260 34 39MB
English Pages 185 [194] Year 2008
Chapter 1 Answers Exercise 1A 1 3 5 7 9 11 13 15 17
7x y 8m n 7p 6 x2 2 x2 6 x 8 6x2 12x 10 8x2 3x 13 3x2 14x 19 a 4 b 14c 20 6x
2 4 6 8 10 12 14 16 18
10t 2r 3a 2ac 4ab 2m2n 3mn2 9 x2 2 x 1 10c2d 8cd2 a2b 2a 8x2 9x 13 9d2 2c 13 r2
Exercise 1B 1 4 7 10 13 16
x7 3x2 5 x8 2p7 27x8 32y6
2 5 8 11 14 17
6 x5 k5 p2 6a9 24x11 4a6
Exercise 1C 1 3 5 7 9 11 13 15 17 19
9x 18 12y 9y2 3x2 5x 4 x2 5 x 10x2 8x 4x 1 3 x3 2 x2 5 x 10y2 14y3 6y4 11x 6 2x2 26x
2 4 6 8 10 12 14 16 18 20
Exercise 1D 1 3 5 7 9 11 13 15 17 19 21 23
4(x 2) 5(4x 3) 4(x2 5) x(x 7) x(3x 1) 5y(2y 1) x(x 2) 4x(x 3) 3xy(3y 4x) 5x(x 5y) 5y(3 4z2) xy(y x)
2 4 6 8 10 12 14 16 18 20 22 24
x(x 4) (x 8)(x 3) (x 8)(x 5) (x 2)(x 3) (x 5)(x 2) (2x 1)(x 2) (5x 1)(x 3) (2x 3)(x 5) (x 2)(x 2) (2x 5)(2x 5) 4(3x 1)(3x 1) 2(3x 2)(x 1)
2p2
y10 2a3 3a2b2 63a12 6a12
x2 9 x xy 5x 20x2 5x 15y 6y3 3 x3 5 x2 2x 4 14y2 35y3 21y4 4x 10 7 x2 3 x 7 9x3 23x2
6(x 4) 2(x2 2) 6x(x 3) 2x(x 2) 2x(3x 1) 7x(5x 4) y(3y 2) 5y(y 4) 2ab(3 b) 4xy(3x 2y) 6(2x2 5) 4y(3y x)
1
2
2 4 6 8 10 12 14 16 18 20 22 24
2x(x 3) (x 6)(x 2) (x 6)(x 2) (x 6)(x 4) (x 5)(x 4) (3x 2)(x 4) 2(3x 2)(x 2) 2(x2 3)(x2 4) (x 7)(x 7) (3x 5y)(3x 5y) 2(x 5)(x 5) 3(5x 1)(x 3)
a d g a e i
x5 x3 1 3x 2 5 13 12 5 64
b e h b f j
x2 x5 5x
1 4 7 10 13
27 42 3 127 235
9
2 5 8 11 14
x4 12x0 12 6x1 3 d 116 1 h 6 5 l 6449 6
62 310 65 37 2
Exercise 1H 5 1 5 2 3 2 5
c f i c g k
1 125 9 4
Exercise 1G
3 6 9 12 15
52 3 72 95 193
1 1 2 11 5 4 5
1 2
1 3 7 13 1 3 9 2 3 7 11 2 5 3 13 2 5(2 5 ) 15 1 11(3 11 ) 17 2 14 187 19 3
6
1 4
8
1 3
2 5 10 1 12 3 5 (3 2 )(4 5 ) 14 11 16 5(4 14 ) 5 21 18 2 35 1189 20 6
21 1
Mixed exercise 1I 1 2 3
Exercise 1E 1 3 5 7 9 11 13 15 17 19 21 23
3 6 9 12 15 18
Exercise 1F
4
5 6 7 8
a a c a c a c e a a
y8
b 6 x7
15y 12 16x2 13x x(3x 4) x(x y y2) (x 1)(x 2) (x 7)(x 5) (5x 2)(x 3) b 2 3 x6 4 37 5 b 3 9 4913
7 a 7 3 a 3 c 33 6
c b d b d b d f c
32x d 12b9 2 3 15x 25x 10x4 9 x3 3 x2 4 x 2y(2y 5) 2xy(4y 5x) 3x(x 2) (2x 3)(x 1) (1 x)(6 x) 1 6 x2 d 12 x 3
b 45 b 2 1 30 851 d 7
Chapter 2 Answers Exercise 2A 1
5
y
y
28
14
24
12
20
10
16
8
12
6
8
4
4
2 4 3 2 1 0 2
x0
2
1
2
3
4 3 2 1 0
4 x
1
2
3
4 x
x1
4
y 22
6
y
18
30
14 10
20
6 2 4 3 2 1 0
10
1
2
3
4 x 4 3 2 1 0
x0
x 112 3
1
2
3
4 x
1
2
3
4 x
10
y 8 6 4 2 4 3 2 1 0
1
2
3
4 x
7
y 40
x0
30
4
y 4 3 2 1 0 4
20
1
2
3
4 x 10
8 12 16
x0
4 3 2 1 0
x 34
10
Chapter 2 Answers 8
3 29 5 x 2 2 1 1 29 7 x 8 8 3 39 9 x 2 2
y 20
15
3 6 x 1 2 2 8 No real roots 4 26 10 x 5 5
10
Exercise 2E 5
4 3 2 1 0
1
2
3
4 x
5
y 80 70 60 50 40 30 20 10 4 3 2 1 0
x
1
2
3
x 0 or x 4 x 0 or x 2 x 1 or x 2 x 5 or x 2 x 3 or x 5 x 6 or x 1 x 12 or x 3 x 23 or x 32 x 13 or x 2 x 13 or x 1
5 21 x 3 1 11 23 x 3 25 x 12 or x 73
(x 2)2 4 (x 8)2 64 (x 7)2 49 3(x 4)2 48 5(x 2)2 20 3(x 32)2 247
Exercise 2F 1
2 4 6 8 10 12 14 16 18 20
