ASHRAE 2001 HVAC Fundamentals Handbook


932 121 11MB

English Pages 892 Year 2001

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover......Page 1
Contributors......Page 2
Fig. 1 Energy Flows in General Thermodynamic System......Page 6
Second Law of Thermodynamics......Page 7
Equations of State......Page 8
Calculating Thermodynamic Properties......Page 9
Fig. 2 Mixture of i and j Components in Constant Pressure Container......Page 10
Fig. 5 Carnot Refrigeration Cycle......Page 11
Fig. 7 Carnot Vapor Compression Cycle......Page 12
Fig. 9 Schematic p-h Diagram for Example 2......Page 13
Fig. 11 Processes of Lorenz Refrigeration Cycle......Page 14
Multistage Vapor Compression Refrigeration Cycles......Page 15
Fig. 13 Schematic and Pressure-Enthalpy Diagram for Dual-Compression, Dual-Expansion Cycle of Ex.........Page 16
Fig. 15 Pressure-Enthalpy Diagram of Actual System and Theoretical Single-Stage System Operating.........Page 17
Fig. 17 Single-Effect Absorption Cycle......Page 19
Working Fluids......Page 20
Conceptualizing the Cycle......Page 21
Table 6 Assumptions for Single-Effect Water-Lithium Bromide Model (Figure 17)......Page 22
Fig. 21 Double-Effect Water-Lithium Bromide Absorption Cycle with State Points......Page 23
Fig. 22 Single-Effect Ammonia-Water Absorption Cycle......Page 24
References......Page 25
Bibliography......Page 26
Basic Relations of Fluid Dynamics......Page 27
Bernoulli Equation and Pressure Variation along Flow......Page 28
Wall Friction......Page 29
Flow Patterns with Separation......Page 30
Cavitation......Page 31
Nonisothermal Effects......Page 32
Compressibility......Page 33
Conduit Friction......Page 34
Fig. 13 Relation Between Friction Factor and Reynolds Number......Page 35
Section Change Effects and Losses......Page 36
Fig. 15 Effect of Duct Length on Damper Action......Page 37
Fig. 17 Differential Pressure Flowmeters......Page 38
Unsteady Flow......Page 39
References......Page 40
Steady-State Conduction......Page 41
Local Overall Heat Transfer Coefficient— Resistance Method......Page 42
Mean Temperature Difference......Page 43
Transient Heat Flow......Page 44
Multidimensional Temperature Distribution......Page 45
Thermal Radiation......Page 46
Blackbody Radiation......Page 47
Actual Radiation......Page 48
Calculation of Radiant Exchange Between Surfaces Separated by Nonabsorbing Media......Page 49
Fig. 6 Radiation Angle Factor for Various Geometries......Page 50
Natural Convection......Page 51
Table 5 Natural Convection Heat Transfer Coefficients......Page 52
Fig. 10 Typical Dimensionless Representation of Forced-Convection Heat Transfer......Page 53
Fig. 12 Typical Tube-Side Enhancements......Page 55
Table 7 Equations for Augmented Forced Convection (Single Phase)......Page 56
Fig. 14 Enhanced Surfaces for Gases......Page 57
Active Techniques......Page 58
Table 12 Selected Studies on EHD Technique......Page 59
Fin Efficiency......Page 60
Fig. 19 Efficiency of Four Types of Spine......Page 61
Fig. 22 Variation of Fin Resistance with Efficiency for Annular and Rectangular Fins (Gardner 1945)......Page 62
Finned-Tube Heat Transfer......Page 63
Symbols......Page 64
Heat Transfer, General......Page 67
Fig. 1 Characteristic Pool Boiling Curve......Page 68
Fig. 2 Effect of Surface Roughness on Temperature in Pool Boiling of Pentane......Page 69
Table 1 Equations for Boiling Heat Transfer......Page 70
Fig. 4 Boiling Heat Transfer Coefficients for Flooded Evaporator......Page 71
Fig. 5 Flow Regimes in Typical Smooth Horizontal Tube Evaporator......Page 72
Condensing......Page 74
Table 4 Values of Condensing Coefficient Factors for Different Refrigerants (from Chapter 19)......Page 76
Fig. 11 Origin of Noncondensable Resistance......Page 77
Pressure Drop......Page 78
Fig. 12 Qualitative Pressure Drop Characteristics of Two-Phase Flow Regime......Page 79
Symbols......Page 80
References......Page 81
Fick’s Law for Mass Diffusion Through Solids or Stagnant Fluids (Stationary Media)......Page 84
Table 1 Mass Diffusivities for Gases in Aira......Page 85
Fig. 2 Pressure Profiles for Diffusion of Water Vapor Through Stagnant Air......Page 86
Molecular Diffusion in Liquids and Solids......Page 87
Analogy Between Convective Heat and Mass Transfer......Page 88
Fig. 6 Water-Saturated Flat Plate in Flowing Airstream......Page 89
Fig. 8 Vaporization and Absorption in Wetted-Wall Column......Page 90
Fig. 11 Sensible Heat Transfer j-Factors for Parallel Plate Exchanger......Page 91
Enthalpy Potential......Page 92
Fig. 12 Air Washer Spray Chamber......Page 93
Air Washers......Page 94
Fig. 15 Graphical Solution of Údh/(hi - h)......Page 95
Symbols......Page 96
Bibliography......Page 97
Table 1 Standard Atmospheric Data for Altitudes to 10000 m......Page 98
Thermodynamic Properties of Water at Saturation......Page 99
Table 2 Thermodynamic Properties of Moist Air at Standard Atmospheric Pressure, 101.325 kPa......Page 100
Table 3 Thermodynamic Properties of Water at Saturation (Continued)......Page 103
Perfect Gas Relationships for Dry and Moist Air......Page 105
Thermodynamic WetBulbTemperature and DewPoint Temperature......Page 106
Moist Air Property Tables for Standard Pressure......Page 107
Fig. 1 ASHRAE Psychrometric Chart No. 1......Page 108
Fig. 2 Schematic of Device for Heating Moist Air......Page 109
Fig. 6 Adiabatic Mixing of Two Moist Airstreams......Page 110
Fig. 9 Schematic Solution for Example 5......Page 111
Fig. 11 Schematic Solution for Example 6......Page 112
References for Air, Water, and Steam Properties......Page 113
References......Page 114
Table 1 Typical Sound Pressures and Sound Pressure Levels......Page 115
Table 3 Combining Two Sound Levels......Page 116
Fig. 1 Curves Showing A- and C-Weighting Responses for Sound Level Meters......Page 117
Measurement of Room Sound Pressure Level......Page 118
Determining Sound Power......Page 119
Airborne Transmission......Page 120
Enclosures and Barriers......Page 121
Attenuation of Sound in Ducts and Plenums......Page 122
Noise......Page 123
Fig. 4 Equal Loudness Contours for Relatively Narrow Bands of Random Noise......Page 124
Noise Criteria (NC) Method......Page 125
Room Criteria (RC) Method......Page 126
Estimating Occupant Satisfaction Using QAI......Page 127
Table 10 Definition of Sound Quality Descriptor and Quality Assessment Index (QAI) to Aid in Int.........Page 128
Fig. 10 Vibration Transmissibility T as a Function of fd/fn......Page 129
Fig. 13 Transmissibility of Two-Degree-of-Freedom System......Page 130
References......Page 131
Bibliography......Page 132
Human Thermoregulation......Page 133
Energy Balance......Page 134
Evaporative Heat Loss from Skin......Page 135
Alternative Formulations......Page 136
Total Skin Heat Loss......Page 137
Metabolic Rate and Mechanical Efficiency......Page 138
Heat Transfer Coefficients......Page 139
Clothing Insulation and Permeation Efficiency......Page 140
Table 8 Garment Insulation Values......Page 141
Environmental Parameters......Page 142
Fig. 4 Analytical Formulas for Calculating Angle Factor for Small Plane Element......Page 143
Fig. 5 ASHRAE Summer and Winter Comfort Zones......Page 144
Draft......Page 145
Warm or Cold Floors......Page 146
Seasonal and Circadian Rhythms......Page 147
Fig. 11 Air Velocities and Operative Temperatures at 50% rh Necessary for Comfort (PMV = 0) of P.........Page 148
Two-Node Model......Page 149
Zones of Comfort and Discomfort......Page 150
Humid Operative Temperature......Page 151
Wet-Bulb Globe Temperature......Page 152
Wind Chill Index......Page 153
Fig. 18 Variation in Skin Reflection and Absorptivity for Blackbody Heat Sources......Page 154
Comfort Equations for Radiant Heating......Page 155
Fig. 21 Schematic Design of Heat Stress and Heat Disorders......Page 156
Extreme Cold Environments......Page 157
Symbols......Page 158
Descriptions of Selected Health Sciences......Page 162
Hazard Recognition......Page 163
Hazard Evaluation......Page 164
Dusts......Page 165
Combustion Nuclei......Page 166
Sources......Page 167
Gaseous Contaminants......Page 168
Gaseous Contaminants in NonIndustrial Environments......Page 169
Health Effects of Volatile Organic Compounds......Page 170
Health Effects of Inorganic Gases......Page 171
Range of Healthy Living Conditions......Page 172
Effects of Thermal Environment on Specific Diseases......Page 173
Vibration......Page 174
Fig. 4 Acceleration Perception Thresholds and Acceptability Limits for Horizontal Oscillations......Page 175
Electromagnetic Radiation......Page 176
Nonionizing Radiation......Page 177
Ergonomics......Page 178
Animals......Page 182
Heat Production......Page 183
Cyclic Conditions......Page 184
Table 1 Dust Sources and Flora in Swine Buildings......Page 185
Ventilation Requirement......Page 186
Ventilation Effectiveness......Page 187
Lactation......Page 188
Heat and Moisture Production......Page 189
Wool Production......Page 190
Growth......Page 191
Fig. 18 Room Latent Heat in Hog House......Page 192
Heat and Moisture Production......Page 193
Reproduction......Page 194
Heat and Moisture Production......Page 195
Energy Balance......Page 196
Fig. 28 Phytochrome Action Spectra......Page 198
Radiation Levels for Plant Growth......Page 199
Relative Humidity......Page 200
References......Page 201
Bibliography......Page 203
Moisture Content......Page 204
Table 2 Approximate Temperature and Relative Humidity Requirements for Spore Germination and Gro.........Page 205
Table 3 Estimates of Optimum and Minimum Temperatures and Relative Humidity Conditions for Popul.........Page 206
Moisture Measurement......Page 208
Fungal Growth and Mycotoxins......Page 209
Table 5 Constants for Dry Matter Loss of Shelled Corn [Equation (11)]......Page 210
Fig. 2 Drying Process Diagrammed on Psychrometric Chart Showing Adiabatic Evaporation of Moistur.........Page 211
Airflow Resistance......Page 212
Analysis of Deep Bed Drying......Page 213
Fig. 3 Time in Swath and Windrow Versus Field Losses of Leaves, Dry Matter, Protein, and Caroten.........Page 214
Cotton......Page 215
Wheat and Barley......Page 216
Tobacco (Curing)......Page 217
Classes of Air Contaminants......Page 222
Sizes of Airborne Particles......Page 223
Fig. 3 Sizes of Indoor Particles......Page 224
Measurement of Airborne Particles......Page 225
Pollen......Page 226
Table 3 Example Case of Airborne Fungi in Building and in Outdoor Air......Page 227
Gaseous Contaminants......Page 228
Measurement of Gaseous Contaminants......Page 229
Volatile Organic Compounds......Page 230
Table 6 Gaseous Contaminant Concentration Measurement Methods......Page 231
Inorganic Gases......Page 232
Outdoor Air Contaminants......Page 233
Table 11 Characteristics of Selected Gaseous Air Pollutants......Page 234
Table 12 Sources, Possible Concentrations, and Indoor-to-Outdoor Concentration Ratios of Some In.........Page 235
Flammable Gases and Vapors......Page 236
Radioactive Air Contaminants......Page 237
Soil Gases......Page 238
Olfactory Stimuli......Page 242
Sorption and Release of Odors......Page 243
Intensity......Page 244
Fig. 3 Panelist Using Dravnieks Binary Dilution Olfactometer......Page 245
Analytical Measurement......Page 246
Table 3 Sensory Pollution Load from Different Pollution Sources......Page 247
Terminology......Page 250
Uncertainty Sources......Page 251
Static Temperature Versus Total Temperature......Page 252
Table 1 Temperature Measurement......Page 253
Resistance Temperature Devices......Page 254
Fig. 3 Typical Resistance Temperature Device Bridge Circuits......Page 255
Thermocouples......Page 256
Multiple Thermocouples......Page 257
Psychrometers......Page 258
Table 3 Humidity Sensor Properties......Page 259
Ion Exchange Resin Electric Hygrometers......Page 260
Pressure Measurement......Page 261
Electromechanical Transducers......Page 262
Airborne Tracer Techniques......Page 263
Thermal Anemometers......Page 264
Measuring Flow in Ducts......Page 265
Flow Rate Measurement......Page 266
Venturi, Nozzle, and Orifice Flowmeters......Page 267
Fig. 8 Dimensions of ASME Long-Radius Flow Nozzles......Page 268
Turbine Flowmeters......Page 269
Air Infiltration, Airtightness, and Outdoor Air Ventilation Rate Measurement......Page 270
Fig. 12 Amperometric Carbon Dioxide Sensor......Page 271
Ammeters......Page 272
Sound and Vibration Measurement......Page 273
Fig. 25 Three-Wire, Three-Phase Power-Factor Meter......Page 274
Calibration......Page 275
Lighting Measurement......Page 276
Mean Radiant Temperature......Page 277
Vapor Permeability......Page 278
Air Contaminant Measurement......Page 279
Digital Recording......Page 280
Standards......Page 281
References......Page 282
Bibliography......Page 283
Fig. 1 Discharge Air Temperature Control......Page 284
Fig. 5 Floating Control Showing Variations in Controlled Variable as Load Changes......Page 285
Fuzzy Logic......Page 286
Valves......Page 287
Fig. 11 Typical Performance Curves for Linear Devices at Various Percentages of Total System Pre.........Page 288
Fig. 13 Typical Multiblade Dampers......Page 289
Positive Positioners......Page 290
Temperature Sensors......Page 291
Power Sensing and Transmission......Page 292
Thermostats......Page 293
Auxiliary Control Devices......Page 294
The OSI Network Model......Page 295
Network Structure......Page 296
Transmission Media......Page 297
Commissioning......Page 298
Fig. 25 Response of Discharge Air Temperature to Step Change in Set Points at Various Proportion.........Page 299
References......Page 300
Fan System Effect Coefficients......Page 799
Flow Patterns......Page 301
Fig. 3 Flow Recirculation Regions and Exhaust-to-Intake Stretched-String Distances......Page 302
Local Wind Pressure Coefficients......Page 303
Interference and Shielding Effects on Pressures......Page 304
Fig. 8 Local Roof Pressure Coefficients for Roof of Low-Rise Buildings......Page 305
Estimating Wind at Sites Remote from Recording Stations......Page 306
Natural and Mechanical Ventilation......Page 307
Fig. 13 Effect of Wind-Assisted and Wind-Opposed Flow......Page 308
Scale Model Simulation and Testing......Page 309
Designing Model Test Programs......Page 310
References......Page 311
Bibliography......Page 312
Nonrenewable and Renewable Energy Resources......Page 313
Self-Imposed Budgets......Page 314
Envelope......Page 315
HVAC Equipment Selection......Page 316
Quantifiable Relationships......Page 317
Production......Page 318
Fig. 5 World Recoverable Coal Reserves: December 31, 1996 and January 1, 1999 (U.S. Only)......Page 319
Fig. 8 World Coal Consumption: 1998......Page 320
Fig. 12 Per Capita End-Use Energy Consumption Trends in the United States......Page 321
Fig. 14 Projected Total U.S. Energy Consumption by Resource......Page 322
Tradable Emission Credits......Page 323
Agencies and Associations in the United States......Page 324
Principles of Combustion......Page 325
Fuel Classification......Page 327
Liquid Fuels......Page 328
Solid Fuels......Page 330
Combustion Calculations......Page 332
Efficiency Calculations......Page 336
Combustion Considerations......Page 337
Bibliography......Page 340
Phaseout of Refrigerants......Page 341
Table 1 Standard Designation of Refrigerants (ASHRAE Standard 34)......Page 342
Table 2 Physical Properties of Selected Refrigerantsa......Page 343
Fig. 3 Viscosity of Aqueous Solutions of Lithium Bromide......Page 344
Table 4 Electrical Properties of Refrigerant Vapors......Page 345
Table 5 Velocity of Sound in Refrigerant Vapors......Page 346
Ammonia and Sulfur Dioxide Leaks......Page 347
Table 8 Comparative Refrigerant Performance per Ton at Various Evaporating and Condensing Temper.........Page 348
Table 12 Swelling of Plastics in Liquid Refrigerants at Room Temperature......Page 350
References......Page 351
CHAPTER 20......Page 352
Fig. 1 Pressure-Enthalpy Diagram for Refrigerant 12......Page 353
Refrigerant 12 (Dichlorodifluoromethane) Properties of Saturated Liquid and Saturated Vapor......Page 354
Fig. 2 Pressure-Enthalpy Diagram for Refrigerant 22......Page 355
Refrigerant 22 (Chlorodifluoromethane) Properties of Saturated Liquid and Saturated Vapor......Page 356
Fig. 3 Pressure-Enthalpy Diagram for Refrigerant 23......Page 357
Refrigerant 23 (Trifluoromethane) Properties of Saturated Liquid and Saturated Vapor......Page 358
Fig. 4 Pressure-Enthalpy Diagram for Refrigerant 32......Page 359
Refrigerant 32 (Difluoromethane) Properties of Saturated Liquid and Saturated Vapor......Page 360
Fig. 5 Pressure-Enthalpy Diagram for Refrigerant 123......Page 361
Refrigerant 123 (2,2-Dichloro-1,1,1-trifluoroethane) Properties of Saturated Liquid and Saturated.........Page 362
Fig. 6 Pressure-Enthalpy Diagram for Refrigerant 124......Page 363
Refrigerant 124 (2-Chloro-1,1,1,2-tetrafluoroethane) Properties of Saturated Liquid and Saturated.........Page 364
Fig. 7 Pressure-Enthalpy Diagram for Refrigerant 125......Page 365
Refrigerant 125 (Pentafluoroethane) Properties of Saturated Liquid and Saturated Vapor......Page 366
Fig. 8 Pressure-Enthalpy Diagram for Refrigerant 134a......Page 367
Refrigerant 134a (1,1,1,2-Tetrafluoroethane) Properties of Saturated Liquid and Saturated Vapor......Page 368
Fig. 9 Pressure-Enthalpy Diagram for Refrigerant 152a......Page 371
Refrigerant 152a (1,1-Difluoroethane) Properties of Saturated Liquid and Saturated Vapor......Page 372
Refrigerant 143a (1,1,1-Trifluoroethane) Properties of Saturated Liquid and Saturated Vapor......Page 373
Refrigerant 245fa (1,1,1,3,3-Pentafluoropropane) Properties of Saturated Liquid and Saturated Vapor......Page 374
Fig. 10 Pressure-Enthalpy Diagram for Refrigerant 404A......Page 375
Refrigerant 404A [R-125/143a/134a (44/52/4)] Properties of Liquid on the Bubble Line and Vapor on.........Page 376
Fig. 11 Pressure-Enthalpy Diagram for Refrigerant 407C......Page 377
Refrigerant 407C [R-32/125/134a (23/25/52)] Properties of Liquid on the Bubble Line and Vapor on .........Page 378
Refrigerant 410A [R-32/125 (50/50)] Properties of Liquid on the Bubble Line and Vapor on the Dew .........Page 379
Refrigerant 507A [R-125/143a (50/50)] Properties of Saturated Liquid and Saturated Vapor......Page 380
Fig. 12 Pressure-Enthalpy Diagram for Refrigerant 717 (Ammonia)......Page 381
Refrigerant 717 (Ammonia) Properties of Saturated Liquid and Saturated Vapor......Page 382
Fig. 13 Pressure-Enthalpy Diagram for Refrigerant 718 (Water/Steam)......Page 383
Refrigerant 718 (Water/Steam) Properties of Saturated Liquid and Saturated Vapor......Page 384
Fig. 14 Pressure-Enthalpy Diagram for Refrigerant 744 (Carbon Dioxide)......Page 385
Refrigerant 744 (Carbon Dioxide) Properties of Saturated Liquid and Saturated Vapor......Page 386
Fig. 15 Pressure-Enthalpy Diagram for Refrigerant 50 (Methane)......Page 387
Refrigerant 50 (Methane) Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 388
Fig. 16 Pressure-Enthalpy Diagram for Refrigerant 170 (Ethane)......Page 389
Refrigerant 170 (Ethane) Properties of Saturated Liquid and Saturated Vapor......Page 390
Fig. 17 Pressure-Enthalpy Diagram for Refrigerant 290 (Propane)......Page 391
Refrigerant 290 (Propane) Properties of Saturated Liquid and Saturated Vapor......Page 392
Fig. 18 Pressure-Enthalpy Diagram for Refrigerant 600 (n-Butane)......Page 393
Refrigerant 600 (n-Butane) Properties of Saturated Liquid and Saturated Vapor......Page 394
Fig. 19 Pressure-Enthalpy Diagram for Refrigerant 600a (Isobutane)......Page 395
Refrigerant 600a (Isobutane) Properties of Saturated Liquid and Saturated Vapor......Page 396
Fig. 20 Pressure-Enthalpy Diagram for Refrigerant 1150 (Ethylene)......Page 397
Refrigerant 1150 (Ethylene) Properties of Saturated Liquid and Saturated Vapor......Page 398
Fig. 21 Pressure-Enthalpy Diagram for Refrigerant 1270 (Propylene)......Page 399
Refrigerant 1270 (Propylene) Properties of Saturated Liquid and Saturated Vapor......Page 400
Fig. 22 Pressure-Enthalpy Diagram for Refrigerant 702 (Normal Hydrogen)......Page 401
Refrigerant 702 (Normal Hydrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 402
Fig. 23 Pressure-Enthalpy Diagram for Refrigerant 702p (Parahydrogen)......Page 403
Refrigerant 702p (Parahydrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 404
Fig. 24 Pressure-Enthalpy Diagram for Refrigerant 704 (Helium)......Page 405
Refrigerant 704 (Helium)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 406
Fig. 25 Pressure-Enthalpy Diagram for Refrigerant 728 (Nitrogen)......Page 407
Refrigerant 728 (Nitrogen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 408
Fig. 26 Pressure-Enthalpy Diagram for Refrigerant 729 (Air)......Page 409
Refrigerant 729 (Air)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 410
Fig. 27 Pressure-Enthalpy Diagram for Refrigerant 732 (Oxygen)......Page 411
Refrigerant 732 (Oxygen)Properties of Gas at 0.101 325 MPa (one standard atmosphere)......Page 412
Fig. 28 Pressure-Enthalpy Diagram for Refrigerant 740 (Argon)......Page 413
Fig. 29 Enthalpy-Concentration Diagram for Ammonia-Water Solutions......Page 415
Refrigerant Temperature (t¢ = C) and Enthalpy (h = kJ/kg) of Lithium Bromide Solutions......Page 416
Fig. 30 Enthalpy-Concentration Diagram for Water-Lithium Bromide Solutions......Page 417
Fig. 31 Equilibrium Chart for Aqueous Lithium Bromide Solutions......Page 418
References......Page 419
Physical Properties......Page 422
Table 2 Properties of Pure Sodium Chloridea Brines......Page 423
Fig. 6 Density of Sodium Chloride Brines......Page 424
Table 3 Physical Properties of Ethylene Glycol and Propylene Glycol......Page 425
Table 5 Freezing and Boiling Points of Aqueous Solutions of Propylene Glycol......Page 426
Table 7 Specific Heat of Aqueous Solutions of Ethylene Glycol......Page 427
Table 9 Viscosity of Aqueous Solutions of Ethylene Glycol......Page 428
Table 11 Specific Heat of Aqueous Solutions of Propylene Glycol......Page 429
Table 13 Viscosity of Aqueous Solutions of Propylene Glycol......Page 430
Fig. 14 Specific Heat of Aqueous Solutions of Industrially Inhibited Propylene Glycol (vol. %)......Page 431
Service Considerations......Page 432
Nonhalocarbon, Nonaqueous Fluids......Page 433
Bibliography......Page 434
Desiccant Cycle......Page 435
Table 1 Vapor Pressures of Different Relative Humidities at 21C......Page 436
Fig. 5 Surface Vapor Pressure of Water-Lithium Chloride Solutions......Page 437
Fig. 6 Adsorption and Structural Characteristics of Some Experimental Silica Gels......Page 438
Desiccant Life......Page 439
Bibliography......Page 440
Terminology and Symbols......Page 441
Properties......Page 442
Acoustics......Page 443
Fig. 2 Typical Variation of Apparent Thermal Conductivity with Fiber Diameter and Density......Page 444
Fig. 3 Typical Variation of Apparent Thermal Conductivity with Mean Temperature and Density for .........Page 445
Surface Conductance......Page 446
Factors Affecting Heat Transfer Across Air Spaces......Page 447
Fig. 5 Heat Flow Through Cylindrical Surfaces......Page 448
Fig. 6 Determination of Economic Thickness of Installed Insulation of Mechanical Equipment......Page 449
Fig. 7 Example of Optimal Thermal Resistance for Building with Internal Heat Gains......Page 450
Paint Failure and Other Appearance Problems......Page 451
Effect of Moisture on Heat Flow......Page 452
Table 2 Linear and Volumetric Shrinkage Values of Wood, from Green to Oven Dry Moisture Content......Page 453
Water Vapor Diffusion......Page 454
Airflow Retarder Functions and Properties......Page 455
Vapor Retarder Functions and Properties......Page 456
Steady-State Design Tools......Page 457
Table 5 Initial and Final Calculations of Vapor Pressure Drops and Surface Vapor Pressures in Ex.........Page 458
Mathematical Models......Page 459
Preventing Surface Condensation......Page 460
Fig. 11 Conversion of Equivalent Thickness to Actual Thickness for Pipe Insulation......Page 461
Cold-Formed Steel Frame Construction......Page 464
Masonry and Concrete Construction......Page 465
Control of Liquid Water Entry......Page 466
Surface Condensation......Page 467
Vapor Retarders and Airflow Retarders......Page 468
Other Considerations......Page 469
Example of Residential Wall Construction for Mixed Climates......Page 470
Other Considerations......Page 471
Inverted Roof Systems......Page 472
Crawl Spaces......Page 473
Fig. 5 Example of Residential Slab-on-Grade Construction in Warm, Humid Climates......Page 474
Moisture Control in Commercial and Institutional Buildings......Page 475
Fig. 8 Heat Loss Effect at Ceiling Edge......Page 476
Insulating Pipes to Prevent Freezing......Page 477
Underground Pipe Insulation......Page 478
References......Page 479
Bibliography......Page 480
Thermal Transmission Data for Building Components......Page 481
Fig. 2 Insulated Wood Frame Wall (Example 1)......Page 482
Masonry Walls......Page 483
Table 2A Heating and Wind Design Conditions—Canada......Page 0
Table 3 Thermal Resistances of Plane Air Spacesa,b,c, K·m2/W......Page 484
Table 4 Typical Thermal Properties of Common Building and Insulating Materials—Design Valuesa......Page 485
Constructions Containing Metal......Page 489
Fig. 5 Gypsum Roof Deck on Bulb Tees (Example 4)......Page 490
Modified Zone Method for Metal Stud Walls with Insulated Cavities......Page 491
Uo Concept......Page 492
Table 6 Transmission Coefficients U for Wood and Steel Doors, W/(m2·K)......Page 493
Apparent Thermal Conductivity of Soil......Page 494
Heat Loss from Pipes and Flat Surfaces......Page 495
Table 9 Typical Water Vapor Permeance and Permeability Values for Common Building Materialsa......Page 496
Table 10 Typical Thermal Conductivity for Industrial Insulations at Various Mean Temperatures—De.........Page 498
Fig. 9 Surface Resistance as Function of Heat Transmission for Flat Surfaces and Cylindrical Sur.........Page 499
Calculating Heat Flow for Buried Pipelines......Page 500
Table 12 Heat Loss from Bare Copper Tube to Still Air at 27Ca, W/m......Page 501
Table 13 Recommended Thicknesses for Pipe and Equipment Insulation......Page 502
Fig. 1 Two-Space Building with Forced Ventilation, Infiltration, and Exfiltration......Page 505
Room Air Movement......Page 506
Averaging Time-Varying Ventilation......Page 507
Air Change Effectiveness......Page 508
Wind Pressure......Page 509
Mechanical Systems......Page 510
Fig. 5 Distribution of Inside and Outside Pressures over Height of Building......Page 511
ASHRAE Standard 62......Page 512
Thermal Loads......Page 513
Flow Caused by Wind Only......Page 514
Natural Ventilation Guidelines......Page 515
Airtightness Ratings......Page 516
Leakage Distribution......Page 517
Multifamily Building Leakage......Page 518
Table 1 Effective Air Leakage Areas (Low-Rise Residential Applications Only)......Page 519
Fig. 11 Histogram of Infiltration Values— Low-Income Housing......Page 520
Residential Ventilation Zones......Page 521
Table 3 Continuous Exhaust Airflow Rates......Page 522
Selection Principles for Ventilation Systems......Page 523
Empirical Models......Page 524
Residential Calculation Examples......Page 525
Table 9 Basic Model Wind Coefficient Cw......Page 526
Combining Residential Infiltration and Mechanical Ventilation......Page 527
Air Leakage Through Automatic Doors......Page 528
Fig. 14 Air Leakage Rate of Door Versus Average Crack Width......Page 529
Tracer Gas Measurements......Page 530
Multizone Air Exchange Measurement......Page 531
References......Page 532
Climatic Design Conditions......Page 537
Relationship Between Design Conditions and Previously Published Design Temperatures......Page 538
Monthly Tables......Page 539
Typical Year Data Sets......Page 540
Observational Data Sets......Page 541
Table 1A Heating and Wind Design Conditions—United States......Page 542
Table 1B Cooling and Dehumidification Design Conditions—United States......Page 543
Table 2B Cooling and Dehumidification Design Conditions—Canada......Page 559
Table 3A Heating and Wind Design Conditions—World Locations......Page 562
Table 3B Cooling and Dehumidification Design Conditions—World Locations......Page 563
Table 4A Design Wet-Bulb—Mean Coincident Dry-Bulb Temperature......Page 590
Table 4B Design Dry-Bulb—Mean Coincident Wet-Bulb Temperature......Page 591
Peak Load Computation......Page 608
Table 2 CLTD Values for Multifamily Residencesa......Page 609
Table 4 Window Glass Load Factors (GLFs) for Multifamily Residencesa......Page 610
Latent Heat Sources......Page 611
Fig. 2 Floor Plan of Single-Family Detached House......Page 612
Heating Load......Page 613
Outdoor Design Temperature......Page 614
Attic Temperature......Page 615
Fig. 3 Uninsulated Crawl Space......Page 616
Fig. 4 Heat Flow from Basement......Page 617
Basement Design Temperatures......Page 618
Calculating Infiltration Heat Loss......Page 619
Crack Length Method......Page 620
References......Page 621
CHAPTER 29......Page 622
Initial Design Considerations......Page 623
Instantaneous Heat Gain from Lighting......Page 624
Plenum Temperatures......Page 625
Table 2 Typical Nonincandescent Light Fixtures......Page 626
Fig. 3 Schematic Diagram of Typical Return Air Plenum......Page 627
Table 3B Typical Overload Limits with Standard Motors......Page 628
Table 4B Hooded Gas Appliance Usage Factors, Radiation Factors, and Load Factors......Page 629
Office Equipment......Page 630
Table 5 Recommended Rates of Heat Gain From Typical Commercial Cooking Appliances......Page 631
Table 10 Recommended Heat Gain from Miscellaneous Office Equipment......Page 633
Fenestration Direct Solar, Diffuse Solar, and Conductive Heat Gains......Page 634
Table 14 Solar Equations......Page 635
Surface Colors......Page 636
OUTDOOR Air Temperatures......Page 637
Data Limitations......Page 638
Heat Gain Calculations Using Standard Air Values......Page 639
Duct Heat Gain and Leakage......Page 640
Outside Face Heat Balance......Page 641
Using SHGC to Calculate Solar Heat Gain......Page 642
Table 18 Single Layer Glazing Data Produced by Window 4.1......Page 643
Conduction Process......Page 644
Overall HB Iterative Solution Procedure......Page 645
Radiant Time Series (RTS) Method......Page 646
Overview of the Radiant Time Series Method......Page 647
Conductive Heat Gain Using Conduction Time Series......Page 648
Table 20 Wall Conduction Time Series (CTS)......Page 649
Table 20 Wall Conduction Time Series (CTS) (Concluded)......Page 650
Calculating Cooling Load Using RTS......Page 653
Table 25 Representative Solar RTS Values for Light to Heavy Construction......Page 654
Table 27 Wall Heat Gain and Cooling Load for Example 5......Page 655
Fig. 12 Wall Heat Input, Heat Gain for Example 5 and Cooling Load Using CTS and RTS......Page 656
Table 28 Solar Calculations—Solar Heat Gain Using SHGC—for Example 6......Page 657
Comparison With Previous Methods......Page 658
References......Page 659
Bibliography......Page 660
Insulating Glazing Units......Page 662
Fig. 2 Types of Residential Windows......Page 663
Determining Fenestration Energy Flow......Page 664
Frame UFactor......Page 665
Indoor and Outdoor Surface Heat Transfer Coefficients......Page 666
Table 2 Indoor Surface Heat Transfer Coefficient hi in W/(m2·K)—Vertical Orientation (Still Ai.........Page 667
Representative UFactors for Fenestration Products......Page 668
Table 4 U-Factors for Various Fenestration Products in W/(m2·K)......Page 669
Table 4 U-Factors for Various Fenestration Products in W/(m2·K)(Concluded)......Page 670
Fig. 4 Standard Fenestration Units......Page 671
Representative UFactors for Doors......Page 672
Examples......Page 673
Table 7 Extraterrestrial Solar Irradiance and Related Data......Page 674
Fig. 8 Comparison of Standard Air Mass m = 1.5 Solar Spectrum with Direct Beam Spectra Through A.........Page 675
Determining Solar Angle......Page 676
Diffuse and Ground-Reflected Radiation......Page 677
Angular Dependence......Page 678
Solar-Optical Properties of Glazing......Page 679
Fig. 18 Variations with Incident Angle of Solar-Optical Properties for (A) Double-Strength Sheet.........Page 680
Fig. 19 Optical Properties of a Single Glazing Layer......Page 681
Determining the Properties of Uncoated Glazing Layers from Normal Incidence Measurements......Page 682
Coated Glazings......Page 683
Fig. 22 Multilayer Glazings Considered as Systems and Subsystems......Page 684
Spectral Averaging of Glazing Properties......Page 685
Angular Averaging of Glazing Properties......Page 686
Table 13 Visible Transmittance (Tv), Solar Heat Gain Coefficient (SHGC), Solar Transmittance (T).........Page 687
Spectrally Selective Glazing......Page 695
Fig. 24 Demonstration of Two Spectrally Selective Glazing Concepts, Showing Ideal Spectral Trans.........Page 696
Calculation of Solar Heat Gain Coefficient......Page 697
Solar Gain Through Frame and Other Opaque Elements......Page 698
Shading Coefficient—A Historical Perspective......Page 699
Solar Gain Rejection and Internal Load Dominated Buildings......Page 700
Table 16 Shading Coefficients and U-Factors for Standard Hollow Glass Block Wall Panels......Page 701
Glazing Systems......Page 702
Shading Devices and Fenestration Attachments......Page 703
Calculating System Transmittance and Absorptancesfrom Layer Properties......Page 704
Exterior Shading......Page 705
Roof Overhangs: Horizontal and Vertical Projections......Page 706
Equations for Computer Calculations of External Shadowing of Inclined Surfaces......Page 707
Venetian Blinds and Roller Shades......Page 708
Table 21 Properties of Representative Indoor Shading Devices Shown in Tables 19 and 20......Page 709
Completely Shaded Glazings......Page 710
Table 22 Interior Solar Attenuation Coefficients for Single and Insulating Glass with Draperies......Page 711
Between-Glass Shading Layer......Page 712
Interior Shading Layer......Page 713
Table 23 Summary of Environmental Control Capabilities of Draperies......Page 715
Infiltration Through Fenestration......Page 716
Daylight Prediction......Page 717
Fig. 33 Window-to-Wall Ratio Versus Annual Electricity Use (kWh/m2·floor·year)......Page 718
Fig. 34 Visible Transmittance Versus SHGC for Several Glazings with Different Spectral Selectivi.........Page 719
Annual Energy Performance......Page 720
Fig. 36 Temperature Distribution on Indoor Surfaces of Insulating Glazing Unit......Page 721
Fig. 37 Minimum Indoor Surface Temperatures Before Condensation Occurs......Page 722
Occupant Comfort and Acceptance......Page 723
Life-Cycle Costs......Page 724
Codes and Standards......Page 725
References......Page 726
Bibliography......Page 729
Forward and Inverse Models......Page 730
Inverse Models......Page 731
Tools for Energy Analysis......Page 732
Calculating Space Sensible Loads......Page 733
Heat Balance Method......Page 734
Weighting Factor Method......Page 735
Simplified Calculation Method for Slab Foundations and for Basements......Page 736
Fig. 2 Slab Foundation for Example 1......Page 737
Secondary System Components......Page 738
Fig. 4 Fan Part-Load Curve Obtained from Measured Field Data under ASHRAE 823-RP......Page 739
Heat and Mass Transfer Components......Page 740
Fig. 5 Psychrometric Schematic of Cooling Coil Processes......Page 741
Table 4 Correlation Coefficients for Off-Design Relationships......Page 742
Vapor Compression Chiller Models......Page 743
Fig. 10 Schematic of Reciprocating Compressor Model......Page 744
Fig. 11 Overall Modeling Strategy......Page 745
Annual Degree-Day Method......Page 746
Fig. 13 Variation of Balance Point Temperature and Internal Gains for a Typical House......Page 747
Monthly Degree-Days......Page 748
Table 6 Degree-Day and Monthly Average Temperatures for Various Locations......Page 749
Fig. 15 Heat Pump Capacity and Building Load......Page 750
Integration of System Models......Page 751
Fig. 17 Algorithm for Calculating Performance of VAV with System Reheat......Page 752
Gray-Box Approach......Page 753
Table 8 Single-Variate Models Applied to Utility Billing Data......Page 754
Fig. 18 Steady-State, Single-Variate Models Appropriate for Modeling Energy Use in Residential a.........Page 755
Neural Network Models......Page 758
Closing Remarks......Page 759
References......Page 760
Bibliography......Page 763
Air Jet Classification......Page 764
Isothermal Jets......Page 765
Table 2 Recommended Values of Centerline Velocity Constant for Standard Openings......Page 766
Fig. 1 Airflow Patterns of Different Diffusers......Page 767
Fig. 3 Cross-Sectional Velocity Profiles for Straight-Flow Turbulent Jets......Page 768
Airflow in Occupied Zone......Page 769
Outlet Classification and Performance......Page 770
Fig. 4 Air Motion Characteristics of Group A Outlets......Page 771
Fig. 6 Air Motion Characteristics of Group C Outlets......Page 772
Factors Affecting Outlet Performance......Page 773
Underfloor Air Distribution and Task/Ambient Conditioning......Page 774
Standards for Satisfactory Conditions......Page 775
ADPI Selection Guide......Page 776
Return and Exhaust Openings......Page 777
Outlet Location and Selection......Page 778
Group E Outlets......Page 779
Perimeter Spaces......Page 780
References......Page 781
Bibliography......Page 782
Theory......Page 783
Fig. 2 Stream Function-Vorticity Solution for Ventilated Room (50 000 Iterations)......Page 784
Multispecies Flows......Page 785
Symbols......Page 786
Bibliography......Page 787
Bernoulli Equation......Page 788
System Analysis......Page 789
Fig. 3 Multiple Stack Analysis......Page 790
Fig. 5 Single Stack with Fan for Examples 3 and 4......Page 791
Fig. 6 Triple Stack System for Example 5......Page 792
Fig. 7 Pressure Changes During Flow in Ducts......Page 793
Table 1 Duct Roughness Factors......Page 794
Local Loss Coefficients......Page 795
Fig. 9 Friction Chart for Round Duct (r = 1.20 kg/m3 and e = 0.09 mm)......Page 796
Testing, Adjusting, and Balancing Considerations......Page 800
Duct Insulation......Page 801
Duct System Leakage......Page 802
Table 6 Duct Leakage Classificationa......Page 803
System and Duct Noise......Page 804
Static Regain Method......Page 805
T-Method Optimization......Page 806
HVAC Duct Design Procedures......Page 807
Fig. 16 Schematic for Example 8......Page 808
Industrial Exhaust System Duct Design......Page 809
Fig. 20 System Schematic with Section Numbers for Example 9......Page 810
Fig. 21 Total Pressure Grade Line for Example 9......Page 813
References......Page 814
Bibliography......Page 815
Round Fittings......Page 816
Rectangular Fittings......Page 841
Valve and Fitting Losses......Page 856
Table 4 Comparison of K Factors from Rahmeyer (1999a) with Previous Reference Data for Elbows......Page 857
Table 7 Maximum Water Velocity to Minimize Erosion......Page 858
Water Hammer......Page 859
Table 8 Equivalent Length in Metres of Pipe for 90 Elbows......Page 860
Service Water Piping......Page 862
Fig. 7 Section of Figure 6 on Enlarged Scale......Page 863
Procedure for Sizing Cold Water Systems......Page 864
Pipe Sizes......Page 865
Low-Pressure Steam Piping......Page 866
Fig. 10 Flow Rate and Velocity of Steam in Schedule 40 Pipe at Saturation Pressure of 0 psig......Page 867
Table 16 Flow Rate of Steam in Schedule 40 Pipe......Page 868
Table 18 Return Main and Riser Capacities for Low-Pressure Systems, g/s......Page 869
Table 19 Vented Dry Condensate Return for Gravity Flow Based on Manning Equation......Page 870
Table 21 Flow Rate for Dry-Closed Returns......Page 871
Gas Piping......Page 872
Fuel Oil Piping......Page 873
References......Page 874
Fig. 3 Friction Loss for Water in Plastic Pipe (Schedule 80)......Page 861
Letter Symbols......Page 876
Codes and Standards......Page 886
Table 1 Conversions to SI Units......Page 887
Table 2 Conversion Factors......Page 888
Table 1 Properties of Vapor......Page 889
Table 2 Properties of Liquids......Page 890
Table 3 Properties of Solids......Page 891
References......Page 892

ASHRAE 2001 HVAC Fundamentals Handbook

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up