309 103 6MB
English Pages 399 Year 2009
AntennasforBaseStations inWirelessCommunications
ABOUTTHEEDITORS DR.ZHININGCHENreceivedhisPh.D.fromtheInstituteofCommunications Engineering and his DoE from the University ofTsukuba. Since 1988, he has worked at the Institute of Communications Engineering, Southeast University, City University of Hong Kong, University ofTsukuba, and the IBMT. J.Watson Research Center. He is currently Principal Scientist and DepartmentHeadforRF&OpticalattheInstituteforInfocommResearchin Singapore.Heisconcurrentlyholdingguest/adjunctprofessorappointments atShanghaiJiaoTongUniversity,SoutheastUniversity,NanjingUniversity, TongjiUniversity,andNationalUniversityofSingapore.Heisalsotechnical advisoratCompexSystems. As a key member of numerous international organizations, Dr. Chen has organized many events. He is the founder of the InternationalWorkshop on Antenna Technology (iWAT). He has published over 260 papers as well as authoredandeditedthefollowingbooks:BroadbandPlanarAntennas:Design andApplications(Wiley,2007),UltraWidebandWirelessCommunication(Wiley, 2006), and Antennas for Portable Devices (Wiley, 2007). He also contributed chapterstoUltraWidebandAntennasandPropagationforCommunications, Radar,andImaging(Wiley,2006)aswellasAntennaEngineeringHandbook, FourthEdition(McGraw-Hill,2007).Heholds26grantedandfiledpatentswith 15licensedindustrydeals.HeistherecipientoftheCSTUniversityPublication Award2008,IEEEAP-SHonorableMentionStudentPaperContest2008,IES PrestigiousEngineeringAchievementAward2006,I2RQuarterlyBestPaper Award2004,andIEEEiWAT2005BestPosterAward. Dr.ChenisaFellowoftheIEEE,Inc.andanIEEEAP-SDistinguished Lecturer(www1.i2r.a-star.edu.sg/~chenzn). DR. KWAI-MAN LUK received his Ph.D. in electrical engineering from The University of Hong Kong. He is currently Head and Chair Professor of the Electronic Engineering Department at City University of Hong Kong. His recentresearchinterestsincludedesignofpatch,planar,anddielectricresonator antennas; microwave and antenna measurements; and computational electromagnetics.Heistheauthoroftwobooks,acontributingauthortonine researchbooks,andtheauthorofover250journalpapersand200conference papers.HehasrecentlybeenawardedtwoU.S.patentsandtenPRCpatentson thedesignofawidebandpatchantennawithanL-shapedprobe.Hereceived theJapanMicrowavePrizeatthe1994AsiaPacificMicrowaveConferenceheld inChibainDecember1994andtheBestPaperAwardatthe2008International SymposiumonAntennasandPropagationheldinTaipeiinOctober2008. He was the Technical Program Chairperson of the 1997 Progress in Electromagnetics Research Symposium (PIERS 1997), the General ViceChairpersonofthe1997and2008Asia-PacificMicrowaveConference,andthe GeneralChairmanof2006IEEERegionTenConference.Heisadeputyeditorin-chiefoftheJournalofElectromagneticWavesandApplications. ProfessorLukisaFellowoftheIEEE,Inc.;aFellowoftheChineseInstitute ofElectronics,PRC;aFellowoftheInstitutionofEngineeringandTechnology, UK;andaFellowoftheElectromagneticsAcademy,U.S.
Antennasfor BaseStations inWireless Communications ZhiNingChen Kwai-ManLuk
NewYork Chicago SanFrancisco Lisbon London Madrid MexicoCity Milan NewDelhi SanJuan Seoul Singapore Sydney Toronto
Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-161289-0 MHID: 0-07-161289-0 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-161288-3, MHID: 0-07-161288-2. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.
ContentsataGlance
Chapter1. FundamentalsofAntennas
1
Chapter2. BaseStationAntennasforMobileRadioSystems
31
Chapter3. A ntennasforMobileCommunications: CDMA,GSM,andWCDMA
95
Chapter4. AdvancedAntennasforRadioBaseStations
129
Chapter5. A ntennaIssuesandTechnologies forEnhancingSystemCapacity
177
Chapter6. N ewUnidirectionalAntennasfor VariousWirelessBaseStations
205
Chapter7. AntennasforWLAN(WiFi)Applications
241
Chapter8. A ntennasforWirelessPersonalAreaNetwork (WPAN)Applications:RFID/UWBPositioning
291
Index
349
v
This page intentionally left blank
Contents
Preface xiii Acknowledgments xv Introduction xvii
Chapter1. FundamentalsofAntennas
1.1 BasisParametersandDefinitionsofAntennas 1.1.1 InputImpedanceandEquivalentCircuits 1.1.2 MatchingandBandwidth 1.1.3 RadiationPatterns 1.1.4 PolarizationoftheAntenna 1.1.5 AntennaEfficiency 1.1.6 DirectivityandGain 1.1.7 Intermodulation 1.2 ImportantAntennasinThisBook 1.2.1 PatchAntennas 1.2.2 SuspendedPlateAntennas 1.2.3 PlanerInverted-L/FAntennas 1.2.4 PlanerDipoles/Monopoles 1.3 BasicMeasurementTechniques 1.3.1 MeasurementSystemsforImpedanceMatching 1.3.2 MeasurementSetupsforFar-ZoneFields 1.3.3 MeasurementSystemsforIntermodulation 1.4 SystemCalibration 1.5 Remarks References
1 1 2 3 4 6 9 10 13 15 15 17 18 20 21 21 22 26 28 28 29
Chapter2. BaseStationAntennasforMobileRadioSystems
31
32 33 36 44 44 51 51 62 67
2.1 OperationalRequirements 2.2 AntennaPerformanceParameters 2.2.1 ControlofAntennaParameters 2.3 TheDesignofaPracticalBaseStationAntenna 2.3.1 MethodsofConstruction 2.3.2 ArrayDesign 2.3.3 DimensioningtheArray 2.3.4 MultibandandWidebandArrays 2.3.5 FeedNetworks
vii
viii Contents
2.3.6 PracticalCost /PerformanceIssues 2.3.7 PassiveIntermodulationProductsandTheirAvoidance 2.3.8 UseofComputerSimulation 2.3.9 ArrayswithRemotelyControlledElectricalParameters 2.3.10 AntennasforTD-SCDMASystems 2.3.11 MeasurementTechniquesforBaseStationAntennas 2.3.12 ArrayOptimizationandFaultDiagnosis 2.3.13 RADHAZ 2.3.14 VisualAppearanceandPlanningIssues 2.3.15 FutureDirections References
Chapter3. A ntennasforMobileCommunications: CDMA,GSM,andWCDMA
3.1 Introduction 3.1.1 RequirementsforIndoorBaseStationAntennas 3.1.2 RequirementsforOutdoorBaseStationAntennas 3.2 CaseStudies 3.2.1 AnEight-Element-ShapedBeamAntennaArray 3.2.2 A90çLinearlyPolarizedAntennaArray 3.2.3 ADual-BandDual-PolarizedArray 3.2.4 ABroadbandMonopolarAntennaforIndoorCoverage 3.2.5 ASingle-FeedDual-BandPatchAntennafor IndoorNetworks 3.3 Conclusion 3.4 Acknowledgment References
68 69 71 72 78 80 83 86 87 91 93
95 95 95 96 98 98 106 111 117 122 126 126 127
Chapter4. AdvancedAntennasforRadioBaseStations
129
130 131 132 134 137 138 139 139 146 148 150 153 154 156 157 161 165 167 168 169 171 173 174
4.1 4.2 4.3 4.4 4.5
BenefitsofAdvancedAntennas AdvancedAntennaTechnologies Three-SectorReferenceSystem Three-SectorOmnidirectionalAntenna HigherOrderReceiveDiversity 4.5.1 FieldTrial 4.6 TransmitDiversity 4.7 AntennaBeamtilt 4.7.1 CaseStudy 4.8 ModularHigh-GainAntenna 4.8.1 CaseStudy 4.8.2 FieldTrial 4.9 HigherOrderSectorization 4.9.1 CaseStudy 4.10 FixedMultibeamArrayAntenna 4.10.1 FieldTrials 4.10.2 MigrationStrategy 4.11 SteeredBeamArrayAntenna 4.12 AmplifierIntegratedSectorAntenna 4.12.1 CaseStudy 4.13 AmplifierIntegratedMultibeamArrayAntenna 4.14 Conclusion References
Contents ix
Chapter5. A ntennaIssuesandTechnologiesfor EnhancingSystemCapacity
5.1 Introduction 5.1.1 MobileCommunicationsinJapan 5.1.2 WirelessAccessSystem 5.2. DesignConsiderationsforAntennasfrom aSystemsPointofView 5.3 CaseStudies 5.3.1 SlimAntenna 5.3.2 NarrowHPBWAntennawithParasiticMetalConductors 5.3.3 SpotCell(Micro-Cell)Antenna 5.3.4 BoosterAntenna 5.3.5 ControlofVerticalRadiationPattern 5.4 Conclusion References
Chapter6. N ewUnidirectionalAntennasfor VariousWirelessBaseStations
6.1 Introduction 6.2 PatchAntennas 6.2.1 TwinL-ShapedProbesFedPatchAntenna 6.2.2 Meandering-ProbeFedPatchAntenna 6.2.3 Differential-PlateFedPatchAntenna 6.3 ComplementaryAntennasComposedofan ElectricDipoleandaMagneticDipole 6.3.1 BasicPrinciple 6.3.2 ComplementaryAntennasComposed ofSlotAntennaandParasiticWires 6.3.3 ComplementaryAntennaswithaSlot AntennaandaConicalMonopole 6.3.4 NewWidebandUnidirectionalAntennaElement 6.4 Conclusion 6.5 Acknowledgment References
177 177 177 179 182 184 184 188 194 196 196 202 202
205 205 207 207 210 212 219 220 221 221 222 236 237 237
Chapter7. AntennasforWLAN(WiFi)Applications
241
241 241 243 245
7.1 Introduction 7.1.1 WLAN(WiFi) 7.1.2 MIMOinWLANs 7.2 DesignConsiderationsforAntennas 7.2.1 Materials,FabricationProcess,TimetoMarket, Deployment,andInstallation 7.2.2 MIMOAntennaSystemDesignConsiderations 7.3 State-of-the-ArtDesigns 7.3.1 OutdoorPoint-to-PointAntennas 7.3.2 OutdoorPoint-to-Multiple-PointAntennas 7.3.3 IndoorPoint-to-MultiplePointAntennas 7.4 CaseStudies 7.4.1 IndoorP2MPEmbeddedAntenna 7.4.2 OutdoorP2PAntennaArray 7.4.3 Dual-BandOutdoorP2PAntennaArray 7.4.4 OutdoorP2PDiversityGridAntennaArray
246 249 255 255 260 260 264 265 270 270 276
x Contents
7.4.5 Outdoor/IndoorP2MPHotSpot/HotZoneAntenna 7.4.6 MIMOAntennaArray 7.4.7 Three-ElementDual-BandMIMOAntenna 7.5 Conclusion References
Chapter8. A ntennasforWirelessPersonalAreaNetwork (WPAN)Applications:RFID/UWBPositioning
Index
8.1 Introduction 8.1.1 WirelessPersonalAreaNetwork(WPAN) 8.1.2 RadioFrequencyIdentification(RFID) 8.1.3 Ultra-Wideband(UWB)Positioning 8.2 AntennaDesignforRFIDReaders 8.2.1 DesignConsiderations 8.2.2 CaseStudy 8.3 AntennaDesignforIndoorMono-StationUWB PositioningSystem 8.3.1 DesignConsiderations 8.3.2 CaseStudy:Six-ElementSectoredAntennaArrays 8.4 Conclusion References
279 282 286 287 288
291 291 292 296 305 313 313 318 341 341 341 346 347
349
Contributors ZhiNingChen BrianCollins AndersDerneryd MartinJohansson YasukoKimura AhmedA.Kishk Ka-LeungLau Kwai-ManLuk XianmingQing ShiePingSee WeeKianToh HangWong
InstituteforInfocommResearch B SCAssociatesLtd.andQueenMary, UniversityofLondon EricssonABEricssonResearch EricssonABEricssonResearch NTTDoCoMo UniversityofMississippi CityUniversityofHongKong CityUniversityofHongKong InstituteforInfocommResearch InstituteforInfocommResearch InstituteforInfocommResearch CityUniversityofHongKong
This page intentionally left blank
Preface
Wirelesscommunicationhasundergonerapiddevelopmentduringthe pastfourdecades.Startingwiththefirstgenerationwirelesscommunicationsinthe1970s,theindustryprogressedtothesecondgenerationin the1990s,thethirdgenerationinthe2000s,andatpresent,isentering thefourthgeneration.Applicationsrangefromcellularmobilephonesto healthcareandradiofrequencyidentifications,tonamejustafew. Basestationantennasareimportantcomponentsofanywirelesscommunicationsystem.Thewiderangeofapplicationsposesstringentspeci- ficationsinpowerefficiency,sectorialdirectivity,polarizationdiversity, andadaptability.Inaddition,factorssuchasvisualattractiveness,electromagneticimpactonenvironment,and,aboveall,costareimportant considerations.Theartofdesigningbasestationantennasisthusat theforefrontofantennatechnologyandpresentschallengingproblems requiringinnovativesolutions. Thisbook,AntennasforBaseStationsinWirelessCommunications, editedbyZhiNingChenandKwai-ManLuk,isatimelyanduniquecontributionthataddressesthebackground,fundamentalprinciples,and practicalsolutionstomanychallengesinbasestationantennadesign. BothDr.ChenandDr.Lukarewellknownandhavedonedistinguished workinthefield.Theyhaveassembledaninternationalgroupofexperts tocontributetothebook,whichcoversalloftherelevantissues.The authors,whoarefromindustry,researchinstitutions,anduniversities, haveextensiveexperienceintheresearch,development,andapplicationofantennasinwirelesscommunications.Theyprovideperspectives fromdiversebackgroundsand,inmanyinstances,describetheirown solutionstothechallengesofdesigningbasestationantennas. Thisbookwillbeawelcomeadditiontothelibraryofanyoneinterestedintheforefrontofantennatechnology. —KaiFongLee UniversityofMississippi Oxford,Mississippi May2009 xiii
This page intentionally left blank
Acknowledgments
WeareveryexcitedaboutthepublicationofAntennasforBaseStations inWireless Communications.This project has presented many challenges, such as gathering the ideas needed to write a unique book, organizingthecontenteffectively,findingtheappropriatecontributors, workingonagreements,consolidatingallthechaptersandmoderating thebook’scontents,andwritingourownchapters.Ourgratefulthanks areduetoalltheauthorsforcontributingchapterstothisbook.They haveexpendedmucheffortandtimetocompletethishardtaskwithin a very short period.Also, we would like to take this opportunity to thankallthepeopleinvolvedinthisproject,especiallyWendyRinaldi, Editorial Director at McGraw Hill, for her professional support and patiencetomakethisprojectahugesuccess.Finally,wewouldliketo thankourfamilies,namely,Chen’swifeLinLiuandhistwinsons,Shi FengandShiYa,aswellasLuk’swifeJenniferandhissons,Alecand Lewis,fortheirunderstandingandsupportwhenwehadtoworkonthis projectpastmidnightandduringmanyweekendsandholidays.
xv
This page intentionally left blank
Introduction
Overthepasttwodecades,developmentsinverylarge-scaleintegration (VLSI) or ultra large-scale integration (ULSI) technologies for electronic circuits and lithium batteries have been revolutionary. In parallel,hugeprogresshasbeenmadeinthefieldsofcomputerscience andinformationtheory.Theseinnovationsaretheingredients,interms ofbothhardwareandsoftware,fortherapidgrowthofmodernmobile communicationsystems,networks,andservices.Asantennaengineers, we have been challenged by the extremely fast changes in technical requirementsandstrongdemandsintheapplicationmarket.Thisbook presentsthelatestadvancesinantennatechnologiesforavarietyof basestationsinmobilewirelesscommunicationsystems. MobileWirelessCommunicationsand AntennaTechnologies Thedevelopmentofthecellularmobilephoneisanexcellentexample of a modern mobile wireless communication technology. Modern personalmobilewirelesscommunicationsstartedwiththefirstcommercial mobilephonenetwork—theAutoradiopuhelin(ARP),designatedasthe zerogeneration(0G)cellularnetwork—launchedinFinlandin1971. Afterthat,severalcommercialtrialsofcellularnetworkswerecarried outintheUnitedStatesbeforetheJapaneselaunchedthefirstsuccessfulcommercialcellularnetworkinTokyoin1979.Throughoutthe1980s, mobile cellular phones were progressively introduced in commercial operations.Atthattime,thecellularnetworkconsistedofmanybase stationslocatedinarelativelysmallnumberofcellsthatcoveredthe serviceareas.Withinthenetworkandbyusingefficientprotocols,automatedhandoverbetweentwoadjacentcellscouldbeachievedseamlessly whenamobilephonewasmovedfromonecelltoanother.Allthecellular systemswerebasedonanalogtransmissions.Duetolow-degreeintegrationandhigh-powerconsumingcircuitsaswellasbulkybatteries, mobilephonesatthattimeweretoolargetocarryuntilMotorola,Inc., xvii
xviii Introduction
introduced the first portable mobile phone.1 Later, analog systems, knownasthefirstgeneration(1G)mobilephonesystems,wereaccepted astruepersonalmobilewirelesscommunicationsystems. Inthe1990s,digitaltechnologywasemployedforthedevelopment of mobile phone systems, which were rapidly advancing and quickly replacingtheanalogsystemstobecomethesecondgeneration(2G)personalmobilephonesystems.Benefitingfromthehugeprogressseenin integratedcircuits(IC)andbatteriesaswellasthedeploymentofmore basestations,thebricks(mobilephones)shrunktobecomeactualhandhelddevices.Meanwhile,cellularnetworksbegantoprovideuserswith additionalnewservicessuchastextmessaging(shortmessageservice orSMS)andmediacontentsuchasdownloadableringtones. Afterthesuccessofthe2Gcellularnetwork,extended2Gsystems, such as the CDMA2000 1xRTT and GPRS featuring multiple access technology,weredevelopedtoenhancenetworkperformanceandprovidesignificanteconomicadvantages.Thesesystemsareknownasthe 2.5generation(2.5G).Intheory,the2.5GCDMA20001xRTTnetwork canachievethemaximumdatarateofupto307kbpsfordelivering voice,data,andsignalingdata. The2Gand/or2.5Gnetworksprovideduserswithqualityofservice (QoS).Withsomanydifferentstandards,however,differenttechnologieshadtobedeveloped.Toachieveaworldwidestandard,thethird generation(3G)systemshavebeenstandardizedintheInternational TelecommunicationUnion(ITU)familyofstandards,ortheIMT-2000, withasetoftechnicalspecificationssuchasa2-Mbpsmaximumdata rateforindoorsand384-kbpsmaximumdatarateforoutdoors,although thisprocessdidnotstandardizethetechnologyitself.Thefirstcommercial3GCDMA-basednetworkwaslaunchedbyNTTDoCoMoinJapan onOctober1,2001.Followingthis,many3Gnetworkshavebeensetup worldwide. By the end of 2008, global subscriptions to 3G networks exceeded300million.Forexample,inChinaalone,thenumberofsubscribershadreached118millionbytheendof2008. Afterthe3Gsystems,themarketislookingtowardthenext-generation systems,whichwillbethefourthgeneration(4G)orbeyond3G(B3G). Thedevelopmentofthe4GsystemstargetsQoSandincreasinglyhigh dataratestomeettherequirementsoffutureapplicationssuchaswirelessbroadbandaccess,multimediamessagingservice(MMS),videochat, mobileTV,high-definitionTV(HDTV)content,digitalvideobroadcasting(DVB-T/H),andsoon. Beforethe4Gsystemsarerealized,however,manyB3Gsystemsare beingdeveloped.Forexample,the3GPPLongTermEvolution(LTE),an ambitiousprojectcalledthe“ThirdGenerationPartnershipProject,”is designedtoimprovetheUniversalMobileTelecommunicationsSystem (UMTS)intermsofspectralefficiency,costs,servicequality,spectrum usage,andintegrationwithotheropenstandards.
Introduction xix
GSM, CDMA, GPRS, EDGE, UMTS, HSDPA/HSUPA, LTE
WiMAX WiFi UWB, ZigBee Bluetooth RFID NFC
WPAN (Wireless personal area network) WLAN (Wireless local area network) WMAN (Wireless metropolitan area network)
WWAN (Wireless wide area network) Figure1 Coverageofmodernpersonalwirelessnetworks
Our lifestyle has changed significantly compared to 20 years ago. Besides the proliferation of mobile phones, wireless communication technologies have penetrated many aspects of life from business to social networks to healthcare and medical applications.A variety of wirelesscommunicationsystemsarenowavailabletoconnectalmost allpeopleandpremises,asshowninFigure1. Inthesesystems,antennasplayavitalroleasoneofthekeycomponentsorsubsystems.Therapidproposalofnewapplicationshasalso spurredstrongdemandsfornewhigh-performanceantennas.Although the fundamental physical principles of antennas have not changed, antennaengineershavebeenexperiencingtherapidadvancementof antenna technologies. For example, antenna technologies for the terminals and base stations in mobile communications have changed remarkablysincethefirstmobilephones,whichhadlongwhipantennas,appearedinthemarket,asdetailedinTable1. Conventionally,anantennaorarrayisdesignedasaradiatingRF component. By optimizing the radiators’ shapes or configurations, or bycombiningdifferentradiatingelements,theantennaorarraywill achievetheperformanceneededtomeetsystemrequirements.Sucha methodologyhasbeenusedforalongtimeinthedesignofcommercial
xx Introduction TABLE1 FeaturesofAntennasinPersonalMobileTerminalsandBaseStations
AntennasinMobile Terminals
Antennas/Arrays inBaseStations
Size
Verysmall
Compact
Operatingbands
ultiplebands(uptosix)for Multiplebands(uptofour) M forcellphones,WiFi,and cellphonesandlaptops Bluetooth Ultra-wideband
UniversalUHFbandsfor RFID
Diversity
Availableinlaptopand UWBwirelessUSBdongles
Availableifneeded
Polarization
Circularlypolarizedin RFIDhandheldreaders
ualpolarizationforcell D phones,WiFi,andbluetooth
Ultra-wideband
ircularpolarizationin C RFIDreadersandlocation beacons Adaptivebeamforming Notavailable
Availableifneeded
MIMO
Availableifneeded
Willbeavailable
mobileterminalantennaswherecriticalsizeandcostconstraintsare imposed. For base stations, the requirements for high-performance antennasorarrayshavepushedantennaengineerstoimplementmore complicatedRF,electrical,and/ormechanicaldesignstocontrolantenna andarrayperformance,inparticularfortheradiationpatternsofbase stationantennasorarrays.Therefore,theantennaorarrayisdesigned asasubsystemratherthanonlyanRFcomponent. Furthermore,theantennaorarraywillbeintelligent(smartoradaptive)ifpowerfulsignalprocessingfunctionsareappliedtocontrolling antennaperformanceordigitallyprocessingsignalsfromantennasto formaclosedfeedbackloop.Theconceptofantennadesignis,therefore, expandedtocovernotonlyRFradiators,controllingcircuits,orsubsystemsbutalsosignalprocessingalgorithms,asshowninFigure2.Such aconcepthasbeenusedsubstantiallyinthedevelopmentofantennas forbasestationsinwirelesscommunications,thedetailsofwhichwill befoundinthisbook. InThisBook Antennas have become one of the most important technologies in modernmobilewirelesscommunications.Manyexcellentbooksdiscuss thefundamentalconceptsortypicaldesignsforgeneralapplications. Mostofthemaretextbooksforstudents,2–5whereasthepracticalissues inantennaengineeringareusuallyincludedinengineeringhandbooks
Introduction xxi
Antenna Array
Processing
Control RF circuits Electrical circuits Mechanical structures
Component
Sub-system
System
Control & Processing
Signal processing
Figure2 Antennatechnology:RFradiator,controllingsubsystem,and signalprocessing
and monographs.1,6–11This book will focus on antenna technologies for base stations in modern mobile wireless communication systems, includingthemostpopularapplicationsinWPAN(UWBandRFID), WLAN(BluetoothandWiFi),WMAN(WiMAX),WWAN(cellularphones such as GSM, CDMA, andWCDMA), and so on.The discussion will coverallaspectsofantennatechnologies,fromantennaelementdesign toantennadesigninsystems.Keydesignconsiderationsandpractical engineering issues will be highlighted in the following chapters, all writtenbyhighlyexperiencedresearchers,issuesnotreadilyfoundin otherexistingtechnicalliterature.Thecontributorsarefromindustry, researchinstitutes,anduniversities;allofthem,inadditiontoample engineeringexperience,haveworkedforyearsintheresearch,development,andapplicationofantennasinwirelesscommunications. Chapter1
Chapter1definesantennaparametersandtheirfundamentals.Unlike otherbooks,weconcentrateonthepracticalaspectsofantennasand the measurement techniques for different parameters such as input impedanceandradiationpatterns.Measurementsinfar-fieldandnearfieldrangesareaddressed.Techniquesforcharacterizationoflinearly and circularly polarized antennas are also described. One important parameter, which is usually not discussed in most antenna books, is theintermodulationdistortionoftheantenna,whichisconsideredhere. Thischapterwillbewellreceivedbyantennaengineers.
xxii Introduction
Chapter2
Chapter 2 begins with a description of the operational requirements forbasestationantennasandrelatesthoserequirementstoantenna specificationparametersandthemeansbywhicheachoftheseparametersarecontrolled.Theuseofspace-andpolarization-diversitysystems is described, and the required antenna parameters related to dual-polarizedantennasarereviewed.Asamajordesignconsideration, thedescriptionofavarietyofconstructionmethodsemphasizesboth antennaperformanceandcost.Theroleofmodernelectromagneticsimulationtoolsisdiscussedinthecontextofbasestationantennadesign. Avarietyofpracticalradiatingelementsaredescribedtoprovidethe designerwithpotentialstartingpointsfornewdesigns.Arraydesigns arealsoexamined.Thegeneralpracticeofmultiplexinganumberof transmitters and receivers into a common antenna system creates severe requirements for avoiding passive intermodulation products (PIMs).MethodsforminimizingPIMsarethusexamined.Thischapter includesdescriptionsofavarietyofmechanicaldesignapproachesand providesaguidetogooddesignpractice. Ithasbecomegeneralpracticetocontroltheelevationbeamdirection (beamtilt)ofbasestationantennas,eitherlocallyorremotely,withthe expectationbeingthatthiscontrolwillbeintegratedwiththemanagementoftrafficloadingandtheoptimizationofsystemcapacity.Remote controlisalsobeingappliedtotheazimuthradiationpatternforchangingthebeamwidthandpointingthebeamstodesireddirections.These developmentsaredescribed,togetherwithsomeofthedesignconsiderationsinvolvedintheirrealization.Themeasurementofbasestation antenna arrays is also discussed, along with techniques for optimizinganddiagnosingcommonproblemsencounteredduringdesign.The installationofbasestationsisoftentheoccasionforobjectionsrelated to potential visual and electromagnetic impact on the local environment.Thesetopicsandalternativemethodsforreducingtheirimpact arediscussedandexamplesareprovided.Inthelastpartofthechapter, somesuggestionsaremadeaboutpossiblefuturedevelopmentsofbase stationantennas. Chapter3
Chapter3describesthecommercialrequirementsfortheperformanceof bothindoorandoutdoorbasestationantennasforvariousmobilephone systems.Conventionaltechniquesfordevelopingbasestationantennas arealsoreviewed,includingdirecteddipolesandaperture-coupledpatch antennas.The L-probe fed patch antenna is a wideband design that hasattractedmuchinterestintheantennacommunityinrecentyears duetoitssimplestructureandlowcost.Byexaminingfivedifferent
Introduction xxiii
antenna designs with simulations and measurements, this chapter demonstrates that this new antenna structure is highly suitable for developingbasestationantennasforboth2Gand3Gmobilewireless communicationsystems. Chapter4
Chapter4introducesadvancedantennatechnologiesforthefixedGSMbase stations in mobile wireless communication systems. It starts by describingthebenefitsobtainedfromadvancedantennasinGSMbase stations.Thenwebrieflyreviewadvancedantennatechnologies,includingantennabeamtilt,higherordersectorization,fixedmultibeamarray antennas, steered beam array antennas, receiver-diversity, coverage concepts,three-sectoromnidirectionalpatterns,modularhigh-gainantennas,amplifierintegratedsectorantennas,andamplifierintegratedmultibeamarrayantennas.Afterthat,thecasestudiesrelatedtotheantenna technologiesjustmentionedareincluded.Thischapterhighlightsmany practicalengineeringissuesfromasystemspointofview. Chapter5
Chapter5firstpresentsthespecialaspectsofmobilecommunication systems operating in Japan, which occupy so many frequency bands thatantennaarrayswithmultipleoperatingfrequencybandsormultipleantennaarraysoperatingindifferentfrequencybandsarerequired. Severaldesignsareavailabletomeetsuchpracticalrequirements.The TDMA-based PDC andW-CDMA systems are briefly introduced for understanding the requirements of base stations.Then the practical designconsiderationsforantennadesignarehighlightedfromasystem pointofview.In3Gnetworks,oneofthemostimportantconsiderations in antenna configuration is increasing the number of subscribers or systemcapacity.Waystoselecttheantennastructuresanddesignthe actualantennasforincreasingsystemcapacityaresuggested.Thetechniquetocontrolverticalradiationpatternsiselaboratedfromanengineeringpointofview. Thischapterlooksatfivetypicalantennadesigns,whichhavebeen appliedinpracticalwirelessaccesssystems.First,slimantennaswith smallwidths,whichmaybesingle-bandormultiple-bandantennas,are preferredduetolimitedspacefor,andthehighcostof,antennainstallationsinJapan.Adetailedcasestudyispresented.Second,thischapter demonstratesthatthehorizontalradiationpatternofanantennacanbe controlledbyaddingmetallicconductorsinthevicinityoftheexisting basestationantenna.Third,anomnidirectionalverticalarrayantennaof width0.09lforspotcellsisdescribed.Fourth,boosterantennasthathave thehighFBratioandlowsidelobelevelsneededfortherealizationofa
xxiv Introduction
reradiationsysteminashadowareaarepresented.Fifth,wewillshow thattheverticalradiationpatternduetoanumberofverticalarrayelementscanbecontrolledbychangingthephasesofeacharrayelement. Chapter6 Chapter6introducesseveralwidebandunidirectionalantennadesigns basedonmicrostripantennatechnology.Alldesignsemployelectrically thicksubstrateswithalowdielectricconstantforachievingwideimpedancebandwidthperformance.Moreover,theseantennasusingthetwin L-probefeed,meanderingprobefeed,ordifferential-platefeednotonly achievewideimpedancebandwidths,butalsopossessexcellentelectrical characteristicssuchaslowcrosspolarization,highgain,andsymmetrical E-planeradiation.Afterthat,thechapterproceedstoillustrateanewtype ofwidebandunidirectionalantennaelement—acomplementaryantenna. Thisnovelwidebandunidirectionalantennaiscomposedofaplanarelectricdipoleandashortedpatchantennathatisequivalenttoamagnetic dipole.AnewΓ-shapedfeedingstrip,comprisinganairmicrostripline and an L-shaped coupled strip, is selected for exciting the dipole and theshortedpatch.Thisconfigurationofantennastructureaccomplishes excellentelectricalcharacteristics,suchaswideimpedancebandwidth, low cross polarization, low backlobe radiation, nearly identical E- and H-planepatterns,astableradiationpattern,andsteadyantennagain acrosstheentireoperatingfrequencyband.Inaddition,twoalternative feedingstructures,T-stripandsquare-platecoupledlines,demonstrate theflexibilityofantennafeeddesign.Allantennaspresentedinthischapterfindpracticalapplicationsinmanyrecentwirelesscommunication systemslike2G,3G,WiFi,ZigBee,andsoon. Chapter7
Chapter7providesageneraldescriptionofthestandardsanddeploymentscenariosofWLAN(WiFi).Designsareconsideredfromasystem perspective,includingmaterials,fabricationprocess,time-to-market,as wellasdeploymentandinstallation.TheapplicationofMIMOtechnologyinWLANsystemsinordertoprovidereliabilityandhigh-speedwirelesslinksisalsodiscussed.InMIMOsystems,antennaperformancewill greatlyimpactcapacitythroughthecross-correlationofthesignalsin transmissionandreception.Themutualcouplingbetweentheantennas will,therefore,playacriticalroleinantennadesign,whichincludeselementselectionandarrayconfiguration.Theoptimizedantennadesigns withlowmutualcouplingwillenhancethediversityperformanceofthe MIMOsystems.Furthermore,theMIMOsystemsarealsoadvantageous forvarioustypesofdiversitytechniques,forinstance,space,pattern, andpolarizationdiversitywhenappliedsimultaneously.
Introduction xxv
Several state-of-the art antenna design solutions are presented as well. This includes outdoor point-to-point antennas, outdoor pointto-multiple point antennas, and indoor point-to-point antennas.The variousdesignchallengesandtradeoffsoftheseantennasarealsodiscussed.Client-deviceantennashaveverycriticalconstraintsinterms ofcostandsize,whichseverelylimitantennaperformance.Asforthe basestationantennasinpoint-to-point(P2P)and/orpoint-to-multipoint (P2MP)systems,thechallengesfacedincludethetradeoffsamongthe performance,cost,size,integrationofmultiplefunctionsintoasingle antennadesign,aswellasintegrationofantennasintoradios. Based on the specifications and the antenna design considerations forWLANsystems,severalantennadesignsandtheirpracticalchallengesandtradeoffsarehighlightedascasestudies.Theperformance, simplicity, cost effectiveness, and manufacturability of the antenna designsareemphasized.Severalapplieddesigninnovationsarehighlighted,forexample,embeddableantennaonmultilayeredsubstrates, dualbroadbandantennas,integrateddual-bandarrays,andarrayswith broadbandfeedingnetworktechnologies. Awirelesspersonalareanetwork(WPAN)isashortrangenetwork for wirelessly interconnecting devices centered around an individual person’sworkspace.Typically,aWPANusesthetechnologythatallows communicationwithinabout10meters.Therearemanytechnologies suchasInfrared,Bluetooth,HomeRF,ZigBee,ultra-wideband(UWB), radio frequency identification (RFID), and near-field communication (NFC), that have been used forWPAN applications. Some of them— Infrared, Bluetooth, and RFID, for example—are mature commercial productsthathavebeendevelopedforyears.TheotherssuchasUWB andNFCarestillbeingdeveloped. Chapter8
Chapter8addressestheantennadesignsfortwoWPANtechnologies: RFIDforassetstrackingandUWBfortargetpositioning. RFID technology has been developing rapidly in recent years, and itsapplicationscanbefoundinmanyserviceindustries,distribution logistics,manufacturingcompanies,andgoodsflowsystems.Thereader antennaisoneofthekeycomponentsinanRFIDsystem.Thedetection range and accuracy of RFID systems depend directly on reader antenna performance.The optimal antenna design always offers the RFIDsystemlongrange,highaccuracy,reducedfabricationcost,aswell assimplifiedsystemconfigurationandimplementation.ThefrequenciesforRFIDapplications,whichspanfromalowfrequencyof125KHz to the microwave frequency of 24 GHz, the selection of the antenna, and the design considerations for specific RFID applications feature distinct differences. Loop antennas have been the popular choice of
xxvi Introduction
readerantennasforLF/HFRFIDsystems.FortheRFIDapplications atUHFandMWFbands,anumberofantennascanbeusedasreader antennas,whereasthecircularlypolarizedpatchantennahasbeenthe mostwidelyusedantenna. The technology of UWB positioning is still being developed. UWB radiosemployveryshortpulsesthatspreadenergyoverabroadrange ofthefrequencyspectrum.DuetotheinherentlyfinetemporalresolutionofUWB,arrivedmultipathcomponentscanbesharplytimedat a receiver to provide accurate time of arrival (TOA) estimates.This characteristicmakestheUWBidealforhigh-precisionradiopositioningapplications.Mono-stationUWBpositioningtechnologyfeaturesa highlyaccuratesimplesystemconfigurationandhasgreatpotentialfor indoorpositioningapplications.Thesix-elementsectoredantennaarray showninthischapterdemonstratestherequirementsanddesignconsiderationsforsuchasystem.Theantennaconfiguration,theantenna elementdesign,andthemethodforcontrollingtheantennaelement’s beamwidth are expected to be beneficial when designing sectored antennaarraysforindoorUWBpositioningapplications. References 1. Z.N.ChenandM.Y.W.Chia,BroadbandPlanarAntennas:Designand Applications,London:JohnWiley&Sons,February2006. 2. W.L.StutzmanandG.A.Thiele,AntennaTheoryandDesign,2ndedition,New York:ArtechHouse,1997. 3. J.D.KrausandR.J.Marhefka,Antennas,3rdedition,NewYork:McGraw-Hill EducationSingapore,2001. 4. R.S.Elliott,AntennaTheory&Design,inIEEEPressSeriesonElectromagnetic WaveTheory,Revsub-edition,NewYork:Wiley-IEEEPress,2003. 5. C.A.Balanis,AntennaTheory:AnalysisandDesign,3rdedition,NewYork:WileyInterscience,2005. 6. J.J.Carr(ed.),PracticalAntennaHandbook,4thedition,NewYork:McGraw-Hill, 2001. 7. K.M.LukandK.W.Leung(eds.),DielectricResonatorAntennas,inAntennas Series,Cambridge,UK:ResearchStudiesPress,2002. 8. K.L.Wong,CompactandBroadbandMicrostripAntennas,NewYork: Wiley-Interscience,2002. 9. R.C.Hansen,ElectricallySmall,Superdirective,andSuperconductingAntennas, NewYork:Wiley-Interscience,2006. 10. J.Volakis(ed.),AntennaEngineeringHandbook,4thedition,NewYork: McGraw-HillProfessional,2007. 11. Z.N.Chen(ed.),AntennasforPortableDevices,London:Wiley,2007.
Chapter
1
FundamentalsofAntennas
AhmedA.Kishk CenterofElectromagneticSystemResearch(CEDAR) DepartmentofElectricalEngineering UniversityofMississippi
Anantennaisadevicethatisusedtotransferguidedelectromagnetic waves(signals)toradiatingwavesinanunboundedmedium,usually freespace,andviceversa(i.e.,ineitherthetransmittingorreceiving modeofoperation).Antennasarefrequency-dependentdevices.Each antennaisdesignedforacertainfrequencyband.Beyondtheoperating band,theantennarejectsthesignal.Therefore,wemightlookatthe antennaasabandpassfilterandatransducer.Antennasareessential partsincommunicationsystems.Therefore,understandingtheirprinciplesisimportant.Inthischapter,weintroducethereadertoantenna fundamentals. Therearemanydifferentantennatypes.Theisotropicpointsource radiator,oneofthebasictheoreticalradiators,isusefulbecauseitcan beconsideredareferencetootherantennas.Theisotropicpointsource radiatorradiatesequallyinalldirectionsinfreespace.Physically,such anisotropicpointsourcecannotexist.Mostantennas’gainsaremeasuredwithreferencetoanisotropicradiatorandareratedindecibels withrespecttoanisotropicradiator(dBi). 1.1 BasisParametersand DefinitionsofAntennas Somebasicparametersaffectanantenna’sperformance.Thedesigner mustconsiderthesedesignparametersandshouldbeabletoadjust, asneeded,duringthedesignprocessthefrequencybandofoperation, 1
2 ChapterOne
polarization,inputimpedance,radiationpatterns,gain,andefficiency. Anantennainthetransmittingmodehasamaximumpoweracceptance. Anantennainthereceivingmodediffersinitsnoiserejectionproperties.Thedesignershouldevaluateandmeasurealloftheseparameters usingvariousmeans. 1.1.1 InputImpedance andEquivalentCircuits
As electromagnetic waves travel through the different parts of the antennasystem,fromthesource(device)tothefeedlinetotheantenna andfinallytofreespace,theymayencounterdifferencesinimpedance ateachinterface.Dependingontheimpedancematch,somefraction ofthewave’senergywillreflectbacktothesource,formingastanding waveinthefeedline.Theratioofmaximumpowertominimumpowerin thewavecanbemeasuredandiscalledthestandingwaveratio(SWR). AnSWRof1:1isideal.AnSWRof1.5:1isconsideredtobemarginally acceptableinlow-powerapplicationswherepowerlossismorecritical, althoughanSWRashighas6:1maystillbeusablewiththerightequipment.Minimizingimpedancedifferencesateachinterfacewillreduce SWRandmaximizepowertransferthrougheachpartofthesystem. Thefrequencyresponseofanantennaatitsportisdefinedasinput impedance (Zin).The input impedance is the ratio between the voltageandcurrentsattheantennaport.Inputimpedanceisacomplex quantitythatvarieswithfrequencyasZin(f)=Rin(f)+jXin(f ),wheref isthefrequency.Theantenna’sinputimpedancecanberepresentedas acircuitelementinthesystem’smicrowavecircuit.Theantennacan berepresentedbyanequivalentcircuitofseverallumpedelements,as showninFigure1.1.InFigure1.1,theequivalentcircuitoftheantenna isconnectedtoasource,Vs,withinternalimpedance,Zs=Rs+jXs.The antennahasaninputimpedanceofZin=Ra+jXa.Therealpartconsists
Rr
Xs Rs
Rl
Vs
Xa Zin
Figure 1.1 Equivalent circuit of
anantenna
FundamentalsofAntennas 3
oftheradiationresistance(Rr)andtheantennalosses(Rl).Theinput impedancecanthenbeusedtodeterminethereflectioncoefficient(Γ) andrelatedparameters,suchasvoltagestandingwaveratio(VSWR) andreturnloss(RL),asafunctionoffrequencyasgivenin1–4
Γ=
Zin − Zo Zin + Zo
(1.1)
whereZoisthenormalizingimpedanceoftheport.IfZoiscomplex,the reflectioncoefficientcanbemodifiedtobe
Γ=
Zin − Zo∗ Zin + Zo
(1.2)
where Z *o is the conjugate of the nominal impedance.TheVSWR is givenas
1+ Γ
(1.3)
RL = −20 log|Γ|
(1.4)
VSWR =
1− Γ
Andthereturnlossisdefinedas
InputimpedanceisusuallyplottedusingaSmithchart.TheSmith chartisatoolthatshowsthereflectioncoefficientandtheantenna’s frequencybehavior(inductiveorcapacitive).Onewouldalsodetermine anyoftheantenna’sresonancefrequencies.Thesefrequenciesarethose atwhichtheinputimpedanceispurelyreal;conveniently,thiscorrespondstolocationsontheSmithchartwheretheantenna’simpedance locuscrossestherealaxis. Impedanceofanantennaiscomplexandafunctionoffrequency.The impedanceoftheantennacanbeadjustedthroughthedesignprocess tobematchedwiththefeedlineandhavelessreflectiontothesource. Ifthatisnotpossibleforsomeantennas,theimpedanceoftheantenna canbematchedtothefeedlineandradiobyadjustingthefeedline’s impedance,thususingthefeedlineasanimpedancetransformer. 1.1.2 MatchingandBandwidth
In some cases, the impedance is adjusted at the load by inserting a matching transformer, matching networks composed of lumped elementssuchasinductorsandcapacitorsforlow-frequencyapplications, orimplementingsuchamatchingcircuitusingtransmission-linetechnology as a matching section for high-frequency applications where lumpedelementscannotbeused.
4 ChapterOne
Thebandwidthistheantennaoperatingfrequencybandwithinwhich theantennaperformsasdesired.Thebandwidthcouldberelatedtothe antennamatchingbandifitsradiationpatternsdonotchangewithin thisband.Infact,thisisthecaseforsmallantennaswhereafundamentallimitrelatesbandwidth,size,andefficiency.Thebandwidthofother antennasmightbeaffectedbytheradiationpattern’scharacteristics, andtheradiationcharacteristicsmightchangealthoughthematching oftheantennaisacceptable.Wecandefineantennabandwidthinseveralways.Ratiobandwidth(BWr)is BWr =
fU fL
(1.5)
wherefUandfLaretheupperandlowerfrequencyoftheband,respectively.Theotherdefinitionisthepercentagebandwidth(WBp)andis relatedtotheratiobandwidthas
BWp = 200
fU − f L WBr − 1 % = 200 % WBr + 1 fU + f L
(1.6)
1.1.3 RadiationPatterns
Radiationpatternsaregraphicalrepresentationsoftheelectromagnetic powerdistributioninfreespace.Also,thesepatternscanbeconsidered toberepresentativeoftherelativefieldstrengthsofthefieldradiated bytheantenna.1–4Thefieldsaremeasuredinthesphericalcoordinate system,asshowninFigure1.2,intheqandfdirections.Fortheideal isotropic antenna, this would be a sphere. For a typical dipole, this wouldbeatoroid.Theradiationpatternofanantennaistypicallyrepresentedbyathree-dimensional(3D)graph,asshowninFigure1.3, orpolarplotsofthehorizontalandverticalcrosssections.Thegraph shouldshowsidelobesandbacklobes.Thepolarplotcanbeconsidered asaplanercutfromthe3Dradiationpattern,asshowninFigure1.4. z
q
f
y
x Figure1.2 Sphericalcoordinates
FundamentalsofAntennas 5 Color scale magnitude
Sidelobes Main lobe Backlobe
Nulls
0.00 -4.44 - 8.89 -13.33 -17.78 -22.22 - 26.67 -31.11 -35.56 - 40.00
Figure1.3 3Dradiationpattern
0 90° 120°
-10
60°
-20
150°
30°
-30 -40
180°
0°
330°
210° 300°
240° 270° Figure1.4 Polarplotradiation
The same pattern can be presented in the rectangular coordinate system, as shown in Figure 1.5.We should point out that these patternsarenormalizedtothepattern’speak,whichispointedtoq=0in thiscaseandgivenindecibels. 1.1.3.1Beamwidth Thebeamwidthoftheantennaisusuallyconsidered
tobetheangularwidthofthehalfpowerradiatedwithinacertaincut throughthemainbeamoftheantennawheremostofthepowerisradiating.Fromthepeakradiationintensityoftheradiationpattern,which isthepeakofthemainbeam,thehalfpowerlevelis−3dBbelowsuch apeakwherethetwopointsonthemainbeamarelocated;thesepoints areontwosidesofthepeak,whichseparatetheangularwidthofthehalf power.Theangulardistancebetweenthehalfpowerpointsisdefined asthebeamwidth.Halfthepowerexpressedindecibelsis−3dB,sothe
6 ChapterOne 0
-10
-20
-30
-40 -180 -150 -120 -90 -60 -30
0
30
60
90
120 150
180
Figure1.5 Rectangularplotofradiationpattern
half-powerbeamwidthissometimesreferredtoasthe3-dBbeamwidth. Bothhorizontalandverticalbeamwidthsareusuallyconsidered. 1.1.3.2SidelobesandNulls Noantennaisabletoradiatealltheenergy
inonepreferreddirection.Someenergyisinevitablyradiatedinother directionswithlowerlevelsthanthemainbeam.Thesesmallerpeaks arereferredtoassidelobes,commonlyspecifiedindBdownfromthe mainlobe. Inanantennaradiationpattern,anullisazoneinwhichtheeffective radiatedpowerisataminimum.Anulloftenhasanarrowdirectivity anglecomparedtothatofthemainbeam.Thus,thenullisusefulfor several purposes, such as suppressing interfering signals in a given direction. Comparing the front-to-back ratio of directional antennas is often useful.Thisistheratioofthemaximumdirectivityofanantennatoits directivityintheoppositedirection.Forexample,whentheradiation patternisplottedonarelativedBscale,thefront-to-backratioisthe difference in dB between the level of the maximum radiation in the forward direction and the level of radiation at 180°.This number is meaninglessforanomnidirectionalantenna,butitgivesoneanideaof theamountofpowerdirectedforwardonaverydirectionalantenna. 1.1.4 PolarizationoftheAntenna
Thepolarizationofanantennaistheorientationoftheelectricfield (E-plane)oftheradiowavewithrespecttotheEarth’ssurfaceandis
FundamentalsofAntennas 7
determinedbythephysicalstructureandorientationoftheantenna.It hasnothingincommonwiththeantennadirectionalityterms:horizontal,vertical,andcircular.Thus,asimplestraightwireantennawillhave onepolarizationwhenmountedverticallyandadifferentpolarization whenmountedhorizontally.Electromagneticwavepolarizationfilters arestructuresthatcanbeemployedtoactdirectlyontheelectromagneticwavetofilteroutwaveenergyofanundesiredpolarizationandto passwaveenergyofadesiredpolarization. Reflectionsgenerallyaffectpolarization.Forradiowaves,themost important reflector is the ionosphere—the polarization of signals reflected from it will change unpredictably. For signals reflected by the ionosphere, polarization cannot be relied upon. For line-of-sight communications,forwhichpolarizationcanbereliedupon,havingthe transmitterandreceiverusethesamepolarizationcanmakeahuge difference in signal quality; many tens of dB difference is commonly seen,andthisismorethanenoughtomakeupthedifferencebetween reasonablecommunicationandabrokenlink. Polarization is largely predictable from antenna construction, but especiallyindirectionalantennas,thepolarizationofsidelobescanbe quitedifferentfromthatofthemainpropagationlobe.Forradioantennas, polarization corresponds to the orientation of the radiating elementinanantenna.AverticalomnidirectionalWiFiantennawillhave verticalpolarization(themostcommontype).Oneexceptionisaclass ofelongatedwaveguideantennasinwhichaverticallyplacedantenna ishorizontallypolarized.Manycommercialantennasaremarkedasto thepolarizationoftheiremittedsignals. PolarizationisthesumoftheE-planeorientationsovertimeprojected onto an imaginary plane perpendicular to the direction of motion of theradiowave.Inthemostgeneralcase,polarizationiselliptical(the projectionisoblong),meaningthatthepolarizationoftheradiowaves emittingfromtheantennaisvaryingovertime.Twospecialcasesare linearpolarization(theellipsecollapsesintoaline)andcircularpolarization(inwhichtheellipsevariesmaximally).Inlinearpolarization, theantennacompelstheelectricfieldoftheemittedradiowavetoaparticularorientation.Dependingontheorientationoftheantennamounting,theusuallinearcasesarehorizontalandverticalpolarization.In circularpolarization,theantennacontinuouslyvariestheelectricfield of the radio wave through all possible values of its orientation with regardtotheEarth’ssurface.Circularpolarizations(CP),likeelliptical ones,areclassifiedasright-handpolarizedorleft-handpolarizedusing a“thumbinthedirectionofthepropagation”rule.Opticalresearchers usethesameruleofthumb,butpointitinthedirectionoftheemitter, notinthedirectionofpropagation,andsotheiruseisoppositetothat ofradioengineers.Someantennas,suchthehelicalantenna,produce
8 ChapterOne
circularpolarizations.However,circularpolarizationcanbegenerated fromalinearlypolarizedantennabyfeedingtheantennabytwoports withequalmagnitudeandwitha90°phasedifferencebetweenthem. Fromthelinearfieldcomponentsinthefarzone,thecircularpolarizationcanbepresentedas
Ec (θ , φ ) =
Ex (θ , φ ) =
Eφ (θ , φ ) + jEθ (θ , φ ) 2 Eφ (θ , φ ) − jEθ (θ , φ ) 2
(1.7)
(1.8)
whereEcisthecopolarofthecircularpolarization,inthiscase,thelefthandCP,andExisthecross-polarization,ortheright-handCP. In practice, regardless of confusing terminology, matching linearly polarized antennas is important, or the received signal strength is greatlyreduced.So,horizontalpolarizationshouldbeusedwithhorizontalantennasandverticalwithvertical.Intermediatematchingwill causethelossofsomesignalstrength,butnotasmuchasacomplete mismatch.Transmittersmountedonvehicleswithlargemotionalfreedom commonly use circularly polarized antennas so there will never beacompletemismatchwithsignalsfromothersources.Inthecaseof radar,thesesourcesareoftenreflectionsfromraindrops. Inordertotransfermaximumpowerbetweenatransmitandreceive antenna, both antennas must have the same spatial orientation, the samepolarizationsense,andthesameaxialratio.Whentheantennas arenotalignedordonothavethesamepolarization,powertransfer between the two antennas will be reduced.This reduction in power transferwillreducetheoverallsystemefficiencyandperformanceas well.Whentransmitandreceiveantennasarebothlinearlypolarized, physicalantennamisalignmentwillresultinapolarizationmismatch loss,whichcanbedeterminedusingthefollowingformula:
Loss(dB)=20log(cosf)
(1.9)
wherefisthedifferenceinalignmentanglebetweenthetwoantennas. For15°,thelossisapproximately0.3dB;for30°,thelossis1.25dB;for 45°,thelossis3dB;andfor90°,thelossisinfinite. Inshort,thegreaterthemismatchinpolarizationbetweenatransmittingandreceivingantenna,thegreatertheapparentlosswillbe.You canusethepolarizationeffecttoyouradvantageonapoint-to-pointlink. Useamonitoringtooltoobserveinterferencefromadjacentnetworks, androtateoneantennauntilyouseethelowestreceivedsignal.Then bringyourlinkonlineandorienttheotherendtomatchpolarization.
FundamentalsofAntennas 9
Thistechniquecansometimesbeusedtobuildstablelinks,eveninnoisy radioenvironments. 1.1.5 AntennaEfficiency
Antennaefficiencyisthemeasureoftheantenna’sabilitytotransmitthe inputpowerintoradiation.1–4Antennaefficiencyistheratiobetween theradiatedpowerstotheinputpower: e=
Pr Pin
(1.10)
Different types of efficiencies contribute to the total antenna efficiency.The total antenna efficiency is the multiplication of all these efficiencies.Efficiencyisaffectedbythelosseswithintheantennaitself andthereflectionduetothemismatchattheantennaterminal.Based ontheequivalentcircuitonFigure1.1,wecancomputetheradiation efficiencyoftheantennaastheratiobetweentheradiatedpowersto theinputpower,whichisonlyrelatedtotheconductionlossesandthe dielectriclossesoftheantennastructureas
er =
Pr R Rr = r = Pin Rin Rr + Rl
(1.11)
Duetothemismatchattheantennaterminal,thereflectionefficiency canbedefinedas
eref = (1−|Γ |2 )
(1.12)
Thenthetotalefficiencyisdefinedas
e=ereref
(1.13)
Inthisformula,antennaradiationefficiencyonlyincludesconduction efficiencyanddielectricefficiencyanddoesnotincludereflectionefficiencyaspartofthetotalefficiencyfactor.Moreover,theIEEEstandardsstatethat“gaindoesnotincludelossesarisingfromimpedance mismatchesandpolarizationmismatches.”5 Efficiencyistheratioofpoweractuallyradiatedtothepowerinput intotheantennaterminals.AdummyloadmayhaveanSWRof1:1but anefficiencyof0,asitabsorbsallpowerandradiatesheatbutnotRF energy,showingthatSWRaloneisnotaneffectivemeasureofanantenna’sefficiency.Radiationinanantennaiscausedbyradiationresistance, whichcanonlybemeasuredaspartoftotalresistance,includingloss resistance.Lossresistanceusuallyresultsinheatgenerationratherthan
10 Chapter One
radiationandreducesefficiency.Mathematically,efficiencyiscalculated asradiationresistancedividedbytotalresistance. 1.1.6 DirectivityandGain
Thedirectivityofanantennahasbeendefinedas“theratiooftheradiation intensity in a given direction from the antenna to the radiation intensityaveragedoveralldirections.”Inotherwords,thedirectivity ofanonisotropicsourceisequaltotheratioofitsradiationintensityin agivendirection,overthatofanisotropicsource1–4:
D=
U 4π U = Ui Pr
(1.14)
whereDisthedirectivityoftheantenna;Uistheradiationintensity oftheantenna;Uiistheradiationintensityofanisotropicsource;and Pristhetotalpowerradiated. Sometimes, the direction of the directivity is not specified. In this case,thedirectionofthemaximumradiationintensityisimpliedand themaximumdirectivityisgivenas
Dmax =
U max 4π U max = Ui Pr
(1.15)
whereDmaxisthemaximumdirectivityandUmaxisthemaximumradiationintensity. Amoregeneralexpressionofdirectivityincludessourceswithradiationpatternsasfunctionsofsphericalcoordinateanglesqandf:
D=
4π ΩA
(1.16)
whereΩAisthebeamsolidangleandisdefinedasthesolidanglein which, if the antenna radiation intensity is constant (and maximum value),allpowerwouldflowthroughit.Directivityisadimensionless quantitybecauseitistheratiooftworadiationintensities.Therefore, itisgenerallyexpressedindBi.Thedirectivityofanantennacanbe easilyestimatedfromtheradiationpatternoftheantenna.Anantenna thathasanarrowmainlobewouldhavebetterdirectivitythantheone thathasabroadmainlobe;hence,thisantennaismoredirective.Inthe caseofantennaswithonenarrowmajorlobeandverynegligibleminor lobes,thebeamsolidanglecanbeapproximatedastheproductofthe half-powerbeamwidthsintwoperpendicularplanes:
Ω A = Θ1r Θ 2r
(1.17)
FundamentalsofAntennas 11
where,Ω1risthehalf-powerbeamwidthinoneplane(radians)andΩ2ris thehalf-powerbeamwidthinaplaneatarightangletotheother(radians).Thesameapproximationcanbeusedforanglesgivenindegrees asfollows: 2
180 π 41253 = D ≈ 4π Θ1 d Θ 2 d Θ1 d Θ 2 d
(1.18)
whereΩ1disthehalf-powerbeamwidthinoneplane(degrees)andΩ2d isthehalf-powerbeamwidthinaplaneatarightangletotheother (degrees).Inplanararrays,abetterapproximationis6 D≈
32400 Θ1 d Θ 2 d
(1.19)
Gainasaparametermeasuresthedirectionalityofagivenantenna. Anantennawithlowgainemitsradiationwithaboutthesamepower inalldirections,whereasahigh-gainantennawillpreferentiallyradiate inparticulardirections.Specifically,thegain,directivegain,orpower gainofanantennaisdefinedastheratiooftheintensity(powerperunit surface)radiatedbytheantennainagivendirectionatanarbitrarydistancedividedbytheintensityradiatedatthesamedistancebyahypotheticalisotropiclosslessantenna.Sincetheradiationintensityfroma losslessisotropicantennaequalsthepowerintotheantennadividedby asolidangleof4psteradians,wecanwritethefollowingequation:
G=
4π U Pin
(1.20)
Althoughthegainofanantennaisdirectlyrelatedtoitsdirectivity, antennagainisameasurethattakesintoaccounttheefficiencyofthe antennaaswellasitsdirectionalcapabilities.Incontrast,directivityis definedasameasurethattakesintoaccountonlythedirectionalpropertiesoftheantenna,andtherefore,itisonlyinfluencedbytheantenna pattern.If,however,weassumeanidealantennawithoutlosses,then antenna gain will equal directivity as the antenna efficiency factor equals1(100%efficiency).Inpractice,thegainofanantennaisalways lessthanitsdirectivity.
G=
4π U 4π U = ecd = ecd D Pin Pr
(1.21)
Equations1.20and1.21showtherelationshipbetweenantennagain anddirectivity,whereecdistheantennaradiationefficiencyfactor,Dthe
12 Chapter One
directivityoftheantenna,andGtheantennagain.Weusuallydealwith relativegain,whichisdefinedasthepowergainratioinaspecificdirectionoftheantennatothepowergainratioofareferenceantennainthe samedirection.Theinputpowermustbethesameforbothantennas whileperformingthistypeofmeasurement.Thereferenceantennais usuallyadipole,horn,oranyothertypeofantennawhosepowergain isalreadycalculatedorknown.
G = Gref
Pmax Pmax |ref
(1.22)
In the case that the direction of radiation is not stated, the power gainisalwayscalculatedinthedirectionofmaximumradiation.The maximumdirectivityofanactualantennacanvaryfrom1.76dBfora shortdipoletoasmuchas50dBforalargedishantenna.Themaximum gainofarealantennahasnolowerboundandisoften–10dBorless forelectricallysmallantennas. Antennaabsolutegainisanotherdefinitionforantennagain.However, absolutegaindoesincludethereflectionormismatchlosses:
Gabs = eeff G = erefl ecd D
(1.23)
Asdefinedbefore,ereflisthereflectionefficiency,andecdincludesthe dielectricandconductionefficiency.Thetermeeffisthetotalantenna efficiencyfactor. Takingintoaccountpolarizationeffectsintheantenna,wecanalso definethepartialgainofanantennaforagivenpolarizationasthat part of the radiation intensity corresponding to a given polarization dividedbythetotalradiationintensityofanisotropicantenna.Asa resultofthisdefinitionforthepartialgaininagivendirection,wecan presentthetotalgainofanantennaasthesumofpartialgainsforany twoorthogonalpolarizations: Gtotal=Gq+Uf
Gθ =
4π Uφ 4π Uθ & Gφ = Pin Pin
(1.24) (1.25)
ThetermsUqandUfrepresenttheradiationintensityinagivendirectioncontainedintheirrespectiveE-fieldcomponent. Thegainofanantennaisapassivephenomenon;powerisnotadded bytheantennabutsimplyredistributedtoprovidemoreradiatedpower inacertaindirectionthanwouldbetransmittedbyanisotropicantenna. Anantennadesignermusttakeintoaccounttheantenna’sapplication
FundamentalsofAntennas 13
whendeterminingthegain.High-gainantennashavetheadvantageof longerrangeandbettersignalqualitybutmustbeaimedcarefullyina particulardirection.Low-gainantennashaveshorterrange,buttheorientationoftheantennaisinconsequential.Forexample,adishantenna onaspacecraftisahigh-gaindevice(mustbepointedattheplanettobe effective)whereasatypicalwirelessfidelity(WiFi)antennainalaptop computerislow-gain(aslongasthebasestationiswithinrange,the antennacanbeinanyorientationinspace).Improvinghorizontalrange attheexpenseofreceptionaboveorbelowtheantennamakessense. 1.1.7 Intermodulation
Generally,anantennaisconsideredapassivelineardevice.However, whensuchadeviceisexcitedbyhighenoughpower,itactsslightlyasa nonlineardevice.Thenonlinearityisnormallycausedbymetal-to-metal jointsandnonlinearmaterialsintheantennastructure.Therefore,when signalswithmultiplefrequenciesarefedintononlineardevices,intermodulationproducttermswhosefrequenciesaredifferenttothoseof theinputsignalaregenerated.Atypicalpassiveintermodulationsignal levelisfrom–180to–120dBc(dBcrelativetocarrierpower).7–8 Anantenna’sintermodulationdegradesawirelesssystem’sperformanceifthesystemhasthefollowingfeatures: ■
Hightransmittedpowerisadopted.
■
Thesystemisequippedwithhighreceiversensitivity.
■
Oneantennaisusedforbothtransmittingandreceiving.
■
Signalsatmorethanonefrequencyaretransmitted.
Base stations normally have this entire feature set. Base stations, therefore,sufferfrompassiveintermodulation(PIM).High-powersignalsexcitetheantennaofthebasestation,andintermodulationcomponentscausebackreflectiontothereceiverduetotheantenna’sPIM. Since the receiver is highly sensitive and is able to sense very weak signals, the intermodulation signals cause interference.The problem becomes worse if the intermodulation term falls inside the receiving bandbecausetheinterferencecannotberemovedbyfiltering.Forexample,fortheP-GSM-900systemwhosedownlinkbandisfrom935MHz to 960 MHz and whose uplink band is from 890 MHz to 915 MHz, the 3rd order intermodulation term at the base station side may be 2×935−960=910MHz,whichfallsinsidetheuplinkband.Onthe otherhand,thePIMproblemisnotthatseriousataclientterminal, such as a cell phone, a personal digital assistant (PDA), or a laptop withwirelesscapability,andisnormallyignored.Ontheclientside,
14 Chapter One
thetransmittedpowerisnotthathighduetolimitedbatterycapacity andforelectromagneticsafetyreasons,andthusthePIMreflectedto thereceiverisweakerthanthatatthebasestation.Therelativelylowpowertransmissiondoesnotreducethequalityofuplinkasthebase station is equipped with a highly sensitive receiver. In addition, the receiversensitivityisnothighataclientterminal,andthereflected PIMlevelisthuslowerthanthenoiselevel.Similarly,therelatively lowerreceiversensitivitydoesnotdegradethedownlinkperformance asahigh-powersignalistransmittedfromthebasestation. Anantenna’sPIMcanbemeasuredbyadedicatedanalyzer.Forexample,SummitekInstrumentsprovidessuchananalyzer.Figure1.6shows theblockdiagramofaPIManalyzerthatmeasuresthePIMofatwo-port device.Ithastwomeasurementmodescalledreversemeasurementand forwardmeasurement.AsshowninFigure1.6,atwo-tonehigh-power signalisfedintoPort1ofthedeviceundertest(DUT).TheRFswitch is in the“Rev” position for the reverse measurement mode or in the “Fwd”positionfortheforwardmeasurement.Forthemeasurementof anantenna’sPIM,thereversemeasurementisusednotonlybecausean antennaisaone-portdevicebutalsobecausethereversemeasurement correspondstotheoperationconditionofabasestationantenna.
PA Tx Rx
Port 1
PA
Rx Tx
Figure1.6 BlockdiagramofaPIManalyzer
DUT
Receiver
RF switch Rev Fwd
Port 2
FundamentalsofAntennas 15
1.2 ImportantAntennasinThisBook Hereweintroduceseveralantennasthatarerecentlydevelopedand couldbeconsideredasrelativelynew.Theseantennasareconventional microstrip antennas as narrow band planar printed antennas, suspendedplanarantennasaswidebandantennas,andplanarmonopole asanultra-widebandantenna(UWB). 1.2.1 PatchAntennas
Themicrostrippatchantennaisapopularprintedresonantantennafor narrow-bandmicrowavewirelesslinksthatrequiresemihemispherical coverage.Duetoitsplanarconfigurationandeaseofintegrationwith microstriptechnology,themicrostrippatchantennahasbeenstudied heavilyandisoftenusedasanelementforanarray. Common microstrip antenna shapes are square, rectangular, circular,ring,equilateraltriangular,andelliptical,butanycontinuous shape is possible.9 Figure 1.7 shows the parameters of circular and rectangular patches. Some patch antennas eschew a dielectric substrateandsuspendametalpatchinairaboveagroundplaneusing dielectricspacers;theresultingstructureislessrobustbutprovides betterbandwidth.
y
Microstrip antenna
y
Microstrip antenna
Rp
y
L
W
x
x Feed point Ground plane
z
Feed point Ground plane Dielectric substrate Ground plane
(a)
(b)
*Ground plane covered by dielectric Figure1.7 (a)Circularpatch,(b)rectangularpatch,and(c)sideview
(c)
16 Chapter One
Advantages: ■
Planer(andcanbemadeconformaltoshapedsurface)
■
Lowprofile
■
Easeofintegrationwithmicrostriptechnology
■
Canbeintegratedwithcircuitelements
■
■
Abilitytohavepolarizationdiversity(caneasilybedesignedtohave vertical,horizontal,right-handcircular(RHCP),orleft-handcircular (LHCP)polarizations) Lightweightandinexpensive
Disadvantages: ■
Narrow bandwidth (typically less than 5%), requiring bandwidthwideningtechniques
■
CanhandlelowRFpower
■
Largeohmicloss
The most common microstrip antenna is a rectangular patch.The rectangularpatchantennaisapproximatelyaone-halfwavelengthlong section of rectangular microstrip transmission line.When air is the antennasubstrate,thelengthoftherectangularmicrostripantenna is approximatelyone-halfofafree-spacewavelength.Iftheantennais loaded with a dielectric as its substrate, the length of the antenna decreasesastherelativedielectricconstantofthesubstrateincreases. Theresonantlengthoftheantennaisslightlyshorterbecauseofthe extendedelectricfringingfields,whichincreasetheantenna’selectrical length slightly.The dielectric loading of a microstrip antenna affects bothitsradiationpatternandimpedancebandwidth.Asthedielectric constantofthesubstrateincreases,theantennabandwidthdecreases. This increases the antenna’s Q factor and, therefore, decreases the impedancebandwidth. FeedingMethods: ■
Coaxialprobefeeding
■
Microstriptransmissionline
■
Recessedmicrostripline
■
Aperturecouplingfeed10–11
■
Proximity-coupledmicrostriplinefeed(nodirectcontactbetweenthe feedandthepatch12)
FundamentalsofAntennas 17
Bandwidthcanbeincreasedusingthefollowingtechniques: ■ ■
Usingthickandlowpermittivitysubstrates Introducingcloselyspacedparasiticpatchesonthesamelayerofthe fedpatch(15%BW)
■
Usingastackedparasiticpatch(multilayer,BWreaches20%)
■
IntroducingaU-shapedslotinthepatch(toachieve30%BW)13
■
Aperturecoupling(10%BW,highbackloberadiation)10–11
■
Aperture-coupledstackedpatches(40–50%BWachievable)14
■
L-probecoupling15
Thesizeofthepatchantennacanbereducedbyusingthefollowing techniques: ■
Usingmaterialswithhighdielectricconstants
■
Usingshortingwalls
■
Usingshortingpins16
Toobtainasmallsizewide-bandwidthantenna,thesetechniquescan becombined. 1.2.2 SuspendedPlateAntennas
Asuspendedplateantenna(SPAs)isdefinedasathinmetallicconductor bondedtoathingroundeddielectricsubstrate,asshowninFigure1.8. Suspendedplateantennashavethicknessesrangingfrom0.03l1to0.12l1 (l listhewavelengthcorrespondingtotheminimumfrequencyofthe well-matchedimpedancebandwidth)andalowrelativedielectricconstantofabout1.SPAshaveabroadimpedancebandwidthandunique radiationperformance.17 Theuseofthickdielectricsubstratesisasimpleandeffectivemethodto enhancetheimpedancebandwidthofamicrostrippatchantennabyreducingitsunloadedQ-factor.Astheimpedancebandwidthincreases,however, surfacewavelossesalsoincrease,whichreducesradiationefficiency.Tosuppressthesurfacewavesalowpermittivityofthesubstrateisrequired. Advantages: ■
Easytofabricate
■
Notexpensive
■
Largebandwidth
■
Nosurfacewaves
18 Chapter One
W L
Side view
Patch Patch h
Ground plane Feeding probe
Ground plane
Figure 1.8 Suspended plate antenna patch fed by an L-shaped
probe
Disadvantages: ■
Highcrosspolarization
■
ThickAntennacomparedtoconventionalmicrostripantenna
FeedingMethods: ■
Coaxialprobe(poormatchingBWisonly8%) Bandwidthcanbeimprovedusingthesetechniques:17
■
■
Adualprobe-feedingarrangementconsistingofafeedprobeanda capacitiveload18 Long U-shaped slot, cut symmetrically from the plate (BW is 10%–40%)
■
L-shapedprobe(BWreaches36%)19
■
T-shapedprobe(BWreaches36%)
■
Ahalf-wavelengthfeedingstrip
■
Acenter-fedSPAwithasymmetricalshortingpin
■
Stackedsuspendedplateantenna20
1.2.3 PlanerInverted-L/FAntennas
Aplanarinverted-L/Fantennaisanimprovedversionofthemonopole antenna.Thestraightwiremonopoleistheantennawiththemostbasic form.Itsdominantresonanceappearsataroundone-quarteroftheoperatingwavelength.Theheightofquarter-wavelengthhasrestrictedtheir applicationtoinstanceswherealow-profiledesignisnecessary.17
FundamentalsofAntennas 19
Figure 1.9 shows the geometry of a narrow-strip monopole with a horizontalbentportion,andtheplanerinverted-Fantenna(PIFA)is showninFigure1.10. APIFAcanbeconsideredakindoflinearinverted-Fantenna(IFA), with the wire radiator element replaced by a plate to expand bandwidth. Advantages: ■
Reducedheight
■
Reducedbackwardradiation
■
Moderatetohighgaininbothverticalandhorizontalpolarizations
Disadvantages: ■
Narrowbandwidth
The shorting post near the feeding probe of the PIFA antennas is a good method for reducing the antenna size, but this results in the narrowimpedancebandwidth.
w h
w
h
(a)
(b)
Figure 1.9 Geometry of a (a) narrow-strip monopole
withahorizontalbentportion(b)monopole
l1
l2
h
Figure1.10 GeometryofthePIFA
w
20 Chapter One
Bandwidthcanbeimprovedusingthesetechniques: ■ ■
Usingthickairsubstrate Usingparasiticresonatorswithresonantlengthsclosetotheresonant frequency21
■
Usingstackedelements22
■
Varyingthesizeofthegroundplane23
ThesizeofthePIFAcanbereducedusingthesetechniques: ■
Usinganadditionalshortingpin24
■
Loadingadielectricmaterialwithhighpermittivity25
■
Capacitiveloadingoftheantennastructure26
■
Usingslotsonthepatchtoincreasetheantenna’selectricallength27
1.2.4 PlanerDipoles/Monopoles
Dipolesandmonopolesarethemostwidelyusedantennas.Themonopoleisastraightwireverticallyinstalledaboveagroundplane;itis verticallypolarizedandhasanomnidirectionalradianinthehorizontal plane.Toincreasetheimpedancebandwidthofthemonopoleantenna, planerelementscanbeusedtoreplacethewireelements.28 Planerdesignswithdifferentradiatorshapeshavebeenwidelyused inwhichthebandwidthreaches70%.Theseshapesinclude17 ■
Circular(BWfrom2.25–17.25GHz)
■
Triangular
■
Elliptical(BWfrom1.17–12GHz)
■
Rectangular(BWof53%)
■
Ring
■
Trapezoidal(80%BW)
■
Rollmonopoles(morethan70%BW)
Thesquareplanarmonopolewithtrident-shapedfeedingstrip(shown in Figure 1.11) was introduced29 with a bandwidth of about 10 GHz (about 1.4–11.4 GHz).This bandwidth is three times the bandwidth obtainedusingasimplefeedingstrip. A compact wideband cross-plate monopole antenna (shown in Figure1.12)hasbeenproposed.30Thisantennahasacross-sectional areaonly25%thatofacorrespondingplanarcross-platemonopole antenna and can generate omnidirectional or near omnidirectional
FundamentalsofAntennas 21
Figure 1.11 Geometry of the planar
monopoleantennawithatrident-shaped (three-branch)feedingstrip
Figure 1.12 A compact wideband cross-platemonopoleantenna
radiationpatternsforfrequenciesacrossawideoperatingbandwidth ofabout10GHz(1.85–11.93GHz). 1.3 BasicMeasurementTechniques Performing measurements of the antenna parameters to verify the simulateddesignisveryimportant.Measurementsarealsoneededto verifythattheantennaachievesitsrequirements.Theparametersofthe antennathatneedtobemeasuredaretheinputimpedance,radiation pattern,directivity,gain,andefficiency.Here,wewillbrieflystatethe techniquesusedfortheseparameters.Wearegoingtoavoidsomeofthe laboriousoldtechniquesthatwereusedforlackofmodernequipmentand insteadconcentrateonthetechniquesthatusemodernequipment. 1.3.1 MeasurementSystems forImpedanceMatching
Antennaimpedancecanbemeasuredusingavectornetworkanalyzer. Avectornetworkanalyzerisabletoseparatetheforwardwave,V +,and thereflectedwave,V −,fromanantennaatareferenceplanewherecalibrationisdone,andthusthereflectioncoefficientisprovided,whichis
22 Chapter One
theratiobetweenthereflectedtoincidentwavesasG=V −/V +.Then,the impedanceatthereferenceplanecanbecomputedasZ=Zc(1+Γ)/(1−Γ), whereZcisthecharacteristicimpedanceofthecableconnectingtothe antenna.Consequently,beforestartingtomeasuretheDUT,thenetworkanalyzerhastobecalibratedusingtheslanderedtechniquesof standardshort,open,andmatchingloads.Oneofthemostimportant parametersthatcalibrationestablishesisthereferenceplane,whichis criticalforphaseinformation.Thisisasingleportmeasurement. In some cases, two port measurements are needed to measure the reflectioncoefficientsforthetwoportsandthemutualcouplingbetween them.These are referred to as the S-parameter measurements.This measurementdeterminesthemutualcouplingbetweentwoantennas or,forsomeantennas,determinestheisolationbetweentwoportsofa duallypolarizedantenna. 1.3.2 MeasurementSetups forFar-ZoneFields
Forfar-fieldmeasurements,thedistancebetweenthetransmitterand receiverhastobelargeenoughtobesurethatthetransmitterisinthe far zone of the antenna under test.To perform these measurements indoors,youhavetoprovideanenvironmentthatensurestheantenna doesnotinteractwiththesurroundingsandoperateswithintheenvironment as if in free space.To achieve this, an anechoic chamber is usedwithitswallscoveredwithproperabsorbingmaterialsthatreduce or eliminate the reflections from the walls.The absorbing materials haveacertainbandwidthor,inotherwords,acertainlowerfrequency bound.Thelowerfrequencyisreducedastheabsorbingmaterialsize isincreased. 1.3.2.1 Far-Field System To measure the far-zone field, the transmittingandreceivingantennasareputintoananechoicchamber,using aspacingthatsatisfieseachother’sfar-zonerequirement.Figure1.13 showsananechoicchamberinstrumentationblockdiagram.Thisdistanceguaranteesthewaveimpingingonthereceivingantennacanbe approximatedasaplanewave.Generally,thefar-fielddistance,d,is consideredtobe
d=
2D2 λ
(1.26)
whereDistheantennadiameterandlisthewavelengthoftheradio wave.Separatingtheantennaundertest(AUT)andtheinstrumentationantennabythisdistancereducesthephasevariationacrossthe AUTenoughtoobtainareasonablygoodantennapattern.
FundamentalsofAntennas 23
Figure1.13 Anechoicchamberinstrumentationblockdiagram
Theantennaundertestwillrotatewhiletheotherantenna,referred toasthetestingprobe,isfixed.Ifthemeasurementiscarriedoutin atransmittingmode,theantennaundertesttransmitssignalswhile rotating two dimensionally or three dimensionally depending on the rotatingmechanism.Atthesametime,thetestingprobereceivessignalsandthemeasurementsystemrecordsthedata.Ontheotherhand, ifthemeasurementiscarriedoutinareceivingmode,thetestingprobe transmits signals and the antenna under test receives signals while rotating.Thismeasurementgivestheradiationpatternoftheantenna undertest,ifthepolarizationisthesameasthatofthetestingprobe, whichcouldbeverticallypolarized,horizontallypolarized,orcircularly polarized.Incasethefar-zonerequirementisdifficulttosatisfy,aparabolicreflectorantennaisusedtogenerateaplanewave.Suchasystem isreferredtoasacompactrange. 1.3.2.2Near-FieldSystem Tomeasurethenear-zonefield,theantenna
undertestisnormallyfixedandoperatesineitheratransmittingor receivingmode,whereasthetestingprobescansonasurface.Thescanning surface could be a flat plane, a cylindrical surface, or a sphericalsurfacedependingonthemechanicalschemeofthemeasurement system.Neartheantennaundertest,thesystemrecordsthemeasured data.5,31 Planarnear-fieldmeasurementsareconductedbyscanningasmall probeantennaoveraplanarsurface,asinFigure1.14a.Thesemeasurementsarethentransformedtothefar-fieldbyuseofaFourierTransform, ormorespecifically,byapplyingamethodknownasstationaryphase
24 Chapter One
to the LaplaceTransform.Three basic types of planar scans exist in near-fieldmeasurements.TheprobemovesintheCartesiancoordinate system, and its linear movement creates a regular rectangular samplinggridwithamaximumnear-fieldsamplespacingof∆x=∆y=l/2. Cylindricalnear-fieldrangesmeasuretheelectricfieldonacylindrical surfaceclosetotheAUT,asshowninFigure1.14b.Cylindricalharmonicsareusedtotransformthesemeasurementstothefar-field.Spherical near-fieldrangesmeasuretheelectricfieldonasphericalsurfaceclose totheAUT,asshowninFigure1.14c.Sphericalharmonicsareusedto transformthesemeasurementstothefar-field. Similartothefar-zonemeasurement,theobtainedfielddatahasthe same polarization as that of the testing probe. Normally, the testing probeislinearlypolarized,andthusthemeasurementisoftencarried outtwiceforthetwoorthogonalpolarizationcomponentsonthesampling surface.This offers a convenient way to measure the radiation patternsofanelectricallylargeantenna,whichyoumaynotbeableto measureinananechoicchamber. Agilentprovideshigh-qualitymicrowaveinstrumentation,andcombiningAgilent’s microwave instrumentation with NSI’s software and systemsexpertiseprovidesasolutionthatisunrivaledintheantenna measurementindustry.Thebasicnear-fieldrangesystemblockdiagram showninFigure1.15issimilartotheUniversityofMississippi’savailableplanarnear-fieldsystem. 1.3.2.3CircularlyPolarizedSystems Bychoosingdifferenttestingprobes
inthefar-zonemeasurement,therearethreewaystomeasurethefarzone circularly polarized field. If the measurement system could get
(a)
(b)
(c)
Figure 1.14 Near-field scanning: (a) planar scanning, (b) cylindrical scanning, and
(c)sphericalscanning
FundamentalsofAntennas 25
Figure1.15 NSIVNAantennameasurementsystembasedontheNSIModel200V-5'×5' Near-FieldVerticalScannerandtheAgilent8720ESVectorNetworkAnalyzer
boththemagnitudeandphaseofthereceiveddata,thetestingprobe canbelinearlypolarized.Afterthemeasurementforthetwoorthogonal polarizationcomponents,theleft-handorright-handcircularpolarizationcomponentcanbecomputedusingthecomplexdatacollectedas giveninEq.1.7andEq.1.8.Ifthemeasurementsystemcanonlyget themagnitudebutnotthephaseofthedata,themeasurementmaybe carriedouttwice,onceusingtheleft-handpolarizedtestingprobeand thenonceusingtheright-handpolarizedprobe,togetthetwocircularly polarizedcomponents(copularandcross-polar,respectively).Thesetwo methodsrequiretwomeasurements.Anotherconvenientwayofavoidinghavingtoperformtwomeasurementsistousealinearlypolarized testingproberotatingataratemuchfasterthanthatoftheantenna under test.The resulting pattern is an oscillating pattern called an axialratiopattern,asshowninFigure1.16.Thedifferenceofthetwo envelopsgivestheaxialratio.Thismethodcanbeappliedtoasystem
26 Chapter One q 30
0
q 30 60
60
90
90
Figure 1.16 Example of an axial ratio
pattern
thatisabletogetonlythemagnitudeofthedata.Thetwoenvelopsare presentedbyE1andE2as
E1 (θ , φ ) = Ec (θ , φ ) + Ex (θ , φ ) E2 (θ , φ ) = Ec (θ , φ ) − Ex (θ , φ )
(1.27)
FromE1andE2theaxialratiothatisusedasameasureofthequality ofthecircularpolarizationisgivenas
|AR(θ , φ )|= 20 log
E1 (θ , φ ) E2 (θ , φ )
(1.28)
UsuallytheARismeasuredforthemainbeamandisgivenas
|AR|=|AR(0, 0)|
(1.29)
1.3.3 MeasurementSystems forIntermodulation
Theintermodulationphenomenonexistsinnonlinear devicesworking in a high-power environment. Intermodulation is widely discussed for thedesignofpoweramplifiers.Similarly,forabasestationtransmitting antenna,whichemitshighpower,theintermodulationexistsduetothe metal/metaljointandmaterialnonlinearity.Theintermodulationisakind ofinterferencethatshouldbesuppressed.Supposetwocloselylocated fundamentalfrequencies,f1andf2,aretransmittedbytheantenna;due tononlinearity,theradiatedfieldhascomponentsatthefrequenciesof f1,f2,2f1,2f2,3f1,3f2,f1 +f2,f1 −f2,2f1 −f2,2f2 −f1,andsoon.Sincef1and f2areclosetoeachother,the3rdorderintermodulationcomponentsat 2f1−f2and2f2−f1areveryclosetothefundamentalfrequenciesandare difficulttoremoveusingfilters,thusintroducinginterferences. To measure the 3rd order intermodulation, the antenna under test operates at a transmitting mode and the testing probe operates at a receiving mode.The testing probe should have a very good linearity
FundamentalsofAntennas 27
withinalargedynamicrangeofpowerlevelsinordernottointroduce measurementerrors.Whenmeasuring,theantennaundertestisexcited byagivenpowerlevelattwoclosefundamentalfrequencies,andthe fundamentaland3rdorderintermodulationcomponentsaremeasured andrecordedonthereceivingside.Theoperationisrepeatedfordifferent inputpowerlevels,andfinallyitgivestwocurves—oneisthereceived powerlevelofthefundamentalcomponentversusinputpower,andthe otheroneisthereceivedpowerlevelofthe3rdorderintermodulation componentversusinputpower.Fromthetwocurves,wecanobtainthe 3rdorderinterceptpoint,whichindicatesthepowerdynamicrangeof theantennaundertestforlinearoperation.Figure1.17showsanexampleofmeasurementsystemsforintermodulationinananechoicchamber, whichisinstalledattheCityUniversityofHongKong,SAR,China.
AUT
Figure1.17 Exampleofmeasurementsystemsforpassiveintermodulation(FacilityisavailableattheStateKeyLaboratoryof MillimeterWavesatCityUniversityofHongKong.)
28 Chapter One
1.4 SystemCalibration GainandPolarizationCalibrationsofStandardAntennas Thiscalibrationserviceisofferedprimarilyfordeterminingtheabsoluteon-axisgainand polarizationofstandardgainhorns,which,inturn,areusedasreference standardsindeterminingthegainandpolarizationofotherantennas bythegaincomparisontechnique.Theantennasneednotbeidentical. Thismethodisthemostaccuratetechniqueknownforabsolutegainand polarizationmeasurements.Forgainmeasurements,theuncertainties aretypically0.10–0.15dB.Uncertaintiesof0.05dB/dBforpolarization axialratiomeasurementsaretypical. Near-FieldScanningTechniques Withthistechnique,gain,pattern,and polarizationparametersarecalculatedfromnear-fieldamplitudeand phasemeasurementstakenoverasurfaceclosetothetestantenna. Theabsolutegaincanbedeterminedtowithinabout0.2dB,thepolarizationaxialratiotowithinabout0.10dB/dB,andsidelobelevelsdown to−50dBor−60dB.Theexactuncertaintiesintheseparameterswill depend on such factors as the frequency, type, and size of antenna. Calibratedprobesarenormallyrequiredforthesemeasurements.In ordertoachieveaccurateresultswiththeplanar,cylindrical,orspherical near-field method, the transmitting or receiving properties of the probemustbeknown.Withthisinformation,themeasureddatacan becorrectedforthenonidealpatternandpolarizationpropertiesofthe probe.Probesarecharacterizedbyathree-stepprocess:(1)Theon-axis gain and polarization properties are measured using the technique described;(2)thefar-fieldamplitudeandphasepatternsaremeasured for two nominally orthogonal polarizations of the incident field; and (3)theon-axisandpatterndataarecombinedtoobtaintheprobecorrectioncoefficientsatthedesiredlatticepointsforthemeasurement surfacespecified.5,31
1.5 Remarks In this chapter, we briefly presented the fundamental parameters of theantennasobeginningengineerscanquicklygraspthemeaningof antennaparameters.Wealsogaveexamplesofdifferentprintedand simpleantennasandtheiradvantagesanddisadvantages.Inaddition, wetouchedonthemeasurementtechniquesforantennaparameters.We indicatedthesignificanceofthecalibrationofthesesystemstoprovide reliablemeasurements.Thereaderwhoneedsmoredetailshouldrefer tothereferencesprovided.
FundamentalsofAntennas 29
References 1.C.A.Balanis,AntennaTheoryAnalysisandDesign,NewYork:JohnWiley&Sons, Inc.,2005;C.A.Balanis,ModernAntennaHandbook,NewYork:JohnWiley&Sons, Inc.,2008. 2.S.Drabowitch,A.Papiernik,H.D.Griffiths,andJ.Encinas,ModernAntennas,2nd edition,NewYork:Springer,2005. 3.J.deKrausandR.J.Marhefka,AntennasforAllApplications,3rdedition,New York:McGraw-HillScience/Engineering/Math,2001. 4.W.L.StutzmanandG.A.Thiele,AntennaTheoryandDesign,NewYork:JohnWiley &Sons,Inc.,1981. 5.ANSI/IEEEStandardTestProcedureforAntennas,ANSI/IEEEStd149,NewYork: JohnWileyDistributors,1979. 6.RichardC.JohnsonandHenryJasik,AntennaEngineeringHandbook,2ndedition, NewYork:McGraw-HillBookCompany,1984. 7.SummitekInstruments,www.summitekinstruments.com. 8.S.Hienonen,“Studiesonmicrowaveantennas:passiveintermodulationdistortion inantennastructuresanddesignofmicrostripantennaelements,”Dissertation, HelsinkiUniversityofTechnologyRadioLaboratory,EspooFinland,March2005. 9.RameshGarg,R.B.Garg,P.Bhartia,PrakashBhartia,ApisakIttipiboon,and I.J.Bahl,MicrostripAntennaDesignHandbook,NewYork:ArtechHouseInc.,2000. 10.P.L.SullivanandD.H.Schaubert,“Analysisofanaperturecoupledmicrostrip antenna,”IEEETransactiononAntennasandPropagation,vol.34,no.8(August1986). 11.D.M.Pozar,“Areciprocitymethodofanalysisforprintedslotandslot-coupled microstripantennas,”IEEETransactiononAntennasandPropagation,vol.34,no.12 (August1986). 12.K.Wu,J.Litva,andR.Fralich,“Fullwaveanalysisofarbitrarilyshapedline-fed microstripantennasofarbitraryshape,”Proc.IEE,Pt.H,vol.138(1991):421–428. 13.A.K.Schackelford,K.F.LeeandK.M.Luk,“Designofsmall-sizewide-bandwidth microstrippatchantenna,”IEEEAntennasandPropagationMagazine,vol.45,no.1 (February2003). 14.P.Besso,D.Finotto,D.Forigo,andP.Gianola,“Analysisofaperture-coupledmultilayermicrostripantennas,”IEEEAntennasandPropagationSocietyInternational SymposiumDigest,vol.3(28Juneto2July1993):122–1227. 15.K.M.Luk,C.L.Mak,Y.L.Chow,andK.F.Lee,“Broadbandmicrostrippatch antenna,”ElectronicsLetters,vol.34(1998):1442–1443. 16.K.F.LeeandR.Chair,“Ontheuseofshortingpinsinthedesignofmicrostrippatch antennas,”Transactions—HongKongInstitutionofEngineers,vol.11,no.4(2004). 17.Z.N.ChenandM.Y.W.Chia,BroadbandPlanarAntennas,NewYork:JohnWiley& Sons,Inc.,2006. 18.G.Mayhew-Ridgers,J.W.Odendaal,andJ.Joubert,“Single-layercapacitivefeedfor widebandprobe-fedmicrostripantennaelements,”IEEETransactionsonAntennas andPropagation,vol.51,no.6(June2003):1405–1407. 19.Z.N.Chen,“Impedancecharacteristicsofprobe-fedL-shapedplateantenna,”Radio Science,vol.36,no.6(2001):(1377–1383). 20.Z.N.Chen,M.Y.W.Chia,andC.L.Lim,“Astackedsuspendedplateantenna,” MicrowaveandOpticalTechnologyLetters,vol.37,no.5(June5,2003):337–339. 21.P.K.Panayi,M.Al-Nuaimi,andL.P.Ivrissimtzis,“Tuningtechniquesfortheplanar inverted-Fantenna,”IEENationalConferenceonAntennasandPropagation, no.461(30March–1April1999). 22.M.Tong,M.Yang,Y.Chen,andR.Mittra,“Designandanalysisofastackeddual- frequencymicrostripplanarinverted-Fantennaformobiletelephonehandsetsusing theFDTD,”IEEEAntennasandPropagationSocietyInternationalSymposium, vol.1(2000):270–273.
30 Chapter One 23.M.C.HuynhandW.Stutzman,“Groundplaneeffectsontheplanarinverted— Fantenna(PIFA)performance,”IEEProc.MicrowaveAntennasandPropagation, vol.150,no.4(August2003):209–213. 24.L.ZaidandR.Staraj,“MiniaturecircularGSMwirepatchonsmallgroundplane,” ElectronicLetters,vol.38(February2002):153–154. 25.T.KLoandY.Hwang,“BandwidthenhancementofPIFAloadedwithveryhigh permittivitymaterialusingFDTD,”IEEEAntennasandPropagationSociety InternationalSymposium,vol.2(June1998):798–801. 26.T.KLo,J.Hoon,andH.Choi,“SmallwidebandPIFAformobilephonesat1800MHz,” IEEEVehicularTechnologyConference,vol.1(May2004):27–29. 27.C.R.RowellandR.D.Murch,“AcapacitivelyloadedPIFAforcompactmobiletelephonehandsets,”IEEETrans.AntennasandPropagation,vol.45,no.5(May1997): 837–842. 28.N.P.Agrawall,G.Kumar,andK.P.Ray,“Wide-bandplanermonopoleantenna,” IEEETransactionsonAntennasandPropagation,vol.46,no.2(1998):294–295. 29.K.Wong,C.Wu,andS.Su,“Ultra-widebandsquareplanarmetal-platemonopole antennawithatrident-shapedfeedingstrip,”IEEETransactionsonAntennasand Propagation,vol.53,no.4(April2005):1262–1268. 30.K.Wong,C.Wu,andF.Chang,“Acompactwidebandomnidirectionalcross-plate monopoleantenna,”MicrowaveandOpticalTechnologyLetters,vol.44,no.6 (March20,2005). 31.G.E.Evans,AntennaMeasurementTechniques,NewYork:ArtechHouseInc.,1990.
2
Chapter
BaseStationAntennasfor MobileRadioSystems
BrianCollins BSCAssociatesLtd.andQueenMary,UniversityofLondon
Aswellastheirobviousfunctionofprovidingalinkbetweenabasestationandamobilestation,basestationantennasprovideanessential andincreasinglyimportanttoolforthecontroloffrequencyre-useand theoptimizationofchannelcapacityinamobileradionetwork.Inthis chapter,weexaminethewayinwhichtheseconsiderationscontribute to the specification of the performance parameters required and the engineeringmeansbywhichtheseparameterscanbeprovided. Thedescriptionsareofgeneralapplicationtomanyfrequencybands, sotoavoidtediousrepetition,thefollowingbandswillbedefinedand usuallyreferredtobytheshortnamesshown.Inthecontextofmultibandarrays,850-MHzand900-MHzbandswillbereferredtoasthe lowbandand1710–2170-MHzasthehighband.Thenomenclaturefor basestationsandmobilestationsdiffersbetweenairinterfacespecifications,butforconveniencethetermsbasestation(BS)andmobilestation (MS)willbeusedherewithoutimplyingreferencetoanyparticularair interface.Toavoidrepetition,thefollowingcommentsapplythroughout thischapter: ■
Reciprocity Theprincipleofreciprocityappliestomostoftheperformance parameters of an antenna. Gain, radiation pattern, efficiency,andmanyothercharacteristicshavethesamevaluewhether anantennaistransmittingorreceivingasignal,sointhediscussion thatfollowsthedirectionoftransmissionischosentosuitthesimplest understandingofthephenomenadescribed. 31
32 Chapter Two TABLE2.1 FrequencyBands,Nomenclatures,andUses
Frequencyband 450–470MHz
Shortreference
Service
450MHz
Phone+data
824–890MHz
850MHz
Phone+data
870(880)–960MHz
900MHz
Phone+data
824–960MHz (850and900MHz)
Lowbands
Phone+data
1710–1880MHz
1800MHz
Phone+data
1850–1990MHz
1900MHz
Phone+data
1900–2170MHz
2100MHz
Phone+data
1710–2170MHz(1800,1900, and2100MHzbands)
Highbands
Phone+data
■
■
Intellectualproperty Manyofthetopicsdiscussedinthischapter relatetoareasinwhichawidevarietyofpatentshavebeengranted;it shouldnotbeassumedthatbecauseatechniqueorphysicalstructure isdescribedhereitisfreeofpatentsorothercommercialIP. Frequencybands Table2.1includesmostmajorworldwideassignmentsbutotherfrequencybandsareallocatedtomobileradioservices in some countries. Future bands for UMTS or additional 3G servicesarenotincluded.FollowingthetransferofbroadcastTVservicestodigitalformat,asignificantamountofthepresentanalogTV spectrumwillbereassignedtomobileservices,althoughtheextent towhichthesemaybecommononaninternationalbasisisnotclear atthetimeofwriting.
2.1 OperationalRequirements Thedominantconcernsofmobileradiooperatorsaretooptimizenetworkcapacitywithintheallocatednumberofchannelsandtoobtain themaximumrevenuegenerationfromtheinstalledequipmentbase. Theseeconomicobjectivesimplysecuringthemostintensivepossible frequencyre-useandcontrollingthegeographicaldistributionofchannel capacity to match the distribution of user demand in space and time.Thephysicallocationofbasestationsandtheengineeringoftheir antennasystemsareinvaluabletoolsinthisoptimization.Thedevelopmentofthenetworkandtheantennasystemsemployedwillbedeterminedbothbycurrentusagepatternsandalsobythoseforeseeninthe future.Animportantfeatureofmodernantennadesignistheincreasing availabilityoftechniquesthatpermittheadaptationofantennacharacteristicstocurrentusagepatternsinrealtime. Inthediscussionthatfollows,weassumethereaderhasageneral understandingofhowmobileradioairinterfacesoperateandisfamiliar
BaseStationAntennasforMobileRadioSystems 33
withthegeneralprinciplesofnetworkandcellplanning.Specialattentionisgiventothewaysinwhichantennaspecificationsarechosenand achievedtooptimizenetworkcoverageandcapacity. 2.2 AntennaPerformanceParameters In order to provide the required azimuth beamwidth and gain, a BS antennatypicallycomprisesaverticalarrayofradiatingelements.The designoftheindividualelementsprovidestherequiredazimuthradiation pattern characteristics, whereas the vertical extent of the array andthenumberofradiatingelementsinthearrayischosentoprovide thenecessarygain. Theazimuthbeamwidthofabasestationantennaischosentosuit thefrequencyre-useplanchosenforthenetwork.Basestationstypicallysupportthreecellsspaced120°apartinazimuth,althoughthis planisbynomeansuniversalespeciallywherecoveragemaybelimited bybuildingsorhillsorwhereusagepatternsarenonuniform,asinthe caseofaBSalongsideamajorhighway.Codedivisionmultipleaccess (CDMA)systemsrequirecarefulcontroloftheoverlapbetweencellsto avoidexcessivelossofcapacityinsoft/softerhandoffmodes,soa3-dB beamwidthof65°isthenorm.GlobalSystemforMobileCommunication (GSM)systemstypicallyuseantennaswith65°beamwidthinurban areasbutoftenusewiderbeamwidthsinruralareas.Theapparentgap between65°sectorsisfilledfromanadjacentBS.Indenseurbanareas the planning of most networks is determined by the need to provide sufficientcapacityratherthantocoverthelargestpossiblearea,sodifferentconsiderationsmayapplytothedesignofBSantennas. Forazimuthanglesbeyondtheedgesoftheservedcell,allowingsome overlapforhandoffcontrolandoptimization,thesignalradiatedbya BS antenna has no functional use and serves only to impair the C/I ratioinothercells.Forthisreason,itisdesirablethatbeyond±60°from boresighttheazimuthpatternfallsmonotonicallyatashigharateas practicableandthatrearwardradiationissuppressed. AlthoughweareaccustomedtoseeingrooftopBSantennasinmany cities, a substantial number of cells use antennas mounted at lower levels;thesemakeuseofthebuiltenvironmenttolimittheareathey cover—allowingmoreintensivefrequencyre-use—andtheycanmore easilybedisguisedtoreduceproblemswithplanningconsent. Theuseofomnidirectionalantennasisusuallylimitedtosmallin-fill basestationsbecausetheirabilitytosupportonlyasinglecelllimits theircapacityandfrequencyre-usecapabilities. ThemainBSnetworkisusuallyprovidedwithantennashavingthe highestgaineconomicallypossible;thisreducesthenumberofstations needed, improves in-building penetration, and helps to resolve some
34 Chapter Two
shadowingproblems.Severeshadowingproblemsarebetterresolvedby changingthelocationorheightoftheantenna;whereahigherantenna causesproblemswithfrequencyre-use,addingamicrocelltocoverthe unservedcoverageholemaybeabetteroption. Reducingtheelevationbeamwidthandselectingtheelevationangle ofthebeammaximumprovidefurthermethodsforcontrollingthefield strengthovertheintendedserviceareaofacell.Ifabasestationantenna hasthemaximumofitselevationradiationpatternalignedpreciselyin thehorizontalplane,inmanysituationstheelevationoftheantenna overthesurroundingarea—andatlongerdistancesthecurvatureofthe earth—willensurethemaximumsignalwillpassovertheheadsofmost users.Bydirectingthebeamslightlydownward,thefieldstrengthfor mostuserswithintheintendedcoverageareawillbeincreasedandat thesametimethepowerradiatedintoneighboringcellswillbereduced, significantlyimprovingtheC/Iratioinneighboringcellsthatsharethe samefrequency.Theeffectmaybecomparedwithdippingtheheadlights ofanautomobiletoavoiddazzlingapproachingdrivers. Theelevationpatternofacolumnofuniformlyexcitedradiatingelementsischaracterizedbyasuccessionofminorlobesandnullsboth aboveandbelowthemainbeam.Nullsbelowthemainbeam—especially thenullclosesttoit—cancauseareasofpoorcoverageclosetotheBS; side lobes immediately above the main beam can cause interference withneighboringcellsifthemainbeamisdowntiltedoriftheterrain risesbetweenoneBSandanother.Elevationpatternshapingiscommonlyusedtofillatleastthefirstnullbelowthemainbeamandto suppressthelevelofsidelobesforsomechosenrangeofelevationangles abovethemainbeam. Inordertoservestreet-levelusersfromantennasmountedonthe roofs of nearby high buildings, antennas with large elevation beamwidths(andthereforewithlowgain)maybedesirable.Inthissituationmanyusersaretypicallylocatedwellbelowthehorizontalasseen fromtheBSantenna,andlargebeamtiltsmaybeusedbothtocorrectly illuminatetheintendedusersaswellastoreduceinterferencelevels insurroundingcells. Figure2.1showsonewayinwhichwecanenvisagethefrequencyreusesituation.CellAusesfrequencyf1andprovidesausablesignalas farasdistanced1insomeazimuthdirection.Beyondthisdistance,the signalprovidedfromCellAistoolowtoprovideareliablelink,butis toohightoallowthefrequencytobere-used,whereasatsomedistance d2thelevelofinterferencefromCellAhasfallentoalevelthatallows f1tobere-usedbyCellB.Inordertoprovidethemaximumnetwork capacity,weneedtoensurethatsignalintensityfallsasrapidlyaspossiblewithdistanceandweassistthisbothbysiteplacementandby downtiltingtheantennaatCellA.1
Log field strength
BaseStationAntennasforMobileRadioSystems 35
Minimum useful signal
Acceptable level of interference in neighboring cell d1 Cell A uses f1
Log distance Re-use distance
d2 Cell B can re-use f1 3.8
Figure2.1 Re-usedistance.Thepropagationlossistypicallyproportionaltoaboutd .
Thelimitingradiusofthecellrepresentsthedistanceatwhichthereisareasonable chancetheSINRratiowillbesufficienttoprovideanadequateBER.Beyondthis theuseofthesamefrequencywillnotbepossiblebecauseofmutualinterference. Atasufficientdistancethesignallevelhasfallenenoughforanothercelltore-use thesamefrequency.Theelevationbeamwidthofabasestationantennaistypically only5°–7°.Bytiltingthebeamdownwardsignificantreductionofthere-usedistance ispossible.
Theanglebywhichtheelevationpatternmaximumisplacedbelow thehorizontalisknownasthebeamtiltoftheantenna.Beamtiltcan beprovidedbytwomechanisms.Mechanicaltiltisprovidedbyangling thebasestationantennaphysicallydownward,whereaselectricaltilt isprovidedbycontrollingthephasesoftheradiatingcurrentsineach elementofthearraysothemainbeamismoveddownward.Anantenna may have both electrical and mechanical beamtilt, the net beamtilt beingthesumofboth.
ComparingMechanicalandElectricalTilt Theeffectiveazimuthpatternofanantennawithelectricaltiltdiminishesin rangeasthetiltincreases,butithasanessentiallyconstantshapeirrespective oftheappliedtilt.Ifanantennaismechanicallytilted,thereisatendencyfor thepatterntobecomebothshorterandwiderasthetiltincreases,particularly forantennashavingazimuthbeamwidthsinexcessof60°,becausethetilthas littleeffectatazimuthanglesfarfromboresight.Inanumberofsituations,for exampleanantennamountedonawallandfiringobliquelyfromit,anantenna withmechanicaltiltisvisuallymuchmoreobtrusivethananantennamounted verticallyandprovidedwithelectricaltilt.
36 Chapter Two
2.2.1 ControlofAntennaParameters
Wenowexaminehoweachoftheperformanceparametersrequiredby theusercanbeprovidedbytheantennadesignengineer. 2.2.1.1 AzimuthRadiationPattern Theazimuthbeamwidthofanarray
isdeterminedbythedesignoftheradiatingelement(s)usedforeach verticalunit(tier),togetherwithitsrelationshiptothereflectingsurface behindit,usedtocreateaunidirectionalbeam.Thewidthandshapeof thereflectorwillalsocontrolthefront-to-backratioandtosomeextent therateofroll-offoffthepatternbeyondthe–3dBpointsoftheazimuth pattern. Inordertoobtainpredictablenetworkhand-offbehavior,theshape of the azimuth radiation pattern should change as little as possible overtheoperatingfrequencyband.TheMSmeasuresthelevelofthe Broadcast Control Channel (BCCH) GSM or Pilot Channel (CDMA) receivedfromdifferentcells,bothofwhicharefunctionsofthebeamwidthoftheBSantennaattheBStransmit(TX)frequency;thesystem assumesthatahandoffmadebycomparativemeasurementsonthese channelswillbeaccompaniedbyamatchingchangeintheBSreceive (RX)channelgain,andasignificantdifferencebetweenantennagain ontheTXandRXfrequenciesmayresultinproblemswithuplinkquality,unstablehandoffperformance,ordroppedcalls.InaCDMAsystem, theoverlapbetweencellshasacriticaleffectontheproportionoftraffic thatusessoft/softerhandoffmodes,aparameterthatdirectlyaffects networkcapacity.Forthesereasons,itisusualtospecifytightlimitson theazimuthbeamwidthasafunctionoffrequency,typically65°±3°or 90°±5°overthewholeband.Thebeamwidthat−10dBissometimesalso specified,butthisisrelativelydifficulttocontrolbyantennadesign. Thetypicalfront-to-back(F/b)ratioofa65°antennais30dB,and thisisspecifiedtocontrolthefrequencyre-usecharacteristicsofthe basestation.Whateverantennaischosenforuse,thenetworkengineer should use measured pattern data in system coverage modeling and shouldcheckonthecoverageimplicationsofanychangeinradiation patternsandgainovertheband. If the required F/b ratio is greater than is offered in an otherwise suitableantenna,theeffectiveratiocanbeincreasedbyselectingan antennawithalargerelectricalbeamtiltthanisrequiredandmounting itinanuptiltedattitude.Thisplacesthemainbeamwiththedesired beamtiltintheforwarddirectionwhiletiltingtheunwantedrearlobe wellbelowthehorizontalintherearwarddirection. The usual convention is that the azimuth pattern is specified and measuredatanelevationanglethatcontainstheelevationbeammaximum,soforanantennawithanelectricaldowntiltof5°,theazimuth patternisplottedonthesurfaceofaconewithahalfangle85°fromthe
BaseStationAntennasforMobileRadioSystems 37
vertical.Abeamtiltof5°isunderstoodtomeanadowntiltof5°.When plotting elevation patterns in Cartesian form, the x-axis is arranged withanglesbelowthehorizontotherightofthey-axisandanglesabove totheleft;althoughuniversallylabeledangleofelevation,thescaleis reallytheangleofdepression. 2.2.1.2 Gain Gainisafunctionofboththeazimuthbeamwidthofthe antenna—whichwillbeselectedtosuitthemannerinwhichcellsare fittedtogethertomeetfrequencyre-userequirements—anditselectricallengthintheverticalplane.Themaximumlengthofabasestation antennaisdeterminedeitherbythephysicalsizethatcanbeaccepted withoutbecomingtooobtrusive(asinthelowbands)orbytheminimum acceptable vertical beamwidth, which diminishes as the length and gainincrease.Astheantennalengthincreases,thelengthandattenuationofinternaltransmissionlinesincrease;forthisreasondoubling the antenna length halves the elevation beamwidth and doubles the directivity,butdoesnotdoubletheavailablegain. A broadside array delivers the maximum possible directivity if all itselementsareexcitedwithequalco-phasedcurrents.Inpracticethe applicationofbeam-shapingrequiresnonuniformelementcurrentsand thedirectivityobtainedfallsshortofthatofauniformarray;thisshortfallisknownaspatternshapinglossanditincreasesastheextentof appliednullfillandsidelobesuppressionisincreased.(Thenonuniformityoftheelementcurrentsresultsinawiderelevationbeamwidth thanwouldbeobtainedwithauniformdistributionandthereduced directivityisadirectconsequenceoftheincreasedbeamwidth.) 2.2.1.3 Elevation Beamwidth The elevation beamwidth of a BS array
is a function of its electrical length in the vertical plane.There is a practicallimittotheextenttowhichtheelevationbeamwidthcanbe reducedinordertoobtainincreasedgainbecauseanantennawitha verysmallverticalbeamwidthisphysicallylargeand,becauseofitssize andnarrowbeamwidth,itrequiresaveryrigidsupporttoavoidunacceptabledeflectionbyhighwinds.Inhillyterrainitmaynotprovide goodcoverageoftheintendedserviceareabecauseusersmayoccupyan elevationarcoflargerangularextentthantheantennacanilluminate. Standardpracticeistouseantennasupto8wavelengthslonginthe lowbands,andupto12,oroccasionally16,wavelengthslonginthehigh bands.Thesearraylengthsprovideelevationbeamwidthsofaround7°, 5°,and3.5°,respectively.
2.2.1.4 Beamtilt For an array with a fixed beamtilt, electrical tilt is usuallyeffectedbyaddingalinearphaseshiftacrossthewholearray. Thisensuresthatonlyasmallchangeoccursinbothgainandelevation
38 Chapter Two
pattern as the tilt is increased, and the levels of nulls and sidelobes remain almost unaffected for small tilt angles.The directivity of an arrayfallswiththecosineofthebeamtilt—becausethearrayappears shorterwhenviewedfromthepositionofthetiltedbeammaximum— andalsofallsbecausethegratinglobesabovethehorizontalincrease inlevelastheelectricaltiltisincreased,especiallyiftheinter-element spacingiselectricallylarge. 2.2.1.5 Passive Intermodulation Products In digital mobile radio net-
works, base station antennas usually function as both transmitting andreceivingantennas,providingdiversityonreceptionandaircombining∗ on transmission. Transmissions are usually made on more than one frequency, and for orthogonal frequency-division multiplexing(OFDM)andCDMAsystems,asinglechannelmayoccupyawide bandwidth with multiple carriers or signals with noise-like spectra. When multiple-frequency transmissions encounter any conductor or jointwithanonlinearvoltage/currentrelationship,theresultwillbe the generation of passive intermodulation (PIM) products.These are spurioussignalswithfrequenciesrelatedtothosethatgiverisetothem. Fortwounmodulatedcarriers,intermodulationproductsaregeneratedatfrequenciesgivenby:
Secondorder:
f2−f1,f2+f1
Thirdorder:
2f2−f1,2f1−f2,2f1+f2,2f2+f1
Fourthorder:
3f1−f2,2f1−2f2,…
Fifthorder:
3f1−2f2,2f2−2f1,4f1−f2,4f2−f1,…
Someofthesefrequenciesarelikelytofallinthereceivefrequency band,andthesituationbecomesverycomplexwhenuptoeightcarriers arefedintoasingleantenna.Severeproblemsareparticularlylikelyif anantennaoperatesinbothlowandhighbands,wherethesecond-order productislikelytofallin-band. RadiatedPIMsmaycauseinterferenceforotherspectrumusers—for exampleanothernetworksharingthesamebasestationstructure—or theymayfallinareceivebandservedbythesameantenna.PIMlevels areusuallyspecifiedforatwo-carriertest,withalevelof–153dBcfora carrierlevelof2×43dBm(20W).Achievingthisverylowlevel,which ensuresthereceiverisnotsignificantlydesensitizedbylocallygenerated ∗Atermusedtoindicatethatdifferentradiofrequencychannelsassociatedwiththesame radiosystemaretransmittedfromseparateantennasratherthanbeingcombinedinto asingletransmittingantenna.
BaseStationAntennasforMobileRadioSystems 39
PIMs,isaseveretestofthemechanicaldesignandconstructionofany antenna and is only achieved by rigorous attention to detail at every stage.Thepracticalimplicationsofthisrequirementarediscussedlater inthischapter. 2.2.1.6 Grounding for Lightning Protection Base station antennas are oftenmountedontallstructures,andtheyarelikelytosuffertheeffectsof directornearbylightningstrikes.Tominimizetheprobabilityofdamage to the antennas or the systems connected to them, careful attention mustbepaidtobondingofconductingpartsoftheantenna.Antennas aresometimesprotectedbyalightningspikemountedtothesupportingstructure,projectingsomedistanceabovethetopoftheantennas, butsometimestheantennasthemselvesformthehighestpointonthe structure,inwhichcasetheymustbefittedwithalightningspikeand asolidconnectiontoground,independentoftheirconnectingcables. 2.2.1.7 MechanicalDesign Abasestationantennaisacomplexdevice
thatmustprovidehighlyreliableserviceoveraperiodofmanyyears. Theachievementofstableoperatingcharacteristicsdespitetheeffects ofwind,rain,andpollutionrequirescarefulattentiontotheselectionof materials,thedesignofjoints,andthearrangementsfortheexclusionof waterfromcriticalareas.Thisrequiressomecarefuldesignjudgments becausethecostandweightofantennasistightlyconstrained.Antenna specificationsoftenciteinternationaltestcriteria2,3typicallyrelatingto operationathighandlowtemperatures,thermalcycling,drivingrain, saltmist,andmechanicalvibration.Specificationsalsoconstrainthe maximumpermittedlateralwindthrustforanantennaanditsmountinghardware,forwindinanyazimuthdirectionataspecifiedvelocity, typically45m/s(100mi/h),butvaryingwithlocalconditions. Thedesignofmountinghardwaretosupportanantenna,whichmay beupto2.5minlengthandweigh20kg,iscomplicatedbythewide varietyofmountingpolestobeaccommodatedandtherequirementto provideformechanicaltiltingoftheantenna.Theunpredictablevelocityandturbulenceofwindflowovertheroofsofbuildingshasledto occasionalunexpectedstructuralfailuresofantennamountings.This hasresultedfromfatiguefailureofthemountinghardwareoritspoints ofattachmenttotheantenna,inducedbythecoupledresonantbehavior oftheantenna,itsmountings,andthesupportingstructure.Inconsequence,someoperatorsnowwiselyspecifythatantennasmountedin locationswhereinjurycouldresultfromamountingfailure—forexample where antennas could fall into a street—are fitted with a secondary methodofrestraintsuchasaflexiblestainlesssteelwirerope,firmly anchoredtotheantennaandthesupportingstructure.
40 Chapter Two
2.2.1.8 DiversitySystems Whenamobileusermovesthroughtheenvi-
ronment,thesignalreceivedatabasestationantennafluctuateswidely inamplitudebecauseoftheinteractionofdirectandreflectedsignals fromtheMS.Ifanotherantennaiserectedsomedistanceawayfromthe first,thesignalfluctuationsonthetwoantennaswillbeuncorrelated. Adiversitysystemusestwoantennasandcombinestheiroutputsin somewaythatexploitsthislackofcorrelation.Theresultoftheuse ofdiversityisthattheavailabilityofthereceivedsignalisincreased. For a given signal availability, this increase could alternatively have beenachievedbyincreasingthetransmittedpower;sodiversitygain isdefinedastheequivalentincreaseinthepowerrequiredtoachieve somestatedreliability. The multipath nature of mobile radio propagation results in the strongfrequencydependenceofpropagationloss.Thisismitigatedby theuseofslowfrequencyhopping†(SFH)inGSMsystemsandtheuse ofspread-spectrumtechniquessuchaswidebandcodedivisionmultiple access(W-CDMA)andOFDM.Theeffectofveryshortlossesofusable signalisreducedbydigitalsignalcoding. Spatial Diversity Spatial diversity was used on the uplink from the inception of many mobile radio systems, and most readers will be familiarwiththesightofpairsofantennasfiringineachofthethree directionsofthesectorssupportedfromabasestation.Thesesystems normallyuseverticallypolarizedantennas;bothantennasarealsoused fortransmittingandtheavailabilityoftwoantennasreducestheloss, complexity,andcostoftherequiredcombiningarrangements. PolarizationDiversity Thesignalradiatedbyahandsetisstronglypolarizedinthedirectionofitslongaxis.Seenfromthefrontorrearofahandsetuser,thepolarizationwillbedominatedbytheverticalcomponent,but inthelateraldirectionahandsetistypicallyheldatalargeangletothe vertical,betweenthemouthandtheearofthestandingorseateduser, typicallyatleast45°.Becauseofthetypicaldominanceofthevertically polarizedcomponent,thediversitygainobtainedfromapairofantennas withhorizontalandverticalpolarizationisexceededbyonereceiving linear polarization at ±45° from the vertical, so dual slant-polarized antennas are now in almost universal use for polarization diversity systems.(Theseareoftencalleddual-polarorcross-polararrays.) Theuseofpolarizationdiversityiswellestablishedinurbanareas, wherepropagationpathsarecharacterizedbyextensivereflectionsand scattering.4Abasestationemployingpolarizationdiversityantennas
†
Slowimpliesthatthehoppingperiodisatleastonebitlong.
BaseStationAntennasforMobileRadioSystems 41
usesonlyoneantennapersector,andthreeantennascanbemounted closelytogetheronasinglepole.Thisgivesanadvantageincost(one dual-polar antenna replaces two space-diversity antennas), and the lower windload and absence of a head-frame reduce the cost of the supportingstructure.Thereducedvisualprofileofapolarizationdiversitybasestationreducesthedifficultyofobtainingplanningconsent inurbanareas. Furtherusefuldiversitygaincanbeobtainedinsomeenvironments bytheuseofbothspatialandpolarizationdiversity;theuseof4-branch diversitycanbeexpectedtoincrease,especiallyfor3Gandlatersystems. Diversitygaincanalsobeachievedonthedownlink;5itrequiresmore advancedsignalprocessingtechniquesthanreceive-pathdiversity,but theuseofhigh-statemodulationformats—forexampleforHigh-Speed DownlinkPacketAccess(HSDPA)—ismakingitsusenecessary. The future migration of mobile radio systems to higher data rates andthequestforincreasedspectralefficiencyisexpectedtoresultin moretechniquessuchasmultiple-input,multiple-output(MIMO)and space-timeblockcodingaswellasothertechniquesthatfurtherexploit theuseofmultipleantennas. Slant linear polarization has the unusual characteristic that the signaltransmittedbya+45°transmittingantennaisreceivedwithout polarizationlossonanantennawith–45°polarization.Thelabelingof portsonadual-polarbasestationantennashouldthereforeberegarded asbeingpurelyforidentificationunlessithasbeenagreedwhetherthe designationreferstotransmittedorreceivedsignals.Fortunatelythis hasnoconsequenceinoperation. 2.2.1.9 EffectsofImperfectAntennasonDiversityPerformance Toarrive
at appropriate specifications, we need to understand how practical antennaperformancedefectsmayimpactsystemperformance.
RadiationPatternDefects Theimplementationofspatialdiversityusing identicalverticallypolarizedantennascreatesnonewproblems,asthe radiation patterns should match closely in both planes and the gain frombothantennasinanyspecifieddirectionwillbealmostequal.The onlysignificantriskwillbeofsomeelevationpatternmismatchcaused bymanufacturingtolerancesormismatchedmechanicaltilts. A dual-polar antenna creates a much greater challenge in ensuring accurate pattern matching for the two polarizations.A dual-polar base station antenna is an unusual device in that it is a linear array inwhichtheelementsarearrayedinaplaneat45°totheirownprincipalplane.Thishastheconsequencethatsomepropertiesoftheazimuthandelevationpatternsaredependentononeanotherinunusual ways. Figure 2.2 shows the two copolar azimuth radiation patterns of
42 Chapter Two
Gain difference at beam max Tracking error −45
+45
Gain Azimuth angle
Squint between beams
Figure2.2 Trackingerroristhecombinedresultofdifferentialbeamsquint,peakgain difference,andpatternshapedifferences.Somecontributiontothepeakgaindifference mayarisefromadifferenceintheelevationbeamtiltbetweenpolarizations.
adual-polarantenna,onerelatingtoeachpolarizationplane.Itwill beseenthattheseexhibitanumberofdefects: ■
Theelectricalboresightdirectionsofthetwopatternsaredifferent; theanglebetweenthemisreferredtoasthesquintangle.
■
Thetwopatternshaveslightlydifferentgainsatbeammaximum.
■
Theslopesonthetwosidesofeachpatternareslightlydifferent
Thegainsprovidedbythetwopatternsatanyspecifiedazimuthangle aredifferentbyanamountknownasthetrackingerror. The largest practical effect arises from the tracking error; which parametercontributesmostisofinteresttothedesignerbuthaslittle effect on operation. At the uplink frequency, a large tracking error reducestheavailablediversitygain;atthedownlinkfrequency,itcauses poorhandoffbetweensectorsbecauseamobilemakingahandoffdecisionbymeasuringthereceivedC/IratioontheBCCHmaybeassigned achannelontheotherpolarization(notthatoccupiedbytheBCCH), whichislowerinmeanfieldstrengthbytheamountofthetracking errorattheassignedchannelfrequency.Handoffbetweencellsisinitiatedwhenthesignalfromtheservingcellfallsbelowthatofanother cell by a margin set by a hysteresis parameter.This margin may be erodedbythetrackingerror,potentiallyleadingtorepeatedunwanted handoffs(ping-ponging);neartheouteredgeofthecell—theunexpected changeinlevelbetweenchannelscausedbytrackingerrorcouldalso leadtoadroppedcall. Squintarisesfrommechanicalorelectricalasymmetryinoneorboth arrays(±45°)relativetothemechanicalandelectricalazimuthaxisof thearray.Apatchelementfedfromoneedgeisnotaperfectlybalanced
BaseStationAntennasforMobileRadioSystems 43
deviceandsuffersatendencytosquintinitsE-plane.Inaslant-polar array, this is in the 45° diagonal plane because of the orientation of the elements. In a vertical array, it has the rather unexpected effect ofcreatinganazimuthsquintthatbecomeslargerasthebeamtiltis increased—anexampleofthecouplingofparametersbetweenplanes seeninthesearrays.Thesquintisusuallyfrequencydependentandso ismosttroublesomewhenthepatchisusedinwidebandarrays;itcan be rectified by using a balanced feed system for the patch, either by drivingitinantiphasefromoppositeedgesorbyexcitingtheradiating patchfromabalancedstructurebelowit. Inordertorecognizethepracticallimitationsofarraydesign,aswell asreflectingthesignificanceofpotentialcoverageandhandoffdefects, thepermittedtrackingerrorisusuallyspecifiedseparatelybetweenand beyondthenominal–3-dBpointsoftheazimuthpattern.Thereisprobablynoneedfortherelatedcontributoryparameterstobeseparately specified—althoughtheyoftenare. Theelevationradiationpatternsineachpolarizationshouldmatch ascloselyaspossible,andbecauseofthehighrateofchangeofsignal levelwithelevationanglebelowthemainbeam,thebeamtiltsshould remainequalacrosstheoperatingfrequencyband. Cross-PolarDiscrimination Mostdual-polarantennasystemsarerequired tohaveahighdegreeofcross-polardiscrimination(XPD)soeachport receivessignalsonlywiththedesignatedpolarization.Itcanbeshown thattheXPDneededtoprovideeffectivepolarizationdiversityisnot large;thisisfortunatebecauseachievingaconstantpolarizationangle overawiderangeofazimuthbearingsisnoteasy.Adiagonalpatchor crosseddipolehasapolarizationangleof45°intheboresightdirection, but as the angle off boresight increases the polarization angle tends towards90°(vertical)simplybecauseofthegeometricalarrangement. TheXPDintheboresightdirectionistypicallyaround23dB,whereasat theedgesofa120°sectoritislikelytofalltoaround10dB.ThepracticalresultofthisisaprogressivefallindiversitygainasadistantMS movesoffthearrayaxis.Tosomeextent,thisbehaviormatchesthatof apairofspatial-diversityantennaswherethelateralantennaspacing fallswiththecosineoftheanglefromboresight. The incoming signal from an MS generally has elliptical polarizationwithanarbitraryaxialratioandpolarangle.Becauseofthis,the diversitybehaviorofaBSantennadependsontheorthogonalityofthe polarizationresponsesofthetworeceivingarraysratherthanthescalar XPD; the computation of orthogonality requires the measurement of thecomplexradiationpatternsofbotharraysforEVandEH,i.e.,when theantennaisseparatelyilluminatedbyplane-polarizedsignalswith verticalandhorizontalpolarization.
44 Chapter Two Cross-Polar Isolation (Interport Isolation) We noted previously that with aspatial-diversityantennasystem,bothantennasarecommonlyused forthedownlink,withhalfthetransmittersconnectedtoeachantenna throughahybrid/filternetwork.Inthisconfiguration,thereisatleast30 dBisolationbetweenthetransmittingantennassothisfigurewas(andstill is)usedinthespecificationoftherequiredintermodulationperformance of BS transmitters—unfortunately, achieving 30 dB isolation between the two input ports of a dual-polar antenna is not so easy. Dual-polar antennasusuallycomprisearraysofdual-polarpatches,crosseddipoles, orsquaredipolearrays,andsignificantcouplingexistsbetweenthe+45° elementofonetierandthe–45°elementsoftheadjacenttiers—another outcomeofarrayingtheelementsalongtheirdiagonaldirection.Toavoid theradiationofintermodulationproductsgeneratedbythePAstageof thetransmitters,itisnecessarytoexceed30-dBisolation,atleastwhen measuredbetweenthetransmitterendsofanantennafeedsystem. Dual-polarBSantennasprovideanexampleofthefactthatthecrosspolarisolation(XPI)ofadual-polarantennais,ingeneral,notrelated toitsboresightXPD.
2.3 TheDesignofaPractical BaseStationAntenna Engineersunfamiliarwithwidebandradiatingelementdesignshould consultthechaptersofthisbookthatdescribethebasicprinciplesof manyofthedesignsmentionednext. 2.3.1 MethodsofConstruction
Thefirstdecisioninthedesignofabasestationantennaisthetypeof construction to be used for both the radiating elements and the feed system.Bothmaybecreatedusingprintedcircuittechniquesorusing coaxial cables and fabricated radiating elements.The choice between thesemethodsandvarioushybridmethodsislargelyamatterofcost. Theoptimumdesignwilldependstronglyonthecostoflaborandmaterialsinthelocationwheremanufactureandassemblywilltakeplace; wherelaborisinexpensiveamorelabor-intensiveconstructionwillcost less than a form of minimized labor-input construction—for example, anall-printedcircuitdesignthatmayhaverelativelyhighmaterialand processingcosts.Thereisnooptimumdesignforalloccasions.Theseeconomicconsiderationsareoutsidetheusualremitoftheantennadesign engineer,buttheywillstronglyinfluencethechoiceofthemosteconomic engineeringdesignforaparticularcompanyormanufacturingunit. 2.3.1.1 RadiatingElements Therearemanydesignsfortheradiating
elementsofbasestationantennasandthediscussionhereislimitedto
BaseStationAntennasforMobileRadioSystems 45
abriefsummaryofpossibleclassesofdesign.Radiatingelementdesign hasrespondedtotheincreasingdemandforoperationovereverwider bandwidths,butinadditiontomeetingastringentelectricalspecification,asuccessfuldesignmustalsobecapableoflow-cost,high-volume productionwithconsistentelectricalperformance. ThemostcommonlyusedformsofverticallypolarizedradiatingelementsarevariantsofthebasicdesignsshowninFigure2.3.Toprovide adequate bandwidth, patch elements (Figure 2.4a) usually take the formofstackedpatchesinwhichanupperparasiticradiatorisexcited byafedpatchlyingbelowit.6Astackedpatchofthisformatiseasy tointegrateintoaprinted-circuitfeednetwork(corporatefeed),sothe antenna comprises a printed circuit board (PCB) with the parasitic patchesattachedtoit,typicallywithpush-inplasticspacers. Thereflectingplanebehinddipoleelementsmaybeflat,curved,bent, or have up-standing flanges along its longitudinal edges. Optimizing thespacingoftheelementfromthereflector,togetherwiththereflector profile, is an important means by which the azimuth beamwidth maybecontrolledoverextendedfrequencybands.Dipolesarebalanced structuresandmustbedriventhroughsomeformofbalun,themost commonformsforBSantennasbeingthePawseystubanditsprintedcircuitderivativetheRobertsbalun,sometimescalledthehairpinbalun (Figure2.4). Microstripfeednetworkscanbeetchedonalow-losslaminatewith agroundplaneontheoppositeface,butthecostofsuitablematerialsis high,especiallyforlargelow-bandantennas.Alternativeconstructions
Figure2.3 Typicaldesignsforaverticallypolarizedradiatingelement.Thereflectingplanebehindtheelements may be flat, curved, bent, or have up-standing flanges alongitslongitudinaledges.Optimizationofthespacingoftheelementfromthereflector,togetherwiththe reflector profile, is an important means by which the azimuth beamwidth may be controlled over extended frequencybands.
46 Chapter Two
(a)
(b)
Figure2.4 Pawseystub(a)andRoberts(hairpin)balun(b)
makeuseofstampedorlaser-cutsheetmetalconductorsorconductors etched on thin low-cost material with the feed system supported on spacerssotheeffectivedielectricisair(Figure2.5).Asafurthervariation,someconstructionsusealayerofrigidorsemi-rigidfoammaterial tosupportthetransmissionlineplaneaboveground.
(a)
(b)
(c)
(d)
Figure 2.5 Microstrip line configurations: (a) line etched on the same substrateasthegroundplane,(b)fabricatedair-spacedline,(c)conductor etchedonthinsuspendedlow-costlaminate,and(d)linelayerseparated fromgroundbylow-lossfoam
Dual-polarantennasgenerallyuseoneofthreeformatsofradiating elementshowninFigure2.6,eachderivedfromthosejustdescribed. Simple patch elements generally have insufficient bandwidth, althoughapatchwithairbelowitandsufficientlyelevatedoverground mayapproachwhatisneededforsomeapplications.Thebandwidthcan beincreasedbystackingparasiticallyexcitedpatchesabovethedriven patchorbydrivingasinglepatchviaacapacitivelycoupledprobe.7 Astackedpatchelementcomprisesalowerdrivenpatch,oftenintegratedwithamicrostripfeednetwork,withoneormoreparasiticpatches suspendedinaparallelplane.8Itmaybedesignedusingeithersquare orcirculardrivenandparasiticpatches,whichcansometimesbemixed (forexample,aroundfedpatchwithasquareparasite).Inthesimplest configuration,thefedpatchisexcitedintwopositionsmutuallyatright angles(Figure2.6a),butoveralargebandwidththetendencyofthis configuration to squint can cause problems for the whole array.This tendencyiscorrectedifforeachpolarizationthelowerpatchisfedat twooppositepointswithbalancedantiphasevoltages,buttheconfigurationistopologicallydifficulttorealizeinmicrostripformatbecausethe feedlinescrossoneanother.Placingthepatchinanenvironmentthat isitselfelectricallysymmetricalimprovesmattersifthesurroundings supportthewantedbalancedmodebutnottheunwantedunbalanced
BaseStationAntennasforMobileRadioSystems 47
(a)
(c) (b) Figure2.6 Dual-polarradiatingelements:(a)patch,
(b)crosseddipole,and(c)squaredipolearray
mode.Aparasiticpatchoraringradiatorcanbeexcitedbyastructure similartoacrosseddipole,creatingahybridsystem.9,10 The natural azimuth beamwidth of a dual-polar stacked patch is around 72°, but it can be reduced to 60° by shaping the reflector in whichitisplaced,forexample,bybendingupitsedges.Thebeamwidth canalsobeincreasedbyplacingdielectricundertheparasite,reducing thedistancebetweenitsradiatingedges,butthistendstoreduceits impedancebandwidth. Crossed-dipoleelements(Figure2.6b)areusedinmanydesigns;when spacedaquarterwavelengthaboveareflector,theyprovideanazimuth beamwidth of around 90°.To provide stable impedance and pattern characteristicsoverwidebandwidths,theindividualelementsmaytake forms approximating bowtie dipoles, pairs of corner-driven squares, or pairs of rings.The radiating elements may be constructed using printedcircuits,metalcastings,orelectroplatedplasticinjectionmoldings.CrosseddipolesareusuallymountedonPawseystuborRoberts baluns,which,aswellassupportingthedipolesl /4abovethereflectingplane,providebothahighbalanceratioandeffectiveimpedance compensation over the necessary extended bandwidths. Parameters availableforoptimizationincludethelength,width,andflareangleof thedipolesandtheirdistanceabovethereflector.Insomedesigns,the limbsofthedipolesarebentintoaV-shape,slopingbackwardtoward the ground plane (Figure 2.7). Further parameters are the Z0 of the balancedandunbalancedtransmissionlinesofthebalun.Theeffective shuntcapacitancebetweentheinnerdipoleterminalsisanimportant impedanceoptimizationparameterbecauseitinteractswiththeshunt inductanceoftheparallel-linestubintrinsicinthebalun.
48 Chapter Two
Figure 2.7 Crossed-dipole element pressed and bentfromsheetmetalwithanair-spacedmicrostrip feed(PhotocourtesyofAndrewCorporation)
ARobertsbalunprovidesadditionaloptimizationparameterscomparedwithaPawseystubbecausevaryingtheZ0ofthemicrostripline atanypointiseasy,andtheopen-circuitl /4lineontheunfedsideof thebalunprovidesadditionalimpedancecompensation.Itispossible toarrangeforthepointatwhichthefeedcrossesfromonebalunlegto theothertobeatdifferentheightsabovethegroundplaneforthetwo membersofthecrossedpairandsomeverysimpleandelegantdesigns havebeencreatedinthisway.11 Asquaredipolearray,asshowninFigure2.6c,providesafurtheroption foradualslant-polararraywith65°azimuthbeamwidth.Theradiating currentsinthedipolesontheoppositesidesofthesquareareinphase,one pairproviding+45°andtheother–45°polarization.Theindividualdipoles canbedesignedusinganyofthetechniquesdescribedpreviously. Log-periodicdipoleantennas(LPDAs)aresometimesusedasarray elements.Thesecanbeplacedwithslightlywiderinterelementspacing than dipoles because the radiation pattern of individual LPDAs has lowsidelobesneartheverticalaxisofthearray—thedirectioninwhich gratinglobesfirstappearastheelementspacingisincreased.Inalong array(say8lormore),thereisnosignificantgainadvantagerelative totheuseofotherelementforms,althoughsomeexampleshavebeen producedthathaveveryhighF/bratios.AlthoughindividualLPDAs mayhavewidebandwidths,theyarenoteasytouseeffectivelyinlong arraysforapplicationsrequiringabandwidthsuchasmightbeneeded tocoverbothlow-bandandhigh-bandfrequencies.Dual-polarLPDAs arebulky,alltheirdimensionsbeingasubstantialfractionofawavelengthatthelowestoperatingfrequency,andtheadventofpolarization diversityhasreducedtheuseofthiselementform.
BaseStationAntennasforMobileRadioSystems 49
2.3.1.2 General Aspects of Radiating Element Design The achievement of a well-controlled elevation pattern, stable with frequency, depends onthequalityoftheimpedancematchofindividualradiatingelements. IndividualtiersshouldhaveaVSWRlessthanabout1.2:1acrossthe bandofinterest.Thisisastringentrequirement,butunlessitismet, errorsinthenominalradiatingcurrentsineachtier,createdbytheeffect ofmismatchatthepowerdividersinthefeednetwork,willseriously prejudice elevation pattern performance.The reason for this is illustratedinFigure2.8.Iftwomismatchedloadsareconnectedtoasimple branchedpowerdivider,thensolongasthelengthsoftransmissionline connectingthejunctiontotheloadsareequal,theimpedancespresented attheoutputportsofthedividerwillbeequal(thoughmismatched)and equalcurrentswillflowintheloads.Assumingthedividerhasbeenwell designed,itsinputVSWRwilltendtoaboutthesamevalueasthatof theelements.However,iftheloadsareconnectedbyunequallengths ofline,thentheimpedanceplotsofthetwoelementswillhaverotated roundthecenteroftheSmithChartbydifferentamounts,depending ontheelectricaldistancesbetweentheloadsandthejunction.Atthe junction,theunequalimpedanceswillcauseunequalcurrentstoflow inthetwooutputbranches;thesewilldifferfromthedesignvaluesin bothamplitudeandphase.Asthefrequencychanges,theratioofthe complexloadcurrentswillchange,soiftheloadmismatchislargethe powerdivisionratiowillbestronglydependentonfrequency.Thesame argumentsapplytodividerswithanynumberofbranches.
z1
z2 z´ = z˝ z1 = z2 ≠ Z0
z˝
z´ L1
L1
z´
z˝
z2 = z1 ≠ Z0
Input
z1
z2 z1 = z2 ≠ Z0
z´ ≠ z˝ z˝
z´ L1 z´
L2 > L1
z2 = z1 ≠ Z0
z˝ Input
Figure2.8 Illustrationofthereasonfortheerrorinpowerdivisionthat occursiftheloadimpedanceispoorlymatched
50 Chapter Two
Avoidingtheseeffectsrequirescloseimpedancematchingofindividualtiersofelementsoverthewholefrequencyband.Foralineararray, the azimuth beamwidth and its stability with frequency, the control ofsquint,andazimuthtrackingbehaviorarealldirectlydetermined bythedesignoftheradiatingelements.Theseareallmajorfactorsin determiningtheirdesign,andtheyareoftenoverlookedinproposals fornewbroadbandelementconfigurationsbyengineerswhohavenot encounteredthepracticalaspectsofBSarraydesign. Cross-polar discrimination (XPD) is the ratio of the output of an antennatoanincomingsignalwithitsnominalpolarizationrelative toitsresponsetotheorthogonalpolarization.Inthecaseof±45°slant linearpolarization,wecaneasilyseethatforasimplearraysuchasjust described,thereisanintrinsicprobleminmaintainingahighXPDover awideazimuthsector.Ifweconsideranarrayofdipolesorientedat45° tothehorizontalandplacedinfrontofaverticalreflectingplane,then,in theboresightdirection,thepolarizationwillconformwiththerequired 45°plane(althoughtheasymmetrycausedbyanarrowreflectorwill limittheXPD).However,asanobservermovesawayfromthearray axis, the angle between the plane of polarization and the horizontal graduallyincreasesuntilat90°fromboresighttheplaneofpolarization isvertical.Unlesswedesignsomemoreelaborateradiatingstructure, theXPDforsignalswith±45°linearpolarizationwillalwaysfallclose to0dBat±90°.ApracticalantennawillhaveanXPDexceeding20dB onboresight,fallingtoaround10dBatthe–3dBpointsoftheazimuth pattern.Becausetheincomingpolarizationoftherealsignalisanarbitraryellipsethatchangesinaxialratioandpolarizationangleasthe sourcemobilemovesthroughtheenvironment,theprecisepolarization ofthereceivingantennainaparticulardirectionisnotreallyimportant; whatmattersistheorthogonalityofthepolarizationresponsesofthe twosetsofelements.Orthogonalitymaybecomputedfromthecomplex radiationpatternsofthetwoarraysasfollows12:
P = Pmax
E1+45 ϒ E 2+45 ϒ + E1−45 ϒ E 2−45 ϒ E1+45 ϒ E1*+45 ϒ + E1−45 ϒ E1*−45 ϒ
E 2+45 ϒ E 2*+45 ϒ + E 2−45 ϒ E 2*−45ϒ
where E1 +45° is the +45° field component from Port 1; E2 +45° is the +45°fieldcomponentfromPort2;E1 −45°isthe−45°fieldcomponent ∗ fromPort1;E2−45°isthe−45°fieldcomponentfromPort2;andE is thecomplexconjugateofE. Manyarraysaredesignedtooperateover824–960MHz(atotalbandwidthof15.3%)or1710–2170MHz(24%),andoverthesebandsthey mustmaintaincloselyconstantazimuthpatterns,impedance,andcrosspolarisolation.
BaseStationAntennasforMobileRadioSystems 51
Antennaconstructionsemployingcoaxialcablesforthefeednetwork generallyusecableswithsolder-floodedcopperwirebraid.Cablesofthis typeareeasytobend;theystayinplaceonceformed;andtheyhave muchlowerPIMthancableswithconventionalwirebraid.Somecablefed array designs make use of printed-circuit power dividers; others areall-cabledesigns,usingcablesofdifferentcharacteristicimpedance, sometimesconnectedinparallel,toformimpedancetransformingsections.Theelectricaldesignoffeednetworksisdiscussedbelow. Ingeneral,theconstructionmethodsfortheradiatingelementsand the feed system should be chosen together; particular care must be takenwiththeinterfacebetweenthemintermsofmechanicalintegrity, impedancematching,thegenerationofPIMs,andcost.Thisinterfaceis oftenbetweencopperorcopperalloys(inthefeednetwork)andaluminumalloy(fortheradiatingelements).Adirectjointbetweenthesehas ahighgalvaniccontactpotentialandwillrapidlycorrodeinawarm, humidatmosphere.Theavailabilityofreliablelow-costtinplatingon aluminumhasprovidedonepopularsolution,allowingcoaxialcablesto besoft-soldereddirectlytoaluminumalloydipolesorpatches. For azimuth beamwidths narrower than about 55°, a tier is often constructedusingtworadiators.Astheirlateralspacingisincreasedto reducethebeamwidth,thelevelofazimuthsidelobesrises.Theachievementoflowsidelobeswitha30°beamwidthisdifficultandsolutions existinwhichthreeelementsareused,withtheirlateralspacingand relativecurrentschosentoprovideacleanazimuthbeam. 2.3.2 ArrayDesign
Havingchosenthetypeofradiatingelementsandfeedlinestobeused, thenexttaskisthedesignofthearray. 2.3.3 DimensioningtheArray
ThegainofaBSantennaistypicallymanytimeslargerthancanbe providedbyasingleradiatingelement,anditisnecessarytoarraya numberofelementstoachievetherequiredgainandpatterncharacteristics.Ifthearraywereuniformandlossless,itsdirectivitywould depend only on the azimuth pattern of the elements, the electrical lengthofthearray,andthenumberofelementsusedtofillit.Inorder to minimize cost, we wish to use the minimum necessary number of elements,sowemustunderstandhowtheverticalspacingbetweenthe elementsaffectsarrayperformance.Notethat,atthisstage,werefer todirectivitybecausewehavenotyetinvestigatedtheinevitablelosses withinthearraythatwillreduceitsgain. Atypicalrelationshipbetweenarraydirectivityandelementspacing isshowninFigure2.9,whichrelatestoauniformbroadsidearrayof
52 Chapter Two
d/k n 4 5 6
1⁄ 4
3⁄ 8
1⁄
2.45 2.94 3.44
3.39 4.05 4.87
4.29 5.30 6.29
5⁄
2
8
5.21 6.45 7.81
3⁄
4
6.05 7.55 9.15
7⁄ 8
1
6.84 8.59 10.37
6.95 8.86 10.77
14 13 12 11
n = 16
Normalized Ds, dB
10 9
12
8
8
7 6
6
5
4
4
3
3 2
2
1 0
0
0.1
0.2
0.3
0.4
0.5
0.6 0.7 d/λ
0.8
0.9
1.0
1.1
1.2
Figure2.9 Directivityofabroadsidearrayofshortdipolesasafunctionofelementspacing,normalizedtothatofasingleelement
shortdipoles.Directivityincreasestoamaximumwhenthespacingis aroundonewavelength.Ataspacingofonewavelengththesignalsfrom eachelementaddinphaseinthreedirections:thebroadsidedirection, wherewewantthemainbeam,andalsoalongthearrayaxisinboth directions.As the spacing exceeds one wavelength, the directions of thesegratinglobesofthearrayfactormoveawayfromtheaxis,causing thearraysidelobeleveltoincreaseataratedeterminedbytheelevationpatternofasingletier.Themainbeamcontinuestoshrinkwith increasingspacingbutprogressivelymoreenergyislostintothegrating lobes.Tomaximizethearraydirectivityoveraspecifiedbandwidth,we couldchooseaspacingthatprovidesequaldirectivityattheupper-and lower-bandedges,butifweaddelectricaltilttomovethemainbeam
BaseStationAntennasforMobileRadioSystems 53
downward,theuppergratinglobewillgrowinamplitudeandtheloss ofdirectivitycausedbyoverspacingwillincrease.Wemust,therefore, choosetheelementspacingaftercomputingthedirectivity/frequency relationshipwiththemaximumrequiredelectricaltiltapplied.Therate atwhichthegratinglobesgrowasthespacingexceeds1ldependson theelevationpatternoftheindividualelements—thosewithsignificant radiationclosetothearrayaxismustbespacedcloserthanelements withlowradiationinthisdirection. Tooptimizeboththetechnicalandtheeconomicparametersofarray design,establishingagainbudgetishelpful(Table2.2).Beginwithan estimateofthenumberofelementsneeded(n)andrepeattheprocess foradifferentnumberifthecalculatednetgainisunsatisfactory. TABLE2.2 GainBudget
Reference (seebelow) a b c d e f g h i j k
Parameter
dB
Directivityofauniformarrayofnomnidirectionalelements atthechosenspacing Reductionindirectivityatbandedges Beamshapingloss Allowanceforimperfectcurrentdistribution Max/meanpowerratiooftheazimuthpattern Directivityofthearray Lossinradiatingelements Attenuationinfeednetwork Attenuationofcablefromconnectortoprimarypower divider Radomeloss Netgain
a. Thisvalueisobtainedbyintegrationoftheelevationpatternofa collinear array of the chosen radiating elements. For a vertically polarizedarrayanapproximationmaybemadebyusingthepatternsforanarrayofshortverticaldipoles,butforslant-polarized arraysthisapproximationmayleadtounderestimationofthegratinglobesandaconsequentoverestimationofthedirectivityofthe realarray.Theelevationpatternmaximumofindividualtiersmust lieinthehorizontalplane.Althoughthebeamtiltofthearraywill bedeterminedbythearrayfactor,iftheindividualtiersfireslightly upward,themaximumtotaldirectivitywillbereduced,especially forarrayswithalargeelectricaldowntilt.Aslightdownwardtiltis moreacceptablebecausetheelementpatternandthearrayfactor arelikelytobetiltedinthesamedirection.
54 Chapter Two
b. Becausetheelectricallengthofthearrayincreaseswithfrequency,it isoftenassumedthattheelevation-planedirectivityoftheantenna willalsoincreasewithfrequency.However,thedirectivity/frequency relationshipisdeterminedbythechosenspacing.Theusualspecificationrequirementistoachievethelargestpossibleminimumdirectivityacrosstherequiredfrequencyband.Thisleadstothechoiceof thelargestacceptableinter-tierspacingconsistentwithacceptable gratinglobes,sothedirectivitymayfallwithfrequencyattheupper bandedge.Errorsinelementcurrentswilltendtobehigheratband edgesthanatbandcenter,andtheattenuationofthefeedsystem willincreasewithrisingfrequency.Toensurethatalltheseeffects areunderstoodandtakenintoaccountinthearraydesign,thegain budgetshouldbeestablishedfortheband-edgefrequenciesaswell asforthecenterfrequency(seealsoiteme). c. A typical array specification will require the first null below the horizontobefilledtoatleast−18dBandthetwosidelobesabove themainbeamsuppressedtoatleast−20dBrelativetothemain beam.Thiswillresultinabeamshapinglossofabout0.3dB. d. Thisfactoraccountsforthedifferencebetweentheintendedradiatingcurrents,usedinthecomputationofdirectivity,andthoserealizedinpractice.Thisdifferencemaybeassmallas0.2dB,butis oftenlarger,especiallyatthebandedges. e. The max / mean ratio of the azimuth pattern can most easily be understoodbyconsideringanidealizedpatterninwhichtheantenna uniformlyilluminatesa90°azimuthquadrant.Comparedwiththe powernecessarytoprovideagivenfieldstrengthoveracomplete 360°,thequadrantantennawillrequireonlyonequarteroftheinput power.Theratiooftheareaofthewholecircletothatofthequadrant patternis4.Inageneralcase,ifweplottheazimuthpatterninterms ofrelativefield,thepowerineachdirectionisproportionaltotheE2 (i.e.,theradiussquared)andtheareainsidethecurveistheintegral ofr2over360°.Foranyazimuthpatternplottedonarelativefield scale,thenumericalvalueofthemax /meanpowerratioistheratio oftheareaoftheoutercircle(E=1)tothatoftheazimuthpattern plottedwithinit.Thisrelationshipistrueforanynumberoftiers inthearray,andwecanobtainitstotaldirectivitybymultiplying the (numerical) directivities in the azimuth and elevation planes, calculatedseparately.Anytendencyfortheazimuthbeamwidthtovary withfrequencywillcauseachangeinmax /meanratiothatwillinturn impactthegain/frequencybehaviorofthearray.Thehighestarray gainwillbeobtainediftheazimuthbeamwidthiskeptclosetothe specifiedminimumvalueatallfrequenciesintheoperatingband.
BaseStationAntennasforMobileRadioSystems 55
f. Thisnetdirectivityofthearrayistheupperlimittothegainthatwe canachieve,eveniftheantennawerelossless(f=a–b–c–d+e). g. Losses are inevitable, and will tend to be higher for elements and feedstructuresetchedonlow-costPCBsubstrates,whereasfabricated metaldesignsgenerallyhavelowlosses.Unfortunatelytheestimation of losses by many simulation programs is not accurate and is oftenoptimistic.Elementefficiencycanbemeasuredbycomparingthe inputpowerwiththeintegraloftheradiatedpowermeasuredovera sphereinananechoicchamber.Aswehaveseen,theinputVSWRof individualelementsshouldbekeptbelow1.2:1forotherreasons;at thislevelthereflectionlossisonly1%(0.04dB)andcanbeignored. h. Foranantennawithlength8lormore,theattenuationofthefeed systemisconsiderable,especiallyinthehighband,andtheneedto controlitdeterminesthediametersandtypesofcoaxialcables,and thedimensionsandmaterialsofmicrostriplines.Lossesalsocause heatingofthefeedsystemoftransmittingantennasandlimittheir maximumpowerrating,soinamobilebasestationantennaboth attenuationandheatingeffectsmustbeconsidered.Requirements for elevation pattern shaping and the need to control currents to avoidexcessshapinglossmeanthatthefeedsystemmusthavepredictableandrepeatablephasecharacteristics.Becausefeednetworks areusuallydeployedinaverylimitedspace,cablesareformedon assemblywithbendradiioftenclosetotheirpermittedminimum limit.Despitethistheymustaccuratelymaintaintheirphaselengths; forthisreason,cableswithsolder-dippedbraidhavebecomepopular becausetheyarereasonablyflexibleandretaintheirpositionand electricalpropertiesafterbending.Anarraydesignwithexcessive internallosswillbesuboptimalinseveralways:foragivengain,it willbelongerthanitneedstobe;itwillhaveanarrowerelevation beamwidththanwouldnormallybeassociatedwithanantennaof thespecifiedgain;anditwillhavealargervisualprofile,ahigher windload,andhighercost. i. Tower-mountedantennascanbefittedwithanexternalconnectorat therearmidpointoftheantenna,sotheinternalcablesextendonly fromthemidpointtotheupperandlowerendsofthearray.Antennasto bepole-mountedareusuallyfittedwithbottom-mountedexternalconnectors,sointernalcablesmustextendfromthebottomoftheantenna tothemidpointandfromtheretotheendsofthearray.Thisarrangementproduceshigherinternallosses,especiallyonhighband. j. A radome causes both reflection and absorption of energy radiated bytheantennaelements.Theextentoftheseeffectsdependsonthe dielectricconstant,dielectriclossfactor,andthicknessoftheradome.
56 Chapter Two
Materials used successfully have included glass-reinforced plastic (grp/ fiberglass), polystyrene, ABS, ASA, and UPVC. For outdoor installation, the material must be stabilized against ultraviolet deterioration.Inthecaseofgrp,theresinusedmustbechosenwith care.Atypicalresinabsorbsasufficientamountofwatertochange itspermittivitybetweenadried-outconditionunderprolongedhot sunshineandequilibriumwatercontentinwetweather.Inanexperimentbytheauthor,apultrudedpolyesterresingrpradome1.2-m longreleasedawineglass-fullofwater(125g)afterbeingdriedout followinga24-hourperiodofexposuretowateronitsexternalsurfaces.Theresultofwaterabsorptionwasasubstantialincreasein theinputVSWRoftheantenna.
There are two contributions to the loss caused by a radome. Loss causedbywavepropagationthroughthethicknessoftheradomeis inevitable,butcloseplacementoftheradometotheradiatingelementsresultsinfurtherlosscausedbystored-energyfields,localto theelement,intersectingtheradome.
k. Thenetgainisequaltothedirectivityofthearray(f)minusthesum ofalllosses(g+h+i+j). 2.3.3.1 ElevationPatternShaping Becausetheuserspecificationrelates onlytotheamplitudeandnotthephaseofthesignalradiatedatdifferentelevationangles,thereisnouniquesetofcomplexcurrentsthat willdeliverthespecifiedperformance.Theantennadesignercanchoose toconstrainanumberofvariablesinordertoarriveatasolutionthat meetstherequirementsofparticularconstructionmethods.Ageneral solutionwillrequireboththeamplitudesandphasesoftheradiating currentstobedifferentforeachelementinthearray.Amongothers, thereareclassesofsolutionforwhichtheelementcurrentsareequal inmagnitudeandvaryonlyinphase,solutionsinwhichpairsofadjacentelementshaveequalcomplexcurrents,andsolutionsinwhichthe requiredpowerdividershavealimitednumberofsimpleratios,suitable forconstructionfromcoaxialcables. 3.3.3.2 MutualImpedance Acurrentflowinginoneelementofanarray induces currents in other elements, particularly in the adjacent elements.Thefeedimpedanceofeachelementisafunctionofthecurrent thatitcarriesitselfandalsoofthecurrentsinitsneighbors.Totakea typicalexampleofthethirdelementinalongarray:
Z3 =
I I1 I I Z13 + 2 Z23 + Z33 + 4 Z43 + 5 Z53 + ... I3 I3 I3 I3
BaseStationAntennasforMobileRadioSystems 57
Ifthecurrentsinelements2and4aremuchlargerinmagnitudethan thatinelement3,theinputimpedanceofelement3maybesubstantiallychangedevenifthemutualimpedanceisitselfrelativelysmall. Ifweuseordinarybranchedpowerdividers,thechangeinZ3andthe correspondingbutdifferentchangesinotherelementinputimpedances willresultinanuncertaintyinthevalueofI3relativetootherelement currents.Worse,asthefrequencychangesthemutualimpedanceswill change,particularlyinphase,causingtheerrorintherelativemagnitudeandphaseofI3tobefrequencydependent.Otherarrayexcitations tobeavoidedincludethosewithlargeamplitudetapersacrossthearray, causingexcessivebroadeningofthemainbeamwithconsequentialloss indirectivity.Wemustalsoavoidanyexcitationfunctionforwhichthe specifiedpatterncharacteristicsareverysensitivetotheachievement ofexactcurrentvalues. Awiderangeofstrategiesforpatternsynthesisaredescribedinthe literature,thecitedreferences13,14beingonlyasmallsample.Itispossibletowritecomputerprogramsusingiterativeoptimizationroutines andgeneticalgorithms,themainproblemwiththeirusebeingtospecify theconstraintsdescribedaboveandtoappropriatelyweightthedifferentfeaturesofthesolution.SolutionscanbetestedbyapplyingaMonte Carlo analysis; after, say, 1,000 trials using different sets of random errors,itispossibletolistthenumberoftrialsthatfailedbecauseof inadequatedirectivity,poorsidelobesuppression,inadequatenullfill, oranyotherselectedparameter.Theuseofthismethodallowsarobust solutiontobeselectedfromanumberofpossiblecandidatesanddevelopsagoodunderstandingoftheneedtocontrolerrorsintheexcitation ofapracticalarray. Formanyyearstheauthorhasusedasimplecomputer-basedsynthesistechniquedevelopedbyhisformercolleagueJunXiang,whichmakes useofthesuperpositionofpatternscreatedbysuperposedexcitation functions.Inthecaseofabasestationarray,weneedanasymmetric elevationpatternwithadjustmentsmadeonlytothefirstlowernull andtypicallythreeuppersidelobes,soauniformdistributionservesus wellasastartingpoint. Forthepurposeofpatternsynthesis,weareinterestedintheregion ofthepatternwithinabout20°ofthebroadsidedirection,soforelementswithlimiteddirectivityintheelevationplane(suchasdipolesor patches),wecanconcentrateonthearrayfactorratherthanworking withthecompleteelevationpattern. Ifweexcitethearrayuniformly,theresultingarrayfactorisafunction oftheformE=sin(nx)/nsin(x),asshowninFigure2.10.Ifallcurrents arecophased,themaximumofthisfunctionwillbeinthebroadside direction,butwecanapplyalinearphaseshiftacrosstheapertureafter thesynthesisiscompletetomovethemaximumtothedesiredangle.
58 Chapter Two
3-dB beamwidth Relative power (dB)
13.6dB
Up
0°
Down
Angle above/below horizontal Figure2.10 Formoftheradiationpatternofauniformlyexcitedbroadsidearray; thehorizontalscaledependsontheelectricallengthofthearray.
Close-insidelobesarespacedaboutonebeamwidthapart,butthespacingincreasesforlobesfartherfromthebroadsidedirection. Foreaseofunderstanding,thephasereferencepointinthefollowing discussionistakentobethecenterofthearray. 1. Webeginwithauniform,cophasedexcitationofthearray,producing apatternoftheformshowninFigure2.10. 2. Inordertofillthefirstnullbelowthehorizon,weestablishasecond excitationofthearray,inphasequadraturewiththefirst,withuniformamplitudebutwithalinearphaseshiftappliedsuchthatthe maximum is shifted to the angle of the null we wish to fill.The amplitudeofthissecondexcitationisdeterminedbytheextentto whichthenullistobefilled. 3. Weapplyathirdexcitationwithitsmaximumdirectedtotheangle ofthefirstuppersidelobe,inphasewiththeprimaryexcitationand withamagnitudeequaltotherequiredreductioninthesidelobe(the firstsidelobeoftheprimaryexcitationisinantiphasetothemain lobe,soapplyinganin-phaseexcitationwillreduceitsmagnitude). 4. Inthesameway,weapplyafourthexcitationwithitsbeammaximum directedtotheangleoftheseconduppersidelobe,butinantiphase withtheprimaryexcitation(thesecondsidelobebeinginphasewith themainlobeoftheprimaryexcitation). 5. Someiterationmaybeneededbecausethesidelobesofthesubsidiary excitationswillcreatesmallerrorsinthelevelsofthenullandsuppressedsidelobes.Ifwewishtofillmorenullsorsuppressmoreside lobes,wecanapplyfurtherexcitations,butasadditionalshapingis applied,thedirectivityofthearraymaybeexpectedtofall.
BaseStationAntennasforMobileRadioSystems 59
Attheendofthisprocedurethecurrentsineachelementaregiven bythevectorsumofthecurrentsassociatedwitheachexcitationthat wehaveapplied.Toallowforinaccuracyinthepracticalachievement ofthedesiredcurrent,amarginshouldbeleftbetweenthecalculated values of nulls and sidelobes and those specified—a margin of 3 dB shouldgenerallybeadequate.Afterasuitablearrayexcitationhasbeen produced,itmaybemodifiedtosuitvariouspracticalconstraints.Itis oftenconvenienttofeedadjacentelementswithcurrentsofthesame amplitude,soforeveryelementpairthemeanofthecalculatedcurrents canbeappliedtoboth.Aftercheckingthecomputedpatternfollowing anyadjustments,therequiredelectricaltiltcanbearrangedbyapplying alinearphaseshiftacrossthearray. Toprovideafixedelectricalbeamtiltasafunctionoffrequency,we mustdelaythecurrentsinlowerelementsbyafixedtimeratherthan afixedphase,asourobjectiveistotiltthephase-frontoftheradiated signalawayfromthenormaltothearray;thephaseangleassociated withthisdelayisdirectlyproportionaltofrequency.Thischaracteristic is provided by different lengths of transmission line rather than by fixedphaseshifters.Ifwecomputethecablelengthdifferencesrequired atonefrequency(typicallywedothisatmidband),theelectricalbeamtiltwill,inprinciple,remainconstantoverthewholeband.Errorsin theelementcurrentscanberegardedasrandominphaseandwitha circularerrorprobable(CEP)—themedianlengthoftheerrorvector of,say,0.5dB;theCEPcanbeincreasedandaMonteCarloanalysis rerununtilasignificantnumberofspecificationinfringementsoccur. Thisexercisewillindicatetheprecisionthatmustbeachievedinthe practicalcontroloftheelementcurrents.Asanexampleofwhatcanbe achieved,Figure2.11showsthesuperimposedmeasuredelevationpatternsofabatchoften12-elementantennas.Thedegreeofconsistency oftheresultisverygoodabove−25dB. Awidevarietyofcomputer-basedtoolsisusedfornetworkcoverage planning,andunfortunatelymanyofthesehaveadoptedinconsistent conventionsregardingtheformatoftheinputradiationpatterndata. Most antenna manufacturers provide radiation pattern data files on theirwebsitesandmakethemfreelyavailableinaselectionofthemore commoncommercialprogramformats. 2.3.3.3 InputImpedance TheusualspecificationfortheVSWRatthe
inputofabasestationantennais1.4:1or1.5:1.Aswellasregardingthe antennaasasingleunitwithaninputVSWRspecification,weneedto consideritasacomplexassemblyofradiatingelements,powerdividers, andinterconnectingtransmissionlines,andmustconsiderthecontrol ofimpedancematchingateachstagebetweentheradiatingelements and the array input.When designing the intermediate components,
60 Chapter Two 0 Beamtilt (2°)
Relative power (dB)
−5
Filled null
Suppressed sidelobes
−10 −15 −20 −25 −30 −35 −40 90° (up)
60°
30°
0°
−30°
−60°
−90° (down)
Elevation patterns measured on a batch of 12λ antennas Figure 2.11 Superposition of ten elevation patterns measured at 1800 MHz (Courtesy
JaybeamWireless)
wewillthenhaveaclearunderstandingoftheimpedancespecification tobemetbyeachone.Becausetheantennawilloperateoverawide frequencyband,itislikelythattheindividualreflectionsfromseparate components will add together unfavorably at some frequencies.This is particularly likely for an antenna with 0° electrical tilt, especially ifminimalpatternshapinghasbeenapplied,becauseinthiscasethe reflectionsfromvariouscomponentsofthearray,liketheradiatingcurrents,willbeclosetobeinginphase. An8-elementarrayistypicallyconstructedasshowninFigure2.12, whereeachelementisconnectedthroughthreelevelsofpowerdivider. Here,theelementmayhaveamaximumVSWRof1.2:1,whereasthat ofeachofthethreepowerdividersshouldbenotgreaterthanabout 1.06:1.Consideringthelargebandwidthsinvolved,thesearestringent targets,buttheirachievementwillhelpcontrolelevationpatternand gainacrosstheoperatingfrequencyband(s). 2.3.3.4 Cross-Polar Isolation For the reasons explained in 2.2.1.8,
the cross-polar isolation for a complete dual-polar array is specified
Tertiary
Tertiary
Tertiary
Secondary
Tertiary Secondary
Primary Input Figure2.12 Typicalfeedsystemforan8-elementarray
BaseStationAntennasforMobileRadioSystems 61
as>30dB.Thetargetisolationforanindividualtiershouldbeatleast this,orperhaps>33dB,butevenifperfectisolationisobtainedfora singletier,themutualimpedancesbetweentierswillgenerallyreduce thistoaround26dB,especiallyforsmallvaluesofbeamtilt.Therequired isolationcanberestoredbyintroducingsomeintentionalcompensating coupling.WhenconsideringtheXPIofasingleelementpair,couplingmay occurbecauseoflackofsymmetryintheelementorinitsenvironment inthearray.Adipolesquareconfiguration(Figure2.6)issymmetricalif theindividualdipolesaredriventhrougheffectivebaluns,butacrossed dipolealwayshassomedegreeofasymmetrycausedbythefeedmethodat itscenter.Asquareorcircularpatchorstackedpatchisasymmetricunless twobalancedfeedpointsareprovidedineachpolarizationplane. Figure2.13showstwomechanismsthatcausecross-polarcoupling inasimplelineararrayofcrossed±45°elements.Element2R(solid) isisolatedfromelement2L,butitcouplestoelements1Land3L.The currentsinducedinthereflectorsurfaceflowinadiagonaldirection parallel with the elements, but at the edge of the reflector currents induced by both ±45° elements can only flow parallel with the edge, causingcouplingbetween2Rand2L. Themechanismsofelement-paircoupling,couplingviaedgecurrents, andintertiercouplingallhavedifferentpathlengthsassociatedwith thecoupledenergy,sotheycannotallbecompensatedinthesameway. Couplingbetweentheelementpairmaybestbecompensatedbysome correspondingasymmetryonorneartheelements;couplingcausedby currents along the reflector edges may require compensation by perturbingthefieldsattheedgesofthereflector,whereasintertiercoupling mayrequirecompensatingcouplingbetweenselectedadjacenttiers.An efforttooffsettheseseparatecouplingmechanismsbyasinglemeans ofcompensationislikelytoleadtoasolutionthatworkswelloverpart ofthebandbutfailselsewhere.Thebesttacticistoseparatetheeffects, usingsimulationandexperiment,andcompensateeachmechanismat source.
Reflector edge
Elements
#1 Left
#2 Right, #2 Left
#3 Left
Figure2.13 Intrinsiccross-polarcouplingmechanism
62 Chapter Two
Withnostepstakentoenhancetheisolation,atypicalachievedresult isoftheorderof26dBforanantennawitha2°beamtiltandtypical beam-shaping,butislowerforanantennawith0°tilt.Theachievement ofanisolationof30dBormoreusuallyrequiresadditionalpolarization compensation. Thesimplestwaytominimizeboththeunwantedcouplingbetween alternatecross-polarizedelementsandtheasymmetryofthearrayenvironmentistoplaceeachradiatingelementinthecenterofacavity.15 Thiscavityhasasidelengthofalittlelessthanawavelength,determined by the interelement spacing chosen as described in 2.3.3. Its depthmustbesufficienttocreatetherequiredenvironmentalsymmetry,butmayalsobedeterminedbythetargetfront-to-backratio(F/b), deepercavitiesgenerallyprovidinghighervalues.Thedepthnecessary to provide an enhanced F/ b ratio usually ensures that the intertier couplingismuchreducedandanoptimallydimensionedcavitycanalso reducethevariabilityoftheazimuthbeamwidthwithfrequency. 2.3.4 MultibandandWidebandArrays
Inmanycountries,anoperatorcommonlyhasaccesstotwofrequency bandsforGSMservicesandanadditionalbandfor3Gservices.Tominimizethecostsofantennasystemsandtowerspacerental,aswellasto respondtopublicpressureforlessobtrusiveantennasystems,operators mayuseantennasprovidingserviceonseveralfrequencybands.Thedifferenthistoriesandcurrentenvironmentsofoperatorshavecreateda varietyofrequirementsfortheseantennas,sothereisacorrespondingly widevarietyofspecificationsandsolutions.Replacingexistingsingleband antennas with new multiband antennas is always challenging, becausethequalityofcurrentnetworkcoveragemustbemaintained.Any compromisesinperformancemustbemadeontheaddedfrequencyband, soasaconsequencealternativesolutionsexistfornetworksapproaching dual-bandoperationfromdifferentdirections. Ingeneral,low-bandGSMoperatorshaveaddedhigh-bandcoverageto createadditionalcapacityindensenetworks.Theuseoffrequencybands istransparenttousers,allofwhomnowhavemultibandhandsets,andit isnotofprimaryimportancethatthehigh-bandcoverageiscontiguous aslongassufficienttotalcapacityisavailableatanylocation.Dual-band antennasareattractiveforthispurposebecausetheyallowextranetwork capacitytobeaddedwithoutadditionalantennas,avoidingrequirements foraddedwindloadandincreasedvisualprofile.Theadventofremote electricaltilt(RET)hasallowedindependentcontrolofthebeamtilton eachband,greatlyaddingtothefunctionalityoftheseantennas. Wherepermittedbyspectrumavailability,manynetworksthatpreviously had only high-band GSM frequency allocations have added
BaseStationAntennasforMobileRadioSystems 63
low-band capabilities to enhance their coverage, especially in rural areas. This usually required additional large antennas, but where adequate existing high-band coverage existed, the use of dual-band antennaswasnotnecessary. The advent of 3G UMTS services added further antenna requirements, and again the optimum solutions depended on what systems and services each network already provided.The preferred network engineeringsolutionisthatindependentantennasareprovidedforeach band,becausethisfacilitateseasyindependentoptimization,upgrade, and maintenance, but practical constraints have driven the creation ofavarietyofhybridsolutions.Theserangefromcompletelyseparate antennaswithindependenttower-mountedamplifiers(TMAs)andseparatefeedersystems,tointegratedantennaswithcommonTMAsand singlefeedersystemstotheequipmentcubicle.Mostsolutionsfallinto oneofthefollowingcategories. 2.3.4.1 Independent Antennas Mounted Side-by-Side Under a Single Radome These antennas have many arrangements.They generally
comprisetwoarraysofthesameoverallphysicallengthandaretypicallycomprisedofoneofthefollowingcombinations:
a b c
Array1 850and/or900MHz 1800and/or1900MHz 1700–2170MHz
Array2 1800and/or1900MHz 1900–2170MHz(UMTS) 1700–2170MHz
Althoughbotharraysgenerallyhavethesamephysicallength,they mayhavedifferentazimuthbeamwidthsandpolarizations.Ifequipped withRETfacilities,theycanalsohaveindependentfixedorvariable electricalelevationbeamtilt.Theonlyconstraintondesignisthatthe twoarrayshaveacommonphysicalazimuthpointingdirection—though thatconstraintisbeingaddressedbytheintroductionofazimuthbeamwidth control and beam-steering as described in 2.3.9. Example a is typicalofantennasusedbyaGSMnetworkaddingextracoverageonan alternativefrequencyband.Examplebwouldsuitahigh-bandnetwork addingUMTScoverage,whoserequirementsforazimuthbeamwidthor polarizationmaydifferbetweenbandsandtheparametersonthelower bandmustbepreservedwhile3Gcapabilitiesareadded.Examplecis probablyabettersolutioniftheconstraintsoftheoldersystemallow it to be used.The use of broadband arrays enables antennas with a commondesigntobedeployedin2Gand3Gnetworks,providingagreat benefitintermsoflogistics.Adualmultibandarrayislessflexiblethan usingseparatearraysforeachservice,althoughtheavailabilityofRET andotherremotecontroltechniquesisaddressingthis.
64 Chapter Two
Asignificantproblemencounteredwithlaterallycombinedarraysis thateacharrayoperatesinanunsymmetricalenvironment:thereflector extends farther on one side of each element column than it does ontheother,sotheazimuthpatternisunsymmetricalandthebeam maximummaysquintoff-axis.Thesecondarraysuffersamirror-image squint,sotheremaybeasubstantialdifferencebetweentheboresight directionofthetwobeamsevenwhenthearraydesignisidenticalfor bothelementcolumns.Adegreeofcompensationcanbeobtainedifsome elementsofeacharrayaretransposedbetweencolumns;16althoughif completesymmetryistobeobtained,theazimuthbeamwidthwillbe reduced.Techniques of this kind must be applied with care because theelevationpatternsofanon-collineararraydifferasafunctionof azimuthdirection. InterleavedArrays Thereisapproximatelyoneoctaveseparationbetween thelow-bandandhigh-bandfrequencies,soahigh-bandarrayoptimally hasaninterelementspacingthatisapproximatelyonehalfthatofalowbandarray.Aswehaveseen,thisisnotaproblemifarrayelementsare spacedbyslightlylessthanawavelength,so,providingwecandevise astructureinwhichhigh-andlow-bandelementscanbeco-located,we candesignanentirelysatisfactoryarrayinwhichtheradiatorsforboth bandsareinterleavedasshowninFigure2.14.Theoveralldimensions ofthisinterleavedarraywillbethesameasthoseofalow-bandantenna havingthesameelectricalcharacteristics(gain,azimuth,andelevation beamwidths, F/b ratio, and so on). It is possible to co-locate twice as manyelementsforthehigh-bandarray,sothehigh-bandarraypotentiallyhasahighergainthanthatofthelow-bandarrayandwouldhave halftheelevationbeamwidth.Insomecases,adecisionismadetouse theavailableaperturefortwoseparatehigh-bandarrays,eachhaving thesamenumberofelementsasthelow-bandarray.Ideallythelow-band arraywillcover824–960MHz,whereasthehigh-bandarray(s)willcover 1710–2170 MHz, although operational requirements may allow some designerstoselectasubsetofthefrequencyassignments. Althoughtheazimuthbeamwidthsofthehigh-andlow-bandsections ofaninterleavedarraydonotneedtohavethesameazimuthbeamwidth,
λ High
Dual-frequency, low/high band High band
Figure2.14 Exampleofaninterleavedarray
λ Low
BaseStationAntennasforMobileRadioSystems 65
ithasbecomegeneralpracticethattheydo.Theyalsousuallyhavethe same ±45° slant linear polarization—antennas where the two bands requiredifferentpolarizationsareusuallyconstructedasside-by-side arrays. Adual-polardual-bandantennamaycontainuptosixindependent andwell-isolatedantennasinonehousing.Althoughcreatingaconceptualdesignforsuchanantennaisrelativelyeasy,optimizingitisnot. Bothbandgroupshavewidebandwidths,sostableperformanceisnot easy to achieve, and many of the parameters available to the design engineersimultaneouslyinfluencetheperformanceofboththehighbandandlow-bandarrays. Therequirementforisolationbetweenthecross-polarizedportsof adual-polarantennaisthatitexceeds30dB.Theisolationbetween the ports for the high- and low-band arrays should also typically haveanisolationof30dBtoavoidunwantedinteractionsbetween thetransmitters.Thecloseproximityoftheelementsforeachband makes it difficult to provide this isolation directly, so it is common toincorporateafiltercircuitinthefeedlineswherethisisneeded. The high- and low-band arrays are sometimes combined into only twoports(dualband±45°ports)bytheuseofadiplexer—asimple microstripfiltercanusuallyprovidetherequiredisolationandpowerhandlingcapability. WidebandArrays Thereadermaywonderwhyasatisfactorybasestationantennadesigncannotbecreatedbyusingtruebroadbandradiating elements, such as LPDAs.This is not as easy as it may sound. A dual-polarLPDAwithsufficientbandwidthisaquitelargedevice ofveryconsiderablemechanicalcomplexity.Toavoidgratinglobesand consequentlossofgaintherequiredinterelementspacingwillbearound onewavelengthatthehighband,whereasthephysicaldimensionsof eachelementareoftheorderofonehalf-wavelengthatthelowband. Eveniftheelementgroupscanbecompressedbyusingminiaturization techniques(whichusuallyreducetheavailablebandwidthandresultin lowergain),theveryhighmutualimpedancesbetweentheelementsof suchaclose-spacedarraycreatemajorproblemsinoptimizingelevation patternperformanceandinputimpedance. IndependentAntennasMountedEnd-to-End Twoantennascanbemounted end-to-end,oneabovetheother,butforhigh-gainantennasthisleads toverylongstructures.Antennasmountedend-to-endhaveoccasionally been used to obtain space diversity on a single frequency band, buttheirsmallverticalseparationresultsinhighsignalcorrelation. (Lateralseparationofantennasismoreeffectivethanverticalseparationbecausescatterersarepredominantlydispersedinthehorizontal planearoundtheMS,notintheverticalplane.)
66 Chapter Two Compound Arrays In some instances, integrating a dual high-band array,comprisingtwoseparatelaterallyspacedelementcolumnswitha singlelow-bandarray,mayberequired.Asanexample,suchanantenna mayprovideoperationonGSM900,GSM1800,andUMTS2100.Inthis case,thespaceissufficienttoplacethelow-bandelementsonthecenterlineofthearraywiththehigh-bandelementsoneitherside,sonocolocateddual-bandelementsarerequired.
2.3.4.2 Dual-Band Radiating Elements Most dual-band radiating ele-
ments are conceived as combinations of two separate radiators, with separatefeedsystems.Combinationsincludethefollowing:
■
■ ■
Ahigh-bandpatchmountedoveralow-bandpatchinsuchawaythat thelow-bandpatchformsthegroundplaneforthehigh-bandpatch17 Ahigh-bandcrosseddipolemountedoveralow-bandpatch18 Ahigh-bandcrosseddipolesurroundedbya4-squarelow-bandsubarray19
The design of these element groups must achieve good control of theequalityandstabilityoftheazimuthbeamwidthovereachoperatingband,togetherwithadequatecross-polarisolation,despitethe presenceofconductorsintheradiatingstructureofthe“other”band, which act as parasitic polarization-coupling elements.The achievementofafullysymmetricaloperatingenvironmentforeveryelement ismoredifficultthanitisforastandardsingle-bandarray,anditis typicalthatadditionalpolarizationdecouplingarrangementswillbe needed. 2.3.4.3 OperationalConsiderations Manymobilenetworkoperatorsnow
havefrequencyassignmentsintwoorthreebandshavingselectedtheir BSsitesbasedontheplanningoftheirearliernetworks.Asnewtechnologiesemerge,re-usingandadaptingtheirinfrastructuretoprovide supportfornewnetworksisacontinualchallenge.Fromanoperator’s pointofview,usingseparateantennasforeachsystemisalwayspreferable,whetherornottheantennasoperateondifferentbands,soone networkcanbeoptimized,upgraded,orreplacedwithminimalimpact onothernetworks. A single multiband antenna provides a solution that is lower in capital,installation,andtowerrentalcoststhananarrangementwith separateantennasforeachband.Themultibandantennawillgenerallyhavealowertotalweightandwindloadthanseparateantennas andwillpresentamuchlowervisualprofilethanseparateinstallationsforeachband /system,especiallywhenconsideringthecomplete
BaseStationAntennasforMobileRadioSystems 67
tower-top equipment including antennas, brackets, and headframes, and the strength, weight, and visibility of the necessary supporting structure.Thedownsideisthatasix-portantenna(threebands,two polarizations)isaverycomplexdeviceandfailureinanyofitssixconstituentarrayswillrequireitsreplacement,potentiallyputtingthree networksofftheair,possiblyforseveralhoursuntilriggingoperations arecomplete. 2.3.5 FeedNetworks
AtypicalfeednetworkisshowninFigure2.12.Inthisexample,the inputsignalisdividedinthreestages.Theprimarypowerdividerisa two-waysplitterfeedingtheupperandlowerhalvesofthearray;the tertiarydividerseachfeedapairofradiatingelements;andthesecondarydividershavetheappropriatenumberofports,dependingonthe numberofelementsinthewholearray.Inanarraywithanumberof elementsthatisnotapowerof2(2,4,8,or16),anadditionalstageof powerdivisionissometimesused. 2.3.5.1 General Design Considerations The first step in feed network
designistocomputetherequiredpowerdivisionrationeededateach junction.Asnoted,itiscommonforadjacentelementstobeassigned currentswithequalamplitudes,andthisadjustmentshouldbecarried outbeforedesigningthenetworkasitreducesthenumberofdifferent powerratiosneeded. Powerdividersoftenhaveonlytwooutputports,especiallyifcable impedancematchingsectionsareused.Ifapowerdividerfeedsadifferentnumberofelementsfromeachoutput,thentheelementswith smallercurrentsaregroupedtogethersothateverypowerdividerhas output powers that are as equal as possible; in general, it is easier toensureaconstantratiofromawidebanddividerwhentheoutput powersarecomparable. Theeffectsofmismatchatjunctionscanbemitigatedbyusinghybrid orWilkinsonpowerdividers,buttheseareexpensiveandmaynotbe practicable.Notonlymusttheelementimpedancesbewellmatched, butalsoanytransformationrationeededbetweenthejunctionandthe transmissionlinefeedingtheelementsmustbeachievedinamanner that provides stability over a wide bandwidth.To achieve this, it is commontoemploymultisectionimpedancetransformersthatcanbe designedinitiallybyusingaSmithChartandthenoptimizedusinga suitablesimulationprogram.AhighVSWRattheinputofthesecondarydividerswillcausephaseerrorsintheprimarydivider,resulting inanunstableelevationbeamtilt—aproblemthatmustbeavoidedto
68 Chapter Two
preventtroublesomedifferencesinperformancebetweenthetransmit andreceivebandsofafrequency-divisionduplex(FDD)system. 2.3.5.2 Microstrip,Coaxial,andHybridLineSystems Microstripdesign
isrelativelyeasybecauseboththeZ0andthelengthofanylinesectioncanbeadjustedatwill.Coaxiallinedividersmustmakeuseofthe characteristicimpedancesofavailablecables,althoughcablesmaybe connectedinparallelwhereanalternativeimpedanceisrequired.Many commercialantennadesignsusehybridtechniquestoprovidedesign flexibilityatthelowestpossiblecost,usingmicrostrippowerdividers connectedbycoaxialcables.Themicrostripcomponentsoftenemploy standardmicrowavePTFE-glassPCBlaminates,butaluminaandother substratesarealsoincommonuse. TherequirementsoflowPIM,togetherwiththepowerlevelscommon inhigh-capacityGSMbasestations,hasledtotheadoptionof7/16-DIN connectorsasthealmostuniversalstandardconnectorforbasestation antennas. 2.3.6 PracticalCost/PerformanceIssues
Theworldwidesuccessofmobileradioservicesandtheprospectofthe continuinggrowthofdata-andinformation-basedsystemshaveledto requirements for extremely large numbers of base station antennas. Thereareusuallymanywaysinwhichaneffectivetechnicalsolution can be found and antenna design is now strongly determined by the economicsofproduction.Manymanufacturershaveproductionfacilities inregionswithlowlaborcosts,sotheemphasisofdesignhastendedto betominimizematerialcostswhileacceptingsignificantmechanical complexity. Thereisasignificantdifferenceinantennaeconomicsbetweennetworksinruralareas,wherethenetworkoptimizationemphasisison coverage,andnetworksinurbanareas,wherenetworkengineeringis dominatedbytheneedtomaximizecapacity.Thecostofestablishing abasestationishighandincludesnotonlytheequipmentandinstallationcostsbutalsothecostsofplanning,backhaullinks,siterentals, power,taxes,andmaintenance.Ifthenumberofbasestationsrequired to cover the desired service area can be reduced by using high-cost antennaswiththemaximumpossiblegain,thismaybeaveryworthwhileexpenditure.Inadensenetwork,theantennaparameterthatis ofmostimportanceiscleanradiationpatterns,andtheachievementof maximumgainisfarlesssignificant,soantennascanbedesignedusing low-costmaterials.Optimumnetworkdesigndependsonawidevariety ofeconomicandtechnicalfactors,includingthelocalplanningrégime, laborrates,andsiteaccesscosts,sothereisnosinglebestchoice.
BaseStationAntennasforMobileRadioSystems 69
2.3.7 PassiveIntermodulation ProductsandTheirAvoidance
Theadventofmultibandnetworksandantennas,thedemandforadditionalcapacity,andtheadoptionoftowerandinfrastructuresharing haveledtoanincreasingrequirementtoreducePIMstoalevelat which they do not impair network performance.The standard test level,−153dBcrelativetotwocarriersata+43dBm,isapproximately theratio(1015.3)ofthedistancefromtheEarthtothesuncomparedwith thethicknessofapieceofthinpaper.Itsachievementisafactorthat stronglydeterminesthechoiceofthematerials,finishes,andmechanicaldesignofalmosteveryantennacomponent.NotonlymustthePIM limitbeachievedconsistentlyinlargenumbersofproductionantennas, butantennasmustmaintainthislevelofperformanceformanyyears whileexposedtothecorrosiveeffectsofrain,salt,andindustrialpollutantsaswellasthemechanicalstressesandvibrationcausedbywind. Antennadesignmustbeconceivedfromanearlystageintermsofthe avoidanceofPIMs—thereisnoeasywayinwhichaninadequateinitial designcanbemodifiedlaterinthehopethatPIMscanbeavoided. TheachievementoflowPIMlevelsdependsonfollowingclearrules, bothindesignandatallstagesofproduction.Theseinclude ■
■
■
Avoid design details requiring any interconductor joint that is not essential to the electrical operation of the antenna. If two conductivemechanicalcomponentsareincontact,considerhowtheycould bemadefromasinglepieceorinsulatethemsonocurrentcanflow acrossthejoint.Ifcurrentmustflowbetweentwolargeflatsurfaces, consider separating them with an insulating membrane and relyingonthelargecapacitanceformedbetweentheopposingsurfaces. Ensure that every essential conducting joint is tightly compressed andthattheforceonthejointdoesnotdependonanycompressible orcreep-pronematerial.Wherepossible,reducetheareaofcontactso thecurrentpathisclearlydefinedandthecontactpressureishigh. Avoiddrysolderjoints.Well-solderedjointscausefewproblems,so ensuregoodaccessandgoodlightingsojointscanbesolderedand inspected easily and also that soldering equipment is right for the job.Iflead-freesolderisused,thesolderingtemperatureisusually higherthanwithleadedsolder,sotheseconsiderationsbecomeeven moreimportanttosuccess.Forprintedcircuitboards,chooselaminate gradesthatareguaranteedtohavelowintrinsicPIMlevels;theseare availablefrommostmanufacturers. Ensurethatprintedcircuitboardsarecleanlyetchedandwellwashed afterprocessing.Ifboardsarecutafterwashing,thereisalwaysarisk ofnewcontamination;routingorwater-jetcuttingarelesslikelyto
70 Chapter Two
leadtocontaminationthanlasercutting.Goodmaterialbadlyprocessedwillalwaysfailtodelivertheexpectedresult. ■
■
■
■
■
Observe good engineering practice in the selection of metals and finishes at any intermetallic joint. Corrosion, and consequent PIM generation,isdrivenbythegalvaniccontactpotentialbetweenthe contactingmetals.Protectessentialjointsfromcorrosionandwhereverpossibleprotectthemfromcontactwithwater. Avoidtheuseofmetalswithnonlinearconductivityorcontactpotentials—nickelisaknownPIMsourceandcannotbetoleratedinelectroplatingormetalalloys.Stainlesssteelfastenersarefrequentlyusedin antennaconstruction,buttheyshouldnotformthecurrentpathatan interconnection. Avoid the use of ferromagnetic materials; the skin depth on these materials is reduced and their RF resistance is correspondingly raised. Aluminumiswidelyusedforantennaconstruction,butitisavery electropositivemetalanditssurfaceisalwayscoveredbyathinlayer ofaluminumoxide(alumina).Jointsbetweenaluminumcomponents mustbeprovidedwithcorrosionprotectionandhighcontactforces. Maintainahighlevelofcleanlinessduringthehandlingandstorage ofcomponentsaswellasinassembly,testing,andpackagingareas.
2.3.7.1 Some Universal Principles Many important design techniques
relatetotheconfigurationofjointsbetweenconductors,whetherthese arepartofaradiatingstructure,aninternalfeedsystem,orthereflector surface and its supporting hardware. RF currents flow only in averythinlayeronandbelowaconductorsurface;theskindepth at2GHzinaluminumisonly1.8µm.Onlytheextremesurfacelayer oftheconductorstakespartincurrentconduction,andateverypoint whereconductorstouch,thecurrentwillpassacrosstheshortestavailable path.The impedance encountered by the current will change if thesurfacepathgeometrychanges.Ateveryinterconnection,thesurface current path must be well defined, maintained independently of production tolerances, and bearing sufficient mechanical pressure to ensurethatthepathremainsstablewhateverforcesthejointmayexperienceonaccountoftemperaturechange,vibration,windload,orother causes.Itisessentialtorememberthatintherealworldnosurfacesare flat—theyarealwaysroughandtheyslopeinonedirectionoranother. Nosurfacesareexactlysquare,andnoconductorsarecompletelyrigid. Table2.3showsexamplesthatillustratesimpleprinciplesthatmustbe followedineveryantennadesign.Theseexamplesarenotexhaustive, andtheyapplywhenevertheradiatingstructureandfeedsystemare
BaseStationAntennasforMobileRadioSystems 71 TABLE2.3 TypicalMechanicalDetailsIllustratingGoodDesignPrinciples Detail
Practical Imperfections
Preferred Detail Example
1 (a) Strip conductors joined to one another or to ground.
Contact pressure at circled point is not defined. Loss, power rating, and PIM are uncertain. Impedance changes if contact point moves.
Right angle connection between flat conductors.
Any lack of square or deflection of the joint displaces the contact point: loss, PIM, unstable Z.
(b) (b) Can also be achieved by bending or pressing strip end(s).
2
Move the fixing closer to the bend, or press the flange to define the contact point.
3
Connection through a dielectric layer.
Most thermoplastic materials creep under pressure, so the joint integrity is lost and heating occurs. Brittle material may be fractured if joint is overtightened.
Add a sleeve over the fastener to remove stress from the dielectric and to form a stable current path.
4
Clamping through a dielectric layer.
The problems are the same as those of the preceding example, but this is worse because the pressure under the fastener is higher for a given joint closure force.
Add a sleeve and a washer to reduce pressure: also observe precautions as in (1).
5
Current path relies on contact through thread. 6
This is particularly to be avoided. It shares the problems of (3), and the point of current flow between the screw and the upper conductor is undefined. Don’t rely on current flowing from a screw into the threaded component.
Defined current path.
These examples are exaggerated to show clearly what is happening. Spring plug contact is smaller than hole.
Current path is incorrect: impedance uncertain and current density at contact point is high. Plug will overheat.
Contact is at entry to hole. it is stable and less dependent on spring temper.
chosen.Ifthereasonsforavoidingthedetailsintheleft-handcolumnare understood,avarietyofgoodsolutionsmayoftenbefound.Thiskindof improvementindesigndetailsisnotcostlyandtherewardsareofvalue bothtotheantennamanufacturerandtheuser:Therewillbefewerfailuresinpost-productionVSWRandPIMtests,togetherwithimproved stabilityinperformanceandhigherlevelsoflifetimereliability. 2.3.8 UseofComputerSimulation
Theincreasingpowerandaffordabilityofcomputingresourceshasled tothedevelopmentofarangeofelectromagneticsimulationprograms that can be used to accelerate the design of base station antennas.
72 Chapter Two
Althoughthesetoolsarevaluableaidstoacompetentantennadesign engineer,theiruseisnosubstituteforadequateunderstandingofthe processesatworkinthephysicalantenna.Alltheavailabletoolsare farbetteratanalysisthanatsynthesis—givenacompletedescriptionof anantennastructure,thetoolswillcomputeitselectricalbehaviorwith considerableaccuracy.Optimizationroutinesareusuallyprovided,but thesearecomparativelyunintelligentprocessesthatallowthedesigner toexplorearangeofinputparametersandcomputethecorresponding performanceofthemodel,seekinganoptimumwithinadefinedsearch area. Simulationispowerfulinpredictingtheradiationpatternsthatwill be obtained from a specified structure and its use can significantly shortenthetimeneededtodeveloparadiatingelementandreflector structure with the needed characteristics (VSWR, beamwidths, F / b ratio, and polarization).The element currents required to provide a specifiedelevationpatterncanbeobtainedeitherbyaninteractiveor aself-optimizingroutine.Havingdecidedontherequiredradiatingcurrents,simulationisalmostessentialfortherapidoptimizationofarray feednetworksfollowingafirst-passdesignfrombasicprinciples. Oneofthemostusefulaspectsofsimulationisthewayinwhichthe designengineercanexaminefieldsandcurrentsintheantenna.This knowledgeprovidesakeytounderstandinghowtheantennaoperates, andthisinturnhelpsintheunderstandingoftheperformancedeficienciesthatusuallybesetanewdesign.Usefulinsightsareoftenobtained bycomparingtheoperationofthecomputermodelwiththatofaphysicalprototype. Thereisaconstantlychangingpointofbalancebetweencomputer simulationandpracticalexperiment.Dramaticincreasesinthespeed andcapabilitiesofphysicalmeasurementsystemshaveprovidedamuch betterinsightintotheperformanceofantennaprototypes,butneither impressivemeasurementsystemsnorthelatestsimulationtoolscan replacethecompetentdesignengineerwhocanengageinthecreative processofnewdesignandcanunderstandwhatneedstobedonewhen problemsarise. 2.3.9 ArrayswithRemotely ControlledElectricalParameters
Electricalbeamtilthasbeenusedsincetheinceptionofmobileradio systemsasameansofcontrollingtherangeofcommunicationfroma basestationwhilemaintainingnear-incoverageinshadowedregions andinsidebuildings.Itsapplicationtoreducetheinterferencetoand fromusersoutsidetheintendedcoverageareaofamobileradiocell,and sotoimprovefrequencyre-use,wasdescribedin1981byLee.20
BaseStationAntennasforMobileRadioSystems 73
The advent of 2G systems with their digital signal formats led to theuniversaladoptionofhigherlevelsofcontrolofantennaelevation sidelobesandthegeneraluseofbeamtilttooptimizenetworkcapacity. Whennewnetworkscommenceoperation,theyaregenerallycoveragelimited,soantennasareinstalledwithsmallbeamtilts,typically2°for anantennawitha5°elevationbeamwidth(Figure2.15).Asthenetworksbecamedenser,itbecamenecessarytoincreasethemechanical tiltofexistingantennasortoreplacethemwithantennaswithlarger electricaltilts.Thisprocesswaslaborintensiveandrequiredmanufacturersandnetworkoperatorstomaintaininventoriesofantennaswith avarietyofelectricaltilts. Theadventof3Gnetworksprovidedafurtherincentivetooptimize beamtiltstoahigherlevelofprecisionthanwaspreviouslynecessary.In aCDMAnetwork,allusersshareacommonfrequencyandtheirsignals areidentifiedandseparatedbycodesequencesassignedtoeachuser. Whenusersarelocatedbetweencells,orbetweenthesectorsofthesame cell,theirsignalsarereceivedbymorethanonecell(orsector),andthey arecombinedtogetherbyprocessesknownassoft(orsofter)handoff. Whenamobileisinsofthandoffbetweencells,itenjoysimprovedBER 0° 30°
330°
300°
60°
270°
90°
120°
240°
150°
210° 180°
Figure 2.15 Constant field strength azimuth footprint for a 65°
antennawithelectricaltiltsof0°(outermost),2°,5°,and8°,assumingwell-controlledelevationpatternsandflatterrain
74 Chapter Two
performancebutitconsumesresourcesatbothbasestationsandalso inthebackhaullinkjoiningthem.Systemoptimizationrequirescarefulcontrolofcoverageoverlap,andtheadjustmentofelectricaltiltisa powerfultooltoenablethis.Inasituationinwhichonecellisoverloaded withtrafficbutanadjacentcellhassparecapacity,theuseofadjustabletiltcanallowtheoverloadedstationtoreduceitsfootprint(and thereforeitstrafficload)while,atthesametime,theadjacentstation canexpanditsfootprintbyreducingitsantennatiltangle.Theability toremotelycontrolthebeamtiltofbasestationantennas21isapowerful techniquethatcanbeextendedtooptimizenetworkcapacitybyincludingreal-timeadaptationtotrafficpatterns.22 2.3.9.1 GeneralDesignIssues Theusualmethodforproducingelectrical tilt is to apply a linear phase shift across the array aperture.To maintainthelevelsofsidelobesandnullfill,nochangemustoccurin theamplitudesofthecurrents,andtheirrelativephasesmustremain unchangedapartfromtheaddedlinearincrementalshifts. When designing phase shifters, we could consider the use of PINdiodes or varactor diodes or the use of more mechanical methods suchasdielectricallyloadedlines,trombonelines,ortappedlines.The severeconstraintsonPIMgenerationandtherelativelyhighpower ratingsrequiredcurrentlyruleouttheuseofelectronicphaseshifters for BS antennas, so mechanical techniques must be used.Variable transmission-linestructuresmustavoidtheuseofslidingmechanical contacts,soelectricalconnectionsusuallyrelyoncapacitanceandnot onphysicalcontact. Lineswithvariablevelocityratio,loadedbyslidingdielectricslugs, appearattractivebecausenoconductorcontactisneeded,butdesigning aphaseshifterwithalargerangeofadjustablephaseandlowVSWR overawidefrequencybandisnoteasy.Someslidingdielectricarrangementsareinuse,23butmanysuccessfuldesignshaveusedtapped-line phaseshifters.24 Figure2.16showsan8larraywithalinearphaseshiftintroduced, retardingthephaseofsuccessiveelementsbyavariablephasej°.To drivean8-elementarray,thismethodrequiresfourphaseshiftersdelivering a phase shift in the range 0°–j°, together with two delivering 0°–2j°andonedelivering0°–4j°.Onesimplificationthatisgenerally adopted,atthecostofsomelossingainandinthecontrolofsidelobe levels,istouseafixedphasebetweenimmediatelyadjacentelements, providingaphasecorrespondingtothemeandowntiltthattheantenna willprovide;foranantennawith0°–10°downtilt,thiswouldtypicallybe setats(sin5°)wheresistheinterelementspacinginelectricaldegrees atbandcenter.Thearrangementnowrequiresonlythreephaseshifters, twoproviding0°–2j°andtheother0°–4j°.
BaseStationAntennasforMobileRadioSystems 75
Top of array
Phase front
Required additional phase 0
−f
−2f
−3f
Bottom
−4f
−5f
−6f
−7f
Figure2.16 An8larraywithlinearvariablephaseshift
Identical pairs of radiating elements with fixed relative phases
InFigure2.17adjacentelementsareprovidedwithacommonfixed phase difference, and variable phase is applied between the pairs of elements. The phase shifters are designed as tapped transmission lines—thisdesignmethodhastheadvantagethatamovementofthe tap position over a length of line y ° long provides a relative phase advancebetweenoutputsof+y °whenthetapisatoneendofitstravel andof−y °whenattheotherend,arelativetotalof2y °.Ifthetapped linesarearrangedincirculararcs,themaximumphaseshiftforagiven angularmovementoftheinputshaftcanbeadjustedbychoosingthe appropriateradius.Becausethephasesoftheelementsateachendof thearraymovesymmetricallyaboutzero,anadditionalpairofelements withfixed(0°)phasecanbeintroducedatthecenterofthearray.This allowsa10larraytobedrivenwithonlytwophaseshifters,whichcan benestedconcentricallytoprovideacompactmechanicalconstruction. Anidenticalarrangementisneededforeachpolarization,andinamultibandantenna,separatefeednetworksandvariablephaseshiftersare requiredforeachfrequencyband.
Radius r
Power division network
Input
Radius 2r
Figure2.17 Feednetworkfora10larrayusingtwotappedlinephaseshifters
76 Chapter Two
A10larraywithdowntiltadjustablebetween0°and10°requiresa totalphaseshiftacrossthearrayof562°,sotheouterarcphaseshifter needsalengthofabout280°.Iftheradiatingelementsareconnected tothephaseshiftersusinglinesofequallength,theavailabletiltwill be±5°,sotoprovideabeamtiltof0°–10°anintrinsic5°tiltmustbe providedbythefixedlinesinthefeednetwork. Thereisnosingleoptimumdesign—eachvariantprovidesdifferent technicalandeconomictrade-offs.Anarraywithuniformphaseshift betweeneveryelementatalltiltanglesrequiresmorephaseshiftersbut canprovidebetter-shapedelevationpatternsandhighergainatextreme tiltangles.Adesignwithconcentricphaseshifterswillbemechanically less complex but may provide less control of the current amplitudes intheinnerandouterelementpairs—andsomayhavelessabilityto shapetheelevationpattern.Theuseofsubarraysoftwoorthreeelementssimplifiesthedesignandreducescost,butatsomecompromise toperformanceovertherangeofsupportedtiltangles. AmicrostripdesignforavariablephaseshifterisshowninFigure2.18. A successful design must provide a low-inputVSWR over the whole operatingbandandforanyselectedvalueofphaseshift. A dual-polar 10l antenna covering one frequency band (including widebandantennascovering1710–2170MHz)requirestwosetsofphase shifters,oneforeachpolarization.Bothphaseshiftersareusuallyoperatedfromasingledrive,andthebeamtiltsonbothpolarizationsmust
Large arc gets largest phase shift and is connected to outermost radiating subarrays.
Position of wiper adjusts distance between outputs, adjusting phase. Smaller arc causes smaller phase shift and is attached to inner subarrays.
Capacitive joint couples energy while allowing movement
DC ground for lightning protection
Fixed phase output for center subarray
Figure 2.18 Microstrip phase shifter with two concentric arcs (Photo courtesy of AndrewCorporation)
BaseStationAntennasforMobileRadioSystems 77
trackaccurately.Thephaseshiftersareconnectedtoelementsatthetop andbottomofthearraythroughcablesofsimilarlength,sothenatural locationforthephaseshiftersisclosetothecenterofthearray. Many dual-band antennas with multiple input ports are used on more than one radio network, perhaps employing different air interface standards, and to facilitate separate optimization on each band, theseantennasarealmostinvariablyprovidedwithRETcontrol.Their designcombinestheengineeringchallengesreferredtointhecontext ofdual-bandantennaswiththoseofthecontrolofmutualimpedances andbroadbandpolarizationdecouplingthatareneededtoprovidesatisfactory RET performance. For the same application reason, remote azimuthsteering(RAS)andremoteazimuthbeamwidthcontrol(RAB) willalsobeimplementedonthesecomplexantennas. Directcurrent(DC)motorsorsteppermotorsarecommonlyusedto provideremoteoperationofthephaseshifters;theyaretypicallylocated closetothebottomoftheantennatoallowaccessforreplacementin caseoffailure.EarlyRETantennadesignswerefittedwithexternal motordrives,butwiththeincreasingacceptanceofremotecontroltechniques,thecompletedrivesystemwillbeinstalledwithintheprofile ofthearray(somemanufacturersarealreadyprovidingthisarrangement).Somemeansofmanualadjustmentisusuallyprovidedforuse incaseofmotorfailure.Amechanicalindicatortoshowthecurrenttilt settingprovidesconfidenceifthereisanydoubtthattheremotelyset parameterhasnotbeenachieved. 2.3.9.2 RemoteControlInterfaceandProtocol Followingearlyproposals
for antennas with RET it became clear that the development of this technology would progress much more quickly if there were a standardinterfaceforthecontrolsystem.Proprietarysystemswouldpresentproblemsifanantennamanufacturerdiscontinuedaproductline orifanetworkoperatorwishedtochangeitssupplierforcommercial reasons.Antenna manufacturers, network operators, and infrastructurevendorsformedtheAntennaInterfaceStandardsGroup(AISG)in 2002,andthisbody,inconjunctionwithThe3rdGenerationPartnership Project(3GPP),hasdevelopedinterfacestandardswhoseobjectiveis to provide interoperability among different vendors’ equipment.The standardsdefineathree-layerprotocolstack.25OnthePHYlayer,the standards26,27definealternativeconnectionmeansbetweentower-top equipmentandthecontroller.TheseareanRS485busandasystem usingalow-frequencymodulatedsubcarrierintroducedintothecoaxialconnectionbetweenthebasestationandthetower-topequipment. Among other parameters, the standards define relevant supply voltagesandcurrents,subcarriercharacteristics,connectors,andpin-out details.Thedatalinklayer28isbasedonasubsetofHigh-levelData
78 Chapter Two
LinkControl(HDLC);thesystemusesasingleprimary(control)device, andallotherdevices(includingRETsandTMAs)aresecondarydevices thatrespondtotheprimarydevice.Theapplicationlayer29definesaset ofelementaryprocedures(acommandset)thatprovidesalltherequired functionalityfortheconnectedsecondarydevices. Thetrendtowardtheincreasingcomplexityoftower-topequipment andtheapplicationofRETtechniquestootherradiosystemshasled tothecontinuingdevelopmentofAISGstandards,andtheavailability ofalow-costcontrolbusonthetowerisstimulatingthedevelopmentof otherequipment,includingvariousformsofsystemmonitorsthatmake useofaremotedataconnectionfromthetowertop. 2.3.9.3 AzimuthPatternControl Formanyyears,theprospectofimple-
menting “smart” antennas has provided a continuing incentive to researchers.Ithasbeendemonstratedthatsuchsystemscandeliver great benefits in terms of system capacity and range of communication, but their implementation in current mobile radio systems has proveddifficultandexpensive.Thereisalargegapbetweenwhatcan beprovidedbyasimple“dumb”antennaandasmartantennaproviding adaptivebeamforming,C/Noptimization,andcapacitymaximization. RETtechniquesmaybeseenasafirststepinfillingthatgap.Afurther importantstepistheprovisionofremotecontroloftheazimuthbeamwidth30,31,32andtheazimuthbeamdirection.33,34Antennasusingthese relativelylow-costtechniqueswilloperatewithanyradioairinterface, anymodulationtechnique,atanypowerlevel,andwithanynumberof RFcarriers.Theyalsoprovidesymmetricalcharacteristicsontransmit andreceivebands.Sometimesdescribedas“semi-smart,”thesemethods provide relatively slow changes in antenna characteristics, typically takingsecondsortensofsecondstochangethebeamshapeorposition, buttheyarefastenoughtoallowadaptiontomatchmostchangesin thepatternofnetworktrafficdemand.35 2.3.10 AntennasforTD-SCDMASystems
Air-interfaceprotocolsthatemploytime-divisionduplex(TDD)transmissionusethesametransmissionfrequencyfortheup-anddownlinks andareabletomakegenerallymoreeffectiveuseof“smart”antenna techniquesthanareprotocolsthatusefrequency-divisionduplex(FDD). Theuseofasinglefrequencyallowsvalidchannelstateinformation (CSI) to be obtained rapidly for transmission in both directions. In thecaseofanFDDsystem,especiallyonewithlargefrequencyspacing between the up- and downlinks, obtaining up-to-date CSI at the basestationforthedownlinkischallenging;rapidupdatingrequires significant channel capacity and consequent loss of user capacity.
BaseStationAntennasforMobileRadioSystems 79
AnexampleofaTDDsystemistheChineseTimeDivision-Synchronous CodeDivisionMultipleAccess(TD-SCDMA)standard,andthisalready employsadaptivebeamformingtechniquesusingbothomnidirectional anddirectionalantennaarrays. AnexampleofadirectionalsmartantennaisshowninFigure2.19. This uses the same methods for the control of elevation patterns as more conventional“dumb” antennas, but the whole antenna array is formed from multiple subarrays of the more conventional type.The multiplesubarrays,eachacolumnofelements,arecloselymatchedin performance, and sampling facilities are provided in each column to allowthewholearraytobecalibrated.Aswithaconventionalantenna, it is possible to achieve diversity using dual-polar elements.A highband,four-columnarrayistypicallyaround320mmwideandallows beam-steeringto±60°fromboresight.Theamountbywhichthebeam canbesteeredoffboresightislimitedbytheappearanceofpotentially highazimuthsidelobelevelsasthesteeringangleincreases.Tooptimize
Figure 2.19 Example of a directional beamforming antenna for a TD-SCDMA system (PhotocourtesyofCombaTelecom)
80 Chapter Two
thereceivedC/Iratio,beam-steeringisaugmentedbytheuseofnullformingmethodsbywhichunwantedsignalsaresuppressedandinterferenceradiatedtowardthesourcesofinterferingsignalsisreducedat thesametime.Inthesesystems,beamscanbeswitched,andradiation patterns adapted on a user-by-user, burst-by-burst basis. Currently, thisadaptivityisavailableonlyintheazimuthpatterns,theelevation patternsbeingthoseofaconventionalfixedarray.Theapplicationof adaptivebeam-shapingintheelevationplaneaddsconsiderablecost andcomplexityandmaynotbejustifiable,butRETtechniquescould easilybeapplied. Theuseofasingle-carrierTDDsystemgreatlyreducesthespecificationrequirementsforPIMlevels,sosomelower-costmethods,materials, and components can be used without penalty; for example, premium PCBmaterialsarenotneededandType-Nconnectorsareentirelyadequateforthisapplication. 2.3.11 MeasurementTechniques forBaseStationAntennas
Basestationantennaspresentanumberofmeasurementchallenges because of their closely specified radiation patterns and PIM performance,aswellastheverylargevolumesofproductforwhichconformingperformancemustbeassured. 2.3.11.1 Radiation Pattern Measurements Far-field measurements will generallybemadewithintheserviceareaofoneormorelocalnetworks. Forthisreasontherotatingantennaundertest(AUT)shouldalways receivethesignalradiatedbyafixedilluminatingantennathatshould beaimedinadirectioninwhichitisleastlikelytocauseinterference toanynetworkuser. Accuratefar-fieldmeasurementsdependontheavailabilityofaclear andopentestrange.Becauseweareinterestedinthelevelsofnulls andsidelobesatlevelsaround−20dBrelativetothemain-beammaximum,thetraditionalcriterionforthenecessaryrangelengthisinadequate,andarangelengthofatleast4d2/lisneeded.(Atarangeof 2d2/l,thereisaparabolicphaseerrorof45°attheendsofthearray relativetothecenter—ifyoudoubtthatthisistooshort,tryapplying thatphaseerrortoasetoftypicalarraycurrents.)TheapertureoccupiedbytheAUTshouldbeprobedtoestablishthattheamplitudeand phaseoftheilluminatingsignalareconstanttoacceptablelimits.Time gatingmethodscanbeusedtooffsettheeffectsofsitereflections,but implementingthesetendstoslowdownthemeasurementprocess.The azimuth pattern of a base station antenna must be measured at the elevationangleequaltothenominalbeamtilt.Thisrequirestheuseof
BaseStationAntennasforMobileRadioSystems 81
anazimuth-over-elevationmountfortheAUTorahighmountinglocationfortheAUTwiththeilluminatingantennaatalowerelevation.For slant-polarantennas,theAUTmustbeilluminatedinturnwithplane wavespolarizedat±45°. Somefacilitiesareequippedwithverylargeanechoicchambers,butif validfar-fieldmeasurementsaretobeobtained,theiruserequiresthe applicationofcorrectiontechniques.Thesemayincludetheinstallation ofmovableormultiplesourceantennasandtherecordingofcomplex fieldvaluesforlatercomputation.Suchsystemscanbeconsideredasa classofverylargenear-fieldranges. Far-field measurements are fast to perform, and data for a large numberoffrequenciescanbegatheredinasinglerotationoftheAUT. It is also easy to conduct a swept gain /frequency measurement that providesconfidencethattherearenofrequenciesatwhichthegainof theantennaisunexpectedlylowerthanelsewhere.Themaindrawbacks aretheneedforlandforthefacility,thecostofhandlingantennas,and problemscausedbyinclementweather. When measuring the radiation patterns of a dual-polar array, it is importanttoappreciatethattheradiationintheforwarddirectionhas theoppositepolarizationsensetothatoftherearwardradiation(seen frombehind,theradiatingelementappearstohaveamirrorimageorientationcomparedwithwhenitisseenfromthefront).Thismeansthat toassesstheF/bratio,wemustcomparetheforwardradiationofone polarizationwiththemaximumrearwardradiationoftheotherpolarization(orbothofthemtobecertainofcapturingthelargestvalue). Sometimesatotalrearwardpoweriscomputedbyaddingbothpolarizationcontributionspower-wise. Near-fieldmeasurementsareusuallycarriedoutinascreenedanechoic chamber;theyhavetheadvantageofeaseofaccessibilityanduseand beingunaffectedbyweatherconditions.ThefieldradiatedbytheAUT isprobedbyasmallhornoropen-endedwaveguide.Becausethemain areaofinterestintheradiationpatternofaBSantennaiswithina fewdegreesofthehorizontalplane,acylindricalnear-fieldsystemcan beusedratherthanafullthree-dimensionalsystem—althoughhighanglegratinglobeswillnotbeseen.Themainconstraintofanear-field systemisthatgainmeasurementsareonlyavailableatthosefrequenciesatwhichapatternmeasurementismade,sonofrequency-swept gainmeasurementispossible. Some near-field ranges are provided with multiple illuminating horns,allowingelectronicswitchingofthesourceantennaratherthan muchslowerphysicalmanipulation.Asystemofthistypeprovidesfast measurements allowing more frequencies to be measured in a given time,butthesecurityofacontinuousgain/frequencymeasurementis stillmissing.
82 Chapter Two
With some near-field systems, measuring two components of the E-field(EVandEH)maybenecessaryinordertosynthesizeapattern with ±45° polarization; with other systems, illuminating the AUT directlywiththerequiredpolarizationmaybepossible,soitmaytake onlyhalfthetimetomeasureasinglepattern—oftenthisisallthatis neededtocompareresultsduringthedevelopmentprocess.Awideband illuminatinghornallowsmeasurementsonbothlowandhighbands totakeplaceduringonemeasurementprocess.Theuseofadual-polar hornwithelectronicswitchingisaneffectivewaytoacceleratemeasurements. An ideal arrangement is a combination of both types of range as therewillalwaysbesomeneedforthemeasurementsthatcanonly be performed on the far-field range, whereas the ease of use and accessibilityofthenear-fieldrangeisahugebonus,especiallyinthe winter! 2.3.11.2 GainMeasurements Theinternalcomplexityofabasestation
antennaandthelongelectricallengthofthetransmissionlinesconnectingitscomponentsmakeitpossiblethat,insomeregions,thegainfrequencycurvehasminimaaffectingrelativelysmallfrequencyranges. Thispossibilitymakescontinuousfrequency-sweptgainmeasurements important,atleastduringproductdevelopmentanduntilconfidence isestablishedthataproducthasstableandsubstantiallyfrequencyindependentcharacteristics. Comparing the gain of a base station antenna with a standard gain horn is prone to errors caused by the very different ground reflectionsthataffectmeasurementswithantennaswithsuchdifferentbeamwidths(say6°and90°intheverticalandhorizontalplanes fortheBSarrayandaround20°inbothplanesforthestandardgain horn).A better procedure is to use the three-antenna method36 to calibrateabasestationantennaasasecondarystandard.Bythis method,sitereflectionsaffectingthe(secondary)gainstandardand theAUTaresimilarinmagnitude,somoreaccurateresultscanbe obtained. 2.3.11.3 VSWRandCross-PolarIsolationMeasurements VSWRandXPI
measurementsarenormallymadeusingswept-frequencynetworkanalyzers.Indevelopment,thesewillusuallybevectornetworkanalyzers (VNAs).Inproduction,vectororscalaranalyzersmaybeused,anditis commonforthetestgeartobecontrolledbyacomputerthat,following ascanofabarcodeontheAUT,setsupthecorrectfrequencybandsand testlimits,promptsthetesttechniciantomaketheappropriateconnectionsforeachmeasurement,recordstheresulttoanarchive,and printsatestcertificate.
BaseStationAntennasforMobileRadioSystems 83
2.3.12 ArrayOptimization andFaultDiagnosis
Onceaprototypeisconstructed,itisoftenfoundthatitsperformance does not fully meet expectations. A modern dual-polar multiband antennaisacomplexstructure,anddeterminingwhathasgonewrong when performance expectations are not met is not easy. Finding the sourceoftheproblemsrequiressomeclearthinkingandcarefulexperimentaltechniques. 2.3.12.1 SingleRadiatingElementsandElementGroups Measurements
onasingleelementorelementgroupwillusuallyincludethemeasurementofazimuthpatterns,inputimpedance,polarization,andXPI.The mosttroublesomeparametertocontainoverawidebandwidthisthe azimuthbeamwidth,andthisisbestoptimizedbyamixtureofcomputer simulationandexperiment.Simulationisgoodforrapidoptimization of simple mechanical parameters, for example, the spacing between theradiatorandthereflectororthereflectorwidthandthedepthofa flangeonthefrontedgeofthereflector.Whenthesimulationdoesn’t producethedesiredresult,itmaybeusefultocarryoutsomepractical experimentstoprovidenewideasaboutwhatcanbedoneandthento optimizetheideausingthesimulator. Itisusuallyworthcheckingthemagnitudeofthemutualimpedance betweenadjacentarrayelementstomakesurethedrivenimpedance oftheelementswillremainwithinexpectedboundswhenthephases andamplitudesofcurrentsinneighboringelementsarechangedasa resultofbeam-shapingorelectricaltilt.InaRETantenna,theeffect of mutual impedance will be to modify the complex currents in the arrayelementsinunintendedwayswhenthebeamtiltchanges,causing unwantedvariationsintheelevationpattern.Inanarraycoveringa singlebandgroup,mutualimpedancecanbecontrolledwithseparatingfencesbetweentheelements,butthissolutionisnoteasytoapply to a dual-band antenna where adjacent elements are of very differentdimensions.Forthisreason,theelevationpatternperformancefor dual-bandinterleavedarraystendstobelesswellcontrolledthanfor separatelow-bandandhigh-bandarrays. AhighvalueofmeasuredXPIforasingletierdoesnotensurethatthe performanceofthecompletearraywillbeadequate,butiftheisolation ofthecomponentsofasingletierissignificantlylessthantherequired 30dBforthecompletearray,obtaining30dBfromthecompletearray willbedifficult.Itisalwayshardtocompensatealocaleffectbyacompensatingcouplingatsomepointelectricallyfaraway;suchcompensationtendstoworkoversomerelativelynarrowbandwherethephase relationshipsbetweentheerrorvectorandthecompensatingcoupling arecorrectlyphased.
84 Chapter Two
Inadual-bandarray,thecouplingbetweenhigh-andlow-bandelementgroupscangiverisetohigh-bandradiatingcurrentsflowingin low-band elements, and this causes frequency-dependent ripples or otherdeformitiesinthehigh-bandpatternsofthearray.Theamplitude of low-band currents flowing in high-band elements is usually small andisseldomtroublesome.Inanarrayinwhichinputsatbothbands arecombinedusingadiplexer,excessivecouplingattheelementmay interactwiththebehaviorofthediplexertocauseunwantedripplesin theinputVSWRofthehigh-bandarray. 2.3.12.2 FeedNetworksandArrays Beforebuildingaprototypearray,
ensurethefeednetworkprovidestheexpectedcomplexcurrentsatits outputportsandiswellmatchedwhenalltheoutputportsarecorrectly terminated.Althoughthenetworkmayhavebeensimulatedbeforeit wasconstructed,coaxialfeedsystemsarelikelytoshowsomedifferences inthestrayreactancesassociatedwithcablejunctions.Inaccuracyin modelingofinterlinecouplinginmicrostripnetworksmayrequiresome impedancecorrectiononaphysicalmodel,particularlyiflinespacings aresmalltoeconomizeontheuseofexpensivelaminatematerials. A simple method for the diagnosis of feed network problems is to sampletheoutputsofdifferentelementsofanarrayusingabalanced loop.Astheloopismovedtocoupletosuccessiveelements,themeasuredratioofthecurrentsinthesampledelementsshouldbeconstant inamplitude,withaphasedifferencehavingthecorrectnominalvalue atmidbandandavalueatotherfrequenciesproportionaltof/f0.This measurementiseasytocarryoutusingaVNA,andtheresultcanbe displayed in polar or Cartesian form.A corresponding measurement canbecarriedoutonthefeednetworkitself,terminatedwithmatched loads,andthedifferencebetweenthetworesultsisaclearindication of the effects of element mismatch (including mutual coupling).The periodicityofripplesintheresponsegiveanimmediateindicationof the distance separating the sources of interacting reflections, allowing the matching to be improved to reduce the excursions from the wantedvalues.TheresultsbecomeconfusingiftheportsoftheVNAare notthemselveswell-matched(asiscommon),somatchedattenuators shouldbeinsertedinseriesattheVNAports. ThefeednetworkofaRETantennacanbemeasuredinthiswayto provideconfirmationthattherearenounwantedinteractionswithinthe networkandthattheoutputcurrentsarecorrectfortherequiredrange oftiltangles.Asanextensionofthistechnique,itispossibletoconstruct ananechoic“box,”linedwithabsorber,witharrangementsforaprobe tobescannedalongthearraytomeasuretherelativecomplexelement currents.Thesesampledcurrentscanbeusedtocomputetheelevation patternofthearray,oftenwithsurprisingaccuracy.Measurementsof
BaseStationAntennasforMobileRadioSystems 85
thiskindaresometimesusedtocarryoutroutinetestingofproduction antennas;theyproviderapidconfirmationthatconnectionshavebeen correctlymadeandthatthearrayhasnoseriousproblems. If the feed network appears to provide the correct output currents when measured on the bench with matched loads, yet the complete arrayshowsvariabilityofelementcurrentswithfrequency,thecauseis almostcertainlymismatchattheinputoftheelements.Iftheelements (orelementgroupscomprisingeachtier)areknowntomatchcorrectly whenmeasuredseparately,thenattentionmustbegiventothemutual impedancebetweenthem.Themutualisolationbetweentiersiseasy tomeasure,andthedrivenimpedanceofatierinthepresenceofits immediateneighborscanbemeasuredusingmultipledirectionalcouplersoramultiportVNA.Thecouplingtoneighboringelementsat2l spacingormorecangenerallybeneglected. 2.3.12.3 PassiveIntermodulationProducts PIMisusuallymeasuredwith theAUTplacedinananechoicboxwithatypicalclearancebetweenthe antennaandtheabsorberofaround1m.Thesupportingframeorslide onwhichtheantennaisplacedduringmeasurementshouldbemadeof wood,GRP,orotherinsulatingmaterial.Whileaworkablemeasurement systemcanbemadeusingtwosignalsources,twopoweramplifiers,a triplexfilter,andaspectrumanalyzer,acompleteintegratedsystemis availableforthistask,allowingfastandflexiblemeasurementdownto alevelofaround−160dBfortwoinputsignalsat+43dBm.MostBS antenna manufacturers measure PIM on a routine basis on 100% of production.Asnoted,PIMislikelytobegeneratedatimproperlycompressedconductorjoints,andthegeneralpracticeistomeasurePIM whiletheantennaisvibrated,sometimesbyamotor-drivendevice,but oftenusingarubber-facedhammerorawalkingstick! ThefieldintensityclosetotheantennacreatedduringaPIMmeasurementislikelytoexceedsafelimits,37andaccesstotheantennaby personnelshouldberestrictedwhilepowerisappliedbyaphysicalbar orwalk-onpressurepad. ThediagnosisofPIMproblemsinproductionisnoteasy.Consistent failuresuggestsinadequatedesignandspecification,whileoccasional failingofbatchesofproductmaypointtoadefectivebatchofmaterial. A sudden increase in failures may indicate a change in a material, a process,oramemberoftheproductionteam.Isolatedfailuresmayrelate toaproductionerror(wrongpart,loosescrew,badsolderjoint,orcontamination).AswithVSWRperformance,theuseofstatisticalprocess control(SPC)isapowerfulmethodforspottingtrendsandunderstandingthemostlikelyreasonsforfailure.Practicalmeasuredresultswill alwaysdisplaystatisticalvariability,butbyunderstandingthescatter ofresultsandthemeanvaluesobtainedoneachproductoveraperiod
86 Chapter Two
oftimeitshouldbepossibletorelatechangesinperformancetofactors relatedtodesign,procurement,andmanufacture.Withoutsomehistory ofresults,pinningdownthereasonsforchangesisverydifficult. 2.3.13 RADHAZ
The possibility that the radio emissions from mobile radio base stationsmaypresentalong-termhazardtohealthhasbeenofconcernto radioengineersandtomembersofthepublicformanyyears.Because ofthedistancebetweenatypicalbasestationantennaandmembers ofthegeneralpublic,thelevelsofelectromagneticfield(orpowerflux density)thepublicencountersaretypicallythreeordersofmagnitude belowthelevelsrecommendedbytheInternationalCommitteeonNonionizingRadiationProtection(ICNIRP)andmostnationalauthorities. Insomecountries,however,thereisconsiderablepublicanxietyabout thismatterandlargenumbersofbasestationsaremovedeveryyear becauseofpublicconcern.Thepublicperceptionoftheelectromagnetic radiation hazard (RADHAZ) issue relating to base stations is probablythatthelargerthenumberofantennasandthegreaterthevisual profileofaninstallation,thehigherthepossiblerisk,somorecompact systemsarelikelytodrawlesscriticismonthismatter. Ingeneralthelevelsofpowerfluxdensitycreatedbyahandsetin usenexttotheheadaremuchclosertotheICNIRPlimits,andthetotal doseofelectromagneticenergyreceivedbymostindividualsisheavily dominatedbytheirhandsetuse. Riggers and engineers who work on BS systems should be made awarethatincloseproximitytoanantennatheymaybeexposedtofield intensitiesthatexceedrecommendedlimits,andwhenworkingonradio towers,allpersonnelshouldberequiredtowearcalibratedfieldhazard monitors.Thetransmitter(s)connectedtoanyantennaonwhichthey intendtoworkshouldalwaysbeturnedoffbeforeaccessingtheantennas;iftheymustpassclosetothefrontofanyoperatingantennain ordertoreachtheirworkinglocation,theconnectedtransmittershould alsobeturnedofftoallowthemtopasssafely. Where base station antennas are mounted on short towers or on masts erected on roofs that can be accessed by building residents or other members of the public, it is good practice to install barriers to identifyanyareainwhichhighpowerfluxdensitiesmaybeencountered.Smallcompactbasestationsbuiltintostreetfurnitureusually operateatlowpower,andthereisnoareainwhichfieldsexceedsafe limitsforpublicexposure. Everyoneworkingwithbasestationantennas,theirdesign,testing, planning,installation,andmaintenanceshouldbeawareofissuesrelatingtoRADHAZ.Theyshouldtakeresponsibilityfortheirownsafetyand
BaseStationAntennasforMobileRadioSystems 87
thatoftheircolleaguesandthegeneralpublic.Althoughmostresearch findingsindicatethatthereisprobablylittlegroundforconcernatfield intensitiesbelowtherecommendedlimits,theengineeringcommunity should remain fully informed about the results of current research, bothinordertoreassuremembersofthepublicandtorespondinan effectiveandtimelymanneriffuturefindingsrequireanychangesin currentpractice. 2.3.14 VisualAppearance andPlanningIssues
For the engineering reasons discussed in this chapter, base station antennasarelargedevicesandhaveasubstantialvisibleprofile.The provisionofanextendedhigh-capacitymobileradionetworkrequires verylargenumbersofbasestations,andinmanycountrieseachregion isservedbyseveralcompetingnetworkoperators.Whetherinhistoric cities,residentialareas,orruralandwildernesslandscapes,theerectionofbasestationsisfrequentlyamatterofcontroversy,theantennas and their associated supporting structures attracting most criticism. Networkoperatorsmustusuallyobtainplanningconsentforproposed basestationsfromlocalauthorities,andbothtoincreasetheirprobabilityofsuccessfulplanningapplicationsandtobeseenasorganizations responsivetothefeelingsoflocalcommunities,theyhavedevelopeda numberofsolutionstosoftentheimpactoftheirinstallationsonthe visualenvironment. Figure2.20ashowsatypicalthree-sectorcellsitewithpairsofspace diversityantennas.Thelarge-diametermonopoleisneededtoprovide sufficient stability for the high-gain microwave back-haul antennas, whichinthisexampleoperateon18,23,or38GHz.Thepresenceofthe microwaveantennasandLNAsaddstotheclutteredappearanceofthe installation;theheadframeandsafetyrailsaddtothevisualimpact; andthewindforcesonallthesecomponentsmustbetakenintoaccount whendimensioningthemonopole.Large-diametercablescannotbebent easily—inthisexamplenoattempthasbeenmadetohidethemand somesmallercableshavebeenlefthanginguntidily. The example in Figure 2.20b is clearly an improvement.The use of dual-polarantennashasremovedtheneedforalargeheadframeandthe cableinstallationhasbeenwellmanaged.Themonopoleisstillheavyfor a10-mstructure,andvariouscomponentsappeartobestandardfitments thatwerenotreallyneededforthisinstallation.Theaccessladderand therailforthefall-arrestsystemareseentotheleftofthemonopole. Dual-polarantennasassosmall—atleastforthehighbands—thata varietyoflow-profilesolutionshasbeencreated.Figure2.21showstypicalStreetworksinstallations,bothfree-standingandwrappedaround
88 Chapter Two
(a)
(b)
Figure 2.20 (a) Space diversity and (b) polarization diversity high-band antenna systemsmountedonmonopolestypically15-mhigh(Photosbytheauthor)
astreetlightingcolumn.Inthissecondcase,thecabinethousingthe basestationequipmentisnomoreconspicuousthatthecontrolboxfor thetrafficlight(lowerright).Urbansitescanusuallybeconnectedby undergrounddatalinessothereisnorequirementforarigidstructure tosupportanarrow-beammicrowaveantenna. Basestationantennashavesuccessfullybeenintegratedintoadvertisingsignsandtheirincorporationinafunctionalflagpolecanallowthem tobeerectedwithlittlecontroversyinmanylocationswhereautilitarianengineeringdesignwouldbecompletelyunacceptable.Disguiseis also possible using dielectric panels that simulate building features. Simple measures like avoiding the projection of antennas above the rooflineareveryeffective—ofcourse,thisimpactsradioplanning,but therearemanyinstancesinwhichthisimpactcanbeaccommodated. In rural areas, measures such as avoiding placing structures on the skyline,choosingsitesneartheedgeofwoodland,orsimplypainting structuresinharmoniouscolorscanlimittheimpactofbasestations. Theuseofartificial“trees”iswellknown;althoughunsympatheticand obtrusiveexamplescanbeseeninsomelocations,themostsuccessful examplesareprobablysimulatedconiferoustreeslocatedclosetoconiferouswoodlands.
BaseStationAntennasforMobileRadioSystems 89
(a)
(b)
Figure2.21 Thesebasestationsquicklybecomepartofthestreetsceneandarehardly
noticedbytheaveragepasserby.(Photosbytheauthor)
Glass-reinforced plastics (grp/Fiberglass) structures can be used to createvisualprofilesforbasestationantennainstallationsonoldand modernbuildings.Figure2.22ashowsagrpimitationchimneyduring teststochecktheeffectoftheenclosureontheradiationpatternsofthe antennashousedinside.InFigure2.22btheantennaandalargeamount ofelectronicequipmentishousedinacylinderthatformsanarchitectural feature.Figure2.22cshowstheinstallationofa“tree.” TheScottishGovernment’swebsite38pointsoutthatpublicworksof arthavebeencommissionedthatincorporateantennasorcompletebase stations.Theycanenhancethelandscapeandstrengthentheidentity ofaplace.Possiblelocationsforpublicartareinsquaresandplazas, alongsidemajortransportroutes,attransportintersections,orcloseto importantvistas. Thechallengeofminimizingthevisualimpactofbasestationsvariesin differentcountriesaccordingtolocalarchitecturalstylesandthenatureof theruralscenery.Insomecities,excellentcoveragehasbeenprovidedwith minimalimpactontheurbanscene,whereasothercitieshavebeenless activeinencouragingnetworkoperatorstoachievethehigheststandardsof visualengineering.Whilesomeofthesesolutionsareveryexpensive,other measuresarerelativelyinexpensiveandshouldalwaysbeconsidered.
90 Chapter Two
(a)
(b)
(c) Figure2.22 Disguisedbasestationantennasolutions:(a)Agrpstructuresurroundingthe antenna(PhotocourtesyofJaybeamWireless);(b)anintegratedthree-sectorBSantenna withTMAspresentedasanarchitecturalfeature(PhotocourtesyofPowerwave,Inc.);and (c)aBSdisguisedasatreebeingliftedintoposition(PhotocourtesyofKittingTelecom)
2.3.14.1 SiteandAntennaSharing Thesharingofbasestationfacilities
exists at several levels. Networks may share sites, but use separate antennastructures;theymayerectantennasonacommonstructureor shareantennas.Radioaccessnetwork(RAN)sharingbetweenoperators isbecomingcommoninsomecountries.Amobilevirtualnetworkoperator (MVNO) shares an entire physical network belonging to another
BaseStationAntennasforMobileRadioSystems 91
Figure2.23 Microstripfeednetworkforamulti-userantennawithindependently controlledbeamtilts(PhotocourtesyofQuintelLtd.)
organization,whichmaysimplybeahardwarefacilityproviderrather thanaserviceoperator.Sharingcreatessomeconstraintsontheways inwhichthesharingorganizationscandesignandoptimizetheirnetworks,butithasanimportantcontributiontomakebothtonetwork economics and also to minimizing the visual impact of mobile infrastructure.Figure2.23showsanexampleofadual-polarantennawith amicrostripfeednetworkandstacked-patchelementsthatcanprovide individuallycontrolledbeamtiltstomultiplenetworkusers.39 Insomecountries,theradioandTVbroadcastingindustryhasaclear distinctionbetweenasmallnumberofcompanieswhooperatethehardwareinfrastructure;theycompetitivelysellcapacitytoamuchlarger numberofcompanieswhoareresponsibleforthecontent.Thispattern ofdivisionreducesthetotalcostofoperationwhilemaintainingawide varietyofchoicefortheconsumerandmaybeonethatmobileradio systemsfollowincreasinglyinthefuture. 2.3.15 FutureDirections
Networkoperatorswillcontinuetobeunderpressuretoreducecosts, whileatthesametimetoprovideincreasedcapacity,bettercoverage,and higherdataratestosupportnewuserservices.Thecostsofnewequipmentroll-outonnewfrequencybandsareveryhigh,andthegreatest challengeinmanypartsoftheworldwillbetowringthehighestpossible levels of optimization from the existing networks.The wide adoption of RET techniques and the advent of remote azimuth steering (RAS) andremoteazimuthbeamwidthcontrol(RAB)providenewtoolsforthe dynamicoptimizationofnetworkperformance.Thenetworksoftwareto integratethesetechnologieswithtrafficdynamicsisstillunderdevelopmentbutwillpotentiallyhaveamajoreffectonnetworkoperation. Oncethislayerofsoftwarebecomesavailable,theantennaindustrywill
92 Chapter Two
likelydevisenewwaysinwhichthecapabilitiesofthese“semi-smart” techniquescanbeextendedtocreateadditionaloperationalflexibility. Thelicensingofmobileradiooperationsonadditionalfrequencybands is likely to create new requirements for multiband and /or wideband antennas.Thisisanareainwhichthechangingpoliciesofregulators mayhaveasignificantimpactonantennadesignandmanufacturing.The verylargenumberofcombinationsoffrequencies,polarizations,beamwidths,andotherparametershas,forsometime,resultedinantenna manufacturers requiring a very wide range of products, a trend that haspersistedfor20years.Thehighcostofantennadevelopmentand theeconomicsoflargevolumemanufacturinghavehadagreatimpact onthestructureoftheantennaindustryworldwideandaresomeofthe driversthathaveencouragedtheadventofwidebandRETantennasas wellastherationalizationoftheindustryinrecentyears. Moves to provide higher user data rates are stimulating intensive researchonmultipleantennatechniques.Planningconstraintsaswell ashardwarecostsandthepublic’smistrustoflargeantennainstallationswilllimitthepossibilityofsimplyaddingmorehardwaretoexistinginstallations,butoperatorscanrespondtothesenewrequirements bysharingtheirantennaestate,poolingtheirresources(towerspace, planning consents, and other hardware), and using them in a more technicallyadvantageousmanner. Itseemsunlikelythatwhatmanywouldregardastrue“smart”antennaswillbeintroducedinanyquantityintonetworksusingtheexisting GSM/UMTSairinterfaces,35butpracticeinEastAsiashowsthatthey mayplayawiderandmoresignificantroleiffutureairinterfacesare designedtoexploittheiradvantageswhileaccommodatingtheirlimitations.Technicaldevelopmentssuchastheintroductionoftransmit diversityandMIMOraisetheperformancebarofstandardantennas combinedwithsemi-smartcapabilities.Inbothcaseswhatisbeingdone iseffectivelytocombineintelligentsignalprocessingwithconventional antennaelements,andthefactthattherearemanydifferentwaysin whichsomenear-optimumsolutionmaybefoundbycombiningthese techniquesinvariouswayscomesasnosurprise. Thereiscurrentlymuchinterestinpossibleapplicationsforantennasusingartificialmaterialssuchaselectromagneticbandgap(EBG) structuresandfrequencyselectivesurfaces(FSSs),andtheremaybe somepossibilitiesfortheiruseinbasestationantennadesign.However, requirementsforwidebandwidthanddual-polarizedoperation,together withconstraintsoncostandefficiency,maylimittheirpossibleusesfor mainstreamapplications. TheuseofopticalfibertocarryRFsignalsiswell-known,andthis techniquecouldbeextendedtothedevelopmentofantennasinwhich beamformingisperformedinfiber,thesignalsbeingconvertedtoRF
BaseStationAntennasforMobileRadioSystems 93
at each radiating element.This would continue the existing trend of movingelectronicstothetowertopand,amongotheradvantages,could provideagreatimprovementinthepowerefficiencyofbasestations. References Note:Wherepatentsarecitedtheyshouldberegardedonlyasexamples forreference.Thecitationsarenotalwaystotheprimarydocuments (whichmaynotbeinEnglish),andthosethatarecitedasapplications maynothavebeengranted.Insomecases,thereferenceddocuments mayappeartoconflictwithoneanotherandnoopinionisimpliedor intendedastowhichmaytakeprecedenceorclaimpriority. 1.W.C-Y.Lee,MobileCommunicationsDesignFundamentals,2ndEd,NewYork: JWiley,1993. 2.“Environmentalconditionsandenvironmentaltestfortelecommunications equipment;Parts1–4:Classificationofenvironmentalconditions:Stationaryuseat non-weatherprotectedlocations,”ETS300-019-1-4,EuropeanTelecommunications StandardsInstitute:www.etsi.org. 3.“Guidanceforthecorrelationandtransformationofenvironmentalconditionclasses ofIEC60721-3totheenvironmentaltestsofIEC60068–Stationaryuseatnonweatherprotectedlocations,”IEC/TR60721-4-4:www.iec.ch. 4.B.S.Collins,“Polarizationdiversityantennasforcompactbasestations,”Microwave Journal,vol.43,no.1(January2000):76–88. 5.S.M.Alamouti,“Asimpletransmitdiversitytechniqueforwireless communications,”IEEEJ.SelectAreasofComms.,vol.16,no.8(October1998): 1451–1458. 6.D.M.PozarandD.H.Schaubert,Microstripantennas:theanalysisanddesignof microstripantennasandarrays,IEEEPress,1995. 7.K-MLuketal,“WidebandpatchantennawithL-shapeprobe,”USPatent6,593,887. 8.R.B.Waterhouse,MicrostripPatchAntennas:ADesigner’sGuide,Springer,2003. 9.RYMSA,EuropeanPatentEP1,879,256A1. 10.ArgusTechnologies,PCTPatentApplicationWO2006/135956A1. 11.CSALtd.,BritishPatentGB2,424,765. 12.N.Cummings,“Methodsofpolarizationsynthesis,”inAntennaEngineering Handbook,4thEd.J.Volakis,NewYork:McGraw-Hill,2007. 13.R.C.Hansen,“Arraypatterncontrolandsynthesis,”ProcIEEE,vol.80,no.1 (January1992). 14.R.S.Elliott,“Designofline-sourceantennasforsumpatternswithsidelobes ofindividuallyarbitraryheights,”IEEETrans.AP.,vol.AP-24,(January1976): 76–83. 15.Kathrein-WerkeKG,USPatent6,930,651. 16.Kathrein-WerkeKG,USPatentApplicationUS2004/0178964. 17.CSALtd.,PTCPatentApplicationWO99/59223. 18.CSALtd.,PTCPatentApplicationWO9959223A2. 19.Kathrein-WerkeKG,USPatent7,079,083. 20.W.C-YLee,“Cellularmobileradiotelephonesystemusingtiltedantennaradiation patterns,”USPatent4,249,181. 21.DeltecTelesystemsInternationalLtd.,USPatent6,198,458. 22.I.Siomina,P.Varbrand,andD.Yuan,“Automatedoptimizationofservicecoverage andbasestationantennaconfigurationinUMTSnetworks,”IEEEWirelessComms, vol.13,no.6,(December2006). 23.Teilletetal,USPatentApplicationUS2005/0057417. 24.AndrewCorporation,USPatentApplicationUS2008/0024355.
94 Chapter Two 25.“UTRANIuantinterface:Generalaspectsandprinciples,”TechnicalSpecificationTS 25.460,3rdGenerationPartnershipProject:www.3gpp.org. 26.“Controlinterfaceforantennalinedevices,”StandardAISGv2.0,AntennaInterface StandardsGroup:www.aisg.org.uk. 27.“UTRANIuantinterface:Layer1,”TechnicalSpecificationTS25.461,3rdGeneration PartnershipProject:www.3gpp.org. 28.“UTRANIuantinterface:Signallingtransport,”TechnicalSpecificationTS25.462,3rd GenerationPartnershipProject:www.3gpp.org. 29.“UTRANIuantinterface:Remoteelectricaltilting(RET):Antennasapplicationpart (RETAP)signalling,”TechnicalSpecificationTS25.463,3rdGenerationPartnership Project:www.3gpp.org. 30.JaybeamLtd,PCTPatentApplicationWO2007/141281. 31.Izzatetal,USPatentApplicationUS2004/0160361. 32.“Remoteazimuthbeamwidthextensiontothecontrolinterfaceforantennaline devices,”ExtensionStandardAISG-ES-RAB,AntennaInterfaceStandardsGroup: www.aisg.org.uk. 33.PowerwaveInc.,PTCPatentApplicationWO2007/136333. 34.“Remoteazimuthsteeringextensiontothecontrolinterfaceforantennaline devices,”ExtensionStandardAISG-ES-RAS,AntennaInterfaceStandardsGroup: www.aisg.org.uk. 35.C.Parinietal,“Semi-smartantennas,”UK:Ofcom,2006:www.ofcom.org.uk/ research/technology/research/emer_tech/smart/finalb.pdf. 36.“IEEEstandardtestproceduresforantennas,”ANSI/IEEEStd.149–1979, December1979. 37.InternationalCommissiononNon-IonizingRadiationProtection,“Guidelinesfor limitingexposureintime-varyingelectric,magneticandelectromagneticfields (upto300GHz),”HealthPhysics,vol.74(1998):494–522.(Refertoyournational regulationsforregulatoryinformation.) 38.Manygoodplanningideasandexamplesofdisguisedantennascanbefoundat http://www.scotland.gov.uk/Publications/2001/09/pan62/pan62-. 39.QuintelTechnologyLtd,PatentApplicationPCTWO2006/008452A1.
Chapter
3
AntennasforMobile Communications:CDMA, GSM,andWCDMA
Ka-LeungLauandKwai-ManLuk CityUniversityofHongKong
3.1 Introduction Theoperatingfrequenciesfor2Gand3Gmobilecommunicationsfall into the 820–960 MHz and the 1710–2170 MHz frequency bands. In theselowermicrowavefrequencyranges,antennasizeisanissuefor bothbasestationantennasandhandsetantennas.Ingeneral,weprefer basestationantennasthathavealowprofileandastreamlinedstructure. Otherwise, our living environment would be crowded with the hugenumberofantennasfordifferentsystemsandoperators.Alsofor aestheticreasons,wepreferthatahandsetantennabeembeddedin themobilephonecover. Designingbasestationantennasismorechallengingandinteresting thandesigninghandsetantennas,sincemorestringentrequirements areimposedontheperformanceofdifferentbasestationantennasfor indoorandoutdoorcoverage. 3.1.1 RequirementsforIndoor BaseStationAntennas
Inindoorenvironments,suchasshoppingmalls,parkinggarages,orairports,integratednetworksservingallmobilephoneoperatorsarecommonlyinstalled.Forthisimplementation,verywidebandormultiband antennasarerequired.Thegainsoftheseantennasneednotbetoohigh. Inwall-mountedcases,theradiationpatternshouldbeunidirectional 95
96 Chapter Three
andshouldhaveahorizontalbeamwidthofatleast90°toensurewide anglecoverage.Thiscanberealizedbycombiningtwoseparatedipole arraysoperatedatdifferentfrequencies.Atypical7-dBigaindual-band indoorpanelantennaconsistingoftwotwo-elementdipolearrays,one for GSM900 and the other for GSM1800, is schematically shown in Figure3.1.Thetwoarraysareconnectedthroughaspeciallydesigned dual-bandfeednetwork. Inceiling-mountedcases,theantennashouldhaveaconicalradiation patterninthehorizontalplane.Thisantennacanbeimplementedusing broadbandelectricdipoletechnology.Twotypicalbroadbandindoorceiling-mountedantennasforindoorcoverageareshowninFigure3.2.The firstoneisbasedonadual-bandmonopoledesignwhereasthesecond oneisbasicallyabiconicalantenna. 3.1.2 RequirementsforOutdoor BaseStationAntennas
Highlysophisticatedbasestationantennaarraysareindemandforoutdoorcoverageinmobilecommunications.Thevariousrequiredperformancecharacteristicsofthisantennaarenoteasytoachieve.Different wideband arrays with a variety of beamwidth (60°/90°/105°), gain (10to20dBi),anddowntilt(0°to20°)optionsmustbemadeavailable tocovervariousdeploymentscenariosinurban,suburban,andrural environments.Theantennasaredesignedwithnullfillcapabilityfor
Ground plane
Dipole for GSM900
Dual-band transmission line
Dipole for GSM1800 SMA connector Figure3.1 Adual-bandwall-mountedpatchantenna
AntennasforMobileCommunications:CDMA,GSM,andWCDMA 97
Circular post Cylindrical cup
Ground plane
Coaxial feed
SMA connector (a)
Shorting strip Conical monopole
Conical ground plane SMA connector (b) Figure3.2 Broadbandceiling-mountedantennas
98 Chapter Three
mitigatingthecoverageissueforsubscribersclosertothebasestation antenna.Theantennasshouldalsoprovideuppersidelobesuppression andhighfront-to-backratioforminimizinginterferencewithneighboringcells.Toreduceinterferenceamongdifferentmobilephonechannels, theintermodulationdistortion(IMD)mustbelessthan–103dBm. Inthepast,aspacediversitytechnologywithonetransmittingarray andtworeceivingarrayswasusuallyrealized.Nowadays,adual-polarizedantennawithtwoindependentlyoperatingslantedarrays,oneat +45°degreeandtheotherat−45°polarization,isimplementedpredominantly.Forgooddiversityperformance,thedecouplingbetweenthetwo arraysisrequiredtobeatleast30dB. Forreducinginstallationeffortandcosts,antennaarraysareneeded thatareabletooperateinallmobilecommunicationbands,whichcan considerablyreducethenumberofantennasrequiredbynetworkoperators.To provide more flexibility in network design, the gain in each frequencybandcanbedifferentfromotherbands.Again,decoupling betweenoutputportsfordifferentfrequencybandsisacriticalissuein thedesignprocess. Commercially available base station antenna arrays are based on dipoleantennatechnology.Althoughdifferentbrandnamesareused, suchasthevectordipole,1butterflydipole,2anddirecteddipole,3they alluseareflectortoproduceadirectionalradiationpatternfromelectric dipoles.Othercompaniesemployaperture-coupledpatchantennas4as basicelementstodeveloptheiroutdoorbasestationantennaseries.In general,theperformancesoftheseantennasisexcellent. Inthefollowingsection,wepresentfivenoveldesignsofbasestation antennasforoutdoorandindoorcoverage,allbasedonL-probefedpatch antennatechnology.5Wehopetheseprovidepracticingengineerswith alternative design solutions and new insights when designing their basestationantennas. 3.2 CaseStudies 3.2.1 Case1:AnEight-Element-Shaped BeamAntennaArray
Inthissection,thedesignofalinearlypolarized,shapedbeamantenna arrayusingageneticalgorithm(GA)ispresented.Havingabasestation antennawithnullfilltoavoidpossibleareasofreducingfieldstrength intheserviceareaisdesirable.6Thisantennaisusuallycomprisedof anumberofidenticalelementsmountedalongaverticallinetoform anantennaarray.Iftheseelementsarearrangedwithappropriateelementspacingandexcitedwithcurrentsofappropriateamplitudesand phases,acharacteristic-shapedradiationpatternintheverticalplane
AntennasforMobileCommunications:CDMA,GSM,andWCDMA 99
canbeobtained.Indeed,thecurrentamplitudesandphasescanbecontrolledbyadjustingthepowerratiosattheoutputportsofthepower dividerandthelengthsoftheconnectingcables. 3.2.1.1 ArrayGeometry Thegeometryoftheproposedarrayisshown
inFigure3.3.7Itisaneight-elementL-probe-fedpatchantennaarray. Eacharrayelementconsistsofarectangularpatchthatissupported by plastic posts above the ground plane and is proximity-coupled by anL-shapedprobelocatedunderitsedge.Inordertoreducethecrosspolarizationofthearray,whichismainlycausedbytheverticalportions of the L-shaped probes, the vertical portions of adjacent probes are locatedatoppositeedgesandareexcitedinanti-phases.Normally,a wide-bandeight-waypowerdividerwillbeusedtofeedtheseprobes. Thedesignofthisdividerwillnotbediscussedhere.Wewillspendmore timedescribingtheoptimizationofthecurrentamplitudesandphases characteristicsandtheelementspacingforachievingashaped-beam radiationpatternthroughtheuseofGA.Theantenna’sperformance, includingtheS-parameters,radiationpatterns,andgain,wassimulated bytheMoMsolverIE3DwithGAcapability.
3.2.1.2 GeneticAlgorithm Employingthemomentmethodtoevaluate this array requires long computation time and numerous memories. Global searching methods for optimization are not recommended.To reduce the computation time, the choice of boundaries for a chromosomeinvolvedinthegeneticalgorithmbecomescritical.Heretheoptimization starts with the current amplitudes and phases obtained by theOrchard-Elliottsynthesisprocedure.Thosechromosomesfromthis
Port 1 Port 2 Port 3 E1
Port 4 E2
Port 5 E3
z y
Port 6 E4
x
Port 7 E5
Port 8
E6 E7
Figure3.3 Geometryoftheeight-elementshapedbeamantennaarray
7
100
Chapter Three
calculationarevariedwithinapresetrangeandtheelementspacing isassumedtobeequalto0.8lo.Aftertheboundariesforthecurrent amplitudesandphasesaredetermined,weneedtofindtheboundaries fortheelementspacings.Byconsideringthephysicalsizesoftheelementsandneglectingthemutualcouplingeffectbetweentheelements, weassumethatthelowerandupperboundariesfortheelementspacing are0.75loand0.85lo,respectively.Nextweneedtodefinetheobjective functionsinthegeneticalgorithm. ObjectiveFunctions Thereareseveralcriteriafortheradiationpattern tobesynthesized.Themainlobehastobesynthesizedwiththeabsolute maximumvaluealongaspecifieddirection.Also,thepowerlevelsofthe nullshavetobespecifiedtoformanearlyCosec2qpattern.Moreover, thepeakgainofthemainbeamhastobemaximized.Otherthanthe radiationpattern,arequirementisalsoplacedontheinputreturnloss ofeacharrayelement.Theobjectivefunctionsofthegeneticalgorithm arelistedhere: ■
Minimumgain>15dBi(from1.71to2.17GHz)
■
Uppersidelobes