 7.31 1.10 1.36 0.72 0.78 4.62 1.78 5.66 2.32 0.23 1.38 0.66 1.24 10.75
N/A 0.00 0.05 0.91 0.00 0.01 N/A N/A 0.00 0.03 0.04 0.98 0.01 0.01 N/A N/A 0.28 0.00
N/A 0.00 0.05 0.93 0.00 0.01 N/A N/A 0.00 0.03 0.02 1.00 0.01 0.01 N/A N/A 0.23 0.00
N/A 0.00 0.11 0.67 0.00 0.00 N/A N/A 0.00 0.00 0.16 0.66 0.00 0.00 N/A N/A 0.83 0.00
!2.0 !1.0 !1.0 13.2 0.7 !1.0 !1.0 !5.0 !5.0 3.7 !1.0 20.8 0.6 !2.0 !2.0 !2.0 !2.0 0.6
ENVIRONMENTAL PROBLEMS
tert-Butylbenzene (N/A) 1,1,1,2-Tetrachloroethane (HALZ70) 1,1,2,2-Tetrachloroethane (HALZ2) Tetrachloroethylene (MCLZ5) Toluene (MCLZ100) trans-1,2-Dichloroethene (MCLZ100) trans-1,3-Dichloropropene (N/A) 1,2,3-Trichlorobenzene (N/A) 1,2,4-Trichlorobenzene (MCLZ70) 1,1,1-Trichloroethane (MCLZ200) 1,1,2-Trichloroethane (MCLZ5) Trichloroethylene (MCLZ5) Trichlorofluoromethane (HALZ175) 1,2,3-Trichloropropane (MCLZ40) 1,2,4-Trimethylbenzene (N/A) 1,3,5-Trimethylbenzene (N/A) Vinyl chloride (MCLZ2) Xylenes (Total) (MCLZ10,000)
Note: MCL, maximum contaminant level; HAL, health advisory level (as of December 2000); HRL, health reference level (concentration values used only as reference levels for analyses in this report); MRL, minimum reporting level. The MCL, HAL, HRL, and MRL values are used in this report only as reference levels to facilitate occurrence assessments. “% PWSOThreshold” indicates the proportion of systems with any analytical results exceeding the concentration value of the HRL/MCL/HAL. (Note that results for % PWSs greater than an MCL value does not indicate a MCL violation. A formal MCL violation occurs when the MCL is exceeded by the average of four consecutive quarterly samples or confirmation samples as required by the primacy States.) N/A, there is no HRL/MCL/HAL available. a
The high occurrence of ethylene dibromide are, in part, considered false positives related to analytical methods problems.
Source: From United States Environmental Protection Agency, 2001, Occurrence of Unregulated Contaminants in Public Water Systems - A National Summary, EPA 815-P-00-002, www.epa.gov.
10-145
q 2006 by Taylor & Francis Group, LLC
10-146
Table 10C.90 United States Public Water System Safe Drinking Water Information System/Federal Version (SDWIS/FED) (Round 2) Data—20-State Cross-Section Summary of Occurrence (1993 to 1997) Chemical Name (Threshold in mg/L)
q 2006 by Taylor & Francis Group, LLC
# GW PWS
# SW PWS
% PWSO MRL
% GW PWS
% SW PWS
16,495
15,009
1,486
88.11
87.76
91.66
11,972 11,968 11,954 11,745 11,940 12,623 14,034 11,788 12,644 12,604 12,953 13,512 12,050
10,509 10,512 10,500 10,420 10,482 11,086 12,220 10,329 11,088 11,068 11,503 11,833 10,600
1,463 1,456 1,454 1,325 1,458 1,537 1,814 1,459 1,556 1,536 1,450 1,679 1,450
0.01 0.08 0.08 0.01 0.04 0.03 0.34 0.09 0.07 0.07 0.83 0.01 0.05
0.00 0.04 0.03 0.01 0.01 0.02 0.21 0.09 0.02 0.05 0.11 0.01 0.02
24,125 22,974 23,858 18,461 23,328 24,433 23,737 23,478 23,750 23,006 22,141 24,808 24,065 24,096 24,069 16,787 22,736 22,995 24,119 22,972 22,969 22,923 24,118 21,378 22,617 22,973
21,461 20,507 21,152 16,348 20,872 21,925 21,021 21,030 21,059 20,454 19,836 22,114 21,430 21,445 21,438 15,178 20,380 20,524 21,457 20,509 20,501 20,524 21,457 18,808 20,320 20,509
2,664 2,467 2,706 2,113 2,456 2,508 2,716 2,448 2,691 2,552 2,305 2,694 2,635 2,651 2,631 1,609 2,356 2,471 2,662 2,463 2,468 2,399 2,661 2,570 2,297 2,464
0.13 0.46 21.97 12.12 0.75 0.34 27.42 2.25 18.37 0.46 1.27 0.74 0.06 0.09 0.07 0.35 0.18 0.24 0.26 0.13 0.23 0.75 0.14 0.12 0.16 0.14
0.12 0.32 16.14 11.08 0.74 0.32 21.84 2.04 14.55 0.32 1.23 0.67 0.05 0.07 0.06 0.32 0.13 0.23 0.22 0.12 0.19 0.62 0.11 0.10 0.15 0.14
% PWSO Threshold
% GW PWSO
% SW PWSO
99% Value
1.79
1.83
1.41
560,000
0.07 0.41 0.48 0.00 0.27 0.13 1.21 0.14 0.45 0.20 6.55 0.00 0.28
0.00 0.00 0.01 0.01 N/A 0.00 0.00 0.09 N/A 0.00 0.00 0.00 0.00
0.00 0.00 0.01 0.01 N/A 0.00 0.00 0.09 N/A 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.14 N/A 0.00 0.00 0.00 0.00
!3.0 !2.0 !4.0 !2.0 !10.0 !10.0 !10.0 !1.0 !10.0 !50.0 !5.0 !2.0 !5.0
0.23 1.62 67.52 20.11 0.86 0.56 70.54 4.08 48.23 1.53 1.65 1.34 0.11 0.26 0.15 0.62 0.59 0.32 0.53 0.20 0.57 1.92 0.38 0.27 0.26 0.20
N/A 0.03 0.08 0.01 0.06 N/A 0.04 0.58 0.08 N/A 0.00 0.08 N/A N/A N/A 0.00 0.02 N/A 0.00 N/A N/A 0.00 0.00 0.00 N/A N/A
N/A 0.02 0.05 0.00 0.05 N/A 0.01 0.55 0.05 N/A 0.00 0.07 N/A N/A N/A 0.00 0.00 N/A 0.00 N/A N/A 0.00 0.00 0.00 N/A N/A
N/A 0.08 0.30 0.05 0.08 N/A 0.26 0.78 0.30 N/A 0.00 0.11 N/A N/A N/A 0.00 0.13 N/A 0.00 N/A N/A 0.00 0.00 0.00 N/A N/A
!1.0 !1.0 18.8 6.5 !9.0 !2.5 110.0 !2.5 9.7 !1.0 !20.0 !1.0 !2.0 !1.0 !1.0 !0.5 !1.0 !2.0 !1.0 !2.0 !2.0 !2.0 !2.0 !2.0 !2.0 !2.0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Inorganic chemicals (IOCs) Sulfate (HRLZ500,000) Synthetic Organic Chemicals (SOCs) Aldicarba (HRLZ7) Aldicarb sulfonea (HRLZ7) Aldicarb sulfoxidea (HRLZ7) Aldrina (HRLZ0.002) Butachlora (N/A) Carbaryla (MCLZ700) Dicambaa (MCLZ200) Dieldrina (HRLZ0.002) 3-Hydroxycarbofurana (N/A) Methomyla (MCLZ200) Metolachlora (HRLZ70) Metribuzina (HRLZ91) Propachlora (MCLZ90) Volatile organic chemicals (VOCs) Bromobenzene (N/A) Bromochloromethaneb (MCLZ10) Bromodichloromethane (HRLZ60) Bromoform (HRLZ400) Bromomethane (MCLZ10) Chloroethane (N/A) Chloroform (HRLZ600) Chloromethane (MCLZ3) Dibromochloromethane (HRLZ60) Dibromomethane (N/A) Dichlorodifluoromethaneb (MCLZ1,000) 1,1-Dichloroethane (MCLZ5) 1,3-Dichloropropane (N/A) 2,2-Dichloropropane (N/A) 1,1-Dichloropropene (N/A) 1,3-Dichloropropene (HRLZ40) Hexachlorobutadieneb (HRLZ0.9) Isopropylbenzeneb (N/A) m-Dichlorobenzene (HALZ600) n-Butylbenzeneb (N/A) n-Propylbenzeneb (N/A) Naphthaleneb (HRLZ140) o-Chlorotoluene (MCLZ100) p-Chlorotoluene (MCLZ100) p-Isopropyltolueneb (N/A) sec-Butylbenzeneb (N/A)
Total PWS
22,973 24,127 24,800 22,532 22,659 24,088 22,965 22,974
20,508 21,462 22,106 20,144 20,329 21,441 20,504 20,513
2,465 2,665 2,694 2,388 2,330 2,647 2,461 2,461
0.11 0.21 0.08 0.19 1.17 0.08 0.76 0.43
0.10 0.16 0.05 0.15 0.93 0.06 0.63 0.35
0.16 0.64 0.30 0.50 3.22 0.23 1.79 1.10
N/A 0.00 0.00 N/A 0.00 0.00 N/A N/A
N/A 0.00 0.00 N/A 0.00 0.00 N/A N/A
N/A 0.00 0.00 N/A 0.00 0.00 N/A N/A
!2.0 !1.0 !1.0 !2.0 !2.5 !1.0 !1.0 !2.0
Note: MCL, maximum contaminant level; HAL, health advisory level (as of December 2000); HRL, health reference level (concentration values used only as reference levels for analyses in this report); MRL, minimum reporting level. The MCL, HAL, HRL, and MRL values are used in this report only as reference levels to facilitate occurrence assessments. “% PWSOThreshold” indicates the proportion of systems with any analytical results exceeding the concentration value of the HRL/MCL/HAL. (Note that results for % PWSs greater than an MCL value does not indicate a MCL violation. A formal MCL violation occurs when the MCL is exceeded by the average of four consecutive quarterly samples or confirmation samples as required by the primacy States.) N/A, there is no HRL/MCL/HAL available. a b
ENVIRONMENTAL PROBLEMS
tert-Butylbenzeneb (N/A) 1,1,1,2-Tetrachloroethane (HALZ70) 1,1,2,2-Tetrachloroethane (HALZ2) 1,2,3-Trichlorobenzeneb (N/A) Trichlorofluoromethaneb (HALZ175) 1,2,3-Trichloropropane (MCLZ40) 1,2,4-Trimethylbenzeneb (N/A) 1,3,5-Trimethylbenzeneb (N/A)
Massachusetts data not included in summary statistics for this contaminant. New Hampshire data not included in summary statistics for this contaminant.
Source: From United States Environmental Protection Agency, 2001, Occurrence of Unregulated Contaminants in Public Water Systems - A National Summary, EPA 815-P-00-002, www.epa.gov.
10-147
q 2006 by Taylor & Francis Group, LLC
10-148
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10C.91 Public Water-Supply Wells in the United States Closed Because of Contamination as of 1984 Water-Supply Wells In Service or Standby State and Utility
Shallow (!100 0 )
Arizona Mesa Phoenix Wtr & Swr Dept. Tempe Tucson California Alhambra Anaheim Burbank Fresno Fullerton Garden Grove Glendale La Puente/SW Suburban Long Beach/Dominguez Wtr Corp. Los Angeles Wtr & Power Modesto Pomona Riverside Sacremento/Arcade Cnty Wtr San Bernardino San Jose/Great Oaks Wtr Co. Santa Barbara/Goleta Wtr Dist. Santa Barbara/Santa Barbara Pub. Colorado Colorado Springs Connecticut Clinton/Conn. Wtr Co. Delaware Newark/Artesian Wtr Co. Florida Boca Raton Daytona Beach Englewood Hollywood Miami Naples Ocala/Gen. Dev. Util. Palm Bay/Gen. Dev. Util. Palm Beach Gdns/Seacoast Util. Tallahassee Hawaii Honolulu
1 4
2
Deep (O100 0 )
Closed by Man-Made or Chemical Contamination Shallow (!100 0 )
Deep (O100 0 )
Closed by Natural Contamination Shallow (!100 0 )
Deep (O100 0 )
24 115
2 8
0 5
6 272
2 7
0 0
14 31 4 100 11 14 8 40
3 4 6 1 0 0 4 10
0 0 0 0 1 17 0 2
15
0
2
180
25
0
43 31 70 60
0
34 10
0
4
2 2 28 1
0
8 3
0
0
0 0 0 0 0 0
9
0
1
7
0
2
8
0
1
24
17
6
2
0
0
7
35
0
3
0
0
47 17 73 52
50 21 9 6 7 4 21
39
0 0 6 0
0 1 1
2 24
60
0 0 0 1
73
7 0 0 2
0 0 0
0 0
0
1 5 0 0
9
2 0
0 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10C.91
10-149
(Continued) Water-Supply Wells In Service or Standby
State and Utility
Shallow (!100 0 )
Illinois Elgin Indiana Anderson Richmond/Ind. Am. Wtr. Co. South Bend Iowa Sioux City Louisiana Baton Rouge/B.R. Wtr Co. Michigan Kalamazoo Lansing Minnesota Rochester Nebraska Grand Island Nevada Reno/Sierra Pac. Power Co. New Jersey Brick Harrington Park/Hackensack Wtr Co. Merchantville New Mexico Albuquerque Santa Fe/Sangre de Cristo Wtr Co. New York East Meadow/ Hempstead Wtr Dept. Elmira Farmingdale Lake Success/ Jamaica Wtr Co. Oakdale/Suffolk Wtr Auth. West Nyack/Spring Valley Wtr Co. Ohio Mansfield Oklahoma Oklahoma City Pennsylvania Pittsburgh/West View M.A. Rhode Island Bristol/Bristol Cnty Wtr Co. West Warwick/Kent Cnty W.A.
Deep (O100 0 )
Closed by Man-Made or Chemical Contamination Shallow (!100 0 )
11 4 5
9
15
2 2
108 124
0
0
0
0 0
19
11 1
2
0 0
0
0 0
Deep (O100 0 ) 2
7
50
10 3
Shallow (!100 0 )
0
23 5
Deep (O100 0 )
Closed by Natural Contamination
1 2
0 0
3
0 0 0
9
30
0
2
0
0
0
16
0
0
3
0
7 19
4 68
1 0
0 1
0 1
0 2
4
15
1
1
86 12
1 1
0 1
35
3
3
30
0 11 55
31
0
0
14
1 0 3
0
0 1 0
357
14
20
0
2
19
68
0
1
1
2
3
6
0
0
0
1
4
0
2
24
12
0
2
0
1
1
4
0
0
1
0 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-150
Table 10C.91
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Water-Supply Wells In Service or Standby
State and Utility
Shallow (!100 0 )
Texas El Paso Lubbock Utah Ogden Provo Salt Lake City/Salt Lake Wtr Dept. Virginia Woodbridge/Prince William Cnty Wyoming Cheyenne
7
Deep (O100 0 )
Closed by Man-Made or Chemical Contamination Shallow (!100 0 )
Deep (O100 0 )
Closed by Natural Contamination Shallow (!100 0 )
Deep (O100 0 )
140 330
1 3
0 3
8 10 14
0 0 0
1 2 1
0
0
26
1
0
37
1
0
Source: From Compiled from 1984 Water Utility Operating Data issued by the American Water Works Association. Copyright 1986 AWWA.
q 2006 by Taylor & Francis Group, LLC
Source Type LUST Underground injection State sites DOD/DOE CERCLA (nonNPL) RCRA corrective action Nonpoint sources Landfills NPL
Number of States Reporting Information
Number of Aquifers or Hydrogeologic Settings for Which Information Was Reported
Total Sites
Number
Percent of Total
Number
Percent of Total
Number
Percent of Total
Number
Percent of Total
22 17
72 72
85,067 31,480
48,320 1,313
57 4
15,436 172
18 !1
3,044 61
4 !1
21,438 452
25 !2
17 17 19
34 54 59
12,202 8,705 3,506
6,199 4,470 1,381
51 51 39
3,139 286 802
26 3 23
753 1,717 229
6 20 7
3,242 1,937 316
27 22 9
19
50
2,696
538
20
267
10
95
4
67
3
8 6 22
29 26 66
2,030 1,356 307
44 110 275
2 8 90
31 110 249
!2 8 81
5 2 83
!1 !1 27
3 — 33
!1 — 11
Number of Sites with Confirmed Releases
Number of Sites with Confirmed Groundwater Contamination
Number of Sites with Active Remediation
Number of Sites with Cleanup Completed
ENVIRONMENTAL PROBLEMS
Table 10C.92 Summary of Contaminant Source Type and Number Reported in the United States in 1998
Note: CERCLA, Comprehensive Environmental Response, Compensation, and Liability Act; DOD/DOEZDepartment of Defense/Department of Energy; LUST, leaking underground storage tank; NPL, national priority list; RCRA, Resource Conversation and Recovery Act; —, not available. Source: From United States Environmental Protection Agency, 2000, National Water Quality Inventory 1998. Report to Congress, Groundwater and Drinking Water Chapters, www.epa.gov.
10-151
q 2006 by Taylor & Francis Group, LLC
10-152
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10C.93 Hazardous Waste Sites on the National Priority List by State and Outlying Area in the United States 2003 State and Outlying Area Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Guam Puerto Rico Virgin Islands United States Total Note:
Total Sites 15 6 9 11 98 18 16 15 1 52 15 3 9 45 29 14 12 14 15 12 19 32 69 24 4 25 15 11 1 20 116 12 91 29 — 35 11 12 95 12 25 2 13 45 19 9 30 47 9 40 2 2 9 2 1,283 1,296
Rank
Percent Distribution
Federal
Nonfederal
24 44 40 37 2 22 23 24 (X) 6 24 46 41 8 14 29 32 30 24 33 20 12 5 18 45 16 24 38 49 19 1 34 4 15 50 11 39 35 3 36 17 47 31 9 21 42 13 7 43 10 47 (X) (X) (X) (X) (X)
1.2 0.5 0.7 0.9 7.6 1.4 1.2 1.2 0.1 4.1 1.2 0.2 0.7 3.5 2.3 1.1 0.9 1.1 1.2 0.9 1.5 2.5 5.4 1.9 0.3 1.9 1.2 0.9 0.1 1.6 9.0 0.9 7.1 2.3 — 2.7 0.9 0.9 7.4 0.9 1.9 0.2 1.0 3.5 1.5 0.7 2.3 3.7 0.7 3.1 0.2 (X) (X) (X) 100.0 (X)
3 5 2 — 24 3 1 1 1 6 2 2 2 5 — 1 2 1 1 3 9 7 1 2 — 3 — 1 — 1 8 1 4 2 — 5 1 2 6 2 2 1 4 4 4 — 11 14 2 — 1 1 — — 163 164
12 1 7 11 74 15 15 14 — 46 13 1 7 40 29 13 10 13 14 9 10 25 68 22 4 22 15 10 1 19 108 11 87 27 — 30 10 10 89 10 23 1 9 41 15 9 19 33 7 40 1 1 9 2 1,120 1,132
As of December 31. Includes both proposed and final sites listed on the National Priorities List for the Superfund program as authorized by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and the Superfund Amendments and Reauthorization Act of 1986. —, represents zero.
Source: From U.S. Census Bureau, Statistical Abstract of the United States: 2004–2005, www.census.gov. Original Source:
From U.S. Environmental Protection Agency, Supplementary Materials: National Priorities List, Proposed Rule, December 2003.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-153
Table 10C.94 Number of Injection Wells in the United States in 1998 Number of Wells (Rounded to Nearest 100)
Well Class Class I
500
Class II
164,300
Class III
29,600
Class IV
Banned by all states and EPA under the Safe Drinking Water Act unless authorized for groundwater cleanup Actual numbers unavailable
Class V Source:
Description of Injection Practice Inject fluids into deep, confined geologic formations Associated with municipal or industrial waste disposal, hazardous or radioactive waste sites Inject fluids used in oil and gas production into deep, confined geologic formations Inject fluids into shallower formations for mineral extraction Inject hazardous or radioactive wastes directly or indirectly into drinking water sources Includes all injection methods not included in other four categories
From United States Environmental Protection Agency, 2000, National Water Quality Inventory 1998. Report to Congress, Groundwater and Drinking Water Chapters, www.epa.gov.
Original Source: From U.S. EPA Office of Groundwater and Drinking Water, 1999.
q 2006 by Taylor & Francis Group, LLC
10-154
Table 10C.95 United States Toxic Release Inventory On-Site and Off-Site Disposed or Other Releases, by State, 2003 On-site Disposal or Other Releases On-site Disposal to Class I Underground Injection Wells, RCRA Subtitle C Landfills, and Other Landfills
State
Class I Wells Pounds
RCRA Subtitle C Landfills Pounds
Other On-site Landfills Pounds
Subtotal Pounds
Fugitive Air Emissions Pounds
0 0 0 0 3,303,538 0 0 0 0 0 20,875,927 0 0 0 0 794 1,075,521 0 470,746 0 35,904,030 0 0 0 1,907,236 0 12,654,379 0 0 0 0 0 0 18,605 0 0 0 0 29,289,527 1,307,526 0 0 0 0 0 0 0 85,633,991 0 0 0 0 0 10
7,739,591 0 0 1 295,473 25,491,811 97 0 0 0 84 90 12 0 30,517,289 23,219,451 8,094,913 0 33,000 0 7,050,318 0 0 0 1,046,569 251 65 199,911 81 0 29,771,405 0 104,607 0 2,919,297 2,023 0 0 7,261,217 1,757,603 13,208,609 11,433 13,533 250 62,318 0 54,792 3,619,830 7,672,552 0 0 344 633,020 7,844
10,578,722 310 0 5,854,841 2,439,167 608,973 6,086,523 393 1,252,178 0 10,441,600 522,944 10 0 42,662 4,464,352 17,522,055 1,889,630 3,535,497 15,143,069 7,348,228 838,723 1,827,936 41,739 3,757,600 5,528,048 1,985,150 2,187,364 22,971,757 7,740,974 2,606,310 0 33,841 5,296,008 1,137,787 3,265,168 2,263,167 0 16,604,064 1,814,396 11,729,305 5,711,204 250 0 2,387,601 5,533,657 18,926,296 24,058,727 12,978,810 4 0 3,317,037 191,652 7,700,777
18,318,313 310 0 5,854,842 6,038,178 26,100,784 6,086,620 393 1,252,178 0 31,317,611 523,034 22 0 30,559,951 27,684,597 26,692,489 1,889,630 4,039,243 15,143,069 50,302,576 838,723 1,827,936 41,739 6,711,405 5,526,299 14,639,593 2,387,276 22,971,839 7,740,974 32,377,715 0 138,448 5,314,613 4,057,084 3,267,191 2,263,167 0 53,154,807 4,879,525 24,937,914 5,722,637 13,783 250 2,449,919 5,533,657 18,981,088 113,312,547 20,651,362 4 0 3,317,381 824,673 7,708,631
10,050,670 395,715 8,460 1,063,942 6,279,944 3,946,761 753,351 855,300 290,367 3,338 5,640,681 9,084,590 1,926 180,874 995,037 8,628,864 8,722,806 3,791,907 2,641,059 6,024,718 12,230,196 686,531 596,281 741,565 3,915,701 3,110,524 5,810,502 2,811,105 597,835 886,910 588,282 157,081 1,840,951 300,082 2,855,774 6,936,819 251,193 324 9,765,195 2,467,942 2,538,300 5,871,513 942,381 236,638 6,720,209 656,431 11,030,628 35,163,397 1,857,825 19,824 124,893 5,233,866 1,560,909 3,840,246
q 2006 by Taylor & Francis Group, LLC
Point Source Air Emissions Pounds 48,028,693 1,689,402 6 3,605,620 14,018,639 14,238,606 2,204,320 2,154,851 7,003,978 1 71,659,217 90,203,030 162,669 1,900,899 3,038,312 47,405,033 64,952,587 18,311,363 10,557,093 51,653,888 42,697,721 3,611,216 35,266,724 5,297,813 46,250,106 10,522,357 25,988,162 24,870,138 3,486,141 5,985,779 1,253,025 5,217,148 10,484,189 647,660 24,254,524 93,358,632 4,621,269 5,701 123,297,398 13,460,673 10,784,137 85,113,791 7,081,569 390,168 45,438,879 807,101 77,689,173 56,502,383 7,268,894 45,025 831,616 45,714,310 11,772,038 75,083,656
Surface Water Discharges Pounds
Class II–V Wells Pounds
Land Treatment Pounds
RCRA Subtitle C Surface Impoundments Pounds
7,805,767 541,992 0 6,965 5,419,186 4,617,780 2,955,073 722,325 918,650 8,062 2,507,602 9,573,187 71,627 364,067 4,642,166 7,221,378 23,296,297 3,274,619 4,021,144 2,986,815 11,303,522 3,334,311 2,704,113 68,806 1,218,195 1,246,533 7,751,711 2,620,282 49,172 18,177,388 88,601 86,194 4,148,642 62,237 7,937,611 8,592,474 248,831 0 6,716,124 3,451,751 2,452,054 9,684,378 24,365 6,947 3,473,022 3,199,143 2,410,104 21,670,283 56,978 136,856 355,871 8,198,926 1,397,187 4,194,526
8,305 21,374,380 0 0 93,481 30,086 0 0 0 0 154,144 0 0 2,670 0 0 0 0 500 2,971 0 0 50,375 0 0 0 0 0 209,716 0 3 0 5 0 0 0 0 0 0 0 0 0 0 0 0 101 0 42,000 0 0 0 0 0 87
147,954 0 0 167,809 501,024 675,350 341 0 9 0 2,067,467 431,299 0 19,681 669,554 477,550 1,850,171 750 419,554 333,583 46,587 0 159,930 39 123,547 71,993 393,645 12,617 933 678,512 43 0 6,583 326,660 23,565 245,329 17,123 0 499,432 13,387 187,648 12,327 0 0 37,514 685 26,760 3,090,383 292,689 0 597 203,048 29,989 597,291
0 0 0 0 1 5,134 0 0 0 0 405,334 35,472 0 0 2,239,333 29,315 1,500 0 0 334,515 289,599 0 0 0 0 0 15,268 544 0 1,000 0 0 0 0 0 0 0 0 307,465 1 12,337 1,790,272 0 0 85 0 0 11 0 0 0 0 0 21,088
Other Surface Impoundments Pounds
Other Land Disposal Pounds
14,642,205 270,833,014 0 6,854,241 2,039,402 130,552 2,726,225 78 8,178 2,082 9,159,351 13,660,727 7 0 6,571,414 8,987,454 8,571,928 2,611,789 3,795,286 5,381,917 4,062,499 0 34,954 80,638 5,389,756 5,284,791 6,767,118 40,355,980 10,445,012 755 188,495,103 22,805 6,551 1,270,605 257 6,096,625 7,020,805 2 12,485,002 547,749 503 309,090 0 0 2,944,266 23,556 22,765,611 3,684,426 130,057,726 7 10,124 1,887,312 5,035,903 4,937,887
464,575 244,609,756 0 30,027,815 43,324 444,069 3,317,078 778 48 0 123,809 748,427 3 229,586 12,027,196 447,772 777,844 39,658 127,585 921,961 148,267 9,557 119,632 670,421 1,062,639 63,705 221,233 21,326,736 6,475,019 277,302 185,492,867 165 188,018 9,831,265 398,503 609,420 2,975 0 178,440 524,632 2,350 5,508,710 3,500 0 327,757 5,350 2,457,322 1,953,398 78,732,740 5 0 244,389 517,707 342,718
Subtotal Pounds 81,148,169 539,444,259 8,466 41,726,391 28,395,002 24,088,337 11,956,389 3,733,332 8,221,230 13,482 91,717,605 123,736,732 236,233 2,697,777 30,183,012 73,197,365 108,173,133 28,030,086 21,562,221 67,640,366 70,778,392 7,641,615 38,932,009 6,859,282 57,959,944 20,299,903 46,947,640 91,997,402 21,263,828 26,007,647 375,917,924 5,483,393 16,674,938 12,438,509 35,470,235 115,839,298 12,162,196 6,027 153,249,057 20,466,134 15,977,329 108,290,080 8,051,815 633,753 58,941,732 4,692,347 116,379,598 122,106,261 218,266,853 201,716 1,323,101 61,481,850 20,313,733 89,017,499
Total On-Site Disposal or Other Releases Pounds
Total Off-Site Disposal or Other Releases Pounds
99,466,482 539,444,569 8,466 47,581,233 34,433,180 50,189,121 18,043,008 3,733,725 9,473,408 13,482 123,035,216 124,259,766 236,255 2,697,777 60,742,962 100,881,962 134,865,622 29,919,715 25,601,464 82,783,436 121,080,968 8,480,338 40,759,945 6,901,021 64,671,349 25,826,201 61,587,233 94,384,677 44,235,667 3,748,621 408,295,639 5,483,393 16,813,386 17,753,122 39,527,319 119,106,489 14,425,362 6,027 206,403,864 25,345,659 40,915,243 114,012,717 8,065,598 634,003 61,391,651 10,226,004 135,360,685 235,418,808 238,918,214 201,721 1,323,101 64,799,231 21,138,405 96,726,130
18,982,157 199,327 0 632,299 6,168,633 7,682,581 4,474,503 1,650,391 4,139,175 306 3,417,197 2,391,094 2,048 419,791 584,846 31,519,211 99,900,349 7,482,328 3,262,448 7,798,069 5,764,045 824,733 4,739,560 2,112,307 36,933,939 5,622,420 1,489,728 8,114,819 970,916 17,722,548 758,761 460,749 6,310,629 146,129 4,499,897 10,039,033 9,213,436 0 45,193,295 4,622,081 1,213,679 52,905,725 734,652 258,275 22,316,357 94,109 7,178,908 26,485,939 3,077,073 144,981 7,916 9,431,206 1,741,529 5,443,463
Total On-Site and Off-Site Disposal or Other Releases Pounds 118,448,639 539,643,896 8,466 48,213,532 40,801,813 57,871,702 22,517,511 5,384,116 13,612,583 13,788 126,452,413 126,650,860 238,303 3,117,568 61,327,809 132,401,173 234,765,971 37,402,043 28,863,912 90,581,505 126,845,013 9,305,071 45,499,505 9,013,328 101,605,288 31,448,621 63,076,960 102,499,496 45,206,583 51,471,169 409,054,400 5,944,142 23,124,015 17,899,251 44,027,216 129,145,522 23,638,798 6,027 251,597,159 29,967,740 42,128,922 166,918,443 8,800,250 892,279 83,708,008 10,320,113 142,539,594 261,904,747 241,995,287 346,702 1,331,017 74,230,438 22,879,934 102,169,593
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Northern Marianas Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia
Other On-site Disposal or Other Releases
0 7,960,400 200,402,228
1,677 2,909 170,794,270
655,225 7,064,110 267,883,840
656,902 15,027,419 639,080,339
2,873,281 513,877 205,095,324
21,768,989 1,638,924 1,381,295,231
4,595,302 10,990 222,628,110
0 0 21,968,824
821,747 1,564 15,675,243
49,651 4,341 5,542,266
21,242 1,019,873 817,040,382
302,494 12,290 612,362,811
30,423,707 3,201,858 3,281,608,191
31,080,609 18,229,277 3,920,688,530
19,717,618 1,034,080 518,031,287
50,798,227 19,263,357 4,438,719,817
Note: This information does not indicate whether (or to what degree) the public has been exposed to toxic chemicals. Therefore, no conclusions on the potential risks can be made based solely on this information (including any ranking information). For more detailed information on this subject refer to The Toxics Release Inventory (TRI) and Factors to Consider When Using TRI Data document at www.epa.gov/trl/tridata. On-site Disposal or Other Releases include Underground injection to Class I Wells (Section 5.4.1), RCRA Subtitle C Landfills (5.5.1A), Other Landfills (5.5.1B), Fugitive or Non-point Air Emissions (5.1), Stack or Point Source Air Emissions (5.2), Surface Water Discharges (5.3), Class II–V Wells (5.4.2), Land Treatment (5.5.2), RCRA Subtitle C Surface impoundments (5.5.3A), Other Surface Impoundments (5.5.3B) and Other Land Disposal (5.5.4). Off-site Disposal or Other Releases include from Section 6.2 Underground Injection to Class I Wells (M81), RCRA Subtitle C Landfills (M65), Other Landfills (M64, M72), Storage Only (M10), Solidification/Stabilization—Metals and Metal Category Compounds only (M41 or M40), Wastewater Treatment (excluding POTWs)—Metals and Metal Category Compounds only (M62 or M61), RCRA Subtitle C Surface Impoundments (M66), Other Surface Impoundments (M67, M63), Land Treatment (M73), Other Land Disposal (M79), Underground Injection to Class II–V Wells (M82, M71), Other Off-site Management (M90), Transfers to Waste Broker—Disposal (M94, M91), and Unknown (M99) and, from Section 6.1, Transfers to POTWs (metals and metal category compounds only).
ENVIRONMENTAL PROBLEMS
Wisconsin Wyoming Total
Does not include Off-site Disposal or Other Releases transferred to other TRI facilities that reported the amounts as On-site Disposal or Other Releases. Source: From United States Environmental Protection Agency, 2005, 2003 TRI Public Data Release eReport May 2005, www.epa.gov.
10-155
q 2006 by Taylor & Francis Group, LLC
10-156
Table 10C.96 United States Toxic Release Inventory On-Site and Off-Site Disposal or Other Releases, by Industry, 2003 On-site Disposal or Other Releases On-site Disposal to Class I Underground Injection Wells, RCRA Subtitle C Landfills, and Other Landfills
SIC Code Industry
Class I Wells Pounds
Other On-site Landfills Pounds
Subtotal Pounds
Fugitive Air Emissions Pounds
Point Source Air Emissions Pounds
Surface Water Discharges Pounds
Class II–V Wells Pounds
Land Treatment Pounds
RCRA Subtitle C Surface Impoundments Pounds
Other Surface Impoundments Pounds
Other Land Disposal Pounds
Subtotal Pounds
Total On-Site Disposal or Other Releases Pounds
Total Off-Site Disposal or Other Releases Pounds
Total On-Site and Off-Site Disposal or Other Releases Pounds
0 0 63,205 0 0 0 0 0 0 0 177,818,769 2,487,806 0 0 0
0 0 546 0 0 0 2,273 0 42 87 3,804,019 56 15,272 0 94,933
17,124,349 7,952,585 41,361 2,376 0 0 330,292 1 12,545,504 0 24,987,711 724,902 165,188 6,725 3,332,388
17,124,349 7,952,585 105,112 2,376 0 0 332,566 1 12,545,546 87 206,610,499 3,212,764 180,480 6,725 3,427,320
1,285,236 842,399 16,998,226 58,494 1,130,155 112,094 3,370,921 691,650 27,019,698 7,253,937 62,053,840 16,706,339 14,095,493 269,382 1,556,565
1,753,800 64,775 35,055,551 2,416,426 4,826,038 366,780 27,040,230 5,410,353 146,219,717 7,437,745 168,589,153 34,608,196 51,339,039 655,731 38,084,142
679,446 199,797 83,136,183 130,052 262,178 0 108,277 35 18,715,017 549 44,537,842 17,134,723 125,302 27,908 2,133,677
21,584,184 58,768 17,044 0 0 0 0 0 0 0 273,096 32,752 0 0 2,971
13,150 1,154,725 9,873,967 149,836 123,650 0 115,179 0 1,064,035 0 557,537 54,496 0 60 195
2,236,052 21,088 89,218 0 0 0 250 0 128,025 0 23,290 12 11 0 169
637,974,487 1,817,948 140,913 0 160,937 0 1,108 0 3,635,346 0 12,922,181 61,682 4,997 0 230,674
562,019,783 795,570 428,500 0 53 0 16,190 35,961 307,503 4,951 4,731,869 98,744 81,715 5 337,690
1,227,546,138 4,955,069 145,739,602 2,754,807 6,503,010 478,875 30,652,154 6,137,999 197,089,341 14,697,183 293,688,809 68,696,945 65,646,558 953,086 42,346,084
1,244,670,487 12,907,654 145,844,714 2,757,183 6,503,010 478,875 30,964,719 6,138,000 209,634,887 14,697,270 500,299,307 71,909,709 65,827,018 959,811 45,773,404
1,037,942 4,925 7,340,634 421,402 894,688 200,481 2,021,849 71,580 5,327,919 267,911 44,440,173 3,059,186 9,461,313 1,139,481 5,469,229
1,245,708,429 12,912,580 153,185,349 3,178,586 7,397,699 679,355 33,006,568 6,209,580 214,962,805 14,985,181 544,739,481 74,968,895 75,288,331 2,099,292 51,242,633
945,916 0 0 0 6,354 0 0 0 0
9,728,105 14,789 11 239,206 2,676 5,765 755 51,833 0
36,433,952 48,262 3,688,102 198,932 236,433 168 1,450 144,198,732 0
47,107,973 63,051 3,688,112 438,140 245,463 5,933 2,205 144,250,565 0
13,604,646 12,327,229 2,666,073 3,281,807 11,936,992 1,694,548 926,391 284,136 634,593
35,879,537 23,708,658 4,127,143 6,476,571 51,064,653 5,123,745 3,908,177 721,277,416 839,584
39,443,391 2,331,208 209,418 3,628,323 207,966 1,018,609 62,644 3,340,491 1,218
5 0 0 0 0 0 0 4 0
15,115 17,556 210 0 0 341 0 1,993,907 0
0 125 0 750 0 0 0 1,238,158 5
32,623,268 8,368 8 2,466 34 5 5 126,316,380 5
29,540,600 340,049 20,986 5,939 92,279 82,747 504 5,397,157 6,067
151,006,562 38,733,193 7,023,837 13,395,857 63,301,924 7,919,995 4,897,720 859,847,648 1,281,472
198,114,535 38,796,244 10,711,949 13,833,997 63,547,387 7,925,928 4,899,925 1,004,098,213 1,281,472
279,358,340 19,827,879 3,627,929 6,444,050 11,228,710 788,458 2,155,240 78,665,493 117,925
477,472,875 58,624,123 14,339,878 20,278,047 74,776,098 8,714,386 7,055,165 1,082,763,707 1,399,396
0
12
0
12
974,868
1,820,524
12,614
0
0
0
14,333
7,393
2,829,733
2,829,745
349,073
3,178,818
19,080,178
156,200,572
15,801,796
191,082,546
287,991
498,873
300,944
0
10
1,803,701
2
127,109
3,018,630
194,101,176
33,007,422
227,108,598
0 200,402,228
633,316 170,794,270
62,631 267,883,840
695,947 639,080,339
3,131,619 205,095,324
2,902,674 1,361,295,231
4,880,299 222,628,110
0 21,968,824
541,275 15,875,243
1,412 5,542,266
1,125,238 817,040,382
7,883,444 612,362,811
20,465,982 3,281,608,191
21,161,909 3,920,688,530
1,282,055 518,031,287
22,443,964 4,438,719,817
Note: This information does not indicate whether (or to what degree) the public has been exposed to toxic chemicals. Therefore, no conclusions on the potential risks can be made based solely on this information (including any ranking information). For more detailed information on this subject refer Toxics Release Inventory (TRI) and Factors to Consider When Using TRI Data document at www.epa.gov/tri/tridata. On-site Disposal or Other Releases include Underground Injection to Class I Wells (Section 5.4.1), RCRA Subtitle C Landfills (5.5.1A), Other Landfills (5.5.1B), Fugitive or Non-point Air Emissions (5.1), Stack or Point Source Air Emissions (5.2), Surface Water Discharges (5.3), Class II–V Wells (5.4.2). Land Treatment (5.5.2), RCRA Subtitle C Surface Impoundments (5.5.3A), Other Surface Impoundments (5.5.3B) and Other Land Disposal (5.5.4). Off-site Disposal or Other Releases include from Section 6.2 Underground Injection to Class I Wells (M81), RCRA Subtitle C Landfills (M65), Other Landfills (M64, M72), Storage Only (M10), Solidification/Stabilization—Metals and Metal Category Compounds only (M41 or M40), Wastewater Treatment (excluding POTWs)—Metals and Metal Category Compounds only (M62 or M61), RCRA Subtitle C Surface Impoundments (M66), Other Surface Impoundments (M67, M63), Land Treatment (M73), Other Land Disposal (M79), Underground Injection to Class II–V Wells (M82, M71), Other Off-site Management (M90), Transfers to Waste Broker—Disposal (M94, M91), and Unknown (M99) and, from Section 6.1, Transfers to POTWs (metals and metal category compounds only). Does not include Off-site Disposal or Other-Releases transferred to other TRI facilities that reported the amounts as On-site Disposal or Other Releases. Source: From United States Environmental Protection Agency, 2005, 2003 TRI Public Data Release eReport, May 2005, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
10 Metal mining 12 Coal mining 20 Food 21 Tobacco 22 Textiles 23 Apparel 24 Lumber 25 Furniture 26 Paper 27 Printing 28 Chemicals 29 Petroleum 30 Plastics 31 Leather 32 Stone/ clay/glass 33 Primary metals 34 Fabricated metals 35 Machinery 36 Electrical Equip. 37 Transportation Equip. 38 Measure/Photo. 39 Miscellaneous 491/493 Electric utilities 5,169 Chemical wholesale distributors 5,171 Petroleum terminals/bulk storage 7,389/4,953 Hazardous waste/solvent recovery No codes Total
RCRA Subtitle C Landfills Pounds
Other On-site Disposal or Other Releases
ENVIRONMENTAL PROBLEMS
10-157
Table 10C.97 Number of Reported Spills in Canada in Seven Sectors, 1984–1995 Year
Chemical
Government
Metallurgy
Mining
Petroleum
Pulp & Paper
Service Industry
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 Total
70 130 206 179 405 582 588 552 667 754 784 534 5,451
223 200 206 228 981 1,080 1,320 1,487 1,991 1,957 2,165 2,204 14,042
31 58 181 139 360 392 361 508 703 618 599 431 4,381
153 83 118 124 172 172 191 195 194 186 199 184 1,971
1,831 2,053 2,398 2,512 3,021 2,971 3,157 3,139 1,144 1,531 1,577 1,642 26,976
38 44 73 63 148 224 312 291 340 371 458 353 2,715
94 104 157 208 281 346 408 434 427 456 464 484 3,863
Source: From Summary of Spill Events in Canada, 1984–1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.
Table 10C.98 Total Quantity of Reported Spills in Canada in Seven Sectors (Tons), 1984–1995 Year
Chemical
Government
Metallurgy
Mining
Petroleum
Pulp & Paper
Service Industry
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 Total
1,783 12,399 16,160 17,128 5,498 7,194 6,629 1,619 827 1,519 178 325 71,259
142,556 140,820 11,267 133,863 58,480 189,169 84,194 184,449 1,386,991 677,529 678,622 1,576,576 5,265,518
4,860 314 23,923 87,665 23,497 51,266 79,178 32,449 193,435 1,425,753 27,489 11,791 1,961,620
113,078 16,105 29,972 126,939 6,752 42,899 35,247 26,172 58,667 12,094 7,262 4,783 479,969
72,121 46,029 62,232 89,773 29,444 120,765 50,284 43,963 11,164 62,725 18,174 18,176 624,852
2,948 35,447 28,138 90,608 26,933 16,322 35,845 46,491 25,494 35,612 19,751 49,224 412,814
433 211 431,886 616,308 1,115 228 310 5,106 5,625 190 197 763 1,062,374
Source: From Summary of Spill Events in Canada, 1984–1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.
Table 10C.99 Hydrocarbon Spills Reported in Canada, 1974–1983 Year
Condensates and Gases
Crude Oil
No. 2 Fuel
No. 6 Fuel
No. 4 & 5 Fuel
Gasoline
Other Oils
Waste Oil
Asphalt
Total
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 Total %
3,623 600 7,429 20,865 845 3,306 705 1,160 281,181 768 320,482 59
14,823 11,530 10,901 10,699 12,067 12,540 15,274 8,041 10,658 8,553 115,086 21
1,046 836 1,650 3,753 2,801 4,724 3,517 12,589 4,602 1,467 36,985 7
1,106 2,499 2,084 804 3,288 9,054 585 763 915 803 21,901 4
5,594 2,844 2,231 1,587 1,932 1,801 649 1,184 1,067 422 19,311 4
810 3,095 2,156 1,638 1,237 1,567 918 1,767 847 460 14,495 3
222 256 220 551 454 339 278 1,013 609 300 4,242 1
631 321 38 85 72 319 108 1,886 46 69 3,575 1
82 266 372 103 476 392 479 287 147 337 2,941 1
27,935 22,250 27,085 40,085 23,170 34,045 22,510 28,690 300,070 13,180 539,020 100
Note: By type; volume in metric tons. Source: From Environment Canada, 1987, Summary of Spill Events, 1974–1983, www.ec.gc.ca. With permission.
q 2006 by Taylor & Francis Group, LLC
10-158
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10C.100 Quantity Spilled Annually for the Top Five MIACC List 1 Substances in Canada Tonnes Year
Anhydrous Ammonia
Chlorine
Gasoline
Hydrochloric Acid
Propane
Total
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 Total
27 25 33 7 17 27 86 4 28 70 13 18 355
2.9 0.2 409.1 0.3 9.2 1.1 0.1 0.2 0.5 0.4 8.2 16.3 448.4
5,632 1,746 909 837 1,096 746 675 508 6,439 689 206 247 19,730
36 57 53 189 51 250 106 55 346 37 72 25 1,276
19 1,591 25 1 1 11 64 137 15 57 43 2 1,965
5,716 3,418 1,430 1,035 1,174 1,035 930 704 6,829 853 343 308 23,775
Source: From Summary of Spill Events in Canada, 1984–1995, EPS 5/SP/3, Environment Canada, Canada Environmental Emergencies Program, 1998. Reproduced with the permission of the Minister of Public Works and Government Services, 2006.
Table 10C.101 Top Five On-Site Releases to Land in Canada, 1996 and 2001 Substance 1996 Zinc (and its compounds) Ethylene glycol Manganese (and its compounds) Lead (and its compounds) Asbestos (friable form) 2001 Calcium fluoride Zinc (and its compounds) Manganese (and its compounds) Ethylene glycol Lead (and its compounds)
Releases (Tons)
Share of Total (%)
4,989.7 3,209.8 1,910.2 894.3 848.2
35.9 23.1 13.8 6.4 6.1
10,211.0 8,143.8 3,637.2 2,044.5 1,641.0
31.0 24.8 11.1 6.2 5.0
Source: From Environment Canada, Pollution Data Branch, National Pollutant Release Inventory Database, www.ec.gc.ca/pdb/npri, 2001. Reproduced with the permission of the Minister of Public Works and Government Services, 2006. Original Source: From Environment Canada, Pollution Data Branch, National Pollutant Release Inventory database, www.gc.ca/pdb/npri/ (accessed April 1, 2003).
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-159
Table 10C.102 Trichloroethene Concentrations Detected in Municipal/Communal and Private/Domestic Water Supplies in Canada Number of Supplies
Percentage of Supplies Where TCE Was Detected
Average Maximum Concentration
Municipal/communal Private/domestic
481 215
8.3 3.3
25 ug/L 1,680 ug/L
TCE Concentration Range
Percentage of Sites within TCE Range
Supply
Nondetectable levels (!0.01–10 ug/L) !1 ug/L 1–10 ug/L 10–100 ug/L O100 ug/L
Percent of Population Supplied with Groundwater within TCE Rangea
93 3.6 1.4 0.43 1.3
49 48 2.1 0.8
a
1.67 Million of the 7.1 million Canadians who relied on groundwater for household use in 1995 were covered this study. Most of sites were from Ontario and New Brunswick. Source: Abstracted from Health Canada, 2005, Guidelines for Canadian Drinking Water Quality: Supporting Documentation— Trichloroethene. Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, www.hc-sc.gc.ca. With permission.
Table 10C.103 Sources of Groundwater Contamination Reported by European Countries EEA18 Country/ Pollutant Heavy metals Chlorinated hydrocarbons Hydrocarbons Sulphate Metals Phosphate Bacteria
Phare
AT
DK
ES
FR
DE
†
† †
† †
† †
†
† †
SE
UK
BG
EE
HU
†
† †
†
†
† †
† †
†
†
† †
†
LT
†
T
R CY
RO
SK
SI
MD
† †
† †
† †
†
†
†
† †
†
† † †
†
Note: T, Tacis; R Others, AT, Austria; DK, Denmark; ES, Spain; FR, France; CY, Cyprus; DE, Germany; SE, Sweden; UK, UK; BG, Bulgaria; EE, Estonia; HU, Hungary; LT, Lithuania; RO, Romania; SK, Slovak Rep; MD, Rep. of Moldova. Source: From European Environmental Agency, 1999, Groundwater Quality and Quantity in Europe, Printed with permission, www.eca.europa.eu. Reprinted with permission q EEA.
Table 10C.104 Known Occurrences of Hydrocarbon Contamination of Groundwater in Australia State or Territory Victoria
Western Australia NSW ACT Queensland South Australia Northern Territory Tasmania a
Area
Source
9 sites 2 sites in Melbourne–Geelong region 1 site 8 sites including 2 sites on the Swan Coastal Plaina 5 sites, including Anna Bay, Botany and Matraville 1 site 3 sites 1 site in Cairns 6 Sites Mt Gambler (2 sites), Bordertown, Jamestown, Fregon and Minlayton 1 site Croker Island Several (number and locations unknown)
Industrial/manufacturing/storage facilities Landfill Fuel station Fuel stations Industrial/manufacturing/storage facilities Landfill Fuel stations Fuel station Fuel stations Fuel station Fuel stations
The two sites on the Swan Coastal Plain are documented in Davis et al. (1993).
Source: From Ball, J. et al., 2001, Inland Waters, Australia State of Environment Report 2001 (Theme Report), CSIRO Publishing on behalf of the Department of the Environment and Heritage, Canberra, www.deh.gov.au. Original Source: Adapted from Knight 1993.
q 2006 by Taylor & Francis Group, LLC
10-160
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 10D
SOLID WASTE
Activity Waste piles
10.1
Other
10.2
Tanks
16.7
Drums
24.9
Recycling
33.9 36.7
Surface impoundments
53.1
Landfills
65.9
Manufacturing 0
10
20
30 40 Percent
50
60
70
Figure 10D.70 Types of activities at hazardous waste sites in the United States (percent of 1177 final and proposed sites on the National Priorities list as of June 1988; a site may have more than one type of activity). (From U.S. EPA, Office of Emergency Response, Washington, DC 20460.)
Media
12.2
Air
37.2
Surface water
72.2
Groundwater
0
10
20
30
40 Percent
50
60
70
80
Figure 10D.71 Observed contamination at hazardous waste sites in the United States (percent of 1177 final and proposed sites on the National Priorities list as of June 1988; a site may have more than one type of contamination). (From U.S. EPA, Office of Emergency Response, Washington, DC 20460.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-161
CT
MA RI
DE MD DC
Guam AK
Puerto Rico and US Virgin Islands
HI
Figure 10D.72 Superfund sites in the United States. (From www.images.google.com.)
Total = $209 Billion
Total sites = 294,000 NPL 736
NPL $32B
UST $16B
RCRA-CA $45B
States & private 150,000
States & private $30B DOE $35B Civilian agencies $19B
RCRA-CA 3,800
DOD $33B
Civilian agencies 3,000
UST 125,000
DOE 5,000 DOD 6,400
These estimates are derived from judgements regarding the most likely scenarios within a range of estimates. The estimates described in the report, include a number of assumptions such as the average cleanup cost per site, number of new site discoveries, and future additons to the NPL. NPL: National Priorites List, or Superfund; RCRA-CA: Resource Conservation and Recovery Act Corrective Action program; UST: Underground Storage Tanks; DOD; Department of Defense; DOE: Department of Energy; Civilian agencies: non-DOD and non-DOE federal agencies; and State & private: state mandatory, voluntary, and brownfields sites, and private sites. Totals may not add due to rounding.
Figure 10D.73 Estimated number of hazardous waste sites and cleanup costs: 2004–2033. (From clu-in.org/download/market/ 2004market.)
q 2006 by Taylor & Francis Group, LLC
10-162
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Food scraps 11.4% Yard trimmings 12.2% Other 3.4%
Wood 5.7%
Rubber, leather & textiles 7.1%
Paper 35.7% Plastics 11.1%
Metals 7.9% Glass 5.5% Figure 10D.74 2001 total MSW generation—229 million tons (before recycling). (From www.epa.gov.)
8000
7924 7379
7000 6326 5812
6000
5386
5000
4482
4000
3558
3000
3197 3091 2514 2314 2216
2000
1967 1858
1000 0
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Figure 10D.75 Number of landfills in the U.S. (From www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-163
Paper 35.2% Yard trimmings 12.1% Food scraps 11.7% Plastics 11.3% Metals 8.0% Rubber, leather, and textiles 7.4% Glass 5.3% Wood 5.8% Other 3.4% Figure 10D.76 2003 total waste generation—236 million tons (before recycling). (From www.epa.gov.)
250 Million tons
5 lbs.
236.2 4.5
200 Million tons
4.5
205.2
4 lbs.
3.7
150 Million tons
100 Million tons
151.6
3.3
3 lbs.
121.1
2.7 88.1
50 Million tons
1960
1970
1980
1990
2003
2 lbs.
Per capita generation (lbs/person/day) Total MSW generation (mil tons)
Figure 10D.77 Trends in MSW generation 1960–2003. (From www.epa.gov.)
80 Million
35% 72.3
70 Million
30%
60 Million
30.6%
25%
50 Million 40 Million 30 Million
16.2%
20 Million 10 Million 0 Million
15%
14.5 5.6 6.4%
1960
8.0
10%
9.6%
6.6%
1970
1980
1990
Percent recycling Total MSW recycling (millions/yr)
Figure 10D.78 MSW recycling rates 1960–2003. (From www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
20%
33.2
2003
5%
10-164
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WA MT OR
ME
ND
ID WY
MN WI
SD
UT
AZ
IL
OH
IN
WV
CO
CA
PA
IA
NE NV
NY
MI
KS
KY
MO
AR
NM
SC MS
TX
VA
NC
TN
OK
VT NH MR RI CT NJ DE MD
GA
AL
LA FL
AK HI
States with bottle bills Figure 10D.79 States with bottle deposit rules. (From The Container Recycling Institute 1999, www.epa.gov.)
WA MT OR
ME
ND
ID
MN WI
SD
NY MI
WY NE NV
UT
IL CO
CA
AZ
PA
IA
KS OK
NM
WV KY
MO AR
SC AL
GA
LA FL
AK HI
States with yard waste bans Figure 10D.80 States with yard waste bans. (From BioCycle Magazine, May 1998, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
VA NC
TN MS
TX
OH
IN
VT NH MA RI CT NJ DE MD
ENVIRONMENTAL PROBLEMS
10-165
WR 17 OR 50
MT 32 ID 7
NV 1 CA 74
WY 8 UT 14
AZ 23
ME 50
ND 50
CO 11
NM 5
MN 433
WI 176
SD 10 IA 57
NE 5
MI 120
PA 329 IL 55
MO 97
KS 70 OK 4 TX 166
NY 200
IN 51
OH 458
KY 37
NC 120
TN 46 AR 22 LA 21
MS 9
AL 20
WV 22 VA 11
GA 169
SC 69
FL 35
AK 0 HI 9 Less than 10 10 − 99 More than 100
Figure 10D.81 Number of yard waste composting programs. (From BioCycle Magazine, April 1999, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
VT 14 NH 103 MA 250 RI 21 CT 65 NJ 171 DE 3 MD 17 DC 0
10-166
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WA MT OR
ME
ND
ID
MN WI
SD
NY MI
WY
PA
IA
NE NV
CO
WV
MO
KS
OH
IN
IL
UT
CA
VA
KY
NC
TN OK
AZ
VT NH MA RI VT NJ DE MD DC
AR
SC
NM MS TX
GA
AL
LA FL
AK HI
0 − 9% 10 − 19% 20 − 29%
30 − 39% 40% or more unavailable
Figure 10D.82 State recycling rates. (From BioCycle Magazine, April 1999, www.epa.gov.)
WA 102 OR 122
ID 6
NV 8
MN 771
IA 574
NE 15
UT 14
CO 70
CA 511
WI 600
SD 3
WY 2
AZ 32
ME 84
ND 25
MT 6
KS 101 OK 8
NM 3 TX 159
MI 200
IL 450
MO 197
IN 169
OH 372
PA 879 WV 75
KY 43
MS 15
AL 38
VA 79
NC 271
TN 35
AR 41 LA 33
NY 1,472
GA 179
SC 186
FL 315
AK 1 HI 0
Less than 10 10 − 100 More than 100
Figure 10D.83 Number of curbside recycling programs. (From BioCycle Magazine, April 1999, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
VT 80 NH 38 MA 156 RI 26 CT 169 NJ 510 DE 3 MD 100 DC 1
ENVIRONMENTAL PROBLEMS
10-167
WA MT
ME
ND MN
OR
ID
WI
SD
MI
WY
PA
IA
NE NV
IL
UT CO
OH
IN
WV
MO
KS
CA
KY
OK
AR
NM
SC MS
TX
VA NC
TN AZ
VT NH MA RI CT NJ DE MD DC
NY
GA
AL
LA FL
AK HI
Less than 1%
11 − 20%
1 − 5%
More than 20%
6 − 10%
Unavailable
Figure 10D.84 State combustion rates. (From BioCycle Magazine, April 1999, www.epa.gov.)
WA MT
ME
ND MN
OR
ID
WI
SD
NY MI
WY NE NV
PA
IA IL
UT CO
CA
KS
MO
OH
IN
WV KY
NC
TN AZ
OK NM
AR
SC MS
TX
AL
FL
HI
Less than 50% 51 − 70% 71 − 80%
GA
LA
AK
81 − 90% More than 90% Unavailable
Figure 10D.85 State land disposal rates. (From BioCycle Magazine, April 1999, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
VA
VT NH MA RI CT NJ DE MD DC
10-168
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Number of Landfills WA 21 OR 33
MT 33 ID 27
NV 25
ME 8
ND 15
MN 26
SD 15
WY 66
IA 60
NE 23
UT 45
CO 68
CA 188 AZ 54
WI 46
OK 41
NY 28 PA 51
OH 52
IN 45
IL 56
MO 26
KS 53
NM 55
MI 58
WV 19
KY 26
VA 70
NC 35
TN 34
AR 23
VT 5 NH 19 MA 47 RI 4 CT 3 NJ 11 DE 3 MD 22 DC 0
SC 19 MS 19
AL 30
GA 76
LA 25
TX 181 AK 322
FL 95 HI 8
Figure 10D.86 Number of landfills. (From BioCycle Magazine, April 1999, www.epa.gov.)
Years of Remaining Landfill Capacity WA MT
ME
ND MN
OR
ID
WI
SD
NY MI
WY NE NV
PA
IA IL
UT CO
CA
KS
MO
OH
IN
WV KY
NC
TN AZ
OK NM
AR
SC MS
TX
VA
AL
GA
LA FL
AK HI
less than 5 years
more than 10 years
5 − 10 years
unavailable
Figure 10D.87 Years of remaining landfill capacity. (From BioCycle Magazine, April 1999, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
VT NH MA RI CT NJ DE MD DC
ENVIRONMENTAL PROBLEMS
10-169
Table 10D.105 Composition of Municipal Solid Waste Discards by Organic and Inorganic Fractions in the United States, 1960–2000 Year
Organics
Inorganics
1960 1965 1970 1975 1980 1981 1982 1983 1984 1985 1986 1990a 1995a 2000a
77.8 78.3 75.2 75.5 77.1 77.5 77.8 78.7 79.6 80.4 80.8 80.8 81.7 82.5
22.3 21.7 24.8 24.5 22.9 22.5 22.2 21.3 20.4 19.6 19.2 19.2 18.3 17.5
Note: In percent of total net discards; discards after materials recovery has taken place, and before energy recovery. a
Estimate.
Source: From U.S. Environmental Protection Agency, 1988, Characterization of Municipal Solid Waste in the United States 1960 to 2000 (Update 1988), PB88-232780. Based on study by Franklin Associates, Ltd.
Table 10D.106 Composition of Municipal Solid Waste in the United States, 1960–2000 Materials
1960
1965
1970
1975
1980
1981
1982
1983
1984
1985
1986
1990
1995
2000
Paper and paperboard Glass Metals Ferrous Aluminum Other nonferrous Plastics Rubber and leather Textiles Wood Other Total nonfood product wastes Food wastes Yard wastes Miscellaneous inorganic wastes Total wastes discardeda Energy recoveryb Net wastes discarded
24.5 6.4
32.2 8.5
36.5 12.5
34.4 13.2
42.0 14.2
43.6 14.3
41.4 11.8
45.8 13.3
49.4 12.8
48.7 12.2
50.1 11.8
54.9 12.3
60.2 12.2
66.0 12.0
9.9 0.4 0.2 0.4 1.7 1.7 3.0 0.0 48.2
10.0 0.5 0.2 1.4 2.2 1.9 3.5 0.0 60.5
12.4 0.8 0.3 3.0 3.0 2.0 4.0 0.1 74.7
12.0 1.0 0.3 4.4 3.7 2.2 4.4 0.1 75.6
11.2 1.4 0.4 7.6 4.1 2.6 4.9 0.1 88.6
11.1 1.4 0.4 7.8 4.1 3.4 4.4 0.1 90.5
11.0 1.3 0.3 8.4 3.8 2.8 5.0 0.1 87.8
11.1 1.5 0.3 9.1 3.4 2.8 5.2 0.1 92.6
11.0 1.5 0.3 9.6 3.3 2.8 5.1 0.1 95.9
10.4 1.6 0.3 9.7 3.4 2.8 5.4 0.1 94.5
10.6 11.1 11.3 1.7 2.0 2.4 0.3 0.3 0.3 10.3 11.8 13.7 3.9 3.5 3.6 2.8 3.0 3.1 5.8 5.3 5.7 0.1 0.1 0.1 97.4 104.2 112.5
11.3 2.7 0.4 15.6 3.8 3.3 6.1 0.1 121.3
12.2 20.0 1.3
12.4 21.6 1.6
12.8 23.2 1.8
13.4 25.2 2.0
11.9 26.5 2.2
12.1 26.7 2.3
12.0 27.0 2.4
12.0 27.5 2.4
12.2 27.8 2.4
12.3 28.0 2.5
12.5 28.3 2.6
81.7 0.0 81.7
96.1 0.2 95.9
12.5 29.5 2.8
12.4 31.0 3.0
12.3 32.0 3.2
112.5 116.2 129.2 131.6 129.1 134.5 138.3 137.3 140.8 149.0 158.9 0.4 0.7 2.7 2.3 3.5 5.0 6.5 7.6 9.6 13.3 22.5 112.1 115.5 126.5 129.3 125.6 129.5 131.8 129.7 131.2 135.7 136.4
168.8 32.0 136.8
Note: In millions of tons. a b
Wastes discarded after materials recovery has taken place. Municipal solid waste consumed for energy recovery. Does not include residues. Details may not add to totals due to rounding.
Source: From U.S. Environmental Protection Agency, 1988, Characterization of Municipal Solid Waste in the United States 1960 to 2000 (Update 1988), PB88-232780. Based on a study prepared by Franklin Associates, Ltd.
q 2006 by Taylor & Francis Group, LLC
10-170
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10D.107 Summary Data on Solid Waste Facilities in the United States Percent of uncontrolled sites that are solid waste facilities Of 1,389 sites with actual or presumed problems of releases of hazardous substances Of 550 sites on National Priority List Two most prevalent effects at problem solid waste sites Leachate migration, groundwater pollution: at 89% of sites Drinking water contamination: at 49% of sites Mean size of problem solid wastes sites Median hazard ranking scorea Solid waste sites on the NPL All NPL sites Estimates for national number of solid waste sites Operating sanitary, municipal landfills Closed sanitary, municipal landfills Operating industrial landfills Closed industrial landfills Operating surface impoundments Closed surface impoundments Total Estimate of need for future cleanup Low: 5% landfills, 1% impoundments likely to release toxic substances High: 10% landfills, 2% impoundments likely to release toxic substances Conservative figure used for cleanup by superfund a
18% 20%
67.4 acres 40.8 42.2 14,000 42,000 75,000 150,000 170,000 170,000 621,000 17,400 34,800 5,000
28.5 required for placement on National Priorities List; current highest site score is 75.6.
Source: From Office of Technology Assessment, 1985.
Table 10D.108 Solid Waste Disposal by Selected Industries in the United States, 1975–1983 1983
Industry Group b
All industries Food Lumber and wood Paper Chemicals Petroleum Stone, clay, glass Primary metal Fabricated metals Machinery exc. electrical Electric equipment Transportation equipment
1975
1976
1977
1978
1979
1980
1981
1982
Total
Hazardous Wastea
139.1 12.6 8.1 9.1 38.7 2.0 11.3 42.7 1.9 2.7 1.5 3.8
156.8 15.0 9.3 10.1 50.3 2.6 11.1 42.4 2.1 3.1 1.5 4.3
160.0 13.1 6.3 10.6 55.7 2.9 12.6 41.7 2.0 3.6 1.5 4.7
160.8 13.4 6.7 10.9 48.8 3.6 12.7 46.1 2.0 3.4 1.8 5.2
163.7 14.0 6.5 13.3 45.4 3.1 14.1 47.8 2.0 3.5 2.3 4.3
149.9 14.4 5.9 12.3 43.4 4.9 13.3 37.5 1.9 3.0 2.1 4.2
145.8 13.2 6.4 11.3 43.7 4.7 12.1 36.0 1.8 2.8 1.7 4.0
99.4 9.8 3.7 11.5 36.1 4.4 5.8 16.7 1.4 1.6 1.3 2.9
89.0 9.6 4.0 13.7 18.8 3.6 6.2 17.7 2.0 1.8 1.7 3.0
8.0 0.2 (Z) 0.1 3.6 1.5 0.2 1.0 0.2 0.2 0.3 0.3
Nonhazardous Waste 81.0 9.4 4.0 13.5 15.2 2.1 5.9 16.7 1.7 1.7 1.4 2.7
Note: In millions of short tons. Excludes recovered materials. Data included both wet and dry weight figures. Excludes apparel and other textiles, and, beginning 1978, establishments with less than 20 employees. Z, Less than 50,000 short tons. a
b
Covers waste, which because of its quantity, concentration, or physical, chemical, or infectious characteristics, may cause, or significantly contribute to an increase in serious irreversible, or incapacitating reversible illness; or pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, or disposed of or managed. See Resource Conservation and Recovery Act 1976, Public Law 94-580, for listing of hazardous wastes. Includes industries not shown separately.
Source: From U.S. Department of Commerce, Statistical Abstract of the United States 1987.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-171
Table 10D.109 Future Use of Containment Technologies for Cleanup of Hazardous Waste Sites in the United States Technique
Applicability
Barriers Slurry wall Grout curtain Vibrating beam Sheet pile Block displacement Hydraulic controls (wells) Subsurface drains Runon/runoff controls Surface seals and caps Solidification, etc.
2 2–3 2 3 3 2 2 1 1 2
Effectiveness 1 1 1 1–2 1 1,3 1 3 2,3 1,3
Confidence
Capital Cost
2 2 2–3 2 4 1 2 1 2 3–4
2 2–3 2–3 2–3 3 1 1 1 1 2
Cap/O&M
Projected Level of Use
1 1 1 1 1 3 2 2 1 1
Extensive Limited Moderate Nil-Limited Nil Extensive Moderate Extensive Extensive ModerateLimited
Key: Applicability: (1) Very broadly applicable; little or no site dependency. (2) Broadly applicable; some sites unfavorable. (3) Limited to sites of specific characteristics. Effectiveness: (1) Can produce “leak-tight” containment. (2) Can reduce migration—some leakage likely. (3) Used as supporting technique in conjunction with other elements. Confidence: (1) Well proven—long-term effectiveness—high. (2) Well proven— long-term effectiveness—unknown. (3) Limited experience; used in other applications. (4) Developmental; little data. Capital cost for function provided: (1) Low. (2) Normal. (3) High. Capital to operation and maintenance (O&M) cost ratio: (1) Capital higher than O&M. (2) Capital about same as O&M. (3) Capital lower than O&M. Source: From U.S. Congress, Office of Technology Assessment, 1985, Superfund Strategy. Original source:
Little, A.D., Evaluation of Available Cleanup Technologies for Uncontrolled Sites, contractor report prepared for the Office of Technology Assessment, Nov. 15, 1984.
Table 10D.110 Future Use of Treatment Technologies for Cleanup of Hazardous Waste Sites in the United States Technique Biological treatment Chemical treatment Neutralization/precipitation
Applicability
Effectiveness Confidence
Capital Cost
Cap/O&M
Secondary Disposal
Projected Level Use of
Or, 1–2
2
1
1
1–2
3
Moderate
In, 1
1
1
1
2
4
Or, 2 In, 3 Or, 3 In, 3
2 1 2 1
2 2 3 2
3 2 3 2
1–2 2 2–3 2
1 1 2 3
Moderate– Extensive Limited Limited Nil Limited
Or, In, 1
1
1
2
2–3
2–3
Or, In, 1
1
1
1
2–3
4
Stripping Flotation Ion exchange Reverse osmosis Gas stream controls Thermal oxidation
Or, 2 Or, 2 In, 3 Or, In, 3
1 2 1–3 1–2
1 1 3 3
1 1 3 3
2 1 3 3
4 4 4 4
Or, 1
1
1
3
3
1
Carbon adsorption
Or, 1
1
1
3
2–3
2–3
Wet air oxidation Chlorination Ozonation Reduction (Cr) Physical treatment Carbon adsorption Sedimentation/filtration
Moderate– Extensive Moderate– Extensive Moderate Limited Nil Nil Limited– Moderate Limited– Moderate (Continued)
q 2006 by Taylor & Francis Group, LLC
10-172
Table 10D.110
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Technique Incineration Onsite Offsite In situ biodegradation
Applicability
Effectiveness Confidence
Or, 1 Or, 1 Or, 3
1 1 2
2 1 3
Capital Cost 3 3 2
Cap/O&M
Secondary Disposal
Projected Level Use of
3a 3b 1
1 NA 3
Limited Moderate Limited
Key: Class: Or, Organic compounds. In, Inorganic compounds. Range: (1) Broadly applicable to compounds in indicated class. (2) Moderated applicable: depends on waste composition concentration. (3) Limited to special situations. Effectiveness: (1) Highest levels available. (2) Output may need further treatment; may have pockets untreated (in situ). Confidence: (1) Well proven—easily transferable to site cleanup. (2) Well proven—but not in clean-up settings. (3) Limited experience. (4) Developmental; little data. Capital cost for function provided: (1) Low. (2) Normal. (3) High. Capital to operations and maintenance (O&M) cost basis: (1) Capital higher than O&M. (2) Capital about the same. (3) Capital lower than O&M. Secondary treatment or disposal: (1) None. (2) Minor. (3) Major, but does not require hazardous waste techniques. (4) Basically a separation process; must be used with subsequent hazardous waste treatment or secure disposal step. a b
Must dispose solid residues. Depends on reactive material used.
Source: From U.S. Congress, Office of Technology Assessment, 1985, Superfund Strategy. Original Source: Little, A.D., Evaluation of Available Cleanup Technologies for Uncontrolled Sites, contractor report prepared for the Office of Technology Assessment, Nov. 15, 1984.
Table 10D.111 Generation, Materials Recovery, Composting, and Discards of Municipal Solid Waste, 1960–2001 Millions of Tons
Generation Recovery for recycling Recovery for compostinga Total materials recovery Discarded after recovery
1960
1970
1980
1990
1995
1999
2000
2001
88.1 5.6 Neg. 5.6 82.5
121.1 8.0 Neg. 8.0 113.0
151.6 14.5 Neg. 14.5 137.1
205.2 29.0 4.2 33.2 172.0
213.7 46.2 9.6 55.8 158.0
231.4 50.8 14.7 65.5 165.9
232.0 51.2 16.5 67.7 164.3
229.2 51.4 16.6 68.0 161.2
Note: In millions of tons. Details may not add to totals due to rounding. a
Composting of yard trimmings, food scraps and other MSW organic material. Does not include backyard composting. Source: From Franklin Associates, Ltd., www.epa.gov/epaoswer.
Table 10D.112 Generation, Materials Recovery, Composting, and Discard of Municipal Solid Waste, 1960–2001 Percent of Total Generation 1960 Generation (%) Recovery for recycling (%) Recovery for composting (%)a Total materials recovery (%) Discarded after recovery (%)
100.0 6.4 Neg. 6.4 93.6
1970
1980
100.0 6.6 Neg. 6.6 93.4
100.0 9.6 Neg. 9.6 90.4
1990
1995
1999
2000
2001
100.0 14.2 2.0 16.2 83.8
100.0 21.6 4.5 26.1 73.9
100.0 22.0 6.4 28.4 71.6
100.0 22.1 7.1 29.2 70.8
100.0 22.4 7.2 29.7 70.3
Note: In percent of total generation. Details may not add to totals due to rounding. a
Composting of yard trimmings, food scraps and other MSW organic material. Does not include backyard composting.
Source: From Franklin Associates, Ltd., www.epa.gov/epaoswer.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-173
Table 10D.113 Generation and Recovery of Materials in MSW, 2001
Paper and paperboard Glass Metals Steel Aluminum Other nonferrous metalsa Total metals Plastics Rubber and leather Textiles Wood Other materials Total materials in products Other wastes Food, otherb Yard trimmings Miscellaneous inorganic wastes Total other wastes Total municipal solid waste
Weight Generated
Weight Recovered
Recovery as a Percent of Generation (%)
81.9 12.6
36.7 2.4
44.9 19.1
13.5 3.2 1.4 18.1 25.4 6.5 9.8 13.2 4.2 171.5
4.6 0.8 0.9 6.3 1.4 1.1 1.4 1.3 0.9 51.4
33.8 24.5 64.8 34.5 5.5 17.4 14.6 9.5 20.7 30.0
26.2 28.0 3.5 57.7 229.2
0.7 15.8 Neg. 16.6 68.0
2.8 56.5 Neg. 28.7 29.7
Note: In millions of tons and percent of generation of each material. Includes waste from residential, commercial, and institutional sources. Neg., less than 5,000 tons or 0.05 percent. a b
Includes lead from lead–acid batteries. Includes recovery of other MSW organics for composting.
Source: From Franklin Associates, Ltd., www.epa.gov/epaoswer.
Table 10D.114 Generation and Recovery by Products in MSW by Material, 2001
Weight Generated Durable goods Steel Aluminum Other nonferrous metalsa Total metals Glass Plastics Rubber and leather Wood Textiles Other materials Total durable goods Nondurable goods Paper and paperboard Plastics Rubber and leather Textiles Other materials Total nondurable goods Containers and packaging Steel Aluminum Total metals
Weight Recovered
Recovery as a Percent of Generation (%)
10.9 1.0 1.4 13.3 1.7 8.0 5.6 5.0 2.9 1.2 37.6
3.0 Neg. 0.9 4.0 Neg. 0.3 1.1 Neg. 0.3 0.9 3.6
27.8 Neg. 64.8 29.6 Neg. 3.9 20.1 Neg. 118.8 73.7 17.5
43.5 6.1 0.9 6.7 3.2 60.4
15.6 Neg. Neg. 1.1 Neg. 16.7
35.9 Neg. Neg. 16.1 Neg. 27.7
2.6 2.0 4.6
1.5 0.8 2.3
58.8 40.0 50.8 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-174
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10D.114
(Continued)
Glass Paper and paperboard Plastics Wood Other materials Total containers and packaging Other wastes Food, otherb Yard trimmings Miscellaneous inorganic wastes Total other wastes Total municipal solid waste
Weight Generated
Weight Recovered
Recovery as a Percent of Generation (%)
10.9 38.4 11.2 8.2 0.2 73.5
2.4 21.1 1.1 1.3 Neg. 28.1
22.0 55.0 9.6 15.2 Neg. 38.3
26.2 28.0 3.5 57.7 229.2
0.7 15.8 Neg. 16.5 68.0
2.8 56.5 Neg. 28.7 29.7
Note: In millions of tons and percent of generation of each product. Includes waste from residential, commercial, and institutional sources. Details may not add to totals due to rounding. Neg., less than 5,000 tons or 0.05 percent. a b
Includes lead from lead–acid batteries. Includes recovery of other MSW organics for composting.
Source: From Franklin Associates, Ltd., www.epa.gov/epaoswer.
Table 10D.115 Projections of Materials Generated in the Municipal Waste Stream: 2000 and 2005 Million Tons
% Of Total
Materials
2000
2005
2000
2005
Paper and paperboard Glass Metals Plastics Wood Others Total materials in products Other wastes Food wastes Yard trimmings Miscellaneous inorganic wastes Total other wastes Total MSW generated
87.7 11.9 17.6 23.4 14.0 19.7 174.3
94.8 11.2 18.7 26.7 15.8 22.2 189.4
39.3 5.3 7.9 10.5 6.3 8.8 78.1
39.6 4.7 7.8 11.2 6.6 9.3 79.1
22.5 23.0 3.4 48.9 223.2
23.5 23.0 3.6 50.1 239.5
10.1 10.3 1.5 21.9 100.0
9.8 9.6 1.5 20.9 100.0
Note: In thousands of tons and percent of total generation. Generation before materials recovery or combustion. Details may not add to totals due to rounding. Source: From Franklin Associates, www.epa.gov/epaoswer.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-175
Table 10D.116 Median Concentrations of Substances Found in MSW Landfill Leachate, in Comparison with Existing Exposure Standards Exposure Standards Substancea Inorganics Animony (11) Arsenic (72) Barium (60) Beryllium (6) Cadmium (46) Chromium (total) (97) Copper (68)
Median Concentration (ppm) 4.52 0.042 0.853 0.006 0.022 0.175 0.168
Type 0
Value (ppm)
T N N T N N
W N W N T W N N W W
0.01 0.05 1.0 0.2 0.01 0.05 0.012 0.018 0.7 1,000 0.05 0.05 0.002 0.07 10 0.01 0.05 0.04 0.110
W T T T T C C T T C T W
21 5 10 5 1,000 5.7 0.0037 2,000 100 0.1 4,000 763
W Cyanide (21) Iron (120) Lead (73) Manganese (103) Mercury (19) Nickel (98) Nitrate (38) Selenium (18) Silver (19) Thallium (11) Zinc (114) Organics Acrolein (1) Benzene (35) Bromomethane (1) Carbon tetrachloride (2) Chlorobenzene (12) Chloroform (8) Bis(chloromethyl) ether (1) p-Cresol (10) 2,4-D (7) 4,4-DDT (16) Di-n-butyl phthalate (5) 1,2-Dichlorobenzene (8) 1,4-Dichlorobenzene (12) Dichlorodifluoromethane (6) 1,1-Dichloroethane (34) 1,2-Dichloroethane (6) 1,2-Dichloropropane (12) 1,3-Dichloropropane (2) Diethyl phthalate (27) 2,4-Dimethyl phenol (2) Dimethyl phthalate (2) Endrin (3) Ethyl benzene (41) Bis(2-ethylhexyl) phthalate (10) Isophorone (19) Lindane (2) Methylene chloride (68) Methyl ethyl ketone (24) Naphthalene (23) Nitrobenzene (3) 4-Nitrophenol (1) Pentachlorophenol (3) Phenol (45) 1,1,2,2-Tetrachloroethane (1)
0.063 221 0.162 9.59 0.002 0.326 1.88 0.012 0.021 0.175 8.32
170 202 128 195 250 2,394 129 0.103 70.2 11.8 13.2 237 1,715 1,841 66.7
T N T W C
118 42.5 16.8 274 184
W W T W T
1,168 0.020 5,352 4,151 32.4 54.7 17 173 2,456 210
W T C W W T W T T C
7,000 7 0.58 5 5,700 0.19 30,000 2,120 313,000 0.2 1,400
5,200 4 4.7 2,000 620 20 150 1,000 1,000 1.75 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-176
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10D.116
(Continued) Exposure Standards Median Concentration (ppm)
Substancea Tetrachloroethylene (18) Toluene (69) Toxaphene (1) 1,1,1-Trichloroethane (20)
Type 0
132 1,016 1 887
1,1,2-Trichloroethane (4) Trichloroethylene (28)
378 187
Trichlorofluoromethane (10) 1,2,3-Trichloropropane (1) Vinyl chloride (10)
56.1 230 36.1
Value (ppm)
C T N N T C N T T T N
6.9 10,000 5 200 3,000 6.1 5 3.2 10,000 20 2
Note: Types of exposure standards: C, EPA Human Health Criteria, based on carcenogenicity; N, National Interim Primary or Secondary Drinking Water Standard; T, EPA Human Health Criteria, based on systemic toxicity; W, Water-Quality Criteria. a Number of samples in parentheses. Source: From After U.S. Environmental Protection Agency, Office of Solid Waste, Summary of Data on Municipal Solid Waste Landfill Leachate Characteristics, Criteria for Municipal Solid Waste Landfills (40 CFR Pert 258), EPA/530-SW-88-038 (Washington, DC: July 1988), princeton. edu/cgi-bin.
Table 10D.117 NPL Status (June 2004) Number of Sites on Final NPL Total General superfund section Federal facilities section Number of sites remaining on proposed NPL Total General superfund section Federal facilities section Total number of final and proposed sites Number of sites on the construction completion list Number of sites deleted from final NPL Number of sites with partial deletions
1,245 1,087 158 56 50 6 1,301 899 282 45 partial deletions at 37 sites
Note: These numbers reflect the status of sites as of June 29, 2004. Site status changes occurring after this date may affect these numbers at time of rule publication in the Federal Register. Source: From www.epa.gov/superfund/sites.
Table 10D.118 Number of NPL Site Actions and Milestones by Fiscal Year
Action Sites proposed to the NPL Sites finalized on the NPL Sites deleted from the NPL Milestone Partial deletionsa Construction completion
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
30 0 2
52 33 12
36 43 13
9 31 25
27 13 34
20 18 32
34 17 20
37 43 23
40 39 19
45 29 30
9 19 17
14 20 9
26 11 16
7 11 6
— 88
— 68
— 61
— 68
0 64
6 88
7 87
3 85
5 87
4 48
7 42
7 40
7 40
4 7
Note: A fiscal year is October 1 through September 30. Partial deletion totals are not applicable until fiscal year 1996, when the policy was first implemented. a
These totals represent the total number of partial deletions by fiscal year and may include multiple partial deletions at a site. Currently, there are 50 partial deletions at 42 sites.
Source:
From www.epa.gov/superfund/sites.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-177
Table 10D.119 NPL Site Totals by Status and Milestone as of May 19, 2005 Nonfederal (General)
Federal
Total Sites
58 1,085 283
6 159 13
64 1,244 296
32 890
10 43
Status Proposed sites Final sites Deleted sites Milestone Partial deletions Construction completions
42a 933
Note: Sites that have achieved these milestones are included in one of the three NPL status categories. a
50 partial deletions have occurred at these 42 sites.
Source: From www.epa.gov/superfund.
Table 10D.120 Municipal Landfills in the United States and Protectorates State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennesee Texas Utah
Number of Active Municipal Landills 28 217 59 67 278 72 11 3 67 159 10 37 61 32 77 58 12 29 27 25 106 54 26 14 30 82 21 56 33 14 79 42 114 12 63 94 88 47 4 37 13 81 678 54 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-178
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10D.120
(Continued)
State
Number of Active Municipal Landills
Vermont Virginia Washington West Virginia Wisconsin Wyoming
61 152 25 22 46 59
Subtotal
3,536
Protectorates American Samoa Guam Northern Mariana Islands Puerto Rico U.S. Virgin Islands
4 3 3 33 2
Total
3,581
Source: From ERG Estimates. 20-Mar-96, www.epa.gov/epaoswer/non-hw.
Table 10D.121 Number and Population Served by Curbside Recyclables Collection Programs, 2001 Population Served Number of Programs
Population (in 1000)
(in 1000)
Percent (%)a
Northeast South Midwest West
3,421 1,677 3,572 1,034
53,805 101,833 64,687 62,612
43,981 26,496 25,851 43,038
82 26 40 69
Total Percent of total U.S. population
9,704
233,931
139,366
60 49
Region
a
Percent of population served by curbside programs was calculated using population of states reporting data.
Source: From U.S. Census Bureau 2002, BioCycle December 2001, www.epa.gov/epaoswer/non-hw.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-179
SECTION 10E
AGRICULTURAL ACTIVITIES
Tons/Acre/ Yr 8 or more 4 to 8 Hawaii
Puerto Rico Virgin Islands
Note: Data are only present where Cropland and Conservation Reserve Program (CRP) land are 5 percent or more of the land cover
2 to 4 Less than 2 Less than 5% Cropland and CRP land in sample
NRI sample data, collected a1 approximately 800,000 sites nationwide, have been aggregated to create estimates for USGS hydrologic cataloging unit areas. Because the statistical valiance in some of these areas may be large, the map reader should use this map only to identify broad spatial trends and avoid making highly localised interpretations
Figure 10E.88 Average annual soil erosion by water on cropland and conservation reserve program land in the United States, 1992. (From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, www.nrcs.usda.gov.)
Tons/Acre/Yr Increase of more than 3 Increase of 0.5 to 3 Little change –0.5 to 0.5
Hawaii
Purto Rico Virgin Islands
Decrease of 0.5 to 3 Decrease of 3 or more
Note: Data are only present where Cropland and Conservation Reserve Program (CRP) land are 5 percent or more of the land cover NRI sample data, collected at approximately 800,000 sites nationwide, have been aggregated to create estimates for USGS hydrologic cataloging unit areas. Because the statistical vadance In some of these areas may be large, the map reader should use this map only to identify broad spatial trends and avoid making highly localized interpretations
Less than 5% Cropland and CRP land in sample
Figure 10E.89 Change in average annual soil erosion by wind and water on cropland and conservation reserve program land in the United States, 1982–1992. (From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
10-180
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Watershed classification (number of watersheds) Low potential for delivery (528) Moderate potential for delivery (1,048) High potential for delivery (530) Insufficient data (156) Alaska (no data) Puerto Rico/U.S. Virgin Islands Hawaii
Figure 10E.90 Sediment runoff potential from croplands and pasture lands, 1990–1995. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov in the United States.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-181
Mining 1 percent
Other 7 percent
Urban 4 percent Roadside 3 percent
Streambank 26 percent
Forest lands 7 percent
Pasture and rangeland 12 percent Cropland 40 percent
Figure 10E.91 Sources of sediment discharge to surface waters in the United States, 1977. (From United States Department of Agriculture, Soil Conservation Service, 1978, Environmental Impact Statement: Rural Clean Water Program.)
q 2006 by Taylor & Francis Group, LLC
10-182
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Nitrogen
Average pounds per acre .................................... > 8.7 ............................... 2.1 − 8.7 ............................... > 0 − 2.1 Greater than 95% federal land or no acreage in the 7 crops or value equal to zero
Areas outside conterminous United States have no data
Phosphate
Areas outside conterminous United States have no data
Average pounds per acre .................................... > 1.75 ............................... 0.3 − 1.75 ............................... > 0 − 0.3 Greater than 95% federal land or no acreage in the 7 crops or value equal to zero
Figure 10E.92 Potential nitrogen and phosphate fertilizer loss from farm fields. (From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, Working Paper No. 16, www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-183
Explanation Nitrogen, in tons per square mile, by county Less than 1 Greater than or equal to 1 and less than 2 Greater than or equal to 2 and less than 4 Greater than or equal to 4
Figure 10E.93 Estimated nonpoint-source inputs of nitrogen applied in animal manure, 1987. (From Nolan, B.T. and Stoner, J.D., Nutrients in groundwaters of the conterminous United States, 1992–1995, Environmental Science and Technology, vol. 34, no. 7, 2000, p. 1156–1165, www.usgs.gov.)
Palouse River, Wash.
Platte River, Nebr.
Red River of the North, Minn., N.Dak.
White River, Ind.
Susquehanna River, Penn.
Willamette River Oreg.
Connecticut River, Conn.
Potomac River, D.C.
Snake River, Idaho
Tar River, N.C.
San Joaquin River, Calif.
Altamaha River, GA.
Explanation Nitrogen source Atmosphere Fertilizer Manure Point source
South Platte River, Colo
Trinity River, Tex.
White River, Ark.
Apalachicola River, Fla.
Figure 10E.94 Proportions of nonpoint and point sources of nitrogen in selected United States national water-quality assessment program watersheds. (From Puckett, L.J., 1994, Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States, U.S. Geological Survey Water-Resources Investigations Report 94-4001, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-184
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Palouse River, WA
Platte River, NE
Red River of the North, Minn.,
White River, IN
Susquehanna River, PA
Connecticut River, CT
Willamette River, OR
Potomac River, DC
Snake River, ID
Tar River, NC
San Joaquin River, CA
Altamaha River, GA
Apalachicola River, FL
4.5
4.5
3.0
Nitrogen 3.0 Discharge 1.5
1.5 0
0 White River, AK
Discharge, in cubic feet per second per day per square mile
Nitrogen, in tons per mi2
Explanation
South Platte River, CO
Trinity River, TX
White River, AK
Figure 10E.95 Annual amounts of nitrogen transported in streams and stream discharges in selected United States national water quality assessment program watersheds. (From Puckett, L.J., 1994, Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States, U.S. Geological Survey Water-Resources Investigations Report 94-4001, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
0 0
10-185
500 Miles 500 Kilometers
Explanation
Land use shown on map Agriculture wheat Corn and soybeans
Nitrate 1980−89 Yield, in tons Percentage per square change mile per year per year
Total phosphorus 1982−89 Yield, in tons Percentage per square change mile per year per year
Suspended sediment 1980−89 Yield, in tons Percentage per square change mile per year per year
0.032
*
0.010
−2.8
10
+0.8
0.932
*
0.163
−2.1
100
−1.0
Mixed
0.304
*
0.066
−1.6
79
−0.7
Urban
0.547
+0.2
0.119
−0.6
23
−0.6
Forest
0.255
*
0.063
−0.8
31
−0.3
Range
0.031
*
0.017
−1.9
33
−0.2
* Between −0.1 and +0.1
Figure 10E.96 Yield and percentage change in yield of nitrate, total phosphorous, and suspended sediment in hydrologic cataloging units in the conterminous United States. That are classified as having agricultural (wheat, corn and soybeans, and mixed), urban, forest, and range land use, 1980–1989. (From Smith, R.A., Alexander, R.B., and Lanfear, K.J., 1993, Stream water quality in the conterminous United States—status and trends of selected indicators during the 1980s in national water summary 1990–1991—stream water quality, U.S. Geological Survey Water-Supply Paper 2400, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-186
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1200
Millions of pounds
1000 Total U.S.
800
600
400
Total agricultural use Insecticides
Herbicides 200 Other 0 1964 1966
1971
1976
'82 '83 '84 '85
Note: Excludes wood preservatives, disinfectants, and sulfur
Figure 10E.97 Use of pesticides in the United States, 1964–1984. (From U.S. Environmental Protection Agency, Office of Pesticide and Toxic Substances, 1987, Agricultural Chemicals in Groundwater: Proposed Pesticide Strategy.)
Explanation Total active ingredient used in county (in pounds per acre of cropland per year) 2.0001 − 20.0000 None 20.0001 − 93.0000 0.0001 − 1.0000 1.0001 − 2.0000
0 0
400 Miles 600 km
Figure 10E.98 Annual estimated pesticide use per acre of agricultural land in each county in the conterminous United States, based on the index years from 1987 to 1991. (From Barbash, J.E. and Resek, E.A., 1996, Pesticides in Groundwater Distribution, Trends and Governing Factors, Ann Arbor Press, Chelsea, Michigan. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-187
Runoff
Note: Includes dissolved and adsorbed pesticides
Average loss .................................... High ............................... Medium ..................................... Low Greater than 95% federal land or no acreage in the 13 crops or value equal to zero
Areas outside conterminous United States have no data
Leaching
Areas outside conterminous United States have no data
Average loss .................................... High ............................... Medium ..................................... Low Greater than 95% federal land or no acreage in the 13 crops or value equal to zero
Figure 10E.99 Pesticide runoff and leaching potential for field crop production. (From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, Working Paper No. 16, www.nrcs.usda.gov.)
q 2006 by Taylor & Francis Group, LLC
10-188
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Pesticides widespread in streams and groundwater Agricultural areas Fish Streams
85%
Water
92%
Shallow groundwater
59% Urban areas
Fish Streams
100%
Water
99%
Shallow groundwater
49% Mixed land use
Major rivers and streams
Fish
96%
Water
100%
Major aquifers
33% 0
50
100
% Samples with one or more pesticides Figure 10E.100 Percent samples collected from national water quality assessment (NAWQA). Pesticide National Synthesis Project with one or more Pesticides. (From United States Geological Survey, 1999, Pesticides in the Nations Resources, National Water Quality Assessment (NAWQA), Pesticide National Synthesis Project, April 1999, Powerpoint presentation, ca.water.usgs.gov/pnsp/present/water.)
q 2006 by Taylor & Francis Group, LLC
Dieldrin
Chlorpyrifos Carbofuran
Carbaryl Malathion
Diazinon
Bromacil
Pendimethalin
Tebuthiuron
Diuron
Simazine Prometon 2,4-D
Metribuzin
EPTC Bentazon
Cyanazine Alachlor
DEA
Metolachlor
10-189
Atrazine
ENVIRONMENTAL PROBLEMS
100 Streams and shallow groundwater in agricultural areas 80
Explanation streame
detections 0.01 µg/L detections 0.05 µg/L
60
groundwater
Frequency of detection, as percentage of samples
40 20 0 100 Streams and shallow groundwater in urban areas 80 60 40 20 0 100 Large streams and major aquifers with mixed land uses 80 60 40 20
Agricultural herbicides
Urban herbicides
Dieldrin
Chlorpyrifos Carbofuran
Carbaryl Malathion
Diazinon
Bromacil
Pendimethalin
Diuron
Tebuthiuron
Metribuzin Simazine Prometon 2,4-D
EPTC Bentazon
Cyanazine Alachlor
Metolachlor
DEA
Atrazine
0
Insecticides
Figure 10E.101 Patterns of occurrence to the 21 most detected compounds in surface and groundwater samples collected from areas included in the United States Geological Survey National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, 1998, Pesticides in Surface and Ground Water of the United States: Summary of Results of the National Water Quality Assessment Program (NAWQA), July 22, 1998, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Frequency of detection, as percentage of samples with each compound > 0.01µg/L
10-190
70 Common mixtures in agricultural areas
60
Streams Shallow groundwater
50 40 30 20 10 0
Atrazine Atrazine Metolachlor DEA
Atrazine Atrazine Atrazine Atrazine Atrazine Atrazine Atrazine DEA DEA DEA DEA DEA DEA DEA Metolachlor Simazine Prometon Prometon Prometon Prometon Prometon Metolachlor Simazine Metolachlor Metolachlor Metolachlor Simazine Simazine Simazine Alachlor Cyanazine
70 Common mixtures in urban areas
60
Streams Shallow groundwater
50 40 30 20 10 0 Simazine Prometon
Atrazine Prometon
Atrazine Atrazine Atrazine Prometon Atrazine Atrazine Atrazine Simazine Simazine Atrazine Prometon Simazine Simazine Simazine Prometon Prometon Prometon Prometon Prometon DEA Simazine Metolachlor Metolachlor Metolachlor Diazinon DEA Diazinon DEA Diazinon Chlorpyrifos
Figure 10E.102 Frequency of composition of common mixtures in surface water and shallow groundwater samples with detections collected from areas included in the United States Geological Survey National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, 1998, Pesticides in Surface and Ground Water of the United States: Summary of Results of the National Water Quality Assessment Program (NAWQA), July 22, 1998, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-191
(50/52)
(41/52)
(43/51)
Post-emergence samples
(35/51)
(39/51)
(40/51)
(43/51)
(28/51)
(24/51)
(27/51)
Harvest-season samples
(20/52)
(21/52)
(1/51)
(0/51) (0/52) (0/51)
(0/51) (0/52) (0/51)
(4/51)
(3/51)
(1/51) (1/52) (0/51)
(1/51)
(6/51)
(8/52)
(14/52)
(14/51) (7/52)
(11/51) (9/52) (1/51)
(3/51) (0/51) (0/52) (0/51)
(2/51) (1/52) (0/51)
(3/52) (2/51)
Ac et oc hl Al or ac hl o Am r et ry n At ra zi ne C ya na zi C ya ne na D ee am zine th id D ly e ei at so ra pr op zine yl at D ra im zi et ne he na m Fl id uf en ac M et et ol ac hl or M et rib Pe uz nd in im et ha lin Pr om e Pr ton om et ry Pr n op ac hl Pr o op r az in e Si m az in e Te rb ut ry n
0
(0/51)
(6/52) (1/51)
10
(8/51)
(15/51)
20
(0/51) (0/52) (0/51)
(23/51)
30
(30/52)
Number of detections
40
(45/51)
Pre-emergence samples
(46/51)
(46/51)
50
(51/51) (50/51)
60
Figure 10E.103 Number of detections of selected herbicides and degradation products for pre-emergence, post-emergence, and Harvest-season runoff samples collected from 51 streams in the Midwestern States, 2002. (From Scribner, E.A., Battaglin, W.A., Dietze, J.E., and Thurman, E.M., 2003, Reconnaissance Data for Glyphosate, Other Selected Herbicides, Their Degradation Products, and Antibiotics in 51 Streams in Nine Midwestern States, 2002, U.S. Geological Survey Open-File Report 03-217, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-192
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Insecticides in streams 4
24 4
Portland
2
1
2
2
1
1 2
Denver
3 4
4
Las Vegas
1
4 4
3
2 3
3
2
Albany 2
1 4
Indianapolis
2
1 1
3
3
Atlanta
Dallas
4
2 2 1 1
3
2
4 1 3
3
4
3
2
1
4 4
1
2 1
4
3
Norwalk Harrisburg Washington DC 3
2
1 1 1 1 Tallahassee 3 4
4 3 2 3
75th Percentile concentration (as multiple of national median of 0.012 µg/L) Major rivers Streams Agricultural areas 1 2 3 4
Urban areas
Mixed land use
1 2 3 4
1 2 3 4
0.00 − 0.07 0.08 − 1.00 1.01 − 6.21 6.22 − 98.4
Annual use (pounds of active ingredient per square kilometer of agricultural land in a county) No reported use 27
Figure 10E.104 Geographic distribution of insecticides in surface water for streams included in the United States Geological Survey National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, 1998, Pesticides in Surface and Ground Water of the United States: Summary of Results of the National Water Quality Assessment Program (NAWQA), July 22, 1998, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-193
Herbicides in streams Portland 4
1 3 3 3
1
2 1
2
1
2
2 3
1
Denver 4
1
Las Vegas
4 2 2
4
4
4 4
1 2 3 4
2 3 2
3
2
1 1 1 1
Tallahassee 4 4
75th Percentile concentration (as multiple of national median of 0.30 µg/L)
Washington DC
2
4
Atlanta Dallas 3 44
Agricultural areas
4
4 1 1
1 1
3 33 Norwalk 4 Harrisburg 2 4
3
Indianapolis
1
Streams
1
Albany
2 3
2 3 2 4
1 3
2 2
Major rivers Urban areas 1 2 3 4
Mixed land use 1 2 3 4
0.00 − 0.41 0.42 − 1.00 1.01 − 3.80 3.81 − 27.0
Annual use (pounds of active ingredient per square kilometer of agricultural land in a county) No reported use 155
Figure 10E.105 Geographic distribution of herbicides in surface water for streams included in the United States Geological Survey Pesticide National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, 1998, Pesticides in Surface and Ground Water of the United States: Summary of Results of the National Water Quality Assessment Program (NAWQA), July 22, 1998, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-194
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Percentile of percent detections at each site
Aquatic-life
NAWQA small urban watersheds (11 sites)
100 80
80
60
60
40
40
20
20
0
0 NAWQA small agricultural watersheds (41 sites)
100
60
60
20 0 NAWQA medium watersheds (14 sites)
100 80 60 40 20
Exceedances aquatic-life criteria, in percent
80
40
40 20 0 100 80 60 40 20
0
0 NASQAN large watersheds (46 sites)
100
100
60
40
40
20
20
0
0
Crop use
Decreasing
hl C
T e on
hi
at ar
py hy
lp
or hl
et M
Increasing
or py M rifo in ala s ph th os ion -m Pa et ra hyl th D ion ia zi no n
60
rb u Ph fos or M a al te at hi Az in Fo on ph n os ofo -m s Pa ethy ra l D thio is ul n fo D ton ia zi Et non ho pr op
80
rif os
80
Az
Detections, in percent
100
80
C
Exceedances
100
Percentile Maximum 75th
OPs were most often detected in samples from small streams draining urban watersheds and from some agricultural watersheds. 50th (Median) Chlorpyrifos, diazinon, and malathion were often detected in samples 25th from rivers in medium and large watersheds. The three pesticides Chlorpyrifos, Malathion and Diazinon have substantial non-cropland use. Minimum Aquatic-life criteria were exceeded most often in streams in small urban watersheds. Boxplots illustrate the distribution of percent detections (or percent aquatic-life exceedances) among sites. For example, the median percent detections of chlorpyrifos among the 46 NASQAN sites is 9%; percent detections range from no detections at the Snake River at Burbank, Washington, to 90% detections at the Arroyo Colorado at Harlingen, Texas. Percentiles presented are not adjusted for varied detection limits and sampling frequency
Figure 10E.106 Organophosphorous pesticide occurrence in surface water for streams included in the United States Geological Survey National Water Quality Assessment Program, 1992–1997. (From Hopkins, E. H. et al., 2000, Organophosphorous Pesticide Occurrence and Distribution in Surface and Ground Water of the United States, 1992–1997, U.S. Geological Survey Open-File Report 00-187, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-195
Fish and Bed sediment 100 Agricultural land 80 60 40
Fish Bed sediment
Frequency of detection, as percentage of samples
20 0 100 Urban land 80 60 40 20 0 100 Major rivers and streams with mixed land use 80 60 40 20
DDT
Dieldrin
Oxychlordane
Trans-chlordane
Cis-nonachlor
Cis-chlordare
Trans-nonachlor
o ,p '-DDE
o ,p '-DDD
o ,p '-DDT
p ,p '-DDT
p ,p '-DDD
p ,p '-DDE
0
Chlordane
Note: The pesticide compounds found most often in fish and bed sediment are related to three major groups of insecticides that were heavily used in the 1960s. Organochlorine compounds related to DDT and dieldrin were widely used in both agricultural and urban areas, and chlordane was mainly used in urban areas. Figure 10E.107 The most frequently detected pesticides in fish and bed sediment in the United States, 1991–1996. (From United States Geological Survey, 1999, The Quality of Our Nation’s Waters, Nutrients and Pesticides, U.S. Geological Survey Circular. 1225, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-196
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Explanation Decreasing trend No trend Figure 10E.108 DDT trends throughout the United States using sediment core data form 1970 to top of core. (From United States Environmental Protection Agency, The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, National Sediment Quality Survey, Second Edition, www.epa.gov.)
Herbicides in groundwater 3
Portland
2
2
2
4
3
1
1
3
1 2 4 2
3
4
Reno
2 22 3 3 3 1 3
3 4 1
1
41 4
4 1
4
2 4
4
1
Las Vegas
Indianapolis 4
1
2
2
2
1
Albuquerque
3 1
4 4 1
2
Denver 4 2
Albany
4
2
1
2 1
Dallas 1
Frequency of detection
3
4 1 4
1 3
2
3
4
Norwalk
Harrisburg 4 2 3 3
3
4
1
2
Virginia Beach 1
Atlanta
3
3 4
Tampa
3 2
(as multiple of national median of 37%) Shallow groundwater Agricultural areas 1 2 3 4
Urban areas 1 2 3 4
Major aquifers Annual use
Mixed land use 1 2 3 4
0.00 − 0.50 0.51 − 1.00 1.01 − 1.63 1.64 − 2.72
(pounds of active ingredient per square kilometer of agricultural land in a county) No reported use 155
Figure 10E.109 Geographic distribution of insecticides in groundwater in areas included in the United States Geological Survey National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, Pesticides in Surface and Ground Water of the United State: Summary of Results of the National Water Quality Assessment Program (NAWQA), www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-197
Insecticides in groundwater 1
Portland
2
3
3
4
1 2 2
1
3
1
4 1
4
Reno
1 1 1 4 3 1 2
1
1 3
1 1 4
4
1 1
3
2
3
1
1
1
Denver
4 4
1
Las Vegas 4 2
Albuquerque 4 1
Dallas
1
1
1
Atlanta 3 4
3
4 1
3
3
Shallow groundwater Agricultural areas 1 2 3 4
Urban areas 1 2 3 4
1
Tampa
Frequency of detection (as multiple of national median of 3.3%)
4
1 2 4 4 Norwalk 2 3 3 Harrisburg 1 2 1 1 4 Virginia Beach 4 4 1 4
3
3
3 3
3
Albany
Indianapolis
1 1
1
4
1
Major aquifers Mixed land use 1 2 3 4
Annual use 0.00 0.01 − 1.00 1.01 − 1.88 1.89 − 12.5
(pounds of active ingredient per square kilometer of agricultural land in a county) No reported use 27
Figure 10E.110 Geographic distribution of herbicides in groundwater in areas included in the United States Geological Survey Pesticide National Water Quality Assessment Program, 1992–1996. (From United States Geological Survey, Pesticides in Surface and Ground Water of the United State: Summary of Results of the National Water Quality Assessment Program (NAWQA), www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Increasing risk of groundwater contamination
10-198
Explanation Less than six tons nitrogen input per square mile and poorly-drained soils Less than six tons nitrogen input per square mile and well-drained soils Six or more tons nitrogen input per square mile and poorly-drained soils Six or more tons nitrogen input per square mile and well-drained soils
Figure 10E.111 Areas in the United States most vulnerable to nitrate contamination of groundwater. (From Nolan, B. T. and Ruddy, B. C., Nitrate in Ground Waters of the United States-Assessing the Risk, United States Geological Survey Fact Sheet FS-092-96, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-199
Nitrate in farmland streams
Ecosystem comparison: Nitrate in streams, 1992-1998 100
80
Less than 2 ppm 2-6 ppm
60
6-10 ppm 10 ppm or more
40 20 0
% of Streams sites tested
% of Streams sites tested
100
80 60 40 20 0
Farmlands
1992−1998
Urban
Ecosystem comparison: Nitrate in groundwater, 1992-1998
100 Less than 2 ppm
80
2-6 ppm 6-10 ppm
60
10 ppm or more
40 20 0
1992−1998
% of Groundwater sites tested
% of Groundwater sites tested
Nitrate in farmland groundwater
Forests
100 80 60 40 20 0
Farmlands
Forests
Urban
Figure 10E.112 Nitrates in farmland streams and groundwater in the 36 major United States river basins and aquifers sampled by the National Water Quality Assessment Program, 1992–1998. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03-050, www.epa.gov. The Heintz Cent, The State of the Nation’s Ecosystem 2002.)
1 1 1
1 3 2
3 2
2 1
2
1
2 2
2 3
3 1 2 1
1
2 1
2
3
2
2
3 2
1 3
3
1
2 3
2
2
3
2 2 3 3
1
2 2 1
3
2
Median nitrate concentration (milligrams per liter) Agricultural land use
Urban land use
1 2 3
1 2 3
Concentration ranges
Average annual total nitrogen input by county for 1991-94 (kilograms per hectare)
Highest (greater than 5.0)
Highest (equal to greater than 28)
Middle (0.5 to 5.0)
Middle (7to 28)
Lowest (less than 0.5)
Lowest (less than 7)
Figure 10E.113 Median Nitrate Concentration in Shallow Groundwater Sampled by the NAWQA Program During 1992–1995. (From Nolan, B.T. and Stoner, J.D., Nutrients in groundwaters of the conterminous United States, 1992–1995, Environmental Science and Technology, vol. 34, no. 7, 2000, p. 1156–1165, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
10-200
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Number of studies: 36 13 A
33
A
1.000
B
Ammonia
100.000
B
0.100 0.010
Number of studies: 36 13 33
10.000 1.000 0.100
A
f. ui aq
aj
or
Ag ric
.
f. ui aq or
M
M
aj
Ag ric
.
0.001 U rb an
0.001
(a)
A
A 0.010
U rb an
10.000
Nitrite-plus-nitrate
Concentration, mg/L
Concentration, mg/L
100.000
Type of groundwater study
Type of groundwater study
(b) Orthophosphate
100.000
Concentration, mg/L
Number of studies: 36
10.000
13
33
1.000 0.100 0.010
A
A
A
f. ui aq or
M
aj
U rb an
Ag ric
.
0.001
(c)
Type of groundwater study
Figure 10E.114 Distribution of nitrate-plus-nitrite, ammonia, and othrophosphate in groundwater samples from land-use studies and major aquifers. (From Nolan, B.T. and Stoner, J.D., Nutrients in groundwaters of the conterminous United States, 1992–1995, Environmental Science and Technology, vol. 34, no. 7, 2000, p. 1156–1165, www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-201
Prince Edward Island
No change
Nova Scotia New Brunswick Quebec Ontario Manitoba Saskatchewan Alberta British Columbia
No change
–10
0
10
20
30
40
50
Percent reduction Figure 10E.115 Changes in the area of Canadian cropland at risk of exceeding a tolerable level of water erosion between 1981 and 1996. (From The Health of Our Water, Toward Sustainable Agriculture in Canada, Publication 2020/E, Coote, D.R. and Gregorich, L.J. (eds.), Research Branch Agriculture and Agri-Food Canada, 2000. Original Source: McRae, T., Smith, C.A.S., and Gregorich, L.J., (eds.), 2000, Environmental Sustainability of Canadian Agriculture: Agri-Environmental Indicator Project. Agriculture and Agri-Food Canada, Ottawa, Ont. Reproduced with the permission of the Minister of Public Works and Government Services Canada, 2006.)
(in million tons/yr) 400
Changes in sediment yield reflect changes in basin conditions, including climate, solis, erosion rates, vegetation, topography and land use. It is influenced strongly by human actions, such as in the construction of dams and levees (see high sediment load in China and the Amason basin, where large dams have been implemeted), forest harvesting and farming in drainage basins
Figure 10E.116 World sediment load by basin. (From Water for People Water for Life, The United Nations World Water Development, Copyright q United Nations Educational, Scientific and Cultural Organization — World Water Assessment Programme (UNESCO-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: Reprinted from Marine Geology, vol. 154, Syvitski, J.P. and Morehead, M.D., Estimating River-Sediment Discharge to the Ocean: Application to the Eel Margin, Northern California, pp 13–28, 1999. With permission from Elsevier.)
q 2006 by Taylor & Francis Group, LLC
10-202
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Asia 6349
Global sediment loads Suspended sediment discharged per region
Million tonnes per year 6000 5000 4000 3000
North America 1020
Europe 230
Central America 442 South America 1788
Pacific Ocean
2000
Eurasian Arctic 84
1000 0
Pacific Ocean
Africa 500
Atlantic Ocean
Indian Ocean
Australia 62 Oceanic Islands 3000
Figure 10E.117 Global sediment loads, suspended sediment discharged by region. (From United Nations Environmental-Programme, UNEP/GRID-Arendal, Vital Water Graphics, Global Sediment Loads Suspended Sediment Discharged per Region, Downloaded 9/22/05, www.unep.org/vitalwater/freshwater.htm Data source for chart Gleick. P.H., 1993, Witter in Crisis: A Guide to the World’s Fresh Wafer Resources, Oxford University Press, NY. Reprinted with permission.)
Freshwater fisheries directive sampling points Suspended solids data 2000 < 20 mg/l 20 − 40 mg/l 40 − 60 mg/l > 60 mg/l
Figure 10E.118 Suspended solids loads in sampling points in England and Wales monitored under the freshwater fish directive. (From Department of Environment, Food and Rural Affairs, 2002, The Government’s Strategic Review of Diffuse Water Pollution from Agriculture in England: Agriculture and Water: A Diffuse Pollution Review, www.defra.gov.uk. Reproduced under the terms of the Click-Use Licence.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-203
Surface water quality 2000 exceedance-Turbidity guidelines Major issue-Greater than 33% of the drainage basin has not met turbidity guidelines for 'good' surface water quality Significant issue-5% to 33% of the drainage basin has not met turbidity guidelines for 'good' surface water quality Not a significant issueGreater than 50% of the drainage basin has monitoring coverage and less than 5% of the drainage basin exceeds turbidity guidelines for 'good' surface water quality Undetermined issue-Less than 50% of the drainage basin has monitoring coverage. Turbidity guidelines for 'good' surface water quality exceeded in less than 5% of the drainage basin No monitoring coverage/data not available
Figure 10E.119 Australian catchments where turbidity is considered an environmental issue. (From Ball, J., Donnelley, L., Erlanger, P., Evans, R., Kollmorgen, A., Neal, B., and Shirley, M., 2001, Inland Waters, Australia State of Environment Report 2001 (Theme Report), CSIRO Publishing on behalf of the Department of the Environment and Heritage, Canberra. Original Source: National Land and Water Resources Audit, 2001a, Australian Water. Resources Assessment 2000, www.deh.gov.au. Copyright Commonwealth of Australia reproduced by permission.)
q 2006 by Taylor & Francis Group, LLC
10-204
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
% of samples greater than 0.1 µg/L 20
15
10
5
2.4-D
MCPA
Atrazine
Diuron
Simazine
Mecoprop
PCSD
Isoproturon
00 20
99 19
98 19
97 19
96 19
95 19
94 19
19
93
0
Figure 10E.120 Occurrences of some commonly found pesticides in surface freshwaters in England and Wales, 1993–2000. (From European Environmental Agency (EEA), 2003, Europe’s Environment, The Third Assessment, Environmental Assessment Report No. 10, EE1, Copenhagen, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-205
Number of sites failing 2,4-d (5) a\b\g\d\e_hch (total) (5) aldrin (2) azinphos-methyl (2) carbendazim(3) chlorfenvinphos (4) cyfluthrin (5) cypermethrin (47) diazinon (18) dichlorvos (3) dieldrin (10) diflubenzuron (4) diuron (5) endosulfan total (a+b) (1) endrin (2)
fenitrothion (5) isoproturon (3) malathion (1) mcpa (6) mecoprop (2) mevinphos (1) permethrin (14) pirimicarb (2) pirimiphos methyl (1) ppddt (3) ppddt/opddt/pptde/ppdde (total) (3) propetamphos (13) tributyl tin as tbt (17) triphenyl tin as tpt (7)
Figure 10E.121 Surface freshwater sites exceeding pesticide environmental quality standards (EQS) For England and Wales, 2000. (From Department of Environment, Food and Rural Affairs, 2002, The Government’s Strategic Review of Diffuse Water Pollution from Agriculture in England: Agriculture and Water: A Diffuse Pollution Review, www.defra.gov.uk. Reproduced under the terms of the Click-Use Licence.)
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Consentration (ppt)
10-206
400 350 300 250 200 150 100 50 0 East Java
Central Java
West Java
Sampling site Heptachlor Chlordane pp-DDD Metoxichlor g-HCH
Aldrin Dieldrin op-DDT A-HCH d-HCH
Lampung
North Sumatra
Heptahlor epoxide Endrin pp-DDT B-HCH
Figure 10E.122 Highest concentrations of POPs and OCs compounds in Indonesian surface water in 2002. (From Syafrul, H., 2003, Environmental Standards Related to POPs in Indonesia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNUM Centre, Tokyo, www.unu.edu. Printed with permission.)
Maximum recorded levels of endrin in freshwater 0.25 0.2
ppb
0.15 0.1
U.S. EPA CMC 0.086ppb U.S. EPA CCC 0.036
0.05 0 China
Korea Indonesia Banjir Kanal Kimpo Han River Timur River (1999) (2002)
Malaysia
Philippines Tenejeros, Malabon, Manila (2000)
Thailand
Vietnam
Maximum recorded levels of endrin in seawater (logarithmic scale) 10
ppb
1
0.1 U.S. EPA CMC 0.037ppb 0.01
U.S. EPA CCC 0.023ppb
0.001 China
Indonesia Korea Incheon Tanjung Priok South Port (1999) Harbour (2002)
Philippines Manila (2000)
Thailand Gulf Singapore Lim Chu Kang, of Thailand (1999) NW Straits of Johore (2002)
Figure 10E.123 Maximum recorded levels of endrin in freshwater and seawater in East Asia. (From King, C., 2003, Capacity Development for Monitoring Major Persistent Organic Pollutants (POPs) in East Asian Waters: Examples of UNU Monitoring Activities in East Asia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unu.edu. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-207
Maximum recorded levels of aldrin in fresh water (logarithmic) 10 U.S. EPA CMC 3ppb
ppb
1
0.1
THAILAND 0.1ppb
0.01
0.001 China Indonesia Yellow Ciliwung River (1999) River (2003)
Korea
Malaysia Selangor (2000)
Philippines Pangasinan (2002)
Thailand
Vietnam West Lake (2002)
Maximum recorded levels of aldrin in seawater 1.4 U.S. EPA CMC 1.3ppb 1.2 PHILIPPINES 1ppb ppb
1 0.8 0.6 0.4 0.2 0 Indonesia China Haihe River (1999) Tanjung Perak Harbour (2003)
Korea
Philippines Batangas Bay (2001)
Singapore E. Thailand Straits of Chumporn Gulf Johore (2003) of Thailand (2000)
Figure 10E.124 Maximum recorded levels of aldrin in freshwater and seawater in East Asia. (From King, C., 2003, Capacity Development for Monitoring Major Persistent Organic Pollutants (POPs) in East Asian Waters: Examples of UNU Monitoring Activities in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unu.edu. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
10-208
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Maximum recorded levels of dieldrin in freshwater 0.3 U.S. EPA CMC 0.24ppb
0.25
ppb
0.2 0.15 THAILAND 0.1ppb
0.1 0.05
U.S. EPA CCC 0.056ppb
0 China Shanghai (1999)
Indonesia Korea Kimpo Malaysia Philippines Thailand Tha Surabaya Han River Selangor Rizal Laguna Chin River (2002) (1999) (2000) (2003) (2001)
Vietnam
Maximum recorded levels of dieldrin in coastal water 1 PHILIPPINES 1 ppb
0.8 U.S. EPA CMC 0.71ppb
ppb
0.6 0.4 0.2 U.S. EPA CCC 0.0019ppb
0 China
Indonesia Tanjung Priok (2003)
Korea
Philippines Pasig River (2001)
Singapore NE Johor/E Singapore Straits (2003)
Thailand Ranong, Andaman Sea (2001)
Figure 10E.125 Maximum recorded levels of dieldrin in freshwater and seawater in East Asia. (From King, C., 2003, Capacity Development for Monitoring Major Persistent Organic Pollutants (POPs) in East Asian Waters: Examples of UNU Monitoring Activities in East Asia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unu.edu. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-209
Maximum recorded levels of p,p'-DDT in freshwater (logarithmic) 0.3
VIETNAM 10ppb
ppb
1
U.S. EPA CMC 1.1ppb CHINA and THAILAND, 1ppb
0.1
UK 0.01ppb
0.01
0.001 China Yandste River (1999)
Indonesia Kali Surabaya River (2001)
Korea
Malaysia Selangor River (2000)
Philippines Ayam River, Limay (2001)
Thailand
Vietnam Balat Estuary (2001)
U.S. EPA CCC 0.001ppb
Maximum observed levels of p,p'-DDT in seawater 0.3 0.25
ppb
0.2 U.S. EPA CMC 0.13ppb
0.15 0.1
CHINA 0.05-0.1ppb
0.05 0 China Bohai sea (1999)
Indonesia Tanjung Perak Harbour (1999)
Korea
Philippines Bataan (2001)
Singapore SE. Straits of Johore between Johore (2003)
Thailand Krabi, Andaman sea (2001)
Viet Nam Hue (1999)
U.S. EPA CCC 0.001ppb
Figure 10E.126 Maximum recorded levels of p,p 0 -DDT in freshwater and seawater 1999–2003. (From King, C., 2003, Capacity Development for Monitoring Major Persistent Organic Pollutants (POPs) in East Asian Waters: Examples of UNU Monitoring Activities in East Asia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unu.edu. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
10-210
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
450
Consentration (ppt)
400 350 300 250 200 150 100 50 0 East Java
Central Java
West Java
North Sumatra
Lampung
Sampling site HCB Heptachlor epoxide Endrin pp-DDE Metoxichlor g-HCH
Heptachlor Chlordane Mirex op-DDT A-HCH d-HCH
Aldrin Dieldrin pp-DDD pp-DDT B-HCH
Figure 10E.127 Highest concentrations of POPs and OCs compounds in Indonesian river sediment in 2002. (From Syafrul, H., 2003, Environmental Standards Related to POPs in Indonesia in United Nations University, Capacity Development Training for Monitoring of POPS in the East Asian Hydrosphere, 1–2 September, 2003, UNU Centre, Tokyo, www.unu.edu. With permission.)
Percentage of samples
25 1994
20
1995 1996
15
1997
10
1998 1999
5
2000
Carbendazim
Chlorotoluron
Atrazine
Dichlorprop
Simazine
2,4-D
MCPA
Diuron
Mecoprop
Isoproturon
0
Pesticide Figure 10E.128 Trends in exceedance of 0.1 ug/L drinking water directive standard for England and Wales, 1994–2000. (From Department of Environment, Food and Rural Affairs, 2002, The Government’s Strategic Review of Diffuse Water Pollution from Agriculture in England: Agriculture and Water: A Diffuse Pollution Review, www.defra.gov.uk. Reproduced under the terms of the Click-Use Licence.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-211
7.00
Nitrate or TON mg N/l
6.00 5.00 < 10
4.00
10 to < 25 25 to < 50
3.00
50 to < 75 > 75
2.00 1.00 0.00 Small
Medium
Very Large
Large
Largest
Size of river Data from Denmark, France, Germany, Portugal and UK
Figure 10E.129 Median annual average nitrate or total oxidized nitrogen concentrations (mg N/L) at stations in different sized rivers in relation to the percentage total agricultural land use in upstream catchment. (From European Environment Agency, YIR01WQ1 Nitrogen and Phosphorous in River Stations by River Size and Catchment Type, www.eea.europa.eu. Reprinted with permission q EEA.)
60
Upward trend Downward trend
40 20 0 –20 –40 –70 –80 –100
la
Po
H
un
ga
ry
s e rie nc nt Fra u o
Al
lc
Es to Sw nia ed Bu en lg a Au ria s G tr er ia m D any en m ar k
nd
Fi n Li lan th d ua Sl ni ov a ak R ep ub lic U S ni te lov d Ki eni ng a do m
Nitrate pollution in rivers is higher in the EU-15 than in the New -10 (but lowest of all in the Nordic countries). This reflects differences in agricultural intensity and practices. In 2000/2001, rivers in 14 European countries (out of 24 with available information) exceeded the EU drinking water directive's guide concentration for nitrate; five also exceeded the maximum allowable concentration. In general nitrate concentrations in rivers are declining: 25% of monitoring stations on Europe's rivers recorded a decrease between 1992 and 2001. However, around 15% of river monitoring stations showed an increasing trend in nitrate concentrations over the same period.
Trends in river nitrate concentration (% of monitoring stations, 1992-2001)
Nitrate concentrations in rivers
ia
tv
La
Figure 10E.130 Nitrate concentration trends in European rivers. (From European Environmental Agency, 2004, EEA Signals 2004, A European Environmental Update on Selected Issues, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
9364
3224
2533
1808
901
633
Asia
Europe
N.America
Oceania
S. America
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Global
10-212
Nitrate total [mg L−1 N03−]
7.25
5.80
4.35
2.90
1.45
0.00
Figure 10E.131 Statistical distribution of nitrate for major global watersheds, 1976–1990. (From United Nations Environmental Programme Global Environment Monitoring System, Water Programme (GEMS/WATER), The Annotated Digital Atlas of Global Water Quality, www.gemswater.org. Reprinted with permission.)
Figure 10E.132 Percent change of nitrogen, nitrate C nitrite in selected 82 watersheds. (From United Nations Environment Program, Global Environment Monitoring System (GEMS) Water Programs, 2005, 2004 State of the UNEP GEMS/Water Global Network and Annual Report, 2005, www.gemswater.org. Printed with permission.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-213
Nitrate in groundwater Affected regions 20/25 − 50mg NO3/l > 45/50 mg NO3/l Small affected areas evenly distributed > 25 mg NO3/l > 45/50 mg NO3/l No data available No data collected 0
500
1000 km
BASC MAP: EUROSTAT/GISCO
GRAPHICS & ANALYSIS: AWW
Figure 10E.133 Nitrate in groundwater in Europe. (From European Environmental Agency (EEA), 1999, Groundwater Quality and Quantity in Europe, June 1999, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
10-214
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Sweden-2000-3 Latvia-2000-4 Lithuania-2000-5 Ireland-1998-3 Finland-1998-26 Greece-1998-65 Estonia-2000-5 Hungary-1999-11
no exceedance
Bulgaria-2001-64
rare (, 25%)
Poland-2000-3
frequent (25−50%)
Czech Rep.-2000-39 very frequent (> 50%)
Belgium-2001-2 Slovenia-2000-4 Netherlands-2001-8 Austria-2001-14 UK-1998-4 Slovak Rep.-2000-10 Denmark-2000-3 Germany-2000-2 Spain-1999-3 0%
25% 50% 75% % of groundwater bodies
100%
Note: The figure is based on the data for the latest year available (given after the country name). The numbers of groundwater bodies per country indluded in the presentation are given after the year. The four classes represent the percentage of sampling sites within each groundwater body where annual mean nitrate values exceed 50 mg No3/litre. Figure 10E.134 Percentage of sampling sites in groundwater bodies where annual mean values exceed 50 mg/L. Nitrate (From European Environment Agency, Nitrate in Groundwater, Indicator Fact Sheet WEU01, www.eea.europa.eu. Reprinted with permission q EEA.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-215
Figure 10E.135 Distribution of bores across Australia, with nitrate levels greater than 10 mg/L. (From Ball, J., Donnelley, L., Erlanger, P., Evans, R., Kollmorgen, A., Neal, B., and Shirley, M., 2001, Inland Waters, Australia State of Environment Report 2001 (Theme Report), CSIRO Publishing on behalf of the Department of the Environment and Heritage, Canberra www.deh.gov.au. Original Source: LWRRDC, 1999, Contamination of Australian Groundwater Systems with Nitrate, Occasional Paper No. 03/99, Land and Water Resources Research and Development Corporation, Canberra, www.lwrrdc.gov.au. Copyright Commonwealth of Australia reproduced by permission.)
q 2006 by Taylor & Francis Group, LLC
10-216
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.122 Trends in Regional Agricultural Activity and Soil Loss, 1975 and 2000 (High Growth Scenario) Acres in Crop Production 1975
Region I. II.
New England New YorkNew Jersey III. Middle Atlantic IV. Southeast V. Great Lakes VI. South Central VII. Central VIII. Mountain IX. West X. Northwest Totalc a b c
Quantity (106 Acres) a
Soil Loss
2000
Percent of National Total
Percent of 1975 Value
b
1
1
129 119
5 27 65 31 58 26 4 7 223
2 12 29 14 26 12 2 3 100
127 121 132 108 107 105 140 129 118
1975
2000
Percent of Percent of National National Quantity 6 Total Total (10 Tons) b
b
1
2 17
2 12 33 13 24 10 2 3 100
180 900 880 590 960 72 10 86 3,700
5 24 24 16 26 1
b
b
2 100
Percent of 1975 Value
Percent of National Total
126 120
b
127 119 136 114 113 100 144 129 121
5 24 27 15 24 2
b
b
2 100
Annual Average Soil Loss Per Acre (Tons) 13 14 36 33 14 20 18 3 3 13 17
Less than 0.5 million acres. Less than 0.5 percent. Rounding may creat inconsistencies in addition.
Source:
From U.S. Environmental Protection Agency, 1980, Environmental Outlook 1980.
Table 10E.123 Estimated Acreage and Erosion in the Contiguous United States, Selected Years, 1938–1997 Item Acreage Cropland and CRP combined CRP land Pasture Range Total erosion Cropland and CRP combined Sheet and rill Wind Pasture Sheet and rillc Windd Range Sheet and rillc Windc Total cropland, pasture, range Erosion per acre Cropland Sheet and rill Wind Subtotal CRP Sheet and rill Wind
1938
1967
1977
1982
398.8a
438.2
413.3
— na na
— na na
— na na
na na
2.60b na
1.93 na
1.69 1.38
1.52 1.4
1.21 0.95
1.06 0.84
na na
na na
na na
1.45 0.13
1.28 0.13
1.26 0.13
1.08 0.12
na na na
na na na
na na na
0.49 1.92 7.12
0.48 1.77 6.46
0.48 1.76 5.76
na na na
Million acres 421 — 131.9 408.9 Billion tons/year
1987
1992
1997
406.6
382.3
377
3.8 127.6 402.8
34 125.9 398.9
32.7 120 406
Tons/acre/year na na 8.9d
5.9 na na
4.7 5.3 na
4 3.3 7.3
3.7 3.2 6.9
3.1 2.4 5.5
2.8 2.2 5
— —
— —
— —
— —
2 6.8
0.6 0.7
0.4 0.3 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10E.123
10-217
(Continued)
Item
1938
Subtotal Pasture Sheet and rill Wind Range Sheet and rill Wind
1967
1977
1982
1987
1992
1997
—
—
—
–—
8.8
1.3
0.7
na na
na na
na na
1.1 0.1
1 0.1
1 0.1
0.9 0.1
na na
na na
na na
1.2 4.7
1.2 4.4
1.2 4.4
na na
Note: na, not available; CRP, Conservation Reserve Program. a b c d
Based on 1939 census estimate of cropland. Kimberlin (1976), based on 1967 Conservation Needs Inventory. Based on multiplying published per acre erosion estimates times acreage. Based on dividing sum of sheet, rill, and wind erosion by total U.S. cropland acres.
Source: From Heimlich, R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), www.ers.usda.gov; based on data from USDA, ERS, NRCS National Resources Investigations of 1977, 1982, 1987, 1992, and 1997, except where noted.
Table 10E.124 Representative Values for Nutrient Export and Input Rates for Various Land Uses in the United States Land Use
Total Phosphorus
Total Nitrogen
0.2 0.7 0.8 1.1 2.2 255.0
2.5 6.0 14.5 5.0 9.0 2,920.0
a,b
A. Export rates (kg/ha/yr) Forest Nonrow crops Pasture Mixed agriculture Row crops Feedlot, manure storage B. Total atmospheric input rates (kg/ha/yr)a,b Forest Agricultural/rural Urban industrial C. Wastewater input rates (kg/capita/yr)b Septic tank inputc
0.26 0.28 1.01 1.45
6.5 13.1 21.4 4.65
Note: All values are medians and are only approximations owing to the highly variable nature of data on these rates. a b c
Value in this table are all in kg/ha/yr, which is the standard for such measurements. To convert to pounds per acre per year, multiple by 0.892. Source: Reckhow et al., 1980. This is prior to absorption to soil during infiltration; generally, soils will absorb 80 percent or more of this phosphorus.
Source: From U.S. Environmental Protection Agency, 1988, The Lake and Reservoir Restoration Guidance Manual, EPA 440/5-88-002.
q 2006 by Taylor & Francis Group, LLC
10-218
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.125 Contribution of Total Nitrogen and Phosphorous from Variable Nonpoint Sources (in Pounds per Acre per Year) Areal Loading Rates Source
Nitrogen (N)
Precipitation Forest land Range land Crop land Land receiving manure Irrigation return flows Surface Subsurface Urban land drainage Animal feedlot runoff
Phosphorus (P)
5.0–9.8 2.7–12 — 0.10–12 3.6–12
0.04–0.05 0.03–0.8 0.07–0.08 0.05–2.7 0.7–2.7
3.0–27 4.0–18 6.4–8.9 90–1,400
1.0–4.1 2.9–10 1.1–5.4 8.9–630
Source: From U.S. Geological Survey, 1984, National Water Summary 1983-Hydrologic Events and Issues, Water Supply Paper 2250; based on data from Loehr, R.C., 1974.
Table 10E.126 Constituents of Livestock Waste Per Day (lb.)
104 Days (lb.)
360 Head/Acre/yr (Tons)
64 2.1 8.2 53.7 0.380 0.048 0.260
8,960 294 1,148 7,518 55.0 6.7 36.4
4,200 144 540 30.7 in. 24.9 3.2 16.8
Wet manure and urine Dry mineral matter Dry organic matter Water Total nitrogen Total phosphorus Total potassium
Note: Some constituents of waste of a 1,000-pound bovine on a daily and feeding period basis, and of 360 head per acre on an annual basis. Source: From Hansen, R.W., 1971, Livestock Waste Disposal and Water Pollution Control, Colorado State University Cooperative Extension Service Bulletin 480a.
Table 10E.127 Fertilizer Elements of Animal Excrements
Wet manure Total mineral matter Organic matter Nitrogen (N) Phosphorus (P2O5) Potassium (K2O)
Dairy Cattle (lb./day)
Beef Cattle (lb./day)
Hens (lb./day)
Hogs (lb./day)
88 1.80 7.20 0.36 0.10 0.15
64 2.1 8.2 0.38 0.048 0.26
59 4.5 12.9 2 0.69 0.34
50 1.3 5.9 0.4 0.18 0.1
Sheep (lb./day) 37 1.5 6.9
Note: Fertilizer elements of various complete animal excrements per 1,000 pounds of liveweight. Source: From Hansen, R.W., 1971, Livestock Waste Disposal and Water Pollution Control, Colorado State University Cooperative Extension Service Bulletin 480a.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-219
Table 10E.128 Trends in Gross Nutrient Discharges in Agricultural Runoff in the United States, 1975 and 2000 2000 (Tons) Pollutant
1975 (Tons)
High Growth
Low Growth
5,700 3,000 1,400 10,000
8,800 5,700 2,600 17,000
7,600 4,900 2,200 15,000
Nitrogen Phosphorus Potassium Totala a
Rounding may create inconsistencies in addition.
Source: From U.S. Environmental Protection Agency, Environment Outlook 1980.
Table 10E.129 Trends in Gross Discharges of Sediment in Agricultural Runoff in the United States, 1975 and 2000 2000 (103 Tons) Pollutant
1975 (103 Tons)
High Growth
Low Growth
94,000 40,000 630
110,000 49,000 760
97,000 42,000 650
Total suspended solids Total dissolved solids Biochemical oxygen demand
Note: Conservative estimates; discharges may uniformly be too low by a factor of four of five. Source: From U.S. Environmental Protection Agency, Environmental Outlook 1980.
Table 10E.130 Yield and Percentage Change in Yield of Nitrate, Total Phosphorous, and Suspended Sediment in WaterResource Regions of the Conterminous United States, 1980–1989 Nitrate 1980–1989 Water-Resources Region
Suspended Sediment 1980–1989
Yield, in Tons Per Square Mile Per Year
Percentage Change Per Year
Yield, in Tons Per Square Mile Per Year
Percentage Change Per Year
Yield, in Tons Per Square Mile Per Year
Percentage Change Per Year
0.558 0.226 0.647 0.847 0.989 0.333 0.011 0.060 0.056 0.012 0.057 0.049 0.225 0.047
a
0.077 0.092 0.067 0.125 0.157 0.103 0.008 0.028 0.039 0.014 0.036 0.018 0.063 0.060
K1.4 C0.1 K3.3 K1.0 K1.2 K3.8 K0.8 K1.7 K3.1 K0.9 K2.4 K2.7 K1.7 K1.4
32 20 36 85 102 111 4 45 31 15 92 21 40 21
K0.4 C0.2 C0.5 K1.3 K1.3 K1.2 C1.2 K0.2 K0.7 K0.6 K0.8 K0.2 K0.1 K0.6
North Atlantic South Atlantic-Gulf Great Lakes Ohio-Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Arkansas-White-Red Texas-Gulf-Rio Grande Colorado Great Basin Pacific Northwest California a
Total Phosphorus 1982–1989
a a a
K0.4 K1.6 a a a a a a a a
Between K0.1 and C0.1.
Source: From Smith, R. A., Alexander, R. B., and Lanfear, K. J., 1993, Stream water quality in the conterminous United States – status and trends of selected indicators during the 1980’s in national water summary 1990–91 — stream water quality, U.S. Geological Survey Water-Supply Paper 2400, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
10-220
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.131 Nitrogen Runoff Estimates in Coastal Regions by Major Source Category, Selected Years 1982–1987 Total Nitrogen (1,000 lbs/yr)
EDA Group
WWTPs
Industries
Urban Runoff
Cropland Runoff
Pature/Range Runoff
Forest Runoff
Upstream Sources
Total
North Atlantic Middle Atlantic South Atlantic Gulf of Mexico East Gulf of Mexico West Pacific-South Pacific-North
23,475 178,810 23,265 27,516 22,917 83,163 18,301
1,335 22,237 13,802 11,154 13,789 1,530 3,877
8,291 46,367 15,184 17,131 7,261 9,437 5,630
2,471 36,277 39,115 42,310 17,021 32,472 5,432
108 780 34 29,362 34,070 33,811 89,307
556 1,166 130 51 46 5,589 89,307
69,930 314,539 82,929 3,057,405 88,626 58,784 173,968
106,166 600,177 174,460 3,184,927 183,730 224,786 303,771
Source: From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, www.nrcs.usda.gov. Original Source: From NOAA, 1994.
Table 10E.132 Phosphorus Runoff Estimates in Coastal Regions by Major Source Category, Selected Years 1982–1987 Total Phosphorus (1,000 lbs/yr)
EDA Group
WWTPs
Industries
Urban Runoff
Cropland Runoff
Pasture/Range Runoff
Forest Runoff
Upstream Sources
Total
North Atlantic Middle Atlantic South Atlantic Gulf of Mexico East Gulf of Mexico West Pacific-South Pacific-North
14,826 112,998 14,580 9,202 13,990 59,211 13,749
312 3,823 10,872 27,248 6,580 186 304
1,368 7,512 2,311 2,607 1,105 1,456 886
132 2,001 2,664 433 173 723 113
1 8 0 294 341 338 73
6 12 1 1 0 56 893
4,114 20,579 17,159 434,073 20,458 3,611 27,452
20,760 146,931 47,588 473,857 42,646 65,581 43,470
Source: From United States Department of Agriculture, Natural Resources Conservation Services, 1997, Water Quality and Agriculture, Status, Conditions, and Trends, www.nrcs.usda.gov. Original Source: From NOAA, 1994.
Table 10E.133 Load Yield, and Percentage Change in Load and Yield of Nitrate, Total Phosphorous, and Suspended Sediment in Six Coastal Segments of the Conterminous United States, 1980–1989 Nitrate 1980–1988
Coastal Segment North Atlantic South Atlantic Gulf of Mexico Great Lakes Pacific Northwest California Total load Area-weighted average yield Change in Total Load a
Load (tons/yr) 171 37 1,178 205 74 26 1,691 — —
Total Phosphorus 1982–1988
Yield in Percentage Tons Per Square Mile Change Per Year Per Year 0.972 0.257 0.687 1.570 0.267 0.232 — 0.638 —
Load (tons/yr)
Yield, in Percentage Tons Per Square Mile Change Per Year Per Year
C2.1 — —
18 10 136 14 15 15 207 —
0.101 0.068 0.079 0.108 0.055 0.132 — 0.079
K2.1
—
—
C1.8 a
K3.4 a a
a a
K3.5 K2.6 K2.2 a
— — K3.0
Suspended Sediment 1980–1988
Load (tons/yr)
Yield, in Tons Per Square Mile Per Year
1,177 257 16,607 1,484 2,519 4,684 26,728 —
67 18 97 114 91 502 — 104
K21.0 — —
—
—
K6.4
Percentage Change Per Year C8.0 K1.1 K3.8 a a
Not statistically significant.
Source: From Smith, R.A., Alexander, R.B., and Lanfear, K.J., 1993, Stream water quality in the conterminous United States – status and trends of selected indicators during the 1980’s in national water summary 1990–91 — stream water quality, U.S. Geological Survey Water-Supply Paper 2400, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-221
Table 10E.134 Farm Fertilizer Use in the United States, 1939–1998 (Millions of Tons of Primary Nutrients) Year 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
Fertilizer Applied
Year
Fertilizer Applied
Year
1.6 1.8 1.9 2.1 2.4 2.6 2.7 3.1 3.3 3.6 3.9 4.1 4.7 5.2 5.6
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
5.9 6.1 6.1 6.4 6.5 7.4 7.5 7.8 8.4 9.5 10.5 11 12.4 14 15
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
Fertilizer Applied 15.5 16.1 17.2 17.2 18 19.3 17.6 20.8 22.1 20.6 22.6 23.1 23.7 21.4 18.1
Year 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
Fertilizer Applied 21.8 21.7 19.7 19.1 19.6 19.6 20.6 20.5 20.7 20.9 22.4 21.3 22.1 22.4 22.3
Source: From U.S. Department of Commerce, Bureau of the Census, 1976. Historical Statistics of the United States: Colonial Times to 1970, Series K 193. Washington, DC; U.S. Department of Commerce, Bureau of the Census. 1985. Statistical Abstracts of the United States: 1986, no. 1161, p. 654. Washington, DC; U.S. Department of Agriculture, Economic Research Service. 1987. Inputs Situation and Outlook Report. AR-5. Washington, DC; U.S. Geological Survey National Water Summary 1986; Heimlich, 2003; Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003.
q 2006 by Taylor & Francis Group, LLC
10-222
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.135 United States Commercial Fertilizer Use, 1960–1998 Primary Nutrient Use a
Year
Total Materials
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
24.9 25.6 26.6 28.8 30.7 31.8 34.5 37.1 38.7 38.9 39.6 41.1 41.2 43.3 47.1 42.5 49.2 51.6 47.5 51.5 52.8 54.0 48.7 41.8 50.1 49.1 44.1 43.0 44.5 44.9 47.7 47.3 48.8 49.2 52.3 50.7 53.6 55.0 55.0
Nitrogen (N) Million Ions 2.7 3.0 3.4 3.9 4.4 4.6 5.3 6.0 6.8 6.9 7.5 8.1 8.0 8.3 9.2 8.6 10.4 10.6 10.0 10.7 11.4 11.9 11.0 9.1 11.1 11.5 10.4 10.2 10.5 10.6 11.1 11.3 11.4 11.4 12.6 11.7 12.3 12.4 12.3
Phosphate (P2O5)
Potash (K2O)
Totalb
2.6 2.6 2.8 3.1 3.4 3.5 3.9 4.3 4.4 4.7 4.6 4.8 4.9 5.1 5.1 4.5 5.2 5.6 5.1 5.6 5.4 5.4 4.8 4.1 4.9 4.7 4.2 4.0 4.1 4.1 4.3 4.2 4.2 4.4 4.5 4.4 4.5 4.6 4.6
2.2 1.2 2.3 2.5 2.7 2.8 3.2 3.6 3.8 3.9 4.0 4.2 4.3 4.6 5.1 4.4 5.2 5.8 5.5 6.2 6.2 6.3 5.6 4.8 5.8 5.6 5.1 4.8 5.0 4.8 5.2 5.0 5.0 5.1 5.3 5.1 5.3 5.4 5.3
7.5 7.8 8.4 9.5 10.5 10.9 12.4 14.0 15.0 15.5 16.1 17.2 17.2 18.0 19.3 17.6 20.8 22.1 20.6 22.6 23.1 23.7 21.4 18.1 21.8 21.7 19.7 19.1 19.6 19.6 20.6 20.5 20.7 20.9 22.4 21.3 22.1 22.4 22.3
Note: Includes Puerto Rico. Detailed State data shown in (USDA, 1997). Fertilizer statistics used in this table include commercial fertilizers purchased for use on farms such as chemical fertilizers and natural processed and dried organic materials. Purchased natural processed and dried organic materials historically have represented about 1 percent of total nutrient use. a b
Includes secondary and micronutrients. Most of the difference between total primary nutrient tons and total fertilizer materials is carrier or filler materials. Totals may not add due to rounding.
Source: From Heimlich, R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003, www.ers.usda.gov. Original Source: From Fertilizer use estimates for 1960–1984 are from USDA; Commercial Fertilizers. 1985 and earlier issues; those for 1985–1994 are from Tennessee Valley Authority (TVA), Commercial Fertilizers, 1994 and earlier issues; and those for 1995–1997 are from The Association of American Plant Food Control Officials, Commercial Fertilizers, 1995–1998.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-223
Table 10E.136 United States Regional Commercial Nutrient Use for Year Ending June 30, 1989–1998 Region
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1,000 tons Nitrogen Northeast Lake States Corn Belt Northern Plains Appalachia Southeast Delta States Southern Plains Mountain Pacific U.S. totala Phosphate Northeast Lake States Corn Belt Northern Plains Appalachia Southeast Delta States Southern Plains Mountain Pacific U.S. totala Potash Northeast Lake States Corn Belt Northern Plains Appalachia Southeast Delta States Southern Plains Mountain Pacific U.S. totala
313 1,011 3,041 1,680 613 643 560 1,217
306 1,134 3,215 1,751 667 670 643 1,117
299 1,128 3,280 1,978 662 627 609 1,223
328 1,119 3,279 1,954 718 65 674 1,192
350 1,073 3,003 2,090 705 682 615 1,235
376 1,186 3,562 2,319 720 701 663 1,377
349 1,108 3,228 2,133 694 640 630 1,208
334 1,108 3,354 2,219 752 694 718 1,186
354 1,236 3,243 2,373 741 660 607 1,258
351 1,172 3,220 2,317 763 635 752 1,282
626 916 10,619
642 921 11,065
628 838 11,273
666 849 11,432
744 886 11,382
775 953 12,633
765 953 11,709
806 1,122 12,294
862 1,010 12,344
867 938 12,297
188 477 1,254 522 361 297 154 342
197 508 1,334 550 381 308 177 315
188 479 1,262 583 384 281 154 334
208 468 1,269 577 409 295 180 288
211 474 1,312 646 410 314 172 340
232 465 1,317 649 412 297 192 363
203 461 1,257 617 399 313 197 341
183 474 1,340 626 396 332 213 313
184 537 1,304 713 413 318 198 319
171 487 1,275 772 409 328 221 330
253 270 4,119
279 289 4,339
255 274 4,195
270 248 4,212
296 257 4,431
298 291 4,517
300 326 4,412
312 335 4,523
306 316 4,609
338 290 4,621
232 852 1,974 129 506 558 212 149
261 941 2,132 133 538 559 240 143
262 832 2,044 134 539 517 229 150
267 809 1,987 123 584 556 280 146
262 779 2,034 134 575 581 288 168
299 781 2,133 123 576 535 302 191
280 760 1,996 124 574 563 336 168
230 776 2,098 123 592 587 351 172
234 866 2,153 147 624 563 323 178
228 848 2,074 168 634 564 316 172
53 155 4,820
65 179 5,192
80 200 4,988
55 220 5,026
80 230 5,131
68 252 5,259
79 231 5,112
79 240 5,248
80 249 5,416
91 242 5,335
Note: Totals may not add due to rounding. Northeast, ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, and MD; Lake States, MI, WI, and MN; Corn Belt, OH, IN, IL, IA, and MO; Northern Plains, ND, SD, NE, and KS; Appalachia, VA, WV, NC, KY, and TN; Southeast, SC, GA, FL, and AL; Delta States, MS, AR, and LA; Southern Plains, OK and TX; Mountain, MT, ID, WY, CO, NM, AZ, UT, and NV; and Pacific, WA, OR, CA, AK, and HA. a
Excludes Puerto Rico. Detailed state data shown in (USDA, 1995).
Source: From Heimlich, R., 2003, Agricultural Resources and Environmental Indicators 2003, Agriculture Handbook No. (AH722), February 2003, www.ers.usda.gov. Original Source: From USDA, ERS, based on Tennessee Valley Authority, Commercial Fertilizers, 1994 and earlier issues; The Association of American Plant Food Control Officials, Commercial Fertilizers, 1995–1998.
q 2006 by Taylor & Francis Group, LLC
10-224
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.137 Production and Sales of Synthetic Organic Pesticides in the United States, 1960–1984 Item
Unit
Production, total Herbicides Insecticides Fungicides Production valuea Sales, total Sales value
Mil. lb Mil. lb Mil. lb Mil. lb Mil. dol Mil. lb Mil. dol
1960
1965
1970
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
648 102 366 179 307 570 262
877 263 490 124 577 764 497
1,034 404 490 140 1,058 881 870
1,603 788 660 155 2,900 1,317 2,359
1,364 656 566 142 2,880 1,193 2,410
1,388 674 570 143 3,116 1,263 2,808
1,416 664 605 147 3,342 1,300 3,041
1,429 657 617 155 3,685 1,369 3,631
1,468 806 506 156 4,269 1,406 4,078
1,430 839 448 143 5,136 1,291 4,652
1,113 623 379 111 4,331 1,147 4,432
1,017 570 324 123 3,993 1,017 4,054
1,189 716 350 123 5,056 1,108 4,730
Note: Includes a small quantity of soil conditioners. a
Manufacturers unit value multiplied by production.
Source: From U.S. Department of Commerce, Statistical Abstract of the United States, 1987.
Table 10E.138 United States Production and Sales of Conventional Pesticides, 1994–2001
Production-active ingredient (billions of pounds) Sales Value (billons of dollars)
1994/1995
1996/1997
1998/1999
2000/2001
1.3 7.0
1.3 7.9
1.6 9.6
1.6 9.3
Source: From Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticides Industry Sales and Usage 2000 and 2001 Market Estimates, United States Environmental Agency, Office of Prevention, Pesticides and Toxic Substances, EPA-733-R-04-001, May 2004. Donaldson, D., Kiely, T., and Grube, A., 2002, Pesticides Industry Sales and Usage 1998 and 1999 Market Estimates, United States Environmental Agency, Office of Prevention, Pesticides and Toxic Substances, EPA-733-R-02-001, August 2002. Aspelin, A. and Grube, A., 1999, Pesticides Industry Sales and Usage 1996 and 1997 Estimates, United States Environmental Agency, Office of Prevention, Pesticides and Toxic, 733-R-99-001, November 1999. Aspelin, A., 1997, Pesticides Industry Sales and Usage 1994 and 1995 Market Estimates, United States Environmental Agency, Office of Prevention, Pesticides and Toxic Substances, EPA-733-R-97-002, August 1997, www.epa.gov.
Table 10E.139 Annual Amount of Pesticide Active Ingredient Used in the United States by Pesticide Type, 1982–2001 Estimates All Market Sectors Million Pounds of Active Ingredient Year
Herbicides/PGR
Insecticides
Fungicides
Other Conva
Otherb
Total
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
620 573 634 611 590 532 557 567 564 546 554 527 583 556 578 568 555 534 542 553
198 185 173 161 151 141 132 123 121 114 116 115 124 125 116 112 103 126 122 105
117 115 109 110 109 100 99 98 91 86 81 80 79 77 79 81 86 79 74 73
149 148 145 138 138 133 137 154 173 182 189 192 199 203 222 197 168 173 188 157
298 287 284 284 278 269 266 251 252 226 246 248 244 249 234 270 294 332 308 315
1,382 1,308 1,345 1,304 1,266 1,175 1,191 1,193 1,201 1,154 1,186 1,162 1,229 1,210 1,229 1,228 1,206 1,244 1,234 1,203
Note: Excludes wood preservatives, specialty biocides, and chlorine/hypochlorites. a b
Other conventional pesticides include nematicides, fumigants, and other conventional pesticides. “Other” includes sulfur, petroleum, and other chemicals used as pesticides (e.g., sulfuric acid and insect repellents).
Source: From Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticide Industry Sales and Usage, 2000 and 2001 Market Estimates, United States Environmental Protection Agency, www.epa.gov, based on Croplife America annual surveys, USDA/NASS (www.usda.gov/nass), and EPA proprietary data.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10E.140 Amount of Conventional Pesticide Active Ingredient Used in the United States by Pesticide Type and Market Sector, 2000 and 2001 Estimates Herbicides/Plant Growth Regulators
Year Sector 2000 Agriculture Ind/Comm/Gov Home & Garden Total 2001 Agriculture Ind/Comm/Gov Home & Garden Total
Insecticides/Miticides
Fungicides
Nematicide/Fumigant
Other Conventionala
Total
Mil. lbs of a.i.
%
Mil. lbs of a.i.
%
Mil. lbs of a.i.
%
Mil. lbs of a.i.
%
Mil. lbs of a.i.
%
Mil. lbs of a.i.
%
432 48 62 542
80 9 11 100
90 17 15 122
74 14 12 100
44 19 11 74
59 26 15 100
131 24 1 156
84 15 1 100
25 6 1 32
78 19 3 100
722 114 90 926
78 12 10 100
433 49 71 553
78 9 13 100
73 15 17 105
70 14 16 100
42 19 12 73
58 26 16 100
102 24 1 127
80 19 1 100
25 4 1 30
83 13 3 100
675 111 102 888
76 13 11 100
Note: Totals may not add due to rounding. Table does not cover industrial wood preservatives, specialty biocides, chlorine/hypochlorites, and other chemicals used as pesticides (e.g., sulfur and petroleum oil). The abbreviation “a.i.” stands for active ingredient. a
“Other Conventional” pesticides include rodenticides, molluscicides, aquatic and fish/bird pesticides, and other miscellaneous conventional pesticides.
Source:
From Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticide Industry Sales and Usage, 2000 and 2001 Market Estimates, United States Environmental Protection Agency, www.epa.gov, EPA estimates based on Croplife America annual surveys, USDA/NASS (www.usda.gov/nass), and EPA proprietary data.
10-225
q 2006 by Taylor & Francis Group, LLC
10-226
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.141 Conventional Pesticide Active Ingredient Used in the United States Agricultural and Nonagricultural Market Sector Shares, 1964–2001 Agricultural Sector
Year
Total U.S. Million Pounds of Active Ingredient
Million Pounds of Active Ingredient
% of Total U.S.
Nonagricultural Sector Million Pounds of Active Ingredient
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
617 658 682 712 742 763 760 793 843 882 964 1013 1041 1084 1106 1144 1121 1118 1084 1021 1061 1020 988 906 925 942 949 928 940 914 984 961 996 958 912 912 926 888
366 396 414 429 457 491 499 528 575 607 688 729 753 794 813 843 826 831 804 745 794 767 739 666 690 712 720 708 723 698 776 765 803 767 724 706 722 675
59 60 61 60 62 64 66 67 68 69 71 72 72 73 74 74 74 74 74 73 75 75 75 74 75 76 76 76 77 76 79 80 81 80 79 77 78 76
251 262 268 283 285 272 261 265 268 275 276 284 288 290 293 301 295 287 280 276 267 253 249 240 235 230 229 220 217 216 208 196 193 191 188 206 204 213
Note: Conventional pesticides only, excluding sulfur, petroleum oil, and other chemicals used as pesticides (e.g., sulfuric acid and insect repellants), wood preservatives, specialty biocides, and chlorine/hypochlorites. Source: From Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticide Industry Sales and Usage, 2000 and 2001 Market Estimates, United States Environmental Protection Agency, www.epa.gov, EPA estimates based on Croplife America annual surveys, USDA/NASS (www.usda.gov/nass), and EPA proprietary data.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-227
Table 10E.142 Most Commonly Used Conventional Pesticide Active Ingredients United States, Agricultural Market Sector, 2001, 1999, 1997, and 1987 Estimates 2001
1999
1997
1987
Active Ingredient
Type
Rank
Range
Rank
Range
Rank
Range
Rank
Range
Glyphosate Atrazine Metam sodium Acetochlor 2,4-D Malathion Methyl bromide Dichloropropene Metolachlor-s Metolachlor Pendimethalin Trifluralin Chlorothalonil Copper hydroxide Chlorpyrifos Alachlor Propanil Chloropicrin Dimethenamid Mancozeb Ethephon EPTC Simazine Dicamba Sulfosate
H H Fum H H I Fum Fum H H H H F F I H H Fum H F PGR H H H H
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
85–90 74–80 57–62 30–35 28–33 20–25 20–25 20–25 20–24 15–22 15–19 12–16 8–11 8–10 8–10 6–9 6–9 5–9 6–8 6–8 5–8 5–8 5–7 5–7 3–7
2 1 3 4 6 7 5 11 12 8 10 9 13 15 16 17 18 14 20 21 24 19 NA 22 NA
67–73 74–80 60–64 30–35 28–33 28–32 28–33 17–20 16–19 26–30 17–22 18–23 9–11 8–10 8–10 7–10 7–10 8–10 6–8 6–8 5–6 7–9 NA 6–8 NA
5 1 3 7 8 NA 4 6 NA 2 9 10 15 13 14 12 22 25 20 17 NA 18 NA 16 NA
34–38 75–82 53–58 31–36 29–33 NA 38–45 32–37 NA 63–69 24–28 21–25 7–10 10–13 9–13 13–16 6–8 5–6 6–9 7–10 NA 7–10 NA 7–10 NA
17 1 15 NA 5 NA NA 4 NA 3 10 6 19 19 14 2 13 NA NA 21 NA 8 NA 23 NA
6–8 71–76 5–8 NA 29–33 NA NA 30–35 NA 45–50 10–13 25–30 5–7 5–7 6–9 55–60 7–10 NA NA 4–6 NA 17–21 NA 4–6 NA
Note: List is limited to conventional pesticides and does not include sulfur and petroleum oil usage. Ranked by Range in Millions of Pounds of Active Ingredient. H indicates herbicide; I, insecticide; Fum, fumigant; F, fungicide; and PGR, plant growth regulator. NA indicates that an estimate is not available. Source: From Kiely, T., Donaldson, D., and Grube, A., 2004, Pesticide Industry Sales and Usage, 2000 and 2001 Market Estimates, United States Environmental Protection Agency, www.epa.gov, EPA estimates based on USDA/NASS (www.usda.gov/nass) and EPA proprietary data.
q 2006 by Taylor & Francis Group, LLC
10-228
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.143 Quantity of Pesticides Applied to Selected Crops in the United States, 1990–2001 Type of Pesticide and Commodity Total Herbicides Insecticides Fungicides Other Corn Cotton Wheat Soybeans Potatoes Other vegetables Citrus fruit Apples Other deciduous fruit Pounds of Active Ingredient Per Planted Acre Total Herbicides Insecticides Fungicides Other
1990
1995
1996
1997
1998
1999
2000
2001
497.7 344.6 57.4 27.8 67.9 240.7 50.9 17.8 74.4 43.8 39.8 11.0 8.3 10.9
543.3 324.9 69.9 47.5 101.0 201.3 83.7 21.5 68.7 53.1 78.0 14.0 9.0 14.1
575.8 365.7 59.2 46.8 104.0 227.7 65.6 32.9 78.1 49.5 82.8 14.5 9.7 14.9
579.3 362.6 60.2 48.5 108.0 227.3 68.4 25.5 83.5 59.4 73.3 15.0 10.6 16.4
544.4 340.3 52.0 45.7 106.4 212.4 55.4 23.9 78.8 63.6 67.8 14.1 9.3 19.2
553.7 316.8 75.4 42.3 119.1 186.0 90.6 21.4 77.3 64.6 70.5 13.3 7.9 22.2
539.4 308.6 77.4 36.6 116.8 176.1 94.5 19.2 79.1 61.8 70.1 13.0 7.6 18.1
511.1 307.5 62.0 33.2 108.3 187.3 72.8 18.3 72.2 60.5 66.5 12.8 7.6 13.1
2.2 1.5 0.3 0.1 0.3
2.4 1.4 0.3 0.2 0.4
2.4 1.5 0.2 0.2 0.4
2.4 1.5 0.2 0.2 0.4
2.3 1.4 0.2 0.2 0.4
2.3 1.3 0.3 0.2 0.5
2.2 1.3 0.3 0.5 0.5
2.2 1.3 0.3 0.1 0.5
Note: In million pounds of active ingredients, except as indicated (497.7 represents 497,700,000). Source: From U.S. Census Bureau, Statistical Abstract of the United States, 2002, www.census.gov. Original Source: From U.S. Dept. of Agriculture, Economic Research Service, Production Practices for Major Crops in U.S. Agriculture, 1990–1997, Statistical Bulletin No. 969, August 2000, and unpublished data.
q 2006 by Taylor & Francis Group, LLC
Characteristics
Uses
b
Water-Quality Criteria (mg/L)
National Use on Farmse (million lb/yr)
Detection Limita (mg/L)
Human Health
Aldrin
0.01
0.0007
0.002
13
Low
Dieldrin
0.03
0.0007
0.002
22
Medium
Chlordane
0.15
0.005
0.004
56
DDD
0.05
0.0002
0.001
DDE DDT
0.03 0.05
0.0002 0.0002
Endrin Heptachlor epoxide Lindane Methoxychlor Toxaphene
0.05 0.01
Aquatic Life
Solubilityc (mg/L)
Relative Persistence within Pesticide Groupd
1971
15
7.9
Termite control, degradation product of aldrin
0.7
0.3
High
Corn, termites, general purpose
0.5
1.9
5
High
Fruits and vegetables, degradation product of DDT
2.9
0.2
0.001 0.001
10 17
High High
Degradation product of DDT and DDD Cotton, fruits, vegetables, general purpose
Nr 27
nr 0.1
*1 0.003
0.002 0.004
14 30
nd Low
0.6 1.5
1.4 1.2
0.01 0.10 0.25
*4 *100 0.007
0.08 *.03 0.013
150 3 400
0.7 2.6 35
0.7 3.0 37
0.2 3.8 33
nr 0.6 5.9
0.8 5.0 16
Diazinon Ethion Malathion Methyl parathion Methyl trithion Parathion Trithion
0.10 0.25 0.25 0.25
nd nd nd nd
nd nd 0.1 nd
40,000 2,000 145,000 57,000
Cotton, wheat Degradation product of heptachlor which is used on corn, and termite control Medium Livestock, seed treatment, general purpose nd Livestock, alfalfa, general purpose nd Cotton, livestock Organophosphate insecticides High Corn, general purpose nd Citrus fruits Low General purpose Low Cotton and wheat
5.6 2.0 5.2 8.0
3.2 2.3 3.6 28
1.6 nr 2.8 23
0.3 nr 1.6 11
9.0 2.0 28 20
0.50 0.25 0.50
nd nd nd
nd 0.04 nd
nd 24,000 340
nr 8.5 nr
nr 9.5 nr
nr nr
nr 4.0 nr
0.1 5.0 0.1
Atrazine 2,4-D 2,4,5-T Silvex
0.5 0.5 0.5 0.5
nd *100 *10 nd
nd nd nd nd
nd Not identified Low Wheat, corn, sorghum nd General purpose Chlorophenoxy and triazine herbicides High Corn Low Wheat, rangeland, general purpose Medium Rice, rangeland, general purpose nd Sugarcane, rice, rangeland
24 4 0.8 nr
54 31 nr nr
90 38 nr nr
76 23 0.2 nr
92 60 2.2 0.4
33,000 900,000 240,000 140,000
Principal Uses and Sources
Organochlorine insecticides Corn
1976
1982
Total Use, 1981f (million lb/yr)
1966
Chemical
0.9 nr (Most farm uses cancelled 1974) nr nr (Most farm uses cancelled 1974) nr nr (Most farm uses cancelled 1974) nr nr (Cancelled 1972) nr nr nr nr (Cancelled 1972) 0.8 nr 0.6 nrt
0.8 0
ENVIRONMENTAL PROBLEMS
Table 10E.144 Selected Characteristics and Uses of Pesticides Monitored by the U.S. Geological Survey-U.S. Environmental Protection Agency Pesticide Monitoring Network, 1975–1980
9.6 0 0 0 0.3 2.0
Note: mg/L, microgram per liter; lb/yrZpounds per year; nd, no available data; nr, none reported. *See footnoteb. a
Detection limits shown are for water samples. Bed-sediment reporting limits are 10 times greater and are expressed in units micrograms per kilogram (Lucas and others, 1980). All criteria are from U.S. Environmental Protection Agency (1980), except for values marked by asterisks, which are from U.S. Environmental Protection Agency (1976). The human-health criteria for all pesticides except endrin, lindane, methoxychlor, 2,4-D, and 2,4,5-T represent the estimated average concentrations associated with an incremental increase in cancer risk of 10K8 (one additional cancer per 100,000 people over a lifetime of exposure). The aquatic-life criteria are for freshwater and are 24-hour average concentrations. c Data from Kenaga and Goring (1980). d Relative persistence within each pesticide group as estimated from Hiltbold (1974) and Wauchope (1978). e Data for 1966, from Eichers and others (1970); for 1971, Andrilenas (1974); for 1976, Eichers and others (1978); for 1982, U.S. Department of Agriculture (1983). Data for 1982 do not include use on livestock or use in California, Colorado, Connecticut, Maine, Massachusetts, Nevada, New Hampshire, New Jersey, New Mexico, Oregon, Rhode Island, Utah, Vermont, West Virginia, and Wyoming. f Data from Mark H. Glaze (U.S. Environmental Protection Agency, written communication, 1983). Source: From U.S. Geological Survey, 1985. National Water Summary 1984. Water-Supply Paper 2275. b
10-229
q 2006 by Taylor & Francis Group, LLC
10-230
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.145 Detection Frequency of Targeted Pesticides in Surface Waters in the United States, 1957–1992 Sampling Sites
Pesticide
Total Sites
Number of Sites with Detections
Samples Percent of Sites with Detections
Total Samples
Number of Samples with Detections
Percent of Samples with Detections
Insecticides Organochlorine Compounds Aldin 951 Chlordane 838 1,185 DDTa DDT-total (sum of DDT, 75 DDD, DDE) Dieldrin 1,016 Endosulfan 469 Endrin 944 1,498 HCH (all isomers)b Heptachlor 948 Kepone 75 Methoxychlor 268 Mirex 212 Perthane 81 Toxaphene 215 Organophosphorus Compounds Azinphos-methyl 79 Chlorpyrifos 108 Crufomate 33 DEF 4 Diazinon 193 Dichlorvos (DDVP) 2 Dimethoate 33 Disulfoton 40 Disyston 4 Ethion 326 Ethoprop 33 Fenitrothion 42 Fensulfothion 9 Fenthion 232 Fonofos 94 Imidan 33 Malathion 426 Methamidophos 10 Methidathion 2 Methyl parathion 387 Methyl trithion 80 Parathion 326 Phorate 121 Phosphamidon 33 Ronnel 35 Sulprofos 33 Terbufos 94 Trithion 314 Other Insecticidesc Aldicarb 4 Carbaryl 24 Carbofuran 84 Deet 26 Dibutyltin (DBT) 10 Fenvalerate 4 Methomyl 8 Oxamyl 4 Permethrin 11 Propargite 7
65 154 258 56
7 18 22 75
3,910 3,366 5,569 77
224 948 945 42
6 28 17 55
459 9 136 462 102 nr 33 2 0 16
45 2 14 31 11 nr 12 1 0 7
4,995 1,614 4,255 7,144 3,877 750 772 512 285 1,490
1,412 42 359 2,087 287 nr 33 13 0 84
28 3 8 29 7 nr 4 3 0 6
0 7 0 2 36 0 0 0 0 0 0 0 0 0 14 0 16 0 2 13 0 4 0 0 0 0 10 1
0 6 0 50 18 0 0 0 0 0 0 0 0 0 15 0 4 0 100 3 0 1 0 0 0 0 11 0
402 987 33 4 1,836 30 33 349 4 1,046 33 42 9 538 945 33 2,415 100 nr 2,215 185 1,493 1,008 33 63 33 945 805
0 13 0 2 256 0 0 0 0 0 0 0 0 0 63 0 104 0 nr 14 0 5 0 0 0 0 2 2
0 1 0 50 14 0 0 0 0 0 0 0 0 0 7 0 4 0 nr 1 0 0 0 0 0 0 0 0
0 6 25 22 1 4 0 0 4 3
0 25 30 85 10 100 0 0 36 43
4 333 396 nr 22 nr 8 4 316 316
0 32 119 nr 4 nr 0 0 3 3
0 10 30 nr 18 nr 0 0 1 1 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10E.145
10-231
(Continued) Sampling Sites
Pesticide
Total Sites
Tributyltin (TBT)
Number of Sites with Detections
Samples Percent of Sites with Detections
Total Samples
Number of Samples with Detections
Percent of Samples with Detections
22
15
68
10
8
80 Herbicides
17 372 123 15 497 366 15 26 362 349 270 62 12 244 209 15 22 4
nr 272 11 0 440 242 0 5 280 147 74 9 7 70 119 0 0 0
nr 73 9 0 89 66 0 19 77 42 27 15 58 29 57 0 0 0
121 1,549 947 27 4,650 1,473 27 nr 1,452 1,469 828 523 450 827 632 27 36 16
nr 802 212 0 3,928 755 0 nr 827 245 140 4 48 28 312 0 0 0
nr 52 22 0 84 51 0 nr 57 17 17 1 11 3 49 0 0 0
51 0 4 42 14
1,721 84 141 1,347 1,576
359 0 4 214 79
21 0 3 16 5
54 945 30 1,074 181 16 9 316 nr 395 16 nr 9 316 71 8 16 1,087
16 49 0 nr 17 0 0 63 nr 2 16 nr 0 25 18 0 16 113
30 5 0 nr 9 0 0 20 nr 1 100 nr 0 8 25 0 100 10
580 16 255 16 11
0 0 216 0 8
0 0 85 0 73
20 9 nr
0 9 nr
0 100 nr
Triazines and Acetanilides Acrolein Alachlor Ametryn Atratone Atrazine Cyanazine Cyprazine Hexazinone Metolachlor Metribuzin Prometon Prometryn Propachlor Propazine Simazine Simetone Simetryn Terbutryn Phenoxy Acids 2,4-D 2,4-D (methyl ester) 2,4-DP 2,4,5-T 2,4,5-TP (silvex) Other Herbicides Bensulfuron-methyl Butylate Chloramben Dacthal Dicamba Dinoseb Diquat EPTC Fluometuron Linuron Molinate Norflurazon Paraquat Pendimethalin Picloram Propham Thiobencarb Trifluralin
215 6 50 166 196
110 0 2 70 27
3 94 30 119 68 4 9 15 26 37 27 26 9 15 38 8 27 104
2 8 0 nr 17 0 0 7 7 9 7 5 0 14 15 0 2 24
Captan Chlorothalonil HCB PCNB PCP
30 4 50 4 11
0 0 43 0 8
Azinhos-methyl oxon Carbofuran phenol 2-Chloro-2 0 ,2 0 diethylacetanilide
6 1 26
0 1 8
67 9 0 nr 25 0 0 47 27 24 26 19 0 93 39 0 7 23 Fungicides 0 0 86 0 73 Transformation products 0 100 31
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-232
Table 10E.145
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Sampling Sites
Pesticide
Number of Samples with Detections
Percent of Samples with Detections
nr 3,941 4,869 685 685 nr 154 154 304
nr 543 939 559 249 nr 0 0 222
nr 14 19 82 36 nr 0 0 73
20 73
3,714 nr
552 nr
15 nr
100 100 100 100 0 0
nr nr 14 9 14 33
nr nr 14 9 0 0
nr nr 100 100 0 0
Number of Sites with Detections
Percent of Sites with Detections
26 876 1,128 291 242 26 50 50 76
16 139 219 254 154 2 0 0 60
62 16 19 87 64 8 0 0 79
922 26
181 19
1 1 14 1 14 33
1 1 14 1 0 0
Total Sites
Cyanazine amide DDD DDE Deethylatrazine Deisopropylatrazine Desmethyl norflurazon Endosulfan sulfate Endrin aldehyde ESA (alachlor metabolite) Heptachlor epoxide 2-Hydroxy-2 0 6 0 diethylacetanilide 2-Ketomolinate 4-Ketomolinate Oxychlordane Paranitrophenol Photomirex Terbufos sulfone
Samples
Total Samples
Note: a, alpha; b, beta; g, gamma; d, delta. nr, not reported. a
Detection frequencies for DDT, DDD, and DDE include both p,p 0 -, and o,p 0 -isomers, as many studies did not report which isomer was targeted. b HCH data for all isomers, including, a, b, g (lindane), and d. c Includes compounds used as acaricides, miticides, and nematocides. Source: From Larson, S.J., Capel, P.D., and Majewski, M.S., 1997, Pesticides in Surface Waters Distribution, Trends, and Governing Factors, Volume Three of the Series Pesticides in the Hydrologic System, Ann Arbor Press, Inc., Chelsea, Michigan.
Table 10E.146 Statistical Summary of Concentrations of Glyphosate, Its Degradation Product, AMPA, and Glufosinate Determined for Water Samples Collected form 51 Streams in Nine Midwestern States, 2002 Herbicide
Number of Samples
Pre-emergence runoff samples Glyphosate 51 AMPA 51 Glufosinate 51 Post-emergence runoff samples Glyphosate 52 AMPA 52 Glufosinate 52 Harvest-season runoff samples Glyphosate 51 AMPA 51 Glufosinate 51
Number at or Above MRL
25th Percentile
Median
75th Percentile
95th Percentile
Maximum
18 27 0
!0.10 !0.10 !0.10
!0.10 0.10 !0.10
0.20 0.28 !0.10
0.58 0.55 !0.10
1.00 1.8 !0.10
21 43 2
!0.10 0.18 !0.10
!0.10 0.27 !0.10
0.32 0.42 !0.10
1.5 0.94 !0.10
4.5 2.0 0.26
16 37 0
!0.10 !0.10 !0.10
!0.10 0.21 !0.10
0.14 0.51 !0.10
0.45 1.3 !0.10
8.7 3.6 !0.10
Note: All concentrations in micrograms per liter. MRL, method reporting limit; !, less than; AMPA, aminomethylphosphonic acid. Source: From Scribner, E.A., Battaglin, W.A., Dietze, J.E., and Thurman, E.M., 2003, Reconnaissance Data for Glyphosate, Other Selected Herbicides, Their Degradation Products, and Antibiotics in 51 Streams in Nine Midwestern States, 2002, U.S. Geological Survey Open-File Report 03-217, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-233
Table 10E.147 Average Pesticide Concentrations Detected in Sediments from Selected Estuaries in the United States, 1984– 1992 (milligrams per kilogram dry weight) Estuary
tDDT
TDieldrin
tCdane
Hexachl
Lindane
Mirex
Machias Bay, ME-Hog Island Machias Bay, ME-Chance Island Frenchman Bay, ME-Long Porcupine Island Penobscot Bay, ME-Colt Head Island Johns Bay, ME-Pemaquid Neck Casco Bay, ME-Great Chebeague Island Casco Bay, ME-Cousins Island Cape Elizabeth, ME-Richmond Island Merrimac River, MA-Plum Island Salem Harbor, MA-Folger Point Boston Harbor, MA-President Roads Boston Harbor, MA-Deer Island Boston Harbor, MA-Quincy Bay Boston Harbor, MA-Hull Bay Boston Harbor, MA-Mystic RIver Massachusetts Bay, MA-Plymouth Entrance Buzzards Bay, MA-West Island New Bedford Harbor, MA-Clarks Point Narragansett Bay, Rl-Prudence Island Narragansett Bay, Rl-Conanicut Island Niantic Bay, CON-Black Point Long Island Sound, NY-New Haven Long Island Sound, NY – Norwalk Long Island Sound, NY-Long Island Shoal Long Island Sound, NY-Rocky Point Long Island Sound, NY-Lloyd Point Long Island Sound, NY-Oak Neck Point Hudson River, NY Raritan Bay, NY-Upper Bay Raritan Bay, NY-Gravesend Bay Raritan Bay, NY-West Reach Raritan Bay, NJ-East Reach Raritan Bay, NJ-Lower Bay Great Bay, NJ-Wells Island Great Bay, NJ-Seven Island Great Bay, NJ-Intercoastal Waterway Delaware Bay, DE-Cherry Island Range Delaware Bay, DE-Brandywine Shoal Delaware Bay, DE -The Shears Baltimore Harbor, MD-Fort McHenry Channel Baltimore Harbor, MD-Brewerton Channel Chesapeake Bay, MD-Gibson Island Chesapeake Bay, MD-Chester River Chesapeake Bay, MD-Kent Island Chesapeake Bay, MD-Patuxent River Chesapeake Bay, MD-Smith Island Chesapeake Bay, VA-James RIver Chesapeake Bay, VA-York RIver Chesapeake Bay, VA-Elizabeth RIver Pamlico Sound, NC-Jones Bay Cape Fear River, NC-Horseshoe Shoal Charleston Harboar, SC – Coastal Charleston Harboar, SC-South Channel Savannah River, GA-Elba Island Sapelo Sound, GA-High Point St. Johns River, FL -Trout River St. Johns River, FL-West Mill Cove St. Johns River, FL-Ortega River St. Johns River, FL-Piney Point
0.00 0.52 1.14 4.88 0.08 6.53 6.60 0.32 0.00 24.49 87.01 7.21 32.65 6.27 43.67 0.00 1.77 14.38 11.00 8.12 1.85 7.33 7.50 0.10 0.00 0.00 8.02 26.63 9.10 17.48 31.10 34.74 35.75 6.97 8.36 1.45 47.60 4.05 4.63 30.13 15.83 10.52 5.32 7.70 0.53 1.11 3.33 2.11 17.23 1.43 0.10 47.58 1.77 0.00 1.57 5.03 6.86 11.70 1.07
0.00 0.26 1.93 1.08 0.18 3.71 0.23 0.15 0.17 1.64 1.33 1.03 5.16 1.67 8.33 0.00 0.70 0.00 2.67 6.14 0.83 0.00 2.00 0.02 0.00 0.00 0.49 3.50 1.25 1.83 3.50 2.41 2.05 0.67 0.75 0.17 3.65 0.75 0.00 2.18 3.75 0.80 1.65 2.25 0.10 0.19 0.90 0.19 0.38 0.00 0.00 8.00 0.00 0.00 0.00 0.47 0.28 0.00 0.00
0.13 0.65 0.86 1.83 0.02 3.61 1.63 0.07 0.89 6.12 7.14 7.04 11.53 3.23 22.43 0.00 0.78 3.90 4.93 4.03 0.40 4.00 3.33 0.04 0.00 0.00 3.15 5.00 2.08 4.35 7.04 6.22 7.79 1.93 2.29 0.13 4.38 6.15 0.53 8.97 5.69 2.45 1.55 2.40 0.07 0.99 0.67 1.02 3.18 0.00 0.00 14.60 0.03 0.00 0.00 3.93 1.09 4.20 1.60
0.53 0.36 0.76 1.46 0.00 1.05 1.43 0.07 0.70 1.77 1.12 1.23 0.67 0.53 0.67 0.00 0.26 1.88 2.33 0.98 0.37 2.00 0.95 0.03 0.36 0.29 0.44 0.77 0.29 0.97 0.83 1.18 1.89 1.30 0.41 0.48 0.70 1.03 0.60 6.18 5.90 1.06 0.35 0.50 0.00 0.14 0.20 0.36 0.51 0.00 0.00 0.00 0.08 0.57 0.00 0.00 0.00 0.00 0.00
0.00 0.51 0.25 0.99 0.00 0.00 0.25 0.07 0.21 2.02 0.52 0.08 0.44 0.17 0.00 0.00 0.68 0.07 0.00 2.56 0.05 0.00 0.00 0.06 0.00 0.00 1.41 0.00 0.16 0.52 0.71 0.64 1.23 0.67 0.16 0.08 0.03 0.89 0.17 0.00 1.70 0.79 0.70 1.50 0.00 0.50 0.00 0.59 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.20 0.00 0.00 1.00 0.00 0.00 0.31 1.10 0.25 1.40 0.00 0.00 0.00 0.03 0.33 0.43 0.52 0.05 0.33 0.33 0.00 0.00 2.67 1.31 0.67 0.22 0.27 0.58 0.41 35.40 0.00 0.29 0.00 1.20 0.00 0.00 0.42 0.31 0.00 0.58 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.62 0.14 0.23 0.00 0.00 0.00 0.00 0.00 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-234
Table 10E.147
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Estuary St. Johns River, FL-Orange Point St. Lucie River, FL-Stuart Biscayne Bay, FL-North Bay Biscayne Bay, FL-Chicken Key Charlotte Harbor, FL-Cape Haze Tampa Bay, FL-Northern Tampa Bay Apalachicola Bay, FL -St George Island St. Andrew Bay, FL-Military Point Choctawhatchee Bay, FL Pensacola Bay, FL Mobile Bay, AL-North Point Pascagoula River, MS-Escatawpa River Pascagoula River, MS Round Island, MS-Round Island Herron Bay, MS-Heron Bay Mississippi River Delta, LA-Southeast Pass Mississippi River Delta, LA-Head of Passes Barataria Bay, LA-Barataria Pass Calcasieu River, LA-Prien Lake Calcasieu River, LA-West Cove Galveston Bay, TX-East Bay Galveston Bay, TX-Trinity Bay Galveston Bay, TX-Greens Bayou Galveston Bay, TX-Goat Islands Galveston Bay, TX-Morgans Point Galveston Bay, TX-Eagle Point Galveston Bay, TX-Texas City Lavaca Bay, TX San Antonio Bay, TX-Mosquito Point San Antonio Bay, TX-San Antonio Bay Corpus Christi Bay, TX-Long Reef Lower Laguna Madre, TX -Laguna Heights Lower Laguna Madre, TX -Long Island San Diego Bay, CA-Outside San Diego Bay, CA-National City San Diego Bay, CA-28th Street San Diego Bay, CA-North San Diego Bay, CA-Harbor Island San Diego Bay, CA-Shelter Island Mission Bay, CA-Outside Dana Point Harbor, CA-Outside San Pedro Bay, CA-Seal Beach San Pedro Bay, CA-LongBeach San Pedro Bay, CA-Outer Harbor San Pedro Bay, CA-Cerritos Channel Santa Monica Bay, CA-Southeast Santa Monica Bay, CA-South Santa Monica Bay, CA-Manhattan Beach Santa Monica Bay, CA-West Santa Monica Bay, CA-Deep Santa Monica Bay, CA-North San Luis Obispo, CA-San Luis Obispo Estero Bay, CA-Estero Bay Monterrey Bay, CA-Indian Head Beach San Francisco Bay, CA-Redwood City San Francisco Bay, CA-Hunters Point San Francisco Bay, CA-Oakland Estuary San Francisco Bay, CA-Southampton Shoal San Francisco Bay, CA-Oakland Entrance San Francisco Bay, CA-Castro Creek
tDDT 0.00 6.93 0.90 0.53 0.14 0.27 2.05 718.50 2.50 0.39 17.21 5.30 3.62 0.38 0.17 3.47 390.00 0.04 473.00 25.67 0.00 0.00 123.67 6.38 0.90 1.67 0.00 0.52 0.20 0.65 0.42 0.00 0.00 14.71 8.14 16.36 7.33 37.93 3.89 0.33 2.20 31.26 97.60 498.66 221.80 149.67 833.67 2.51 57.09 24.85 98.33 6.90 0.30 0.74 11.42 6.48 27.33 1.00 5.3 6.6
TDieldrin
tCdane
Hexachl
Lindane
Mirex
0.00 0.40 0.00 0.00 0.00 0.06 0.78 0.00 0.43 0.20 0.13 1.20 0.14 0.00 0.00 0.93 2.20 0.11 2.00 0.83 0.00 0.00 7.17 0.94 0.00 0.20 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.10 0.49 0.18 0.00 0.00 0.00 0.00 0.00 0.75 0.94 1.18 0.27 0.32 0.00 0.25 0.00 0.77 0.00 0.00 0.00 2.00 0.62 2.10 0.00 0.00 0.78
0.49 1.17 0.00 0.00 0.06 0.02 0.30 0.00 0.47 0.39 0.15 1.67 1.06 0.12 0.00 0.44 6.58 0.01 6.07 0.00 0.00 0.00 71.00 10.72 0.17 1.39 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 1.68 7.91 2.01 1.12 0.86 0.17 0.10 1.60 8.19 0.78 14.40 0.83 1.12 0.31 1.69 0.00 0.73 0.00 0.00 0.01 2.27 0.34 5.56 0.00 0.00 1.08
0.00 0.00 0.57 0.00 0.10 0.06 0.19 0.00 0.00 0.00 0.05 0.00 0.44 0.00 0.02 7.50 3.00 0.02 3.67 0.00 0.00 0.00 32.83 10.20 1.35 1.67 0.00 0.37 0.00 0.02 2.03 0.05 0.00 0.00 0.00 0.00 0.03 0.00 0.27 0.23 0.10 0.00 0.18 0.09 0.90 0.00 0.03 0.00 0.26 0.00 0.10 0.00 0.00 0.00 0.68 0.29 0.79 0.47 0.57 0.75
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 1.00 0.00 0.00 0.33 0.20 0.00 0.00 0.00 0.60 0.03 0.70 0.00 0.00 0.43 0.22 0.12 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.02 0.03 0.17 0.00 0.00 0.12 0.01 0.00 0.00 0.33 0.00 0.00 0.00 0.20 0.03 0.18 0.53 0.00 0.17
0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.54 0.00 0.00 0.09 1.80 0.01 3.33 0.23 0.00 0.00 0.17 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.12 0.00 0.00 0.00 0.04 0.09 0.17 0.02 0.10 0.00 0.05 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.12 0.35 0.29 0.00 0.00 0.12 (Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10E.147
10-235
(Continued)
Estuary
tDDT
TDieldrin
tCdane
Hexachl
Lindane
Mirex
San Francisco Bay, CA-San Pablo Bay Bodega Bay, CA-North Coos Bay, OR-North Bend Columbia River Mouth, WA-Desdemona Sands Puget Sound, Nisqually Reach, WA Puget Sound, Commencement Bay, WA Puget Sound, WA-Elliott Bay Boca de Quadra, AK-Bacrian Point Lutak Inlet, AK-Chilkoot River Mouth Skagway, AK-Skagway River Nahku Bay, AK-East Side Prince William Sound, AK-Port Valdez Gulf of Alaska, AK-Kamishak Bay Bering Sea, AK,-Dutch Harbor Bering Sea, AK,-Port Moller Chukchi Sea, AK-Red Dog Mine Beaufort Sea, AK-Olitok Point Beaufort Sea, AK-Prudhoe Bay
3.7 0.4 0.83 0.15 0.00 3.48 13.25 0.00 2.17 1.00 0.00 1.00 0.00 1.83 4.67 1.53 0 0.17
0.28 0.06 0.15 0.08 0.00 0.64 1.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17
0.33 0.14 0.08 0.04 0.00 1.75 1.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
0.28 0.01 0.14 0.03 0.00 3.18 0.27 0.67 0.30 0.47 0.00 0.47 0.73 0.15 0.00 0.00 0.33 0.22
0.12 0.03 0.03 0.00 0.00 0.06 0.03 0.00 0.00 0.53 0.00 0.53 0.70 0.00 1.00 0.27 0.00 0.2
0 0.04 0 0.04 0.00 0.17 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Note: tDDT is the sum of 2,4 0 -DDD, 4,4 0 DDD, 2,4 0 -DDE, 4,4 0 -DDE, 2,4 0 DDT, 4,4 0 -DDT. TDieldrin is the sum of aldrin and dieldrin. tCdane is the sum of cis-chlordane and trans-nonachlor, heptachlor, and heptachlorepoxide. Source: From Abstracted from Marmon, M.R., Gottholm, W., and Robertson, A., 1998, A Summary of Chemical Contaminant Levels at Benthic Surveillance Project Sites (1984–1992)—NOAA Technical Memorandum NOS ORCA 124, noa.gov.
q 2006 by Taylor & Francis Group, LLC
10-236
Table 10E.148 Selected Results of Studies that Monitored Pesticides in Bed Sediment in the United States, 1960–1994 All Monitoring Studies (Published 1960–1994) Concentration Range (mg/kg dry weight)
Target Analytes
nr, 0.05–480 nr, 0.01–4,800 nr, 0.5–100 nr, 0.5–50 nr, 0.01–38 nr, 0.1–50 nr, 0.05–960 nr, 0.01–24 nr, 0.1–50 nr, 0.1–960 nr, 0.01–10 nr, 0.1–50 nr, 0.1–960 nr, 0.01–50 nr, 0.1–100 nr, 0.01–100 nr, 0.1–100 nr, 0.1–480 nr, 0.1–960 nr, 0.01–100 nr, 0.1–100 0.03–480 nr, 0.1–480 nr, 0.1–480 nr, 0.01–480 nr, 0.01–480 nr, 0.03–400 nr, 0.05–480 nr, 0.1–100 nr, 0.1–4,800 nr, 0.01–100 nr, 0.5–100 nr, 0.5–100 nr, 0.5–1,200 nr, 0.05–9,600
In Maximum Concentrations nd-1,065 nd-1,000 nd-293 nd-149 nd-5,100 nd-1,312 nd-5,820 nd-10,000 nd-292 nd-1,870 nd-6,480 nd-807 nd-3,752 nd-30,200,000 nd-13 nd-440 nd-4,530 nd-96 nd-140 nd-120 nd-20 nd-110 nd-2,800 nd-0.8 nd-16.6 nd-106 nd-7,500,000 nd-221 0 nd-366 nd-1,834 nd-5.5 nd-16 nd-770 nd-1,858,000
119 111 25 28 95 29 50 101 29 52 96 35 51 44 42 163 50 14 14 131 10 44 33 25 119 123 47 128 41 70 85 22 21 13 100
Percentage of Studies Concentration Range (mg/kg dry weight) with Detectable In Detection In Maximum Residues in at Least Limits Concentrations One Sample 28 74 24 32 91 28 52 88 21 60 80 37 53 80 19 65 26 50 50 25 30 20 15 4 21 32 32 19 0 20 13 9 10 31 12
nr, 0.1–480 nr, 0.1–4,800 nr, 0.5–100 nr, 0.5–50 nr, 0.01–10 nr, 0.1–50 nr, 0.1–960 nr, 0.01–20 nr, 0.1–50 nr, 0.1–960 nr, 0.01–10 nr, 0.1–50 nr, 0.1–960 nr, 0.1–50 nr, 0.1–50 nr, 0.01–100 nr, 0.1–10 nr, 0.1–480 nr, 0.1–960 nr, 0.1–100 nr, 0.1–100 nr, 0.1–480 nr, 0.1–480 nr, 0.1–480 nr, 0.1–480 nr, 0.01–480 nr, 0.1–400 nr, 0.1–480 nr, 0.1–50 nr, 0.1–4,800 nr, 0.01–50 nr, 0.5–100 nr, 0.5–100 nr, 0.1–1,200 nr, 0.1–9,600
nd-1,065 nd-510 nd-90 nd-149 nd-260 nd-1,312 nd-5,820 nd-430 nd-292 nd-1,870 nd-2,280 nd-807 nd-3,752 nd-4,443,500 nd-0.2 nd-440 nd-339 nd-96 nd-140 nd-43 nd-20 nd-65 nd-2,800 nd-0.8 nd-12 nd-106 nd-7,500,000 nd-65 0 nd-366 nd-310 nd-5.5 nd-16 nd-770 nd-2,800
Total Number of Studies That Reported Data
Percentage of Studies with Detectable Residues in at Least One Sample
70 62 22 25 46 27 44 48 27 45 45 29 43 25 16 97 34 13 13 80 9 39 30 25 72 78 41 75 14 50 64 22 21 8 65
24 69 14 24 91 22 48 90 15 53 76 28 47 68 13 54 21 46 46 20 22 13 17 4 22 28 24 16 0 20 9 9 10 25 11
Note: Results are presented for all monitoring studies (published 1960–1994), and for recent monitoring studies (published 1984–1994) that are listed in Tables 2.1 and 2.2 of the publication. Concentration range in detection limits: “nr” indicates that one or more studies did not report detection limits. Abbreviations: nd, not detected; nr, not reported; mg/kg, microgram per kilogram. a b c
Total or unspecified. (o,p 0 Cp,p 0 )- or unspecified. p,p 0 - or unspecified.
Source: From Nowell, L.H., Capel, P.D., and Dileanis, P.D., 1999, Pesticides in Stream Sediment and Aquatic Biota, Distribution, Trends, and Governing Factors, Volume Four of the Series Pesticides in the Hydrologic System, Lewis Publishers, Boca Raton. q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Aldrin Chlordanea Chlordane, cisChlordane, transDDDa DDD, o,p 0 DDD, p,p 0 DDEa DDE, o,p 0 DDE, p,p 0 DDTb DDT, o,p 0 DDT, p,p 0 DDT, total Diazinon Dieldrin Endosulfana Endosulfan I Endosulfan II Endrin HCHa HCH, aHCH, bHCH, dHeptachlor Heptchlor epoxide Hexachlorobenzene Lindane Malathion Methoxychlorc Mirex Nonachlor, cisNonachlor, transPentachlorophenol Toxaphene
In Detection Limits
Total Number of Studies that Reported Data
Recent Monitoring Studies (Published 1984–1994)
ENVIRONMENTAL PROBLEMS
10-237
Table 10E.149 Statistical Summary of Organochlorine Concentrations in Sediment, in the United States, 1992–1995 Concentration (mg/kg dry weight) at Given Percentile
Target Analyte p,p 0 -DDE Total PCBsa Total PCBsb p,p 0 -DDD trans-Nonachlor p,p 0 -DDT Dieldrin cis-Chlordane cis-Nonachlor trans-Chlordane Oxychlordane o,p 0 -DDD Pentachloroanisole Hexachlorobenzene o,p 0 -DDT Heptachlor epoxide o,p 0 -DDE g-HCH Dacthal Endrin a-HCH Toxaphene Aldrin Mirex o,p 0 -Methoxychlor p,p 0 -Methoxychlor b-HCH Heptachlor Endosulfan cis-Permethrin transPermethrin Chloroneb Isodrin
Number of Samples
RL
5
10
25
421 428 207 350 411 358 413 411 412 416 405 350 430
1 100 50 1 1 2 1 1 1 1 1 1 50
!1 !100 !50 !1 !1 !2 !1 !1 !1 !1 !1 !1 !50
!1 !100 !50 !1 !1 !2 !1 !1 !1 !1 !1 !1 !50
!1 !100 !50 !1 !1 !2 !1 !1 !1 !1 !1 !1 !50
!1 !100 !50 !1 !1 !2 !1 !1 !1 !1 !1 !1 !50
2.2 !100 !50 !1 !1 !2 !1 !1 !1 !1 !1 !1 !50
442
50
!50
!50
!50
!50
354 412
2 1
!2 !1
!2 !1
!2 !1
405 413 414 412 415 419 418 418 382 378 411 419 409 344 340
1 1 5 2 1 200 1 1 5 5 1 1 1 5 5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
396 409
5 1
!5 !1
!5 !1
50
75
90
Frequency of Detection (percent)
95
100
7.28 !100 150 4.19 2.08 4.03 1.5 1.8 !1 2.2 !1 !1 !50
12.9 145.5 336 9.24 3 12.05 3.23 3.3 1.6 3.775 !1 2.09 !50
220 13,000 13,000 130 18 180 18 17 10 20 1.3 150 !50
39.4 5.8 18.8 24.9 15.8 18.7 14.3 15.8 9.2 17.1 0.3 10.9 0
!50
!50
!50
!50
0
!2 !1
!2 !1
!2 !1
!2 !1
30 4.6
3.1 1.2
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
!1 !1 !5 !2 !1 !200 !1 !1 !5 !5 !1 !1 !1 !5 !5
22 5.2 25 !2 !1 240 3 4.4 !5 71 1.2 !1 8.8 26 15
2 1 1.5 0 0 0.2 0.5 1.9 0 0.8 0.5 0.2 2.7 1.2 0.9
!5 !1
!5 !1
!5 !1
!5 !1
!5 !1
!5 !1
0 0
Note: All statistics apply to samples in the national data set. 5. Frequency of detection: percentage of samples with concentrations at or above the reporting limit. PCB, polychlorinated biphenyl; RL, reporting limit in microgram per kilogram dry weight; mg/kg, microgram per kilogram; !, less than. a b
Total PCBs censored at a reporting limit of 100 mg/kg dry weight. Total PCBs censored at a reporting limit of 50 mg/kg dry weight.
Source: From Wong, C.S., Capel, P.D., and Nowell, L.H., 2000, Organochlorine Pesticides and PCBs in Stream Sediment and Aquatic Biota — Initial Results from the National Water-Quality Assessment Program, 1992–1995, United States Geological Survey, Water-Resources Investigations Report 00-4053, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
10-238
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.150 Comparison of Organochlorine Concentrations in Sediment in the United States with Sediment-Quality Guidelines, 1992–1995 EPA Sediment-Quality Criteria
Target Analytes Total chlordane Total DDT Dieldrin Endosulfan I Endrin Total HCH Heptachlor epoxide Hexachlorobenzene Lindane Total methoxychlor Total PCBs Toxaphene Probability of adverse effects
Criterion (mg/kg-oc) — — 11,000 — 4,200 — — — — — — —
Tier 1 Percent of Sites Exceeding Criterion
Boundary Values and Tier Assignments Tier 2–3 Boundary Valuea (mg/kg dry weight)
Tier 1–2 Boundary Valueb (mg/kg dry weight)
0.5 1.58 0.02 2.9 0.02 0.32 0.6 22 0.32 19 21.6 1.5
6 46.1 6.67c i 45c 3.7 i i 1.38 i 189 100
— — 0 — 0 — — — — — — — High
NAWQA Sites in Each Tier (percent)
Tier 1
Tier 2
Tier 3
10.4 4.7 0 — 0 0.2 — — 0.7 — 3.5 0.2d High
8.3 32.1 14.3 1.2 0 1.2 1.2 0 0.2 0.5 2.3 0d Intermediate
81.3 63.2 85.7 98.8 100 98.5 98.8 100 99 99.5 94.2 99.8d No indication
Note: Percentage of NAWQA sites in Tiers 1, 2, and 3 based on exceedance of sediment-quality guidelines. EPA sediment-quality criteria, and the percent exceedance, are shown because exceedance of this criterion triggers classification in Tier 1 for sites with sediment organic carbon data. Tier 1-2 and Tier 2-3 boundary values are also shown (see text for explanation). The probability of adverse effects on aquatic life is shown for each tier. I, insufficient guidelines to determine a Tier 1-2 boundary value; EPA, U.S. Environmental Protection Agency; PCB, polychlorinated biphenyl; wt., weight; mg/kg, microgram per kilogram; mg/kg-oc, microgram per kilogram of sediment organic carbon; —, no guideline available. a b c d
Lowest of the lower screening values. Second lowest of the upper screening values. Values are appropriate only for site with no sediment organic carbon data; if sediment organic carbon data are available, the EPA sediment-quality criterion (column 1) should be used instead. Because the boundary values (1.5 and 100 mg/kg) for this compound are well below its detection limit in the present study (200 mg/kg), the percentage of sites in Tiers 1 and 2 must be considered as underestimates.
Source: From Wong, C.S., Capel, P.D., and Nowell, L.H., 2000, Organochlorine Pesticides and PCBs in Stream Sediment and Aquatic Biota — Initial Results from the National Water-Quality Assessment Program, 1992–1995, United States Geological Survey, Water-Resources Investigations Report 00-4053, www.usgs.gov.
Table 10E.151 Current and Maximum Rates of Toxaphene Accumulation in Great Lakes Sediments
Location Lake Superior Northern Lake Michigan Southern Lake Michigan near Chicago Urban Area Lake Ontario
Number of Sediment Cores Analyzed
Accumulation Rates in Sediment (ng/cm2/yr) Present
Maximum Historical
3 3 1
0.097–0.14 0.52–1.01 0.24
0.25 1.07 0.32
3
0.39–0.60
1.4
Note: All accumulations are focus-corrected. a Total or unspecified. b (O,p 0 Cp,p 0 )- or unspecified. c p,p 0 - or total. Source: From United States Environmental Protection Agency, 2000, Deposition of Air Pollutants to the Great Waters Third Report to Congress, EPA-453/R-00-005. Original Source: From Pearson et al., 1997b, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-239
Table 10E.152 Selected Results of Studies That Monitored Pesticides in Whole Fish and the Percentage of Those Studies That Exceeded Guidelines for the Protection of Fish-Eating Wildlife, 1960–1994 Whole Fish: All Monitoring Studies (Published 1960–1994) Concentration Range (mg/kg wet weight)
Target Analytes
In Detection Limits
Aldrin Acephate Alachlor Aldicarb Atrazine Azinphos-methyl Carbaryl Carbofuran Carbofuran, 3-hydroxyCarbophenothion Chlordanea Chlordane, cisChlordane, transChlorpyrifos Coumaphos Cyanazine D, 2,4Dacthal (DCPA) DDDa DDD, o,p 0 DDD, p,p 0 DDEa DDE, o,p 0 DDE, p,p 0 DDTa DDT, o,p 0 DDT, p,p 0 DDT, total Demeton Diazinon Dichlorvos Dicofol Dieldrin Dimethoate Disulfoton Endosulfana Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone EPN Ethoprop Famphur Fensulfothion Fenthion Fenvalerate HCHa HCH, aHCH, bHCH, dHeptachlor
nr, 0.01–50 50 nr, 10–100 50 10–8,000 50–300 5–50 nr, 20–200 20–200 50 nr, 0.1–100 nr, 0.01–100 nr, 0.01–50 nr, 10 nr 10 1 nr, 2–10 nr, 0.1–50 nr, 0.01–50 nr, 0.01–100 nr, 0.1–100 nr, 0.01–50 nr, 0.01–100 nr, 0.1–50 nr, 0.01–50 nr, 0.01–100 nr, 0.1–100 50 nr, 100 nr nr, 1–10 nr, 0.01–100 41–50 nr nr, 0.1–20 nr, 0.02–10 nr, 2–10 nr, 2–200 nr, 0.01–100 nr, 200 nr 200 nr nr nr nr nr nr, 0.1–100 nr, 0.0.1–100 nr, 0.01–100 nr, 0.01–100 nr, 0.01–50
In Maximum Concentrations (Cmax) nd-12 nd nd nd nd nd nd-50 nd-560 1,490 nd nd-870 nd-1,090 nd-970 nd nd nd 6 nd-13,400 nd-12,500 nd-420 nd-31,000 nd-31,500 nd-360 nd-140,000 nd-6,750 nd-720 nd-4,600 nd-28,880 nd nd nd nd-560 nd-12,500 nd nd nd-170 nd-285 nd-40 nd-20 nd-2,060 nd nd nd nd nd nd nd nd-11 nd-170 nd-610 nd-900 nd-41 nd-600
Percentage of Studies with Percentage of Cmax that Studies with Exceeded Total Number Detectable NAS/NAE of Studies Residues Guidelinea 32 1 2 1 3 2 1 1 1 1 27 44 42 2 1 1 1 14 19 34 61 21 35 61 22 37 55 34 1 2 1 10 87 1 1 6 8 7 6 65 2 1 1 1 1 1 1 2 12 34 31 25 34
19 0 0 0 0 0 0 100 100 0 63 61 62 0 0 0 100 79 84 29 77 90 23 89 77 35 58 100 0 0 0 40 74 0 0 67 38 29 17 28 0 0 0 0 0 0 0 50 50 35 23 12 35
0 — — — — — — — — — 33 20 12 — — — — — 26 0 10 33 0 28 27 0 7 50 — — — — 31 — — 17 13 0 — 5 — — — — — — — — 17 — — — 6
Percentage of Studies with Cmax that Exceeded NYSDEC Guidelineb 0 — — — — — — — — — 4 5 7 — — — — — 26 9 31 62 3 43 50 5 20 82 — — — — 30 — — — — — — 9 — — — — — — — — 17 — — — 6 (Continued)
q 2006 by Taylor & Francis Group, LLC
10-240
Table 10E.152
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Whole Fish: All Monitoring Studies (Published 1960–1994) Concentration Range (mg/kg wet weight)
Target Analytes
In Detection Limits
Heptachlor epoxide Hexachlorobenzene Kepone Lindane Malathion Methamidophos Methiocarb Methomyl Methoxychlorc Methyl parathion Metolachlor Mevinphos Mirex Monocrotophos Nonachlor, cisNonachlor, transOxadiazon Oxamyl Oxychlordane Parathion Pentachloroanisole Pentachlorophenol Permethrin Perthane Phorate Phosdrin Photomirex T,2,4,5Terbufos Tetrachlorvinphos Tetradifon Toxaphene Trichlorfon Trifluralin
nr, 0.01–104 nr, 0.01–100 nr, 10–50 nr, 0.01–100 nr, 1–50 nr nr nr nr, 0.1–100 nr, 50 nr nr nr, 0.01–100 nr nr, 0.01–100 nr, 0.01–107 nr nr nr, 0.01–105 30–50 nr nr, 0.1–3,000 nr 0.01–1 50 20 nr 0.2 50 20 nr, 1–10 nr, 0.1–2,000 50–80 nr, 2
In Maximum Concentrations (Cmax) nd-480 nd-27,000 nd-2,800 nd-120 nd nd nd nd nd-130 nd-60 nd nd nd-1,810 nd nd-156 nd-1,550 2,200 nd nd-640 nd 33–160 nd-4,520 0.53 nd nd nd 196–400 nd nd nd nd-2 nd-280,330 nd 7–126
Percentage of Studies with Cmax that Percentage of Studies with Exceeded Total Number Detectable NAS/NAE of Studies Residues Guidelinea 64 51 6 42 3 1 1 1 15 3 1 1 46 1 38 45 1 1 50 2 2 2 1 3 1 1 2 1 1 1 5 51 2 2
50 45 50 24 0 0 0 0 47 33 0 0 28 0 29 64 100 0 34 0 100 50 100 0 0 0 100 0 0 0 20 37 0 100
5 — — 2 — — — — — — — — — — — — — — — — — — — — — — — — — — — 37 — —
Percentage of Studies with Cmax that Exceeded NYSDEC Guidelineb 2 14 — 2 — — — — — — — — 11 — — — — — — — — — — — — — — — — — — — — —
Note: All concentrations are wet weight, NAS/NAE guideline, maximum recommended concentration for protection of fish-eating wildlife. NYSDEC guideline: New York fish flesh criterion for protection of piscivorous wildlife. Abbreviations and symbols: Cmax, maximum concentration in the study; NAS/NAE, National Academy of Sciences and National Academy of Engineering; NYSDEC, New York State Department of Environmental Conservation; na, data not available; nd, not detected; nr, one or more studies did not report this information; mg/kg, microgram per kilogram; —, no guideline available. a
Total or unspecified. (o,p 0 Cp,p 0 )- or unspecified. c p,p 0 - or total. Source: From Nowell, L.H., Capel, P.D., and Dileanis, P.D., 1999, Pesticides in Stream Sediment and Aquatic Biota, Distribution, Trends, and Governing Factors, Volume Four of the Series Pesticides in the Hydrologic System, Lewis Publishers, Boca Raton. b
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-241
Table 10E.153 Statistical Summary of Organochlorine Concentrations in Fish in the United States, 1992–1995 Concentration (mg/kg wet weight) at Given Percentile
Target Analyte p,p 0 -DDE Total PCBs p,p 0 -DDD transNonachlor p,p 0 -DDT Dieldrin cis-Chlordane cis-Nonachlor transChlordane Oxychlordane o,p 0 -DDD Pentachloroanisole Hexachlorobenzene o,p 0 -DDT Heptachlor epoxide o,p 0 -DDE g-HCH Dacthal Endrin d-HCH a-HCH Toxaphene Aldrin Mirex p,p 0 -Methoxychlor o,p 0 -Methoxychlor b-HCH Heptachlor
Number of Samples
RL
5
10
25
50
75
90
95
100
Frequency of Detection (percent)
233 233 224 231
5 50 5 5
!5 !50 !5 !5
!5 !50 !5 !5
6.9 !50 !5 !5
27 !50 !5 !5
80.5 150 14 9.2
186 646 33.5 21.8
326 1,400 46 29.4
2,400 72,000 1,200 120
79.8 44.6 42.4 33.8
232 232 231 230 232
5 5 5 5 5
!5 !5 !5 !5 !5
!5 !5 !5 !5 !5
!5 !5 !5 !5 !5
!5 !5 !5 !5 !5
7.08 6.15 !5 !5 !5
21.7 21 15.8 8.59 8.61
30.35 36.05 28.8 11.45 15.35
430 260 150 53 56
32.3 28.9 24.2 18.7 16.8
232 231 232
5 5 5
!5 !5 !5
!5 !5 !5
!5 !5 !5
!5 !5 !5
!5 !5 !5
5.77 !5 !5
11.35 8.82 7.56
30 360 87
12.1 9.5 8.2
234
5
!5
!5
!5
!5
!5
!5
8.875
33
7.3
228 232
5 5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
5.2 7.335
140 24
5.7 5.6
227 231 231 232 230 232 233 233 233 233
5 5 5 5 5 5 200 5 5 5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
!5 !5 !5 !5 !5 !5 !200 !5 !5 !5
5.06 !5 !5 !5 !5 !5 !200 !5 !5 !5
130 30 67 16 5.5 5.4 210 !5 !5 !5
4.9 4.3 3 1.7 0.4 0.4 0.4 0 0 0
231
5
!5
!5
!5
!5
!5
!5
!5
!5
0
232 233
5 5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
!5 !5
0 0
Note: All Statistics apply to samples in the national data set. Compounds are listed in order of detection frequency. Frequency of detection: percentage of samples with concentrations at or above the reporting limit. PCB, polychlorinated biphenyl; RL, reporting limit in microgram per kilogram wet weight; mg/kg, microgram per kilogram; !, less than. Source: From Wong, C.S., Capel, P.D., and Nowell, L.H., 2000, Organochlorine Pesticides and PCBs in Stream Sediment and Aquatic Biota - Initial Results from the National Water-Quality Assessment Program, 1992–1995, United States Geological Survey, Water-Resources Investigations Report 00-4053, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
10-242
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10E.154 Comparison of Organochlorine Concentrations in Whole Fish Samples Collected in the United States with Edible-Fish Guidelines for Protection of Human Health, 1992–1995
FDA Action Levelb
Target Analytes Total chlordane Total DDT Total dieldrin Endrin Total heptachlor Hexachlorobenzene Lindane Mirex Total PCBs Toxaphene
EPA Cancer Groupa B2 B2 B2 D/E B2 B2 B2/C —e B2 B2
EPA Guidance for Use in Fish Advisories: Recommended Screening Valuea,c
Standard (mg/kg)
Percent of Sites Exceeding Standard
Guideline (mg/kg)
Percent of Sites Exceeding Guideline
300 5,000 300 300 300 300 — 100 2,000f 5,000
0.4 0 0 0 0 0 — 0 2.6 0
80d 300d 7d 3,000 10d 10d 70d 2,000 10d 100d
5.7 7.8 23 0 3 0 0 0 45 0.4
Note: Because chemical concentrations are in whole fish, whereas standards and guidelines apply to edible fish tissues, exceedance indicates that additional sampling of game fish fillets may be warranted. All concentrations are wet weight. EPA cancer group: B2, probable human carcinogen; C, possible human carcinogen; D, not classified; E, no evidence of carcinogenicity. FDA, Food and Drug Administration; EPA, U.S. Environmental Protection Agency; mg/kg, microgram per kilogram; —, no standard or guideline available. a b c d e f
From U.S. Environmental Protection Agency (1995). From Food and Drug Administration (1990), unless otherwise specified. Based on chronic toxicity, unless otherwise specified. Based on 1 in 100,000 cancer risk. Not classified by EPA; however, classified as a probable human carcinogen by International Agency for Research on Cancer. FDA tolerance level (from Food and Drug Administration, 1984).
Source: From Wong, C.S., Capel, P.D., and Nowell, L.H., 2000, Organochlorine Pesticides and PCBs in Stream Sediment and Aquatic Biota - Initial Results from the National Water-Quality Assessment Program, 1992–1995, United States Geological Survey, Water-Resources Investigations Report 00-4053, www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-243
Table 10E.155 Potential Sources of Pesticide Contamination of Groundwater
SPILLS AND LEAKS Storage areas Storage tanks/pipelines Loading/unloading Transport accidents DISPOSAL Process Waste Off-specification material Cancelled products Containers Rinsate LAND APPLICATION Leaching Backflow to irrigation well Run-in to wells, sinkholes Mixing/loading areas Feed lots
Manufacturer/ Formulator
Dealer
Industrial User
Land Application
x x x x
x x x x
x x x x
x x x x
x x x x
x x x
x x x
x x x x x x x x x
Source: From U.S. Environmental Protection Agency, office of Pesticides and Toxic Substances, 1987, Agricultural Chemicals in Ground Water: Proposed Pesticide Strategy.
q 2006 by Taylor & Francis Group, LLC
Pesticide or Transformation Product
USEPA Water-Quality Criteria for Drinking Water (µg/L) MCL
HA
Acute (1 d)
NAWWS
NPS CWS
Chronic (7 yrs)
Acifluorfen
nsr
nsr
2,000
100
ND
Qa
Alachlor
2
nsr
100
NR
0.003–4.270
ND
nsr
nsr
nsr
nsr
0.100–8.630 0.002–0.022
Alachlor ESA
Frequencies of Exceedance of MCL or HA (if MCL not available) Among Sampled Wells (percent)
Ranges of Observed Concentrations (µg/L) in Groundwater MCPS
10-kg Child
MMS
PGWDB
MCPS
RD
0.0385–6.185
NAWWS
NPS CWS
0.003–0.025 4.2
ND
NA
NA
0.006–3,000
0.91b
ND
MMS
PGWDB
RD NA 0.13
0.02
0.38
NA
2,6-Diethylaniline
nsr
nsr
nsr
nsr
Hydroxyalachlor
nsr
nsr
nsr
nsr
Aldicarb
3
1
1
1
ND
ND
0.08–1,264.00
ND
ND
Aldicarb sulfone
2
42
60
60
ND
ND
0.01–153.00
ND
ND
12
Aldicarb sulfoxide
4
9
10
10
ND
ND
0.01–1030.00
ND
ND
9.2
Aldrin
nsr
nsr
0.3
0.3
ND
ND
0.0052–21
ND
ND
0.033c
Ametryn
nsr
60
9,000
900
ND
ND
0.01–0.200
ND
ND
Arsenic
50d
NA
ND NA
ND
4.6
0
1.6–680.0
3
3
100
50
0.003–2.090
Q-0.92
Q-7.0
Deethyl atrazine
nsr
nsr
nsr
nsr
0.002–2.320
ND
ND
Deisopropyl atrazine
nsr
nsr
nsr
nsr
0.050–1.170
0.03–6.719
18
0.001–1,500
0
0
0.13
0.05–2.860
NA
ND
ND
0.100–3.540
NA
0.1
0.64 NA NA
Baygon (propoxur)
nsr
3
40
40
ND
ND
2.0–35.0
ND
ND
0.019
Bentazon
nsr
20
300
300
ND
ND
2.9
0.10–41.89
ND
ND
0
0.28
α-BHC
nsr
nsr
50
50
ND
ND
ND
0.0014–0.16e
ND
ND
ND
NA
β-BHC
nsr
nsr
nsr
nsr
ND
0.04
0.0014–0.16a
ND
ND
δ-BHC
Nsr
nsr
nsr
nsr
Qa
Qa
γ-BHC (lindane)
0.2
0.2
1,200
33
ND
Q-0.42
0.0006– 180.000
NA
NA
0
ND
0.13
0.045 0.12
Bromacil
nsr
90
5,000
3,000
ND
ND
0.03–951.6
ND
ND
Butylate
nsr
350
2,000
1,000
ND
ND
ND
0.87–2.23
ND
ND
ND
0
Carbaryl
nsr
700
1,000
1,000
ND
ND
ND
0.03–610.00
ND
ND
ND
0
ND
ND
Carbofuran
40
36
50
50
ND
ND
0.01–176.00
ND
ND
0.26
Carboxin
nsr
700
1,000
1,000
ND
ND
ND
ND
ND
ND
Chloramben
nsr
100
3,000
200
Qa
Qa
1.00
0
0
0
α-Chlordane
2f
nsr
60f
0.5f
Q-0.01
Q-0.01
0.01–20.000f
0f
0f
0.20f
ND
Q-0.01
Chlorothalonil
nsr
nsr
200
200
Chlorpyrifos
nsr
20
30
30
0.005–0.024
Cyanazine
nsr
1
100
20
0.010–0.880
nsr
γ-Chlordane
Cyanazine amide
0.18c
0.140–1.100 ND
ND
0.1205–0.1485
0.05–0.654
0
0.002–29.0
0
0 ND
ND
0
0.29
nsr
nsr
nsr
nsr
0.050–0.550
2,4-D
70
70
1,000
100
0.100–0.890
ND
ND
0.0079–57.1
0
ND
ND
Dacthal (DCPA)
nsr
4,000
80,000
5,000
ND
ND
ND
0.010–300.0
ND
ND
ND
0
nsr
nsr
nsr
nsr
0.010–2.220
Q-7.2
Q-2.4
0.21–431.0
NA
NA
NA
NA
Dalapon Diazinon
200 nsr
200 0.6
3,000 20
300 5
Qa
Qa
ND
0 0
0 ND
ND 0.051
0.2
nsr
200
NR
Qa 0.48– 0.71
ND 0.01–3.2
1,2-Dibromo-3chloropropane (DBCP)
Qa Q
0.001–8000.00
0
0.27
5.5
Dicamba
nsr
200
300
300
ND
ND
0.006–44.0
ND
ND
0
1,3-Dichloropropene
nsr
nsr
30f
30f
ND
ND
0.279–140f
ND
ND
NA
DCPA hydrolysis products
q 2006 by Taylor & Francis Group, LLC
0.100
NA
0
0.33c
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Atrazine
ND 0.910
ND
10-244
Table 10E.156 Pesticide Concentrations Measured in Groundwater during Multistate Studies and Studies from the Pesticides in Groundwater Database in Relation to DrinkingWater-Quality Criteria in the United States, 1971–1993
nsr
nsr
0.5
0.5
Dinoseb Diphenamid
7 nsr
7 200
300 300
10 300
Diquat
20
20
nsr
nsr
Disulfoton
nsr
0.3
10
3
Diuron
nsr
10
1,000
300
Endothall
100
140
800
200
Endrin
ND
ND
ND
0.095c
0 ND
ND ND
0.59 ND
0.04–100.00
0
0
0.61
0.01–5.37
ND
ND
ND
ND
0.001–2.600
3.5 ND
ND ND
0.008–47.00 ND
Qa
Qa
ND
ND
ND
ND ND
ND 0
ND
ND
2
2
20
3
ND
ND
0.001–3.5
ND
ND
0.024
Ethylene dibromide (EDB)
0.05
nsr
8
NR
ND
0.29
0.001– 15,772.4
ND
0.13
10.6
Ethylene thiourea (ETU)7
nsr
nsr
300
100
ND
Q-16
0.725
ND
NA
NA
Fenamiphos
nsr
2
9
5
ND
ND
ND
ND
ND
ND
Fluometuron
nsr
90
2,000
2,000
ND
ND
0.8–5.000
ND
ND
0
Fonofos
nsr
10
20
20
Glyphosate
700
700
20,000
1,000
0.4
nsr
10
5.0
ND
ND
0.001–0.8
ND
ND
0.12
0.2
nsr
nsr
0.1
ND
ND
0.01–0.22
ND
ND
0.032 0
Heptachlor Heptachlor epoxide Hexachlorobenzene
ND
0.007–0.90
ND
0
0.004–150.0
0
1
nsr
50
50
Q-0.17
ND
0.0039–0.0056
0
ND
Hexazinone
nsr
200
3,000
3,000
ND
ND
0.060–0.720
ND
ND
Malathion
nsr
200
200
200
ND
0.007–6.17
MCPA
nsr
10
100
100
Methomyl
nsr
200
300
300
Methoxychlor
40
40
50
50
Methyl parathion
nsr
2
300
30
ND
Metolachlor
nsr
100
2,000
2,000
0.003–1.460
ND
ND
Metribuzin
nsr
200
5,000
300
0.050–0.220
ND
nsr
nsr
nsr
nsr
ND
Metribuzin DA
0
ND
0
0.13–5.5 ND
ND
ND
ND
0
1.0–20.00 0.01–0.312
ND
ND
0
ND
ND
0
0.01–0.256
ND
0.02–157.00
0
ND
ND
ND
0.001–25.10
0
ND
ND
0
ND
ND
ND
ND
ND ND
0.0375–3.805
( h)
0 0
0
0.013
Metribuzin DADK
nsr
nsr
nsr
nsr
Qa
Qa
ND
NA
NA
Metribuzin DK
nsr
nsr
nsr
nsr
Qa
Qa
ND
NA
NA
ND
Oxamyl
200
200
200
200
ND
ND
0.01–395.00
ND
ND
0.013
Paraquat
nsr
30
100
50
1
NR
1,000
300
ND
ND
0.001–0.64
ND
ND
0
500
500
20,000
700
0.010–0.030
ND
ND
0.01–30.0
ND
ND
0
Prometon
nsr
100
200
200
0.050–1.350
Q
Q-0.57
0.05–29.6
0
0
0
0
Pronamide
nsr
50
800
800
ND
Qa
Qa
ND
ND
0
0
ND
Pentachlorophenol Picloram
0.01–100.0
0.21 0
Propachlor
nsr
90
500
100
0.002
ND
ND
0.02–3.5
0
ND
ND
0
Propazine
nsr
10
1,000
500
ND
ND
ND
0.01–0.20
ND
ND
ND
0
Propham Simazine
nsr 4
100 4
5,000 500
5,000 50
0.002–0.270
ND Q-0.76
ND Q
6.000 0.001–67.0
0
ND 0
ND 0
0.043–8.359
ENVIRONMENTAL PROBLEMS
Dieldrin
40
0 5 10 15 20 25 30 35 >40
USEPA/CAMD 07/23/04
USEPA/CAMD 07/28/04
Figure 10G.139 Wet sulfate deposition decreased throughout the early 1990s in much of the Ohio River Valley and Northeastern U.S. Other less dramatic reductions were observed across much of New England, portions of the Southern Appalachian Mountains and in the Midwest. Average decreases in wet deposition of sulfate range from 39 percent in the Northeast to 17 percent in the Southeast, www.epa.gov/airmarkets.
q 2006 by Taylor & Francis Group, LLC
10-282
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
3.0 2.8
A
Loss of dryland (sq. mil/thousands)
2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
Northeast
Mid Atlantic
South Atlantic
South & West Florida
Louisiana
Other Gulf
West
Mid Atlantic
South Atlantic
South & West Florida
Louisiana
Other Gulf
West
3.0 2.8
B
2.6
Loss of dryland (sq. mil/thousands)
2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
Northeast
Sea level scenario:
Baseline
50 cm
100 cm
200 cm
Figure 10G.140 Loss of dry land in the United States by 2100 (A) if no shores are protected and (B) if developed areas are protected for sea level rise. (From U.S.EPA 1988. The Potential Effects of Global Climate Change on the U.S. Draft report to Congress. Prepared by Titus and Greene, adapted from Park and others.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-283
2000
2050
2100
2000
2050 Year
2100
Total sea-level rise (cm)
150
100
50
0
The dark shading indicates the most probable response to the climate scenario shown in Figure 10G-142. The broken line depicts the response to a warming trend delayed 100 years by thermal inertia of the ocean. A global warming of 6˚C by 2100, which represents an extreme upper limit, would result in a sea level rise of about 2.3 m, but errors on this estimate are very large. Figure 10G.141 Total estimated sea-level rise, 1980–2100. (From Thomas, Robert 1986, Future sea-level rise and its early detection by satellite remote sensing, in Effects of Change in Stratospheric Ozone and Global Climate, vol. 4.)
Greenhouse gases Global warming
Atmosphere
Increased ice melting particularly in GREENLAND
Sea-ice distribution
Increased snowfall on the ice sheets
Ocean
Increased melting beneath ice shelves
Thermal expansion
Increased ice discharge from ANTARCTICA into the ocean Sea-level rise
Sea-level fall
Sea-level rise
Heat trapped by greenhouse gases raises the temperature of the atmosphere and the ocean. The response of sea level to this warming is strongly determined by the partition of available heat between these two processes. If most of the heat remains in the atmosphere, air temperatures rise rapidly and sea level is affected most by increased melting of ice. Alternatively, rapid transfer of heat into the sea would increase ocean temperatures, and sea level would rise because of thermal expansion and by accelerated Antarctic ice discharge associated with increased melting from beneath the floating ice shelves. Moreover, sea-ice distribution both influences, and is affected by, thermal interactions between atmosphere and ocean.
Figure 10G.142 Major processes relating greenhouse warming to average worldwide sea level. (From Thomas Robert 1986, Future sea-level rise and its early detection by satellite remote sensing, in Effects of Changes in Stratospheric Ozone and Global Climate, vol. 4.)
q 2006 by Taylor & Francis Group, LLC
10-284
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Unpolluted
Polluted
Atmosphere
Acidic deposition
Normal rainfall (pH about 5.6)
SOx
Acid precipitation pH 3.0-5.6
NOx
Dry deposition
Roof catchment Watershed- trees, rocks, soil
Industries and automobiles
Sensitive watershed
Water
Yes
No
Little or no effect
Cistern
Sediment Rare effects
Surface supplies
Large reservoirs
Groundwater supplies
Shallow wells
Small headwater streams
Aluminum
Deep wells
Distribution system
Copper pipe
Lead pipe
Contains lead and copper
Contains cadmium and lead
Aluminum
Treatment: Cl2, pH adjustment
Untreated waters Little or no effect
Aluminum Distribution system
Copper pipe
Lead pipe
Contains lead
Plastic pipe
Galvanized pipe
Plastic pipe
Distribution system
Steel pipe
Copper pipe
Contains aluminum
Lead pipe
Contains lead and aluminum
Plastic pipe
No effects Potential for contamination or often contaminated No data
Figure 10G.143 Probable effects of acid deposition on water supplies. (From Perry, J.A., 1984, Current research on the effects of acid deposition, J. Am. Water Works Assoc., vol. 76, no. 3 Copyright. With permission.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-285
4.0
a EPA High
3.0 Estimate of sea level rise
Sea level rise relative to 1986 (m)
Scenarios used in this study
EPA Mid-High 2.0
a
b NRC High
WMO High
d NRC High
c
a EPA Mid-Low
b NRC Mid
1.0
b NRC a EPA Low d NRC Low b NRC Low
Past century
0.0
WMO Low
Estimated 0.12m rise 2000
2050
c
2100
Year a Environmental Protection Agency, reported in JS Hoffman, D Keyes and JG Titus, Projection Future Sea Level Rise, US GPO, 1983. b Glacial volume estimate of National Research Council, reported in MF Meier et al, Glaciers, Ice Sheets, and Sea Level, National Academy Press, 1985, augmented with thermal expansion estimates of the NRC, reported in R Revelle, Probable future changes in sea level resulting from increased atmospheric carbon dioxide, in Changing Climate, NAP, 1983. c WMO International assessment of the role of carbon dioxide and other greenhouse gases in Climate Variations and Associated Impacts, WMO, 1985. d NRC, Responding to Changes in Sea Level: Engineering Implications, NAP, 1987.
Figure 10G.144 Estimates of future sea level rise. (From yosemite.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-286
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Trends/100 yrs +20% +10% +5% –5% –10% –20%
Figure 10G.145 Precipitation trends from 1900 to present. (From Karl et al. (1996), yosemite.epa.gov.)
0.6 0.4 0.2
∆°F
0 −0.2 −0.4 −0.6 −0.8
91 19 01 19 11 19 21 19 31 19 41 19 51 19 61 19 71 19 81 19 91
81
18
71
18
18
18
61
−1
Year Figure 10G.146 Global temperature changes (1861–1996). (From IPCC (1995), updated yosemite.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-287
(ppm)
360
(°C)
e
ang
e ch
tur pera
1
340
Tem 0.8
320 8 (Gt C) 7 per year
0.6
6 0.4
5 4
0.2
3 2
0
1 0
–0.2
ions
trat
cen
on O2 c
C
–0.4
ns
ssio emi 1 rbon
–0.6 ©2004,
Ca ACIA 10
11
12
00
00
00
00
00
50
14
13
00
18
17
16
00
20
19 00
00
0
rs
Yea
Fossil fuels Land-use change
00
This 1000-year record tracks the rise in carbon emissions due to human activities (fossil fuel burning and land clearing) and the subsequent increase in atmospheric carbon dioxide concentrations, and air temperatures. The earlier parts of this Northern Hemisphere temperature reconstruction are derived from historical data, tree rings, and corals, while the later parts were directly measured. Measurements of carbon dioxide (CO2) in air bubbles trapped in ice cores form the earlier part of the CO2 record; direct atmospheric measurements of CO2 concentration began in 1957.
Figure 10G.147 1000 years of changes in carbon emissions, CO2 concentrations and temperature, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
10-288
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(ppm) 800
Projected future range
700
600
500
400 Current level
350
n atio entr re) onc o c C CO 2 ctic ice tar (An 1800 AD
(˚C) Projected range year 2100
6 300 4
2 Current level 0
250
–2 –4 –6
atur
per
Tem
©2004,
ACIA
1,4
1,6
00
00
00
00
0
0
0
go
sa
ar Ye
,00
,00
,00
,00
0,0
0,0
0,0
0,0
1,0
1,2
40
60
80
20
0
ge
an e ch
0
This record illustrates the relationship between temperature and atmospheric carbon dioxide concentrations over the past 160,000 yrs and the next 100 yrs. Historical data are derived from ice cores, recent data were directly measured, and model projections are used for the next 100 yrs.
Figure 10G.148 Atmospheric carbon dioxide concentration and temperature change, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-289
(˚C) 2
1
0
–1
–2 1900 ©2004,
1920
1940
1960
1980
2000
ACIA
Annual average change in near surface air temperature from stations on land relative to the average for 1961–1990, for the region from 60 to 90˚N. Figure 10G.149 Observed arctic temperature, 1900 to present, www.amap.no/acia.
Temperature change (°C)
6 AIB AIT AIFI A2 B1 B2 IS92a
5 4 3 2 1 0
1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 ©2004,
ACIA
Projections of global temperature change (shown as departures from the 1990 temperature) from 1990 to 2100 for seven illustrative emissions scenarios. The brown line shows the projection of the B2 emissions scenario, the primary scenario used in this assessment and this scenario on which the maps in this report showing projected climate changes are based. The pink line shows the A2 emissions scenario, used to a lesser degree in this assessment. The dark gray band shows the range of results for all the SRES emissions scenarios with one everage model while the light gray band shows the full range of scenarios using climate models. Figure 10G.150 Projected global temperature rise, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
10-290
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(°C) 8 A2
B2
CGCM2 ECHAM4/OPYC3 GFDL-R30_C HadCM3 CSM_1.4
7 6 5 4 3 2 1 0 2000
2010
©2004,
2020
2030
2040
2050
2060
2070
2080
2090
2100
ACIA
The ten lines show air temperatures for the region from 60˚N to the pole as projected by each of the five ACIA global climate models using two different emissions scenarios. The projections remain similar through about 2040, showing about a 2˚C temperature rise, but then diverge, showing increases from around 4˚ to over 7˚C by 2100. The full range of models and scenarios reviewed by the IPCC cover a wider range of possible futures. Those used in this assessment fall roughly in the middle of this range, and thus represent neither best- nor worst-case scenarios. Figure 10G.151
Projected arctic surface air temperatures 2000–2100 608N—Pole: change from 1981–2000 average, www.amap.no/acia.
(million km2) 16 15 14 13 12 11 10 9 8 7 6 5 1990
1910 Annual
©2004,
ACIA
1920
1930
1940
1950
1960
1970 1980
1990
2000
Winter (Jan−Mar)
Spring (Apr−Jun)
Summer (Jul−Sep)
Autumn (Oct−Dec)
Annual average extent of arctic sea ice from 1900 to 2003. A decline in sea-ice extent began about 50 years ago and this decline sharpened in recent decades, corresponding with the arctic warming trend. The decrease in sea-ice extent during summer is the most dramatic of the trends. Figure 10G.152 Observed seasonal Arctic sea-ice extent (1900–2003), www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-291
(°C) 7 6
A2 B2
5 4 3 2 1 0 2000 ©2004,
2020
2040
2060
2080
2100
ACIA
Increases in arctic temperature (for 60°–90°N) projected by an average of ACIA models for the A2 and B2 emissions scenarios, relative to 1981–2000. Figure 10G.153 Projected arctic temperature rise, www.amap.no/acia.
–
–
–
Figure 10G.154 Reduced salinity of North Atlantic waters, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
10-292
Global ocean circulation, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 10G.155
ENVIRONMENTAL PROBLEMS
10-293
(˚C)
0
–20
100 ©2004,
80 ACIA
60
40
0
20
Thousands of Years Before Present
This record of temperature change (departures from present conditions) has been reconstructed from a Greenland ice core. The record demonstrates the high variability of the climate over the past 100,000 yrs. It also suggests that the climate of the past 10000 years or so, which was the time during which human civilization developed, has been unusually stable. There is concern that the rapid warming caused by the increasing concentrations of greenhouse gases due to human activities could destabilize this state.
Figure 10G.156 1000,000 yrs of temperature variation in Greenland, www.amap.no/acia.
Greenland ice sheet melt extent (Maximum melt extent 1979 − 2002) (105 km2)
7 6 5 4 3 2 1980 1985 1990 1995 2000 ©2004,
©2004,
ACIA
ACIA / Map ©Clifford Grabhorn
Seasonal surface melt extent on the Greenland Ice Sheet has been observed by satellite since 1979 and shows an increasing trend. The melt zone, where summer warmth turns snow and ice around the edges of the ice sheet into slush and ponds of meltwater, has been expanding inland and to record high elevations in recent years. When the meltwater seeps down through cracks in the ice sheet, it may accelerate melting and, in some areas, allow the ice to slide more easily over the bedrock below, speeding its movement to the sea. In addition to contributing to global sea-level rise, this process adds fresh water to the ocean, with potential impacts on ocean circulation and thus regional climate.
Figure 10G.157 Greenland ice sheet melt extent, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
10-294
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(mm)
25 20 15 10 5 0 –5 –10 –15 –20 1992 ©2004,
1994
1996
1998
2000
2002
2004
60-days smoothed
10-days averages
ACIA
These data, from a satellite launched in 1992, show the rise in global average sea level over the past decade. Figure 10G.158 Observed global sea level rise, www.amap.no/acia.
(cm) 100
80
60
Emission Scenario AIB AIFI AIT A2 B1 B2
40
20
0 2000 ©2004,
2020
2040
2060
2080
2100
ACIA
The graph shows future increases in global average sea level in centimeters as projected by a suite of climate models using six IPCC emissions scenarios. The bars at right show the range projected by a group of models for the designated emissions scenarios. Figure 10G.159 Projected global sea level rise, www.amap.no/acia.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-295
.122
.097 20%
.104
10 .061
.063
.090
.079
.096
12%
22%
.093
.085 11%
.126 .060
.079 17%
9 6
3
.106
5
.091
14%
.090
.104
2
3
7
.095
8
37%
1
11%
.078
.086 13%
17%
4
The National Trend .105 21%
Figure 10G.160
.083
Trend in fourth highest daily maximum 8-hour ozone concentration (ppm) by EPA region, 1980–2003, www.epa.gov/airtrends.
.104
.091 13%
.069
.104
10 .062
.075
10%
.072 4%
.093
.090
.085 6%
2
7 .097
.081
8
.076
16%
.076
3 .097
5
9
.085 .081
.087 7%
.090 7%
no change
6
1
11%
.085 4
.080
6%
The National Trend .091 .083 9% Figure 10G.161
Trend in fourth highest daily maximum 8-hour ozone concentration (ppm) by EPA region 1990–2003, www.epa.gov/airtrends.
q 2006 by Taylor & Francis Group, LLC
10-296
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
80
40
70
30
60
20
50
10
40
0
Ozone (ppm)
Number of days >90˚
Bridgeport, CT 50
30 90 91 92 93 94 95 96 97 98 99 00 01 02 03
80
80
70
60
60
40
50
20
40
Ozone (ppm)
Number of days >90˚
Atlanta, GA 100
30
0 90 91 92 93 94 95 96 97 98 99 00 01 02 03 Unadjusted ozone Meteorologically adjusted ozone
Ozone concentrations are Annual Average Daily Maximum 8-hr values between June and August. Figure 10G.162 Number of days daily maximum temperatures exceed 908 (bar) compared to unadjusted ozone (red line) and meteorologically adjusted ozone (blue line) for Bridgeport and Atlanta, 1990–2003. Ozone concentrations are annual average daily maximum 8-hr values between June and August, www.epa.gov/airtrends.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-297
1
10 7%
8
3% 2
2%
9% 9
5
2% 9%
9%
6
2%
3
2%
7
1%
4% 9% 15%
4
21%
Trend in average daily maximum 8-hour concentrations (ppm) Meteorological-adjusted trend in average daily maximum 8-hr concentrations (ppm)
Figure 10G.163 Trends in unadjusted and meteorologically adjusted ozone levels by EPA region, 1990–2003, www.epa.gov/airtrends.
q 2006 by Taylor & Francis Group, LLC
10-298
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
NOx
6
Tons (millions)
5 4 3 2 1 0 1996
1997
1998
1999
2000
2001
2002
2003
2001
2002
2003
VOC
6
Tons (millions)
5 4 3 2 1 0 1996 Region 1 Region 2
1997
1998
Region 3 Region 4
1999
2000
Region 5 Region 6
Region 7 Region 8
Region 9 Region 10
Figure 10G.164 NOx and VOC emissions in Region 10 from 1998 to 1999 is due to a change in methodology rather than a true emission increase, www.epa.gov/airtrends.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-299
Trends in NOx Emissions for Eastern States with Largest Reductions in NOx from Electric Utilities 9
Millions of tons NOx
8 7 6 5 4 3 2 1 0
1996 1997 1998 1999 2000 2001 2002 2003
Ozone levels since 1990 Hartford, CT
1990
Columbia, SC
Pittsburgh, PA
1998
2003 1990
1998
2003 1990
1998
2003
Figure 10G.165 Ozone trends for selected urban areas and corresponding regional emission trends, www.epa.gov/airtrends.
United States 8000
Total greenhouse gas emissions million tons CO2 equivalent
7500
Reduction from projection required to meet commitment:
–24.3% Projection
Actual emissions
7000 6500 6000 5500
Target
5000
Projected emissions Historical emissions Kyoto target
4500 4000 1990
1995
2000
2005
2010
Actual and projected emissions of six greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, SF6)
Figure 10G.166 Actual and projected emission of six greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, SF6). (From Actual emissions UNFCCC/SB12000/11 Table B.1 Projected emissions UNFCCCM998/Add 2 Table C.6, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
10-300
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
I.
Alaska, Yukon, and Coastal British Columbia Lightly settled/water-abundant region; potential ecological, hydropower, and flood impacts: Increased spring flood risks Glacial retreat/disappearance in south, advance in north; impacts on flows, stream ecology Increased stress on salmon, other fish species Flooding of coastal wetlands Changes in estuary salinity/ecology
V. Sub-Arctic and Arctic Sparse population (many dependent on natural systems); winter ice cover important feature of hydrologic cycle: Thinner ice cover, 1- to 3-month increase in ice-free season, increased extent of open water Increased lake-level variability, possible complete drying of some delta lakes Changes in aquatic ecology and species distribution as a result of warmer temperatures and longer growing season
VI. Midwest U.S.A. and Canadian Prairies Agricultural heartland–mostly rainfed, with some areas relying heavily on irrigation: Annual streamflow decreasing/increasing; possible large declines in summer streamflow Increasing likelihood of severe droughts Possible increasing aridity in semi-arid zones Increases or decreases in irrigation demand and water availability–uncertain impacts on farmsector income, groundwater levels, streamflows, and water quality
II. Pacific Coast States (U.S.A.) Large and rapidly growing population; water abundance decreases north to south; intensive irrigated agriculture; massive water-control infrastructure; heavy reliance on hydropower. endangered species issues; increasing competition for water : More winter rainfall/less snowfall-earlier seasonal peak in runoff, increased fall/winter flooding, decreased summer water supply Possible increases in annual runoff in Sierra Nevada and Cascades Possible summer salinity increase in San Francisco Bay and Sacramento/San Joaquin Delta Changes in lake and stream ecology– warmwater species benefiting; damage to coldwater species (e.g., trout and salmon)
VII. Great Lakes Heavily populated and industrialized region; variations in lake levels/flows now affect hydropower, shipping, shoreline structures: Possible precipitation increases coupled with reduced runoff and lake-level declines Reduced hydropower production; reduced channel depths for shipping Decreases in lake ice extent–some years w/out ice cover Changes in phytoplankton/zooplankton biomass, northward migration of fish species, possible extirpations of coldwater species
VIII. Northeast U.S.A. and Eastern Canada Large, mostly urban population–generally adequate water supplies, large number of small dams, but limited total reservoir capacity; heavily populated floodplains: Decreased snow cover amount and duration Possible large reductions in streamflow Accelerated coastal erosion, saline intrusion into coastal aquifers Changes in magnitude, timing of ice freeze-up/break-up, with impacts on spring flooding Possible elimination of bog ecosystems Shifts in fish species distributions, migration patterns
III. Rocky Mountains (U.S.A. and Canada) Lightly populated in north, rapid population growth in south; irrigated agriculture, recreation, urban expansion increasingly competing for water; headwaters area for other regions: Rise in snow line in winter-spring, possible increases in snowfall, earlier snowmelt, more frequent rain on snow–changes in seasonal streamflow, possible reductions in summer streamflow, reduced summer soil moisture Stream temperature changes affecting species composition; increased isolation of coldwater stream fish
IX. IV. Southwest Rapid population growth, dependence on limited groundwater and surface water supplies, water quality concerns in border region, endangered species concerns, vulnerability to flash flooding: Possible changes in snowpacks and runoff Possible declines in groundwater recharge– reduced water supplies Increased water temperatures–further stress on aquatic species Increased frequency of intense precipitation events–increased risk of flash floods
Southeast, Gulf, and Mid-Atlantic U.S.A. Increasing population–especially in coastal areas, water quality/non -point source pollution problems, stress on aquatic ecosystems: Heavily populated coastal floodplains at risk to flooding from extreme precipitation events, hurricanes Possible lower base flows, larger peak flows, longer droughts Possible precipitation increase–possible increases or decreases in runoff/river discharge, increased flow variability Major expansion of northern Gulf of Mexico hypoxic zone possible–other impacts on coastal systems related to changes in precipitation/non-point source pollutant loading Changes in estuary systems and wetland extent, biotic processes, species distribution
Figure 10G.167 Possible water resources impacts in North America, www.epa.gov/oar.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-301
Table 10G.197 Percent Change in Air Quality and Emissions Percent Change in Air Quality
NO2 O3 1-h 8-h SO2 PM10 PM2.5 CO Pb
a b c d e
1993–2002
K21
K11
K22 K2a K14 C4a K54 K39 — K13 — K8b K65 K42 K94 K57 Percent Change in Emissions K15 K12 K40 K25 K33 K31 K34d K22 — K17 K41 K21 K93 K5
NO2 VOC SO2 PM10c PM2.5c CO Pbe Note:
1983–2002
Trend data not available. Negative numbers indicate improvements in air quality or reductions in emission. Positive numbers show where emissions have increased or air quality has gotten worse.
Not statistically significant. Based on percentage change from 1999. Includes only directly emitted particles. Based on percentage change from 1985. Emission estimates prior to 1985 are uncertain. Lead emissions are included in the toxic air pollutant emissions inventory and are presented for 1982–2001.
Source: From www.epa.gov/airtrends/images/enlarge/sixpoll-1lg.gif.
q 2006 by Taylor & Francis Group, LLC
10-302
Table 10G.198 Lead (Pb) National Totals (Thousands of Tons) Lead (Pb) National Totals (Thousands of Tons) Source Category
1970
1980
1985
1990
1991
1992
1993
1997
1998
1999
0.229773
1975
0.128825
0.063955
0.064244
0.061487
0.058603
0.061661
0.062
0.057
0.061
0.063925
0.068881
0.532
0.075254
0.059612
0.03017
0.017612
0.017531
0.017872
0.018884
0.019
0.018
0.016
0.01581
0.014985
0.414
4.110847
0.421131
0.417995
0.416037
0.414095
0.415973
0.415
0.415
0.415
0.413444
0.410383
0.014
0.120227
0.104387
0.118276
0.135801
0.132297
0.093402
0.092
0.096
0.163
0.167
0.187825
0.194212
0.027
9.923236
3.025672
2.096969
2.169625
1.974318
1.77442
1.899989
2.027
2.049
2.055
2.080743
1.991153
1.002
0
0
0
0
0
0
0
0
0
0
0
0
0.013
1.337357
0.807826
0.315972
0.168558
0.166802
0.056379
0.055
0.054
0.059
0.051
0.054315
0.053518
0.321
0
0
0
0
0
0
0
0
0
0
0
0
0.273
0
0
0
0
0
0
0
0
0
0
0
0
0.0007
1.59515
1.21002
0.870866
0.804311
0.808
0.812
0.825
0.83
0.604
0.787782
0.798363
0.805779
0.178
0.420736
0.017849
0.018332
0.018796
0.01903
0.019355
0.01919
0.019996
0.02116
0
0.776437 0 4.975 0.000 4.975
0.574333 0 4.169 0.000 4.169
0.565182 0 3.810 0.000 3.810
0.528556 0 3.916 0.000 3.916
0.525034 0 4.047 0.000 4.047
0.544384 0 3.929 0.000 3.929
0.505382 0 4.077 0.000 4.077
0.502712 0 4.137 0.000 4.137
0.497295 0 4.057 0.000 4.057
0.552 0.029 3.356 0.000 3.356
10.0423
130.2061
60.50133
18.05194
6.129554 4.204813 0.921121 0 0 0 159.659 74.153 22.890 0 0 0 159.659 74.153 22.890
Source: From www.epa.gov/airtrends/pdfs/leadnational.pdf.
q 2006 by Taylor & Francis Group, LLC
1994
1995
1996
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Fuel Comb. 0.327293 Elec. Util. Fuel Comb. 0.236916 Industrial Fuel Comb. 10.05174 Other 0.102811 Chemical & Allied Product Mfg Metals 24.22351 Processing 0 Petroleum & Related Industries Other Industrial 2.028097 Processes Solvent 0 Utilization Storage & 0 Transport Waste Disposal 2.2 & Recycling Highway 171.9611 Vehicles Off-highway 9.737102 Miscellaneous 0 Total 220.869 Fires 0 Total without 220.869 Fires
Volatile Organic Compounds (VOC) National Totals (Thousands of Tons) Source Category Fuel Comb. Elec. Util. Fuel Comb. Industrial Fuel Comb. Other Chemical & Allied Product Mfg Metals Processing Petroleum & Related Industries Other Industrial Processes Solvent Utilization Storage & Transport Waste Disposal & Recycling Highway Vehicles Off-highway Miscellaneous Miscellaneous Total Fires Total without Fires
Source:
1970
1975
1980
1985
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
30
40
45
32
47
44
44
45
45
44
50
52
56
54
62
61
52
56
150
150
157
134
182
196
187
186
196
206
179
175
174
172
173
176
170
170
541
470
848
1,403
776
835
884
762
748
823
893
893
889
919
949
950
790
878
1,341
1,351
1,595
881
634
710
715
701
691
660
388
388
394
251
254
262
214
218
394
336
273
76
122
123
124
124
126
125
73
78
78
66
67
71
69
72
1,194
1,342
1,440
703
611
640
632
649
647
642
477
487
485
457
428
441
375
380
270
235
237
390
401
391
414
442
438
450
435
438
443
438
454
420
406
412
7,174
5,651
6,584
5,699
5,750
5,782
5,901
6,016
6,162
6,183
5,477
5,621
5,149
5,036
4,831
5,012
4,692
4,562
1,954
2,181
1,975
1,747
1,490
1,532
1,583
1,600
1,629
1,652
1,294
1,328
1,327
1,237
1,176
1,192
1,205
1,178
1,984
984
758
979
986
999
1,010
1,046
1,046
1,067
509
518
535
487
415
420
457
427
16,910
15,392
13,869
12,354
9,388
8,860
8,332
7,804
7,277
6,749
6,221
5,985
5,859
5,681
5,325
4,952
4,543
4,428
1,616 1,101 NA 34,659 917 33,742
1,917 716 NA 30,765 587 30,178
2,192 1,134 NA 31,106 1,024 30,082
2,439 566 NA 27,404 465 26,939
2,662 1,059 NA 24,108 983 23,125
2,709 756 NA 23,577 678 22,899
2,754 486 NA 23,066 407 22,659
2,799 556 NA 22,730 478 22,252
2,845 720 NA 22,569 638 21,931
2,890 551 NA 22,041 464 21,577
2,935 1,940 0 20,871 1,870 19,001
2,752 816 0 19,530 744 18,786
2,673 718 0 18,782 645 18,136
2,682 791 0 18,270 667 17,603
2,644 733 0 17,512 615 16,898
2,622 532 0 17,111 412 16,699
2,688 883 0 16,544 785 15,759
2,572 704 0 16,056 627 15,429
ENVIRONMENTAL PROBLEMS
Table 10G.199 Volatile Organic Compounds (VOC) National Totals (Thousands of Tons)
From www.epa.gov/airtrends/pdfs/vocnational.
10-303
q 2006 by Taylor & Francis Group, LLC
10-304
Table 10G.200 Sulfur Dioxide (SO2) National Totals (Thousands of Tons) Sulfur Dioxide (SO2) National Totals (Thousands of Tons) Source Category
1970
1975
1980
1985
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
17,398
18,268
17,469
16,272
15,909
15,784
15,416
15,189
14,889
12,080
12,767
13,195
13,416
12,583
11,396
10,850
10,293
10,929
4,568
3,310
2,951
3,169
3,550
3,256
3,292
3,284
3,218
3,357
2,849
2,805
2,740
2,135
2,139
2,243
2,299
2,227
1,490 591
1,082 367
971 280
579 456
831 297
755 280
784 279
772 269
780 275
793 286
636 255
648 259
586 261
620 325
628 338
642 342
575 328
596 329
4,775 881
2,849 727
1,842 734
1,042 505
726 430
612 378
615 416
603 383
562 379
530 369
389 335
407 344
405 342
304 312
313 316
332 319
271 348
285 323
846
740
918
425
399
396
396
392
398
403
386
409
415
382
410
429
416
426
NA NA 8
NA NA 46
NA NA 33
1 4 34
0 7 42
0 10 44
1 9 44
1 5 71
1 2 59
1 2 47
1 5 32
1 5 33
1 5 34
1 6 34
1 6 34
1 7 35
2 5 28
2 6 32
273 278 110 NA 31,218 NA 31,218
334 301 20 NA 28,043 NA 28,043
394 323 11 NA 25,925 NA 25,925
455 354 11 NA 23,307 NA 23,307
503 371 12 NA 23,076 12 23,064
469 379 11 NA 22,375 12 22,363
436 385 10 NA 22,082 9 22,073
402 392 10 NA 21,772 9 21,763
369 399 15 NA 21,346 14 21,332
335 406 10 NA 18,619 10 18,609
302 413 15 0 18,385 15 18,370
304 422 7 0 18,840 6 18,834
300 432 6 0 18,944 6 18,939
300 475 67 0 17,545 67 17,478
260 437 70 0 16,347 69 16,278
248 440 44 0 15,932 44 15,888
275 420 91 0 15,353 91 15,263
256 443 88 0 15,943 95 15,848
Source: From www.epa.gov/airtrends/2005.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Fuel Comb. Elec. Util. Fuel Comb. Industrial Fuel Comb. Other Chemical & Allied Product Mfg Metals Processing Petroleum & Related Industries Other Industrial Processes Solvent Utilization Storage & Transport Waste Disposal & Recycling Highway Vehicles Off-highway Miscellaneous Miscellaneous Total Fires Total without Fires
ENVIRONMENTAL PROBLEMS
Table 10G.201 Nitrogen Oxides (Nox) National Emissions Totals (Thousands of Tons) Nitrogen Oxides (NOx) National Emissions Totals (Thousands of Tons) Source Category Fuel comb. Elec. Util. Fuel Comb. Industrial Fuel Comb. Other Chemical & Allied Product Mfg Metals Processing Petroleum & Related Industries Other Industrial Processes Solvent Utilization Storage & Transport Waste Disposal & Recycling Highway Vehicles Off-highway Miscellaneous Miscellaneous Total Fires Total without Fires
1970
1975
1980
1985
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
4,900
5,694
7,024
6,127
6,663
6,519
6,504
6,651
6,565
6,384
6,164
6,276
6,232
5,721
5,330
4,917
4,699
4,458
4,325
4,007
3,555
3,209
3,035
2,979
3,071
3,151
3,147
3,144
3,151
3,101
3,050
2,709
2,723
2,757
2,870
2,775
836 271
785 221
741 213
712 262
1,196 168
1,281 165
1,353 163
1,308 155
1,303 160
1,298 158
1,197 125
1,177 127
1,101 129
768 102
766 105
779 107
725 105
729 102
77 240
73 63
65 72
87 124
97 153
76 121
81 148
83 123
91 117
98 110
83 139
89 143
89 143
86 120
89 122
94 124
84 149
94 137
187
182
205
327
378
352
361
370
389
399
433
460
467
451
479
504
487
504
NA NA 440
NA NA 159
NA NA 111
2 2 87
1 3 91
2 6 95
3 5 96
3 5 123
3 5 114
3 6 99
2 15 153
3 16 157
3 16 163
4 14 162
4 15 129
4 16 130
8 16 152
7 16 137
12,624 2,652 330 NA 26,883 NA 26,883
12,061 2,968 165 NA 26,377 NA 26,377
11,493 3,353 248 NA 27,079 NA 27,079
10,932 3,576 310 NA 25,757 NA 25,757
9,592 3,781 369 NA 25,529 362 25,167
9,449 3,849 286 NA 25,179 247 24,932
9,306 3,915 255 NA 25,260 234 25,026
9,162 3,981 241 NA 25,357 234 25,123
9,019 4,047 390 NA 25,349 382 24,967
8,876 4,113 267 NA 24,956 258 24,698
8,733 4,179 412 0 24,787 405 24,382
8,792 4,178 187 0 24,705 179 24,526
8,619 4,156 179 0 24,348 172 24,176
8,371 4,084 251 0 22,845 236 22,609
8,394 4,167 276 0 22,598 263 22,335
7,774 4,156 184 0 21,549 171 21,378
7,365 4,086 356 0 21,102 341 20,761
7,381 4,103 289 0 20,728 236 20,492
Source: From www.epa.gov/airtrends/pdfs/noxnational.pdf.
10-305
q 2006 by Taylor & Francis Group, LLC
10-306
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10G.202 National Air Pollutant Emissions Estimates (Fires and Dust Excluded) for Major Pollutants Millions of Tons Per Year
Carbon monoxide (CO) Nitrogen oxides (NOx)c Particulate matter (PM)d PM10 PM2.5e Sulfur dioxide (SO2) Volatile organic compounds (VOC) Leadf Totalsg a b c d e f g
1985a
1990
1995
2000a
2004b
1970
1975
1980
197.3 26.9
184.0 26.4
177.8 27.1
169.6 25.8
143.6 25.2
120.0 24.7
102.4 22.3
87.2 18.8
12.2a NA 31.2 33.7
7.0 NA 28.0 30.2
6.2 NA 25.9 30.1
3.6 NA 23.3 26.9
3.2 2.3 23.1 23.1
3.1 2.2 18.6 21.6
2.3 1.8 16.3 16.9
2.5 1.9 15.2 15.0
0.221 301.5
0.16 275.8
0.074 267.2
0.022 249.2
0.005 218.2
0.004 188.0
0.003 160.2
0.003 138.7
In 1985 and 1996 EPA refined its methods for estimating emissions. Between 1970 and 1975, EPA revised its methods for estimating particulate matter emissions. The estimates for 2004 are preliminary. NOx estimates prior to 1990 include emissions from fires. Fires would represent a small percentage of the NOx emissions. PM estimates do not include condensable PM, or the majority of PM2.5 that is formed in the atmosphere from “precursor” gases such as SO2 and NOx. EPA has not estimated PM2.5 emissions prior to 1990. The 1999 estimate for lead is used to represent 2000 and 2003 because lead estimates do not exist for these years. PM2.5 emissions are not added when calculating the total because they are included in the PM10 estimate.
Source: From www.epa.gov/airtrends/2005/econ-emission.html.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10G.203 Carbon Monoxide (CO) National Emissions Totals (Thousands of Tons) Carbon Monoxide (CO) National Emissions Totals (Thousands of Tons) Source Category
1970
Fuel Comb. Elec. Util. Fuel Comb. Industrial Fuel Comb. Other Chemical & Allied Product Mfg Metals Processing Petroleum & Related Industries Other Industrial Processes Solvent Utilization Storage & Transport Waste Disposal & Recycling Highway Vehicles Off-highway Miscellaneous Miscellaneous Total Fires Total without Fires
237
276
1975
322
1980
291
1985
363
1990
349
1991
350
1992
363
1993
370
1994
372
1995
770
763
750
670
879
920
955
1,043
1,041
3,625 3,397
3,441 2,204
6,230 2,151
7,525 1,845
4,269 1,183
4,587 1,127
4,849 1,112
4,181 1,093
3,644 2,179
2,496 2,211
2,246 1,723
2,223 462
2,640 333
2,571 345
2,496 371
620
630
830
694
537
548
NA NA 7,059
NA NA 3,230
NA NA 2,300
2 49 1,941
5 76 1,079
163,231 11,371 7,909 NA 204,043 6,766 197,277
153,555 14,329 5,263 NA 188,398 4,433 183,965
143,827 16,685 8,344 NA 185,407 7,622 177,785
134,187 19,029 7,927 NA 176,844 7,289 169,555
110,255 21,447 11,122 NA 154,186 10,583 143,603
1996
1997
1998
1999
2000
2001
2002
2003
408
423
451
496
484
485
499
530
1,056
1,188
1,162
1,151
1,213
1,219
1,253
1,436
1,377
4,108 1,171
4,506 1,223
2,741 1,053
2,742 1,071
2,727 1,081
3,829 350
3,081 361
3,088 372
2,498 337
3,003 329
2,536 371
2,475 338
2,380 348
1,599 354
1,710 367
1,702 366
1,255 159
1,295 161
1,380 162
1,294 128
1,422 138
544
594
600
624
561
582
590
571
592
615
635
634
5 28 1,116
5 17 1,138
5 51 1,248
5 24 1,225
6 25 1,185
1 70 2,904
2 71 2,948
2 72 3,121
52 163 3,019
51 169 1,849
50 178 1,851
51 215 1,852
73 241 1,854
104,980 21,934 8,618 NA 147,128 10,583 136,545
99,705 22,419 6,934 NA 140,896 6,389 134,507
94,431 22,904 7,082 NA 135,901 6,537 129,364
89,156 23,389 9,658 NA 133,559 9,089 124,470
83,881 23,874 7,298 NA 126,777 6,705 120,072
78,606 24,358 15,016 0 128,858 14,502 114,356
75,849 23,668 7,316 0 117,910 6,793 111,117
73,244 23,689 7,184 0 115,380 6,654 108,726
68,708 23,316 11,410 0 114,541 10,508 104,033
68,061 24,178 12,964 0 114,467 12,049 102,418
63,476 24,677 8,676 0 106,262 7,744 98,518
62,161 24,450 16,498 0 112,054 15,654 96,401
58,807 24,446 14,033 0 106,886 13,180 93,706
Source: From www.epa.gov/airtrends/2005/pdfs/conational.pdf.
10-307
q 2006 by Taylor & Francis Group, LLC
10-308
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10G.204 Estimated Sea-Level Change by Year 2100, as a Result of Ice Wastage in a Carbon Dioxide-Enhanced Environment Ice Mass Contributing to Sea-Level Change Glaciers and small ice caps Greenland ice sheet Antarctic ice sheet a
Estimated Sea-Level Change (Range, ft) C0.3 to 1.0 C0.3 to 1.0 K0.3 to 3a
Most likely the change will range from 0 to 0.7 foot.
Source: From National Academy of Sciences, Committee on Glaciology, 1985.
Table 10G.205 Nationwide Impacts of Sea-Level Rise in the United States Sea-Level Rise
If densely developed areas are protected Shore protection costs ($ billions) Dryland lost (mi2) Wetlands lost (%) If no shores are protected Dryland lost (mi2) Wetlands lost (%) If all shores are protected Wetlands lost (%)
50 cm
100 cm
200 cm
32–43 2,200–6,100 20–45
73–111 4,100–9,200 29–69
169–309 6,400–13,500 33–80
3,300–7,300 17–43
5,100–10,300 26–66
8,200–15,400 29–76
38–61
50–82
66–90
Source: From U.S. Environmental Protection Agency, 1988, The potential effects of Global climate change on the United States, Draft Report to Congress, Data assembled by Titus and Greene.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-309
SECTION 10H
9
8
OFFSHORE WASTE DISPOSAL
Sewage Sludge Industrial Waste
Wet Tons (Millions)
7
6
5
4
3
2
1
0 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Year Note: For the purpose of this graph, Industrial Waste Category also includes Fish Waste and Construction Debris.
Figure 10H.168 Sewage sludge and industrial waste dumped in U.S. ocean waters from 1973 to 1986. (From U.S. EPA 1988, Report to Congress on Administration of the Marine Protection Research, and Sanctuaries Act of 1972, as Amended, 1984–1986, EPA-503/8-88/002.)
q 2006 by Taylor & Francis Group, LLC
10-310
Table 10H.206 Offshore Waste Disposal in the United States, 1973–1983 Offshore Waste Disposal in the United States, 1973–1983 1974
1975
1976
1977
3,643 4,898 974 0
3,642 5,010 770 0
3,322 5,040 396 0
2,633 5,271 315 0
1,784 5,134 379 0
2,548 5,535 241 0
2,577 6,442 107 0
2,928 7,309 89 0
0 11
0 16
0 6
0 9
0 15
0 18
0 45
0 11
1,408 0
938 0
120 0
100 0
60 0
0.17 0
0 0
0 0
0
12.3
0 0
240 0 5,051 4,890 974 240 0 11 0
1978
0
17.6
0
0
0
0 0
0 0
0 0
0 0
0 0
0 0
0.26 0
200 0
0 0
0 0
0 12.1
0 0
0 0
2,733 5,271 315 0 0 9 0
1,844 5,134 379 0 0 15 17.6
4,580 5,010 770 200 0 16 12.3
3,452 5,040 396 0 0 6 4.1
2,548.17 5,535 241 0 0 18 0
Thousand gallons (prior to incineration).
Source: From U.S. Environmental Protection Agency, Report to Congress January 1981–December 1983.
q 2006 by Taylor & Francis Group, LLC
1980
4.1
Note: Thousands of tons. a
1979
2,577 6,442 107 0 0 45 0
1981
1982
1983
1,063 7,670 0 0
283 8,312 0 0
0 13
0 31
0 0
0 0
0 0
700a
800a
0
2,271 6,703 0 0 0.0003 15
23.3 0
18.8 0
21.5 0
0 0
0 0
0 0
0 0
2,928.26 7,309 89 0 0 11 0
2,294.3 6,703 0 0 0.0003 15 700a
1,081.8 7,670 0 0 0 13 800a
304.5 8,312 0 0 0 31 0
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Atlantic (A) Industrial waste Sewage sludge Construction debris Solid waste/chemicals incinerated Explosives Wood incinerated Gulf of Mexico (B) Industrial waste Sewage sludge/construction debris solid waste/explosives/wood incinerated Chemicals incinerated Pacific (C) Industrial waste Sewage sludge/construction debris solid waste/explosives/wood incinerated Solid waste Wood incinerated Totals of (A), (B), (C) Industrial waste Sewage sludge Construction debris Solid waste Explosives Wood incinerated Chemical incinerated Atlantic (A)
1973
ENVIRONMENTAL PROBLEMS
10-311
Table 10H.207 Quantities of Sludge Dumped by Sewage Authorities in United States Ocean Waters, 1984–1986 Quantities in Thousand Wet Tons
Sewage Authorities Bergen County Utilities Authority NJ Joint Meeting of Essex and Union Counties NJ Linden Roselle Sewerage Authority NJ Middlesex County Utilities Authority NJ Nassau County Dept. of Public Works NY New York City Dept. of Environmental Protection NY Passaic Valley Sewerage Commission NJ Rahway Valley Sewerage Authority NJ Westchester County Dept. of Environmental Facilities NY
1984
1985
1986
255 335
309 341
353 238
235 966 520 3,085
95 1,039 576 3,345
93 1,018 709 3,591
854 160 539
884 187 470
1,317 98 506
6,999
7,246
7,923
Note: Nine municipal sewage authorities which had previously held interim permits are dumping sewage sludge pursuant to court orders issued by United States district courts in New York and New Jersey. These authorities have been required to submit permit applications to the USEPA, and currently are shifting their dumping from the 12-Mile Site to the Deepwater Municipal Sludge Dump Site, also known as the 106-Mile Site. Source: From U.S. Environmental Protection Agency, 1988, Report to Congress on Administration of the Marine Protection, Research, and Sanctuaries Act of 1972, as Amended, 1984–1986, EPA-503/8-88/002.
Table 10H.208 Quantities of Industrial Waste Materials Dumped in United States Ocean Waters by Special Permit, 1984–1986 Quantities in Thousand Wet Tons
USEPA Region II Acid waste site (NY Bight Apex) Allied Chemical Corp.a NY Deepwater Industrial Waste Site DuPont—Edge Moorb DE DuPont — Grassellic NJ USEPA Region IX Fish Wastes Site Samoa Packing, American Samoa Star Kist, American Samoa Oil Drilling Muds and Cuttings THUMS Long Beach, CA a b c d
1984
1985
1986
40
40
34
19 146
0 100
140 73
8 7.9
4.6 20.3
21.4 24.1
—d 220.9
2.7 167.6
13.6 306.1
Hydrochloric acid waste. Aqueous iron and miscellaneous chlorides and hydrochloric acid wastes. Solution of alkaline sodium wastes. No permit issued.
Source: From U.S. Environmantal Protection Agency, 1988, Report to Congress on Administration of the Marine Protection, Research, and Sanctuaries Act of 1972, as Amended, 1984–1986, EPA-503/888/002.
q 2006 by Taylor & Francis Group, LLC
10-312
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 10I
ENERGY DEVELOPMENT
Table 10I.209 Water-Quality Impacts of Various Energy Processes Frequency and Areal Scale Process
Water-Quality Impacts
Extraction and on-site processing Coal mining Underground mining Most damaging problems are acid mines drainage and disruption of aquifers, which affect pH, dissolved solids and specific ion content, and thus impair utility of streams and groundwaters for other uses. a. Surface waters b. Groundwaters Surface mining Surface disturbance results in high sediment transport potential. Discharge from mines may impair water quality through increase in dissolved solids and specific ions. a. Surface waters b. Groundwaters Beneficiation Release of chemical and physical treatment materials to streams can impair water quality. Leaching of solid wastes results in pollution similar to acid drainage. a. Surface waters b. Groundwaters Oil and gas extraction Primary recovery Principal problems are handling of saline waste waters. Leaks in casings, pipes, and storage ponds can release brines to groundwaters and streams. a. Surface waters b. Groundwaters Secondary and Principal concerns are escape of oil and tertiary recovery formation waters through casing, pipe, and storage tank leaks releasing organic and inorganic contaminants to the environment. a. Surface waters b. Groundwaters Offshore operation Blowouts with resulting massive oil contamination are a rare but catastrophic problem. Oil-shale extraction Most significant concerns relate to and processing potential for escape of noxious organic and inorganic contaminants to streams. Disruption of aquifers likely, low hazard due to limited occurrence of oil shale. Undergoing mining Concerns center on disruption of aquifers and disposal of sometimes saline dewatering by injection. a. Surface waters b. Groundwaters
Regional
Local
Time Frame
Severity
M
L L
3 3
Poor Ineffective
L
M S
3 1
Fair Good
L
M M
2 1
Fair Fair
M
S M
2 3
Good Fair
L L
S L S
2 3 3
Good Good Good
L L
L L
1 1
Good Good
H
H
H
M
L
Effectiveness of Control
(Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10I.209
10-313
(Continued) Frequency and Areal Scale
Process Surface mining
Surface retorting
In-situ recovery
Tar-sands extraction and processing Surface mining and processing
In-situ recovery
Geothermal extraction Vapor-dominated systems
Water-dominated systems
Water-Quality Impacts
Regional
Surface disturbance results in high sediment transport potential. a. Surface waters b. Groundwaters Concerns center on potential for escape of organic and inorganic contaminants from plant site to accidental leaks and spills. A more significant concern is escape of contaminants from waste piles through leaching. a. Surface waters b. Groundwater Underground effects mainly involve contamination of groundwaters by organic and inorganic compounds produced in combustion; where applicable surface effects are similar to those of surface retorting. a. Surface waters b. Groundwaters
Main concerns are accidental release of organic contaminants to streams and potential for failure of waste impoundment structures leading to massive downstream damage from fine waste. a. Surface waters b. Groundwaters Concerns center on potential for escape of noxious organic and inorganic chemicals to groundwaters. a. Surface waters b. Groundwaters
Main concerns are escape of noxious inorganic contaminants to groundwater from waste disposal, blowouts, and leaks in casings and pipes. a. Surface waters b. Groundwaters Main problems involve escape of noxious and toxic constituents of thermal waters to surface and groundwaters from production operations, waste disposal, blowouts, and leaks in casings and pipes. a. Surface waters b. Groundwaters
Local
Time Frame
Severity
L L
S M
2 1
Excellent Excellent
M L
L L
2 1
Good to fair Good
L M
S L
2 3
Excellent Untested
M L
S L
2 1
Good to fair Untested
L M
S L
2 3
Untested Untested
L M
S L
2 1
Good Fair
H
M L
4 3
Fair Fair
H
Effectiveness of Control
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-314
Table 10I.209
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Frequency and Areal Scale
Process
Water-Quality Impacts
Uranium mining and milling Underground mining Escape of radioactive and other inorganic contaminants to the environment through disposal of dewatering waste and escape from tailings ponds can seriously impair downstream water uses. a. Surface waters b. Groundwaters Surface mining Some concern about high sediment transport potential, but main source of concern is potential for radioactive contamination of streams and groundwaters through leakage from tailings disposal ponds. a. Surface waters b. Groundwaters Solution mining Main concern centers on escape of radioactive and inorganic process chemicals to off-site groundwaters. a. Surface waters b. Groundwater Transportation Coal slurry lines Main concern centers on pipeline breaks and the potential for contamination of streams. a. Surface waters b. Groundwaters Oil pipelines Most significant problems are pipeline breaks and resulting oil pollution of streams. a. Surface waters b. Groundwaters Oil tankers Escape of oil to marine environment as result of shipwrecks can be catastrophic to marine life over wide areas. Refining Oil refining Controlled release of waste water and accidental releases of organic and inorganic contaminants are most significant issues; concerns center on impairment of water supplies of other water users. a. Surface waters b. Groundwaters Nuclear fuel cycle Accidental releases of radioactive materials to surface and groundwaters from processing and reprocessing plants are main concern; both highand low-level waste disposal also have potential for escape of radioactivity to the water environment. Controlled release of nonradioactive inorganic chemicals adds to chemical load of receiving waters. a. Surface waters b. Groundwaters
Regional
Local
Time Frame
Severity
M
S L
4 4
Good Poor
M
S L
4 4
Good Poor
L L
S L
1 4
Excellent Excellent
L L
S L
2 1
Excellent Excellent
M L
S L M
2 1 3
Fair Good Poor
M L
M L
3 3
Good Good
M M
S L
4 4
Good Fair to poor
M
M
L
Effectiveness of Control
(Continued)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10I.209
10-315
(Continued) Frequency and Areal Scale
Process Conversion Fossil-fueled steam electric generation
Nuclear steamelectric generation
Geothermal electric generation
Hydroelectric generation
Coal conversion processes
Water-Quality Impacts Controlled release of cooling-system blowdown to streams and/or leakage from cooling ponds add dissolved solids and treatment chemicals to stream loads. Once-through cooling contributes to thermal pollution. a. Surface waters b. Groundwater Small controlled releases of radioactive materials and discharge of coolingsystem blowdown add radioactivity, dissolved solids, and treatment chemicals to stream loads. Accidental release of radioactivity through reactor containment failure could endanger human life over wide area. a. Surface waters b. Groundwaters Disposal of waste and condensate containing noxious inorganic compounds and thermal load to streams impair downstream uses and damages aquatic life. a. Surface waters b. Groundwaters Changes in stream temperature and dissolved gases due to storage and reservoir releases seriously alter the aquatic environment. a. Surface waters b. Groundwaters Controlled release of cooling system blowdown and accidental releases of organic and inorganic contaminants, as in oil refining and with similar concern about impairment of other water uses. a. Surface waters b. Groundwaters
Regional
Local
Time Frame
Severity
L
M L
2 1
Good Good
L
M L
5 4
Good Good
H
M L
4 3
Fair Fair
L
L S
2 1
Fair Good
M L
M L
3 3
Good Good
M
M
H
H
Effectiveness of Control
Note: Frequency, H, high, M, medium, L, low. Time frame, L, longer than 10 yrs, M, 1 to 10 yrs, S, less than 1 yr, Severity, 5, direct threat to human life, 4, hazardous to human health, 3, severe economic damage, 2, damage to biota, 1, aesthetic or other Intangible harm. Source: From Davis, G.H., 1985, Water and Energy: Demand and Effects, Unesco Studies and Reports in Hydrology 42. Copyright Unesco. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
10-316
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 10J
WATERBORNE DISEASES/HEALTH HAZARDS
Microbial pathogens
Waterborne disease Animals
Humans
Water environment
Figure 10J.169 Waterborne disease interactions in the water environment, (From Cotruvo, J.A., et al., 2004, Waterborne Zoonoses, Identification, Causes, and Control, Published on Behalf of the World Health Organization by IWA Publishing, www.who.int.)
60 Legionella species* AGI Chemical Viral Parasitic Bacterial
Number of outbreaks
50 40 30 20 10 0 1971
1974
1977
1980
1983
1986
1989
1992
1995
1998
2001
Year * Beginning in 2001, Legionnaires disease was added to the surveillance system, and Legionella species were classified separately. Acute gastrointestinal illness of unknown etiology.
Figure 10J.170 Number of waterborne-disease outbreaks (nZ764) associated with drinking water, by year and etiologic agent in the United States, 1971–2002. (From Blackburn, B.G. et al., 2004, Surveillance of waterborne-disease outbreaks associated with drinking water — United States, 2001–2002, MMWR Surveillance Summaries, vol. 53, no. SS-08, pp. 23–45, www.cdc.gov.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-317
Number of outbreaks
60
Individual Noncommunity Community
50 40 30 20 10 0
1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001
Year * Excludes outbreaks of Legionnaires disease
Figure 10J.171 Number of waterborne disease outbreaks (nZ758)* associated with drinking water, by year and type of water system — United States, 1971–2002. (From Cotruvo, J.A. et al., (ed.), 2004, Waterborne Zoonoses, Identification, Causes, and Control, Published on Behalf of the World Health Organization by IWA Publishing, Copyright q World Health Organization 2004, wlio.int.)
100 90 80
Outbreaks
70 60 50 40 30 20 10 0 y y ch ar ar ar ru nu M b a e J F
Ap
r il
M
ay
n Ju
e
ly Ju
g Au
us
t
Se
pt
em
be
r O
o ct
be
r
N
em ov
be
r
D
ec
em
be
r
Figure 10J.172 Outbreaks of waterborne disease by month, 1973–1998. (From Gleick, P.H. et al., 2004, The World’s Water 2004–2005, The Biennial Report on Freshwater Resources, Island Press, Washington, www.worldwater.org.)
q 2006 by Taylor & Francis Group, LLC
10-318
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Giardiasis
52% 38%
Undefined AGI Shigellosis
2%
Campylobacterosis
2%
Viral AGI
2%
Hepatitis A
2%
Salmonellosis
2% 10
20
30
40
50
60
Percent of Waterborne Outbreaks in Surface Water Systems (n = 123)
7
3500
6
3000
5
2500
4
2000
3
1500
2
1000
1
500
Cases
Outbreaks
Figure 10J.173 Etiology of waterborne disease outbreaks in untreated, disinfected-only, and filtered surface water systems in the United States, 1971–1985. (From Craun, G.F., 1988, Surface water supplies and health, J. American Water Works Association, vol. 80, no. 2. Copyright AWWA. Reproduced with permission.)
Outbreaks Cases
0
0 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20
Year Figure 10J.174 Outbreaks of Waterborne Disease by Month, 1973–1998 (From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-319
100 90 4
80 60 50
2
40
Cases
Outbreaks
70 3
Outbreaks Cases
30 1
20 10
0
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0
Year Figure 10J.175 Outbreaks of waterborne disease associated with private water supplies in England and Wales from 1980–2000. (From Stanwell-Smith, R., Anderson, Y., and Levy, D., 2003, National surveillance systems in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida. Reproduced with permission.)
Number of outbreaks
10 8 6 4 2 0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month
Figure 10J.176 Seasonal distribution of outbreaks associated with both private and public drinking water supplies in England and Wales from 1991 to 2000. (From Stanwell-Smith, R., Anderson Y., and Levy, D., 2006, National Surveillance Systems in Hunter, P.R., Waite, M., and Ronchi, El. (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida.)
14
16000
12
14000 12000 10000
8
8000 6
Cases
Outbreaks
10
No of outbreaks Cases
6000
4
4000
2
2000
0
0
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
Year Figure 10J.177 Outbreaks and cases of waterborne disease in Sweden, 1980–1999. (From Stanwell-Smith, R., Anderson Y., and Levy, D., 2006, National Surveillance Systems in Hunter, P.R., Waite, M., and Ronchi, El. (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida.)
q 2006 by Taylor & Francis Group, LLC
10-320
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Salmonella Shigella Campylobacter Tox. prod. E. coli Giardia Entamoeba Cryptospordium Calicivirus Unknown 0
20
40
60
80
100
Figure 10J.178 Microbial agents associated with waterborne outbreaks in Sweden, 1980–1999. (From Stanwell-Smith, R., Anderson, Y., and Levy, D., 2003, National surveillance systems in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida. Reproduced with permission.)
40
Other* Dermatitis
Number of outbreaks
35
Meningoencephalitis† Gastroenteritis
30 25 20 15 10 5 0
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
Year * Includes keratitis, conjunctivitis, otitis, bronchitis, meningitis, hepatitis, leptospirosis, Pontiac fever, and acute respiratory illness. † Also includes data from report of ameba infections.
Number of outbreaks
Figure 10J.179 Number of waterborne-disease related outbreaks (nZ445) associated with recreational water by year and illness in the United States, 1978–2002. (From Yoder, J.S. et al., 2004. Surveillance for waterborne-disease outbreaks associated with recreation water — United States, 2001–2002, MMWR Surveillance Summary, vol. 53, no. SS08, pp 1–22, October 22, 2004, www.cdc.gov.)
18 16 14 12 10 8 6 4 2 0
Other* Meningoencephalitis Dermatitis Gastroenteritis
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2001–2002 * Acute respiratory illness, Pontiac fever, or chemical exposure.
Figure 10J.180 Number of waterborne-disease related outbreaks (nZ65) associated with recreational water by illness and month in the United States, 2001–2002. (From Yoder, J.S. et al., 2004, Surveillance for waterborne-disease outbreaks associated with recreation water — United States, 2001–2002, MMWR Surveillance Summary, vol. 53, no. SS08, pp 1–22, October 22, 2004, www.cdc.gov.)
q 2006 by Taylor & Francis Group, LLC
Suitability of climate conditions for the transmission of malaria 2004 climate suitable, malaria endemic
6 Malaria around the world
5 4
2004 1
Malaria transmission occurs
3
2 3
Limited risk
2
No malaria
1 climate unsuitable, malaria absent
Africa bears the overwhelming burden of malaria. It is home to the deadliest form of the malaria parasite and to climatic conditions where mosquitoes fluorish. Local environmental conditions, such as wetlands and drainage patterns, also influence the abundance of mosquitoes Consequently, dams and irrigation schemes must be carefully planned and managed in order to reduce opportunities for mosquitoes to breed
ENVIRONMENTAL PROBLEMS
Malaria in Africa
3 1
2
2 1
2
1
3 5
1 4
3 2
6
1
978 661
Child deaths from malaria Annual deaths from malaria of children under five years 2002 by WHO region
Other vector-borne diseases Schistosomiasis
Flat worms, whose life cycle partly takes place in freshwater snails, burrow through the skin. 200 million people, many of them children, are currently infected with schistomiasis
Japanese encephalities
This is a virus transmitted by mosquitoes in Asia. 90% of the cases occur in children under 5 yrs
Leishmaniasis
Transmitted by sand flies, this parasite causes skin lesions and damage to internal organs. It killed 59,000 people in 2001
Dengue fever
Mosquitoes transmit the virus, which kills more than 10,000 children every yr
Lymphatic filariasis
Worms lodging in the lymphatic system can cause deformations in children as young as 12 yrs
2
6
3
4
1
57 877 Africa
5
4 2 3
5
51 059
Figure 10J.181 Malaria. (From Gordon, B., Mackay, R., and Rehfuess, E., 2004, Inheriting the world: The Atlas of Children’s Health and the Environment, World Health Organization, www.who.int.) q 2006 by Taylor & Francis Group, LLC
10-321
9443 44 1266 South-East Eastern Western Europe The Asia Mediterranean Pacific Americas
10-322
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
1,000,000 900,000 800,000
Comprehensive monitoring begins
Number of cases
700,000 600,000 500,000 400,000 300,000 200,000 100,000
19
7 19 2 73 19 7 19 4 75 19 7 19 6 77 19 7 19 8 79 19 8 19 0 81 19 8 19 2 83 19 8 19 4 85 19 8 19 6 87 19 8 19 8 89 19 9 19 0 91 19 9 19 2 93 19 9 19 4 9 19 5 96 19 9 19 7 98 19 9 20 9 00
0
Figure 10J.182 Dracunculiasis (guinea worm) cases worldwide, 1972–2000. (From Gleick. et al., 2002. The world’s water, The Biennial Report on Freshwater Resources, 2002–2003, Island Press, Washington, www.worldwater.org. Reproduced with permission.)
700,000
100% Sixth pandemic
Seventh pandemic
90%
600,000
80% 70% 60%
400,000
50% 300,000 200,000
Case fatality rate (Ploynomial trend)
Africa The Americas
40%
Case fatality rate
Number of casees
500,000
30%
Asia 20% 100,000 10% 0%
19
50 19 52 19 54 19 5 19 6 5 19 8 60 19 6 19 2 64 19 66 19 68 19 70 19 72 19 74 19 76 19 78 19 80 19 8 19 2 8 19 4 86 19 8 19 8 90 19 92 19 94 19 96 19 98
0
Figure 10J.183 Cholera, reported number of cases and case fatality rates, 1950–1998. (From World Health Organization, WHO Report on Global Surveillance of Epidemic-Prone Infectious Diseases-Cholera, www.who.int.)
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-323
1,000
76 71
22 11
10
10
African (child: high; adult: high) Southeast Asian (child: high; adult: high) Eastern Mediterranean (child: high; adult: high) Eastern Mediterranean (child: low; adult: low) Southeast Asian (child: low; adult: low) American (child: high; adult: high) American (child: low; adult: low) Western Pacific (child: low; adult: low) European (child: low; adult: low) European (child: low; adult: high) European (child: very low; adult: high) American (child: very low; adult: very low)
0
Western Pacific (child: very low; adult: very low)
11 11 11
1
African (child: high; adult: very high)
DALYs per 1,000 (log scale)
100
237 234 164163 146 116
Region (mortality strata)
Figure 10J.184 Diarrheal disease from water, sanitation, and hygiene: DALYs per 1,000 children (under 5 years old) by region. (From Pru¨ss, A., Kay, D., Fewtrell, L., and Bartram, J., 2002, Estimating the burden of disease from water, sanitation, and hygiene at a global level, Environmental Health Prerspectives, vol. 110, no. 5, May 2002, www.ehponline.org.)
140,000,000 No millennium goal: Low 120,000,000
No millennium goal: High Millennium goal: Low
Total deaths
100,000,000
Millennium goal: High
80,000,000 60,000,000 40,000,000 20,000,000
20 20
20 18
20 16
20 14
20 12
20 10
20 08
20 06
20 04
20 02
20 00
-
Figure 10J.185 Total water-related deaths between 2000 and 2020. (From Gleick, P. H., 2002, Dirty water: estimated deaths from waterrelated diseases 2000–2020, Pacific Institute Research Report, q 2002 Pacific Institute for Studies in Development, Environment, and Security, on-line at www.pacinst.org.)
q 2006 by Taylor & Francis Group, LLC
10-324
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Blood lead concentrations, micrograms per deciliter (mg/dL)
30
25 90th percentile (10 percent of children have this blood lead level or greater) 20
15
101,2
5
0
Median value (50 percent of children have this blood lead level or greater) 1976 − 1980
1988 − 1991
1992 − 1994
1999 − 2000
Figure 10J.186 Concentration of lead in blood of children age 5 and under, 1976–1980, 1988–1991, 1992–1994, 1999–2000. (From United States Environmental Protection Agency, 2003, EPA’s Draft Report on the Environment, 2003, EPA 600-R-03050. U.S. Environmental Protection Agency. America’s Children and the Environment Measures of Contaminants, Body Burdens, and Illnesses, Second Edition, February 2003. Data from CDC National Center for Health Statistics, National Health and Nutrition Examination Survey, 1976–2000, www.epa.gov. 1 10 mg/dL of blood lead has been identified by CDC as elevated, which indicates the need for interventions. (CDC Preventing Lead Poisoning in Young Children, 1991.) 2 Recent research suggests that blood levels less than 10 mg/dL may still produce subtle, subclinical health effects in children. (Schmidt, C.W. Poisoning Young Minds, 1999.)
Table 10J.210 Magnitude of Waterborne Disease Outbreaks in the United States, 1920–1980 Frequency of Occurrence (Number of Outbreaks) Size of Outbreak (Cases of Illness) !2 2–5 6–10 11–25 26–50 51–100 101–200 201–300 301–500 501–1,000 1,001–3,000 3,001–5,000 5,001–10,000 O10,000 Total
Community Systems
Noncommunity Systems
Individual Systems
All Systems
3 26 71 145 94 68 63 28 29 29 28 9 5 5 603
0 35 50 119 124 82 50 14 14 9 3 0 0 0 500
3 95 81 63 34 16 6 2 1 1 0 0 0 0 302
6 156 202 327 252 166 119 44 44 39 31 9 5 5 1,405
Source: From Craun, G.F., 1986, Waterborne Diseases in the United States. Copyright CRC Press, Inc., Boca Raton, FL. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-325
Table 10J.211 Etiology of Waterborne Disease Outbreaks in the United States, 1920–1984 Time Period 1920–1925 1926–1930 1931–1935
1936–1940
1947–1945
1946–1950
1951–1955
1956–1960
1961–1965
Disease
Outbreaks
Cases
Deaths
Typhoid fever Gastroenteritis Typhoid fever Gastroenteritis Typhoid fever Gastroenteritis Amebiasis Hepatitis A Gastroenteritis Typhoid fever
127 11 100 17 85 25 1 1 91 60
7,294 27,756 3,072 63,902 2,114 7,664 1,412 28 77,403 1,281
435 0 234 0 140 0 98 0 2 80
Shigellosis Chemical poisoning Amebiasis Gastroenteritis Thyhoid fever Shigellosis Salmonellosis Paratyphoid fever Chemical poisoning Gastroenteritis Typhoid fever
10 1
3,308 92
0 0
1 126 56 10 1 2
4 36,118 1,450 2,817 12 14
0 3 46 6 0 0
1
30
0
87 18
10,718 264
0 5
Hepatitis A Shigellosis Paratyphoid fever Leptospirosis Tularemia Gastroenteritis Typhoid fever Hepatitis A Shigellosis Amebiasis
5 4 1
173 2,321 5
0 1 0
1 1 31 7 7 4 1
9 4 5,297 103 340 732 31
0 0 0 0 0 1 2
Salmonellosis Poliomyelitis Gastroenteritis Typhoid fever Hepatitis A Shigellosis
1 1 21 13 11 7
2 16 2,306 128 417 3,081
0 0 0 3 0 0
Chemical poisoning Salmonellosis Amebiasis Tularemia
3
14
4
2 1 1
17 5 2
0 0 0
Gastroenteritis Typhoid fever Hepatitis A Shigellosis
18 11 10 7
20,627 63 334 520
0 0 0 4
Time Period
1966–1970
1971–1975
1976–1980
Disease
Outbreaks
Cases
Deaths
Chemical poisoning Salmonellosis Giardiasis Paratyphoid fever Gastroenteritis Hepatitis A Shigellosis Typhoid fever Salmonellosis Toxigenic E. coil AGI Chemical poisoning Amebiasis
5 3 1 1 21 19 14 4 4 4
30 16,425 123 5 5,922 562 1,215 45 226 188
6 3 0 0 0 1 0 0 0 4
4 3
15 39
0 2
Giardiasis Gastroenteritis Shigellosis Hepatitis A Giardiasis Chemical poisoning
2 63 14 14 13 13
53 17,752 2,803 368 5,136 513
0 0 0 0 0 0
Typhoid fever
4
222
0
Salmonellosis Toxigenic E. coil AGI Gastroenteritis Giardiasis Chemical poisoning
2 1
37 1,000
0 0
114 26 25
22,093 14,416 3,081
0 0 1
Shigellosis Viral gastroenteritis Salmonellosis Campylobacteriosis Hepatitis A
10 10 6 3 2
2,392 3,147 1,113 3,821 95
0 0 0 0 0
Gastroenteritis, undetermined etiology Giardiasis Chemical poisoning Shigellosis Hepatitis A
59
20,772
0
48 11 7 7
4,048 179 532 274
0 0 0 0
Viral gastroenteritis, Norwalk agent Salmonellosis
7
1,077
0
2
1,150
0
Campylobacterosis
6
993
0
Viral gastroenteritis, rotavirus Cholera Yersiniosis Cryptosporidium Entamoeba
1
1,761
0
1 1 1 1
17 16 117 4
0 0 0 0
1981–1984
Source: From Craun, G.F., 1986, Waterborne Diseases in the United States, Copyright CRC Press, Inc., Boca Raton, FL. Reprinted with permission; amended with statistics from Center for Disease Control Annual Summaries, 1981–1984.
q 2006 by Taylor & Francis Group, LLC
10-326
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.212 Etiologic Agents Most Frequently Identified in Waterborne Outbreaks of Infectious Diseases in the United States, 1971–1992 Etiologic Agent
Outbreaks
Cases of Illness
118 57 24 29 13 12 7 23 283
26,733 9,967 10,908 807 5,257 2,370 17,194 4,243 77,479
Giardia lamblia Shigella Norwalk-like virus Hepatitis A Campylobacter Salmonella Cryptosporidium parvum All othersa Total a
Toxigenic E. coli, Yersinia, rotavirus, S. typhi, V. cholera and others.
Source: From Chlorine Chemistry Council, 1997, Drinking Water Chrlorination White Paper, A Review of Disinfection Practices and Issues, June 12, 1997, www.c3.org.
Table 10J.213 Etiology of Waterborne Disease Outbreaks in the United States, by Type of Water System, 1991–2000 Community Water Systemsa Etiological Agent Giardia Cryptosporidiumd Campylobacter jejuni Salmonellae, nontyphoid E. coli E. coli O157:H7/C. jeuni Shigella Plesiomonas shigelloides Non-01 V.cholerae Hepatitis A virus Norwalk-like viruses Small, round-structured virus Chemical Undetermined Total
Non-community Water Systemsb
Individual Water Systemsc
All Systems
Outbreaks
Cases
Outbreaks
Cases
Outbreaks
Cases
Outbreaks
Cases
11 7 1 2 3 0 1 0 1 0 1 1
2,073 407,642 172 749 208 0 83 0 11 0 594 148
5 2 3 0 3 1 5 1 0 1 4 1
167 578 66 0 39 781 484 60 0 46 1,806 70
6 2 1 1 3 0 2 0 0 1 0 0
16 39 102 84 12 0 38 0 0 10 0 0
22 11 5 3 9 1 8 1 1 2 3 2
2,256 408,259 340 833 259 781 605 60 11 56 2,400 218
18 11 57
522 10,162 422,364
0 38 64
0 4,837 8,934
7 11 34
9 238 548
25 60 155
531 15,237 431,846
Note: Data are compiled from CDC Morbidity and Mortality Weekly Report Surveillance Summaries for 1991–1992, 1993–1994, 1995– 1996, 1997–1998 and 1999–2000. Figures include adjustments to numbers of outbreaks and illness cases originally reported, based on more recent CDC data. a b c d
Community water systems are those that serve communities of an average of at least 25 year-round residents and have at least 15 service connections. Non-community water systems are those that serve an average of at least 25 residents and have at least 15 service connections and are used at least 60 days yK1. Individual water systems are those serving less than 25 residents and have less than 15 service connections. There were 403,000 cases of illness reported in Milwaukee in 1993.
Source: From Chlorine Chemistry Council, 2003, Drinking Water Chlorination, A Review of Disinfection Practices and Issues, February 2003, www.c3.org.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-327
Table 10J.214 Waterborne-Disease Outbreaks (nZ25) Associated with Drinking Water, by Etiologic Agent and Type of Water System (Excluding Outbreaks Caused by Legionella Species) — United States, 2001–2002 Type of Water Systema Community Etiologic Agent
Outbreaks
Unknown AGlb Viruses Norovirus Parasitic Giardia intestinalis Cryptosporidium species Naegleria fowleri Chemical Copper Copper and other minerals Ethyl benzene, toluene, xylene Ethylene glycol Bacterial (other than Legionella species) Campylobacterjejuni C. jejuni and Yersinia enterocolitica Escherichia coli O157:H7 Total Percentage a
b
Noncommunity
Cases
Outbreaks
Cases
Individual Outbreaks
Cases
Total Outbreaks
Cases
0 0 1 1 3 2 0 1 3 2 0 0
0 0 71 71 14 12 0 2 33 30 0 0
2 2 4 4 0 0 0 0 1 0 1 0
98 98 656 656 0 0 0 0 4 0 4 0
5 5 0 0 2 1 1 0 1 0 0 1
19 19 0 0 16 6 10 0 2 0 0 2
7 7 5 5 5 3 1 1 5 2 1 1
117 117 727 727 30 18 10 2 39 30 4 2
1 0
3 0
0 1
0 12
0 2
0 15
1 3
3 27
0 0
0 0
0 1
0 12
1 0
13 0
1 1
13 12
0 7 (28.0)
0 118 (12.6)
0 8 (32.0)
1 25 (100.0)
2 940 (100.0)
0 770 (81.9)
1 10 (40.0)
2 52 (5.5)
Com, community; Ncom, noncommunity; Ind, individual. Community and noncommunity water systems are public water systems that serve O15 serv connections or an average of R25 residents for R60 days/year. A community water system serves year-round residents of a community, subdivision, mobile home park with R15 service connections or an average of R25 residents. A noncommunity water system can be nontransient or transient. Nontransient systems serve R25 of the same persons for O6 months of the year, but not yearround (e.g., factories or schools), whereas transient systems provide water to places in which persons do not remain for long periods of time (e.g., restaurants, highway rest stations, or parks). Individual water systems are small systems not owned or operated by a water utility that serve !15 connections or !25 persons. Outbreaks associated with water not intended for drinking (e.g., lakes, springs and creeks used by campers and boaters, irrigation water, and other nonpotable sources with or without taps) are also classified individual systems. Acute gastrointestinal illness of unknown etiology.
q 2006 by Taylor & Francis Group, LLC
10-328
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.215 Total Outbreaks of Drinking-Water Related Disease, United States, 1973–2000 Schneiderb Year 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Total a b c
CDC Datac
Heinz Centera Outbreaks
Outbreaks
Cases
21 20 16 29 26 22 26 29 24 30 35 20 16 18 11 15 12 10 11 18 8 11 11 3 4 7
22 17 33 41 49 32 40 40 26 25 22 15 15 12 14 15 27 17 13 16 6 7 10
3,860 1,911 11,435 6,761 20,005 4,430 3,456 20,905 1,755 2,117 1,569 22,149 2,159 2,540 1,748 12,960 4,724 404,183 1,178 2,375 192 304 1,734
453
514
534,450
Outbreaks
Cases
22 15 13 13 14 15 27 18 12 16 6 7 10 15 24 227
25,846 (1986–1988)
17,464 (1991–1992) 405,366 (1993–1994) 2,567 (1995–1996) 2,038 (1997–1998) 2,068 (1999–2000) 455,349
Heinz Center State of the Nations; Ecosystem report, heinzctr.org/ecosystems/fr_water/datasets/freshwater_waterborne_ disease_ outbreaks.shtm. Data compiled by Dr. Orren D. Schneider and used by permission, water.sesep.drexel.edu/outbreaks/US_summaryto1998.htm. Data part of the Center for Disease Control. Surveillance for Waterborne-Disease Outbreaks program. Waterborne Disease Outbreaks, 1986–1988, www.cdc.gov/epo.mmwr/preview/mmwrhtml/00001596.htm; Waterborne-Disease Outbreaks, 1991–1992, www.cdc.gov/ epo.mmwr/preview/mmwrhtml/000025893.htm; Waterborne-Disease Outbreaks, 1993–1994, www.cdc.gov/epo.mmwr/preview/ mmwrhtml/0004088.htm; Waterborne-Disease Outbreaks, 1995–1996, www.cdc.gov/epo.mmwr/preview/mmwrhtml/00055820.htm; Waterborne-Disease Outbreaks, 1997–1998, www.cdc.gov/epo.mmwr/preview/mmwrhtml/ss4904a1.htm; Waterborne-Disease Outbreaks, 1999–2000, www.cdc.gov/epo.mmwr/preview/mmwrhtml/ss5108a1.htm.
Source: From World’s Water 2004–2005, by Peter Gleick. H. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC.
Table 10J.216 Number of Waterborne Outbreaks by Type of Water System and Etiology in the United States, 1971–2000 Water System Type Non-community Community Treated and untreated recreational watera Individual All water systems a
Unidentified Agents
Protozoa
Viruses
Bacteria
Chemicals
228 98 40
31 96 98
27 20 18
43 40 97
11 54 5
39 405
16 241
9 74
18 198
21 91
An outbreak attributed to algal toxins is not included. An outbreak of both Shigella and Cryptosporidium is included in the protozoa category.
Source: From Cotruvo, J.A. et al., (ed.), 2004, Waterborne Zoonoses, Identification, Causes, and Control, Published on Behalf of the World Health Organization by IWA Publishing, Copyright q World Health Organization 2004, www.who.int.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-329
Table 10J.217 Drinking-Waterborne Outbreaks of Zoonotic Agents in the United States, 1971–2000 Type of Water Systema Etiologic Agent
Total
C
NC
I
GW
SW
M/U
126 19 15 15 11 2 1 1
83 9 11 11 4 — — —
29 7 2 2 4 1 1 1
14 3 2 2 3 1 — —
31 12 8 11 8 2 1 1
90 3 5 2 2 — — —
5 4 2 2 1 — — —
190
118
47
25
74
102
14
Giardia Campylobacter Cryptosporidium Salmonella E. coli O157:H7 Yersinia E. coli O6:H16 E. coli O0157:H7 and Campylobacter Total a b
Water Sourceb
C, community; NC, noncommunity; I, individual. GW, groundwater; SW, surface water; M/U, mixed or unknown.
Source: From Cotruvo, J.A. et al., (ed.), 2004, Waterborne Zoonoses, Identification, Causes, and Control, Published on Behalf of the World Health Organization by IWA Publishing, Copyright q World Health Organization 2004, www.who.int.
Table 10J.218 Waterborne Outbreaks Reported in United States Drinking Water Systems by Type of System and Water Source, 1991–1998 Number of Waterborne Outbreaks Water Source Groundwatera Surface waterb Unknown Totals a b
Community Systems
Non-Community Systems
Individual Systems
All Water Systems
22 22 3 47
52 2 8 62
11 1 5 17
85 25 16 126
Surfacewater, lakes, reservoirs, rivers, streams. Groundwater, wells and springs.
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991-1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
Table 10J.219 Etiology of Waterborne Outbreaks in United States Drinking Water Systems, 1991–1998; Number of Outbreaks by Type of Water System and Water Source Community Water Systems Etiological Agent Undetermined Chemical Giardia Cryptosporidium Norwalk-like virus Campylobacter Salmonella, non-typhoid Escherichia coli O157:H7 Shigella Vibrio cholerae Hepatitis A virus Plesiomonas shigelloides Total
Non-Community Water Systems
SurfaceWater
GroundWater
Unknown Source
SurfaceWater
GroundWater
Unknown Source
5 7 6 3 1
1 9 4 3 1 1 1 1 1
1
1
36
5 1
1
1
3 1 2
1
3 5
1
1
22
22
3
2
1 1 52
8
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
q 2006 by Taylor & Francis Group, LLC
10-330
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.220 Etiology of Waterborne Outbreaks Reporting in United States Drinking Water Systems; Cases of Illness by Type of Water System and Water Source, 1991–1998 Community Water Systems Etiological Agent Undetermined Chemical Giardia Cryptosporidium Norwalk-like virus Campylobacter Salmonella, non-typhoid E. coli O157:H7 Shigella Vibrio cholerae Hepatitis A virus Plesiomonas shigelloides Total
Noncommunity Water Systems
SurfaceWater
GroundWater
Unknown Source
SurfaceWater
GroundWater
Unknown Source
10,210 104 1,937 403,343 148
18 409 49 4,294 594 172 625 157 83
67
250
4,789
101 2
77
27
128 551 51
7
39 484
27
11
415,742
6,401
155
277
46 60 6,148
137
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
Table 10J.221 Etiology of Waterborne Outbreaks in Individual Water Systems in the United States Outbreaks and Cases of Illness by Water Source, 1991–1998 Outbreaks Etiological Agent Undetermined Chemical Giardia Cryptosporidium E. coli Shigella Hepatitis A virus Total
Cases of Illness
SurfaceWater
GroundWater
Unknown Source
SurfaceWater
GroundWater
Unknown Source
0 0 1 0 0 0 0 1
2 3 1 2 1 1 1 11
1 3 0 0 0 1 0 5
0 0 2 0 0 0 0 2
43 3 10 39 3 33 10 141
8 5 0 0 0 5 0 18
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-331
Table 10J.222 Waterborne Disease Outbreaks Caused by Use of Contaminated, Untreated Surface Water in the United States, 1920–1980 Type of Water System Community Deficiency Contamination on watershed Use of surface water for supplemental source Overflow of sewage or outfall near water intake Flooding, heavy rains Dead animals in reservoir Insufficient data Total a
a
Noncommunity a
Individual a
All a
OB
Cases
OB
Cases
OB
Cases
OB
Cases
26
3,498
3
57
12
257
41
3,812
7
3,613
7
245
2
115
16
3,973
3
103
3
39
5
87
11
229
2
125
1
93
1
77
4
295
—
—
1
100
—
—
1
100
27 65
1,228 8,567
24 39
726 1,260
28 48
436 972
79 152
2,390 10,799
Number of outbreaks.
Source: From Craun, G.F., 1986, Waterborne Diseases in the United States. Copyright CRC Press, Inc., Boca Raton, FL. Reprinted with permission.
Table 10J.223 Waterborne Disease Outbreaks Caused by Use of Contaminated, Untreated Groundwater (Springs) in the United States, 1920–1980 Type of Water System Community Deficiency Overflow or seepage of sewage Surface runoff Flooding Creviced limestone Contamination of raw water transmission line Improper construction Insufficient data Total a
a
Non-Community a
Individual a
OB
Cases
OB
Cases
OB
8
238
3
35
5
11 2 1 2
265 76 200 284
5 2 3 1
162 123 213 7
— 12 36
— 508 1,571
1 18 33
26 1,961 2,527
All
Cases
a
OB
Cases
39
16
312
7 — — —
75 — — —
23 4 4 3
502 199 413 291
1 20 33
9 415 538
2 50 102
35 2,884 4,636
Number of outbreaks.
Source: From Craun, G.F., 1986, Waterborne Diseases in the United States. Copyright CRC Press, Inc., Boca Raton, FL. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
10-332
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.224 Waterborne Disease Outbreaks Caused by Use of Contaminated, Untreated Groundwater (Wells) in the United States, 1920–1980 Type of Water System Community Deficiency Overflow or seepage of sewage Surface runoff, heavy rains Creviced limestone, fissured rock Improper construction, faulty well casing Flooding Chemical contamination Contamination by stream or river Contamination of raw water transmission line Seepage from abandoned well Animal in well Insufficient data Total a
a
OB
Noncommunity
Individual
Cases
a
a
OB
Cases
OB
28 25 9 8
14,915 2,492 1,404 342
104 26 19 10
10,236 947 2,044 414
9 3 3 8
5,883 77 445 10,481
3 2 6 —
3 1 19 116
144 34 18,480 54,697
1 1 67 239
All
Cases
a
OB
Cases
52 34 12 9
675 824 660 141
184 85 40 27
25,826 4,263 4,108 897
107 16 392 —
5 10 3 —
211 68 48 —
17 15 12 8
6,201 161 885 10,481
50 238 3,309 17,753
— 2 40 167
— 19 413 3,059
4 4 126 522
194 291 22,202 75,509
Number of outbreaks.
Source: From Craun, G.F., 1986, Waterborne Diseases in the Untied States, Copyright CRC Press, Inc. Boca Raton, FL. Reprinted with permission.
Table 10J.225 Waterborne Disease Outbreak and Disease Rates Attributed to Source Contamination and Treatment Inadequacies in Community Systems in the United States Using Surface Water Sources, 1971–1985 Type of Community Water System
Waterborne Disease Outbreaks per 1,000 Water Systems
Waterborne Illnesses per MillionPerson Years
32.5 40.5 5.0
370.9 66.3 4.7
Untreated Disinfected only Filtered and disinfected water
Source: From U.S. Environmental Protection Agency, 1987; Craun, G.F., 1987.
Table 10J.226 Water Supply Deficiencies Responsible for Waterborne Outbreaks in the United States, 1971–1985. Source of Deficiency Surface water source No treatment Disinfection only, or inadequate disinfection Disinfection with other treatment (but no filtration) Filtration and disinfection Totals Groundwater source No treatment Inadequate disinfection Disinfection with other treatment Totals Distribution system Cross-connection Contamination of mains/plumbing Contamination of storage Corrosive water Totals Grand Total (reported) Outbreaks Illnesses
Outbreaks
Reported Illnesses
31 67 5 20 123
1,647 23,028 969 9,852 35,496
154 90 1 245
11,266 40,893 22 52,181
44 14 11 10 79
8,124 3,413 6,244 147 17,928
Source: From U.S. Environmental Protection Agency, 1987; Craun, G.F., 1987.
q 2006 by Taylor & Francis Group, LLC
447 105,605
ENVIRONMENTAL PROBLEMS
10-333
Table 10J.227 Waterborne Outbreaks and Deficiencies in United States Public Water Systems Surfacewater Sources, 1991–1998 Community Systems Surfacewater Source Type of Contamination Untreated surface water Inadequate or interrupted disinfection; disinfection only treatment Inadequate or interrupted filtration Distribution system contamination Inadequate control of chemical feed Miscellaneous/unknown Total
Noncommunity Systems Surfacewater Source
Outbreaks
Percent
Outbreaks
Percent
0 4
0 18
0 1
0 50
4 9 2
18 41 9
0 0 0
0 0 0
3 22
14 100
1 2
50 100
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida.
Table 10J.228 Waterborne Outbreaks and Deficiencies in United States Public Water Systems Groundwater Sources, 1991–1998 Community Systems Groundwater Source Type of Contamination Untreated groundwater Inadequate or interrupted disinfection; disinfection only treatment Inadequate or interrupted filtration Distribution system contamination Inadequate control of chemical feed Miscellaneous/unknown Total
Noncommunity Systems Groundwater Source
Outbreaks
Percent
Outbreaks
Percent
5 3
23 14
18 21
35 40
1 8 3
4 36 14
0 8 0
15
2 22
9 100
5 52
10 100
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, Florida.
q 2006 by Taylor & Francis Group, LLC
10-334
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.229 Causes of Waterborne Disease Outbreaks in Community Water Systems in the United States — 1971–1998 Outbreaksa — %
Time Period
Number of Outbreaks
Distribution System Deficiencies
34 39 90 60 24 27 20 294
32.4 41.0 24.4 31.7 16.7 29.6 45.0 30.3
1971–74 1975–78 1979–82 1983–86 1987–90 1991–94 1995–98 1971–98
Untreated Groundwater
Inadequate, Interrupted Disinfection of Groundwater
Inadequate Disinfection of Unfiltered Surface Water
Filtered Surface Water
14.7 2.6 8.0 6.7 12.5 11.1 10.0 8.8
17.6 17.9 16.7 11.7 16.7 7.4 10 14.6
20.6 17.9 23.3 28.3 29.2 11.1 5 21.4
2.9 7.7 11.1 13.3 12.5 14.8 10 10.5
a
Rows do not total 100% because miscellaneous and unknown causes of outbreaks are not tabulated. Source: Reprinted from Journal AWWA, vol. 93, no. 9 (September 2001), by permission. Copyright q 2001, American Water Works Association, www.awwa.org.
Table 10J.230 Causes of Waterborne Disease Outbreaks in Noncommunity Water Systems in the United States — 1971–98 Outbreaksa — %
Time Period
Number of Outbreaks
Distribution System Deficiencies
51 77 67 38 29 41 21 325
0 14.3 4.5 2.6 3.4 12.2 14.3 7.4
1971–74 1975–78 1979–82 1983–86 1987–90 1991–94 1995–98 1971–98 a
Untreated Groundwater
Inadequate, Interrupted Disinfection of Groundwater
Inadequate Disinfection of Unfiltered Surface Water
Filtered Surface Water
40.4 40.3 49.3 50.0 34.5 34.1 19.0 40.6
28.8 26 26.9 39.5 41.4 34.1 33.3 31.1
11.5 7.8 4.5 7.9 5.1 2.4 0 6.8
1.9 0 3.0 0 0 0 0 1.0
Rows do not total 100% because miscellaneous and unknown causes of outbreaks are not tabulated.
Source: Reprinted from Journal AWWA, vol. 93, no. 9 (September 2001), by permission. Copyright q 2001, American Water Works Association, www.awwa.org.
Table 10J.231 Etiology of Outbreaks Caused by Distribution System Contamination in the United States — 1971–1998 CWSa Etiology Chemical Unidentified pathogen Giardia Salmonella Norwalk-like virus Shigella Campylobacter Hepatitis A Salmonella typhimurium Cyclospora Escherichia coil 0157:H7 Vibrio cholerae Total a b
NCWSb
Outbreaks
%
Outbreaks
%
35 29 8 4 3 3 3 1 1 1 1
39.3 32.6 9.0 4.5 3.4 3.4 3.4 1.1 1.1 1.1 1.1
3 11 4 1 1 1 1 1
12.5 45.8 16.7 4.2 4.2 4.2 4.2 4.1
1 24
4.1 100
89
100
CWS — community water system. NCWS — noncommunity water system.
Source: Reprinted from Journal AWWA, vol. 93, no. 9 (September 2001), by permission. Copyright q 2001, American Water Works Association, www.awwa.org.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-335
Table 10J.232 Number of Waterborne Outbreaks by Deficiencies in Drinking Systems, in the United States 1971–2000 Type of Contamination
Giardia, Cryptospridium
Campylobacter, E. coli, Salmonella, Yersinia
16 52 22 14 14 13 10 141
11 3 — 14 2 11 8 49
Distribution system contamination Inadequate disinfection; only treatment, surface watera Inadequate, interrupted, or bypass of filtration; surface water Untreated groundwater Untreated surface water Inadequate or interrupted disinfection; groundwaterb Water not intended for drinking; contaminated faucet or ice; unknown Total a b
Includes two outbreaks with surface water and groundwater sources. Includes three outbreaks where groundwater was filtered.
Source: From Cotruvo. J.A. et al., (ed.), 2004. Waterborne Zoonoses, Identification, Causes, and Control, Published on Behalf of the World Health Organization by IWA Publishing, Copyright q World Health Organization 2004, www.who.int.
Table 10J.233 Epidemiological Characteristics of the Principal Pathogenic Agents in Wastewater
Agents Virus Enterovirus (including polio, echo and coxsackie) Hepatitis A Rotavirus Bacteria Colibacilli Salmonella thyphi Other salmonellas Shigella Campylobacter Cholera Yersinia enterocolitica Leptospira Parasites Dysentery amoeba Glardia Balantidium coli Ascaris Ancyclostoma Anguillula Trichocephalus Hymenolepis Taenia Fasciola hepatica Other flukes a b c
Quantity Excreted per g/feces
Multiplication in the Environment
Infecting Dose ID 50c
Latencya
Survivalb
107
0
3 mo
no
100
106? 106?
0 0
? ?
no no
? ?
108 108 108 107 107 107 105 urine
0 0 0 0 0 0 0 0
3 mo 2 mo 2–3 mo 1 mo 7d 1 mo 3 mo 7d
yes yes yes yes yes yes yes no
G 109 107 106 104 106 108 109 low
107 105 ? 104 102 10 103 ? 104 ? 102
0 0 0 10 d 7d 3d 20 d 0 2 mo 2 mo 6–8 wks
25 d 25 d 20 d? 1y 3 mo 3 wks 9 mo 10 d 9 mo 4 mo Life of Host
no no no no no yes no no no yes yes
10–100 25–100 25–100 Several units 1 1 Several units 1 1 Several units Several units
Period necessary for excreted pathogenic agent to become infectious to receiving or susceptible individual; (0, is immediate). In environment, outside final host (man or animal). Dose sufficient to provoke the appearance of clinical symptoms in 50% of individuals tested.
Source: From Prost, A., 1987, Heath risks stemming from wastewater reutilization, Water Quality Bulletin, vol. 12, no. 2.
q 2006 by Taylor & Francis Group, LLC
10-336
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.234 Microbial Pathogens Linked to Drinking Water or Recreational Water Contact Organism Helminths Schistosoma spp. Dracunculus medinentis Protozoa Giardia duodenalis
Disease Schistosomaisis Dracunculiasis Giardiasis
Cryptosporidium parvum
Cryptosporidiosis
Cyclospora cayetanensis
Cyclosporiasis
Entamoeba histolytica Toxoplasma gondii
Amebiasis Toxoplasmosis
Free-living amoebae
Amoebic meningoencephalitis
Algae Cyanobacteria Pfesteria piscicida
Bacteria Vibrio cholerae Salmonella spp. Salmonella typhi Shigella spp. Campylobacter spp. Enterotoxigenic E. coli Enterohaemorrhagic E. coli Yersinia spp. Francisella tularensis Helicobacter pylori Mycobacteria spp. not M. tuberculosis Viruses Hepatitis A and Hepatitis E viruses Various, esp. Norwalk-like viruses Enteroviruses
Transmission Contact with surface water infected with free swimming cercariae Drinking water
Urinary and intestinal damage. Bladder cancer Painful ulcers on lower limbs and feet
Faecal oral spread through drinking water or recreational water Faecal oral spread through drinking water or recreational water Faecal oral spread through drinking water
Diarrhoea and abdominal pain, weight loss and failure to thrive Diarrhoea often prolonged
Faecal and spread through drinking water Drinking water contaminated by feline animals Aspiration of infected surface water into nose
Various
Clinical Features
Diarrhoea and abdominal pain, weight loss and failure to thrive Diarrhoea, may be severe dysentery Glandular fever, foetal damage in pregnant women Fatal encephalitis
Toxins in drinking water or direct contact with surface water blooms Toxins in water
Dermatitis, hepatitis, respiratory symptoms, potentially fatal Respiratory and eye irritation, deficiencies in learning and memory and acute confusional states
Cholera Salmonellosis Typhoid
Drinking water Occasional outbreaks with drinking water Drinking water
Shigellosis (bacillary dysentery) Campylobacteriois
Both drinking and recreational water
Watery diarrhoea, may be severe Diarrhoea, colicky abdominal pain and fever Fever, malaise and abdominal pain with high mortality Diarrhoea frequently with blood loss
Estuary-associated syndrome
Both drinking and recreational water Drinking water Drinking water and recreational water contact Drinking water Drinking water
Varies
Drinking water Potable water systems in hospitals, some recreation
Diarrhoea frequently with blood loss Watery diarrhoea Bloody diarrhoea and haemolyic uraemic syndrome in children Fever, diarrhoea and abdominal pain Typhoid-like or mucocutaneous with suppurative skin lesions Gastritis that can progress to gastric cancer Varies, includes respiratory disease, wound infections, skin disease
Viral hepatitis
Drinking and recreational water contact
Hepatitis
Viral gastroenteritis
Drinking and recreational water contact
Vomiting and diarrhoea
Various, including poliomyelitis
Drinking and recreational water contact
Various
Yersiniosis Tularaemia
Source: From Hunter, P.R., 2003, Climate change and waterborne and vector-borne disease in Sartory, D., Jones, K., Semple, K., and Godfree, A., (eds.), The Society for Applied Microbiology Symposim Series no. 32, Pathogens in the Environment and Changing Ecosystems, Blackwell Publishing, Oxford, UK.
Table 10J.235 Occurrence of Cryptosporidium Oocysts in Various Waters throughout the Western United States Water Sampled Raw sewage Treated sewageb Reservoir, lake Stream, river Filtered drinking water Nonfiltered drinking water a b
Number of Samples
Number of Samples Positive
Percent Positive
Oocysts/La
11 22 32 58 10 4
10 20 24 45 2 2
91 91 75 77 20 50
28.4 17 0.91 0.94 0.001 0.006
Geometric means. Activated sludge.
Source: From Craun, G.F., 1988. Surface water supplies and health, J. Am. Water Works Assoc., vol. 80, no.2. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10J.236 Cryptosporidiosis Case Reports by State/Area — United States, 1999–2002 1999
State/Area
No.
(%)
Rate
16 NRb 16 2 279 14 22 1 7
(0.6)
0.4
(0.6) (0.1) (10.1) (0.5) (0.8) (!0.1) (0.3)
0.3 0.1 0.8 0.3 0.6 0.1 1.2
189 170 NR 8 90 47 56 2 7 24 81 17 71 52 91 12 26 13 15 9 20
(6.8) (6.1)
1.2 2.1
(0.3) (3.3) (1.7) (2.0) (0.1) (0.3) (0.9) (1.1) (0.6) (2.6) (1.9) (3.3) (0.4) (0.9) (0.5) (0.5) (0.3) (0.7)
0.6 0.7 0.6 1.9 0.1 0.2 0.5 2.4 0.3 1.1 0.5 1.9 0.4 0.5 1.4 0.9 0.5 1.6
54 44 452
(2.0) (1.6) (16.3)
0.6 2.4 2.4
a
No. of Outbreak Cases
(%)
Rate
16 NR 10 16 285 72 29 9 18
(0.6) (0.3) (0.8) (0.5) (7.5) (2.3) (0.9) (0.3) (0.6)
0.4 0.2 0.6 0.7 1.7 0.9 1.1 3.1
(7.7) (6.1)
1.5 2.3
4 20
240 191 NR 28 126 72 77 9 7 14 20 14 87 97 190 16 31 10 82 4 25
(0.9) (4.0) (2.3) (2.5) (0.3) (0.2) (0.4) (0.6) (0.4) (1.2) (3.1) (6.1) (0.5) (1.0) (0.3) (2.6) (0.1) (0.8)
2.2 1.0 1.2 2.6 0.3 0.2 0.3 1.6 0.3 0.6 1.0 3.9 0.6 0.6 1.1 4.8 0.2 2.0
4
19 26 910
(0.6) (0.8) (9.9)
0.2 1.4 1.6
186
1 7
55 2
No.
2001 No. of Outbreak Cases
14
233
7
2 4
8 25
2002 No. of Outbreak Cases
(%)
Rate
No.
(%)
Rate
18 1 11 10 229 44 17 6 14
(0.5) (!0.1) (0.3) (0.3) (6.0) (1.2) (0.4) (0.2) (0.4)
0.4 0.2 0.2 0.4 0.7 1.0 0.5 0.8 2.4
47 1 19 8 200 57 19 4 5
(1.6) (!0.1) (0.6) (0.3) (6.6) (1.9) (0.6) (0.1) (0.2)
1.0 0.2 0.3 0.3 0.6 1.3 0.5 0.5 0.9
91 162 3 23 488 90 82 7 5 8 19 40 55 187 197 15 55 37 185 7 17
(2.4) (4.3) (0.1) (0.6) (12.8) (2.4) (2.2) (0.1) (0.1) (0.2) (0.5) (1.1) (1.5) (4.9) (5.2) (0.4) (1.5) (1.0) (4.9) (0.2) (0.4)
0.6 1.9 0.2 1.7 3.9 1.5 2.8 0.1 0.1 0.2 1.5 0.7 0.9 1.9 4.0 0.5 1.0 4.1 10.8 0.3 1.4
17
106 123 2 29 121 70 49 16 10 10 12 19 77 135 206 10 41 6 52 4 31
(3.5) (4.1) (0.1) (1.0) (4.0) (2.3) (1.6) (0.5) (0.3) (0.3) (0.4) (0.6) (2.6) (4.5) (6.8) (0.3) (1.4) (0.2) (1.7) (0.1) (1.0)
0.6 1.4 0.2 2.2 1.0 1.1 1.7 0.6 0.2 0.2 0.9 0.3 1.2 1.3 4.1 0.3 0.7 0.7 3.0 0.2 2.4
24 80 248
(0.6) (0.8) (6.5)
0.3 1.6 1.3
4
17 20 300
(0.6) (0.7) (9.9)
0.2 1.1 1.6
No.
3 341
5
11
No. of Outbreak Cases
97 2
10
2 32
31
3
(Continued)
q 2006 by Taylor & Francis Group, LLC
10-337
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New Yorkc
2000
(Continued) 1999
State/Area
2000
No.
(%)
Rate
260 85 20 67 14 98 123 6 NR 7 13 69 4 36 30 NR 3 386 1 2,769
(9.4) (1.3) (0.7) (2.4) (0.5) (3.5) (4.4) (0.2)
3.5 0.4 3.1 0.6 0.4 2.9 1.0 0.6
(0.3) (0.6) (2.5) (0.1) (1.9) (1.1)
0.9 0.2 0.3 0.2 6.0 0.4
(0.1) (13.9) (!0.1) (100.0)d
0.2 7.2 0.2 1.0
a
No. of Outbreak Cases 4
61
7
2 353
2001
No.
(%)
Rate
171 28 18 260 30 20 64 4 NR 15 12 115 26 28 21 NR 3 428 5 3,128
(5.5) (0.9) (0.6) (8.3) (1.0) (0.6) (2.0) (0.1)
2.1 0.3 2.8 2.3 0.9 0.6 0.5 0.4
(0.5) (0.4) (3.7) (0.9) (0.9) (0.7)
2.0 0.2 0.6 1.3 4.6 0.3
(0.1) (13.7) (0.2) (100.0)
0.2 8.0 1.0 1.1
No. of Outbreak Cases
134
1
5 428
2002
No.
(%)
Rate
123 31 15 185 16 58 102 10 7 8 24 96 84 34 27 NR 2 664 7 3,787
(3.2) (0.8) (0.4) (4.9) (0.4) (1.5) (2.7) (0.3) (0.2) (0.2) (0.6) (2.5) (2.2) (0.9) (0.7)
1.5 0.4 2.4 1.6 0.5 1.7 0.8 0.9 0.2 1.1 0.4 0.4 3.7 5.5 0.4
(0.1) (17.5) (0.2) (100.0)
0.1 12.3 1.4 1.3
No. of Outbreak Cases
6 2 389
No. 147 40 41 119 16 40 111 21 8 42 61 34 16 33 35 46 3 515 9 3,016
(%) (4.9) (1.3) (1.4) (3.9) (0.5) (1.3) (3.7) (0.7) (0.3) (1.4) (2.0) (1.1) (0.5) (1.1) (1.2) (1.5) (0.1) (17.1) (0.3) (100.0)
Rate 1.8 0.5 6.5 1.0 0.5 1.1 0.9 2.0 0.2 5.5 1.1 0.2 0.7 5.4 0.5 0.8 0.2 9.5 1.8 1.0
No. of Outbreak Cases 1
22
5 2 207
Note: Population estimates are from the Population Division, U.S. Census Bureau. Estimates of the population of states: ST-99-4 State Rankings of Population Change and Demographic Components of Population Change for the Period July 1, 1998 to July 1, 1999, available at census.goalpopest/archives/1990s/ST-99-01.txt, and Table 1: Annual estimates of the population for the United States and States and Puerto Rico: April 1, 2001, to July 1, 2003 (NST-EST 2003 01), available at www.census.gov/popset/estates/ tables/NST-EST2003-01.xls. Estimates of the New York City population: (SU-99-7) Population Estimates for Places (Sorted Alphabetical Within State): Annual Time Series, July 1, 1990 to July 1, 1999 (Includes April 1, 1990 Population Estimates Base), available at www.census.gov/popset/archives/1990a/su-99-07/SU-99-7_NY.txt, and Table 1: Annual Estimates of the Population for incorporated Places over 100,000, Ranked by July 1, 2003 Population; April 1, 2001, to July 1, 2003 (SUB-EST 2003-01) available at www.census.gov/popest/cities/tables/SUB-EST2003-01.xls. a b c d
Per 100,000 population on the basis of U.S. Census Bureau population estimates. No cases reported. New York State case counts include New York City cases. Percentages might not total 100% because of rounding.
Source: From Hlavsa, M.C., Watson, J.C. and Beach, M.J., 2005, Cryptosporidiosis surveillance – United States 1999–2002, MMWR Surveillance Summaries, vol. 54, no. SS-01, January 28, 2005, www.cdc.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
New York City North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total
10-338
Table 10J.236
ENVIRONMENTAL PROBLEMS
10-339
Table 10J.237 Outbreaks and Cases of Cryptosporidiosis in England and Wales, 1983–1997
Year
Number of Outbreaks
Drinking Water Outbreaksa
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Total
1 1 3 4 1 2 6 4 9 12 9 7 5 4 12 80
0 0 0 0 0 0 3 2 2 4 3 2 1 3 5 25
a
Total Outbreak Cases 16 19 60 98 69 102 1,090 92 93 549 358 373 612 244 874 4,649
Outbreak Total Cases in Cases as a Total Drinking England and Percentage of Water Casesa Wales the Total 0 0 0 0 0 0 1,042 49 46 343 164 257 575 236 743 3,455
61 876 1875 3560 3277 2750 7,768 4,682 5,165 5,211 4,832 4,432 5,691 3,660 4,321 58,161
Drinking Water Outbreak Cases as a Percentage of the Totala
26 2 3 3 2 4 14 2 2 11 7 8 11 7 20 8
0 0 0 0 0 0 13 1 1 7 3 6 10 6 17 6
Cases include those with a strong probable or possible association with public drinking water.
Source: From Nichos, G., 2003, Using existing surveillance-based data in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
Table 10J.238 Some Published Cases of Cryptosporidiosis Outbreaks in Recreational Waters, 1986–2001
Year
Location
Facility
Disinfectant
1986 1988 1988 1990 1992 1992 1992 1993 1993 1993 1993 1994 1994 1994 1994 1995 1995 1995 1996 1996 1996 1996 1997 1997 1997 1997 1998 1998
New Mexico, United States Doncaster, England Los Angeles county, United States British Columbia, Canada Gloucestershire, England Idaho, United States Oregon, United States Wisconsin, United States Wisconsin, United States Wisconsin, United States Wisconsin, United States Missouri, United States New Jersey, United States South west England Sutherland Australia Kansas, United States Georgia, United States Nebraska, United States Florida, United States California, United States Andover, England Indiana, United States England and Wales England and Wales Minnesota, United States Queensland, Australia Canberra, Australia Oregon, United States
Lake Pool Pool Pool Pool Water Slide Pool (wave) Pool (motel) Pool (motel) Pool Pool Pool (motel) Lake Pool Pool Pool Water Park Water Park Pool Water Park Pool Lake River Pool Fountain Pools 3 Pools Pool
None Chlorine Chlorine Chlorine Chlorine Ozone/Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine None Chlorine Chlorine a
Chlorine a a
Chlorine Chlorine None None Ozone/Chlorine (Sand Filter) a a a
No. of Cases Estimated (Confirmed) 56 (79) 44 (5) 66 (23) (13) 500 (52) 51 (22) 64 5 54 101 (26) 2,070 (46) 14 (8) (70) 101 (2) 2,470 (6) (14) 22 (16) 3,000 (29) 8 3 27 (7) (9) 369 (73) 129 (210) 51 (8) (Continued)
q 2006 by Taylor & Francis Group, LLC
10-340
Table 10J.238
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Year
Location
Facility
1998 1998 1998 1999
New South Wales, Australia Hutt Valley, New Zealand Minnesota, United States Florida, United States
2000 2000 2000 2000 2001 2001
Ohio, United States Nebraska, United States Trent region, England London, England South west England South west England
a
Disinfectant
Pools Pools Pool Interactive water fountain Pool Pool Pool Pool Pool Stream onto Beach
a a a
Chlorine a a
Chlorine Chlorine Chlorine None
No. of Cases Estimated (Confirmed) 370 (171) (26) 38 (2) 700 (186) 225 (65) 41 (41) 3 (3) 14 (8) 14 (6)
Data not available.
Source: From Pond, K., 2005. Water Recreation and Disease Plausibility and Associated Infections: Acute Effects, Sequelae, and Mortality, Published on behalf of the World Health Organization by IWA Publishing, London Copyright q World Health Organization 2005, www.who.int. Original Source: From Fayer et al., 2002; CDR Weekly website: hpa.org.uk.
Table 10J.239 Total Waterborne Outbreaks of Giardiasis in United States Water Systems, 1965–1995 Time Period 1965–1970 1971–1975 1976–1980 1981–1985 1986–1990 1991–1995 Source:
q 2006 by Taylor & Francis Group, LLC
Number of Outbreaks 3 12 26 49 16 11
From United States Environmental Protection Agency, 1998, Giardia: Human Health Criteria Document, EPA823-R-002, www.epa.gov.
ENVIRONMENTAL PROBLEMS
10-341
Table 10J.240 Waterborne Outbreaks of Giardiasis by Type of Water System in the United States, 1965–1996 Community Water Systems Year 1965 1966–1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 Total Source:
Noncommunity Water Systems
Individual Systems & Nonpotable Water
Total
Outbreaks
Cases
Outbreaks
Cases
Outbreaks
Cases
Outbreaks
Cases
1 0 0 1 0 1 2 2 0 1 2 2 5 7 8 9 17 3 1 4 2 2 3 1 0 2 2 3 1 0 82
123 0 0 34 0 12 52 4,878 0 600 950 5,130 3,789 1,724 265 497 2,216 463 703 251 633 262 380 123 0 95 27 358 1,449 0 25,014
0 0 1 0 0 3 1 1 0 2 2 1 2 0 2 2 0 1 2 1 0 0 1 2 2 0 0 0 0 0 26
0 0 19 0 0 112 16 18 0 39 62 23 2,120 0 39 60 0 400 38 23 0 0 152 42 28 0 0 0 0 0 3,191
0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 10
0 0 0 0 0 0 5 34 9 0 0 18 0 6 7 4 4 3 0 0 0 0 0 0 0 0 0 0 10 0 100
1 0 1 1 0 3 4 4 1 3 4 4 7 8 11 12 18 5 3 5 2 2 4 3 2 2 2 3 2 0 117
123 0 19 34 0 124 73 4,930 9 639 1,012 5,171 5,909 1,730 311 561 2,220 866 741 274 633 262 532 165 28 95 27 358 1,459 0 28,305
From United States Environmental Protection Agency, 1998, Giardia: Human Health Criteria Document, EPA-823-R-002, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
10-342
Table 10J.241 Glardiasis Case Reports, by State/Area — United States, 1998–2002 1998
Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New Yorkc
a
No.
(%)
Rate
288 109 250 168 NRb 618 NR 39 34
(1.2) (0.4) (1.0) (0.7)
6.6 17.7 5.4 6.6
(2.6)
15.6
(0.2) (0.1)
5.2 6.5
(6.9) (5.0) (0.5) (0.7) (6.1) (3.2) (1.8) (0.9)
11.2 15.9 10.3 14.4 12.2 (13.1) 15.0 8.6
(1.1)
20.2
(3.4) (4.8) (5.5) (0.5) (3.3) (0.5) (1.0) (0.9) (0.3 (0.9) (1.0) (15.4)
13.6 11.9 28.0 4.8 14.5 13.5 15.0 12.7 7.0 2.7 13.7 20.6
1,676 1,215 123 177 1,472 772 429 226 NR NR 277 NR 833 1,172 1,324 131 790 119 249 222 83 218 238 3,789
q 2006 by Taylor & Francis Group, LLC
No. of Outbreak Cases
No. 340 96 255 152 NR 704 NR 52 37
1,636 99 1
4 7
637 8 8 131 2 140 83
55
1,360 1,355 117 134 1,458 654 377 220 NR 21 236 119 851 1,166 1,555 145 807 83 288 215 64 NR 261 3,696
2000 No. of Outbreak Cases
(%)
Rate
(1.5) (0.4) (1.1) (0.7)
7.8 15.5 5.3 6.0
(3.0)
17.4
(0.2) (0.2)
6.9 7.1
(5.8) (5.8) (0.5) (0.6) (6.3) (2.8) (1.8) (0.9)
9.0 17.4 9.9 10.7 12.0 11.0 13.1 8.3
(0.1) (1.0) (0.5) (3.7) (5.0) (6.7) (0.6) (3.5) (0.4) (1.0) (0.9) (0.3)
0.5 19.0 2.3 13.8 11.8 32.6 5.2 14.8 9.4 14.3 11.9 5.3
121 64
(1.1) (15.9)
15.0 20.3
1 78
4
1,334 117 1 11 3
640 2 9
1
No. 227 115 313 203 NR 695 462 92 38 1,521 1,201 105 139 1,093 517 420 205 NR 41 238 125 632 1,135 1,227 116 839 91 300 211 56 NR 164 3,346
2001 No. of Outbreak Cases
(%)
Rate
(1.0) (0.5) (1.4) (0.9)
5.1 18.3 6.1 7.6
(3.2) (2.1) (0.4) (0.2)
16.2 13.6 11.7 6.6
5
(7.0) (5.5) (0.5) 0.6 (5.0) (2.4) (1.9) (0.9)
9.5 14.7 8.7 10.7 8.8 8.5 14.4 7.6
1,459
(0.2) (1.1) (0.6) (2.9) (5.2) (5.6) (0.5) (3.8) (0.4) (1.4) (1.0) (0.3)
0.9 18.7 2.4 10.0 11.4 24.9 4.1 15.0 10.1 17.5 10.6 4.5
1 1 138 56
(0.8) (15.3)
9.0 17.6
83
105
8 12 1 22
No. 231 121 267 160 NR 632 417 59 70 1,155 963 118 172 1,108 3 345 178 NR 14 197 NR 906 1,003 1,061 NR 715 95 234 208 98 494 148 2,903
2002 No. of Outbreak Cases
(%)
Rate
(1.2) (0.6) (1.4) (0.8)
5.2 19.1 5.0 5.9
(3.2) (2.1) (0.3) (0.4)
14.3 12.1 7.4 12.2
(5.9) (4.9) (0.6) (0.9) (5.6) (!0.1) (1.8) (0.9)
7.1 11.5 9.6 13.0 8.9 !0.1 11.8 6.6
(0.1) (1.0)
0.3 15.3
1
(4.6) (5.1) (6.4)
14.2 10.0 21.3
27 1 16
(3.6) (0.5) (1.2) (1.1) (0.2) (2.5) (0.8) (14.7)
12.7 10.5 13.6 9.9 3.0 5.8 8.1 15.2
2
2
118 1
38
66
No.
(%)
Rate
205 115 269 175 2,561 571 260 54 47
(1.0) (0.5) (1.3) (0.8) (12.0) (2.7) (1.2) (0.3) (0.2)
4.6 17.9 4.9 6.5 7.3 12.7 7.5 6.7 8.3
1,318 926 91 137 1,011 NR 314 192 NR 6 213 118 935 923 982 NR 512 94 191 162 46 474 153 2,764
(6.2) (4.3) (0.4) (0.6) (4.8)
7.9 10.8 7.3 10.2 8.0
(1.5) (0.9)
10.7 7.1
(!0.1) (1.0) (0.6) (4.4) (4.3) (4.6)
0.1 16.4 2.2 14.6 9.2 19.5
(2.4) (0.4) (0.9) (0.8) (0.2) (2.2) (0.7) (13.0)
9.0 10.3 11.1 7.5 3.6 5.5 8.3 14.4
No. of Outbreak Cases
21 1
5
1,226 91 1
5 1
46
80
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
State/Area
1999
2,079 NR 82 1,093 148 900 1,681 130 NR 181 220 NR 291 326 503 740 90 1,003 45 24,204 9 NR 13 24,226
(8.6)
28.1
(0.3) (4.5) (0.6) 3.7 (6.0) (0.5)
12.9 9.7 4.4 27.4 12.2 13.2
(0.7) (0.9)
24.8 4.0
(1.2) (1.9) (2.1) (3.1) (0.4) (4.1) (0.2) (99.9) (!0.1)
13.9 55.2 7.4 13.0 5.0 19.2 9.4 9.0 6.0 —
(0.1) (100)d
0.3
1
2
4
2,818
2,818
1,894 NR 104 1,110 162 808 1,124 149 NR 143 187 NR 256 345 471 560 93 936 37 23,245 23 NR 13 23,281
(8.1)
25.5
(0.4) (4.8) (0.7) (3.5) (4.8) (0.6)
16.4 9.9 4.5 24.4 9.4 15.0
(0.6) (0.8)
19.5 3.4
5
(1.1) (1.5) (2.0) (2.4) (0.4) (4.0) (0.2) (99.8) (0.1)
12.0 58.1 6.9 9.7 5.1 17.8 7.7 8.5 15.1 —
19 30 1
(0.1) (100.0)
0.3
2 2 4
1 10 2,460
2,460
1,797 NR 65 1,058 96 654 1,083 157 NR 108 187 NR 281 217 487 622 80 811 49 21,772 17 NR 24 21,813
(8.0)
21.7
(0.3) (4.9) (0.4) (3.0) (5.0) (0.7)
10.1 9.3 2.8 19.1 8.8 15.0
(0.5) (0.9)
14.3 3.3
16
(1.3) (1.0) (2.0) (2.9) (0.4) (3.7) (0.2) (99.8) (0.1)
12.6 35.6 6.2 10.6 4.4 15.1 9.9 7.7 10.9 —
42
(0.1) (100.0)
0.6
1 13 10
3 3 1 1,980
1,980
1,620 NR 78 1,090 NR 543 1,150 168 NR 106 169 NR 284 220 417 512 89 765 87 19,659 9 NR 40 19,706
(7.7)
18.9
(0.4) (5.5)
12.3 9.6
(2.8) (5.8) (0.9)
15.6 9.4 15.9
4 8
(0.5) (1.0)
14.0 3.3
15
(1.4) (1.1) (2.1) (2.6) (0.4) (3.9) (0.2) (99.8) (!0.1)
12.5 35.9 5.8 8.5 4.6 14.2 7.5 6.9 5.7 —
3
(0.2) (100.0)
1.0
1
12 1 316
3 319
1,417 NR 47 972 85 447 1,066 170 149 83 191 3 335 145 386 510 78 691 29 21,206 7 1
(6.7)
17.6
(0.2) (4.6) (0.4) (2.1) (5.0) (0.8) (0.7) (0.4) (0.9) (!0.1) (1.6) (0.7) (1.8) (2.4) (0.4) (3.2) (0.1) (99.6) (!0.1) (!0.1)
7.4 8.5 2.4 12.7 8.6 15.9 3.6 10.9 3.3 !0.1 14.4 23.5 5.3 8.4 4.3 12.7 5.8 7.4 4.3 1.4
86 21,300
(0.4) (100.0)
2.2
6 4 1
7
ENVIRONMENTAL PROBLEMS
New York City North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Total state Guam Northern Mariana Islands Puerto Rico Total
5 1,500
2 1,502
Note: Population estimates are from the Population Division, U.S. Census Bureau, Estimates of the population of states: ST-99-4 State Rankings of Population Change and Demographic Components of Population Change for the Period July 1, 1998 to July 1, 1999, available at www.census.gov/popest/archives/states/1990s/ST-90-01.txt, and Table1: Annual estimates of the population for the United States and States and Puerto Rico: April 1, 2001, to July 2003 (NST-EST 2003 01), available at www.census.gov/ popest/states/tables/NST-EST2003-01.xls. Estimates of the New York City population: (SU-99-7) Population Estimates for Places (Sorted Alphabetically With in State): Annual Time Series, July 1, 1990 to July 1, 1999 (includes April 1, 1990 Population Estimates Base), available at www.census.gov/popest/archives/1990s/su-99-07/SU-99-7_NY.txt, and Table 1: Annual Estimates of the Population for Incorporated Places over 100,000. Ranked by July 1, 2003 Population: April 1, 2001, to July 1, 2003 (SUB-EST 2003-01), available at www.census.gov/popest/cities/tables/SUB-EST2003-01.xls. Estimates of the population of Guam, the Northern Marians Islands, and Puerto Rico: International Data Base (IDB) Data access — Spreadsheet, available at www.census.gov/ipc/www/dbsprd.html. a Per 100,000 population on the basis of U.S. Census Bureau population estimates. b No cases reported to CDC. c New York State counts include New York City cases. d Percentages might not total 100% because of rounding. Source: From Hlavsa, M.C., Watson, J.C. and Beach, M.J., 2005, Giardiasis surveillance – United States 1998-2002, MMWR Surveillance Summaries, vol. 54, no. SS-01, January 28, 2005, pp. 9–16, www.cdc.gov.
10-343
q 2006 by Taylor & Francis Group, LLC
10-344
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.242 Causes of Waterborne Outbreaks of Giardiasis in the United States, 1971–1994 Water Source, Treatment, or Deficiency
Outbreaks
Surface water source Untreated Chlorination only Filtered (includes outbreaks when filtration was bypassed) Groundwater source Untreated Chlorination only Filtration Contamination of distribution system or storage Use of water not intended for drinking or ingestion during water recreation or other water activities Insufficient information Total Source:
13 51 17 8 7 1 12 14 4 127
From United States Environmental Protection Agency, 1998, Giardia: Human Health Criteria Document, EPA-823-R-002, www.epa.gov.
Table 10J.243 Causes of Waterborne Diseases in England and Wales, 1971–2000 Decade Public Supplies 1971–1980
1981–1990
1981–2000
Private Supplies 1971–1980
1981–1990
1991–2000
Cause Gastroenteritis Giardia Total Cryptosporidium Campylobacter Gastroenteritis Total Cryptosporidium Campylobacter Gastroenteritis Total Paratyphoid Gastroenteritis Total Campylobacter Streptobacillary fever Gastroenteritis Total Campylobacter Mixed Campylobacter and Cryptosporidium Cryptosporidium Gastroenteritis Giardia E. coli O157 Total
No. Outbreaks
No. Cases
2 1 3 7 3 3 13 23 1 1 25
3,114 60 322 1,157 629 310 2,096 2,837 281 229 3,347
1 1 2 3 1 1 5 8 1
6 160 166 520 304 56 962 178 43
3 2 1 1
74 81 31 14 421
Source: From Stanwell-Smith, R., Anderson, Y., and Levy, D., 2003, National surveillance systems in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-345
Table 10J.244 Etiology of Recreational Waterborne Outbreaks, Outbreaks, and Cases of Illness by Type of Water Source in the United States, 1991–1998 Outbreaks
Cases of Illness
Swim Etiological Agent Cryptosporidium Naegleria E. coli O157:H7 Shigella Undetermined Giardia Schistosoma Pseudomonas Leptospira Norwalk-like virus Chemical Salmonella, on-typhoid Adenovirus Total a b
a
Lake
Swim Pool
3 9 9 11 8 3 6
19
Swim b
River
Other
Lake
Swim Pool
1 4
429 9 293 1,216 1,016 59 173
9,477
4 2 1 5
1 1
1 1
1
4
369 4
100 187
15 6
9 61 30
162
2 2
1 1
48 48
55 55
2 1 35
Otherb
44
5
1 54
River
29 3 6
595 4,219
9
10,002
25
528
Includes wading pools and pools and other activities at water parks. Water slide park, dunking booth, hot spring, canal, fountain, ocean unknown.
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Hunter, P.R., Waite, M., and Ronchi, El., (eds.), Drinking Water and Infectious Disease Establishing the Links, CRC Press LLC, Boca Raton, FL. Table 10J.245 Waterborne-Disease Outbreaks (nZ65) Associated with Recreational Water, by Etiologic Agent and Type of Water in the United States, 2001–2002 Type Treated Etiologic Agent Bacterial Pseudomonas aeruginosa Escherichia coli (O157:H7, O26:NM) Shigella sonnei Bacillus species Legionella species Staphylococcus species Parasitic Cryptosporidum species Naagleria fowleri Giardia intestinalis Avian schistosomes Unknown AGIc ARId Viruses Norovirus Chemical Chlorine gas Chloramines Total Percentage a b c d
Outbreaks 24 18a 1 2 1 1 1 9 9 0 0 0 5 4 1 2 2 4 2 2a 44 (67.7)
Fresh Cases 571 393 9 78 20 68 3 1,469 1,469 0 0 0 63 59 4 51 51 102 50 52 2,256 (89.0)
Outbreaks 3 0 3b 0 0 0 0 12 2 8 1 1a 3 3 0 3b 3b 0 0 0 21 (32.3)
Total Cases 69 0 69 0 0 0 0 34 5 8 2 19 82 82 0 95 95 0 0 0 280 (11.0)
Outbreaks
Cases
27 18 4
640 393 78
2 1 1 1 21 11 8 1 1 8 7 1 5 5 4 2 2 65 (100)
78 20 68 3 1,503 1,474 8 2 19 145 141 4 146 146 102 50 52 2,536 (100)
Includes outbreaks of suspected etiology on the basis of clinical syndrome and setting. Includes one mixed-pathogen outbreak. Acute gastrointestinal illness of unknown etiology. Acute respiratory illness of unknown etiology.
Source: From Yoder, J.S. et al., 2004, Surveillance for waterborne-disease outbreaks associated with recreation water – United States, 2001–2002, MMWR, vol. 53, no. SS08, pp 1–22, October 22, 2004, www.cdc.gov.
q 2006 by Taylor & Francis Group, LLC
10-346
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.246 Causes of Waterborne Disease Outbreaks Associated with Recreational Water in the United States Number of Outbreaks
Source of Contamination or Deficiency Fecal accident or ill bather Children in diapers Poor maintenance, inadequate treatment or operation of swimming or wading pool Bather overload or crowding Floods Livestock Geese Seepage or overflow of sewage Total
13 8 9 3 1 1 2 3 40
Source: From Craun, G.F., Calderon, R.L., and Nwachuku, N., 2003, Causes of waterborne outbreaks reported in the United States, 1991–1998 in Drinking Water and Infectious Disease Establishing the Links, Hunter, P.R., Waite, M., and Ronchi, El., (eds.), CRC Press LLC, Boca Raton, FL.
Table 10J.247 Swimming-Associated Giardiasis Outbreaks Reported in the United States, 1982–1996 State
Year
Cases
Washington Illinois New Jersey Maryland Maryland Georgia Georgia Maryland Washington Maryland New Jersey Washington Indiana Florida
1982 1985 1985 1987 1988 1991 1991 1991 1991 1993 1993 1993 1994 1996
78 15 9 266 34 9 7 14 4 12 43 6 80 60
Source:
Location Swimming pool Swimming pool Indoor pool Swimming pool Swimming pool Swimming pool Swimming pool Pool Swimming pool Swimming pool Swimming pool River Swimming pool Wading pool
Additional Information Fecal contamination Inadequate chlorination Day-care center Day-care center Park; fecal contamination Wild animals near lake Met water quality limits Filter malfunction
From United States Environmental Protection Agency, 1998, Giardia: Human Health Criteria Document, EPA-823-R-002, www.epa.gov.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-347
Table 10J.248 Number of Cases of Shigellosis Associated with Recreational Waters in the United States, 1991–2000 State
Date
Etiologic Agent
Illness
No. of Cases
Source and Settings
Rhode Island Mass. Virginia New Jersey Ohio New Jersey Minnesota Colorado Colorado Penn. Mass. Florida
July 1991 June 1991 July 1992 June 1992 July 1993 June 1994 May 1994 July 1995 July 1995 Aug 1995 July 1997 1999
S. sonnei S. sonnei S. sonnei S. sonnei S. sonnei S. sonnei S. flexneri S. sonnei S. sonnei S. sonnei S. sonnei S. sonnei
GI GI GI GI GI GI GI GI GI GI GI GI
23 203 9 54 150 242 35 81 39 70 9 38
Missouri Minnesota Minnesota
Sept 2000 July 2000 Aug 2000
S. sonnei S. sonnei S. sonnei
GI GI GI
6 15 25
Lake, swimming area Lake, park Lake, camp Lake, Campground Lake, park Lake, park Lake, park Lake, recreational area Lake, recreational area Lake, beach Pool/fountain, public park Interactive fountain, beach park Wading pool, municipal pool Lake/pond, beach Lake, public beach
Notes: GI, gastroenteritis; Mass., Massachusetts; Penn., Pennsylvania. Source:
From Pond, K., 2005. Water Recreation and Disease Plausibility and Associated Infections: Acute Effects, Sequelae, and Mortality, Published on behalf of the World Health Organization by IWA Publishing, London Copyright q World Health Organization 2005, www.who.int. Original Source: From Minnesota Department of Health 1974; Anonymous 1993; 1995; 1996b; Levy et al., 1998; Barwick et al., 2000; Lee 2002.
Table 10J.249 Water- and Sanitation-Related Infections in Developing Countries and Their Control Importance of Alternate Control Methodsa
Infections
Water Quality
Diarrhoeal diseases and enteric fevers Viral agents 2 Bacterial agents 3 Protozoal agents 1 Poliomyelitis and hepatitis A 1 Worms with no intermediate host Ascaris and Trichuris 0 Hookworms 0 Beef and pork tapeworms 0 Worms with intermediate stages Schistosomiasis 1 Guinea worm 3 Worms with two aquatic 0 intermediate stages Skin, eye and louse-borne 0 infections Infections spread by water-related insects Malaria 0 Yellow fever and dengue 0 Bancroftian filariasis 0 a
Personal and Domestic Cleanliness
Drainage and Sullage Disposal
Food Hygiene
Public Health Importancea
Water Availability
Excreta Disposal
Excreta Treatment
3 3 3 3
2 2 2 2
1 1 1 1
3 3 3 3
0 0 0 0
2 3 2 1
3 3 2 3
1 1 0
3 3 3
2 2 3
1 1 0
1 0 0
2 1 3
2 3 2
1 0 0
3 0 2
2 0 2
1 0 0
0 0 0
0 0 3
3 2 1
3
0
0
3
0
0
2
0 0 0
0 0 3
0 0 0
0 0 0
1 1 3
0 0 0
3 3 3
0, no importance; 1, little importance; 2, moderate importance; 3, great importance.
Source: From Feachem, R.G., 1984, The Health Dimension of the Decade, in world Water ’83: the World Problem, Proceedings of July 1983 Conference of Institution of Civil Engineers, London.
q 2006 by Taylor & Francis Group, LLC
10-348
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.250 Some Water-Associated Diseases by Cause and Sex Estimates for 2001 Deaths (in Thousands) Both Sexes Number Total burden of disease (000s of DALYs) Total deaths (000s) Communicable diseases, matemal and perinatal conditions and nutritional deficiencies overall Infectious and parasitic diseases altogether Diarrhoeal diseases Malaria Schistosomiasis Lymphatic filariasis Onchocerciasis Dengue Japanese encephalitis Trachoma Intestinal nematode infections Ascariasis Trichuriasis Hookworm infection Unintentional injuries overall Drowning
%
Males Number
Burden of Disease (in Thousands) Females
%
Number
Both Sexes %
Number 1.467,183
Males
Females
%
Number
%
100
768,064
100
Number 699,119
% 100
56,552 18,374
100 32.5
29,626 9,529
100 32.2
26,926 8,846
100 32.9
615,737
42.0
304,269
39.6
10,937
19.3
5,875
19.8
5,063
18.8
359,377
24.5
184,997
24.1 174,380
2,001 1,123 15 0 0 21 15
3.5 2.0 0.0 0.0 0.0 0.0 0.0
1,035 532 11 0 0 10 8
3.5 1.8 0.0 0.0 0.0 0.0 0.0
966 591 5 0 0 11 8
3.6 2.2 0.0 0.0 0.0 0.0 0.0
62,451 42,280 1,760 5,644 987 653 767
4.3 2.9 0.1 0.4 0.1 0.0 0.1
31,633 20,024 1,081 4,316 571 287 367
4.1 2.6 0.1 0.6 0.1 0.0 0.0
30,818 22,256 678 1,327 416 365 400
4.4 3.2 0.1 0.2 0.1 0.0 0.1
0 12
0.0 0.0
0 6
0.0 0.0
0 5
0.0 0.0
3,997 4,706
0.3 0.3
1,082 2,410
0.1 0.3
2,915 2,296
0.4 0.3
4 2 4 3,508
0.0 0.0 0.0 6.2
2 1 2 2,251
0.0 0.0 0.0 7.6
2 1 2 1,256
0.0 0.0 0.0 4.7
1,181 1,649 1,825 129,853
0.1 0.1 0.1 8.9
604 849 932 82,378
0.1 0.1 0.1 10.7
577 800 893 47,475
0.1 0.1 0.1 6.8
402
0.7
276
1.0
126
0.5
11,778
0.8
8,150
1.1
3,628
0.5
311.468
44.6
24.9
Note: The burden of disease is calculated through an indicator of population health the DALY: a DALY represents a lost year of healthy life and is the unit used to estimate the gap between the current health of a population and an idea situation in which everyone in that population in which everyone in that population would live into old age in full health. This table shows the total deaths and burden of disease caused by communicable diseases, maternal and perinatal conditions and nutritional deficiencies noncommunicable diseases and injuries related to water. Source: From Water for People Water for Life, The United Nations World Water Development, Copyright q United Nations Educational, Scientific and Cultural Organization (UNESCO)-World Water Assessment Programme (UNESCO-WWAP), 2003. Reproduced by permission of UNESCO. www.unesco.org. Original Source: From WHO (World Health Organization), 2002, Report on the Status of the Dracunculiasis Eradication Campaign in 2001. Document WHO/CDS/CPE/CEE/2002.30, Geneva. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10J.251 Reported Dracunculasis Cases by Country, 1972–2000 Region and Country Africa Benin Burkina Faso Cameroon Central African Republic Chad Coˆte d’Ivoire Ethiopia Ghana Kenya Mali Mauritania Niger Nigeria Senegal Sudan Togo Uganda Asia and Middle East India Pakistan Yemen Number of Countries Reporting Number of Cases
1972
1973
1974
1,480 5,822
4,404
820 4,008
1975
1976
6,277 251
1,557
1978
1979
1980
2,885
2,694
2,565
1981
1982
1983
1984
4,362
1,739 0
458 168
2,558 86
9 1,889 1,467 4,501
314 1,177 3,385 4,717
4,072 1,291 1,373 5,234 62
5,640
5,207
172 6,993
6,712
7,978
1,421
1,617
1,676
2,703
853
3,413
3,040
1,472 2,573 2,882 4,244
760
1,084 127 3,000
777 663 2,113
401 903 1,530
428 1,612
5,008 1,241
5,560
816 651 1,906 1,693 161
4,891
4,654
6,283
4,971
4,656
693
1,606
1,226
4,052
668
786
737
542
334
208
1,007 65
137
3,261
1,648
2,600 98
1977
2,259
8,777
2,617
2,673
1,748
951
2,592
7,052
6,827 250
2,846
2,729 14,155
5,406
42,926
1985
1986
1987
400 1,957
1,272 2,302 18,398
435 227 699 2,821 216,848 128 132 822 399 1,325
1988
1989
1990
33,962 1,266 752
7,172 45,004 871
37,414 42,187 742
1991
1992
1993
4,315 11,784 127
13,887 8,281 72
4,302 6,861 30
156 1,370 1,555 1,360 12,690 1,487 3,565 2,233 303 71,767 179,556 123,793 66,697 33,464 5 6 564 1,111 884 16,024 608 447 8,036 1,557 288 32,829 500 653,492 640,008 394,082 281,937 183,169 138 38 1,341 728 542 2,447 178 2,749 3,042 5,118 8,179 1,960 1,309 4,704 126,852
1,231 8,034 1,120 17,918 35 12,011 3,533 21,564 75,752 630 2,984 10,349 42,852
640 5,061 1,252 8,432 53 5,581 5,029 18,562 39,774 195 53,271 5,044 10,425
371 0 94 19
4,006 393
1,839 6,230
1,456 4,070
44,818
39,792
30,950
23,070
17,031 2,400
12,023 1,110
7,881 534
4,798 160
2,185 106
1,081 23
755 2
12
13
15
15
15
11
15
18
6
25 6
6
8
7
6
8
3
11
7
6
6
12
14
13,652
11,809
13,282
20,426
12,779
18,087
26,980
8,213
35,839
18,741
51,765
56,519
75,797
57,000
1994
1995
1997
1998
1999
2000
855 2,477 19 5
695 2,227 23 34
492 2,184 8 26
186 1,956 5 35
149 127 25 3,801 2,794 1,254 514 371 451 8,894 4,877 8,921 23 0 6 4,218 2,402 1,099 1,762 562 388 13,821 2,956 3,030 16,374 12,282 12,590 76 19 4 64,608 118,578 43,596 2,073 1,626 1,762 4,810 1,455 1,374
3 1,414 366 5,473 7 650 379 2,700 13,420 0 47,977 2,128 1,061
2,273 6,281 15 18
60 0 82 20
1996
1,472 3,241 17 9
9 0 62 20
0 0 7 20
0 0 0 20
46,043 262,136 781,219 892,055 623,844 547,575 374,202 229,773 164,973 129,852 152,814 77,863
78,557
1 3 476 297 249 60 9,027 7,402 1 4 410 290 255 136 1,920 1,166 13,237 7,869 0 0 66,097 54,890 1,589 828 321 96
0 0 0 20
0 0 0 20
96,293 75,223
Source: From World’s Water 2002–2003, by Peter H. Gleick. Copyright q 2002 Island Press. Reproduced by permission of Island Press, Washington, DC.
10-349
q 2006 by Taylor & Francis Group, LLC
10-350
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.252 Deaths and DALYs from Selected Water-Related Diseases, 2000
Diarrheal diseases Childhood cluster diseases Poliomyelitis Diphtheria Tropical-cluster diseases Trypanosomiasis Schistosomiasis Trachoma Intestinal nematode infections Ascariasis Trichuriasis Hookworm disease Other Intestinal Infections Total
Deaths
DALYs
2,019,585
63,345,722
1,136 5,527
188,543 187,838
49,129 15,335 72
1,570,242 1,711,522 3,892,326
4,929 2,393 3,477 1,692 2,103,274
1,204,384 1,661,689 1,785,539 53,222 75,601,028
Notes: DALYs, The DALY is a measure of population health that combines in a single indicator years of life lost from premature death and years of life lived with disabilities. One DALY can be thought of as one lost year of “healthy” life. This table excludes mortality and DALYs associated with water-related insect vectors, such as malaria, onchocerciasis, and dengue fever. Trachoma, while few deaths from trachoma are reported, approximately 5.9 million cases of blindness or severe complications occur annually. Source: From World’s Water 2004–2005, by Peter H. Gleick. Copyright q 2004 Island Press. Reproduced by permission of Island Press, Washington, DC.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-351
Table 10J.253 Annual Number of Diarrhoeal Cases Avoided if the Combined Water and Sanitation Millennium Goals Are Achieved by WHO subregion
WHO Sub-Region 2 5 11 13 15 World
Region/ Country AFR-E AMR-D EUR-D SEAR-D WPR-B1
Number of Cases Avoided Per Year (‘000s), by Intervention
Pop. (m)
Cases of Diarrhoea (million)
1a
2b
481 93 223 1,689 1,488 7,183
619 93 43 1,491 1,193 5,388
28 0 548 3 0 250 112 26 0 895 39 0 454 154 0 854
87 0 405 9 0 307 568 146 0 829 131 0 171 545 0 950
3c 127 0 049 13 0 208 1 0 056 272 0 361 239 0 104 903 0 004
4d 345 0 132 48 0 679 19 0 816 807 0 596 659 0 687 2 0 860 0 951
5e 439 0 980 64 0 106 27 0 983 1 0 04 0 922 844 0 381 3 0 717 0 971
Notes: Therefore, in the analysis, account is taken of the proportion of populations in each country who did not have access to improved” water and sanitation in 2000. Level VI, No improved water supply and no basic sanitation in a country which is not extensively covered by those services, and where water supply is not routinely controlled; Level Vb, Improved water supply and no basic sanitation in a country which is not extensively covered by those services, and where water supply is not routinely controlled; Level Va, Improved sanitation but no improved water supply in a country which is not extensively covered by those services, and where water supply is not routinely controlled; Level IV, Improved water supply and improved sanitation in a country which is not extensively covered by those services, and where water supply is not routinely controlled; Level III, Improved water supply and improved sanitation in a country which is not extensively covered by those services, and where water supply is not routinely controlled, plus household water treatment; Level II, Regulated water supply and full sanitation coverage, with partial treatment for sewage, corresponding to a situation typically occurring in developed countries; Level I, Ideal situation, corresponding to the absence of transmission of diarrhoeal disease through water, sanitation and hygiene. a
b
c d e
Intervention 1. Millennium targets: halving the proportion of people who do not have access to improved water sources by 2015, with priority given to those already with priority given to those already with improved sanitation. This means: Scenario Va to IV (applied to half the population without improved water supply). Intervention 2. Millennium targets with sanitation targets: halving the proportion of people who do not have access to improved water sources and improved sanitation facilities, by 2015. This means: Scenario VI to IV, or Scenario Va or Vb to IV (applied to half the population without improved water supply and half the population without improved sanitation). Intervention 3. Access for all to improved water and improved sanitation. This means: Scenario VI, Va and Vb to IV (applied to the entire population without improved water and the entire population without improved water and the entire population without improved sanitation). Intervention 4. A minimum of water disinfected at the point of use for all, on top of improved water and sanitation services. This means: Scenarios VI, Va, Vb and IV go to Scenario III. Intervention 5. Access for all to a regulated piped water supply and sewage connection into their houses. This means: Scenarios VI, Va, Vb, IV and III go to Scenario II. All the interventions were compared to the situation in 2000, which was defined as the baseline year.
Source: From Hutton, G. and Haller, L., 2004, Evaluation of Costs and Benefits of Water and Sanitation Improvements at the Global Level, Water, Sanitation and Health Protection of the Human Environment, Work Health Organization, Geneva. Copyright q World Health Organization 2004, www.who.int.
q 2006 by Taylor & Francis Group, LLC
10-352
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.254 Clinical Syndromes and Incubation Periods of Infectious and Chemical Agents Causing Acute Waterborne Disease in the United States Agent Bacteria Campylobacter jejuni Enterotoxigenic Escherichia coli Salmonella Salmonella typhi Shigella Vibrio cholerae 01 Yersinia enterocolitica Viruses Hepatitis A Norwalk virus Rotavirus Parasites Entamoeba histolytica
Incubation Period 2–5 d 6–36 hr 6–48 hr 10–14 d 12–48 hr 1–5 d 3–7 d
Clinical Syndrome Gastroenteritis, often with fever Gastroenteritis Either gastroenteritis (often with fever), enteric fever, or extraintestinal infection Enteric fever — fever, anorexia, malaise, transient rash, splenomegaly, and leukopenia Gastroenteritis, often with fever and bloody diarrhea Gastroenteritis, often with significant dehydration Either gastroenteritis, mesenteric lymphadenitis, or acute terminal ileitis; may mimic appendicitis
2–6 wks 24–48 hr 24–72 hr
Hepatitis — nausea, anorexia, jaundice, dark urine Gastroenteritis, of short duration Gastroenteritis, often with significant dehydration
2–4 wks 1–4 wks
Varies from mild gastroenteritis to acute fulminating dysentery with fever and bloody diarrhea Chronic diarrhea, epigastric pain, bloating, malabsorption, and weight loss
Giardia lamblia Chemicals Fluoride Heavy metals Antimony Cadmium Copper Lead Tin Zinc, etc
!1 hr
Nausea, vomiting, and abdominal cramps
!1 hr
Nausea, vomiting, and abdominal cramps, often accompanied by a metallic taste
Others Pesticides Petroleum products, etc
Variable
Variable
Source: From Craun, G.F., 1986, Waterborne Diseases in the United States, Copyright CRC Press, Inc. Boca Raton, FL. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-353
Table 10J.255 Pathogens in Drinking Water, Infectious Dose, Estimated Incidence through Consumption of Drinking Water in the United States, Survival in Drinking Water, and Potential Survival Strategies Infectious Dosea Bacteria Vibrio cholera Salmonella spp. Shigella spp. Toxigenic Escherichia coli Campylobacter spp. Leptospira spp. Francisella tularensis Yersinia enterocolitica Aeromonas spp. Helicobacter pylori Legionella pneumophila Mycobacterium avium Protozoa Giardia lambia Cryptosporidium parvum Naegleria fowleri Acanthamoeba spp. Entamoeba histolica Cyclospora cayetanensis Isospora belli The microsporidia Ballantidium coli Toxoplasma gondii Virusesf Total estimates
Estimated Incidenceb
Survival in Drinking Water (Days)
Survival Strategiesc
108 106–7 102 102–9 106 3 10 109 108 ? O10 ?
(very few)c 59,000 35,000 150,000 320,000 ?d ? ? ? High 13,000e ?
30 60–90 30 90 7 ? ? 90 90 ? Long Long
VNC, IC VNC, IC VNC, IC VNC, IC VNC, IC ? ? ? ? ? VNC, IC IC
1–10 1–30 ? ? 10–100 ? ? ? 25–100 ?
260,000 420,000 ? ? ? ? ? ? ? ?
25 ? ? ? 25 ? ? ? 20 ?
Cyst Oocyst Cyst Cyst Cyst Oocyst Oocyst Spore, ICd Cyst Oocyst
1–10
6,500,000
5–27g
Adsorption/ absorption
Note: ?, unknown; IC, intracellular survival and/or growth; VNC, viable but not culturable. a b c d e f g
Infectious dose is number of infectious agents that produce symptoms in 50% of teted volunteers. Volunteers are not usually susceptible individuals, and therefore these numbers are not useful for risk estimates. U.S. point estimates. Very few outbreaks of cholera occur in the United States, and these are usually attributable to imported foods (14). Possible IC with microsporidialike organisms (15). Data form Breiman and Butler (14). Includes Norwalk virus, poliovirus, coxsachievirus, echovirus, reovirus, adenovirus, HAV, HEV, rotavirus, SRSV, astrovirus, coronavirus, calicivirus, and unknown viruses. Estimated for HAV, Norwalkvirus, and rotavirus (13).
Source: From Ford, T.E., 1999, Microbiological safety of drinking water: United States and global perspectives, Environmental Health Perspectives Supplements, vol. 107, no. S1, February 1999, www.ehponline.org Original Source:
Except where noted, data are compiled from Morris and Levin (2), WHO (10), Hazen and Toranzos (11), and Geldreich (12).
Table 10J.256 Survival of Bacteria In Various Media Organism E. coli E. coli E. coli Coliforms Salmonella S. typhi S. typhi S. typhi Shigella S. flexneri Vibrio cholerae
Survival Time
Media
63 days 3–3.5 months 4–4.5 months 17 hours-50 percent reduction 44 days 2–85 days 24–27 days 25–41 days 24 days 26.8 hours-50 percent reduction 7.2 hours-50 percent reduction
Recharge well Groundwater in the field Groundwater held in lab Well water Water infiltrating sand column Soil Septic tank Soil Water infiltrating sand column Well water Well water
Source: From McGinnis, J.A. and DeWalle, F.B., 1983, The movement of typhoid organisms in saturated permeable soil, J. Am. Water Works Assoc., Vol. 75, no. 6. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
10-354
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.257 Survival Times of Organisms Organism
Media
Survival Time Days
Ascaris ova
Vegetables Soil Vegetables Soil Water Soil Grass Water Vegetables Soil Pasture Grass Vegetables Lettuce Soil Water Vegetables Grass Tomatoes Soil Vegetables Water Water
27–35 730–2010 3 6–8 60C 180C 10–40 30–90 3–40C 15–280C 200C 100C 10–53 18–21 2–120 87–104 7 42 2–10 26–77 5–14 32 20
Entamoeba histolytica
Mycobacterium tuberculosis
Salmonella (spp.)
Salmonella typhi
Shigella (spp.) Shigella sonnel Streptococcus faecalis Vibrio cholerae Vibrio comma Poliovirus
Source: From Crook, James, 1985, Water reuse in California, Journal American Water Works Assoc., Vol. 77, no. 7. Copyright AWWA. Reprinted with permission.
Table 10J.258 Movement of Bacteria in Soil in Relation to Groundwater Velocity Pollution River water Sewage Sewage Sewage Sewage Sewage River water Sewage Sewage Wastewater River water Sewage Sewage Polluted water Sewage Sewage Pure culture Sewage Sewage Sewageb Sewage Sewage Sewage Sewage Polluted water Polluted water a b
Organism
Length of Travel (m)
Medium
Velocity (m/d)
E. coli Bacteria Bacteria Coliforms Bacteria E. coli E. coli B. coli Bacteria Coliforms Bacteria B. coli C. welchii Bacteria B. coli B. coli B. stearothermophilis Coliforms Bacteria S. typhi Bacteria Coliforms Coliforms Coliforms Bacteria Bacteria
0.30 0.31 0.61 0.91 1.50 2.00 3.00 3.10 4.50 6.10 7.50 10.70 15.20 18.30 19.80 24.40 28.70 30.50 61.00 64.00 70.70 91.00 457.20 830.00 850.00 1,000.00
Dune sand Dense soil Porous soil Coarse sand Fine sand Fine sand Sand Fine sand Fine sand Fine sand Sand Sand gravel Fine sand Sand gravel Fine sand Sand gravel Crystalline rock Sand Sand gravel Gravel loam Fine sand Sand gravel Coarse gravel Sand gravel Coarse gravel Fractured limestone
0.11 0.01a 0.10a 0.08 0.03a 0.128 0.004 0.50 0.03a 0.03a 0.08 1.50 0.50 0.53a 0.11 4.10 25.50 21.80 30.50 42.70 0.11 0.24 30.50 1.60 5.50a 5.50a
Estiamted from soil description, using a hydraulic gradient of 0.01. Other groundwater velocity values were measured by other authors. Yakima outbreak.
Source: From McGinnis, J.A. and DeWalle, F.B., 1983, The movement of typhoid organisms in saturated permeable soil, J. Am. Water Works Assoc., Vol. 75, no. 6. Copyright AWWA. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-355
Table 10J.259 Migration of Viruses Beneath Land Treatment Sites Maximum Distance of Virus Migration (m) Site Location St. Petersburg, FL Gainesville, FL Lubbock, TX Kerrville, TX Muskegon, MI San Angelo, TX East Meadow, NY Holbrook, NY Sayville, NY 12 Pines, NY North Massapequa, NY Babylon, NY Ft. Devons, MA Vineland, NJ Lake George, NY Phoenix, AZ Dan Region, Israel
Site Type
Depth
Horizontal
S S S S S S R R R R R R R R R R R
6.0 3.0 30.5 1.4 10.0 27.5 11.4 6.1 2.4 6.4 9.1 22.8 28.9 16.8 45.7 18.3 31–67
— 7.0 — — — — 3.0 45.7 3.0 — — 408.0 183.0 250.0 400.0 3.0 60–270
Note: R, Rapid infiltration; S, Slow-rate infiltration. Source: Adapted from Gerba, C.P. and Goyal, S.M., 1985, Pathogen removal from wastewater during groundwater recharge, in Asano, T., Artificial Recharge of Groundwater, Copyright Butterworth Publ, Boston. Reprinted with permission.
Table 10J.260 Selected Human Health and Environmental Effects from Toxic Chemicals Human Health Effectsa Chemical
Carcinogenb
Aldrin/dieldrin
B
Arsenic
† †
Benzene Cadmium
Carbon tetrachloride Chromium
Teratogenb
B
B
†
Di-n-butyl phthalate Dioxin
Environmental Effects
Tremors, convulsions, kidney damage
Toxic to aquatic organisms, reproductive failure in birds and fish, bioaccumulation in aquatic organisms Toxic to legume crops
Vomiting, poisoning, liver and kidney damage Anemia, bone marrow damage Suspected causal factor in many human pathogies: tumors, renal dysfunction, hypertension, arteriosclerosis, ltai-itai disease (weakened bones), emphysema Kidney and liver damage, heart failure Kidney and gastrointestinal damage, respiratory complications Gastrointestinal irritant, liver damage
Copper DDT
Others
B
B (minimal)
Tremors, convulsions, kidney damage
Central nervous system damage B
Lead
B B
Acute skin rashes, systemic damage, mortality Convulsions, anemia, kidney and brain damage
Toxic to some fish and aquatic invertebrates Toxic to fish, bioaccumulates significantly in bivalve mollusks
Toxic to some aquatic organisms Toxic to juvenile fish & other aquatic organisms Reproductive failure of birds and fish, bioaccumulates in aquatic organisms, biomagnifies in food chain Eggshell thinning in birds, toxic to some fish Bioaccumulates, lethal to aquatic organisms birds and mammals Toxic to domestic plants and animals, bio-magnifies to some degree in food chain (Continued)
q 2006 by Taylor & Francis Group, LLC
10-356
Table 10J.260
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Human Health Effectsa
Chemical
Carcinogenb
Methyl Mercury
PCBs
B
Teratogenb
Others
Environmental Effects
B
Irritability, depression, kidney and liver damage, Minamata disease
B
Vomiting, abdominal pain, temporary blindness, liver damage
Reproductive failure in fish species, inhibits growth and kills fish; biomagnifies Liver damage in mammals, kidney damage and eggshell thinning in birds, suspected reproductive failure in fish Reproductive effective in aquatic organisms toxic to fish Decreased productivity of phytoplankton communities, birth defects in fish and birds, toxic to fish and invertebrates
Phenols Toxaphene
a b
B
B
Effects on central nervous system, death at high doses Pathological changes in kidney & liver; changes in blood chemistry
In many cases human health effects are based upon the results of animal tests. If a substance is identified as a carcinogen, there is evidence that it has the potential for causing cancer in humans; if it is identified as a teratogen, it has the potential for causing birth defects in humans.
Source: From U.S. Environmental Protection Agency; National Water Quality Inventory, 1984 Report to Congress and The Conservation Foundation, State of the Environment 1982.
Table 10J.261 Chemicals Causing Distribution System Outbreaks in the United States — 1971–98 Chemical Copper Chlordane Nitrite Unidentified herbicide Ethylene glycol Oil Other chemicalsc Total a b c
CWSa
NCWSb
16 3 2 2 2 1 9 35
2
1 3
CWS — community water system. NCWS — noncommunity water system. Each of the following was responsible for one outbreak; fluoride, lead, chromium, sodium hydroxide, chlorine, liquid soap, ethyl acrylate, morpholine, and hydroquinone.
Source: From Reprinted from Journal AWWA, vol. 93, no. 9 (September 2001), by permission. Copyright q 2001, American Water Works Association, www.awwa.org.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-357
Table 10J.262 Potential Exposure to Lead in Tap Water Percent of Samples O20 ug/L a
Age of House
pH of Water
First-Flush (%)
Fully-Flushed (2 min) (%)
!6.4 7.0–7.4 R:8.0 %6.4 7.0–7.4 R8.0 %6.4 7.0–7.4 R8.0
93 83 72 84 28 18 51 14 13
51 5 0 19 7 4 4 0 3
0–2 yrs
2–5 yrs
6Cyrs
Note: Percentage of samples taken from kitchen taps exceeding 20 ug/L of lead at different pH levels, by age of house. The United States Environmental Protection Agency (EPA) sets drinking water standards and has determined that lead is a health concern at certain levels of exposure. There is currently an action level of 15 parts per billion (mg/L). The most common cause of lead entering drinking water is corrosion, a reaction between the water and the lead pipes or the lead-based solder. When water stands in the pipes of a residence for several hours without use, there is a potential for lead to leach, or dissolve, into the water if a lead source is present. Soft water (water that makes soap suds easily) can be more corrosive and, therefore, has higher levels of dissolved lead. Some home water treatment devices may also make water more corrosive. a
A measure of the concentration of hydrogenions and potential electrochemical corrosion.
Source: From U.S. EPA, 1987, Preliminary Results from “Lead Solder Aging Study” More recent data are available at: U.S. EPA, 2005, Is there Lead in my Drinking Water? www.epa.gov/safewater/lead.
Table 10J.263 Geometric Mean and Selected Percentiles of Lead in Blood in the United States. Population Aged 1 Yr and Older, National Health, and Nutrition Examination Survey, 1999–2002 Survey Yrs Total, age 1 and older Age group 1–5 yrs 6–11 yrs 12–19 yrs 20 yrs and older Gender Males Females Race/ethnicity Mexican Americans Nonhispanic blacks Nonhispanic whites
Selected Percentiles (95% Confidence Interval)
Geometric Mean (95% Conf. Interval)
50th
75th
90th
95th
Sample Size
99–00 01–02
1.66 (1.66–1.72) 1.45 (1.39–1.51)
1.60 (1.50–1.60) 1.40 (1.30–1.40)
2.40 (2.30–2.60) 2.20 (2.10–2.20)
3.80 (3.60–3.90) 3.40 (3.10–3.50)
4.90 (4.60–5.30) 4.40 (4.20–4.70)
7,970 8,945
99–00 01–02 99–00 01–02 99–00 01–02 99–00 01–02
2.23 (1.96–2.53) 1.70 (1.55–1.87) 1.51 (1.36–1.66) 1.25 (1.14–1.36) 1.10 (1.04–1.17) 0.942 (0.899–0.986) 1.75 (1.68–1.81) 1.56 (1.49–1.62)
2.20 (1.90–2.50) 1.50 (1.40–1.70) 1.30 (1.20–1.50) 1.10 (1.00–1.30) 1.00 (0.900–1.10) 0.800 (0.800–0.900) 1.70 (1.60–1.70) 1.60 (1.50–1.60)
3.30 (2.80–3.80) 2.50 (2.20–2.80) 2.00 (1.70–2.40) 1.60 (1.50–1.80) 1.40 (1.30–1.60) 1.20 (1.20–1.30) 2.50 (2.50–2.60) 2.20 (2.20–2.30)
4.80 4.10 3.30 2.70 2.30 1.90 3.90 3.60
(4.00–6.60) (3.40–5.00) (2.70–3.60) (2.40–3.00) (2.10–2.30) (1.80–2.00) (3.70–4.00) (3.30–3.70)
7.00 5.80 4.50 3.70 2.80 2.70 5.20 4.60
(6.10–8.30) (4.70–6.90) (3.40–6.20) (3.00–4.70) (2.60–3.00) (2.30–2.90) (4.80–5.50) (4.20–4.90)
723 898 905 1,044 2,135 2,231 4,207 4,772
99–00 01–02 99–00 01–02
2.01 (1.93–2.09) 1.78 (1.71–1.86) 1.37 (1.32–1.43) 1.19 (1.14–1.25)
1.80 1.70 1.30 1.10
(1.80–1.90) (1.70–1.80) (1.20–1.30) (1.10–1.20)
2.90 (2.80–3.00) 2.70 (2.50–2.80) 1.90 (1.90–2.10) 1.80 (1.70–1.80)
4.40 3.90 3.00 2.60
(4.10–4.80) (3.70–4.10) (2.90–3.20) (2.40–2.70)
6.00 5.30 4.00 3.60
(5.40–6.40) (5.00–5.50) (3.70–4.20) (3.00–3.80)
3,913 4,339 4,057 4,606
99–00 01–02 99–00 01–02 99–00 01–02
1.83 (1.75–1.91) 1.46 (1.34–1.60) 1.87 (1.75–2.00) 1.65 (1.52–1.80) 1.62 (1.55–1.69) 1.43 (1.37–1.40)
1.80 1.50 1.70 1.60 1.60 1.40
(1.60–1.80) (1.30–1.60) (1.60–1.90) (1.40–1.70) (1.50–1.60) (1.30–1.40)
2.70 (2.60–2.90) 2.20 (2.00–2.60) 2.80 (2.50–2.90) 2.50 (2.30–2.80) 2.40 (2.30–2.40) 2.10 (2.10–2.20)
4.20 3.60 4.20 4.20 3.60 3.10
(3.90–4.50) (3.30–4.00) (4.00–4.60) (3.80–4.60) (3.40–3.70) (3.00–3.40)
5.80 5.40 5.70 5.70 5.00 4.10
(5.10–6.60) (4.40–6.60) (5.20–6.10) (5.30–6.50) (4.40–5.70) (3.90–4.50)
2,742 2,268 1,842 2,219 2,716 3,806
Source: From Department of Health and Human Services, Centers of Disease Control and Prevention, 2005, Third National Report on Human Exposure to Environmental Chemicals, NCEH Pub. No. 05-0570, July 2005, www.cdc.gov.
q 2006 by Taylor & Francis Group, LLC
10-358
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.264 Pesticide Residues In Human Adipose Tissue in the United States Pesticide Residues
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1983
Sample size DDT Dieldrin Oxchlordane Heptachlor Epoxide Trans-Nonachlor Beta-Benzene Hexachloride Hexachlorobenzene
1,386 7.95 0.16 (NA) 0.09 (NA) 0.37
1,560 8.06 0.22 (NA) 0.09 (NA) 0.35
1,886 6.97 0.18 0.10 0.07 (NA) 0.19
1,092 5.96 0.17 0.12 0.09 (NA) 0.25
900 5.15 0.14 0.12 0.08 (NA) 0.21
779 4.76 0.12 0.11 0.08 0.06 0.19
682 4.35 0.09 0.11 0.08 0.13 0.18
789 3.14 0.09 0.10 0.07 0.10 0.14
827 3.52 0.09 0.11 0.07 0.12 0.14
796 3.10 0.08 0.10 0.07 0.12 0.15
98 2.82 0.10 0.12 0.08 0.14 0.12
384 2.24 0.05 0.09 0.09 0.11 0.09
407 1.67 0.06 0.09 0.09 0.12 0.10
(NA)
(NA)
(NA)
(NA)
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.03
Note: Concentration levels, 1970–1983 in parts per million (ppm), Data represent geometric means and are based on a sample of measurements of pesticide residues and associated chemicals found in human tissue collected by medical pathologists from selected cities in the conterminous 48 states as part of the National Human Adipose Tissue Monitoring Program. NA, Not available. Source: From U.S. Department of Commerce, Statistical Abstract of the United States 1987.
q 2006 by Taylor & Francis Group, LLC
Selected Percentiles (95% Confidence Interval)
Geometric Mean Hexachlorobenzene Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) p,p 0 -DDT Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) p,p 0 -DDE Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) o,p 0 -DDT Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Oxychlordane Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) trans-Nonachlor Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Hetachlor epoxide Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Mirex Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Aldrin Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Dieldrin Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum) Endrin Lipid adjusted (ng/g of lipid) Whole weight (ng/g of serum)
50th
75th
90th
95th
Sample Size
—a —a
!LOD !LOD
!LOD !LOD
!LOD !LOD
!LOD !LOD
2,277 2,277
—a —a
!LOD !LOD
!LOD !LOD
!LOD !LOD
26.5 (22.4–32.7) 0.184 (0.161–0.221)
2,305 2,305
295 (267–327) 1.81 (1.64–2.01)
250 (227–277) 1.57 (1.37–1.72)
597 (521–699) 3.97 (3.43–4.59)
1,400 (1,210–1,500) 8.81 (7.85–10.1)
2,320 (1,830–2,780) 15.4 (12.9–17.6)
2,298 2,298
—a —a
!LOD !LOD
!LOD !LOD
!LOD !LOD
!LOD !LOD
2,279 2,279
11.4 (!LOD–12.5) 0.070 (0.063–0.077)
11.1 (!LOD–12.5) 0.069 (0.058–0.078)
21.7 (19.2–24.2) 0.143 (0.126–0.160)
36.3 (31.4–41.4) 0.248 (0.215–0.297)
49.7 (42.0–61.2) 0.352 (0.289–0.441)
2,249 2,249
17.0 (15.2–18.9) 0.104 (0.093–0.116)
17.9 (15.5–20.5) 0.112 (0.097–0.124)
33.7 (30.2–37.2) 0.217 (0.191–0.243)
56.3 (49.6–65.9) 0.389 (0.328–0.470)
78.2 (63.6–111) 0.589 (0.432–0.797)
2,286 2,286
—a —a
!LOD !LOD
!LOD !LOD
14.8 (13.0–17.8) 0.102 (0.089–0.121)
21.6 (18.1–26.2) 0.153 (0.125–0.179)
2,259 2,259
—a —a
!LOD !LOD
!LOD !LOD
15.8 (!LOD–73.7) 0.101 (0.049–0.468)
57.1 (13.2–230) 0.414 (0.080–1.73)
2,257 2,257
—a —a
!LOD !LOD
!LOD !LOD
!LOD !LOD
!LOD !LOD
2,275 2,275
—a —a
!LOD !LOD
!LOD !LOD
15.2 (14.3–17.0) 0.109 (0.099–0.121)
20.3 (18.7–22.4) 0.146 (0.129–0.164)
2,159 2,159
—a —a
!LOD !LOD
!LOD !LOD
!LOD !LOD
5.10 (!LOD–5.20) 0.021 (0.020–0.021)
2,187 2,187
ENVIRONMENTAL PROBLEMS
Table 10J.265 Geometric Mean and Selected Percentiles of Blood Serum Concentrations for Organochlorine Pesticides in the United States Population Aged 12 Yrs and Older, National Health and Nutrition Examination Survey, 2001–2002
Note: !LOD means less than the limit of detection, which may vary for some chemicals by individual sample. Maximum detection limits (ng/g of lipid) for Hexachlorobenzene, p,p 0 -DDT, o,p 0 -DDT, Heptachlor epoxide, Mirex, Aldrin, Dieldrin, Endrin were 31.4, 17.4, 17.4, 10.5, 10.5, 5.94, 10.5, 5.09, respectively. a
Not calculated. Proportion of results below limit of detection was to high to provide a valid result.
Source: From Department of Health and Human Services, Centers of Disease Control and Prevention, 2005, Third National Report on Human Exposure to Environmental Chemicals, NCEH Pub. No. 05-0570, July 2005, www.cdc.gov.
10-359
q 2006 by Taylor & Francis Group, LLC
10-360
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 10J.266 Selected Synthetic Organic Chemicals Detected in Drinking Water Wells in the United States Chemical Benzene a-BHC b-BHC g-BHC (Lindane) Bis(2-ethylhexyl)phthalate Bromoform Butyl benzyl phthalate Carbon tetrachtoride Chloroform Chloromethane Cyclohexane Dibromochloropropane (DBCP) Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethylene Di-n-butyl phthalate Dioxane Ethylenedibromide(EDB) Isopropyl benzene Methylene chloride Parathion Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene (TCE) Trifluorotrichloroethane Vinyl chloride Xylene
Cancer Classification A C B2 B2–C B2 B2 C B2 B2 C D B2 C C B2 C D D B2 B2 NTA B2 C B2–C D D C B2–C D A D
Note: A, Known human carcinogen; B1, Probable human carcinogen — limited evidence in humans; B2, Probable human carcinogen — sufficient evidence in animals and inadequate data in humans; C, Possible human carcinogen — limited evidence in animals; D, Inadequate evidence to classify. Source: From U.S. Environmental Protection Agency, Integrated Risk Information System URL: www.epa.gov/iris.
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
Table 10J.267 Summary of Toxic Effects of Some Organic and Inorganic Chemicals Known to Occur In Groundwater
10-361
q 2006 by Taylor & Francis Group, LLC
10-362
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
,
ENVIRONMENTAL PROBLEMS 10-363
q 2006 by Taylor & Francis Group, LLC
10-364
Numerical key of toxic effects: (1) Eye irritation, (2) Skin irritation, (3) Allergic sensitization, (4) Upper respiratory tract irritation, (5) Lung/respiratory effects, (6) Liver damage, (7) Kidney damage, (8) Pancreatic damage, (9) central nervous system, (CNS) effects, (10) Peripheral nervous system effects, (11) Blood cell disorders, (12) Immunological effects, (13) Cardiovascular effects, (14) Gastrointestinal effects, (15) Cholinesterase inhibition, (16) Methemoglobinemia, (17) Skin damage, (18) Visual damage, (19) Endocrine effects, (20) Reproductive effects, (21) Embryotoxicity, (22) Teratogenicity, (23) Mutagenicity, (24) Carcinogenicity. Source: From Office of Technology Assessment. Compiled from a partial survey of literature conducted by Environ Corp., 1983.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
ENVIRONMENTAL PROBLEMS
10-365
Table 10J.268 Estimated Drinking Water Concentration Corresponding to a 1!10-6 Excess Lifetime Cancer Risk for Selected Known, Probable, or Possible Carcinogens for a Lifetime Consumption of Water Drinking Water Concentration (mg/L)
Sex, Species
Tumor Type
Benzene a-BHC b-BHC Carbon tetrachloride 1,2-Dichloroethane 1,4-Dioxanea Ethylene dibromide (EDB)
1–10 0.006 0.02 0.3 0.4 3 0.02
Human M mouse M mouse Various M rat M rat Mrat
DDT Heptachlor 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane Vinyl chloride — continuous lifetime exposure from birth Vinyl chloride — continuous lifetime exposure during adulthood
0.1 0.008 0.2 0.5 0.024
Mouse/rat Mouse Mouse Mouse F rat
0.048
F rat
Leukemia Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Hemangiosarcoma of circulatory system Nasal squamous cell carcinoma Forestomach tumors, hemangiosarcomas, thyroid follicular cell adenomas or carcinomas Benign and malignant liver tumors Hepatocellular carcinomas Hepatocellular carcinoma Hepatocellular carcinoma Total of liver angiosarcoma, hepatocellular carcinoma, and neoplastic nodules Total of liver angiosarcoma, hepatocellular carcinoma, and neoplastic nodules
Chemical
a
Toxicity values under review; revised assessment due in 2006 or 2007.
Source: From U.S. Environmental Protection Agency, Integrated Risk Information System (IRIS), 2005, www.epa.gov/iris.
q 2006 by Taylor & Francis Group, LLC
CHAPTER
11
Water Resources Management Gustavo˜ Suarez
CONTENTS Section Section Section Section Section Section Section Section Section Section
11A 11B 11C 11D 11E 11F 11G 11H 11I 11J
Dams . . . . . . . . . . . . . . . . . . Reservoirs . . . . . . . . . . . . . . . Hydroelectric Power . . . . . . . Costs of Water Projects . . . . . Project Planning and Analysis Research and Expenditures . . Desalination . . . . . . . . . . . . . Water Transfer . . . . . . . . . . . Groundwater . . . . . . . . . . . . . Water Conservation . . . . . . . .
. . . . . . . . . .
.. .. .. .. .. .. .. .. .. ..
. . . . . . . . . .
............................................ ............................................ ............................................ ............................................ ............................................ ............................................ ............................................ ............................................ ............................................ ............................................
11-2 11-48 11-88 11-131 11-139 11-160 11-223 11-242 11-263 11-293
11-1
q 2006 by Taylor & Francis Group, LLC
11-2
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 11A
DAMS
China Asia North and Central America Western Europe Africa Eastern Europe South America Australasia 0
5000
10000
15000
20000
25000
Number of dams Figure 11A.1 Regional distribution of large dams in 2000. (From WCD compilation of various sources and ICOLD, 1998. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
Table 11A.1 World’s Largest Dams Volume (Thousands) Dam Syncrude Tailings Chapeto´n Pati New Cornelia Tailings Tarbela Kambaratinsk Fort Peck Lower Usuma Cipasang Atatu¨rk Yacyreta´-Apipe Guri (Raul Leoni) Rogun Oahe Mangla Gardiner Afsluitdijk Oroville San Luis Nurek Garrison Cochiti Tabka (Thawra) Bennett WAC Tucuruı´i Boruca High Aswan (Sadd-el-Aali) San Roque Kiev Dantiwada Left Embankment Saratov Mission Tailings 2 Fort Randall Kanev Mosul Kakhovka
Location
m3
yds3
Year Completed
Canada Argentina Argentina United States Pakistan Kyrgyzstan Montana Nigeria Indonesia Turkey Paraguay/Argentina Venezuela Tajikistan South Dakota Pakistan Canada Netherlands California California Tajikistan North Dakota New Mexico Syria Canada Brazil Costa Rica Egypt Philippines Ukraine India Russia Arizona South Dakota Ukraine Iraq Ukraine
540,000 296,200 238,180 209,500 121,720 112,200 96,049 93,000 90,000 84,500 18,000 78,000 75,500 70,339 65,651 65,440 63,400 59,639 59,405 58,000 50,843 48,052 46,000 43,733 43,000 43,000 43,000 43,000 42,841 41,040 40,400 40,088 38,227 37,860 36,000 35,640
706,320 387,410 274,026 274,026 159,210 146,758 125,628 121,644 117,720 110,522 105,944 102,014 98,750 92,000 85,872 85,592 82,927 78,008 77,700 75,861 66,500 62,850 60,168 57,201 56,242 56,242 56,242 56,242 56,034 53,680 52,843 52,435 50,000 49,520 47,086 46,617
UC UC UC 1973 1976 UC 1940 1990 UC 1990 1998 1986 1985 1963 1967 1968 1932 1968 1967 1980 1956 1975 1976 1967 1984 UC 1970 UC 1964 1965 1967 1973 1953 1976 1982 1055 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.1
11-3
(Continued) Volume (Thousands)
Dam
Location
Itumbiara Lauwerszee Beas Oosterschelde
Brazil Netherlands India Netherlands
m3
yds3
Year Completed
35,600 35,575 35,418 35,000
46,563 46,532 46,325 45,778
1980 1969 1974 1986
Note: UC, under construction in 2004. China’s Three Gorges dam, on the Yangtze River, begun in 1993 and expected to be completed in 2009, will be the world’s largest and highest dam. Source: From Department of the Interior, Bureau of Reclamation and International Water Power and Dam Construction.
Number of dams
8000 7000 6000 5000 4000 3000 2000 1000 0
Asia North America Europe Africa South America Australasia
00
e
or ef
19
0s
0
19
19
1
0s
19
2
0s
0s
3
19
4
19
B
0s
19
5
0s
6
0s
19
19
7
0s
0s
9
8
19
Time
90
r1
te
Af
Figure 11A.2 Cumulative commissioning of large dams in the 20th century. (From ICOLD 1998, excluding over 90% of large dams in China. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
Table 11A.2 Number of Dams in the World in 1950 and 1982 by Continent 1950
1982
Continent
Dams
%
Dams
%
Europe Asia America Africa Australasia Total China
1,292 1,541 2,090 123 150 5,196 8
25 30 40 2 3 100 0.2
3,800 22,701 7,241 610 446 34,798 18,595
11 65 21 2 1 100 53
Source: From International Commission on Large Dams, 1984, Register of Dams; percentages rounded.
q 2006 by Taylor & Francis Group, LLC
11-4
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11A.3 Dams in 140 Countries Regions and Countries Africa South Africa Zimbabwe Algeria Morocco Tunisia Nigeria Coˆte d’Ivoire Angola Dem. Rep. of Congo Kenya Namibia Libya Madagascar Cameroon Mauritius Burkina Faso Ethiopia Mozambique Lesotho Egypt Swaziland Ghana Sudan Zambia Botswana Malawi Benin Congo Guinea Mali Senegal Seychelles Sierra Leone Tanzania Togo Gabon Liberia Uganda Total Western Europe Spain France Italy United Kingdom Norway Germany Sweden Switzerland Austria Portugal
Number of Dams 539 213 107 92 72 45 22 15 14 14 13 12 10 9 9 8 8 8 7 6 6 5 4 4 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1,209 1,196 569 524 517 335 311 190 156 149 103
Regions and Countries Finland Cyprus Greece Iceland Ireland Belgium Denmark Netherlands Luxembourg Total South America Brazil Argentina Chile Venezuela Colombia Peru Ecuador Bolivia Uruguay Paraguay Guyana Suriname Total Eastern Europe Albania Romania Bulgaria Czech Republic Poland Yugoslavia Slovakia Slovenia Croatia Bosnia Herzegovina Ukraine Lithuania Macedonia Hungary Latvia Moldova Total North and Central America United States Canada Mexico Cuba Dominican Republic Costa Rica Honduras Panama El Salvadaor Guatemala
Number of Dams 55 52 46 20 16 15 10 10 3 4,277 594 101 88 74 49 43 11 6 6 4 2 1 979 306 246 180 118 69 69 50 30 29 25 21 20 18 15 5 2 1,203 6,575 793 537 49 11 9 9 6 5 4
Regions and Countries Nicaragua Trinidad & Tobago Jamaica Antigua Haiti Total Asia China India Japan South Korea Turkey Thailand Indonesia Russia Pakistan North Korea Iran Malaysia Taipei China Sri Lanka Syria Saudi Arabia Azerbaijan Armenia Philippines Georgia Uzbekistan Iraq Kazakstan Kyrgyzstan Tajikistan Jordan Lebanon Myanmar Nepal Vietnam Singapore Afghanistan Brunei Cambodia Bangladesh Laos Total Austral-Asia Australia New Zealand Papua New Guinea Fiji Total
Number of Dams 4 4 2 1 1 8,010 22,000 4,291 2,675 765 625 204 96 91 71 70 66 59 51 46 41 38 17 16 15 14 14 13 12 11 7 5 5 5 3 3 3 2 2 2 1 1 31,340 436 86 3 2 577
Source: Based on ICOLD, 1998, ID, 1000 and other sources. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile. With permission.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-5
6000
5418
Number of dams
5000
4788
4431
4000 3000
2735 2069
2000 1000
630
353
601
809 964 913
Be fo re
19 00 19 00 s 19 10 s 19 20 s 19 30 s 19 40 s 19 50 19 s 60 s 19 70 s 19 Af 80 s te r1 99 0
0
Figure 11A.3 Commissioning of large dams globally by decade in the 20th century. (From ICOLD, 1998, excluding over 90% of large dams in China. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
Table 11A.4 Countries with More Than 100 Dams in 1982 China U.S.A. Japan India Spain Korea Canada Great Britain
18,595 5,338 2,142 1,085 690 628 580 529 29,587
(16,500) (5,046) (2,006) (999) (630) (558) (494) (519)
Brazil Mexico France Italy Australia South Africa Norway
489 487 432 408 374 342 219
(443) (433) (388) (403) (320) (316) (205)
Germany Czechoslovakia Sweden Switzerland Yugoslavia Austria Bulgaria Romania
2,751
184 142 134 130 114 112 108 106 1,030
(158) (131) (132) (128) (93) (97) (106) (81)
Note: Numbers in brackets represent number of dams in service at the end of 1977. Source: From International Commission on Large Dams, 1984, Register of Dams.
Table 11A.5 Rate of Dam Construction in the World, 1950–1982 Outside of China
Period Up to 1950 1951 to 1974 1975 to 1977 1951 to 1977 1978 to 1982 1975 to 1982 1951 to 1982
China
Number per Period
Total Number
Number per Annum
5,188 8,948 752 9,700 1,315 2,067 11,015
5,188 14,136 14,888 14,888 16,203 16,203 16,203
373 251 359 263 258 344
Number per Period
Total Number 8
16,492 2,095
16,500 18,595
611 419
1.70 1.60
18,587
18,595
581
1.69
Source: From International Commission on Large Dams, 1984, World Register of Dams.
q 2006 by Taylor & Francis Group, LLC
Number per Annum
Ratio China Compared to Outside China
11-6
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
12000
Number of dams
10000 8000 6000 4000 2000
Height, m
>1 50
90 –1 20 12 0– 15 0
60 –9 0
30 –6 0
20 –3 0
10 –2 0
0– 10
0
Figure 11A.4 Global distribution of dam heights (m). (From ICOLD, 1998. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
Table 11A.6 Classification of Dams in the World by Type and Height Number of Dams/Height
Earth (TE) and Rockfill (ER) Gravity (PG) Arch (VA) Buttress (CB) Multi-Arch (MV) Total Source:
Total
15–30 m
30–60 m
28,844
24,567
3,657
3,954 1,527 337 136 34,798
2,222 775 175 74 27,813
1,294 428 110 48 5,537
60–100 m
100–150 m
150–200 m
O200 m
477
116
21
6
361 204 40 13 1,095
65 83 12 — 276
8 24 — — 53
4 13 — 1 24
From International Commission on Large Dams, 1984, World Register of Dams.
Table 11A.7 World’s Highest Dams No 1 2 3 4 5
6 7 8 9 10 11 12
Height above Lowest Foundation (m)
Typea
335 300 285 272 262 261
TE/ER TE PG VA VA ER
261 253 245 243 242 237 237 234 233 230 226 221
ER/TE ER/TE VA/PG ER TE ER VA VA VA TE PG VA/PG
Name Rogun Nurek Grande Dixence Inguri Vajont Manuel Moreno Torres (Chicoase´n) Tehri Kishau Sayano-Shushensk Guavio Mica Chivor Mauvoisin El Cajo´n Chirkey Oroville Bhakra Hoover
Country
Year
U.S.S.R. U.S.S.R. Switzerland U.S.S.R. Italy Mexico
U/C 1980 1961 1980 1961 1980
India India U.S.S.R. Colombia Canada Colombia Switzerland Honduras U.S.S.R. U.S.A. India U.S.A.
U/C U/C U/C U/C 1972 1975 1957 U/C (1984) 1978 1968 1963 1936 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.7 No 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41
42 43 44 45 46 47 48 49 50 51 52 53
54
11-7
(Continued)
Height above Lowest Foundation (m) 220 220 219 216 215 214 213 210 208 207 202 201 200 200 196 195 194 192 191 186 186 186 185 185 184 183 183 180 180 180 180 180 176 175 174 173 173 172 172 171 169 168 168 168 168 167 167 166 165 165 165 164 164 162 162 100 160 160 160 160
Typea VA VA PG VA PG MV VA ER VA ER/PG VA VA VA VA PG/ER/TE ER VA PG ER VA TE VA VA VA ER PG TE VA ER VA VA VA ER ER PG TE VA VA PG VA VA ER ER ER PG ER VA/PG VA TE VA PG ER TE PG/ER ER ER TE/ER ER ER/TE VA
Name Contra Mratinje Dworshak Glen Canyon Toktogul Daniel Johnson Dez San Roque Luzzone Keban Almendra Khudoni Karoun Kolnbrein Itaipu Altinkaya New Bullard’s Bar Lakhwar New Melones Kurobe Swift Zillergru¨ndl Mossyrock Oymapinar Atatu¨rk Shasta WAC Bennett Amir Kabir Dartmouth Emmosson Tehchi Tignes Takase Ayvacik Alpe Gera Don Pedro Karakaya Hungry Horse Longyangxia Cabora Bassa Idukki Charyak Gura Apelor La Grande 2 Grand Coule´e Fierze Daniel Palacios Vidraru Kremasta Ross Wujiangdu Thomson Trinity Guri Talbingo Foz de Areia Grand-Maison Salvajina Thein Dam Ranjit Yellowtail
Country Switzerland Yugoslavia U.S.A. U.S.A. U.S.S.R. Canada Iran Philippines Switzerland Turkey Spain U.S.S.R. Iran Austria Brazil Turkey U.S.A. India U.S.A. Japan U.S.A. Austria U.S.A. Turkey Turkey U.S.A. Canada Iran Australia Switzerland Taiwan France Japan Turkey Italy U.S.A. Turkey U.S.A. China Mozambique India U.S.S.R. Romania Canada U.S.A. Albania Ecuador Romania Greece U.S.A. China Australia U.S.A. Venezuela Australia Brazil France Columbia India U.S.A.
Year 1965 1976 1973 1966 1978 1968 1962 U/C 1963 1974 1970 U/C 1975 1977 1982 U/C 1970 U/C 1979 1964 1958 U/C 1968 U/C U/C 1945 1967 1964 1979 1974 1974 1952 1978 1981 1964 1971 U/C 1953 U/C 1974 1974 1977 U/C 1978 1942 1978 U/C 1965 1965 1949 1981 U/C 1962 U/C 1971 1980 U/C U/C U/C 1966 (Continued)
q 2006 by Taylor & Francis Group, LLC
11-8
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11A.7 No
55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76
(Continued)
Height above Lowest Foundation (m) 158 158 158 158 158 158 157 157 157 156 156 155 155 155 155 155 154 154 153 153 153 153 153 151 151 151 150 150 150 150 150 150
Typea
Name
ER TE ER ER VA ER VA PG VA PG VA–TE ER VA VA VA PG VA/PG ER VA VA ER PG/ER VA PG ER VA PG VA ER ER VA/CB TE
Canales Yacambu Cougar Emborcaca˜o Go¨kcekaya Naramata Dongjiang Okutadami Speccheri Sakuma Zeuzier Goescheneralp Monteynard Nagawado Place Moulin Sadar Sarovar Bhumibol Tedorigawa Curnera Flaming George Gepatsch Revelstoke Santa Giustina Dorna Menzelet Zervreila Baishan Canelles Finstertal Kenyir Roselend Big Horn
Note: U/C, under construction. a
TE, Earth; ER, Rockfill; PG, Gravity; CB, Buttress; VA, Arch; MV, Multi-Arch.
Source: From International Commission on Large Dams, 1984, World Register of Dams.
q 2006 by Taylor & Francis Group, LLC
Country
Year
Spain Venezuela U.S.A. Brazil Turkey Japan China Japan Italy Japan Switzerland Switzerland France Japan Italy India Thailand Japan Switzerland U.S.A. Austria Canada Italy Spain Turkey Switzerland China Spain Austria Malaysia France Canada
U/C U/C 1964 1982 1972 U/C U/C 1961 1957 1956 1957 1960 1962 1969 1965 U/C 1964 1979 1967 1964 1965 U/C 1950 U/C U/C 1957 U/C 1960 1980 U/C 1961 1972
Name of Dam Afghanistan Kajakaiv Albania Fierze Koman Algeria Bou Hanifia Bou Roumi Keddara Sly Argentina Las Pirquitas Gral. M. Belgrano Cabra Corral Res. Las Maderas (B.L) Futaleufu AmutuiQuimei Res. Los Reyunos Alicura
Year of Completion
River
Nearest City
1952
Helmand
Kandahar
1978 C
Drin Drin
B. Curri Shkoder
1948 C (1984) C (1986) C (1985)
El Hammam Bou Roumi Boudouaou Sly
1961 1973
State Province or Country
Type
Height above Lowest Foundation (m)
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
ER
98
274
3,230
2,680,000
I
Tropoje Shkoder
ER ER
167 133
400 275
8,000 4,500
2,700,000 450,000
H H
Bou Hanifia Bou Medfa Boudouaou El Asnam
Mascara Blida Blida El Asnam
ER TE ER TE
99 100 108 87
464 300 560 395
1,530 4,200 4,380 3,565
73,000 188,000 146,000 286,000
IS I S I
5,500 800 380 1,700
Del Valle Juramento
Piedra Blanca Coronel Moldes
Catamarca Salta
TE TE
83 112
410 470
2,900 8,000
65,000 3,100,000
ICH IH
1,400 1,500
1974 1976
Las Maderas Futaleufu´
El Carmen Trevelin
Jujuy Chubut
TE TE
98 130
460 600
4,500 6,000
300,000 5,600,000
IH H
30 3,000
1980 C (1984)
Diamante Limay
25 de Mayo S.C.de Bariloche
TE TE
131 130
266 880
3,220 13,000
260,000 3,215,000
IH H
2,300 3,000
Cerro Pelado Australia Upper Yarra Eucumbane South Para Glenbawn Warragamba Geehi Blowering Corin Talbingo Cethana Wyangla Ord River Lake Argyle (Res.) Cardinia
C (1985)
Grande
Amboy
Mendoza Rio Negro/ Neuque´n Co´rdoba
TE
104
410
3,700
370,000
HICR
3,300
1957 1958 1958 1958 1980 1966 1968 1968 1971 1971 1971 1972
Yarra Eucumbene South Para Hunter Warragamba Geehi Tumut Cotter Tumut Forth Lachlan Ord
Melbourne Cooma Adelaide Scone Sydney Cooma Tumut Canberra Tumut Devonport Cowra Wyndham
Victoria NSW Sth Aust. NSW NSW NSW NSW ACT NSW Tasmania NSW West Aust.
TE/ER TE TE ER PG ER ER ER ER ER ER ER
89 116 48 78 137 91 112 76 162 110 85 99
610 579 284 823 351 265 808 282 701 213 1,510 341
5,660 6,735 581 7,650 1,233 1,421 8,563 1,376 14,490 1,376 3,580 1,908
207,200 4,798,400 51,190 360,000 2,057,000 21,093 1,628,000 74,970 921,400 109,000 1,220,000 5,797,000
1973
Melbourne
Victoria
TE/ER
86
1,542
5,150
288,905
Copeton
1976
Cardinia Creak Gwydir
Inverell
NSW
ER
113
1,484
8,333
1,364,000
S H S IC SH H IH S H H I I S I
9,300
2,165 191 736 1,700 12,740 1,534 2,350 1,190 4,290 1,980 14,700 3,500 13 14,800
11-9
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.8 High Dams of the World Arranged by Country
(Continued)
Name of Dam
Year of Completion 1979 1980 1980
Mangrove Creek
1982
Blue Rock Thomson Lower Pieman Austria Gepatch Oschaniksee Ko¨lnbrein Rotlech Finstertal Zillergru¨ndl Brazil Euclides Da Cunha
Nearest City
State Province or Country
Type
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Purpose
Mitta Mitta Ipswich Melbourne
Victoria Queensland Victoria
ER ER ER
180 76 89
670 1,140 1,000
14,100 3,371 4,700
4,000,000 28,700 100,000
Wyong
NSW
ER
80
380
1,340
170,000
S
570
C (1984) C (1984) C (1985)
Mitta Mitta Pryde Creek Sugarloaf Creek Mangrove Creek Tanjil Thomson Pieman
Moe Moe Queenstown
Victoria Victoria Tasmania
TE ER ER
75 164 122
640 1,180 374
1,530 13,300 2,950
200,000 1,175,000 641,000
S SI H
1,018 1,040 4,714
1965 1972–1978 1977 1977 1980 C (1986)
Faggenbach tr. Fragant Malta tr. Lech tr. Naderbach Ziller
Landeck Obervellach ¨ nd Om Reutte ¨ tz O Mayrhofen
Tyrol Carinthia Carinthia Tyrol Tyrol Tyrol
ER ER VA PG/ER ER VA
153 116 200 32 150 186
600 530 626 128 652 506
7,100 2,250 1,580 14/11 4,500 1,355
140,000 33,000 205,000 1,260 60,500 90,000
H H H H H H
325 6 188 200 23 215
1960–1977
Pardo
Sa˜o Paulo
TE
92
312
2,200
13,400
H
2,340
Tres Marias
1960
Minas Gerais
TE
75
2,700
14,250
19,790,000
CHI
8,700
Furnas Estreito
1963 1969
Sa˜o Francisco Grande Grande
S.Jose´ do Rio Pardo Tres Marias
ER/PG ER/PG
127 92
779 715
9,697 4,446
22,950,000 1,418,000
HC H
13,000 13,000
Xavantes
1970
Xavantes
Minas Gerais M.Gerais/Sa˜o Paulo Sa˜o Paulo
TE/ER
92
500
6,000
8,750,000
H
Paraitinga Paraitinga Dike Paraitinga Res. Itauba
1975 1975
Paraibuna Paraibuna
Sa˜o Paulo Sa˜o Paulo
TE TE
105 80
586 530
11,051 3,391
2,430,000 2,430,000
HC
1975
Jacui
ER
90
385
3,410
510,000
Paraibuna Sa˜o Sima˜o
1978 1978
Paraibuna Paranaiba
TE TE/ER/PG
94 120
1,285 3,611
7,892 27,378
2,463,000 12,540,000
HCI H
1,500 24,100
Foz Do Areia Itumbiara
1980 1980
Iguac¸u Paranaiba
ER TE/PG
160 106
850 6,780
13,000 38,820
6,100,000 17,030,000
H HC
11,000 16,200
Salto Santiago (Main) 1980 Jequitai 1981 Emborcac¸a˜o 1982
Iguac¸c¸u´ Jequital Paranaiba
ER TE ER
80 80 158
1,400 580 1,607
9,860 2,300 25,000
6,750,000 1,200,000 17,600,000
H I H
24,000 1,850 7,800
q 2006 by Taylor & Francis Group, LLC
Paranapanema Paraitinga
Passos Pedregulho
Julio de Castilhos Rio Grande do Sul Paraibuna Sa˜o Paulo Sa˜o Sima˜o Minas Gerais (Goia´s) Bituruna Parana´ Itumbiara Gola´s/Minas Gerais Laranjeiras do Sul Parana´ Jequital Minas Gerais Araguari Minas Gerais/Goia´s
IHS H S
Maximum Discharge Capacity of Spillways (m3/sec)
H
2,584 570 7
3,200 600 — 8,130
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Dartmouth Split-Yard Creek Winneke
River
Height above Lowest Foundation (m)
11-10
Table 11A.8
1982 C (1983) C (1986)
Pedra Do Cavalo
C
Parana´ Tocantis Sa˜o Francisco Paraguassu
Segredo Bulgaria Belmeken Canada Kenney Lajoie WAC Bennett Daniel Johnson (Manic 5) Outardes 4 No. 1 Outardes 4 No. 2 Lower Notch Big Horn Abraham Lake Res. Mica Manicouagan 3 Revelstoke Barrage principal
C (1987)
Foz do Iguac¸u Tucuruı´ Petrola´ndia
Brasil/Paraguai Para´ Pernambuco
ER/PG/TE TE/ER/PG ER
196 93 105
7,900 10, 667 4,150
29,200 64,300 16,530
29,000,000 43,000,000 10,700,000
Bahia
ER
142
510
6,500
5,330,000
HCS
12,000
Iguac¸u
Cachoeira de S. Fe´lix Pinha˜o
Parana´
ER
140
700
6,700
3,000,000
H
13,000
1976
Kriva
Sestrimo
S
ER
94
760
3,560
145,000
H
1952 1955 1967 1968
Nechako Bridge Peace Manicouagan
Prince George Goldbridge Hudson Hope Baie Comeau
British Columbia British Columbia British Columbia Quebec
ER ER TE MV
104 87 183 214
457 1,033 2,042 1,314
3,071 2,860 43,733 2,255
23,700,000 720,728 70,308,930 141,851,350
H H H H
1968 1968 1971 1972
Outardes Outardes Montreal North Sask.
Baie Comeau Baie Comeau North Bay Nordeag
Quebec Quebec Ontario Alberta
ER ER TE/PG TE
122 108 132 150
649 726 1,969 472
7,533 4,688 1,817 4,330
170,960 1,768,000
H H H H
1972 1975 C 1978
Columbia Manicouagan Columbia La Grande Riviere La Grande Riviere La Grande Riviere R. aux Meandres Riviere Stephane
Revelstoke Baie Comeau Revelstoke Radisson
British Columbia Quebec British Columbia Quebec
TE TE PG/ER ER
242 108 153 168
792 366 1,620 2,826
32,111 9,175 13,000 23,192
24,699,800 10,422,991 5,180,000 61,715,000
H H H H
7,080 16,000
Radisson Radisson Radisson
Quebec
ER
13,511 8,601 18,800
H
9,970
TE/ER
2,156 1,689 3,780
60,020,000
Quebec
93 93 125
19,530
H
7,350
Radisson
Quebec
TE
95
1,435
3,000
—
H
—
Radisson
Quebec
TE
90
1,940
10,100
—
H
—
1967 1968 1981 1981
Grande Cato Cauquenes Los Leones
Ovalle Parral Rancagua Los Andes
IV Regio´n VII Regio´n VI Regio´n V Regio´n
TE TE TE TE
96 89 83 128
1,000 420 1,200 330
7,350 3,650 9,400 4,360
740,000 220,000 170,000 42,500
I I T T
6,500 300 220 10
Barrage Nord Sud Barrage
1981
Digue QA-1
1981
Digue QA-8
1982
1981
H HN IH
61,400 110,000 28,700
— 566 10,194
1,425
4,248
Chile Paloma Digua Colihues A Los Leones – 1st stage Colbun China Shuifeng Fengman
C (1985)
Maule
Linares
VII Regio´n
TE
116
530
13,870
1,490,000
I–H
7,570
1943 1955
Kuandian Jilin
Liaoning Jilin
PG PG
106 81
899 1,080
3,400 1,940
14,700,000 10,778
H CIH
37,500 10,000
Nangudong Sanmenxia
1960 1960
Yalu Jiang Songhua Jiang Loushui He Huang He
Linxian Sanmenxia
Henan Henan
ER PG
78 106
164 713
1,750 1,630
64,500 35,400,000
IC HI
3,285 3,843
11-11
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Itaipu Tucuruı´ Itaparica
(Continued)
Name of Dam
Year of Completion 1960 1970 1970 1972 1972 1973 1973 1974 1976 1979 1980 1981 C C
Baoquan Guxian Hunanzhen Longyangxia Lubuge Shibianyu Shitouhe Wuqiangxi Colombia Calima I Prado Alto Anchicaya Chivor(La Esmeralda) Chuza (Golillas) Punchina Betania Salvajina Guavio Czechoslovakia Orlik Dalesice Dominican Republic Tavera
C C C C C C C C
Sabana Yegua
State Province or Country
Type
Length of Crest (m)
1,380 4,915 2,740 1,196 3,464 1,711 4,660 2,928 4,241 1,040 1,080 1,930 2,100 1,630
21,626 3,340,000 3,911,000 3,450,000 655,000 1,218,000 168,000 20,900 521,000 1,550,000 2,300,000 2,580,000 6,215,000
CI HIS H HI HIS CH H CIHM IH I IHC H HN H
2,790 1,340 1,450 1,750 1,850 2,080 8,550 2,670
46,000 1,200,000 2,060,000 24,700,000 110,000 28,000 147,000 10,800,000
HIC HC HNS HIS IH I IH HI
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
Zhejiang Guangdong Jilin Liaoning Fujian Guangdong Henan Hubei Gansu Hebei Hunan Guizhou Shaanxi Jilin
PG TE PG PG ER ER TE PG ER VA PG VA PG VA
105 80 114 79 76 81 76 97 101 95 111 165 120 150
tr. Wei He Yuan Shui
Huixian Luoning Juzhou Gonghw Luoping Changan Meixian Yuanling
Henan Henan Zhejiang Qinghai Yunnan Shaanxi Shaanxi Hunan
PG PG CB VA ER ER ER PG
116 121 129 172 97 85 105 104
1965 1971 1974 1975 1978 1982 C (1984) C (1985) C (1987)
Calima Prado Anchicaya´ Bata´ Chuza Guatape Magdalena Cauca Guavio
Buga Ibague´ Cali Guateque Bogota´ Medellin Neiva Popayan Gachala´
Valle Tolima Valle Boyaca´ Cundinamarca Antioquı´a Huila Cauca Cundinamarca
ER TE ER ER ER TE ER/PG ER ER
115 90 140 237 135 77 90 160 243
240 260 240 280 106 750 670 360 390
2,820 2,000 2,500 10,800 1,400 5,800 6,300 3,500 17,755
563,000 1,400,000 45,000 815,000 257,000 72,000 1,971,000 904,000 1,020,000
H HI H H S H HICS H H
370 1,200 46,000 10,600 545 7,500 19,000 3,550 3,500
1963 1979
Vitava Jihlava
Pribram Trebı´c
Bohe´me C. Moravie S.
PG ER
91 100
550 330
1,030 1,800
703,800 127,300
HCS HSRI
2,555 442
1974
Yaque del Norte Yaque del Sur
Tavera
Santiago
TE
82
405
1,850
170,000
IH
6,900
Los Bancos
San Juan
TE
90
1,200
14,700
677,000
IHC
1,885
q 2006 by Taylor & Francis Group, LLC
462 730 828 593 305 215 245 246 297
Gross Capacity of Reservoir (103 m3)
Hangzhou Woxian Jian Huairen Nan’an Shaoguan Lingbao Xiangfan Wenxian Xingtai Yuanling Zun’yi Ankang Huadian
1978
Xin’an Jiang Nandu Jiang Yalu Jiang Hun Jiang tr. Dong Jiang Bel Jiang Hongnong He Han Jiang Bailong Jiang Nanli He Youshui Wu Jiang Han Jiang Songhua Jiang Luo He Luo He Wuxi Jiang Huang He Huangni He
Nearest City
Volume Content of Dam (103 m3)
488 368 542 670
315 440 342
600
14,000 6,300 24,200 23,910 8,570 400 1,950 4,700 2,310 23,300 19,796 30,900 6,300
10,600 10,500
7,150
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Xin’Anjiang Songtao Yunfeng Huairen Shanmei Nanshui Zhaikou Danjiangkou Bikou Zhuzhuang Fengtan Wujiangdu Ankang Baishan
River
Height above Lowest Foundation (m)
11-12
Table 11A.8
France Serre-Poncon Mont-Cenis Grand’Maison Pla De Soulcem Ghana Akosombo (Main) Great Britain Scammonden Llyn Brianne Greece Kremasta Polyphyton Mornos Pournari Sfikia Peghai (Main Dam) Guatemala Pueblo Viejo Hong Kong High Island East High Island West India Koyna (Shivaji Sagar) Rihand (Gobind Ballabh Pant Sagar) Bhakra Dam (Gobind Sagar)
a
C (1980)
Bao
Sabana Iglesia
Santiago
TE
112
425
3,050
280,000
HIS
C (1983)
Paute
Cuenca
Azuay
PG/VA
167
420
1,200
120,000
H
7,700
C (1980)
Daule
Quevedo
Los Rı´os
TE/ER
90
250
3,000
6,000,000
M
3,600
1970
Daule
Aswan
Egypt
TE/ER
111
3,830
44,300
168,900,000
1973
Lempa
Hutyapa
ER
80
900
5,100
1982
Nanuku Ck
Suva
Fiji
ER
85
485
1959 C (1983)
Rur Kleiner Regen
Heimbach Zwiesel
Nordrhein Bayern
TE ER
77 86
1960 1968 C (1985) C (1983)
Durance Cenise Eau d’Olle Mounicou
Gap Modane Grenoble Tarascon
Htes Alpes Savoie Ise`re Arie`ge
TE TE/ER TE/ER TE
1965
Volta
Accra/Tema
Ghana
ER
1970 1972
Black Brook Towy
Huddersfield Llandovery
Best Yorkshire Dyfed
TE/ER ER
1965 1974 1979 1980 C (1984) C (1987)
Achelo¨os Aliakmon Mornos Arachthos Aliakmon Ao¨os
Agrinion Kozani Lidhoriki Arta Veria Metsovon
Etolo-Akarnanie Makedhonia Phocide Ipiro Makedhonia Ipiro
C (1983)
Chixoy
San Cristobel
Alta Verapaz
GR
11,000
1,430,000
H
11,000
1,738
133,000
H
625
480 640
2,600 2,263
181,800 20,300
CNH SNCH
450 58
129 120 160 76
600 1,400 550 275
14,100 14,850 12,500 1,675
1,270,000 332,200 140,000 29,300
HI H H H
3,430 265 65 134
134
671
7,991
147,960,000
H
14,160
76 91
624 274
4,304 2,085
7,873 60,000
S S
850
TE ER TE TE ER TE
165 112 126 102 80 78
460 298 815 574 230 295
8,170 3,459 17,000 9,500 1,620 2,800
4,750,000 2,244,000 780,000 730,000 99,000 262,000
H HI S H H H
3,000 1,375 1,135 6,100 1,600 160
ER
130
230
3,200
460,000
H
3,850
3443 6120
284,375
S
435
)
Kwun Mun Kwun Mun
Sai Kung Sai Kung
New Territories New Territories
ER ER
85 76
457 762
1961 1962
Koyna Rihan
Karad Mirzapur
Maharashtra Uttar Pradesh
PG PG
103 93
808 934
1,555 1,680
2,796,500 10,600,000
H H
3,823 13,339
1963
Satluj
Nangal Township
Himachal Pradesh
PG
226
518
4,130
9,621,000
IH
8,372
(Continued) q 2006 by Taylor & Francis Group, LLC
11-13
1977 1977
WATER RESOURCES MANAGEMENT
Tavera-Bao Ecuador Daniel Palacios (Amaluza Res.) Daule-Peripa Egypt Aswan High Dam (Sadd-el-Aali) El salvador Cerron Granda (Silencio) Fiji Monasavu Germany (F.R.) Rur Frauenau
(Continued)
Name of Dam
River
Nearest City
State Province or Country
Type TE,PG TE,PG TE,PG TE
105 81 125 133
1,282 5,065 4,865 1,950
2,496 25,180 7,960 35,500
160,660 8,511,000 11,550,000 8,570,000
IH IHC IH IH
1,474 35,960 53,450 12,374
PG TE TE PG TE,ER TE,PG TE,PG PG PG PG PG PG
138 75 128 89 84 89 86 100 192 155 143 101
650 4,363 743 938 568 1,264 2,688 903 440 1,210 512 322
1,700 19,096 11,013 1,679 1,715 1,449 3,219 1,937 2,000 4,100 1,953 1,150
1,996,000 3,610,000 2,442,600 915,000 219,000 708,260 3,417,000 630,000 580,000 9,500,000 8,722,000 4,418,000
H IH IH SIH H I IH I IH IHC H H
5,012 10,930 8,467 3,775 1,416 2,247 20,530 17,275 8,000 62,269 37,400 2,830
IH IHC
13,150 21,890
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Purpose
1972 1972 1974 1974
Sholayar Tapi Krishna Beas
Colmbatore Fort Songadh Hyderabad Mukerian
1976 1977 1978 C C C C C C C C C
Cheruthoni Sileru Ramganga Bhatsa Chakra Dudhganga Hasdeo Karjan Yamuna Narmada Krishna Kali
Idukki Jeypur Dhampur Bombay Shimoga Kolhapur Bilaspur Rajpipla Dehradun Rajpipla Hyderabad Dandeli
Tamil Nadu Gujarat Andhra Pradesh Himachal Pradesh Kerala Orissa Uttar Pradesh Maharashtra Karnataka Maharashtra Madhya Pradesh Gujarat Uttar Pradesh Gujarat Andhra Pradesh Karnataka
C C
Bhagirathi Ravi
Tehri Pathankot
Uttar Pradesh Punjab
TE,ER ER,TE
261 160
570 565
22,750 16,187
3,539,000 3,280,000
C
Warna
Kolhapur
Maharashtra
TE,PG
91
1,580
15,310
964,000
1967
Citarum
Purwakarta
W–Java
ER
100
1,225
9,000
3,345,000
1972 C
Brantas Citarum
Malang Cianjur
E–Java W–Java
ER ER
100 98
823 300
6,156 2,570
342,000 609,000
1975 1978 1982
Karun Ghesh-Lagh Lar
Masjed Soliman Sanandaj Tehran
Iran Iran Iran
VA TE TE
200 80 105
380 300 1,500
1,570 2,000 1,300
3,005,000 224,000 960, 000
1951 1983
Diyala Tigris
Sulaymaniya Mosul
Sulaymaniya Nienava
ER ER
128 131
535 3,500
7,480 23,000
3,000,000 12,500,000
1964 1965
Cormor Buthier
Sondrio Aosta
Adige Lombardia Valle d’Aosta
PG VA
174 155
628 678
1,700 1,510
68,088 105,000
H H
1956 1957 1960
Tenryu Tama Sho
Toyohashi Ome Gifu
Aichi Tokyo Gifu
PG PG ER
156 149 131
294 353 405
1,120 1,680 7,950
327,000 189,000 370,000
H SH H
q 2006 by Taylor & Francis Group, LLC
I
3,222
IHCSR
3,000
IHCR HCR
1,310 2,400
IH S IH
16,200 2,600 1,700
ICH ICH
11,400 17,000 59 473 7,700 1,800 1,800
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Sholayar Ukai Dam Nagarjunasagar Dam Pong Dam (Beas Project) Cheruthoni Balimela Dam Ramganga Bhatsa Chakra Dudhganga Hasdeo Project Karjan (Lower) Lakhwar Sardar Sarovar Srisailam H.E. Project Supa (Kalinadi Project) Tehri Dam Thein Dam Ranjit Sagar (Res.) Warna Indonesia IR.H.Juanda (Jatiluhur) Karangkates Saguling Iran Karoon Ghesh-Lagh Lar Iraq Derbendikhan Mosul Italy Alpe Gera Place Moulin Japan Sakuma Ogochi Miboro
Year of Completion
Maximum Discharge Capacity of Spillways (m3/sec)
Height above Lowest Foundation (m)
11-14
Table 11A.8
1960
Tadami
Arimine Makio Okutadami Kurobe Oshirakawa Tsuruta Yanase Kuzuryu Shimokubo
1961 1961 1961 1964 1964 1965 1965 1968 1968
Kisenyama
1969
Koshibu
1969
Misakubo
1969
Shimokotori
1973
Aburatani
1974
Fukuchi Kajigawa Kurokawa Matsukawa
1974 1974 1974 1974
Miyama Niikappu Sameura Taisetsu Hirose Nabara
1974 1974 1974 1974 1975 1975
Iwaya Kusaki
1976 1976
Myojin
1976
Terauchi
1977
Futai Kassa Miho
1978 1978 1978
Joganji Kiso Tadami Kurobe Oshirakawa Sendai Nabari Kuzuryu Kanna, tr. Tone Samutani, tr. Yodo Koshibu, tr. Tenryu Misakubo, tr. Tenryu Kotori, tr. Jintsu Aburatani, tr. Kuma Fukuchi Kaji Ichi Matsu, tr Tenryu Naka Niikappu Yoshino Ishikari Fufuki, tr. Fuji Nabara, tr. Ota Mase, tr. Kiso Watarase, tr. Tone Nabara, tr. Ota Sada, tr. Chikugo Kiyotsu Kassa Sakawa
Nanakura
1978
Takase
Aizuwakamatsu Toyama Matsumoto Koide Omachi Gifu Kagoshima Aki Ono Fujioka
Fukushima
PG
145
462
1,990
494,000
H
2,200
Toyama Nagano Fukushima Toyama Gifu Kagoshima Kochi Fukui Saitama
PG ER PG VA ER PG ER ER PG
140 105 157 186 95 118 115 128 129
500 260 480 489 390 448 202 355 626
1,570 2,616 1,640 1,360 1,700 1,124 2,842 6,300 1,190
218,000 75,000 601,000 199,000 14,200 123,000 105,000 320,000 130,000
H IHS H H H Ch H HC HIS
380 3,200 1,500 1,500 330 4,965 1,900 1,560 1,600
Uji
Kyoto
ER
91
255
2,338
7,230
Iida
Nagano
VA
105
293
311
58,000
IHC
Tenryu
Shizuoka
ER
105
268
2,410
30,000
H
900
Takayama
Gifu
ER
119
321
3,530
123 037
H
1,920
Yatsushiro
Kumamoto
er
82
189
1,277
5,420
h
430
Nago Shibata Himeji Iida
Okinawa Niigata Hyogo Nagano
ER PG ER PG
92 107 98 84
260 286 325 165
1,622 433 3,623 263
51,500 22,500 33,390 7,400
Kuroiso Tomakomai Nankoku Asahikawa Enzan Hiroshima
Tochigi Hokkaido Kochi Hokkaido Yamanashi Hiroshima
ER ER PG ER ER ER
76 103 106 87 75 86
334 326 400 440 255 305
1,967 3,071 1,200 3,874 1,400 2,213
Minokamo Kiryu
Gifu Gunma
ER PG
128 140
366 405
Hiroshima
Hiroshima
ER
89
Amagi
Fukuoka
ER
Nagaoka Nagaoka Minamiashigara Omachi
Niigata Niigata Kanagawa Nagano
H
6 2,160
ICS C H CIS
800 1,920 175 900
25,800 145,000 316,000 66,000 14,300 5,658
IHS H IHCS CHIS IHCS H
840 1,500 6,000 1,000 1,380 475
5,780 1,374
173,500 60,500
IHCS IHCS
2,950 4,320
402
3,268
6,145
83
420
3,012
18,000
ICS
1,300
ER ER ER
87 90 95
280 487 588
2,350 4,450 5,816
18,300 13,500 64,900
H H CHS
1,950 114 3,100
ER
125
340
7,380
32,500
H
1,950
H
80
11-15
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Tagokura
(Continued)
Year of Completion
Takase Seto Tedorigawa Terauchi Urushizawa Inamura Tamahara Agigawa Arakawa Arima Doyo Igarashigawa Jozankei Kuriyama Kyuragi Naramata Nitchu Ogaki Okawa
1978 1978 1979 1980 1980 1981 1982 C (1986) C (1985) C (1985) C (1984) C (1990) C (1986) C (1985) C (1985) C (1986) C (1986) C (1985) C (1984)
Takase Setodani Tedori Sada Naruse Seto Hotchi Kiso Ara Iruma Doyo Igarashi Ishikari Nebesawa Matsuura Naramata Oshikiri Ukedo Agano
Ouchi
C (1985)
Ono
Sagae Sagurigawa Takami Tamagawa Shichigashuku Shintsuruko Shitoki Tokachi Yasaka Jordan King Talal Dam Wadi Arab Dam Libya Ghan Malaysia Temengor Kenyir Batang Ai
C C C C C C C C C
River
Nearest City
Mogami Saguri Shizunai Omono Abukuma Nyu Shitoki Tokachi Oze
Omachi Gojo Kanazawa Amagi Furusawa Kochi Numata Ena Kofu Hanno Yonago Sanjo Sapporo Imaichi Taku Numata Kitakata Haramachi Aizuwakamatsu Aizuwakamatsu Sagae Ojiya Tomakomai Omagari Shiroishi Obanazawa Iwaki Obihiro Iwakuni
1977 C (1985)
Zarqa River Wadi Arab
1982
Ghan
1978 C (1984) C (1985)
S. Perak Grik S. Trengganu Kuala Brang Batang Ai Lubok Antu
(1985) (1988) (1984) (1987) (1988) (1985) (1984) (1984) (1987)
q 2006 by Taylor & Francis Group, LLC
State Province or Country
Type
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Nagano Nara Ishikawa Fukuoka Miyagi Kochi Gunma Gifu Yamanashi Saitama Tottori Niigata Hokkaido Tochigi Saga Gunma Fukushima Fukushima Fukushima
ER ER ER ER ER ER ER ER ER ER ER ER PG ER PG ER ER ER PG
176 111 154 83 80 88 116 102 88 84 87 76 113 89 117 158 106 85 78
362 343 420 420 310 325 570 430 320 260 480 360 405 340 386 520 468 262 407
11,600 3,740 10,050 3,000 2,143 3,100 5,435 4,400 3,000 1,600 2,700 2,278 1,150 2,200 1,045 12,300 5,010 1,729 1,000
76,200 16 850 231,000 18,000 18,000 5,800 14,800 48,000 10,800 7,600 7,680 21,100 82,300 6,890 7,400 90,000 24,600 19,500 57,500
Fukushima
ER
102
340
4,400
18,500
Yamagata Niigata Hokkaido Akita Miyagi Yamagata Fukushima Hokkaido Yamaguchi
ER ER ER PG ER ER ER ER PG
115 116 120 100 93 93 84 84 120
510 420 427 432 565 303 300 443 540
9,490 7,214 5,120 1,105 5,050 2,645 2,580 3,658 1,600
109,000 27,500 229,000 254,000 109,000 31,500 12,100 112,000 48,000
Jarash North Shuneii
Salt District Irbid District
TE/ER ER
94 82
330 482
4,216 2,968
Ghrian
NE/Ghrian
ER
80
316
Perak Trengganu Sarawak
ER ER ER
115 150 85
128 800 810
Purpose H H HCSI CIS HCS H H CS CS CS H CS CS H CSH CIS ICS I CSIH H
Maximum Discharge Capacity of Spillways (m3/sec) 1,700 230 3,500 1,300 1,500 230 160 2,000 1,680 670 80 1,420 675 52 1,080 1,650 1,120 1,680 5,230 176
CSIH CS CH CISH CSI I CSI CH CS
2,600 1,690 2,400 3,500 2,620 1,100 1,540 2,600 4,050
52,000 20,000
IC IS
2,950 430
1,650
39,500
IC
1,640
6,980 16,500 4,000
570,000 13,600,000 2,360,000
HC HC H
2,720 7,000 2,175
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Name of Dam
Height above Lowest Foundation (m)
11-16
Table 11A.8
1947
Nazas
C. Lerdo
Durango
TE
95
330
5,300
3,152,000
IC
6,000
1948
Tamazula
Culiaca´n
Sinaloa
TE
81
1,031
4,900
845,000
IH
6,300
1952
Yaqui
Obrego´n
Sonora
TE
90
1,457
8,773
3,237,000
IHC
11,100
1955 1955
Rı´o Mayo Rı´o Tonto
Navojoa C.Alema´n
Sonora Oaxaca
TE TE
81 76
780 830
4,196 4,059
1,014,700 6,515,000
IHC ICH
8,000 5,500
1956
Rı´o Fuerte
El Fuerte
Sinaloa
TE
86
3,230
10,200
3,290,000
IGH
16,450
1961 1963 1964
Tehuantepec Balsas Grijalva
Tehuantepec Apatzingan Ca´rdenas
Oaxaca Michoaca´n Chiapas
TE TE TE
86 148 138
375 350 478
3,540 5,500 5,077
942,000 9,340,000 8,300,000
IC H HC
5,500 10,350 21,750
1964 1968
Humaya Bravo
Culiaca´n Acun˜a
Sinaloa Coahuila
TE PG/TE
107 87
820 9, 760
7,141 11,620
3,150,000 4,379,000
IC IHCS
5,600 43,690
1974 1980
Grijalva Grijalva
Tuxtla Gutierrez Tuxtla Gutie´rrez
Chiapas Chiapas
TE TE
146 261
323 485
4,030 15,370
9,200,000 1,613,000
H H
6,900 15,000
1981 1982
San Lorenzo Sinaloa
Cosala´ Guamuchil
Sinaloa Sinaloa
TE TE
136 114
400 800
7,090 9,315
2,850,000 1,800,000
IHC IHC
C (1985) C (1985)
Ocoroni Balsas
Guasave Iguala
Sinaloa Guerrero
TE TE
79 126
400 347
2,367 6,327
300,000 782,000
IC H
2,450 17,000
C (1986)
Tepalcatepec Apatzingan
Jalisco
TE
104
1,150
5,898
600,000
IC
7,000
1970 1971 1973 1974
Tessaout Ziz Masa Bou Regreg
Marrakech Er Rachidia Tiznit Rabat
Marrakech Er Rachidia Tiznit Rabat
TE TE ER ER
100 85 85 100
725 785 670 340
5,300 5,800 3,700 3,000
200,000 380,000 310,000 493,000
IH I IS SI
3,000 1,700 3,400 5,000
C (1986)
Lakhdar
Demnate
Azilal
TE
145
380
9,500
270,000
IHS
1,820
1981
Kulekhani
Kathmandu
Nepal
ER
114
406
4,419
85,300
H
2,540
1965 1965 1977
Waitaki Rangataiki Mangatangi
Oamaru Whakatane Manukau
Otago South Auckland South Auckland
TE TE TE
118 86 78
957 345 340
12,500 3,500 2,240
2,200,000 25,000 39,000
H H S
3,400 1,900 510
5,000 7,000
11-17
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Mexico Lazaro Cardenas (El Palmito) Sanalona Alvaro Obregon (Oviachic) Adolfo Ruiz Cortines (Mocu´zari) Presidente Aleman (Temascal) Migual Hidalgo (El Mahone) Presidente Benito Juarez (El Marques) El Infiernillo Netzahualcoyoti Pte.Adolfo Lopez Mateos (Humaya) Internacional La Amistad La Angostura Manuel Moreno Torres (Chicoase´n) Jose Lopez Portillo Pte. (Comedero) Gustavo Diaz Ordaz Pdte. (Bacurato) El Sabinal Carlos Ramirez Ulloa (Caracol) Chilatan Morocco Moulay Youssef Hassan Addakhil Youssf Ben Tachfine Sidi Mohamed Ben Abdellah Ait Chouarit Nepal Kulekhani Dam New Zealand Benmore Matahina Mangatangi
(Continued)
Name of Dam Patea Nigeria Shiroro
Chinchan Philippines Ambuklao Binga Angat Pantabangan
River
Nearest City
State Province or Country
Type
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
C
Patea
Wanganui
Taranaki
TE
82
190
1,100
138,000
H
2,800
C (1984)
Kaduna/ Dinya
Minna
Niger
ER
125
700
3,457
7,000 000
H
7,500
1965 1970 1977 1979 C (1987) C (1987)
Walldaiselv Sira-Digea Sira Leiro Oddeana Brattliana
Haugesund Flekkefjord Stavanger Bergen Haugesund Haugesund
Hordaland Vest-Agder Vest-Agder
90 90 129 84 140 98
350 400 420 1,140 500 1,460
1,450 2,700 4,715 3,624 5,400 9,700
see Storvatn 3,105,000
H H H H H H
375 45
Rogaland Rogaland
ER ER ER ER ER ER
600
1967 1976 1967
Jehlum Indus Saddle Dam
Dehlum Taxila Mirpur
Punjab NWFP A. Kashmir
TE TE/ER TE
138 143 84
3,139 2,743 2,073
65,379 105,570 26,240
7,251,811 13,689,644
HI IH I
31,144 42,186 —
1982
Parana´
Hernandarias
Brazil/Paraguay
ER/PG/TE
190
7,655
33,690
29,000,000
H
62,000
1982 C (1985) C (1987)
Yauliyacu Colca Jequetepeque Yuracocha
Casapalca Chivay Pacasmayo
Lima Arequipa Cajamarca
TE ER ER
75 92 112
220 503 750
3,000 4,300 14,200
7,500 260,000 400,000
M I IH
1,300 1,830
Casapalca
Lima
TE
90
230
5,800
13,500
M
Baguio Baguio Manila Cabanatuan
Benguet Benguet Bulacan Neva Ecija
ER ER ER TE
129 107 131 107
452 215 368 1,615
6,000 2,000 7,000 12,300
327,170 63,000 1,099,000 2,996,000
H H IH IHC
7,300 5,200 7,500 4,200
1982 C
Agno Agno Angat Upper Pampanga Magat Agno
Santiago Dagupan
Isabela Pangesinan
TE/ER ER
106 210
2,925 1,130
13,200 43,150
1,250,000 990,000
IH IHC
30,400 12,600
1958 1964 1968
Ca´vado Rabaga˜o Mira
Chaves Chaves Odemira
Vila Real Vila Real Beja
ER VA/PG TE
110 94 86
540 1,897 428
2,700 1,117 3,966
164,500 569,000 485,000
H H I
720 500 208
H
2,400
C (2007) 1956 1960 1967 1977
250
Magat San Roque Portugal Paradela Alto Rabaga˜o Santa Clara Romania Izvorul Muntelui (Bicaz) Fintinele Somes
1961
Bistrita
P.Nearnt
Nearnt
PG
127
430
1,625
1,230,000
1978
Huedin
Cluj
ER
92
400
2,320
225,000
HR
700
Cerna Principal
1979
Somesul Cald Cerna
Tg.Jiu
Gorj
ER
110
342
2,550
124,000
SHI
1,080
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Norway Hyttejuvet Digea Svartevatn Sysenvatn Oddatjorn Blasjo Storvatn Reservoir Pakistan Mangla Tarbela Auxiliary-1 Jari Paraguay Itaipu Peru Yauliyacu Arriba Condorma Gallito Ciego
Year of Completion
Height above Lowest Foundation (m)
11-18
Table 11A.8
1979 C (1983) C (1984) C (1984) C (1985) C (1985) C (1985) C (1986) C (1987)
Sebes Bistrita Rıˆul Mare Dıˆmbovita Teleajen R. Tirgului Buza`u Bistrita Bistra Maˆrului
Sebes Bistrita Hateg Tirgoviste Vaˆlenii de Munte Cimpulung Nehoiu Tg.Jiu Otelul Rosu
Alba Bistrita Na´saˆud Hunedoara Dimbovita Prahova Arges Buzaˆu Gorj Caras Severin
ER ER ER TE TE ER ER ER ER
91 92 168 105 75 120 122 93 130
300 250 450 270 720 380 440 270 400
1,600 1,600 9,020 2,400 5,000 3,500 8,800 1,700 5,320
136,000 90,000 225,000 68,900 60,000 60,000 155,000 29,400 96,000
1977
Orange
Petrusville
VA
107
853
1,300
3,237,000
IH
20,400
Sterkfontein
1980
Harrismith
TE
93
3,060
19,800
2,656,000
S
—
Goedertrouw South Korea So Yang Gang Sam Rang Jin Upper part Dam An Dong
1982
Nue Jaar Spruit Mhlatuze
Eshowe
Orange Free State Orange Free State Natal
TE
88
660
5,330
321,000
IS
7,000
1973 C
Han Nakdong
Chunchon Samrangjin
ER ER
123 85
530 250
9,591 1,003
2,900,000 6,140
IHCR H
5,500
1976
Nakdong
Andong
Kangwondo Kyeongsangnamdo Keongsangnamdo
ER
83
624
4,015
1,248,000
IHCS
5,360
Spain Mequinenza Porto De Mouros Grado I Iznajar Almandra El Atazar Arenos Beninar
1966 1967 1969 1969 1970 1972 1979 1983
Mequinenza Arzua El Grado Rute Almendra Atazar Montanejos Beninar
Zaragoza La Corun˜a Huesca Cordoba Salamanca Madrid Castellon Almeria
PG ER PG PG VA VA ER ER
81 93 130 122 202 134 108 87
451 460 958 407 557 484 428 386
1,000 2,337 1,225 1,450 2,186 1,200 3,014 3,800
1,533,800 297,000 399,000 980,000 2,649,000 426,000 132,000 70,000
H H IH HIS H S I IS
Limonero
1983
Malaga
Malaga
ER
93
410
3,188
27,000
S
Canales Cuevas De Almanzora Negratin
C (1983) C (1983)
Ebro Ulla Cinca Genil Tormes Lozoya Mijares Grande De Adra Guadalmedina Benil Almanzora
Granada Almeria
ER ER
159 113
340 623
1,217 6,510
71,000 191,000
IS IH
226 2,520
Granada
PG/ER
75
439
1,150
546,000
IH
3,440
Sallente
C (1983)
Guadiana Menor Flamisell
Guejar Sierra Cuevas De Almanzora Freila
Lerida
ER
89
398
1,100
6,000
H
63
La Vin˜uela Zahara Sri Lanka Kotmale Randenigala
C (1983) C (1983)
Guaro Guadalete
Torre De Capdella La Vin˜uela Zahara
Malaga Cadiz
ER/TE ER
94 85
460 500
3,345 2,011
25,000 212,000
IS I
120 1,000
C (1985) C (1986)
Kotmale Oya Mahaweli
Gampola Mahiyangana
CP UP
ER ER
87 94
600 495
4,159 3,700
175,000 860,000
H HIC
5,550 8,085
C (1983)
HCR SH H SHI SCHI SH CISH HS HI
264 650 1,750 600 1,200 620 3,400 800 830
12,800 1,550 3,420 6,550 3,000 410 1,300 232 283
11-19
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Oasa Colibita Gura Apelor Pecineagu Mineciu Riusor Siriu Vija Poiana Marului South Africa P K Le Roux
Name of Dam
(Continued)
Year of Completion
Goescheneralp
1950
Grande Dixence Luzzone
1961 1963
Mattmark Emosson Taiwan Shihmen Tsengwen Thailand Sirikit Bang Lang Srinagarind Khao Laem Turkey Seyhan Hirfanli Demirko¨pru¨ Almus Kozan Keban Ayvacik Gu¨zelhisar Go¨nen Doganci C ¸ amlidere Aslantas Adigu¨zel Kilic¸kaya
Nearest City
State Province or Country
Type
1961 1961 1963 1967 1968
Dala¨lven Klara˜lven Lule a¨lv Lule a¨lv Lule a¨lv
Mora Hagfors Jokkmokk Jokkmokk Porius
Kopparberg,M Va˜rmland,M Norrbotten,N Norrbotten,N Norrbotten,N
ER ER/TE TE ER ER
1954
Julia
Bivio
Grisons
1957
Fionnay
1967 1974
Drance de Bagnes Go¨schenerreuss Dixence Brenno di Luzzona Seaser Vispa Barberine
1964 1973
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
125 80 101 85 106
850 400 1,900 570 1,450
7,200 1,750 10,500 2,300 4,900
880,000 270,000 50,000 67,000 1,650,000
H H H H H
1,000 1,280 2,300 1,500 875
TE
91
400
2,700
62,600
H
200
Valais
VA
237
520
2,030
181,500
H
100
Go¨schenen
Uri
ER
155
540
9,300
76,000
H
200
He´re´mence Olivone
Valais Tessin
PG VA
285 208
695 530
6,000 1,330
401,000 88,000
H H
— 88
Saas-Fee Finhaut
Valais Valais
TE VA
120 180
780 555
10,500 1,090
101,000 227,000
H H
150 60
Tahan Tsengwen
Chungli Tainan
Taiwan Taiwan
ER TE
133 133
360 400
7,059 9,296
309,120 707,530
IHCS ICSH
1972 1981 1981 C(1984)
Nan Pattani Quae Yai Quae Noi
Uttaradit Yala Kanchanaburi Kanchanaburi
N S Central Region Central Region
TE TE/ER ER ER
114 85 140 90
800 422 610 910
9,800 2,900 12,100 8,000
10,550,000 1,360,000 17,745,000 7,450,000
IHC IHC IHC IHC
3,250 4,500 2,420 3,200
1956 1959 1960 1965 1972 1974 1981 1982 C C C C C C
Seyhan Kizilirmak Gediz Yesilirmak Kilgen Firat Yesilirmak Gu¨zelhisar Go¨nen Nilu¨fer Bayindir Ceyhan B.Menderes Kelkit
Adana Kirsehir Manisa Tokat Adana Elazig Samsun Izmir Balikesir Bursa Ankara Adana Denizli Sivas
South A Inner A West.A NEA South.A East North West West West Inner A South West Inner
TE ER TE TE TE/ER PG/ER ER ER TE ER TE/ER TE/ER ER ER
77 83 77 95 83 207 175 89 78 82 106 95 145 135
1,955 364 543 371 289 1,126 405 511 293 288 278 566 377 405
7,500 2,000 4,300 3,500 1,195 15,585 2,327 3,204 2,036 2,278 2,487 8,000 5,892 6,030
1,200,000 5,980,000 1,320,000 950,000 163,000 30,600,000 10,800,000 158,000 164,000 50,000 133,000 1,150,000 1,188,000 14,000 000
ICB ICH ICH IH I CH CH IS I S IS ICH ICH ICH
2,500 2,300 200C6272 1,550 1,250 17,000 11,000 2,550 2,785 1,978 662 11,930 4,260 2,450
q 2006 by Taylor & Francis Group, LLC
13,400 9,470
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Sweden Trangsist Holjes Messaure Letsi Seitevare Switzerland Marmorera (Castilleto) Mauvolsin
River
Height above Lowest Foundation (m)
11-20
Table 11A.8
C C C C C C C C
First Seyhan Asagiaksu Pupa Go¨ksu Kizilirmak Ceyhan Firat
Diyarbakir Adana Burdur Isparta Mersin Samsun K.Maras Diyarbakir
SE South West SE South North East
VA TE TE TE TE ER ER ER
173 95 95 75 75 195 151 184
462 309 428 315 171 604 425 746
2,000 7,664 3,500 1,800 1,110 2,600 8,000 85,000
9,580,000 1,629,000 1,340,000 24,000 66,000 5,763,000 19,500 48,700
1916
Calaveras
1925
Dix Tieton Cobble Mountain Reservoir New Exchequer Salt Springs
1925 1925 1931
Esopus Creek Calaveras Creek Dix Tieton Little
1926 1931
El Capitan Hoover (Boulder) Fort Peck Alcova Mathews
1934 1936 1937 1938 1938
Tygart Quabbin Winsor San Gabriel No 1 Friant Grand Coulee Marshall Ford Lake Travis (res) Nantahala Lake Green Mountain
1938 1939 1939 1942 1942
Merced N Fork Mokelumne San Diego Colorado Missouri North Platte Tr Cajalco Creek Tygart Swift San Gabriel San Joaquin Columbia
1942 1942 1942
Colorado Nantahala Blue
Fontana
1944
Merriman
1945
Shasta Mud Mountain Watauga Anderson Ranch Leroy Anderson
1945 1948 1948 1950 1950
Little Tennessee Roundout Creek Sacramento White Watauga S Fork Boise Coyote Creek
H ICH ICH I H ICH IH ICH
17,000 8,900 4,495 295 4,385 11,800 4,850 16,800
Olive Bridge
New York
TE
77
1,417
1,950
484,018
S
5,938
Sunol
California
ER
75
366
2,646
123,348
S
702
High Bridge Naches Westfield
Kentucky Washington Mass.
ER TE TE
87 97 80
311 280 221
1,343 1,567 2,294
222,027 244,229 86,380
H ICR S
1,300 1,416 113
Snelling
California California
ER ER
146 9
378 396
3,952 2,294
1,265,552 171,947
H HS
9,911 1,580
Lakeside Boulder Frazer Casper Corona
California Nevada Montana Wyoming California
TE/ER VA TE TE/ER TE
82 221 76 81 84
357 379 6,534 233 1,988
2,049 364 96,050 1,250 7,309
88,811 34,852,028 22,118,763 227,577 224,494
S IHCN CHIN IHR S
4,831 11,327 6,514 1,557 382
Grafton Ware Azusa Fresno Coulee Dam
W Virginia Mass. California California Washington
PG TE ER PG PG
76 85 123 97 168
586 805 463 1,063 1,272
1,055 3,058 8,104 1,632 8,093
135,190 1,561,256 54,725 642,027 11,794,553
NC S CS ISCR ICHN
8,948 425 7,524 2,350 26,986
Austin Nantahala Hot Sulphur Springs Fontana Village
Texas N Carolina Colorado
TE TE TE/ER
85 76 94
1,230 318 351
1,251 5,532 3,333
1,446,381 142,590 190,696
HCSR H IHR
16,197 2,503 708
N Carolina
PG
146
721
2,734
603,715
H
4,474
Lackawack
New York
TE
114
732
4,434
189,956
S
5,097
Redding Buckley Elizabethton Boise San Jose
California Washington Tennessee Idaho California
PG ER ER TE TE
183 130 97 139 77
1,055 213 274 411 421
6,660 1,758 2,660 7,380 2,485
5,614,809 130,698 398,415 620,071 112,617
ISHN C CHNR ICRH I
5,239 3,892 1,756 566 1,195
q 2006 by Taylor & Francis Group, LLC
11-21
(Continued)
WATER RESOURCES MANAGEMENT
Karakaya C ¸ atalan Karacaoren Uluborlu Gezende Altinkaya Menzelet Ataturk United States Ashokan
(Continued)
Name of Dam
Year of Completion 1950
Bull Shoals Center Hill Wolf Creek Bradbury Detroit Hungry Horse
1951 1951 1951 1953 1953 1953
Lookout Point
1953
Yale Lucky Peak Pine Flat Lake Folsom Beardsley
1953 1954 1954 1956 1957
Brownlee Courtwright Oahe Swift Wishon Casitas Table Rock Mammoth Pool Arthur R. Bowman (Prineville) Ball Mountain Lewis Smith Sly Creek Hills Creek
1958 1958 1958 1958 1958 1959 1959 1960 1961
Smith Trinity Abiquiu Dillon Lermon Navajo Union Valley Whiskeytown Briones
1962 1962 1963 1963 1963 1963 1963 1963 1964
1961 1961 1961 1962
q 2006 by Taylor & Francis Group, LLC
S Fork Holston White Caney Fork Cumberland Santa Ynez N Santiam S Fork Flathead Middle Fork Whillamette Lewis Boise Kings American Mid Fk Stanislaus Snake Helms Creek Missouri Lewis N Fk Kings Coyote Creek White San Joaquin Crooked West Dipsey Fork Lost Crook M Fk Willamette Smith Trinity Rio Chama Blue Florida San Juan Silver Crk Clear Creek Bear Creek
Nearest City
State Province or Country
Type
Bluff City
Tennessee
ER
Cotter Lancaster Burkesville Santa Barbara Mill City Kalispell
Arkansas Tennessee Kentucky California Oregon Montana
PG TE/PG TE TE PG VA
Eugene
Oregon
Woodland Boise Piedra Sacramento Melones Oxbow Village Piedra Pierre Woodland Piedra Santa Barbara Branson
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
87
488
4,499
402,115
78 76 79 85 141 172
688 658 1,748 1,021 482 645
1,606 2,736 8,713 5,119 1,147 2,359
TE
84
968
Washington Idaho California California California
TE TE PG PG TE
98 104 134 104 85
Bend
Idaho California So. Dakota Washington California California Missouri California Oregon
ER ER TE TE ER TE TE/PG TE TE
Jamaica Dilworth Oroville Oakridge
Vermont Alabama California Oregon
Belknap Springs Redding Abiquiu Silverthorne Durango Blanco Coloma Redding El Sobrante
Oregon California New Mexico Colorado Colorado New Mexico California California California
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
CHNR
1,756
3,759,653 1,033,658 4,927,760 252,864 561,152 4,277,715
CH CHR HCR ISR HCRI IHCN
14,158 12,856 15,659 4,559 4,984 1,501
5,892
562,385
CINH
7,646
472 713 561 3,109 250
3,211 4,511 1,835 6,866 2,294
495,860 377,445 1,233,492 1,245,817 120,264
HCR CRI CIRH ISHC H
4,899 2,642 11,072 16,056 2,027
120 95 75 186 80 102 77 124 75
421 263 2,890 640 1,021 610 1,958 250 244
4,587 1,193 70,339 11,774 2,829 6,967 3,479 4,094 1,089
1,759,808 152,088 27,432,595 932,512 157,886 313,304 3,332,900 151,718 190,573
HCR HS CHIN HCR HS ISC CH HS IRC
8,593 400 2,266 4,106 1,379 210 15,801 4,757 230
TE TE TE TE
83 93 83 104
279 671 640 703
1,767 3,930 4,000 8,257
2,760 1,714,540 80,238 439,055
CR HCR H CHIS
4,248 5,873 328 4,010
TE TE TE TE TE TE TE TE TE
101 164 99 94 87 123 138 86 87
351 747 469 1,798 415 1,112 549 1,190 629
1,911 22,486 9,017 9,140 2,326 20,521 7,646 3,412 7,578
18,502 3,019,563
H IHCR CR S I IR S IHCR S
255 680 447 333 272 963 1,260 815 93
311,674 49,463 2,108,020 334,274 297,269 83,285
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
South Holston
River
Height above Lowest Foundation (m)
11-22
Table 11A.8
1964
Homestake
1964
Round Butte Summersville Blue Mesa Glen Canyon John W. Flannagan Lost Creek Lower Hell Hole Millwood Yellowtail San Luis
1964 1965 1966 1966 1966 1966 1966 1966 1966 1967
Alamo (res) Blue River Oroville Ruedi International Amistad Lopez
1968 1968 1968 1968 1969 1969
New Bullards Bar Coedar Springs Don Pedro Heron Castaic
1970 1971 1971 1971 1973
Dworshak
1973
Jocassee Libby Pyramid Soldier Creek Carters Cochiti
1973 1973 1973 1973 1974 1975
Lost Creek Ririe Gross
1976 1976 1977
S Fork Mckenzie M Fk Homestake Deschutes Gauley Gunnison Colorado Pound Lost Creek Rubicon Little Bighorn San Luis Creek Bill Williams Blue Feather Fryingpan Rio Grande Arroyo Grande Crk North Yuba W Fk Mojave Tuolumne Willow Creek Castaic Creek N. Fork Clearwater Keowee Kootenai Piru Creek Strawberry Coosawattee Bio Grande and Santa Fe Rogue Willow Creek South Boulder Crk
Springfield
Oregon
ER
158
488
9,939
270,463
HCIR
Minturn
Colorado
ER
81
608
2,628
53,780
Warm Springs Swiss Montrose Less Ferry Elkhorn City Devils Slide Auburn Ashdown Hardin Los Banos
Oregon W Virginia Colorado Arizona Virginia Utah California Arkansas Montana California
TE ER TE/ER VA TE TE ER ER VA TE
134 119 119 216 79 76 125 89 160 116
442 695 239 475 279 329 472 5,350 451 5,639
7,340 10,371 2,355 3,747 1,824 1,401 6,357 6,117 1,182 59,559
659,913 236,215 1,160,706 33,304,009 83,261 27,753 257,058 189,000 1,076,830 2,517,536
HR CRS HCR HSCR CR ISRC SH CS ICHR ISHR
1,286 11,667 954 7,815 1,240 70 132 13,403 2,605 29
Parker Springfield Oroville Basalt Del Rio Arroyo Grande
Arizona Oregon California Colorado Texas/Mex. California
TE TE TE TE/ER TE/PG TE
105 95 230 98 77 85
297 381 2,073 318 9,754 341
2,328 3,726 59,635 2,863 2,652 2,705
539,350 110,380 4,297,451 126,432 4,323,847 64,758
CRI CR SCHR IRC CIHR S
1,175 1,501 4,248 157 42,673 1,256
Marysville Victorville La Grange Tierra Amarillo Castaic
California California California New Mexico California
VA ER TE TE/ER TE
194 76 173 84 125
671 725 549 372 1,585
1,988 6,040 12,233 2,317 33,640
1,195,984 96,212 2,503,968 495,243 431,719
SH IRS H ISR IRS
4,219 913 13,380 19 2,220
Ahsahka
Idaho
PG
219
1,002
4,931
4,259,213
HCR
6,258
Libby Piru Duchesne Carters Cochiti Pueblo
S Carolina Montana California Utah Georgia New Mexico
ER PG ER TE ER TE
133 129 122 77 141 77
549 881 329 393 594 8,785
8,869 2,875 5,315 2,440 11,468 50,228
1,431,206 7,165,296 220,793 1,365,464 465,146 52,726
H HCR IRSH ICR CHR CIR
1,761 4,060 4,248
Shady Cove Idaho Falls Louisville
Oregon Idaho Colorado
ER TE PG
105 77 104
1,097 326 332
8,257 2,046 7,809
573,485 123,348 50,557
CHSR IC SH
4,474 1,133 444
S
2,152 99
WATER RESOURCES MANAGEMENT
Cougar
520 4,280
(Continued) 11-23
q 2006 by Taylor & Francis Group, LLC
(Continued)
Name of Dam
Year of Completion
River
Nearest City
State Province or Country
Type
Height above Lowest Foundation (m)
Length of Crest (m)
Volume Content of Dam (103 m3)
Gross Capacity of Reservoir (103 m3)
Penn.
TE
122
640
9,939
13,568
Covington Modesto Bloomington
Virginia California Maryland
ER ER ER
78 191 90
368 475 649
1,988 12,233 7,646
152,582 2, 960,356 116,793
Warm Springs
Virginia
ER/TE
143
731
18,000
43,790
Cloverdale
California
TE
97
914
22,920
469,365
Mingechaur UstKamenogorsk Tbilisi Bratsk
Azerb. SSR Kazakh, SSR
TE PG
80 90
1,550 380
15,600 1,170
Georg. SSR Irkutsk
Murmansk Yevlakh Tashkent Alma-Ata
Murmansk Azerb. SSR Uzbek. SSR Kazakh. SSR
86 125 36 40 78 125 168 144
780 1,430 2,987 723 2,625 590 764 530
1977
Voronlya Terter Chirchik Malaya Almaatinka Angara
TE PG TE TE ER TE ER ER
Ust-Ilimsk
Irkutsk
1978 1978 1978 1980 1980 1980 C C C C C C C
Sulak Naryn Zeye Karadarya Inguri Vakhsh Yenisei Bureya Avar Koisu Kolyma Vakhsh Vorotan Aragvi
Makhachkala Naryn Blagoveshchensk Osh Zugdidi Nurek Minusinsk Blagoveshchensk Makhachkala Magadan Nurek Sisian Tbilisi
Daghest. SSR Kirgh. SSR Amur. Kirghiz. SSR Georgian SSR Tadjik SSR Krasnoyarsk Kharbarovsk Daghest. SSR Magadan Tajik SSR Armen. SSR Georg. SSR
PG TE/ER VA PG CB CB VA TE VA/PG PG TE/ER ER TE/ER TE TE
102 47 233 215 115 115 272 300 245 139 111 126 335 87 102
1978 C
Onia Tucupido
El Vigia Guanare
Mo´rida Portuguesa
TE TE
301 92
1977
Gathright New Melones Bloomington
1978 1979 1981
Bath County Upper
C
Warm Springs U.S.S.R. Mingechaur Bukhtarma
C
Little Blue Run of Ohio Jackson Stanislaus N Branch of Potomac Little Back Creek Dry Creek
1953 1960
Kura Irtysh
Sioni Bratsk
1963 1964
Iori Angara
Serebrianka No 1 Sarsang Charvak Medeo
1970 1976 1977 1977
Ust-Ilim Chirkey Toktogul Zeya Andizhan Inguri Nurek Sayano-Shushensk Bureya Irganai Khudoni Rogun Spandarian Zhinvali Venezuela Onia Tucupido
q 2006 by Taylor & Francis Group, LLC
48
RC CIHR CSR H
173 3,171 5,465 509
CSR
1,056
16,000,000 49,800,000
HNIC HN
3,600 1,000
6,300 4,415 6,547 2,147 5,660 5,820 21,600 8,500
325,000 169,000,000
IH HNS
596 7,090
4,170,000 560,000 2,000,000 —
H IH HI C
675 800 1,200 —
1,477 2,248 333 293 758 920 680 74 1,066 810 312 759 660 317 412
3,800 5,066 1,358 3,345 2,160 3,700 3,960 58,000 9,075 3,561 5,827 12,550 75,500 2,250 5,200
59,300,000
HN
9,700
2,780,000 19,500,000 68,400,000 1,750,000 1,100,000 10,500,000 31,300,000 20,900,000 705,000 14,600,000 13,300,000 277,000 520,000
HIS HI HCN HI HI HI NH HC H H HI HI HS
450 290
1,300
6,600 3,300
C IHC
2,870 2,340 6,600 2,392 2,500 4,000 13,600 19,100 2,760 17,500 3,500 160 2,500 435 —
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
East Liverpool
Little Blue Run
Purpose
Maximum Discharge Capacity of Spillways (m3/sec)
11-24
Table 11A.8
C C C C C C C
Turija Gazivode Sjenica Lazici Zavoj Zambia/Zimbabwe Kariba
Yacambu´ Cojedes
Lara Cojedes Tachira Me´rida Ta´chira Miranda Ta´chira
TE TE TE TE TE TE TE
158 77 108 118 120 100 108
107 750
Caparo Camburito Taguaza Uribante
Sanare Acarigua San Cristo´bal Buena Vista San Cristobal Sta. Lucia San Cristo´bal
1962 1968 1969 1969
Uvac Crna Reka Crni Drim Rama
Nova Varos Kavadarci Debar Prozor
ER ER ER ER
82 114 112 103
1970 1977 1979 C (1983) C (1987)
Turija Ibar Veliki Uvac Beli Rzav Visocica
Strumica Titova Mitrovica Nova Varos Bajina Basta Pirot
SR Srbija SR Makedonija SR Makedonija SR Bosna and Hercegovina SR Makedonija SAP Kosovo SR Srbija SR Srbija SR Srbija
ER ER ER ER ER
1959
Zambezi
Lusaka
VA
Zambia/ Zimbabwe
3,000 7,000 7,500 15,000 6,600 2,000 7,800
427,000 810,000 1,400,000 5,300,000 212,000 770,000
ICS IHC H H H S H
1,220 338 330 230
2,480 2,722 2,699 1,510
250,000 475,000 520,000 487,000
H J H H
1,500 2,050 2,890 400
93 108 106 123 80
417 520 310 120 250
1,978 5,000 2,430 2,170 1,400
65,000 370,000 190,000 150,000 16,000
J H H H H
76 720 1,000 180 1,800
128
579
1,032
160,368
H
9,500
300
480
430
WATER RESOURCES MANAGEMENT
Yacambu´ Las Palmas Las Cuevas La Vueltosa Borde Seco Taguaza La Honda Yugoslavia Kokin Brod Tikves Spilje Rama
Note: Height—over 75 m; Volume—over 1,000,000 cubic m. Dam types are identified by the following abbreviations: Earth TE; Rockfill ER; Gravity PG; Buttress CB; Arch VA; Multi-Arch MV. Purpose for which reservoir is used is indicated by the following abbreviations: Irrigation I; Hydroelectric H; Flood Control C; Navigation N; Water Supply S; Mine Tailings T; Recreational R. Under year of completion, C is under construction and P is planned. Source : Compiled from World Register of Dams, 1984, published by the International Commission on Large Dams, 151 Boulevard Haussmann, 75008 Paris.
11-25
q 2006 by Taylor & Francis Group, LLC
11-26
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11A.9 World’s Highest Dams Structural Height Name Rogun Nurek Grande Dixence Inguri Vaiont Manuel M. Torres Tehri Alvaro Obregon Mauvoisin Alberto Lleras Mica Sayano-Shushenskaya Ertan La Esmeralda Kishau Oroville El Cajo´n Chirkey Bhakra Luzzone Hoover Contra Mratinje Dworshak Glen Canyon Toktogul Daniel Johnson Keban Zimapan Karun Lakhwar Dez Almendra Berke Khudoni Ko¨lnbrein Altinkaya New Bullards Bar New Melones Itaipu Kurobe 4 Swift Mossyrock Oymopinar Atatu¨rk Shasta Bennett WAC Karakaya Tignes Amir Kabir (Karad) Tachien Dartmouth ¨ zko¨y O Emosson Zillergrundl Los Leones New Don Pedro
River, Location Vakhsh, Tajikistan Vakhsh, Tajikistan Dixence, Switzerland Inguri, Georgia Vaiont, Italy Grijalva, Mexico Bhagirathi, India Mextiquic, Mexico Drance de Bagnes, Switzerland Orinoco, Colombia British Columbia, Canada Yenisei, Russia Yangtze/Yalong, China Bata´, Colombia Tons, India Feather, CA, U.S.A. Humuya, Honduras Sulak, Russia Sutlej, India Brenno di Luzzone, Switzerland Colorado, AZ-NV, U.S.A. Verzasca, Switzerland Piva, Herzegovina North Fork Clearwater, ID, U.S.A. Colorado, AZ, U.S.A. Naryn, Kyrgyzstan Manicouagan, Canada Firat, Turkey Moctezuma, Mexico Karun, Iran Yamuna, India Dez, Abi, Iran Tormes, Spain Ceyhan, Turkey Inguri, Georgia Malta, Austria Kizil Irmak, Turkey No. Yuba, CA, U.S.A. Stanislaus, CA, U.S.A. Parana´, Brazil/Paraguay Kurobe, Japan Lewis, WA, U.S.A. Cowlitz, WA, U.S.A. Manavgat, Turkey Firat, Turkey Sacramento, CA, U.S.A. Peace, Canada Firat, Turkey Ise`re, France Karadj, Iran Tachia, Taiwan Mitta-Mitta, Australia Gediz, Turkey Barberine, Switzerland Ziller, Austria Los Leones, Chile Tuolumne, CA, U.S.A.
Gross Reservoir Capacity
ft
m
Thousands of acre ft
Millions of cum
Year Completed
1,099 984 935 892 859 856 856 853 820 797 797 794 797 778 774 770 768 764 741 738 732 722 722 717 710 705 703 689 679 673 669 666 662 659 659 656 640 637 625 623 610 610 607 607 604 602 600 591 591 591 591 591 591 590 590 587 585
335 300 285 272 262 261 261 260 250 243 243 242 240 237 236 235 234 233 226 225 223 220 220 219 216 215 214 210 207 205 204 203 202 201 201 200 195 194 191 190 186 186 185 185 184 183 183 180 180 180 180 180 180 180 180 1799 178
9,404 8,512 324 801 137 1,346 2,869 n.a. 146 811 20,000 25,353 4,720 661 1,946 3,538 4,580 2,252 8,002 71 28,500 70 713 3,453 27,000 15,800 115,000 25,110 n.a. 2,351 470 2,707 2,148 n.a. n.a. 166 4,672 960 2,400 23,510 162 756 1,300 251 39,482 4,550 57,006 7,767 186 166 188 3,243 762 184 73 86 2,030
11,600 10,500 400 1,100 169 1,660 3,540 n.a. 180 1,000 24,670 31,300 5,800 815 2,400 4,299 5,650 2,780 9,870 87 35,154 86 880 4,259 33,304 19,500 141,852 31,000 n.a. 2,900 580 3,340 2,649 n.a. n.a. 205 5,763 1,184 2,960 29,000 199 932 1,603 310 48,700 5,612 70,309 9,580 230 205 232 4,000 940 225 90 106 2,504
1985 1980 1962 1984 1961 1981 UC 1926 1957 1989 1972 1980 1999 1975 1985 1968 1984 1977 1963 1963 1936 1965 1973 1974 1964 1978 1968 1974 1994 1976 1985 1963 1970 2000 n.a. 1977 1986 1968 1979 1982 1964 1958 1968 1983 1990 1945 1967 1986 1952 1962 1974 1978 1983 1974 1986 1986 1971 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.9
11-27
(Continued) Structural Height
Name Alpa-Gera Kopperston Tailings 3 Takase Nader Shah Hasan Ugurlu Revelstoke Hungry Horse Longyangxia Cabora Bassa Maqarin Amaluza Idikki Charvak Gura Apelor Retezat Grand Coulee Boruca Vidraru Kremasta (King Paul) Pauti-Mazar
River, Location Cormor, Italy Jones Branch, WV, U.S.A. Takase, Japan Marun, Iran Yesil Irmak, Turkey Columbia, B.C., Canada S.Fk., Flathead, MT, U.S.A. Huanghe, China Zambezi, Mozambique Yarmuk, Jordan Paute, Ecuador Periyar, India Chirchik, Uzbekistan Riul Mare, Romania Columbia, Washington Terraba, Costa Rica Arges, Romania Achelo¨us, Greece Mazar, Ecuador
Gross Reservoir Capacity
ft
m
Thousands of acre ft
Millions of cum
Year Completed
584 580 577 574 574 574 564 564 561 561 558 554 552 552 550 548 545 541 541
178 177 176 175 175 175 172 172 171 171 170 169 168 168 168 167 166 165 165
53 — 62 1,313 874 4,298 3,470 20,025 51,075 259 81 1,618 1,620 182 9,390 12,128 380 3,850 405
65 — 76 1,620 1,078 5,300 4,280 24,700 63,000 320 100 1,996 2,000 225 11,582 14,960 465 4,750 500
1965 1963 1979 1978 1980 1984 1953 1983 1974 1987 1982 1974 1970 1980 1942 UC 1965 1965 1984
Note: UC, under construction in 2004, n.a., not available. China’s Three Gorges dam on the Yangtze River, begun in 1993 and expected to be completed in 2009, will be the world’s largest and highest dam. Source: From International Commission on Large Dams, World Register of Dams 1998, and other sources.
1 200
Number of dams
1 000 800 600 400 200
Be fo re
19 00 19 s 00 19 s 10 19 s 20 19 s 30 s 19 40 s 19 50 s 19 60 19 s 70 19 s Af 80 s te r1 99 0
0
Decades
Figure 11A.5 Large dams commissioned per decade in Europe. (From ICOLD, 1998. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
q 2006 by Taylor & Francis Group, LLC
11-28
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
2500
Number of dams
2000
1500
1000
500
Be fo re
19 0 19 0 00 s 19 10 s 19 20 s 19 30 s 19 40 s 19 60 s 19 00 19 s 70 s 19 Af 80 s te r1 99 0
0
Decades Figure 11A.6 Large dams commissioned per decade in Asia. (From ICOLD, 1998. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
2000 1800
Number of dams
1600 1400 1200 1000 800 600 400 200
Be fo re
19 00 19 00 19 s 10 19 s 20 19 s 30 s 19 40 19 s 50 s 19 60 s 19 70 s 19 Af 80s te r1 99 0
0
Decades
Figure 11A.7 Large dams commissioned per decade in North and Central America. (From ICOLD, 1998. Note: Rates of dam commissioning in the 1990s are underreported. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-29
200 180
Number of dams
160 140 120 100 80 60 40 20
Be fo re
19 00 19 00 s 19 10 s 19 20 s 19 30 19 s 40 s 19 50 s 19 60 s 19 70 s 19 Af 80 s te r1 99 0
0
Decades Figure 11A.8 Large dams commissioned per decade in South America. (From ICOLD, 1998. Note: Rates of dam commissioning in the 1990s are underreported.)
350 300
Number of dams
250 200 150 100 50
Be fo re
19 00 19 00 19 s 10 s 19 20 19 s 30 s 19 40 19 s 50 19 s 60 s 19 70 1 s Af 980 te s r1 99 0
0
Decades
Figure 11A.9 Large dams commissioned per decade in Africa. (From ICOLD, 1998. Note: Rates of dam commissioning in the 1990s are underreported. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
q 2006 by Taylor & Francis Group, LLC
11-30
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
120
Number of dams
100 80 60 40 20
Be fo re
19 0 19 0 00 s 19 10 19 s 20 19 s 30 s 19 40 19 s 50 s 19 60 s 19 70 s 1 Af 980 te r1 s 90 0
0
Decades Figure 11A.10 Large dams commissioned per decade in Austral-Asia. (From ICOLD, 1998. Note: Rates of dam commissioning in the 1990s are underreported. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile.)
Table 11A.10 Modes and Causes of Earth Dam Failures Form Overtopping
General Characteristics
Causes
Hydraulic Failures (30% of all failures) Flow over embankment, washing Inadequate spillway capacity out dam Clogging of spillway with debris Insufficient freeboard due to settlement, skimpy design
Wave erosion Toe erosion Gullying
Loss of water
Notching of upstream face by waves, currents Erosion of toe by outlet discharge
Lack of riprap, too small riprap
Spillway too close to dam Inadequate riprap Rainfall erosion of dam face Lack of sod or poor surface drainage Seepage Failures (40% of all failures) Excessive loss of water from Previous reservoir rim or bottom reservoir and/or occasionally increased seepage or increased groundwater levels near reservoir Previous dam foundation Pervious dam Leaking conduits Settlement cracks in dam
Shrinkage cracks in dam
Preventive or Corrective Measures Spillway designed for maximum flood Maintenance, trash booms, clean design Allowance for freeboard and settlement in design; increase crest height or add flood parapet Property designed riprap Training walls Properly designed riprap Sod, fine riprap; surface drains
Blanket reservoir with compacted clay or chemical admix; grout seams, cavities
Use foundation cutoff; grout; upstream blanket Impervious core Watertight joints; waterstops; grouting Remove compressible foundation, avoid sharp changes in abutment slope, compact soils at high moisture Use low-plasticity clays for core, adequate compaction (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.10
11-31
(Continued)
Form Seepage erosion or piping
General Characteristics Progressive internal erosion of soil from downstream side of dam or foundation backward toward the upstream side to form an open conduit or “pipe.” Often leads to a washout of a section of the dam
Causes Settlement cracks in dam
Remove compressible foundation, avoid sharp changes, internal drainage with protective filters
Shrinkage cracks in dam
Low-plasticity soil; adequate compaction; internal drainage with protective filters Foundation relief drain with filter; cutoff Construction control; core; internal drainage with protective filter Toe drain; internal drainage with filter Stub cutoff walls, collars; good soil compaction Watertight joints; waterstops; materials Riprap, wire mesh
Pervious seams in foundation Pervious seams, roots, etc. in dam Concentration of seepage at face Boundary seepage along conduits, walls Leaking conduits
Foundation slide
Upstream slope
Animal burrows Structural Failures (30% of all failures) Sliding of entire dam, one face, or Soft or weak foundation both faces in opposite directions, with bulging of foundation in the direction of movement Excess water pressure in confined sand or silt seams Slide in upstream face with little or no bulging in foundation below toe
Steep slope
Weak embankment soil Sudden drawdown of pond Downstream slope
Flow slide
Slide in downstream face
Collapse and flow of soil in either upstream or downstream direction
Preventive or Corrective Measures
Steel slope Weak soil Loss of soil strength by seepage pressure or saturation by seepage or rainfall Loose embankment soil at low cohesion, triggered by shock, vibration, seepage, or foundation movements
Flatten slope; employ broad berms; remove weak material; stabilize soil
Drainage by deep drain trenches with protective filters; relief wells Flatten slope or employ berm at toe Increased compaction; better soil Flatten slope, rock berms; operating rules Flatten slope or employ berm at toe Increased compaction; better soil Core; internal drainage with protective filters; surface drainage Adequate compaction
Source: From National Academy Press, 1983, Safety of existing dams: evaluation and improvement. With permission. Original Source: From Sowers, G.F., 1961, The Use and Misuse of Earth Dams, Consulting Engineering, July.
q 2006 by Taylor & Francis Group, LLC
11-32
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11A.11 World’s Largest Dams According to Spillway Capacity No
1 2 3 4 5 6 7 8 9 10 11 12 13
14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Capacity, (m3 sec)
Name
113,000 110,000 82,300 64,845 64,600 63,713 62,297 62,296 61,400 60,000 59,000 58,500 58,400 57,000 54,862 54,400 53,450 52,000 50,000 49,800 49,600 47,000 46,970 46,259 45,312 45,307 44,752 43,000 43,690 42,459 42,186 41,280 40,300 40,000 39,644 39,644 39,158 37,945 37,500 37,400 36,200 25,960 35,620 35,000 33,980 33,800 33,600 33,414 33,131 31,400 31,152 31,144
Gezhouba Tucurui Dajiangkou The Dalles Burdekin Falls John Day Lock and Dam MacNary Lock and Dam Sardar Sarovar Itaipu Oosterscheldekering Shuifeng Saratov Gavins Point Salto Grande Jhuj Panjiakou Nagarjuna Sagar Porto Primavera Jupia Wanan Kadana Ankang Gohira Alvin Wirtz Sri Rama Sagar Bonneville Bargi Owen Falls International la Amistad Hirakud Tarbela Xinanjiang Kuibyshev Ilha Solteira Priest Rapids Wanapum Tom Miller Narayanpur Shuifeng Srisailam HE Fengman Ukai Daheiting Guri Kentucky Fuchunjing Chief Joseph Wells Conowingo Xijin Marala Mangla
Note: U/C, under construction. Source: From International Commission on Large Dams, 1984, World Register of Dams.
q 2006 by Taylor & Francis Group, LLC
Country China Brazil China U.S.A. Australia U.S.A. U.S.A. India Brazil Netherlands China/Korea U.S.S.R. U.S.A. Uruguay/Argentina India China India Brazil Brazil China India China India U.S.A. India U.S.A. India Uganda U.S.A./Mexico India Pakistan China U.S.S.R. Brazil U.S.A. U.S.A. U.S.A. India China India China India China Venezuela U.S.A. China U.S.A. U.S.A. U.S.A. China Pakistan Pakistan
Year U/C U/C 1974 1957 U/C 1968 1957 U/C 1982 U/C 1943 1967 1958 1979 U/C 1979 1974 U/C 1968 U/C 1978 U/C U/C 1950 U/C 1937 U/C 1954 1969 1957 1976 1965 1955 1973 1959 1963 1939 U/C 1943 1943 1954 1972 1980 U/C 1944 1968 1955 1967 1928 1966 1968 1967
WATER RESOURCES MANAGEMENT
11-33
Table 11A.12 Summary of Regional Statistics on Large Dams
World
Europe
Asia
North and Central America
25,420a–48,000a 31 23 269 14,370
5,480 33 7 70 1,225
31,340 33 44 268 6,800
8,010 28 13 998 1,660
979 37 30 1,011 2,665
1,269 28 43 883 1,750
577 33 17 205 270
2,643
552
753
700
534
62
42
O18%
O45%
O11%
O42%
O20%
a
Total number of large dams Average heightb(m) Average reservoir areab (km2) Avg. reservoir capacityb (million m3) Technically feasible hydroelectric potentialc (TWh/yr) Annual hydroelectric productionc (TWh/yr) Exploited technically feasible hydroelectric potentialc (%) a
b c
South America
AustralAsia
Africa
O3.5%
The primary source of data is ICOLD 1998, but the regional divisions in this Table and in Figure V.16 through Figure V.27 follow those described in Table V.3. The 1998 ICOLD Register has 25,420 dams registered. Reporting depends on the member countries. Table V.I indicates how the global estimate of neatly 48,000 large dams is arrived at, with the main issue being the number of dams in China. The ICOLD 1998 database was used to calculate the average dam height, reservoir capacity, and surface area by region. I/HD 2000. Technical Flexibility is based on the conversion of all river lead and flow in the major rivers in region into energy.
Source: Based on ICOLD, 1998. damsreport.org. Annex V, Dams, Water and Energy: A Statistical Profile. With permission.
Table 11A.13 Dam Incident Summary NPDP ID CO00203 DE00018 DE00052 FL00723 IDS00011 KYS00004 MS00128 MS02734 MS01731 MDS00002 IDS00013 IA01967 NJ00235 NM00445 NYS00007 SC01458 UT00379 WI00160 WI00053 TN15712 NYS00018 NMS00006 SD00921 VTS00016 VT00122 UTS00009 UTS00008 SCS00004 NY13130 OR00185 NY00561 WIS00005 WI10607 WI00248
Dam Name Maple Grove Millsboro Pond Wiggins Mill Pond Dam Martin Plant Cooling Water Reservoir Mud Creek Dam Samsel Spring Lake Pine Lake Dam Vance Lake Big Millpond (Route 50) Dam on Pierce Park Gulch Fertile Mill Dam Gropps Lake Dam United Nuclear Churchrock Swimming Poll Dam Huttos Lake Dam Goshen Pulcifer Little Falls Edwards Sherman Dam Phelps Dodge Corporation Tailings Dam No. 3 East Lemmon Steward Fairfield Swamp Pond Lower North Eden Reservoir South Eden Reservoir Tutens Mill Pond Tannersville Reservoir #1 Dam Crump Reservoir Snow BIrd Lake Dam Kohlsville Dam Lepper Wyocena
Incident Date
Incident Type
Dam Failure
2/1979 2/1979 2/1979 10/30/1979 1/12/1979 2/2/1979 9/1979 4/1979 4/13/1979 2/25/1979 2/12/1979 8/22/1979 5/27/1979 7/16/1979 1979 9/9/1979 2/14/1979 6/1979 4/1979 4/2/1979 9/14/1979 10/13/1980
Vandalism Piping Internal Erosion Piping Inflow Flood—Hydrologic Event Seepage Erosion Erosion Piping Undermining Inflow Flood—Hydrologic Event Piping Sliding Cracking and Internal Erosion Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Deterioration Gate Structural Failure Piping Inflow Flood—Hydrologic Event Structural Failure
Yes Yes Yes Yes Yes No No Unknown Yes Yes Yes Yes Yes Yes Unknown Yes Yes No Unknown No Yes Yes
6/5/1980 1980 4/13/1980 4/20/1980 4/20/1980 3/14/1980 3/22/1980 4/19/1980 9/1/1980 4/1980 3/1980 1/1/1980
Inflow Flood—Hydrologic Even Piping Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Embankment Erosion Piping Piping Seepage Gate Structural Failure Abutment Erosion
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Unknown Unknown (Continued)
q 2006 by Taylor & Francis Group, LLC
11-34
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID
Dam Name
Incident Date
COS00006 DE00028 GAS00214 MN00519 ID00001 CA10268 KYS00006 NHS00007 TXS00002 UTS00011 WI00146 ORS00005 WA00240
Prospect Reservoir Dam Lake Como Dam Rail Road Lake Dam Pickwick Saint John Cascade Eastover Mining Company Dam Mascoma River Dam No. 2 Unnamed Dam (TXS00002) Upper North Eden Reservoir Necedah Mann Creek Dam Alexander Lake Dam
2/10/1980 7/29/1980 5/23/1980 9/21/1980 5/7/1980 1981 12/18/1981 2/12/1981 1981 4/20/1981 9/20/1981 11/8/1982 12/3/1982
WAS00013 UTS00006 COS00004 CT00157 CT00396 CT00417 CT00426 CT00545 CTS00008 CTS00007 CTS00006 CTS00005 CTS00003 CTS00002 CTS00001 CT00662 CT00427 IDS00009 IDS00008
Alexander Lake Milk Pond Dam Lawn Lake Gorton Pond Jennings Pond Upper Millpond Bushy Hill Pond Holbrook Pond Comstock Pond (CT 424 C. D. Batchelor Pond Bushy Pond (CT 391) Bronson Company Dam (CT 691) Urban Pond Hempstead Pond Crystal Lake Leesville Dam Pratt Read Cameron Dam Howard Dam
12/3/1982 6/23/1982 7/15/1982 6/4/1982 6/4/1982 6/4/1982 6/1982 6/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 4/24/1982 4/24/1982
CTS00017 CTS00016 CTS00015 CTS00014 CTS00013 CTS00012 CTS00011 CTS00010 CTS00009 CTS00023 CTS00022 CTS00021 CTS00020 CTS00019 CTS00018 CT00423 CT00404 CT00339 COS00005 MNS00002 MS01738 UT00080 WAS00010 WAS00009 NJS00062
Whalebone Creek Pond (CT 1024) Upper Pond (CT 433) Mansure Pond (CT 517) Main Street Pond (CT 880) Lower Mill Pond (CT 1190) Lower Pond (CT 1512) Ivoryton Pond (CT 882) Forman Pond Falls River Pond (CT 884) Abbott Pond (CT 774) Dennison Road Pond (CT 1504) Dolan Pond (CT 883) Hunts Brook Dam Mile Creek Pond (CT 1191) Shady Brook Pond (CT 846) Mill Pond Deer Lake Johnson Pond Cascade Lake Dam Fishhook River Dam Cofferdam Lakeview Reservoir Dam Dmad Peters Reservoir No. 2 Peters Reservoir No. 1 Unnamed Dam (NJS00062)
6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/4/1982 6/1982 6/4/1982 7/15/1982 10/1983 11/27/1983 6/23/1983 3/10/1983 3/10/1983 1984
Incident Type Piping Inflow Flood—Hydrologic Event Concrete Deterioration Inflow Flood—Hydrologic Event Piping Earthquake Sabotage—Other Structural Failure Inflow Flood—Hydrologic Event Spillway Failure Not Known Piping Inflow Flood—Hydrologic Event; Animal Attack Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Erosion Inflow Flood—Hydrologic Event Inflow Flood—Upstream Dam Failure Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flow—Hydrologic Event Inflow Flow—Hydrologic Event Seepage Not Known Not Known Not Known Not Known Inflow Flood—Hydrologic
Dam Failure Yes Yes Yes Yes Yes Yes Yes Yes No Yes Unknown Yes Yes Yes Yes Yes Yes Unknown Unknown Yes Yes Yes Yes Yes Yes Yes Yes No Yes Unknown Yes Yes Yes Yes Yes Unknown Yes Yes Yes Yes Yes Unknown Unknown Unknown Yes Unknown Yes Yes Yes Yes Yes No Yes Unknown Yes Yes No (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
11-35
(Continued)
NPDP ID
Dam Name
Incident Date
Incident Type
WIS00003 VTS00015 VTS00014 VTS00013
Grettum Flowage Halls Lake Laraway Wards Pond
6/13/1984 5/31/1984 6/7/1984 6/7/1984
VT00081 UTS00001 TX05119 TNS00017 TNS00011 SD00695 CTS00004 NE02138 NES00003 MTS00006 IL00712 MO31374 WI00726 OK00663 OK11073 WA00074 VTS00012 UT00301 PAS00005 TNS00014 MI00209 MI00573 MI00616 MIS00001 NE00492 ND00426
North Montpelier Pond Doty-Tex Johnson (Utah) Bass Haven Lake Dam Unnamed Dam on Del Rio Creek Shangri La Lake Dimock Haas Pond Dam Merlyn Schrunk Dam Atkinson Reservoir Brownes Lake Riverview Dam Richardet Dam Port Wing Scs-Upper Red Rock Creek Site–20 Cedar Lake Upriver Dam Noonan Trial Lake Unnamed Dam (PAS00005) Demery’s Lake Barryton Dam Danaher Lake Dam Rainbow Lake Dam Bruce Nordland Dam Haeker Dam Simpson Dam; Alvin
6/7/1984 4/12/1984 8/17/1984 5/6/1984 9/1984 6/20/1984 5/20/1984 4/1984 4/8/1984 6/20/1984 11/21/1985 12/1985 9/1/1985 10/3/1986 11/8/1986 5/20/1986 1986 6/7/1986 1986 4/1986 9/10/1986 9/10/1986 9/10/1986 9/10/1986 8/1986 7/17/1986
MIS00004 MIS00003 MIS00002 MI00678 MI00574 MI00526 MI00281 OK20844 TNS00008 TNS00009 TN10305 WI00638
Childsdale Dam Cat Creek Dam Carson City Dam Hesperia Dam Luther Pond Dam White Cloud Dam Hart Lake Scs—Little Washita River Site–13 Tomkins Lake Sky Lake No. 1 Rebecca Lake Bog Brook
9/10/1986 9/10/1986 9/10/1986 9/10/1986 9/10/1986 9/10/1986 9/10/1986 9/1987 12/25/1987 12/24/1987 12/25/1987 5/1988
WI00330 UT00514
Bischel Quail Creek
3/1988 12/31/1988
MO31923 MTS00002
Marschke Lake Dam Hein Coulee Structure (Lower Birch Creek Watershed) Unnamed Dam (KYS00005) Unnamed Dam (MNS00004) Unnamed Dam (MNS00005) Evans Dam Lockwood Dam Unnamed Dam (MNS00006) Unnamed Dam (MNS00007)
4/19/1988 7/6/1988
Inflow Flow—Hydrologic Event Piping Inflow Flow—Hydrologic Event Inflow Flow—Hydrologic Event; Piping Inflow Flow—Hydrologic Event Inflow Flow—Hydrologic Event Embankment Erosion Piping Sliding Inflow Flow—Hydrologic Event Piping Inflow Flow—Hydrologic Event Spillway Failure Plugged Spillway Seepage Seepage; Embankment Slide Inflow Flow—Hydrologic Event Seepage; Piping Not Known; Seepage; Piping Gate Closure Piping Seepage; Piping Not Known Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Seepage; Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Animal Attack Piping Seepage; Piping; Embankment Erosion Not Known Piping
1989 1989 1989 9/15/1989 9/15/1989 1989 1989
Inflow Flood—Hydrologic Event Embankment Failure Embankment Failure Not Known Not Known Embankment Failure Embankment Failure
KYS00005 MNS00004 MNS00005 NC02149 NC02152 MNS00006 MNS00007
Dam Failure Unknown Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes Yes No No (Continued)
q 2006 by Taylor & Francis Group, LLC
11-36
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID
Dam Name
Incident Date
NJS00014
Holmdel Park Dam
7/1989
NYS00015 TNS00010 ORS00004 TNS00018 TNS00025 TX03546 TNS00019 OH00575 VAS00006 VT00217 VTS00011 WAS00015 WI00191 WA01707
Unnamed Dam (NYS00015) Southern Clay Company Dam No. 2 Avion Water District Summit Landfill Dam Summit Landfill Nix Lake Dam Unnamed Dam (TNS00019) Acton Lake Dam Cockram Mill Dam Beaver Pond Eight Trout Club Unnamed Dam (WAS00015) Leland Chinook Water District Dam
1989 9/8/1989 1989 9/29/1989 10/1/1989 3/29/1989 6/23/1989 1990 7/14/1990 7/23/1990 3/15/1990 11/1990 6/1990 11/1990
VTS00010 SCS00005 SC02298 SC00459 AL00539 ALS00006 ALS00007 NE02363 NC03195 MOS00004
5/1990 7/18/1990 10/10/1990 10/10/1990 1990 1990 1990 12/1990 2/16/1990 2/15/1990
IL50233 IDS00002
Riddel Pond Unnamed Dam (SCS00005) Brewer Gold Company Dam 1 Kendall Lake Dam Caddis Lake Dam Campbell Unnamed Dam (ALS00007) Timperley Wildlife Res Landrum Lake Dam(Failer) St. Joe State Park Sediment Impoundment Christiansen Lake Dam Hester Lake Dam Wilmington Dam (Kankakee River Mill Race Dam) Lake Carroll Sedimentation Pond 2 Dam Kirby Dam (Manns Lake; Atlanta Dam)
5/1990 7/9/1990
ALS00008 NCS00039 NHS00006 NYS00009 TX00309 SCS00002 SCS00001
Unnamed Dam (ALS00008) Unnamed Dam (NCS00039) Unnamed Dam (NHS00006) Unnamed Dam (NYS00009) Lake Center Dam Upper Twin Lake Dam Lower Twin Lakes Dam
1990 4/29/1991 8/8/1991 1991 8/4/1991 8/2/1991 8/2/1991
RIS00003 RIS00002 RI04258 NYS00010 NYS00011 NYS00012 NYS00014 NYS00013 WVS0005 WAS00001
Unnamed Dam (RIS00003) Unnamed Dam (RIS00002) Burton Pond Dam Unnamed Dam (NYS00010) Unnamed Dam (NYS00011) Unnamed Dam (NYS00012) Unnamed Dam (NYS00014) Unnamed Dam (NYS00013) Unnamed Dam (WVS00005) Seminary Hill Reservoir, City of Centralia
1991 1991 1991 1991 1991 1991 1991 1991 1991 10/5/1991
VTS00009 NJ00541 OK01437 WY00037
Swanson Port Republic dam Scs-Upper Black Creek Site–62 Wyoming Hereford Ranch No. 2
4/1991 1992 1992 1992
MO20145 MO12279 IL50319
5/1990 6/27/1990 6/1990
Incident Type Inflow Flood—Hydrologic Event; Seepage; Piping Not Known Piping Faulty Design and Construction Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Drain Gate Failure Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inadequate Spillway Capacity Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Inadequate Spillway Capacity Piping Piping Not Known Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Animal Attack Structural Failure Inflow Flood—Hydrologic Event; Inadequate Spillway Capacity Embankment Erosion Not Known Not Known Inflow Flood—Hydrologic Event Not Known; Seepage; Embankment Erosion Inflow Flood—Hydrologic Event Not Known Seepage Not Known Not Known Inflow Flood—Hydrologic Event Inflow Flood—Upstream Dam Failure Not Known Not Known Concrete Deterioration Not Known Not Known Not Known Not Not Inflow Flood—Hydrologic Event Landslide; Seepage; Concrete Deterioration Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Not Known
Dam Failure Yes Unknown Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Unknown Yes Yes Yes Unknown Unknown Yes Unknown Unknown Unknown Unknown Unknown Unknown Yes Yes Yes No Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
11-37
(Continued)
NPDP ID
Dam Name
Incident Date
WI00468
La Blonde
7/1992
NV00024 MDS00001
Bilk Creek Res Black Rock Estates Pond
1992 4/21/1992
MOS00015 COS00007 NE01419 ND00107
Unnamed Dam (MOS00015) Greeley Krone Dam Jund (Zeeland) Dam
6/5/1992 1/1993 1993 7/16/1993
MOS00002 MO32026 MO31996 MO31526 MO12370 MO10107 MD00330 OHS00002 WI00112 WI00158 WI12788 WI10130 WI01073 WI00154 WI00035
Norman Swinney’s Dam Freddies Lake Dam Boyd Lake Dam Bockelman Lake Dam Harrison County Lake Stevens Lake Dam Annapolis Mall Swm Pond Middletown Hydraulic Dam Rock Briggsville Hatfield Headrace Lake Family Fairchild Partridge Lake Cambria
5/26/1993 9/26/1993 9/25/1993 7/1993 1/3/1993 6/1993 3/4/1993 5/13/1993 6/20/1993 3/23/1993 7/20/1993 4/23/1993 6/1993 1/1993 6/26/1993
OHS00005 OHS00004 WI00016
Unnamed Dam (OHS00005) Unnamed Dam (OHS00004) Hatfiled
1993 1993 6/18/1993
WA00408
Iowa Beef Processors Waste Pond No. 1
1/25/1993
OHS00003 NV10311 WI00791 WI00502 WA00063 VT00035
Unnamed Dam (OHS00003) Buckskin Tailings Ladysmith Gomulak And Profit Sherry Lake Dam Newport No. 11 Diversion Dam
1993 9/12/1994 9/15/1994 9/16/1994 1994 5/1/1994
TX04210 TX03916 TX03876 WI10532
Cade Lake Number 3 Dam Bearfoot Lake Dam Lake Tinkle Dam Eleva Roller Mill
1994 1994 1994 3/26/1994
SC00167
Lake Pauline Dam
6/27/1994
SC00149
Crystal Lake Dam
6/27/1994
SC00142
Saxe-Gotha Millpond Dam
6/27/1994
PA00899 PA00780 OH00355 OH00088
Fishpond Arrowhead Lake Invex of Ohio Upper Lake Dam Chopper’s Lake Dam
4/28/1994 4/26/1994 8/13/1994 4/10/1994
Incident Type Inflow Flood—Hydrologic Event; Debris-Reservoir Inflow Flood—Hydrologic Inflow Flood—Hydrologic Event; Piping Erosion Animal Burrows Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Biological Attack (i.e. bush, tree growth); Embankment Erosion; Inadequate Spillway Capacity Inadequate Compaction Inflow Flood—Hydrologic Event Embankment Slide Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Undermining Inflow Flood—Hydrologic Event Reconstruction Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event; Gate Misoperation Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Seepage; Piping; Gate Structural Failure Inflow Flood—Hydrologic Event; Animal Attack; Seepage; Inadequate Spillway Capacity Inflow Flood—Hydrologic Event Earthquake Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Embankment Erosion Inadequate Spillway Capacity Spillway Failure Spillway Failure Piping; Biological Attack (i.e. bush, tree growth) Inflow Flood—Upstream Dam Failure Inflow Flood—Upstream Dam Failure Inflow Flood—Hydrologic Event; Gate Misoperation Concrete Deterioration Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Dam Failure Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Unknown Unknown Yes
Yes
Unknown No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
11-38
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID
Dam Name
Incident Date
FLS00001
IMC–AGRICO Hopewell Mine
11/19/1994
GA00211 GA00238 GA00239 GA00287 GA00831 GA02902 GA02899 GA02746 GA02744 GA02743 GA02677 GA01679 GA01419 GA01070 GA03574 GA03572 GA03571 GA03568 GA03567 GA03540 GA03527 GA03526 GA03203 GAS00005 GAS00004 GAS00003 GAS00002 GAS00001 GA04987 GAS00086 GAS00085 GAS00084 GAS00083
Gibson—Cary Development Corp Dam Houston Lake Dam Mossy Lake Dam Giles Lake Dam Grisp County (Warwick) Holoka Lake Dam Mulkey Lake Dam Whatley Lake Dam Rustins Pond Dam Hortmans Pond Dam Goose Lake Dam McGill Lake Dam Philema Lake Dam Phillips Pond Dam Lies Lake Dam Coffin Lake Dam Wolhwender Lake Dam Shellhouse Lake Dam Merritt Lake Dam Lake Yohola Dam McKemie Lake North Dam McKemie Lake Dam Thomas Millpond Dam Cordrays Pond Dam City of Senoia Dam Birch Creek Farms Baker/Austin Pond Dam 6 acre lake on Forrest Road Suggs Millpond Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam S of US 27 By-Pass & Webster St. Unnamed small dam 2 miles SW of Cuthbert Unnamed small dam 3 miles S of Cuthbert, u/s of US Unnamed small dam SE of County Rds. #134 & #152 Unnamed small dam SE of County Rds. #134 &152 Unnamed small dam on Collins Mill Creek Unnamed small dam north of Bethlehem Church Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed dam Unnamed small dam 1 mile NW of Buena Vista Lake Dam Unnamed small dam
GAS00082 GAS00081 GAS00080 GAS00079 GAS00078 GAS00077 GAS00076 GAS00075 GAS00074 GAS00073 GAS00072 GAS00071 GAS00070 GAS00069 GAS00068 GAS00067
Incident Type
Dam Failure
7/5/1994 7/6/1994 7/6/1994 8/30/1994 7/9/1994 8/17/1994 8/17/1994 7/21/1994 7/5/1994 7/21/1994 7/21/1994 8/17/1994 7/6/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 7/7/1994 9/12/1994 9/12/1994 7/6/1994 8/17/1994 7/5/1994 7/6/1994 7/6/1994 7/8/1994 7/5/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event; Seepage; Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
9/12/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
(Continued)
NPDP ID GAS00066 GAS00065 GAS00064 GAS00063 GAS00062 GAS00061 GAS00060 GAS00059 GAS00058 GAS00057 GAS00056 GAS00055 GAS00054 GAS00053 GAS00052 GAS00051 GAS00050 GAS00049 GAS00048 GAS00047 GAS00046 GAS00045 GAS00044 GAS00043 GAS00042 GAS00041 GAS00040 GAS00039 GAS00038 GAS00037 GAS00036 GAS00035 GAS00034 GAS00033 GAS00032 GAS00031 GAS00030 GAS00029 GAS00028 GAS00027 GAS00026 GAS00025 GAS00024 GAS00023 GAS00022 GAS00021 GAS00020 GAS00019 GAS00018 GAS00017 GAS00016
11-39
Dam Name Unnamed small dam Unnamed dam Unnamed dam Unnamed small dam west of SR 214, north of SR26 Unnamed small dam west of SR 128 Unnamed small dam at RR, SE of Montezuma Unnamed small dam on Meadow Creek Unnamed small dam 1 mile SW of Marshallville Unnamed small dam 1 mile E of Marshallville Lake Dam Unnamed small dam on Gin Creek, west of Flint River Unnamed dam Unnamed dam Unnamed dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam 1 mile east of Felder Lake Dam Unnamed small dam 1.5 miles NW of Sutton’s Corner Unnamed small dam 2 miles SE of Bluffton Unnamed dam Unnamed dam Underwood Millpond Dam Thorton Place Pond Dam Taylor’s Mill Pond Dam Swearingen Lake Dam Small Rovoli Lake Dam Small Lake above Double “O” Ranch Shofill Lake Dam Scout Lake Dam Rockhill Lake Dam Parish Lake Dam South Owens Lake Dam Old Farm Dam Minor’s Millpond Lake Dam McNeil Lake Dam McMath Millpond Upper McMath Millpond Lower Lower Leisure Lake Dam Loki Lake Dam Levee @ Macon Lamar County Reservoir Dam Lake Jennifer Upper Lake Jennifer Lower Lake Corinth Dam Iris “B” Lake Dam Hutcheson Lake Dam Housers Millpond Dam
Incident Date
Incident Type
Dam Failure
8/17/1994 7/21/1994 7/21/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes
8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes
8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994 7/29/1994 7/29/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 8/30/1994 7/14/1994 9/12/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
9/12/1994
Inflow Flood—Hydrologic Event
Yes
9/12/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994 8/17/1994 8/17/1994 7/14/1994 7/5/1994 7/21/1994 7/5/1994 7/5/1994 8/30/1994 8/30/1994 7/5/1994 9/12/1994 8/17/1994 7/5/1994 7/21/1994 9/12/1994 7/6/1994 7/6/1994 7/5/1994 7/6/1994 7/6/1994 7/5/1994 7/29/1994 7/29/1994 7/6/1994 7/6/1994 7/6/1994 8/30/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
11-40
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID GAS00015 GAS00014 NE00419 NE00212 IL50330 GAS00210 GAS00183 GAS00182 GAS00181 GAS00180 GAS00179 GAS00178 GAS00177 GAS00176 GAS00175 GAS00174 GAS00173 GAS00172 GAS00171 GAS00170 GAS00169 GAS00168 GAS00167 GAS00166 GAS00165 GAS00164 GAS00163 GAS00162 GAS00161 GAS00160 GAS00159 GAS00158 GAS00157 GAS00156 GAS00155 GAS00154 GAS00153 GAS00152 GAS00151 GAS00150 GAS00149 GAS00148 GAS00147 GAS00146 GAS00145
Dam Name Harell Lake Dam Hancock Waterman Dam Morgan Dam East Peoria Dredge Disposal Facility Unnamed Dam (GAS00210) Williamson Downs Lake Dam Wells Millpond Lake Dam Wainwright Lake Dam (2) Wainwright Lake Dam (1) Vinny Mill Pond Dam Upper & Lower Marimac Upper Jackson north of County Road #152 Upper Iris “A” Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Leverett Pond Dam Unnamed small dam within city limits of Weston Unnamed small dam 1.5 miles NE of Weston Unnamed small dam N of County Rd #18, E of PBS tower Unnamed small dam N of County Rd #18, E of PBS tower Unnamed small dam just upstream of Kennedy Unnamed small dam upstream of Holoka Lake Dam Unnamed small dam North of Bear Creek Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam 1/2 mile U/S SR 45 on Mossy Creek Unnamed small dam above Taylor Mill Pond Dam Unnamed small dam above Taylor Mill Pond Dam Unnamed small dam above Taylor Mill Pond Dam Unnamed small dam above Taylor Mill Pond Dam Unnamed small dam, Bottsford quad in draw, E. of T
Incident Date
Incident Type
Dam Failure
8/17/1994 7/6/1994 8/1994 1994 11/11/1994 1994 7/5/1994 7/29/1994 7/21/1994 7/21/1994 7/6/1994 7/8/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Seepage; Piping Flood Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
7/6/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes
7/5/1994
Inflow Flood—Hydrologic Event
Yes
7/5/1994
Inflow Flood—Hydrologic Event
Yes
7/5/1994
Inflow Flood—Hydrologic Event
Yes
7/5/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
(Continued)
NPDP ID GAS00144 GAS00143 GAS00142 GAS00141 GAS00140 GAS00139 GAS00138 GAS00137 GAS00136 GAS00135 GAS00134 GAS00133 GAS00132 GAS00131 GAS00130 GAS00129 GAS00128 GAS00127 GAS00126 GAS00125 GAS00124 GAS00123 GAS00122 GAS00121 GAS00120 GAS00119 GAS00118 GAS00117 GAS00116 GAS00115 GAS00114 GAS00113 GAS00112 GAS00111 GAS00110 GAS00109 GAS00108 GAS00107 GAS00106 GAS00105 GAS00104 GAS00103 GAS00102
11-41
Dam Name Unnamed small dam above Tharpe Lake Dam Unnamed dam in NW part of Sumeter County Unnamed dam in NW part of Sumter County Unnamed small dam 1m. SW of Powell Dairy Lake Dam Unnamed small dam NW of Plains Unnamed small dam 0.75 miles SW of Lake Collins Unnamed small dam below Kornonia Lake Unnamed small dam below Kornonia Lake Unnamed small dam below Kornonia Lake Unnamed small dam 1 mile west of Americus Unnamed small dam 1 mile north of Americus Unnamed small dam 1 mile east of Americus Unnamed small dam S. of SR27, 1 mile E. of Americus Unnamed dam in Americus Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed dam Unnamed small dam south of Gussie Lake Dam Unnamed dam 1 mile north of Union Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam upstream of Wolhwender Unnamed small dam SW of intersect. Of US #19 & SR 2 Unnamed small dam S of Ebenezer Rd on Little Mucka Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam
Incident Date
Incident Type
Dam Failure
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994 7/29/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/29/1994
Inflow Flood—Hydrologic Event
Yes
7/9/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 9/12/1994 9/12/1994 9/12/1994 9/12/1994 9/12/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
9/12/1994 9/12/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994
Inflow Flood—Hydrologic Event
Yes
8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
11-42
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID
Dam Name
Incident Date
GAS00101 GAS00100 GAS00099 GAS00098 GAS00097 GAS00096 GAS00095 GAS00094 GAS00093 GAS00092 GAS00091 GAS00090 GAS00089 GAS00088 GAS00087 GAS00013 GAS00012 GAS00011 GAS00010 GAS00009 GAS00008 GAS00007 GAS00006 GA04904 GA04832 GA04765 GA04764 GA04763 GA04712 GA04537 GA03189 GA03188 GA03187 GA03186 GA03042 GA03041 GA03018 GA03017 GA01067 GA01050 GA01029 GA01019 GA00835 GA01417 GA01412 GA01411 GA01410 GA01364 GA01235 GA01193 GA00289 GA00242 CO00390 MI00109 MS03334 NC01137
Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Unnamed small dam Goodroe Lake Dam Goffs Mill Lake Dam Free Lake Dam Fountain Lake Dam Forbes Lake Dam Ferguson Lake Dam English Lake Dam Edgemon Andrews Lake Dam Silberman Lake Dam Harper Lake Dam Yara Lake Dam Pace Lake Dam South Kennedy Lake Dam West Leisure Lake Dam Pace Lake Dam Esperanza Farms Lake Dam Tharpe Lake Dam Reeves Lake Dam Horsehead Creek Lake Dam Whitewater Creek Lake Dam Flat Creek Lake Dam Kersey Lake Dam Cloud Lake Dam Barnesville Reservior Dam Hicks Millpond Dam Garant Lake Dam Flint River Statham Lake Dam Browns Millpond Lake Dam Shipp Lake Dam Able Acres Lake Dam Tyrone Lake Dam Kraftsmans Association Lake Dam McKnight Lake Dam Lake Clopine Dam Wilkinson Lake Dam Frenchman Creek Barnes Dam Lake Gary Dam Lake Lynn Dam
8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/17/1994 8/30/1994 8/17/1994 7/21/1994 8/30/1994 8/17/1994 8/17/1994 8/17/1994 7/29/1994 8/17/1994 7/21/1994 7/29/1994 7/29/1994 7/29/1994 8/17/1994 7/6/1994 8/17/1994 7/29/1994 7/29/1994 7/29/1994 7/21/1994 7/21/1994 6/5/1994 8/30/1994 8/17/1994 7/5/1994 7/5/1994 7/21/1994 7/7/1994 7/6/1994 7/9/1994 7/29/1994 7/29/1994 7/5/1994 7/5/1994 7/6/1994 8/30/1994 8/30/1994 6/4/1995 5/29/1995 9/1995 6/19/1995
NC04944
Jaycees Pond Dam
6/19/1995
Incident Type Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Seepage; Piping Inflow Flood—Hydrologic Event; Piping Inflow Flood—Hydrologic Event; Seepage
Dam Failure Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
11-43
(Continued)
NPDP ID
Dam Name
Incident Date
NCS00004 NHS00001 ND00339
McReady Chicken Waste Lagoon Dike Willey House Dam Appert
7/5/1995 10/28/1995 7/15/1995
NCS00013 NCS00011
NCS00007 NCS00003 NC02159 MT03839 CO01967 ID00151 NJ00408 WY02028 WI12794 WI00092
Unnamed small dam Southern Pines Country Club Golf Course Dam 3 Southern Pines Country Club Golf Course Dam 2 Southern Pines Country Club Golf Course Dam 1 Reedy Swine Farm Lagoon Dike Lancaster Dam Moose Lodge Dam Eureka Holding Pond Dike Vincent No. 2 Troy Kenilworth Lake Dam Cottonwood Hazel Lake Mount Morris Dam
WAS00002 VT00182 VA03102 NV00051 NV00070
CSC Orchards, Frost Protection Pond Wolcott Pond Timber Lake Dam Boyd Reservoir Milk Ranch Dam
7/1995 8/5/1995 6/22/1995 1/1995 7/8/1995
NJS00001 PA00422
Mendham Reservoir Dam Brookville Waterworks
4/1996 7/19/1996
TNS00001 WA01045 WV07719 WI10386 WI01102 WI00450 WA01782 WA01406 VTS00008 TX07035 TX01961 TN15768
Dillard Dam Olufson Dam Bruceton Mills Dam Hamilton Mill Vernon Marsh-Ref. Flowage Cranberry Creek Boeing Creek North Stormwater Pond Yelm Diversion Rinse Casa Monte Dam Roberts Tank Dam Mallard Lake
12/17/1996 12/11/1996 1/19/1996 4/20/1996 5/19/1996 4/21/1996 12/31/1996 2/7/1996 6/14/1996 11/26/1996 7/14/1996 11/3/1996
CO01122 KSS00002 NH00600 MT01173 MI00876 ME00072 KSS00001 IL00918 IL01110 IL50394 AZ00187 AZS00003
Henry Speer Dam Bergerson Dam Canyon Lake Hollenbeck Dam Highland Lake Dam Decker Dam Aurora-West Dam Puddle Pond Dam Channahon Dam Udall Centennial Narrows Dam
4/10/1996 11/14/1996 3/13/1996 7/1/1996 1996 10/20/1996 1996 7/17/1996 7/17/1996 7/17/1996 8/11/1997 9/26/1997
NSC00010 NCS00009
Incident Type
Dam Failure Yes Unknown Yes
6/19/1995 7/1995
Not Known Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Seepage Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
7/1995
Not Known
Yes
7/1995
Inflow Flood—Hydrologic Event
Yes
7/18/1995 6/26/1995 6/19/1995 7/8/1995 6/9/1995 2/5/1995 1/18/1995 7/1995 12/15/1995 8/29/1995
Rupture Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Seepage; Piping Partial Dam Breach Not Known Piping Inflow Flood—Hydrologic Event; Inflow Flood—Upstream Dam Failure; Seepage; Piping Seepage; Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event; Embankment Erosion Piping Inflow Flood—Hydrologic Event; Embankment Erosion Inflow Flood—Hydrologic Event Seepage Inflow Flood—Hydrologic Event Seepage Piping Not Known; Piping Inadequate Spillway Capacity Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Animal Attack; Piping; Embankment Erosion; Embankment Slide Piping Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event; Piping
Yes Yes Yes Yes Yes Yes Yes Unknown Yes Yes
Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Unknown Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
11-44
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID AZS00001 NE00695 MTS00001 MO20164 MI00496 ME00567 MA00376 GA04975
FLS00003
Dam Name Middle Goose Tailings Dam (No. 2 Tailings Impoundment) Scott Dam Anita Dam Lake Venita Dam Hamilton Dam Apple Valley Lake Dam East Head Pond Dam Forsyth Reservoir
Incident Date
Incident Type
Dam Failure
10/21/1997
Liquefaction Failure
Yes
4/7/1997 3/26/1997 2/21/1997 6/20/1997 4/16/1997 1997 12/24/1997
Inflow Flood—Hydrologic Event Piping Seepage; Piping Inflow Flood—Hydrologic Event Debris—Reservoir; Piping Not Known; Seepage; Piping Inflow Flood—Hydrologic Event; Seepage; Piping; Concrete Deterioration Not Known; Seepage; Piping
Yes Yes Yes Yes Yes Yes Yes
Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Seepage; Piping Spillway Failure Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Upstream Dam Failure Inflow Flood—Hydrologic Event Piping Inflow Flood—Upstream Dam Failure Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Earthquake Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Spillway Failure Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Inadequate Spillway Capacity Inflow Flood—Hydrologic Event Fire Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inadequate Spillway Capacity Spillway Failure Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event
Yes Yes Yes Yes Yes Yes
FLS00002 NJ00716 NJS00009 NJS00006 WA01377 WA00133
Ridgewood Avenue Dam (Lake Apopka Dam) RGC Minerals Containment Moss Mill Lake Dam Stockton College Dam Tarkiln Pond Dam (Route 548 Dam) Horn Rapids Dam Wishkah Reservoir No. 2 Dam
11/27/1997 4/27/1997 8/20/1997 8/20/1997 8/20/1997 2/1997 3/19/1997
VTS00007 TX02021 TNS00003 TNS00002 TN11306 SD00025 SC00377
Sibley Holland Dam Site A Patton Mullens Farm Pond Johnson Ck #4 Woodruff (Breached 1997) Starnes/Brown Dam
1997 1/1/1997 3/1/1997 3/5/1997 3/1/1997 3/22/1997 7/24/1997
WI10610 WA01741 SC00307
Linnie Lac Dam Galbreath Sediment Dam Malcolm B. Rawls Dam
6/21/1997 1/18/1997 7/24/1997
OH02964 OH02900 NY13600 NV00223 ORS00002 VTS00006 VTS00005 VTS00004 VTS00003 VTS00002 VTS00001 VT00241 VT00229 TX01580 TN09910
Green Acres Levee Thomas Pond Dam Henry Kaufman Pond Dam Carson City Wastewater Dam Lacomb Diversion Name Unknown Sanville Name Unknown Name Unknown Clay Brook Water Supply Golf Course Pond Sunset Lake Lake Runnemede Jan Land Company Lake No. 1 Dam Johnson Lake
3/4/1997 3/1/1997 6/14/1997 10/30/1998 5/11/1998 1/7/1998 1/16/1998 6/27/1998 6/27/1998 6/27/1998 6/27/1998 8/11/1998 7/18/1998 10/1998 7/13/1998
TN09902 WA01756 RI03201 NY00494 NY13643 OH01978 NY01539 NY12015 CO00508 GA00084 GAS00185
Bennett Lake Klickitat Mill Pond Dam Peace Dale Pond Dam Camp Weona Dam Peru Water Supply Dam Bookhamer Lake Dam Gouldtown-Mill 5 West Channel Natural Dam Vertrees Little Ocmulgee Lake Dam Bay Meadows
7/13/1998 2/8/1998 2/18/1998 6/8/1998 6/27/1998 7/5/1998 1/7/1998 1/7/1998 5/29/1998 3/11/1998 3/7/1998
No
Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11A.13
11-45
(Continued)
NPDP ID
Dam Name
Incident Date
GAS00188 GAS00191 NC00725 MS01402 JY00174 GAS00189
Pine Cove Pond Dam County Road 15 Dam Ramseur Lake Dam Archusa Crk Wtr Park Lk Hematite Boy Scout Camp Lake Dam
4/5/1998 3/8/1998 2/19/1998 1/8/1998 6/11/1998 2/2/1998
GAS00186 GA05053 GA01826 CO00629 FLS00004
Not Named (Exempt) Dam Big Sandy Plantation, Inc. Lake Dam Southern States Lake Dam Carl Smith E.R. Jahna-Independent North Sand Mine Tailings Nagels Mill Pond Colee Naylor Pond Dam House Autry Mill Dam Hog Waste Lagoon Dike Winkler Lake Dam Lower (Flat Rock Lakes) Dubose Lake Dam Hall Lake Dam Kellys Pond Dam Rolling Green Community Lake Nubble Pond Dam Cold Brook Not Known Stubbs Farm Dam Riley Mill Pond Foreman Branch Dam Jones Lake Dam Lake Lanahan
3/7/1998 2/2/1998 2/9/1998 5/2/1998 7/2/1999
Tuckahoe State Park Dam Frazers Dam Bostwicks Pond Dam Unregistered Dam (No Name) Stubbs Sassafras Mill Dam Lake “Jimmy Carter” Lake Bray Dam J.B. Dunnell Dam Veteran’s Memorial State Park Dam Pittsfield Dredge Disposal Pond Dam Caloosa Sand Mine Reclamation Lake Lookover Lake Dam Kirbys Mill Dam Unnamed Dam Saddler Dam Unnamed Dam (at Williamsburg Country Club) Sydnors Millpond Dam Old Forge Pond Dam Lower Rosegill Lake Dam Town Bridge Pond Dam Rosegill Upper Dam Allens Mill Dam Lake Powell Dam
9/16/1999 9/15/1999 9/16/1999 9/16/1999 9/16/1999 9/16/1999 6/28/1999 9/17/1999 9/17/1999 9/17/1999 4/29/1999 8/25/1999 3/21/1999 9/16/1999 9/1999 9/1999 9/1999
MD00074 NCS00031 NCS00029 NCS00022 NC03056 NC01191 NC01084 NC00946 MD00345 NH00598 NH00270 MD00342 MD00319 MD00190 MD00189 MD00170 MD00152 MD00149 MD00098 NJ00039 NHS00002 MDS00003 MD00025 GAS00194 MA00537 MA01258 MA02531 IL50396 FLS00005 NJ00565 NJ00634 VAS00005 VAS00003 VAS00002 VA13303 VA12709 VA11912 VA11911 VA11906 VA09704 VA09512
9/16/1999 9/20/1999 9/21/1999 4/18/1999 4/20/1999 9/21/1999 9/21/1999 9/15/1999 2/11/1999 10/1/1999 10/1/1999 9/16/1999 9/16/1999 9/16/1999 9/16/1999 9/16/1999 5/7/1999
9/1999 9/1999 9/1999 9/1999 9/1999 9/1999 9/1999
Incident Type Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Not Known; Seepage; Piping Inflow Flood—Hydrologic Event; Embankment Erosion Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Seepage Embankment Slide Inflow Flood—Hydrologic Event; Piping Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Sabotage—Other Seepage Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Not Known Not Known Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Embankment Erosion Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Seepage; Piping Inflow Flood—Hydrologic Event Embankment Erosion Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event; Wind; Animal Attack; Biological Attack (i.e., bush, tree growth)
Dam Failure Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-46
Table 11A.13
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
NPDP ID
Dam Name
Incident Date
VA07308 VA07305 VA05707 TNS00007 TNS00006 SD00536 SD00444 PAS00002 OH02867 OH02795 NY13278 NJS00028 NY01345 NJ00768 RI04389 WIS00002 TX09244 TX03797 NY14821 NJS00046 NJS00050 AK00144 NJ00010 NHS00004
Cypress Shores Cow Creek Dam Essex Mill Dam Deer Creek Bent Tree Dam Covey Dam W. Day Longo Pond Dam Beldon Pond Lake Dam Crown City Mining Pond No. 24 Dam Lake Hyenga Dam Spencer/Estates Detention Basin High Falls Seneca Lake Dam Mill Pond Chenowith Dam Camp La Junta Dam Powell Lake Dam Murtha Pond Dam Furnace Pond Dam Edison Pond Dam City Of Kake Dam Tomahawk Lake Dam Middle Pond
9/1999 9/1999 9/1999 7/1/1999 4/22/1999 5/9/1999 9/3/1999 1/26/1999 4/1999 5/19/1999 9/17/1999 9/16/1999 11/27/1999 8/12/2000 8/6/2000 3/14/2000 10/23/2000 3/22/2000 7/5/2000 8/12/2000 8/12/2000 7/24/2000 8/12/2000 6/7/2000
NH01364 ND00540 MS01687 GAS00196 ARS00001 GA00459 GAS00203 IL01077 NY16046 TN03510 OR00467 RIS00006
Mountain Lake Grand Forks Co. Com. #1 Ascalmore Creek Str Y-17a-11 Lott Dam Ponca Dam Pritchard Lake Dam Ingles Shopping Center Wardens Pond North Dam Eagle Lake Dam HIll #1 Smith River Lbr. Co. Pond Sweet’s Mill
1/7/2000 6/12/2000 4/4/2000 9/18/2000 6/2000 3/16/2001 6/13/2001 7/19/2001 7/16/2001 2001 5/31/2002 5/8/2002
WA83006 GAS00205 MS01611 MN00486 CA00724 CA00812 CA00813 CA10122 CA10123
Swift No 2 Hydroelectric Project Clarke Apple Orchard Lake Dam No. 1 Big Sand Creek Str Y-32-32 Wild Rice River Las Tablas Cr Nacimiento San Antonio El Piojo Hughes
4/21/2002 12/24/2002 4/2002 6/2002 3/17/2004 3/17/2004 3/17/2004 3/17/2004 3/17/2004
Incident Type Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Piping Concrete Spillway Cap Inflow Flood—Hydrologic Event Embankment Erosion Not Known Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Inflow Flood—Hydrologic Event Not Known Animal Attack; Inadequate Spillway Capacity Not Known Inflow Flood—Hydrologic Event Animal Attack Deterioration Inflow Flood—Hydrologic Event Deterioration Inflow Flood—Hydrologic Event Not Known Piping Inflow Flood—Hydrologic Event Piping Biological Attack (i.e., bush, tree growth); Embankment Erosion) Seepage; Piping Piping Not Known; Animal Attack; Piping Inflow Flood—Hydrologic Event Earthquake Earthquake Earthquake Earthquake Earthquake
Note: Number of Events Found: 680. Time period: 1979 to 2004; Incident: all; Dam type: all; Dam failure: all; State: all. Source: From npdp.standford.edu. With permission.
q 2006 by Taylor & Francis Group, LLC
Dam Failure Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
WATER RESOURCES MANAGEMENT
11-47
Table 11A.14 Causes of Dam Incidents in the United States Type of Dam Concrete Cause Overtopping Flow erosion Slope protection damage Embankment leakage, piping Foundation leakage, piping Sliding Deformation Deterioration Earthquake instability Faulty construction Gate failures Total
Othera
Embankment
F
A
F
A
F
6 3
3
18 14
7 17 13
3
23
14
6
11
43
2 6
5 3 2
28 29 3 3
5 2
2 1 19
F
A
F&A
27 17
10 17 13
37 34 13
23
14
37
1
17
49
66
3
7 6 2
28 31 9 3
35 37 11 3
2
3
5
2 103
5 182
7 285
3 2 19
1 77
3 163
Totals
7
A
Note: F, failure; A, accident (an incident where failure was prevented by remedial work or operating procedures, such as drawing down the pool). a
Steel, masonry-wood, or timber crib.
Source: From National Academy Press, 1983, Safety of Existing Dams: Evaluation and Improvement. Based on Schnitter, 1979, Lessons from Dam Incidents U.S.A., ASCE/USCOLD, and supplementary date supplied by U.S. Committee on Large Dams for period to 1979.
q 2006 by Taylor & Francis Group, LLC
11-48
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 11B
Paducah
RESERVOIRS
Kentucky
Cumberland River Nashville
Clinch River Melton Hill
Knoxville
Fort Lodoun Little Tennessee River Hiwassee River Chickamauga Charleston/Calhoun Chattanooga Nickajack Watts Bar
Pickwlck Wilson Yellow Creek
Wheeler
Muscle Shoals Decatur Tennessee-Tombigbee Guntersville Waterway
Guntersville Major Port City Lock and Dam
Figure 11B.11 Route of the river. The Tennessee River’s main navigable channel is 652 miles long. It officially begins a mile above Knoxville, Tennessee, and eventually empties into the Ohio River at Paducah, Kentucky. Commercial navigation also extends into three major tributaries: 61 miles up the Clinch River, 29 miles up the Little Tennessee River, and 21 miles up the Hiwassee River. Another 150 miles of channel—too shallow for commercial traffic—is marked for recreational use. (From www.tva.gov.)
Paducah, Kentucky Tennessee River Mile 0 Elevation 302
Knoxville, Tennessee Tennessee River Mile 652 Watts Bar Mile 530 Nickajack Elevation 745 Mile 425 Elevation 635
Wheeler Mile 275 Elevation 556.3 Kentucky Mile 22 Elevation 375
Pickwick Mile 207 Elevation 418 Guntersville Mile 349 Wilson Elevation 595.4 Mile 259 Elevation 507.9
Fort Loudoun Mile 602 Elevation 815 Chickamauga Mile 471 Elevation 685.4
Figure 11B.12 Tennessee river system. Nine main-river dams form a “staircase” of quiet, pooled water, and controlled current—a continuous series of reservoirs that stretches along the entire length of the Tennessee River. From its beginning just above Knoxville, the Tennessee drops a total of 513 ft in elevation before it empties into the Ohio River. (From www.tva.gov.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-49
Table 11B.15 The Tennessee Valley Authority Multipurpose Reservoir System The TVA reservoir system was designed to provide for navigation, flood control, and the production of hydroelectricity. Today the reservoir system is also operated for such other purposes as providing municipal and industrial water supplies, regulating flows to minimize the effects of effluents including thermal discharges, fluctuating water levels for control of mosquitos and troublesome aquatic vegetation, and controlling flows and levels for various recreational uses This reservoir system encompasses more than 11,000 miles of shoreline and 600,000 acres of water. The overall benefit of this system to the Nation and the region are incalculable, but some indication is provided by a consideration of the more quantifiable benefits: flood damages prevented, transportation savings, hydroelectric power production, and recreation visits There are 39 dams operating in the Tennessee Valley’s integrated water control system. They are: 35 TVA dams — Apalachia, Blue Ridge, Boone, Chatuge, Cherokee, Chickamauga, Douglas, Fontana, Fort Loudoun, Fort Patrick Henry, Guntersville, Hiwassee, Kentucky, Melton Hill, Nickajack, Normandy, Norris, Nottely, Ocoee No. 1, Ocoee No. 2, Ocoee No. 3, Pickwick Landing, South Holston, Tellico, Tims Ford, Watauga, Watts Bar, Wheeler, Wilson, Bear Creek, Little Bear Creek, Nolichucky, Upper Bear Creek, Cedar Creek, and Wilbur 4 Alcoa dams — Calderwood, Cheoah, Chilhowee, and Santeetlah Raccoon Mountain Pumped Storage Project stores energy (generated elsewhere) to meet peak power demands. There are 9 dams in the Cumberland River basin for which TVA distributes power generation. They include one TVA dam, Great Falls, and 8 Corps of Engineer dams — Barkley, Center Hill, Cheatham, Cordell Hull, Dale Hollow, J. Percy Priest, Old Hickory, and Wolf Creek The 4 Bear Creek projects (Bear, Little Bear, and Upper Bear and Cedar), the 2 Duck River projects (Normandy and Columbia), and the Tims Ford dam were planned under Tributary Area Development programs but have been counted among those in the Integrated Water Control System because they were all partially justified as having system flood control value. Tims Ford also contributes power to the system In the 1960’s TVA built two systems of small dams in tributary watersheds: Beech River Project — Beech, Cedar, Dogwood, Lost Creek, Pine, Pin Oak, Redbud, and Sycamore Bristol Project — Beaver Creek and Clear There are 12 dams owned by Alcoa in The Little Tennessee River Valley which are not included in TVA’s integrated water control system The Elk River Dam operated by the Air Force, the Burnett Dam operated by the city of Asheville, and the Walters Dam of the Carolina Power and Light Company are other structures in the Tennessee Valley, but are not controlled by TVA
Table 11B.16 Tennessee Valley Authority Reservoirs Lake Elevation (Feet above Sea Level)
Main River Projects Kentucky Pickwick Landing Wilson Wheeler Guntersville Nickajack Chickamauga Watts Bar Fort Loudoun Raccoon Mtn. (Pumped Storage Project) Tributary Projects Columbia Normandy Tims Ford Apalachia Hiwassee Chatuge Ocoee No. 1 Ocoee No. 2
Length of Lake (Miles)
Length of Lake Shoreline (Miles)
Area of Lake (Acres)
Normal Minimum
184.3 52.7 15.5 74.1 75.7 46.3 58.9 95.5 60.8 —
2,380 496 154 1,063 949 192 810 771 360 —
160,300 43,100 15,500 67,100 67,900 10,370 35,400 39,000 14,600 528
354 408 504.5 550 593 632 675 735 807 1,530
54 17 34.2 9.8 22.2 13 7.5 —
236 73 246 31 163 132 47 —
12,600 3,160 10,600 1,100 6,090 7,050 1,890 —
603 859 865 1,272 1,450 1,905 811 —
Lake Volume (Acre-Feet) at Top of Top of Gates Gates
Useful Controlled Storage in Reservoir (Acre-Feet)
375 418 507.88 556.28 595.44 635 685.44 745 815 —
6,129,000 1,105,000 640,200 1,069,000 1,049,000 251,600 737,300 1,175,000 393,000 37,310
4,008,000 417,700 53,600 349,000 162,400 31,500 345,300 379,000 111,000 35,110
635 880 895 1,280 1,526.5 1,928 830.76 1,115.2
363,000 126,100 608,000 57,800 434,000 240,500 83,300 —
283,000 60,500 282,600 8,650 306,000 123,000 31,030 Silted (Continued)
q 2006 by Taylor & Francis Group, LLC
11-50
Table 11B.16
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued) Lake Elevation (Feet above Sea Level)
Main River Projects Ocoee No. 3 Blue Ridge Nottely Melton Hill Norris Tellico Fontana Douglas Cherokee Ft. Patrick Henry Boone S. Holston Watauga Wilbur Great Falls Nolichucky Totalsa a
Length of Lake (Miles) 7 11 20.2 44 129 33.2 29 43.1 54 10.4 32.7 23.7 16.3 1.8 22 —
Length of Lake Shoreline (Miles)
Area of Lake (Acres)
Normal Minimum
24 65 106 173 800 373 248 555 393 37 130 168 106 3.6 120 26 11,195
480 3,290 4,180 5,690 34,200 15,860 10,640 30,400 30,300 872 4,310 7,580 6,430 72 3,080 383 641,455
1,413 1,590 1,735 790 960 807 1,580 940 1,020 1,258 1,330 1,675 1,915 1,645 780 1,238.9
Does not include the Columbia Dam Project.
Source: From Tennessee Valley Authority, 1988.
q 2006 by Taylor & Francis Group, LLC
Lake Volume (Acre-Feet) at Top of Top of Gates Gates 1,435 1,691 1,780 796 1,034 815 1,710 1,002 1,075 1,263 1,385 1,742 1,975 1,650 805.3 1,240.9
4,180 195,900 174,300 126,000 2,552,000 424,000 1,443,000 1,461,000 1,541,000 26,900 193,400 764,000 677,000 715 50,200 2,003 23,771,708
Useful Controlled Storage in Reservoir (Acre-Feet) 3,629 183,900 117,140 31,900 1,922,000 120,000 946,000 1,251,000 1,148,000 4,250 148,400 438,300 353,000 327 35,700 496 13,408,432
WATER RESOURCES MANAGEMENT
11-51
Raccoon River at Van Meter, IA Q = 68,900 ft3 sec−1 July 10, 1993
120°
South Skunk River below Squaw Creek near Ames, IA Q = 25,300 ft3 sec−1 July 9, 1993
Mississippi River at St. Paul, MN. Q = 105,000 ft3 sec−1 June 28,1993
Minnesota River near Jordan, MN Q = 91,500 ft3 sec−1 June 25,1993
1 1 5°
110°
105°
100°
Mississippi River at Clinton, IA Q = 234,000 ft3 sec−1 June 8,1993
95°
70° 85°
90°
45°
80°
75°
40°
35°
Kansas River at Topeka, KS Q = 196,000 ft3 sec−1 July 24, 1993 Mississippi River at Keokuk, lA Q = 435,000 ft3 sec−1 July 10, 1993 Missouri River at Hermann, MO Q = 732,000 ft3 sec−1 July 31, 1993
Explanation
0
200
400 Miles
0
200
400 Kilometers
Mississippi River at St. Louis, MO Q = 1,030,000 ft3 sec−1 August 1, 1993
Area of flooding streams Boundary of Mississippi River basin Streamflow-gaging station
Figure 11B.13 Peak discharges (Q) and dates of occurrence for the 1993 flood at selected streamflow-gaging stations in the upper Mississippi River basin. (From www.geo.mtu.edu.)
q 2006 by Taylor & Francis Group, LLC
11-52
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
120°
1 1 5°
110°
105°
100°
95°
70°
90°
45°
85°
80°
75°
40°
35°
Explanation Area of flooding streams Boundary of Mississippi River basin
0
200
400 Miles
0
200
400 Kilometers
Figure 11B.14 The Mississippi River basin and general area of flooding streams, June to August 1993. (From www.geo.mtu.edu.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-53
Figure 11B.15 Areal distribution of total precipitation in the area of flooding in the upper Mississippi River basin, January to July 1993. (From www.geo.mtu.edu.)
q 2006 by Taylor & Francis Group, LLC
11-54
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Figure 11B.16 Location of selected streamflow-gaging stations and ranges in recurrence interval for the 1993 peak discharges in the upper Mississippi River basin. (From www.geo.mtu.edu.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-55
Figure 11B.17 Consumptive use and renewable water supply by water resources region. (From U.S. Geological Survey, 1984, updated using 1995 estimates of water use.)
q 2006 by Taylor & Francis Group, LLC
11-56
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Data are provisional and subject to change) Capacity of reservoirs reported in thousands of acre-feet 3188 82 %
5566
63 %
52 %
61 %
14365 66 %
65 %
37065
1448
64 %
57 %
6708
60 %
52 %
30 %
25 %
3632
3866 77 %
77 %
52 %
3260 73 %
5290
53 %
43 %
71 %
49 %
AZ
CO
ID
MT
NV
NM
OR
UT
WA
WY
3 of 4
74 of 74
24 of 24
43 of 45
7 of 7
13 of 13
29 of 31
26 of 28
10 of 13
13 of 13
Number of reservoirs reported Select here for the reservoir dataset for this period Storage is below average (% of capacity) Storage is at or above average (% of capacity) Average storage as % of capacity * = Data are not available for this state.
te
rn
La
Gr
ea
ak es
Upper Mississppi Central Pacific
Upper Arkansas Red Upper Rio Grande and Pecos
e Cumb
Lower Arkansas Red and White
Western Gulf
Figure 11B.19 Water resources regions of the United States. (From U.S. Geological Survey.)
q 2006 by Taylor & Francis Group, LLC
ste
rn
Ohio River
Lower Mississippi
South Pacific
Colorado River
Gr
Ea
r we ri Lo sou is M
Great Basin
tL
Te
nd rla
e nn
ss
ee t
as
e uth
So
ea
t
Chesapeaks Bay
Upper Missouri
s ke Delaware and Hudson
W es
Pacific Northwest
New Eng land
Figure 11B.18 Reservoir storage as percent of capacity for April 1, water year 2005. (From www.wcc.nrcs.usda.gov.)
WATER RESOURCES MANAGEMENT
11-57
Table 11B.17 Normal Surface-Water Reservoir Capacity in the United States Normal Reservoir Capacityb Area of Region, in Thousands of Square Miles
Average Renewable Supply, in Billion Gallons per Daya
In Million Acrefeet
In Acre-feet of Storage per Square Mile
As a Percentage of Annual Renewable Supply
New England Mid-Atlantic South Atlantic-Gulf Great Lakes Ohio (exclusive of Tennessee Region) Tennessee
69 103 271 134 160
78.4 80.7 233.5 74.3 139.5
13.0 10.3 38.7 6.9 19.6
188 100 143 51 123
15 11 15 8 13
43
41.2
11.2
260
24
Upper Mississippi (exclusive of Missouri Region) Mississippi (entire basin) Souris-Red Rainy Missouri Arkansas-White-Red Texas-Gulf
181
77.2
12.2
67
14
1241 55 511 244 178
464.3 6.5 62.5 68.6 33.1
164.8 8.0 84.3 31.8 24.7
133 145 165 130 139
32 110 120 41 67
Rio Grande Upper Colorado Colorado (entire basin) Great Basin Pacific Northwest California
137 103 258 139 271 165
5.1 14.7 15.6 9.9 276.2 70.2
10.4 37.7 70.4 3.3 60.9 38.8
76 366 273 24 225 235
182 229 403 30 20 49
Alaska Hawaii Caribbean
586 6 4
975.5 7.4 5.1
1.5 0.0 0.3
3 2 90
Water Resources Region
a b
0.1 0.1 5
Adjusted by adding exports and subtracting imports. About two-thirds of maximum capacity.
Source: From U.S. Geological Survey, 1984, National Water-Summary 1983—Hydrologic Events and Issues, Water—Supply Paper 2250.
Table 11B.18 Summary of Reservoir Storage, Including Controlled Natural Lakes, in the United States and Puerto Rico Reservoir Storage (Range, in Acre-feet)
Total Reservoir Storage Number of Reservoirs
Acre-feet
Percentage of Total
5 569 295 374 1,411 2,654
107,655,000 322,852,000 20,557,000 13,092,000 15,632,000 479,788,000
22.4 67.3 4.3 2.7 3.3 100.0
Greater than 10,000,000 100,000–10,000,000 50,000–100,000 25,000–50,000 5,000–25,000 Totala
Note: Reservoir storage is expressed as normal capacity, which is the total storage space in a reservoir below the normal retention level, including dead storage and inactive storage, and excluding any flood control or surcharge storage. a
In addition, there are perhaps at least 50,000 reservoirs with capacities ranging from 50 to 5,000 acre-feet, and about 2 million smaller farm ponds used for storage.
Source: From U.S. Army Corps of Engineers, 1981.
q 2006 by Taylor & Francis Group, LLC
11-58
Table 11B.19 Hydraulic Test Data from Aquifer Storage and Recovery Well Systems in Southern Florida
Production Well Identifier
Open Interval Tested (ft)
956–1130a
S
—
12/10/92 ASR-1 Broward County WTP 2A 11/21/96 ASR-1
956–1130a
M
MW-1
995–1200a
S
—
11/26/96 11/26/96 11/26/96 9/19/96 Springtree WTP 6/6/97
ASR-1 ASR-1 ASR-1 MW-1
995–1200a 995–1200a 995–1200a 990–1200a
M M M S
MW-1 MW-1 ASR-1 —
ASR-1
1,110–1,270a
S
7/28/97 Fiveash WTP 1/12/98
ASR-1
1,110–1,270a
FMW-1
Broward County Deerfield Beach West WTP NR ASR-1
1/13/98 FMW-1 1/15/98 FMW-1 3/16/98 FMW-1 3/17/98 FMW-1 3/25/98 ASR-1 3/30/98 ASR-1 Charlotte County Shell Creek WtP 11/5/97 ASR-1 11/17/97 ASR-1 11/18/97 ASR-1
Pumping Rate (gal/min)
950–2,100
1,200
Length of Test (hr)
Transmisivity (ft2/d)
Storage Coefficient (unitless)
Leakance (1/day)
Method of Analysis
NR
—
—
—
—
5.7
1,050–2,950
8
1,000 1,000 1,000 48
24 24 24 6
—
700–1,900
8
R
—
2,115
48
998–1,028
P, R
—
160
998–1,042 1,058–1,175a 1,055–1,175a 1,055–1,175a 1,055–1,200a 1,055–1,200a
P, R P S S S R
— — — — — —
P S R
— — —
700–755 700–764 700–764
q 2006 by Taylor & Francis Group, LLC
24,200 —
1.33!10K6
6.3!10K2
—
28,900 37,200 44,000 —
1.1!10K4 5.3!10K5 — —
—
None — — —
42.6–32.0
NR
Problems and Comments
Step-drawdown test was performed prior to multiwell, but date of test was not given in report
H-J —
Walton C-J Theis Rec — —
90.6–51.1 Data collected for multiwell test but no information on whether corrections were made — — NR NR
—
—
5,700
—
—
Theis Rec
22.75
4
4,700
—
—
Theis Rec
4.7
160 600 100–160 164 968–2,104 2,100
4 10 min 4 24 4 24
8,000 23,500 — NR — 19,500
— — — — — —
— — — — — —
Theis Rec C-J — — — Theis Rec
300–550 231–597 546
NR 12 54
— —
— — —
— — —
— — SC
1,300
BackGround Measurements
18.4–16.5
NR
Acidization of well done after step test and before constant rate test. Interpretation of recovery data favored late time data
NR
Third packer test showed apparent failure after about 10 min, which may have affected data. FMW-1 apparently not used in 24-hour test of ASR-1
5 46 3.8–3.6 w3.5 25.5–17.7 w17.5
10.0–5.6 5.3–4.6 4.4
Walton method should give same transmissivity if no leakance as C-J method Curve matches look okay
NR
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Test Type
Monitoring Well
Specific Capacity (gallons per minute per foot)
3/7/00 3/31/00 4/20/00 4/18/00 4/18/00 Collier County Manatee Road 11–90
S
—
610–600
P, R
—
10
8 1.33
—
—
—
450
—
—
Theis Rec SC SC SC SC SC
TPW-1 TPW-1 SZMW-1 IMW-1 SMW-1
630–807 507–700a 510–700a 280–320 170–205
P S S S S
— — — — —
131 490–1,050 31–101 28.3–59.5 9.3–17.7
4 NR NR NR NR
1,300 4,700 3,700 2,300 300
— — — — —
— — — — —
MW-A
360–460
P, S
—
NR
NR
2,400
—
—
P, S P, S P, S P, S P, S M M
— — — — — MW-B MW-B
NR NR NR NR NR 670 670
NR NR NR NR NR 17 17
20,000 15,000 6,700 6,300 5,700 9,400 12,000
—
220–600
NR
67,000
465–530a 680–760 930–1020 1,180–1,220 1,345–1,606 465–528a 465–528
11-90 11–90 11–90 11–90 11–90 NR NR Macro Lakes NR
MW-A MW-A MW-A MW-A MW-A ASR-1 ASR-1 DZMW
296–399
S
NR NR NR NR NR NR NR NR
DZMW DZMW DZMW ASR-1 ASR-1 ASR-1 ASR-2 ASR-3
296–399 550–622 745–811a 745–790a 745–790a 745–790a 736–780a 736–780a
R P, R R M M M S S, M
— — — ASR-1 DZMW DZMW ASR-1 ASR-2,
600 5 187 463 463 463 400–650
3 4 4.5 8.3 8.3 8.3 NR ASRZMW
42,400 47 8,200 16,300 9,100 12,000 — 400–820
— — — — — 1.00!10K4 — —
— — — — — 3.7!10K4 — —
— — — — — — — — K5 K 6.5!10 7!10 4 — — — — NR 8,000–8,100
—
10.6 1
Multiwell aquifer test planned in the future
NR
All of the step-drawdown tests are indicated to be packer tests; however, some could have been a test of an open interval below casing. For step test, transmissivity was determined at each step by an unspecified method in Walton (1970).
NR
Estimated transmissivity in lower Hawthorn zone I (550 to 622 ft) was too low for consideration as an aquifer storage and recovery interval. No dates were reported for any tests. Good agreement between tests
C-J
17.4–15
5 17.34 (avg) 13.87 (avg) 5.5–4.0 1 (avg)
See comment
NR
See comment See comment See comment See comment See comment H-J Theis Rec
NR NR NR NR NR — —
Walton
220–170
Theis Rec Theis Rec Theis Rec Theis Rec H-J Theis Rec Theis Rec —
NR
NR NR NR NR — — 25–24 —
WATER RESOURCES MANAGEMENT
6/28/99 ASR-1 764–933a Englewood South Regional WWTP NR TPW-1 563–583
Lee County Lee County WTP
(Continued) 11-59
q 2006 by Taylor & Francis Group, LLC
(Continued)
Production Well Identifier NR
11-60
Table 11B.19
ASR-1
Corkscrew WTP 08–94 MW-A
Open Interval Tested (ft)
Pumping Rate (gal/min)
Length of Test (hr)
Transmisivity (ft2/d)
445–600a
M
NR
350
48
800
428–515
P
—
NR
NR
500
—
—
SC
— — — MW-C MW-C MW-C MW-A MW-A MW-C MW-C — — — — —
39 15–74 NR 400 400 400 415 415 415 415 115–410 129–497 153–450 163–380 130–490
5 min. 4 NR 115.5 115.5 115.5 120 120 120 120 NR NR NR NR NR
500 13,000 100 3,410 3,380 3,460 1,760 1,900 3,180 3,410 2,040 7,350 4,020 — 13,400
— —
— —
SC SC NR Hantush C-J Theis Rec Theis C-J Theis C-J SC SC SC — SC
8/17/94 8/24/94 NR 09–95 09–95 09–95 06–96 06–96 06–96 06–96 7/13/99 2/12/99 6/25/99 7/8/99 7/20/99 North Reservoir 12/7/98
MW-A MW-A MW-B ASR-1 ASR-1 ASR-1 ASR-1 ASR-1 ASR-1 ASR-1 ASR-2 ASR-3 ASR-4 ASR-5 ASR-5
524–578 744–778 452–504 328–397a 328–397a 328–397a 328–397a 328–397a 328–397a 328–397a 337–397a 285–347a 310–368a 253–291a 253–291a
P P, S NR M M M M M M M S S S S S
MW-1
480–518
S
—
92–430
NR
14,400
12/9/98 12/11/98 12/16/98 12/18/98 3/3/99 3/8/99
MW-1 MW-1 MW-1 MW-1 ASR-1 ASR-1
529–619a 640–703 808–890 904–977 540–642a 540–642a
P, S P, S P, S P, S S M
— — — — — MW-1
73–295 79–281 55–190 85–322 162–590 379
NR NR NR NR 4 72
5,200 2,040 680 9,590 2,220 8,290
q 2006 by Taylor & Francis Group, LLC
Storage Coefficient (unitless)
Method of Analysis
Leakance (1/day)
1.00!10K4
NR 7.70!10K5 6.70!10K5 — 2.30!10K4 1.70!10K4 5.70!10K5 4.90!10K5 — — — — — —
— — — — — 3.27!10K4
H-J
NR 1.6!10K5 — — — — — — — — — — — —
— — — — — 7.33!10K4
SC
SC SC SC SC SC H-J
NR
2.5
BackGround Measurements NR
Data collected for multiwell test in September 1995
Problems and Comments Storage zone in ASR-1 is located in the lower Hawthorn producing zone of the Upper Floridan aquifer as defined by Reese (2000) Test of MW-A, interval 744 to 778 ft, was of upper 34 of 240 ft thick Suwannee Limestone. Second multiwell test of ASR-1 followed backplugging of MW-A to injection zone. Transmissivity values for step-drawdown test of ASR-2, 3, 4, and 5 were obtained
NR 1.3–0.6 NR — — — — — — 7.8–6.6 26.9–19.4 15.0–11.7 7.4–5.2 50.0–36.1 44.4–41.3 Data collected for 3 days prior to the multiwell test 9.7–3.5 6.6–2.8 2.8–1.8 10.5–3.1 8.65–7.00 —
Fit of line to ASR-1 recovery data for multiwell test is poor
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Test Type
Monitoring Well
Specific Capacity (gallons per minute per foot)
MW-1 ASR-1
379 379
72 72
455–554a
S
—
135
15 min
NR ASR-1 6/16/99 ASR-1 6/17/99 ASR-1 10/23/99 ASR-1 10/23/99 ASR-1 10/23/99 ASR-1 10/23/99 ASR-1 San Carlos Estates 6/7/99 TPW-1
455–647 455–574a 455–575a 455–553a 455–553a 455–553a 455–553a
S P P M M M M
— — — ASR-1 ASR-1 SZMW-1 SZMW-1
160 479 483 1,540–1,400 1,540–1,400 1,540–1,400 1,540–1,400
15 min 70 min 18 min 27 27 27 27
650–701a
S
—
710–1,480
8
7/29/99 8/2/99 11/10/99 11/10/99 Olga WTP 1/5/99
SZMW-1R SMW-1 TPW-1 TPW-1
659–721a 234–321 650–701a 650–701a
S S M M
170–350 150–220 985 985
8 8 8 8
— — 39,000 70,000
MW-1
515–605
S
—
110–400
NR
2,500
1/7/99 2/3/99 2/4/99 2/4/99
MW-1 MW-1 MW-1 MW-1
612–689 835–935a 710–935 835–935a
P P P P
— — — —
70–200 70–355 70–350 70–350
NR NR NR NR
1,300 7,600 7,600 7,600
— — SZMW-1R SZMW-1R
8,740 8,570 —
— 29,100 26,600 24,700 25,400 27,400 29,000 —
4.64!10K4 —
— —
—
—
— — — — — NR —
— — — — — NR —
—
—
— — 1.00!10K2 —
C-J (recovery) C-J (recovery) —
— C-J (recovery) C-J (recovery) C-J C-J (recovery) C-J C-J (recovery) —
— NR 59.7
Ninety hours collected prior to multiwell test, but apparently not used to correct drawdown data
Pumping rate for multiwell test was 1,540 for first 6.5 hr, then changed to 1,400. No attempt was made to analyze multiwell test data for storage coefficient or leakance. Storage zone is located in the lower Hawthorn producing zone of Upper Florida
Unknown for multiwell test. Test followed 10 days of recharge at 1,955 gal minK1 and then 6-day static period
High specific capacity in TPW-1 due to two pilot holes in open interval. Pumping rate for test on 11/10/99 of 985 gallons per minute was natural flow. C-J solution for drawdown in SZMW-1R is suspect. Solution is for very late time only, and background changes due to prior recharge may have affected response
Measured for multiwell test, but unknown if used to correct drawdown
H-J results for multiwell test agree better with single well and packer test than C-J results. A second constant rate test was run but is not reported here. Storage zone is about 150 ft below top of Suwannee Limestone
86.3 NR NR NR — — — 250–130
— — — —
— — C-J Theis Rec
15–9.0 8.9–6.5 — —
—
—
SC
NR
— — — —
— — — —
SC SC SC SC
NR NR NR NR
(Continued) q 2006 by Taylor & Francis Group, LLC
11-61
M M
WATER RESOURCES MANAGEMENT
540–642a 540–642a
3/8/99 ASR-1 3/8/99 ASR-1 Winkler Avenue NR ASR-1
11-62
Table 11B.19
(Continued)
Production Well Identifier
West Well Field 1/26/97 ASR-1
Pumping Rate (gal/min)
Length of Test (hr)
Test Type
Monitoring Well
945–1,101 740–820 830–945a 854–945a 857–945a 859–920a 859–920a 859–920a 859–920a 859–920a
P S P P R S M M M M
— — — — — — MW-1 MW-1 MW-3 MW-3
6–15 78–480 80–340 75–350 300 112–545 500 500 500 500
953–1,060a
M
ASR-1
250
850–1,302a
S
—
1,400–4,000
8
NR NR NR NR NR 5 60 60 60 60
1.66
Transmisivity (ft2/d)
Storage Coefficient (unitless)
Leakance (1/day)
33 1,900 9,000 6,400 8,700 5,000 7,200 12,000 9,400 11,000
— — — — — — 5.10!10K5 4.10!10K5 5.50!10K5 4.20!10K4
— — — — — — 5.2!10K3 — 6.0!10K2 —
11,000
8.4!10K5
—
J-L
—
—
—
—
269–52.1
—
2/25/97 4/8/97 12/9/97 12/9/97 12/9/97 12/9/97 12/9/97 Monroe County Marathon 5/3/90
ASR-2 ASR-3 ASR-1 ASR-1 ASR-1 ASR-1 ASR-1
845–1,250a 835–1,210a 850–1,302a 850–1,302a 850–1,302a 850–1,302a 850–1,302a
S S M M M M M
— — ASR-1 ASR-2 ASR-2 ASR-3 ASR-3
1,500–3,800 1,500–3,800 3,500 3,500 3,500 3,500 3,500
8 8 72 72 72 72 72
— — 10,300 15,400 18,200 15,400 19,700
N/A 3.90!10K4 2.90!10K4 4.40!10K4 3.30!10K4
ASR-1
387–432a
M
OW-1
105
25
2,290
3.20!10K4
NR
5/3/90 5/3/90 5/3/90
ASR-1 ASR-1 ASR-1
387–432a 387–432a 387–432a
M M M
OW-1 OW-1 OW-2
105 105 105
25 25 25
2,510 1,760 2,180
3.70!10K4 — 5.20!10K4
— — NR
q 2006 by Taylor & Francis Group, LLC
Method of Analysis
— —
— — N/A 1.6!10K3 N/A 3.90!10K5 N/A
SC SC SC SC Theis Rec SC H-J C-J H-J C-J
— — C-J Walton C-J Walton C-J
Walton
C-J Theis-Rec Walton
BackGround Measurements
Problems and Comments
NR NR NR NR NR 14.9–8.5 — — — —
NR
Transmissivity estimate from Meyer (1989b). Storage coefficient estimated by model simulation of pumping test
Measured for Multiwell test. Correction was not done, due to negligibility
All three aquifer storage and recovery wells were heavily acidized prior to all tests. Late time drawdown data problematic because of pump going down several times
Measured for 3 weeks prior to multiwell test. A regional increasing trend in water level was determined
Leakance using Walton (1962) method not determined
126.6–51.1 46.1–38.2 NR — — — —
—
— — —
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
2/8/99 MW-1 3/17/99 MW-3 3/25/99 MW-3 3/25/99 MW-3 3/26/99 MW-3 11/1/99 ASR-1 11/3/99 ASR-1 11/3/99 ASR-1 11/3/99 ASR-1 11/3/99 ASR-1 Miami-Dade County Hialeah 2/10/75 MW-1
Open Interval Tested (ft)
Specific Capacity (gallons per minute per foot)
4/20/98 MW-1 8/2/98 ASR-1 8/2/98 ASR-1 8/2/98 ASR-1 Palm Beach County Boynton Beach East WTP 4/9/92 ASR-1
P, R M M M
— ASR-1 MW-1 MW-1
804–900a
S
10/15/92 ASR-1 804–909a Delray Beach North Storage Reservoir 6/5/96 ASR-1 849–899
6/11/96 ASR-1 6/14/96 AR-1 6/18/96 ASR-1 9/20/96 ASR-1 2/24/98 ASR-1 West Palm Beach WTP 8/22/96 FAMW
9/14/96 8/29/96 9/1/96 9/4/96 9/6/96
FAMW FAMW FAMW FAMW FAMW
105 95–350
25 NR
10
6.4
706
10 6,500 6,500 6,500
6.4 24 24 24
2,940 620,000 586,000 765,000
—
320–2,100
NR
6,800–13,000
S
—
798–1,723
NR
Not calculated
P
—
49
NR
900–952 974–1,020 1,020–1,100 1,020–1,200a 1,020–1,200a
P P P S S
— — — — —
83 90 98 575–1,100 760–2,550
975–1,091
P, S
—
1,304–1,384 975–1,090 975–1,190a 975–1,290 975–1,384
P, S S S S S
— — — — —
1,175–1,227 1,268–1,710a 1,268–1710a 1,268–1,710a
—
4,090
— —
—
NR
— N/A 1.25!10K3 1.90!10K4
NR
— —
Theis-Rec —
—
C-J
— N/A 0.01–0.001 N/A
Recovery C-j (recovery) H-J C-J (recovery)
— 3.9–2.7
NR
Water-level data taken for 5 days prior to constant rate test; corrections made using a long-term increasing trend
Leakance derived by extrapolation; longer pumping period required for more accurate value
NR 1,600 1,600 1,600
—
C-J
18–28
—
—
C-J
29–27
—
—
—
—
NR NR NR 24 13.2
— — — — —
— — — — —
— — — — —
— — — — —
64–142
NR
—
—
—
—
55–110 300–584 300–584 550–740 550–740
NR NR NR NR NR
— — — — —
— — — — —
— — — — —
— — — — —
0.37
NR
Second step test is with permanent equipment installed in well. Average of estimates for transmissivity was 70,000 gallons per day per foot
NR
Second step test performed after acidization of well. For the second step test, pump malfunctioned after about 10 min of pumping during the last step at 2,550 gal minK1
NR
Recovery was allowed following step test of ASR-1 before multiwell test was begun. Large deviation from Theis curve during late time, but leaky aquifer solution not used
0.9 2.4 2 10.8–7.8 17.2–15.7 194–86
220–110 75–58 110–101 116–105 116–99
11-63
OW-2 —
(Continued) q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
5/3/90 ASR-1 387–432a M 5/6/90 ASR-1 387–432a S Okeechobee County Taylor Creek-Nubbin Slough (Lake Okeechobee) 4/20/98 MW-1 1,175–1,227 P
(Continued)
Production Well Identifier 11/19/96 1/30/97 2/1/97 2/1/97 Western Hillsboro 4/5/00
11-64
Table 11B.19
Open Interval Tested (ft)
FAMW 975–1,191a ASR-1 985–1,200a ASR-1 985–1,200a ASR-1 985–1,200a Canal, Site 1 EXW-1 1,160–1,225
Length of Test (hr)
Transmisivity (ft2/d)
550–732 508–704 700 700
NR 24 24 24
— — 138,000 108,000
Pumping Rate (gal/min)
Test Type
Monitoring Well
S S M M
— — FAMW FAMW
P
—
95
NR
—
105 1,000–3,000
NR NR
— —
Storage Coefficient (unitless) — — 1.00!10K4 8.00!10K4
Leakance (1/day)
Method of Analysis
Specific Capacity (gallons per minute per foot)
— — — —
— — C-J Theis
62–42 390–306 — —
—
—
—
22.6
— —
— —
— —
10.9 31.1–26.2
EXW-1 EXW-1
1,015–1,150 1,015–1,225a
P S
— —
MW-1
600–775a
M
ASR-1
388
72
5,910
1.64!10K4
4.3!10K2
H-J (drawdown)
—
8/24/82
MW-1
600–775a
M
ASR-1
388
72
6,430
2.67!10K4
4.7!10K4
H-J (recovery)
—
Problems and Comments
NR
Acidized EXW-1 with 4,300 gallons of 36 percent HCl on 6-2-00
NR
Also conducted four pump tests of ASR-1 during drilling with total depth ranging from 627 to 1,000 ft and casing at 600 feet. Transmissivity was calculated from these tests based on recovery data from ASR-1
Note: Depths are in feet below land surface. Test type: M, multiwell constant rate; P, Packer test; R, single well constant rate recovery; S, step drawdown. Method of analysis; SC, specific capacity; Theis, Theis (1935) confined aquifer; C-J, Cooper and Jacob (1946) confined aquifer; Theis (1935) residual drawdown recovery; H-J, Hantush and Jacob (1955) leaky aquifer; Walton, Walton (1962) leaky aquifer; J-L, Jacob and Lohman (1952). Other annotations: WTP, water treatment plant; WWTP, wastewater treatment plant; —, not applicable; NR, not reported. a
Open interval tested is the same (or about the same) as the storage zone.
Source: From damsreport.org.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
4/10/00 5/25/00 St. Lucie County 8/24/82
BackGround Measurements
Storage Required to Produce Indicated Flow 100% of Time Region
Flow
Storage
New England Delaware and Hudson Rivers Chesapeake Bay Southeast Western Great Lakes Eastern Great Lakes Ohio River Cumberland River Tennessee River Upper Mississippi River Upper Missouri River Lower Missouri River Upper Arkansas-Red Rivers Lower Arkansas-Red and White Rivers Lower Mississippi River Upper Rio Grande and Pecos Rivers Western Gulf Colorado Great Basin South Pacific Central Pacific Pacific Northwest United States
6,300 3,200
1,300 590
5,600 21,000 8,400 2,300 7,400 1,500 9,000 7,800
Flow
Storage
Flow
Storage
Flow
Storage
Flow
Storage
9,700 4,800
1,900 900
16,000 7,800
4,200 2,000
22,000 11,000
7,300 3,800
39,000 19,000
26,000 11,000
960 4,900 780 720 4,100 160 400 1,100
8,400 31,000 12,000 3,700 9,400 2,100 11,000 12,000
1,400 7,800 1,100 1,100 5,200 290 600 2,300
13,000 49,000 16,000 6,500 15,000 3,300 15,000 18,000
3,400 14,000 2,800 2,200 7,200 620 1,200 5,200
18,000 71,000 21,000 9,700 21,000 4,500 19,000 25,000
6,000 25,000 5,100 3,700 11,000 1,100 2,500 8,700
32,000 126,000 32,000 19,000 46,000 7,800 28,000 41,000
20,000 78,000 20,000 11,000 29,000 3,100 9,600 26,000
1,200 410 410
340 660 250
1,800 550 700
660 840 410
3,200 1,200 1,300
1,200 1,300 720
4,500 2,200 2,100
2,100 2,300 1,200
9,000 5,800 4,500
5,700 5,200 3,000
1,000
1,400
2,100
2,500
4,400
5,000
8,400
9,400
20,000
22,000
2,100
900
3,600
1800
6,500
3,200
10,000
5,500
21,000
14,000
a
a
a
a
a
a
a
a
a
a
920 210 300 30 1,000 9,700 90,000
1,300 90 72 10 880 2,600 24,000
1,700 320 470 40 1,900 21,000 140,000
1,700 120 100 13 1,760 6,600 40,000
3,400 560 780 60 3,800 26,000 210,000
3,800 230 240 26 3,100 9,300 71,000
5,900 830 1,200 100 6,300 39,000 300,000
5,500 380 420 43 5,300 16,000 120,000
14,000 1,700 2,100 180 16,000 76,000 560,000
12,000 1,200 1,000 119 11,400 47,000 350,000
WATER RESOURCES MANAGEMENT
Table 11B.20 Reservoir Storage Required to Produce Selected Dependable Flows in the United States
Note: Flow is in millions of gallons per day, and storage is in thousands of acre-feet. a
Appropriations currently exceed supply.
Source: From Select Committee on National Water Resources, U.S. Senate 1960.
11-65
q 2006 by Taylor & Francis Group, LLC
11-66
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11B.21 Advantages and Disadvantages of Subsurface and Surface Reservoirs Subsurface Reservoirs
Surface Reservoirs
Advantages 1. Many large-capacity sites available 2. Slight to no evaporation loss 3. Require little land area 4. Slight to no danger of catastrophic structural failure 5. Uniform water temperature 6. High biological purity 7. Safe from immediate radioactive fallout 8. Serve as conveyance systems—canals or pipeline across lands of others unnecessary Disadvantages 1. Water must be pumped 2. Storage and conveyance use only 3. Water may be mineralized 4. Minor flood control value 5. Limited flow at any point 6. Power head usually not available 7. Difficult and costly to investigate, evaluate, and manage 8. Recharge opportunity usually dependent on surplus surface flows 9. Recharge water may require expensive treatment 10. Continuous expensive maintenance of recharge areas or wells
Disadvantages 1. Few new sites available 2. High evaporation loss even in humid climate 3. Require large land area 4. Ever-present danger of catastrophic failure 5. Fluctuating water temperature 6. Easily contaminated 7. Easily contaminated by radioactive material 8. Water must be conveyed Advantages 1. Water may be available by gravity flow 2. Multiple use 3. Water generally of relatively low mineral content 4. Maximum flood control value 5. Large flows 6. Power head available 7. Relatively easy to evaluate, investigate, and manage 8. Recharge dependent on annual precipitation 9. No treatment required of recharge water 10. Little maintenance required of facilities
Source: From U.S. Bureau of Reclamation, 1977, Groundwater Manual, U.S. Department of the Interior.
Table 11B.22 Summary of Storage Reservoirs on United States Bureau of Reclamation Projects Active Capacity Category Constructed and operated by Bureau of Reclamation Rehabilitated and operated by Bureau of Reclamation Constructed by others, operated by Bureau of Reclamation Under construction by Bureau of Reclamation Constructed by Bureau of Reclamation, operated by others Rehabilitated by Bureau of Reclamation, operated by others Constructed and operated by others Constructed or rehabilitated under loan program Total
Total Capacity
No. of Reservoirs
1000 m3
Acre-Feet
1000 m3
Acre-Feet
110
106,709,244
86,510,251
144,632,109
117,254,697
10
247,069
200,302
248,694
201,618
11
6,337,601
5,137,957
7,009,548
5,682,711
8
837,118
678,660
5,469,294
4,434,012
109
18,183,188
14,741,292
19,878,391
16,115,611
14
852 561
691,180
865,130
701,370
71
78,238,538
63,428,765
100,529,146
81,499,984
22
444,806
360,609
493,310
399,932
355
211,850,129
171,749,017
279,125,626
226,289,936
Note: As of September 30, 1986. Source: From U.S. Department of the Interior, Bureau of Reclamation, 1986, Statistical Compilation of Engineering Features on Bureau of Reclamation Projects.
q 2006 by Taylor & Francis Group, LLC
Reservoir Caonillas Carite Cidra Dos Bocas Garzas Guajataca Guayo La Plata Loiza Loco Lucchetti Patillas Prieto Yahuecas Average
Original Capacity (Mm)3
Const. Year
Study Year
55.66 13.95 6.54 37.50 5.80 48.46 19.20 40.21 26.81 2.40 20.35 17.64 0.76 1.76
1948 1913 1946 1942 1943 1928 1956 1974 1953 1951 1952 1914 1955 1956
2000 1999 1997 1999 1996 1999 1997 1998 1994 2000 2000 1997 1997 1997
Age
Storage Capacity (Mm)3
Total Vol. Loss (Mm)3
52 86 51 57 53 71 41 24 41 49 48 83 42 41
42.27 10.74 5.76 18.04 5.11 42.28 16.57 35.46 14.20 0.87 11.88 13.84 0.22 0.33
13.39 3.21 0.78 19.46 0.69 6.18 2.63 4.75 12.61 1.53 8.47 3.80 0.54 1.43
Long-Term Volume Loss (m3/yr)
Loss in Percent
Long-Term Storage Loss per Year (Percent)
257,500 37,326 15,294 341,404 13,019 87,042 64,146 197,917 307,561 31,224 176,458 102,703 12,857 34,878 119,952
24 23 12 52 12 13 14 12 47 64 42 22 71 81 35
0.5 0.3 0.2 0.9 0.2 0.2 0.3 0.5 1.1 1.3 0.9 0.6 1.7 2.0 0.7
Drainage Area (km)2
Surface Area (km)2
126.65 20.51 21.39 310.00 15.60 79.77 24.86 469.00 538.00 21.76 44.81 65.27 24.80 45.17
2.70 1.20 1.08 1.78 0.40 3.42 1.09 3.09 2.67 0.29 1.11 1.35 0.06 0.22
Deposition Sediment Yield Rate (m3/km2/yr) (cm/yr) 9.5 3.1 1.4 19.2 3.2 2.5 5.9 6.4 11.5 10.8 15.9 7.6 21.4 15.8 9.6
2,186 1,938 768 1,299 878 1,188 2,660 483 750 1,774 4,102 1,739 900 1,430 1,578
Storage Loss (m3/km2/yr)
WATER RESOURCES MANAGEMENT
Table 11B.23 Results of Bathymetric Surveys of 14 Reservoirs in Puerto Rico
2,033 1,820 715 1,103 834 1,091 2,580 422 572 1,435 3,937 1,617 518 772 1,389
Note: Const., construction; vol., volume; m3/yr, cubic meter per year; Mm3, mega cubic meter; km2, square kilometer; cm/yr, centimeter per year; m3/km2/yr, cubic meter per square kilometer per year. Source: From www.usgs.gov.
11-67
q 2006 by Taylor & Francis Group, LLC
11-68
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11B.24 Percent of Annual Inflow Storage and Water Demand Storage for Lago Caonillas, Lago Cidra, Lago Dos Bocas, Lago Guajataca, Lago Loiza, and Lago La Plata
Reservoir
Average Annual Inflow (Million Cubic Meters)
Percent of Annual Inflow Stored
Annual Demand (Mm3)
Ability to Store Annual Water Demand (Percent)
14.5 400.00 104.50 363.85 270.98
40.0 4.0 40.0 4.0 13.1
6.9 103.61 62.16 138.15 96.52
83 17 68 10 37
Lago Cidra Lago Dos Bocas Lago Guajataca Lago Loiza Lago La Plata Note: Mm3, mega cubic meter. Source: From www.usgs.gov.
Table 11B.25 Major Storage Reservoirs on United States Bureau of Reclamation Projects Project, State, Reservoir Name (Dam Name), Stream, Operator Pacific Northwest Region Boise ID-OR Cascade Reservoir North Fork Payette River Columbia Basin, WA Banks Lake (North and dry falls) Offstream Billy Clapp Lake (Pinto) Offstream Franklin D. Roosevelt LK (Grand Coulee) Columbia River Potholes Reservoir (O Sullivan) Lower Crab Creek Hungry Horse, MT Hungry Horse Reservoir South Fork Flathead River Minidoka-Palisades, ID-WY American Falls Reservoir Snake River Island Park Reservoir Henrys Fork River Jackson Lake Snake River Palisades Reservoir South Fork Snake River Owyhee, ID-OR Lake Owyhee Owyhee River Owyhee Project North Board of Control Yakima, WA Cle Elum Lake Cle Elum River Mid-Pacific Region Central Valley, CA Clair Engle Lake (Trinity) Trinity River
Category
Purpose
Active Capacity Acre-Feet
Total Capacity Acre-Feet
Reservoir Area Acres
Year Completed
A
I–P–FC
653,000
703,000
28,300
1948
A
I
715,000
1,280,000
27,000
1951b
A
I–FC
21,200
64,200
1,010
1948
A
I–P–FC–RR–N
5,190,000
9,390,000
82,300
1942
A
I–FC
332,000
512,000
27,800
1949
A
I–P–FC–N
2,980,000
3,470,000
23,800
1953
B
I–FC–MI
1,670,000
1,670,000
58,100
1978c
A
I–FC
127,500
1,280,000
7,794
1938c
A
I–FC
624,000
847,000
25,500
1916c,e
A
I–P–FC–FW
1,200,000
1,401,000
16,150
1957
D
I–FC
715,000
1,120,000
12,700
1932
A
I
437,000
710,000
4,812
1933
A
I–P
2,140,000
2,450,000
16,500
1962 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11B.25
11-69
(Continued)
Project, State, Reservoir Name (Dam Name), Stream, Operator Folsom Lake American River Lake Isabella Kern River U.S. Corps of Engineers Millerton Lake (Friant) San Joaquin River New Hogan Lake Calaveras River U.S. Corps of Engineers New Melones Lake Stanislaus River O Neill Reservoir San Luis Creek California Department of Water Resources Pine Flat Lake Kings River U.S. Corps of Engineers San Luis Reservoir San Luis Creek California Department of Water Resources Shasta Lake Sacramento River Klamath, CA-OR Clear Lake Reservoir Lost River Gerber Reservoir Miller Creek Upper Klamath Lake Upper Klamath Lake Outlet Pacific Power and Light Newlands, NV Lake Tahoe Truckee River Truckee-Carson Irrigation District Solano, CA Lake Berryessa (Monticello) Putah Creek Lower Colorado Region Boulder Canyon, AZ-CA-NV Lake Mead (Hoover) Colorado River Colo R Front WorkLevee System Senator Wash Reservoir
Category
Purpose
Active Capacity Acre-Feet
Total Capacity Acre-Feet
Reservoir Area Acres
Year Completed
B
I–P–FC
920,000
1,010,000
11,400
1956
E
I–FC
567,900
570,000
11,400
1953
A
I–FC
434,000
521,000
4,900
1942
E
I–FC
309,000
324,000
4,410
1964
B
I–P–FC
2,100,000
2,400,000
12,500
1979
D
I–P
20,800
56,400
2,250
1967
E
I–FC
1,000,000
1,000,000
5,970
1954
D
I–P
1,960,000
2,040,000
13,000
1967
A
I–P–FC–RR–N– MI
3,970,000
4,550,000
29,700
1945
A
I–FC
513,000
527,000
25,800
1910
A
I
94,300
94,300
3,830
1925c
E
I–P
465,000
873,000
90,900
1921a,c
D
I–P
732,000
732,000
120,000
1913c
A
I–FC–MI
1,590,000
1,600,000
20,700
1957
A
I–P–FC–RR–N– MI
17,400,000
2,8500,000
163,000
1936
12,300
13,800
470
1966b
A
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-70
Table 11B.25
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Project, State, Reservoir Name (Dam Name), Stream, Operator Senator Wash Parker-Davis, AZ-CA-NV Lake Havasu (Parker) Colorado River Salt River, AZ Theodore Roosevelt Lake Salt River Salt River Valley Water Users Assoc. Upper Colorado Region Central Utah, UT Strawberry Reservoir Strawberry River Colorado River Storage Blue Mesa Reservoir Gunnison River Flaming Gorge Reservoir Green River Lake Powell (Glen Canyon) Colorado River Navajo Reservoir San Juan River Southwest Region Brantley, NM Brantley Reservoir Canadian River, TX Lake Meredith (Sanford) Canadian River Canadian River Municipal Water Authority Colorado River, TX Marshall Ford Reservoir Colorado River Lower Colorado River Authority Middle Rio Grande, NM Cochiti Lake Rio Grande River U.S. Corps of Engineers Nueces River, TX Choke Canyon Reservoir Frio River Rio Grande, NM-TX Elephant Butte Reservoir Rio Grande River San Angelo, TX Twin Buttes Reservoir Middle South Concho River; Spring Creek San Angelo Water Supply Corporation Tucumcari, NM Conchas Lake Canadian River
Purpose
Active Capacity Acre-Feet
Total Capacity Acre-Feet
A
P–FC–MI
180,000
619,400
20,400
1938
D
I–P–MI
1,336,700
1,336,700
17,315
1936e
A
I–MI–FC
951,000
1,106,500
17,000
1974
A
I–P–FC
748,500
940,800
9,180
1966
A
I–P
3,515,700
3,788,700
42,020
1964
A
P–R
20,876,000
27,000,000
161,390
1964
A
I–FC–RR
1,036,100
1,708,600
15,610
1963
C
FC–I
42,000
3,485,000
15,320
D
FC–MI–FW
1,304,554
1,382,478
16,513
1965
D
I–P–FC–RR–N
1,590,763
1,953,936
18,929
1942
E
I–FC–S–FW
676,217
722,000
10,690
1975
A
MI–FW
689,480
691,130
25,733
1982
A
I–P
2,060,000
2,110,000
36,521
1916
D
I–FC–MI–FW
632,214
640,568
9,079
1963
E
I–FC
451,161
528,951
13,664
1940
Category
Reservoir Area Acres
Year Completed
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11B.25
11-71
(Continued)
Project, State, Reservoir Name (Dam Name), Stream, Operator U.S. Corps of Engineers Missouri Basin Region Colorado-Big Thompson, CO Lake Granby Colorado River Fort Peck, MT Fort Peck Lake Missouri River U.S. Corps of Engineers Kendrick, WY Seminoe Reservoir North Platte River North Platte, NE-WY Pathfinder Reservoir North Platte River Pick-Sloan Missouri Basin Program Lake Francis Case (Fort Randall) Missouri River U.S. Corps of Engineers Lake Oahe Missouri River U.S. Corps of Engineers Lake Sharpe (Big Bend) Missouri River U.S. Corps of Engineers Lewis and Clark Lake (Gavins Point) Missouri River U.S. Corps of Engineers Bostwick Division, KS-NE Harlan County Lake Republican River U.S. Corps of Engineers Boysen Division, WY Boysen Unit Boysen Reservoir Wind River Garrison Division, ND Audubon Lake (Snake Creek) Offstream Lake Sakakawea (Garrison) Missouri River U.S. Corps of Engineers Helena-Great Falls Div, MT (Canyon Ferry Unit)
Category
Purpose
Active Capacity Acre-Feet
Total Capacity Acre-Feet
466,000
540,000
7,260
1950
14,626,000
18,909,000
249,000
1940
Reservoir Area Acres
Year Completed
A
I–P
E
I–P–FC–N
A
I–P
985,603
1,017,273
20,300
1939
A
I–P
985,102
1,016,507
22,000
1909
E
P–FC–N
4,033,000
5,603,000
102,100
1953
E
I–P–FC
17,886,400
23,337,600
372,800
1962
E
P
1,882,302
1,884,000
64,000
1964
E
P–FC–N
156,000
504,000
32,000
1955
E
I–FC
691,121
825,782
23,064
1952
A
I–P–FC
802,000
952,400
22,166
1952
B
I
356,000
500,000
19,400
1965d
E
I–P–FC–N– MI–FW
18,933,500
23,923,000
381,900
1956a
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-72
Table 11B.25
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Project, State, Reservoir Name (Dam Name), Stream, Operator Canyon Ferry Lake Missouri River Lower Bighorn Div, MT-WY (Yellowtail Unit) Bighorn Lake (Yellowtail Dam) Bighorn River Marias Division, MT (Lower Marias Unit) Lake Elwell (Tiber) Marias River Oregon Trail Div, NE-WY (Glendo Unit) Glendo Reservoir North Platte River Solomon Division, KS (Glen Elder Unit) Waconda Lake (Glen Elder) Solomon River
Category A
Purpose I–FC–P–MI–F– W
Active Capacity Acre-Feet
Total Capacity Acre-Feet
Reservoir Area Acres
1,605,057
2,050,519
35,181
1954
Year Completed
A
P
834,776
1,328,360
17,298
1966
A
I–FW
790,533
1,368,157
23,152
1956f
A
I–P–FC
726,254
789,402
12,400
1958
A
I–FC–MI
927,104
963,775
12,600
1969
Note: As of September 30, 1986; total capacity of 500,000 acre-feet or more. Purpose, FW, fish wildlife; FC, flood control; I, irrigation; MI, municipal industrial; N, navigation; P, power; RR, river regulation; S, sediment. Capacity-active, storage available for project, usually the storage above the lowest point of release. Total, storage at highest controlled water surface. Reservoir area, water surface area at active conservation capacity. Year completed, date original construction completed except as indicated in footnote e. Operating agency, agency directly and officially responsible for operation and maintenance of feature. Does not include agencies that may administer recreational or other secondary function as a service to the primary operator. Category, A, constructed and operated by bureau of reclamation; B, constructed by others, operated by bureau of reclamation; C, under construction by bureau of reclamation; D, constructed by bureau of reclamation, operated by others; E, constructed and operated by others. a b c d e f
The bureau of reclamation has responsibility for the proper care and management of five reservoirs by special agreement. Reregulating reservoir. Dead storage not evaluated. Not yet in operation. Date indicates bureau of reclamation rehabilitation work. Tiber dam modification completed in 1981.
Source: From U.S. Department of the Interior Bureau of Reclamation, 1986, Statistical Compilation of Engineering Features on Bureau of Reclamation Projects.
q 2006 by Taylor & Francis Group, LLC
Characteristics of Dam
Name Alaska Chena River Lakes Arizona Adobe Alamo Cave Buttes Dreamy Draw New River Painted Rock Tat Momolikot Whitlow Ranch Arkansas Blakely Mountain Dam Blue Mountain DeGray DeQueen Dierks Gillham Millwood Narrows Dam Nimrod California Black Butte Brea Buchanan Dam-H.V. Eastman Lake Carbon Canyon
River Basin
Stream
Community in Vicinity
Year Placed in Operation
Total Storage (acre-ft)
Permanent Pool (Acreage) or No Pool (NPP)
Project Functionsa
Type
Height (ft)
Length (ft)
Chena River
Fairbanks
1981
2,000
NPP
FR
Earth
50
40,200
Gila Colorado Gila Gila Gila Gila Gila Gila
Skunk Creek Bill Williams River Cave Creek Dreamy Draw New River Gila River Santa Rosa Wash Queen Creek
Phoenix Wenden Phoenix Phoenix Phoenix Gila Bend Casa Grande Superior
1982 1968 1979 1973 1985 1959 1974 1960
18,350 1,046,310 46,600 320 43,520 2,491,700 198,550 35,500
NPP 560 NPP NPP NPP NPP NPP NPP
FR FRWX FRX FRX F FRWX FWX FX
Earth Earth Earth Earth Earth Earth Earth Earth
109 283 109 50 104 181 75.5 149
2,275 975 2,275 448 2,320 4,780 12,500 837
Ouachita Arkansas Ouachita Red Red Red Red Ouachita Arkansas
Ouachita Petit Jean River Caddo Rolling Fork River Saline River Cossatot River Little River Little Missouri Fourche La Fave River
Hot Springs Paris Arkadelphia DeQueen Dierks Gillham Ashdown Murfreesboro Plainview
1955 1947 1971 1977 1975 1975 1966 1949 1942
2,768,500 257,900 881,900 136,100 96,800 221,800 1,854,930 407,900 336,010
20,900 2,910 6,400 1,680 1,360 1,370 29,200 2,500 3,550
FP FRWX FPQRS FSQRW FSRAW FSQW FSW FP FSWX
Earth Earth Earth Earth Earth and Rock Earth and Rock Earth Concrete Concrete
235 115 243 160 153 160 88 175 97
1,100 2,800 3,400 2,360 2,500 1,750 17,554 941 1,012
Sacramento Santa Ana San Joaquin
Stony Creek Brea Creek Chowchilla River
Orland Fullerton Chowchilla
1963 1942 1975
160,000 4,010 150,000
770 NPP 470
FIRX FRX FIRW
Earth Earth Earth and Rock
156 87 205.5
2,970 1,765 1,800
Santa Ana
Carbon Canyon River East Fork Russian River Dry Creek
Brea
1961
6,610
NPP
FRX
Earth
99
2,610
Ukiah
1959
122,500
1,700
FRX
Earth
160
3,500
Healdsburg
1983
381,000
500
FRSW
Earth
319
3,000
Farmington Fullerton
1952 1941
52,000 760
NPP NPP
F FRX
Earth Earth
60 46
7,800 575
Los Angeles Marysville Madera
1940 1941 1975
25,450 69,000 90,000
120 400 5,000
FRWX DR FIRW
Earth Concrete Earth
97 280 163
10,475 1,142 5,730
Bakersfield San Fernando
1953 1954
570,000 440
1,850 NPP
FIRW FX
Earth Earth
185 50
4,952 1,300
Coyote Valley
Russian
Dry Creek (Warm Springs) Lake and Channel Farmington Fullerton
Russian
Hansen Harry L. Englebright Hidden Dam-Hensley Lake Isabella Lopez
Los Angeles Sacramento San Joaquin
Littlejohn Creek East Fullerton Creek Big Tujunga Wash Yuba River Fresno River
San Joaquin Los Angeles
Kern River Pacoima Wash
San Joaquin Santa Ana
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-73
Yukon-Kuskokwim
WATER RESOURCES MANAGEMENT
Table 11B.26 Flood Control Reservoirs in the United States
11-74
Table 11B.26
(Continued) Characteristics of Dam
Name
Colorado Bear Creek Chatfield Cherry Creek John Martin Trinidad Connecticut Black Rock Colebrook River
Hancock Brook Hop Brook Mansfield Hollow Northfield Brook Thomaston West Thompson Idaho Lucky Peak Illinois Cariyle Farmdale Fondulac Shelbyville Rend Lake
Stream
Community in Vicinity
Year Placed in Operation
Total Storage (acre-ft)
Sacramento
Martis Creek
Reno
1971
20,400
71
San Joaquin San Joaquin San Joaquin San Joaquin Mojave San Joaquin Sacramento San Joaquin Santa Ana Santa Ana San Gabriel Los Angeles San Joaquin San Joaquin San Gabriel
Bear Creek Burns Creek Mariposa Creek Owens Creek Mojave Calaveras American River Kings River Santa Ana River San Antonio Creek San Gabriel River Los Angeles River Tule River Kaweah River San Gabriel River and Rio Hondo
Merced Merced Merced Merced Victorville Valley Springs Auburn Piedra Corona Upland Duarte Van Nuys Porterville Visalia El Monte
1954 1950 1948 1949 1971 1963 1939 1954 1941 1956 1948 1941 1960 1961 1957
7,700 7,000 15,000 3,600 89,670 325,000 14,700 1,000,000 196,240 7,700 32,110 17,430 85,000 150,000 35,150
NPP NPP NPP NPP NPP 715 280 NPP NPP NPP NPP NPP 400 345 NPP
Missouri Missouri Missouri Arkansas Arkansas
Bear Creek South Platte River Cherry Creek Arkansas River Purgatoire River
Denver Denver Denver Lamar Trinidad
1978 1974 1950 1943 1977
30,810 231,429 93,920 615,500 123,500
109 1,412 852 1,844 280
Housatonic Connecticut
Thomaston Riverton
1970 1969
8,700 97,700
Housatonic Housatonic Thames Thames Housatonic Thames
Branch Brook West Branch, Farmington River Hancock Brook Hop Brook Natchaug River Northfield Brook Naugatuck River Quinebaug
Plymouth Middlebury Willimantic Thomaston Thomaston Thompson
1960 1968 1952 1965 1960 1965
Columbia
Boise River
Boise
Upper Upper Upper Upper Upper
Kaskaskia River Farm Creek Fondulac Creek Kaskaskia River Big Muddy River
Carlyle East Peoria East Peoria Shelbyville Benton
Mississippi Mississippi Mississippi Mississippi Mississippi
q 2006 by Taylor & Francis Group, LLC
Project Functionsa
Type
Height (ft)
Length (ft)
FSR
Earth
113
2,670
F F F F FRWX FIRX DR FIRX FRX FX FRX FRX FIRX FIRX FRWX
Earth Earth Earth Earth Earth Earth and Rock Concrete Concrete Earth Earth Earth Earth Earth Earth Earth
92 55 88 75 200 210 155 429 106 160 92 57 142 250 56
1,830 4,075 1,330 790 2,200 1,960 620 1,820 2,280 3,850 23,800 15,444 3,490 2,375 16,960
FRX FRX FRX FIR FIRX
Earth Earth Earth Concrete and Earth Earth
180 148 141 106 200
5,300 12,500 14,300 13,274 6,610
20 760
FR FRSX
Earth Earth
154 223
933 1,300
4,030 6,970 52,000 2,430 42,000 26,800
40 21 450 8 NPP 200
FRW FR FRW FRW F FRW
Earth Earth Earth Earth Earth Earth
57 97 68 118 142 70
630 520 12,420 810 2,000 2,550
1956
306,000
2,850
FIR
Earth
250
1,700
1967 1951 1951 1970 1970
983,000 15,500 3,780 684,000 294,000
26,000 NPP NPP 11,100 18,900
FSNRWA F F FSNRW FQRSW
Earth Earth Earth Earth Earth
67 80 67 108 54
6,570 1,275 1,000 3,000 10,600
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Martis Creek Merced County Stream Group Bear Burns Mariposa Owens Mojave River New Hogan North Fork Pine Flat Prado San Antonio Santa Fe Sepulveda Success Terminus Whittier Narrows
River Basin
Permanent Pool (Acreage) or No Pool (NPP)
Ohio
Brookville
1974
359,600
2,250
FRSW
Earth and Rock
182
3,000
Terre Haute Rockville Huntington Peru Harrodsburg Ellsworth Wabash
1952 1960 1969 1967 1964 1978 1966
228,120 132,800 153,100 368,400 441,000 301,600 263,600
1,400 1,100 500 1,100 3,280 2,010 976
FRX FRX FRW FRW FARS FRSQW FRW
Earth Earth Earth Earth Earth Earth and Rock Earth
150 117 91 137 93 84 133
950 1,790 5,332 8,100 1,400 1,550 6,100
Cagles Mill Cecil M. Harden Huntington Mississinewa Monroe Patoka Salamonie Iowa Coralville Rathbun Red Rock Saylorville Kansas Clinton Council Grove El Dorado Elk City Fall River Hillsdale John Redmond Kanopolis Marion Melvern
Ohio Ohio Ohio Ohio Ohio Ohio Ohio
East Fork of Whitewater River Mill Creek Raccoon Creek Wabash River Mississinewa Salt Creek Patoka River Salamonie
Upper Mississippi Missouri Upper Mississippi Upper Mississippi
Iowa River Chariton River Des Moines River Des Moines River
Iowa City Centerville Des Moines Des Moines
1958 1969 1969 1975
492,000 552,000 1,830,000 602,000
1,820 11,000 8,950 74,000
FARW FNRWXQ FARWQ FARWQ
Earth Earth Earth Earth
100 86 110 125
1,400 10,600 5,676 6,750
Missouri Arkansas Arkansas Arkansas Arkansas Missouri Arkansas Missouri Arkansas Missouri
Lawrence Council Grove El Dorado Independence Fall River Kansas City Burlington Salina Marion Melvern
1977 1964 1981 1966 1949 1981 1964 1948 1968 1972
397,200 112,265 236,200 284,300 256,400 160,000 630,250 450,000 143,850 363,000
7,000 3,235 8,000 4,450 2,350 4,580 9,280 3,815 6,200 6,930
FSWAXR FSQR FSQR FSQ FSX FSQR FSQR FRWX FRQS FRQWX
Earth Earth Earth Earth Earth Earth Earth Earth Earth Earth
114 96 99 107 94 75 86.5 131 67 98
9,250 6,500 20,930 4,840 6,015 11,600 21,790 15,360 8,375 9,700
Milford Pearson Skubitz Big Hill Perry Pomona Toronto Tuttle Creek Wilson Kentucky Barren River Buckhorn
Missouri Arkansas
Wakarusa River Grand (Neosho) Walnut River Elk River Fall River Big Bull Creek Grand (Neosho) Smoky Hill River Cottonwood River Marias Des Cygnes Republican River Big Hill Creek
Junction City Cherryvale
1965 1981
1,160,000 40,600
15,600 1,240
FRSXWQ FSR
Earth and Rock Earth
126 83
6,300 3,870
Missouri Missouri Arkansas Missouri Missouri
Delaware River 110 Mile Creek Verdigris River Big Blue River Saline River
Perry Pomona Toronto Manhattan Wilson
1969 1963 1960 1962 1964
770,000 230,000 200,800 2,346,000 776,000
12,200 4,000 2,660 15,800 9,000
FRSXW FRSWXQ FX FRWXQAN FIRWXNA
Earth and Rock Earth and Rock Earth Earth and Rock Earth
95 85 90 157 160
7,750 7,750 4,712 7,500 5,600
Ohio Ohio
Glasgow Buckhorn
1964 1960
815,200 168,000
4,340 550
FARS FR
Earth Earth
146 162
3,970 1,020
Carr Fork Cave Run Dewey Fishtrap
Ohio Ohio Ohio Ohio
Hazard Farmers Paintsille Pikeville
1976 1974 1949 1968
47,700 614,100 93,000 164,360
530 6,790 1,100 569
FQRW FQRW FARW FARW
Earth and Rock Earth and Rock Earth Rock
130 148 118 195
720 2,740 913 1,100
Grayson Green River Martins Fork Paintsville Nolin Rough River
Ohio Ohio Cumberland Ohio Ohio Ohio
Barren River Middle Fork of Kentucky River Carr Fork Licking River Johns Creek Levisa Fork, Big Sandy River Little Sandy Green River Martins Fork Paint Creek Nolin River Rough River
Grayson Campbellsville Harlan Paintsville Kyrock Leitchfield
1967 1969 1978 1983 1963 1958
118,990 723,200 21,000 73,500 609,400 334,400
1,050 5,070 578 261 2,890 2,180
FQRW FRSQW FQ FQRW FAR FRX
Earth and Rock Earth and Rock Concrete Earth and Rock Earth and Rock Earth and Rock
120 142 97 160 174 124
1,460 2,350 574 1,600 990 1,530
q 2006 by Taylor & Francis Group, LLC
11-75
(Continued)
WATER RESOURCES MANAGEMENT
Indiana Brookville
11-76
Table 11B.26
(Continued) Characteristics of Dam
Name
Stream
Community in Vicinity
Year Placed in Operation
Total Storage (acre-ft)
Project Functionsa
Type
Height (ft)
Length (ft)
164
1,280
76 48
12,850 3,600 4,934
Ohio
Salt River
Taylorsville
1983
291,670
1,625
FQRW
Earth and Rock
Red Red Red
Bayou Bodcau Cypress Bayou Cypress Bayou
Shreveport Shreveport Shreveport
1949 1971 1946
357,300 175,000 88,300
NPP 32,700 2,300
FRW NFRS FR
Earth Concrete and Earth Earth
Potomac
North Branch
Barnum
1981
130,900
952
FQRS
Earth and Rock
296
2,130
Connecticut Connecticut Thames Charles
Ware River Millers River Little River Charles River
Barre So.Royalston Charlton Millis
1958 1941 1958 1983
24,000 49,900 12,700 35,000
NPP NPP 200 NPP
FRW FRW FRW F
Earth and Rock Earth and Rock Earth and Rock Nonstructural
62 56 66 —
885 1,400 3,255 —
Connecticut Connecticut Connecticut Connecticut Connecticut
Monson Fiskdale Oxford Huntington Chester
1966 1960 1959 1941 1965
3,740 30,000 12,800 49,000 32,400
NPP 360 NPP NPP 275
F FRW FRW FRW FRWS
Earth Earth Earth Earth Earth
and Rock and Rock and Rock and Rock and Rock
85 55 55 160 1,164
1,060 520 2,140 1,200 1,360
Connecticut Blackstone Thames
Conant Brook Quinebaug River French River Westfield River Middle Branch, Westfield River Tully River West River Quinebaug River
Fryville Uxbridge Sturbridge
1949 1960 1961
22,000 12,350 11,100
300 NPP 23
FRW FRW FRW
Earth and Rock Earth and Rock Earth and Rock
62 51 78
1,570 2,400 560
Upper Mississippi
Minnesota River
Ortonville
1973
45,000
12,700
FRW
Earth
25
13,700
Upper Mississippi
Chippewa River
Montevideo
1950
—
NPP
FRWX
Earth and Rock
23.3
17,975
Upper Mississippi Upper Mississippi Red River of the North Red River of the North
Minnesota River Minnesota River Otter Tail River
Montevideo Montevideo Fergus Falls
1950 1950 1953
122,800 35,000 14,100
6,500 5,100 210
FRWX FRWX FARS
Earth and Rock Earth and Rock Earth and Rock
21 19.5 47
4,100 11,800 1,355
Red Lake River
Red River
1951
2,680,000
279,000
FARSX
Earth and Rock
15.5
36,500
Mississippi Arkabutla Lake Enid Lake Grenada Lake Okatibbee Sardis Lake
Lower Mississippi Lower Mississippi Lower Mississippi Pascagoula Lower Mississippi
Coldwater River Yocona River Yalobusha River Okatibbee Creek Little Tailahatchie River
Arkabutla Enid Grenada Meridian Sardis
1943 1951 1954 1969 1940
525,300 660,000 1,337,400 142,400 1,570,000
5,100 6,100 9,800 1,280 10,700
F F F FQSR F
Earth Earth Earth Earth Earth
Missouri Clearwater Long Branch
White Grande Chariton
Black River Little Chariton
Piedmont Macon
1948 1980
413,700 65,000
1,630 2,430
FRWX FRSQW
Tully West Hill Westville Minnesota Big Stone LakeWhetstone River Lac Qui Parle Chippewa River Lac Qui Parle Marsh Lake Orwell Red Lake
q 2006 by Taylor & Francis Group, LLC
and Rock and Rock and Rock and Rock
81 99 102 67 117
11,500 8,400 13,900 6,543 15,300
Earth and Rock Earth
154 71
4,225 3,800
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Taylorsville Louisiana Bayou Bodcau Caddo Lake Wallace Lake Maryland Jennings Randolph Lake Massachusetts Barre Falls Birch Hill Buffumville Charles River Natural Valley Storage Conant Brook East Brimfield Hodges Village Knightville Littleville
River Basin
Permanent Pool (Acreage) or No Pool (NPP)
Missouri Missouri
Smithville Wappapello Nebraska Harlan County Papillion Creek and Tributaries: Glenn Cunningham (Site 11) Standing Bear Lake (Site 16) Salt Creek and Tributaries Olive Creek (Site 2) Blue Stem (Site 4)
Missouri
Wagon Train (Site 8)
Missouri
Stagecoach (Site 9)
Missouri
Yankee Hill (Site 10) Conestoga (Site 12) Twin Lake (Site 13) Pawnee (Site 14) Holmes Park Lake (Site 17) Branched Oak (Site 18) Nevada Mathews Canyon Pine Canyon New Hampshire Blackwater Edward MacDowell Franklin Falls Hopkinton-Everett Otter Brook Surry Mountain New Mexico Abiquiu Cochiti Conchas Galisteo Jemez Canyon Two Rivers Diamond “A” Dam
Kansas City Hermitage
1986 1961
46,900 650,000
930 7,820
FRWQ FRWX
Earth and Rock Earth and Rock
120 155
1,900 4,630
Missouri Lower Mississippi
Little Blue River Pomme de Terre River Little Platte River St. Francis River
Smithville Wappapello
1982 1941
246,500 613,200
7,190 4,100
FSQRW FR
Earth Earth and Rock
95 109
4,200 2,700
Missouri
Republican River
Republican City
1952
850,000
13,600
FIRWX
Earth and Rock
107
11,827
Missouri
Knight Creek
Omaha
1975
17,910
392
FQRX
Earth
67
1,940
Missouri
Trib. of Big Papillion Creek
Omaha
1973
5,220
137
FRX
Earth
70
1,460
Missouri
Kramer
1964
5,470
174
FR
Earth
45
3,020
Sprague
1963
10,260
315
FR
Earth
57
2,760
Holland
1963
9,280
303
FR
Earth
52
1,650
Hickman
1964
6,640
196
FR
Earth
48
2,250
Missouri Missouri Missouri Missouri Missouri
S. Trib. Olive Br. Creek N. Trib. Olive Br. Creek N. Trib. Hickman Creek S. Trib. Hickman Creek Cardwell Creek Holmes Creek Middle Creek N. Middle Creek Antelope Creek
Denton Denton Pleasantdale Emerald Lincoln
1966 1964 1966 1965 1963
7,560 10,640 8,080 29,520 6,510
208 230 255 728 100
FR FR FR FR FR
Earth Earth Earth Earth Earth
52 63 58 65 55
3,100 3,000 2,075 5,000 7,700
Missouri
Oak Creek
Raymond
1968
97,560
1,780
FR
Earth
70
5,200
Colorado Colorado
Mathews Canyon Pine Canyon
Caliente Caliente
1957 1957
6,270 7,750
NPP NPP
FX FX
Earth Earth
71 92
800 884
Merrimack Merrimack Merrimack
Webster West Peterborough Franklin
1941 1950 1943
46,000 12,800 154,000
NPP NPP NPP
FRW FRW FRW
Earth Earth Earth
75 67 140
1,150 1,030 1,740
Merrimack Merrimack Connecticut Connecticut
Blackwater River Nubanusit Brook Pemigewasset River Contoocook River Piscataquog River Otter Brook Ashuelot River
West Hopkinton East Weare Keene Keene
1962 1962 1958 1941
71,500 87,500 18,300 32,500
200 120 85 265
FRW FRW FRW FRW
Earth Earth Earth Earth
76 115 133 86
790 2,000 1,288 1,670
Rio Grande Rio Grande Arkansas Rio Grande Rio Grande
Rio Chama Rio Grande Canadian River Galisteo Creek Jemez River
Abiquiu Pena Blanca Tucumcari Albuquerque Bernalillo
1963 1975 1939 1970 1953
1,212,000 596,300 529,000 89,000 102,700
NPP 1,200 3,000 NPP NPP
FXS FRWX FI FX FX
Earth Earth Concrete and Earth Earth Earth
325 251 200 158 135
1,540 28,300 19,400 2,820 780
Rio Grande
Rio Hondo
Roswell
1963
168,000
NPP
FX
Earth
98
4,885
11-77
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Longview Pomme de Terre
11-78
Table 11B.26
(Continued) Characteristics of Dam
Name
Bowman-Haley Homme Pipestem Ohio Alum Creek Berlin Caesar Creek Clarence J. Brown Deer Creek Delaware Dillon Michael J. Kirwan Mosquito Creek Muskingum River Reservoirs Atwood Beach City Bolivar Charles Mill Clendening Dover Leesville Mohawk Mohicanville Piedmont
Stream
Community in Vicinity
Year Placed in Operation
Total Storage (acre-ft)
Rio Grande Pecos
Rocky Arroyo Pecos
Santa Rosa
1979
447,000
NPP
Susquehanna Susquehanna Susquehanna Genesee Susquehanna
Canacadea Creek Canisteo Creek Ouleout Creek Genesee River Otselic River
Hornell Arkport Franklin Mount Morris Whitney Point
1949 1940 1950 1952 1942
14,600 7,900 33,550 337,000 86,440
124 NPP 210 170 1,200
Cape Fear Neuse Yadkin-Pee Dee
New Hope Neuse Yadkin
Durham Raleigh Wilkesboro
1982 1983 1963
753,500 335,600 153,000
14,300 11,300 1,470
Red River of the North Missouri
Sheyenne River
Valley City
1950
70,000
325
North Fork, Grand River South Branch of Park River Pipestem Creek
Haley
1967
92,980
1,750
Park River
1951
3,650
Jamestown
1974
Africa Deerfield Wilmington Springfield New Holland Delaware Zanesville Newton Falls
Ohio
Alum Creek Mahoning River Caesar Creek Buck Creek Deer Creek Olentangy River Licking River West Branch, Mahoning River Mosquito Creek
Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio
Indian Fork Sugar Creek Sandy Creek Black Fork Brushy Fork Tuscarawas River McGuire Creek Walhonding River Lake Fork Stillwater Creek
Red River of the North James River Ohio Ohio Ohio Ohio Ohio Ohio Ohio Ohio
q 2006 by Taylor & Francis Group, LLC
Project Functionsa
Type
Height (ft)
Length (ft)
FIX
Earth
118 212
2,940 1,950
FRW F FRW FR FRW
Earth Earth Concrete and Earth Concrete Earth
90 113 130 210 95
1,260 1,200 2,010 1,028 4,900
FQRSWX FQRSWX FARSX
Earth Earth Earth
112 92 148
1,330 1,915 1,740
FARS
Earth
61
1,650
FSRWX
Earth
79
5,730
51
FARS
Earth
67
865
146,880
885
FRWX
Earth
108
4,000
1975 1943 1978 1974 1968 1951 1961 1966
134,800 91,200 242,200 63,700 102,500 132,000 273,000 78,700
348 240 13,300 1,010 727 950 1,325 580
FRSW FARSWQ FRSQW FQRW FRW FARWX FRWX FAQRSW
Concrete and Earth Concrete and Earth Earth and Rock Earth and Rock Earth Earth Earth Earth
93 96 165 72 93 92 118 83
10,000 5,750 2,750 6,620 3,880 18,600 1,400 9,900
Cortland
1944
104,100
700
FARSWQ
Earth
47
5,650
New Cumberland Beach City Bolivar Mufflin Tippecanoe Dover Leesville Nellie Mohicanville Piedmont
1937 1937 1938 1936 1937 1938 1937 1937 1936 1937
49,700 71,700 149,600 88,000 54,000 203,000 37,400 285,000 102,000 65,000
1,540 420 NPP 1,350 1,800 350 1,000 NPP NPP 2,270
FRX FRX FR FRX FRX FRX FRX FR FR FRX
Earth Earth Earth Earth Earth Concrete Earth Earth Earth Earth
65 64 87 48 64 83 74 111 46 56
3,700 5,600 6,300 1,390 950 824 1,694 2,330 1,220 1,750
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Rocky Dam Santa Rosa Dam Reservoir New York Almond Arkport East Sidney Mount Morris Whitney Point North Carolina B. Everett Jordan Falls W. Kerr Scott North Dakota Baldhill
River Basin
Permanent Pool (Acreage) or No Pool (NPP)
Ohio Ohio Ohio
Clear Fork Seneca Fork Little Stillwater Creek Wills Creek North Branch of Kokosing River
Perrysville Senecaville Tappan
1938 1937 1936
87,700 88,500 61,600
850 3,550 2,350
FRX FRSX FRX
Earth Earth Earth
113 45 52
775 2,350 1,550
Conesville Fredericktown
1937 1973
196,000 14,900
900 98
FRX FRW
Earth Earth
87 71
1,950 1,400
Paint Creek East Branch, Sunday Creek Mill Creek Little Miami River
New Petersburg Gloucester
1972 1951
145,000 26,900
710 394
FRSQW FRSWX
Earth and Rock Concrete
118 84
700 944
Mount Healthy Williamsburg
1952 1978
11,380 284,500
200 18,760
FRX FRSQW
Earth Earth
100 200
1,100 1,450
Barnsdall Canton
1977 1948
58,200 377,100
1,137 7,910
FSQRW FSI
Earth Earth
97 73
3,193 15,140
Copan Fort Supply Cherokee
1983 1942 1941
227,700 100,700 271,400
4,850 1,820 8,690
FSQRW FSX FRWX
Earth Earth Earth
70 85 68
7,730 12,225 6,010
Sapulpa Hugo Caney Ponca City Oologah Hardesty
1950 1974 1951 1976 1963 1978
55,030 966,700 289,000 1,348,000 1,519,000 229,500
880 13,250 3,570 17,040 29,460 5,340
FRWXS FSQRW FSAX FSQRW FSN FSRW
Earth Earth Earth Earth Earth Earth
89 101 94 125 137 120
2,920 10,200 5,200 9,466 4,000 15,200
Wright City Clayton Skiatook Waurika Wister
1969 1983 1985 1977 1949
465,780 429,600 500,700 343,500 427,900
3,750 14,360 10,190 10,100 5,360
FSQW FSRW FSQRW FISQWR FSAX
Earth Earth Earth Earth Earth
124 81 143 106 99
7,712 14,138 3,590 16,600 5,700
AFIQRSW
Gravel Embankment Earth Concrete and Earth
242
1,300
319 114
1,329 2,110
Concrete and Earth Rockfill and Concrete Rockfill and Concrete Roller Compacted Concrete
145 193
3,352 5,100
49
6,624
160
1,780
165 90 170 98
1,350 1,270 4,300 1,775
Wills Creek North Branch, Kokosing River Lake Paint Creek Tom Jenkins
Ohio Ohio
West Fork Mill Creek William H. Harsha Oklahoma Birch Canton
Ohio Ohio Arkansas Arkansas
Copan Fort Supply Great Salt Plains
Arkansas Arkansas Arkansas
Heyburn Hugo Hulah Kaw Oologah Optima
Arkansas Red Arkansas Arkansas Arkansas Arkansas
Pine Creek Sardis Skiatook Waurika Wister Oregon Applegate
Red Red Arkansas Red Arkansas
Birch Creek North Canadian River Little Caney River Wolf Creek Salt Fork, Arkansas River Polecat Creek Kiamichi River Caney River Arkansas River Verdigris River North Canadian River Little River Jackfork Creek Hominy Creek Beaver Creek Poteau River
Rogue River
Applegate River
Medford
1981
82,000
988
Blue River Cottage Grove
Columbia Columbia
Blue River Cottage Grove
1968 1942
85,000 30,060
975 1,155
FINR FINR
Dorena Fall Creek
Columbia Columbia
Cottage Grove Eugene
1949 1965
70,500 115,000
1,885 1,865
FINR FINR
Fern Ridge
Columbia
Blue River Coast Fork, Willamette River Row River Middle Fork, Willamette River Long Tom River
Eugene
1941
110,000
10,305
FINR
Willow Creek
Columbia
Willow Creek
Heppner
1983
13,250
96
FRN
Pennsylvania Alvin R. Bush Aylesworth Creek Beltzville Blue Marsh
Susquehanna Susquehanna Delaware Delaware
Kettle Creek Aylesworth Creek Pohopoco Tulephocken
Renovo Archbald Lehighton Blue Marsh
1962 1970 1971 1978
75,000 1,700 68,250 22,900
160 NPP 947 963
Ohio Ohio
FRW F FQRSW FAQRS
Earth Earth Earth Earth
and Rock and Rock and Rock and Rock
q 2006 by Taylor & Francis Group, LLC
11-79
(Continued)
WATER RESOURCES MANAGEMENT
Pleasant Hill Senecaville Tappan
11-80
Table 11B.26
(Continued) Characteristics of Dam
Name
River Basin Ohio Susquehanna Ohio Susquehanna River
East Branch, Clarion River Foster Joseph Sayers Francis E. Walter (Bear Creek) Gen. Edgar Jadwin Indian Rock Kinsua Loyalhanna Mahoning Creek Prompton Raystown
Ohio
Shenango Stillwater Tioga-Hammond Lakes Hammond Lakes Tionesta Union City Woodcock Creek Youghiogheny River
Ohio Susquehanna Susquehanna
Community in Vicinity
Year Placed in Operation
Total Storage (acre-ft)
Project Functionsa
Type
Height (ft)
Length (ft)
FW FR FRW FR
Concrete and Earth Earth and Rock Earth Earth
137 151 143 131
1,265 3,100 1,480 2,850
FARQW
Earth
184
1,725
Conemaugh River Cowanesque River Crooked Creek West Branch, Susquehanna River East Branch, Clarion River Bald Eagle Creek Lehigh River
Saltsburg Lawrenceville Ford City Curwensville
1952 1980 1940 1965
274,000 89,000 93,900 124,200
300 410 350 790
Wilcox
1952
84,300
90
Blanchard White Haven
1969 1961
99,000 110,000
1,730 90
FRW FNRW
Earth Earth and Rock
100 234
6,835 3,000
Dyberry Creek Codorus Creek Allegheny River Loyalhanna Creek Mahoning Creek Lackawaxen River Raystown Branch, Juniata River Shenanago River Lackawanna River Tioga River
Honesdale York Warren Saltsburg New Bethlehem Honesdale Huntingdon
1960 1942 1965 1942 1941 1960 1973
24,500 28,000 1,180,000 95,300 74,200 52,000 762,000
NPP NPP 1,900 210 170 290 8,300
F FRW PFAQRW FRW FRW FNRW FRW
Earth Earth Concrete and Earth Concrete and Earth Concrete Earth Earth and Rock
109 83 177 114 162 140 225
1,225 1,000 1,877 960 926 1,230 1,700
Sharpsville Uniondale Tioga
1966 1960 1978
191,400 12,000 62,000
1,910 85 470
FAQRW FS FR
Concrete Earth Earth and Rock
68 77 140
720 1,700 2,710
Susquehanna Ohio Ohio Ohio Ohio
Crooked Creek Tionesta Creek French Creek French Creek Youghiogheny River
Tioga Tionesta Union City Meadville Confluence
1978 1940 1970 1973 1943
63,000 133,400 47,640 20,000 254,000
680 480 NPP 118 450
FR FRW F FQRA FARWQ
Earth and Rock Earth Earth Earth Earth
122 154 88 90 184
6,450 1,050 1,420 4,650 1,610
Missouri Missouri
Cold Brook Cottonwood Springs Creek
Hot Springs Hot Springs
1953 1970
7,200 8,385
36 41
FRWX FRWX
Earth Earth
127 123
925 1,190
Red River of the North Red River of the North
Bois de Sioux River Wheaton
1941
164,500
10,925
FRX
Earth
14
9,100
Bois de Sioux River Wheaton
1941
85,000
6,500
FRX
Earth
16
14,400
Texas Addicks
San Jacinto
Addicks
1948
204,500
NPP
FX
Earth
49
61,166
Aquilla Bardwell Barker
Brazos Trinity San Jacinto
South Mayde Creek Aquilla Creek Waxahachie Creek Buffalo Bayou
Hillsboro Ennis Barker
1983 1965 1945
146,000 140,000 207,000
3,280 3,570 NPP
FSX FRSX FX
Earth Earth Earth
104.5 82 37
11,890 15,400 72,844
South Dakota Cold Brook Cottonwood Springs Lake Traverse Reservation Control Dam White Rock
Susquehanna Delaware Delaware Susquehanna Ohio Ohio Ohio Delaware Susquehanna
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Conemaugh Cowanesque Crooked Creek Curwensville
Stream
Permanent Pool (Acreage) or No Pool (NPP)
Brazos Trinity
Canyon Ferrells Bridge Dam Lake O’ the Pines Granger Dam and Lake Grapevine Hords Creek Lake Kemp Lavon
Guadalupe Red
Lewisville
Trinity
Navarro Mills North San Gabriel Dam, Lake Georgetown O. C. Fisher
Trinity Brazos
Pat Mayse Proctor Somerville Stillhouse Hollow Waco Wright Patman Vermont Ball Mountain North Hartland
Red Brazos Brazos Brazos Brazos Red
North Springfield Townshend Union Village
Connecticut Connecticut Connecticut
Virginia John W. Flannagan Gathright Dam and Lake Moomaw North Fork of Pound River Washington Howard A. Hanson Mill Creek Mud Mountain Wynoochee West Virginia Beech Fork Bluestone
Leon River Clear Fork, Trinity River Guadalupe Cypress Creek
Belton Fort Worth
1954 1952
1,097,600 258,600
12,300 3,770
FIRSX FNRXA
Earth Earth
192 130
5,524 9,130
New Braunfeis Jefferson
1964 1959
740,900 842,100
8,240 18,700
FRSX FRS
Earth Earth
224 97
6,830 10,600
San Gabriel River Denton Creek Hords Creek Wichita River East Fork, Trinity River Elm Fork, Trinity River Richland Creek North Fork, San Gabriel River
Granger Grapevine Coleman Wichita Falls Fort Worth
1980 1952 1948 1972 1953
244,200 425,500 25,310 502,900 748,200
4,400 7,280 510 15,590 21,400
FRSWX FNRSXA FARSX FX FRSX
Earth Earth Earth Earth and Rock Earth
115 137 91 115 81
16,320 12,850 6,800 8,890 19,483
Lewisville
1954
989,700
23,280
FRSX
Earth
125
32,888
Corsicana Georgetown
1962 1980
212,200 130,800
5,070 1,310
FRSX FRSWX
Earth Rock
82 164
7,570 6,700
North Concho River Sanders Creek Leon River Yegua Creek Lampasas River Bosque River Sulphur River
San Angelo
1952
396,400
5,440
FRSX
Earth
128
40,885
Paris Comanche Somerville Belton Waco Texarkana
1967 1963 1967 1968 1965 1957
189,100 374,200 507,500 630,400 726,400 2,654,300
5,993 4,610 11,460 6,430 7,270 20,300
FRSX FRSX FRSX FRSX FRSX FRSX
Earth Earth Earth Earth Concrete and Earth Earth
96 86 80 200 140 100
7,080 13,460 26,175 15,624 24,618 18,500
West River Ottauguechee River Black River West River Ompompanoosuc River
Jamaica North Hartland
1961 1960
54,600 71,420
75 220
FRW FRW
Concrete and Earth Concrete and Earth
265 185
915 1,520
Springfield Townshend Union Village
1960 1961 1950
51,067 33,700 38,000
290 100 NPP
FRW FRW FRW
Concrete and Earth Concrete and Earth Concrete and Earth
120 133 170
2,940 1,700 1,100
Ohio James
Pound River Jackson
Haysi Alleghany
1963 1979
145,700 123,739
310 2,532
FAQR FQR
Concrete and Earth Earth and Rock
250 257
960 1,172
Ohio
North Fork, Pound River
Pound
1966
11,293
106
FR
Rock
122
600
Green Columbia Puyallup Chehalis
Green River Mill Creek White River Wynoochee River
Kanaskat Walla Walla Enumclaw Montesano
1961 1942 1953 1972
106,000 8,300 106,000 70,000
1,600 225 NPP 1,150
FAS FR FR FSARI
Rock Earth Rock Concrete and Earth
235 145 425 177
675 3,200 700 1,700
Ohio Ohio
Beech Fork New River
Lavalette Hinton
1977 1952
37,540 631,000
450 1,800
FRW FRWX
Earth Concrete
86 180
1,080 2,048
Brazos Trinity Colorado Red Trinity
Colorado
Connecticut Connecticut
WATER RESOURCES MANAGEMENT
Belton Benbrook
Note: Operable as of September 30, 1986. a
q 2006 by Taylor & Francis Group, LLC
11-81
Project Functions: A, Low Flow Augmentation; D, Debris Control; F, Flood Control; I, Irrigation; N, Navigation; P, Power; Q, Water Quality Control; R, Public Recreation (Annual Attendance exceeding 5,000); S, Water Supply; W, Fish and Wildlife (Federal and State); X, Water Conservation and Sedimentation.
11-82
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11B.27 Largest Manmade Reservoirs in the United States Dam Name
Reservoir
Location
Hoover
Lake Mead
Nevada
Glen Canyon
Lake Powell
Arizona
Oahe Garrison Fort Peck Grand Coulee
Lake Oahe Lake Sakakawea Fort Peck Lake F D Roosevelt Reservoir Lake Koocanusa Lake Shasta
South Dakota North Dakota Montana Washington
Toledo Bend Reservoir Lake Francis Case Flaming Gorge Reservoir Lake Oroville Hungry Horse Reservoir Dworshak Reservoir Amistad International Reservoir Bull Shoals Lake Sam Rayburn Reservoir
Louisiana
Libby Shasta Toledo Bend Fort Randall Flaming Gorge Oroville Hungry Horse Dworshak Amistad
Bull Shoals Sam Rayburn Dam
Montana California
South Dakota Utah California Montana Idaho Texas
Arkansas Texas
Owner
Acre-Feet
Completed
Bureau of Reclamation Bureau of Reclamation Corps of Engineers Corps of Engineers Corps of Engineers Bureau of Reclamation Corps of Engineers Bureau of Reclamation Sabine River Authority Corps of Engineers Bureau of Reclamation California DWR Bureau of Reclamation Corps of Engineers International Boundary Water Commission Corps of Engineers Corps of Engineers
28,255,000
1936
27,000,000
1964
19,300,000 18,500,000 15,400,000 9,562,000
1966 1953 1957 1942
5,809,000 4,552,000
1973 1966
4,477,000
1966
3,800,000 3,788,900
1954 1964
3,540,000 3,468,000
1968 1953
3,468,000 3,384,000
1973 1969
3,048,000 2,898,200
1951 1965
Source: From USBR Register of Dams, www.usbr.gov.
Table 11B.28 World’s Largest Reservoirs in Terms of Capacity No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Capacity, 108 m3 204,800 169,270 168,900 160,368 147,960 141,851 135,000 73,300 70,309 68,400 63,000 61,715 60,020 59,300 58,000 53,790 50,700 49,800 48,000 46,000 43,000 35,900 35,400 34,852 34,100
Name a
Owen Falls Bratsk High Aswan Kariba Akosombo Daniel Johnson Guri Krasnoyarsk W A C Bennett Zeya Cabora Bassa La Grande 2 La Grande 3 Ust-llim Kuibyshev Caniapiscau Barrage KA 3 Upper Wainganga Bukhtarma Atatu¨rk Irkutsk Tucurui Vilyui Sanmenxia Hoover Sobradinho
Country Uganda U.S.S.R. Egypt Zimbabwe/Zambia Ghana Canada Venezuela U.S.S.R. Canada U.S.S.R. Mozambique Canada Canada U.S.S.R. U.S.S.R. Canada India U.S.S.R. Turkey U.S.S.R. Brazil U.S.S.R. China U.S.A. Brazil
Year 1954 1964 1970 1959 1965 1968 U/C 1967 1967 1978 1974 1978 1981 1977 1955 1980 U/C 1960 U/C 1956 U/C 1967 1960 1936 1979 (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11B.28 No 21 22 23 24
(Continued) Capacity, 108 m3 33,304 32,203 31,790 31,500 31,300 30,600 29,959 29,000 28,973 28,370 28,100 29,000 27,920 27,675 27,433 26,000 25,400 24,700 24,700 24,700 23,700 23,550 22,950 22,119 21,626 21,166
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
11-83
Name Glen Canyon Skins Lake No 1 Jenpeg Volgograd Sayano-Shushensk Keban Iroquois Itaipu Churchill Falls (GR-1) Missi Falls Control Kapchagay Loma de la Lata Garrison Kossou Oahe Razzaza Dyke Rybinsk Longyangxia Mica Tsimlyansk Kenney Ust-Khantaika Furnas Fort Peck Xinanjiang Ilha Solteira
Country U.S.A. Canada Canada U.S.S.R. U.S.S.R. Turkey Canada Brazil Canada Canada U.S.S.R. Argentina U.S.A. Ivory Coast U.S.A. Iraq U.S.S.R. China Canada U.S.S.R. Canada U.S.S.R. Brazil U.S.A. China Brazil
Year 1966 1953 1975 1958 U/C 1974 1958 1982 1971 1976 1970 1977 1953 1972 1958 1970 1941 U/C 1972 1952 1952 1970 1963 1937 1960 1973
Note: U/C, under construction. a
This capacity is not fully obtained by a dam; the major part of it is the natural capacity of a lake; Owen Falls is not the greatest manmade lake.
Source: From International Commission on Large Dams, 1984, World Register of Dams.
q 2006 by Taylor & Francis Group, LLC
11-84
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11B.29 Depth of Reservoirs in the United States and Loss by Evaporation Region
Median Depth (ft)
Loss (ft/acre)
New England Delaware and Hudson Chesapeake Bay Southeast Eastern Great Lakes Western Great Lakes
19 29 25 23 16 18
0.55 0.96 0.64 0.53 0.68 0.79
Ohio Cumberland Tennessee Upper Mississippi Lower Mississippi
24 44 40 7 20
0.47 0.54 0.36 0.83 0.81
Upper Missouri Lower Missouri Upper Arkansas-White-Red Lower Arkansas-White-Red Western Gulf Upper Rio Grande and Pecos
25 21 9 (15) 10 8 (15) 20
1.97 1.11 3.27 1.33 2.75 4.26
Colorado Great Basin Pacific Northwest Central Pacific South Pacific
16 15 25 33 44
3.79 3.00 1.44 2.58 4.81
Source: From U.S. Geological Survey, 1960.
q 2006 by Taylor & Francis Group, LLC
Pend Oreille Etowah Cumberland
Newport, WA Cartersville, GA Grand Rivers, KY
1,153,000 670,000 2,082,000
1952 1950 1964
1955 1950 1966
42,600 74,000 130,000
42,600 74,000 130,000
NFPR FPRW NPFR
C C CE
90 190 157
1,055 1,250 9,959
White Missouri
Eureka Springs, AR Chamberlain, SD
1,952,000 1,883,000
1963 1964
1965 1965
112,000 468,000
112,000 468,000
FPSR FPRIW
CE E
228 95
2,575 10,570
Ouachita
Mt. Pine, AR
2,768,000
1953
1956
75,000
75,000
FPRW
E
235
1,100
Columbia
Bonneville, OR
537,000
1938
1938
1,076,600
1,076,600
NPR
C
122
2,690
Mountain Fork Chattahoochee White
Broken Bow, OK Buford, GA Mountain Home, AR
1,368,230 2,554,000 5,408,000
1968 1956 1952
1970 1957 1953
100,000 86,000 340,000
100,000 86,000 340,000
FPWSR NFPW FPR
E E C
225 192 258
2,690 5,400 2,256
Salt Coosawatte Caney Fork Cumberland Columbia
Perry, MO Carters, GA Lancaster, TN Ashland City, TN Bridgeport, WA
1,428,000 472,756 2,092,000 104,000 593,100
1983 1975 1948 1952 1955
1985 1975 1951 1958 1956
58,000 500,000 135,000 36,000 2,069,000
58,000 500,000 135,000 36,000 2,273,160
FNPRSW FPRW FPR NPR PIR
CE ER CE C C
138 450 250 75 220
1,700 1,950 2,160 801 4,300
Savannah
Augusta, GA
2,900,000
1952
1953
280,000
280,000
NFPRSW
CE
200
5,680
Santee
St. Stephen, SC
2,580,000
N/A
1985
84,000
84,000
PW
CE
86
876
Cumberland S. Fork McKenzie Obey
Carthage, TN Blue River, OR Celina, TN
310,900 219,000 1,706,000
1973 1963 1943
1974 1964 1949
100,000 25,000 54,000
100,000 64,600 54,000
NPR NFPRI FPR
CE ER C
445 445 200
1,738 1,738 1,717
Arkansas Caddo Red
Dardanelle, AR Arkadelphia, AR Denison, TX
486,200 831,900 5,312,300
1969 1969 1944
1965 1972 1945
124,000 68,000 70,000
124,000 108,000 175,000
NPR FNPRS FPSRN
C E E
68 243 165
2,683 3,400 17,200
North Santiam
Mill City, OR
461,000
1963
1954
118,000
118,000
NFPRI
C
382
1,528
N. Fork, Clearwater
Orofino, ID
3,453,000
1972
1973
400,000
1,060,000
PNFR
C
717
3,300
Canadian Grand (Neosho) Missouri
Eufaula, OK Ft. Gibson, OK Glasgow, MT
3,825,400 1,284,400 18,909,000
1964 1950 1938
1964 1953 1944
90,000 45,000 185,250
90,000 67,500 185,250
ENPS FP NFPRIW
E CE E
114 110 251
3,200 2,990 21,026
River
Existing Installation (kW)
Scheduled Installation (kW)
204,160c
Ultimate Installation (kW)
Project Functions
Typeb
Height (ft)
Length (ft)
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-85
Community in Vicinity
Total Storage Capability (acre-ft)a
Project Albeni Falls, ID Allatoona Lake, GA Barkley Dam and Lake Barkley, KY and TN Beaver Lake, AR Big Bend Dam (Lake Sharpe), SD Blakely Mountain DamLake Ouachita, AR Bonneville L&D Lake Bonneville, OR & WA Broken Bow Lake, OK Buford Dam Lanier, GA Bull Shoals Lake, AR & MO Clarence Cannon Dam Carters Dam, GA Center Hill Lake, TN Cheatham L&D, TN Chief Joseph Dam (Rufus Woods Lake), WA Clarks Hill Lake, GA & SC Cooper River, Charleston Harbor, SC Cordell Hull L&D, TN Cougar Lake, OR Dale Hollow Lake, TN & KY Dardanelle L&D, AR DeGray Lake, AR Denison Dam (Lake Texoma), TX & OK Detroit Lake, OR, including Big Cliff Lake, OR Dworshak Dam and Reservoir, ID Eufaula Lake, OK Fort Gibson Lake, OK Fort Peck Lake, MT
Flood Control and/or Nav. Feature Placed in Useful Initial Operation Power In FY
WATER RESOURCES MANAGEMENT
Table 11B.30 Multipurpose Reservoirs in the United States
11-86
Table 11B.30
(Continued)
Project
Ice Harbor L&D (Lake Sacajawea), WA Jim Woodruff Dam (Lake Seminole), FL, GA & AL John Day L&D (Lake Umatilla), OR & WA John H. Kerr Dam and Reservoir, NC & VA Robert F. Henry L&D, AL J. Percy Priest Dam and Reservoir, TN Keystone Lake, OK Laurel River Lake, KY Libby Dam, Lake Koocanusa, MT Little Goose L&D (Lake Bryan), WA Lookout Point Lake, Including Dexter Lake, OR Lost Creek Lake, OR Lower Granite L&D, WA Lower Monumental L&D, WA McNary L&D—Lake Wallula, OR & WA
Missouri
Lake Andes, SD
Missouri
Riverdale, ND
Missouri
Existing Installation (kW)
Scheduled Installation (kW)
Ultimate Installation (kW)
Project Functions
Typeb
Height (ft)
Length (ft)
5,574,000
1953
1954
320,000
320,000
NFPRIW
E
165
10,700
24,137,000
1954
1956
430,000
430,000
NFPRIW
E
210
11,300
Yankton, SD
504,000
1956
1957
100,000
100,000
NFPRIW
E
74
8,700
Middle Santiam
Sweet Home, OR
491,000
1967
1967
100,000
100,000
PFNIR
C
340
1,380
Little Red Osage
Heber Springs, AR Warsaw, MO
2,844,000 5,202,000
1962 1982
1964 1982d
96,000 160,000
96,000 160,000
FPRW FPRW
CE CE
96 96
5,000 5,000
Sevannah Middle Fork Willamette Snake
Hartwell, GA Oakridge, OR
2,842,700 356,000
1961 1961
1962 1962
344,000 30,000
344,000 30,000
NFPRS NFPRI
CE GE
204 304
17,852 2,150
Pasco, WA
417,000
1962
1962
603,000
603,000
NPRI
CE
130
2,790
Appalachicola
Chattahoochee, FL
367,300
1957
1957
30,000
30,000
NPRW
CE
67
6,150
Columbia
Rufus, OR
2,500,000
1968
1969
2,160,000
2,700,000
NPRFI
CE
161
5,900
Roanoke
Boydton, VA
2,750,300
1952
1953
204,000
204,000
FPRW
CE
144
22,285
Alabama Stones
Benton, AL Nashville, TN
234,200 652,000
1972 1967
1975 1970
68,000 28,000
68,000 28,000
NPRW FPRW
CE CE
101 147
14,962 2,716
Arkansas Laurel Kootenai
Tulsa, OK London, KY Libby, MT
1,737,600 435,600 5,809,000
1964 1973 1972
1968 1978 1975
70,000 61,000 525,000
70,000 61,000 840,000
FNPWS FPRW FPR
E R C
121 282 420
4,600 1,420 3,055
Snake
Starbuck, WA
565,000
1970
1970
810,000
810,000
NPRI
CE
160
2,670
Willamette Middle Fork, Willamette
Lowell, OR
483,000
1954
1955
135,000
135,000
NFPRI
CE
243
3,381
Rogue Snake Snake
Trail, OR Pomeroy, WA Kahlotus, WA
465,000 484,000 376,000
1977 1975 1969
1977 1975 1969
49,000 810,000 810,000
49,000 810,000 810,000
DFPISWR NPRIF NPRI
CE CE CE
345 146 135
3,600 3,200 3,800
Columbia
Umatilla, OR
1,550,000
1953
1954
980,000
1,625,000
NPRI
CE
183
7,300
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Fort Randal Dam (Lake Francis Case), SD Garrison Dam (Lake Sakakawea), ND Gavins Point Dam (Lewis and Clark Lake), SD & NE Green Peter Lake, OR, including Foster Lake, OR Greers Ferry Lake, AR Harry S. Truman Dam and Res. Hartwell Lake, GA & SC Hills Creek Lake, OR
River
Community in Vicinity
Total Storage Capability (acre-ft)a
Flood Control and/or Nav. Feature Placed in Useful Initial Operation Power In FY
Snettisham, AKf Stockton Lake, MO Table Rock Lake, AR & MO Tenkiller Lake, OK The Dalles L&D (Lake Celilo), WA & OR Walter F. George L&D, GA & FL Webbers Falls L&D, OK West Point Lake, AL & GA Whitney Lake, TX Wolf Creek Dam (Lake Cumberland), KY
Alabama Little Missouri
Camden, AL Murfreesboro, AR
331,800 407,900
1969 1950
1970 1950
75,000 25,500
75,000 25,500
NPRW FPRW
CE C
90 183.5
Stanislaus North Fork Missouri
Oakdale, CA Norfolk, AR Pierre, SD
2,400,000 1,983,000 23,337,000
1978 1943 1959
1979 1944 1962
300,000 80,550 595,000
Cumberland Arkansas
Hendersonville, TN Ozark, AR
545,000 148,400
1954 1969
1957 1973
Roanoke Arkansas
Bassett, VA Sallisaw, OK
318,500 525,700
1951 1970
Angelina
Jasper, TX
3,997,600
Great Lakes
Sault Ste. Marie, MI
300,000 163,000 595,000
FIPRW FPRS NFPRIW
ER C E
625 216 245
1,560 2,624 9,300
100,000 100,000
100,000 100,000
NPR NPR
CE C
98 58
3,605 2,480
1954 1971
14,000 110,000
14,000 110,000
FPR NPR
C E
220 75
892 7,230
1965
1966
52,000
52,000
FPWR
CE
120
19,430
—
1855
1952
18,400
NP
Juneau, AK Stockton, MO Branson, MO
352,400 1,647,000 3,462,000
1969 1958
1973 1973 1959
46,700 45,200 200,000
P FPRW FPR
Control Gate Ch CE CE
Speel Sac White
18 128 252
338 5,100 6,423
Illinois Columbia
Gore, OK The Dalles, OR
1,230,800 53,000
1952 1957
1953 1957
34,000 1,806,800
34,000 1,806,800
FP NPR
E CR
197 300
3,000 8,875
Chattahoochea
Fort Gaines, GA
934,000
1963
1963
130,000
130,000
NPRW
CE
114
13,585
Arkansas Chattahoochee
Webbers Falls, OK West Point, GA
170,100 604,500
1970 1975
1973 1975
60,000 73,375
60,000 108,375
NP FPRW
E CE
84 97
4,370 7,250
Brazos Cumberland
Whitney, TX Jamestown, KY
1,999,500 6,089,000
1953 1950
1954 1952
30,000 270,000
30,000 270,000
FPR FPR
CE CE
159 258
17,695 5,736
18.400 27,000g
73,700 45,200 200,000
11,380 941
WATER RESOURCES MANAGEMENT
Millers Ferry L&D, AL Narrows Dam—Lake Greeson, AR New Melones Lake, CAe Norfolk Lake, AR& MO Oahe Dam (Lake Oahe), SD & ND Old Hickory L&D, TN Ozark-Jeta Taylor L&D, AR Philpott Lake, VA Robert S. Kerr L&D and Reservoir, OK Sam Rayburn Dam and Reservoir, TX St. Mary’s River, MI
Note: In operation September 30, 1986. Nomenclature for project functions: Fy, Fiscal year; D, debris control; F, flood control; I, irrigation; N, navigation; P, power; R, public recreation (annual attendance exceeding 5000); W, fish and wildlife (federal or state). a b c d e f g h
Total of all storage functions, including inactive and dead storage to normal full pool level. G, gravel; R, rock; C, concrete; E, earth. Chief Joseph Additional Units and Operating Units 1–16. All units are synchronized-to-line and two units have passed the pumpback test. However, due to damaging effects to fish, no further pumping will be done for their testing or operation until a solution to the problem is found. Being operated for the Department of Interior by the Bureau of Reclamation. Being operated by the Alaska Power Administration. Crater Lake Unit. Weir for Long Lake.
Source: From Department of the Army Annual Report FY86 of the Secretary of the Army on Civil Works Activities, Washington, D.C.
11-87
q 2006 by Taylor & Francis Group, LLC
11-88
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 11C
HYDROELECTRIC POWER
29.9 22.1 5.0 4.4
0.2 Great Lakes
Souris-Red-Rainy Alaska Pacific Northwest Great Basin
0.2 0.8
8.010.1
5.3 3.4
2.4 1.5
Missourl
Arkansas-White-Red 3.6 1.9
Rio Grande
Lower Colorado
By water resources regions
0.1 0.2
Million kilowatts
0.4
4.8
3.9 2.2
0.6 1.3
Mid Atlantic 3.7
1.6 1.2 Tennessee
6.1
5.4
1.5 Texas-Gulf
North Atlantic
1.5
Ohio 4.3
Upper Colorado 1.9 1.7
California
Upper Mississippi
1.5
South Atlantic Gulf
0.21.0
Lower Mississippi
Developed Undeveloped The hydro potential of Hawaii and the Souris-Red-Rainy Region Drainage is relatively small and thus is not shown.
Figure 11C.20 Conventional hydroelectric power developed and undeveloped, January 1, 1984. (From Federal Energy Regulatory Commission, 1984.)
34.8
22.7
5.0 0.2 1.6
18.2 4.6
Alaska 2.8
3.0
Mountain 7.9
Pacific
5.4
East North Central 1.1
West North Central
New England
4.3
Middle Atlantic
1.8 0.4
East South Central
5.7
By geographic divisions Million kilowatts
2.6
6.0
5.3 2.3
West South Central
South Atlantic
Developed Undeveloped The hydro potential of Hawaii is relatively small and thus is not shown
Figure 11C.21 Conventional hydroelectric power developed and underdeveloped, January 1, 1984. (From Federal Energy Regulatory Commission, 1984.)
q 2006 by Taylor & Francis Group, LLC
Installed Capacity — Kilowattsb
Plant Corps of Engineers Lincoln School Tocks Island Gathright John H Kerr Philpott St. Stephen Clark Hill Richard B Russell Richard B Russell Hartwell Jim Woodruff L&D Walter F George L&D West Point Buford Lower Auchumpkee Lazer Creek Spewrell Bluff Spewrell Bluff Millers Ferry L&D Jones Bluff Carters Carters Allatoona St. Marys Falls Barkley Cheatham L&D J Percy Priest Old Hickory L&D Center Hill Cordell Hull Dale Hollow Celina Wolf Creek Laurel Booneville Bluestone Rowlesburg Clarence F Cannon
Stream
State
Year of Initial Oper.
St John R Delaware R Jackson R Roanoke R Smith R Santee & Cooper R Savannah R Savannah R Savannah R Savannah R Apalachicola R Chattahoochee R Chattahoochee R Chattahoochee R Flint R Flint R Flint R Flint R Alabama R Alabama R Coosawattee R Coosawattee R Etowah R St Marys R Cumberland R Cumberland R Stones R Cumberland R Caney Fk, Cumberland R Cumberland R Obey R Cumberland R Cumberland R Laurel R S Fk Kentucky R New R Cheat R Salt R
ME NJ VA VA VA SC GA GA GA GA FL GA GA GA GA GA GA GA AL AL GA GA GA MI KY TN TN TN TN TN TN KY KY KY KY WV WV MO
— — — 1952 1953 — 1953 — — 1962 1957 1963 1975 1957 — — — — 1970 1975 1975 1977 1950 1951 1966 1958 1970 1957 1950 1973 1948 — 1951 1977 — — — —
Gross Static Head (ft) 76 107 194 90 164 70 152 162 162 178 31 92 78 155 84 123 144 144 49 45 387 387 145 21 46 22 85 46 161 49 135 60 163 251 140 125 938 107
Usable Power Storage 1000 Acre-Feeta 32 426 61 1029 111 1420 1510 127 127 1415 37 207 86 1049 124 60 242 242 17 12 135 135 284 NA 258 19 34 63 492 54 496 15 2142 185 258 238 8 437
Developed — — — 204,000 14,000 280,000 — — 344,000 30,000 130,000 73,375 86,000 — — — — 75,000 68,000 250,000 250,000 R 74,000 18,400 130,000 36,000 28,000 100,000 135,000 100,000 54,000 — 270,000 61,000 — — — —
Under Construction — — — — — 84,000 — 3,00,000 3,00,000 R — — — — — — — — — — — — — — — — — — — — — — — — — — — — 27,000
Authorized 70,000 70,000 49,000 204,000 14,000 84,000 280,000 300,000 300,000 R 344,000 30,000 130,000 108,375 86,000 77,000 83,000 100,000 50,000 R 75,000 68,000 250,000 250,000 110,000 18,400 130,000 36,000 28,000 100,000 135,000 100,000 54,000 108,000 270,000 61,000 7,300 180,000 350,000 R 27,000
q 2006 by Taylor & Francis Group, LLC
11-89
(Continued)
WATER RESOURCES MANAGEMENT
Table 11C.31 Conventional and Pumped Storage Hydroelectric Plants in the United States
11-90
Table 11C.31
(Continued) Installed Capacity — Kilowattsb
Plant
q 2006 by Taylor & Francis Group, LLC
State
Gross Static Head (ft)
Salt R Des Moines R Sylvan Slough, Miss R Little Missouri R Caddo R Caddo R Ouachita R Osage R Pomme de Terre R Sac R Missouri R Missouri R
MO IA IL AR AR AR AR MO MO MO NE SD
— — 1919 1950 1971 1971 1955 1979 — 1973 1956 1954
107 53 16 145 188 188 181 46 117 86 44 131
437 400 NA 202 393 393 1286 90 165 660 100 3500
— — 2,752 25,500 40,000 28,000 R 75,000 160,000 R — 45,200 100,000 320,000
31,000 R — — — — — — — — — — —
31,000 R 17,200 2,752 25,500 80,000 28,000 R 75,000 160,000 R 16,800 45,200 100,000 320,000
Missouri R Missouri R Missouri R Missouri R Mountain Fk R, Little R Red R Arkansas R Arkansas R Arkansas R Canadian R Illinois R Arkanasas R Neosho R Arkansas R Little Red R North Fork R White R White R White R Neches R Angelina R Neches R Neches R Leon R Brazos R N Santiam R N Santiam R S Santiam R
SD SD ND MT OK TX AR AR OK OK OK OK OK OK AR AR AR MO AR TX TX TX TX TX TX OR OR OR
1964 1962 1956 1943 1970 1944 1965 1973 1971 1964 1953 1973 1953 1968 1964 1944 1952 1959 1965 — 1966 — — — 1953 1954 1953 1968
67 189 172 213 194 108 49 23 42 82 143 30 60 76 183 174 194 204 190 24 71 13 61 110 89 97 357 284
260 17000 17900 13800 9 1730 65 19 NA 1481 345 NA NA 351 763 445 952 1098 956 NA 1400 NA 1488 399 133 243 40 28
468,000 595,000 430,000 185,300 100,000 70,000 124,000 100,000 110,000 90,000 39,100 60,000 45,000 70,000 96,000 80,550 340,000 200,000 112,000 — 52,000 — — — 30,000 18,000 100,000 20,000
— — — — — — — — — — — — — — — — — — — — — — — — — — — —
468,000 595,000 430,000 185,300 100,000 175,000 124,000 100,000 110,000 90,000 39,100 60,000 67,500 70,000 96,000 165,550 340,000 200,000 112,000 3,000 52,000 2,700 13,500 19,000 30,000 18,000 100,000 20,000
Stream
Developed
Under Construction
Authorized
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Clarence F Cannon Red Rock Rock Island L&D 15c Narrows Degray Degray Blakely Mountain Harry S Truman Pomme de Terre Stockton Gavins Point Fort Randall Corps of Engineers Big Bend Oahe Garrison Fort Peck Broken Bow Denison Dardanelle Ozark Robert S Kerr Eufula Tenkiller Ferry Webbers Falls Fort Gibson Keystone Greers Ferry Norforkd Bull Shoals Table Rock Beaver Town Bluff Sam Rayburn Dam A Rockland Belton Whitney Big Cliff RRG Detroit Foster RRG
Usable Power Storage 1000 Acre-Feeta
Year of Initial Oper.
Flatiron 3 Big Thompson Pole Hill Estes Marys Lake Guernsey Glendo Alcova Fremont Canyon Kortes Seminoe Yellowtail Heart Mountain Boysen Pilot Butte Canyon Ferry Otero
M Fk Santiam R S Fk Mckenzie R S Fk Mckenzie R M Fk Willamette R M Fk Willamette R M Fk Willamette R Columbia R Columbia R Columbia R Columbia R Columbia R Columbia R Snake R Snake R Snake R Snake R N Fk Clearwater R Columbia R Pend Oreille R Kootenai R Rogue R Yube R
OR OR OR OR OR OR OR WA WA OR WA OR WA WA WA WA ID WA ID MT OR CA
1967 — 1964 1955 1954 1962 1938 1981 1957 1968 1968 1953 1961 1969 1970 1975 1973 1955 1955 1975 1977 —
310 64 435 48 231 318 59 59 83 105 105 74 98 100 98 100 630 167 28 341 321 210
63 3 10 4 12 49 87 87 53 300 300 185 24 20 49 44 2000 NA 1153 4934 315 775
80,000 — 25,000 15,000 120,000 30,000 518,400 558,220 1,806,800 1,957,500 202,500 980,000 603,000 810,000 810,000 810,000 400,000 2,069,000 42,600 420,000 49,000 — 19,011,197 438,000 R
— — — — — — — — — — — — — — — — — — — 420,000 — — 831,000 331,000 R
80,000 4,500 60,000 15,000 120,000 30,000 544,600 558,220 1,806,800 1,957,500 742,500 980,000 603,000 810,000 810,000 810,000 1,060,000 2,069,000 42,600 840,000 49,000 50,000 22,297,897 1,169,000 R
Prairie Cr, Platte R Rattlesnake Cr, Big Thoom Dry Cr, Big Thompson R Big Thompson R Dry Cr, Big Thompson R Big Thompson R Fish Cr, Big Thompson R N Platte R N Platte R N Platte R N Platte R N Platte R N Platte R Bighorn R Shoshone R Bighorn R Wyoming Cnl (Wind R) Missouri R Arkansas Cnl (Arkansas R)
NE CO
— 1954
51 1113
NA 1
— 74,500e
— —
16,800 R 74,500
CO CO CO CO CO WY WY WY WY WY WY MT WY WY WY MT CO
1954 1954 1954 1950 1951 1927 1958 1955 1960 1950 1939 1966 1948 1952 1935 1953 —
292 835 835 570 217 92 133 164 350 204 218 463 275 110 106 147 270
100 NA NA NA NA 41 511 1842 1015 4 1011 613 421 742 NA 1512 93
8,500 R 4,500 33,250 45,000 8,100 4,800 24,000 36,000 48,000 36,000 45,000 250,000 5,000f 15,000 1,600 50,000 —
— — — — — — — — — — — — — — — — —
8,500 R 4,500 33,250 45,000 8,100 4,800 24,000 36,000 48,000 36,000 45,000 250,000 5,000 15,000 1,600 50,000 11,000
q 2006 by Taylor & Francis Group, LLC
11-91
(Continued)
WATER RESOURCES MANAGEMENT
Green Peter Strube RRG Cougar Dexter RRG Lookout Point Hills Creek Bonneville Bonneville 2nd Ph The Dalles John Day John Day McNary Ice Harbor Lower Monumental Little Goose Lower Granite Dworshak Chief Joseph Albeni Falls Libby Lost Creek Maryville Total Conventional Total Reversible Bureau of Reclamation Prairie Creek Flatiron 1 and 2
11-92
Table 11C.31
(Continued) Installed Capacity — Kilowattsb
Plant Mt Elbert Elephant Butte Glen Canyon Flaming Gorge Fontenelle Crystal Morrolw Point Blue Mesa Upper Molina
Roza(Canal) Grand Coulee Grand Coulee P/G Hungry Horse Green Springs Trinity Nimbus Folsom Auburn Judge Francis Carr
q 2006 by Taylor & Francis Group, LLC
Stream
State
Arkansas Cnl (Arkansas R) Rio Grande Colorado R Green R Green R Gunnison R Gunnison R Gunnison R Cottonwood Cr, Plateau Cr Plateau Cr, Colorado R Blue R Senator Wash Cr Colorado R Colorado R Colorado R Colorado R L Truckee R E Fk Carson R Provo R Diamond Fk Pipeline Sixth Water Cr, Diamond Strawberry Offstream Payette R Boise R S Fk Boise R Snake R Snake R Chandler Pwr Cnl (Yakima R) Roza Cnl (Yakima R) Columbia R Columbia R S Fk Flathead R Emigrant Cr, Bear Cr Trinity R American R American R N Fk American R Clear Cr Tnl (Trinity R)
CO
1981
464
7
100,000 R
100,000 R
200,000 R
NM AZ UT WY CO CO CO CO
1940 1964 1963 1968 1977 1970 1967 1962
190 566 435 110 220 403 356 2663
1730 20876 3516 149 18 42 774 6
24,300 1,042,000 108,000 10,000 28,000 120,000 60,000 8,640
— — — — — — — —
24,300 1,042,000 108,000 10,000 28,000 120,000 60,000 8,640
CO CO CA CA AZ AZ NV CA NV UT UT UT UT ID ID ID ID ID WA
1962 1943 — 1942 1951 1936 1936 — — 1958 — — — 1925 1912 1950 1909 1957 1956
1600 261 74 78 131 530 530 183 236 144 848 823 431 94 40 300 48 244 121
6 146 9 218 1809 7227 7927 NA 90 149 700h 700h 700 NA NA 423i 95j 1200 NA
4,860 26,000 — 120,000 240,000 717,000 717,000 — — 4,950 — — — 8,000 1,500 40,000 13,000 118,750 12,000
— — — — — — — — — — — — — — — — — — —
4,860 26,000 7,210 R 120,000 240,000 717,000 717,000 3,000 8,000 4,950 33,000 90,000 10,500 8,000 1,500 40,000 13,400 118,750 12,000
WA WA WA MT OR CA CA CA CA CA
1958 1941 1974 1952 1960 1964 1955 1955 — 1963
160 343 280 477 1984 469 43 333 675 695
NA 5232k 53 2982m U 2285 2 920 1966 2289
11,250 6,180,000l 150,000 R 285,000 16,000 105,556 13,500 198,720 — 160,000
— — 150,000 R — — — — — — —
11,250 6,180,000 300,000 R 285,000 16,000 105,556 13,500 198,720 300,000 160,000
Developed
Under Construction
Authorized
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Lower Molinag Green Mountain Senator Wash Parker Davis Hoover Hoover Stampede Watasheamu Deer Creek Dyne Sixth Water Syar Black Canyon Boise Anderson Ranch Minidoka Palisades Chandler
Gross Static Head (ft)
Usable Power Storage 1000 Acre-Feeta
Year of Initial Oper.
Shasta New Melones O’Neill San Luis Siphon Drop Total Conventional Total Reversiable Tennessee Valley Authority Great Falls Kentucky Pickwick landing Wilson Wheeler Tims Ford Guntersville Nickajack Raccoon MT Chickamauga Ocoee 1 Ocoee 2 Ocoee 3 Blue Ridge Apalachia Hiwassee/ Hiwassee Nottely Chatuge Watts Bar Melton Hill Norris Fonatna Fort Londoun Douglas Cherokee Ft Patrick Boonce Wlbur Watauga South Holston Total Conventional Total Reversible
Sacramento R Spring Cr, Sacramento R Sacramento R Stanislaus R Delta Mendota Cnl (San Jose) Calif Aqueduct Yuma Main Cnl (New R)
Caney Fk, Cumberland R Tennessee R Tennessee R Tennessee R Tennessee R Elk R Tennessee R Tennessee R Tennessee R Tennessee R Ocoee R Ocoee R Ocoee R Toccoa R Hiwassee R Hiwassee R Hiwassee R Nottely R Hiwassee R Tennessee R Clinch R Clinch R Little Tennessee R Tennessee R French Broad R Holston R S Fk Holston R S Fk Holston R Watauga R Watauga R S Fk Holston R
CA CA
1949 1964
87 625
23 2517
75,000 150,000
— —
75,000 150,000
CA CA CA
1944 1979 1967
482 583 56
4050 2050 20
539,000o 300,000n 25,200R
— — —
539,000 300,000 25,200 R
CA CA
1968 —
327 15
1961 NA 12,139,176 707,700R
424,000 Rp —
424,000 R 1,600
250,000R
— — 12,596,276 981,710R
TN
1916
148
39
31,860
—
31,860
KY TN AL AL TN AL TN TN TN TN TN TN GA TN NC NC GA NC TN TN TN NC TN TN TN TN TN TN TN TN
1944 1938 1942 1936 1972 1939 1968 1979 1940 1912 1913 1943 1931 1943 1940 1956 1956 1954 1942 1964 1936 1945 1943 1943 1942 1953 19583 1912 1949 1951
50 46 88 48 133 39 35 1040 45 111 245 308 148 440 246 246 168 124 54 58 193 430 70 135 147 67 119 65 312 240
715 236 47 328 240 131 21 35 220 33 NA 4 186 35 350 352 171 229 214 25 1761 1136 81 1136 1411 4 150 U 518 519 3,242,910 1,589,500 R
175,000 220,040 629,840 361,800 45,000 115,200 103,950 1,530,000 R 120,000 18,000 21,000 28,800 20,000 82,800 57,600 59,500 R 15,000 10,000 166,500 72,000 100,800 238,500 139,140 120,600 135,180 36,000 75,000 10,700 57,600 35,000
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 3,242,91 1,589,500 R
175,000 220,040 629,840 361,800 45,000 115,200 103,950 1,530,000 R 120,000 18,000 21,000 28,800 20,000 82,800 57,600 59,500 R 15,000 10,000 166,500 72,000 100,800 238,500 139,140 120,600 135,180 36,000 75,000 10,700 57,600 35,000
R
q 2006 by Taylor & Francis Group, LLC
11-93
(Continued)
WATER RESOURCES MANAGEMENT
Keswick Spring Creek
11-94
Table 11C.31
(Continued) Installed Capacity — Kilowattsb
Plant
State
Gross Static Head (ft)
Merced R
CA
1918
356
NA 2,000
2,000
— 2,000
2,000
Rio Grande Rio Garnde
TX TX
1954 1983
115 213
2767 500 97,500
31,500 66,000 —
— — 97,500
31,500 66,000
Gila R Yakima R (offstream) Yakima R (offstream) Big Cr, Flathead R
AZ WA WA MT
1929 1942 1932 1916
204 30 34 585
1164 NA NA NA 14,560
10,000 2,500 1,700 360
— — — — 14,560
10,000 2,500 1,700 360
Eklutna R Speel R
AK AK
1955 1973
851 823
174 138 77,160 34,584,503 2,735,200 R
30,000 47,160
— — 104,160 38,355,303 3,740,210 R
30,000 74,160
Stream
Developed
831,000 581,000 R
Under Construction
Authorized
Note: Federally owned, developed, under construction, and authorized January 1, 1984. R Capacity shown is in reversible equipment. U—Less than 1,000 acre-ft. NA—Data not available. b Includes main generating units only. c Operated by Rock island Army Arsenal. Nameplate rating is 3,440 kilowatts which cannot be obtained. d Storage Capacity for ultimate development is 420,000 acre-ft. e All water used for generation must be returned by pumping. f Storage in Buffalo Bill Reservoir is used jointly for irrigation and power. g Pipeline collects water form Big Creek and Cottonwood Creek, tributaries of Plateau Creek. h Water to be stored in the enlarged Strawberry Reservoir which is located upstream. i Used jointly for irrigation, power, and flood control. j Used jointly for irrigation and power. k Used jointly for irrigation, power, flood control, and navigation. l Includes two of three 10,000 kilowatt station service units used to supply commercial power. m Used jointly for power and flood control. n Dam and reservoir were constructed by the Corps of Engineers. o Includes one of two 2,000 kilowatt station service units used to supply commercial power. p 222,000 kilowatts are allocated to the state of California under contact. q Constructed by the Bureau of Reclamation. r Constructed by the Corps of Engineers. a
Source: From Federal Energy Regulatory Commission, 1984, Hydroelectric Power Resources of the United States—Developed and Undeveloped, FERC-0070, Washington, DC.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
National Park Service Cascades Total Conventional International Boundary & Water Commission Falcon Amistad Total Conventional Bureau of Indian Affairs Coolidge Drop 2 Drop 3 Big Creek Total Conventional Alaska Power Administration Eklutnaq Snettishamr Total Conventional Grand Total Conventional Grand Total Reversible
Usable Power Storage 1000 Acre-Feeta
Year of Initial Oper.
WATER RESOURCES MANAGEMENT
11-95
Table 11C.32 Trends in Pumped Storage Capacity Development in the United States Installed Capacity in Reversible Units (millions of kilowatts) Developed
Under Construction
Year as of January 1
Pure
Combined
Total
Pure
Combined
Total
1960 1964 1968 1972 1976 1980 1984
0 0.4 1.6 2.6 7.3 9.3 10.1
0.1 0.3 0.5 1.3 2.4 3.6 3.7
0.1 0.7 2.1 3.9 9.7 12.9 13.8
0 0.7 1.2 6.0 2.7 3.2 4.9
0.2 0.5 1.6 1.4 1.6 1.5 0.4
0.2 1.2 2.8 7.4 4.3 4.7 5.3
Note: A pure pumped storage project with a large peaking capacity can be developed at a site with two potential reservoirs of reasonable size in close proximity and with a relatively large difference in elevations. Projects are usually more economically developed at sites with high usable heads; consequently, the more favorable sites are normally located in mountainous terrain. However, consideration has been given to the construction of pumped storage projects in areas of level terrain by placing the lower reservoir in an underground cavern or excavated area. For any development, an assured supply of water at least sufficient to replace evaporation, seepage, and other losses is essential. Source: From Federal Energy Regulatory Commission, 1984.
Allaga
Skag it St. Joe
Flathead
Missouri M. F Clearwk. ater Salmon Rapid M. Fk. Salmon
Snake Rog
ue
Smith
Klama th Trinity M. Fk . Feath er
Eel
sh
St. Croix Lower St. Croix
Wolf
Pere Marquette
Missouri Little Miami
Ame
rican
Colorado
Rio Grande
Buffalo
Little Beaver
S. Fk. Eleven Current and m Cu berl Point Obed
r Uppe re wa la e D ware Dela
New River Gorge S. Fk. New
Chattooga
Legend Component of the National Wild and Scenic Rivers System under section 2(a) and 3(a) of the Act.
Rio Grande
River segment established by special act. Figure 11C.22 River segments covered by the Wild and Scenic Rivers Act and special acts precluded from hydroelectric development. (From Federal Energy Regulation Commission, 1984.)
q 2006 by Taylor & Francis Group, LLC
11-96
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Pries
t
Moyie
t
Snak e
o Penobsc
Kettle
John Day O Illinoiewyhee
Clarks F ork
Ausable
Manistee
Snake
Brune
Fish Creek
Upper Mississippi
Wisconsin
reek Pine C
au
Tuolumn e
Kern
Sweetwater Upper Encampm Iowa ent Green Etk Cache La Poudre Yampa Colorado Big Thompson Gunnison Dolores Los Pinos Gasconado Conejos Piedra Varde Illinois Salt San Francisco
y Atteghen Gauley
Red
y ioghen Yough pon a c a C
ar Greenbri e Blueston key c u h c Noli
Buffalo
rk Sipsey Fo Cahaba
Black Creek
Ogeechee
Escatawpa Soldier Creek
Legend River segment designated for study under section 5(a) of the Wild and Scenic Rivers Act
atonic Hous ug a Shep
Suwannee
Myakka
Loxahatchee
Figure 11C.23 River segments designated for study under section 5(a) of the Wild and Scenic Rivers Act. (From Federal Energy Regulation Commission, 1984.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-97
105 100 90 Pumped storage
80
Rocky river plant (first pumped atorage plant) began operation in 1929
60
Grand coulee plant (largest hydroelectric plant) began operation in 1941
50
LEGEND Existing capacity Projected capacity
40
Millions of kilowatts
70
Appleton plant (first hydroelectric plant) began operation on September 30, 1882
30
Conventional
20 10
1880
1900
1920
1940
1960
1980
0 2000
Figure 11C.24 Hydroelectric capacity in the United States 1882–2000. (From Federal Energy Regulatory Commission, 1984.)
Table 11C.33 Small Hydroelectric Capacity in the United States 5,000 kW and Less Category Developed Number of sites Capacity (MW) Generation (GWh) Under Construction Number of sites Capacity (MW) Generation (GWh) Planned (NERC)a Number of sites Capacity (MW) Generation (GWh) Projectedb Number of sites Capacity (MW) Generation (GWh) Totals Number of sites Capacity (MW) Generation (GWh)
15,000 kW and Less
30,000 kW and Less
1980
1984
1980
1984
1980
1984
751 1,194.6 4.8
864 1,351.1 16.8
946 3,294.7 16.8
1,124 3,729.7 18.8
1,071 5,834.6 28.0
1,252 6,574.0 30.8
16 23.5 0.1
137 168.6 0.7
29 135.6 1.0
153 325.8 1.4
33 229.9 1.3
158 444.8 2.0
12 34.2 0.1
25 54.3 0.3
23 136.2 0.5
39 191.4 0.9
25 182.4 0.6
50 436.8 1.9
157 317.5 1.2
1,699 2,587.1 20.0
227 1,241.8 4.9
2,278 6,669.4 29.4
279 2,317.5 8.9
2,367 8,5724.4 37.3
936 1,569.8 6.2
2,725 4,160.8 27.6
1,225 4,808.3 23.2
3,594 10,916.3 50.3
1,408 8,564.4 38.8
3,827 16,028.0 72.0
Note: Developed, Under Construction, and Projected. In reports of the Regional Electric Reliability Councils. b Potential developments not under construction or included in NERC reports but which have FERC licensing or exemption status, are authorized or recommended for Federal construction, or have structural provisions for plant additions. a
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
11-98
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Reservoir
Long distance power lines
Powerhouse Intake Generator
Penstock Turbine River
Figure 11C.25 Hydroelectric dam. (From www.tva.gov.)
Table 11C.34 Hydroelectric Plants Having Potential Conventional Capacity over 1,000,000 Kilowatts Installed Capacity in Conventional Units Kilowatts Plant Grand Coulee John Day Chief Joseph R. Moses Niagara The Dalles Hoover Rocky Reach Wanapum Priest Rapids Bonneville Dworshak Glen Canyon Boundary
River Columbia Columbia Columbia Niagara Columbia Colorado Columbia Columbia Columbia Columbia N. Fork Clearwater Colorado Pend Oreille
Total a
Developed
Under Construction
Ultimate Authorized
Bureau COE COE PASNY COE Bureau CC PUD No. 1 GC PUD No. 2 GC PUD No. 2 COE
6,180,000 2,160,000 2,069,000 1,950,000 1,806,800 1,434,000 1,213,950 831,250 788,500 1,076,620
0 0 0 0 0 0 0 0 0 0
6,180,000 2,700,000 2,069,000 1,950,000 1,806,800 1,434,000 1,213,950 1,151,250 1,108,500 1,102,820
COE Bureau
400,000 1,042,000
0 0
1,060,000 1,042,000
392,000 23,834,920
1,026,600
Ownera
Seattle 21,586,720
634,600 392,000
Bureau, Bureau of Reclamation; COE, Corps of Engineers; PASNY, Power Authority, State of New York; GC, Grant County; CC, Chelan County; and Seattle, Seattle Dept. of Lighting.
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-99
Switchyard
Visitors center
Reservoir Intake
Elevator
Main access tunnel Discharge
Surge chamber
Powerplant chamber Breakers Transformer vault Figure 11C.26 Pumped-storage plant. (From www.tva.gov.)
Hydropower Plants COE Owned and Operated FERC Licensees (Non-Federal Owners) Corps District Boundaries
Figure 11C.27 Hydropower plants. (From nwd-wc.usace.army.)
q 2006 by Taylor & Francis Group, LLC
Background. The Corps of Engineers (Corps) is the single largest owner and operator of hydropower in the U.S., with 24% of the nation's hydropower generating capacity. The percentage is 16% for the Bureau of Reclamation and 6% for the Tennessee Valley Authority. Corps dams have a total nameplate capacity of close to 21,000 megawatts (MW) and produce an average of almost 100 million kilowatt-hours (kWh) of energy annually. Nonfederal power plants at Corps facilities add about another 2,000 MW of capacity.
11-100
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Pac Nor th ific west
Souris-RedRainy
w d Ne glan n E
Great Lakes
Missouri
sin
Ca
lifo
rn
MidAtlantic
Upper Mississippi
Great Ba
Upper Colorado
Ohio
ia
Lower Colorado
e
Arkansas-White-Red Lower Mississippi
Rio Grande
sse
ne
n Te
South Atlantic-Gulf
Texas-Gulf
Explanation Water use, in million gallons per day 0 − 100,000 100,000 −200,000 200,000 − 300,000 300,000− 1,300,000
Hawaii Caribbean Alaska Figure 11C.28 Hydroelectric power water use by water resources region, 1995. (From www.usgs.gov.)
Table 11C.35 Hydroelectric Power Water Use by Water Resources Region, 1995 Water Use Region New England Mid-Atlantic South Atlantic-Gulf Great Lakes Ohio Tennessee Upper Mississippi Lower Mississippi Souris-Red-Rainy Missouri Basin Arkansas-White-Red Texas-Gulf Rio Grende Upper Colorado Lower Colorado Great Basin Pacific Northwest California Alaska Hawaii Caribbean Total
Mgal/d
1000 acre-ft/yr
Power Generated (million kWh)
156,000 144,000 229,000 340,000 172,000 209,000 119,000 78,200 3,970 141,000 95,400 14,500 3,860 17,900 23,400 5,060 1,260,000 140,000 2,090 229 349 3,160,000
175,000 162,000 258,000 382,000 192,000 235,000 133,000 87,700 4,450 159,000 107,000 16,300 4,320 20,000 26,300 5,670 1,140,000 157,000 2,340 256 391 3,540,000
6,720 5,260 17,100 24,200 5,250 16,000 2,990 1,320 100 16,000 6,740 1,050 464 7,220 9,740 633 140,000 47,000 1,440 148 101 310,000
Note: Figures may not add to totals because of independent rounding. Mgal/d, million gallons per day; kWh, kilowatthour. Source: From http://npdp.stanford.edu; www.usgs.gov.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
WA
MT
11-101
ND
MN
OR WY
ID
CA NV
VT NY NH
WI
SD
MI IL
CO
IN OH
MO
KS
KY AZ
NM TX
OK
MA
CT
IA
NE
UT
ME
AR
MS AL
MD WV VA NC
TN GA
RI
PA
SC
NJ DE DC Explanation Water use, in million gallons per day 0−10,000
LA
10,000 −50,000 FL
100,000−300,000
Hawaii Virgin Islands Alaska
Puerto Rico
Figure 11C.29 Hydroelectric power water use by state, 1995. (From www.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
50,000 − 100,000
300,000−660,000
11-102
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11C.36 Hydroelectric Power Water Use by State, 1995 Water Use State Alabama Alaska Arizona Arkonsas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Puerto Rico Virgin Islands Total
Mgal/d
1000 acre-ft/yr
Power Generated (million kWh)
157,000 2,090 21,200 42,700 146,000 6,810 3,610 0 0 16,900 50,900 229 115,000 55,800 12,300 2,350 1,250 83,000 76,100 85,200 14,400 24,200 39,800 19,800 0 17,100 66,200 15,000 6,080 33,000 309 2,750 356,000 56,400 13,900 14,200 49,100 458,000 55,900 339 42,200 62,400 122,000 18,600 3,720 17,500 14,800 653,000 51,500 50,800 5,150 349 0 3,160,000
177,000 2,340 23,700 47,900 164,000 7,630 4,050 0 0 19,000 57,100 256 129,000 62,500 13,800 2,630 1,410 93,100 85,400 95,500 16,100 27,100 44,600 22,200 0 19,200 74,200 16,800 6,810 37,000 346 3,090 399,000 63,200 15,600 15,900 55,100 511,000 62,600 380 47,300 69,900 137,000 20,900 4,170 19,600 16,600 733,000 57,700 57,000 5,770 391 0 3,540,000
9,510 1,440 7,960 2,630 47,100 2,140 317 0 0 443 4,850 148 11,300 1,010 467 21 11 2,880 1,110 3,440 1,450 992 1,410 1,030 0 1,920 10,400 1,040 6,320 1,460 241 353 24,600 5,810 2,480 227 3,300 40,400 352 6.1 3,070 6,420 9,430 1,520 931 983 922 82,300 1,210 1,600 793 101 0 310,000
Note: Figures may not add to totals because of independent rounding, Mgal/d, million gallons per day; kWh, kilowatt-hour. Source: From npdp.stanford.edu. 1988.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
WA
11-103
MT
ND
OR ID CA
WY
WI
SD
UT
IL
AZ
NM
IN
OH WV
VA
KY OK
RI CT NJ DE DC
PA
MO
KS
MA
MI
NE CO
ME
NY
IA
NV
NH
VT
MN
AR
SC
MS
TX
MD
NC
TN GA
AL
LA
0 − 2.9 3 − 4.9 5 − 9.9
FL HI
10 − 19
AK
20 − 41 (Million gallons) Figure 11C.30 Water used to produce 1 kWh of hydroelectric power in the United States in 1990. (From ga.water.usgs.gov.)
WA
MT
ND
OR ID CA
WY
VT
MN
ME MA
WI
SD
NY
NV
MI
IA UT
IL
NE
PA
IN
OH
CO MO
KS AZ
NH
NM
KY OK
SC MS
LA
VA NC
TN
AR
TX
WV
AL
GA
RI CT NJ DE DC MD
0− 2 2.1− 10 12 −30
FL HI
AK
40 −64 83−100 (Percent)
Figure 11C.31 Percent of total power produced coming from hydroelectric sources in the United States in 1990. (From ga.water.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
11-104
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
WA
MT
ND
VT
MN
NH
ME
OR ID CA
NV
WI
SD
WY
MI
IA CO KS AZ
NM
OK
PA
IL IN
NE
UT
OH WV
MO KY
VA NC
TN
AR
TX
MA
NY
RI CT NJ DE DC MD
SC MS
LA
AL
GA
0 - 20 20 - 1,500
HI
1,500 - 4,500
FL
AX
4,000 - 20,000 20,000 - 88,000 (Million kilowatt–hours)
Figure 11C.32 Hydroelectric power production in the United States in 1990. (From ga.water.usgs.gov.)
Installed capacity (thousands of megawatts)
80 70 60 50 40 30 20 10 0 1960
1964
1968
1972
1976
1980
1982
1988
Number of applications
Figure 11C.33 Developed conventional hydroelectric capacity in the United States (From FERC, 1988a, xix. With permission.)
2500 2000 1500 1000 500 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
Figure 11C.34 U.S. Hydro applications a 1980–1990. (From FERC, 1988a, xix. With permission.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-105
Table 11C.37 U.S. Hydro Operations and Potential 1988
# Plants in operation Developed capacity Mean plant capacity % of developed capacity under FERC jurisdiction Total potential capacity % of potential capacity developed a b
Conventional
Pumped Storagea
Total
2010 70,800 MW 35 MW 46.2%
37 17,100 MW 462 MW 81.3%
2047 87,900 MW 43 MW 53.0%
146,900 MW 48.2%
19,100 MWb 89.5%
166,000 MWb 53.0%
Includes both pure pumped storage and combined conventional and pumped storage facilities. Because of the enormous number of sites potentially suitable for pumped storage, only developed facilities and those actually under construction are included in the total potential capacity estimates for pumped storage facilities.
Source: From FERC, 1988a, vii–viii.
Table 11C.38 Hydro Development and Potential in the UMRB 1988 Number of Plants
Average Plant Size
Developed Capacity (MW)
Undeveloped Capacity (MW)
Total Potential Capacity (MW)
Percentage of Total Potential Developed
7 6 31 8 116 168 2047
4,268 21,939 6,121 133,000 4,045 11,217 42,936
29.9 131.6 189.7 1,064.0 469.2 1,884.5 87,889.7
285.9 388.0 299.9 857.8 492.4 2,324.0 78,048.5
315.8 519.6 489.6 1,921.8 961.6 4,208.5 165,938.2
9 25 39 55 49 45 53
Illinois Iowa Minnesota Missouri Wisconsin 5 states United States
Source: From FERC, 1988a, pp. 101, 132–41, 264.
Number of facilities
120 100 80 Projects 60 Dams 40 20 0 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 Figure 11C.35 New conventional hydro projects and dams in the United States (From FERC, 1988a, xix. With permission.)
200,000 150,000 100,000 50,000 0
Nfld.
Que.
Orl.
Production GWh Figure 11C.36 Hydroelectricity by province. (From nrcan.gc.ca.)
q 2006 by Taylor & Francis Group, LLC
Man.
B.C.
Capacity MW
Owers
11-106
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
200
15,000
180 Installed capacity MW
10,000
140
Units
120 Capacity
7,500 5,000
100 80 60
Number of units
160
12,500
40 2,500 0 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Year
20 0
Figure 11C.37 Reclamation hydroelectric development 1909–2000. (From U.S. Department of the Interior, Bureau of Reclamation Power Resources Office—October 2004.)
21
18
12
Undeveloped
Millions of kilowatts
15
9
6 3 0 Potential for development depends on many interrelated factors Figure 11C.38 Undeveloped hydroelectric power. (From U.S. Department of the Interior, Bureau of Reclamation Power Resources Office—October 2004.)
q 2006 by Taylor & Francis Group, LLC
Developed
Water Resource Region
a
Total Potential
Installed Capacity kW
Average Annual Generation 1,000 kWh
248 122 128
1,538,631 1,506,299 6,094,348
6,359,847 6,091,861 16,190,853
669 409 261
4,387,567 4,786,750 5,396,194
13,299,262 13,732,622 10,633,130
5,926,198 6,293,049 11,490,542
19,659,209 19,824,483 26,826,983
25.9 23.9 53.0
209 36 47 105
3,895,123 1,646,672 3,749,075 617,237
24,354,228 6,104,170 16,249,440 3,187,639
229 200 33 104
2,243,431 4,313,176 1,150,985 1,267,796
9,852,598 13,330,111 2,777,781 5,459,595
6,138,554 5,959,848 4,900,060 1,885,033
34,206,826 19,443,281 19,027,221 8,47,234
63.4 27.6 76.5 32.7
5
205,800
430,400
29
1,000,075
3,106,275
1,205,875
3,536,675
17.0
8
13,000
68,000
8
45,880
158,290
58,880
226,290
22.0
62 23
3,462,023 1,854,460
15,549,519 5,341,446
234 128
5,307,568 3,581,693
17,595,761 9,065,790
8,769,591 5,436,153
33,145,280 14,407,236
39.4 34.1
18 5 26 17 60 176
393,970 131,408 1,452,497 1,910,463 188,422 29,909,275
1,066,359 389,521 5,923,214 6,601,700 655,837 143,542,447
87 25 137 33 112 1,128
1,481,627 233,886 2,370,246 1,650,983 765,697 22,104,337
3,032,279 632,431 6,221,787 5,085,441 1,862,008 67,221,564
1,875,597 365,294 3,822,743 3,561,446 954,119 52,013,612
4,098,638 1,021,952 12,145,001 11,687,141 2,517,845 210,764,011
21.0 35.9 37.9 53.6 19.7 57.5
211 26 14 1,546
8,033,509 155,737 17,652 66,775,601
37,644,560 634,082 104,100 296,489,223
740 96 15 4,677
10,099,470 5,041,107 62,890 77,291,358
25,983,648 22,192,656 310,950 231,563,079
18,132,979 5,196,844 80,542 144,066,959
63,628,208 22,826,738 415,050 528,052,302
44.3 2.9 21.9 46.3
No. of Plants
North Atlantic Region Mid Atlantic Region South Atlantic-Gulf Region Great Lakes Region Ohio Region Tennessee Region Upper Mississippi Region Lower Mississippi Region Souris-Red-Rainy Region Missouri Region Arkansas-White-Red Region Texas-Gulf Region Rio Grande Region Upper Colorado Region Lower Colorado Region Great Basin Region Pacific Northwest Region California Region Alaska Region Hawaii Region Total United States
Undeveloped
No. of Sites
Installed Capacity kWa
Average Annual Generation 1,000 kWh
Installed Capacity kW
Average Annual Generation 1,000 kWh
Percent Total Potential Cap. Now Developed
WATER RESOURCES MANAGEMENT
q 2006 by Taylor & Francis Group, LLC
Table 11C.39 Conventional Hydroelectric Power in the United States Developed, Undeveloped, and Total Potential — January 1, 1984
Includes potential capacity additions or subtractions at existing plants.
Source: From Federal Energy Regulatory Commission, 1984.
11-107
q 2006 by Taylor & Francis Group, LLC
11-108
Table 11C.40 Conventional Hydroelectric Power in the United States Developed, Undeveloped, and Total Potential — January 1, 1984 Developed
No. of Plants
Installed Capacity kW
Average Annual Generation 1,000 kWh
279 157 210 65 166 57 43 192 337 26 14 1,546
1,618,739 4,297,372 1,087,054 2,808,465 6,013,182 5,734,292 2,338,020 7,869,611 34,835,480 155,737 17,652 66,775,601
6,684,066 25,703,831 5,159,366 12,187,539 17,216,643 22,024,618 6,516,705 32,866,583 167,391,690 634,082 104,100 296,489,223
New England Middle Atlantic East North Central West North Central South Atlantic East South Central West South Central Mountain Pacific Alaska Hawaii Total United States a
Includes potential capacity additions or subtractions at existing plants.
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
No. of Sites 74 421 208 157 355 119 214 876 1,472 96 15 4,677
Total Potential
Installed Capacity kWa
Average Annual Generation 1,000 kWh
4,555,434 5,370,969 1,789,913 3,011,876 8,395,423 2,842,266 5,328,495 18,201,259 22,691,726 5,041,107 62,890 77,291,358
13,887,230 18,152,584 7,158,041 9,999,018 17,795,208 9,337,538 12,734,953 53,698,630 66,296,271 22,192,656 310,950 231,563,079
Installed Capacity kW
Average Annual Generation 1,000 kWh
Percent Total Potential Cap. Now Developed
6,174,170 9,668,341 2,876,967 5,820,341 14,408,605 8,576,558 7,666,515 26,070,870 57,527,206 5,196,844 80,542 144,066,959
20,571,296 43,856,415 12,317,407 22,186,557 35,011,851 31,362,156 19,251,658 86,565,213 233,687,961 22,826,738 415,050 528,052,302
26.2 44.4 37.7 48.2 41.7 66.8 30.4 30.1 60.5 2.9 21.9 46.3
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Geographic Division
Undeveloped
WATER RESOURCES MANAGEMENT
11-109
5 Fuel Maintenance 4 Cents per kilowatt-hour
Operation
3
2
1
0 Hydroelectric
Nuclear steam
Fossil-fueled steam
Gas turbine/ small-scale
Hydropower is an economical source of electrical energy. It is one type of electricity that is immune to rising fuel costs. Hydropower costs above include pumped-storage. Figure 11C.39 Average power production expenses per kWh, 1995–1999. (From Energy Information Administration Financial Statistics of Major U.S. Investor-Owned Utilities.)
Table 11C.41 Federal Hydroelectric Capacity by Operating Agency, January 1, 1984 Installed Capacity Conventional and Reversible (Kilowatts) In Operation Corps of Engineers Bureau of Reclamation Tennessee Valley Authority International Boundary and Water Commission Alaska Power Administration Bureau of Indian Affairs National Park Service Total
Under Construction
Ultimate Authorized
19,449,197 12,846,876 4,832,410 97,500
1,162,000 250,000 — —
23,466,897 13,577,986 4,832,410 97,500
77,160 14,560 2,000 37,319,703
— — — 1,412,000
104,160 14,560 2,000 42,095,513
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
11-110
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11C.42 TVA’s Hydro Plants
Tennessee River Fort Loudeun Watts Bar Chickamauga Nickajack Guntersville Wheeler Wilson Pickwick Landing Kentucky Raccoon Mountain Pumped Storage Clinch River Norris Melton Hill French Broad River Douglas Holston River South Holston Boone Fort Patrick Henry Cherokee Walauga River Walauga Wilbur Little Tennessee River Fontana Hiwassee River Chaluge Nottety Hiwassee Apalachia Ocoee River Blue Ridge Ocoee 1 Ocoee 2 Ocoee 3 Elk River Tims Ford Caney Fork River Great Falls
Dam Height (ft)
Dam Length (ft)
Reservoir Length (mil)
Capacitya (MW)
Construction Span
125 122 129 86 97 72 137 113 206 230
4,190 2,960 5,800 3,767 3,979 6,342 4,541 7,715 8,422 8,500
61 96 59 46 76 74 16 53 184 1.2
123 175 129 100 114 355 611 193 199 1,532
1940–43 1939–42 1936–40 1964–67 1935–39 1933–36 1918–24 1934–38 1938–44 1970–78
265 103
1,860 1,020
129 44
111 72
1933–36 1960–63
215
1,705
43
90
1942–43
285 168 95 183
1,600 1,697 737 6,760
24 33 10 59
46 83 32 126
1942–50 1950–52 1951–53 1940–41
331 77
925 375
16 2
68 12
1942–48 1912
480
2,365
29
241
1942–44
150 199 307 150
3,336 3,915 1,376 1,308
13 20 22 10
10 16 121 74
1941–42 1941–42 1936–40 1941–43
174 135 30 110
1,553 840 450 612
11 8 0.8 7
13 25 19 28
1925–30 1910–11 1912–13 1941–42
175
1,580
34
37
1966–70
92
800
22
37
1915–16
Note: To find information on dam releases, reservoir levels, and other river system data, go to http://lakeinfo.tva.com. a
Net winter dependable capacity; the amount of power a plant can produce on an average winter day, minus the electricity used by the plant itself.
Source: From www.tva.com.
q 2006 by Taylor & Francis Group, LLC
Region PN
Project Boise
Columbia Basin Hungary Horse Minidoka Palisades Rogue River Basin Yakima Total MP
Total UC
Boulder Canyon Parker-Davis
Collbran Colo. River Storage
State Location
River
Initial Date in Service
Number of Units
Installed Capacity (kW)
Gross Generation (kWh)
Idaho Idaho Idaho Washington
So. Fork, Boise Payette Boise Columbia
12–50 12–25 5–12 3–41
2 2 3 33
40,000 10,200 3,450 6,809,000
117,267,000 66,221,000 7,054,000 18,854,034,875
Hungry Horse
Montana
So. Fork, flathead
10–52
4
428,000
851,474,000
Minidoka Palisades Green Springs
Idaho Idaho Oregon
Snake So. Fork, Snake Trans. Mtn. Div.
5–09 2–57 5–60
4 4 1
27,700 176,564 17,290
84,345,000 422,987,000 53,649,000
Chandler Roza
Washington Washington
Yakima Yakima
2–56 8–58
California California California California California California California California California
2 1 56 2 3 3 2 2 6 8 7 2
12,000 12,937 7,537,141 154,400 198,720 117,000 300,000 13,500 25,200 a 202,000 646,000 180,000
40,885,000 59,568,700 20,557,485,575 494,153,000 493,687,000 470,903,000 342,689,000 55,253,000 6,094,000 176,083,000 2,209,689,300 582,083,000
2 1 2 40 19
140,000 350 3,650 1,980,820 2,078,800
594,842,000 3,075,000 13,657,130 5,442,208,430 4,040,245,040
255,000 120,000 2,453,800 4,860 8,640 86,400
1,170,088,000 458,320,999 5,668,654,039 14,369,675 24,818,100 142,539,000
28,000
4,705,000
Trinity Lewiston Stampede
California California California
Tunnel, Lewiston American Sacramento Stanislaus American San Luis Creek San Luis Creek Sacramento Tunnel, Clear Creek Trinity Trinity Little Truckee
5–63 6–55 10–49 6–79 5–55 11–67 3–68 6–44 1–64
Hoover
Arizona/Nevada
Colorado
9–36
Davis Parker
Arizona California
Colorado Colorado
1–51 12–42
Lower Molina Upper Molina Blue Mesa
Colorado Colorado Colorado
Pipeline Pipeline Gunnison
12–62 12–62 9–67
5 4 28 1 1 2
Crystal
Colorado
Gunnison
6–78
1
2–64 2–64 9–87
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-111
Anderson Ranch Black Canyon Boise River div. Grand Coulee
Central Valley Judge F. Carr Folsom Keswick New Melones Nimbus O’Neill San Luis Shasta Spring Creek
Washoe Total LC
Plant
WATER RESOURCES MANAGEMENT
Table 11C.43 Bureau of Reclamation Power Facilities
Region
(Continued) Project
Provo River Rio Grande Seedskadee Dolores Total GP
11-112
Table 11C.43
Colo.-Big Thompson
North Platte Pick-Sloan mo. Basin
Shoshone
Total
State Location
Initial Date in Service
River
Installed Capacity (kW)
Gross Generation (kWh)
151,950 1,296,000 173,334 4,950 27,945 10,000 1,283 11,495 1,804,857 4,500
236,681,000 3,328,793,000 195,118,000 14,261,154 28,224,800 45,472,000 2,655,481 16,486,900 4,054,124,110 10,010,000
Flaming Gorge Glen Canyon Morrow Point Deer Creek Elephant Butte Fontenelle McPhee Towaoc
Utah Arizona Colorado Utah New Mexico Wyoming Colorado Colorado
Green Colorado Gunnison Provo Rio Grande Green Dolores Towaoc Canal
Big Thompson
Colorado
Trans. Mtn. Div.
4–59
3 8 2 2 3 1 1 1 26 1
Estes Flatiron Green Mountain Marys Lake Pole Hill Mt. Elbert
Colorado Colorado Colorado Colorado Colorado Colorado
Trans. Mtn. Trans. Mtn. Blue Trans. Mtn. Trans. Mtn. Trans. Mtn.
9–50 1–54 5–43 5–51 1–54 6–81
3 3 2 1 1 2
45,000 94,500 26,000 8,100 38,200 200,000
107,647,000 229,031,000 27,690,000 38,686,000 180,065,000 347,142,760
Alcova Seminoe Guernsey Boysen
Wyoming Wyoming Wyoming Wyoming
North Platte North Platte North Platte Wind
7–55 8–39 7–27 8–52
2 3 2 2
41,400 51,750 6,400 15,000
70,301,000 63,319,000 10,150,000 30,139,000
Canyon Ferry Fremont Canyon Glendo Kortes Yellowtail Buffalo Bill Heart Mountain Pilot Butte Shoshone Spirit Mountain
Montana Wyoming Wyoming Wyoming Montana Wyoming Wyoming Wyoming Wyoming Wyoming
Missouri North Platte North Platte North Platte Big Horn Shoshone Shoshone Wind Shoshone Shoshone
12–53 12–60 12–58 6–50 8–66 7–92 12–48 1–25 6–92 10–94
3 2 2 3 4 3 1 2 1 1 44
50,000 66,880 38,000 36,000 250,000 18,000 5,000 1,600 3,000 4,500 1,003,750
239,121,000 144,776,000 46,405,000 83,793,000 322,981,000 47,604,000 9,115,000 4,416,000 18,413,000 17,087,000 2,047,891,760
Div. Div. Div. Div. Div.
11–63 9–64 12–70 2–58 11–40 5–68 12–92 5–93
Number of Units
Note: Hydroelectric powerplants for which the bureau of reclamation has operating responsibility fiscal year 2004. Grand Total Number of Plants, 58; Grand Total Number of Units, 194; Grand Total Installed Capacity, 14,780,368 kW; Grand Total Gross Generation, 37,770,363,914 kWh. Revised December 16, 2004. a
Federal share of 424,000 kW installed capacity-plant operated by the State of California-Navajo stem plant: reclamation share is 546,750 kW installed capacity with 2004 gross generation of 4,713,459,920 kWh.