x 0 or x 25 x 0 or x 6 x 1 or x 4 x 3 or x 2 x 4 or x 5 x 6 or x 2 x 13 or x 32 x 32 or x 52 x 3 or x 0 x 2 or x 2
a
y (0, 2)
(2, 0)
x
(1, 0) 0
b
22 x 3 13
y
(0, 10)
24 x 1 or x 76
2 4 6 8 10 12
(x 3)2 9 (x 12)2 14 2(x 4)2 32 2(x 1)2 2 2(x 54)2 285 3(x 16)2 112
x
0
26 x 0 or x 161
Exercise 2C 1 3 5 7 9 11
4 x
1 2
Exercise 2B 1 3 5 7 9 11 13 15 17 19
3 3 3 , 1.27 or 4.73 5 33 4 , 5.37 or 0.37 2 5 31 5 , 3.52 or 0.19 3 1 2 6 , 1.21 or 0.21 2 9 53 7 , 0.12 or 1.16 14 2 19 8 , 0.47 or 1.27 5 1 9 2 or 4 1 78 10 , 0.71 or 0.89 11
x 1 9
3 5 1 , 0.38 or 2.62 2 3 17 2 , 0.56 or 3.56 2
c
y
(5, 0)
0
(3, 0) x
Exercise 2D 1 x 3 22 3 x 5 30
2 x 6 33 4 x 2 6
(0, 15)
Chapter 2 Answers d
j
y
y
(0, 4) (0, 3) 0 ( 12 , 0)
(3, 0)
e
x
x
0
y
( 32 , 0)
(12 , 0)
(4, 0)
2
4
3
4
(1, 0)
x
0
Mixed exercise 2G 1
(0, 3)
a
y 20 16
f
y
12 8 4
(0, 10) 0 ( 23 , 0)
( 52 , 0)
6 5 4 3 2 1 0 4 x 3
x b
1
2 x
y 12
g
y (1, 0)
0
8 4
( 5 , 0) x 3
3 2 1 0 4
1
2
3 x
8 (0, 5)
h
x 34 2
y
(0, 0) 0
( 13, 3
3
0) x
12
a y 1 or 2
b x 23 or 5
c x 15 or 3
5 7 d 2
5 17 a , 0.44 or 4.56 2 b 2 7 , 4.65 or 0.65 3 29 c , 0.24 or 0.84 10
i
5 73 d , 2.25 or 0.59 6
y 4
a
y
(0, 7)
(1, 0)
(0, 4)
(7, 0) 0
x
(1, 0) (4, 0)
0
x
Chapter 2 Answers b
d
y
y
(1, 0) ( 32 , 0)
x
0
(0, 0) 0
(0, 3) c
y 5
( 12 , 0)
(3, 0) 0
a p 3, q 2, r 7 b 2
(0, 6)
(7 12 , 0)
3 7
6
1 13
7
x 5 or x 4
x
x
Chapter 3 Answers Exercise 3A 1 3 5
Mixed exercise 3F
x 4, y 2 x 2, y 2 x 23, y 2
2 4 6
x 1, y 3 x 412, y 3 x 3, y 3
2 4
x 512, y 6 x 134, y 14
Exercise 3B 1 3
x 5, y 2 x 1, y 4
Exercise 3C 1
2 3 4 5
a x 5, y 6 or x 6, y 5 b x 0, y 1 or x 45, y 35 c x 1, y 3 or x 1, y 3 d x 412, y 412 or x 6, y 3 e a 1, b 5 or a 3, b 1 f u 112, v 4 or u 2, v 3 (11, 15) and (3, 1) (116, 412) and (2, 5) a x 112, y 534 or x 3, y 1 b x 3, y 12 or x 613, y 256 a x 3 13 , y 3 13 or x 3 13 , y 3 13 b x 2 35 , y 3 25 or x 2 35 , y 3 25
Exercise 3D 1
2
3
a d g j a d g j a d
x4 x 3 x 12 x 117 x3 x 18 x4 x 34 x 212 No values
b x7 e x 11 h x1
c x 212 f x 235 i x 8
b x1 e x3 h x 7
c x 314 f x 425 i x 12
b 2x4 e x4
c 212 x 3
Exercise 3E 1
2 3
4
a c e g i k a c a c e a
3x8 x 2, x 5 12 x 7 1 1 2 x 12 3 x 3 x 0, x 5 5 x 2 1 x 1 2 2x4 14 x 0 5 x 3, x 4 2 k 6
b d f h j l b d b d f b
4 x 3 x 4, x 3 x 2, x 212 x 13, x 2 x 212, x 23 112 x 0 x 1, x 1 3 x 14 x3 No values 1 x 1, 2 x 3 8 p 0
1 2 3 4 5 6 7 8
9 10 11 12 13
x 4, y 312 (3, 1) and (215, 135) b x 4, y 3 and x 223, y 13 x 112, y 214 and x 4, y 12 a x 1012 b x 2, x 7 3x4 a x 5, x 4 b x 5, x 4 a x 212 b 12 x 5 c 12 x 212 k 315 x 0, x 1 a 1 13 b x 1 13 , x 1 13 a x 4, x 9 b y 3, y 3 a 2x 2(x 5) 32 b x(x 5) 104 c 1012 x 13
Chapter 4 Answers Exercise 4A 1
a
h
y
y
1 0
2
x
3
i
x
0 1
1
6
y 2
b
y
12 0
0
3 2
x
1
j
6
c
y
y
0
3
6
2
a
y
0
1
y 3 1 0
3
1
x
1
1 x b
e
x
1 2
x
3 2 1 0
d
x
2
1 2
y
y
2
24
0
2
3
c f
0
2
4 x
1
y
y 2
1 0
1
x
2
d g
0
2 x
0
2 x
y
y
1 0
1
x
1 2
x
Chapter 4 Answers e
b y x(x 4)(x 1)
y
