237 35 3MB
English Pages XVII, 262 [276] Year 2021
Studies in Fuzziness and Soft Computing
Akansha Mishra Amit Kumar
Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems
Studies in Fuzziness and Soft Computing Volume 399
Series Editor Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
The series “Studies in Fuzziness and Soft Computing” contains publications on various topics in the area of soft computing, which include fuzzy sets, rough sets, neural networks, evolutionary computation, probabilistic and evidential reasoning, multi-valued logic, and related fields. The publications within “Studies in Fuzziness and Soft Computing” are primarily monographs and edited volumes. They cover significant recent developments in the field, both of a foundational and applicable character. An important feature of the series is its short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results. Indexed by ISI, DBLP and Ulrichs, SCOPUS, Zentralblatt Math, GeoRef, Current Mathematical Publications, IngentaConnect, MetaPress and Springerlink. The books of the series are submitted for indexing to Web of Science.
More information about this series at http://www.springer.com/series/2941
Akansha Mishra Amit Kumar •
Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems
123
Akansha Mishra School of Mathematics Thapar Institute of Engineering & Technology Patiala, Punjab, India
Amit Kumar School of Mathematics Thapar Institute of Engineering & Technology Patiala, Punjab, India
ISSN 1434-9922 ISSN 1860-0808 (electronic) Studies in Fuzziness and Soft Computing ISBN 978-981-15-6997-5 ISBN 978-981-15-6998-2 (eBook) https://doi.org/10.1007/978-981-15-6998-2 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore
Dedicated to Parents and God
Preface
In the last few years, several methods have been proposed in the literature for solving transportation problems under fuzzy environment and its various extensions [1–8 and references therein]. But, all these methods [1–8 and references therein] have been proposed by considering the assumption that the aggregated values of all the parameters are known. Therefore, instead of the aggregated values of the parameters, the values of the various parameters, collected from experts, are provided. Then, the existing methods [1–8 and references therein] cannot be used to solve transportation problems under fuzzy environment and its various extensions. To overcome this limitation of the existing methods [1–8 and references therein], firstly, there is a need to use an appropriate weighted aggregation operator to aggregate the values of the parameters provided by the experts in terms of the fuzzy set and its various extensions. But, there exist several weighted aggregation operators under a fuzzy environment and its various extensions. Therefore, to overcome the limitation of the existing methods [1–8 and references therein], firstly, there is a need to choose an appropriate weighted aggregation operator under fuzzy environment and its various extensions. It is pertinent to mention that after aggregating the provided values of the parameters by the selected weighted aggregation operator, researchers may use the recently proposed methods [1–6] for solving transportation problems under fuzzy environment and its various extensions. However, after a deep study, some drawbacks have been observed in the existing methods [1–6]. Therefore, it is scientifically incorrect to use the existing methods [1–6]. Keeping all above in mind, the aim of this book is (i) To choose/propose an appropriate weighted averaging aggregation operator under some extensions of the fuzzy environment. Also, to show that it is illogical to define the weighted geometric aggregation operator under fuzzy environment and its various extensions. (ii) To make the researchers aware about the inappropriateness of the existing methods [2–4] for solving balanced fully triangular fuzzy transportation
vii
viii
Preface
problems. Also, to propose a new method (named as Mehar method) for solving balanced fully triangular fuzzy transportation problems. (iii) To make the researchers aware about the inappropriateness of the existing approach [5] for solving the triangular intuitionistic fuzzy transportation problem of type-2. Also, to propose a new approach (named as Vaishnavi approach) for solving triangular intuitionistic fuzzy transportation problems of type-2. (iv) To make the researchers aware about some limitations and a drawback of the existing approach [6] for solving balanced fully trapezoidal intuitionistic fuzzy transportation problems. Also, to propose a new approach (named as JMD approach) for solving unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. (v) To make the researchers aware about some limitations and a drawback of the existing approach [1] for solving balanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. Also, to propose a new approach (named as JMD approach) to solve unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. Patiala, India
Akansha Mishra Amit Kumar
References 1. D. Chakraborty, D. K. Jana and T. K. Roy, Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem, OPSEARCH 52 (2015) 431–471. 2. A. Ebrahimnejad, An improved approach for solving fuzzy transportation problem with triangular fuzzy numbers, Journal of Intelligent & Fuzzy Systems 29 (2015) 963–974. 3. A. Ebrahimnejad, New method for solving fuzzy transportation problems with LR flat fuzzy numbers, Information Sciences 357 (2016) 108-124. 4. A. Ebrahimnejad, A lexicographic ordering-based approach for solving fuzzy transportation problems with triangular fuzzy numbers, International Journal of Management and Decision Making 16 (2017) 346–374. 5. A. Ebrahimnejad and J. L. Verdegay, An efficient computational approach for solving type-2 intuitionistic fuzzy numbers based transportation problems, International Journal of Computational Intelligence Systems 9 (2016) 1154–1173. 6. A. Ebrahimnejad and J. L. Verdegay, A new approach for solving fully intuitionistic fuzzy transportation problems, Fuzzy Optimization and Decision Making 17 (2018) 447–474. 7. G. Gupta, Transportation Problems in Intuitionistic Fuzzy Environment, Ph.D Thesis, 2016, Thapar Institute of Engineering & Technology, Patiala, Punjab, India. 8. A. Kaur, J. Kacprzyk and A. Kumar. Fuzzy Transportation and Transshipment Problems, Studies in Fuzziness and Soft Computing Springer Nature, Switzerland AG, Vol. 385, 2020.
Acknowledgements
The authors would like to thank the Series Editor Prof. Janusz Kacprzyk for his valuable suggestions. Dr. Akansha Mishra would like to express her heartfelt gratitude to her mother Mrs. Uma Mishra and her father Mr. R. P. Mishra for their unconditional love, support and blessings. She gratefully acknowledges the patience and love of her sibling Vinayak Mishra who helped her to overcome the difficulties encountered during her life. Dr. Amit Kumar would like to acknowledge the adolescent inner blessings of Mehar (Daughter of his Cousin Dr. Parmpreet Kaur). He believes that Mata Vaishno Devi has appeared on the earth in the form of Mehar and without Mehar’s blessings it would not have been possible to think the ideas presented in this thesis. Last but not the least, both the authors are ever grateful to Almighty God. Thank you God for the numerous blessings bestowed upon us in every aspect of our life.
ix
Contents
1 Appropriate Weighted Averaging Aggregation Operator Under Some Extensions of the Fuzzy Environment . . . . . . . . . . . . . . . . . 1.1 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Need of the Fuzzy Set and Its Various Extensions in Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Need of a Weighted Aggregation Operator Under Various Extensions of the Fuzzy Environment . . . . . . . . . . . . . . . . . . 1.4 Need to Choose an Appropriate Weighted Aggregation Operator Under Various Extensions of the Fuzzy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Some Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Drawbacks of Some Existing Weighted Geometric Aggregation Operators Under Various Extensions of the Fuzzy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 Drawbacks of Xu and Yager’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . 1.6.2 Drawbacks of Wang and Liu’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . 1.6.3 Drawbacks of Garg’s Intuitionistic Fuzzy Interactive Weighted Geometric Aggregation Operator . . . . . . . . 1.6.4 Drawbacks of Garg’s Intuitionistic Fuzzy Hamacher Interactive Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.5 Drawbacks of He et al.’s Intuitionistic Fuzzy Interaction Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.6 Drawbacks of Chen and Chang’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . 1.6.7 Drawbacks of Garg and Kumar’s Connection Number-Based Power Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. ..
1 2
..
2
..
4
.. ..
5 6
..
10
..
10
..
11
..
12
..
14
..
15
..
16
..
17 xi
xii
Contents
1.6.8
1.7
Drawbacks of Zhang’s Linguistic Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . 1.6.9 Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.6.10 Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Power Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.6.11 Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Prioritized Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.6.12 Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Geometric Aggregation Operator . . . . 1.6.13 Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Prioritized Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.14 Drawbacks of Garg and Arora’s Dual Hesitant Fuzzy Soft Weighted Geometric Aggregation Operator . . . . 1.6.15 Drawbacks of Garg’s Intuitionistic Fuzzy Multiplicative Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.16 Drawbacks of Garg’s Pythagorean Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . 1.6.17 Drawbacks of Garg’s Pythagorean Fuzzy Interactive Weighted Geometric Aggregation Operator . . . . . . . . 1.6.18 Drawbacks of Garg’s Confidence Levels-Based Pythagorean Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.19 Drawbacks of Garg’s Interval-Valued Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . 1.6.20 Drawbacks of Garg and Kumar’s Linguistic Interval-Valued Intuitionistic Fuzzy Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . 1.6.21 Drawbacks of Nancy and Garg’s Single-Valued Neutrosophic Weighted Geometric Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Some Existing Weighted Averaging Aggregation Operators Under Various Extensions of the Fuzzy Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.1 Drawbacks of Xu’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . 1.7.2 Drawbacks of Wang and Liu’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . .
..
19
..
20
..
22
..
24
..
26
..
27
..
29
..
30
..
32
..
33
..
34
..
35
..
37
..
39
..
40
..
40
..
41
Contents
xiii
1.7.3 1.7.4 1.7.5 1.7.6 1.7.7 1.7.8
1.7.9 1.7.10
1.7.11
1.7.12
1.7.13
1.7.14 1.7.15
1.7.16 1.7.17 1.7.18 1.7.19 1.7.20
Drawbacks of Garg’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . Drawbacks of Yu’s Intuitionistic Fuzzy Interaction Weighted Averaging Aggregation Operator . . . . . . . . Drawbacks of Huang’s Hamacher Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . Drawbacks of Garg’s Intuitionistic Fuzzy Hamacher Weighted Averaging Aggregation Operator . . . . . . . . Drawbacks of Chen et al.’s Linguistic Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . Drawbacks of Arora and Garg’s Linguistic Intuitionistic Fuzzy Prioritized Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Averaging Aggregation Operator . . . . Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Prioritized Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Weighted Interaction Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Possibility Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Power Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Bonferroni Mean Aggregation Operator . . . . . . . Drawbacks of Garg and Arora’s Generalized Intuitionistic Fuzzy Soft Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . Drawbacks of Garg and Arora’s Dual Hesitant Fuzzy Soft Weighted Averaging Aggregation Operator . . . . Drawbacks of Garg’s Intuitionistic Fuzzy Multiplicative Averaging Aggregation Operator . . . . . Drawbacks of Ma and Xu’s Pythagorean Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . Drawbacks of Garg’s Pythagorean Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . Drawbacks of Garg’s Confidence Levels-Based Pythagorean Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
..
43
..
44
..
45
..
47
..
48
..
50
..
51
..
53
..
55
..
58
..
59
..
60
..
62
..
62
..
64
..
65
..
66
..
68
xiv
Contents
1.7.21 Drawbacks of Garg et al.’s Interval-Valued Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.22 Drawbacks of Linguistic Interval-Valued Atanassov Intuitionistic Fuzzy Weighted Averaging Aggregation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.23 Drawbacks of Nancy and Garg’s Single-Valued Neutrosophic Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.24 Drawbacks of Liu and Luo’s Single-Valued Neutrosophic Hesitant Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Appropriate Weighted Averaging Aggregation Operators Under Some Extensions of the Fuzzy Environment . . . . . . . . . . . . . . 1.8.1 Appropriate Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.8.2 Appropriate Pythagorean Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.8.3 Appropriate Connection Number Weighted Averaging Aggregation Operator . . . . . . . . . . . . . . . . . . . . . . . . 1.8.4 Appropriate Interval-Valued Intuitionistic Fuzzy Weighted Averaging Aggregation Operator . . . . . . . . 1.9 Limitation of the Weighted Geometric Aggregation Operators Under Various Extensions of the Fuzzy Environment . . . . . . . 1.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Mehar Method to Find a Unique Fuzzy Optimal Value of Balanced Fully Triangular Fuzzy Transportation Problems . . . . . . . . . . . . . 2.1 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 An Existing Method for Comparing Triangular Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Ebrahimnejad’s Methods for Solving Balanced Fully Triangular Fuzzy Transportation Problems . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Ebrahimnejad’s First Method . . . . . . . . . . . . . . . . . . 2.4.2 Ebrahimnejad’s Second Method . . . . . . . . . . . . . . . . 2.5 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Fuzzy Optimal Solution by Ebrahimnejad’s First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Fuzzy Optimal Solution by Ebrahimnejad’s Second Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Limitation of Ebrahimnejad’s Methods . . . . . . . . . . . . . . . . . . 2.7 Drawback of Ebrahimnejad’s Methods . . . . . . . . . . . . . . . . . .
..
68
..
71
..
72
..
73
..
74
..
75
..
76
..
77
..
77
.. .. ..
78 78 79
.. .. ..
87 88 89
..
89
. . . .
90 91 95 99
. . . .
. . 100 . . 103 . . 106 . . 107
Contents
Reason for the Occurrence of the Drawback in Ebrahimnejad’s Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9 Rank, Mode and Divergence Based Approach for Comparing Triangular Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 Validity of Rank, Mode and Divergence Based Approach for Comparing Triangular Fuzzy Numbers . . . . . . . . . . . . . . . 2.11 Proposed Mehar Method to Find a Unique Optimal Value of Balanced Fully Triangular Fuzzy Transportation Problems . 2.12 Unique Fuzzy Transportation Cost of the Considered Balanced Fully Triangular Fuzzy Transportation Problem . . . . . . . . . . . 2.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xv
2.8
3 Vaishnavi Approach for Solving Triangular Intuitionistic Transportation Problems of Type-2 . . . . . . . . . . . . . . . . . . . . . . . 3.1 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Tabular Representation of a Triangular Intuitionistic Fuzzy Transportation Problem of Type-2 . . . . . . . . . . . . . . . . . . . . . 3.4 An Existing Approach for Comparing Triangular Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Singh and Yadav’s Approach . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Ebrahimnejad and Verdegay’s Approach . . . . . . . . . . . . . . . . 3.7 Limitation of Ebrahimnejad and Verdegay’s Approach . . . . . . 3.8 Drawback of Ebrahimnejad and Verdegay’s Approach . . . . . . 3.9 Reasons for the Occurrence of the Drawback . . . . . . . . . . . . . 3.10 Proposed MEHAR Approach for Comparing Triangular Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 Proposed Vaishnavi Approach . . . . . . . . . . . . . . . . . . . . . . . . 3.12 Crisp Optimal Solution of the Considered Triangular Intuitionistic Fuzzy Transportation Problem of Type-2 . . . . . . 3.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 JMD Approach for Solving Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problems . . . . . . . . . . . . . . . . 4.1 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Intuitionistic Fully Fuzzy Linear Programming Problem of a Balanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Existing Approach for Comparing Trapezoidal Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Ebrahimnejad and Verdegay’s Approach for Solving Balanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problems .
. . 108 . . 108 . . 110 . . 110 . . 114 . . 117 . . 118 . . 119 . . 120 . . 121 . . 122 . . . . . .
. . . . . .
123 124 124 125 126 128
. . 128 . . 131 . . 138 . . 141 . . 141 . . 143 . . 144 . . 144
. . 145 . . 147 . . 147
xvi
Contents
4.6 4.7 4.8 4.9 4.10
Limitations of Ebrahimnejad and Verdegay’s Approach . . . . . Drawback of Ebrahimnejad and Verdegay’s Approach . . . . . . Reasons for the Occurrence of the Limitations . . . . . . . . . . . . Reasons for the Occurrence of the Drawback . . . . . . . . . . . . . DAUGHTER Approach for Comparing Trapezoidal Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Mehar Representation of a Trapezoidal Intuitionistic Fuzzy Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Multiplication of a Trapezoidal Intuitionistic Fuzzy Number in Its Existing Representation with a Trapezoidal Intuitionistic Fuzzy Number in Its Mehar Representation . . . . . . . . . . . . . . 4.13 Proposed JMD Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14.1 Intuitionistic Fuzzy Optimal Solution of the First Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem . . . . . . . . . . . . . . . . . . . . . . 4.14.2 Intuitionistic Fuzzy Optimal Solution of the Second Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem . . . . . . . . . . . . . . . . . . . . . . 4.15 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 JMD Approach for Solving Unbalanced Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problems . . . . . . 5.1 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Tabular Representation of a Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problem . . . . . . . . . . . . . . 5.4 Existing Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Chakraborty et al.’s Approach for Solving Balanced Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Origin of the Generalized Intuitionistic Fuzzy Linear Programming Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Limitations of Chakraborty et al.’s Approach . . . . . . . . . . . . . 5.8 Invalidity of Chakraborty et al.’s Approach . . . . . . . . . . . . . . 5.9 Inappropriateness of the Existing Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers . . . . . . 5.10 PRABHUS Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 Proposed JMD Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.12 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .
. . . .
150 153 155 156
. . 156 . . 160
. . 161 . . 162 . . 180
. . 180
. . 191 . . 202 . . 203 . . 205 . . 206 . . 207 . . 208 . . 209
. . 210 . . 213 . . 218 . . 219 . . 220 . . . . .
. . . . .
220 225 243 262 262
About the Authors
Dr. Akansha Mishra received her M.Sc. degree in Mathematics from Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India, in 2015, and her Ph.D. in Mathematics from Thapar Institute of Engineering & Technology, Patiala, Punjab, India, in 2019. Her main research interest is in fuzzy optimization. She has published six research papers in SCI/SCIE indexed journals, and presented another at the International Congress on Industrial and Applied Mathematics, organized by the International Council for Industrial and Applied Mathematics in Valencia, Spain on July 15–19, 2019. Dr. Amit Kumar is an Associate Professor at the School of Mathematics, Thapar Institute of Engineering & Technology, Patiala, Punjab, India. Holding a Ph.D. from the Indian Institute of Technology Roorkee (2008), Dr. Kumar has made significant contributions to the development of solution methods for various types of fuzzy linear programming problems, fuzzy transportation problems, fuzzy game theory and fuzzy multi-criteria decision-making problems. He has published over 60 research papers in SCI/SCIE indexed journals, and has co-authored three books in the series “Studies in Fuzziness and Soft Computing,” published by Springer, Germany.
xvii
Chapter 1
Appropriate Weighted Averaging Aggregation Operator Under Some Extensions of the Fuzzy Environment
Weighted aggregation operator plays an important role in optimization problems. In the last few years, several weighted geometric aggregation operators and several weighted averaging aggregation operators have been proposed in the literature [1–3, 6, 9–11, 13, 14, 16–39, 42–65, 67, 76–93, 95–104, 106–108, 110–131, 135–138, 140–146] under various extensions of the fuzzy environment [139]. The aim of this chapter is to make the researchers aware about: (i) Some drawbacks of the existing weighted geometric aggregation operators [1, 2, 10, 16, 17, 19, 20, 22, 23, 25, 28, 33, 42–45, 47, 60, 97, 114, 130, 142] which have been defined under various extensions of the fuzzy environment. (ii) Some drawbacks of the existing weighted averaging aggregation operators [2, 3, 13, 18, 21, 22, 24, 28, 31–37, 42, 46, 65, 90, 92, 97, 114, 127, 137] which have been defined under various extensions of the fuzzy environment. (iii) The fact that it is appropriate to use the existing intuitionistic fuzzy weighted averaging aggregation operator [6] to aggregate intuitionistic fuzzy numbers. (iv) The fact that it is appropriate to use the generalization of the existing intuitionistic fuzzy weighted averaging aggregation operator [6] to aggregate Pythagorean fuzzy numbers. (v) The fact that it is appropriate to use the existing weighted averaging aggregation operator [73, 74] to aggregate connection numbers. (vi) The fact that it is appropriate to use the existing weighted averaging aggregation operator [129] to aggregate interval-valued intuitionistic numbers. (vii) The fact that it is illogical to propose weighted geometric aggregation operators under various extensions of the fuzzy environment.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 A. Mishra and A. Kumar, Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems, Studies in Fuzziness and Soft Computing 399, https://doi.org/10.1007/978-981-15-6998-2_1
1
2
1.1
1 Appropriate Weighted Averaging Aggregation Operator …
Organization of the Chapter
This chapter is organized as follows: (i) In Sect. 1.2, a need of the fuzzy set and its various extensions in optimization problems has been discussed. (ii) In Sect. 1.3, a need to define weighted aggregation operators under various extensions of the fuzzy environment has been discussed. (iii) In Sect. 1.4, a need to choose an appropriate weighted averaging aggregation operator under various extensions of the fuzzy environment has been discussed. (iv) In Sect. 1.5, some basic definitions have been discussed. (v) In Sect. 1.6, some drawbacks of the existing weighted geometric aggregation operators [1, 2, 10, 16, 17, 19, 20, 22, 23, 25, 28, 33, 42–45, 47, 60, 97, 114, 130, 142], defined under various extensions of the fuzzy environment, have been discussed. (vi) In Sect. 1.7, some drawbacks of the existing weighted averaging aggregation operators [2, 3, 13, 18, 21, 22, 24, 28, 31–37, 42, 46, 65, 90, 92, 97, 114, 127, 137], defined under various extensions of the fuzzy environment, have been discussed. (vii) In Sect. 1.8, appropriate weighted averaging aggregation operators under some extensions of the fuzzy environment have been discussed. (viii) In Sect. 1.9, it is pointed out that it is illogical to propose weighted geometric aggregation operators under various extensions of the fuzzy environment. (ix) Section 1.10 concludes the chapter.
1.2
Need of the Fuzzy Set and Its Various Extensions in Optimization Problems
In most of the real-life optimization problems, firstly, a numerical value is assigned corresponding to each linguistic variable like poor, good, excellent etc. Then, two or more experts are asked to provide their opinion in terms of the assigned numerical values. After that, an appropriate mathematical expression (named as an aggregation operator) is used to obtain a single numerical value by aggregating all the numerical values provided by the experts. Finally, the obtained single numerical value is used to finalize the decision. The following example has been considered to explain this process. An institute may apply the following process to select the best candidate out of a finite number of shortlisted candidates (say, m).
1.2 Need of the Fuzzy Set and Its Various Extensions …
3
Step 1: Assign the real numbers 1, 2, 5, 8 and 10 corresponding to the linguistic variables poor, average, good, very good and excellent, respectively. Step 2: Constitute a committee of finite number of experts (say, n). Step 3: Ask each committee member to provide his/her opinion about each candidate in terms of only the real numbers 1, 2, 5, 8 and 10. Step 4: Use the crisp weighted averaging aggregation operator (1.1.1) or the crisp weighted geometric aggregation operator (1.1.2) to obtain a single real number Ck corresponding to the kth candidate. Pn i¼1 wi aik ; k ¼ 1; 2; . . .; m: Ck ¼ P n i¼1 wi Ck ¼
n Y ðaik Þwi ; k ¼ 1; 2; . . .; m:
ð1:1:1Þ
ð1:1:2Þ
i¼1
where, (i) aik = 1 or 2 or 5 or 8 or 10 represents the numerical value assigned to kth candidate by the by the ith expert. (ii) wi 0 represents the weightage of the ith expert’s opinion. Step 5: Find maximum1 k m fCk g. Step 6: If maximum1 k m fCk g ¼ Cp , then the pth candidate is the best candidate. It is obvious that in the above-discussed process; a real number has been assigned to represent a linguistic variable, while, in the literature, it is pointed out that it is not appropriate to represent a linguistic variable with a real number. The following example has been considered to explain the same. Four students appear in an examination of a subject. Out of these four students (i) The first student secures 98 marks. (ii) The second student secures 80 marks. (iii) The third student secures 79.95 marks. Finally, the following is decided for the considered subject: (i) The numerical value “10”, representing the linguistic term excellent, will be awarded to all those students who have secured 80 or more than 80 marks. (ii) The numerical value “9”, representing the linguistic term very good, will be awarded to all those students who have secured less than 80 marks. In this case, (i) The first student will always feel it is injustice with him/her as there is a huge difference between his/her marks and the second student’s marks, while, the
4
1 Appropriate Weighted Averaging Aggregation Operator …
numerical value, assigned to him/her, is same as the numerical value assigned to the second student. (ii) The third student will always feel it is injustice with him/her as there is a very small difference between his/her marks and the third student’s marks, while, the numerical value, assigned to him/her, is 9 and the numerical value assigned to the second student is 10. To resolve such type of issues, in the literature, fuzzy set and its various extensions [7] have been used to represent the linguistic terms of various optimization problems like multi-attribute decision-making problems [12], transportation problems [69], game theory [75, 109], linear programming problems [70], etc. Hence, various methods have been proposed in the literature to solve different types of optimization problems under fuzzy environment and its various extensions.
1.3
Need of a Weighted Aggregation Operator Under Various Extensions of the Fuzzy Environment
It is pertinent to mention that most of methods for solving optimization problems under fuzzy environment and its extensions have been proposed by considering the assumption that the aggregated value of the required parameters, provided by all the decision-makers in terms of fuzzy set or any specific extension of the fuzzy set, is known. Therefore, if instead of the aggregated values of required parameters, the values of the parameters, provided by each expert in terms of the fuzzy set or in terms of a specific extension of the fuzzy set, are known. Then, most of the existing methods, proposed for solving optimization problems under fuzzy environment and its extensions, cannot be used directly. For example, as the existing method [75] for solving matrix games with intuitionistic fuzzy payoffs, the existing method [75] for solving matrix games with interval-valued intuitionistic fuzzy payoffs and the existing method [72] for solving Pythagorean fuzzy transportation problems have been proposed by considering the assumption that the aggregated values of required parameters, provided by every expert in terms of an intuitionistic fuzzy set, an interval-valued intuitionistic fuzzy set and a Pythagorean fuzzy set, respectively, are known. Therefore, if instead of the aggregated values of required parameters, the values of the parameters, provided by each expert, are known. Then, these existing methods cannot be used directly. To overcome the limitation of the existing methods for solving optimization problems under a specific extension of the fuzzy environment, there is a need to use an appropriate weighted aggregation operator to aggregate the opinions of all the experts provided in terms of a specific extension of the fuzzy set.
1.4 Need to Choose an Appropriate Weighted Aggregation …
1.4
5
Need to Choose an Appropriate Weighted Aggregation Operator Under Various Extensions of the Fuzzy Environment
It is obvious from Sect. 1.3 that to overcome the limitation of the existing methods for solving optimization problems under a specific extension of the fuzzy environment, there is a need to use an appropriate weighted aggregation operator to aggregate the opinions of all the experts provided in terms of a specific extension of the fuzzy set. However, as there exist several weighted aggregation operators under each extension of the fuzzy environment. Therefore, to overcome the limitation of the existing methods for solving optimization problems under fuzzy environment and its extensions, firstly, there is a need to choose an appropriate weighted aggregation under each extension of the fuzzy environment. The reasons for the existence of several weighted aggregation operators under each extension of the fuzzy environment are as follows: It is a well-known fact that to aggregate real numbers with the classical weighted averaging aggregation operator (1.1.1), there is a need to use an expression to evaluate the addition of real numbers as well as an expression to evaluate the multiplication of a non-negative real number with a real number. Similarly, to aggregate positive real numbers with the weighted geometric aggregation operator (1.1.2), there is a need to use an expression to evaluate the multiplication of real numbers as well as an expression to evaluate the non-negative power of a positive real number. On the same direction, to generalize the crisp weighted averaging aggregation operator (1.1.1) under a specific extension of the fuzzy environment, there is a need to use (i) An expression to evaluate the addition for the considered extension of the fuzzy set. (ii) An expression to evaluate the multiplication of a non-negative real number with the considered extension of the fuzzy set. Similarly, to generalize the crisp weighted geometric aggregation operator (1.1.2) under a specific extension of the fuzzy environment, there is a need to use (i) An the (ii) An the
expression to evaluate the multiplication for the considered extension of fuzzy set. expression to evaluate the positive power of the considered extension of fuzzy set.
However, as arithmetic operations for each extension of the fuzzy set depend upon a t-norm and a t-conorm and different types of t-norm and t-conorm have been defined in the literature. Therefore, in the literature [1–3, 6, 9–11, 13, 14, 16–39, 42–68, 71, 76–93, 95–104, 106–108, 110–131, 134–137, 139–145], various
1 Appropriate Weighted Averaging Aggregation Operator …
6
arithmetic operations, based upon different types of t-norm and t-conorm, have been proposed for each extension of the fuzzy set. Hence, in the literature, various weighted aggregation operators have been proposed for each extension of the fuzzy set.
1.5
Some Basic Definitions
In this section, some basic definitions have been presented. Definition 1.5.1 [127]: The weighted averaging operator is the mapping WA: Rn ! R defined by the following formula: WAw ða1 ; a2 ; . . .; an Þ ¼
n X
wj aj ;
j¼1
where w ¼ ðw1 ; w2 ; . . .; wn ÞT is the weight vector of aj ðj ¼ 1; 2; . . .; nÞ, with wj 2 P ½0; 1 and nj¼1 wj ¼ 1. Definition 1.5.2 [130]: The weighted geometric operator is the mapping n WG: R þ ! R þ defined by the following formula: WGw ða1 ; a2 ; . . .; an Þ ¼
n Y
w
aj j
j¼1
where w ¼ ðw1 ; w2 ; . . .; wn ÞT is the weight vector of aj ðj ¼ 1; 2; . . .; nÞ, with wj 2 P ½0; 1 and nj¼1 wj ¼ 1. Definition 1.5.3 [133]: The power average operator is the mapping PA: Rn ! R defined by the following formula: Pn ð1 þ T ðai ÞÞai PAða1 ; a2 ; . . .; an Þ ¼ Pi¼1 n i¼1 ð1 þ T ðai ÞÞ where
Pn : Sup a ; a i j j¼1 j 6¼ i 2 (ii) Sup ai ; aj is the support for ai from aj , Sup ai ; aj ¼ Keaðai aj Þ for K 2 ½0; 1; a 0. (i) T ðai Þ ¼
1.5 Some Basic Definitions
7
Definition 1.5.4 [131]: The power geometric operator is the mapping PG: R þ ! R þ defined by the following formula: n
PGða1 ; a2 ; . . .; an Þ ¼
n Y
ai 1 þ T ðai Þ=
Pn i¼1
ð1 þ T ðai ÞÞ
i¼1
Definition 1.5.5 [100]: A function T: ½0; 1 ½0; 1 ! ½0; 1 is called a t-norm if it satisfies the following conditions: (1) (2) (3) (4)
8x 2 ½0; 1; T ð1; xÞ ¼ x. 8x; y 2 ½0; 1; T ðx; yÞ ¼ T ðy; xÞ. 8x; y; z 2 ½0; 1; T ðx; T ðy; zÞÞ ¼ T ðT ðx; yÞ; zÞ. If x x0 , y y0 , then T ðx; yÞ T ðx0 ; y0 Þ.
Definition 1.5.6 [100]: A function, S: ½0; 1 ½0; 1 ! ½0; 1 is called a t-conorm if it satisfies the following conditions: (1) (2) (3) (4)
8x 2 ½0; 1; Sð0; xÞ ¼ x. 8x; y 2 ½0; 1; Sðx; yÞ ¼ Sðy; xÞ. 8x; y; z 2 ½0; 1; Sðx; Sðy; zÞÞ ¼ Sððx; yÞ; zÞ. If x x0 , y y0 , then Sðx; yÞ Sðx0 ; y0 Þ.
~ over X is defined as Definition 1.5.7 [139]: Let X be a universal set. A fuzzy set A ~ A ¼ fx; lA ð xÞjx 2 X g, where lA~ : X ! ½0; 1 and lA~ ð xÞ indicate the degree of ~ membership of x in A.” Definition 1.5.8 [4]: An intuitionistic fuzzy set, over the universal set X, is defined as a ¼ fx; la ð xÞ; ma ð xÞjx 2 X; 0 la ð xÞ 1; 0 ma ð xÞ 1; la ð xÞ þ ma ð xÞ 1g. The values la ð xÞ, ma ð xÞ and 1 la ð xÞ ma ð xÞ, respectively, are called the degree of membership, the degree of non-membership and the degree of hesitation for the element x. Also, the pair hla ; ma i is called an intuitionistic fuzzy number. ~ on X defined Definition 1.5.9 [15]: Let X be an initial universe of objects. A set A ðsÞ ~ as A ¼ x; lA~ x jx 2 X is called a hesitant fuzzy set, where (i) lA~ is a mapping defined by lA~ : X ! ½0; 1. (ii) lA~ xðsÞ is a set of some different values in [0,1]. (iii) s represents the number of possible membership degrees of the element ~ x 2 X to A. ~ on X defined Definition 1.5.10 [33]: Let X be an initial universe of objects. A set A ðsÞ ðtÞ ~ ¼ x; l ~ x ; m ~ x jx 2 X is called a dual hesitant fuzzy set, where l ~ ; m ~ as A A A A A is a mapping defined by
8
1 Appropriate Weighted Averaging Aggregation Operator …
lA~ ; mA~ : X ! ½0; 1; where
(i) lA~ xðsÞ ; mA~ xðtÞ is a set of some different values in [0,1]. (ii) s represents the number of possible membership degrees of the element ~ x 2 X to A. (iii) t represents the number of possible non-membership degrees of the element ~ x 2 X to A.
Definition 1.5.11 [124]: An intuitionistic fuzzy multiplicative set, over the universal set X, is defined as a ¼ fhx; la ð xÞ; ma ð xÞijx 2 X; 1q la ð xÞ q; ma ð xÞ q; la ð xÞma ð xÞ 1; q [ 1g. The values la ð xÞ, ma ð xÞ and 1 la ð xÞ ma ð xÞ are called the degree of membership, the degree of non-membership and the degree of hesitation, respectively, for the element x. Also, the pair hla ; ma i is called an intuitionistic fuzzy multiplicative number.
1 q
Definition 1.5.12 [134]: A Pythagorean fuzzy set, over the universal set X, is defined as a ¼ fx; la ð xÞ; ma ð xÞjx 2 X; 0 la ð xÞ 1; 0 ma ð xÞ 1; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 2 ðla ð xÞÞ þ ðma ð xÞÞ 1g. The values la ð xÞ, ma ð xÞ and 1 ðla ð xÞÞ2 ðma ð xÞÞ2 are called the degree of membership, the degree of non-membership and the degree of hesitation, respectively, for the element x. Also, the pair hla ; ma i is called a Pythagorean fuzzy number. Definition 1.5.13 [73, 74]: If two sets A and B, having same number of characteristics (say N), are put together to form a pair H with respect to the problem W, then the pair H is called a set pair and the number lðH; W Þ ¼ NS þ NP j is called a connection number of the set pair H, where S represents the number of identity characteristics S P and P represents the number of contrary characteristics. Furthermore, and degree and the contrary degree of these two sets, N N are called identical respectively. Assuming NS ¼ a and NP ¼ c, NP ¼ c the connection number P lðH; W Þ ¼ NS þ NSP i þ N j can also be written as lðH; W Þ ¼ N a þ ð1 a cÞi þ cj. Definition 1.5.14 [5]: An interval-valued intuitionistic fuzzy set, L over Uthe universal ð x Þ ; ma ð xÞ; ma ð xÞ jx 2 X; set X, is defined as a ¼ fx; lLa ð xÞ; lU a U U 0 lL ð xÞ lU ð xÞ 1; 0 mLa ð xÞ mU a ðxÞ 1; la ð xÞ þ ma ð xÞ 1g. The intervals L a U a L U L L la ð xÞ; la ð xÞ , ma ð xÞ; mU and 1 lU are a ð xÞ a ð xÞ ma ð xÞ; 1 la ð xÞ ma ð xÞ called the interval of degree of membership, the interval of degree of non-membership and the interval of degree of hesitation, respectively, for the L U ; m ; m element x. Also, the pair h lLa ; lU a a a i is called an interval-valued intuitionistic fuzzy number.
1.5 Some Basic Definitions
9
Definition 1.5.15 [66]: Let X be an initial universe of objects and E the set of parameters in relation to objects in X and AE. Parameters are often attributes, characteristics or properties of objects. Let P ð X Þ denote the power set of X. Then, ~ A is called a soft set over X, where F ~ is a mapping defined by the pair F; ~ : A ! P ð X Þ: F Definition 1.5.16 [66]: Let F ð X Þ be the set of all fuzzy subsets in X. Then, the pair ~ A is called a fuzzy soft set over X, where F ~ is a mapping defined by F; ~ : A ! F ð X Þ: F Definition 1.5.17 [66]: Let Hð X Þ be the set of all hesitant fuzzy subsets in X. ~ A is called a hesitant fuzzy soft set over X, where F ~ is a mapping Then, the pair F; defined by ~ : A ! Hð X Þ: F Definition 1.5.18 [33]: Let DHð X Þ be the set of all dual hesitant fuzzy subsets in ~ A is called a dual hesitant fuzzy soft set over X, where F ~ is a X. Then, the pair F; mapping defined by ~ : A ! DHð X Þ: F Definition 1.5.19 [105]: A single-valued neutrosophic set, over the universal set X, is defined as a ¼ fx; la ð xÞ; ma ð xÞ; ha ð xÞjx 2 X; 0 la ð xÞ 1; 0 ma ð xÞ 1; 0 ha ð xÞ 1; la ð xÞ þ ma ð xÞ þ ha ð xÞ 3g. The values la ð xÞ, ma ð xÞ and ha ð xÞ, respectively, are called the degree of membership, the degree of non-membership and the degree of indeterminacy for the element x. Also, the triplet hla ; ma ; ha i is called a single-valued neutrosophic number. Definition 1.5.20 [90]: A single-valued neutrosophic hesitant fuzzy set, over the universal set X, is defined as a ¼ f x; la ð xÞ; ma ð xÞ; ha ð xÞjx 2 X; la ð xÞ ¼ cj ; j ¼ 1; 2; . . .; l : 0 cj 1g; ma ð xÞ ¼ dj ; j ¼ 1; 2; . . .; p : 0 dj 1 ; ha ð xÞ ¼ fj ; j ¼ 1; 2; . . .; m : 0 fj 1g; max1 j l cj þ max1 j p dj þ max1 j m fj 3 . The values la ð xÞ, ma ð xÞ and ha ð xÞ, respectively, are called the set of degree of membership, the set of degree of non-membership and the set of degree of indeterminacy for the element x. Also, the set fla ; ma ; ha g is called a single-valued neutrosophic hesitant fuzzy number.
10
1.6
1 Appropriate Weighted Averaging Aggregation Operator …
Drawbacks of Some Existing Weighted Geometric Aggregation Operators Under Various Extensions of the Fuzzy Environment
In this section, some drawbacks of the existing weighted geometric aggregation operators [1, 2, 10, 16, 17, 19, 20, 22, 23, 25, 28, 33, 42–45, 47, 60, 97, 114, 130, 142], defined under various extensions of the fuzzy environment, have been pointed out. It can be easily verified that the same drawbacks are also occurring in the other existing weighted geometric aggregation operators defined under various extensions of the fuzzy environment.
1.6.1
Drawbacks of Xu and Yager’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator
Using the t-norm T ðx; yÞ ¼ xy and the t-conorm Sðx; yÞ ¼ x þ y xy ¼ 1 ð1 xÞð1 yÞ, Xu and Yager [130] proposed (i) The expression (1.6.1.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼ hl1 l2 ; 1 ð1 m1 Þð1 m2 Þi
ð1:6:1:1Þ
(ii) The expression (1.6.1.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. D E ak ¼ lk ; 1 ð1 mÞk
ð1:6:1:2Þ
Also, using the expression (1.6.1.1) and the expression (1.6.1.2), Xu and Yager [130] proposed the intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3). * ni¼1 ðai Þwi ¼
n Y i¼1
lwi i ; 1
n Y ð 1 m i Þ wi
+ ð1:6:1:3Þ
i¼1
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
11
Beliakov et al. [6] pointed out that if there exist an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1. Then, the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), will always be h0; 1i. Beliakov et al. [6] further pointed out that due to this drawback, the mono w tonicity property “ai 4a0i 8 i ) ni¼1 ðai Þwi 4 ni¼1 a0i i ; where ai ¼ hli ; mi i and
a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers” will not be satisfied for the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3). Hence, the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3) is not valid as an aggregation operator is said to be valid if it satisfies the monotonicity property in addition to some other necessary properties [132]. To validate this claim, Beliakov et al. [6] considered the intuitionistic fuzzy numbers a1 ¼ h0:3; 0:2i; a2 ¼ h0; 1i; a01 ¼ h0:5; 0:4i and a02 ¼ h0; 1i. Beliakov et al. [6] claimed that as a2 ¼ a02 and according to the existing approach for comparing intuitionistic fuzzy numbers [130], a1 a01 . Therefore, w according to the monotonicity property, the relation 2i¼1 ðai Þwi 2i¼1 a0i i should hold. While, it can be easily verified that if w1 ¼ 0:4 and w2 ¼ 0:6. Then, on applying the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), w 2i¼1 ðai Þwi ¼ 2i¼1 a0i i ¼ a02 ¼ h0; 1i. This clearly indicates that the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3) is not valid.
1.6.2
Drawbacks of Wang and Liu’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator
Garg [19] claimed that using the t-conorm Sðx; yÞ ¼ 1xþþxyy and the t-norm xy T ðx; yÞ ¼ 1 þ ð1x Þð1yÞ, Wang and Liu [114] have proposed (i) The expression (1.6.2.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼
l1 l2 m1 þ m2 ; 1 þ ð1 l1 Þð1 l2 Þ 1 þ m1 m2
ð1:6:2:1Þ
(ii) The expression (1.6.2.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. * a ¼ k
2lk
ð 1 þ mÞ k ð 1 mÞ k
; ð2 lÞk þ lk ð1 þ mÞk þ ð1 mÞk
+ ð1:6:2:2Þ
1 Appropriate Weighted Averaging Aggregation Operator …
12
(iii) The intuitionistic fuzzy weighted geometric aggregation operator (1.6.2.3). ni¼1 awi i
¼
Qn Qn wi wi Q n wi 2 i¼1 ðli Þ i¼1 ð1 þ mi Þ Qi¼1 ð1 mi Þ Q Qn Q ; wi n wi n wi n wi i¼1 ð2 li Þ þ i¼1 ðli Þ i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ ð1:6:2:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. Garg [19] also claimed that the membership value of the aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.2.3), is independent from the change in the membership degree and the non-membership degree of the intuitionistic fuzzy numbers. To validate the claim, Garg [19] considered the four intuitionistic fuzzy numbers a1 ¼ h0; 0:52i; a2 ¼ h0:23; 0:73i; a3 ¼ h0:50; 0:43i; a4 ¼ h0:22; 0:76i with w1 ¼ 0:1; w2 ¼ 0:4; w3 ¼ 0:2; w4 ¼ 0:1 and showed that aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted geometric aggregation operator (1.6.2.3), is h0; 0:6751i. Then, Garg [19] considered the four different intuitionistic fuzzy numbers b1 ¼ h0; 0:45i; b2 ¼ h0:32; 0:63i; b3 ¼ h0:55; 0:45i, b4 ¼ h0:63; 0:36i and showed that that aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted geometric aggregation operator (1.6.2.3), is h0; 0:5043i. Furthermore, Garg [19] claimed that it is obvious that in both the cases, the membership value of the aggregated intuitionistic fuzzy number is same, and hence, it may be concluded that the membership value of the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.2.3), is not depending upon the changes in the membership value and non-membership value of the considered intuitionistic fuzzy numbers.
1.6.3
Drawbacks of Garg’s Intuitionistic Fuzzy Interactive Weighted Geometric Aggregation Operator
To resolve the shortcomings of the existing intuitionistic fuzzy weighted geometric aggregation operator [114], Garg [19] proposed (i) The expression (1.6.3.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
o Q2 * n Q2 2 ð 1 m Þ ð 1 l m Þ i i i i¼1 i¼1 a1 a2 ¼ ; Q2 Q2 i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ + Q2 Q2 i¼1 ð1 þ mi Þ i¼1 ð1 mi Þ Q2 Q2 i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ
13
ð1:6:3:1Þ
(ii) The expression (1.6.3.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. o * n + 2 ð1 mÞk ð1 l mÞk ð1 þ mÞk ð1 mÞk k a ¼ ; ð1 þ mÞk þ ð1 mÞk ð1 þ mÞk þ ð1 mÞk
ð1:6:3:2Þ
Also, using the expression (1.6.3.1) and the expression (1.6.3.2), Garg [19] proposed the intuitionistic fuzzy interactive weighted geometric aggregation operator (1.6.3.3). ni¼1 awi i
Qn wi Q n wi 2 i¼1 ð1 mi Þ i¼1 ð1 li mi Þ Qn Qn ¼ ; wi wi i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ Q Qn ð1 þ mi Þwi ni¼1 ð1 mi Þwi Q Qni¼1 wi n wi i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ
ð1:6:3:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing intuitionistic fuzzy interactive weighted geometric aggregation operator (1.6.3.3). Therefore, the existing intuitionistic fuzzy interactive weighted geometric aggregation operator (1.6.3.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1. Then, the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy interactive weighted geometric aggregation operator (1.6.3.3), will always be h0; 1i. Hence, the monotonicity property ‘ai 4a0i 8 i ) w
ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy interactive weighted geometric aggregation operator (1.6.3.3).”
1 Appropriate Weighted Averaging Aggregation Operator …
14
1.6.4
Drawbacks of Garg’s Intuitionistic Fuzzy Hamacher Interactive Weighted Geometric Aggregation Operator
Garg [17, 28] proposed (i) The expression (1.6.4.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼
cð1 m1 Þð1 m2 Þ cð1 l1 m1 Þð1 l2 m2 Þ ; ð1 þ ðc 1Þm1 Þð1 þ ðc 1Þm2 þ ðc 1Þð1 m1 Þð1 m2 ÞÞ ð1 þ ðc 1Þm1 Þð1 þ ðc 1Þm2 Þ ð1 m1 Þð1 m2 Þ ð1 þ ðc 1Þm1 Þð1 þ ðc 1Þm2 þ ðc 1Þð1 m1 Þð1 m2 ÞÞ ð1:6:4:1Þ
(ii) The expression (1.6.4.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. * a ¼ k
cð1 mÞk cð1 l mÞk
ð1 þ ðc 1ÞmÞk ð1 mÞk
+
; ð1 þ ðc 1ÞmÞk þ ðc 1Þð1 mÞk ð1 þ ðc 1ÞmÞk þ ðc 1Þð1 mÞk ð1:6:4:2Þ
Also, using the expression (1.6.4.1) and the expression (1.6.4.2), Garg [17, 28] proposed the intuitionistic fuzzy Hamacher interactive weighted geometric aggregation operator (1.6.4.3). Q Q c ni¼1 ð1 mi Þwi ni¼1 ð1 li mi Þwi Qn ¼ Qn wi wi ; i¼1 ð1 þ ðc 1Þmi Þ þ ðc 1Þ i¼1 ð1 mi Þ Q Qn ð1 þ ðc 1Þmi Þwi ni¼1 ð1 mi Þwi i¼1 Qn Qn wi wi i¼1 ð1 þ ðc 1Þmi Þ þ ðc 1Þ i¼1 ð1 mi Þ
ni¼1 awi i
ð1:6:4:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing intuitionistic fuzzy Hamacher interactive weighted geometric aggregation operator (1.6.4.3). Therefore, the existing intuitionistic fuzzy Hamacher interactive weighted geometric aggregation operator (1.6.4.3) is not valid.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
15
“If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy Hamacher interactive weighted geometric aggregation operator (1.6.4.3), will always be h0; 1i. Hence, the monotonicity property w
‘ai 4a0i 8 i ) ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy Hamacher interactive weighted geometric aggregation operator (1.6.4.3).”
1.6.5
Drawbacks of He et al.’s Intuitionistic Fuzzy Interaction Weighted Geometric Aggregation Operator
He et al. [60] proposed (i) The expression (1.6.5.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼ hð1 m1 Þð1 m2 Þ ð1 ðl1 þ m1 ÞÞð1 ðl2 þ m2 ÞÞ;
ð1:6:5:1Þ
1 ð1 m1 Þð1 m2 Þi
(ii) The expression (1.6.5.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. D E ak ¼ ð1 mÞk ð1 ðl þ mÞÞk ; 1 ð1 mÞk
ð1:6:5:2Þ
Also, using the expression (1.6.5.1) and the expression (1.6.5.2), He et al. [60] proposed the intuitionistic fuzzy interaction weighted geometric aggregation operator (1.6.5.3). * ni¼1 ðai Þwi ¼
n n n Y Y Y ð1 mi Þwi ð1 ðli þ mi ÞÞwi ; 1 ð1 mi Þwi i¼1
i¼1
+ ð1:6:5:3Þ
i¼1
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned Pn to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and i¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing intuitionistic fuzzy interaction weighted geometric aggregation operator (1.6.5.3). Therefore, the existing
1 Appropriate Weighted Averaging Aggregation Operator …
16
intuitionistic fuzzy interaction weighted geometric aggregation operator (1.6.5.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted interaction geometric aggregation operator (1.6.5.3), will always be h0; 1i. Hence, the monotonicity property ‘ai 4a0i 8 i ) w
ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy interaction weighted geometric aggregation operator (1.6.5.3).”
1.6.6
Drawbacks of Chen and Chang’s Intuitionistic Fuzzy Weighted Geometric Aggregation Operator
Chen and Chang [10] pointed out the drawbacks of the existing intuitionistic fuzzy weighted geometric aggregation operator [88]. To resolve the drawbacks, Chen and Chang [10] proposed (i) The expression (1.6.6.1) to evaluate the multiplication of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼ h1 ð1 l1 Þð1 l2 Þ; ð1 l1 Þð1 l2 Þ ð1 ðl1 þ m1 ÞÞð1 ðl2 þ m2 ÞÞi
ð1:6:6:1Þ
(ii) The expression (1.6.6.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. D E ak ¼ 1 ð1 lÞk ; ð1 lÞk ð1 ðl þ mÞÞk
ð1:6:6:2Þ
Also, using the expression (1.6.6.1) and the expression (1.6.6.2), Chen and Chang [10] proposed the intuitionistic fuzzy weighted geometric aggregation operator (1.6.6.3). * ni¼1 ðai Þwi ¼
n n n Y w Y w Y w 1 1 la i i ; 1 la i i 1 lai mai i i¼1
i¼1
+
i¼1
ð1:6:6:3Þ where, (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
17
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.6.3). Therefore, the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.6.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.6.3), will always w be h0; 1i. Hence, the monotonicity property ‘ai 4a0i 8 i ) ni¼1 ðai Þwi 4 ni¼1 a0i i ,
where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.6.3).”
1.6.7
Drawbacks of Garg and Kumar’s Connection Number-Based Power Geometric Aggregation Operator
Garg and Kumar [47] claimed that if (i) The intuitionistic fuzzy numbers a11 ¼ h0:3; 0:5i, a12 ¼ h0; 1i and a13 ¼ h0:4; 0:2i represents the rating values of the alternative H1 corresponding to the attributes G1 ; G2 and G3 , respectively. (ii) The intuitionistic fuzzy numbers a21 ¼ h0:4; 0:3i, a22 ¼ h0:2; 0:3i and a23 ¼ h0; 1i represents the rating values of the alternative H2 corresponding to the attributes G1 ; G2 and G3 , respectively. Then, on applying the existing intuitionistic fuzzy weighted geometric aggregation operators [19, 60, 128, 130, 135], the same intuitionistic fuzzy number h0; 1i, representing the aggregated value, is obtained corresponding to both the alternatives H1 and H2 . To resolve this issue, Garg and Kumar [47], firstly, used the existing method [40] to transform the ith intuitionistic ai ¼ hli ; mi i into its equivalent fuzzy number ith connection number di ¼ a1i þ a2i i þ a3i j, where (i) (ii) (iii) (iv) (v)
a1i ¼ li ð1 mi Þ. a2i ¼ 1 li ð1 mi Þ mi ð1 li Þ. a3i ¼ mi ð1 li Þ. 0 a1i a2i a3i 1. a1i þ a2i þ a3i ¼ 1.
Then, using
1 Appropriate Weighted Averaging Aggregation Operator …
18
(i) The existing expression (1.6.7.1) to evaluate the multiplication oftwo connection numbers [8] d1 ¼ a11 þ a21 i þ a31 j and d2 ¼ a12 þ a22 i þ a32 j. d1 d2 ¼ a11 a12 þ 1 1 a21 1 a22 i þ a11 þ a31 a12 þ a32 a11 a12 j ð1:6:7:1Þ (ii) The existing expression (1.6.7.2) to evaluate the positive power k of a connection number [8] d ¼ a1 þ ða2 Þi þ ða3 Þj. k k k k dk ¼ a1 þ 1 1 a2 i þ a1 þ a 3 a1 j
ð1:6:7:2Þ
(iii) The existing expression (1.6.7.3) to evaluate between two oftwo the distance connection numbers [41] d1 ¼ a11 þ a21 i þ a31 j and d2 ¼ a12 þ a22 i þ 3 a2 j. d ð d1 ; d2 Þ ¼
1 1 a1 a12 þ a21 a22 þ a31 a32 3
ð1:6:7:3Þ
Garg [47] proposed the connection number-based power geometric aggregation operator (1.6.7.4). nt¼1
ð dt Þ
Pn1 þ T ðdt Þ t¼1
ð1 þ T ðdt ÞÞ
! 1 þ T ðdt Þ n Pn1 þ T ðdt Þ n Y Y P n ð 1 þ T ð dt Þ Þ ð 1 þ T ð dt Þ Þ 1 2 t¼1 t¼1 ¼ at þ 1 1 at i t¼1
þ
n Y t¼1
a1t þ a3t
t¼1
! n Pn1 þ T ðdt Þ Y ð 1 þ T ð dt Þ Þ ð 1 þ T ð d Þ Þ t t¼1 t¼1 a1t j
1 þ T ð dt Þ Pn
t¼1
ð1:6:7:4Þ where T ð dt Þ ¼ 1
n X
d dp ; di :
p¼1 p 6¼ t It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.1), is also occurring in the existing connection number-based power geometric aggregation operator (1.6.7.4). Therefore, the existing connection number-based power geometric aggregation operator (1.6.7.4) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 0, then using the existing method [40], used by Garg and Kumar [47] to
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
19
transform an intuitionistic fuzzy number into its equivalent connection number, the intuitionistic fuzzy number ai ¼ h0; 0i will be transformed into its equivalent connection number di ¼ a1i þ a2i i þ a3i j ¼ 0 þ ð1Þi þ ð0Þj. Therefore, the aggregated connection number, obtained on applying the existing connection number-based power geometric aggregation operator (1.6.7.4), will be 0 þ ð1Þi þ ð0Þj. Hence, the monotonicity property ‘di 4d0i 8 i ) ni¼1 ðdi Þwi 4 w 0 0 0 ni¼1 d0i i , where di ¼ a1i þ a2i i þ a3i j and d0i ¼ a1i þ a2i i þ a3i j are connection numbers’ will not be satisfied for the existing connection number-based power geometric aggregation operator (1.6.7.4).”
1.6.8
Drawbacks of Zhang’s Linguistic Intuitionistic Fuzzy Weighted Geometric Aggregation Operator
Zhang [142] proposed (i) The expression (1.6.8.1) to evaluate the of Etwo linguistic intuD E multiplication D itionistic fuzzy numbers a1 ¼ sa11 ; sa21 and a2 ¼ sa12 ; sa22 . * a1 a2 ¼
+ s 2 2 ; s t
a
a
1 t
2 t
a
1
tt 1 t1
a
1
1 t2
ð1:6:8:1Þ
(ii) The expression (1.6.8.2) to evaluate the positive power k of a linguistic intuitionistic fuzzy number a ¼ hsa1 ; sa2 i. a ¼ k
s
2 k
tðat
Þ
;s
ð1:6:8:2Þ
1 k
ttð1at
Þ
Also, using the expression (1.6.8.1) and the expression (1.6.8.2), Zhang [142] proposed the linguistic intuitionistic fuzzy weighted geometric aggregation operator (1.6.8.3). * ni¼1 ðai Þwi ¼
+
2 wi ; s sQ n a i t
t i¼1
where
tt
n Q
a1
1 ti
wi
ð1:6:8:3Þ
i¼1
(i) ai ¼ a1i ; a2i , i ¼ 1; 2; . . .; n are n linguistic intuitionistic fuzzy numbers. (ii) wi is the weight assigned to the ith linguistic intuitionistic fuzzy number P ai ¼ ha1i ; a2i i such that wi 0 and ni¼1 wi ¼ 1.
20
1 Appropriate Weighted Averaging Aggregation Operator …
(iii) 0 a1i t; 0 a2i t, (iv) t is a non-negative integer. (v) a1i þ a2i t. Garg and Kumar [42] claimed that the non-membership value of the aggregated linguistic intuitionistic fuzzy number, obtained on applying the existing linguistic intuitionistic fuzzy weighted geometric aggregation operator (1.6.8.3), is independent from the change in the non-membership degree of the linguistic intuitionistic fuzzy numbers. To validate the claim, Garg and Kumar [42] considered the four linguistic intuitionistic fuzzy numbers a1 ¼ hs4 ; s3 i; a2 ¼ hs2 ; s4 i; a3 ¼ hs5 ; s1 i; a4 ¼ hs4 ; s2 i with w1 ¼ 0:3; w2 ¼ 0:2; w3 ¼ 0:2; w4 ¼ 0:2 and showed that aggregated linguistic intuitionistic fuzzy number, obtained on applying the linguistic intuitionistic fuzzy weighted geometric aggregation operator (1.6.8.3), is hs3:7233 ; s2:5139 i. Then, Garg and Kumar [42] obtained the linguistic intuitionistic fuzzy numbers b1 ¼ hs4 ; s1 i; b2 ¼ hs2 ; s2 i; b3 ¼ hs5 ; s3 i; b4 ¼ hs4 ; s4 i by replacing the non-membership values s3 , s4 , s1 and s2 with s1 ; s2 ; s3 and s4 , respectively, and showed that the aggregated linguistic intuitionistic fuzzy number, obtained on applying the linguistic intuitionistic fuzzy weighted geometric aggregation operator (1.6.8.3), is hs3:7233 ; s2:5139 i. Furthermore, Garg and Kumar [42] claimed that it is obvious that in both the cases, the non-membership value of the aggregated linguistic intuitionistic fuzzy number is same, and hence, it may be concluded that the non-membership value of the aggregated linguistic intuitionistic fuzzy number, obtained by the linguistic intuitionistic fuzzy weighted geometric aggregation operator (1.6.8.3), is not depending upon the changes in the non-membership values of the considered linguistic intuitionistic fuzzy numbers, which is illogical.
1.6.9
Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Weighted Geometric Aggregation Operator
To resolve the drawbacks of the existing linguistic intuitionistic fuzzy weighted geometric aggregation operator [142], Garg and Kumar [42], firstly, proposed the a1 ðta2 Þ a1 ðta2 Þ a2 ðta1 Þ a2 ðta1 Þ expressions a1i ¼ i t i , a2i ¼ t i t i i t i and a3i ¼ i t i to transform the ith linguistic intuitionistic fuzzy number ai ¼ hsa1i ; sa2i i into its equivalent ith
linguistic connection number di ¼ sa1i þ sa2i i þ sa3i j, where, 0 a1i a2i a3i t and a1i þ a2i þ a3i ¼ t. Then, Garg and Kumar [42] proposed
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
21
(i) The expression (1.6.9.1) to evaluate multiplication of two the
linguistic connection numbers d1 ¼ sa11 þ sa21 i þ sa31 j and d2 ¼ sa12 þ sa22 i þ sa32 j. 0
1
d1 d2 ¼ s a1 a1 þ @s t
1 2 t2
a2
t 1 1 t1
a2
1 t2
0
1
Ai þ @s
1 a
1 t
t
þ
a3 1 t
1 a
2 t
þ
a3 2 t
1 1 A j
a
1 t
a
2 t
ð1:6:9:1Þ (ii) The expression (1.6.9.2) to evaluate the positive power k of a linguistic connection number d ¼ sa1 þ ðsa2 Þi þ ðsa3 Þj. d ¼ s a1 k þ s k
t
t 1ð1at
t2
2
Þ
iþ s k t
k
ðat1 þ at3 Þ ðat1 Þ
j k
ð1:6:9:2Þ
Also, using the expression (1.6.9.1) and the expression (1.6.9.2), Garg and Kumar [42] proposed the linguistic connection number-based weighted geometric aggregation operator (1.6.9.3). 0
1
ni¼1 ðdi Þwi ¼ s Qn a1 wi þ @s Qn i t
i¼1
0
t 1
t2
þ @ s Q n a1 t
i¼1
i t
þ
a3 i t
i¼1
a2
1 ti
wi Ai 1
ð1:6:9:3Þ
wi Q 1 wi A j a n i
i¼1
t
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing linguistic connection number-based weighted geometric aggregation operator (1.6.9.3). Therefore, the existing linguistic connection number-based weighted geometric aggregation operator (1.6.9.3) is not valid. D E “If there exists a linguistic intuitionistic fuzzy number ai ¼ sa1i ; sa2i
such that
¼ 0 and ¼ 0, then using the method, proposed by Garg and Kumar [42] to transform a linguistic intuitionistic fuzzy number into its equivalent linguistic connection number, the linguistic intuitionistic fuzzy number ai ¼ hs0 ; s0 i will be transformed into its equivalent linguistic connection number di ¼ di ¼ sa1i þ
sa2i i þ sa3i j ¼ s0 þ ðst Þi þ ðs0 Þj. Therefore, the aggregated linguistic connection a1i
a2i
number, obtained on applying the existing linguistic connection number-based weighted geometric aggregation operator (1.6.9.3), will be s0 þ ðst Þi þ ðs0 Þj. Hence, w the monotonicity property ‘di 4d0i 8 i ) ni¼1 ðdi Þwi 4 ni¼1 d0i i , where di ¼
1 Appropriate Weighted Averaging Aggregation Operator …
22
sa1i þ sa2i i þ sa3i j and d0i ¼ sða1 Þ þ sða2 Þ i þ sða3 Þ j are linguistic connection i i i numbers’ will not be satisfied for the existing linguistic connection number-based weighted geometric aggregation operator (1.6.9.3).”
1.6.10 Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Power Geometric Aggregation Operator Garg and Kumar [43] pointed out the drawbacks of the existing intuitionistic fuzzy weighted geometric aggregation operators [13, 91]. To resolve the drawbacks, Garg and Kumar [43], firstly, used the existing method [42] to transform the ith linguistic intuitionistic fuzzy number ai ¼ D E sa1i ; sa2i into its equivalent ith linguistic connection number
di ¼ sa1i þ sa2i i þ sa3i j: where a1i ðta2i Þ . t 1 2 a ta ð Þ a2 ðta1 Þ a2i ¼ t i t i i t i . a2 ðta1 Þ a3i ¼ i t i . 0 a1i a2i a3i t. a1i þ a2i þ a3i ¼ t.
(i) a1i ¼ (ii) (iii) (iv) (v)
Then, using (i) The existing expression (1.6.10.1) [42] to evaluate the
multiplication of two and linguistic connection numbers d1 ¼ sa11 þ sa21 i þ sa31 j
d2 ¼ sa12 þ sa22 i þ sa32 j. 0
1
d1 d2 ¼ s a1 a1 þ @s t
1 2 t2
a2
t 1 1 t1
a2
1 t2
0
1
Ai þ @s
1 t
a
1 t
þ
a3 1 t
1 a
2 t
þ
a3 2 t
1 1 A j
a
1 t
a
2 t
ð1:6:10:1Þ (ii) The existing expression (1.6.10.2) [42] to evaluate the positive power k of a linguistic connection number d ¼ sa1 þ ðsa2 Þi þ ðsa3 Þj.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
d ¼ s a1 k þ s k
t
t 1ð1at
t2
2
Þ
iþ s k t
k
ðat1 þ at3 Þ ðat1 Þ
j k
23
ð1:6:10:2Þ
(iii) The existing expression (1.6.10.3) [42] to evaluate the distance
between
two
of two linguistic connection numbers d1 ¼ sa11 þ sa21 i þ sa31 j and
d2 ¼ sa12 þ sa22 i þ sa32 j. d ðd1 ; d2 Þ ¼
1 1 a1 a12 þ a21 a22 þ a31 a32 3t
ð1:6:10:3Þ
Garg and Kumar [43] proposed the linguistic connection number-based power geometric aggregation operator (1.6.10.4). 0 nh¼1
ðdh Þ
Pn1 þ T ðdh Þ
ð 1 þ T ðd h Þ Þ h¼1
1
B C B C B 0 C 1 ¼s þ s B Ci 1 þ T ðd h Þ
2 Pn1 þ T ðdh Þ C Qn a1h Pn ð1 þ T ðdh ÞÞ B Q a n 1 þ T d ð ð Þ Þ @ h AA h¼1 h¼1 t t@1 1 th 2 i¼1
t
i¼1
1
0
C B C B C B 0 1 þ Bs Cj 1 þ T ðd h Þ C B Q a1 a3 wi Q a1 Pn 1 þ T ðd h Þ Þ A A @ t@ n h þ h n h ð h¼1 t t t i¼1
i¼1
ð1:6:10:4Þ where T ð dh Þ ¼ 1
n X
d dh ; dp :
p¼1 p 6¼ h It is pertinent to mention that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.1), is also occurring in the existing linguistic connection number-based power geometric aggregation operator (1.6.10.4). Therefore, the existing linguistic connection number-based power geometric aggregation operator (1.6.10.4) is not valid. D E “If there exists a linguistic intuitionistic fuzzy number ai ¼ sa1i ; sa2i
such that
¼ 0 and ¼ 0, then using the existing method [42], used by Garg and Kumar [43] to transform a linguistic intuitionistic fuzzy number into its equivalent a1i
a2i
1 Appropriate Weighted Averaging Aggregation Operator …
24
linguistic connection number, the linguistic intuitionistic fuzzy number ai ¼ D E sa1i ; sa2i will be transformed into its equivalent linguistic connection number
di ¼ sa1i þ sa2i i þ sa3i j ¼ s0 þ ðst Þi þ ðs0 Þj. Therefore, the aggregated linguistic connection number, obtained on applying the existing linguistic connection number-based power geometric aggregation operator (1.6.10.4), will be Hence, the monotonicity s0 þ ðst Þi þ ðs0 Þj.
property 0 wi wi 0 n n ‘di 4di 8 i ) i¼1 ðdi Þ 4 i¼1 di , where di ¼ sa1i þ sa2i i þ sa3i j and d0i ¼
sða1 Þ þ sða2 Þ i þ sða3 Þ j are connection numbers’ will not be satisfied for the i
i
i
existing linguistic connection number-based power geometric aggregation operator (1.6.10.4).”
1.6.11 Drawbacks of Garg and Kumar’s Linguistic Connection Number-Based Prioritized Geometric Aggregation Operator Garg and Kumar [44], firstly, used the existing method [42] to transform the ith linguistic intuitionistic fuzzy number ai ¼ hsa1i ; sa2i i into its equivalent ith linguistic
connection number di ¼ sa1i þ sa2i i þ sa3i j: where a1i ðta2i Þ . t a1i ðta2i Þ a2 ðta1 Þ 2 ai ¼ t i t i . t a2 ðta1 Þ a3i ¼ i t i : 0 a1i a2i a3i t. a1i þ a2i þ a3i ¼ t.
(i) a1i ¼ (ii) (iii) (iv) (v)
Then, using (i) The existing expression (1.6.11.1) [42] to evaluate the
multiplication of two and linguistic connection numbers d1 ¼ sa11 þ sa21 i þ sa31 j
d2 ¼ sa12 þ sa22 i þ sa32 j. 0
1
d1 d2 ¼ s a1 a1 þ @s t
1 2 t2
a2
t 1 1 t1
a2
1 t2
0
1
Ai þ @s
1 t
a
1 t
þ
a3 1 t
1 a
2 t
þ
a3 2 t
1 1 A j
a
1 t
a
2 t
ð1:6:11:1Þ
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
25
(ii) The existing expression (1.6.11.2) [42] to evaluate the positive power k of a linguistic connection number d ¼ sa1 þ ðsa2 Þi þ ðsa3 Þj.
d ¼ s a1 k þ s k
t
t2
t 1ð1at
2
Þ
iþ s k t
k
ðat1 þ at3 Þ ðat1 Þ
j k
ð1:6:11:2Þ
Garg and Kumar [44] proposed the linguistic connection number-based prioritized geometric aggregation operator (1.6.11.3). 1
0 PnT ðdh Þ
nh¼1 ðdh Þ
h¼1
ðT ðdh ÞÞ
C B C B C B 0 1 ¼s þ s Ci B T ð dh Þ T ðdh Þ
2 Pn C Qn a1h Pn ðT ðdh ÞÞ B Q a n T d @ ð ð Þ Þ h AA h¼1 h¼1 t t@1 1 h i¼1
t2
i¼1
t
1
0
C B C B B 0 1C þ Bs Cj T ðdh Þ C B Q a1 a3 wi Q a1 Pn T ðdh ÞÞ A A @ t@ n h þ h n h ð h¼1 i¼1
t
t
i¼1
t
ð1:6:11:3Þ where, Qn Sðdh Þ p ¼ 2 t , h ¼ 2; 3; . . .; n with T ðd1 Þ ¼ 1. p 6¼ h ða1 a3 Þðt þ a2h Þ 1 (ii) Sðdh Þ ¼ 2 t þ h h t . (i) T ðdh Þ ¼
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing linguistic connection number-based prioritized geometric aggregation operator (1.6.11.3). Therefore, the existing linguistic connection number-based prioritized geometric aggregation operator (1.6.11.3) is not valid. D E “If there exists a linguistic intuitionistic fuzzy number ai ¼ sa1i ; sa2i
such that
a1i ¼ a2i ¼ 0, then using the existing expression [42], used by Garg and Kumar [44] to transform a linguistic intuitionistic fuzzy number into a linguistic connection number, the linguistic intuitionistic fuzzy number ai ¼ hs0 ; s0 i will be transformed into its equivalent linguistic connection number di ¼ s0 þ ðst Þi þ ðs0 Þj, i.e., a1i ¼ 0; a2i ¼ t and a3i ¼ 0. Therefore, the aggregated linguistic connection number, obtained on applying the existing linguistic connection number-based prioritized geometric aggregation operator (1.6.11.3), will be s0 þ ðst Þi þ ðs0 Þj. Hence, the
1 Appropriate Weighted Averaging Aggregation Operator …
26
w monotonicity property ‘di 4d0i 8 i ) ni¼1 ðdi Þwi 4 ni¼1 d0i i , where di ¼ 0 0 0 a1i þ a2i i þ a3i j and d0i ¼ a1i þ a2i i þ a3i j are linguistic connection numbers’ will not be satisfied for the existing linguistic connection number-based prioritized geometric aggregation operator (1.6.11.3).”
1.6.12 Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Geometric Aggregation Operator Arora and Garg [2] proposed (i) The expression (1.6.12.1) to evaluate the multiplication of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ hl11 l12 ; 1 ð1 m11 Þð1 m12 Þi
ð1:6:12:1Þ
(ii) The expression (1.6.12.2) to evaluate the positive power k of an intuitionistic fuzzy soft number a ¼ hl; mi. D E ak ¼ lk ; 1 ð1 mÞk
ð1:6:12:2Þ
. Using the expression (1.6.12.1) and the expression (1.6.12.2), Arora and Garg [2] proposed the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3). m j¼1
ni¼1
gi nj aij ¼
*
m n Y Y j¼1
i¼1
!nj g liji
;1
m n Y Y j¼1
1 mij
gi
!nj + ð1:6:12:3Þ
i¼1
where (a) gi [ 0 8 i ¼ 1; 2; . . .; n: (b) nj [ 0 8 j ¼ 1; 2; . . .; m: Pn (i) gi ¼ 1. Pi¼1 m (ii) j¼1 nj ¼ 1. Garg and Arora [32] pointed out the following drawbacks in the existing intuitionistic fuzzy soft weighed geometric aggregation operator (1.6.12.3).
(i) If there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that lij ¼ 0, then the membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3),
will be 0, i.e., if there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that lij ¼ 0, then the membership value of the
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
27
aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3), will be independent from the membership values of remaining intuitionistic fuzzy soft numbers, which is illogical. To validate this claim, Garg and Arora [32] considered the intuitionistic fuzzy soft numbers a11 ¼ h0; 0:5i, a12 ¼ h0:3; 0:6i, a21 ¼ h0:5; 0:4i, a22 ¼ h0:2; 0:7i with g1 ¼ 0:7, g2 ¼ 0:3; n1 ¼ 0:4; n2 ¼ 0:6 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3), is h0; 0:5126i. It is obvious that the membership value of the aggregated intuitionistic fuzzy soft number is 0. (ii) The membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3), is independent from the changes in the non-membership values of the considered intuitionistic fuzzy soft numbers. To validate this claim, Garg and Arora [32], firstly, considered the intuitionistic fuzzy soft numbers a11 ¼ h0:6; 0:3i, a12 ¼ h0:3; 0:4i, a21 ¼ h0:2; 0:6i, a22 ¼ h0:1; 0:7i with g1 ¼ 0:6, g2 ¼ 0:4; n1 ¼ 0:8; n2 ¼ 0:2 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator aggregation operator (1.6.12.3), is h0:2730; 0:5268i. Then, Garg and Arora [32] replaced the intuitionistic fuzzy soft numbers a12 ¼ h0:3; 0:4i and a22 ¼ h0:1; 0:7i with the intuitionistic fuzzy soft numbers b12 ¼ h0:3; 0:6i and b22 ¼ h0:1; 0:8i. Garg and Arora [32] claimed that the new aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted geometric aggregation operator (1.6.12.3), is h0:2730; 0:55565i. It is obvious that the membership value of the new aggregated intuitionistic fuzzy soft number is also 0:2730.
1.6.13 Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Prioritized Weighted Geometric Aggregation Operator Arora and Garg [1] proposed (i) The expression (1.6.13.1) to evaluate the multiplication of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ hl11 l12 ; 1 ð1 m11 Þð1 m12 Þi
ð1:6:13:1Þ
(ii) The expression (1.6.13.2) to evaluate the positive power k of an intuitionistic fuzzy soft number a ¼ hl; mi.
1 Appropriate Weighted Averaging Aggregation Operator …
28
D E ak ¼ lk ; 1 ð1 mÞk
ð1:6:13:2Þ
Using the expression (1.6.13.1) and the expression (1.6.13.2), Arora and Garg [1] proposed the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3).
m i¼1
1PTmi !PTmi *0 gj Pgnj Ti P n T n Y i i¼1 gj i¼1 gj j¼1 A n @ j¼1 j¼1 aij ¼ lij ; j¼1 m Y i¼1
1
m n Y Y i¼1
Pn
!PTmi
gj
1 mij
j¼1
gj
i¼1
Ti
+
j¼1
ð1:6:13:3Þ where (i) g1 ¼ T1 ¼ 1. Q Sðail Þ; j ¼ 2; 3; . . .; n. (ii) gj ¼ j1 Ql¼1 i1 (iii) Ti ¼ k¼1 Sðaik Þ; i ¼ 2; 3; . . .; m. 1 þ lij mij . (iv) S aij ¼ 2 Garg and Arora [32] pointed out the following drawbacks in the existing intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3).
(i) If there exists an intuitionistic fuzzy soft numbers aij ¼ lij ; mij such that lij ¼ 0, then the membership values of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3), will be
0, i.e., if there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that lij ¼ 0, then the membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3), will be independent from the membership values of remaining intuitionistic fuzzy soft numbers, which is illogical. To validate this claim, Garg and Arora [32] considered the intuitionistic fuzzy soft numbers a11 ¼ h0; 0:5i, a12 ¼ h0:3; 0:6i, a21 ¼ h0:5; 0:4i, a22 ¼ h0:2; 0:7i with g1 ¼ 0:7, g2 ¼ 0:3; n1 ¼ 0:4; n2 ¼ 0:6 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the expression (1.6.13.3), is h0; 0:5144i. It is obvious that the membership value of the aggregated intuitionistic fuzzy soft number is 0. (ii) The membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3), is independent from the changes in the degree of non-membership values of the considered intuitionistic fuzzy soft numbers.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
29
To validate this claim, Garg and Arora [32], firstly, considered the intuitionistic fuzzy soft numbers a11 ¼ h0:6; 0:3i, a12 ¼ h0:3; 0:4i, a21 ¼ h0:2; 0:6i, a22 ¼ h0:1; 0:7i with g1 ¼ 0:6, g2 ¼ 0:4; n1 ¼ 0:8; n2 ¼ 0:2 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3), is h0:4423; 0:3966i. Then, Garg and Arora [32] replaced the intuitionistic fuzzy soft numbers a12 ¼ h0:3; 0:4i and a22 ¼ h0:1; 0:7i with the intuitionistic fuzzy soft numbers b12 ¼ h0:3; 0:6i and b22 ¼ h0:1; 0:8i. Garg and Arora [32] claimed that the new aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized weighted geometric aggregation operator (1.6.13.3), is h0:4423; 0:4140i. It is obvious that the membership value of the new aggregated intuitionistic fuzzy soft number is also 0:4423.
1.6.14 Drawbacks of Garg and Arora’s Dual Hesitant Fuzzy Soft Weighted Geometric Aggregation Operator Garg and Arora [33] proposed (i) The expression (1.6.14.1) to evaluate the multiplication of two dual hesitant fuzzy soft sets a11 ¼ hfh11 g; fg11 gi and a12 ¼ hfh12 g; fg12 gi. a11 a12 ¼
[
k1 ðkðc11 Þ þ kðc12 ÞÞ ; l1 ðlðd11 Þ þ lðd12 ÞÞ
c11 2 h11 ; c12 2 h12 ; d11 2 g11 ; d12 2 g12 ð1:6:14:1Þ (ii) The expression (1.6.14.2) to evaluate positive power k of a dual hesitant fuzzy soft set a ¼ hfhg; fggi. ak ¼
[
k1 ðkkðcÞÞ ; l1 ðklðdÞÞ
ð1:6:14:2Þ
c2h d2g where (i) l : ½0; 1 ! ½0; 1 is a continuous increasing function with lð0Þ ¼ 0. (ii) k : ½0; 1 ! ½0; 1 is a continuous decreasing function with k ð1Þ ¼ 0. (iii) lð xÞ ¼ k ð1 xÞ.
1 Appropriate Weighted Averaging Aggregation Operator …
30
Using the expressions (1.6.14.1) and (1.6.14.2), Garg and Arora [33] proposed the dual hesitant fuzzy soft weighted geometric aggregation operator (1.6.14.3). m j¼1
ni¼1
*(
[
gi nj aij ¼ c
(
k
1
m X j¼1
ij 2 hij
nj
n X gi k cij
m X j¼1
nj
;
i¼1
dij 2 hij l1
!!)
n X gi l dij
!!)+
ð1:6:14:3Þ
i¼1
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.1), is also occurring in the existing dual hesitant fuzzy soft weighted geometric aggregation operator (1.6.14.3). Therefore, the existing dual hesitant fuzzy soft weighted geometric aggregation operator (1.6.14.3) isnot valid.
“If there exists one dual hesitant fuzzy soft number aij ¼ hij ; gij such that hij ¼ f0g and gij ¼ f1g, then the aggregated dual hesitant fuzzy soft number, obtained on applying the dual hesitant fuzzy soft weighted geometric aggregation operator (1.6.14.3), will be h0; 1i, i.e., if one intuitionistic fuzzy number is n gi nj ai ¼ h0; 1i. Hence, the monotonicity property ‘aij 4a0ij 8 i ) m 4 j¼1 i¼1 aij
gi nj n 0 m , where aij and a0ij are dual hesitant fuzzy soft numbers’ will j¼1 i¼1 aij not be satisfied for the existing dual hesitant fuzzy soft weighted geometric aggregation operator (1.6.14.3).”
1.6.15 Drawbacks of Garg’s Intuitionistic Fuzzy Multiplicative Weighted Geometric Aggregation Operator Garg [16] pointed out the drawbacks of the existing intuitionistic fuzzy multiplicative weighted geometric aggregation operator [124]. To resolve the drawbacks, Garg [16] proposed (i) The expression (1.6.15.1) to evaluate the multiplication of two intuitionistic fuzzy multiplicative numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼
2f1 ð1 l1 m1 Þð1 l2 m2 Þg ð1 þ 2m1 Þð1 þ 2m2 Þ 1 ; ð1:6:15:1Þ ; 2 ð1 þ 2m1 Þð1 þ 2m1 Þ 1
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
31
(ii) The expression (1.6.15.2) to evaluate the positive power k of an intuitionistic fuzzy multiplicative number a ¼ hl; mi. o * n + 2 1 ð1 lmÞk ð1 þ 2mÞk 1 ak ¼ ; : 2 ð1 þ 2mÞk 1
ð1:6:15:2Þ
Also, using the expression (1.6.15.1) and the expression (1.6.15.2), Garg [16] proposed the intuitionistic fuzzy multiplicative weighted geometric aggregation operator (1.6.15.3). ni¼1 ðai Þwi ¼
Qn Q wi 2 1 ni¼1 ð1 li mi Þwi i¼1 ð1 þ 2mi Þ 1 Qn ; wi 2 i¼1 ð1 þ 2mi Þ 1
ð1:6:15:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy multiplicative numbers. (ii) wi is the weight assigned to the ith fuzzy multiplicative number Pintuitionistic n ai ¼ hli ; mi i such that wi 0 and i¼1 wi ¼ 1. Mishra [94] considered the following example to show that the expression (1.6.15.1) is not valid, and hence, the expression (1.6.15.2) and the intuitionistic fuzzy multiplicative weighted geometric aggregation operator (1.6.15.3) are also not valid.
Let a1 ¼ hl1 ; m1 i ¼ 14 ; 3 and a2 ¼ hl2 ; m2 i ¼ 16 ; 4 be two intuitionistic fuzzy multiplicative numbers. Then, on applying the existing expression (1.6.15.1),
2f1 ð1 l1 m1 Þð1 l2 m2 Þg ð1 þ 2m1 Þð1 þ 2m2 Þ 1 a1 a2 ¼ ; 2m1 Þð1 þ 2m2 Þ 1 2 ð1 þ 11 ; 31 : ¼ 372
It is a well-known fact that if a ¼ hl; mi is an intuitionistic fuzzy multiplicative number, then for l and m, the conditions 19 l; m 9 and lm 1 should necessarily 11
11 ; 31 , the value of l is 372 be satisfied. However, it is obvious that in a1 a2 ¼ 372 which is less than 19 . Also, the value of m is 31, which is greater than 9. Therefore, 11
; 31 is not an intuitionistic fuzzy multiplicative number. Hence, the a1 a2 ¼ 372 expression (1.6.14.1) to evaluate the multiplication of two intuitionistic fuzzy multiplicative numbers is not valid. Furthermore, it is pertinent to mention that the existing expression (1.6.15.2) i.e., k 2 1 ð 1lm Þ f g ð1 þ 2mÞk 1 ak ¼ ; is obtained by considering a1 ¼ a2 in the existing 2 ð1 þ 2mÞk 1 D E ð1l1 m1 Þð1l2 m2 Þg ð1 þ 2m1 Þð1 þ 2m2 Þ1 expression (1.6.15.1), i.e., a1 a2 ¼ 2fð1 . 1 þ 2m1 Þð1 þ 2m2 Þ1 ; 2 However, as discussed above, the existing expression (1.6.15.1) is not valid. Therefore, the existing expression (1.6.15.2) is also not valid.
1 Appropriate Weighted Averaging Aggregation Operator …
32
1.6.16 Drawbacks of Garg’s Pythagorean Fuzzy Weighted Geometric Aggregation Operator Garg [20] proposed (i) The expression (1.6.16.1) to evaluate the multiplication of two Pythagorean fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. * a1 a2 ¼
l1 ; l2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 1 þ 1 l21 1 l22
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi+ m21 þ m22 1 þ m21 m22
ð1:6:16:1Þ
(ii) The expression (1.6.16.2) to evaluate the positive power k of a Pythagorean fuzzy number a ¼ hl; mi. * a ¼ k
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi+ pffiffiffi k 2l ð1 þ m2 Þk ð1 m2 Þk qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; ð1 þ m2 Þk þ ð1 m2 Þk ð2 l2 Þk þ ðl2 Þk
ð1:6:16:2Þ
Also, using the expression (1.6.16.1) and the expression (1.6.16.2), Garg [20] proposed the Pythagorean fuzzy weighted geometric aggregation operator (1.6.16.3). *
ni¼1 awi i
pffiffiffi Qn wi 2 i¼1 li ffi; ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Qn Qn 2 wi 2 wi i¼1 ð2 li Þ þ i¼1 ðli Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi+ Qn Qn 2 Þ wi 2 Þwi ð 1 þ m ð 1 m i i Qi¼1 Qni¼1 n 2 wi 2 wi i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ
ð1:6:16:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n Pythagorean fuzzy numbers. (ii) wi is the weight assigned P to the ith Pythagorean fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing Pythagorean fuzzy weighted geometric aggregation operator (1.6.16.3). Therefore, the existing Pythagorean fuzzy weighted geometric aggregation operator (1.6.16.3) is not valid. “If there exists a Pythagorean fuzzy number ai ¼ hli ;mi i such that li ¼ 0 and mi ¼ 1, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy weighted geometric aggregation operator (1.6.16.3), will always w be h0;1i, and hence, the monotonicity property ‘ai 4a0i 8 i ) ni¼1 ðai Þwi 4ni¼1 a0i i ,
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
33
where ai ¼ hli ;mi i and a0i ¼ hl0i ;m0i i are Pythagorean fuzzy numbers’ will not be satisfied for the existing Pythagorean fuzzy weighted geometric aggregation _operator (1.6.16.3).”
1.6.17 Drawbacks of Garg’s Pythagorean Fuzzy Interactive Weighted Geometric Aggregation Operator Garg [25] pointed out the drawbacks of the existing Pythagorean fuzzy weighted geometric aggregation operators [18, 20]. To resolve the drawbacks, Garg [25] proposed (i) The expression (1.6.17.1) to evaluate the multiplication of two Pythagorean fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi nQ o Q2 *u 2 2Þ 2 m2 Þ u2 ð 1 m ð 1 l i i i i¼1 i¼1 t a1 a2 ¼ ; Q2 Q2 2Þ þ 2 ð 1 þ m i i¼1 i¼1 ð1 mi Þ ffi+ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Q2 Q2 2 2 i¼1 ð1 þ mi Þ i¼1 ð1 mi Þ Q2 Q2 2 2 i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ
ð1:6:17:1Þ
(ii) The expression (1.6.17.2) to evaluate the positive power k of a Pythagorean fuzzy number a ¼ hl; mi. vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi n o sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi+ *u u2 ð1 m2 Þk ð1 l2 m2 Þk ð 1 þ m2 Þ k ð 1 m2 Þ k t ak ¼ ; ð 1 þ m2 Þ k þ ð 1 m2 Þ k ð 1 þ m2 Þ k þ ð 1 m2 Þ k
ð1:6:17:2Þ
Also, using the expressions (1.6.17.1) and the expression (1.6.17.2), Garg [25] proposed the Pythagorean fuzzy interactive weighted geometric aggregation operator (1.6.17.3). *sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Qn ffi Qn 2 Þ wi 2 m 2 Þ wi 2 ð 1 m ð 1 l i i i i¼1 i¼1 Qn Q ni¼1 awi i ¼ ; n 2 wi 2 wi i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ ffi+ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Qn Qn 2 Þ wi 2 Þ wi ð 1 þ m ð 1 m i i Qi¼1 Qni¼1 n 2 wi 2 wi i¼1 ð1 þ mi Þ þ i¼1 ð1 mi Þ
ð1:6:17:3Þ
1 Appropriate Weighted Averaging Aggregation Operator …
34
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n Pythagorean fuzzy numbers. (ii) wi is the weight assigned P to the ith Pythagorean fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.1), is also occurring in the existing Pythagorean fuzzy weighted interactive geometric aggregation operator (1.6.17.3). Therefore, the existing Pythagorean fuzzy weighted interactive geometric aggregation operator (1.6.17.3) is not valid. “If there exists a Pythagorean fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy interactive weighted geometric aggregation operator (1.6.17.3), will always be h0; 1i. Hence, the monotonicity property ‘ai 4a0i 8 i ) w ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ hli ; mi i and a0i ¼ hl0i ; m0i i are Pythagorean fuzzy numbers’ will not be satisfied for the existing Pythagorean fuzzy interactive weighted geometric aggregation operator (1.6.17.3).”
1.6.18 Drawbacks of Garg’s Confidence Levels-Based Pythagorean Fuzzy Weighted Geometric Aggregation Operator Garg [22] pointed out that all the aggregation operators have been proposed by considering the assumption that decision-makers are surely familiar with the evaluated objects. But, it is not a realistic assumption. Therefore, to handle this situation, Garg [22] proposed the confidence levels-based Pythagorean fuzzy weighted geometric aggregation operator (1.6.18.1). nj¼1
wj g aj j ¼
*
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi+ u n n gj wj Y Y gj wj u lj ; t1 1 m2j j¼1
ð1:6:18:1Þ
j¼1
where (i) 0\gj 1 is confidence level of aj . P (ii) wj is the weight vector associated with aj such that wj 0 and nj¼1 wj ¼ 1. P (iii) gj is the confidence level of aj such that gj [ 0 and nj¼1 gj ¼ 1.
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
35
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.1), is also occurring in the existing confidence levels-based Pythagorean fuzzy weighted geometric aggregation operator (1.6.18.1). Therefore, the existing confidence levels-based Pythagorean fuzzy weighted geometric aggregation operator (1.6.18.1) is not valid. “If there exists a Pythagorean fuzzy number ai ¼ hli ; mi i such that li ¼ 0 and mi ¼ 1, then the aggregated Pythagorean fuzzy number, obtained by the existing confidence levels-based Pythagorean fuzzy weighted geometric aggregation operator (1.6.18.1), will always be h0; 1i. Hence, the monotonicity property w
‘ai 4a0i 8 i ) ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are Pythagorean fuzzy numbers’ will not be satisfied for the existing confidence levels-based Pythagorean fuzzy weighted geometric aggregation operator (1.6.18.1).”
1.6.19 Drawbacks of Garg’s Interval-Valued Intuitionistic Fuzzy Weighted Geometric Aggregation Operator Garg [23] pointed out the drawbacks of the existing interval-valued intuitionistic fuzzy weighted geometric aggregation operator [85]. To resolve the drawbacks, Garg [23] proposed (i) The expression (1.6.19.1) to evaluate the multiplication of two interval-valued intuitionistic fuzzy numbers a1 ¼ h½a1 ; b1 ; ½c1 ; d1 i and a2 ¼ h½a2 ; b2 ; ½c2 ; d2 i. *"
Q2
Q2
i¼1 ð1
ci Þ c
Q2
ai c i ; Q2 i¼1 ½1 þ ðc 1Þci þ ðc 1Þ i¼1 ð1 ci Þ # Q Q c 2i¼1 ð1 di Þ c 2i¼1 ½1 bi di Q2 Q2 i¼1 ½1 þ ðc 1Þdi þ ðc 1Þ i¼1 ð1 di Þ i 2 Q2 h Q2 i¼1 1 þ ðc 1Þci i¼1 ð1 ci Þ 4Q ; Q2 2 i¼1 ½1 þ ðc 1Þci þ ðc 1Þ i¼1 ð1 ci Þ i 3+ Q2 Q2 h i¼1 1 þ ðc 1Þdi i¼1 ð1 di Þ 5 Q2 Q2 i¼1 ½1 þ ðc 1Þbi þ ðc 1Þ i¼1 ð1 di Þ
a1 a2 ¼
c
i¼1 ½1
ð1:6:19:1Þ
(ii) The expression (1.6.19.2) to evaluate the positive power k of an interval-valued intuitionistic fuzzy number a ¼ h½a; b; ½c; d i.
1 Appropriate Weighted Averaging Aggregation Operator …
36
*" a ¼
c½1 ck c½1 a ck
c½1 d k c½1 b d k
#
; ; ½1 þ ðc 1Þck þ ðc 1Þ½1 ck ½1 þ ðc 1Þd k þ ðc 1Þ½1 d k " #+ : ½1 þ ðc 1Þck ½1 ck ½1 þ ðc 1Þd k ½1 d k ; ½1 þ ðc 1Þck þ ðc 1Þ½1 ck ½1 þ ðc 1Þd k þ ðc 1Þ½1 d k k
ð1:6:19:2Þ Also, using the expression (1.6.19.1) and the expression (1.6.19.2), Garg [23] proposed the interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.19.3). Q Q c ni¼1 ½1 ci wi c ni¼1 ð1 ai ci Þwi Qn Qn wi wi ; i¼1 ½1 þ ðc 1Þci þ ðc 1Þ i¼1 ð1 ci Þ Q Q c ni¼1 ½1 di wi c ni¼1 ð1 bi d Þwi Q Qn wi n wi ; i¼1 ½1 þ ðc 1Þdi þ ðc 1Þ i¼1 ð1 di Þ Qn Q ð1 þ ðc 1Þci Þwi ni¼1 ½1 ci wi Qn Qn i¼1 wi wi ; i¼1 ½1 þ ðc 1Þci þ ðc 1Þ i¼1 ð1 ci Þ Q Qn ð1 þ ðc 1Þdi Þwi ni¼1 ½1 di wi Q Qn i¼1 wi n wi i¼1 ½1 þ ðc 1Þdi þ ðc 1Þ i¼1 ð1 di Þ
ni¼1 awi i ¼
ð1:6:19:3Þ
where (i) ai ¼ h½ai ; bi ; ½ci ; di i i ¼ 1; 2; . . .; n are n interval-valued intuitionistic fuzzy numbers. (ii) wi is the weight assigned to the ith interval-valued intuitionistic fuzzy number P ai ¼ h½ai ; bi ; ½ci ; di i such that wi 0 and ni¼1 wi ¼ 1. Mishra [94] considered the following example to show that the existing expression (1.6.19.1) is not valid, and hence, the existing interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.19.3) is also not valid. If c ¼ 1, k ¼ 2 and n ¼ 2, then the existing expression (1.6.19.1) and (1.6.19.2) will be transformed into the expression (1.6.19.4) and the expression (1.6.19.5), respectively. *" a1 a 2 ¼ "
2 Y
# 2 2 2 Y Y Y ð1 ai Þ ½1 ai ci ; ð1 bi Þ ½1 bi di ;
i¼1
i¼1
i¼1
2 2 Y Y 1 ð1 ai Þ; 1 ð1 bi Þ i¼1
#+
i¼1
i¼1
ð1:6:19:4Þ
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
Dh i a2 ¼ ½1 a2 ½1 a c2 ; ½1 b2 ½1 b d 2 ; h iE 1 ½1 a2 ; 1 ½1 b2
37
ð1:6:19:5Þ
Now, let a1 ¼ h½0:65; 0:73; ½0:17; 0:21i and a2 ¼ h½0:50; 0:60; ½0:35; 0:40i be two interval-valued intuitionistic fuzzy numbers. Then, a1 a2 ¼ h½0:1480; 0:1080; ½0:8250; 0:8920i a21 ¼ h½0:0901; 0:0693; ½0:8775; 0:9271i It is a well-known fact that for an interval-valued intuitionistic fuzzy number, a ¼ h½a; b; ½c; d i, the conditions a b, c d and b þ d 1 should always be satisfied. However, it is obvious that for a1 a2 ¼ h½0:1480; 0:1080; ½0:8250; 0:8920i and a21 ¼ h½0:0901; 0:0693; ½0:8775; 0:9271i, the condition a b is not satisfying. Therefore, a1 a2 , obtained by the expression (1.6.19.1), and a21 ¼ h½0:0901; 0:0693; ½0:8775; 0:9271i, obtained by the expression (1.6.19.2), are not interval-valued intuitionistic fuzzy numbers. Hence, the expression (1.6.19.1) and the expression (1.6.19.2) are not valid.
1.6.20 Drawbacks of Garg and Kumar’s Linguistic Interval-Valued Intuitionistic Fuzzy Weighted Geometric Aggregation Operator Garg and Kumar [45] proposed (i) The expression (1.6.20.1) to evaluate the multiplication of two linguistic interval-valued intuitionistic fuzzy numbers a1 ¼ h½sa1 ; sb1 ; ½sc1 ; sd1 i and a2 ¼ h½sa2 ; sb2 ; ½sc2 ; sd2 i. a1 a2 ¼
Dh i h iE sa1 a2 ; sb1 b2 ; sc1 þ c2 c1 c2 ; sd1 þ d2 d1 d2 t
t
t
ð1:6:20:1Þ
t
(ii) The expression (1.6.20.2) to evaluate the positive power k of a linguistic interval-valued intuitionistic fuzzy number a ¼ h½sa ; sb ; ½sc ; sd i. ak ¼
st
ðÞ
a k t
; st
ðÞ
b k t
; s
t 1ð
Þ
k 1ct
; s
t 1ð
Þ
k 1dt
ð1:6:20:2Þ
1 Appropriate Weighted Averaging Aggregation Operator …
38
where (i) (ii) (iii) (iv) (v) (vi)
½sai ; sbi represents the linguistic membership degree. ½sci ; sdi represents the linguistic non-membership degree. ai ; bi ; ci ; di 2 ½0; t. bi þ di t;i ¼ 1; 2: t is a positive integer. k is a positive real number.
Using the expression (1.6.20.1) and the expression (1.6.20.2), Garg and Kumar [45, 46] proposed the linguistic interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.20.3). * ni¼1 ðawi i Þ
¼
2
3 2
6 6s n 4 Q t
i¼1
ðati Þ
wi
; s t
n Q i¼1
ðbti Þ
3
7 6 7; 6s n 5 4 Q wi t
1
i¼1
ð1cti Þ
wi
; s t
1
n Q
ð1dti Þ
7 7 5 wi
+
i¼1
ð1:6:20:3Þ It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted geometric aggregation operator (1.6.1.3), is also occurring in the existing linguistic interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.20.3). Therefore, the existing linguistic interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.20.3) is not valid. “If there exists a linguistic interval-valued intuitionistic fuzzy number ai ¼ h½sai ; sbi ; ½sci ; sdi i such that ai ¼ bi ¼ 0 and ci ¼ di ¼ t, then the aggregated linguistic interval-valued intuitionistic fuzzy number, obtained by the existing linguistic interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.20.3), will always be h½s0 ; s0 ; ½sh ; sh i, and hence, the monotonicity property w ‘ai 4a0i 8 i ) ni¼1 ðai Þwi 4 ni¼1 a0i i , where ai ¼ h½sai ; sbi ; ½sci ; sdi i and a0i ¼ h½sa0i ; sb0i ; ½sc0i ; sdi0 i are linguistic interval-valued intuitionistic fuzzy numbers’ will not be satisfied for the existing linguistic interval-valued intuitionistic fuzzy weighted geometric aggregation operator (1.6.20.3).”
1.6 Drawbacks of Some Existing Weighted Geometric Aggregation …
39
1.6.21 Drawbacks of Nancy and Garg’s Single-Valued Neutrosophic Weighted Geometric Aggregation Operator Nancy and Garg [97] proposed (i) The expression (1.6.21.1) to evaluate the multiplication of two single-valued neutrosophic numbers a ¼ ha; b; ci, a1 ¼ ha1 ; b1 ; c1 i and a2 ¼ ha2 ; b2 ; c2 i. *
1b1 ! k 1 k1b2 1 ðka1 1Þðka2 1Þ a1 a2 ¼ logk 1 þ ; 1 logk 1 þ ; k1 k1 1c1 !+ k 1 k1c2 1 1 logk 1 þ ;k[1 k1
ð1:6:21:1Þ (ii) The expression (1.6.21.2) to evaluate the positive power n of a single-valued neutrosophic number a ¼ ha; b; ci. * a ¼ n
logk 1 þ
1 logk
ðka 1Þn
!
k1b 1
n !
; 1 logk 1 þ ðk 1Þn1 ðk 1Þn1 !+ 1c n k 1 1þ ðk 1Þn1
; ð1:6:21:2Þ
Also, using the expression (1.6.21.1) and the expression (1.6.21.2), Nancy and Garg [97] proposed the single-valued neutrosophic weighted geometric aggregation operator (1.6.21.3). * ni¼1 awi i
¼
logk
! ! n n Y Y wi wi ai 1bi ; 1þ ðk 1Þ ; 1 logk 1 þ k 1 i¼1
1 logk 1 þ
n Y
k1ci 1
wi
!+
i¼1
i¼1
ð1:6:21:3Þ where (i) ai ¼ hai ; bi ; ci i, i ¼ 1; 2; . . .; n are n single-valued neutrosophic numbers. (ii) wi is the weight assigned to thePith single-valued neutrosophic number ai ¼ hai ; bi ; ci i such that wi 0 and ni¼1 wi ¼ 1.
1 Appropriate Weighted Averaging Aggregation Operator …
40
Mishra [93] considered a numerical example to show that the existing single-valued neutrosophic weighted geometric aggregation operator (1.6.21.3) is not valid as the monotonicity property is not satisfying for it.
1.7
Drawbacks of Some Existing Weighted Averaging Aggregation Operators Under Various Extensions of the Fuzzy Environment
In this section, the drawbacks of the existing weighted averaging aggregation operators [2, 3, 13, 18, 21, 22, 24, 28, 31–37, 42, 46, 65, 90, 92, 97, 114, 127, 137], defined under various extensions of the fuzzy environment, have been pointed out. It can be easily verified that the same drawbacks are also occurring in the other existing weighted averaging aggregation operators defined under various extensions of fuzzy environment.
1.7.1
Drawbacks of Xu’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
Using the t-norm T ðx; yÞ ¼ xy and the Sðx; yÞ ¼ x þ y xy ¼ 1 ð1 xÞð1 yÞ, Xu [127] proposed
t-conorm
(i) The expression (1.7.1.1) to evaluate the sum of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. ð1:7:1:1Þ
a1 a2 ¼ h1 ð1 l1 Þð1 l2 Þ; m1 m2 i
(ii) The expression (1.7.1.2) to evaluate the multiplication of a positive real number k with an intuitionistic fuzzy number a ¼ hl; mi. D E k a ¼ 1 ð 1 l Þ k ; mk
ð1:7:1:2Þ
Also, using the expression (1.7.1.1) and the expression (1.7.1.2), Xu [127] proposed the intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3). *
ni¼1 ðwi
ai Þ ¼
n n Y Y 1 ð 1 li Þ w i ; mwi i i¼1
i¼1
+ ð1:7:1:3Þ
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
41
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. Beliakov et al. [6] pointed out that if there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted averaging operator (1.7.1.3), will always be h1; 0i. Beliakov et al. [6] further pointed out that due to the mono this drawback, tonicity property “ai 4a0i 8 i ) ni¼1 ðwi ai Þ4 ni¼1 wi a0i where ai ¼ hli ; mi i
and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers” will not be satisfied for the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3). Hence, the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3) is not valid as an aggregation operator is said to be valid if it satisfies the monotonicity property in addition to some other necessary properties [132]. To validate this claim, Beliakov et al. [6] considered the intuitionistic fuzzy numbers a1 ¼ h0:3; 0:2i; a2 ¼ h1; 0i; a01 ¼ h0:5; 0:4i and a02 ¼ h1; 0i. Beliakov et al. [6] claimed that as a2 ¼ a02 and according to the existing approach [127] for comparing intuitionistic fuzzy numbers, a1 a01 . Therefore, according to the monotonicity property, the relation 2i¼1 ðwi ai Þ 2i¼1 wi a0i should hold. While, it can be easily verified that if with w1 ¼ 0:4 and w2 ¼ 0:6. Then, on applying the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3), 2i¼1 ðwi ai Þ 2i¼1 wi a0i ¼ h1; 0i. This clearly indicates that the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3) is not valid.
1.7.2
Drawbacks of Wang and Liu’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
xy Using the t-conorm Sðx; yÞ ¼ 1xþþxyy and the t-norm T ðx; yÞ ¼ 1 þ ð1x Þð1yÞ, Wang and Liu [114] proposed
(i) The expression (1.7.2.1) to evaluate the addition of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼
ð1 þ l1 Þð1 þ l2 Þ ð1 l1 Þð1 l2 Þ 2m1 m2 ; ð1 þ l1 Þð1 þ l2 Þ þ ð1 l1 Þð1 l2 Þ ð2 m1 Þð2 m2 Þ þ m1 m2
ð1:7:2:1Þ
1 Appropriate Weighted Averaging Aggregation Operator …
42
(ii) The expression (1.7.2.2) to evaluate the multiplication of a positive real number with an intuitionistic fuzzy number a ¼ hl; mi. *
ð1 þ lÞk ð1 lÞk
2mk
+
; ð1 þ lÞk þ ð1 lÞk ð2 mÞk þ mk
ka¼
ð1:7:2:2Þ
Also, using the expression (1.7.2.1) and the expression (1.7.2.2), Wang and Liu [114] proposed the intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3). Q Qn ð1 þ li Þwi ni¼1 ð1 li Þwi Qn Qni¼1 wi wi ; i¼1 ð1 þ li Þ þ i¼1 ð1 li Þ Qn wi 2 i¼1 ðmi Þ Qn Q wi n wi i¼1 ð2 mi Þ þ i¼1 ðmi Þ
ni¼1 ðwi ai Þ ¼
ð1:7:2:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned Pn to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and i¼1 wi ¼ 1. Garg [21] pointed out that the following drawbacks in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3). (i) If there exists one intuitionistic fuzzy number ai ¼ hli ; mi i such that mi ¼ 0, then the degree of non-membership of the aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3), will always be 0, i.e., the degree of non-membership of the aggregated intuitionistic fuzzy number ni¼1 ðwi ai Þ is independent from the non-membership degree of the remaining ðn 1Þ intuitionistic fuzzy numbers. To validate the claim, Garg [21] considered the four intuitionistic fuzzy numbers a1 ¼ h0:72; 0i; a2 ¼ h0:63; 0:36i; a3 ¼ h0:31; 0:62i; a4 ¼ h0:71; 0:22i with w1 ¼ 0:2; w2 ¼ 0:3; w3 ¼ 0:4; w4 ¼ 0:1 and showed that aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3), is h0:5517; 0i. Furthermore, Garg [21] claimed that it is obvious that degree of the non-membership of the aggregated intuitionistic fuzzy number is 0, and hence, it may be concluded that the degree of non-membership of the aggregated intuitionistic fuzzy number, obtained by the intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3), is not depending upon the degree of non-membership of the remaining three intuitionistic fuzzy numbers. (ii) The membership value of the aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted averaging operator (1.7.2.3), is
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
43
independent from the change in the membership degree and the non-membership degree of the intuitionistic fuzzy numbers. To validate the claim, Garg [21] considered the four intuitionistic fuzzy numbers a1 ¼ h0:23; 0:35i; a2 ¼ h0:45; 0:23i; a3 ¼ h0:65; 0:17i; a4 ¼ h0:50; 0:20i with w1 ¼ 0:2; w2 ¼ 0:3; w3 ¼ 0:4; w4 ¼ 0:1 and showed that the aggregated intuitionistic fuzzy number, obtained on applying the expression (1.7.2.3), is h0:5060; 0:2196i. Then, Garg [21] replaced the intuitionistic fuzzy numbers a2 ¼ h0:45; 0:23i and a3 ¼ h0:65; 0:17i with the intuitionistic fuzzy numbers a2 ¼ h0:33; 0:23i and a3 ¼ h0:37; 0:17i and showed that the aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy weighted averaging operator (1.7.2.3), is h0:3422; 0:2196i. Furthermore, Garg [21] claimed that it is obvious that in both the cases, the non-membership value of the aggregated intuitionistic fuzzy number is same. Hence, it may be concluded that the non-membership value of the aggregated intuitionistic fuzzy number, obtained by the intuitionistic fuzzy weighted averaging aggregation operator (1.7.2.3), is not depending upon the changes in the membership values of the considered intuitionistic fuzzy numbers.
1.7.3
Drawbacks of Garg’s Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
To resolve the drawbacks of the existing intuitionistic fuzzy weighted averaging operators [114], Garg [21] proposed (i) The expression (1.7.3.1) to evaluate the addition of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. *Q
2 ð 1 þ li Þ Q2i¼1 i¼1 ð1 þ li Þ þ
a1 a2 ¼ 2
nQ 2
Q2 Qi¼1 2
ð 1 li Þ
i¼1 ð1
li Þ
;
o+ Q2 ð 1 l Þ ð 1 l m Þ i i i i¼1 i¼1 Q2 Q2 i¼1 ð1 þ li Þ þ i¼1 ð1 li Þ
ð1:7:3:1Þ
(ii) The expression (1.7.3.2) to evaluate the multiplication of a positive real number k with an intuitionistic fuzzy number a ¼ hl; mi . * ka¼
k
ð1 þ lÞ ð1 lÞ
k
ð1 þ lÞk þ ð1 lÞk
;
n o+ 2 ð1 lÞk ð1 l mÞk ð 1 þ l Þ k þ ð 1 lÞ k
ð1:7:3:2Þ
1 Appropriate Weighted Averaging Aggregation Operator …
44
Also, using the expression (1.7.3.1) and the expression (1.7.3.2), Garg [21] proposed the intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.2).
ni¼1 ðwi
Qn wi Q n wi i¼1 ð1 þ li Þ Qi¼1 ð1 li Þ Q ai Þ ¼ ; n wi n ð1 þ li Þ þ i¼1 ð1 li Þwi Qni¼1 Q wi n wi 2 i¼1 ð1 li Þ i¼1 ð1 li mi Þ Qn Qn wi wi i¼1 ð1 þ li Þ þ i¼1 ð1 li Þ
ð1:7:3:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy number s. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.1), is also occurring in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.3). Therefore, the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.3), will always be h1; 0i. Hence, monotonicity property the ‘ai 4a0i 8 i ) ni¼1 ðwi ai Þ4 ni¼1 wi a0i , where ai ¼ hli ; mi i and a0i ¼ hl0i ; m0i i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.3.3).”
1.7.4
Drawbacks of Yu’s Intuitionistic Fuzzy Interaction Weighted Averaging Aggregation Operator
Yu [137] pointed out the drawbacks of the existing intuitionistic fuzzy interaction weighted averaging aggregation operator [127]. To resolve the drawbacks, Yu [137] proposed (i) The expression (1.7.4.1) to evaluate the sum of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼ h1 ð1 l1 Þð1 l2 Þ; ð1 l1 Þð1 l2 Þ ð1 ðl1 þ m1 ÞÞð1 ðl2 þ m2 ÞÞi
ð1:7:4:1Þ
(ii) The expression (1.7.4.1) to evaluate the multiplication of a positive real number k with an intuitionistic fuzzy number a ¼ hl; mi.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
45
D E k a ¼ 1 ð1 lÞk ; ð1 lÞk ð1 ðl þ mÞÞk
ð1:7:4:2Þ
Also, using the expression (1.7.4.1) and the expression (1.7.4.2), Yu [137] proposed the intuitionistic fuzzy interaction weighted averaging aggregation operator (1.7.4.3). *
ni¼1 ðwi ai Þ ¼
n n n Y Y Y 1 ð1 li Þwi ; ð1 li Þwi ð1 ðli þ mi ÞÞwi i¼1
i¼1
+
i¼1
ð1:7:4:3Þ where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3), is also occurring in the existing intuitionistic fuzzy interaction weighted averaging aggregation operator (1.7.4.3). Therefore, the existing intuitionistic fuzzy interaction weighted averaging aggregation operator (1.7.4.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted interaction averaging aggregation operator (1.7.4.3), will always be h1; 0i. Hence, the monotonicity property ‘ai 4a0i 8 i )
ni¼1 ðwi ai Þ4 ni¼1 wi a0i , where ai ¼ hli ; mi i and a0i ¼ hl0i ; m0i i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy weighted interaction averaging aggregation operator (1.7.4.3).”
1.7.5
Drawbacks of Huang’s Hamacher Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
Using
the
t-norm
Sðx; yÞ ¼
ð1xÞð1yÞð1cÞxy , 1ð1cÞxy
T ðx; yÞ ¼ c þ ð1cÞðxy1xÞð1yÞ
and
the
t-conorm
Huang [65] proposed
(i) The expression (1.7.5.1) to evaluate the addition of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i.
1 Appropriate Weighted Averaging Aggregation Operator …
46
a1 a2 ¼
ð1 l1 Þð1 l2 Þ ð1 cÞl1 l2 ð1 m1 Þð1 m2 Þ ð1 cÞm1 m2 ; 1 ð1 cÞl1 l2 1 ð1 cÞm1 m2
ð1:7:5:1Þ (ii) The expression (1.7.5.2) to evaluate the multiplication of a positive real number with an intuitionistic fuzzy number a ¼ hl; mi. * ka¼
ð1 þ ðc 1ÞlÞk ð1 lÞk
cmk
+
; ð1 þ ðc 1ÞlÞk þ ðc 1Þð1 lÞk ð1 þ ðc 1Þð1 mÞÞk þ ðc 1Þmk ð1:7:5:2Þ
Also, using the expression (1.7.5.1) and the expression (1.7.5.2), Huang [65] proposed the intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3). Q 1Þli Þwi ni¼1 ð1 li Þwi Qn wi wi ; i¼1 ð1 þ ðc 1Þli Þ þ ðc 1Þ i¼1 ð1 li Þ Q c ni¼1 ðmi Þwi Q Qn wi n wi i¼1 ð1 þ ðc 1Þð1 mi ÞÞ þ ðc 1Þ i¼1 ðmi Þ
ni¼1 ðwi ai Þ ¼
Qn
Qn
i¼1 ð1 þ ðc
ð1:7:5:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy numbers. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. Garg [28] pointed out that the following drawbacks in the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3). (i) If there exists one ai ¼ hli ; mi i such that mi ¼ 0, then the degree of non-membership of the aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), will always be 0, i.e., the degree of non-membership of the aggregated intuitionistic fuzzy number ni¼1 ðwi ai Þ is independent from the non-membership degree of the remaining ðn 1Þ intuitionistic fuzzy numbers. To validate the claim, Garg [28] considered the four intuitionistic fuzzy numbers a1 ¼ h0:85; 0i; a2 ¼ h0:35; 0:40i; a3 ¼ h0:55; 0:35i; a4 ¼ h0:76; 0:17i with w1 ¼ 0:2; w2 ¼ 0:3; w3 ¼ 0:4; w4 ¼ 0:1, c ¼ 1 and showed that aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is h0:6212; 0i. Furthermore, Garg [28] claimed that it is obvious that degree of the non-membership of the aggregated intuitionistic fuzzy number is 0, and hence,
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
47
it may be concluded that the degree of non-membership of the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is not depending upon the degree of non-membership of the remaining three intuitionistic fuzzy numbers. (ii) The membership value of the aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is independent from the change in the membership degree and the non-membership degree of the intuitionistic fuzzy numbers. To validate the claim, Garg [28] considered the four intuitionistic fuzzy number s a1 ¼ h0:85; 0i; a2 ¼ h0:35; 0:40i; a3 ¼ h0:55; 0:35i; a4 ¼ h0:76; 0:17i with w1 ¼ 0:2; w2 ¼ 0:3; w3 ¼ 0:4; w4 ¼ 0:1, c ¼ 1 and showed that aggregated intuitionistic fuzzy number, obtained on applying the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is h0:6212; 0i. Then, Garg [28] replaced the intuitionistic fuzzy numbers a2 ¼ h0:35; 0:40i and a3 ¼ h0:55; 0:35i with the intuitionistic fuzzy numbers a2 ¼ h0:45; 0:40i and a3 ¼ h0:15; 0:35i; and showed that the aggregated intuitionistic fuzzy number, obtained on applying the intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is h0:5354; 0i. Furthermore, Garg [28] claimed that it is obvious that in both the cases, the non-membership value of the aggregated intuitionistic fuzzy number is same, and hence, it may be concluded that the non-membership value of the aggregated intuitionistic fuzzy number, obtained by the intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.5.3), is not depending upon the changes in the membership values of the considered intuitionistic fuzzy numbers.
1.7.6
Drawbacks of Garg’s Intuitionistic Fuzzy Hamacher Weighted Averaging Aggregation Operator
To resolve the drawbacks of the existing intuitionistic fuzzy weighted averaging aggregation operators [65], Garg [28] proposed (i) The expression (1.7.6.1) to evaluate the addition of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i.
ð1 þ ðc 1Þl1 Þð1 þ ðc 1Þl2 Þ ð1 l1 Þð1 l2 Þ ; ð1 þ ðc 1Þl1 Þð1 þ ðc 1Þl2 þ ðc 1Þð1 l1 Þð1 l2 ÞÞ cð1 l1 Þð1 l2 Þ cð1 l1 m1 Þð1 l2 m2 Þ ð1 þ ðc 1Þl1 Þð1 þ ðc 1Þl2 þ ðc 1Þð1 l1 Þð1 l2 ÞÞ
a1 a2 ¼
ð1:7:6:1Þ
1 Appropriate Weighted Averaging Aggregation Operator …
48
(ii) The expression (1.7.6.2) to evaluate the positive power k of an intuitionistic fuzzy number a ¼ hl; mi. * ka¼
ð1 þ ðc 1ÞlÞk ð1 lÞk ð1 þ ðc 1ÞlÞk þ ðc 1Þð1 lÞk + cð1 lÞk cð1 l mÞk
; ð1:7:6:2Þ
ð1 þ ðc 1ÞlÞk þ ðc 1Þð1 lÞk Also, using the expression (1.7.6.1) and the expression (1.7.6.2), Garg [28] proposed the intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.6.3). Q 1Þli Þwi ni¼1 ð1 li Þwi Qn ai Þ ¼ wi wi ; i¼1 ð1 þ ðc 1Þli Þ þ ðc 1Þ i¼1 ð1 li Þ Qn Q c i¼1 ð1 li Þwi ni¼1 ð1 li mi Þwi Qn Qn wi wi i¼1 ð1 þ ðc 1Þli Þ þ ðc 1Þ i¼1 ð1 li Þ Qn
ni¼1 ðwi
Qn
i¼1 ð1 þ ðc
ð1:7:6:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy number s. (ii) wi is the weight assigned P to the ith intuitionistic fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3), is also occurring in the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.6.3). Therefore, the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.6.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.6.3), will always be 1; 0. Hence, the monotonicity property ‘ai 4a0i 8 i )
ni¼1 ðwi ai Þ4 ni¼1 wi a0i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy Hamacher weighted averaging aggregation operator (1.7.6.3).”
1.7.7
Drawbacks of Chen et al.’s Linguistic Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
Chen et al. [13] proposed
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
49
(i) The expression (1.7.7.1) the addition of D to evaluate E D E two linguistic intuitionistic fuzzy numbers a1 ¼ sa11 ; sa21
and a2 ¼ sa12 ; sa22 .
* a1 a2 ¼
+ s
a1
tt 1 t1
a1
1 t2
; s 2 2 a
1 t
t
ð1:7:7:1Þ
a
2 t
(ii) The expression (1.7.7.2) to evaluate the multiplication of a non-negative real number k with a linguistic intuitionistic fuzzy number a ¼ hsa1 ; sa2 i. ka¼
s
1 k
ttð1at
Þ
;s
ð1:7:7:2Þ
2 k
tðat
Þ
Also, using the expression (1.7.7.1) and the expression (1.7.7.2), Chen et al. [13] proposed the linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3) and its extensions. *
ni¼1 ðwi
ai Þ ¼
+ s tt
n Q i¼1
wi ; s Q
2 wi n a1 a i i
1 t
t
ð1:7:7:3Þ
t i¼1
where (i) ai ¼ ha1i ; a2i i, i ¼ 1; 2; . . .; n are n linguistic intuitionistic fuzzy numbers. assigned to the ith linguistic intuitionistic fuzzy number (ii) wi is the weight
P ai ¼ a1i ; a2i such that wi [ 0 and ni¼1 wi ¼ 1. (iii) 0 a1i t; 0 a2i t, (iv) t is a non-negative integer. (v) a1i þ a2i t. Garg and Kumar [42] pointed out that the following drawbacks in the existing linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3). The non-membership value of the aggregated linguistic intuitionistic fuzzy number, obtained on applying the existing linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3), is independent from the change in the non-membership degree of the linguistic intuitionistic fuzzy numbers. To validate the claim, Garg and Kumar [42] considered the four linguistic intuitionistic fuzzy numbers a1 ¼ hs4 ; s3 i; a2 ¼ hs2 ; s4 i; a3 ¼ hs5 ; s1 i; a4 ¼ hs4 ; s2 i with w1 ¼ 0:3; w2 ¼ 0:2; w3 ¼ 0:2; w4 ¼ 0:2 and showed that aggregated linguistic intuitionistic fuzzy number, obtained on applying the linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3), is hs3:7233 ; s2:5139 i. Then, Garg and Kumar [42] obtained the linguistic intuitionistic fuzzy numbers b1 ¼ by replacing the hs4 ; s1 i; b2 ¼ hs2 ; s2 i; b3 ¼ hs5 ; s3 i; b4 ¼ hs4 ; s4 i non-membership values s3 , s4 , s1 and s2 with s1 ; s2 ; s3 and s4 , respectively, and
1 Appropriate Weighted Averaging Aggregation Operator …
50
showed that the aggregated linguistic intuitionistic fuzzy number, obtained on applying the linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3), is hs3:7233 ; s2:5139 i. Furthermore, Garg and Kumar [42] claimed that it is obvious that in both the cases, the non-membership value of the aggregated linguistic intuitionistic fuzzy number is same, and hence, it may be concluded that the non-membership value of the aggregated linguistic intuitionistic fuzzy number, obtained by the linguistic intuitionistic fuzzy weighted averaging aggregation operator (1.7.7.3), is not depending upon the changes in the non-membership values of the considered linguistic intuitionistic fuzzy numbers, which is illogical.
1.7.8
Drawbacks of Arora and Garg’s Linguistic Intuitionistic Fuzzy Prioritized Weighted Averaging Aggregation Operator
Arora and Garg [3] proposed (i) The expression (1.7.8.1) the addition ofE two linguistic intuitionistic D evaluates E D fuzzy numbers a1 ¼ sa11 ; sa21 and a2 ¼ sa12 ; sa22 . * a1 a2 ¼
+ s
1 t
a
1 t
þ
a
1 3
1 t
a
2 t
þ
a
1 1 ; s 1 1 3
2 t
a
1 t
a
2 t
t
a a 1 2 t2
ð1:7:8:1Þ
(ii) The expression (1.7.8.2) to evaluate the multiplication of a non-negative real number k with a linguistic intuitionistic fuzzy number a ¼ hsa1 ; sa2 i. ka¼
s a1 a2 k a1 k ; s a2 k t ð t þ t Þ ð t Þ t 2 t
ð1:7:8:2Þ
(iii) The expression (1.7.8.3) to evaluate the score of a linguistic intuitionistic fuzzy number a ¼ hsa1 ; sa2 i. Sð aÞ ¼
1 t þ a1 a2 2
(v) The expression (1.7.8.4) to evaluate the total score value.
ð1:7:8:3Þ
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
T ð ah Þ ¼
51
n Y Sð ah Þ ; h ¼ 2; 3; . . .; n with T ða1 Þ ¼ 1 t p¼2 p 6¼ h
ð1:7:8:4Þ
Also, using the expressions (1.7.8.1)–(1.7.8.4), Arora and Garg [3] proposed the linguistic intuitionistic fuzzy prioritized averaging aggregation operator (1.7.8.5).
nh¼1
* T ð ah h Þ ah ¼ s Rnh¼1 ðT ðah ÞÞ
+ t
1
Qn i¼1
a1 1 th
T ðah Þ Rn ðT ðah ÞÞ h¼1
!; s t
T ðah Þ Qn a2h Rnh¼1 ðT ðah ÞÞ i¼1
t
ð1:7:8:5Þ It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3), is also occurring in the linguistic intuitionistic fuzzy prioritized averaging aggregation operator (1.7.8.5). Therefore, the linguistic intuitionistic fuzzy prioritized averaging aggregation operator (1.7.8.5) is not valid. D E “If there exists a linguistic intuitionistic fuzzy number ai ¼ sa1i ; sa2i
such that
¼ t and ¼ 0, then the aggregated linguistic intuitionistic fuzzy number, obtained by the existing linguistic intuitionistic fuzzy prioritized averaging aggregation operator (1.7.8.5), will always behst ; s0 i. Hence, the monotonicity property 0 T a ð Þ Pn h 0 PnT ðah Þ a0h ; where ‘ai 4a0i 8 i ) nh¼1 ah 4 nh¼1 ðT ðah ÞÞ ðT ðah ÞÞ h¼1 h¼1
ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are linguistic intuitionistic fuzzy numbers will not be satisfied for the existing linguistic intuitionistic fuzzy prioritized averaging aggregation operator (1.7.8.5).” a1i
1.7.9
a2i
Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Averaging Aggregation Operator
Arora and Garg [2] proposed (i) The expression (1.7.9.1) to evaluate the addition of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ h1 ð1 l11 Þð1 l12 Þ; m11 m12 i
ð1:7:9:1Þ
(ii) The expression (1.7.9.2) to evaluate the multiplication of a positive real number k with the intuitionistic fuzzy soft number a ¼ hl; mi.
1 Appropriate Weighted Averaging Aggregation Operator …
52
D E k a ¼ 1 ð 1 l Þ k ; mk
ð1:7:9:2Þ
Using the expression (1.7.9.1) and the expression (1.7.9.2), Arora and Garg [2] proposed the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3).
m j¼1
nj
ni¼1
¼ gi aij
* 1
m n Y Y j¼1
i¼1
1 lij
gi
! nj ;
m n Y Y j¼1
! nj + g miji
i¼1
ð1:7:9:3Þ where (i) (ii) (iii) (c)
gi [ 0. P n i¼1 gi ¼ 1. nj [ 0. Pm j¼1 nj ¼ 1:
Garg and Arora [32] pointed out the following drawbacks in the existing intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3)
(i) If there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that mij ¼ 0, then the non-membership values of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3), will
be 0, i.e., if there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that mij ¼ 0, then the non-membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3), will be independent from the non-membership values of remaining intuitionistic fuzzy soft numbers, which is illogical. To validate this claim, Garg and Arora [32] considered the intuitionistic fuzzy soft numbers a11 ¼ h0:5; 0i, a12 ¼ h0:6; 0:3i, a21 ¼ h0:4; 0:5i, a22 ¼ h0:7; 0:2i with g1 ¼ 0:7, g2 ¼ 0:3; n1 ¼ 0:4; n2 ¼ 0:6 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3), is h0:5126; 0i. It is obvious that the non-membership value of the aggregated intuitionistic fuzzy soft number is 0. (ii) The non-membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft prioritized averaging aggregation operator (1.7.9.3), is independent from the changes in the degree of membership values of the considered intuitionistic fuzzy soft numbers. To validate this claim, Garg and Arora [32], firstly, considered the intuitionistic fuzzy soft numbers a11 ¼ h0:3; 0:6i, a12 ¼ h0:4; 0:3i, a21 ¼ h0:6; 0:2i,
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
53
a22 ¼ h0:7; 0:1i with g1 ¼ 0:6, g2 ¼ 0:4; n1 ¼ 0:8; n2 ¼ 0:2 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3), is h0:5268; 0:2730i. Then, Garg and Arora [32] replaced the intuitionistic fuzzy soft numbers a12 ¼ h0:4; 0:3i and a22 ¼ h0:7; 0:1i with the intuitionistic fuzzy soft numbers b12 ¼ h0:6; 0:3i and b22 ¼ h0:8; 0:1i. Garg and Arora [32] claimed that the new aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.9.3), is h0:55565; 0:2730i.
1.7.10 Drawbacks of Arora and Garg’s Intuitionistic Fuzzy Soft Weighted Prioritized Averaging Aggregation Operator Arora and Garg [2] proposed (i) The expression (1.7.10.1) to evaluate the addition of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. ð1:7:10:1Þ
a11 a12 ¼ h1 ð1 l11 Þð1 l12 Þ; m11 m12 i
(ii) The expression (1.7.10.2) to evaluate the multiplication of a positive real number k with the intuitionistic fuzzy soft number a ¼ hl; mi. D E k a ¼ 1 ð 1 l Þ k ; mk
ð1:7:10:2Þ
Using the expression (1.7.10.1) and the expression (1.7.10.2), Arora and Garg [2] proposed the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator aggregation operator (1.7.10.3).
m j¼1
¼ nj ni¼1 gi aij
* 1
m n Y Y j¼1
i¼1
1 lij
gi
! nj ;
m n Y Y j¼1
! nj + g miji
i¼1
ð1:7:10:3Þ where (i) gi ¼ PRn i i¼1
Ri
S aip , i ¼ 2; 3; . . .; n: Q with T1 ¼ 1 and Tj ¼ np¼2 S ajp , j ¼ 2; 3; . . .; m: with R1 ¼ 1 and Ri ¼
T (ii) nj ¼ Pmj Tj j¼1 (iii) S aij ¼ lij mij .
Qn
p¼2
54
1 Appropriate Weighted Averaging Aggregation Operator …
Garg and Arora [32] pointed out the following drawbacks in the existing intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3)
(i) If there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that mij ¼ 0, then the non-membership values of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3), will be 0, i.e., if there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that mij ¼ 0, then the non-membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3), will be independent from the non-membership values of remaining intuitionistic fuzzy soft numbers, which is illogical. To validate this claim, Garg and Arora [32] considered the intuitionistic fuzzy soft numbers a11 ¼ h0:5; 0i, a12 ¼ h0:6; 0:3i, a21 ¼ h0:4; 0:5i, a22 ¼ h0:7; 0:2i with g1 ¼ 0:7, g2 ¼ 0:3; n1 ¼ 0:4; n2 ¼ 0:6 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3), is h0:5144; 0i. It is obvious that the non-membership value of the aggregated intuitionistic fuzzy soft number is 0. (ii) The non-membership value of the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator aggregation operator (1.7.10.3), is independent from the changes in the degree of membership values of the considered intuitionistic fuzzy soft numbers. To validate this claim, Garg and Arora [32], firstly, considered the intuitionistic fuzzy soft numbers a11 ¼ h0:3; 0:6i, a12 ¼ h0:4; 0:3i, a21 ¼ h0:6; 0:2i, a22 ¼ h0:7; 0:1i with g1 ¼ 0:6, g2 ¼ 0:4; n1 ¼ 0:8; n2 ¼ 0:2 and claimed that the aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3), is h0:3966; 0:4423i. Then, Garg and Arora [32] replaced the intuitionistic fuzzy soft numbers a12 ¼ h0:4; 0:3i and a22 ¼ h0:7; 0:1i with the intuitionistic fuzzy soft numbers b12 ¼ h0:6; 0:3i and b22 ¼ h0:8; 0:1i. Garg and Arora [32] claimed that the new aggregated intuitionistic fuzzy soft number, obtained by the intuitionistic fuzzy soft weighted prioritized averaging aggregation operator (1.7.10.3), is h0:4140; 0:4423i. It is obvious that the non-membership value of the new aggregated intuitionistic fuzzy soft number is also 0:4423.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
55
1.7.11 Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Weighted Interaction Averaging Aggregation Operator Garg and Arora [32] proposed (i) The expression (1.7.11.1) to evaluate the addition of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ h1 ð1 l11 Þð1 l12 Þ; ð1 l11 Þð1 l12 Þ ð1 l11 m11 Þð1 l12 m12 Þi
ð1:7:11:1Þ
(ii) The expression (1.7.11.2) to evaluate the multiplication of a positive real number k with the intuitionistic fuzzy soft number a ¼ hl; mi. D E k a ¼ 1 ð1 lÞk ; ð1 lÞk ð1 l mÞk
ð1:7:11:2Þ
Using the expression (1.7.11.1) and the expression (1.7.11.2), Garg and Arora [32] proposed the intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3).
m j¼1
nj
ni¼1
gi aij
* ¼
m n Y Y g 1 1 lij i j¼1
m Y
n Y
j¼1
i¼1
!nj
i¼1
1 lij mij
m n Y Y g ; 1 lij i j¼1
gi
!nj +
!nj
i¼1
ð1:7:11:3Þ Mishra et al. [96] pointed out that an aggregation operator is said to be valid if and only if it satisfies some necessary properties.
The monotonicity
property n 0 m m n 0 “aij 4aij ) j¼1 nj i¼1 gi aij 4 j¼1 nj i¼1 gi aij 8 i; j D E
where aij ¼ lij ; mij and a0ij ¼ l0ij ; m0ij are intuitionistic fuzzy soft numbers” is one of these necessary properties [93, 95]. Mishra et al. [96] further pointed out that although Garg and Arora [32] have claimed that for the intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3), the monotonicity property is not satisfying. But, in actual case, for the intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3), the monotonicity property is not satisfying. Therefore, the intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3) is not valid.
56
1 Appropriate Weighted Averaging Aggregation Operator …
To validate this claim, Mishra et al. [96] pointed out that according to the n monotonicity property, the relation
m ¼ j¼1 nj i¼1 gi aij
n 0
m should hold only if lij ¼ l0ij ; mij ¼ m0ij for all i; j i.e., j¼1 nj i¼1 gi aij aij ¼ a0ij for all i; j, i.e., if there exist the intuitionistic fuzzy soft numbers aij ¼ D E
lij ; mij and a0ij ¼ l0ij ; m0ij for which the condition lij ¼ l0ij ; mij ¼ m0ij 8 i; j n ¼ does not hold. But, the relation
m j¼1 nj i¼1 gi aij
n 0
m hold. Then the intuitionistic fuzzy soft weighted j¼1 nj i¼1 gi aij interaction averaging aggregation operator (1.7.11.3) will not be valid. Mishra et al. [96] considered the following example to show that the monotonicity property is not satisfying for the intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3). Example 1.7.11.1 Let us consider preference of the ith expert for the alternatives A D E
and B with respect to the jth attribute be represented by the element aAij ¼ lAij ; mAij D E
¼ and the element aBij ¼ lBij ; mBij , respectively, of the matrix A ¼ aAij 22
h0:6; 0:3i h1:0; 0:0i ¼ and the matrix B ¼ aBij ¼ lAij ; mAij h0:7; 0:2i h0:4; 0:5i 22 22 22
h0:5; 0:4i h1:0; 0:0i lBij ; mBij ¼ : h0:6; 0:3i h0:3; 0:6i 22 It is obvious from the matrices A and B that
(i) aA11 ¼ lA11 ; mA11 ¼ h0:6; 0:3i is greater than aB11 ¼ lB11 ; mB11 ¼ h0:5; 0:4i lA11 ¼ 0:6 is greater than lB11 ¼ 0:5 and mA11 ¼ 0:3 is less than mB11 ¼ 0:4.
(ii) aA12 ¼ lA12 ; mA12 ¼ h1:0; 0:0i is equal to aB12 ¼ lB12 ; mB12 ¼ h1:0; 0:0i lA12 ¼ lB12 ¼ 1:0 and mA12 ¼ mB12 ¼ 0:0.
(iii) aA21 ¼ lA21 ; mA21 ¼ h0:7; 0:2i is greater than aB21 ¼ lB21 ; mB21 ¼ h0:6; 0:3i lA21 ¼ 0:7 is greater than lB21 ¼ 0:6 and mA21 ¼ 0:2 is less than mB21 ¼ 0:3.
(iv) aA22 ¼ lA22 ; mA22 ¼ h0:4; 0:5i is greater than aB22 ¼ lB22 ; mB22 ¼ h0:3; 0:6i lA22 ¼ 0:4 is greater than lB22 ¼ 0:3 and mA22 ¼ 0:5 is less than mB22 ¼ 0:6.
as as as as
aB11 ; aA12 ¼ aB12 ; aA21 aB21 and aA22 aB22 , i.e., B B B B a11 ; a12 ; a21 ; a22 . So, according to the monotonicity property, the existing intuitionistic fuzzy soft interaction averaging operator
aggregation
Since, aA11 A A A A a11 ; a12 ; a21 ; a22
(1.7.11.3) will be valid only if the relation 2j¼1 nj 2i¼1 gi aAij
2j¼1 nj 2i¼1 gi aBij holds.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
57
While, using the existing intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3),
2j¼1 nj 2i¼1 gi aAij 2j¼1 nj 2i¼1 gi aBij ¼ h1; 0i: This clearly indicates that the monotonicity property is not satisfying for the existing intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3). Hence, the existing intuitionistic fuzzy soft weighted interaction averaging aggregation operator (1.7.11.3) is not valid. Mishra et al. [96] used the following procedure to point out that the expression (1.7.11.1), proposed by Garg and Arora [32], is not valid. If ai ¼ hli ; mi i; i ¼ 1; 2; . . .; n are n intuitionistic fuzzy soft numbers, then the expression (1.7.11.1) can be generalized as the expression (1.7.11.4). *
ni¼1 ai
¼
1
n Y
ð1 li Þ;
i¼1
n Y
ð1 li Þ
i¼1
n Y
+ ð1 li mi Þ
ð1:7:11:4Þ
i¼1
If there exists an intuitionistic fuzzy soft number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then *
ni¼1 ai ¼ * ¼
n n n Y Y Y 1 ð1 li Þ; ð1 li Þ ð1 li mi Þ i¼1
1 ð1 li Þ
i¼1
i¼1
n1 Y
n1 Y
i¼1
i¼1
ð1 li Þ; ð1 li Þ
n1 Y ð1 li mi Þ ð1 li mi Þ
+
ð1 li Þ
i¼1
* ¼
+
1 ð1 1ÞÞ
n1 Y
ð1 li Þ; ð1 1Þ
i¼1
ð1 1 0Þ
n1 Y
+ ð1 li mi Þ
n1 Y ð1 li Þ i¼1
¼ h1; 0i
i¼1
This indicates that if there exists a ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0. Then, ni¼1 ai is independent from the remaining ai ¼ hli ; mi i; i ¼ 1; 2; . . .; n 1; which is mathematically incorrect.
1 Appropriate Weighted Averaging Aggregation Operator …
58
1.7.12 Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Possibility Weighted Averaging Aggregation Operator Garg and Arora [37] proposed (i) The expression (1.7.12.1) to evaluate the addition of two possibility intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 ; p11 i, a12 ¼ hl12 ; m12 ; p12 i. a11 a12 ¼ h1 ð1 l11 Þð1 l12 Þ; m11 m12 ; 1 ð1 p11 Þð1 p12 Þi ð1:7:12:1Þ (ii) The expression (1.7.12.2) to evaluate the multiplication of a positive real number k with the possibility intuitionistic fuzzy soft number a ¼ hl; m; pi. D E k a ¼ 1 ð 1 lÞ k ; m k ; 1 ð 1 p Þ k
ð1:7:12:2Þ
Using the expression (1.7.12.1) and the expression (1.7.12.2), Garg and Arora [37] proposed the possibility intuitionistic fuzzy soft possibility weighted averaging aggregation operator (1.7.12.3).
n
m j¼1 nj i¼1 gi aij
* ¼
1
m n Y Y j¼1
1
m n Y Y j¼1
1 lij
i¼1
1 pij
gi
gi
!nj
!nj +
;
m n Y Y j¼1
!nj g miji
;
i¼1
i¼1
ð1:7:12:3Þ It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the intuitionistic fuzzy soft possibility weighted averaging aggregation operator (1.7.12.3). Therefore, the existing intuitionistic fuzzy soft possibility weighted averaging aggregation operator (1.7.12.3) is not valid.
“If there exists a possibility intuitionistic fuzzy soft number aij ¼ lij ; mij ; pij such that lij ¼ 1, mij ¼ 0 and pij ¼ 0, then the aggregated possibility intuitionistic fuzzy soft number, obtained by the existing intuitionistic fuzzy soft possibility weighted averaging aggregation operator (1.7.12.3), will always be h1; 0; 0i. Hence,
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
59
n monotonicity property ‘aij 4a0ij 8 i ) m 4 j¼1 nj i¼1 gi aij
D E
n 0 , where aij ¼ lij ; mij ; pij and a0ij ¼ l0ij ; m0ij ; p0ij are
m j¼1 nj i¼1 gi aij
the
possibility intuitionistic fuzzy numbers’ will not be satisfied for the existing intuitionistic fuzzy soft possibility weighted averaging aggregation operator (1.7.12.3).”
1.7.13 Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Power Weighted Averaging Aggregation Operator Garg and Arora [36] proposed (i) The expression (1.7.13.1) to evaluate the addition of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i.
a11 a12 ¼ p1 ðpðl11 Þ þ pðl12 ÞÞ; q1 ðqðm11 Þ þ qðm12 ÞÞ
ð1:7:13:1Þ
(ii) The expression (1.7.13.2) to evaluate the multiplication of a positive realumber k with the possibility intuitionistic fuzzy soft number a ¼ hl; mi.
k a ¼ p1 ðpðkl11 Þ þ pðkl12 ÞÞ; q1 ðqðkm11 Þ þ qðkm12 ÞÞ
ð1:7:13:2Þ
where (i) p : ½0; 1 ! ½0; 1 is a continuous increasing function with pð0Þ ¼ 0. (ii) q : ½0; 1 ! ½0; 1 is a continuous decreasing function with qð1Þ ¼ 0. (iii) qð xÞ ¼ pð1 xÞ. Using the expression (1.7.13.1) and the expression (1.7.13.2), Garg and Arora [36] proposed the intuitionistic fuzzy soft power weighted averaging aggregation operator (1.7.13.3).
m j¼1
nj
ni¼1
gi aij
* ¼
p
1
m X
nj
n X
j¼1
q
1
m X j¼1
nj
gi p lij
i¼1 n X
gi q mij
!!
!!+
; ð1:7:13:3Þ
i¼1
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the existing intuitionistic fuzzy soft power weighted averaging aggregation operator (1.7.13.3). Therefore, the existing intuitionistic fuzzy soft power weighted averaging aggregation operator (1.7.13.3) is not valid.
60
1 Appropriate Weighted Averaging Aggregation Operator …
“If there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy soft number, obtained by the existing intuitionistic fuzzy soft power weighted averaging aggregation operator (1.7.13.3), will always be h1; 0i. Hence, the monotonicity
property n 0 m m n 0 ‘aij 4aij 8 i ) j¼1 nj i¼1 gi aij 4 j¼1 nj i¼1 gi aij , D E
where aij ¼ lij ; mij and a0ij ¼ l0ij ; m0ij are intuitionistic fuzzy soft numbers’ will not be satisfied for the existing intuitionistic fuzzy soft power weighted averaging aggregation operator (1.7.13.3).”
1.7.14 Drawbacks of Garg and Arora’s Intuitionistic Fuzzy Soft Bonferroni Mean Aggregation Operator Garg and Arora [34] proposed (i) The expression (1.7.14.1) to evaluate the addition of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ h1 ð1 l11 Þð1 l12 Þ; m11 m12 i
ð1:7:14:1Þ
(ii) The expression (1.7.14.2) to evaluate the multiplication of two intuitionistic fuzzy soft numbers a11 ¼ hl11 ; m11 i, a12 ¼ hl12 ; m12 i. a11 a12 ¼ hl11 l12 ; 1 ð1 m11 Þð1 m12 Þi
ð1:7:14:2Þ
(iii) The expression (1.7.14.3) to evaluate the multiplication of a positive real number k with the intuitionistic fuzzy soft number a ¼ hl; mi. D E k a ¼ 1 ð 1 l Þ k ; mk
ð1:7:14:3Þ
(iv) The expression (1.7.14.4) to evaluate the positive power k of an intuitionistic fuzzy soft number a ¼ hl; mi. D E ak ¼ lk ; 1 ð1 mÞk
ð1:7:14:4Þ
Using the expressions (1.7.14.1)–(1.7.14.4), Garg and Arora [34] proposed the intuitionistic fuzzy soft Bonferroni mean aggregation operator (1.7.14.5).
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
0
61
1p þ1 q
B 1 p q C m n B C @mnðm 1Þðn 1Þ k; l ¼ 1 i; j ¼ 1 aik ajl A 0
0
k 6¼ l
i 6¼ j
11p þ1 q
CC B *B m n B CC B Y 1
Y B B p q mnðm1Þðn1Þ CC ¼ B1 B 1 lik ljl CC B CC B @ AA @ k; l ¼ 1 i; j ¼ 1 k 6¼ l i 6¼ j 0
;
ð1:7:14:5Þ 1p þ1 q
C B m n B Y Y q mnðm11 Þðn1Þ C C B p 1 B1 1 ð1 mik Þ 1 mjl C C B A @ k; l ¼ 1 i; j ¼ 1 k 6¼ l i ¼ 6 j
+
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the intuitionistic fuzzy soft Bonferroni mean aggregation operator (1.7.14.5). Therefore, the existing intuitionistic fuzzy soft Bonferroni mean aggregation operator (1.7.14.5) is not valid.
“If there exists an intuitionistic fuzzy soft number aij ¼ lij ; mij such that lij ¼ 0 and mij ¼ 1, then the aggregated intuitionistic fuzzy soft number, obtained by the existing intuitionistic fuzzy soft Bonferroni mean aggregation operator (1.7.14.5), will always be h1; 0i. Hence, the monotonicity property ‘aij 4a0ij 8 i; j ) 0 1p þ1 q
B p q C @mnðm11 Þðn1Þ mk; l ¼ 1 ni; j ¼ 1 aik ajl A 4 k 6¼ l i 6¼ j 0 1p þ1 q
p q
B C @mnðm11 Þðn1Þ mk; l ¼ 1 ni; j ¼ 1 a0ij a0jl A , where aij ¼ lij ; mij i 6¼ j D Ek 6¼ l and a0ij ¼ l0ij ; m0ij are intuitionistic fuzzy soft numbers’ will not be satisfied for the
existing intuitionistic fuzzy soft Bonferroni mean aggregation operator (1.7.14.5).”
1 Appropriate Weighted Averaging Aggregation Operator …
62
1.7.15 Drawbacks of Garg and Arora’s Generalized Intuitionistic Fuzzy Soft Weighted Averaging Aggregation Operator Garg and Arora [35] proposed the generalized intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.15.1). *
ni¼1 ðwi
ai Þ ¼
l bi 1
n Y i¼1
! ð1 l i Þ
wi
; m bi þ
n Y i¼1
mwi i
m bi
n Y
+ mwi i
i¼1
ð1:7:15:1Þ It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.1.3), is also occurring in the existing generalized intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.15.1). Therefore, the existing generalized intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.15.1) is not valid.
“If there exists an intuitionistic fuzzy soft number ai ¼ lij ; mij such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy soft number, obtained by the existing generalized intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.15.1), will always be h1; 0i. Hence, the monotonicity property
‘ai 4a0i 8 i; j ) ni¼1 ðwi ai Þ4 ni¼1 ðwi ai Þ, where ai ¼ lij ; mij and a0ij ¼ D E l0ij ; m0ij are intuitionistic fuzzy soft numbers’ will not be satisfied for the existing generalized intuitionistic fuzzy soft weighted averaging aggregation operator (1.7.15.1).”
1.7.16 Drawbacks of Garg and Arora’s Dual Hesitant Fuzzy Soft Weighted Averaging Aggregation Operator Garg and Arora [33] proposed (i) The expression (1.7.16.1) to evaluate the addition of two dual hesitant fuzzy soft sets a11 ¼ hfh11 g; fg11 gi and a12 ¼ hfh12 g; fg12 gi.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
[
a11 a12 ¼
63
1
l ðlðc11 Þ þ lðc12 ÞÞ ; k1 ðk ðd11 Þ þ kðd12 ÞÞ
c11 2 h11 ; c12 2 h12 ; d11 2 g11 ; d12 2 g12 ð1:7:16:1Þ (ii) The expression (1.7.16.2) to evaluate the multiplication of a positive real number k with a dual hesitant fuzzy soft set a ¼ hfhg; fggi. ka¼
[
l1 ðklðcÞÞ ; k 1 ðkkðdÞÞ c2h d2g
ð1:7:16:2Þ
where (i) l : ½0; 1 ! ½0; 1 is a continuous increasing function with lð0Þ ¼ 0. (ii) k : ½0; 1 ! ½0; 1 is a continuous decreasing function with k ð1Þ ¼ 0. (iii) lð xÞ ¼ k ð1 xÞ. Using the expressions (1.7.16.1) and the expression (1.7.16.2), Garg and Arora [33] proposed the dual hesitant fuzzy soft weighted averaging aggregation operator (1.7.16.3).
m j¼1
nj
ni¼1
gi aij
*
[
¼ c
(
1
l
m X j¼1
ij 2 hij
nj
n X gi l cij
k
m X j¼1
nj
;
i¼1
dij 2 hij 1
!!
n X gi k dij
!!)+
i¼1
ð1:7:16:3Þ It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.3), is also occurring in the existing dual hesitant fuzzy soft weighted averaging aggregation operator (1.7.16.3). Therefore, the existing dual hesitant fuzzy soft weighted averaging aggregation operator (1.7.16.3) is not valid.
“If there exists one dual hesitant fuzzy soft number aij ¼ hij ; gij such that hij ¼ f1g and gij ¼ f0g, then the aggregated dual hesitant fuzzy number, obtained on applying the existing dual hesitant fuzzy soft weighted averaging aggregation operator (1.7.16.3), will be h1; 0i. Hence,
the monotonicity
property n 0 m m n 0 ‘aij 4aij 8 i; j ) j¼1 nj i¼1 gi aij 4 j¼1 nj i¼1 gi aij ,
1 Appropriate Weighted Averaging Aggregation Operator …
64
D E
where aij ¼ lij ; mij and a0ij ¼ l0ij ; m0ij are dual hesitant fuzzy soft numbers’ will not be satisfied.”
1.7.17 Drawbacks of Garg’s Intuitionistic Fuzzy Multiplicative Averaging Aggregation Operator Garg [24] pointed out the drawbacks of the existing intuitionistic fuzzy multiplicative averaging aggregation operator [124]. To resolve the drawbacks, Garg [24] proposed (i) The expression (1.7.17.1) to evaluate the sum of two intuitionistic fuzzy multiplicative numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼
ð1 þ 2l1 Þð1 þ 2l2 Þ 1 2f1 ð1 l1 m1 Þð1 l2 m2 Þg ; 2 ð1 þ 2l1 Þð1 þ 2l2 Þ 1
ð1:7:17:1Þ
(ii) The expression (1.7.17.2) to evaluate the multiplication of a positive real number k with an intuitionistic fuzzy multiplicative number a ¼ hl; mi. * ka¼
n o k + 2 1 ð 1 lm Þ ð1 þ 2lÞ 1 ; 2 ð1 þ 2lÞk 1 k
ð1:7:17:2Þ
Also, using the expression (1.7.17.1) and the expression (1.7.17.2), Garg [24] proposed the intuitionistic fuzzy multiplicative averaging aggregation operator (1.7.17.3). Q n
ni¼1 ðwi
ai Þ ¼
i¼1 ð1 þ 2li Þ
2
wi
Qn w 1 2 1 i¼1 ð1 li mi Þ i ; Qn wi i¼1 ð1 þ 2li Þ 1
ð1:7:17:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n intuitionistic fuzzy multiplicative numbers. (ii) wi is the weight assigned to the ith Pintuitionistic fuzzy multiplicative number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. Mishra [94] considered the following example to show that the expression (1.7.17.1) is not valid, and hence, the expression (1.7.17.2) and the existing intuitionistic fuzzy multiplicative averaging aggregation operator (1.7.17.3) are also not valid.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
65
Let a1 ¼ hl1 ; m1 i ¼ 3; 14 ; and a2 ¼ hl2 ; m2 i ¼ 4; 16 be two intuitionistic fuzzy multiplicative numbers. Then on applying the existing expression (1.7.17.1),
ð1 þ 2l1 Þð1 þ 2l2 Þ 1 2f1 ð1 l1 m1 Þð1 l2 m2 Þg ; a1 a2 ¼ ð1 þ 2l1 Þð1 þ 2l2 Þ 1 2 11 ¼ 31; : 372
It is a well-known fact that if a ¼ hl; mi is an intuitionistic fuzzy multiplicative number, then for l and m, the conditions 19 l; m 9 and lm 1 should necessarily
11 , the value be satisfied. However, it is obvious that in, a1 a2 ¼ hl; mi ¼ 31; 372 11 of l is 31 which is greater than 9. Also, the value of m is 372, which is less than 19.
11 is not an intuitionistic fuzzy multiplicative number. Therefore, a1 a2 ¼ 31; 372 Hence, D
the
existing
expression (1.7.17.1), E ð1 þ 2l1 Þð1 þ 2l2 Þ1 2f1ð1l1 m1 Þð1l2 m2 Þg ; ð1 þ 2l Þð1 þ 2l Þ1 is not valid. 2 1
Furthermore,
as
ð1 þ 2lÞk 1 2f1ð1lmÞ g ; ð1 þ 2lÞk 1 2 k
the
a1 a2 ¼
i.e.,
2
existing
expression
(1.7.17.2),
i.e.,
ka¼
is obtained by considering a1 ¼ a2 in the existing D E ð1l1 m1 Þð1l2 m2 Þg expression (1.7.17.1), i.e., a1 a2 ¼ ð1 þ 2l1 Þð21 þ 2l2 Þ1 ; 2fð1 : 1 þ 2l Þð1 þ 2l Þ1 1
2
However, as discussed, the existing expression (1.7.17.1) is not valid. Therefore, k ð1 þ 2lÞk 1 2f1ð1lmÞ g ; ð1 þ 2lÞk 1 is also the existing expression (1.7.17.2), i.e., k a ¼ 2 not valid.
1.7.18 Drawbacks of Ma and Xu’s Pythagorean Fuzzy Weighted Averaging Aggregation Operator Ma and Xu [92] proposed (i) The expression (1.7.18.1) to evaluate the addition of two Pythagorean fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. * a1 a2 ¼
l1 l2
m1 m2
+
1 ; 1 : 1 l21 1 l22 þ l21 l22 2 1 m21 1 m22 þ m21 m22 2 ð1:7:18:1Þ
1 Appropriate Weighted Averaging Aggregation Operator …
66
(ii) The expression (1.7.18.2) to evaluate the multiplication of a positive real number k with a Pythagorean fuzzy number a ¼ hl; mi. * ka¼
h
lk ð1 l2 Þk þ l2k
i12 ; h
+
lk ð1 l2 Þk þ l2k
i12
ð1:7:18:2Þ
Also, using the expression (1.7.18.1) and the expression (1.7.18.2), Ma and Xu [92] proposed the Pythagorean fuzzy weighted averaging aggregation operator (1.7.18.3) and its extensions. *
ni¼1 ðwi
ai Þ ¼
Qn Qn
i¼1 ð1
Qn
i¼1 ð1
Qn
wi i¼1 li Q w l2i Þ i þ ni¼1
1 ; i 2 l2w i +
wi i¼1 mi 1 Q w i 2 m2i Þ i þ ni¼1 m2w i
ð1:7:18:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n Pythagorean fuzzy numbers. (ii) wi is the weight assigned P to the ith Pythagorean fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.18.3). Therefore, the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.18.3) is not valid. “If there exists a Pythagorean fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.18.3), will always be h1; 0i. Hence, the monotonicity property ‘ai 4a0i 8 i ) ni¼1 ðwi ai Þ4
ni¼1 wi a0i , where ai ¼ hli ; mi i and a0i ¼ l0i ; m0i are Pythagorean fuzzy numbers’ will not be satisfied for the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.18.3).”
1.7.19 Drawbacks of Garg’s Pythagorean Fuzzy Weighted Averaging Aggregation Operator Garg [18] proposed (i) The expression (1.7.19.1) to evaluate the sum of two Pythagorean fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
67
*sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi + l21 þ l22 m1 ; m2 a1 a2 ¼ ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ l21 :l22 1 þ 1 m2 :1 m2
ð1:7:19:1Þ
1
2
(ii) The expression (1.7.19.2) to evaluate the multiplication of a positive real number k with a Pythagorean fuzzy number a ¼ hl; mi. ka¼
*sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 1 þ l2 Þ k ð 1 l2 Þ k
+ pffiffiffi k 2m ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð 1 þ l2 Þ k þ ð 1 l 2 Þ k ð 2 m 2 Þ k þ ð m 2 Þ k
ð1:7:19:2Þ
Also, using the expression (1.7.19.1) and the expression (1.7.19.2), Garg [18] proposed the Pythagorean fuzzy weighted averaging aggregation operator (1.7.19.3).
ni¼1 ðwi
ffi *sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Qn Qn 2 wi 2 wi i¼1 ð1 þ li Þ i¼1 ð1 li Þ Qn Qn ; ai Þ ¼ 2 wi 2 wi i¼1 ð1 þ li Þ þ i¼1 ð1 li Þ + pffiffiffi Qn wi 2 i¼1 mi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi Qn Qn 2 wi 2 wi i¼1 ð2 mi Þ þ i¼1 ðmi Þ
ð1:7:19:3Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n Pythagorean fuzzy numbers. (ii) wi is the weight assigned P to the ith Pythagorean fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.19.3). Therefore, the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.19.3) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.19.3), will always be h1; 0i. Hence, the monotonicity property ‘ai 4a0i 8 i ) ni¼1 ðwi ai Þ4
ni¼1 wi a0i , where ai ¼ hli ; mi i and a0i ¼ hl0i ; m0i i are Pythagorean fuzzy numbers’ will not be satisfied for the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.19.3).”
1 Appropriate Weighted Averaging Aggregation Operator …
68
1.7.20 Drawbacks of Garg’s Confidence Levels-Based Pythagorean Fuzzy Weighted Averaging Aggregation Operator Garg [22] pointed out that all the aggregation operators have been proposed by considering the assumption that decision-makers are surely familiar with the evaluated objects. But, it is not a realistic assumption. Therefore, to handle this situation, Garg [22] proposed the confidence levels-based Pythagorean fuzzy weighted averaging aggregation operator (1.7.20.1).
nj¼1 wj gj aj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi *v + u n n gj wj Y Y u gj wj 2 ; 1 lj mj ¼ t1 j¼1
ð1:7:20:1Þ
j¼1
where (i) 0 gj 1 is confidence level of aj . P (ii) wj is the weight vector associated with aj such that wj 0 and nj¼1 wj ¼ 1. P (i) gj is the confidence level of aj such that gj 2 ½0; 1 and nj¼1 gj ¼ 1. It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the existing confidence levels-based Pythagorean fuzzy weighted averaging aggregation operator (1.7.20.1). Therefore, the existing confidence levels-based Pythagorean fuzzy weighted averaging aggregation operator (1.7.20.1) is not valid. “If there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.20.1), will always be h1; 0i. Hence, the monotonicity property ‘aj 4a0j 8 j ) nj¼1 wj gj aj 4
nj¼1 wj gj a0j , where ai ¼ hli ; mi i and a0i ¼ hl0i ; m0i i are Pythagorean fuzzy numbers’ will not be satisfied for the existing Pythagorean fuzzy weighted averaging aggregation operator (1.7.20.1).”
1.7.21 Drawbacks of Garg et al.’s Interval-Valued Intuitionistic Fuzzy Weighted Averaging Aggregation Operator Garg et al. [31] pointed out the drawbacks of the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator [85]. To resolve the drawbacks, Garg et al. [31] proposed
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
69
(i) The expression (1.7.21.1) to evaluate the sum of two interval-valued intuitionistic fuzzy numbers a1 ¼ h½a1 ; b1 ; ½c1 ; d1 i and a2 ¼ h½a2 ; b2 ; ½c2 ; d2 i. *" a1 a2 ¼
Q2 Q2
i¼1 ½1 þ ðc
i¼1 ½1 þ ðc
1Þai
Q2
i¼1 ð1 ai Þ Q 1Þ 2i¼1 ð1
1Þai þ ðc ai Þ # Q2 Q2 ½1 þ ðc 1Þbi i¼1 ð1 bi Þ ; Q2 Q2 i¼1 i¼1 ½1 þ ðc 1Þbi þ ðc 1Þ i¼1 ð1 bi Þ " Q Q c 2i¼1 ð1 ai Þ c 2i¼1 ½1 ai ci ; Q2 Q2 i¼1 ½1 þ ðc 1Þai þ ðc 1Þ i¼1 ð1 ai Þ #+ Q Q c 2i¼1 ð1 bi Þ c 2i¼1 ½1 bi di Q2 Q2 i¼1 ½1 þ ðc 1Þbi þ ðc 1Þ i¼1 ð1 bi Þ
;
ð1:7:21:1Þ
(ii) The expression (1.7.21.2) to evaluate the multiplication of a positive real number k with an interval-valued intuitionistic fuzzy number a ¼ h½a; b; ½c; d i. *" ka¼
½1 þ ðc 1Þak ½1 ak
½1 þ ðc 1Þak þ ðc 1Þ½1 ak # ½1 þ ðc 1Þbk ½1 bk ; ½1 þ ðc 1Þbk þ ðc 1Þ½1 bk " c½1 ak c½1 a ck ; ½1 þ ðc 1Þak þ ðc 1Þ½1 ak #+ c½1 bk c½1 b d k
;
ð1:7:21:2Þ
½1 þ ðc 1Þbk þ ðc 1Þ½1 bk Also, using the expression (1.7.21.1) and the expression (1.7.21.2), Garg et al. [31] proposed the interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.7.21.3).
1 Appropriate Weighted Averaging Aggregation Operator …
70
Q 1Þai wi ni¼1 ð1 ai Þwi Qn Q ai Þ ¼ ; ½1 þ ðc 1Þai wi þ ðc 1Þ ni¼1 ð1 ai Þwi Q Qi¼1 n ½1 þ ðc 1Þbi wi ni¼1 ð1 bi Þwi Q Qn i¼1 ; ½1 þ ðc 1Þbi wi þ ðc 1Þ ni¼1 ð1 bi Þwi Q ð1:7:21:3Þ i¼1 Qn c i¼1 ð1 ai Þwi c ni¼1 ½1 ai ci wi Qn Qn wi wi ; i¼1 ½1 þ ðc 1Þai þ ðc 1Þ i¼1 ð1 ai Þ Qn Q c i¼1 ð1 bi Þwi c ni¼1 ½1 bi di wi Qn Qn wi wi i¼1 ½1 þ ðc 1Þbi þ ðc 1Þ i¼1 ð1 bi Þ
ni¼1 ðwi
Qn
i¼1 ½1 þ ðc
where (i) ai ¼ h½ai ; bi ; ½ci ; di i, i ¼ 1; 2; . . .; n are n interval-valued intuitionistic fuzzy numbers. (ii) wi is the weight assigned to the ith interval-valued intuitionistic fuzzy number P ai ¼ h½ai ; bi ; ½ci ; di i such that wi 0 and ni¼1 wi ¼ 1. Mishra [94] considered the following example to show that the expression (1.7.21.1) is not valid, and hence, the interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.7.21.3) is not valid. If c ¼ 1, k ¼ 2 and n ¼ 2, then the existing expression (1.7.21.1) will be transformed into the expression (1.7.21.4). "
# 2 2 Y Y a1 a2 ¼ 1 ð1 ai Þ; 1 ð1 bi Þ ; "
i¼1
i¼1
2 2 2 2 Y Y Y Y ð1 ai Þ ½1 ai ci ; ð1 bi Þ ½1 bi di i¼1
i¼1
i¼1
#
ð1:7:21:4Þ
i¼1
Now, let a1 ¼ h½0:65; 0:73; ½0:17; 0:21i and a2 ¼ h½0:50; 0:60; ½0:30; 0:40i be two interval-valued intuitionistic fuzzy numbers. Then, using the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.7.21.4), a1 a2 ¼ h½0:8250; 0:8920; ½0:1480; 0:1080i It is a well-known fact that for an interval-valued intuitionistic fuzzy number, a ¼ h½a; b; ½c; d i, the conditions a b, c d and b þ d 1 should always be satisfied. However, it can be easily verified that for a1 a2 ¼ h½0:8250; 0:8920; ½0:1480; 0:1080i the condition c d is not satisfying. Therefore, a1 a2 , obtained by the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.7.21.4), is not an interval-valued intuitionistic fuzzy number. Hence, the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.7.21.4) is not valid.
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
71
1.7.22 Drawbacks of Linguistic Interval-Valued Atanassov Intuitionistic Fuzzy Weighted Averaging Aggregation Operators Garg and Kumar [46] proposed (i) The expression (1.7.22.1) to evaluate the addition of two linguistic intervalvalued Atanassov intuitionistic fuzzy numbers a1 ¼ h½sa1 ; sb1 ; ½sc1 ; sd1 i and a2 ¼ h½sa2 ; sb2 ; ½sc2 ; sd 2 i.
a1 a2 ¼
Dh
i h iE sa1 þ a2 a1 a2 ; sb1 þ b2 b1 b2 ; sc1 þ c2 c1 c2 ; sd1 þ d2 d1 d2 t
t
t
ð1:7:22:1Þ
t
(ii) The expression (1.7.22.2) to evaluate the multiplication of a positive real number k with a linguistic interval-valued Atanassov intuitionistic fuzzy number a ¼ h½sa ; sb ; ½sc ; sd i. ka¼ s
t 1ð1at Þ
; st c k ; st d k t 1ð1btÞ ðt Þ ð t Þ
t ;s t
ð1:7:22:2Þ
where (i) (ii) (iii) (iv) (v)
½sai ; sbi represents the linguistic membership degree. ½sci ; sdi represents the linguistic non-membership degree. ai ; bi ; ci ; di 2 ½0; t. bi þ di t. t is a positive integer.
Using the expression (1.7.22.1) and the expression (1.7.22.2), Garg and Kumar [46] proposed the linguistic interval-valued Atanassov intuitionistic fuzzy weighted averaging aggregation operator (1.7.22.3).
ni¼1 ðwi ai Þ ¼
Dh iE i h stð1Qn ð1aÞwi Þa ; stð1Qn ð1bÞwi Þ ; st Qn ðcÞwi ; st Qn ðdÞwi t t i¼1 i¼1 i¼1 t i¼1 t ð1:7:22:3Þ
It can be easily verified that the following drawback, pointed out by Beliakov et al. [6] in the existing intuitionistic fuzzy weighted averaging aggregation operator (1.7.1.1), is also occurring in the existing linguistic interval-valued Atanassov intuitionistic fuzzy weighted averaging aggregation operator (1.7.22.3). Therefore, the existing linguistic interval-valued Atanassov intuitionistic fuzzy weighted averaging aggregation operator (1.7.22.3) is not valid.
1 Appropriate Weighted Averaging Aggregation Operator …
72
“If there exists a linguistic interval-valued Atanassov intuitionistic fuzzy number ai ¼ h½sai ; sbi ; ½sci ; sdi i such that sai ¼ sbi ¼ h and sci ¼ sdi ¼ 0, then the aggregated linguistic interval-valued Atanassov intuitionistic fuzzy number, obtained by the existing linguistic interval-valued Atanassov intuitionistic fuzzy weighted averaging aggregation operator (1.7.22.3), will always be ai ¼ h½1;1; ½0; 0i. Hence, the monotonicity property ‘ai 4a0i 8 i ) ni¼1 ðwi ai Þ4 ni¼1 wi a0i , h i h i where ai ¼ h½sai ; sbi ; ½sci ; sdi i and a0i ¼ h sa0i ; sb0i ; sc0i ; sdi0 i are linguistic interval-valued Atanassov intuitionistic fuzzy numbers’ will not be satisfied for the existing linguistic interval-valued Atanassov intuitionistic fuzzy weighted averaging aggregation operator (1.7.22.3).”
1.7.23 Drawbacks of Nancy and Garg’s Single-Valued Neutrosophic Weighted Averaging Aggregation Operator Nancy and Garg [97] proposed (i) The expression (1.7.23.1) to evaluate the sum of two single-valued neutrosophic numbers a1 ¼ ha* i. 1 ; b1 ; c1 i and a2 ¼ ha2 ; b2 ;c 2 ! b1 ! k1a1 1 k1a2 1 k 1 kb2 1 ; logk 1 þ ; a1 a2 ¼ 1 logk 1 þ k1 k1 ðkc1 1Þðkc2 1Þ logk 1 þ ;k[1 k1 ð1:7:23:1Þ (ii) The expression (1.7.23.2) to evaluate the multiplication of a positive real number n with a single-valued neutrosophic number a ¼ ha; b; ci. * na¼
1 logk 1 þ
logk
k1a 1
n !
kb 1
n !
; logk 1 þ ; ðk 1Þn1 ðk 1Þn1 !+ ð kc 1Þ n 1þ ; k[0 ðk 1Þn1
ð1:7:23:2Þ
1.7 Drawbacks of Some Existing Weighted Averaging Aggregation …
73
Also, using the expression (1.7.23.1) and the expression (1.7.23.2), Nancy and Garg [97] proposed the single-valued neutrosophic weighted averaging aggregation operator (1.7.23.3). *
ni¼1 ðwi
ai Þ ¼
1 logk 1 þ
n Y
k
1ai
i¼1
logk
n Y 1þ ð k c i 1 Þ wi
1
wi
! ; logk 1 þ
n Y
k 1 bi
wi
! ;
i¼1
!+
i¼1
ð1:7:23:3Þ where (i) ai ¼ hai ; bi ; ci i, i ¼ 1; 2; . . .; n are n single-valued neutrosophic numbers. (ii) wi is the weight assigned to thePith single-valued neutrosophic number ai ¼ hai ; bi ; ci i such that wi 0 and ni¼1 wi ¼ 1. Mishra [93] considered a numerical example to show that the existing single-valued neutrosophic weighted averaging aggregation operator (1.7.23.3) is not valid as it is not satisfying the monotonicity property.
1.7.24 Drawbacks of Liu and Luo’s Single-Valued Neutrosophic Hesitant Fuzzy Weighted Averaging Aggregation Operator Liu and Luo [90] proposed the single-valued neutrosophic hesitant fuzzy weighted averaging aggregation operator (1.7.24.1). [
ki¼1 ðwi ai Þ ¼
c1 2l1 ;...;ck 2lk ;d1 2m1 ;...;dk 2mk ;g1 2h1 ;...;gk 2hk
(
) ( )) k k ki ki Y Y crðiÞ grðiÞ ; i¼1
(( 1
k Y
1 crðiÞ
ki
) ;
i¼1
i¼1
ð1:7:24:1Þ where (i) ai ¼ fli ; mi ; hi gði ¼ 1; 2; . . .; kÞ is a collection of single-valued neutrosophic hesitant fuzzy elements, where li , mi and hi are three sets of some values in ½0; 1. (ii) wi is the weight associated with ai ði ¼ 1; 2; . . .; k Þ satisfying wi 0, Pk i¼1 wi ¼ 1.
1 Appropriate Weighted Averaging Aggregation Operator …
74
(iii) r: f1; 2; . . .; k g ! f1; 2; . . .; kg is a permutation such that arðiÞ is the largest number in ða1 ; a2 ; . . .; ak Þ. Mishra and Kumar [95] considered the following example to show the monotonicity property is not satisfying for the existing single-valued neutrosophic hesitant fuzzy weighted averaging aggregation operator (1.7.24.1). Hence, the existing single-valued neutrosophic hesitant fuzzy weighted averaging aggregation operator (1.7.24.1) is not valid. Let n1 ¼ ff1g; f0g; f1gg, n2 ¼ ff0:1g; f0:2g; f0gg and m1 ¼ ff1g; f0g; f0gg, m2 ¼ ff0:3g; f0:2g; f0gg be four single-valued neutrosophic hesitant fuzzy numbers. Then, using the existing comparing method [90], (i) n1 ¼ ff1g; f0g; f1gg is less than m1 ¼ ff1g; f0g; f0gg as sðn1 Þ ¼ 0:6667 is less than sðm1 Þ ¼ 1. (ii) n2 ¼ ff0:1g; f0:2g; f0gg is less than m2 ¼ ff0:3g; f0:2g; f0gg as sðn2 Þ ¼ 0:6333 is less than sðm2 Þ ¼ 0:7. Since, n1 m1 and n2 m2 . So, according to the monotonicity property, the relation w1 n1 w2 n2 w1 m1 w2 m2 should hold. While, using the existing single-valued neutrosophic hesitant fuzzy weighted averaging aggregation S operator (1.7.24.1), i.e., ki¼1 ðwi ai Þ = c1 2l1 ;...;ck 2lk ;d1 2m1 ;...;dk 2mk ;g1 2h1 ;...;gk 2hk ki Q ki Q ki k k k Q 1 1 crðiÞ crðiÞ grðiÞ ; ; , i¼1
i¼1
i¼1
w1 n1 w2 n2 ¼ w1 m1 w2 m2 ¼ ff1g; f0g; f0gg This clearly indicates that the monotonicity property is not satisfying for the existing single-valued neutrosophic hesitant fuzzy weighted averaging aggregation operator (1.7.24.1). Hence, the existing single-valued neutrosophic hesitant fuzzy weighted averaging aggregation operator (1.7.24.1) is not valid.
1.8
Appropriate Weighted Averaging Aggregation Operators Under Some Extensions of the Fuzzy Environment
In this section, the appropriate weighted averaging aggregation operators under some extensions of the fuzzy environment have been discussed. The appropriate weighted averaging aggregation operators under the remaining extensions of the fuzzy environment can be defined in the same manner.
1.8 Appropriate Weighted Averaging Aggregation …
1.8.1
75
Appropriate Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
Using the Lukasiewicz t-conorm Sðx; yÞ ¼ minð1; x þ yÞ and the Lukasiewicz t-norm T ðx; yÞ ¼ maxð0; 1 ðð1 xÞ þ ð1 yÞÞÞ, Beliakov et al. [6] proposed (i) The expression (1.8.1.1) to evaluate the addition of two intuitionistic fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i. a1 a2 ¼ hminð1; l1 þ l2 Þ; maxð0; 1 ðð1 m1 Þ þ ð1 m2 ÞÞÞi
ð1:8:1:1Þ
(ii) The expression (1.8.1.2) to evaluate the multiplication of a positive real number k with an intuitionistic fuzzy number a ¼ hl; mi, and hence, the expression (1.8.1.3) to evaluate the multiplication of a real number k 2 ð0; 1 with an intuitionistic fuzzy number a ¼ hl; mi. k a ¼ hminð1; klÞ; maxð0; 1 kð1 mÞÞi; k [ 0 k a ¼ hkl; 1 kð1 mÞi; 0\k 1
ð1:8:1:2Þ ð1:8:1:3Þ
Also, using the expression (1.8.1.1) and the expression (1.8.1.3), Beliakov et al. [6] proposed the intuitionistic fuzzy weighted averaging aggregation operator (1.8.1.4). *
ni¼1 ðwi
ai Þ ¼
min 1; *
¼
n X
! wi li
i¼1 n X i¼1
wi li ;
n X
n X ðwi ð1 mi ÞÞ ; max 0; 1
+
!+
i¼1
wi mi
i¼1
ð1:8:1:4Þ In Sect. 1.7, it is pointed out that if there exists an intuitionistic fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated intuitionistic fuzzy number, obtained by the existing intuitionistic fuzzy weighted averaging operators [2, 3, 13, 21, 24, 32–37, 65, 114, 127, 137], is h1; 0i. While, it can be easily verified that the aggregated intuitionistic fuzzy number, obtained by the intuitionistic fuzzy weighted averaging aggregation operator (1.8.1.4), is not h1; 0i. Hence, it is appropriate to use the intuitionistic fuzzy weighted averaging aggregation operator (1.8.1.4) for aggregating intuitionistic fuzzy numbers as compared to the existing intuitionistic fuzzy weighted averaging operators [2, 3, 13, 21, 24, 32–37, 65, 114, 127, 137].
1 Appropriate Weighted Averaging Aggregation Operator …
76
1.8.2
Appropriate Pythagorean Fuzzy Weighted Averaging Aggregation Operator
Using the generalized form of the Lukasiewicz t-conorm Sðx; yÞ ¼ minð1; x2 þ y2 Þ and the generalized form of the Lukasiewicz t-norm T ðx; yÞ ¼ maxð0; 1 ðð1 x2 Þ þ ð1 y2 ÞÞÞ, (i) The expression (1.8.2.1) has proposed to evaluate the addition of two Pythagorean fuzzy numbers a1 ¼ hl1 ; m1 i and a2 ¼ hl2 ; m2 i.
a1 a2 ¼ min 1; l21 þ l22 ; max 0; 1 1 m21 þ 1 m22
ð1:8:2:1Þ
(ii) The expression (1.8.2.2) has been proposed to evaluate the multiplication of a positive real number k with a Pythagorean fuzzy number a ¼ hl; mi, and hence, the expression (1.8.2.3) has been proposed to evaluate the multiplication of a real number k 2 ð0; 1 with an intuitionistic fuzzy number a ¼ hl; mi.
k a ¼ min 1; kl2 ; max 0; 1 k 1 m2 ; k [ 0
k a ¼ kl2 ; 1 k 1 m2 ; 0\k 1
ð1:8:2:2Þ ð1:8:2:3Þ
Also, using the expression (1.8.2.2) and the expression (1.8.2.3), the Pythagorean fuzzy weighted averaging aggregation operator (1.8.2.4) has been proposed. *
ni¼1 ðwi
ai Þ ¼
min 1; *
¼
n X
! wi l2i
i¼1 n X i¼1
wi l2i ;
n X
n X wi 1 m2i ; max 0; 1
+
!+
i¼1
wi m2i
i¼1
ð1:8:2:4Þ In Sect. 1.7, it is pointed out that if there exists a Pythagorean fuzzy number ai ¼ hli ; mi i such that li ¼ 1 and mi ¼ 0, then the aggregated Pythagorean fuzzy number, obtained by the existing Pythagorean fuzzy weighted averaging operators [18, 22, 92], is h1; 0i. While, it can be easily verified that the aggregated Pythagorean fuzzy number, obtained by the Pythagorean fuzzy weighted averaging aggregation operator (1.8.2.4), is not h1; 0i. Hence, it is appropriate to use the intuitionistic fuzzy
1.8 Appropriate Weighted Averaging Aggregation …
77
weighted averaging aggregation operator (1.8.2.4) for aggregating Pythagorean fuzzy numbers as compared to the existing Pythagorean fuzzy weighted averaging operators [18, 22, 92].
1.8.3
Appropriate Connection Number Weighted Averaging Aggregation Operator
Kumar and Garg [73, 74] proposed the connection number weighted averaging aggregation operator (1.8.3.1) to aggregate connection numbers dh ¼ a1h þ a2h i þ a3h j, h ¼ 1; 2; . . .; n:
nh¼1 ðwh
dh Þ ¼
n X
wh a1h
h¼1
! ! n n X X 2 3 w h ah i þ wh ah j þ h¼1
ð1:8:3:1Þ
h¼1
It can be easily verified that if there exists a connection number dh ¼ þ a2h i þ a3h j such that a1h ¼ a3h ¼ 0 and a2h ¼ 1, then the aggregated connection number, obtained by the existing connection number weighted averaging aggregation operator (1.8.3.1), is not 0 þ ð1Þi þ ð0Þj. Hence, it is appropriate to use the connection number weighted averaging aggregation operator (1.8.3.1) for aggregating connection numbers. a1h
1.8.4
Appropriate Interval-Valued Intuitionistic Fuzzy Weighted Averaging Aggregation Operator
Xu and Yager [129] proposed the interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.8.4.1) to aggregate interval-valued intuitionistic L U L U fuzzy numbers ai ¼ li ; li ; mi ; mi ; i ¼ 1; 2; . . .; n: *
ni¼1 ðwi
ai Þ ¼
n n X X ; wi lLi ; wi lU wi mLi ; wi mU i i i¼1
+ ð1:8:4:1Þ
i¼1
In Sect. 1.7, it is pointed if there intuitionistic out
that
exists anL interval-valued L U U L U ; m such that l ; m ¼ l ¼ 1 and m fuzzy number ai ¼ lLi ; lU i i i i i i ¼ mi ¼ 0, then the aggregated interval-valued intuitionistic fuzzy number, obtained by the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator [46], is h½1; 1; ½0; 0i.” While, it can be easily verified that the aggregated interval-valued intuitionistic fuzzy number, obtained by the existing interval-valued intuitionistic fuzzy weighted
1 Appropriate Weighted Averaging Aggregation Operator …
78
averaging operator (1.8.4.1), is not h½1; 1; ½0; 0i. Hence, it is appropriate to use the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator (1.8.4.1) for aggregating interval-valued intuitionistic fuzzy numbers as compared to the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator [46].
1.9
Limitation of the Weighted Geometric Aggregation Operators Under Various Extensions of the Fuzzy Environment
It is a well-known fact that if ai ; i ¼ 1; 2; . . .; n are n real numbers, then the weighted geometric mean of these real numbers can be defined only if ai [ 0 8 i ¼ 1; 2; . . .; n: Since, this condition will not be satisfied for the numbers under various extensions of the fuzzy environment. Therefore, it is illogical to define a weighted geometric aggregation operator under various extensions of the fuzzy environment. The following clearly indicates that this claim is valid: Garg [29] proposed the weighted neutral geometric aggregation operator (1.9.1) to aggregate ‘n’ Pythagorean fuzzy numbers ai ¼ hli ; mi i and claimed that it can be used only if neither li ¼ 0 nor mi ¼ 0 for any i. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi *v !wiffi u Qn n 2 Þ wi u Y ð l i¼1 i Qn ni¼1 ðai Þwi ¼ tQn ; 1 1 l2i m2i 2 Þwi þ 2 Þ wi ð l ð m i¼1 i i¼1 i i¼1 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !wiffi+ u Qn n 2 Þ wi u Y ð m i¼1 i tQ Qn 1 1 l2i m2i n 2 Þ wi þ 2 Þ wi ð l ð m i¼1 i i¼1 i i¼1
ð1:9:1Þ
where (i) ai ¼ hli ; mi i, i ¼ 1; 2; . . .; n are n Pythagorean fuzzy numbers. (ii) wi is the weight assigned P to the ith Pythagorean fuzzy number ai ¼ hli ; mi i such that wi 0 and ni¼1 wi ¼ 1.
1.10
Conclusions
On the basis of the present study, the following can be concluded (i) It is inappropriate to use the existing weighted aggregation operators [1–3, 6, 9–11, 13, 14, 16–39, 42–65, 67, 76–93, 95–104, 106–108, 110–131, 135– 138, 140–146] under various extensions of the fuzzy environment.
1.10
Conclusions
79
(ii) It is appropriate to use the existing intuitionistic fuzzy weighted averaging aggregation operator [6] to aggregate intuitionistic fuzzy numbers. (iii) It is appropriate to use the generalization of existing intuitionistic fuzzy weighted averaging aggregation operator [6] to aggregate Pythagorean fuzzy numbers. (iv) It is appropriate to use the existing connection number weighted averaging aggregation operator [73, 74] to aggregate connection numbers. (v) It is appropriate to use the existing interval-valued intuitionistic fuzzy weighted averaging aggregation operator [129] to aggregate interval-valued intuitionistic fuzzy numbers. (vi) It is illogical to propose weighted geometric aggregation operators under various extensions of the fuzzy environment.
References 1. R. Arora, H. Garg, Prioritized averaging/geometric aggregation operators under the intuitionistic fuzzy soft set environment. Sci. Iranica E 25, 466–482 (2018) 2. R. Arora, H. Garg, Robust aggregation operators for multi-criteria decision making with intuitionistic fuzzy soft environment. Sci. Iranica E 25, 931–942 (2018) 3. R. Arora, H. Garg, Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties. Comput. Appl. Math. 38, 1–32 (2019) 4. K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986) 5. K. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343– 349 (1989) 6. G. Beliakov, H. Bustince, D.P. Goswami, U.K. Mukherjee, N.R. Pal, On geometric operators for Atanassov’s intuitionistic fuzzy sets. Inf. Sci. 181, 1116–1124 (2011) 7. H. Bustince, E. Barrenechea, M. Pagola, J. Fernandez, Z. Xu, B. Bedregal, J. Montero, H. Hagras, F. Herrera, B.D. Baets, A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. 24, 179–194 (2016) 8. H. Chaokai, W. Meng, A new reputation model for p2p network based on set pair analysis. Open Cybern. Syst. J. 9, 1393–1398 (2015) 9. T.-Y. Chen, A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: a comparative perspective. Inf. Sci. 281, 97–112 (2014) 10. S.-M. Chen, C.H. Chang, Fuzzy multiattribute decision making based on transformation techniques of intuitionistic fuzzy values and intuitionistic fuzzy geometric averaging operators. Inf. Sci. 352–353, 133–149 (2016) 11. S.-M. Chen, S.-H. Cheng, W.-H. Tsai, Multiple attribute group decision making based on interval-valued intuitionistic fuzzy aggregation operators and transformation techniques of interval-valued intuitionistic fuzzy values. Inf. Sci. 367–368, 418–442 (2016) 12. S.-J. Chen, C.-L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 375 (Springer, Berlin, 1992) 13. Z. Chen, P. Liu, Z. Pei, An approach to multiple attribute group decision making based on linguistic intuitionistic fuzzy numbers. Int. J. Comput. Intell. Syst. 8, 747–760 (2015) 14. P. Dworniczak, Comments on crucial and unsolved problems on Atanassov’s intuitionistic fuzzy sets. Soft. Comput. 22, 4935–4939 (2018)
80
1 Appropriate Weighted Averaging Aggregation Operator …
15. B. Farhadinia, Correlation for dual hesitant fuzzy sets and dual interval-valued hesitant fuzzy sets. Int. J. Intell. Syst. 29, 184–205 (2014) 16. H. Garg, Generalized intuitionistic fuzzy multiplicative interactive geometric operators and their application to multiple criteria decision making. Int. J. Mach. Learn. Cybernet. 7, 1075– 1092 (2016) 17. H. Garg, Some series of intuitionistic fuzzy interactive averaging aggregation operators. SpringerPlus 5, 1–27 (2016) 18. H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int. J. Intell. Syst. 31, 886–920 (2016) 19. H. Garg, Generalized intuitionistic fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application to decision making. Comput. Ind. Eng. 101, 53–69 (2016) 20. H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process. Int. J. Intell. Syst. 32, 597– 630 (2017) 21. H. Garg, Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng. Appl. Artif. Intell. 60, 164–174 (2017) 22. H. Garg, Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process. Comput. Math. Organ. Theory 23, 546–571 (2017) 23. H. Garg, Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. J. Ind. Manage. Optim. 14, 283–308 (2018) 24. H. Garg, Generalized interaction aggregation operators in intuitionistic fuzzy multiplicative preference environment and their application to multicriteria decision-making. Appl. Intell. 48, 2120–2136 (2018) 25. H. Garg, Generalized Pythagorean fuzzy geometric interactive aggregation operators using Einstein operations and their application to decision making. J. Exp. Theor. Artif. Intell. 30, 763–794 (2018) 26. H. Garg, New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications. Int. J. Intell. Syst. 34, 82–106 (2019) 27. H. Garg, Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multiattribute decision-making process. Int. J. Intell. Syst. 34, 601–626 (2019) 28. H. Garg, Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-Making problems. Iran. J. Sci. Technol. Trans. Electr. Eng. 43, 587–613 (2019) 29. H. Garg, Novel neutrality operation–based Pythagorean fuzzy geometric aggregation operators for multiple attribute group decision analysis. Int. J. Intell. Syst. 34, 2459–2489 (2019) 30. H. Garg, A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties. Neural Comput. Appl. (2020). https://doi.org/10.1007/ s00521-020-04859 31. H. Garg, N. Agarwal, A. Tripathi, Some improved interactive aggregation operators under interval-valued intuitionistic fuzzy environment and their application to decision making process. Sci. Iranica 24, 2581–2604 (2017) 32. H. Garg, R. Arora, Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making. Eng. Appl. Artif. Intell. 71, 100–112 (2018) 33. H. Garg, R. Arora, Dual hesitant fuzzy soft aggregation operators and their application in decision-making. Cogn. Comput. 10, 769–789 (2018) 34. H. Garg, R. Arora, Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. J. Oper. Res. Soc. 69, 1711–1724 (2018)
References
81
35. H. Garg, R. Arora, Generalized and group-based generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Intell. 48, 343–356 (2018) 36. H. Garg, R. Arora, Generalized intuitionistic fuzzy soft power aggregation operator based on t-norm and their application in multicriteria decision-making. Int. J. Intell. Syst. 34, 215–246 (2019) 37. H. Garg, R. Arora, Algorithms based on COPRAS and aggregation operators with new information measures for possibility intuitionistic fuzzy soft decision-making. Math. Probl. Eng. 2020, Article ID 1563768, 20 (2020) 38. H. Garg, R. Arora, Maclaurin symmetric mean aggregation operators based on t-norm operations for the dual hesitant fuzzy soft set. J. Ambient Intell. Humaniz. Comput. 11, 375– 410 (2020) 39. H. Garg, J. Gwak, T. Mahmood, Z. Ali, Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications. Mathematics 8, 538 (2020) 40. H. Garg, K. Kumar, A novel correlation coefficient of intuitionistic fuzzy sets based on the connection number of set pair analysis and its application. Sci. Iranica E 25, 2373–2388 (2018) 41. H. Garg, K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision making process. Appl. Intell. 48, 3346–3359 (2018) 42. H. Garg, K. Kumar, Some aggregation operators for linguistic intuitionistic fuzzy set and its application to group decision-making process using the set pair analysis. Arbian J. Sci. Eng. 43, 3213–3227 (2018) 43. H. Garg, K. Kumar, Multiattribute decision making based on power operators for linguistic intuitionistic fuzzy set using set pair analysis. Expert Syst. 36, e12428 (2019) 44. H. Garg, K. Kumar, Prioritized aggregation operators based on linguistic connection number for multiple attribute group decision making under linguistic intuitionistic fuzzy environment. ICSES Trans. Neural Fuzzy Comput. 2, 1–15 (2019) 45. H. Garg, K. Kumar, Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy environment. J. Ind. Manage. Optim. 16 (2020) https://doi.org/10.3934/jimo.2018162 46. H. Garg, K. Kumar, Linguistic interval-valued Atanassov intuitionistic fuzzy sets and their applications to group decision making problems. IEEE Trans. Fuzzy Syst. 27, 2302–2311 (2019) 47. H. Garg, K. Kumar, Power geometric aggregation operators based on connection numbers of set pair analysis under intuitionistic fuzzy environment. Arbian J. Sci. Eng. 45, 2049–2063 (2020) 48. H. Garg, Nancy, Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making. J. Ambient Intell. Humanized Comput. 9, 1975–1997 (2018) 49. H. Garg, Nancy, New logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers. Cogn. Syst. Res. 52, 931–946 (2018) 50. H. Garg, Nancy, Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures. Measurement 138, 278–290 (2019) 51. H. Garg, Nancy, Multiple attribute decision making based on immediate probabilities aggregation operators for single-valued and interval neutrosophic sets. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01332-9 52. H. Garg, Nancy, Linguistic single-valued neutrosophic power aggregation operators and their applications to group decision-making problems. IEEE/CAA J. Automatica Sin. 7, 546–558 (2020) 53. H. Garg, D. Rani, Generalized geometric aggregation operators based on t-norm operations for complex intuitionistic fuzzy sets and their application to decision-making. Cogn. Comput. (2019). https://doi.org/10.1007/s12559-019-09678-4
82
1 Appropriate Weighted Averaging Aggregation Operator …
54. H. Garg, D. Rani, Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process. Arabian J. Sci. Eng. 44, 2679– 2698 (2019) 55. H. Garg, D. Rani, Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. J. Ind. Manage. Optim. (2019). https://doi.org/10.3934/jimo.2020069 56. H. Garg, D. Rani, Robust averaging–geometric aggregation operators for complex intuitionistic fuzzy sets and their applications to MCDM process. Arabian J. Sci. Eng. 45, 2017–2033 (2020) 57. H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process. Artif. Intell. Rev. 53, 3595–3620 (2020) 58. H. Garg, D. Rani, New generalised Bonferroni mean aggregation operators of complex intuitionistic fuzzy information based on Archimedean t-norm and t-conorm. J. Exp. Theor. Artif. Intell. 32, 81–109 (2020) 59. Y. He, H. Chen, Z. He, L. Zhou, Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015) 60. Y. He, H. Chen, L. Zhou, J. Liu, Z. Tao, Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Inf. Sci. 259, 142–159 (2014) 61. Y. He, Z. He, C. Jin, H. Chen, Intuitionistic fuzzy power geometric Bonferroni means and their application to multiple attribute group decision making. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 23, 285–315 (2015) 62. Y. He, Z. He, G. Wang, H. Chen, Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 23, 1655–1668 (2015) 63. Y. He, Z. He, P. Zhou, Y. Deng, Scaled prioritized geometric aggregation operators and their applications to decision making. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 24, 13–45 (2016) 64. F. Herrera, E. Herrera-Viedma, Aggregation operators for linguistic weighted information. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27, 646–656 (1997) 65. J.-Y. Huang, Intuitionistic fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 27, 505–513 (2014) 66. Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties. Comput. Math Appl. 60, 906–918 (2010) 67. F. Jin, Z. Ni, H. Chen, Note on “Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl. Based Syst. 96, 115–119 (2016) 68. G. Kaur, H. Garg, Generalized Cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group decision-making process. Arabian J. Sci. Eng. 44, 2775–2794 (2019) 69. A. Kaur, J. Kacprzyk, A. Kumar, Fuzzy Transportation and Transshipment Problems. Studies in Fuzziness and Soft Computing, vol. 385 (Springer Nature, Switzerland AG, 2020) 70. J. Kaur, A. Kumar, An Introduction to Fuzzy Linear Programming Problems. Studies in Fuzziness and Soft Computing, vol. 340 (Springer Nature, Switzerland AG, 2016) 71. R. Krishankumar, K.S. Ravichandran, V. Shyam, S.V. Sneha, S. Kar, H. Garg, Multi-attribute group decision-making using double hierarchy hesitant fuzzy linguistic preference information. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-02004802-0 72. R. Kumar, S.A. Edalapanah, S. Jha, R. Singh, A Pythagorean approach to the transportation problem. Complex Intell. Syst. 5, 255–263 (2019) 73. K. Kumar, H. Garg, Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl. Intell. 48, 2112–2119 (2018)
References
83
74. K. Kumar, H. Garg, TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37, 1319– 1329 (2018) 75. D.-F. Li, Decision and Game Theory in Management with Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol. 308 (Springer, Berlin, 2014) 76. N. Li, H. Garg, L. Wang, Some novel interactive hybrid weighted aggregation operators with Pythagorean fuzzy numbers and their applications to decision making. Mathematics 7, 1150 (2019) 77. C. Li, L. Liu, Notes on “Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms” [Inform. Sci. 55, 82–99 (2014)]. Inf. Sci. 381, 283–289 (2017) 78. D. Li, W. Zeng, J. Li, F. Yu, Note on hesitant fuzzy prioritized weighted operators. J. Intell. Fuzzy Syst. 30, 3191–3196 (2016) 79. C. Liang, S. Zhao, J. Zhang, Muti-criteria group decision making method based on generalized intuitionistic trapezoidal fuzzy prioritized aggregation operators. Int. J. Mach. Learn. Cybernet. 8, 597–610 (2017) 80. J. Lin, Q. Zhang, Some continuous aggregation operators with interval-valued intuitionistic fuzzy information and their application to decision making. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 20, 185–209 (2012) 81. J. Lin, Q. Zhang, Note on aggregating crisp values into intuitionistic fuzzy number. Appl. Math. Model. 40, 10800–10808 (2016) 82. J. Lin, Q. Zhang, Note on continuous interval-valued intuitionistic fuzzy aggregation operator. Appl. Math. Model. 43, 670–677 (2017) 83. P. Liu, A weighted aggregation operators muti-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Syst. Appl. 38, 1053–1060 (2011) 84. P. Liu, Some geometric aggregation operators based on interval intuitionistic uncertain linguistic variables and their application to group decision making. Appl. Math. Model. 37, 2430–2444 (2013) 85. P. Liu, Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22, 83–97 (2014) 86. P. Liu, S.M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans. Cybern. 47, 2514–2530 (2017) 87. P. Liu, F. Jin, A muti-attribute group decision-making method based on weighted geometric aggregation operators of interval-valued trapezoidal fuzzy numbers. Appl. Math. Model. 36, 2498–2509 (2012) 88. P. Liu, Y. Liu, An approach to multiple attribute group decision making based on intuitionistic trapezoidal fuzzy power generalized aggregation operator. Int. J. Comput. Intell. Syst. 7, 291–304 (2014) 89. P. Liu, J. Liu, Y. Chu, Y. Zhang, Muti-atribute group decision making method based on neutrosophic trapezoidal fuzzy linguistic frank aggregation operators. J. Intell. Fuzzy Syst. 35, 779–791 (2018) 90. C.F. Liu, Y.S. Luo, New aggregation operators of single-valued neutrosophic hesitant fuzzy set and their application in multi-attribute decision making. Pattern Anal. Appl. 22, 417–427 (2019) 91. P. Liu, X. Qin, Power average operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision making. J. Intell. Fuzzy Syst. 32, 1029–1043 (2017) 92. Z. Ma, Z. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems. Int. J. Intell. Syst. 31, 1198– 1219 (2016) 93. A. Mishra, A note on “Novel single-valued neutrosophic aggregated operators under Frank norm operation and its application to decision-making process”. Int. J. Uncertainty Quantification 8, 119–121 (2018)
84
1 Appropriate Weighted Averaging Aggregation Operator …
94. A. Mishra, Aggregation operators for various extensions of fuzzy set and its applications in transportation problems. Ph.D Thesis, Thapar Institute of Engineering and Technology, Patiala, Punjab, India, 2019 95. A. Mishra, A. Kumar, Commentary on “New aggregation operators of single-valued neutrosophic hesitant fuzzy set and their application in multi-attribute decision making”. Pattern Anal. Appl. 22, 1207–1209 (2019) 96. A. Mishra, A. Kumar, S.S. Appadoo, A note on “Novel scale prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making”. Eng. Appl. Artif. Intell. 87, 103827 (2020) 97. Nancy, H. Garg, Novel single-valued neutrosophic aggregated operators under Frank norm operation and its application to decision-making process. Int. J. Uncertainty Quantification 6, 361–375 (2016) 98. Nancy, H. Garg, Some hybrid weighted aggregation operators under neutrosophic set environment and their applications to multicriteria decision-making. Appl. Intell. 48, 4871– 4888 (2018) 99. X. Peng, J. Dai, H. Garg, Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Syst. Sci. 33, 2255–2282 (2018) 100. J.-J. Peng, J.-Q. Wang, H.-Y. Zhang, X.-H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 47, 2342– 2358 (2016) 101. X. Peng, H. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators. Fundam. Informaticae 147, 415–446 (2016) 102. W. Qian, L. Niu, Intuitionistic multiplicative preference relation and its application in group decision making. J. Intell. Fuzzy Syst. 30, 2859–2870 (2016) 103. J. Qin, X. Liu, W. Pedrycz, Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making. Appl. Soft Comput. 41, 428–452 (2016) 104. D. Rani, H. Garg, Complex intuitionistic fuzzy power aggregation operators and their applications in multicriteria decision-making. Expert Syst. 35, 1–22 (2018) 105. F. Smarandache, A unifying field in logics: neutrosophic logic. Multiple Valued Logic 8, 385–438 (2002) 106. M. Shakeel, S. Abduulah, M.S.A. Khan, K. Rahman, Averaging aggregation operators with interval Pythagorean trapezoidal fuzzy numbers and their application to group decision making. J. Math. 50, 147–170 (2018) 107. M. Shakeel, S. Abduulah, M. Shahzad, T. Mahmood, N. Siddiqui, Averaging aggregation operators with Pythagoean trapezoidal fuzzy numbers and their application to group decision making. J. Intell. Fuzzy Syst. 36, 1899–1915 (2019) 108. K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators. Int. J. Fuzzy Syst. (2020). https:// doi.org/10.1007/s40815-020-0803-5 109. T. Verma, A. Kumar, Fuzzy Solution Concepts for Non-cooperative Games. Studies in Fuzziness and Soft Computing, vol. 383 (Springer Nature, Switzerland AG, 2020) 110. S.-P. Wan, F. Wang, L.-L. Lin, J.-Y. Dong, Some new generalized aggregation operators for triangular intuitionistic fuzzy numbers and application to multi-attribute group decision making. Comput. Ind. Eng. 93, 286–301 (2016) 111. Y. Wang, Notes on aggregation of fuzzy truth values. Inf. Sci. 296, 119–127 (2015) 112. X. Wang, Z. Fan, Fuzzy ordered weighted averaging (FOWA) operator and its application. Fuzzy Syst. Math. 17, 67–72 (2003) 113. L. Wang, H. Garg, N. Li, Interval-valued q-rung orthopair 2-tuple linguistic aggregation operators and their applications to decision making process. IEEE Access 7, 131962–131977 (2019) 114. W. Wang, X. Liu, Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans. Fuzzy Syst. 20, 923–938 (2012)
References
85
115. W. Wang, X. Liu, Some hesitant fuzzy geometric operators and their application to multiple attribute group decision making. Technol. Econ. Dev. Econ. 20, 371–390 (2014) 116. L. Wang, Q. Shen, L. Zhu, Dual hesitant fuzzy power aggregation operators based on Archimedean t-conorm and t-norm and their application to multiple attribute group decision making. Appl. Soft Comput. 38, 23–50 (2016) 117. G. Wei, Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Appl. Soft Comput. 10, 423–431 (2010) 118. G.-W. Wei, FIOWHM operator and its application to multiple attribute group decision making. Expert Syst. Appl. 38, 2984–2989 (2011) 119. G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl. Based Syst. 31, 176–182 (2012) 120. G. Wei, Correction to “Pythagorean fuzzy interaction aggregation operators and their application to multiplie attribute decision making”. J. Intell. Fuzzy Syst. 34, 2817–2824 (2018) 121. G. Wei, H. Garg, H. Gao, C. Wei, Interval-valued Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. IEEE Access 6, 67866–67884 (2018) 122. G. Wei, H. Wang, X. Zhao, R. Lin, Hesitant triangular fuzzy information aggregation in multiple attribute decision making. J. Intell. Fuzzy Syst. 26, 1201–1209 (2014) 123. J. Wu, Q.-W. Cao, Same families of geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers. Appl. Math. Model. 37, 318–327 (2013) 124. M. Xia, Z. Xu, Preference relations based on intuitionistic fuzzy multiplicative information. IEEE Trans. Fuzzy Syst. 21, 113–132 (2013) 125. M. Xia, Z. Xu, N. Chen, Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis. Negot. 22, 259–279 (2013) 126. S. Xian, W. Xue, J. Zhang, Y. Yin, Q. Xie, Intuitionistic fuzzy linguistic induced ordered weighted averaging operator for group decision making. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 23, 627–648 (2015) 127. Z. Xu, Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007) 128. Z. Xu, Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. Knowl. Based Syst. 24, 749–760 (2011) 129. Z. Xu, R.R. Yager, Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group. Fuzzy Optim. Decis. Making 8, 123–139 (2009) 130. Z. Xu, R.R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006) 131. Z. Xu, R.R. Yager, Power geometric operators and their use in group decision making. IEEE Trans. Fuzzy Syst. 18, 94–105 (2010) 132. R.R. Yager, On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988) 133. R.R. Yager, The power average operator. IEEE Trans. Systems Man Cybern. 31, 724–731 (2001) 134. R.R. Yager, Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22, 958–965 (2014) 135. J. Ye, Intuitionistic fuzzy hybrid arithmetic and geometric aggregation operators for the decision-making of mechanical design schemes. Appl. Intell. 47, 743–751 (2017) 136. D. Yu, Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 13, 1235–1246 (2013) 137. D. Yu, Multiattribute decision making based on intuitionistic fuzzy interaction average operators: a comparison. Int. Trans. Oper. Res. 22, 1017–1032 (2015) 138. Z. Yue, Aggregating crisp values into intuitionistic fuzzy number for group decision making. Appl. Math. Model. 38, 2969–2982 (2014) 139. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
86
1 Appropriate Weighted Averaging Aggregation Operator …
140. W. Zeng, D. Li, Y. Gu, Note on the aggregation operators and ranking of hesitant interval-valued fuzzy elements. Soft. Comput. 23, 8075–8083 (2019) 141. S. Zeng, H. Garg, M. Munir, T. Mahmood, A. Hussain, A multi-attribute decision making process with immediate probabilistic interactive averaging aggregation operators of T-spherical fuzzy sets and its application in the selection of solar cells. Energies 12, 4436 (2019) 142. H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM. J. Appl. Math. 2014, Article ID 432092, 11 (2014) 143. Z. Zhang, Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making. Inf. Sci. 234, 150–181 (2013) 144. Z. Zhang, Hesitant triangular multiplicative aggregation operators and their application to multiple attribute group decision making. Neural Comput. Appl. 28, 195–217 (2017) 145. X. Zhao, R. Lin, G. Wei, Hesitant triangular fuzzy information based on Einstein operations and their application to multiple attribute decision making. Expert Syst. Appl. 41, 1086– 1094 (2014) 146. H. Zhao, Z. Xu, M. Ni, S. Liu, Generalized aggregation operators for intuitionistic fuzzy sets. Int. J. Intell. Syst. 25, 1–30 (2010)
Chapter 2
Mehar Method to Find a Unique Fuzzy Optimal Value of Balanced Fully Triangular Fuzzy Transportation Problems
In the last few years, several methods have been proposed to solve transportation problems under fuzzy environment [11 and the references therein]. Ebrahimnejad [1, 3] pointed out some drawbacks of the existing methods [4–8, 10, 12–18] for solving fully triangular fuzzy transportation problems (transportation problems in which each parameter is represented by a triangular fuzzy number). Also, to resolve the drawbacks, (i) Ebrahimnejad [1] proposed a method for solving balanced fully triangular fuzzy transportation problems. (ii) Ebrahimnejad [3] proposed a method for solving balanced fully triangular fuzzy transportation problems. One may claim that Ebrahimnejad’s methods [1, 3] can be used only to solve such balanced fully triangular fuzzy transportation problems for which the aggregated value of the fuzzy transportation cost, fuzzy availability and fuzzy demand, provided by all the decision-makers, is available. While, Ebrahimnejad’s methods [1, 3] cannot be used to solve such balanced fully triangular fuzzy transportation problems for which, instead of the aggregated data, the data of each decision-maker is provided separately. To overcome this limitation, one may modify Ebrahimnejad’s methods [1, 3] with the help of the existing triangular fuzzy weighted aggregation operators [19, 20]. Also, one may use Ebrahimnejad’s methods [1, 3] in its present form or its modified version to solve real-life balanced fully triangular fuzzy transportation problems. However, after a deep study, it is observed that on applying Ebrahimnejad’s methods [1, 3] more than one triangular fuzzy numbers, representing the total minimum fuzzy transportation cost, are obtained, which is mathematically incorrect as the physical meaning of all the obtained triangular fuzzy numbers will be different. Hence, it is inappropriate to use Ebrahimnejad’s methods [1, 3] in their present form or the modified version of Ebrahimnejad’s methods [1, 3] to solve real-life balanced fully triangular fuzzy transportation problems. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 A. Mishra and A. Kumar, Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems, Studies in Fuzziness and Soft Computing 399, https://doi.org/10.1007/978-981-15-6998-2_2
87
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
88
The aim of this chapter is (i) To make the researchers aware about the inappropriateness of Ebrahimnejad’s methods [1, 3]. (ii) To propose a new method (named as Mehar method) for solving balanced fully triangular fuzzy transportation problems to overcome a limitation and to resolve a drawback of Ebrahimnejad’s methods [1, 3].
2.1
Organization of the Chapter
This chapter is organized as follows: (i) In Sect. 2.2, some basic definitions have been presented. (ii) In Sect. 2.3, an existing method for comparing triangular fuzzy numbers, used in Ebrahimnejad’s methods [1, 3], has been discussed. (iii) In Sect. 2.4, Ebrahimnejad’s methods [1, 3] for solving balanced fully triangular fuzzy transportation problems have been discussed. (iv) In Sect. 2.5, to illustrate Ebrahimnejad’s methods [1, 3], a balanced fully triangular fuzzy transportation problem has been solved by Ebrahimnejad’s methods [1, 3]. (v) In Sect. 2.6, a limitation of Ebrahimnejad’s methods [1, 3] has been discussed. (vi) In Sect. 2.7, a drawback of Ebrahimnejad’s methods [1, 3] has been discussed. (vii) In Sect. 2.8, the reason for the occurrence of the drawback in Ebrahimnejad’s methods [1, 3] has been discussed. (viii) In Sect. 2.9, the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9] has been discussed. (ix) In Sect. 2.10, it is proved that the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9] is valid. (x) In Sect. 2.11, a new method (named as Mehar method) has been proposed to solve balanced fully triangular fuzzy transportation problems. (xi) In Sect. 2.12, a unique fuzzy optimal value of the balanced fully triangular fuzzy transportation problem, considered in Sect. 2.5, has been obtained by the proposed Mehar method. (xii) Sect. 2.13 concludes the chapter.
2.2 Preliminaries
2.2
89
Preliminaries
In this section, some basic definitions, used in the further sections, have been presented [9]. Definition 2.2.1 A convex normalized fuzzy set having piecewise continuous membership function is called a fuzzy number. e ¼ ða; b; cÞ is said to be a triangular fuzzy Definition 2.2.2 A fuzzy number A number if its membership function le ð xÞ is defined as A
8 xa ; > > < ba 1; le ð xÞ ¼ cx A > cb ; > : 0;
a x\b; x ¼ b; b\x c; elsewhere:
e 1 ¼ ða1 ; b1 ; c1 Þ and A e2 ¼ Definition 2.2.3 Two triangular fuzzy numbers A e e ða2 ; b2 ; c2 Þ are said to be equal, i.e., A 1 ¼ A 2 if and only if a1 ¼ a2 , b1 ¼ b2 , c1 ¼ c2 . e ¼ ða; b; cÞ is said to be Definition 2.2.4 A triangular fuzzy number A non-negative triangular fuzzy number if and only if a 0. e 2 ¼ ða2 ; b2 ; c2 Þ are two triangular fuzzy e 1 ¼ ða1 ; b1 ; c1 Þ and A Definition 2.2.5 If A e e numbers. Then, A 1 A 2 ¼ ða1 þ a2 ; b1 þ b2 ; c1 þ c2 Þ. e 2 ¼ ða2 ; b2 ; c2 Þ are two non-fsubjects. e 1 ¼ ða1 ; b1 ; c1 Þ and A Definition 2.2.6 If A e 2 ¼ ða1 a2 ; b1 b2 ; c1 c2 Þ. e1 A Then, A
2.3
An Existing Method for Comparing Triangular Fuzzy Numbers
If A1 and A2 are two distinct real numbers, i.e., A1 6¼ A2 , then it can be easily e 1 ¼ ða1 ; b1 ; c1 Þ and A e2 ¼ concluded that A1 \A2 or A1 [ A2 . However, if A e e ða2 ; b2 ; c2 Þ are two triangular fuzzy numbers such that A 1 6¼ A 2 . Then, it cannot e 2 or A e1 A e 2 . Different methods have been proposed e1 A easily concluded that A in the literature for comparing triangular fuzzy numbers. Ebrahimnejad [1, 3] has used the following method for comparing two distinct e 2 ¼ ða2 ; b2 ; c2 Þ. e 1 ¼ ða1 ; b1 ; c1 Þ and A triangular fuzzy numbers A e 2 if a1 \a2 , b1 b2 , c1 c2 or a1 a2 , b1 \b2 , c1 c2 or a1 a2 , e1 A (i) A b1 b2 , c1 \c2 .
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
90
e1 A e 2 if a1 [ a2 , b1 b2 , c1 c2 or a1 a2 , b1 [ b2 , c1 c2 or a1 a2 , (ii) A b1 b2 , c 1 [ c 2 .
2.4
Ebrahimnejad’s Methods for Solving Balanced Fully Triangular Fuzzy Transportation Problems
Ebrahimnejad [1, 3] claimed that if it is assumed that the triangular fuzzy number ~xij ¼ xij;1 ; xij;2 ; xij;3 represents the fuzzy quantity of the product to be supplied from the ith source ðSi Þ to the jth destination Dj . Then, to solve a balanced fully triangular fuzzy transportation problem, represented by Table 2.1, is equivalent to solve the fully fuzzy linear programming problem (2.4.1). Hence, Ebrahimnejad [1, 3] proposed the following two methods to solve the fully fuzzy linear programming problem (2.4.1). where (i) The triangular fuzzy number ~cij ¼ cij;1 ; cij;2 ; cij;3 represents the fuzzy transportation cost for supplying the one unit quantity of the product from the ith source ðSi Þ to the jth destination Dj . (ii) The triangular fuzzy number ~ai ¼ ai;1 ; ai;2 ; ai;3 represents the fuzzy availability of the product at the ith source ðSi Þ. (iii) The triangular fuzzy number ~bj ¼ bj;1 ; bj;2 ; bj;3 represents the fuzzy demand of the product at the jth destination Dj . (iv) m represents the number of sources. (v) n represents the number of destinations. Fully fuzzy linear programming problem (2.4.1) h i n Minimize m x c ; c ; c ; x ; x ij;1 ij;2 ij;3 ij;1 ij;2 ij;3 i¼1 j¼1
Table 2.1 Tabular representation of a balanced fully fuzzy transportation problem Destinations Sources
D1
D2
Dj
Dn
Fuzzy availability
S1 .. . Si .. . Sm Fuzzy demand
~c11 .. . ~ci1 .. . ~cm1 ~b1
~c12 .. . ~ci2 .. . ~cm2 ~b2
.. . .. .
~c1j .. . ~cij .. . ~cmj ~bj
.. . .. .
~c1n .. . ~cin .. . ~cmn ~ bn
~ a1 .. . ~ ai .. . ~ am Pm i¼1
~ ai ¼
Pn j¼1
~ bj
2.4 Ebrahimnejad’s Methods for Solving Balanced Fully …
91
Subject to nj¼1 xij;1 ; xij;2 ; xij;3 ¼ ai;1 ; ai;2 ; ai;3 ; i ¼ 1; 2; . . .; m; m i¼1 xij;1 ; xij;2 ; xij;3 ¼ bj;1 ; bj;2 ; bj;3 ; j ¼ 1; 2; . . .; n;
xij;1 ; xij;2 ; xij;3 is a non-negative 8 i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n.
2.4.1
triangular
fuzzy
number
Ebrahimnejad’s First Method
Ebrahimnejad [1] proposed the following method to solve the fully fuzzy linear programming problem (2.4.1). Step 1: Using the multiplication of two non-negative triangular fuzzy numbers ða1 ; b1 ; c1 Þ and ða2 ; b2 ; c2 Þ, i.e., ða1 ; b1 ; c1 Þ ða2 ; b2 ; c2 Þ = ða1 a2 ; b1 b2 ; c1 c2 Þ, transform the fully fuzzy linear programming problem (2.4.1) into its equivalent fully fuzzy linear programming problem (2.4.1.1). Fully fuzzy linear programming problem (2.4.1.1) h i n Minimize m c x ; c x ; c x ij;1 ij;1 ij;2 ij;2 ij;3 ij;3 i¼1 j¼1 Subject to Constraints of the fully fuzzy linear programming problem (2.4.1). Pm Pm Pm Step 2: Using the relation, m i¼1 ðai ; bi ; ci Þ ¼ i¼1 ai ; i¼1 bi ; i¼1 ci , transform the fully fuzzy linear programming problem (2.4.1.1) into its equivalent fully fuzzy linear programming problem (2.4.1.2). Fully fuzzy linear programming problem (2.4.1.2) " Minimize
m X n X i¼1 j¼1
Subject to
cij;1 xij;1 ;
m X n X i¼1 j¼1
cij;2 xij;2 ;
m X n X i¼1 j¼1
!# cij;3 xij;3
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
92 n X
xij;1 ;
n X
xij;2 ;
n X
j¼1
j¼1
j¼1
n X
n X
n X
xij;1 ;
j¼1
xij;2 ;
j¼1
! xij;3 ! xij;3
¼ ai;1 ; ai;2 ; ai;3 ;
i ¼ 1; 2; . . .; m;
¼ bj;1 ; bj;2 ; bj;3 ;
j ¼ 1; 2; . . .; n;
j¼1
is a non-negative xij;1 ; xij;2 ; xij;3 8 i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n.
triangular
fuzzy
number
Step 3: Using the relation, ða1 ; b1 ; c1 Þ ¼ ða2 ; b2 ; c2 Þ ) a1 ¼ a2 ; b1 ¼ b2 ; c1 ¼ c2 and the relation ða; b; cÞ is a non-negative triangular fuzzy number ) a 0, b a 0; c b 0; transform the fully fuzzy linear programming problem (2.4.1.2) into its equivalent fuzzy linear programming problem (2.4.1.3). Fuzzy linear programming problem (2.4.1.3) " Minimize
m X n X
cij;1 xij;1 ;
m X n X
i¼1 j¼1
i¼1 j¼1
n X
n X
cij;2 xij;2 ;
m X n X
!# cij;3 xij;3
i¼1 j¼1
Subject to n X
xij;1 ¼ ai;1 ;
j¼1 m X i¼1
xij;2 ¼ ai;2 ;
j¼1
xij;1 ¼ bj;1 ;
m X
xij;3 ¼ ai;3 ;
i ¼ 1; 2; . . .; m;
j¼1
xij;2 ¼ bj;2 ;
i¼1
m X
xij;3 ¼ bj;3 ; j ¼ 1; 2; . . .; n;
i¼1
xij;1 0; xij;2 xij;1 0; xij;3 xij;2 0:
Step 4: Using the existing method for comparing triangular fuzzy numbers, discussed in Sect. 2.3, transform the fuzzy linear programming problem (2.4.1.3) into its equivalent crisp multi-objective linear programming problem (2.4.1.4). Crisp multi-objective linear programming problem (2.4.1.4) " Minimize
m X n X i¼1 j¼1
# cij;1 xij;1
2.4 Ebrahimnejad’s Methods for Solving Balanced Fully …
" Minimize
m X n X
93
# cij;2 xij;2
i¼1 j¼1
" Minimize
m X n X
# cij;3 xij;3
i¼1 j¼1
Subject to Constraints of the fuzzy linear programming problem (2.4.1.3). Step 5: Find a crisp optimal solution xij;1 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n and the P Pn crisp optimal value m i¼1 j¼1 cij;1 xij;1 of the crisp linear programming problem (2.4.1.5). Crisp linear programming problem (2.4.1.5) " Minimize
m X n X
# cij;1 xij;1
i¼1 j¼1
Subject to
n X
xij;1 ¼ ai;1 ;
i ¼ 1; 2; . . .; m;
j¼1 m X
xij;1 ¼ bj;1 ; j ¼ 1; 2; . . .; n;
i¼1
xij;1 0
8 i ¼ 1; 2; . . .; m;
j ¼ 1; 2; . . .; n:
Step 6: Find a crisp optimal solution xij;2 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n and the Pm Pn crisp optimal value i¼1 j¼1 cij;2 xij;2 of the crisp linear programming problem (2.4.1.6). Crisp linear programming problem (2.4.1.6) " Minimize
m X n X
# cij;2 xij;2
i¼1 j¼1
Subject to n X j¼1
xij;2 ¼ ai;2 ;
i ¼ 1; 2; . . .; m;
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
94 m X
xij;2 ¼ bj;2 ;
j ¼ 1; 2; . . .; n;
i¼1
x ij;1 xij;2 8 i ¼ 1; 2; . . .; m;
j ¼ 1; 2; . . .; n:
where x ij;1 is the crisp optimal value of the variable xij;1 in the crisp optimal solution of the crisp linear programming problem (2.4.1.5). Step 7: Find a crisp optimal solution xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n and the Pm Pn crisp optimal value i¼1 j¼1 cij;3 xij;3 of the crisp linear programming problem (2.4.1.7). Crisp linear programming problem (2.4.1.7) " Minimize
m X n X
# cij;3 xij;3
i¼1 j¼1
Subject to
n X
xij;3 ¼ ai;3 ;
i ¼ 1; 2; . . .; m;
j¼1 m X
xij;3 ¼ bj;3 ; j ¼ 1; 2; . . .; n;
i¼1
x ij;2 xij;3 8 i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: where x ij;2 is the crisp optimal value of the variable xij;2 in the crisp optimal solution of the crisp linear programming problem (2.4.1.6). Step 8: Using the crisp optimal solution xij;1 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n , the crisp optimal solution xij;2 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n and the crisp optimal solution xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n of the crisp linear programming problem (2.4.1.5), the crisp linear programming problem (2.4.1.6) and the crisp linear programming problem (2.4.1.7), respectively, find a fuzzy optimal solution xij;1 ; xij;2 ; xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng of the fully fuzzy linear programming problem (2.4.1). P Pn Step 9: Using the crisp optimal value m i¼1 j¼1 cij;1 xij;1 , the crisp optimal value Pm Pn Pm Pn i¼1 j¼1 cij;2 xij;2 and the crisp optimal value i¼1 j¼1 cij;3 xij;3 of the crisp linear programming problem (2.4.1.5), the crisp linear programming problem (2.4.1.6) and the crisp linear programming problem (2.4.1.7), respectively, find the
2.4 Ebrahimnejad’s Methods for Solving Balanced Fully …
fuzzy optimal value
P
m i¼1
Pn
j¼1 cij;1 xij;1 ;
95
Pm Pn i¼1
j¼1 cij;2 xij;2 ;,
Pm Pn
j¼1 cij;3 xij;3
i¼1
of the fully fuzzy linear programming problem (2.4.1).
2.4.2
Ebrahimnejad’s Second Method
Ebrahimnejad [3] proposed the following method to solve the fully fuzzy linear programming problem (2.4.1). Step 1: Using the multiplication of two non-negative triangular fuzzy numbers ða1 ; b1 ; c1 Þ and ða2 ; b2 ; c2 Þ, i.e., ða1 ; b1 ; c1 Þ ða2 ; b2 ; c2 Þ = ða1 a2 ; b1 b2 ; c1 c2 Þ, transform the fully fuzzy linear programming problem (2.4.1) into its equivalent fully fuzzy linear programming problem (2.4.2.1). Fully fuzzy linear programming problem (2.4.2.1) h i n Minimize m i¼1 j¼1 cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 Subject to Constraints of the fully fuzzy linear programming problem (2.4.1). Pm Pm Pm Step 2: Using the relation, m i¼1 ðai ; bi ; ci Þ ¼ i¼1 ai ; i¼1 bi ; i¼1 ci , transform the fully fuzzy linear programming problem (2.4.2.1) into its equivalent fully fuzzy linear programming problem (2.4.2.2). Fully fuzzy linear programming problem (2.4.2.2) " Minimize
m X n X
cij;1 xij;1 ;
i¼1 j¼1
m X n X
cij;2 xij;2 ;
i¼1 j¼1
m X n X
!# cij;3 xij;3
i¼1 j¼1
Subject to n X
xij;2 ;
n X
j¼1
j¼1
j¼1
n X
n X
n X
j¼1
xij;1 ;
n X
xij;1 ;
j¼1
xij;2 ;
! xij;3 ! xij;3
¼ ai;1 ; ai;2 ; ai;3 ;
i ¼ 1; 2; . . .; m;
¼ bj;1 ; bj;2 ; bj;3 ;
j ¼ 1; 2; . . .; n;
j¼1
is a non-negative xij;1 ; xij;2 ; xij;3 8 i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n.
triangular
fuzzy
number
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
96
Step 3: Using the relation, ða1 ; b1 ; c1 Þ ¼ ða2 ; b2 ; c2 Þ ) a1 ¼ a2 ; b1 ¼ b2 ; c1 ¼ c2 and the relation ða; b; cÞ is a non-negative triangular fuzzy number ) a 0, b a 0; c b 0; transform the fully fuzzy linear programming problem (2.4.2.2) into its equivalent fuzzy linear programming problem (2.4.2.3). Fuzzy linear programming problem (2.4.2.3) " Minimize
m X n X
cij;1 xij;1 ;
m X n X
i¼1 j¼1
i¼1 j¼1
n X
n X
cij;2 xij;2 ;
m X n X
!# cij;3 xij;3
i¼1 j¼1
Subject to n X
xij;1 ¼ ai;1 ;
j¼1 m X i¼1
xij;2 ¼ ai;2 ;
j¼1
xij;1 ¼ bj;1 ;
m X
xij;3 ¼ ai;3 ;
i ¼ 1; 2; . . .; m;
xij;3 ¼ bj;3 ;
j ¼ 1; 2; . . .; n;
j¼1
xij;2 ¼ bj;2 ;
i¼1
m X i¼1
xij;1 0; xij;2 xij;1 0; xij;3 xij;2 0:
Step 4: Using the existing method for comparing triangular fuzzy numbers, discussed in Sect. 2.3, transform the fuzzy linear programming problem (2.4.2.3) into its equivalent crisp multi-objective linear programming problem (2.4.2.4). Crisp multi-objective linear programming problem (2.4.2.4) " Minimize
m X n X
# cij;1 xij;1
i¼1 j¼1
" Minimize
m X n X
# cij;2 xij;2
i¼1 j¼1
" Minimize
m X n X
# cij;3 xij;3
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (2.4.2.3).
2.4 Ebrahimnejad’s Methods for Solving Balanced Fully …
97
Step 5: Find a crisp optimal solution xij;2 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n and the P Pn crisp optimal value m i¼1 j¼1 cij;2 xij;2 of the crisp linear programming problem (2.4.2.5). Crisp linear programming problem (2.4.2.5) " Minimize
m X n X
# cij;2 xij;2
i¼1 j¼1
Subject to n X
xij;2 ¼ ai;2 ;
i ¼ 1; 2; . . .; m;
xij;2 ¼ bj;2 ;
j ¼ 1; 2; . . .; n;
j¼1 m X i¼1
xij;2 0 8 i ¼ 1; 2; . . .; m;
j ¼ 1; 2; . . .; n:
Step 6: Find a crisp optimal solution xij;1 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng and the P Pn crisp optimal value m i¼1 j¼1 cij;1 xij;1 of the crisp linear programming problem (2.4.2.6). Crisp linear programming problem (2.4.2.6) " Minimize
m X n X
# cij;1 xij;1
i¼1 j¼1
Subject to n X
xij;1 ¼ ai;1 ;
i ¼ 1; 2; . . .; m;
xij;1 ¼ bj;1 ;
j ¼ 1; 2; . . .; n;
j¼1 m X i¼1
0 xij;1 x ij;2 8 i ¼ 1; 2; . . .; m;
j ¼ 1; 2; . . .; n:
where x ij;2 is the crisp optimal value of the variable xij;2 in the crisp optimal solution of the crisp linear programming problem (2.4.2.5).
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
98
Step 7: Find a crisp optimal solution xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng and the P Pn crisp optimal value m i¼1 j¼1 cij;3 xij;3 of the crisp linear programming problem (2.4.2.7). Crisp linear programming problem (2.4.2.7) " Minimize
m X n X
# cij;3 xij;3
i¼1 j¼1
Subject to n X
xij;3 ¼ ai;3 ;
i ¼ 1; 2; . . .; m;
j¼1 m X
xij;3 ¼ bj;3 ; j ¼ 1; 2; . . .; n;
i¼1
x ij;2 xij;3 8 i ¼ 1; 2; . . .; m;
j ¼ 1; 2; . . .; n:
where x ij;2 is the crisp optimal value of the variable xij;2 in the crisp optimal solution of the crisp linear programming problem (2.4.2.5). Step 8: Using the crisp optimal solution xij;2 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng, the crisp optimal solution xij;1 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng and the crisp optimal solution xij;3 ; i ¼ 1; 2; . . .; m, j ¼ 1; 2; . . .; ng of the crisp linear programming problem (2.4.2.5), the crisp linear programming problem (2.4.2.6) and the crisp linear programming problem (2.4.2.7), respectively, find a fuzzy optimal solution xij;1 ; xij;2 ; xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n of the fully fuzzy linear programming problem (2.4.1). P Pn Step 9: Using the crisp optimal value m i¼1 j¼1 cij;2 xij;2 , the crisp optimal value Pm Pn Pm Pn i¼1 j¼1 cij;1 xij;1 and the crisp optimal value i¼1 j¼1 cij;3 xij;3 of the crisp linear programming problem (2.4.2.5), the crisp linear programming problem (2.4.2.6) and the crisp linear programming problem (2.4.2.7), respectively, find the Pm Pn Pm Pn Pm Pn c x c x , c x fuzzy optimal value , i¼1 j¼1 ij;1 ij;1 i¼1 j¼1 ij;2 ij;2 i¼1 j¼1 ij;3 ij;3 of the fully fuzzy linear programming problem (2.4.1).
2.5 Illustrative Example
2.5
99
Illustrative Example
In this section, Ebrahimnejad’s methods [1, 3] have been illustrated with the help of the balanced fully fuzzy transportation problem represented by Table 2.2. It is pertinent to mention that as in Ebrahimnejad methods [1, 3], the fully fuzzy linear programming problem (2.4.1) has been solved to find a fuzzy optimal solution of the balanced fully triangular fuzzy transportation problem represented by Table 2.1. Therefore, in this section, the fully fuzzy linear programming problem (2.5.1) has been solved to find a fuzzy optimal solution of the balanced fully triangular fuzzy transportation problem represented by Table 2.2. Fully fuzzy linear programming problem (2.5.1) Minimize ð20; 40; 60Þ x11;1 ; x11;2 ; x11;3 ð25; 50; 50Þ x12;1 ; x12;2 ; x12;3 ð25; 50; 50Þ x21;1 ; x21;2 ; x21;3 ð20; 40; 60Þ x22;1 ; x22;2 ; x22;3 Subject to
x11;1 ; x11;2 ; x11;3 x12;1 ; x12;2 ; x12;3 ¼ ð40; 60; 80Þ;
x21;1 ; x21;2 ; x21;3 x22;1 ; x22;2 ; x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 x21;1 ; x21;2 ; x21;3 ¼ ð40; 60; 80Þ;
x12;1 ; x12;2 ; x12;3 x22;1 ; x22;2 ; x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 , x12;1 ; x12;2 ; x12;3 , x21;1 ; x21;2 ; x21;3 and x22;1 ; x22;2 ; x22;3 are non-negative triangular fuzzy numbers.
Table 2.2 Balanced fully triangular fuzzy transportation problem
Destinations Sources S1 S2 Fuzzy demand
D1
D2
Fuzzy availability
ð20; 40; 60Þ ð25; 50; 50Þ ð40; 60; 80Þ
ð25; 50; 50Þ ð20; 40; 60Þ ð40; 60; 80Þ
ð40; 60; 80Þ ð40; 60; 80Þ
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
100
2.5.1
Fuzzy Optimal Solution by Ebrahimnejad’s First Method
Using Ebrahimnejad’s first method [1], the fuzzy optimal solution of the fully fuzzy linear programming problem (2.5.1) can be obtained as follows: Step 1: Using the multiplication of two non-negative triangular fuzzy numbers ða1 ; b1 ; c1 Þ and ða2 ; b2 ; c2 Þ, i.e., ða1 ; b1 ; c1 Þ ða2 ; b2 ; c2 Þ = ða1 a2 ; b1 b2 ; c1 c2 Þ, the fully fuzzy linear programming problem (2.5.1) can be transformed into its equivalent fully fuzzy linear programming problem (2.5.1.1). Fully fuzzy linear programming problem (2.5.1.1) Minimize 20x11;1 ; 40x11;2 ; 60x11;3 25x12;1 ; 50x12;2 ; 50x12;3 25x21;1 ; 50x21;2 ; 50x21;3 20x22;1 ; 40x22;2 ; 60x22;3 Subject to Constraints of the fully fuzzy linear programming problem (2.5.1). Pm Pm Pm Step 2: Using the relation, m i¼1 ðai ; bi ; ci Þ ¼ i¼1 ai ; i¼1 bi ; i¼1 ci , the fully fuzzy linear programming problem (2.5.1.1) can be transformed into its equivalent fully fuzzy linear programming problem (2.5.1.2). Fully fuzzy linear programming problem (2.5.1.2) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to
x11;1 þ x12;1 ; x11;2 þ x12;2 ; x11;3 þ x12;3 ¼ ð40; 60; 80Þ;
x21;1 þ x22;1 ; x21;2 þ x22;2 ; x21;3 þ x22;3 ¼ ð40; 60; 80Þ;
x11;1 þ x21;1 ; x11;2 þ x21;2 ; x11;3 þ x21;3 ¼ ð40; 60; 80Þ;
x12;1 þ x22;1 ; x12;2 þ x22;2 ; x12;3 þ x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 , x12;1 ; x12;2 ; x12;3 , x21;1 ; x21;2 ; x21;3 and x22;1 ; x22;2 ; x22;3 are non-negative triangular fuzzy numbers.
2.5 Illustrative Example
101
Step 3: Using the relation, ða1 ; b1 ; c1 Þ ¼ ða2 ; b2 ; c2 Þ ) a1 ¼ a2 ; b1 ¼ b2 ; c1 ¼ c2 and the relation ða; b; cÞ is a non-negative triangular fuzzy number ) a 0, b a 0; c b 0;, the fully fuzzy linear programming problem (2.5.1.2) can be transformed into its equivalent fuzzy linear programming problem (2.5.1.3). Fully fuzzy linear programming problem (2.5.1.3) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to x11;1 þ x12;1 ¼ 40; x11;2 þ x12;2 ¼ 60; x11;3 þ x12;3 ¼ 80; x21;1 þ x22;1 ¼ 40; x21;2 þ x22;2 ¼ 60; x21;3 þ x22;3 ¼ 80; x11;1 þ x21;1 ¼ 40; x11;2 þ x21;2 ¼ 60; x11;3 þ x21;3 ¼ 80; x12;1 þ x22;1 ¼ 40; x12;2 þ x22;2 ¼ 60; x12;3 þ x22;3 ¼ 80; x11;2 x11;1 0; x12;2 x12;1 0; x21;2 x21;1 0; x22;2 x22;1 0; x11;3 x11;2 0; x12;3 x12;2 0; x21;3 x21;2 0; x22;3 x22;2 0; x11;1 ; x12;1 ; x21;1 ; x22;1 0:
Step 4: Using the existing method for comparing triangular fuzzy numbers, discussed in Sect. 2.3, the fuzzy linear programming problem (2.5.1.3) can be transformed into its equivalent crisp multi-objective linear programming problem (2.5.1.4). Crisp multi-objective linear programming problem (2.5.1.4) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 Minimize 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 Minimize 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to Constraints of the fuzzy linear programming problem (2.5.1.3). Step 5: According to Step 5 of Ebrahimnejad’s first method [1], discussed in Sect. 2.4.1, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.1.5).
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
102
Crisp linear programming problem (2.5.1.5) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 Subject to x11;1 þ x12;1 ¼ 40; x21;1 þ x22;1 ¼ 40; x11;1 þ x21;1 ¼ 40; x12;1 þ x22;1 ¼ 40; x11;1 ; x12;1 ; x21;1 ; x22;1 0: It can be easily verified that on solving the crisp linear programming problem (2.5.1.5), the obtained crisp optimal solution is x11;1 ¼ 40; x12;1 ¼ 0, x21;1 ¼ 0; x22;1 ¼ 40 and the corresponding crisp optimal value is 1600. Step 6: According to Step 6 of Ebrahimnejad’s first method [1], discussed in Sect. 2.4.1, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.1.6). Crisp linear programming problem (2.5.1.6) Minimize 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 Subject to x11;2 þ x12;2 ¼ 60; x21;2 þ x22;2 ¼ 60; x11;2 þ x21;2 ¼ 60; x12;2 þ x22;2 ¼ 60; x11;2 40; x12;2 0; x21;2 0; x22;2 40: It can be easily verified that on solving the crisp linear programming problem (2.5.1.6), the obtained crisp optimal solution is x11;2 ¼ 60; x12;2 ¼ 0, x21;2 ¼ 0; x22;2 ¼ 60 and the corresponding crisp optimal value is 4800. Step 7: According to Step 7 of Ebrahimnejad’s first method [1], discussed in Sect. 2.4.1, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.1.7). Crisp linear programming problem (2.5.1.7) Minimize 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to x11;3 þ x12;3 ¼ 80; x21;3 þ x22;3 ¼ 80; x11;3 þ x21;3 ¼ 80; x12;3 þ x22;3 ¼ 80; x11;3 60; x12;3 0; x21;3 0; x22;3 60: It can be easily verified that on solving the crisp linear programming problem (2.5.1.7), the obtained crisp optimal solution is x11;3 ¼ 60; x12;3 ¼ 20, x21;3 ¼ 20; x22;3 ¼ 60 and the corresponding crisp optimal value is 9200.
2.5 Illustrative Example
103
Step 8: Using Step 8 of Ebrahimnejad’s first method [1], the fuzzy optimal solution of the fully fuzzy linear programming problem (2.5.1) is ~x11 ¼ ð40; 60; 60Þ, ~x12 ¼ ð0; 0; 20Þ, ~x21 ¼ ð0; 0; 20Þ, ~x22 ¼ ð40; 60; 60Þ. Step 9: Using Step 9 of Ebrahimnejad’s first method [1], the fuzzy optimal value of the fully fuzzy linear programming problem (2.5.1) is ð1600; 4800; 9200Þ:
2.5.2
Fuzzy Optimal Solution by Ebrahimnejad’s Second Method
Using Ebrahimnejad’s second method [3], a fuzzy optimal solution of the fully fuzzy linear programming problem (2.5.1) can be obtained as follows: Step 1: Using the multiplication of two non-negative triangular fuzzy numbers ða1 ; b1 ; c1 Þ and ða2 ; b2 ; c2 Þ, i.e., ða1 ; b1 ; c1 Þ ða2 ; b2 ; c2 Þ = ða1 a2 ; b1 b2 ; c1 c2 Þ, the fully fuzzy linear programming problem (2.5.1) can be transformed into its equivalent fully fuzzy linear programming problem (2.5.2.1). Fully fuzzy linear programming problem (2.5.2.1) Minimize 20x11;1 ; 40x11;2 ; 60x11;3 25x12;1 ; 50x12;2 ; 50x12;3
25x21;1 ; 50x21;2 ; 50x21;3 20x22;1 ; 40x22;2 ; 60x22;3
Subject to Constraints of the fully fuzzy linear programming problem (2.5.1). Pm Pm Pm Step 2: Using the relation, m i¼1 ðai ; bi ; ci Þ ¼ i¼1 ai ; i¼1 bi ; i¼1 ci , the fully fuzzy linear programming problem (2.5.2.1) can be transformed into its equivalent fully fuzzy linear programming problem (2.5.2.2). Fully fuzzy linear programming problem (2.5.2.2) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to
x11;1 þ x12;1 ; x11;2 þ x12;2 ; x11;3 þ x12;3 ¼ ð40; 60; 80Þ;
x21;1 þ x22;1 ; x21;2 þ x22;2 ; x21;3 þ x22;3 ¼ ð40; 60; 80Þ;
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
104
x11;1 þ x21;1 ; x11;2 þ x21;2 ; x11;3 þ x21;3 ¼ ð40; 60; 80Þ;
x12;1 þ x22;1 ; x12;2 þ x22;2 ; x12;3 þ x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 , x12;1 ; x12;2 ; x12;3 , x21;1 ; x21;2 ; x21;3 and x22;1 ; x22;2 ; x22;3 are non-negative triangular fuzzy numbers. Step 3: Using the relation, ða1 ; b1 ; c1 Þ ¼ ða2 ; b2 ; c2 Þ ) a1 ¼ a2 ; b1 ¼ b2 ; c1 ¼ c2 and the relation ða; b; cÞ is a non-negative triangular fuzzy number ) a 0, b a 0; c b 0, the fully fuzzy linear programming problem (2.5.2.2) can be transformed into its equivalent fuzzy linear programming problem (2.5.2.3). Fully fuzzy linear programming problem (2.5.2.3) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3
Subject to x11;1 þ x12;1 ¼ 40; x11;2 þ x12;2 ¼ 60; x11;3 þ x12;3 ¼ 80; x21;1 þ x22;1 ¼ 40; x21;2 þ x22;2 ¼ 60; x21;3 þ x22;3 ¼ 80; x11;1 þ x21;1 ¼ 40; x11;2 þ x21;2 ¼ 60; x11;3 þ x21;3 ¼ 80; x12;1 þ x22;1 ¼ 40; x12;2 þ x22;2 ¼ 60; x12;3 þ x22;3 ¼ 80; x11;2 x11;1 0; x12;2 x12;1 0; x21;2 x21;1 0; x22;2 x22;1 0; x11;3 x11;2 0; x12;3 x12;2 0; x21;3 x21;2 0; x22;3 x22;2 0; x11;1 ; x12;1 ; x21;1 ; x22;1 0: Step 4: Using the existing method for comparing triangular fuzzy numbers, discussed in Sect. 2.3, the fuzzy linear programming problem (2.5.2.3) can be transformed into its equivalent crisp multi-objective linear programming problem (2.5.2.4). Crisp multi-objective linear programming problem (2.5.2.4) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 Minimize 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2
2.5 Illustrative Example
105
Minimize 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to Constraints of the fuzzy linear programming problem (2.5.2.3). Step 5: According to Step 5 of Ebrahimnejad’s second method [3], discussed in Sect. 2.4.2, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.2.5). Crisp linear programming problem (2.5.2.5) Minimize 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 Subject to x11;2 þ x12;2 ¼ 60; x21;2 þ x22;2 ¼ 60; x11;2 þ x21;2 ¼ 60; x12;2 þ x22;2 ¼ 60; x11;2 0; x12;2 0; x21;2 0; x22;2 0: It can be easily verified that on solving the crisp linear programming problem (2.5.2.5), the obtained crisp optimal solution is x11;2 ¼ 60; x12;2 ¼ 0, x21;2 ¼ 0; x22;2 ¼ 60 and the corresponding crisp optimal value is 4800. Step 6: According to Step 6 of Ebrahimnejad’s second method [3], discussed in Sect. 2.4.2, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.2.6). Crisp linear programming problem (2.5.2.6) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 Subject to x11;1 þ x12;1 ¼ 40; x21;1 þ x22;1 ¼ 40; x11;1 þ x21;1 ¼ 40; x12;1 þ x22;1 ¼ 40; 0 x11;1 60; 0 x12;1 0; 0 x21;1 0; 0 x22;1 60: It can be easily verified that on solving the crisp linear programming problem (2.5.2.6), the obtained crisp optimal solution is x11;1 ¼ 40; x12;1 ¼ 0, x21;1 ¼ 0; x22;1 ¼ 40 and the corresponding crisp optimal value is 1600. Step 7: According to Step 7 of Ebrahimnejad’s second method [3], discussed in Sect. 2.4.2, there is a need to find a crisp optimal solution and the crisp optimal value of the crisp linear programming problem (2.5.2.7).
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
106
Crisp linear programming problem (2.5.2.7) Minimize 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to x11;3 þ x12;3 ¼ 80; x21;3 þ x22;3 ¼ 80; x11;3 þ x21;3 ¼ 80; x12;3 þ x22;3 ¼ 80; x11;3 60; x12;3 0; x21;3 0; x22;3 60: It can be easily verified that on solving the crisp linear programming problem (2.5.2.7), the obtained crisp optimal solution is x11;3 ¼ 60; x12;3 ¼ 20, x21;3 ¼ 20; x22;3 ¼ 60 and the corresponding crisp optimal value is 9200. Step 8: Using Step 8 of Ebrahimnejad’s second method [3], the fuzzy optimal solution of the fully fuzzy linear programming problem (2.5.1) is ~x11 ¼ ð40; 60; 60Þ, ~x12 ¼ ð0; 0; 20Þ, ~x21 ¼ ð0; 0; 20Þ, ~x22 ¼ ð40; 60; 60Þ. Step 9: Using Step 9 of Ebrahimnejad’s second method [3], the fuzzy optimal solution of the fully fuzzy linear programming problem (2.5.1) is ð1600; 4800; 9200Þ.
2.6
Limitation of Ebrahimnejad’s Methods
In general, to solve a real-life fully fuzzy transportation problem, the opinion of two or more experts about the parameters is collected. Then, all the collected information is aggregated to obtain a single value of each parameter. Since, Ebrahimnejad’s methods [1, 3] have been proposed by considering the assumption that the aggregated value of each parameter is available. Therefore, Ebrahimnejad’s methods [1, 3] can be used to solve such balanced fully triangular fuzzy transportation problems for which the aggregated value of the fuzzy transportation cost, the fuzzy availability and the fuzzy demand are provided. But, Ebrahimnejad’s methods [1, 3] cannot be used to solve such balanced fully triangular fuzzy transportation problems for which instead of providing the aggregated fuzzy data, the fuzzy data of each decision-maker is provided separately. For example, Ebrahimnejad’s methods [1, 3] cannot be used to solve the balanced fully triangular fuzzy transportation problem considered in Example 2.6.1. Example 2.6.1 Let us consider a product needs to be supplied from two sources to two destinations. For the same purpose, the information about each parameter is collected from two experts. If (i) Table 2.3 represents the fuzzy transportation cost, the fuzzy availability and the fuzzy demand provided by the first decision-maker.
2.6 Limitation of Ebrahimnejad’s Methods Table 2.3 Fuzzy data provided by the first decision-maker
Destinations Sources S1 S2 Fuzzy demand
Table 2.4 Fuzzy data provided by the second decision-maker
Destinations Sources S1 S2 Fuzzy demand
107
D1
D2
Fuzzy availability
ð10; 30; 40Þ ð25; 30; 50Þ ð40; 60; 80Þ
ð25; 50; 50Þ ð20; 40; 60Þ ð40; 45; 60Þ
ð20; 60; 70Þ ð25; 45; 60Þ
D1
D2
Fuzzy availability
ð10; 20; 25Þ ð20; 35; 40Þ ð20; 55; 60Þ
ð25; 30; 60Þ ð20; 25; 40Þ ð40; 45; 50Þ
ð30; 50; 70Þ ð20; 40; 80Þ
(ii) Table 2.4 represents the fuzzy transportation cost, the fuzzy availability and the fuzzy demand provided by the second decision-maker. Then, this balanced fully triangular fuzzy transportation problem cannot be solved by Ebrahimnejad’s methods [1, 3].
2.7
Drawback of Ebrahimnejad’s Methods
It is obvious from Sect. 2.5 that according to Ebrahimnejad’s methods [1, 3], the triangular fuzzy number ð1600; 4800; 9200Þ represents the total minimum fuzzy transportation cost for the balanced fully triangular fuzzy transportation problem represented by Table 2.2. While, in actual case, the triangular fuzzy number ð1600; 4800; 9200Þ does not represents the total minimum fuzzy transportation cost for the balanced fully triangular fuzzy transportation problem, represented by Table 2.2, due to the following reason: (i) It is obvious that ~x11 ¼ ð40; 40; 40Þ, ~x12 ¼ ð0; 20; 40Þ, ~x21 ¼ ð0; 20; 40Þ, ~x22 ¼ ð40; 40; 40Þ is a feasible solution of the considered balanced fully triangular fuzzy transportation problem represented by Table 2.2. (ii) The total fuzzy transportation cost, i.e., ð20; 40; 60Þ ~x11 ð25; 50; 50Þ ~x12 ð25; 50; 50Þ ~x21 ð20; 40; 60Þ ~x22 corresponding to this fuzzy optimal solution is ð1600; 5200; 8800Þ. (iii) According to the existing method for comparing triangular fuzzy numbers, discussed in Sect. 2.3 and used in Ebrahimnejad’s methods [1, 3], the fuzzy
108
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
transportation cost ð1600; 4800; 9200Þ is not less than the fuzzy transportation cost ð1600; 5200; 8800Þ. Remark 2.1 The limitation and drawback, pointed out in Ebrahimnejad’s methods [1, 3], are also occurring in Ebrahimnejad’s method [2].
2.8
Reason for the Occurrence of the Drawback in Ebrahimnejad’s Methods
In this section, the reason for the occurrence of drawback in Ebrahimnejad’s methods [1, 3] has been discussed. Ebrahimnejad [1, 3] has used the method, discussed in Sect. 2.3, for comparing triangular fuzzy numbers. However, it is not appropriate to use this method due to the following reason: It is well-known fact that if A1 and A2 are two real numbers such that A1 6¼ A2 . Then, either the relation A1 [ A2 or the relation A1 \A2 will be satisfied. On the e 2 ¼ ða2 ; b2 ; c2 Þ are two triangular fuzzy e 1 ¼ ða1 ; b1 ; c1 Þ and A same direction, if A e 2 . Then, either the relation A e1 A e 2 or the relation e 1 6¼ A numbers such that A e e A 1 A 2 should be satisfied. While, if the method, used by Ebrahimnejad [1, 3] for comparing triangular e1 ¼ fuzzy numbers, is applied for comparing two triangular fuzzy numbers A e e e ða1 ; b1 ; c1 Þ and A 2 ¼ ða2 ; b2 ; c2 Þ such that A 1 6¼ A 2 . Then, it may happen that e 2 nor the relation A e1 A e 2 will be satisfied, which is e1 A neither the relation A mathematically incorrect. The following example has been considered to validate this claim. e 1 ¼ ð1; 2; 5Þ and A e 2 ¼ ð1; 3; 4Þ be two triangular fuzzy numbers. Then, as Let A for these triangular fuzzy numbers, none of the conditions a1 \a2 , b1 b2 , c1 c2 , or a1 a2 , b1 \b2 , c1 c2 , a1 a2 , b1 b2 , c1 \c2 , a1 [ a2 , b1 b2 , c1 c2 , a1 a2 , b1 [ b2 , c1 c2 , a1 a2 , b1 b2 , c1 [ c2 is satisfying. Therefore, according to the method, discussed in Sect. 2.3 and used by e 2 nor e1 A Ebrahimnejad [1, 3] for comparing triangular fuzzy numbers, neither A e e A1 A2.
2.9
Rank, Mode and Divergence Based Approach for Comparing Triangular Fuzzy Numbers
It is obvious from Sect. 2.8 that the drawback in Ebrahimnejad’s methods [1, 3] is occurring due to the drawback of the method for comparing triangular fuzzy numbers.
2.9 Rank, Mode and Divergence Based Approach …
109
It is pertinent to mention that this drawback is not occurring in the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9], i.e., on applying the existing Rank, Mode and Divergence based approach for e 1 ¼ ða1 ; b1 ; c1 Þ and comparing two distinct triangular fuzzy numbers [9], A e 2 ¼ ða2 ; b2 ; c2 Þ, either the relation A e1 A e 2 or the relation A e1 A e 2 will be A e e e 2 , i.e., e obtained. The relation A 1 ¼ A 2 will be obtained only if in actual case A 1 ¼ A a1 ¼ a2 , b1 ¼ b2 , c 1 ¼ c 2 . Hence, it is better to use the existing Rank-, Mode- and Divergence-based approach for comparing triangular fuzzy numbers [9] instead of the existing method discussed in Sect. 2.3. Using the existing Rank-, Mode- and Divergence-based approach for comparing e 1 ¼ ða1 ; b1 ; c1 Þ and triangular fuzzy numbers [9], two triangular fuzzy numbers A e 2 ¼ ða2 ; b2 ; c2 Þ can be compared as follows: A e 2 ¼ a2 þ 2b2 þ c2 and check that e 1 ¼ a1 þ 2b1 þ c1 and Rank A Step 1: Find Rank A 4 4 e e e e e 1 ¼ Rank A e2 . Rank A 1 [ Rank A 2 or Rank A 1 \Rank A 2 or Rank A e 2. e 1 [ Rank A e 2 , then A e1 A Case (i): If Rank A e 1 \Rank A e 2. e 2 , then A e1 A Case (ii): If Rank A e 1 ¼ Rank A e 2 , then go to Step 2. Case (iii): If Rank A e 2 ¼ b2 and check that Mode A e1 [ e 1 ¼ b1 , Mode A Step 2: Find A e 2 or Mode A e 1 \Mode A e 2 or Mode A e 1 ¼ Mode A e2 . Mode A e 2. e 1 [ Mode A e 2 , then A e1 A Case (i): If Mode A e 1 \Mode A e 2. e 2 , then A e1 A Case (ii): If Mode A e 1 ¼ Mode A e 2 , then go to Step 3. Case (iii): If Mode A e 2 ¼ c2 a2 and check e 1 ¼ c1 a1 , Divergence A Step 3: Find Divergence A e 1 [ Divergence A e 2 or Divergence A e 1 \Divergence A e2 that Divergence A e 1 ¼ Divergence A e2 . or Divergence A e 2. e 1 [ Divergence A e 2 , then A e1 A Case (i): If Divergence A e 1 \Divergence A e 2. e 2 , then A e1 A Case (ii): If Divergence A e 1 ¼ Divergence A e 2. e 2 , then A e1 ¼ A Case (iii): If Divergence A
110
2.10
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
Validity of Rank, Mode and Divergence Based Approach for Comparing Triangular Fuzzy Numbers
In Case (iii) of Step 3 of the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9], it is claimed that if e 1 ¼ Rank A e 2 , Mode A e 1 ¼ Mode A e 2 and Div A e 1 ¼ Div A e2 Rank A e 2 , i.e., a1 ¼ a2 , b1 ¼ b2 , c1 ¼ c2 . e1 ¼ A then A The following clearly indicates that this claim is valid. e 1 ¼ Rank A e 2 ) a1 þ 2b1 þ c1 ¼ a2 þ 2b2 þ c2 Rank A 4 4 e 1 ¼ Mode A e 2 ) b1 ¼ b2 Mode A e 1 ¼ Div A e 2 ) c 1 a1 ¼ c 2 a2 Div A
ð2:10:1Þ ð2:10:2Þ ð2:10:3Þ
It can be easily verified that on solving Eqs. (2.10.1), (2.10.2) and (2.10.3), the e1 ¼ A e 2. obtained solution is a1 ¼ a2 , b1 ¼ b2 , c1 ¼ c2 , d1 ¼ d2 , i.e., A
2.11
Proposed Mehar Method to Find a Unique Optimal Value of Balanced Fully Triangular Fuzzy Transportation Problems
In this section, using the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9], a method (named as Mehar method) has been proposed to find a unique triangular fuzzy number, representing the total minimum fuzzy transportation cost of the fully triangular fuzzy transportation problem represented by Table 2.1. The steps of the proposed Mehar method are as follows: Step 1: Check that the aggregated value of the fuzzy transportation cost, the fuzzy availability and the fuzzy demand, provided by all the decision-makers, is available or not. Case (i): If it is available, then go to Step 2. Case (ii): If it is not available, then using the existing triangular fuzzy weighted averaging aggregation operator [19], find,
2.11
Proposed Mehar Method to Find a Unique Optimal Value …
(i) The
p P k¼1
triangular wk ckij;1 ;
p P k¼1
fuzzy
wk ckij;2 ;
p P k¼1
wk ckij;3
number
111
~cij ¼ pk¼1 wk ~ckij
=
representing the aggregated value of the
fuzzy transportation cost for supplying the one unit quantity of the product from the ith source to the jth destination. ~ aki = (ii) The triangular fuzzy number ai ¼ pk¼1 wk ~
p p p P P P wk aki;1 ; wk aki;2 ; wk aki;3 representing the aggregated value of the k¼1
k¼1
k¼1
fuzzy availability of the product at the ith source. ~ bkj = (iii) The triangular fuzzy number bj ¼ pk¼1 wk ~
p p p P P P wk bkj;1 ; wk bkj;2 ; wk bkj;3 representing the aggregated value of the k¼1
k¼1
k¼1
fuzzy demand the product at the jth destination. where weight of the kth decision-maker. (i) wk 2 ½0; 1 represents the normalized k (ii) The triangular fuzzy number ~cij ¼ ckij;1 ; ckij;2 ; ckij;3 represents the fuzzy transportation cost for supplying the one unit quantity of the product from the ith source to the jth destination according to the kth decision-maker.
(iii) The triangular fuzzy number a~ki ¼ aki;1 ; aki;2 ; aki;3
represents the fuzzy
availability of the product at the ith source according to the kth decision-maker. (iv) The triangular fuzzy number ~bkj ¼ bkj;1 ; bkj;2 ; bkj;3 represents the fuzzy demand of the product at the jth destination according to the kth decision-maker. and go to Step 2. For example, if in Example 2.6.1, the normalized weights of the first and second decision-makers are 0.4 and 0.6, repsectively. Then, the triangular fuzzy number
Table 2.5 Aggregated fuzzy data of decision-makers
Destinations Sources S1 S2 Fuzzy demand
D1
D2
Fuzzy availability
ð10; 24; 31Þ ð22; 33; 44Þ ð28; 57; 68Þ
ð25; 38; 56Þ ð20; 31; 48Þ ð40; 45; 53Þ
ð26; 54; 70Þ ð22; 42; 76Þ
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
112
~cij ; i ¼ 1; 2; j ¼ 1; 2; ~ai ; i ¼ 1; 2 and ~bj ; j ¼ 1; 2, presented in Table 2.5, represents the aggregated fuzzy cost for supplying the one unit quantity of the product from the ith source to the jth destination, the aggregated fuzzy availability of the product at the ith source and the aggregated fuzzy demand of the product at the jth destination, respectively. Step 2: Write the fully fuzzy linear programming problem (2.5.1) with the help of the provided/aggregated fuzzy data. Step 3: Using Step 1 to Step 3 of Ebrahimnejad’s method [1], transform the fully fuzzy linear programming problem (2.5.1) into its equivalent fuzzy linear programming problem (2.5.1.3). Step 4: Using the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9], transform the fuzzy linear programming problem (2.5.1.3) into its equivalent crisp linear programming problem (2.11.1). Crisp linear programming problem (2.11.1) " Minimize Rank
m X n X
cij;1 xij;1 ;
i¼1 j¼1
m X n X
cij;2 xij;2 ;
i¼1 j¼1
m X n X
!# cij;3 xij;3
i¼1 j¼1
Subject to Constraints of the fuzzy linear programming problem (2.5.1.3). þc Step 5: Using the expression, Rankða; b; cÞ ¼ a þ 2b , transform the crisp linear 4 programming problem (2.11.1) into its equivalent crisp linear programming problem (2.11.2).
Crisp linear programming problem (2.11.2) 2P m P n 6i¼1 j¼1 Minimize6 4
cij;1 xij;1 þ 2
m P n P
cij;2 xij;2 þ
i¼1 j¼1
m P n P
3 cij;3 xij;3
i¼1 j¼1
4
7 7 5
Subject to Constraints of the fuzzy linear programming problem (2.5.1.3). Step 6: Solve the crisp linear programming problem (2.11.2) and check that a unique crisp optimal solution exists for the crisp linear programming problem (2.11.2) or not. Case (i) If a unique crisp optimal solution exists for the crisp linear programming problem (2.11.2), then go to Step 9.
2.11
Proposed Mehar Method to Find a Unique Optimal Value …
113
Case (ii) If more than one crisp optimal solution exists for the crisp linear programming problem (2.11.2), then go to Step 7. Step 7: Solve the crisp linear programming problem (2.11.3) and check that a unique crisp optimal solution exists for the crisp linear programming problem (2.11.3) or not. Crisp linear programming problem (2.11.3) " Minimize
m X n X
# cij;2 xij;2
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (2.11.2) with the additional constraint. P P P P m
n
cij;1 xij;1 þ 2
m
n
i¼1 “ i¼1 j¼1 4 gramming problem (2.11.2).”
c x j¼1 ij;2 ij;2
Crisp optimal value of the crisp linear pro-
Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (2.11.3), then go to Step 9. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (2.11.3), then go to Step 8. Step 8: Solve the crisp linear programming problem (2.11.4). Crisp linear programming problem (2.11.4) Minimize
hXm Xn i¼1
c x j¼1 ij;3 ij;3
Xm Xn i¼1
i
c x j¼1 ij;1 ij;1
Subject to Constraints the crisp linear programming problem (2.11.3) with the additional P of P n constraint “ m i¼1 j¼1 cij;2 xij;2 ¼ Crisp optimal value of the crisp linear programming problem (2.11.3).” Step 9: Using the obtained i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng,
crisp
optimal
solution
xij;1 ; xij;2 ; xij;3 ;
(i) Find the fuzzy optimal solution xij;1 ; xij;2 ; xij;3 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng of the fully fuzzy linear programming problem (2.5.1). n of the fully c x ; c x (ii) The fuzzy optimal value m ij;1 ij;1 ij;2 ij;2 ; cij;3 xij;3 i¼1 j¼1 fuzzy linear programming problem (2.5.1).
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
114
2.12
Unique Fuzzy Transportation Cost of the Considered Balanced Fully Triangular Fuzzy Transportation Problem
In Sect. 2.5, a balanced fully triangular fuzzy transportation problem, represented by Table 2.2, is solved by Ebrahimnejad’s methods [1, 3]. Also, in Sect. 2.7, it is showed that on applying Ebrahimnejad’s methods [1, 3] more than one triangular fuzzy numbers, representing the optimal fuzzy transportation cost, are obtained, which is mathematically incorrect. In this section, the same balanced fully triangular fuzzy transportation problem is solved by proposed Mehar method and showed that a unique triangular fuzzy number, representing the optimal fuzzy transportation cost, is obtained. Using the Mehar method, proposed in Sect. 2.11, a unique fuzzy optimal value, representing the optimal fuzzy transportation cost of the balanced fully triangular fuzzy transportation problem represented by Table 2.2, can be obtained as follows. Step 1: Since, in the balanced fully triangular fuzzy transportation problem, represented by Table 2.2, the aggregated values of fuzzy transportation cost, fuzzy availability and fuzzy demand are provided. So, there is no need to apply Step 1 of the proposed Mehar method. Step 2: The balanced fully triangular fuzzy transportation problem, represented by Table 2.2, can also be represented by the fully fuzzy linear programming problem (2.12.1). Fully fuzzy linear programming problem (2.12.1) ! ð20; 40; 60Þ x11;1 ; x11;2 ; x11;3 ð25; 50; 50Þ x12;1 ; x12;2 ; x12;3 Minimize ð25; 50; 50Þ x21;1 ; x21;2 ; x21;3 ð20; 40; 60Þ x22;1 ; x22;2 ; x22;3
Subject to
x11;1 ; x11;2 ; x11;3 x12;1 ; x12;2 ; x12;3 ¼ ð40; 60; 80Þ;
x21;1 ; x21;2 ; x21;3 x22;1 ; x22;2 ; x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 x21;1 ; x21;2 ; x21;3 ¼ ð40; 60; 80Þ;
x12;1 ; x12;2 ; x12;3 x22;1 ; x22;2 ; x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 , x12;1 ; x12;2 ; x12;3 , x21;1 ; x21;2 ; x21;3 and x22;1 ; x22;2 ; x22;3 are non-negative triangular fuzzy numbers.
2.12
Unique Fuzzy Transportation Cost of the Considered Balanced …
115
Step 2: Using the multiplication of non-negative triangular fuzzy numbers ða1 ; b1 ; c1 Þ and ða2 ; b2 ; c2 Þ, i.e., ða1 ; b1 ; c1 Þ ða2 ; b2 ; c2 Þ = ða1 a2 ; b1 b2 ; c1 c2 Þ, the fully fuzzy linear programming problem (2.12.1) can be transformed into its equivalent fully fuzzy linear programming problem (2.12.2). Fully fuzzy linear programming problem (2.12.2) Minimize 20x11;1 ; 40x11;2 ; 60x11;3 25x12;1 ; 50x12;2 ; 50x12;3 25x21;1 ; 50x21;2 ; 50x21;3 20x22;1 ; 40x22;2 ; 60x22;3 Subject to Constraints of the fully fuzzy linear programming problem (2.12.1). Pm Pm Pm Step 3: Using the relation, m i¼1 ðai ; bi ; ci Þ ¼ i¼1 ai ; i¼1 bi ; i¼1 ci , the fully fuzzy linear programming problem (2.12.2) can be transformed into its equivalent fully fuzzy linear programming problem (2.12.3). Fully fuzzy linear programming problem (2.12.3) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3
Subject to
x11;1 þ x12;1 ; x11;2 þ x12;2 ; x11;3 þ x12;3 ¼ ð40; 60; 80Þ;
x21;1 þ x22;1 ; x21;2 þ x22;2 ; x21;3 þ x22;3 ¼ ð40; 60; 80Þ;
x11;1 þ x21;1 ; x11;2 þ x21;2 ; x11;3 þ x21;3 ¼ ð40; 60; 80Þ;
x12;1 þ x22;1 ; x12;2 þ x22;2 ; x12;3 þ x22;3 ¼ ð40; 60; 80Þ;
x11;1 ; x11;2 ; x11;3 , x12;1 ; x12;2 ; x12;3 , x21;1 ; x21;2 ; x21;3 and x22;1 ; x22;2 ; x22;3 are non-negative triangular fuzzy numbers. Step 4: Using the relation, ða1 ; b1 ; c1 Þ ¼ ða2 ; b2 ; c2 Þ ) a1 ¼ a2 ; b1 ¼ b2 ; c1 ¼ c2 and the relation ða; b; cÞ is a non-negative triangular fuzzy number ) a 0, b a 0; c b 0, the fully fuzzy linear programming problem (2.12.3) can be transformed into its equivalent fuzzy linear programming problem (2.12.4).
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
116
Fully fuzzy linear programming problem (2.12.4) Minimize 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to x11;1 þ x12;1 ¼ 40; x11;2 þ x12;2 ¼ 60; x11;3 þ x12;3 ¼ 80; x21;1 þ x22;1 ¼ 40; x21;2 þ x22;2 ¼ 60; x21;3 þ x22;3 ¼ 80; x11;1 þ x21;1 ¼ 40; x11;2 þ x21;2 ¼ 60; x11;3 þ x21;3 ¼ 80; x12;1 þ x22;1 ¼ 40; x12;2 þ x22;2 ¼ 60; x12;3 þ x22;3 ¼ 80; x11;2 x11;1 0; x12;2 x12;1 0; x21;2 x21;1 0; x22;2 x22;1 0; x11;3 x11;2 0; x12;3 x12;2 0; x21;3 x21;2 0; x22;3 x22;2 0; ; x11;1 ; x12;1 ; x21;1 ; x22;1 0: Step 5: Using the existing Rank, Mode and Divergence based approach for comparing triangular fuzzy numbers [9], the fuzzy linear programming problem (2.12.4) can be transformed into its equivalent crisp linear programming problem (2.12.5). Crisp linear programming problem (2.12.5) Minimize Rank 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 ; 40x11;2 þ 50x12;2 þ 50x21;2 þ 40x22;2 ; 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 Subject to Constraints of the fuzzy linear programming problem (2.12.4). þc Step 6: Using the expression Rankða; b; cÞ ¼ a þ 2b , the crisp linear programming 4 problem (2.12.5) can be transformed into its equivalent crisp linear programming problem (2.12.6).
2.12
Unique Fuzzy Transportation Cost of the Considered Balanced …
117
Crisp linear programming problem (2.12.6) 20x11;1 þ 25x12;1 þ 25x21;1 þ 20x22;1 Minimize 4 þ 2 40x11;2 þ 50x12;2 þ 50 x21;2 þ 40x22;2 4
þ 60x11;3 þ 50x12;3 þ 50x21;3 þ 60x22;3 4 Subject to Constraints of the fuzzy linear programming problem (2.12.4). Step 7: It can be easily verified that the following unique crisp optimal solution is obtained on solving the crisp linear programming problem (2.12.6). x11;1 ¼ 40; x11;2 ¼ 40; x11;3 ¼ 40; x12;1 ¼ 0; x12;2 ¼ 20; x12;3 ¼ 40; x21;1 ¼ 0; x21;2 ¼ 20; x21;3 ¼ 40; x22;1 ¼ 40; x22;2 ¼ 40; x22;3 ¼ 40:
Therefore, according to Case (i) of Step 6 of the proposed Mehar method, there is a need to go to Step 9 of the proposed Mehar method. Step 8: Using the crisp optimal solution of the crisp linear programming problem (2.12.6), obtained in Step 7, the fuzzy optimal solution for the balanced fully trian- gular fuzzy transportation problem, represented by Table 2.2, is x11;1 ; x11;2 ; x11;3 ¼ ð40; 40; 40Þ, x12;1 ; x12;2 ; x12;3 ¼ ð0; 20; 40Þ; x21;1 ; x21;2 ; x21;3 ¼ ð0; 20; 40Þ, x22;1 ; x22;2 ; x22;3 ¼ ð40; 40; 40Þ and the total minimum fuzzy transportation cost is ð1600; 5200; 8800Þ.
2.13
Conclusions
It is showed that on solving the balanced fully triangular fuzzy transportation problem, represented by Table 2.2, by Ebrahimnejad’s methods [1, 3] more than one triangular fuzzy numbers, representing the optimal fuzzy transportation cost, are obtained, which is mathematically incorrect. Therefore, it is inappropriate to use Ebrahimnejad’s methods [1, 3] for solving balanced fully triangular fuzzy transportation problems. Also, a new method (named as Mehar method) has been proposed for solving balanced fully triangular fuzzy transportation problems. Furthermore, it is showed that on solving a balanced fully triangular fuzzy transportation problem by the proposed Mehar method, always a unique triangular fuzzy number, representing the total minimum fuzzy transportation cost, will be obtained. So, it is appropriate to use the proposed Mehar method for solving a balanced fully triangular fuzzy transportation problem.
118
2 Mehar Method to Find a Unique Fuzzy Optimal Value …
References 1. A. Ebrahimnejad, An improved approach for solving fuzzy transportation problem with triangular fuzzy numbers. J. Intell. Fuzzy Syst. 29, 963–974 (2015) 2. A. Ebrahimnejad, New method for solving fuzzy transportation problems with LR flat fuzzy numbers. Inf. Sci. 357, 108–124 (2016) 3. A. Ebrahimnejad, A lexicographic ordering-based approach for solving fuzzy transportation problems with triangular fuzzy numbers. Int. J. Manag. Decis. Making 16, 346–374 (2017) 4. H. Basirzadeh, An approach for solving fuzzy transportation problem. Appl. Math. Sci. 5, 1549–1566 (2011) 5. S. Chanas, W. Kolodziejczyk, A. Machaj, A fuzzy approach to the transportation problem. Fuzzy Sets Syst. 13, 211–221 (1984) 6. S. Chanas, D. Kuchta, A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82, 299–305 (1996) 7. S. Chanas, D. Kuchta, Fuzzy integer transportation. Fuzzy Sets Syst. 98, 291–298 (1998) 8. D.S. Dinagar, K. Palanivel, The transportation problem in fuzzy environment. Int. J. Algorithm Comput. Math. 2, 65–71 (2009) 9. A. Gani, K.A. Razak, Two stage fuzzy transportation problem. J. Phys. Sci. 10, 63–69 (2006) 10. A. Kaufmann, M.M. Gupta, Fuzzy Mathematical Models in Engineering and Management science (Elsevier, Amsterdam, Netherland, 1988) 11. A. Kaur, J. Kacprzyk, A. Kumar, Fuzzy Transportation and Transshipment Problems, Studies in Fuzziness and Soft Computing, vol. 385 (Springer Nature, Switzerland AG, 2020) 12. A. Kaur, A. Kumar, A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 12, 1201–1213 (2012) 13. A. Kumar, A. Kaur, A new method for solving fuzzy transportation problems using ranking function. Appl. Math. Model. 35, 5652–5661 (2011) 14. A. Kumar, A. Kaur, Application of classical transportation methods for solving fuzzy transportation problems. J. Transp. Syst. Eng. Inform. Technol. 11, 68–80 (2011) 15. S.T. Liu, C. Kao, Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153, 661–674 (2004) 16. M. Oheigeartaigh, A fuzzy transportation algorithm. Fuzzy Sets Syst. 8, 235–243 (1982) 17. P. Pandian, G. Natarajan, A new algorithm for finding a fuzzy optimal solution for fuzzy transportation problems. Appl. Math. Sci. 4, 79–90 (2010) 18. M. Shanmugasundari, K. Ganesan, A novel approach for the fuzzy optimal solution of fuzzy transportation problem. Int. J. Eng. Res. Appl. 3, 1416–1421 (2013) 19. X.R. Wang, Z.P. Fan, Fuzzy ordered weighted averaging (FOWA) operator and its application. Fuzzy Syst. Math. 17, 67–72 (2003) 20. Z.S. Xu, A priority method for triangular fuzzy number complementary judgement matrix. Syst. Eng. Theor. Pract. 23, 86–89 (2003)
Chapter 3
Vaishnavi Approach for Solving Triangular Intuitionistic Transportation Problems of Type-2
In the last few years, several methods have been proposed to solve transportation problems under intuitionistic fuzzy environment [1 and references therein]. Singh and Yadav [2] proposed an approach for solving triangular intuitionistic fuzzy transportation problems of type-2 (transportation problems in which the cost for supplying the one unit quantity of the product from each source to each destination is represented by a triangular intuitionistic fuzzy number. While, all the other parameters are represented by non-negative real numbers). In this approach, firstly, one of the well-known methods (North–west corner method or least cost method or Vogel’s approximation method, etc.) is used to find an initial basic feasible solution of the considered triangular intuitionistic fuzzy transportation problem of type-2. Then, the well-known MODI approach (or u v approach) is used to find a crisp optimal solution with the help of the obtained initial basic feasible solution. Ebrahimnejad and Verdegay [3] pointed out that for solving a triangular intuitionistic fuzzy transportation problem of type-2 by Singh and Yadav’s approach [2], there is a need to use arithmetic operations of triangular intuitionistic fuzzy numbers. Due to which, more computational efforts are required for solving a triangular intuitionistic fuzzy transportation problem of type-2 by Singh and Yadav’s approach [2]. To reduce the computational efforts, Ebrahimnejad and Verdegay [3] proposed an alternative approach for solving triangular intuitionistic fuzzy transportation problems of type-2. One may claim that Ebrahimnejad and Verdegay’s approach [3] can be used to solve such balanced triangular intuitionistic fuzzy transportation problems of type-2 for which the aggregated value of the intuitionistic fuzzy transportation cost, the crisp availability and the crisp demand, provided by all the decision-makers, is available. While, Ebrahimnejad and Verdegay’s approach [3] cannot be used to solve such triangular intuitionistic fuzzy transportation problems of type-2 for which, instead of the aggregated data, the data of each decision-maker is provided
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 A. Mishra and A. Kumar, Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems, Studies in Fuzziness and Soft Computing 399, https://doi.org/10.1007/978-981-15-6998-2_3
119
120
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
separately. To overcome this limitation, one may modify Ebrahimnejad and Verdegay’s approach [3] with the help of the existing triangular intuitionistic fuzzy weighted averaging aggregation operator [4]. Also, one may use Ebrahimnejad and Verdegay’s approach [3] to solve real-life triangular intuitionistic fuzzy transportation problems of type-2. However, after a deep study, it is observed that on applying Ebrahimnejad and Verdegay’s approach [3] more than one triangular intuitionistic fuzzy numbers, representing the total minimum intuitionistic fuzzy transportation cost, are obtained, which is mathematically incorrect as the physical meaning of all the obtained triangular intuitionistic fuzzy numbers will be different. Hence, it is inappropriate to use Ebrahimnejad and Verdegay’s approah [3] to solve real-life triangular intuitionistic fuzzy transportation problems of type-2. The aim of this chapter is (i) To make the researchers aware about the inappropriateness of Ebrahimnejad and Verdegay’s approach [3]. (ii) To propose a new approach (named as MEHAR approach) for comparing triangular intuitionistic fuzzy numbers. (iii) To propose a new approach (named as Vaishnavi approach) for solving triangular intuitionistic fuzzy transportation problems of type-2.
3.1
Organization of the Chapter
This chapter is organized as follows: (i) In Sect. 3.2, some basic definitions have been presented. (ii) In Sect. 3.3, an existing approach for comparing triangular fuzzy numbers, used in Ebrahimnejad and Verdegay’s approach [3], has been discussed. (iii) In Sect. 3.4, Ebrahimnejad and Verdegay’s approach [3] for solving triangular intuitionistic fuzzy transportation problems of type-2 has been discussed. (iv) In Sect. 3.5, a limitation of Ebrahimnejad and Verdegays’s approach [3] has been discussed. (v) In Sect. 3.6, a drawback of Ebrahimnejad and Verdegay’s approach [3] has been discussed. (vi) In Sect. 3.7, the reason for the occurrence of the drawback in Ebrahimnejad and Verdegay’s approach [3] has been discussed. (vii) In Sect. 3.8, a new approach (named as MEHAR approach) has been proposed for comparing triangular intuitionistic fuzzy numbers. (viii) In Sect. 3.9, a new approach (named as Vaishnavi approach) has been proposed for solving triangular intuitionistic fuzzy transportation problems of type-2.
3.1 Organization of the Chapter
121
(ix) In Sect. 3.10, a unique intuitionistic fuzzy optimal value of the triangular intuitionistic fuzzy transportation problem of type-2, considered in Sect. 3.5, has been obtained by the proposed Vaishnavi’s approach. (x) Sect. 3.11 concludes the chapter.
3.2
Preliminaries
In this section, some basic definitions have been presented [2, 3]. Definition 3.2.1 An intuitionistic fuzzy set, over the universal set X, is defined as a ¼ fx; la ð xÞ; ma ð xÞjx 2 X, 0 la ð xÞ 1; 0 ma ð xÞ 1, la ð xÞ þ ma ð xÞ 1g. The values la ð xÞ, ma ð xÞ and 1 la ð xÞ ma ð xÞ, respectively, are called the degree of membership, the degree of non-membership and the degree of hesitation for the element x. ~ I ¼ x; l ~ I ð xÞ; m ~ I ð xÞ : x 2 R , Definition 3.2.2 An intuitionistic fuzzy set, A A A defined over the set of real numbers ℝ, is said to be an intuitionistic fuzzy number if the following conditions holds: (i) There exist m 2 R such that lA~ I ðmÞ ¼ 1 and mA~ I ðmÞ ¼ 0, (m is called the ~ I ). mean value of A (ii) lA~ I ð xÞ and mA~ I ð xÞ are piecewise continuous mapping from ℝ to the closed interval ½0; 1. (iii) 0 lA~ I ð xÞ; mA~ I ð xÞ 1 8x 2 R. (iv) 0 lA~ I ð xÞ þ mA~ I ð xÞ 1 8x 2 R. ~ I is said to be a triangular Definition 3.2.3 An intuitionistic fuzzy number A intuitionistic fuzzy number if its membership function lA~ I ð xÞ and non-membership function mA~ I ð xÞ are defined as 8 xa 1 ; > > < a2 a1 1; lA~ I ðxÞ ¼ a3 x ; > > : a3 a2 0
a1 x\a2 a2 a2 \x a3 otherwise
8 a0 x 2 > 0 0 ; > > < a2 a1 0; and mA~ I ðxÞ ¼ a02 x > > 0 0 ; > : a2 a3 1;
~I A triangular intuitionistic fuzzy number A I 0 0 ~ A ¼ a1 ; a2 ; a3 ; a1 ; a2 ; a3 .
a01 x\a2 a2 a2 \x a03 otherwise
may be represented as
Definition 3.2.4 A triangular intuitionistic fuzzy number is said to be a non-negative triangular intuitionistic fuzzy number if a01 0.
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
122
~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 and B ~ I ¼ b1 ; b2 ; b3 ; b01 ; b2 ; b03 be Definition 3.2.5 Let A 1 3 ~I ~I two triangular intuitionistic fuzzy numbers. Then, A B ¼ ða1 þ b1 ; a2 þ b2 ; 0 0 a3 þ b3 :; a1 þ b1 ; a2 þ b2 ; a3 þ b3 . ~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 and B ~ I ¼ b1 ; b2 ; b3 ; b01 ; b2 ; b03 be Definition 3.2.6 Let A 1 3 two triangular intuitionistic fuzzy numbers. Then, ~ I B ~ I ¼ a1 b3 ; a2 b2 ; a3 b1 ; a01 b03 ; a2 b2 ; a03 b01 : A ~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 and B ~ I ¼ b1 ; b2 ; b3 ; b01 ; b2 ; b03 be Definition 3.2.7 Let A 1 3 ~I B ~I ¼ intuitionistic fuzzy numbers. Then, A two non-negative 0 triangular a1 b1 ; a2 b2 ; a3 b3 ; a1 b01 ; a2 b2 ; a03 b03 . ~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 be a triangular intuitionistic fuzzy Definition 3.2.8 Let A 1 3 number and k be a real number. Then, ~I ¼ kA
3.3
0 0 ka1 ; ka2 ; ka3 ; ka10 ; ka2 ; ka30 ; k 0; ka3 ; ka2 ; ka1 ; ka3 ; ka2 ; ka1 ; k\0:
Tabular Representation of a Triangular Intuitionistic Fuzzy Transportation Problem of Type-2
A triangular intuitionistic fuzzy transportation problem of type-2 having m sources and n destinations can be represented by Table 3.1 [2, 3]. where
Table 3.1 Tabular representation of triangular intuitionistic fuzzy transportation problem of type-2 Destinations Sources
D1
D2
Dj
Dn
S1
~cI11
~cI12
~cI1j
~cI1n
a1
.. . Si
.. .
.. .
.. .
~cIi2
.. .
.. .
~cIi1
.. .
.. . ai
.. . Sm
.. .
.. . ~cIm2
.. .
~cIm1
Crisp demand
b1
b2
~cIij .. .
~cIin
~cImj
.. .
.. . ~cImn
bj
bn
Crisp availability
.. . am
3.3 Tabular Representation of a Triangular Intuitionistic Fuzzy …
123
(i) The triangular intuitionistic fuzzy number ~cIij ¼ ðcij;1 ; cij;2 ; cij;3 ; c0ij;1 ; cij;2 ; c0ij;3 Þ represents the intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source ðSi Þ to the jth destination Dj , (ii) The non-negative real number ai represents the crisp availability of the product at the ith source ðSi Þ, (iii) The non-negative real number (iv) bj represents the crisp demand of the product at the jth destination Dj ,
3.4
An Existing Approach for Comparing Triangular Intuitionistic Fuzzy Numbers
If A and B are two distinct real numbers, i.e., A 6¼ B, then it can be easily concluded ~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 ~I ¼ and B that A\B or A [ B. However, if A 1 3 ~ I 6¼ B ~ I . Then, it b1 ; b2 ; b3 ; b01 ; b2 ; b03 are triangular fuzzy numbers such that A I I I I ~ ~ ~ or A B ~ . Different approaches have been cannot easily conclude that A B proposed in the literature for comparing triangular intuitionistic fuzzy numbers. Singh and Yadav [2] as well as Ebrahimnejad and Vedegay [3] have used the following approach for comparing triangular intuitionistic fuzzy numbers ~ I ¼ a1 ; a2 ; a3 ; a0 ; a2 ; a0 and B ~ I ¼ b1 ; b2 ; b3 ; b01 ; b2 ; b03 : A 1 3 Check that f a1 ; a2 ; a3 ; a01 ; a2 ; a03 > f b1 ; b2 ; b3 ; b01 ; b2 ; b03 or f a1 ; a2 ; a3 ; a01 ; a2 ; a03 < f b1 ; b2 ; b3 ; b01 ; b2 ; b03 or f a1 ; a2 ; a3 ; a01 ; a2 ; a03 = f b1 ; b2 ; b3 ; b01 ; b2 ; b03 , where, a1 þ 2a2 þ a3 þ a01 þ 2a2 þ a03 f a1 ; a2 ; a3 ; a01 ; a2 ; a03 ¼ 8 and b1 þ 2b2 þ b3 þ b01 þ 2b2 þ b03 f b1 ; b2 ; b3 ; b01 ; b2 ; b03 ¼ : 8
124
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
Case (i): If f a1 ; a2 ; a3 ; a01 ; a2 ; a03 > f b1 ; b2 ; b3 ; b01 ; b2 ; b03 then ða1 ; a2 ; a3 ; a0 ; a ; a0 Þ ≻ b1 ; b2 ; b3 ; b01 ; b2 ; b03 . Hence, maximum a1 ; a2 ; a3 ; a01 ; a2 ; a03 , 1 2 3 0 = a1 ; a2 ; a3 ; a01 ; a2 ; a03 and minimum a1 ; a2 ; a3 ; a01 ; b1 ; b2 ; b3 ; b1 ; b2 ; b03 a2 ; a03 Þ:, b1 ; b2 ; b3 ; b01 ; b2 ; b03 = b1 ; b2 ; b3 ; b01 ; b2 ; b03 . Case (ii): If f a1 ; a2 ; a3 ; a01 ; a2 ; a03 < f b1 ; b2 ; b3 ; b01 ; b2 ; b03 then ða1 ; a2 ; a3 ; a0 ; a ; a0 Þ ≺ b1 ; b2 ; b3 ; b01 ; b2 ; b03 . Hence, maximum a1 ; a2 ; a3 ; a01 ; a2 ; a03 , 1 2 3 0 = b1 ; b2 ; b3 ; b01 ; b2 ; b03 and minimum a1 ; a2 ; a3 ; a01 ; b1 ; b2 ; b3 ; b1 ; b2 ; b03 a2 ; a03 Þ:, b1 ; b2 ; b3 ; b01 ; b2 ; b03 = a1 ; a2 ; a3 ; a01 ; a2 ; a03 . Case (iii): If f a1 ; a2 ; a3 ; a01 ; a2 ; a03 = f b1 ; b2 ; b3 ; b01 ; b2 ; b03 then ða1 ; a2 ; a3 ; a01 ; a2 ; a03 Þ b1 ; b2 ; b3 ; b01 ; b2 ; b03 . Hence, maximum a1 ; a2 ; a3 ; a01 ; a2 ; a03 , = minimum a1 ; a2 ; a3 ; a01 ; a2 ; a03 , b1 ; b2 ; b3 ; b01 ; b2 ; b03 b1 ; b2 ; b3 ; b01 ; b2 ; b03 = a1 ; a2 ; a3 ; a01 ; a2 ; a03 and b1 ; b2 ; b3 ; b01 ; b2 ; b03 .
3.5
Singh and Yadav’s Approach
Singh and Yadav [2] proposed following approach for solving triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.1, by considering (i) The arithmetic operations of triangular intuitionistic fuzzy numbers instead of the arithmetic operations of real numbers. (ii) The approach, discussed in Sect. 3.4, for comparing triangular intuitionistic fuzzy numbers. Step 1: Find an initial basic feasible solution of the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.1, by applying one of the well-known methods (North–west corner method or least cost method or Vogel’s approximation method, etc.). Step 2: Apply MODI method (or u v method) to find a crisp optimal solution with the help of the obtained initial basic feasible solution.
3.6
Ebrahimnejad and Verdegay’s Approach
Ebrahimnejad and Verdegay [3] pointed out that for solving a triangular intuitionistic fuzzy transportation problem of type-2 by Singh and Yadav’s approach [2], there is a need to use arithmetic operations of triangular intuitionistic fuzzy numbers. Due to which, more computational efforts are required for solving a triangular intuitionistic fuzzy transportation problem of type-2 by Singh and Yadav’s approach [2].
3.6 Ebrahimnejad and Verdegay’s Approach
125
Table 3.2 Transformed crisp transportation problem Destinations Sources
D1 f ~cI11
D2 f ~cI12
.. . Si
.. .
.. .
.. . Sm
.. .
Crisp demand
b1
S1
f ~cIi1 f ~cIm1
Dj f ~cI1j
.. .
.. .
.. .
f ~cIm2
.. .
b2
f ~cIi2
Dn f ~cI1n
Crisp availability
.. .
.. .
.. . ai
.. .
.. .
.. .
.. . am
bj
bn
f ~cIij f ~cImj
f ~cIin f ~cImn
a1
To reduce the computational efforts, Ebrahimnejad and Verdegay [3] proposed the following approach for solving the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.1. Step 1: Transform the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.1, into its equivalent crisp transportation problem represented by Table 3.2. where cij;1 þ 2cij;2 þ cij;3 þ c0ij;1 þ 2cij;2 þ c0ij;3 f ~cIij ¼ : 8 Step 2: Find a crisp optimal solution xij ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n of the transformed crisp transportation problem represented by Table 3.2. Step 3: Using the crisp optimal solution xij ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n , n obtained in Step 2, find the intuitionistic fuzzy transportation cost m i¼1 j¼1 cij;1 xij ; cij;2 xij ; cij;3 xij ; c0ij;1 xij ; c0ij;2 xij ; c0ij;3 xij .
3.7
Limitation of Ebrahimnejad and Verdegay’s Approach
In general, to solve a real-life transportation problem, the opinion of two or more experts about the parameters is collected. Then, all the collected information is aggregated to obtain a single value of each parameter. Since, Ebrahimnejad and Verdegay’s approach [3] has been proposed by considering the assumption that the aggregated value of each parameter is available. Therefore, Ebrahimnejad and Verdegay’s approach [3] cannot be used to solve several real-life triangular intuitionistic fuzzy transportation problems of type-2. For example, Ebrahimnejad and
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
126
Table 3.3 Data provided by the first decision-maker Destinations Sources
D1
D2
Crisp availability
S1 S2 Crisp demand
ð10; 30; 40; 5; 30; 45Þ ð15; 30; 50; 10; 30; 70Þ 60
ð25; 50; 60; 10; 50; 70Þ ð20; 40; 60; 15; 40; 70Þ 50
50 60
Table 3.4 Data provided by the second decision-maker Destinations Sources
D1
D2
Crisp availability
S1 S2 Crisp demand
ð15; 20; 45; 10; 20; 50Þ ð20; 35; 55; 15; 35; 75Þ 50
ð30; 55; 65; 15; 55; 75Þ ð25; 45; 65; 20; 45; 75Þ 60
60 50
Verdegay’s approach [3] cannot be used to solve the triangular intuitionistic fuzzy transportation problem of type-2 considered in Example 3.7.1. Example 3.7.1 Let us consider a product needs to be supplied from two sources to two destinations. For the same purpose, the information about each parameter is collected from two experts. If
(i) Table 3.3 represents the intuitionistic fuzzy availability and the crisp demand provided by (ii) Table 3.4 represents the intuitionistic fuzzy availability and the crisp demand provided by
transportation cost, the crisp the first decision-maker transportation cost, the crisp the second decision-maker.
Then, this triangular intuitionistic fuzzy transportation problem of type-2 cannot be solved by Ebrahimnejad and Verdegay’s approach [3].
3.8
Drawback of Ebrahimnejad and Verdegay’s Approach
In this section, the triangular intuitionistic fuzzy transportation problems of type-2, represented by Table 3.5, have been solved by Ebrahimnejad and Verdegay’s approach [3] and showed that two distinct triangular intuitionistic fuzzy numbers (875, 3125, 3875; 375, 3125, 4375) and (1375, 2625, 4375; 875, 2625, 4875), representing the intuitionistic fuzzy optimal transportation cost, are obtained, which are mathematically incorrect as the physical meaning of these triangular intuitionistic fuzzy numbers is different.
3.8 Drawback of Ebrahimnejad and Verdegay’s Approach
127
Table 3.5 Triangular intuitionistic fuzzy transportation problem of type-2 Destinations Sources
D1
D2
Crisp availability
S1 S2 Crisp demand
ð20; 60; 80; 10; 60; 90Þ ð30; 50; 90; 20; 50; 100Þ 25
ð25; 55; 85; 15; 55; 95Þ ð15; 65; 75; 5; 65; 85Þ 25
25 25 50
Using Ebrahimnejad and Verdegay’s approach [3], discussed in Sect. 3.6, a crisp optimal solution and the intuitionistic fuzzy optimal transportation cost of the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, can be obtained as follows. Step 1: Using Step 1 of Ebrahimnejad and Verdegay’s approach [3], the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, can be transformed into a crisp transportation problem represented by Table 3.6. Step 2: On solving the crisp transportation problem, represented by Table 3.6, the following two crisp optimal basic feasible solutions are obtained (i) x11 ¼ 25, x12 ¼ 0, x21 ¼ 0, x22 ¼ 25, (ii) x11 ¼ 0, x12 ¼ 25, x21 ¼ 25, x22 ¼ 0. Step 3: Using Step 3 of Ebrahimnejad and Verdegay’s approach [3] (i) The triangular intuitionistic fuzzy number, representing the intuitionistic fuzzy optimal transportation cost, corresponding to the first crisp optimal basic feasible solution is (875, 3125, 3875; 375, 3125, 4375). (ii) The triangular intuitionistic fuzzy number, representing the intuitionistic fuzzy optimal transportation cost, corresponding to the second crisp optimal basic feasible solution is (1375, 2625, 4375; 875, 2625, 4875) . Hence, both the distinct triangular intuitionistic fuzzy numbers (875, 3125, 3875; 375, 3125, 4375) and (1375, 2625, 4375; 875, 2625, 4875) represent the intuitionistic fuzzy optimal transportation cost of the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, which is mathematically incorrect as the physical meaning of these triangular intuitionistic fuzzy numbers is different. Table 3.6 Transformed crisp transportation problem Destinations Sources S1 S2 Crisp demand
D1
D2
Crisp availability
f ð20; 60; 80; 10; 60; 90Þ ¼ 55 f ð30; 50; 90; 20; 50; 100Þ ¼ 55 25
f ð25; 55; 85; 15; 55; 95Þ ¼ 55 f ð15; 65; 75; 5; 65; 85Þ ¼ 55 25
25 25 50
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
128
3.9
Reasons for the Occurrence of the Drawback
The drawback, pointed out in Sect. 3.8, is occurring due to the following reason. It is obvious from Step 2 of Ebrahimnejad and Verdegay’s approach [3] that Ebrahimnejad and Verdegay [3] have used the expression f ~cij ¼ ðcij;1 þ 2cij;2 þ cij;3 Þ þ ðc0ij;1 þ 2cij;2 þ c0ij;3 Þ for transforming a triangular intuitionistic fuzzy 8 I 0 number ~cij ¼ cij;1 ; cij;2 ; cij;3 ; cij;1 ; cij;2 ; c0ij;3 into a real number, i.e., Ebrahimnejad and Verdegay [3] have used the approach, discussed in Sect. 3.3, to find minimum of triangular intuitionistic fuzzy numbers. However, there may exist such distinct triangular intuitionistic fuzzy numbers for which the real number, obtained by the ðcij;1 þ 2cij;2 þ cij;3 Þ þ ðc0ij;1 þ 2cij;2 þ c0ij;3 Þ , will be equal and hence, the expression ~cij ¼ 8 obtained minimum will not be a unique triangular intuitionistic fuzzy number. For example, (20, 60, 80; 10, 60, 90) and (30, 50, 90; 20, 50, 100) are two different triangular intuitionistic fuzzy numbers. While, f ð20; 60; 80; 10; 60; 90Þ = f ð30; 50; 90; 20; 50; 100Þ ¼ 55. Hence, minimum (20, 60, 80; 10, 60, 90), (30, 50, 90; 20, 50, 100) = (20, 60, 80; 10, 60, 90) and (30, 50, 90; 20, 50, 100) .
3.10
Proposed MEHAR Approach for Comparing Triangular Intuitionistic Fuzzy Numbers
It is obvious from Sect. 3.9 that it is not appropriate to use the existing approach, discussed in Sect. 3.3, for comparing triangular intuitionistic fuzzy numbers. In this section, a new approach (named as MEHAR) has been proposed for comparing triangular intuitionistic fuzzy numbers. Using the proposed MEHAR approach, the triangular intuitionistic fuzzy num I 0 0 I ~ ~ bers A ¼ a1;1 ; a1;2 ; a1;3 ; a ; a1;2 ; a and A ¼ a2;1 ; a2;2 ; a2;3 ; a0 ; a2;2 ; a0 1
1;1
1;3
2
2;1
2;3
can be compared as follows: Step 1: Check that M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 Þ or M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 Þ or M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , where M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ¼ a1;1 þ a1;3 þ 2a1;2 þ a01;1 þ a01;3 M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ¼ a2;1 þ a2;3 þ 2a2;2 þ a02;1 þ a02;3
and
:
3.10
Proposed MEHAR Approach for Comparing Triangular Intuitionistic …
129
Case (i): If M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≻ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (ii): If M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≺ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (iii): If M a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = M a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then go to Step 2.
Step 2: Check that E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 Þ or E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 or E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , where E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ¼ a1;1 þ a1;3 þ 2a1;2 þ a01;3 and E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ¼ a2;1 þ a2;3 þ 2a2;2 þ a02;3 : Case (i): If E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≻ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (ii): If E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≺ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (iii): If E a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = E a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then go to Step 3.
> H a2;1 ; a2;2 ; a2;3 ; Step 3: Check that H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a02;1 ; a2;2 ; a02;3 Þ or H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 a2;2 ; a02;3 Þ or H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , where H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ¼ a1;3 þ 2a1;2 þ a01;3 and H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ¼ a2;3 þ 2a2;2 þ a02;3 :
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
130
Case (i): If H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≻ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (ii): If H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≺ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (iii): If H a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = H a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then go to Step 2.
Step 4: Check that A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 Þ or A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 or A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , where A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ¼ a1;3 þ a01;3 and A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ¼ a2;3 þ a02;3 : Case (i): If A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≻ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (ii): If A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≺ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (iii): If A a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = A a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then go to Step 2.
> R a2;1 ; a2;2 ; a2;3 ; Step 5: Check that R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 a02;1 ; a2;2 ; a02;3 Þ or R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 or R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , where R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ¼ a01;3 and R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ¼ a02;3 :
3.10
Proposed MEHAR Approach for Comparing Triangular Intuitionistic …
131
Case (i): If R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 > R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≻ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (ii): If R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 < R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 ≺ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 . Case (iii): If R a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = R a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 , then a1;1 ; a1;2 ; a1;3 ; a01;1 ; a1;2 ; a01;3 = a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 .
3.11
Proposed Vaishnavi Approach
In this section, to overcome the limitation as well as to resolve the drawback of Ebrahimnejad and Verdegay’s approach [3], a new approach (named as Vaishnavi approach) has been proposed to solve the triangular intuitionistic fuzzy transportation problems of type-2, represented by Table 3.1. Step 1: Check that the aggregated value of the intuitionistic fuzzy transportation cost, the crisp availability and the crisp demand, provided by all the decision-makers, is available or not. Case (i): If it is available, then go to Step 2. Case (ii): If it is not available, then use the existing triangular intuitionistic fuzzy weighted averaging aggregation operator [4]. Find,
(i) The triangular intuitionistic fuzzy number ~cij ¼ pk¼1 wk ~ckij = ! Pp Pp Pp k k k wk cij;1 ; k¼1 wk cij;2 ; k¼1 wk cij;3 ; Pp Pp Pk¼1 representing the aggregated p k k k k¼1 wk cij;5 ; k¼1 wk cij;2 ; k¼1 wk cij;7 value of the intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source to the jth destination. P (ii) The non-negative real number ai ¼ pk¼1 wk aki representing the aggregated value of the crisp availability of the product at the ith source. P (iii) The non-negative real number bj ¼ pk¼1 wk bkj representing the aggregated value of the crisp demand of the product at the jth destination. where, (i) wk 2 ½0; 1 represents the normalized weight of the kth decision-maker. (ii) The triangular intuitionistic fuzzy number ~ckij ¼ ckij;1 ; ckij;2 ; ckij;3 ; ckij;5 ; ckij;2 ; ckij;7 Þ represents the intuitionistic fuzzy cost for supplying the one
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
132
unit quantity of the product from the ith source to the jth destination according to the kth decision-maker. (iii) The non-negative real number aki represents the crisp availability of the product at the ith source according to the kth decision-maker. (iv) The non-negative real number bkj represents the crisp demand of the product at the jth destination according to the kth decision-maker. and go to Step 2. For example, if in Example 3.7.1, the normalized weights of first and second decision-makers are 0:4 and 0:6, repsectively. Then, Table 3.7 will represent the aggregated intuitionistic fuzzy cost for supplying one unit quantity of the product, the crisp availability of the product and the crisp demand of the product. Step 2: Check that the considered/transformed triangular intuitionistic fuzzy transportation problem of type-2 problem P Pn is a balanced Pm Pn or an unbalanced problem, i.e., check that m a ¼ b or a ¼ 6 i j i i¼1 j¼1 i¼1 j¼1 bj . Case (i): If the considered/transformed triangular Pn fuzzy transportation P intuitionistic a ¼ problem of type-2 is a balanced problem, i.e., m i i¼1 j¼1 bj , then go to Step 4. Case (ii): If the considered/transformed triangular intuitionistic fuzzy transportation P P n problem of type-2 is an unbalanced problem, i.e., m a ¼ 6 i¼1 i j¼1 bj , then go to Step 3. P Pm n Step 3: Add a dummy source having availability and j¼1 bj i¼1 ai consider the transportation cost for supplying the one unit quantity of the product from each source to the dummy destination as the triangular intuitionistic fuzzy number ð0; 0; 0; 0; 0; 0Þ. P Pn m Also, add a dummy destination having demand a b i¼1 i j¼1 j and consider the transportation cost for supplying the one unit quantity of the product from the dummy source to each destination as the triangular intuitionistic fuzzy number ð0; 0; 0; 0; 0; 0Þ. Step 4: Write the intuitionistic fuzzy linear programming problem (3.11.1) corresponding to the considered/transformed balanced triangular intuitionistic fuzzy transportation problem of type-2.
Table 3.7 Aggregated data Destinations Sources
D1
D2
Crisp availability
S1 S2 Crisp demand
ð13; 24; 43; 8; 24; 48Þ ð18; 33; 53; 13; 33; 73Þ 54
ð28; 53; 63; 13; 53; 73Þ ð23; 43; 63; 18; 43; 73Þ 56
56 54
3.11
Proposed Vaishnavi Approach
133
Intuitionistic fuzzy linear programming problem (3.11.1) h i n Minimize m cij;1 ; cij;2 ; cij;3 ; c0ij;1 ; cij;2 ; c0ij;3 xij i¼1 j¼1 Subject to nX þ1
xij ¼ ai ; i ¼ 1; 2; . . .; m;
j¼1 nX þ1
xij ¼
j¼1
n X
bj
j¼1 m þ1 X
m X
ai ; i ¼ m þ 1;
i¼1
xij ¼ bj ; j ¼ 1; 2; . . .; n;
i¼1 m þ1 X i¼1
xij ¼
m X i¼1
ai
n X
bj ; j ¼ n þ 1;
j¼1
xij is a non-negative real number.
Step 5: Using the relation a cij;1 ; cij;2 ; cij;3 ; c0ij;1 ; cij;2 ; c0ij;3 = acij;1 ; acij;2 ; acij;3 ; ac0ij;1 ; acij;2 ; ac0ij;3 Þ, a 0, transform the intuitionistic fuzzy linear programming problem (3.11.1) into its equivalent intuitionistic fuzzy linear programming problem (3.11.2). Intuitionistic fuzzy linear programming problem (3.11.2) h i n 0 0 Minimize m c x ; c x ; c x ; c x ; c x ; c x ij;1 ij ij;2 ij ij;3 ij ij ij;2 ij ij i¼1 j¼1 ij;1 ij;3 Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.11.1). P n Step 6: Using the relation nj¼1 aj;1 ; aj;2 ; aj;1 ; a0j;1 ; aj;2 ; a0j;3 = j¼1 aj;1 ; Pn Pn Pn 0 Pn Pn 0 j¼1 aj;2 ; j¼1 aj;3 :; j¼1 aj;1 ; j¼1 aj;2 ; j¼1 aj;3 , transform the intuitionistic fuzzy linear programming problem (3.11.2) into its equivalent intuitionistic fuzzy linear programming problem (3.11.3).
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
134
Intuitionistic fuzzy linear programming problem (3.11.3) m X n X
Minimize
cij;1 xij
m X n X
i¼1 j¼1
cij;2 xij ;
m X n X
i¼1 j¼1 m X n X
cij;3 xij ;
i¼1 j¼1
cij;2 xij ;
m X n X
i¼1 j¼1
m X n X
c0ij;1 xij ;
i¼1 j¼1
! c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.11.1). Step 7: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (3.11.3) into its equivalent crisp linear programming problem (3.11.4) and hence, in the crisp linear programming problem (3.11.5). Crisp linear programming problem (3.11.4) " Minimize M
m X n X
cij;1 xij
i¼1 j¼1
m X n X
cij;2 xij ;
i¼1 j¼1
m X n X
cij;2 xij ;
i¼1 j¼1
m X n X
m X n X
cij;3 xij ;
i¼1 j¼1
m X n X
c0ij;1 xij ;
i¼1 j¼1
!# c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.11.1). Crisp linear programming problem (3.11.5) " Minimize
m X n X
cij;1 xij þ
i¼1 j¼1
þ
m X n X
#
m X n X i¼1 j¼1
cij;3 xij þ 2
m X n X i¼1 j¼1
cij;2 xij þ
m X n X
c0ij;1 xij
i¼1 j¼1
c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.11.1). Step 8: Check that a unique crisp optimal solution exists for the crisp linear programming problem (3.115) or not.
3.11
Proposed Vaishnavi Approach
135
Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (3.11.5), then go to Step 18. Case (ii): If more than one crisp optimal solutions exist for the crisp linear programming problem (3.11.5), then go to Step 9. Step 9: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (3.11.3) into its equivalent crisp linear programming problem (3.11.6) and hence, in the crisp linear programming problem (3.11.7). Crisp linear programming problem (3.11.6) " Minimize E
m X n X
cij;1 xij
i¼1 j¼1 m X n X
c0ij;1 xij ;
m X n X
i¼1 j¼1
m X n X
cij;2 xij ;
m X n X
i¼1 j¼1
cij;2 xij ;
i¼1 j¼1
cij;3 xij ;
i¼1 j¼1
m X n X
!#
c0ij;3 xij
i¼1 j¼1
Subject to m X n X
cij;1 xij þ
i¼1 j¼1 m X n X
þ
m X n X
cij;3 xij þ 2
i¼1 j¼1
m X n X
cij;2 xij þ
i¼1 j¼1
m X n X
c0ij;1 xij
i¼1 j¼1
c0ij;3 xij ¼ Crisp optimal value of the crisp linear programming problem ð3:11:5Þ:
i¼1 j¼1
and Constraints of the crisp linear programming problem (3.11.5). Crisp linear programming problem (3.11.7)
Minimize
" m X n X i¼1 j¼1
cij;1 xij þ
m X n X i¼1 j¼1
cij;3 xij þ 2
m X n X
cij;2 xij þ
m X n X
i¼1 j¼1
# c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (3.11.6). Step 10: Check that a unique crisp optimal solution exists for the crisp linear programming problem (3.11.7) or not. Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (3.11.7), then go to Step 18. Case (ii): If more than one crisp optimal solutions exist for the crisp linear programming problem (3.11.7), then go to Step 11.
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
136
Step 11: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (3.11.3) into its equivalent crisp linear programming problem (3.11.8) and hence, in the crisp linear programming problem (3.11.9). Crisp linear programming problem (3.11.8) " Minimize H
m X n X
cij;1 xij
i¼1 j¼1 m X n X i¼1 j¼1
c0ij;1 xij ;
m X n X
m X n X
cij;2 xij ;
i¼1 j¼1
cij;2 xij ;
i¼1 j¼1
m X n X
cij;3 xij ;
i¼1 j¼1
m X n X
!#
c0ij;3 xij
i¼1 j¼1
Subject Pm Pto n
P Pn Pm Pn Pm Pn þ m i¼1 j¼1 cij;3 xij + 2 i¼1 j¼1 cij;2 xij þ i¼1 j¼1 c0ij;3 xij ¼ Crisp optimal value of the crisp linear programming problem (3.11.7). and Constraints of the crisp linear programming problem (3.11.7). i¼1
j¼1 cij;1 xij
Crisp linear programming problem (3.11.9) " Minimize
2
m X n X i¼1 j¼1
cij;2 xij þ
m X n X i¼1 j¼1
cij;3 xij þ
m X n X
! c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (3.11.8). Step 12: Check that a unique crisp optimal solution exists for the crisp linear programming problem (3.11.9) or not. Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (3.11.9), then go to Step 18. Case (ii): If more than one crisp optimal solutions exist for the crisp linear programming problem (3.11.9), then go to Step 13. Step 13: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (3.11.3) into its equivalent crisp linear programming problem (3.11.10) and hence, in the crisp linear programming problem (3.11.11).
3.11
Proposed Vaishnavi Approach
137
Crisp linear programming problem (3.11.10) " Minimize A
m X n X
cij;1 xij
i¼1 j¼1 m X n X
c0ij;1 xij ;
i¼1 j¼1
m X n X
m X n X
cij;2 xij ;
i¼1 j¼1
cij;2 xij ;
i¼1 j¼1
m X n X
m X n X
cij;3 xij ;
i¼1 j¼1
!#
c0ij;3 xij
i¼1 j¼1
Subject to Pm Pn Pm Pn 0 P P n 2 m i¼1 j¼1 cij;2 xij þ i¼1 j¼1 cij;3 xij + i¼1 j¼1 cij;3 xij ¼ Crisp optimal value of the crisp linear programming problem (3.11.9) and Constraints of the crisp linear programming problem (3.11.9). Crisp linear programming problem (3.11.11) " Minimize
m X n X i¼1 j¼1
cij;3 xij þ
m X n X
# c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (3.11.10). Step 14: Check that a unique crisp optimal solution exists for the crisp linear programming problem (3.11.11) or not. Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (3.11.11), then go to Step 18. Case (ii): If more than one crisp optimal solutions exist for the crisp linear programming problem (3.11.11), then go to Step 15. Step 15: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (3.11.3) into its equivalent crisp linear programming problem (3.11.12) and hence, in the crisp linear programming problem (3.11.13).
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
138
Crisp linear programming problem (3.11.13) " Minimize R
m X n X
cij;1 xij
i¼1 j¼1 m X n X i¼1 j¼1
c0ij;1 xij ;
m X n X
cij;2 xij ;
i¼1 j¼1
m X n X
cij;2 xij ;
i¼1 j¼1
m X n X
m X n X
cij;3 xij ;
i¼1 j¼1
!#
c0ij;3 xij
i¼1 j¼1
Subject Pm Pto n
P Pn 0 þ m i¼1 j¼1 cij;3 xij ¼ Crisp optimal value of the crisp linear programming problem (3.11.12). i¼1
j¼1 cij;3 xij
and Constraints of the crisp linear programming problem (3.11.12). Crisp linear programming problem (3.11.14) " Minimize
m X n X
! c0ij;3 xij
i¼1 j¼1
Subject to Constraints of the crisp linear programming problem (3.11.13). Step 17: Find a crisp optimal solution for the crisp linear programming problem (3.11.14) and go to Step 18. Step 18: Find the intuitionistic fuzzy optimal value of the intuitionistic fuzzy linear programming problem (3.11.1) corresponding to the obtained crisp optimal solution.
3.12
Crisp Optimal Solution of the Considered Triangular Intuitionistic Fuzzy Transportation Problem of Type-2
In Sect. 3.9, the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, has been solved by Ebrahimnejad and Verdegay’s approach [3] to point out that more than one triangular intuitionistic fuzzy numbers, representing the optimal intuitionistic fuzzy transportation cost, are obtained. In this section, a unique triangular intuitionistic fuzzy, representing the optimal intuitionistic fuzzy transportation cost, for the same triangular intuitionistic fuzzy transportation problem of type-2 has been obtained by the proposed Vaishnavi approach.
3.12
Crisp Optimal Solution of the Considered Triangular Intuitionistic …
139
Using the proposed Vaishnavi approach, a unique triangular intuitionistic fuzzy number, representing the intuitionistic fuzzy optimal transportation cost, can be obtained as follows: Step 1: Since, in the considered triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, the aggregated values of fuzzy transportation cost, the crisp availability and the crisp demand are provided. So, there is no need to apply Step 1 of the proposed Vaishnavi approach. P P Step 2: Since, 2i¼1 ai ¼ 2j¼1 bj ¼ 50. So, the triangular intuitionistic fuzzy transportation problem, represented by Table 3.5, is a balanced triangular intuitionistic fuzzy transportation problem. Step 3: Since, the triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, is a balanced triangular intuitionistic fuzzy transportation problem of type-2. So, there is no need to add a dummy source and a dummy destination. Step 4: The balanced triangular intuitionistic fuzzy transportation problem of type-2, represented by Table 3.5, can also be represented by the intuitionistic fuzzy linear programming problem (3.12.1). Intuitionistic fuzzy linear programming problem (3.12.1) Minimize½ð20; 60; 80; 10; 60; 90Þ x11 ð25; 55; 85; 15; 55; 95Þ x12 ð30; 50; 90; 20; 50; 100Þ x21 ð15; 65; 75; 5; 65; 85Þ x22 Subject to x11 þ x12 ¼ 25; x21 þ x22 ¼ 25; x11 þ x12 ¼ 25; x12 þ x22 ¼ 25; x11 0; x12 0; x21 0; x22 0.
Step 5: Using the relation a cij;1 ; cij;2 ; cij;3 ; c0ij;1 ; cij;2 ; c0ij;3 = acij;1 ; acij;2 ; acij;3 ; ac0ij;1 ; acij;2 ; ac0ij;3 Þ, a 0, the intuitionistic fuzzy linear programming problem (3.12.1) can be transformed into its equivalent intuitionistic fuzzy linear programming problem (3.12.2). Intuitionistic fuzzy linear programming problem (3.12.2) Minimize½ð20x11 ; 60x11 ; 80x11 ; 10x11 ; 60x11 ; 90x11 Þ ð25x12 ; 55x12 ; 85x12 ; 15x12 ; 55x12 ; 95x12 Þ ð30x21 ; 50x21 ; 90x21 ; 20x21 ; 50x21 ; 100x21 Þ ð15x22 ; 65x22 ; 75x22 ; 5x22 ; 65x22 ; 85x22 Þ
140
3 Vaishnavi Approach for Solving Triangular Intuitionistic …
Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.12.1). P n Step 6: Using the relation nj¼1 aj;1 ; aj;2 ; aj;1 ; a0j;1 ; aj;2 ; a0j;3 = j¼1 aj;1 ; Pn Pn 0 Pn Pn 0 Pn j¼1 aj;2 ; j¼1 aj;3 :; j¼1 aj;1 ; j¼1 aj;2 ; j¼1 aj;3 , the intuitionistic fuzzy linear programming problem (3.12.2) can be transformed into its equivalent intuitionistic fuzzy linear programming problem (3.12.3). Intuitionistic fuzzy linear programming problem (3.12.3) Minimize½ð20x11 þ 25x12 þ 30x21 þ 15x22 ; 60x11 þ 55x12 þ 50x21 þ 65x22 ; 80x11 þ 85x12 þ 90x21 þ 75x22 ; 10x11 þ 15x12 þ 20x21 þ 5x22 ; 60x11 þ 55x12 þ 50x21 þ 65x22 ; 90x11 þ 95x12 þ 100x21 þ 85x22 Þ Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.12.1). Step 7: Using the proposed MEHAR approach for comparing triangular intuitionistic fuzzy numbers, the intuitionistic fuzzy linear programming problem (3.12.3) can be transformed into its equivalent crisp linear programming problem (3.12.4) and hence, in the crisp linear programming problem (3.12.5). Crisp linear programming problem (3.12.4) Minimize½M ð20x11 þ 25x12 þ 30x21 þ 15x22 ; 60x11 þ 55x12 þ 50x21 þ 65x22 ; 80x11 þ 85x12 þ 90x21 þ 75x22 ; 10x11 þ 15x12 þ 20x21 þ 5x22 ; 60x11 þ 55x12 þ 50x21 þ 65x22 ; 90x11 þ 95x12 þ 100x21 þ 85x22 Þ Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.12.1). Crisp linear programming problem (3.12.5) Minimize½320x11 þ 330x12 þ 340x21 þ 310x22 Subject to Constraints of the intuitionistic fuzzy linear programming problem (3.12.1).
3.12
Crisp Optimal Solution of the Considered Triangular Intuitionistic …
141
Step 8: It can be easily verified that on solving the crisp linear programming problem (3.12.5), the following unique crisp optimal solution is obtained. x11 ¼ 0;
x12 ¼ 25;
x21 ¼ 25;
x22 ¼ 0:
Step 9: Using the crisp optimal solution of the crisp linear programming problem (3.12.5), the intuitionistic fuzzy optimal value of the intuitionistic fuzzy linear programming problem (3.12.1) is. ð20; 60; 80; 10; 60; 90Þ x11 ð25; 55; 85; 15; 55; 95Þ x12 ð30; 50; 90; 20; 50; 100Þ x21 ð15; 65; 75; 5; 65; 85Þ x22 ¼ ð20; 60; 80; 10; 60; 90Þ 0 ð25; 55; 85; 15; 55; 95Þ 25 ð30; 50; 90; 20; 50; 100Þ 25 ð15; 65; 75; 5; 65; 85Þ 0 ¼ ð1375; 2625; 4375; 875; 2625; 4875Þ
3.13
Conclusions
A limitation and a drawback of the existing approach [3] have been pointed out. Also, it is pointed out that the drawback is occurring due to using an inappropriate existing approach for comparing triangular intuitionistic fuzzy numbers. Furthermore, a new approach (named as MEHAR approach) for comparing triangular intuitionistic fuzzy numbers as well as a new approach (named as Vaishnavi approach) for solving triangular intuitionistic fuzzy transportation problems of type-2 have been proposed.
References 1. G. Gupta, Transportation Problems in Intuitionistic Fuzzy Environment, Ph. D. Thesis, Thapar Institute of Engineering & Technology, Patiala, Punjab, India 2016 2. S.K. Singh, S.P. Yadav, A new approach for solving intuitionistic fuzzy transportation problem of type 2. Ann. Oper. Res. 43, 349–363 (2016) 3. A. Ebrahimnejad, J.L. Verdegay, An efficient computational approach for solving type-2 intuitionistic fuzzy numbers based transportation problems. Int. J. Comput. Intell. Syst. 9, 1154–1173 (2016) 4. S.-P. Wan, F. Wang, L.-L. Lin, J.-Y. Dong, Some new generalized aggregation operators for triangular intuitionistic fuzzy numbers and application to multi-attribute group decision making. Comput. Ind. Eng. 93, 286–301 (2016)
Chapter 4
JMD Approach for Solving Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problems
Ebrahimnejad and Verdegay [1] proposed an approach for solving fully trapezoidal intuitionistic fuzzy transportation problems (transportation problems in which each parameter is represented by a trapezoidal intuitionistic fuzzy number). One may claim that Ebrahimnejad and Verdegay’s approach [1] can be used to solve such fully trapezoidal intuitionistic fuzzy transportation problems for which the aggregated value of the intuitionistic fuzzy transportation cost, the intuitionistic fuzzy availability and the intuitionistic fuzzy demand, provided by all the decision-makers, is available. While Ebrahimnejad and Verdegay’s approach [1] cannot be used to solve such fully trapezoidal intuitionistic fuzzy transportation problems for which, instead of the aggregated data, the data of each decision-maker is provided separately. To overcome this limitation, one may modify Ebrahimnejad and Verdegay’s approach [1] with the help of the existing trapezoidal intuitionistic fuzzy aggregation operator [2]. Also, one may use Ebrahimnejad and Verdegay’s approach [1] to solve real-life fully trapezoidal intuitionistic fuzzy transportation problems. However, after a deep study, some limitations and a drawback have been observed in Ebrahimnejad and Verdegay’s approach [1]. The aim of this chapter is (i) To make the researchers aware about the observed limitations and the drawback of Ebrahimnejad and Verdegay’s approach [1]. (ii) To make the researchers aware about a drawback of the approach, used in Ebrahimnejad and Verdegay’s approach [1], for comparing trapezoidal intuitionistic fuzzy numbers. (iii) To propose a valid approach (named as DAUGHTER approach) for comparing trapezoidal intuitionistic fuzzy numbers. (iv) To propose a valid approach [named as JAI MATA DI (JMD)] approach for solving unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. (v) To illustrate the proposed JMD approach with the help of numerical examples.
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 A. Mishra and A. Kumar, Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems, Studies in Fuzziness and Soft Computing 399, https://doi.org/10.1007/978-981-15-6998-2_4
143
4 JMD Approach for Solving Unbalanced Fully …
144
4.1
Organization of the Chapter
This chapter has been organized as follows: (i) In Sect. 4.2, some basic definitions have been presented. (ii) In Sect. 4.3, an existing approach for comparing trapezoidal intuitionistic fuzzy numbers, used in Ebrahimnejad and Verdegay’s approach [1], has been discussed. (iii) In Sect. 4.4, the intuitionistic full fuzzy linear programming problem of a balanced fully trapezoidal intuitionistic fuzzy transportation problem has been presented. (iv) In Sect. 4.5, Ebrahimnejad and Verdegay’s approach [1] has been discussed in a brief manner. (v) In Sect. 4.6, some limitations of Ebrahimnejad and Verdegay’s approach [1] have been pointed out. (vi) In Sect. 4.7, a drawback of Ebrahimnejad and Verdegay’s approach [1] has been pointed out. (vii) In Sect. 4.8, a reason for the occurrence of the limitations has been discussed. (viii) In Sect. 4.9, the reasons for the occurrence of the drawback have been discussed. (ix) In Sect. 4.10, a new approach (named as DAUGHTER approach) has been proposed for comparing trapezoidal intuitionistic fuzzy numbers (x) In Sect. 4.11, a new representation of a trapezoidal intuitionistic fuzzy number (named as Mehar representation) has been proposed. (xi) In Sect. 4.12, an expression has been proposed to evaluate the multiplication of a trapezoidal intuitionistic fuzzy number in its existing representation with a trapezoidal intuitionistic fuzzy number in its Mehar representation. (xii) In Sect. 4.13, a new approach (named as JMD approach) has been proposed to solve unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. (xiii) In Sect. 4.14, the proposed JMD approach has been illustrated with the help of two numerical problems. (xiv) Sect. 4.15 concludes the chapter.
4.2
Preliminaries
In this section, some basic definitions have been presented [1]. e I is said to be a trapezoidal Definition 4.2.1 An intuitionistic fuzzy number A intuitionistic fuzzy number if its membership function leI ðxÞ and non-membership A function meI ðxÞ is defined as A
4.2 Preliminaries
8 xa 1 ; > > < a2 a1 1; leI ðxÞ ¼ a4 x A ; > > : a4 a3 0;
145
8 a0 x > a0 2a0 ; a1 x\a2 > > < 2 1 a2 x a3 0; and meI ðxÞ ¼ a03 x A a3 \x a4 > ; > > a : 03 a04 otherwise 1;
a01 x\a02 a02 x a03 a03 \x a04 otherwise
e I may be denoted as A e I ¼ ð a1 ; a 2 ; a3 ; A trapezoidal intuitionistic fuzzy number A 0 0 0 0 a4 ; a1 ; a2 ; a3 ; a4 Þ: e I ¼ ð a1 ; a2 ; a3 ; a4 ; Definition 4.2.3 A trapezoidal intuitionistic fuzzy number A 0 0 a1 ; a2 ; a3 ; a4 Þ is said to be a non-negative trapezoidal intuitionistic fuzzy number if a01 0: e I ¼ ð a1 ; a2 ; a 3 ; a4 ; Definition 4.2.4 Two trapezoidal intuitionistic fuzzy numbers A eI ¼ e I ¼ b1 ; b2 ; b3 ; b4 ; b01 ; b02 ; b03 ; b04 are said to be equal, i.e., A a01 ; a02 ; a03 ; a04 Þ and B I 0 0 0 0 0 0 0 e if a1 ¼ b1 ; a2 ¼ b2 ; a3 ¼ b3 ; a4 ¼ b4 ; a1 ¼ b1 ; a2 ¼ b2 ; a3 ¼ b3 and a4 ¼ b04 . B e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and B e I ¼ ð b1 ; b2 ; b 3 ; b4 ; Definition 4.2.5 Let A 1 2 3 4 0 0 0 0 eI B eI ¼ b ; b ; b ; b Þ be two trapezoidal intuitionistic fuzzy numbers. Then, A 1 2 3 4 a1 þ b1 ; a2 þ b2 ; a3 þ b3 ; a4 þ b4 ; a01 þ b01 ; a02 þ b02 ; a03 þ b03 ; a04 þ b04 : e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and B e I ¼ ð b1 ; b2 ; b 3 ; b4 ; Definition 4.2.6 Let A 1 2 3 4 e I B eI ¼ b0 ; b0 ; b0 ; b0 Þ be two trapezoidal intuitionistic fuzzy numbers. Then, A 1 2 3 4 0 0 0 0 0 0 0 0 a1 b 4 ; a2 b 4 ; a3 b 2 ; a4 b 1 ; a1 b 4 ; a2 b 3 ; a3 b 3 ; a4 b 1 : e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and B e I ¼ ð b1 ; b2 ; b 3 ; b4 ; Definition 4.2.7 Let A 1 2 3 4 0 0 0 0 b1 ; b2 ; b3 ; b4 Þ be two non-negative trapezoidal intuitionistic fuzzy numbers. Then, eI B e I ¼ a1 b1 ; a2 b2 ; a3 b3 ; a4 b4 ; a01 b01 ; a02 b02 ; a03 b03 ; a04 b04 . A e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 Definition 4.2.8 Let A be a trapezoidal 1 2 3 4 eI ¼ intuitionistic fuzzy number and k be a real number. Then, k A 0 0 0 0 ka1 ; ka2 ; ka3 ; ka4 ; ka10 ; ka20 ; ka30 ; ka30 ; k 0; ka4 ; ka3 ; ka2 ; ka1 ; ka4 ; ka3 ; ka2 ; ka1 ; k\0:
4.3
Intuitionistic Fully Fuzzy Linear Programming Problem of a Balanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem
Ebrahimnejad and Verdegay [1] have solved the intuitionistic fully fuzzy linear programming problem (4.3.1) to find an intuitionistic fuzzy optimal solution of the balanced fully trapezoidal intuitionistic fuzzy transportation problem represented by Table 4.1.
4 JMD Approach for Solving Unbalanced Fully …
146
Intuitionistic fully fuzzy linear programming problem (4.3.1) h i n Minimize m cIij ~xIij i¼1 j¼1 ~ Subject to nj¼1~xIij ¼ ~aIi ; i ¼ 1; 2; . . .; m; m xIij ¼ ~bIj ; j ¼ 1; 2; . . .; n; i¼1~ ~xIij is a non-negative trapezoidal intuitionistic fuzzy number. where (i) The trapezoidal intuitionistic fuzzy number ~cIij represents the intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source ðSi Þ to the jth destination Dj . (ii) The trapezoidal intuitionistic fuzzy number ~xIij represents the quantity of the product to be supplied from the ith source ðSi Þ to the jth destination Dj . (iii) The trapezoidal intuitionistic fuzzy number ~ aIi represents the intuitionistic fuzzy availability of the product at the ith source ðSi Þ. (iv) The trapezoidal intuitionistic fuzzy number ~ bIj represents the intuitionistic fuzzy demand of the product at the jth destination Dj . Pm I Pn I ai ¼ j¼1 ~bj represents that the total intuitionistic fuzzy availability of (v) i¼1 ~ the product at all the sources is equal to the total intuitionistic fuzzy demand of the product at all the destinations.
Table 4.1 Tabular representation of balanced fully trapezoidal intuitionistic fuzzy transportation problem Sources
Destinations D2 D1
Dj
Dn
Intuitionistic fuzzy availability
S1
~cI11
~cI12
~cI1j
~cI1n
~ aI1
⋮ Si
⋮
⋮
⋮
~cIij
⋮
⋮
~cIi2
⋮
⋮
~cIi1
~cIin
~ aIi
⋮ Sm
⋮
⋮ ~cIm1
⋮
~cImj
⋮
⋮ ~cmn
⋮
~cIm1 ~bI 1
~bI 2
~bI j
~ bIm
Intuitionistic fuzzy demand
⋮
~ aIm Pm i¼1
~ aIi ¼
Pn j¼1
~ bIj
4.4 Existing Approach for Comparing Trapezoidal Intuitionistic Fuzzy Numbers
4.4
147
Existing Approach for Comparing Trapezoidal Intuitionistic Fuzzy Numbers
It is well-known fact that the optimal solution of a crisp linear programming problem will be that feasible solution corresponding to which the value of the objective function will be minimum. On the same direction, an intuitionistic fuzzy optimal solution of the intuitionistic fully fuzzy linear programming problem (4.3.1) will be that intuitionistic fuzzy feasible solution corresponding to which the value of the objective function of the intuitionistic fully fuzzy linear programming problem (4.3.1) will be minimum. Since, in case of intuitionistic fully fuzzy linear programming problem (4.3.1), the value of the objective function, corresponding to an intuitionistic fuzzy feasible solution, will be a trapezoidal intuitionistic fuzzy number. Therefore, to find the intuitionistic fuzzy optimal solution of the intuitionistic fully fuzzy linear programming problem (4.3.1), there is a need to find the minimum of trapezoidal intuitionistic fuzzy numbers, i.e., there is a need to compare the trapezoidal intuitionistic fuzzy numbers. In this section, the approach for comparing the trapezoidal intuitionistic fuzzy numbers, used in Ebrahimnejad and Verdegay’s approach [1], has been discussed. e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and B e I ¼ b1 ; b2 ; b3 ; b4 ; b01 ; b02 ; b03 ; b04 be Let A 1 2 3 4 two trapezoidal intuitionistic fuzzy numbers. Then, I eI [ H B eI B e I if H A e , (i) A I e I \H B eI B e I if H A e , (ii) A I eI B eI ¼ H B e I if H A e , (iii) A where ða þ a þ a þ a Þ þ a0 þ a0 þ a0 þ a0 I ðb1 þ b2 þ b3 þ b4 Þ þ ðb01 þ b02 þ b03 þ b04 Þ e I ¼ 1 2 3 4 ð 1 2 3 4 Þ and H B e ¼ H A . 8 8
4.5
Ebrahimnejad and Verdegay’s Approach for Solving Balanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problems
The aim of this chapter is to point out some limitations and a drawback of Ebrahimnejad and Verdegay’s approach [1]. Since, to achieve this aim, there is a need to discuss Ebrahimnejad and Verdegay’s approach [1]. Therefore, a brief review of Ebrahimnejad and Verdegay’s approach [1] has been presented in this section. Ebrahimnejad and Verdegay [1] proposed the following approach for solving balanced fully trapezoidal intuitionistic fuzzy transportation problems.
4 JMD Approach for Solving Unbalanced Fully …
148
Step 1: Transform the intuitionistic fully fuzzy linear programming problem (4.3.1) into its equivalent intuitionistic fully fuzzy linear programming problem (4.5.1) by replacing the parameters ~cIij , ~xIij , ~aIi and ~bIj with the trapezoidal intuitionistic fuzzy
numbers cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 , xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 , ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; a0i;2 ; a0i;3 ; a0i;4 and bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; b0j;2 ; b0j;3 ; b0j;4 , respectively, Intuitionistic fully fuzzy linear programming problem (4.5.1) h n cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 Minimize m i¼1 j¼1 i xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 Subject to nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 ¼ ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; a0i;2 ; a0i;3 ; a0i;4 ; i ¼ 1; 2; . . .; m; 0 0 0 0 m x ; x ; x ; x ; x ; x ; x ; x ij;1 ij;2 ij;3 ij;4 i¼1 ij;1 ij;2 ij;3 ij;4 0 ¼ bj;1 ; bj;2 ; bj;3 ; bi;4 ; bj;1 ; b0j;2 ; b0j;3 ; b0j;4 ; j ¼ 1; 2; . . .; n; xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 is a non-negative trapezoidal intuitionistic fuzzy number, i ¼ 1; 2; . . .; m, j ¼ 1; 2; . . .; n.
Step 2: Using the relation, a1 ; a2 ; a3 ; a4 ; a01 ; a02 ; a03 ; a04 ¼ b1 ; b2 ; b3 ; b4 ; b01 ; b02 ; b03 ; b04 ) a1 ¼ b1 ; a2 ¼ b2 ; a3 ¼ b3 ; a4 ¼ b4 ; a01 ¼ b01 ; a02 ¼ b02 ; a03 ¼ b03 ; a04 ¼ b04 and using the relation a1 ; a2 ; a3 ; a4 ; a01 ; a02 ; a03 ; a04 is a non-negative trapezoidal intuitionistic fuzzy number ) a01 0, a1 a01 0, a02 a1 0, a2 a02 0, a3 a2 0, a03 a3 0, a4 a03 0, a04 a4 0, transform the intuitionistic fully fuzzy linear programming problem (4.5.1) into its equivalent intuitionistic fuzzy linear programming problem (4.5.2). Intuitionistic fuzzy linear programming problem (4.5.2) h n Minimize m cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 i¼1 j¼1 i xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4
4.5 Ebrahimnejad and Verdegay’s Approach for Solving …
149
Subject to n X j¼1 n X
xij;1 ¼ ai;1 ; x0ij;1 ¼ a0i;1 ;
j¼1 m X i¼1 m X i¼1
n X j¼1 n X
xij;2 ¼ ai;2 ; x0ij;2 ¼ a0i;2 ;
j¼1
xij;1 ¼ bj;1 ; x0ij;1 ¼ b0j;1 ;
m X i¼1 m X i¼1
n X j¼1 n X
xij;3 ¼ ai;3 ; x0ij;3 ¼ a0i;3 ;
j¼1
xij;2 ¼ bj;2 ; x0ij;2 ¼ b0j;2 ;
m X i¼1 m X
n X j¼1 n X
xij;4 ¼ ai;4 ; x0ij;4 ¼ a0i;4 ;
i ¼ 1; 2; . . .; m;
j¼1
xij;3 ¼ bj;3 ; x0ij;3 ¼ b0j;3 ;
i¼1
m X i¼1 m X
xij;4 ¼ bj;4 ; x0ij;4 ¼ b0j;4 ;
j ¼ 1; 2; . . .; n;
i¼1
x0ij;1 0, xij;1 x0ij;1 0, x0ij;2 xij;1 0, xij;2 x0ij;2 0, xij;3 xij;2 0, xij;3 0, xij;4 x0ij;3 0, x0ij;4 xij;4 0, i ¼ 1; 2; . . .; m, j ¼ 1; 2; . . .; n:
x0ij;3
Step 3: Using of two non-negative the multiplication trapezoidal 0intuitionistic fuzzy and b1 ; b2 ; b3 ; b4 ; b1 ; b02 ; b03 ; b04 i.e., numbers a1 ; a2 ; a3 ; a4 ; a01 ; a02 ; a03 ; a04 0 0 0 0 0 0 0 0 a1 ; a2 ; a3 ; a4 ; a1 ; a2 ; a3 ; a4 b1 ; b2 ; b3 ; b4 ; b1 ; b2 ; b3 ; b4 ¼ ða1 b1 ; a2 b2 ; a3 b3 ; a4 b4 ; a01 b01 ; a02 b02 ; a03 b03 ; a04 b04 Þ, transform the intuitionistic fuzzy linear programming problem (4.5.2) into its equivalent intuitionistic fuzzy linear programming problem (4.5.3). Intuitionistic fuzzy linear programming problem (4.5.3) h i n 0 0 0 0 0 0 0 0 Minimize m c x ; c x ; c x ; c x ; c x ; c x ; c x ; c x ij;1 ij;1 ij;2 ij;2 ij;3 ij;3 ij;4 ij;4 i¼1 j¼1 ij;1 ij;1 ij;2 ij;2 ij;3 ij;3 ij;4 ij;4
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.5.2). Step 4: Using the approach for comparing trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 4.3, transform the intuitionistic fuzzy linear programming problem (4.5.3) into its equivalent crisp linear programming problem (4.5.4) and hence into its equivalent crisp linear programming problem (4.5.5). Crisp linear programming problem (4.5.4) Minimize h i n 0 0 0 0 0 0 0 0 m H c x ; c x ; c x ; c x ; c x ; c x ; c x ; c x ij;1 ij;1 ij;2 ij;2 ij;3 ij;3 ij;4 ij;4 ij;1 ij;1 ij;2 ij;2 ij;3 ij;3 ij;4 ij;4 i¼1 j¼1 Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.5.2).
4 JMD Approach for Solving Unbalanced Fully …
150
Crisp linear programming problem (4.5.5) "
m X n 1X cij;1 xij;1 þ cij;2 xij;2 þ cij;3 xij;3 þ cij;4 xij;4 þ c0ij;1 x0ij;1 8 i¼1 j¼1 i þ c0ij;2 x0ij;2 þ c0ij;3 x0ij;3 þ c0ij;4 x0ij;4
Minimize
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.5.2). n o Step 5: Find a crisp optimal solution x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 of the crisp linear programming problem (4.5.5). Step 6: Using the crisp optimal solution, obtained in Step 5, find n othe intuitionistic 0 0 0 0 fuzzy optimal solution xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 and the intuitionistic fuzzy optimal value n 0 0 0 0 0 0 0 0 m i¼1 j¼1 cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 :
4.6
Limitations of Ebrahimnejad and Verdegay’s Approach
In this section, some limitations of Ebrahimnejad and Verdegay’s approach [1] have been pointed out. 1. To solve a real-life transportation problem, the opinion of two or more experts about the parameters is collected. Then, all the collected information is aggregated to obtain a single value of each parameter. Since, Ebrahimnejad and Verdegay’s approach [1] has been proposed by considering the assumption that the aggregated value of each parameter is available. Therefore, Ebrahimnejad and Verdegay’s approach [1] cannot be used to solve several real-life balanced fully trapezoidal intuitionistic fuzzy transportation problems. For example, Ebrahimnejad and Verdegay’s approach [1] cannot be used to solve the balanced fully trapezoidal intuitionistic fuzzy transportation problem considered in Example 4.6.1. Example 4.6.1 Let us consider a product needs to be supplied from two sources to two destinations. For the same purpose, the information about each parameter is collected from two experts. If
4.6 Limitations of Ebrahimnejad and Verdegay’s Approach
151
(i) Table 4.2 represents the intuitionistic fuzzy transportation cost, the intuitionistic fuzzy availability and the intuitionistic fuzzy demand provided by the first decision-maker. (ii) Table 4.3 represents the intuitionistic fuzzy transportation cost, the intuitionistic fuzzy availability and the intuitionistic fuzzy demand provided by the second decision-maker. Then, this balanced fully trapezoidal intuitionistic fuzzy transportation problem cannot be solved by Ebrahimnejad and Verdegay’s approach [1]. 2. Ebrahimnejad and Verdegay [1] have proposed their proposed approach for solving balanced fully trapezoidal intuitionistic fuzzy transportation problems. Therefore, Ebrahimnejad and Verdegay’s approach [1] cannot be used to solve unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. One may think that in actual case, it is not a limitation as an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem can be easily transformed into a balanced fully trapezoidal intuitionistic fuzzy transportation problem by introducing a dummy source and a dummy destination as in the case of an unbalanced crisp transportation problem. However, the following clearly indicates that the approach to transform an unbalanced crisp transportation problem into its equivalent balanced crisp transportation problem cannot be used to transform an unbalanced fully trapezoidal Table 4.2 Intuitionistic fuzzy data provided by the first decision-maker Sources S1 S2 Intuitionistic fuzzy demand
Destinations D1 10; 30; 40; 50; 5; 15; 45; 55 15; 30; 50; 80; 10; 20; 70; 90 40; 60; 70; 90; 30; 50; 80; 95
D2 25; 50; 60; 80; 10; 30; 70; 90 20; 40; 60; 80; 15; 35; 70; 85 10; 45; 55; 70; 5; 30; 60; 80
Intuitionistic fuzzy availability 20; 60; 70; 80; 15; 50; 75; 85 25; 45; 60; 70; 20; 40; 65; 80
Table 4.3 Intuitionistic fuzzy data provided by the second decision-maker Sources S1 S2 Intuitionistic fuzzy demand
Destinations D1 15; 35; 45; 55; 10; 20; 50; 60 20; 35; 55; 85; 15; 25; 75; 95 45; 65; 75; 95; 35; 55; 85; 100
D2 30; 55; 65; 85; 15; 35; 75; 95 25; 45; 65; 85; 20; 40; 75; 90 15; 50; 60; 75; 10; 35; 65; 85
Intuitionistic fuzzy availability 25; 65; 75; 85; 20; 55; 80; 90 30; 50; 65; 75; 25; 45; 70; 85
4 JMD Approach for Solving Unbalanced Fully …
152
intuitionistic fuzzy transportation problem into its equivalent balanced fully trapezoidal intuitionistic fuzzy transportation problem. Ebrahimnejad and Verdegay [1] have solved the balanced fully trapezoidal intuitionistic fuzzy transportation problem having two sources S1 , S2 and three destinations D1 , D2 and D3 by considering ~cI11 ¼ ð10; 20; 30; 40; 5; 15; 35; 45Þ; ~cI12 ¼ ð50; 60; 70; 90; 45; 55; 75; 95Þ; ~cI13 ¼ ð80; 90; 110; 120; 75; 85; 115; 125Þ; ~cI21 ¼ ð60; 70; 80; 90; 55; 65; 85; 95Þ; ~cI22 ¼ ð70; 80; 100; 120; 65; 75; 115; 125Þ; ~cI23 ¼ ð20; 30; 50; 60; 15; 25; 35; 65Þ; ~aI1 ¼ ð60; 80; 100; 120; 50; 70; 110; 130Þ; ~aI2 ¼ ð40; 60; 80; 100; 30; 50; 90; 110Þ; ~bI ¼ ð30; 50; 70; 90; 20; 40; 80; 100Þ; ~bI ¼ ð20; 30; 40; 50; 15; 25; 45; 55Þ; 1 2 ~bI ¼ ð50; 60; 70; 80; 45; 55; 75; 85Þ: 3 If it is assumed that there are only two destinations instead of three destinations. Then, the modified fully trapezoidal intuitionistic fuzzy transportation problem can be represented by Table 4.4. It is obvious that for the modified fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.4, 2i¼1 ~ ai ¼ ð100; 140; 180; 220; 2 ~ 80; 120; 200; 240Þ and j¼1 bj ¼ ð50; 80; 110; 140; 35; 65; 125; 155Þ. Since 2 ~ai 6¼ 2 ~bj . So, the modified fully trapezoidal intuitionistic fuzzy transi¼1
j¼1
portation problem is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem. Now, according to the existing approach for transforming an unbalanced crisp transportation problem into its equivalent balanced crisp transportation problem, there is a need to check that 2i¼1 ~ai 2j¼1 ~bj or 2i¼1 ~ bj . ai 2j¼1 ~
Table 4.4 Fully trapezoidal intuitionistic fuzzy transportation problem Sources S1 S2 Intuitionistic fuzzy demand
Destinations D1 10; 20; 30; 40; 5; 15; 35; 45 60; 70; 80; 90; 55; 65; 85; 95 30; 50; 70; 90; 20; 40; 80; 100
D2 50; 60; 70; 90; 45; 55; 75; 95 70; 80; 100; 120; 65; 75; 115; 125 20; 30; 40; 50; 15; 25; 45; 55
Intuitionistic fuzzy availability 60; 80; 100; 120; 50; 70; 110; 130 40; 60; 80; 100; 30; 50; 90; 110
4.6 Limitations of Ebrahimnejad and Verdegay’s Approach
153
It can be easily verified that H 2i¼1 ~ai ¼ 160 and H 2j¼1 ~ bj ¼ 95. Since H 2i¼1 ~ai [ H 2j¼1 ~bj . Therefore, according to the existing approach for comparing trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 4.3, 2i¼1 ~ai 2j¼1 ~bj . Hence, according to the existing approach for transforming an unbalanced crisp transportation problem into a balanced crisp transportation problem, there is a need to add a dummy destination having intuitionistic fuzzy 2 demand ~ai 2 ~bj ¼ ð100; 140; 180; 220; 80; 120; 200; 240Þ ð50; 80; i¼1
j¼1
110; 140; 35; 65; 125; 155Þ ¼ ð40; 30; 100; 170; 75; 5; 135; 205Þ, i.e., according to the existing approach for transforming an unbalanced crisp transportation problem into its equivalent crisp transportation problem, the transformed fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.5, will be a balanced fully trapezoidal intuitionistic fuzzy transportation problem. While, in actual case, the transformed fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.5, is not a balanced fully trapezoidal intuitionistic fuzzy transportation problem as the total intuitionistic fuzzy availability 2i¼1 ~ai ¼ ð60; 80; 100; 120; 50; 70; 110; 130Þ ð40; 60; 80; 100; 30; 50; 90; 110Þ ¼ ð100; 140; 180; 220; 80; 120; 200; 240Þ is not equal to the total intuitionistic fuzzy demand 3j¼1 ~bj ¼ ð30; 50; 70; 90; 20; 40; 80; 100Þ ð20; 30; 40; 50; 15; 25; 45; 55Þ ð40; 30; 100; 170; 75; 5; 135; 205Þ ¼ ð10; 110; 210; 310; 40; 60; 257; 360Þ Furthermore, as the intuitionistic fuzzy demand of the dummy destination D3 does not have any physical meaning as it is not a non-negative trapezoidal intuitionistic fuzzy number.
4.7
Drawback of Ebrahimnejad and Verdegay’s Approach
Ebrahimnejad and Verdegay [1] have used an existing approach for comparing trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 4.3, in their proposed approach. However, the following example clearly indicates that it is inappropriate to use this approach. It is obvious that for the fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, 2i¼1 ~ai ¼ ð100; 140; 180; 220; 80; 120; 200; 240Þ and 2j¼1 ~bj ¼ ð110; 155; 165; 210; 80; 105; 205; 250Þ. Since 2 ~ai 6¼ 2 b~j . So, the considered fully trapezoidal intuitionistic fuzzy transi¼1
j¼1
portation problem is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem.
Intuitionistic fuzzy demand
S2
S1
Sources
Destinations D1 10; 20; 30; 40; 5; 15; 35; 45 60; 70; 80; 90; 55; 65; 85; 95 30; 50; 70; 90; 20; 40; 80; 100 D2 50; 60; 70; 90; 45; 55; 75; 95 70; 80; 100; 120; 65; 75; 115; 125 20; 30; 40; 50; 15; 25; 45; 55
Table 4.5 Transformed fully trapezoidal intuitionistic fuzzy transportation problem D3 0; 0; 0; 0; 0; 0; 0; 0 0; 0; 0; 0; 0; 0; 0; 0 40; 30; 100; 170; 75; 5; 135; 205
60; 80; 100; 120; 50; 70; 110; 130 40; 60; 80; 100; 30; 50; 90; 110
Intuitionistic fuzzy availability
154 4 JMD Approach for Solving Unbalanced Fully …
4.7 Drawback of Ebrahimnejad and Verdegay’s Approach
155
Table 4.6 Unbalanced fully trapezoidal intuitionistic fuzzy transportation problem Sources S1 S2 Intuitionistic fuzzy demand
Destinations D1 10; 20; 30; 40; 5; 15; 35; 45 60; 70; 80; 90; 55; 65; 85; 95 55; 85; 95; 130; 45; 75; 105; 135
D2 50; 60; 70; 90; 45; 55; 75; 95 70; 80; 100; 120; 65; 75; 115; 125 30; 70; 90; 100; 15; 65; 95; 135
Intuitionistic fuzzy availability 60; 80; 100; 125; 50; 70; 110; 130 40; 60; 80; 110; 30; 50; 90; 140
Now, according to the existing approach for transforming an unbalanced crisp transportation problem into its equivalent balanced crisp transportation problem, there is a need to check that 2i¼1 ~ai 2j¼1 ~bj or 2i¼1 ~ bj . ai 2j¼1 ~ 2 1325 bj ¼ 1325 It can be easily verified that H i¼1 ~ai ¼ 8 and H 2j¼1 ~ 8 . Since 2 H i¼1 ~ai ¼ H 2j¼1 ~bj ¼ 1325 8 . Therefore, according to the existing approach for comparing trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 4.3, 2i¼1 ~ai ¼ 2j¼1 ~bj . Hence, according to the existing approach for comparing trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 4.3, the fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, is a balanced fully trapezoidal intuitionistic fuzzy transportation problem. While, in actual case, it is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem as 2i¼1 ~ai 6¼ 2j¼1 ~bj .
4.8
Reasons for the Occurrence of the Limitations
e 1 ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and In Sect. 4.6, it has been assumed that if A 1 2 3 4 e 2 ¼ b1 ; b2 ; b3 ; b4 ; b0 ; b0 ; b0 ; b0 are two distinct trapezoidal intuitionistic fuzzy A 1 2 3 4 e1 [ H A e 2 . Then, on adding trapezoidal intuitionistic numbers such that H A e 2 in A e 1 , i.e., A e2 A e1 A e2 ¼ A e1 A e 2 , it will be equal to A e 1. fuzzy number A e 1 \H A e 2 then on adding trapezoidal intuitionistic fuzzy Similarly, if H A e 1 in A e 2 , i.e., A e1 A e2 A e1 ¼ A e2 A e 1 , it will be equal to A e 2. number A However, the following example clearly indicates that in actual case this result will not hold.
156
4 JMD Approach for Solving Unbalanced Fully …
e 1 ¼ ð10; 20; 30; 40; For the trapezoidal intuitionistic fuzzy numbers A e 2 ¼ ð15; 25; 35; 45; 10; 20; 40; 50Þ, the condition 5;15; 35; A 45Þ and e 2 is satisfying. So, according to condition (ii), on adding e 1 \H A H A e 1 ¼ b1 a4 ; b2 a3 ; b3 a2 ; b4 a1 ; b01 a04 ; b02 a03 ; b03 a02 ; b04 a01 e2 A A e 1 , the trapezoidal intuitionistic fuzzy ¼ ð35; 15; 5; 25; 45; 25; 15; 35Þ in A e 2 should be obtained. While A e1 A e2 A e 1 ¼ ð10; 20; 30; 40; 5; number A 15; 35; 45Þ ð35; 15; 5; 25; 45; 25; 15; 35Þ ¼ ð25; 5; 35; 65; 40; 10; e 2. 50; 80Þ 6¼ A
4.9
Reasons for the Occurrence of the Drawback
The drawback in Ebrahimnejad and Verdegay’s approach [1], discussed in Sect. 4.7, is occurring due to the following reason. It is obvious from Sect. 4.3 that Ebrahimnejad and Verdegay [1] have assumed e 2 ¼ b1 ; b2 ; b3 ; b4 ; b0 ; b0 ; b0 ; b0 are e 1 ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 and A that if A 1 1 3 4 1 2 3 4 e e two trapezoidal intuitionistic fuzzy numberssuch that A 1 6¼ A 2 , then either the e 2 or the relation H A e 1 \H A e 2 will hold. While, in e1 [ H A relation H A e actual case, theremay existdistinct trapezoidal intuitionistic fuzzy numbers A 1 and e1 ¼ H A e 2 , e.g., the trapezoidal intuitionistic e 2 such that H A e 2 but A e 1 6¼ A A e 1 ¼ ð10; 20; 30; 40; 5; 15; 35; 45Þ and A e 1 ¼ ð8; 22; 25; 35; 5; 15; fuzzy numbers A e e 40; 50Þ are two trapezoidal intuitionistic fuzzy numbers such that A 1 6¼ A 2 but it e1 ¼ H A e 2 ¼ 25. can be easily verified that H A
4.10
DAUGHTER Approach for Comparing Trapezoidal Intuitionistic Fuzzy Numbers
It is obvious from Sect. 4.9 that it is not appropriate to use the existing approach discussed in Sect. 4.3, for comparing trapezoidal intuitionistic fuzzy numbers. In this section, a new approach (named as DAUGHTER approach) has been proposed for comparing trapezoidal intuitionistic fuzzy numbers. Using the proposed DAUGHTER approach, the trapezoidal intuitionistic fuzzy numbers a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 and a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ can be compared as follows:
4.10
DAUGHTER Approach for Comparing Trapezoidal Intuitionistic …
157
Step 1: Check that D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ Dða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \Dða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ Dða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a11 þ a12 þ a13 þ a14 þ a011 þ a012 þ a013 þ a014 and D a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 ¼ a21 þ a22 þ a23 þ a24 þ a021 þ a022 þ a023 þ a024 . Case (i): If D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ D a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ Case (ii): If D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \ D a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii): If D a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ D a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 2. Step 2: Check that A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a11 þ a12 þ a13 þ a14 þ a012 þ a013 þ a014 and A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 ¼ a21 þ a22 þ a23 þ a24 þ a022 þ a023 þ a024 . Case (i): If A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ Case (ii): If A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii): If A a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ A a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 3. Step 3: Check that U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ U ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \ U ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ U ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ,
158
4 JMD Approach for Solving Unbalanced Fully …
where U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a12 þ a13 þ a14 þ a012 þ a013 þ a014 and U a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 ¼ a22 þ a23 þ a24 þ a022 þ a023 þ a024 . [ U ða21 ; a22 ; a23 ; a24 ; Case (i): If U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 0 0 0 0 0 0 0 0 a21 ; a22 ; a23 ; a24 Þ. Then, a11 ; a12 ; a13 ; a14 ; a11 ; a12 ; a13 ; a14 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ \U ða21 ; a22 ; a23 ; a24 ; Case (ii): If U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 0 0 0 0 0 0 0 0 a21 ; a22 ; a23 ; a24 Þ. Then, a11 ; a12 ; a13 ; a14 ; a11 ; a12 ; a13 ; a14 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. ¼ U ða21 ; a22 ; a23 ; a24 ; Case (iii): If U a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 4. Step 4: Check that G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ Gða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \ Gða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ Gða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a12 þ a13 þ a14 þ a013 þ a014 and Gða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ ¼ a22 þ a23 þ a24 þ a023 þ a024 . [ Gða21 ; a22 ; a23 ; a24 ; Case (i) If G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ Case (ii) If G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \Gða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. ¼ Gða21 ; a22 ; a23 ; a24 ; Case (iii) If G a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 5. Step 5: Check that H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ H ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \H ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ H ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a13 þ a14 þ a013 þ a014 and H ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ ¼ a23 þ a24 þ a023 þ a024 . Case (i): If H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ H ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ
4.10
DAUGHTER Approach for Comparing Trapezoidal Intuitionistic …
159
Case (ii): If H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \H ða21 ; a22 ; a23 ; a24 ; 0 0 0 0 0 0 0 0 a21 ; a22 ; a23 ; a24 Þ. Then, a11 ; a12 ; a13 ; a14 ; a11 ; a12 ; a13 ; a14 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii): If H a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ H ða21 ; a22 ; a23 ; a24 ; 0 0 0 0 a21 ; a22 ; a23 ; a24 Þ. Then, go to Step 6. Step 6: Check that T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ T a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a14 þ a013 þ a014 and T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ ¼ a24 þ a023 þ a024 . Case (i): If T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ Case (ii): If T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii): If T a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ T ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 7. Step 7: Check that E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ Eða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \Eða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ Eða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a14 þ a014 and E a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ ¼ a24 þ a024 . Case (i) If E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ Eða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ \Eða21 ; a22 ; a23 ; a24 ; Case (ii) If E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 0 0 0 0 0 0 0 0 a21 ; a22 ; a23 ; a24 Þ. Then, a11 ; a12 ; a13 ; a14 ; a11 ; a12 ; a13 ; a14 ða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii) If E a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ E a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, go to Step 8.
4 JMD Approach for Solving Unbalanced Fully …
160
Step 8: Check that R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ Rða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \Rða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ or R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ Rða21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ, where R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a014 and R a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ ¼ a024 . Case (i): If R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 [ R a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ Case (ii): If R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 \R a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Case (iii): If R a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ R a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ. Then, a11 ; a12 ; a13 ; a14 ; a011 ; a012 ; a013 ; a014 ¼ a21 ; a22 ; a23 ; a24 ; a021 ; a022 ; a023 ; a024 Þ.
4.11
Mehar Representation of a Trapezoidal Intuitionistic Fuzzy Number
To overcome the second limitation of Ebrahimnejad and Verdegay’s approach [1], there is need to propose an approach for transforming an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem into a balanced fully trapezoidal intuitionistic fuzzy transportation problem. It has been observed that to achieve this objective, there is a need to propose a new representation of a trapezoidal intuitionistic fuzzy number. Keeping the same in mind, in this section, a new representation of a trapezoidal intuitionistic fuzzy number (named as Mehar representation of a trapezoidal intuitionistic fuzzy number) has been proposed. e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a0 ; a0 ; a0 be a trapezoidal intuitionistic fuzzy Let A 1 2 3 4 number, where a01 a1 a02 a2 a3 a03 a4 a04 . Then, Mehar representation e I ¼ a0 ; b1 ; b2 ; of this trapezoidal intuitionistic fuzzy number will be A 1 b3 ; b4 ; b5 ; b6 ; b7 ÞM . where b1 ¼ a1 a01 , b2 ¼ a02 a1 , b6 ¼ a4 a03 , b7 ¼ a04 a4 .
b3 ¼ a2 a02 ,
b 4 ¼ a3 a2 ,
b5 ¼ a03 a3 ,
4.11
Mehar Representation of a Trapezoidal Intuitionistic Fuzzy Number
161
For example, the Mehar representation of the trapezoidal intuitionistic fuzzy e I ¼ ð15; 20 15; 25 e I ¼ ð20; 30; 40; 50; 15; 25; 45; 55Þ will be A number A 20; 30 25; 40 30; 45 40; 50 45; 55 50ÞM ¼ ð15; 5; 5; 5; 10; 5; 5; 5ÞM .
4.12
Multiplication of a Trapezoidal Intuitionistic Fuzzy Number in Its Existing Representation with a Trapezoidal Intuitionistic Fuzzy Number in Its Mehar Representation
In the next section, a new approach (named as JMD approach) has been proposed to solve unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. In one of the steps of the proposed JMD approach, there is a need to find the multiplication of a trapezoidal intuitionistic fuzzy number in its existing form with a trapezoidal intuitionistic fuzzy number in its Mehar representation. Therefore, the same is discussed in this section. Let
cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4
and
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ;
x0ij;3 ; x0ij;4 Þ be two non-negative trapezoidal intuitionistic fuzzy numbers in its existing representation [1]. Then, using Definition 4.2.7, cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 ¼ cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;2 ; c0ij;3 x0ij;3 ; c0ij;4 x0ij;4 : ð4:12:1Þ Furthermore, using Sect. 4.11, the trapezoidal intuitionistic fuzzy number, ~xij ¼ xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 in its Mehar representation can be written as x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 ,
M
where ¼ xij;1 x0ij;1 ) xij;1 ¼ x0ij;1 þ aij;1 . ¼ x0ij;2 xij;1 ) x0ij;2 ¼ xij;1 þ aij;2 ¼ x0ij;1 þ aij;1 þ aij;2 . ¼ xij;2 x0ij;2 ) xij;2 ¼ x0ij;2 þ aij;3 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 . ¼ xij;3 xij;2 ) xij;3 ¼ xij;2 þ aij;4 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 . aij;5 ¼ x0ij;3 xij;3 ) x0ij;3 ¼ xij;3 þ aij;5 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 . aij;6 ¼ xij;4 x0ij;3 ) xij;4 ¼ x0ij;3 þ aij;6 = x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 . (vii) aij;7 ¼ x0ij;4 xij;4 ) x0ij;4 ¼ xij;4 þ aij;7 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 . (i) (ii) (iii) (iv) (v) (vi)
aij;1 aij;2 aij;3 aij;4
162
4 JMD Approach for Solving Unbalanced Fully …
the trapezoidal intuitionistic fuzzy number Replacing 0 0 0 0 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 , present in left-hand side of multiplication (4.12.1), with its Mehar representation x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 M
and the values of xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4 , present in right-hand side of multiplication (4.12.1), with x0ij;1 þ aij;1 ; x0ij;1 þ aij;1 þ aij;2 þ aij;3 ; x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; x0ij;1 ; x0ij;1 þ aij;1 þ aij;2 ; x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 , respectively, the multiplication (4.12.1) is transformed into its equivalent multiplication (4.12.2).
cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 M 0 0 0 ¼ cij;1 xij;1 þ aij;1 ; cij;2 xij;1 þ aij;1 þ aij;2 þ aij;3 ; cij;3 xij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
ð4:12:2Þ
4.13
Proposed JMD Approach
Mishra and Kumar [4] pointed out that the existing approach [3] cannot be used to solve unbalanced fully triangular intuitionistic fuzzy transportation problems (unbalanced transportation problems in which each parameter is represented by a triangular fuzzy number). To overcome this limitation of the existing approach [3], Mishra and Kumar [4] proposed a new approach (named as JMD approach) for transforming an unbalanced fully triangular intuitionistic fuzzy transportation problem into a balanced fully triangular intuitionistic fuzzy transportation problem. On the same direction, to overcome the limitations and to resolve the drawback of Ebrhimnejad and Verdegay’s approach [1], a new approach (named as JMD approach) has been proposed to solve unbalanced fully trapezoidal intuitionistic fuzzy transportation problems. The steps of the proposed JMD approach are as follows: Step 1: Check that the aggregated value of the intuitionistic fuzzy transportation cost, the intuitionistic fuzzy availability and the intuitionistic fuzzy demand, provided by all the decision-makers, is available or not. Case (i): If it is available then go to Step 2.
4.13
Proposed JMD Approach
163
Case (ii): If it is not available then using the existing trapezoidal intuitionistic fuzzy weighted averaging aggregation operator [2], find, (i) The trapezoidal intuitionistic fuzzy number ~cij ¼ pk¼1 wk ~ckij ¼ ! P P P Pp wk ckij;1 ; pk¼1 wk ckij;2 ; pk¼1 wk ckij;3 ; pk¼1 wk ckij;4 ; k¼1 Pp Pp Pp Pp representing the k k k k k¼1 wk cij;5 ; k¼1 wk cij;6 ; k¼1 wk cij;7 ; k¼1 wk cij;8 aggregated value of the intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from ith source to jth destination. (ii) The trapezoidal intuitionistic fuzzy number ~ ai ¼ pk¼1 wk ~ aki ¼ ! P P P Pp wk aki;1 ; pk¼1 wk aki;2 ; pk¼1 wk aki;3 ; pk¼1 wk aki;4 ; P P Pp Pk¼1 representing the p p p k k k k k¼1 wk ai;5 ; k¼1 wk ai;6 ; k¼1 wk ai;7 ; k¼1 wk ai;8 aggregated value of the intuitionistic fuzzy availability of the product at the ith source. bkj ¼ (iii) The trapezoidal intuitionistic fuzzy number ~ bj ¼ pk¼1 wk ~ ! P P P Pp wk bkj;1 ; pk¼1 wk bkj;2 ; pk¼1 wk bkj;3 ; pk¼1 wk bkj;4 ; k¼1 Pp Pp Pp Pp representing the k k k k k¼1 wk bj;5 ; k¼1 wk bj;6 ; k¼1 wk bj;7 ; k¼1 wk bj;8 aggregated value of the intuitionistic fuzzy demand the product at the jth destination. where (i) wk 2 ½0; 1 represents the normalized weight of the kth decision-maker. k (ii) The trapezoidal intuitionistic fuzzy number ~cij ¼ ckij;1 ; ckij;2 ; ckij;3 ; ckij;4 ; ckij;5 ; ckij;6 ; ckij;7 ; ckij;8 Þ represents the intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source to the jth destination according to the kth decision-maker.
~ki ¼ aki;1 ; aki;2 ; aki;3 ; aki;4 ; aki;5 ; (iii) The trapezoidal intuitionistic fuzzy number a aki;6 ; aki;7 ; aki;8 Þ represents the intuitionistic availability of the product at the ith source according to the kth decision-maker. (iv) The trapezoidal intuitionistic fuzzy number ~ bkj ¼ bkj;1 ; bkj;2 ; bkj;3 ; bkj;4 ; bkj5; ; bkj;6 ; bkj;7 ; bkj;8 Þ represents the intuitionistic demand of the product at the jth destination according to the kth decision-maker. and go to Step 2. For example, if in Example 4.6.1, the normalized weights of the first and second decision-makers are 0.4 and 0.6, respectively. Then, the trapezoidal intuitionistic fuzzy numbers ~cij ; i ¼ 1; 2; j ¼ 1; 2; ~ai ; i ¼ 1; 2 and ~ bj ; j ¼ 1; 2, presented in Table 4.7, represent the aggregated intuitionistic fuzzy cost for supplying the one unit quantity of the product from the ith source to the jth destination, the aggregated
164
4 JMD Approach for Solving Unbalanced Fully …
Table 4.7 Aggregated intuitionistic data of decision-makers Source S1 S2 Intuitionistic fuzzy demand
Destination D1 13; 33; 43; 53; 8; 18; 48; 58 18; 33; 53; 83; 13; 23; 73; 93 43; 63; 73; 93; 33; 53; 83; 98
D2 28; 53; 63; 83; 13; 33; 73; 93 23; 43; 63; 83; 18; 38; 73; 88 15; 50; 65; 75; 8; 33; 58; 83
Intuitionistic fuzzy availability 23; 63; 73; 83; 18; 53; 78; 88 28; 48; 63; 73; 23; 43; 68; 83
intuitionistic fuzzy availability the product at the ith source and the aggregated intuitionistic fuzzy demand of the product at the jth destination, respectively. Step 2: Transform the trapezoidal intuitionistic fuzzy number ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; a0i;2 ; a0i;3 ; a0i;4 Þ, representing the intuitionistic fuzzy availability of the product at the ith source, and the trapezoidal intuitionistic fuzzy number bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; b0j;2 ; b0j;3 ; b0j;4 Þ, representing the intuitionistic fuzzy demand of the product at the jth destination, into their Mehar representations a0i;1 ; bi;1 ; bi;2 ; bi;3 ; bi;4 ; bi;5 ; bi;6 ; bi;7 ÞM and b0j;1 ; cj;1 ; cj;2 ; cj;3 ; cj;4 ; cj;5 ; cj;6 ; cj;7 , respectively, M
Step 3: Find the total intuitionistic fuzzy availability of the product, i.e., P Pm Pm m m 0 0 i¼1 ai;1 ; bi;1 ; bi;2 ; bi;3 ; bi;4 ; bi;5 ; bi;6 ; bi;7 ¼ i¼1 ai;1 ; i¼1 bi;1 ; i¼1 bi;2 ; M Pm Pm Pm Pm P m i¼1 bi;3 ; i¼1 bi;4 ; i¼1 bi;5 ; i¼1 bi;6 ; i¼1 bi;7 ÞM and the total intuitionistic P n 0 ¼ demand of the product, i.e., nj¼1 b0j;1 ; cj;1 ; cj;2 ; cj;3 ; cj;4 ; cj;5 ; cj;6 ; cj;7 j¼1 bj;1 ; M Pn Pn Pn Pn Pn Pn Pn j¼1 cj;1 ; j¼1 cj;2 ; j¼1 cj;3 ; j¼1 cj;4 ; j¼1 cj;5 ; j¼1 cj;6 ; j¼1 cj;6 ÞM : P Pm Pm Pm Pm Pm m 0 Step 4: Check that i¼1 ai;1 ; i¼1 bi;1 ; i¼1 bi;2 ; i¼1 bi;3 ; i¼1 bi;4 ; i¼1 bi;5 ; P Pm P P P P Pm n n n n n 0 ¼ i¼1 bi;6 ; i¼1 bi;7 ÞM j¼1 bj;1 ; j¼1 cj;1 ; j¼1 cj;2 ; j¼1 cj;3 ; j¼1 cj;4 ; Pn Pn Pn Pm 0 Pm Pn 0 Pm ai;1 ¼ i¼1 ai;1 ¼ j¼1 bj;1 , b j¼1 cj;5 ; j¼1 cj;6 ; j¼1 cj;6 ÞM ; i.e., P Pm Pn Pi¼1 Pn Pm Pni¼1 i;1 m ¼ nj¼1 cj;1 , b ¼ c , b ¼ c , b ¼ c i;4 j¼1 j;4 , Pn i¼1 i;2Pm j¼1 j;2Pn i¼1 i;3 Pm j¼1 j;3 Pi¼1 Pm n i¼1 bi;5 ¼ j¼1 cj;5 , i¼1 bi;6 ¼ j¼1 cj;6 and i¼1 bi;7 ¼ j¼1 cj;7 or not. P Pm Pm Pm Pm Pm m 0 Case (i): If i¼1 ai;1 ; i¼1 bi;1 ; i¼1 bi;2 ; i¼1 bi;3 ; i¼1 bi;4 ; i¼1 bi;5 ; P Pm Pm P P P P n n n n n 0 ¼ i¼1 bi;6 ; i¼1 bi;7 ÞM j¼1 bj;1 ; j¼1 cj;1 ; j¼1 cj;2 ; j¼1 cj;3 ; j¼1 cj;4 ; Pn Pn Pn j¼1 cj;5 ; j¼1 cj;6 ; j¼1 cj;6 ÞM . Then, the considered fully trapezoidal intuitionistic fuzzy transportation problem is a balanced fully trapezoidal intuitionistic fuzzy transportation problem. Go to Step 6.
4.13
Proposed JMD Approach
165
P Pm Pm Pm Pm Pm m 0 Case (ii): If i¼1 ai;1 ; i¼1 bi;1 ; i¼1 bi;2 ; i¼1 bi;3 ; i¼1 bi;4 ; i¼1 bi;5 ; P Pm Pm P P P P n n n n n 0 6¼ i¼1 bi;6 ; i¼1 bi;7 ÞM j¼1 bj;1 ; j¼1 cj;1 ; j¼1 cj;2 ; j¼1 cj;3 ; j¼1 cj;4 ; Pn Pn Pn j¼1 cj;5 ; j¼1 cj;6 ; j¼1 cj;6 ÞM . Then, the considered fully trapezoidal intuitionistic fuzzy transportation problem is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem. Go to Step 5. Step 5: Add a dummy source Sm þ 1 having intuitionistic fuzzy availability and qðm þ 1Þ;1 ; qðm þ 1Þ;2 ; qðm þ 1Þ3 ; qðm þ 1Þ4 ; qðm þ 1Þ5 ; qðm þ 1Þ6 ; qðm þ 1Þ7 ; qðm þ 1Þ8 M
consider the cost for supplying the one unit quantity of the product from the dummy source Sm þ 1 to all the destinations as a trapezoidal intuitionistic fuzzy number e 0 ¼ ð0; 0; 0; 0; 0; 0ÞM . where ( qðm þ 1Þ;1 ¼ max 0; ( qðm þ 1Þ;2 ¼ max 0; ( qðm þ 1Þ;3 ¼ max 0; ( qðm þ 1Þ;4 ¼ max 0; ( qðm þ 1Þ;5 ¼ max 0; ( qðm þ 1Þ;6 ¼ max 0; ( qðm þ 1Þ;7 ¼ max 0;
n X
b0j;1
j¼1
i¼1
n X
m X
cj;1
j¼1
i¼1
n X
m X
cj;2
j¼1
i¼1
n X
m X
cj;3
j¼1
i¼1
n X
m X
cj;4
j¼1
i¼1
n X
m X
cj;5
j¼1
i¼1
n X
m X
cj;6
j¼1
( qðm þ 1Þ;8 ¼ max 0;
m X
n X j¼1
cj;7
) a0i;1
; )
bi;1 ; ) bi;2 ; ) bi;3 ; ) bi;4 ; ) bi;5 ; ) bi;6 ;
i¼1
Xm i¼1
) bi;7 :
166
4 JMD Approach for Solving Unbalanced Fully …
Also, add a dummy destination Dn þ 1 having intuitionistic fuzzy dummy demand sðn þ 1Þ1 ; sðn þ 1Þ2 ; sðn þ 1Þ3 ; sðn þ 1Þ4 ; sðn þ 1Þ5 ; sðn þ 1Þ6 ; sðm þ 1Þ7 ; sðm þ 1Þ8 M and consider the cost for supplying the one unit quantity of the product from all the sources to the dummy destination Dn þ 1 as a trapezoidal intuitionistic fuzzy number e 0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ. where ( sðn þ 1Þ;1 ¼ max 0; ( sðn þ 1Þ;2 ¼ max 0; ( sðn þ 1Þ;3 ¼ max 0; ( sðn þ 1Þ;4 ¼ max 0; ( sðn þ 1Þ;5 ¼ max 0;
m X
a0i;1
i¼1
j¼1
m X
n X
bi;1
i¼1
j¼1
m X
n X
bi;2
i¼1
j¼1
m X
n X
bi;3
i¼1
j¼1
m X
n X
bi;4
i¼1
( sðn þ 1Þ;6 ¼ max
m X
sðn þ 1Þ;7 ¼ max 0; ( sðn þ 1Þ;8 ¼ max 0;
m X
n X
b0j;1 ; ) cj;1 ; ) cj;2 ; ) cj;3 ; ) cj;4 ; )
cj;5 ;
j¼1
bi;6
n X
i¼1
j¼1
m X
n X
i¼1
)
j¼1
bi;5
i¼1
(
n X
bi;7
) cj;6 ; ) cj;7 :
j¼1
Step 6: Write the intuitionistic fully fuzzy linear programming problem (4.13.1) of the transformed balanced fully trapezoidal intuitionistic fuzzy transportation problem.
4.13
Proposed JMD Approach
167
Intuitionistic fully fuzzy linear programming problem (4.13.1) h n Minimize m cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; c0ij;2 ; c0ij;3 ; c0ij;4 i¼1 j¼1 i x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 M
Subject to þ1 nj¼1 x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 M 0 ¼ ai;1 ; bi;1 ; bi;2 ; bi;3 ; bi;4 ; bi;5 ; bi;6 ; bi;7 ; i ¼ 1; 2; . . .; m; M
þ1 nj¼1 x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 M ¼ qi;1 ; qi;2 ; qi;3 ; qi;4 ; qi;5 ; qi;6 ; qi;7 :qi;8 M ; i ¼ m þ 1; þ1 0 x ; a ; a ; a ; a ; a ; a ; a m ij;1 ij;2 ij;3 ij;4 ij;5 ij;6 ij;7 i¼1 ij;1 M 0 ¼ bj;1 ; cj;1 ; cj;2 ; cj;3 ; cj;4 ; cj;5 ; cj;6 ; cj;7 ; j ¼ 1; 2; . . .; n; M
þ1 0 m x ; a ; a ; a ; a ; a ; a ; a i¼1 ij;1 ij;1 ij;2 ij;3 ij;4 ij;5 ij;6 ij;7 M ¼ sj;1 ; sj;2 ; sj;3 ; sj;4 ; sj;5 ; sj;6 ; sj;7 ; sj;8 M ; j ¼ n þ 1; x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
M
is a non-negative trapezoidal intu-
itionistic fuzzy number. where (i) (ii) (iii)
aij;1 ¼ xij;1 x0ij;1 ; aij;2 ¼ x0ij;2 xij;1 ; aij;3 ¼ xij;2 x0ij;2 ; ai;4 ¼ xij;3
. xij;2 ; aij;5 ¼ x0ij;3 xij;3 ; aij;6 ¼ xij;4 x0ij;3 ; aij;7 ¼ x0ij;4 xij;4 : bi;1 ¼ ai;1 a0i;1 ; bi;2 ¼ a0i;2 ai;1 ; bi;3 ¼ ai;2 a0i;2 ; bi;4 ¼ ai;3 ai;2 ; bi;5 ¼ a0i;3 ai;3 ; bi;6 ¼ ai4 a0i;3 ; bi;7 ¼ a0i;4 ai;4 cj;1 ¼ bj;1 b0j;1 ; cj;2 ¼ b0j;2 bj;1 ; cj;3 ¼ bj;2 b0;2 ; cj;4 ¼ bj;3 bj;2 ; cj;5 ¼ b0j;3 bj;3 ; cj;6 ¼ bj;4 b0j;3 ; cj;7 ¼ b0j;4 bj;4
.
.
Step 7: Using the multiplication (4.12.2), proposed is Sect. 4.12, transform the intuitionistic fully fuzzy linear programming problem (4.13.1) into its equivalent intuitionistic fully fuzzy linear programming problem (4.13.2).
4 JMD Approach for Solving Unbalanced Fully …
168
Intuitionistic fully fuzzy linear programming problem (4.13.2) h n 0 0 Minimize m i¼1 j¼1 cij;1 xij;1 þ aij;1 ; cij;2 xij;1 þ aij;1 þ aij;2 þ aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
Subject to Constraints of the intuitionistic fully fuzzy linear programming problem (4.13.1). Pn Step 8: Using relation ni¼1 Ai1 ; Ai2 ; Ai3 ; Ai4 ; A0i;1 ; A0i;2 ; A0i;3 ; A0i;4 ¼ i¼1 Ai1 ; Pn Pn Pn Pn Pn Pn Pn 0 0 0 0 i¼1 Ai2 ; i¼1 Ai3 ; i¼1 Ai4 ; i¼1 Ai;1 ; i¼1 Ai;2 ; i¼1 Ai;3 ; i¼1 Ai;4 Þ, transform the intuitionistic fully fuzzy linear programming problem (4.13.2) into its equivalent intuitionistic fully fuzzy linear programming problem (4.13.3). Intuitionistic fully fuzzy linear programming problem (4.13.3) " Minimize
m þ 1 nX þ1 X
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ aij;3 ;
i¼1 j¼1 m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
i¼1 j¼1 m þ 1 nX þ1 X
i¼1 j¼1
c0ij;1 x0ij;1 ;
m þ 1 nX þ1 X
i¼1 j¼1 m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ aij;2 ;
i¼1 j¼1
c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ;
i¼1 j¼1 m þ 1 nX þ1 X
c0ij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
Subject to nX þ1
x0ij;1 ;
j¼1
¼
j¼1
¼
aij;1
j¼1
nX þ1
aij;2 ;
j¼1
nX þ1
aij;3 ;
nX þ1
j¼1
x0ij;1 ;
nX þ1 j¼1
aij;1
nX þ1 j¼1
aij;2 ;
nX þ1
aij;4 ;
j¼1
a0i;1 ; bi;1 ; bi;2 ; bi;3 ; bi;4 ; bi;5 ; bi;6 ; bi;7
nX þ1
nX þ1
aij;3 ;
j¼1
b0j;1 ; cj;1 ; cj;2 ; cj;3 ; cj;4 ; cj;5 ; cj;6 ; cj;7
j¼1
M
aij;5 ;
j¼1
M
nX þ1
nX þ1
nX þ1
aij;6 ;
j¼1
nX þ1
! aij;7
j¼1
M
; i ¼ 1; 2; . . .; m;
aij;4 ;
nX þ1 j¼1
aij;5 ;
nX þ1 j¼1
; j ¼ 1; 2; . . .; n;
aij;6 ;
nX þ1 j¼1
! aij;7 M
4.13
Proposed JMD Approach
169
x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
is a non-negative trapezoidal intu-
M
itionistic fuzzy number. Step 9: Using the relation ða0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 ÞM ¼ ðb0 ; b1 ; b2 ; b3 ; b4 ; b5 ; b6 ; b7 ÞM ) a0 ¼ b0 , a1 ¼ b1 , a2 ¼ b2 , a3 ¼ b3 , a4 ¼ b4 , a5 ¼ b5 , a6 ¼ b6 , a7 ¼ b7 and the relation ða0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 ÞM is a non-negative trapezoidal intuitionistic fuzzy number ) a0 0, a1 0, a2 0; a3 0; a4 0; a5 0; a6 0; a7 0, transform the intuitionistic fully fuzzy linear programming problem (4.13.3) into its equivalent intuitionistic fuzzy linear programming problem (4.13.4). Intuitionistic fuzzy linear programming problem (4.13.4) " Minimize
m þ 1 nX þ1 X
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
þ 1 nX þ1 m þ 1 nX þ1 X mX aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
Subject to nX þ1
x0ij;1 ¼ a0i;1 ;
j¼1
nX þ1 j¼1
bi;4 ;
nX þ1
nX þ1
aij;5 ¼ bi;5 ;
x0ij;1 ¼ qi;1 ;
nX þ1
nX þ1
aij;5 ¼ qi;6 ;
j¼1
cj;4 ;
nX þ1
m þ1 X
aij;1 ¼ qi;2
m þ1 X i¼1
aij;5 ¼ cj;5 ;
nX þ1
nX þ1
nX þ1
aij;2 ¼ qi;3 ; n X
nX þ1
aij;3 ¼ qi;4 ;
nX þ1
aij;4 ¼
j¼1
aij;7 ¼ qi;8 ; i ¼ m þ 1;
j¼1 m þ1 X
aij;2 ¼ cj;2 ;
i¼1
i¼1
aij;4 ¼
j¼1
j¼1
aij;6 ¼ qi;7 ;
aij;1 ¼ cj;1 ;
m þ1 X
nX þ1
aij;7 ¼ bi;7 ; i ¼ 1; 2; . . .; m;
j¼1
i¼1
aij;3 ¼ bi;3 ;
j¼1
j¼1
x0ij;1 ¼ b0j;1 ;
nX þ1 j¼1
aij;6 ¼ bi;6 ;
j¼1
i¼1
aij;2 ¼ bi;2 ;
j¼1
j¼1
m þ1 X
nX þ1 j¼1
j¼1
qi;5 ;
aij;1 ¼ bi;1
aij;6 ¼ cj;6 ;
m þ1 X i¼1
m þ1 X i¼1
aij;3 ¼ cj;3 ;
m þ1 X i¼1
aij;7 ¼ cj;7 ; j ¼ 1; 2; . . .; n;
aij;4 ¼
4 JMD Approach for Solving Unbalanced Fully …
170 m þ1 X
x0ij;1 ¼ sj;1 ;
i¼1
sj;5 ;
m þ1 X
aij;1 ¼ sj;2 ;
i¼1 m þ1 X
aij;5 ¼ sj;6 ;
m þ! X
aij;2 ¼ sj;3 ;
i¼1 m þ1 X
i¼1
aij;6 ¼ sj;7 ;
m þ1 X
aij;3 ¼ sj;4 ;
i¼1 m þ1 X
i¼1
m þ! X
aij;4 ¼
i¼1
aij;7 ¼ sj;8 ; j ¼ n þ 1;
i¼1
x0ij;1 0, aij;1 0, aij;2 0, aij;3 0, aij;4 0, aij;5 0, aij;6 0, aij;7 0, i ¼ 1; 2; . . .; m, j ¼ 1; 2; . . .; n. Step 10: Using the proposed DAUGHTER approach for comparing trapezoidal intuitionistic fuzzy numbers, transform the intuitionistic fuzzy linear programming problem (4.13.4) into its equivalent crisp multi-objective linear programming problem (4.13.5). Crisp multi-objective linear programming problem (4.13.5) "
m þ 1 nX þ1 X
Minimize D
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
þ 1 nX þ1 m þ 1 nX þ1 X mX aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 " Minimize A
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
i¼1 j¼1
þ 1 nX þ1 þ1 X mX mX nþ1 cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; c x0ij;1 þ aij;1 þ aij;3 ; ij;4 j¼1 i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
i¼1
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
þ 1 nX þ1 þ 1 nX þ1 mX mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;2 ; i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
4.13
Proposed JMD Approach
" Minimize U
m þ 1 nX þ1 X
171
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
m þ 1 nX þ1 X
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
" Minimize G
m þ 1 nX þ1 X
aij;3 ;
i¼1 j¼1
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1 m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
m þ 1 nX þ1 X
aij;3 ;
i¼1 j¼1
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1 m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Minimize H
m þ 1 nX þ1 X
i¼1 j¼1
"
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
þ 1 nX þ1 m þ 1 nX þ1 X mX aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
4 JMD Approach for Solving Unbalanced Fully …
172
"
m þ 1 nX þ1 X
Minimize T
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Minimize E
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
"
m þ 1 nX þ1 X
mP þ 1 nP þ1 i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 " Minimize R
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ þ aij;ij i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.13.4). Step 11: Solve the crisp linear programming problem (4.13.6) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.6) or not.
4.13
Proposed JMD Approach
173
Crisp linear programming problem (4.13.6) " Minimize D
m þ 1 nX þ1 X
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.13.4). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.6) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.6) then go to Step 12. Step 12: Solve the crisp linear programming problem (4.13.7) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.7) or not. Crisp linear programming problem (4.13.7) " Minimize A
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Subject to D
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
þ 1 nP þ1 mP aij;3 ; i¼1 j¼1
mP þ 1 nP þ1 cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ i¼1 j¼1
4 JMD Approach for Solving Unbalanced Fully …
174
aij;5 þ aij;6 Þ;
mP þ 1 nP þ1 i¼1 j¼1
c0ij;1 x0ij;1 ;
mP þ 1 nP þ1
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1 mP þ 1 nP þ1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 Þ;
i¼1 j¼1
þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ i¼1 j¼1
c0ij;4 x0ij;1 þ : aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5
þ aij;6 þ aij;7 ÞÞ ¼ Crisp optimal value of the crisp linear programming problem (4.13.6) and Constraints of the intuitionistic fuzzy linear programming problem (4.13.6). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.7) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.7) then go to Step 13. Step 13: Solve the crisp linear programming problem (4.13.8) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.8) or not. Crisp linear programming problem (4.13.8) " Minimize U
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Subject to A
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
þ 1 nP þ1 mP aij;3 ;
i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ i¼1 j¼1
aij;5 þ aij;6 Þ;
mP þ 1 nP þ1 i¼1 j¼1
aij;1 þ
c0ij;1 x0ij;1 ;
mP þ 1 nP þ1
þ 1 nP þ1 mP c0ij;2 x0ij;1 þ aij;1 þ aij;2 ; c0ij;3 x0ij;1 þ
i¼1 j¼1 mP þ 1 nP þ1
aij;2 þ aij;3 þ aij;4 þ aij;5 Þ;
i¼1 j¼1
c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ
aij;5 þ aij;6 þ aij;7 ÞÞ ¼ Crisp optimal value of the crisp linear programming problem (4.13.7) and
4.13
Proposed JMD Approach
175
Constraints of the intuitionistic fuzzy linear programming problem (4.13.7). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.8) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.8) then go to Step 14. Step 14: Solve the crisp linear programming problem (4.13.9) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.9) or not. Crisp linear programming problem (4.13.9) " Minimize G
m þ 1 nX þ1 X
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
Subject to U
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 ¼ Crisp optimal value of the crisp linear programming problem (4.13.8) and Constraints of the intuitionistic fuzzy linear programming problem (4.13.8). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.9) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.9) then go to Step 15.
4 JMD Approach for Solving Unbalanced Fully …
176
Step 15: Solve the crisp linear programming problem (4.13.10) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.10) or not. Crisp linear programming problem (4.13.10) " Minimize H
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Subject to G
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 ¼ Crisp optimal value of the crisp linear programming problem (4.13.9) and Constraints of the intuitionistic fuzzy linear programming problem (4.13.9). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.10) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.10) then go to Step 16. Step 16: Solve the crisp linear programming problem (4.13.11) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.11) or not.
4.13
Proposed JMD Approach
177
Crisp linear programming problem (4.13.11) " Minimize T
m þ 1 nX þ1 X
þ 1 nX þ1 mX cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
i¼1 j¼1
aij;3 ;
m þ 1 nX þ1 X
i¼1 j¼1
þ 1 nX þ1 mX cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ
i¼1 j¼1
i¼1 j¼1
aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ;
m þ 1 nX þ1 X
c0ij;1 x0ij;1 ;
i¼1 j¼1
aij;2 ;
m þ 1 nX þ1 X
m þ 1 nX þ1 X
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1
þ 1 nX þ1 mX c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ
i¼1 j¼1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7
i¼1 j¼1
Subject to H
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;2 ; i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 ¼ Crisp optimal value of the crisp linear programming problem (4.13.10) and and Constraints of the intuitionistic fuzzy linear programming problem (4.13.10). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.11) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.11) then go to Step 17. Step 17: Solve the crisp linear programming problem (4.13.12) and check that a unique crisp optimal solution exists for the crisp linear programming problem (4.13.12) or not.
4 JMD Approach for Solving Unbalanced Fully …
178
Crisp linear programming problem (4.13.12) " Minimize E
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;2 ; i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Subject to T
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;2 ; i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 ¼ Crisp optimal value of the crisp linear programming problem (4.13.11) and and Constraints of the intuitionistic fuzzy linear programming problem (4.13.11). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (4.13.12) then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (4.13.12) then go to Step 18. Step 18: Solve the crisp linear programming problem (4.13.13) and go to Step 19.
4.13
Proposed JMD Approach
179
Crisp linear programming problem (4.13.13) " Minimize R
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP aij;3 ; cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
þ 1 nP þ1 mP þ 1 nP þ1 mP aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;1 þ aij;1 þ i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 þ 1 nP þ1 mP c0ij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 ; c0ij;4 x0ij;1 þ aij;2 ; i¼1 j¼1 i¼1 j¼1 aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 Subject to E
mP þ 1 nP þ1 i¼1 j¼1
mP þ 1 nP þ1 cij;1 x0ij;1 þ aij;1 ; cij;2 x0ij;1 þ aij;1 þ aij;2 þ
þ 1 nP þ1 mP aij;3 ;
i¼1 j¼1
i¼1 j¼1
mP þ 1 nP þ1 cij;3 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 ; cij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ i¼1 j¼1
aij;5 þ aij;6 Þ;
mP þ 1 nP þ1 i¼1 j¼1
c0ij;1 x0ij;1 ;
mP þ 1 nP þ1
c0ij;2 x0ij;1 þ aij;1 þ
i¼1 j¼1 mP þ 1 nP þ1
aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 Þ;
i¼1 j¼1
þ 1 nP þ1 mP aij;2 ; c0ij;3 x0ij;1 þ i¼1 j¼1
c0ij;4 x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5
þ aij;6 þ aij;7 ÞÞ ¼ Crisp optimal value of the crisp linear programming problem (4.13.12) and and Constraints of the intuitionistic fuzzy linear programming problem (4.13.12). Step 19: Using the obtained crisp optimal solution fx0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7 ; i ¼ 1; 2; . . .m; j ¼ 1; 2; . . .; ng, find xij;1 ¼ x0ij;1 þ aij;1 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: xij;2 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: xij;3 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: xij;4 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: (v) x0ij;2 ¼ x0ij;1 þ aij;1 þ aij;2 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: (vi) x0ij;3 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 , i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: (vii) x0ij;4 ¼ x0ij;1 þ aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;5 þ aij;6 þ aij;7 . i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n: (i) (ii) (iii) (iv)
4 JMD Approach for Solving Unbalanced Fully …
180
Step 20: Using the optimal values of xij;k and x0ij;k ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n; k ¼ 1; n2; 3; 4, obtained in Step 19, find the intuitionistic fuzzy xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;2 ; x0ij;3 ; x0ij;4
; i ¼ 1; 2; . . .; m; j ¼ m P n P 1; 2; . . .; ng and the intuitionistic fuzzy optimal value cij;1 xij;1 ; cij;2 xij;2 ; i¼1 j¼1 cij;3 xij;3 ; cij;4 xij;4 : ; c0ij;1 x0ij;1 ; c0ij;2 x0ij;2 ; c0ij;3 x0ij;3 ; c0ij;4 x0ij;4 of the intuitionistic fully fuzzy optimal solution
linear programming problem (4.5.1).
4.14
Illustrative Examples
In Sect. 4.6, the unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.4, has been considered to point out a limitation of Ebrahimnejad and Verdegay’s approach [1]. Also, in Sect. 4.7, the unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, has been considered to point out a drawback of Ebrahimnejad and Verdegay’s approach [1]. In this section, both these unbalanced fully trapezoidal intuitionistic fuzzy transportation problems have been solved by the proposed JMD approach.
4.14.1 Intuitionistic Fuzzy Optimal Solution of the First Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem Using the proposed JMD approach, the intuitionistic fuzzy optimal solution of the first unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.4, can be obtained as follows: Step 1: Using Sect. 4.11, (i) The Mehar representation of the trapezoidal intuitionistic fuzzy numbers ~ aI1 ¼ a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a01;2 ; a01;3 ; a01;4 ¼ ð60; 80; 100; 120; 50; 70; 110; 130Þ and ~aI2 ¼ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a02;2 ; a02;3 ; a02;4 ¼ ð40; 60; 80; 100; 30; 50; 90; 110Þ, representing the intuitionistic fuzzy availability of the product at first and second source, respectively, are ð50; 10; 10; 10; 20; 10; 10; 10ÞM and ð30; 10; 10; 10; 20; 10; 10; 10ÞM , respectively.
4.14
Illustrative Examples
181
(ii) The Mehar representation of the trapezoidal intuitionistic fuzzy numbers ~ bI1 ¼ b1;1 ; b1;2 ; b1;3 ; b1;4 ; b01;1 ; b01;2 ; b01;3 ; b01;4 ¼ ð30; 50; 70; 90; 20; 40; 80; 100Þ and ~ ¼ ð20; 30; 40; 50; 15; 25; 45; 55Þ, bI2 ¼ b2;1 ; b2;2 ; b2;3 ; b2;4 ; b02;1 ; b02;2 ; b02;3 ; b02;4 representing the intuitionistic fuzzy demand of the product at first and second destination, respectively, are ð20; 10; 10; 10; 20; 10; 10; 10ÞM and ð15; 5; 5; 5; 10; 5; 5; 5ÞM , respectively. Step 2: It is obvious that 2i¼1 ~ai ¼ ð80; 20; 20; 20; 40; 20; 20; 20ÞM 15; 15; 15ÞM .
and
2i¼1 ~ bj ¼ ð35; 15; 15; 15; 30;
Step 3: Since 2i¼1 ~ai 6¼ 2i¼1 ~bj So, the fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.4, is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem. So, there is a need to add (i) A dummy source S3 having intuitionistic fuzzy availability q3;1 ; q3;2 ; q3;3 ; q3;3 ; q3;4 ; q3;5 ; q3;6 ; q3;7 ; q3;8 ÞM with the consideration of the cost for supplying the one unit quantity of the product from the dummy source S3 to both the destinations as a trapezoidal intuitionistic fuzzy number e 0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0ÞM . where q3;1 ¼ maxf0; 35 80g ¼ 0; q3;2 ¼ maxf0; 15 20g ¼ 0; q3;3 ¼ maxf0; 15 20g ¼ 0; q3;4 ¼ maxf0; 15 20g ¼ 0; q3;5 ¼ maxf0; 30 40g ¼ 0; q3;6 ¼ maxf0; 15 20g ¼ 0; q3;7 ¼ maxf0; 15 20g ¼ 0; q3;8 ¼ maxf0; 15 20g ¼ 0: (ii) A dummy destination D3 having intuitionistic fuzzy demand s3;1 ; s3;2 ; s3;3 ; s3;4 ; s3;5 ; s3;6 ; s3;7 ; s3;8 ÞM with the consideration of the cost for supplying the one unit quantity of the product from all the sources to the dummy destination D3 as a trapezoidal intuitionistic fuzzy number e 0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ.
4 JMD Approach for Solving Unbalanced Fully …
182
where s3;1 ¼ maxf0; 80 35g ¼ 45; s3;2 ¼ maxf0; 20 15g ¼ 5; s3;3 ¼ maxf0; 20 15g ¼ 5; s3;4 ¼ maxf0; 20 15g ¼ 5; s3;5 ¼ maxf0; 40 30g ¼ 10; s3;6 ¼ maxf0; 20 15g ¼ 5; s3;7 ¼ maxf0; 20 15g ¼ 5; s3;8 ¼ maxf0; 20 15g ¼ 5:
Step 4: To find an intuitionistic optimal solution of the transformed fully balanced trapezoidal intuitionistic fuzzy transportation problem, there is a need to solve the intuitionistic fully fuzzy linear programming problem (4.14.1.1). Intuitionistic fully fuzzy linear programming problem (4.14.1.1) Minimize½ð10; 20; 30; 40; 5; 15; 35; 45Þ x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 ð50; 60; 70; 90; 45; 55; 75; 95Þ M 0 x12;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a125 ; a12;6 ; a12;7 ð60; 70; 80; 90; 55; 65; 85; 95Þ M 0 x21;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a216 ; a21;7 ; M i ð70; 80; 100; 120; 65; 75; 115; 125Þ x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a226 ; a22;7 ; M
Subject to
x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 x012;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a12;5 ; a12;6 ; a12;7
M M
x013;1 ; a13;1 ; a13;2 ; a13;3 ; a13;4 ; a13;5 ; a13;6 ; a13;7 ¼ ð50; 10; 10; 10; 20; 10; 10; 10ÞM ;
M
4.14
Illustrative Examples
183
x021;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a21;6 ; a21;7 x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a22;6 ; a22;7
M M
x023;1 ; a23;1 ; a23;2 ; a23;3 ; a23;4 ; a23;5 ; a23;6 ; a23;7
M
¼ ð30; 10; 10; 10; 20; 10; 10; 10ÞM ;
x031;1 ; a31;1 ; a31;2 ; a31;3 ; a31;4 ; a31;5 ; a31;6 ; a31;7 x032;1 ; a32;1 ; a32;2 ; a32;3 ; a32;4 ; a32;5 ; a32;6 ; a32;7
M M
x033;1 ; a33;1 ; a33;2 ; a33;3 ; a33;4 ; a33;5 ; a33;6 ; a33;7 ¼ ð0; 0; 0; 0; 0; 0; 0; 0ÞM ; M
x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 x021;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a21;6 ; a21;7
M M
¼ ð20; 10; 10; 10; 20; 10; 10; 10ÞM ;
x012;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a12;5 ; a12;6 ; a12;7 x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a22;6 ; a22;7
M M
¼ ð15; 5; 5; 5; 10; 5; 5; 5ÞM ;
x013;1 ; a13;1 ; a13;2 ; a13;3 ; a13;4 ; a13;5 ; a13;6 ; a13;7 M 0 x23;1 ; a23;1 ; a23;2 ; a23;3 ; a234 ; a23;5 ; a23;6 ; a23;7 M
¼ ð45; 5; 5; 5; 10; 5; 5; 5ÞM ; x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
M
is a non-negative trapezoidal intu-
itionistic fuzzy number. Step 5: Using the multiplication (4.12.2), proposed in Sect. 4.12, the intuitionistic fuzzy linear programming problem (4.14.1.1) can be transformed into its equivalent intuitionistic fully fuzzy linear programming problem (4.14.1.2).
184
4 JMD Approach for Solving Unbalanced Fully …
Intuitionistic fuzzy linear programming problem (4.14.1.2) h Minimize A11;1 ; A11;2 ; A11;3 ; A11;4 ; A011;1 ; A011;2 ; A011;3 ; A011;4 A12;1 ; A12;2 ; A12;3 ; A12;4 ; A012;1 ; A012;2 ; A012;3 ; A012;4 A21;1 ; A21;2 ; A21;3 ; A12;4 ; A021;1 ; A021;2 ; A021;3 ; A021;4 i A22;1 ; A22;2 ; A22;3 ; A22;4 ; A022;1 ; A022;2 ; A022;3 ; A022;4 Constraints of the intuitionistic fully fuzzy linear programming problem (4.14.1.1). where A11;1 ¼ 10 x011;1 þ a11;1 ; A11;2 ¼ 20 x011;1 þ a11;1 þ a11;2 þ a11;3 ; A11;3 ¼ 30 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 ; A11;4 ¼ 40 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 þ a11;6 ; A011;1 ¼ 5x011;1 ; A011;2 ¼ 15 x011;1 þ a11;1 þ a11;2 ; A011;3 ¼ 35 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 ; A011;4 ¼ 45 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 þ a11;6 þ a11;7 ; A12;1 ¼ 50 x012;1 þ a12;1 ; A12;2 ¼ 60 x012;1 þ a12;1 þ a12;2 þ a12;3 ; A12;3 ¼ 70 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 ; A12;4 ¼ 90 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 þ a12;6 ; A012;1 ¼ 45x012;1 ; A012;2 ¼ 55 x012;1 þ a12;1 þ a12;2 ; A012;3 ¼ 75 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 ; A012;4 ¼ 95 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 þ a12;6 þ a12;7 ; A21;1 ¼ 60 x021;1 þ a21;1 ; A21;2 ¼ 70 x021;1 þ a21;1 þ a21;2 þ a21;3 ; A21;3 ¼ 80 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 ; A21;4 ¼ 90 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 þ a21;6 ; A021;1 ¼ 55x021;1 ; A021;2 ¼ 65 x021;1 þ a21;1 þ a21;2 ; A021;3 ¼ 85 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 ; A021;4 ¼ 95 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 þ a21;6 þ a21;7 ; A22;1 ¼ 70 x022;1 þ a22;1 ; A22;2 ¼ 80 x022;1 þ a22;1 þ a22;2 þ a22;3 ; A22;3 ¼ 100 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 ; A22;4 ¼ 120 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 þ a22;6 ; A022;1 ¼ 65x022;1 ; A022;2 ¼ 75 x022;1 þ a22;1 þ a22;2 ; A022;3 ¼ 115 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 ; A022;4 ¼ 125 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 þ a22;6 þ a22;7
4.14
Step n P i¼1
Illustrative Examples
185
Ai;1 ; Ai;2 ; Ai;3 ; Ai;4 ; A0i;1 ; A0i;2 ; A0i;3 ; A0i;4 ¼ i¼1 n n n n n n n P P P P P P P 0 Ai;1 ; Ai;2 ; Ai;3 ; Ai;4 ; Ai;1 ; A0i;2 ; A0i;3 ; A0i;4 , the intuitionistic 6:
i¼1
Using
i¼1
relation
i¼1
i¼1
n P
i¼1
i¼1
i¼1
fully fuzzy linear programming problem (4.14.1.2) can be transformed into its equivalent intuitionistic fully fuzzy linear programming problem (4.14.1.3). Intuitionistic fully fuzzy linear programming problem (4.14.1.3)
Minimize A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ i A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4 Subject to x011;1 þ x012;1 þ x013;1 ; a11;1 þ a12;1 þ a13;1 ; a11;2 þ a12;2 þ a13;2 ; a11;3 þ a12;3 þ a13;3 ; a11;4 þ a12;4 þ a13;4 ; a11;5 þ a12;5 þ a13;5 ; a11;6 þ a12;6 þ a13;6 ; a11;7 þ a12;7 þ a13;7 M ¼ ð50; 10; 10; 10; 20; 10; 10; 10ÞM ; x021;1 þ x022;1 þ x023;1 ; a21;1 þ a22;1 þ a23;1 ; a21;2 þ a22;2 þ a23;2 ; a21;3 þ a22;3 þ a23;3 ; a21;4 þ a22;4 þ a23;4 ; a21;5 þ a22;5 þ a23;5 ; a21;6 þ a22;6 þ a23;6 ; a21;7 þ a22;7 þ a23;7 M ¼ ð30; 10; 10; 10; 20; 10; 10; 10ÞM ; x031;1 þ x032;1 þ x033;1 ; a31;1 þ a32;1 þ a33;1 ; a31;2 þ a32;2 þ a33;2 ; a31;3 þ a32;3 þ a33;3 ; a31;4 þ a32;4 þ a33;4 ; a31;5 þ a32;5 þ a33;5 ; a31;6 þ a32;6 þ a33;6 ; a31;7 þ a32;7 þ a33;7 M ¼ ð0; 0; 0; 0; 0; 0; 0; 0ÞM ; x011;1 þ x021;1 þ x031;1 ; a11;1 þ a21;1 þ a31;1 ; a11;2 þ a21;2 þ a31;2 ; a11;3 þ a21;3 þ a31;3 ; a11;4 þ a21;4 þ a31;4 ; a11;5 þ a21;5 þ a31;5 ; a11;6 þ a21;6 þ a31;6 ; a11;7 þ a21;7 þ a31;7 M ¼ ð20; 10; 10; 10; 20; 10; 10; 10ÞM ; x012;1 þ x022;1 þ x032;1 ; a12;1 þ a22;1 þ a32;1 ; a12;2 þ a22;2 þ a32;2 ; a12;3 þ a22;3 þ a32;3 ; a12;4 þ a22;4 þ a32;4 ; a12;5 þ a22;5 þ a32;5 ; a12;6 þ a22;6 þ a32;6 ; a12;7 þ a22;7 þ a32;7 M ¼ ð15; 5; 5; 5; 10; 5; 5; 5ÞM
186
4 JMD Approach for Solving Unbalanced Fully …
x013;1 þ x023;1 þ x033;1 ; a13;1 þ a23;1 þ a33;1 ; a13;2 þ a23;2 þ a33;2 ; a13;3 þ a23;3 þ
a33;3 ; a13;4 þ a23;4 þ a33;4 ; a13;5 þ a23;5 þ a33;5 ; a13;6 þ a23;6 þ a33;6 ; a13;7 þ a23;7 þ a33;7 M ¼ ð45; 5; 5; 5; 10; 5; 5; 5ÞM x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
M
is a non-negative trapezoidal intu-
itionistic fuzzy number. Step 7: Using the relation ð a0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 Þ M ¼ 0 0 0 ðb ; b1 ; b2 ; b3 ; b4 ; b5 ; b6 ; b7 ÞM ) a ¼ b , a1 ¼ b1 , a2 ¼ b2 , a3 ¼ b3 , a4 ¼ b4 , a5 ¼ b5 , a6 ¼ b6 , a7 ¼ b7 and the relation ða0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 ÞM is a non-negative trapezoidal intuitionistic fuzzy number ) a0 0, a1 0, a2 0; a3 0; a4 0; a5 0; a6 0; a7 0, the intuitionistic fully fuzzy linear programming problem (4.14.1.3) can be transformed into its equivalent intuitionistic fuzzy linear programming problem (4.14.1.4). Intuitionistic fuzzy linear programming problem (4.14.1.4)
Minimize A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ i A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4 Subject to x011;1 þ x012;1 þ x013;1 ¼ 50; a11;1 þ a12;1 þ a13;1 ¼ 10; a11;2 þ a12;2 þ a13;2 ¼ 10 a11;3 þ a12;3 þ a13;3 ¼ 10; a11;4 þ a12;4 þ a13;4 ¼ 20; a11;5 þ a12;5 þ a13;5 ¼ 10; a11;6 þ a12;6 þ a13;6 ¼ 10; a11;7 þ a12;7 þ a13;7 ¼ 10; x021;1 þ x022;1 þ x023;1 ¼ 30;
4.14
Illustrative Examples
187
a21;1 þ a22;1 þ a23;1 ¼ 10; a21;2 þ a22;2 þ a23;3 ¼ 10; a21;3 þ a22;3 þ a23;3 ¼ 10; a21;4 þ a22;4 þ a23;4 ¼ 20; a21;5 þ a22;5 þ a23;5 ¼ 10; a21;6 þ a22;6 þ a23;6 ¼ 10; a21;7 þ a22;7 þ a23;7 ¼ 10; x031;1 þ x032;1 þ x033;1 ¼ 0; a31;1 þ a32;1 þ a33;1 ¼ 0; a31;2 þ a32;2 þ a33;3 ¼ 0; a31;3 þ a32;3 þ a33;3 ¼ 0; a31;4 þ a32;4 þ a33;4 ¼ 0; a31;5 þ a32;5 þ a33;5 ¼ 0; a31;6 þ a32;6 þ a33;6 ¼ 0; a31;7 þ a32;7 þ a33;7 ¼ 0; x011;1 þ x021;1 þ x031;1 ¼ 20; a11;1 þ a12;1 þ a13;1 ¼ 10; a11;2 þ a12;2 þ a13;2 ¼ 10; a11;3 þ a12;3 þ a13;3 ¼ 10; a11;4 þ a12;4 þ a13;4 ¼ 20; a11;5 þ a12;5 þ a13;5 ¼ 10; a11;6 þ a12;6 þ a13;6 ¼ 10;
188
4 JMD Approach for Solving Unbalanced Fully …
a11;7 þ a12;7 þ a13;7 ¼ 10; x012;1 þ x022;1 þ x032;1 ¼ 15; a12;1 þ a22;1 þ a32;1 ¼ 5; a12;2 þ a22;2 þ a32;2 ¼ 5; a12;3 þ a22;3 þ a32;3 ¼ 5; a12;4 þ a22;4 þ a32;4 ¼ 10; a12;5 þ a32;5 þ a32;5 ¼ 5; a12;6 þ a22;6 þ a32;6 ¼ 5; a12;7 þ a22;7 þ a32;7 ¼ 5; x013;1 þ x023;1 þ x033;1 ¼ 45; a13;1 þ a23;1 þ a33;1 ¼ 5; a13;2 þ a23;2 þ a33;2 ¼ 5; a13;3 þ a23;3 þ a33;3 ¼ 5; a13;4 þ a23;4 þ a33;4 ¼ 10; a13;5 þ a33;5 þ a33;5 ¼ 5; a13;6 þ a23;6 þ a33;6 ¼ 5; a13;7 þ a23;7 þ a33;7 ¼ 5; x0ij;k ; aij;k 0:
Step 8: Using the proposed DAUGHTER approach for comparing trapezoidal intuitionistic fuzzy numbers, the intuitionistic fuzzy linear programming problem (4.14.1.4) can be transformed into its equivalent crisp multi-objective linear programming problem (4.14.1.5).
4.14
Illustrative Examples
189
Crisp multi-objective linear programming problem (4.14.1.5)
Minimize D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize A A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize U A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize G A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize H A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize T A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize E A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize RðA11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Subject to
190
4 JMD Approach for Solving Unbalanced Fully …
Constraints of the intuitionistic fuzzy linear programming problem (4.14.1.4). Step 9: According to the proposed DAUGHTER approach, there is a need to check that a unique crisp optimal solution exist for the crisp linear programming problem (4.14.1.6) or not and hence, there is a need to check that a unique crisp optimal solution exist for the crisp linear programming problem (4.14.1.7) or not. Crisp linear programming problem (4.14.1.7)
Minimize D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.14.1.4). where D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4 ¼ 200x011;1 þ 540x012;1 þ 0x013;1 þ 600x021;1 þ 750x022;1 þ 0x023;1 þ 195a11;1 þ 495a12;1 þ 0a13;1 þ 545a21;1 þ 685a22;1 þ 0a23;1 þ 185a11;2 þ 445a12;2 þ 0a13;2 þ 485a21;2 þ 615a22;2 þ 0a23;2 þ 170a11;3 þ 390a12;3 þ 0a13;3 þ 420a21;3 þ 540a22;3 þ 0a23;3 þ 150a11;4 þ 330a12;4 þ 0a13;4 þ 350a21;4 þ 460a22;4 þ 0a23;4 þ 120a11;5 þ 260a12;5 þ 0a13;5 þ 270a21;5 þ 360a22;5 þ 0a23;5 þ 85a11;6 þ 185a12;6 þ 0a13;6 þ 185a21;6 þ 245a22;6 þ 0a23;6 þ 45a11;7 þ 95a12;7 þ 0a13;7 þ 95a21;7 þ 125a22;7 þ 0a23;7
Step 10: It can be easily verified that on solving the crisp linear programming problem (4.14.1.7), the following unique crisp optimal solution is obtained. (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
x011;1 ¼ 20, x012;1 ¼ 15, x013;1 ¼ 15, x021;1 ¼ 0, x022;1 ¼ 0, x023;1 ¼ 30. a11;1 ¼ 10, a12;1 ¼ 0, a13;1 ¼ 0, a21;1 ¼ 0, a22;1 ¼ 5, a23;1 ¼ 5. a11;2 ¼ 10, a12;2 ¼ 0, a13;2 ¼ 0, a21;2 ¼ 0, a22;2 ¼ 5, a23;2 ¼ 5. a11;3 ¼ 10, a12;3 ¼ 0, a13;3 ¼ 0, a21;3 ¼ 0, a22;3 ¼ 5, a23;3 ¼ 5. a11;4 ¼ 20, a12;4 ¼ 0, a13;4 ¼ 0, a21;4 ¼ 0, a22;4 ¼ 10, a23;4 ¼ 10. a11;5 ¼ 10, a12;5 ¼ 0, a13;5 ¼ 0, a21;5 ¼ 0, a22;5 ¼ 5; a23;5 ¼ 5. a11;6 ¼ 10; a12;6 ¼ 0; a13;6 ¼ 0; a21;6 ¼ 0; a22;6 ¼ 5; a23;6 ¼ 5. a11;7 ¼ 10; a12;7 ¼ 0; a13;7 ¼ 0; a21;7 ¼ 0; a22;7 ¼ 5; a23;7 ¼ 5.
4.14
Illustrative Examples
191
Step 11: Using Step 19 of the proposed JMD approach, (i) x11;1 ¼ 30; x11;2 ¼ 50; x11;3 ¼ 70; x11;4 ¼ 90; x011;1 ¼ 20; x011;2 ¼ 40; x011;3 ¼ 80; x011;4 ¼ 100: (ii) x12;2 ¼ 15; x12;2 ¼ 15; x12;3 ¼ 15; x12;4 ¼ 15; x012;1 ¼ 15; x012;2 ¼ 15; x012;3 ¼ 15; x012;4 ¼ 15: (iii) x13;1 ¼ 15; x13;2 ¼ 15; x13;3 ¼ 15; x13;4 ¼ 15; x013;1 ¼ 15; x013;2 ¼ 15; x013;3 ¼ 15; x013;4 ¼ 15: (iv) x21;1 ¼ 0; x21;2 ¼ 0; x21;3 ¼ 0; x21;4 ¼ 0; x021;1 ¼ 0; x021;2 ¼ 0; x021;3 ¼ 0; x021;4 ¼ 0: (v) x22;1 ¼ 5; x22;2 ¼ 15; x22;3 ¼ 25; x22;4 ¼ 35; x022;1 ¼ 0; x022;2 ¼ 10; x022;3 ¼ 30; x022;4 ¼ 0: (vi) x23;1 ¼ 0; x23;2 ¼ 45; x23;3 ¼ 55; x23;4 ¼ 65; x023;1 ¼ 30; x023;2 ¼ 40; x023;3 ¼ 60; x023;4 ¼ 70. Step 12: Using Step 20 of the proposed JMD approach, the obtained intuitionistic fuzzy optimal solution of the unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.2, is ~xI11 ¼ ð30; 50; 70; 90; 20; 40; 80; 100Þ, ~xI12 ¼ ð15; 15; 15; 15; 15; 15; 15; 15Þ, ~xI21 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ; ~xI22 ¼ ~xI13 ¼ ð15; 15; 15; 15; 15; 15; 15; 15Þ, I ð5; 15; 25; 35; 0; 10; 30; 40Þ, ~x23 ¼ ð35; 45; 55; 65; 30; 40; 60; 70Þ and the obtained intuitionistic fuzzy optimal value is ð3300; 5800; 9100; 13; 200; 2350; 4450; 11; 050; 15; 550Þ.
4.14.2 Intuitionistic Fuzzy Optimal Solution of the Second Unbalanced Fully Trapezoidal Intuitionistic Fuzzy Transportation Problem Using the proposed JMD approach, the intuitionistic fuzzy optimal solution of the second unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, can be obtained as follows: Step 1: Using Sect. 4.11, (i) The Mehar representation of the trapezoidal intuitionistic fuzzy numbers ~ aI1 ¼ a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a01;2 ; a01;3 ; a01;4 ¼ ð60; 80; 100; 125; 50; 70; 110; 130Þ and ~aI2 ¼ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a02;2 ; a02;3 ; a02;4 Þ¼ ð40; 60; 80; 110; 30; 50; 90; 140Þ, representing the intuitionistic fuzzy availability of the product at first
4 JMD Approach for Solving Unbalanced Fully …
192
and second source, respectively, are ð50; 10; 10; 10; 20; 10; 15; 5ÞM and ð30; 10; 10; 10; 20; 10; 20; 30ÞM , respectively. ~I ¼ (ii) The Mehar representation of the trapezoidal intuitionistic fuzzy numbers b 1 0 0 0 0 b1;1 ; b1;2 ; b1;3 ; b1;4 ; b1;1 ; b1;2 ; b1;3 ; b1;4 ¼ ð55; 85; 95; 130; 45; 75; 105; 135Þ and ~bI2 ¼ b2;1 ; b2;2 ; b2;3 ; b2;4 ; b02;1 ; b02;2 ; b02;3 ; b02;4 ¼ ð30; 70; 90; 100; 15; 65; ; 95; 135Þ, representing the intuitionistic fuzzy demand of the product at first and second destination, respectively, are ð45; 10; 20; 10; 10; 10; 25; 5ÞM and ð15; 15; 35; 5; 20; 5; 25; 15ÞM , respectively. Step 2: It is obvious that 2i¼1 a~i ¼ ð80; 20; 20; 20; 40; 20; 35; 35ÞM and 2i¼1 ~bj ¼ ð60; 25; 55; 15; 30; 15; 50; 20ÞM . Step 3: Since 2i¼1 ~ai 6¼ 2i¼1 ~bj . So, the fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, is an unbalanced fully trapezoidal intuitionistic fuzzy transportation problem. So, there is a need to add a dummy source S3 having intuitionistic fuzzy supply q3;1 ; q3;2 ; q3;3 ; q3;3 ; q3;4 ; q3;5 ; q3;6 ; q3;7 ; q3;8 ÞM with the consideration of the cost for supplying the one unit quantity of the product from the dummy source S3 to both the destinations as a trapezoidal intuitionistic fuzzy number e 0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0ÞM . where q3;1 ¼ maxf0; 60 80g ¼ 0; q3;2 ¼ maxf0; 25 20g ¼ 5; q3;3 ¼ maxf0; 55 20g ¼ 35; q3;4 ¼ maxf0; 15 20g ¼ 0; q3;5 ¼ maxf0; 30 40g ¼ 0; q3;6 ¼ maxf0; 15 20g ¼ 0; q3;7 ¼ maxf0; 50 35g ¼ 15; q3;8 ¼ maxf0; 20 35g ¼ 0: Also, there is need to add a dummydestination D3 having dummy demand s3;1 ; s3;2 ; s3;3 ; s3;4 ; s3;5 ; s3;6 ; s3;7 ; s3;8 M with the consideration of the cost for supplying the one unit quantity of the product from all the sources to the dummy 0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ. destination D3 as a trapezoidal intuitionistic fuzzy number e
4.14
Illustrative Examples
193
where s3;1 ¼ maxf0; 80 60g ¼ 20; s3;2 ¼ maxf0; 20 25g ¼ 0; s3;3 ¼ maxf0; 20 55g ¼ 0; s3;4 ¼ maxf0; 20 15g ¼ 5; s3;5 ¼ maxf0; 40 30g ¼ 10; s3;6 ¼ maxf0; 20 15g ¼ 5; s3;7 ¼ maxf0; 35 50g ¼ 0; s3;8 ¼ maxf0; 35 20g ¼ 15:
Step 4: To find an intuitionistic fuzzy optimal solution of the transformed balanced fully trapezoidal intuitionistic fuzzy transportation problem, there is a need to solve the intuitionistic fully fuzzy linear programming problem (4.14.2.1), Intuitionistic fully fuzzy linear programming problem (4.14.2.1) Minimize½ð10; 20; 30; 40; 5; 15; 35; 45Þ x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 ð50; 60; 70; 90; 45; 55; 75; 95Þ M 0 x12;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a125 ; a12;6 ; a12;7 ð60; 70; 80; 90; 55; 65; 85; 95Þ M 0 x21;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a216 ; a21;7 ; M i ð70; 80; 100; 120; 65; 75; 115; 125Þ x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a226 ; a22;7 M
Subject to
x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 x012;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a12;5 ; a12;6 ; a12;7
M M
x013;1 ; a13;1 ; a13;2 ; a13;3 ; a13;4 ; a13;5 ; a13;6 ; a13;7 ¼ ð50; 10; 10; 10; 20; 10; 15; 5ÞM ;
M
4 JMD Approach for Solving Unbalanced Fully …
194
x021;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a21;6 ; a21;7 x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a22;6 ; a22;7
M M
x023;1 ; a23;1 ; a23;2 ; a23;3 ; a23;4 ; a23;5 ; a23;6 ; a23;7
M
¼ ð30; 10; 10; 10; 20; 10; 20; 30ÞM ;
x031;1 ; a31;1 ; a31;2 ; a31;3 ; a31;4 ; a31;5 ; a31;6 ; a31;7 x032;1 ; a32;1 ; a32;2 ; a32;3 ; a32;4 ; a32;5 ; a32;6 ; a32;7
M M
x033;1 ; a33;1 ; a33;2 ; a33;3 ; a33;4 ; a33;5 ; a33;6 ; a33;7 ¼ ð0; 5; 35; 0; 0; 0; 15; 0ÞM ; M
x011;1 ; a11;1 ; a11;2 ; a11;3 ; a11;4 ; a11;5 ; a11;6 ; a11;7 x021;1 ; a21;1 ; a21;2 ; a21;3 ; a21;4 ; a21;5 ; a21;6 ; a21;7
x031;1 ; a31;1 ; a31;2 ; a31;3 ; a31;4 ; a31;5 ; a31;6 ; a31;7
M
M M
¼ ð45; 10; 20; 10; 10; 10; 25; 5ÞM ;
x012;1 ; a12;1 ; a12;2 ; a12;3 ; a12;4 ; a12;5 ; a12;6 ; a12;7 x022;1 ; a22;1 ; a22;2 ; a22;3 ; a22;4 ; a22;5 ; a22;6 ; a22;7
x032;1 ; a32;1 ; a32;2 ; a32;3 ; a31;4 ; a32;5 ; a32;6 ; a32;7
M
M M
¼ ð15; 15; 35; 5; 20; 5; 25; 15ÞM ;
x013;1 ; a13;1 ; a13;2 ; a13;3 ; a13;4 ; a13;5 ; a13;6 ; a13;7 M 0 x23;1 ; a23;1 ; a23;2 ; a23;3 ; a234 ; a23;5 ; a23;6 ; a23;7 M
x033;1 ; a33;1 ; a33;2 ; a33;3 ; a33;4 ; a33;5 ; a33;6 ; a33;7
x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
M
M
¼ ð20; 0; 0; 5; 10; 5; 0; 15ÞM ;
is a non-negative trapezoidal intu-
itionistic fuzzy number. Step 5: Using the multiplication (4.12.2), proposed in Sect. 4.12, the intuitionistic fully fuzzy linear programming problem (4.14.2.1) can be transformed into its equivalent intuitionistic fully fuzzy linear programming problem (4.14.2.2).
4.14
Illustrative Examples
195
Intuitionistic fully fuzzy linear programming problem (4.14.2.2) hh Minimize A11;1 ; A11;2 ; A11;3 ; A11;4 ; A011;1 ; A011;2 ; A011;3 ; A011;4 A12;1 ; A12;2 ; A12;3 ; A12;4 ; A012;1 ; A012;2 ; A012;3 ; A012;4 A21;1 ; A21;2 ; A21;3 ; A12;4 ; A021;1 ; A021;2 ; A021;3 ; A021;4 i A22;1 ; A22;2 ; A22;3 ; A22;4 ; A022;1 ; A022;2 ; A022;3 ; A022;4 Constraints of the intuitionistic fully fuzzy linear programming problem (4.14.2.1). where A11;1 ¼ 10 x011;1 þ a11;1 ; A11;2 ¼ 20 x011;1 þ a11;1 þ a11;2 þ a11;3 ; A11;3 ¼ 30 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 ; A11;4 ¼ 40 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 þ a11;6 ; A011;1 ¼ 5x011;1 ; A011;2 ¼ 15 x011;1 þ a11;1 þ a11;2 ; A011;3 ¼ 35 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 ; A011;4 ¼ 45 x011;1 þ a11;1 þ a11;2 þ a11;3 þ a11;4 þ a11;5 þ a11;6 þ a11;7 ; A12;1 ¼ 50 x012;1 þ a12;1 ; A12;2 ¼ 60 x012;1 þ a12;1 þ a12;2 þ a12;3 ; A12;3 ¼ 70 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 ; A12;4 ¼ 90 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 þ a12;6 ; A012;1 ¼ 45x012;1 ; A012;2 ¼ 55 x012;1 þ a12;1 þ a12;2 ; A012;3 ¼ 75 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 ; A012;4 ¼ 95 x012;1 þ a12;1 þ a12;2 þ a12;3 þ a12;4 þ a12;5 þ a12;6 þ a12;7 ; A21;1 ¼ 60 x021;1 þ a21;1 ; A21;2 ¼ 70 x021;1 þ a21;1 þ a21;2 þ a21;3 ; A21;3 ¼ 80 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 ; A21;4 ¼ 90 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 þ a21;6 ; A021;1 ¼ 55x021;1 ; A021;2 ¼ 65 x021;1 þ a21;1 þ a21;2 ; A021;3 ¼ 85 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 ; A021;4 ¼ 95 x021;1 þ a21;1 þ a21;2 þ a21;3 þ a21;4 þ a21;5 þ a21;6 þ a21;7 ; A22;1 ¼ 70 x022;1 þ a22;1 ; A22;2 ¼ 80 x022;1 þ a22;1 þ a22;2 þ a22;3 ; A22;3 ¼ 100 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 ; A22;4 ¼ 120 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 þ a22;6 ; A022;1 ¼ 65x022;1 ; A022;2 ¼ 75 x022;1 þ a22;1 þ a22;2 ; A022;3 ¼ 115 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 ; A022;4 ¼ 125 x022;1 þ a22;1 þ a22;2 þ a22;3 þ a22;4 þ a22;5 þ a22;6 þ a22;7 :
4 JMD Approach for Solving Unbalanced Fully …
196
P Pn n 0 0 0 0 Step 6: Using relation A ; A ; A ; A ; A ; A ; A ; A i;1 i;2 i;3 i;4 i;1 i;2 i;3 i;4 ¼ i¼1 i¼1 Ai;1 ; Pn Pn Pn Pn P P P n n n 0 0 0 0 the i¼1 Ai;2 ; i¼1 Ai;3 ; i¼1 Ai;4 ; i¼1 Ai;1 ; i¼1 Ai;2 ; i¼1 Ai;3 ; i¼1 Ai;4 Þ, intuitionistic fully fuzzy linear programming problem (4.14.2.2) can be transformed into its equivalent intuitionistic fully fuzzy linear programming problem (4.14.2.3). Intuitionistic fully fuzzy linear programming problem (4.14.2.3)
Minimize A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 i þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4 Subject to x011;1 þ x012;1 þ x013;1 ; a11;1 þ a12;1 þ a13;1 ; a11;2 þ a12;2 þ a13;2 ; a11;3 þ a12;3 þ a13;3 ; a11;4 þ a12;4 þ a13;4 ; a11;5 þ a12;5 þ a13;5 ; a11;6 þ a12;6 þ a13;6 ; a11;7 þ a12;7 þ a13;7 M ¼ ð50; 10; 10; 10; 20; 10; 15; 5ÞM ; x021;1 þ x022;1 þ x023;1 ; a21;1 þ a22;1 þ a23;1 ; a21;2 þ a22;2 þ a23;2 ; a21;3 þ a22;3 þ a23;3 ; a21;4 þ a22;4 þ a23;4 ; a21;5 þ a22;5 þ a23;5 ; a21;6 þ a22;6 þ a23;6 ; a21;7 þ a22;7 þ a23;7 M ¼ ð30; 10; 10; 10; 20; 10; 20; 30ÞM ; x031;1 þ x032;1 þ x033;1 ; a31;1 þ a32;1 þ a33;1 ; a31;2 þ a32;2 þ a33;2 ; a31;3 þ a32;3 þ a33;3 ; a31;4 þ a32;4 þ a33;4 ; a31;5 þ a32;5 þ a33;5 ; a31;6 þ a32;6 þ a33;6 ; a31;7 þ a32;7 þ a33;7 M ¼ ð0; 5; 35; 0; 0; 0; 15; 0ÞM ; x011;1 þ x021;1 þ x031;1 ; a11;1 þ a21;1 þ a31;1 ; a11;2 þ a21;2 þ a31;2 ; a11;3 þ a21;3 þ a31;3 ; a11;4 þ a21;4 þ a31;4 ; a11;5 þ a21;5 þ a31;5 ; a11;6 þ a21;6 þ a31;6 ; a11;7 þ a21;7 þ a31;7 M ¼ ð45; 10; 20; 10; 10; 10; 25; 5ÞM ; x012;1 þ x022;1 þ x032;1 ; a12;1 þ a22;1 þ a32;1 ; a12;2 þ a22;2 þ a32;2 ; a12;3 þ a22;3 þ a32;3 ; a12;4 þ a22;4 þ a32;4 ; a12;5 þ a22;5 þ a32;5 ; a12;6 þ a22;6 þ a32;6 ; a12;7 þ a22;7 þ a32;7 M ¼ ð15; 15; 35; 5; 20; 5; 25; 15ÞM ;
4.14
Illustrative Examples
197
x013;1 þ x023;1 þ x033;1 ; a13;1 þ a23;1 þ a33;1 ; a13;2 þ a23;2 þ a33;2 ; a13;3 þ a23;3 þ a33;3 ; a13;4 þ a23;4 þ a33;4 ; a13;5 þ a23;5 þ a33;5 ; a13;6 þ a23;6 þ a33;6 ; a13;7 þ ¼ ð20; 0; 0; 5; 10; 5; 0; 15ÞM ; M
a23;7 þ a33;7
x0ij;1 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;5 ; aij;6 ; aij;7
M
is a non-negative trapezoidal intu-
itionistic fuzzy number. Step 7: Using the relation ða0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 ÞM ¼ ðb0 ; b1 ; b2 ; b3 ; b4 ; b5 ; b6 ; b7 ÞM ) a0 ¼ b0 , a1 ¼ b1 , a2 ¼ b2 , a3 ¼ b3 , a4 ¼ b4 , a5 ¼ b5 , a6 ¼ b6 , a7 ¼ b7 and the relation ða0 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 ; a7 ÞM is a non-negative trapezoidal intuitionistic fuzzy number ) a0 0, a1 0, a2 0; a3 0; a4 0; a5 0; a6 0; a7 0, the intuitionistic fully fuzzy linear programming problem (4.14.2.3) can be transformed into in its equivalent intuitionistic fuzzy linear programming problem (4.14.2.4). Intuitionistic fuzzy linear programming problem (4.14.2.4)
Minimize A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ i A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Subject to x011;1 þ x012;1 þ x013;1 ¼ 50; a11;1 þ a12;1 þ a13;1 ¼ 10; a11;2 þ a12;2 þ a13;2 ¼ 10; a11;3 þ a12;3 þ a13;3 ¼ 10; a11;4 þ a12;4 þ a13;4 ¼ 20; a11;5 þ a12;5 þ a13;5 ¼ 10; a11;6 þ a12;6 þ a13;6 ¼ 15; a11;7 þ a12;7 þ a13;7 ¼ 15; x021;1 þ x022;1 þ x023;1 ¼ 30;
198
4 JMD Approach for Solving Unbalanced Fully …
a21;1 þ a22;1 þ a23;1 ¼ 10; a21;2 þ a22;2 þ a23;3 ¼ 10; a21;3 þ a22;3 þ a23;3 ¼ 10; a21;4 þ a22;4 þ a23;4 ¼ 20; a21;5 þ a22;5 þ a23;5 ¼ 10; a21;6 þ a22;6 þ a23;6 ¼ 20; a21;7 þ a22;7 þ a23;7 ¼ 30; x031;1 þ x032;1 þ x033;1 ¼ 0; a31;1 þ a32;1 þ a33;1 ¼ 5; a31;2 þ a32;2 þ a33;3 ¼ 35; a31;3 þ a32;3 þ a33;3 ¼ 0; a31;4 þ a32;4 þ a33;4 ¼ 0; a31;5 þ a32;5 þ a33;5 ¼ 0; a31;6 þ a32;6 þ a33;6 ¼ 15; a31;7 þ a32;7 þ a33;7 ¼ 0; x011;1 þ x021;1 þ x031;1 ¼ 45; a11;1 þ a12;1 þ a13;1 ¼ 10; a11;2 þ a12;2 þ a13;2 ¼ 20; a11;3 þ a12;3 þ a13;3 ¼ 10; a11;4 þ a12;4 þ a13;4 ¼ 10; a11;5 þ a12;5 þ a13;5 ¼ 10; a11;6 þ a12;6 þ a13;6 ¼ 25;
4.14
Illustrative Examples
199
a11;7 þ a12;7 þ a13;7 ¼ 5; x012;1 þ x022;1 þ x032;1 ¼ 15; a12;1 þ a22;1 þ a32;1 ¼ 15; a12;2 þ a22;2 þ a32;2 ¼ 35; a12;3 þ a22;3 þ a32;3 ¼ 5; a12;4 þ a22;4 þ a32;4 ¼ 20; a12;5 þ a32;5 þ a32;5 ¼ 5; a12;6 þ a22;6 þ a32;6 ¼ 25; a12;7 þ a22;7 þ a32;7 ¼ 15; x013;1 þ x023;1 þ x033;1 ¼ 20; a13;1 þ a23;1 þ a33;1 ¼ 0; a13;2 þ a23;2 þ a33;2 ¼ 0; a13;3 þ a23;3 þ a33;3 ¼ 5; a13;4 þ a23;4 þ a33;4 ¼ 10; a13;5 þ a33;5 þ a33;5 ¼ 5; a13;6 þ a23;6 þ a33;6 ¼ 0; a13;7 þ a23;7 þ a33;7 ¼ 15; x0ij;k ; aij;k 0:
Step 8: Using the proposed DAUGHTER approach for comparing trapezoidal intuitionistic fuzzy numbers, the intuitionistic fuzzy linear programming problem (4.14.2.4) can be transformed into its equivalent crisp multi-objective linear programming problem (4.14.2.5).
200
4 JMD Approach for Solving Unbalanced Fully …
Crisp multi-objective linear programming problem (4.14.2.5)
Minimize D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize A A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize U A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize G A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize H A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize T A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize E A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Minimize R A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.14.2.4).
4.14
Illustrative Examples
201
Step 9: According to DAUGHTER approach, there is a need to check that a unique crisp optimal solution exist for the crisp linear programming problem (4.14.2.6) or not. Crisp linear programming problem (4.14.2.6)
Minimize D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 i þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4
Subject to Constraints of the intuitionistic fuzzy linear programming problem (4.14.2.4). where D A11;1 þ A12;1 þ A13;1 þ A14;1 ; A11;2 þ A12;2 þ A13;2 þ A14;2 ; A11;3 þ A12;3 þ A13;3 þ A14;3 ; A11;4 þ A12;4 þ A13;4 þ A14;4 ; A011;1 þ A012;1 þ A013;1 þ A014;1 ; A011;2 þ A012;2 þ A013;2 þ A014;2 ; A011;3 þ A012;3 þ A013;3 þ A014;3 ; A011;4 þ A012;4 þ A013;4 þ A014;4 ¼ 200x011;1 þ 540x012;1 þ 0x013;1 þ 600x021;1 þ 750x022;1 þ 0x023;1 þ 195a11;1 þ 495a12;1 þ 0a13;1 þ 545a21;1 þ 685a22;1 þ 0a23;1 þ 185a11;2 þ 445a12;2 þ 0a13;2 þ 485a21;2 þ 615a22;2 þ 0a23;2 þ 170a11;3 þ 390a12;3 þ 0a13;3 þ 420a21;3 þ 540a22;3 þ 0a23;3 þ 150a11;4 þ 330a12;4 þ 0a13;4 þ 350a21;4 þ 460a22;4 þ 0a23;4 þ 120a11;5 þ 260a12;5 þ 0a13;5 þ 270a21;5 þ 360a22;5 þ 0a23;5 þ 85a11;6 þ 185a12;6 þ 0a13;6 þ 185a21;6 þ 245a22;6 þ 0a23;6 þ 45a11;7 þ 95a12;7 þ 0a13;7 þ 95a21;7 þ 125a22;7 þ 0a23;7 :
Step 10: It can be easily verified that on solving the crisp linear programming problem (4.14.2.6) the following unique crisp optimal solution is obtained. (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
x011;1 ¼ 20, x012;1 ¼ 15, x013;1 ¼ 15, x021;1 ¼ 0, x022;1 ¼ 0, x023;1 ¼ 30. a11;1 ¼ 10, a12;1 ¼ 0, a13;1 ¼ 0, a21;1 ¼ 0, a22;1 ¼ 5, a23;1 ¼ 5. a11;2 ¼ 10, a12;2 ¼ 0, a13;2 ¼ 0, a21;2 ¼ 0, a22;2 ¼ 5, a23;2 ¼ 5. a11;3 ¼ 10, a12;3 ¼ 0, a13;3 ¼ 0, a21;3 ¼ 0, a22;3 ¼ 5, a23;3 ¼ 5. a11;4 ¼ 20, a12;4 ¼ 0, a13;4 ¼ 0, a21;4 ¼ 0, a22;4 ¼ 10, a23;4 ¼ 10. a11;5 ¼ 10, a12;5 ¼ 0, a13;5 ¼ 0, a21;5 ¼ 0, a22;5 ¼ 5, a23;5 ¼ 5. a11;6 ¼ 10, a12;6 ¼ 0, a13;6 ¼ 0, a21;6 ¼ 0, a22;6 ¼ 5, a23;6 ¼ 5. a11;7 ¼ 10, a12;7 ¼ 0, a13;7 ¼ 0, a21;7 ¼ 0, a22;7 ¼ 5, a23;7 ¼ 5.
4 JMD Approach for Solving Unbalanced Fully …
202
Step 11: Using Step 19 of the proposed JMD approach, (i) x11;1 ¼ 30, x11;2 ¼ 50, x11;3 ¼ 70; x11;4 ¼ 90; x011;1 ¼ 20; x011;2 ¼ 40; x011;3 ¼ 80; x011;4 ¼ 100: (ii) x12;2 ¼ 15, x12;2 ¼ 15, x12;3 ¼ 15; x12;4 ¼ 15; x012;1 ¼ 15; x012;2 ¼ 15; x012;3 ¼ 15; x012;4 ¼ 15: (iii) x13;1 ¼ 15, x13;2 ¼ 15, x13;3 ¼ 15; x13;4 ¼ 15; x013;1 ¼ 15; x013;2 ¼ 15; x013;3 ¼ 15; x013;4 ¼ 15: (iv) x21;1 ¼ 0, x21;2 ¼ 0, x21;3 ¼ 0; x21;4 ¼ 0; x021;1 ¼ 0; x021;2 ¼ 0; x021;3 ¼ 0; x021;4 ¼ 0: (v) x22;1 ¼ 5, x22;2 ¼ 15, x22;3 ¼ 25; x22;4 ¼ 35; x022;1 ¼ 0; x022;2 ¼ 10; x022;3 ¼ 30; x022;4 ¼ 0: (vi) x23;1 ¼ 0, x23;2 ¼ 45, x23;3 ¼ 55; x23;4 ¼ 65; x023;1 ¼ 30; x023;2 ¼ 40; x023;3 ¼ 60; x023;4 ¼ 70. Step 12: Using Step 20 of the proposed JMD approach, the obtained intuitionistic fuzzy optimal solution of the unbalanced fully trapezoidal intuitionistic fuzzy transportation problem, represented by Table 4.6, is ~xI11 ¼ ð30; 50; 70; 90; 20; 40; 80; 100Þ, ~xI12 ¼ ð15; 15; 15; 15; 15; 15; 15; 15Þ, ~xI21 ¼ ð0; 0; 0; 0; 0; 0; 0; 0Þ; ~xI22 ¼ ~xI13 ¼ ð15; 15; 15; 15; 15; 15; 15; 15Þ, I ð5; 15; 25; 35; 0; 10; 30; 40Þ, ~x23 ¼ ð35; 45; 55; 65; 30; 40; 60; 70Þ and the obtained intuitionistic fuzzy optimal value is ð3300; 5800; 9100; 13; 200; 2350; 4450; 11; 050; 15; 550Þ.
4.15
Conclusions
Some limitations and a drawback of the existing approach [1] have been pointed out. Also, to overcome the limitations and to resolve the drawback, a new approach (named as DAUGHTER approach) for comparing trapezoidal intuitionistic fuzzy numbers as well as a new approach (named as JMD approach) for solving unbalanced fully trapezoidal intuitionistic fuzzy transportation problems has been proposed. Furthermore, to illustrate the proposed JMD approach, two unbalanced fully trapezoidal intuitionistic fuzzy transportations problems have been solved.
References
203
References 1. A. Ebrahimnejad, J.L. Verdegay, A new approach for solving fully intuitionistic fuzzy transportation problems. Fuzzy Optim. Decis. Making 17, 447–474 (2018) 2. W. Jianqiang, Z. Zhong, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. J. Syst. Eng. Electron. 20, 321–326 (2009) 3. A. Mahmoodirad, T. Allahviranloo, S. Niroomand, A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft. Comput. 23, 4521–4530 (2019) 4. A. Mishra, A. Kumar, JMD method for transforming an unbalanced fully intuitionistic fuzzy transportation problem into a balanced fully intuitionistic fuzzy transportation problem. Soft. Comput. (2020). https://doi.org/10.1007/s00500-020-04889-6
Chapter 5
JMD Approach for Solving Unbalanced Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problems
Chakraborty et al. [1] proposed an approach for solving fully generalized trapezoidal intuitionistic fuzzy transportation problems (transportation problems in which each parameter is represented by a generalized trapezoidal intuitionistic fuzzy number). One may claim that Chakraborty et al.’s approach [1] can be used only to solve such fully generalized trapezoidal intuitionistic fuzzy transportation problems for which the aggregated value of the generalized intuitionistic fuzzy transportation cost, the generalized intuitionistic fuzzy availability and the generalized intuitionistic fuzzy demand, provided by all the decision-makers, is available. While Chakraborty et al.’s approach [1] cannot be used to solve such fully generalized trapezoidal intuitionistic fuzzy transportation problems for which, instead of the aggregated data, the data of each decision-maker is provided separately. To overcome this limitation, one may modify Chakraborty et al.’s approach [1] with the help of existing generalized trapezoidal intuitionistic fuzzy aggregation operator [2]. Also, one may use Chakraborty et al.’s approach [1] to solve real-life fully generalized trapezoidal intuitionistic fuzzy transportation problems. However, after a deep study, some limitations and a drawback have been observed in Chakraborty et al.’s approach [1]. The aim of this chapter is (i) To make the researchers aware about the observed limitations and a drawback of Chakraborty et al.’s approach [1]. (ii) To make the researchers aware about a drawback of the approach, used in Chakraborty et al.’s approach [1], for comparing generalized trapezoidal intuitionistic fuzzy numbers. (iii) To propose a valid approach (named as PRABHUS approach) for comparing generalized trapezoidal intuitionistic fuzzy numbers. (iv) To propose a valid approach (named as JMD (JAI MATA DI)) for solving unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. (v) To illustrate the proposed JMD approach with the help of a numerical example. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 A. Mishra and A. Kumar, Aggregation Operators for Various Extensions of Fuzzy Set and Its Applications in Transportation Problems, Studies in Fuzziness and Soft Computing 399, https://doi.org/10.1007/978-981-15-6998-2_5
205
206
5.1
5 JMD Approach for Solving Unbalanced Fully Generalized …
Organization of the Chapter
This chapter is organized as follows: (i) In Sect. 5.2, some basic definitions have been presented. (ii) In Sect. 5.3, the tabular form of a fully generalized trapezoidal intuitionistic fuzzy transportation problem has been discussed. (iii) In Sect. 5.4, an existing approach for comparing generalized trapezoidal intuitionistic fuzzy numbers, used in Chakraborty et al.’s approach [1], has been discussed. (iv) In Sect. 5.4, the generalized intuitionistic fully fuzzy linear programming problem of a balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem has been discussed. (v) In Sect. 5.5, Chakraborty et al.’s approach [1] for solving balanced fully generalized trapezoidal intuitionistic fuzzy transportation problems has been discussed in a brief manner. (vi) In Sect. 5.6, the origin of the generalized intuitionistic fully fuzzy linear programming problem, used in Chakraborty et al.’s approach [1], has been pointed out. (vii) In Sect. 5.7, some limitations of Chakraborty et al.’s approach [1] have been discussed. (viii) In Sect. 5.8, it is showed that Chakraborty et al. [1] have used a mathematical incorrect assumption in their proposed approach. Hence, Chakraborty et al.’s approach [1] is not valid. (ix) In Sect. 5.9, it is showed that the approach, used by Chakraborty et al. [1] for comparing generalized trapezoidal intuitionistic fuzzy numbers, is inappropriate. (x) In Sect. 5.10, a new approach (named as PRABHUS approach) has been proposed for comparing generalized trapezoidal intuitionistic fuzzy numbers. (xi) In Sect. 5.11, a new approach (named as JMD approach) has been proposed to solve unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. (xii) In Sect. 5.12, the proposed JMD approach has been illustrated with the help of a numerical problem. (xiii) Sect. 5.13 concludes the chapter.
5.2 Preliminaries
5.2
207
Preliminaries
In this section, some basic definitions have been presented [1]. nD E eI ¼ x; leI ð xÞ; meI ð xÞ : x 2 Definition 5.2.1 An intuitionistic fuzzy number A A A Rg is called a generalized intuitionistic fuzzy number, if the following properties hold, (i) There exist m 2 R such that leI ðmÞ ¼ w; meI ðmÞ ¼ 0 where 0 w 1. A A (ii) leI is continuous mapping from R to the interval ð0; w. A (iii) leI ð xÞ þ meI ð xÞ 1 8 x 2 R. A A e I is said to be a Definition 5.2.2 A generalized intuitionistic fuzzy number A generalized trapezoidal intuitionistic fuzzy number if its membership function leI ð xÞ and non-membership function meI ð xÞ are given by A
8 xa1 > w ; > a a 2 1 > < w; leI ð xÞ ¼ x A > w aa44a ; > > 3 : 0;
A
a1 x\a2 a2 x a3 a3 \x a4 otherwise
and
8 0 a x > > w a0 2a0 ; > > 1 2 < meI ð xÞ ¼ 0; A > x > w aa33a ; > 0 > 4 : w;
a01 x\a2 a2 x a3 a3 \x a04 otherwise
e I may be denoted as A generalized trapezoidal intuitionistic fuzzy number A e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a2 ; a3 ; a0 ; w . A 1 4 eI ¼ Definition 5.2.3 A generalized trapezoidal intuitionistic fuzzy number A a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w is said to be a non-negative generalized trapezoidal intuitionistic fuzzy number if and only if a01 0. eI ¼ Definition 5.2.4 Two generalized trapezoidal intuitionistic fuzzy numbers A e I ¼ b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 are said a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 and B to be equal if and only if a1 ¼ b1 ; a2 ¼ b2 ; a3 ¼ b3 ; a4 ¼ b4 ; a01 ¼ b01 ; a02 ¼ b02 and w1 ¼ w2 . e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a2 ; a3 ; a0 ; w 1 eI ¼ and B Definition 5.2.5 Let A 1 4 b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 be two generalized trapezoidal intuitionistic fuzzy eI B e I ¼ ða1 þ b1 ; a2 þ b2 ; a3 þ b3 ; a4 ; a01 þ b01 ; a2 þ b2 ; a3 þ numbers. Then, A 0 0 b3 ; a4 þ b4 ; minimumfw1 ; w2 gÞ . e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a2 ; a3 ; a0 ; w1 and B e I ¼ ð b1 ; b 2 ; b3 ; Definition 5.2.6 Let A 1 4 0 0 b4 ; b1 ; b2 ; b3 ; b4 ; w2 Þ be two generalized trapezoidal intuitionistic fuzzy numbers. e I B e I ¼ ða1 b4 ; a2 b3 ; a3 b2 ; a4 b1 ; a01 b04 ; a2 b3 ; a3 b2 ; a04 Then, A 0 b1 ; minimumfw1 ; w2 gÞ .
5 JMD Approach for Solving Unbalanced Fully Generalized …
208
e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a2 ; a3 ; a0 ; w1 and B e I ¼ ð b1 ; b2 ; b3 ; Definition 5.2.7 Let A 1 4 0 0 b4 ; b1 ; b2 ; b3 ; b4 ; w2 Þ be two non-negative generalized trapezoidal intuitionistic eI B e I ¼ a1 b1 ; a2 b2 ; a3 b3 ; a4 ; a01 b01 ; a2 b2 ; a3 b3 ; a04 b04 ; w , fuzzy numbers. Then, A where w ¼ minimumfw1 ; w2 g. e I ¼ a1 ; a2 ; a3 ; a4 ; a0 ; a2 ; a3 ; a0 ; w1 be a generalized Definition 5.2.8 Let A 1 4 trapezoidal intuitionistic fuzzy number and k be a real number. Then, eI ¼ kA
5.3
0 0 ka1 ; ka2 ; ka3 ; ka4 ; ka10 ; ka2 ; ka3 ; ka40 ; w1 ; k 0 ka4 ; ka3 ; ka2 ; ka1 ; ka4 ; ka3 ; ka2 ; ka1 ; w1 ; k\0
Tabular Representation of a Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problem
A fully generalized trapezoidal intuitionistic fuzzy transportation problem can be represented by Table 5.1 [1]. where (i) The generalized trapezoidal intuitionistic fuzzy number ~cIij represents the generalized intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source ðSi Þ to the jth destination Dj , (ii) The generalized trapezoidal intuitionistic fuzzy number ~ aIi represents the generalized intuitionistic fuzzy availability of the product at the ith source ðSi Þ,
Table 5.1 Tabular representation of fully generalized trapezoidal intuitionistic fuzzy transportation problem Sources
Destinations D1 D2
Dj
Dn
Generalized intuitionistic fuzzy availability
S1
~cI11
~cI12
~cI1j
~cI1n
~ aI1
.. . Si
.. .
.. .
.. .
.. .
~cI12
.. .
.. .
~cIi1
.. .
~cIin
~ aIi
.. .
.. . ~cIm2
.. . ~cmn
.. .
~cIm1
.. .
~bI 1
~bI 2
~ bIm
.. . Sm Generalized intuitionistic fuzzy demand
~cIij
.. .
.. . ~cImj
~bI j
~ aIm
5.3 Tabular Representation of a Fully Generalized Trapezoidal …
209
(iii) The generalized trapezoidal intuitionistic fuzzy number ~ bIj represents the intuitionistic fuzzy demand of the product at the jth destination generalized Dj .
5.4
Existing Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers
It is well-known fact that an optimal solution of a transportation problem will be that feasible solution corresponding to which the total transportation cost will be minimum. On the same direction, the generalized intuitionistic fuzzy optimal solution of the fully generalized trapezoidal intuitionistic fuzzy transportation problem, represented by Table 5.1, will be that generalized intuitionistic fuzzy feasible solution corresponding to which the total transportation cost will be minimum. Since, in the case of a fully generalized trapezoidal intuitionistic fuzzy transportation problem, the total cost will be a generalized trapezoidal intuitionistic fuzzy number. Therefore, to find a generalized trapezoidal intuitionistic fuzzy optimal solution of the fully generalized trapezoidal intuitionistic fuzzy transportation problem, represented by Table 5.1, there is a need to find the minimum of generalized trapezoidal intuitionistic fuzzy numbers, i.e., there is a need to compare generalized trapezoidal intuitionistic fuzzy numbers. In this section, the approach for comparing the generalized trapezoidal intuitionistic fuzzy numbers, used in Chakraborty et al.’s approach [1], has beendiscussed. Let a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 and b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 be two generalized trapezoidal intuitionistic fuzzy numbers. Then, (i) a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 if H ða1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minimumfw1 ; w2 gÞ [ H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; minimumfw1 ; w2 gÞ: 0 (ii) a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 if H ða1 ; b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minimumfw1 ; w2 gÞ\ minimumfw1 ; w2 g: 0 0 0 0 (iii) a1 ; a2 ; a3 ; a4 ; a1 ; a2 ; a3 ; a4 ; w1 ¼ b1 ; b2 ; b3 ; b4 ; b1 ; b2 ; b3 ; b4 ; w2 if H ða1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minimumfw1 ; w2 gÞ ¼ H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; minimumfw1 ; w2 gÞ: where H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minimumfw1 ; w2 g minimumfw1 ; w2 g ¼ a1 þ a2 þ a3 þ a4 þ a01 þ a2 þ a3 þ a04 8
5 JMD Approach for Solving Unbalanced Fully Generalized …
210
and H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; minimumfw1 ; w2 g minimumfw1 ; w2 g b1 þ b2 þ b3 þ b4 þ b01 þ b2 þ b3 þ b04 : ¼ 8
5.5
Chakraborty et al.’s Approach for Solving Balanced Fully Generalized Trapezoidal Intuitionistic Fuzzy Transportation Problems
The aim of this chapter is to point out some limitations and a drawback of Chakraborty et al.’s approach [1]. Since, to achieve this aim, there is a need to discuss Chakraborty et al.’s approach [1]. Therefore, a brief review of Chakraborty et al.’s approach [1] has been presented in this section. Chakraborty et al. [1] proposed the following approach to solve generalized balanced fully trapezoidal intuitionistic fuzzy transportation problem represented by Table 5.1. Step 1: Write the generalized intuitionistic fuzzy linear programming problem (5.5.1) corresponding to the balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem represented by Table 5.1. Generalized intuitionistic fuzzy linear programming problem (5.5.1) 2
00
n
o
13
1
6 C7 n BB 0 0 1 2 3 C Minimize4m i¼1 j¼1 @@cij;1 ; cij;2 ; cij;3 ; cij;4 ; cij;1 ; cij;2 ; cij;3 ; cij;4 ; min 1 i m wij ; wi ; wj A xij A5 1jn
Subject to 0 n X j¼1
n
o
1
1jn
0
i¼1
o
B C xij @ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j A; i ¼ 1; 2; . . .; m;
m X
n
1
B C xij @bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m w1ij ; w2i ; w3j A; j 1jn ¼ 1; 2; . . .; n;
xij is a non-negative real number.
5.5 Chakraborty et al.’s Approach for Solving Balanced Fully …
211
Step 2: Using the existing multiplication k a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w ¼ ka1 ; ka2 ; ka3 ; ka4 ; ka01 ; ka2 ; ka3 ; ka04 ; w ; k 0 , transform the generalized intuitionistic fuzzy linear programming problem (5.5.1) into its equivalent generalized intuitionistic fuzzy linear programming problem (5.5.2). Generalized intuitionistic fuzzy linear programming problem (5.5.2) h n 0 0 Minimize m i¼1 j¼1 cij;1 xij ; cij;2 xij ; cij;3 xij ; cij;4 xij ; cij;1 xij ; cij;2 xij ; cij;3 xij ; cij;4 xij ; n oi min w1ij ; w2i ; w3j 1im 1jn
Subject to Constraints of the generalized intuitionistic fuzzy linear programming problem (5.5.1). Step 3: Using the comparing approach, discussed in Sect. 5.4, transform the generalized intuitionistic fuzzy linear programming problem (5.5.2) into its equivalent crisp linear programming problem (5.5.3). Crisp linear programming problem (5.5.3) h h n 0 0 Minimize H m i¼1 j¼1 cij;1 xij ; cij;2 xij ; cij;3 xij ; cij;4 xij ; cij;1 xij ; cij;2 xij ; cij;3 xij ; cij;4 xij ; n o min w1ij ; w2i ; w3j 1im 1jn
Subject to
H
n X
0
!
¼ H @ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min
xij
n
ij
1im 1jn
j¼1
1 o w1 ; w2 ; w3 A; i
j
i ¼ 1; 2; . . .; m;
H
m X
0
! xij
¼ H @bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min
i¼1
1im 1jn
n
1 o w1 ; w2 ; w3 A; ij
i
j
j ¼ 1; 2; . . .; n; xij is a non-negative real number. 0 0 Step 4: Using the relations, H m a ; a ; a ; a ; a ; a ; a ; a ; w ¼ i;1 i;2 i;3 i;4 i;2 i;3 i¼1 i;1 i;4 P P Pm n n 0 0 , H i¼1 H ai;1 ; ai;2 ; ai;3 ; ai;4 ; ai;1 ; ai;2 ; ai;3 ; ai;4 ; w j¼1 xij ¼ j¼1 H xij and
5 JMD Approach for Solving Unbalanced Fully Generalized …
212
Pm Pm H i¼1 xij ¼ i¼1 H xij , transform the crisp linear programming problem (5.5.3) into its equivalent crisp linear programming problem (5.5.4). Crisp linear programming problem (5.5.4) " Minimize
m X n X H cij;1 xij ; cij;2 xij ; cij;3 xij ; cij;4 xij ; c0ij;1 xij ; cij;2 xij ; cij;3 xij ; c0ij;4 xij ; i¼1 j¼1
n oi min 1 i m w1ij ; w2i ; w3j 1jn
Subject to n n o X H xij ¼ H ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j ; 1jn
j¼1
i ¼ 1; 2; . . .; m; m n o X 0 0 1 2 3 H xij ¼ H bj;1 ; bj;2 ; bj;3 ; bj;4 ; bj;1 ; bj;2 ; bj;3 ; bj;4 ; min 1 i m wij ; wi ; wj ; 1jn
i¼1
j ¼ 1; 2; . . .; n;
xij is a non-negative real number. Step 5: Using the expressions H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w ¼ w8 ða1 þ a2 þ a3 þ a4 þ a01 þ a2 þ a3 þ a04 Þ and H xij ¼ xij , transform crisp linear programming problem (5.5.4) into its equivalent crisp linear programming problem (5.5.5). Crisp linear programming problem (5.5.5) n o1 min 1 i m w1ij ; w2i ; w3j m n 6B C XX 1jn cij;1 xij þ cij;2 xij þ cij;3 xij Minimize4@ A 8 i¼1 j¼1 20
þ cij;4 xij þ c0ij;1 xij þ cij;2 xij þ cij;3 xij þ c0ij;4 xij
i
Subject to n X j¼1
n o1 0 min 1 i m w1ij ; w2i ; w3j 1jn B C xij ¼ @ A ai;1 þ ai;2 þ ai;3 þ ai;4 þ a0i;1 þ ai;2 þ ai;3 þ a0i;4 ; 8
5.5 Chakraborty et al.’s Approach for Solving Balanced Fully …
213
i ¼ 1; 2; . . .; m; n o1 min 20c1 i m w1ij ; w2i ; w3j C B 1jn xij ¼ @ A bj; 1 þ bj; 2 þ bj;3 þ bj;4 þ b0j;1 þ bj;2 þ bj;3 þ b0j;4 ; 8 0
m X i¼1
j ¼ 1; 2; . . .; n;
xij is a non-negative real number.
Step 6: Find the crisp optimal solution xij ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n of the crisp linear programming problem (5.5.5).
Step 7: Using the crisp optimal solution xij ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n , obtained in Step 6, find the generalized intuitionistic fuzzy optimal value P P Pn Pn Pn Pn Pn Pn 0 Pn Pn n n i¼1 j¼1 cij;4 ; i¼1 j¼1 cij;1 ; i¼1 j¼1 cij;1 ; i¼1 j¼1 cij;2 ; i¼1 j¼1 cij;3 ;; n o Pn Pn Pn Pn 0 Pn Pn 1 2 3 of the i¼1 j¼1 cij;2 ; i¼1 j¼1 cij;3 ; i¼1 j¼1 cij;4 ; min 1 i m wij ; wi ; wj 1jn
generalized intuitionistic fuzzy linear programming problem (5.5.1).
5.6
Origin of the Generalized Intuitionistic Fuzzy Linear Programming Problem
The generalized intuitionistic fuzzy linear programming problem (5.5.1), used in Chakraborty et al.’s approach [1], has been obtained as follows: Step 1: To find an optimal solution of the balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem, represented by Table 5.1, is equivalent to find an optimal solution of the generalized intuitionistic fully fuzzy linear programming problem (5.6.1). Generalized intuitionistic fully fuzzy linear programming problem (5.6.1) h i n I ~ ~ Minimize m x c ij i¼1 j¼1 ij Subject to n X
~xij ~aIi ;
i ¼ 1; 2; . . .; m;
~xij ~bIj ;
j ¼ 1; 2; . . .; n;
j¼1 m X i¼1
~xij is a non-negative generalized trapezoidal intuitionistic fuzzy number.
5 JMD Approach for Solving Unbalanced Fully Generalized …
214
Step 2: Replacing the parameters ~cIij , ~aIi , ~bIj and ~xij with the generalized trapezoidal intuitionistic fuzzy numbers cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; cij;2 ; cij;3 ; c0ij;4 ; w1ij , ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; w2i , bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; w3j n o 0 0 1 2 3 and xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj , respec1jn
tively, the generalized intuitionistic fully fuzzy linear programming problem (5.6.1) can be transformed into its equivalent generalized intuitionistic fully fuzzy linear programming problem (5.6.2). Generalized intuitionistic fully fuzzy linear programming problem (5.6.2) h n 0 0 1 Minimize m i¼1 j¼1 ð cij;1 ; cij;2 ; cij;3 ; cij;4 ; cij;1 ; cij;2 ; cij;3 ; cij;4 ; wij n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
Subject to n o nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; w2i ; i ¼ 1; 2; . . .; m; n o 0 0 1 2 3 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; w3j ; j ¼ 1; 2; . . .; n; m i¼1
n o 0 0 1 2 3 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn
is
a
non-negative generalized trapezoidal intuitionistic fuzzy number. Step 3: Using the relation, a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 ðb1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 Þ ¼ a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minfw1 ; w2 g b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; minfw1 ; w2 gÞ, the generalized intuitionistic fully fuzzy linear programming problem (5.6.2) can be transformed into its equivalent generalized intuitionistic fully fuzzy linear programming problem (5.6.3).
5.6 Origin of the Generalized Intuitionistic Fuzzy Linear …
215
Generalized intuitionistic fully fuzzy linear programming problem (5.6.3) n o n 0 0 1 2 3 Minimize m c ; c ; c ; c ; c ; c ; c ; c ; min w ; w ; w 1 i m ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 j¼1 ij;1 ij;4 ij i j 1jn n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
Subject to Constraints of the generalized intuitionistic fully fuzzy linear programming problem (5.6.2). Step 4: Using the existing approach for comparing generalized trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 5.4, the generalized intuitionistic fully fuzzy linear programming problem (5.6.3) can be transformed into its equivalent crisp linear programming problem (5.6.4). Crisp linear programming problem (5.6.4) n o n 0 0 1 2 3 c Minimize H m ; c ; c ; c ; c ; c ; c ; c ; min w ; w ; w 1 i m ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 j¼1 ij;1 ij;4 ij i j 1jn n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
Subject to n o H nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j ¼ 1jn n o ; i ¼ 1; 2; . . .; m; H ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
n o m 0 0 1 2 3 H i¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj ¼ 1jn n o ; j ¼ 1; 2; . . .; n; H bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j
is a non-
1jn
negative generalized trapezoidal intuitionistic fuzzy number. h i 0 0 1 Step 5: Using the relation, H m ¼ i¼1 ci;1 ; ci;2 ; ci;3 ; ci;4 ; ci;1 ; ci;2 ; ci;3 ; ci;4 ; wij
n o 0 0 H c ; c ; c ; c ; c ; c ; c ; c ; min w1ij m 1 i m ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 ij;1 ij;4 1jn
,
the
crisp
5 JMD Approach for Solving Unbalanced Fully Generalized …
216
linear programming problem (5.6.4) can be transformed into its equivalent crisp linear programming problem (5.6.5). Crisp linear programming problem (5.6.5) Minimize
X m X n n o H cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; cij;2 ; cij;3 ; c0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
i¼1 j¼1
n
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j
o
1jn
Subject to ! n n o X 0 0 1 2 3 H xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj ¼ 1jn
j¼1
n
H ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j
o
1jn
;
i ¼ 1; 2; . . .; m;
! m n o X 0 0 1 2 3 H xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn
i¼1
H
bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m 1jn
n
w1ij ; w2i ; w3j
o
;
j ¼ 1; 2; . . .; n;
n o H xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j is a non1jn
negative real number.
Step 6: Using the relation H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w ðb1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; wÞ ¼ H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; wÞ,the crisp linear programming problem (5.6.5) can be transformed into its equivalent crisp linear programming problem (5.6.6). Crisp linear programming problem (5.6.6) " Minimize
m X n n o X H cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; cij;2 ; cij;3 ; c0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
i¼1 j¼1
n
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
o
5.6 Origin of the Generalized Intuitionistic Fuzzy Linear …
217
Subject to ! n n o X 0 0 1 2 3 H xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj ¼ 1jn
j¼1
n o H ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j ; 1jn
i ¼ 1; 2; . . .; m;
! m n o X 0 0 1 2 3 ¼ H xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn
i¼1
n o 0 0 1 2 3 H bj;1 ; bj;2 ; bj;3 ; bj;4 ; bj;1 ; bj;2 ; bj;3 ; bj;4 ; min 1 i m wij ; wi ; wj ; 1jn
j ¼ 1; 2; . . .; n;
n o H xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j is a non1jn
negative real number. n o 0 0 1 2 3 Step 7: Since, H xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn is a non-negative real number. So, assuming H xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; n o x0ij;4 ; min 1 i m w1ij ; w2i ; w3j ¼ xij , the crisp linear programming problem (5.6.6) 1jn
can be transformed into its equivalent crisp linear programming problem (5.6.7). Crisp linear programming problem (5.6.7) " # m X n n o X 0 0 1 2 3 xij Minimize H cij;1 ; cij;2 ; cij;3 ; cij;4 ; cij;1 ; cij;2 ; cij;3 ; cij;4 ; min 1 i m wij ; wi ; wj i¼1 j¼1
1jn
Subject to n X
n o 0 0 1 2 3 xij ¼ H ai;1 ; ai;2 ; ai;3 ; ai;4 ; ai;1 ; ai;2 ; ai;3 ; ai;4 ; min 1 i m wij ; wi ; wj ; 1jn
j¼1
i ¼ 1; 2; . . .; m; n X
n o xij ¼ H bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m w1ij ; w2i ; w3j ;
j¼1
j ¼ 1; 2; . . .; n; xij is a non-negative real number.
1jn
218
5 JMD Approach for Solving Unbalanced Fully Generalized …
Step 8: Using the existing approach for comparing generalized trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 5.4, the crisp linear programming problem (5.6.7) can be transformed into its equivalent generalized intuitionistic fuzzy linear programming problem (5.5.1).
5.7
Limitations of Chakraborty et al.’s Approach
In this section, some limitations of Chakraborty et al.’s approach [1] have been pointed out. (i) Chakraborty et al.’s approach [1] cannot be used to solve unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. (ii) To solve a real-life transportation problem, the opinion of two or more experts about the parameters is collected. Then, all the collected information is aggregated to obtain a single value of each parameter. Since, Chakraborty et al.’s approach [1] has been proposed by considering the assumption that the aggregated value of each parameter is available. Therefore, Chakraborty et al.’s approach [1] cannot be used to solve several real-life fully generalized trapezoidal intuitionistic fuzzy transportation problems. For example, Chakraborty et al.’s approach [1] cannot be used to solve the fully generalized trapezoidal transportation problem considered in Example 5.7.1. Example 5.7.1 Let us consider a product needs to be supplied from two sources to two destinations. For the same purpose, the information about each parameter is collected from two experts. If (i) Table 5.2 represents the generalized trapezoidal intuitionistic fuzzy transportation cost, the generalized trapezoidal intuitionistic fuzzy availability and the generalized trapezoidal intuitionistic fuzzy demand according to the first decision-maker. (ii) Table 5.3 represents the generalized trapezoidal intuitionistic fuzzy transportation cost, the generalized trapezoidal intuitionistic fuzzy availability and the generalized trapezoidal intuitionistic fuzzy demand according to the second decision-maker. Then, this fully generalized trapezoidal intuitionistic fuzzy transportation problem cannot be solved by Chakraborty et al.’s approach [1].
5.8 Invalidity of Chakraborty et al.’s Approach
219
Table 5.2 Generalized intuitionistic fuzzy data provided by the first decision-maker Sources
Destinations D1
S1
S2 Generalized intuitionistic fuzzy demand
10; 30; 40; 50; 5; 30; 40; 55; 0:5
D2
15; 30; 50; 80; 10; 30; 50; 90; 0:8 40; 60; 70; 90; 30; 60; 70; 95; 0:5
25; 50; 60; 80; 10; 50; 60; 90; 0:6
20; 40; 60; 80; 15; 40; 60; ; 85; 0:7 10; 45; 55; 70; 5; 45; 55; 80; 0:5
Generalized intuitionistic fuzzy availability 20; 60; 70; 80; 15; 60; 70; 85; 0:5 25; 45; 60; 70; 20; 45; 60; ; 80; 0:5
Table 5.3 Generalized intuitionistic fuzzy data provided by the second decision-maker Sources
S1 S2 Generalized intuitionistic fuzzy demand
5.8
Destinations D1
D2
15; 35; 45; 55; 10; 35; 45; ; 60; 0:5 20; 35; 55; 85; 15; 35; 55; 95; 0:4 45; 65; 75; 95; 35; 65; 75; 100; 0:2
30; 55; 65; 85; 15; 55; 65; 95; 0:8 25; 45; 65; 85; 20; 45; 65; 90; 0:3 15; 50; 60; 75; 10; 50; 60; 85; 0:6
Generalized intuitionistic fuzzy availability 25; 65; 75; 85; 20; 65; 75; 90; 0:5 30; 50; 65; 75; 25; 50; 65; 85; 0:5
Invalidity of Chakraborty et al.’s Approach
In this section, it is showed that Chakraborty et al. [1] have used a mathematical incorrect assumption in their proposed approach. Hence, Chakraborty et al.’s approach [1] is not valid. et al. [1] have used
It is obvious from Step 6 that Chakraborty the relation H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w ¼ H ða1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; wÞ H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w to transform the crisp linear programming problem (5.6.5) into its equivalent crisp linear programming problem (5.6.6). While, the following example clearly indicates that this relation is not valid, i.e., the generalized crisp linear programming problem (5.6.5) cannot be transformed into the crisp linear programming problem (5.6.6). Hence, the generalized intuitionistic fuzzy linear programming problem (5.5.1) is not valid. Let a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w ¼ ð2; 3; 4; 5; 1; 2; 4; 6; 0:5Þ and ðb1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; wÞ ¼ ð3; 4; 5; 6; 2; 4; 5; 7; 0:5Þ.
220
5 JMD Approach for Solving Unbalanced Fully Generalized …
Then, H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w ¼ H ½ð2; 3; 4; 5; 1; 3; 4; 6; 0:5Þ ð3; 4; 5; 6; 2; 4; 5; 7; 0:5Þ ¼ H ð6; 12; 20; 30; 3; 12; 20; 42; 0:5Þ ¼ 17:75. While, H a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w H b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w ¼ H ð2; 3; 4; 5; 1; 2; 4; 6; 0:5Þ H ð3; 4; 5; 6; 2; 4; 5; 7; 0:5Þ ¼ 1:6875 2:25 ¼ 3:796875.
5.9
Inappropriateness of the Existing Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers
Chakraborty et al. [1] have used an existing approach, discussed in Sect. 5.4, for comparing generalized trapezoidal intuitionistic fuzzy numbers. However, the following example clearly indicates that it is inappropriate to use it for comparing generalized trapezoidal intuitionistic fuzzy numbers. It is obvious that ð20; 60; 80; 100; 10; 60; 80; 110; 0:8Þ and ð25; 55; 85; 95; 5; 55; 85; 115; 0:8Þ are two different generalized trapezoidal intuitionistic fuzzy numbers. Therefore, minimum of these generalized trapezoidal intuitionistic fuzzy numbers should be either ð20; 60; 80; 100; 10; 60; 80; 110; 0:8Þ or ð25; 55; 85; 95; 5; 55; 85; 115; 0:8Þ. While, as H ð20; 60; 80; 100; 10; 60; 80; 110; 0:8Þ ¼ H ð25; 55; 85; 95; 5; 55; 85; 115; 0:8Þ ¼ 52. Therefore, according to the existing approach for comparing generalized trapezoidal intuitionistic fuzzy numbers, discussed in Sect. 5.4, both the generalized trapezoidal intuitionistic fuzzy numbers ð20; 60; 80; 100; 10; 60; 80; 110; 0:8Þ and ð25; 55; 85; 95; 5; 55; 85; 115; 0:8Þ will represent the minimum value.
5.10
PRABHUS Approach for Comparing Generalized Trapezoidal Intuitionistic Fuzzy Numbers
It is obvious from Sect. 5.9 that it is not appropriate to use the existing approach, discussed in Sect. 5.4, for comparing generalized trapezoidal intuitionistic fuzzy numbers. In this section, a new approach (named as PRABHUS approach) has been proposed for comparing generalized trapezoidal intuitionistic fuzzy numbers Using the proposed PRABHUS approach, the generalized trapezoidal intuI e itionistic fuzzy numbers A 1 ¼ a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 and e I ¼ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a0 ; a2;2 ; a2;3 ; a0 ; w2 A 2;1 2;4 2 can be compared as follows:
5.10
PRABHUS Approach for Comparing Generalizsed …
221
Step 1: Check that P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ or P a1;1 ; a1;2 ; a1;3 ; a1;4 ; P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\ minfw1 ; w2 gÞ or P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ , where, P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a1;1 þ a1;2 þ a1;3 þ a1;4 þ a01;1 þ a1;2 þ a1;3 þ a01;4 Þ and P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ ¼ minfw1 ; w2 g a2;1 þ a2;2 þ a2;3 þ a2;4 þ a02;1 þ a2;2 þ a2;3 þ a02;4 Þ.
Case (i): If P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (ii): If P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \ P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 Þ. Case (iii): If P a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ P a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, go to Step 2. Step 2: Check that R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ [ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ or R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ, where R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a1;1 þ a1;2 þ a1;3 þ a1;4 þ a1;2 þ a1;3 þ a01;4 Þ and R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ ¼ minfw1 ; w2 g a2;1 þ a2;2 þ a2;3 þ a2;4 þ a22 þ a2;3 þ a02;4 .
222
5 JMD Approach for Solving Unbalanced Fully Generalized …
Case (i): If R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 Þ. Case (ii): If R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 Þ. Case (iii): If R a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ R a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, go to Step 2. Step 3: Check that A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; min fw1 ; w2 gÞ or A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ, where A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a1;2 þ a1;3 þ a1;4 þ a1;2 þ a1;3 þ a01;4 Þ and A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ ¼ minfw1 ; w2 g a2;2 þ a2;3 þ a2;4 þ a22 þ a2;3 þ a02;4 . Case (i): If A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ; w2 . Case (ii): If A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\A a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a02;1 ; a2;2 ; a02;3 ; w2 . Case (iii): If A a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ A a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, go to Step 2. Step 4: Check that B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or B a1;1 ; a1;2 ; a1;3 ; a1;4 ;
5.10
PRABHUS Approach for Comparing Generalizsed …
223
a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; min fw1 ; w2 gÞ or B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ, where B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a1;3 þ a1;4 þ a1;3 þ a01;4 Þ and B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a2;3 þ a2;4 þ a2;3 þ a02;4 . Case (i): If B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (ii): If B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (iii): If B a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ B a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, go to Step 2. Step 5: Check that H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; min fw1 ; w2 gÞ or H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ, where H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a1;4 þ a01;4 Þ and H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a2;4 þ a02;4 . Case (i): If H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 .
224
5 JMD Approach for Solving Unbalanced Fully Generalized …
Case (ii): If H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \ H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (iii): If H a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ H a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, go to Step 2. Step 6: Check that U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ U a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\U a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; min fw1 ; w2 gÞ or U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ U a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ, where U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a01;4 and U a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g ¼ minfw1 ; w2 g a02;4 . Case (i): If U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ U a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (ii): If U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \ U a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (iii): If U a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ U a2;1 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;2 ; a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Step 7: Check that S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ S a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 g or S a1;1 ; a1;2 ; a1;3 ; a1;4 ; S a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; min a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 gÞ\ fw1 ; w2 gÞ or S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ S a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ,
5.10
PRABHUS Approach for Comparing Generalizsed …
225
where S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ w1 and S a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ ¼ w2 . Case (i): If S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g [ S a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (ii): If S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g \S a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 . Case (iii): If S a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; minfw1 ; w2 g ¼ S a2;1 ; a2;2 ; a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; minfw1 ; w2 gÞ. Then, a1;3 ; a01;4 ; w1 Þ ¼ a2;1 ; a2;2 ; a2;3 ; a2;4 ; a02;1 ; a2;2 ; a2;3 ; a02;4 ; w2 .
5.11
Proposed JMD Approach
In this section, to overcome the limitations and to resolve a drawback of Chakraborty et al.’s approach [1], a new approach (named as JMD approach) has been proposed for solving unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. Step 1: Check that the aggregated value of the generalized trapezoidal intuitionistic fuzzy transportation cost, the generalized trapezoidal intuitionistic fuzzy availability and the generalized trapezoidal intuitionistic fuzzy demand, provided by all the decision-makers, is available or not. Case (i): If it is available, then go to Step 2. Case (ii): If it is not available, then find generalized trapezoidal intuitionistic fuzzy number ~cij ¼ P Pp Pp Pp p k k k k wk ~ckij ¼ k¼1 wk cij;1 ; k¼1 wk cij;2 ; k¼1 wk cij;3 ; k¼1 wk cij;4 ; n o Pp Pp Pp Pp k k k k k1 w c ; w c : ; w c ; w c ; min w 1im ij k¼1 k ij;5 k¼1 k ij;2 k¼1 k ij;3 k¼1 k ij;6
(i) The
pk¼1
1jn
representing the aggregated value of the generalized intuitionistic fuzzy cost
226
5 JMD Approach for Solving Unbalanced Fully Generalized …
for supplying the one unit quantity of the product from the ith source to the jth destination. (ii) The generalized trapezoidal intuitionistic fuzzy number ~ ai ¼ P P P P p p p p p k k k k k¼1 wk ~ aki ¼ k¼1 wk ai;1 ; k¼1 wk ai;2 ; k¼1 wk ai;3 ; k¼1 wk ai;4 ; Pp P p k k k¼1 wk ai;5 ; k¼1 wk ai;2 ; :
k2 Pp Pp k k representing the aggregated k¼1 wk ai;3 ; k¼1 wk ai;6 ; min1 i m wi value of the generalized intuitionistic fuzzy availability of the product at the ith source. (iii) The generalized trapezoidal intuitionistic fuzzy number ~ bj ¼ P P P P p p p p p k k k k k¼1 wk ~bkj ¼ k¼1 wk bj;1 ; k¼1 wk bj;2 ; k¼1 wk bj;3 ; k¼1 wk bj;4 ; n o Pp Pp Pp Pp k k k k k3 repk¼1 wk bj;5 ; k¼1 wk bj;2 ; : k¼1 wk bj;3 ; k¼1 wk bj;6 ; min1 j n wj resenting the aggregated value of the generalized intuitionistic fuzzy demand of the product at the jth destination. where (i) wk 2 ½0; 1 represents the normalized weight of the kth decision-maker. (ii) The generalized trapezoidal intuitionistic fuzzy number ~ckij ¼ ckij;1 ; ckij;2 ; ckij;3 ; ckij;4 ; ckij;5 ; ckij;2 ; ckij;3 ; ckij;6 ; wk1 ij Þ represents the generalized trapezoidal intuitionistic fuzzy transportation cost for supplying the one unit quantity of the product from the ith source to the jth destination according to the kth decision-maker.
~ki ¼ aki;1 ; aki;2 ; aki;3 ; (iii) The generalized trapezoidal intuitionistic fuzzy number a aki;4 ; aki;5 ; aki;2 ; aki;3 ; aki;6 ; wk2 i Þ represents the generalized trapezoidal intuitionistic fuzzy availability of the product at the ith source according to the kth decision-maker. (iv) The generalized trapezoidal intuitionistic fuzzy number ~ bkj ¼ bkj;1 ; bkj;2 ; bkj;3 ; bkj;4 ; bkj;5 ; bkj;2 ; bkj;3 ; bkj;6 ; wk3 j Þ represents the generalized trapezoidal intuitionistic fuzzy demand of the product at the jth destination according to the kth decision-maker. and go to Step 2. For example, if in Example 5.7.1, the normalized weights of first and second decision-makers are 0.4 and 0.6, repsectively. Then, Table 5.13.1 will represent the aggregated generalized trapezoidal intuitionistic fuzzy cost for supplying the one unit quantity of the product, the generalized trapezoidal intuitionistic fuzzy availability and the generalized trapezoidal intuitionistic fuzzy demand (Table 5.4).
5.11
Proposed JMD Approach
227
Table 5.4 Aggregated generalized trapezoidal intuitionistic fuzzy data of decision-makers Source
S1 S2 Generalized intuitionistic fuzzy demand
Destinations D1
13; 33; 43; 53; 8; 33; 43; 58; 0:5
D2
18; 33; 53; 83; 13; 33; 53; 93; 0:4 43; 63; 73; 93; 33; 63; 73; 98; 0:2
28; 53; 63; 83; 13; 53; 63; 93; 0:6
23; 43; 63; 83; 18; 43; 63; 88; 0:3 13; 48; 58; 73; 8; 48; 58; 83; 0:5
Generalized intuitionistic fuzzy availability 23; 63; 73; 83; 18; 63; 73; 88; 0:5 28; 48; 63; 73; 23; 48; 63; 83; 0:5
Step 2: Find the total generalized intuitionistic of the product, i.e., fuzzyavailability Pm Pm Pm m 0 0 2 i¼1 ai;1 ; ai;2 ; ai;3 ; ai;4 ; ai;1 ; ai;2 ; ai;3 ; ai;4 ; wi ¼ i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ;
2 Pm 0 Pm Pm Pm 0 Pm i¼1 ai;4 ; i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ; i¼1 ai;4 ;min1 i m wi Þ and the total generalized intuitionistic demand of the product, i.e., Pn Pn Pn n 0 0 3 j¼1 bj;1 ; bj;2 ; bj;3 ; bj;4 ; bj;1 ; bj;2 ; bj;3 ; bj;4 ; wj ¼ j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; n o Pn Pn 0 Pn Pn Pn 0 3 j¼1 bj;4 ; j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 ; min1 j n wj Þ P Pm Pm Pm Pm 0 m Step 3: Check that i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ; i¼1 ai;4 ; i¼1 ai;1 ; P
2 Pm Pm Pm 0 P P n n n i¼1 ai;2 ; i¼1 ai;3 ; i¼1 ai;4 ;min1 i m wi Þ ¼ j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; n o Pn Pn 0 Pn Pn Pn 0 3 i.e., j¼1 bj;4 ; j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 ; min1 j n wj Þ, Pn Pm Pn Pm Pn Pm ai;1 ¼ j¼1 bj;1 , ai;2 ¼ bj;2 , i¼1 ai;3 ¼ j¼1 bj;3 , Pn Pm 0 i¼1 Pn 0 j¼1 Pm 0 P Pi¼1 m n 0 a ¼ b , a ¼ b , a ¼ b and i¼1 i;4 j¼1 j;4 i¼1 i;1 i¼1 i;4 j¼1 j;4 n o j¼1 j;1
2 min1 i m wi ¼ min1 j n w3j or not. P Pm Pm Pm Pm 0 Pm Pm m Case 1: If i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ; i¼1 ai;4 ; i¼1 ai;1 ; i¼1 ai;2 i¼1 ai;3 ; P
2 Pn Pn Pn Pn 0 Pm 0 n i¼1 ai;4 ; min1 i m wi Þ ¼ j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 ; j¼1 bj;1 ; n o Pn Pn 0 Pn 3 j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 min1 j n wj Þ: Then, the considered fully generalized trapezoidal intuitionistic fuzzy transportation problem is a balanced fully generalizedtrapezoidal intuitionistic fuzzy transportation problem. Go to Step 5. Pm Pm Pm Pm 0 Pm Pm Pm Case 2: If i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ; i¼1 ai;4 ; i¼1 ai;1 ; i¼1 ai;2 ; i¼1 ai;3 ;
Pn Pn Pn Pn 0 Pn Pm 0 2 i¼1 ai;4 ; min1 i m wi Þ 6¼ j¼1 bj;1 ; j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 ; j¼1 bj;1 ; n o Pn Pn 0 Pn 3 Then, the considered fully j¼1 bj;2 ; j¼1 bj;3 ; j¼1 bj;4 ; min1 j n wj Þ:
5 JMD Approach for Solving Unbalanced Fully Generalized …
228
generalized trapezoidal intuitionistic fuzzy transportation problem is an unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problem. Go to Step 4. Step 4: Add a dummy source Sm þ 1 having generalized intuitionistic fuzzy avail I ability ~aðm þ 1Þ ¼ aðm þ 1Þ;1 ; aðm þ 1Þ;2 ; aðm þ 1Þ3 ; aðm þ 1Þ4 ; a0ðm þ 1Þ;1 ; aðm þ 1Þ;2 ; aðm þ 1Þ3 ; n n oo
a0ðm þ 1Þ;4 :; min min1 i m w2i ; min1 j n w3j and consider the cost for supplying the one unit quantity of the product from the dummy source Sm þ 1 to all the destinations as a generalized trapezoidal intuitionistic fuzzy number ~0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 1Þ. where ( 0
aðm þ 1Þ;1 ¼ max 0;
n X j¼1
aðm þ 1Þ;1 ¼
a0ðm þ 1Þ;1
b0j;1
(
m X
;
i¼1
þ max 0; (
aðm þ 1Þ;2 ¼ aðm þ 1Þ;1 þ max 0; ( aðm þ 1Þ;3 ¼ aðm þ 1Þ;2 þ max 0; ( aðm þ 1Þ;4 ¼ aðm þ 1Þ;3 þ max 0; ( a0ðm þ 1Þ;4
) a0i;1
¼ aðm þ 1Þ;4 þ max 0;
n X
bj1
n X
j¼1
j¼1
n X
n X
bj2
j¼1
j¼1
n X
n X
bj3
j¼1
j¼1
n X
n X
bj4
j¼1 n X j¼1
! b0j;1 !
bj1 !
bj2 !
n X j¼1
bj3
j¼1
b0j;4
m X
ai1
i¼1
i¼1
m X
m X
ai2
i¼1
i¼1
m X
m X
ai3
i¼1
i¼1
m X
m X
ai4
i¼1
! bj4
m X
m X i¼1
!) a0i;1 !) ;
ai1 !)
;
ai2 !) ai3
i¼1
a0i;4
;
m X
; !)
ai4
;:
i¼1
Also, add a dummy destination Dn þ 1 having intuitionistic fuzzy demand 0 0 ~bI ðn þ 1Þ ¼ bðn þ 1Þ;1 ; bðn þ 1Þ;2 ; bðn þ 1Þ3 ; bðn þ 1Þ4 ; bðn þ 1Þ;1 ; bðn þ 1Þ;2 ; bðn þ 1Þ3 ; bðn þ 1Þ;4 ; n n o o
min min1 i m w2i ; min1 j n w3j and consider the cost for supplying the one unit quantity of the product from all the sources to the dummy destination as a generalized trapezoidal intuitionistic fuzzy number Dn þ 1 ~0 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 1Þ. where
5.11
Proposed JMD Approach
( b0ðn þ 1Þ;1
¼ max 0;
m X i¼1
bðn þ 1Þ;1 ¼
b0ðn þ 1Þ;1
229
a0i;limits1
) b0j;limits1
;
j¼1
(
þ max 0; (
bðn þ 1Þ;2 ¼ bðn þ 1Þ;1 þ max 0; ( bðn þ 1Þ;3 ¼ bðn þ 1Þ;2 þ max 0; ( bðn þ 1Þ;4 ¼ bðn þ 1Þ;3 þ max 0;
m X
ai1
¼ bðn þ 1Þ;4 þ max 0;
m X
i¼1
i¼1
m X
m X
ai2
i¼1
i¼1
m X
m X
ai3
i¼1
i¼1
m X
m X
ai4
i¼1
( b0ðn þ 1Þ;4
n X
m X
! a0i;limits1 !
ai1 !
ai2 ! ai3
i¼1
m X i¼1
bj1
j¼1
i¼1
a0i;limits4
n X
! ai4
n X
bj2
n X j¼1
n X
n X
bj3
j¼1
j¼1
n X
n X
!) b0j;limits1
bj4
!) ;
bj1 !)
;
bj2 !) bj3
;
j¼1 n X j¼1
;
j¼1
j¼1
j¼1
n X
b0j;limits4
n X
!) bj4
:
j¼1
Step 5: Write the generalized intuitionistic fully fuzzy linear programming problem (5.11.1) corresponding to the considered/transformed balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem. Generalized intuitionistic fully fuzzy linear programming problem (5.11.1) h i þ1 nþ1 I ~ ~ Minimize m x c ij i¼1 j¼1 ij Subject to nX þ1
~xij ~aIi ;
i ¼ 1; 2; . . .; m þ 1;
j¼1 m þ1 X
~xij ~bIj ;
j ¼ 1; 2; . . .; n þ 1;
i¼1
~xij is a non-negative generalized trapezoidal intuitionistic fuzzy number. Step 6: Transform the generalized intuitionistic fully fuzzy linear programming problem (5.11.1) into its equivalent generalized intuitionistic fully fuzzy linear programming problem (5.11.2) by replacing the parameters ~cIij , ~ aI , ~ bI and ~xij with i j the generalized trapezoidal intuitionistic fuzzy numbers cij;1 ; cij;2 ; cij;3 ; cij;4 ; c0ij;1 ; cij;2 ; cij;3 ; c0ij;4 ; w1ij Þ, ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; w2i , bj;1 ; bj;2 ; bj;3 ; bj;4 ;
5 JMD Approach for Solving Unbalanced Fully Generalized …
230
b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; w3j Þ
and
ðxij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; 1jn
w2i ; w3j Þ, respectively. Generalized intuitionistic fully fuzzy linear programming problem (5.11.2) h i þ1 nþ1 0 0 1 Minimize m c ; c ; c ; c ; c ; c ; c ; c ; w ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 j¼1 ij;1 ij;4 ij n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
Subject to þ1 nj¼1
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m 1jn
ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; w2i ;
n
w1ij ; w2i ; w3j
o
i ¼ 1; 2; . . .; m þ 1;
n o 0 0 1 2 3 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; w3j ; j ¼ 1; 2; . . .; n þ 1; þ1 m i¼1
n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j is a non1jnþ1
negative generalized trapezoidal intuitionistic fuzzy number. Step 7: Using the relation, a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; w1 b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; w2 Þ ¼ a1 ; a2 ; a3 ; a4 ; a01 ; a2 ; a3 ; a04 ; minfw1 ; w2 g b1 ; b2 ; b3 ; b4 ; b01 ; b2 ; b3 ; b04 ; minfw1 ; w2 gÞ ¼ a1 b1 ; a2 b2 ; a3 b3 ; a4 b4 ; a01 b01 ; a2 b2 ; a3 b3 ; a04 b04 ; minfw1 ; w2 g ,transform the generalized intuitionistic fully fuzzy linear programming problem (5.11.2) into its equivalent generalized intuitionistic fully fuzzy linear programming problem (5.11.3). Generalized intuitionistic fuzzy linear programming problem (5.11.3) h þ1 nþ1 Minimize m cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;c0ij;1 x0ij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; c0ij;4 x0ij;4 ; i¼1 j¼1 n o 1 2 3 min 1 i m þ 1 wij ; wi ; wj 1jnþ1
Subject to
5.11
Proposed JMD Approach
þ1 nj¼1
231
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 1jnþ1
ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; w2i ;
n
w1ij ; w2i ; w3j
o
i ¼ 1; 2; . . .; m þ 1;
n o mþ1 0 0 1 2 3 i¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m þ 1 wij ; wi ; wj 1jnþ1 bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; w3j ; j ¼ 1; 2; . . .; n þ 1; n o 0 0 1 2 3 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m þ 1 wij ; wi ; wj 1jnþ1
is
a
non-negative generalized trapezoidal intuitionistic fuzzy number. Step 8: Using the proposed PRABHUS approach for comparing generalized trapezoidal intuitionistic fuzzy numbers and the relation n o xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j is a non-negative 1jn
generalized trapezoidal intuitionistic fuzzy number implies 0 x0ij;1 xij;1 xij;2 xij;3 ; xij;4 x0ij;4 , transform the generalized intuitionistic fully fuzzy linear programming problem (5.11.3) into its equivalent generalized intuitionistic fuzzy linear programming problem (5.11.4). Generalized intuitionistic fuzzy linear programming problem (5.11.4) h þ1 nþ1 Minimize m cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;c0ij;1 x0ij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; c0ij;4 x0ij;4 ; i¼1 j¼1 n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to n o þ1 ¼ P nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1 n o ; i ¼ 1; 2; . . .; m þ 1; P ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1
5 JMD Approach for Solving Unbalanced Fully Generalized … n o þ1 0 0 1 2 3 ¼ P m x ; x ; x ; x ; x ; x ; x ; x ; min w ; w ; w 1imþ1 ij;1 ij;2 ij;3 ij;4 ij;1 ij;2 ij;3 ij;4 i¼1 ij i j 1jnþ1 n o ; j ¼ 1; 2; . . .; n þ 1; P bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j
232
1jnþ1
n o þ1 ¼ R nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1 n o ; i ¼ 1; 2; . . .; m þ 1; R ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
n o þ1 0 0 1 2 3 ¼ R m x ; x ; x ; x ; x ; x ; x ; x ; min w ; w ; w 1im ij;1 ij;2 ij;3 ij;4 ij;1 ij;2 ij;3 ij;4 i¼1 ij i j 1jn n o ; j ¼ 1; 2; . . .; n þ 1; R bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1
n o þ1 ¼ A nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1 n o ; i ¼ 1; 2; . . .; m; A ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j 1jn
n o þ1 0 0 1 2 3 A m x ; x ; x ; x ; x ; x ; x ; x ; min w ; w ; w ¼ 1imþ1 ij;1 ij;2 ij;3 ij;4 ij;1 ij;2 ij;3 ij;4 i¼1 ij i j 1jnþ1 n o A bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j ; j ¼ 1; 2; . . .; n þ 1; 1jnþ1
n o nþ1 0 0 1 2 3 ¼ B j¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; xij;1 ; xij;2 ; xij;3 ; xij;4 ; min 1 i m wij ; wi ; wj 1jn n o B ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m w1ij ; w2i ; w3j ; i ¼ 1; 2; . . .; m þ 1; 1jn
n o þ1 0 0 1 2 3 B m x ; x ; x ; x ; x ; x ; x ; x ; min w ; w ; w ¼ 1 i m þ 1 ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 ij;1 ij;4 ij i j 1jnþ1 n o B bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j ; j ¼ 1; 2; . . .; n þ 1; 1jnþ1
n o þ1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j ¼ B nj¼1 1jnþ1 n o B ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j ; i ¼ 1; 2; . . .; m þ 1; 1jnþ1
5.11
Proposed JMD Approach 233 n o mþ1 ¼ H i¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1 n o H bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j ; j ¼ 1; 2; . . .; n þ 1;
1jnþ1
n o þ1 ¼ U nj¼1 xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1 n o ; i ¼ 1; 2; . . .; m þ 1; U ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j
1jnþ1
n o þ1 0 0 1 2 3 ¼ x ; x ; x ; x ; x ; x ; x ; x ; min w ; w ; w U m 1 i m þ 1 ij;1 ij;2 ij;3 ij;4 ij;2 ij;3 i¼1 ij;1 ij;4 ij i j 1jnþ1 n o ; j ¼ 1; 2; . . .; n þ 1; U bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j 1jnþ1
0 x0ij;1 xij;1 xij;2 xij;3 ; xij;4 x0ij;4 : h i 0 0 a ; a ; a ; a ; a ; a ; a ; a ; w Step 9: Using the relations, P m ¼ i;1 i;2 i;3 i;4 i;2 i;3 i i¼1 i;1 i;4 hP i
m 0 0 , R m i¼1 ai;1 ; i¼1 P aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; min1 i m fwi g hP m 0 ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; wi Þ ¼ i¼1 R aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;1 ; aij;2 ; aij;3 ; h i P m 0 0 a0ij;4 ; min1 i m fwi gÞ, A m ¼ i¼1 ai;1 ; ai;2 ; ai;3 ; ai;4 ; ai;1 ; ai;2 ; ai;3 ; ai;4 ; wi i¼1 A
aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; min1 i m fwi g , B m i¼1 ai;1 ; ai;2 ; ai;3 ; hP m 0 0 ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; wi Þ ¼ i¼1 B aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; h i
Pm 0 0 min1 i m fwi gÞ, H m ¼ i¼1 ai;1 ; ai;2 ; ai;3 ; ai;4 ; ai;1 ; ai;2 ; ai;3 ; ai;4 ; wi i¼1 H
aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; min1 i m fwi g and U m i¼1 ai;1 ; ai;2 ; hP m 0 0 ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; wi Þ ¼ i¼1 U aij;1 ; aij;2 ; aij;3 ; aij;4 ; aij;1 ; aij;2 ; aij;3 ; aij;4 ; min1 i m fwi gÞ , transform the generalized intuitionistic fuzzy linear programming problem (5.11.4) into its equivalent generalized intuitionistic fuzzy linear programming problem (5.11.5). Generalized intuitionistic fuzzy linear programming problem (5.11.5) h þ1 nþ1 Minimize m cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;c0ij;1 x0ij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; c0ij;4 x0ij;4 ; i¼1 j¼1 13 n o min w1ij ; w2i ; w3j A5 1imþ1 1jnþ1
Subject to
5 JMD Approach for Solving Unbalanced Fully Generalized …
234
0 @
nX þ1
0 P@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
j¼1
0
P@ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; 0
m þ1 X
@
n min
1imþ1 1jnþ1
n min
1imþ1 1jnþ1
n
P@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
min
1imþ1 1jnþ1
i¼1
0
0 @
nX þ1
min
1imþ1 1jnþ1
R@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
j¼1
0
R@ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; 0
m þ1 X
@
n min
1imþ1 1jnþ1
n min
1imþ1 1jnþ1
min
i¼1
0
R@bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; 0 @
nX þ1
min
1imþ1 1jnþ1
A@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
j¼1
0
A@ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; 0 @
m þ1 X
n min
1imþ1 1jnþ1
n min
i
0 A@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
i¼1
0
A@bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ;
min
1imþ1 1jnþ1
n min
AA ¼
j ¼ 1; 2; . . .; n þ 1; 11
i ¼ 1; 2; . . .; m þ 1;
o
11
w1ij ; w2i ; w3j AA ¼
j ¼ 1; 2; . . .; n þ 1;
o
11
w1ij ; w2i ; w3j AA ¼
j
n
1imþ1 1jnþ1
1 o A;
1 o w1 ; w2 ; w3 A; ij
1imþ1 1jnþ1
11
w1ij ; w2i ; w3j AA ¼
1 n o w1ij ; w2i ; w3j A;
0
o
o
n 1imþ1 1jnþ1
i ¼ 1; 2; . . .; m þ 1;
w1ij ; w2i ; w3j
w1ij ; w2i ; w3j
0 R@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
1 o A;
1 n o w1ij ; w2i ; w3j A;
0
11
w1ij ; w2i ; w3j AA ¼
w1ij ; w2i ; w3j
0
P@bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ;
o
i ¼ 1; 2; . . .; m þ 1;
o
11
w1ij ; w2i ; w3j AA ¼ o
1
w1ij ; w2i ; w3j A;
j ¼ 1; 2; . . .; n þ 1;
5.11
Proposed JMD Approach
0
nX þ1
@
0
B@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
j¼1
0
B@ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; 0 @
m þ1 X
n 1imþ1 1jnþ1
n min
1imþ1 1jnþ1
B@xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
0
B@bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ;
nX þ1
@
H @ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ;
m þ1 X
n min
1imþ1 1jnþ1
n min
1imþ1 1jnþ1
min
1imþ1 1jnþ1
i¼1
0
H @bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ; 0
nX þ1
@
n min
1imþ1 1jnþ1
U @xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
0
U @ai;1 ; ai;2 ; ai;3 ; ai;4 ; a0i;1 ; ai;2 ; ai;3 ; a0i;4 ; 0 @
m þ1 X
n min
1imþ1 1jnþ1
n min
1imþ1 1jnþ1
U @xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
0
U @bj;1 ; bj;2 ; bj;3 ; bj;4 ; b0j;1 ; bj;2 ; bj;3 ; b0j;4 ;
min
1imþ1 1jnþ1
j ¼ 1; 2; . . .; n þ 1;
o
11 AA ¼
1 A;
o
i ¼ 1; 2; . . .; m þ 1;
o
11 AA ¼
1 A;
j ¼ 1; 2; . . .; n þ 1;
o
11
1
w1ij ; w2i ; w3j A;
n min
A;
w1ij ; w2i ; w3j AA ¼
n
1imþ1 1jnþ1
1
w1ij ; w2i ; w3j
o
0
i¼1
o
w1ij ; w2i ; w3j
0
j¼1
o
w1ij ; w2i ; w3j
n
H @xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
11
w1ij ; w2i ; w3j AA ¼
w1ij ; w2i ; w3j
0
i ¼ 1; 2; . . .; m þ 1;
o
w1ij ; w2i ; w3j
0
0
@
min
1imþ1 1jnþ1
min
j¼1
0
n
1imþ1 1jnþ1
H @xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ;
1
w1ij ; w2i ; w3j A;
n
235
o w1ij ; w2i ; w3j AA ¼ o
0
i¼1
0
min
11
i ¼ 1; 2; . . .; m þ 1;
o
11
w1ij ; w2i ; w3j AA ¼ o
1
w1ij ; w2i ; w3j A;
j ¼ 1; 2; . . .; n þ 1;
0 x0ij;1 xij;1 xij;2 xij;3 ; xij;4 x0ij;4 : Step 10: Using the relations, P aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; w ¼ w aij;1 þ aij;2 þ aij;3 þ aij;4 þ a0ij;1 þ aij;2 þ aij;3 þ a0ij;4 , R aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ;
5 JMD Approach for Solving Unbalanced Fully Generalized …
236
aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;2 þ aij;3 þ a0ij;4 , A aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;2 þ aij;3 þ aij;4 þ aij;2 þ aij;3 þ a0ij;4 , B aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;3 þ aij;4 þ aij;3 þ a0ij;4 , H aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;4 þ a0ij;4 and U aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w a0ij;4 , transform the generalized intuitionistic fuzzy linear programming problem (5.11.5) into its equivalent crisp linear programming problem (5.11.6). Crisp linear programming problem (5.11.6) h n 0 0 0 0 Minimize m i¼1 j¼1 cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; 13 n o min w1ij ; w2i ; w3j A5 1imþ1 1jnþ1
Subject to 0 @ 0 @
n min
1imþ1 1jnþ1
min
1imþ1 1jnþ1
@
n min
1imþ1 1jnþ1
o
1 A
nX þ1
xij;1 þ xij;2 þ xij;3 þ xij;4 þ x0ij;1
þ xij;2 þ xij;3 þ x0ij;4
1 o w1ij ; w2i ; w3j A ai;1 þ ai;2 þ ai;3 þ ai;4 þ a0i;1 þ ai;2 þ ai;3 þ a0i;4 ;
0
@
n min
1imþ1 1jnþ1
i ¼ 1; 2; . . .; m þ 1;
1imþ1 1jnþ1
w1ij ; w2i ; w3j
o
1 A
nX þ1
j ¼ 1; 2; . . .; n þ 1;
xij;1 þ xij;2 þ xij;3 þ xij;4 þ xij;2 þ xij;3 þ x0ij;4
! ¼
j¼1
n min
¼
i¼1
1jnþ1
0
!
1 ! m þ1 o X w1ij ; w2i ; w3j A xij;1 þ xij;2 þ xij;3 þ xij;4 þ x0ij;1 þ xij;2 þ xij;3 þ x0ij;4 ¼
n o bj;1 þ bj;2 þ bj;3 þ bj;4 þ b0j;1 þ bj;2 þ bj;3 þ b0j;4 ; min 1 i m þ 1 w1ij ; w2i ; w3j
@
j¼1
n
0
w1ij ; w2i ; w3j
w1ij ; w2i ; w3j
1 o A ai;1 þ ai;2 þ ai;3 þ ai;4 þ ai;2 þ ai;3 þ a0 ; i;4
i ¼ 1; 2; . . .; m þ 1;
5.11 Proposed JMD Approach 0 1 ! m þ1 n o X @ min ¼ w1ij ; w2i ; w3j A xij;1 þ xij;2 þ xij;3 þ xij;4 þ xij;2 þ xij;3 þ x0ij;4 1imþ1 1jnþ1
0
n
@
min
1imþ1 1jnþ1
0 @ 0 @
min
1imþ1 1jnþ1
0 @ 0 @
w1ij ; w2i ; w3j
w1ij ; w2i ; w3j
n min
1imþ1 1jnþ1
min
0 @
w1ij ; w2i ; w3j
n min
1imþ1 1jnþ1
0 @
nX þ1
xij;2 þ xij;3 þ xij;4 þ xij;2 þ xij;3 þ x0ij;4
! ¼
o
1 A
m þ1 X
i ¼ 1; 2; . . .; m þ 1;
xij;2 þ xij;3 þ xij;4 þ xij;2 þ xij;3 þ x0ij;4
!
min
1imþ1 1jnþ1
1 o A bj;2 þ bj;3 þ bj;4 þ bj;2 þ bj;3 þ b0 ; j;4
w1ij ; w2i ; w3j
o
1 A
nX þ1
xij;3 þ xij;4 þ xij;3 þ x0ij;4
j ¼ 1; 2; . . .; n þ 1;
!
¼
1 o w1ij ; w2i ; w3j A ai;3 þ ai;4 þ ai;3 þ a0i;4 ;
i ¼ 1; 2; . . .; m þ 1;
min
1 ! m þ1 n o X 1 2 3 A 0 wij ; wi ; wj xij;3 þ xij;4 þ xij;3 þ xij;4 ¼
min
1 n o w1ij ; w2i ; w3j A bj;3 þ bj;4 þ bj;3 þ b0j;4 ;
1imþ1 1jnþ1
1imþ1 1jnþ1
0 @ 0 @
¼
j¼1
n
0 @
A
1 o A ai;2 þ ai;3 þ ai;4 þ ai;2 þ ai;3 þ a0 ; i;4
w1ij ; w2i ; w3j
0 @
1
i¼1
n 1imþ1 1jnþ1
o
j ¼ 1; 2; . . .; n þ 1;
j¼1
n min
i¼1
o w1ij ; w2i ; w3j A bj;1 þ bj;2 þ bj;3 þ bj;4 þ bj;2 þ bj;3 þ b0j;4 ;
n
1imþ1 1jnþ1
1
237
i¼1
j ¼ 1; 2; . . .; n þ 1;
min
1 ! nX þ1 n o 1 2 3 A 0 wij ; wi ; wj xij;4 þ xij;4 ¼
min
1 n o w1ij ; w2i ; w3j A ai;4 þ þ a0i;4 ;
1imþ1 1jnþ1
1imþ1 1jnþ1
j¼1
i ¼ 1; 2; . . .; m þ 1;
238
5 JMD Approach for Solving Unbalanced Fully Generalized …
0 @
min
1imþ1 1jnþ1
1 ! m þ1 n o X 1 2 3 A 0 wij ; wi ; wj xij;4 þ xij;4 i¼1
0
¼@
min
1imþ1 1jnþ1
1 n o 1 2 3 A wij ; wi ; wj bj;4 þ b0j;4 ;
j ¼ 1; 2; . . .; n þ 1; 0 @
min
1imþ1 1jnþ1
1 ! 0 nX þ1 n o w1ij ; w2i ; w3j A x0ij;4 ¼@ j¼1
min
1imþ1 1jnþ1
1 n o w1ij ; w2i ; w3j A a0i;4 ;
i ¼ 1; 2; . . .; m þ 1; 0 @
n min
1imþ1 1jnþ1
o
1
w1ij ; w2i ; w3j A
m þ1 X
x0ij;4
i¼1
!
0 ¼@
n min
1imþ1 1jnþ1
1 o w1ij ; w2i ; w3j A b0j;4 ;
j ¼ 1; 2; . . .; n þ 1; 0 x0ij;1 xij;1 xij;2 xij;3 ; xij;4 x0ij;4 : Step 11: Transform the generalized intuitionistic fuzzy linear programming problem (5.11.6) into its equivalent generalized intuitionistic fuzzy linear programming problem (5.11.7) by solving the constraints of the generalized intuitionistic fuzzy linear programming problem (5.11.6). Generalized intuitionistic fuzzy linear programming problem (5.11.7) h þ1 nþ1 Minimize m cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;c0ij;1 x0ij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; c0ij;4 x0ij;4 ; i¼1 j¼1 n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to nP þ1
xij;1 ¼ ai;1 ,
j¼1 nP þ1 x0ij;4 j¼1
nP þ1
xij;2 ¼ ai;2 ,
j¼1
¼ a0i;4 ; i ¼ 1; 2; . . .; m þ 1;
nP þ1 j¼1
xij;3 ¼ ai;3 ,
nP þ1 j¼1
xij;4 ¼ ai;4 ,
nP þ1 j¼1
x0ij;1 ¼ a0i;1 ,
5.11
Proposed JMD Approach
mP þ1
xij;1 ¼ bj;1 ,
i¼1 mP þ1 x0ij;4 i¼1
mP þ1
xij;2 ¼ bj;2 ,
i¼1
239 mP þ1
xij;3 ¼ bj;3 ,
i¼1
mP þ1
xij;4 ¼ bj;4 ,
i¼1
mP þ1 i¼1
x0ij;1 ¼ b0j;1 ,
¼ b0j;4 ; j ¼ 1; 2; . . .; n þ 1; 0 x0ij;1 xij;1 xij;2 xij;3 ; xij;4 x0ij;4 :
Step 12: Using the proposed PRABHUS approach, transform the generalized intuitionistic fuzzy linear programming problem (5.11.7) into its equivalent crisp multi-objective linear programming problem (5.11.8). Crisp linear programming problem (5.11.8) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 P cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 R cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 A cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 B cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 H cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 U cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
5 JMD Approach for Solving Unbalanced Fully Generalized …
240
Subject to Constraints of the crisp linear programming problem (5.11.7). Step 13: Solve the crisp linear programming problem (5.11.9) and check that a unique crisp optimal solution exists for the crisp linear programming problem (5.11.9) or not. Crisp linear programming problem (5.11.9) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 P cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to Constraints of the crisp linear programming problem (5.11.7). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (5.11.9), then go to Step 18. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (5.11.9), then go to Step 14. Step 14: Solve the crisp linear programming problem (5.11.10) and check that a unique crisp optimal solution exists for the crisp linear programming problem (5.11.10) or not. Crisp linear programming problem (5.11.10) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 R cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to þ1 nþ1 0 0 0 m i¼1 j¼1 P cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 n o x0ij;4 ;min 1 i m þ 1 w1ij ; w2i ; w3j ¼ Crisp optimal value of the crisp linear pro1jnþ1
gramming problem (5.11.9) and Constraints of the crisp linear programming problem (5.11.9).
5.11
Proposed JMD Approach
241
Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (5.11.10), then go to Step 18. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (5.11.10), then go to Step 15. Step 15: Solve the crisp linear programming problem (5.11.11) and check that a unique crisp optimal solution exists for the crisp linear programming problem (5.11.11) or not. Crisp linear programming problem (5.11.11) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 A cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to þ1 nþ1 0 0 0 0 m i¼1 j¼1 R cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o min 1 i m þ 1 w1ij ; w2i ; w3j ¼ Crisp optimal value of the crisp linear programming 1jnþ1
problem (5.11.10) and Constraints of the crisp linear programming problem (5.11.10). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (5.11.11), then go to Step 18. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (5.11.11), then go to Step 16. Step 16: Solve the crisp linear programming problem (5.11.12) and check that a unique crisp optimal solution exists for the crisp linear programming problem (5.11.12) or not. Crisp linear programming problem (5.11.12) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 B cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to
5 JMD Approach for Solving Unbalanced Fully Generalized …
242
þ1 nþ1 m c0ij;1 x0ij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; c0ij;4 i¼1 j¼1 A cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o x0ij;4 ;min 1 i m þ 1 w1ij ; w2i ; w3j ¼ Crisp optimal value of the crisp linear pro1jnþ1
gramming problem (5.11.11) and Constraints of the crisp linear programming problem (5.11.11). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (5.11.12), then go to Step 18. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (5.11.12), then go to Step 17. Step 17: Solve the crisp linear programming problem (5.11.13) and check that a unique crisp optimal solution exists for the crisp linear programming problem (5.11.13) or not. Crisp linear programming problem (5.11.13) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 H cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
Subject to þ1 nþ1 0 0 0 0 m i¼1 j¼1 B cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o min 1 i m þ 1 w1ij ; w2i ; w3j ¼ Crisp optimal value of the crisp linear programming 1jnþ1
problem (5.11.12) and Constraints of the crisp linear programming problem (5.11.12). Case (i): If a unique crisp optimal solution exists for the crisp linear programming problem (5.11.13), then go to Step 19. Case (ii): If more than one crisp optimal solution exists for the crisp linear programming problem (5.11.13), then go to Step 18. Step 18: Solve the crisp linear programming problem (5.11.14) and go to Step 19. Crisp linear programming problem (5.11.14) h þ1 nþ1 0 0 0 0 Minimize m i¼1 j¼1 U cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o w1ij ; w2i ; w3j min 1imþ1 1jnþ1
5.11
Proposed JMD Approach
243
Subject to þ1 nþ1 0 0 0 0 m i¼1 j¼1 H cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ;cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; n o min 1 i m þ 1 w1ij ; w2i ; w3j ¼ Crisp optimal value of the crisp linear programming 1jnþ1
problem (5.11.13) and Constraints of the crisp linear programming problem (5.11.13). n Step 19: Using the obtained crisp optimal solution xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; x0ij;4 ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; ng, find (i) The generalized intuitionistic fuzzy optimal solution ðxij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; min 1 i m w1ij ; w2i ; w3j Þ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n of the 1jn
generalized intuitionistic fuzzy linear programming problem (5.11.1). (ii) The generalized intuitionistic fuzzy optimal value ðcij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; n o 0 0 0 0 1 2 3 cij;4 xij;4 ; cij;1 xij;1 ; cij;2 xij;2 ; cij;3 xij;3 ; cij;4 xij;4 ; min 1 i m wij ; wi ; wj of the 1jn
generalized intuitionistic fuzzy linear programming problem (5.11.1).
5.12
Illustrative Example
Chakraborty et al. [1] solved the balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem, represented by Table 5.5, to illustrate their proposed approach. In this section, the generalized intuitionistic fuzzy optimal solution of the same problem is obtained by the proposed JMD approach. Using the proposed JMD approach, the generalized intuitionistic fuzzy optimal solution of generalized intuitionistic fully fuzzy transportation problem, represented by Table 5.5, can be obtained as follows: Step 1: To find a generalized intuitionistic fuzzy optimal solution of the balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem, represented by Table 5.5, is equivalent to find a generalized intuitionistic fuzzy optimal solution of the generalized intuitionistic fully fuzzy linear programming problem (5.12.1).
Generalized intuitionistic fuzzy demand ð~ bIj Þ
S3
S2
S1
Sources
1; 3; 4; 5; 0:5; 3; 4; 5; 0:6 3; 4; 5; 8; 2; 4; 5; 9; 0:7 6; 7; 8; 9; 5; 7; 8; 11; 1
3; 5; 6; 7; 2; 5; 6; 8; 0:6
1; 2; 3; 4; 0:5; 2; 3; 5; 0:8 4; 5; 6; 7; 3; 5; 6; 8; 0:8
4; 6; 7; 8; 3; 6; 7; 9; 0:2
2; 4; 5; 6; 1; 4; 5; 6; 0:5
D2
Destinations D1
Table 5.5 Fully generalized trapezoidal intuitionistic fuzzy transportation problem
2; 4; 5; 6; 0:5; 4; 5; 7; 0:6
2; 4; 5; 10; 1; 4; 5; 11; 0:2
2; 6; 7; 11; 1; 6; 7; 12; 0:4
3; 7; 8; 12; 2; 7; 8; 13; 0:3
D3
Generalized intuitionistic fuzzy availability ð~aIi Þ 4; 6; 8; 9; 2; 6; 8; 10; 0:6 0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:7 8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:8
244 5 JMD Approach for Solving Unbalanced Fully Generalized …
5.12
Illustrative Example
245
Generalized intuitionistic fully fuzzy linear programming problem (5.12.1) Minimize ð2; 4; 5; 6; 1; 4; 5; 6; 0:5Þ x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 ð4; 6; 7; 8; 3; 6; 7; 9; 0:2Þ x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 ð3; 7; 8; 12; 2; 7; 8; 13; 0:3Þ x13;1 ; x13;2 ; x13;3 ; x13;4 ; x013;1 ; x13;2 ; x13;3 ; x013;4 ; 0:2 ð1; 3; 4; 5; 0:5; 3; 4; 5; 0:6Þ x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 ð3; 5; 6; 7; 2; 5; 6; 8; 0:6Þ x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 ð2; 6; 7; 11; 1; 6; 7; 12; 0:4Þ x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ð3; 4; 5; 8; 2; 4; 5; 9; 0:7Þ x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ð1; 2; 3; 4; 0:5; 2; 3; 5; 0:8Þ x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ð2; 4; 5; 10; 1; 4; 5; 11; 0:2Þ x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2
Subject to x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ð4; 6; 8; 9; 2; 6; 8; 10; 0:6Þ; x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:7Þ; x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:8Þ; x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ð6; 7; 8; 9; 5; 7; 8; 11; 1Þ; x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ð4; 5; 6; 7; 3; 5; 6; 8; 0:8Þ; x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ð2; 4; 5; 6; 0:5; 4; 5; 7; 0:6Þ;
246
5 JMD Approach for Solving Unbalanced Fully Generalized …
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; 0:2 is a non-negative generalized trapezoidal intuitionistic fuzzy number.
Step 2: Using the multiplication, a1;1 ; a1;2 ; a1;3 ; a1;4 ; a01;1 ; a1;2 ; a1;3 ; a01;4 ; w1 b1;1 ; b1;2 ; b1;3 ; b1;4 ; b01;1 ; b1;2 ; b1;3 ; b01;4 ; w2 ¼ a1;1 b1;1 ; a1;2 b1;2 ; a1;3 b1;3 ; a1;4 b1;4 ; a01;1 b01;1 ; a1;2 b1;2 ; a1;3 b1;3 ; a01;4 b01;4 ; minfw1 ; w2 gÞ, the generalized intuitionistic fully fuzzy linear programming problem (5.12.1) can be transformed into its equivalent generalized intuitionistic fully fuzzy linear programming problem (5.12.2). Generalized intuitionistic fully fuzzy linear programming problem (5.12.2) Minimize 2x11;1 ; 4x11;2 ; 5x11;3 ; 6x11;4 ; 1x011;1 ; 4x11;2 ; 5x11;3 ; 6x011;4 ; 0:2 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 Subject to Constraints of the generalized intuitionistic fully fuzzy linear programming problem (5.12.1). Step 3: Using the proposed PRABHUS approach for comparing generalized trapezoidal intuitionistic fuzzy numbers, the generalized intuitionistic fully fuzzy linear programming problem (5.12.2) can be transformed into its equivalent generalized intuitionistic fuzzy linear programming problem (5.12.3).
5.12
Illustrative Example
247
Generalized intuitionistic fuzzy linear programming problem (5.12.3) Minimize 2x11;1 ; 4x11;2 ; 5x11;3 ; 6x11;4 ; 1x011;1 ; 4x11;2 ; 5x11;3 ; 6x011;4 ; 0:2 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 Subject to P x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ P x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ P x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ Pð4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; P x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ P x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ P x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ Pð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; P x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ P x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ P x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Pð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
P x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ P x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ P x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Pð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ;
248
5 JMD Approach for Solving Unbalanced Fully Generalized …
P x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ P x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ P x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ Pð4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ; P x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ P x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ P x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Pð2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ; R x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ R x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ R x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ Rð4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; R x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ R x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ R x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ Rð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; R x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ R x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ P x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Rð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
A x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ A x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ A x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Rð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ;
A x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ A x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ A x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ Að4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ;
5.12
Illustrative Example
249
A x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ A x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ A x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Að2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ; A x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ A x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ A x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ Að4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; A x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ A x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ A x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ Að0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; A x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ A x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ A x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Að8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
A x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ A x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ A x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Að6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ; A x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ A x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ A x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ Að4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ; A x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ A x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ A x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Að2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ;
250
5 JMD Approach for Solving Unbalanced Fully Generalized …
B x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ B x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ B x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Bð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ;
B x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ B x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ B x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ Bð4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ; B x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ B x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ B x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Bð2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ; B x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ B x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ B x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ Bð4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; B x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ B x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ B x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ Bð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; B x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ B x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ B x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Bð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
B x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ B x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ B x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Bð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ;
5.12
Illustrative Example
251
B x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ B x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ B x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ Bð4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ; B x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ B x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ B x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ Bð2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ; H x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ H x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ H x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ H ð4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; H x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ H x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ H x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ H ð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; H x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ H x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ H x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ H ð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
H x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ H x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ H x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ Bð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ; H x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ H x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ H x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ H ð4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ;
252
5 JMD Approach for Solving Unbalanced Fully Generalized …
U x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ U x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ U x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 ¼ U ð4; 6; 8; 9; 2; 6; 8; 10; 0:2Þ; U x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ U x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ U x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 ¼ U ð0; 0:5; 1; 2; 0; 0:5; 1; 5; 0:2Þ; U x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 þ U x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 þ U x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ U ð8; 9:5; 10; 11; 6:5; 9:5; 10; 11; 0:2Þ;
U x11;1 ; x11;2 ; x11;3 ; x11;4 ; x011;1 ; x11;2 ; x11;3 ; x011;4 ; 0:2 þ U x21;1 ; x21;2 ; x21;3 ; x21;4 ; x021;1 ; x21;2 ; x21;3 ; x021;4 ; 0:2 þ U x31;1 ; x31;2 ; x31;3 ; x31;4 ; x031;1 ; x31;2 ; x31;3 ; x031;4 ; 0:2 ¼ U ð6; 7; 8; 9; 5; 7; 8; 11; 0:2Þ; U x12;1 ; x12;2 ; x12;3 ; x12;4 ; x012;1 ; x12;2 ; x12;3 ; x012;4 ; 0:2 þ U x22;1 ; x22;2 ; x22;3 ; x22;4 ; x022;1 ; x22;2 ; x22;3 ; x022;4 ; 0:2 þ U x32;1 ; x32;2 ; x32;3 ; x32;4 ; x032;1 ; x32;2 ; x32;3 ; x032;4 ; 0:2 ¼ U ð4; 5; 6; 7; 3; 5; 6; 8; 0:2Þ; U x13;1 ; x13;2 ; x13;3 ; x12;4 ; x013;1 ; x13;2 ; x32;3 ; x013;4 ; 0:2 þ U x23;1 ; x23;2 ; x23;3 ; x23;4 ; x023;1 ; x23;2 ; x23;3 ; x023;4 ; 0:2 þ U x33;1 ; x33;2 ; x33;3 ; x33;4 ; x033;1 ; x33;2 ; x33;3 ; x033;4 ; 0:2 ¼ U ð2; 4; 5; 6; 0:5; 4; 5; 7; 0:2Þ;
xij;1 ; xij;2 ; xij;3 ; xij;4 ; x0ij;1 ; xij;2 ; xij;3 ; x0ij;4 ; 0:2 is a non-negative generalized trapezoidal intuitionistic fuzzy number.
Step 4: Using the relations, P aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; w ¼ w aij;1 þ aij;2 þ aij;3 þ aij;4 þ a0ij;1 þ aij;2 þ aij;3 þ a0ij;4 , R aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;1 þ aij;2 þ aij;3 þ aij;4 þ aij;2 þ aij;3 þ a0ij;4 , A aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;2 þ aij;3 þ aij;4 þ aij;2 þ aij;3 þ a0ij;4 , B aij;1 ;
5.12
Illustrative Example
253
aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;3 þ aij;4 þ aij;3 þ a0ij;4 , H aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w aij;4 þ a0ij;4 and U aij;1 ; aij;2 ; aij;3 ; aij;4 ; a0ij;1 ; aij;2 ; aij;3 ; a0ij;4 ; wÞ ¼ w a0ij;4 , the generalized intuitionistic fuzzy linear programming problem (5.12.3) can be transformed into its equivalent generalized intuitionistic fuzzy linear programming problem (5.12.4). Generalized intuitionistic fuzzy linear programming problem (5.12.4) Minimize 2x11;1 ; 4x11;2 ; 5x11;3 ; 6x11;4 ; 1x011;1 ; 4x11;2 ; 5x11;3 ; 6x011;4 ; 0:2 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 Subject to 0:2 x11;1 þ x11;2 þ x11;3 þ x11;4 þ x011;1 þ x11;2 þ x11;3 þ x011;4 þ 0:2 x12;1 þ x12;2 þ x12;3 þ x12;4 þ x012;1 þ x12;2 þ x12;3 þ x012;4 þ 0:2 x13;1 þ x13;2 þ x13;3 þ x13;4 þ x013;1 þ x13;2 þ x13;3 þ x013;4 ¼ 0:2ð53Þ; 0:2 x21;1 þ x21;2 þ x21;3 þ x21;4 þ x021;1 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x22;1 þ x22;2 þ x22;3 þ x22;4 ; x022;1 þ x22;2 þ x22;3 þ x022;4 þ 0:2 x23;1 þ x23;2 þ x23;3 þ x23;4 þ x023;1 þ x23;2 þ x23;3 þ x023;4 ¼ 0:2ð10Þ; 0:2 x31;1 þ x31;2 þ x31;3 þ x31;4 þ x031;1 þ x31;2 þ x31;3 þ x031;4 þ 0:2 x32;1 þ x32;2 þ x32;3 þ x32;4 þ x032;1 þ x32;2 þ x32;3 þ x032;4 þ 0:2 x33;1 þ x33;2 þ x33;3 þ x33;4 þ x033;1 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð75:5Þ;
254
5 JMD Approach for Solving Unbalanced Fully Generalized …
0:2 x11;1 þ x11;2 þ x11;3 þ x11;4 þ x011;1 þ x11;2 ; þ x11;3 þ x011;4 þ 0:2 x21;1 þ x21;2 þ x21;3 þ x21;4 þ x021;1 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x31;1 þ x31;2 þ x31;3 þ x31;4 þ x031;1 þ x31;2 þ x31;3 þ x031;4 ¼ 0:2ð61Þ; 0:2 x12;1 þ x12;2 þ x12;3 þ x12;4 þ x012;1 þ x12;2 þ x12;3 þ x012;4 þ 0:2 x22;1 þ x22;2 þ x22;3 þ x22;4 þ x022;1 þ x22;2 þ x22;3 þ x022;4 þ 0:2 x32;1 þ x32;2 þ x32;3 þ x32;4 þ x032;1 þ x32;2 þ x32;3 þ x032;4 ¼ 0:2ð44Þ; 0:2 x13;1 þ x13;2 þ x13;3 þ x12;4 þ x013;1 þ x13;2 þ x32;3 þ x013;4 þ 0:2 x23;1 þ x23;2 þ x23;3 þ x23;4 þ x023;1 þ x23;2 þ x23;3 þ x023;4 þ 0:2 x33;1 þ x33;2 þ x33;3 þ x33;4 þ x033;1 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð33:5Þ; 0:2 x11;1 þ x11;2 þ x11;3 þ x11;4 þ x11;2 þ x11;3 þ x011;4 þ 0:2 x12;1 þ x12;2 þ x12;3 þ x12;4 þ x12;2 þ x12;3 þ x012;4 þ 0:2 x13;1 þ x13;2 þ x13;3 þ x13;4 þ x13;2 þ x13;3 þ x013;4 ¼ 0:2ð51Þ; 0:2 x21;1 þ x21;2 þ x21;3 þ x21;4 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x22;1 þ x22;2 þ x22;3 þ x22;4 þ þ x22;2 þ x22;3 þ x022;4 þ 0:2 x23;1 þ x23;2 þ x23;3 þ x23;4 þ þ x23;2 þ x23;3 þ x023;4 ¼ 0:2ð10Þ; 0:2 x31;1 þ x31;2 þ x31;3 þ x31;4 þ x31;2 þ x31;3 þ x031;4 þ 0:2 x32;1 þ x32;2 þ x32;3 þ x32;4 þ x32;2 þ x32;3 þ x032;4 þ 0:2 x33;1 þ x33;2 þ x33;3 þ x33;4 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð69Þ; 0:2 x11;1 þ x11;2 þ x11;3 þ x11;4 þ x11;2 ; þ x11;3 þ x011;4 þ 0:2 x21;1 þ x21;2 þ x21;3 þ x21;4 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x31;1 þ x31;2 þ x31;3 þ x31;4 þ x31;2 þ x31;3 þ x031;4 ¼ 0:2ð56Þ; 0:2 x12;1 ; þ x12;2 þ x12;3 þ x12;4 þ x12;2 þ x12;3 þ x012;4 þ 0:2 þ 0:2 x32;1 þ x32;2 þ x32;3 þ x32;4 þ x32;2 þ x32;3 þ x032;4 ¼ 0:2ð41Þ;
5.12
Illustrative Example
0:2 x13;1 þ x13;2 þ x13;3 þ x12;4 þ x13;2 þ x32;3 þ x013;4 þ 0:2 x23;1 þ x23;2 þ x23;3 þ x23;4 þ x23;2 þ x23;3 þ x023;4 þ 0:2 x33;1 þ x33;2 þ x33;3 þ x33;4 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð33Þ; 0:2 x11;2 þ x11;3 þ x11;4 þ x11;2 þ x11;3 þ x011;4 þ 0:2 x12;2 þ x12;3 þ x12;4 þ x12;2 þ x12;3 þ x012;4 þ 0:2 x13;1 þ x13;2 þ x13;3 þ x13;4 þ x13;2 þ x13;3 þ x013;4 ¼ 0:2ð45Þ; 0:2 x21;2 þ x21;3 þ x21;4 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x22;2 þ x22;3 þ x22;4 þ þ x22;2 þ x22;3 þ x022;4 þ 0:2 x23;2 þ x23;3 þ x23;4 þ x23;2 þ x23;3 þ x023;4 ¼ 0:2ð10Þ; 0:2 x31;2 þ x31;3 þ x31;4 þ x31;2 þ x31;3 þ x031;4 þ 0:2 x32;2 þ x32;3 þ x32;4 þ x32;2 þ x32;3 þ x032;4 þ 0:2 x33;2 þ x33;3 þ x33;4 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð61Þ; 0:2 x11;2 þ x11;3 þ x11;4 þ x11;2 ; þ x11;3 þ x011;4 þ 0:2 x21;2 þ x21;3 þ x21;4 þ x21;2 þ x21;3 þ x021;4 þ 0:2 x31;2 þ x31;3 þ x31;4 þ x31;2 þ x31;3 þ x031;4 ¼ 0:2ð41Þ; 0:2 x12;2 þ x12;3 þ x12;4 þ x12;2 þ x12;3 þ x012;4 þ 0:2 x22;2 þ x22;3 þ x22;4 þ x22;2 þ x22;3 þ x022;4 þ 0:2 x32;2 þ x32;3 þ x32;4 þ x32;2 þ x32;3 þ x032;4 ¼ 0:2ð42Þ; 0:2 x13;2 þ x13;3 þ x12;4 þ x13;2 þ x32;3 þ x013;4 þ 0:2 x23;2 þ x23;3 þ x23;4 þ x23;2 þ x23;3 þ x023;4 þ 0:2 x33;2 þ x33;3 þ x33;4 þ x33;2 þ x33;3 þ x033;4 ¼ 0:2ð31Þ; 0:2 x11;3 þ x11;4 þ x11;3 þ x011;4 þ 0:2 x12;3 þ x12;4 þ x12;3 þ x012;4 þ 0:2 x13;1 þ x13;3 þ x13;4 þ x13;3 þ x013;4 ¼ 0:2ð47Þ;
255
256
5 JMD Approach for Solving Unbalanced Fully Generalized …
0:2 x21;3 þ x21;4 þ x21;3 þ x021;4 þ 0:2 x22;3 þ x22;4 þ x22;3 þ x022;4 þ 0:2 x23;3 þ x23;4 þ x23;3 þ x023;4 ¼ 0:2ð10Þ; 0:2 x31;3 þ x31;4 þ x31;3 þ x031;4 þ 0:2 x32;3 þ x32;4 þ x32;3 þ x032;4 þ 0:2 x33;3 þ x33;4 þ x33;3 þ x033;4 ¼ 0:2ð42Þ; 0:2 x11;3 þ x11;4 þ x11;3 þ x011;4 þ 0:2 x21;3 þ x21;4 þ x21;3 þ x021;4 þ 0:2 x31;3 þ x31;4 þ x31;3 þ x031;4 ¼ 0:2ð36Þ; 0:2 x12;3 þ x12;4 þ x12;3 þ x012;4 þ 0:2 x22;3 þ x22;4 þ x22;3 þ x022;4 þ 0:2 x32;3 þ x32;4 þ x32;3 þ x032;4 ¼ 0:2ð27Þ; 0:2 x13;3 þ x12;4 þ x32;3 þ x013;4 þ 0:2 x23;3 þ x23;4 þ x23;3 þ x023;4 þ 0:2 x33;3 þ x33;4 þ x33;3 þ x033;4 ¼ 0:2ð23Þ; 0:2 x11;4 þ x011;4 þ 0:2 x12;4 þ x012;4 þ 0:2 x13;4 þ x013;4 ¼ 0:2ð19Þ; 0:2 x21;4 þ x021;4 þ 0:2 x22;4 þ x022;4 þ 0:2 x23;4 þ x023;4 ¼ 0:2ð7Þ; 0:2 x31;4 þ x031;4 þ 0:2 x32;4 þ x032;4 þ 0:2 x33;4 þ x033;4 ¼ 0:2ð21Þ; 0:2 x11;4 þ x011;4 þ 0:2 x21;4 þ x021;4 þ 0:2 x31;4 þ x031;4 ¼ 0:2ð20Þ; 0:2 x12;4 þ x012;4 þ 0:2 x22;4 þ x022;4 þ 0:2 x32;4 þ x032;4 ¼ 0:2ð15Þ; 0:2 x12;4 þ x013;4 þ 0:2 x23;4 þ x023;4 þ 0:2 x33;4 þ x033;4 ¼ 0:2ð13Þ 0:2 x011;4 þ 0:2 x012;4 þ 0:2 x013;4 ¼ 0:2ð51Þ; 0:2 x021;4 þ 0:2 x022;4 þ 0:2 x023;4 ¼ 0:2ð5Þ; 0:2 x031;4 þ 0:2 x032;4 þ 0:2 x033;4 ¼ 0:2ð11Þ; 0:2 x011;4 þ 0:2 x021;4 þ 0:2 x031;4 ¼ 0:2ð11Þ;
5.12
Illustrative Example
257
0:2 x012;4 þ 0:2 x022;4 þ 0:2 x032;4 ¼ 0:2ð8Þ; 0:2 x013;4 þ 0:2 x023;4 þ 0:2 x033;4 ¼ 0:2ð7Þ Step 5: Solving the constraints of the generalized intuitionistic fuzzy linear programming problem (5.12.4), it can be transformed into its equivalent generalized intuitionistic fuzzy linear programming problem (5.12.5). Generalized intuitionistic fuzzy linear programming problem (5.12.5) h Minimize 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 ; Subject to x11;1 þ x121 þ x13;1 ¼ 4; x11;2 þ x122 þ x13;2 ¼ 6; x11;3 þ x123 þ x13;3 ¼ 8; x11;4 þ x124 þ x13;4 ¼ 9; x011;1 þ x012;1 þ x013;1 ¼ 2; x011;4 þ x012;4 þ x013;4 ¼ 10; x21;1 þ x221 þ x23;1 ¼ 0; x21;2 þ x222 þ x23;2 ¼ 0:5; x21;3 þ x223 þ x23;3 ¼ 1; x21;4 þ x224 þ x23;4 ¼ 2; x021;1 þ x022;1 þ x023;1 ¼ 0; x021;4 þ x022;4 þ x023;4 ¼ 5; x31;1 þ x321 þ x33;1 ¼ 8; x31;2 þ x322 þ x33;2 ¼ 9:5; x31;3 þ x323 þ x33;3 ¼ 10; x31;4 þ x324 þ x33;4 ¼ 11; x031;1 þ x032;1 þ x033;1 ¼ 6:5; x031;4 þ x032;4 þ x033;4 ¼ 11; x11;1 þ x21;1 þ x31;1 ¼ 6; x11;2 þ x21;2 þ x31;2 ¼ 7; x11;3 þ x21;3 þ x31;3 ¼ 8; x11;4 þ x21;4 þ x31;4 ¼ 9; x011;1 þ x021;1 þ x031;1 ¼ 5; x011;4 þ x021;4 þ x031;4 ¼ 11;
258
5 JMD Approach for Solving Unbalanced Fully Generalized …
x12;1 þ x22;1 þ x32;1 ¼ 4; x12;2 þ x22;2 þ x32;2 ¼ 5; x12;3 þ x22;3 þ x32;3 ¼ 6; x12;4 þ x22;4 þ x32;4 ¼ 7; x012;1 þ x022;1 þ x032;1 ¼ 3; x012;4 þ x022;4 þ x032;4 ¼ 8; x13;1 þ x23;1 þ x33;1 ¼ 2; x13;2 þ x23;2 þ x33;2 ¼ 4; x13;3 þ x23;3 þ x33;3 ¼ 5; x13;4 þ x23;4 þ x33;4 ¼ 6; x013;1 þ x023;1 þ x033;1 ¼ 0:5; x013;4 þ x023;4 þ x033;4 ¼ 7; Step 6: Using the proposed PRABHUS approach, the generalized intuitionistic fuzzy linear programming problem (5.12.5) can be transformed into its equivalent crisp multi-objective linear programming problem (5.12.6). Crisp multi-objective linear programming problem (5.12.6) h Minimize P 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ P 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ P 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ P 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ P 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ P 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ P x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ P 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 h Minimize R 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ R 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ R 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ R 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ R 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ R 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ R x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ R 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2
5.12
Illustrative Example
h Minimize A 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ A 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ A 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ A 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ A 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ A 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ A x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ A 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 h Minimize B 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ B 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ B 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ B 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ B 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ B 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ B x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ B 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 h Minimize H 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ H 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ H 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ H 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ H 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ H 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ H x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ H 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2
259
260
5 JMD Approach for Solving Unbalanced Fully Generalized …
h Minimize U 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ U 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ U 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ U 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ U 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ U 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ U x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ U 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 Subject to Constraints of the generalized intuitionistic fuzzy linear programming problem (5.12.5). Step 7: According to the proposed JMD approach, there is a need to check that a unique crisp optimal solution exists for the crisp linear programming problem (5.12.7) or not, i.e., there is a need to check a unique crisp optimal solution exists for the crisp linear programming problem (5.12.8) or not. Crisp linear programming problem (5.12.7) h Minimize P 4x12;1 ; 6x12;2 ; 7x12;3 ; 8x12;4 ; 3x012;1 ; 6x12;2 ; 7x12;3 ; 9x012;4 ; 0:2 þ P 3x13;1 ; 7x13;2 ; 8x13;3 ; 12x13;4 ; 2x013;1 ; 7x13;2 ; 8x13;3 ; 13x013;4 ; 0:2 þ P 1x21;1 ; 3x21;2 ; 4x21;3 ; 5x21;4 ; 0:5x021;1 ; 3x21;2 ; 4x21;3 ; 5x021;4 ; 0:2 þ P 3x22;1 ; 5x22;2 ; 6x22;3 ; 7x22;4 ; 2x022;1 ; 5x22;2 ; 6x22;3 ; 8x022;4 ; 0:2 þ P 2x23;1 ; 6x23;2 ; 7x23;3 ; 11x23;4 ; x023;1 ; 6x23;2 ; 7x23;3 ; 12x023;4 ; 0:2 þ P 3x31;1 ; 4x31;2 ; 5x31;3 ; 8x31;4 ; 2x031;1 ; 4x31;2 ; 5x31;3 ; 9x031;4 ; 0:2 þ P x32;1 ; 2x32;2 ; 3x32;3 ; 4x32;4 ; 0:5x032;1 ; 2x32;2 ; 3x32;3 ; 5x032;4 ; 0:2 i þ P 2x33;1 ; 4x33;2 ; 5x33;3 ; 10x33;4 ; 1x033;1 ; 4x33;2 ; 5x33;3 ; 11x033;4 ; 0:2 Subject to Constraints of the generalized intuitionistic fuzzy linear programming problem (5.12.5).
5.12
Illustrative Example
261
Crisp linear programming problem (5.12.8) h Minimize 0:2 4x12;1 þ 6x12;2 þ 7x12;3 þ 8x12;4 þ 3x012;1 þ 6x12;2 þ 7x12;3 þ 9x012;4 þ 0:2 3x13;1 þ 7x13;2 þ 8x13;3 þ 12x13;4 þ 2x013;1 þ 7x13;2 þ 8x13;3 þ 13x013;4 þ 0:2 1x21;1 þ 3x21;2 þ 4x21;3 þ 5x21;4 þ 0:5x021;1 þ 3x21;2 þ 4x21;3 þ 5x021;4 þ 0:2 3x22;1 ; 5x22;2 þ 6x22;3 þ 7x22;4 þ 2x022;1 þ 5x22;2 þ 6x22;3 þ 8x022;4 ; þ 0:2 2x23;1 þ 6x23;2 ; 7x23;3 þ 11x23;4 þ x023;1 þ 6x23;2 þ 7x23;3 þ 12x023;4 þ 0:2 3x31;1 þ 4x31;2 þ 5x31;3 þ 8x31;4 þ 2x031;1 þ 4x31;2 þ 5x31;3 þ 9x031;4 þ 0:2 x32;1 þ 2x32;2 þ 3x32;3 þ 4x32;4 þ 0:5x032;1 þ 2x32;2 þ 3x32;3 þ 5x032;4 i þ 0:2 2x33;1 þ 4x33;2 þ 5x33;3 þ 10x33;4 þ 1x033;1 þ 4x33;2 þ 5x33;3 þ 11x033;4 Subject to Constraints of the crisp linear programming problem (5.12.5). Step 6: It can be easily verified that on solving the crisp linear programming problem (5.12.8), the following unique crisp optimal solution is obtained. (i). (ii). (iii). (iv). (v). (vi). (vii). (viii). (ix).
x11;1 x12;1 x13;1 x21;1 x22;1 x23;1 x31;1 x32;1 x33;1
¼ 3; ¼ 0; ¼ 1; ¼ 0; ¼ 0; ¼ 0; ¼ 3; ¼ 4; ¼ 1;
x11;2 x12;2 x13;2 x21;2 x22;2 x23;2 x31;2 x32;2 x33;2
¼ 3:5; x11;3 ¼ 4; x11;4 ¼ 4; x011;1 ¼ 2; x011;4 ¼ 4 ¼ 0; x12;3 ¼ 0:5; x12;4 ¼ 0:5; x012;1 ¼ 0; x012;4 ¼ 0:5 ¼ 2:5; x13;3 ¼ 3:5; x13;4 ¼ 4:5; x013;1 ¼ 0; x013;4 ¼ 5:5 ¼ 0:5; x21;3 ¼ 1; x21;4 ¼ 2; x021;1 ¼ 0; x021;4 ¼ 4 ¼ 0; x22;3 ¼ 0; x22;4 ¼ 0; x022;1 ¼ 0; x022;4 ¼ 1 ¼ 0; x23;3 ¼ 0; x23;4 ¼ 0; x023;1 ¼ 0; x023;4 ¼ 0 ¼ 3; x31;3 ¼ 3; x31;4 ¼ 3; x031;1 ¼ 3; x031;4 ¼ 3 ¼ 5; x32;3 ¼ 5:5; x32;4 ¼ 6:5; x032;1 ¼ 3; x022;4 ¼ 6:5 ¼ 1:5; x33;3 ¼ 1:5; x33;4 ¼ 1:5; x033;1 ¼ 1:5; x033;4 ¼ 1:5
Step 7: Using the crisp optimal solution, obtained in Step 6, the generalized intuitionistic fuzzy optimal solution of the generalized intuitionistic fuzzy linear programming problem (5.12.1) is (i). (ii). (iii). (iv). (v). (vi).
~x11 ~x12 ~x13 ~x21 ~x22 ~x23
¼ ð3; 3:5; 4; 4; 2; 3:5; 4; 4; 0:2Þ ¼ ð0; 0; 0:5; 0:5; 0; 0; 0:5; 0:5; 0:2Þ ¼ ð1; 2:5; 3:5; 4:5; 0; 2:5; 3:5; 5:5; 0:2Þ ¼ ð0; 0:5; 1; 2; 0; 0:5; 1; 4; 0:2Þ ¼ ð0; 0; 0; 0; 0; 0; 0; 1; 0:2Þ ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0:2Þ
5 JMD Approach for Solving Unbalanced Fully Generalized …
262
(vii). ~x31 ¼ ð3; 3; 3; 3; 3; 3; 3; 3; 0:2Þ (viii). ~x32 ¼ ð4; 5; 5:5; 6:5; 3; 5; 5:5; 6:5; 0:2Þ (ix). ~x33 ¼ ð1; 1:5; 1:5; 1:5; 1:5; 1:5; 1:5; 1:5; 0:2Þ and the generalized intuitionistic fuzzy optimal value of the generalized intuitionistic fuzzy linear programming problem (5.12.1) is ð24; 61; 94:5; 157; 11; 61; 94:5; 203:5; 0:2Þ.
5.13
Conclusions
Some limitations and a drawback of the existing approach [1] for solving balanced fully generalized trapezoidal intuitionistic fuzzy transportation problems are pointed out. Also, to overcome the limitations and to resolve the drawback, a new approach (named as JMD approach) has been proposed for solving unbalanced fully generalized trapezoidal intuitionistic fuzzy transportation problems. Furthermore, the exact generalized intuitionistic fuzzy optimal solution of the existing balanced fully generalized trapezoidal intuitionistic fuzzy transportation problem [1] has been obtained by the proposed JMD approach.
References 1. D. Chakraborty, D.K. Jana, T.K. Roy, Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem. Opsearch 52, 431–471 (2015) 2. W. Jianqiang, Z. Zhong, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems. J. Syst. Eng. Electron. 20, 321–326 (2009)