347 61 4MB
English Pages 37
. I
zyx zyxwvu ORN L-2823
UC-4
- Chemistry-Genera
EFFECTIVE CADMIUM CUTOFF ENERGIES
zyx
R, W, Stoughton J. Halperin Mo P o Bietske
.
U N I O N CARBIDE CORPORATION for the
U.S. A T O M I C ENERGY C O M M I S S I O N
.
1
L E G A L NOTICE
zyxwvutsrqpo zyxwvutsrqponm zyxwvutsrqpo
T h i s report was prepared a s an account o f Government sponsored work.
N e i t h e r the U n i t e d States,
nor t h e Commission, nor any person a c t i n g on b e h a l f of t h e Commission:
A.
Makes
ony warranty or representation, expressed or implied, w i t h r e s p e c t t o t h e accuracy,
completeness, ony
or u s e f u l n e s s of the information c o n t a i n e d i n t h i s report, or t h a t t h e u s e o f
information.
apporatus,
method,
or process d i s c l o s e d
i n t h i s report may n o t i n f r i n g e
p r i v o t e l y owned r i g h t s ; or
8 . Assumes any l i a b i l i t i e s w i t h respect t o the use of,
or for damages r e s u l t i n g from t h e u s e of
ony information, apparatus, method, or process d i s c l o s e d in t h i s report.
A s used i n the above, "person a c t i n g on behalf of the Commission"
i n c l u d e s any employee or
contractor of t h e Commission, or employee of s u c h contractor, t o the e x t e n t t h a t s u c h employee or
contractor
of the Commission, or employee of s u c h contractor prepares,
disseminates, or
provides access to, any information pursuant t o h i s employment or contract w i t h t h e Commission, or h i s employment w i t h such contractor.
1
z
om2823
zyxwvu
DATE ISSUED
zyxwvuts zyxwvutsr zyxwv zyxwvutsrqponm OAK RIDGE PTATIOTJAL U B O W O R P
Oak Ridge, Tennessee operated by
UT?IOIT CAR3ZDE CORPO€U!ITOT? f o r the Ud S + AT01!IC EIERGY COPdNISSION
'
8
3 4 4 5 6 0363434 0
-2
zyxw
zyxwvu
-
zyx zyxwvu Effective CadmLum CytofZ Ehergies
R . W . Stoughton, J. Halperir,, and Marjorie P, Lietzke
Abstract
Effective cutoff energies for poir-t
_1.I/. absorbers
inside of spherical
and cylindrical cadmim f i l t e r s have been calculated f o r thermal reactor neutrons. plus a
The neutron s p e c t m was assumed t o consist of a Maxwellian
1/E component,
and the parmeters varied were the thickness of
f i l t e r , the Maxwellian tenrperature and the b ~ w e l l i a aLo
_1/E flux r a t i o .
Because of the s e n s i t i v i t y of the el’fective cutoff t o Maxwellian f l u x parameters for t h i n f i l t e r s it i s recornended %‘fiatf i l t e r thicknesses of about 40 m i l s be used.
Forty mil f i l t e r s show effective cutoffs a t about
zyxwvuts
0.50 t o 0.55 ev. for temperahres up t o about 500°A ( o r about 0.045 ev).
Effective cutoff energies f o r boron f i l t e r s were also calculated for purposes of comparison.
The cutoffs f o r cylindrical cadnium f i l t e r s
should be applicable to a properly designed experLxen+ual f a c i l i t y .
-3-
zyxwv zyxw zy
z zyxw zyxw zyxw h t r o d u c t ion
For many yems cadm3m has been used as a fiJ,ter for thermal neutrana in maswing t h e r m 1 vs epithermal reaction r a t e s f o r reactor spectrum neutrons. Yaa e f ' f e c t l v s Cd cutoff er,ergy kras been estimateil as several
depenaing on the t h i c h e s s ~f the f j l t e r .
Hughes
a
e s t h a t e d about 0.4Q and
0.57 ev for 10 and 30 m i l cadmium -t;taFcknesses, -respe:tiveljr,
calculated r e l a t i v e number of neufxoos transmi3Aed vs enezgy Dayton and Pettus
tenths ef an ev
from a p l o t of %he
.
More recently
calculated effective Cd cutoff energies f o r flat f i l t e r s
of ,large area f o r both a monodirectional and an isotropic flux. only a
& flux,
w i t h lower wii upper lj.aits of 0.025 ev
%he upper liiit was not
and energy.
They assumed
aQa 10nev (althorn
important) i n the* numerical integrations over the angle
They defined the effective cutoff energy as the cutoff of a perfect
( I n f i n i t e l y sharp) f i l t e r that allows t h e same tu"al xmiber of-absorptions by the f i l t e r e d sample as does the gLven cailmkm ffl%er. In - h e i r calczila%irms they
assumed that the f i l t e r e d sanple had a The purpose of thLs paper is
tb
& cross
sectian.
calculate ef"fec-i;5.-veCd cutoff enezgies, as absorber and for an idealized
defined by Dayton and Pettus, f o r a 12ypo-khetical&l
zyxwvu z
Two geometrical configurations have been conside;-ed:
spherica4. and cylLndrica1
f i l t e r s (one cm dim. by two cn high.) ix resctor ixz*adiai;ions. Fdihfle %e ampl.es
occurred) and rather smal.1 3x1 ares,.
Xt c a s be s$mm that if a point san2le is moved
a signtficant distance f r D m the cen%er of the cyl-bdrical s h e l l i t s correaponfiir&
effective C d thickness is changed very l i t t l e .
For example, i f t h e p0b-k is moved
along the axis half way t o ogle of %he f a c e s (i. .e.
to one q w t e r '3f t h e height from
the nearer face) the effective Cd thickness is changed about G.$.
Eence a th4.n
zyxwv zyxwvu -4-
f i n i t e sample which approximates an i n t e p a l of such points should shov very
zyx zyxwvu
rxarly the sane effective cutoff as does the central point.
Actually an e f -
fective thickness could be calculated and a correction made, i f desired. the case of the spherical f i l t e r s the correction would be larger.
In
From an
experimental point of view, however, the cylindrical f i l t e r s are easier to make and to use, i n addition L ' o allowing an effective cutoff which is r e l atively insensitive t o position of sample.
Effective cutoff energies were also calculated f o r boron f i l t e r s LEIorder t o compare the variation of effective cutoffs with f i l t e r thickness and spectral parameters t o t h a t of cadmium.
zyxw zyxwvu zyxw zyxwv
I n general r e a l fiYcers such as caclnriurn a.~ad boron o n l y approxiaate o m defined perfect f i l t e r .
An additional factor t h a t a f f e c t s the u s e m e s s of a
f i l t e r is the sharpness w i t h iflich the t r t z x i t f o n fi-on opacity t o transparency i s made a t the cutoff.
A siaple measure of t b . i s efficiency was made here by
calculating the f'raction of %he ",tal number of reactions occurring i n t h e l / v t e s t sample a t energies below -
.O3
294
Fig. 2.
.04
.O5
.06
580 MAXWELLIAN TEMPERATURE
filter
(E,) for
.O8
.O 7
870 (OA)
Effective Cadmium Cutoffs for Spherical Shells.
l/V
absorbe
.09
3
4160
zyxw zyx
are given i n Table 1 f o r two values of Em (0.0253 and 0.05 ev)
-
.
Here the
f i r s t column gives ?he actual thickness, the second gives the effective
thickness and the last column gives the energy a t which 50% of the neutrons a r e transmitted.
The corresponding thickness r a t i o (effective/actual) f o r
a cubic f i l t e r i s about 1.20.
Some calculations were also carried out under conditions which should have given r e s u l t s i n agreement with those of Dayton and Pettus
12). Using
zyxwvu zy -
the sphere model, described above, with no Mxwellian ( i . e . , r = 0 ) and with
a lower l i m i t of the I & flux a t 0.025 ev the r e s u l t s should have agreed with
t h e i r monodirectional flux calculations f o r very t h i n samples (see the t h i r d
and fourth columns of Table 11). The data of Dayton and Pettus were read from
*.
a graph but should be accurate enough t o indicate a d i s t i n c t difference
Their
resonance parameters f o r Cd were s l i g h t l y different from those used i n t h i s paper, but hardly enough t o account f o r t h e difference i n results.
-
-
Reactior, rates per unit energy vs E and t o t a l reactions below E have been calculated f o r the
l/v absorber
as a function of energy for 10 and 40 m i l cad-
-
The solid curves i n Figs. 3 and 3a show
mium filters, Em = 0.0253 and r = 20.
-
-
the fractions of the t o t a l number of reactions occurring a t energy E per unit energy; the dotted curves show the fractions of the t o t a l reactions which
-
occur between energies zero and E.
*A
The t o t a l number of reactions occurring
recent comunication ( 2 June 1959) from W . G . Pettus contained some recal-
culated values and these ( i n the case of the beam flux) were much closer t o the r e s u l t s obtained in t h i s work than were Dayton's and Pettus' original values.
(See Table I1 and r e f . ( 2 ) ) .
-15-
zyxwv
zy zyxwvu
zyxw zyxwvu zyxw zyxw Table 9
Approximate vs Accurate Effective Cadmium Cu-toffs for Cylinrters
( a b . = 2) f o r
Em = .0253
lo
Eff 0 1
sphere
cylixder
cake
10
122
20
24,4
30
36.6
40
48.8
60
732
100
122.0
approx.
-P = 20
-16-
zyxwv
zyxw zyxwvutsr zyxwvut Table I1
Effective Cd Cutoff Energies for Monodirectional F l u Lower Limit in ev
Cd Thickness (mils ) 10
0.0253
zy
Dayton and Pettusa
This Paper
5 x
1/E F l u
0.025
0.025 -
0 -237 0.26 0.362 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20
.431
.429
.34
40
,520
.520
.42
60
.584
583
47
100
.679
679
56
a
V a l u e s read from a graph
m.
zyxw zyxw
- 17-
U N C L A S S I FlED O R N L - L R - DWG. 39143
-
T
I
I. 3
T
1.2
1.1
zy
1.0
lu
3.9
6
cr
zyxwvutsrq zyxwv zyxwvut W
0.8
z
3
u)
c
s zyxwvutsrq 0.7
.o $ t
L
2Q.'
0.6
X-
cn z 0.6 0 -I o
1
IC
a
0.5
E LL
0
0.4 z 0 -
-Reaction
I I I
I
I I
I
I
Rate --- Fractions of Reactions
/o = 10 mil
-Reaction Rate ---Fractions of Reactions
/o =40mil
o
0.3
2 LL
0.2
0.1
I I
0.0
zy
zyx I-
A
I111111
lo2
I(
I I111111
103
I I1
io4
E,
(40 mil)
Fig. 3. Reaction Rates and Fractions of Total Reactions Below Energy E for Spherical Cadmium Shells.
zyxw zyxwv zyxwvutsrqponm - 18-
-
I
l1111l1
I
I
I I I1111
I I I IIll
I
UNCLASSIFIED ORNL- L R - DWG. 38934 I 1 1 l 1 1 1 I I I I I III
-
-
-
-
10’
zyx
IO0
l‘
zyxwvutsrqp >
.-c u)
t
3
h
L
W
L
t .-
a L
0
W
zyxwvu [r
W
z W
zyxwvutsrq lo-’ 3
13w
m m
I I I I I I I
z
10-2
0
I-
o
a w
I
I
I I
[r
I
LL
0
zyxwvutsrqponm zyxwvutsrqponmlkjihg IO-^ z 0
I-
i
0
a
I I
I
-
= 40 mil
---
= 10 mil
I I IIII
T
E
io0
I
I IIIIII
10
I
I1l111
40
I (40ECmil ) EC
(10 mil )
Fig. 3a. Reaction Rates and Fractions of Total Reactions Below Energy Cadmium Shells.
E for Spherical
zyxwvu zyxwv zy zyxwv zyxwv zyxw zy z
a t all energies was noxmaLized to uni"cyo Acreactions in the 10 than tn the 40 mEL caae,
of course tihere m e more
As seen
i n F i g e 3 about 6 ~ of $
the total reactions occur belaw the cutoff wit& Maxwellian neutrons I n the
BI the 40 mil. case very few reactions inm~,ve
case of the 10 mil khicknesh.
and only a few percent of t h e reactions w c u r be3.0w6EG.
MaxweUan neu-ns
-
The c a l c U t e d r e s u l t s f o r boron spheres m e presented
Boron Spheres.
i n Appendix B. Cd Cylinders.
The results for the cylindrical shells are Shown fn Fig.
4
4
The cutoffs are seen to be sfmilas t o but a l i t t k e higher than those for the spherical f i l t e r s , as expected.
Again a thickneas of abaut 40 m i l s is indi-
z
cated in arder that We cutoffs be insensitive to We flux r a t i o a t the lower Maxweuian teaperatures.
Since the melting point of cadmtum mtal i s 321%
0
(594 A) the higher temperatures ~ R be Y unrealistic; however cadmpum i n some chemical form could be used as a f i l t e r a t higher temperatures by c l a d d b g Vdues of E
it w i t h sume high melting material.
-
in Fig. 5 f o r r =
G
VS.
C d chiokness are
sWm
0
0,
E and
30 for
% -
= 0,0253 ev.
The fractions of the total reactions by the
& sample below the
effective I
cutaff are shown i n F&g, 6.
-
ing Em a t an;y thickness. creases wi-bh;
For r $
A t low
'c
E;m
0,
this fraction is increased by Fncreas-
( i . e e 2 mound 0,0253 ev), the fkaction in-
*-
only f o r t h i n f i l t e r s ; a t the higher Em values the fraction in-
creases w i t h r f o r all thicknesses.
A t En = 0.075 ev a dfsfinct rnihbtum
OCC'UU"~
d
in the fraction curve at about 15 mjls Cd,
A t Ea = 0.1 ev the mFn39aum &s broader -..-
and l&s d k t j h c t , See Appendix C f o r calculated values for cylindrical. Cd fil%wse
zyxw zyx
- 20 -
UNCLASSIFIED O R N L - L R - DWG. 381408
.8
.7
nils Cd
........ r = 12
00
-
............
60
.6
-
zyxwvuts zyxwvu ..................................
40
-T > Q,
..................................... ..*""*: _---------_
.5 30
............................
.......................................................................................... 20 -lu" .4 - - - - _ _ ---_---__ -- _ _ _ _ _ _--------------
v
. 3 -1 5
.2 10 .02
.03
294O
Fig,
.O 4
.O 5
.O 6 E,(ev)
-
.07
.08
580" 870° MAX WELL1AN TEMPERATURE ( O A )
.09
zyx .I 0
1160"
4. Effective Cadmium Cutoffs for Cylindrical Filters (Height/Diameter = 2).
-21
-
zyxw zyxw zyxwvutsrqponm - 22 -
0.L
0.:
zyxwvu
zyxwvutsr
z
0 -
I-
o 0.2
a
LT
LL
0.4
zyxwv \&-,
I-= 0
20
40 mils Cd
60
=.0253 ev
80
400
Fig. 6. Fractions of Reactions Below Cadmium Cutoff for Cylindrical Filters (Height/Diameter = 2).
Boron Cylinders. VS.
zyxwv zyxw zyxwv zy z zyxwvu -
Figs. 7a and 7 b show typical curvEs for Ec and FRACE
thickness, respectively, f o r boron and cadmium. As expectad, there is
as expected the boron shows a much W g e r FRAW
no leveling off of Ec w i t h increasing thickness i n the case of Boron.
Also
.wlan cadnlium azld shows t b e
effects of the Ma%wellim neutrons over a wider range of thioknesses.Also see Appendix D. Conclysiow
Effective cadpl;lwn cutoff energies have been calculated for a wide va;riety of Maxwellian neutron temperatures, r a t i o s of Maxwellian to epithe-1 and thicknesses of Cd f i l t e r s .
flux,
Beaause of the sensitivity t o Maxwellian flux
zyxw zyxwvu
parameters for thin filters (less than about 30 m;uS) it is recanmended that f i l t e r s of about 40 mils be used i n Cd r a t i o work.
Depedlng on the exact
conditions the effective cutoffs for 40 mil C d l i e between 0.50 and 0.55 ev f o r MaxweUm texperatures of 300 t o
5008.
The vaLues presented here Shou3.d
hold t o a good approxirpation for s m a l l samples centrally located inside cyl i n d r i c a l cadmium f i l t e r s .
I " I
+,
-
- 24 -
zyxw
zyxwvu zyxwvutsrqp
zyxwvutsrqpon z UNGLASSI FI ED ORNL-LR-DWG. 3 8 1 3 8 A
-B
6-
---- Cd
-
5-
T >
a, v
zyxwvutsr zyxwvutsrqponm zyxwvu 4-
-
lu” 3 -
I I
I
-
2-
I
I -
-
‘-___________--------------.*/’
,
I
1
I
10 20 30 40 50 60 70 80 90 400
I
I I 10 20 30 40 50 60 70 80 90 100
mils Cd 4
I
Fig. 7a. Effective Cutoffs for Cadmium and Boron Filters for E = 0.0253 ev and r m = 20.
Fig. 7b. Fractions of Reactions Below Effective Cutoffs for Boron and Cadmium Filters for E = 0.0253 ev and r = 20. m
-25-
zyxwv
zyxwvu zyxwv zyx Acknowledaements
We wish t o thank J. E. Murphy and C . S . W i l l i a m s of the Central D a t a
Processing Department of the O a k Ridge Gaseous Diffusion P b t f o r i n % e r e s t b g discussions on numerical integration and f o r helpful suggestions.
zyxw zyxwvutsrq zyxwvuts zyxwvu zyxw zyxwvu zyxw References
1, D e J, Hughes, " P i l e Neutron Research", pp. 131-2, AddisonrlJesby
Fubl, Co., 2.
Cambridge, Mass.,
(1953)0
I. E, D q o n a.nd W, G, Pet%us, Nucleonics
3. C. H, Weetcott, J. Nuclear Energy 4.
3
a No.
12, po
86 (1957).
59 (1955).
D. J, Hughes and R e B. Schwartz, "Neutron Cross Sections", U. 8. A.l;aanics Energy ~aaranissionDocument BNL-325, second mition, (1958)
zyxw zyxwv zyxwvuts zyxwv zyxw -27-
Appendix A
Wfective Cadmium Cutoffs Ec (in ev) for Spherical F i l t e r s o r Unidirectional Beams
12 EC
0253
10
15 20
30 40 80 100 120
.0300
10
15 20
30 40 50 60 80 100
120
.ob0
10
0.141 0.283 0.396 0.478 0.519 0.552 0.583 0 635 0.680 0 -719
0.158 0.285 0.395 0.477 0 . 5 ~ 0 555 0.584 0.635 0.679 0 -719
-
0.196
0.302
20
391 0.474 0.516
100 120
0.459 0.163
Ec
0.126 0.235 0.375 0.477 0.518 0.552 0.583 0 e635 0.680 0 -719
30
m C T
0.585 0.241
EC
0.118 0.202
0 * 351 0 475
ERACT
0.678 0.323 0.115 o .069
zyxwvu zyxwvu
15 30 40 50 60 80
20
FRAm
0
0
551
0.581 0.634 0.680 0.720
0.082
0.067 0.068 0.071 0.073
0.074
0.455 0.162 0.083 0.068
0.144 0.245 0.374 0.476 0.520 0 * 555 0.584 0 9635 0 0679
0 *719
0.186 0.278 0 372 0.469 0.514 0 549 0 578 0 -633 0.680 0.720
0.0%
0.068
f
0.069
0.518 0 552 0.583 0 -635 Q .680 0 -719
0.581
0 J37
0.675
0.220
0 * 33-9 0
0,239
0.097
0.069
0 351 0.474 0.520 0.554 0.584 0 =635 0 -679 0 -719
0.181
0.265 0 * 357 0.462
0.511 0.547 0 578 0.632 0.679 Q -719
.UT
0.070
6280
Appendix A (Cont’d)
e
zyxwvut zyxwvutsr zyxwvut zyxwvutsrq m m
m m
zyxwvutsrqponmlkjihgfed KFU.GT
/
30
20
12
0500
10
15 20
30
40
0,387
0 0457 0 .so2
100 120
’
00222
01180 0.131 0 0105
10
0,540 574 0.630 0.676 0.716
0.308 0,373 0 446 00493 0 532 0 566 0,625 0,672 0.714 0
0
‘9
15
0
30 40 60 100 10
15 20
30
40 60 100 10
15 20
30
40 60 100
331
0.376 0.1~32 0.467 0 536
20
.loo0
Ec
zyxwvutsrq 50
60 80
.0600
0.230 0.3U
Ec
zyxwvut zyxwvut zyxwvuts 0.650
0,288 0 353 0 392 0 435
0,286 0e 1 8 8 0.165 0.206
0 Q47L 0.529
0,623
0 317 0 4 365 0
0.395
Oe49 0 477 0 526 0 597
0.245
0,2hl 0,202
Q.197
0.286 0.349 0,386 0 428 0. J+60 0.514 0,606 0 0 317 0 364 0 394 0 e 434 0 467 0 * 517 0 * $93
zyxw zyxwvu zyx zy -29-
Appendix B
Effective Boron Cutoffs Ec (in ev) for Spherical F i l t e r s or Unidirectional Beams
r = nv0/@, =
Em
(4 0253
l0
(*./m2) 20
50 100 150 200 300 500
0350
20
50 100 150 200
300 500 .0500
20
50 100 150 200 300 500 *
0750
20
50
100 150 200
300 500 .loo0
20 50 100 150 200
300 500
12
EC
FRACT
0.384 0.545 0.0715 0.1672 0.524 0.5936 0.441 1.422 0.399 3.864 0.373 11.16 0.368 0.0353
0.0432 0.0858 0.1681 0.4192 1.139 3.615
0.356 0.538 0.571 0.492 0.430
E
C
20 FRAm
0.367 0.569 0.638 0.563 0.472 0.393 0.369
11.11
0 -369
0.0541 0.1060 0.1879 0.3177 0.7782 3.000 10.92
0.324 0.517 0.603 0.561 0.485 0.404 0 371
0.0537 0.331 0.1046 0.538 0.1794 0.655 0.27~. 0.637 0.4997 0.553 2.586 0.429 10.74 0.373
0.0699 0.288 0.1360 0.483 0.2318
0.610
0.3389 0.621 0.5126 0.571 2.174 0.454 io .23 0.380 0.0840 0.1626 0.2728 0.3826 0.5230 1.483
9.155
0.263 0.455 0.599 0.641 0.623 0.510 0.395
EC
me2
0.0349 0.399 0.0347 0.407 0.0692 0.587 0.0682 0.611 0.1372 0.599 0.1258 0.655 0.4227 0.490 0.2970 0.543 1.207 0.422 0.9990 0.449 0.377 3.600 0.383 3.743 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQP 11.14 0.368 11.13 0.368
0.0428 0.0841 0.1507 0.2781 0.8512 3.344 U. .06
0.382
30
0.0696 0.1348 0.2246 0.3168 0.4321 1.520
9.613 0.0837 0.1615 0.2685 0.3691 0.4796 0.9321 8.027
0.0427
0.373
0.0832
0.586 0.682 0.627
0.1442 0.2295 0.6227 3.046
zyx z 0.293
0.497 0.641 0.680 0.648
0.506 0.38
0.267 0.465 0.625 0.687 0.689 0.584 0.413
11.00
0.0536 o.logg 0.~754 0.2531 0.3777 2.ll2
10.50
0.0694 0.1342 0.2223
0.3077 0.4030 1.049 8.925
0.0835 0.1610
0.2664 0.3629 0.4606 0.7403 6.881
0.518
0.406 0 * 370
0.336 0.550 0.685 0.690 0.618 0.458 0 - 376
0.296 0.505 0.662 0.716 0.703 0.561 0.398
0.269 0.471 0.639 o.‘p3 0.730 0.651 0.435
-30-
zyxwvu
Appendix C Effective Cd Cutoffs Ec ( i n ev) for Cylinders (Hei&t/Diam.
