Elements of Number Theory

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

00

elem ents of number theory translated from the fifth revised edition by saul kravetz

ELEMENTS OF NUMBER THEORY

ELEMENTS OF NUMBER THEORY

BY I. M. VINOGRADOV

T ra n s la te d from the Fifth R evised Edition by Saul Kravetz

DOVER PUBLICATIONS, INC.

C o pyright 1954 by D over P u b l i c a t i o n s , Inc.

F i r s t E n g li s h t r a n s l a t i o n of the F if th R u s s i a n ed itio n o f 1949.

/

M an u factu red in th e U n ited S t a t e s of Am

CONTENTS P reface

vii C hapter I

DIVISIBILITY THEORY § 1. B asic C oncepts and Theorem s ( 1). § 2 . The G reatest Common D ivisor (2). § 3 . The L e a s t Common Multiple (7). § 4 . The Relation of E u c lid ’s Algorithm to Continued F ractions (8). § 5 . Prime Numbers (14). § 6 . T he U nicity of Prime De­ composition (15). Problem s for C hapter I (17). Numerical E x e r c is e s for Chapter I (20). C hapter II

IMPORTANT NUMBER-THEORETICAL FUNCTIONS §1. The F u n ctio n s { x}»x (21). § 2. Su ms Extended over the Divisors of a Number (.22). §3. The Mobius Function (24). §4. The E uler Function (26). Problems for C hapter II (28). Numerical E x e r c is e s for Chapter II (40). Chapter III .

CONGRUENCES § 1. B asic C oncepts (41). § 2. P ro p erties of Congruences Similar to those of Equation® (42). §3. Further P ro p erties of Congruences (44). §4. Complete Systems of R esid u e s (45). §5. Reduced S ystem s of R esid u e s (47). § 6. The Theorem s of ill

Euler and Ferm at (48). Problem s for Chapter III (49). Numeri­ cal E x e r c is e s for Chapter III (58). C hapter IV

CONGRUENCES IN ONE UNKNOWN § 1. B a s ic C oncepts (59). § 2. C ongruences of the F irs t Degree (60). §3. System s of Congruences of the F ir s t Degree (63). §4. C ongruences of Arbitrary Degree with Prime Modu­ lus (65). § 5. Cong ruences of Arbitrary Degree with Com­ posite Modulus (66). Problem s for C hapter IV (71). Numerical E x e r c is e s for C hapter IV (77). C hapter V

CONGRUENCES OF SECOND DEGREE §1. General T heorem s (79). § 2. The Legendre Symbol (81). §3. The Jacobi Symbol (87). § 4 . The C a s e of Composite Moduli (91). Problem s for C hapter V (95). Numerical Exer­ c i s e s for Chapter V (103). C hapter VI

PRIMITIVE ROOTS AND INDICES § 1. General Theorem s (105). §2. Prim itive Roots Modulo p a and 2pa (106). §3. E valuation of Prim itive Roots for the Moduli p a and 2pa (108). § 4. Indices for the Moduli p a and 2pa (110). § 5 . C on seq u en ce s of the P receding Theory (113). § 6 . Indices Modulo 2a (116). §7. Indices for Arbitrary Com­ posite Modulus (119). Problem s for Chapter VI (121). Numeri­ cal E x e r c is e s for Chapter VI ( 130).

SOLUTIONS OF THE PROBLEMS Solutions for Chapter I Solutions for C hapter III Solutions for Chapter V IV

(133). Solutions for Chapter II (139). (161). Solutions for Chapter IV (178). (187). Solutions for Chapter VI (202).

ANSWERS TO THE NUMERICAL EXERCISES Answers for Chapter I A nsw ers for C hapter III A nsw ers for C hapter V

(217). (218). (218).

A nsw ers for C hapter II (217). A nsw ers for C hapter IV (218). Answers for C hapter VI (219).

TABLES O F IN D IC E S .....................................................................

220

TA BLES OF PRIMES