y
x
0
2
1 0
4 f
x
c y x(x 1)2
y
y
x
0 1
g
y
x
0
1
d y x(x 1)(3 x)
y 3 0
3
x
1
h
y
3 x
0
1
e y x2(x 1)
y 3 0
3 x
1
0 i
y
f
0
2
y x(1 x)(1 x) y
x 1 0
j
x
1
y
x
1
g y 3x(2x 1)(2x 1)
y 0
2
x 0 12
3
a y x(x 2)(x 1)
0
x
h y x(x 1)(x 2)
y
2
1 2
y
1
x
1
0
2
x
Chapter 4 Answers i
y x(x 3)(x 3)
e
y
y
x
0 0
3
j
3
y x2(x 9)
x
2
a
y
y 27 0
9
x x
0
3
Exercise 4B 1
a
y
b
y
x
0
0
x
3
27 b
y c
x
0
y
1 0
c
y
d
x
0
y
8 0
d
y
e
0
x
x
1
x
2
y
1 8
0
1 2
x
Chapter 4 Answers
Exercise 4C 1
Exercise 4D y
1
y
a i
y
x
x
0
y
y x2
4
1
2
0
x
1
x
y x(x2 1) 2
y
iii x2 x(x2 1)
ii 3 b i
y x2
y y x(x 2)
x
0
y x2
x
0
2
3
y x 3
y y x2
3 iii x(x 2)
ii 1
x
0
x
c i y x2
y
y x4
4
y (x 1)(x 1)2 0
1
y x8
iii x2 (x 1)(x 1)2
ii 3 d i
y
x
0
y x2 (1 x)
y x3
5
x
1
y
0
y
y
y x3 0
x
1
2 iii x2(1 x)
ii 2
x
2
x
x
e i
y
y x8
0
y ii 1
1
x
4
x
y x(x 4) 1 iii x(x 4)
x
Chapter 4 Answers f
i
2 a
y
y
y x2(x 4)
y x(x 4) x
0 0
x
4
y x(4 x)
y x1
b (0, 0); (4, 0); (1, 5) 1
iii x(x 4)
ii 3
3 a
x
g i
y
y y (x 2)3
1
2.5 2 0
4
x
0
y x(1 x)3
x
y x(2x 5) y x(x 4)
b (0, 0); (2, 18); (2, 2)
iii x(x 4) (x 2)
ii 1 h i
3
4 a
y
y y (x 1)(x 1) y x2
y (x 1)3 x
0
1 0
x
1
y x3 2 iii x3
ii 2 i
b (0, 1); (1, 0); (3, 8)
x
i
y
5 a
y
y y x2
x2
x
0
x
0
y
y x3
27
x
iii x3 x2
ii 2
b (3, 9) j
i
y 6 a
y x(x 2) 2
0
x
y x3 ii 3
iii x3 x(x 2)
y y x2 2x 0
y x(x 2)(x 3) b (0, 0); (2, 0); (4, 8)
2
3
x
Chapter 4 Answers 7 a
12 a
y
y
y x2
y 14x 2
y x2(x 3) 0
x
3
y (x2 1)(x 2) 2 1
0
1
x
2
b Only 2 intersections 8 a
y
b (0, 2); (3, 40); (5, 72)
y 3x(x 1)
13 a
1 0
y
x
1
y (x 2)(x 2)2 2
y (x 1)3
x
0 2
y x2 8 b Only 1 intersection 9 a
y y
0
1
b (0, 8); (1, 9); (4, 24)
1
x
Exercise 4E
x
1
y
a i
y
ii
y
iii
y x(x 1)2
10 a
0
x
y x(x
b i
01 2
2
(0, 12 ), x 2
(2, 0), (0, 8)
2)2
y
ii
y
x
0
(2, 0), (0, 4)
y
12
x
0
b Graphs do not intersect.
y
iii
x 0
y 1 4x2
x
0
x x
0
(0, 2)
(3
b 1, since graphs only cross once
2, 0), (0, 2) ( 12 , 0), y 2
11 a
y
1
y 6x
0
4
c i
y
b (0, 0); (2, 12); (5, 30)
y
iii
y
x 0
y x3 3x2 4x
ii
x
0
x
0
(0, 1), (1, 0) (0, 1), (1, 0)
(0, 1), x 1
x
Chapter 4 Answers d i
y
0
x
iii
x
0
1
x y f(x 1)
0
c f(x 1) x(x 1)2; (0, 0)
y
4
a
y f(x)
y
x
0
x
0
y
x
(1, 0), y 1
y
ii
b
0
(0, 1), (1, 0)
y
y
iii
0
x
(1, 0), (0, 1), (1, 0) e i
y
ii
0 ( 3, 0), (0, 3), ( 3, 0)
(0, 3), (3 3, 0)
x
2
( 13 , 0), y 3 b
f
i
y
y
ii
iii
y
y
y f(x) 2
2
x
0
x
0
0
(0, 13 ), x 3
(0, 27), (3, 0) a
y y f(x)
2
0 2
2
0
c f(x 2) (x 2)x2; (0, 0); (2, 0) 5
a
y
y f(x)
x
1
0 b i
y f(x 2)
b
x
4
y y
4 1 0
4 ii
y f(x) 4 x
4
y
0
2
y f(x) 2 1
x
2
y f(x 2)
(0, 9), (3, 0)
2
x
y f(x 2) 4
x
0
x
2
c f(x 2) (x 2)(x 2); (2, 0); (2, 0) f(x) 4 (x 2)2; (2, 0)
c f(x 2) (x 1)(x 4); (0, 4) f(x) 2 (x 1)(x 2) 2; (0, 0) 3
a
Exercise 4F
y
1
a i
y
1
ii
y
f(2x)
iii
y f(x)
y f(x) 0
f(2x) f(x)
x
0
x
f(x) 0
0
x f(2x)
x
Chapter 4 Answers b i
y
y
ii
iii
j
y
f(x)
x
0
x 0 f(x) f(x)
y
i
0
f(x)
f(x)
x
0
x
y
iii
f(12 x)
a
0
2
f(x)
iii
y
x
x
0
1 f(x) 4
1 f(x) 4
