Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor (Power Systems) 9783030403249, 9783030403256, 3030403246

This book explores the direct thrust force control (DTFC) of tubular surface-mount linear permanent magnet synchronous m

127 85 6MB

English Pages 250 [244]

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Preface
Acknowledgements
Contents
List of Figures
List of Tables
1 Introduction
1.1 Motivation and Scope
1.2 Types of Linear Permanent Magnet PMSMs
1.3 A Review of Developments in Direct Thrust Force Control of Linear PMSM
1.4 Description of Experimental Setup
1.5 Book Outline
1.6 Conclusions
References
2 Mathematical Modeling of Surface-Mount Linear Permanent Magnet Synchronous Motor
2.1 Introduction
2.2 Construction of Tubular Surface-Mount Linear PMSM
2.3 Dynamic Modeling of Surface-Mount Linear PMSM in 3-Phase Stationary abc-Reference Frame
2.3.1 Mapping of Three-Phase Machine Variables to Complex Space Vectors
2.4 Two-Axis Dynamic Models of Linear PMSM
2.4.1 Dynamic Model of Linear PMSM in the dq-Reference Frame
2.4.2 Dynamic Model of Linear PMSM in αβ-Reference Frame
2.4.3 Dynamic Model of Linear PMSM in xy-Reference Frame
2.5 Estimation of Stator Flux Magnitude and Thrust Force Base on Dq-Axes Current Model
2.6 Conclusion
References
3 Direct Thrust Force Control Based on Duty Ratio Control
3.1 Introduction
3.2 Basic Principle of Direct Thrust Force Control
3.2.1 Selection of Reference Stator Flux Magnitude λref
3.2.2 Operational Range of Load Angle δ for Low Inductance Surface-Mount Linear PMSM
3.3 Stability Analysis of Direct Thrust Force Control
3.3.1 Lyapunov Stability Analysis of Conventional DTFC
3.4 Effect of Inverter Voltage Vectors on Thrust Force and Flux Variation
3.5 Experimental Results for Conventional DTFC
3.6 Duty Ratio Control
3.7 Review of Classical Duty Ratio Control Methods
3.8 State of the Art Duty Ratio Control Method
3.8.1 Tuning of Static Gains CT and CF
3.9 Proposed Duty Ratio Control Method
3.9.1 Derivation of Expression for FT
3.9.2 Derivation of Expression for λs
3.9.3 Derivation of Expressions for dF and dλ
3.10 Experimental Results for Duty Ratio Controlled DTFC
3.10.1 Start-Up Performance with Speed Loop Closed
3.10.2 Speed Reversal and Steady-State Performance
3.10.3 Analysis of Steady State Error in Force for DTFC1
3.10.4 Flux Trajectory
3.10.5 Transient Response of Force with Outer Speed Loop Disabled
3.11 Conclusions
References
4 SV-PWM Based Direct Thrust Force Control of a Linear Permanent Magnet Synchronous Motor
4.1 Introduction
4.2 Stator Flux and Thrust Force Regulation in xy-Reference Frame
4.3 Analysis of Thrust Force Control in Surface-Mount Linear PMSM
4.3.1 Selection of Reference Stator Flux Magnitude λref
4.3.2 Characteristics of the Co-efficient K for Surface-Mount Linear PMSM with Low Stator Inductance and Short Pole-Pitch
4.4 Derivation of Transfer Function for Stator Flux Regulation
4.5 Derivation of Transfer Function for Thrust Force Regulation
4.6 PI Controller Based Direct Thrust Force Control (PI-DTFC)
4.6.1 Stator Flux Control Loop
4.6.2 Thrust Force Control Loop
4.6.3 Discrete Time Design of Stator Flux and Force PI Controllers
4.7 Linear Quadratic Regulator Based Direct Thrust Force Control of Linear PMSM (Optimal-DTFC1)
4.7.1 Formulation of a Novel State Space Model of the Linear PMSM
4.7.2 Controllability of the Novel State Space Model
4.8 Linear Quadratic Regulator Based State Feedback Control with Integral Action
4.8.1 Mathematical Formulation of Error Dynamics
4.8.2 Optimal Linear Quadratic Regulator Design
4.9 Novel LQR Based Direct Thrust Force Control of the Linear-PMSM
4.9.1 Controllability Analysis of the Error Dynamics
4.9.2 Choice of Gain Matrix for State Feedback Law
4.10 Experimental Validation of Proposed Control Scheme
4.10.1 Dynamic Response with Outer Speed Loop Disabled
4.10.2 Steady-State Regulation with Outer Speed Loop Disabled
4.10.3 Start-Up Speed Response with Outer Speed Loop Enabled
4.10.4 Speed Reversal with Outer Speed Loop Enabled
4.10.5 Steady-State Response with Outer Speed Loop Enabled
4.11 Conclusions
References
5 Optimal, Combined Speed and Direct Thrust Force Control of a Linear Permanent Magnet Synchronous Motors
5.1 Introduction
5.2 State Space Model of the Linear PMSM in the xy-Reference Frame for Combined Flux, Thrust and Speed Dynamics
5.2.1 Controllability Analysis of the Novel State Space Model
5.3 Linear Quadratic Regulator Based State Feedback Control with Integral Action
5.3.1 Mathematical Formulation of Error Dynamics
5.3.2 Formulation of the Linear Quadratic Regulator
5.4 Linear Quadratic Regulator Based Combined Speed and Direct Thrust Control
5.4.1 Controllability Analysis of the Error Dynamics
5.4.2 Choice of Gain Matrix for State Feedback Law
5.5 Experimental Validation of Proposed Optimal-DTFC2
5.5.1 Start-Up Speed Response
5.5.2 Speed Reversal and Steady-State Response
5.5.3 Effect of Parameter Variation on the Performance
5.6 Conclusions
References
6 Sliding Mode Based Combined Speed and Direct Thrust Force Control of a Linear Permanent Magnet Synchronous Motors
6.1 Introduction
6.2 Dynamic Model of the Linear PMSM in xy-Reference Frame
6.3 Sliding Mode Control
6.3.1 Fundamentals of Sliding Mode Control
6.3.2 Variable Structure Based Direct Torque Control
6.4 Sliding Mode Control with Augmented Integral Action
6.4.1 Sliding Surface for Stator Flux Regulation
6.4.2 Sliding Surface for Speed Regulation
6.4.3 Control Law for Stator Flux Regulation
6.4.4 Control Law for Combined Speed and Thrust Force Regulation
6.4.5 Chattering Reduction
6.5 Experimental Validation of Proposed SM-DTFC1
6.5.1 Start-Up Speed Response
6.5.2 Speed Reversal and Steady-State Response
6.5.3 Evaluation of Robustness to the Parameter Variation
6.6 Conclusions
References
7 Sensorless Control of a Linear Permanent Magnet Synchronous Motors Using a Combined Sliding Mode Adaptive Observer
7.1 Introduction
7.2 Dynamic State Space Model of Linear PMSM in xy-Reference Frame
7.3 Combined Speed and Direct Thrust Force Control of Linear PMSM Based on Integral Sliding Mode Control
7.3.1 Sliding Surface for Stator Flux Regulation
7.3.2 Sliding Surface for Speed Regulation
7.3.3 Control Law for Stator Flux Regulation
7.3.4 Control Law for Thrust Force Regulation
7.4 A Novel Combined Sliding Mode State Observer
7.4.1 Stability Analysis of the Proposed Observer
7.4.2 Gain Selection for the Proposed Observer
7.4.3 Adaption Scheme for Speed Estimation
7.4.4 Estimation of Stator Flux Magnitude and Thrust Force
7.5 Experimental Results
7.6 Experimental Evaluation of the Control Performance of SM-DTFC2
7.6.1 Start-Up Response
7.6.2 Speed Reversal Response
7.6.3 Robustness to Parameter Variation
7.7 Experimental Evaluation of the SM-Observer
7.7.1 Speed Reversal Response
7.7.2 Speed Reversal Response Without the Improved SM Function
7.7.3 Steady State Response
7.7.4 Position Estimation
7.7.5 Flux Estimation
7.8 Conclusion
References
8 Conclusions and Future Work
8.1 Conclusions
8.2 Main Contributions of the Book
8.3 Future Work
Appendix A Description of the Experimental Setup
A.1 Description of the Prototype Tubular Surface-Mount Linear PMSM
A.2 Description of 3-Phase Voltage Source Inverter
A.3 Description of Voltage Sensing Board
A.4 Description of Current Sensing Board
A.5 Description of dSPACE© DS 1104 R&D Controller Board
Appendix B Derivation of Expressions for dFT dt and dλs dt
B.1 Derivation of Expression for dFT dt in Terms of Inverter Voltages
B.2 Derivation of Expression for dλs dt in Terms of Inverter Voltages

Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor (Power Systems)
 9783030403249, 9783030403256, 3030403246

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers