Digitally Assisted Pipeline ADCs : Theory and Implementation [1 ed.] 1402078390, 9781402078392, 9781402078408

Digitally Assisted Pipeline ADCs: Theory and Implementation explores the opportunity to reduce ADC power dissipation by

201 118 2MB

English Pages 175 [176] Year 2004

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover......Page 1
Contents......Page 8
List of Figures......Page 12
List of Tables......Page 16
Acknowledgments......Page 18
Preface......Page 20
1. Motivation......Page 21
2. Overview......Page 22
3. Chapter Organization......Page 24
1. Introduction......Page 25
2. Digital Performance Trends......Page 26
3. ADC Performance Trends......Page 27
1. Introduction......Page 35
2. Basic Device Scaling from a Digital Perspective......Page 36
3. Technology Metrics for Analog Circuits......Page 37
4. Scaling Impact on Matching-Limited Circuits......Page 45
5. Scaling Impact on Noise-Limited Circuits......Page 53
2. Analog Circuit Challenges......Page 63
3. The Cost of Feedback......Page 65
4. Two-Stage Feedback Amplifier vs. Open-Loop Gain Stage......Page 66
5. Discussion......Page 72
1. A Brief Review of Pipelined ADCs......Page 73
2. Conventional Stage Implementation......Page 74
3. Open-Loop Pipeline Stages......Page 75
4. Alternative Transconductor Implementations......Page 80
1. Overview......Page 83
2. Error Model and Digital Correction......Page 85
3. Alternative Error Models......Page 94
1. Introduction......Page 95
2. Modulation Approach......Page 96
3. Required Sub-ADC and Sub-DAC Redundancy......Page 97
4. Parameter Estimation Based on Residue Differences......Page 99
5. Statistics Based Difference Estimation......Page 104
6. Complete Estimation Block......Page 107
7. Simulation Example......Page 110
8. Discussion......Page 117
1. ADC Architecture......Page 121
2. Stage 1......Page 122
3. Stage 2......Page 126
4. Post-Processor......Page 127
1. Layout and Packaging......Page 129
2. Test Setup......Page 131
3. Measured Results......Page 132
4. Post-Processor Complexity......Page 141
1. Summary......Page 143
2. Suggestions for Future Work......Page 144
A-Open-Loop Charge Redistribution......Page 147
B-Estimator Variance......Page 151
1. Time Constant......Page 157
2. Output Variance......Page 158
3. Maximum Gain Parameters......Page 159
References......Page 163
F......Page 173
T......Page 174
V......Page 175
Recommend Papers

Digitally Assisted Pipeline ADCs : Theory and Implementation [1 ed.]
 1402078390, 9781402078392, 9781402078408

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

DIGITALLY ASSISTED PIPELINE ADCs

This page intentionally left blank

Digitally Assisted Pipeline ADCs Theory and Implementation by

Boris Murmann Standford University and

Bernhard E. Boser University of California, Berkeley

KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: Print ISBN:

1-4020-7840-4 1-4020-7839-0

©2004 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: and Kluwer's eBookstore at:

http://kluweronline.com http://ebooks.kluweronline.com

Dedication

To our families.

This page intentionally left blank

Contents

List of Figures List of Tables Acknowledgments Preface

xi xv xvii xix

1. INTRODUCTION 1. Motivation 2. Overview 3. Chapter Organization

1 1 2 4

2. PERFORMANCE TRENDS 1. Introduction 2. Digital Performance Trends 3. ADC Performance Trends

5 5 6 7

3. SCALING ANALYSIS 1. Introduction 2. Basic Device Scaling from a Digital Perspective 3. Technology Metrics for Analog Circuits 4. Scaling Impact on Matching-Limited Circuits 5. Scaling Impact on Noise-Limited Circuits

15 15 16 17 25 33

4. IMPROVING ANALOG CIRCUIT EFFICIENCY 1. Introduction 2. Analog Circuit Challenges 3. The Cost of Feedback

43 43 43 45

viii

Digitally Assisted Pipeline ADCs 4. 5.

Two-Stage Feedback Amplifier vs. Open-Loop Gain Stage Discussion

46 52

5. OPEN-LOOP PIPELINED ADCS 1. A Brief Review of Pipelined ADCs 2. Conventional Stage Implementation 3. Open-Loop Pipeline Stages 4. Alternative Transconductor Implementations

53 53 54 55 60

6. DIGITAL NONLINEARITY CORRECTION 1. Overview 2. Error Model and Digital Correction 3. Alternative Error Models

63 63 65 74

7. STATISTICS-BASED PARAMETER ESTIMATION 1. Introduction 2. Modulation Approach 3. Required Sub-ADC and Sub-DAC Redundancy 4. Parameter Estimation Based on Residue Differences 5. Statistics Based Difference Estimation 6. Complete Estimation Block 7. Simulation Example 8. Discussion

75 75 76 77 79 84 87 90 97

8. PROTOTYPE IMPLEMENTATION 1. ADC Architecture 2. Stage 1 3. Stage 2 4. Post-Processor

101 101 102 106 107

9. EXPERIMENTAL RESULTS 1. Layout and Packaging 2. Test Setup 3. Measured Results 4. Post-Processor Complexity

109 109 111 112 121

10. CONCLUSION 1. Summary 2. Suggestions for Future Work

123 123 124

Appendices A- Open-Loop Charge Redistribution B- Estimator Variance

127 131

Contents

ix

C- LMS Loop Analysis 1. Time Constant 2. Output Variance 3. Maximum Gain Parameters

137 137 138 139

References Index

143 153

This page intentionally left blank

List of Figures

1-1. 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 3-7. 3-8. 3-9. 3-10. 3-11. 3-12.

System overview. ADC performance trend. ADC energy efficiency trend. Comparison of speed trends: ADCs versus digital. Comparison of energy efficiency trends: ADCs versus digital. Modern ADC application: 802.11 base band processor for wireless networks [21]. ADC applications in the speed/resolution space. The equipower contours assume FOM2=3pJ/conversion. Supply voltage scaling. NMOS transit frequency. Transconductor efficiency versus gate overdrive. The dotted line shows the case for perfect square law devices. Product gm/ID·fT. NMOS intrinsic device gain at VOV=200mV. NMOS intrinsic device gain at VOV=200mV (Zoom into typical operating region). Technology scaling trends of AVTH and Ae. Flash ADC block diagram. Preamp/latch model. Flash ADC energy as a function of sampling rate (assuming constant mismatch factors AVTH, and Ae). Flash ADC energy as a function of sampling rate (assuming improving mismatch factors AVT, and Ae with technology). Estimated flash ADC energy versus feature size (from speed trajectory in Figure 3-11).

3 10 11 12 12 13 14 18 19 20 21 22 22 24 26 27 29 30 31

xii 3-13. 3-14. 3-15. 3-16. 3-17. 3-18. 3-19. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6.

5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 7-1. 7-2. I

7-3. 7-4. 7-5. 7-6.

Digitally Assisted Pipeline ADCs Published flash ADC performance vs. technology. Basic amplifier model. Noise limited circuit energy versus speed and technology. Ratio slewing/linear settling time vs. sampling speed. Noise limited circuit energy with slewing included. Published 10-bit pipelined ADC performance vs. technology. Typical 10-bit pipelined ADC power distribution. Analog circuit challenges and power dissipation. Comparison: (a) Precision feedback amplifier. (b) Open-loop amplifier. (a) Two-stage feedback amplifier. (b) Open-loop gain stage. Two-stage amplifier penalty factor. Percent power savings with open-loop amplification as a function of gain (assuming ka=kb). Percent power savings with open-loop amplification as a function of gain (assuming Vref=1V, ka=10V-1 and kb given by (4-13)). Pipelined ADC block diagram. Conventional pipeline stage. Open-loop pipeline stage. Open-loop stage model. Differential pair V-I characteristic. Differential pair nonlinearity as a function of d=Vxmax/VOV. (a) ADC block diagram. (b) Reduced model for analysis. Reduced model with stage sub-circuits. Model for error compensation. Additive nonlinearity compensation. (a) Model with shifted variables. (b) Equivalent/compensated model. Modification for hardware efficient linear digital weighting. Complete digital correction hardware. System model with digital code modulation. ntroducing Sub-ADC redundancy: (a) Quantization error of a 2-bit sub-ADC. (b) Error of a (2+1)-bit sub-ADC. (c) Superimposed modulation. Sub-ADC/DAC interface: (a) Bipolar modulation. (b) Equivalent unipolar modulation with DAC offset. System model for transfer function analysis. Residue plot for both RNG states. Single transfer function segment without correction and b3