Distributed Artificial Intelligence: Second International Conference, DAI 2020, Nanjing, China, October 24–27, 2020, Proceedings 3030640957, 9783030640958

This book constitutes the refereed proceedings of the Second International Conference on Distributed Artificial Intellig

286 66 17MB

English Pages 141 [149] Year 2020

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Preface
Organization
Contents
Parallel Algorithm for Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning
1 Introduction
2 Hostility Game
3 Algorithm
4 Experiments
5 Conclusion
References
LAC-Nav: Collision-Free Multiagent Navigation Based on the Local Action Cells
1 Introduction
2 The Local Action Cells
3 Collision-Free Navigation
4 Experiments
5 Discussions
References
MGHRL: Meta Goal-Generation for Hierarchical Reinforcement Learning
1 Introduction
2 Related Work
3 Preliminaries
4 Algorithm
4.1 Two-Level Hierarchy
4.2 Meta Goal-Generation for Hierarchical Reinforcement Learning
5 Experiments
5.1 Environmental Setup
5.2 Results
6 Discussion and Future Work
References
D3PG: Decomposed Deep Deterministic Policy Gradient for Continuous Control
1 Introduction
2 Background
2.1 Reinforcement Learning (RL)
2.2 Deep Deterministic Policy Gradient (DDPG)
3 The D3PG Algorithm for Robotic Control
3.1 Structural Decomposition
3.2 The PCG Method
3.3 The D3PG Algorithm
4 Experiment
5 Related Work
6 Conclusions
A Appendix
A.1 Appendix
A.2 MuJoCo Platform
References
Lyapunov-Based Reinforcement Learning for Decentralized Multi-agent Control
1 Introduction
2 Preliminaries
2.1 Networked Markov Game
2.2 Soft Actor-Critic Algorithm
2.3 Lyapunov Stability in Control Theory
3 Multi-agent Reinforcement Learning with Lyapunov Stability Constraint
3.1 Multi-agent Soft Actor-Critic Algorithm
3.2 Lyapunov Stability Constraint
4 Experiment
5 Conclusion
References
Hybrid Independent Learning in Cooperative Markov Games
1 Introduction
2 Theoretical Framework
2.1 Markov Games
2.2 Policies and Nash Equilibria
2.3 Q-Learning
3 Hybrid Q-Learning
4 Pathologies in Multi-Agent RL
4.1 Relative Overgeneralization
4.2 The Stochasticity Problem
4.3 Miscoordination
4.4 The Alter-Exploration Problem
5 Independent Learner Baselines
5.1 Independent Q-Learning
5.2 Distributed Q-Learning
5.3 Hysteretic Q-Learning
5.4 LMRL2
5.5 Parameters
6 Experiments
6.1 Climb Games
6.2 Heaven and Hell Game
6.3 Common Interest Game
6.4 Meeting in a Grid
7 Conclusions
References
Efficient Exploration by Novelty-Pursuit
1 Introduction
2 Related Work
3 Background
4 Method
4.1 Selecting Goals from the Experience Buffer
4.2 Training Goal-Conditioned Policy Efficiently
4.3 Exploiting Experience Collected by Exploration Policy
5 Experiment
5.1 Comparison of Exploration Efficiency
5.2 Ablation Study of Training Techniques
5.3 Evaluation on Complicated Environments
6 Conclusion
A Appendix
A.1 Reward Shaping for Training Goal-Conditioned Policy
A.2 Additional Results
A.3 Environment Prepossessing
A.4 Network Architecture
A.5 Hyperparameters
References
Context-Aware Multi-agent Coordination with Loose Couplings and Repeated Interaction
1 Introduction
2 Motivation Scenario
3 Problem Description
4 Algorithms
4.1 Description of MACUCB
4.2 Description of VE
4.3 Extensions
5 Regret Analysis
6 Experiment
6.1 Experiment Setting
6.2 Experimental Results
7 Conclusion
References
Battery Management for Automated Warehouses via Deep Reinforcement Learning
1 Introduction
2 Related Work
3 Motivation Scenario
4 Problem Statement and MDP Formulation
4.1 Battery Management Problem
4.2 MDP Formulation
5 Solving the MDP
5.1 TD3
5.2 Enforcing State Dependent Exploration via Action Regulation Loss
6 Simulator Design
7 Empirical Evaluation
7.1 Experimental Configurations
7.2 Experimental Results
8 Conclusion
References
Author Index

Distributed Artificial Intelligence: Second International Conference, DAI 2020, Nanjing, China, October 24–27, 2020, Proceedings
 3030640957, 9783030640958

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers