126 76 1MB
English Pages 149 [156] Year 2017
Marco MACULAN
DIOPHANINE APPLICAIONS OF GEOMERIC INVARIAN HEORY
MÉMOIRES DE LA SMF 152
Société Mathématique de France 2017
Comité de rédaction Chrisine BACHOC Emmanuel BREUILLARD Yann BUGEAUD Jean-François DAT Marc HERZLICH O’ Grady KIERAN
Raphaël KRIKORIAN Julien MARCHÉ Lauren MANIVEL Emmanuel RUSS Chrisophe SABOT Wilhelm SCHLAG
Pascal HUBERT (dir.) Difusion AMS P.O. Box 6248 Providence RI 02940 USA www.ams.org
Maison de la SMF B.P. 67 13274 Marseille Cedex 9 France [email protected] Taris 2017
Vene au numéro : 35 € ($ 52) Abonnemen élecronique : 113 € ($ 170) Abonnemen avec supplémen papier : 162 €, hors Europe : 186 € ($ 279) Des condiions spéciales son accordées aux membres de la SMF. Secrétariat : Nathalie Christiaën Mémoires de la SMF Sociéé Mahémaique de France Insiu Henri Poincaré, 11, rue Pierre e Marie Curie 75231 Paris Cedex 05, France Tél : (33) 01 44 27 67 99 Fax : (33) 01 40 46 90 96 [email protected] http://smf.emath.fr/ © Sociéé Mahémaique de France 2017 Tous drois réservés (aricle L 122–4 du Code de la propriéé inellecuelle). Toue représenaion ou reproducion inégrale ou parielle aie sans le consenemen de l’édieur es illicie. Cete représenaion ou reproducion par quelque procédé que ce soi consiuerai une conreaçon sancionnée par les aricles L 335–2 e suivans du CPI.
ISSN 0249-633X (prin) 2275-3230 (elecronic) ISBN 978-2-85629-865-7
Séphane SEURET Direceur de la publicaion
MÉMOIRES DE LA SMF 152
DIOPHANINE APPLICAIONS OF GEOMERIC INVARIAN HEORY
Marco MACULAN
Société Mathématique de France 2017 Publié avec le concours du Centre National de la Recherche Scientifque
M. MACULAN Institut Mathématique de Jussieu, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris. E-mail : [email protected] Url : http://webusers.imj-prg.fr/~marco.maculan/
2010 Mathematics Subject Classification. --- Primary 14L24, 14G40, 11K60, 14G22. Key words and phrases. --- Geometric Invariant Theory, diophantine approximation, Roth’s Theorem, Berkovich spaces, height o semi-stable points. DOI. --- 10.24033/msm.460.
Partially supported by ANR research project “Positive” ANR-2010-BLAN-0119-01.
DIOPHANTINE APPLICATIONS OF GEOMETRIC INVARIANT THEORY Marco MACULAN
Abstract. --- This text consists o two parts. In the frst one we present a proo o Thue-Siegel-Roth’s Theorem (and its more recent variants, such as those o Lang or number felds and that “with moving targets” o Vojta) as an application o Geometric Invariant Theory (GIT). Roth’s Theorem is deduced rom a general ormula comparing the height o a semi-stable point and the height o its projection on the GIT quotient. In this setting, the role o the zero estimates appearing in the classical proo is played by the geometric semi-stability o the point to which we apply the ormula. In the second part we study heights on GIT quotients. We generalise Burnol’s construction o the height and refne diverse lower bounds o the height o semi-stable points established to Bost, Zhang, Gasbarri and Chen. The proo o Burnol’s ormula is based on a non-archimedean version o Kemp-Ness theory (in the ramework o Berkovich analytic spaces) which completes the ormer work o Burnol. Résumé (Applications diophantiennes de la théorie géométrique des invariants) Ce texte est constitué de deux parties. Dans la première nous présentons une preuve du théorème de Thue-Siegel-Roth (et des variantes plus récentes, comme celle de Lang pour le corps de nombres et celle with moving targets de Vojta) basée sur la théorie géométrique des invariants (GIT). Le théorème de Roth est déduit d’une ormule reliant la hauteur d’un point semi-stable et la hauteur de sa projection dans le quotient GIT. Dans ce cadre, le rôle du « lemme des zéros » présent dans la preuve classique est joué par la semi-stabilité géométrique du point auquel on applique la ormule. Dans la deuxième partie nous étudions la hauteur sur les quotients GIT. Nous généralisons la construction de Burnol de cette hauteur et nous améliorons plusieurs minorations de la hauteur de point semi-stables précédemment établies par Bost, Zhang Gasbarri et Chen. La preuve de la ormule de Burnol porte sur une version non-archimédienne de la théorie de Kemp-Ness (dans le langage de la géométrie analytique de Berkovich), qui complète le travail antérieur de Burnol.
© Mémoires de la Société Mathématique de France 152, SMF 2017
CONENS
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
1. Geometric Invariant Teory and Arakelov Geometry: basic results . . . . . . . . 13 1. T F F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. L q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. Diophantine approximation on P via Geometric Invariant Teory . . . . . . . . 1. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. F F F M T . . . . . . . . . . . . . . . . . . . . . . . . . 3. U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. E : . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. S P P W . . . . . . . . . . . . . . . . . . . .
27 27 36 44 48 54 60
3. Kemp-Ness Teory in Non-Archimedean Geometry . . . . . . . . . . . . . . . . . . . . . . . 1. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. KN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. M GI q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69 70 76 90 102
4. Heights on GI quotients: urther results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. E q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. T B, G Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. L q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
113 114 120 129 136
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
INRODUCION
I , R’ T R , pq Q p q q
p q . T R’ T T. T “” f : “” . T R ( T, S G’) . O , D — R’ T — ( “D’ L”) : , . T D’ L E V [28]; N [50] F’ P T “” . T D’ L B [7]: B. U P T, F W [30] S’ S T, . T Z L, R S, . T ( [29]). T : D’ L ( P T); P T. I O [53] S [65] V [69] R’ T — “ ” — . I S’ S T. H B G [8, T 6.5.2 §6.6] q R’ T f “ ” S’ S T.
CONENS
7
T G I T ( A ) . B [20] GI q . B [12], [13], Z [75] S [64] ( ) (e.g. , …). G [32] B Z GLn . C [22] — RR [56] [67] — . I , () x x n a an P Kn P K ′n v ( K K ′ ). T , , n B [7, T 2], R’ T . L . F . I C 1 G I T R’ T. T C 4, R’ T C 2. I C 3 4 . I C 2 R’ T ( ) q F F C 2 ( “ ”). I C 3 KN [46] . I C 4 q ( ) C 1. A . I C 2 C 1 2.3, C 4 C 3 1. W .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
8
CONENS
Acknowledgements T J.B. B. I . D I : I A. CL, A. D, C. G, M. N A. T. F, I q .
MÉMOIRES DE LA SMF 152
CONVENIONS
H . 1. — F A n, An HA An A T PA A A PA PS A
R , M A , M HA M A PM PS M 2. — L A , M A n . S M n M n HA M A n 3. Hermitian Norms. — L E, F q ∥∥E , ∥∥F ⟨ ⟩E , ⟨ ⟩F . L r . ▷ O E C F ∥∥E F ⟨v w v ′ w ′⟩E F ⟨v v ′⟩E ⟨w w ′⟩F
v v ′ E w w ′ F . ▷ O r Sr E ∥∥Sr E q E r Sr E. I e en E, n C E, n r r n r rn r : r ∥e r enr n ∥Sr E r r r n r rn T : f Sr E д Ss E, ∥ f д∥Sr s E ∥ f ∥Sr E ∥ д∥Ss E L ∥∥Sr E : f Sr E, f x r ∥ f ∥ r ∥ f ∥S E ,x E ∥x ∥E ▷ O r r E ∥∥r E ⟨v vr w w r ⟩r E ⟨vi w j ⟩E i j r v vr w w r E.
CONENS
10
W H q 1 : (1)
∥v vr ∥r E
r ∏ i
∥vi ∥E
T ∥∥r E no q E r r E, r q ( [22, L 4.1]). ▷ F ϕ E F ϕ ( ∥∥E ∥∥F ). O HC E F ∥∥HE F ⟨ϕ ⟩HE F ϕ ◦
ϕ HC E F . I e en E, ∥ϕ ∥HE F ∥ϕe ∥F ∥ϕen ∥F
W E C F HC E F .
4. Non-archimedean norms. — L K o . I o K . M , o E E E o K : v E ∥v ∥ E K v E
T ∥∥ E o : , ϕ E F (. ) o ∥∥ E E Eo K (. ∥∥ F F Fo K) ∥∥ F F (. q ∥∥ E ϕ, , w
ϕ v w
∥v ∥ E
w F .) F r , Sr E (. r E) r Er Er Sr E (. Er r E). I , (. H q ). 5. Normalisation o places. — F K oK VK . I v K, Kv K v Cv Kv ( q v). A v p p v p Kv Qp 1. T q H’ E H H’ q .
MÉMOIRES DE LA SMF 152
ACKNOWLEDGEMENS
11
6. Hermitian vector bundles and Arakelov degree. — L K , oK VK . A E oK E , K C, ∥∥ E E E C. T . F v VK ∥∥ Ev Kv Ev E oK Kv . I E, F oK , homomorphism o hermiian vecor bundles ϕ E F oK , K C, : , v E C, ∥ϕv∥ F ∥v ∥ E
I L , , degree ∑ L #Ls L ∥s ∥ L
∑
v VK
∑
K C
∥s ∥ Lv
v VK
Kv R ∥s ∥ Lv
s L . I , P F, s. F E E E E ▷ degree: E ▷ slope: E E ▷ maximal slope: E F , F E
F E E.
Proposition (S q, [14]). — Le E F be oK -hermiian vecor bundles and le ϕ E oK K F oK K be an injecive homomorphism o K-vecor spaces. Ten, ∑ F ∥ϕ ∥ v E where, or every place v VK ,
v VK
∥ϕ ∥ v
,s Ev
∥ϕs∥ Fv ∥s ∥ Ev
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CONENS
12
7. Height unction with respect to a hermitian line bundle. — L K , oK X oK . ▷ A hermiian line bundle
L L ∥∥ L K C
L X , K C, ∥∥ L L X C . T ∥∥ L K C . L K ′ K, oK ′ P K ′ X. B , P oK P S oK ′ X
T oK ′ L: oK ′ P L. P L
▷ T heigh o P wih respec o L h L P
L P K ′ K
M , s H X L P, ∑ K ′ Kh L P # P LsP P L ∥s ∥ L P K C K ′,
T h LP h L XQ R heigh uncion wih respec o L.
MÉMOIRES DE LA SMF 152
CHAPER 1 GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY: BASIC RESULS
I G I T ( F F, T 1.6) C 2 “ ” R’ T: GI q. I q ( T 2.1). E C 4 q, : . W R’ T C 2. 1. Te Fundamental Formula L K oK . 1.1. — L X oK oK 1 G L very ample G X. T E X L G. T G P E OE G. T j X P E j OE ≃ L Gq. 1. O k G — i.e. f k — reducive . O S G reducive ( G S -reducive group) : 1) G f, S ; 2) s S , s G s G S s ( s s). E S GLn S , SLn S . I oK SLn oK . T [9, C IV] [34], [24] .
14
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
1.2. — A x X semi-sable , f d , G s X Ld x. d C oK A d X L . A S [63, II.4, T 4] AG X Ld G d
G A oK Y P AG q X X ( G L). F
X G ( X L G ). L X Y q . S Y , f D , MD Y Gq ϕ D MD LD X 1.3. — F K C ∥∥ E E C G C. S ∥∥ E K C .
L ∥∥ O FS OE ∥∥ E ∥∥ L L. D L X L ∥∥ L K C . F y Y C t y MD ∥t ∥ MD y ϕ D t LD x x X C x y
Lemma 1.1. — Le f Y MD be a global secion.
Tere exiss a unique G-invarian global secion f X LD which vanishes idenically on X X and such ha ϕ D f f X . For every complex embedding K C,
y Y C
∥ f ∥ MD y
x X C
∥ f ∥ LD x
I , ∥t ∥ MD y t y MD , ∥∥ MD MD . Proo. — 1) I Y MD . 2) I 1).
MÉMOIRES DE LA SMF 152
□
1. HE FUNDAMENAL FORMULA
15
1.4. — L M D Y h M D M D ( [8, 2.7.17]). D h M D Q h X L G Q Y Q D ( D).
Lemma 1.2. — h X L G .
Proo. — L D MD t t N Y MD . L K ′ K, Q K ′ Y Q oK ′ Y . T i N ti Q. B , ∑ ∥ti ∥ MD Q K ′ Qh M D Q # Q MD Q ti Q MD ′
K K
∑
K ′ C
∥ti ∥ MD y
K C y Y C
I f i N K C ∥ti ∥ MD Y C. T L 1.1 (2) . □ Remark 1.3. — P L ∥∥ MD . T . A C 3 ( T 1.1). I KN ( K [48, C 8, §2], B [20] S [62, C 5]). A ( ) Z [75, T 4.10]. 1.5. Instability measure. — L v K. I v ∥∥ Lv (. ∥∥ MD v ) L (. MD ) 2 . F Cv x XCv v-adic insabiliy measure v x
д GCv
∥д s ∥ Lv д x ∥s ∥ Lv x
. T s. I x s jx P E Cv , x L
v x
д GCv
∥д x ∥ Ev ∥ x ∥ Ev
2. L x Cv X. S X , Cv x ov x X, ov Cv . T x L ov : s . E s x L q s s Cv . S ∥s ∥ Lv x v
T s x L. S [8, E 2.7.20].
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
16
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
Proposition 1.4. — Le v be a place o K. For every Cv -poin x X Cv and every non-zero secion t x MD , ∥t ∥ M v x v x D D ∥ t ∥ LD v x
Proo. — I ∥∥ MD G . S v . U MD MD . L y x y Yov q ov Y y ( ov Cv ). U t t ov y MD ∥t ∥ MD v y . S MD , f Y MD ov y f t. A P 1.1, f q G f X LD ov X . F д GCv . S f , ∥ f ∥ LD v д x ∥ f ∥ LD v д x
∥t ∥ MD v y ∥ t ∥ LD v д x ∥t ∥ MD v y. д GCv , v x
∥ t ∥ LD v д x ∥t ∥ M v y D D D ∥ t ∥ LD v x д GCv ∥ t ∥ LD v x
□
Remark 1.5. — F v, P q x x v , i.e. F v XoK F v GF v ( F v Cv ). I C 3 : , q x ( T 1.16). 1.6. Fundamental ormula. — S : heorem 1.6 (F F). — Le P XK be a semi-sable poin. Ten or almos all places v VK he insabiliy measure v P is zero and ∑ h L P v P h M D P D K Q v V K
I T 1.6 C:
Corollary 1.7. — For every semi-sable poin P X K, ∑ v P h X L G h L P K Q v V K
Remark 1.8. — O C 3 4 q F F ( “F F”). F , T 1.5 C 4.
MÉMOIRES DE LA SMF 152
2. LOWER BOUND OF HE HEIGH ON HE UOIEN
17
I , B [20, P 5] ( C 1.6 C 4). 2. Lower bound o the height on the quotient 2.1. Statement o the lower bound. — L E E En n oK . L F oK GL E GL E oK oK GL En GL F , , oK , uniary, i.e., K C, U E U∥∥ E U∥∥ En GLd C
∥∥ F .
heorem 2.1. — Wih he noaion inroduced above, le b b bn be n-uple o inegers and Eb Enbn F a homomorphism o hermiian vecor bundles, generically surjecive and GL E-equivarian. Ten, n n ∑ ∑ bi Ei bi Ei h P F OF SL E i i
where OF is equipped wih he Fubini-Sudy meric given by F and SL E is he oK reducive group SL E oK oK SL En .
H, i n bi , Eibi oK Eibi Eibi bi . A C 4 ( T 1.11). T q Ei ( R’ T). Remark 2.2. — T [22, T 4.2] : C K P P F , n n ∑ ∑ h OF P bi Ei bi Ei i i C’ T 2.1 q C 1.7 h OF P h P F OF SL E
Remark 2.3. — I T 2.1 bi . I, bi , , i n, Ei bi ′ Ei Ei SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
18
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
S GL E′ GL E′ GL En′ . I
Eb Enbn F
T 2.1, GL E′ ′ E′
b
En′
bn
SL E′
F
SL E SL E′ SL En′ T q MD . I , h P F OF SL E h P F OF SL E′ P F
T T 2.1 b b N . Invariant theory or a product o linear groups 2.2. — L k . L n E E En n k . D GLE GLE k k GLEn SLE SLE k k SLEn
Deinition 2.4. — L F k . A , i.e. k , GLE GLF homogeneous o weigh b b bn Zn , k S S t tn Gm S, t E tn En t b tnbn F
Proposition 2.5. — Le GLE GLF be a homogeneous represenaion o weigh b b bn and suppose ha he subspace o SLE-invarian elemens o F is non-rivial. Ten: or every i n he dimension ei o Ei divides he ineger bi ; or every k-scheme S, any S-poin д дn o GLE and any SLE-invarian elemen w o F : (2.1)
д дn w д b e дn bn en w
Proo. — T . □ 2.3. — F N SN N ( N , S ∅ ). I E k SN N E N . E, SN x x N E, x x N x x N
Deinition 2.6. — F N Z k S N Ek E N E N . MÉMOIRES DE LA SMF 152
2. LOWER BOUND OF HE HEIGH ON HE UOIEN
19
2.4. — L b b bn n . T Sb Sb Sbn
k E b E b Enbn . T k GLE k Ek E b Ek E b k k Ek Enbn
T GLE GLEE b . P 2.52) EE Db GLE SLE . Deinition 2.7. — T Sb E b n b k i kSbi EE Eb .
T Eb EE b . T F M T I T f (c. [71, C III], [22, T 3.1, C] [2, A 1]):
heorem 2.8 (F M T I T). — Suppose ha he characerisic o k is zero. Te subspace o SLE-invarian elemens o he k-vecor space EE b is he image o he homomorphism Eb . Deinition 2.9. — W ei bi i n. C k bi Ei bi ei Eibi Ei bi E Ei : bi Ei bi ei E Ei Eibi Eiei bi ei Ei bi ei
Eibi
bi ei Eibi Ei Ei
. S Eb Eb En bn .
Corollary 2.10. — Suppose ha he characerisic o k is zero. Le F be a non-zero k-vecor space o nie dimension and GLE GLF be a represenaion. Le b b bn be a n-uple o non-negaive inegers and n ⊗ ϕ Eibi F i
be a surjecive and GLE-equivarian homomorphism o k-vecor spaces. Te represenaion is homogeneous o weigh b b bn and i he subspace o SLE-invarian elemens o F is non-zero: 1) For every i n he dimension ei o Ei divides he ineger bi .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
20
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
2) Te subspace o SLE-invarians o F is he image o he homomorphism ϕ ◦ Eb ◦ Eb
n ⊗ i
kSbi
n ⊗ i
Ei bi ei F
T F M T I T : Remark 2.11. — I E G unique Gq R E E E G ( R ). T q : Gq E F G R F ◦ ◦ R E . I , ϕ E G F G . F , [49, . 182] [48, C1, §1]. Non-hermiian norms and ensor produc. — I . T [36] [33, N , . 33] . L N i N Vi ∥∥Vi . L ∥∥Vi Vi . D V V VN . Deinition 2.12. — T V , v V , ∥v ∥V
ϕ i Vi i N
∥v ∥V
R {∑
ϕ ϕ N v , ∥ϕ ∥V ∥ϕ N ∥VN
∥v ∥V ∥v N ∥VN v
R ∑
} v v N
T V q ∥∥V V VN . A, V q ∥∥V V VN . I ∥∥Vi V VN V . Proposition 2.13. — Wih he noaion inroduced above: Te -norm ∥∥ resp. he -norm ∥∥ is he smalles resp. he bigges among he norms ∥∥ on V such ha, or i N and vi Vi , ∥v v N ∥ ∥v ∥V ∥v N ∥VN . ∥v v N ∥ ∥v ∥V ∥v N ∥VN and, or i n and ϕ i Vi ,
∥ϕ ϕ N ∥ ∥ϕ ∥V ∥ϕ N ∥VN
. ∥ϕ ϕ N ∥
where ∥∥ denoes he operaor norm induced by ∥∥ on V . MÉMOIRES DE LA SMF 152
∥ϕ ∥V ∥ϕ N ∥VN
2. LOWER BOUND OF HE HEIGH ON HE UOIEN
21
∥v ∥V ∥v ∥V or all v V .
(D) Te isomorphism V ≃ V C C VN induces he ollowing isomeries: V VN V VN
V VN V VN
(F) For every i N le Wi be a nie-dimensional complex vecor space equipped wih a norm ∥∥Wi and le ϕ i Vi Wi be a linear map decreasing he norms. Ten, he induced maps ϕ ϕ N V VN W WN ϕ ϕ N V VN W WN decrease he norms. Le L be a normed vecor space o dimension . Ten, V VN L V VN L V VN L V VN L
Skech o he proo. — P 1), 4) 5) . B , i N vi Vi N N ∏ ∏ ∥vi ∥Vi ∥vi ∥Vi ∥v v N ∥ 1).
i
i
F 1) 2) .
□
Proposition 2.14. — Le V and W be nie-dimensional normed vecor spaces. Te operaor norm on HC V W coincides wih he -norm on V C W hrough he canonical isomorphism V C W HC V W Proo. — T T [36, §1.1, Tè 1] E V , F C G W .
□
Remark 2.15. — L L . I P L L ≃ C L L C. Proposition 2.16. — Le W be an hermiian vecor space and le r be a posiive ineger. Endow he exerior powers r W wih he hermiian norm dened in § 3 on page 9. Ten he canonical map W r r W decreases he norms. SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
22
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
Proo. — F w W r w H q (1) 10 ⟨ w w⟩ Ei
R ∑
R ∑
R ∑
.
