Cinnamon: A Medicinal Plant and A Functional Food Systems (Food Bioactive Ingredients) [1st ed. 2023] 303133504X, 9783031335044

This work addresses the multiple possibilities for using cinnamon for applications in food science technology and to hel

196 83 15MB

English Pages 275 [265] Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Contents
About the Authors
Chapter 1: The Main Varieties, Producing Areas of Cinnamon, and Market
1.1 Introduction
1.2 Different Species of Cinnamon
1.2.1 Cinnamomum burmannii (Ness & T. Ness)
1.2.2 Cinnamomum loureiroi
1.2.3 Cinnamomum aromaticum
1.2.4 Cinnamomum zeylanicum
1.3 An Overview of Cinnamon Production
1.4 Conclusions
References
Chapter 2: The Quality Evaluation of Cinnamon
2.1 Introduction
2.2 Volatile Oil and Extracts
2.3 Quality Assessment
2.4 Technical Quality Analysis
2.4.1 HPLC Analysis
2.4.2 GC–MS analysis
2.5 Spectroscopic Techniques Multivariate Analysis
2.6 Conclusions
References
Chapter 3: Aspects Morphological, Molecular, and Biochemical of Cinnamon
3.1 Introduction
3.2 Morphological Characterization of Cinnamon
3.3 Molecular Characteristics of Cinnamon or Genetic Characterization
3.4 Biochemical Characterization of Cinnamon
3.5 Conclusion
References
Chapter 4: Bioactive Compounds and Extraction Methods of Cinnamon
4.1 Introduction
4.2 Chemical Composition and Extraction Methods of Cinnamon Essential Oils
4.2.1 Unconventional Extraction Method
4.2.1.1 Supercritical Extraction
4.3 Antimicrobial Activities
4.3.1 Antibacterial
4.3.2 Antifungal
4.4 Conclusion
References
Chapter 5: The Application of Cinnamon as a Spice in Food
5.1 Introdution
5.2 Antioxidant Properties
5.3 Cinnamon in Food
5.4 Conclusion
References
Chapter 6: Pharmacological Effects of Cinnamon in Functional Foods
6.1 Introduction
6.2 Anti-inflammation
6.3 Antioxidation
6.4 Antitumor
6.5 Lowering Blood Sugar and Blood Lipids
6.6 Protecting Digestive System
6.7 Other Functions
6.8 Clinical Applications
6.9 Conclusion
References
Chapter 7: Antioxidant Activity and Mechanism of Cinnamon
7.1 Introduction
7.2 Oxidative Stress
7.2.1 Definition of Oxidative Stress
7.2.2 Free Radical
7.2.3 The Cause of Free Radical Production
7.3 The Mechanism of Oxidative Stress
7.3.1 The Effect of Oxidative Stress on Lipids
7.3.2 The Effect of Oxidative Stress on Protein
7.3.3 The Effect of Oxidative Stress on DNA
7.4 Antioxidant Mechanism of Cinnamon Essential Oil
7.4.1 Scavenging Free Radicals
7.4.2 Chelation with Metal Ions
7.4.3 Inhibit Lipid Peroxidation and Regulate the Level of Antioxidant Enzymes
7.5 Relationship Between Active Components and Antioxidant Activity of Cinnamon Essential Oil
7.6 Concluding Remarks
References
Chapter 8: Inhibitory Mechanism of Cinnamon Essential Oil and Its Active Components Against Bacteria
8.1 Introduction
8.2 Antibacterial Mechanism of Cinnamon Essential Oil and Its Active Components
8.2.1 Damage to Cell Membrane
8.2.2 Inhibit the Activity of ATP Enzyme
8.2.3 Inhibition of Filamentous Temperature-Sensitive Protein Z
8.2.4 Morphological Changes of Bacteria
8.2.5 Inhibitory Effect on Membrane Porin
8.2.6 Effect on Genetic Material
8.2.7 Effects on Respiration and Energy Metabolism
8.2.8 Inhibition of Exercise Ability and Biofilm Formation
8.2.9 Anti-quorum Sensing
8.3 Synergistic Effect of Cinnamon Essential Oil and Its Components with Antibacterial Agents
8.4 Commercial Application of Cinnamaldehyde
8.5 Limitations of Cinnamaldehyde in Commercial Application
8.6 Concluding Remarks
References
Chapter 9: Inhibitory Mechanism of Cinnamon Essential Oil and Its Active Components Against Fungi
9.1 Introduction
9.2 Physical and Chemical Properties of Essential Oil
9.3 Cinnamon Essential Oil Inhibits Fungal Growth and Toxin Metabolism
9.4 Chemical Structure of Cinnamaldehyde
9.5 Artificial Synthesis of Cinnamaldehyde
9.6 Antifungal Mechanism of Cinnamaldehyde or Cinnamon Essential Oil
9.7 Antifungal Activity of Cinnamaldehyde Derivatives
9.8 Synergistic Effect of Cinnamaldehyde and Antifungal Agents
9.9 Prospect
9.10 Concluding Remarks
References
Chapter 10: Inhibitory Effect of Cinnamon Essential Oil and Its Active Components on Aspergillus Flavus and Its Toxin
10.1 Introduction
10.2 Physicochemical Properties and Biosynthesis of Aflatoxins
10.3 Current Situation and Strategy of Prevention and Control of Aflatoxin
10.4 The Mechanism of Inhibiting Toxin Production
10.5 Effects of Reactive Oxygen Species on Fungal Growth and Toxin Production
10.6 Concluding Remarks
References
Chapter 11: Antiviral Activity and Mechanism of Cinnamon Essential Oil and Its Active Components
11.1 Introduction
11.2 Antiviral Activity of Volatile Compounds
11.3 Potential Pharmacological Effects of Cinnamon on SARS-Co-2
11.3.1 Antiviral Activity
11.3.2 Anti-inflammatory Activity
11.3.3 Protection of Cells from Free Radical Damage
11.3.4 Protection of the Cardiovascular System
11.4 Immune System Regulation
11.4.1 Potential Antiviral Mechanisms of EOs
11.4.2 Killing or Inactivating the Virus Directly
11.4.3 Inhibition of Viral Binding/Fusion and RNA Replication
11.4.4 The Mechanism of Action on Unenveloped Virus
11.5 Concluding Remarks
References
Chapter 12: Effect of Cinnamon on the Treatment of Alzheimer’s Disease
12.1 Introduction
12.2 Alzheimer’s Disease (AD)
12.3 The Main Factors Affecting the Quality of Electrospinning
12.3.1 Cholinergic Hypothesis
12.3.2 β-Amyloid Hypothesis
12.3.3 Hypothesis of Abnormal Phosphorylation of Tau Protein
12.3.4 Neuroinflammation Hypothesis
12.3.5 Oxidative Stress Hypothesis
12.4 Effect of Cinnamon on the Pathway of Alzheimer’s Disease
12.5 Other Plants with Anti-AD Activity
12.6 Concluding Remarks
References
Chapter 13: Adjuvant Therapeutic Effect of Cinnamon on Diabetes Mellitus
13.1 Introduction
13.2 Main Physiologically Active Components of Cinnamomum cassia
13.2.1 Cinnamon Essential Oil
13.2.2 Cinnamon Polyphenols
13.2.3 Cinnamon Polysaccharides
13.3 Pathological and Clinical Overview of Diabetes
13.4 Hypoglycemic Mechanism of Cinnamon
13.5 Improve Glucose and Lipid Metabolism and Insulin Resistance
13.5.1 Promote Insulin Secretion or Increase Insulin Sensitivity
13.5.2 Inhibit Inflammatory Response
13.5.3 Anti-lipid Peroxidation
13.5.4 Reduce Fasting Blood Glucose and Delay Gastric Emptying Time
13.6 Chinese Herbal Medicine for the Treatment of Diabetes
13.7 Conclusion and Prospect
References
Chapter 14: Anticancer Effect of Cinnamon
14.1 Introduction
14.2 Cinnamon and Cancer
14.3 Effect of Cinnamon on Apoptosis
14.4 Regulation of Growth Factors by Cinnamomum cassia
14.5 Regulation of Cell Cycle by Cinnamon
14.6 Inhibitory Effect of Cinnamon on Inflammation
14.7 Conclusion
References
Untitled
Chapter 15: The Application Potential of Cinnamon in Neuroprotection
15.1 Introduction
15.2 Cinnamon and Nervous System Diseases
15.2.1 Cinnamon and Alzheimer’s Disease
15.2.2 Cinnamon and Parkinson’s Disease
15.2.3 Cinnamon and Multiple Sclerosis
15.2.4 Cinnamon and Cerebral Ischemic Injury
15.2.5 Cinnamon and Anxiety as well as Depression
15.3 Research Advancements on Effects of Cinnamon on Nervous System Diseases
15.3.1 Inhibitory Effect of Cinnamon on Abnormal Phosphorylation of Tau Protein
15.3.2 Inhibitory Effect of Cinnamon on β-Amyloid (Aβ) Aggregation
15.3.3 Inhibitory Effect of Cinnamon on Abnormal Aggregation of α-Synuclein (Syn)
15.3.4 Inhibitory Effect of Cinnamon on Neuroinflammation
15.3.5 Anti-oxidative Stress Role of Cinnamon
15.4 Conclusion
References
Chapter 16: Hepatoprotective Efficacy of Cinnamon
16.1 Introduction
16.2 Chemical Composition of Cinnamon
16.3 Safety Studies of Cinnamon
16.4 Nonalcoholic Fatty Liver Disease (NAFLD)
16.5 Alcoholic Liver Disease
16.6 Liver Cirrhosis
16.7 Conclusion
References
Chapter 17: Safety Evaluation of Cinnamon or Cinnamon Extract
17.1 Introduction
17.2 Potential Side Effects of Cinnamon or Cinnamon Extract
17.3 General and Genetic Toxicology Studies of Cinnamon or Cinnamon Extracts
17.3.1 Subchronic Toxicity Tests
17.3.2 Genotoxicity Test
17.4 Clinical Safety Studies of Cinnamon and Cinnamon Extract
17.5 Safety Assessment Methods of Cinnamon or Cinnamon Extract
17.6 Conclusion
References
Index
Recommend Papers

Cinnamon: A Medicinal Plant and A Functional Food Systems (Food Bioactive Ingredients) [1st ed. 2023]
 303133504X, 9783031335044

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Food Bioactive Ingredients

Jian Ju Mozaniel Santana de Oliveira Yu Qiao

Cinnamon: A Medicinal Plant and A Functional Food Systems

Food Bioactive Ingredients Series Editor Seid Mahdi Jafari, Department of Food Materials and Process Design Engineering Gorgan University of Agricultural Sciences and Natural Resources Gorgan, Iran

The Food Bioactive Ingredients Series covers recent advances and research on the science, properties, functions, technology, engineering and applications of food bioactive ingredients and their relevant products. The series also covers health-­ related aspects of these bioactive components, which have been shown to play a critical role in preventing or delaying different diseases and to have many health-­ improving properties. The books in this series target professional scientists, academics, researchers, students, industry professionals, governmental organizations, producing industries and all experts performing research on functional food development, pharmaceuticals, cosmetics and agricultural crops.

Jian Ju Mozaniel Santana de Oliveira Yu Qiao

Cinnamon: A Medicinal Plant and A Functional Food Systems

Jian Ju Special Food Research Institute Qingdao Agricultural University Qingdao, China Yu Qiao Institute of Agro-Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan, China

Mozaniel Santana de Oliveira Museu Paraense Emílio Goeldi Adolpho Ducke Laboratory/Botanical Coordination Belém, Brazil

ISSN 2661-8958     ISSN 2661-8966 (electronic) Food Bioactive Ingredients ISBN 978-3-031-33504-4    ISBN 978-3-031-33505-1 (eBook) https://doi.org/10.1007/978-3-031-33505-1 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

I dedicate this work to my friends from Museu Paraense Emilio Goeldi: To my supervisor Eloisa Helena de Aguiar Andrade for her friendship and inspiration and especially to my parents Maria and Manoel de Oliveira, my wife Joyce Fontes, and my beautiful daughter Isabela de Oliveira. Thanks MCTI/CNPq and MPEG for the scholarship, number 301283/2023-0. Dr. Mozaniel de Oliveira

Contents

1

 The Main Varieties, Producing Areas of Cinnamon, and Market ������    1 1.1 Introduction��������������������������������������������������������������������������������������    1 1.2 Different Species of Cinnamon��������������������������������������������������������    2 1.2.1 Cinnamomum burmannii (Ness & T. Ness)��������������������������    2 1.2.2 Cinnamomum loureiroi ��������������������������������������������������������    3 1.2.3 Cinnamomum aromaticum����������������������������������������������������    4 1.2.4 Cinnamomum zeylanicum ����������������������������������������������������    4 1.3 An Overview of Cinnamon Production��������������������������������������������    5 1.4 Conclusions��������������������������������������������������������������������������������������    8 References��������������������������������������������������������������������������������������������������    8

2

 The Quality Evaluation of Cinnamon����������������������������������������������������   13 2.1 Introduction��������������������������������������������������������������������������������������   13 2.2 Volatile Oil and Extracts ������������������������������������������������������������������   14 2.3 Quality Assessment��������������������������������������������������������������������������   15 2.4 Technical Quality Analysis ��������������������������������������������������������������   16 2.4.1 HPLC Analysis ��������������������������������������������������������������������   16 2.4.2 GC–MS analysis ������������������������������������������������������������������   17 2.5 Spectroscopic Techniques Multivariate Analysis������������������������������   18 2.6 Conclusions��������������������������������������������������������������������������������������   19 References��������������������������������������������������������������������������������������������������   20

3

Aspects Morphological, Molecular, and Biochemical of Cinnamon ��������������������������������������������������������������������������������������������   23 3.1 Introduction��������������������������������������������������������������������������������������   23 3.2 Morphological Characterization of Cinnamon ��������������������������������   24 3.3 Molecular Characteristics of Cinnamon or Genetic Characterization��������������������������������������������������������������������������������   25 3.4 Biochemical Characterization of Cinnamon������������������������������������   26 3.5 Conclusion����������������������������������������������������������������������������������������   26 References��������������������������������������������������������������������������������������������������   27

vii

viii

Contents

4

 Bioactive Compounds and Extraction Methods of Cinnamon������������   29 4.1 Introduction��������������������������������������������������������������������������������������   29 4.2 Chemical Composition and Extraction Methods of Cinnamon Essential Oils��������������������������������������������������������������   30 4.2.1 Unconventional Extraction Method��������������������������������������   35 4.3 Antimicrobial Activities��������������������������������������������������������������������   36 4.3.1 Antibacterial��������������������������������������������������������������������������   36 4.3.2 Antifungal ����������������������������������������������������������������������������   40 4.4 Conclusion����������������������������������������������������������������������������������������   42 References��������������������������������������������������������������������������������������������������   43

5

 The Application of Cinnamon as a Spice in Food ��������������������������������   47 5.1 Introdution����������������������������������������������������������������������������������������   47 5.2 Antioxidant Properties����������������������������������������������������������������������   48 5.3 Cinnamon in Food����������������������������������������������������������������������������   53 5.4 Conclusion����������������������������������������������������������������������������������������   54 References��������������������������������������������������������������������������������������������������   54

6

 Pharmacological Effects of Cinnamon in Functional Foods����������������   57 6.1 Introduction��������������������������������������������������������������������������������������   57 6.2 Anti-inflammation����������������������������������������������������������������������������   58 6.3 Antioxidation������������������������������������������������������������������������������������   60 6.4 Antitumor������������������������������������������������������������������������������������������   60 6.5 Lowering Blood Sugar and Blood Lipids ����������������������������������������   62 6.6 Protecting Digestive System ������������������������������������������������������������   63 6.7 Other Functions��������������������������������������������������������������������������������   64 6.8 Clinical Applications������������������������������������������������������������������������   64 6.9 Conclusion����������������������������������������������������������������������������������������   65 References��������������������������������������������������������������������������������������������������   66

7

 Antioxidant Activity and Mechanism of Cinnamon ����������������������������   69 7.1 Introduction��������������������������������������������������������������������������������������   69 7.2 Oxidative Stress��������������������������������������������������������������������������������   70 7.2.1 Definition of Oxidative Stress����������������������������������������������   70 7.2.2 Free Radical��������������������������������������������������������������������������   71 7.2.3 The Cause of Free Radical Production ��������������������������������   71 7.3 The Mechanism of Oxidative Stress ������������������������������������������������   72 7.3.1 The Effect of Oxidative Stress on Lipids������������������������������   72 7.3.2 The Effect of Oxidative Stress on Protein����������������������������   73 7.3.3 The Effect of Oxidative Stress on DNA��������������������������������   75 7.4 Antioxidant Mechanism of Cinnamon Essential Oil������������������������   75 7.4.1 Scavenging Free Radicals ����������������������������������������������������   76 7.4.2 Chelation with Metal Ions����������������������������������������������������   76 7.4.3 Inhibit Lipid Peroxidation and Regulate the Level of Antioxidant Enzymes��������������������������������������������������������   77

Contents

ix

7.5 Relationship Between Active Components and Antioxidant Activity of Cinnamon Essential Oil�����������������������   78 7.6 Concluding Remarks������������������������������������������������������������������������   80 References��������������������������������������������������������������������������������������������������   80 8

 Inhibitory Mechanism of Cinnamon Essential Oil and Its Active Components Against Bacteria����������������������������������������������������������������   85 8.1 Introduction��������������������������������������������������������������������������������������   85 8.2 Antibacterial Mechanism of Cinnamon Essential Oil and Its Active Components ��������������������������������������������������������������   86 8.2.1 Damage to Cell Membrane ��������������������������������������������������   87 8.2.2 Inhibit the Activity of ATP Enzyme��������������������������������������   88 8.2.3 Inhibition of Filamentous Temperature-Sensitive Protein Z�������������������������������������������������������������������������������   91 8.2.4 Morphological Changes of Bacteria ������������������������������������   92 8.2.5 Inhibitory Effect on Membrane Porin����������������������������������   95 8.2.6 Effect on Genetic Material����������������������������������������������������   95 8.2.7 Effects on Respiration and Energy Metabolism ������������������   96 8.2.8 Inhibition of Exercise Ability and Biofilm Formation����������   96 8.2.9 Anti-quorum Sensing������������������������������������������������������������   97 8.3 Synergistic Effect of Cinnamon Essential Oil and Its Components with Antibacterial Agents��������������������������������   99 8.4 Commercial Application of Cinnamaldehyde����������������������������������  100 8.5 Limitations of Cinnamaldehyde in Commercial Application ����������  100 8.6 Concluding Remarks������������������������������������������������������������������������  101 References��������������������������������������������������������������������������������������������������  101

9

Inhibitory Mechanism of Cinnamon Essential Oil and Its Active Components Against Fungi��������������������������������������������  107 9.1 Introduction��������������������������������������������������������������������������������������  107 9.2 Physical and Chemical Properties of Essential Oil��������������������������  109 9.3 Cinnamon Essential Oil Inhibits Fungal Growth and Toxin Metabolism ��������������������������������������������������������������������������������������  109 9.4 Chemical Structure of Cinnamaldehyde ������������������������������������������  112 9.5 Artificial Synthesis of Cinnamaldehyde ������������������������������������������  112 9.6 Antifungal Mechanism of Cinnamaldehyde or Cinnamon Essential Oil��������������������������������������������������������������������������������������  113 9.7 Antifungal Activity of Cinnamaldehyde Derivatives������������������������  115 9.8 Synergistic Effect of Cinnamaldehyde and Antifungal Agents��������  116 9.9 Prospect��������������������������������������������������������������������������������������������  117 9.10 Concluding Remarks������������������������������������������������������������������������  119 References��������������������������������������������������������������������������������������������������  119

x

Contents

10 Inhibitory  Effect of Cinnamon Essential Oil and Its Active Components on Aspergillus Flavus and Its Toxin��������  125 10.1 Introduction������������������������������������������������������������������������������������  125 10.2 Physicochemical Properties and Biosynthesis of Aflatoxins����������  127 10.3 Current Situation and Strategy of Prevention and Control of Aflatoxin ������������������������������������������������������������������������������������  129 10.4 The Mechanism of Inhibiting Toxin Production����������������������������  131 10.5 Effects of Reactive Oxygen Species on Fungal Growth and Toxin Production����������������������������������������������������������������������  134 10.6 Concluding Remarks����������������������������������������������������������������������  137 References��������������������������������������������������������������������������������������������������  137 11 Antiviral  Activity and Mechanism of Cinnamon Essential Oil and Its Active Components���������������������������������������������������������������������  141 11.1 Introduction������������������������������������������������������������������������������������  141 11.2 Antiviral Activity of Volatile Compounds��������������������������������������  142 11.3 Potential Pharmacological Effects of Cinnamon on SARS-Co-2��������������������������������������������������������������������������������  144 11.3.1 Antiviral Activity����������������������������������������������������������������  144 11.3.2 Anti-inflammatory Activity������������������������������������������������  147 11.3.3 Protection of Cells from Free Radical Damage������������������  147 11.3.4 Protection of the Cardiovascular System����������������������������  152 11.4 Immune System Regulation������������������������������������������������������������  153 11.4.1 Potential Antiviral Mechanisms of EOs������������������������������  154 11.4.2 Killing or Inactivating the Virus Directly ��������������������������  154 11.4.3 Inhibition of Viral Binding/Fusion and RNA Replication��������������������������������������������������������������������������  154 11.4.4 The Mechanism of Action on Unenveloped Virus��������������  155 11.5 Concluding Remarks����������������������������������������������������������������������  156 References��������������������������������������������������������������������������������������������������  156 12 Effect  of Cinnamon on the Treatment of Alzheimer’s Disease������������  161 12.1 Introduction������������������������������������������������������������������������������������  161 12.2 Alzheimer’s Disease (AD)��������������������������������������������������������������  162 12.3 The Main Factors Affecting the Quality of Electrospinning����������  165 12.3.1 Cholinergic Hypothesis������������������������������������������������������  165 12.3.2 β-Amyloid Hypothesis��������������������������������������������������������  167 12.3.3 Hypothesis of Abnormal Phosphorylation of Tau Protein����������������������������������������������������������������������  168 12.3.4 Neuroinflammation Hypothesis������������������������������������������  169 12.3.5 Oxidative Stress Hypothesis ����������������������������������������������  169 12.4 Effect of Cinnamon on the Pathway of Alzheimer’s Disease ��������  169 12.5 Other Plants with Anti-AD Activity������������������������������������������������  171 12.6 Concluding Remarks����������������������������������������������������������������������  172 References��������������������������������������������������������������������������������������������������  173

Contents

xi

13 Adjuvant  Therapeutic Effect of Cinnamon on Diabetes Mellitus ������  179 13.1 Introduction������������������������������������������������������������������������������������  179 13.2 Main Physiologically Active Components of Cinnamomum cassia������������������������������������������������������������������  181 13.2.1 Cinnamon Essential Oil������������������������������������������������������  181 13.2.2 Cinnamon Polyphenols ������������������������������������������������������  183 13.2.3 Cinnamon Polysaccharides ������������������������������������������������  184 13.3 Pathological and Clinical Overview of Diabetes����������������������������  184 13.4 Hypoglycemic Mechanism of Cinnamon ��������������������������������������  184 13.5 Improve Glucose and Lipid Metabolism and Insulin Resistance��������������������������������������������������������������������  185 13.5.1 Promote Insulin Secretion or Increase Insulin Sensitivity ��������������������������������������������������������������������������  186 13.5.2 Inhibit Inflammatory Response������������������������������������������  187 13.5.3 Anti-lipid Peroxidation ������������������������������������������������������  187 13.5.4 Reduce Fasting Blood Glucose and Delay Gastric Emptying Time ������������������������������������������������������������������  188 13.6 Chinese Herbal Medicine for the Treatment of Diabetes����������������  188 13.7 Conclusion and Prospect����������������������������������������������������������������  190 References��������������������������������������������������������������������������������������������������  192 14 Anticancer  Effect of Cinnamon��������������������������������������������������������������  197 14.1 Introduction������������������������������������������������������������������������������������  197 14.2 Cinnamon and Cancer��������������������������������������������������������������������  199 14.3 Effect of Cinnamon on Apoptosis��������������������������������������������������  201 14.4 Regulation of Growth Factors by Cinnamomum cassia ����������������  209 14.5 Regulation of Cell Cycle by Cinnamon������������������������������������������  210 14.6 Inhibitory Effect of Cinnamon on Inflammation����������������������������  211 14.7 Conclusion��������������������������������������������������������������������������������������  212 References��������������������������������������������������������������������������������������������������  213 15 The  Application Potential of Cinnamon in Neuroprotection ��������������  217 15.1 Introduction������������������������������������������������������������������������������������  217 15.2 Cinnamon and Nervous System Diseases��������������������������������������  218 15.2.1 Cinnamon and Alzheimer’s Disease ����������������������������������  218 15.2.2 Cinnamon and Parkinson’s Disease������������������������������������  219 15.2.3 Cinnamon and Multiple Sclerosis��������������������������������������  220 15.2.4 Cinnamon and Cerebral Ischemic Injury����������������������������  221 15.2.5 Cinnamon and Anxiety as well as Depression��������������������  221 15.3 Research Advancements on Effects of Cinnamon on Nervous System Diseases����������������������������������������������������������  222 15.3.1 Inhibitory Effect of Cinnamon on Abnormal Phosphorylation of Tau Protein������������������������������������������  222 15.3.2 Inhibitory Effect of Cinnamon on β-Amyloid (Aβ) Aggregation������������������������������������������������������������������������  223

xii

Contents

15.3.3 Inhibitory Effect of Cinnamon on Abnormal Aggregation of α-Synuclein (Syn)��������������������������������������  223 15.3.4 Inhibitory Effect of Cinnamon on Neuroinflammation������  224 15.3.5 Anti-oxidative Stress Role of Cinnamon����������������������������  226 15.4 Conclusion��������������������������������������������������������������������������������������  227 References��������������������������������������������������������������������������������������������������  228 16 Hepatoprotective  Efficacy of Cinnamon������������������������������������������������  231 16.1 Introduction������������������������������������������������������������������������������������  231 16.2 Chemical Composition of Cinnamon���������������������������������������������  234 16.3 Safety Studies of Cinnamon������������������������������������������������������������  235 16.4 Nonalcoholic Fatty Liver Disease (NAFLD)����������������������������������  237 16.5 Alcoholic Liver Disease������������������������������������������������������������������  238 16.6 Liver Cirrhosis��������������������������������������������������������������������������������  240 16.7 Conclusion��������������������������������������������������������������������������������������  241 References��������������������������������������������������������������������������������������������������  243 17 Safety  Evaluation of Cinnamon or Cinnamon Extract������������������������  247 17.1 Introduction������������������������������������������������������������������������������������  247 17.2 Potential Side Effects of Cinnamon or Cinnamon Extract ������������  249 17.3 General and Genetic Toxicology Studies of Cinnamon or Cinnamon Extracts ��������������������������������������������������������������������  250 17.3.1 Subchronic Toxicity Tests ��������������������������������������������������  250 17.3.2 Genotoxicity Test����������������������������������������������������������������  251 17.4 Clinical Safety Studies of Cinnamon and Cinnamon Extract��������  252 17.5 Safety Assessment Methods of Cinnamon or Cinnamon Extract ��������������������������������������������������������������������������������������������  253 17.6 Conclusion��������������������������������������������������������������������������������������  254 References��������������������������������������������������������������������������������������������������  255 Index������������������������������������������������������������������������������������������������������������������  259

About the Authors

Jian Ju  has a Ph.D. At present, he is a professor and academic leader at the Special Food Research Institute of Qingdao Agricultural University. He is also a Taishan scholar-young expert in Shandong Province. His main responsibility at Qingdao Agricultural University is to lead team members to explore biodegradable antibacterial packaging containing plant active components and apply them to extend the shelf life of food. Dr. Ju Jian graduated from the School of Food, Jiangnan University. His main research direction is food preservation. He presided over and participated in the National Natural Science Foundation of China, the Special Fund for Taishan Scholars Project, the “Top Talent” Scientific Research Initiation Fund of the Special Support Program of Qingdao Agricultural University, the Jiangsu Postgraduate Innovation Project, and the Jiangnan University Excellent Doctoral Student Cultivation Fund. At present, he is the guest editor of Frontiers in Nutrition and Journal of Visualized Experiences. In addition, He is also a reviewer of international academic journals such as Journal of Ethnopharmacology, Colloids and Surfaces B: Biointerfaces, Phytomedicine, and International Food Research. In 2020, he was invited as a visiting scholar by the School of Bioengineering of the Swiss Federal Institute of Technology in Lausanne for academic exchanges. Over the years, Dr. Ju Jian has devoted himself to the research of the inhibitory effects of plant extracts on food-borne bacteria and fungi, especially the xiii

xiv

About the Authors

antibacterial mechanism of plant essential oils against microorganisms. He has successfully combined essential oil preservation technology with food processing and food packaging technology to reduce the potential harm of microorganisms and food packaging pollution to human body. At present, more than 40 related research papers have been published in this food preservation field. He has published three academic monographs. Furthermore, he has served several enterprises by providing technical support. Mozaniel  Santana  de Oliveira  graduated in Chemistry from the Federal University of Pará, Brazil. He obtained both a master’s and Ph.D. in Food Science and Technology from the same university. He has 13  years of professional experience. From 2010 to 2014, he worked on the chemistry of natural products at the Empresa Brasileira de Pesquisa Agropecuária (Embrapa), and from 2014 to 2018, he worked in the Postgraduate Program in Food Science and Technology at the Federal University of Pará, specifically with essential oils. Since 2020, he has been a researcher for the Institutional Training Program – PCI, at the institution Museu Paraense Emilio Goeldi, linked to the Ministério da Ciência, Tecnologia e Inovações of Brazil (MCTI), with studies focused on extraction, characterization chemistry, and applications of essential oils in several industrial segments, among them the food industry. Specifically, Dr. Oliveira has experience in engineering, food science and technology, pharmacology and drug discovery, medicinal chemistry, ethnopharmacology and ethnobotany, phytochemistry, methods of extraction of bioactive compounds, biotechnology of natural products, and allelopathy to find new natural herbicides to control invasive plants. He also has experience in the area of essential ​​ oil extraction using supercritical technology and conventional methods. Since 2020, he has supervised and co-supervised master’s and Ph.D. students in several graduate programs. Dr. Oliveira has an H index of 18 on the Web  of Science, 16 on Scopus, and 20 on Google Scholar. Additionally, he serves as a reviewer for 50 international scientific journals and is the academic editor of the journals PLOS One, Evidence-­Based Complementary and Alternative Medicine, Journal of

About the Authors

xv

Food Quality, Molecules, Open Chemistry, Frontiers in Plant Science, and Frontiers in Pharmacology. Yu  Qiao  has graduated from Huazhong Agricultural University. Since 2008, she worked in the Institute of Agro-Product Processing and Nuclear Agricultural Technology at the Hubei Academy of Agricultural Science. Her main research direction is agricultural products preservation. She has experience in food flavor, food science and technology, food quality changes during storage and transport, irradiation preservation technology, essential oil extraction, and component analysis. She has successfully applied essential oil preservation technology in strawberries and mulberries to prolong the storage period. Dr. Qiao has undertaken more than 10 projects in products processing, storage, and transportation, including National Natural Science Foundation projects, National Science and Technology Support Program project, and the National Key Technology R&D Program of China, Major Program of Technical Innovation of Hubei Province. Currently, she has published more than 50 academic papers and authorized 12 patents of China. Since 2015, she has supervised and co-supervised 15 master’s students in several graduate programs. Additionally, she is also a reviewer of international academic journals such as Food Chemistry, Journal of Agricultural and Food Chemistry, Food Research International, LWT  – Food Science and Technology, Journal of the Science of Food and Agriculture, and Journal of Food Processing and Preservation. Furthermore, she has served more than 10 food processing enterprises by providing technical support.

