Проектирование экструзионных машин с учетом качества резинотехнических изделий: Монография 978-594275-325-2, 978-5-94275-325-2

Рассмотрены основные технологические и конструктивные аспекты проектирования одношнековых машин для переработки полимерн

198 106 4MB

Russian Pages 173 Year 2007

Report DMCA / Copyright

DOWNLOAD PDF FILE

Проектирование экструзионных машин с учетом качества резинотехнических изделий: Монография
 978-594275-325-2, 978-5-94275-325-2

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

. . . .

, . . , . .

"

,

-1" 2007

621.929.3 710.514 791 : "

" , . . "

"

. .Ш

791 : / . . , , . . , . . .– .:" -1", 2007. – 292 . – 400 . – ISBN 978-5-

. . 94275-325-2.

-

. . , . -

,

-

, ,

,

.

621.929.3 710.514

ISBN 978-5-94275-325-2



 " 2007

. ., . .,

. ., . ., 2007 -1",

, , ,

. . . . 60 × 84 / 16. 16,97

.

" 107076,

,

. .

9.02.2007 400 -1", ., 4 -

392000,

,

, 106, . 14

.

№ 124

(

) .

: , ;

; ;

;

;

-

-

. . , . -

. , -

. .

,

, ,

,

. . (

) . , ,



. ,

-

. , ,



,

,

. , (

,

)

,

,

. ,

, -

. ; (∆T, ∆P, ω)

;

;

; ( ,

)

; .

-

1. 1.1.

: ,

(

),

,

, . ( 10

. 1.1).

: 8;

,

-

10

.

6.

-

,

10. 5,

.

-

,

6. . ,

,

,

-

,

,

,

.

(

),

1

. ,

,

.

-

, .

,

, ,

,

. . . , ,

. ,

2

18

8

-

-

.

. -

12

50 . 16 13, 1,

, 15,

13, 14 . 8,

. 17.

.

11

.

,

-

. . ,

,

, ,

. ,

,

,

.

-

. 1.1.

:

,

,

,

:

ρ

ρ

t–

, ;

V

; p –

Dρ = −ρ(∇V ) ; Dt

DV = −∇p + ∇τ + ρg ; Dt

/ 3; ∇ –

;

; g –

; η–

, ,

q = k∇T ,

k –

,

⋅ ; τ –

(1.3) (1.4)

; cV – , ; q –

(1.2)

τ = η∆ ,

, ,

(1.1)

DT  ∂p  = −(∇q ) − AT   (∇V ) + (τ / ∇V ) A ; Dt  ∂T ρ

; ρ –

D – Dt

V –

-

; ∆ –

,

/( ⋅

/( ⋅

, ); T –

); A –

-

.

(1.1 – 1.4) .

. .

[1]

. ( )

"

" (

: U-

-

).

[2].

,

-

:

τ=µ

n –

,

∂V , ∂n

;

( Re ≤ 1 ),

.

( divV = 0 ),

,

,

.

,

gradP = 0 , ∆V = 0 .

,

-

,

, -

,

, . . (1.1 – 1.4) (

-

). , (1.4)

-

(1.1) . [4],

gradP = 0 )

( .

[5, 6]

,

-

. [7]

,

,

. [8 – 26] .

,

.

,

. 1.2 ,

-

. V = ωD/2,

ω–

,

–1

;D–

, ,

,

. ϕ

, Vx

-

Vl,

Vx = Vcosϕ Vx – .

l.

. 1.2.

Vl – ,

. V, x, ,

V Vl = Vsinϕ

-

,

. .

,

,

,

-

. V

-

. ,

.

-

δ

. ,

,

-

. Vx

-

:

Q = ∫ ∫ V x ∂l∂y hB

(1.5)

00

h, B – (1.2)

, , (1.4)

.

,

, x [33]:

µ–

⋅ .

,

-

∂ 2V x ∂ 2V 1 ∂P ( ) = ( 2x + ), µ ∂x ∂y 2 ∂l

(1.6)

(1.6)

, ,

:

V x (0, y ) = 0 ,

V (l , 0) = 0 , V x (b, y ) = 0 ,

Vx –

V x (l , d ) = V x .

(1.7)

. (1.6)

(1.7)

.

[14, 27]. [8, 29], QL = ∆P –

πDδ 3 m∆P

12cµ cos 2 ϕ

, [12]

, ;m– [31]

,

(1.8) ;



-

,

. ,

.

-

, .

,

y.

Vx

,

:

-



Q = Vl ∂y = 0 , d

(1.9)

0

U Vx = y x  H (1.10) [34 – 38]

(1.10)

,

.

, ,

 y   3 − 2 , H  

.

[40] – [41 – 42]

[39] .

. .

.

-

. , . [44 – 47] . ,

,

,

,

-

, .

,

[39, 48

γ&

– 57]

τ,

,

, [25, 58 – 62] ,

[39, 46, 47, 63 – 74] – .

,

-

[10, 75, 76]

[24, 77 – 83]. , -

. , , [23, 25, 35 – 37, 81, 84, 85].

∂υ j

∂υi ∂x j

,

∂xi

,

,

.

[80, 82, 86 – 91]

, ,

, .

[54, 92 – 94]

,

, .

-

. . [25, 58 – 62]

.

, [25, 32, 37]

-

,

,

, ,

. .

, -

(1.1 – 1.4)

µ = µ 0 e −b (T −T0 )

(1.11)

∂w = Qc∂T + Q∂P ,

(1.12)

,

. ,

[14, 38, 77, 98]

.

,

-

, .

-

, . ,

, [65, 74].

. .

[73, 74]

.

-

, , . ,

,

. [93]

,

,

(ϕ, h, D, L, ω, T ,

, (N, Q, ∆P)

, . .).

-

:

τ–

;γ–

1 2 J2 –

[74].

,

1  τ = µ0  J 2  2 

; µ0 –

( n −1) 2 γ&

,

(1.13)

–1

,

⋅ n;

 dv   dv  1 J 2 =  x  +  z  , 2  dy   dy  2

vz

vx –

2

. [93] -200.

,

,

-

( ) ,

,

,

,

.

[94]

:

(

1. ) 2.

,

v x. , ,

(∇v ) = ∂v x ∂x

3. 4. 5.

+

∂v y ∂y

+

, . . z

∂v z = 0. ∂z

(1.14)

.

,

xy

.

: gx = gy = gz = 0.

(1.15)

6. (1.1 – 1.4). 7. ). 8. B/h ≥ 10. 9.



(

-

,

, . .

B/h ≥ 10,

. . ,

10. . . 1.3.



,

. 1.4. :

, , N = N1+N2+N3,

2

N1 = (B/h)(4Vx +

Vz2)

m0(V/h)

n–1

z Fz –

,

. 1.3.

; N2 = (Vz/2)Bh∆P –

(1.16) ,

. 1.4.

( ) ( ) –

(

,

; Fz =

1 z

∫ exp RT ( z )∂z

z

E





. 1.3)

,

;

, N3 = V(V/δ)nm0exp[E/(RT )]× ×ecos(ϕ)z – , ;L– , ; V = ωD/2 – –1 ; m0 – , ⋅ n; n – ;E– , /( ⋅ ); T – , ; –

δ,

; Vz = Vcosϕ; z = L/sinϕ – , / ;ω– , ;R– , ; ∆P –

0

,

; Q2 = Bh F p ∆P 12(V h ) Q = Q1 – Q2,

3

Q1 = Vz/(2Bh) Fg – ;e–

, ; Fg

Fp –

n −1

(1.17) m0 Fz z



-

,

1.5). ,

B, h

∂z

. 1.6.

(

.

,

-

z, V : V = Q/BH,

(1.18)

qz = ρ V T,

(1.19)

∂qz/∂z = ρ V (∂T/∂z).

(1.20)

QZ (1.19)

z

:

Fg, Fp

h/B

Fg

. 1.5.

Fp

h/B

q:

γ = V/h,

,

α

q = τ γ& = η γ& 2 . ~ 1 T = z

(1.21) :

∫ T ( z )∂z .

z

(1.22)

0

, .

T =T,

-

q = q = α(T – T ).

:

(1.23)

α = kλ/h.

(1.24)

qzBH + q BH∂z = [qz + (∂qz/∂z) ∂z]BH + q B∂ z + q B∂z.

(1.25)

z 1.

.

: G = m0h /(2Kλ)(V/h) 2

T(z) = T + Gexp[E/(RT)] – (Gexp[E/(RT)] – T

; A = 2KaB/(Qh); a = λ/(ρc); K = αh/λ; V = Q/Bh; a – , ;



/( 2⋅° ); λ –

, , 3

/( ⋅° ); T , T

n+1

,

, ;α–

.

+ T )exp(–Az), ,



.

/ ;B– -

/( ⋅° ); ρ –

,

(1.26) 2

,

/ .

. 1.6.

T :

T = T + Gexp(E/RT ) × 2.

× (1 + (exp(–Az ) – 1)/(Az )) + (T – T

: T(z) = T

.

.

)(exp(–Az ) – 1)/(Az ). (1.27)

+ GBh/(ρcQ)exp(E/RT )z.

(1.28)

T :

T 3.

.

=T

+ GBh/(ρcQ)exp(E/RT)z /2.

.

(1.29)

: T [95 – 107] -

.

=T

.

.

(1.30)

,

, -

. :

,

, [95]:.

.

,

( )

 v  p  + ( v∇) v  = ∇ σ + pf ;  t 

(1.31)

p + (∇pv ) = 0 , t

(1.32)

 v  pC p  + (v∇ )T  = ∇(λ∇T ) + (σ e ) t   .

σ



(1.33)

e

.

(

),

-

(

).

(

).

,

, ,

.



, .

-

σ= M e ,



,

(1.34)

-

:

M iklm = µ 0 δ il δ km + µ i (< ni nl > δ km + δ im < nk nl >) +

+ 1 / 5µ 2 (6 < ni nm >< nk nl > − < ni nk >< nl nm >) ,

n –

. µ1

µ2

(1.34)

. ,

.

µ0

(1.34)

,

(1.33)

-

,

-

, ,

. (1.31–1.32),

,

-

-

.

,

v, , :

∫  p

  v  + (v ∇ )v  u − P(∇u ) + M : Def t  V

1

V

∀H ∈ L2 (V ) ;

(1.35)

  T  + ( v ∇)T Ψ + λ∇T ∇Ψ dV = ∫ qΨdS + ∫ α(T − T∞ )dS + t   S S



+ ∫ M : Def υ : Def υ ΨdV , −

∫ g ⋅ u dS , ∀u ∈ W2 (V );

 p  ∫  t + ∇( pv)  ⋅HdV = 0 , V

∫  pC p 

V

 v dV = 



1

∀Ψ ∈ W21 (V ) .

2

V

,

(1.35),

(1.31 – 1.33). ,

,

, .

,

,

[95]. :

Pk = − K (∇v) , K >> 1 . V

u, v,

,

∫ {M : Defv : ∇v − K (∇v)(∇u )}dV = ∫ gu dS ;

-

(1.36)

S

,

,

. . . , .

, ,

, ,

.

. , ,

-

,

.

, .

, ,

. .

,

,

. -

.

. ,

-

, .

S,

, .

, V

. = ϕ(τ s )

.

, ,

, ,

:

-

τ = µ γ&

* 1n

*v

 =µ   δ  

(τ s )1 n

*ϕ

=µ    δ 

1 n*

µ* .

*

.

n* .

-

,

,

,

. -

.

, -

, . 0,2

1,0

, ,

.

-

, .

h/w < 0,1

,

, .

,

,

,

,

.

,

. ,

h/w < 0,1

, h/w > 1,1

. , -

.

, -

,

-

. . -

-

,

. .

,

,

-

. : ;

. , [95],

− −

∑ Qi = 0

:

m1

i =1

∑ m2

i =1

∆Pi =

;

∑ µ 0 exp(−bT )Qi1/ n = 0 m2

.

i =1

,

. , ,

-

P0 = Q

1/ n

Q

exp(−bT )[Ei (− B ) − Ei (− B exp(−1 / Q))] ,

,

:

nB ≥ Q * exp(−1 / Q * ) ,

(1.37) (1.38)

*

 Q *   *  1  1 + n *   Q *  − exp Q  = 0 , Q  Ei − exp *   − Ei −   n   n   n  Q   n   

P0 , Q , B – ,

. n = 1…3

nB = nb(T0 − Ts ) ≥ 3 .

(1.39)

. , 2-

,

3-

,

.

.

[95] -20

-

-286

, ,

,

-

,

, .

-

-

[95] :

.

. ,

,

.

. -

:

, ,

,

,

-

.

-

. -

-

-

,

. . ,

,

.

,

. ,

,

,

,

. .

-

-

. -

,

,

,

,

. -

, ,

-

. ,

.

, ,

. . .



,

[95],

:

,

-

-

,

.

-

-

,







; -

;

,

,

; -



; .

,

, −

; (

)

-

, , [95]. [108 – 110]

, -

,

,

-

, . ( ).

,

, .

;

− − −

: – –

,

; ;

-

− −

: –

:

,

.

[108]:

∂p ∂σ yy ∂p ∂τ yz ∂p ∂τ xy = ≡b, = ≡0; = ≡a; ∂z ∂y ∂y ∂y ∂x ∂y

τ xy , τ yz , σ yy –

;

(1.40)

= ( , z) –

,

-

. (1.40),

:

τ xy = ay + a1 ; τ yz = by + b1 ,

a1 , b1 , –

(1.41)

. [109] ,

[110]. γ xy Θ 0 (T ) = .

γ yz Θ 0 (T ) = .

  1 A =  2  1 − τ xy + τ 2yz 

(

,

)

(

)

     2 2 − 1  7,8 1 − τ xy + τ yz  − β ; γ& xy , γ& yz –       : Θ0 (T ) – ;0< 1) (1.51) n, ϕ , qp

2 (δ / D ) n2 + 2   e  k 1 −     D 

Borland Delphi

(DLL) ϕ = 17,65°.

,

q3 =

(1.51)

n1 = n:

 (1 − η0,3 ) − (n3 + 1)  h   D

-

MathCAD.

-

 1 .  3 (0)  Fd ε k

3 (0)

3 (1) −

1

qp

: qp = q + q .

(1.53)

(1.53)

.

-

. 1.7. q

q . 1.7. (1.53)

, ,

η0 , η , χ .

,

(1.55), qp (

qp,

z.p

):

Bz , p = (1 + χtgϕ)1/ n ( (1) − (0))1/ n . (

. .):

L =P

h

µ 0 (πDN cos ϕ)1/ n (n + 1)1/ n B z , p

W , = kµ 0, ,

Q

120wL tgϕ qp πDNI

=

Q G t

=

( (πDN / 60)1/ n3 +1 δ1/ n3

P 2  3  [(1 − η0 ) + χtgϕ(1 − η ) − 1] ⋅ 10 . ρp  q 

 1G P  2 120 +  [(1 − η0 ) + χtgϕ(1 − η ) − 1] π k ρp  q q DN cos ϕI  p

(

 240 wL tgϕ ) t1 + k t  q p πDNI 

.

−k t

.

tmax ≈ (18tcp − 7t ( . .

):

(1.57)

/ :

(1.58)

: (1.59)

).

:

11.

(1.56)

e cos ϕL ⋅10 3 .

ti +1 = B / A ,

 120wL tgϕ (k − k +  3cp ρ p whε −  qp πDNI 

(1.55)

. .):

,

(k − k ) ;

B = 555,56

sin ϕ .

W = 2v max P [(1 − η0 ) + χtgϕ(1 − η )] .

:

A = 3cpρp whε +

1+1 / n

(1.54)

.

− 3t

.

)/8 .

(1.60)

γ& p = (πDN (n + 1)) / h . :

τ = (η ( ) ⋅ γ& ) /(1 + C2 ⋅ γ&

. .



(1.61)

.

,

,

(1.62)

,

,

,

, -

, , . [112]

( (

)

[112]

)

.

,

-

. [1, 35]

  δ*  1  ln 1 + εδ s 1 +  N 21− α  , K β   

T2 − T1 = α–

α

 γ&  γ& , µ = µ 0 (T ) 0  ; β –  γ&  , µ = µ1 exp[− β(T − T1 )] ; K –

,

42 700 ·

δs =

*



, L2,0 D0-

,

,

/

;

s

DL2

h22 sin α cos α

=

D 2C 2

h22 sin α cos α

δ* =

0)

:

;

πh23 D sin 2 α πh23 sin 2 α , = 12 L2 12C 2

  δ*  δ*  δ1 +  N 21−α = δ 0 1 + 0  N 21−,0α .   K  K  0   

(1.65)

(1.66)

δN 21−α = δ 0 N 21−,0α .

(1.67)

 h K = K0  2  h2,0 

  .   3

(1.68)

, .

K= ,l–

,

K=

; –

,

πd 4 , 128l

πd 3 α , 12l l

 d K = K 0   d0 d = d 0 h2 / h2,0 , (1.67)

(1.64)

δ* / K = δ*0 / K 0

,

(1.68)

;l–

-

2,

,

d–





(1.64), (1.66)

d–

;

.

,

,

3

2π µ1β , I γC P

L2 D=

,

-

3

, (

· )

),

ε= ,

( –1



( )

I–

(1.63)

:

  ,   3

, . . d/l = const,

 α   . K = K 0    α0  , α = α 0 h2 / h2,0 , 3

(1.68) [112].

 h N 21− α = N 21−,0α  2  h2,0 

  D0  2   .   D   2

(1.69)

DN 2 D0 N 2,0 = h2 h2,0

(1.70)

h2 = h2,0 D / D0

[112]:

(1.71)

N 2 = N 2,0 .

(1.72)

,

, ,

D-

D0-

( ):

-

h2 = h2,0 3 D / D0

N 2 = N 2,0 3 ( D / D0 ) 2 .

(1.73)

(1.74)

, ,

.

,

,

,

,

. ,

D > D0

:

h2,0 3 D / D0 < h2 < h2,0 D / D0 ;

(1.75)

N 2,0 3 ( D / D0 ) 2 < N 2 < N 2,0 . [112]

(1.76)

. ,

.

-

,

-

. [112]

− −

:

L1: ; .

− −

L2: (

); .

[112]

,

-

-

. L1

L2 ,

0
+3  1   ± arccos −  + 2πn  = 2 cos  3/ 2     − 3           < W > +3         3            

τw ,

, ,

(1.106) .

:

[207]

, ,

, (1.107), , (1.110) – (1.113)

−1

];

(1.110)

: (1.111)

    3 ,     

(1.112)

− −  < W > = f  τ w  .  

(1.113) -

,

,

.

-

1.4. , [208].

,

, ,

-

. -

.

. 1.20 [209]

.

. , (

. 1.2). x1 = ϕ0;

:

x2 = h; x3 = D; x4 = L; x5 = ω0.

,

Nu =

(

)

π3 D 3 L 1 + 3 sin 2 ϕ 0 µ 0 ω02 L + × 2 H

dP × π 2 D 2 Hω0 cos ϕ 0 . dz Qu =

ω0 2 2 πD sin ϕ 0 H 3 dP π D H cos ϕ 0 sin ϕ 0 − . 2 dz 12 µ 0

∆Pu =

, −

(1.114 – 1.116) : ,

. 1.20.

dP L dP l= . dz sin ϕ0 dz .

(1.114)

(1.115)

(1.116)

-

f1 (x ) = Q (x ) = a1 x2 sin x1 cos x1 − b1 x23 sin 2 x1 ,

(



f 2 (x ) = N (x ) =

a1 =

(1.117)

)

a2 1 + 3 sin 2 x1 + b2 x2 sin x1 cos x1 , x2

(1.118)

π 2 D 2 ω0 ω0 2 2 πD ∆Pu ; b2 = ∆Pu . π D ; a2 = π3 D 3µ 0ω02 L ; b1 = 2 2 12µ 0 L

N(x), Q(x) ( ).

ϕ = x1

,

h = x2

. 1.21) ( : µ 0 = 1000 ⋅ n ; = 1⋅10–3 ; Fg = F p = 0,9 .

Q(x) = 80 ° ; n = 1; ω0 = 1,5

(

N(x)) D = 0,08 ; ∆P = 20

; L = = 0,8 ; δ = 1⋅10–3 (1.117 – 1.118)

,

,



( , f(x),

(

.

, ,



)

,

(

(1.118)

(x1 = ϕ0; x2 = h; x3 = D) Q.

) N(x) (1.118)

(

( (

(1.117). . 1.21).

/

-

,

i = 1, 2, …, k; k –

(90

);

),

x)

Q (1.117).

-

x∗

x .

–1

,

:

ai ≤ xi ≤ bi,

; ai, bi –

xi. ,

(1.119) ,

(1.119)

). h,

Q(x)

. 1.21. N(x)

zi,

xi

-

: zi = ai + (bi – ai) sin2 xi, (1.119) [209]

(1.120) .

,

. ,

: x1, x2, x3, x4. x1

x3 / x4 .

x2

α 3 ≤ x 2 x3 ≤ β 3 , α 4 ≤ x3 x 4 ≤ β 4 .

(1.119),

(1.122) β3 , . .

,

: (1.121) (1.122) x2 / x3

(1.121)

, ,

x2 / x3 (1.117 – 1.118).

-

[210]

. ,

1. N,

Q,

∆p

. T°

, . -

, . 2. ,

h

(

(

~ h • = h1• , ..., hN• K j ( h) =

max σ j (h)

[σ] j

)

T

,

= (h1, h2, …, hn) , ) M(h),

, ,

,

-

.

(

,

:

)

K j (h) − 1 = 0, j = 1, N ,

(1.123)

.

(1.123)

.

-

[ ( ) ]

h j ( p +1) = h j ( p ) + h j ( p ) r0−1 K j h( p ) − 1 ,

p–

; r0 –

,

,

(1.124)

. (1.123), (1.124) –

-

. . M(h), h ∈ D,

:

(1.125) (1.126)

K j ( h) − 1 ≤ 0 ,

K j ( h) − 1 ≤ 0 ,

(1.127)

K j ( h) − 1 ≤ 0 ,

(1.128)

K wj (h) − 1 ≤ 0 M(h) –

;D–

, (1.130)

. (1.125) – (1.130)



(

a j ≤ hj ≤ bj

(1.129)

(

).

-68)

∆p

Q ,

∆T (

. (

N* . 1.22,

. 1.23). -

Q

)

.

(

-

).

, ,

.

,

-

,

, . -

( ,

) ,

.

,

.

,

,

,

-

a = 2π/t, t–

.

-

. ,

-

. . ,

. ,

.

⋅105

. 1.22.

N*

Q( , T = 80 °C

∆p = 20

)

⋅105

. 1.23. (

№1

T

N*

Q ) ∆p = 20 , ∆T = 30 °C, T =50 °C, = 80 °C, α = 100 /( 2⋅°C)

,

, -

, ,

,

. .

, D = 45 , ; µ = 0,3; γ = 7,8⋅103 / 3; [σ] = 410 pmax = 50 ;

50

( ) ( )(

~ K h ∗ = 1,0 ; ~ K j h ∗ j = 1,4

47

;

[w] = 100 : ; 35 ≤ h2 ≤ 39 ; 360 ≤ h3 ≤ 500 ; 29 ≤ h1 ≤ 33 36 ≤ h4 ≤ 54 ; 2,7 ≤ h5 ≤ 4,5 .

( )

K

,

~ h1∗ = 32

: .

~ M ∗ = 4,056

.

( )

.

~ K h ∗ = 0,599 ;

~ h5∗ = 3,5

–1

-

hi (i = 1...5)

ε = 0,05

)

: E = 2105

38 ; [K]y = 2,5; [w] = 0,25 ;

.

w

( )

.

~ K h ∗ = 0,933 ;

:

( )

~ h ∗ = 0,485 .

;

~ h2∗ = 38

;

~ K h∗ , ~ h3∗ = 500

-

;

~∗ h4 =

ε

minM(h) = 10–4.

. ~ h1∗ = 31,86

: ~ ~ ; h2∗ = 37,8 ; h3∗ = 495 ~∗ M min = 3,689 . ,

~ ; h5∗ = 3,5

~ ; h4∗ = 45,8

.

10 %

. 31,86

; h2 = D2 = 37,86 ( [210, 211]

1 2, [210] , ; h4 = t = 45,8 ; h5 = e = 35 , ; D2 = 37 ; l0 = 480 ; t = 45 ;e=4

; h3 = l0 = 495 1): D1 = 31

, ( , ,

2): h1 = D1 = 12,5 %. -

.

, 2

1

,

. 1.24.

:

1

h, ,

2, d,

3. ,

q1, a –

-

q2

. 1.25. q1

q2

-

. ,

q1′

q 2′ ,

-

:

q1′ =

1 q1 ; K 2

=

bh12 h22 . 6 L (h1 + h2 )

. 1.24.

(

I-II

.

. 1.26)

. 1.25.

,

,

,

. :

W0 = W ;   W = W = ∆,

∆– ,

,

; W0, W , W – :

1   R W0 =  Pa − q1d  0 ; 2   Eh0

(1.131)

,

(1.132)

W = (q1d − q2 c ) W =

– ;

;

b–

µ–

, ; h0 –

;

;β=b/ –

2

(1.134)

, d

; R =

(1.133)

[1 − µ + β (1 + µ)].

q2 c

2 (β 2 − 1)

d–

R ; Eh

+d – 2



-

,

, ;h –

(1.131)

q1 q1 =

Pa

q2

.

:

R0 R + q2 c h0 h 1 ; R0 R d + 2h0 h

E∆ + PaR R0

[

(1.135)

]

2 R0 h + R 2h0 1 . q2 = 2 R c 1 1 − µ + β − (1 + µ) + h 2 β2 −1

∆ [210, 211]:

q1

β

2  a 1 d 1  l ≤ P  −  − µ 2 +  + 2h0  2h0 2   h0  2

 a l2 − P  + µ 2  h0 2h0  2

(1.136)

,

-

2  a 1 1  σ2  l P2  −  − µ 2 +  + 2 −  2h0 2  n  h0  2

2  2    +  a + µ l  1− l  h 2h02   2h02   0 2

2    +  1+ l   2h02  

   +1  ;    

(1.137) σϕ = q2 ≤

σ –

σ n

q1d − q2 c σ ≤ ; h n 2

2  β2 + 1   + 1,8 β + 1 + 1,56  2  β −1  β2 − 1   2

(1.138)

,

(1.139)

; σϕ –

;n – . IV (

. 1.24, 1.25):

. 1.26.

,

,

-

max σ 1 = p

2  2    2a l2 d l  a + µ − −  + 2  2  d − a 2 d d a − ( ) 2 2 (d − a )  (d − a )      2   2    1   l   +1  + +   , (1.140) 2  2   2 (d − a )       2 2   a    2a l d − +µ + 1 +    2 (d − a )2  d 2 (d − a )    d − a   

maxσ

β=

b ; c



2

( )

2   2 β2 + 1 a2  β + 1 , + + 1 , 8 1 , 56  c 2  β2 − 1 β2 − 1 

=p

, ;d–

, ;c–

;µ– ,

, ;b– , ; –

,

, ;l– (1.140)

[(

) (

,

) ( :

M ( x ) = πρ 2 x12 − a 2 + x22 − x12 + 2 x32 − x22 x = ( 1,

: , −

(1.141)

(

2,

3,

)] .

. (1.141) (1.142)

4),

-

).

:



max σ 1 , max σ

(1.143)

max σ 2 ≤ [σ]2;

(1.144)

ai ≤ xi ≤ bi, 2



i= 1, 2, 3, 4.

,

,

(1.140) ;ρ–

max σ 1 ≤ [σ]1;

(1.145)

,

(1.141); [σ]1, [σ]2 –

; M(x) –

-

; xi – .

; 30 ≤ 434 ; 25 ≤ 1 ≤ 32 = 2 ⋅ 105 ; µ = 0,3; ρ = 7,8 ⋅ 103 /

2 ≤ 37

; 42

3



3 ≤ 52

.

; [σ]2 = : = 22,5 ; = 150 ; [σ]1 = 566 ;8 ≤ 4 ≤ 15 ; – ; "minMT-LC" [220], , ; 4* = 8 ; 3* = 42 ; 2* = 33,6 : 1* = 25,6 * . min = 0,05

1.5.

, . : ,

, ,

.

, ,

. 50 , ,

-

; .

,

,

.

,

. ,

. ,

,

-

. ,

, .

: 1)

,

P, P=

p –

, G, ;

2) 3)

;D –

πD 2 p , 4

(1.146)

, ;

,

-

,

-

;

4)

. , ,

-

. . 1.27.

[43, 210, 211]. , (

,

,

)

.

y max

R

RA

G+P’

P

l/2 a

l . 1.27.

:

P– G–

; ; P' –

;

RA, RB –

A

B,

1.6.

. (

).

-

,

.

,

,

(

)

[212]. ,

,

,

.

,

,

-

,

x. ,

,

:

 = min   (0) = 2(m + 1) t, (k )

t–

( k −1)

k-

, (m + 1) (r + 1)

;r=n–m– :

∑ xi(k ) − xr(k+)2  ; r +1 i =1

 

(1.149)

f(x); T(x) – ,

),

: (1.147) (1.148)

f(x), x∈En, (k) – (x) ≥ 0, x, (k) –

En – ,

,

( p m  T(x) = ∑ hi2 ( x) + ∑ ui g i2 ( x) , i = m +1  i =1 

,

(1.150)

ui –

,

: ui = 0

gi(x) ≥ 0

ui = 1

gi(x) < 0,

(1.151)

: (k)

,

,

,

f(x) (k ≠ i)

(1.150). (1.149)

i

:

|Kj (xi) − 1| ≤ ε,

ε–

.

( p + 1)

xi



;r– .

-

"OPTISCRE" (

[

]

= x i( p ) + x i( p ) r −1 K j (x i( p ))− 1 ,

,

,

]

: (1.152)

. (1.149)

,(

[

. ). (1.149) . -

"ITERA"

-

, . ).

[213]

-

. [214] .

1. ,

, .



-

, . 2.

(

) ,

. 3. 4.

( ,

"

"(

).

),

, .

5. ,

(

,

)

.

1.7.

− −

: ; c



-

; (

),



; (

)

, −

; -



; (

),

-

,



; (

)

,

. 2.

2.1.

, , ,

. . [74]

. .

,

. .

-

[94]:

1) N = N1 + N2 + N3,

N1 = (B/h)(4Vx2 + Vz2)m0(V/h)n – 1z Fz; N2 = (Vz/2)Bh∆P; Fz = Vcosϕ; z = L/sinϕ; V = ωD/2; 2) Q1 = (Vz/2)(B/h)Fg; Q2 = Bh F ∆P/[12(V/h) : 3

3) )

1 z

∫ exp RT ( z ) ∂z ; N

z

E

3

(2.1)

= V(V/δ)nm0exp[E/(RT )]ecos(ϕ)z ; Vz =

0

Q = Q1 – Q2,

(2.2)

n–1

m0Fzz ];

T(z) = T + Gexp[E/(RT)] – (Gexp[E/(RT)] – T

.

+ T )exp(–Az), (2.3)

G

m0h2/(2Kλ)(V/h)n

=

+

1

;

A

=

2KaB/(Qh);

a

λ/(ρc);

=

K

αh/λ;

=

V = Q/Bh. T : T = T + Gexp(E/RT )(1 + (exp(–Az ) – 1)/(Az )) + + (T – T . )(exp(–Az ) – 1)/(Az );, )

(2.4)

[219] T(z) = T

+ GBh/(ρcQ)exp(E/RT )z.

.

(2.5)

T : T

.

=T

.

+ GBh/(ρcQ)exp(E/RT)z /2;

(2.6)

T

;

(2.7)

E ; RT

(2.8)

) 4)

=T

.

.

η = m0 γ& n −1 exp

5) ) [125, 126, 216 – 222]:

,

,

JB(t ) =

∫ τ[T (t )] –

t*

∂t

; τ[T(t)] –

JB (

i ∂t ∂t ∫ τ[T (t )] = ∑i ∫ τ[T (t )] = 1 , t 0

t*

t

(2.9)

i −1

,

(

-

0

" T(t).

p

); t* –

"

"

p

" p

-

(

)

,

,

: σ ≤ [σ] (

6)

.

( EJ ≤ [EJ], y ≤ [y],

,

)

-

).

2.2.

2.2.1.

(2.1) – (2.9) . . ( 224],

) (

D = 0,032 ,

ϕ = 17 ,

L/D

=

10, h = (0,002…0,005) , δ = 0,001 . ,

. 2.1) [223, -

= 0,0035 ,

,

ω = (0…7,85) ,

, (

-

–1

.

).

-

. , . ;

:



N=N

-

= I U ; N xx = I xxU ,

N–

,

, ;I –

-

.

− N xx ; N

,

.



,

;N

;N – , ;U–

:

– ,

, ;I –

-

, . "

3, 4, 5, h = (0,003…0,008) , (0…12,56)

–1

.

δ = 0,001

-

"(

. 2.2) [224], D = 0,06 , = 0,006 ,

1, ϕ = 17 ,

ω =

:

α.

2

1 :

N = M 2πn ,



, ⋅ ;n–

, 3, 4, 5 (

"

-

,

/c. 1

").

. 2.1. : 1–

;2– ;5–

;3–

;4– ;6– 7–

;

. 2.2. 1–

M

;2–

= P r sin α ,

P–

(

, ;r–

. 2.2,

):

, .

N =M ϕ,

ϕ– ϕ = 2πn .

: ;6–

; 3, 4, 5 –

" "

-

-

"

"

2.2.2.

-68-1 ( 2.1)

(

. 2.1

2.2).

.

-68-1 T T

.

.

λ = 0,22 ρ = 1200 / 3, , α = 100 /( 2⋅°C); τ [T(S)] – "Monsanto" " ",

= 50 °C; "

/(

⋅° );

.

. 2.3,

n = 0,2;

"c T

= 80 °C [215]:

(

-68-1 ,%

50,0 50,0 5,00 2,50 75,00 1,00 2,50 3,00 20,00 209,0

-18

-15 " "

8. 9. : Microsoft –

"TablCurve":

τ–

,

-

1).

100

7.

) m0 = 600 000 ⋅ n, = 2100 /( ⋅° ),

(

2.1.

1. 2. 3. 4. 5. 6.

T = 95 °C;

:

,% 23,92 23,90 2,39 1,20 35,88 0,48 1,20 1,44 9,57 100

31,86 24,19 0,54 0,48 26,15 0,62 1,14 1,98 12,74 100 Windows

τ = (–16,17 + 3 131 360/T 2)2,

;T–

, .

2.2.3.

[222 – 224]

-68-1 JB ≤ 0,5 %). (

, , . .

,

(

.

2.1). (2.1) – (2.9) (

2,

. ) :T

.

= 50 °C, T = 95 °C. ω .

, . .

.

(σ , δ Q (2.1) – (2.9) ( (

) N*,

JB, ,

)

, (σ , δ ).

. )

(ω = (0,2…7,85) Q = (0,02…0,1)⋅10–5

∆P, (2.1) – (2.9) (

3

/ ),

. )

–1

.



,

,

∆T

N

-

. [225]. (

. 2.3)

" ISO 9000.

"

"Monsanto",

,

Q:

. 2.3. 1– ; 2 – Q = 0,04⋅10–5 3/ ; 3 – Q = 0,06⋅10–5 –5 3 4 – Q = 0,08⋅10 / ; 5 – Q = 0,1⋅10–5 3/ –

,

(σ , δ

.

3

/ ;

(σ , δ )

)

.

-

-250. 269-66. . 2.3 [225, 226]

,

Q

(2, 3, 4, 5)

,

(

1), JB ≤ 0,5

. ( %) 80

/

2



. = 300 %) 12 %.

. 2.3) 2 %.

(

1)

(

5,

(σ , δ )

(

N σ ,δ ,m ϕ = 17°; h = 0,003 ; D = 0,032 ; L = 0,325 ; ω = 0,2…1,88 ∆P = 5…20 : ––– – ;  – , σ ,δ .,σ,δ – , JB – ;τ –

. 2.4)

(σ = -

. 2.4.

Q: –1

; ; ; 14

%.

, .

(2.1 – 2.9)

-

3.

3.1. [222]

-

, . N,

JB

Q, ,

2.

° ); = 2300

⋅°

: ρ = 1200

-68 /(

),

)

(m0 = 100

)

(m0 = 600





n

; n = 0,2; T n

=T

.

; n = 0,2; T

.

/ ; λ = 0,22

/(

= 348 ; T = 348 );

.

∆P = 10

= 323 ; T = 348 );

.

. , ϕ

, . 3.1 N,

ϕ

JB . 3.1, h

ϕ



-

3

Q.

2(

.

. ,

"Linyur") h

(15…20°)

-

N, ,

,

,

-

.

h

N(

1 – 3),

h

,

,

, , ,

,

-

.

)

) 3.1.



N ( ), JB (%) ); 0,032 ; ω = 5,2 c–1 (50 / L = 0,32 ; e = 0,0032 ; δ = 0,001 : ; –

Q(

3

/ )

D=

ϕ(

Q . 3.1).

,

h, Q,

h, ϕ

,

, t

, ,

. Q,

, ,

,

ϕ

. . 3.2 JB

-

D

N,

-

ϕ

Q. . 3.2 D

N.

D

N( , ,

h -

,

1, 2, 3),

,

, ,

, .

ϕ(

Q . 3.2).

D,

,

D, , ,

ϕ

,

. 3.3 JB . 3.3,

N.

-

ω

ω

,

1, 2, 3), ,

(

) .

ω, 4, 5, 6),

Q(

4, 5, 6), . N,

ω

ϕ

Q.

N( ,

Q(

Q(

ϕ.

. 3.3)

,

3.1

ω,

3.2,

,

.

)

) 0,01 ; ω = 5,2 c (50 –

. 3.2.

N(

–1

/

JB (%) L = 0,32 ; e = 0,0032 ; δ = 0,001 :

), );

ϕ

JB . 3.4, N

H=

L ϕ,

L

L

N( ,

.

/ )

Q.

,

N.

3

; –

ϕ

. 3.4. N,

Q(

(

1, 2, 3), )

)

) N ( ), JB (%) 0,01 ; D = 0,032 ; L = 0,32 ; e = 0,0032 ; δ = 0,001 : ; –

. 3.3.



ϕ.

Q , Q(

. 3.4,

Q(

3

/ )

H=

ϕ,

L, ,

-

4, 5, 6).

)

) . 3.4. ω = 5,2 c–1 –

N ( ), JB (%) 0,01 ; D = 0,032 ; (50 / ); e = 0,0032 ; δ = 0,001 : ; –

Q(

3

/ )

H=

ω,

ϕ ( . 3.1 – 3.4, ω, ∆T ϕ δ JB

JB L, h,

D,

. 3.5 N, . 3.5

N.

.

ϕ

,

N

-

JB,

ϕ ϕ

δ(

,

D, ,

L, .

, N N,

,

h, 7 – 9).

δ

Q.

,

, δ, . .

1, 2, 3),

-

.

)

) . 3.5. JB (%)

ω = 5,2 c–1 (50



/ ; –

N ( ), H = 0,01 ; D = 0,032 ; Q ( 3/ ) ); L = 0,32 ; e = 0,0032 :

δ ϕ,

ϕ,

,

. 3.6. JB ϕ. 1, 2, 3), .

δ

Q, ,

( ϕ

Q(

). 4, 5, 6,).

. 3.5,

Q

e

-

N,

Q. . 3.6, ,

N

e, e,

δ, . .

, ,

,

N(

-

)

) . 3.6. JB (%)

ω = 5,2 c–1 (50



/ ; –

N ( ), H = 0,01 ; D = 0,032 ; Q ( 3/ ) ); L = 0,32 ; δ = 0,001 : ϕ,

Q

e(

e δ(

ϕ,

. JB . 3.5, 3.6, ∆T

7 – 9).

. 3.6),

-

,

,

ϕ,

JB,

. 3.2. N,

Q(

(ϕ, h, D, L, δ, e)

(ω) ϕ;

JB

. 3.1 – 3.6),

, h;

D;

. (N, JB, Q), . ., ω;

-

: L.

.

4.

4.1.

, – ;

,

:

,

;

F;

-

F; .

,

x –

.

y –

;F–

;

x , y ; R( x , y ) –

,

x,

.

y,

F

.

.

∆P, y3

L; x4 – T

.

, y2 – Q. , (

ϕ; x2 – ; y1 –

ω,

: x1 –

. D

h; x3

y4 –

,

y = (y1, y2),

-

(

: -

. ,

)

-

N

x = (x1, x2, x3, x4, x5) )

x5 –

[222, 226 – 234]:

[F = N(ϕ, h, D, ω, L)]→ min,

(4.1)

: –

R1 = J (t ) = –

(

,

)

i ∂t ∂t ∫ τ[T (t )] = ∑i ∫ τ[T (t )] ≤ ε ; t 0

t*

i −1

(4.3)

= Q(ϕ, h, D, ω, L);

(4.4)

(ϕ, h, D, ω, L) = T ;

(4.5)

Q – T

ϕ*, Dkh*, D*, ω*, DkL* (ω) , , (

,

ϕ*, Dkh*, D*, ω*, DkL* – ; kh*, kL*, kh*, kL*, kh, kL – (h, L), ; ε, Q , T , ).

.

 D∗ ≤ D ≤ D ∗ ;  ∗ ϕ∗ ≤ ϕ ≤ ϕ ;  ∗  Dk h∗ ≤ k h D ≤ Dk h ; ω ≤ ω ≤ ω∗ ;  ∗  Dk ∗ ≤ k L D ≤ Dk L∗ ;  L

–68-1 . 2.3,

. 2); =

(4.6)

(ϕ, h, D, L) , –

, ; [σ] –

4.2.

(

: τ[T(t)] –

(4.2)

R2(ϕ, h, D, ω, L) ≤ [σ];





t

,

-

= 2100

/(

⋅°

); ρ = 1200

/ 3, λ = 0,22

T (

.

/( ° ),



= 323 , m0 = 600

.

T

=T

.

(4.1) – (4.6)

(ω, N) ∆T;

; .

,

;

n

, n = 0,2;

, (ϕ, h, D, L)

-



, n = 0,2.

Q

; kL* = 5; kL* = 10; ∆P = 25

= 353 , m0 = 100

n

. ),

–1

.

∆P -

: D = (0,03…0,09) ; ϕ = (15…22)°; kh* = 0,05; kh* = 0,15; ω = (1,25…9,4) ; δ = 0,001 ; = 0,1D; D0 = 0,05 ; ϕ0 = 17°; h0 = 0,1D ; ω0 = 3,14 –1; L0 = 7D . . 4.1 4.2, Q , N , ω. Q N, ; δ. ϕ°, h,

D, ω,

–1

L,

N,

∆P = 20 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 6 – N (ϕ, h, D, L)

. 4.1. Q ϕ°, h,

. 4.2.

D, ω,

–1

L,

(ω, N) , T = 80 ° :

∆Т, °

N,

(ϕ, h, D, L) Q ∆P = 20 , = 50 °C, T = 80 °C, α = 100 /( 2 ⋅ °C): T 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 7 – N; 8 – ∆T (ω, N)

ϕ°, h,

D, ω,

–1

L,

N,

. 4.3. (ω, N) Q = 6⋅10–5 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 6 – N

(ϕ, h, D, L) ∆P 3 / , T = 80 ° :

-

ϕ°, h,

D, ω,

–1

L,

N,

(ϕ, h, D, L) ∆P T . = 50 °C, T = 80 °C, α = 100 /( 2 ⋅ °C): 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 7 – N

. 4.4. (ω, N)

ϕ°, h,

D, ω,

–1

L,

Q = 6⋅10–5

3

/ ,

N,

(ϕ, h, D, L) (ω, N) ∆T , T . = 50 °C, T = 80 °C, Q = 6 ⋅10–5 3/ , ∆P = 20 α = 100 /( 2⋅ °C): 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 7 – N

. 4.5.

ϕ°, h,

D, ω,

–1

L,

N,

α

(ϕ, h, D, L) (ω, N) α , ∆T = 30 °C, T . = 50 °C, Q = 6⋅10–5 3/ , ∆P = 20 T = 50 °C, α = 100 /( 2⋅°C): 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 7 – N

. 4.6.

ϕ°, h,

D, ω,

–1

L,

N,

(ϕ, h, D, L) Q

. 4.7. (ω, N) 1 – ϕ; 2 – h; 3 – D; 4 – ω; 5 – L; 6, 7, 7' – N –

: ,

,

, J 1(t) ≈ 0,003, J 2(t) ≈ 0,006. ,

,

, . . -

, . ω.

. 4.1 – 4.7,

Q,

Q

N, ;

N

-

δ.

;

∆T,

. 4.1 – 4.4 . 4.5 , ∆T, .

,

ϕ(Q), h(Q), D(Q), ω(Q), N(Q) L

. , ,

ω

,

h ω.

. ∆T

h

-

Q, N

-

,

ω

.

. 4.6

α

D ϕ,

. D

∆T

, h,

,

ϕ

L. D. :

. -

L, Q, α),

(

h

. :

(2.3); (

.

. . 2.1 ,

1,5…3,0 (∆T = 30 )

m0 = (6…1)⋅105 ⋅ n, . (ϕ, h, D, L) ,

, , (

. 4.7).

(2.5) . 2).

(2.7),

,

-

,

(ω, N)

-

.

ω.

. 4.1, 4.2, 4.7,

Q

N

Q

N,

δ.

: ;

-

; .

, . , (ω, N) ∆T

4( ∆P, ,σ

,

. 4.1 – 4.7),

(ϕ, h, D, L) Q,

, ≤ [σ] (

EJ ≤ [EJ]

y ≤ [y])

,

-

.

4.3. (

. . 4.1)

,

. 2.2.1.

. 4.3.1.

-68 JB ≤ 0,5 %).

, , . .

,

(

= 0,003 , D = 0,032 , L = 0,325 , e = 0,0035, δ = 0,001 ) (2.1 – 2.9) ( , . . ) .

(ω = 6,28 , . . :T

ω.

h

–1

,

.

-

= 323 , T = 368 . :

h, ω

)N (0,2…6,28)

, ϕ = 17°, h

–1

∆T,

0,0005 ) (2.1 – 2.9) (

(

ϕ = 17°, D = 0,032 , L = 0,325 , e = 0,0035, δ = 0,001 , Q = (0,02…0,08)⋅10–5 3/ ), (JB ≤ 0,5), (σ ≤ 320 (h0 = 0,003 , ω0 = 0,2 –1) , . . )

-

Q

. ∆P, ,

(ω = y≤ -

N. ; ω = (0,2…7,85)

h = (0,002…0,006)

–1

.

. 4.2. (h* = 0,0025, 0,0035, 0,0045 )

(

.

. 4.8,

. 4.1) ISO 9000).

, Windows

" ( . 4.8, "TablCurve":

Microsoft –

. "Monsanto" (

" 1)

τ = (–16,17+3 ⋅ 106/T 2)2,

τ–

,

;T–

, .

4.1. τ,

-68-1 τ,

-

T,

50

45

370

27

25

380

20

18

390

. 4.8.

:

1– Q⋅10 , 3/

5

;2–

4.2.

∆P,



T

JB,

,

.

h*,

%

0,2 0,3 0,4 0,5 0,6 0,7 0,8

-

5 5 5 10 10 15 15

100 100 100 90 90 80 80

0,5 0,5 0,5 0,5 0,5 0,5 0,5

0,0025 0,0029 0,0032 0,0035 0,0038 0,0041 0,0045

(σ , δ

, .

-250.

ω*,

N*,

1,88 3,12 3,75 5,02 5,65 6,91 7,52

0,15 0,25 0,41 0,52 0,61 0,82 0,94

–1

.

-68-1 (σ , δ )

)

-

269-66. δ

.

= 300 %)

(σ , δ )

(

. 4.9)

(σ = 80

2

,

10 %. ,

(

/

) (JB < 0,5 %)



≤ 320

. 4.10), y ≤ 0,0005 ) . (

,

-

σ ,δ ;σ ,δ .,σ ,δ –

. 4.9 ;  –

––– –

N Q:

;τ –

JB –

h, ω ;––– –

. 4.10.  –

, ;

,

N Q:

(

.

. 4.10)

-

(14 %), (

) .

4.3.2.

(0,2…12,85)

–1

∆T,

,

. 4.3.1

" ( . 2.2), . 2.2.1. : T . = 50 °C, T = 95 °C. (ϕ = 17°, D = 0,06 , L = 0,6 , e = 0,0065, δ = 0,001 ), Q = (1…6)⋅10–5 3/ ), ∆P, (JB ≤ 0,5), (σ ≤ 300 (h0 = 0,003 , ω0 = 0,5 –1) (2.1 – 2.9) ( , . ) "

0,0005 )

-

,

(ω = y≤

N.

h = (0,003…0,008)

; ω = (0,2….12,85)

–1

.

. 4.3.

(h*

= 0,0035, 0,0060, 0,0080 )

,

. 4.3.1.

, (

-

) JB < 0,5 % [222].

( (

%),

. 4.11),

. 4.11)

(14 (

).

Q⋅ 10 , 3/ –5

1 2 3 4 5 6

∆P,

4.3. °

10 10 10 15 15 20

∆T,

100 100 100 90 90 80

. 4.11.  –

JB, %

0,5 0,5 0,5 0,5 0,5 0,5

h, ω ;––– –

H*,

ω*,

N*,

8,91 9,41 10,4 11,5 12,5 12,7

1,05 1,84 2,76 4,34 5,46 7,52

–1

0,0035 0,0050 0,0060 0,0065 0,0078 0,0080

N Q:

5.

5.1. , ( . 2), ,

. .

. . [74]: 1)

,

(

. .

,

-

[94]

) N = N1 + N2 + N3,

(5.1)

N1 = (B/h)(4Vx2 + Vz2)m0(V/h)n – 1z Fz; N2 = (Vz/2)Bh∆P;

1 Fz = z 2)

∫ exp RT ( z) ∂z ; N

z

E

3

z = L/sinϕ; V = ωD/2.

0

Q1 = (Vz/2)(B/h)Fg; Q2 = Bh F ∆P/[12(V/h) : 3

3) )

= V(V/δ)nm0exp[E/(RT )]ecos(ϕ)z ; Vz = Vcosϕ;

Q = Q1 – Q2,

(5.2)

n–1

m0Fzz ].

T(z) = T + Gexp[E/(RT)] – (Gexp[E/(RT)] – T

2

G = m0h /(2Kλ)(V/h)

; A = 2KaB/(Qh); a = λ/(ρc); K = αh/λ; V = Q/Bh.

.

+ T )exp(–Az), (5.3)

n+1

T : T = T + Gexp(E/RT )(1 + (exp(–Az ) – 1)/(Az )) + + (T – T . )(exp(–Az ) – 1)/(Az ); )

(5.4)

[231] T(z) = T T

.

=T

.

.

+ GBh/(ρcQ)exp(E/RT )z.

(5.5)

T : + GBh/(ρcQ)exp(E/RT)z /2;

(5.6)

) T 4)

.

=T

.

η = m0 γ& n −1 exp

5) [125, 126]

,

,

JB(t ) =

∫ τ[T (t )] –

t*

∂t

; τ[T(t)] – p

(5.7)

E . RT

(5.8) JB (

)

i ∂t ∂t = ∫ τ[T (t )] ∑i ∫ τ[T (t )] = 1 , t 0

t*

,

.

t

(5.9)

i −1

p

p

( p

-

0

" T(t).

p

"

p ); t* – p

p

"

p

" p

p

-

(

)

,

,

,

.

, –"

-

",

" (

". . 5.1)

, . . . , . .

,



. .

.

,

,

"

"

.

-

(

),

"

",

,

.

( )

"

",

-

[235].

ln

l

l

1

D

D

D

D

D1

Dn

D2

-

l

2

l

. 5.1.

:

1, 2 –

;3–(

); 4 – ;5–

γ,

. -

, [211, 222, 236 – 240].

γ& –

γ& =

τ–

W = (t – e)cosφ – (n = 0,2); , ;h–

γ

[241 – 243]:

= γ& τ , 1  ω + 1 n 

,

–1

[111],

;

h

, .

WhL ; τ = Q sin ϕ

, ;Q– , –1; φ – , .



,

3

/ ;n– , ;L–

γ = ∑γ i ,

:

n

γ

i

= γ& i τ i ; τ

i

i =1

Fl = i i ; γi – Qi i-

,

6) [236 – 243]:

; γ i , γ& i , τ

i



,

,

; Fi , li –

i-

,

,

.

,

γ = γ + γ = γ& τ + (5.10)

∑ γ& i τ i . n

(5.10)

i =1

,

(

)

. , . (

. 5.1). ,

D

∂l

, l,

V = Q/(πD2/4), QL l

ql = ρ V T.

. 5.2. V [94]:

(5.11) (5.12)

:

∂ql /∂l= ρ V (∂T/∂l).

(5.13)

q = τ γ& = η γ& 2 ,

γ& = 2V/D,

,

(5.14) :

~ 1 T = ∫ T (l )∂l . l0 l

,

(5.15)

α

,

-

q = α(T – T ).

(5.16)

α = 2Kλ/D. :

qlBH + q BH∂l = [ql + (∂ql/∂l) ∂l]BH + q B∂l, . l

q

l

(5.17)

q

l+

q dl ld l

dl

q

V

qk

D

. 5.2.

. 5.3. ( 1(

G1 =

m1D12  8V1    4kλ1  D1 

n +1

; A1 = 4k1

a1 V1 D12

. 5.3)

; a1 =

)  E   E  T (l ) = T1 + G1 exp ~  − (G1 exp ~  − Tnb + T1) exp(− A1l ) .      RT1   RT1 

λ1 . ρ1c1

 E   e − A1l1 − 1  − A1l1 ~  + (− Tnb + T1 ) e T 1 = T1 + G1 exp ~  1 + , A1l1 A1l1      RT1 

(5.18)

(5.19)

[43, 211]

γ& 1 = 2(

8V1 . D1

. 5.3)

-

. ,

,

я( ,

. 5.3)

V2 = n –

(n = 3):

-

4Q

n πD22

,

 E T (l ) = T2 + G2 exp ~   RT 2

m D 2  8V  G2 = 2 2  2  4kλ 2  D2 

n +1

 E ~ T 2 = T2 + G 2 exp  ~   RT 2 ; A2 = 4k 2

a2 V2 D22

λ2 . ρ 2 c2

; a2 =

  − T + T ) exp( − A l ) . (5.20) 2 2  1b 

   − (G exp E 2  ~   RT 2 

−A l −A l    1 + e 2 2 − 1  + (− T + T ) e 2 2 , (5.21) 1 2 b   A2 l 2  A2 l 2 

[43, 211]

γ& 2 = (

. 5.3)

,

-

D = D = f (l ) , D (l ) = D

.



l (D l

−D

.

.

D

.

+D 2

):

.

(5.22)

    −  G exp E  ~    RT  

 E T (l ) = T + G exp ~   RT

G =

8V2 . D2

m D 2 n +1 (γ& ) ; A = 4k a 2 ; 4kλ V D (l ) a =

[43, 211]

  −T +T  2b 

 E ~ T = T + G exp  ~   RT

   exp(− A l ) . (5.23)   −A l  e− A l −1 1+  + (−T2b + T ) e ,  A l  Al 

λ 4Q . ; V = ρ c πD 2 (l ) γ& = (

256Q

π( D + d ) 3

.

. 5.3)

:

     − T b + T  exp(− A l ). (5.25)    

     E  E   T (l ) = T + G exp ~  −  G exp ~  RT  RT      

Gp =

mp Dp2 4kλ p

(γ& )n+1 ;

[43, 211]

(5.24)

 ~  E T p = Tp + Gp exp ~  RT p  Ap = 4k p γ& =

ap Vp Dp2 8Vp Dp (

; ap =

. . 5.4).

(

 −A l   e p p − 1  1 + + −T  Ap l p   

λp

ρ p cp

; Vp =

4Q

πDp2

.

b + Tp

) eA l

− Ap lp p p

;

(5.26)

l

q

q

l+

q dl ld l

dl

q

V

qk

D

D

. 5.4. ,

:

V ql

(

π[ D − D 2 (l )]

D (l) − D

D (l ) − D 2

(5.27)

(5.28) -

= α(T − T ) ,

q ; H=

.

α

), :

2

4Q

2

ql = ρ c V T .

,

α = kλ

=

(5.29)

.

(

. 5.4)

ql π( D (l ) − D ) π( D (l ) − D ) dl = +q 4 4 2

2

2

:

2

  dq   π( D 2 (l ) − D 2 ) + q πD dl. = q l + l  dz  ⋅ 4   dz   ρcV

2 D (l )kλ dT E (T − T ) . = m γ& n +1 exp ~ − dl ( D (l ) + D ) RT l

(

. 5.1)

T (l ) = T

+G

  − G  

T =T ~

G

=

m ( D (l ) + D ) 4kλ D (l )

( γ& ) n +1 ; A

= 4k

a D (l )

V ( D (l ) + D ) =

λ

ρ l

D +D 4

; Rb =

D +D 4

; δ1 =

D −D

;

.

2

22,32Q 1 ; π( R0 + Rb ) (δ1 + δ 2 ) 2

; δ2 = (

D −D 2 . 5.1)

.

  −  

   − T2 b + T  

   exp( − A l ).  

  −A l − 1    e ⋅ + 1 + (− T2b + T    A l   

[43, 220]

γ& =

  E exp  ~  RT 

  E exp  ~  RT 

  E exp ~  RT 

+G

a

R0 =

(5.30)

)e

−A

A l

(5.31)

l

, (5.32)

T (l ) = T

G

m (D + D )

=

4kλ D

= 4k

γ& n+1 ; A

   − (G  

  E exp  ~  RT 

+G

 ~  E T = T + G exp ~  RT  a D V (D + D ) a

=

λ

ρ l

  −T  

  E exp  ~  RT 

+ T ) exp( − A l ) . (5.33)

(

 −A l − 1   e + −T +T 1 +   A l   

) eA

−A l

l

, (5.34)

;

.

[43, 211]

γ& =

R =

D 2

; R =

D 2

.



7)

5,58Q 1 , π( R + R ) ( R − R ) 2

≤ [σ],

( EJ ≤ [EJ], y ≤ [y],

, .

)

(5.1 – 5.10)

-

.

5.2.

5.2.1.

(5.1) – (5.10)

-

. . ( ϕ = 17°,

D = 0,032 , h = (0,002…0,005) , – δ = 0,001 . ,

,

. 5.2) [244, 245], L/D = 10,

= 0,0035 , ω = (0 …7,85) ,

, ).

(

)(

–1

.

-

. , . (100 ± 1 º ),

.

,

( – 1050…1100 / 3.

),

,

.

( .

. 5.3),

.





N=N

− N xx ; N

.

= I U ; N xx = I xxU ,

-

:

:

. 5.5.

,

N– ;N –

, ,

;N – ;I –

, ;I –

, ;U–

, .

1

2

3

60°

60°

. 5.6.

1–

;2– 5–

9– 12 –

:

;3– ;6– ; 10 – ; 13 –

;7–

PE –

;A–

;4– ;8– ; 11 – ; TE – ;V–

; ; ; ;

. 5.7 . ,

, ,

,

-

.

-

,

.

. 5.7.

:

1– 9–

4– ; 12 –

; 10 –

; 2; 11 – ;6– ; 14 –

;5– ; 13 –

;3–

;

;8–

; ; 15 –

; 16 –

-

5.2.2. -68-1 (

-68-1

:

T = 85 °C;

T (

" 0,22 , ",

"c /( ⋅° );

T

= 80 °C (

-

) m0 = 600 000 [215],

.

= 50 °C;

⋅ n, n = 0,2; = 2100 /( ⋅° ),

( .

. 2.3,

-

. 5.5, 5.6). T = 100 °C; T

.

ρ = 1200 / 3, λ= α = 100 /( 2⋅°C); τ[T(S)] – "Monsanto" " -

1). Windows

Microsoft –

"TablCurve":

τ–

,(

τ = (–16,17 + 3131360/T 2)2,

); T –

, .

5.1.

-

-68-1 100 -

1. 2. 3. 4.

-18

5. 6.

-15 7. " "

8. 9. :

-

,%

,%

50,0 50,0 5,00 2,50

23,92 23,90 2,39 1,20

31,86 24,19 0,54 0,48

75,00 1,00 2,50

35,88 0,48 1,20

26,15 0,62 1,14

3,00 20,00 209,0

1,44 9,57 100

1,98 12,74 100

5.2.3.

,

"

[243 – 246]

-

", . .

(

), :

" .

-

.

-68-1,

" ,

-

20 .

(

)

. = (0,4; 1,04; 3,12; 5,2; 5,76; 6,24; 7,28)

= (8,4; 10,4; 16,4; 18,4)

);

.,

-

.

30 2 –1

d

.

° –

:T



.

– (

);

.

,° –

-

(

. ; I,



: P, .– ; Q, / –

, (

/(2

)

, ,

-

. 5.8).

-

/ ). ,

(7,2

)

"Adop PhotoShop 5.0" ( ) (

( )

,

, %,

.

) . 5.8. : –

5

;



10

)

. 5.8. 5.2.4.

,

γ

Q

[247]. .

,

-

(

)(

γ

. 5.2,

γ,

. 5.9) [248], . .

.

,

,

[125, 126]. ,

, . 5.9.

(5.1 – 5.10). γ&

,

10 %) Q,

7

. 5.9. 2

Q=7 , ,

/

9

/ (

( 20

.

–1

15

. 5.10),

/ , N = 1060

–1

,

N,

Q=9

/ , N = 1180

(

1060

. 5.10). (20 ° )

(

. 5.2.

T

103

γ 50

100

40

40

97

30

30

94

20

20

91

10

10

88

0

0

.

.,°

. .,

δ, % 50 −1

1 3 4 2

0

. 5.9.

20 δ

γ&

(2), Т

.

. (4)

40

60

80

(1) .

(3)

1180

γ

.

γ

. .

= -

.

= 100 ° ) (45 %), , .

T

110 100 90 80 70 60

. .,

γ

, °C N ,

.

c

−1

1200 100 1120 80 1040 60 3 40 960 2 880 20 1 800 00

5

10

. 5.10. γ& . (1),

Q

(3)

.

(

. 5.9,

2) γ

. .

/

N (2) Т

γ

Q,

.

, = 30…90

30

= 90…95,

95, -

. , ,

, ,

,

,

" γ

, ,

"

"

-

, " .

. -

.

. . -68-1 JB ≤ 0,5 %).

, ,

(

, . . (5.1) –

(5.10) (

3,

. ) :T

. .

= 50 °C, T = 85 °C. ω .

, . .

.

( ) N*,

(σ , δ Q (5.1) – (5.10) (

.



, (σ , δ ). (ω = (0,2…7,85)

)

-

,

3,

Q = (0,02…0,1)⋅10–5

. ), ∆P, (5.1) – (5.10) ( .

3

/ ),

N,

(

-

JB,

JB

. 5.11)

"

-

"

–1

,

-

. ), [240]

"Monsanto",

∆T

-

[224].

-

,

-

ISO 9000.

: 1–

. 5.11. –5

4 – Q = 0,08⋅10–5

3

0,06⋅10 / ; 3 / ; 5 – Q = 0,1⋅10–5

3

/ –

; 2 – Q = 0,04⋅10–5

3

/ ;3–Q=

(σ , δ

, -250.

.

(σ , δ )

)

.

-

269–66. . 5.11 [220]

,

Q (

(2, 3, 4, 5)

,

-

1), JB ≤ 0,5 %)

. (

. 5.11)

(

1)

(

5

2 %. (

. 5.12)

m0 = 600 000 ⋅ n, n = 0,2; = 2100 /( ⋅° ),

T

.

= 50 °C;

T = 85 °C;

λ = 0,22 ρ = 1200 / 3, α = 100 /( 2⋅°C); τ[T(S)] – , "Monsanto" " ", . . 5.11,

(



JB, % Т

. 5.12. (■)

γ&

.

T

.

) -

1).

δ (□)

,

γ&

.

(●),

(

(▲)

),

(∆) n

JB (♦) d

( /

( [224]):

δ, %

T

n = 50…70 ,

-

T = 105 °C; T = 75 °C ( /( ⋅° );

:

. 5.12,

.

(□)

.

= 0,01

(■))

n = 10…50

/

,

-

,

,

. ,

80…95 % .

JB ( 4

. 5.12, 1 %)

20

n 50 70 / 99 103 °C 18 %.

n

10

50

96 18,5 20 %. (1 %)

JB ,

/

,

99 °C

-

(

%)

, . δ, % 24

JB, % 15 2

16

10

8

5 1

0

0 90

100

. 5.13. d

.

T = 0,0105

110

T

, °C δ (2),

l = 0,008

JB (1)

4

(

. 5.12)

,

(5.18) – (5.34) 2 %.

(

. 5.13)

,

,

-

JB (σ , δ )

= 300 %)

(

N σ ,δ Q ϕ = 17 ; h = 0,003 ; D = 0,032 ; L = 0,325 ; ω = 0,2…1,88 ∆P = 5…20 : ––– – ;  – ;σ ,δ .,σ ,δ .–

. 5.14)

. (σ = 80 / 11 %.



2

.

. 5.14.

, τ –

; JB – ; –

–1

; ,

;

12 %. , .

(5.1 – 5.10)

-

6. ,

6.1.

, . N, JB

-

,

-68-1 ⋅ n; n = 0,2; T

4.

⋅ ; n = 0,2; T . = T . (m0 = 100 = = 323 ; T = 358 ; ∆P = 20 ). n

.

Q,

, : ρ = 1200 = 358 ; T = 358 )

/ 3; λ = 0,22

/( ⋅° );

= 2300

.

/( ⋅° ); (m0 = 600 -

, ,

5(

. 6.1

.

ϕ

. ,

h

1 "Linyur"). h

JB ϕ

Q, . 6.1,

1

N,

. ϕ

(15…20°) N, ,



650



630



600

-

,

– 3⋅10– 3 /

5



600



500



400

– 1 5 10–5

. 6.1.

(20 –

N (1 – 3), Q (4 – 6), JB (7 – 9) γ (10 – 12) D = 0,032 ; ω = 2,1 c–1 –1 ); L = 0,32 ; e = 0,0032 ; δ = 0,001 : ; –

,

.

h

N(

1 – 3),

h

,

, , ,

,

ϕ(

.

Q . 6.1).

,

h, h,

Q,

ϕ

h . Q, ,

,

,

, t ϕ,

JB

ϕ.

, γ& ,

h, (

, -

.

h,

, ,

. 6.1).

,

h, ,

,

,

ϕ

Q .

. 6.2 N,

Q,

JB

. 6.2, D

ϕ

D

ϕ

-

.

D

N. 1, 2, 3), ,

N( ,

,

-

, ,

,

,

.

Q(

ϕ(

4, 5, 6),

Q . 6.2).

D,

,

D, ,

, ,

-

. ϕ

JB (

D, D

. 6.2).

,

Q, ,

.

– 500

– 1000

– 1500

1 – 10 000



2 8000



3 6000

4 – 9⋅10–6 3

) . 6.2.



(

. 6.2).

N (1 – 3), Q (4 – 6), JB (7 – 9) ); γ (10 – 12) H = 0,004 ; ω = 3,14 c–1 (30 / L = 0,32 ; e = 0,0032 ; δ = 0,001 : ; –

ϕ,

ϕ,

, Q

ϕ

. 6.3. N, ω

Q, . 6.3,

ϕ

D ,

JB N.

. ,

ω

. ω

-

N(

1, 2, 3), ,

)

(

-

,

.

ω, (

ϕ.

Q(

ω,

. 6.3)

,

Q

4, 5, 6),

. N (1 – 3), Q (4 – 6), JB (7 – 9) γ (10 – 12) H = 0,006 ; D = 0,032 ; L = 0,32 ; e = 0,0032 ; δ = 0,001 : – ; – . 6.3.

1 – 1500 2 – 1000



3 500

4 – 9⋅10–6 3 /

1 – 4000 2 – 3000 3 – 2000 4 – 9⋅10–6 3 /



1 200



2 150



3 100

. 6.4.

– 9⋅10 3 /

D = 0,032 ; ω = 5,2 c–1 –

4

N (1 – 3), Q (4 – 6), JB (7 – 9) γ (10 – 12) H = 0,006 ; (50 / ); e = 0,0032 ; δ = 0,001 : ; –

–6

1 – 4000 2 – 3000 3 – 2000 4 – 9⋅10–6 3 /

ω,

JB ω

6.3). Q, ,

ϕ(

. ,

.

ϕ,

ϕ,

, .

ϕ

. 6.4. JB ϕ

Q, . 6.4, , L

N

ϕ,

N,

L 1, 2, 3), ) ϕ.

, ,

. ϕ,

L, ,

4, 5, 6). JB L L, L, ϕ

. N,

.

,

δ Q,

JB ϕ

, ),

N(

).

δ, . .

. 6.3).

.

,

. 6.5

3),

ϕ(

ϕ(

.

, N N(

-

L,

,

. 6.5

-

N.

(

Q

6.4). ,

,

L

N(

. 6.4,

. 6.3). Q

.

,

Q(

ω(

,

.

ϕ,

δ,

ϕ

, δ(

N

,



1 150



2 100

, 1, 2, -

.

3 – 50 4 – 3⋅10–6 3 / 5

1 – 1300 2 – 1100



3 900

4 – 3⋅10–6 3 /

N (1 – 3), Q (4 – 6), JB (7 – 9) γ (10 – 12) H = 0,004 ; D = 0,032 ; –1 ); L = 0,32 ; e = 0,0032 : ω = 3,76 c–1 (35 ; –

. 6.5.

– δ ,

ϕ, JB

, (

.

. 6.5, ), δ

ϕ,

Q, ( Q(

δ,

. 6.5,

). 4, 5, 6).

Q ϕ(

(85 °C)

. 6.5, ) -

.

ϕ,

ϕ,

δ(

. 6.5).

,

,

. . 6.6 Q,

ϕ .

JB

e

N,

-

1 – 2000 2 – 1500 3 – 1000 4 – 2⋅10–6 3

1 – 7000 2 – 6000 3 – 5000 4 – 2⋅10–6 3 /

N (1 – 3), Q (4 – 6), JB (7 – 9) γ (10 – 12) H = 0,004 ; D = 0,032 ; ); L = 0,32 ; δ = 0,001 : ω = 3,14 c–1 (30 / ; – N e, , . 6.6.

– ϕ. 1, 2, 3),

. 6.6, , δ, . .

( -

,

, ϕ,

. Q

e(

. 3.6),

-

, ϕ,

. (

6.6).

∆T

. 6.6,

JB 7 – 9).

ϕ,

, ϕ,

,

JB, ϕ, ,

.

(

.

. 6.2. N, JB

(

(ϕ, h, D, L, δ, e)

(ω) (N, Q, JB, ), . .,

, h;

Q,

-

. 6.1 – 6.6),

D;

ω

. : L.

-

7.

7.1.

,

,

-

:

( γ

,

),

,

, [126].

:

, )

-

[243].

-

(

[F = N(h, D, ω, L)]→ min,

:

(7.1)

: –

(

)



t∗

R1 = JB(t ) =

0



(



)

(

∂t = τ[T (t )]

)

Dkh*, D*, ω*, DkL* Dkh*, D*, ω*, DkL* – , ; kh*, kL*, kh*, kL*, kh, kL – (h, L), ; ε, γ

(7.3)

= Q(h, D, ω, L);

(7.5)

(h, D, ω, L) = T ;

(7.6)

.

 D∗ ≤ D ≤ D ∗ ;   ∗  Dk h∗ ≤ k h ≤ Dk h ;  ω∗ ≤ ω ≤ ω∗ ;   ∗  Dk L∗ ≤ k L ≤ Dk L ,

(7.7)

(h, D, L) ,

(ω)

,

,Q ,T .–

,

,

, ). : ϕ = 17o; ε = 0,02; γ

(

0,05; kh* = 0,15; ω = (1,2…9,4) –1; kL* = 5; kL* = 10; ∆P = 20 0,05 ; h0 = 0,1D ; ω0 = 3,14 –1; L0 = 7D .

;

(7.4)

Q



(7.2)

R3(h, D, ω, L) ≤ [σ];

– T

∂t

i −1

R2(h, D, ω, L) = γ



, ; [σ] –

∑ ∫ τ[T (t )] ≤ ε ; i t ti

; δ = 0,0005 ; α = 100

= 3500, T /(

2

⋅ °C); T

-

= 90 ° ; D = 0,03…0,09 ; kh* = = 50 °C, T = 85 °C; = 0,1D; D0 =

7.2.

(7.1) – (7.7) ( . 7.1, 7.2).

, . 7.1.

,

[212],

Q

, .

. 7.2

,

Q

ω

D,

γ

ω,

L,

3500 400 3,0

75

5

2800 320 2,4

60

4

2100 240 1,8

45

3

( –1

D,

. 7.1) –

h,

N,

3,0

1 5 6 4 2

2,4 1,8

3 1400 160 1,2

30

2

1,2 0,6

700

80

0,6

15

1

0

0

0

0

0 0

0 5

10

15

20

25 Q,

/

(3 – ω, 5 – N, 6 – γ)

. 7.1.

(1 – h, 2 – D, 4 – L) Q γ

L,

ω,

–1

D,

h,

N,

60 6,0

400

3,0

320

2,4

48 4,8

240

1,8

36 3,6

3,0

5 2 4 1

2,4 1,8

3 160

1,2

24 2,4

1,2

80

0,6

12 1,2

0,6

0

0

0

0 0

5

10

15

(3 – ω, 5 – N)

(1 – h, 2 – D, 4 – L) Q

. 7.2.

(

D . 7.1

N 6,2 / ) –1 ; L = 0,325 ; ∆P = 20

h, . . 7.2) Q.

; δ = 0,0005 ; α = 100 -32

0,032 ; kh* = 0,05; kh = 0,15; ω = (1,2…9,4) = 0,1D; h0 = 0,1D ; ω0 = 3,14 –1.

/(

(Q = 6,2 , ω,

–1

2

⋅ °C); T

5

5

2920

4

4

.

; L = 0,325 ; ∆P = 20

.

)

(Q =

: ϕ = 17o; D = 0,032 ; ω = 2,2 = 100 °C; T = 85 °C; = 0,1D; h = 0,0035 . ( . 7.3 7.4) = 3500; T = 90 ° ; D = : ϕ = 17o; ε = 0,02; γ

; δ = 0,0005 ; α = 100

N ,

/ )

/(

2

⋅ °C); T

,

.

= 50 °C; T = 85 °C;

13 %

-

.

h,

3650

(N = 0,865

-32 = 50 °C; T

–1

,

γ

-

( γ = 4475),

*

. 7.3 7.4

0 /

25 Q,

20

N,

1,0

6 1

0,8

5 2190

3

3

1460

2

2

0,4

730

1

1

0,2

0

0

0

0,6

3

0 5

6

7

8 Q,

/

(3 – ω, 5 – N, 6 – γ)

(1 – h)

. 7.3. Q

γ

-

ω,

–1

h,

N,

5

5

4

4

1,0

1

0,8 5 0,6

3

3 2

2

1

1

0

0

3

0,4 0,2 0

5

6

7

8

Q, /

(3 – ω, 5 – N)

. 7.4.

(

(1 – h) Q

. 7.3)

Q,

ω

,

h. ,

,(

-

.

-

).

Q ω.

. 7.1 – 7.4, Q

N N, ;

:

-

δ.

; .

-

,

. ,

(ω, N)

7(

∆T

∆P,

. 7.1 – 7.4),

(h, D, L) ,



≤ [σ] (

-

Q,

EJ ≤ [EJ]

y ≤ [y])

,

, .

7.3. (

. . 7.1)

,

. 7.2.1.

. 7.3.1.

-68 JB ≤ 0,5 %).

, , . .

,

(

(ω = 6,28 = 0,003 , D = 0,032 , L = 0,325 , e = 0,0035, δ = 0,001 ) (7.1 – 7.10) ( . , 3) :T ω.

h )N (0,2…7,85) , 1

)

–1

,

y ≤ 0,0005 )

.

, ϕ = 17 , h

–1

, . . = 323 , T = 358 .

. :

h, ω Q ϕ = 17 , D = 0,032 , L = 0,325 , e = 0,0032, δ = 0,0005 , Q = (2…8)⋅10–7 3/ ), ∆T, (JB ≤ 0,5), (7.1 – 7.7) (

h = (0,002…0,006)

. , N.

3)

; ω = (0,2…7,85)

–1

.

(

.

(ω = ∆P, (σ ≤ 320 (h0 = 0,003 , ω0 = 0,2 – -

7.3.2.

(

(h* = 0,0025; 0,0032; 0,0035 )

. 7.1) .

7.1.

∆P,

Q⋅10–5 3 /

T

JB

,

.

, %

%

0,2 0,3 0,4 0,5 0,6 0,7 0,8

5 5 5 10 10 15 15

100 100 100 90 90 80 80

h*,

0,5 0,5 0,5 0,5 0,5 0,5 0,5

3450 3450 3450 3450 3450 3450 3450

5 5 5 7 7 10 10

0,0025 0,0029 0,0032 0,0035 0,0038 0,0041 0,0045

ω*,

N *,

1,88 3,12 3,75 5,02 5,65 6,91 7,52

0,15 0,25 0,41 0,52 0,61 0,82 0,94

–1

. ( . 7.5, ISO 9000).

. 7.2)

"

-

"

"Monsanto" (

, (σ , δ

, .

-250.

-68-1 (σ , δ )

. )

-

269-66. Windows τ–

δ

.

= 300 %)

( . 7.5, "TablCurve":

Microsoft –

1)

τ = (–16,17 + 3·106/T 2)2,

,

;T–

, .

(σ , δ )

(

. 7.6)

(σ = 80

10 %.

7.2.

-68-1

τ,

τ,

50 27 20

T,

45 25 18

. 7.5. 1–

370 380 390

: ;2–

/

2

,

σ ,δ

. 7.6. ;  –

––– –

N ;σ ,δ

;τ –

JB –

;δ– ; –

Q: , σ ,δ . ,



,

-

;

, ( 320

,

) y ≤ 0,0005 )

( (JB < 0,5 %) .

( = 3450) (

. 7.5), (σ

. 7.6)

(11 %), (

≤ , -

) .

8.

(

5, 6, 7)

.

1.

, m0; n – τ[T(t)] –

,

: T

.

;

;

xi∗ ≤ xi ≤ xi∗ –

;

∆P; ∆T – Q– [σ] –

,

;

; (

ε–

,

)

-

; .

2.

.

РИ НТ 1. .

2.

.

3.

( . 5) ( . 7, – –

(7.1 – 7.9))

(

(ω, N) (ω, N)

,

(h, D, L) (h)

( (

. )

:

1); 2).

,

, . [211]. -

[σ] = 320

: = 2100 , [y] = 0,0005 . 1.

/( ⋅° ), ρ = 1200

-68-1. / 3, λ = 0,22

/( ° ), T = 358 , m0 = 600

(ω, N)

(ϕ, h, D, L)

(ω, N)

(h)

⋅ n, n = 0,2

T

.

.

.

= 323 , . 7.2,

. 7.2. 2.

h0 = 0,003 ; ω0 = 0,2

–1

; h = (0,002…0,006)

. ; ω = (0,2…7,85)

.

. 8.1.

: –1

.

: a = 0,016 ; l = 0,32 ; [y] = 0,01R1 ; (0,001 ≤ 1 ≤ 0,006) ; ; = 2 ⋅ 105 ; µ = 0,3; ρ = 7,85 ⋅ 103 / 3. 4) [211], , : h = 1* = 0,0025 ; e = 2* = 0,0024 ; R0 = 3* = 0,0078 . *min = 6,56 , 20 % . ( . 1.24, 1.25, 1.26) : = 0,016 ; = 50 ; [σ]1 = 566 ; [σ]2 = 434 ; 0,022 ≤ 1 ≤ 0,028 ; 0,028 ≤ 2 ≤ 0,032 ; 0,032 ≤ 3 ≤ ≤ 0,042 ; 0,006 ≤ 4 ≤ 0,012 . "minMT-LC" ( . , 5) [211] : ; 1* = 21,9 ; ; ; 2* = 28,6 3* = 32,8 4* = 6,6 *min = 0,03 , 20,5 % . ( . 1.27) R1 = 0,016 ; = 50 ; (0,001 ≤ 2 ≤ 0,004) ; (0,001 ≤ 3 ≤ 0,01) ; "minMSCRE" ( . ,

1.

, ,

2. 3.

. . (∆T, ∆P, ω).

,

4. N( JB

Q,

),

,

.

5. . 6.

N( Q, T

.

JB,

) (

)

.

7.

.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62.

Rogowsky Z.M. Engineering, 162, . 358, 1946, Eirich F.R. Jnst. Mech. Eng., London, 62, c. 156, 1947. Maillefer Ch., 12 – 18, 1952. Boussinesq M.Y. J. Math. Pures appl., 13, c. 377, 1868. Grant D., Walker W. Plast. Progr., London, c. 245 –254, 1951. Eccher S., Valentinotti A. Jnd. Eng. Chem., 50, № 5 , . 829 – 836, 1958. Gore W.L. Extr. Symposium // Jnd. Eng. Chem., 45, c. 969 – 993, 1953. Carley J.F., Strub R.A. Jnd. Eng. Chem., 45, № 5, c. 970, 1953. Maillefer Ch. Brit. Plastics, 27, c. 394, 1954. Pigott W.T. Trans. ASME, 73, c. 947, 1951. Strub R.A. Proc. Second Midwestern Conference on Fluid Mechanics. Ohio State University, c. 481 – 494, 1952. Carley J.F., Mallouk R.S., Mckelwey J.M. Jnd. Eng. Chem., 45, № 5, c. 974, 1953. Kennaway A., Weeks D.J., Ch. 17, "Poluthene" ed Renfrew A. and Morgan. London, 1960. Gor W.L., Mckelwey. Theory of schrew Extruders Ch. 16 of Rheology, V. 3. Academic Press., 1960. Booy H.L. Polym. Engng and Sci, 7, № 1, 5, 1967. Chan R.R.S., Lee C.W.M., Biggs R.D. J. Apple. Polym. Sc., 12, c. 115, 1968. Jinessi V.D. Kautschuk and Gummi, 20, № 9, c. 529, 1967. Hufnagel W. Plastverarbeiter, 18, № 9, c. 519, 1967. Carley J.F., Strub R.A. Jnd Eng. Chem., 45, № 5, 978, 1953. Carley J.F. SPE journal, 9, № 3, 9, 1953. , . . .: . ., 1962. . . .: . ., 1962. . . .: , 1962. Jacobi H.R. Grundlagen der Extruder technik. Munchen, 1960. . . . .: , 1965. Fischer E.G. Extrusion of Plastics Jliffe books. London, 1964. Meskat W. Kunststoffe, 45, c. 87, 1955. Squires P.H. SPE journal, 14, № 5, c. 24, 1958. Maillefer. Rev. gen. Cautch, V. 31, № 5, 1954. Pai Schih I. Viscous Flow Theory I, Laminar Flow, Princeton, N.J. D. Van Nostrand Co. Jnc., 1956. Mohr W.D., Saxton R.L. Jnd. Eng. Chem., 49, c. 1857, 1957. Mallouk R.S., Mckelwey J.M. Jnd. Eng. Chem., 5, c. 45, 1953. Mohr W.D., Mallouk R.S. Priv. communic. to Ph Sqs, Sept, 20, 1957. Gaspar E. SPE journal, 12, № 10, c. 23, 1956. Maddok B.H. Plastics Technol., 3, c. 385, 1957. Sackett R.D. SPE journal, 12, № 10, c. 32, 1956. Mckelwey J.M. Jnd. Eng. Chem., 45, c. 982, 1953. Chung Chan. J. Mod. Plast., 45, № 13, 1968. Werner Udo. Kunststoffe, 56, № 7, 1966. Booy M.L. Kautschuk and Gummi, 17, № 5, 1964. . ., . , № 6, 7, 8, 1960. . . , № 5, 1961. . ., . . . , 1965. Colwell R.E., Nikolls R.R. Jnd. Eng. Chem., 51, № 7, 841, 1959. Domininghaus H. Plastverarbeiter, 18, № 9, c. 391, 1967. Griffith R.M. Jng Eng. Chem., 1, № 3, 180, 1962. Mcrtkwey J.M. SPE. J. 14, № 3, 1958. Mori Y., Ototake N., Jgarashi H. Chem. Ehg., 18, 221, 1954. Collwell R.E. SPE. J., 11, № 7, 24, 1955. Rotem Z., Shinnar R. Chem. Eng. Schi., 15, 130, 1961. Krueger W.L. SPE. J., 18, 1282, 1962. Newman S., Trementozzi Q.J. Appl. Polym. Scl., 9, № 9, 3071, 1965. Kroesser F.W., Middleman S. Polym. Eng. Science, 5, № 5, 230, 1965. . . . ., 1967. Narkis M., Ram. A. Polym. Engng and Sch., 7, № 3, 161, 1967. Tomis Fr., Machacek L., Slavicek E. Gummi-Asbest-Kunstst, 24, № 8, 1971. Pfajer O. Plastverarteiter, 20, № 1, 1969. Jacobi H.R. Shcneckenmaschinen, 1, 1965. Glude B.S., Holmens-Walker W.A. Jnt. Plast. Eng., 2, № 8, № 9, 1962. Griffith R.M. Jng. Eng. Chem., 1, № 3, 1962. Jacobi H.R. Jnt. Plast. Eng., 2, № 5, № 6, 1962. Mckelwej J.M. Jnd. Eng. Chem., 46, № 4, 1954.

.:

-

63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76.

Pearson J.R.A. Mechanical Principels of Polymer Melt Processing. London, 1966. Jnter nationales Symposium fur Gummi in Gottwaldow (CSSR). Gummi-Asbest-Kunstst, 25, № 1, 1972. Janeschits-krieg J.H. Kautschuk und Gummi, 17, № 1, 1964. Gavis J., Laurence R.L. Jnd. Eng. Chem. Fundament, 7, № 3, 1968. Klein J., Tadmor Z. Polym. Eng. Sci., 9, № 1, 1969. Muller J. Plastverarbeiter, № 5, 1968. Zehnen J. Kunststofftechnik, 9, № 3, 1970. Klein J., Marshall D. Polym. Eng. Science, 7, 6, № 3, 1966. Tadmor Z. Polym. Eng. Science, vjl 6, № 3, 1966. Renert M., Jinesci V., Nuca G. Plaste und kautschuk, V. 16, № 2, 1969. . . : .… . . ., 1968. . . . .: , 1977. 462 . Mori Y., Ototake W. Chem. Rng Japan, 19, № 9, 1955. . ., . . ., 1958. № 10. 77. . ., . . . № 6. 1961. 78. . . . , 1960. . 29. 79. De Haven E.S. Jnd. Eng. Chem., 53, № 10, 1963. 80. Kruger, Kunststoffe, 53, № 10, 1963. 81. Schenkel G.R.M. Jnt. Plast. Eng., 2, № 9, 1962. 82. Weeks D.J., Allen W.J.J. Mech. Ehg. Sci. 4, № 4, 1962. 83. Mckelwey J.M., Wheeler N.C. SPE Trans., № 2, 1963. 84. Mckelwey J.M. SPE J., 9, № 3, 1953. 85. . ., . . . – 1959. № 4. 86. . ., . . . 1963. № 6. 87. . ., . . 13. ., 1962. 88. . ., . . . 1965. № 6. 89. . ., . . . 1966. № 1. 90. . ., . ., . . . 1965. № 11. 91. . . : . ... . . . ., 1966. 92. . ., . . . 1962. № 1. 93. . ., . ., . ., . . // . , 1989. 94. . ., . ., . . . .: , 1986. 488 . 95. . . , : . .… . 05.04.09. ., 1992. 32 . 96. . ., . ., . . – // : . . : 1974. . 39-47. 97. . ., . ., . . : . . : , 1974. . 48 –54. 98. . ., . . : . . : , 1975. . 3 – 7. 99. . ., . ., . . . : , 1975. . 71 – 74. 100. . ., . ., . . // : . . : , 1976. . 26 – 30. 101. . ., . . // : . . 1976. . 9 – 15. 102. . ., . . //

.

.

-

:

.

. . , // //

:

,

: .

. 103.

: .

104. , 1978. 105.

. ., : . .,

. .,

, 1978. . 43 – 46. . . , 1978. . . //

-

:

.

.

:

. ., . . // : . . : , 1985. . 56 – 60. 106. Savenkova O.V., Skulsky O.I., Slavnov YE.V. Thermal modes existing in a screw extruder for thermoplastic materi-

als // Fluid Mechanics – Soviet Research. 1986. V. 16, N 3. P. 128 – 133. 107. . ., . ., . . // : . . 108. . . , . . , . . , . . // 109. . ., . ., . . . 1999. № 3. . 9 – 12. 110. . ., . .

:

, 1986. . 48 – 51.

.

. 2002. № 10. 52 . // -

. 1999. № 7. . 7 – 10.

// 111.

. .

:

112. 113.

.

.… . . .:

. .

. ,

. 05.02.13. , 2005. 568 .

.

// :

. 114.

, 2005. 16 .

.

"

,

2003".

.:

"

"

"

.

. 6-

, 2006.

: Krupp Industrie und Stahlbau. 1980. 115. Gummi, Asbest, Kunststoffe. 1980. 33. № 10. S. 761. 116. . . : . . . .: , 1982. 64 . 117. . . . .: , 1976. 86 . 118. . 2770841, , 1956. 119. . 1161034, , 1967. 120. . 3517097, , 1970. 121. . 50-6874, , 1975. 122. . 1290471, , 1962. 123. . 1140336, , 1963. 124. : . № 49 / . , 1970. . 48 125. : . .: , 1971. 85 . 126. . . . .: , 1987. 272 . 127. . ., . . // 10.c ." . ". .: . ., 1999. 2. . 191 – 198. 128. . ., . ., . ., . . // . -12: 12. . . , 1999. . 4. . 124–125. 129. . . : . .… . . . 05.17.08. , 2004. 16 130. . . . . .: , 1984. . 35. 131. . ., . . . .: , 1970. 132. . . .: , 1965. 133. . . ., 1963. 134. . . . .: , 1979. 135. . . . .: , 1970. 136. . . . .: , 1965. 137. . . .: , 1965. . 265. 138. . . . .: , 1969. 139. . ., . ., . . . .: , 1964. 140. Bueche F.J. Chem. Phys. 1954. V. 22. № 4. P. 603 – 609. 141. . . . .: , 1970. 142. Tordella J.P. J. Appl. Phys. 1956. V. 27. P. 454. 143. Ramsteiner F. Kunststoffe. 1972, Bd. 62. № 11. S. 766. 144. . ., . ., . . . .: , 1963. . 37 – 55. 145. . ., . . . .: , 1970. . 40 – 52. 146. Howells E.R., Benbow J.J. Plast. Trans. J. 1962. V. 30. P. 240. 147. . ., . . . 1977. № 8. . 42. 148. . ., . . . 1983. № 3. . 31 – 34. 149. Mendelson R.A., Finger F.L., Bagley E.B. . .: , 1974. . 178 – 190.

150. / . . . . ; . . . . .: , 1974. 151. Chapoy L.L., Pedersen S. Polym Eng and Sci. 1970. V. 8. P. 724 – 727. 152. ., . . .: , 1978. 153. . . . .: , 1955. 154. . . . .… . . : , 1962. 155. . . . 1966. № 4. . 611 – 616. 156. . . . , 1974. № 3. 157. . . . 1978. № 5. 158. . . .– .: , 1947. 159. . . . .– .: , 1951. 160. Ackerberg R.C. J. Mec. 1965. V. 21. P. 1 161. Socton O., Taduoefhy M. Soc. Mater. Sci. 1968. V. 11. P. 103, 104. 162. Socton O., Taduoefhy M. Soc. Mater. Sci. 1968. V. 17. P. 103, 104. 163. Schummer P. Rheol. Acta. 1968. V. 7. № 3. P. 271 – 277. 164. . . . .… . . . .: , 1972. 165. . . . 1966. . XI, № 6. . 802 – 808. 166. . . . 1969. № 3. . 17 – 19. 167. . . . .… . . . .: , 1974. 168. . . . .… . . . : , 1973. 169. Davies A.R., Walters K., Webster T.F. Y Non-Newton Fluid Mech. 1981. V. 8, № 1–2. P. 95 – 117. 170. Davies A.R., Walters K., Webster T.F. Y Non-Newton Fluid Mech. 1978. V. 4, № 4. P. 325 – 344. 171. Cable P.J., Boger D.V. AICHE Journal. 1978. V. 24, № 4. P. 372 – 375. 172. Cable P.J., Boger D.V. AICHE Journal. 1978. V. 24, № 5. p. 869 – 879. 173. Cogswell F.N. Pol. Eng. Sci. 1972. V. 12, № 1. P. 64. 174. . . : .… . . . . 05.04.09. ., 1974. 175. . ., . . . . . .: , 1983. . 5. . 8. 176. . ., . ., . . . .: , 1981. . 76. 177. Cotten G.R. Rubb. Chem. and Tech. 1968. 100. No. 1. P. 51. 178. . . . . 1970. № 1. . 26 – 28. 179. Cotten G.R. Rubber Age. 1968. 100. No. 11. P. 51. 180. Weissert P.C. Rubber Chem. and Tech. 1969. 42. No. 3. P. 903. 181. Henze E.D. Polym. Eng. and Sci. 1973. 13. No. 2. P. 153 – 159. 182. . ., . . . 1973. № II. . 23 – 25. 183. Cotten G.R. Rubber Chem. and Tech. 1979. 52. No. 1. P. 187 – 198. 184. . ., . . . 1973. № 4. . 11 – 13. 185. . ., . . . .: , 1977. . 64 – 72. 186. . ., . . , . .: , 1972. № 10. . 39 – 42. 187. . . . , . .: , 1972. № 11. . 37 – 39. 188. . ., . ., . . , . .: , 1973. № 1. . 15 – 18. 189. . . . , 1973. № 6. . 28 – 30. 190. . ., . ., . . . .: , 1978. . 34 – 70. 191. . ., . ., . . , . .: , 1971. № 10. . 37 – 39. 192. . ., . ., . . . .: , 1978. . 34 – 70. 193. Rubber Age. 1971. 103. No. 2. P. 110. 194. Rubber World. 1974. 169. No. 4. P. 29. 195. Elastomerics. 1977. No. 5. P. 18. 196. Rubber World. 1975. No. 4. P. 44. 197. Rev. gen. caout. plast. 1974. No. 1–2. P. 57. 198. Elastomerics. 1977. No. 5. P. 18. 199. Rev. gen. caout. plast. 1974. No. 1–2. P. 57. 200. . ., . ., . . , 1972. № 3. . 50–51. 201. . ., . . , . .: , 1976. № 6. . 28. 202. . . 302252 // . 1971, № 5. 203. . . 504665 // . 1976, № 8. 204. " "( ), 1976. 205. . . . .: , 1978. . 48 – 54.

206. 207.

. ., . .

. .,

A.M.

. .: . . 05.04.09. ., 1999. 32 .

, 1977. 63 .

: . .… . 208. . ., . ., . ., . . . .: , 1984. 152 . 209. . . , : .… . . 05.17.08. , 1984. 377 . 210. . . , : .… . . 05.02.13. , 2001. . 390. 211. : / . . , . . , . . , . . , . . . .: " -1", 2004. 248 . 212. . . .: , 1975. 480 . 213. // . . . ./ . . ; . . .: , 1983. 214. Rajesh J., Jayaraman V.K., Kulkarn B.D. Taboo search algorithm for continuous function optimization. Chem. Eng. Department, National Chemical Laboratory, Pune. India. Che. Eng.: Res and Des. A: Transactions of the Institution of Chemical Engineers. 2000. 78. № 6. 215. . . : .… . . . ., 1972. 216. . ., . ., . . // : . : . . . - , 1999. . 3. C. 72 – 74. 217. . ., . ., . . // : . . . . . : , 1999. . 24–25. 218. . ., . ., . . // IV

:

219.

. .,

. .,

. . .

.

:

-

.

.

.

- , 1999. C. 15.

// . 220. 221. . 222. . 223.



.

:

, 1999. . 4.

. 2. . 237 – 238. -

: . .,

. .,

.

.

:

-

.

.

.

// , 2000. C. 75 – 78.

-

- , 2000. . 58 – 59.

:

.

.

. . . 05.02.13. . .

. ., .c . .

.

224. .c . 225.

.

: . .

. .,

-

.

:

-

.

.

.

.

- , 2000.

.

:

"

227.

. .,

. .

,

.

,

. .,

// . 13. . 50 – 53 // :

- , 2003.

-

. .

// ", 2004. . 159 – 162. . ., . .

. .,

.

. 2003. . 9. № 3. . 430 – 433. -2004:

.

.X

.

. -

// 228.

.

. 6. . 147 – 150.

// . .,

.-

, 2001. 16 . .

. .,

226.

. :

. :

.

. . .,

. ., // V . .,

-

.

, 2000. . 4.

. .

. 2000. № 8. . 15 –

// 16. 229. : 230.

. ., . . .,

. . : . .,

. //

:

. 231.

. 10:

232.

.

. . ., .c . . .,

// VI -

. . .

.

.

,

,

. . .

-

.

:

-

.

.

.

:

. .,

-

.

.

.

- , 2001.

" 233.

.. . ", 2002. . 216 – 218. . ., . .,

. . .

. 8. . 64 – 67.

. . //

.

- , 2001. . 106–107. //

. . .,

- , 2001. . 240 – 241.

:

.

-

-2002: -

8-

//

2002. № 12. . 3–4. 234. . .,

. .,

. .,

.

. . //

:

V . ., . ., , 1972. . 272. . .,

235. 236.

.

. . . . .,

// :

"

. .,

,

" 239.

240. : 241. // .

: 242.

( 2003611833 243.

:

-

. . . -2004". . II: V .

"

161 – 166. 237. // " 238.

.

.

.

.

- , 2004. . 2. . 282 – 284. .

.

.

:

. . , , : . . " , 2005. . 64 – 66. . ., . ., . . . : , , : . . . , 2006. . 48 – 51. . ., . ., . . . . , , : . XII . ." ", 2006. . 148 – 151. . ., . ., . . . // . .. . : , 2006. . 2. . 196 – 200. . ., . ., . . . : . . 2006. . 253 – 255. . ., . ., . ., . .

.

.

.

.

.

.

.: //

.

.

.:

"

-

-

.№ //

. .,

. .,

. .

// "

-

"

248.

. .,

. ., //

.

:

"

. .,

//

. 2006. № 3(5). . 86 – 92 . .

. 2006.

. . , ", 2005. . 131 – 134.

. .

-

,

// 246.

.:

// .-

04.08.2003. . .

245.

.

.-

):

244.

.-

.

. .,

:

. 2006. № 8. . 3 – 4. . ., . . . . . . . ., . ., . .,

. .: 247.

.

-

. - , 2004. .

. .-

.:

,

:

. XI

.

// . 2006. . 12. № 4 . . 979 – 986. . . "Progressive technologies of Development": 3", 2006. . 146 – 147.

.-

. .

. .

-

хi (i = 1, 2, 3)

: dP, d, ϕ0, H0, D0, W0, L0, ϕ*, H*, D*, W*, L*, ϕ*, H*, D*, W*, L*, e0, E, dx, µ, n, RK, K1, K2, K1K,

1. 2. K2K. 3.

HH = 2π/MMM; RH = 0,5; MMM = 36. 4. 5. 6. 7. 8. 9. 10. 11. 12 13. 14 15. 16 17. 18. 19. 20.

.

. . . . . . . . N1 N2 N3

N. N. N.. .

.

. .

-

. .

.

1

(

)

1. 2.

,

D d1

, 3. , 4.

L Fg

α

5.



6.

Fp

.

Tz

.

T0

, 7.

,

8. i

9. x

10.

R(i) Nx

c

11.

Nc

ic

12.

,

Nic P1

13. ,

Q

3

/

14.

-

W1 , 15.

FI

, 16.

-

H , 17. ,

P

18. , / 3 19.

DP

RO

1 20. 2

S1 S2

21. FF 1

NFF1

. .

(

)

22. NF1

1 23.

K1K

1K 24.

K2K

2K 25. 26.

JB -

RRX

RX 27.

-

RRY

RY 28.

HH

H 29.

RH

30.

AA

A 31.

RRX

RX

1 (LINYUR) ,

SCREEN 11 LINE (40, 100)-(40, 300) LINE (40, 300)-(400, 300) FOR XXX = 40 TO 400 STEP 6 LINE (XXX, 298)-(XXX, 302), 6 NEXT XXX FOR XXX1 = 40 TO 400 STEP 60 LINE (XXX1, 296)-(XXX1, 304), 6 NEXT XXX1 FOR YYY1 = 300 TO 100 STEP -4 LINE (38, YYY1)-(42, YYY1), 7 NEXT YYY1 FOR YYY2 = 300 TO 100 STEP -20 LINE (36, YYY2)-(44, YYY2), 7 NEXT YYY2 LOCATE 20, 4: PRINT "0": LOCATE 20, 29: PRINT "15" LOCATE 20, 50: PRINT "30 ": LOCATE 20, 53: PRINT "FI,grad" LOCATE 13, 2: PRINT "10": LOCATE 7, 2: PRINT "20" LOCATE 6, 2: PRINT "h*10^3,m" KH = 1 DIM NF(KH), X#(7) FOR I = 1 TO KH READ NF(I) 'PRINT NF(I) NEXT I DATA 4000 DATA 4500

,

DATA 5000 DATA 6000 DATA 6500 DATA 7000 DATA 7500 DATA 8000 DATA 8500 20 RK = 15: MMM = 36: RH = .5: EEE = .01 30 K1 = 15: K2 = .015 K1K = 5: K2K = .0035 'PRINT K1 'GOSUB 190 60 NF1 = R14 'NF1 = Q# LOCATE 2, 1: PRINT "NF1="; NF1 70 HH = 6.28 / MMM 90 z1 = K1: z2 = K2 * 10000: PSET (40 + z1 * 12, 300 - z2), 7 FOR I = 1 TO KH NF1 = NF(I) YY1 = K1: YY2 = K2 * 10000 91 FOR AA = 3.14 TO 6.28 STEP HH FOR RRX = 0 TO RK STEP RH RRY = RRX * .0015 RHY = RH * .0015 SS1 = K1 + RRX * COS(AA): SS2 = K2 + RRY * SIN(AA) LOCATE 1, 1: PRINT SS1, SS2 LOCATE 2, 1: PRINT "AA="; AA * 180 / 3.14 LOCATE 3, 1: PRINT "NF="; NF1; "Q="; Q# IF SS1 = 0# THEN GOTO 111 SEQL# = SEQL# + R#(J) * R#(J) 111 NEXT J 444 IF NC = 0 THEN GOTO 313 CALL PROB(1) FOR J = 1 TO NC SEQL# = SEQL# + R#(J) * R#(J) NEXT J 313 SUM#(IN) = SEQL# END SUB SUB WRIT CALL PROB(3) 'PRINT " = "; R#(K9) 'PRINT #1, " = "; R#(K9) FOR J = 1 TO NX 'PRINT " BEKTOP: X("; J; ") = "; X#(J) 'PRINT #1, " BEKTOP: X("; J; ") = "; X#(J) NEXT J IF NC = 0 THEN GOTO 6 CALL PROB(1) FOR J = 1 TO NC 'PRINT " H("; J; "): "; R#(J) 'PRINT #1, " H("; J; "): "; R#(J) NEXT J 6 IF NIC = 0 THEN GOTO 503 CALL PROB(2) FOR J = K7 TO K6 'PRINT " G("; J; "): "; R#(J) 'PRINT #1, " G("; J; "): "; R#(J) NEXT J 503 END SUB 3 > ------------------------------------------------------O EE C O EPEMEHH X: 5 O EE C O O PAH EH B B E: 1).PABEHCTB : 3 2).HEPABEHCTB: 13 BE .O PE .PA MEP E OPM.MHO O PAHH KA: .003 C O O PE .OKOH AH E O CKA: .01 HA A O K ECK X B C EH X( 1 ) = 17 X( 2 ) = 3.000000026077032D-03 X( 3 ) = 3.200000151991844D-02 X( 4 ) = .6000000238418579 X( 5 ) = .3199999928474426 ! Q= 8.91047626339514 / GAM= 5048.469 Q#= 2.062610246156282D-06 ^3/c N= 1452.327011108398 dT= 62.16527083518412 JB= 1.167453E-02 FI= 17 H= .003 D= .032 W= .6 / L= .32 SIGekv= 2.290001E+07 Fprog= 7.374678E-07 FDIFER = .024 SR(N1) = .7174034955390454 ******************************************************* HOMEP C ETA: 2 FDIFER = 8.381973946497475D-04 ! Q= 9.820940261988653 / GAM= 3418.813 Q#= 2.273365801386262D-06 ^3/c N= 1121.288036346436 dT= 41.70574269086681 JB= 8.140317E-03 FI= 16.63561 H= 4.370651E-03 D= 2.948779E-02 W= .5827073 / L= .2904083 SIGekv= 2.280219E+07 Fprog= 5.891075E-07 .

1. 2.

: σ, ρ, dP, D, d0, d0*, e0, h0, h*, e0, e0*, h*, d0*, e0*, E, µ, n.

.

3. 4.

. Q

,

. 5. 6.

σ

Q.

-

W. 7. 8.

. , .

9. 10.

. : e, h, d0, M(e, h, d0). 11.

.

-

. .

-

8

σ ( x ) ≤ [σ]

W ( x ) ≤ [W]

a i ≤ x i ≤ bi

9

10

M( x )

: maxσ, maxW, M( x ) x 11

. .

.

4

(

)

1.

, 1

2.

,

d1 0

3. , 4.

L

x

5.

Nx

c

6.

Nc

ic

7.

,

8.

-

W1

9.

FI

, 10.

Nic P1

,

-

H

, 11. , 12.

R1

P -

PP TAU

,

(x) 13.

1

-

, 14.

-

, 15.

σ]

SIGD

,

WDOP

W] 16. , ⋅

/

RO

3

17.

,

18.

,

iz



R

19. ,

-

20.

,

SIGEKV W

–1

21. ,

Wmax max

22.

( -

NNN

) 23.

,

L0 0

24. '

NK k

4

'*** MINMSCRE *********** ' * '* * '************************************************************* DECLARE SUB FEAS () DECLARE SUB STAR () DECLARE SUB WRIT () DECLARE SUB SUMR () DECLARE SUB PROB (INQ!) DIM SHARED X#(50), X1#(50, 50), X2#(50, 50), R#(100), R1#(100), R2#(100), R3#(100), SUM#(50), F#(50), SR#(50), ROLD#(100), H#(50), FLG#(10), A#(50, 50) COMMON SHARED KIK, NX, NC, NIC, STEP0#, ALFA#, BETA#, GAMA#, IN, INF, FDIFER#, SEQL#, K1, K2, K3, K4, K5, K6, K7, K8, K9, FOLD#, L5, L6, L7, L8, L9, R1A#, R2A#, R3A# OPEN "MINMSCRM.RES" FOR OUTPUT AS #1 PRINT #1, " " PRINT " " PRINT "-----------------------------------------------------------" PRINT #1, " ------------------------------------------------------------" FDIFER# = 1# NX = 3 ' NC = 0 ' NIC = 8 ' SIZE# = .5# ' . . CONVER# = .01# ' ALFA# = 3# BETA# = .5# GAMA# = 3# 10 STEP0# = SIZE# X#(1) = .0025# ' X#(2) = .0031# ' X#(3) = .0069# ' ' CALL PROB(3)

'PRINT " F2IF FDIFER# < CONVER# THEN GOTO 9999 PRINT " >" PRINT #1, " >" PRINT "-----------------------------------------------------------" PRINT #1, " ------------------------------------------------------------" PRINT " O EE C O EPEMEHH X: "; NX PRINT #1, " O EE C O EPEMEHH X: "; NX PRINT " O EE C O O PAH EH B B E: 1).PABEHCTB : "; NC PRINT #1, " O EE C O O PAH EH B B E: 1).PABEHCTB : "; NC PRINT " 2).HEPABEHCTB: "; NIC PRINT #1, " 2).HEPABEHCTB: "; NIC PRINT " BE .O PE .PA MEP E OPM.MHO O PAHH KA: "; SIZE# PRINT #1, " BE .O PE .PA MEP E OPM.MHO O PAHH KA: "; SIZE# PRINT " C O O PE .OKOH AH E O CKA: "; CONVER# PRINT #1, " C O O PE .OKOH AH E O CKA: "; CONVER# K1 = NX + 1 K2 = NX + 2 K3 = NX + 3 K4 = NX + 4 K5 = NX + 5 K6 = NC + NIC K7 = NC + 1 K8 = NC + NIC K9 = K8 + 1 N = NX - NC N1 = N + 1 IF N1 >= 3 THEN GOTO 50 N1 = 3 N=2 50 N2 = N + 2 N3 = N + 3 N4 = N + 4 N5 = N + 5 N6 = N + 6 N7 = N + 7 N8 = N + 8 XN = N XNX = NX XN1 = N1 R1A# = .5# * (SQR(5#) - 1#) R2A# = R1A# * R1A# R3A# = R2A# * R1A# L5 = NX + 5 L6 = NX + 6 L7 = NX + 7 L8 = NX + 8 L9 = NX + 9 ICONT = 1 NCONT = 1 PRINT " HA A O K ECK X B C EH " PRINT #1, " HA A O K ECK X B C EH " FOR J = 1 TO NX PRINT " X("; J; ") = "; X#(J) PRINT #1, " X("; J; ") = "; X#(J) NEXT J FDIFER# = 2# * (NC + 1) * STEP0# FOLD# = FDIFER# IN = N1 CALL SUMR SR#(N1) = SQR(SEQL#) PRINT " FDIFER ="; FDIFER#, " SR(N1) ="; SR#(N1) PRINT #1, " FDIFER ="; FDIFER#, " SR(N1) ="; SR#(N1) IF SR#(N1) < FDIFER# THEN GOTO 341 CALL WRIT INF = N1 STEP0# = .05# * FDIFER# CALL FEAS PRINT " SR(INF) ="; SR#(INF) PRINT #1, " SR(INF) ="; SR#(INF)

PROB"

IF FOLD# < 1E-09 THEN GOTO 80 341 PRINT "************************************************" PRINT #1, " ****************************************" PRINT " HOMEP C ETA:"; ICONT, " FDIFER ="; FDIFER# PRINT #1, " HOMEP C ETA:"; ICONT, "FDIFER ="; FDIFER# CALL WRIT FTER# = R#(K9) STEP1# = STEP0# * (SQR(XNX + 1#) + XNX - 1#) / (XNX * SQR(2#)) STEP2# = STEP0# * (SQR(XNX + 1#) - 1#) / (XNX * SQR(2#)) ETA# = (STEP1# + (XNX - 1#) * STEP2#) / (XNX + 1#) FOR J = 1 TO NX X#(J) = X#(J) - ETA# NEXT J CALL STAR FOR I = 1 TO N1 FOR J = 1 TO NX X2#(I, J) = X1#(I, J) NEXT J NEXT I FOR I = 1 TO N1 IN = I FOR J = 1 TO NX X#(J) = X2#(I, J) NEXT J CALL SUMR SR#(I) = SQR(SEQL#) IF SR#(I) < FDIFER# THEN GOTO 8 CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 8 CALL PROB(3) F#(I) = R#(K9) NEXT I 1000 STEP0# = .05# * FDIFER# ICONT = ICONT + 1 FH# = F#(1) LHIGH = 1 FOR I = 2 TO N1 IF F#(I) < FH# THEN GOTO 166 FH# = F#(I) LHIGH = I 166 NEXT I 41 FL# = F#(1) LOW = 1 FOR I = 2 TO N1 IF FL# < F#(I) THEN GOTO 177 FL# = F#(I) LOW = I 177 NEXT I FOR J = 1 TO NX X#(J) = X2#(LOW, J) NEXT J IN = LOW CALL SUMR SR#(LOW) = SQR(SEQL#) IF SR#(LOW) < FDIFER# THEN GOTO 87 INF = LOW CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 CALL PROB(3) F#(LOW) = R#(K9) GOTO 41 87 FOR J = 1 TO NX SUM2# = 0# FOR I = 1 TO N1 SUM2# = SUM2# + X2#(I, J) NEXT I X2#(N2, J) = 1# / XN * (SUM2# - X2#(LHIGH, J)) NEXT J SUM2# = 0#

FOR I = 1 TO N1 FOR J = 1 TO NX SUM2# = SUM2# + (X2#(I, J) - X2#(N2, J)) ^ 2 NEXT J NEXT I FDIFER# = (NC + 1) / XN1 * SQR(SUM2#) IF FDIFER# < FOLD# THEN GOTO 98 FDIFER# = FOLD# GOTO 198 98 FOLD# = FDIFER# 198 FTER# = F#(LOW) PRINT "------------", FDIFER# NCONT = NCONT + 1 IF NCONT < 4 * N1 THEN GOTO 37 IF ICONT < 1500 THEN GOTO 337 FOLD# = .5# * FOLD# 337 NCONT = 0 PRINT "**************************************************" PRINT #1, " *****************************************" PRINT " HOMEP C ETA:"; ICONT, " FDIFER ="; FDIFER# PRINT #1, " HOMEP C ETA:"; ICONT, "FDIFER ="; FDIFER# CALL WRIT 37 IF FDIFER# < CONVER# THEN GOTO 81 IF LHIGH = 1 THEN GOTO 43 FS# = F#(1) LSEC = 1 GOTO 44 43 FS# = F#(2) LSEC = 2 44 FOR I = 1 TO N1 IF LHIGH = I THEN GOTO 18 IF F#(I) < FS# THEN GOTO 18 FS# = F#(I) LSEC = I 18 NEXT I FOR J = 1 TO NX X2#(N3, J) = X2#(N2, J) + ALFA# * (X2#(N2, J) - X2#(LHIGH, J)) X#(J) = X2#(N3, J) NEXT J IN = N3 CALL SUMR SR#(N3) = SQR(SEQL#) IF SR#(N3) < FDIFER# THEN GOTO 82 INF = N3 CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 82 CALL PROB(3) F#(N3) = R#(K9) IF F#(N3) < F#(LOW) THEN GOTO 84 IF F#(N3) < F#(LSEC) THEN GOTO 92 GOTO 60 92 FOR J = 1 TO NX X2#(LHIGH, J) = X2#(N3, J) NEXT J SR#(LHIGH) = SR#(N3) F#(LHIGH) = F#(N3) GOTO 1000 84 FOR J = 1 TO NX X2#(N4, J) = X2#(N2, J) + GAMA# * (X2#(N3, J) - X2#(N2, J)) X#(J) = X2#(N4, J) NEXT J IN = N4 CALL SUMR SR#(N4) = SQR(SEQL#) IF SR#(N4) < FDIFER# THEN GOTO 25 INF = N4 CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 25 CALL PROB(3) F#(N4) = R#(K9)

60

64

67

72

68

81

80

IF F#(LOW) < F#(N4) THEN GOTO 92 FOR J = 1 TO NX X2#(LHIGH, J) = X2#(N4, J) NEXT J F#(LHIGH) = F#(N4) SR#(LHIGH) = SR#(N4) GOTO 1000 IF F#(N3) > F#(LHIGH) THEN GOTO 64 FOR J = 1 TO NX X2#(LHIGH, J) = X2#(N3, J) NEXT J FOR J = 1 TO NX X2#(N4, J) = BETA# * X2#(LHIGH, J) + (1# - BETA#) * X2#(N2, J) X#(J) = X2#(N4, J) NEXT J IN = N4 CALL SUMR SR#(N4) = SQR(SEQL#) IF SR#(N4) < FDIFER# THEN GOTO 67 INF = N4 CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 CALL PROB(3) F#(N4) = R#(K9) IF F#(LHIGH) > F#(N4) THEN GOTO 68 FOR J = 1 TO NX FOR I = 1 TO N1 X2#(I, J) = .5# * (X2#(I, J) + X2#(LOW, J)) NEXT I NEXT J FOR I = 1 TO N1 FOR J = 1 TO NX X#(J) = X2#(I, J) NEXT J IN = I CALL SUMR SR#(I) = SQR(SEQL#) IF SR#(I) < FDIFER# THEN GOTO 72 INF = I CALL FEAS IF FOLD# < 1E-09 THEN GOTO 80 CALL PROB(3) F#(I) = R#(K9) NEXT I GOTO 1000 FOR J = 1 TO NX X2#(LHIGH, J) = X2#(N4, J) NEXT J SR#(LHIGH) = SR#(N4) F#(LHIGH) = F#(N4) GOTO 1000 CLS PRINT "**************************************************" PRINT #1, " *****************************************" PRINT " HOMEP C ETA:"; ICONT, " FDIFER ="; FDIFER# PRINT #1, " HOMEP C ETA:"; ICONT, "FDIFER ="; FDIFER# CALL WRIT PRINT " HA " PRINT #1, " HA " GOTO 10 CLS PRINT "*************************************************" PRINT #1, " *****************************************" PRINT " HOMEP C ETA:"; ICONT, " FDIFER ="; FDIFER# PRINT #1, " HOMEP C ETA:"; ICONT, "FDIFER ="; FDIFER# CALL WRIT PRINT " HET HA A" PRINT #1, " HET HA A" 'SOUND 440, 10 SLEEP 30

GOTO 10 9999 PRINT "---------------------------STOP----------------------------" PRINT #1, " ----------------------------STOP----------------------------" 'SOUND 210, 20 CLOSE END SUB FEAS ALFA# = 1#: BETA# = .5#: GAMA# = 2# XNX = NX ICONT = 0 LCHEK = 0 ICHEK = 0 250 CALL STAR FOR I = 1 TO K1 FOR J = 1 TO NX X#(J) = X1#(I, J) NEXT J IN = I CALL SUMR NEXT I 28 SUMH# = SUM#(1) INDEX = 1 FOR I = 2 TO K1 IF SUM#(I) SUM#(K4) THEN GOTO 601 FOR J = 1 TO NX FOR I = 1 TO K1 X1#(I, J) = .5# * (X1#(I, J) + X1#(KOUNT, J)) NEXT I NEXT J FOR I = 1 TO K1 FOR J = 1 TO NX X#(J) = X1#(I, J) NEXT J IN = I CALL SUMR NEXT I 555 SUML# = SUM#(1) KOUNT = 1 FOR I = 2 TO K1 IF SUML# < SUM#(I) THEN GOTO 233 SUML# = SUM#(I) KOUNT = I 233 NEXT I SR#(INF) = SQR(SUM#(KOUNT)) FOR J = 1 TO NX X#(J) = X1#(KOUNT, J) NEXT J GOTO 26 601 FOR J = 1 TO NX X1#(INDEX, J) = X1#(K4, J) NEXT J SUM#(INDEX) = SUM#(K4) GOTO 555 16 FOR J = 1 TO NX X1#(INDEX, J) = X1#(K4, J) X#(J) = X1#(INDEX, J) NEXT J SUM#(INDEX) = SUM#(K4) SR#(INF) = SQR(SUM#(K4)) GOTO 26 14 FOR J = 1 TO NX X1#(INDEX, J) = X1#(K3, J) X#(J) = X1#(INDEX, J) NEXT J SUM#(INDEX) = SUM#(K3) SR#(INF) = SQR(SUM#(K3)) 26 ICONT = ICONT + 1 FOR J = 1 TO NX X2#(INF, J) = X#(J) NEXT J IF ICONT < (2 * K1) THEN GOTO 500 ICONT = 0 FOR J = 1 TO NX X#(J) = X1#(K2, J) NEXT J IN = K2 CALL SUMR DIFER# = 0# FOR I = 1 TO K1 DIFER# = DIFER# + (SUM#(I) - SUM#(K2)) ^ 2 NEXT I DIFER# = 1# / (K7 * XNX) * SQR(DIFER#) IF DIFER# > 1E-14 THEN GOTO 500 IN = K1 STEP0# = 20# * FDIFER# CALL SUMR SR#(INF) = SQR(SEQL#)

FOR J = 1 TO NX X1#(K1, J) = X#(J) NEXT J FOR J = 1 TO NX FACTOR# = 1# X#(J) = X1#(K1, J) + FACTOR# * STEP0# X1#(L9, J) = X#(J) IN = L9 CALL SUMR X#(J) = X1#(K1, J) - FACTOR# * STEP0# X1#(L5, J) = X#(J) IN = L5 CALL SUMR 56 IF SUM#(L9) < SUM#(K1) THEN GOTO 54 IF SUM#(L5) < SUM#(K1) THEN GOTO 55 GOTO 97 54 X1#(L5, J) = X1#(K1, J) SUM#(L5) = SUM#(K1) X1#(K1, J) = X1#(L9, J) SUM#(K1) = SUM#(L9) FACTOR# = FACTOR# + 1# X#(J) = X1#(K1, J) + FACTOR# * STEP0# IN = L9 CALL SUMR GOTO 56 55 X1#(L9, J) = X1#(K1, J) SUM#(L9) = SUM#(K1) X1#(K1, J) = X1#(L5, J) SUM#(K1) = SUM#(L5) FACTOR# = FACTOR# + 1# X#(J) = X1#(K1, J) - FACTOR# * STEP0# IN = L5 CALL SUMR GOTO 56 97 H#(J) = X1#(L9, J) - X1#(L5, J) X1#(L6, J) = X1#(L5, J) + H#(J) * R1A# X#(J) = X1#(L6, J) IN = L6 CALL SUMR X1#(L7, J) = X1#(L5, J) + H#(J) * R2A# X#(J) = X1#(L7, J) IN = L7 CALL SUMR IF SUM#(L6) > SUM#(L7) THEN GOTO 688 X1#(L8, J) = X1#(L5, J) + (1# - R3A#) * H#(J) X1#(L5, J) = X1#(L7, J) X#(J) = X1#(L8, J) IN = L8 CALL SUMR IF SUM#(L8) > SUM#(L6) THEN GOTO 76 X1#(L5, J) = X1#(L6, J) SUM#(L5) = SUM#(L6) GOTO 75 76 X1#(L9, J) = X1#(L8, J) SUM#(L9) = SUM#(L8) GOTO 75 688 X1#(L9, J) = X1#(L6, J) X1#(L8, J) = X1#(L5, J) + R3A# * H#(J) X#(J) = X1#(L8, J) IN = L8 CALL SUMR STEP0# = SIZE# SUM#(L9) = SUM#(L6) IF SUM#(L7) > SUM#(L8) THEN GOTO 71 X1#(L5, J) = X1#(L8, J) SUM#(L5) = SUM#(L8) GOTO 75 71 X1#(L9, J) = X1#(L7, J) SUM#(L9) = SUM#(L7) 75 IF ABS(X1#(L9, J) - X1#(L5, J)) > .01# * FDIFER# THEN GOTO 97

X1#(K1, J) = X1#(L7, J) X#(J) = X1#(L7, J) SUM#(K1) = SUM#(L5) SR#(INF) = SQR(SUM#(K1)) IF SR#(INF) < FDIFER# THEN GOTO 760 NEXT J ICHEK = ICHEK + 1 STEP0# = FDIFER# IF ICHEK FDIFER# THEN GOTO 28 IF SR#(INF) > 0# THEN GOTO 35 CALL PROB(3) FINT# = R#(K9) FOR J = 1 TO NX X#(J) = X2#(INF, J) NEXT J CALL PROB(2) FOR J = K7 TO K8 R1#(J) = R#(J) NEXT J FOR J = 1 TO NX X#(J) = X1#(KOUNT, J) NEXT J CALL PROB(2) FOR J = K7 TO K8 R3#(J) = R#(J) NEXT J FOR J = 1 TO NX H#(J) = X1#(KOUNT, J) - X2#(INF, J) X#(J) = X2#(INF, J) + .5# * H#(J) NEXT J CALL PROB(2) FLG#(1) = 0# FLG#(2) = 0# FLG#(3) = 0# FOR J = K7 TO K8 IF R3#(J) >= 0 THEN GOTO 404 FLG#(1) = FLG#(1) + R1#(J) * R1#(J) FLG#(2) = FLG#(2) + R#(J) * R#(J) FLG#(3) = FLG#(3) + R3#(J) * R3#(J) 404 NEXT J SR#(INF) = SQR(FLG#(1)) IF SR#(INF) < FDIFER# THEN GOTO 35 ALFA1# = FLG#(1) - 2# * FLG#(2) + FLG#(3) BETA1# = 3# * FLG#(1) - 4# * FLG#(2) + FLG#(3) RATIO# = BETA1# / (4# * ALFA1#) FOR J = 1 TO NX X#(J) = X2#(INF, J) + H#(J) * RATIO# NEXT J IN = INF CALL SUMR SR#(INF) = SQR(SEQL#) IF SR#(INF) < FDIFER# THEN GOTO 465 FOR I = 1 TO 20 FOR J = 1 TO NX X#(J) = X#(J) - .05# * H#(J)

NEXT J CALL SUMR SR#(INF) = SQR(SEQL#) IF SR#(INF) < FDIFER# THEN GOTO 465 NEXT I 465 CALL PROB(3) IF FINT# > R#(K9) THEN GOTO 46 SR#(INF) = 0# GOTO 35 46 FOR J = 1 TO NX X2#(INF, J) = X#(J) NEXT J 35 FOR J = 1 TO NX X#(J) = X2#(INF, J) NEXT J END SUB SUB PROB (INQ) '" ,[ ]" NNN = 10' ( ) NK = 10 ' ( ) PP = 50000000: DP = PP / NK '" [ ]" LL0 = .016: R1 = .016: TT = .032 LL = TT * NK: BE = (17 * 3.14 / 180) '" [ ] . " SIGD = 325000000: FF = .2 '" [ ]" WD = .01 * 2 * R1 '" [ / ^3], [ ] . .[ / ^2]" RO = 7850: EE = 2E+11: GG = 9.81 '" , , " Q = RO * GG * 3.14 / LL * ((R1 - X#(1)) ^ 2 * LL + 2 * (R1 - X#(1) / 2) / COS(BE) * X#(1) * X#(2) * NK - X#(3) ^ 2 * LL) FFP = 3.14 * ((R1 - X#(1)) ^ 2 - (X#(3)) ^ 2) J2 = 3.14 * (R1 - X#(1)) ^ 4 / 4 * (1 - (X#(3) / (R1 - X#(1))) ^ 4) WW0 = 3.14 * (R1 - X#(1)) ^ 3 / 2 * (1 - (X#(3) / (R1 - X#(1))) ^ 4) 'LL1 = (2 * 3.14 * (R1 - X#(1)) ^ 4 * WD * EE / Q) ^ .25 PRINT "Q="; Q; "LL="; LL; "WD="; WD PRINT "X#(1)="; X#(1); "X#(2)="; X#(2); "X#(3)="; X#(3) PRINT #1, "Q="; Q; "LL="; LL; "WD="; WD PRINT #1, "X#(1)="; X#(1); "X#(2)="; X#(2); "X#(3)="; X#(3) '" F5" MYS0 = 0: MYS1 = 0: MYS2 = 0: QYS1 = 0: QYS2 = 0: QYS3 = 0 FOR I = 1 TO NK - 1 XI = (2 * I - 1) * TT / 2 IF I