R
w
w r
⟨w w r w w r ⟩ Ei ∥w ∥Ei ∥w r ∥Ei ∥w ∥Ei ∥w r ∥Ei
∥w ∥Ei ∥w r ∥Ei
□
Applicaion o he lower bound o he heigh on he quoien 2.5. — L T 2.1 bi . D Y q P F SL E , f D, M D Y OFD. F D MD . 2.6. Application o the First Main Teorem o Invariant Teory. — A Y . S K ,
F Eb Eb oK oK Enbn
F i n Ei K Ei oK K E b K E b K K Enbn . T SLE SD F MD . T i n ei K Ei Dbi . C E Db E Db ( D 2.7 2.9) : ϕ E Db SD E b
E Db E Db K K EnDbn .
Lemma 2.17. — For every i n le i Ei be non-zero. A se o generaors o he SLE-invarian elemens o he vecor space SD E b PE b OD
is given by he image hrough ϕ ◦ o he elemens Db e
f
Dbn e n
where n ranges in SDb SDb SDbn . MÉMOIRES DE LA SMF 152
2. LOWER BOUND OF HE HEIGH ON HE UOIEN
23
Trough he idenicaion Y MD oK K ≃ PE b ODSLE : { ∑ } ϕ ◦ f h P Eb OFSL E MD v D SD b v V YCv K
Proo. — 1) T q C 2.10 ( SD E b SLV q ϕ). 2) L Q YQ K ′ K. S MD , (1) SD b SLE ϕ ◦ f — MD — Q. B : ∑ h MD Q ϕ ◦ f M v Q ∑
v VK
v VK
D
y YCv
.
ϕ ◦ f M
Dv
y
□
2.7. Size o the invariants. — C oK
EDb EDb EnDbn
E Db (. E Db ) oK EDb K C ∥∥ e n Dbn e n E e Db e En
(. ∥∥ ). C oK EoK EDb K C ∥∥ E EDb H E Db E Db
D oK E EDb . F K C SD Eb C ( § 3 9). Lemma 2.18. — Wih he noaion inroduced above, he map E Db ◦ ϕ denes an homomorphism o oK -modules n ⊗ ϕ ◦ E EDb Ei Dbi ei SD Eb i
which decreases he norms.
Proo. — T E Db ◦ ϕ oK . T ϕ ◦ : 1) E Db SD E b ; n n ⊗ ⊗ 2) E Db Ei Dbi ei E Db ; Ei Dbi ei i
i
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 1. GEOMERIC INVARIAN HEORY AND ARAKELOV GEOMERY
24
3) Ei ei Ei ;
4) E EDb E Db
n ⊗ i
Ei Dbi ei
.
F K C : , 1) § 3 9 ; 2) P 2.135) R 2.15; 3) Ei ei ≃ Ei ei P 2.133) P 2.16; 4) 3) P 2.14. □ Lemma 2.19. — Le n SDb . For every K C: ∥ ∥ e Db e NDb N
Proo. — F i n vi viei Ei . C R R r i j i n j Dbi r i j ei i j. F R R v R
ei n Db i e i ⊗ ⊗ ⊗ i
j
vir i j ei
n Db i e i ⊗ ⊗ i
j
vir i j ei vir i j ei ei
T v R R R EDb . F T EDb T R R TR v R . W : ∑ TR ∥T ∥ TR ∥T ∥ F R R
R R
R R
R r ii j i j
B T T R R TR v R . T ∥ T ∥ ∥T ∥ ∥ T ∥ ∥T ∥ R R TR { } #R e Db enDbn ∥T ∥ ∥T ∥ T , T , T , R R TR ( T
R R v R ).
□
2.8. End o the proo o Teorem 2.1. — F i n i Ei . F n SDb n ⊗ Db e Db e Ei Dbi ei f n n EE Db i
MÉMOIRES DE LA SMF 152
2. LOWER BOUND OF HE HEIGH ON HE UOIEN
25
S ϕ ◦ oK , v, n ∏ Db e ∥ i ∥ iEi vi ∥ϕ ◦ f ∥ MD v y y YCv
i
A L 2.18 2.19 K C: n ∏ Db e ∥ϕ ◦ f ∥ MD y ∥ϕ ◦ f ∥ ∥ ∥ ∥ i ∥ iEi i y YC
e Db e NDb N
n ∏ i
i
Db e
∥ i ∥ iEi i
A L 2.17, K Qh P Eb OFSL E n ∑ bi ∑ ∥ i ∥ Ei v e b e bNN e i v V i K
bi ∑ bi Ei Ei ei i n
Ei ei . Ei
□
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2 DIOPHANINE APPROXIMAION ON P1 VIA GEOMERIC INVARIAN HEORY
I R’ T ( ) G I T C 1. L . I S 1 R’ T ( M T, T 1.12). M , R’ T q ( M E L B, T 1.7) M T . I S 2 G I T . A , F F M T. T ( ) S 3 4. F, S 5, , F F. O H D D’ L EVN (T 2.2). W W. T “GI ” T DG’.
1. Statement o the results 1.1. Roth’s Teorem with moving targets and the Main Eective Lower Bound 1.1.1. Heigh and disance on he projecive line. — I . Deinition 1.1. — 1) F K x x x PQ absolue logarihmic heigh ∑ ∥x x ∥ v hx K Q v V K
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
28
VK K , v, x v x v ∥x x ∥ v x v x v
v v
2) L K v VK K. T v-adic spherical disance P , Cv x x x y y y , v x y
x y x y v ∥x x ∥ v ∥y y ∥ v
3) L x y K P . T v x y v K. F S VK ( ) ∑ v x y R S x y v S
I S v v x y.
Proposition 1.2 ( [8, T 2.8.21]). — Le x y be disinc K-raional poins o P . Ten, V x y hx hy K Q K Deinition 1.3. — L a P K ′ K, S VK VK v S v K ′ Cv K . D a v Cv P v : ∑ S a x v a v x v S
1.1.2. Roh’s Teorem wih moving arges. — I R’ T : heorem 1.4. — Le K be a number eld, S VK a nie subse, K ′ a nie exension o K and a real number. For every place v S x an embedding v K ′ Cv which respecs K. Tere is no sequence o couples x i ai wih i N made o a K-raional poin x i o P and a K ′-raional poin ai o P disinc rom x i saisying he ollowing properies: 1) he sequence hx i is unbounded; 2) hai ohx i as i goes o inniy; 3) or all i N he ollowing inequaliy is saised: S ai x i hx i K Q V’ R’ T , K:
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE RESULS
29
heorem 1.5 (c. [69, T 1]). — Le K be a number eld, S VK a nie subse, q a posiive ineger and a real number. q Tere is no sequence o q -uples x i ai ai (i N) made o pairwise disinc 1 K-raional poins o P saisying he ollowing properies:
1) or all q, hai ohx i as i goes o inniy; 2) or all i N he ollowing inequaliy is saised: q ∑ S ai x i hx i K Q
T 1.5 T 1.4 K G K ′ K ai ai . W . L q q P 1.2, x i ai . H q . 1.1.3. Main Eecive Lower Bound. — A , R’ T R’ T — . T K x x n v a an . A B [7], . T “M E L B” G I T. I r r n : P n . R’ T: Deinition 1.6. — L q n t . 1) C ∆n t n n n t . 2) L tqn n q q ∆n tqn
L Rn . T tqn n .
1. i.e. i N a i
, ai
, x i , a i
q.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
30
3) L Rqn q q n n Rqn
4) F n r r r n r r r n .
W M E L B (c. [7, T 2] n ):
heorem 1.7 (M E L B). — Le K ′ be a nie exension o K o degree q and le S VK be a nie se o nie places. Le n be a posiive ineger, le n be a real number and le r r r n be an n-uple o posiive real numbers such ha r i r i Rqn or all i n . Ten, or all i n and or all couples x i ai made o a K-raional poin x i o P and a K ′-raional poin ai o P such ha Kai K ′, he ollowing inequaliy holds: { { }} ∑ r i v ai x i tqn ′ K Cv i n K Q v S n n q ∑ q∑ n r i hx i r i hai q r i i where, or every place v VK , he embeddings K ′ Cv are mean o be K-linear.
Remark 1.8. — W M E L B . F , R 1.13 M E L B . A R’ T . 1.1.4. Deducing Roh’s Teorem rom he Main Eecive Lower Bound. — L M E L B (T 1.7) R’ T (T 1.4). L R ( [47]). T R’ T . Lemma 1.9. — Le q n be posiive inegers. Ten, tqn n n q In paricular,
n
n tqn
Proo. — A [8, L 6.3.5] : ∆n n n T
MÉMOIRES DE LA SMF 152
tqn n.
□
1. SAEMEN OF HE RESULS
31
Proo o Teorem 1.4. — A q x i ai i N T 1.4. U q K ′, Kai K ′ i N q K ′ K . F . B ( “M’ ”, [8, 6.4.2]) I N , v S v , i I , S ai x i vS ai x i v ai x i v #S ( v ’ ) ∑ v v S
U q x i ai i I i N. n , n r T 1.7. A x i ai i n , v S, { { { }} } v r r a x a x i v i i v i i i ′ K Cv
i n
i n
n n n ∑ ∑ r i hx i r i qhai C q i i { } ∑ r i v ai x i tqn i n K Q v S { } tqn r i S ai x i i n K Q C q . B , i n,
,
S ai x i K Qhx i
n n { } n ∑ ∑ r i hx i q r i hx i r i qhai C i n i i
tqn
S x i ’ hx i hx i ( Rqn ). T n r r i hx i r j hx j i j n. D q r hx :
n q ∑ hai n r C tqn q n i hx i r hx
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
32
n S hai ohx i i hai hx i . T r i r i hx . T, n tqn q n
L n , L 1.9, n n tqn .
□
1.2. Statement o the Main Teorem 1.2.1. More combinaorial daa. — I . Deinition 1.10. — L q n , r r r n n t . 1) C Rn : n { } ∏ ⃞ r n Rn i r i i n r i {
∇r t n ⃞ r { ∆r t n ⃞ r
r r
i } n t rn } n t ⃞ r ∇r t rn
A Z Zn : ⃞ rZ , ∇rZ t ∆rZ t. F r ⃞ n , ∇n t ∆n t. 2) I n L Rn , n n R, n t n n
3) D qr
n ∏ i
∇n t
i j n
{r } j
ri
∆n t
q
4) D uqr t q n { { } } ∆n uqr t qr q ∆n t
Lemma 1.11. — Te uncion n n R is sricly concave 2 . Moreover he ollowing properies are saised: 2. T , t t n , n t t n t n t
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE RESULS
1) For all t , n t 2) n t or all t n;
33
tn t n n
3) n n t n t or all t n;
4) Te uncion n is increasing on n and decreasing on n n. Proo. — S 1) 3) . W n 1) . F n n t n t n t n n
2) F n n n n . 4) F 3) n .
□
1.2.2. Main Teorem. — K , : heorem 1.12 (M T). — Le K ′ be a nie exension o K o degree q and le S VK be a nie subse. Le n be an ineger, t a t x non-negaive real numbers and le r r r n be an n-uple o posiive real numbers. I he ollowing inequaliy is saised, (SS)
n uqr t a n t x qr
hen, or all i n and or all couples x i ai made o a K-poin x o P and K ′-poin ai o P such ha Kai K ′, he ollowing inequaliy holds: { { }} ∑ r a x q ∆n t a t a i v i i K ′ Cv i n K Q v S
Cqr t a t x where
Cqr t a t x
n ∑ i
∇n t x
r i hx i q Cqr t a t x
n ∑ i
r i hai Cqr t a t x r
n q ∆uqr t a n t x
q ∆n t a q ∆uqr t a n t x Cqr t a t x ∆n uqr t a ∇n t x q ∆n t a q Cqr t a t x
T 1.12 (SS) ( , n uqr t a n t x qr ) q ∆n t a . T T 1.12 . T , q ∆n t a , T 1.7 T 1.12 , .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
34
Remark 1.13. — T Cqr t a t x T 1.11 C 4 T 2.1 C 1 M T. D , T 1.12 Cqr t a t x ∆n uqr t a ∇n t x q ∆n t a q
( R 2.8).
1.3. From the Main Teorem to the Main Eective Lower Bound. — I M E L B (T 1.7) M T 1.12. n S r i r i Rqn i n , qr .
1.3.1. Choice o he parameers. — T M E L B T 1.12 t a tqn W uqr uqr tqn . Lemma 1.14. — Wih he noaion inroduced above: uqr qr n, hence uqr ; 1) ∆n n 2) n qr n ; ∆n uq r
3) n uqr qr ;
n uqr qr n n . 4) n
Proo. — 1) B n tqn . T, ∆n uqr qr n
S ∆n t t n n t n uqr n qr
2) T uqr (1) n uqr n n n n qr n n n ∆n uq r n C nn n . 3) F L 1.111), n uqr qr n qr n n
qr . 4) S 3).
MÉMOIRES DE LA SMF 152
□
1. SAEMEN OF HE RESULS
35
F t x , , (SS) . M , n n n, q w qr n n uqr n w qr qr n
Lemma 1.15. — Wih he noaion inroduced above: 1) ∇n w qr ; 2) n ; ∇n w q r
n 3) ∆n uqr n w qr .
n n . 2) F (1): t n n,
Proo. — 1) L 1.143) w qr n
∇n t
n ∇n t
3) B w qr D 1.102): ∆n uqr n w qr ∆n uqr qr n uqr n qr ∆n uq r
qr
n n
qr
q L 1.14 (2). T n □ qr n. 1.3.2. Applicaion o he Main Teorem. — L 1.143) T 1.12 ta tqn t x w qr n w qr . L t x w qr L 1.15: { { }} ∑ r a x tqn i v i i K ′ Cv i n K Q v S n n ∑ ∑ n q r i hx i q r i hai r Cqr
n Cqr q. T . □ i
i
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
36
2. From the Fundamental Formula to the Main Teorem 2.1. Interlude on the index. — L K . 2.1.1. Index. — L n P P n n K. F i n i P P i . L z z zn K P b b bn n . F i n ti zi P K. Deinition 2.1. — L f OPz P z. T f ∑ f f ℓ t ℓ tnℓn ℓ ℓ ℓn Nn
f ℓ K. T index o f a z wih respec o he weigh b { } b f z b ℓ bn ℓn f ℓ ,
I f , b z .
I b b bn n , n b bn b b b . T s L P z: f s L z b s z b ss z 2.1.2. Higher dimensional Dyson’s Lemma. — T H D D’ L: N [50]. T EV [28] ( ) . L r r r n n . C P:
OP r OP r n OP r n heorem 2.2 (H D’ L). — Le z z q be K-poins o P and t t q be non-negaive real numbers. Suppose ha ▷ i z , i z or every i n and every , ; ▷ here exiss a non-zero global secion f P OP r such ha, or every q, r f z t
Ten he ollowing inequaliy is saised: q ∑
∆n t qr where qr
MÉMOIRES DE LA SMF 152
n ∏ i
i j n
{r } j
ri
q
2. FROM HE FUNDAMENAL FORMULA O HE MAIN HEOREM
37
2.1.3. Index a a single poin. — L z z zn K P, t r r r n n . Deinition 2.3. — L Z qr z t P f r f z t. C P OP r : Kr z t K P OP r Z r z t OP r } { f P OP r r f z t
Proposition 2.4. — Keeping he noaion inroduced above, or every i n le Ti Ti be a basis o K such ha Ti vanishes a zi . n r i ℓi ℓi 1) Te monomials Tz ℓ Ti or ℓ ∇rZ t orm a basis o he K-vecor i Ti space Kr z t. 2) K Kr z t #∇rZ t and
K K r z t ∇n t n r r n
K Z r z t OP r ∆n t n r r n
3) K Z r z t OP r #∆rZ t and Proo. — L .
□
2.1.4. Index a muliple poins. — L r r r n n t N .
F q z z zn K P. S zi , i n.
, zi
Deinition 2.5. — C q z z z q . C P, q Z r z t Z qr z t
C P OP r :
Kqr z t KP OP r Z qr z t OP r { } f P OP r r f z t q
R uqr t q n { { } } ∆n uqr t qr q ∆n t
Proposition 2.6. — Keeping he noaion inroduced above: q 1) Z qr z t OP r Z r z t OP r .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
38
2) K Kqr z t (2.1)
n ∏ i
r i q #∆rZ t. In paricular,
K Kq r z t q ∆n t n r r n
3) Suppose uqr t n. Le z P K be a poin such ha or i n and q, one has i z , i z . Ten, or t uqr t, Kqr z t Kr z t
4)
K Kq r z t ∆n uqr t n r r n
R (3) (4) q H D D’ L. Proo. — 1) T Z r z t’ ( [28, L 2.8]). 2) U Kqr z t KP OP r Z qr z t OP r , K Kqr z t K P OP r K Z qr z t OP r K P OP r
q ∑
K Z r z t OP r
q P 2.43).
n ∏ i
r i q#∆rZ t
3) B f Kqr z t Kr z t . T H D D’ L q ∑
∆n t ∆n t qr
∆n t ∆n uqr t. T t uqr t t uqr t.
4) I ∆n uqr t , uqr t n, . A uqr t n. A 3), t uqr t, Kqr z t Kr z t
T G’
K Kqr z t K P OP r K Kr z t K P OP r #∇rZ t
P 2.42) q. T q r t uqr t. □ 2.2. Defnition o the “moduli problem”. — L K VK .
MÉMOIRES DE LA SMF 152
2. FROM HE FUNDAMENAL FORMULA O HE MAIN HEOREM
39
2.2.1. Linear acions on grassmannians. — L E oK . F N GN E N E, i.e. oK GN E oK { O F } X f X S oK f E N
S oK G oK E. T, N , oK G GN E N , P N E q ON E. T P GN E P N E Gq.
2.2.2. Back o he Main Eecive Lower Bound. — L K ′ K q . L n . L P PoK n n oK . L r r r n n OP r P,
OP r OP r n OP r n
F i n x i K PoK ai K ′ PoK Kai K ′. C x x x n , a a an P a a HK K ′ Q L t x t a K Kr x t x f PK OP r r f x t x Kqr a ta f PK OP r r f a t a
PK P. 3 S f K a , a a. D kr t x kqr t a K Kr x t x Kqr a ta . I , PK OP r K : Kr x t x Gkr tx P OP r Kqr a ta Gkq r ta P OP r 3. H f , K , a, K ′ , f K ′ . A, Q K q r a t a f P OP r oK Q r f a t a K ′ Q G , K Kq r a t a . I , Kq r a t a K Q K r a t a
K ′ Q
K r a t a f P OP r oK Q r f a t a .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
40
n T oK SLnoK P PoK . W
Fr t x
k∧ r t x
P OP r
Fqr ta
kq∧ r t a
P OP r
P , q SLnoK : Gkr tx P OP r P Fr t x Gkq r ta P OP r P Fqr t a 2.2.3. Te geomeric invarian heory daa. — W F F : Pr Kr x t x Kqr a ta Xr Gkr tx P OP r oK Gk t P OP r q r
a
G SLnoK Lr Xr P
: jr Xr P Fr t x oK P Fqr t a P Fr t x oK Fqr t a
(T P G S .) F K C
Fr t x C Fqr ta C
k∧ r t x
n ⊗
kq∧ r t a
i
Sr i C
n ⊗ i
Sr i C
q ∥∥ Fr tx ∥∥ Fq r ta ( § 3 9). E Fr t x C Fqr t a . T SUn . D Lr Xr . 2.3. Proo o the Main Teorem 2.3.1. — I T 1.12 (T 2.7) 5.2 ( P 3.1, 3.2 4.1) 3 4. T 1.12, , n r r r n . E , r f M E L B r .
MÉMOIRES DE LA SMF 152
2. FROM HE FUNDAMENAL FORMULA O HE MAIN HEOREM
41
2.3.2. Semi-sabiliy condiions. — T 1.12 F F Pr , Pr . I S 5.2 : heorem 2.7. — Le n be a posiive ineger and r r r n be a n-uple o posiive inegers. Le t x t a be real numbers wih t a tqn . I he inequaliy n uqr t a n t x qr
is saised hen here exiss a posiive ineger q n r t a t x such ha, or every ineger , he K-poin P r X r K is semi-sable under he acion o SLn wih respec o he polarizaion given by he Plücker embeddings. 2.3.3. Applying he Fundamenal Formula. — T (SS) T 1.12. T T 2.7 q n r t a t x , , K P r K r x t x Kq r a ta
. T F F (, , C 1.7 C 1) P r q: h L r P r
∑ v P r h X r L r G K Q v S
. D n r r n , (2.1)
∑ v P r n K Q v S r r n
h L r P r n r r n
h X r L r G n r r n
I q . T Pr x i ’ ai ’. I S’ L. H q A . T . I . T q .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
42
2.3.4. Upper bound o he heigh. — T P Xr P Fqr t a P Fr t x . T: Kqr a ta h Lr Pr h Fr tx Kr x t x h Fq r t a
S A ( P 3.13.2) : n ∑ h Fr tx Kr x t x
h
Fq r t a
∑
ℓi hx i
i ℓ ∇rZ t x
n n ∑ ∏ Kqr a ta r i kqr t a q r i hai r q i
i
A r : (2.2)
h L r P r n r r n
∇n t x
n ∑
r i hx i
i
n ∑ q ∆n t a q r i hai r q i
2.3.5. Upper bound o he insabiliy measure. — L v K. I v : { } r k t t a x v Pr qr a a i v i i ′ i n
K Cv
n ∑ i
∑
ℓ ∇rZ t x
kr t x kqr t a ℓi r i v ai x i
kqr t a
n ∑ i
r i kqr t a r kr t x r
. T S 4 ( P 4.1). I v , f , P 2.6 2), 2.42) 2.64): { v P r q ∆n t a t a r i v ai x i n i n r r n K ′ Cv n } n t x ∆n uqr t a ∑ r i v ai x i i I v , r ∆n uqr t a ∇n t x . B D 1.102), n uqr t a ∆n uqr t a MÉMOIRES DE LA SMF 152
2. FROM HE FUNDAMENAL FORMULA O HE MAIN HEOREM
43
(SS) n t x ∆n uqr t a . B v ai x i ∑ w ai x i w v
w K ′ v. S P 1.2, ∑ ∑ ∑∑ w ai x i w ai x i K ′ Q hx hai v S w VK ′
v S w v
(2.3)
∑ v P r , n K Q v S r r n
{ } ∑ r a x q ∆n t a t a i v i i K ′ Cv i n K Q v S
n n t x ∆n uqr t a ∑ r i qhx i hai i r ∆n uqr t a ∇n t x
2.3.6. Lower bound o he heigh on he quoien. — F i n Ei oK bi r i kqr t a kr t x . A T 2.1 C 1 G SL E oK oK SL En GL Fqr ta Fr t x
n ⊗ i
Eibi
n r i kq r ta kr tx ⊗ oK Fqr t a Fr t x i
T Ei , Ei i n. T Gq jr Xr P Fqr t a Fr t x T 2.1 h Xr Lr G h P Fqr t a Fr t x O G kqr t a kr t x r kqr t a kr t x
kqr t a kr t x q ( § 3 9). T S’ , kqr t a n r r n
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
44
kr t x . T , r , : (2.4)
h X r L r G ∆n uqr t a ∇n t x r n r r n
Remark 2.8. — T T 2.1 C 1 T 1.11 C 4, h Xr Lr G kqr t a kr t x
,
h X r L r G n r r n
M T f (2.1) q (2.2), (2.3) (2.4). 3. Upper bound o the height 3.1. Rational point Proposition 3.1. — Wih he noaion inroduced in Secion , n ∑ ∑ ℓi hx i h Fr tx Kr x t x i ℓ ∇nZ rt x
Proo. — L T T K . F i n x i x i K x i P K. S x i . F n ℓ ⃞ r n ⊗ T ℓ Tr i ℓi Txℓii i
Tx i x i T x i T . A K Kr x t x T ℓ ℓ ∇rZ t x . L v K. T H q (1) 10 ∧ ∑ T ℓ ∥T ℓ∥P OP r v Fr t x v
ℓ ∇rZ tx
ℓ ∇rZ t x
F n ℓ ⃞ r n ∑ T ℓ ∥Tr i ℓi Txℓii ∥v P OP r v
i
n ∑ i
r i ℓi ∥T ∥v
n ∑ i
C .
