Надежность технических систем 5-230-22198-4

Изложены основные понятия, определения и критерии, используемые в теории надежности. Рассмотрены общие методы расчета на

187 105 1005KB

Russian Pages 113 Year 2002

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Надежность технических систем
 5-230-22198-4

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

(

)

. .

2002

-2681.51 – 192 (075.8) 32.965 – 6 6.5

:

. .

. .

– ., 2002 . –

113 .

ISBN 5–230–22198–4 ,

,

. , . IV

,

2101 –

«

». , .

ISBN 5–230–22198–4 681.51 – 192 (075.8) 32.965 – 6 6.5 ©

. ., 2002.

-3-

, , ,

,

. .

,

,

,

,

,

. . (

(

).

, .

)

,

,

,

, ,

, ,

.

,

.

.

,

:

,

,

. .

, .

,

,

.

, .

,

.

-4-

I. 1.1. , ,

, (

). , ,

,

. , . –

, . (

,

)

. , ,

(

,

),

, ,

. . –

.

,

,

,

.

Э



,

, . –

(



) :

,

-

; , . .

,

,

. . (

),

, . ( ,

) (

,

, . 1.1). . ,

. , ,

-5,

,

. : ,

,

. – .

.

1.1.

. – .

. , . , , .

, . . , , . .

-6-

, ,

. (

)

,

, -

(

).

,

. ,

,

, -

(

),

. , , ,

, . . –

, .

,

,

, ,

, ,

,

.

.

1.2.

.

, -

, , , .

-7,

(

.

1.2.). , , , . , .

,

( ). (

,

,

,

. .).

, ,

– ,

.

,

,

; –

;

,

. . –

, .

,

, ,

,

, ,

, . . , .

1.2.

.

. , ,

,

.



, . ,

. ,

,

,

. –

.

-8К . . , ,

,

,

,

. (

)

,

, . , . , . (

. 1.3.).

1.3.

1

.

2

3

, . (

, –

(

(

)

(

)

(

) (

, )

)

(

). ,

,

-

) ,

,

-

-91.3. (

)

1

.

2

3 , -

(

,

), . (

, ) ,

(

)

, . (

,

-

) Э , , -

( (

) ) , , ,

,

. –

.

-10Э

– . , ,

,

. . , ,

,

,

,

, ,

. . , ,

– . .

,

, .

1.3. . .Э .



(

), , .

, (

)

, . , , ,

.

(

)

. . , ,

. .

Э (

).

,

,

. , . (

)

-11( (

), ). ,

(

). (

).

– .

К



, .

.

, , ,

,

, . , ,

, .

1.4. 1.4.1.

, ,

(

)

,

. ,

, .

(

).

,

,

, , .

, ,

. . . : ,

,

,

( ( .

1.

). –

) –

,

-12-

, . . t.

, , ,

t

. , :

p(t ) = P { > t }, t ≥ 0. , p(t) , p(∞)=0, . .

(1.1) , . . p(0)=1, 1

0 ( t→+∞

. 1.1.). .

. 1.1.

. p(t)

t 2.

(

)–

,

. q(t) , –

,

q(t ) = P { ≤ t } = 1 − p(t ), 3.

, t ( ≤t). >t,

:

t ≥ 0.

(1.2)

. q(t) ω( t ) =

dq(t ) dp(t ) =− dt dt

, : (1.3)

-13-

. 1.2.

.

(1.3)

,

p(t ) = ∫ ω(t )dt ∞

(0,t) t ∞(

):

t

(1.2)

(1.3):

p(t ) = 1 − ∫ ω(t )dt . t

(1.4) t0

t0

,

=0 → (0)=ω(0), . .

-16→∞

,

( )≈−

( )=−

,

(1.17)

ω ′( ) d = − ln ω( ). ω( ) d

:

.

d ln p( ). d

(1.19) (1.19)



(1.18) p(t) :

(1.16)

p(0)=1, t

, ,

0

t,

,

:

( )d = − ln p(t ).

(1.20)

0

:

⎧⎪ t p(t ) = exp⎨− ∫ ( )d ( ⎪⎩ 0 ,

⎫⎪ )⎬. ⎪⎭

(1.21) ,

,

, . ()

∫ t

.

,

( )d =0.

, . .:

0

1.4.

.

ω(t ) dq(t ) dt

q(t ) q(t )

∫ ω(t )dt t

ω(t )

(t )

1 − ∫ ω(t )dt 0

1 − p(t )

⎞ ⎛ t 1 − exp⎜ − ∫ (t )dt ⎟ ⎟ ⎜ ⎠ ⎝ 0 =const,

1 − q (t ) t

0

p(t )

p(t )

. . :



dp(t ) dt

⎞ ⎛ t (t ) ⋅ exp⎜ − ∫ (t )dt ⎟ ⎟ ⎜ ⎠ ⎝ 0

⎞ ⎛ t exp⎜ − ∫ (t )dt ⎟ ⎟ ⎜ ⎠ ⎝ 0

(t ) 1 dq(t ) ⋅ 1 − q(t ) dt ω(t ) 1 − ∫ ω(t )dt t



0

1 dp(t ) ⋅ p(t ) dt

-17= ∫ p(t )dt = ∫ e − t dt = − t

T

t

0

1

e−

t

∞ 0

0

=

1

.

(1.22)

1.4

, .

. p(t), , ω( t ) = 2 e

− t

(t)

T ,

:

(1 − e − t ).

. 1.

(1.4).

⎡t

⎤ p(t ) = 1 − ∫ ω(t )dt = 1 − 2 ⋅ ⎢ ∫ e − t dt − ∫ e −2 t dt ⎥ = 2e − t − e −2 t . ⎥⎦ 0 0 ⎣⎢ 0 2. (1.17): t

ω(t ) ⋅ (1 − e − t ) (t ) = = . p(t ) (1 − 0,5e − t ) 3. : T

[

]

= ∫ p(t )dt = ∫ 2e − t − e −2 t dt = ∞



0

0

1.4.2.

:

t

.

(1.8)

3 . 2

,

,

. . η( ( )

. 1. , ( . 1.4). p (t ) = P {η ≤ t }, t ≥ 0

). , t.

(1.23)

-18-

. 1.4.

. p (t)

(

η. Э

0(

t→∞). 2. , . . , q (t ) = p{η > t } = 1 − p (t ).

( :

η>t,

t=0)

1

) (1.24)

3. ω (t ) =

: dp (t ) , dt

t ≥ 0.

(1.25) .

ω (t),

p (t) ,

.

4.

.

mk = ∫ t k ω (t )dt = k ∫ t k −1q (t )dt . ∞



0

0

(1.26)

(1.26) dp (t ) dq (t ) =− ω (t ) = dt dt :

. ∞

m = ∫ t ω (t )dt = − ∫ t dq (t ) = − t ⋅ q (t ) + ∫ q (t )dt = k ∫ t k −1q (t )dt , 123 ∞



k

0

k

k

→0

0

0





k

0

0

. (

) T

:

T = ∫ q (t )dt = ∫ [1 − p (t )]dt . ∞



0

0

(1.27)

,

-19-

,

T (

.1.4). :

= 2 ∫ t [1 − p (t )]dt − T 2 . ∞

(1.28)

0

5. , ,

p (t/ ), t,

. .

,

, : p (t / ) = [ p ( + t ) − p ( )] /[1 − p ( )].

(1.29)

t, q (t / ) = 1 − p (t / ) = q ( + t ) / q ( ).

: (1.30)

p (t/ )

′ p (t / ) p ( ) = t →0 t 1− p ( )

t→0, . . , . ( ),

,

:

( ) = lim

, ω ( ) , ( )=− 1− p ( )

dp (t ) ′ p (t ) = = ω (t ) dt

0

0

: (1.32)

(1.31)

,



t→0,

> 0.

d ( ) = − ln[1 − p ( )] d

t

(1.31)

: (1.33) (1.33)

p (0)=0.

t:

( )d = − ∫ d ln[1 − p ( )] =− ln[1 − p ( )] 0 = − ln[1 − p (t )]. t

t

0

,

⎫⎪ ⎬. ⎪⎭ : ⎫⎪ ( )d ⎬. ⎪⎭

⎧⎪ t 1 − p (t ) = exp⎨− ∫ ( )d ⎪⎩ 0 ⎧⎪ t p (t ) = 1 − exp⎨− ∫ ⎪⎩ 0 ,

:

(1.34)

(1.35) .

,

-20-

, . , , 1.5

. , .

1.5.

.

q (t )

ω (t )

1 − p (t )

dp (t ) dt

p (t ) p (t ) 1 − q (t )

q (t )

∫ ω (t )dt

1 − ∫ ω (t )dt

⎛ ⎞ 1 − exp⎜ − ∫ (t )dt ⎟ ⎜ ⎟ ⎠ ⎝ 0

⎞ ⎛ exp⎜ − ∫ (t )dt ⎟ ⎜ ⎟ ⎝ 0 ⎠

ω (t )



dq (t ) dt

t

1 dq (t ) ⋅ q (t ) dt

ω (t )

1 − ∫ ω (t )dt t

0

0

t

dp (t ) 1 ⋅ 1 − p (t ) dt

t

t

(t )



(t )

⎛ ⎞ (t ) ⋅ exp⎜ − ∫ (t )dt ⎟ ⎜ ⎟ ⎝ 0 ⎠

0

t

1.4.3.

(

) , ,

. . t=0

t. (0,t)

n Fn (t ) = P {Vt ≥ n}. P {Vt

(1.36)

= n} = P {Vt n

Vt . ,

Fn(t) – , . .:

≥ n} − P {Vt

, Vt –

.

(0,t) (1.36)

≥ n + 1} = Fn (t ) − Fn +1(t ). (0,t):

(1.37)

1. H (t ) = m1{Vt }.

(0,t). Э .

H(t). (1.38)

-21-

,

{

}

,

{ }

{ }

m1 Vt2 − Vt1 = m1 Vt2 − m1 Vt1 = H (t 2 ) − H (t1 ). (

H (t ) = ∑ nP {Vt = n}.

)



(t1,t2)

: (1.39)

:

n =0

(1.40)

H (t ) = ∑ nFn (t ) − ∑ nFn +1(t ). (1.37)



n =0

H(t)

(0,t).

(1.40)



,

:

n =0

(1.41) (1.41)

n=0

.

m=n+1.

H (t ) = ∑ nFn (t ) − ∑ (m − 1)Fm (t ). (1.41)

:





n =1

m =1

,

H (t ) = ∑ Fn (t ). :



n =1

(1.42)

2.

[H (t 2 ) − H (t1 )]. (t 2 − t1 ) ω ω

ω

(t1,t2), (1.39)

(t1–t2).

:

H (t + Δt ) − H (t ) dH (t ) = . Δt →0 Δt dt (1.43) (1.42) ,

(t ) = lim

(1.43)

(t ) = ∑

:



dFn (t ) . dt n =1

(1.44)

3. Fn(t),

. . , . .

. : 1. . 2.

. k

k-

.

:

-22ς=

k

ς[



k −1,

(1.45) ]–

,

ξk.

ηk

.1.5. 0

= η1 = 0; n-

1

= ∑ςk .

= ς1 = ,

1.

,

:

n

n

k =1

,

(1.46) (0,t) n-

,

n

, –

,

: Fn (t ) = P {Vt ≥ n} = P { n < t }

t.

⎧n ⎫ Fn (t ) = P ⎨∑ ς k < t ⎬ ⎩ k =1 ⎭

ς1 – ςn

(1.47) ,

Fn(t) . . ως k (t ) –

Θ ς k (iv )

ςk.

, . .:

Θ ς k ( −iv ) = ∫ ως k (t )e ivt dt . ∞

(1.48)

0

ω ς k (t ) =

1 2π

∫ Θς

:



−∞

k

(iv )e −ivt dt . (1.49)

(1.48)

, e ivς k .

ςk

∑n = ∑ ς k ,

:

n

k =1

{ }

⎧⎪ iv ∑n ς k ⎫⎪ n Θ ∑n (iv ) = m1 ⎨e k =1 ⎬ = ∏ m1 e ivς k , ⎪⎭ k =1 ⎪⎩

-23Θ ∑n (iv ) = ∏ Θ ς k (iv ), n

:

k =1

(1.50)

. . . W∑ n ( t ) =

1 2π

:

∫ ∏ Θς



n

−∞ k =1

k

( iv )e ivt dv

(1.51)

ςk = ηk+ξk Θ ς k (iv ) = Θ ηk (iv ) ⋅ Θ k (iv ), Θηk ( iv )

Θξ k ( iv )

,

: (1.52)



, . ωηk (t ) ω k (t ) :

Θ ηk (iv ) = ∫ ωηk (t )e ivt dt , ∞

(1.53)

Θ k (iv ) = ∫ ω k (t )e ivt dt . 0



(1.54)

0

(1.47), (1.49), (1.51)÷(1.54) Fn(t) :

Fn (t ) = ∫ W∑n (t )dt = t

=

1 2π

∞ ⎡∞ ⎤ ivx ( ) ⋅ ω x e d x ω k ( y )e ivy d y ⎥ ⋅ e −ivt dvdt . ⎢ ∫ ηk ∫∫∏ ∫ ⎥⎦ 0 −∞ k =1 ⎢ 0 ⎣0 0 t ∞

n

ω(t) (1.55) 1 Fn (t ) = 2π : 1 Fn (t ) = 2π 4.

ω (t)

. n-

,

, . .:

∞ ⎡∞ ⎤ ivx ivy −ivt ( ) ( ) ω x e d x ω y e d y ⋅ ⎢ ⎥ ⋅ e dvdt . ∫ ∫ ⎢∫ ∫ ⎥⎦ 0 −∞ ⎣ 0 0 , t ∞

n

⎡∞ ⎤ ivy −ivt ( ) ω y e d y ⎢ ⎥ ⋅ e dvdt . ∫ ∫ ⎢∫ 0 −∞ ⎣ 0 ⎦⎥ t ∞

(1.55)

(1.56) ω (t)= (x),

n

(1.57)

,

-24-

Ω(t)dt

,

.

(t,t+dt)

,

, . . .

, (t,t+dt) dt,

, ,

An

dt

. (t,t+dt)

,

n-

. ,

n-

dFn (t ) , dt

P {An } = dFn (t ). , Ω(t)dt, , n: ∞ ⎧ ⎫ Ω(t )dt = P ⎨U An ⎬. ⎩n =1 ⎭

An

: ,

(1.58) Ak

(1.58)

(t,t+dt) An

Ar

k≠r

,

∞ ⎫ ∞ ⎧∞ Ω(t )dt = P ⎨U An ⎬ = ∑ P {An } =∑ dFn (t ). n =1 ⎩n =1 ⎭ n =1 Ω(t)

,

Ω(t ) = ∑

:

(1.59) .

(1.59)



:

dFn (t ) . dt n =1

(1.60) ,

(1.42.),

: dH (t ) Ω(t ) = =ω dt . .

(t ). ω

(1.61) Ω(t) (t)

!

,

Ω(t)

, . (1.61)

H(0)=0,

t

0

tc

,

:

H (t ) = ∫ Ω(t )dt . t

(1.62) Ω(t)

0

, ω(t)

ω(t).

Ω(t) :

-25-

Ω(t ) = ω(t ) + ∫ Ω( )ω(t − )d , t

(1.63)

0

.

ω(t),

(1.63)

, . ,

(1.63) ,



, ,

. . .

Ω(t) (1.63)

. Ω( p ) = Ω( p ) ⋅ ω( p ) + ω( p ). (1.63) ω( p ) , Ω( p ) = 1 − ω( p )

ω( p ) =

Ω( p ) . 1 + Ω( p ) (1.64)

,

: : (1.64)

(1.65) (1.65)

, (1.64)

ω(p) (1.65).

:

lim Ω(t ) = lim pΩ( p ).

t →∞

Ω(p)

p →0

p ∫ ω(t )e − pt dt ∞

lim pΩ( p ) = lim

p →0

p →0

1 − ∫ ω(t )e − pt dt 0 ∞

.

0

∫ ω(t )dt

,



lim pΩ( p ) = lim

p →0

∫ tω(t )dt

0 p →0 ∞

=

:

1 . T

0

lim Ω(t ) =

t →∞

. .

: 1 , T , , Ω(t)

Ω(t) . :

t→∞,

-26-

1. ω(t)

2.

Ω(t)

1/T ;

t→∞ 3.

) Ω(t)>ω(t);

(

(t) – (t) –

,

4.

, (t)>Ω(t)>ω(t); Ω(t)> (t)>ω(t); , . .

(t)= =const,

(t ) ≠ ∑ Ω i (t ),

Ω

:

N

i =1

Ω(t) = (t) = . Ω(t),

. , :

ω(t ) =

2

te − t . .

ω( p ) = ∫ ω(t )e ∞

0

Ω( p ) =

Ω(p).

− pt

dt = ∫



5.

2

te −(

+ p )t

dt =

0

ω( p ) = . 1 − ω( p ) p(p + 2 ) Ω(t)

(

. 2 + p) (1.64), 2

:

2

:

p1 = 0; p2 = −2 .

Ω(t ) =

(1.64),

ω(t):

(

2⎡

)

1 e −2 t ⎤ −2 t . ⎢ − ⎥ = 1− e 2 2 2 ⎣ ⎦ G(t) (

)

. , g ( t ) = 1 − G( t )

t

,

(

): (1.66)

G(t) , . (0,t)

g(t) – N

Δ.

-27-

.1.6. ,

Bk –

,

Δ

(t – k – Δ k). Ω( k ) ⋅ Δ ⋅ p(t − k ) .

,

,

: (

.

),

G(t), . . t:

⎧N ⎫ G(t ) = p(t ) + lim P ⎨U Bk ⎬ max Δt k →0 ⎩k =1 ⎭ Bi Bj i≠j ⎧N ⎫ N P ⎨U Bk ⎬ = ∑ p(t − k ) ⋅ Ω( k ) ⋅ Δ k . ⎩k =1 ⎭ k =1

,

:

(1.67)

max Δ k→0,

:

G(t ) = p(t ) + ∫ p(t − ) ⋅ Ω( )d . t

(1.68)

0

, . :

g (t ) = 1 − G(t ) = 1 − p(t ) − ∫ p(t − ) ⋅ Ω( )d = t

= g (t ) − ∫ p(t − ) ⋅ Ω( )d .

0

t

(1.69)

0

,

,

.1.7.

(

.

. 1.7):

-28-

. . A1, A2, … An . PAi(B) –

(

)

B

,

B→P(B) Ai. : P (B ) = P ( A1 ) ⋅ PA1 (B ) + P ( A2 ) ⋅ PA2 (B ) + K + P ( Ai ) ⋅ PAi (B ) + K + P ( An ) ⋅ PAn (B ). 6. К

(К ) G(t)

(

t

. 1.7), . . K = lim G(t ). t →∞

K = 1−

(1.70) (1.68)

К t→∞:

T T = . T +T T +T

(1.71)



К

К .

К

.

t. KП = 1− KГ =

,

:

Tв T + Tв

(1.72)

К

К t→∞.

t, G( t ) − K

< ,

(1.73)



. , t , K

:

= K ⋅ p(t

). К

(1.74) ,

(t)

(t) .

const, ,

(p(0)=1)

p (t ) =

+

+

. .

t=0 +

e −(

+ )t

: ,

-29-

p (t ) = K + (1 − K )e

=

=

1 ; T



,

K =

1 ; T

. .

t K t

(1.75) T T

+T

. К

(1.75)

t. (1.75)

p (t)→К

,



t→∞, ,

. ,

. ,

= 0,02 1/ =const, t =10 . .

(1.22):

=

T

K =

1

= 50 .

T T

=

+T

(1.71)

50 = 0,83. 50 + 10

G(t ) = p (t ) = K + (1 − K )e



:

(1.75): t K t

= 0,83 + 0,17e −0,12t .

1.4.4.

1. , –

. T ),

(

( t

T ): = m1[T ]

(1.76) -

t,

:

P {T

>t }=

100.

(1.77) –

, t , (

).

. , .

-30-

, .

Э

-

. . .

2. , . , Э

. . . .

____________________________________________ : 1. . 2. « » . 3. . 4. 5. 6. , 7. ? 8. ?

,

.

Ω(t). .

-31-

II. 2.1.

,

, (

«

»

)

, (

. 2.1).

. 2.1.

.

I.

. Э

. , .

II.

.

. Э .

,

,

,

. III.

. Э

. ,

.

,

. ,

,

(

)

, , . , ,

, «

, »

( .

, ,

. 2.1), ,

.

. , ,

, . .,

-322.2.

, . ( (0,t) ( . 2.2): p(t ) = exp(− t ), t ≥ 0; > 0; > 0.

. 2.2.

(2.1)

p(t)

.

(2.1) ω(t ) = − p ′(t ) = = ∫ e − t dt = ∞

T

(1.3) . 2.3): t −1 exp( − t ). (

,

(



1

(1 +

1

)

),

(2.3)

0

( )–

-

.

. -

:

( ) = ∫ t x −1e −t dt . ∞ 0

: ( ) = ( x − 1) ( x − 1) = ( x − 1)( x − 2) ( x − 2) = ... : (4,7)=3,7·2,7·1,7· (1,7) (1,7)=0,9086 – 0;

2

)−

2

(1 +

(1.11): 1

)].

(2.4)

(1.17)

t exp(− t ) = exp( − t ) −1

> 0. , – (t)

,

:

, (2.5) ,

=1 – =const,

. 2.3).

. 2.3.

ω(t)

.

T

, –4 =10 1/

)

−1

t

1 – (t)

( (2.2),

(2.1)

(t). (t) =1,5;

t=100 . . (2.3)

T =

T



: 1

1 (1 + ) = (10 −4 ) −0,67 ⋅ (1,67). -

T ≈418 .

,

(1,67)=0,9033

: (2.5)

(100 ) = ⋅ ⋅ (100 )

−1

= 1,5 ⋅ 10 −3 1/ .

, t=100 :

2.3.

Э =1.

(Э ) :

-34-

p(t ) = e − t , t ≥ 0; > 0. (2.5)

(2.6) ,

=1

(t)≡ . , . :

, ,

,

,

Э

. – T ,

= ∫ e − t dt = ∞

T

– 1/ , . .: 1

. (2.7) =1, . . (2)=1.

0

(2.7) p(t ) = e p( :



(2.6) t ≥ 0;

1

)=e

; −1

(2.3) :

1/T ,

> 0.

Э

t=T

≅ 0,368.

(

. 2.4):

Э

ω(t ) = − p ′(t ) = e − t .

(2.8) ,

– T .

,

, ,

, 2 T

T . ⎛ 1⎞ = 2 ∫ te − t dt − ⎜ ⎟ ⎝ ⎠ 0 ∞

2

2



−x

dx −

1 2

=

2 2



1 2

=

1 2

.

0

t = x; t =

. 2.4. Э

xe 2 ∫

= {

:

x

.

.

-35-

∫ xe

ax

dx =

∫ xe dx =



−x

0

lim

x →∞

2 T

x +1 e

=

:

x

1 2

(ax − 1),

e ax a2



(− x − 1) (− 1)2 0 e −x

= lim

x →∞

1 ex

=

x +1

→ 0.

ex



= 1,

0

,

=T 2

: (2.9) , t, . :

p(t + ) e − ( t + p(t ) = = p( ) e−

)

= e− .

(2.10) : ,

. Э

( . .

≠const,

). . .

.

=10–4 1/ .

t=2000 , . (2.6)

p(2000 ) = e −10 (2.8)

−4

⋅2000

:

= 0,819. :

ω(t ) = 10 −4 ⋅ e −10 ⋅2000 = 8,19 ⋅ 10 −6 1/ . (2.7) 1 T = = 10 4 .

2.4.

(0,t)

(

2.5. ):

−4

p(t) T .

:

ω(t)

-36-

⎛ t2 ⎞ ⎟, p(t ) = exp⎜⎜ − 2 ⎟ 2 ⎝ ⎠ : –

(2.11) , . ω(t). m,

, ω(t ) = − p ′(t ) =

(t ) =

t 2

exp( −

t2 2

2

,

).

(2.12) (

ω(t ) t = 2. p(t )

. 2.5. ): (2.13)

–T .( :

= ∫ tω(t)dt = ∞

T

0

2 T

π⎞ ⎛ = ⎜2 − ⎟ 2⎠ ⎝

2





t2 2

e



t2 2

)

dt =

0

= 0,4292

= 1,253 .

π 2

(2.14) :

2

. (2.15)

. 2.5.

2.5.

p( m). ( . 2.5. ):

.

-

:

ω(t ) =

2 0

(r ) (r) –

r=1,

t r −1 exp(−

> 1,

( 0t

)

), -

(2.16) . .

r. r –

-37-

,

0

=

: 1

.

T

0

-

r

Э

. (0,t)

2.6. ):

( 0 t )i . p(t ) = exp( − 0 t ) ∑ i! i =0

(

.

rm =1

ω(t ) = (t ) =

=

T

0

( 0 t ) r −1 exp( − 0 t ). (r − 1)! r −1

=

(2.19) : r 2 0

0

t0

= rT ,

r– 2 T0

. 2.6.

=r

.

: 2 T.

-

) )

. 2.6. ):

.

2 T

,

(2.17) . 2.6. ): (2.18)

(

( 0 t )i (r − 1)! ∑ i! i =0 0 ( 0t ) r −1

r

(

:

; ) .

; ,

r

.

. .

-

.

-382.6.

Э (t , t ),

t

t –

. (Δω(t)

1. (t) (

. 2.7. );

2. 3.

p(t) (

. 2.7.

. 2.7. );

:

ω(t)

) ) ω(t ) = h,

):

(t);

p(t). 1 h(t − t ) = 1. 2

: 2(t − t ) ⎧ ⎪ (t − t )(t − t ) ⎪ ω(t ) = ⎨ 2(t − t ) ⎪ ⎪⎩ (t − t )(t − t )

ω(t)

t ≤t ≤t , t ≤t ≤t . (2.20)

p(t)

⎧ (t − t ) 2 ⎪1 − ⎪ (t − t )(t − t ) p(t ) = ⎨ (t − t ) 2 ⎪ ⎪ (t − t )(t − t ) ⎩

t ≤t ≤t ,

:

t ≤t ≤t . (t)

2(t − t ) ⎧ ⎪ 2 ⎪ (t − t )(t − t ) − (t − t ) (t ) = ⎨ ⎪ 2 t ≤t ≤t . ⎪⎩ t − t

(2.21) :

t ≤t ≤t ,

(2.22)

-39-

Δ:

1

=

2

=

t

=

h t −t )=

p(t

t

2 (t − t )(t − t )

Δ-

(2.23) :

1 . 2

=t −

:

1 2(t − t )(t − t ). 2

= ∫ tω(t )dt = t

T

⎫ t ≤t ≤t ⎪ ⎪ ⎬ t ≤t ≤t ⎪ ⎪⎭

h 2 = t −t (t − t )(t − t )

t

(2.24) T :

1 (t + t + t ). 3

(2.25)

ΔJ=

t −t

.

:

. t −t t = t ⇒ J = 0, t = t ⇒ J = 0. : T −t t −t t −t J = ; J = ; T = . t −t t −t t −t (2.24) (2.25) 1 J = 1− 2(1 − J ), 2 1 T = (1 + J ). 3 p(t ) = 1 −

J=

t −t

t −t

ΦΔ(J)

:

(2.26) :

Δ ( J ),

⎧J 2 0≤J ≤J , ⎪ ⎪J Δ (J ) = ⎨ ⎪J + (J − J )(2 − J − J ) ⎪⎩ 1− J (2.28) – ΦΔ(J)

(2.27)

J ≤ J ≤ 1.

(2.28) ,

. ΦΔ(J)

, .

,

t,

-40-

t, t , t ΦΔ(J) ( . 2.8).

J

J ,

Δ-

. 2.6.

2.7.

(

ΦΔ(J).

)

,

,

. :

ω(t ) = c1ω1(t ) + c 2 ω 2 (t ), : ω1(t) ω2(t) – , c2 – c1 , c1+c2=1.

.

ω(t ) = c1 1e p(t ) = c1e (t ) =

− 1t

− 1t

+ c2

+ c 2e

− 2t − 1t

ω(t ) c1 1e = p(t ) c1e − t

t→∞

2e

,

1t

− 2t

(2.29) , , : . :

. + c2

2e − 2t

+ c 2e e– 1t

(1.8)

− 2t

:

.

e–

t

1

2

– t

e

2

(t)≈ (t)→ 1.

1 1+ 2 2

(

. 2.9).

-41-

. 2.9. 2 >

(t)

1.

T

=

1

:

+

2

1

.

2

2.8.

«

» >1 . (

ω( t ) =

Э

1 2π

2

. 2.10): ⎛ (t − T ) 2 ⎞ ⎟. exp⎜ − 2 ⎜ ⎟ 2 T ⎝ ⎠

2 T

.

(2.30) : .

2.10. .

T

-42-

p(t ) = ∫ ω( )d = ∫ ∞



t

=

1 2π



1 2π

t

2 T

( −T )

:

2

2

e

2 T

d =

∫ 2π t −T



1



e

1 ⎛ −T − ⋅⎜⎜ 2⎝ T

⎞ ⎟ ⎟ ⎠

2

⎛ −T d ⎜⎜ T ⎝

⎞ ⎟= ⎟ ⎠

T

x2 ∞ − e 2 dx.

t −T

(2.31) ) :

T

q(t ) = 1 − p(t ) =

t −T

F(x) =





T

1

−∞



⎛ t −T . . q(t ) = F ⎜⎜ T ⎝ 1

(0,t) (

⎞ ⎟, ⎟ ⎠

∫e x

−∞



e



x2 2 dx,

(2.32) (2.33)

2

u 2

du.

(2.34)

(2.34) –

, . , , . .

(2.30) 0

Э

t> ω(t)

,

T,

. . t>

. ,

T

. ω(t)

. (

. 2.10) t T, T

e

2

2 T

(2.41)

. T =8000 , t=4000 . . (2.38)

:

T

=2000

.

-45⎛ 4000 − 8000 ⎞ F⎜ ⎟ 2000 ⎝ ⎠ = F ( −2 ) = 1 − F ( −2 ) . P ( 4000 ) = F ( 4) F ( 4) ⎛ 8000 ⎞ F⎜ ⎟ ⎝ 2000 ⎠

F(x) (

): F(2)=0,97725; F(4)=1; 1 − 0,97725 P ( 4000 ) = = 0,2275. 1 (2.37) ω(t ) =

F (T

. . F (T

ω(t ) =

)⋅

1

) = F (4) = 1, T

T

φ( x )



T

,

⋅e



.

T

: φ( x ) =

1 2π

φ(x) :

x=

t −T

:

t −T

⋅e

−x

2

2.

.

.

T

, : ⎛ 4000 − 8000 ⎞ φ⎜ ⎟ 2000 ⎠ = φ( −2) = φ(2) = 0.05399 = 2,7 ⋅ 10 −5 1/ . ⎝ ω( 4000 ) = 2000 2000 2000 T (1.17): (t ) =

(T )

ω(t ) 2,7 ⋅ 10 −5 = = 11,87 ⋅ 10 −4 1/ . p(t ) 0,02275 (2.41) =T

+

F (T

T T

)⋅





e

T

2

2

2 T

:

= 8000 +

2000 ⋅ e −8

F ( 4) ⋅ 2π

= 8000,26 .

2.9.

. p (t ) = 1 − e , t

ω ( t ) = p ′ (t ) = e

t ≥ 0, − t

,

p (t)

> 0. t ≥ 0,

: (2.42) :

> 0.

(2.43) :

-46(t ) =

ω (t ) = . 1 − p (t ) ,

(2.44) . :

1 T = ∫ [1 − p (t )]dt = ∫ e − t dt = . ∞



0

p (t ) = 1 − e

:

(2.45)

0



(2.42),

1/T t T

t ≥ 0, T > 0

,

= 2∫ t [1 − p (t )]dt − T = 2 ∫ te − t dt − ∞

2

:



2

0

(2.46)

1 2

=

1 2

= T 2. (2.47)

0

. , ,

, .

2.10.

,

,

. ,

, ,

,

. . 1. 0,1,2…,n. m n

:

Pn (m ) = C nm p m q n −m [m] = np; p– q=1–p. 2.

0,1,2…,n.

2 T [m ]

(2.48) :

= npq,

(2.49) ;

m

:

-47-

Pm =

⋅ e− .

m

m!

[m ] = ; – 3. Pm = pq

[m ] =

2 T [m]

(2.50) :

= ,

(2.51) . 0,1,2…,n.

m −1

1 ; p

.

(2.52) 2 T [m]

=

:

q p2

, (2.53)

p– q=1–p. ____________________________________________ : 1. « » . 2. « » ? 3. ( ) « » . 4. « » 5. , 6. .

;

? .

-48-

III.

(

)

3.1

, ( ,

,

,

) ,

. ,

,

: ,

-

(

)

;

( ); (

-

,

,

,

,

); . .

,

,

, . , . , ,

, ,

(

,

. .).

,

, ,

.

, . .

, ,

,

, . ,

,

,

,

.

, : -

Э (Э

,

Э

). ,

: ,

,

Э

; . , . .

3.2.

,

N Э . .

. Э

-49-

: p(t ), ω(t ), – 1.

(t ), T Э

p(t ) → p(t ) = N– n(t) –

q (t ) =

N − n( t ) , N Э

:

: (3.1) ;

Э

t;

n( t ) . N

(3.2)

2.

Э

Э

, n( Δt ) , N ⋅ Δt n(Δt) – ⎛ Δt ⎞ ⎜t − ⎟ 2⎠ ⎝

:

ω(t ) =

3.

(t ) → (t ) =

⎛ Δt ⎞ ⎜ t + ⎟. 2⎠ ⎝

Э

n( Δt ) ; N ⋅ Δt

:

N + N i +1 = i 2 –

N

(3.3)

Э

(3.4)

Э

Ni – Ni+1 –

Э

Δt; Δt.

Э

4.

∑ ti

:

N

T

=

i =1

,

N

ti –

Э

i-

(3.5) . T

Э

(3.5)

,

.

,

Э

i-

∑ ni t

:

m

T



i =1

N t

i

=

i

,

t i −1 + t i ; 2

m=

(3.6) tk ; Δt

;

-50-

ti-1 – ti – tk – , ni – Δt = ti – ti-1 –

i-

;

i-

.

; Э

Э

;

. 1000 Э

.

3000

3000÷4000 3000

;

i-

3000÷4000

50 Э

80 Э .

,

Э

.

. (3.1) (3.2) : N − n(t ) 1000 − 80 = P (3000 ) = = 0,92; N 1000 n(t ) 80 q(3000 ) = = = 0,08; N 1000 N − n(3500 ) 1000 − 105 P (3500 ) = = 0,895, = N 1000 N i + N i +1 920 + 870 = 1000 − = 1000 − 895 = 105 2 2 – Э t=3500 ( ). (3.3) (3.4) : n( Δt ) 80 ω(3000 ) = = ≈ 2,67 ⋅ 10 −5 1/ ; N ⋅ Δt 1000 ⋅ 3000 50 ω(3500 ) = = 5 ⋅ 10 −5 1/ ; 1000 ⋅ 1000 80 n( Δt ) (3000 ) = = ≈ 2,98 ⋅ 10 −5 1/ ; N ⋅ Δt 895 ⋅ 3000 n(3500 ) = N − N

(3500 ) =

=N−

50 ≈ 5,59 ⋅ 10 −5 1/ . 895 ⋅ 1000

3.3.

N Э ( ,

.

Э ). ,

-51-

. , Ω(t),

-

t .

1. Э

, :

Э

, : n( Δt ) Ω (t ) = , N ⋅ Δt n(Δt) – ⎛ Δt ⎞ ⎜t − ⎟ 2⎠ ⎝ N– Δt – (3.7) 2.

Э

(3.7) ⎛ Δt ⎞ ⎜ t + ⎟; 2⎠ ⎝

Э

;

.

Ω(t). .

Э

∑ ti :

n

=

t

i =1

n ti – n–

,

∑∑ t ij N

=

t

(i-1)-

i-

,

t. (3.8) Э .

t,

(3.8)

Э ,

N Э :

nj

j =1 i =1 N

∑nj

,

j =1

tij –

Э

j;

nj –

j-

Э

Ω (t )

(3.9) (i-1)-

t. t

,

.

.

,

, . K ,

.

i-

-52-

K =

: t

t +t

, (3.10)

tp – t –

,

t = ∑t i ; n

i =1

tpi – t i– n–

t = ∑t i ,

,

n

i =1

, )Э

(

(i-1)i-

(3.11) ,

i,

.

(3.10) tp K =

, t t

+t

.

K. t

:

, (3.12)

t – t –

, . K ,

K

=

. t t +t

(3.13)

, K K K

=

, . . t t

+t

:

. (3.14)

K = 1− K .

(1.72): K

K =

(1.71): T T

Э : t =T ,

+T

. , (3.15)

t – T –

; .

. . 6

, 11

. 181

,

– 329

– 245

.

8

-53-

. . t Σ = ∑∑ t ij = 181 + 329 + 245 = 755

:

nj

N

j =1 i =1

n Σ = ∑ n j = 6 + 11 + 8 = 25

.

:

N

j =1

.

(3.9)

∑∑ t ij N

t

=

:

nj

j =1 i =1 N

∑nj j =1

=

tΣ 755 = = 30,2 . nΣ 25

____________________________________________ : 1. ? 2.

Э

? 3. .

-54-

ё

IV.

4.1.

.

:

1. 2. 3. 4.

. . . .

1. : 1. 2. 3.

. . . ,

. .

. (

). . . .

, , . , .

2. , (

. 4.1.

)

.

.

-55-

, 1

2(

. 4.1). tp

= ∫ P (t )dt

P1(t)>P2(t). T

∞ 0

(

P(t))) , . .T

(

1 < T ,

,

1.

)

,

. , . . 1968

«

, »,

.:

,

, 1968. , . ,

1972

« », Э

.:

, 1972.

.

, . .

:

1.

, ,

, .

2.

. : )

,

, ;

)

, ;

)

,

, . . η,

– η– (

:

, η )

. : ~ T,

T, T.

-56-

, :

=

~ (T ,T ~ η = η (T ,T

,

) ⎫⎪ ⎬ )⎪⎭

(4.1)

(

η

(4.1) ):

m =Э=

) ⎫⎪ ⎬ mη = W = η (T ,T )⎪⎭ , Э– W– , T , T – . , , (T ,T

(4.2) ,

, T K,

T .

,

φ, . .

,

(tj, tj+1). – . ( )

,

. ,

. ,

, : 1)



P(t) ω(t),

(t). 2) P(t1,t2) Ω(t).

(t1,t2), 3) . ,

, G(t). ,

, P(t1,t2).

, (

),

: 1.

: ) )

i;

T ;

-57-

)

P(Δt3)

Δt3.

2. (

,

): ) T ; ; ) ) ) P(t1), P(t2) – (0,t1) 3.

(0,t2).

,

:

- P(t) (t); Ω(t) – -

; (

).

4.2.

. . , . , (

.

) . , . :

1) 2) 3) 4) 5) 6)

; ; ; (

,

,

. .);

; .

1.

. (

,

. .). . , .



-58-

(

y)

( (

x) (

.4.2).

. 4.2) . y=a+bx. .

. 4.2. J = ∑ [a + bx i − y i ] −2 = min.

:

K

i =1

(4.3)

∂J = ∑ [a + bx i − y i ] = 0, ∂a i =1

a

b

:

K

K ∂J = ∑ [a + bx i − y i ] x i = 0. ∂b i =1

(4.4) x1,…,xn,

(a+b1x11+…+bnxni–y1)

a,b1,…,bn. , .

. . . . P(t) : xi yi Wi,

⎫ ⎪ ⎪ ⎬ Pi (t ) ⎪ = P (t ) ⎪⎭ , W – =

W.

Wi W

(4.5) , i-

;

-59-

Pi(t), P (t) – .

,

i.

. 4.3. , (

)

. ( ) K ,

. Э . 2.

,

,

,

, . ,

,

.

.

, . . . 4.4).

(

, K , .

. : 1) 2)

; , . . .

-60-

. 4.4.

.

. . 3. . . K . . : 1. 2.

. . .

, .

3. 4.

, ,

. .

Э ,

.

.

. Э

– K

, . K K

. ,

«

(

,

)

»

r (t ) = − ln P (t ) = ∫ ( )d

. :

t

0

.

(4.6)

-61-

, r

. Э

, ,

. .

(

,

. .).

Ω(t).

(t) . . (

. 4.5), (

)

. , ,

. .

Э

=

U− W−

. 4.5.

U U

; = .

W W

⎫ ,⎪ ⎪ ⎪⎪ ⎬ ,⎪ ⎪ ⎪ ⎪⎭

:

(4.7)

-62-

.

,

(t) 10°C. , . (t)

Ki =

i *

, (4.8) .

*– , (t). : 1)

(t ) = f (

:

: 0 ,t

0

, 1,

2 ... n ),

(4.9)

0 – 0 t – 1,…, n, –

, , .

2)

: ,

-

, (t)

.

ó

.

. : 1;

-

2.

. = f(

, 0 ,t

0

, 1,

2 ).

= (1 + C1 + C 2 )

: 0

,

(4.10)

C1 – C2 –

1; 2

t0;

: , 1 = U /U W + W0 + W ; 2 = W +W W , W0, W – W , W0 –

, .

C1 (

.4.6).

C2

1,

2

t0

,

-63-

.4.6. . , : 1 U

: , J

2 3 4 5

: : : :

6

:

,

6

U

J W

, W . U J < 75% U U J < 90% U U J < 90% U

J J J U,

; ; ; J

W < 50% W W < 75% W W < 90% W W

50% 25% . . . 90%

. U, J

W

100%

. . (t)

.4.7.

(

.4.7).

100%

-64,

, . .

4. Э , .

Э :

,

,

. (Э ) 1. 2. 3.

: ;

; -

.

, . ,

,

, . .

-

,

. , . , (

)

. .

,

Э(t ) = −(

1

+

:

2)+

t,

1 – 2 – –

(4.11) ;

,

; ;

t– Э = −(

1

. +

(

2)+

)

T ,

(4.12)

T –

. . , T

К

=

. T

.

(4.13)

(0,T ,

K).

a

:

-65−

=

2

+

T

T

.

К

[

]

⎞ ⎛ ⎜ S0 = 1 − exp(− ℵt ) ⎟ ℵ ⎠ ⎝ − 2+ T Э =− 1+ 1 − expℵT ℵT К =−

1+

ℵ –

(

⎛ 2 ⎜ − ℵ ⎜⎝ T К

(4.14) :

(

К

)=

⎞ ⎟ 1 − expℵT ⎟ ⎠

К

),

(4.15) ,

T = 8760 ; ℵ = 13 ⋅ 10 −6 1/ .

E = 0,12; .

Э .

ΔЭ

i

:



i

−Э

Э0 Э

: 0

(4.16)

– ; i

– ,

i.

ΔЭ i. ,

.

, .

, . , , .

4.3.

( ) . , . : 1. 2. 3.

. . .

-664.

, . . 1. . P(t)=0,98

t =2000 .

(t) .

P (t ) = [P P (t ) = e −

t

]3 ;

−1 T

;

P (t ) = e ≈ 1− t : 1 − 0,98 = = 10 −5 1/ . 2000





.

=3

. (t )

=e

.

;

T

1 = T 3

;

= 0,98.

t

10 −5 = 3,3 ⋅ 10 −6 1/ . 3 2.

1. 2. 3.

,

A, B, C. t1=100 .

P (t1)=0,97 , –4

A0=10

A, B, C, –4

1/ ;

B0=8·10

A1, B1, C1 ⇒

–4

1/ ; A1,

C0=3·10 B1,

: 1/ ;

C1.

. 1.

, -

Kj =

j

j-

, ,

j



j-

. Kj Kj =



, :

j0

,

n

i =1

ji 0

n–

. :

K = 0

+

0 0

+

= 0

10 −4

(1 + 8 + 3) ⋅ 10

−4

=

1 ; 12

-67K = K =

0

+

0

+

0 0 0 0

=

+

0

+

=

0

2.

8 ⋅ 10 −4

(1 + 8 + 3) ⋅ 10 3 ⋅ 10 −4

(1 + 8 + 3) ⋅ 10 −4 (t)

P (t 1 ) = 1 − 3. 1

=K

1

=K

1

=K

−4

= =

=

t1 = 0,97 ;

2 ; 3 1 . 4

1 − 0,97 = 3 ⋅ 10 − 4 1/ . 100 :

=

1 1 ⋅ 3 ⋅ 10 − 4 = ⋅ 10 −4 = 2,5 ⋅ 10 −5 1/ ; 4 12 2 = ⋅ 3 ⋅ 10 −4 = 2 ⋅ 10 −4 1/ ; 3 3 1 = ⋅ 3 ⋅ 10 −4 = ⋅ 10 − 4 = 7,5 ⋅ 10 −5 1/ . 4 4 3.

1. A1

B1.

2.

P(t)=0,97 t1=100 .

3. 4.

–2007 . 1992÷2002 ,

exp[− 92 – L–

=

(L − 1992 )] ,

92

:

A1

B1,

: ,

A0:

92

B0:

92

= 1,4 ⋅ 10

−4

. 1/ ;

1992

= 0,034 1/

;

= 0,14 1/

= 28 ⋅ 10 −4 1/ ;

. A

A1

.

1. Э 07 07

2. K K

1

1

= 1,4 ⋅ 10

−4

B1.

⋅ exp[− 0,034 ⋅ (2007 − 1992 )] = 8,4 ⋅ 10

−5

2007 .: 1/ ;

= 28 ⋅ 10 −4 ⋅ exp[− 0,14 ⋅ (2007 − 1992 )] = 34 ⋅ 10 −5 1/ 2 :

= = =

=

+

07

+

07

07

07

07

=

8,4 ⋅ 10 −5

(8,4 + 34 ) ⋅ 10 −5 34 ⋅ 10 −5

(8,4 + 34) ⋅ 10 −5

= 0,2;

= 0,8

1 − P (t ) 1 − 0,98 = = 2 ⋅ 10 −4 1/ ; t1 100 07

B

;

.

Kj

;

-68-

1 1

=K

=K

= 0,4 ⋅ 10 −4 1/ ;

= 1,6 ⋅ 10 −4 1/ .

1 1

4. 1. 2. 3.

1, 2, 3, 4.

ΩC=10–5 1/ ; =5 t =20

4.

(1 =

j

K

) j-

+

Ωj

j

,

. :

0j,

Ωj –

j-

;



0j

,

; .⋅

:

K

1

= 1,6 ⋅ 10 −4

K

2

=K

01

=

3

=K

=

02

03

;

2

4

=

.⋅

= 3 ⋅ 10 −4 04

=0

;

2

( ).

5. = K Эj ⋅ Ω j + : :

j

K Э1 = 4 ⋅ 10 6 01

=

02

=

03

=

0j,

./ 04

;

= 0.

K Э 2 = K Э 3 = K Э 4 = 1,7 ⋅ 10 6

6.

./

;

, =∑

:

n

j,

j =1

:

Cj – n–

j-

, .

Ωj. . – . : Эj

=

0j

=

:

ℵ j



[1 − exp(− ℵt p )] =

0j

[1 − exp(− ℵt p )] ;

0j

+

jΩ j,

-69=

j

[1 − exp(− ℵt p )] .

K Эj ℵ

nj

=

n

=

[exp(ℵ

ℵ j

1 ⎛⎜ ℵ ⎜⎝

0j

:

α0 j = =

n

:

ℵ K nj

0j

+

) − 1] .

:

K nj ⎞ α ⎟[exp(ℵ ) − 1] = α 0 j + j , Ω j ⎟⎠ Ωj

(4.17)

[exp(ℵ ) − 1] ;

[exp(ℵ ) − 1] .



= ∑(

,

+ α0 j )+ ∑

n

j =1

n

j =1

0j

αj

Ωj

+∑

jΩ j.

n

j =1

(4.18)

. Ωi

∑ Ω j − Ω i = 0.

Ωj

:

n

j =1

Ωj,

(4.19) . .

)= ∑

Φ (Ω 1,K Ω n

n

j =1

αj

Ωj

+∑ n

j =1

⎟ , ⎜ j Ω j + ∑ Ω j − ΩC ⎛ n ⎜ j =1 ⎝ .

– Ω1,...,Ωn

⎞ ⎟ ⎠

:

:

α1 ⎧ ∂Φ ⎪ ∂Ω = − 2 + 1 + = 0 Ω1 ⎪ 1 ⎪ ⎨KKKKKKKKKKK ⎪ ∂Φ α ⎪ = − n2 + n + = 0 Ωn ⎪⎩ ∂Ω n =

α1

Ω 12



1

=

α2

Ω 22 :



2

=K=

αn

Ω n2



: n.

(4.19)

-70-

Ωj

=

αj

α1

Ω 12



1

.

+

j

(4.20) (4.20)

n ⎛α Ω 1 + ∑ α j ⎜⎜ 12 − j =2 ⎝ Ω1

1

+

j

Э A(Ω1 ) = B(Ω1 ) , :

A(Ω 1 ) = Ω C − Ω 1 − B( Ω 1 ) = ∑

A(Ω1)

hj =

.4.8.

(

.4.9).

,

:

⎫ ⎪ ⎞⎪ ⎟ 1+ 2⎟⎪ ⎠⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ (4.21)

1

+

j

⎞ ⎟ ⎟ ⎠

(4.21)

B(Ω1).

Ω1

,

Ωj ⎛Ωj ⎞ ⎟ ⎜ ⎜Ω ⎟ ⎝ 1⎠

⎛ α1 ⎜ ⎜Ω2 − ⎝ 1

⎛ α1 ⎜ ⎜Ω2 − ⎝ 1

j =3

⎞ ⎟ − Ω C = 0. ⎟ ⎠

:

α2

αj

n

(4.19),

(4.20),

. (4.20)

=



αj α1

j



α1

1

1 , 1+ h j

⋅ Ω 12 .

:

.

-71-

.4.9. 1 (1 + h j ), α j α1.

(

. 4.9). A(Ω1) B(Ω1) ⎛ α2 1 ⋅ A(Ω 1 ) = Ω C − Ω 1 ⎜1 + ⎜ α1 1 + h2 ⎝

B( Ω 1 ) = Ω 1 ∑ n

αj

j =3

α1



:

⎞ ⎟ , ⎟ ⎠

1 . 1+ h j

(4.22)

Ω1,

(4.22). ℵ = 13 ⋅ 10 α1 =

−6

1/ ;

1,6 ⋅ 10 −4 13 ⋅ 10

[exp(13 ⋅ 10

−6

α2 = α3 = α4 = 1

= =

4 ⋅ 10 6

13 ⋅ 10 =

:

−6

3 ⋅ 10 −5

13 ⋅ 10

−6

−6

[ (

1,7 ⋅ 10 5

) ]

⋅ exp 13 ⋅ 10 −6 ⋅ 8760 ⋅ 5 − 1 = 1,78;

[1 − exp(− 13 ⋅ 10

=

) ]

⋅ 8760 ⋅ 5 − 1 = 0,955;

−6

)]

⋅ 8760 ⋅ 20 = 2,76 ⋅ 1011

[1 − exp(− 13 ⋅ 10

−6

3

4

)]

;

⋅ 8760 ⋅ 20 = 1,17 ⋅ 1010

13 ⋅ 10 −6 1,17 ⋅ 1010 − 2,76 ⋅ 1011 h2 = ⋅ Ω 12 = −2,77 ⋅ 1011 ⋅ Ω 12 . 0,955 (4.22) A(Ω1) Ω1 = 1,43·10–6 1/ . : Ω2 = Ω3 = Ω4 = 2,86·10–6 1/ . 2

.⋅

B(Ω1).

.⋅

;

-724.4.

,

, (

)

.

: 1. 2. 3. 4.

. .

Э .

.

,

, .

(

). ,

:

1) 2) 3)

; ; , . ,

,

. , .

.

, .

,

, .

К . .

Э

,

. ,

,

. : . . . .

, , ,

. K ,

. :

-73=

t

t

, K t – K –

; .

4.5.

. . «

» (

)

. . . , (

)

. (

), .

. .

, , .

Э

.

, (

) (

). ( 1.

). (

)

, .

. 4.10.

, T

(

)

.

:

≅ min(T j ), j = 1,2,..., n ,

(4.23)

n–

.

P (t ) = ∏ P j (t ), n

j =1

Pj(t) –

(4.24) j-

. n

:

-74=∑ n

j =1

T

(

i

j

= const ). (4.25) :

=

∑ 1/ T 1

,

n

j =1

T

j

(4.26)

j –

j-

.

(1.21)

(4.24)

:

n ⎧⎪ n t ⎫⎪ ⎧⎪ t P (t ) = ∏ exp⎨− ∫ j (t )dt ⎬ = exp⎨− ∑ ∫ ⎪⎩ j =1 0 ⎪⎭ ⎪⎩ 0 j =1 , ( =const) :

P (t ) = e −

= ∑nj

t

=e

⎫⎪

j (t )dt ⎬.

⎪⎭

(4.27)

− t

,

,

(4.25) :

(4.26).

r

j =1

j,

(4.28)

nj – r–

j-

; .

P (t)

.



e

·t