-
zyx = 2)
and Fractions of Reactions Below Cutoffs FRACT f o r Various Values of the Cnwacteristic Maxgellian Energy Em
zyxwvuts r = nv0/gr =
0
mils Cd
EC
12
FRAm
EC
30
20
FRAm
FRACT
EC
EC
FRACT
zyxwvutsrqp zyxwvuts Em = 0.0253
10
15 20
30
40 60
100
,378 .419 .452 .504 -547 .615 .718
,0612
.0640 ,0661 .0684 -0705 .0730 .0756
-173 .339 ,431 .503 .547 -615 -718
0358 .116 .0751 ,0692 *0705 .0729 *0757 Em
10
15 20
30 40 60 100
.go6 .342 ,429 .5oi 0545 .615 .719
.148 .298 .419 .502 .547 .615 ,718
=
=
LO
15 20
30 40 60 100
.260 -353 .415 .483 -531 .606 .714
.301
01552 .12i8
.io03 -0915 .089
00799
.137 .259 .404 .501 .547 .615 .718
.466 .161 .0877 .0726 -0723 .0736 a760
.i8i .283 .401 0497 .544 .614 .718
.582
.218
.0907 .0698 .0708 .0728 -0755
0.035 .189 .308 .416 ,499 ,545 .614 .718
.346 ,1190 .0789 .0711 -07x5 .0734 .0760
482 .161 .0819 ,0695 .0706 .0730 .0756
.565 .213
.0997 a0750 .0733 .071+1 .0762
0.05 .250 ,338 .401 .472 ,522 -599 .712
.398
.245 .479 .329 .25’2 .390 .188 .153 .120 .462 .143 .513 .122 .io5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH .592 .lo0 e0910 .7o8 a 6 0 .0826 .202
-31(Appendix C continued) E, 10
15 20
30 40 60 100
.bo3 .446
.203 *I79 .i40
.336
234
.382
.2U
.412 ,456 .495 .547 .631
.yo
.210
10
20
.309
.249 -175 .198
15
100
0.075
zyxwvut .3U a375 .409 .454 .49i e555 .665
E,
30 40 60
=
,480
.540 .643
.304 .225 .248 .271 .266 .234
.177
.308 .366 *399 .441 .474 .529 .625
.344
.262
.289 .327 .326 .291 .219
= 0.100
.204 .197 .191 .225 ,236
.336 .381 ,410 .452 .488 ,539 .617
.267 .247 .244 .241 .23g *279 .304
Ec
mm
Ec
E~ = 0.70
#
-335
.go ,409 .450
.483 .534 .610
335 .270
,271 .q4 .274 -325 .370
zyxwvuts zyxwvutsr r = nv0/fir = 20
mils Cd
F!RAcT
Em = 0.20
10
15 20
FFUiCT
FRACT
zyxwvutsr EC
30 40 60
100
mils
Ec
# = 0.40
.403 .048 .4ll .37i .170 .390 -087 .450 .061 .456 .434 .lo2 .410 .185 .071 .485 .494 ,469 .115 .439 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a198 .546 .550 .082 .484 .220 .520 133 .591 .089 .560 .596 .520 .236 .145 .678 ,622 .163 .657 .loo '575 .259 .792 -757 all9 .7i5 .192 .657 .286 Em = 3.0
Em = 10.0
Cd 10
15 20
30 40 60 100
,387 .0051 .5i7 ,0031 .631 .0049 .429 .0060 .716 .0063 .467 .0071 .834 . O083 *537 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA .oog8 .9lO .0095 .5g8 .0126 .995 .0104 .702 .0181 1.073 ,0103 .859 00273
= 1.0
.033 .036 .040 .Ob9 a057 .071 .OgO
zyxwv zyxwv
632-
zyxwvut zyxwvut zyxwvut Appendix C (Cont'd)
Miscellaneous Results
r = nvo/15, =
12
mils Cd
EC
FRAm
E, 25
35 80
0.475 0.526 0.670
EC
m C T
EC
0,468 0.525 0,670
0,070
0.074
0.072
0.070 0.074
0.473 0,524 0.670
35
80
0.454
0.108
0.508
0,095 0.081
0.665
E25
35 80
0,436 0,476 0.592
0.432 0.488 0,656
0.161 0.131 0.091
0.433 0,472 0,612
= U.100
0.200
OBL94 0.238
0.431 0.467 O.fl5
EC
0,072 0.071 0,075
m m
0.035
0.464 0.523 0,670
O&Q
0,07lb
0,075
Em = 0.075
E~ = 0.050 25
zy zyxw m C T
=
= 0,0253
0,069
30
I2
30
0.274 0,274 0,361
,
0.208
0.422
0,316
0,207
0,458
0,529
0.157
0,579
0.252
zyxwvu zyxw zyxw zy
Effective Boron cui;offs E~ (in ev) for cy1iniiers (ilei@;ht/biam. = 2)
and Fractions of Reactions belox Cutoffs FlRACT! far Various Values of the CharacterTstbc iyla;rweUau k r g y Em
n = 0.0253
E
-p__
20
422
30 50 80
, .Q40 *053 *0?9 0
100
0
125
440
.613 528
,618 --
173
623
150 200 300
500
1000
zyxw 0
039 053
0'77 QU5 .I49 535
9
1,631
.
5,160 15 292 611.227
zyxwvut zyxwvut zyxwvut zn = 0,050 --1_1__
20
30 50 80 100 150 200
3w 500 1000
062
0082
.EO
9
0
D
176
221
454
10297
4 ,620 15.126 61e 310
061.
061
a372
zyxwv e
082
464
eo81
166
e
0
295 607
3 532 14.790 61 310
zyxwv zyxwvu zyxwv z
Appendix D (Continued)
r = nvo/fir
3.2
m C T
Ec
E~
20
30
50
80
100 150 200 300
500 1000
30
20
zyxwvutsrq
mg. B/m2
Ec
106
324 410
154
o 522
.080
= 0,075
e
333-
.4639 540 420
zyxwvu zyxwvutsrq zyxwv 0
220
264 406 0770 34 532 14,518 61,272
607 ,628 627 ,600 0479 e 393* 371+
e 671 e679 .681 539 404 374
zyxwvutsrqponm 0
8
Em = 0,100
20
30
50
80 LOO 150 200
300 500
1000
ma
0%
.E8 184 260 3O9 .442 638 2 570 1 3 e 494 61,189 0 0
298
.m .496 .594 628 645 645 539 .412 8
0
Q575
557 ~ 6 9 8 1 2 364 62,189
.620 43'9 376 0
zyxwv zyxw zyxwvutsr zyxwvuts zyxwvut zyxwvu zyxwvut zyxwvuts ORNL- 2823 Chemi.s t r y - General
INTERNAL DISTRIBUTION
C. E. Center Biology Library Health Physics Library C e n t r a l Research Library Reactor Experimental Engineering Library 7-21. Laboratory Records Department 22 Laboratory Records, ORNL R, C. 23. A. M. Weinberg Le B. Emlet (K-25) 24 J. P. Murray (Y-12) 25 26 J. A. Swartout 27o EP H. Taylor 28 E. D. Shipley 29 o S. C. Lind 30o M. L. Nelson 31 C. P. Keim J. H. Frye, Jr. 32 R. S o Livingston 33 34. F. L. C u l l e r 35o A. H. S n e l l 36 A. Hollaender 37o M. T. Kelley 38. K. Z o Morgan
1, 20 3. 4-50 6.
.
0
.
,
42p' 43 0 44* 45 0 46 P,
47 B 48 0 49 P 50% 51%
-52-1020 103. 104. 1050 106 107 108e 0
T I A. Lincoln A. S. Householder C, S. H a r r i l l C. Eo Winters Ho E, Seagren D. P h i l l i p s D. S. B i l l i n g t o n J. A, Lane M. Je Skinner W. H. Jordan G o E o Boyd R. A. Charpie P. Mo Reyling R. W o S q . u h t o n J. Halperin M. P. Lietzke Bryce Crawford (consultant ) T. H. Davies ( c o n s u l t a n t ) C. E. Larson ( c o n s u l t a n t ) J. D. Roberts ( c o n s u l t a n t ) G. T. Seaborg ( c o n s u l t a n t ) ORNL - Y-12 Technical Library, Document Reference Section
zyxwvut zyxw 0
,/'
39 0 40. 41.
109 e 110 0
EXTERNAL DISTRIBUTION
111. Division of Research and Development, AEC, OR0 112-59,3. Given d i s t r i b u t i o n as shown i n TID-4500 (15 ed.) under ChemistryGeneral category