MÉMOIRES DE LA SMF 152
ℓi ∥Tx i ∥v
n ∑ i
ℓi ∥x i ∥v
□
3. UPPER BOUND OF HE HEIGH
45
3.2. arget points Proposition 3.2. — Wih he noaion inroduced in Secion ,
n n ∑ ∏ h Fq r ta Kqr a ta r i kqr t a q r i hai r q i
i
T . 3.2.1. — Eq oK P OP r n ⊗ Sr i oK P OP r i
D P OP r oK . T oK P OP r P OP r T ℓ
n ⊗ i
Tr i ℓi Tℓi
. A, v, n n ∑ ∑ r i ℓi ∥T ∥ v ℓi ∥T ∥ v T ℓ P OP r v i
I , (3.1)
i
∑ ∑ P OP r T ℓ P OP r v v VK
ℓ ⃞
Z r
3.2.2. — E K Kqr a ta oK P OP r . T oK Kqr a ta P OP r Kqr a ta
q P OP r , C P OP r Kqr a ta
q P OP r C. D C oK . W (3.1): Kqr a ta K Qh Fq r ta Kqr a ta C P OP r C
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
46
3.2.3. — D E K Z qr a ta OP r Ω G K ′ K. E Ω E K Ω oΩ . A P 2.6: q (3.2) E E K Ω
, K ′ Q, E Z r a t a OPΩ r 4 . F i n ai ai Ω ai P K. S a K ai , , ai . F K ′ Q, Ω E n ⊗ Tr i ℓi T ℓi Ta ℓ i
ai
Ta T ai T ℓ ℓ ℓn ∆rZ t a . L E i
oΩ E T ℓ’. Eq T ℓ’ . D E oΩ . F, (3.2), K E K Ω oΩ oΩ E ’. D EΩ . 3.2.4. — T PK OP r E Z qr a ta OP r C oK K E. A q (P ‘S q’ 11), ∑ C C ∥ ∥ v EΩ (3.3) h Fq r ta Kqr a ta K Q Ω Q v V Ω
, v VΩ , ∥ ∥ v v , ∥ ∥ v
,f C Ω
∥f ∥ Ev ∥ f ∥ Cv
T ∥∥ v . T oΩ E EΩ .
3.2.5. — I v . F q PΩ OP r E E K Ω E . D ∥ ∥ v . W : ▷ v : ∥∥ v ∥ ∥ v ; q { } ▷ v : ∥∥ v q ∥ ∥ v . q
4. H a Ω PΩ PK K Ω Z r a t a PΩ t a a .
MÉMOIRES DE LA SMF 152
3. UPPER BOUND OF HE HEIGH
F q i n ϕ i ϕi
47
Ω
T T T Ta T a i T i
C ϕ r
Sr ϕ
Sr n ϕ n
Ω
PK OP r K Ω Sr Ω Ω Ω Sr n Ω
i n ϕ i i . W ◦ϕ r PΩ OP r E Z r t a : T ℓ
n ⊗ i
Tr i ℓi Tℓi
Ta ℓ ℓ ∆rZ t a
B Ta ℓ’ oΩ E . T ∥ ◦ ϕ r ∥ v
∥ ∥ v ∥ϕ r ∥ v B oK V V V, n ∑ r i ϕ i Eo v ∥ϕ r ∥ v ϕ r EP OP r v K
i
T . B ϕ i ϕ i T ϕ i T ai . T, ▷ v : ϕ i Eo v ∥ϕ i T ∥v ∥ϕ i T ∥v Ω ai ai v
▷ v :
ϕ i Eo v ϕ i T v ϕ i T v Ω ai ai v
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
48
K: n {∑ ∑ ∑ } ∥∥ v r i ai ai v r Ω Q q ′ v VΩ K Q
v VΩ
∑
∑
i
n ∑
v VΩ K ′ Q i
Ω Q
∑
r i ai ai v r Ω Q q
n ∑
K ′ Q i
r i hai r q
D Ω Q, hai hai K ′ Q (3.3), n ∑ r i hai r q h Fq r ta Kqr a ta C q i
U C P OP r Kqr a ta P OP r
n ∏
r i
Kqr a ta kqr t a
i
.
□
4. Upper bound o the instability measure 4.1. Notations and frst reductions. — L v K. Proposition 4.1. — Wih he noaion inroduced in Secion 2.2, i he place v is nonarchimedean, { } r k t t a x v Pr qr a a i v i i ′ i n
K Cv
n ∑ i
∑
ℓ ∇rZ t x
kr t x kqr t a ℓi r i v ai x i
whereas, in he v archimedean case, he previous inequaliy holds wih kqr t a
n ∑ i
r i kqr t a r kr t x r
added on he righ-hand side.
T i n K ′ Cv :
1) x i x i Kv x i P Kv ∥x i x i ∥ v . 2) ai ai Cv ai P Cv ∥ai ai ∥ v ; 3) q i Cv ai x i ai x i .
MÉMOIRES DE LA SMF 152
4. UPPER BOUND OF HE INSABILIY MEASURE
49
4.1.1. Elemens o SL measuring disances
Deinition 4.2. — F i n q дi Cv : ( ) ( ) ⊤ x i x i ai ai дi GL Cv xi xi a x i a x i ai ai i
C n д
д дn
i
GL Cv n .
Proposition 4.3. — Wih he noaion inroduced above, or all i n and q,
1) дi
ai x i ai x i ;
2) дi
v v ai x i ;
3) For a non-zero vecor y y Cv such ha ∥y y ∥ v ,
v ai y v x i y v д yT yT i v v ai y v x i y v
where T T denoes he canonical basis o Cv and y P Cv he line generaed by y y .
Proo. — 1) C: x i x i ai ai . 2) C 1).
3) T дi Cv Cv , ( T , T ) ( ) ai ai xi xi
T .
□
4.1.2. Proo o Proposiion 4.1. — I P 4.1 P 4.6 4.7: . Deinition 4.4. — F h h hn GL Cv n ∥h w x ∥ Fr tx v , ▷ v h Kr x t x ∥w x ∥ Fr tx v ∥h w a ∥ Fq r ta v , ▷ v h Kqr a ta ∥w a ∥ Fq r ta v w x Fr t x K (. w a Fqr t a K) P Kr x t x (. Kqr a ta ). Deinition 4.5. — F i n K ′ Cv дi дi i , . S д д дn .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
50
E v Pr { } v Pr n v h Kr x t x v h Kqr a ta h SL Cv { } д K x t д K a t v r x v qr a ′ K Cv
T Fr t x Fr t a GLnoK
kr t x r kr t a r . B P 4.32), i
v ai x i n kr t x ∑ д Kr x t x v д Kr x t x r i v ai x i v i
n kqr t a ∑ v д Kqr a ta v д Kqr a ta r i v ai x i i
O P 4.1 :
Proposition 4.6. — Wih he noaion inroduced above, i v is non-archimedean, n ∑ ∑ v д Kr x t x ℓi v ai x i i ℓ ∇rZ t x
whereas, i v is archimedean, he preceding inequaliy holds wih kr t x r be added on he righ-hand side. Proposition 4.7. — Wih he noaion inroduced above, i v is non-archimedean, { } v д Kqr a ta kqr t a t a r i v ai x i i n
whereas, i v is archimedean, he preceding inequaliy holds wih n kqr t a ∑ r i kqr t a r i added on he righ-hand side.
4.2. aylor expansion at the single point: proo o Proposition 4.6. — K S 4.1. 4.2.1. — L i n
Ti x i T x i T Kv
S x i x i Kv Ti . I v Ti ov Ti , Ti ov ov . I v Ti Kv Ti , Ti Kv . S Ti x i i n, P 2.41) K Kr x t x n ⊗ T ℓ Tiri ℓi Tiℓi i
MÉMOIRES DE LA SMF 152
4. UPPER BOUND OF HE INSABILIY MEASURE
51
ℓ ℓ ℓn ∇rZ t x . T Fr t x oK Kv , ∧ w T ℓ ℓ ∇rZ t x
P Kr x t x . I v T ℓ’ ov Kr x t x Kv P OP r ov
T
∥w ∥ Fr tx v
I v T ℓ’ ∥w ∥ Fr tx v
∑
ℓ ∇rZ t x
∥T ℓ∥P OP r v
r B ℓi r i , i
r ℓi i ℓ ∇rZ t x i kr t x r
∥w ∥ Fr tx v
∑
n ∑
∑
n ∑
ℓ ∇rZ t x i
∑
ℓ ∇rZ t x
n ∑
r ℓi i
r i
i
4.2.2. — F ℓ ∇rZ t n ∑ д T ℓP OP r v r i ℓi ∥дi Ti ∥v ℓi ∥дi Ti ∥ v i
T H q, ∑ д T ℓP OP r v д w Fr tx v ℓ ∇rZ t x
∑
n ∑
ℓ ∇rZ t x i
r i ℓi д Ti v ℓi д Ti v
F i n P 4.33) v ▷ дi Ti v v ;
▷ ∥дi
Ti ∥ v v ai x i .
S v :
n ∑ ∑ v д Kr x t x д w Fr tx v ℓi v ai x i i ℓ ∇rZ t x
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
52
I v : v д Kr x t x д w Fr tx v kr t x r n ∑ ∑ ℓi v ai x i kr t x r i ℓ ∇rZ t x
.
□
4.3. aylor expansion at the algebraic points: proo o Proposition 4.7. — K S 4.1. 4.3.1. — I v ov Kv f fkq r ta ov : Kqr a ta K Kv P OP r oK ov
I v f fkq r ta Kqr a ta Kv . W Fqr a ta oK Kv , w
kq∧ r t a
f
P Kqr a ta . I ∥∥ v Cv P OP r oK Cv . W H’ q (1) 10 kq∑ r t a v д Kqr a ta д w Fq r ta v д f v
:
Lemma 4.8. — Le f be a non-zero elemen o Kqr a ta . Wih he noaion inroduced above, i v is non-archimedean, { } ∥д f ∥ v ta r i v ai x i i n ∥ f ∥v
whereas, i v is archimedean, he preceding inequaliy holds wih ∑ r i r i n
added on he righ-hand side.
4.3.2. — F i n :
Ti ai T ai T Cv
S ai ai Cv Ti . I v ov Cv Ti ov MÉMOIRES DE LA SMF 152
4. UPPER BOUND OF HE INSABILIY MEASURE
53
Ti , Ti ov ov . 5 I v Ti Cv Ti , Ti Cv . F n ℓ ℓ ℓn ⃞ r n ⊗ T ℓ Tiri ℓi Tiℓi i
T T ℓ’ Cv P OP r K Cv . I v T ℓ’ ov P OP r oK ov . I v T ℓ’ ℓ ⃞ r , n ∏ ri ∥T ℓ∥ v rℓ ℓi i
4.3.3. — I v , 4.2.2 n n ∑ ∑ ℓi v ai x i ℓi v ai x i д T ℓ v i
i
, v , q kqr t a r . 4.3.4. — W f ℓ f ℓT ℓ f ℓ Cv . I v , } { ∥ f ∥ v f ℓ v ℓ ⃞ rZ I v ,
∥ f ∥ v
∑
ℓ ⃞
Z r
f ℓ v rℓ
S v ai x i ℓ ∇rZ t a : n n { ∑ ∑ } ℓi r i v ai x i ℓi v ai x i r i n i i i { } ta r i v ai x i i n
B f r f a t a , , f ℓ ℓ ∆rZ t a . I : { } f ℓ v д T ℓ v д f v ℓ ∇rZ t a
ta
i n
{ } r i v ai x i ∥ f ∥ v
.
5. S Ti ov ov Ti ov , (.[11, 1.6.1 P 2]). O Ti Kv . I Ti , .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
54
4.3.5. — S v . P 4.33) q : ∑ д f f ℓ v д T ℓ v v ℓ ∇rZ t a
(4.1)
i n
{
v ai x i r i
} ta
∑
ℓ ∇rZ t a
f ℓ v
n ∏
r i ℓi
i
C ℓ ℓ P OP r J’ q: √ n n n ∏ ∑ ∏ ∏ ∑ r i ℓi f ℓ v r i f ℓ v r i ℓi i
ℓ ∇rZ t a
P OP r f : ∑
ℓ ∇rZ t a
f ℓ v
n ∏ i
i
n
i r i
r i ℓi
U ba ba ba b , .
i
. T
ℓ ∇rZ t a
ℓ ∇rZ t a
ℓ ∇rZ t a
n { ∏ } r r i ℓi ℓ i
∑
ℓ ∇rZ t a
n { ∏ } r r i ℓi ∥ f ∥v ℓ
f ℓ v rℓ
i
n { ∏ } r r i ℓi r A (4.1) ℓ ℓ ∇rZ t a i □
5. End o the proo: semi-stability in the general case 5.1. Basic acts about the semi-stability o subspaces 5.1.1. Insabiliy coefcien. — L K G K K X q Gq L. L x K X . L Gm G G ( ) x Gm X x x
B X , x q x A X . D x K x . S Gm , Gm K x L L x
L x Z. I insabiliy coefcien o x L. 6 6. W [48, D 2.2].
MÉMOIRES DE LA SMF 152
5. END OF HE PROOF: SEMISABILIY IN HE GENERAL CASE
55
heorem 5.1 (HM ). — Suppose ha K is perec and L is ample. Wih he noaion inroduced above, he poin x is semi-sable i and only i L x
or every one-parameer subgroup Gm G.
T M [48, T 2.1] K . T K [45, T 4.2] R [59]. 7 5.1.2. Insabiliy coefcien o linear subspaces. — L V K r . C r Gr V P Gr V P r V .
S K G V . T Gr V , P r V q r O P V . S P Gq , O Gr V Gq . Deinition 5.2. — L Gm G . 1) L W V r . S W O W O.
2) F p Z Vp v V v p v
L p (. p ) (. ) p Vp . 3) F p Z V p q p Vq . S , V p Z Vp . I , p p V p V p p
Proposition 5.3. — Le W V be a linear subspace o dimension r . Se W p W V p or every ineger p. 1) Te subspaces W p orm a decreasing lraion o W and ∑ W p K W p K W p p Z
p K W
p∑
K W p
p p
7. I [45, T 4.2] T 5.1 K’ M’ [48, A C 2, B].
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
56
2) Le w w r be a basis o W . For every i r le w i be he insabiliy coefcien o he poin w i PV . Ten he vecor w i wries as w i w i w i wih w i V . I he elemens w w r V are linearly independen, hen r ∑ w i W i
3) Wih he noaions o (2), here exiss a basis w w r o W such ha heir componens o minimal weigh w w r V are linearly independen.
Proo. — T [48, C 4, §4]. S [67, § 2, L 2]. □ Proposition 5.4. — Le W , W be subvecor spaces o V . Ten: 1) (I ) I W is conained in W , hen (5.1) W W p K W K W
2) (G ) (5.2) W W W W W W
Proo. — 1) C. 2) F p G K W p K W p K W p W p K W p W p
C W p W p W W p.
□
Remark 5.5. — T P : V W W W W ( V ). I, 2) . 5.2. Asymptotic semi-stability: proo o Teorem 2.7
5.2.1. — G S 2.2. T [63, §2 L 2]. I P r X r . F K ( P PK n ). heorem 5.6. — Le n be a posiive ineger and r r r n be a n-uple o posiive inegers. Le t x t a be real numbers wih t a tqn . I he inequaliy n uqr t a n t x qr
is saised hen here exiss a posiive ineger q n r t a t x such ha, or every ineger , he K-poin P r X r K is semi-sable under he acion o SLn wih respec o he polarizaion given by he Plücker embeddings.
MÉMOIRES DE LA SMF 152
5. END OF HE PROOF: SEMISABILIY IN HE GENERAL CASE
57
5.2.2. Compuaion o he insabiliy coefciens. — F n r r r n , t i n : ∑ Z t ℓi r i ri ℓ ∇rZ t
Z t . A L 1.11 ri
Deinition 5.7. — L Gm SLn K . 1) F i n, Ti Ti K m i , Gm K, Ti m i Ti
Ti m i Ti
T n m m m n weigh o Ti Ti ( i n) adaped basis or . T m i . I m i Ti Ti . 2) W , Q y P Ti y i y . D y q K P i y i n insabiliy poin o ( ).
Proposition 5.8 (I f ). — Le Gm SLn be a oneparameer subgroup. Wih he noaion inroduced above, or i n, n ∑ Z Kr x t x i x m i ri t x i
Proposition 5.9 (I f ). — Le be a posiive real number. Under he assumpions o Teorem here exis a posiive real number and a posiive ineger he wo o hem possibly depending on n, q, r , t a and t x saisying he ollowing properies: or every one-parameer subgroup Gm SLn , every ineger and every real number , n ∑ m i Zri uqr t a n r i r r n qr Kq r a ta i
Proo o Teorem 2.7. — A HM (T 5.1) Gm SLn , P r K r x t x K r a t a
L . L , P 5.9. U , i n, :
(SS ′)
Zri uqr t a Zri t x n r i r r n qr
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
58
F . P 5.8 5.9 P r : n ∑ i
] m i Zri uqr t a n r i r r n qr i x Zri t x
S m i , (SS ′). T . □ Proo o Proposiion 5.8. — C Ti Ti (i n). S i x i n ( ). U i K Ti i Ti x i . A P 2.41), K Kr x t x n ⊗ Tiri ℓi Ti i Ti ℓi T ℓ i
ℓ ℓ ℓn ∇r t x . T n ⊗ m i r i ℓi Tiri ℓi Ti m i i Ti ℓi i T ℓ i
S m i , T ℓ ni m i r i ℓi , T ℓ
n ⊗ i
T T ℓ ℓ
Tiri ℓi Tiℓi
∇rZ t x ,
Kr x t x
n ∑
∑
i ℓ ∇rZ t x
m i ℓi r i
P 5.32)
n ∑ i
Z m i ri t x
5.2.3. Proo o Proposiion 5.9 Lemma 5.10. — Le Gm SLn be a one-parameer subgroup. Suppose 8 uqr t a , n Le a be a K-raional poin o P . Ten, or , Kqr a ta Kr a uqr t a n ∑ kqr t a kr uqr t a P OP r m i r i i
Proo. — T uqr t a , n , D 1.104), ∆n uqr t a qr q ∆n t a
8. I uq r t a n C (SS) T 2.7 n n n .
MÉMOIRES DE LA SMF 152
□
5. END OF HE PROOF: SEMISABILIY IN HE GENERAL CASE
59
S a K i a , i a i n K ′ Q. A P 2.63), Kqr a ta Kr a uqr t a
( Q K). G’ f (P 5.4 2) Kqr a ta Kr a uqr t a : Kqr a ta Kr a uqr t a Kqr a ta Kr a uqr t a
W 5.1.2, b P OP r b ni m i r i ( r Tnr n ). T (P 5.41) T Kqr a ta Kr y uqr t a P OP r .
□
Lemma 5.11. — Le be a posiive real number. Under he assumpion o Teorem 2.7 here exis a posiive real number and a posiive ineger he wo o hem possibly depending on n, d, r , ta and t x such ha, or every ineger and every real number : K P OP r 1) n r r n Z #∇ r uqr t a 2) q ∆n t a qr ; n r r n 3)
kq r t a n r r n
q ∆n t a
Proo. — 1) C. 2) F uqr t a 3) P 2.6 2). □ Proo o Proposiion 5.9. — L L 5.11. . L a PK q i a i n. A P 5.8 a : n ∑ K r a uqr t a m i Zri uqr t a i
A L 5.11 P 2.42): kq r t a k r uqr t a P OP r n r r n qr
T L 5.10 : n ∑ m i Zri uqr t a n r i r r n qr Kq r a ta i
.
□
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
60
6. Semi-stability on P P and the Wronskian determinant
I n W . S qr q r r r r
W r r .