Source: From www.usbr.gov.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Frying PanArkansas Kendrick
Plant
NPDP ID VA17702 VA01706 VA01707 UT00310
Dam Name North Anna Dam Bath Co. Pumped Storage— Upper Dam Bath Co. Pumped Storage— Lower Dam Logan No. 3
State
Dam Type
Dam Height (ft)
Primary Purpose
Secondary Purpose
VA VA
Earth Earth
90 381
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
VA
Earth
136
Hydroelectric
Flood Control and Storm Water Management
UT
Concrete Gravity Gravity Rockfill Gravity Earth Rockfill Earth Earth Gravity Gravity Earth Multiple Arch Gravity Earth Earth Concrete Gravity Earth Earth Gravity Concrete Earth Concrete Gravity Earth Concrete Buttress Stone Concrete Timber Crib Gravity Timber Crib Concrete Gravity Gravity Gravity Earth Gravity
TN02702 OR00015 OR00004 OR00011 OR00012 OK83001 OK10314 OK00134 OK00135
Dale Hollow Dam Cougar Detroit John Day Dam Foster Salina Dike Fort Gibson Lake Robert S. Kerr Pensacola
TN OR OR OR OR OK OK OK OK
NY83112 NY83028 NY00374
Bennetts Bridge—Dike A Stillwater—South Dam Bennetts Bridge
NY NY NY
NY00375 NY00376 NY00397
Bennetts Bridge—Dike B Bennetts Bridge—Dike C Cranberry Lake
NY NY NY
NY00316
Stillwater—North Dam
NY
NY00146 NY00120
Conklingville Clark Mills Upper
NY NY
NH127 NH00052
Stone Dam Shelburne
NH NH
MT00652 MT00561 MT00568
Libby Madison Dam Canyon Ferry
MT MT MT
MT00559 MT00560 MT00134 MO30014
Holter Dam Hauser Dam Hebgen Dam Osage
MT MT MT MO
Hydroelectric
Flood Control and Storm Water Management
31.5 200 519 463 230 126 45 110 87 151
Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control
5 20 45
Hydroelectric Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management Flood Control and Storm Water Management
13 10 19
Hydroelectric Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management Flood Control and Storm Water Management
55
Hydroelectric
Flood Control and Storm Water Management
95 23
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
16.5 17
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
422 39 225
Hydroelectric Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management Flood Control and Storm Water Management
124 125 88 148
Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control
and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water
and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management Management Management Management Management Management
Management Management Management Management 11-113
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11C.44 Number of Dams Found: 160
NPDP ID
11-114
Table 11C.44
(Continued) Dam Name
Dam Type Earth Rockfill Gravity Gravity Masonry Gravity Gravity Earth Gravity Earth Concrete Rockfill Earth Earth Earth Earth Concrete Earth Concrete Timber Crib Concrete Gravity Earth Earth Earth Earth Earth Earth Earth Earth Earth Earth Concrete Gravity Concrete Earth Stone Earth Rockfill Stone Timber Crib Gravity Rockfill Earth Timber Crib Rockfill Gravity
MO20725
Harry S. Truman Dam
MO
MN83002
International Falls
MN
MI00547 MI00548 MI00549 ME96172
Secord Smallwood Edenville Pleasant Pond Dam
MI MI MI ME
ME83048 ME83049 ME83050 ME83051 ME96079 ME96100
North Twin—Dike 4 North Twin—Dike 5 North Twin—Dike 6 Stone Dam—Dike 8 Davee Brook #1 Dam Andres Mill Dam
ME ME ME ME ME ME
ME83006
Gilman Falls Dam
ME
ME83038 ME83039 ME83040 ME83041 ME83042 ME83043 ME83044 ME83045 ME83046 ME83047 ME10103
ME ME ME ME ME ME ME ME ME ME ME
ME00534
Stone Dam—Dike 1 Stone Dam—Dike 2 Stone Dam—Dike 3 Stone Dam—Dike 4 Stone Dam—Dike 5 Stone Dam—Dike 6 Stone Dam—Dike 7 North Twin—Dike 1 North Twin—Dike 2 North Twin—Dike 3 Automatic Dam Messalonskee #4 #1 Fitch’s Mill Pond Dam
ME00535
Rich Mill Dam
ME
ME00508
Rainbow Lake Dam
ME
ME00518 ME00468
Ripley Pond Dam Long Pond Storage Dam
ME ME
q 2006 by Taylor & Francis Group, LLC
ME
Dam Height (ft)
Primary Purpose
Secondary Purpose
98
Hydroelectric
Flood Control and Storm Water Management
29
Hydroelectric
Flood Control and Storm Water Management
57 36 54 12
Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control
and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management
11 11 13 9 26 4
Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control
and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management Management Management
18
Hydroelectric
Flood Control and Storm Water Management
10 10 10 9 9 9 9 11 11 15 40
Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control
18
Hydroelectric
Flood Control and Storm Water Management
9
Hydroelectric
Flood Control and Storm Water Management
9
Hydroelectric
Flood Control and Storm Water Management
6 7
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management Management Management Management Management Management Management Management
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
State
Mapleton Dam
ME
ME00430 ME00398 ME00352
Parson’s Mill Dam Long Pond Dam Morneau’s Dam
ME ME ME
ME00360
Blake Dam
ME
ME00341 ME00283
Upper Dam Behind The Mill Dam
ME ME
ME00291
Mainstream Dam, Main Stem
ME
ME00305
Sokokis Lake Dam
ME
ME00254
Alford Lake Dam
ME
ME00225
Mars Hill Dam
ME
ME00198
Lock Dam
ME
ME00200
East Millinocket
ME
ME00201
Dolby
ME
ME00202
Stone Dam
ME
ME00203
North Twin
ME
ME00204
Ripogenus
ME
ME00205
Millinocket Lake
ME
ME00206
Seboomook
ME
ME00209
Ragged Lake
ME
ME00211
Caucomgomoc
ME
ME00215
Canada Falls
ME
ME00166
Branns Mill Dam
ME
Timber Crib Rockfill Gravity Concrete Stone Earth Timber Crib Gravity Concrete Earth Rockfill Concrete Concrete Gravity Concrete Timber Crib Stone Concrete Stone Gravity Concrete Earth Stone Concrete Earth Gravity Timber Crib Earth Gravity Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Earth Concrete Gravity Earth Concrete Gravity Concrete Gravity Timber Crib Earth Stone
11
Hydroelectric
Flood Control and Storm Water Management
10 8 10
Hydroelectric Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management Flood Control and Storm Water Management
16
Hydroelectric
Flood Control and Storm Water Management
8 20
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
21
Hydroelectric
Flood Control and Storm Water Management
15
Hydroelectric
Flood Control and Storm Water Management
7
Hydroelectric
Flood Control and Storm Water Management
14
Hydroelectric
Flood Control and Storm Water Management
14
Hydroelectric
Flood Control and Storm Water Management
28
Hydroelectric
Flood Control and Storm Water Management
66
Hydroelectric
Flood Control and Storm Water Management
27
Hydroelectric
Flood Control and Storm Water Management
35
Hydroelectric
Flood Control and Storm Water Management
83
Hydroelectric
Flood Control and Storm Water Management
20
Hydroelectric
Flood Control and Storm Water Management
60
Hydroelectric
Flood Control and Storm Water Management
30
Hydroelectric
Flood Control and Storm Water Management
16
Hydroelectric
Flood Control and Storm Water Management
50
Hydroelectric
Flood Control and Storm Water Management
14
Hydroelectric
Flood Control and Storm Water Management
q 2006 by Taylor & Francis Group, LLC
11-115
(Continued)
WATER RESOURCES MANAGEMENT
ME00483
11-116
Table 11C.44
(Continued)
NPDP ID
Dam Name
State
Dam Type
Dam Height (ft)
Primary Purpose
Masonry Gravity Concrete Timber Crib Concrete Buttress Earth Concrete Rockfill Gravity Concrete Gravity Earth Concrete Gravity Concrete Earth Gravity Earth Concrete Gravity Concrete Earth Stone Concrete Gravity Earth Concrete Gravity Earth Concrete Timber Crib Masonry Concrete Gravity Concrete Earth Concrete Masonry Gravity Concrete Gravity Gravity Rockfill Timber Crib Masonry Gravity Gravity Earth Gravity Earth Gravity Gravity
8
Hydroelectric
Flood Control and Storm Water Management
14
Hydroelectric
Flood Control and Storm Water Management
50
Hydroelectric
Flood Control and Storm Water Management
18
Hydroelectric
Flood Control and Storm Water Management
45
Hydroelectric
Flood Control and Storm Water Management
12
Hydroelectric
Flood Control and Storm Water Management
9
Hydroelectric
Flood Control and Storm Water Management
43
Hydroelectric
Flood Control and Storm Water Management
32
Hydroelectric
Flood Control and Storm Water Management
20
Hydroelectric
Flood Control and Storm Water Management
17.5
Hydroelectric
Flood Control and Storm Water Management
21
Hydroelectric
Flood Control and Storm Water Management
17
Hydroelectric
Flood Control and Storm Water Management
12 38
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
45
Hydroelectric
Flood Control and Storm Water Management
14
Hydroelectric
Flood Control and Storm Water Management
10
Hydroelectric
Flood Control and Storm Water Management
9 157 258 9
Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control
Bridge Street
ME
ME00128
Spencer Lake Dam
ME
ME00133
Brassua
ME
ME00135
First Roach Dam
ME
ME00143
Mattaceunk
ME
ME00157
Upper Dam
ME
ME00125
Mill Pond Dam
ME
ME00127
Flagstaff
ME
ME00071
Sebago Lake Dam
ME
ME00091
Moosehead—East Outlet
ME
ME00092
Moosehead—West Outlet
ME
ME00095
Gardiner Water District Dam
ME
ME00029
Rangeley Lake Dam
ME
ME00058 ME00062
Lermond Pond Dam Great Works Pond Dam
ME ME
ME00002
Brunswick Dam/Topsham Dam
ME
MA83013
Collins
MA
MA00719
Chicopee
MA
MA00501 KY03001 KY03010 IL83003
New Home Barkley Dam Wolf Creek Upper Sterling
MA KY KY IL
q 2006 by Taylor & Francis Group, LLC
and and and and
Storm Water Storm Water Storm Water Storm Water
Management Management Management Management
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
ME00187
Secondary Purpose
Albeni Falls Brownlee J. Storm Thurmond Dam
ID ID GA
GA01702
Hartwell Dam
GA
GA00068
Richard B. Russell Dam
GA
CT01677
Putnam
CT
CA01352 CA00863 CA00421 CA00200 CA00095 AR00150 AL01420 AL01425 AL01413 AL01414 AL01417 WA00004 WA00084 WA00085
Collett Afterbay New Bullards Bar New Drum Afterbay San Gabriel Upper Gorge Pp Blakely Mountain Dam Lewis Smith Martin Point “A” Gantt Logan Martin Chelan Rock Island Wanapum
CA CA CA CA CA AR AL AL AL AL AL WA WA WA
WA00086 WA00088
Rocky Reach Priest Rapids
WA WA
WA00135 WA00147 WA00148 WA00151 WI00141 WI00724
Yale Saddle Dam Swift No. 1 Yale Mossyrock Lower Watertown Dam Castle Rock
WA WA WA WA WI WI
WI00740
Petenwell
WI
WI00741
Rice
WI
WI00749
Spirit
WI
WI00764
Burnt Rollways
WI
WI00765
Seven Mile
WI
Gravity Rockfill Gravity Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Other Concrete Gravity Earth Concrete Arch Arch Earth Rockfill Gravity Earth Rockfill Gravity Earth Gravity Earth Buttress Earth Gravity Earth Gravity Gravity Gravity Rockfill Concrete Gravity Gravity Rockfill Concrete Earth Arch Earth Earth Arch Gravity Gravity Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete
180 395 200
Hydroelectric Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management Flood Control and Storm Water Management
204
Hydroelectric
Flood Control and Storm Water Management
195
Hydroelectric
Flood Control and Storm Water Management
24
Hydroelectric
Flood Control and Storm Water Management
13 645 95 381 57 240 300 175 41 35 142 40 128 205.5
Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control
130 187
Hydroelectric Hydroelectric
Flood Control and Storm Water Management Flood Control and Storm Water Management
40 412 323 606 10 38
Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control
50
Hydroelectric
Flood Control and Storm Water Management
19
Hydroelectric
Flood Control and Storm Water Management
26
Hydroelectric
Flood Control and Storm Water Management
16
Hydroelectric
Flood Control and Storm Water Management
10
Hydroelectric
Flood Control and Storm Water Management
and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water
and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management Management Management Management Management Management Management Management Management Management Management
Management Management Management Management Management Management
11-117
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
ID00319 ID00056 GA01701
11-118
Table 11C.44
(Continued)
NPDP ID
Dam Name
Dam Type Gravity Earth Concrete Gravity Concrete Earth Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Concrete Concrete Gravity Earth Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Earth Concrete Gravity Concrete Gravity Concrete Gravity Concrete Gravity Earth Concrete Earth Earth Earth Earth
WI00766
Sugar Camp
WI
WI00767
Minocqua
WI
WI00772
North Pelican
WI
WI00774
Willow
WI
WI00775
Rainbow
WI
WI00777
Combined Locks
WI
WI00784
Du Bay
WI
WI00804
Buckatahpon
WI
WI00808
Twin Lakes
WI
WI01005
Long-On-Deerskin
WI
WI01017
Little St Germain
WI
WI01138
Lac Vieux Desert
WI
WI01146
Big St Germain
WI
WI83003
Squirrel Lake
WI
WI83005
Old Badger
WI
WI83006
New Badger
WI
WI83007
Rapide Croche
WI
WI83010
Eau Pleine
WI
WI83012 WI83014 WI83015 WI83034
Sawyer Dike Cth “E” Dike Jim Hall Dike Willow Doberstein Dike
WI WI WI WI
Source: From http://npdp.stanford.edu.
q 2006 by Taylor & Francis Group, LLC
Dam Height (ft)
Primary Purpose
Secondary Purpose
10
Hydroelectric
Flood Control and Storm Water Management
9
Hydroelectric
Flood Control and Storm Water Management
11
Hydroelectric
Flood Control and Storm Water Management
35
Hydroelectric
Flood Control and Storm Water Management
39
Hydroelectric
Flood Control and Storm Water Management
28
Hydroelectric
Flood Control and Storm Water Management
40
Hydroelectric
Flood Control and Storm Water Management
8
Hydroelectric
Flood Control and Storm Water Management
10
Hydroelectric
Flood Control and Storm Water Management
10
Hydroelectric
Flood Control and Storm Water Management
9
Hydroelectric
Flood Control and Storm Water Management
8.5
Hydroelectric
Flood Control and Storm Water Management
7
Hydroelectric
Flood Control and Storm Water Management
7
Hydroelectric
Flood Control and Storm Water Management
21.5
Hydroelectric
Flood Control and Storm Water Management
24
Hydroelectric
Flood Control and Storm Water Management
23.6
Hydroelectric
Flood Control and Storm Water Management
45
Hydroelectric
Flood Control and Storm Water Management
20 24 22 10
Hydroelectric Hydroelectric Hydroelectric Hydroelectric
Flood Control Flood Control Flood Control Flood Control
and Storm Water and Storm Water and Storm Water and Storm Water
Management Management Management Management
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
State
WATER RESOURCES MANAGEMENT
11-119
Table 11C.45 Hydro Development in UMRB States 1/1/88 to 9/12/90
Illinois Iowa Minnesota Missouri Wisconsin 5 states
Developed Capacity 1988 (MW)
Developed Capacity 1990 (MW)
Percent Change
Change in Number of Plants
29.9 131.6 189.7 1,064.0 469.2 1,884.5
32.6 131.9 209.1 1,062.3 502.3 1,938.2
9.2 0.2 10.2 K0.2 7.0 2.9
C2 C1 C3 C1 K4 C3
Source: From FERC, 1988a, pp. 101, 132–41; FERC, 1990j.
Table 11C.46 Hydro Capacity on the Upper Mississippi River and Illinois Waterway
Mississippi River Site Bemidji Lake Winnibigoshish Grand Rapidsc,d Brainerdc,d Little Falls 2c,d Little Falls 1c,d Blanchardc Sartellc St. Cloudc St. Cloud Clearwater Monticello Bailey Coon Rapids St. Anthony Falls—Upperc St. Anthony Falls—Lowerc L&D 1c L&D 2c Lake Pepine L&D 5 L&D 5A L&D 6 L&D 7 L&D 8 L&D 9 L&D 10 L&D 11 L&D 12 L&D 13 L&D 14 L&D 15 L&D 15 L&D 15 L&D 16 L&D 17 L&D 18 L&D 19 L&D 19 L&D 20 L&D 21 L&D 22 L&D 24 L&D 25
Owner
Class of Ownershipa
Otter Tail Power Co Ball Club Association Blandin Paper Co Potlatch Corp. NW Ppr Minnesota Pwr & Lt Co Minnesota Pwr & Lt Co Minnesota Pwr & Lt Co Champion Intl Corp St. Cloud, City of St. Cloud Association
P R I I P P P I M R
Coon Rapids Hydro Assoc Northern States Power Northern States Power Co. Ford Motor Co. Hastings, City of Southern Minn Municipal Power Agency Winona Hydro Partners Mountain City Assoc. Trempealeau Assoc. Wisc. Public Power Inc. Upper Mississippi Hydro Assoc. United Hydro Partnership Guttenburg Partners Ltd. Three City Miss. R. Hydro Bellevue, City of Winnetka, Village of LeClaire, City of Iowa-Illinois G&E Co. Corps of Engineers Davenport Hydro Assoc. Lock 16 Assoc. Wapello Assoc. Burlington Hydro Assoc. Union Electric Co. Corps of Engineers Canton Assoc. Quincy Assoc. Hannibal Assoc. Clarksville Hydro Assoc. Winfield Hydro Assoc.
M P P I I P R R R M R R R M M M M P F R R R R P F R R R R R
Developed Capacity (MW)
Potential Capacity (MW)
Status of Potential Capacityb
0.7 2.1 3.3 0.6 3.9 18.0 3.2 8.0
12.4 17.9 4.0
1.0 3.2 7.0
6.3 2.1 11.2 11.2 11.2 10.5 2.0 16.0 7.2 500.0
PO LA
PO
10.0 6.0 10.8 12.7 10.5
3.6 2.8
10.0 10.0 18.4 19.3 6.8 24.0 19.7 28.0 14.0 10.5 28.0
PO
MA
MA
124.8 103.8 30.0 10.0 10.0 50.0 50.0
PO PO (Continued)
q 2006 by Taylor & Francis Group, LLC
11-120
Table 11C.46
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
(Continued)
Mississippi River Site L&D 26 L&D 27
Owner
Class of Ownershipa
Missouri Joint Mun. Elec. Uty. Comm. Corps of Engineers
Developed Capacity (MW)
M
78.0
F
15.3
Mississippi Total
Illinois Waterway Site Calumet/e Lockport Brandon Road Dresden Island Marseilles Marseilles Starved Rock
Owner
Class of Ownershipa
Edc Fndtn of Chicago Sanitary Dist. of Chicago Rockdale, Village of Channahon, Village of Illinois Power Co. Marseilles, City of Peru, City of
205.3
1139.4
Developed Capacity (MW)
Potential Capacity (MW)
M
30.0
M M P M M
7.3 7.76 11.0 7.6 63.5
UMRS Total
220.9
1202.9
c d e
MO MO
2.0
15.6
b
Status of Potential Capacityb
13.6
Illinois Total
a
Status of Potential Capacityb
Potential Capacity (MW)
PO
F, federally owned; I, industrially owned; M, nonfederal publicly owned; P, private utility owned; R, private non-utility owned. LA, License amendment pending; PO, Preliminary permit outstanding; MA, Major license applied for (O1.5 MW); MO, Major license outstanding (O1.5 MW). Existing plant is operating under a FERC license or exemption. Other plants are either federal or are not under FERC’s jurisdiction because of their age. License expires December 31,1993. Pumped storage facility.
Relicensing: In addition to the development of new projects, decisions regarding the relicensing of existing projects will have an important effect on the character of hydropower in the UMRB. Hydro projects are typically licensed for a period of 30 to 50 years. Many projects under FERC’s jurisdiction are due for relicensing in the next few years. Nationwide, the licenses for 227 projects will expire between 1990 and 1999. Twenty-two percent of these projects are in the five UMRB states, which is far greater than the region’s proportion of hydro plants. Wisconsin has the highest relicensing workload of any state in the country between 1990 and 1999. (See Appendix C.) Source: From FERC, 1988a; FERC, 1990j.
Table 11C.47 River Segments Protected from Hydro Development in UMRB States
Wild and Scenic Rivers Wolf Lower St. Croix Eleven Point St. Croix Vermillion, Middle Fork Special Act Current and Jacks Fork (Ozark National Scenic Riverway)
State
Exiting Plants
Capacity of Undeveloped Sites (MW)
WI MN–WI MO MN–WI IL
0 1 0 2 0
16.0 26.2 14.2 47.5 NA
MO
0
170.7 274.6
Source: From FERC, 1988a, pp. 222–23.
q 2006 by Taylor & Francis Group, LLC
Project Numbera
Plant Name
River
Owner
State
County
Project Statusb
Capacity (kW)
Exp. Date (YYMMDD)
Waverly (East Hydro) Maquoketa
Cedar R
Waverly, City of
IA
Bremer
495
Maquoketa R
IA
Jackson
1,200
Keokuk L&D 19 Iowa Falls
Mississippi R Iowa R
IA IA
Lee Hardin
925 4344
Ottumwa Five-In-One Dam
Des Moines R Cedar R
IA IA
Wapello Linn
MO LE
3,000 1,600
8364
Anamusa
Wapsipinicon R
IA
Jones
LE
288
Moline L&D 15
IL
Rock Island La Salle Rock Island
FA
2,024 2,752
IL
La Salle
MO
3,600
040410
2373
Rockton
Rock R
IL
Winnebago
NO
1,100
931231
2446
Dixon
Rock R
IL
Lee
MO
3,200
931231
2866
Lockport
IL
Will
MO
13,600
011130
2936
Sears
Chicago Sani & Ship Cnl, Des Plaines Rock R
Illinois Power Co. Corps of Engineers Hydro-Op One Assoc. South Beloit WG & E Co. Commonwealth Edison Co. Sanitary Dist of Chicago
IL IL
287
Marseilles Rock Island L&D 15 Dayton
Sylvan Slough, Mississippi R Illinois R Sylvan Slough, Mississippi R Fox R
Iowa Elec Lt and Pwr Co. Union Electric Co Iowa Elec Lt and Pwr Co. Ottumwa, City of Cedar Rapids, City of Iowa Elec Lt and Pwr Co. Iowa IL G & E Co.
IL
Rock Island
LE
746
7004
Upper Sterling Rochester Lanesboro Hy Redwood Falls
Rock R Zumbro R S Br Root R Redwood R
IL MN MN MN
Whiteside Wabasha Fillmore Redwood
LE
2,000 2,680 477 500
Bemidji
Mississippi R
MN
Beltrami
740
Thief River Falls
Red Lake R
MN
Pennington
550
346
Blanchard
Mississippi R
MN
Morrison
MO
18,000
030824
362 469
Twin City L&D 1 Winton
Mississippi R Kawishiwi R
White Hydropower Co. Rock Falls, City of Rochester, City of Lanesboro, City of Redwood Falls, City of Otter Tail Power Co. Thief River Falls, City of Minnesota Pwr and Lt Co. Ford Motor Co. Minnesota Pwr and Lt Co.
MN MN
Hennepin Lake
MO MO
17,920 4,000
030606 031031
124,800 540 080430
3,600
11-121
(Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11C.48 Existing Plants in Upper Mississippi River Basin States
(Continued)
Project Numbera
River
Owner
State
County
Project Statusb
2056B
Hennepin Island
Mississippi R
MN
Hennepin
MO
12,400
001231
2056A
Lower Dam
Mississippi R
MN
Hennepin
MO
8,000
001231
2360C
Scanlon
St. Louis R
MN
Carlton
MO
1,600
931231
2360D
Knife Falls
St. Louis R
MN
Carlton
MO
2,400
931231
2360B
Thompson
St. Louis R
MN
Carlton
MO
68,600
931231
2360A
Fond Du Lac
St. Louis R
MN
Carlton
MO
12,000
931231
2361
Prairie River
Prairie R
MN
Itasca
NO
1,084
931231
2362 2363 2454
Grand Rapids Cloquet Sylvan
Mississippi R St. Louis R Crow Wing R
MN MN MN
Itasca Carlton Morrison
MO MO MO
2,100 6,514 1,800
931231 931231 931231
2532B
Little Falls 2
Mississippi R
MN
Morrison
MO
600
931231
2532A
Little Falls 1
Mississippi R
MN
Morrison
MO
3,900
931231
2533
Brainerd
Mississippi R
MN
Crow Wing
MO
3,342
931231
2663
Pillager
Crow Wing R
MN
Morrison
MO
1,600
970511
3071
Rapidan
Blue Earth R
MN
Blue Earth
LE
5,000
4108 4306 5223
St. Cloud Mississippi L&D 2 International Falls
Mississippi R Mississippi R Rainy R
MN MN MN
Stearns Dakota Koochiching
MO MO MO
8,000 4,000 10,800
6299
Lake Byllesby
Cannon R
MN
Dakota
LE
2,500
8315
Startell
Mississippi R
MN
Benton
MO
3,172
8423
Granite Falls
Minnesota R
MN
Chippewa
LE
1,367
10853D
Hoot Lake
Otter Tail R
MN
Otter Tail
MA
1,000
10853C
Central (Wright)
Otter Tail R
Northern States Power Co. Northern States Power Co. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Blandin Paper Co. Potlatch Corp. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Minnesota Pwr and Lt Co. Potlatch Corp, NW Ppr Minnesota Pwr and Lt Co. Rapidan Revelopment Ltd. St. Cloud, City of Hastings, City of International Falls Pwr Co. Dakota & Goodhue Counties Champion Intl Corp. Granite Falls, City of Otter Tail Power Co. Otter Tail Power Co.
MN
Otter Tail
MA
400
q 2006 by Taylor & Francis Group, LLC
Capacity (kW)
Exp. Date (YYMMDD)
241130 330630 271130
250228
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Plant Name
11-122
Table 11C.48
Pisgah
Otter Tail R
10853E
Friberg (Tablin Gorge) Dayton Hollow
Otter Tail R
10853A
Otter Tail R
Clarence F. Cannon Clarence F. Cannonc Harry S. Trumanc
Salt R
Osage R
Stockton
Sac R.
Table Rock
White R
Riverdale
Salt R
459 2221
Osage (Bagnell) Ozark Beach
Finley Cr., James R Osage R White R
2277 2561
Taum Saukc Niangua
E Fk Black R Niangua R
Figor
Duck Cr, Tagatz Cr Duck Cr., Tagatz Cr Montello Lk, Montello R Montello R Wautoma R
Lawrence Montello Harrisville Wautoma Pardeeville Appleton Appleton (Lower) Neenah Dam Nepco Lake Merillan Kilbourn
Otter Tail Power Co. Otter Tail Power Co. Otter Tail Power Co. Corps of Engineers Corps of Engineers Corps of Engineers Corps of Engineers Corps of Engineers Turner, Glenn O. Frances Union Electric Co. Empire Dist Elec Co. Union Electric Co. Sho Me Power Corp. Figor, D.J.
MN
Otter Tail
MA
520
MN
Otter Tail
MA
560
MN
Otter Tail
MA
970
MO
Ralls
FA
27,000
MO
Ralls
FA
31,000
MO
Benton
FA
160,000d
MO
Cedar
FA
45,200
MO
Taney
FA
200,000
MO
Christian
MO MO
Miller Taney
MO MO
172,000 16,000
060228 930831
MO MO
Reynolds Camden
MO MO
408,000 3,000
100630 931231
WI
Marquette
38
WI
Marquette
200
WI
Marquette
379
WI WI
Marquette Waushara
187 252
WI
Columbia
50
WI
Outagamie
1,940
WI
Outagamie
1,445
WI
Winnebago
400
WI
Wood
2,920
WI WI
Jackson Sauk
100 8,200
112
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-123
Pioneer Pwr & Lt Co. Montello Granite Co. Miller, Duane J. North Amer Hydro Inc. Fox R Pardeeville Elec Comm. Fox R Wisconsin Elec Pwr Co. Fox R Consolidated Papers Inc. Fox R Bergstrom Paper Co. Four Mile Cr., Nekoosa Papers Wisconsin R Inc. Halls Cr., Black R Merillan, Village of Wisconsin R Wisconsin Power & Light Co.
WATER RESOURCES MANAGEMENT
10853B
(Continued)
Project Numbera
Project Statusb
River
Owner
State
County
Barron Merrill
Yellow R Prairie R
WI WI
Barron Lincoln
100 135
La Valle Pine River Island Woolen Radisson
Baraboo R Pine R Baraboo R Couderay R
WI WI WI WI
Sauk Richland Sauk Sawyer
50 100 412 393
Linen Mill
Baraboo R
WI
Sauk
100
Oak Street
Baraboo R
WI
Sauk
156
Prairie Du Sac
Wisconsin R
WI
Sauk
28,440
Nancy
Totagatic R
WI
Washburn
450
Clam Falls
Clam R
WI
Burnett
112
St. Croix Falls
St. Croix R
WI
Polk
Gordon
Eau Claire R
WI
Douglas
257
Balsam Lake
Balsam R, Apple R Milwaukee R
Barron, City of Ward Paper Company La Valle El Co. Miller, Clair Island Woolen Co. North Central Power Co. McArthur, George and Son McArthur, George and Son Wisconsin Power & Light Co. Dahlberg Lt and Pwr Co. Northwestern Wis Elec Co. Northern States Power Co. Dahlberg Lt and Pwr Co. Northerwestern Wis Elec Co. Roy Kleisch
WI
Polk
68
WI
Washington
17
WI
Richland
60
WI
Shawano
MO
700
770719
WI
Outagamie
MO
4,800
190331
WI
Lincoln
MO
2,600
161231
WI
Portage
MO
7,200
910630
WI
Vilas
NO
500
300630
WI
Rusk
MO
15,000
010228
WI
Lincoln
MO
17,240
180331
WI
Oneida
LE
1,700
Barton (Gadow Milling) Muscoda
Mill Cr, Wisconsin R Wolf R
710
Shawano (Upper)
1510 1940
Kaukauna (Lower) Tomahawk
Wisconsin R
1953
Du Bay
Wisconsin R
1957
Otter Rapids
Wisconsin R
1960
Flambeau
Flambeau R
1966
Grandfather Falls
Wisconsin R
1968
Hat Rapids
Wisconsin R
q 2006 by Taylor & Francis Group, LLC
Fox R
Muscoda, Village of Wisconsin Power & Light Co. Kaukauna, City of Wisconsin Public Service Corp Consolidated Water Pwr Co. Wisconsin Public Service Corp Dairyland Power Coop Wisconsin Public Service Corp Wisconsin Public Service Corp
Capacity (kW)
Exp. Date (YYMMDD)
23,200
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Plant Name
11-124
Table 11C.48
1981 1982 1984B 1984A 1989 1999 2064 2110 2161 2180 2181 2192 2207 2212 2239 2255 2256 2291 2292 2347 2348 2390 2395
Alexander
Wisconsin R.
WI
Lincoln
MO
4,200
040630
WI WI
Oconto Chippewa
MO MO
1,000 33,900
000229 980630
WI
Adams
MO
20,000
980131
WI
Adams
MO
15,000
980131
WI
Lincoln
LE
2,340
WI
Marathon
MO
5,400
950630
WI
Sawyer
MO
600
011130
WI
Portage
MO
4,800
000630
WI
Oneida
MO
2,120
000630
WI WI
Lincoln Dunn
MO MO
3,000 5,400
030630 050331
WI
Wood
MO
3,800
000630
WI
Marathon
MO
3,050
041231
WI
Marathon
MO
3,640
930731
WI
Lincoln
MO
320
930731
WI
Wood
MO
3,200
930731
WI
Wood
MO
4,400
930731
WI
Wood
MO
2,920
930731
WI
Wood
MO
3,800
930731
WI
Rock
NO
500
931231
WI
Rock
NO
380
931231
WI
Rusk
MO
9,000
931231
WI
Price
NO
960
931231 (Continued)
q 2006 by Taylor & Francis Group, LLC
11-125
Wisconsin Public Service Corp Stiles Oconto R. Oconto Elec Coop Holcombe Chippewa R. Northern States Power Co. Petenwell Wisconsin R. Wisconsin River Power Co. Castle Rock Wisconsin R. Wisconsin River Power Co. Merrill Wisconsin R. Wisconsin Public Service Corp Wausau Wisconsin R. Wisconsin Public Service Corp Last Fork (Winter) E Fk Chippewa R. North Central Power Co. Stevens Point Wisconsin R. Consolidated Water Pwr Co. Rhinelander Wisconsin R. Rhinelander Paper Co. Grandmother Wisconsin R. Nekoosa Corp. Menomonie Red Cedar R. Northern States Power Co Biron 2 Wisconsin R. Consolidated Water Pwr Co. Mosinee Wisconsin R. Mosinee Paper Mills Co. Rothschild Wisconsin R. Weyerhaeuser Co. Kings Wisconsin R. Tomahawk Pwer & Pulp Co. Centralia Wisconsin R. Nekoosa Papers Inc. Wis Rpds 1 Wisconsin R. Consolidated Water Pwr Co. Port Edwards Wisconsin R. Nekoosa Papers Inc. Nekoosa Wisconsin R. Nekoosa Papers Inc. Central Rock R. Wisconsin Power (Janesville) & Light Co. Blackhawk Rock R. Wisconsin Power & Light Co. Big Falls Flambeau R. Northern States Power Co. Pixley N Fk Flambeau R. Flambeau Paper Corp.
WATER RESOURCES MANAGEMENT
1979
(Continued)
Project Numbera
River
2417
Hayward
Namekagon R.
2421
Lower Hydro
2430
Ladysmith
2440
Chippewa Falls
2444
White River
2464
Weed Dam
2473
Crowley Rapids
2475
Thornapple
2476
Jersey
2484
Gresham
2486
Pine
2491
Jim Falls
2522
Johnson Falls
2523
Oconto Falls (Upper) Caldron Falls
2525 2536
2550
Little Quinnesec Falls Sandstone Rapids Weyauwega
2560
Potato Rapids
2567
Wissota
2581
Peshtigo
2588
Little Chute
2546
q 2006 by Taylor & Francis Group, LLC
Owner
Northern States Power Co. N Fk Flambeau R. Flambeau Paper Corp. Flambeau R. Lake Superior Dist Pwr Co. Chippewa R. Northern States Power Co. White R. Northern States Power Co. Red R. Gresham, Village of N Fk Flambeau R. Flambeau Paper Corp. Flambeau R. Northern States Power Co. Tomahawk R. Wisconsin Public Service Corp Red R. Gresham, Village of Pine R. Wisconsin Elec Pwr Co. Chippewa R. Northern States Power Co. Peshtigo R. Wisconsin Public Service Corp Oconto R. Wisconsin Elec Pwr Co. Peshtigo R. Wisconsin Public Service Corp Menominee R. Niagara of Wis Paper Corp. Peshtigo R. Wisconsin Public Service Corp Waupaca R. Wisconsin Elec Pwr Co. Peshtigo R. Wisconsin Public Service Corp Chippewa R. Northern States Power Co. Peshtigo R. Wisconsin Public Service Corp Fox R. Kaukauna, City of
State
County
Project Statusb
WI
Sawyer
NO
200
931231
WI
Price
NO
1,200
931231
WI
Rusk
LE
3,900
WI
Chippewa
MO
21,600
931231
WI
Ashland
NO
1,000
931231
WI
Shawano
NO
700
150630
WI
Price
NO
1,500
931231
WI
Rusk
NO
1,400
931231
WI
Lincoln
NO
512
931231
WI
Shawano
NO
423
191231
WI
Florence
MO
3,600
931231
WI
Chippewa
MO
48,600
330930
WI
Marinette
MO
3,520
931231
WI
Oconto
NO
1,320
931231
WI
Marinette
MO
6,400
931231
WI
Marinette
MO
8,388
930630
WI
Marinette
MO
3,840
931231
WI
Waupaca
NO
400
931231
WI
Marinette
NO
1,380
931231
WI
Chippewa
MO
35,280
000630
WI
Marinette
NO
584
931231
WI
Outagamie
MO
3,300
000731
Capacity (kW)
Exp. Date (YYMMDD)
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Plant Name
11-126
Table 11C.48
2595 2639 2640 2670 2677B 2677A 2677C 2684 2689 2697 2711 2715 2744B 2894 2970 3052 4914 6476 7264 8015 8286 9002 9003 9184 9185
Wisconsin R.
Consolidated Water Pwr Co. High Falls Peshtigo R. Wisconsin Public Service Corp Cornell Chippewa R. Northern States Power Co. Upper Hydro N Fk Flambeau R. Flambeau Paper Corp. Dells Chippewa R. Northern States Power Co et al Badger (Old) Fox R. Kaukauna, City of Rapid Croche Fox R. Kaukauna, City of Badger (New) Fox R. Kaukauna, City of Arpin E Fk Chippewa R. North Central Power Co. Oconto Falls Oconto R. Scott Paper Co. Cedar Falls Red Cedar R. Northern States Power Co. Trego Namekagon R. Northern States Power Co. Combined Locks Fox R. Kaukauna, City of Park Mill Menominee R. Menominee Co. Black Brook Apple R. Northwestern Wis Elec Co. Argyle E Pecatonica R. Argyle, Village of Black River Falls Black R. Black River Falls, City of West De Pere Fox R. International Paper Co. Neshonoc La Crosse R. North Amer Hydro Inc. Appleton (Middle) Fox R. Fox Valley Corp. et al. Shawano Wolf R. Little Rapids Corp. Chippewa Chippewa R. Northern States Power Co. et al. Apple River Apple R. Northern States Power Co. Riverdale Apple R. Northern States Power Co. Danbury Yellow R. Northwestern Wis Elec Co. Clam River Clam R. Northwestern Wis Elec Co. Junction Kinnickinnic R. River Falls, City of River Falls Kinnickinnic R. River Falls, City of
WI
Portage
MO
1,800
930630
WI
Marinette
MO
7,000
931231
WI
Chippewa
MO
30,800
231130
WI
Price
NO
900
931231
WI
Eau Claire
MO
9,500
000831
WI WI WI WI
Outagamie Outagamie Outagamie Sawyer
MO MO MO NO
2,000 2,400 3,600 1,450
191231 191231 191231 190430
WI WI
Oconto Dunn
MO MO
1,810 6,000
931231 010130
WI
Washburn
NO
1,200
930331
WI WI WI
Outagamie Marinette Polk
MO MO NO
7,000 1,724 650
240729 150228 201231
WI WI
Lafayette Jackson
LE NO
50 900
010830
WI
Brown
NO
1,078
041130
WI
La Crosse
LE
500
WI
Outagamie
NO
1,290
WI WI
Shawano Sawyer
LE LE
380 3,100
WI
St. Croix
LE
3,700
WI
St.Croix
LE
620
WI
Burnett
NO
1,076
070531
WI
Burnett
NO
1,200
070331
WI WI
Pierce Pierce
NO NO
250 125
180831 180831
050630
(Continued)
q 2006 by Taylor & Francis Group, LLC
11-127
10489A 10489B
Wisconsin R. Div.
WATER RESOURCES MANAGEMENT
2590
(Continued)
Project Numbera
Plant Name
River
Owner
State
County
Project Statusb
10674
Midtec
Fox R.
WI
Outagamie
MA
2,700
10805
Hatfield
Black R.
Midtec Paper Corp. Midwest Hydraulic Co.
WI
Jackson
PO
4,800
a b c d
Capacity (kW)
Exp. Date (YYMMDD)
11-128
Table 11C.48
920931
Plants without project numbers are not under FERC jurisdiction and thus have no entries under the project status or license expiration columns. Project Status: FA, Federally authorized; LE, Exempted from licensing; MA, Major license applied for (O1.5 MW); MO, Major license outstanding or annual license during major relicensing proceeding (O1.5 MW); NO, Minor license outstanding or annual license during minor relicensing proceeding (%1.5 MW); PO, Preliminary Permit Outstanding. Pumped storage. Reversible capacity could be used for conventional generation.
Source: From FERC, 1990j.
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-129
Table 11C.49 Small Hydroelectric Capacity in the United States 5,000 kW and Less Category Developed Number of sites Capacity (MW) Generation (GWh) Under Construction Number of sites Capacity (MW) Generation (GWh) Planned (NERC)a Number of sites Capacity (MW) Generation (GWh) Projectedb Number of sites Capacity (MW) Generation (GWh) Totals Number of sites Capacity (MW) Generation (GWh)
15,000 kW and Less
30,000 kW and Less
1980
1984
1980
1984
1980
1984
751 1,194.6 4.8
864 1,351.1 16.8
946 3,294.7 16.8
1,124 3,729.7 18.6
1,071 5,834.6 28.0
1,252 6,574.0 30.8
16 23.5 0.1
137 168.6 0.7
29 135.6 1.0
153 325.8 1.4
33 229.9 1.3
158 444.8 2.0
12 34.2 0.1
25 54.3 0.3
23 136.2 0.5
39 191.4 0.9
25 182.4 0.6
50 436.8 1.9
157 317.5 1.2
1,699 2,587.1 20.0
227 1,241.8 4.9
2,278 6,669.4 29.4
279 2,317.5 8.9
2,367 8,572.4 37.3
936 1,569.8 6.2
2,725 4,160.8 27.6
1,225 4,808.3 23.2
3,594 10,916.3 50.3
1,408 8,564.4 38.8
3,827 16,028.0 72.0
Note: Developed, Under Construction, and Projected. a b
In reports of the Regional Electric Reliability Councils. Potential developments not under construction or included in NERC reports but which have FERC licensing or exemption status, are authorized or recommended for Federal construction, or have structural provisions for plant additions.
Source: From Federal Energy Regulatory Commission, 1984.
Table 11C.50 Trends in Pumped Storage Capacity Development in the United States Installed Capacity in Reversible Units (Millions kW) Developed
Under Construction
Year as of January 1
Pure
Combined
Total
Pure
Combined
Total
1960 1964 1968 1972 1976 1980 1984
0 0.4 1.6 2.6 7.3 9.3 10.1
0.1 0.3 0.5 1.3 2.4 3.6 3.7
0.1 0.7 2.1 3.9 9.7 12.9 13.8
0 0.7 1.2 6.0 2.7 3.2 4.9
0.2 0.5 1.6 1.4 1.6 1.5 0.4
0.2 1.2 2.8 7.4 4.3 4.7 5.3
Note:
A pure pumped storage project with a large peaking capacity can be developed at a site with two potential reservoirs of reasonable size in close proximity and with a relatively large difference in elevations. Projects are usually more economically developed at sites with high usable heads; consequently, the more favorable sites are normally located in mountainous terrain. However, consideration has been given to the construction of pumped storage projects in areas of level terrain by placing the lower reservoir in an underground cavern or excavated area. For any development, an assured supply of water at least sufficient to replace evaporation, seepage, and other losses is essential.
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
11-130
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11C.51 Hydroelectric Plants Having Potential Conventional Capacity over 1,000,000 kW Installed Capacity in Conventional Units Kilowatts Plant Grand Coulee John Day Chief Joseph R. Moses Niagara The Dalles Hoover Rocky Reach Wanapum Priest Rapids Bonneville Dworshak Glen Canyon Boundary
a
River
Ownera
Developed
Under Construction
Ultimate Authorized
Columbia Columbia Columbia Niagara Columbia Colorado Columbia Columbia Columbia Columbia N. Fork Clearwater Colorado Pend Oreille Total
Bureau COE COE PASNY COE Bureau CC PUD No. 1 GC PUD No. 2 GC PUD No. 2 COE
6,180,000 2,160,000 2,069,000 1,950,000 1,806,800 1,434,000 1,213,950 831,250 788,500 1,076,620
0 0 0 0 0 0 0 0 0 0
6,180,000 2,700,000 2,069,000 1,950,000 1,806,800 1,434,000 1,213,950 1,151,250 1,108,500 1,102,820
COE Bureau
400,000 1,042,000
0 0
1,060,000 1,042,000
Seattle
634,600 21,586,720
392,000 392,000
1,026,600 23,834,920
Bureau, Bureau of Reclamation; COE, Corps of Engineers; PASNY, Power Authority, State of New York; GC, Grant County; CC, Chelan County; and Seattle, Seattle Dept. of Lighting.
Source: From Federal Energy Regulatory Commission, 1984.
Table 11C.52 Federal Hydroelectric Capacity by Operating Agency, January 1, 1984 Installed Capacity Conventional and Reversible (kW)
Corps of Engineers Bureau of Reclamation Tennessee Valley Authority International Boundary and Water Commission Alaska Power Administration Bureau of Indian Affairs National Park Service Total
In Operation
Under Construction
Ultimate Authorized
19,449,197 12,846,876 4,832,410 97,500 77,160 14,560 2,000 37,319,703
1,162,000 250,000 — — — — — 1,412,000
23,466,897 13,577,986 4,832,410 97,500 104,160 14,560 2,000 42,095,513
Source: From Federal Energy Regulatory Commission, 1984.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-131
SECTION 11D
COSTS OF WATER PROJECTS
B
H F
E
H
H
I
G I
B
B E
B
D
C
I
B G B
E E H
B E
B G
I
F
E H
C H
G I
J
I G
I
F D
H
G
F
H
A
E
B
H
I B
D
B
I
H
B
H
I
F
B
G H
A
E
I E
A
H
H
Legend Areas in which major storage reservoirs cannot be constructed or are not likely to be needed. Major navigable waterway.
Figure 11D.40 Map of physiographic regions in the United States (for reservoir costs). (From Corps of Engineers, U.S. Army, 1960.)
q 2006 by Taylor & Francis Group, LLC
11-132
Table 11D.53 Costs of Reservoirs in the Physiographic Regions of the United States
Physiographic Region A B C D E F G H I J
10
30
50
80
150
300
700
1500
3000
7000
30,000
$230 200 180 160 155 145 140 120 95 65
$190 160 135 120 115 106 103 86 65 43
$175 145 120 105 98 90 87 73 55 37
$162 132 110 93 85 80 75 62 46 32
$145 115 95 78 73 65 60 50 38 25
$130 100 80 65 60 55 50 40 30 20
$113 85 66 52 47 43 38 30 22 15
$100 75 56 42 38 34 30 24 18 12
$88 64 49 35 32 28 25 18 15 10
$77 55 40 28 25 21 19 14 10 8
$60 40 28 18 16 14 12 10 8 6
Note: Values are costs in dollars of reservoir storage per acre-feet. Size class in thousand acre-feet. Source: From Corps of Engineers, U.S. Army, 1960.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Size Class
WATER RESOURCES MANAGEMENT
11-133
24a
24b
23a
23b
13b
20e 20c
24d
7a
19
20b
23c
9b
13a
20a
24c
1
12b
18 20d
13c
12a
12c
22a
23d 24f
21a
16
21c
24e 24g 25
21e 22b
22c
8d
13d
21b
12e
11b 8g 14a
13g
21d
14b
13h
21f
12f
22d
5b
11c 15b
8f
3e
6a
4a 3b
3d 13j
22e
3f
13i 3c
Paleozoic
Permian
544
Precambrian
Pennsylvanian
Paleozoic
Devonian Mississippian
Quaternary Cretaceous
360
248
Ages uncertain
410
145
Metamorphic rock
Silurian
Triassic-Jurassic
505
325
440
Figure 11D.41 U.S. physiographic region. (From www.tapestry.usgs.gov.)
q 2006 by Taylor & Francis Group, LLC
440
286
Tertiary
Cenozoic
1.8
65
Mesozoic
248
0
Cambrian Ordovician
Geologic time scale Millions of years ago (Non-Linear)
9b
6b
4b 3a
5a
11a
15a
8c
8e
12d
13e
13f
9c
8a 10 8b
12a
17
24f
9d
3a
9a 9e 6c
11-134
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
USS
Africa
180 154
160 140
160
160
Asia LA & C
120
120
112
115 104
100
90
80
60
60
60 50
50
57
50 52
40
60 33 26
20 0 Sewer Small bore Septic tank connection sewer
Poor-lesh
VIP
Simple pin
Figure 11D.42 Average construction cost of sanitation facilities for Africa, Asia, and Latin America and the Caribbean, 1990–2000. (From www.who.int.)
Cost USS per m
Production cost
0.6 0.5
0.2
0.3
0.3
Tariff/cost ratio
1.2 0.54
0.5
0.4 0.3
Median ratio
0.8 0.3
0.2
0.1
1.0
0.6 0.4 0.2 0
0 Africa
Asia
LA & C N.Amer Oceania Europe
Figure 11D.43 A comparison of the median unit production cost of urban water supply and the median tariff/production cost ratio by region 1990–2000. (From www.who.int.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-135
USS per m2 1.0 0.9
Water tariff
0.8
Sewerage tariff
0.7
0.57 0.59
0.6 0.5
0.48
0.44
0.4 0.35 0.3 0.2
0.32
0.12
0.1
0.41
0.40
0.21 0.14
0 Africa
Asia
LA & C
N.Amer
Oceania
Europe
Figure 11D.44 Median water supply and sewerage tariffs by region, 1990–2000. Average construction cost per person served of water supply facilities for Africa, Asia and Latin America and the Caribbean 1990–2000. (From www.who.int.)
Table 11D.54 Typical Costs of Irrigation Development in Latin America, Africa, Asia, and Far East
Region Latin America Africa (excl. Sudan) Sudan Near East Asia and Far East (excl. South Asia) South Asia (Bangladesh, India, Pakistan) Rehabilitation in all regions except South Asia, $1760/ha Rehabilitation in South Asia, $800/ha
$/ha
Gravity Schemes Share in Total (%)
Pump and Tubewells ($/ha)
All Schemes Weighted Average Cost ($/ha)
6,000 11,000 5,000 7,000 4,000 2,500
50 70 50 70 60 40
3000 6000 4000 4000 2000 1000
4000 9500 4500 6100 3200 1600
Note: 1980 prices; US $ per hectare. Source: From FA0, 1982, The State of Food and Agriculture.
USS 160
144
Africa
140 120 100
Asia LA & C
112 52
80
54
60
55
41
40
31
20
23
48
49 34 36
17
21 22
0 House connection
Standpost
Borehole
Dog well
Rain water
Figure 11D.45 Average construction cost per person served of water supply facilities for Africa, Asia, and Latin America and the Caribbean, 1990–2000. (From www.who.int.)
q 2006 by Taylor & Francis Group, LLC
11-136
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11D.55 Typical Cost Structures for Water-Supply Systems in the United States Small Systemsa
Percentage of Operating Expenses
Percentage of Operating Expenses Excluding Interest Charges
Percentage of Operating Expenses
Percentage of Operating Expenses Excluding Interest Charges
19 15 36 14 16 100
22 18 43 17 — 100
15 10 31 25 19 100
19 13 38 30 — 100
Acquisition Treatment Distribution and Transmission Support Services Interest Charges Total a b
Large Systemsb
Serving between 300 and 75,000 people. Serving over 75,000 people.
Source: From U.S. Environmental Protection Agency, 1986, Guidelines for Ground Water Classification under the EPA Ground Water Protection Strategy; ACT Systems Inc., 1977, 1979.
Table 11D.56 Typical Water System Costs in the United States (1984 $/million of gallons produced) Source Population Served by System 1000–3300 3300–10,000 10,000–25,000 25,000–75,000 75,000–500,000 Over 5,00,000
Surface Water
Groundwater
1,085 1,063 795 727 596 457
1,493 924 718 710 606 574
Note: Operating expenses (including depreciation and capital charges), inflated to 1984 dollars. Source: From U.S. Environmental Protection Agency, 1986, Guidelines for Ground Water Classification under the EPA Ground Water Protection Strategy ; Survey of Operating and Financial Characteristics of Community Water Systems, Temple, Barker and Sloane, Inc. 1982.
Table 11D.57 Costs of Groundwater Supply Systems in the United States Population Served by System 25–1000 1000–3300 3300–10,000 10,000–25,000 25,000–75,000 75,000–5,00,000 Over 5,00,000
Annual Cost 4,616 1,493 924 718 710 606 574
Note: By population size category; 1984 $/million gallons produced. Operating expenses (including depreciation and capital charges, inflated to 1984 dollars). Source: From U.S. Environmental Protection Agency, 1986, Guidelines for Ground Water Classification under the EPA Ground Water Protection Strategy ; Survey of Operating and Financial Characteristics of Community Water Systems, Temple, Barker and Sloane, Inc. 1982.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-137
Table 11D.58 Costs of Community Water Supply Technology in Developing Countries Low Technology
High
Handpumps
Standpipes
Yardtaps
Handpumps
Standpipes
Yardtaps
4000 1300 None 5300 13.3
2,000 4,000 4,500 10,500 26.3
2,500 4,500 16,000 23,000 57.5
10,000 2,500 None 12,500 31.2
5,000 8,000 10,000 23,000 57.5
6,000 9,000 30,000 45,000 112.5
700 200 None 900 1400 2300
1,500 600 150 2,250 1,100 3,350
3,200 1,000 450 4,650 None 4,650
1,400 400 None 1,800 3,000 4,800
3,000 1,200 300 4,700 2,200 6,900
6,000 2,000 900 8,900 None 8,900
Capital cost (US$) Wellsa Pumps (hand/motor) Distributionb Sub-total Cost per capita Annual cost (US$/year) Annualized capitalc Maintenance Operation (fuel) Sub-total (cash) Haul costs (labor)d Total (including labor) Total annualized cost per capita Cash only CashClabor
2.3 5.8
5.6 8.4
11.6 11.6
4.5 12.0
11.8 17.3
22.3 22.3
Note: Capital and recurrent costs for a community of 400 people. a b c d
Pumping water level assumed to be 20 m. Two wells assumed for handpump system (200 persons per handpump). Distribution system includes storage, piping, and taps with soakaway pits. Capital costs with replacement of mechanical equipment after 10 years annualized at a discount rate of 10% over 20 years. Labour costs for walking to the water point, queuing, filling the container, and carrying the water back to the house. Time valued at US $ 125/h.
Source: From Arlosoroff, Saul, and others, 1987, Community Water Supply: The Handpump Option, The World Bank, Washington, DC.
Table 11D.59 Projection of Irrigation Expansion in Developing Countries and Related Costs (1993–2000)
Asia (30 countries) Near East (10 countries) Latin America (40 countries) Africa (50 countries) Total (130 countries)
Total Irrigated Land-1990 (millions of hectacres)
Projected Increases
Unit Cost (US dollars)
132.11 9.50 16.31 14.21 172.11
2.02 0.45 0.84 0.07 5.24
400 800 000 200
Total Costs (billions of dollars) 2.88 2.32 7.20 7.20 5.52
Source: From www.munfw.org.
Table 11D.60 Estimated Targets and Costs for the Modernization of Existing Irrigation Schemes (1990–2000)
Asia Near East Latin America Africa Developing Countries—130 Source: From www.munfw.org.
q 2006 by Taylor & Francis Group, LLC
Total Irrigated Area-1990 (millions of hectacres)
Total Area Upgraded
Unit Cost (US dollars)
Total Costs (US dollars)
132.11 95.9 16.3 14.2 172.11
3.21 5.1 1.63 1.42 7.2
600 450 1000 1800 113.1
1.4 1.6 2.52 4
11-138
Table 11D.61 Options for Community Water Supply: A Comparative Study Step
Type Of Service
Water Source
Quality Protection
Water Use LPCa
Energy Source
Operation and Maintenance Needs
High capital and O&M costs, except for gravity schemes
Most desirable service level, but high resources needs
High capital and O&M costs, except gravity schemes Moderate capital and O&M costs, except gravity schemes; collection time Low capital and O&M costs; collection time
Very good access to safe water: fuel and institutional support critical Good access to safe water: cost competitive with handpumps at high pumping lifts Good access to safe water: sustainable by villagers Improvement if traditional source was badly contaminated Starting point for supply improvement
House connections
Groundwater Surface water Spring
Good, no treatment May need treatment Good, no treatment
100 to 150
Gravity, Electric, Diesel
4
Yardtaps
Groundwater Surface water Spring
Good, no treatment May need treatment Good, no treatment
50 to 100
Gravity, Electric, Diesel
3
Stand pipes
Groundwater Surface water Spring
Good, no treatment May need treatment Good, no treatment
10 to 40
Gravity, Electric, Diesel, Wind, Solar
2
Handpumps
Groundwater
Good, no treatment
10 to 40
Manual
Trained repairer: few spare parts
1
Improved traditional Groundwater sources (partially Surface water protected) Spring Rainwater Traditional Sources Surface water (unprotected) Groundwater Spring Rainwater
Variable Poor Variable Good, If protected Poor Poor
10 to 40
Manual
General upkeep
Very low capital and O&M costs: collection time
10 to 40
Manual
General upkeep
Low O&M costs (buckets, etc.) collection time
a
Liters per capita per day.
Source: From www.skipumps.com.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
General Remarks
5
0
Well trained operator; Reliable fuel and chemical supplies; many spare parts: wastewater disposal Well trained operator; reliable fuel and chemical supplies: many spare parts Well trained operator; reliable fuel and chemical supplies: many spare parts
Costs
WATER RESOURCES MANAGEMENT
11-139
SECTION 11E
PROJECT PLANNING AND ANALYSIS
Figure 11E.46 Linear flows. (From The African Water Page, adapted from Esrey et al. 2001, www.thewaterpage.com. With permission.)
People
Excreta
Food
Pathogen destruction
Transport & storage
Safe fertilizer
Crops
Plants Figure 11E.47 Circular flows. (From The African Water Page, www.thewaterpage.com. With permission.)
q 2006 by Taylor & Francis Group, LLC
11-140
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
120 100
%
80 60 40
62
81
85
88
96
100
Africa
Asia
LA & C
Oceania
Europe
N. America
20 0 Figure 11E.48 Proportion (%) of population with water supply services. (From The African Water Page, www.thewaterpage.com. WHO/ UNICEF, 2000.)
100 90 80 70 60 50 40 30 20 10 0
%
90 66 35 0 Africa
14 Asia
LA & C
Oceania
Europe
N. America
Figure 11E.49 Lack of treatment of waste water. (From The African Water Page, www.thewaterpage.com. WHO/UNICEF, 2000.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-141
Table 11E.62 Elements Comprising a Water Resources Project Investigation A. Purposes of a multiple-purpose project 1. Irrigation 2. Drainage 3. Domestic or industrial water supply 4. Flood control 5. Hydro-power generation 6. Navigation 7. Fish and wildlife conservation 8. Recreation 9. Water quality control 10. Salinity control 11. Watershed management 12. National defense 13. International relation B. Land resources 1. Land classification 2. Land use and capabilities 3. Development 4. Settlement 5. Drainage C. Water resources 1. Water supply, surface and groundwater and salvage 2. Water quality and treatment 3. Water requirements, all purposes 4. Water rights including international treaties 5. Flood studies 6. Sediment, including transport, erosion and aggradation 7. Project operation studies 8. Forecasting for operation 9. Hydraulic design requirements D. Engineering and geology 1. Aerial photography, surveying and mapping 2. Geology, foundation and materials 3. Anticipated construction problems 4. Plans and cost estimates, physical plan formulation 5. Anticipated operation, maintenance and replacement problems and estimates of cost Source: From ECAFE, United Nations, 1964.
q 2006 by Taylor & Francis Group, LLC
E. Economics 1. Existing economy and resource use 2. Future economy without the project 3. Future economy with the project, and regional and national impact 4. Economic criteria for plan formulation 5. Economic justification F. Financial considerations 1. Cost allocation to various purposes 2. Repayment of capital investment 3. Payment of annual operation, maintenance and replacement costs G. Legal considerations 1. Right to use of water 2. International agreements and treaties 3. Land acquisition and rights-of-way H. Public relations 1. Determination of public interest in contemplated development 2. Dissemination of factual information on progress and objectives of investigation 3. Establishment of government policy and enabling legislation I. Reports 1. Reconnaissance reports (a) Basin plan (b) Preliminary project report 2. Special interim or progress reports 3. Feasibility 4. Definite plan J. Administration 1. Organizational requirements for supervision of construction and operation of proposed projects 2. Program and budget requirements and control
11-142
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11E.63 Purposes of a Water Resources Project Purpose Flood control
Irrigation
Hydroelectric
Navigation
Description Flood-damage prevention or reduction, protection of economic development, conservation storage, river regulation, recharging of groundwater, water supply, development of power, protection of life Agricultural production
Provision of power for economic development and improved living standards Transportation of goods and passengers
Domestic and industrial water supply
Provision of water for domestic, industrial, commercial, municipal, and other uses
Watershed management
Conservation and improvement of the soil, sediment abatement, runoff retardation, forests and grassland improvement, and protection of water supply Increased well-being and health of the people
Recreational use of water
Fish and wildlife
Pollution abatement
Insect control
Drainage
Sediment control
Salinity control
Improvement of habitat for fish and wildlife, reduction or prevention of fish or wildlife losses associated with man’s works, enhancement of sports opportunities, provision for expansion of commercial fishing Protection or improvement of water supplies for municipal, domestic, industrial, and agricultural use and for aquatic life and recreation Public health, protection of recreational values, protection of forests and crops Agricultural production, urban development, and protection of public health Reduction of control of slit load in streams and protection of reservoirs
Abatement or prevention of saltwater contamination of agricultural, industrial, and municipal water supplies
Type of Works and Measures Dams, storage reservoirs, levees, floodwalls, channel improvements, floodways, pumping stations, floodplain zoning, flood forecasting
Dams, reservoirs, wells, canals, pumps and pumping plants, weed-control and desilting works, distribution systems, drainage facilities, farmland grading Dams, reservoirs, penstocks, power plants, transmission lines Dams, reservoirs, canals, locks, open-channel improvements, harbor improvements Dams, reservoirs, wells, conduits, pumping plants, treatment plants, saline-water conversion, distribution systems Soil-conservation practices, forest and range management practices, debris-detention dams, small reservoirs, and farm ponds Reservoirs, facilities for recreational use, works for pollution control, reservations of scenic and wilderness areas Wildlife refuges, fish hatcheries, fish ladders and screens, reservoir storage, regulation of streamflows, stocking of streams and reservoirs with fish, pollution control, and land management Treatment facilities, reservoir storage for augmenting low flows, sewage-collection systems, legal control measures Proper design and operation of reservoirs and associated works, drainage, and extermination measures Ditches, tile drains, levees, pumping stations, soil treatment Soil conservation, sound forest practices, proper highway and railroad construction, desilting works, channel and revetment works, bank stabilization, special dam construction and reservoir operations Reservoirs for augmenting low streamflow, barriers, groundwater recharge, coastal jetties (Continued)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
Table 11E.63
11-143
(Continued)
Purpose Artificial precipitation Employment
Public works acceleration
New water-resources policies
Description
Type of Works and Measures
Control of precipitation within meteorological limits Stimulation of employment and sources for increased income in depressed areas of unemployment and underdevelopment Acceleration of Federal, state, and local constructions of public works on cost-sharing basis New policies to be used by Federal agencies, according to S. Document no. 97 (27), approved by the President May 15, 1962, affecting the economies of project justification as well as project formulation and composition
Portable cloud-seeding equipment, ground generators Area Redevelopment Act and Area Redevelopment Administration
Public Law 87–658
Senate Document no. 97
Source: From Dixon, In Chow, Handbook of Applied Hydrogeology, McGraw-Hill, Copyright, 1964. With permission.
q 2006 by Taylor & Francis Group, LLC
11-144
Table 11E.64 Items to be Considered in Planning a Multiple-Purpose Water Resources Project
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
A. Physical and Related Items 1. Project area a. Physical geography: location and size; physiography; climate; soils b. Settlement: history; population; cultural background, both rural and urban c. Development: industry; transportation; communication; commerce; power; land uses; water uses; minerals; undeveloped resources d. Economic conditions: general; relief problems; community needs; national needs e. Investigations and reports: previous investigations; history; scope 2. Hydrologic data a. Hydrologic records and networks: gaging and observation stations; data-collecting agencies b. Hydrometeorological data: precipitation; evaporation and evapotranspiration c. Surface water: low flows; normal flows; maximum floods; “design floods;” drought; quality d. Groundwater: aquifers; recharge; quality 3. Supply of water a. Sources of supply: surface-water supply; groundwater supply; reservoirs b. Variation of supply: variability; consumptive use; regulation; diversion requirements; return flow; evapotranspiration losses; seepage losses or gains c. Quality of water: physical, chemical, biological and radioactive qualities; quality requirements; pollution d. Legal rights: water rights; development of project rights; operation rights 4. General considerations for design and planning a. Geology: explorations; geological formations; foundation problems b. Design problems: design criteria; methods of analysis; project operation and maintenance c. Construction problems: accessibility to project site; rights of way and relocation; construction materials; construction period; flow diversion; manpower; equipment, accessibility d. Alternative plans: comparison of alternative plans; supplementary plans; possible alternative plans; relationships to areas to be served e. Estimates of costs f. Intrastate, interstate, and international problems g. Organizations involved: public and/or private; technical, social, and political 5. Flood control a. Flood characteristics of the project area: Historical floods; flood magnitude and frequency b. Design criteria: project design storms and floods; degree of protection c. Damage: survey of flooding areas and things affected by floods, nearby or quite a distance away, including commerce, good will, dates of delivery of goods, etc. d. Measure of control: reduction of peak flow by reservoirs; confinement of flow by levees, floodwalls, or a closed conduit; reduction of peak stage by channel improvement; diversion of floodwater through bypasses or floodways; flood-plain zoning and evacuation; floodproofing and flood insurance of specific properties; reduction of flood runoff by watershed management e. Existing remedial works 6. Agricultural use of water (irrigation and related drainage) a. Factors for land classification: soil texture; depth to sand, gravel, shale, raw soil, or penetrable lime zone; alkalinity; salinity; slopes; surface cover and profile; drainage; water logging b. Present and anticipated development: crops; livestock; financial resources; improvements; organizations; development period c. Water requirements, if any: total crop requirement; irrigation-water demand; farm-delivery losses; diversion amounts d. Available water: sources; quality; quantity; distribution e. Irrigation methods: flooding; furrow irrigation; sprinkling; subirrigation; supplemental irrigation f. Structural works: storage reservoirs; dams; spillways; diversion works; canals and distribution systems 7. Hydroelectric power a. Development: sources; present potential and future capacities b. Alternative sources of power: stream; oil; gas; nuclear power; interties
WATER RESOURCES MANAGEMENT
c. Types of power plants: run-of-river; storage; pumped storage d. Structural components: dams; canals; tunnels; penstock; forebay; powerhouse; tailrace e. Power problems: load demand and distribution; interties (interconnections with other power transmission systems) f. Markets; revenues; costs 8. Navigation a. Water traffic: present and future needs and savings in shipping costs, if any, on the basis of which the justifications are primarily judged at the present time b. Alternative means of transportation: air; land c. Navigation requirements: depth, width, and alignment of channels; locking time; current velocity; terminal facilities d. Methods of improving navigation: channel improvement by reservoir regulation; contraction works; bank stabilization, straightening, and snag removal; lock-and-dam construction; canalization; dredging 9. Domestic and industrial water supply a. Sources of supply: surface and/or groundwater; location and capacity; desalination b. Water demand: climate; population characteristics; industry and commerce; water rates and metering; size of project area; fluctuation c. Water requirements: quantity; pressure; quality (tastes, odors, color, turbidity, bacteria content, chemicals, temperature, etc.) d. Methods of purification: plain sedimentation; chemical sedimentation or coagulation; filtration; disinfection; aeration; water softening e. Treatment plant: location; design; purpose or purposes f. Distribution systems: reservoirs; pumping stations; elevated storage; layout and size of pipe systems; location of fire hydrants g. Waterworks organizations: maintenance and operation of supply, distribution, and treatment facilities 10. Recreational use of water a. Population tributary (population near enough to the project area to use it for recreational purposes) b. Facilities: boating; fishing; swimming; etc. c. Water requirements: depth of water; area of water surface; sanitation 11. Fish and wildlife a. Biological data: species; habits b. Facilities: reservoirs; fish ladders c. Water requirements: temperature; current velocity; biological qualities 12. Drainage a. Existing projects b. Drainage conditions: rainfall excess; soil condition; topography; disposal of water c. Drainage system: urban; farmland 13. Water-quality control a. Problems involved: sources; nature and degree of pollution; sediment; salinity; temperature; oxygen content; radioactive contamination b. Hydrologic information and measurement c. Methods of control B. Economic Aspects of Project Formulation 1. Benefits and damages: identification and evaluation 2. Costs: identification and estimation 3. Financial feasibility 4. Allocation of costs 5. Reimbursement requirements and sharing of allocated costs 6. Methods and costs of financing the project, whether federal, state, or local, bringing all benefits and all costs to an annual basis and recognizing interest on the investment not only during construction, but throughout the entire proposed “life of the project” 7. Benefit-cost-ratio analysis: alternative plans Source: From Dixon, In Chow, Handbook of Applied Hydrogeology, McGraw-Hill, Copyright, 1964. With permission.
11-145
q 2006 by Taylor & Francis Group, LLC
11-146
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11E.65 Potential Benefits of Water Quality Improvements In-Stream use
Commercial fisheries, shell fisheries, and aquaculture; navigation Recreation (e.g., fishing, hunting, boating, swimming) Subsistence fishing Human health risk reductions Water-enhanced noncontact recreation (e.g., picnicking, photography, jogging, biking, camping) Nonconsumptive use (e.g., wildlife viewing, hiking near water) Flood control (reduced property loss and risk to health and safety) Industry/commercial (process and cooling waters) Agriculture/irrigation Municipal drinking water (treatment cost savings, water storage dredging and construction savings, and human health risk reduction) Residing, working, traveling, and owning property near water, etc. Existence (satisfaction gained from knowing the resources exist and knowing others enjoy the resources; ecologic value, including reduced mortality and morbidity, improved reproductive success, increased diversity of aquatic and piscivorous wildlife, improved habitat for threatened and endangered species, and improved integrity of aquatic and aquatic-dependent ecosystems) Bequest (intergenerational equity)
Near-stream use
Diversionary use
Aesthetic use Passive use
Note: Previous analyses have included option value as a potential benefit of environmental improvement. For this analysis, EPA adopted Freeman’s (1993) conclusion that option value does not exist as a separate benefit category. Source: From www.epa.gov. Table 11E.66 Some Examples of Water Management Purposes and the Need for Planning Function
Primary Responsibilitya
Irrigation
F, S, L, P
Municipal water supply
L
Best construction of systems Cost effectiveness
Industrial water supply
P
Cost effectiveness
Energy cooling water
P
Development of supplies
Hydropower
F, P
Wastewater treatment
L
Development of economic power Cost effectiveness
Navigation
F
Flood damage reduction Urban drainage
F, S, L L
Agricultural drainage Recreation Fish and wildlife
L F, S, L F, S
Watershed management Preservation of ecological systems Preservation of systems of unique value
L F, S F, S
a
Capital Investment
National economic efficiency Optimum facilities Plans for economical systems Plans for systems Development of facilities Preservation and enhancement of species Best plans Preservation of systems Preservation of systems
Operating Plans Best use of water and money Contingencies, best use of facilities Contingencies, best use of facilities Best use of facilities, meeting standards Maximization of energy production Meeting standards, reducing costs Operation of facilities Optimum operation Maintenance, warning, etc Operation of systems Effective operation Effective operation Maintenance and operation NA NA
FZFederal SZState LZLocal PZPrivate
Source: From Grigg, N.S., 1985, Water Resources Planning. Copyright 1985 McGraw-Hill, Inc. Reprinted with permission.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-147
Table 11E.67 Stages of Planning for Water Resources Management
Policy Planning Examples of Activities Assess broad national needs
Framework Planning Examples of Activities From viewpoint of broad regionwide totals and on “no-project” basis
Hypothesize national goals and objectives Inventory and evaluate available data Identify problems and opportunities in achieving goals Identify costs and benefits in achieving goals
Recommend policy choices
Coordinate national priorities Review programs for achievement of goals
Assess present and future water use and environmental needs Assess available water and related land resources
Evaluate general regulation potential and identify water quality management approaches Inventory present status of development Inventory general means available to satisfy needs Assess general alternatives to meet different goals
General Appraisal Planning Examples of Activities On basis of local projects or measures, and over regional of watershed areas Estimate present and future water use and environmental needs Estimate available water and related land resources Make preliminary evaluations of alternative water quality management approaches Make preliminary estimates of costs, benefits and consequences of specific alternative projects and measures Compare alternative projects and measures Devise alternative early action and future programs Recommend specific early action and alternative future programs, including selection of projects or measures for implementation study
Identify problem areas that need priority attention Recommend actions that can be taken at present and those that require further study
Implementation Planning Examples of Activities For specific projects or measures
Evaluate specific water use and environmental needs Evaluate available water and related land resources Evaluate regulation potential for different degrees of storage
Evaluate degree of water quality control with different types of facility
Prepare conceptual designs and cost estimates Make economic analyses of benefits and consequences Make financial analyses to demonstrate payout
Compare alternatives on basis of costs, benefits and payout Recommend an alternative to be selected
Recommend concerning authorization Source: From National Water Commission, 1972, Water Resources Planning.
q 2006 by Taylor & Francis Group, LLC
11-148
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11E.68 Water Body Classification Categories Description of Desired Usea Category I: Water bodies typically used for direct contact recreational activities, including swimming, scuba diving, snorkeling and waterskiing
Category II: Water bodies typically used for indirect contact recreational activities, including sail boating, motor boating, canoeing, and fishing. These activities involve incidental contact with lake water, but do not generally require the water clarity found in direct contact recreational waters. Algal blooms in mid- to late-summer may limit direct contact recreational activities such as swimming and waterskiing Category III: Water bodies that typically serve important functions such as wildlife habitat and aesthetics. May also provide opportunities for warm water fishing, provided winterkill does not occur. Generally accessible to the public for education, interpretation, and nature appreciation.
Category IV — Nutrient Traps: The intended use of these water bodies is to reduce downstream loading of phosphorus and other nutrients that contribute to water pollution. These ponds are generally artificially modified to improve their nutrient trapping capacity. These ponds may become hypereutrophic, and frequent summer algal blooms would be considered normal Category V — Sediment Traps: These water bodies are similar to Category IV water bodies, but too small to effectively remove a significant fraction of nutrients a b
Guidelines for Desired Useb Minimum summer Secchi disc depth of at least 1.0 meters; summer average of at least 1.4 meters. Total phosphorus concentrations less than 45 g/L. Chlorophyll-a concentrations less than 20 g/L. Carlson TSI index (Secchi disc based) no greater than 55 Mean summer Secchi disc depth of at least 0.9 meters, but less than 1.4 meters Total phosphorus concentration of at least 45 g/L, but less than 75 g/L Chlorophyll-a concentration of at least 20 g/L, but less than 40 g/L Carlson TSI index (Secchi disc based) should be no greater than 60 Of primary importance are guidelines related to aesthetic enjoyment and wildlife habitat to maintain/improve desired use of these water bodies — see Table 5.2 for a listing of aesthetic and habitat indicators. Of secondary importance are the following water quality guidelines: Mean summer Secchi disc depth of at least 0.7 meters Total phosphorus concentration of at least 75 g/L, but less than 105 g/L Chlorophyll-a concentration of at least 40 g/L, but less than 60 g/L Carlson TSI index (Secchi disc based) no greater than 65 Design for phosphorus removal efficiencies of at least 50%. Depth should be managed to prevent or reduce odors associated with algal blooms. No numeric standards for water quality parameters are defined for this category Generally have phosphorus removal efficiencies less than 50%. No numeric standards for water quality parameters are defined for this category
Categories I–III could also include ecologically or biologically unique resources, or water bodies that directly or indirectly affect such a resource. The water quality criteria for Categories I–III may not apply in the case of ecologically or biologically unique resource; resource-specific criteria may be required.
Source: From Black Dog Watershed Management Organization, www.dakotacountyswcd.org. With permission.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-149
Table 11E.69 Aesthetic and Habitat Indicators and Recommended City Actions Indicator Localized shoreline erosion
Prevalence
Recommended Actionsa
10% or less of shore 10% to 25% 25% or more Present
A (note # of sites), B A (note # of sites), B, C A (note # of sites), B, D E
Average density of shallow water aquatic plantsc
Present 10 cubic yards or more O75% 50% to 75% 25% to 50% !25% Present Not present Present Not present !1.5
Non-native invasive shallow water aquatic plantsd
1.5 to 2.5 O2.5 Present
E F A A, B A, B, Computer A, B, D A (note # of colonies), G, H A A, G, I A A, B (to encourage growth of desirable plants), J A A, K A, B (to encourage growth of desirable plants), L A
Shoreline erosion resulting from upstream activity Sedimentation/deltas Shoreline buffer/percent vegetatedb
Purple loosestrife, non-native invasive species Glossy and common buckthorn, non-native invasive species
Not present a
b c d
Key to recommended city actions: A, Monitor annually; B, Targeted education materials regarding the importance of lakescaping and buffers; C, Lakescaping demonstration project; D, Lakescaping incentive program (e.g. small grants to encourage residents to implement lakescaping techniques); E, Evaluate source of problem and develop methods to address problem; F, Excavate sediment; G, Targeted education materials regarding the detrimental impacts of the plants, the importance of removing them, methods to remove them, and replacement plantings; H, Recruit citizens to take part in the DNR’s purple loosestrife (beetle) program to eradicate plants; I, Recruit citizens to remove/replace plants; J, Evaluation needed to determine why so few plants are present and if more are needed; K, Evaluate extent of plant growth and develop/implement aquatic plant management plan; L, Evaluate extent of plant growth and develop/implement aquatic plant management plan — may not include eradication of non-native invasive plants, especially if they are the only aquatic plants present. Percent vegetated — percent of shoreline that is vegetated, exclusive of landscaped lawns, with buffer at least 10 f in width. Based on density ratings given for numerous locations within the littoral zone of each water body; density of 1, low, 2, moderate, 3, high. Non-native invasive aquatic plants include Eurasian watermilfoil and curly leaf pondweed.
Source: From Black Dog Watershed Management Organization, www.dakotacountyswcd.org. With permission.
q 2006 by Taylor & Francis Group, LLC
11-150
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11E.70 Recommended Lake Water Quality Management Actions for Category I and II Lakes Type(s) of Management Action Needed Most Recent Summer Average Lake Water Quality, as Compared to Management Action Level Better than
5–10-Year Water Quality Trend No trend analysis available
Improving
Steady
Degrading
Worse than
No trend analysis available Improving
Steady
Degrading
Watershed Management
Lake Monitoring
No action
Continue existing water quality monitoring program: Survey Level— Category I Secchi Disc—Category II No action Survey Level— Category I Secchi Disc—Category II No action Survey Level— Category I Secchi Disc—Category II No action Management Level— Category I Survey Level—Category II No action Management Level— Category I Survey Level—Category II Implementation of Management Level— runoff BMPs Category I Survey assumed; no further Level—Category II action required Diagnostic study (e.g., Management Level— P8 modeling) Category I Survey Level—Category II
Intensive lake Comprehensive monitoring as part of lake/watershed diagnostic feasibility diagnostic feasibility study study
Source: From Black Dog Watershed Management Organization, www.dakotacountyswcd.org. With permission.
q 2006 by Taylor & Francis Group, LLC
Runoff Monitoring or Equivalent None
None
None
Watershed land use review None
None
Watershed land use review; And subsequent, focused runoff water quality monitoring in potential problem subwatersheds Detailed runoff water quality monitoring as part of diagnostic feasibility study
WATER RESOURCES MANAGEMENT
Table 11E.71 Detailed Listing of Possible Best Management Practices Type of Practice
Storm Protection Benefit
Pollutants Controlled
Construction Requirements
Public education (billing inserts, news releases, radio public service announcements, school programs, and pamphlets)
Not applicable
Reduced pollutant load to storm drain system
Can reduce improper disposal of paints, varnishes, thinners, pesticides, fertilizers, and household cleansers, and chemicals, etc.
None
Litter control
Site dependent
Reduced potential for clogging and discharge
Household and restaurant paper, plastics, and glass
Increase number of trash receptacles and regularly service
Recycling programs
Site dependent
Reduction in potential for clogging and harmful discharge
Household paper, glass, aluminum, and plastics. Oil and grease from auto maintenance
Collection and sorting stations
“No Littering” ordinance
Storm drain system and receiving water
Prohibits littering and prevents litter from entering storm drains
Paper, plastics, glass, food wrappers, and containers
None
“Pooper Scooper” ordinance
Storm drain system and receiving water
Requires animal owners to clean Coliform bacteria and nitrogen/urea up and properly dispose of animal wastes
None
Develop and enact spill response Site dependent plan
Prevent pollutants from entering Hazardous chemical, harmful storm drain chemicals, oil, and grease
None
Clean up vacant lots
Prevent debris from Hazardous and/or harmful accumulating on lot. Prevent chemicals, wind blown for water site from appearing as a borne debris “dump” for others to use for disposal. Eliminate sources of hazardous waste
None
Prohibit illegal and illicit Storm drain system and connections and dumping into receiving water storm drain system
Reduces pollutant load entering storm drains
Coliform bacteria, nitrogen, contaminants, and toxic or harmful chemicals
None
Identify, locate, and prohibit illegal or illicit discharge to storm drain system
Halt hazardous and harmful discharges, whether intentional or negligent
Sewage from cross connections, oil, grease, direct disposal of pesticides and fertilizers, contaminated water, paint, varnish, solvents, water from site dewatering, swimming pool and spa water, flushing water from radiators and cooling systems, and hazardous or harmful chemicals
Monitor storm drain system for flows and water quality
Institutional Source Controls
Site dependent
Area-wide
(Continued) q 2006 by Taylor & Francis Group, LLC
11-151
Area of Benefit
(Continued)
Type of Practice
Area of Benefit
Storm Protection Benefit
Require proper storage, use, and Site dependent (city, state, or Reduce pollutant load to storm county-wide) system disposal of fertilizers, pesticides, solvents, paints and varnishes, and other household chemicals (oil, grease, and antifreeze, etc.) Restrict paving and use of nonporous cover materials in recharge areas
Pollutants Controlled
Construction Requirements
Household hazardous materials
None
Recharge area site
Promotes infiltration to groundwater and reduces runoff volume and velocity. Filters pollutants
Street sweeping
Street right-of-way
Reduction in potential for clogging storm drains with debris. Some oil and grease control possible
Sidewalk cleaning
Sidewalk right-of-way in areas Reduction in pollutants entering of heavy foot traffic storm drain
Clean and maintain storm drain channels annually
Silt and sediment and the Prevent erosion in channel. Channel capacity and contaminants contained therein. Improve capacity by removing receiving water. Upstream Plastic, glass, paper, and metal silt and sedimentation. flood control benefits. thrown or washed in channel Remove debris that is habitat Includes benefits to destroying or toxic to wildlife channel wildlife habitat and vegetation
None
Clean and inspect storm inlets and catch basins annually
Site dependent flood control benefits
Allows proper drainage to Silt and sediment and the prevent flooding and contaminants contained therein. Plastic, glass, paper, and metal continued proper operation of thrown or washed into facilities facilities
None
Clean and inspect debris basins Site dependent flood control annually benefits
Silt and sediment and the Allows proper drainage to contaminants contained therein. prevent flooding and Plastic, glass, paper, and metal continued proper operation of thrown or washed into facilities facilities
None
Storm drains cleaned and Flood control and water maintained every 3 to 6 years quality benefits
Silt and sediment and the Allows proper drainage to contaminants contained therein. prevent flooding and Plastic, glass, paper, and metal continued proper operation of thrown or washed into facilities facilities
None
Storm system pump stations cleaned and maintained annually
Prevents flooding and allows Silt and sediment and the continued proper operation of contaminants contained therein. facilities Plastic, glass, paper, and metal thrown or washed into facilities
None
11-152
Table 11E.71
Establishment of vegetation or use of recharge/infiltration materials
Nonstructural Source Controls Acquire street sweeping equipment
Oil and dirt
None
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
q 2006 by Taylor & Francis Group, LLC
Site dependent flood control and water quality benefits
Paper and plastics, leaves and twigs, dust, and oil and grease
Storm drain system and receiving water
Prevents and eliminates sewer system surcharges
Contaminants, toxics, and coliform bacteria
None
Minor Structural Source Controls Storm drain inlet protection
Storm drain drainage area
Prevent debris from entering storm drain
Dirt, leaves, twigs, paper, plastic, and other incidentals
Not available
Outlet protection
Storm drain receiving water
Prevent erosion at the outlet of pipes or paved channels and protect downstream water quality
Turbidity and sediment
Structural apron lining at the outlet location. Made of riprap, grouted riprap, concrete, or other structural materials
Slope stabilization and erosion control measures
Site and topography dependent
Reduce silt and sediment load to Silt and sediment and the storm drains contaminants therein
None
Interceptor swale
Dependent on flow velocity. Max. velocity for earth channel is 6 fps. Max. velocity for vegetated or riprap channel is 8 fps
Sediments and silt and the Shorten length of exposed contaminants contained therein slopes and intercept and divert storm runoff from erodible areas
Excavation drainageway across disturbed areas or rightsof-way
Improve and maintain natural channels
Silt and sediment and the Prevent erosion in channel. Channel capacity and contaminants contained therein. Improve capacity by removing receiving water. Upstream Plastic, glass, paper, and metal silt and sedimentation. flood control benefits. thrown or washed in channel Remove debris that is habitat Includes benefits to destroying or toxic to wildlife channel wildlife habitat and vegetation
None
Diversion channel
Intercept and convey runoff to Dependent of flow velocity. outlets at nonerosive velocity Maximum velocities: 5 fps for vegetated channel and 8 fps for riprap channel. Not for use on slopes greater than 15%. Drainage area should be 5 acres of less
Sediment and erosion controls
Lined drainageway of trapezoidal cross section
Grass-lined channel
Intercept runoff and convey Site dependent but of larger runoff from site capacity than interceptor or perimeter swales
Sediment and silt and the contaminants contained therein
Excavation of channel or improvements to natural channel. Stabilization with vegetation
Filters sediment from runoff Sediment and the contaminants before it enters inlet. Provides contained therein relatively good protection
Barrier around storm drain inlet. Useful for areas where storm drain is operational before area runoff area is stabilized
Riprap
Provides stabilization and erosion control for stream banks and channels, outlet, and slopes
Placement of rock on area to be stabilized. May also require use of filter fabric liner
Site dependent
Erosion and sediment
(Continued) q 2006 by Taylor & Francis Group, LLC
11-153
Storm drain drop inlet protection Areas less than 1 to 2 acres
WATER RESOURCES MANAGEMENT
Inspect and maintain sewer system
(Continued) Area of Benefit
Storm Protection Benefit
Pollutants Controlled
Construction Requirements
Gabions
Site dependent
Provides stabilization and erosion control for stream banks, outlet, and slopes
Erosion and sediment
Placement of wire cage will with rocks over area to be stabilized. May also require use of filter fabric liner
Vegetative control
Applicable and effective for most sites
Erosion and sediment Provides stabilization and erosion control for streambanks, swales, channels, outlets, slopes, open disturbed areas. Can be up to 99% effective with established cover. Temporary seeding can be up to 90% effective
Site preparation (can include land leveling and installation of irrigation system), seeding or planting, and netting or mulching to establish seed. Can also include other sodding, ground cover, shrubs, trees, and native plants
Filter strips
Site dependent
Receives overland flow slowing Silt, sediment, trash, organic runoff and trapping matter, and to an extent, soluble pollutants through infiltration particulates. Can be 30 to 50% effective for sediment control
Fence open channels
Site dependent
Prevent windblown trash from entering channel. Prevents illegal dumping in channel
Grading and vegetative establishment. Should have a minimum width of 15 to 20 feet. Good performance is achieved with a 50- to 75-foot width Construction of fences
Trash and pollutants
Discharge Elimination Methods French drains and subsurface drains
Dependent on site topography Provides drainage of “wet” soils Sediment and soil permeability to allow establishment of vegetation. Can reduce runoff
Underground perforated pipe leading to a surface water outlet. Pipe size, bedding and depth is dependent on site conditions
Infiltration trench and dry well
Small drainage areas. Runoff Provides temporary storage of runoff and infiltration to soil. from rooftops, parking lots, Not for use in areas where residential, etc. groundwater could become contaminated
Excavation of a shallow trench 2 0 to 10 0 deep. Backfilled with coarse stone aggregate
Exfiltration trench
Site dependent
q 2006 by Taylor & Francis Group, LLC
Prevents 100% of pollutants from entering surface water. Oil, grease, floating organic matter, and settleable solids should be removed before water enters trench
Prevent silting on underlying filter Prevents pollutants from entering gravel or rock bed. Retain first surface water. Oil, grease, flush, reduce runoff volume floating organic matter, and and peak discharge rate and settleable solids should be promote water quality removed before water enters improvement trench
Uses perforated pipe with suitable membrane filter material. Installed before receiving water outlet or in groundwater recharge area
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Type of Practice
11-154
Table 11E.71
Site dependent. Requires relatively flat surface
Retention basin
Best for sites of 5 to 50 acres Promotes infiltration to groundwater and reduces runoff volume and velocity. Filters pollutants
Sediment, trace metals, nutrients, and oxygen-demanding substances
Install porous pavement. May require twice as much paving materials as standard asphalt to achieve same strength Excavation of a basin over permeable soils. Size is site dependent. Depth is 3 to 12 feet
Floatables and Oil Removal Clarifies and oil and water separators on parking structures
Parking lot structure and receiving water
Collect debris before it can enter Oil, grease, and antifreeze from storm drain vehicles and foods and food wrappers
Install grit and separators
Oil and grit separators
Site dependent. For heavy traffic areas or areas with high potential for oil spills
Remove pollutants
Sediments and hydrocarbons
Install oil and grit separators on storm drains
Sediment/grease trap
Installed on storm drain inlets Intercept and trap sediment and grease from runoff
Sediment, oil, and grease
Install sediment and grease traps
Detention basin
Temporary storage of storm Four acres of drainage area runoff until release. Can also for each acre/foot of improve water quality storage provided to retain a permanent pool of water
Sediment, trace metals, hydrocarbons, nutrients, and pesticides
Excavation of a basin over soils which will cause excessive seepage. May require a liner. Can be used aesthetically as a small pond in landscaping
Extended detention basin
Size for a minimum detention Temporary storage of runoff for time of 24 hours an extended period of time. Can improve water quality
Sediment, trace metals, hydrocarbons, nutrients, and pesticides
Excavation of a basin over soils which will cause excessive seepage. May require a liner. Can be used aesthetically as a small pond in landscaping
Bar screens
Site dependent
Large debris
Install bar screens before pump station suction bays
Wetlands
Requires large area, 3% of the Remove pollutants. Provide watershed area habitat and recreational area
Hydrocarbons, silt and sediment, oxygen-demanding substances, bacteria, and nutrients
Create a new wetlands area or use existing wetlands
Site dependent. Is abandoned Treats stormwater flows prior to treatment facility available? discharge
Process dependent. Chlorination facilities may be added to remove microorganisms
Treatment conversion
WATER RESOURCES MANAGEMENT
Allow infiltration of surface runoff. Oil and grease Reduce runoff volume and pollutant loadings from low volume traffic areas
Porous pavement
Solids Removal
Restrict passage of objects which may obstruct pump station suction bays
Microorganism Removal 11-155
Conversion of wastewater treatment plants to wet weather facilities
(Continued) q 2006 by Taylor & Francis Group, LLC
(Continued) Area of Benefit
Storm Protection Benefit
Pollutants Controlled
Construction Requirements
Install treatment facilities on “Dirty” storm drains
Site and need dependent
Microorganisms Treats stormwater flows. Dry weather flows should be halted or routed to existing wastewater treatment facility if possible
Site specific
Swirl concentrators and chlorination/dechlorination
Site and need dependent
Treats stormwater flows prior to discharge
Floatables, settleable solids, suspended solids, and coliform bacteria
Install concentrators
Chlorination/dechlorination facilities
Site and need dependent
Treats stormwater flows prior to discharge
Microorganisms
Install chlorination/ dechlorination facilities
Primary clarifiers
Site and need dependent
Treats stormwater flows prior to discharge
Floatables, settleable solids, suspended solids, and coliform bacteria
Install primary clarifiers
Primary clarifiers and filters
Site and need dependent
Treats stormwater flows prior to discharge
Suspended solids, nutrients and coliform bacteria
Construct sedimentation basins and filters
Primary clarifiers and lime precipitation
Site and need dependent
Treats stormwater flows prior to discharge
Floatable, settleable solids, suspended solids, coliform bacteria, and metals
Install primary clarifiers and lime precipitation facilities
Detention basin and wetland treatment
Requires large area, 3% of the Remove pollutants. Provide watershed area habitat and recreational area
Hydrocarbons, silt and sediment, oxygen-demanding substances, bacteria, metals, and nutrients
Create a new wetlands area or use existing wetland
Metals Removal
Source: From Black Dog Watershed Management Organization ENR 4900, www.dakotacountyswcd.org. With permission.
q 2006 by Taylor & Francis Group, LLC
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Type of Practice
11-156
Table 11E.71
WATER RESOURCES MANAGEMENT
11-157
Table 11E.72 Recommended Best Management Practices According to Watershed Watersheds Tributary to a Ponding Area that Treats Stormwater Runoff (Treated Watershed)
Best Management Practice Retrofit dry ponds to wet detention ponds Retrofit dry ponds to constructed water quality wetlands Retrofit dry ponds to extended detention basins Construct sedimentation (pretreatment) basins, when opportunity arises Create additional water quality storage to meet NURP standards Perform stormwater system maintenance in accordance with local plan Install “Stormceptors” or other precast stormwater treatment systems Prioritize street sweeping Construct skimmers to prevent downstream discharge of oil and floatables Develop/implement lawn fertilizer ordinance Construct filter strips/grassed swales Increase opportunities for infiltration Stabilize slopes and implement other permanent erosion/sediment controls Develop and implement education program emphasizing good housekeeping practicesg Provide vegetative buffers around ponds and wetlands a b c d e f g
No Outleta
NURP Detentionb
Wet Detentionc
Dry Detentiond
Watersheds Receiving No Treatment No Detentione
Direct Dischargef
X
X
X X X X
X X
X
X
X
X
X X
X X
X X
X X
X
X
X
X
X
X
X
X
X X
X X
X X
X X
X X X
X X X
X
X
X
X
X
X
X
X
X
X
X
X
No outlet watershed — area tributary to a landlocked basins (i.e., no outlet); receives highest level of treatment (i.e., 100% total phosphorus removal). NURP watershed — area tributary to a wet detention pond that provides treatment to NURP standards (i.e., 40%–60% total phosphorus removal). Wet detention watershed — area tributary to a wet detention pond that provides treatment to less than NURP standards (i.e., 5%–40% total phosphorus removal). Dry detention watershed — area tributary to a dry detention basin that provides for settlement of larger particles and traps floatables, but provides minimal water quality treatment (i.e., 0%–10% total phosphorus removal). No detention watershed — area tributary to a storm sewer system that does not receive any type of detention storage or treatment. Direct watershed — area that directly discharges as sheet flow into a major waterbody without any treatment. “Good housekeeping practices” include: fertilizer and chemical management, lawn and garden care guidelines, litter control, control of illegal dumping/illicit discharges, pet waste management, vacant lot cleanup, recycling programs, etc. See also Table 5.4.
Source: From Black Dog Watershed Management Organization, www.dakotacountyswcd.org. With permission.
q 2006 by Taylor & Francis Group, LLC
11-158
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
Table 11E.73 Current Status the WHO/UNICEF/WSSCC Global Water Supply and Sanitation Assessment 2000 Report Provides Information on the Current Status of Basic Water and Sanitation Services throughout the World 1990 Population (Millions) (76% of Global Population Represented) Total Population Population Population Served Unserved Global Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Africa Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Asia Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Latin American and the Caribbean Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Oceania Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Europe Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation Northern America Urban water supply Rural water supply Total water supply Urban sanitation Rural sanitation Total sanitation
% Served
2000 Population (Millions) (89% of Global Population Represented) Total Population Population Population Served Unserved
% Served
2292 2179 113 95 2974 1961 1013 66 5266 4140 1126 79 2292 1877 415 82 2974 1028 1946 35 5266 2905 2361 55 (72% of regional population represented) 197 166 31 84 418 183 235 44 615 349 266 57 197 167 30 85 418 206 212 49 615 373 242 61 (88% of regional population represented) 1029 972 57 94 2151 1433 718 67 3180 2405 775 76 1029 690 339 67 2151 496 1655 23 3180 1186 1994 37 (77% of regional population represented)
2845 2672 173 94 3210 2284 926 71 6055 4956 1099 82 2845 2442 403 86 3210 1210 2000 38 6055 3652 2403 60 (96% of regional population represented) 297 253 44 85 487 231 256 47 784 484 300 62 297 251 46 84 487 220 267 45 784 471 313 60 (94% of regional population represented) 1352 1254 98 93 2331 1736 595 75 3683 2990 693 81 1352 1055 297 78 2331 712 1619 31 3683 1767 1916 48 (99% of regional population represented)
313 287 26 92 128 72 56 56 441 359 82 82 313 267 46 85 128 50 78 39 441 317 124 72 (64% of regional population represented) 18 18 0 100 8 5 3 62 26 23 3 88 18 18 0 99 8 7 1 89 26 25 1 96 (15% of regional population represented) 522 522 0 100 200 199 1 100 722 721 1 100 522 522 0 100 200 199 1 100 722 721 1 100 (99.9% of regional population represented) 213 213 0 100 69 0 69 0 100 282 282 0 100 213 213 0 100 69 69 0 100 282 282 0 100
391 362 29 93 128 79 49 62 519 441 78 85 391 340 51 87 128 62 66 49 519 402 117 78 (85% of regional population represented) 21 21 0 98 9 6 3 63 30 27 3 88 21 21 0 99 9 7 2 81 30 28 2 93 (44% of regional population represented) 545 542 3 100 184 161 23 87 729 703 26 96 545 537 8 99 184 137 47 74 729 674 55 92 (99.9% of regional population represented) 239 239 0 100 71 71 0 100 310 310 0 100 239 239 0 100 71 71 0 100 310 310 0 100
Note: The report charts the developments since 1990. The current status is provided in the table above. Source: From thewaterpage.com. With permission.
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
11-159
Table 11E.74 Table Annual Investments in Water Supply and Sanitation Indicating Proportional Disparity Region
Water Supply (US$ Billion)
%
Sanitation (US$ Billion)
%
Africa Asia LA & C Total
4.091 6.063 2.41 12.564
88 85 62 80
0.542 1.104 1.503 3.148
12 15 38 20
Note: Investment figures indicate that a higher priority has been given over the 90s for water supply as opposed to sanitation, both through national governments and by the international community. Source: From WHO/UNICEF, 2000. thewaterpage.com. With permission.
q 2006 by Taylor & Francis Group, LLC
11-160
THE WATER ENCYCLOPEDIA: HYDROLOGIC DATA AND INTERNET RESOURCES
SECTION 11F
Step 1
Step 2
Step 3
Step 4
Step 5
RESEARCH AND EXPENDITURES
Identify regulated entities Private sector Public sector
Identify cost categories Capital Operation and maintenance (O &M) Research and development (R&D) Regulation and monitoring (R&M) Other
Collect data Annual WPA expenditures Other supporting data
Simulate without-CWA WPA expenditures Regression-projection approach Alternative approach
Estimate annual WPA costs (with and without-CWA) Capital costs annualization procedure O&M, R&D, R &M, other costs
Step 6
Compute incremental annual costs attributable to CWA
Step 7
Compare cost and benefit estimates for CWA
Figure 11F.50 Outline of methodology for assessing CWA costs. (From A Retrospective Assessment of the Costs of the Clean Water Act—1972–1997 Final Report, www.epa.gov.)
q 2006 by Taylor & Francis Group, LLC
WATER RESOURCES MANAGEMENT
POEU O&M