Chapter 1

The Main Varieties, Producing Areas of Cinnamon, and Market

Abstract  Cinnamon is an important commodity for several countries. Among the more than 250 known species, four have the highest added values: C. zeylanicum sin. C. verum, C. burmannii, C. loureiroi, C. aromaticum. These varieties are responsible for approximately 90% of the world market for the production and sale of manufactured products, such as powder, bark, extracts, and essential oils, for food industries, pharmaceuticals, and cosmetics. Keywords  Natural product · Cinnamon · Spice · Species · Industry

1.1 Introduction Cinnamon has been used by humans for more than four thousand years and remains a crop of great commercial interest (Wijesekera and Chichester 1978; Blahová and Svobodová 2012; Huang et  al. 2016) for various industrial sectors (Song et  al. 2020). Among the more than 250 cinnamon species cataloged (Kojoma et al. 2002; Mbaveng and Kuete 2017), the species of greatest commercial interest are Cinnamomum cassia Blume, C. zeylanicum Blume (sin. C. verum JS Presl.), C. tamala Nees e C. camphora Seib. Other species are also grown as a spice, such as Chinese cassia (C. cassia), Vietnamese cinnamon or Saigon (C. loureiroi), Indonesian cinnamon (C. burmannii), and Malabar cinnamon (C. citriodorum). Of these, C. zeylanicum is the most used commercial species worldwide and is widely cultivated in Sri Lanka and India. In addition, cinnamon management must be carried out at altitudes above sea level, ranging from 300 to 1000  m, at an average temperature of approximately 27 °C (Prabhuji et al. 2021). These main cinnamon varieties corresponded to a global market of approximately USD 760.2 million in 2018. This growth trend may be related to exports to the United States; however, for some producing countries such as Indonesia, exports to the United States are declining, which may be related to the low growth of the American GDP and the price of this commodity (Putri et al. 2020; Varma 2022).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 J. Ju et al., Cinnamon: A Medicinal Plant and A Functional Food Systems, Food Bioactive Ingredients, https://doi.org/10.1007/978-3-031-33505-1_1

1

2

1  The Main Varieties, Producing Areas of Cinnamon, and Market

The cinnamon marker is related to its organoleptic characteristics, such as aroma and flavor, in addition to the concentration of coumarins (Lungarini et  al. 2008; Starowicz et al. 2018; Fadel et al. 2019; Lopes et al. 2022). Introducing new cultivars with lower coumarin content for added value has been proposed, since these substances can be harmful to human health. However, the vast majority of markets still do not have specific regulations regarding the concentration of coumarins in cinnamon, in addition to the introduction of new agro-technologies and policy interventions (Pathirana and Senaratne 2020). This chapter presents important information about the main species of cinnamon sold in the world, their places of origin, and explains the valuable market of this spice.

1.2 Different Species of Cinnamon Cinnamon corresponds to a wide variety of plants, belonging to the Cinnamomum species; among these species of the Lauraceae family, four are highlighted in the food, pharmacological, and cosmetic industries, including Cinnamomum cassia (sin. C. aromaticum) known as Cassia or cinnamon Chinese, this being the most common, C. burmannii, C. loureiroi, and C. zeylanicum (syn. Cinnamomum Verum). Table 1.1 presents the information about the main species and their respective commercial names (Prasad et  al. 2009; Mbaveng and Kuete 2017; Sharifi-Rad et al. 2021).

1.2.1  Cinnamomum burmannii (Ness & T. Ness) Cinnamomum burmannii is a shrub, commonly known as Indonesian cassia, Batavia cassia, and Padang cassia. Indonesian cinnamon is cultivated in the Malaysian-­ Indonesia regions and is marketed in the Indonesian islands; however, this species is cultivated more extensively in the islands of Sumatra, Java, Jambi, and Timor (Budiastuti et al. 2020). Cinnamon from Indonesia is commonly used as a medicinal Table 1.1  Main species and commercial names of Cinnamomum cassia Scientific name C. zeylanicum sin. C. verum

C. burmannii C. loureiroi C. aromaticum

Commercial name Ceylon Cinnamon True Cinnamon Mexican Cinnamon Indonesian Cinnamon Korintje Cinnamon, Padang Cassia Saigon cinnamon, Vietnamese Cassia. Vietnamese Cinnamon Cassia Cinnamon or Chinese Cinnamon

1.2  Different Species of Cinnamon

3

Fig. 1.1  Leaves and rolls of cinnamon from Indonesia

plant. In a recent study, Ervina et al. (2019) demonstrated that extracts of C. burmannii rich in phenolic compounds are able to inhibit radicals such as DPPH, can also interact with the enzyme α-glucosidase causing its inhibition, and can be a source of bioactive compounds for antidiabetic applications. In addition, essential oils isolated from C. burmannii bark have several compounds of commercial interest such as cinnamaldehyde (68.3–82%), cinnamyl acetate (2.5–16%), cinnamyl alcohol (2.25–4.6%), cinnamic acid (3–8%) (Fajar et al. 2019), eugenol (17.62%), trans-Cinnamaldehyde (60.17%), coumarin (13.39%) (Wang et  al. 2009), 1,8-cineole (6.9–52.9%), borneol (1.7–34.2%), camphor (0–9.8%), terpinen-4-ol (4.1–9.3%), and α-terpineol (6.4–13.0%) (Ji et al. 1991); differences in chemical composition in terms of major compounds may be related to the year and place of sample collection, as well as chemotypes (Li et al. 2022). Figure 1.1 shows leaves and rolls of cinnamon bark from Indonesia.

1.2.2  Cinnamomum loureiroi Cinnamomum loureiroi is a spice also called cinnamon, which is increasingly gaining commercial popularity. Originating in Vietnam, it is used as a food condiment for aroma and flavor (Opara and Chohan 2021). This species is characterized by a significantly higher amount of coumarin compared to Ceylon cinnamon bark (Drobac et al. 2020). Coumarins are found in several plant species and have a pleasant aroma; however, these substances can cause hepatotoxic effects when ingested in large quantities. Vietnam cinnamon has shown significant levels of coumarins and is considered a frequent source of human exposure to this secondary metabolite (Lončar et al. 2020). The coumarin content is one of the criteria used to evaluate the quality and origin of cinnamon (Sowa et al. 2019). However, this species is very important commercially, as it has demonstrated important biological activities, such as antibacterial, anti-diabetic, anti-fungal, antioxidant, antirheumatic, anti-­ thrombotic, and anti-tumor activities. In addition, other constituents can be found,

4

1  The Main Varieties, Producing Areas of Cinnamon, and Market

Fig. 1.2 Vietnamese cinnamon, leaves, bark and powder

such as cinnamyl alcohol, cinnamic acid, anthocyanin, cinnamaldehyde, essential oils, sugar, crude fats protein, pectin, and others (Al-Dhubiab 2012). Figure  1.2 shows the leaves, bark, and cinnamon powder from Vietnam.

1.2.3  Cinnamomum aromaticum Cinnamomum aromaticum is a spice widely used in Asian countries. This species, C. aromaticum (= C. cassia (L.) Bercht. & Presl. and C. cassia D. Don), also known as Chinese cinnamon or Chinese cassia, originating in southern China, is the most widely cultivated species in tropical and subtropical Asia for their aromatic bark to produce cinnamon (Islam et al. 2009; Xie et al. 2019). In addition, this kind of cinnamon is widely used as an adulterant (Parihar et al. 2021) and in the food industry, as it has shown important antimicrobial, anti-infective, antioxidant activities, among others, which may be related to its economic importance (Ranasinghe et al. 2002; Zenner et al. 2003; Subekti and Saputri 2019; Kačániová et al. 2021; Lang et al. 2021). Figure 1.3 shows the species of. cassia, leaves, bark, and powder.

1.2.4  Cinnamomum zeylanicum Cinnamomum zeylanicum Blume (“Ceylon cinnamon/true cinnamon”) is native to Sri Lanka. This species is an important spice and aromatic culture with wide applications in food, medicine, and cosmetics. This species of Cinnamon is also known as the true one. Its essential oil and extracts contain several bioactive compounds of commercial interest, especially eugenol, (E)-Cinnamyl acetate (E)-caryophyllene, cinnamic acid, and cinnamate (Jayaprakasha et  al. 2003; Pandey et  al. 2020). In addition, the essential oil of C. zeylanicum can be an alternative for use in animal management cultures (poultry), as it has shown potential antimicrobial activity

1.3  An Overview of Cinnamon Production

5

Fig. 1.3  Cinnamomum aromaticum, leaves, bark, and powder

Fig. 1.4  Leaves and bark of Cinnamomum zeylanicum

against pathogens that can cause deterioration in poultry (Abd El-Hack et al. 2020; Alizadeh Behbahani et  al. 2020). Figure  1.4 shows the images of C. zeylanicum leaves and bark.

1.3 An Overview of Cinnamon Production Global data has shown that cinnamon production has increased over the years. Sri Lankan production, for example, accounts for 90% of Ceylon cinnamon in the global market (De Silva and Esham 2020). The implementation of models to improve agricultural management and marketing of cinnamon, to access large markets, can be associated with increasing farmers’ knowledge of standard regulation. In this way, they improve the added value of the cinnamon commodity. However,

6

1  The Main Varieties, Producing Areas of Cinnamon, and Market

because traditional cultivation does not add value to the producer, they can opt for a standard production model such as Korintje Cinnamon products to improve their income and livelihoods (Menggala and Damme 2018; Baldin et al. 2021; Menggala et al. 2021). Cinnamon is predicted to be in significant demand in various industrial areas such as food, cosmetics, and pharmaceuticals (Nabavi et al. 2015). Globally, there is a growth trend of 14.2% from 2019 to 2025, with Ceylon cinnamon being the main driver of growth, which has been dominating the market since 2018 and will tend to remain in the lead until 2025 (Forecasts 2022). Menggala and Damme (2018) list a series of measures to improve cinnamon production until reaching market: Process improvement, where the transforming production process will reorganize or improve processing technology; Product development, where natural products will develop into diverse and more sophisticated product lines, with higher values per unit volume; Functional improvement, which refers to cases where new and superior functions will draw up in the value chains; Inter-sectoral upgrading, which occurs when new research or technology enables a product to shift from one sector to a different “new area”; Access to end-­ market; Access to skills and capacity improvement; Collaboration and cooperative building; Access to finance and incentives. In addition, several products can be obtained from the processing of cinnamon such as power, bark, sticks, tubes, essential oil, and extract (Jeyaratnam et al. 2016; Muhammad and Dewettinck 2017). From the official data in Tables 1.2 and 1.3, we can observe the production of cinnamon in recent years, 2015–2020. The largest producers according to data from Table 1.2  Cinnamon production of the main world exporters from 2015 to 2020, origin (FAO 2022) Country or area Africa Americas Asia Caribbean China China, mainland Africa Americas Asia Caribbean China China, mainland Africa Americas Asia Caribbean

Element Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production

Year 2015 2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2016 2017 2017 2017 2017

Unit Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes

Value 3398.00 136.00 219,501.00 136.00 74,502.00 74,502.00 2888.00 133.00 217,981.00 133.00 71,682.00 71,682.00 3498.00 135.00 219,873.00 135.00

Value footnotes A A A A A Im A A A A A Im A A A A (continued)

1.3  An Overview of Cinnamon Production

7

Table 1.2 (continued) Country or area China China, mainland Africa Americas Asia Caribbean China China, mainland Africa Americas Asia Caribbean China China, mainland Africa Americas Asia Caribbean China China, mainland

Element Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production Production

Year 2017 2017 2018 2018 2018 2018 2018 2018 2019 2019 2019 2019 2019 2019 2020 2020 2020 2020 2020 2020

Unit Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes

Value 72,410.00 72,410.00 3573.00 137.00 219,925.00 137.00 72,865.00 72,865.00 3594.00 138.00 219,682.00 138.00 72,319.00 72,319.00 3752.00 138.00 218,232.00 138.00 72,531.00 72,531.00

Value footnotes A Im A A A A A Im A A A A A Im A A A A A Im

Footnotes: A – Aggregate, may include official, semi-official, estimated or calculated data; Im – FAO data based on imputation methodology

Table 1.3  Main cinnamon exporting countries in the world, origin (Tridge 2022)

Rank country China Vietnam Indonesia Netherlands United Arab Emirates Sri Lanka Germany India Spain Madagascar

Share in export value in 2021 56.15% 27.70% 10.15% 0.82% 0.76% 0.75% 0.66% 0.43% 0.33% 0.31%

Export value 2021, USD in million $ 267.78 $ 132.12 $ 48.39 $ 3.89 $ 3.65

1-year growth in export value 2020–2021 −5.70% 35.54% 28.25% 68.58% 36.18%

3-year growth in export value 2018–2021 132.49% 150.74% 40.86% 202.26% 95.69%

$ 3.60 $ 3.14 $ 2.05 $ 1.58 $ 1.46

−34.29% −20.87% 44.54% 183.77% 17.31%

−56.40% 39.60% 65.28% 298.82% −35.08%

8

1  The Main Varieties, Producing Areas of Cinnamon, and Market

the Food and Agriculture Organization of the United Nations – FAO (2022) are the countries of Asia. Table 1.2. presents data from Your Global Sourcing Hub – Tridge (2022) on the 10 largest exporters of cinnamon in the world. In 2021, China obtained the most income from the export of cinnamon in the world, even with a 5.70% export loss from 2020 to 2021. In proportional terms, Spain had the most increased exports, with an increase of 183.77% from 2020 to 2021 and 298.82% from 2018 to 2021 (Table 1.3).

1.4 Conclusions Products derived from Cinnamomum species are important promoters of the economy in developing countries, and varieties such as Cinnamomum zeylanicum and Cinnamon cassia are the most important. In addition, it is well known that Sri Lanka is a great exporter, while China and Vietnam have gained space in the world scenario of exporters of products derived from cinnamon to major world markets such as Europe, Japan, and the USA. Acknowledgments  Dr. Mozaniel Santana de Oliveira, thanks PCI-MCTI/MPEG, Process number: 300983/2022-0. Conflicts of Interest  The authors declare no conflict of interest. Funding  This review received no external funding.

References Abd El-Hack ME, Alagawany M, Abdel-Moneim A-ME, Mohammed NG, Khafaga AF, Bin-­ Jumah M, Othman SI, Allam AA, Elnesr SS (2020) Cinnamon (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry. Antibiotics 9:210 Al-Dhubiab BE (2012) Pharmaceutical applications and phytochemical profile of Cinnamomum burmannii. Pharmacogn Rev 6:125 Alizadeh Behbahani B, Falah F, Lavi Arab F, Vasiee M, Tabatabaee Yazdi F (2020) Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evidence-Based Complement Altern Med 2020:1–8 Baldin M, Breunig T, Cue R, De Vries A, Doornink M, Drevenak J, Fourdraine R, George R, Goodling R, Greenfield R, Jorgensen MW, Lenkaitis A, Reinemann D, Saha A, Sankaraiah C, Shahinfar S, Siberski C, Wade KM, Zhang F, Fadul-Pacheco L, Wangen S, da Silva TE, Cabrera VE (2021) Integrated decision support systems (idss) for dairy farming: a discussion on how to improve their sustained adoption. Animals 11:2025 Blahová J, Svobodová Z (2012) Assessment of coumarin levels in ground cinnamon available in the Czech retail market. Sci World J 2012:1–4 Budiastuti B, Andiniusnia W, Cahyasarl IA, Primaharinastiti R, Sukardiman S (2020) Standardization bark of Cinnamomum burmannii nees Ex Bl. from five areas of Indonesia. Pharm J 12:578–588 De Silva AM, Esham M (2020) Ceylon cinnamon production and markets. In: Senaratne R, Pathirana R (eds) Cinnamon: botany, agronomy, chemistry and industrial applications, 1st edn. Springer, Cham, pp 63–84

References

9

Drobac M, Arsenijević J, Kovačević N (2020) The content of coumarin in the commercial samples of cinnamon bark and cinnamon-containing dietary supplements available on the Serbian market. Acta Aliment 49:263–269 Ervina M, Lie HS, Diva J, Caroline, Tewfik S, Tewfik I (2019) Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antidiabetic and antioxidant activities. Biocatal Agric Biotechnol 19:101152 Fadel HHM, Hassan IM, Ibraheim MT, Abd El Mageed MA, Saad R (2019) Effect of using cinnamon oil encapsulated in maltodextrin as exogenous flavouring on flavour quality and stability of biscuits. J Food Sci Technol 56:4565–4574 Fajar A, Ammar GA, Hamzah M, Manurung O, Abduh uhammad Y (2019) Effect of tree age on the yield, productivity, and chemical composition of essential oil from Cinnamomum burmannii. Curr Res Biosci Biotechnol 1:17–22 FAO (2022) Cinnamon. In: Undata a word informations. FAOSTAT | The Food and Agriculture Organization. http://data.un.org/Data.aspx?q=production&d=FAO&f=itemCode%3A693%3B elementCode%3A5510#f_A. Accessed 16 Nov 2022 Forecasts RAS (2022) Cinnamon market size, share & trends analysis report by product (Ceylon, Cassia, Saigon, Korintje), by application (residential, commercial), by region, and segment forecasts, 2019–2025. In: Grandviewresearch Huang J-F, Li L, van der Werff H, Li H-W, Rohwer JG, Crayn DM, Meng H-H, van der Merwe M, Conran JG, Li J (2016) Origins and evolution of cinnamon and camphor: a phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol Phylogenet Evol 96:33–44 Islam R, Khan RI, Al-Reza SM, Jeong YT, Song CH, Khalequzzaman M (2009) Chemical composition and insecticidal properties of Cinnamomum aromaticum (Nees) essential oil against the stored product beetle Callosobruchus maculatus (F.). J Sci Food Agric 89:1241–1246 Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2003) Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. J Agric Food Chem 51:4344–4348 Jeyaratnam N, Nour AH, Kanthasamy R, Nour AH, Yuvaraj AR, Akindoyo JO (2016) Essential oil from Cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Ind Crop Prod 92:57–66 Ji X, Pu Q, Garraffo HM, Pannell LK (1991) Essential oils of the leaf, bark and branch of Cinnamomum buramannii blume. J Essent Oil Res 3:373–375 Kačániová M, Galovičová L, Valková V, Tvrdá E, Terentjeva M, Žiarovská J, Kunová S, Savitskaya T, Grinshpan D, Štefániková J, Felsöciová S, Vukovic N, Kowalczewski PŁ (2021) Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chem 19:214–227 Kojoma M, Kurihara K, Yamada K, Sekita S, Satake M, Iida O (2002) Genetic identification of cinnamon (Cinnamomum spp.) based on the trnL-trnF chloroplast DNA. Planta Med 68:94–96 Lang M, Montjarret A, Duteil E, Bedoux G (2021) Cinnamomum cassia and Syzygium aromaticum essential oils reduce the colonization of Salmonella Typhimurium in an in vivo infection model using caenorhabditis elegans. Molecules 26:5598 Li F, Huang S, Mei Y, Wu B, Hou Z, Zhan P, Hou Z, Huang W, Zhao J, Wang J (2022) Genome assembly provided new insights into the Cinnamomum burmannii evolution and D-borneol biosynthesis differences between chemotypes. Ind Crop Prod 186:115181 Lončar M, Jakovljević M, Šubarić D, Pavlić M, Služek VB, Cindrić I, Molnar M (2020) Coumarins in food and methods of their determination. Foods 9(5):645. https://doi.org/10.3390/ foods9050645 Lopes JDS, Lima ABS de, Cangussu RR da C, Silva MV da, Ferrão SPB, Santos LS (2022) Application of spectroscopic techniques and chemometric methods to differentiate between true cinnamon and false cinnamon. Food Chem 368:130746 Lungarini S, Aureli F, Coni E (2008) Coumarin and cinnamaldehyde in cinnamon marketed in Italy: a natural chemical hazard? Food Addit Contam Part A 25:1297–1305

10

1  The Main Varieties, Producing Areas of Cinnamon, and Market

Mbaveng AT, Kuete V (2017) Cinnamon species. In: Kuete V (ed) Medicinal spices and vegetables from Africa, 1st edn. Elsevier, Cambridge, MA, pp 385–395 Menggala SR, Damme PV (2018) Improving Indonesian cinnamon (c. burmannii (Nees & t. nees) blume) value chains for greater farmers incomes. IOP Conf Ser Earth Environ Sci 129:012026 Menggala SR, Vanhove W, Muhammad DRA, Rahman A, Speelman S, Van Damme P (2021) The effect of geographical indications (GIs) on the Koerintji cinnamon sales price and information of origin. Agronomy 11:1410 Muhammad DRA, Dewettinck K (2017) Cinnamon and its derivatives as potential ingredient in functional food – a review. Int J Food Prop 20:1–27 Nabavi S, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi S (2015) Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients 7:7729–7748 Opara EI, Chohan M (2021) Culinary herbs and spices, 1st edn. Royal Society of Chemistry, Cambridge Pandey DK, Chaudhary R, Dey A, Nandy S, Banik RM, Malik T, Dwivedi P (2020) Current knowledge of cinnamomum species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. In: Singh J, Meshram V, Gupta M (eds) Bioactive natural products in drug discovery, bioactive. Springer Singapore, Singapore, pp 127–164 Parihar AKS, Kulshrestha M, Sahu U, Karbhal KS, Inchulkar SR, Shah K, Chauhan NS (2021) Quality control of Dalchini (Cinnamomum zeylanicum): a review. Adv Tradit Med 23(15):1–10 Pathirana R, Senaratne R (2020) An introduction to Sri Lanka and its cinnamon industry. In: Senaratne R, Pathirana R (eds) Cinnamon: botany, agronomy, chemistry and industrial applications. Springer, Cham, pp 1–38 Prabhuji SK, Rao GP, Pande S, Richa, Srivastava GK, Srivastava AK (2021) Cinnamomum species: spices of immense medicinal and pharmacological values. Med Plant – Int J Phytomed Relat Ind 13:202–220 Prasad KN, Yang B, Dong X, Jiang G, Zhang H, Xie H, Jiang Y (2009) Flavonoid contents and antioxidant activities from Cinnamomum species. Innov Food Sci Emerg Technol 10:627–632 Putri IU, Sentosa SU, Syofyan E (2020) Analysis of factors affecting Indonesia’s cinnamon exports to the United States. In: Proceedings of the 4th Padang international conference on education, economics, business and accounting (PICEEBA-2 2019). Atlantis Press, Paris Ranasinghe L, Jayawardena B, Abeywickrama K (2002) Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M.Perry against crown rot and anthracnose pathogens isolated from banana. Lett Appl Microbiol 35:208–211 Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, Goloshvili T, Cirone Silva NC, Bouyahya A, Vitalini S, Varoni EM, Martorell M, Abdolshahi A, Docea AO, Iriti M, Calina D, Les F, López V, Caruntu C (2021) Cinnamomum species: bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol 12:600139 Song E, Gress DR, Andriesse E (2020) Global production networks and (distributional) regional development: the cinnamon industry in Karandeniya and Matale, Sri Lanka. J South Asian Dev 15:209–237 Sowa P, Tarapatskyy M, Puchalski C, Dżugan M (2019) Quality evaluation of cinnamon marketed in Poland on the basis of determining ratio of cinnamaldehyde-to-coumarin content. Zywn Nauk Technol Jakosc/Food Sci Technol Qual 121:113–125 Starowicz M, Koutsidis G, Zieliński H (2018) Sensory analysis and aroma compounds of buckwheat containing products – a review. Crit Rev Food Sci Nutr 58:1767–1779 Subekti N, Saputri R (2019) The application of Cinnamomum aromaticum nanoparticle and chlorpyrifos for controlling Tribolium castaneum. AIP Conf Proc 2155(1):020018 Tridge (2022) Cinnamon. In: Globle Sourcing Hub Food Agriculture. https://www.tridge.com/ intelligences/cinnamon. Accessed 16 Nov 2022 Varma J (2022) Cinnamon: market analysis, 2017–2030. San Francisco Wang R, Wang R, Yang B (2009) Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov Food Sci Emerg Technol 10:289–292

References

11

Wijesekera ROB, Chichester CO (1978) The chemistry and technology of cinnamon. CRC Crit Rev Food Sci Nutr 10:1–30 Xie P, Lin S, Lai Q, Lian H, Chen J, Zhang Q, He B (2019) The complete plastid genome of Chinese cinnamon, Cinnamomum aromaticum Nees (Lauraceae). Mitochondrial DNA Part B 4:3831–3833 Zenner L, Callait MP, Granier C, Chauve C (2003) In vitro effect of essential oils from Cinnamomum aromaticum, Citrus limon and Allium sativum on two intestinal flagellates of poultry, Tetratrichomonas gallinarum and Histomonas meleagridis. Parasite 10:153–157

Chapter 2

The Quality Evaluation of Cinnamon

Abstract  Cinnamon has been used for many years as a food additive and as a source of bioactive compounds to improve the quality of life of humans. However, it is important to report that these products can be adulterated and lose quality. Toxicity of this food condiment can cause intoxication; therefore, research is necessary to analyze the quality of cinnamon samples commercialized worldwide. Analytical techniques and mathematical methods applied to chemical composition have shown efficiencies for detecting adulteration and evaluating cinnamon quality. Keywords  Essential oil · Extract · Analytical methods · Bioactive compounds

2.1 Introduction For several centuries, humans have sought plants to cure diseases and illnesses; in addition, plants have been used as a source of spices for foods, additives, preventing lipid oxidation, or as antimicrobial agents (Cava-Roda et al. 2021; Mishra 2022; Wu et al. 2022). Among the natural condiments, cinnamon stands out, which has been used as a seasoning and as herbal medicine for many decades. Preclinical results have shown that cinnamon has anti-inflammatory, antimicrobial, antioxidant, antitumor, cardiovascular cholesterol-lowering effects, and acts as an immunomodulator (Gruenwald et al. 2010). Cinnamon offers several medicinal properties, such as carminative, tonic, astringent, antispasmodic, antiseptic, aperient, sedative, stimulant, digestive, antioxidant, hypertensive, aromatic, vasodilator and aphrodisiac, in addition to inhibiting the mycelial development of fungi (Ribeiro-Santos et al. 2017; Cava-Roda et al. 2021). C. cassia Presl, popularly known as cinnamon, has several biological activities. Among several components, cinnamic aldehyde stands out. Industries have tried to use oils due to their proven action against bacteria and as antioxidants (Huang et al. 2014; Vu et al. 2020; Li et al. 2021). Figure 2.1 shows a sample of cinnamon. In addition, the quality control of cinnamon samples is of great importance for the food and pharmaceutical industry, as the potential fraud in this can increase the © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 J. Ju et al., Cinnamon: A Medicinal Plant and A Functional Food Systems, Food Bioactive Ingredients, https://doi.org/10.1007/978-3-031-33505-1_2

13

14

2  The Quality Evaluation of Cinnamon

Fig. 2.1  Cinnamon from China

toxicity of the bark powder. Therefore, several authors have reported the use of different analytical techniques to assess the quality of this product (Lopes et al. 2022; Cantarelli et al. 2020). The analytical techniques used for fraud detection include (ATR-FTIR) spectroscopy and chemometrics (da Silva Bruni et  al. 2021), NMR (Farag et al. 2018), UPLC–MS and GC–MS (Farag et al. 2022), among others. In this sense, the present work aims to review the literature and summarize information related to quality and techniques to detect potential fraud in cinnamon samples.

2.2 Volatile Oil and Extracts Volatile oils, also known as essential oils, are biosynthesized in the secondary metabolism of plants, and their main functions are plant protection and growth (Cascaes et al. 2021; Oliveira 2022). Cinnamon species have been reported in the literature as promising for the production of essential oils (Becerril et  al. 2012; Nwanade et  al. 2021). In addition, they have demonstrated numerous biological properties that will be discussed in later chapters. Figure 2.2 shows a summary of the main metabolic pathways that produce essential oils, and Table 2.1 lists the main species of cinnamon rich in essential oils. Zhang et al. (2016) studied the biological properties of Cinnamon sp. essential oil rich in compounds such as cinnamaldehyde (92.40%), trans-cinnamaldehyde (2.73%), and benzaldehyde with a concentration of (1.52%), being considered a potential way to control microorganisms present in food. In addition, extracts from different parts of cinnamon have been shown to be rich in bioactive compounds with application in food science and technology (Ahmadi et al. 2021; Liang et al. 2019), such as Cinnamomum verum, a potential inhibitor of α-amylase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase enzymes. These extracts are rich in compounds such as p-hydroxybenzoic acid, p-coumaric

2.3  Quality Assessment

15

Fig. 2.2  Biosynthesis of essential oil. Summary of the biosynthetic pathway of secondary metabolism of plants in the production of different kinds of composts of natural origin. Abbreviations; FPP farnesyldiphosphate, DTS Diterpene synthase, GGPP geranylgeranyldiphosphate, GPP geranyldiphosphate, IPP isopentenyl pyrophosphate, GLVs green-leaf volatiles, MTS Monoterpene synthase, DAHP 3-deoxy-D-arabinoheptulosonate-7 phosphate, STS Sesquiterpene synthase, PEP phosphoenolpyruvate, Phe phenylalanine, E4P erythrose 4-phosphate. (Adapted from Oliveira et al. 2018)

acid, pyrogallol, and ferulic acid. In general, several phenolic compounds can be found in different cinnamon species and can be used as one of the quality characteristics of this species (Pashazadeh et al. 2020). Figure 2.3 shows a summary of the biosynthesis of some phenolic compounds.

2.3 Quality Assessment Quality assessment methods require the use of data analysis, where they can exemplify the degree of compliance, standards, and criteria that are predetermined. For example, if the producer’s quality is not within the pre-established standards, corrective assessment actions should be applied to reassess the quality for other periods of time (Batini et al. 2009). Reports in the literature on cinnamon quality are related

16

2  The Quality Evaluation of Cinnamon

Fig. 2.3  Distribution of secondary metabolites in each class. The phenolic compounds present include flavonoids, phenolic acids, and simple coumarins. The latter is the simplest phenolic compound and is biosynthesized from the benzoic and cinnamic acids. (The figure is licensed for use and is adapted from Marchiosi et al. 2020)

to chemical composition and low toxicity for both extracts and essential oils (Park et al. 2004).

2.4 Technical Quality Analysis 2.4.1 HPLC Analysis The high-performance liquid chromatography (HPLC) method of analysis is one of the most used instrumental techniques in analytical chemistry, as it allows the separation and analysis of a wide variety of compounds of greater polarity, such as compounds present in extracts of cinnamon; therefore, authors have used this analytical technique to carry out several quality studies. This technique allows the analysis of possible adulterations and additions of components that are not part of the plant matrix, for example (Ramanunny et al. 2022; Li et al. 2020; Williams et al. 2015; Zhang and Zhang 2019). Table 2.1 lists work from different authors who used the HPLC analytical method to analyze the quality of different species of cinnamon.

2.4  Technical Quality Analysis

17

Table 2.1  Compounds identified in cinnamon species using HPLC Species Cinnamomum verum Presl C. zeylanicum

Identified compounds (−) Epicatechin, myricetin, and luteolin

Cinnamon-flavored

Cinnamaldehyde, 2-methoxycinnamaldehyde, dipropylene glycol, and vanillin Coumarin

Unidentified, product purchased in industry

Cinamic acid, methyl eugenol, and cinnamaldehyde

Local market

Tannic acid

Cinnamomum spp.

Trans-Cinnamic acid

Cinnamomum spp.

Ferulic acid, caffeic acid, and cinnamic acid

C. cassia

Coumarin, 2-hydroxyl cinnamaldehyde, cinnamyl alcohol, cinnamic acid, cinnamaldehyde, 2-methoxy cinnamaldehyde, eugenol, (IS) bisphenol A Coumarin

Cinnamomum spp. Cinnamomum burmannii [(Nees & T. Nees) lume]

Trans-cinnamaldehyde, and coumarin

References Okutan et al. (2014) Sedighi et al. (2018) Behar et al. (2014) Jakovljević Kovač et al. (2021) Salih and Hamed (2022) Lee et al. (2015) Khezeli et al. (2016) Ding et al. (2011) Iwata et al. (2016) Aryati et al. (2020)

2.4.2 GC–MS analysis Gas chromatography coupled with mass spectrometry is an analytical technique widely used to identify compounds present in essential oils. This technique allows qualitative analysis of different compounds, and when gas chromatography is combined with a flame ionization detector (GC–FID), the quantitative analysis of the volatile components present in essential oils can be carried out (Aparicio-Ruiz et al. 2018; Mesquita et al. 2021). These volatile compound identification techniques are also helpful in analyzing the essential oil quality of cinnamon species. For example, Wong et al. (2014) analyzed the quality of the essential oil of Cinnamomum zeylanicum and reported that this quality is related to the cinnamaldehyde content. Cardoso-Ugarte et al. (2016) assessed the main compounds identified in cinnamon species among the monoterpenes: α-terpineol, geraniol, phellandrene, borneol, cymene, decanal, furfural, citronellol, carvacrol; alcohols: 2-phenylethyl, cinnamic, benzyl, cuminic; sesquiterpenes: limonene linalool; monoterpene hydrocarbons: caryophyllene, α-pinene, trans-cinnamic, benzoic, caproic, caprylic, formic, β-hydroxybutyric, isovaleric, lauric, myristic, propionic, salicylic tannic acids; esters: benzylbenzoate phenylethylbenzoate, methyl cinnamate, benzyl cinnamate, aldehydes, cinnamaldehyde, hydroxycinnamaldehyde, benzaldehyde,

18

2  The Quality Evaluation of Cinnamon

o-­ methoxycinnamaldehyde, acetaldehyde, cumminic aldehyde, and isovaleric aldehyde.

2.5 Spectroscopic Techniques Multivariate Analysis The most commonly used spectroscopic techniques to obtain fingerprints from food are NMR, near infrared, Fourier transform infrared (FT-IR) and UV–VIS spectroscopy. These techniques have some advantages for the analysis of the structure and composition of foods because it is possible to analyze small amounts of the sample or its extract in a non-invasive , non-destructive, simple, fast and direct way, without or with minimal sample preparation, in addition to the simultaneous determination of a large number of compounds. The use of these techniques meets the trend of food analysis with green methods that generate quick responses without consuming reagents or solvents and with less environmental impact (Mishra 2022; Calle et al. 2021). Molecular IR absorption spectroscopy is an ideal technique for rapid screening and characterization of chemical composition. Its potential increases when this technique is combined with chemometrics, becoming robust for the evaluation of food quality and authenticity (Mendes and Duarte 2021; Qi et al. 2022). Chemometric mathematical methods are an important ally to detect fraud and authenticity of cinnamon samples in industry. For example, Yasmin et al. (2019) used chemometrics on a cinnamon powder sample, and after obtaining the results using FT-NIR and FT-IR spectroscopic techniques the authors concluded that NIR (Near Infrared) and FT-NIR (Fourier Transform Near Infrared) are analytical techniques used for the analysis of various substances, including cinnamon. NIR spectroscopy is a non-destructive and rapid technique that measures the interaction of near-infrared light with a sample. It is based on the principle that different chemical components absorb and reflect light in the near-infrared range in characteristic ways. By analyzing the absorption patterns, NIR spectroscopy can provide information about the chemical composition of a sample. FT-NIR spectroscopy is a variation of NIR spectroscopy that utilizes a Fourier transform to obtain the spectrum. It offers advantages such as higher spectral resolution and greater sensitivity compared to traditional dispersive NIR spectroscopy. In the context of cinnamon analysis, NIR and FT-NIR can be used to determine various quality parameters and detect adulteration, such as moisture content, essential oil content, adulteration detection: Cinnamon is sometimes adulterated with cheaper substitutes or lower-quality materials. NIR and FT-NIR spectroscopy can help identify adulterants by comparing the spectra of the sample with known authentic samples or by developing calibration models based on known adulterants, in this sense, the NIR spectroscopy can provide information about the chemical composition of

2.6 Conclusions

19

cinnamon. This can be useful for quality assessment and determining the suitability of cinnamon for specific applications. It’s important to note that while NIR and FT-NIR spectroscopy are important quality analysis techniques, they typically require the development of calibration models based on known reference samples. This involves collecting a representative set of samples with known properties and building mathematical models to correlate the spectral data with the desired parameters. These models can then be used to predict the properties of unknown samples. These methods proved that FT-NIR and FT-IR spectroscopic techniques combined with multivariate analysis could be utilized as a controlled procedure or as an alternative rapid detection method to identify adulterated cinnamon powder (Huang and Dai 2014). Cen et al. (2021) applied multivariate chemometric techniques and reported that the hierarchical cluster analysis showed 13 samples were divided into three dominant classes. Bai et al. (2021) used chemometrics on results obtained by GC–MS and FT-IR analysis, on samples of (Cinnamomum cassia (Xijiang type), C. cassia (Fangcheng type), C. loureirii, C. verum and C. burmannii) collected in China. The authors concluded that analysis of the FT-IR HCA and PCA data revealed that the chemical compositions of the essential oils were similar to that of C. loureirii, C. cassia (Xijiang type), and C. cassia (Fangcheng type) and different from samples of C. verum and C. burmannii. In addition, the results showed that the place of collection can influence the chemical composition of essential oils. Farag et al. (2022) used various metabolomic analytical methods on different cinnamon samples based on SPME-GC/MS, UV/Vis, and NMR platforms. After multivariate analysis, it was concluded that the samples were of high quality, and confirmed by the three analytical platforms. This information is important and can be applied to other commercial products containing cinnamon mixed with other herbs, to study the possible interferences of other phytochemical constituents.

2.6 Conclusions The analytical methods used to detect the quality of cinnamon samples have shown efficiency. In addition, a method such as FT-IR is relatively simple, inexpensive, and non-destructive, and when combined with chemometric analysis, it can quickly attest to the quality and authenticity of cinnamon samples. Acknowledgments  Dr. Mozaniel Santana de Oliveira, thanks PCI-MCTI/MPEG, Process number: 300983/2022-0. Conflicts of Interest  The authors declare no conflict of interest. Funding  This review received no external funding.

20

2  The Quality Evaluation of Cinnamon

References Ahmadi S, Hivechi A, Bahrami SH, Milan PB, Ashraf SS (2021) Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity. Int J Biol Macromol 173:580–590 Aparicio-Ruiz R, García-González DL, Morales MT, Lobo-Prieto A, Romero I (2018) Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS. Talanta 187:133–141 Aryati WD, Nadhira A, Febianli D, Fransisca F, Mun’im A (2020) Natural deep eutectic solvents ultrasound-assisted extraction (Nades-UAE) of trans-cinnamaldehyde and coumarin from cinnamon bark [cinnamomum burmannii (nees & t. nees) blume]. J Res Pharm 24:389–398 Bai M, Jin X, Cen Z, Yu K, Yu H, Xiao R, Deng J, Lai Z, Wu H, Li Y (2021) GC–MS and FTIR spectroscopy for the identification and assessment of essential oil components of five cinnamon leaves. Brazilian J Bot 44:525–535 Batini C, Cappiello C, Francalanci C, Maurino A (2009) Methodologies for data quality assessment and improvement. ACM Comput Surv 41:1–52 Becerril R, Nerín C, Gómez-Lus R (2012) Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog Dis 9:699–705 Behar RZ, Davis B, Wang Y, Bahl V, Lin S, Talbot P (2014) Identification of toxicants in cinnamon-­ flavored electronic cigarette refill fluids. Toxicol Vitr 28:198–208 Calle JLP, Ferreiro-González M, Ruiz-Rodríguez A, Barbero GF, Álvarez JÁ, Palma M, Ayuso J (2021) A methodology based on FT-IR data combined with random forest model to generate spectralprints for the characterization of high-quality vinegars. Foods 10:1411 Cantarelli MÁ, Moldes CA, Marchevsky EJ, Azcarate SM, Camiña JM (2020) Low-cost analytic method for the identification of Cinnamon adulteration. Microchem J 159:105513. https://doi. org/10.1016/j.microc.2020.105513 Cardoso-Ugarte GA, López-Malo A, Sosa-Morales ME (2016) Cinnamon (Cinnamomum zeylanicum) Essential Oils. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Elsevier, New York, pp 339–347 Cascaes MM, Carneiro O dos S, Nascimento LD do, de Moraes ÂAB, de Oliveira MS, Cruz JN, Guilhon GMSP, Andrade EH de A (2021) Essential oils from annonaceae species from Brazil: a systematic review of their phytochemistry, and biological activities. Int J Mol Sci 22:12140 Cava-Roda R, Taboada-Rodríguez A, López-Gómez A, Martínez-Hernández GB, Marín-Iniesta F (2021) Synergistic antimicrobial activities of combinations of Vanillin and essential oils of cinnamon bark, cinnamon leaves, and cloves. Foods 10:1406. https://doi.org/10.3390/ foods10061406 Cen Z, Du J, Deng J, Lai Z, Yu H, Gu D, Geng X, Wu H, Li Y (2021) Volatile oil variation and morphology of cinnamon twigs from different regions of China. Rev Bras Farmacogn 31:217–224 da Silva Bruni AR, de Oliveira VMAT, Fernandez AST, Sakai OA, Março PH, Valderrama P (2021) Attenuated total reflectance Fourier transform (ATR-FTIR) spectroscopy and chemometrics for organic cinnamon evaluation. Food Chem 365:130466. https://doi.org/10.1016/j. foodchem.2021.130466 Ding Y, Wu EQ, Liang C, Chen J, Tran MN, Hong CH, Jang Y, Park KL, Bae K, Kim YH, Kang JS (2011) Discrimination of cinnamon bark and cinnamon twig samples sourced from various countries using HPLC-based fingerprint analysis. Food Chem 127:755–760 Farag MA, Labib RM, Noleto C, Porzel A, Wessjohann LA (2018) NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT 90:491–498. https://doi.org/10.1016/j.lwt.2017.12.069 Farag MA, Khaled SE, El Gingeehy Z, Shamma SN, Zayed A (2022) Comparative metabolite profiling and fingerprinting of medicinal cinnamon bark and its commercial preparations via a multiplex approach of GC–MS, UV, and NMR techniques. Meta 12:614. https://doi. org/10.3390/metabo12070614

References

21

Gruenwald J, Freder J, Armbruester N (2010) Cinnamon and Health. Crit Rev Food Sci Nutr 50:822–834. https://doi.org/10.1080/10408390902773052 Huang Y, Dai W-G (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4:18–25. https://doi.org/10.1016/j.apsb.2013.11.001 Huang DF, Xu J-G, Liu J-X, Zhang H, Hu QP (2014) Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four foodrelated bacteria. Microbiology 83:357–365. https://doi.org/10.1134/S0026261714040067 Iwata N, Kainuma M, Kobayashi D, Kubota T, Sugawara N, Uchida A, Ozono S, Yamamuro Y, Furusyo N, Ueda K, Tahara E, Shimazoe T (2016) The relation between hepatotoxicity and the total coumarin intake from traditional Japanese medicines containing cinnamon bark, vol 7, p Front Pharmacol Jakovljević Kovač M, Mihajlović L, Molnar M (2021) Coumarin in grounded cinnamon and teas containing cinnamon - extraction and determination by HPLC method. Croat J food Sci Technol 13:246–252 Khezeli T, Daneshfar A, Sahraei R (2016) A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 150:577–585 Lee J, Lee DG, Park JY, Chae S, Lee S (2015) Analysis of the trans-Cinnamic Acid Content in Cinnamomum spp. and Commercial Cinnamon Powder Using HPLC. J Agric Chem Environ 04:102–108 Li J, Fan G, He Y (2020) Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci Total Environ 698:134141 Li C, Luo Y, Zhang W, Cai Q, Wu X, Tan Z, Chen R, Chen Z, Wang S, Zhang L (2021) A comparative study on chemical compositions and biological activities of four essential oils: Cymbopogon citratus (DC.) Stapf, Cinnamomum cassia (L.) Presl, Salvia japonica Thunb. and Rosa rugosa Thunb. J Ethnopharmacol 280:114472. https://doi.org/10.1016/j.jep.2021.114472 Liang Y, Li Y, Sun A, Liu X (2019) Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci Nutr 7:2186–2193 Lopes JDS, Lima ABS de, Cangussu RR da C, Silva MV da, Ferrão SPB, Santos LS (2022) Application of spectroscopic techniques and chemometric methods to differentiate between true cinnamon and false cinnamon. Food Chem 368:130746. https://doi.org/10.1016/j. foodchem.2021.130746 Marchiosi R, dos Santos WD, Constantin RP, de Lima RB, Soares AR, Finger-Teixeira A, Mota TR, de Oliveira DM, Foletto-Felipe M de P, Abrahão J, Ferrarese-Filho O (2020) Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem Rev 19:865–906 Mendes E, Duarte N (2021) Mid-infrared spectroscopy as a valuable tool to tackle food analysis: a literature review on coffee, dairies, honey, olive oil and wine. Foods 10:477 Mesquita K do SM, Feitosa B de S, Cruz JN, Ferreira OO, Franco C de JP, Cascaes MM, Oliveira MS de, Andrade EH de A (2021) Chemical composition and preliminary toxicity evaluation of the essential oil from peperomia circinnata Link var. circinnata. (Piperaceae) in Artemia salina Leach. Molecules 26:7359 Mishra M (2022) Chapter 1. Spectroscopic techniques for the analysis of food quality, chemistry, and function. In: 1st edn. RSC, Londo, pp 1–22 Nwanade CF, Wang M, Wang T, Zhang X, Zhai Y, Zhang S, Yu Z, Liu J (2021) The acaricidal activity of cinnamon essential oil: current knowledge and future perspectives. Int J Acarol 47:446–450 Okutan L, Kongstad KT, Jäger AK, Staerk D (2014) High-resolution α-amylase assay combined with high-performance liquid chromatography–solid-phase extraction–nuclear magnetic resonance spectroscopy for expedited identification of α-Amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon. J Agric Food Chem 62:11465–11471 Oliveira MS de (2022) Essential Oils, 1st edn. Springer, Cham

22

2  The Quality Evaluation of Cinnamon

Oliveira MS de, Costa WA da, Bezerra PN, Filho AP da SS, Junior RN de C (2018) Potentially phytotoxic of chemical compounds present in essential oil for invasive plants control: a mini-­ review. In: Radhakrishnan R (ed) Biological Approaches for Controlling Weeds, 1st edn. InTech, London, pp 1–10 Park HJ, Jung HJ, Jung WT, Choi J, Nam JH, Lee KT, Kwon BM (2004) Quality evaluation of the cinnamon essential oils based on gas chromatographic analysis and cytotoxicity. Korean J Pharmacogn 35:288–292 Pashazadeh B, Elhamirad AH, Hajnajari H, Sharayei P, Armin M (2020) Optimization of the pulsed electric field -assisted extraction of functional compounds from cinnamon. Biocatal Agric Biotechnol 23:101461 Qi W, Tian Y, Lu D, Chen B (2022) Research Progress of Applying Infrared Spectroscopy Technology for Detection of Toxic and Harmful Substances in Food. Foods 11:930 Ramanunny AK, Wadhwa S, Gulati M, Gupta S, Porwal O, Jha NK, Gupta PK, Kumar D, Prasher P, Dua K, Al SA, Almawash S, Singh SK (2022) Development and validation of RP-HPLC method for 1΄-Acetoxychavicol acetate (ACA) and its application in optimizing the yield of ACA during its isolation from Alpinia galanga extract as well as its quantification in nanoemulsion. South African J Bot 149:887–898 Ribeiro-Santos R, Andrade M, Melo NR de, Sanches-Silva A (2017) Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci Technol 61:132–140. https://doi.org/10.1016/j.tifs.2016.11.021 Salih HT, Hamed AH (2022) Extraction and determination of tannic acid in rosemary, anise, and cinnamon by reversal phase RP-HPLC. Eurasian Chem Commun 4:94–102 Sedighi M, Nazari A, Faghihi M, Rafieian-Kopaei M, Karimi A, Moghimian M, Mozaffarpur SA, Rashidipour M, Namdari M, Cheraghi M, Rasoulian B (2018) Protective effects of cinnamon bark extract against ischemia-reperfusion injury and arrhythmias in rat. Phyther Res 32:1983–1991 Vu THN, Nguyen QH, Dinh TML, Quach NT, Khieu TN, Hoang H, Chu-Ky S, Vu TT, Chu HH, Lee J, Kang H, Li WJ, Phi Q-T (2020) Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J Gen Appl Microbiol 66:24–31. https://doi.org/10.2323/jgam.2019.04.004 Wu H, Zhao F, Li Q et al (2022) Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci:1–13 Williams AR, Ramsay A, Hansen TVA, Ropiak HM, Mejer H, Nejsum P, Mueller-Harvey I, Thamsborg SM (2015) Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Sci Rep 5:14791 Wong Y, Ahmad-Mudzaqqir M, Wan-Nurdiyana W (2014) Extraction of Essential Oil from Cinnamon (Cinnamomum zeylanicum). Orient J Chem 30:37–47 Yasmin J, Ahmed MR, Lohumi S, Wakholi C, Lee H, Mo C, Cho B-K (2019) Rapid authentication measurement of cinnamon powder using FT-NIR and FT-IR spectroscopic techniques. Qual Assur Saf Crop Foods 11:257–267 Zhang Y, Liu X, Wang Y, Jiang P, Quek S (2016) Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–289 Zhang Z, Zhang J (2019) Determination of cinnamic acid and cinnamaldehyde in Guizhi Decoction and Guizhi add Cinnamon and Monkshood decoction by HPLC. In: International symposium on the frontiers of biotechnology and bioengineering. AIP, Beijing, p 020045

Chapter 3

Aspects Morphological, Molecular, and Biochemical of Cinnamon

Abstract  The powdered or unprocessed bark of Cinnamomum species can be sold as cinnamon, but only one species can be considered as true cinnamon. Studies have shown that morphological, molecular, and biochemical aspects can help in the correct identification of species. However, works are still published with inadequate information, or without taxonomic identification of cinnamon species. In this sense, the present work reports the genetic identification between cinnamon species among others that can bring safety to consumers. Keywords  DNA · Identification · Cinnamon · Molecular study

3.1 Introduction Spices have had a great influence on the history of mankind, since Classical Antiquity, and they have been used to season foods of the nobility, as medicines for the treatment of various diseases and as valuable exchange items during the period of the Great Navigations (Vieira and Silva 2017; Do Nascimento et  al. 2020). Cinnamon is one of the most commercially used spices, originating in Southeast Asia; it was exported from the East to the Mediterranean by the people of Ancient Greece (Pearson 2017). Since Classical Antiquity, cinnamon has been used in the manufacture of fragrances and cosmetics, in the flavoring of incense for religious activities, and as a preservative in the embalming of corpses, mainly in Ancient Greece, Rome, Egypt, and China (Hurdman et al. 2012; Do Nascimento et al. 2020). Like other spices, cinnamon was also used in the Classical Period to flavor beverages, tending to invigorate and refreshing effects and as sedatives and soporifics (Kowalski et al. 2018). Cinnamon is a species belonging to the family Lauraceae and the genus Cinnamomum, which comprises about 340 species of trees and shrubs (Liyanage et al. 2021b; Liu et al. 2022). The species and its products have gained worldwide prominence due to recent scientific evidence that proves its medicinal benefits and applications in the production of new drugs (Mousavi et al. 2020). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 J. Ju et al., Cinnamon: A Medicinal Plant and A Functional Food Systems, Food Bioactive Ingredients, https://doi.org/10.1007/978-3-031-33505-1_3

23

24

3  Aspects Morphological, Molecular, and Biochemical of Cinnamon

Cinnamon species are very similar in terms of floral, leaf, and pollen morphology; ecophysiological characteristics; chemical constituents of essential oils; etc. (Yun et  al. 2018). Some studies in the literature try to differentiate these species based on their morphological characteristics as well as the molecular and genetic characteristics of each cinnamon species (Chung et al. 2003). The identification of each cinnamon species based on these particularities is fundamental for planting and industry, as they can vary significantly in yield, quality, and quantity of the desired product (Hussain et al. 2021). In this way, the present work aims to bring a discussion about the morphological characteristics of cinnamon, looking for differences between the main species used commercially, in addition to presenting the main discussions regarding the molecular, genetic, and biochemical characteristics that guide the main differences between the cinnamon species.

