115 4 20MB
English Pages 459 Year 1979
APPROXIMATION THEORY AND FUNCTIONAL ANALYSIS
This Page Intentionally Left Blank
NORTH-HOLLAND MATHEMATICS STUDIES
35
Notas de Matematica (66) Editor: Leopoldo Nachbin Universidade Federal do Rio de Janeiro and University of Rochester
Approximation Theory and Functional Analysis Proceedings of the International Symposium on Approximation Theory, Universidade Estadual de Campinas (UNICAMP) Brazil, August 1-5, 1977 Edited by
Joio B. PROLLA Universidade Estadual de Campinas. Brazil
1979
NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM
NEW YORK
0
OXFORD
0 North-Holland Publishing Company, 1979
All rights reserved. N o part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.
ISBN: 0 7204 1964 6
Publishers: NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM NEW YORK OXFORD Sole distributors for the U.S.A. and Canada: ELSEVIER NORTH-HOLLAND, INC. 5 2 VANDERBILT AVENUE, NEW YORK, N.Y. 10017
Library of Congress Cataloging in Publication Data
I n t e r n a t i o n a l Symposium on Approximation Theory, Universidade Estadual d e Campinas, 1977. Approximation t h e o r y and f u n c t i o n a l a n a l y s i s . (Notas de matemdtica . 66) (North-Holland mathematics s t u d i e s ; 35j Papers i n English o r French. Includes index. 1. Functional analysis--Congresses. 2 . Approximation theory--Congresses. I. P r o l l a , Joao B. 11. Universidade E s t a d u a l de Campinas. 111. T i t l e . I V . S e r i e s , QAl.N86 no. 66 [QA3201 510'.8s [ 5 1 5 ' . 7 1 78-26264 ISBN 0-444-85264-6
PRINTED IN THE NETHERLANDS
FOREWORD
T h i s book c o n t a i n s t h e P r o c e e d i n g s of t h e I n t e r n a t i o n a l Sympo-
sium on Approximation Theory h e l d a t t h e U n i v e r s i d a d e Campinas (UNICAMP), B r a z i l , d u r i n g August 1 - 5 ,
1977.
Estadual
de
Besides
the
t e x t s of l e c t u r e s d e l i v e r e d a t t h e Symposium, it c o n t a i n s some papers by i n v i t e d l e c t u r e r s whowere u n a b l e t o a t t e n d t h e m e e t i n g . The Symposium w a s s u p p o r t e d by t h e I n t e r n a t i o n a l Union, b y t h e Fundaqao d e Amparo 5 P e s q u i s a do E s t a d o
Mathematical de
,550 P a u l o
(FAPESP), by German and S p a n i s h government a g e n c i e s , and by
UNICAMP
itself. The o r g a n i z i n g committee w a s c o n s t i t u t e d by P r o f e s s o r s Machado, Leopoldo Nachbin, Joao B . P r o l l a ( c h a i r m a n ) ,
Silvio
and
Guido
Zapata. W e would l i k e t o t h a n k P r o f e s s o r U b i r a t a n D’Ambrosio, d i r e c t o r
of t h e I n s t i t u t e of Mathematics o f UNICAMP, whose s u p p o r t
made
the
m e e t i n g p o s s i b l e . Our s p e c i a l t h a n k s a r e e x t e n d e d to Miss E l d a M o r t a r i who t y p e d t h i s volume.
Joao B . P r o l l a
V
This Page Intentionally Left Blank
TABLE O F CONTENTS
R. ARON,
J.
.
1
. . .
13
. . . . . .
19
P o l y n o m i a l a p p h o x i m a t i o n and a q u e o t i a n 06 G.E.Skieov. A n a l y t i c h y p o e l l i p t i c i t y 0 6 a p e h a t o h n 06 paincipae type . . . . . . . . . . . .
BARROS NETO,
. .
.
.
. . .
H . BAUER,
Kahawkin apphoximatian i n dunctian npacen.
K.
an compact n e t n , a p p h a x i m a t i a n a n p h o d u c t n c t n , and t h e apphoximation phopehty . . , . . . , . . ,
D. BIERSTEDT,
A hemath a n v e c t a h - v a l u e d apphaximatian
.
B.
.
.
. . .
T h e c o m p l e t i o n 0 6 p a h t i a l L y a h d e t e d wectah dpacen . . . . . . . . . . . , . and KOhOWhin'b t h e o h e m
BROSOWSKI,
. .
63
. . . . .. . . .. . ..
71
. . .
121
de wahiabLe.4
..
133
Mehamokphic unidahm a p p h a x i m a t i a n a n c e a s e d n u b n e t s a d o p e n Riemann nuhdacen . . . . . . .
. .
139
. . .
159
P . L . BUTZER,
.
R. L .
STENS and M.
WEHRENS,
g e b h a i c canvalLLtian i n t e g a a l o
A p p h a x i m a ~ a nb y d-
Nan-ahchimedean w e i g h t e d a p p h o x i m a t i o n
J. P.
Q. CARNEIRO,
J. P.
FERRIER, T h z o k i e
P . M.
GAUTHIER,
n p e c t h a l e en une i n d i n i t E
.
.
C. S . GUERREIRO, W h i t n e y ' n n p e c t h a l n y n t h e b i b t h e o h e m
. . . . .
d i n i t e dimennionn G.
37
G. LORENTZ a n d S . D.
,
RIEMENSCHNEIDER,
Bihkhodd i n t e k p o L a t i a n
Rec.ent
phogenn
.
-
* .
.
in
.. . . . . . . . . . . .. . .
P. MALLIAVIN, A p p k o x i m a t i o n poLynamiaLe p o n d e k z e e t C a f l O f l i Q U U . .
i n in-
. . . . . . . .
. . . .
vi i
187
phoduitn
. . .. - .- .. . -
237
viii
TABLE OF CONTENTS
R . M E I S E , Spacen a d d i d d e h e n t i a b l e d u n c t i o n n and
t i o n phapehty.
. . . . .
,
.the u p p o x h a -
. . . . . . . . . . . . . .
L . NACHBIN, A l o o k a t a p p h o x i m a t i a n t h e o h y
. . . . . . . . . .
,
309
. .
333
. . .
343
L . N A R I C I and E . BECKENSTEIN, Banach a l g e b h a ovm valued ~L&dh
P h . NOVERRAZ, A p p h o x i m a t i a n a d p L u h i n u b h a k m o n i c d u n c t i o n n . 0. T . W.
PAQUES, T h e a p p h o x i m a t i o n p h o p e h t y d o h c e h t a i n npacen
. . . . . . . . . . . . . . .
351
. .
371
. . . . . . . . .
383
..
409
. . . .
421
.. .... . . . . .. . .. .
429
......
445
o d h o l o m o h p h i c mappingn. J . B . PROLLA,
The a p p h o x i m a t i a n p h o p e h t y d o h Nachbin n p a c e n .
I . J . SCHOENBERG,
I)n c a h d i n a l n p L i n e n m o a t h i n g
0 6 e c h e l o n KB,#~e-Schwahtz npacen
M. VALDIVIA, A c h a h a c t t h i z a t i o n
D . WULBERT, T h e h a t i a n a l ? a p p h o x i m a t i o n a d h e a l d u n c t i o n n G.
ZAPATA,
lndtx.
263
Fundamental? neminahmn
. . . . .
,
.
,
. . . .
,
. . . . . . . . . .
Approximation Theory and Functional Analysis J. 8. Prolla led. I 0 North-Holland Publishing Company, 1979
POLYNOMIAL APPROXIMATION AND A QUESTION OF G. E.
SHILOV
RICHARD M. ARON
I n s t i t u t o de Matemztica Universidade Federal
do Rio de J a n e i r o
Caixa P o s t a l 1835, z c - 0 0 2 0 . 0 0 0 Rio de J a n e i r o , B r a z i l
and School of Mathematics University
ABSTRACT
Let
s p a c e . For
of
Dublin
39 T r i n i t y
College
Dublin
Ireland
2,
E be an i n f i n i t e d i m e n s i o n a l r e a l o r complex
n =0,1,2,.
.. , m ,
let
Banach
a n ( E ) be t h e a l g e b r a g e n e r a t e d
by
a l l c o n t i n u o u s polynomials on E which a r e homogeneous o f d e g r e e ( n . u n ( E ) with respect t o s e v e r a l
W e d i s c u s s t h e completion of
natural
t o p o l o g i e s , i n t h e r e a l and complex c a s e . I n p a r t i c u l a r , weprove that when
i s a complex Banach s p a c e whose d u a l h a s
E
T~ - c o m p l e t i o n of
property, then the
t h o s e holomorphic f u n c t i o n s compact
-+
Q:
approximation
whose d e r i v a t i v e
with
a f : E + E l is
.
Let
ball
f :E
the
a 1( E ) c a n be i d e n t i f i e d
B1.
E
be a Banach s p a c e o v e r
For e a c h
n
c o n t i n u o u s polynomials s u p { I I P ( ~ ) I:I x
E
E
IN
,
P :E
let -+
B ~ )( P ( O E , F )
IK= IR o r
a:, w i t h c l o s e d
-
unit
P(nE,F) be t h e s p a c e o f n-hctruxJeneous F, normed by E F).
P E P(nE,F)
P(E,F) is
11 P 11
the s p a c e of mcon-
t i n u o u s l y F r g c h e t d i f f e r e n t i a b l e f u n c t i o n s from E t o
F and
H(E,F)
i s t h e s p a c e o f holomorphic mappings from E t o F , where E and are complex Banach s p a c e s . Throughout, i f t h e 1
range
space
F
F
is
ARON
2
HE)= H(E,C).
F = IK i s u n d e r s t o o d ; t h u s f o r example
suppressed, then
I n t h i s p a p e r , w e c o n s i d e r v a r i a t i o n s on t h e f o l l o w i n g problem posed by G . E . S h i l o v [ 8 ]
.
F o r each
n = 0,1,2,.
.., ,
b e t h e a l g e b r a g e n e r a t e d by t h e c o l l e c t i o n o f f u n c t i o n s CL)
5 n; thus
j
a (E) =
( ~ " ( E ) , T ) " of
topology
P(jE),
E P ( E ) . Then, what is t h e
E lN,
completion
a n ( E ) w i t h r e s p e c t t o some s p e c i f i e d l o c a l l y
on
T
P("E)
n@j:
an ( E )
let
03
convex
a n ( E ) ? I n t h e r e a l c a s e , t h i s problem h a s been con-
s i d e r e d by many a u t h o r s . I n S e c t i o n 1, w e b r i e f l y o u t l i n e some recent r e s u l t s i n t h i s c a s e . When E i s a complex Banach s p a c e ,
the
above
problem h a s a p p a r e n t l y n o t been s t u d i e d . I n S e c t i o n 2 , w e d i s c u s s the c o m p l e t i o n of
.
1
u ( E ) and
a m ( E ) f o r s e v e r a l c o m o n t o p o l o g i e s on the
(Related r e s u l t s w i l l a l s o appear i n [ 1 1 .) I n p a r t i c u l a r , we c h a r a c t e r i z e t h e completion o f A 1 ( E ) a s a s p a c e o f anaH(E)
space
l y t i c f u n c t i o n s h a v i n g weakly uniformly c o n t i n u o u s d e r i v a t i v e s ,
and
i n t e r m s o f compact holomorphic mappings. Some o f t h e r e s u l t s i n t h i s p a p e r were o b t a i n e d w h i l e t h e
au-
t h o r was a v i s i t o r a t t h e I n s t i t u t o d e Matemstica, U n i v e r s i d a d e
Fe-
d e r a l d o Rio d e J a n e i r o ,
s u p p o r t e d i n p a r t by t h e CNPq and FINEP, t o
which t h e a u t h o r e x p r e s s e s h i s g r a t i t u d e .
SECTION 1.
Among t h e most n a t u r a l , and so f a r u n s o l v e d , v e r s i o n s of
t h e q u e s t i o n of S h i l o v i s t h e f o l l o w i n g . Given E , d i m e n s i o n a l Banach s p a c e , l e t
0
T~
a
real i n f i n i t e
d e n o t e t h e t o p o l o g y on um(E) = P(E)
g e n e r a t e d by t h e f a m i l y o f norms
where Bm = {x A
F ( E ) 'b
0
E
E :
.
o f am(E)
[ 1x1 I 5 m
.
Then, c h a r a c t e r i z e t h e c o m p l e t i o n
W e r e c a l l t h a t t o e a c h polynomial P
E
P("E)
c o r r e s p o n d s a u n i q u e symmetric c o n t i n u o u s n - l i n e a r mapping A : E x E x Z
Ax".
...
x E +
K , v i a t h e t r a n s f o r m a t i o n P(x) = A ( x ,
Thus, s i n c e
..., x)
POLYNOMIAL APPROXIMATION AND A QUESTION OF SHILOV
3
1 + ...
for
P
E
P(nE)
element i n
I
x, y
P(E)
,
E Bm
,
and a c o n s t a n t
Cm
,
w e c o n c l u d e t h a t every
and hence e v e r y e l e m e n t i n ( P ( E ) , T : ) ~
c o n t i n u o u s on bounded s u b s e t s o f Nemirovskir and Semenov [ 6 1
E
.
is uniformly
However, i t h a s been shown
by
t h a t f o r any i n f i n i t e d i m e n s i o n a l Banach
s p a c e E l t h e r e always e x i s t s a u n i f o r m l y c o n t i n u o u s f u n c t i o n on
B1 B1 by p o l y n o m i a l s . Incon-
which c a n n o t b e a p p r o x i m a t e d u n i f o r m l y on
n e c t i o n w i t h t h i s , w e remark t h a t i n many Banach s p a c e s
E
I
t h e norm
f u n c t i o n (which i s o b v i o u s l y u n i f o r m l y c o n t i n u o u s on bounded sets) is n o t t h e u n i f o r m l i m i t of p o l y n o m i a l s on bounded s e t s . T h i s was s e r v e d by Kurzweil [ 4 ]
,
( r e s p . Rp 1
-
1 5 p,
(resp. [ p ] -)
noted, i f
inf
who showed t h a t , f o r example i n
ob-
E = C [ 0,1]
p n o t e v e n ) I t h e norm i s n o t t h e u n i f o r m l i m i t of d i f f e r e n t i a b l e f u n c t i o n s . I n p a r t i c u l a r , as Kurzvd.1
IP(x) 1
:
IIx 11 = 1 } = 0 for e v e r y
P E P("E)
and n E l N ,
t h e n , t h e norm c a n n o t be u n i f o r m l y a p p r o x i m a t e d byplynosnials on balls; t h i s c o n d i t i o n i s c l o s e l y c o n n e c t e d w i t h t h e u n i f o r m c o n v e x i t y of the space [ 5
I
.
F o r a r b i t r a r y r e a l Banach s p a c e s E 1
a (E) w a s d i s c u s s e d i n [ 2
1
. We
f :E
-+ F
the
0
T~
- completion
of
b r i e f l y s k e t c h t h e p r o o f of a g e n e r -
a l i z a t i o n o f t h i s r e s u l t . Given a f a m i l y tion
,
P C P(E)
, we
say t h a t a func-
i s P - u n i f o r m l y c o n t i n u o u s on bounded subsets of
E
ARON
4
( a b b r e v i a t e d "P-continuous") there is if
6
x, y
i f f o r each
E
some
n , then
f(y)ll
hi,
h;
,... ,h;l
...,h n'
and
h = sup ( h i ,
...,h;)
f
be a f u n c t i o n i n
p. Compactness
of
'2 .
and
in
-
such t h a t t h e
X
h = i n f (h;,
...,h i )
Then
S then leads,
t o t h e e x i s t e n c e o f f i n i t e l y many
a g i v e n number
0,
Let
for
functions
two
functions
satisfy
and h(x)
- h(x)
o
E
S
X
C
33
will be called bfittrUng& 6 > o
there exists a
d:-de-
such that
the
implication
f E 8. Obviously, strongly L-determining impliesl-de-
holds for all
termining. A closed set if the map
: d:
ps
+
d:
S
C
X
is strongly E-determining if andonly
defined by restricting a function
S ,
f E d:
to the set S, is bijective and open. of
We have seen that the closure &determining.
If S is 6-determining and if
then, by the open mapping theorem, d:
S
is
aEX
d:
S
always
is closed in C ( S )
is strongly E-determining.
If
has finite dimension n then there exists astrongly L-determining
set S of cardinality n. It suffices to choose a base of
strongly
d:
.
, ... , fn
A simple induction argument then yields the existence of
xl,. ..xn E X
points
fl
n
such that
det (fi(xj))
*
0.
s = ~xl,...,xnl is E-determining and by the preced-
Consequently,
ing argument strongly E-determining. In particular, if 6 .is the set of real polynomials of degree 5 n [ a,b ] C
IR , a
*
restricted to a compact
b, every set of n + 1
interval
different pints xl,. ..,xn+,E[a,b]
is strongly determining. Therefore,in Example 1 the set S ={-l, - 2 ' 1) 2' E is strongly E-determining and contained in a x X . 1
A simple revision of the proof of Proposition 3 now leads
1
to
the announced improvement:
THEOREM 3 : fion
f E E
Let
S
be a h t t O n g C y
hatisdying
E - d e t e h m i n i n g h e x . T h e n euehy dunc-
BAUER
i n i n Kor(Jf,L). Since f
E
E
ascX
i s t h e i n t e r s e c t i o n of a l l sets
h
If = f
with
}
V
E , we o b t a i n
COROLLARY: Kor(X,E) = E
id
E aJcx
cantainh a btkongty
L -detehmining
bet.
This c o r o l l a r y s e t t l e s Example 1. I t contains t h e
corollaries
of Proposition 3 as s p e c i a l c a s e s .
For t h e case of a b s o l u t e Korovkin approximation, t h a t
e
=
C(X)
,
Theorem 1 s t a t e s t h a t
Kor (JC,E)
is
equals ?E , We have seen
t h a t i n t h e r e l a t i v e theory o n e cannot expect a s i m i l a r r e s u l t o u t an a d d i t i o n a l assumption on
f . . For
for
c
with-
s t a t e space 1 S ( C ( X ) ) , defined i n Chapter 11, i s t h e convex compact s e t M + ( X ) of
a l l (Radon) p r o b a b i l i t y measures on
X
,
= C(X)
the
hence a simplex ( i n t h e sense
of Choquet). I t has been proved r e c e n t l y by Leha and Papadopoulou [81 t h a t t h e corresponding property f o r general
d: l e a d s t o t h e complete
g e n e r a l i z a t i o n of Theorem 1. Continuing t h e discussion i n t h e general case of t h e theory,
relative
l i s c a l l e d b i m p L i c i a l i f t h e s t a t e space S(f) i s asimplex.
The r e s u l t then i s :
The proof given i n Lazar [ 6 1
[ 8
1 makes use of t h e s e l e c t i o n theorem of
f o r ( m e t r i z a b l e ) simplexes. A n immediate consequence
is
35
KOROVKIN APPROXIMATION IN FUNCTION SPACES
t h e n t h e f o l l o w i n g r e s u l t which c o n t a i n s Theorem 2 as a s p e c i a l c a s e :
-
aSx c aJCd: X.
F o r t h e r e m a i n i n g p a r t o f t h e p r o o f w e o n l y have that
to
observe
i s c o n t a i n e d i n t h e i n t e r s e c t i o n of a l l t h e s e t s
{f = f )
with a r b i t r a r y
aEx
Since
Gd: =
f
E
c
E ajcx
A
V
d:.
is equivalent to
we
aJCX = a E X
a
obtain
p a r t i a l c o n v e r s e t o C o r o l l a r y 2 of P r o p o s i t i o n 3:
COROLLARY:
aJCX = a E X
t o a b i m p t i c i a t Apace
h o t d n id
i h a K a J w v h i n hpace W i X h
JC
kehpect
E.
We a r e now i n t h e p o s i t i o n t o f i n i s h t h e d i s c u s s i o n o f Example 6: i s s i m p l i c i a 1 s i n c e e v e r y c o n t i n u o u s real f u n c t i o n
2. Here
a E X = ] 0,1] i s t h e r e s t r i c t i o n of a f u n c t i o n
compact subset o f d: ( c f . [ 5 ]
,
aEX =
p. 1 6 9 ) . From
X = [ O,l]
But a f u n c t i o n
f E 6: \ Jc
for a l l
a c c o r d i n g t o Lemma 1.
x E X
s e n t i n g measure f o r d e f i n i t i o n of
JC.
x =
cannot be
0;
however,
We t h u s o b t a i n
l~ =
f fdp
Kor(JC,E)
*
monic in
E ) i s a n JE-repre-
1
.
u
c
X be
d',
n
2
the
t h e closure 2.
Define
U
a n d 6: as t h e s e t o f f u n c t i o n s f E C ( X ) which a r e h a r 6: U . Again aJCX C U" where U* denotes t h e topolcJgical bound(and X )
.
Furthermore
ajcX = e x X
and
aE X
= U* s i n c e a l l
boundary p o i n t s of t h e convex s e t U are r e g u l a r ( c f . [ 2 d:
Mx(JC)
=
f ( 0 ) according to
= JC
3-f.
-
JC = A ( X )
a r y of
Mx(JC)
+
Example 3 c a n be g e n e r a l i z e d as follows. L e t
of a n o p e n , convex, r e l a t i v e l y compact set
;6: =7C
A
T ( E ~ , ~
in h
it f o l l m s that
Jc-affine s i n c e 1
a
on
is s i m p l i c i a l s i n c e e v e r y f u n c t i o n
f E C(U*) i s t h e
1 , p. 127). restriction
BAUER
36
of a function in 1:. It follows from the preceding Corollary andCorollary 2 of Proposition 3, or from Theorem 5, that JC space with respect to d:
ex X
if and only if
=
is a Korovkin
U”, i.e. if and only
if U is n t t r i c t L y c o n v e x .
REFERENCES [ 11
E. M. ALFSEN, C o m p a c t conucx s e t s and boundcay d. Math. 57, Springer-Verlag (1971).
[ 21
H. BAUER. Silovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89 - 136.
[ 31
H. BAUER, Approximation and abstract boundaries, Amer.
hLtqhd5,
Ergebnisse
Math.
Monthly (to appear). [ 41
H. BAUER and K. DONNER, Korovkin approximation in Co(X), Math. Ann. (to appear).
[ 51
G. CHOQUET, L e c t u h e A o n a n a L y s i n , vol. I1 (Repeoenhtion theohy), W. A. Benjamin, Inc. (1969).
[ 61
A. LAZAR, Spaces of affine continuous functions on simplexes, Trans. Amer. Math. SOC. 134(1968), 503 -525.
[ 71
G. LEHA, Relative Korovkin-Satze und Rsnder, Math. (1977), 87 - 95.
[ 81
G. LEHA and S . PAPADOPOULOU, Nachtrag zu “G. Leha: Relative Korovkin-Satze und RZnder ” Math. Ann. 233(1978) , 273-274.
91
Ann.
229
.
Y. A. ;ASKIN, The Milman-Choquet boundary
and approximation theory, Funct. Anal. Appl. 1(1967), 170 -171.
Approdmation Theory and Functional A ~ ~ ~ l y e i e J.B.
ProlZa ( e d . )
0 North-Holland Publishing Company, 1979
A REMARK ON VECTOR-VALUED
APPROXIMATION ON COMPACT
SETS, APPROXIMATION ON PRODUCT SETS, AND THE APPROXIMATION PROPERTY
KLAUS
-
D.
BIERSTEDT
FB 1 7 d e r GH, Mathematik, D2-228 Warburger S t r . 1 0 0 , P o s t f a c h 1 6 2 1 D-4790 Paderborn Germany (Fed. Rep.)
INTRODUCTION
A f t e r Grothendieck [ 211
,
a l o c a l l y convex ( 1 . c . )
space
s a i d t o have t h e apptoximation phopehty ( f o r s h o r t , a . p . ) i f the identity
idE
precompact s u b s e t of
of E
E
is
E
i f andonly
can be approximated u n i f o r m l y
on
by c o n t i n u o u s l i n e a r o p e r a t o r s from
every into
E
E of f i n i t e r a n k ( i . e . w i t h f i n i t e d i m e n s i o n a l range).lvlany " c o n c r e t e "
1.c. s p a c e s are known t o have t h e a . p . , (1972)
, with
b u t a countehexampLc?
s u b s e q u e n t r e f i n e m e n t s due t o Figiel,Davie, and Szankmski,
shows t h a t t h e r e a r e even c l o s e d subspace o f each
EndLo
06
lP w i t h o u t
a . p.
for
p 2 1, p # 2 . I n connection with t h e a.p.,
a c r i t e r i o n due
to
L.
Schwartz
1 2 6 1 i s v e r y u s e f u l : Schwartz i n t r o d u c e s f o r two L . c . s p a c e s E and
F
t h e i r E-ptroduc-t by E E F := Le(FA
where
Fk i s t h e d u a l of
on precompact subsets of
,E ) ,
F w i t h t h e topology of uniform convergence F and where t h e s u b s c r i p t e on t h e 37
space
BIERSTEDT
38
E(F;,E)
of a l l c o n t i n u o u s l i n e a r o p e r a t o r s from FA i n t o E i n d i c a t e s
t h e t o p o l o g y of uniform convergence on t h e e q u i c o n t i n u o u s s u b s e t s of F'
.
F are q u a s i - c o m p l e t e ,
E and
If
o n e c a n e a s i l y show E E F S F E E ,
E E F o f t w o complete s p a c e s E and F i s oanplete
and t h e € - p r o d u c t
( c f . [26]). Moreover, t h e E - t e n n o h p h o d u c t
[21 1 i s a t o p o l o g i c a l s u b s p a c e o f ctitenion
60t
t h e a.p.
I26
E BE F
of
Grothendieck
E E F. W e c a n now f o d a t e SchwatLtz'b
, Proposition
11, c f . a l s o 131, I,
3.9,
and [ 8 ] ) :
THEOREM (L. Schwartz) :
id and o n l y id L.c.
bpace F
T h e quahi-complete L . c .
i n denbe i n
E 0 F
equivalently,
(at,
and F ahe complete l . c . get:
bpaCeb
E EF
doh
bpace E ha4 t h e a . p .
d o h each ( q u a s i - ) c o m p l e t e
each Banach Apace F ) . S o id
buch t h a t E o h F han t h e a . p . ,
V
E E F = E BE F, t h e c o m p l e t i o n 06 t h e E - . t e M b O t phoduct
( w h i c h we w i l l
UehO
caLC,
doh
E
we
E QE F
b h a h t , c o m p l e t e E-tenboh p h o d u c t ) .
I n f a c t , t h e a p p l i c a t i o n s of t h i s theorem, s a y , i n t h e c a s e o f f u n c t i o n s p a c e s E d e r i v e from t h e remark t h a t t h e "abstract"operator space
E
E
F
c a n u s u a l l y be i d e n t i f i e d w i t h a
F-valued f u n c t i o n s " o f t y p e E "
. And
E QE F
"concrete"
i s t h e s p a c e of
responding" f u n c t i o n s w i t h f i n i t e dimensional ranges i n proof of t h e a . p .
of
E
space
F.
of
"cor-
Hence
is t h e n e q u i v a l e n t t o t h e approximation
a of
c e r t a i n F-valued f u n c t i o n s by f u n c t i o n s w i t h v a l u e s i n f i n i t e dimens i o n a l s u b s p a c e s o f F f o r e v e r y ( q u a s i - ) complete L . c . o n l y f o r e v e r y Banach s p a c e F ,
space
F
or
a r e s u l t which i s o f i n t e r e s t i n b o t h
directions.
I n t h i s a r t i c l e , w e w i l l g i v e some ( r a t h e r s i m p l e ) new examp.h o f how t o a p p l y S c h w a r t z ' s theorem t o f u n c t i o n s p a c e s
more
general
t h a n , b u t e s s e n t i a l l y s i m i l a r t o t h e well-known u n i f o r m a l g e b r a s H(K) and
A ( K ) on compact s u b s e t s
K of
CN (N '1).
More p r e c i s e l y , we deal
h e r e w i t h s p a c e s of c o n t i n u o u s f u n c t i o n s on a compact
set K
which
VECTOR-VALUED
APPROXIMATION O N COMPACT SETS
39
e i t h e r are u n i f o r m l y a p p r o x i m a b l e by f u n c t i o n s b e l o n g i n g ,
t o a g i v e n bubbheah
sets U c o n t a i n i n g K ,
F of t h e s h e a f
c o n t i n u o u s f u n c t i o n s o r have r e s t r i c t i o n s b e l o n g i n g t o terior
$
of
on
open
C of a l l
F on t h e i n -
K.
In
The genehue d i t u a t i o n i s t h e s u b j e c t of s e c t i o n s 1 a n d 2 .
s e c t i o n 1, the v e c t o r - v a l u e d case i s c o n s i d e r e d , w h i l e s e c t i o n 2deals w i t h "slice product''
-
r e s u l t s (on p r o d u c t s e t s ) . F i n a l l y , i n s e c t i o n
3 , w e look a t some o f t h e m o t i v a t i n g exampeed and s u r v e y
the
known
r e s u l t s ( a n d their r e l a t i o n s ) i n t h i s case.
So, i n a s e n s e , t h i s p a p e r i s b a s e d on a g e n e r a l i z a t i o n o f t h e author's old article ( 2 1
and m o t i v a t e d , among o t h e r t h i n g s , by
the
more r e c e n t a r t i c l e [27] o f N . Sibony: W e show t h e c o n n e c t i o n of sane of Sibony's r e s u l t s with topological tensor product theory and t h e a . p . o f t h e s p a c e s of s c a l a r f u n c t i o n s i n q u e s t i o n . The o f t h i s p a p e r w i l l be combined w i t h t h e t e c h n i q u e o f o f t h e a.p.
with
results
"localization"
f o r s u b s p a c e s of w e i g h t e d Nachbin s p a c e s ( c f . [ 5 1 and [lo])
i n a s u b s e q u e n t p a p e r t o y i e l d new examples o f f u n c t i o n s p a c e s mixed t y p e " w i t h a . p .
"of
and t o demonstrate a p p l i c a t i o n s of t h e l o c a l
-
i z a t i o n p r o c e d u r e i n some c o n c r e t e cases.
ACKNOWLEDGEMENT:
The a u t h o r g r a t e f u l l y acknowledges
,support
under
t h e GMD/CNPq a g r e e m e n t d u r i n g h i s s t a y a t UNICAMP July-September1977 w i t h o u t which i t would n o t h a v e been p o s s i b l e t o a t t e n d t h i s Confere n c e i n Campinas. I would a l s o l i k e tothank J. B . P r o l l a f o r h i s
con-
s t a n t i n t e r e s t i n my c o n t r i b u t i o n t o t h e s e P r o c e e d i n g s . A s everybody can see i m m e d i a t e l y , p a r t o f t h e r e s u l t s i n t h i s a r t i c l e d a t e s
(at
l e a s t ) back t o t h e t i m e when t h e j o i n t p u b l i c a t i o n [lo 1 was p r e p a r e d . So t h e a u t h o r t h a n k s B. Gramsch and R. Meise f o r many v e r s a t i o n s and remarks i n t h i s c o n n e c t i o n .
helpful
con-
EIERSTEDT
40
CASE
1. THE GENERAL VECTOR-VALUED Let
and
X be a c o m p l e t e l y r e g u l a r ( H a u s d o r f f ) t o p o l o g i c a l
space
F a c l o h e d .LocaL.Ly convex ( L . c . 1 bubdhead of t h e s h e a f Cx of a l l o r complex
continuous ( r e a l open s u b s e t
v a l u e d ) f u n c t i o n s on
C ( U ) w i t h t h e compact-open
f i c i e n t to r e q u i r e
t o p o l o g y c o . I n f a c t , i t would be
F to be a
p t e a h e a 6 o n l y , and w e p r e f e r
presheaf n o t a t i o n throughout t h i s paper. compare [ 9 1 and [ 101
Let
.A
+.
of our
F a s above was called "ahead
sheaf
use
notation 06
F-matpkic
E always d e n o t e a q u a s i - c o m p l e t e locally convex ( H a u s d o r f f ) W e w i l l always assume t h a t
C).
t h a t any f u n c t i o n
f : X
( F o r some
to
suf-
I.)
space ( o v e r R o r i.e.
foreach
i.e.,
X, F ( U ) i s a c l o s e d t o p o l o g i c a l l i n e a r subspaceof
U of
dunc-tianh" i n [ 9
X,
f : X
+.
X
IR ( o r , e q u i v a l e n t l y ,
i s a kR-space, any
function
Y, Y any c o m p l e t e l y r e g u l a r s p a c e ) i s c o n t i n u o u s i f and only
i f the r e s t r i c t i o n of
t o e a c h compact s u b s e t o f
f
X
i s continuous.
(Each l o c a l l y compact o r m e t r i z a b l e s p a c e , a n d , more g e n e r a l l y , e a c h k-space is also a KIR-space,
km-space.)
c
U C X
c f . B l a s c o [12], and hence t h e s h e a v e s
p l e t e , i.e. the spaces
u
Then each open
( C ( U ) , C O ) and
Cx
is
again
a
and F are com-
F ( U ) a r e complete f o r e a c h open
x. Under t h e s e a s s u m p t i o n s , t h e r e e x i s t s ( c f . 110 1,1.5) the '!E-vdutd
ahead
FE
06
=
F", namely, f o r any open
U in
X,
t h e s p a c e o f a l l c o n t i n u o u s E-valued f u n c t i o n s which s a t i s f y e ' o f with t h e topology
subsets of
U
E
F ( U ) f o r each
e' E E ' ,
f
on U
endowed
c o of uniform convergence on ccmpct
( c f . 1 3 ) and
151 ),
and t h e c o n o n i c a l r e s t r i c t i o n mappings of t h e s h e a f
FE a r e j u s t t h e
VECTOR-VALUED APPROXIMATION ON COMPACT SETS
o r d i n a r y r e s t r i c t i o n s o f f u n c t i o n s . FE sheaf
:C
41
i s a c L a b e d subsheaf of
of a l l c o n t i n u o u s E-valued f u n c t i o n s on
X.
I n o u r d e f i n i t i o n and i n some of o u r r e s u l t s below, h e l p f u l t o keep t h e f o l l o w i n g m o t i v a t i n g examples F-morphic f u n c t i o n s i n mind ( c f . a l s o [ 9
( i i ) X open i n
of
it may
be
F of
sheaves
1 and [lo] for mre examples) :
1. EXAMPLES: ( i )X = complex monifold or j u s t o f holomorphic f u n c t i o n s on
the
11, F=O=sheaf
CN (I?
XI
(n 2 1) , L = P(x,D) a ( l i n e a r ) h y p o e l l i p t i c
IRn
d i f f e r e n t i a l o p e r a t o r w i t h Cw-coefficients,and F = t = s h e a f of n u l l s o l u t i o n s o f L , i . e .
f o r any any open
U i n X.
N ~ ( u )= I f
and by
C"(U)
c"(u); (LI
U)frOI
(The c l o s e d graph theorem
F r g c h e t s p a c e s i m p l i e s t h a t , on N,(U), duced by
E
for
t h e topologiesin-
c o c o i n c i d e and hence t h a t N ( U )
L i s a c l o s e d t o p o l o g i c a l l i n e a r subspace o f (CCU), c o ) .)
E s p e c i a l l y , the sheaf
X
of harmonic f u n c t i o n s on
IRn
satisfies
a l l a s s u m p t i o n s o f 1. (ii)above, and a l s o t h e "harmonic s h e a v e s " o f a b s t r a c t p o t e n t i a l t h e o r y are s h e a v e s of F-morphic f u n c t i o n s .
All
t h e s h e a v e s of example 1. a r e (FN)-sheaves.
2.
For a compact s u b s e t K o f
DEFINITION: (i)
X I we d e f i n e :
C ( K , E ) := t h e s p a c e o f a l l c o n t i n u o u s E - v a l u e d
functions
on K w i t h t h e topology of uniform convergence on K , (ii) A F ( K , E )
:= i f E C ( K , E ) ;
i.e. ( i i i )H F ( K , E )
{f
E
:=
e'of
I
I f(EFE(Ei)r
f
K
E
the closure i n
C(K,E);
(depending on
0
F ( K ) f o r e a c h e'E E ' } , and C ( K , E ) of
t h e r e e x i s t s an open neighbourhood f ) and a f u n c t i o n
g
c o n t i n u o u s and e ' o g E F(U) for any
e'E
E
U of
K
E
F ( U ) [ i . e . g: U + E
El] such t h a t g
iK
=f
1.
BIERSTEDT
42
h o l d s , and b o t h are closed s u b s p a c e s of C(K,E) which
C AF(K,E)
HF(K,E)
w e endow w i t h t h e topology o f uniform convergence on K ( i n d u c e d C(K,E)).
If
E =
IR o r
by
w e w r i t e C ( K ) , A F ( K ) , and H F ( K ) , r e s p e c -
C,
tively. NOW, of c o u r s e , i f
and
HF(K,E)
i s complete, a l l t h e spaces C(K,E), AF(K,E),
E
are complete, t o o . The e q u a t i o n
quasi-complete
E i s well-known
(cf. [ 3
for
= E EC(K)
C(K,E)
1 ) , and, once t h i s e q u a t i o n is
w e l l - u n d e r s t o o d , t h e proof of t h e f i r s t p a r t of t h e f o l l o w i n g r e s u l t
i s c l e a r (see e . g .
1 or
[ 3
a r b i t r a r y subspace of
f o r a d e s c r i p t i o n of
[5]
C(K),
an
E EF, F
from which o u r r e s u l t below
is
easily
derived, too) :
3 . THEOREM:
(1) A F ( K , E )
AF(K,E)
Hence
(2)
(oh,
= E
m
V
aPEA F ( K ) h o l d s do& a&? complete
equiuaeently,
doh
t.c.
a l e 8 a n a c h J Apace4 E id and o n l y
hub t h e a.p.
AF(K)
id
= E EAF(K)
For t h e second p a r t of 3, S c h w a r t z ' s c r i t e r i o n for t h e a . p . t h e i n t r o d u c t i o n ) i s needed. I n o t h e r words, A F ( K ) h a s t h e and o n l y i f , f o r a r b i t r a r y Banach space with e ' o f on
K,
1
it
E
0
F ( K ) f o r any e'
each f u n c t i o n f E C ( K , E )
E,
may be approximated, uniformly
E E'
E
t h a t s a t i s f y e' o g
I
have t h e form g(x) =
E
if
by c o n t i n u o u s f u n c t i o n s g on K w i t h v a l u e s i n f i n i t e dimen-
s i o n a l s u b s p a c e s of
n
a.p.
(in
n
C eigi(x) i =1
IN f i n i t e (depending on g ) , ei
E
f o r complete t . c . E . )
E
F(I?),
for all
E, and
(Remark t h a t such a n approximation w i t h p o s s i b l e by t h e a.p.
K
gi
gi
x
E
oney
o f C ( K ) and by t h e e q u a t i o n
t o o , and
E
hence
K;
AF(K)
, i = l , ... , n . is
UeWayb
C(K,E) = E
aE C(K)
E
C(K)
V
VECTOR-VALUE0 APPROXIMATION ON COMPACT SETS
As t o t h e a . p . o f t h e c o r r e s p o n d i n g s p a c e
43
HF(K), the situation
t h e r e i s , i n some s e n s e , j u s t t h e o p p o s i t e :
We U b b U m e t h a t , d o h some b a b i b
4.
THEOREM:
K,
F ( U ) hub t h e a . p .
d o t each
U E UL
. [ Fah
le
neighbouhhoodb
06
06
I I ] b e L o w , we couLd a l b o
i n b t e a d t h a t E hub t h e a.p.1
UbbUme
Then
(1)
06
E QE H F ( K ) i b a denne topoLogicnL [ i f l e a n .
and hence
HF(K,E),
hoedo w h e n e u e t E (2)
compLete.
i b
has t h e a s p . id and onLy id, doh each
ConsequentLy
HF(K)
compeete L . c .