6.1. — T : heorem 6.1. — Le r r r be a couple o posiive inegers such ha r r . Le t x t a be non-negaive real numbers such ha t x q ∆ t a q ∆ t a q r
I he inequaliy (6.1)
q ∆ t a q r
is saised hen here exiss a posiive ineger q r ta t x such ha, or every ineger , he K-poin P r X r K is semi-sable under he acion o SL wih respec o he polarizaion given by he Plücker embeddings. I , ▷ t a tq q;
▷ t x q w w q r
T M E L B n . Proposition 6.2 (I f ). — Le be a posiive real number. Under he assumpions o Teorem 6.1 here exiss a posiive ineger (possibly depending on q, r , ta and t x ) saisying he ollowing properies: or every one-parameer subgroup Gm SL K and every ineger : Kq r a ta r r ⟨m r ⟩ q ∆ t a q ∆ t a q r
where ⟨ ⟩ denoes he sandard scalar produc on R .
A T 2.7 T 6.1 P 6.2. T P 6.2 : Proposition 6.3. — Le f Kr a ta be a non-zero secion. I q ∆ t a q r , hen, or every one parameer subgroup Gm SL K , f ⟨m r ⟩ q ∆ t a q r
he insabiliy coefcien o f being aken as a poin o PP OP r and wih respec o he inverible shea O.
MÉMOIRES DE LA SMF 152
6. SEMISABILIY ON P P AND HE WRONSKIAN DEERMINAN
61
Proo o Proposiion 6.2. — L . A L 5.11 :
kq r t a q ∆ t a r r L f fkq r ta Kq r a ta ( ) f fkq r ta ( P 5.3). T P 5.32) (6.2)
Kq r a ta
kq∑ r t a
f ℓ
kq r t a ⟨m r ⟩ q ∆ t a q r ℓ
q P 6.3. C (6.2).
□
T D’ L: heorem 6.4 (c. C 6.15). — Le f P Or be a non-zero global secion and le b b b be a couple o non-negaive real numbers. Le y be a Q-poin o P . Le q be an ineger and or every q le z be a Q-poin o P. For every i suppose: 1) i z , i z or every , ; 2) i z , i y or every q. For every q suppose t and q ∑ (6.3) ∆ r f z q r
Ten, b f y bi r i and ) ( q ∑ b f y ∆ ∆ r f z q r bi r i
A D’ L [28, . 489]. T (6.3) q EV b f y “ ” ( loc. ci.).
I P 6.3 f ( ): Proposition 6.5. — Le Gm SL K be a one parameer subgroup and x an adaped basis or . Ten, or every non-zero elemen f P OP r , f ⟨m r ⟩ m f y where y is he insabiliy poin o wih respec o he chosen adaped bases.
Proo o Proposiion 6.3. — I f T 6.4 z a K ′ Q, b m y y ( ): t a ( (6.1) ), ∆ t a t a . □
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
62
T T 6.4. I P 6.5, D’ L — i.e. T 2.2 n 9 — . U, D’ L : r z q m y . T T 6.4 . A : Proposition 6.6. — Le b b b and c c c be couples o non-negaive real numbers. Suppose ha is made o posiive real numbers. For all i le fi P OP r i be a non-zero secion. Ten, or all Q-poin z o P , b f f z bi c i c f f z
I , T 6.4 W . 6.2. Homogeneous Wronskian. — I SL K . W [1, 2.8]. L r r .
Deinition 6.7. — L f f Sr K T T K . T homogeneous Wronskian f f : ) ) ( ( r f ℓ Wf f j r T Tj j ℓ I S r K , , r T T ( r ).
T [1, 2.9] W. I W’ [8, P 6.3.10] f f Wf f . T W Sr K ∧ Sr K S r K W
9. T D [27], ( [7], [68] [70]).
MÉMOIRES DE LA SMF 152
6. SEMISABILIY ON P P AND HE WRONSKIAN DEERMINAN
63
Proposition 6.8 (. [1, 2.3, 2.5 2.8]). — Te ollowing properies are saised: 1) I T′T′ is a basis and W ′ Sr K S r K is he Wronskian map aken wih respec o he later basis, hen as linear maps, W ′ T′T′ r W
where T′T′ is he linear map sending Ti on Ti′ or i . 2) Te linear map W is equivarian under he acion o SL K on he vecor spaces Sr K and S r K .
6.3. ensorial rank. — L V V K .
Deinition 6.9. — T ensorial rank v V K V v v v v v vi ℓ Vi i ℓ . D v. T GLV GLV ( ). T v V V v V K V ≃ HK V V
( V V ). v F i vi vi v Vi v ℓ v ℓ v ℓ . T, i , vi vi v . 6.4. Splitting polynomials through the Wronskian. — L r r r i Vi Sr i K . W , P OP r ≃ V V
F f P OP r f . W [7, . 266], s f f F i Ti , Ti K . Deinition 6.10. — L f P OP r f . F ℓ ℓ ℓ ℓi i , : f , f ℓ ℓ ℓ ℓ ℓ T T T T OP r r . T homogeneous Wronskian Wf [∏ r i ] Wf ℓ f ℓ ℓ ri i OP r r .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
64
L f P OP r f . W f
∑
ℓ
f ℓ f ℓ
fi ℓ P Or i i ℓ . F i W Wi f Wfi fi Ti Ti . A : Proposition 6.11. — Wih he noaions inroduced above, Wf W f W f 6.5. Index o the Wronskian. — I W . Proposition 6.12. — Le f P OP r be a non-zero secion and le b b b be a couple o non-negaive real numbers. Ten, or every Q-poin z o P, ) ( f ∆ t f r b Wf z bi r i f r
where t b f z bi r i .
Proo. — S W ( ) (P 6.8), i Ti , Ti K Ti i z , Ti i z . L t b f z f z. L f f , r r . S T T z, ℓ ℓ , { } b ℓ ℓ f z t ⟨b ℓ ℓ ⟩ } { ℓ bi r i r bi r i t r ⟨ ⟩ ⟨ ⟩ ℓ b ℓ ℓ bi r i r ℓ ℓ bi r i r r
( r r r ℓ r ). L S . S , {∑ } b ℓ ℓ f z b Wf z S
S
MÉMOIRES DE LA SMF 152
ℓ
{∑
{ }} ℓ t bi r i r bi r i r ℓ
6. SEMISABILIY ON P P AND HE WRONSKIAN DEERMINAN
W t ′ t bi r i u r t ′ ,
F,
65
∑ ℓ ℓ t′ t bi r i bi r i r r ℓ ℓ
∑
r u
r u ∑ ℓ u u r u t ′ t′ r u t ′ r ℓ
C :
Lemma 6.13. — Wih he noaions inroduced above, le t t ′ . Ten, u ∆ t u t′ r r Proo o Lemma 6.13. — :
▷ S u t ′. T, ut ′ u t ′ , r , r r
▷ S u r . T, u u u t u t′ T t t t . B , u t, u r , u t u t t u u t t
q q t t . T . □ T .
□
Proposition 6.14. — Le f P OP r be non-zero and b b b a couple o nonnegaive real numbers. Le q be an ineger and or every q le z be a Q-poin o P. For every i suppose i z , i z or every , . Ten, q ∑
where t
∆ t q r
i q r f z b f z bi r i i SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
66
Proo. — S f . T b Wf z . ▷ Upper bound. – B P 6.6. S Wf W f W f P 6.6 c r b Wf z bi r i r Wf z I r Wf z . S f . U , Wi f Or i P z : ∑ Wi f i z r i i ) ( q ∑ ∑ r i Wi f i z r i i
r Wf z
q ∑ ∑ r Wf z ri i
F q, P 6.12 ( z z b r ) :
∆ t r Wf z r { } t r f z . S , b Wf z , q r q r , q ∑ ∑ bi r i q r ∆ t ri r i
▷ Lower bound. – P 6.12 z z b :
t
∆ t b Wf y bi r i r { } b f z bi r i .
C b f z :
q ∑ q r ∆ t r r
MÉMOIRES DE LA SMF 152
6. SEMISABILIY ON P P AND HE WRONSKIAN DEERMINAN
( r ). D r : q ∑
67
r
q r r q r q r
∆ t
f , ( r ) — [7, L 2 II.4] . T f . T f . □ Corollary 6.15. — Under he assumpions o Proposiion 6.14, suppose r f z or q and (6.1)
Ten, b f z
q ∑
∆ r f z q r
bi r i and
∆
q ∑ b f z ∆ r f z q r bi r i
Proo. — I b f y bi r i , P 6.14
(6.1).
q ∑
∆ r f z q r
□
6.6. Wronskian as a covariant. — L . F . T W “” SL K , i.e. SL K q W P P OP r d P S r K K S r K
U PP OP r f P OP r . T W W SL K q W O ≃ O U . I , R’ G I T. , O f O Wf SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
68
CHAPER 2. DIOPHANINE APPROXIMAION ON P VIA GI
f OP r Gm SL K . I y , P 6.5 m Wf y m f y m m A , T 6.4 y y b m . U, Pr ( t x ). I P 6.12 P 6.14.
MÉMOIRES DE LA SMF 152
CHAPER 3 KEMPF-NESS HEORY IN NON-ARCHIMEDEAN GEOMERY
I K N [46] ( ) . E , q . T , . I S 1 K N . T C 4. I S 2 : ( B ), . C , . C , . W ( B T’ ). S 3 : ( T 3.3). T GI q ( , T 1.6). T , , B .
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
70
I GI q. W , B . T C 4. 1. Statement o the main results 1.1. A result o Kemp and Ness. — L G () V ( ) G ∥∥ V R . S ∥∥ U G. L v V . K N [46] pv G R pv д ∥д v ∥
A , : heorem 1.1. — Wih he noaions inroduced above: 1) Te uncion pv obains is minimum value i and only i he orbi o v is closed. 2) Any criical poin o pv is a poin where pv obains is minimum. 3) I pv obains is minimum value, hen he se where pv obains his value consiss o a single U - Gv cose here Gv is he sabiliser o v in G. 1.2. Interpretation via the moment map. — A GS M, G I T Kä . I PV L U G V . F v V , a L U 1
v L U R
⟨a v v⟩ i ∥v ∥ H ⟨ ⟩ ∥∥, i q L U V V . v a
S v V 2 pv д pv e д G PV . Proposition 1.2. — A non-zero vecor v V is minimal i and only i he linear map v is idenically zero. (F [48, T 8.3].) 1. O . 2. T G v v .
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
71
W 2) T 1.1 q: PV M PV PV G O. L Y q PV G. T U Y C
[48, T 8.3]. W U , q U MW q. T GS [40], [41], [42], K [48, C 8] W [72]. 1.3. Present setting. — I : ▷ C k ; ▷ V kf X k G; ▷ ∥∥ u X ( D 2.29) U G ( D 2.20 2.21). AL [3] X f ( S ) u X C R U . S 1) 3) T 1.1 : Example 1.3. — C C C t x y tx y
T ℓ ∥x y∥ x y U. H t t C , t
t C . T “” . M t t “” U.
I KN , G I T. 1.4. Algebraic setting. — L k . L G k f k X S A . D Y AG X Y AG A.
T G I T f ( [48, T 1.1 C 1.2] , [43] [63, T 3] ).
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
72
heorem 1.4. — Te k-scheme Y is o nie ype and he morphism saises he ollowing properies: 1) is surjecive and G-invarian; 2) le K be a eld exension o k and K X K X k K YK Y k K be he morphism obained exending scalars o K; hen or all poins x x ′ X K, K x K x ′
i and only i G K x G K x ′ , ∅
he orbis being aken in X K . 3) or every G-sable closed subse F X is image F Y is closed; 4) he srucural morphism ♯ OY OX induces an isomorphism ♯ OY OX G
I Y q X G k, i.e. G ′ X Y ′ q Y . F , Y quoien X G quoien morphism projecion (on he quoien). 1.5. Analytic setting. — S k . K G (. X , . Y ) k kf G (. X , . Y ). H, q ; B. W S 2.1: . T k G k X k X Y ( ) G . L G k X X k G X . Deinition 1.5. — T orbi x X X G x x
A F X G -sable (. G -sauraed) x F , G x (. G x ) F . I . I , x y X , y G x x G y
( x y ; [5, P 5.1.1]).
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
73
1.6. Analytic topology o the GI quotient. — O 1)–3) T 1.4 k : heorem 1.6 (c. P 3.1 3.9). — Wih he noaion inroduced above, he morphism X Y saises he ollowing properies: 1) is surjecive and G -invarian; 2) or every x x ′ X : x x ′
i and only i G x G x ′ , ∅
3) i F is a G -sable closed subse o X , hen is projecion F is a closed subse o Y . I 1) 2) “” (T 1.4 1)–2)). I 2), G x x X C X : Z . T q K N. A N [51]. T 1.6 q, : Corollary 1.7. — Wih he noaion inroduced above, he ollowing properies are saised: 1) or every poin x X here exiss a unique closed orbi conained in G x; 2) or every G -sauraed subses F F ′ X : F F ′ , ∅
i and only i
F F ′ , ∅
3) a subse V Y is open i and only V X is open; 4) le U be an open subse o X ; hen U is G -sauraed i and only i U U i U saises one o his wo equivalen properies, hen is projecion U is an open subse o Y . I Y q 3 X q : x RG x ′ G x G x ′
I , ♯ OY OX G , , ,
♯ OY OX G
. T q S ( [62, C 5, P 43)]) L’ S T ( , ). N, — S , 3. A S S .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
74
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
( ) R . Qestion. — I , ,
?
♯ OY OX G
1.7. A variant o the result o Kemp-Ness Deinition 1.8. — A u X invarian G U G : t G k X t U, u t u t
G k X X G X .
heorem 1.9 (c. T 3.3). — Le u X be a plurisubharmonic uncion which is invarian under he acion o a maximal compac subgroup o G. For every x X ,
x ′ x
ux ′
x ′ G x
ux ′
Deinition 1.10. — L u X . A x X : ▷ u-minimal on -bre ux ux ′ x ′ X x x ′; ▷ u-minimal on G-orbi ux ux ′ x ′ G x. T u (. u G) X u (. X G u). Corollary 1.11 (c. C 3.4). — Le u X be a plurisubharmonic uncion which is invarian under he acion o a maximal compac subgroup o G. Ten, 1) a poin x is u-minimal on -bre i and only i i is u-minimal on G-orbi; 2) X u X G u; 3) i u is moreover coninuous, he se o u-minimal poins on -bres X u is closed. I K N q T 1.9: Corollary 1.12. — Wih he noaion inroduced above, le u be opologically proper. Le x X be a u-minimal poin on is G-orbi (hus on is -bre). Ten here exiss a poin x G x such ha is orbi is closed and ux ux. Proo. — I x ′ G x . I f □ x x ′ ( u ). T q T 1.9 U K N. T S 3.5.
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
75
1.8. Metric on GI quotients. — L X k G. L L G . S L ∥∥L : , U X s U L , ∥s ∥LU U R x U : ▷ ∥s ∥LU x sx ; ▷ ∥s ∥LU x ∥s ∥LU x k; ▷ V U , ∥s ∥LV ∥s ∥LU V . N L. L X X Y q X G. L X Y q . F D M D Y , ϕ D M D L D X G ( [48, T 1.10]). D M D : y Y t M D y, ∥t ∥M D y ∥ t ∥L D x x y
O , i.e. ( P 4.5). heorem 1.13 ([75, T 4.10], c. T 4.6 C 3). — Make he ollowing assumpion: ▷ he meric ∥∥L is invarian under he acion o a maximal compac subgroup o G; ▷ or every analyic open subse U X and every secion s U L ha does no vanish on U , he uncion ∥s ∥L U R is plurisubharmonic. Ten, he meric ∥∥M D is coninuous. Remark 1.14. — I , ∥∥ L FS KN. Z FS ( [73, T 2.2] [15, A A]). T Kä ∥∥ MD [74, T 2.2]. Remark 1.15. — I , . M , X k ◦ k ◦ G. S X q G L. L X , G L X, G L. T L ∥∥ L ( § 4.1.3). T, ∥∥ L G G ( D 2.21) ,
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
76
L , ∥s ∥ L U X s U L ( C 4.4).
heorem 1.16 (c. T 4.6). — Under he assumpions o Teorem 1.13 suppose ha k is non-rivially valued and algebraically closed. Le x X k be a semi-sable k-poin o X and t x MD be a non-zero secion. Ten,
x ′ x
∥ t ∥L D x ′ ∥ t ∥L D д x д G k
where he supremum on he le-hand side is ranging on k-poins x ′ in he bre o x. S k Qp F t F . W R 1.15 X X Y q X . F D MD Y X , ϕ D MD LD X L ∥∥ MD MD .
heorem 1.17 (c. T 4.11). — Le k be eiher a nie exension o Qp or o he orm F t or a eld F and le K be he compleion o an algebraic closure o k. Le y be a K-poin o Y and le t y M D be a secion. Ten, ∥t ∥ MD y ∥ t ∥ LD x x y
where he supremum on he righ-hand side is ranging on K-poins x o X in he bre o y. 2. Preliminaries to the local part L k k . 2.1. Analytic spaces 2.1.1. Overview. — O k. T : 4 1) T : C . 2) T : R R q X X X X . 5 4. T R C . 5. N q X R X OX : ▷ X q X q ;
▷ X X , U X OX U OX U OX f U OX ♯ f f ♯ OX OX R .
MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
77
3) T : k ( ) k B . R B [5], [6]; [57, §1.2], B’ [23]. W k. I , k X B [5, §1.5, §3.4 §3.5], P [54], N [52, §2], . 2.1.2. Underlying opological space. — L X k . Deinition 2.1. — T X X x x X ( ) x R k k ( x x). T X , U X, 1) U x X x U X ; 2) f U OX , f U R f x f x T analyic opology X .
N x X x.
heorem 2.2. — I X is non-empy, he opological space X is non-empy, locally separaed and locally compac. Moreover, 1) i is Hausdor i and only i X is separaed over k; 2) i is compac i and only i X is proper over k. Proo. — T [5, §1.5]. S 1) 2) () () [5, T 3.4.8 3.5.3]. □ Deinition 2.3. — L x X . T complee residue eld x x x . T , Hx. T : , f X Y k, f f X Y . F X X X , X X .
Remark 2.4. — T X x : x , q x k . D :
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
78
1) I , G’M f C () C. T X X X X C X C . 2) I , X X X X C GCR
3) I , X B. I X . 6 Proposition 2.5. — I k be an algebraically closed eld and he absolue value on k nonrivial, hen he se o k-poins X k is dense in X . A Z : Proposition 2.6. — Le X be a k-scheme o nie ype. For every consrucible se Z X , X Z X Z where on he le-hand side he closure is aken wih respec he analyic opology and on he righ-hand side o he Zariski one. Proo. — S [39, E. XII, C 2.3] [5, P 3.4.4] . T □ X ≃ X C GCR.
2.1.3. Srucural shea. — L X . B X Akn n.
Deinition 2.7. — L U X . A analyic uncion U f U x U x x U : 1) f x x; 2) U x U д kt tn U , y U , f y д y ( t tn Ank ). T k U OX U . T U ▷ OX U k X . F x X x . Deinition 2.8. — T n-dimensional analyic afne space k An OAn An k k
6. F , X Ak , Gauss norm ∥ ∥ k t R , a i t i a i , k t . I f , ∥ ∥ Ak .
MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
79
Remark 2.9. — I , C An C n C q . I , R An Cn GCR q R f Cn f z f z. I n f B. S [5, §1.5] [54].
E Ak , k X . 1) I X f, j X Ank n. L I OAn X I OAn I . C k X , OX j OAn I
O OX j. 2) F k X X iN X i f . T OXi X i OX X . O OX .
Deinition 2.10. — T k X X OX analyicaion o X . X X . A f Y X k k f Y X . I f f . 2.1.4. Exension o scalars
Deinition 2.11. — A analyic exension K k K q k K.
L K k. L X k X K X k K K K. L X K K K X K . Deinition 2.12. — T X K X k X K k X K X
exension o scalars map. I , X .
Proposition 2.13. — Te map X K k is surjecive and opologically proper. Since he opological spaces X and X K are locally compac, he map X K k is closed.
Proo. — I , k R K C, XCR q G . I [6, §1.4]. □
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
80
T K : k f Y X f K YK X K K f .
Deinition 2.14. — A K-poin X x x x X x x K.
L x X X x K . T x x X . L x K K X K S K S x X K X K .
Deinition 2.15. — T x K K ( K K) X K poin associaed o x and he embedding x K.
2.1.5. Fibres. — L f Y X k . L x X , K x x K X K x. Proposition 2.16. — Keep he noaions jus inroduced. Ten: 1) Te map o scalars exension Y K k YK Y induces a homeomorphism f x Y K k YK X K x K
2) For every analyic exension K ′ o k and every poin x ′ X K′ such ha X K ′ k x ′ x, he map induced by K ′ K k , is surjecive.
Y K ′ k f K′ x ′ f x
Proo. — 1) I G . I , [6, §1.4]. 2) L Ω x ′ x ′ x Ω′ X Ω x ′. T x Ω′ x Ω x x Ω x ′ ( x ′ x). T Y ΩK ′
Y K ′ k
Y ΩK
Y K k
f Ω x Ω′ f K′ x ′ f x
f Ω x Ω f K x K f x
K x x x K X K x. T : , (1); YΩ X Ω x Ω YK X K x K
T Y K ′ k f K′ x ′ f x .
□
Proposition 2.17. — Wih he noaions inroduced above, le y y Y be poins such ha f y f y . Ten, here exiss an analyic exension Ω o k and Ω-poins x Ω , x Ω X Ω such ha:
MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
81
1) Ωk yi Ω yi or i ; 2) f Ω yΩ f Ω yΩ .
Proo. — T . Firs sep. – S X S k k . T : f Ω yi Ω i yΩ , yΩ X Ω y y . Second sep. – L x X f y f y K x . L x K X K x. A P 2.16 Y K k YK X K x K f x
. T yK yK YK 1) K k yiK yi i ; 2) f K yK f K yK .
C K Y ′ YK X K x K , X ′ x K □ f K YK X K . 2.2. Maximal compact subgroups. — L k . 2.2.1. Subgroups. — L G k (i.e. k ). L m G k G G G G . Deinition 2.18. — A H G subgroup : 1) m H H G k G H ; 2) H H ; 3) e Gk H .
A H compac G .
