149 57
English Pages VII; 992 [1009] Year 1954
First Edition, Macmillan; 192 2 Reprinted, Chelsea, 1954
PRINTED IN THE UNITED STATES OF AMERICA
CONTENTS. CHAPTER XXIII. CHANGE OF THE VARIABLES IN A MULTIPLE
I~"'TEGRAL. PAGES
ARTS.
1-13 13-27
826-829. 830-832. 833-840.
Change of Order of Integration Change of the Variables Jacobians. BERTRAND'S Definition and Method. of Calculation
27-33
841-852.
The General Multiple I ntegral PROBLEMS -
33-43 44-48
CHAPTER XXIV. EULERIAN INTEGRALS, GAUSS' II FUNCI'ION. 853-870.
Beta and Gamma Functions
871-874.
n-1 I,t" x-1- dx; Y(n)r(l-n)='lr/sinmr; Gauss' Theorem, .0 +x
-
a Case
49-61
61-65
875-885. 886-896. 897-909. 910-930.
Theorems of WALLIS and STIRLING The II Function EULER'SConstant. GAUSS' Theorem Expansions of log F(x+ 1), etc. Calculation of F Functions. Definite Integrals .
65-76 76·86 87-96
931-936.
Approximate Summation CAUCHY'S Theorems; Approximation Formulae; DE MORGAN'S Investigation Integration by Continued Fractions. Factorial Series for y,(a+x); GAUSS' Calculation of "'(x) TABULATED RESULTS PROBLEMs -
116-120
937-946. 947-954. 955·957.
vii
96-116
121-130 130-139 139-144 144-152
viii
CONTENTS.
CHAPTER XXV. LEJEUNE-DIRICHLET INTEGRALS, LIOUVILLE INTEGRALS. PAGES
ARTS.
958-967. 968-984. 985-987.
DIRICHLET'S Theorem Extensions by LIOUVILLE, BOOLE, CATALAN. Generalisations LIOUVILLE'S Integral. LIOUVILLE'S Proof of GAUSS' Theorem PROBLEMS -
153-160 160-173 173-175 176-179
CHAPTER XXVI. DEFINITE INTEGRALS (I.). 7f
988-992. General Summary of Methods;
1"'" log sin ...c dx ;
Illus-
trations t" sinmrx 993-1027. Form '0 --ft-dx(m4:n), etc. .0 x 1028-1030. WOLSTENHOLME'S Principle 1031-1034. 1035-1041.
('"
'0
.0
• P Sln,q'--c
1'"
;t
d» resumed.
e-(lZ - e-n
x
o
t"
cos . b» d»,
.sina.t'
- - d»,
.r.
1042-1070. Various Forms.
r
Jo
207-208
['" .0
-
etc. 2
e-e2(a ,,2+i'! ) dx,
1'" aC~S1X2dz, . etc. ; +.1:
f'"
~nd.x . _'" (.v-b)2+ a2' etc.;
cos rx dor.
('" ./0
213-216
0
~~d.x x(a:4+2a2.1,·2cos2a+a4)' x l ft + a 2ft'
209-213
e-z • cos a» d»,
.0
('" cos rx d.x ./0
f'"
188-207
Partial Fractions·
sin
'0 e- x
•0
180-188
x 4ft
-
2a 2ft.v1ft cos 2na + a 1ft ,
PROBLEMS -
etc.
217-236 -
237-243
CHAPTER XXVII. DEFINITE INTEGRALS (II.). LOGARITHMIC AND EXPONENTIAL FUNCl'IONS INVOLVED. 1071-1076. Series required 1077·1085. Groups A, B, ... G.
f (I
~.q(
lOg1r ±x'')s d»
244-247 Various Forms of Type 248-259
ix
CONTENTS. A.RTS.
PA.GES
(ooIF(.l')~, etc,
1086-1092. General Principles.
260·263
)0 +,xfl.r:
...
1093-1096. 10"9" (log sin 0)2dO, etc.
263-265
Y'+l :.v" d»
265-266
KUMMER'S Integrals
266-269
oo
1097-1098. WOLSTENHOLME'S Expressions for 1099-1100. Group H.
LEGENDRE'S Rule.
00
1101-1103. Groups I, J. Derivations from 1104-1107. Group K.
Type
-.-1loo coshpx
.0
sin 1 qx
[
.0
. S1l1
L 0
( log! 1
,xll-l
1-- d.v (1 >a>O)
±,x
274-278
mx dx
1108-1120. Groups L, M, N. Formulae of POISSON, ABEL, CAUCHY, LEGENDRE PROBLEMS
269-274
278·286 287-292
-
CHAPTER XXVIII. DEFINITE INTEGRALS (IlL).
i" .vpsinan.r:d,x, etc.
1121-1133. Types t" cosSl.vcosqxd.t', etc.;
Jo
)0
1134-1158. Results derivable from well-known Series.
t" cospO )0 (f-=-2a cos-0+ a2)ft «o
293-301
Type
-
301-320
1159· 11M. SERRET'S Investigation of ['" e- kx.rfl - 1 d.t', k complex.
./0
Deductions
321-327
1169-1181. FRESNEL'S Integrals.
SOLDNER'S Function li(.t')
327-336
1182-1188. FRULLANI'S Theorem. ELLIOTT'S and LEUDESDOR:r'S Extensions
337-342
1189-1201. Complex Constants -
342-352
PROBLEMS
-
353-361
CHAPTER XXIX. THE COMPLEX VARIABLE. VECTORS. REPRESENTATION.
1202-1221. Vectors. Laws of Combination. DEMOIVRE'S Theorem 1222-1234. Continuity, etc.
CONFORMAL
ARGAND Diagram.
Revision of Definitions .
362-376 376·382
x
CONTENTS. PAGES
ARTS.
1235·1242. Conformal Representation. WEIERSTRASS' Example of a Function with no determinable Differential Coefficient. Differentiation of a Complex Function 1243·1246. Definitions. Zeros, Singularities, etc. 1247·1255. Conformal Representation. Isogonal Property, Connection of Elements of Area. Connection of Curvatures. Curvature Formulae. Quasi-Inversion. Homographic Relation 1256·1262. Branch Points. RIEMANN'S Surfaces . 1263-1265. Number of Roots in a given Contour PRO:BLEMS
-
382-387 388-389
389-402 402-406 407-415 415-418
CHAPTER XXX. INTEGRATION.
CONTOUR INTEGRATION. THEOREM.
TAYLOR'S
1266·1274. Definitions. General Properties. Integration of a Series 1275·1285. CAUCHY'S Theorem. Deformation of a Path. Loops. Exclusion of Singularities.
423-434
1286-1287.
434·436
f
ep(z)dz z-a'
f
ep(z)dz
(z-a 1)(z-a2 )
...
(z-a,)
1288-1297. Branch-Points and their Effect 1298. Period- Parallelograms 1299·1300. Differential Coefficients of a Synectic Function. TAYLOR'S Theorem 1301·1328. Contour Integration PROBLEMS -
419·423
436·446 446-447 448-452 452-478 479-482
CHAPTER XXXI. ELLIPTIC INTEGRALS AND FUNCTIONS. 1329-1342. Periodicity 1343. sn LU, cn LU, dn LU 1344-1354. Addition Formulae and Deductions. JACOBI'S 33 Formulae. Periodicity 1355·1361. Duplication, Dimidiation, Triplication 1362-1365. The General Proposition for Addition Formulae. Second and Third Classes of Legendrian Integrals
483-498 498 498·508 508·511 511-513
xi
CONTENTS. ARTS.
PAGBS
1366-1379. Jacobian Zeta, Eta, Theta Functions.
involving Jacobian Functions . PROBLDIS
Integrations -
514-519 520-529
-
CHAPTER XXXII. ELLIPl'IC INTEGRALS. THE WEIERSTRASSIAN FORMS. The Differential Coefficients of p(u) - 530-532 - 532-534 1385-1386. Periodicity of P(u) 1387-1413. AdditionFormulaforp(u). Deductions. p(nu) -P(u). 1380-1384. Definitions of p(u), '('II), 0'('11).
SCHWARZ -
-
534-545
1414-1415. Connection of the Weierstrassian and Legendrian
Periods and Functions
545-547
1416-1419. Expansions of the Weierstrassian Functions
. 1420-1431. Addition Formulae for Zeta and Sigma Functions and Deductions 1432-1445. Differentiation of P(u) and Integration by Aid of Weierstrassian Functions -
547-549
PROBLEMS
-
-
549-553 553-560 561-566
CHAPTER XXXIII. ELUPTIC FUNCTIONS.
REDUCTION TO STANDARD FORMS.
1446-1458. Reduction to Weierstrassian Form 1459-1479. Reduction to Legendrian Form 1480-1481.
LANDEN'S
Transformation. Illustrative Examples -
567-578 578-593 594-597
-
598-603
Notation. Variation of an Integral 1499-1502. Conditions for a Stationary Value. The Equation
604-614
PRoBLEMS
-
CHAPTER XXXIV.
(SECTION
I.)
CALCULUS OF VARIATIONS. 1482-1498. The Symbols 0, w.
K =0
-
Case of V dependent on Terminals 1504-1507. Relative Maxima and Minima. LAGRANGE'S Rule. V a Perfect Differential . 1503.
614-620 621 621-629
CONTENTS.
Xli
PAGBS
ARTS.
1508-1523. Several Dependent Variables 1524-1546. Geodesics. Least Action. Brachistochronism. Energy Condition of Equilibrium . PROBLEMS -
CHAPTER XXXIV.
629-639 639-650 650·660
II.)
(SECTION
DOUBLE INTEGRALS. CULVERWELL'S METHOD OF DISCRIMINATION. 1547-1557. Double Integrals. Two Independent Variables 1558-1564. Relative Maxima and Minima. Bubbles. Limited Variation· 1565.
Stationary Value of
f[uss; with condition
ffWd;rdy=a.'·
-
-
.
-
.
1566·1583. Discrimination. CULVERWELL'S Method. Points. Various Cases BIBLIOGRAPHY 1584. PROBLEMS -
CHAPTER XXXV.
(SECTION
661-669 669-673
673-674
Conjugate 674-691 691 692
I.)
FORMULAE OF LAGRANGE AND FOURIER. 1585-1596. FOURIER'S Theorem. The Cosine Series. The Sine Series 1597-1604. A Remarkable Limiting Form. POISSON'S Investigation 1605·1608. GRAPHICAL REPRESENTATION OF THE RESULTS 1609-1615. REMARKS AND ILLUSTRATIONS PROBLEMS -
CHAPTER XXXV.
(SECTION
693-699 699-710 710·712 712-716 717-719
II.)
DIRICHLET'S INVESTIGATION.
1616·1625. DnuCHLET'S Investigation. Existence of Maxima and Minima, Discontinuities 1626-1627. Application to FOURIER'S Series. CAUCHY'S Identity 1628·1632. The
Limit
Ltw"+w rio sin.(J).r cf>(x) d». .10 .r
Illustrations 1633-1639. Various Deductions. PROBLEMS -
FOURIER'S Formula
720-728 729·730
Graphical 731-734 734-736 737-744
xiii
CONTENTS.
CHAPTER XXXVI. MEAN VALUES. ARTS.
PAGES
1640-1650. General Conception. Combination of Means. Density
of a Distribution 1651-1654. The Inverse Distance.
745-754
Theorems on Potential.
Typical Examples
754-757
1655-1656. A Useful Artifice
757-766
Mean Areas and Volumes. Miscellaneous Means 1664-1670. Certain Inequalities, and their Consequences. General Means in Terms of Restricted Means 1671-1679. CLERK MAXWELL'S "Geometric Mean," useful for Electromagnetic Problems PROBLEMS -
1657-1663. M(p2), M(pfl).
766-778' 779-782 782-786 786·791
CHAPTER XXXVII. CHANCE. 1680-1687. Definitions and Illustrations of Applications of the
Calculus -
792-800
1688-1691. Random Points
800-802
1692·1695. Condensation Graph. Illustrations1696-1703. Inverse Probability. BAYES' Problem 1704:-1706. BUFFON'S Problem. Parallel Rulings. Rectangular
802-819 820-825
Rulings
825-827
1707-1711. Random Lines-
828-830
1712-1722. Number of Lines crossing a Contour.
Various Cases
1723-1735. Theorems of SYLVESTER and Oaozrox 1736-1743. D'ALEMBERT'S Mortality Curve.
Definitions.
830-834 834-844
Ex-
pectation of Life PROBLEMS -
844-848 849-852
CHAPTER XXXVIII. UNCERTAINTIES OF OBSERVATION. Frequency Law. Weight. Modulus Mean Error. Mean of Squares. Error of Mean Square. Probable Error .
1744-1749. LAPLACE'S Hypothesis. 1750.
853-857 857-858
xiv
CONTENTS. P.\GES
ARTS.
1751-1752. KRAMP'S Table. The Graph 1753-1756. Resultant Weight. Weight of a Series of Observations 1757-1758. Determination of Error of Mean Square from " Apparent Errors " 1759-1762. Reduction to Linear Form of Equations connecting Errors of a System of Physical Elements. Standardisation 1763. PRINCIPLE OFLEAST SQUARES 1764-1779. The Normal Equations. Order of Procedure. BmLIOGRAPHY. ILLUSTRATIONS PROBLEMS
858-859 859·862 862-863
863-865 865 866-875 876-878
CHAPTER XXXIX. THEOREMS OF STOKES AND GREEN.
HARMONIC ANALYSIS.
1780-1781. STOKEs'Theorem 1782-1784. GREEN'S Theorem. Deductions . 1785-1797. Harmonic Analysis. Spherical, Solid and Surface Harmonics. Poles and Axes 1798-1808. LEGENDRE'S Coefficients. Zonal Harmonics. Properties. Power Series. RODRIGUES' Form. Various Expressions for P (p) 1809-1812. Limiting Values. Expressions in terms of Definite Integrals 1813·1814. Various Forms of LAPLACE'S Equation 1815-1816. The Differential Equation satisfied by a LEGENDRE'S Coefficient. General Solution 1817·1826.
fl fl Pft2dp=2n~1 fl;;:
879-881 882-886 886·890
890·894 894-895 895-897 897·898
PmP n dp =0, m =1= n. P n in terms of p. Deduc-
-1
tions
1827. 1828-1831.
898-902 902
Calculation of the Coefficient of P n in p"
902·905
1832·1833. Expansion of f(p) in terms of LEGENDRE'S Coefficients, Series Unique 1834-1835. P n', P n", eto., in terms of LEGENDRE'S Coefficients
905·906
1836-1837.
dp.
fl
Pm'Pn'dp
1838·1849. IVORY'S Equation.
905
906·907
Various Working Theorems·
907-9lJ
xv
CONTENTS. ARTS.
PAGES
1850-1852. Illustrative Applications 1853.
hST OF WORKING FORMULAE.
1854:-1856. Roots of P n =0. Graphs of r=aPn , r =a(I+EPn) 1857-1860. I(2n+ I)Pn' A Discontinuity. Physical Meaning 1861-1863. Practical Expression of a Rational Function in Solid Harmonics 1864. 1865-1867. 1868-1869. 1870-1871. 1872. 1873-1874.
Change of Axis Tesseral and Sectorial Harmonics Expansion of F(jJ., ¢). O'BRIEN'S Proof Integral of Product of two Harmonics over Unit Sphere Theorem as to V within or without the Sphere when known on the Surface Differentiation of Zonal Harmonics. Change of Origin -
911-912 913 914-917 917-920 920-921 921-923 923-925 925-927 927-928 928 929-930 931-939
PROBLEMS
CHAPTER XL. SUPPLEMENTARY NOTES. 1875-1883 A. RIEMANN'S Definition and Theorem 1884-1889 B. Convergence of an Infinite Integral 1890 C. Strict Accuracy of Standard Forms -
940-945 945-948 948-949
1891-1893 D. HERMITE'S Method for Rational Fractions
949-952
1894
E. LEGENDRE'S Transformation applied to Form
JXa;y 1895-1899 F. Continuity of a Function of two Independent Variables. Differentiation of a Definite Integral. Double Integrals 1900-1902 G. Uniform Convergence. Double Limits 1903-1904:H. Unicursal Curves 1905-1910 I. GENERAL REVIEW
952-953
PROBLEMS -
953-956 956-957 957-959 959·962 962-966
ANSWERS -
966-974
IYDEX
975-980