Computer-aided analysis of mechanical systems 9780131642201, 0131642200

Nikravesh P.E. Computer-aided analysis of mechanical systems (PH, 1988, 3675)(ISBN 0131642200) - errata

335 49 23KB

English Pages 5 Year 1988

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Computer-aided analysis of mechanical systems
 9780131642201, 0131642200

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

ERRATA COMPUTER-AIDED ANALYSIS OF MECHANICAL SYSTEMS Parviz E. Nikravesh Prentice-Hall, 1988 (Corrections as of January 1, 2004) Address to an error is given in the first column by the page number and in the second column by a line number, or a figure number, or an equation number. For example: “line 2” means the second line from the top of the page; “line –3” means the third line from the bottom of the page; “Eq. 2.30, +2” means the second line following Eq. 2.30; Eq. 6.48, line 1 means the first line in Eq. 6.48. Page Line, Fig., … 10

Error

Correction

Eq. 1.6

correct to: ( r 2 + l 2 + s2 − d 2 ) − 2 rl cosφ − 2 ls cosθ1 + 2 rs cos(φ + θ1 ) = 0 Eq. 1.7 correct to: ( r 2 + l 2 − s2 − d 2 ) − 2 rl cosφ + 2 ds cosθ 2 = 0 11, 12 Figs. 1.12, 1.13, 1.14 The link lengths are: crank = r, coupler = d, follower = s, frame = l aij = 0 23 Eq. 2.30, +3 aii = 0 Eq. 2.33, +1 correct to: where I is a 3 x 3 identity matrix. The … 25 Eq. 2.42 0 0 ˙ ˙ 28 Eq. 2.61 αa α˙ a 29 line 2 …=c …=c 2 30 Ex. 2.5, +4 6 x2 x4 6 x2 x4 32 Eq. 2.75, -2 n-vector 3-vector Eq. 2.75, +1 n x m matrix 3 x m matrix 34 Prob. 2.16 make the following corrections:  1.2  −0.3 cosφ i − sin φ i 0   x 2 − x1          A i =  sin φ i cosφ i 0  c1 = −0.5  c 2 =  0.8  d =  y 2 − y1   0   0   0  0  0 1  42 Eq. 3.4, +5 m = 4 x 3 = 12 m = 6 x 2 = 12 45 Fig. 3.9 l3 = 3 m l3 = 0.3 m i v vi Eq. a t t T T footnote, line 1 [ui , v i ] [ui , v i ] 48 line –3 φ˙˙3 = 5.39 φ˙˙3 = −5.39 st (L) q˙ 49 Eq. 3.15, 1 (L)q˙ nd (L) + (L) q q˙ + L (L) + (L) q q˙ + L Eq. 3.15, 2

ERRATA (Computer-Aided Analysis of Mechanical Systems) Page 1

70

line 11 2nd row in the table

 1  1   3.5  3.5       −7   −7      −17   17  infection inflection Φ2 φ2 φ1 Φ1 T [Φ 2 , d ] [φ 2 , d ]T [Φ1 ] [φ1 ]  Φ1   −Φ1  −Φ  −Φ   2  2 move the thick line from before the table to below the table 326 o 320 o

103

line 2

r

60

last equation

67 69

Fig. 3.11 Ex. 3.13, +2 Ex. 3.13, +2 Ex. 3.13, +7 Ex. 3.13, +8 Eq. 5

.. ..

109 110

line 3 line –7, circled 2 Eq. f, line 3 line 5 line 22, circled 30 line 25, circled 33

114 127 133 141 143 145 147 149 151 154 155 158

before last parag. Sub. INPOIN, +6 Sub. SMPL, +4 top line top line top line top line top line top line Fig. 6.2 line 11 Fig. 6.4

i

˙˙ ri

˙˙ r i ri P P − ξi sin φ i + ηi cosφ i − ξiP sin φ i − ηiP cosφ i Φ 3 ≡ Φ1 = 0 Φ 3 ≡ φ1 = 0 ( y1 − 100 sin φ1 − y 4 ) ( y1 − y 4 ) ( x1 − 100 cosφ1 − x 4 ) ( x1 − x 4 ) replace the statement for circled 30 with: circled 7, circled 11, circled 21, circled 25, circled 30 = 0 ( y1 − 100 sin φ1 − y 4 ) ( y1 − y 4 ) ( x1 − 100 cosφ1 − x 4 ) ( x1 − x 4 ) redundant data (it could be removed) centroid origin NG>0 and NS>0 NG>0 or NS>0 Program Expansion Problems Program Expansion Problems Program Expansion Problems Program Expansion Problems Program Expansion Problems Program Expansion Problems “_” r is missing on the axis r ( u )( z ) u( z ) replace with the following figure

ERRATA (Computer-Aided Analysis of Mechanical Systems) Page 2

ζ

z

z

φ φ

r s'

r s r s y

x

x

ξ

(a)

160 165

Eq. 6.22 -7

-5 -4

168

Eq. 6.48, line 1

171

Eq. b

η y

(b)

eT

eT

−0.922  −0.922      uζ = L = −0.029  uζ = L = −0.293  0.387   0.387  L  L  L L L L     A = L L −0.029  A = L L −0.293 L L L L L  L  p = [0.810, − 0.029, − 0.543, 0.191]T p = [0.810, − 0.1103, − 0.543, 0.191]T  −e T   −e T      e + e0I e˜ + e0I .



p +

174 175 176 178 181 201 202 203

+

L = a˙ p˙ L = a˙ p P (s)' (s˙)'P ˙ ˙˙ L + 2Gp L + 2Gp ∗ ∗ S s e0 j  e0 j  Eq. 6.118, line 1 e  e   j  j ω j = ω i + ω ji PROBLEMS, -2 missing Eq. # (6.128) Eq. 5, +1 … Eqs. 6.73, 6.54, … … Eqs. 6.73, 6.55, … ˙ L˙ L ˙ L˙ T L (correct twice) Ex. 7.3, last equation L G LG i i i i TABLE 7.2 col. 3, row 5 s'i s'i B col. 5, row 3 s' j s' j B col. 6, row 3 − sTi (hBi − hBj )L sTi (hBj − hBi )L col. 6, row 5 − s˜ i (hBj − hBi )L s˜ i (hBj − hBi )L line 4 footnote, +2 Eq. 6.109, +1 last equation

ERRATA (Computer-Aided Analysis of Mechanical Systems) Page 3

206 209 210 213 216 219 223 229 250

col. 6, row 7 top figure Eq. (a), -1 Fig. 8.2 line 4 line –6 Eq. i Eq. 8.27, line 3 parag. 2, +6 line –5 Prob. 9.7 (c) Prob. 9.7 Prob. 9.8 (d)

256 257

260 262

2dT (hPi − hPj )L 2dT (hPj − hPi )L missing caption Figure P.7.19 body i particle i r fp fp O n =L nO = L n = s˜ A f + s˜ B (− f ) n = s˜ A f + s˜ B (−f ) ˙˙r Pj r˜ Pj subscript (v) for the integral is missing hi = [r˙ T ,ω ']Ti hi = [r˙ T ,ω 'T ]Ti sP = A is'Pi sPi = A is'Pi … 0.05, determine … … 0.05 (other velocities are zero), determine … add the following: (e) Find the accelerations in this configuration. add to the end: (let x˙1 = y˙1 = y˙ 2 = 0 )

line 20 M10, Length

correct to: C…..N must be greater than or equal to M N N+M  M Φ Tq  M10, Description … Φq …   Φ q 0  line 9 …, ETA, P-J’… …, ETA-P-J’… Sub. TRANSF …, Sec. 5.1.1 …, Sec. 5.1.2 Following Sub. TRIG, before Sub. MASS … missing statement for Sub. MASS (add the following:) Subroutine MASS. This subroutine generates the square matrix to the left of Eq. 10.5 containing the mass and the moment of inertia for each body, the Jacobian matrix and its transpose. Subroutine MASS is as follows:

263

269 275 276 284 286 289 290

Sub. FUNCT Sub. RVLT Sub. TRAN Sub. SMPL line 6 data line 14 line –3 Prob. 10.24, line 3 last line line –7 line –5 Eq. (b) line 1

Sec. 5.2.3 Sec. 5.2.3 Sec. 5.2.3 Sec. 5.2.3 1,2,0,-1,0 2,3,-.38 3.669.2 …, as can that … axial n r ni δ (A is'i ) δpi

Sec. 5.1.3 Sec. 5.1.3 Sec. 5.1.3 Sec. 5.1.3 1,2,0,0,-1,0 2,3,-.38,0,0 3669.2 …, as that … radial n'i n'i ∂(A is'i ) ∂pi

ERRATA (Computer-Aided Analysis of Mechanical Systems) Page 4

296 299

line –5 Eq. 11.40 Eq. 3 following Eq. 4 parag. following Eq. 4

pTi p−i 1 = 0 pTi pi − 1 = 0 ω˜ '1 J'1 ω 'i ω˜ '1 J'1 ω '1 T T ˙ L + (s˙ j A is˜ 'i −s j A is˜ 'i )ω 'i + L L + (−s˙Tj A is˜ 'i −sTj A˙ is˜ 'i )ω 'i + L a thick line is needed the paragraph should not be indented

300

TABLE 11.1 col. 6, row 6 following Table 11.1 Prob. 11.3 Fig. P.11.7

−2dT d + L −2d˙ T d˙ + L remove the thick line Eq. 11.6 Eq. 11.16 the vecor for n 2 should be a thick line

302

Eq. 12.5

ε i = y (t i ) − y i )

311

Eq. 12.24

314 316 333 334 357 368

line before footnote line 7 parag. 3, +3 line (a.3) Ref. 15 Sparse matrix

ε i = y (t i ) − y i −1

−1

L L   ∆y i +1 =  I − b−1  L ∆y i +1 = − I − h b−1  L   L L 0 o … time t to a final … … time t to a final … Method 1. Method I. … the for of … … the form of … ˙˙ θ θ˙ Wehave Wehage 100, 144 110, 144

ERRATA (Computer-Aided Analysis of Mechanical Systems) Page 5