( o h each B a n a c h ) bpace
HF(K,E)
= {f E C ( K , E ) ;
thehe exints
nubbpace
UM
d o h each
e'
open n e i g h b v u h h o o d
E
E
,
E'
and e a c h
U = U(e',E)
E
06
> 0
Kaod
g = g ( e ' , E ) E F ( U ) buch t h a t
a 6unction
E BE C ( K ) i s a t o p o l o g i c a l l i n e a r subspace o f C ( K , E )
and
PROOF:
As
as t h e
E - t e n s o r p r o d u c t p r e s e r v e s t o p o l o g i c a l l i n e a r s u b s p a c e s , only E Q HF(K)
d e n s i t y of
s e r t i o n . So l e t f E HF(K,E). function
g
s&watz's
must b e v e r i f i e d f o r t h e f i r s t a s -
p be a c o n t i n u o u s seminorm
E
FE(U)
such t h a t
= E
on compact subsets o f
a,
HF(K,E)
on
E,
By d e f i n i t i o n , t h e r e e x i s t s a n open s e t
definition, FE(U)
U E
in
E
F(U)
m~ p ( f ( x )
-
g(x))
0
u 3 K and $. B u t , a g a i n
and
a by
( w i t h t h e t o p o l o g y o f uniform convergence
U). W i t h o u t l o s s o f g e n e r a l i t y , w e may assume
and hence t h e a.p.
of
F ( U ) or o f
E and o n e
theorem from t h e i n t r o d u c t i o n imply t h a t
direction
of
E 0 F ( U ) i s dense
44
EIERSTEDT
5.
E 4 F ( U ) w i t h s u p p(g(x)- h ( x ) ) < xCK Now h l K E E d H F ( K ) h o l d s and s u p p ( f ( x ) h ( x ) ) < E , which p r o v e s XEK t h e r e q u i r e d d e n s i t y of E @ H F ( K ) i n HF(K,E).
i n FE(U). Therefore we can f i n d h
E
-
( 2 ) i s t h e n c l e a r from S c h w a r t z ' s c r i t e r i o n because t h e
on t h e r i g h t hand s i d e of t h e e q u a t i o n i s n o t h i n g b u t
a close look w i l l i m m e d i a t e l y r e v e a l .
E
E
space
-
HF(K)
as
0
I n other wordsl i t i s adwayd t r u e ( u n d e r t h e a s s u m p t i o n of t h a t a function
f E C ( K , E ) which can be a p p r o x i m a t e d u n i f o r m l y on K
FE
by f u n c t i o n s e x t e n d i n g t o e l e m e n t s o f K may a l s o b e a p p r o x i m a t e d u n i f o r m l y on
h(x) =
n
Z
i=l
n E IN f i n i t e (depending on But t h e a . p .
eihi(x)
on open neighbourhoods of
K by f u n c t i o n s of t h e form
for a l l
x
E K;
..., n .
ei E E l a n d
h)
gi E HF(kI1 i =1,
HF(K) is equivalent to the f a c t t h a t , f o r a r b i t r a r y
of
Banach s p a c e E l e a c h f u n c t i o n given any
4)
e' E Eq1 e' o f
f E C(K,E) with the property
K
by
( s c a l a r ) f u n c t i o n s b e l o n g i n g t o F on open sets c o n t a i n i n g K i s
al-
ready an element of
may b e a p p r o x i m a t e d u n i f o r m l y
i . e . can be approximated u n i f o r m l y
HF(K,E),
K by E-valued f u n c t i o n s b e l o n g i n g t o Or,
F
E
on open s e t s c o n t a i n i n g
t o p u t i t this wayl H F ( K ) h a s t h e a.p.
Banach s p a c e E and an a r b i t r a r y f u n c t i o n e x i s t s f o r any
E
e' o g o E F(Uo)
I (e'
0
REMARK:
f ) (x)
> O , unidahmly f o r a l l U
E l I an open s e t
0
3
K
for each
- (e'
and a f u n c t i o n
e ' E Ei
o g o ) ( x ) ]
0
E
and a f u n c t i o n
x K2
W i t h o u t l o s s of g e n e r a l i t y w e may assume
g E (F1
U = U
E
x U2
F 2 ) ( U ) s u c h that
with
Ui E UI
( i= 1 / 2 1 , a n d h e n c e
F1(U1)
by S c h w a r t z ' s t h e o r e m , b e c a u s e there exists
h
E
F1(U1)
8 F2(U2)
F2(U2)
or
f E A F ~F,(K~
XK2)
,
y i e l d c o n t i n u o u s l i n e a r mappings of The c h a r a c t e r i z a t i o n o f 6 implies
v
I1(gl)
C
I1 : t K
A F ~F , ( K ~ x
A F ( ~K 2 )
-
and
h a s t h e a.p. fien
such t h a t
( 2 ) Notice t h a t , by t h e i d e n t i t y C ( K 1 x K 2 )
for arbitrary
+
=C(K1,C(K2))=C(K2,C(Kl))r
f ( t , * ) resp.12:x
0
12(K2)
C A F ~ ( K ~ a) n d
0
(1) 14
A F , (Ki) 1
= H
Fi
t h e b e b p a c e n hub -the a . p . ,
f(.,x)
hence also
C
8. COROLLARY:
+
r e s p . K 2 i n t o C(K2) resp. C(K1). 1 K2) a t t h e e n d o f t h e proof of
and 1 2 ( K 2 ) C A ( K 1 ) . So, f o r f a t s e t s K1 AF ( K 2 ) 2 F1 t h e a s s e r t i o n f o l l o w s i m m e d i a t e l y from 6 . (1).o
I1(K1)
1
(Ki)
(i = 1 , 2 ) hoLdb a n d
t h e n we o b t a i n
and K 2 ,
one
04
VECTOR-VALUED APPROXIMATION ON COMPACT SETS
nets (2) H
(K1
F1
K2.
and
K1
x
han t h e a . p .
K2)
F2 have -the a . p .
( 3 ) 1 6 K1
have t h e a . p . ,
AFl
wheneve& both H
F1
(K ) and H ( K )
F2
id b o t h
ahe 6 a t and
K2
and
61
F2(Kl
AF2 (K2)
han t h e a s p . , t o o .
xK2)
(1) i s clear from S c h w a r t z ' s t h e o r e m , 6 . ( 3 ) , a n d 7 . ( 2 ) .
PROOF:
(2)
and ( 3 ) f o l l o w from 7 by a i d of t h e r e s u l t ( S c h w a r t z [ 2 6 ] , P r o p o s i t i o n 11, C o r o l l a i r e 2 ) t h a t t h e € - p r o d u c t of two compete L . c .
a.p.
spaces with
a l s o e n j o y s t h e a.p. I n d u c t i o n on I a n d 8. (1) u s i n g , among o t h e r ( o b v i o u s ) t h i n g s ,
t h a t f i n i t e E - p r o d u c t s are U h A o C i a t i W e a n d t h a t E - p r o d u c t s of carrplete
spaces w i t h a . p . are a g a i n spaces w i t h a.p.
9 . COROLLARY: with
x1
nheaveb
...
x
OA
xn
x
-
c xll..
hen p e c t i v e l y
.
.,Xn
X1,..
Let
be c o m p l e t e l y h e g u l a h (H~~.4li0h,46) bpaCeA
a klR-npace,
,
'CXn
d o h each
F1,
bet
.. ,Kn
K1,.
and
(1) L e t , d o h name banid Ui have t h e a.p.
y i e l d s now:
, . . , Fn compact
hubbe&
06
06
neighbouhhoodn 0 6
Ki
Ui
E
Uli
( i=1,
a t mod2 one i) o h l e t a l e b u t one have t h e a . p . H
F1
E
...
Fn
(K1 x
H
name h o l d b d o h LCZ U e e t h e b e t 6
A
F1
E
...
H
Fi
... , n
X1 ,
...,Xn
,
Fi(Ui)
except ( i=1,
(Ki)
...
604
n)
Then
... x K H
i n t h u e , and id aLl
(2)
be c l o n e d l . c . nub-
Fn
(K1
F1
E
Fi
(Ki)
...
K1,... x
=H
...
Frl ,Kn
x
F1
(K1)
( i= 1 . . . , n )
(K1
x
.. .
have t h e a . p . , Zhe
x Kn)
.
be bat. Th e n
Kn) = A F (K1)
1
E
...
E
AFn(Kn)
BIE RSTEDT
62
hoRdn t h u e , and id aLL t h e bame h o l d s d o h
E
E
(Ki)
(i = 1 ,
...
i=l,.
...
Fn
(K1
X
. ..
x
= H
F1
E
mod?
...
have t h e u . p . ,
x Kn).
AFi ( K i ) =HF i (K.11-
be dat and
Ki
Kn)
... , n )
..-
at.! t h e d e dpaced ( e x c e p t do& at
16 t h e n
F1
A Fl
Fi
..,n ,
( 3 ) L e t , doh each
A
A
oneJ have t h e a.p.,
Fn
(K1 x
.. . x Kn)
ib valid, too. F o r t h e c o r r e s p o n d i n g s p a c e s o f f u n c t i o n s w i t h values i n a quasicomplete .t.c. s p a c e E
(1) L e t
1 0 . COROLLARY: A
F1
E
...
s e c t i o n 1), we g e t e . g . :
(see
,...,K n
K1
Fn
(K1 x
be dat. Then
. .. x K n l E )
= E € A F (K1)
1
E
.. .
in t t u e . bouhhoods
06
.., n ) .
( i=1,.
H F1 i d
m i 06
E be compeete and l e t , d o h borne babio
( 2 ) Let
E
...
Fn
K~
Fi(Ui)
I
neigh-
h a v e t h e a s p . doh e a c h
Ui
E
Lzi
Then
(K1 x
.. . x K n , E )
=E
./eE H F
U
(K1) BE
1
. .. BE H Fn(K V
)
uaLid.
( 3 ) L e t E be c o m p l e t e , l e X Ki b e bat and A
.., n .
e a c h i =1,.
have t h e a . p .
T h e n id a L l t h e b p a c e b
( i =1,.
.. , n )
(Ki) Fi
A
Fi
= H F . (Ki) doh 1
(Ki)
=HF
i
(Ki)
I
holds, too.
PROOF:
(1) is a consequence of 3 . (1) and 9. ( 2 ) . Let u s remark t h a t ,
under the h y p o t h e s i s of ( 2 1 ,
(F1
E
.. .
E
Fn) ( U ) ( a s c - p r o d u c t of ample&
VECTOR-VALUE0 APPROXIMATION ON COMPACT SETS
spaces with a.p.) up
s a t i s f i e s the a.p. :=
IU,
of neighbourhoods of
x
... x Un
K1
;
Ui
... x K n
x
f o r each
i n the basis
( i =l,.
Uli
6
U
53
., n ) 1
Hence ( 2 ) follows from 4 . (1) and
9 . ( 1 ) . F i n a l l y ( 3 ) i s i m p l i e d by 9 . ( 2 ) , ( 3 ) and by t h e remark a t t h e
v e r y end o f s e c t i o n 1.
0
3. DISCUSSION OF THE MOTIVATING EXAMPLES
I n t h i s f i n a l s e c t i o n , w e w i l l look a t some o f t h e known results i n t h e case of o u r m o t i v a t i n g examples o f s h e a v e s F ( c f . 1 above) a n d
w i l l p o i n t o u t t h a t , between s o m e theorems i n t h e l i t e r a t u r e , s t r o n g It is
r e l a t i o n s f o l l o w from o u r p r e v i o u s d i s c u s s i o n . here to survey
not
intended
aLL t h e r e l e v a n t a r t i c l e s , b u t we w i l l r a t h e r i l l u s -
t r a t e some of t h e ideas which m i g h t p l a y a r b l e , when one t r i e s
to
a p p l y t h e r e s u l t s of s e c t i o n s 1 and 2 , by s p e c i f i c examples. P e r h a p s t h e case most p e o p l e have b e e n i n t e r e s t e d i n i s
F
=o,
the nucLeah F r g c h e t s h e a f o f holomorphic f u n c t i o n s on a complex manifold
X . F o r s i m p l i c i t y , however, w e w i l l o n l y d e a l w i t h h o l o m o r p h i c
f u n c t i o n s on of sheaves
X = CN (N 2 1) h e r e .
I t i s c l e a r t h a t f i n i t e ~-prcducts
I) are n o t h i n g b u t t h e c o r r e s p e n d i n g s h e a f
u c t a n d that, f o r a n y q u a s i - c o m p l e t e L.c.
s p a c e E , OE
F
s h e a f o f E-valued holomorphic f u n c t i o n s . When for short, A(K,E)
, H(K,E)
i n s t e a d of
0 on t h e prod-
AF(K,E)
,
=o,
is j u s t
we w i l l
the
write,
HF(K,E), respectively.
F = O , some o f the r e s u l t s i n s e c t i o n s 1 and 2 are
appar-
e n t l y p a r t o f t h e “ f o l k l o r e “ of t h e subject, b u t u s u a l l y n o t
easily
For
e have a l r e a d y p o i n t e d o u t i n t h e i n accessible i n the l i t e r a t u r e : W t r o d u c t i o n t h a t this p a p e r i s b a s e d on a g e n e r a l i z a t i o n of t h e “ o l d ”
article [ 2 1 .
L a t e r on ( i n [ 1 ]
c l o s e d s u b s p a c e s of
C(K)
,
K
,
s e c t i o n 1), 0. B. Bekken l o o k e d
at
compact, w i t h the so-called “Afice p t o p U t y ”
64
BIERSTEOT
A f t e r the p r o p r change
and showed t h a t t h i s p r o p e r t y i m p l i e s t h e a . p .
of n o t a t i o n and some i d e n t i f i c a t i o n s ( u s i n g t h e f a c t t h a t e a c h Banach space is a c l o s e d subspace o f
f o r some compact K ' ) h i s r e s u l t s
C(K')
there a r e q u i t e s i m i l a r t o o u r theorem 3 ( f o r Banach s p a c e s E ) . s e c t i o n 3 of [ 1 ]
,
(making u s e o f t h e n u c l e a r i t y o f
In
Bekken obtains
(1)
a p r o p o s i t i o n r e l a t e d t o ( b u t somewhat weaker t h a n ) o u r theorem
4.
For a d e t a i l e d account of t h e r e l a t i o n of t h e slice p r o p e r t y w i t h t h e a . p . and t h e consequences of a theorem o f Milne i n t h i s see a l s o [ 6
connection,
I. we
A s u s u a l w i t h s p a c e s o f holomorphic f u n c t i o n s ,
s p l i t up o u r d i s c u s s i o n f o r t h e cases
N =1 and
N22. If
must
now
i.e.
N = l
K i s a compact subset of t h e complex p l a n e , t h e problem i s completely
s o l v e d : A ( K ) and
H ( K ) have t h e n atLoayn t h e a . p .
(whereas i t r e m a i n s
a n o p e n p h o b l e m w h e t h e r e v e n t h e Banach a l g e b r a
H m ( D ) o f a l l bounded
D e n j o y s t h e a . p . Fanark
holomorphic f u n c t i o n s on t h e open u n i t d i s k t h a t the a.p. i a l !).
of t h e d i s k a l g e b r a
A(;)
=
H(6)
is really quite triv-
T h i s i n t e r e s t i n g r e s u l t i s due t o t h e j o i n t e f f o r t o f several
p e o p l e ( a n d a l s o , u n f o r t u n a t e l y , n o t e a s i l y a c c e s s i b l e i n the l i t e r a t u r e i n i t s f u l l generality) : E i f l e r [171 6 for
H ( K ) , and Davie [151 f o r
A(K)
r e s u l t s ) . More g e n e r a l l y , Gamelin
,
Gamelin-Garnett [19],secticn
u e c t o h - UaLued
( t h e y a l l use
[ 181, s e c t i o n 12
has pointed
out
t h a t t h e c o n s t r u c t i v e t e c h n i q u e s (and t h e a p p r o x i m a t i o n scheme)
of
Mergelyan and V i t u s h k i n show t h a t t h e s o - c a l l e d "T-inuahiant"algebras have the a . p . A s t o
A ( K ) = H ( K ) i n t h e c a s e o f one v a r i a b l e l a neced-
s a h y and b u d d i c i e n t
c o n d i t i o n ( i n v o l v i n g COntinuouA andyx%
was g i v e n by V i t u s h k i n , see e . g . For
[19]
and [ 2 9 ] .
N z 2 , t h e r e are o n l y p a h t i a l r e s u l t s . Remark f i r s t
by a n example o f D i e d e r i c h and F o r n a e s s , there e x i s t s compact domain G of holomorphy i n A(K)
#
H(K)
capadty)
for
K =
c.
1CN
with
a
Cm-boundary
that,
relatively such t h a t
For a s u r v e y o f some r e l a t e d r e c e n t work
on
VECTOR-VALUED
t h e q u e s t i o n when
APPROXIMATION ON COMPACT SETS
55
A ( K ) = H ( K ) i n s e v e r a l complex v a r i a b l e s , we r e f e r
t o B i r t e l [111, and f o r r e s u l t s i n “ 6 i n i t e S. P a . C . m a n i d o e d n ” Rossi-Taylor [ 25
1.
I t i s known now t h a t
A(K)
lowing t y p e s of compact s e t s (i)
to
K c
f o r the fol-
( o r H ( K ) ) has t h e a.p.
cN:
i s t h e c l o s u r e of a a t f i i c t ~ yp a e u d o c o n v e x k e g i o n w i t h
K
s u f f i c i e n t l y smooth ( s a y , C 3 -1
boundary, o r :
i s t h e c l o s u r e of a heguLan WeiL p o t y e d e h .
(ii) K
Both c o n d i t i o n s imply K f a c t ( t r i v i a l l y ) , and
(in
A(K) =H(K)
c a s e ( i ), t h i s approximation theorem i s due t o Henkin-Lieb -Kerzman, i n c a s e ( i i ) ,i t i s a r e s u l t of P e t r o s j a n ) .
( i )was proved
e.g.
in
Bekken 11 1 , s e c t i o n 2 , a p p l y i n g a v e c t o r - v a l u e d v e r s i o n of Henk n ’ s s e p a r a t i o n o f s i n g u l a r i t i e s r e s u l t . I t a l s o f o l l o w s from Sibony P r o p o s i t i o n 4 ( i n view of o u r C o r o l l a r y 5 ) . Sibony [ 2 7 ]
,
p. 1 7 3
a l s o remarked t h a t P e t r o s j a n ’ s arguments may be m o d i f i e d A(K,E)
= H(K,E)
f o r each F r s c h e t s p a c e E i f
K
to
is the closure
271, has
yield of
a
r e g u l a r W e i l p o l y e d e r , and hence ( i i ) f o l l o w s a g a i n from ourCorollary 5.
The method of ‘ Y o c a L i z a t i a n
REMARK:
tio n spaces ( c f . [ 5 t h e a.p.
1 and
06
t h e a.p.”
for certain
[ 1 0 ] ) may be used t o show t h a t
f o r compact sets K ’ t h a t a r e “ s u f f i c i e n t l y w e l l ”
func-
A ( K ’ ) has
didjoint
UMionb of s e t s K a s above and t h a t some r e l a t e d f u n c t i o n s p a c e s h a v e the a.p.
,
too ( c f . [ 5 1 ,
Corollary 15)
,
b u t w e w i l l n o t go i n t o
de-
t a i l s here. L e t u s now e x p l i c i t l y s t a t e what w e g e t from t h e p r e c e d i n g res u l t s by a p p l y i n g o u r C o r o l l a r i e s 9 and 1 0 :
14. THEOREM: ( i = 1,.
.. , n )
(i)
(1) H(K) hub t h e a . p . id
eithen. a n y compact n u b b e t
06
C
oh
K = K1
x
... x K n
with
Ki
BIERSTEDT
56
(ii) t h e C l o A u h e a d
a b t h i c t C y pdeudoconvex k e g i o n w i t h
6 i c i e n t L g nmooth boundahg o h (2)
A ( K ) had t h e a . p .
06
a t e g u l a h Weil polyedeh.
undeh t h e name c o n d i t i o n n
i n ( 1 ) ( i ) ,a d d i t i o n a l t y , Ki t o be h a t . " " = A ( K ~ )aE ... QE A ( K n ) i n t h e n t h u e . (3)
H ( K ) = A ( K ) holdd
doh K = K 1
t i t h e h ( i )a 6a.t compact an
x
det
nub-
... x K n
heqLLitled
And
W,h%
i n a: w i t h
4 one
A(K)
=
...,n )
Ki ( i= 1 ,
H(Ki)
= A(Ki)
oh
i n ( I ) (ii) a b o v e .
L e t .then E b e an a h b i t k a h g c o m p l e t e 1 . c . n p a c e . (4)
Undeh t h e ahnumptionn o d ( 2 1 ,
(5)
Undek t h e annumptionb
06
( 3 1 , we h a v e
A(K,E)
= H(K
, E ),
too.
11. ( 3 ) i s r e l a t e d t o a r e s u l t of Weinstock [30 I ,
p . 812, where,
i n s t e a d of the assumption of a smooth boundary i n 11. (1)( i i ) ,he needs o n l y t h e s o - c a l l e d " n e g m e n t p h a p e h t y " o f K.
( W e i n s t o c k ' s methods a r e
q u i t e d i f f e r e n t , however.) A t t h i s p o i n t , a few remarks on p a p e r [ 271 a r e a l s o i n o r d e r ( i n c o n n e c t i o n w i t h
OLX
Sibony's
preceding results):
P r o p o s i t i o n 1 o f [ 2 7 1 i s , i n some s e n s e , e a s y , i f n o t t r i v i a l ,
a s o u r theorem 4 . ( 1 )
(and i t s simple p r o o f ) demonstrates: I t is
n e c e s s a r y t o invoke G l e a s o n ' s theorem a t t h i s p o i n t ; t h e w e l l n u c l e a r i t y ( o r even t h e a . p . )
of
not
- known
0 and s i m p l e t e n s o r p r o d u c t a r g u
-
ments s u f f i c e ! C o r o l l a i r e 3 of [ 2 7 ] c o r r e s p o n d s w i t h 7 . (1) and l0.Q) i n t h i s p a p e r . A s we have a l r e a d y n o t e d above,
however,
Sibony's
p r o p o s i t i o n 4 i s r e a l l y a Mon-thiWial? r e s u l t b a s e d on H e n k i n ' s mthod and i m p l i e s t h e a . p . of
A ( K ) i n c a s e ( i ) .Hence, by o u r C o r o l l a r y 5,
it i s ( e s s e n t i a l l y ) e ~ u i ~ a t e n t ot theorem 2.4 o f Bekken [ 1 1. Finally,
Corollaire 8 of [ 2 7 ] c o r r e s p o n d s w i t h o u r theorem 1 1 . ( 5 ) .
It should
p e r h a p s be p o i n t e d o u t t h a t , whereas p a r t o f S i b o n y ' s p r o o f s looks as
VECTOR-VALUED APPROXIMATION ON COMPACT SETS
57
though t h e y a r e b a s e d on theorems and methods which a r e j u s t t r u e i n h i s g i v e n d p e c i a l s i t u a t i o n , i t t u r n s o u t from o u r d i s c u s s i o n t h a t what i s r e a l l y needed i s o n l y a p r o o f o f t h e a . p .
above
o f A(K) ( = H ( K ) )
t o make e v e r y t h i n g work, even i n many u t h e h cases.
W e turn t o sheaves
F of harmonic f u n c t i o n s o r , more g e n e r a l l y ,
of n u l l - s o l u t i o n s o f h y p o e l l i p t i c d i f f e r e n t i a l o p e r a t o r s w i t h Cm-meff i c i e n t s now. These a r e a g a i n n u c l e a r F r g c h e t s h e a v e s , a n d h e n c e o u r
F h a s t h e a . p . i s c e r t a i n l y s a t i s f i e d . For nuclearity
assumption t h a t
of the sheaves i n axiomatic p o t e n t i a l theory, c f . Cornea 1 1 4 1 ,
Constantinescu-
5 11.
I n t h i s case, w e w i l l assume f o r t h e moment t h a t
s e t K i s t h e c l o s u r e o f some open s u b s e t
U of
X
for
AF(K):
F
,
i . e . f o r each with
f E AF(i) L :f
+
f
I au
g E C(aU) there e x i s t s
I f w e suppose that
i s b i j e c t i v e from
f o r functions i n
AF(K) onto
A F ( K ) w i l l imply t h a t
c e r t a i n l y h a s t h e a.p.
result that
L :f
+
dpace w i t h a . p . o f closed set
K'
621/2,
the
function
C(3I.l) and h e n c e y i e l d s a
C aU)
L
( A maximum p r i n c i p l e
i s e v e n a n i d u m e t h y . ) Then
I n f a c t , i t would be enough f o r s u c h
flK,
is bijective from
C(K')
f o r some c l o s e d subset K '
.
Let f o r instance t i o n s on
unique
to
f l a u = g , t h e c o n t i n u o u s l i n e a r r e s t r i c t i o n mapping
t o p o l o g i c a l isomorphism of t h e s e Banach s p a c e s .
AF(K)
a
fat).
comp.leteLy x7~Lv.L-
U is a hegulak set for t h e DihiehLet phoblem with r e s p e c t
sheaf
compact
(and hence
A v e r y n i c e phenomenon may o c c u r h e r e which y i e l d s a a t s o l u t i o n t o t h e question of t h e a.p.
the
F be t h e s h e a f
AF(K) onto
of
a cLodsdbubK
(say,
JC of ( r e a l ) haamonic
R" ( n 1. 2). W e refer e . g . t o Ho-Van-Thi-Si
a
a
func-
[ 2 2 ] , p. 617/8,
6 2 6 , 637 f o r c o n d i t i o n s c o n c e r n i n g , s a y , t h e e q u a l i t i e s (i)
= HJC(K)
+(K)
(ii) +(K)
I aK
ciple,
,
and
( o r , e q u i v a l e n t l y , by t h e maximum prin-
= C ( aK)
L : +(K)
+
C ( 3 K ) b i j e c t i v e and i s o m e t r i c ) .
BIERSTEDT
68
L e t u s o n l y n o t e t h a t i n g e n e r a l a s u i t a b l e ( o u t s i d e ) cone con-
d i t i o n i m p l i e s b o t h ( i ) and ( i i )and t h a t , i n t h e case
n =2,
(ii)are v a l i d for a compact set K such t h a t e a c h p o i n t
x
E
( i )and aK
is
a boundary p o i n t of a c o n n e c t e d component o f t h e complement o f K . So then
= HX(K)
Ax(K)
has the a.p.
W e a l s o r e f e r t o Weinstock [ 311 f o r r e s u l t s on
f o r sheaves
AF(K)
F = NL (on Rn) o f n u l l s o l u t i o n s of ( l i n e a r )
partical differential operators
L of o r d e r
elliptic
m with constant coeffi-
c i e n t s i n t h i s c o n n e c t i o n and t o Vincent-Smith [ 2 8 ] f o r i n t h e s e t t i n g o f harmonic s h e a v e s
= HF(K)
AF(K) = H F ( K )
F of a x i o m a t i c p o t e n t i a l t h e o r y .
I t would l e a d us too f a r a f i e l d e v e n t o g i v e o n l y c o m p l e t e he@~encu
for a l l interesting relevant results i n t h i s direction. Another argument t h e n y i e l d s t h e a . p . of
AF(K)
and
HF(K)
e v e n i n a much more g e n e r a l s e t t i n g :
1 2 . THEOREM:
(n
1. 2 ) and
L e t again K
JC
be t h e nhead a d haamonic dunctiono o n R n
an a h b i t h a h y compact nubhet
(1)
Then b o t h
(2)
Hence
Ax(K,E)
dpace
E , a n d , doh duch an
+(K,E)
PROOF:
=
E
GE
Hx(K)
alwayn have t h e a . p . h o l d n d o h each c o m p l e t e l . ~ .
+(K)
=Hx(K)
m a y s himpfiu
p. 6 2 1 , 634 shows, b o t h
A = Hx(K)and
E , +(K)
= Hx(K,E).
As Ho-Van-Thi-Si
A = Ax(K)
and
&(K)
1221,
are h i m p . t i c i a l s p a c e s , i . e . t h e null measure i s t h e
A - m a x i m a l measure ( o r , e q u i v a l e n t l y , measure
Choquet boundary of 116 1 , p.
A)
99) t h a t t h e s t a t e space
C(S).
concentrated
only
in
the
o r t h o g o n a l t o A . T h i s means (cf. Effros-Kazdan S = S(A) i s a A i m p L e x and t h a t
i s order isometric t o t h e Banach s u b s p a c e tions in
Wn.
06
A(S)
o f a l l addine
A
func-
However, i t i s well-known t h a t e a c h s u c h A h f l e x Apace
A(S) h a s t h e a . p . :
In f a c t , A ( S )
i s an a b d t k a c t
(L)
- apace.
( This
68
VECTOR-VALUED APP ROXlMATlON ON COMPACT SETS
argument can be found e . g . i n t h e p r o o f o f C o r o l l a r y 2 . 6 , Namioka-Phelps
( 2 ) f o l l o w s from (1) and 3 . ( 2 ) ,
l231.1
p. 4 7 7
of
5 above.
For t h e c o n n e c t i o n between s i m p l i c i a l s p a c e s a n d t h e of " w e a k PihichLet p t o b t e m n " see Effros-Kazdan 1161 :
solution (say) is
+(K)
s i m p l i c i a l i f and o n l y i f e a c h c o n t i n u o u s f u n c t i o n d e f i n e d on a comp a c t s u b s e t o f t h e Choquet baundaty of element of
A X ( K ) may b e e x t e n d e d t o
an
o f t h e s a m e norm.
+(K)
But now w e g e t t h e a . p .
of
A F ( K ) and
f o r many
HF(K)
sheaves
F o f a x i o m a t i c p o t e n t i a l ? t h e o h y a n d aLl? sets K = c l o s u r e o f a r e l a t i v e l y compact open s e t
U:
I n f a c t , under c e r t a i n
u n d e r l y i n g hahmonic npace ( X IF)
,
i t i s known t h a t
axioms
on
the
AF(K) resp. HF(K)
i s a g a i n b i m p L i c i a L , and t h e n we may p r o c e e d a s i n t h e p r o o f o f t n e orem 1 2 t o c a r r y t h e c o r r e s p o n d i n g r e s u l t s o v e r t o t h i s
(much
more
g e n e r a l ) s e t t i n g . For t h e r e l e v a n t axioms needed here and t h e AF(K) resp. H (K)
F
[ 1 6 ] , Cor. 4 . 3 ,
i s a s i m p l i c i a l s p a c e , we
p . 1 0 8 and Cor. 4 . 2 ,
s u f f i c i e n t condition for
orem 4 . 4 ) .
I n [16 ]
,
r e f e r t o E f f r o s -Kazc*.
p. 112.
(For a n e c e s s a r y
and
A F ( K ) = H F ( K ) i n t h i s s e t t i n g see [ 1 6 ] , t h e -
t h e axioms s t i l l e x c l u d e d genehat
sets
open
U
f o r d e g e n e t a t e e l l i p t i c e q u a t i o n s , b u t t h e c o r r e s p o n d i n g problem was s o l v e d a f f i r m a t i v e l y by B l i e d t n e r - H a n s e n [ 1 3 ] ,
and w e r e f e r t o
f o r t h e m o s t g e n e r a l r e s u l t s on s i m p l i c i a l s p a c e s
[13]
AF(K).
I n concluding, we should p o i n t o u t t h a t t h e €-product
E
Jfl
o f two s h e a v e s o f harmonic f u n c t i o n s i n a x i o m a t i c p o t e n t i a l
X2
theory
y i e l d s n o t h i n g b u t t h e ( m u L t i p L y r e s p . ) b e p a h a t e e y h a h m o n i c functions of
Gowrisankaran [ 201
resp.
Reay [ 2 4 1 . W e l e a v e i t t o t h e reader to
combine o u r p r e c e d i n g remark on t h e a . p .
of
AF(K) resp.
in
HF(K)
above
to
o b t a i n , s a y , theorem 11 and lemma 2 3 of [ 2 4 ] w i t h o u t any e f f o r t .
Of
axiomatic p o t e n t i a l theory with t h e r e s u l t s i n s e c t i o n
c o u r s e , w e could also immediately s t a t e r e s u l t s f o r holomorphic
- harmonic
sheaves
0
E
JC
etc.
,
2
"mixed"
(say)
b u t t h e p r e c e d i n g examples
BIE RSTE DT
60
and a p p l i c a t i o n s may s u f f i c e .
REFERENCES
[ 11
0. B. BEKKEN, The a p p r o x i m a t i o n p r o p e r t y f o r Banach spaces
of
a n a l y t i c f u n c t i o n s , p r e p r i n t (19741, u n p u b l i s h e d . [ 21
K.-D.
BIERSTEDT, F u n c t i o n a l g e b r a s a n d a t h e o r e m o f f o r vector
- valued
Papehs
functions,
Mergelyan
t h e Summeh
6hom
Gathehing o n Function A l g e b k a h , A a r h u s , V a r i o u s . P u b l i c a t i o n S e r i e s 9 (19691, 1 - 1 0 . [
31
K.-D.
BIERSTEDT,
Gewichtete
F u n k t i o n e n und
Raume
stetiger
vektorwertiger
das i n j e k t i v e T e n s o r p r o d u k t
I , 11,
J.
r e i n e angew. Math. 259(1973), 186-210; 260 (1973) , 133-146.
[ 41
K.-D.
BIERSTEDT, I n j e k t i v e T e n s o r p r o d u k t e und
Slice
- Produkte
g e w i c h t e t e r Raume s t e t i g e r Funktionen, J. reine Math, 266 (1974) [ 5]
K.-D.
angew.
121-131.
BIERSTEDT, The a p p r o x i m a t i o n p r o p e r t y f o r w e i g h t e d
func-
t i o n s p a c e s ; Tensor p r o d u c t s o f weighted s p a c e s , Funct i o n Spaces and D e n h e A p p h o x i m a t i o n ( P r o c . C o n f e r e n c e
Bonn 1974) , Bonner. Math. [ 6]
K.-D.
BIERSTEDT, Neuere
S c h r i f t e n 81 (19751, 3-25; 26-48.
Ergebnisse
von Banach-Grothendieck
,
zum A p p r o x i m a t i o n s p r o b l e m
J a h r b u c h U b e r b l i c k e Math. 1976,
B1, 45-72. [ 71
K.-D.
BIERSTEDT a n d R. MEISE, L o k a l k o n v e x e Unteraume l o g i s c h e n Vektorraumen und d a s
Math. 8 (1973) , 1 4 3 - 1 7 2 .
I 81
K.-D.
E -Produkt,
BIERSTEDT and R. MEISE, Bemerkungen tionseigenschaft
i n topo-
Manuscripta
iiber d i e Approxima-
lokalkonvexer Funktionenraume,
Ann. 209 (19741, 99 - 1 0 7 .
Math.
VECTOR-VALUED APPROXIMATION
[ 9
1
K.-D.
BIERSTEDT, B .
ON COMPACT SETS
61
GRAMSCH a n d R . MEISE, Lokalkwexe Garben und
g e w i c h t e t e i n d u k t i v e L i m i t e s F-morpher F u n k t i o n e n , Func-
t i o n Spacen and Denbe Appno ximation ( P r o c . Conference Bonn 1974) , Bonner Math. S c h r i f t e n 8 1 (19751, 59 - 7 2 . [10 ]
.
K -D.
BIERSTEDT , B
.
GRAMSCH a n d R . MEISE , A p p r o x i m a t i o n s e i g e n -
schaf t, L i f t i n g
und
KO
- homologie
bei
lokalkonvexen
P r o d u k t g a r b e n , M a n u s c r i p t a Math. 1 9 (1976) , 319
Ill]
[12]
- 364.
F. T . B I R T E L , Holomorphic a p p r o x i m a t i o n t o b o u n d a r y v a l u e g e b r a s , B u l l . h e r . Math. SOC. 84 ( 1 9 7 8 ) , 4 0 6
J . L. BLASCO, Two p r o b l e m s o n k m - s p a c e s ,
- 416.
al-
(19771, t o
preprint
a p p e a r i n A c t a Math. S c i . Hungar.
[13]
J . BLIEDTNER and W .
HANSEN, S i m p l i c i a 1 c o n e s i n p o t e n t i a l t h e -
o r y , I n v e n t i o n e s Math. 29 ( 1 9 7 5 ) , 8 3
[14]
C. CONSTANTINESCU a n d A.
- 110.
CORNEA, P o t e n t i a l t h e o r y
on h a r m o n i c
s p a c e s , S p r i n g e r G r u n d l e h r e n d e r Math. W i s s .
Band
158
(1972). DAVIE, The a p p r o x i m a t i o n p r o p e r t y o f A ( K ) o n p l a n e sets ,
[ 15 1
A.
[ 16 ]
E . G. EFFROS a n d J . L . KAZDAN, A p p l i c a t i o n s o f Choquet
M.
p r i v a t e communication ( 1 9 6 9 ) , u n p u b l i s h e d .
simplexes
t o e l l i p t i c and p a r a b o l i c b o u n d a r y v a l u e p r o b l e m s , D i f f . E q u a t i o n s 8 ( 1 9 7 0 ) , 95 - 1 3 4 .
J.
[17]
L. EIFLER, The s l i c e p r o d u c t of f u n c t i o n a l g e b r a s , Proc. Amer. Math. SOC. 2 3 ( 1 9 6 9 1 , 559 - 5 6 4 .
1181
T. W.
GAMELIN, Uniform a p p r o x i m a t i o n o n p l a n e sets, /\pphoxima-
t i o n Theohy (1973), 1 0 1
[19]
T. W.
( E d i t o r : G.
- 149.
G. L o r e n t z )
GAMELIN a n d J. GARNETT, C o n s t r u c t i v e
,
Academic
Press,
techniques
i n ra-
t i o n a l a p p r o x i m a t i o n , T r a n s . Amer. Math. SOC. 143 (1969) ,
187
- 200.
62
[20]
BIERSTEDT
K.
GOWRISANKARAN, M u l t i p l y h a r m o n i c f u n c t i o n s , Nagoya Math. J . 28 ( 1 9 6 6 1 , 2 7 - 4 8 .
[211
A.
GROTHENDIECK, P r o d u i t s t e n s o r i e l s topologiques
e t espaces reprint
n u c l 6 a i r e s , Memoirs Amer. Ma th. SOC. 1 6 ( 1 9 5 5 ) , (1966).
F r o n t i g r e de C h o q u e r dans les espaces de f o n c t i o n s e t approximation d e s f o n c t i o n s h a r m o n i q u e s , B u l l . SOC. Roy S c i . L i s g e 4 1 ( 1 9 7 2 ) , 6 0 7 - 6 3 9 .
[22]
HO-VAN-THI-SI,
1231
I . NAMIOKA a n d R. R. PHELPS, T e n s o r p r o d u c t s of compact c o n v e x
sets, P a c i f i c J. Math. 31 ( 1 9 6 9 ) , 4 6 9 - 4 8 0 . [241
I . REAY, S u b d u a l s
[25]
H.
and t e n s o r products o f spaces of harmonic f u n c t i o n s , Ann. I n s t . F o u r i e r 24 ( 1 9 7 4 ) , 1 1 9 1 4 4 .
-
ROSS1 and J . L. TAYLOR, On a l g e b r a s o f h o l o n o r p h i c f u n c t i o n s on f i n i t e pseudoconvex m a n i f o l d s , J. F u n c t i o n a l Anal.24 ( 1 9 7 7 ) , 11 - 3 1 .
126 1
L. SCHWARTZ, T h g o r i e des d i s t r i b u t i o n s 5 v a l e u r s
vectorielles
I , Ann. I n s t . F o u r i e r 7 ( 1 9 5 7 ) , 1 - 1 4 2 .
[271
N.
SIBONY, A p p r o x i m a t i o n de f o n c t i o n s 5 v a l e u r s d a n s u n F r 6 c h e t p a r d e s f o n c t i o n s holomorphes, Ann. (1974) , 1 6 7 - 179.
[28 1
G.
Inst. Fourier
F. VINCENT-SMITH, U n i f o r m a p p r o x i m a t i o n s of t i o n s , Ann. I n s t . F o u r i e r 1 9 ( 1 9 6 9 1 , 339
[291
A.
G.
- 157.
B. M. WEINSTOCK, Approximationbyholomorphic f u n c t i o n s o n cert a i n p r o d u c t sets i n 811
[31]
harmonic func-
- 353.
VITUSHXIN, U n i f o r m a p p r o x i m a t i o n b y h o l o m o r p h i c functions, J. F u n c t i o n a l Anal. 20 ( 1 9 7 5 1 , 1 4 9
(30 1
24
- 822.
CN
,
Pacific
J . Math.
43 (1972) ,
B . M. WEINSTOCK, U n i f o r m a p p r o x i m a t i o n b y s o l u t i o n s o f e l l i p t i c
e q u a t i o n s , P r o c . Amer. Math.
SOC. 4 1 ( 1 9 7 3 1 , 5 1 3 - 5 1 7 .
Approximation Theory and Functional Analyeie J . B. Prolla (ed. ) 0 North-Holland Publishing Company, 1979
THE COMPLETION OF PARTIALLY ORDERED VECTOR SPACES AND KOROVKIN S THEOREM
BRUNO BROSOWSKI
Johann Wolfgang Goethe U n i v e r s i t a t F a c h b e r e i c h Mathematik Robert Mayer-Str. 6-10 D-6000 F r a n k f u r t / Main, Germany
I n t h e p r e s e n t p a p e r w e w i l l g i v e a new p r o o f of a g e n e r a l i z a t i o n o f K o r o v k i n ' s theorem u s i n g t h e completion of a g a r t i a l l y o r d e r e d v e c t o r s p a c e by Dedekind-cuts.
The g i v e n proof works n o t o n l y i n t h e
case of C[0,1] b u t also f o r c e r t a i n p a r t i a l l y o r d e r e d realvector spaces
where a mode of convergence i s d e f i n e d , which i s c o m p a t i b l e w i t h t h e
l i n e a r s t r u c t u r e and t h e p a r t i a l o r d e r i n g o f t h e c o n s i d e r e d
linear
space. L e t X b e a r e a l vector s p a c e w i t h a p a r t i a l o r d e r i n g d e f i n e d b y K , t h e s e t o f a l l p o s i t i v e e l e m e n t s of
a cone space X
i s c a l l e d Dedekind-complete
X including
i f e v e r y non-empty
. The
0
s u b s e t which
i s bounded f r o m above h a s a supremum and i f e v e r y non -empty
subset
which i s bounded from below h a s a n infimum. I n t h e f o l l o w i n g w e
as-
sume t h a t t h e p a r t i a l o r d e r i n g i s Archimedean which i s d e f i n e d by
f o r a l l elements
u , v E X.
T h m we have t h e f o l l o w i n g
THEOREM:
Let X be a p a f i t i a g l y ohdefied h e a l u e c t o f i o p a c e , w h i c h 63
id
64
BROSOWSKI
Ahchimedean. Then we have: T h e h e i n a uni que detehmintd Dedekind - cornpLete p a h t i a L L y
dehed heaL v e c t o h Apace (i)
oh-
6x w i t h t h e BoLlowing p n o p e h t i e d :
x 06
Thehe e x i b t b a dubbpace
6 X duch t h a t
x ahe
X and
ihom okphi c. (ii)
~ v e h ye k e m e n t
x#
E
6x
hatis die4
6~ L A c a l l e d t h e V e d e k i n d - c o m p l e t i o n
X i s directed i.e.
If i n a d d i t i o n t h e o r d e r i n g i n
then
06 X .
6X is also a lattice. For a proof of t h e theorem compare LUXEMBURG, ZAANEN [ Z
DEFINITION:
A subspace
c a l l e d Dedekind-denhe i n
1.
X of a p a r t i a l l y o r d e r e d B - v e c t o r s p a c e is Y
iff
x c
Y C 6X.
For s t a t i n g t h e g e n e r a l i z e d Korovkin-theorem w e have t o d e f i n e t h e mode of convergence i n a p a r t i a l l y o r d e r e d v e c t o r s p a c e . W e some r e s u l t s of BANASCHEWSKI A subset
[ 11 :
E C K \ {O} d e f i n e s a convergence g e n e r a t i n g s e t i n X
i f E s a t i s f i e s t h e following conditions:
REMARK:
S i n c e w e assume X t o be Archimedean w e have
111.
use
inf E = 0 .
COMPLETION OF PARTIALLY ORDERED SPACE5 AND KOROVKIN'S THEOREM
85
Now w e d e f i n e a mode of convergence a s f o l l o w s : A sequence (xn)
x
c
converges t o an element
I n t h i s case we w r i t e
xn
+
E
lowing p r o p e r t i e s :
Z
x
iff
-
x. T h i s mode of convergence h a s t h e fol-
(a)
C o n s t a n t s e q u e n c e s are c o n v e r g e n t .
(b)
If
(x
E
converges t o
converges a l s o t o
x.
G I t h e n e v e r y subsequence of ( x n )
F u r t h e r w e assume
(e)
L e t ( x n ) b e a sequence such t h a t
and such t h a t
x (f)
Let
*
n E
i n f (x,) e x i s t s I t h e n inf(rcn).
(3:n ) be a sequence s u c h t h a t XI
2 x2 2 x3 5
and such t h a t
---
s u p ( ~ ~e )x i s t s , then
xn * s u p ( x n ) . E
Now w e can s t a t e t h e g e n e r a l i z a t i o n of K o r o v k i n ' s theorem:
THEOREM I:
LeZ
Y be a p a h t i a l l y atdehed
b e a COi?vehgenccL g e n e h a t i n g 6 e Z i n Y
.
W - w e c t o h & p a c e and LeZ
E
Fuhtheh L e t X be a n k c h e d e a n
BROSOWSKI
66
p a h t i a L L y o h d e f i e d a - v e c t a h pace, Luhich
Let
( L ) be
a oequence Ln:Y
06
i 6
Vedekind-dende i n Y.
monotonic opetlatohn
Y
+
buch t h a t
A : Y + Y
i b
a monotonic o p c h a t a h ouch t h a t t h e h e d t h i c t i o n A
map o d
X o n t o X and
-LA
06
,x
i d u
bijtdue
mona.tonic t y p e l i . e . A ~ ~ ( ~ ~ ) & *AZ ,I =< ~ z( 1,z ~ ) 2
T h e n rue have
PROOF:
For t h e proof l e t
u L
F o r each
u
E
U
Y
Y Y
and
y
E
Y C 6X
be given. Then d e f i n e t h e s e t s
:= I u E
x
:= { I
X I 2 5 - y).
I
E
E
L
Y
I y
5 ul,
w e have
2 5 Y ( U . Since L n
and
A
are monotonic w e have Ln(I)
and
5
Ln(Y)
5
Ln(u)
COMPLETION OF PARTIALLY ORDERED SPACES A N D KOROVKIN'S THEOREM
For a b b r e v i a t i o n w e set 1 , := L , ( Z ) , W e now p r o v e :
(y,)
y,
:= LJy),
un := L J u L
converges t o a n element y
0
.
S i n c e by a s s u m p t i o n
w e have
From t h i s w e c o n c l u d e t h a t t h e e l e m e n t s
e x i s t and a l s o s a t i s f y t h e r e l a t i o n
C o n s e q u e n t l y w e have
where
-
i := s u p { i n )
T h i s i s t r u e for e v e r y
E E
and
-
s
:= i n f
isn}.
E; t h u s w e have a l s o
67
68
BROSOWSKI
iqow l e t
u E
U-
i
. Then w e
7 5
have
u
and by ( " 1
S i n c e A i s of monotonic t y p e and b i j e c t i v e w e have
and c o n s e q u e n t l y
A
-1
(u) E U
Y
.
From t h i s w e c o n c l u d e
and hence
Now l e t
.
u E UA(Y)
I = A-'A(Z)
W
l € L
and consequently
and hence
A
u E U-
i
-1
,
Then w e have
z
(u) E U
i.e.
=
2
u
and
2 A- 1 (u)
Y
Y
. Using
'A(y)
c U-
S i m i l a r l y one c a n p r o v e L - = L A ( y t h i s w e conclude:
A($)
s
From t h e r e l a t i o n s
i
= A(y).
(*)
we c o n c l u d e
. Consequently we
have
y)
.Using
COMPLETION OF PARTIALLY ORDERED SPACES AND KOROVKINS THEOREM
Since
E E
was a r b i t r a r y w e have
E
Let
REMARK:
68
C [ a , b 1 be t h e v e c t o r l a t t i c e o f a l l r e a l - v a l u e d con
-
t i n u o u s f u n c t i o n s on [ a, h 1 under t h e o r d e r i n g d e f i n e d by "f 0.
1 , is
whether
n c a n be c o n s t r u c t e d which
gives
The n a t u r a l e x t e n s i o n of t h i s p r o b l e m , p o s e d i n [ 8 a n a l g e b r a i c p o l y n o m i a l of d e g r e e
u n i f o r m a p p r o x i m a t i o n t o t h e associate order
0 (n-l-a)
f
on t h e w h o l e [ - 1 , 11 w i t h
p r o v i d e d t h e d e r i v a t i v e f'
L i p l ( a ; C) ,
belongs t o
o 0, p
E
by h y p o t h e s i s , g E M
f
r,
wl,
such t h a t
k = 1 f max I w . ( x ) I . Then 3 ' which p r o v e s t h a t
€
E
... ,wm
p [ f
(XI
p[wj(x)(f(x)
zA(M).
-
x
€
W,
-
g (XI 1
~ j .
aGj
i s t r a n s v e r s a l t o each
aPk
and
aG. n
aQk
3 By a r e s u l t o f S c h e i n b e r g [ 1 7 , Theorem 3 . 2 ]
aPk
and
are i s o l a t e d sets.
,
each of t h e R i e
-
mann s u r f a c e s
G j U Q1 U Q2 U
... " k'
a d m i t s a compact e s s e n t i a l e x t e n s i o n . Thus, by t h e s p e c i a l Theorem 1, t h e r e i s a f u n c t i o n
T h e r e e x i s t s .a f u n c t i o n holomorphic on
El
U
P1
.
Set
ml E M(GZ
pl E M(R)
U
Q1)
case
of
with
such t h a t
m1
-
p1
is
151
MEROMORPHIC APPROXIMATION ON CLOSE0 SUBSETS OF RIEMANN SURFACES
-
ml
-
f
p1
p1
on
G1
on
F2
u
F1 ,
By t h e s p e c i a l c a s e of Theorem 1, t h e r e i s a f u n c t i o n g2EM(G U Q U Q ) 3 1 2
such t h a t
.
Set
m2 = g2 + p1
Set
f l = f . Then, w e may p r o c e e d i n d u c t i v e l y t o c o n s t r u c t a s e q u e n c e
m' j
s a t i s f y i n g for
Then,
E
M(Gj+l
j =2,3,..
.
U
...
Q1 u
U Qj)
, J
E
c
Imj(z)
- f(7.11
Im.(z)
- mj-l(z) I
01
and
I n i n f i n i t e d i m e n s i o n s , W h i t n e y ' s theorem i s f a l s e i n formulat i o n 1, even i n t h e c a s e
U = H , a real s e p a r a b l e H i l b e r t s p a c e , and
m = l . We p r e s e n t an example of t h i s i n s e c t i o n 2 . I n f o r m u l a t i o n i t i s t r u e , w i t h r e s p e c t t o t h e u s u a l compact-open
case
m =1 w i t h some r e s t r i c t i o n s . The case
2
topology, f o r the
m 1. 2
r e m a i n s a n open
problem and o u r g u e s s i s t h a t t h e theorem i s f a l s e i n t h i s c o n t e x t . Two o t h e r d i r e c t i o n s a r i s e n a t u r a l l y i n i n f i n i t e dimensions:the f i r s t one i s t o c o n s i d e r subspaces o f d i m e n s i o n s , w i t h t h e whole s p a c e new t o p o l o g y i n
am(U)
g r n ( U ) which c o i n c i d e , i n f i n i t e
am(U);
t h e second i s t o l o o k f o r a
which c o i n c i d e s , i n f i n i t e d i m e n s i o n s ,
with
t h e u s u a l one. I n s e c t i o n 2 w e c o n s i d e r t h e c o n c e p t o f d i f f e r e n t i a b i l i t y type, which g i v e s u s a u n i f i e d way t o d e a l s i m u l t a n e o u s l y s u b s p a c e s of
several
with
grn(U).
I n [ 1 2 ] R e s t r e p o s t u d i e d t h e c l o s u r e o f t h e a l g e b r a of
poly-
n o m i a l s of f i n i t e type i n a Banach s p a c e o f a c e r t a i n k i n d , f o r t h e topology o f t h e uniform convergence of t h e f u n c t i o n and i t s d e r i v a t i v e on bounded s u b s e t s . I n [ l ] Aron and P r o l l a e x t e n d e d t h i s r e s u l t
to
a more g e n e r a l c l a s s of Banach s p a c e s , c o n s i d e r i n g t h e case m 2 2 and polynomial a l g e b r a s o f v e c t o r f u n c t i o n s weakly u n i f o r m l y
continuous
on bounded s u b s e t s . I n s e c t i o n 3 w e s t u d y i d e a l s of f u n c t i o n s weakly u n i f o r m l y c o n t i n u o u s on bounded s e t s , w i t h r e s p e c t t o t h e t o p o l o g y of t h e u n i f o r m convergence o f order m on bounded sets. I n s e c t i o n 4 , w e c o n s i d e r t h e topology
in
[lo].
T
C
introducedbyProlla
WHITNEYS SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
161
F i n a l l y , i n s e c t i o n 5, we use t h e r e s u l t s of s e c t i o n 4
t o es-
t a b l i s h some f a c t s a b o u t modules. The r e s u l t s o f t h i s p a p e r a r e t a k e n from t h e a u t h o r ' s D o c t o r a l D i s s e r t a t i o n a t t h e U n i v e r s i d a d e F e d e r a l d o R i o de J a n e i r o ,
written
under t h e guidance of P r o f e s s o r J . B . P r o l l a .
1. PmLIMINARIES
I n t h e sequel
stands
N
for
{0,1,2,...1,
m s t a n d s f o r a n e l e m e n t of
e l e m e n t s of
N.
Let
E
cal d u a l s E ' E' 8 F 9 8
a n d F'
For
E E +
X
IN
U
natural
{ml
and
respectively,
9(x)v
E
U
for
v
applications
F.
E
a real H a u s d o r f f l o c a l l y c o n v e x s p a c e , a function
unique) such t h a t , f o r
x E U,
Df(x)y = l i m
X
E
uniformly with respect to
Df : U
+
f :U + X
6(E;X) ( n e c e s s a r i l y
IR,
f ( x + XY)
A+O
A
-
f(x)
y o n e a c h bounded s u b s e t of
I n t h e same way, w e d e f i n e c - d i 6 6 e h e n t i a b i l i t y by
i, j,k
a non-empty open s u b s e t ,
s p a n n e d by t h e
d:(E;F)
F, p E E ' ,
E
C
i s c a l l e d b-diddehentiabLe i f there i s
b
integers
a n d F b e r e a l normed l i n e a r s p a c e s w i t h t o p o l o g i -
# 0
t h e l i n e a r s u b s p a c e of
v: x
set of
the
c a n d bounded by compact. W e o b s e r v e t h a t i f
space, b - d i f f e r e n t i a b i l i t y i s Frechet
E
E .
by
replacing
is
a
normed
d i f f e r e n t i a b i l i t y and c - d i f -
f e r e n t i a b i l i t y i s Hadamard d i f f e r e n t i a b i l i t y (Nashed [ 9 1 1 . Let
gy
T~
b d: ( E ; X )
denote the space
S ( E ; X ) endowed w i t h t h e t o p o l o -
of u n i f o r m c o n v e r g e n c e on bounded s u b s e t s o f
denote the space
f(E;X)
endowed w i t h t h e t o p o l o g y
E 7
C
and of
LC(E;X)
uniform
may d e f i n e c o n v e r g e n c e o n compact s u b s e t s of E . By i n d u c t i o n w e b k b b k-1 d:'(OEIF) = F a n d , f o r k 2 1, d: ( EIF) = d: (E;d: ( E I F ) ) . I n t h e same
162
GUERREIRO
way, replacing b by c, we have
LC(kEIF). Furthermore, let C(U;X)
denote the vector space of all continuous functions from U endowed with the compact-open topology The space
.
0
7
Gbm(U;F) and its topology
T~~
will
be
to
X,
defined
inductively as follows: For if
m = O , gbo(U;F)
=
C(U;F),
T~~
0
and we denote D f = f ,
= '7
f E C(U;F). gbl U;F) as the vector space of all € b
For m = 1, define
which are b-differentiable and such that
rbl
pology
Df
E
E
C(U;F)
C(U;d: (E;F)). The to-
is defined as the topology €or which the isomorphism
f E gbl(U;F)
+
(f,Df)
C(U;F)
x
C(U;Lb (E;F))
is a homeomorphism. For uniformity of notation, D1f = Df. Suppose we had already defined Eb(k-l) (U;F), 'Ib (k-1) Dk-l , &b(k-l) (U;F)
-+
C(U;lb(k-lEIF)), for some
and
2.
k
8b(k-1) (U;F) b k such that Dk-lf is b-differentiable and D(Dk-lf) E C(U;I: ( EIF)) Define Dk: gbk(U;F) -t C(U;eb(kEIF)) by Dkf = D(Dk-'f) and the toDefine
pology
-rbk
gbk(U;F) as the vector space of all
f
E
.
as being the only one for which the isomorphism
is a homeomorphism. Finally, define
ab"(U;F) =
n
kslN
the topology for which the isomorphism
is a
homeomorphism.
sbk(U;F) and consider as
b-
7
WHITNEY'SSPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
F = IR, w e w i l l w r i t e
For t h e c a s e The s p a c e
BCrn(U;F) and i t s t o p o l o g y
163
Ebm(U;F) = 8bm ( U ) .
i s defined
T~~
t i v e l y i n t h e same way, by j u s t r e p l a c i n g b by
induc-
c i n t h e above defi-
nition. k k There i s a n a t u r a l i d e n t i f i c a t i o n between L ( EIF) and L ( E;F) , t h e v e c t o r s p a c e o f c o n t i n u o u s k - l i n e a r maps from Ek t o F. b k
t h e r e i s a homeomorphism between b k d: ( E;F) ( r e s p e c t i v e l y
and
w i t h t h e topology
d: ( EIF)
d : C ( k E I F ) ) ,t h e space
(respectively
T'
(respectively
T
C
I n fact,
d:C(kEIF))
d:(kE;F)
endowed
1.
On t h e o t h e r hand, t h e n a t u r a l isomorphism between
Xs(kE;F)
t h e vector s p a c e of c o n t i n u o u s symmetric k - l i n e a r maps f r o m k
F , and
P ( E ; F ) , t h e s p a c e of c o n t i n u o u s k-homogeneous
from E
i n t o F,
Ek
,
to
polynomials
i s , a c t u a l l y , a homeomorphism, i f w e endow both spaces
w i t h t h e topology
T~
or both with t h e topology
T
C
.
cm
Moreover, g i v e n f b e l o n g i n g t o Cbm(U;F)or 8 (U;F), x E U, k z m , k k w e may a s s o c i a t e D f ( x ) w i t h a n e l e m e n t d k f ( x ) o f gs( E;F) which k may be i d e n t i f i e d w i t h a p o l y n o m i a l a k f ( x ) of P ( E ; F ) . bm I n t h a t case, t h e T t o p o l o g y may be d e f i n e d i n gbm(U;F) by t h e f a m i l y o f seminorms o f t h e form
K
C
U
a compact s u b s e t , k 5 m. cm
The t o p o l o g y
T
may be d e f i n e d i n
o f seminorms :
K
C
U, L C E
compact s u b s e t s ,
k
F o r d e t a i l s , see Nachbin [ 8
5 m.
1
.
LCm(U;F) by t h e
family
164
GUERREIRO
2 . IDEALS AND DIFFERENTIABILITY TYPES The c o n c e p t of holomorphy t y p e f o r complex f u n c t i o n s i s already
w e l l known (Nachbin [ 7 1 1 . The same d e f i n i t i o n may be a p p l i e d t o real s p a c e s (Aron and P r o l l a 11
DEFINITION 2.1:
P + II PII,
Pek (E;F) k
, which
E INl
t h e norm on e a c h b e i n g
denoted
s a t i s f i e s the following conditions:
i s t h e normed s p a c e o f a l l c o n s t a n t functions fran
Peo(E;F)
i)
F is asequence
A di6dekentiabiLity type dhom E ,to
of Bnnach s p a c e s by
1 1.
to F, i d e n t i f i e d w i t h F ; 8k ii) each P ( E ; F ) i s a v e c t o r s u b s p a c e o f E
iii) t h e r e i s a r e a l number
x E E
DEFINITION 2.2:
Let
0 b e a d i f f e r e n t i a b i l i t y t y p e from E
E
Pek(E;F) imply
j, k E IN
P
,jc
k,
i J P ( x ) E P e J ( E ; F ) and
pern(U;F) a s t h e v e c t o r s u b s p a c e of
t o F.We
gbm(U;F)
of
such t h a t , f o r x E U, k 5 m , w e have 2 f ( x ) EPek(E;F) -k Bk x E U + d f ( x ) E P (E;F) is c o n t i n u o u s .
f
and t h e mapping
W e endow
u 1. 1 s u c h t h a t
and
d e f i n e t h e space a l l functions
k P (E;F);
sem(U;F) w i t h t h e topology
em
d e f i n e d by t h e fam-
‘I
ily of seminorms; -i
p K I k ( f ) = sup IIld f ( x ) l l e ; x E K , 0
where
K
C
U
i s a compact s u b s e t and
I n t h e case
F = IR w e w i l l w r i t e
W e remark t h a t t h e s p a c e definition.
k E IN
5
i
5 kl,
I
k
5 m.
Eern(U;F)
= tZ e m ( U ) .
sbrn(U;F) i s a p a r t i c u l a r case of t h i s
WHITNEYS SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
DEFINITION 2 . 3 (Aron a n d P r o l l a [ 1 1 ) : from E
A d i f f e r e n t i a b i l i t y type
-3
F i s c a l l e d compact i f i t s a t i s f i e s t h e f o l l o w i n g c o n d i -
to
t i o n s f o r each i)
166
k E IN:
k
Pf (E;F)
,
t h e v e c t o r s p a c e of c o n t i n u o u s k-homogeneous p l y -
n o m i a l s of f i n i t e t y p e , i s d e n s e l y c o n t a i n e d i n
v E F
ii) f o r e a c h
q
+
i s continuous
qk 8 v
from
* I l l t o ( Pkf ( E ; F ) , 11 * I l e ) ;
(E',lI
iii) i f
t h e map
Pek(E;F);
P E E ' 8 E,
then
For each
k E IN,
Q O P E Pek(E;F) f o r a l l
6k (E;F)
Q E P
and
EXAMPLES 2.4: k P f (E;F) i n
let
PCk(E;F)
k
be
the closure
of
6 = c i s a compact dif-
P (E;F) f o r t h e u s u a l norm. Then
f e r e n t i a b i l i t y t y p e c a l l e d cukhenZ compact t y p e . I f we c o n s i d e r , f o r each
k E IN, P N k ( E ; F ) , t h e Banach to
o f a l l n u c l e a r c o n t i n u o u s p o l y n o m i a l s from E
I/*l l N ,
n u c l e a r norm
F , endowed w i t h t h e
E h a s t h e approximation p r o p e r t y ,
then
i s a compact d i f f e r e n t i a b i l i t y t y p e called nuceeah type (see[ 2 1 ) .
9 = N
PROPOSITION 2.5:
Xy
and i f
space
.type ghom 16
P
Bk
E
Let
F b e a Banach npace and
F. k
to
(E;F) = P ( E ; F ) , k E I N , k
6 a di66eaentiabili-
5 m, t h e n
gbm(U;F) = Egm(U;F)
topoLogicalLy.
PROOF:
map
As w e h a v e ( P e k ( E ; F ) , 11. 11 ) a Banach s p a c e a n d t h e i n c l u s i o n 8
k
Pek(E;F) C P (E;F)
e q u i v a l e n t norms.
COROLLARY 2 . 6 :
is continuous, then
11
I1
and
11
- It6
are
0
Let E be a 6 i n i t e dimension nohmed bpace and
compac2 d i 6 6 e h e n t i a b i l i t g t y p e daom E t o
F.
9
a
GUERREIRO
166
k Pf(E;F) =
PROOF:
DEFINITION 2 . 7 : A
C
P 9k (E;F)
k
= P (E;F),
k E IN.
0
8 b e a d i f f e r e n t i a b i l i t y t y p e from E t o F and
Let
a e m ( U ; F ) a non-empty s u b s e t .
W e define:
i= where
n {A
+
m; k
I ( a , k ) ; a E U, k
I ( a , k ) = { f E Eem(U;F); $ f ( a )
=
E
0, 0 5 i
IN}
5
and:
k)
PROPOSITION 2 . 8 : A C
1 6 0 i d a di6dexentiabiLity t y p e 6hom em Eem(U;F) a n o n - e m p t y d u b b e t , t h e n in T - c l o d e d .
PROOF:
Fix
If every
g
f
a E U, k
E A,
T
t o F
and
E,
for
and c o n s i d e r
9 B(a,k) there is
E >
0
such t h a t
p(f
-
g) 2
where
Consider
em
5 m
E
V = {h E gem(U;F); p ( f
-neighborhood o f I f there exists
-
h)
0
1
vi(yl
Let
B
< 6
and
,
p1
, ...
I
(pk E
1 5 i 5 k , imply
E'
Ilf(x)
-
be a d i f f e r e n t i a b i l i t y t y p e from
We d e f i n e :
i s wucbs,
k E IN
, k 5 ml.
such
and that
f ( y ) i I < E.
E
to
F.
WHITNEY'S SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
W e endow
gem(E;F) w i t h t h e
d e f i n e d by t h e fam-
+:-topology,
W
175
i l y o f seminorms:
B
C
a bounded subset,
E
W e remark t h a t
k E IN
,
IF(E;F) = I
k
5 m.
bm
(E;F)
f o r a n y compact
type
of
0 , whenever E i s a f i n i t e d i m e n s i o n a l s p a c e . No-
differentiability
t i c e a l s o t h a t f o r 8 a compact d i f f e r e n t i a b i l i t y t y p e from E t o F , Om Pf ( E ; F ) C Iw ( E ; F ) (see Aron and P r o l l a [ 1 ] 1 .
DEFINITION 3 . 3 :
Let
b e a d i f f e r e n t i a b i l i t y t y p e from E
O
A C 8 p ( E ; F ) a non-empty
subset. W e define:
i n a s i m i l a r way a n d , by i n t r o d u c t i n g t h e na-
We may d e f i n e
t u r a l m o d i f i c a t i o n s i n Example 2 . 1 9 , +We m - c l o s e d subset of f o r any
A C
t o F and
is n o t always a
A -4
On the o t h e r h a n d , A
&:(E;F).
em Iw (E;F) a
w e see t h a t
non-empty
is
+:-closed
s u b s e t . The p r o o f o f t h i s f a c t
is
similar t o 2.8.
PROPOSITION 3 . 4 :
16
0
id
a di6dekentiabiLity t y p e 6kom
o a t i d 6 y i n g ( i i i ) 0 6 U e d i n i t i o n 2 . 3 , .then att
to
F
S p ( E ; F ) O P C S:(E;F),
doh
P E E ' @ E.
PROOF: then
E
Let
f E & p ( E ; F ) and
i k ( f o P ) ( x ) = ikf(Px) oP.
P E E ' 8 E.
If
k E IN, k
5 m, x
E
E,
176
GUERREIRO
Let
b e a bounded s u b s e t and
B C E
bounded subset, t h e r e are
- vi(Py)
Ivi(Px)
x,y E B,
IIGkf
(Px)
and
6 > 0
I
< 6 , 1:
-
i k f (Py) II
i
ql,...,ps
5
0. A s
E
Sr
P(B) E
is a
C E
such t h a t
E'
imply
€/I1 P I1k .
Then :
which p r o v e s that
x
E E
Let
DEFINITION 3 . 5 :
+
€I be
hk(f
oP) (x) E Pek(E;F)
i s wucbs.
a d i f f e r e n t i a b i l i t y t y p e from
s a t i s f y i n g (iii)of D e f i n i t i o n 2 . 3 , and l e t G
C
0
E
to
F
E ' 8 E and A C &$(E;F)
be non-empty subsets.
W e s a y t h a t ( A , G ) 6 a t i h d i e n c o n d i t i o n (L) i f g i v e n
have
A og
POlogY
C
em
A,
t h e closure being considered with respect t o t h e to-
'Iw *
{Pn ; n E IN }
C
E' 8 E
such t h a t
Let
IR nuch t h a t
& r ( E ) i6 an a l g e b h a and L e t
Suppobe thehe
v
o Pn
+
i b
a nequence
I
C
Then
ib
for all 9 EE'.
G = { P n ; n E IN } C E ' 8 E
ha4 p h o p e h t y (B*) N i t h h t h p e c t t o G ;
?
,
hatib6ie6
the
c o n d i t i o n (L).
Tp-tLobuhe
06
I i n
For t h e proof w e need t h e f o l l o w i n g lemmas:
.lE(:&
E
t o
8 P ( E ) b e an i d e a l .
that:
ii) ( 1 , G )
9
be a compact d i d b e h e n t i a b i l i t y Xype dhom
0
THEOREM 3 . 7 :
i) E
se-
W e s a y t h a t E had phopehty ( B * ) i f t h e r e i s a
DEFINITION 3 . 6 : quence
we
g E G
nuch
WHITNEY'S SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
Let
LEMMA 3.8:
be a d i d i e h e n t i a b i e i t y .type daom
8
& P ( E ) in an aegebaa and
.that
R : g E Iwe m ( E l
16 i d e a l ad
I
+
C
C
m 1;
E
Thehe
id
Muheouek,
R ( 1 ) i n an
f
E
E P ( E ) , and
in
f E
I,
then
Rf
Sbm(El).
8 a compact d i d d e h e n t i a b i l i t y t y p e d h o m
id
IN, k 5 m , B C E
u bounded n u b n e t ,
E
henpect
E
t o
F,
> 0.
no E hl d u c h t h a t
S e e Aron a n d P r o l l a [ 1]
PROOF OF THEOREM 3 . 7 : Conversely, l e t
.
I t i s clear t h a t f E
:,
B
E
C
-
Y
I C I.
a bounded subset,
k
5 m,
and
be given.
By Lemma 3 . 9 ,
there is
no
E N
such t h a t
pBIk(f - f oPn) < ~ / 3 , n Fix
n
1. n 0
and l e t
P = P
a n d r e s u l t s from Lemma 3 . 8 , Rf in
connideh
l e t E b e a b p a c e 6 a t i b B y i f l g phopehty (B*) w i t h
f E s ~ ( E ; F ) ,k E
> 0
and
Analogous t o 2 . 1 3 .
t o {Pn ; n
E
nuch
EP(E).
g F ( E ) i n an i d e a e Xhen t h e rbm-cLonuhe 06
Ebm(E1).
LEMMA 3 . 9 :
PROOF:
rn
t o
glEl E gbm(El).
6eLongn t o t h e ~ ~ ~ - c k ? o b u06h e R ( 1 )
PROOF:
E
b e a d i n i t e dimenbionae llubbpace
El C E
Let
E'
I??
n
.
If
n0
.
= P(E)
belongs to t h e
Sbrn(El). F u r t h e r m o r e , P ( B ) C El
,
by u s i n g n o t a t i o n
r b m - c l o s u r e of
R(1)
i s a bounded subset, then a rela-
t i v e l y compact s u b s e t , a n d t h e t o p o l o g y by t h e f a m i l y of seminorms:
El
2
T~~
may be defined i n gh(El)
178
GUERREIRO
L C El
a compact subset, j
So, t h e r e i s
g
such t h a t :
E I
I i i i ( R f ) (Px) O P x E B ,
El, j 5 m.
E
-
ii(Rg) (Px) o P l l , < E / 3 ,
O ( i ( k ,
and u s i n g t h e f a c t t h a t ( 1 , G )
s a t i s f i e s c o n d i t i o n ( L ) , t h e r e is h E I
such t h a t
'B,k
(4 O P
-
h) < ~ / 3 .
Then :
x E B, 0
4.
-
i < k , which c o n c l u d e s the p r o o f .
IDEALS OF
0
Ecm(U)
DEFINITION 4.1:
For
A C ECm(U;F) a n o n - e m p t y
= n {A+I(a,k,L,E); a
E
U, k 5 m , L
C
subset
E compact,
E
we
define
> 0)
where I ( a , k , L , ~ l = { f E g C m ( u ; F ) ; I I i i f ( a ) v I I < E , v E L, 0
5 i 5
kl.
WHITNEYS SPECTRALSYNTHESIS THEOREM IN INFINITE DIMENSIONS
The d e f i n i t i o n o f
e x t e n d s n a t u r a l l y and obvious modifica
-
may b e f a i l t o b e TCm-closed. Bycontrast,
t i o n s i n 2.19 show t h a t
i s always
179
Tcm-closed.
The d e f i n i t i o n of c o n d i t i o n (L) f o r a p a i r ( A , G ) ,
G
C
E' 8 E
a non-empty s u b s e t , i s n a t u r a l l y e x t e n d e d t o o .
THEOREM 4.2:
be a n k k d and buppobe Ahetre 0 G
I C Ecm(U)
Let
C
E' 8 E
buch t h a t
i)
iE, t h e i d e n t i t y
E
06
,
betungb t o t h e ctobuhe
06
i n
G
F(E;E) ; ii) (1,G) b a t i b 6 i e b c o n d i t i o n ( L ) Then
LEMMA 4.3: VeCtOh
i b
Let
t h e Tcm-c.labuhe
I
U n El
C
16 we c a n b i d e h 06
06
then
Bcm(U1).
i,
K
C
giUl E gCm(U1)aU'l .the Tcm-dClbWze
06
acm(U),
f E
id
R(1)
i n
f E
1,
gCm(U1).
gbm(U1) = BCm(U1)
W e j u s t remark t h a t
I t i s clear t h a t
PROOF OF THEOREM 4.2: f E
dimevlshnd
to-
is a f i n i t e d i m e n s i o n vector space.
p o l o g i c a l l y b e c a u s e El
Let
+
Moheoveh,
Rf b e l o n g b t o t h e Tcm-C.tObWLe
PROOF: Analogous t o 2.13.
a dinite
E
C
a non-empty open bubbet.
Scm(U)
R :g
R ( 1 ) i b an i d e a l
ECm(U).
i n
be an i d e a l , El
C Ficm(U)
a u b b p a c e , U1
06 I
.
U
and
L
C E
i
C
i.
compact s u b s e t s , k
By Lemma 3 . 1 , P r o l l a a n d G u e r r e i r o [ l l ] , t h e r e are
5 m,
u E G
E
> 0.
and V C U
a non-empty open s u b s e t s u c h t h a t
Consider
El = u ( E ) , U1= E l
11 U,
K 1 = u(K) a n d
L1 = u ( L ) .
By
GUEAREIRO
180
u s i n g n o t a t i o n and r e s u l t s f r o m Lemma 4 . 3 , t h e r e i s
g
On t h e o t h e r hand (1,G) s a t i s f i e s c o n d i t i o n ( L ) h
E
I
acm(U)
-
THEOREM 5.1: C
aLL
so
there
is
L, 0 5 i 5 k .
x
T h i s shows t h a t
W
such t h a t
such t h a t
(x,v) E K
5.
E I
f E
7.
0
SUBMODULES OF
tCm(U;F)
Let F be a bpace with t h e apphoximation phopehtg
BCm(U;F) an
8m(u)-submodule s a t i n d y i n g :
(v
o W) 8 v c
tp E F', v E F .
Suppose thehe is i)
iE
G C E' Q E
duch t h a t :
6eLongn t o the ~ L o d u h e06 G in
LC(E;E);
if
and doh
WHITNEY'S SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
Then
06
i b t h e Tcm-ctobuhe
W in
The p r o o f of 5 . 1 u s e s t h e f o l l o w i n g W
C
GCm(U;F) i s a n
T h e v e c t o h bubhpace
LEMMA 5.2:
. Moheoueh,
ECm(U)
&Cm(U)-submodule a n d
(9 o
W,G)
SCm(U;F). two
lemmas,
both ,
In
9 E F'.
9 o w = {p
hatib 6ieb
181
o g; g E W }
ad
an id&
i b
condition (L), id ( W , G )
hatib-
iieb condition (L).
PROOF:
If
h E gcm(U) a n d
= h(p og) E 9
g E W, then
O W . Therefore
9
OW
a n d , so
hg E W
i s an i d e a l .
Suppose now t h a t (W,G) s a t i s f i e s (L) a n d l e t be a non-empty open s u b s e t s u c h t h a t and
L C E
compact s u b s e t s , f
E
9 o (gh) =
g
and
E G
V C U
g ( V ) C U . I f we c o n s i d e r K
W , k 5 m,
E
> 0,
is
there
h
C
V
E
W
such t h a t
Then :
This proves t h a t
Suppobe t h a t
LEMMA 5.3:
G
doh borne
16
C
f E
(9 o
W) o ( g !V) C (9 o W l V )
.
0
iE beLong6 t o t h e c t o b u k e
G
06
in EC(E;E),
E' 8 E , and t h a t ( W I G )batid6ieb condition ( L ) .
GI
then 9 o f
beLong6 to t h e r c m - c l o b u h e
06
9 o
W
in
FhCrn(U).
PROOF:
Consider
f E
5,
a
E
U, k 5 m ,
E >
0
and
L
C
E
a
compact
182
GUERREIRO
s u b s e t . There i s
y
E
L, 0 5 i
5
g E W
such t h a t
9 o f E
k , which p r o v e s t h a t
, S i n c e Lemma 5.2
(9 o W)'
e n a b l e s u s t o a p p l y Theorem 4 . 2 , w e c o n c l u d e t h a t t h e TCm-closure of
q oW
PROOF OF THEOREM 5.1:
sets, k 5 m,
Then
E
>O
in
acm(U)
f
Let
E
i;,
and d e f i n e f o r
A = U {Ai;O
5
i
5 k)
a p p r o x i m a t i o n p r o p e r t y , t h e r e are that:
E
W
5
K C U, L i
5 k
be compact sub-
C E
t h e set
i s a compact s u b s e t of n
to
E
N,
'jEF',
"j
F.
E F
By t h e such
belongs t o
9.o f 3
9 .OW, 1
so
t h e r e are
w.
Consider
such t h a t
'K,L,k where
belongs
0
let 0
o f
n
By Lemma 5 . 3 , e a c h gj
.
q
E~
Let
= ~ / 3(1 +
(9.o f 7
-
9 . 09.) < E 3 3 1
n I: II vj 1 1 ) . j=1
n By h y p o t h e s i s , h = .E ( 9 . 09.)8 V ]=I 1 3 j'
t E W such t h a t
h
E
WHITNEY'S SPECTRAL SYNTHESIS THEOREM IN INFINITE DIMENSIONS
183
-
P ~ , ~ , k ( ht) < E/3.
Then:
E/3
n
+
I:
(x,v)
E
This proves t h a t
p
+
EIIIV.lI
3
j=1 K
x
L,
KiLik
(f
4 3 < E,
0 5 i
- t)
-(
r + l n - r
=
A s a corollary, we obtain
(2.2 * 10)
D(E,X) =
f
D(E1,X)D(E2,X).
Hence ,
THEOREM 2.3:
.LA h e g u d a h
( A t k i n s o n and Sharma [ 1 1
.L6 and o n l y i6 b a t h
2.3. REGULAR MATRICES
a6
i t b
A decompobable rncukix E =El @ E2
components ahe h e g u l a h .
By Theorem 2.2, t h e P 6 l y a c o n d i t i o n
(2.2.5)
i s n e c e s s a r y f o r r e g u l a r i t y . To o b t a i n a w o r k a b l e s u f f i c i e n t
t i o n , w e need t h e f o l l o w i n g n o t i o n . By a s e q u e n c e i n a r o w
condi-
i of t h e
m a t r i x E , w e mean a c o n t i n u o u s b l o c k of o n e s e ik =
(2.3.1)
,.. -- eill
= 1
which i s maximal. T h e r e f o r e , f o r a s e q u e n c e e i t h e r e i ,k-1
= 0,
and e i t h e r
d
=
n
or
ei,l+l
= 0
.
k = 0
A sequence
or is
else odd
LORENTZ and RIEMENSCHNEIDER
194
(or euen) i f i t h a s a n odd ( e v e n ) number o f o n e s . A sequence (2.3.1) i s b u p p a a t e d i f t h e r e e x i s t two o n e s
t o the
NW and
SW of
,
positions (il,kl)
in
E
eik = 1, i n o t h e r words, i f t h e r e a r e o n e s i n
(i2,k2) i n
Already G . D . B i r k h o f f [ 3
E with
il < i , k
k; i 2> i tk 2 0.
q i m p l i q u e que
est c r o i s s a n t e .
implique que
Q(z) l a transformge de M e l l i n de q .
Soit
mellement l e s deux membres de 2 . 1 . 2 .
1
m
0
l o g 11
-
uI uZ-ldu =
-
Transformons
for-
p a r M e l l i n , remarquant que
cotg
-
712
Z
1 < Rez < 0
on o b t i e n t
2.1.3.
donne, n o t a n t p a r
h ( x ) l a fonction ayant
Notons p a r
%,
M l a transform6e de M e l l i n - S t i e l j g s de
-
< Rez
0
2.1.4.
2.1.5.
06
L
(Indgalitd fondamentale)
%,a
2.1.6.
h E Lm
1,a
mesure
243
- -'2
< a < -1
- -l
< a 2 -1
2
2 -
fa
2
ddsigne l'espace des fonctions sommables par rapport 5 la -a l'espace des fonctions borndes par x .Ceci xa-1 dx; a
dtant, justifions les opsrations formelles effetudes ci-dessus. Posons :
dm
Alors
E
Mc1
espace des mesures sommables pour xa
d'oii d'aprss 2.1.5.
2.1.8.
est bien d6fini et
C o m e d'autre part
duit de composition k
- -
2
h*dm
:=
2.1.7.
< B < 0.
=
log11
log 11
-
- XI
XI
%,a
LlIa, - 1 < a < 0, le
E
*
s
1 Si a > - 7 ; - - 1< a < - .1 2 2
4
est bien d6fini et
On a enfin
K(z) =
- cotgnz
. 6(z)
si
Re2 = 6,
-
1 7
< B < 0,
et
(z) K ( z ) =- M 2
k(t) =
jot
les deux membres &ant
dx
et
presque partout
continus ceci vaut partout d'oc 2.1.2.
E
proL
1, B
MALLlAVlN
244
Posons
il rgsulte de 2.1.8. que
lim r(x)
2.1.9.
existe
X=m
Nous allons monter un lemme glbmentaire sur l’allure d’un potentiel d’une mesure portbe pour l’axe ri?el.
lim y=o
exibte e t
+ iy)
b0it
dinie
.
ALohd o n u
lim U” (xo + iy)
y=o
PREWE:
=
up(x0).
Up (x) est semi-continue infbrieurement donc
D‘o6 l’intggrale
- .f log11
-
xot-1I d p (t) est convergente. ReMlrquant
que les points rgguliers de E lim h(x y =o d’oG en utilisant 2 . 2 .
+
iy) = q(x)
APPROXIMATION POLYNOMIAL€ PONDIRE€ ET PRODUITS CANONIQUES
en tous les points rsguliers de E l tout dense sur E et
246
ceux-ci formant un ensemble par-
Wp(x) 6tant semi-continue supgrieurement, q(x)
continue, on obtieni
3.
3.1.
Nous nous proposons dans ce paragraphe de d6montrer 6nonc6s 1.2.
THEOREME:
u n e mebuhe dX
DEMONSTRATION:
Si
H(E,
- logp)
e b t non
v i d e , aeohn o n p e u t &ouve,t
a y a n t pouh buppotrt u n enbemble d i b c h e t
Soit
H ( E , -1ogp)
El
# 6. I1 existe d'aprgs
I1 r6sulte du fait que cette int6grale est >
-
m
que
t
C E,Z&
que
1.1.
dp=p(t) est
0
une fonction continue. Soit n(t)
=
et soit exp [
-
partie entigre de
1
log(1
-
zt-')dn(t)]
~(t)
= F(z).
F ( z ) est une fonction m6romorphe n'admettant que des pzles simples.
D'autre part, posons s(t) = II
3.1.3.
j log11 - zt-l
MALL1AVlN
246
=
a/x
Jo
Lx 1/2
+
2
+
J1/2
+
Jim.
La premisre int6grale est i n f 6 r i e u r e 5
L a seconde d
+
log x
.
0 (1)
.
La d e r n i s r e d
(1 (1)
R e s t e d 6 v a l u e r l a 3sme i n t 6 g r a l e s = s
1
+ - -1
I
1 Isl! 2 T
La p r e m i s r e i n t 6 g r a l e
A
+
2, bl,
. . , ,br
,r
a l o r s on p e u t t r o u v e r une f r a c t i o n r a t i o n n e l l e pour p 6 l e s s i m p l e s e t t e l l e que
F
1
(2)
= F(z) H(z)
v6rifiera
p o i n t s d e E distincts; H ( z ) a y a n t les
bk
APPROXIMATION POLYNOMIALE
PONDEREE ET PRODUITS CANONIOUES
247
3.1.3.
On a
OG
E R6sidus de F1(x) < t. e Le m- r6sidu a v6rifiant
p(t)
=
D‘autre part on a
-
d’oc .f
06 yn
t2
0.
D'autre part
0 , on o b t i e n t
= R
est a t t e i n t sur l'axe
qu'il
existe
une
suite
APPROXIMATION POlYNOMlALE PONDERBE ET PRODUITS CANONlClUES
R + k
261
telle que
D’autre part on a sur E
d’oG en remarquant que Wr et W’
sont hmniques dans { z ; [ z / 0
such t h a t f o r any
t
E
IR, with
ti 5 6 1 1
s u p q ( t ( f ( a + t h )- f ( a ) - u ( t h ) ) 2 1). he S Obviously y-
u i s uniquely determined by
d e h i v a t i v e ob
f i n a. W e w r i t e
f and a ; u i s c a l l e d
f ' ( a ) i n s t e a d of u .
t h e system of a l l bounded ( f i n i t e ) s u b s e t s of ( G i i t e a u x - ) di66ehentiable at
if
a. f
f i s y - d i f f e r e n t i a b l e a t any
E
,f
If
the y
is
is c a l l e d Fhzchet-
i s c a l l e d y-diddehentiable o n
51,
a E 52.
For G l t e a u x - d i f f e r e n t i a b l e f u n c t i o n s t h e r e e x i s t s e v e r a l g e n e r a l i z a t i o n s of t h e c l a s s i c a l mean v a l u e theorem (see e . g .
Yamamuro
SPACES OF OlFFEAENTlABLE FUNCTIONS AND THE APPROXlMATlON PROPERTY
[24I
,
27 1
1 . 3 ) . We s h a l l u s e t h e f o l l o w i n g o n e , which i s a consequence o f
t h e Hahn-Banach theorem and a r e s u l t o f c l a s s i c a l c a l c u l u s .
2. LEMMA:
l e t E and F be l . c . b p a c e b , 51 an open bub6e.t i n
a,b E R
let
.
Abbume
fitiabte at any
x E s
tained i n R g ( t ) := f ' (a
S [ a , b l : = {a t t ( b
b e buch t h a t
+
t(b
f(b)
-
-
f : S2
duhthehmohe t h a t
+
-
a ) I t E [0,11 1
F
and
E
con-
i h
Gzteaux- d;ddmen-
i h
and t h a t t h e mapping g : [ 0 , 1 ] * L a ( E , F ) , [a,bl a ) ) , i d c o n t i n u o u s . T h e n t h e doU0wing hoLh .thue: 1 f'(a
f(a) =
+
t(b
-
a))[b
-
aldt.
The f o l l o w i n g lemma i n d i c a t e s t h a t y - d i f f e r e n t i a b i l i t y
of a function
f i s a l r e a d y i m p l i e d by Gzteaux d i f f e r e n t i a b i l i t y and
a
continuity
p r o p e r t y of t h e derivative (see also K e l l e r [ 1 8 1 , 1 . 2 . 1 a n d Y a m a m u r o [24
1 , 1.4.4).
3. LEMMA:
L e t E and
F be L.c.
dpacen, 51 an open b u b b e t
f : S2 + F Gzteaux didbetentiable on
t i n u o u b , &en f PROOF:
i b
f'
16
: 52 +
Ly(E,F)
i b
con-
y-diddehentiable o n R .
L e t a be any p o i n t i n
bounded subsets of
$2.
and
E
06
S any e l e m e n t of t h e s y s t e m
S2,
y
of
E and l e t q be any c o n t i n u o u s semi-norm o n F . Py
Uleoontinuity of f ' in a, f o r
E
> 0 t h e r e e x i s t s a convex b a l a n c e d n e i g h -
bourhood U o f zero i n E s u c h t h a t
a
+
U
C 51
and s u c h t h a t f o r any
x € a + U
S i n c e S i s bounded i n E 2 we
have f o r any
, we
t with
can f i n d
0
0 6
with
and any
6s
C
h E S:
U.
By lemna
272
MElSE
This implies
Hence
f is y-differentiable a t a .
Let
4 . DEFINITION: E and
-
a system of bounded subsets of
y
n E mm(:=
U (
1
#
E and F be 1 . c . s p a c e s , s2 E
which
we d e f i n e t h e s p a c e o d
)
n
if
:R
-+
j E
F I f o r any
covers
t.imea
y - d i d 6 u e n t i a b L e dunctions o n R w i t h vaLuea i n
c ~ ( P , F ) :=
$ an o p e n s u b s e t o f
F
m0
cantinuouaLy
a6
with
0
~ < jn + l
) : = f ) and f o r any f . E C ( C ~ , L ~ ( E , F )(fo 1 Y
with
0
5j
on R and
A e t d 06
R
i s f . Gsteaux
3
f; = f j + l
j
E
06
. This
- differentiable
I .
Cn(B,F)
topology i s given by t h e system {pLrKrSrq 1
5
e
+
of semi-
norms, where
L
s u b s e t of
S is any e l e m e n t of y and q is any c o n t i n u o u s
norm on F ,
ill
lNo
i s endowed w i t h t h e t o p o l o g y od unidohm Y t h e dehiuatiweb up t o t h e ohdeh n a n t h e compactaub-
The v e c t o r s p a c e convehgence
s
i s compact i n EK and E .
Wo b e a convex b a l a n c e d neighbourhood of z e r o
Now l e t f o r which
+
KO
Wo
C
KO C K , t h e r e e x i s t s
n. s
l i m um = i d K i n
Since
Lo := Ls
J
and
E
since
m*m 0
E IN
s u c h t h a t f o r a n y s ? s o a n d a n y x E KO
us(x)
Put
C(K,E)
in
-
x
E
wo.
then it follows
0
LoCKo+WoCR.
S i n c e Lo tion
is a compact subset o f
0 2 1 ( 1 t h e func-
f ( j ) : 51 + L A ~ ( E , F )i s c o n t i n u o u s , t h e r e e x i s t s a convex
a n c e d neighbourhood any
51 and s i n c e f o r
j with
U of z e r o i n
0 < j 5 l , any
x
E
E with
Lo
Lo
and a n y
+
bal-
U C s2 s u c h t h a t
z E E
with
for
x-zEU
t h e f o l l o w i n g estimate h o l d s
For
1 5 j 5 !k t h e s e t
f (j) (Lo)
i s compact and hence
bounded
in
= L c o ( E r L f ~ l ( E r F1). E i s b a r e l l e d by h y p o t h e s i s , hence fJ(Lol j- 1 i s e q u i c o n t i n u o u s i n Lco(E,Lco (E,F)). T h i s i m p l i e s t h a t t h e r e i s a
L:O(E,F)
MEISE
280
neighbourhood W and any
j
of z e r o i n
y ' E Lj-l
E such t h a t f o r any
f o r any
y = (ylI...,yj)
o n e of t h e yk i s i n The s e t
Now w e d e f i n e
W
e
x
El, where
E
Lo,any y1 E W
j
,
t h i s means t h a t we have
j
- 1 of
t h e yk a r e i n
L and
j '
-1 ( n ( W . j, j=1 J
hence t h e r e e x i s t s
E
w e have
f (1) (x) i s symmetric f o r any
Since
x
fl
U) i s a neighbourhood of z e r o i n
s E IN w i t h
s
our construction we get
u(x)
E KO
,
2 s0 s u c h t h a t
and o b s e r v e t h a t b y t h e c h o i c e of
u := us
EK
+
U C B
f o r any
x
E
s
and by
Ko(from now
on l e t us omit t h e map j, l i . e . w e r e g a r d u as mapping from E i n t o E). Then t h e s e t w := u-1 (s1) i s an open neighbourhood of KO and on w w e c a n d e f i n e t h e mapping
is e a s y t o see t h a t with
j
f
0
n t 1 and any
f
0
u : w
+
F. By o u r d e f i n i t i o n 2 . 4
u E Cgo(w,F) and t h a t f o r any y E Ej
x
E
w,
any
it j
t h e following holds
I n o r d e r t o prove t h e d e s i r e d estimate, w e o b s e r v e f i r s t t h a t we have
u(Ko) (1):
C
Lo, and t h a t f o r any
x
E
KO
,u(x) -
x E U. Hence w e g e t fran
SPACES OF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
Then w e o b s e r v e t h a t f o r any
x
hence f o r any
KO
E
j
and any
with y
E
291
1 5 j 5.e w e have u(Q,) Q:
1
C
L
1’
w e g e t from (11,( 2 ) and ( 3 )
< (e+1).L + 1 -
By ( 4 ) and (S), t h e proof of t h e lemma i s complete.
4.
L e t us r e c a l l from B i e r s t e d t and Meise 1 6
REMARK:
d u c t i v e i n j e c t i v e system
s u b s e t of
Ea
~
o A f 1 . c . s p a c e s Ea
(CFA)
. Then
i t i s obvious t h a t any 1 . c . s p a c e E which c a n b e
E A of
lEa I
. Hence i)
is called
E = ind E
r e p r e s e n t e d a s an i n d u c t i v e l i m i t o f a compactly r e g u l a r system
in-
i s Hausdorff And i f f o r any acanpact a+ a E t h e r e e x i s t s a E A such t h a t K i s a l r e a d y a ccnpact
campactLy heguLah, i f s u b s e t K of
{ E a I*j u BIa
1 t h a t an
( F ) - s p a c e s Eu w i t h a.p.
has
inductive
the
property
i n any of t h e f o l l o w i n g c a s e s E h a s (CFA):
E i s a (F)-space with a.p.
i i ) E = i n d En I where { E n l j n m } i s a s t r i c t i n d u c t i v e n + of ( F ) - s p a c e s En w i t h a . p . i i i ) E = in$ En
n
I
system
where { E n l j n m } i s a compact i n j e c t i v e induc-
t i v e system of
( F ) - s p a c e s En w i t h a . p . For b r e v i t y w shall
c a l l any s p a c e o f t h i s t y p e (DFSA)-space. Using a t r i c k which g o e s back t o Aron and S c h o t t e n l o h e r [ 4 ],we can now prove t h e d e s i r e d r e s u l t on t h e a . p .
of
Czo(Sa).
MElSE
232
5. THEOREM:
L e t E be an in Lemma 3 and
and
y = yco
n E INm aLl t h e hypothedeb
a t e d a t L d 6 i e d . Then
PROOF:
in
of
n Cco(Q)
identify
c a n b e proved by showing t h a t C z o ( Q ) 8 F is dense
Czo(R)
E
F
f o r any Banach s p a c e F.
C:o(Q)
E
F
in
Q,
ma 3 , t h e r e e x i s t s such t h a t Let
f
0
us define
fo E Cao(Qo,F)
E , any
u
E
e
C g o ( Q , F ) , a n y compact subset KO o f
+ I, and
0
and E ~ f o := f
(finite
CEO (Eo)
i s dense
in
Czo(R)
3
,
such t h a t
g : = hou E C a o ( E ) 8 F, and f o r any
Y
E
E ’ 8 E and an open neighbourhood
u(Ko) C Q n Eo = Qo, and s i n c e
there exists
any
f E
u E CZo(wlF) s a t i s f i e s t h e estimates g i v e n i n lemma 3 .
CZo(QotF) = Ccn0(Q) that
that
C Z o ( Q t F ) f o r any Banach s p a c e F .
To do t h i s , l e t any any compact
By c o r o l l a r y 2 w e mayand shall
CZo(R,F). Hence w e o n l y have t o show
and
i s dense i n
Czo(Q) 8 F
6 a h a n y open d u b n e t R a 6 E.
had t h e a . p .
Cgo(Q)
c0(Q)
theohem 1 o n E and
06
i s quasi-complete by h y p o t h e s i s . Hence, by theorem 1.7
Cgo(Q)
t h e a.p.
adburnt duathehmohe t h a t doh
x E KO
,
any
x
E KO
j with
15 j
5 L
and
SPACES OF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
Hence w e have shown of
mm
(f
-
5
g)
2s
,
which proves t h e d e n s i t y
a F in c ~ ~ ( . Q , F ) .
c:~(E)
A l l t h e hypotheses of theorem 6 a r e s a t i s f i e d
6 . REMARK:
n E
K~ ,Q,
293
s2 of
and any open s u b s e t
E,
if
E is either
w i t h a . p . o r a (DFSA)-space. T h i s follows from 2 . 5 ,
for
any
an (F) - s p a c e
2 . 6 andremark 4 .
We s h a l l show now t h a t f o r Frgchet spaces E w i t h a . p . t h i s r e s u l t i s optimal.
7. THEOREM: a)
Fax a F h e c h e t Apace E t h e doLLowing axe e q u i u a e e n t :
C:o(Sl)
Q
# $
has t h e a . p . 06
that
c)
E
n E INw
and a n y o p e n n u b s e t
E-
Thexe exidt
b)
d o h any
n E INm and a n open n u b b e t
czo(a)
had
R # pl
ad
E
nuch
t h e a.p.
had t h e a . p .
(a) * (b): t r i v i a l
PROOF:
(b)
=.
( c ) : By 2 . 8 ,
ELo = E ’ i s a continuously p r o j e c t e d topo-
l o g i c a l l i n e a r subspace of Frgchet space E t h e a . p . of
C
C : o( . Q ) ,
hence
EA has t h e a.p.
But f o r a
EA i s e q u i v a l e n t t o t h e a . p . of Elhence
E has t h e a . p .
( c) * ( a ) : This is clear according t o t h e remark 6.
REMARK:
For Banach spaces E theorem 7 was shown by Bombal
Gorddn
294
MEISE
and Gonzslez Llavona [lo] f o r
51 = E . Again f o r Banach s p a c e s
s l i g h t l y d i f f e r e n t version (using
[ 201 and a l s o by Aron [ 3
topology
.
I
T h e h e C X i 4 t A a n (FS)-npace
8. COROLLARY:
06
the
a
C z o (51) ) of theorem 7 w a s p r e s e n t e d by P r o l l a andGuerreiro
i n d u c e d by
t h e a . p . go& a n y
n o t have
Cf: ( 0 ) endowed w i t h
E
E huch t h a t
doeA
Czo(51)
mm a n d a n y n o n - e m p t y o p e n nubnet
n E
R
E.
T h i s i s a consequence of theorem 7 and t h e e x i s t e n c e of (FS)-
PROOF:
s p a c e s w i t h o u t a . p . The e x i s t e n c e of s u c h (FS) - s p a c e
follows
from
E n f l o ' s c o u n t e r e x a m p l e , a s Hogbe-Nlend p r o v e d i n [ 1 6 1 . Because of lemma 3 , t h e method a p p l i e d i n t h e proof o f theorem 5 c a n be used a l s o t o d e r i v e some f u r t h e r d e n s i t y r e s u l t s
just
by
" l i f t i n g " d e n s i t y r e l a t i o n s known i n t h e f i n i t e d i m e n s i o n a l case. Bef o r e s t a t i n g them l e t u s r e c a l l t h a t a c o n t i n u o u s n-homogeneous p o l r nomial
p on E i s c a l l e d Ainite, i f t h e r e
exist
y i ,...,y;
E
E'
such t h a t n p(X) =
By
n
j =1
f o r any
(y;,X)
x E E.
P f ( E ) w e d e n o t e t h e l i n e a r h u l l o f a l l c o n t i n u o u s n-homogeneous
p o l y n o m i a l s on E
,
9. THEOREM:
E be a q u a A i - c o m p k k t e b a h a L t e d
Let
(CFii). Then doh 0(#
0)
PROOF:
06
E
n
any
E
n E
t h e space
L e t any
p a c t s u b s e t Q of
f
INo.
I t i s e a s y t o see t h a t
and 1 . c . Pf(E) @ F
,
E CZo(QIF)
E , any
m
Pf (E) C C c o ( E l .
L.c.
pace F a n d a n y
i n dense i n
Apace open
With
oubaet
Czo(51,F).
a n y compact s u b s e t K of
51 , a n y can-
1 < n +1, any c o n t i n u o u s seml-norm
q onF,
296
SPACES OF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
and
> 0
E
be g i v e n . W e s h a l l show t h a t t h e r e e x i s t s
g
E Pf(E)
€3 E
with
Let
F
9 and l e t
d e n o t e t h e c o m p l e t i o n o f t h e c a n o n i c a l normed s p a c e
F/ker q
d e n o t e t h e c a n o n i c a l c o n t i n u o u s l i n e a r map.Since q II 0 f E Cn ( Q I F ) , a c c o r d i n g t o lemma 3 t h e r e e x i s t s u E E' 8 E s u c h co 9 that a : F
+
F
Now we p r o c e e d as i n t h e proof of theorem 5 and d e f i n e
no :=
Ci n Eo and f o : (IT
0
f ) ICio.Then f o E C,"o(Qo,F
S i n c e t h e p o l y n o m i a l s o n Eo are d e n s e i n in F
q i
and s i n c e
ho
E
)
= CEo(Qo)
gE
Fq.
CEo(Qo) ;since II(F) is dense
no ( t h i s was shown
u(K) i s c o n t a i n e d i n
p r o o f of lemma 3 ) , t h e r e e x i s t s
4
:= I m u I
Eo
P(Eo) 8
IT
(F) =
Pf (Eo)
in @
IT (
the F)
such t h a t
Assume t h a t
i=ll...,m.
ho = Then
m -..
Z pi 8 r ( y i ) , where i=1 h :=
Z piOu8yi
i =1
pi E Pf (Eo) and
is i n
Pf(E) 8 F
yi E F f o r and
as
in
t h e p r o o f of theorem 5 i t f o l l o w s
PL,KIQ,q
Hence we have shown t h a t
(f
-
h) 5 2~
Pf (E) €3 F
.
is d e n s e i n
Czo(Q,F).
The following c o r o l l a r y i s a n immediate consequence of theorem 9.
286
MElSE
10. COROLLARY:
Let E be a q u a b i - c o m p l e t e b a w i e l l e d l . c . npace w i t h
(CFA). T h e n
any
n ( # 0 ) 06
604
.the a p a c e
E
m m , any
n E
l . c . b p a c e F , and a n y o p e n n u b a e t
63 F
C:o(E)
CEo(n,F).
dense i n
i b
Looking a t theorem 5 and c o r o l l a r y 1 0 and t h e i r p r o o f
in
f i n i t e d i m e n s i o n a l c a s e one h a s t h e i m p r e s s i o n t h a t c o n d i t i o n ( o r more o r less t h e a . p . )
t o g e t h e r w i t h f i n i t e dimensional
the (CFA)
results
c a n b e u s e d i n s t e a d o f C m - f u n c t i o n s w i t h compact s u p p o r t . T h e f o l l o w i n g theorem i s o f t h e s a m e n a t u r e . B e f o r e w e s t a t e i t , l e t us remark E be any 1.c. space
t h a t a n e a s y c a l c u l a t i o n shows t h e f o l l o w i n g : L e t and l e t
d e n o t e i t s ( c o n t i n u o u s ) d u a l . For any system y o f bounded
E'
subsets of
( c o v e r i n g E ) and any
E
m
C y ( E ) . Using t h i s and t h e c l a s s i c a l theorem
belongs to
Wiener-Schwartz
11. THEOREM:
0) 0 6
denbe
ifl
E
Paley
L e t E b e a q u a b i - c o m p l e t e b a a a e l l e d l . c . bpace n
a n y 1 . c . b p a c e F , and a n y o p e n
E INm,
t h e L in ea h hue1
06
the net
Ie,
-
*
with bubbet
f I y E E', f E F)
LA
Cgo(Q,F).
4 . A KERNEL THEOREM FOR FUNCTIONS OF CLASS
CEO
I n t h i s s e c t i o n w e s h a l l show ( u n d e r a p p r o p r i a t e t h a t any f u n c t i o n s i n m
of
t h e proof o f theorem 9 a l s o g i v e s
(CFA). T h e n d o h a n y
fi(#
y E E', t h e f u n c t i o n
m
Cco(Ql
x
hypotheses)
Q 2 ) c a n b e r e g a r d e d as a n e l e m e n t o f
m
C c o ( Q l , C c o ( ~ 2 ) ) and v i c e v e r s a . Using theorem 3 . 5 t h i s a l s o
a tensor product representation f o r
m
Cco(Ql
x Q,)
.
B e f o r e w e c a n prove
o u r r e s u l t w e need s e v e r a l lemmas. The f i r s t lemma i s consequence o f d e f i n i t i o n 2 . 4 .
implies
an
immediate
SPACESOF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
1. LEMMA: 06
Let E,F and
b e L . c . b p a c e b , l e t R be an o p e n
G
y b e a covetring b y b t e m
E l leX
297
0 6 bounded b u b b e t
dubbet
let
E , and
06
u E L(F,G) b e g i v e n .
any
a)
Foh
b)
Fotr a n y
f E Cm(51,F) t h e d u n c t i o f l
Y
f E Cm(R,F) a n d a n y
belongs t o c)
2.
06
subbet
x1
1e.t
LEMMA:
Ei
PROOF:
t o p o t o g i c a l bubbpace
and
doh i =1,2.
F
The mapping
m
+
tonuous and j - l i n e a r ,
El
(ii)* :
( i d ) * ( m ) [ x ]= m ( [ i d ( x ) ] ) .
t h e n by lemma 1 . b )
,
j
f o r any
c o n t i n u o u s l i n e a r map
1.5,and l
(ii)*
( i a )*
o
f'j)
any j E IN
0
6
be an
open
,F)
by
g E C(R1,Cco(Q2,F)1 .
i2
d e f i n e d by
ii
: E';
IN. Thus
eEo( (El x
(0,x2)is
=
(El x E 2 ) j i s con-
+
gives rise
ia
E2)JrF)
( x2 )
to
a
eEo(E);,F), d e f i n e d
-+
I f now f i s a n y e l e m e n t of C~o(511xR2rF)r m
m l.c), f ( 1 ) is i n C c o ( R l ~ ~ 2 , ~ ~ o ( (E2)jrF). E1~ m
(EJrF)), (i$*o f ( j ) i s in Cco (511X 512' Ls co 2
L3 (E ,F)). L e t u s d e n o t e t h e f u n c t i o n 512' co 2 m R2,F) t h a t f o r Then it f o l l o w s from f E Cco(R1x
Cco(nl
f (1) by
Cco(R,G).
m
x E2
Then i t f o l l o w s from lemma 1.a) that hence
m
x R2
f E Cco(Rl
T h e n dotr any
i2: E 2
b e l o n g n to
.then
F,
06
be 1 . c . hpaceb and l e L Qi
o b v i o u s l y l i n e a r and c o n t i n u o u s , hence
by
f(1)
Y
1 , o n e de,4inen a 6 u n c X i o n
f (xlf
+
Y
E2
El
t h e dunction
E INo
f E Czo(RrF) m i t h f ( R ) C G
any
Y
C m ( R , L j (E,F)1 .
G i b a closed lineah
76
j
Y
beloflgb to C m ( R r G ) .
uo f
gj
.
and any x1 E
R1 t h e f u n c t i o n
gj(xlr
) :
R2
-+
Lio(E2rF)
i s G z t e a u x - d i f f e r e n t i a b l e and t h a t i t s Gsteaux-derivative is g j + l ( y , * 1. T h i s p r o v e s t h a t f o r any m
x1 E Q1
Cco(512,F) , hence t h e f u n c t i o n
t h e function
g : nl
f(xlr
) belongs
Cco(n2,F) , g(Xl) = f 00
-+
to
( X l l o ) Can
be d e f i n e d . I n o r d e r t o show c o n t i n u i t y o f E
> 0 , and any c o n t i n u o u s
be given. Since
g
j
g on
semi-norm on
R1
, let
any
x1
6
61,
any
m
Cco(S22rF) of the f o m p
l r 5 r Q 2 r ~
i s uniformly c o n t i n u o u s on {x,} x K 2 f o r any
j,
MElSE
258
t h e r e e x i s t s a neighbourhood f o r any ( x l , x 2 ) any j w i t h
(where
0
{xll
E
and any ( h l , h 2 )
d e n o t e s t h e semi-norm
I
Pj,Q2,s
E
V1
El
w e have
V2
x
such t h a t
x E2
for
hl
E
u
+
s u p . q(u(y)) on L20(E,F)).
FQ;
V1
g i s continuous.
3 . PROPOSITION: 604
of zero i n
x V2
5 j5 l
T n i s i m p l i e s f o r any
hence
K2
x
V1
Which
and L e t
i =1,2
Fok
(Ei)A
Let
C o m p L e t e and w h i c h eQllaeA (Ei)AA
i d
be a n o p e n h u b b e t a d
sli
b e a quabi-compLete L . c . bpuce
Ei
t#pOfOgiCUk?Ly,
Abdume 6uhthekmohe t h a t
Ei.
E2
in
a k I R - b p a c e . Then t h e h e e X i b t h a continuoub Lineah a n d i n j e c t i v e map 03
A : Cco(Ql 6oh
any
PROOF:
tion
x
f
E
Q2)
m
+
m
Co(Q1,Cco(~Z)),
m
Cco(nl
x
dediMed b y
-+
f
(xl,
: x1
*
f(X1,
1
a,)
t h e func
-
Q2).
L e t u s show f i r s t t h a t for any
g : x1
A(f)
)
belongs to
m
Cco
f E CEo(fil
x
(Ql,c;o(i22)1 *
L e t il d e n o t e t h e l i n e a r c o n t i n u o u s mapping i l : E 1 El x E2, m i l ( x l ) = (xl,O) a n d l e t f E Cco(Ql x Q,) b e g i v e n . As i n t h e p r o o f -+
of lemma 2 one shows t h a t f o r any
j E IN
t h e mapping
~p :=
j
( i i ) * o f(1)
SPACES OF OIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
m
belongs t o g j : x1
+
Cco ( i l l
x
R2,L~o(El,IR1 ) .
29%
Hence, by lemma 2 t h e
mapping
i s i n C(Rl,C~o(R2,L~o(E1,1R))). Now o b s e r v e
9 . (xl,
3
i t f o l l o w s from 3.2
by o u r h y p o t h e s e s
and g e n e r a l
results
that
on t h e
€ - p r o d u c t t h a t w e have n a t u r a l isomorphisms
Using t h i s isomorphism, w e g e t from f o r any
j E IN
. Obviously
g.7 the napping
g. E C(Ql,L~o(E1,C~o(Q2)) 7
go = A ( f ) , and w e s h a l l p r o v e
now t h a t
i s t h e G s t e a u x - d e r i v a t i v e of g I n o r d e r t o do t h i s , gj+1 j ’ (k) = (‘j * 0 f f i r s t remark t h a t f o r any k E IN w e have
l e t us and
5)
‘Oj
that
f o l l o w s f r o m t h e proof of lemma 2. Hence w e g e t
Now l e t
R2
x1 E Q1
hl E E l ,
any compact Q2 o f
any
L
E M
, any
E 2 , any compact s u b s e t Q1 o f
b e g i v e n . W e have t o p r o v e t h a t t h e r e e x i s t s any
t
with
0
0,
6
By (1) and 1 . 5 w e have t o e s t i m a t e f o r
0
5
k
5 R
El
K2 o f
and
such t h a t
E
> O for
MEISE
300
-t ( f ( j + k )(xl
+
-
thl,x2)
f
(X1'X2)
f ( j + k + l ) i s c o n t i n u o u s on
Since
R~
x
a2 ,
-
it i s uniformly continu-
ous on a s u i t a b l e neighbourhood o f t h e compact set
uniform c o n t i n u i t y o f
Cx,)
element o f
.
By
g = go
isan
.
m
m
K2
f ( j + k + l ) a n d ( 3 ) i t i s clear t h a t t h e r e exists
s a t i s f y i n g ( 2 ) . C o n s e q u e n t l y w e h a v e shown t h a t
6 > 0
x
Cco (Ql,Cco (Q,)
L i n e a r i t y and i n j e c t i v i t y o f
A are o b v i o u s . C o n t i n u i t y
of
A
follows i m m e d i a t e l y from (1) a n d t h e d e f i n i t i o n o f t h e c o r r e s p o n d i n g topologies.
Now w e want t o p r o v e t h a t A i s s u r j e c t i v e i f w e impose
some
f u r t h e r conditions.
4 . LEMMA:
subset
06
Fon Ei.
i =1,2
El
Asbume t h a t
'Let g b e a a n y 6unc;tion i n a)
Fon a n y ( j, k )
b e a L . c . bpace and l e t
L e t Ei
E
x m
E2 k
i b
604
be an open
any ( j , k )
E
E!
k E2
IN 2
.
cco(~l,cco(~2)). m
IN2 t h e mapping f ( j r k :Ql )
dehilzed b y f ( j t k ) (x1,xi,y1,y2)
is c o n t i n u o u s .
a km-6pace
Ri
.
x
Q2
X
x
+
IR
SPACES OF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
331
a ) Observe t h a t f o r any open s u b s e t R of a 1.c. s p a c e E l a n y
PROOF:
1 . c . s p a c e F and any
i s c o n t i n u o u s on
K
x
f
QJ
E
m
Cco(QIF)
the function
f o r any compact s u b s e t
K
R and
of
any
compact s e t Q i n E and has v a l u e s i n F . Hence f o r any compact s u b s e t K1
of
Rl
and any compact s u b s e t Q1
of
Ell
the function
i s l i n e a r and c o n t i n u o u s f o r any compact s e t K 2 i n p a c t s e t Q 2 i n E2 , w e g e t from lemma 1.b) t h a t b e l o n g s t o C(K1 x QllC(K2 x Q,k)) = C(K1 x Q! x K2 x
b)
x
-
) [
x K2 x
Q:'
x
Q,). k
is a kR-space
The s e c o n d a s s e r t i o n i s a consequence o f t h e f o l l o w i n g con-
siderations:
=: A ( t )
pk((g(j)(
d;) =C(K1
T h i s p r o v e s t h e c o n t i n u i t y o f f ( j r k )I s i n c e El1' f o r any ( j , k ) E IN 2
.
R 2 and any com-
+
B(t).
302
MElSE
uniformly i n
y1 E Qi
By lemma 2.2
=
k y 2 E Q,
and
.
we g e t
lo
1
f ( j r k + ' )(x,
+ t h l r x 2 + T t h Z r y l r ( h 2 , y 2 ) )dT
f ( J r k + l ) i s u n i f o r m l y c o n t i n u o u s i n a neighbourhood of t h e compact set {xl} x {x,) x Qi* x Q2k hence w e also have I t f o l l o w s from a ) t h a t
uniformly i n
5. THEOREM:
equal6
Foh
(Ei)AA
Then t h e mapping ib
i =1,2
a topological
l e t Ei
E!
x E:
m
A : Cco(Ql
ment o f
m
C c o ( a l f C ~ o ( ~ 2 ))
any ( j , k ) A(f) : x l + f
E
.
2 D l
(Xlf*)r
Q1
A i s s u r j e c t i v e . L e t g be any e l e
-
1 . By lemma 4 t h e f u n c t i o n f : (x,,x2) +g(xl) (x,)
Cco(Ql,C~,(Q,)
is obvious t h a t
+
doh
Ei.
06
idomohphibm.
m
i s c o n t i n u o u s on
be an open bubbet
i b a km-hpace
x "2)
F i r s t l e t us show t h a t
PROOF:
be a q u a b i - c o m p l e t e l.c.bpace w h i c h
t o p o l o g i c a l t y and l e t Qi
buathekmoke t h a t
Addume
k y2 E Q 2 .
and
y1 E Q:
x Q,.
W e s h a l l prove
A ( f ) = g, hence
I n order t o prove
m
m
f E CCo(al
x
a,).
Then it
A is surjective.
f E Cc0(R1 x
a,)
let usremark t h e following:
SPACES OF DIFFERENTIABLE FUNCTIONS AND THE APPROXIMATION PROPERTY
and a s u r j e c t i o n u
Let (j,k) E
:
{I,...f j j
U
303
{l'f...fk'}+.{lf,..,j+k~
b e g i v e n . Then w e d e f i n e a c o n t i n u o u s l i n e a r map ru :(El x E 2 ) j + k
+
E
by
= ( ( e l , u (1)'
-
r e l (, j~ )
-(j,k)
By lemma 4.a) t h e f u n c t i o n Ql
X
R2
x
(El
any (x1,x2)
€
X
R1
:= f ( I , k ) o r
fU
-f a(j,k) ( x l , x 2 , * )
E2)j+k and x
' (e20 (1')'. . - 'e2u ( k ' )
X
E2,1R),
is c o n t i n u o u s . Using t h e mappings duction t h a t
f
m
belongs t o
Cco(R1
for
is ( j + k ) - l i n e a r
-f a(I 'k)
R2. Because of t h e c o n t i n u i t y o f c]+'(El o
c o n t i n u o u s on
is
U
t h e map-
d e f i n e d by
f u( J ' k ) I t is e a s y t o p r o v e by i n x
Q,).
Let
us
show
that
f
is
Gsteaux-differentiable:
u
Define
u2
:
0
U (1')
+
{l}
*
1 '
11)
0
U
{l}
by
ul(l)
= 1
and
define
~ ~ ( 1 =' 1. ) Thenwe g e t from 4 . b ) t h a t f o r
by
x = (x1,x2) E Q1 x R2
+
and
h = ( h l , h 2 ) E El
E2
x
1
+
f ; O r 1 ) ( x ) ) [ h ] , and f E Cco(R1 x R,) ul 2 by lemma 2.3. From t h i s and l e m a 4 . b ) w e g e t by i n d u c t i o n t h a t f o r
Hence
f'(x)[h] = (f(l'')(x)
any 1 E W t h e f u n c t i o n
f
be r e p r e s e n t e d as a sum of
k in
INo w i t h
j +k =
L
is i n
L
Cco(Rl
x Q,)
and t h a t
f ('1
can
f, ( J r k ) where t h e sum r u n s o v e r a l l j and and o v e r c e r t a i n
(J
.
This proves
that
MEISE
f E
cco (a, m
x
Q,).
Hence w e have shown t h a t
A : Cm c o ( ~ xl o 2 )
b i j e c t i v e . From t h e r e p r e s e n t a t i o n o f (A'l ( g ) )
follows t h a t A - l
m
+ c ~ ~ ( Q ~ , ci s~ ~ ( ~ ~ i n d i c a t e d above i t
i s c o n t i n u o u s . Then A i s a t o p o l o g i c a l isomorphism
by p r o p o s i t i o n 3 .
REMARK:
R e s u l t s of t h e same t y p e as i n theorem 5 a r e also g i v e n
in
t h e l e c t u r e n o t e s of F r o h l i c h e r a n d Bucher [151 ( w i t h a d i f f e r e n t defin i t i o n o f d i f f e r e n t i a b i l i t y ) and i n Colombeau [111I [ 1 2 ] . Itseems t o b e i m p o s s i b l e t o g e t t h e r e s u l t on (DFM)-spaces g i v e n below by
bor-
n o l o g i c a l methods. Concluding t h i s s e c t i o n , l e t us combine theorem 5 and some
of
t h e r e s u l t s i n s e c t i o n 3 . Then w e g e t
6 . THEOREM:
Let El
and E 2 b e e i t h e k (F)-Apactd o h (DFM)-bpacesand
L e t Oi be a n o p e n d u b n e t a d Ei
doh
i =1,2.
Then we h a v e t h e
dot-
bowing t o pob a g i c a l 16 a ma h p hid m d
7 . THEOREM: Ei
.
Foh
i =1,2, b e t
be an open s u b s e t
Cli
06
t h e L . c . space
Assume t h a t e i t h e n . 1)
El
2)
El
and E 2 and
E2
ahe ( F ) - d p a c e n , o n e
06
a h e (DFM) - s p a c e s , o n e
w h i c h had a . p . ,
05
ah
wkich A a ( D F S A ) -npace.
T h e n t h e d o l l o w i n g hold4
8. REMARK:
The d u a l of
CEo(Sa)
forms a n a t u r a l g e n e r a l i z a t i o n of the
s p a c e of d i s t r i b u t i o n s w i t h compact s u p p o r t t o i n f i n i t e
dimensions.
SPACES OF DIFFERENTIABLE FUNCTIONS ANDTHE APPROXIMATION PROPERTY
306
It is obvious that many of the results of this article can regarded as results on the dual of
also
be
m
Cco(Q). E.g. theorem 3.10 is of
importance in connection with the theorem of Paley -Wiener -Schwartz (in order to see this one has to extend several results
to
complex
valued functions on R , then (for certain 1.c. spaces E) one can define the Fourier-Laplace transform of any
m
T E Cco(Q,fl!)'
morphic function on the complexification of EA growth condition). Theorem 6 can be used
* : Cmco (E)'
x
CZo(E) '
-+
to
,
as a
holo-
satisfying acertain
define
a
convolution
Czo(E) I . The precise formulation of the results
just mentioned will be contained in a subsequent paper.
REFERENCES
[
11
A. ARHANGEL'SKII, Bicompact sets and the topology Soviet Math. (Doklady) 4 (1963),, 561 - 564.
of
spaces,
[ 21
R. ARON, Compact polynomials and compact differentiable mappings between Banach spaces, in "Si?minaihe P i t h h e L e h f l g ( A n a l y b e ) Annee 1974/75", Springer Lecture Notes Math. 524 (1976), p. 213-222.
[ 31
R. ARON, Approximation of differentiable functions on a Banach space, in 'I 1 n d i n i t e d i m e n d i o n a l hoComo/rphq a n d appfic&ovl~': North-Holland Mathematics Studies (19771, p. 1-17.
[ 41
R.
[ 51
K.-D. BIERSTEDT and R. MEISE, Lokalkonvexe Unterraume in topologischen Vektorramen und das c-Produkt,manuscripta math. 8 (1973)I 143 -172.
[ 61
K.-D. BIERSTEDT and R. MEISE, Bemerkung uber die Approximationseigenschaft lokalkonvexer Funktionenrame, Math. Ann. 209 (19741, 99 -107.
ARON and M. SCHOTTENLOHER, Compact holomorphic mappings on Banach spaces and the approximation property, J. Functional Analysis 21 (19761, 7-30.
MElSE
306
[ 71
X.-D.
BIERSTEDT and R. MEISE, N u c l e a r i t y and t h e Schwartz prope r t y i n t h e t h e o r y of holomorphic f u n c t i o n s on
metrizable
l o c a l l y convex s p a c e s , i n " l n d i n i t e dimenbionaL hoLomohphy
and a p p L i c a t i o n d " , North-Holland Mathematics S t u d i e s (1977), p. 9 3 - 1 2 9 . 81
J. L. BLASCO, Two p r o b l e m s on k m - s p a c e s , Math. Sci. Hung.
t o appear
in
Acta
[ 91
P. L. BOLAND, An example of a n u c l e a r s p a c e i n i n f i n i t e dimens i o n a l holomorphy, Ark. Mat. 1 5 ( 1 9 7 7 ) , 87 - 9 1 .
1101
F. BOMBAL GORDON and J. L. GoNZaEZ UAVONA, La p r o p i e d a d
de
aproximacidn en e s p a c i o s de funciones diferenciables,Revis-
t a Acad. C i . Madrid 70 ( 1 9 7 6 1 , 7 2 7 - 7 4 1 . [ l l ] J. F. COLOMBEAU, Uiddekentiation
e t b o k n o l a g i e , t h S s e , Bordeaux
1973.
[12]
J. F. COLOMBEAU, S p a c e s of Cm-mappings i n i n f i n i t e l y many
di-
mensions and a p p l i c a t i o n s , p r e p r i n t Bordeaux 1 9 7 7 . [131
S. DINEEN, Holomorphic f u n c t i o n s on s t r o n g d u a l s of Fr6chetMonte1 spaces , i n " I n d i n i t e d i m e n d i o n a l holomokphy and app t i c a t i o n d t'
[14]
,
North-Holland Mathematics Studies (1977),147-166.
K. FLORET a n d J . WLOKA, Eindiihtung i n die Thgohie d e n LokaLkonwexen
Raume, S p r i n g e r L e c t u r e Notes i n Math. 56 ( 1 9 6 8 ) . [15]
A. FROLICHER a n d W. BUCHER, CaLcuLud i n wectoh dpaced nohm, S p r i n g e r Lecture Notes i n Math. 30 ( 1 9 6 6 ) .
[161
H.
without
HOGBE-NLEND, L e s e s p a c e s de F r 6 c h e t - S c h w a r t z e t l a p r o p r i e t e d ' a p p r o x i r n a t i o n , C.R.
Acad. S c i . P a r i s A 275(1972) ,1073-1075.
[171
J. HORVhTH, T o p o L o g i c a e v e c t o h b p a c e d and d i b t h i b u t i o n b 1,Readi n g , Mass, Addison Wesley 1965.
[18]
H.
PiddehcntiaL cak?cutub i n eocaeCy c o n v e x S p r i n g e r L e c t u r e Notes i n Math. 417 ( 1 9 7 4 ) .
H . KELLER,
bpaced,
SPACES OF DIFFERENTIABLE FUNCTIONS ANOTHE APPROXIMATION PROPERTY
[191
G . KOTHE,
T a p o L o g i c a L v e c t v t r h p a C e b I, Springer
307
Grundlehren
der Math. 159 (1969). [20] J. B. PROLLA and C. S. GUERREIRO, An extension of Nachbin's theorem to differentiable functions on Banach spaces with the approximation property, Ark. Mat. 14 (19761, 251 - 258. [21] H. H. SCHAEFER, T o p o L o g i c a L v e c t o h dpaces, Springer 1970. [221
L. SCHWARTZ, Theorie des distributions 5 valeurs I, Ann. Inst. Fourier 7 (19571, 1-142.
[ 231
M. DE WILDE, R6seaux dans les espaces lin6aires 2 semi-normes, Mgmoires SOC. Royale Sc. Lisge, 5e sGrie,l8, 2 (1969).
[24I
S. Y A W U R O , Uia6ekentiaL
CdCU&Uh
vectorielles
i n t o p o t a g i c a L fitzeah
Springer Lecture Notes in Math. 374 (1974).
hpaceb,
This Page Intentionally Left Blank
Approximation Theory and Functional A n a l y s i s J.B. Prol2a ( e d . ) 0North-HoZland Publishing Compmzy, 1979
A LOOK AT APPROXIMATION THEORY
LEOPOLDO NACHBIN I n s t i t u t o de Matemgtica U n i v e r s i d a d e F e d e r a l do Rio de J a n e i r o 20.000 R i o de J a n e i r o RJ ZC-32 Brazil Department of Mathematics U n i v e r s i t y of R o c h e s t e r R o c h e s t e r NY 14627 USA
1, INTRODUCTION I would l i k e t o d e s c r i b e v e r y b r i e f l y how I w a s l e d t o
become
s e r i o u s l y i n t e r e s t e d i n Approximation Theory, t h a t i s , t o i n d i c a t e t h e m o t i v a t i o n t h a t I had i n my mind. T h i s f i e l d h a s d e v e l o p e d i n B r a z i l i n t h e p a s t t e n y e a r s or so, t h a n k s a l s o t o t h e work of S i l v i o Machado,
Joao Bosco
Prolla
and
Guido Z a p a t a , as w e l l as t h e r e s e a r c h s c h o o l t h a t t h e y formed. I f I had t o r e d u c e b i b l i o g r a p h i c a l r e f e r e n c e s t o a b a r e
mini-
mum, i n what c o n c e r n s t h e work of t h e B r a z i l i a n s c h o o l i n Approximat i o n Theory and i t s r e l a t i o n s h i p t o t h e r e s e a r c h o f o t h e r g r o u p s ,
I
would q u o t e my monograph Element6 ad A p p t o x i m a t i a n T h e o h y ( 1 9 6 7 ) , as w e l l as P r o l l a ' s monograph Apphoximation (1977) (see [ 3 4 1 up-to-date
,
0 4 Vectoh Vatued
[ 5 4 1 ) . However, t h e b i b l i o g r a p h y
at
the
Funciionb end
is
and complete w i t h r e s p e c t t o t h e work by Machado, P r o l l a ,
Zapata and m y s e l f .
I t i s extremely incomplete o th er wis e.
emphasize t h e f o l l o w i n g aspects:
Let
me
310
NACHBIN
1)
I s h a l l r e s t r i c t myself
h e r e t o t h e r e a l v a l u e d c a s e . The
v e c t o r v a l u e d c a s e was t r e a t e d i n a d e s i r a b l e d e g r e e
of
generality
(see also
through v e c t o r f i b r a t i o n s by Machado [ 1 6 ] and P r o l l a [ 4 0 ] [35 1
I361 1 * 2)
I n t h e complex c a s e ,
Bishop and W e i e r s t r a s s - S t o n e 3)
I p o i n t o u t t h e work by Machado on the
theorems [ 181
.
W e c a l l a t t e n t i o n t o t h e work by Zapaka on Mergelyan's the-
orem and q u a s i - a n a l y t i c classes [ 65 ] (see a l s o [ 541 ) 4)
.
(See a l s o [ 541 )
.
Weighted approximation i n t h e c o n t i n u o u s l y
differentiable
c a s e was s t u d i e d by Zapata [631 , [ 6 4 1 . 5)
A d e n s i t y theorem f o r polynomial a l g e b r a s of
continuously
d i f f e r e n t i a b l e mappings i n i n f i n i t e dimensions and i t s
relationship
t o t h e Banach-Grothendieck
approximation p r o p e r t y was i n v e s t i g a t e d by
P r o l l a and G u e r r e i r o I 5 3 I (see a l s o [ 38 1 ) . 6)
Nonarchimedean Approximation Theory h a s
P r o l l a [ 561,
and C a r n e i r o [ 7 1
,
[ 8
1
.
been
sthdied
by
2 . APPROXIMATION OF CONTINUOUSLY DIFFERENTIABLE MAPPINGS
I n 1 9 4 7 , M a r s h a l l S t o n e came from t h e U n i v e r s i t y o f Chicago t o l e c t u r e a t t h e U n i v e r s i d a d e F e d e r a l do R i o de J a n e i r o (known t h e n as U n i v e r s i d a d e do B r a s i l ) f o r t h r e e months.
He
offered
a
beautiful
c o u r s e on "Rings of Continuous F u n c t i o n s " . Among o t h e r t h i n g s ,
he
t a l k e d a b o u t h i s c e l e b r a t e d p a p e r A GenehaLized W C i e & A t h U A A A p p h o x i -
m a t i o n Theohem which he had j u s t w r i t t e n . I t was p u b l i s h e d n e x t y e a r i n volume 21 (1948) of Mathematics Magazine. T h i s is a good
example
of an a r t i c l e t h a t became famous i n s p i t e of t h e f a c t
is
that
was
p u b l i s h e d i n an o b s c u r e j o u r n a l . S t o n e ' s c o u r s e d e a l t w i t h c o n t i n u o u s f u n c t i o n s , and was
going
t o have a l a s t i n g i n f l u e n c e on m e . I t was d u r i n g a n d shortly a f t e r i t t h a t , i n 1948, I t h o u g h t of and proved, b u t d i d n o t
gublish
then,
A LOOK AT APPROXIMATION THEORY
31 1
I will
w h a t I c a l l e d the W e i e r s t r a s s - S t o n e theorem f o r modules [ 3 4 ] .
come back t o t h i s a s p e c t i n a b r i e f w h i l e . The r e a s o n I d i d n o t publ i s h r i g h t aw'ay t h a t r e s u l t f o r modules w a s t h i s . I t took u n t i l 1960
to r e a l i z e
- 1961,
years
me
w h i l e I v i s i t e d B r a n d e i s U n i v e r s i t y f o r four months,
th!, i n t e r e s t f o r Approximation Theory o f
modules i n p l a c e
o f a l g e b r a s , and t o g e t s t a r t e d i n w e i g h t e d a p p r o x i m a t i o n p r o p e r f o r continuous functions. I n 1948, I went t o t h e U n i v e r s i t y of Chicago v i s i t during 1948-1950,
for
a two
a t t h e i n v i t a t i o n o f S t o n e . While t h e r e ,
had an a p p o r t u n i t y , i n 1 9 4 9 , o f p r e s e n t i n g a t And& Weil's
I
seminar
the t h e n r e c e n t a r t i c l e "On i d e a l s of d i f f e r e n t i a b l e f u n c t i o n s "
Hassler
year
by
Whitney, j u s t p u b l i s h e d i n volume 70 (1948) of t h e American
J o u r n a l of Mathematics. A f t e r my l e c t u r e ,
I r v i n g Segal
asked
me:
how a b o u t a s i m i l a r r e s u l t f o r a l g e b r a s of c o n t i n u o u s l y differentiable f u n c t i o n s , a l o n g the l i n e s o f t h e W e i e r s t r a s s - S t o n e t h e o r e m ? I n o t h e r
words, t h e problem w a s t o describe t h e c l o s u r e of
a subalgebra
continuously d i f f e r e n t i a b l e functions , or e q u i v a l e n t l y , to
of
describe
t h e closed subalgebras of c o n t i n u o u s l y d i f f e r e n t i a b l e f u n c t i o n s ,
in
t h e s p i r i t of t h e W e i e r s t r a s s - S t o n e theorem. To t h e b e s t of my knowl e d g e , t h i s problem h a s remained open so f a r : see below f o r t h e con-
jecture t h a t I h a v e i n mind i n t h i s r e s p e c t . Pressed by S e g a l ' s q u e s t i o n , I s t u d i e d i m m e d i a t e l y i n 1949 [ 231
t h e noteworthy case of d e n s e s u b a l g e b r a s , t o o b t a i n t h e f o l l o w i n g r e s u l t . L e t E be a r e a l m - d i f f e r e n t i a b l e ( m = 0 , 1 , f i n i t e dimension. Denote by
...,-)
Cm(E) t h e a l g e b r a o f
m - d i f f e r e n t i a b l e real f u n c t i o n s o n E ,
all
manifold
continuously
endowed w i t h t h e t o p o l o g y
o f uniform convergence on t h e compact subsets of and a l l t h e i r d i f f e r e n t i a l s up t o o r d e r m .
of
T~
E of suchfunctions
312
NACHBIN
(Nl)
F o h euehg
x
E
E, thehe i d
(N2)
F a t euehg
x
E
E,y
E
E
E
f E A
duck t h a t f ( x ) #O.
# y , ,?%thehe0
E, x
f E A nuch t h a t
f(x) # f(y).
F a h evehy
(N3)
x
x , thehe
at
ib
t # 0
and evehy t a n g e n t u e c t o h f
E A
t o E
buck t h a t
These c o n d i t i o n s do n o t depend on m . The case
excluded
m=O
by t h e above r e s u l t i s c o v e r e d by t h e W e i e r s t r a s s - S t o n e
theorem.
Coming back t o t h e q u e s t i o n S e g a l a s k e d m e i n 1 9 4 9 , b i t by b i t I was l e d t o f o r m u l a t e t h e f o l l o w i n g c o n j e c t u r e . I f i t i s t r u e ,
the
Whitney i d e a l theorem a n d t h e above d e n s i t y theorem are subsumed
by
i t . For t h e s a k e o f s i m p l i c i t y o f terminology and n o t a t i o n o n l y , l e t
15 m
us assume t h a t of
f o r some
lRn
n = 1,2,.
16
belongb t o t h e
CeObUhe
modueo
jD"g(x)
06
-
and evehy
U/A
Daf(x) 1 c
oadeh a t
mobt
Notice t h a t
E
doh
A
any
f
K ad
E
U
doh
T~
x E K
and
QO
equivalence are
Cm(U) t h e n f
i d (and ahJay4
contained i n
> 0, theke i b
E
m=
A.
LA a d u b a l g e b k a a d
Cm(U)
in
doh e u e h g compact h u b b e t
ceabb
D"
A
consider the
U, a c c o r d i n g t o which x , y E U
f E C m ( U ) and 06
subset
t o a r b i t r a r y E and t o
C"(U),
f(x) = f(y) for a l l
CONJECTURE 2 :
i s a nonvoid open
E=U
.., e x t e n s i o n
d e f i n e d by A on
U/A
e q u i v a l e n t when
id),
and t h a t
A is a subalgebra of
being easy. I f relation
m
g
any
dome
E
A
pahtiae
OMLy
equivalence buch
that
dehiuadiue
epual t o m.
f belongs to t h e c l o s u r e of
A in
Cm(U)
for
T~
when t h e above c o n d i t i o n h o l d s t r u e f o r e v e r y compact s u b s e t K o f U, by d e f i n i t i o n , n o t j u s t f o r t h o s e K c o n t a i n e d i n
some
equivalence
313
A LOOK AT APPROXIMATION THEORY
class modulo
The above c o n j e c t u r e i s a n a s p e c t of what I called
U /A.
LacaLizabiLity (see below too). If t r u e , t h e above c o n j e c t u r e h a s a n a t u r a l e x t e n s i o n t o modules i n p l a c e of a l g e b r a s . T h e r e i s a more n a i v e c o n j e c t u r e , which i s e a s i l y s e e n
to
f a l s e . W e m i g h t i n d e e d c o n j e c t u r e t h a t e v e r y s u b a l g e b r a A of which i s c l o s e d f o r
p l e convergence a t p o i n t s o f
t i a l s up t o order m. F o r
E of f u n c t i o n s and a l l t h e i r d i f f e r e n -
m = 0, t h i s i s i n d e e d t h e case; as a matter
of f a c t , t h e s t a t e m e n t t h a t g e b r a s of
Co(E)
Cm(E)
of s i m -
i s a l s o c l o s e d f o r t h e t o p o l o g y rms
T~
be
and
T~
= C(E) i s easily
have t o same c l o s e d s u b a l -
T~~
seen
to
be
to
equivalent
the
W e i e r s t r a s s - S t o n e theorem.
Lef: A be f:he n u b a t g e b f i a 0 6
EXAMPLE 3:
f(l/k) = f(0)
n u c h bha-t
Then A i d c t o b e d
60fi
60k
- c ~
a&!
k=1,2,
C1(n) a 6 a t e
... and
f
E
m
tnofieaweh Z,=,f'(l/n)/n
but it in n o 2 c t o n e d
doh
C1 ( R ) 2
=O.
71s.
A few y e a r s a g o , I a s k e d J a i m e Lesmesthe q u e s t i o n o f e x t e n d i n g
t h e above Theorem 1 t o i n f i n i t e d i m e n s i o n s . I a l s o d i d
raise
q u e s t i o n d u r i n g a l e c t u r e I gave a t Madrid, where Jos6 L l a v o n a
that got
i n t e r e s t e d i n i t . Recent work a l o n g t h i s l i n e w a s done by L e s m e s [13] and P r o l l a [ 4 9 ]
,
[ 531 i n B r a z i l , and by Llavona [14 I
,
[15]
i n Spain.
W e now summarize t h a t a s p e c t v e r y s u c c i n t l y , a l o n g t h e l i n e s o f 1381.
L e t E l F be Hausdorff r e a l l o c a l l y convex s p a c e s , E # 0 , U a nonvoid open s u b s e t o f
m
and
E
t h e v e c t o r s p a c e of a l l mappings
=
1,2,.
f :U
+
F
..
,m.
W e d e n o t e by
FfO,
?(U;F)
t h a t a r e c o n t i n u o u s l y m-
d i f f e r e n t i a b l e i n t h e following sense: 1)
f
is f i n i t e l y m-differentiable;
dimensional v e c t o r subspace
S
w e assume t h a t the r e s t r i c t i o n
of
E with
f ] (U
13 S )
t h a t is, f o r every f i n i t e
S # 0
+
fa,(
k
E;F)
U n S nonvoid,
is m - d i f f e r e n t i a b l e i n t h e
c l a s s i c a l s e n s e . Thus we h a v e the d i f f e r e n t i a l s dkf : U
and
NACHBIN
314
for
k =0,1,.
. ., k
5 n,
k
w i t h v a l u e s i n t h e v e c t o r s p a c e gas ( E;F) o f
Ek t o
a l l symmetric k - l i n e a r mappings of 2)
F.
The mapping
i s c o n t i n u o u s of e v e r y
longs t o t h e v e c t o r subspace k - l i n e a r mappings of
We endow
.,
k = 0,1,.
Ek
to
k 5 m . I n p a r t i c u l a r , d k f ( x ) be-
k ~ ; of ~ ) all Is
c o n t i n u o u s symmetric
F.
Cm(U;F) w i t h t h e t o p o l o g y
T~
of seninorms depending on t h e p a r a m e t e r s k ,
fc
d e f i n e d by t h e
4, K, L
a c o n t i n u o u s seminorm on
b e i n g nonvoid compact subsets of
family
F and K , L
respectively.
U, E
W e s h a l l u s e t h e n o t i o n of polynomial a l g e b r a ; see t h e convent i o n on page 6 3 , [ 5 4 1 .
THEOREM 4 :
Let
m 2 1 and A be a p o L y n a m i a l b u b a t g e b t a
SUppObe t h a t t h e t e i n a b u b n e t G c o n t i n u o u n L i n e a z endomohphibmh duch
06
06
t h e v e c t a h Apace
E'
?(U;F).
06
06 all
@ E
E w i t h d i n i t e dimenbionaL h a g u ,
that: 1)
T h e i d e n t i t y mapping
IE
belong4 t o t h e clonute 0 6 G doh
t h e compact-open t o p o l o g y an t h e v e c t o h npace a L L c o n t i n u o u n L i n e a h endomohphibmb 2)
Fon evetry that
06
and e v e h y
f
E
h t h i c t i o n ( f o J) IV = f o (J I V)
A,
; E)
06
U
06
E.
J E G, e v e t y n o n v a i d open nubbet V
J(V) c U
E(E
it 6 o l l o w h t h a t t h e
belongn t a t h e
nuch ze-
ctonuhe i n
316
A LOOK A T APPROXIMATION THEORY
Cm(U;F)
Then A i n d e n s e i n (Nl)
Foh e v e h y
x
(N2)
Fah evehy
x E U, y
that (N3)
6
in
f
E
A
nuch
thehe i b
f
E A
buch
x # y, t h e h e
U,
E
h u c h t h a t f ( x ) # 0.
f E A
U, t h e h e in
f ( x ) # f(y)
Foh e V e h y
don .rm i d and ondy id:
.
x E U, t E E , t # 0,
that
aa ft ( X I If
E
= d f ( x ) (t)
# 0.
i s f i n i t e d i m e n s i o n a l , c o n d i t i o n s 1) and 2 ) of Theorem 4
are s a t i s f i e d by G r e d u c e d t o
IE. Hence Theorem 4 i m p l i e s
Theorem
1. C o n d i t i o n 1) o f Theorem 4 i m p l i e s t h a t Grothendieck approximation p r o p e r t y , t h a t i s , closure of
E' 8 E
in
L(E;E)
E
has
the
belongs
IE
f o r t h e compact-open
Banachto
topology.
the Thus
Theorem 4 leads t o t h e f o l l o w i n g c o n j e c t u r e :
CONJECTURE
5:
F a h evetry
given
E,
t h e 60tLaiuing c o n d i t i o n n a h e equi-
vatent: Foh a h b i t h a h y
U, F , m 1. 1, t h e n e v e h y poLynamiaL
adgebha A i n d e n h e i n
o n l y id) A E
hatihdieh
Cm(U;F) d o h
(Nl)
,
-rm id ( a n d
nubaLwayn
(N2) , ( N 3 ) .
hab t h e Ranach - G h o t h e n d i e c k a p p h o x i m a t i o n p h o p e h t y .
I t i s known t h a t ( C 1 ) i m p l i e s ( C 2 ) . The c o n j e c t u r e i m p l i e s ( C l ) i s an a t t e m p t t o improve Theorem 4 .
that
(C2)
316
NACHBIN
I n t h e d i r e c t i o n of r e s e a r c h t h a t I j u s t mentioned,
there
is
more g e n e r a l l y t h e q u e s t i o n of s t u d y i n g Approximation Theory f o r a l g e b r a s o r modules of c o n t i n u o u s l y d i f f e r e n t i a b l e v e c t o r v a l u e d mappi n g s by u s i n g w e i g h t s . T h i s q u e s t i o n however i s s t i l l wide open,
in
s p i t e o f t h e a v a i l a b l e r e s u l t s . See t h e n e x t s e c t i o n f o r t h e c o n t i n uous c a s e .
3 . WEIGHTED APPROXIMATION FOR MODULES AND ALGEBRAS OF CONTINUOUS F"C-
TIONS L e t m e t a l k now a b o u t t h e W e i e s t r a s s - S t o n e theorem f o r m o d u l e s , how i t l e d m e t o t h e B e r n s t e i n a p p r o x i m a t i o n problem and what I t h e n c a l l e d t h e w e i g h t e d a p p r o x i m a t i o n problem ( o r t h e B e r n s t e i n - N a c h b i n a p p r o x i m a t i o n problem, a c c o r d i n g t o a more r e c e n t terminology by other authors). Let
E be a c o m p l e t e l y r e g u l a r t o p o l o g i c a l s p a c e , and C ( E ) de-
n o t e t h e a l g e b r a o f a l l c o n t i n u o u s r e a l f u n c t i o n s on E endowed w i t h t h e compact-open t o p o l o g y . T h e r e i s t h e i d e a l theorem f o r I f I i s an i d e a l i n
C ( E ) and
b e l o n g s t o t h e c l o s u r e of
-1
1
I
I-'(O)
in
as
C(E) which reads =
nf
,
I f-'(O)
C ( E ) i f and only i f
then
follows. f
E
f vanishes
C (E) on
(0). More g e n e r a l l y , t h e r e i s t h e W e i e s t r a s s - S t o n e
a l g e b r a A of
C ( E ) which r e a d s as f o l l o w s . L e t
l e n c e r e l a t i o n on E d e f i n e d by for every
f E A. C o n s i d e r
x1
A in
E / A
be t h e e q u i v a -
i f xl, x2 E E and f ( 5 ) = f ( x 2 )
n f € A f"(0)
A-'(O)=
o f e q u i v a l e n c e c l a s s e s modulo E / A belongs to t h e c l o s u r e of
- x2
theorem f o r a sub-
which e i t h e r is one
o r e l s e is v o i d . Then
C ( E ) i f and only i f
on e v e r y e q u i v a l e n c e class modulo E / A -1 A (0) i s nonvoid.
and f
f
f E C(E) i s constant
v a n i s h e s on A-'(O)
if
I n t h e i d e a l theorem, we have a module I over the algebra A = C ( E ) .
A LOOK AT APPROXIMATION THEORY
31 7
I n t h e W e i e r s t r a s s - S t o n e theorem, w e have a module bra
A
+
A over t h e alge-
IR g e n e r a t e d b y A and a l l c o n s t a n t r e a l f u n c t i o n s on
w e c o n s i d e r e d j u s t a v e c t o r subspace W of
C(E)
,
w e would
If
E.
have
a
module W o v e r t h e a l g e b r a A of a l l c o n s t a n t r e a l f u n c t i o n s on E . I n t h e succession of these t h r e e c a s e s , t h e algebra of m u l t i p l i e r s vari e s from t h e l a r g e s t t o t h e s m a l l e s t p o s s i b i l i t y c o n t a i n i n g t h e unit. More g e n e r a l l y , l e t A be a s u b a l g e b r a o f
C ( E ) whichwe mayrylw
w
assume t o c o n t a i n t h e u n i t w i t h o u t loss o f g e n e r a l i t y , and l e t a v e c t o r subspace o f
C ( E ) which i s a module o v e r
be
A so t h a t A W C W .
The W e i e r s t r a s s - S t o n e theorem f o r modules r e a d s a s f o l l o w s . 1 n t r o d u c e as b e f o r e t h e e q u i v a l e n c e r e l a t i o n E/A to t h e closure of
s e t K of E
E
W in
on E .
Then
f E C(E) belongs
C ( E ) i f , a n d o n l y i f , f o r e v e r y compact sub-
c o n t a i n e d i n some e q u i v a l e n c e c l a s s modulo E/A and every
> 0, there is
g E W
such t h a t
Ig(x)
-
f ( x )1
0
T(V) C X V , form a b a s i s o f neighborhoods a t 0 ; i n equiva-
such t h a t
l e n t t e r m s , when c o r r e s p o n d i n g t o e v e r y neighborhood U of
0 in
W
w e may f i n d a n o t h e r neighborhood V o f 0 i n W and E > 0 such t h a t k k Urn T ( E V) C U. More g e n e r a l l y , t h e members o f a c o l l e c t i o n C o f k =O l i n e a r o p e r a t o r s on W are s a i d t o be " s i m i l a r l y d i r e c t e d " i f the neighborhoods such t h a t
a t 0.
V of
T(V) C
0 in
W
,
f o r e a c h o f which there i s X = A ( V , T ) > 0 T E C , form a b a s i s of neighborhoods
X V f o r every
D i r e c t e d n e s s o f a l i n e a r o p e r a t o r i m p l i e s i t s c o n t i n u i t y . Both
d i r e c t e d n e s s and s i m i l a r d i r e c t e d n e s s r e d u c e t o continuity when a normed s p a c e . These c o n c e p t s a r i s e o n l y i n t r e a t i n g
more
t o p o l o g i c a l v e c t o r s p a c e s . Thus t h e h y p o t h e s i s i n Theorem t h a t the operators i n i s f i e d when
THEOREM 6:
W is
general 6
below
A be s i m i l a r l y d i r e c t e d is a u t o m a t i c a l l y sat-
W i s a normed s p a c e .
The p a i h A , W ha6
b0Me
h e p h e s e n t a t i o n b y continuous A e a L
a Haubdoadd s p a c e lukich 4~ lady convex
dunc.tionb id and o n L y i6 W
i6
undeh A ,
i n A a t e bimieahdy d i t e c t e d .
and the
0pehU.tOth
A WOK AT APPROXIMATION THEORY
76 the pait
THEOREM 7: h u e
6uncXionn and
undex A ,
S
i 4
A , W han 40me h e p h e n e n t a t i o n b y
06
a wectoh oubnpuce
t h e n t h e q u o t i e n t paih
A / S , WIS
16 t h e p a i h
areal d u n c t i o n b , t h e n 16
dea W
A, W
bpeC.tkae
cont i nuoun
which in
inuahiant
aeptenentation
S i 4 cloaed i n
had n u m e h e p h e d e n t a t i o n
W.
by cant i nuoun
nynt hebi d hoedn i n t h e doLl!owing
S i n a cLoned p h o p e h v e c t o h bubnpuce
A,
W
hab dome
b y Cona%tUOUb heal! 6unct i onn i6 a n d o n l y id
THEOREM 8:
319
t h e n S in t h e intehnection
06
06
W which
in
inwahiant un-
a l l ! C t 0 4 e d w e c t o h n u b 4 p a c ~0 6
w h ich a x e i n v a a i a n t undeh A , have cadimenhion o n e i n W and c o n - .
tain S. The p a s s i n g t o a q u o t i e n t s t a t e m e n t of Theorem 7 i m p l i e s
spec;
t r a l s y n t h e s i s i n Theorem 8 , which may be viewed a s an a b s t r a c t v e r s i o n o f the W e i e r s t r a s s - S t o n e theorem f o r modules. L e t u s a l s o p o i n t
,
then
Theorem 8 becomes t h e f o l l o w i n g s t a t e m e n t . Every c l o s e d p r o p e r
vec-
o u t t h a t , when
tor subspace
A i s reduced t o t h e scalar o p e r a t o r s
S o f a l o c a l l y convex s p a c e
a l l c l o s e d vector s u b s p a c e s o f and c o n t a i n
W
of
W
is t h e i n t e r s e c t i o n
of
W which have codimension one i n
S . As i t i s c l a s s i c a l , such a s t a t e m e n t
is
W
equivalent
t o t h e Hahn-Banach theorem. Thus Theorem 8 may be looked upon
as
a
g e n e r a l i z a t i o n of b o t h t h e W e i e r s t r a s s - S t o n e theorem f o r modules a n d t h e Hahn-Banach theorem f o r l o c a l l y convex s p a c e s . We may t h e n ask t h e f o l l o w i n g n a t u r a l q u e s t i o n . To what e x t e n t
the c o n d i t i o n o f t h e o p e r a t o r s i n
A b e i n g s i m i l a r l y d i r e c t e d i s mu-
c i a l f o r the v a l i d i t y o f Theorem 6, o r Theorem 7 , or Theorem 8 ? Lo-
c a l c o n v e x i t y under
A
i s n o t superfluous.
In fact,
r e d u c e d t o t h e scalars o p e r a t o r s o f
W , t h e n i t may
e v e r y c l o s e d p r o p e r v e c t o r subspace
S of
s l l closed vector subspaces of
and c o n t a i n
S,
letting be
A
false
be that
is the intersection
of
W which have condimension one i n
W
W
i n case W i s n o t assumed t o be l o c a l l y convex.
The
NACHBIN
320
answer t o t h e above n a t u r a l q u e s t i o n i s no. The example t h a t I found i n 1957 l e d m e t o t h e c l a s s i c a l B e r n s t e i n a p p r o x i m a t i o n problem, a s 1 s h a l l describe next.
EXAMPLE 9 :
t i o n s on
Let
R
W be t h e F r g c h e t s p a c e o f a l l c o n t i n u o u s r e a l f u n c -
t h a t are r a p i d l y d e c r e a s i n g a t i n f i n i t y . C a l l
t h e a l g e b r a o f a l l r e a l p o l y n o m i a l s on
a
R . Every
E
A = P (33)
is
that
C(lR)
s l o w l y i n c r e a s i n g a t i n f i n i t y g i v e s r i s e t o t h e c o n t i n u o u s l i n e a r opTa : f E W
erator
+
af
E W
which i s d i r e c t e d i f and only a is bounded.
Thus A may be v i e w e d . a s a commutative a l g e b r a operators of
of
continuous l i n e a r
W c o n t a i n i n g the i d e n t i t y o p e r a t o r o f
W , b u t each such
o p e r a t o r i s d i r e c t e d i f and o n l y i f t h e c o r r e s p o n d i n g p o l y n o m i a l
is
c o n s t a n t . I t i s c l e a r t h a t W i s l o c a l l y convex u n d e r A .
is
w
some
E W
v a n i s h i n g nowhere
i n lR s u c h t h a t
W ( t h i s i s e a s i l y seen t o be e q u i v a l e n t
v a n i s h i n g nowhere i n of
BAP
-2
or BA P
t o e x i s t e n c e o f some
W which i s i n v a r i a n t u n d e r
lR, i t can be shown t h a t A w
any c l o s e d v e c t o r s u b s p a c e o f condimension o n e i n W .
in
b e l o w ) . Then t h e c l o s u r e
p r o p e r v e c t o r subspace o f never vanishes i n
i s n o t dense i n
Aw
w
E
W
t h a t i s n o t a f u n d a m e n t a l w e i g h t i n the sense
R
-1
There
W is a closed
Since
w
i s n o t contained
in
A.
W which i s i n v a r i a n t under
A, having
Thus Theorem 8 d o e s n o t h o l d i n t h i s case due
t o l a c k o f d i r e c t e d n e s s . A f o r t i o r i Theorem 7 a n d Theorem 6
do n o t
h o l d i n t h i s c a s e f o r t h e same r e a s o n . This counterexample l e a d s us t o t h e
CLUbbiCae
&MnAZeh a p p o x i -
m a t i o n p t o b L e m , u s u a l l y f o r m u l a t e d i n t h e f o l l o w i n g t w o forms, where P(lRn)
i s t h e a l g e b r a o f a l l r e a l p o l y n o m i a l s on IRn B AP
and
- 1.
Let
v : IRn
+
IR,
b e an upper s e m i c o n t i n u o u s " w e i g h t "
Cvm(lRn) be t h e v e c t o r s p a c e o f a l l
tends to
... .
f o r n = 1,2 ,
f E C(IEln)
such
that
0 a t i n f i n i t y , seminormed by II f Ilv = s u p { v ( x ) If ( x ) ; x EW
Assume t h a t
vf n
v i s r a p i d l y d e c r e a s i n g a t i n f i n i t y , t h a t is P(Rn) CCv,(*).
1.
A LOOK AT APPROXIMATION THEORY
When i s
dense i n
P(IRn)
321
Cvw(lRn) ? W e t h e n s a y t h a t
mentaL w e i g h t . W e s h a l l d e n o t e by R n
v is a
dunda-
t h e s e t o f a l l s u c h fundamental
w e i g h t s i n t h e s e n s e of B e r n s t e i n . F o r t e c h n i c a l r e a s o n s w e a l s o i n -
rn
troduce the set
rn
Clearly
BAP
i n g to
0
C
f o r a l l k > 0.
Rn
E
This inclusion i s proper.
Rn.
- 2.
vk
o f a l l such v such t h a t
Let
Cw(lRn)
be t h e Banach s p a c e o f a l l
a t i n f i n i t y , normed by
the s p e c i a l case of
E
C(#)tend-
Ilfll= s u p { i f ( x ) I ; x E lRn 1 ;
Cvm(lRn) when
w
v = l . Assume t h a t
rapidly decreasing a t i n f i n i t y , t h a t i s
w a w e i g h t . When i s
f
P(IRn) w dense i n
P(lRn) w
it
is
E C(IRn)
is
and c a l l
Cm(IRn),
C
Cw(lRn) ? W e t h e n s a y
that
w
is a 6undarnentaL w e i g h t . If
w
E
C(IR")
is rapidly decreasing a t i n f i n i t y , then w i s a
f u n d a m e n t a l w e i g h t i n the s e n s e of v a n i s h e s on B AP
- 1. H o w e v e r
v a n i s h on that
and
IRn
IRn
B A P -1
I wI
BAP- 2
i f and o n l y i f
is a fundamental weight i n t h e
a fundamental w e i g h t v i n t h e s e n s e of
a n d may f a i l t o be c o n t i n u o u s .
is
It
B AP
sense
of
-1
my
€3 A P
i n t h i s sense
i s a b e t t e r way o f l o o k i n g a t t h e c o n c e p t
m e n t a l w e i g h t s i n t h e s e n s e of B e r n s t e i n t h a n
never
w
of
funda-
- 2.
The f o l l o w i n g a r e t h e s i m p l e s t c r i t e r i a f o r a n upper s e m i c o n tinuous function
v : IR
+
IR+
t o belong to
rl ,
thus t o
R1 ,
by
i n c r e a s i n g d e g r e e of g e n e r a l i t y : BOUNDED CASE: ANALYTIC CASE:
v
hub a b o u n d e d buppoht.
Thehe ahe
C > 0
and
c > 0 dvh w h i c h , doh any x E IR,
we have
QUASI-ANALYTIC CASE:
We h a v e
1 z;=l -
VM,
=
+
-
whehe,
{oh
NACHBIN
322
m = O,l,...,
In
we b e t
B A P - 1, t h e s u b a l g e b r a
Cvm(IRn), and we have t h e weight BAP
- 2,
i s contained i n
C(IRn)
Cvm(IRn). I n
v i n the definition of
t h e submodule P ( I R n ) w o v e r t h e s u b a l g e b r a
is contained i n of
of
P(IRn)
of
P(IRn)
C (IR")
c,(IRn), and w e have t h e w e i g h t w i n t h e d e f i n i t i o n
P(EP)W. Thus
was l e d
I
t o t h e following general
formulation
of t h e
weighted a p p h o x i m a t i o n phobLem. The v i e w p o i n t t h u s adopted embraces the
Weierstrass
- Stone
theorem f o r modules, t h u s f o r a l g e b r a s ,
B e r n s t e i n approximation problem. A c t u a l l y , it i s guided by
and t h e the
idea
of e x t e n d i n g t h e c l a s s i c a l B e r n s t e i n approximation problem i n t h e same s t y l e t h a t the Weierstrass
- Stone
theorem g e n e r a l i z e s
W e i e r s t r a s s theorem (see [ 3 4 ] f o r d e t a i l s )
.
t h e classical
L e t V be a s e t of upper semicontinuous p o s i t i v e r e a l f u n c t i o n s
on a completely r e g u l a r t o p o l o g i c a l s p a c e E.
d i m c t e d i n t h e s e n s e t h a t , i f vl, v 2 v1 5 X v and
such t h a t
v2
E V,
and any
v E V
E
f
+
is
V
i s called
f E C ( E ) such t h a t ,
a for
> 0 , t h e c l o s e d s u b s e t CxEE; v ( x ) - i f ( x ) l L E I
i s compact, w i l l be denoted by seminorm
V
t h e r e a r e h > 0 and v E V
5 X v. Each element of
w e i g h t . The v e c t o r subspace of C ( E ) o f a l l any
W e assume t h a t
CVm(E).
It f l l v = sup I v ( x )
0
Each
If ( x ) 1 ; x E E
n a t u r a l topology on t h e w e i g h t e d d p a c e
CV,(E)
v
determines a
E V
on
the
CVm(E).
is defined
by
the
f a m i l y of a l l such seminorms. Let
A
C
C ( E ) be a s u b a l g e b r a c o n t a i n i n g t h e u n i t , and W
be a v e c t o r subspace. A s s u m e t h a t W i s a module o v e r A W C W.
A
,
C
CVm(E)
that
is
The w e i g h t e d a p p h u x i m a t i o n pAObeem c o n s i s t s of a s k i n g f o r a
d e s c r i p t i o n of t h e c l o s u r e of
W in
CVm(E) under such c i r c u m s t a n c e s
We s a y t h a t W i s LocaLizabLe undefi A i n Wm(E)when the following
A LOOK AT APPROXIMATION THEORY
condition holds true: i f of
W
in
CVm(E) i f
f(x)1
0
such t h a t
The n t h i c t w e i g h t e d appaoxi-
E X.
mation phab-tern c o n s i s t s of a s k i n g f o r n e c e s s a r y and s u f f i c i e n t c o n d i tions i n order t h a t W e d e n o t e by
W b e l o c a l i z a b l e under G ( A ) a s u b s e t of
A as a n a l g e b r a w i t h u n i t ,
W e a l s o introduce a subset W a s a module o f
t h a t i s , such t h a t t h e s u b a l g e b r a
G(W) of
f o r t h e t o p o l o g y of
A
of
A
C(E)
.
W which t o p o l o g i c a l l y g e n e r a t e s
t h a t i s , the submodule over A of
A,
G(W) i s dense i n W
by
CV,(E).
A which t o p o l o g i c a l l y g e n e r a t e s
G ( A ) and one i s d e n s e i n
g e n e r a t e d by
A in
f o r t h e topology of
W
generated
CVm(E).
A b a s i c r e s u l t i s t h e n t h e f o l l o w i n g one.
THEOREM 10:
w
E
doh
G(w),
any
Addume
thehe id
x
E E.
t h a t , 604
Y
E
rl
v
eUChg
E
V,
euehy
a
E G(A)
and e u e h q
nuch t h a t
Then W i n locaLiza6Le undeh A i n
CVm(E).
W e may combine Theorem 10 w i t h t h e i n d i c a t e d c r i t e r i a f o r memb e r s h i p of
rl.
COROLLARY 11: evekg
L e t u s c o n s i d e r e x p l i c i t l y the a n a l y t i c case.
Anbume t h a t , d o h e v e h y
w E G(W), t h e t e a t e
6 o h any
x
E
E.
Then W
i b
C > 0
and
v
E
V,
c > 0
evehy
a E G(A)
and
nuch t h a t
LocaLizabLe undeh A i n
CV=(E).
A s a p a r t i c u l a r c a s e o f t h e above r e s u l t s f o r modules,
w e have
324
NACHBIN
t h e f o l l o w i n g o n e s f o r a l g e b r a s . For s i m p l i c i t y s a k e , assume t h a t
i s s t r i c t l y p o s i t i v e , t h a t is, f o r every that
v ( x ) > 0 . L e t A be c o n t a i n e d i n
,
there is v E V
su&
We s a y t h a t A i s
lo-
E E
CV,(E).
C V m ( E ) when t h e f o l l o w i n g c o n d i t i o n
calizabte i n f E CV,(E)
x
then
always o n l y i f )
belongs t o t h e c l o s u r e o f
f f
holds
A in
true:
CV-(E)
if
is c o n s t a n t on e v e r y e q u i v a l e n c e class mdulo
W e d e n o t e by
G ( A ) a s u b s e t of
V
A which t o p o l o g i c a l l y
if (and E/A.
generates
A as an a l g e b r a w i t h u n i t , t h a t i s such t h a t t h e s u b a l g e b r a o f A g e n -
e r a t e d by
G ( A ) and one i s d e n s e i n
A
f o r t h e topology of
CVm(E).
The p a r t i c u l a r c a s e i s t h e n t h e f o l l o w i n g one.
W e may combine Theorem 12 w i t h t h e i n d i c a t e d c r i t e r i a f o r membership of
rl.
COROLLARY 1 3 : ahe
C > 0
d o h any
x
and
E E.
W e quote
L e t us c o n s i d e r e x p l i c t l y t h e a n a l y t i c case.
Andume t h a t , 6 0 4 e v e h y
c > 0
buch
Then A [34]
,
i b
v
E
V and evehy a E G ( A ) , t h e t r e
that
localizable i n C V m ( E ) .
[37] for additional details.
A LOOK AT APPROXIMATION THEORY
325
FEFE RENCES
R. M.
functions on a B m c h space, i n l n , $ i n i t e V i m e n A i o n a L H o t o m o h p h y a n d A p p L i c a t i o n 4 ( E d i t o r : M. C . Matos) , Notas de Matemgtica 54(1977). 1 - 1 7 , North-Holland.
ARON, Approximation of d i f f e r e n t i a b l e
R. M. ARON, Polynomial approximation and a q u e s t i o n of G.E. Shilov, i n A p p h o x i m a t i o n T h e o h y a n d FunctionaL A n a L y n i A J . B.
P r o l l a ) , Notas de Matemztica ( 1 9 7 9 )
,
(Editor:
North-Holland,
t o appear. R. M. ARON and J. B. PROLLA, Polynomial approximation of
dif-
f e r e n t i a b l e f u n c t i o n s on Banach s p a c e s , J o u r n a l f i i r d i e Reine und Angewandte Mathematik, t o appear.
K.-D. BIERSTEDT, Verallegemeinerungen das S a t z e s von StoneWeierstrass , Jahrbuch ijberblicke Mathematik(1975),109-135.
K.-D. BIERSTEDT, Some g e n e r a l i z a t i o n s of t h e W e i e r s t r a s s
and
Stone-Weierstrass theorems, Anais da Academia B r a s i l e i -
r a de C i k c i a s 4 9 ( 1 9 7 7 1 , 507 K.-D.
- 523.
BIERSTEDT, A remark on vector-valued approximation onam-r p a c t s e t s , approximation on product s e t s , and t h e
ap-
proximation p r o p e r t y , i n A p p h o x i m a t i o n T h e o h y a n d Func-
t i a n a l A n a L y d ( E d i t o r : J . B. P r o l l a ) , Notas de Matemzt i c a ( 1 9 7 9 ) , North-Holland,
J.
Q.
t o appear.
CARNEIRO, AproximaGao ponderada nao-arquimediana, A n d s
da Academia B r a s i l e i r a de C i s n c i a s 50 (1978) , 1 - 3 4 .
J . P. Q. CARNEIRO, Non-archimedean weighted approximation, i n A p p h o x i m a t i o n T h e o a y a n d FunctionaL A n a e y d i n (Editor: J. B.
P r o l l a ) , Notas de Matemgtica ( 1 9 7 9 ) , North-Holland,
t o appear. J.-P.
FERRIER, Suk l ' a p p h o x i r n a t i o n p o n d z h e e , P u b l i c a t i o n s
S6minaire d'Analyse Moderne, U n i v e r s i t 6
( 1 9 7 2 ) , Canada.
de
du
Sherbrooke
NACHBIN
326
(10 ]
G.
GLAESER, A l g s b r e s e t s o u s - a l g s b r e s de f o n c t i o n s d i f f g r e n t i a -
37(1965),
b l e s , Anais da Academia B r a s i l e i r a de C i i n c i a s
395
- 406.
[ll]
C . S. GUERREIRO, I d e a i s
de
fun@es d i f e r e n c i g v e t g ,
[12]
C. S. GUERREIRO, Whitney's s p e c t r a l s y n t h e s i s theorem
Academia B r a s i l e i r a de C i g n c i a s 49 (1977), 41
Anais
- 70.
in
da
in-
f i n i t e dimensions, i n A p p h a x i m a t i o n T h e o k y and F u n c t i o n a l
Analydin (Editor: J. B. P r o l l a ) , (1979), North-Holland,
Notas
de
Matemdtica
t o appear.
[ 131
J. LESMES, On t h e approximation of c o n t i n u o u s l y d i f f e r e n t i a b l e f u n c t i o n s i n H i l b e r t s p a c e s , R e v i s t a Colombiana de Mat e m s t i c a s 8 (1974), 217 - 223.
[14]
J. G. LLAVONA,
A p t u x i m a c i o n de d u n c i o n e h d i d e h c n c i a b t e n , Uni-
v e r s i d a d Complutense de Madrid (19751, Spain. [ 15 ]
J . G. LLAVONA, Approximation o f d i f f e r e n t i a b l e f u n c t i o n s ,
to
appear.
[16 ]
S. MACHADO, Aproximaqgo ponderada e m f i b r a d o s vetoriais, Anais da Academia B r a s i l e i r a de C i d n c i a s 4 3 (19711, 1 - 2 1 .
1171
S. MACHADO and J . B. PROLLA, An i n t r o d u c t i o n t o N a c h b i n s p a c e s , R e n d i c o n t i d e l C i r c o l o Matematico d i Palermo
119
- 139.
21 (1972),
[18]
S . MACHADO, On B i s h o p ' s g e n e r a l i z a t i o n of t h e Weierstrass-Stone theorem, I n d a g a t i o n e s Mathematicae 39 (1977), 218 224.
[19]
S. MACHAW and J . B. PROLLA, Concerning t h e bounded c a s e o f t h e Bernstein-Nachbin approximation problem, J o u r n a l of t h e Mathematical S o c i e t y o f J a p a n 29 (19771, 451 - 458.
[20]
S. MACHADO and J . B. PROLLA, The g e n e r a l complex
-
Bernstein-Nachbin approximation problem, 1 ' I n s t i t u t F o u r i e r 28 (1978), 193
- 206.
case of
the
Annales
de
A LOOK AT APPROXIMATION THEORY
327
[Zl] P. MALLIAVIN, Approximation p o l y n o m i a l e p o n d s r z e e t p r o d u i t s c a n o n i q u e s , i n A p p h o x i m a t i o n Theohy and F u n d a n d A n d y b A ( E d i t o r : J. B. P r o l l a )
,
N o t a s de Matemhtica (1979)
, North-
Holland, t o appear. [22]
R . MEISE, S p a c e s o f d i f f e r e n t i a b l e f u n c t i o n s a n d t h e approxima-
t i o n property, i n Apphoximation Theohy
A n a t y b i n ( E d i t o r : J . B. P r o l l a ) , ( 1 9 79) , North-Holland,
[231
and
Functionat
de
Platerngtica
Notas
t o appear.
L . NACHBIN, S u r l e s a l g s b r e s d e n s e s de f o n c t i o n s
diffgrentia-
b l e s s u r une v a r i b t z , Comptes Rendus d e l'Acad6mie S c i e n c e s de P a r i s 228 ( 1 9 4 9 ) , 1549 [241
- 1551.
L. NACHBIN, A l g e b r a s o f f i n i t e d i f f e r e n t i a l order a n d t h e e r a t i o n a l c a l c u l u s , Annals o f Mathematics 413
[251
des
- 437.
70
op-
(1959),
lo-
L. NACHBIN, On t h e w e i g h t e d p o l y n o m i a l a p p r o x i m a t i o n i n a c a l l y compact s p a c e , P r o c e e d i n g s o f t h e N a t i o n a l Acao f S c i e n c e s o f t h e USA 4 7 (1961), 1055 -1057.
[26 1
L. NACHBIN, S u r 1 ' a p p r o x i m a t i o n p o l y n o m i a l e pond6rs.e d e s
fonc-
t i o n s r6elles c o n t i n u e s , A t t i d e t L a 11
Riunione det Ghoupement d e M a t h z m a t i c i e n b d ' EXpm5.4.kn Latine, FirenzeBologna 1 9 6 1 ( 1 9 6 3 ) , 4 2 - 5 8 , E d i z i o n i Cremonese, I t a l y . [271
L. NACHBIN,
R g s u l t a t s & c e n t s e t probldmes d e n a t u r e a l q a r i q u ?
e n t h g o r i e d e l ' a p p r o x i m a t i o n , P t o c e e d i n g n 06 t h e
t e t n a t i o n a t COnghe6b o 6 M a t h e m a t i c i a n s , Stockholm (19631, 379
[281
- 384,
ln1962
A l m q v i s t a n d W i k s e l l s , Sweden.
L. NACHBIN, S u r l e thsorzrne de Denjoy-Carleman p o u r les a p p l i c a t i o n s v e c t o r i e l l e s i n d s f i n i m e n t d i f f g r e n t i a b l e s quasia n a l y t i q u e s , Comptes Rendus d e 1'Acadgmie
des Sciences
de P a r i s 256 (19631, 8 6 2 - 8 6 3 . [29 I
-
L. NACHBIN, F o n c t i o n s a n a l y t i q u e s e t q u a s i - a n a l y t i q u e s v e c t o r i e l l e s e t l e problgme d ' a p p r o x i m a t i o n d e B e r n s t e i n , S z m i n a i h e P i e h h e Letong ( A n a l y s e ) , I n s t i t u t H e n r i P o i n C ~ (1963) , F r a n c e .
328
NACHBIN
[30 ]
L.
NACHBIN, Weighted a p p r o x i m a t i o n o v e r t o p o l o g i c a l s p a c e s and
t h e B e r n s t e i n problem
over f i n i t e dimensional
vector
s p a c e s , Topology 3 ( 1 9 6 4 ) , s u p p l . 1, 1 2 5 - 1 3 0 . [31 ]
L . N A C H B I N , Weighted a p p r o x i m a t i o n f o r a l g e b r a s and modules of
c o n t i n u o u s f u n c t i o n s : real and s e l f - a d j o i n t Annals o f Mathematics 8 1 (19651, 289 [32]
-
complex cases,
302.
L . NACHBIN, Aproximaqao p o n d e r a d a d e f u n q o e s c o n t i n u a s p o r po-
lin6mios, A t a d do T e h c e i h a Coloquio B h a d i L e i h a d e Mate-
m z t i c a , F o r t a l e z a 1 9 6 1 (1965), 1 4 6 - 189, I n s t i t u t o
de
Matem6tica P u r a e A p l i c a d a , B r a s i l . 133 ]
L . NACHBIN, Weighted a p p r o x i m a t i o n f o r f u n c t i o n
F. T . B i r t e l ( 1 9 6 6 ) , 330
134 ]
algebras
q u a s i - a n a l y t i c mappings , i n F u n c t i o n A l g e b h a d
L . NACHBIN,
- 333,
and
(Editor:
S c o t t a n d Foresman, USA.
E l e m e n t 4 a 6 apphoximatian Rheahy (1967) , Van N o s t r a n d .
R e p r i n t e d ( 1 9 7 6 ) , K r i e g e r , USA. 135 ]
L . NACHBIN, J . B . PROLLA a n d S. MACHADO, Weighted a p p r o x i m a t i o n ,
v e c t o r f i b r a t i o n s and a l g e b r a s o f o p e r a t o r s , J o u r n a l de
Mathgmatiques P u r e s e t A p p l i q u g e s 5 0 ( 1 9 7 1 ) , 2 9 9 [36 ]
L . NACHBIN, J . B . PROLLA and S . MACHADO,
- 323.
Concerning weighted
approximation, v e c t o r f i b r a t i o n s and a l g e b r a s of
opera-
t o r s , J o u r n a l o f Approximation Theory 6 ( 1 9 7 2 1 , 80 - 8 9 . [371
L.
N A C H B I N , On t h e p r i o r i t y o f a l g e b r a s o f c o n t i n u o u s f u n c t i o n s
i n w e i g h t e d a p p r o x i m a t i o n , Symposia Mathematica 17(1976),
169 [ 38
I
- 183.
L. NACHBIN , S u r l a d e n s i t 6 d e s s o u s - a l g g b r e s p o l y n o m i a l e s
d'ap-
p l i c a t i o n s c o n t i n h e n t d i f fgrentiables ,Seminaihe Piehhe
LeLung e t Henhi S k a d a (Andyde) , 1976/77,
Springer Verlag
L e c t u r e Notes i n Mathematics, t o appear. [39]
J . B.
PROLLA,
Vectah
dibhatiann
and
aLgebhan a d o p e h a t o f i b ,
P u b l i c a t i o n s du S g m i n a i r e d ' A n a l y s e Moderne, U n i v e r s i t g de S h e r b r o o k e (1968/69)
,
Canada.
A LOOK AT APPROXIMATION THEORY
[40]
J. B.
329
PROLLA, Aproximaqiio p o n d e r a d a e S l g e b r a s
de operadores,
A n a i s d a Academia B r a s i l e i r a d e C i g n c i a s 43(1971), 23
[41]
L , B.
PROLLA, The w e i g h t e d Dieudonn6 t h e o r e m
for
- 36.
density
in
t e n s o r p r o d u c t s , I n d a g a t i o n e s Ebthermticae 33(1971), 170-175. 142
I
J. €3. PROLLA, Weighted s p a c e s o f v e c t o r - v a l u e d
c o n t i n u o u s func-
t i o n s , A n n a l i d i Matematica P u r a e d A p p l i c a t a 145 [43 ]
J . B.
- 158.
PROLLA, B i s h o p ' s g e n e r a l i z e d S t o n e - W e i e r s t r a s s f o r weighted s p a c e s , Mathematische 283
[44 1
89 (1971),
- 289.
theorem
Annalen 1 9 1 (1971) ,
J . B . PROLLA, Weighted a p p r o x i m a t i o n o f c o n t i n u o u s
functions,
B u l l e t i n o f t h e American M a t h e m a t i c a l S o c i e t y 7 7 ( 1 9 7 1 ) , 1021-1024.
[45 I
J . B.
PROLLA, Weighted a p p r o x i m a t i o n a n d s l i c e p r o d u c t s of iscdu-
l e s o f c o n t i n u o u s f u n c t i o n s , A n n a l i d e l l a S c u o l a Nomle S u p e r i o r e d i P i s a 2 6 ( 1 9 7 2 ) , 5 6 3 571.
-
[46 1
J . B . PROLLA a n d S . MACHADO, W e i g h t e d G r o t h e n d i e c k
subspaces,
T r a n s a c t i o n s o f t h e American M a t h e m a t i c a l S o c i e t y (1973) [471
J. B.
,
247
- 258.
186
PROLLA, Modules od c o n t i n u o u s f u n c t i o n s , i n
Functional A n a e y b i n and A p p l i c a t i a n n ( E d i t o r : L. N a c h b i n ) ,S p r i n g e r
V e r l a g L e c t u r e N o t e s i n M a t h e m a t i c s 384 (19741, 123- 128. [48]
J . B.
PROLLA, Then c o n d e 4 e n c i a b n a b h e t e o h i a
de aphoximacion,
P u b l i c a c i o n e s d e l D e p a r t a m e n t o de E c u a c i o n e s F u n c i o n a
-
lest U n i v e r s i d a d d e S e v i l l a ( 1 9 7 4 1 , S p a i n . (491
J. B.
PROLLA, On p o l y n o m i a l algebras o f c o n t i n u o u s l y d i f f e r e n t i a b l e f u n c t i o n s , R e n d i c o n t i d e l l a Accademia N a z i o n a l e d e i L i n c e i 57 ( 1 9 7 4 ) , 481
[501
J . B.
- 486.
PROLLA, On o p e r a t o r i n d u c e d t o p o l o g i e s , i n A n a l y n e
tionnelee e t Applications 225 - 2 3 2 ,
Hermann, P a r i s .
( E d i t e u r : L. N a c h b i n )
Fonc-
(1975) ,
NACHEIN
330
[51]
J.
1521
J . B. PROLLA,
B. PROLLA,
Dense approximation f o r polynomial algebras, Bonner
Mathematische S c h r i f t e n 8 1 (1975) , 115
- 123.
Aphaximacizn en litgebhab p a l i n o m i c a b de duncianu dibehenciabled,Publicaciones d e l Departamento de An6l i s i s Matemstico, U n i v e r s i d a d de S a n t i a g o de Compostela (19751, S p a i n .
1531
[54
1
J . B. PROLLA and C . S . GUERREIRO, An e x t e n s i o n
of Nachbin's theorem t o d i f f e r e n t i a b l e f u n c t i o n s on Banach s p a c e s w i t h t h e approximation p r o p e r t y , Arkiv f o r Matematik 1 4 (19761, 251 - 258.
J. B . PROLLA, Apphoximation o d u e c t o t - v a t u e d d u n c t i o n n ,
de Matemitica 6 1 ( 1 9 7 7 ) [55]
J. B.
,
Notas
North-Holland.
PROUA, The approximation p r o p e r t y f o r Nachbin s p a c e s , i n Appaaximation Theohy and F u n c t i o n a l A n a l y b i b ( E d i t o r : J. B. P r o l l a )
, Notas
de Matem6tica (19791, North - H o l l a n d ,
t o appear. [56 1
J. B.
PROLLA, Non-archimedean f u n c t i o n s p a c e s , i n Lineah Spaces
a n d Appkoximation ( E d i t o r s : P. L. B u t z e r and B.Sz-Nagy)
,
I n t e r n a t i o n a l S e r i e s i n Numerical Mathematics 40 (1978) , 1 0 1 - 1 1 7 , B i r k h a u s e r Verlag B a s e l , S w i t z e r l a n d . [57]
J. B. PROLLA and S. MACHADO, S u r l ' a p p r o x i m a t i o n polynomialeen
dimension i n f i n i e , Acted d e l a VT Rzunion du Ghoupernent d e Mathematiciend d ' Exphehbion L a t h e , Palrna de M a l l o r c a 1977, S p a i n , t o a p p e a r . [581
W.
H.
SUMMERS, Weighted bpaceb and w e i g h t e d a p p h o x i m a t i o n , PUb l i c a t i o n s du S i m i n a i r e d'Analyse Moderne , U n i v e r s i t S de Sherbrooke ( 1 9 7 0 ) , Canada.
[59 1
W.
H.
SUMMERS, The bounded case of t h e weighted
approximation problem, i n FunctionaL Analydid and A p p t i c a t i o n b (Editor: L. Nachbin) , S p r i n g e r V e r l a g L e c t u r e Notes i n Mathematics
384 ( 1 9 7 4 ) , 1 7 7 - 183.
331
A LOOK AT APPROXIMATION THEORY
160 ]
W.
H. SUMMERS, Weighted a p p r o x i m a t i o n f o r modules o f c o n t i n u o u s f u n c t i o n s 11, i n Anak?yne F a n c t i o n n e L l e ( E d i t e u r : L . Nachbin) ( 1 9 7 5 ) , 2 7 7
[61]
G.
I . ZAPATA, A p t o x i m a C Z a
- 283,
et
Appticationd
Hermann, P a r i s .
p o n d e a a d a paka d u n ~ o e b &&?hen&&&,
M o n o g r a f i a s do C e n t r o B r a s i l e i r o de P e s q u i s a s F i s i c a s 30
(1971) , B r a s i l .
[62]
G.
I . ZAPATA, S u r le problsme d e B e r n s t e i n e t l e s a l g s b r e s
de
f o n c t i o n s c o n t i n h e n t d i f f g r e n t i a b l e s , Comptes Rendusde
1'Acadgmie des S c i e n c e s de P a r i s 274 (1972) , 70 [631
G.
- 72.
I . ZAPATA, B e r n s t e i n a p p r o x i m a t i o n problem f o r differentiable
f u n c t i o n s and q u a s i - a n a l y t i c weights, T r a n s a c t i o n s
of
t h e American M a t h e m a t i c a l S o c i e t y 182 (19731, 503-509. [64]
G.
I . ZAPATA, Approximation f o r w e i g h t e d a l g e b r a s o f d i f f e r e n -
t i a b l e s f u n c t i o n s , B o l l e t t i n o d e l l a Unione I t a l i a n a 9 ( 1 9 7 4 ) , 32 [651
G. I . ZAPATA, Weighted a p p r o x i m a t i o n , Mergelyan t h e o r e m and q u a s i - a n a l y t i c w e i g h t s , A r k i v f o r Matematik 1 3 ( 1 9 7 5 ) ,
255 [66 ]
Matematica
- 43.
G.
- 262.
I . ZAPATA, Fundamental seminorms, i n A p p a o x i m a t i o n Theoty and
F u n c t i o n a l Anadgdid
( E d i t o r : J. B . P r o l l a ) ,
Matemztica (1979) , N o r t h - H o l l a n d ,
t o appear.
Notas
de
This Page Intentionally Left Blank
Approximation Theory and Functional Analysis J.B. ProZla led. I @North-HoZZand PubZishing Company, 1979
BANACH ALGEBRAS OVER VALUED FIELDS
LAWRENCE N A R I C I
St. John's University
Jamaica, N e w York, 11439, USA and EDWARD BECKENSTEIN
S t . John ' s U n i v e r s i t y S t a t e n I s l a n d , N e w York 1 0 3 0 1 , USA
ABSTRACT By " G e l f a n d t h e o r y " h e r e is meant t h e s t u d y o f t h e c o n s e q u e n c e s o f t o p o l o g i z i n g t h e maximal i d e a l s of a Banach algebra.
The
i s most r i c h when t h e u n d e r l y i n g f i e l d i s t h a t of t h e complex
R o r some o t h e r v a l u e d
b e r s . I f t h e u n d e r l y i n g f i e l d is
theory num-
field,
a
t h e o r y c a n s t i l l b e d e v e l o p e d however and t h a t i s d i s c u s s e d here. F i r s t t h e G e l f a n d t h e o r y for complex Banach a l g e b r a s i s reviewed
briefly;
t h e n t h e a n a l o g o u s t h e o r y f o r t h e case when t h e f i e l d c a r r i e s a nonarchimedean r e a l - v a l u e d v a l u a t i o n i s p r e s e n t e d . I n t h e c o u r s e o f t h e
l a t t e r d i s c u s s i o n , a S t o n e - W e i e r s t r a s s t h e o r e m is needed. I n t h e l a s t p a r t of t h e p a p e r some versions of t h e S t o n e - W e i e r s t r a s s
theoremwhich
h o l d i n a l g e b r a s of c o n t i n u o u s f u n c t i o n s over f i e l d s w i t h n o n a r c h i medean v a l u a t i o n are d i s c u s s e d .
1. CLASSICAL GELFAND THEORY.
If
I,
G i s an open s u b s e t o f
a t o p o l o g i c a l vector s p a c e , a map
[9
1
C , t h e complex numbers,
x:G + X
333
and
X
is
is a n a l y X h i n G i f t h e
NARlCl and BECKENSTEIN
334
d i f f e r e n c e q u o t i e n t has a l i m i t a t each p o i n t i n
G.
For t h e v e c t o r - v a l u e d v e r s i o n o f L i o u v i l l e ' s theorem t o
hold,
t h e v e c t o r s p a c e must have a good s u p p l y o f c o n t i n u o u s l i n e a r f u n c t i o n a l s . The d u a l s p a c e X' must be t o t a l i n t h e s e n s e t h a t i f e v e r y vanishes a t
f E X'
x , then x must be
1.1. LIOWILLE'S THEOREM:
0.
16 X LA a TVS
and
X'
i A
totae then
, p.211).
([l1
x : & + X in e n t i h e and b o u n d e d , t h e n x mu4.t be c o n h t a n t .
id
F o r t h e remainder o f t h e r e s u l t s i n t h i s s e c t i o n w e a s s u m e t h a t X is a complex commutative Banach a l g e b r a w i t h i d e n t i t y e
A complex number
A
v e r t i b l e . The s e t
06
i s a hegueah p a i n t
if
x E X
x
-
(11 e 11 =1). X e is i n
-
p ( x ) of r e g u l a r p o i n t s o f
over t h e r e s o l v e n t map
rx : p ( x )
X,X
+
x i s an open set.More-1 ( x -Xe) i s a n a l y t i c , "11,
+
p. 2 0 8 ) . An i m p o r t a n t consequence o f t h e s e r e s u l t s i s :
1.2.
GELFAND - M A Z U R THEOREM ( [ i ] , p.
bpecthum
u(x)
06
212):
x, t h o b e compgex numbetrn
( a ) F o t evehy A
doh
which
x E
x,
the
-
he
ib
x
n o t i n v m t i b e e , i b n o t empzy. ( b ) 16 X i n
a d i v i n i a n a l g e b t a [ a l l nanzeto elementn have i n -
v e t b e d ) t h e n X i6 i n o m o t p h i c and i n o m e t h i c t o
PROOF:
(b) Since
a(x) #
@, x
Since X i s a d i v i s i o n algebra,
-
Xe x
-
&.
i s n o t i n v e r t i b l e for sore A Xe
must be
E
Q.
0 , i . e . x = Xe.
The proof of p a r t ( a ) depends h e a v i l y on t h e L i o u v i l l e theorem. Consequently one would s u s p e c t t h a t t h i s r e s u l t would
not
transfer
e a s i l y t o Banach a l g e b r a s o v e r o t h e r f i e l d s , and i n d e e d t h i s i s c a s e . Even i n r e a l Banach a l g e b r a s t h e r e may be e l e m e n t s w i t h
the empty
spectrum. A s l o n g as t h e u n d e r l y i n g f i e l d i s Q , however, wecan obtain v e r s i o n s o f t h e above r e s u l t f o r l o c a l l y convex Hausdorff and l o c a l l y m-convex a l g e b r a s ( [ lI
,
p . 212
- 3).
algebras
The o n l y change that
336
BANACHALGEBRASOVERVALUEDFIELDS
o c c u r s i s t h a t t h e " i s o m e t r y " of p a r t ( b ) i s r e p l a c e d by "homeomor phism". For a t i m e i t was wondered ( [ 6 1 ) l o g i c a l d i v i s i o n a l g e b r a s o t h e r t h a n Q.
i f t h e r e w e r e complex top.
1 ,[ 1, p. 2141)
Williamson "12
showed t h a t t h e r e were by p r o v i d i n g an a l g e b r a i c a l l y c o m p a t i b l e
t with
Q(t) of r a t i o n a l f u n c t i o n s i n
pology f o r t h e f i e l d
-
to-
complex
coefficients. ( b ) above i s t h a t
An i m p o r t a n t consequence o f maximal i d e a l M of
X
. We
(I:
for any
d e n o t e t h e c o s e t (complex number) x + M by
x(M). I t now becomes p o s s i b l e t o view on t h e s p a c e M o f maximal i d e a l s of function
is
X/M
2 which s e n d s M i n t o
X as a collectionoffunctions X
.
We a s s o c i a t e x
x(M).Once M h a s been
X as a c o l l e c t i o n
it becomes p o s s i b l e t o view
of
X with
the
topologized,
c o n t i n u o u s func-
t i o n s mapping M i n t o Q. Among o t h e r t h i n g s , even w i t h o u t
endowing
M w i t h a t o p o l o g y , i t now f o l l o w s t h a t
a(x)
1.3
= %(MI.
I n a l g e b r a s o f c o n t i n u o u s o r a n a l y t i c f u n c t i o n s ( [ 1 1 , p.202-3) c h a r a c t e r i z a t i o n s such as 1 . 3 are t h e r u l e f o r d e s c r i b i n g
spectra,
i . e . , t h e spectrum of a f u n c t i o n x i s i t s r a n g e . We endow M w i t h t h e weakest t o p o l o g y which w i l l make each t h e maps
Z
c o n t i n u o u s and c a l l t h i s t h e Gelband t o p o l o g y .
of then
M
becomes a compact Hausdorff s p a c e .
i s a Banach a l g e b r a w i t h i n v o l u t i o n s a t i s f y i n g t h e
A B*-algebra
condition
II x* x 11 = I1 x 11 2 . The c e l e b r a t e d r e p r e s e n t a t i o n theorem
of
Gelfand and Naimark states:
1.4. REPRESENTATION OF B*-ALGEBRAS ( 1 1
algebta, t h e n X
06
CVfltiflUVUb
maximal i d e a &
i b
1
, p.
259f.
:
iboaethically i ~ o m a ~ p h ti oc t h e algebha
c o m p l e x - v a l u e d dunctiond on t h e compact 06
16 X i b a
X with
bUp
nahm ( a n d p V i n t w i b e
bpaCC
VpehUtiVnb).
C(M
U
B*I
Q)
04
NARlCl and BECKENSTEIN
336
2.
GELFAND THEORY OVER VALUED F I E L D S
Here w e assume t h a t
X i s a commutative Banach
algebra
with
i d e n t i t y o v e r a f i e l d F where t h e norm on X and t h e v a l u a t i o n on F each s a t i s f y t h e s t r o n g IIx + y 11 5 max (Ilx 11 t y a r e t h a t if
,
("nonarchimedean")
II y I1 )
. Among
IIxII ZIlyll , t h e n
triangle
inequality:
t h e consequences of t h i s i n e q u a l i IIx+ yII =max (Ilxll
, IIy 1 1 )
and t h a t
e v e r y p o i n t i n a s p h e r e i s a c e n t e r . A l l norms and v a l u a t i o n s areassumed r e a l - v a l u e d .
A d e t a i l e d d i s c u s s i o n of such normed s p a c e s
a l g e b r a s can be found i n
[lo ] ,
and
such s p a c e s b e i n g c a l l e d n o m c k i m e d u n
hpaces, The c r i t i c a l r e s u l t ( ( 1 . 2 ) ) t h a t
each
e l e m e n t have
nonempty
spectrum f a i l s t o h o l d f o r nonarchimedean a l g e b r a s . There may b e e l e ments w i t h empty spectrum ( [ l o ] , p. 1 0 5 ) . The w o r s t consequence t h i s is t h a t w e c a n n o t s a y t h a t
X.
X/M
X/M
i s merely a s u p e r f i e l d of
F.
of
i s F f o r e a c h maximal i d e a l of If we hypothesize
separately
t h a t e a c h element have nonempty spectrum t h e n , e x a c t l y a s i n p r o o f o f (1,2) ( b ) , d i v i s i o n a l g e b r a s are i s o m e t r i c a l l y i s o m o r p h i c t o t h e
d e r l y i n g f i e l d . We d e f i n e a Geldand atgebha t o be
a
commutative Banach a l g e b r a X w i t h i d e n t i t y such t h a t each maximal i d e a l
M of
un-
nonarchimedean X/M = F
for
X.
Although w e c a n n o t show t h a t each e l e m e n t h a s n o n e m p t y s p e c t r u m i n an a r b i t r a r y nonarchimedean Banach a l g e b r a , w e c a n show f o r any x that
u ( x ) i s c l o s e d and bounded, t h e proof b e i n g a b o u t t h e same
f o r t h e complex c a s e
([lo] ,
p . 114). Thus i f
e a c h e l e m e n t h a s compact spectrum. A l s o ( c f . true that
u ( x ) = G(M)
F
is locally
(1.3) 1 i t i s
as
compact, generally
fl F.
I n an a t t e m p t t o d u p l i c a t e t h e complex Gelfand t h e o r y , w e wish t o i n t r o d u c e a t o p o l o g y t o t h e maximal i d e a l s . Two main c h o i c e s
are
a v a i l a b l e : R e s t r i c t c o n s i d e r a t i o n of what e l e m e n t s x are t o b e chosen
or c o n s i d e r o n l y c e r t a i n maximal i d e a l s . More s p e c i f i c a l l y we consider
([lo] , p . 1 1 7 f . l :
337
BANACH ALGEBRASOVER VALUED FIELDS
2.1.
THE GELFAND SUBALGEBRA
maximal i d e a l M I x(M)
2.2.
9: or
F
E
THE GELFAN'D IDEALS
f o r every
X
x
Those
E
such t h a t f o r
X
every
Those maximal i d e a l s M such that x(M) E F
:
Mg
x.
I n t h e f i r s t c a s e w e r e t a i n a l l t h e M ' s ; i n t h e s e c o n d , a l l the x's.
I t now f o l l o w s t h a t ( a ) f o r each
M E M, M 0 X
9 = F); ( b ) X = X
(i.e.l X / M n X
i s a Gelfand
iff M = M 4 9 g (X i s a Gelfand a l g e b r a i f f e a c h maximal i d e a l i s a Gelfand i d e a l or
(maximal) i d e a l i n X
9
9
X c o i n c i d e s w i t h i t s Gelfand s u b a l g e b r a ) ;
gebra o f
(c) X
g
is a closed subal
-
X.
W e may now c o n s i d e r t h e f o l l o w i n g t o p o l o g i e s .
Define t h e w c a k G e L d a n d Z o p o L o g y
2.3. THE WEAK TOPOLOGY: weakest topology f o r
M such t h a t each
i n d u c e s t h e weak Gelfand t o p o l o g y on
2.4.
x
E
X
4
t o be t h e
i s continuous.
Mg'
Define t h e s t t o n g GcLdand t o p o l o g y
THE STRONG TOPOLOGY:
t h e weakest t o p o l o g y f o r M
g
This
t o be
such t h a t e v e r y X E X i s c o n t i n u o u s . T h i s is
c l e a r l y s t r o n g e r t h a n t h e weak Gelfand t o p o l o g y .
REMARKS: M
9
( a ) S t r o n g t o p o l o g i e s y i e l d s p a c e s w i t h more s t r u c t u r e . (b)
i s g e n e r a l l y n o t b i g enough t o y i e l d i n f o r m a t i o n a b o u t
t h e Gelfand i d e a l s
M
of
X
X whereas
are r i c h enough t o h e l p d e s c r i b e
X
g' a ( x ) = B ( M ) . ( c ) These t o p o l o g i e s a r e unigg 9' a r e complete. Thus M o r M i s compact f o r m i t i e s and M and M g 99 9 gg i f f t h e y are t o t a l l y bounded.
e.g.
if
x
E
X
99
g
then
The l a s t remark h e l p s t o o b t a i n t h e f o l l o w i n g compactness sult.
re-
NARlCl and BECKENSTEIN
338
2.5.
COMPACTNESS
and
Mgg
([lo],
7 6 F in eocaU?y c o m p a c t t h e n
p. 124):
ahe n t h u n g e y c o m p a c t . Convehnek?y i d
Mgg
11X
A4
oh
h t h o n g l y compact, t h e n e i t h e t F in L o c a l L y compact o h t h e 06
any element i n X
2.6.
9
i b
in 0 - d i m e n n i a n a L and each
ad t h e npaeen
Each
06
npecthum
t h e Geldand t o p d O g i 5 5
Mg' Mgg'
M
1 3
t o p o C o g y i b t o t a L C y d i b c o n n e c t e d and Haundoh66.
([lo],
in
9
n o n e m p t y , compact, and nowhehe d e n b e .
DISCONNECTEDNESS ([lo], p . 1 2 5 ) :
2.7. SEPARATION
Mg
p. 1 2 6 ) :
X
4
i n fie nfivng
T h e d o L l o ~ i n 9n t a t e m e n . t n a t e e q u h a -
Cent. (a) The (weak1 Geldand t a p o l o g y on M ( b ) T h e dunctionn dhom
X
(c) The dunctiono dhom X ( d ) The map M + M n X
g
in
g g
i n Haundohdd.
nepahate p a i n t n .
nepahate pointb
hth0Mgly.
1-1.
Maximal i d e a l s must a l w a y s be o f codimension 1. C o n v e r s e l y , i n
I , Gleason p r o v e d t h a t a l i n e a r s u b s p a c e o f codimension
1
in a
complex commutative Banach a l g e b r a w i t h i d e n t i t y i s a maximal
ideal
I 5
i f f i t c o n s i s t s o f s i n g u l a r e l e m e n t s . Hence,in a nonarchimedean Banach a l g e b r a , one might c o n s i d e r t h e q u e s t i o n : I f
M i s a l i n e a r subspace
o f codimension 1 c o n s i s t i n g s o l e l y o f s i n g u l a r e l e m e n t s , must M b e a G e l f a n d i d e a l ? The f a c t t h a t G l e a s o n ' s
argument uses d e e p theorems
from complex v a r i a b l e t h e o r y g i v e s warning t h a t
the
nonarchimedean
q u e s t i o n c o u l d be d i f f i c u l t . In [ 2 ]
t h e a u t h o r s c o n s i d e r e d G l e a s o n ' s q u e s t i o n i n t h e topo-
l o g i c a l a l g e b r a (endowed w i t h t h e compact-open t o p o l o g y ) C (T,F) c o n t i n u o u s f u n c t i o n from a t o p o l o g i c a l s p a c e T i n t o
a
of
topological
f i e l d F . I t i s shown t h e r e t h a t G l e a s o n ' s r e s u l t i s t r u e i f F i s t h e f i e l d of complex numbers, f a l s e i f
F i s t h e reals, a n d t r u e i f F i s
a n u l t r a r e g u l a r f i e l d c o n t a i n i n g a t l e a s t t h r e e p o i n t s under a n y t h e following conditions.
of
BANACH ALGEBRAS OVER VALUED FIELDS
339
1. F
i s n o t a l g e b r a i c a l l y closed.
2. F
p o s s e s s e s a s e q u e n c e o f d i s t i n c t e l e m e n t s converging to 0.
3. F
i s d i s c r e t e l y valued.
4 . The t o p o l o g y of
i s g i v e n by a v a l u a t i o n .
F
is ultranormal.
5. T
2
W e s a y t h a t a Gelfand a l g e b r a i s fiegulah i f t h e f u n c t i o n s s e p a r a t e p o i n t s and closed subsets of
2.8.
REGULAR:
X
i d
M strongly.
f i e g u l a f i i d 6 t h e I w t a k l Geldand t o p o l o g y
c o i n c i d e n w i t h t h e h u l l - k e f i n e l t o p o l o g y on M .
( I10
1
,
on
M
p. 1 3 5 ) .
I n t h e complex case, X i s r e g u l a r i f f t h e h u l l - k a r n e l t o p o l o g y
i s Hausdorff and t h e p r o o f r e l i e s h e a v i l y on t h e compactness o f M i n t h e Gelfand t o p o l o g y . By c!ioosing nonarchimedean a l g e b r a s i n which M
i s n o t compact, one o b t a i n s c o u n t e r e x a m p l e s t o ' i f t h e X is regular".
topology is Hausdorff, t h e n
U be the u n i t b a l l i n
Let
each maximal i d e a l M 1 . that
U C W. If
hull - k e r n e l
X and l e t
S i n c e II x(M) 11'
U = W, w e c a l l
II x I1
W = { x I Ilx(M)II
f o r every M
I
5
it i s clear
X a v*-aLgebaa.As w i l l ba seen shortly,
t h e V*-algebras are t h e nonarchimedean a n a l o g s o f B*-algebras (2.10)).
for
1
I t i s e a s y t o v e r i f y ([lo 1
I
(
see
p . 1 4 8 ) t h a t V*-algebras m u s t be
semisimple.
2.9.
16
T i n a 0 - d i m e n n i o n a e compact Haubdofid6 Apace and F in com-
p l e t e t h e n T in homeomofiphic t o t h e n p a c e M a d maximal C(T,F) undeh t h e map
t
+
Mt
S
i d
06
= { x E C(T,F) I x ( t ) = 0 ) urhefl \#i c~hhieA
t h e GeLdand t o p o l o g y . A C A ~ ,C ( T , F ) L A a V * - a t g e b k a
a d d i t i o n , id
idcaln
( [ l o ] , 9. 1 5 4 ) . I n
0 - d i m e n h i a n a l , compact and Haubdok.d6 t h e n S 0 ho-
meomohphic t o T id6 C(S,F)
i b
ibomofiphic t o
C(T,F).
As a f i r s t r e p r e s e n t a t i o n t h e o r e m w e have 2 . 1 0 . ( [ 1 0 ] , ~ . 164)
16
Xg i b a V*-Gd6and
aegebfia and
Mg
in compact
NARlCl and BECKENSTEIN
340
then X
9
in i n o m e t h i c a L L y i n o m o h p h i c t o
t o w n 2ha.t id X
C(Mg
I
dhom w h i c h it
p),
a V*-Gebaand a t g e b t a i n w h i c h
X id
in idorne-th.icaley i n o m o h p h i c t o
bl
601-
i d compact t h e n
C(M,F).
F o r t h e p r o o f of ( 2 . 1 0 ) one n e e d s a version of
a Stone-Weierstarss
t h e o r e m f o r a l g e b r a s of c o n t i n u o u s f u n c t i o n s which t a k e v a l u e s i n
a
nonarchimedean v a l u e d f i e l d . Such t h e o r e m s a r e t h e s u b j e c t o f t h e n e x t and l a s t p a r t o f t h e p a p e r .
3 . STONE-WEIERSTRASS THEOREMS
F d e n o t e s a f i e l d w i t h nonarchimedean v a l u a t i o n . G e n e r a l i z i n g a r e s u l t of Dieudonn6 ([ 4 ] ) , K a p l a n s k y ( [ 7 1 1
ob-
t a i n e d t h e f o l l o w i n g a n a l o g of t h e c l a s s i c a l S t o n e - W e i e r s t r a s s t h e o -
rem.
3.1.
KAPLANSKY-STONE-WEIERSTRASS
THEOREM:
([ 7
1,
i n a compact Haundohdd n p a c e and Y a nubaegebha & a t e 4 p o i n t s and COntainb C O n b . t U M f b t h e n
[
10, p . 162 ]
06
'Id T
:
C ( T , F ) w h i c h nepa-
Y i n dende i n
C(T,F).
An immediate c o n s e q u e n c e o f t h i s is
3.2. and
([
71,
[ 1 0 , p.
1631 1:
Y a bubatgebha
05
16 T i n a LocaLLy c o m p a c t Haundohbd n p a c e
C-(T,F)-continuoud
buncfionb which vanidh a t
i n d i n i t y - w h i c h n e p a t a t e n p a i n t d and c o n t a i n d conn.tan;tA then Y i n denbe in
Ca(T,F). A s h a s b e e n o b s e r v e d b y Nachbin
( [ a 1 ) , i t is
n o t r e a l l y neces-
s a r y t o c o n s i d e r s u b a l g e b r a s Y f o r S t o n e - W e i e r s t r a s s t y p e theorems: sub-modules s u f f i c e . T o q u o t e just one o f many p o s s i b l e i l l u s t r a t i o n s of t h i s
viewpoint ([ 3 ]
I
f o r example) w e h a v e t h e f o l l o w i n g r e s u l t of
P r o l l a ' s. 3.3.
( [ 111
,
Cor. 2.5):
Le-t T be a compact Haubdohd6
dpace,
X
a
341
EANACH ALGEBRASOVER VALUED FIELDS
n o n a h c h i m e d e a n nohmed b p a c e o v e h
F
whehLe A i n a n e p a h a t i n g n u b a e g e b h a Then i d
denne i n
and
Id a n A-bubmoduLe
06
W i d denne i n C(T,X)
06
C(T,x),
C(T,F). d o h eaclz
t i n T, V 7 ( t ) ={w(t)lwEW}
X.
REFERENCES
[ 11
E. BECKENSTEIN, L. N A R I C I a n d C .
SUFFEL, T o p o L o g i c a L A l g e b h a b ,
North-Holland P u b l i s h i n g Co., [ 21
E. BECKENSTEIN, L. NARICI,
C.
Amsterdam, 1977.
SUFFEL and S . WARNER,
Maximal
ideals i n algebras of c o n t i n u o u s f u n c t i o n s , J. Anal. Math. 31(1977) , 293
[
31
[ 41
- 297.
R. C . BUCK, A p p r o x i m a t i o n p r o p e r t i e s of vector - v a l u e d
t i o n s , P a c i f i c J. Math. 5 3 ( 1 9 7 4 ) , 85
J. DIEUDONNE, S u r l e s f o n c t i o n s c o n t i n u e s p - a d i q u e s , Math. 6 8 ( 1 9 4 4 ) , 79
51
[ 61
A.
- 95.
func-
Bull.Sci.
GLEASON, A c h a r a c t e r i z a t i o n of maximal i d e a l s , J.Anal. Math.,
vol. 1 9 ( 1 9 6 7 ) , 1 7 1
- 172.
I . KAPLANSKY, T o p o l o g i c a l r i n g s , B u l l . Amer. M a t h . SOC. 45(1948) 809
[ 71
- 94.
- 826.
I. KAPLANSKY, T h e Weierstrass t h e o r e m i n f i e l d s w i t h valuations, P r o c . Amer. Math. SOC. 1 ( 1 9 5 0 ) , 356 - 3 5 7 .
[ 81
L. NACHBIN, A p p h o x i m a t i o n T h e o h y ,
van Nostrand, P r i n c e t o n , l 9 6 7 .
R e p r i n t e d by Krieger P u b l i s h i n g C o . , n u e , H u n t i n g t o n , N. 91
6 4 5 New Y o r k
Ave-
Y., 1 9 7 6 .
M. NAIMARK,.Nohmk?d Ringd, N o r d h o f f , G r o n i n g e n , T h e N e t h e r l a n d s , 1964.
[lo 1
L. N A R I C I , E . BECKENSTEIN a n d G . BACHIVYW, FuncfhnrLt Aaa.tydi.6 and V a L u a t i o n T h e o h g , Marcel D e k k e r , N e w Y o r k , 1 9 7 1 .
NARlCl and BECKENSTEIN
342
[ll]
J . B.
PROLLA, Nonarchimedean f u n c t i o n spaces. T o a p p e a r
Birkhauser Verlag, Basel-Stuttgart,
[12]
J. H.
in:
Lineah S p a c u and A p p h a x i m a t i o n ( P r o c . Conf .,Oberwolfach, 1 9 7 7 ; E d s . P . L. B u t z e r a n d €3. S z . - N a g y ) , I S N M v o l . 4 0 , 1978.
WILLIAMSON, On t o p o l o g i s i n g t h e f i e l d C ( t ) Math. SOC. 5 ( 1 9 5 4 ) , 729 - 734.
,
Proc.
Amer.
Approdmation Theorg and Functional AnaZysds J.B. Prolla l e d . ) 0iVort.h-Holland PA Zishing Company, 1979
APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS
PHILIPPE NOVERRAZ U n i v e r s i t g d e Nancy I Ma t h g m a t i q u e s 5 4 0 3 7 NANCY CEDEX, F r a n c e
If
U
i s a n open and c o n n e c t e d s u b s e t o f
a , an a p p l i c a t i o n
s i o n a l l o c a l l y convex v e c t o r s p a c e E o n (resp. [ -
a,
+ 1
an i n f i n i t e
dimen
-
f :U+a
i s s a i d t o b e h o t o m o h p h i c ( r e s p . p.&.U&ubhahmonLc) i f
)
a)
f
b)
t h e r e s t r i c t i o n of
i s continuous ( r e s p . upper semicontinuous)
f
t o any f i n i t e d i m e n s i o n a l
subspace
i s holomorphic ( r e s p . plurisubharmonic). L e t us d e n o t e by
(resp. P ( U )
H(U)
,
P,(U))
t h e s e t o f holomor-
p h i c ( r e s p . p l u r i s u b h a r m o n i c , p l u r i s u b h a r m o n i c a n d c o n t i n u o u s ) funct i o n s on
U.
If
K i s a compact , s u b s e t of
= Ix E
(U)
In
an,
n
2
2,
1) Any v i n
u,
U
,
l e t u s d e n o t e by
v ( x ) 5 s u p v , wv E P ( U ) ) . K
t h e f o l l o w i n g r e s u l t s are w e l l known ( 3 ) : P(U) i s t h e p o i n t w i s e d e c r e a s i n g l i m i t
of
p l u r i s u b h a r m o n i c f u n c t i o n s i n a s t r i c t l y smaller o p e n
2)
(ie
U'
of
If
U i s pseudo-convex
compact
U
K of
Cm
set
d(U', C U ) > 0).
U)
then
(ie Kp(u)
343
Kp(U)
-
i s compact i n
Kpc(U)
.
U
f o r any
344
NOVERRAZ
If
U i s pseudo-convex,
compact s u b s e t of al,
..., a j
Iv
If
then f o r v i n
U there e x i s t
fll..
Pc(U)
. , f 7.
,
in
E >
0 and K
and
H(U)
p o s i t i v e numbers such t h a t
-
K = KH(U)
sup ai l o g I f i
i
i s compact i--a pseudo-convex open set
U,
then any holomorphic f u n c t i o n i n a neighborhoodof Kcan be a p p r o x i m a t d u n i f o r m l y on K by elements If
u
H(U).
-
A
and U' are pseudo-convex, U C U' t h e n K H ( U ) , = K H ( " , )
f o r any compact s u b s e t of in
of
U i f and o n l y i f
H(U') i s d e n s e
H(U) f o r t h e compact open topology.
P r o p e r t i e s 31, 4 ) and 5 ) have been g e n e r a l i s e d t o l a r g e r c l a s ses of l o c a l l y convex s p a c e s w i t h Schauder b a s i s i n c l u d i n g
Banach
spaces ( 6 ) .
8, c o n d i t i o n
W e s h a l l i n v e s t i g a t e c o n d i t i o n s 1 and 2 . I n
i s o b t a i n e d by r e g u l a r i s a t i o n ( i e c o n v o l u t i o n ) of
se-
v by a D i r a c
quencer so it i s n a t u r a l t o c o n s i d e r s o m e measure.
1)
For t h e sake
of
s i m p l i c i t y w e s h a l l c o n s i d e r h e r e only ( i n f i n i t e dimensional) Banach spaces and Gaussian measures f o l l o w i n g Gross ( 5 ) . I t i s w e l l known t h a t i n a Banach s p a c e E there are no
s t i t u t e t o t h e Lebesgue measure t h a t means t h e r e does n o t e x i s t
sub-
a
measure i n v a r i a n t by t r a n s l a t i o n s o r r o t a t i o n s . A Gaussian measure l.~ on E can be c h a r a c t e r i z e d as follows: there e x i s t s an H i l b e r t space H
v
d e n s e l y and c o n t i n u o u s l y imbeded i n E such t h a t
u
t h e c y l i n d r i c a l Gauss measure on t h e c y l i n d r i c a l s e t s of
arises H
1-I
.
from The
t r i p l e t ( H p , i , E ) is c a l l e d an a b s t r a c t Wiener space. The f o l l o w i n g p r o p e r t i e s hold:
1)
L e t be
T in
P(E,E), i f
and i s u n i t a r y t h e n
p
T restricted t o H
i s i n v a r i a n t by
T
i s i n P(H H ) I-r P I !J ( i e pT-' = 11).
APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS
L e t be
2)
clx(A)
= p(x
+
,A
A)
346
u
Bore1 i n E l t h e n
and p x are
e i t h e r e q u i v a l e n t o r o r t h o g o n a l , t h e y a r e e q u i v a l e n t if and only i f
x belongs t o
H
P
.
W e have t h e f o l l o w i n g Lemma:
16
LEMMA 1:
i n a Gaubbian meabutre on E and
p
hatrmonic 6uncLion i n an open n u b s e t U
doh
E we h a v e
Suppose t h a t v i s bounded from above i n t h e b a l l B ( x , r ) , t h e
mapping
x
+
eiex
- invariant,
but
a pLuhisub-
r bmale enough.
PROOF:
Te
06
i d v in
V(X)
induce& a
u n i t a r y mapping T e on H
P
I
so
u
is
and w e have
5
v(x
+
y e i e )do
.
The r e s u l t f o l l o w s from
Fubini
t h e o r em. L e t us note
P R O P O S I T I O N 1: 1)
A(v,x
A(x,v r )
p(r)A
2)
v(x) = l i m r =O
3)
A(x,v,r)
LA apLutribubhatrmonic d u n c t i o n 06
a c nwex and inctreasing dunc-tion
i n in6initely
any x i n E t h e f u n c t i o n y = 0.
and
0 6 Log r .
A(x,V,r).
L e t us r e c a l l t h a t a f u n c t i o n
entiable a t
x
y
+
cp
H
u - di66etrenZiable. 9 is H -differentiable
u
( x + y ) , d e f i n e d on
Hcl
I
if
for
is differ
-
NOVERRAZ
346
PROOF:
1) i s a consequence of t h e f a c t t h a t p l u r i s u b h a r m o n i c
func-
t i o n s depending o n l y from I1 x I) are l o g a r i t h m i c a l l y convex. S i n c e v i s upper s e m i c o n t i n u o u s , f o r any
2)
5 v(x) +
v ( x + y)
w e have
II y II 5 r X f E hence
for
E
> 0
E
Is a consequence of a r e s u l t of Gross (5).
3)
L e t us n o t i c e t h a t , u n l e s s
v i s continuous, A(v,x,r)
i n g e n e r a l a continuous f u n c t i o n of
is
not
x.
A s a consequence of 2 ) and 3 ) w e have:
A p l u t i b u b h a h m a n i c dunc-tion v
PROPOSITION 2:
wine l i m i t
a nequence
06
06
i-6
L a c a l l y ,the p o i n t -
i n , 5 i n i t d y H - d i d , 5 e h e n t i a b l e @~L5ubha/unonic
iuncztio nA . T h e r e i s a n o t h e r way t o a p p r o x i m a t e bounded f u n c t i o n s : l e t p be a Gaussian measure o f p a r a m e t e r
vt{ll x 11 2
c1
> 01
+
f u n c t i o n Ptf ( x ) = f Ptf
0
i,
if f (x
t
+
+
t > 0 , then
t h e n Gross ( 5 ) h a s proved t h a t
0
1.1
/f(x)
-
f
is uniformly continuous
f u n i f o r m l y on E .
tends t o
For
the
y)ut(dy) is i n f i n i t e l y H -differentiable if
i s bounded and m e a s u r a b l e . Moreover i f
PROOF:
t and
= 1
vt(E)
E
f(y)I 5
< 0, t h e r e i s E
.
0, t h e r e i s
,
i f g i v e n a s t r i c t compact sub-
such t h a t T E E* 8 E ,
K
C
EB
a n d i s compact i n
such t h a t
%(T(x)- x)
0,
E
K
and i s compact i n
T E E* Q E
f E JCS(U;F)
,E
> 0
such t h a t
EB
,
361
so t h a t
pB(T(x)
-
x)
0 , 6
i s t h e complement o f
d i s t ( K , C E B ( U 87 EB) ) (where C (U n EB) EB EB U n EB i n E B ) , s u c h t h a t B ( f ( x ) f(y)) < E,
whenever
pB(x
x E K
-
and
-
y) < 6. Since
( P r o p o s i t i o n 1.15), t h e n f o r e a c h
f l U n ~ B is
x E K,
continuous
is
there
6x
>
0,
A x 5 d i S t E ( K , C E (U n E B ) ) , s u c h t h a t B ( f ( X I - f (y)) < E/ 2 , for B B n pB(x y ) < 6 x . S i n c e K C U 17 EB i s compact i s EB , K C . L J B(xi,GXi), 1=1 f o r some s e t {x, xn} C K . ( B ( a , r ) = { x E EB; p B ( x a ) C r , when
-
,...,
and
a E EB
-
Define
r > 0)).
y(x) = sup { 6
Then
y :K
+
Now f o r any B(x,6)
C
B(xi,6
‘i
Since E has the
for a l l
x E K.
for all
x
Let
Uo =
-
pB(x
-
...,n }
xi);
i=l,
i s c o n t i n u o u s a n d y > 0. L e t
R
x E K
E
xi
),
and
y E B(x, 6 )
I
for
x E K.
6 = i n f { y ( x ) ; x E K).
there
is
some
i
with
thus
S.a.p.,
there is
T E E* Q E
such that ~ f , ( T ( x- )x ) c 6 ,
By the a b o v e , w e g e t t h a t
K. L e t
{gl
, .. . , gn}
be a b a s i s i n
T ( E ) and l e t
U n EB n T ( E ) . S i n c e f i s S i l v a - h o l o m o r p h i c ,
f
can
be
c o n s i d e r e d as a h o l o m o r p h i c mapping from t h e f i n i t e d i m e n s i o n a l balanced s e t
Uo
into
F,
PAQUES
n f(z) = f ( B
i=l
where (z,,
..., z n )
f
ECn,
subsets of Uo. S i n c e is
E
P
F
5
zigi)
=
z
IPl= 0
ZPf
P '
and c o n v e r g e n c e i s uniform on compact
T(K) C U
(1
EB
and i s compact i n
there
Uo,
M E IN, such t h a t
Thus, i f
x E K,
Since
t h e proof i s complete. NOW, w e g i v e a n e x t e n s i o n of t h e p r e v i o u s theorem
class of s u b s e t s of
2 . 2 DEFINITION:
t o be
Let
s a i d t o be d i n i t e d y S
2 . 3 REMARK:
E ,
If
U be a non-void open s u b s e t of
Pb(E;C)
- Runge
(Paques [ 111)
2 . 4 THEOREM:
E,
said
T ~ ) .U
is
i n E i f for e a c h f i n i t e dimensional sub-
Eo
*
i s a Banach s p a c e , t h i s d e f i n i t i o n c o i n c i d e s w i t h
t h e D e f i n i t i o n 2 . 1 of A r o n - S c h o t t e n l o h e r [ 2 open s u b s e t o f
is
E. U
is d e n s e i n ( J C s ( U ; ( c ) ,
i s S-Runge i n
U n Eo
E
another
E.
S-Runge in E i f
s p a c e Eo of
to
then
U
1
.
If
U
is
a
i s f i n i t e l y S-Runge and S-Runge
balanced in
E.
. L e t E have t h e
S.a.p.
and L e t
U
b e an o p e n
nubbet
THE APPROXIMATION PROPERTY FOR SPACES OF HOLOMORPHIC MAPPINGS
06
Jfs(U;C)
E which i h 4 i n i t e d y S-Runge. Then
JCs(U; F)
604
Q
F
i b
383
T
S
-denhe i n
F.
e v e h y l k ~ c a e e y convex hpace
F o r t h e p r o o f o f Theorem 2 . 4 i t w i l l b e n e e d e d
the
following
p r o p o s i t i o n , which h a s i m p o r t a n t c o r o l l a r i e s .
2 . 5 PROPOSITION:
L e t F b e a dpace s a t i d d y i n g t h e doLeowing
tion: I d K i n a compact bubded
v e x huLL
06
F , t h e n t h e ceohed
06
(Pb(nE;F),
( a na lo g o u s 6ohmuLaA hold a b o h a t
f o r all
to
T : 3CS(U;F)
Let
+
f E XS(U;F),
I$
f o r each
JCs(U;C).
E
JCs(U;C) F ' and
E
U
Lo a nun-void
x
f E Jcs(U;F)
ous. Indeed, l e t
U.
and
Clearly,
n E IN).
doh
+
Xs(U;C)
seminorm on
K
x E K}, where
(Tf) ($)
belongs
$ E F'.
Tf : FA
p be a rS-continuous
p ( g ) = sup { Ig(x) 1 ;
-tS),
b e d e f i n e d by (Tf) ($1 ( x ) = ( $ of) (x),
F
W e now show t h a t t h e l i n e a r map
by
F. 7 6
abno.ecl*eLy con-
E , then
o p e n 6 u b d e t 06
PROOF:
06
r ( K ) , i n a compact n u b s e t
K,
C
U
is continu-
JCs(U;C)
defined
is a strict
compact
s e t . By h y p o t h e s i s , t h e closed a b s o l u t e l y convex h u l l o f compact s u b s e t o f f i n e d by
for all
fine
F.
C a l l it
$ E F'.
Hence
Now
E
f(K)
q b e t h e seminorm on
Let
F'
is a de-
L). I t f o l l o w s t h a t
Tf E Z ( F & ; 3 C s ( U ; C ) ) .
A E Xs(U;C)
g ( x ) E (FA)' = F
$ E F'.
L.
q ( $ ) = s u p { II$(t) I; t
L e t now
condi-
E F = L(F;,
JC,(U;C)).
by t h e formula
g is weakly S-holomorphic,
For each
x E U, de-
g ( x ) ( @ ) = ( A @ )( x ) ,
hence
S
for
- holomorphic
all by
PAOUES
364
C l e a r l y , Tq = A, a n d t h e r e f o r e T is onto Xs(U;C) E F .
P r o p o s i t i o n 1.20.
On t h e o t h e r hand, T
i s i n j e c t i v e by t h e Hahn-Banach Theorem.
r e m a i n s t o show t h a t
T i s a homeomorphism.
Let T(g) = s u p
6
I
E c s ( F ) and
Ig(x) I;
x
E
K C U
KI,
b e a s t r i c t compact
g E Jcs(U;Cl.
It
subset.
Let
t h e n , f o r every f EJCS(U;F),
we have by t h e Hahn-Banach Theorem, t h a t
This completes t h e p r o o f .
2.6 COROLLARIES OF THE PROPOSITION 2 . 5 :
nubnet a 6
a)
16 U i d
U
- void
nun
Open
E , we h a v e :
16
F i b a c o m p k t e bpace a n d
F oh (X,(U;C),
T
~
)hub
the
a p p t o ximatio n p ~ ~ o p e t t yt ,h e n
I n p a t t i c u l a t id E had d i n i t e d i m e n n i o n a n d F
i d
a com-
pLete d p a c e , t h e n
b)
16 F had t h e a p p t o x i m a t i o n p t o p e t t y a n d
condition
06
Pmpodition 2.5, then
JCs(U;C)
dadiddied
B F
the
d Ts-deue
i n XS(U;F). c)
(X,(U;C),
ill
T,)
Jc,(U;C)
npuced
F.
had 8 F
t h e a p p t o x i m a t i o n p k o p e t b y id a n d i d
Ts-denAe i n
JcS(U;F),
doh
only
a l e am&
THE APPROXIMATION PROPERTY FOR SPACES OF HOLOMORPHIC MAPPINGS
366
The proof of a) f o l l o w s from P r o p o s i t i o n 2.5 and
( a ) . The
1.33
Proposition
proof of b ) f o l l o w s from P r o p o s i t i o n 2 . 5 a n d
Proposition
1 . 3 3 (b); and c ) f o l l o w s from P r o p o s i t i o n 2.5 and P r o p o s i t i o n 1 . 3 3 ( c ) and P r o p o s i t i o n 1 . 2 2 .
PROOF OF THEOREM 2 . 4 :
Let
be a s t r i c t compact s e t , B E c s ( F )
K C U
f E JCs(U;F). By h y p o t h e s i s , t h e r e i s
and
EB
,
so t h a t g i v e n
pB(T(x)
-
x)
0, there
E
for a l l
E,
B E BE
x
E
K,
U be a n o n
- void
apphoximatiofl phopehty,
( E * , T ~ ) i s a complemented
subspace
of
386
PAQUES
(Xs(U;C),T
:) hence E$ h a s t h e a p p r o x i m a t i o n p r o p e r t y . From
~
w e have t h a t , i f a
for
f E XS(U;C),
t h e mapping
U,
clear t h a t
Da : ( J c s ( U ; C ) ,
To show c o n t i n u i t y , l e t
a
Then t h e r e i s
E.
B E BE
6 > 0 , be s u c h t h a t
Let
-1
defined by Da(f) = 6 f ( a ) ,
T ~ +E;, )
i s a c o n t i n u o u s p r o j e c t i o n onto
D2 = Da.
s u b s e t of i n EB.
i s a q u a s i - c o m p l e t e s p a c e , t h e n E h a s t h e S.a.p..
E
For
this,
+
compact
K C EB and i s c o m p a c t
From Cauchy
C U n EB.
SK
Indeed, it is
K be a s t r i c t
such t h a t
a
E;.
in-
e q u a l i t i e s , ( C o r o l l a r y 1.18) i t f o l l o w s t h a t
for all
f
E Jcs(U;C).
Then
i s continuous.
Da
w e show t h a t E h a s t h e S . a . p .
NOW,
.
Since
Ei
has the
p r o x i m a t i o n p r o p e r t y , t h e n f o r e v e r y b a l a n c e d convex compact of
1 E
,
EZ
f o r e v e r y s t r i c t compact subset K o f
> 0, t h e r e i s
p E 1. S i n c e
g
E
g E (E;)
m g =
Since, f o r each
for of
Bi
B E
m
E
BE
U
Fo r
so t h a t
1=1
D E
BE
vi
.., m ,
vi
(EZ)', xi
E
E, a n d f o r
-
pIIK
0). Hence
PE
= Voo=V.
Sine
ED,
C
g =
I
f o r T E E*. ED J , ( I ) = I D i s a b a l a n c e d convex
$(T) = TI
V", where V i s a c l o s e d a b s o l u t e l y 0-neighborhood in ED.
( V = {v
where
(ED);
367
Z pi i=l
@ xi.
Hence,
Therefore
and t h e n
that is,
-
S i n c e , g E E* 8 E the
6
i s i n d e p e n d e n t of
i t f o l l o w s t h a t E has
S.a.p..
2 . 8 DEFINITION:
L e t E be a l o c a l l y convex complex Hausdorff s p a c e .
i s s a i d t o have t h e S - h o l a m o h p h i c a p p h o x i m a t i o n p h o p e h t y (S.H.a.p.1
E
K C E, a s t r i c t compact set, t h e r e i s
i f given K
and
C
EB
and i s compact i n EB and g i v e n
such t h a t
pB(g(x)
-
x)
0, there is g
x E K.
such t h a t E
JCs(E;&) B E
PAQUES
368
I t is clear t h a t i f
E has t h e
S.a.p.,
t h e n E h a s t h e S.H.a.p..
For t h e converse i t i s needed t h a t E be a quasi-complete space, t h a t
i s , w e have t h e f o l l o w i n g theorem, which c o n t a i n s t h e p r e v i o u s t h e o -
E, which i s f i n i t e l y S-Runge.
rem f o r an open s u b s e t U o f
2 . 9 THEOREM:
U b e an open
which i d h i n i t e l y S-Runge. Then t h e 6 o & l o w i n g conditionh
E,
d u b b e d 06
b e a q U a d i - C O m p l E t e d p a c e and l e t
Let E
ahe e q u i v a l e n t : a)
E
S.H.a.p..
b)
Foh eweny l o c a l l y convex d p a c e
had t h e
in c)
(xs(u;C),T
d)
E
)had
~
only i n
c)
+
+
E t o be a quasi-complete space i s
needed
d).
c) i s p a r t (c) o f C o r o l l a r y 2.6, which i s t r u e f o r
open s u b s e t of
E.
c)
+
d) i s Theorem 2.7.
remains o n l y t o show t h a t proof o f Theorem 2 . 1 , ( c f . D e f i n i t i o n 2.8)
2.10 COROLLARY:
S.a.p.
t h e a p p k o x i m a t i o n ptopekty.
S.a.p..
had t h e
The assumption of
b)
63 F i d -rs-dende
3ES(U;F).
REMARK:
PROOF:
F, JCs(U;C)
a)
+
Let
E
i 6 and o n l y id,
+
a ) i s obvious.
b ) . T h i s proof i s analogous
substituting
.
d)
g
E
for
HS(E;C) C3 E
be a q u a d i - c o m p l e t e d p a c e . Then 60k
each
n E IN,
(Pb(%;C),
-rs)
any It
t o the
T E E* Q E
E
had
had t h e
the ap-
pho ximation phopehty.
PROOF:
If
E has t h e
any open s u b s e t U of
S.a.p.,
i t f o l l o w s by Theorem 2 . 9 ,
E , which i s f i n i t e l y S-Runge,
h a s t h e approximation p r o p e r t y . S i n c e f o r each
n
E
that
(X,(U;C),
for T ~ )
1N, ( P b ( n E ; C ) ,rS
THE APPROXIMATION PROPERTY FOR SPACES OF HOLOMORPHIC MAPPINGS
i s a complemented subspace of
( X S (U;(c), ' I ~ )
, we
have t h a t
369
(Pb(%;O),
'I~)
h a s t h e approximation p r o p e r t y . Conversely, i n p a r t i c u l a r , E* h a v i n g t h e a p p r o x i m a t i o n property, has the S.a.p.
E
i n t h e proof of Theorem 2 . 7 )
.
By t h e p r e v i o u s C o r o l l a r y , w e have t h a t
2.11 REMARK: quasi-complete S-Runge,
(as
s p a c e and U i s an open s u b s e t o f
El
if
E
a
is
which is f i n i t e l y
h a s t h e approximation p r o p e r t y , i f and only t h e n (Ws(U;C), T ~ ) n E IN,
i f , f o r each
(Pb("E;C), ' I ~ ) h a s t h e approximation p r o p e r t y .
REFERENCES
I1 1
R. ARON,
Tensor p r o d u c t s o f holomorphic f u n c t i o n s , Indag. Math.
35, (1973) I 1 9 2 [ 21
- 202.
R. ARON and M. SCHOTTENLOHER, Compact holomorphic mappings Banach s p a c e s and t h e Approximation p r o p e r t y , J. t i o n a l Analysis 21,
[ 31
[ 4
I
1
51
(1976) , 7
- 30.
P . ENFLO, A counterexample t o t h e approximation p r o p e r t y Banach s p a c e , A c t a Math. 130 (1973) , 309 317.
-
A.
on
Func-
in
Phoduitd ten6o&ie& t a p o e o g i q u e d e t eApace6 n u c . t e a i h e 6 , Memoirs Amer. Math. SOC., 1 6 ( 1 9 5 5 ) .
GROTHENDIECK,
C. P. GUPTA, Malgrange theorem f o r n u c l e a r l y e n t i r e f u n c t i o n s o f bounded t y p e on Banach s p a c e . D o c t o r a l D i s s e r t a t i o n , U n i v e r s i t y of R o c h e s t e r , 1 9 6 6 . Reproduced by I n s t i t u t o de Matemgtica Pura e A p l i c a d a , Rio de J a n e i r o , B r a s i l , Notas de Matemgtica, N Q 37 ( 1 9 6 8 ) .
[ 61
M. C. MATOS, Holomorphically b o r n o l o g i c a l s p a c e s and
infinite d i m e n s i o n a l v e r s i o n s o f H a r t o g s theorem, J . London Ma*. SOC. ( 2 ) 17 (19781, t o a p p e a r .
370
I 71
PAQUES
L. NACHBIN, Recent developments i n i n f i n i t e dimensional
holo-
morphy, B u l l . Amer. Math. SOC. 79 ( 1 9 7 3 1 , 6 2 5 - 6 4 0 . [ 81
In:
L. NACHBIN, A glimpse a t i n f i n i t e d i m e n s i o n a l h o l o m o r p h y ,
P h a c c e d i n g h o n ' I n , 3 i n i t e D i m e n d i o n a L Holomokphy, U n L v m i t y
0 6 Kentucky
1 9 7 3 , ( E d i t e d by T. L. Hayden and
T.
J.
S u f f r i d g e ) . L e c t u r e Notes i n Mathematics 3 6 4 , S p r i n g e r Verlag B e r l i n - H e i d e l b e r g - N e w York 1 9 7 4 , p p . 69 - 79.
I91
L . NACHBIN, TopoLogy o n S p a c e d 0 6 Holomo/rpkic M a p p i n g h , . E r g e b ~ s s e der M a t h e m a t i k und ihrer Grenzgebtete, B a n d 47, Springer
-Verlag New York I n c . 1 9 6 9 .
[lo ]
Ph. NOVERRAZ, P d e u d a - c v n v e x i t e , c a n v e x i t i i p o l y n o m i d e eA d o m d n u d ' h o L o m o h p h i e en d i m e n h i o n indinie, ca 4 8 , North-Holland,
[111
0. T. W.
Notas de M a t e m s t i -
Amsterdam, 1 9 7 3 .
PAQUES, P h o d u t o h t e n d o h i a i d d e dunqoe.4 Silva-hvlomok-
6ah
e a
p h o p h i e d a d e d e a p h o x i m a ~ i i a , Doctoral Dissertation,
Universidade E s t a d u a l de C a m p i n a s , C a m p i n a s ,
Brasil,
1977. [12 1
In: Analyhe , 3 v n c t i a n e l l e e t a p p l i c a t b n h (L. N a c h b i n , e d i t o r ) . Hermann, Paris,
D. PISANELLI, S u r l a L F - a n a l i t y c i t g . 1 9 7 5 , pp. 2 1 5 - 2 2 4 .
I131
J . B. PROLLA, A p p k o x i m a t i o n
06
Vectak Valued F u n c t i o n h ,
d e Maternztica 6 1 , N o r t h - H o l l a n d , [14]
L . SCHWARTZ, T h d o r i e des d i s t r i b u t i o n s
Notas
Amsterdam, 1 9 7 7 . valeurs
vectorielles
I , Ann. I n s t . F o u r i e r 7 ( 1 9 5 7 1 , 1 - 1 4 1 .
[151
M.
SCHOTTENLOHER, €-product a n d c o n t i n u a t i o n o f a n a l y t i c
map-
pings, I n : Anaeybe F o n c t i o n e l l e e t AppRicationn, (L. N a c h b i n , e d i t o r ) Hermann, P a r i s , 1 9 7 5 , p p . 2 6 1 - 2 7 0 . [161
J. S. SILVA, C o n c e i t o h
calmente
d e dunciio diddenenci&~eL em
COnULXVh,
L i s b o a , 1957.
C e n t ro de E s t u d o s
ebpacob
Matemsticos
lade
Approximation T h e o q and Functional AnaZyaie J . B . ProZZa (ed.) QNor th-Hc Z land Pub t i s h i n g Company, 19 79
THE APPROXIMATION PROPERTY FOR NACHBIN SPACES
JOAO B . PROLLA Depar tamento d e M a temstica U n i v e r s i d a d e E s t a d u a l de Campinas Campinas, S P , B r a z i l
1. INTRODUCTION Throughout t h i s p a p e r X i s a Hausdorff s p a c e s u c h t h a t C&(X;X)
(IK = I R o r
C)
s e p a r a t e s t h e p o i n t s of
X,
and
E
i s a non-zero locally
convex s p a c e . Our aim i s t o p r o v e t h a t c e r t a i n function spaces L C C(X;E) have t h e approximation p r o p e r t y as soon as E h a s t h e
approximation
p r o p e r t y . W e show t h i s f o r t h e c l a s s of a l l Nachbin s p a c e s C V m ( X ; E ) . Such s p a c e s i n c l u d e
C ( X ; E ) w i t h t h e compact-open t o p o l o g y ;
w i t h t h e s t r i c t topology:
, Bierstedt
that
CVm(X;IK)
that
X i s a completely r e g u l a r
[ 11
,
w i t h t h e uniform t o p o l o g y .
Co(X;E)
E = IK
v E V
When
u s i n g t h e t e c h n i q u e of E-products, had proved
h a s t h e approximation p r o p e r t y , under t h e h y p o t h e s i s k m - s p a c e , and t h a t t h e f a m i l y V o f
w e i g h t s i s such t h a t g i v e n a compact subset weight
Cb (X;E)
such t h a t
v(x)
1
for a l l
K C X, one c a n f i n d
x
a
E K.
The t e c h n i q u e w e u s e h e r e was s u g g e s t e d by t h e p a p e r
151
G i e r z , who proved t h e analogue o f Theorem 1 below f o r t h e c a s e of
of X
compact and b u n d l e s o f Banach s p a c e s . T h i s t e c h n i q u e of " l o c a l i z a t i o n " of t h e approximation p r o p e r t y was used by B i e r s t e d t , i n t h e c a s e t h e p a r t i t i o n by a n t i s y m m e t r i c s e t s ( B i e r s t e d t [ 2 1 1 , b u t
the
of
main
i d e a of r e p r e s e n t i n g t h e s p a c e o f o p e r a t o r s of L as a n o t h e r Nachbin s p a c e o f cross s e c t i o n s i s due t o G i e r z . However o u r p r e s e n t a t i o n is 371
372
PROLLA
much s i m p l e r , i n p a r t i c u l a r w e do n o t u s e t h e concept of a C (X)-convex
C ( X ) -module.
locally
I n t h e I n t r o d u c t i o n t o h i s paper, Gierz said
t h a t h i s method could be a p p l i e d t o t h e v e c t o r f i b r a t i o n s i n t h e sense of [ 8]
,
and t h i s l e d t o o u r e f f o r t a t s i m p l i f y i n g
his
proof
and
adapting it t o our context.
2. THE APPROXIMATION PROPERTY FOR NACHBIN SPACES A v e c t o h d i b h a t i o n o v e r a Hausdorff t o p o l o g i c a l space
p a i r ( X , ( F x ) x E X ) ,where each F,
i s a v e c t o r space over
X
the
is a field
IK (where K = IR or a ) . A c k o d b - ~ e c t i o nis then any element f o f t h e C a r t e s i a n product o f t h e s p a c e s A w e i g h t an
Fxl i . e .
X i s a f u n c t i o n v on
norm o v e r Fx f o r each L of c r o s s - s e c t i o n s
f
.
f = ( f (x)I x
I
X such t h a t
v ( x ) is a semi-
LVm i s a v e c t o r space
x E X. A Nachbin b p a c e
such t h a t t h e mapping
is upper semicontinuous and n u l l a t i n f i n i t y on X f o r each weight v
be onging t o a d i h e c t e d b e t V of weights ( d i r e c t e d means t h a t , given v1
, vz
E
v
V , t h e r e is some
( i = 1,2) f o r a l l
x
f
E
V
and
X > 0 such t h a t v i ( x ) 5 Av(x)
X); t h e space L is then equipped
with
the
topology d e f i n e d by t h e d i r e c t e d s e t of seminorms
and i t i s denoted by
LVa
.
S i n c e only t h e subspace w e may assume t h a t
L(x) = F,
L(x) = { f ( x ) ; f f o r each
x
C(X;IK)
L} C Fx i s relevant,
E X.
The C a r t e s i a n p r o d u c t of t h e s p a c e s F, C ( X ; M ) -module, where
E
h a s t h e s t r u c t u r e of a
denotes t h e r i n g of
all
continuous
THE APPROXIMATION PROPERTY FOR NACHBIN SPACES
i f we d e f i n e t h e p r o d u c t
IK-valued f u n c t i o n s on X I
Q E C(X;IK)
for a l l
and e a c h c r o s s - s e c t i o n
x E X. I f
W
C
373
f
Of
each
by
B C C(X;IK) is a
is a v e c t o r subspace and
L
for
s u b a l g e b r a , w e s a y t h a t W i s a B-module,
i f BW = { $ f ; $ EB, f
W ) CW.
E
W e recall t h a t a l o c a l l y convex s p a c e E h a s t h e a p p h o x i m a t i o n
p h o p e h t y i f t h e i d e n t i t y map e on E can be approximated,
uniformly
on e v e r y t o t a l l y bounded s e t i n E, by c o n t i n u o u s l i n e a r maps of f i n i t e rank. T h i s i s e q u i v a l e n t t o s a y t h a t t h e space
E ' @ E i s dense i n
L(E) w i t h t h e topology o f uniform convergence on
bounded s e t s of
E.
Let
Ec(E),
totally
c s ( E ) b e t h e s e t of a l l c o n t i n u o u s seminom
,
d e n o t e t h e spacz E s e m i P normed by p. I f , f o r e a c h p E c s ( E ) , t h e s p a c e E h a s t h e a p p r o x i P mation p r o p e r t y , t h e n E h a s t h e a p p r o x i m a t i o n p r o p e r t y . on E .
For each seminorm
THEOREM 1:
p
E cs(E)
Suppabe t h a t , d o h each
Fx equipped w&h
x E X, t h e bpace
{v(x); v E V l
hab
B c C b ( X ; I K ) be a b e l d - a d j o i n t
and
t h e t o p o l o g y dedined by t h e damily
t h e apphoximation p h o p e h t y . L e t
let E
06
beminohnb
b e p a h a t i n g b u b a l g e b h a . Then any Nachbin d p a c e
which
LVm
id
a
B-modute hab t h e apphoximation p h o p e h t y . The i d e a o f t h e p r o o f i s t o r e p r e s e n t t h e s p a c e W = LV,
being
,
a s a Nachbin s p a c e of c r o s s - s e c t , i o n s o v e r
XI
e(W),
where
each
fiber
L(W;Fx), and t h e n a p p l y t h e s o l u t i o n o f t h e Bernstein-Nachbin
a p p r o x i m a t i o n problem i n t h e s e p a r a t i n g and s e l f - a d j o i n t bounded case. B e f o r e p r o v i n g theorem 1 l e t us s t a t e some c o r o l l a r i e s .
COROLLARY 1: Fx
L e t X be a Hauddohdd b p a c e , and
604
each
be a nohmed b p a c e w i t h t h e apphoximation p h o p e h t y .
Cb(X;IK)
be a b e t i - a d j o . i n t and b e p a h a t i n g b u b a l g e b h a .
let
x E X
Let
B
C
374
PROLLA
L e t L be a v e c t o t s p a c e
x)
(X; (F,)
chodb
06
-Aectiand
pehtaining
to
nuch t h a t
x
f E L , t h e map
(1) doe evetry
+
Ilf(x)II 0 u p p a demicontinuoirn
and nuLL a t i n d i n i t y ;
i n a B-rnoduLe;
(2)
L
(3)
L(X) = F,
60%
x E
each
x.
Then L equipped w i t h nohm IIf 1 I = sup fIlf(x)lI; x E X I
had t h e
apphoximation p t o p e h t y . PROOF:
Consider t h e w e i g h t v on X d e f i n e d by
f o r each
II
f
x E X.
II = sup
REMARK:
Then
{ IIf ( x ) II ; x E
LVm
is
just
L
v ( x ) = norm of
equipped
with
FX’
norm
x).
From C o r o l l a r y 1 i t f o l l o w s t h a t a l l “ c o n t i n u o u s sums”,
t h e s e n s e of Godement [ 6
1 or
[7
in
1 , of Banach s p a c e s w i t h the approxi-
mation p r o p e r t y have t h e approximation p r o p e r t y , i f t h e X
the
i s compact and i f such a “ c o n t i n u o u s sum” i s a
“ b a s e space“
Cb(X;IK)
-module.
I n p a r t i c u l a r , a l l “ c o n t i n u o u s sums“ o f H i l b e r t s p a c e s and of C*-alg e b r a s , i n t h e sense of D i x m i e r and Douady [ 3 tion property, i f
1
have t h e approxima
X i s compact. Indeed, a ” c o n t i n u o u s sum“
sense of [ 3 1
is a
COROLLARY 2 :
Let X b e a Hauddohdd dpace buch t h a t
-
i n the
C ( X ; I I o -module.
k a t i n g ; L e t V b e a dikected b e t demicontknuoub dunctiand o n
X;
04
C b ( X ; x ) 0 bepa-
&eat-vaLued, n o n - n e g a t i v e , uppek
and l e t E be a lacuLLy convex pace
w i t h t h e apphoximation p h o p e h t y . Then C V m ( X ; E ) had t h e apphaxha.tLun pto pehty
.
PROOF:
By d e f i n i t i o n , CVm(X;E) = { f E C ( X ; E ) ;
finity, for a l l
v
€
vf
vanishes
at
in-
V), equipped w i t h t h e topology d e f i n e d
by
the
THE APPROXIMATION PROPERTY FOR NACHBIN SPACES
376
f a m i l y o f seminorms
where
v E V Let
and
p
E
denote
Lv
cs(E).
C V m ( X ; E ) equipped w i t h t h e topology d e f i n e d by
t h e above seminorms when either
or
Lv(x) = 0
by t h e seminorms
v
E
V
Lv(x) = E
{v(x)p; p
i s k e p t f i x e d . Then, for e a c h x E X , equipped with t h e topology defined
E CS(E)
1 . Hence i n b o t h c a s e s , L v ( x ) h a s
t h e approximation p r o p e r t y . I t remains t o n o t i c e spaces a r e
Cb(X;JK)-modules. T h e r e f o r e
property. Since
v E V
Lv
that
has
was a r b i t r a r y , C V m ( X ; E )
the has
all
Nachbin
approximation t h e approxima-
t i o n property.
COROLLARY 3:
(a)
Let X and E b e an i n CoaoLLaay 2 . T h e n
C(X;E)
w i t h t h e compact-open t o p o L o g y h a d t h e a p p h o x i m a -
t i o n phopehty. (b) C o ( X ; E )
N i t h t h e uni6oam t o p o L o g g had
the
appkoximation
pkopehtg.
REMARK:
I n ( a ) above, i t i s s u f f i c i e n t t o assume t h a t
C(X;IK)
is
separating.
COROLLARY 4 :
(Fontenot [ 4 1 )
A p a c e , and Let E
Let
X
b e a LocaLLy compact
be a L o c a L L y convex Apace w i t h
p a o p e h t y . T h e n c ~ ( x ; E )w i t h t h e n t a i c t t o p o e o g y
the
Haundoa66
appaoximation
B had t h e a p p k o x i -
m a tio n p h o p e h t y .
PROOF:
Apply C o r o l l a r y 2 , w i t h
COROLLARY 5:
Ale Nachbin spaced
V = {v E Co(X;JR);
06
v
0).
continuoun ncaLak-vaLu&d duncfiond
376
PROLLA
h a v e t h e apphoximation p h o p e k t y .
I n Corollary 2, take
PROOF:
E = IK.
3 . PROOF OF THEOREM 1
Let
W = LV,
Let
vo
E
For e a c h
and l e t and
V T
w
be a t o t a l l y bounded s e t .
be g i v e n .
> 0
E
J(W)
E
A C
c o n s i d e r t h e map
E ~ O T : W + F ,
for
x
E
X I where
for all
f
STEP 1:
sX o T
E
E~
:W
+
W.
E L(W;Fx).
Just notice t h a t
PROOF:
is t h e e v a l u a t i o n map, i.e., ~ ~ (= ff( x) ) ,
F,
E,
E C ( W ; F ~ ) #s i n c e
v ( x ) [ ~ ( x5 ) ~1 I f
f o r every
f o r any
v
U(x)
T E
f o r any
v E V.
T E C (W), c o n s i d e r t h e c r o s s - s e c t i o n
F o r each
and f o r each
IIv ,
E V
E
E o ~T)
c o n s i d e r t h e weight ? on X d e f i n e d by
C(W;Fx).
e(W).
?=(
Then
377
THE APPROXIMATION PROPERTY FOR NACHBIN SPACES
STEP 2:
x * ~ ( x ) I ? ( x ) ]i b uppetc . b e m i c o n t i n u o u b and vanishes
T h e map
at i n d i n i . t g o n X , d o & e a c h
PROOF:
Let
Choose
h"
xo E X
and
there exist
such t h a t
{ 1 , 2 , ...,rn}
x
x E Vi
Let
X. L e t
h')
. Then
6 > 0. Since
A
such t h a t , given
E
u
=
T(A) i s totally bounded, f E A,
there
is
such t h a t
+
v ( x )[
( T f i ) ( x )]
neighborhoods of
V2,...,Vm
for all
-
fl,f 2,...,fm
Since
in
h'
6 = 2(h"
Let
V1,
a n d assume
~ ( x o ) [ ? ( x o ) 0. L e t
-V
which i s t h e normal f r e q u e n c y f u n c t i o n
2m
cos vx d v ,
SCHOENBERG
388
if
m =1, o t h e r w i s e (m = 2,3,.
.
.)
Gm(x) i s an e n t i r e f u n c t i o n
having
i n f i n i t e l y many zeros, a l l r e a l . T h e caeddicients a d (1) satis6q t h e a s y m p t o t i c h e L a t i o n h
--
--
1 1 --1 a ( n ) = ( i n ) 2m Gm(v(hn) 2m ) + , o ( n 2m)
(4)
a4
V
where t h e " l i t t e e
n +
m ,
v.
or' dymbok? hoed4 unidaamly d o h n l L i n t e g e h d
For a proof see ( 5 , P a r t I ] , where i t i s a l s o shown byexamples (1.10),
t h a t ( 4 ) no l o n g e r h o l d s i f t h e e q u a l i t y s i g n i s a l l o w e d i n and t h a t t h e c o e f f i c i e n t n = 2k
aAn) d i v e r g e s e x p o n e n t i a l l y t o
t e n d s t o i n f i n i t y t h r o u g h even v a l u e s , i f
( 1 . 1 0 ) are r e v e r s e d anywhere i n t h e i n t e r v a l
the
0 < u < 2.rr
+
m
,
as
inequalities
.
The f o l l o w i n g d i s c u s s i o n , w h i l e n o t d i r e c t l y r e l a t e d
to
our
s u b j e c t of smoothing, w i l l show t h e c o n n e c t i o n of t h e a s y m p t o t i c rel a t i o n ( 4 ) w i t h t h e w i d e r f i e l d of p a r a b o l i c d i f f e r e n t i a l e q u a t i o n s . Observe t h a t ( 2 ) i m p l i e s t h a t
(5)
--1
--1
U(x,t) = t 2m G m ( x t 2m) =
-
-tv
2m
+ ixv
d v , ( t > 0).
The f u n c t i o n under t h e i n t e g r a l s i g n i s immediately s e e n t o s a t i s f y for all v
, the
d i f f e r e n t i a l equation
which r e d u c e s t o t h e f a m i l i a r h e a t e q u a t i o n i f
also -plane
m = l . I t follows t h a t
U ( x , t ) , d e f i n e d by ( 5 ) , is a s o l u t i o n of (6) i n t h e upper h a l f t > 0 . On t h e o t h e r hand, a p p l y i n g t o ( 2 ) F o u r i e r ' s inversion
formula and s e t t i n g
v = O r we f i n d that
ON CARDINALSPLINE SMOOTHING
These r e m a r k s imply t h e f o l l o w i n g : 'I 6
1x 1
say, a s
+
LA a b o t u , t i o n
a,
06
f (x)
389
cantinuow and a ( I X I - * )
,
then
t h e d i , j d e ~ e n . t i a l e q u a t i o n ( 6 ) Aattin6qLng t h e boundmy
condition
This p a r t i c u l a r s o l u t i o n
u ( x , t ) may now a l s o be
approximated
by t h e f o l l o w i n g n u m e r i c a l p r o c e d u r e : Draw i n t h e ( x , t ) - p l a n e
the
rectangular lattice of p o i n t s
(WAX,
n At)
(w
= 0, k 1
, ...
;
D e f i n e on it a l a t t i c e f u n c t i o n
n = 0,1,2
u
v
, ...) .
by s t a r t i n g w i t h
uw ,o = f ( v Ax) ,
and computing t h e v a l u e s a l o n g e a c h h o r i z o n t a l l i n e from those on the l i n e below i t , by means o f t h e t r a n s f o r m a t i o n (1.2). T h i s
evidently
amounts t o i t e r a t i n g (1.21, a n d a f t e r n s t e p s w e o b t a i n
(10)
For any g i v e n x a n d
t > 0,
( 1 0 ) w i l l go o v e r i n t o ( 8 ) i f w e
f o l l o w i n g : We 6 h A t c o n n e c t the. m e o h - n i z e b
Ax and
A t
do the
by ,the h d a t i a n
SCHOENBERG
380
A t = X (Ax) 2m.
(11)
Id t h e i n t e g e k b
n ahe buch t h a t
v and
VAX
+
x,
and
n A t
.+
t
an
Ax
0.
+
then
U
v,n
T h i s follows r e a d i l y from r e l . a t i o n (4): ( 1 0 ) d i f f e r s
U(X,t).
+
1 0 ) and ( 8 1 , i n view o f t h e
asymptotic
from a Cauchy-Riemann sum f o r tk integral
( 8 1 , by a q u a n t i t y t h a t t e n d s t o z e r o due t o t h e u n i f o r m i t y i n
v of
t h e error t e r m o f ( 4 ) . I t i s i n t e r e s t i n g t o n o t e t h a t it d o e s n o t matter which
for-
mula ( 1 . 2 ) w e u s e i n t h i s c o n s t r u c t i o n , as l o n g as it i s o f the degree of exactness
2m-1,
i.e.,
i t s a t i s f i e s (1.71, and above a l l t h a t i t
s a t i s f i e s t h e s t a b i l i t y c o n d i t i o n (1.10)
,
t h e t e r m "stabi1ity"meaning
h e r e s t a b i l i t y on i t e r a t i o n . F o r t h e g e n e r a l t h e o r y of F. J o h n , which t h e e q u a t i o n ( 6 ) i s a s p e c i a l example, see [ 3 1
.
of
I n t h i s s e c t i o n w e d e a l t e x c l u s i v e l y w i t h f o r m u l a e ( 1 . 2 ) which s a t i s f y t h e symmetry r e l a t i o n . I n [ 2 ]
T.
N.
E. G r e v i l l e d e a l t
with
t h e more d i f f i c u l t c a s e o f unsymmetric f o r m u l a e .
3 . CARDINAL SPLINE INTERPOLATION (see [ 9 , L e c t u r e s 1
l e m o f caadinal intehpolation i s t o f i n d s o l u t i o n s
-
4 1 ) . T h e prob-
f ( x ) of t h e i n -
t e r p o l a t i o n problem
(1)
f ( v ) = Y"
,
for all i n t e g e r s
v
,
where ( y v ) are t h e d a t a . A f o r m a l s o l u t i o n i s f u r n i s h e d b y t h e series
391
ON CARDINAL SPLINE SMOOTHING
i n v e s t i g a t e d i n 1 9 0 8 by de l a V a l l G e P o u s s i n , also l a t e r
by
E. T.
W h i t t a k e r , who c a l l e d i t t h e cahdinad b e h i e b . The d i f f i c u l t y w i t h ( 2 )
“i: :y
i s t h e s l o w decay o f t h e f u n c t i o n
as
x
-. A
+
s o l u t i o n of (1) i s t h e p i e c e w i b e l i n e a h i n t e h p o t h z t
much s i m p l e r g i v e n by
S1(x)
m
(3)
where
M2(x) i s t h e roof f u n c t i o n d e f i n e d by
in
M2(x) = x + l
,
[-1,01
M (x) = 1
2
-x
i n [ O , l l and%(x)
=o
The p u r p o s e o f cahdinad b p l i n e i n t e h p o & z t i o n i s t o b r i d g e between t h e p i e c e w i s e l i n e a r
if 1x1 ’1.
the
gap
S1(x) d e f i n e d by (31, a n d t h e c a r d i n a l
series ( 2 ) . I t a i m s a t r e t a i n i n g s o m e of t h e s t u r d i n e s s a n d s i n p l i c i t y of ( 3 ) , a t t h e same t i m e c a p t u r i n g some of t h e s m o o t h n e s s a n d s o p h i s t i c a t i o n of
(2).
Le-t m be a natuhad numbeh, and d e b
(4)
S2rn-l
b e t h e cLadb
06
= {S(X)3
cahdinad b p d i n e d
S(x)
0 6 deghee
2m-1
dedined
by
the two conditionb:
(5)
The h e s t h i c t i o n whete
v
i d
04
S ( x ) -to e u e h y u n i t i n t e n v a l
a n i n X e g e h , i b apolynomia!.
(v ,v
0 6 deghee 2
2m
+11,
-
1.
392
SCHOENBERG
For
m =1
we f i n d
S1
t o be i d e n t i c a l w i t h t h e c l a s s ( 3 )
c o n t i n u o u s p i e c e w i s e l i n e a r f u n c t i o n s . Observe t h a t t h e c l a s s o f p o l y n o m i a l s of d e g r e e s n o t e x c e e d i n g The r o l e o f t h e r o o f - f u n c t i o n t h e s o - c a l l e d centha.! B-npLine
M 2 m ( ~ ) : Waiting
SZmml c o n t a i n s 2m-1.
of (3)
M2(x)
of
x+
i s t a k e n o v e r by = max ( x , O ) ,
it
may be d e d i n e d b y
Clearly port
M2m(~)
€
S2m-l; w e also f i n d t h a t
M2m(~) > 0
i n its
sup-
- m < x < m. The B - s p l i n e s h o u l d be f a m i l i a r i n view of the fun-
damental i d e n t i t y
which a l s o shows t h a t
IM2,(x)dx
= 1 if
w e choose
f (x) = x
The r e p r e s e n t a t i o n ( 3 ) a l s o g e n e r a l i z e s , and eueAny S ( x )
2m E
. SZm-l
admitb a unique hepheoentation m
S(x) = c c
~
M*m(X
--m
whehe t h e
-
v)
I
c v ahe c o n n t a n t n . T h i s i s t h e s o - c a l l e d ntandahd heptebefl-
t a t i o n . The c o n v e r s e i s clear: Every series (8) f u r n i s h e s an e l e m e n t of
SZm-1
ments o f
.
W e now t r y t o s o l v e t h e i n t e r p o l a t i o n problem (1) b y e l e -
S2m-l.
I n t h i s d i r e c t i o n t h e r e are t w o d i f f e r e n t k i n d s o f
results.
A. T h e d a t a (y,) s e q u e n c e (y,)
ahe
06 poweh
g h o w t h (See [ 8
i s of p o w e h g n o w t h , and w r i t e
1). W e s a y t h a t t h e
ON CARDINAL SPLINE SMOOTHING
(y,)
(9)
393
E PG,
provided t h a t
y,
(10)
v
+
E
PG,
= ~ ( l v l y ) as
f
m,
f o r some
y
2
0.
y1
2
Similarly, we w r i t e
f(x)
(11)
provided t h a t
f ( x ) = O ( l x l y l ) as
x
+
f o r some
f m,
Below w e e x c l u d e t h e t r i v i a l c a s e when
m=l,
l e m i s s o l v e d by ( 3 ) w i t h o u t any r e s t r i c t i o n on t h e
THEOREM 1:
16 t h e heqUenCt
(y,)
i h
0.
s i n c e o u r prob
-
(y,,).
a d pawet g t u w t h , t h e n t h e i n t e h -
palation p t a b l e m
huh a u n i q u e h o l u t i o n
S(x)
huch t h a t
The a s s u m p t i o n ( 9 ) o f Theorem 1 i s a rough one; i t admits,e.g., a l l bounded s e q u e n c e s ( y V ) , w i t h
y = 0 i n ( 1 0 ) . The s e c o n d assump-
t i o n t o which w e now p a s s , i s much more s e l e c t i v e , and
takes
a c c o u n t t h e f i n e r s t r u c t u r e of t h e sequence: i n f a c t i t a d m i t s a narrow subclass of t h e s e q u e n c e s of
PG.
into only
As u s u a l , w i t h strongeras-
sumptions, s t r o n g e r c o n c l u s i o n s are p o s s i b l e : The i n t e r p o l a n t w i l l e x h i b i t a n i m p o r t a n t extremum p r o p e r t y .
S(x)
SCHOENBERG
394
m
B. T h e c a n e when
IAmyv12
r on H, gl(0) = O .
such t h a t
hl = 1 on
f l = hl o g l ,
f = h(gl,.
., g L )
. .,gL)
A andalso
h E C"(lR) such that h,O,
Then from Nachbin's Lenuna,there exist gl,...,gt
h(gl,..
all
for
H
i s a subalgebra of
s i n c e t h i s i s a c l o s e d s u b a l g e b r a . A l s o , fl
such t h a t
con-
h(gl,.
let
and
I n p a r t i c u l a r , f o r any
C m ( I R ) b e such t h a t
bourhood o f
IRn
i s bounded
approximates
i s p o s i t i v e on a neighbourhood of
hog
n e s s , there e x i s t
K.
without
h ( 0 ) = 0 . From the above remark, it follows t h a t
and
Let
gi
functions,
be t h e s e t o f r e a l p a r t s o f f u n c t i o n s i n A.
i s a s e l f - a d j o i n t a l g e b r a , t h e n A1
g E A1
k
1.
e R ,using
T.
f E CE(IRn)
s u p p o r t . L e t A1 A
Hence
p E P(lR )
a
h ( 0 ) = 0. Furthermore,
. . ,e.
E Corn
IRn } i s bounded i n
w e c a n approximate h on G by p o l y n o m i a l s s t a n t t e r m , since
h(0) = 0, m n
i s such t h a t
Cm(lR )
t h e W e i e r s t r a s s a p p r o x i m a t i o n theorem f o r d i f f e r e n t i a b l e
k
topology
A s s u m e a l s o t h a t C i s a s u b a l g e b r a . I n t h i s case,
7.
E C
S i n c e the set
on
c1
f
., g L )
on
A,
since
E
N o w t h e p r o o f i s complete.
z E C\lR
, let
gz
b e t h e complex f u n c t i o n on
W
FUNDAMENTAL SEMINORMS
g,(x) I t i s clear t h a t
PROOF:
g,
E
E = P(DUa. W e
In fact, for
m=O
claim t h a t
gp(IR) C E
for all
m E IN.
t h i s i s e v i d e n t . Assume t h a t t h e p r o p o s i t i o n
m E IN. L e t
t r u e f o r some
x E IR.
ci(IR).
-
Let
1 x - 2
=
437
p E P(IR). Since
-
q = gz(p
is
p ( z ) ) EP(IR),
t h e n from t h e a s s u m p t i o n i t f o l l o w s t h a t
Now t h e mapping
f E Ba
+
g f:
i s continuous hence
E Ba
S i n c e E i s a complex v e c t o r s p a c e w e h a v e
So t h e claim i s p r o v e d . F u r t h e r , t h e mapping
continuous, hence E is s e l f - a d j o i n t s i n c e for all
g:(;,)'
1
E
f
E
P(IR)
Ba
+
is.
'f
SO
E
(4,)
is
Ba
-.7E E -g,
I N : whence
E E:g
c g:
P(B)
a C
E
for all
m , n E IN.
From t h i s i t f o l l o w s t h a t t h e complex a l g e b r a A g e n e r a t e d by g, a n d
-g2
i s c o n t a i n e d i n E.
t i o n s (N) s i n c e
{gz}
Also
A
i s s e l f - a d j o i n t and s a t i s f i e s condi-
s a t i s f i e s c o n d i t i o n s (N).
From
Lemma
2
it
438
ZAPATA
P(IR) is d e n s e i n B a r t h a t i s ,
follows t h a t
LEMMA 4 :
1e.t
con6.tan.t
CzIZl
PROOF:
Let
p
,
a E SPC(IR)
z, z'
c
\ IR.
is fundamental.
T h e n t h e 4 e e x i s t 6 a pa4,itive
such ,tha.t
E
~ ( m ) .Since
gzp
i t follows
From t h e d e f i n i t i o n of
If
E
CI
r = ~ y r n z . t~h,e n
=
42 42
a, there exists
11 gzIlm =
Z
k-0
k! k+l
g Z I p = (1 + ( z
C > 0
=
cz
and m E IN s u c h t h a t
and
T o f i n i s h , i t i s enough t o o b s e r v e t h a t t h e number Cz
d o e s n o t depend on
PROOF:
Assume t h a t
- z')g2)gzlp
12'
= l + Iz-z'I CC,
p.
P a ( z ) i s unbounded. L e t
p E P(IR) be such t h a t
FUNDAMENTAL SEMINORMS
then
q
E P
(IR) and
q
-
gz =
.
g ZP
p(z)
By c h o o s i n g a c o n s t a n t C Z r i > 0
a s i n Lemma 4 i t follows t h a t
Since
P ( z ) i s unbounded, t h e n a
gz
and from Lemma 3
E P")-
is
c1
f undamen t a 1.
C o n v e r s e l y assume t h a t n
E
IN* be g i v e n . S i n c e
that
a(gZ
-
p)
a(gzq) = n a ( g Z
5
-
3.
pn
E
E
P(IR)",
q = n(l
Let
a(giq)
~ ( n, cl(gipn) ) 5
5
CirZ
1 and
-
there exists (x
-
.
pn(z) =
THEOREM 2 ( q u a s i - a n a l y t i c c r i t e r i o n ) :
a
PROOF:
on
Q: \
and
IR
p E P(IR)
Then
To f i n i s h w e l e t
unbounded.
then
ZIP).
z E
q
E
such
P ( I R ) and
i s a p o s i t i v e c o n s t a n t as is Lsrr
P) 5 1. If Ci,z
m a 4 it follows t h a t Then
gz
i s fundamental. L e t
c1
n . Hence 'i,z
Let
a
pn =
'i,z
P,(z)
is
E SPC(lR), Id
in 6undamenZaL.
Let
P(sX).
T b e a c o n t i n u o u s l i n e a r form on Let
D d e n o t e t h e s e t o f complex
Ba
s u c h t h a t T vanishes
numbers
such
that
on D. I n f a c t assuming t h i s ,
from
z
Imz < 1. D e f i n e h ( z ) = T ( g Z ) , z E D.
I t i s enough t o p r o v e t h a t
h =O
440
ZAPATA
Hahn-Banach a
-
g2 E P ( l R J a for a l l
theorem i t f o l l o w s t h a t
i s fundamental from Lemma 3 . Let
z E D, n E IN.
S i n c e T v a n i s h e s on is also t r u e f o r
If
n =O.
z, zo
E D, z
#
zo.
h(z) =
Hence
a, t h e r e e x i s t
S i n c e II g 2 I l m 5 ( m + l ) !
Let
n 2 1 then
P(lRR) i t follows t h a t
From t h e d e f i n i t i o n of
for a l l
Then
gz
=
4,
From t h i s i t follows t h a t
h
i s holomorphic on D and
n=l
m E IN such t h a t
(2
-
zO)4,g2
0
.
i s holomorphic on D . Since
m
z
~ ( g ~ x " ?his ). zn
we have t h a t
z E D
-
and
C > 0
0
h
z E D. Then
n-
4
1
=
+
(*)
is t r u e ,
m,
a(x")
t h e n Denjoy c o n d i t i o n s i n Watson's problem are s a t i s f i e d , v a n i s h e s on
Hence
D ( [ 6 1 ) . N o w t h e proof i s complete.
hence
h
441
FUNDAMENTAL SEMINORMS
COROLLARY 1: t h e h e ahe
Let A be t h e
aLl neminohmb
d e t 06
p o n i t i v e conntantd
C
I
N , m E IN
and
c
a E SPC(IR) doh
which
(ddepending o n a)
A U C ~t h a t
... - log,
a ( x n ) 5 c(c n log n whehe log,
doh
log, n = n and
dedined b y
i d
n) n
aLL log,"
n 2 N = l o g ( 1 o gm - l n)
.id
m 2 1. Then A
PROOF:
s e t 06
id a dihected
6undamentaL neminohmd.
T h i s i s a d i r e c t consequence o f Theorem 2 o b s e r v i n g t h a t t h e
"moments" o f any t w o such seminorms have a common e s t i m a t e of the sirme type
a
Let
THEOREM 3:
SPC(IRn). 1 6 t h e k c e x i d t 6undamentaL
E
JemiMohmd
~ 1 ~ , . . .E~ SPC(IR) a ~ duch t h a t
a(fl then
for
... B
f n ) 5 a 1( f 1
...
*
an(fn)
aee
doh
flI . . . I f n E B t
6undamenXaL.
a i d
PROOF:
(9
Let
n :B x . . . x Ban a1 f l l . . . l f n E B. Then
-+
Bnta
be defined by m(fl
,...,f n) =f,@ ...@ f n ,
i i s fundamental and .rr i s c o n t i n u o u s . Hence i f t h e complex s u b a l g e b r a g e n e r a t e d by
s i n c e each
a
T(C;(IR)
then
x
-a
A C P(IRn)
...
x
C;(IR))
. Since
A
viz
A = C ~ ( I R Io R)
A
... o C ~ ( I R )
is a s e l f - a d j o i n t s u b a l g e b r a o f
I
C:(IRn)
is
442
ZAPATA
and a l s o s a t i s f i e s c o n d i t i o n s (N) , from Lemma 2 i t f o l l o w s is dense i n
Hence
Bn,cl.
a
that
A
i s fundamental.
4 . OPEN PROBLEMS
1.
2.
Give i n t e g r a l c r i t e r i a l i k e t h o s e i n [ 7 ]
for characteriz-
i n g fundamental seminorms on
IR.
Under what c o n d i t i o n s on
SPC(IR) i s i t t r u e t h a t a i s
fundamental i f and o n l y i f
a
E m
L:
i=ly a ( x n )
= + a ?
3.
If
CY
E SPC(lR) i s n o t f u n d a m e n t a l , d e s c r i b e
4.
If
a E SPC(IR) i s n o t f u n d a m e n t a l , a r e t h e r e p o s i t i v e con-
s t a n t s c , C such t h a t f o r a l l
z 5.
E C
we have
p E P(IR) , a ( p )
a
SPC(IR) i s i t t r u e t h a t
fundamental i f and o n l y i f t h e s e t { p
6.
the
E
a is
P ( I R ) , a ( p ) (1) i s
s p a c e o f e n t i r e f u n c t i o n s on
Q:?
Give a c h a r a c t e r i z a t i o n o f fundamental seminorms o n
n 7.
in
and
Ip(z) 1 5 C e C I Z I ?
Under what c o n d i t i o n s on
unbounded
5 1
IRn
,
2 2.
I s t h e set of a l l fundamental seminorms on
Same on
R
directed?
R”?
REFERENCES
[ 11
N.
AKIEZER,
On t h e w e i g h t e d a p p r o x i m a t i o n o f c o n t i n u o u s
func-
Amer. t i o n s by p o l y n o m i a l s on t h e e n t i r e number a x i s , Math. SOC. T r a n s l a t i o n s , S e r i e s 2 , v o l . 22 (1962) , 95 - 138. [ 21
S . BERNSTEIN, Le problgme d e l ‘ a p p r o x i m a t i o n d e s f o n c t i o n s con-
t i n u e s s u r t o u t l ’ a x e r 6 e l e t l ‘ u n e de ses a p p l i c a t i o n s , B u l l . SOC. Math. F r a n c e 52 ( 1 9 2 4 ) , 399 -410.
443
FUNDAMENTAL SEMINORMS
[ 31
J. P . FERRIER, Suk k ? ' a p p k o x i m a t i o n pond&ce, moderne, Univ. de Sherbrooke, 1972.
[ 4]
P. GEETHA, On Bernstein approximation problem, J. Math. and Appl. 25 (1969), 450 - 469.
[ 51
P . MALLIAVIN, L'approximation polynomiale pondGr6e sur un
[ 6]
S. MANDELBROJT, S & i e n a d h h e n t n , k z g u l a h i z a t i o n den nuiteA,app t i c a t i o n d , Gauthier-Villars, 1952.
[ 71
S. MERGELYAN, Weighted approximation by polynomials, Arwr. Math. SOC. Translations, Series 2, vol. 10 (19581, 59 -106.
[ 81
L. NACHBIN, Sur les algzbres denses de fonctions diffgrentia-
Sem.
Analysis
espace localement compact,Amx.Journal Math. 81(1959), 605-612.
bles sur une variatg, Comptes Rendus Acad. t. 228 (1949), 1549 -1551.
1 91
d'Analyse
Sc.
Paris,
05 a p p h o x i m a t i o n t h e o h y , D. Van Nostrand, 1967. Reprinted by R. Krieger Co., 1976.
L. NACHBIN, Elementd
[lo] N. SIBONY, Problsme de Bernstein pour les fonctions contintment diffgrentiables, Comptes Rendus Acad. Sc. Paris, t. 270 (19701, 1683-1685. [ll] F. TReVES, T o p o l o g i c a l v e c t o l r n p a c e d , d i n t k i b u t i o n n and KehneRs, Academic Press, 1967. [121
K. UNNI, Lectuked o n B e k n b t e i n a p p k o x i m a t i o n phob.tem, in Analysis, Madras, 1967.
[131
G. ZAPATA, Bernstein approximation problem for differentiable functions and quasi-analytic weights.Transactions Amer. Math. SOC. 182 (19731, 503-509.
[141
G. ZAPATA, Weighted approximation, Mergelyan theorem and quasianalytic weights, Arkiv for Matematik 13 (1975), 255-262.
Seminar
This Page Intentionally Left Blank
INDEX
A
a l g e b r a i c convolution i n t e g r a l s
71
almost simple
214
a p p r o x i m a t i o n , non-archimedean
121
a p p r o x i m a t i o n on p r o d u c t
46
sets
37,
approximation p r o p e r t y approximation, r a t i o n a l
4 21
approximation, r e s t r i c t e d range
226
approximation, simultaneous
227
B
- differentiable
161
B e r n s t e i n problem
433
B e r n s t e i n seminorm
4 33
Be rnstein space
4 31
Birkhoff c on d i t i o n
192
B i r k h o f f i n t e r p o l a t i o n problem
189
Birkhoff' s kernel
222
b
C
c a r d i n a l series
391
cardinal s p l i n e i n t e r p o l a t i o n
39 0
c o a l e s c e n c e of matrices
1 98
c o e f f i c i e n t of c o l l i s i o n
200
compactly
-
291
regular
446
280,
373
446
INDEX
c o n d i t i o n (L)
167
cross -section
372
D Dedekind c o m p l e t i o n
64
degree o f e x a c t n e s s
385
differentiability type
164
d i f f e r e n t i a h i l i t y t y p e , compact
165
E e c h e l o n Kothe-Schwartz s p a c e s E
409
- product
Fe j&
- Korovkin
37, 269
F
kernel
78,
f o r m a l power series
354
fundamental seminorm
4 32
f undamen t a 1 w e i g h t
4 33
f u s i o n lemma
143
G Gaussian m a t r i x
2 31
G e 1f and t h e o r y
3 36
generating function
396
I i n c r e a s i n g seminorm
4 31
i n t e r c h a n g e number
202
i n t e r p o l a t i o n matrix
189
i n t e r p o l a t i o n matrix, p o i s e d
189
interpolation matrix, regular
189
79,
88
INDEX
447
K
Korovkin a p p r o x i m a t i o n
19
Korovkin c l o s u r e
20
Korovkin s p a c e
20
Korovkin' s theorem
63
L level functions
199
M meromorphic uniform a p p r o x i m a t i o n
139
N Nachbin s p a c e non-archimedean
3 72 spaces
121
0
order regularity
189
P
plurisubharmonic f u n c t i o n
34 3
p o i d s de B e r n s t e i n
237
point r6gulier
238
Pdlya c o n d i t i o n
192
P6lya f u n c t i o n s
191
p o l y n o m i a l l y c o m p a t i b l e seminorm
4 31
power growth
392
p r o p e r t y (B)
168
pseudodifferential operator
13
INDEX
446
q
Q
- regular
quasi
- analytic
229
4 39
criterion
R
r a t i o n a l approximation
421
regular interpolation matrix
189
r e l a t i v e Korovkin a p p r o x i m a t i o n
28
r e l a t i v e Korovkin c l o s u r e
28
r e s t r i c t e d range approximation
226
Rogosinski summation method
103
Rolle set
209
S S-approximation p r o p e r t y ( S . a . P . 1
359
seminorm, B e r n s t e i n
433
seminorm , fundamental
4 32
seminorm, i n c r e a s i n g
4 31
seminorm, p o l y n o m i a l l y c o m p a t i b l e
431
s h e a f o f F-morphic f u n c t i o n s
40
shift
203
S-holomorphic a p p r o x i m a t i o n p r o p e r t y (S.H.a.p.1
367
Silva-bounded n-homogeneous polynomial
353
Silva-bounded n - l i n e a r map
352
S i 1va- bounded po 1ynomi a 1
35 4
Silva-holomorphic
35 5
S i l v a - h o l o m o r p h i c , weakly
356
simple
21 3
s i n g u l a r i n t e g r a l of de l a v a l l d e P o u s s i n
99
singular Integral of Fej6r
98
s i n g u l a r i n t e g r a l of Landau-Stieltjes
93
449
INDEX
s i n g u l a r i n t e g r a l of Weierstrass
96
smoothing f o r m u l a S
386
- Runge
36 2
s t r i c t compact
3s 7
supported sequence
194
V V*- a l g e b r a
339
vector fibration
372
v e r y compact
275
w weakly S i l v a - h o l o m o r p h i c
355
weight
372,
w e i g h t , fundamental
4 33
433
This Page Intentionally Left Blank