y f(x)
y
x
0
f(12 x)
f(12 x)
2
0
1 f(x) 4
f(x)
f(x)
f(x)
x
0
y
ii
y
ii
f(x)
x
0
f(x) c
y
i
f(x)
2
x
4 d
y
i
f(4x)
y
ii
iii
f(x)
f(x)
f(x) 0
y
0
x
x
0
y
i
0
i
f
y
f(x)
f(4x)
12
f( 14 x)
2f(x)
f(x)
y
iii
x
0
x
0
f( 14 x)
ii
0
1 2
y
f(x)
iii
y
y 3f(x)
x 2
4
y
ii
y
x
f(4x)
e
y y f(4x)
b
f( 14 x)
2
x
12
y
x
f(x)
0
y y f(x)
2 2f(x)
0
2
x
y f(x)
4
2
0
2
x
4
f(x) 0
x
0
x
0
x
f(x)
F
a
y
y f(x)
2f(x) g i
y
ii
f(x)
y
iii
y
0
x
0
2
f(x)
f(x)
x
2
y
y f(12 x)
0
4
x
2
x
x
0
f(x)
b
f(x)
f(x)
x
0
y
y f(2x)
h
y
i
ii
y
iii
f(x) 4f(x) 0 i
i
y
0
0
1 f(x) 2
x
f(x)
y
y
0 f(x)
x
0
4f(x) ii
x
4
4f(x)
f(x)
x
f(x)
y
iii
x
1 f(x) 2
y
0
f(x)
x 1 f(x) 2
2
0
y f(x)
0 1
1
x
Chapter 4 Answers 4
a
y
b
y f(x)
y (4, 0)
3 x
0
(0, 2)
x
0
(6, 4)
(1, 4) b
y y f(2x)
c
y
y (0, 4) (4, 2)
0
(2, 0)
x
3 2
x
(3, 0) 0 3 x
0
d
y f(x)
y (2, 4)
y
(0, 2) (3, 0) 0
3
x
0
e
( 12 ,
x
0)
y (4, 12)
y f(x) (0, 6) 5
a
y
(6, 0)
y f(x) f
0
2
1
x
0 (1, 0)
x
2
y
(8, 4)
(0, 2) b
y
0 (2, 0)
y f(2x) g
1
0
1 2
1
(12, 0)
y (4, 2)
x
(6, 0)
(0, 1)
x
0 (1, 0)
y h
y f(12 x) 0
4
2
4
y
(4, 4)
(0, 2)
x
(1, 0) 0
(6, 0)
2
x
a y 4, x 1, (0, 2)
y
Exercise 4G 1
a
y
y4
(3, 4)
2 (1, 2) (0, 0) 0 (5, 0)
0
x
1
x
x
Chapter 4 Answers b y 2, x 0, (1, 0)
h y 2, x 1, (0, 0)
y
y
1
y 2
x
0
x
1
0
y2
3
c y 4, x 1, (0, 0)
a A(2, 6), B(0, 0), C(2, 3), D(6, 0)
y
y 0
y4
6 x
(2, 3)
(2, 6) 1
0
x b A(4, 0), B(2, 6), C(0, 3), D(4, 6)
y (2, 6) (4, 6)
d y 0, x 1, (0, 2)
y
3 4
0
x
1
x
0
c A(2, 6), B(1, 0), C(0, 3), D(2, 0)
y
2
1
e y 2, x 12, (0, 0)
0
x
2
3
y (2, 6)
y2
d A(8, 6), B(6, 0), C(4, 3), D(0, 0)
y 0
x
1 2
6
x
0 (4, 3) f
(8, 6)
y 2, x 2, (0, 0)
e A(4, 3), B(2, 3), C(0, 0), D(4, 3)
y
y (2, 3)
y2
2
0
(4, 3)
x
0 (4, 3)
x f
A(4, 18), B(2, 0), C(0, 9), D(4, 0)
y g y 1, x 1, (0, 0)
2
y
0
y1
9 0
1
x (4, 18)
4
x
Chapter 4 Answers g A(4, 2), B(2, 0), C(0, 1), D(4, 0)
iii x 0, y 0
y
y
2
4 x
0 1 (4, 2)
x
0 h A(16, 6), B(8, 0), C(0, 3), D(16, 0)
y iv x 2, y 1, (0, 0)
8 16
0 3
x
y
(16, 6) 2 i
(4, 6)
x
0
A(4, 6), B(2, 0), C(0, 3), D(4, 0)
y 1
y 3
2
j
4
0
v x 2, y 0, (0, 1)
x
y
A(4, 6), B(2, 0), C(0, 3), D(4, 0)
1
y
0 4
0 3
x
2
x
2 (4, 6)
vi x 2, y 0, (0, 1)
y 4
a i
x 2, y 0, (0, 2)
y 2
2 2
1
0
x
x
0
2 b f(x) x2
x 1, y 0, (0, 1)
ii
Mixed exercise 4H 1
y
a
y
1 1 0
x
0
y x2(x 2)
2
x
2x x2 b x 0, 1, 2; points (0, 0), (2, 0), (1, 3)
Chapter 4 Answers 2
a
y y1x
B
A
1
y x6
0
x
4
a x 1 at A, x 3 at B
5
a
y y f(x 1) (5, 0)
y x2 2x 5 b A(3, 2) B(2, 3)
b
y
c y x2 2 x 5 3
a
(4, 0)
y
A( 32 , 4)
x
0
(1, 0)
y2
(0, 3)
x
B(0, 0) 0
6 b
x
0 (0, 0)
a
y
y A(3, 2)
y1
b
c
A(3, 2)
d
(2, 0)
y
y
0 B(0, 2)
x
(0, 0) 0 (2, 0)
x
0 B(0, 0)
(0, 0) 0
(2, 0) x
x y 0 is asymptote
7
y
a f 1 b i
y x2 4 x 3
y
A(0, 4)
y2 B(3, 0) e
(1, 0) 0 (0, 1)
x
0
ii
y
(1, 0) x
y
A(6, 4) ( 32 , 0)
y2 0 f
B(3, 0)
y
x
A(3, 5)
y3 B(0, 1) 0
x
( 12 , 0) 0
x (1, 1)
Review Exercise 1 Answers 1 a b c 2 a 3 a 4 5 6 7 8 9
10
11 12
13 14
x(2x 1)(x 7) (3x 4)(3x 4) (x 1)(x 1)(x2 8) 9 b 27 2 b 14
