223 86 7MB
English Pages 445 Year 2005
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen
Group III: Condensed Matter Volume 42
Physics of Covered Solid Surfaces Subvolume A Adsorbed Layers on Surfaces Part 4 Adsorbed Species on Surfaces and Adsorbate-Induced Surface Core Level Shifts Editor H.P. Bonzel Authors H.P. Bonzel, R. Denecke, W. Eck, A. Föhlisch, G. Held, W. Jaegermann, N. Mårtensson, T. Mayer, H. Over, H.P. Steinrück
ISSN 1615-1925 (Condensed Matter) ISBN 3-540-20281-1 Springer Berlin Heidelberg New York
Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Vol. III/42A4: Editor: H.P. Bonzel At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. Vols. published after v. 1 of group I have imprint: Berlin, New York, Springer-Verlag Includes bibliographies. 1. Physics--Tables. 2. Chemistry--Tables. 3. Engineering--Tables. I. Börnstein, R. (Richard), 1852-1913. II. Landolt, H. (Hans), 1831-1910. III. Physikalisch-chemische Tabellen. IV. Title: Numerical data and functional relationships in science and technology. QC61.23 502'.12 62-53136 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product Liability: The data and other information in this handbook have been carefully extracted and evaluated by experts from the original literature. Furthermore, they have been checked for correctness by authors and the editorial staff before printing. Nevertheless, the publisher can give no guarantee for the correctness of the data and information provided. In any individual case of application, the respective user must check the correctness by consulting other relevant sources of information. Cover layout: Erich Kirchner, Heidelberg Typesetting: Authors and Redaktion Landolt-Börnstein, Darmstadt Printing and Binding: AZ Druck, Kempten
SPIN: 10932216
63/3020 - 5 4 3 2 1 0 – Printed on acid-free paper
Preface Surface Science is understood as a relatively young scientific discipline, concerned with the physical and chemical properties of and phenomena on clean and covered solid surfaces, studied under a variety of conditions. The adsorption of atoms and molecules on solid surfaces is, for example, such a condition, connected with more or less drastic changes of all surface properties. An adsorption event is frequently observed in nature and found to be of technical importance in many industrial processes. For this reason, Surface Science is interdisciplinary by its very nature, and as such an important intermediary between fundamental and applied research. Intense world-wide research in this field over the last 50 years has lead to a considerable degree of maturity, such that a documentation of quantitative results in a single source seems desirable. Tribute is being paid to this effect by the renowned Series of LANDOLT-BÖRNSTEIN whose editor-in-chief Werner Martienssen, Frankfurt/ Main, has initiated several volumes of collected scientific data in the field of Surface Science. The beginning has been made with LANDOLT-BÖRNSTEIN volume III/24, entitled Physics of Solid Surfaces. This volume, consisting of four subvolumes, appeared in 1993-96 and covers the properties of clean solid surfaces. The current volume III/42 is devoted to Physics of Covered Solid Surfaces and, in particular, to Adsorbed Layers on Surfaces. It is as such a collection of data obtained for adsorbates on well-defined crystalline surfaces. "Well-defined" means surfaces of known crystallographic structure and chemical composition. It was almost clear at the beginning, that the amount of general information and quantitative data on Adsorbed Layers on Surfaces is enormous, too large to fit into a single book. Hence several subvolumes had to be planned. Unfortunately, the chapters anticipated for each of the subvolumes did not arrive synchronously with the production schedule, such that the sequence of chapters actually printed in the subvolumes deviates from that in the original outline of the whole volume. We apoligize for this inconvenience, but in the age of electronic information distribution this problem will be solved, once all volumes are available electronically. Search routines will guide the reader to the data of his desire. Until that time, the index of each subvolume will have to do. Three subvolumes A1 to A3 of volume III/42 have already appeared in the years 2001-2003. The present subvolume A4 entitled Adsorbed Species on Surfaces and Adsorbate-Induced Surface Core Level Shifts is the fourth in this sequence. Another final subvolume is currently in preparation. Finally, it is again my pleasure to thank all authors of this volume for their excellent contributions, and the editing and production offices of the Landolt-Börnstein Office of the Springer-Verlag for efficient cooperation and excellent support. Jülich, June 2004
Hans P. Bonzel
VI
Contributors
Editor H.P. Bonzel Forschungszentrum Jülich Institut für Schichten und Grenzflächen (ISG 3) 52425 Jülich Germany
Authors E.I. Altman Department of Chemical Engineering Yale University New Haven, CT 06520 USA 3.4.3 Halogens on metals and semiconductors M. Bienfait CRMC2/CNRS Faculté de Luminy Physique - Case 910 F-13288 Marseille Cedex 9 FRANCE 3.1.2 Noble gases on graphite, lamellar halides, MgO, NaCl H.P. Bonzel Forschungszentrum Jülich Institut für Schichten und Grenzflächen (ISG 3) 52425 Jülich Germany 1 Introduction to physical and chemical properties of adlayer/substrate systems 3.7.1 CO and N2 on metals W.A. Brown Department of Chemistry University College London London WC1H 0AJ U.K. 3.7.2 NO, CN, O2 on metals H. Brune Institut de Physique Expérimentale (IPE) École Polytechnique Fédérale de Lausanne (EPFL) PHB-Ecublens CH-1015 Lausanne 3.3.1 Metals on metals
Contributors K. Christmann Institut für Physikalische und Theoretische Chemie Freie Universität Berlin 14195 Berlin Germany 3.4.1 Chemisorbed hydrogen on metals and semiconductors R. Denecke Universität Erlangen-Nürnberg Lehrstuhl für Physikalische Chemie II Egerlandstraße 3 91058 Erlangen Germany 4.3 Adsorbate induced surface core level shifts of metals R.D. Diehl Department of Physics Pennsylvania State University University Park, PA 16802 USA 3.2.1 Alkali metals on metals W. Eck Universität Heidelberg Angewandte Physikalische Chemie Abteilung Materialchemie Im Neuenheimer Feld 253 69120 Heidelberg Germany M. Enachescu Candescent Technologies 6320 San Ignacio Ave. San José, CA 95119 USA 3.4.4 P, S, As, Sb on metals and semiconductors N. Esser Institut für Festkörperphysik Technische Universität Berlin D-10623 Berlin Germany 4.6 Surface optical properties J.E. Fieberg Department of Chemistry Georgetown College Georgetown, KY 40324 USA 3.8.9 Halogen-substituted hydrocarbons on metals and semiconductors
VII
VIII
Contributors
A. Föhlisch Institut für Experimentalphysik Universität Hamburg Luruper Chaussee 149 D-22761 Hamburg Germany 3.7.1 CO and N2 on metals H.-J. Freund Fritz-Haber-Institut der Max Planck Gesellschaft (MPG) D-14195 Berlin Germany 3.9 Adsorption on oxides H.J. Grabke Max-Planck Institut (MPI) für Eisenforschung GmbH D-40074 Düsseldorf Germany 3.5 Surface segregation of atomic species (non-metal on metal) E. Hasselbrink Institut für Physikalische und Theoretische Chemie Universität Essen D-45117 Essen Germany 3.8.3 NH3 and PF3 on metals and semiconductors G. Held University of Cambridge Department of Chemistry Lensfield Road Cambridge CB2 1EW United Kingdom 3.8.7 Cyclic hydrocarbons on metals and semiconductors K. Hermann Fritz-Haber-Institut der Max-Planck Gesellschaft (MPG) Abteilung Theorie D-14195 Berlin Germany 4.1 Surface structure on metals and semiconductors H. Ibach Institut für Schichten und Grenzflächen (ISG 3) Forschungszentrum Jülich D-52425 Jülich Germany 4.4 Surface free energy and surface stress
Contributors K. Jacobi Fritz-Haber-Institut der Max-Planck Gesellschaft (MPG) D-14195 Berlin Germany 4.2 Electron work function of metals and semiconductors W. Jaegermann Fachbereich Materialwissenschaft Fachgebiet Oberflächenforschung Technische Universität Darmstadt D-64287 Darmstadt Germany 3.8.2 H2O and OH on semiconductors M.Y.L. Jung Deppartment of Chemical Engineering University of Illinois Urbana, IL 61801 USA 3.11 Surface diffusion on metals, semiconductors and insulators B.E. Koel Department of Chemistry, SSC 606 University of Southern California Los Angeles, CA 90089-0482 USA 3.8.4 CO2, NO2, SO2, OCS, N2O, O3 on metals and semiconductors H. Kuhlenbeck Fritz-Haber-Institut der Max-Planck Gesellschaft (MPG) Abteilung Chemische Physik D-14195 Berlin Germany 3.9 Adsorption on oxides V.G. Lifshits Institute of Automation and Control Processes 690041 Vladivostok Russia 3.3.2 Metals on semiconductors N. Mårtensson Department of Physics Uppsala University S-751 21 Uppsala Sweden 4.3 Adsorbate induced surface core level shifts of metals
IX
X
Contributors
T. Mayer Fachbereich Materialwissenschaft Fachgebiet Oberflächenforschung Technische Universität Darmstadt D-64287 Darmstadt Germany 3.8.2 H2O and OH on semiconductors R. McGrath Surface Science Research Centre and Department of Physics The University of Liverpool Liverpool L69 3BX U.K. 3.2.1 Alkali metals on metals E.G. Michel Departimento Fisica de la Materia Condensada C-III Instituto Universitario de Ciencia de Materiales "Nicolas Cabrera" Universidad Autonoma de Madrid 28049 Madrid Spain 3.2.2 Alkali metals on semiconductors R. Miranda Departimento Fisica de la Materia Condensada C-III Instituto Universitario de Ciencia de Materiales "Nicolas Cabrera" Universidad Autonoma de Madrid 28049 Madrid Spain 3.2.2 Alkali metals on semiconductors D.R. Mullins Oak Ridge National Laboratory Oak Ridge, TN 37831-6201 USA 3.8.5 Substituted hydrocarbons on metals B.E. Nieuwenhuys Gorlaeus Laboratory Leiden University NL 2300 Ra Leiden The Netherlands 3.7.3 Diatomic molecules on alloys K. Oura Department of Electronic Engineering Faculty of Engineering Osaka University Osaka 565-0871 Japan 3.3.2 Metals on semiconductors
Contributors H. Over Physikalisch-Chemisches Institut Justus Liebig Universität Gießen Heinrich-Buff Ring 58 D-35392 Gießen Germany 3.4.2 C, N, O on metals G. Pirug Institut für Schichten und Grenzflächen (ISG 3) Forschungszentrum Jülich D-52425 Jülich Germany 3.8.1 H2O and OH on metals W. Richter Institut für Festkörperphysik Technische Universität Berlin D-10623 Berlin Germany 4.6 Surface optical properties M.A. Rocca Centro di Fisica delle Superfici e Basse Temperature del CNR Istituto Nazionale di Fisica della Materia I-16146 Genova Italy 4.5 Surface phonon dispersion G. Rupprechter Fritz-Haber-Institut der Max-Planck Gesellschaft (MPG) Abteilung Chemische Physik D-14195 Berlin Germany 3.8.6 Linear hydrocarbons and CH4 on metals and semiconductors M. Salmeron Lawrence Berkeley Laboratory Materials Science Bldg. 66/208 Berkeley, CA 94720 USA 3.4.4 P, S, As, Sb on metals and semiconductors D. Sander Max-Planck Institut (MPI) für Strukturphysik D-06120 Halle Germany 4.4 Surface free energy and surface stress
XI
XII
Contributors
A.A. Saranin Institute of Automation and Control Processes 690041 Vladivostok Faculty of Physics and Engineering Far Eastern State University 690000 Vladivostok Russia 3.3.2 Metals on semiconductors E.G. Seebauer Deppartment of Chemical Engineering University of Illinois Urbana, IL 61801 USA 3.11 Surface diffusion on metals, semiconductors and insulators G.A. Somorjai Department of Chemistry University of California Berkeley, CA 94720 USA 3.8.6 Linear hydrocarbons and CH4 on metals and semiconductors H.-P. Steinrück Lehrstuhl für Physikalische Chemie II Universität Erlangen-Nürnberg D-91058 Erlangen Germany 3.8.7 Cyclic hydrocarbons on metals and semiconductors J. Suzanne Departement de Physique CRMC2 - Centre National de la Recherche Scientifique (CNRS) Faculte des Sciences de Luminy F-13288 Marseille, Cedex 9 France 3.6 Molecules on graphite, BN, MgO (except noble gases) W.T. Tysoe Department of Chemistry and Laboratory for Surface Studies University of Wisconsin - Milwaukee Milwaukee, WI 53211 USA 3.8.5 Substituted hydrocarbons on metals Ch. Uebing Department of Physics and Astronomy Rutgers, The State University of New Jersey Piscataway, NJ 08854-8019 USA 3.5 Surface segregation of atomic species (non-metal on metal)
Contributors H. Viefhaus Max-Planck Institut (MPI) für Eisenforschung GmbH D-40074 Düsseldorf Germany 3.5 Surface segregation of atomic species (non-metal on metal) J.M. Vohs Department of Chemical Engineering University of Pennsylvania Philadelphia, PA 19104-6315 USA 3.8.8 Oxygenated hydrocarbons on metals and semiconductors M.A. Van Hove Lawrence Berkeley National Laboratory Materials Science 66 Berkeley, CA 94720 and Department of Physics University of California-Davis Davis, CA 95616 USA 4.1 Surface structure on metals and semiconductors P.R. Watson Department of Chemistry Oregon State University Corvallis, OR 97331 USA 4.1 Surface structure on metals and semiconductors J.M. White Department of Chemistry and Biochemistry University of Texas at Austin Austin, TX 78712 USA 3.8.9 Halogen-substituted hydrocarbons on metals and semiconductors H. Wiechert Institut für Physik der Johann Gutenberg-Universität D-55099 Mainz Germany Molecules on graphite, BN, MgO (except noble gases) Ch. Wöll Lehrstuhl für Physikalische Chemie I Ruhr-Universität Bochum D-44801 Bochum Germany 2 Characterization of adsorbate overlayers: Measuring techniques
XIII
XIV
Contributors
P. Zeppenfeld Institut für Experimentalphysik Atom- und Oberflächenphysik Johannes-Kepler-Universität Linz A-4040 Linz, Austria 3.1.1 Noble gases on metals and semiconductors A.V. Zotov Faculty of Electronics Vladivostok State University of Economics and Service 690600 Vladivostok, Russia Institute of Automation and Control Processes 690041 Vladivostok , Russia 3.3.2 Metals on semiconductors
Landolt-Börnstein Editorial Office Gagernstr. 8, D-64283 Darmstadt, Germany fax: +49 (6151) 171760 e-mail: [email protected]
Internet http://www.landolt-boernstein.com
Contents
XV
Contents III/42 Physics of Covered Solid Surfaces A: Adsorbed Layers on Surfaces
Part 4: Adsorbed species on surfaces and adsorbateinduced surface core level shifts 1
Introduction to physical and chemical properties of adlayer/substrate systems (H.P. BONZEL) ............................................................................................................................................ see subvolume III/42A1
2
Characterization of adsorbate overlayers: measuring techniques (CH. WÖLL).................................................................................................................................................... see subvolume III/42A2
3 3.1 3.1.1 3.1.2
Data: Adsorbate properties Adsorption of noble gases Noble gases on metals and semiconductors (P. ZEPPENFELD)................... see subvolume III/42A1 Noble gases on graphite, lamellar halides, MgO and NaCl (M. BIENFAIT).............................................................................................................................................. see subvolume III/42A1 Adsorption of alkali metals Alkali metals on metals (R.D. DIEHL, R. McGRATH) ......................................... see subvolume III/42A1 Alkali metals on semiconductors (E.G. MICHEL, R. MIRANDA) ..... see subvolume III/42A1 Adsorption of metals Metals on metals (H. BRUNE)...................................................................................................... see subvolume III/42A1 Metals on semiconductors (V.G. LIFSHITS, K.OURA, A.A. SARANIN, A.V. ZOTOV) .................................. see subvolume III/42A1 Non-metallic atomic adsorbates on metals and semiconductors Chemisorbed hydrogen on metals and semiconductors (K. CHRISTMANN).................................................................................................................................... see subvolume III/42A5 Adsorption of C, N, and O on metal surfaces (H. OVER) ............................................................................................ 2 Introduction ................................................................................................................................................................................................................ 2 General remarks..................................................................................................................................................................................................... 2 List of acronyms .................................................................................................................................................................................................... 2 Oxygen adsorption on metal surfaces ............................................................................................................................................. 4 The dissociative sticking coefficient of oxygen on metal surfaces and its dependence on the impact energy of the incident O2 molecule ............................................................................................................................. 13 The heat of adsorption of chemisorbed oxygen overlayers on metal surfaces ................................... 18 Oxygen-metal bond strength (ab initio calculations).................................................................................................... 20 Vibrational properties of chemisorbed oxygen................................................................................................................... 30 Local atomic oxygen-metal geometry .......................................................................................................................................... 33 Ordered overlayers of chemisorbed oxygen and surface oxides on metal surfaces ...................... 37 Phase diagrams and phase transitions in the O-metal surface system ......................................................... 40 Nitrogen adsorption on metal surfaces ........................................................................................................................................ 41 The dissociative sticking coefficient of nitrogen on metal surfaces.............................................................. 43 The heat of adsorption of chemisorbed nitrogen overlayers on metal surfaces................................. 44 Nitrogen-metal bond strength (ab initio calculations) ................................................................................................. 45 Electronic properties of chemisorbed nitrogen on metal surfaces................................................................... 46 Vibrational properties of chemisorbed nitrogen atoms .............................................................................................. 47 Local atomic nitrogen-metal geometry ....................................................................................................................................... 48 Ordered overlayers of chemisorbed nitrogen atoms on metal surfaces ..................................................... 49
3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4 3.4.1 3.4.2 3.4.2.1 3.4.2.1.1 3.4.2.1.2 3.4.2.2 3.4.2.2.1 3.4.2.2.2 3.4.2.2.3 3.4.2.2.5 3.4.2.2.6 3.4.2.2.7 3.4.2.2.8 3.4.2.3 3.4.2.3.1 3.4.2.3.2 3.4.2.3.3 3.4.2.3.4 3.4.2.3.5 3.4.2.3.6 3.4.2.3.7
XVI
Contents
3.4.2.4 3.4.2.4.1 3.4.2.4.2 3.4.2.4.3 3.4.2.4.4 3.4.2.4.5 3.4.2.5
Carbon adsorption on metal surfaces ............................................................................................................................................ 50 Carbon-metal bond strength ................................................................................................................................................................... 51 Electronic properties of chemisorbed carbon on metal surfaces....................................................................... 51 Vibrational properties of chemisorbed carbon atoms................................................................................................... 52 Local atomic carbon-metal geometry ........................................................................................................................................... 53 Ordered overlayers of chemisorbed carbon atoms on metal surfaces.......................................................... 54 References for 3.4.2........................................................................................................................................................................................ 55
3.4.3 3.4.4
Halogens on metals and semiconductors (E.I. ALTMAN) ............................... see subvolume III/42A1 Adsorption of S, P, As, Sb and Se on metals, alloys and semiconductors (M. ENACHESCU, M. SALMERON) ............................................................................................ see subvolume III/42A3
3.5
Surface segregation of atomic species (H. VIEFHAUS, H.-J. GRABKE, CH. UEBING) ................................................................. see subvolume III/42A3
3.6 3.6.1 3.6.2
Molecules on graphite, BN, MgO (except noble gases) Adsorption of molecules on MgO (J. SUZANNE) .................................................... see subvolume III/42A3 Adsorption of molecular hydrogen isotopes on graphite and BN (H. WIECHERT) ........................................................................................................................................... see subvolume III/42A3
3.7 3.7.1 3.7.1.1 3.7.1.1.1 3.7.1.1.2 3.7.1.1.3 3.7.1.1.4 3.7.1.1.5 3.7.1.2 3.7.1.3 3.7.1.4 3.7.1.5 3.7.1.6 3.7.1.7 3.7.1.8 3.7.1.9
Molecular diatomic adsorbates on metals and semiconductors CO and N2 adsorption on metal surfaces (A. FÖHLISCH, H.P. BONZEL)....................................... 74 Introduction ............................................................................................................................................................................................................. 75 Thermodynamic properties...................................................................................................................................................................... 76 Vibrational properties ................................................................................................................................................................................... 77 Geometric structure ......................................................................................................................................................................................... 78 Electronic structure and adsorption models ........................................................................................................................... 80 Atom specific electronic structure and the allylic model of CO adsorption ......................................... 85 CO adsorption on fcc metal surfaces............................................................................................................................................. 87 CO adsorption on bcc metal surfaces ........................................................................................................................................102 CO adsorption on hcp metal surfaces ........................................................................................................................................110 CO adsorption on simple cubic metal surfaces ................................................................................................................120 CO adsorbed on relevant binary systems, modelled by ultra-thin metal overlayers..................121 Adsorption of N2 on metals .................................................................................................................................................................124 Organization of the tables......................................................................................................................................................................135 References .............................................................................................................................................................................................................202
3.7.2 3.7.3
NO, CN, O2 on metals (W.A. BROWN) ............................................................................. see subvolume III/42A3 Adsorption of diatomic molecules on alloy surfaces (B. E. NIEUWENHUYS) ......................................................................................................................... see subvolume III/42A3 Molecular polyatomic adsorbates on metals and semiconductors H2O and OH on metals (G. PIRUG) ....................................................................................... see subvolume III/42A5 H2O and OH on semiconductors (W. JAEGERMANN, T. MAYER) ................................................................226 Introduction ..........................................................................................................................................................................................................226 Surface preparation ......................................................................................................................................................................................229 Surface structure: relaxation and reconstruction ............................................................................................................229 Surface electronic structure and surface potentials .....................................................................................................230 Methods of investigation ........................................................................................................................................................................231 Adsorption mode ............................................................................................................................................................................................232 Thermodynamic data of adsorption .............................................................................................................................................234 Kinetic data of adsorption/desorption, surface diffusion and surface reactions ............................234 Local structure ...................................................................................................................................................................................................236
3.8 3.8.1 3.8.2 3.8.2.1 3.8.2.2 3.8.2.3 3.8.2.4 3.8.2.5 3.8.2.6 3.8.2.7 3.8.2.8 3.8.2.9
Contents 3.8.2.10 3.8.2.11 3.8.2.12 3.8.2.13 3.8.2.14 3.8.2.15 3.8.3 3.8.4 3.8.5 3.8.6 3.8.7 3.8.7.1 3.8.7.2 3.8.7.3 3.8.7.4 3.8.7.4.1 3.8.7.4.2 3.8.7.4.3 3.8.7.4.4 3.8.7.5 3.8.7.5.1 3.8.7.5.2 3.8.7.5.3 3.8.7.5.4 3.8.7.5.5 3.8.7.6 3.8.7.7 3.8.7.8 3.8.7.9 3.8.7.10 3.8.7.11 3.8.8 3.8.9 3.8.10 3.8.10.1 3.8.10.2 3.8.10.2.1 3.8.10.2.2 3.8.10.2.3 3.8.10.2.4 3.8.10.3 3.8.10.4 3.8.10.5 3.9 3.10
XVII