L K k H G . T H K G K k H G K
G K . L G k G k X X . Deinition 2.19. — L H G x X . T H -orbi o x, H x, H x G k X
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
82
2.2.2. Archimedean deniion. — L k R C G () k . Deinition 2.20. — I k C maximal compac subgroup G U GC GC. I k R maximal compac subgroup G U G CR U GC. O f H H C Z. I : ▷ H C Z ; ▷ H C . I U G, U G ≃ U R C U UR. A T G R ( , U) T U T C. 2.2.3. Non-archimedean deniion. — L k G k. C G G. A Gk [18], [19], G [5, C 5] [57], [58]. L H f k ◦ H H k ◦ k . C U H h H f д f k ◦ H k ◦ H k ◦ H.
Deinition 2.21. — A H G maximal compac subgroup H U G k ◦ G k ϕ G k ◦ k G.
T U G ( D 2.18), G . T . Proposition 2.22. — Wih he noaions inroduced above: 1) he se o k-raionals poins U Gk U G Gk coincides wih he se o k ◦ poins Gk ◦ ; 2) or every analyic exension K o k, one has Kk U G U Gk ◦ K ◦
as subses o G K ; 3) i k is algebraically closed and non-rivially valued, he se U Gk is dense in U G. Proo. — 1) L ϕд A k k д Gk. T д U G ϕд f f k ◦ G, ϕд ϕд k ◦ G k ◦ . MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
83
2) L f f N k ◦ k ◦ G. F д G , f x f k ◦ G fi x i N
T f f N K ◦ K ◦ G. 3) T U G f B. T [5, P 2.1.15]. □ T [26] [34] , , Z. M : heorem 2.23. — Le G be a reducive k-group. Ten, here exis a nie separable exension k ′ o k, a Z-reducive group scheme G and an isomorphism o k ′-group schemes G k k ′ ≃ G Z k ′
T C 3.1.5 T 3.6.53.6.6 [26]. 2.3. Plurisubharmonic unctions. — I . I , , . I , P R [60], [61], R B [4], K [44], F J [31] T [66] ( ). T [66, C 5]. M , P . T : , M P . H, . O CL D [21] B, F J [17]. 2.3.1. Harmonic uncions. — L k Ω Ak .
Deinition 2.24. — A h Ω R harmonic x Ω U x Ω, N i N fi U OU i R N ∑ i fi h U i
N N , . I C . I T ( [66, D 2.31] [loc. ci., Tè 2.3.21]).
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
84
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
Proposition 2.25. — Le Ω be an open subse o he analyic afne line Ak . Te ollowing properies are saised: 1) Harmonic uncions give rise o a shea o R-vecor spaces on Ak . 2) I f is an inverible analyic uncion on Ω hen f is an harmonic uncion. 3) Le f Ω ′ Ω be an analyic map beween open subses o Ak ; or every harmonic map h on Ω he composie map h ◦ f is harmonic on Ω ′. 4) Le K be an analyic exension o k and ΩK Kk Ω. For every harmonic uncion h Ω R composie uncion h ◦ K k ΩK R is harmonic. 5) (M P) I he open se Ω is conneced, hen an harmonic uncion h on Ω atains a global maximum i and only i i is consan. 6) I Ω is conneced, every non-consan harmonic uncion h Ω R is an open map.
Proo. — S 1) –4) q . 5) T M P ( ) [25, C I, 4.14]; P 2.3.13 [66]. 6) I f Ω . T Ω I R ( ) . : I , ; b R I , h b M P. T □ 2.3.2. Subharmonic uncions. — L k Ω Ak .
Deinition 2.26. — A u Ω subharmonic Ω ′ Ω h Ω ′ u Ω′ h , , . I q . T Ω q ΩC . I T ( [66, D 3.1.5], [loc. ci., C 3.1.12] [loc. ci., C 3.4.5] . Proposition 2.27. — Le Ω be an open subse o he analyic afne line A . Te ollowing properies are saised: 1) Harmonic uncions are subharmonic. 2) I u v are subharmonic uncions on Ω and are non-negaive real numbers, hen u v and u v are subharmonic uncions. 3) I f is an analyic uncion on Ω hen f is subharmonic. 4) Le K be an analyic exension o k and ΩK Kk Ω. For every subharmonic uncion u Ω R composie uncion u ◦ K k ΩK R is subharmonic. MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
85
5) Le f Ω ′ Ω be an analyic map beween open subses o Ak ; or every subharmonic map u on Ω he composie map u ◦ f is subharmonic on Ω ′. 6) (M P) I he open se Ω is conneced, hen a subharmonic uncion h on Ω atains a global maximum i and only i i is consan. 7) I ui i I is a locally bounded amily o subharmonic uncions on Ω, he is regularised upper envelope 7 is subharmonic. 8) Le u un be subharmonic uncions on Ω and ϕ Rn R be a convex uncion ha is non-decreasing in each variable. Exend ϕ by coninuiy ino a uncion ϕ n Ten he uncion ϕ ◦ u un Ω is subharmonic. Proo. — 1) F . 2) S [66, P 3.1.8]. 3) F . 4) I q [25, C I, T 4.12]. I [66, C 3.4.5]. 5) I [25, C I, T 5.11]. I [66, P 3.1.14]. 6) F . 7) S [66, P 3.1.8]. 8) S [25, C I, T 4.16]. □ Proposition 2.28. — Le v R be a uncion. Te composie map v ◦ t Gm
is subharmonic i and only i one o he ollowing condiions are saised: ▷ v is idenically equal o ; ▷ v is real-valued and convex. Proo. — I v . I v , v ◦ t (8) : v hi i I
hi ai bi v. F i I hi t ai t b (). T (7) , v t i I hi t () , . 7. N u i i I .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
86
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
S v . S t v ◦ t , v . L a b ϕ f va ϕa
vb ϕb
O v ϕ a b. S a b v ϕ , a b. B v ϕ , a b. T ϕ t t Gm Ω t Gm a t b
. 8 A v ◦ t , v ϕ ◦ t M P Ω. S , . M, v, v ϕ va ϕa vb ϕb
v ϕ .
□
2.3.3. Plurisubharmonic uncions. — L X k . Deinition 2.29. — A u X plurisubharmonic K k, Ω AK Ω X K , u ◦ Ω Ω. I ; . Proposition 2.30. — Le X be a k-analyic space. 1) I X is an open subse o he afne line Ak he u is plurisubharmonic on X i and only i i is subharmonic. 2) I u v are plurisubharmonic uncions on X and are non-negaive real numbers, hen u v and u v are plurisubharmonic uncions. 3) I f is an analyic uncion on X hen f is plurisubharmonic. 8. I . I Ω Ω e b a C C x Ak a t x b F , C x Ak t x
. T Ω , . T C , , . O C k , [5, P 3.1.8], [5, T 3.2.1].
MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
87
4) Le K be an analyic exension o k and u X be a plurisubharmonic uncion. Ten he composie uncion u ◦ K k X K is plurisubharmonic. 5) Le f X ′ X be an analyic map beween k-analyic spaces; or every plurisubharmonic map u on X he composie map u ◦ f is plurisubharmonic on X ′. 6) I ui i I is a locally bounded amily o plurisubharmonic uncions on X , he is regularised upper envelope is plurisubharmonic. 7) Le u un be plurisubharmonic uncions on X and ϕ Rn R be a convex uncion which is non-decreasing in each variable. Exend ϕ by coninuiy ino a uncion ϕ n
Ten he uncion ϕ ◦ u un X is plurisubharmonic.
Proo. — F P 2.27.
□
2.3.4. Consrucion o invarian uncions. — L n .
Deinition 2.31. — A exended norm An An R k k K k, K Ank , K k
u
R u K Ank K K n An k
K K n . I k R C u Cn . I k u , K k, K n . Remark 2.32. — 1) I k C Cn . 2) I k R Rn . 3) I k ux r t x r n tn x r r n t tn An . I k n , d
x x x k n
T k n q. T d k n : k n . Proposition 2.33. — Le k be non-archimedean. 1) A non-archimedean norm on k n exends o a coninuous non-archimedean norm u on An in a way such ha, i are norms on k n , hen k u x u x d x An k
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
88
2) A coninuous non-archimedean exended norm is a plurisubharmonic uncion. Proo. — 1) T . S , , v vn k n r r n x v x nvn r x r n x n L ϕ ϕ n k n k . F x An k
u x r ϕ x r n ϕ n x
T u . T u u [35, P 2.1] k. T ( [11, 2.6.2, P 3]). 2) L u . I , k, k . T k n u : v vn k n r r n x v x nvn r x r n x n ( [11, 2.4.1 D 1 2.4.4 P 2]). L ϕ ϕ n . S k n An q : x Akn , k ux r ϕ x r n ϕ n x I u .
□
Proposition 2.34. — Suppose k algebraically closed. Le G be a reducive k-group and X an afne k-scheme o nie ype aced upon by G. Le U be a maximal compac subgroup o G. Ten, here exiss a coninuous, U-invarian, plurisubharmonic and opologically proper uncion u X .
Proo. — U X f Gq , X An G X . I k C f U. I k , G k ◦ U. L k n x д Gk ◦ д x
S Gk ◦ ( , G ) x . T Gk ◦ k n P 2.33 q u An . T u , k Gk ◦ . S Gk ◦ U, u U . □ 2.4. Minima on fbres and orbits. — I .
MÉMOIRES DE LA SMF 152
2. PRELIMINARIES O HE LOCAL PAR
89
2.4.1. Minima on bres Deinition 2.35. — L f X Y u X . T u-minima on f -bres f u Y y Y ux
f uy
f x y
L k f X Y k . L f X Y k f . L K k f K X Y K K. Proposition 2.36. — Le u X be a uncion. Wih he noaions jus inroduced: f K u ◦ X K k f u ◦ Y K k Proo. — T , y K YK , Y K k f K y K f y
y Y K k y K ( P 2.162)).
□
2.4.2. Minima on orbis. — L X k k G. Deinition 2.37. — L H G u X . T u-minima on H -orbis u H X , x X , u H x ′ ux ′
I H
G
uG u
x H x
G
.
Remark 2.38. — L G k X X k G X . L G k X X k . D H H G k X X
. W , , u H H u ◦
Proposition 2.39. — Le u X be a uncion. Le K be an analyic exension o k and consider he subgroup H K G K k H o G K . Ten, u ◦ X K k H K u H ◦ X K k Proo. — T P 2.36 R 2.38.
□
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
90
Proposition 2.40. — Le u X be an upper semi-coninuous uncion. Ten, 1) he uncion uG X is upper semi-coninuous; 2) i u is coninuous, he subse X G u x X uG x ux is closed.
Proo. — 1) I uG x uд x д GC. I , P 2.39, . S k k . I k Gk G . A u x X , uG x ′ ux uд x x G x
д G k
C X uд x uд x д Gk. □ 2) F uG u. 3. Kemp-Ness theory L k . F : ▷ I f X Y k, f k f X Y f ; ▷ L X k k G. I x X G x G x. 3.1. Set-theoretic properties o the analytifcation o the quotient. — T () () T 1.6. L 1.41.5. Proposition 3.1. — Wih he noaion inroduced above: 1) he morphism X Y is surjecive and G-invarian; 2) or every x x ′ X , x x
i and only i G x G x , ∅
3) or every poin x X here exiss a unique closed orbi conained in G x. I , x x ′ X q G x q G x ′ . B P 3.1 :
MÉMOIRES DE LA SMF 152
3. KEMPFNESS HEORY
91
Corollary 3.2. — Wih he noaions inroduced above, le X ′ be a G-sable closed subscheme o X and Y ′ is caegorical quoien by G. Ten he induced morphism o k-analyic spaces Y ′ Y is injecive. Proo o Proposiion 3.1. — 1) C P 1.4. 2) C x x X :
x x G x G x , ∅
S G x G x y. B G , x y x S x x . F x , x k . A P 2.17 K k K x K , x K X K : ▷ K k x iK x i i ;
▷ K x K K x K ( K X K YK K ). S , AGKK AG k K G K K G . T f K YK q f K X K K G K . T, K, x x X k. L x x X k X X k X . : ▷ X Y k k X Y ; ▷ G x i k x i X G x i (i ) . F i : G x i G x i T x x x x . A T 1.4 : G x G x , ∅
F i G x i X Z Z (P 2.6): G x i G x i G x i
S G x , G x G x , G x . 3) F 2): x X y y G x. S G y y . I y y , (2) f G y G y , . □ SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
92
3.2. Comparison o minima 3.2.1. Saemens. — L 1.4–1.5 T 1.9: heorem 3.3. — Wih he noaion inroduced above, le u X be a plurisubharmonic uncion which is invarian under he acion o a maximal compac subgroup o G. For every poin x X , ux ′ ′ ux ′ ′ x G x
x x
Corollary 3.4. — Le u X be a plurisubharmonic uncion which is invarian under he acion o a maximal compac subgroup o G. Ten, 1) a poin x is u-minimal on -bres i and only i i is u-minimal on G-orbis; 2) X u X G u; 3) i u is moreover coninuous, he se o u-minimal poins on -bres X u is closed. Proo o he Corollary. — C u u G. S 3) P 2.402). □ I T 3.3 : heorem 3.5. — Wih he noaion previously inroduced, or every poin x X here exiss a poin x ha belongs o he unique closed orbi conained in G x and such ha ux ux. L T 3.3. Proo o Teorem 3.3. — F x X ,
y x
uy uy y G x
I q. L x x ′ X x ′ x. A T 3.5 x ′, x ′ q G x ′ ux ′ ux ′. B , x ′ x ′ x
G x ′ q G x. T, ux ′ ux ′
uy uy uy
y G x ′
y G x
y G x
q u. S x ′ , uy uy y x
T 3.3.
y G x
T T 3.5.
MÉMOIRES DE LA SMF 152
□
3. KEMPFNESS HEORY
93
3.2.2. Parabolic subgroups conaining desabilizing one-parameer subgroups. — D . L k k G f k X . L S X G X . T K ( [45, T 3.4]): heorem 3.6. — Le x X k be k-poin o X such ha G x S , ∅
Ten, here exiss a parabolic subgroup P PS x o G saisying he ollowing propery: or every maximal orus T P here exiss a one-parameer subgroup T Gm T such ha he limi t x exiss 9 and belongs o S.
t
3.2.3. Desabilizing one-parameer subgroups: archimedean case. — L G () U GC . T, R U U R C G U R U. M, T G R T C U T C. L X S A f G. L S X G Z . Lemma 3.7. — Le x X C be a poin such ha G x mees S. Ten, here exiss a oneparameer subgroup Gm G saisying he ollowing properies: ▷ he limi poin t x exiss and belongs o S; t
▷ he image o U is conained in U.
T [46] X AnC G S . I Gq f X An f S.
Proo. — W KN. A T 3.6 P G : T P T Gm T T t x
t
S. L P G U . L T P P R. A T G. T T 3.6 Gm T q . □ 9. N k x Gm X , t t x k x A X , t t x x
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
94
3.2.4. Desabilizing one-parameer subgroups: non-archimedean case. — L k k ◦ . S k . L G k ◦ G . A G U Gmk ◦ G Gm U G. L X S A f k G S X G . Lemma 3.8. — Le x X k be a poin such ha G x mees S. Ten, here exiss a oneparameer subgroup Gmk ◦ G such ha he limi poin on he generic bre t x
t
exiss and belongs o S.
Proo. — B T 3.6 P G : T G T Gm T T t x
t
S. D P G G: k ◦ [34, E XXVI, Tè 3.3–C 3.5]. B q P G P. L T P T . 10 L Gm T T 3.6. S k , T q Gmk ◦ T q . □
3.2.5. End o proo o Teorem 3.5. — L x X U G u. U k : ▷ archimedean case: k C; ▷ non-archimedean case: k x k. L S q G x. A L 3.73.8 Gm G : ▷ x t x S; t
▷ U U.
10. B [34, E XII, Tè 1.7] ( ) q , S N s S s G S S s s s s. I Q H H [10, C 11.3]: , Q q H . O , [34, E XIX, C 2.6]. T P () S k ◦ : k P .
MÉMOIRES DE LA SMF 152
3. KEMPFNESS HEORY
95
L ux ux. T t t x k x Ak X x x . T t ux u x Ak t ut x
( u ◦ x ) U. B M P, u x t u x ux t
A P 2.28 v x R
v x t u x t
q . I , v x u x t ux t
v x . I , ux v x v x ux
T 3.5.
□
3.3. Analytic topology o the quotient 3.3.1. Saemen. — I 3) T 1.6: Proposition 3.9. — Le F X be a closed G-sable subse o X . Ten is projecion F is closed in Y . C C 3.2: Corollary 3.10. — Le X ′ be a G-sable closed subscheme o X and le Y ′ be is caegorical quoien by G. Te induced morphism o k-analyic spaces Y ′ Y is a homeomorphism ono a closed subse o Y . T P 3.9. 3.3.2. Minimal poins on afne cones. — T P 3.9 f . D . L Ad B Bd A d
d
() k k A , B (i.e. k ). L X S A Y S B . L ϕ A B D k, k d , Bd Ad D
T ϕ k f X Y . L f X Y k f . SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
96
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
Deinition 3.11. — L u X R . 1) A x X u-minimal on f -bre x ′ f x ′ f x ux ′ ux. T u f X f u.
2) L h A k X X A. T u X R -homogeneous z A k X , u hz z u z , A k X .
Proposition 3.12. — Wih he noaion inroduced above, le u X R be a coninuous, -homogeneous and opologically proper uncion. I X f u is closed in X , hen he resricion o f o X f u, is opologically proper.
f X f u Y
Proo o Proposiion 3.12. — T , k R . 11 C b bn B b , Y f An S kt tn kt tn k kt tn t . f f X f u X . A , f X . T q x i i N X ux i i . O f x i i N An ux i , i N. S k , i N i k i ux i . D q X xi xi i B u xi f . M x i ’ x ux . B q 12 , q x i x . B : ▷ x u f ; ▷ u x . 11. A K k K K R . T : . O k R . A ux i k . 12. I ; q [55].
MÉMOIRES DE LA SMF 152
3. KEMPFNESS HEORY
97
T . I f X An f fn f D ( ϕ D). T, i N n, f x i
f x i f x i i ux i
T f x i , f x i i . B ux i i ,
f x i
i n
i n
f x i ux i
f x . S x u f , S A X . x . □ T u u x u 3.3.3. Reducing o he case o he afne spaces. — G P 3.9 1.41.5. O X f Ank . L X S A X S A kf ( ) k G i X X Gq . F Y q X G X Y q . T k X
i
Y
X
j
Y
, j q. C 3.2 f j Y Y . I , F X , F j ◦ iF
S P 3.9 k X . I F G X , iF G X iF Y . T F j ◦ iF Y . O f Gq i X Ank . L X Ank S kt tn G. S G X , G k A kt tn . I , G AG AG A k . 3.3.4. Using Kemp-Ness heory. — T P 3.9 k: k C k G k ◦ G.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
98
L U u X R , , , U ( P 2.34). P 3.12 u u X u . S u , , , C 3.4, u u G, . N P 3.12 X u Y
. A u , . T X u Y , X u . O : G F X , (3.1) F X u F
X u Y , . L (3.1). C. O x F u x ′ F x x ′. S F G , G x x. L x ′ G x u G: u . S u G , x ′ u ; x x ′ x, (3.1). □ 3.4. Continuity o minima on the quotient. — L X f k k G. L Y q X G X Y q . L u X G. C uncion o u-minima on -bres u Y y Y uy ux x y
Proposition 3.13. — Te map u Y is upper semi-coninuous. I he uncion u is coninuous and opologically proper, hen: 1) he resricion o o X u X G u is opologically proper and surjecive ono Y ; 2) he uncion u is coninuous on Y . Proo. — u, V y Y uy . T 3.3 , x X , u x
MÉMOIRES DE LA SMF 152
x ′ x
ux ′ uG x ′ ux ′ x G x
3. KEMPFNESS HEORY
99
I :
V y Y uy x X u x x X uG x
T uG X , x x ′ G x ux ′ ( P 2.40). T q U V G X . B C 1.7 (4), V U Y . S u . 1) T X u Y u. I X u Y . L K Y . T u , K: uy y K
T K x X u x , f x X u x X u
. B u u X u, x X u u x x X u ux
T X u u . 2) T X u X , X u Y ( ). T q u
X u
u
u .
X u
□
3.5. Comparison with the result o Kemp-Ness 3.5.1. Special plurisubharmonic uncions. — I . W q T 1.9 KN , . L X . Deinition 3.14. — A u X special plurisubharmonic D X , D z C z , u ◦ .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
100
Proposition 3.15. — Special plurisubhamornic uncions enjoy he ollowing properies: i is a posiive real number and u is a special plurisubharmonic uncion u, u is special plurisubharmonic; i u v are special plurisubharmonic, hen u v is special plurisubharmonic; i X is a conneced analyic curve and f is a non-consan holomorphic uncion hen f is a special (pluri)subharmonic uncion; i f X ′ X is a holomorphic map wih discree bres and u is a special plurisubharmonic uncion on X , hen f u is special plurisubharmonic on X ′; srongly plurisubharmonic uncions are special plurisubharmonic. Example 3.16 1) T 4) : p ℓp , p ∥x ∥ℓp x p x n p
Cn . I p , ( n ) Kä OPn . { } 2) T ℓ ∥x ∥ℓ x x n . L G f X . heorem 3.17. — Le u X C be a special plurisubharmonic uncion invarian under he acion o a maximal compac subgroup U o G. Le x X C be a poin which is u-minimal on is G-orbi. Ten, 1) he orbi G x is closed; 2) le G x be he sabilizer o x; he ollowing inclusion is an equaliy: kд k U д G x C д GC д x X G u
I , G U. Corollary 3.18. — Le u X C be a coninuous opologically proper, special plurisubharmonic uncion, invarian under he acion o a maximal compac subgroup U o G. Ten, he coninuous map induced by , X u U Y
is a homeomorphism.
Proo. — 1) B x S q G x. A L 3.7 Gm G : ▷ x t x S; t
▷ U U.
MÉMOIRES DE LA SMF 152
3. KEMPFNESS HEORY
101
L ux ux. T t t x x Ak X x . C ux t u x C u x t ut x
T u x () U. A M P, u x ux t
P 2.28 v x R
v x t u x t
q . A u x , I , v x I . S v x u x t ux t
v x . T ux v x v x ux x. 2) S G T . A 1) T x x . R X T x T T Tx ( Tx x) x , x T X
t t x
. T u x t ut x T C U. I T C U Rn ( n T ) : n T C U C U Rn z zn z zn
S u x U, ( ) v Rn R u x . M, u x , v Rn . T x u v Rn . : , Rn , v t t . L G. L д GC д x u G. B C’ k U t T C д kt T G T C U T . S u U, uд x ukt x ut x SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
102
t x u G. B k ′ U T C t ′ Tx C t k ′t ′. T д kt kk ′t ′ kд k U д G x C .
□
4. Metric on GI quotients 4.1. Extended metrics 4.1.1. Deniion. — L X k L . C L X , VL SX S OX L F k S S VL x s S x X S s S x L. C k X VL X VL.
Deinition 4.1. — A ∥∥L VL R exended meric on L K k, ∥ ∥L
∥∥L K VL K VL R L: K x X K s x L ∥s ∥L x ∥x s∥L K K x L. A VL . Remark 4.2. — L ∥∥L L. F U X ∥s ∥L U R , x ∥s ∥L x. O , , U X s U L , ∥s ∥LU U R x U : ▷ ∥s ∥LU x sx ; ▷ ∥s ∥LU x ∥s ∥L x k; ▷ ∥s ∥LU V ∥s ∥LV V U . T ∥s ∥LU L. I , . I , .
MÉMOIRES DE LA SMF 152
4. MERIC ON GI UOIENS
103
4.1.2. Consrucions. — U (, …) . F . L ∥∥L L, K k, x X K K X s x L. F ϕ x L s x L, ∥ϕ ∥L K x
t x L
ϕt ∥t ∥L K x
∥s n ∥L n K x ∥s ∥L K xn
T ∥ϕ ∥L K x x ϕ VL : L . A L n n ∥∥L . L K k. I ∥∥L L ∥∥L ◦ V L K k VLK R
L K L X K X k K.
4.1.3. Exended meric associaed o inegral models. — S k X . L X k ◦ X , , k ◦ k X ≃ X k ◦ k. L L X L X ≃ L. T . D ∥∥ L . L K k x X K K X . T K ◦ K x K ◦ x S K ◦ X. T K ◦ x L K ◦ : s x L. E s x L ≃ x L K ◦ K s s q K. S: ∥s ∥ L K x K
T ∥s ∥ L K x x s VL ∥∥ L VL R
L. T : ∥∥ L L . I K ∥∥L ◦ K k LK ◦ L XK ◦ X k ◦ K ◦ . S k ( k ◦ ) L . T S X L d VL SX S OX L X d
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
104
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
, S X OX . F x X VL X u Lx
f X L
f x
F f fn k ◦ X L, u Lx fi x i n
Proposition 4.3. — Suppose L generaed by is global secions and L very ample. Wih he noaions inroduced above, ∥∥ L u L ◦ I ∥∥ L VL , VL . Proo. — L K K ◦ . L x K X x q K ◦ X x. S L , f X L x f K ◦ x L. C s x L s x f . F K s s : ∥s ∥ L K x K . T, f x s K f x s K ∥s ∥ L K x K K F f X L,
f x s K f x s K ∥s ∥ L K x K K
f x s k ◦ . T .
□
Corollary 4.4. — I L is ample, hen he coninuous map ∥∥ L VL is plurisubharmonic. 4.2. Extended metric on the quotient 4.2.1. Deniion o he exended meric. — L X k k G G L. T k G X L d G A X L d AG d
d
. D X . T AG A G k X Y P AG MÉMOIRES DE LA SMF 152
4. MERIC ON GI UOIENS
105
Y q X G. S AG , k Y : D M D Y ϕ D M D L D X q G. T ϕ D k VM D D VL D X
L ∥∥L L t VM D ∥t ∥M D
∥s ∥L D
D s t
s VL D . X Proposition 4.5. — Wih he noaion inroduced here above, he uncion ∥∥M D is an exended meric on M D . Proo. — L K k . L y Y K K Y t y M D y. S Y K YK ∥∥L , ∥t ∥M D K y
x X K
∥ t ∥L D K x
x y
I ∥∥M D , ∥∥M D . U M D , M D . I f s Y M D y Y , ∥t ∥M D y
T t Y M D M D ϕ D G t X L D G L D X X . F y Y , ∥t ∥M D y ∥ t ∥L D x x X
X □ ∥∥L . heorem 4.6. — Suppose ha: 1) he exended meric ∥∥L is invarian under a maximal compac subgroup o G; 2) he dual exended meric ∥∥L VL R is a plurisubharmonic uncion.
Ten he exended meric ∥∥M D is coninuous.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
106
4.2.2. Passing o he afne cones. — I . T L MD . S D LD MD . C k : X L d D AGD X M Dd X L d D G AD d
d
d
T k X Y AD AGD . T AGD AD k, S AD Y S AG X D
G ( [63, T 3]). Y q X T : VLD X
VLD
D MD
VM D
L D
X
Y
L D M D . T L D M D , VLD VM D . T ∥∥L D ∥∥M D u L D u M D Y . B ∥∥M D , y Y , X (4.1)
u M D y
u L D x u L D y
x y
( ). Proo o Teorem 4.6. — T u L D ∥∥L D : , , G. A P 3.13 u M D , □ ∥∥M D . 4.3. Compatibility with entire models 4.3.1. Noaion and saemens. — S k ( k ◦ ). L G k ◦ k ◦ X q G L. H S’ k ◦ . Deinition 4.7. — A A japanese K ′ K FA A K ′ A (i.e. A). A A universally japanese A .
MÉMOIRES DE LA SMF 152
4. MERIC ON GI UOIENS
107
F , k k Qp k Ft F [37, C 7.7.4]. T S [63, T 2] : k ◦ G AG X Ld G A X Ld d
d
. D X , Y q X Y . F D MD Y LD ϕ D MD LD X
Gq .
D k k ◦ ( X k ◦ k X ). L ∥∥ L L L. Deinition 4.8. — W , Ω k . A x XΩ : 1) minimal s x L д GΩ, ∥s ∥ L Ω x ∥д s ∥ L Ω д x
T s. x 2) residually semi-sable 13 x XΩ Ω G k ◦ Ω. X k ◦ Ω Ω
L x X Ω x. T x (. ) Ω x Ω XΩ (. .) heorem 4.9. — Suppose ha k ◦ is universally japanese. Wih he noaions inroduced above, or every semi-sable poin x X he ollowing are equivalen: 1) x is minimal; 2) x is residually semi-sable. Corollary 4.10. — Under he hypoheses o Teorem 4.9, le Ω be an analyic exension o k which is algebraically closed and non-rivially valued. Le x X Ω be a semi-sable poin. Ten, here exiss a semi-sable minimal poin x X Ω lying in he closure o he orbi o x and whose orbi is closed (in X ). I k Qp , B [20, P 1]. W B B . 13. S X , x Ω◦ x S Ω◦ X. T reducion o x , x, x Ω◦ .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
108
T . A q, M D : 1) ∥∥ MD MD ; 2) ∥∥M D ( 4.2.1).
heorem 4.11. — Suppose ha k ◦ is universally japanese. Wih he noaion inroduced above, he merics ∥∥M D and ∥∥ MD coincide. In paricular, or every analyic exension Ω o k which is algebraically closed and non rivially valued, ∥t ∥ MD Ω y ∥ t ∥ LD Ω x x y
where he supremum is ranging on he semi-sable Ω-poins o X . 4.3.2. Some more noaions. — S D LD MD . B 4.2.2. A (4.1), y Y , u M D y u L D y
u L D x
x y
y Y C u LD , u MD x X f x u M y дy u LD x
S
D
f X LD
LD
д Y MD
MD , P 4.3, ∥∥ LD u LD ◦ L D
∥∥ MD u MD ◦ M D
T Y MD ≃ X L G Y MD X LD . , T, x X (4.1) u MD x u LD x
be a poin ha does no Lemma 4.12. — Wih he noaions inroduced above, le x X , belong o he analyicaion o verex OX o he afne cone X S OX S X OX X X L d D X .
d
Le x be he associaed poin o Te ollowing are equivalen: 1) he poin x is residually semi-sable; x. 2) u LD x u MD
Proo. — U x u LD x . L Ω x x S Ω◦ X x . 1) 2). S MD G f X LD x f Ω◦ x LD . I , f x Ω◦ . T u MD x u LD x MÉMOIRES DE LA SMF 152
4. MERIC ON GI UOIENS
109
2) 1). T q u MD x G . I f X LD f x Ω◦ , Ω x x . □ Proo o Teorem 4.11. — S ∥∥ L, ∥∥ MD ∥∥M D L MD , LD MD . T q ∥∥M D ∥∥ MD q q u MD u M D . F y Y , q (4.1) u MD y u M D y
u LD x
x y
I q. L y Y . S , x y. u LD X A T 4.9 x x X . L 4.122) u LD x u MD x u MD y I ,
u MD y
u LD x ′
x ′ y
□
Proo o Teorem 4.9. — 1) 2) q (4.1) L 4.122). f k ◦ X 2) . D X LD , , k ◦ AD X Ld D d
U x u LD x . T q x x X k k ◦ X OX S X OX X. A x . T A x K Xk ◦ K. HM x , Ω K Gm Ω G k ◦ Ω
x : , OX S X OX , f X x OX k ◦ Ω t t
A [34, E XI, Tè 4.1] k ◦ k ◦ G k ◦ . S Ω◦ , “H’ L” [34, E XI, C 1.11] T G k ◦ Ω◦ SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
110
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
T ( ). T, Ω , T Gm Ω◦ . T Ω Gm Ω G Ω U ◦ G Ω Ω G k ◦ Ω◦ . C ϕ x Gm Ω R ϕ x t u LD t x
T ϕ x U. D x R R : t Gm Ω, x t ϕ x t
T x , x u LD G , : x u LD x S u LD x x . f x , x. T Gm Ω◦ Ω◦ E X LD Ω◦ . T E , E Em
, m Z, Em f E t f t m f . F m Z m Z
um x f x f Em
T , t Gm Ω, { } ϕ x t u LD t x t m um x m Z
t , { } x m um x m Z um x ,
B u LD x m, um x . F, m , um x x. S : ▷ m m um x m ; ▷ m m um x um x ; ▷ m m um x um xm um xm . T x ] { u x } [ m m m T T 4.9 T 1.17. □
MÉMOIRES DE LA SMF 152
4. MERIC ON GI UOIENS
111
Proo o Corollary 4.10. — U , k Ω k . M, x X . C Z Z G x X, k ◦ Z S k ◦ . T Z G. I, x
G G k ◦ X X
x S Ω◦ X x G k ◦ X X G X. T X Z Z k ◦ .
Claim. — Te srucural morphism X Z S k ◦ is surjecive.
k x ( Proo o he claim. — x X ). S u LD x OX X , u LD y G x ( a priori k). T y X y D 4.8, , T 4.9, . I , y S y◦ X X Z,
X Z
X
S y◦
S k ◦
y
I X Z S k ◦ .
□
S , ( k ). T ( T 4.9) . □
T [38, 17.6.2 18.5.11 (’)] , , : Lemma 4.13. — Le k be a complee non-archimedean eld, which is non-rivially valued and algebraically closed. Le S be a a scheme o nie ype over k ◦ . I he srucural morphism S S k ◦ is surjecive, hen here exiss a secion s S k ◦ S o .
Proo. — I f S f, S S A A k ◦ . C k A A k ◦ k. S A , A A. F f A : ∥ f ∥ A f A k T S S k ◦ ∥∥ A A. T ∥∥ A A. L A A ∥∥ A. SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
112
CHAPER 3. KEMPFNESS HEORY IN NONARCHIMEDEAN GEOMERY
L S S S . T specrum ( [5, §1.2]) B k A s S f s ∥ f ∥ A f A MA
, [5, T 1.2.1], MA S A f . M, B k A Sk B ( [57, 1.2.4]): k , k MA □ MA. I , .
MÉMOIRES DE LA SMF 152
CHAPER 4 HEIGHS ON GI QUOIENS: FURHER RESULS
I GI q, F F ( , q C 1), C 1. T . S 1 : , C 3 F F (T 1.5) . I S 2 q. F : , S 4 . S, F F, GI q. W . I S 3 GI q . F q B, G Z. H, B. I S 4 C C 1 ( T 2.1). T ( ). I , ( SL ).
114
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
1. Statement o the main results 1.1. Notation. — L K oK . L X oK oK 1 G. S X q G L. A S [63, T 2] oK G, AG X Ld G A X Ld d d . D X , i.e. x X d G s Ld x. T AG A G oK ,
X Y P AG
Y q X G [63, T 4]. S AG , oK Y : D MD Y , ϕ D MD LD X
q G. “” , K C L X C ∥∥ L . S : ▷ S: Kä ∥∥ L ( ); q U X C s U L ∥s ∥ L ; ▷ I: ∥∥ L G C. S ∥∥ L K C . D L . L K C . D MD : y Y C t y MD ∥t ∥ MD y ∥ t ∥ LD x x y
heorem 1.1 (c. T 1.13 C 3). — Under he assumpions made on he meric ∥∥ L (semi-posiiviy and invariance under he acion o a maximal compac subgroup) he meric ∥∥ MD is coninuous.
T ∥∥ MD K C .
1. L S . A S G reducive ( S -reducive group) : 1) G f, S , 2) s S Ω S ( Ω ) G s G S s Ω.
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
115
Deinition 1.2. — W , M D . C h M YQ R , Q YQ, h M Q h M D Q D D. T h M heigh on he quoien wih respec o X, L and G. 1.2. Instability measure. — L v VK K. I v ∥∥ Lv L.
Deinition 1.3. — L x Cv X. T (v-adic) insabiliy measure v x
д GCv
x L
∥д s ∥ Lv д x ∥s ∥ Lv x
. T s. s T x minimal v ( ∥∥ Lv G) , v x . Proposition 1.4. — Le x be a Cv -poin o X. Ten, 1) he insabiliy measure v x akes he value i and only i he poin x is no semisable; 2) i v is a non-archimedean place over a prime number p, he insabiliy measure v x akes he value i and only i he poin x is residually semi-sable, ha is, he reducion 2 x o x is a semi-sable F p -poin o X oK F p under he acion o G oK F p . T q T 1.9 T 4.9 C 3. 1.3. Statement and proo o the Fundamental Formula heorem 1.5 (F F). — Le P X K be a semi-sable K-poin. Ten he insabiliy measures v P are almos all zero and ∑ h L P v P h M P K Q v V K
Proo. — L P . T,
(1.1)
X K
K X t P MD
∑ K Qh MD P ∥t ∥ MD v P ∑
v VK
v VK
P ′ P
∥ t ∥ LD v P ′
2. S X , x ov X, ov Cv . p F p x X reducion x .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
116
q ∥∥ MD T 1.17 C 3 . A T 1.16 C 3: ∑ ∥ t ∥ LD v д P K Qh MD P д GCv
v VK
∑
v VK
д GCv
D
∑
v VK
∑
∥ t ∥ LD v д P ∥ t ∥ LD v P
∥ t ∥ LD v P
v P K Qh L P v VK
v P ( t G , д t t д GCv ). T F F. □ 1.4. Te case o a projective space. — L F oK . S oK G F , K C, ∥∥ F U G C. T oK G X P F q L O. F K C O X C FS ∥∥ O ∥∥ F . B , ∥∥ O G C . L L 1.1. L v K. L x F oK Cv x Cv X. B , v x
д GCv
∥д x ∥ Fv , ∥x ∥ Fv
∥∥ Fv F oK Cv ( ∥∥ Fv ). I F F : Corollary 1.6. — Le v be a non-zero vecor in F oK K and le P v be he associaed K-poin o X. I he poin P is semi-sable, hen: ∑ ∥д x ∥ Fv h M P h OF v д GCv ∥x ∥ Fv v VK ∑ ∥д x ∥ Fv v VK
д GCv
I B [20, P 5].
MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
117
M . L K C K. A P F C L U
G C P F C . F x F C, x , a L U , ⟨a x x⟩ , i ∥x ∥ ⟨ ⟩ ∥∥ F , i () q L U F C F C . xa
Proposition 1.7. — Wih he noaions inroduced above, he poin x P F C is minimal i and only i he linear map x is idenically zero.
F P 1.2 C 3 . 1.5. Lowest height on the quotient. — S ∥∥ MD MD Y . S h X L G h M Q Q Y Q
B h X L G C F F .
Corollary 1.8. — Le P X K be a semi-sable K-poin. Ten he insabiliy measures v P are almos all zero and ∑ h L P v P h X L G K Q v V K
F q. 1.6. Te lower bound o Bost, Gasbarri and Zhang. — L N e e N . C oK
G GLeoK oK oK GLe N oK S SLeoK oK oK SLe N oK
K C U Ue Ue N G C
SU SUe SUe N S C
L F oK G GL F , oK , : K C ∥∥ F U . B 1.4.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
118
L E E EN N oK Ei ei i N . F E F “” E ( S 3.1 ). T F E , E GE GL E oK oK GL EN GL FE
. C:
SE SL E oK oK SL EN XE P FE L E OFE FS F E YE q XE SE LE T homogeneous o weigh a a a N ZN , oK T t t N Gm T , t E t N EN t a t Na N F
heorem 1.9 (c. T 3.8). — Wih he noaions inroduced above, i he represenaion is homogeneous o weigh a a a N ZN and he subse o semi-sable poins X is no empy, hen: 1) here exiss an isomorphism E YE Y; 2) or every D divisible enough here exiss a canonical isomorphism o hermiian line bundles, ha is an isomeric isomorphism o line bundles, E M D E E M D
N ⊗ i
f E Ei ai D ei
where f E YE S oK is he srucural morphism; N ∑ 3) h XE LESE h X LS ai Ei . i
Corollary 1.10. — Wih he noaion o Teorem 3.8, or every K-poin P o XE which is semi-sable under he acion o SE: h L P E
N ∑ i
ai Ei h X LS
F N G [32, T 1] B [12, P 2.1] Z [75, P 4.2]. 1.7. An explicit lower bound. — I , q. L N E E EN MÉMOIRES DE LA SMF 152
1. SAEMEN OF HE MAIN RESULS
119
N oK . C oK
G GL E oK oK GL EN S SL E oK oK SL EN
K C , U U∥∥ E U∥∥ EN G C
SU SU∥∥ E SU∥∥ EN S C
L F oK G GL F , , K C ∥∥ F U . C S F. B 1.4. F n n n ∑ i ℓn n n i
T ℓn n , S’ , ℓn n n .
heorem 1.11 (c. T 4.1). — Wih he noaions inroduced above, le N ] ⊗ ϕ E Ei ai oK Eibi F i
be a G-equivarian and generically surjecive homomorphism o hermiian vecor bundles. Ten, N ∑ ∑ h P F OFS bi Ei bi ℓ Ei i Ei
i
wih equaliy i b b N .
A, : Conjecture 1.12. — Under he same hypoheses o Teorem 1.11,
N ∑ bi Ei h P F OFS i
T T 1.11 oK . T [22] [16].
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
120
2. Examples o height on the quotient 2.1. Endomorphisms o a vector space 2.1.1. Semi-sable endomorphisms. — L k E k () n. C k GLE f k X EE SA A Sk EE . F ϕ E E Pϕ T , Pϕ T T E ϕ T n ϕT n n n ϕ
T f ϕ n ϕ f ϕ, i.e. A, SLE. Proposition 2.1 ( [49, P 2]). — Te afne space Ank ogeher wih he map EE Ank ϕ ϕ n ϕ
is he caegorical quoien o X by SLE. In paricular, he invarians n generae he k-algebra o invarians ASLE . Proposition 2.2 ( [49, P 4]). — Le ϕ E E be a linear map. Ten:
1) he orbi o ϕ is closed i and only i ϕ is semi-simple i.e. i can be diagonalized; 2) he closure G ϕ o he orbi o ϕ conains he orbi o he semi-simple par ϕ o ϕ.
Corollary 2.3. — For every non-zero endomorphism ϕ E E he associaed k-poin ϕ PEE is semi-sable i and only i ϕ is no nilpoen. 2.1.2. Arihmeic siuaion. — L K oK . L E oK . C S SL E E E. E oK E E ( § 3 9). T ∥∥ E E SU∥∥ E G C. B 1.4 ( F E E G S). heorem 2.4. — Wih he noaions inroduced above, le ϕ be an endomorphism o he Kvecor space E oK K. Suppose ha he corresponding K-poin ϕ o PE E is semi-sable ha is, he endomorphism ϕ is no nilpoen. Ten, Ω Qh M ϕ is equal o ∑ ∑ v n v n v VΩ .
ΩC
where n are he eigenvalues o ϕ couned wih mulipliciies and Ω is a number eld conaining hem.
MÉMOIRES DE LA SMF 152
2. EXAMPLES OF HEIGH ON HE UOIEN
121
T q Y PE E SL E Sn ( , q Pon K P n oK ). C “” A h Pon , i.e. , K Ω K Ω n , ∑ ∑ v n v n Ω Q v V Ω Q ΩC Ω
.
T, h M h Y q Pon Y Sn . K T T 2.4.