c
2
1 27
a 625 b 43 x 3 a 45 b 21 8 5 a 13 b 8 2 3 a 63 b 7 4 3 a 567 b 10 13 7 c 16 6 7 a x 8 or x 9 b x 0 or x 72 c x 32 or x 35 a x 2.17 or 7.83 b x 2.69 or x 0.186 c x 2.82 or x 0.177 a a 4, b 45 b x 4 35 a (x 3)2 9 b P is (0, 18), Q is (3, 9) c x 3 4 2 k 6, x 1 (same root) a a 5, b 11 b discriminant < 0 so no real roots c k 25 d y
25
5 0 15 a a 1, b 2 b y
22 a Different real roots, determinant > 0, so k2 4k 12 > 0 b k < 2 or k > 6 23 0 < k < 89 24 a p2 8p 20 > 0 b p < 2 or p > 10 ) (3 13 c x 2 25 a x(x 2)(x 2) b
y
2
0
y
c
1
26
x
2
0 1
3
x
a
y
x
(3, 2)
0
2
4
x
3 (2, 0) (4, 0) and (3, 2)
16 17 18 19
20 21
x 0 c discriminant 8 k < 23 d 23 y 4, x 2 or y 2, x 4 a x2 4 x 8 0 , y 6 23 b x 2 23 x 2, y 1 or x 13, y 137 a x > 14 b x < 12 or x > 3 c 14 < x < 12 or x > 3 a 0 312
b
y
0
1
2 (1 12 , 2)
(1, 0) (2, 0) and (112, 2) 27 a
x
Review Exercise 1 Answers 30 a
y
0
3
x
2
(0, 0) and (3, 0) b
6
1
x
4
(1, 0) (4, 0) and (0, 6) c
y
3 0
2
8
x
(2, 0) (8, 0) and (0. 3) 28 a
y 3
x
0
Asymptotes: y 3 and x 0 b (13, 0) 29 a f(x) x(x2 8x 15) b f(x) x(x 3)(x 5) c y
3 0
0
3
(2, 0), (0, 0) and (4, 0) (0, 0) and (3, 0) b (0, 0), ), 10 35 ), (12(1 35 ), 10 35 ) (12(1 35
y
0
y
3
(0, 0), (3, 0) and (5, 0)
5
x
4
x
Chapter 5 Answers Exercise 5A 1 a 2 e 23 i
1 2
2 a 4 e 3
4 5 6 7 8 9 10
7 5
b 1 f j
c 3
5 4 1 2
g
1 2
k 2 23
b 5
c
f
g 2
2
i 9 j 3 a 4x y 3 0 c 6xy70 e 5x 3y 6 0 g 14x 7y 4 0 i 18x 3y 2 0 k 4x 6y 5 0 y 5x 3 2x 5y 20 0 y 12 x 7 y 23 x (3, 0) (53, 0) (0, 5), (4, 0)
k b d f h j l
d
1 3
h 2 l
32
d 0 h 2
3 2
l 12 3x y 2 0 4x 5y 30 0 7 x 3y 0 27x 9y 2 0 2x 6y 3 0 6x 10y 5 0
m 1 2 3 4 5 6 7 8
7 12 413 214 1 4
26 5
Exercise 5C
1 a y 2x 1 c y x 3 e y 12 x 12 g y 2x 2 y 3x 6 3 y 2x 8 4 2x 3y 24 0 5 15 6 y 25 x 3 7 2x 3y 12 0 8 85 9 y 43 x 4 10 6x 15y 10 0
b d f h
y 3x 7 y 4x 11 y 23 x 5 y 12 x 2b
y 4x 4 y 2x 4 yx4 y 4x 9 y 65 x
d 2 h 8 l 12
6 7
a Perpendicular c Neither e Perpendicular g Parallel i Perpendicular k Neither y 13 x 4x y 15 0 a y 2x 12 c y x 3 a y 3x 11 c y 23 x 2 3x 2y 5 0 7x 4y 2 0
b d f h j l
Parallel Perpendicular Parallel Perpendicular Parallel Perpendicular
b d b d
y 12 x y 12 x 8 y 13 x 133 y 32 x 127
Mixed exercise 5F 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a y 3x 14 b a y 12 x 4 b a y 17 x 172, y x 12 b a y 152 x 161 b a y 32 x 32 b 11x 10y 19 0 a y 12 x 3 b a y 32 x 2 b (4, 4) c a 2x y 20 b a 12 b 6 c 3 3 b a 3 1 3 a 7x 5y 18 0 b b y 13 x 13 a y l2 l1 3 ( 2 , 0)
(0, 0) 0
(0, 14) y 12 x 32, (1, 1) (9, 3) 22 (3, 3)
y 14 x 94 20 y 13 x 43 2x y 16 0
y 3 x 23 1 2 6 35
x
(0, 3) 4
1
b (3, 3) 15 a x 2y 16 0 c (176, 674)
Exercise 5D 1 a c e g i
1
5
b 16 c 35 1 f 2 g 12 j 4 k 13 2 2 q p n q p qp
(3, 0) (0, 1) (0, 312) y 45 x 4 xy50 y 38 x 12 y 4x 13 y x 2, y 16 x 13, y 6x 23 (3, 1)
Exercise 5E
2 3 4
Exercise 5B 1 a 12 e 1 i 23
2 3 4 5 6 7 8 9 10
b d f h j
yx2 y 4x 23 y 12 x 1 y 8x 33 y 27 x 154
c 12x 3y 17 0 b y 4x
Chapter 6 Answers Exercise 6A
3
1 24, 29, 34 Add 5 to previous term 2 2, 2, 2 Multiply previous term by 1 3 18, 15, 12 Subtract 3 from previous term 4 162, 486, 1458 Multiply previous term by 3 5 14, 18, 116 Multiply previous term by 12 6 41, 122, 365 Multiply previous term by 3 then 1 7 8, 13, 21 Add together the two previous terms 8 59, 161, 173 Add 1 to previous numerator, add 2 to previous denominator 9 2.0625, 2.031 25, 2.015 625 Divide previous term by 2 then 1 10 24, 35, 48 Add consecutive odd numbers to previous term
4 5
1 2
3 4
2
3 4 5 6 7
Exercise 6C 1
2
a c e g a b c
1, 4, 7, 10 b 3, 6, 12, 24 d 10, 5, 2.5, 1.25 f 3, 5, 13, 31 Uk1 Uk 2, U1 3 Uk1 Uk 3, U1 20 Uk1 2Uk, U1 1 U d Uk1 k , U1 100 4 e Uk1 1 Uk, U1 1 f Uk1 2Uk 1, U1 3 g Uk1 (Uk)2 1, U1 0
9, 4, 1, 6 2, 5, 11, 23 2, 3, 8, 63
Uk 2 h Uk1 , U1 26 2 i Uk2 Uk1 Uk, U1 1, U2 1 j Uk1 2Uk 2(1)k1, U1 4
Arithmetic sequences are a, b, c, h, l a 23, 2n 3 b 32, 3n 2 c 3, 27 3n d 35, 4n 5 e 10x, nx f a 9d, a (n 1)d a £5800 b £(3800 200m) a 22 b 40 c 39 d 46 e 18 f n
Exercise 6E
Exercise 6B
a U1 5 U2 8 U3 11 U10 32 b U1 7 U2 4 U3 1 U10 20 U2 9 U3 14 U10 105 c U1 6 U2 1 U3 0 U10 49 d U1 4 U2 4 U3 8 U10 1024 e U1 2 f U1 13 U2 12 U3 35 U10 56 g U1 13 U2 12 U3 35 U10 56 h U1 1 U2 0 U3 1 U10 512 a 14 b 9 c 11 d 9 e 6 f 9 g 8 h 14 i 4 j 5 Un 4n2 4n 4(n2 n) which is a multiple of 4 Un (n 5)2 2 0 Un is smallest when n 5 (Un 2) a 12, b 22 a 1, b 3, c 0 p 12, q 512
Uk1 Uk 2, U1 1 Uk1 Uk 3, U1 5 Uk1 Uk 1, U1 3 Uk1 Uk 12, U1 1 Uk1 Uk 2k 1, U1 1 Uk1 Uk (1)k(2k 1), U1 1 3k 2 b 3k2 2k 2 c 130, 4 4 2p b 4 6p c p 2
Exercise 6D
1 1
a b c d e f a a
2 3 4 5 6 7
a 78, 4n 2 c 23, 83 3n e 27, 33 3n g 39p, (2n 1)p a 30 b 29 d 31 e 221 d6 a 36, d 3, 14th term 24 x 5; 25, 20, 15 x 12, x 8
b d f h c f
42, 2n 2 39, 2n 1 59, 3n 1 71x, (9 4n)x 32 77
Exercise 6F 1
2 3 4 5 6 7 8
a 820 d 294 g 1155 a 20 c 65 2550 i £222 500 1683, 3267 £9.03, 141 days d 12, 5.5 a 6, d 2
b e h b d
450 c 1140 1440 f 1425 21(11x 1) 25 4 or 14 (2 answers)
ii £347 500
Exercise 6G 10
1
a
(3r 1) r1
c
4(11 r) r1
30
b
(3r 1) r1
d
6r r1
11
2 3 4
a 45 c 1010 19 49
16
b 210 d 70
Chapter 6 Answers
Mixed exercise 6H 1 2 3 4
5 6 7 8 9 10 11 12
13 15 16
17
5, 8, 11 10 2, 9, 23, 51 a Add 6 to the previous term, i.e. Un1 Un 6 (or Un 6n 1) b Add 3 to the previous term, i.e. Un1 Un 3 (or Un 3n) c Multiply the previous term by 3, i.e. Un1 3Un (or Un 3n1) d Subtract 5 from the previous term, i.e. Un1 Un 5 (or Un 15 5n) e The square numbers (Un n2) f Multiply the previous term by 1.2, i.e. Un1 1.2Un (or Un (1.2)n1) Arithmetic sequences are: a a 5, d 6 b a 3, d 3 d a 10, d 5 a 81 b 860 b 5050 32 a £13 780 c £42 198 a a 25, d 3 b 3810 a 26 733 b 53 467 a 5 b 45 a 4k 15 b 8k2 30k 30 c 14, 4 b 1500 m a U2 2k 4, U3 2k2 4k 4 b 5, 3 a £2450 b £59 000 c d 30 a d5 b 59
11k 9 18 b 3 c 1.5 d 415
Chapter 7 Answers Exercise 7A 1
2
a i iv b 6 a i iv b 8
Exercise 7G
7 6.01
ii v
9 8.01
6.5 h6
ii v
iii 6.1
8.5 8h
iii 8.1
1
2t 3
2
2
3
12t2
4
9.8
5
1 5r2
6
12 8t
7
10 2x
Exercise 7H
a y 3x 6 0
b
4y 3x 4 0
c 3y 2x 18 0
d
e y 12x 14
f
2
a 7y x 48 0
b
yx y 16x 22 17y 2x 212 0
3
(129, 189)
4
y x, 4y x 9 0; (3, 3) y 8x 10, 8y x 145 0
1
Exercise 7B 1
7 x6
4
1 3
7
3x4
x
8 x7
2 2 3
4 3
5
1 4
8
4x5
x
10 5x6
11 13 x
13 2x3 16 9x8
14 1 17 5x4
4 3
3
4 x3
6
1 3
9
2x3
2
x
3
12 12 x
3 2
5
Exercise 7I
15 3x2 18 3x2
1 4, 1134, 172257 2 0, 22 3 (1, 0) and (123, 91237)
Exercise 7C 1
a 4x 6
b x 12
d 16x 7
e 4 10x
2
a 12
b 6
c 7
d 212
e 2
f
3
4, 0
4
(1, 8)
5
1, 1
6
6, 4
5 (2, 13) and (2, 15) 9 6 a 1 2
b
x
4
x 3
7 x 4, y 20 8
Exercise 7D 1
4 2, 223
c 8x
a 4x3 x2
b x3
c x
3
3 2
1
x
2
2x
1 1 dy 9 a 6x 2 32 x 2 b dx 1 12 x 2 (12 3x)
2
32 x
1112
2
a 0
b
3
a (212, 614)
b (4, 4) and (2, 0)
c (16, 31)
d (12, 4) (12, 4)
3
2
3 2
1
2
10 a x x x 1 2
3 2
(4 x) 1
2 1 2
(4, 16)
b 1 x x
1 3
2
c 4116
Exercise 7E 1
1
a x
2
b 6x3
d
4 3
f
3 1 3
x 2x 3
2
x
2
4
1 2
x
x2 g 3x2
5x 32 x
1 2
h 3 6x2
3 x2 2 x 2
j
l 24x 8 2x2 a 1 b 29
c 4
Exercise 7F 1
24x 3, 24
2
15 3x2, 6x3
3
9 2
4
30x 2, 30
5
3x2 16x3, 6x3 48x4
1
x
2
1
2
1 2
3 2
i
e 6x
2
c x4
6x3, 94 x
3
2
18x4
k 12x3 18x2 d 4
11 6x2 12 x
1
2
2x2
10 2300 12 , 3 27 14 a 1, b 4, c 5 15 a 3x2 10x 5 b i
1 3
ii y 2x 7
16 y 9x 4 and 9y x 128 17 a (45, 25)
b
1 5
iii 725
Chapter 8 Answers Exercise 8A
Exercise 8D
1 6
1 y x6 c
2 y 2 x5 c
3 yx c
4 yx
3
5 y 2x
3 5
c
2
1
1
c
5 3
6 y x c
3
7 y 83 x 2 c
8 y 27 x7 c
9 y 12 x6 c
10 y x3 c
1
11 y 2x 2 c 13 y 4x
1
2
12 y 10x
1
2
2
c
4
14 y 92 x 3 c
c
15 y 3x12 c
3
16 y 2x7 c
1 3
17 y 9x c
18 y 5x c
19 y 3x c
20 y 130 x0.6 c
2
1
a y 2x x
1
3 2
4x c
b y 5x3 3x2 2x
3
2
1
c y 14 x4 3x 6x1 c
5
h y x 2x 2
1
3x
a f(x) 6x 3x 2
1
2
1 2
c f(x) x x
1
2
d f(x) 5x 4x 2
2 3
f(x) 3x 2x 3
3
c
1 6
4
c
2
2
5
c
x c 3
h f(x) x2 x2 43 x c
4
x x c 2
5 2
2 2x 4 3
1
3x c
4
5 x4 x3 rx c
6 t3 t 1 c
2 t3 3
1
2
6t
a
1 3
x3 2 x2 4 x c
b
1 3 3
c
1 2
x2 83 x 2 4x c
d
2 5
e
2 3
x 2 4x 2 c
f
2x 2 43 x 2 c
b
4 x 2 x3 c
3
5
3
3
1
3 1 a 2x 2 c
x
5
3
1
3
x 2 43 x 2 c 1
2
5 3
1
x 2x c x
1
c
3 5
1
f
4x 2 65 x 2 c
1
5
5 2
3 2
g
1 3
x3 3 x2 9 x c
j
2 5
x 2 3 x2 6 x 2 c
1 2
h
8 5
x 83 x 2x c
i
3 x 2 x 2 2 x3 c
1
3
5
a y x3 x2 2
1
d
y x4 2 3x 1 x y 6x 12 x2 4
f
y 25 x 2 6x 2 1
b
2 3
5
1
1 f(x) 12 x4 12
x
2
3
y 1 x x x3 x4 a f2(x) ; f3(x) 3
12
f2(x) x 1; f3(x) 21 x2 x 1; f4(x) 61 x3 21 x2 x 1
2 3
x3 32 x2 5x c
2
5
3
5
4
3
1
3 4
x 3 32 x 3 c
b
2x 2 43 x 2 c
b
3 5
b
2x 2 8x 2 c
2
1 3
4 5
4
b
5
1
3
x 2 23 x 2 6 x 2 c
tc
p 9 x5 2tx 3x1 c 5
8
1 2
x 4x 4x c 1
x2 2 x 2 2 x
1
3
6 2x 2 4x 2 c
1 2
3 2
3 2 x x3 c
7
x 2 2x 2 c
x x3 12 x2 3x c
5 x t3 t2 t 1; x 7
Exercise 8C 1
4 5
x3 32 x2 16 x 3 a 2 x4 2 x3 5 x c 2
3 2
4
e
1 a
g f(x) 13 x3 x1 23 x 2 c
1 4
2 3
Mixed Exercise 8F 1 2
1 2
d
3 4 5 … (n 1)
c
3
x3 6 x2 9 x c
xn1 b
c
2
e f(x) 3x 6x
4
5x c
b f(x) x6 x6 x
f
2
3 x 4 x2 c 2
4 3
e y x3 2 x2 4 x
y 3x 3 2x5 12 x2 c
5
c
1 3
e y 4x 4x3 4x c
3 2x c
c y 23 x 2 112x3 13
1 2
g y 4x
b
3
1
d y x4 3x 3 x1 c
1 3
x4 x3 c
Exercise 8E
c
1 2
f
1 2
x 2 c d 2 3x c x x x 1 1 3 4 3 2 e 4 x 3 x 2 x 3x c
Exercise 8B 2
a
1
2
7 x 1213 8 a A 6. B 9
c
p 10 t4 q2t px3t c 4
9 a
3 2
1
x
2
2x 1
3
2 3
10 a 5x 8x 2 23 x 2 c
x 3 92 x 3 9x c
Review Exercise 2 (Chapters 5 to 8) Answers 1
2
3
4
5
6 7
8 9
10
11 12
13
14
a Since P(3, 1), substitute values into y 5 2x gives 1 5 6, so P on line. b x 2y 5 0 a AB 5 2 b 0 x 7y 9 c C is (0, 97) a 0 x 3y 21 b P (3, 6) c 10.5 units2 a p 15, q 3 b 7x 5y 46 0 c x 1147 a y 13 x 4 b C is (3, 3) c 15 units2 a P is (181, 1136) 12 1 2 b 64 units a d 3.5 b a 10 c 217.5 a 5 km, d 0.4 km a 3, 1, 1 b d2 c n(n 4) a £750 b £14 500 c £155 a a2 4, a3 7 b 73 a a1 k, a2 3k 5 b a3 3a2 5 9k 20 c i 40k 90 ii 10(4k 9) a a5 16k 45 b k4 c 81 a In general: Sn a (a d) (a 2d) … (a (n 2)d) (a (n 1)d) Reversing the sum: Sn (a (n 1)d) (a (n 2)d) (a (n 3)d) … (a d) a Adding the two sums: 2Sn [2a (n 1)d] [2a (n 1)d] … [2a (n 1)d]
b c d e 15 a b c
2Sn n[2a (n 1)d] n Sn [2a (n 1)d] 2 £109 n2 150n 5000 0 n 50 or 100 n 100 (gives a negative repayment) a2 4 2k a3 (4 2k)2 k(4 2k) 6k2 20k 16 k 1 or k 73 a2 23
d a5 2 e a100 23 1 dy 16 12x2 x 2 dx dy 17 a 4x 18x4 dx b 23 x3 3x2 c 1 dy 18 a 6x 2x 2 dx 3 d2y b 2 6 x 2 dx 3
19
20
21
22
23
c x3 83 x 2 c dy d2y a i 15x2 7 ii 2 30x dx 3 dx b x 2x 2 x1 c 1 dy a 4 92 x 2 4x dx b Substitute values, 8 8 c 3y x 20 d PQ 8 10 dy a 8x 5x2, at P this is 3 dx b y 3x 5 c k 53 a At (3, 0), y 0 b At P, y 7x 21 c Q (5, 15 13) a P 2, Q 9, R 4 1
1
3
b 3x 2 29x 2 2x 2 c When x 1, f’(x) 512, gradient of 2y 11x 3 is 512, so it is parallel with tangent. 24
1 3 3
x 2x2 3x 13 5
1
25 3x 2x 2 4x 2 3 26 a 3x2 2 b 3x2 2 2 for all values of x since 3x2 0 for all values of x c y 14 x4 x2 7x 10 d 5y x 22 0 27 a y 13 x3 x1 43 b (1, 2) and (1, 23) 28 a 2x3 5x2 12x b x(2x 3)(x 4) c y
32
0
(32, 0), (0, 0) and (4, 0)
4
x
Review Exercise 2 Answers 29 a PQ2 12 132 170 PQ 170 dy b 3x2 12 x 4x2 dx dy dy At P, 13, at Q, 13 dx dx c x 13y 14 0 30 a x(x 3)(x 4) b y
0
3
(0, 0), (3, 0) and (4, 0) c P (347, 157)
4
x
Practice paper Answers 1 a 4 b 64 3
2 2x3 23 x 2 c 3 a 3, 5 b 36 4 a 27 102 b 202 5 x 3, y 3 and x 8, y 23 6 a x 2y 13 0 b y 2x c (235, 515) 7 a No intersections.
y 2 2
0
2
x
2
b
y (12 , 0) 2
0
2
x
3 5
c
y 2 (0, 2) 2
0
2
x
2
x 1 8 a 670 b 5350 9 a i 2 ii c 4 b i x5 ii x 7, x 3 iii x 7, 3 x 5 10 a P 9, Q 24, R 16 b 10 c x 10y 248 0
c 45 iii c 4
Examination style paper Answers 1
a b 2 a b 3 a
k5 k6 9 1 8x3
y
x
2
b 4 a b 5 a 6 a b 7 a b c 8 a b c 9 a c
x 0 and y 2 3 420 0 k 2.4 a2 1, a3 4 24 3 24x2 32 x2 5 9 48x 4 x 2 1 2x4 6x2 + 5x c 0.4 (137, 43) 4 x3 3 x 2 y
(2, 0)
10 a y 9x 9 d 16 2 e 320 units2
(1, 0)
x