Long range order ............................................................................................................................................................................................237 Electronic properties ...................................................................................................................................................................................238 Core level lines .................................................................................................................................................................................................240 Vibrational properties ................................................................................................................................................................................241 Figures for 3.8.2 ..............................................................................................................................................................................................275 References for 3.8.2.....................................................................................................................................................................................296 Adsorbate properties of NH3 and PF3 on metals and semiconductors (E. HASSELBRINK) ................................................................................................................................... see subvolume III/42A3 CO2, NO2, SO2, OCS, N2O, O3 (B.E. KOEL) ............................................................. see subvolume III/42A5 Substituted hydrocarbons on metal surfaces (W.T. TYSOE, D.R. MULLINS) ........................................................................... see subvolume III/42A3 Linear hydrocarbons and CH4 on metals and semiconductors (G. SOMORJAI, G. RUPPRECHTER) ........................................................................................... see subvolume III/42A5 Cyclic hydrocarbons (G. HELD, H.P. STEINRÜCK) ........................................................................................................300 List of symbols and abbreviations ................................................................................................................................................300 Benzene (C6H6) ................................................................................................................................................................................................301 Cyclohexane (c-C6H12) .............................................................................................................................................................................303 Other saturated cyclic hydrocarbon molecules (cycloalkanes)........................................................................304 Cyclopropane (c-C3H6).............................................................................................................................................................................304 Cyclobutane (c-C4H8) ................................................................................................................................................................................304 Cyclopentane (c-C5H10) ...........................................................................................................................................................................305 Cyclooctane (c-C8H16)...............................................................................................................................................................................305 Non-saturated cyclic hydrocarbon molecules (other than benzene)...........................................................305 Cyclopentene (c-C5H8) .............................................................................................................................................................................305 Cyclopentadiene (c-C5H6) .....................................................................................................................................................................305 Cyclohexene (c-C6H10) .............................................................................................................................................................................306 Cyclohexadiene (c-C6H8) .......................................................................................................................................................................306 Cyclooctadiene (c-C8H12) and Cyclooctatetraene (c-C8H8) ................................................................................306 Ethylene Oxide (C2H4O).........................................................................................................................................................................306 Pyridine (C6H5N) ............................................................................................................................................................................................307 List of Tables ......................................................................................................................................................................................................308 Tables for 3.8.7.................................................................................................................................................................................................309 Figures for 3.8.7 ..............................................................................................................................................................................................354 References for 3.8.7.....................................................................................................................................................................................362 Oxygenated hydrocarbons on metals and semiconductors (J. VOHS) ... see subvolume III/42A3 Halogen-substituted hydrocarbons on metals and semiconductors (J. FIEBERG, J.W. WHITE) ................................................................................... see subvolume III/42A3 Polyatomic chain-like hydrocarbons on metals and semiconductors (W. ECK) .............................371 Introduction ..........................................................................................................................................................................................................371 Physical and Chemical Properties .................................................................................................................................................371 Structural data: Tilt and twist angles, packing and lattice structures ........................................................371 Heat of formation and thermal stability...................................................................................................................................373 Wettability .............................................................................................................................................................................................................374 Anchor groups for SAMs on inorganic substrates .......................................................................................................374 List of abbreviations....................................................................................................................................................................................374 Tables .........................................................................................................................................................................................................................375 References for 3.8.10 .................................................................................................................................................................................380 Adsorption on oxides (H. KUHLENBECK, H.J. FREUND) .................................. see subvolume III/42A5 Surface diffusion on metals, semiconductors, and insulators (E.G. SEEBAUER, M.Y.L. JUNG) ............................................................................................... see subvolume III/42A1
XVIII 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.2.3 4.3.2.4 4.3.2.5 4.3.2.6 4.3.2.7 4.3.2.8 4.3.2.9 4.3.2.10 4.3.2.11 4.3.2.12 4.3.2.13 4.3.2.14 4.3.2.15 4.3.2.16 4.3.2.17 4.3.2.18 4.3.2.19 4.3.2.20 4.3.2.21 4.3.2.22 4.3.2.23 4.3.2.24 4.3.2.25 4.3.2.26 4.3.2.27 4.3.2.28 4.3.2.29 4.3.2.30 4.3.2.31 4.3.2.32 4.3.2.33 4.3.3 4.4 4.5 4.6
Contents Data: Adsorbate-induced changes of substrate properties Surface structure on metals and semiconductors (M.A. VAN HOVE, K. HERMANN, P.R. WATSON) ................................................. see subvolume III/42A2 Electron work function of metals and semiconductors (K. JAKOBI) ... see subvolume III/42A2 Adsorbate induced surface core level shifts of metals (R. DENECKE, N. MǺRTENSSON) ....................................................................................................................................................388 Introduction ..........................................................................................................................................................................................................388 Data section ..........................................................................................................................................................................................................396 Al(001) ......................................................................................................................................................................................................................397 Al(111) ......................................................................................................................................................................................................................398 Ni(100) ......................................................................................................................................................................................................................398 Mo(110) ...................................................................................................................................................................................................................399 Ru(0001) .................................................................................................................................................................................................................399 Ru (10 1 0) ..............................................................................................................................................................................................................400 Rh(100).....................................................................................................................................................................................................................401 Rh(110).....................................................................................................................................................................................................................401 Rh(111).....................................................................................................................................................................................................................401 Stepped Rh surfaces ....................................................................................................................................................................................403 Pd(100) .....................................................................................................................................................................................................................403 Pd(110) .....................................................................................................................................................................................................................404 Pd(111) .....................................................................................................................................................................................................................405 Ta(100) .....................................................................................................................................................................................................................406 Ta(110) .....................................................................................................................................................................................................................406 Ta(111) .....................................................................................................................................................................................................................407 Ta (poly) ..................................................................................................................................................................................................................407 W(100) ......................................................................................................................................................................................................................407 W(110) ......................................................................................................................................................................................................................409 W(111) ......................................................................................................................................................................................................................411 W(320) and other stepped W .............................................................................................................................................................411 W (poly)...................................................................................................................................................................................................................412 Os(0001)..................................................................................................................................................................................................................413 Ir(100) ........................................................................................................................................................................................................................413 Ir(110) ........................................................................................................................................................................................................................413 Ir(332) ........................................................................................................................................................................................................................413 Pt(110) .......................................................................................................................................................................................................................414 Pt(111) .......................................................................................................................................................................................................................414 Stepped Pt surfaces.......................................................................................................................................................................................416 Au(100) ....................................................................................................................................................................................................................416 Au(110) ....................................................................................................................................................................................................................416 Au(111) ....................................................................................................................................................................................................................417 Au (poly) .................................................................................................................................................................................................................417 References .............................................................................................................................................................................................................418 Surface free energy and surface stress (D. SANDER, H. IBACH) ............... see subvolume III/42A2 Surface phonon dispersion (M.A. ROCCA) ........................ see subvolume III/42A2 Surface optical properties (N. ESSER, W. RICHTER) ................ see subvolume III/42A5
Erratum ...........................................................................................................................................................................................................................................................422
2
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
3.4.2 Adsorption of C, N, and O on metal surfaces H. OVER 3.4.2.1 Introduction 3.4.2.1.1 General remarks I would like to start with some general remarks about the completeness of the data presented in this chapter. The amount of data reported in the literature about the properties of adsorbed O, N, and C layers on metal surfaces is hardly tractable on a reasonable time scale, so that the present chapter is inevitably incomplete. This is particularly the case for the electronic properties for which a last comprehensive compilation of data goes back to 1982 [82W1]. The presented tables should rather serve as a first introduction into the wealth of literature about this topic from which the reader may start a more exhaustive literature research. General trends and properties of the adsorbates O, N, and C among the metal surfaces precede each subsection. 3.4.2.1.2 List of acronyms Acronym AES APS ARPES ARSIMS ARUPS b BE c.t. 1O CEM Cluster Cluster DFT DFT-GGA disp. DLEED E(E)LS Eact EELFS EELS Ei ELS EMT ESS EXAFS EXELFS expos. FES FFAK FLAPW FP-LAPW HeD HEIS
Explanation Auger-electron spectroscopy appearance potential spectroscopy angle-resolved photoemission spectroscopy. angle resolved secondary ion mass spectrometry angle-resolved ultraviolet photoemission spectroscopy bulk binding energy coordinated to one O atom corrected effective medium calculations cluster calculations cluster calculations (in contrast to slab calculations) density functional theory calculations DFT-generalized gradient approximation dispersion diffuse low energy electron diffraction electron (energy) loss spectroscopy. activation energy electron energy loss fine structure electron energy loss spectroscopy impact energy of the incident molecule beam electron loss spectroscopy. effective medium theory equilibrium segregation study extended X-Ray absorption fine structure extended electron energy loss fine structure exposure forward-electron scattering. forward focusing of Auger and Kikuchi electrons full potential linearized augmented plane wave method full potential linear augmented plane wave method He diffraction high energy ion scattering Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces
HRCLS HREELS ICISS ID IHA IPE IPES ISS KRIPES KW L LEED LEIS LT phase MCS MC MDS MEIS ML Mol. Beam: MR MS NDRS NRA
high resolution core level shifts high resolution energy electron loss spectroscopy impact-collision ion scattering spectroscopy isothermal desorption isosteric heat of adsorption inverse photoemission: energies given in eV above EF inverse photoemission spectroscopy ion scattering spectroscopy k-resolved inverse photoemission spectroscopy King Wells method [74K1] gas exposure in Langmuir (1 L = 1.33 10-6 mbar s) low energy electron diffraction low energy ion scattering low temperature phase Monte-Carlo simulations micro calorimetry metastable deexcitation spectroscopy. middle energy Ion scattering monolayer molecular beam according to the King-Wells method missing row reconstruction meta-stable phase negative direct recoil spectroscopy nuclear resonance analysis frequency factor photoemission spectroscopy photoelectron diffraction Raman spectroscopy Rutherford backscattering spectroscopy raster electron microscope reflected high energy electron diffraction room temperature surface core level self consistent linearized augmented plane-wave method surface core level shift surface enhanced Raman scattering surface extended X-ray-absorption fine structure secondary ion mass spectroscopy spot profile analyzing LEED surface soft-X-ray absorption scanning tunneling microscopy STM-light emission spectroscopy substitutional subsurface soft-X-ray emission spectroscopy surface X-ray diffraction standing X-ray wave critical temperature (order-disorder transition) thermal desorption spectroscopy thermal energy atom scattering time-of-flight scattering and recoiling spectrometry. ultra high vacuum
νD PES PhD Raman RBS REM RHEED RT SCL SC-LAPW SCLS SERS SEXAFS SIMS SPALEED SSXA STM STM-LES sub subs. SXES SXRD SXW Tc TDS TEAS TOF-SARS UHV Landolt-Börnstein New Series III/42A4
3
4
3.4.2 Adsorption of C, N, and O on metal surfaces
UPS XAS XPD XPS ∆Φ
ultraviolet photoemission spectroscopy X-ray absorption spectroscopy X-ray photoelectron diffraction X-ray photoemission spectroscopy workfunction change
[Ref. p. 55
3.4.2.2 Oxygen adsorption on metal surfaces Sources of oxygen used in UHV experiments are molecular oxygen O2 (the most frequently used source), nitrogen oxides N2O and NO2, atomic O (produced by glow discharge plasma) and ozone O3. These latter three sources are used to produce high-O-coverages even under UHV conditions. Care has to be taken since NO2 and O3 are strongly oxidizing agents which attack even the gaskets of the UHV chamber and the oil in the back pumping system. The interplay of chemisorption, subsurface diffusion and oxidation governs the transformation from a metallic to an oxide material and can be monitored with surface sensitive methods. The most weakly bound oxygen species on metal surfaces is the physisorbed oxygen. This kind of oxygen reveals structural, vibrational and electronic properties that are very close to those of gaseous oxygen. On the other hand, chemisorbed molecular oxygen (superoxo- and peroxo species) is bound by about 0.7-1.0 eV, as observed for instance on Pt(111) [98N3] (and references therein) and Ag(110) [96G1] (and references therein). In this section we concentrate on the properties of chemisorbed (atomic) oxygen on metal surfaces. Chemisorbed (atomic) oxygen needs dissociation of molecular oxygen prior to the adsorption (for dissociative sticking coefficient see Table 1), establishing a strong bond between the atomic oxygen species and the metal surface (see Tables 2 and 3). Details about the adsorption of molecular oxygen on metal surfaces can be found in section 3.7.2. In general the bond strength of chemisorbed atomic oxygen on the metal surface is substantially higher than the binding energy of oxygen in corresponding metal oxides; typical values for chemisorbed oxygen are 5 - 10 eV. Typical experiments in surface science (UHV conditions) are far from thermal equilibrium with the surrounding gas phase. The following scenario is therefore typical for UHV experiments. Beyond a critical coverage of on-surface oxygen, the binding energy of oxygen on the surface is lower than of oxygen accommodated in the selvedge region of the metal surface. Consequently O penetrates into the subsurface region or even dissolves into the bulk for energy reasons. Finally, oxide formation takes place on the metal surface. Oxygen adsorption on metal surfaces plays a crucial role in the oxidation reaction of molecules over metal catalysts (such as the CO oxidation reaction and the partial oxidation of organic molecules) whose efficiency varies widely with the oxygen coverage on the surface. This variation in catalytic activity is attributed to the dependence of the oxygen adsorption energy which determines predominantly the activation barrier for simple oxidation reactions. In turn, the binding energy of oxygen to the underlying catalyst surface is a function of the mutual interaction among the adsorbed O atoms and depends on the actual configuration of the surface [79E2, 77B7, 81S2, 98O1]. For instance, beyond a critical coverage several metal surfaces allow O penetration and diffusion into the bulk region which eventually may result in the formation of a metal oxide. There are some (rare) exceptions from this general tendency: For Zr, Ti and Ta subsurface O is more stable than on-surface oxygen. These variations in the binding energy of oxygen affect directly the catalytic activity. Catalysis by transition-metal surfaces exhibits characteristic trends across the periodic table whereby metals that form chemical bonds of intermediate strength have the highest activity. The strength of the Ometal bonding is frequently related to its propensity to dissociate molecular oxygen on metal surface. For instance the O-Ag bonding is much weaker than on Ru or Ti, and also the dissociative sticking coefficient is much smaller on Ag than on Ru or Ti (see Table 1). An exception to this general rule is aluminum: Although the O-Al bonding is strong, dissociative sticking is very low (see Table 1). The reason is that the missing d-electron density of Al does not allow for high dissociation probability while the s-electron density causes a strong bonding. For a more thorough discussion of this effect, the reader is referred to [95J1]. Norskov et al explain the binding energy of oxygen among the transition metals to be related to
Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces
5
the position of the d-band center (see Fig. 1). To reach high activity on metal surfaces, a low O-metal bonding has to be balanced against the simultaneous reduction in the dissociative sticking probability. This is accomplished with transition metals that bind atomic oxygen moderately strong (so called Sabatier Principle). 0
O chemisorption potential energy rel.to ½ O 2 [eV ]
-2
-4
-6 -8
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
0 -2
Fig. 1. Calculated and experimental values of the binding energy of adsorbed O atoms on various transition metals are indicated along the 5th row in the Periodic Table. Also shown are the O binding energies as a function of the energetic position of the d-band center; [00H1].
-4
Simple model DFT - GGA Exp. (polycryst.)
-6 -8
-4
0 -2 d - band center ed [ eV ]
2
Molecular beam techniques have become a powerful tool to study the dynamics of dissociative chemisorption of molecules, such as oxygen, on well-characterized single crystalline surfaces in UHV (see Table 1). The advantage of using molecular beams is that kinetic and vibrational energy of the impinging gas molecules are well-defined and can be controlled. Many of these investigations have indicated that dissociative chemisorption occurs mainly through two different mechanisms: a direct dissociative mechanism and a precursor-mediated mechanism [97D2]. If the translational energy of the incident O2 molecule promotes the dissociative chemisorption of a molecule at a surface then such a mechanism has been termed direct dissociation. However, it is also possible that kinetic energy may assist in surmounting barriers to molecularly chemisorbed surface states as well (a direct molecular chemisorption mechanism) which then serve as precursors to dissociation. According to [97D2] the general trend is as follows: Systems demonstrating molecularly chemisorbed states which are stable at low temperatures and coverages appear most consistent with dissociation mechanisms involving direct molecular chemisorption for incident energies up to few electron volts. These molecular states have been identified by HREELS and NEXAFS (see for example 98N2). Specific values for the dissociative sticking coefficient and other details about the dissociation process are compiled in Table 1. In general, the dissociative sticking coefficient depends strongly on the impact energy of the incident O2 molecules. This property is illustrated in Fig. 2 for various close-packed metal surfaces. In Fig. 3 we show an example for the dissociative sticking coefficient of O2 on various orientations of Ni as a function of the adsorbed O coverage [97S1].
Landolt-Börnstein New Series III/42A4
6
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
1.0
Initial adsorption probability S 0
O 2 / Ru (001) 0.8 O 2 / Ir (111)
0.6
0.4 O 2 / Pt (111) 0.2 N 2 / W (100) 0
0.2
0.4 0.8 0.6 1.0 Kinetic energy E i [eV]
1.2
1.4
Fig. 2. Measurements of the initial adsorption probability S0 versus kinetic energy Ei for O2 on Ru(001) (filled squares: 77 K, open squares: 500 K); for O2 on Ir(111) (filled discs: 77 K, open discs: 425 K); for O2 on Pt(111) (filled triangles: 200 K, open triangles: 350 K); and for N2 on W(100) at 300 K; [97D2].
0.8 Ni {110} Ni {100} Ni {111}
Sticking probability r0
0.6
0.4
0.2
0
0.1
0.2 0.3 0.4 0.5 0.6 Oxygen atom coverage [ Ni ML ]
0.7
Fig. 3. Dissociative oxygen sticking probability on Ni{100}, Ni{110} and Ni{111} at 300 K in the low Ocoverage region; [97S1]. A thermal molecular beam at room temperature was used.
Other experiments, which do not use molecular beam techniques, introduce the O2 gas through a leak valve. The introduced oxygen gas is at room temperature with a Maxwellian energy distribution for the kinetic energy. Thus the experimental value for the dissociative sticking probability provides an energy averaged value. In general, these values are closer to the reality in catalytic reactions than those obtain by molecular beam experiments. The binding of O atoms to metal surfaces is prevalently covalent. It encompasses two contributions, one is coming from the coupling of O(2p) to the metal s states, and the other is due to the extra coupling to the d-states. Since the contribution from the metal s states to the O-metal bonding is approximately the same for all late transition metals, the main trends in the chemisorption energy is given by the interaction with d electrons (see Fig. 1). The coupling of the localized d states gives rise to a bonding and an antibonding state (tight binding argument). As we move from Cu, Ag, or Au to the left in the Periodic Table, the d-bands move up in energy, and progressively more anti-bonding adsorbate-metal d states become empty. For Cu, Ag, and Au the anti-bonding states are completely filled because the d-bands are well below the Fermi level. The variation in the adsorption strength from Cu, Ag, and Au is determined by the Pauli repulsion between O(2p) and the completely filled d-states. Au has the most extended d states, and therefore the strongest repulsion. This explains why Au is the noblest metal among Cu, Ag, and Au [95H2]. With oxygen in metal oxides the contribution of ionic bonding becomes more important than in the chemisorbed phase of oxygen on metal surfaces. Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces
7
The chemisorbed O species is mostly covalently bound to metal surfaces, as characterized by typical XPS values of O(1s) appearing at 531.5 eV. In the valence band region, the peaks characteristic for atomic oxygen are located at about 6.5 eV below the Fermi level (EF) (see Table 4). This energy position for the O(2p) derived emission from adsorbed atomic oxygen is typical for most transition metals [78K1]. The emission of molecular surface oxygen is centered at 8 eV below EF and has a remarkable width (FWHM) of 4.5 eV.
Cu (110)
I I
II
Ag (110)
I II
I I Intensity
Ni (111)
I
I II I
Pd (111)
I II Pt (100)
Ir (111)
12 8 EF 4 F Binding energy rel.to Femi level E B [eV ]
Fig. 4. Angle-integrated UPS Spectra (hν = 40.8 eV) from various oxygen covered transition metal surfaces. The spectrum for Ag(110) originates from the work by Bradshaw et al. [74B1], while all other spectra are taken from the work by Küppers and Ertl [78K1]. The bars under the spectra denote one-electron multiplet energies as calculated by Doyen and Ertl [78D1]. The presentation is taken from [82W1]. O(2p) derived emission appears at about 6 eV.
In Fig. 4, we show angle-integrated UPS spectra from various oxygen covered transition metal surfaces. ARUPS data have established the energetic splitting of both levels into O(2pz) derived σ, σ* and O(2px,y) derived π, π* states. On transition metals with high density of d-states at EF only the bonding molecular orbitals (MO) are filled and show up in UPS, whereas the anti-bonding MO's are located above EF and are empty. As shown by Hammer and Norskov [00H1] this MO scheme with bonding and antibonding orbitals is of general validity for the oxygen-metal chemisorption bond. Subsequent oxygen incorporation and incipient oxidation is accompanied by a substantial redistribution of the valence band emission. The O(1s) emission changes from 531.5 eV to 529.5 eV, which is largely independent of the substrate metal [82W1]. In the chemisorbed oxygen phases on metal surface, the surface core level shifts of the metal atoms are linearly related to the number of O atoms coordinated to it, see for example the systems O-W(110) [98R1] and O-Ru(0001) [01O1]. Typically, the core levels of surface metal atoms shift to lower values with increasing O-coordination (see Table 4 and compare also section 4.3). The oxygen against metal vibrations are in the energy range of 40 meV to 90 meV, a typically value is 60 meV (see Table 5). The local adsorption geometry of oxygen on metal surface (see Table 6) can roughly be divided into non-reconstructive adsorption, which frequently occurs on low-index surfaces, and reconstructive adsorption. The adsorption site found for oxygen is in good agreement with the general tendency that adsorption of chalcogen atoms on high density transition metal surfaces takes place at those adsorption sites with the highest coordination number and also on which an additional metal layer would have grown. Marcus et al. [75M2] advocated first this empirical law.
Landolt-Börnstein New Series III/42A4
8
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
The general trend of atomic adsorbates to chemisorb in high-coordinated sites was later corroborated by Effective Medium Theory (EMT) considerations. According to this theory, which has been put forward by Nørskov and coworkers [90N2], the actual bonding configuration of the adsorbed oxygen atom is the result of a delicate balance of reaching the optimum electron density offered by the metal substrate surface and minimizing the Pauli repulsion between the metal and the adatom charge density. If the adatom is coordinated to many metal atoms the optimum electron density is provided by a larger bond-lengths that minimizes the Pauli repulsion, and thus making high-coordination adsorption sites favorable. Some early transition metals behave quite differently. With the O-Zr(0001) system we are faced with the interesting situation where only after a critical O coverage is accommodated below the surface, onsurface oxygen becomes stabilized, while for other metal surfaces, a critical on-surface O coverage is needed for the commencement of oxygen penetration into the sub-surface region [95W1, 95W2, 97W1]. In general the heat of adsorption does not vary very much from one surface plane to another [79E3] so that values found for polycrystalline samples serve (at least) as a guideline (see Fig. 5).
Heat of adsorption [kcal / mol]
260
O2
240 220 200 180 160 140 120 100 80 60 40 20 0
a Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn La Hf Ta W Re Os Ir Pt Au Hg Tl Pb
220
O2
Heat of adsorption [kcal / mol]
200 180 100
160
110 100 100
140 120 100
100 110
80 60 40 20 0
b
110 110 111 111 100 110 100 110 111
111
Fig. 5. (a) Heats of adsorption of O2 on polycrystalline transition metal surfaces. (b) Heats of adsorption of oxygen on various single crystal surfaces of transition metals; [94S4]. These are TDS data.
Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn La Hf Ta W Re Os Ir Pt Au Hg Tl Pb
Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces
9
In a naive picture one would assume that the strength of the chemisorption bond increases as the number of “unsaturated” valencies of surface atoms increases, i.e. if the coordination number of the metal surface atoms decreases. This would imply a lower adsorption energy at the most densely packed planes compared to planes with higher Miller indices. A more elaborated view was put forward by Hammer and Nørskov [00H1]. From thermal desorption experiments it is known that with increasing O coverage the activation energy for desorption (see Table 2) and therefore the O-metal bonding (see Table 3) weakens as the result of a net repulsion among the O atoms. This observation is exemplified with oxygen adsorption on various orientations of Ni surfaces (see Fig. 6). 600
Ni {110} Ni {111} Ni {100}
Adsrption heat [kJ / mol ]
500 400 300 200 100
0
1 2 3 Apparent oxygen atom coverage [ Ni ML ]
4
Fig. 6. Caloric heats of adsorption of O2 as a function of coverage in the oxide film formation region for all three low index Ni surfaces; [98B2].
Yet the O-metal bond-lengths do not follow this general trend [98O1]. In most of the cases, the Ometal bond-length remains constant or even decreases slightly with increasing O coverage as demonstrated with Ru(0001) and Ni(111). The effective O radii, which are derived from the value for the O-metal bond-length, slightly exceed the covalent radius by 0.1 Å. This is consistent with a comparatively small net charge transfer from the substrate to the oxygen adatom and a prevalently covalent bonding. The effective O radius increases also with the coordination number. Varying the coordination from threefold to fourfold results in an increased O radius of about 0.1 Å (cf. Ni, Pd, and Rh, Table 6). The adsorption energy of oxygen increases only slightly by a few tenth of an eV (see Table 3), when increasing the coordination number, e.g. from three to four, such as with fcc(111) and fcc(100). It is interesting to note that TD data (as collected in Table 2) are quite difficult to find by a literature research and most of the derived values of the heat of adsorption are not very reliable. The reason is that during the heating ramp of a typical TD experiment not only desorption takes place but also bulk dissolution, phase transition, oxide formation, reaction with other adsorbed species etc.. For instance for aluminum, oxygen desorption is not possible to measure since the O-Al bonding is so strong that Al will melt before O2 desorption can take place. For hexagonal cobalt oxygen desorption takes place at temperatures where Co transforms from hcp to fcc lattice. The interaction between O atoms has partly electrostatic origin in that the O induced dipoles interact with each other. The chemisorption-induced dipoles of on-surface oxygen cause in general an increase of the workfunction (see section 4.2), while subsurface O decreases the work function. If O atoms come to close to each other direct orbital overlap may occur, which could lead to O2 formation with subsequent desorption. Similar to many other chalcogens, oxygen atoms try to prevent a situation where O atoms have to share a common metal atom [98S1]. A very important type of interaction among the O atoms is indirect through their bonds with the metal surface. This interaction exhibits an oscillatory character, i.e. it may be attractive or repulsive depending on the mutual separation. It decays within distances of two to three lattice constants to values below kT. The indirect interaction is considered to be crucial for the development of ordered oxygen layers on metal surfaces (see Table 7). In order to form ordered overlayers the mobility of the O atoms has to be high Landolt-Börnstein New Series III/42A4
10
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
enough to reach the thermodynamical stable configuration. The diffusion barrier determines the mobility of O atoms across the surface. Their values are about one order of magnitude smaller than the strength of the chemisorption bond itself. The interaction among the O atoms in an ordered phase manifests itself in the formation of 2D-band structures, which can be identified for instance with ARUPS even in the case of a (1×1) overlayer. On more open surfaces, such as the fcc(100), disordered O-overlayers are more frequently observed than on densely-packed surfaces, e.g fcc(111). This is presumably due to the higher activation barrier for O diffusion on fcc(100) compared to fcc(111). Evidently the energy of the system depends on the mutual configuration of the adsorbed particles and therefore no longer the configuration with maximum entropy (equal to random distribution) will characterize the equilibrium. As a result long-range order may occur, depending on the interaction between the O atoms and the thermal energy kT. The adsorbate system may be treated with the methods of statistical thermodynamics. At finite temperatures the statistical properties of adsorbate systems may be described by two-dimensional models [76B1], such as the Ising model or the 3-state, 4-state Potts models, leading to an order-disorder transition at a critical temperature (see Table 8). A comprehensive collection of experimental phase diagrams are indicated in Figs. 7 - 10. 700
500
c O / Mo (110)
2.order
p (2×2) antiphase domains + liquid
500
Temperature T [K ]
Temperature T [K ]
gas
p (2×2)
1.order
p (2×2)
300
200
400 p (2×2) + gas 300
gas
0
0.1
0.2 Coverage q [ML]
p (2×2) antiphase domains
400
600
(Ö3×Ö3) R 30°
p (2×2) + gas
complex structures
0.3
0.4
Fig. 7. Phase diagram for O-Mo(110); [86W2]. The dashed lines are extrapolations from LEED measurements.
100 0.10
0.15
0.20 0.25 Coverage q [ML]
0.30
0.35
Fig. 8. Coverage versus temperature phase diagram for O-Ni(111); [81K1].
Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces LG+ p (2×2)
LG+ p(1×1)
800
11
Desorption states α none
LG+ p (2×2)
α+β
α+β+γ
Desorption onset
700 p (2×2)
p (1×1)
1
LG 600 p (2×1)
p (2×1) +p (2×2)
p (2×2) +p (1×1)
Temperature T [K ]
Temperature T [K ]
700
600
Disorder and dissolution
3 p (2×2) + c (2×2)
500
5 c (2×2)
500 2
400
0
0.4 0.6 Coverage q [ML]
0.2
p (2×2)
400
p (2×1)+LG
0.8
1.0
Fig. 9. Phase diagram for O-W(110). LG denotes “lattice gas”; [89W2].
0
0.1
6
p (5×5) + c (2×2)
4
7
p (5×5) + p (2×2) + c (2×2)
p (5×5)
0.3 0.4 0.2 Coverage q [ML]
0.5
0.6
Fig. 10. Phase diagram fro the system oxygen/Pd(100). Solid lines are used to connect data points; dashed lines are assumed or possible boundaries; [88C1].
Since the chemisorption strength of O on metal surfaces is quite high, the adsorption is accompanied by substantial reconstructions of the metal surface (see section 4.1), either locally [94S3] or with mass transport involved [93B1, 96T1, 98C1]. Prominent examples of the latter class are O-induced added row reconstructions on the fcc(110) surface of Ni, Pt, Rh, Pd, Cu, and Ag. The reconstruction is driven by the prospect to form stronger O-metal bonds; this tendency is facilitated by soft metals, which exhibit relatively weak metal-metal bonding. The added row reconstruction on Cu(110) has been considered as the first step towards oxidation [95L2]. The preference of oxygen to bind to low-coordinated metal atoms was explained in the framework of EMT [90N2]. Thus, oxygen chemisorption in long-bridge sites on a (2×1) added row reconstructed Cu(110) surface [90C2] (see Fig. 11) becomes energetically more favorable than adsorption in the first Cu layer of the unreconstructed surface, which overcompensates even the cost of breaking metal-metal bonds.
Fig. 11. The added row (or missing row) structure induced by oxygen adsorption on Cu(110), Ni(110) and Ag(110); [96O2]. The small black balls represent the oxygen atoms. The big hatched and white balls represent the substrate atoms of the first and second substrate layer, respectively. The arrows indicate the growth direction of the metal-O rows.
[001]
[110]
Note that the coordination of the outermost Cu atoms on the (2×1) missing row reconstructed surface is reduced from six (ideal (110) surface) to four and oxygen in long-bridge sites allows oxygen to bind to two under-coordinated metal atoms.
Landolt-Börnstein New Series III/42A4
12
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
Rh(110)-(2×2)p2mg-2O, q = 0.5, 1×2 missing row
Rh(110)-c(2×6)-8O, q = 0.67, 1×3 missing row
Rh(110)-c(2×8)-12O, q = 0.75, 1×4 missing row
Rh(110)-(2×1)p2mg-2O, q = 1.0
Fig. 12. The stable O-phases on Rh(110) as they develop with increasing O-coverage. Except the (2×1)p2mg-2O structure, all other phases are characterized by a missing row type reconstruction of the underlying Rh(110) surface; [98O1]. The small black balls represent the oxygen atoms. The big white, grey and dark grey balls represent the substrate atoms of the first, second and third substrate layer, respectively.
On Rh(110) oxygen adsorption induces the (1×n) missing row reconstruction (see Fig. 12), where densely packed Rh-rows are completely missing. Oxygen adsorption proceeds then on the (1×2) troughs in quasi-threefold sites instead of (1×1) troughs. Oxygen atoms are attached to two Rh atoms in the topmost layer and one Rh atom in the second. This site preference is explained by the propensity of oxygen atoms to bind to lower coordinated metal atoms. For steric reasons the oxygen does not form a (n×1) added row reconstruction on Rh(110) because the topmost Rh-Rh separation along the [001] direction is too small to allow the O atoms to be incorporated [98C1].
Landolt-Börnstein New Series III/42A4
Table 1. Sticking coefficient Substrate
Coverage
Ag(110)
initial initial initial
Ag(111)
initial initial
Ag(100)
0-0.41 ML initial initial
Impact energy Ei [eV] 0.8
0.1 >0.4 0.1 0.9 1.8
4.4×10−3
0.3
0.8 >0.5
8×10−4 Al(110) Al(111)
Al(100) Be(0001)
initial initial initial initial initial initial initial initial initial initial
Remarks
Method
Ref.
direct molecular chemisorption O2(ad) → O(ad) molecular adsorption 100 K: O2(gas) → O(ad) 500 K: O2(gas) → O(ad) 477 K RT RT
Mol. beam Mol. beam STM, backfilling
94V2 94V3 98Z1
TDS, XPS, LEED
84C2
Mol. beam Mol. beam
96R2 96R1, 95B3, 97R2, 97R3
TDS Theory Mol. beam
85C1 97Z1 96B3
RT: dissociative sticking sticking probability strongly Mol. beam decreases for Ei 0.5 ML initial
0.24 0.25 0.50 0.10 ~0.70 ~1.0 1.0 0.87 0.65 0.50 0.23 0.78 0.63 1.0 0.95 ~0.8 →0 0.65 → 0.4
initial 0.05 ML 0 - 0.25 ML initial initial
0.1 0.87 0 0.3 0.75 0.50
Ir(100)-(1×1) Mo(110) stepped (110) Mo(111) Mo(100)
Ni(110) Ni(111) Ni(100) Pd(110)
Pd(111)
Impact energy Ei [eV]
Remarks
Method
Ref.
425 K
Mol. beam TDS
98A1 79K1
Mol. beam TDS AES, TDS, LEED
98A1 79K1 83B2
XPS AES, ∆Φ
85M1 79B2
Mol. beam Mol. beam Mol. beam TDS, LEED TDS
97S1 97S1 97S1 74H1 99Y2
Mol. Beam
98S2, 98N1
TPD, AES
89G1
TPD, LEED, UPS Mol. beam, STM
77C2 01K1
425 K
step distance 25 Å sticking coeff. is constant
473 K sticking coeff. is fairly constant 100 K → 650 K; Direct molecular chemisorption; physisorbed state is precursor of the chemisorbed molecules and these again are precursors for the dissociated O species; precursor conversion from peroxide to atomic O: Energy barrier 0.32 eV. 300 K
323 K 623 K
15
Ir(100)-(1×5)
Sticking coefficient 0.10 0.05
3.4.2 Adsorption of C, N, and O on metal surfaces
Coverage
Ref. p. 55]
Landolt-Börnstein New Series III/42A4
Substrate
Coverage
Pd(100)
0.25 ML 0.5 ML
Pt(110)-(2×1)
initial initial initial
>0.25 ML initial initial
0.3 0.4 0.55 0.42 0.24 0.03 0.3
Pt(100)-(1×1)
initial
Re (10 1 0)
0 - 0.5 ML
0.53
Rh(110)
Ru (10 1 0)
initial initial initial initial initial >0.5 ML 0.2
77 - 500 K d); direct dissociation
91R1 78N1 73B2, 77H2, 81C1 84N1, 94G2 97D2 84N1, 96B2 79P1
AES, LEED TDS, LEED TPD, AES Mol. beam Mol. beam
92C4 90S2 85M2 97B3 98K1
XPS, LEED, TDS LEED, TDS
83F2 77K1, 96R1
Mol. beam, trapping mediated
96W3
[Ref. p. 55
Pt(100)-hex
initial initial initial
0.1 a), c) 0.2 0.02 - 0.08 0.20
Impact energy Ei [eV]
3.4.2 Adsorption of C, N, and O on metal surfaces
Pt(111)
Sticking coefficient ~0.1 ~0.003
16
Substrate
Coverage
V(111)
initial
V(100)
0 - 0.3 ML (1×5)O
W(110)
initial 0.33 ML 0.5 ML 0 - 0.5 ML 0 - 0.25 ML 0.25 - 0.5 ML 0.5 - 0.75 ML 0.75 - 1.0 ML
Zr (10 1 0)
0.0 - 1.0 ML 1.2 ML initial initial θ = 0.5 - 0.8 initial initial
335 kJ/mol 173±5 kJ/mol 163 kJ/mol w.r.t. O2 180 kJ/mol 259±16 kJ/mol 820 - 880 kJ/mol No O2 TDS available, due to phase transition of hcp-Co to fcc-Co 420 kJ/mol 727 kJ/mol Annealing to 800 K: removes 0.3 ML O 459 kJ/mol No desorption of O2 up to 1050 K 490 kJ/mol (272 − 41.8θ) kJ/mol 635 kJ/mol 802 kJ/mol 869 kJ/mol 498±5 kJ/mol 605 kJ/mol 440 - 470±15 kJ/mol 532±5 kJ/mol, that decreases rapidly with coverage 300 - 481 kJ/mol 188 kJ/mol (activation energy) 230 kJ/mol 222 kJ/mol 230 kJ/mol 800 K TD peak 750 K TD peak 160 kJ/mol 130 kJ/mol (173+34θ) kJ/mol, 280 kJ/mol 360 kJ/mol
>0.6 ML desorption
170 kJ/mol 860 K → 775 K
Ag(111) poly-Al Co(10 1 0) Co(0001) poly-Co poly-Cr Cu(110) poly-Cu Fe(110) poly-Fe Ir(111) poly-Mn poly-Mo poly-Nb Ni(110)
Ni(111) Ni(100) poly-Ni Pd(110) Pd(111)
Pd(100)
poly-Pd Pt(110) (2×1)
initial initial c(2×6): 0.8ML initial Variable O cov. initial initial initial initial initial initial initial initial initial initial c(2×4) initial
66B1 60B1 87M1 69M1 90S3/TDS 92G2 76I1/TDS 60B1/TDS 66B1/TDS 60B1/TDS 93A2/MC 91B3/MC 93A2/MC 93A2/MC 60W1, 60B1 99Y2/TDS 99Y2/TDS 89G1/TDS 77C2/TDS 90B1/TDS 90B1/TDS 88C1/TDS 93K2 93K2 60B1 96W2/MC 96W2/MC 77W2/TDS
Landolt-Börnstein New Series III/42A4
Ref. p. 55]
substrate
3.4.2 Adsorption of C, N, and O on metal surfaces
surface
Pt(111) 0.75 ML 0→0.75 ML
Pt(100) poly-Pt Rh(110)
0 → 0.25 ML 0.04 → 0.25 ML 0 → saturation (3×1), >0.3 ML 0.13 - 0.27 ML initial
(2×2)O, 0.5 ML c(2×8)O, 0.95 ML Rh(111)
Rh(001)
poly-Rh Ru(0001) poly-Ta poly-Ti W(110) W(111) W(100)
poly-W poly-Y
initial β1 (1250 K) β2 (920 K) β3 (820 K) >0.6 ML initial (2×2)O (2×1)O initial initial 0.1 ML 0 - 1 ML 0 - 1 ML 0.25 L O2 2.5 L O2 0 - 0.3 ML initial initial
19
heat of adsorption/ activation barrier for desorption
Ref./method
213 - 176 kJ/mol 4 desorption states at 800, 720, 690, 570 K 184 kJ/mol → 110 kJ/mol BE = 3.26 → 2.5 eV 192 kJ/mol → 154 kJ/mol 232±36 kJ/mol 208 kJ/mol − 13.5 kJ/mol.θ/θsat 260 kJ/mol 160 kJ/mol, (3×1) → hex 288 - 301 kJ/mol Several desorption states: β1 – β5 β5 (1150 K) 294±35 kJ/mol, β4 (1095 K) 280±10 kJ/mol, β3 (909 K) 234±10 kJ/mol, β2 (835 K) 215±10 kJ/mol, β1 (797 K) 205±10 kJ/mol 300 kJ/mol, Rh-O binding: 395 kJ/mol 205 kJ/mol, Rh-O binding: 348 kJ/mol Desorption state β β (1200 K) 235±10 kJ/mol β (700 K, 900 K) 235±10 kJ/mol 355 kJ/mol 386 kJ/mol 360 kJ/mol 260 kJ/mol 210 kJ/mol 110 kJ/mol 486 kJ/mol 400 kJ/mol 315 kJ/mol 886 kJ/mol 986 kJ/mol 965 kJ/mol 656 kJ/mol - 482 kJ/mol 627 kJ/mol - 473 kJ/mol 550 kJ/mol 492 kJ/mol 489 kJ/mol - 579 kJ/mol 878 kJ/mol 1107 kJ/mol
81C1 89P1/TDS 89P1/TDS 81C1 84D1/IHA 99K1/TDS 84G3/ID 84N1/ID 60B1 90S1/ TDS (10 K/s)
92C4/TDS 92C4/TDS 79T1/TDS (24 K/s) 95P1/TDS (27 K/s) 83R1 98K1/ MC 83F2/TDS (8.5 K/s)
98K1/MC 60B1 85S2 60B1 60B1 75E1/TDS 75B3/ID 75B3/ID 76B3/TDS 76B3/TDS 75B3/ID 66B1 88C1
Remark: Adsorption micro calorimetry in surface science studies: The reader can find calorimetrically measured molar heats of adsorption of gaseous adsorbates on wires and ribbons, which are not included in this table [96C2].