3.2 Morphological Characterization of Cinnamon Cinnamon is one of the most commonly used spices worldwide (Nabavi et al. 2015). However, there are hundreds of species and subspecies of cinnamon plant across the planet. Although the official source for the production of spices is Cinnamomum zeylanicum, several other representatives of the genus Cinnamomum have a similar morphological structure to the species C. zeylanicum, making it almost impossible to distinguish individuals without resorting to microscopy or analytical methods (Jeremić et al. 2019). The cinnamon species as well as the other species of the genus Cinnamomum are all diploid with 24 chromosomes (Firdausi et al. 2022). Furthermore, the species are always found in small trees up to 15 m tall or shrubs (Ariyarathne et al. 2018). Azad et al. (2016) point out that the shape of cinnamon leaves varies from oval or elliptical to lanceolate-oval or narrowly elliptical with the leaf apex little or widely acuminate and the base leaf acute or wedge-shaped. Cinnamon leaves can range from small to long and be red, slightly pink, or slightly brown when young and reach a light green, intense green, or greenish-­ brown color when they reach maturity (Chen et al. 2014; Azad et al. 2016; Liyanage et al. 2021b). In the species C. zeylanicum, the most used commercially, the leaves are red when immature and dark green when mature (Chandula Weerasekera et al. 2021). Generally, C. zeylanicum leaves can range from 10 to 25 cm in length, being considered medium-long (Ariyarathne et al. 2018). In general, the venation of cinnamon leaves shows a pattern of deep venous distribution (Chandula Weerasekera et al. 2021). Cinnamon flower exhibits protogyny dichogamy and cross-pollination (Azad et al. 2018). They are small, monoecious, hermaphroditic, greenish-white, yellowish-­ white, or light brown in color (Liyanage et al. 2021b). They are glabrous or downy with glabrous or puberulent perianth on the outside and densely pubescent on the inside (Azad et al. 2018). The texture of the flowers of cinnamon species can be

3.3  Molecular Characteristics of Cinnamon or Genetic Characterization

25

fine-soft, thick-soft, or thick-rough, also presenting variations in the number of layers, resistance, aroma, and taste (Chandula Weerasekera et al. 2021). In the species C. zeylanicum, the flowers are fragile and light brown in color, with a fine and soft texture, similar to a paper, a few layers when rolled, with an exotic aroma and a mild sweet taste (Ranasinghe and Galappaththy 2016). Regarding the fruits of C. zeylanicum, these are purple, wild, and aromatic, with a sweet and spicy aroma, measuring about 1 cm, being able to produce only a single seed (Jayaprakasha et al. 2006). The fruits have a globular or elliptical berry, glabrous, with fleshy pulp, 13–18 mm long (Chandula Weerasekera et al. 2021). Plant morphology is directly affected by site geography, genetic factors, and climatic and environmental conditions (de Leon et al. 2016). Cinnamon is generally grown in clayey, lateritic, and silvery sand soil and can grow up to 12 m in height (Chandula Weerasekera et  al. 2021). However, changes in these conditions can cause morphological variations, especially in the crown, shoot color, base, petiole length, leaf length, leaf width, leaf length and fruit length ratio, and skin thickness (Lizawati et al. 2018).

3.3 Molecular Characteristics of Cinnamon or Genetic Characterization The metabolic profile of plants is highly dependent on the genetic basis, the physiological state such as plant age and maturity, and the macro and microenvironmental conditions to which the plant is exposed (Schwachtje et al. 2019; Motta et al. 2019). In a study on molecular characterization and evaluation of the genetic relationship of cinnamon species carried out by Abeysinghe et al. (2009), it was found that a phylogenetic relationship between species based on cpDNA remains unclear, but sequences of the ITS region varied between eight different species of cinnamon. The genetic basis is fundamental in deciding on the quality and quantity of the final yield of natural cinnamon products. Additional efforts are needed to select superior genotypes and maintain genetic uniformity. However, in cinnamon, this differentiation becomes a little more difficult since the cinnamon species are very similar morphologically and genetically. Regarding the planting of cinnamon, such sequencing is even more complex, and the farmers propagate the species randomly through the seeds, without a real concern to ascertain which species of cinnamon is being planted (Liyanage et al. 2021b). Morphological characters are markers that can be used to measure the magnitude of diversity in plants based on character phenotype (Kojoma et al. 2002). The morphological diversity of cinnamon can be observed through the shape of a crown, the color of the shoot, base, petiole length, leaf length, leaf width, leaf length to fruit length ratio, and skin thickness (Savolainen et al. 2000). In a study carried out by, it was evidenced that the cinnamon varieties tested from the species Cinnamomum burmannii showed similarity greater than 70% (Lizawati et al. 2018). Kojoma et al.

26

3  Aspects Morphological, Molecular, and Biochemical of Cinnamon

(2002) evaluated the genetic diversity of three cinnamon species and found single-­ stranded conformation polymorphism (SSCP) analysis of PCR products of the trLtrnF IGS and the trnL intron that resulted in different banding patterns of SSCP between C. cassia, C. verum, and C. burmannii.

3.4 Biochemical Characterization of Cinnamon The genetic diversity of cinnamon species can directly affect the biochemistry of the species (Liyanage et  al. 2021a). There is a clear morphological, yield, and biochemical diversity among the accessions of the cinnamon species germplasm collection (Liyanage et al. 2021b). According to Liyanage et al. (2021a), in a study on the identification of superior germplasm of C. zeylanicum, of the 515 accessions characterized separately regarding the chemical composition of the bark and leaf using methanolic extracts, the majority presented values above the average of cinnamaldehyde of the bark and eugenol in the leaves. According to the authors, more than 70% of the bark samples and more than 90% of the leaf samples did not have a detectable amount of coumarin. Mohammed et al. (2020) point out that in vivo results revealed that cinnamon essential oil improved levels of glucose, insulin, amylase, lipid profile, hepatic MDA, SOD, and GSH, in addition to decreasing hepatic regulation, expression of GLU2 genes, FAS, SREBP-1c, and PEPCK and upregulated IGF-1 mRNA expression in diabetic rats in a dose-dependent manner and improve the histological picture of the liver and pancreas, overcoming the disturbances in biochemical, cytological, and histopathological changes in D rats through the enhancement of antioxidant capacity, reducing oxidative stress and modulating the expression of the gene in question, which could be promising to develop new drugs for the treatment of diabetes.

3.5 Conclusion Cinnamon is one of the most used spices in the world, however, the similarities between the species and varieties of cinnamon. Cinnamon species show few but significant morphological differences. Regarding molecular biology, studies on the subject are still scarce, with the phylogenetic relationship between cpDNA-based species remaining unclear. Regarding cinnamon genetics, cinnamon species have similar genetics; however, more studies are needed to investigate. Furthermore, the synthesis of compounds present in essential oils may have their biochemistry interfered with by the genetics of the species. In addition, studies confirm that these compounds cause biochemical changes in living organisms. This work is a contribution to the expansion of the study of cinnamon.

References

27

Acknowledgments Dr. Mozaniel Santana de Oliveira, thanks PCI-MCTI/MPEG, Process number: 300983/2022-0. Conflicts of Interest  The authors declare no conflict of interest. Funding  This review received no external funding.

References Abeysinghe PD, Wijesinghe KGG, Tachida H, Yoshda T (2009) Molecular characterization of cinnamon (Cinnamomum verum Presl) accessions and evaluation of genetic relatedness of cinnamon species in Sri Lanka based on TrnL intron region. Inter Agric Biol Sci 5:1079–1088 Ariyarathne HBMA, Weerasuriya SN, Senarath WTPSK (2018) Comparison of morphological and chemical characteristics of two selected accessions and six wild species of genus Cinnamomum Schaeff. Sri Lankan J Biol 3:11–23 Azad R, Kumara KLW, Senanayake G et al (2018) Flower morphological diversity of cinnamon (Cinnamomum verum Presl) in Matara District, Sri Lanka. Open Agric 3:236–244 Azad R, Ranawaka RAAK, Senanayake G et  al (2016) Morphological variation of cinnamon (Cinnamomum verum Persl) germplasm in Matara District of Sri Lanka. Int J Minor Fruits, Med Aromat Plants 2:6–14 Chandula Weerasekera A, Samarasinghe K, Sameera K, de Zoysa H et al (2021) Cinnamomum zeylanicum: morphology, antioxidant properties and bioactive compounds. Antioxidants  – Benefits, Sources, Mech Action 97492 Chen P, Sun J, Ford P (2014) Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. J Agric Food Chem 62:2516–2521 Chung MY, Nason JD, Epperson BK, Chung MG (2003) Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity (Edinb) 90:98–106 de Leon N, Jannink J-L, Edwards JW, Kaeppler SM (2016) Introduction to a special issue on genotype by environment interaction. Crop Sci 56:2081–2089 Do Nascimento LD, de Moraes AAB, da Costa KS et al (2020) Bioactive natural compounds and antioxidant activity of essential oils from spice plants: new findings and potential applications. Biomol Ther 10:988 Firdausi J, Dash CK, Rashid MHA, Sultana SS (2022) Karyotype characterization of three important aromatic Cinnamomum L. species with special emphasis on reversible chromosome banding. J Appl Res Med Aromat Plants 100430. https://doi.org/10.1016/j.jarmap.2022.100430 Hurdman C, Tames R, Steele P, MacDonald F (2012) The Encyclopedia of ancient history: Step Back in time to discover the wonders of the ancient world. Wiley, Hoboken, NJ, USA Hussain Z, Ali Khan J, Arshad MI et al (2021) Comparative characterization of cinnamon, cinnamaldehyde and kaempferol for phytochemical, antioxidant and pharmacological properties using acetaminophen-induced oxidative stress mouse model. Bol Latinoam y del Caribe Plantas Med y Aromat 20:339–350. https://doi.org/10.37360/blacpma.21.20.4.25 Jayaprakasha GK, Ohnishi-Kameyama M, Ono H et al (2006) Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J Agric Food Chem 54:1672–1679 Jeremić K, Kladar N, Vučinić N et al (2019) Morphological characterization of cinnamon bark and powder available in the Serbian market. Biol Serbica 41:89–93 Kojoma M, Kurihara K, Yamada K et al (2002) Genetic identification of cinnamon (Cinnamomum spp.) based on the trnL-trnF chloroplast DNA. Planta Med 68:94–96

28

3  Aspects Morphological, Molecular, and Biochemical of Cinnamon

Kowalski R, Kowalska G, Pankiewicz U et al (2018) Effect of the method of rapeseed oil aromatisation with rosemary Rosmarinus officinalis L. on the content of volatile fraction. Lwt 95:40–46 Liu Y, Wang R, Zhao L et al (2022) The antifungal activity of cinnamon-Litsea combined essential oil against dominant fungal strains of Moldy Peanut kernels. Foods 11:1586 Liyanage NMN, Bandusekara BS, Kanchanamala RWMK et al (2021a) Identification of superior Cinnamomum zeylanicum Blume germplasm for future true cinnamon breeding in the world. J Food Compos Anal 96:103747 Liyanage NMN, Ranawake AL, Bandaranayake PCG (2021b) Cross-pollination effects on morphological, molecular, and biochemical diversity of a selected cinnamon (Cinnamomum zeylanicum Blume) seedling population. J Crop Improv 35:21–37 Lizawati L, Riduan A, Neliyati N et al (2018) Genetic diversity of cinnamon plants (Cinnamomum burmanii BL.) at various altitude based on morphological character. IOP Conf Ser. Mater Sci Eng 434:012129 Mohammed KAA, Ahmed HMS, Sharaf HA et al (2020) Encapsulation of cinnamon oil in whey protein counteracts the disturbances in biochemical parameters, gene expression, and histological picture of the liver and pancreas of diabetic rats. Environ Sci Pollut Res 27:2829–2843 Motta EVS, Sampaio BL, Costa JC et al (2019) Quantitative analysis of phenolic metabolites in Copaifera langsdorffii leaves from plants of different geographic origins cultivated under the same environmental conditions. Phytochem Anal 30:364–372 Mousavi SM, Rahmani J, Kord-Varkaneh H et  al (2020) Cinnamon supplementation positively affects obesity: a systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr 39:123–133 Nabavi SF, Di Lorenzo A, Izadi M et al (2015) Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients 7:7729–7748 Pearson MN (2017) Spices in the Indian Ocean world, 1st edn. Routledge, London, UK Ranasinghe P, Galappaththy P (2016) Health benefits of Ceylon cinnamon (Cinnamomum zeylanicum): a summary of the current evidence. Ceylon Med J 61:1 Savolainen V, Chase MW, Hoot SB et al (2000) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362 Schwachtje J, Whitcomb SJ, Firmino AAP et al (2019) Induced, imprinted, and primed responses to changing environments: does metabolism store and process information? Front Plant Sci 10 Vieira CA, Silva AF da (2017) A História e a Química das Especiarias: Experiência de Aula Interdisciplinar para Estudantes do Ensino Médio. Rev Bras Educ e Cult 16:57–70 Yun J-W, You J-R, Kim Y-S et al (2018) In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regul Toxicol Pharmacol 95:115–123

Chapter 4

Bioactive Compounds and Extraction Methods of Cinnamon

Abstract  Cinnamon is an ancient spice used worldwide for commercial purposes in the canning and confectionery industries. This spice belongs to the genus Cinnamomum which has medicinal properties against indigestion, cough cold, and microbial infections. In addition, this genus has species that produce essential oils that present major compounds, such as trans-cinnamaldehyde and cinnamyl acetate. These compounds may be responsible for the high biological potential presented in these volatile oils, mainly antimicrobial against fungi and gram-positive and gram-­ negative bacteria. The biological action of these essential oils can favor the development of new natural antimicrobial products. Keywords  Cinnamomum · Volatile oils · Trans-cinnamaldehyde · Antimicrobial potential

4.1 Introduction The Lauraceae family has around 70 genera, and about 2500 species spread across all continents, mainly in Asia and South America. Among the genera of this family, the genus Cinnamomum stands out (Silva Teles et al. 2019), which has around 250 species distributed in tropical and subtropical Asia, Australia, the Pacific islands, and other regions (Wang et al. 2020). Some species of this genus have several uses in traditional medicine to treat disorders such as indigestion, cold, cough, and microbial infections (Balijepalli et al. 2017). Cinnamon is an ancient spice endemic to Sri Lanka of taxonomic nomenclature known as Cinnamomum verum. This species is a tropical tree that can grow up to 7 meters high in its natural habitat, and its bark is used as spices. The bark has a pleasant aroma, and the essential oils extracted from the bark are used as a concentrated raw material for the flavor of the species, especially in the canning and confectionery industries (Thomas and Kuruvilla 2012).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 J. Ju et al., Cinnamon: A Medicinal Plant and A Functional Food Systems, Food Bioactive Ingredients, https://doi.org/10.1007/978-3-031-33505-1_4

29

30

4  Bioactive Compounds and Extraction Methods of Cinnamon

Studies report that cinnamon essential oils have larvicidal and repellent properties against Culex tritaeniorhynchus and Anopheles subpictus, antifungal activities against fungal species of the genus Candida and antibacterial properties. In addition, other activities are mentioned as anti-inflammatory, antioxidant, antitumor, cardiovascular, cholesterol lowering, and immunomodulatory (Wang et  al. 2023; Charles 2013). Regarding folk medicine, cinnamon tea is a common ingredient used for nausea during pregnancy and after childbirth to lessen bleeding. The health benefits brought by this species can be attributed to the aforementioned biological properties, as well as the astringent and anticoagulation properties (Hariri and Ghiasvand 2016). Given the relevant use and application of cinnamon, the objective of this study was to make a bibliographic survey about the chemical composition of essential oils from Cinnamomum species and their antimicrobial properties.

