Automorphic Forms on Adele Groups. (AM-83), Volume 83 9781400881611

This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of repres

143 4 15MB

English Pages 227 [279] Year 2016

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
CONTENTS
PREFACE
§1. THE CLASSICAL THEORY
A. Elementary Notions
B. Examples
C. Hecke’s Theory
D. Complements to Hecke’s Theory
Notes and References
§2. AUTOMORPHIC FORMS AND THE DECOMPOSITION OF L^2 (Γ\SL (2,R)
A. Automorphic Forms as Functions on SL(2,R)
B. Automorphic Forms and the Decomposition of L^2(Γ\G)
C. Some Miscellaneous Results Concerning the Decomposition of L^2(Γ\SL (2,R)
Notes and References
§3. AUTOMORPHIC FORMS AS FUNCTIONS ON THE ADELE GROUP OF GL(2)
A. Basic Notions
B. Hecke Operators
C. Arbitrary Base Fields
Notes and References
§4. THE REPRESENTATIONS OF GL(2) OVER LOCAL AND GLOBAL FIELDS
A. The Archimedean Places
B. The p-adic Theory
1. Admissibility
2. Classification of Admissible Representations
3. Some Properties of Irreducible Admissible Representations
C. Global Theory
Notes and References
§5 CUSP FORMS AND REPRESENTATIONS OF THE ADELE GROUP OF GL(2)
A. Preliminary Results on the Decomposition of
B. Cusp Forms and Hecke Operators Revisited
C. Some Explicit Features of the Correspondence Between Cusp Forms and Representations
Notes and References
§6 HECKE THEORY FOR GL(2)
A. Hecke Theory for GL (1)
B. Further Motivation
C. Jacquet-Langlands’ Theory
D. Connections with the Classical Theory
Notes and References
§7. THE CONSTRUCTION OF A SPECIAL CLASS OF AUTOMORPHIC FORMS
A. The Weil Representation
B. The Construction of Certain Special Representations of GL(2, A)
C. An Explicit Example
D. Connections with Class Field Theory
Notes and References
§8. EISENSTEIN SERIES AND THE CONTINUOUS SPECTRUM
A. Some Preliminaries
B. Analysis of Certain Induced Representations
C. Eisenstein Series
D. Description of the Continuous Spectrum
E. Summing Up
Notes and References
§9. THE TRACE FORMULA FOR GL(2)
A. Motivation
1. The Real Situation
2. The Case of Compact Quotient
3. The Situation for GL(2)
B. The Trace of
C. A Second Form of the Trace Formula
1. Conjugacy Classes in G0
2. Truncating K1(x,x) and K(x,x)
3. Plan of Attack
4. The Elliptic and Singular Terms
5. The First Parabolic Term
6. The Second Parabolic Term
7. The Third Parabolic Term
8. Final Form of the Trace Formula
Notes and References
§10. AUTOMORPHIC FORMS ON A QUATERNION ALGEBRA
A. Preliminaries
B. Statement and Proof of the Fundamental Result
C. Construction of Some Special Automorphic Forms in the Case of Compact Quotient.
D. Theta Series Attached to Quaternary Quadratic Forms
1. Weil Representations and Theta Series
2. Decomposition of the Weil Representation
3. Application to the Basis Problem
Notes and References
BIBLIOGRAPHY
INDEX
Recommend Papers

Automorphic Forms on Adele Groups. (AM-83), Volume 83
 9781400881611

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Annals of Mathematics Studies Number 83

AUTOMORPHIC FORMS ON A D ELE GROUPS

BY

STEPHEN S. GELBART

PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

C o p y rig h t © 1 9 7 5 , by P rin ce to n U n iv ersity P re ss A LL RIG H TS R E SE R V E D

P rinted in the U n ited S tates o f A m e ric a

L IB R A R Y O F CO N G RESS CATALOGING IN PUBLICATIO N DATA

G e lb a rt, S. A u to m o rp h ic fo rm s on A d e le group s. (A n n a ls o f m a th e m a tics stu d ies; no. 8 3 ) “ E xp an d ed from notes m im eog rap h ed at C o rn ell in M a y o f 1 9 7 2 and entitled A u to m o rp h ic form s and re p resen tatio n s o f A d e le g ro u p s.” B ib lio g ra p h y : p. In clu d es in d ex. 1.

R e p re se n ta tio n s o f grou p s.

2 . A u to m o ip h ic form s.

3 . L in e a r a lg e b ra ic grou p s. I. Q A 1 7 1 .G 3 9

T itle . 1975

II. S e rie s. 512\22

7 4 -2 3 3 8 8

IS B N 0 - 6 9 1 - 0 8 1 5 6 - 5 3 5 7 9

10

8 6 4 2

T o my fath er, Abe G elbart

PREFACE

S e ctio n s 1 through 7 of th e se N otes are b ased on le c tu re s I gav e at C o rn ell U n iv ersity in the Spring of 1 9 7 2 .

They are expanded from N otes

mimeographed a t C orn ell in May of 1 9 7 2 and en titled A utom orphic Forms a n d R e p re s e n ta tio n s of A d e le G roups.

1 am gratefu l to E . M. Stein for s u g ­

g estin g th at I expand th o se N otes for p ub lication by the P rin ce to n U ni­ v e rsity P r e s s and th at I in co rp orate into them the m aterial of S e ctio n s 8 through 10.

T h e s e la s t th ree s e c tio n s are b ased on le c tu re s I gav e at the

In stitu te for A dvanced Study, P rin ce to n , in the Spring of 1 9 7 3 .

I am in­

debted to the In stitu te for its h o sp ita lity a s w ell a s for the atm osphere it c re a te d for s e rio u s work. Th e s u b je c t m atter of th e se N otes is the in terp lay betw een the theory of autom orphic forms and group re p re se n ta tio n s.

One go al is to in terp ret

som e re ce n t developm ents in th is a re a , m ost sig n ifica n tly the theory of Ja c q u e t-L a n g la n d s , working out, w henever p o s sib le , e x p lic it co n se q u e n c e s and c o n n e ctio n s with the c l a s s i c a l theory.

Another go al is to c o lle c t a s

much inform ation a s p o ssib le co n cern in g the d ecom p osition of L 2 (G L (2 ,Q )\ G L (2,A (Q )).

Although e a c h p articu lar s e c tio n h as its own introduction

d escrib in g the m aterial co v ered I would like to add the follow ing orienting rem arks to th is P r e f a c e . S e ctio n s 1 through 5 are prelim inary in nature and th eir purpose is to sp e ll out the e x p lic it re la tio n s betw een c l a s s i c a l cu sp forms and c e rta in irredu cib le c o n stitu e n ts of L 2 (G L (2 ,Q )\ G L (2 ,A (Q )).

H ere I c o ll e c t only

th o se fa c ts from rep resen tatio n theory and the c l a s s i c a l theory of forms which are c ru c ia l to the se q u e l.

P a r ts of th e se s e c tio n s are eith er new or

part of the s u b je c t ’s “ fo lk lo re .”

R e fe re n ce s to the e x is tin g literatu re are

to be found in the “ N otes and R e f e r e n c e s ” at the end of e a c h s e c tio n and individual ackn ow led gem ents are made w henever p o ssib le . vii

viii

PR EFA C E

S ectio n s 6 through 10 d eal with Ja c q u e t-L a n g la n d ’s theory and som e important q uestion s related to it.

S ectio n 8 d e sc rib e s the continuous

spectru m of L 2 (G L (2 ,Q )\ G L (2 ,A )) and is perhaps the le a s t se lf-co n ta in e d . T h e rem aining s e c t io n s , including S ectio n 9 on the tra c e form ula, co n cern the d is c re te spectru m .

I have included a com p lete proof of the tra c e

formula for G L (2 ) prim arily b e c a u s e the id eas involved here are s t il l not w ell known.

I a ls o w anted there to be no doubt in the re a d e r’s mind th at

the proof of Ja c q u e t-L a n g la n d s ’ Theorem 1 0 .5 is now com p lete.

In w riting •

S ectio n 9 I h ave followed J . G. A rthur’s as yet unpublished m anuscript on the tra c e formula for rank one groups and I w ish to thank him for allow ing me to do s o . S cattered throughout th e se N otes are som e new re su lts and proofs w hich I have not d escrib ed elsew h ere.

I am indebted to my c o lle a g u e s at

C o rn ell, in p articu lar K. S. Brow n, W. H. J . F u c h s , A. W. Knapp, S. L ich te n baum, 0 . S. R o th au s, R. Stanton, H. C . Wang, and W. C . W aterhouse, for help and en couragem en t, and to J . G. Arthur, P . C a rtier, W. C a s se lm a n , R. Howe, R. H otta, M. K arel, R . P . L a n g la n d s, R . P a rth a sa ra th y , P . J . S ally , J r ., and T . Shintani, for helpful c o n v e rs a tio n s and co rresp o n d en ce related to the re su lts d escrib ed here.

I e s p e c ia lly w ish to thank R. P . L an g lan d s for

much valu ab le information and in sp iration . T he first typing of th e se N otes w as done a t C orn ell by E sth e r Monroe, D olores P en d ell and Ruth H ym es. w as greatly ap p reciated .

ITHACA DECEMBER 1973

T h eir unusual e fficie n cy and e x p e rtis e

CO N TEN TS

P R E F A C E ....................................................................................................................................

v

§1.

...............................................................................

3

E lem en tary N otions .......................................................................................... E xam p le s ......................................... H e c k e ’s T h e o r y .................................................................................................... Com plem ents to H e c k e ’s T h eory ............................................................. N otes and R e fe re n c e s ......................................................................................

3 9 12 17 20

T H E C L A S S IC A L T H E O R Y A. B. C. D.

§2.

AUTOMORPHIC FORMS AND T H E DECOMPOSITION O F L 2( r \ S L ( 2 ,R ) A. B. C.

§3.

AUTOM ORPHIC FORMS AS FU N CTIO N S ON T H E A D E L E G ROUP O F G L (2 ) ..................................................................................................... A. B. C.

§4.

22

40

B a s ic N otions ....................................................................................................... H eck e O p erators .................................................................................................. A rbitrary B a s e F ie ld s ..................................................................................... N otes and R e fe re n c e s ......................................................................................

40 47 50 52

T H E R E P R E S E N T A T IO N S O F G L (2 ) O V ER L O C A L AND G L O B A L F IE L D S ........................................................................................................

54

A. B.

C. §5.

........................................................................................................

Autom orphic Fo rm s a s F u n ctio n s onS L ( 2 ,R ) .................................. 22 Automorphic F o rm s and the D ecom p osition of L 2 (P \ G ) .......... 30 Some M iscellan eo u s R e s u lts C on cern in g the D ecom p osition of L 2 ( F \ S L ( 2 ,R ) ... ........................................................... 37 N otes and R e fe re n ce s ....................................................................................... 39

T h e A rchim edean P l a c e s ............................................................................. T h e p -ad ic T h eory ............................................................................................. 1. A d m issib ility ................................................................................................ 2. C la s s if ic a tio n of A dm issible R e p re s e n ta tio n s ......................... 3 . Some P ro p e rtie s of Irred u cib le A dm issible R e p re s e n ta tio n s .............................................................................................. G lobal T h eory ....................................................................................................... N otes and R e fe re n c e s ......................................................................................

C U S P FORMS AND R E P R E S E N T A T IO N S O F T H E A D E L E G RO U P O F G L (2 ) ......................................................................... A. B. C.

P relim in ary R e s u lts on the D ecom p osition of R ^ (g ) ................... C u sp Form s and H eck e O perators R e v isite d ..................................... Some E x p lic it F e a tu r e s of the C orresp on d en ce B etw een C usp Fo rm s and R e p r e s e n ta tio n s .............................................................. N otes and R e fe re n ce s ...................................................................................... ix

54 60 60 65 71 75 77 79 80 36 92 96

CONTENTS

X

§6.

H E C K E T H E O R Y FO R A. B. C. D.

§7.

C. D.

T h e Weil R ep resen tatio n .............................................................................. T he C o n stru ctio n of C ertain S p e cia l R ep resen tatio n s of G L (2 , A ) ............................................................................................................ An E x p lic it E xam p le ...................................................................................... C o nn ection s with C la s s F ie ld Theory ............................................... N otes and R e fe re n ce s .....................................................................................

134 143 151 154 1 59

EIS EN S T E IN S E R IE S AND T H E CONTINUOUS S P E C T R U M ......... 161 A. B. C. D. E.

§9.

98 99 105 108 121 130

T H E CO NSTRUCTION O F A S P E C IA L CLA SS OF AUTOMORPHIC FORMS ........................................................................................ 133 A. B.

§8.

G L (2 ) ..........................................................................

H ecke T heory for G L ( 1 ) .............................................................................. Fu rth er M otivation ........................................................................................... Ja c q u e t-L a n g la n d s ’ T h e o ry ......................................................................... C o n n ectio n s with the C la s s i c a l Theory ............................................ N otes and R e fe re n ce s .....................................................................................

Some P r e lim in a rie s ........................................................................................... A n aly sis of C ertain Induced R ep resen tatio n s ............................... E is e n s te in S eries .............................................................................................. D escrip tion of the Continuous Spectrum ............................................ Summing Up ........................................................................................................... N otes and R e fe re n ce s .....................................................................................

162 165 168 173 178 179

T H E T R A C E FO RM ULA FO R G L (2 ) ........................................................... A. M otivation ............................................................................................................. 1. T h e R e a l Situation .................................................................................. 2. The C a s e of Com pact Q u o tien t......................................................... 3. The Situation for G L (2 ) ......................................................................

181 181 181 183 186

B. C.

T h e T ra c e of R j( f ) ...........................................................................................1 88 A Second Form of the T ra c e Form ula ................................................ 195 1. C onju gacy C la s s e s in G q ................................................................ 196 2. T ru n catin g K i ( x ,x ) and r((x ,x ) .................................................... 197 3. P lan of A t t a c k ............................................................................................. 2 0 0 4. T h e E llip tic and Singular Term s ................................................... 201 5. T h e F i r s t P a ra b o lic Term ..................................................................... 2 03 6. T h e Second P a ra b o lic Term ................................................................ 2 1 0 7. T h e Third P a ra b o lic Term ................................................................ 21 4 8. F in a l Form of the T ra c e Form ula ................................................. 2 1 8 N otes and R e fe re n ce s .......................................................................................2 2 4

§ 1 0 . AUTOMORPHIC FORMS ON A QUATERNION A L G E B R A .............. 2 2 7 A. P re lim in a rie s ........................................................................................................ 2 2 9 B. Statem ent and P roof of the Fu n dam ental R e su lt ......................... 2 3 4 C . C o n stru ctio n of Some S p e cia l Automorphic Form s in the C a s e of C om pact Q u o tie n t............................................................................. 2 46 D. T h eta S eries A ttach ed to Q uaternary Q uadratic F o r m s 251 1. Weil R e p re se n ta tio n s and T h eta S eries .................................... 2 5 2 2. D ecom p osition of the Weil R e p r e s e n ta tio n ............................... 25 3 3. A pp lication to th e B a s is Problem ................................................... 2 5 6 N otes and R e fe re n ce s ..................................................................................... 2 5 9 BIB L IO G R A P H Y .................................................................................................................... 2 6 0 IND EX ............................................................................................................................................2 6 4

Automorphic Forms on Adele Groups

§1.

T H E C L A S S IC A L T H E O R Y

T h is s e c tio n d e s c rib e s variou s a s p e c ts of H e c k e ’s th eory of D irich let s e r ie s atta ch e d to cu sp forms and som e re ce n t refinem ents of it due to Weil and A tk in -L eh n er.

T h e se re s u lts from the c l a s s i c a l theory of a u to ­

morphic forms play a c ru c ia l role in the modern theory.

S in ce we in clu de

them primarily to provide a co n v en ien t c l a s s i c a l referen ce for our d is c u s ­ sion of J a c q u e t-L a n g la n d s ’ theory no attem pt at c o m p leten ess is made. A.

E lem en tary N otions Throughout th is s e c tio n we s h a ll be d ealin g with non co -co m p a ct a rith ­

m etic subgroups of S L (2 ,R ).

(T h e c a s e of com pa ct fundam ental domain

w ill be con sid ered in S ectio n 1 0 .)

In f a c t,

F

gruen ce subgroup, i .e ., a subgroup of S L (2 ,Z )

w ill u su ally d enote a c o n ­ which co n tain s the h o m o g e ­

n eo u s p rin cip a l c o n g r u e n c e su b g ro u p

for som e p o sitiv e in teger

N.

Im portant exam p les are

S L ( 2 ,Z )

(the 4‘ full

co n gru en ce su b g ro u p ,’ ’ or ‘ ‘co n g ru en ce subgroup of le v e l 1 ” ) and “ H e c k e ’s sub grou p ”

By

G L + ( 2 ,R ) we s h a ll d enote the group of real

p o sitiv e determ inant. ilm (z) > 01,

and

If g =

2x2

m atrices with

b elon gs to G L +(2 ,R ),

k is a p o sitiv e in teg er, we s e t

(l.D

3

z

to

4

AUTOMORPHIC FORMS ON ADELE GROUPS

(1 .2 )

j(g ,z ) = (c z + d )(d e t g)

1/2 ,

and

(1-3)

fkg]|/z) = f(ez)Kg,z)_k -

T h is la s t formula d efin es an operator on the s p a c e of a ll com p lex-valu ed functions

z e llm (z) > Oi.

f(z ),

z l f z2

Tw o points

w ill be c a lle d eq u iv a len t un der T

for som e y t l \

if y z j = z 2 dom ain for V

if F

A s u b se t

are 1 '-eq u iv alen t and e a c h point of

is T -eq u iv alen t to som e point of the c lo s u re of F .

A point s elem en t of F c u sp s of r

of flm (z) > Oi is a fundam ental

is a co n n ected open su b se t of ilm (z) > Ol with the

property th at no two points of F flm (z) > Oi

F

(or r-e q t/iv a /e /if )

in R U i°oj fixing s .

then F

is a c u s p of F

If H

if there e x is ts a pa ra bo lic

d en o tes the union of ilm (z )> Oi and the

a ls o a c ts on H ; the resu ltin g quotient s p a c e

p o s s e s s e s a natural (H ausdorff) topology and a com plex s tru ctu re su ch . ^ that r \ H is a co m p a ct R iem ann s u rfa c e . The cu s p s we s h a ll co n sid er may be taken as various ratio n al points on the real a x is and . Most authors denote the cu sp at 00 by em p h asize that as

z = x + iy ap p roach es the cu sp in F ,

x

i°° to

is bounded,

and y > 00. In g en eral, if T

is an arb itrary d is c re te subgroup of S L (2 ,R ),

ca lle d a F u c h s ia n gro up of the firs t kin d if r \ H

is co m p act.

V

is

A ll

F u c h s ia n groups, and F Q(N) in p articu lar, have (at m ost) a fin ite number of T -in eq u iv alen t c u s p s . The follow ing definition is valid for F

an arb itrary F u c h s ia n group

of the first kind. DEFINITION 1 .1 .

A com p lex-valu ed function

f(z)

is c a lle d a F -autom or­

p h ic form of w eigh t k ( or an autom orphic form of w eigh t is defined in tlm (z) > 0!

k for F )

and s a tis f i e s the follow ing con d itio n s:

if it

§1. THE CLASSICAL THEORY

(i)

f|[y]k = f,

5

i.e .

'(ffra) ■(cz ,d)k[fe) for all

y = jj!

jjj e 1';

th is is the “ automorphy co n d itio n ”

for f; (ii)

f is holom orphic in jlm (z) > Oi;

(iii)

f is holom orphic at every c u sp of F .

T he s p a c e of su ch functions w ill be denoted

and

Mj^ F ) .

F o r con gru en ce sub grou ps, elem en ts of M ^(F) are often c a lle d modular form s (or m odular form s of le v e l

N if F = TfN )).

If s

Im(o-(z)) = Im(z)|j(cr,z)|- 2 ).

T h erefo re, if f f Sk( r ) , g(w ) -» 0 a s * (with re s p e ct to the topology of H ). T h is means th at g is a c o n ­

tinuous function on the com pa ct s p a c e v e rse ly , if

|g(z)| < M, fg ( 0

F\H

and h ence

|g(z)| < M.

must be holomorphic at C = 0,

C on­

and in fa c t it

must van ish there. □ oo

C o ro lla ry

1 .6 .

If f(z) =

1

a

e 27/inz f Sk( D ,

th en

n= 1

( 1 .1 0 )

Pro of.

a n = 0 (n k / 2 ) .

S in ce

f^OD =

^

an £ n