Landolt-Börnstein New Series III/42A4
20
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
3.4.2.2.3 Oxygen-metal bond strength (ab initio calculations) Table 3. The O-metal bond strength as computed by ab-initio calculations.
substrate Ag(110) Ag(111) Ag(100) Al(111)
surface
O-metal bond strength
Ref./method
3.25 eV w.r.t. O overlayer: 1.0 eV 3.32 eV w.r.t. O 8.0 eV 8.5 eV, (1×1)O island growth; strong bonding due to O2 px,y 7.16 eV (2×2)O, 7.32 eV (2×1)O, 7.44 eV (2×2)3O, 7.63 eV (1×1)O 7.0 eV overlayer: −1.0 eV; not stable w.r.t. O2
94R1/cluster 00H1/DFT 94R2/cluster 95J1 95J1 01K2/DFT-GGA
5.20 eV 2.08 eV 2.84 eV, 3-fold hollow overlayer: 2.0 eV 4.56 eV w.r.t. atomic oxygen
(1×1)O (2×2)O (2×2)O (2×2)O low cov. single O (2×2)O low cov. single O (2×2)mgO
5.0 eV, Fe-O: 2.57 Å 4.35 eV O-overlayer: 5.1 eV 5.2 eV 4.77 eV 4.98 eV 5.9 eV 5.03 eV 5.60 eV 6.7 eV 4.36 eV (1.26 eV w.r.t O2)
94R1/cluster 98F2/DFT 97L1/cluster 00H1/DFT 01Z1/DFT 94R2/cluster 93B4/cluster 97B2/DFT 00H1/theory 00H1/theory 99H1/DFT 92S2/cluster 97L1/cluster 99H1/DFT 92S2/cluster 93G2/cluster 02H1/DFT
(2×2)-O (√3×√3)-O c(2×2)-O (√3×√3)2O (1×1)O single O (2×2)-O c(2×2)O (1×1)O (2×2)O (2×2)O (2×2)O single O single O (2×2)O
4.15 eV/3.53 eV 4.15 eV 3.8 eV 3.6 eV 3.1 eV 3.99 eV 4.2 eV/3.53 eV 3.8 eV 2.2 eV 2.75 eV 4.26 eV 5.51 eV w.r.t. O atom; energy diff. hcp-fcc: 0.5 eV 3.14 eV, 2.61 eV 2.5 - 2.7 eV 3.97 eV w.r.t. atomic oxygen
98L1/99H1/DFT 98L1 98L1 98L1 98L1 97L1/cluster 98L1/99H1/DFT 98L1 98L1 97M1 00L2/DFT 97F2,97F3 97L1, 97C3/cluster 96I1/cluster 01Z1/DFT-slab
(2×2)O initial (2×2)O (1×1)O 0.25 - 1ML
Al(100) Au(111)
initial (2×2)O
Cu(110)
initial (2×1)O single O (2×2)O (2×2)O initial
Cu(111)
Cu(100) Fe(100) Mg(0001) Mo(110) Nb(110) Ni(111)
Ni(100)
Pd(110)(1×2) Pd(111)
Pd(100)
Pt(111)
98D3/cluster 00H1/DFT
Landolt-Börnstein New Series III/42A4
Ref. p. 55]
3.4.2 Adsorption of C, N, and O on metal surfaces
21
substrate
surface
O-metal bond strength
Ref./method
Pt(100)(1×1)
0.25 ML 0.50 ML 1.0 ML (2×2)pg (2×2)O: (2×1)O: (√3×√3)2O (1×1)O single O (2×2)-O c(2×2)O (1×1)O c(2×4)-2O: (2×1)-2O (2×2)O: (2×1)O: (2×2)3O: (1×1)O (2×2)O (1×5)O
3.80 eV 3.0 eV 2.52 eV 2.75eV 5.03 eV, 2.5 eV 4.85 eV (4.93 eV) 4.6 eV 4.24 eV (4.38 eV) 4.61 eV 5.20 eV, 4.77 eV 4.75 eV 3.8 eV 5.36 eV 5.14 eV 5.55 eV, 2.8 eV 5.28 eV 5.06 eV 4.84 eV overlayer: 3.8 eV 5.26 eV (0.6 ML) - 5.14 eV (0.8 ML) depending on the O coverage 5.18 eV 10.01 eV/9.0 eV 9.13 eV/8.5 eV on-surface ads.: 6.5 eV
97G1/DFT-GGA
Rh(110) Rh(111)
Rh(100)
Ru(10 1 0) Ru(0001)
Tc(110) V(100)
Zr(0001)
c(2×2)O (2×1)O (1×1)O (2×2)O
97S6/DFT 98L1, 99G1, 0H1/DFT
98C1/cluster 98L1/99H1 (DFT)
98S1/DFT 96S2, 00H1/DFT
00H1/theory 01K1/DFT 01K1/DFT 96Y1/01J1/DFT 96Y1/01J1/DFT 00H1/DFT
Remarks: a) Cluster Calculations produce less reliable values for O-metal binding energies than slab calculations. b) Some oxygen binding energies are given w.r.t. atomic O in the gas phase, others are given w.r.t. half of the binding energy of O2. Both values differ by about 2.5. eV.
Landolt-Börnstein New Series III/42A4
22
3.4.2.2.4 Electronic properties of chemisorbed atomic oxygen Table 4. Electronic properties of chemisorbed atomic oxygen overlayers on metal surfaces. Substrate Ag(110)
Surface (2×1)O
c(6×2)O c(2×2)
Ag(111)
Al(110)
Al(111)
chem. O oxidic O (4×4)O
25 L -100 L 100 L 0.5 L O2 (1×1)O (islands)
Remarks strong dispersion (2 eV) along the Ag-O chains
Method ARUPS
O(2p) anti-bonding O(1s) O(2p) anti-bonding
1.4 528.1 1.5
490 K
theory XPS
O(2pz) O(2p) bonding O(2p) anti-bonding O(1s) O(2p) bonding O(2p) anti-bonding Ag(3d5/2) Ag(3d5/2) O(1s) O(1s) bonding O(1s) anti-bonding TD states: O(1s) O(β) Ag-3d5/2 O(β) O(1s) O(γ) Ag-3d5/2 O(γ) O(2p) O(γ) O(1s) (4×4)O O(2p) O-induced Al(3p3/2) peaks
3.1 6-8 1.5 - 4 528.5 9.7 3.1 368.2 367.7 530.4 3.8 8.2
weak dispersion of 0.3 eV along Ag chains
chemisorbed
O(2pz)
530.3 368.0 529.0 367.3 2.8, 1.8 528.2 7-8 73.9, 75.1 74 - 81 6.7
O(2px,y)
7.7
Al(3p3/2)
72.5 73 73.5
Ref. 86P1, 90T1, 97C1 76R1, 90T1 84C2 97C1
ARUPS MDS
98O3 92C3
XPS UPS
95B5 88S2
XPS
00B1 77G2, 90R2
UPS
oxidic similar to Al(100) chemisorbed O strong dispersion of O(2p)
band structure clean c.t. 1O c.t. 2O
XPS XPS XPS XPS UPS XPS PES PES
95B4 96B5 95B4 96B5 96B5 85C1, 95B5 76M1, 78E1 78E1
ARPES
79H2, 79E1, 86M1
theory PES
83B4, 82B1 87M2, 91B2, 93B7
[Ref. p. 55
Landolt-Börnstein New Series III/42A4
(1×1)O (1×1)O (islands)
Binding energy [eV] 6
3.4.2 Adsorption of C, N, and O on metal surfaces
0.1-0.6 ML (3×1)O, (4×1)O (2×1)O (n×1)O
State O(2p)
Surface
State
oxide (1×1)O (islands)
Al(3p3/2) O(1s)
10 L O2 (1×1)O
Al(100)
Co( 10 1 0 )
600 L O2
O(2p) O(1s) Al(2p)
O(KLL) Al(L1)O(L22L33) Al(2p)
533.5 74 - 81 6.7 7.5 5-9 532.1, 535.5 73
perimeter anti-bonding Al-O complex (unoccupied state)
1500 L O2
O(1s) O(KLL)
3 - 100 L O2
O(2px,y)
505 55 75.3 74.3 531 469.8, 484.4, 490.6, 505 2.5, 7.5
100 L O2
Al(2p)
75.3, 74.3
(1×1)O 10 L O2 10 L O2 25 L O2 (2×1)O
O(2p)
8 - 10 74 - 81 75.8 7.0, 9.5 6
(2×1)pg-2O
Co(0001)
2pz 2px, 2py
Remarks c.t. 3O
c(2×4)2O (2×1)pg-2O 0.5 L, 120 K 2500 L, 120 K
Al(2p) O(2p) O(2px), O(2py) O(2pz) O(2px) O(2py) O(2pz) 2 states O(2p) O(2p)
Ref.
PES XPS/ theory
87M2 91B2
SSXA ARUPS
79B4 79E1, 79H2
SC-FAPW
81W1 91B2
AES
87H2
XPS AES
87H2 87H2
with 0.7 eV dispersion
clean Al(111): 72.6 eV; small (1×1)O islands: internal and perimeter O atoms
PES interpretation: O in-plane with topmost Al plane theory theory PES theory anti bonding Al-O complex (unoccupied state) SSXA XPS UPS disperse by less than 0.5 eV
76Y1, 78E1 77B6 84B2 78E1 81K3 79B4 77F1 76M1 90S1
disperses by 1 eV 90S1
disperse by 0.5 eV disperses by 0.2 eV
O(on-surface) O(bulk)
IPES IPES UPS
96R3 96R3 82C1
23
7 5 5.8 5.8 −1.8, −2.1 −2 - −4 2.7, 5.3 0.9, 2.8, 5.0, 6.6, 9.3, 11.2
interior
Method
3.4.2 Adsorption of C, N, and O on metal surfaces
(1×1)O 0.3 ML
O(1s)
Binding energy [eV] 74 75.1 532.1
Ref. p. 55]
Landolt-Börnstein New Series III/42A4
Substrate Al(111) cont.
Surface -
Cr(110)
c(4×2)O 100 L O2 1 L O2 c(2×2)O (1×1)O 100 L O2 (2×1)O
State O(2p) O(1s) O(2p) Cr(2p) O(1s) O(2p) O(1s) O(2p) O(2p) Cr(2p) O(2p) bonding states
24
Substrate Co(1120)
State O(2p) O(2p) O(2p) O(2p) Gd(4f)
Ir(110)
oxidic adsorbed O
O(1s) O(1s) Ir(4f7/2) O(2p) O(1s) O(1s) O(2p) Mg(2p)
Ir(111)
Mg(10 1 0)
expos. 650 K 1 - 10 L O2 1 L O2
Mg(0001)
9 L O2
O(1s)
Mo(110)
0.5 L O2 (2×2)-1O
Mo(111)
low cov.
O(2p)
Ir(100)
100 L O2 0.8 ML Mo(100) Ni(110)
Ni(111)
2 - 10 L O2 (2×1)O
O(2p) O(2px,y)
Binding energy [eV] 5.5, 5.3 ~6 5.4, 6.5 4.8, 5.4, 6.5, 7.6 8.75 → 8.85 8.35 → 8.60 530.6 528.9 60.7 6-7 529.8±0.2 531.5 5 50.79 51.44 2.9
Remarks
chemisorbed O oxidic-O surface oxidic-O bulk
on-surface O subsurface O MgO O chem. transition from O-derived 2p to levels of an MgO species. (1×1)O underlayer coexists with MgO
530.6, 533
5.5 8 9.5, 7 530.6 → 530.2 227.2 → 227.4 4-6 6
Method UPS EELS ARPES ARPES PES
Ref. 76B1, 77R3 84S3 95Z1 95Z1 96M1
XPS
97L2
UPS XPS
77C3, 78K1 76Z1
UPS PES
79K1 89T1
ELS
81H1, 81N1
EELS XPS
82F1 81G1 94D1
Fermisurface mapping: global Peierls distortion induces the (2×2) ordering. UPS HeI HeII HeII O(1s)-shift XPS Mo(3d)-shift UPS strong dispersion of 2 eV along the Ni-O ARUPS chains. theory
−3.2 −2.0
(2×1)O (3×1)O (3×1)O 30 L, 100 K
O(1s)
(2×2)O
O(2p)
530 531.5 −1.1 → −2.8
77W3 91P1, 97C1, 96S4 90N1 85D1, 85D2
ARUPS XPS
96S4 95R2
IPE XAS
85A1 89P3
25
similar to (2×1)O O2− O1− dispersion Covalent bond: O(2p)-metal-sp
85M1
3.4.2 Adsorption of C, N, and O on metal surfaces
Surface c(2×2)O 0.7 ML
c(2×2)O c(2×2)O (2×2)O (2×2)O 30 L O2, 100 K
O(2pz) O(2px,y) Ni(3p3/2)
O(1s) O(1s) O(2pz) O(2px,y) O(1s)
529.9 524 529.75 8 6 530 531.5
(2×2)O Pd(110)
Pd(3d5/2)
c(2×4)O 100 L O2, 300 K 100 L O2, 1000 K 0.4 ML
335.58 336.3 6 21.2, 22.2 24.3 335.0 532.3 336.6 529.6 335.54
529.9 529.9 6.5
Pd(100)
c(2×2)
O(2pz) O(2s) O(2s) Pd(3d5/2) O(1s) Pd(3d5/2) O(1s) Pd(3d5/2)
Pt(110)
(1×2)MR+O2 (1×2)MS+O2 (2×2)O
O(1s) O(1s) O(2p)
Pd(111)
>3 ML Landolt-Börnstein New Series III/42A4
Pt(111)
Method XPS
Ref. 76K1
XPS
95R2
PES
79R1, 79C2
XPS
01D1
more pronounced at grazing incidence O2− O1−
O(2p) hybridized with Ni(s,p), strong dispersion IPE, KRIPES of up to 3 eV theory O(2p) derived state (hybrid of O(2p) and Ni4s4p) UPS SCLS O-K emission SXES SCLS UPS O2− O1− Oxygen K-emission spectra: 2p-3d antibonding state partly occupied. clean surface component 334.96 eV surface oxide 1 eV dispersion along densely packed rows. O chemisorbed O subsurface
94H1 85G2, 71E1
89N1 92W2 89N1 64G1, 77J1
XPS
95R2, 00K1
SXES
93T1
SCLS SCLS ARUPS UPS
91C1 96B1 93Y1 83W1
XPS
90B1
clean surface 335.40 eV; angular dependence of PES the intensity: O in 4-fold hollow 0.92 Å above the Pd layer. XPS
94G1, 96P1
86F1 89P1, 80G1
[Ref. p. 55
c(2×4)O
Remarks
3.4.2 Adsorption of C, N, and O on metal surfaces
c(2×2)O
Binding energy [eV] 861.5 852 531.6 530 531.5 8 6 853.7 - 553.9, 855.5 855.9 −1 - −4
30 L, 100 K
Ni(100)
State Ni(3p3/2) clean O(1s) O(1s)
26
Substrate Ni(111) cont.
Re(0001)
Rh(110)
Binding energy [eV] 530.8 529.8 6
0.2 ML 0.8 ML -
O(1s) O(1s) O(1s) O(2p)
530.9 529.8 530 6
(1×5)2O (1×3)2O c(2×4)O disordered 0.8 ML (2×2)p2mg
Rh(100)
Ru(10 1 0)
(2×2)4pg c(2×4)2O c(2×4)2O, (2×1)p2mg-2O
O(2p)
5.5, 6.6, 7.8
O(1s) O(1s)
XPS UPS ARUPS
80D3
ARUPS
92L3 94C1
2 O-induced states (2pz, 2px) disperse by 1.2 eV ARUPS and 0.8 eV CLS
98C1
O(2px) and O(2pz) disperse by about 1.0 eV along the close-packed Re rows. No dispersion perpendicular to the Re rows. 3 weakly dispersing O(2p) bands
O(1s) O(1s) O(1s) O(1s) Rh(3d5/2) Rh(3d5/2) O(2pz) O(2s) Rh(3d5/2) O(1s)
Ru(3d5/2)
530.25 529.75 529.4 529.4 −0.12 0.3 5.9 21.0 −0.25 529.8±0.2 4.0, 4.7, 5.2, 5.8, 6.2, 6.8 0.395 (Ru-O) 0.695 (Ru-2O) 2.8, 4.2, 4.6, 5.0, 6.3
O(1s) O(2p) induced states O(1s)
92L2
529.8±0.2 6.4 530.24
01V1
PES
99J1
Rh c.t 1O w.r.t. bulk Rh c.t 2O w.r.t. bulk
SCLS
00A2
derived states disperse by about 1.4 eV
PES
96Z1
w.r.t. bulk
SCLS XPS
6 O-induced bands; all of them are weakly dispersing (0.7 ML disord., 80L visible in NEXAFS 4-fold 4-fold 4-fold
1.95±0.05 1.96±0.05 1.93 2.07, 1.80 1.86, 1.88 2.02 -
4-fold 4-fold 4-fold fcc, (1×3) MR fcc, (1×2) MR fcc, (1×2) MR reconstructed surface
2.03 1.98±0.08 2.02±0.08 2.18 2.11 1.73 1.79±0.05 1.94 1.94
(2×2)p2mg-2O c(2×8)-12O (5×10)np (2×1)pmg-2O (2×2)
2.0±0.1 1.97, 2.02 2.00
fcc (assumed) fcc fcc 4-fold 4-fold single PdO(001) on Pd(100) 3-fold on both (110) and (310) facets O: bridge O: bridge and 4-fold site are energetically degenerated fcc, (1×2) MR fcc, (1×4) MR fcc fcc (1×2)MR, O fcc
Landolt-Börnstein New Series III/42A4
35 Ref./Method 90V1, 94S1/LEED 92H1/SEXAFS 90P1/NEXAFS 96D1/PhD 91M1/LEED 92H1/SEXAFS 81N3/HEIS 96S5, 97S5/ DLEED 01D1/XPS 91O1/LEED 91O1/LEED 91O1/LEED 82S2/SEXAFS 83N1/NEXAFS 83N1/NEXAFS 93S2/PhD 99A1/DFT 94X1/SIMS 83F3/RBS 94X1/SIMS 93G2/cluster theo. 89H2/RBS 97B1/LEED 97B1/LEED 01H1/DFT 98L1/DFT 98O1/LEED 98O1/LEED 98L1/DFT 96K2/LEED 94V3/LEED 94L1/SEXAFS 97G1/DFT 97G1/DFT 93G1/LEED 94O1/LEED 95O1/LEED 93G1, 95B1/LEED 97S5/DFT
36 substrate Rh(111)
Rh(100)
Ru(10 1 0)
Ru(0001)
stepped Ru(0001) Ta(100) W(110)
W(100) W(100) W(211) W(100)2×1
3.4.2 Adsorption of C, N, and O on metal surfaces surface (√3×√3)O (2×2)O (2×1)O (2×2)O (2×1)O (1×1)O O subsurface Single O c(2×2)O (2×2)O (2×2)4pg-2O
O-metal [Ǻ] 2.0 2.00±0.08 2.02±0.08 2.00 1.99 1.95 1.8 2.02 2.17 2.12±0.06 2.00, 2.06
c(2×4)-2O (2×1)p2mg-2O c(2×4)-2O (2×1)p2mg-2O (1×1)2O artificial (2×2)O (2×1)O (2×2)3O (1×1)O (2×2)O (2×1)O (1×1)O (2×2)O
2.08, 2.03 2.03, 2.03 2.09, 2.10 2.11, 2.11 1.98, 2.08
(3×1)-O (2×1)O (2×1)O (2×1)O ≈(1×1)O (1×1)O (1×1)O O disordered (4×1) (2×1)-3O O disordered
2.03±0.06 2.02±0.06 11.98±0.0 6 2.00±0.04 22.10 2.08 2.03 2.0±0.1 2.08 2.05, 2.11 1.73 2.10 1.65 2.0, 2.24 -
[Ref. p. 55
Adsorption site/Remarks fcc (assumed) fcc fcc fcc fcc fcc octahedral fcc, assumed 4-fold 4-fold quasi-3-fold, clock reconstruction type 2a), 0.2 Ǻ displacements of Rh atoms hcp along the Ru flanks hcp along the Ru flanks hcp hcp fcc, hcp
Ref./Method 98L1/DFT 97S3, 86W1/LEED 97S3,96W1/LEED 99G1/DFT 99G1/DFT 99G1/DFT 98W1/PhD 97C3/cluster 98L1/ DFT 88O1/ LEED 99A1/DFT 98S7, 99B1/LEED 99N1/SXRD 98S1/LEED 98S1/LEED 98S1/DFT 98S1/DFT 98S1/DFT
hcp hcp hcp hcp hcp hcp hcp hcp (terrace), four-fold (step)
89L1/LEED 89P1/LEED 98K2/LEED 96S3/LEED 96S2/DFT 96S2/DFT 96S2/DFT 95H1/LEED
4-fold interstitial 3-fold 3-fold 3-fold 3-fold two types of 3-fold O W-O layer distance: 1.18 Ǻ 4-fold ----3-fold trough
85T1/LEED 75V1/LEED 01Y1/LEED 93J1/STM 98D1, 01T1/PhD 93J1/STM 99O1/XPD 86R1/DLEED 98O2/EELFS 89B1, 89R2/TOFSARS 89M1/LEIS 91M2/STM
O disordered in 2nd layer, MR 3-fold or 4-fold hollow, MR
Landolt-Börnstein New Series III/42A4
Ref. p. 55] substrate Zr(0001)
3.4.2 Adsorption of C, N, and O on metal surfaces surface (2×2)2O (2×1)O (1×1)1O
O-metal [Ǻ] 2.28±0.05 2.11 2.28
(1×1)1O (1×1)2O
2.05 2.21, 2.07
Adsorption site/Remarks O-octahedral below 1st and 2nd layer O-octahedral below 1st and 2nd layer 0.5 ML below 1st and 0.5 ML below 2nd layer (octahedral) O-octahedral tetrahedral/on-surface similar to ZrO2
37 Ref./Method 95W1/LEED 01J1/DFT 95W2/LEED 01J1/DFT 97W1/LEED
Remarks: a) Clock reconstruction type 1 (black) and type 2 (white) according to 99A1 b) In general, DFT slab calculations are more reliable than Cluster calculations concerning the atomic geometries.
3.4.2.2.7 Ordered overlayers of chemisorbed oxygen and surface oxides on metal surfaces Table 7. Ordered overlayers of chemisorbed oxygen and surface oxides on metal surfaces.
Substrate fcc- Ag
Orientation (110) (110) (331) (111)
fcc-Al
fcc-Au hcp-Be
(100) (110) (111) (100) (111) (0001)
fcc-Co
(10 1 0) (0001) (100)
bcc-Cr
(110)
hcp-Co
fcc-Cu
Landolt-Börnstein New Series III/42A4
(111) (100) (110) (210) (111) (332) (100) (h11) h=5,...,15
O-surface structure (2×1), (3×1), (4×1), (5×1), (6×1), (7×1), c(6×2)-6O c(2×2) high pressure phase (2×1) (2×2), (√3×√3)R30°, (4×4)-4O disordered, c(2×2) (331) facets, (111) facets (4×4), (1×1)O, oxide-like (1×1)O islands disordered, amorphous oxide (√3×√3)R30° (1×1)O, BeO(0001)-(1×1), BeO(0001)-(2×2) (2×1), c(2×4), (2×1)pg disordered (2×2), c(2×2) and then nucleation of CoO crystallites. (3×1), (100)-facets p(4×2) (√3×√3)R30° c(2×2), c(2×4), (1×1) (2×1), c(6×2) (2×1), (3×1) disordered, (4,3,−3,5) disordered, (9,1,1,5) (2√2×√2)R45°, c(2x2) c(2×2)
Ref. 73E1, 76E1, 84C1 88S2 78M1 65M1, 74R1 85C1, 95B5 76E1, 85G1 71B1, 72V1 71B1, 78F1, 83M1, 93B2, 98T1 88W2/STM 67J1, 77F1 96C1 84F1 90S1 82C1 77R1 73M1 88K3 78J1 77H1, 82G1 67E1, 83F1 78M2 67E1 82M1 79W1, 98T2 92S1
38 Substrate bcc-Fe
3.4.2 Adsorption of C, N, and O on metal surfaces Orientation (110) (111)
hcp-Gd fcc-Ir
(100) (0001) (110)
hcp-Mg
(111) (766) (100) (0001)
bcc-Mo
(110) (111)
(211) (100)
bcc-Nb
fcc-Pd
(110) (111) (100) (110) (771) (111) (100) (110)
fcc-Pt
(331) (111) (100) (110)
fcc-Ni
(111)
(654) (766) (12,9,8) (62,62,60)
O-surface structure c(2×2), (3×1), (2×2) beyond 0.4ML O: FeO(111) (6×6), (5×5), (4×4), (2√7×2√7)R19.1°, (2√3×2√3)R30° c(2×2), (1×1)O (1×1)-disordered (2×2), c(2×2), (3×2), (1×1), (1×4)oxide (2×2) or/and (2×1) (2×1) (2×1), (5×1), (1×1) (1×1) disordered, MgO(111)(1×1)R30°, MgO(111)(√7×√7/2)R19° (2×2)-1O, (2×1)-O, (1×1) 1-dim. ordered structures (211) facets, (110) facets, (4×2), (4×4), (1×3), (112)-(1×2) facets, (112)-(1×3) facets (2×1), (1×2), (1×3), c(4×2) c(4×4), (2×1), (√5×√5)R26°, (4×1) c(2×2), (6×2), (3×1), (5×5), (110) and (112)facets (1×1)O (3×1) (2×2), (1×1) c(2×2), (1×1), (3×10)-oxide c(2×4), (2×1), (3×1), (9×4) (2×1) (2×2), (√3×√3)R30° (2×2), c(2×2) (1×3), (1×2), pseudo-(2×1), c(2×6), c(2×4)-4O (1,2,2,0) (2×2), (√3×√3)R30°, (2×2)-oxide (2×2), c(2×2), (√5×√5), (5×5) (2×1), (4×2), c(2×2), (1×3), (1×5), (1×7) (2×2)-O, (√3×√3)R30°, (4√3×4√3)R30°, PtO2(0001), (3×15) (2×2)-3O (√3×√3)R30° (2×2), (√3×√3)R30° (√3×√3)R30° (2×2)
[Ref. p. 55
Ref. 62G1, 84K1 95W4 77N1 76B1 86W3, 95Z1 79T1 71G1, 79C1 76H1 69G1, 76R1, 81H1 81N1, 82F1
68H1, 89G2, 91D2, 86W2, 89G2 96K1/RHEED 77C1, 75K1, 85Z1
70D1 68H1, 69K1, 77C1, 75R1, 85Z1, 79B2 83M2 67H1 77P1 77P1, 73F1 85B1, 64M1, 68M1, 93B1 91H1 64M1, 81K1 64M1, 83D1 69E1, 89H2 81D1 77C2 82O1, 87C1, 88C1, 91S1 64T1, 76D1, 80S1 64T2, 77W1, 77L1
89P2 80D1 77L1 80D1 80D1
Landolt-Börnstein New Series III/42A4
Ref. p. 55] Substrate fcc-Pt (cont.) hcp-Re
fcc-Rh
hcp-Ru Ru stepped fcc-Ta
hcp-Ti fcc-Th bcc-V bcc-W
hcp-Zr
3.4.2 Adsorption of C, N, and O on metal surfaces Orientation (100)
O-surface structure (2√2×2√2)R45°, (5×1), (2√2×√2)R45°, (2×1), (3×1) (2√2×√2)R45° (611) (10 1 0) (2×3)O, c(2×4)2O, (1×5)2O, (1×4)2O, (1×3)2O (0001) (2×2) (110) (2×2)p2mg-2O, (2×3)p2mg, c(2×2n)3nO, n=3,4,5, ... (2×1)p2mg-2O (10×2) (2×1), (1×3) (331) (111) (2×2), (2×1), (8×8)-oxide (1×1) (111) (755), (331) (2×2) (100) (2×2), (2×2)gg, (10 1 0) c(4×2), (2×1)p2mg, c(2×6), (7×1) (101) (1,1,3,0), (2,1,5,0), (4,1,9,0) (0001) (2×2), (2×1), (2×2)-3O, (1×1)O (2×1)O (110) (3×1) (100) (2×8/9), c(3×1), (4×1), (3×3), (1×2), (1×3) (3×1) (211) (0001) (1×1), (2×2)O (111) disordered (100) disordered (110) (3×1), c(6×2) (100) (5×1) (110) (2×1)-O, (2×2)-3O, (1×1)-1O, c(14×7), c(2×2), c(21×7), c(48×16) (2×1) (10,1,1) (111) disordered, (211) facets (100) disordered, (4×1), (2×2), (2×1), (3×3), c(2×2), c(8×2), (3×1), (8×1), (4×4) (211), (221) (2×1), (1×n), n = 1, 2,..., 7 (0001) (2×2)2O, (1×1)1O, (1×1)2O (10 1 0) (2×4)
39
Ref. 77L1, 79M1, 77P2, 84B1 79M1, 83L1 91L1, 72Z1 69F1, 70D2 66T1, 67T1, 90S2, 91B1
01V1 93V1, 95F1 79T2, 80C1 99G1 79C1 78C1, 88O1 77O1 77R2 70G1, 75M1, 82D1, 97K1, 96S1 79P1 67H1 74C1, 85T1 67H1 58F1, 81J1, 85S1, 90G1 77B1 76T1 67H1, 00G2 82J3, 84G1 75E1, 78C3, 93J1, 67T2 73B1, 66G1, 78B2 77E1 79N1 73P1, 76B1, 81K2
67C1, 83W2, 85B1, 85W2 95W1, 95W2, 97W1 94Z1
Remarks: a) (1×1) can mean ordered (1×1)O phase or disordered phase, while (1×1)O is used for an ordered (1×1) overlayer of oxygen. b) Disorder occurs more frequently on (100) presumably due to higher diffusion barriers.
Landolt-Börnstein New Series III/42A4
40
3.4.2 Adsorption of C, N, and O on metal surfaces
[Ref. p. 55
3.4.2.2.8 Phase diagrams and phase transitions in the O-metal surface system Table 8. Phase diagrams and phase transitions of O-metal systems.
substrate
surface
fcc-Ag
c(2×2)O → (1×1)O phase transition at 180 K1
453 433 443
Ru(1120)
p(1×2) (1×2)-p2mg
0.25 0.5 Low
691 402-482 442
Intermediate 498
Landolt-Börnstein New Series III/42A4
W(100)
α β
W(100)
α1 "virgin" α+β
363 548 (C) 605 (O) 360 545 625
Technique
at 30 K (IRAS) C16O overtone (2ν)
References
96Jak
13
98Jak2
452.8 458.9
Ru(0001)
Ru(1121)
C-O 2061 2030.8 1941 3940
Adsorption site / configuration
1901 1648 2000 2048 1810 2062 1552 1930-2050 1335 1946 1487 1769 2065
2100 2065
Fermi resonance atop hollow atop
Tilted CO atop 4-fold hollow atop defect site bridge CO in atop, dissociated into C and O at 100 K; β state is dissociated CO
Theory
00Kop
EELS
89Lau
EELS EELS
01Wan1, 01Wan2 03Fan
EELS
77Fro
EELS
85Fra
3.7.1 CO and N2 adsorption on metal surfaces
(√3×√3)R30°
Coverage/ adsorbed state 0.67 0.33
162
Substrate
Landolt-Börnstein New Series III/42A4
Substrate
W(100)
Coverage/ adsorbed state
1 2 0.23-0.5 0.23-0.77
Vibrational frequency [cm−1] Me-C
Adsorption site / configuration
Technique
References
CO stretch at 90 K at 295 K
IRAS
93Rif
C-O 2023-2099 2082-2102 2061-2070 1360 1960-2040
tilted CO upright CO
82Hou, 91Hou
3.7.1 CO and N2 adsorption on metal surfaces
W(110)
Structure
163
164
3.7.1 CO and N2 adsorption on metal surfaces
Table 6. Adsorbed CO (low frequency vibrational data by EELS, TEAS [03Gra] and IETS [02Ho])
Substrate
Structure
Coverage
θ Al(111) Ag/NiAl(110) Single atom Au/NiAl(110) Single atom c(2×2) Cu(100)
Cu(111)
low
0.5
c(7√2×√2)R45° 0.57 0 0 (√3×√3)R30° 1/3
Cu(110) (2×1)
Cu(211)
Adsorption site
atop atop atop atop atop atop atop atop, bent atop atop atop
0 0 0 0.5
atop atop atop atop atop 0.07, 40K atop atop 0.07, 110K atop atop atop single CO atop
Cu(511) Cu(211)
atop
Vibrational frequency [cm−1] 34.7 209.7 282.2 284.7 287.8 32.2-45.1 287.2±0.16 31.69±0.16 290.3 284 292.8 282.3 294.2 32.83±0.4 293±2.5 39.5±5 25±4 29±0.8 26±0.8 30±0.8 27±0.8 288 46.7 289 24.6±0.8 24.2±0.8 25.8±0.4 20.2±0.4 37 425 53 425 53
Fe(110) Ir(100)(1×1)
Step site Defect site p(1×2) c(2×2)
0.5
atop atop
Ir(100)(5×1)
(1×1)
0.5
atop
Ni(100)
c(2×2) (3√2×√2)R45°
0.5 0.67 0.07 0.5
atop bridge 258 atop, bridge 28.2 atop 30.6
c(5√2×√2)R45° 0.6
33% atop, 67% bridge
363
Mode assignment References
ν4 fr. Transl. ν3 fr. Rotation ν3 fr. Rotation ν3 fr. Rotation ν3 fr. Rotation ν4 fr. Transl. ν3 fr. Rotation ν4 fr. Transl. ν3 fr. Rotation ν3 fr. Rotation ν3 fr. Rotation ν3 fr. Rotation
03Gra 03Wal 03Wal 90Hir 95Hir 95Ell 98Gra2
ν3 fr. Rotation ν4 fr. Transl. ν4 fr. Transl.
88Uvd 87Ber
ν3 fr. Rotation
88Uvd
88Uvd 95Hir 99Lau 95Hir,94Hir, 93Hir, 90Hir ν3 fr. Rotation 95Hir ν4 fr. Transl. 96Bra, 02Hei ν3 fr. Rotation 99Lau ν4 fr. Transl [110] 97Ahn ν4 fr. Transl [100] ν4 fr. Transl [110] 98Bra ν4 fr. Transl [100] ν4 fr. Transl [110] ν4 fr. Transl [100] ν3 fr. Rotation 94Hir ν4 fr. Transl. 99Mor ν3 fr. Rotation ν4 fr. Transl. 96Bra ν4 fr. Transl. ν4 fr. Transl. ν4 fr. Transl. ν4 fr. transl. 92Toe ν3 fr. Rotation 91Kis ν4 fr. Transl. ν3 fr. Rotation 91Kis ν4 fr. Transl.
Lan dolt-Börn stein New Series III/4 2A4
3.7.1 CO and N2 adsorption on metal surfaces Substrate
Structure
Ni(111)
c(4×2)
Ni(110)
(2×1)p2mg c(4×2) c(8×2)
Pd(100) Pd(110)
(3√2×√2)R45° (4√2×√2)R45° (2×1)p2mg
Pt(110)-(1×2) (1×1) (2×1)p1g1
Pt(111)
Rh(111)
Ru(0001) Ru(0001)
W(110)
La ndolt-Bö rnstein New Series III/4 2A4
c(4×2)
Low θ (√3×√3)R30° (2×2)-3CO (√3×√3)R30° (√3×√3)R30°
Coverage
Adsorption site
Vibrational frequency θ [cm−1] 0.5 bridge 184 76 0.5 bridge 302 95 atop, bridge 384.7 1.0 100 40 30 31.4 atop 0.1-0.3 60.4 bridge 1.0 0.67 bridge 403 0.75 bridge 411 1.0 short bridge 201.6 427.5 338.7 69.4 bridge 69.2 1 atop 420 1 atop 420 475 1 at 300 K atop 404 411 atop, 50% 0.5 48.5 bridge, 50% 425 144 360 60 47.8 0.03-0.05 atop 64.4 bridge 0.25 55.9 atop atop 46.4 1/3 atop 45.2 3/4 atop 46.0 hollow 92.8 45 atop 40±8 0.33 atop 46.3 atop 1
Ti(0001) Ti(0001)
W(poly)
Landolt-Börnstein New Series III/42A4
W(100)
atop CO atop bridge dissociated dissociated CO, bulk C and O phases
α1 α2 "virgin" β α1
CO CO CO dissociated CO
α "virgin", β1
CO CO and dissoc.
281.8±0.2 281.9 283.2 284.4 ≈287.3 ≈287.3 ≈285.4 ≈283.1 286.2
531.7±0.2 531.85±0.15 530.1±0.2 532 ∼530.5 531.7 531.9 531.9 530.9 529.8±0.2 530.4 531.8 534.2 532.8 531.5 530.5 533.0 533 531.7
93Dha
75Fug2, 75Fug3, 77Fug 85Shi1
96Rot
78Fuk, 80Fuk3 98Kuz
74Yat1
74Yat2, 74Yat3 76Yat1
3.7.1 CO and N2 adsorption on metal surfaces
Ru(0001)
(1×2) c(4×2) (2×1)p2mg (√3×√3)R30°
bridge atop 45% bridge, 55% atop 57% bridge, 43% atop 53% bridge, 47% atop CO
O 1s 530.8 531.9
References
188
Substrate
Landolt-Börnstein New Series III/42A4
Substrate
Structure
Coverage/ adsorbed state β2, β3
Cont'd. W(110)
Zn/Ru(0001) O/Zn(0001)
dissociated CO CO dissociated CO physisorbed CO
Core level energies [eV] C 1s 283.2 285.8±0.5 285.5±0.3 283.1±0.3
291.5
References
O 1s 530.1-530.6 532.0±0.4 531.6±0.3 530.4±0.2 535.2
93Rod
537.7
90Car
77Umb, 83Umb 77Ste1
Table 10. Molecular N2 adsorption (thermodynamics) Substrate
Structure
Cr(110)
Fe(110) Fe(100) Fe(111)
Coverage/ adsorbed state
Heat of adsorption Ead [kJ/mol]
0.36 γ state
c(2×2)
β β α γ
209 222 218 31.4 ∼24
Technique
Activation energy of desorption Ed [kJ/mol]
TDS
14 28 234 243 214
TDS TDS Isotherms TDS TDS
Pre-expoSticking nential factor coefficient νd [s−1] s(θ)
1×1013 ass. 1×1013 ass. 1×1013 ass.
∼2×10
References
0.09
84Miy 91Dow
10−7 - 10−6 10−7 - 10−6 10−7 - 10−6 0.003 at 120 K
77Boz2 77Boz1, 77Boz2
3.7.1 CO and N2 adsorption on metal surfaces
"virgin" β 0.16-0.57 ML Zn ∼ 1 ML O
Chemical state
82Ert2
10
84Gru1, 84Gru2, 85Str
189
Structure
Coverage/ adsorbed state
Heat of adsorption Ead [kJ/mol]
β,
Fe(111)
Ir(110)-(1×2) p1g1(2×2) Ir(100)-(1×1) Ir(100)-(5×1)
Mo(110) Mo(100) Mo(111)
Ni(100)
clean c(2×2)-C c(3×2)-N, facets to (433) at 850 K c(2×2)
Landolt-Börnstein New Series III/42A4
c(2×2) Ni(111)
γ (on α) 0-1 1 γ, 90 K 97 K 130 K 160 K β at 300 K
Sticking Pre-exponential factor coefficient νd [s−1] s(θ) 1×10−6 at 300 K, ∼0.1 at high incident kinetic energy
31 38
30 25
Isobars TDS Isobars TDS
20.7 24.5 25-28
2.1×1013 1×1013
35.5-25.1
108 - 1011
TDS TDS
β at 300 K θmax = 0.35
AES
0.5, γ, 120 K 0.1 - 0.5 0.5 35 0 at 90 K
TDS, LEED TDS LEED TDS TDS
339±13
25 44 - 25
0.01
1×1013 ass. 1×1013 ass. 13
20
1×10 ass. 1×1013 ass.
87Ret1, 87Ret2
87Gru2
1
1×1013 ass. 1×1013 ass.
TDS TDS
References
81Ibb 93Gar 93Gar
0.09 0.6±0.1 at 200 K 140K 0.5 0.5 - 0.72 0.72 γ at 78 K γ at 120 K 120 K γ β α β α β
(2×1) fluid c(1.4×2) (2×1) (2/3×1/3) (1×1) gas (2×1) fluid c(1.4×2) Pd poly Pd(110) Pt(111) Re(0001) Re(0001) Re (1120)
36.6-42-20
Technique
TDS TDS TDS TDS LEED LEED LEED, TDS LEED LEED LEED LEED LEED LEED TDS TDS TDS TDS, FIM TDS TDS
TDS, FEM
Activation energy of desorption Ed [kJ/mol] 42 42 - 21 21
Pre-expoSticking nential factor coefficient νd [s−1] s(θ)
References
1×1013 ass. 1×1013 ass. 1×1013 ass. 8×1012
84Gru3 83Gru2 84Gru3 80Gol 88Kuw
1 - 0.45 0.45 - 0.5 0.5 - 0
13 83Jac1 83Gru1
25 - 41 25 40 ∼40
1×1013 ass. 1×1013 ass. 1×1013 ass. 1×1013
24±1 260±20 21±2 29±2 240±40 38
1×1011 1×10−2 1×109 1×1010 1×10−2 1×1013 ass.
0.67 0.15 adsorbs at 80 K 14) a further contribution to the heat of desorption from van der Waals interactions between the chains is observed. 200
–1
Desorption energy [kJ mol ]
160
120
80
40
0
4
8 12 16 Number of carbons
20
24
Fig. 3. Chemisorption (full symbols) and physisorption enthalpies (open symbols) for various alkanethiols on Au(111) as a function of the number of carbon atoms. For comparison, physisorption values for simple alkanes are indicated as dashed line. Only for chain lengths higher than 14 carbon atoms, the desorption energy is higher than the bond enthalpy of the anchor groupsubstrate bond. Values have been determined by temperature programmed desorption in UHV; [98Lav].
Since SAMs are covalently anchored on the substrate, they show higher resistance to desorption than physisorbed systems. Thermal desorption of alkanethiols on gold (111) occurs only at temperatures of about 500 K and this temperature is largely independent of the chain length [98Lav]. Trichlorosilane- or trialkoxysilane-based SAMs on oxide surfaces are thermally extremely stable due to the polymeric siloxane network formed on the surface. SAMs formed from octadecyltrichlorosilane on silicon dioxide have been found to be stable in UHV up to temperatures of 740 K, at which temperature the C-C bonds in the molecular backbone start to decompose [97Klu]. The siloxane network of the anchor groups remains on the surface after decomposition of the monolayers up to about 1100 K. Monolayers formed by reaction of 1-alkenes with hydrogen-terminated silicon surfaces have been reported to be stable up to 615 K [97Sun].
Landolt-Börnstein New Series III/42A4
374
3.8.10 Polyatomic chain-like hydrocarbons on metals and semiconductors [Ref. p. 380
3.8.10.2.3 Wettability The wettability of self-assembled monolayers is mainly determined by the chemical nature of their terminal group exposed to the surface. In table 2, a survey of advancing contact angle values of water and hexadecane is given for different end groups of SAMs. Generally, for densely packed and well-ordered monolayers and for a given backbone, the wettability is only weakly dependent on the substrate and the packing density. In table 2, only values for SAMs on gold have been listed. The contact angle increases with higher roughness of the substrate; table 2 lists only the limiting values for minimally rough evaporated surfaces. Aromatic SAMs show a smaller variation of the contact angle for different terminal groups since the aromatic backbone delocalizes induced charges, in contrast to aliphatic chains which present more localized terminal dipoles.
3.8.10.2.4 Anchor groups for SAMs on inorganic substrates A broad variety of anchor groups have been used for the covalent attachment of hydrocarbon chains to inorganic surfaces and have been listed in table 3. On noble metals, sulfur containing anchor groups such as thiolates or disulfides which form covalent bonds to the surface are frequently utilized. On metal oxide surfaces, coordinative bonding to the metal ion component of the surface oxide via functional groups such as phosphonic or carboxylic acids often prevails. For most types of metal and semiconductor oxide surfaces, trialkoxysilanes or trichlorosilanes are versatile anchor groups that form two-dimensional crosslinked siloxane networks on the surface, but the long-range order of these SAMs is generally lower than that of e.g. alkanethiols on noble metals. As opposed to most of the other anchor groups listed in table 3, silanes require a minimum of water content in the solvent used for SAM formation in order to polymerize on the surface. For particle (colloid) surfaces, the same anchor groups as for planar surfaces can in general be used. In table 3, data are included for anchor groups on nanoparticles in a size range from some nanometers to several hundred nanometers. Anchor groups for SAMs can also be used for the chemical attachment of thicker, more disordered films on a surface such as oligomeric or polymeric systems and are therefore of technological importance e.g. for adhesion improvement.
3.8.10.3 List of abbreviations AES AFM ATR-IR GIXD IRAS LEAD LEED NEXAFS SAM SPS SPR STM UHV XANES XPS XR
Auger Electron Spectroscopy Atomic Force Microscopy Attenuated Total Reflection Infrared Grazing Incidence X-ray Diffractometry Infrared Reflection Absorption Spectroscopy Low Energy Atom Diffraction Low Energy Electron Diffraction Near Edge X-ray Absorption Fine Structure Self-assembled Monolayer Surface Plasmon Spectroscopy Surface Plasmon Resonance Scanning Tunneling Microscopy Ultrahigh Vacuum X-ray Absorption Near Edge Structure X-ray Photoelectron Spectroscopy X-ray Reflectivity
Landolt-Börnstein New Series III/42A4
Ref. p. 380] 3.8.10 Polyatomic chain-like hydrocarbons on metals and semiconductors
375
3.8.10.4 Tables Table 1. Tilt and twist angles, areas per molecule, structures and superlattices of self-assembled monolayers on various substrates. System
Tilt angle
Alkanethiol / Au(111)
32-34° (IRAS) 55° (IRAS) [90Nuz1], [90Nuz2] [90Nuz1] 35° (NEXAFS) [92Häh]
Alkanethiol / oxidized Au(111)
18° (deposition from solution) 28° (vapour deposition) (NEXAFS) [99Yan] 11° (IRAS) [98Tho] 45° (IRAS) 26° (NEXAFS) [98Tho] [98Tho]
Alkanethiol / Au(111) exposed to Hg vapor Dialkylsulfide / Au(111) Alkaneselenol / Au(111) Alkanethiol / Au(001)
Twist angle
HS(CH2)15COOH / Au(111) HS(CH2)15CONH2 / Au(111) HS(CH2)16CN / Au(111) F(CF2)10(CH2)n-SH (n = 2,6,11) / Au(111)
Superlattice
(√3×√3)R30° [88Str], [90Chi]
c(4×2) LEAD [93Cam] GIXD [93Fen] STM [94Poi], [94Del], [94Buc] 6×√3 (STM, after 6 months storage) [02Noh]
15° (GIXD) [92Sam] 22.2 Å2 (LEAD, GIXD) [95Li]
33.5° (LEAD, GIXD) [95Li]
as deposited: c(2×2) (LEED) [93Dub] annealed: c(2×8) (LEAD) [95Li] c(2×2) (LEAD) [93Cam]
23.5 Å2 (LEAD) [93Cam] 28° (IRAS) [90Nuz2] 50° [90Nuz2] 39.6° (NEXAFS, XPS) [97Dan] 32° [90Nuz2] 55° [90Nuz2] 31° [90Nuz2]
42.5° (NEXAFS) [03Fre] 0-16° (fluorinated segment, SPR, AFM) [01Tam] F(CF2)10(CH2)n-SH 32-38° (alkyl (n = 2,11,17) / Au(111) segment, NEXAFS) 12.5-24° (fluorinated segment, XPS, IRAS, NEXAFS) [00Zha], [00Fre] HS(CH2)11(OCH2CH2)3 ∼30° (alkyl segment) OMe /Au (111) ∼0° (oligoether segment, IRAS) [98Har] HS(OCH2CH2)6C10H21/ 32° (alkyl segment) Au(111) ∼0° (oligoether segment, IRAS) [98Van] Landolt-Börnstein New Series III/42A4
Structure
(√3×√3)R30° [99Sch]
Alkanethiol / Au(110)
OH-terminated Alkanethiol / Au(111)
Area per molecule 21.6 Å2 [00Sch]
(√3×√3)R30° [90Nuz2]
55° [90Nuz2]
p(2×2) or c(7×7) [01Tam] 54-58° (alkyl segment) [00Zha]
−30° [98Van]
376
3.8.10 Polyatomic chain-like hydrocarbons on metals and semiconductors [Ref. p. 380
System
Tilt angle
1,1'-Biphenyl-4-thiol / Au(111) 1,1':4',1''-Terphenyl-4thiol / Au(111) CH3(C6H4)2SH / Au(111) CH3(C6H4)2(CH2)nSH (n = 1-6) / Au(111)
32° [01Fre] 23° ± 5 (NEXAFS) [01Fre] 20° ± 5 (NEXAFS) 32° [01Fre] [01Fre] 19° (GIXD) [00Leu]
Alkanethiol / Ag(111)
HS(CH2)16CN / Ag(111) 1,1'-Biphenyl-4-thiol / Ag(111) 1,1':4',1''-Terphenyl-4thiol / Ag(111) CH3(C6H4)2(CH2)nSH (n = 1-6) / Ag(111)
45 ± 10 (n = even) 23 ± 7 (n = odd) NEXAFS, IRAS [01Ron], [00Zha]
Twist angle
Structure
Superlattice
(√3×√3)R30° [00Leu] (√3×√3)R30° (n = odd) [01Ron]
61 ± 10 (NEXAFS, IRAS) [01Ron], [00Zha]
10° (NEXAFS) [98Him] 0-18° (SPS) [97Ehl] 12-13° (IRAS) [91Lai], [91Wal] 0° ± 5 (GIXD) [96Sam] 29.5° (NEXAFS) [03Fre] 32° [01Fre] 18° ± 5 (NEXAFS) [01Fre] 16° ± 5 [01Fre]
24° ± 6 (n = even) 42° ± 9 (n = odd) NEXAFS, IRAS [01Ron] HS(CH2)11(OCH2CH2)3 ∼10° (alkyl segment) OMe / Ag(111) ∼0° (oligoether segments, IRAS) [98Har] F(CF2)10(CH2)n-SH 10-12° (alkyl seg(n = 2,11,17)/ Ag (111) ment, NEXAFS) 12.5-24° (fluorinated segment, XPS, IRAS, NEXAFS) [00Zha], [00Fre] Alkanethiol / Hg 0° [96Mag], [98Ulm] Alkanethiol / Cu(111) 12° (IRAS) [91Lai] 12° (NEXAFS) [98Ima], [97Rie] Alkanethiol / Fe 0° (XPS, AES) [90Str] Alkanethiol / Pt 0.5 ML
< ±0.05 eV 0 −0.300 eV
98Str (D-S+G) 96Zac (D-S+G) 98Str (D-S+G)
0.5 ML
−0.25 eV
96Zac (D-S+G)
+0.385 eV
96Zac (D-S+G)
−0.47 eV
96Zac (D-S+G)
−0.65 eV
94Pri (D-S+G)
−0.08 eV
94Pri (D-S+G)
−0.35 eV
94Pri (D-S+G)
Rh 3d5/2 level, Eb(bulk) Clean surface
CO adsorption on-top c(2×2) “split (2×1)” bridge O adsorption O hollow (2×2)p4g NO adsorption NO H adsorption H
4.3.2.8 Rh(110) Rh 3d5/2 level, Eb(bulk) Clean surface CO adsorption (2×1)p2mg H adsorption 20 L
4.3.2.9 Rh(111) For oxygen adsorption, three types of Rh surface atoms are considered (see Fig. 4): type “A” for clean Rh, type “B” for Rh coordinated to one O adatom, type “C” for Rh coordinated to two O adatoms [01Gan]. A linear relationship between the core-level shift and the number of O neighbors can be observed; approximately one finds 0.3 eV per bond. This is very well reproduced by the calculations. The theoretical prediction for Rh coordinated to three O adatoms (type "D") in a (1×1) layer with 1 ML coverage is +0.94 eV. In the case of CO adsorption, [98Beu] does not give coordination numbers. If we calculate these, we get 1 for on-top and 2/3 for the hollows in the (2×2) structure. That does not give a linear relationship, not even with respect to the clean surface component.
Landolt-Börnstein New Series III/42A4
402
4.3 Adsorbate induced surface core level shifts of metals
[Ref. p. 418
Fig. 4. Core-level shift relative to bulk signal for O adsorption on Rh(111). Comparison between experiment and theory is shown; reproduced from [01Gan].
For Rh(111) a number of theoretical studies exist as well. While some concentrate on the clean surface core-level shift [82Fei, 94And2], obtaining values close to the experimentally observed –0.5 eV, others also calculate adsorbate induced shifts [03Bir]. For CO/Rh(111), results of 0.24 eV for the on-top species in a (√3×√3)R30° structure and –0.22 eV for threefold hollow sites in the high coverage (2×2)3CO phase [03Bir] agree very well with experimental values listed below. As shown above, also for O adsorption the theoretical description seems to work well [01Gan]. Rh 3d5/2 level, Eb(bulk) Clean surface
1st layer 2nd layer CO adsorption (√3×√3)R30° on top (2×2)-3CO hollow O adsorption p(2×2) B hollow p(2×1) C hollow Alkali adsorption K, Rb, Cs
307.18 eV
94And2, 98Beu (D-S+G)
−0.50 eV
94And2, 97Beu, 98Beu (D-S+G) 01Gan (D-S+G)
−0.485 eV −0.46 eV +0.071 eV
0.33 ML 0.75 ML 1/3 0.25 ML 2/3 0.5 ML
03Bar (D-S+G)
+0.27 eV −0.22 eV
97Beu, 98Beu (D-S+G) 98Beu (D-S+G)
−0.140 eV +0.295 eV
01Gan (D-S+G) 01Gan (D-S+G)
−0.50 eV
95And (n.s.)
Landolt-Börnstein New Series III/42A4
Ref. p. 418]
4.3 Adsorbate induced surface core level shifts of metals
403
4.3.2.10 Stepped Rh surfaces The (111) terraces of the stepped surfaces exhibit a different SCLS as the Rh(111) surface, approaching the flat surface value with increasing terrace width. O adsorption on the steps gives rise to a binding energy shift of the step atoms only [03Gus]. Rh 3d5/2 level, Eb(bulk) Clean surface terrace (553) terrace (151513) step underneath step O adsorption step adsorption (553)
0.06 ML
307.15 eV
03Gus (D-S+G)
−0.43 eV −0.48 eV −0.72 eV −0.14 eV
03Gus (D-S+G) 03Gus (D-S+G) 03Gus (D-S+G) 03Gus (D-S+G)
−0.35 eV
03Gus (D-S+G)
4.3.2.11 Pd(100) The case of CO on Pd(100) has been studied in some detail [91And]. There are two interesting aspects. First of all, there seems to be a linear relationship between the number of adsorbed CO molecules and the binding energy shift, increasing from 0.5 eV for one CO neighbor (called “bridge 1”, coord. 1/2) to about 1.0 eV for two CO neighbors (“bridge 2”, coord. 1). The other interesting aspect is that the binding energies of both Pd species change slightly with increasing coverage, i.e., with next nearest neighbors. A similar effect is also observed for other systems (e.g., CO on Pd(111)). In [94Gur] no spectrum of the clean surface is shown. Therefore it is not possible to check the value given for the core-level shifts. However, we assume that the given SCLS is meant to be towards lower binding energies (−0.41 eV), despite the given value of +0.41 eV. As stated by some of the authors [92Nyh, 94And2], the D-S line shape does not adequately describe the Pd 3d core level, due to the details of the density of states close to the Fermi level. Therefore, some groups use subtraction procedures which are labelled as “no fit”. However, the same authors often use a D-S+G line shape for comparison as well. If discrepancies are small, we give only one value for the binding energy shift. 334.95 eV
Pd 3d5/2 level, Eb(bulk)
334.99 eV 334.96 eV
91And (D-S+G) 02Jaw2 (no fit) 94Gur (Sci) 96Par (no fit)
−0.43 eV −0.44 eV −0.41 eV −0.40 eV
91And, 02Jaw2 92Nyh (no fit) 94Gur (Sci) 02Jaw1 (no fit)
+0.48 eV +0.56 eV +0.97 eV +0.60 eV +1.04 eV +0.47 eV
91And (D-S+G) 91And (D-S+G) 91And (D-S+G) 91And (D-S+G) 91And (D-S+G) 96Par (no fit)
Clean surface
CO adsorption p(2√2×√2)R45° bridge 1 p(3√2×√2)R45° bridge 1 p(3√2×√2)R45° bridge 2 p(4√2×√2)R45° bridge 1 p(4√2×√2)R45° bridge 2 unspecified CO
Landolt-Börnstein New Series III/42A4
1/2 1/2 1 1/2 1
0.50 ML 0.67 ML 0.67 ML 0.75 ML 0.75 ML
404
4.3 Adsorbate induced surface core level shifts of metals
O adsorption c(2×2) 4-fold hollow c(2×2) 4-fold hollow NO adsorption p(4×2) 4-fold hollow p(2√2×√2)R45° bridge saturation unspecified NO H adsorption c(2×2) Alkali adsorption Na
0.5 ML
[Ref. p. 418
0.5 ML
+0.55 eV +0.61 eV +0.55 eV
96Par (no fit) 96Par (Sci) 94Gur (Sci)
0.25 ML 0.5 ML 0.65 ML
+0.3 eV +0.8 eV +1.0 eV +0.5 eV
02Jaw1 (no fit) 02Jaw1 (no fit) 02Jaw1, 02Jaw2 (no fit) 96Par (no fit)
≈0 eV
92Nyh (no fit)
+0.7 eV
95And (n.s.)
saturation
4.3.2.12 Pd(110) CO on Pd(110) is a system that shows a reconstruction of the substrate for adsorption at room temperature. The Pd surface is still unreconstructed for CO coverages up to 0.3 ML. For CO coverages larger than 0.3 ML, a missing-row (1×2) reconstruction is found [97Ram], which coexists with the (1×1) structure up to coverages of 0.75 ML. For 0.75 ML (the saturation coverage at room temperature) the missing-row reconstruction of the substrate is complete. For higher coverages reachable at lower adsorption temperature or higher ambient pressures, the reconstruction is lifted again and CO forms the (2×1) p2mg structure [97Ram]. In [97Ram] only an averaged CO induced core-level position could be determined, leading to a continuous energy shift between 0.3 and 0.75 ML. The high coverage phase had to be prepared separately so that no information about the coverage range between 0.75 ML and 1 ML is given. The authors of [96Bon] use exponentially-modified Gaussian line shapes for thr deconvolution of the different contributions. 335.3 eV 335.2 eV
97Ram (Sci) 91Com (D-S+G) 96Bon (special)
−0.5 eV −0.24 eV −0.55 eV −0.4 eV
97Ram (Sci) 91Com (D-S+G) 94And2 (no fit) 96Bon (special)
0.1 ML > 0.1 ML
+0.34 eV +0.40 eV +0.69 eV +0.75 eV +1.05 eV +0.52 eV +0.32 eV +0.59 eV
00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G) 00Sur (D-S+G)
0.25 ML
+0.32 eV
00Lei (Sci)
+0.40 eV
00Lei (Sci)
0.33 ML 0.21 ML
+0.58 eV +0.58 eV
98San (D-S+G) 98San (D-S+G)
0.33 ML
+0.72 eV
98San (D-S+G)
> 0 eV
98San (no fit)
Pd 3d5/2 level, Eb(bulk)
Clean surface
CO adsorption (√3×√3)R30° fcc hollow H1 c(4×2)-2CO hollow H1 c(4×2)-2CO hollow H2 (2×2)-3CO hollow H2 (2×2)-3CO on-top (2×2)-CO bridge (√3×√3)R30° hollow (300 K) CO bridge (300 K) O adsorption (2×2) hollow (300 K) CO coadsorption on (2×2)-O CO induced core-level shift C2H2 adsorption (√3×√3)R30° hollow (2×2) hollow C2H3 adsorption (√3×√3)R30° H adsorption (1×1)
Landolt-Börnstein New Series III/42A4
1/3 1/3 2/3 2/3 1 1/2
406
4.3 Adsorbate induced surface core level shifts of metals
[Ref. p. 418
4.3.2.14 Ta(100) In a theoretical study, Krakauer has calculated a clean SCLS of +0.96 eV for the first and no shift for the second layer [84Kra]. Since no final state effects are taken into account, the agreement seems reasonable. A better agreement is found in [85Gui] by using a microscopic model, where for the 1st layer a value of +0.9 eV and for the 2nd layer +0.14 eV is found for the unrelaxed surface. If some relaxation is included, both values are reduced by about 0.05 eV. 21.65 eV
84Gui2, 85Gui, 85Spa (D-S+G)
+0.74 eV +0.14 eV
84Gui2, 85Gui, 85Spa (D-S+G)
low coverage higher coverage
+0.99 eV +1.29 eV
84Gui2 (D-S+G) 84Gui2 (D-S+G)
low coverage
+0.93 eV
84Gui2 (D-S+G)
+0.64 eV
85Sou (D-S+G)
Ta 4f7/2 level, Eb(bulk) Clean surface 1st layer 2nd layer O adsorption O chemisorbed O oxide-like H adsorption H Cs adsorption not specified
4.3.2.15 Ta(110) [95Ruc] uses the Ta 4f5/2 level to derive the shifts, since the components of the 7/2 level overlap with the 5/2 peak. In [94And1] no adsorbate induced component is observed, but the position of the clean surface component is shifting with increasing coverage. This shift is coverage-dependent and non-linear. For saturation coverages the quoted values are obtained. Theoretical calculations of the clean SCLS yield 0.4 eV [85Gui]. 21.65 eV 21.58 eV
84Gui2, 85Gui (D-S+G) 94And1 (no fit)
+0.28 eV +0.3 eV +0.31 eV +0.360 eV +0.065 eV
85Gui (D-S+G) 95Ruc (no fit) 94And1 (no fit)
(both coexist)
+1.1 eV +1.9 eV +4.5 eV
95Ruc (no fit) 95Ruc (no fit) 95Ruc (no fit)
saturation saturation
+0.355 eV +0.330 eV
94And1 (no fit) 94And1 (no fit)
Ta 4f7/2 level, Eb(bulk) Clean surface
1st layer 2nd layer O adsorption O chemisorbed p(2×1) [81Tre] monolayer oxide [81Tre] bulk oxide Ta2O5 Alkali adsorption Na - surface component Rb - surface component
93Rif (D-S+G)
Landolt-Börnstein New Series III/42A4
Ref. p. 418]
4.3 Adsorbate induced surface core level shifts of metals
407
4.3.2.16 Ta(111) Oxygen adsorption on Ta(111) at room temperature leads to monolayer adsorption for exposures up to 1 L and to various oxidation states for higher exposures [82Vee]. State “A” is related to the adsorbate phase, while “C” and “D” are related to different sub-oxides. For hydrogen adsorption, continuous shifts of the clean surface components are observed [82Vee]. Published calculations of the clean surface core-level shift give very large shifts of +0.86 eV for the first and 0.14 eV for the 2nd layer [85Gui]. Ta 4f7/2 level, Eb(bulk) Clean surface 1st layer 2nd layer 1st layer 2nd layer O adsorption OA OC OD H adsorption 1st layer surface component 2nd layer surface component
21.64 eV +0.4 eV +0.19 eV +0.39 eV +0.11 eV
saturation saturation
82Vee (D-S+G) 82Vee (D-S+G) 84Wer (D-S+G)
+1.12 eV +1.3 eV +2.4 eV
82Vee (D-S+G) 82Vee (D-S+G) 82Vee (D-S+G)
+0.65 eV +0.36 eV
82Vee (D-S+G)
4.3.2.17 Ta (poly) [84Him] reported an oxidation study of polycrystalline Ta. In order to identify oxidation states, different oxidation procedures have been used; average values are presented here. Fairly mild conditions lead to adsorbate phases or surface oxides. Ta 4f7/2 level, Eb(bulk) Clean surface O adsorption oxidation state +1 oxidation state +3 oxidation state +5 oxidation state +5 in bulk oxide
+0.48 eV +1.22 eV +2.05 eV +5.2 eV
84Him (no fit) 84Him (no fit) 84Him (no fit) 84Him (no fit)
4.3.2.18 W(100) The clean surface, which has a (1×1) structure at room temperature, is reconstructed in a c(2×2) structure at low temperatures [81Vee2, 89Jup, 96Jup, 93Mul]. While [81Vee2] attributed two surface related components to unreconstructed (S1) and reconstructed (S2) domains, later publications identified these peaks with 1st and 2nd layer W atoms, the former of which exhibit a small shift upon reconstruction [84Gui1, 89Jup, 93Mul, 96Jup]. For hydrogen adsorption the new position of the original surface components of clean W(100) is noted. No additional H induced features are observed [81Vee2, 82Vee]. In [81Vee2] the S1 component vanishes for H coverages above 0.1 ML, while the S2 component gradually shifts to lower binding energies; however, at saturation H coverages, where the reconstruction is completely lifted, S2 does not reach the binding energy of the clean surface S1 component. In contrast, in the work of Guillot et al. [82Gui], two pairs of peaks are used without allowing for a shift. Landolt-Börnstein New Series III/42A4
408
4.3 Adsorbate induced surface core level shifts of metals
[Ref. p. 418
Theoretical calculations of the SCLS are included in [99Kim] for the clean and the Li or K covered surfaces. In [85Gui] values of –0.55 and –0.23 eV are reported for the clean SCLS of the 1st and 2nd layer atoms, respectively. 31.42 eV 31.41 eV
W 4f7/2 level, Eb(bulk)
31.5 eV 31.44 eV
82Vee (V) 81Vee2 (V) 86Jup, 96Jup (D-S+G) 85Spa (D-S+G) 93Mul (D-S+G)
Clean surface
unreconstructed (S1) reconstructed (S2) 1st layer high temp. (1×1) low temp. (2×2) 2nd layer 1st layer high temp (1×1) low temp. (2×2) 2nd layer 1st layer (2×2) (1×1) 2nd layer 1st layer 2nd layer 1st layer unreconstructed 2nd layer O adsorption O chemisorbed p(2×1) O chemisorbed 2D reconstr. oxide WO2 O induced (110) facets (900 K) H adsorption surface component c(2×2) (S2) p(1×1) (S2) c(2×2) 1st layer 2nd layer p(1×1) 1st layer 2nd layer W bound to H (unrecon. dom.) 2nd layer W pinched surf. molecules W2H Cs adsorption p(2×2)
−0.35 eV −0.36 eV −0.4 eV −0.35 eV −0.13 eV −0.37 eV −0.35 eV −0.14 eV −0.40 eV −0.35 eV −0.16 eV −0.35 eV −0.45 eV −0.11 eV −0.39 eV −0.19 eV −0.4 eV −0.16 eV
0.5 ML 0.6 ML 1.0 ML >1.25 ML saturation 0.8 ML 0.5 ML saturation
0.1 ML 0.57 ML
82Vee (V) 84Wer (D-S+G) 85Spa (D-S+G) 81Vee2 (V) 89Jup,96Jup (D-S+G) 84Gui1 (D-S+G)
93Mul (D-S+G) 86Jup (D-S) 82Gui (special)
+0.53 eV +0.53 eV +1.3 … +1.4 eV +1.7 ... +1.8 eV +0.7 eV
82Vee (V) 89Aln (special) 89Aln (special) 89Aln (special) 89Aln (special)
−0.255 eV −0.14 eV −0.25 eV −0.25 eV −0.09 eV −0.32 eV −0.15 eV −0.22 eV −0.10 eV +0.06 eV
82Vee (V) 81Vee2 (V) 81Vee2 (V)
−0.35 eV −0.46 eV
85Sou (D-S+G) 85Sou (D-S+G)
82Gui (special) 82Gui (special) 96Jup (D-S+G)
Landolt-Börnstein New Series III/42A4
Ref. p. 418]
4.3 Adsorbate induced surface core level shifts of metals
S adsorption p(2×2) (1S/W) c(2×2) (2S/W) N adsorption c(2×2) fourfold hollow – S1 c(2×2) fourfold hollow – S2 c(2×2) fourfold hollow – S3 Li adsorption 1st layer 2nd layer K adsorption 1st layer 2nd layer
409
0.25 ML 0.5 ML
−0.25 eV +0.07 eV
93Mul (D-S+G) 93Mul (D-S+G)