2.1.3. Reducion o local saemens. — L v K E Cv n. L e en E q E ∥∥E x v x n v ∥x e x n en ∥E x v x n v
v v
Eq Cv EE ∥∥ EE : ∥ϕ ∥ EE
∥ϕx∥E ∥x ∥E x , ∥ϕe ∥E ∥ϕen ∥E
v v
I ∥∥E o E o e o en E ( o Cv ). T ∥∥ EE o EE EE. I ∥ϕ ∥E ϕ ◦ ϕ ϕ ϕ ∥∥E . Proposition 2.5. — Wih he noaion inroduced above, or every endomorphism ϕ o E,
д SLECv
∥дϕд ∥ EE
v n v v n v
v v
where n are he eigenvalues o ϕ (couned wih mulipliciies). Proo o Teorem 2.4. — I f F F C 1.6 P 2.5. □
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
122
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
I P 2.5, f ( e en ),
.
n
n
2.1.4. Compuing minimal endomorphisms. — I ∥ϕ ∥ EE ∥дϕд ∥ EE д SLECv
Proposition 2.6. — Le n Cv . Wih he noaions inroduced above, he endomorphism ϕ n is minimal. Proo o Proposiion 2.6: he non-archimedean case. — L v . P 1.42) f ϕ ϕ F v PEE o F p . L n Cv . U ϕ n v n v
T ϕ F p PEE ϕ n F p E o F p F p e F p en
, i n, i F p i . T ϕ , . T, P 1.43), ϕ , . □ Proo o Proposiion 2.6: he archimedean case. — L suE L L SU∥∥E . A X C suE : ϕ A suE ϕ A
⟨A ϕ ϕ⟩ EE , i ∥ϕ ∥ EE
A ϕ Aϕ ϕA L , ⟨ ⟩ EE ∥∥ EE i q . A P 1.7, ϕ ϕ A A suE. T q : ⟨Aϕ ϕ⟩ EE ⟨ϕA ϕ⟩ EE
A EE
Lemma 2.7. — Wih he noaion inroduced above, or every endomorphism ϕ o E he ollowing condiions are equivalen:
MÉMOIRES DE LA SMF 152
2. EXAMPLES OF HEIGH ON HE UOIEN
123
1) ⟨Aϕ ϕ⟩ EE ⟨ϕA ϕ⟩ EE or all A EE; 2) ϕ ϕ ϕϕ , where ϕ denoes he adjon endomorphism o ϕ wih respec o he norm ∥∥ EE ; 3) Te endomorphism ϕ is diagonalisable on a orhonormal basis. Proo o Lemma 2.7. — T q 2) 3) . T q 1) 2) . F i j n Ai j E Ai j ek ik e j k n ( ik K’ ). W ϕ ni j ϕ i j Ai j . W , i j n, n n ∑ ∑ ϕ jk Aik ϕAi j ϕ ki Ak j Ai j ϕ k
k
T Ai j EE , i j n, ⟨Ai j ϕ ϕ⟩
n ∑
k
O , , ϕ ϕϕ
n ∑
i j
⟨ϕAi j ϕ⟩
ϕ jk ϕ ik n
i j ϕ ji Ai j .
ϕ ki ϕ k j
k
T
ϕ ϕ
⟨Ai j ϕ ϕ⟩Ai j
n ∑
n ∑
i j
⟨ϕAi j ϕ⟩Ai j
I q.
□
T L : n □ ϕ n . 2.1.5. A varian. — L . ∥∥ EE EE : ∥ϕ ∥ x ,
I SU∥∥E .
I
∥ϕx∥E ∥x ∥E
Proposition 2.8. — Wih he noaion inroduced above, ∥дϕд ∥ n д SLEC
where n C are he eigenvalues o ϕ couned wih mulipliciies
Proo. — F i n vi i : д SLE C i n, дϕд д vi i ∥д vi ∥E E
I , д SLE C,
∥дϕд ∥ n
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
124
д SLEC
∥дϕд ∥ n
S n SLE ϕ, ∥дϕд ∥ n n
д SLEC
.
□
T , P 2.5. 2.2. Te lowest height on the orbit is not the height on the quotient 2.2.1. Te quesion. — L S 1.1 P K X. S G: (2.1)
h L д P
д G Q
P ′ P
h L P ′
Q X P. S v P v VK , F F h L P h M P, : (2.2) h L P ′ h M P ′ P P
C q: (2.3)
h L д P h M P
д G Q
Qestion. — W q (2.1), (2.2) (2.3) ? T G GLnZ F : 1) I ( n ) q (2.2) (2.3) F 3 . 2) I ( n ) F ( , F Zr Rr ) f. T Gm , , Gm GL F . 3) I , GLnZ F EZn . E F ( § 3 9) Rn . I q (2.2) (2.3) q Q P F ( P F ). N, q (2.1) q . 3. A E K E E.
MÉMOIRES DE LA SMF 152
2. EXAMPLES OF HEIGH ON HE UOIEN
125
2.2.2. Linear acion on a non-rivial hermiian vecor bundle. — C Gm AZ t x x t x tx
S, t Gm S x x A S. C G Gm X PZ G L O. F k, X k P k
L Y q X ( S Z) X Y q . F r r r ∥∥r R ∥x x ∥r r x r x
E L FS ∥∥r , U. D Lr X h Mr q Y Lr . Proposition 2.9. — Wih he noaions inroduced above: 1) Te poin P Q is semi-sable and
h Mr r r
2) For every t Gm Q,
h Lr t t wih equaliy or t .
r r
I , q (2.2) (2.3) r r . T ( P 2.10 2.13). 2.2.3. A negaive example when he hermiian vecor bundle is rivial. — C Z E Z x x x x x x
L Gm Z
t x x x t x tx t x
C Gm X PZ O. E O FS ∥∥. Proposition 2.10. — Consider he poin P . Wih he noaions inroduced above: 1) Te poin P is semi-sable and h M P SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
126
2) For every t Gm Q,
h O t P
wih equaliy or t .
T q (2.2) (2.3) , E . Proo. — 1) T P . F p , P P P Fp
PFp . I P q Q. O , p , no : , PF . F t Gm C , t t t t T t , t t Gm C
F F F ∑ h M P v VQ
t Gm Cv
t v
2) L K t Gm K. F v , t v t v t v
v , t v t v t v
T, K, P F, K Qh O t P } ∑ { ∑ ∑ t t t t K C t K C K C
Lemma 2.11. — Le N be a posiive ineger. For every x x N R,
N {∑ i
xi
N } ∑ x i e x i e x i e x i N i i
N ∑
Proo o he Lemma. — L RN R x x N
N {∑ i
MÉMOIRES DE LA SMF 152
xi
N } ∑ x i e x i e x i e x i i i
N ∑
2. EXAMPLES OF HEIGH ON HE UOIEN
127
T . T R RN , , R R x N x x e x e x e x T . T x R, .
x N
□
L P 2.10. O N K C, N K Q, L x i t i i N . T, h O д P . □ 2.2.4. Endomorphisms. — L n E Z E Zn . L e en E. A S 2.1 G SLnZ F E E 2.1.2. F K n K, n E K K n ( ), n
n Proposition 2.12. — Le n K and suppose ha hey are no all zero. Wih he noaion inroduced above, h OF n h M n
In paricular, or all non-zero semi-simple endomorphism ϕ o K n , h OF д ϕ h M ϕ д SLn Q
T q T 2.4. T q (2.2) (2.3) , , . H, q (2.1) q . F , n ϕ E ( ), ( ) ϕ
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
128
Proposition 2.13. — Wih he noaions inroduced above: 1) Te endomorphism ϕ is semi-sable and h M ϕ
2) For every д SL Q,
wih equaliy or д .
h O д ϕ
Proo. — 1) T q T 2.4. 2) L K д SL K ( ) a c д b d a b c d K ad bc . W , ) ( ab a дϕд b ab
F v K: ∥дϕд ∥ v ab v ab v av b v av b v
O , K C,
∥дϕд ∥ ab ab a b a b
S a , . S b v v VK , ∑ ∑ K Qh O д ϕ a av v VK
K C
T P F: { ∑ } { } ∑ ∑ av av a v VK
v VK
K C
P , K Qh O д ϕ { } ∑ ∑ (2.4) a a K C
K C
Lemma 2.14. — Le N be a posiive ineger. For every x x N R, N } { ∑ x i i
N ∑ i
e x i N
T L L 2.11.
MÉMOIRES DE LA SMF 152
3. HE APPROACH OF BOS, GASBARRI AND ZHANG
129
L a , . O N K C
N K Q, L x i ai i N . A (2.4), h O д ϕ T a b , . □ 3. Te approach o Bost, Gasbarri and Zhang 3.1. wisting by principal bundles. — I B, G Z B , G. 3.1.1. Te algebraic consrucion. — L G S. L X S () G P G 4 ( Z ). B , wis o X by P q X S P () G д x p дx pд S S ′ д GS ′ x p X S ′ PS ′. C, X P : 1) P S i I S i P , i I , pi S i P . 2) G X S S i X S S i j X S S i j
x дi j x
S i j S i S j дi j q S i j G p j pi . I X P X S. T : 1) L G . T G P S X P . M , H G ( , S S ′, H S ′ GS ′) H P G P . 2) L G F S VF P P VF F . C S U S U F P MS U VF P T F P S, S G P VF P VF P . T F P F P. 4. A principal G-bundle P S () P S G P : 1) P S G P S P S ; 2) P Z : S i I S i i I pi S i P .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
130
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
3) L L G X VLP P VL X . C L P X P X P U X P U L P MS U VLP T L P G P X P VL P X P VLP .
Example 3.1. — L N e e N . C S : G GLeS S S GLe N S S SLeS S S SLe N S
L E E E N N S Ei ei i. E G P E FS E S S FS E N
i S FS Ei rame bundle Ei : S f S ′ S, FS Ei S ′ I OS ′ OSei′ f Ei
T () G P E . L F S G GLF . C G X PF L OF . D F E F P E . T: G E GLE S S GLE N S E SLE S S SLE N
X E PF E
L E OF E G E , S E , X E L E G P E , S P E , X P E L P E . 3.1.2. Te hermiian consrucion. — L . L G CG GC . D G CG G. Deinition 3.2. — A principal hermiian G-bundle P C P G C P PC G, .
C P CG C P C P
p u p pu
L X X C X C X X C. S G X CG C X . MÉMOIRES DE LA SMF 152
3. HE APPROACH OF BOS, GASBARRI AND ZHANG
131
Deinition 3.3. — L P P C P G. T wis o X by P X P X P C X P , X P X P C X P C X C P CG X P C X C PC GC
N G.
L p C P x X C x p x p X P C X C PCGC. T X C X P C
x x p
C X C X P . L P P . T G : 1) L G . T G G CG P G P CG P G P CG P G P C. L H H C H H G C H H C CG . T H P H P C H P H P P ( G P ) H P C. 2) L F F ∥∥F ( ) . S G F ∥∥F CG . C VF VF DF DF v F ∥v ∥F L VF P VF P DF P VF P . T q ∥∥F P F P DF P v F P ∥v ∥F P
T F P F P ∥∥F P F P . 3) L X G G L. S L q ∥∥L CG . C VL VL DL VL L X DL x s x X C s x L ∥s ∥L x R X C , DL VLC. M CG . L VL P VL P DL P VL P . T q ∥∥L P L P DL P x s x X P C s x L P ∥s ∥L P x
T L P L P ∥∥L P L L ∥∥L P .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
132
Example 3.4. — L N e e N . C G GLeC C C GLe N C
S SLeC C C SLe N C
CG U Ue Ue N
C S SU SUe SUe N
L E E E N N , E i Ei ∥∥Ei
Ei ∥∥Ei . S C Ei ei i. E G P E P E C E P E FC E C C FC E N
C E OE OE N
, i, FC Ei Ei OE i orhonormal rame bundle E i , i.e. Cei E i ( Cei ). L F F ∥∥F G GLF . S ∥∥F U. C G X PF L OF FS ∥∥L . D F E F E ∥∥F E F P E . T: 1) G U P E G E U E G E GLE S S GLE N
U E U∥∥E U∥∥E N
2) S SU P E S E SU E S E SLE S S SLE N
SU E SU∥∥E SU∥∥E N
3) L L ∥∥L P E L E L E ∥∥L E X E PF E L E OF E
∥∥L E FS ∥∥F E
3.2. Statement and proo o the result 3.2.1. Seup. — L K . L N e e N . C oK
G GLeoK oK oK GLe N oK
S SLeoK oK oK SLe N oK
K C U Ue Ue N G C
SU SUe SUe N S C
L F oK G GL F , oK , : K C ∥∥ F U .
MÉMOIRES DE LA SMF 152
3. HE APPROACH OF BOS, GASBARRI AND ZHANG
133
T G F G X P F G L O. F K C O X C FS , U . C X S q Y XS X S, Y P AS A X Ld SodK F d
d
L X Y q . F D MD Y LD . E S 1.1. S S G, d , oK S Ld , X Ld S X Ld
G X Ld . T X G. M G q Y , D , MD G. F K C ∥∥ MD U . 3.2.2. wising by hermiian vecor bundles. — L E E EN N oK Ei ei i N . A S 3.1.1 N oK E E EN E. G E 3.1, FE GE, SE, XE, LE F, G, S, X, L E. T:
GE GL E oK oK GL EN XE P FE
SE SL E oK oK SL EN LE OFE
T oK GE FE LE GE X G . C XE E E S , LE. D XESE q XE E D , MD E LED . Proposition 3.5 (C GI q ). — Wih he noaions inroduced above: is he wis o X by E; 1) Te se o semi-sable poins XE 2) Te quoien XESE is he wis o he quoien Y XS by E; 3) Te inverible shea MD E is he wis o MD by E. Skech o he proo. — A . Remark 3.6. — L V oK G. D VE E. T VESE VE SE VS E VS E.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
134
T : , VS E VESE q S oK . P f □ V X Ld d .
L K C . B , , G C GL FC
, , ∥∥ F U . T S 3.1.2. G E 3.4, FE C ∥∥ FE U E U ∥∥ E U ∥∥ EN T LE FS ∥∥ LE ∥∥ FE . T ∥∥ LE SU E SU ∥∥ E SU ∥∥ EN S C
L ∥∥ MD E MD S 1.1. T ∥∥ MD MD U : ∥∥ ′MD E
MD E M D E.
Proposition 3.7. — Wih he noaions inroduced above, he merics ∥∥ MD E , ∥∥ ′MD E coincide. Proo. — T i Cei Ei C i N . T . □ 3.2.3. Saemen. — K . B homogeneous o weigh a a a N ZN oK T t t N Gm T , t E t N EN t a t Na N F heorem 3.8. — Wih he noaions inroduced above, le E E EN be a N -uple o hermiian vecor bundles over oK such ha Ei ei or every i. I he represenaion is homogeneous o weigh a a a N ZN and he subse o semi-sable poins X is no empy, hen: 1) here exiss an isomorphism E YE Y; 2) or every D divisible enough here exiss an isomorphism o hermiian line bundles, ha is an isomeric isomorphism o line bundles, E M D E E M D
N ⊗ i
f E Ei ai D i ei
where f E YE S oK is he srucural morphism; N ∑ 3) h XE LESE h X LS ai Ei . i
MÉMOIRES DE LA SMF 152
3. HE APPROACH OF BOS, GASBARRI AND ZHANG
135
Corollary 3.9. — Wih he noaion o Teorem 3.8, or every K-poin P o XE which is semisable under he acion o SE, h L P E
N ∑ i
ai Ei h X LS
3.2.4. Proo o Teorem 3.8. — L . Proposition 3.10. — Le V be non-zero oK -module which is a and o nie ype. Le r G GL V be a homogeneous represenaion o weigh b b b N . I he submodule VS o S-invarian elemens o V is non-zero, hen: 1) ei divides bi or every i N ; 2) he induced represenaion r G GL VS is given by r д дN
N ∏
дi bi ei
i
or every oK -scheme T and or every д дN GT . Proo. — C r G GL VS. S S FS , r oK N GL VS r GS Gm
T r b b b N , , oK T t t N Gm T , O ,
bN r t E t N E t b t N
r t E t N E rt e t Ne N bN rt e t Ne N t b t N
S 1) 2) .
□
Corollary 3.11. — Under he hypoheses o Teorem 3.8: Te acion o G on Y is rivial; For every ineger D divisible enough he oK -group scheme G acs on he bres o MD hrough he characer N ∏ д дN дi ai D ei i
More precisely, or every oK -scheme T , every д дN GT , every poin y YT and every secion s T y MD , N ∏ д дN y s y дi ai D ei s i
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
136
Proo. — P D MD . T, O ≃ M Gq. T j D Y P Y MD j D D Y MD S X LD S SoDK F
S a a a N , SoDK F Da Da Da N
I P 3.102) V SoDK F G Y MD N ∏ д дN дi ai D ei i
A 1) 2) .
□
T 3.8 C: Proo o Teorem 3.8. — A P 3.52), q YE q Y E: G , E YE Y
S, P 3.53) P 3.7, M D E M D E. S G MD N ∏ дi ai D ei д дN i
E M D E E M D
.
N ⊗
f Ei ai D i ei
i
□
4. Lower bound o the height on the quotient 4.1. Statement. — I T 1.11. L 1.5. L N E E EN N oK . C oK
G GL E oK oK GL EN
S SL E oK oK SL EN
K C , U U∥∥ E U∥∥ EN G C
SU SU∥∥ E SU∥∥ EN S C
MÉMOIRES DE LA SMF 152
4. LOWER BOUND OF HE HEIGH ON HE UOIEN
137
L F oK G GL F , , K C ∥∥ F U . C S F 1.4.
heorem 4.1. — Le a a a N and b b b N be N -uples o inegers. Wih he noaions inroduced above, le ϕ
N ⊗ i
E Ei ai Eibi F
be a G-equivarian and generically surjecive homomorphism o hermiian vecor bundles. Ten, N ∑ ∑ Ei h P F OFS bi bi ℓ Ei i
wih equaliy i b b N .
i Ei
T ϕ Gq v v K ( , ϕ oK ). F , f T 4.1 ϕ , : heorem 4.2. — Le a a a N and b b b N be N -uples o inegers and se
F
N ⊗ i
Wih he noaions inroduced above,
E Ei ai Eibi
N ∑ bi Ei h P F OFS i
wih equaliy i b b N .
∑
i Ei
bi ℓ
Ei
T S 4 T 4.2. 4.2. ensor products o endomorphisms algebras 4.2.1. Noaion. — I T 4.2 bi i N , , N ⊗ F E Eiai i
N a a a N .
heorem 4.3. — Wih he noaion inroduced above, h P F OS B q:
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
138
Proposition 4.4. — Wih he noaion inroduced above, h P F OS
Proo. — T E Eiai ≃ E Eiai ai . A T 3.8 f K Q Ei , , i N , Ei Z Ei Zei . C E′ Ea ENa N . I E′ Za e a N e N . W Sq F ≃ E E′. C ϕ E′ ( E′) : ϕ
T ϕ P F SL E′ ( S) . I h M q Y P F S P F Y q , F F (C 1.6) h M ϕ h OF ϕ .
□
I q. I f : heorem 4.5. — Le ϕ F oK K be a non-zero vecor such ha he associaed K-poin ϕ o P F is semi-sable. Ten, ∑ ∥д ϕ ∥ Fv д SCv ∥ϕ ∥ Fv v V K
I, T 4.3 T 4.5 F F ( C 1.6) K ′ K P F K ′. T T 4.5. 4.2.2. Te case o a non-nilpoen endomorphism. — C ϕ N a i K oK K i Ei
N ⊗ i
MÉMOIRES DE LA SMF 152
E Eiai ≃ E
N ⊗ i
Eiai
4. LOWER BOUND OF HE HEIGH ON HE UOIEN
139
W ϕ . T ϕ S. A, : oK
H SL Ea ENa N
F( ). A C 2.3, ϕ H. T ϕ S , v K, (4.1)
д SCv
∥д ϕ ∥ Fv
h HCv
∥hϕh ∥ Fv
T F N N N ⊗ ⊗ ⊗ Eiai Eiai oK Eiai E i
i
i
T T 2.4 ϕ ∑ ∥hϕh ∥ Fv Ω K
q
v VK
∑
v VΩ .
h HCv
v n v
∑
ΩC
n
n ϕ ( ) Ω . S q , (4.1) , ∑ ∑ ∥д ϕ ∥ Fv ∥hϕh ∥ Fv v VK
д SCv
T 4.5 .
v VK
h HCv
4.2.3. Te case o a non-vanishing invarian linear orm. — S S f P F O F ϕ. F M T I T. T . F i N S ai ai . F i Eiai . S E Eiai , i SL Eai . T , N , N S a S a N
N N F S.
W F M T I T (c. [71, C III], [22, T 3.1, C] [2, A 1]):
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
140
heorem 4.6 (F M T I T). — Te subspace o elemens o F oK K which are invarian under he acion o S oK K is generaed, as a K-linear space, by he elemens , while ranges in S a S a N .
F N N S a S a N
F
N ⊗ i
E Eiai ≃ F
N ⊗ i
E Eiai
L T 4.5. S S ϕ, T 4.6, N N S a S a N ϕ , . B , ϕ ϕ ◦
S ϕ ◦ . T, : ∑ (4.2) д ϕ ◦ Fv
д SCv
v VK
R : 1) F v K F oK Cv , ∥ ◦ ∥ Fv ∥ ∥ Fv
2) T S ( S ). A q , д SCv , ∥д ϕ ∥ Fv д ϕ ◦ Fv
S , q (4.2) ∑ ∥д ϕ ∥ Fv v VK ′
д SCv
T 4.5 .
4.2.4. Te general case. — L . B D S f P F OD SD F
ϕ. C D V P F P FD
ϕ ϕ D
T ϕ D P FD . S FD SD F Sq , P , f S f ′ FD oK K. 5 5. L k V W k G. A Gq ϕ V W ϕ V G W G . I ϕ k V G W G [49, 181–182].
MÉMOIRES DE LA SMF 152
4. LOWER BOUND OF HE HEIGH ON HE UOIEN
141
U f ′ S f ′ P FD O
ϕ D . T ϕ D ∑ ∥д ϕ D ∥ FD v д SCv
v VK
F v K д SCv , D ∥д ϕ D ∥ FD v ∥д ϕ ∥ Fv
T 4.5.
□
4.3. Te general case 4.3.1. Noaion. — I T 4.2. A T 4.3 : heorem 4.7. — Le ϕ FoK K be a non-zero vecor such ha he associaed K-poin P x o P F is semi-sable. Ten, ∑ ∥д x ∥ Fv д SCv ∥x ∥ Fv v V K
T T 4.7.
4.3.2. Te case o a non-vanishing invarian linear orm. — S S P. I , S N ⊗ F E Ei ai Eibi i
. T P 3.101) ei Ei bi i N . T P F T 4.7 T 4.3. Deinition 4.8. — F i N . 1) F ei , i oK i Ei E Ei Ei
, ϕ E Ei v v Ei , ϕ v v ϕv v ϕv v
2) F ei , , i oK ,
i Eiei E Eiei Ei i E Eiei Ei Eiei SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
142
: ϕ E Eiei v vei Ei , ϕ v vei ∑ ϕv v ei v vei Sei
E oK E Ei Ei E Eiei Ei ( , ) ∥∥ Ei . Proposition 4.9. — Fix an ineger i N . Wih he noaions inroduced above: or ei , i is a GL Ei -equivarian isomorphism o hermiian vecor bundles; or ei , , i is GL Ei -equivarian and, or an embedding K C, x ,
∥i x∥ ei ∥x ∥
where he supremum is ranging on he elemens o Eiei C, he norm in he numeraor is he one o E Eiei Ei and he norm in he denominaor is he one o Eiei . Proo. — T i GL Ei q . L K C W Ei C
w C W ei
∥∥W ∥∥ Ei
f i
L x xw W . 1) I w ϕ W : f ϕ x x ϕx x ϕx x W W ∥ϕx ∥W ∥ϕx ∥W ∥ϕ ∥ EW ϕ x x EW W
f ( f ) . 2) S w , . F w R r rw r w ( w) x R x r x rw
W R w w x R W w . F t W w ∑ tR xR t R w w
L x xw W x xw Sw x x x w . W , t W w , f ∑ ∑ f t t R x R x x xw R w w Sw
MÉMOIRES DE LA SMF 152
4. LOWER BOUND OF HE HEIGH ON HE UOIEN
: f t EW w W
∑
R w w
t R w ∥t ∥W w
b e i
F i N i i b i E ≃ Eei bi ei , : bi
ei
i
ei ,
i
bi e i
143
□
,
Eibi E Ei bi Ei bi Eibi E Ei bi Ei bi ei
F i N oK E Ei ai bi ′ Fi E Ei ai bi
ei
oK bi e i
i i
bi e i
E Ei ai Eibi Fi′ Ei
S T N Gq oK F F′ D,
F′
F′
FN′ .
D
N ⊗ i
bi e i
Ei
E F′ D Ei . P , Gq P F P F′ D
T, P ( 5), P K P F′ D S. I x F oK K P, F F (C 1.6) P 4.9 : ∑ ∥д x ∥ Fv h M P д SCv ∥x ∥ Fv v V ∑
K
v VK
д SCv
∑ bi ∥д x∥ F′ Dv ℓei ∥x∥ F Dv i e i
S S D, P F′ D P F′
Sq. M,
OF′ ≃ OF′ D f D
f P F′ S oK .
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
CHAPER 4. HEIGHS ON GI UOIENS: FURHER RESULS
144
L Y′ q P F S ′ P F′ Y′ q . D h M′ q Y′ ( S OF′ ). A F F, ∑
v VK
д SCv
∑ ∥д x∥ F′ Dv h M′ ′ ◦ P bi Ei ∥x∥ F Dv i N
, ,
N ∑ bi ∑ bi Ei h M P h M′ ′ ◦ P ℓei i e i i
T T 4.3 h M′ , T 4.7 . 4.3.3. Te general case. — S S s P F OD
P. O 4.2.4 — , D P F P FD . T . T T 4.7, T 4.2. □
MÉMOIRES DE LA SMF 152
BIBLIOGRAPHY
[1] A. Abdesselam & J. Chipalkatti – “O W ”, J. Pure Appl. Algebra 210 (2007), . 1, . 43–61. [2] M. Atiyah, R. Bott & V. K. Patodi – “O q ”, Inven. Mah. 19 (1973), . 279–330. [3] H. Azad & J. J. Loeb – “P KN ”, Bull. London Mah. Soc. 25 (1993), . 162–168. [4] M. Baker & R. Rumely – Poenial heory and dynamics on he Berkovich projecive line, M S M, . 159, A M S, P, RI, 2010. [5] V. G. Berkovich – Specral heory and analyic geomery over non-Archimedean elds, M S M, . 33, A M S, P, RI, 1990. [6]
, “É A ”, Ins. Haues Éudes Sci. Publ. Mah. (1993), . 78, . 5–161 (1994).
[7] E. Bombieri – “O TSD ”, Aca Mah. 148 (1982), . 255–296. [8] E. Bombieri & W. Gubler – Heighs in Diophanine geomery, N M M, . 4, C U P, C, 2006. [9] A. Borel – Linear algebraic groups, ., G M, . 126, SV, N Y, 1991. [10]
, Linear algebraic groups, ., G M, . 126, SV, N Y, 1991.
[11] S. Bosch, U. Güntzer & R. Remmert – Non-Archimedean analysis, G M W [F P M S], . 261, SV, B, 1984, A . [12] J.-B. Bost – “S ”, Inven. Mah. 118 (1994), . 2, . 223–253.
BIBLIOGRAPHY
146
[13]
, “I ”, Duke 82 (1996), . 1, . 21–70.
[14]
, “P (’è D. M G. W)”, Asérisque (1996), . 237, . E. N. 795, 4, 115–161, S B, V. 1994/95.
[15]
, “G : ”, Geomeric aspecs o Dwork heory. Vol. I, II, W G GH & C. KG, B, 2004, . 371–418.
[16] J.-B. Bost & H. Chen – “C A ”, J. Mah. Pures Appl. (9) 99 (2013), . 4, . 436–488. [17] S. Boucksom, C. Favre & M. Jonsson – “S A ”, arXiv:1201.0187, 2012. [18] F. Bruhat & J. its – “G ”, Ins. Haues Éudes Sci. Publ. Mah. (1972), . 41, . 5–251. [19]
, “G . II. S . E ’ ”, Ins. Haues Éudes Sci. Publ. Mah. (1984), . 60, . 197–376.
[20] J.-F. Burnol – “Rq q”, Inerna. Mah. Res. Noices (1992), . 6, . 117–127. [21] A. Chambert-Loir & A. Ducros – “F B”, arXiv:1204.6277, 2012. [22] H. Chen – “M H ”, J. Algebraic Geom. 18 (2009), . 3, . 575–603. [23] B. Conrad – “S A ”, p-adic geomery, U. L S., . 45, A. M. S., P, RI, 2008, . 9–63. [24] B. Conrad – “R ”, N “SGA3 ” L (CIRM) 2011. A : http://math.stanford.edu/~conrad/. [25] J.-P. Demailly – “Complex Analyic and Dierenial Geomery”. [26] M. Demazure – “S ”, Bull. Soc. Mah. France 93 (1965), . 369–413. [27] F. J. Dyson – “T ”, Aca Mah. 79 (1947), . 225–240. [28] H. Esnault & E. Viehweg – “D’ ( R)”, Inven. Mah. 78 (1984), . 3, . 445–490. [29] G. Faltings – “MSä G”, Proceedings o he Inernaional Congress o Mahemaicians, Vol. 1, 2 (Zürich, 1994), Bä, B, 1995, . 648–655.
MÉMOIRES DE LA SMF 152
BIBLIOGRAPHY
147
[30] G. Faltings & G. Wüstholz – “D ”, Inven. Mah. 116 (1994), . 13, . 109–138. [31] C. Favre & M. Jonsson – Te valuaive ree, L N M, . 1853, SV, B, 2004. [32] C. Gasbarri – “H ”, Forum Mah. 12 (2000), . 2, . 135–153. [33] É. Gaudron – “P q ”, Rend. Semin. Ma. Univ. Padova 119 (2008), . 21–95. [34] P. Gille & P. Polo (.) – Schémas en groupes (SGA 3). ome III. Srucure des schémas en groupes réducis, D Mq 8 (P) [M D 8 (P)], S Mq F, P, 2011, S G A q B M 1962–64. [A G S B M 1962–64], A M. D A. G M. A, J.E. B, P. G, M. R J.P. S, R 1970 F . [35] O. Goldman & N. Iwahori – “T p ”, Aca Mah. 109 (1963), . 137–177. [36] A. Grothendieck – “R q q”, Bol. Soc. Ma. São Paulo 8 (1953), . 1–79. [37]
, “É q. IV. É . I”, Ins. Haues Éudes Sci. Publ. Mah. (1964), . 20, . 259.
[38]
, “É q. IV. É IV”, Ins. Haues Éudes Sci. Publ. Mah. (1967), . 32, . 361.
[39]
, Revêemens éales e groupe ondamenal, SV, B, 1971, S G Aq B M 1960–1961 (SGA 1), D A G. A M. R, L N M , V. 224.
[40] V. Guillemin & S. Sternberg – “C ”, Inven. Mah. 67 (1982), . 3, . 491–513. [41]
, “G q ”, Inven. Mah. 67 (1982), . 3, . 515–538.
[42]
, “C . II”, Inven. Mah. 77 (1984), . 3, . 533–546.
[43] W. J. Haboush – “R ”, Ann. o Mah. (2) 102 (1975), . 1, . 67–83. [44] E. Kani – “P ”, Téorie des nombres (Qebec, P, 1987), G, B, 1989, . 475–543.
SOCIÉÉ MAHÉMAIUE DE FRANCE 2017
BIBLIOGRAPHY
148
[45] G. Kemp – “I ”, Ann. o Mah. (2) 108 (1978), . 2, . 299– 316. [46] G. Kemp & L. Ness – “T ”, Algebraic geomery (Proc. Summer Meeing, Univ. Copenhagen, Copenhagen, 1978), L N M., . 732, S, B, 1979, . 233–243. [47] V. D. Milman – “T P. L ”, Asérisque (1988), . 157–158, . 273–301, Cq P L P Sq (P, 1987). [48] D. Mumord, J. Fogarty & F. Kirwan – Geomeric invarian heory, ., E M G (2) [R M R A (2)], . 34, SV, B, 1994. [49] D. Mumord & K. Suominen – “I ”, Algebraic geomery, Oslo 1970 (Proc. Fih Nordic Summer-School in Mah.), WN, G, 1972, . 171–222. [50] M. Nakamaye – “I D ”, J. Algebraic Geom. 8 (1999), . 1, . 135–146. [51] A. Neeman – “T q ”, Ann. o Mah. (2) 122 (1985), . 3, . 419–459. [52] J. Nicaise – “B ”, arXiv:1204.6277, 2014. [53] C. F. Osgood – “S TSRSN , ”, J. Number Teory 21 (1985), . 3, . 347–389. [54] J. Poineau – “E B Z : ”, Inven. Mah. 194 (2013), . 3, . 535–590. [55]
, “L B Aq”, Bull. Soc. Mah. France 141 (2013), . 2, . 267–297.
[56] S. Ramanan & A. Ramanathan – “S ”, ohoku Mah. J. (2) 36 (1984), . 2, . 269–291. [57] B. Rémy, A. huillier & A. Werner – “B B’ . I. R ”, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), . 3, . 461–554. [58]
, “B ”, (2011).
[59] G. Rousseau – “I ”, Algebraic suraces (Orsay, 1976–78), L N M., . 868, S, BN Y, 1981, . 263– 276. [60] R. Rumely – Capaciy heory on algebraic curves, L N M, . 1378, SV, B, 1989.
MÉMOIRES DE LA SMF 152
BIBLIOGRAPHY
[61]
149
, “O C’ ”, Duke Mah. J. 70 (1993), . 3, . 517–574.
[62] G. W. Schwarz – “ ”, , . 61, H ., 2000. [63] C. S. Seshadri – “G ”, Advances in Mah. 26 (1977), . 3, . 225–274. [64] C. Soulé – “S ”, Composiio Mah. 96 (1995), . 1, . 85–98. [65] N. Steinmetz – “E V N H”, J. reine angew. Mah. 368 (1986), . 134–141. [66] A. huillier – “T . à ’.”, P. D. T, U R 1, 2005, Tè , . +184 . [67] B. otaro – “ p H ”, Duke Mah. J. 83 (1996), . 1, . 79–104. [68] C. Viola – “O D’ ”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), . 1, . 105–135. [69] P. Vojta – “R’ ”, Inerna. Mah. Res. Noices (1996), . 3, . 109–114. [70] P. Vojta – “D’ ”, Inven. Mah. 98 (1989), . 1, . 107–113. [71] H. Weyl – Te Classical Groups. Teir Invarians and Represenaions, P U P, P, N.J., 1939. [72] C. Woodward – “M ”, Hamilonian Acions: invarians e classicaion (M. B & . D, .), . 1, L CIRM, . 2, 2010, . 55–98. [73] S. Zhang – “G R A P”, Inerna. Mah. Res. Noices (1994), . 10, . 425–433. [74]
, “P ”, J. Amer. Mah. Soc. 8 (1995), . 1, . 187–221.
[75]
, “H ”, Composiio Mah. 104 (1996), . 1, . 77–105.
SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2017
MÉMOIRES DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE Nouvelle série
2017 152. M. MACULAN – Diophanine applicaions o geomeric invarian heory 151. T. SCHOENEBERG – Semisimple Lie Algebras and heir classiicaion over p-adic Fields 150. P.G. LEFLOCH , YUE MA – The Mahemaical Validiy o he f R Theory o Modiied Graviy 2016 149. BEUZART-PLESSIS R. – La conjecure locale de Gross-Prasad pour les représenaions empérées des groupes uniaires 148. MOKHTAR-KHARROUBI M. – Compacness properies o perurbed sub-sochasic C -semigroups on L wih applicaions o discreeness and specral gaps 147. CHITOUR Y., KOKKONEN P. – Rolling o maniolds and conrollabiliy in dimension hree 146. KARALIOLIOS, N. – Global aspecs o he reducibiliy o quasiperiodic cocycles in compac Lie groups 145. V. BONNAILLIE-NOËL, M. DAUGE, N. – Ground sae energy o he magneic Laplacian on corner domains 144. P. AUSCHER, S. STAHLHUT – A priori esimaes or boundary value ellipic problems via irs order sysems & A priori esimaes or boundary value ellipic problems via irs order sysems 2015 143. R. DANCHIN, P.B. MUCHA – Criical uncional ramework and maximal regulariy in acion on sysems o incompressible lows 142. Joseph AYOUB – Mois des variéés analyiques rigides 140/141. Yong LU, Benjamin TEXIER – A Sabiliy Crierion or High-Frequency Oscillaions 2014 138/139. Takuro MOCHIZUKI – Holonomic D-Modules wih Beti Srucures 137. Paul SEIDEL – Absrac Analogues o Flux as Symplecic Invarians 136. Johannes SJÖSTRAND – Weyl law or semi-classical resonances wih randomly perurbed poenials 2013 135. L. PRELLI – Microlocalizaion o subanalyic sheaves 134. P. BERGER – Persisence o Sraiicaion o Normally Expanded Laminaions 133. L. DESIDERI – Problème de Plaeau, équaions uchsiennes e problème de Riemann Hilber 132. X. BRESSAUD, N. FOURNIER – One Dimensional General Fores Fire Processes 2012 130-131. Y. NAKKAJIMA – Weigh ilraion and slope ilraion on he rigid cohomology o a variey in characerisic p 129. W. A STEINMETZ-ZIKESCH – Algèbres de Lie de dimension ininie e héorie de la descene 128. D. DOLGOPYAT – Repulsion rom resonances 2011 127. B. LE STUM – The overconvergen sie 125126. J. BERTIN, M. ROMAGNY – Champs de Hurwiz 124. G. HENNIART, B. LEMAIRE – Changemen de base e inducion auomorphe pour GLn en caracérisique non nulle 2010 123. C.-H. HSIAO – Projecions in several complex variables 122. H. DE THÉLIN, G. VIGNY – Enropy o meromorphic maps and dynamics o biraional maps 121. M. REES – A Fundamenal Domain or V 120. H. CHEN – Convergence des polygones de Harder-Narasimhan
2009 119. B. DEMANGE – Uncerainy principles associaed o non-degenerae quadraic orms 118. A. SIEGEL, J. M. THUSWALDNER – Topological properies o Rauzy racals 117. D. HÄFNER – Creaion o ermions by roaing charged black holes 116. P. BOYER – Faisceaux pervers des cycles évanescens des variéés de Drineld e groupes de cohomologie du modèle de Deligne-Carayol 2008 115. R. ZHAO, K. ZHU – Theory o Bergman Spaces in he Uni Ball o Cn 114. M. ENOCK – Measured quanum groupoids in acion 113. J. FASEL – Groupes de Chow orienés 112. O. BRINON – Représenaions p-adiques crisallines e de de Rham dans le cas relai 2007 111. A. DJAMENT – Fonceurs en grassmanniennes, ilraion de Krull e cohomologie des onceurs 110. S. SZABÓ – Nahm ransorm or inegrable connecions on he Riemann sphere 109. F. LESIEUR – Measured quanum groupoids 108. J. GASQUI, H. GOLDSCHMIDT – Ininiesimal isospecral deormaions o he Grassmannian o 3-planes in R 2006 107. I. GALLAGHER, L. SAINT-RAYMOND – Mahemaical sudy o he beaplane model: Equaorial waves and convergence resuls 106. N. BERGERON – Propriéés de Leschez auomorphes pour les groupes uniaires e orhogonaux 105. B. HELFFER, F. NIER – Qaniaive analysis o measabiliy in reversible difusion processes via a Witen complex approach: he case wih boundary 104. A. FEDOTOV, F. KLOPP – Weakly resonan unneling ineracions or adiabaic quasi-periodic Schrödinger operaors
Instructions aux auteurs Les Mémoires de la SMF publien, en rançais ou en anglais, de longs aricles de recherche, des monographies originales ou des séries d’aricles cenrés sur un même suje. Les volumes on enre 100 e 150 pages environ.
Les ichiers AMS-LATEX au orma amsart ou amsbook, ainsi que les ichiers LATEX au orma article ou book son aussi les bienvenus. Ils seron saisis sui-
Le manuscri doi êre envoyé en double exemplaire au secréaria des publicaions en précisan le nom de la revue. Le ichier source TEX (un seul ichier par aricle ou monographie) peu aussi êre envoyé par courrier élecronique ou fp, sous réserve que sa compilaion par le secréaria SMF soi possible. Conacer le secréaria à l’adresse élecronique [email protected] pour obenir des précisions. La SMF recommande vivemen l’uilisaion d’ AMS-LATEX avec les classes smfart ou smfbook, disponibles ainsi que leur documenaion sur le serveur http://smf.emath.fr/ ou sur demande au secréaria des publicaions SMF.
– aille des caracères égale à 10 poins (opion 10pt) ; – largeur du exe (textwidth) de 13 cm ; – haueur du exe (textheight) égale à 21.5 cm ; – le exe éan en oure cenré sur une euille A4 (opion a4paper).
van les normes suivanes :
Les aures ormas TEX e les aures ypes de raiemen de exe ne son pas uilisables par le secréaria e son oremen déconseillés. Avan de saisir leur exe, les aueurs son inviés à prendre connaissance du documen Recommandaions aux aueurs disponible au secréaria des publicaions de la SMF ou sur le serveur de la SMF.
Instructions to Authors In he Mémoires o he SMF are published, in French or in English, long research aricles, original research monographs or series o aricles on he same opic o curren research. Each volume should be approximaely 100-150 pages long. Two copies o he original manuscrip should be sen o he ediorial board o he SMF, indicaing o which publicaion he paper is being submited. The TEX source ile (a single ile or each aricle or monograph) may also be sen by elecronic mail or fp, in a orma suiable or ypseseting by he secreary. Please, send an email o [email protected] or precise inormaion. The SMF has a srong preerence or AMS-LATEX ogeher wih he documenclasses smfart or smfbook, available wih heir user’s guide a http://smf. emath.fr/ (Inerne) or on reques rom he ediorial board o he SMF.
The AMS-LATEX iles using he documenclasses amsart or amsbook, or he LATEX iles using he documenclasses article or book are also encouraged. They will be prepared ollowing he rules below: – – – –
on size equal o 10 poins (10pt opion); ex widh (textwidth): 13 cm; ex heigh (textheight): 21.5 cm; he ex being cenered on a A4 page (a4paper opion).
Files prepared wih oher TEX dialecs or oher word processors canno be used by he ediorial board and are no encouraged. Beore preparing heir elecronic manuscrip, he auhors should read he Advice o auhors, available on reques rom he ediorial board o he SMF or rom he web sie o he SMF.
This text consists o two parts. In the frst one we present a proo o ThueSiegel-Roth’s Theorem (and its more recent variants, such as those o Lang or number felds and that “with moving targets” o Vojta) as an application o Geometric Invariant Theory (GIT). Roth’s Theorem is deduced rom a general ormula comparing the height o a semi-stable point and the height o its projection on the GIT quotient. In this setting, the role o the zero estimates appearing in the classical proo is played by the geometric semi-stability o the point to which we apply the ormula. In the second part we study heights on GIT quotients. We generalise Burnol’s construction o the height and refne diverse lower bounds o the height o semi-stable points established to Bost, Zhang, Gasbarri and Chen. The proo o Burnol’s ormula is based on a non-archimedean version o KempNess theory (in the ramework o Berkovich analytic spaces) which completes the ormer work o Burnol. Ce texte est constitué de deux parties. Dans la première nous présentons une preuve du théorème de Thue-Siegel-Roth (et des variantes plus récentes, comme celle de Lang pour le corps de nombres et celle with moving targets de Vojta) basée sur la théorie géométrique des invariants (GIT). Le théorème de Roth est déduit d’une ormule reliant la hauteur d’un point semi-stable et la hauteur de sa projection dans le quotient GIT. Dans ce cadre, le rôle du « lemme des zéros » présent dans la preuve classique est joué par la semistabilité géométrique du point auquel on applique la ormule. Dans la deuxième partie nous étudions la hauteur sur les quotients GIT. Nous généralisons la construction de Burnol de cette hauteur et nous améliorons plusieurs minorations de la hauteur de point semi-stables précédemment établies par Bost, Zhang Gasbarri et Chen. La preuve de la ormule de Burnol porte sur une version non-archimédienne de la théorie de Kemp-Ness (dans le langage de la géométrie analytique de Berkovich), qui complète le travail antérieur de Burnol.