4.2 Chemical Composition and Extraction Methods of Cinnamon Essential Oils Essential oils are defined as complex and hydrophobic mixtures normally derived from the secondary metabolism of aromatic plants (Franco et al. 2021; Wu et al. 2022; Wang et al. 2023). These volatile oils are obtained by different techniques and extraction methods that prioritize the integrity of the bioactive compounds and their respective biological activities. Among the methods most used in the extraction of essential oils, there are traditional techniques, such as hydrodistillation, steam distillation, solvent extraction, and cold pressing, and the innovative ones, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized extraction (PLE), and supercritical fluid extraction (SFE) (Ferreira et  al. 2021). Table  4.1 shows the main major compounds of the essential oils of some species of Cinnamomum obtained by different extraction techniques. Figures 4.1, 4.2, and 4.3 show the flowcharts of the main extraction methods used to obtain bioactive compounds from cinnamon species. Cinnamomum altissimum bark essential oils were collected in Pahang State, Malaysia, and obtained by hydrodistillation. This volatile oil was characterized by the major monoterpene compounds: linalool (36.0%), limonene (8.3%), and the phenylpropanoid methyl eugenol (12.8%) (Abdelwahab et al. 2017). Essential oils from stem bark, twig bark, and leaves of C. burmannii collected in Indonesia were extracted by steam distillation. In this study, the essential oil (EO) of the stem bark was characterized by the majority trans-cinnamaldehyde (81.61%) and cinnamyl acetate (10.22%), whereas the EO of the twig bark was characterized by trans-­ cinnamaldehyde (84.71%) and cinnamyl acetate (15.59%), and the compounds trans-cinnamaldehyde (84.12%) and cinnamyl acetate (16.10%) were the majority of the essential oil obtained from the leaves (Fajar et al. 2019). Essential oils from leaves, branches, and seeds of C. camphora were collected in China and obtained by hydrodistillation. The volatile oil of the leaves was

4.2  Chemical Composition and Extraction Methods of Cinnamon Essential Oils

31

Table 4.1  Major constituents (≥0.2%) found in the essential oils of some species of Cinnamomum Species Cinnamomum altissimum (bark) C. burmannii (leaves) C. burmannii (branch bark) C. burmannii (stem bark) C. camphora (leaves) C. camphora (twigs) C. camphora (seeds) C. camphora (leaves) C. camphora (branch) C. camphora (wood) C. camphora (root)

Extraction method HD SD

HD

HD

C. cassia (leaves)

HD

C. damhaensis (leaves)

HD

C. griffithii (leaves) HD C. griffithii (bark) C. jensenianum (barks)

HD

C. longipetiolatum (leaves)

HD

C. loureirii (bark)

HD

Major compounds Linalool (36.0%), methyl eugenol (12.8%), and limonene (8.3%) Trans-cinnamaldehyde (84.12%) and cinnamyl acetate (16.10%) Trans-cinnamaldehyde (84.71%) and cinnamyl acetate (15.59%) Trans-cinnamaldehyde (81.61%) and cinnamyl acetate (10.22%) Camphor (18.48%), eucalyptol (16.46%), and linalool (11.58%) Eucalyptol (17.21%), camphor (13.17%), and 3,7-dimethyl-1,3,7-­ octatriene (11.47%) Eucalyptol (20.90%), methyl eugenol (19.98%), and linalool (14.66%) Camphor (93.1%), camphene (1.8%), and α-pinene (1.6%) Camphor (53.6), limonene (7.4%), and α-pinene (6.9%) Camphor (53.2%), 1,8-cineole (19.8%), and α-terpineol (6.2%) Safrole (57.6%), 1,8-cineole (18.1%), and camphor (11.8%) Trans-cinnamaldehyde (57.89%), ethylbenzene (5.43%), and camphor (4.04%) Linalool (44.8%), β-selinene (19.1%), and selin-11-en-4α-ol (7.3%) Methyl eugenol (38.5%), safrole (6.4%), and p-cymene (4.9%) Methyl eugenol (43.8%), safrole (7.0%), and Aromadendrene (4.5%) Eucalyptol (17.26%), α-terpineol (12.52%), and (-)-terpinen-4-ol (7.60%) Linalool (75.7%), cis-Linalool oxide (pyranoid) (3.2%), and hotrienol (3.2%) Trans-cinnamaldehyde (50.2–92.9%), α-copaene (0.5–21.3%), and γ-muurolene (0.2–3.7%)

References Abdelwahab et al. (2017) Fajar et al. (2019)

Jiang et al. (2016)

Poudel et al. (2021)

Li et al. (2013)

Dai et al. (2020)

Salleh et al. (2015)

Tian et al. (2012)

Dai et al. (2020)

Li et al. (2021)

(continued)

4  Bioactive Compounds and Extraction Methods of Cinnamon

32 Table 4.1 (continued) Species C. macrocarpum (leaves) C. macrocarpum (bark) C. osmophloeum (leaves) C. ovatum (leaves) C. ovatum (stem bark) C. polyadelphum (leaves) C. tonkinense (leaves) C. verum (leaves)

Extraction method HD

HD HD

HD

SD

C. verum (flowers)

C. zeylanicum (bark)

HD

C. zeylanicum (bark)

HD

Major compounds Safrole (59.5%), methyl eugenol (11.1%), and γ-gurjunene (3.9%) Safrole (54.5%), methyl eugenol (12.0%), and Aromadendrene (5.2%) Linalool (40.24), trans-cinnamyl acetate (11.71), and camphor (9.38) Eugenol (70.5%), eugenyl acetate (9.5%), and linalool (5.9%) Eugenol (71.2%), eugenyl acetate (9.3%), and linalool (8.3%) Camphor (32.2%), neral (11.7%), and geranial (16.6%) α-pinene (4.0%), sabinene (3.4%), and α-phellandrene (4.8%) (E) Cinnamaldehyde (35.6%), linalool (18.92%), and eugenol (18.69%) (E) Cinnamaldehyde (42.88%), eugenol (21.33%), and linalool (15.62%) Cinnamic aldehyde (52.3%), α-copaene (11.42%), and δ-cadinene (6.25%) (E)-cinnamaldehyde (71.50%), linalool (7.00%), and β-caryophyllene (6.40%)

References Salleh et al. (2015)

Lee et al. (2013) Dai et al. (2020)

Dai et al. (2020)

Narayanankutty et al. (2021)

Kazemi and Mokhtariniya (2016) Alizadeh Behbahani et al. (2020)

HD Hydrodistillation, SD steam distillation

characterized by the majority as camphor (18.48%), eucalyptol (16.46%), and linalool (11.58%), while the essential oil of the branches showed eucalyptol (17.21%), camphor (13.17%), and 3,7-dimethyl-1,3,7-octatriene (11.47%) as the majority. Finally, the essential oil of the seeds was characterized by the major compound eucalyptol (20.90%), methyl eugenol (19.98%), and linalool (14.66%) (Jiang et al. 2016). In the study carried out by Poudel et  al. (2021), the essential oils of leaves, branches, wood, and root obtained by hydrodistillation of a specimen of C. camphora collected in Nepal showed the major compounds camphor (93.1%), camphene (1.8%), and α-pinene (1.6%) in the essential oil of the leaves. While camphor (53.6), limonene (7.4%), and α-pinene (6.9%) were the main compounds found in the essential oil of the twigs, the essential oil of the wood was characterized by the main compound camphor (53.2%), 1,8-cineole (19.8%), and α-terpineol (6.2%), whereas the essential oil of the root presented safrole (57.6%), 1, 8-cineole (18.1%), and camphor (11.8%) as the majority. The leaves of a sample of C. cassia collected in China were extracted from their essential oils by hydrodistillation, and the major

4.2  Chemical Composition and Extraction Methods of Cinnamon Essential Oils

Fig. 4.1  Flowchart of the hydrodistillation system

Fig. 4.2  Flowchart of the microwave extraction system

33

34

4  Bioactive Compounds and Extraction Methods of Cinnamon

Fig. 4.3  Flowchart of the steam distillation system

compounds were trans-cinnamaldehyde (57.89%), ethylbenzene (5.43%), and camphor (4.04%) (Li et al. 2013). In the study by Dai et al. (2020) with essential oil from the leaves of a specimen of C. damhaensis collected in Vietnam. The EO of this sample was extracted by hydrodistillation, and presented the compounds linalool (44.8%), β-selinene (19.1%), and selin-11-en-4α-ol (7.3%) as the main compounds. Barks and leaves of C. griffithii were collected in Bau and Lundu, Sarawak, Malaysia, and essential oils were obtained by hydrodistillation. The essential oil of the bark was characterized by the main compounds methyl eugenol (43.8%), safrole (7.0%), and Aromadendrene (4.5%), and the essential oil of the leaves presented methyl eugenol (38.5%), safrole (6.4%), and p-cymene (4.9%) as the majority (Salleh et al. 2015). The essential oil from the bark of a sample of C. jensenianum was collected at the Wuhan Botanical Garden, Hubei Province, China, and extracted by hydrodistillation. This volatile oil presented eucalyptol (17.26%), α-terpineol (12.52%), and (-)-terpinen-4-ol (7.60%), as the major ones (Tian et  al. 2012). The essential oil from the leaves of C. longipetiolatum collected in Vietnam and extracted by hydrodistillation showed the major compounds linalool (75.7%), (Z)-linalool oxide (pyranoid) (3.2%), and hotrienol (3.2%) (Dai et al. 2020). A sample of C. loureirii collected in China had essential oil from the bark extracted by hydrodistillation, and the composition of this EO was characterized by the major components trans-cinnamaldehyde (50.2–92.9%), α-copaene (0.5–21.3%),

4.2  Chemical Composition and Extraction Methods of Cinnamon Essential Oils

35

and γ-muurolene (0.2–3.7%) (Li et al. 2021). In contrast, the volatile oil of leaves and bark obtained by hydrodistillation of a specimen of C. macrocarpum collected in Bau and Lundu, Sarawak, Malaysia, predominated the major compounds safrole (59.5%), methyl eugenol (11.1%), and γ- gurjunene (3.9%) in the essential oil of the leaves, and the compounds safrole (54.5%), methyl eugenol (12.0%), and aromadendrene (5.2%) were the main compounds found in the essential oil of the bark (Salleh et al. 2015). The compounds linalool (40.24), trans-cinnamyl acetate (11.71), and camphor (9.38) were the main compounds found in leaf essential oil obtained by hydrodistillation of a sample of C. osmophloeum collected in Taiwan (Lee et  al. 2013). In another study with a specimen of C. ovatum collected in Vietnam, the essential oil of leaves and stem bark were obtained by hydrodistillation and showed the major constituents eugenol (70.5%), eugenyl acetate (9.5%), and linalool (5.9%) in the EO of the leaves and the compounds eugenol (71.2%), eugenyl acetate (9.3%), and linalool (8.3%) in the EO of the stem bark (Dai et al. 2020). In the work done by Dai et al. (2020), the essential oil obtained by hydrodistillation of the leaves of C. polyadelphum and C. tonkinense collected in Vietnam showed the following major compounds camphor (32.2%), neral (11.7%), and geranial (16.6%) in the EO of C. polyadelphum, and the major compounds α-pinene (4.0%), sabinene (3.4%), and α-phellandrene (4.8%) characterized the chemical profile of the EO of C. tonkinense. The compounds (E)-cinnamaldehyde (35.6%), linalool (18.92%), and eugenol (18.69%) characterized the chemical profile of the essential oil obtained by steam distillation from leaves of C. verum collected in India. The essential oil of the flowers of this species presented (E)-cinnamaldehyde (42.88%), eugenol (21.33%), and linalool (15.62%) as main constituents (Narayanankutty et al. 2021). The essential oil obtained by hydrodistillation of the bark of a C. zeylanicum sample collected in Iran presented cinnamic aldehyde (52.3%), α-copaene (11.42%), and δ-cadinene (6.25%) as the major ones (Kazemi and Mokhtariniya 2016). This result was different from that observed by (Alizadeh Behbahani et al. 2020), in which the essential oil of C. zeylanicum bark was characterized mainly by (E)-cinnamaldehyde (71.50%), linalool (7.00%), and β-caryophyllene (6.40%).

4.2.1 Unconventional Extraction Method 4.2.1.1 Supercritical Extraction Supercritical fluid extraction is a combination of unit operations, which can make the process selective. For a substance to be in the supercritical fluid region, it needs its pressures and temperatures to be higher than the critical regions (de Oliveira et al. 2016, 2019), as can be seen in Fig. 4.4. In addition, this extraction process is considered green, which can be an alternative for obtaining bioactive compounds from plant hues such as cinnamon. A recent study has shown that the use of

36

4  Bioactive Compounds and Extraction Methods of Cinnamon

Fig. 4.4  The pV T surface for equilibrium states of CO2. The solid (S) line GL is a thermodynamic path where the continuous transformation of the gas (G) into a liquid (L), triple point (TC), critical pressure (Pc), critical temperature (Tc), and critical point (CP)

supercritical fluid can help in the selectivity of extraction of compounds of interest such as cinnamaldehyde and eugenol from cinnamon bark (Li et al. 2018). Baseri et al. (2011) used supercritical CO2 for the recovery of volatile compounds present in cinnamon bark; the authors used different parameters of pressure and temperature, noting that the increase in temperature favored a greater recovery of essential oils, and the compounds obtained in higher concentrations cinnamaldehyde (70–98%), α-muurolene (1–6%), eugenol (2–8%), α-caryophyllen (1–3%), and γ-muurolene (1–3%) (Masghati and Ghoreishi 2018) had a recovery of 54.7% of cinnamaldehyde and was done at 203 bar, 68.2 °C, 1.8 mL/min, 95.7 min, and 38.4% eugenol was done at 207  bar, 42.04  °C, 2.3  ml/min, and 118  min. These results corroborate those of other authors (Oyekanmi et  al. 2021), demonstrating that the supercritical extraction process is a viable alternative for the recovery of cinnamon compost; in Fig.  4.5, we can observe the flowchart of a supercritical extraction plant (Figs. 4.4 and 4.5).

4.3 Antimicrobial Activities 4.3.1 Antibacterial Bacteria are single-celled organisms that can be classified as gram-positive and gram-negative. Gram-positive bacteria have a protective outer membrane; however, the peptidoglycan layers are thicker than seen in gram-negative organisms (Wu et al. 2022; Wang et al. 2023). Gram-negative cells have an inner cytoplasmic membrane surrounded by a thin layer of peptidoglycan (PG) and an outer membrane containing lipopolysaccharide. This outer membrane functions as a permeability barrier to control the inflow and outflow of ions and nutrients and environmental toxins (Rajagopal and Walker 2017). Despite this difference, these types of bacteria have shown strong resistance to antimicrobial agents available on the market

4.3  Antimicrobial Activities

37

Fig. 4.5  Fluxograma de sistema de tratamento com fluido supercrítico

(Magiorakos et al. 2012), and in this sense, it is important to emphasize the antibacterial action presented in the essential oils of some species Cinnamomum, as this potential may favor the control of these pathogens. C. zeylanicum essential oil was tested against six types of bacteria Staphylococcus aureus, Listeria innocua, Bacillus cereus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhi, using agar methods: disk diffusion, well diffusion agar, MIC (minimum inhibitory concentration), and MBC (minimum bactericidal concentration). By the disk diffusion agar method, the essential oil showed the following results: S. aureus (26.00  ±  0.44  mm), Listeria innocua (30.00  ±  0.50  mm), Bacillus cereus (27.00  ±  0.61  mm), P. aeruginosa (24.00  ±  0.32  mm), E. coli (18.00  ±  0.40  mm), and S. typhi (19.00  ±  0.70  mm) (Alizadeh Behbahani et  al. 2020) and S. aureus (29.00 ± 0.45 mm), L. innocua (34.00 ± 0.46 mm), B. cereus (28.00 ± 0.81 mm), P. aeruginosa (27.00 ± 0.67 mm), E. coli (19.00 ± 0.50 mm), and S. typhi (22.00 ± 0.48 mm). Regarding the MIC, the essential oil presented the respective concentrations: Staphylococcus aureus (0.78  mg/mL), L. innocua (0.78 mg/mL), Bacillus cereus (1.56 mg/mL), P. aeruginosa (3.125 mg/mL), E. coli (6.25 mg/ml), and S. typhi (6.25 mg/ml). As for MBC, the results were 50 mg/mL, 12.5  mg/mL, 25  mg/mL, 3.125  mg/mL, 6.25  mg/mL, and 3.125  mg/mL, respectively, for E. coli, P. aeruginosa, P. aeruginosa, S. typhi, L. innocua, S. aureus, and B. cereus. According to the authors, these results demonstrate that the essential oil had a strong antibacterial effect against the six bacterial species studied (Alizadeh Behbahani et al. 2020).

38

4  Bioactive Compounds and Extraction Methods of Cinnamon

Bacteria of the type S. aureus, S. epidermidis, S. pyogenes, P. aeruginosa, and E. coli were tested against the bactericidal action of essential oils derived from the bark of Cinnamomum zeylanicum (EOCz), C. cassia (EOCc), as well as (E)cinnamaldehyde. In this study, EOCz, EOCc, and (E)-cinnamaldehyde exhibited bactericidal activity against S. aureus and S. epidermidis. The MIC values were, respectively, 0.25–0.50 mg/ml; EOCz had a bactericidal effect at 0.50 mg/ml, while EOCc and (E)-cinnamaldehyde had the same effect at 0.25  mg/ml. The authors emphasize that these volatile oils studied and (E)-cinnamaldehyde inhibit the growth of gram-positive and gram-negative bacteria in planktonic form and can be considered as possible sources for the development of new antimicrobial agents (Firmino et al. 2018). C. cassia essential oil was tested against S. maltophilia and B. subtilis bacteria. The majority of this essential oil were cinnamaldehyde (61.57%), trans-4-­ methoxycinnamaldehyde (13.78%), cinnamyl acetate (5.35%), and o-hydroxy-­ cinnamic acid. The disk diffusion method was used to detect the antimicrobial activity, and the essential oil of the studied species showed strong antibacterial activity against S. maltophilia (27.33 ± 0.58 mm) and B. subtilis (20.33 ± 1,53 mm) (Kačániová et al. 2021). The essential oil isolated from the bark of Cinnamomum glanduliferum cultivated in Egypt was tested against gram-positive bacteria (S. aureus, B. subtilis, M. tuberculosis, and S. aureus) and gram-negative bacteria (P. aeruginosa, E. coli, and H. pylori). In this study, it was evidenced that the essential oil has a strong antibacterial activity against Escherichia coli in which it presented an inhibitory zone (25.3  mm) higher than that of the reference antibiotic and effective with a high activity index with a MIC value of 0.49 μg/ml (Taha and Eldahshan 2017). Cinnamomum camphora essential oil was tested against seven types of microorganisms: five gram-positive bacteria – Bacillus cereus, Staphylococcus epidermidis, Propionibacterium acnes, Staphylococcus aureus, Streptococcus pyogenes and two gram-negative bacteria  – Serratia marcescens and P. aeruginosa. The minimum inhibitory concentrations were as follows: B. cereus 625 μg/mL (leaf essential oil), 625 μg/mL (twig essential oil), 625 μg/mL (wood essential oil), 625 μg/mL (root essential oil), 312.5  μg/mL (leaf/branch essential oil), and 312.5  μg/mL (leaf/ branch/wood essential oil); P. acnes 312.5 μg/mL (leaf essential oil), 312.5 μg/mL (bran essential oil), 312.5 μg/mL (wood essential oil), 312.5 μg/mL (root essential oil), 312.5 μg/mL (leaf/branch essential oil), and 312.5 μg/mL (leaf/branch/wood essential oil); P. aeruginosa 625 μg/mL (leaf essential oil), 625 μg/mL (twig essential oil), 625 μg/mL (wood essential oil), 312.5 μg/mL (root essential oil), 625 μg/ mL (leaf/twig essential oil), and 625  μg/mL (leaf/branch/wood essential oil); S. marcescens 625  μg/mL (leaf essential oil), 625  μg/mL (bran essential oil), 39.1 μg/mL (wood essential oil), 625 μg/mL (root essential oil), 625 μg/mL (leaf/ branch essential oil), and 625  μg/mL (leaf/branch/wood essential oil); S. aureus 1250 μg/mL (leaf essential oil), 1250 μg/mL (twig essential oil), 1250 μg/mL (wood essential oil), 1250 μg/mL (root essential oil), 1250 μg/mL (leaf/twig essential oil), and 1250 μg/mL (leaf/branch/wood essential oil); S. epidermidis 156.3 μg/mL (leaf essential oil), 156.3 μg/mL (bran essential oil), 156.3 μg/mL (wood essential oil),

4.3  Antimicrobial Activities

39

156.3  μg/mL (root essential oil), 312.5  μg/mL (leaf/branch essential oil), and 312.5  μg/mL (leaf/branch/wood essential oil); and S. pyogenes 625  μg/mL (leaf essential oil), 625  μg/mL (bran essential oil), 625  μg/mL (wood essential oil), 625 μg/mL (root essential oil), 625 μg/mL (leaf essential oil/branch), and 625 μg/ mL (leaf/branch/wood essential oil). Among these results, the authors emphasize that the wood essential oil showed good antibacterial activity against Serratia marcescens, with the major compounds camphor, 1,8-cineole, α-terpineol, and safrole (Poudel et al. 2021). In the study by Teles et al. (2019), Cinnamomum zeylanicum essential oil was tested against three types of bacteria, which were E. coli, S. aureus, and P. aeruginosa. This essential oil showed the following zones of inhibition: 15.00 ± 1000 mm (E. coli), 14.67 ± 0.577 mm (S. aureus), and 10.33 ± 0.577 mm (P. aeruginosa). Regarding minimum inhibitory concentration (MIC), the essential oil showed 133.3 ± 14.43 μg/mL (E. coli), 216.7 ± 28.87 μg/mL (S. aureus), and 550.0 ± 0.00 μg/ mL (P. aeruginosa). According to the authors, the essential oil of C. zeylanicum exhibited antimicrobial action, mainly against the E. coli. Cinnamomum ovatum, C. tonkinense, C. damhaensis, C. longipetiolatum, and C. polyadelphum essential oils were evaluated for their antimicrobial potential against gram-positive (E. faecalis, S. aureus, Bacillus cereus) and gram-negative (E. coli) bacteria (P. aeruginosa and S. enterica). The essential oil from C. ovatum leaves showed the respective minimum inhibitory concentration (MIC) of 64 μg/mL (E. faecalis), 64  μg/mL (S. aureus), 128  μg/mL (B. cereus), 64  μg/mL (E. coli), 128  μg/mL (P. aeruginosa), and 64  μg/mL (S. enterica), while C. ovatum stem essential oil showed MIC: 64 μg/mL, 64 μg/mL, and 64 μg/mL, respectively, against E. faecalis, S. aureus, B. cereus, and 64 μg/mL, 16 μg/mL, and 64 μg/mL (E. coli, P. aeruginosa, and S. enterica). The essential oil of C. tonkinense showed MIC only against gram-positive bacteria, which were 32 μg/mL, 128 μg/mL, and 128 μg/mL (E. faecalis, S. aureus, B. cereus). The essential oil of C. damhaensis did not demonstrate antimicrobial activity against both types of bacterial species, while the essential oil of C. longipetiolatum had the respective MIC of 64 μg/mL, 128 μg/mL, and 128 μg/mL (E. faecalis, S. aureus, B. cereus) and 256 μg/mL, 256 μg/mL, and 128  μg/mL (E. coli, P. aeruginosa, and S. enterica). Finally, the essential oil of C. polyadelphum presented the respective MIC of 32 μg/mL, 64 μg/mL, and 64 μg/ mL against E. faecalis, S. aureus, B. cereus, and 128 μg/mL S. enterica against the gram-negative bacteria E. coli and P. aeruginosa, and the essential oil was inactive (Dai et al. 2020). Cinnamomum zeylanicum essential oil was evaluated against two bacterial species E. coli and S. aureus. This essential oil presented the following minimal inhibitory concentration (MIC), being 0.80  mg/mL−1 (E. coli) and 0.20  mg/mL−1 (S. aureus), and the minimal bactericidal concentration (MBC) were 3.20 mg.mL−1 (E. coli) and 0.80 mg.mL−1 (S. aureus). According to the authors, the antimicrobial potential of the essential oil of C. zeylanicum must be associated with the major compounds cinnamaldehyde, cinnamyl acetate, and cinnamyl benzoate (Boniface et al. 2012).

40

4  Bioactive Compounds and Extraction Methods of Cinnamon

4.3.2 Antifungal Fungi are microorganisms that are omnipresent beings, that is, they can be found in different environments. They can be airborne in the form of spores, mycelia, and hyphae fragments (Baxi et al. 2016). These beings can cause serious problems to human health through food contamination, as well as the spread of diseases and infections in organs such as the skin, nails, and even the lungs. In this context, essential oils can be an alternative for the control of these pathogens, as these volatile oils have bioactive compounds with significant antimicrobial action (Ferreira et al. 2021), as seen in Table 4.2, which shows the antifungal potential of essential oils of some species of Cinnamomum. The antifungal potential of Cinnamomum zeylanicum bark essential oil was tested against four species of the genus Candida (C. albicans, C. albicans, C. parapsilosis, and C. krusei). According to the results in Table 4.2, the authors point out that the essential oil showed strong antimicrobial activity against the four Candida species, and this high antimicrobial activity may be due to the presence of the high amount of cinnamaldehyde (Unlu et  al. 2010). C. zeylanicum was tested against C. albicans yeast using the minimum inhibitory concentration test, which showed that the essential oil from that sample has expressive antifungal activity against Candida species (Boniface et al. 2012). The essential oils from leaves, branch, wood, root, leaf/branch, and leaf/branch/ wood of C. camphora were tested against seven fungal species: A. niger, C. albicans, Microsporum canis, Trichophyton mentagrophytes, Aspergillus fumigatus, Microsporum gypseum, and Trichophyton rubrum. According to the results (Table 4.2), the mixture of leaf/branch/wood essential oils showed good antifungal activity against Aspergillus niger and A. fumigatus, while the essential oil of the leaves was notably active against Aspergillus niger, A. fumigatus, and Trichophyton rubrum (Poudel et al. 2021). The antimicrobial activity of C. cassia essential oil was analyzed against three fungal yeasts of the genus Penicillium (P. expansum, P. crustosum, and P. citrinum). The authors mention that by the disc diffusion (DD) method, the essential oil showed a lower antifungal potential, different from that observed in the minimum fungicidal concentration (MFC), in which the volatile oil of C. cassia showed a significant antimicrobial potential (Kačániová et  al. 2021). In another study, the essential oil from the bark of C. glanduliferum was tested against the fungal species of Aspergillus fumigatus and Geotricum candidum. According to the results (see Table 4.2), the authors point out that the essential oil of that species showed strong antimicrobial activity against the fungal species of Aspergillus fumigatus (Taha and Eldahshan 2017). The antimicrobial activity of the essential oil of five species of Cinnamomum (C. damhaensis, C. longipetiolatum, C. ovatum, C. polyadelphum, and C. tonkinense) was evaluated against C. albicans. In this study, the authors mention that all Cinnamomum essential oils can be considered active and promising as antimicrobial agents (Dai et al. 2020).

Table 4.2  Antifungal activity found in the essential oils of some species of Cinnamomum Species

Methods

Cinnamomum camphora

Minimum inhibitory Aspergillus niger concentrations (ATCC-16888) (MIC)

Fungi

Results

References

OE folhas MIC: 312.5 μg/mL

Poudel et al. (2021)

OE ramo MIC: 156.3 μg/mL OE madeira MIC: 156.3 μg/mL OE raiz MIC: 156.3 μg/mL OE folha/ramo MIC: 156.3 μg/mL OE folha/ramo/madeira MIC: 78.1 μg/mL

Candida albicans (ATCC-18804)

OE folhas MIC: 312.5 μg/mL OE ramo MIC: 312.5 μg/mL OE madeira MIC: 312.5 μg/mL OE raiz MIC: 312.5 μg/mL OE folha/ramo MIC: 312.5 μg/mL OE folha/ramo/madeira MIC: 312.5 μg/mL

Microsporum canis OE folhas MIC: 312.5 μg/mL (ATCC-11621) OE ramo MIC: 312.5 μg/mL OE madeira MIC: 312.5 μg/mL OE raiz MIC: 312.5 μg/mL OE folha/ramo MIC: 312.5 μg/mL OE folha/ramo/madeira MIC: 312.5 μg/mL Trichophyton mentagrophytes (ATCC-18748)

OE folhas MIC: 156.3 μg/mL OE ramo MIC: 156.3 μg/mL OE madeira MIC: 156.3 μg/mL OE raiz MIC: 312.5 μg/mL OE folha/ramo MIC: 312.5 μg/mL OE folha/ramo/madeira MIC: 156.3 μg/mL

Aspergillus fumigatus (ATCC-96918)

OE folhas MIC: 312.5 μg/mL OE ramo MIC: 156.3 μg/mL OE madeira MIC: 312.5 μg/mL OE raiz MIC: 312.5 μg/mL OE folha/ramo MIC: 156.3 μg/mL OE folha/ramo/madeira MIC: 78.1 μg/mL

Microsporum gypseum (ATCC-24102)

OE folhas MIC: 312.5 μg/mL OE ramo MIC: 312.5 μg/mL OE madeira MIC: 312.5 μg/mL OE raiz MIC: 312.5 μg/mL OE folha/ramo MIC: 625 μg/mL OE folha/ramo/madeira MIC: 312.5 μg/mL

Trichophyton rubrum (ATCC-28188)

OE folhas MIC: 78.1 μg/mL OE ramo MIC: 312.5 μg/mL OE madeira MIC: 312.5 μg/mL OE raiz MIC: 156.3 μg/mL OE folha/ramo MIC: 625 μg/mL OE folha/ramo/madeira MIC: 312.5 μg/mL

(continued)

42

4  Bioactive Compounds and Extraction Methods of Cinnamon

Table 4.2 (continued) Species

Methods

C. cassia

Disc diffusion (DD) Penicillium and minimum expansum fungicidal P. crustosum concentration (MFC) P. citrinum

Fungi

Results

References

DD: 0.33 ± 1.53 mm; MFC = 0.20 μL/mL Kačániová et al. (2021) DD: 10.64 ± 0.58 mm; MFC = 0.39 μL/mL DD: 13.53 ± 1.15 mm; MFC = 0.78 μL/mL

C. damhaensis

Minimum inhibitory Candida albicans concentration (MIC) and median inhibitory concentration (IC50)

MIC: *; IC50: *

Dai et al. (2020)

C. glanduliferum

Disc diffusion (DD) and minimum inhibitory concentration (MIC)

Aspergillus fumigatus (RCMB02568)

DD: 16.2 ± 2.1 mm; MIC: 32.5 μg/mL

Taha and Eldahshan (2017)

Geotricum candidum (RCMB05097)

DD: 20.6 ± 1.5 mm; MIC: 1.95 μg/mL

C. Minimum inhibitory Candida albicans longipetiolatum concentration (MIC) and median C. ovatum inhibitory concentration (IC50)

MIC: 256 μg/mL; IC50: 112.45 μg/mL

C. polyadelphum

MIC: 256 μg/mL; IC50: 123.45 μg/mL

C. tonkinense

MIC: 32 μg/mL; IC50: 15.67 μg/mL

C. zeylanicum

Disc diffusion (DD) and minimum inhibitory concentration (MIC)

Dai et al. (2020)

OE folha: MIC: 64 μg/mL; IC50: 33.22 μg/mL OE caule: MIC: 32 μg/mL; IC50: 15.62 μg/mL

C. albicans ATCC DD: >40 mm 10231 MIC: 0.07 μg−1 mL

Unlu et al. (2010)

C. albicans ATCC DD: >40 mm 90028 MIC: 1.12 μg−1 mL C. parapsilosis ATCC 90018

DD: >40 mm MIC: 40 mm MIC: