135 4 15MB
English Pages 227 [279] Year 2016
Annals of Mathematics Studies Number 83
AUTOMORPHIC FORMS ON A D ELE GROUPS
BY
STEPHEN S. GELBART
PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY
C o p y rig h t © 1 9 7 5 , by P rin ce to n U n iv ersity P re ss A LL RIG H TS R E SE R V E D
P rinted in the U n ited S tates o f A m e ric a
L IB R A R Y O F CO N G RESS CATALOGING IN PUBLICATIO N DATA
G e lb a rt, S. A u to m o rp h ic fo rm s on A d e le group s. (A n n a ls o f m a th e m a tics stu d ies; no. 8 3 ) “ E xp an d ed from notes m im eog rap h ed at C o rn ell in M a y o f 1 9 7 2 and entitled A u to m o rp h ic form s and re p resen tatio n s o f A d e le g ro u p s.” B ib lio g ra p h y : p. In clu d es in d ex. 1.
R e p re se n ta tio n s o f grou p s.
2 . A u to m o ip h ic form s.
3 . L in e a r a lg e b ra ic grou p s. I. Q A 1 7 1 .G 3 9
T itle . 1975
II. S e rie s. 512\22
7 4 -2 3 3 8 8
IS B N 0 - 6 9 1 - 0 8 1 5 6 - 5 3 5 7 9
10
8 6 4 2
T o my fath er, Abe G elbart
PREFACE
S e ctio n s 1 through 7 of th e se N otes are b ased on le c tu re s I gav e at C o rn ell U n iv ersity in the Spring of 1 9 7 2 .
They are expanded from N otes
mimeographed a t C orn ell in May of 1 9 7 2 and en titled A utom orphic Forms a n d R e p re s e n ta tio n s of A d e le G roups.
1 am gratefu l to E . M. Stein for s u g
g estin g th at I expand th o se N otes for p ub lication by the P rin ce to n U ni v e rsity P r e s s and th at I in co rp orate into them the m aterial of S e ctio n s 8 through 10.
T h e s e la s t th ree s e c tio n s are b ased on le c tu re s I gav e at the
In stitu te for A dvanced Study, P rin ce to n , in the Spring of 1 9 7 3 .
I am in
debted to the In stitu te for its h o sp ita lity a s w ell a s for the atm osphere it c re a te d for s e rio u s work. Th e s u b je c t m atter of th e se N otes is the in terp lay betw een the theory of autom orphic forms and group re p re se n ta tio n s.
One go al is to in terp ret
som e re ce n t developm ents in th is a re a , m ost sig n ifica n tly the theory of Ja c q u e t-L a n g la n d s , working out, w henever p o s sib le , e x p lic it co n se q u e n c e s and c o n n e ctio n s with the c l a s s i c a l theory.
Another go al is to c o lle c t a s
much inform ation a s p o ssib le co n cern in g the d ecom p osition of L 2 (G L (2 ,Q )\ G L (2,A (Q )).
Although e a c h p articu lar s e c tio n h as its own introduction
d escrib in g the m aterial co v ered I would like to add the follow ing orienting rem arks to th is P r e f a c e . S e ctio n s 1 through 5 are prelim inary in nature and th eir purpose is to sp e ll out the e x p lic it re la tio n s betw een c l a s s i c a l cu sp forms and c e rta in irredu cib le c o n stitu e n ts of L 2 (G L (2 ,Q )\ G L (2 ,A (Q )).
H ere I c o ll e c t only
th o se fa c ts from rep resen tatio n theory and the c l a s s i c a l theory of forms which are c ru c ia l to the se q u e l.
P a r ts of th e se s e c tio n s are eith er new or
part of the s u b je c t ’s “ fo lk lo re .”
R e fe re n ce s to the e x is tin g literatu re are
to be found in the “ N otes and R e f e r e n c e s ” at the end of e a c h s e c tio n and individual ackn ow led gem ents are made w henever p o ssib le . vii
viii
PR EFA C E
S ectio n s 6 through 10 d eal with Ja c q u e t-L a n g la n d ’s theory and som e important q uestion s related to it.
S ectio n 8 d e sc rib e s the continuous
spectru m of L 2 (G L (2 ,Q )\ G L (2 ,A )) and is perhaps the le a s t se lf-co n ta in e d . T h e rem aining s e c t io n s , including S ectio n 9 on the tra c e form ula, co n cern the d is c re te spectru m .
I have included a com p lete proof of the tra c e
formula for G L (2 ) prim arily b e c a u s e the id eas involved here are s t il l not w ell known.
I a ls o w anted there to be no doubt in the re a d e r’s mind th at
the proof of Ja c q u e t-L a n g la n d s ’ Theorem 1 0 .5 is now com p lete.
In w riting •
S ectio n 9 I h ave followed J . G. A rthur’s as yet unpublished m anuscript on the tra c e formula for rank one groups and I w ish to thank him for allow ing me to do s o . S cattered throughout th e se N otes are som e new re su lts and proofs w hich I have not d escrib ed elsew h ere.
I am indebted to my c o lle a g u e s at
C o rn ell, in p articu lar K. S. Brow n, W. H. J . F u c h s , A. W. Knapp, S. L ich te n baum, 0 . S. R o th au s, R. Stanton, H. C . Wang, and W. C . W aterhouse, for help and en couragem en t, and to J . G. Arthur, P . C a rtier, W. C a s se lm a n , R. Howe, R. H otta, M. K arel, R . P . L a n g la n d s, R . P a rth a sa ra th y , P . J . S ally , J r ., and T . Shintani, for helpful c o n v e rs a tio n s and co rresp o n d en ce related to the re su lts d escrib ed here.
I e s p e c ia lly w ish to thank R. P . L an g lan d s for
much valu ab le information and in sp iration . T he first typing of th e se N otes w as done a t C orn ell by E sth e r Monroe, D olores P en d ell and Ruth H ym es. w as greatly ap p reciated .
ITHACA DECEMBER 1973
T h eir unusual e fficie n cy and e x p e rtis e
CO N TEN TS
P R E F A C E ....................................................................................................................................
v
§1.
...............................................................................
3
E lem en tary N otions .......................................................................................... E xam p le s ......................................... H e c k e ’s T h e o r y .................................................................................................... Com plem ents to H e c k e ’s T h eory ............................................................. N otes and R e fe re n c e s ......................................................................................
3 9 12 17 20
T H E C L A S S IC A L T H E O R Y A. B. C. D.
§2.
AUTOMORPHIC FORMS AND T H E DECOMPOSITION O F L 2( r \ S L ( 2 ,R ) A. B. C.
§3.
AUTOM ORPHIC FORMS AS FU N CTIO N S ON T H E A D E L E G ROUP O F G L (2 ) ..................................................................................................... A. B. C.
§4.
22
40
B a s ic N otions ....................................................................................................... H eck e O p erators .................................................................................................. A rbitrary B a s e F ie ld s ..................................................................................... N otes and R e fe re n c e s ......................................................................................
40 47 50 52
T H E R E P R E S E N T A T IO N S O F G L (2 ) O V ER L O C A L AND G L O B A L F IE L D S ........................................................................................................
54
A. B.
C. §5.
........................................................................................................
Autom orphic Fo rm s a s F u n ctio n s onS L ( 2 ,R ) .................................. 22 Automorphic F o rm s and the D ecom p osition of L 2 (P \ G ) .......... 30 Some M iscellan eo u s R e s u lts C on cern in g the D ecom p osition of L 2 ( F \ S L ( 2 ,R ) ... ........................................................... 37 N otes and R e fe re n ce s ....................................................................................... 39
T h e A rchim edean P l a c e s ............................................................................. T h e p -ad ic T h eory ............................................................................................. 1. A d m issib ility ................................................................................................ 2. C la s s if ic a tio n of A dm issible R e p re s e n ta tio n s ......................... 3 . Some P ro p e rtie s of Irred u cib le A dm issible R e p re s e n ta tio n s .............................................................................................. G lobal T h eory ....................................................................................................... N otes and R e fe re n c e s ......................................................................................
C U S P FORMS AND R E P R E S E N T A T IO N S O F T H E A D E L E G RO U P O F G L (2 ) ......................................................................... A. B. C.
P relim in ary R e s u lts on the D ecom p osition of R ^ (g ) ................... C u sp Form s and H eck e O perators R e v isite d ..................................... Some E x p lic it F e a tu r e s of the C orresp on d en ce B etw een C usp Fo rm s and R e p r e s e n ta tio n s .............................................................. N otes and R e fe re n ce s ...................................................................................... ix
54 60 60 65 71 75 77 79 80 36 92 96
CONTENTS
X
§6.
H E C K E T H E O R Y FO R A. B. C. D.
§7.
C. D.
T h e Weil R ep resen tatio n .............................................................................. T he C o n stru ctio n of C ertain S p e cia l R ep resen tatio n s of G L (2 , A ) ............................................................................................................ An E x p lic it E xam p le ...................................................................................... C o nn ection s with C la s s F ie ld Theory ............................................... N otes and R e fe re n ce s .....................................................................................
134 143 151 154 1 59
EIS EN S T E IN S E R IE S AND T H E CONTINUOUS S P E C T R U M ......... 161 A. B. C. D. E.
§9.
98 99 105 108 121 130
T H E CO NSTRUCTION O F A S P E C IA L CLA SS OF AUTOMORPHIC FORMS ........................................................................................ 133 A. B.
§8.
G L (2 ) ..........................................................................
H ecke T heory for G L ( 1 ) .............................................................................. Fu rth er M otivation ........................................................................................... Ja c q u e t-L a n g la n d s ’ T h e o ry ......................................................................... C o n n ectio n s with the C la s s i c a l Theory ............................................ N otes and R e fe re n ce s .....................................................................................
Some P r e lim in a rie s ........................................................................................... A n aly sis of C ertain Induced R ep resen tatio n s ............................... E is e n s te in S eries .............................................................................................. D escrip tion of the Continuous Spectrum ............................................ Summing Up ........................................................................................................... N otes and R e fe re n ce s .....................................................................................
162 165 168 173 178 179
T H E T R A C E FO RM ULA FO R G L (2 ) ........................................................... A. M otivation ............................................................................................................. 1. T h e R e a l Situation .................................................................................. 2. The C a s e of Com pact Q u o tien t......................................................... 3. The Situation for G L (2 ) ......................................................................
181 181 181 183 186
B. C.
T h e T ra c e of R j( f ) ...........................................................................................1 88 A Second Form of the T ra c e Form ula ................................................ 195 1. C onju gacy C la s s e s in G q ................................................................ 196 2. T ru n catin g K i ( x ,x ) and r((x ,x ) .................................................... 197 3. P lan of A t t a c k ............................................................................................. 2 0 0 4. T h e E llip tic and Singular Term s ................................................... 201 5. T h e F i r s t P a ra b o lic Term ..................................................................... 2 03 6. T h e Second P a ra b o lic Term ................................................................ 2 1 0 7. T h e Third P a ra b o lic Term ................................................................ 21 4 8. F in a l Form of the T ra c e Form ula ................................................. 2 1 8 N otes and R e fe re n ce s .......................................................................................2 2 4
§ 1 0 . AUTOMORPHIC FORMS ON A QUATERNION A L G E B R A .............. 2 2 7 A. P re lim in a rie s ........................................................................................................ 2 2 9 B. Statem ent and P roof of the Fu n dam ental R e su lt ......................... 2 3 4 C . C o n stru ctio n of Some S p e cia l Automorphic Form s in the C a s e of C om pact Q u o tie n t............................................................................. 2 46 D. T h eta S eries A ttach ed to Q uaternary Q uadratic F o r m s 251 1. Weil R e p re se n ta tio n s and T h eta S eries .................................... 2 5 2 2. D ecom p osition of the Weil R e p r e s e n ta tio n ............................... 25 3 3. A pp lication to th e B a s is Problem ................................................... 2 5 6 N otes and R e fe re n ce s ..................................................................................... 2 5 9 BIB L IO G R A P H Y .................................................................................................................... 2 6 0 IND EX ............................................................................................................................................2 6 4
Automorphic Forms on Adele Groups
§1.
T H E C L A S S IC A L T H E O R Y
T h is s e c tio n d e s c rib e s variou s a s p e c ts of H e c k e ’s th eory of D irich let s e r ie s atta ch e d to cu sp forms and som e re ce n t refinem ents of it due to Weil and A tk in -L eh n er.
T h e se re s u lts from the c l a s s i c a l theory of a u to
morphic forms play a c ru c ia l role in the modern theory.
S in ce we in clu de
them primarily to provide a co n v en ien t c l a s s i c a l referen ce for our d is c u s sion of J a c q u e t-L a n g la n d s ’ theory no attem pt at c o m p leten ess is made. A.
E lem en tary N otions Throughout th is s e c tio n we s h a ll be d ealin g with non co -co m p a ct a rith
m etic subgroups of S L (2 ,R ).
(T h e c a s e of com pa ct fundam ental domain
w ill be con sid ered in S ectio n 1 0 .)
In f a c t,
F
gruen ce subgroup, i .e ., a subgroup of S L (2 ,Z )
w ill u su ally d enote a c o n which co n tain s the h o m o g e
n eo u s p rin cip a l c o n g r u e n c e su b g ro u p
for som e p o sitiv e in teger
N.
Im portant exam p les are
S L ( 2 ,Z )
(the 4‘ full
co n gru en ce su b g ro u p ,’ ’ or ‘ ‘co n g ru en ce subgroup of le v e l 1 ” ) and “ H e c k e ’s sub grou p ”
By
G L + ( 2 ,R ) we s h a ll d enote the group of real
p o sitiv e determ inant. ilm (z) > 01,
and
If g =
2x2
m atrices with
b elon gs to G L +(2 ,R ),
k is a p o sitiv e in teg er, we s e t
(l.D
3
z
to
4
AUTOMORPHIC FORMS ON ADELE GROUPS
(1 .2 )
j(g ,z ) = (c z + d )(d e t g)
1/2 ,
and
(1-3)
fkg]|/z) = f(ez)Kg,z)_k -
T h is la s t formula d efin es an operator on the s p a c e of a ll com p lex-valu ed functions
z e llm (z) > Oi.
f(z ),
z l f z2
Tw o points
w ill be c a lle d eq u iv a len t un der T
for som e y t l \
if y z j = z 2 dom ain for V
if F
A s u b se t
are 1 '-eq u iv alen t and e a c h point of
is T -eq u iv alen t to som e point of the c lo s u re of F .
A point s elem en t of F c u sp s of r
of flm (z) > Oi is a fundam ental
is a co n n ected open su b se t of ilm (z) > Ol with the
property th at no two points of F flm (z) > Oi
F
(or r-e q t/iv a /e /if )
in R U i°oj fixing s .
then F
is a c u s p of F
If H
if there e x is ts a pa ra bo lic
d en o tes the union of ilm (z )> Oi and the
a ls o a c ts on H ; the resu ltin g quotient s p a c e
p o s s e s s e s a natural (H ausdorff) topology and a com plex s tru ctu re su ch . ^ that r \ H is a co m p a ct R iem ann s u rfa c e . The cu s p s we s h a ll co n sid er may be taken as various ratio n al points on the real a x is and . Most authors denote the cu sp at 00 by em p h asize that as
z = x + iy ap p roach es the cu sp in F ,
x
i°° to
is bounded,
and y > 00. In g en eral, if T
is an arb itrary d is c re te subgroup of S L (2 ,R ),
ca lle d a F u c h s ia n gro up of the firs t kin d if r \ H
is co m p act.
V
is
A ll
F u c h s ia n groups, and F Q(N) in p articu lar, have (at m ost) a fin ite number of T -in eq u iv alen t c u s p s . The follow ing definition is valid for F
an arb itrary F u c h s ia n group
of the first kind. DEFINITION 1 .1 .
A com p lex-valu ed function
f(z)
is c a lle d a F -autom or
p h ic form of w eigh t k ( or an autom orphic form of w eigh t is defined in tlm (z) > 0!
k for F )
and s a tis f i e s the follow ing con d itio n s:
if it
§1. THE CLASSICAL THEORY
(i)
f|[y]k = f,
5
i.e .
'(ffra) ■(cz ,d)k[fe) for all
y = jj!
jjj e 1';
th is is the “ automorphy co n d itio n ”
for f; (ii)
f is holom orphic in jlm (z) > Oi;
(iii)
f is holom orphic at every c u sp of F .
T he s p a c e of su ch functions w ill be denoted
and
Mj^ F ) .
F o r con gru en ce sub grou ps, elem en ts of M ^(F) are often c a lle d modular form s (or m odular form s of le v e l
N if F = TfN )).
If s
Im(o-(z)) = Im(z)|j(cr,z)|- 2 ).
T h erefo re, if f f Sk( r ) , g(w ) -» 0 a s * (with re s p e ct to the topology of H ). T h is means th at g is a c o n
tinuous function on the com pa ct s p a c e v e rse ly , if
|g(z)| < M, fg ( 0
F\H
and h ence
|g(z)| < M.
must be holomorphic at C = 0,
C on
and in fa c t it
must van ish there. □ oo
C o ro lla ry
1 .6 .
If f(z) =
1
a
e 27/inz f Sk( D ,
th en
n= 1
( 1 .1 0 )
Pro of.
a n = 0 (n k / 2 ) .
S in ce
f^OD =
^
an £ n