Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch: Band 3 Differential- und Integralrechnung [3 ed.] 978-3-211-76746-7, 978-3-211-76747-4

Computer-Algebra-Systeme (CAS) und computerorientierte numerische Verfahren (CNV) vereinfachen den praktischen Umgang mi

490 135 10MB

German Pages 487 [495] Year 2008

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Front Matter....Pages i-ix
Folgen, Reihen und Grenzwerte....Pages 1-34
Grenzwert einer reellen Funktion und Stetigkeit....Pages 35-62
Differentialrechnung....Pages 63-252
Integralrechnung....Pages 253-414
Back Matter....Pages 415-487
Recommend Papers

Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch: Band 3 Differential- und Integralrechnung [3 ed.]
 978-3-211-76746-7, 978-3-211-76747-4

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

W

Josef Trölß

Angewandte Mathematik mit Mathcad Lehr- und Arbeitsbuch Band 3 Differential- und Integralrechnung Dritte, aktualisierte Auflage

SpringerWienNewYork

Mag. Josef Trölß Asten/Linz, Österreich

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdruckes, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf photomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. © 2005, 2007, 2008 Springer-Verlag/Wien Printed in Germany SpringerWien New York ist ein Unternehmen von Springer Science + Business Media springer.at Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Buch berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürfen. Produkthaftung: Sämtliche Angaben in diesem Fachbuch/wissenschaftlichen Werk erfolgen trotz sorgfältiger Bearbeitung und Kontrolle ohne Gewähr. Insbesondere Angaben über Dosierungsanweisungen und Applikationsformen müssen vom jeweiligen Anwender im Einzelfall anhand anderer Literaturstellen auf ihre Richtigkeit überprüft werden. Eine Haftung des Autors oder des Verlages aus dem Inhalt dieses Werkes ist ausgeschlossen. Korrektorat: Mag. Eva-Maria Oberhauser/Springer-Verlag Satz: Reproduktionsfertige Vorlage des Autors Druck und Bindearbeiten: Strauss GmbH, 69509 Mörlenbach, Deutschland Gedruckt auf säurefreiem, chlorfrei gebleichtem Papier – TCF SPIN: 12174447

Mit zahlreichen Abbildungen

Bibliografische Informationen der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN ISBN

978-3-211-76746-7 SpringerWienNewYork 978-3-211-71180-4 2. Aufl. SpringerWienNewYork

Vorwort Dieses Lehr- und Arbeitsbuch aus dem vierbändigen Werk "Angewandte Mathematik mit Mathcad" richtet sich vor allem an Schülerinnen und Schüler höherer Schulen, Studentinnen und Studenten, Naturwissenschaftlerinnen und Naturwissenschaftler sowie Anwenderinnen und Anwender, speziell im technischen Bereich, die sich über eine computerorientierte Umsetzung mathematischer Probleme informieren wollen und dabei die Vorzüge von Mathcad möglichst effektiv nützen möchten. Dieses vierbändige Werk wird ergänzt durch das Lehr- und Arbeitsbuch "Einführung in die Statistik und Wahrscheinlichkeitsrechnung und in die Qualitätssicherung mithilfe von Mathcad". Als grundlegende Voraussetzung für das Verständnis und die Umsetzung mathematischer und technischer Aufgaben mit Mathcad gelten die im Band 1 (Einführung in Mathcad) angeführten Grundlagen. Computer-Algebra-Systeme (CAS) und computerorientierte numerische Verfahren (CNV) vereinfachen den praktischen Umgang mit der Mathematik ganz entscheidend und erfahren heute eine weitreichende Anwendung. Bei ingenieurmäßigen Anwendungen kommen CAS und CNV nicht nur für anspruchsvolle mathematische Aufgabenstellungen und Herleitungen in Betracht, sondern auch als Engineering Desktop Software für alle Berechnungen. Mathcad stellt dazu eine Vielfalt von leistungsfähigen Werkzeugen zur Verfügung. So können mathematische Formeln, Berechnungen, Texte, Grafiken usw. in einem einzigen Arbeitsblatt dargestellt werden. Berechnungen und ihre Resultate lassen sich besonders einfach illustrieren, visualisieren und kommentieren. Werden auf dem Arbeitsblatt einzelne Parameter variiert, so passt die Software umgehend alle betroffenen Formeln und Diagramme des Arbeitsblattes an diese Veränderungen an. Spielerisch lässt sich so das "Was wäre wenn" untersuchen. Damit eignet sich diese Software in hervorragender Weise zur Simulation vieler Probleme. Auch die Visualisierung durch Animation kommt nicht zu kurz und fördert das Verständnis mathematischer Probleme. Ein weiterer Vorteil besteht auch darin, dass die meisten mathematischen Ausdrücke mit modernen Editierfunktionen in gewohnter standardisierter mathematischer Schreibweise dargestellt werden können.

Gliederung des dritten Bandes In diesem Band wird eine leicht verständliche anwendungsorientierte und anschauliche Darstellung des mathematischen Stoffes gewählt. Definitionen, Sätze und Formeln werden für das Verständnis möglichst kurz gefasst und durch zahlreiche Beispiele aus Naturwissenschaft und Technik und anhand vieler Abbildungen und Grafiken näher erläutert. Dieses Buch wurde weitgehend mit Mathcad 14 (M011) erstellt, sodass die vielen angeführten Beispiele leicht nachvollzogen werden können. Sehr viele Aufgaben können aber auch mit älteren Versionen von Mathcad gelöst werden. Bei zahlreichen Beispielen werden die Lösungen teilweise auch von Hand ermittelt. Im vorliegenden Band werden folgende ausgewählte Stoffgebiete behandelt: x

Folgen, Reihen und Grenzwerte: reelle Zahlenfolgen, Eigenschaften von Folgen, arithmetische und geometrische Folgen, arithmetische endliche Reihen, geometrische endliche Reihen, Grenzwerte von unendlichen Folgen, Grenzwerte von unendlichen Reihen, geometrische unendliche Reihen.

x

Grenzwerte einer reellen Funktion und Stetigkeit: Grenzwerte einer reellen Funktion, Stetigkeit von reellen Funktionen, Eigenschaften stetiger Funktionen, Verhalten reeller Funktionen im Unendlichen.

x

Differentialrechnung: Differenzen- und Differentialquotient (Sekante und Tangente), Ableitungsregeln von reellen Funktionen in kartesischer Darstellung, Parameterdarstellung und Polarkoordinatendarstellung, Krümmung ebener Kurven, Grenzwerte von unbestimmten Ausdrücken, Kurvenuntersuchungen, Extremwertaufgaben, Differential einer Funktion (angenäherte Funktionswertberechnung und Fehlerbestimmung), Näherungsverfahren zum Lösen von Gleichungen (Newton-Verfahren und Regula Falsi), Interpolationskurven, Funktionen mit mehreren Variablen, partielle Ableitungen, Fehlerrechnung, Ausgleichsrechnung.

x

Integralrechnung: unbestimmtes Integral, bestimmtes Integral, Integrationsmethoden, uneigentliches Integral erster und zweiter Art, numerische Integration (Mittelpunkts- und Trapezregel, Kepler- und Simpsonregel), Berechnung der Bogenlänge, Flächenberechnung (ebene Flächen und Mantelflächen von Rotationskörpern), Volumsberechnung, Schwerpunktsberechnung, Trägheitsmomente, Biegelinien, Arbeitsintegrale, hydromechanische Berechnungen, Mittelwerte, Mehrfachintegrale.

Spezielle Hinweise Beim Erstellen eines Mathcad-Dokuments ist es hilfreich, viele mathematische Sonderzeichen verwenden zu können. Ein recht umfangreicher Zeichensatz ist die Unicode-Schriftart "Arial". Eine neue Mathematikschriftart (Unicode-Schriftart "Mathcad UniMath") von Mathcad erweitert die verfügbaren mathematischen Symbole (wie z. B. griechische Buchstaben, mathematische Operatoren, Symbole und Pfeile) beträchtlich. Einige Sonderzeichen aus der Unicode-Schriftart "Arial" stehen auch im "Ressourcen-Menü" von Mathcad zur Verfügung (QuickSheets-Gesonderte Rechensymbole). Spezielle Zeichen finden sich auch in anderen Zeichensätzen wie z. B. Bookshelf Symbol 2, Bookshelf Symbol 4, Bookshelf Symbol 5, MT Extra, UniversalMath1 PT, Castellar und CommercialScript BT. Empfohlen wird aber der Einsatz von reinen Unicode-Schriftarten. Zum Einfügen verschiedener Zeichen aus verschiedenen Zeichensätzen ist das Programm Charmap.exe sehr nützlich. Dieses Programm finden Sie unter Zubehör-Zeichentabelle in Microsoft-Betriebssystemen. Es gibt aber auch andere nützliche Zeichentabellen-Programme. Viele Zeichen können aber auch mithilfe des ASCII-Codes (siehe Zeichentabelle) eingefügt werden (Eingabe mit Alt-Taste und Zifferncode mit dem numerischen Rechenblock der Tastatur). Zur Darstellung von komplexen Variablen wird hier die Fettschreibweise mit Unterstreichung gewählt. Damit Variable zur Darstellung von Vektoren und Matrizen von normalen Variablen unterschieden werden können, werden diese hier in Fettschreibweise dargestellt. Die Darstellung von Vektoren mit Vektorpfeilen wird vor allem in Definitionen und Sätzen verwendet. Damit Variable, denen bereits ein Wert zugewiesen wurde, wertunabhängig auch für nachfolgende symbolische Berechnungen mit den Symboloperatoren (live symbolic) verwendet werden können, werden diese einfach redefiniert (z. B. x:=x). Davon wird öfters Gebrauch gemacht.

Danksagung Mein außerordentlicher Dank gebührt meinen geschätzten Kollegen Hans Eder und Bernhard Roiss für ihre Hilfestellungen bei der Herstellung des Manuskriptes, für wertvolle Hinweise und zahlreiche Korrekturen. Hinweise, Anregungen und Verbesserungsvorschläge sind jederzeit willkommen. Linz, im Februar 2008

Josef Trölß

Inhaltsverzeichnis

1. Folgen, Reihen und Grenzwerte 1.1 Folgen

1 ... 34

1

1.1.1 Arithmetische Folgen

9

1.1.2 Geometrische Folgen

13

1.2 Reihen

20

1.2.1 Arithmetische endliche Reihen

20

1.2.2 Geometrische endliche Reihen

22

1.3 Grenzwerte von unendlichen Folgen

26

1.4 Grenzwerte von unendlichen Reihen

29

2. Grenzwerte einer reellen Funktion und Stetigkeit

35 ... 62

2.1 Grenzwerte einer reellen Funktion

35

2.2 Stetigkeit von reellen Funktionen

40

2.2.1 Eigenschaften stetiger Funktionen

44

2.2.2 Verhalten reeller Funktionen im Unendlichen

46

3. Differentialrechnung 3.1 Die Steigung der Tangente - Der Differentialquotient 3.1.1 Die physikalische Bedeutung des Differentialquotienten 3.2 Ableitungsregeln für reelle Funktionen

63 ... 252

63 69 73

3.2.1 Ableitung der linearen Funktion

73

3.2.2 Potenzregel

73

3.2.3 Konstanter Faktor und Summenregel

76

3.2.4 Produktregel

78

3.2.5 Quotientenregel

79

3.2.6 Kettenregel

81

3.2.7 Ableitungen von Funktionen und Relationen in impliziter Darstellung

85

3.2.8 Ableitung der Exponential- und Logarithmusfunktion

90

3.2.9 Ableitung von Kreis- und Arkusfunktionen

99

3.2.10 Ableitung von Hyperbel- und Areafunktionen

105

3.2.11 Höhere Ableitungen

111

3.2.12 Ableitungen von Funktionen in Parameterdarstellung

114

3.2.13 Ableitungen von Funktionen in Polarkoordinatendarstellung

123

3.2.14 Krümmung ebener Kurven

128

3.2.15 Grenzwerte von unbestimmten Ausdrücken

134

Inhaltsverzeichnis

3.3 Kurvenuntersuchungen

138

3.4 Extremwertaufgaben

177

3.5 Das Differential einer Funktion

190

3.5.1 Angenäherte Funktionswertberechnung

191

3.5.2 Angenäherte Fehlerbestimmung

194

3.6 Näherungsverfahren zum Lösen von Gleichungen

198

3.6.1 Das Newton-Verfahren

198

3.6.2 Das Sekantenverfahren

203

3.7 Interpolationskurven

207

3.8 Funktionen mit mehreren unabhängigen Variablen

217

3.8.1 Allgemeines

217

3.8.2 Partielle Ableitungen

222

3.9 Fehlerrechnung

236

3.10 Ausgleichsrechnung

242

4. Integralrechnung

253 ... 414

4.1 Das unbestimmte Integral

253

4.2 Das bestimmte Integral

256

4.3 Integrationsmethoden

264

4.3.1 Grundintegrale

264

4.3.2 Integration durch Substitution

272

4.3.3 Partielle Integration

277

4.3.4 Integration durch Partialbruchzerlegung

280

4.4 Uneigentliche Integrale

287

4.4.1 Uneigentliche Integrale 1. Art

287

4.4.2 Uneigentliche Integrale 2. Art

291

4.5 Numerische Integration

294

4.5.1 Mittelpunkts- und Trapezregel

294

4.5.2 Kepler- und Simpsonregel

298

4.6 Anwendungen der Integralrechnung

306

4.6.1 Bogenlänge einer ebenen Kurve

306

4.6.2 Berechnung von Flächeninhalten

315

4.6.2.1 Berechnung von Flächeninhalten unter einer Kurve

315

4.6.2.2 Berechnung von Flächeninhalten zwischen zwei Kurven

322

4.6.2.3 Mantelflächen von Rotationskörpern

329

4.6.3 Volumsberechnung

334

Inhaltsverzeichnis

4.6.4 Berechnung von Schwerpunkten

342

4.6.4.1 Schwerpunkt eines Kurvenstückes

343

4.6.4.2 Schwerpunkt einer Fläche

345

4.6.4.3 Schwerpunkt einer Drehfläche

352

4.6.4.4 Schwerpunkt eines Drehkörpers

353

4.6.5 Berechnung von Trägheitsmomenten

356

4.6.5.1 Das Massenträgheitsmoment

356

4.6.5.2 Das Flächenträgheitsmoment

361

4.6.6 Berechnung von Biegelinien

366

4.6.7 Berechnung von Arbeitsintegralen

379

4.6.8 Berechnungen aus der Hydromechanik

388

4.6.9 Berechnung von Mittelwerten

391

4.7 Mehrfachintegrale

403

4.7.1 Doppelintegrale

403

4.7.2 Dreifachintegrale

409

Anhang

415... 487

Übungsbeispiele

415

Literaturverzeichnis

480

Sachwortverzeichnis

482

Folgen, Reihen und Grenzwerte

1. Folgen, Reihen und Grenzwerte 1.1 Folgen Reelle Zahlenfolgen heißen solche Funktionen, bei denen die Definitionsmenge D eine Menge natürlicher Zahlen ( D Ž² bzw. D Ž² ) und der Wertebereich W eine Menge reeller Zahlen ist. f: D

o W  

(1-1)

n |of(n) = an Die Elemente des Wertebereichs heißen Glieder der Zahlenfolge. Die Glieder, also die Zahlen a0 , a1 , a2 , ... , bzw. a1 , a2 , a3 , ... , sind die zu den Platzhaltern 1, 2, 3, ... (Indizes) gehörigen Funktionswerte. Bezeichnungen: f(n) = an

Funktionsgleichung

an

allgemeines Glied der reellen Folge (Termdarstellung)

a0 bzw. a1

1. Glied der Folge oder Anfangsglied

ak

k-tes Glied der Folge

an!= a0, a1, a2, ... , an!

bzw. an!= a1, a2, a3, ... , an!

an!= a0, a1, a2, a3, ... !

bzw. an!= a1, a2, a3, ... , an, ...! unendliche Folge

endliche Folge

Beispiel 1.1.1: n

 { 1, 2, 3, ..., 10 }

Definitionsmenge

an!=1/n != 1; 1/2; 1/3; ... ; 1/10 >

endliche Folge

ORIGIN  1

ORIGIN festlegen

n  1  10

Bereichsvariable

an 

1

Folgeglieder in einem Vektor gespeichert

n

Vektorausgabe in Tabellenform: an

a 1

Verschiedene Ausgabeformen der Folgeglieder: T

1

1

1

1

1/1

2

0.5

2

1/2

3

0.333

3

1/3

4

0.25

4

1/4

5

0.2

5

1/5

6

0.167

6

1/6

7

0.143

7

1/7

8

0.125

8

1/8

9

0.111

9

1/9

10

0.1

10

1/10

§ ©

a o ¨1

a2 o a10 o

· ¸ 2 3 4 5 6 7 8 9 10 ¹ 1

1

1

1

a2

2 1 10

Seite 1

a10

1

1

0.5

0.1

1

1

1

a2

a10

1

1 2 1 10

symbolische Ausgabe in Vektorform symbolische und numerische Ausgabe der Folgeglieder

Folgen, Reihen und Grenzwerte

Eigenschaften von Folgen: Eine Folge ak ! heißt 1. streng monoton steigend, wenn für alle k D gilt:

ak < ak+1

(1-2)

2. monoton steigend, wenn für alle k D gilt:

ak d ak+1

(1-3)

3. streng monoton fallend, wenn für alle k D gilt:

ak > ak+1

(1-4)

4. monoton fallend, wenn für alle k D gilt:

ak t ak+1

(1-5)

5. konstant, wenn für alle k D gilt:

ak = ak+1

(1-6)

6. nach oben beschränkt, wenn für alle k D gilt:

ak d K o

(1-7)

ak t Ku

(1-8)

|ak | d M

(1-9)

ak!

K o heißt obere Schranke von

7. nach unten beschränkt, wenn für alle k D gilt: K u heißt untere Schranke von

ak!

8. beschränkt, wenn für alle k D gilt: M heißt Schranke von

ak!

Ko, Ku, M  Beispiel 1.1.2: Geg.:

an = 1/10 ( n2 -1)

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge (n > 0) und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

n  1  10

Bereichsvariable

an  T

1 10

§ ©

a o ¨0 a1 o 0

an

2

˜ n 1

allgemeines Folgeglied

3

4

3

12

7

24

63

10

5

2

5

2

5

10

a2 o

3

a3 o

10

4

· ¸ 10 ¹ 99

8

a4 o

5

symbolische Ausgabe in Vektorform

3

a5 o

2

12 5

7

a10 o

2

99 10

1

11 10 9 8 7 6 5 4 3 2 1  1 1 0

a6 o

a

1

2

3

4

5

6

7

8

9

10

n

Abb. 1.1.1

Seite 2

11

1

0

2

3/10

3

4/5

4

3/2

5

12/5

6

7/2

7

24/5

8

63/10

9

8/1

10

99/10

numerische Ausgabe in Vektorform

Folgen, Reihen und Grenzwerte

Beispiel 1.1.3: Geg.:

an = (-1)n 2/n

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge (n > 0) und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

a a

n  1  n1

Bereichsvariable 2

n

an  ( 1) ˜

T

n1 

ORIGIN festlegen und Redefinition der Variablen a

Steuerung der Bereichsvariablen mit einem Schieberegler (Slider)

allgemeines Folgeglied

n

§ ©

a o ¨ 2 1  a1 o 2

2

1

3

2



a2 o 1

2

1



2

1

5

3

7

4

a3 o 

2



2

1

9

5

a4 o

3



1 2

· ¸ 11 6 ¹ 2

1

symbolische Ausgabe in Vektorform

a5 o 

2 5

a6 o

1

a10 o

3

1 5

alternierende Folge 2

Wenn für alle k D ak . ak+1 < 0 gilt, so heißt die

1

Folge alternierende Folge! 1 0 1

an

2

3

4

5

6

7

8

9 10 11 12 13 14 15

1 2

Abb. 1.1.2

3 n

Beispiel 1.1.4: Geg.:

an = 2 cos( n S/6 )

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge (n > 0) und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

a a

n  1  10

Bereichsvariable

§ ©

an  2 ˜ cos ¨ n ˜

T

a o a1 o



ORIGIN festlegen und Redefinition der Variablen a

π·

¸



allgemeines Folgeglied

3 1 0 1  3 2  3 1 0 1

3

a2 o 1

a3 o 0



a4 o 1

a5



2672279 1542841

a5 o  3

Seite 3

Vorsicht bei der Ausgabe im Format Bruch! Maschinenzahlen! a6 o 2

a10 o 1

Folgen, Reihen und Grenzwerte

2 1 1

an

0

1

2

3

4

5

6

7

8

9

10

11

1

Abb. 1.1.3

2 3 n

Beispiel 1.1.5: Geg.:

an = 2

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge (n > 0) und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

n  1  10

Bereichsvariable

an  2

allgemeines Folgeglied (konstante Folge)

T

a o (2 2 2 2 2 2 2 2 2 2 )

symbolische Ausgabe in Vektorform

a1 o 2

a4 o 2

a2 o 2

a3 o 2

a5 o 2

a6 o 2

a10 o 2

konstante Folge 3

2 an

Abb. 1.1.4 1

1

0

1

2

3

4

5

6

7

8

9

10

11

n

Beispiel 1.1.6: Geg.:

an = 3 n / (2 n - 1)

Ges.:

Es soll gezeigt werden, dass die Folge streng monoton fällt und die Zahl 1 eine untere Schranke ist. Stellen Sie die ersten 10 Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

Seite 4

Folgen, Reihen und Grenzwerte

n  1  10 an 

Bereichsvariable

3˜ n

allgemeines Folgeglied

2˜ n  1

§ ©

a o ¨3 2

9

12

5

18

21

8

27

30

5

7

3

11

13

5

17

19

a1 o 3

a2 o 2

T

a3 o

9

a4 o

5

· ¸ ¹

symbolische Ausgabe in Vektorform

12

a5 o

7

5

a6 o

3

18 11

a10 o

30 19

4

3 an

2

Abb. 1.1.5 1

1

1

0

1

2

3

4

5

6

7

8

9

10

11

n

an ! an 1 3˜ n 2˜ n  1

!

3 ˜ ( n  1) 2 ˜ ( n  1)  1

an t Ku

hat als Lösung(en)

1 2

n›n

1 2

Gilt für alle n > 1/2 und damit für alle n ². Die Folge ist daher streng monoton fallend. n < -1/2 kommt hier nicht in Frage, weil n eine natürliche Zahl sein soll.

Ku = 1 Händische Lösung (gilt für alle n ²). Die Folge ist daher nach unten beschränkt.

3˜ n t 2˜ n  1

Beispiel 1.1.7: Geg.:

an = (10 n - 7) / n2

Ges.:

Es soll nachgewiesen werden, dass die Zahl 4 eine obere und die Zahl 0 eine untere Schranke der Folge ist. Stellen Sie die ersten 10 Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

n  1  10

Bereichsvariable

an 

10 ˜ n  7

allgemeines Folgeglied

2

n T

§ ©

a o ¨3

13

23

33

43

53

9

73

83

93

4

9

16

25

36

7

64

81

100

· ¸ ¹

Seite 5

symbolische Ausgabe in Vektorform

Folgen, Reihen und Grenzwerte

a1 o 3

a2 o

13

a3 o

4

23

a4 o

9

33

a5 o

16

4

43

a6 o

25

53 36

a8 o

73 64

4

3 an

2

Abb. 1.1.6 1

1

0

1

2

3

4

5

6

7

8

9

10

0 11

n

an d Ko 10 ˜ n  7 2

d 4 hat als Lösung(en)

0n›n0

n

Gilt für alle n ². Die Folge ist daher nach oben beschränkt.

an t Ku 10 ˜ n  7 2

t 0 hat als Lösung(en)

n

7 10

dn

Gilt für alle n t 7/10 und damit für alle n ². Die Folge ist daher nach unten beschränkt.

Anstatt das allgemeine Glied a n in Termdarstellung anzugeben, kann eine Folge durch eine sogenannte Rekursionsformel (rekursiv bedeutet zurücklaufend) festgelegt werden. In diesem Fall wird das erste Glied (oder auch die ersten beiden) und zusätzlich eine Rechenvorschrift angegeben, die es gestattet, alle folgenden Glieder jeweils aus dem vorhergehenden Glied zu berechnen.

Beispiel 1.1.8: Geg.:

b1 = 1 und die Rekursionsformel bn+1 = bn + n2

Ges.:

Wie lauten die ersten 14 Folgeglieder? 2

b4 = b3  3 = 6  9 = 15

b1 = 1

2

Berechnung der ersten 6 Folgeglieder mit der Rekursionsformel

b2 = b1  1 = 1  1 = 2

2

b5 = b4  4 = 15  16 = 31

b3 = b2  2 = 2  4 = 6

2

b6 = b5  5 = 31  25 = 56

ORIGIN  1

ORIGIN festlegen

n  1  13

Bereichsvariable

b1  1

Anfangswert (Wert des 1. Folgegliedes)

2

Seite 6

Folgen, Reihen und Grenzwerte

2

bn  1  bn  n

T

1

b

Rekursionsformel (Differenzengleichung)

2

3

1

1

2

4 6

5

15

6

31

7

56

92

8

9

10

11

12

13

14

141

205

286

386

507

651

820

Beispiel 1.1.9: Geg.:

f0 = 1 , f1 = 1 und die Rekursionsformel fn+1 = fn + fn-1

Ges.:

Wie lauten die ersten 15 Folgeglieder.

f0 = 1

f4 = f3  f2 = 3  2 = 5

f1 = 1

f2 = f1  f0 = 1  1 = 2

f5 = f4  f3 = 5  3 = 8

f3 = f2  f1 = 2  1 = 3

f 6 = f 5  f 4 = 8  5 = 13

ORIGIN  0

ORIGIN festlegen

n  1  14

Bereichsvariable

f0  1

f1  1

Anfangswerte

f n1  f n  f n 1

T

0

f

Rekursionsformel (Differenzengleichung) 1

1

0

Berechnung der ersten 6 Folgeglieder mit der Rekursionsformel

2 1

3 2

4 3

5 5

6 8

7

13

8

21

9

34

55

10

11

89

12

144

...

Diese Folge wird Fibonacci-Folge genannt.

Beispiel 1.1.10: Geg.:

x = a und die Rekursionsformel zur Berechnung von

Ges.:

Berechnen Sie

1

3

ORIGIN festlegen

n  1  9

Bereichsvariable

x1  3

Anfangswert (Startwert)

ª 3 « ¬ 1

˜ «2 ˜ xn 

º» xn 2»¼ x1

a: x

n+1

Rekursionsformel (Differenzengleichung)

Seite 7

2 n

= 1/3 ( 2 x + a/x

3 auf 5 Nachkommastellen genau.

ORIGIN  1

xn1 

3

n

)

Folgen, Reihen und Grenzwerte

1 1

3

2

2.1111111111

3

1.6317841387

4

1.4634119891

5

1.4425541251

6

1.4422496346

7

1.4422495703

8

1.4422495703

9

1.4422495703

10

1.4422495703

x

3

3

Anzeige auf 10 Nachkommastellen eingestellt!

1.4422495703

Beispiel 1.1.11: Geg.:

un = 2 int(n/2) und vn = n mod 2

Ges.:

Wie lauten die ersten 15 Folgeglieder?

ORIGIN  1

ORIGIN festlegen

n  1  15

Bereichsvariable

§ n· ¸ © 2¹

un  2 ˜ floor ¨

int = floor. Gibt die größte ganze Zahl zurück, die nicht größer als der Wert von x = n/2 ist.

vn  mod ( n 2)

Modulo-Funktion. Liefert den Rest der Division n/2, wenn der Zähler größer als der Nenner ist, sonst ist das Ergebnis gleich dem Zähler.

T

1

u

2

1

0

T

1

v

1

3 2

2 1

4 2

3 0

5 4

4 1

6 4

5 0

7 6

6 1

8 6

7 0

9 8

8 1

10 8

9 0

10

10 1

0

11 10

11 1

12 12

12 0

13 12

13 1

Beispiel 1.1.12: Geg.:

an = 1 für n ungerade und an = 2n für n gerade.

Ges.:

Wie lauten die ersten 10 Folgeglieder?

ORIGIN  1 f ( n) 

ORIGIN festlegen

for k  1  n k

ck m 2

§k· = k ¸ © 2¹ 2

if floor ¨

ck m 1 otherwise

Unterprogramm (Funktion) zur Berechnung der Folgeglieder. floor(k/2) = k/2 ist dann gleich, wenn k eine gerade Zahl ist.

c

Seite 8

14 14

14 0

15 14

15 1

Folgen, Reihen und Grenzwerte

n  10

Anzahl der Folgeglieder

a  f ( n)

Berechnung der Folgeglieder mit dem Unterprogramm

T

1

a

2 1

1

3 4

4 1

5

6

16

1

7 64

8 1

9

256

10 1

1024

Beispiel 1.1.13: Geg.:

z 1 = 1 und die Rekursionsformel zn+1 =( 5 z n + 3) mod 16

Ges.:

Berechnen Sie die Folgeglieder so lange, bis sie sich wiederholen.

ORIGIN  1 a 5

r 3

k  16

Vorgabegrößen

n  1  19

Bereichsvariable

zn  1

Anfangswert



z n1  mod a ˜ z n  r k

T

1

z

2 1

1

8



Pseudozufallsgenerator (liefert Zahlen zwischen 0 und k-1)

3

4

11

10

5

6

7

8

12

15

14

5

9

10 9

11

0

12

3

2

13

14

13

15

4

...

p k z1 

1 p

˜z

T

Pseudozufallszahlen zwischen 0 und 1 1

z1

1

0.063

2

3 0.5

4

0.688

0.625

5 0.313

6 0.75

7 0.938

8 0.875

9 0.563

10 ...

1.1.1 Arithmetische Folgen In einer arithmetischen Folge ist die Differenz d zweier benachbarter Glieder konstant, aber von null verschieden (für d = 0 liegt eine konstante Folge vor). a2 - a1 = a3 - a2 = a4 - a3 = ... = an+1 - an = d

(1-10)

Mit a1 a2 = a1 +d a3 = a2 + d = a1 + d + d = a1 + 2 d a4 = a3 + d = a1 + 2 d + d = a1 + 3 d usw. erhalten wir das allgemeine Folgeglied: an = a1 + (n - 1) d

mit d  und n ² bzw.

an = a0 + n d

mit d  und n ² 



Seite 9

(1-11)

Folgen, Reihen und Grenzwerte

Mit (1-10) erhalten wir durch Addition das allgemeine Folgeglied aus dem sich daraus ergebenden arithmetischen Mittel seiner Nachbarglieder: an-1 = an - d an+1 = an + d -----------------------an-1 + an+1 = 2 an und damit an = 1/2 (an-1 + an+1 )

(1-12)

Arithmetische Folgen treten überall dort auf, wo sich ein gewisser Anfangswert mehrmals um einen festen Wert vermehrt oder verringert.

Beispiel 1.1.14: Geg.:

an = 2 + (n - 1) 1/2

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

n  1  10

Bereichsvariable 1

an  2  ( n  1) ˜ T

§ ©

a o ¨2

5 2

7

3

allgemeines Folgeglied

2 4

2

9

5

2

11 2

6

· ¸ 2 ¹

13

symbolische Ausgabe in Vektorform

10 9 8 7 6 5 4 3 2 1

an an

1

d = 1/2 Die Folge ist streng monoton steigend.

a3 

1

2 a1

0

1

2

3

4

5

6

7

8

9

10

11

Die Folgeglieder bilden eine Menge äquidistanter Punkte, die auf einer Geraden liegen.

Abb. 1.1.7

n

Beispiel 1.1.15: Geg.:

an = 4 + (1 - n) 5/7

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge, und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

a a

n  1  10 an  4  ( 1  n) ˜

ORIGIN festlegen und Redefinition von a Bereichsvariable

5

allgemeines Folgeglied

7

Seite 10

Folgen, Reihen und Grenzwerte

T

§ ©

a o ¨4

23

18

13

8

3

7

7

7

7

7

5 4 3 2 1

an

2

1 

7

12



7

17 7

· ¸ ¹

symbolische Ausgabe in Vektorform

3

a1 a3

1 0 1 2 3 4 5

an



1

2

3

4

5

6

7

8

9

10

d = - 5/7 Die Folge ist streng monoton fallend.

5 7 11

Abb. 1.1.8 n

Beispiel 1.1.16: Einem Festplattenlager von anfänglich B0 = 5000 Stück werden täglich durchschnittlich 186 Stück entnommen. Wie groß ist der Lagerbestand nach 21 Tagen? Nach wie vielen Tagen sinkt der Lagerbestand erstmals unter 500 Stück? ORIGIN  0

ORIGIN festlegen

Stk  1

Einheitendefinition

k  25

Anzahl der Tage

t  0  k

Bereichsvariable

B0  5000 ˜ Stk

Lagerbestand

d  186 ˜ Stk

konstante Differenz

Bt  B0  d ˜ t

arithmetische Folge

5000  t1 ˜ ( 186)  500

hat als Lösung(en)

t1  24

Nach dem 24. Tag sinkt der Lagerbestand erstmals unter 500 Stück.

750 31

 t1

5000

Ÿ

750 31

§ 750 · ¸ © 31 ¹

24.19 und floor ¨

21

t1

Anzahl

3750 Bt Stk

2500 1250

B21 500 0 1

2 3

4

5 6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 t Tage

Abb. 1.1.9

Seite 11

24

Folgen, Reihen und Grenzwerte

Beispiel 1.1.17: Im Allgemeinen verlieren Wirtschaftsgüter (Gebäude, Computer, PKW, Büroeinrichtungen usw.) mit der Zeit ihren Wert. Wir sprechen dann vom Buch- oder Restwert eines Wirtschaftsgutes. Die Art der Wertverminderung und ihre Aufteilung auf die gesamte Nutzungsdauer heißt Abschreibung des Gutes. Hier soll die lineare Abschreibung eines Gutes anhand eines Beispiels besprochen werden. Eine Stanzmaschine wird zu einem Preis von R0 = 70 000 € (Anschaffungskosten oder 0-ter Restwert) angeschafft. Die Nutzungsdauer beträgt 7 Jahre, wobei mit einem Schrottwert im 7. Jahr von 4000 € gerechnet wird. Wir gehen hier von einem konstanten jährlichen Abschreibungsbetrag aus. Bestimmen Sie die Restwertfolge R n . n ... Nutzungsdauer in Jahren A 1 ... Abschreibung nach dem 1. Jahr R1 = R0 - A1 R2 = R1 - A2

A 2 ... Abschreibung nach dem 2. Jahr

------------------------------Rn = Rn-1 - An

A n ... Abschreibung nach dem n. Jahr

Nach unserer Annahme gilt: A1 = A2 = ... = An = A ORIGIN  0

ORIGIN festlegen

€ 1

Währungsdefinition (eine Variable schreiben und mit + + in den Textmodus wechseln, Eurozeichen eingeben und wieder mit der gleichen Tastenkombination den Textmodus verlassen)

n  1  7

Bereichsvariable

R0  70000 ˜ €

Anschaffungskosten (0-ter Restwert)

R7  4000 ˜ €

Schrottwert im 7. Jahr

R7 = R0  7 ˜ A

hat als Lösung(en)

A

R0 7

R7



7

Rn  Rn 1  A

R0 7

9428.571 ˜ €

A



R7 7

Abschreibung pro Jahr

allgemeines Bildungsgesetz für den Restwert

R

4

8u 10



R0

0 4

0

70000

1

60571.429

R0

2

51142.857



3

41714.286

Rn

4

32285.714

5

22857.143

6

13428.571

7

4000

6u 10

4

4u 10

Abb. 1.1.10



4

2u 10

R7 1

0

1

2

3

4 0 n

Jahre

Seite 12

5

6

7

8

Folgen, Reihen und Grenzwerte

1.1.2 Geometrische Folgen Eine geometrische Folge ist dadurch gekennzeichnet, dass der Quotient q je zweier aufeinanderfolgender Glieder konstant ist (q z 0):

q=

an 1

(1-13)

an

Mit a1 a2 = a1 q a3 = a2 q = a1 q q = a1 q2 a4 = a3 q = a1 q2 q = a1 q3 usw. erhalten wir das allgemeine Folgeglied: an = a1 qn-1 an = a0

qn

mit q \ {0} und n ² bzw.

(1-14)

mit q \ {0} und n ² 

 Drei aufeinanderfolgende Folgegliederak-1 , ak , ak+1 lassen sich immer in der Form ak : q , ak , ak q schreiben. Es gilt daher: ( ak : q ) ( ak q ) = ak 2 . Daraus folgt, dass der Absolutbetrag jedes inneren Folgegliedes einer geometrischen Folge gleich dem geometrischen Mittel seiner Nachbarglieder ist: 

ak =

§ ak · ¨ ¸ ˜ ak ˜ q = ©q¹

ak 1 ˜ ak1

(1-15)

Allgemein können wir sagen: Ist a1 > 0 bzw. a0 > 0, so nimmt die geometrische Folge für q > 1 zu. Sie ist konstant für q = 0, sie nimmt ab für 0 < q < 1 und sie ist alternierend für q < 0. GeometrischeFolgen treten überall dort auf, wo die Änderung von einem Folgeglied zum nächsten nicht absolut, sondern relativ (prozentuell) ist. Geometrische Folgen bilden in Form der sogenannten Vorzugs- oder Normzahlen die Grundlage für die Typisierung von Hauptabmessungen in der Technik und ermöglichen die Wahl zweckmäßiger Größenabstufungen bei Drehzahlen, Vorschüben, Gewindedurchmessern, Längen, Rohren, Stäben, Platten und dergleichen mehr. Bei konsequenter Verwendung werden die wirtschaftliche Fertigung durch Reduzierung von Werkzeugen und Vorrichtungen gefördert, und das Austauschen von Einzelteilen erleichtert. Zahlreiche Anwendungen geometrischer Folgen finden sich aber auch z. B. bei der Beschreibung physikalischer Vorgänge und bei wirtschaftsmathematischen Berechnungen.

Beispiel 1.1.18: Geg.:

an = 1/4 (3/2)n-1

Ges.:

Berechnen Sie die ersten 10 Glieder der Folge und stellen Sie diese Folgeglieder grafisch dar.

ORIGIN  1

ORIGIN festlegen

Seite 13

Folgen, Reihen und Grenzwerte

n  1  10

Bereichsvariable

§ 3· ¸ 4 © 2¹ 1

an 

T

a o

n1

˜¨

a3

allgemeines Folgeglied

a2

3

o

2

§ 1 3 9 27 81 243 729 2187 6561 19683 · ¨ ¸ © 4 8 16 32 64 128 256 512 1024 2048 ¹ 10 9 8 7 6 5 4 3 2 1

an an

7

8

7

a7

1

2

3

4

5

6

7

3 2

Der Quotient von zwei Folgegliedern ist konstant!

symbolische Ausgabe in Vektorform

q = 3/2 Die Folge ist streng monoton steigend. a 1˜q

 1 1 0

q

8

9

10

11

Die Folgeglieder bilden eine Menge von Punkten, die auf einer Exponentialkurve liegen. Abb. 1.1.11

n

Beispiel 1.1.19: Zwischen den Längen 15 mm und 210 mm sind weitere vier Längen so einzuschalten, dass eine geometrische Stufung erreicht wird. Bestimmen Sie die Folge dieser Längen. ORIGIN  1 L1  15 ˜ mm

L6  210 ˜ mm

5

L6 = L1 ˜ q 5

q

nach dem Bildungsgesetz einer geometrischen Folge

L6

q

L1

n  1  6 n 1

T

Quotient

1.695

Bereichsvariable

Ln  L1 ˜ q

1

L

gegebene Längen

1

15

allgemeines Bildungsgesetz 2

3

4

25.4

43.1

73.1

5 123.9

6

˜ mm

numerische Ausgabe in Vektorform

210

Beispiel 1.1.20: Bei einer Drehmaschine ist die niedrigste Drehzahl 20 min-1 und die höchste 100 min-1 . Dazwischen liegen weitere vier Drehzahlen, die geometrisch abgestuft sind. Wie lautet die Folge der Drehzahlen? ORIGIN  1

ORIGIN festlegen

Seite 14

Folgen, Reihen und Grenzwerte

n1  20 ˜ min

1

n6  100 ˜ min

1

gegebene Drehzahlen

5

n6 = n1 ˜ q 5

q

nach dem Bildungsgesetz einer geometrischen Folge

n6

q

n1

k  1  6

Bereichsvariable k 1

nk  n1 ˜ q T

allgemeines Bildungsgesetz

1

n

Quotient

1.38

20

1

2

3

4

5

6

27.6

38.1

52.5

72.5

100

˜ min

1

numerische Ausgabe in Vektorform

Beispiel 1.1.21: Von 1 : ausgehend soll in 6 bzw. 12 prozentuell gleich großen Stufen der Wert 10 : erreicht werden. Berechnen Sie die Zwischenwerte der Folge. ORIGIN  1 E61  1 ˜ Ω

E67  10 ˜ Ω 6

E67 = E61 ˜ q 6

q

gegebene Widerstände

nach dem Bildungsgesetz einer geometrischen Folge

E67

q

E61

Quotient

1.468

Erhöhen wir, mit 1 beginnend, stets um 46,8 % |47 %, so erreichen wir nach 6 solcher Stufen den Wert 10. 6

q = 10 heißt Stufensprung der Normzahlenreihe E6 (hier wird oft der Begriff Reihe statt Folge benützt). Daraus werden die sogenannten Hauptwerte der Normzahlen der Grundreihe E6 abgeleitet, die vereinbarungsgemäß mit zwei Nachkommastellen angegeben wird. k  1  10

Bereichsvariable k 1

E6k  E61 ˜ q T

allgemeines Bildungsgesetz

1

E6

1

1

2

3

4

5

6

7

1.468

2.154

3.162

4.642

6.813

8 10

14.678

9 21.544

Daraus lassen sich die Hauptwerte der Normzahlen der Reihe E6 ableiten: E6  1,00

1,50

E121  1 ˜ Ω

2,20

3,20

4,70

E1213  10 ˜ Ω 12

E1213 = E121 ˜ q

6,80

10,00

14,70

21,50

gegebene Widerstände

nach dem Bildungsgesetz einer geometrischen Folge

Seite 15

31,60

10 31.623

Ω

Folgen, Reihen und Grenzwerte

12

q

E1213

q

E121

k  1  15

Quotient

1.212

Bereichsvariable k 1

E12k  E121 ˜ q T

1

E12

1

allgemeines Bildungsgesetz

2

3

4

5

6

7

8

9

10

11

12

13

1 1.21 1.47 1.78 2.15 2.61 3.16 3.83 4.64 5.62 6.81 8.25

14

15

Ω

10 12.12 14.68

Daraus lassen sich wieder die Hauptwerte der Normzahlen der Reihe E12 ableiten: E12  1,00

1,20

1,50

1,80

2,20

2,60

3,20

3,80

4,60

5,60

Hier ist zwischen 2 benachbarten Gliedern der E6-Reihe noch ein Glied dazwischengeschaltet. Mithilfe eines Unterprogramms lässt sich die Normreihe E6 einfacher berechnen: i  1  15

Bereichsvariable

E12i  rund § 1 if i = 1

¨ i 2 ¨ ¨ 1˜ ¨ j 0 ©

–

T

1

E12

1

12

2 1

1· 10 otherwise

3

1.2

¸ ¸ ¸ ¸ ¹

1.5

4 1.8

5 2.2

6

7

2.6

3.2

8 3.8

9 4.6

10 5.6

11 6.8

12 8.3

13 ...

Beispiel 1.1.22: In der Physik sprechen wir von einer gedämpften Schwingung, wenn die Amplitude A, d. h. die maximale Auslenkung aus der Ruhelage, mit der Zeit abnimmt. Dabei bilden die Amplituden A 1 , A2 , A3 , ... im Allgemeinen eine geometrische Folge. Ermitteln Sie das Bildungsgesetz für die Amplitudenfolge und geben Sie die ersten 10 Glieder an. Welche Amplitude ist als Erste unter 5 % der Anfangsamplitude? ORIGIN  1

ORIGIN festlegen

A1  2 ˜ cm

Ausgangsamplitude

δ  0.5 ˜ s

1

ω 2˜ π˜ s T

Dämpfungsfaktor

1

2˜ π

Kreisfrequenz T

ω  δ˜t

s 1 ( t)  A1 ˜ e

1s

˜ cos ( ω ˜ t)

 δ˜t

Schwingungsdauer Schwingungsgleichung

A ( t)  A1 ˜ e

zeitabhängige Amplitude

t  0 ˜ s 0.001 ˜ s  5 ˜ s

Zeitbereich

Seite 16

Folgen, Reihen und Grenzwerte

gedämpfte Schwingung 2

s1( t)

T

2˜T

1

2

1

cm A( t) cm

0

3

4

5

Abb. 1.1.12

 A( t) cm  1

2 t s

Mit A(t) = A1 e - Gt erhalten wir folgendes Bildungsgesetz: t=0

A1 = A1

t=T

A2 = A1 e - G T = A1 q

t=2T

A3 = A1 e - G 2T = A1 (e - G T)2 = A1 q2

...................................................................................................................

A n = A1 q n-1 n  1  10

Bereichsvariable

 δ˜T

An  A1 ˜ e

T

n1

1

A

allgemeines Bildungsgesetz

2

3

4

5

6

2 1.213 0.736 0.446 0.271 0.164

1

7

8

9

10

0.1

0.06 0.037 0.022

˜ cm

Amplitude als Erste unter 5 % der Anfangsamplitude:

 δ˜T

A1 ˜ e

n 1

 δ˜T

2 ˜ cm ˜ e

 0.1 ˜ cm

n 1

§ 1· ¸ © 20 ¹  1

 0.1 ˜ cm

Ungleichung

 δ˜T  ln §¨ 201 ¸·

( n  1) ˜ ln e

©

¹

logarithmierte Ungleichung

ln ¨ n

 δ˜T

händische Lösung der Ungleichung

ln e

n

6.991

Somit ist A7 die erste Amplitude, die kleiner als 5 % der Anfangsamplitude A1 ist.

Seite 17

Folgen, Reihen und Grenzwerte

Beispiel 1.1.23: Unterjährige Verzinsung. 15000 € sind zu 5 % pro Jahr angelegt. Die Verzinsung wird quartalweise durchgeführt. Wie groß ist der Betrag nach 10 Jahren? ORIGIN  0

ORIGIN festlegen

n  10

Jahre

€ 1

Einheitendefinition

K0  15000 ˜ €

Anfangskapital

p 5˜ %

Zinsfuß (p/m % ... relativer Zinsfuß)

p § ¨ 4 Kn  K0 ˜ ¨ 1  100 ˜ % ©

· ¸ ¸ ¹

4˜n

K10

24654.292 ˜ €

verzinstes Kapital nach 10 Jahren

Beispiel 1.1.24: 32000 € sind in 5 Jahren durch ganzjährige Zinseszinsen auf 38006 € angewachsen. Wie groß ist der Zinsfuß p? ORIGIN  0

ORIGIN festlegen

€ 1

Einheitendefinition

n 5

Jahre

K0  32000 ˜ €

Anfangskapital

K5  38006 ˜ €

Kapital nach 5 Jahren

§ ©

Kn = K0 ˜ ¨ 1  n

r

n

· = K ˜ rn ¸ 0 100 ˜ % ¹

Kn K0

p

r

1.035

Bildungsgesetz für die Kapitalfolge

p  ( r  1)

p

3.5 ˜ %

Zinsfuß

Beispiel 1.1.25: Eine Maschine wir zu einem Preis von R0 = 70000 € angeschafft. Die Nutzungsdauer betrage 7 Jahre, wobei mit einem Schrottwert von 4000 € gerechnet wird (vergleiche Bsp. 1.17). Bei der sogenannten geometrisch-degressiven Abschreibung werden in jedem Jahr gleichbleibend p % vom jeweiligen Restwert abgeschrieben. Bestimmen Sie die Folge der Restwerte. ORIGIN  0

ORIGIN festlegen

€ 1

Einheitendefinition

n  1  7

Bereichsvariable

Seite 18

Folgen, Reihen und Grenzwerte

R0  70000 ˜ €

Anschaffungskosten (0-ter Restwert)

R7  4000 ˜ €

Schrottwert im 7. Jahr

n ... Nutzungsdauer in Jahren R1 = R0 - A1 = R0 - R0 p = R0 (1 - p)

A1 ... Abschreibung nach dem 1. Jahr

R2 = R1 - A2 = R1 - R1 p = R1 (1 - p) = R0 (1 - p)2 A2 ... Abschreibung nach dem 2. Jahr ------------------------------Rn = Rn-1 - An = R0 (1 - p)n

An ... Abschreibung nach dem n. Jahr

Nach unserer Annahme gilt also auch für den Abschreibungsbetrag: An = R0 p (1 - p)n-1 R7 = R0 ˜ ( 1  p)

7

Restwert im 7. Jahr

R7 = R0 ˜ ( 1  p)

7

Daraus folgt:

7

p 1 

R7

33.561 ˜ %

p

R0

Die jährliche Abschreibung beträgt somit ca. 34 %. n Restwertfolge Rn  R0 ˜ ( 1  p) R

geometrisch-degressive Abschreibung



6 0

0

70000

1

46507.305

2

30898.992

3

20528.984

4

13639.253

Rn

5

9061.784

10000˜€

6

6020.56

7

4000

5 R0

4

10000˜€ 3 2 1 1

0

1

2

3

4 0 n

Jahre

Abb. 1.1.13

Seite 19

5

6

7

8

Folgen, Reihen und Grenzwerte

1.2 Reihen Werden die Glieder einer endlichen Zahlenfolge < a1 , a2 , a3 , ... , an > aufsummiert, so entsteht eine endliche Reihe mit n-Gliedern: n

¦

a1  a2  a3  ....  an =

k

ak

(1-16)

1

Werden die Glieder einer unendlichen Zahlenfolge < a1 , a2 , a3 , ... an, ... > aufsummiert, so entsteht eine unendliche Reihe mit unendlich vielen Gliedern: ∞

a1  a2  a3  ....  an  ... =

¦ k

ak

(1-17)

1

Werden die ersten n-Glieder einer Folge addiert, so heißt diese Summe n-te Partialsumme (Teilsumme) der zugehörigen Reihe: s1 = a1 s2 = a1  a2 s3 = a1  a2  a3

1. Partialsumme 2. Partialsumme 3. Partialsumme

-------------------------------------------------------------------------sn = a1  a2  a3  ....  an n-te Partialsumme

(1-18)

sn heißt Summenwert einer aus n-Gliedern bestehenden Reihe. < s1 , s2 , s3 , ... sn > endliche Partialsummenfolge < s1 , s2 , s3 , ... sn, ... > unendliche Partialsummenfolge

(1-19) (1-20)

1.2.1 Arithmetische endliche Reihen Durch Aufsummieren der Folgeglieder einer endlichen arithmetischen Folge < a1 , a1 + d, a2 + d, a3 + d, ... , an + (n - 1) d > erhalten wir eine endliche arithmetische Reihe:





n



s n = a1  a1  d  a1  2 ˜ d  ....  a1  ( n  1) ˜ d =

¦ k

ª¬a1  ( k  1) ˜ dº¼

(1-21)

1

Der Wert der Summe sn ergibt sich aus folgender Addition: sn = a1 + (a1 + d) + (a1 + 2d) + ... + a1 + (n - 1) d sn = a1 + (n - 1) d + a1 + (n - 2) d + a1 + (n - 3) d + ... + a1 -------------------------------------------------------------------------------------------------------------------------------------------2 sn = (2 a1 + (n - 1) d) + (2 a1 + (n - 1) d) + (2 a1 + (n - 1) d) + ... + (2 a1 + (n - 1) d) Daraus folgt der Summenwert: 2 sn = n (2 a1 + (n - 1) d) sn = sn =

n 2 n 2

˜ ª¬2 ˜ a1  ( n  1) ˜ dº¼ bzw. ˜ ª¬a1  a1  ( n  1) ˜ dº¼ =

(1-22)

n 2



˜ a1  an

Seite 20



(1-23)

Folgen, Reihen und Grenzwerte

Beispiel 1.2.1: Berechnen Sie die Summe der natürlichen Zahlen von 1 bis n. n n

Redefinition von n n

¦

sn =

k

k o sn =

n

n ˜ ( n  1)

sn =

2

1

sn =

¦ k

n  100

2

n n k erweitern o s n =  2 2

1

gewähltes n

n ˜ ( n  1) 2

o s n = 5050

Summenwert

Beispiel 1.2.2: Berechnen Sie die Summe der ersten n ungeraden natürlichen Zahlen. n n

Redefinition n

n

¦

sn =

k

( 2 ˜ k  1) o s n = n ˜ ( n  1)  n

sn =

1

¦ k

2

( 2 ˜ k  1) vereinfachen o s n = n

1

Beispiel 1.2.3: Berechnen Sie die Summe der ersten n geraden natürlichen Zahlen. n

n

¦

sn =

k

( 2 ˜ k ) o s n = n ˜ ( n  1)

sn =

1

¦ k

2

( 2k ) erweitern o s n = n  n

1

Beispiel 1.2.4: Drei Zahlen bilden eine arithmetische Folge. Ihre Summe ist 27 und ihr Produkt 585. Wie heißen diese Zahlen? d d

Redefinition

a2  d  a2  a2  d = 27 a2  d ˜ a2 ˜ a2  d = 585

Gleichungssystem

-------------------------------------------Aus der ersten Gleichung folgt:

a2  d  a2  a2  d = 27 auflösen a2

o9

a2  9

Folgeglied a2

Aus der zweiten Gleichung folgt:

a2  d ˜ a2 ˜ a2  d = 585 auflösen d a1 = 5

a2 = 9

a3 = 13

oder

o

§4 · ¨ ¸ © 4 ¹

a1 = 13

a2 = 9

Seite 21

a3 = 5

gesuchte Folgeglieder

Folgen, Reihen und Grenzwerte

Beispiel 1.2.5: Auf einer trapezförmigen schrägen Dachfläche liegen in der obersten Reihe 50 Ziegel. In der zweiten Reihe liegen 54 und in der letzten Reihe 102 Ziegel. Wie viele Ziegel liegen auf dieser Dachfläche, wenn die Anzahl der Ziegel pro Reihe eine arithmetische Folge bilden? ORIGIN  1 an = a1  ( n  1) ˜ d

Bildungsgesetz einer arithmetischen Folge

a1  50

an  102

a2  54

102 = 50  ( n  1) ˜ 4



n

s 14 

hat als Lösung(en)



˜ a1  an

2

s 14

d = a2  a1

d=4

Anzahl der Reihen

14

n  14

1064 Ziegel liegen auf der Dachfläche

1064

1.2.2 Geometrische endliche Reihen Durch Aufsummieren der Folgeglieder einer geometrischen Folge < a1 , a2 q , a3 q2 , ... , an qn-1 > erhalten wir eine endliche geometrische Reihe: n 1

2

s n = a1  a1 ˜ q  a1 ˜ q  ....  a1 ˜ q

n

§ a ˜ qk1· © 1 ¹

¦

=

k

(1-24)

1

Der Wert der Summe sn ergibt sich aus folgender Multiplikation von (1-24) mit q und Subtraktion: sn q

=

+ a1 q2

+ a1 q

+ ... + a1 qn - 1

+ a1 qn

sn = a1 + a1 q + a1 q2 + ... + a1 qn -1 ------------------------------------------------------------------------------------------------------------------------------------------sn q - sn = a1 qn - a1 Ÿ sn (q - 1) = a1 (qn - 1) Daraus folgt der Summenwert: n

s n = a1 ˜

q 1 q1

n

= a1 ˜

1q

1 q

für q z 1

(1-25)

Beispiel 1.2.6: Berechnen Sie die Summe der ersten n Zweierpotenzen, und beweisen Sie das Ergebnis mithilfe der vollständigen Induktion (Induktionsbeweis). n n

Redefinition n 1

sn =

¦ k

k

n

2 o sn = 2  1

0

Seite 22

Folgen, Reihen und Grenzwerte

Induktionsbeweis: Für alle n ² gilt: Aussage: A(1), A(2), A(3), ... Annahme: für alle n ² gilt auch A(n) Behauptung: gilt auch für A(n+1) 0

1

A(1):

s1 = 2 = 1 = 2  1

A(2):

s2 = 2  2 = 3 = 2  1

0

1

2

0

1

2

0

1

2

3

A(3): s3 = 2  2  2 = 7 = 2  1 ---------------------------------------------------------------------n1

A(n):

s n = 2  2  2  ....  2

A(n+1):

s n1 = 2  2  2  ....  2

0

1

n1

2

n

=2 1 n1

n

2 =2

1

n

n

n 1

2  1 2 =2

1

w. z. b. w. (q. e. d.)

Beispiel 1.2.7: Berechnen Sie die Summe der ersten n Potenzen einer reellen Zahl x. n 1

sn =

¦

k

n

x 1 k x o sn = x 1

x z1

0

Beispiel 1.2.8: a) Zu jedem Jahresbeginn wird ein Betrag R = 2000 € auf ein Rentenkonto eingezahlt und dort mit p = 5 % verzinst. b) Zu jedem Jahresende wird ein Betrag R = 2000 € auf ein Rentenkonto eingezahlt und dort mit p = 5 % verzinst. Bestimmen Sie den Wert dieser Rente (vorschüssiger Rentenendwert E 20 bzw. nachschüssiger Rentenendwert E20) am Ende bzw. am Anfang des 20. Jahres und jeweils den Rentenbarwert B 20. a) Die erste Einzahlung wird 20 Jahre, die zweite 19 Jahre, ..., die letzte Einzahlung 1 Jahr verzinst. Wir setzen q = 1+ p. 20

E20 = R ˜ q

19

 R˜ q

p  0.05

18

 R˜ q

19  q18  q17  ....  q  1

2

 ....  R ˜ q  R ˜ q = R ˜ q ˜ q



Zinsen

Geometrische Reihe mit n = 20 Glieder! q 1  p € 1

Einheitendefinition

R  2000 ˜ €

Einzahlung zu Jahresbeginn 20

E20  R ˜ q ˜

q

1

q1

E20

69438.504 ˜ €

vorschüssiger Rentenendwert

Seite 23

Folgen, Reihen und Grenzwerte

E20

B20 

B20

20

26170.642 ˜ €

Rentenbarwert (abzinsen des Rentenendwertes)

q

b) Die erste Einzahlung erfolgt erst am Ende des ersten Jahres und wird daher nur 19 Jahre verzinst usw. Wir setzen wieder q = 1+ p. 19

E20 = R ˜ q

20

E20  R ˜

q

18

 R˜ q 1

q 1

E20

B20 

20

1

19  q18  q17  ....  q  1

 ....  R ˜ q  R = R ˜ q

E20

66131.908 ˜ €

nachschüssiger Rentenendwert

B20

24924.421 ˜ €

Rentenbarwert (abzinsen des Rentenendwertes)

q

Beispiel 1.2.9: Sie nehmen einen Kredit von K 0 = 20000 € bei einem jährlichen Zinssatz p = 7 % auf. Für die Rückzahlung wird vereinbart, dass Sie 5000 € nach dem ersten Jahr, 4000 € nach dem zweiten Jahr, 6000 € nach dem dritten Jahr zurückzahlen. Der Rest soll am Ende des vierten Jahres zurückgezahlt werden. Wie hoch ist dieser Restbetrag? Das sogenannte Äquivalenzprinzip besagt, dass Kapitalien nur miteinander verglichen werden können, wenn Sie auf den gleichen Zeitpunkt bezogen werden. Wir müssen also hier den Wert aller Zahlungen auf einen einzigen Zeitpunkt bestimmen. Eine jährliche Rückzahlung im k-ten Jahr wird auch Annuität Ak genannt. Die Annuität muss einerseits die im k-ten Jahr anfallenden Zinsen Zk abdecken, andererseits vermindert sie die jeweilige noch bestehende Restschuld. Diese Restschuldminderung wird (Kapitaltilgung) Tilgung Tk im k-ten Jahr genannt. Ak = Zk + Tk. Wir beziehen alle Zahlungen auf das Ende des vierten Jahres:

ORIGIN  0

A  A1

K  K1

p  0.07

Zinsen

q 1  p

Quotient

€ 1

Einheitendefinition

K0  20000 ˜ €

Kredit K0

T1  5000 ˜ €

Tilgung im 1. Jahr

T2  4000 ˜ €

Tilgung im 2. Jahr

T3  6000 ˜ €

Tilgung im 3. Jahr

ORIGIN festlegen und Redefinitionen

4

26215.92 ˜ €

Wert des Kredites

3

6125.215 ˜ €

Wert der Rückzahlung im 1. Jahr

2

4579.6 ˜ €

Wert der Rückzahlung im 2. Jahr

K0 ˜ q T1 ˜ q T2 ˜ q

Seite 24

Folgen, Reihen und Grenzwerte

1

T3 ˜ q

6420 ˜ €

Wert der Rückzahlung im 3. Jahr

K0 ˜ q  §© T1 ˜ q  T2 ˜ q  T3 ˜ q 4

3



2

¹

9091.105 ˜ €

fällige Restschuld am Ende des 4. Jahres

Unter der Annahme von jährlichen und gleichbleibenden Ratenzahlungen A (Annuitäten) und nachschüssiger Rückzahlung (d. h. die erste Rückzahlung erfolgt ein Jahr nach der Kreditvergabe) und der Annahme, dass die weiteren Rückzahlungen in Jahresabständen erfolgen, gilt: Der Endwert der Schuld muss gleich dem Endwert eines nachschüssigen Rentenvorganges sein. n

K0 ˜ q ˜ ( q  1)

n

n

K0 ˜ q = A ˜

q 1

hat als Lösung(en)

q 1

n

q 1

n

Ak =

K0 ˜ q ˜ ( q  1)

Annuität für die Rückzahlung einer Schuld K0 in n Jahren

n

q 1

n 4

k  0  n  1

Jahre

p  0.07

Zinsen

q 1  p € 1

Einheitendefinition

K0  20000 ˜ €

Kredit K0

n

Ak  K0 ˜ q ˜

q1

Annuität für die Rückzahlung einer Schuld K0 in n Jahren

n

q 1

Z0  K0 ˜ p

A0

5904.562 ˜ €

T0  A0  Z0

S0  K0  T0

K1  S0

Z1  K1 ˜ p

A1

5904.562 ˜ €

T1  A1  Z1

S1  K1  T1

K2  S1

Z2  K2 ˜ p

A2

5904.562 ˜ €

T2  A2  Z2

S2  K2  T2

K3  S2

Z3  K3 ˜ p

A3

5904.562 ˜ €

T3  A3  Z3

S3  K3  K3

Tilgungsplan: Schuld am Jahresanfang

Zinsen

Annuität

Tilgung

Schuld

K

Z

Ak

T

S











0

0

0

0

0

0

20000

0

1400

0

5904.562

0

4504.562

0

15495.438

1

15495.438

1

1084.681

1

5904.562

1

4819.882

1

10675.556

2

10675.556

2

747.289

2

5904.562

2

5157.273

2

5518.283

3

5518.283

3

386.28

3

5904.562

3

5518.283

3

0

Seite 25

Folgen, Reihen und Grenzwerte

1.3 Grenzwerte von unendlichen Folgen Zuerst sollen einige Beispiele untersucht werden, wie sich Folgeglieder einer unendlichen Folge verhalten, wenn wir den Index immer weiter erhöhen: < an> = < 1/n > = < 1, 1/2, 1/3, 1/4, ... , 1/n, ... > Die Glieder der Folge streben mit wachsendem n gegen einen bestimmten Wert, nämlich gegen 0. Wir sagen, die Folge konvergiert gegen 0 oder die Folge hat den Grenzwert 0. Solche Folgen mit Grenzwert 0 heißen Nullfolgen. < an> = < n > = < 1, 2, 3, 4, ... , n, ... > Die Glieder dieser Folge werden unbegrenzt groß. Wir sagen, die Folge ist divergent bzw. die Folge besitzt keinen Grenzwert oder die Folge besitzt den uneigentlichen Grenzwert "f". Definition: Eine unendliche Folge an!= a1 , a2 , a3 , ... !heißt konvergent gegen den Grenzwert a , wenn folgendes gilt: Zu jedem H > 0 gibt es eine Zahl N  ² , so dass für alle n > N gilt: | an - a| < H

(1-26)

Das heißt, in jeder beliebig kleinen H-Umgebung von a liegen bis auf endlich viele alle Folgeglieder. Wenn eine Folge a n gegen a konvergiert, schreiben wir: lim no∞

an = a

(1-27)

Der limes (lat. Grenze) für n gegen unendlich von an ist gleich a.

Beispiel 1.3.1: ORIGIN  1 an  1 

lim no∞

n  1  20

1

allgemeines Folgeglied

n

§1  ¨ ©



¸ o1



an  1  ε

a 1 ε

Grenzwert der Folge (a = 1) H-Umgebung von a = 1 (Abstand des Folgegliedes an von 1)

1 10

Für H = 1/ 10 gilt: 2

ORIGIN und Bereichsvariable festlegen

|an - 1| = | 1 - 1/n - 1 | = 1/n < H,daher ist n > 10. n1 ( a) 

11

n m 20 for k  1  n N m k  1 if

a ε a

1

n1 ( a)

a ε

11

Fast alle an liegen in dem

an 0 1 2 3 4 5 6 7 8 9 1011 121314 151617 181920 21

1

Streifen a rH (HUmgebung von a = 1), nämlich ab n = 11. Abb. 1.3.1

n

Seite 26

ak  a t ε

Folgen, Reihen und Grenzwerte

Bei der Grenzwertberechnung können unbestimmte Ausdrücke folgender Form auftreten: 0 ∞ 0 0 ∞  0 ˜ ∞ ∞  ∞ 0 ∞ 1 . 0 ∞ Sätze über Folgen: 1. Jede beschränkte und monotone Folge ist konvergent. 2. Jede konvergente Folge ist beschränkt. 3. Jede nicht beschränkte Folge ist divergent. 4. Eine konvergente bzw. divergente Folge bleibt konvergent bzw. divergent, wenn endlich viele Glieder abgeändert werden. 5. Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt, d. h., die Folge besitzt höchstens einen Grenzwert. Aus

lim no∞

lim

6.

no∞

lim

7.

no∞

lim

8.

no∞

an = a und

c ˜ an

=c˜

an  bn an ˜ bn

=

lim no∞

=

lim no∞

lim

9.

=

n o ∞ bn

lim

10.

no∞

lim no∞

n

q

bn = b folgt:

an = c ˜ a

lim no∞

lim an

lim no∞

an 

an ˜

c 

lim no∞

lim no∞

(1-28)

bn = a  b (gilt auch für die Subtraktion)

bn = a ˜ b

(1-29) (1-30)

an = bn

a

(alle bn z 0 ; a,b , b z0)

b

= 0 für |q| < 1 oder 1 für q = 1 oder "f" für q > 1

(1-31)

(1-32)

no∞

Kein Grenzwert für q d-1! 1

11.

lim

n

q =

no∞

lim

q

n

= 0 für q = 0 oder 1 für q > 1

(1-33)

no∞

Beispiel 1.3.2: Berechnen Sie folgende Grenzwerte mit Mathcad und händisch unter Anwendung der Grenzwertsätze: lim

7

no∞ n

lim no∞

lim no∞

o0

2 5 · § ¨3  n  2 ¸ o 3 n ¹ © 1 ª§ n  1 ·  § n  1 ·º «¨ ¸ ¨ ¸» o 2 ¬© n ¹ © 2 ˜ n ¹¼

Nullfolge

3 

lim

lim

no∞ n

no∞

n1

lim no∞

n 1

lim no∞

2





lim

n

1

Seite 27

n o ∞ n2

n 1

n o ∞ 2˜ n

1

1 

lim no∞

5

lim

2

=3

=

1 n

=

1 2

Division von Zähler und Nenner durch n

Folgen, Reihen und Grenzwerte

Beispiel 1.3.3: Berechnen Sie folgende Grenzwerte mit Mathcad und händisch unter Anwendung der vorher genannten Grenzwertsätze:

2

3˜ n  2˜ n  5

lim

n o ∞ 5 ˜ n2  7 ˜ n  1

o

3

2

3

3˜ n  2˜ n  5

lim

n o ∞ 5 ˜ n2  7 ˜ n  1

5

=

2 n



lim

5 2

n

no∞ 5 7  1 2 n

n



lim

n2 n1

no∞

o3



lim

n2 n1

no∞

3 =

2 n

lim no∞ 1

1

=3

n lim no∞

§ ¨1  ©



n

¸

1

oe



exp ( 1) = e = e

Beispiel 1.3.4: Berechnen Sie das Endkapital bei stetiger Verzinsung (augenblickliche Verzinsung) eines Kapitals K0 = 2000 €. Der Jahreszinsfuß beträgt 3 %. € 1

Währungseinheit

p  0.03

Jahreszinsen

K0  2000 ˜ €

Anfangskapital Jahr

p· § K  K0 ˜ ¨ 1  ¸ m¹ ©

m

m 1

m

Monate

p· § K  K0 ˜ ¨ 1  ¸ m¹ ©

m

Tage

p· § K  K0 ˜ ¨ 1  ¸ m¹ ©

m  12

m  360

Lassen wir m über alle Grenzen wachsen und setzen p/m = 1/n, so gilt: m

p· 1· § § K = K0 ˜ ¨ 1  ¸ = K0 ˜ ¨ 1  ¸ m¹ n¹ © ©

K=

lim no∞ p

K  K0 ˜ e

p ª n º ª§ « 1· º » «K0 ˜ «¨ 1  ¸ » » n¹ ¼ ¼ ¬ ¬©

n˜p

n ª§ 1· º « = K0 ˜ ¨ 1  ¸ » n¹ ¼ ¬©

ergibt

p

p

K = K0 ˜ e

K

2060.909 ˜ €

Seite 28

K

2060 ˜ €

K

2060.832 ˜ €

K

2060.906 ˜ €

=

3 5

Folgen, Reihen und Grenzwerte

1.4 Grenzwerte von unendlichen Reihen Genau dann, wenn die Partialsummenfolge < s1 , s2 , s3 , ... sn, ... > konvergiert, d. h. den Grenzwert s hat, wird dieser Reihe s als Wert zugeschrieben. Wir sagen: Die Reihe konvergiert und hat die Summe s (s ). ∞

¦

s = a1  a2  a3  ....  an  ... =

k

ak

(1-34)

1

Sätze über Reihen: ∞

1. Eine unendliche Reihe

¦ k

ak heißt konvergent, wenn ihre Partialsummenfolge

1

< sn > konvergiert. Den Grenzwert s der Partialsummenfolge bezeichnen wir als Summe der Reihe: n



¦

s = a1  a2  a3  ....  an  ... =

k

ak =

lim

sn =

no∞

1

¦

lim no∞

k

ak

(1-35)

1

Divergiert dagegen die Folge der Partialsummen der gegebenen Reihe, so heißt diese divergent. Sie hat keinen endlichen Summenwert! 2. Die Summe einer konvergenten Reihe ist eindeutig bestimmt. 3. Eine konvergente bzw. divergente Reihe bleibt konvergent bzw. divergent, wenn endlich viele Glieder abgeändert werden. ∞

4. Konvergiert



¦ k

ak gegen s, so konvergiert auch

1

k





¦

Divergiert

k

5. Konvergiert

ak , so divergiert auch

1 ∞

k

¦ k

¦

¦

ak , dann gilt

lim

gegen c s (c ).

(1-36)

1

c ˜ ak .

(1-37)

1

an = 0 (die Umkehrung gilt nicht!).

(1-38)

ak divergent (die Umkehrung gilt nicht!).

(1-39)

no∞

1

c ˜ ak



lim

6. Gilt

no∞

an z 0 , so ist

¦ k

1

Beispiel 1.4.1: ORIGIN  0

FRAME

nmax  5  FRAME

Anzahl der Folgeglieder

n  1  nmax

Bereichsvariable

an 

0

Animation mit FRAME von 0 bis 15 und 1 Bild/s



1 2

gegebene Folge

2˜ n

S0  0

ORIGIN festlegen und Animationsparameter

¦ n

Sn  Sn 1  an

1

2 1 2˜ n

o

π

2

12

0.822

n-te Partialsummenfolge (rekursiv)

Seite 29

Summenwert der Reihe

Folgen, Reihen und Grenzwerte

Summe  S

n max

n 0

1 an 0

an

0.5

an 0

2

4

Sn 0

0

0

1

0

0.5

0

0.5

1

2

1

0.125

1

0.625

2

3

2

0.056

2

0.681

3

4

3

0.031

3

0.712

4

5

4

0.02

4

0.732

6

Abb. 1.4.1

n

Summe

Sn Sn  1

0.5

Sn 0

2

4

6

Abb. 1.4.2

n

Beispiel 1.4.2: Berechnen Sie die ersten 64 Partialsummen der folgenden Reihe durch Iteration und berechnen Sie die Summe der Reihe: ORIGIN  1 ∞

¦ n

1

gegebene Reihe

n

1

n  1  64

Bereichsvariable

s1  1

Iterationsbeginn festlegen (Startwert)

sn1  sn 

1 n1

Partialsumme rekursiv definiert

Seite 30

Folgen, Reihen und Grenzwerte

n

sn

die ersten 64 Partialsummen

1

1

2

1.5

3

1.833

4

2.083

5

2.283

6

2.45

7

2.593

8

2.718

9

2.829

...

...

Daraus lässt sich bestenfalls eine gewisse Tendenz ableiten: s4

2.083

s8

s4 ! 2

2.718

s8 ! 2.5

s16

3.381

s16 ! 3.3

s64

4.744

s64 ! 4

Die Partialsummenfolge ist nicht beschränkt und divergiert. ∞

¦ n

1

o∞

n

Die Reihe ist divergent!

1

Beispiel 1.4.3: Berechnen Sie den Summenwert folgender Reihe numerisch (n = 100000) und symbolisch: ∞

1

¦ n

=

n ˜ ( n  1)

1 2



1 6



1 12



1 20

1



30

 ....

1 ∞

100000

1

¦

n

n ˜ ( n  1)

o

100000 100001

¦

0.999990000099999

n

1

1 n ˜ ( n  1)

ergibt

1

1

Beispiel 1.4.4: Berechnen Sie den Summenwert folgender Reihe numerisch (n = 100000) und symbolisch: 100000

1

¦

n

n ˜ ( n  1) ˜ ( n  2)



¦

0.249999999950002

1

n

1 n ˜ ( n  1) ˜ ( n  2)

1

Beispiel 1.4.5: Berechnen Sie den Summenwert folgender Reihe numerisch (n = 10) und symbolisch: 1 2

2



2



2

3 3

 ...

2

10

¦ n

n n



¦

1.98828125

1 2

n

n n

o2

1 2

Beispiel 1.4.6: Berechnen Sie den Summenwert folgender Reihe numerisch (n = 100) und symbolisch: 2

1

2

100

¦ n

1



n n

3 3

 ...



2.718281828459046

¦ n

1

Seite 31

n n

annehmen o e

ergibt

1 4

Folgen, Reihen und Grenzwerte

Beispiel 1.4.7: Berechnen Sie den Summenwert folgender Reihe numerisch (n = 1000) und symbolisch: 1 1˜ 3



1 3˜ 5



1000

 ...

5˜ 7



1

¦

n

1

( 2 ˜ n  1) ˜ ( 2 ˜ n  1)

1

¦

0.499750124937531

1

n

( 2 ˜ n  1) ˜ ( 2 ˜ n  1)

o

1 2

1

Die geometrische unendliche Reihe (a1 = a): n 1

2

a  a ˜ q  a ˜ q  ....  a ˜ q

k 1 a˜ q ¦ ∞

 .... =

k

(1-40)

1

Die n-te Partialsumme 2

n 1

2

n 1

s n = a  a ˜ q  a ˜ q  ....  a ˜ q

(1-41)

hat den Summenwert sn = a  a ˜ q  a ˜ q  ....  a ˜ q

n

= a˜

1 q

1q

=

a 1q



a 1q

n

˜q .

(1-42)

1. Fall q > 1 lim no∞

sn =

lim no∞

§ a  a ˜ qn· ¨ ¸ = ∞ (Satz 10 über Folgen). ©1  q 1  q ¹

(1-43)

2. Fall q = -1 lim no∞

s n existiert nicht (Satz 10 über Folgen).

(1-44)

3. Fall |q| < 1 lim no∞

sn =

lim no∞

§ a  a ˜ qn· = a ¨ ¸ 1 q ©1  q 1  q ¹

(1-45)

Also eine geometrische Reihe ist genau dann konvergent, wenn |q| < 1 gilt! a . Ihre Summe ist also s = 1q

Beispiel 1.4.8: ∞

¦ k

1

a 1

§ 1· ¨ ¸ © 2¹

k 1

=1

q

1 2

1 2



1 4



1 8 s



1 16

 .....

a 1 q

gegebene geometrische Reihe

s

2

Faktoren und Summenwert

nmax  5  FRAME

Animation für FRAME von 0 bis 15 mit 1 Bild/s

n  1  nmax  1

Bereichsvariable

nu  1 3  nmax

Bereichsvariable (ungerade Zahlen)

Seite 32

Folgen, Reihen und Grenzwerte

s ( q a i)  ( 0 d i) 

¦ ª¬a ˜ q

n



˜ ( n d i)º¼

Summe  s q a nmax



n

Partialsummen Summe

1.9375

s( q a nu2 ) 2

s( q a nu1 ) s( q a nu1 )

n max

Summe

s1  a ˜

s( q a nu) s( q a nu1 )

s1

1

s( q a nu)

0

2

4

q

1

q1

1.938

Abb. 1.4.3

6

nu 1 nu1 nu nu nu 1 nu

Auswertung als Grenzwert mit der Summenformel und direkte Berechnung der Reihe:

lim nmax o ∞

n ¨§ q max  ¨a ˜ q  1 ©

· ¸ o2 ¹



Summe 

k 1 ¦ a ˜ q vereinfachen ∞

a

Summe

1 q

2

k

o2

1

Berechnung des Summenwertes mithilfe der Partialsummenfolge: s1 = 1 s 2 = 1 + 1/2 = 3/2

Partialsummenfolge

-------------------------n

§ 1·  1 ¨ ¸ ª § 1 · nº © 2¹ sn = 1 ˜ = 2 ˜ «1  ¨ ¸ » 1 ¬ © 2¹ ¼ 1

lim no∞

ª ª § 1 · nºº «2 ˜ «1  ¨ ¸ »» = ¬ ¬ © 2 ¹ ¼¼

lim no∞

2

ª ˜ §  1 ·º = 2 «2 ¨ 1 n ¸» 2 ¹¼ ¬ ©

Beispiel 1.4.9: ∞

¦ k

1

§ 1· ¨ ¸ © 2¹

k 1

=1

1 2



1 4



1 8



1 16

 .....

gegebene alternierende geometrische Reihe

ORIGIN  0

ORIGIN festlegen

nmax  5  FRAME

Anzahl der Folgeglieder (FRAME von 0 bis 15 und 1 Bild/s)

n  1  nmax

Bereichsvariable

a0  1

q  n 1

an  a0 q

1

Anfangsglied und Quotient

2

s

geometrische Folge

Seite 33

a1 1 q

so

1 3

Summenwert der Reihe

Folgen, Reihen und Grenzwerte

S0  0

Sn  Sn 1  an

Summe  S

n max

n-te Partialsumme (rekursiv definiert)

Partialsummen

nu  1 3  nmax

Bereichsvariable (ungerade)

ng  2 4  nmax

Bereichsvariable (gerade) an 0

1

ang anu

0.5

0

Sn

ang

0

0

1

0

1

1

-0.5

1

0.5

2

0.25

2

0.75

3

-0.125

3

0.625

4

0.0625

4

0.6875

0 0

anu

2

4

6

 0.5

Abb. 1.4.4 ng nu ng ng nu nu

Sng

1

Snu

Summe

0.688

Summe

Sng 1 Sng 0.5 Snu 1 Snu

0

2

4

Abb. 1.4.5

6

ng nu ng ng nu nu

Endliche geometrische Reihe: n max

s n  a0 ˜

1q

1 q

sn

0.688

numerische Auswertung

Unendliche geometrische Reihe:

s

a0 1 q



s

0.667

¦ k

1

§ 1 · ¨ ¸ © 2¹

Seite 34

k 1

o

2 3

numerische und symbolische Auswertung

Grenzwert einer reellen Funktion und Stetigkeit

2. Grenzwert einer reellen Funktion und Stetigkeit 2.1 Grenzwert einer reellen Funktion Der Begriff des Grenzwertes einer reellen Funktion mit der Funktionsgleichung y = f(x) kann auf den Begriff des Grenzwertes einer Folge zurückgeführt werden. Dazu lassen wir die unabhängige Variable x eine gegen x0 konvergierende Zahlenfolge < xn >, die Abszissenfolge, durchlaufen und betrachten die Ordinatenfolge < yn = f(xn > der zu xi gehörigen Funktionswerte f(xi). Die Annäherung x o x0 bedeutet, dass x nacheinander die Werte jeder beliebigen gegen x 0 konvergierenden Folge < xn > annehmen kann. Bei x o x0 + wird zusätzlich verlangt, dass alle xn > x0 , bei x o x0 - alle x n < x0 sind. Definition: a) Eine reelle Funktion y = f(x) sei in einem die Stelle x 0 enthaltenen, offenen Intervall (einer Umgebung von x0 ), nicht notwendigerweise an der Stelle x0 selbst, definiert. Weiters kann dort < xn > jede beliebige Folge sein, die gegen x0 konvergiert ( xn z x0 ). Konvergieren alle Folgen < yn = f(xn) > der Funktionswerte gegen den gleichen Grenzwert G, so heißt G Grenzwert der Funktion y = f(x) an der Stelle x0 . Wir schreiben dafür: lim

f ( x) = G

(2-1)

x o x0

b) Ist < xn > eine beliebige von rechts nach x0 konvergierende Folge, und konvergiert dabei die Folge < yn = f(xn) > stets gegen den Grenzwert Gr, so heißt Gr rechtsseitiger Grenzwert der Funktion y = f(x) an der Stelle x0 . Wir schreiben dafür: lim



f ( x) = Gr

(2-2)



f ( x) = GL

(2-3)

x o x0 c) Ist < xn > eine beliebige von links nach x0 konvergierende Folge, und konvergiert dabei die Folge < yn = f(xn) > stets gegen den Grenzwert GL, so heißt GL linksseitiger Grenzwert der Funktion y = f(x) an der Stelle x0 . Wir schreiben dafür: lim

x o x0 d) Existieren der rechtsseitige und linksseitige Grenzwert an der Stelle x 0 , und stimmen diese überein, so existiert auch der Grenzwert der Funktion y = f(x) an der Stelle x0 . Es gilt auch die Umkehrung. e) Werden die Funktionswerte f(xn) für jede gegen x0 konvergierende Folge < xn > beliebig groß oder klein, so schreiben wir: lim x o x0

f ( x) = ∞

bzw.

lim

f ( x) = ∞ .

(2-4)

x o x0

Dieser Grenzwert wird uneigentlicher Grenzwert der Funktion genannt. Entsprechendes gilt auch für den rechts- bzw. linksseitigen Grenzwert der Funktion an der Stelle x0 . In all diesen Fällen heißt x 0 Unendlichkeitsstelle oder Polstelle der Funktion.

Seite 35

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.1.1: Wir betrachten zwei Abszissenfolgen < xn > der Funktion f: y = x2 , die dem Grenzwert x0 zustreben, und die zugehörigen Ordinatenfolgen < yn = f(xn ) >: ORIGIN  1

ORIGIN festlegen

n  1  100

Bereichsvariable

x1 n  2 

1

x2 n  2 

n

T

1

x1

2

1

T

1

1

x2

1

no∞

y1n  T

1 T

1

2.25

2.25

3.063

1· § ¨2  ¸ n¹ ©

lim no∞

3

5

1.75

4

3 2.778

2

3 3.361

7

1.833

1.9

1.917

6

8

1.857

7

4

5

3.063 4

5

10

9

...

10

1.944

...

Grenzwerte der Folgen

lim no∞

7

3.361 6

3.61

2

o4

6

3.24

3.516

2

§2  1 · ¨ ¸ 2 ˜ n¹ ©

8

3.449 7

3.674

3.516 8

3.719

3.754

9

10

3.568 9

... 10

3.781

...

2

Funktionsgleichung

x  0 0.001  2.5

Bereichsvariable

o4

Grenzwerte der Folgen

6

Alle diese x-Folgen streben gegen 2 und die zugehörigen f(x)-Folgen gegen 4. 4 ist der Grenzwert G der

5

y1

1.938

9 1.889

Ordinatenfolgen

f ( x)  x

f ( x)

1.875

8

1.929

§2  1 · o 2 ¨ ¸ 2 ˜ n¹ ©

no∞

x2n 2

6 1.8

5

1.875

lim

2

1 1

1.833

y2n 

1

y2

1.75

4

¸ o2 n¹

x1n 2

y1

3 1.667



§ ¨2  ©

lim

Abszissenfolgen

2˜ n

1.5

2 1.5

1

4

4

Funktion f: y = x2 mit x gegen 2. Er stimmt hier mit dem Funktionswert an der Stelle 2 überein.

3 2 1

lim 0

1

2

3

x x1

Abb. 2.1.1

Seite 36

xo2

f ( x) o 4

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.1.2: Wir betrachten die Funktion f: y = 1 für x >0 und y = 0 für x < 0 bzw. y = 1/2 für x = 0. Untersuchen Sie den rechts- und linksseitigen Grenzwert mit x o 0. f ( x) =

§ ¨ ¨ ¨ ¨ ©

· = Φ ( x) ¸ 1 if x = 0 ¸ ¸ 2 ¸ 0 if x  0 ¹ 1 if x ! 0

Heavisidefunktion ĭ(x). Der Wert 1/2 ergibt sich bei der Heavisidfunktion aus dem arithmetischen Mittelwert des linksund rechtsseitigen Grenzwertes mit x o 0.

x  5 5  0.5  5

Bereichsvariable 2

Der rechts- und linksseitige Grenzwert stimmt hier nicht überein!

1 Φ( x) 6

4

2

0

2

4

lim Φ ( x) o 1  xo0

6

lim Φ ( x) o 0  xo0

1 x

Abb. 2.1.2

Beispiel 2.1.3: Untersuchen Sie die Funktion g: y =

g ( x) 

1 x 1 1 x 1

if x ! 1

, ob sie einen Grenzwert mit x o 1 besitzt.

if x  1 Bereichsvariable 10 8 6 4 2

2

x 1

Funktionsdefinition

x  2 2  0.001  2

g ( x)

1

1

2 4 6 8  10

1

Liefert jeweils an der Polstelle einen unbestimmten Grenzwert!

0

1

2

1 o∞  x 1 xo1 lim

1 o ∞  x 1 xo1 lim

x

Abb. 2.1.3

Seite 37

Grenzwert einer reellen Funktion und Stetigkeit

Bei der Grenzwertberechnung kommen verschiedene Methoden zur Anwendung. Es kann, wenn uneigentliche Grenzwerte (siehe Kapitel 1) vorkommen, vorteilhaft sein, Funktionsterme zu kürzen oder zu erweitern. Hilfreich können bei der Bestimmung von Grenzwerten auch einige Grenzwertsätze sein, die genau jenen für Folgen (siehe Kapitel 1) entsprechen. Ein sehr hilfreicher Satz zur Bestimmung von Grenzwerten ist der Satz von L'Hospital, der jedoch erst später besprochen wird. Grenzwertsätze für reelle Funktionen: lim

Existieren die Grenzwerte

f ( x) und

x o x0

lim

a)

( f ( x) ± g ( x) ) =

lim

x o x0 x o x0

lim

( c ˜ f ( x) ) = c ˜

lim

lim

lim

g ( x)

(2-5)

f ( x) .

lim

g ( x)

(2-6)

f ( x) mit c \ {0}

(2-7)

x o x0

x o x0

lim c)

lim x o x0

x o x0

x o x0

g ( x) , dann gilt:

f ( x) r 

x o x0

( f ( x) ˜ g ( x) ) =

lim

b)

lim x o x0

f ( x)

x o x0 g ( x)

=

f ( x)

x o x0

lim

mit g ( x)

x o x0

g ( x) z 0

lim

(2-8)

x o x0

Beispiel 2.1.4: Untersuchen Sie folgende Grenzwerte mithilfe der Grenzwertsätze: x  5 5  0.001  5

Bereichsvariable

1.5

lim

10 5˜x 1 x 2

x o 1.5

§ 5 ˜ x  1  x· = ¨ ¸ © x 2 ¹

0

5

10

 10

=

1.5  2

x o 1.5

Abb. 2.1.4

 1.5

3

§ 5 ˜ x  1  x· Gleitkommazahl 4 o 3.929 ¨ ¸ © x 2 ¹

lim

1

xo3 x 3

=

1 0

5

5

10

lim

( x  3)

= "1/0"

Unbestimmter Ausdruck!

xo3

1 o∞  x 3 xo3 x

Abb. 2.1.5

1

xo3

Anwendung des Grenzwertsatzes (2-8) ist unzulässig! lim

 10

lim x o 1.5

Polstelle x = - 2 !

5 5



3.929

lim

10

( x  2)

x o 1.5

5 ˜ 1.5  1

lim x

x 3

lim

x 5

( 5 ˜ x  1)

lim x o 1.5

Polstelle x = 3 !

Seite 38

1 o ∞  x 3 xo3 lim

x

Grenzwert einer reellen Funktion und Stetigkeit

10

x  x 2

2

lim

5

x 2

xo2

2

xo2

=

lim

5

0

5

10

5

( x  2)

= "0/0"

xo2

x  x 2 x 2

x2  x  2

lim

2

Unbestimmter Ausdruck! Anwendung des Grenzwertsatzes (2-8) ist unzulässig!

 10

2

x  x 2 x

x 1

vereinfacht auf

x 2

Abb. 2.1.6 ( x  1) o 3

lim

Der Graph hat eine Lücke bei x = 2 !

xo2

lim

10

1

cos ( x)

lim

5

x 1

xo1

=

lim

5

0

5

10

5

Unbestimmter Ausdruck! Anwendung des Grenzwertsatzes (2-8) ist unzulässig!

 10

lim

x

xo1

Abb. 2.1.7

f ( x) 

cos ( x) 

o∞

x 1

lim xo1

sin ( x)

x 1

o ∞

gegebene Funktion (Lücke bei x1 = 0)

x

Lücke

x  10 10  0.01  10

Bereichsvariable lim

2

lim 1 5

sin ( x) x

x o x1

f ( x)  10

cos ( x) 

Polstelle x = 1 !

x1  0

1

= "cos(1)/0"

( x  1)

xo1

cos( x) x 1

cos ( x)

xo1

0 1 2 x 0

5

10

=

sin ( x)

xo0

lim

= "0/0" x

xo0

Unbestimmter Ausdruck! Anwendung des Grenzwertsatzes (2-8) ist unzulässig! lim

f ( x) o 1

Grenzwert

x o x1

Abb. 2.1.8 lim f ( x) o 1  x o x1

linksseitiger Grenzwert

lim f ( x) o 1  x o x1

rechtsseitiger Grenzwert

Die Lücke x = 0 kann durch die Definition f(0) = 1 geschlossen werden!

Seite 39

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.1.5: Werten Sie für die Fallgeschwindigkeit eines Körpers mit Luftwiderstand folgenden Grenzwert mit k gegen 0 aus:

§ ¨ ¨ lim ¨ m0 ˜ g ˜ ko0 ©

 2˜k˜s1 m0

1e k

§ ¨ ¨ lim ¨ m0 ˜ g1 ˜ ko0 ©

· ¸ ¸ ¸ ¹

 2˜k˜s1 m0

1e k

g ˜ m0 ˜

ergibt

· ¸ ¸ ¸ ¹

2 ˜ s1 m0

annehmen m0 ! 0 annehmen s 1 ! 0 o

2 ˜ g1 ˜ s 1

vereinfachen

§ ¨ ¨ lim ¨ m0 ˜ g1 ˜ ko0 ©

 2˜k˜s1 m0

1e k

· ¸ ¸ ¸ ¹

annehmen m0 ! 0 o vereinfachen



g1 ˜

s1

Beispiel 2.1.6: Für die erzwungene Schwingung ist für den Resonanzfall folgender Grenzwert mit G gegen 0 auszuwerten:

ª e δ˜t § δ ·º ˜ ¨ ω ˜ t  sin ( ω ˜ t)  δ ˜ t ˜ cos ( ω ˜ t)  lim « ˜ sin ( ω ˜ t) ¸» 2 ω © ¹»¼ δo0 « ¬ ω lim δo0

vereinfacht auf 

sin ( ω ˜ t)  ω ˜ t 2

ω

ª e δ˜t § δ sin ( ω ˜ t)  ω ˜ t ·º « ˜ ¨ ω ˜ t  sin ( ω ˜ t)  δ ˜ t ˜ cos ( ω ˜ t)  ˜ sin ( ω ˜ t) ¸» vereinfachen o  « 2 © 2 ω ¹»¼ ω ¬ ω

2.2 Stetigkeit von reellen Funktionen Eine stetige Funktion ("nicht sprunghafte Funktion") ist - vereinfacht gesagt - dadurch gekennzeichnet, dass wir ihren Graf "in einem Zuge" zeichnen können. Definition: a) Eine Funktion f: y = f(x) heißt an der Stelle x0 (x0 D) stetig, wenn dort Grenzwert und Funktionswert existieren und übereinstimmen. Das heißt lim x o x0



f ( x) = G und G = f x0

(2-9)

Trifft auch nur eine der beiden Bedingungen nicht zu, so heißt die Funktion an der Stelle x0 unstetig. b) Eine Funktion f heißt stetig, wenn sie an allen Stellen des Definitionsbereichs stetig ist.

Seite 40

Grenzwert einer reellen Funktion und Stetigkeit

Bemerkung: Existiert an einer Definitionslücke x0 der Grenzwert

lim

f ( x) = c (c ), so kann die Funktion

x o x0

durch die zusätzliche Definition f(x0 ) = c stetig fortgesetzt werden. Die Lücke wird dadurch geschlossen (behebbare Unstetigkeitsstelle). Viele elementare Funktionen sind stetig. Auch Summe, Produkt, Kehrwert und Verkettung (Hintereinanderausführen) von stetigen Funktionen führen wieder auf stetige Funktionen.

Beispiel 2.2.1: f ( x) 

x if 0 d x d 3

f1 ( x) = wenn [ ( 0 d x) ˜ ( x d 3) x wenn ( x ! 3 x  1 0) ]

oder

Funktion

x  1 if x ! 3 x1  3

x2  3.5 

Δx  x2  x1



Δy  f x2  f x1 lim x o x1



Δx

0.5

Δy

0.5

FRAME

( x  1) o 2

lim x o3  x o x1



f x1

lim Δx o 0

lim Δx o 0

35

mithilfe der Variablen FRAME definierter Parameter FRAME: 0 bis 15 mit 1 Bild/s x-Wert- und y-Wert-Differenz

rechtsseitiger Grenzwert

linksseitiger Grenzwert

3

Funktionswert

f x1  Δx  f x1

Der Grenzwert sollte bei Stetigkeit 0 werden!

ª¬ x1  Δx  1  x1º¼ o 1

x  0 0.01  5

Bereichsvariable

Seite 41

Grenzwert einer reellen Funktion und Stetigkeit

Stetigkeit 4

Linksseitiger Grenzwert

lim x o x1

3

x1



x2

x o3

f x1  Δx f x1

y-Achse

f ( x)

2 f x2 f x1

lim ( x  1) o 2  x o x1

1

Die Funktion f(x) ist an der Stelle x 1 unstetig.

Rechtsseitiger Grenzwert 0

0

1

2

3

4

5

x x1 x2 x-Achse

Abb. 2.2.1 Beispiel 2.2.2: Untersuchen Sie die Funktion f(x) = sign(x) (Vorzeichenfunktion) auf Stetigkeit. x  2 2  0.01  2

Bereichsvariable sign ( 0.1)

1

sign ( 0)

0

sign ( 0.1)

1

2

lim sign ( x) o 1  xo0

1 sign( x) sign( 0 )  2

1

0

1

2

3

lim xo0

1



sign ( x) o 1

Liefert hier den falschen Wert!

Die Funktion ist an der Stelle x0 = 0 unstetig,

2

sonst stetig! x 0

Abb. 2.2.2 Beispiel 2.2.3: Untersuchen Sie die Funktion f(x) = V(x - a) = )(x - a) (allgemeine Heavisidefunktion) auf Stetigkeit. x  2 2  0.01  2

Bereichsvariable

2

Φ ( 3  1)

1 Φ( x 1 )

2

1

0

1

2

3

1

Φ ( 0.1  1)

lim Φ ( x  1) o 1  xo1

0

lim Φ ( x  1) o 0  xo1

1

Die Funktion ist an der Stelle x = 1 unstetig, sonst stetig!

2 x

Abb. 2.2.3

Seite 42

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.2.4: Untersuchen Sie die Funktion f(x) = )(x - a) - )(x - b) (Pulsfunktion) auf Stetigkeit. x  2 2  0.01  4

Bereichsvariable lim ( Φ ( x  1)  Φ ( x  2) ) o 1  xo1

2 1 Φ( x 1 )  Φ( x 2 )

2

0

2

4

6

1 2

lim ( Φ ( x  1)  Φ ( x  2) ) o 0  xo1

Die Funktion ist an den Stellen x = 1 und x = 2 unstetig, sonst stetig!

x

Abb. 2.2.4 Beispiel 2.2.5: Untersuchen Sie die Funktion f(x) = ()(x) - )(x - S)) sin(x) (Fensterfunktion) auf Stetigkeit. f ( x)  ( Φ ( x)  Φ ( x  π) ) ˜ sin ( x)

Funktionsgleichung

x  2 2  0.01  4

Bereichsvariable

2 1 f ( x)

2

0

2

4

6

Die Funktion ist überall stetig!

1 2 x

Abb. 2.2.5 Beispiel 2.2.6: Untersuchen Sie die Funktion f(x) = x sin(1/x) auf Stetigkeit.

§ 1· ¸ ©x¹

f ( x)  x ˜ sin ¨ x

3 3 3   0.001  π π π

Funktionsgleichung (Oszillationsstelle bei x = 0)

Bereichsvariable

Seite 43

Grenzwert einer reellen Funktion und Stetigkeit

1

Die Funktion ist bei x = 0 unstetig! 0.5

f ( x) x x

lim 1

f ( x) o 0

xo0

 0.5

0

0.5

1

Der Grenzwert bei x = 0 existiert. Die Oszillationsstelle (Definitionslücke) kann durch die Zusatzdefinition f(0) = 0 stetig geschlossen werden!

 0.5 1 x

Abb. 2.2.6 Beispiel 2.2.7: Untersuchen Sie die Funktion f(x) = (x2 - 1)/(x - 1) auf Stetigkeit. 2

f ( x) 

x 1

Funktionsgleichung (gebrochenrationale Funktion - Lücke bei x = 1)

x 1

x  2 2  0.01  2

Bereichsvariable Die Funktion ist bei x = 1 unstetig!

4

lim

3

f ( x) o 2

xo1 f ( x)

2

2

1 2

1

Der Grenzwert bei x = 1 existiert. Die Lücke (Definitionslücke) kann durch die Zusatzdefinition f(1) = 2 stetig geschlossen werden! 0

1

2

3 2

1

x 1 x 1

x 1

vereinfacht auf

x 1

Abb. 2.2.7

2.2.1 Eigenschaften stetiger Funktionen Stetige Funktionen besitzen eine Reihe von nennenswerten Eigenschaften: Zwischenwertsatz: In einem abgeschlossenen Intervall I = [a, b] nehmen stetige Funktionen jeden Wert zwischen f(a) und f(b) an. Nullstellensatz: Ist f eine in I = [a, b] stetige Funktion, deren Funktionswerte an den Randpunkten a und b verschiedene Vorzeichen haben, so gibt es mindestens einen Wert x0 ] a, b[ mit f(x0 ) = 0. Extremwertsatz: Eine in einem abgeschlossenen Intervall I = [a, b] stetige Funktion f ist in I beschränkt und hat hier ein absolutes Maximum bzw. Minimum (absolute Extremwerte). Relative Extremwerte (relatives Maximum bzw. Minimum) werden im Abschnitt 3.3 näher besprochen.

Seite 44

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.2.8: Besitzt die Funktion y = x3 - x - 3 im Intervall [0, 2] eine Nullstelle? a 0

b 2

Intervallrandpunkte

3

f ( x)  x  x  3 f ( a)

3

f ( b)

Funktion Es liegt mindestens eine Nullstelle innerhalb des Intervalls!

3

x0  wurzel ( f ( x) x a b)

x0

x  4 4  0.01  4

Bereichsvariable

Nullstelle

1.672

10

x0 b

5 f ( b) f ( x)

4

2

0

2

5

f ( a)

4

 10 x

Abb. 2.2.8 Beispiel 2.2.9: Besitzt die Funktion y = x3 - 2 x + 5 im Intervall [-3, 2] eine Nullstelle ? a  3

b 2

Intervallrandpunkte

3

f ( x)  x  2 ˜ x  5

Funktion

x  4 4  0.01  4

Bereichsvariable 10

a 4

f ( x)

2

b

0

f ( b)

2

4

 10 f ( a)  20 x

Abb. 2.2.9 f ( a)

16

x1  1



absolutes Minimum

f ( b)

Startwert (Näherungswert)

x2  1



0.816

Startwert (Näherungswert)



xmax  Maximieren f x1 xmax

absolutes Maximum

9



xmin  Minimieren f x2



f xmax



6.089

xmin

relatives Maximum

0.816



f xmin



3.911

relatives Minimum

Seite 45

Grenzwert einer reellen Funktion und Stetigkeit

2.2.2 Verhalten reeller Funktionen im Unendlichen In vielen Anwendungen wird öfters das Langzeitverhalten einer physikalischen Größe untersucht. Zum Beispiel wird bei Schwingungsvorgängen das stationäre Verhalten untersucht, also das Verhalten nach dem Einschwingvorgang. Um solche Verhalten untersuchen zu können, sind Grenzwert- untersuchungen notwendig. Definition: a) Konvergiert für jede Folge < xn > mit xn ofbzw. xn of die Folge < f(xn) > stets gegen denselben Grenzwert G, so heißt G Grenzwert der Funktion für xn ofbzw. xn of. Wir schreiben dafür: lim

f ( x) = G bzw.

lim

xo∞

f ( x) = G

(2-10)

xo∞

Ist G gleich "+ f"oder "- f ", so sprechen wir auch von einem uneigentlichen Grenzwert. Es gelten hier auch die vorher genannten Grenzwertsätze.

b) Eine Gerade g: x = a (Parallele zur y-Achse) heißt Asymptote der Funktion f: y = f(x), wenn gilt: lim

f ( x) = ∞ ;

lim

xoa

f ( x) = ∞

(2-11)

xoa

a heißt Pol der Funktion f. c) Existiert speziell der Grenzwert

lim

f ( x) = d, dann hat der Graf der Funktion f eine

x o +/-∞

horizontale Asymptote mit der Gleichung y = d. d) Eine Gerade g: y = k x + d heißt Asymptote der Funktion f: y = f(x), wenn gilt: ( f ( x)  g ( x) ) = 0 bzw.

lim x o +/-∞

[ f ( x)  ( k ˜ x  d) ] = 0

lim

(2-12)

x o +/-∞

oder k=

lim x o +/-∞

f ( x) x

und

d=

lim

( f ( x)  k ˜ x)

x o +/-∞

Beispiel 2.2.10: Untersuchen Sie die Funktion f: f(x) = tan(x) ; D = \ { (2 k +1) S/2 } mit k . f ( x)  tan ( x)

Funktionsgleichung

x  2 ˜ π 2 ˜ π  0.001  2 ˜ π

Bereichsvariable

Seite 46

(2-13)

Grenzwert einer reellen Funktion und Stetigkeit



5

2

3

π

Die Funktion besitzt bei xk = (2 k +1) S/2

2

1 f ( x)

 10

5

10

5

10

3

Polstellen und an diesen Stellen Asymptoten mit den Gleichungen xk = (2 k +1) S/2.

5 x

Abb. 2.2.10 lim xo

π



f ( x) o ∞

lim xo

2

π



f ( x) o ∞

Grenzwerte

2

Beispiel 2.2.11: Untersuchen Sie die Funktion f: f(x) = 1/(x-1) ; D = \ { 1 }. f ( x) 

1

Funktionsgleichung

x 1

x  5 5  0.001  5

Bereichsvariable

x0  1

Polstelle 5

Die Funktion besitzt bei x0 = 1 eine Polstelle und

x0

3 1 f ( x)

5

10

0 10

5

3 5 x

Abb. 2.2.11 lim f ( x) o ∞  xo1

lim f ( x) o ∞  xo1 Grenzwerte

lim

f ( x) o 0

xo∞

lim

f ( x) o 0

xo∞

Beispiel 2.2.12: Untersuchen Sie die Funktion f: f(x) = x/(x+1) ; D = \ { -1 }. f ( x) 

x x 1

Funktionsgleichung

Seite 47

an dieser Polstelle eine Asymptote mit der Gleichung x = 1. Die Funktion nähert sich ebenfalls asymptotisch der x-Achse. Die x-Achse mit der Gleichung y = 0 ist ebenfalls Asymptote.

Grenzwert einer reellen Funktion und Stetigkeit

x  5 5  0.001  5

Bereichsvariable

1

5

Die Funktion besitzt bei x0 = - 1 eine Polstelle

3 1 f ( x)

5

(einfache Polstelle) und an dieser Polstelle eine Asymptote mit der Gleichung x = - 1. Die Funktion nähert sich asymptotisch der Geraden y = 1. y = 1 ist ebenfalls eine Asymptote.

1

10

5

10

3 5 x

Abb. 2.2.12 lim x o 1



f ( x) o ∞

lim x o 1



f ( x) o ∞

f ( x) o 1

lim xo∞

f ( x) o 1

lim

Grenzwerte

xo∞

Beispiel 2.2.13: Untersuchen Sie die Funktion f: f(x) = (x2 + 1)/(x2 -4); D = \ { -2, 2 }. 2

f ( x) 

x 1

Funktionsgleichung

2

x 4 x x

Redefinition

2

x  4 = 0 auflösen x o

§2 · ¨ ¸ © 2 ¹

x  5 5  0.001  5

2

Polstellen Bereichsvariable

5

Die Funktion besitzt bei x1 = - 2 und bei x2 = 2

2

3 1 f ( x)

5

1

10

5

10

3 5

eine Polstelle (zweifache Polstelle) und an diesen Polstellen eine Asymptote mit der Gleichung x = - 2 bzw. x = 2. Die Funktion nähert sich ebenfalls asymptotisch der Geraden y = 1. y = 1 ist ebenfalls eine Asymptote.

x

Abb. 2.2.13 lim f ( x) o ∞  x o 2 lim xo∞

f ( x) o 1

lim f ( x) o ∞  x o 2 lim

f ( x) o 1

lim f ( x) o ∞  xo2 Grenzwerte

xo∞

Seite 48

lim f ( x) o ∞  xo2

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.2.14: Berechnen Sie die Asymptoten der nachfolgenden unecht gebrochenrationalen Funktion und stellen Sie die Funktion und Asymptoten grafisch dar. a 1

Konstante 2

2˜ x

f ( x) 

Funktionsgleichung

2

x a k

f ( x)

lim xo∞

d

x

o0

Steigung der Asymptote

( f ( x)  k ˜ x) o 2

lim

Achsenabschnitt der Asymptote

xo∞

y ( x)  k ˜ x  d

Asymptotengleichung

x  a  4 a  4  0.001  a  3

Bereichsvariable 3 2.5 2

f ( x)

Die Funktion nähert sich asymptotisch der Geraden y = 2.

1.5

y( x)

1 0.5 3

2

1

0

1

2

3

x

Abb. 2.2.14 Beispiel 2.2.15: Berechnen Sie die Asymptoten der nachfolgenden unecht gebrochenrationalen Funktion und stellen Sie die Funktion und Asymptoten grafisch dar. a 5

Konstante 2

2

f ( x) 

k

5˜ x  1 x a

lim xo∞

d

Funktionsgleichung

lim

f ( x) x

x a

in Partialbrüche zerlegt, ergibt 2

o5

( f ( x)  k ˜ x) o 25

1  5˜ a

Steigung der Asymptote

5˜ x 5˜ a 

Achsenabschnitt der Asymptote

5 x + 5 a ist der Term für die Asymptotengleichung

xo∞

y ( x)  k ˜ x  d

5˜ x  1

Asymptotengleichung

Seite 49

x a

Grenzwert einer reellen Funktion und Stetigkeit

x  a  2 a  2  0.0001  a  2

Bereichsvariable

300

a

200

f ( x)

Die Funktion nähert sich asymptotisch der Geraden x = a und y = k x +d. x = a und y = k x + d sind Asymptoten. Die Kurve hat bei x 1 = a

100

y( x) 3

4

5

6

7

 100

einen Pol.

 200 x

Abb. 2.2.15

Beispiel 2.2.16: Berechnen Sie die Asymptoten der nachfolgenden Funktion und stellen Sie die Funktion und Asymptoten grafisch dar. 2

x

f ( x)  x ˜ e

Funktion

x  1 1  0.001  20

Bereichsvariable

x2 ˜ e x

lim

o∞

xo∞ 0.8

x2 ˜ e x

lim

0.6

5

o 25 ˜ e

xo5

f ( x) 0.4

lim

0.2

x2 ˜ e x

o0

xo∞ 0

10

20

30

x

Asymptote mit der Gleichung y = 0

Abb. 2.2.16 Beispiel 2.2.17: Berechnen Sie die Asymptoten für die Feldstärke eines Kugelkondensators. E ( x) =

lim xo0

Abb. 2.2.17

Q 4 ˜ π ˜ ε0

˜

1 2

x

§k ˜ 1 · o ∞ ¨ 2¸ © x ¹

=k˜

1

elektrische Feldstärke

2

x

lim xo∞

x = 0 ist eine Polstelle

Seite 50

§ 1· ¨k ˜ 2 ¸ o 0 © x ¹

x- und y-Achse sind Asymptoten

Grenzwert einer reellen Funktion und Stetigkeit

Q  100 ˜ 1.6 ˜ 10 ε 0  8.8542 ˜ 10

 12

Q

E ( x) 

 19

4 ˜ π ˜ ε0

˜

˜C

˜

gegebene Ladung

A˜s

elektrische Feldkonstante

V˜m

1

elektrische Feldstärke

2

x

x  0 ˜ cm 0.01 ˜ cm  10 ˜ cm

Bereichsvariable

5

1u 10

6

7.5u 10

E( x )

6

5u 10

V cm

Abb. 2.2.18

6

2.5u 10

0

1

2

3

4

5

6

7

8

9

10

x cm

Beispiel 2.2.18: Berechnen Sie die Asymptoten für die magnetische Feldstärke H eines stromdurchflossenen Leiters. Außerhalb des Leiters mit Radius r gilt für die magnetische Feldstärke: lim

H ( x) = 0

und

lim

xo∞

H ( x) = 0

H ( x) =

I 2˜ π˜ x

=

k x

ist Asymptote

H ( x) = 0

xo∞

Innerhalb des Leiters gilt unter der Annahme, dass die Stromverteilung über dem Leiterquerschnitt gleichmäßig ist: I I ( x) I

=

A ( x) A

2

=

x ˜π 2

r ˜π

2

=

x

2

Ÿ

I

I ( x) =

r

1 2

H ( x) 

2

˜x

und damit

H ( x) =

r

I 5˜ A r

2

I ( x) 2˜ π˜ x

2

=

gegebener Strom

˜ mm

gegebener Radius I

2˜ π˜ x I 2

if ( x ! r) › ( x  r) magnetische Feldstärkefunktion ˜ x if r d x d r

2˜ r ˜ π x  5 ˜ mm 5 ˜ mm  0.01 ˜ mm  5 ˜ mm

Bereichsvariable

φ  0 0.1  2 ˜ π

Bereichsvariable

Seite 51

2

˜x

r

2˜ π˜ x

=

I 2

2˜ r ˜ π

˜x

Grenzwert einer reellen Funktion und Stetigkeit

20 r

r

mm

mm

10 r˜sin( φ) mm 6

H ( x)

4

2

0

2

4

0

6

A cm

 10

 20 r˜cos ( φ) mm



x mm

Abb. 2.2.19 Beispiel 2.2.19: Die elektrische Feldstärke in der Umgebung einer elektrischen Doppelleitung ist gegeben durch E(x) = k.1/(a2 - x2 ) (k = a.Q/(SH0 l). Bestimmen Sie den Grenzwert mit x gegen ± f und den links- und rechtsseitigen Grenzwert mit x gegen -a und +a der Funktion E(x). Stellen Sie die Funktion zuerst grafisch dar. a  0.5

k 1

E ( x)  k ˜

1 2

2

gegebene Werte elektrische Feldstärke

Pol 2. Ordnung bei x1 = -a und x 2 = a

a x

x  1 1  0.001  1 Bereichsvariable

a

10

a

5

E( x )

2

0 5

 10 x

Abb. 2.2.20

Seite 52

0

2

Grenzwert einer reellen Funktion und Stetigkeit

E ( x) o 0.0

lim

E ( x) o 0.0

lim

y = 0 ist Asymptote

xo∞

xo∞

lim E ( x) o ∞  x o a

lim E ( x) o ∞  x o a

lim xoa



E ( x) o ∞

lim xoa



x = - a ist Asymptote

E ( x) o ∞

x = a ist Asymptote

Beispiel 2.2.20: Gegeben ist eine belastete Gleichstromquelle mit variablem Außenwiderstand. Stellen Sie U = f(x), I = f(x), K = f(x) und P = f(x) in einem Koordinatensystem dar und bestimmen Sie die Asymptoten.

U0 = 85 ˜ V

gegebene Daten

Ri = 10 ˜ Ω

Abb. 2.2.21 (1) Spannungsfunktion: U = I ˜ Ra =

U0 Ra  Ri

˜ Ra

: Ri

U=

Ra U0 ˜ Ri Ra

U0 ˜ x x 1

xo∞ x 1

(2) Stromfunktion: I=

U0

I=

o U0

Asymptote bei U = U0

Ra

o0

Asymptote bei I = 0

1 U0

U0 Ri

lim

x 1

Ri

xo∞ x 1

(3) Wirkungsgradfunktion:

η=

Pab Pzu

=

U˜ I U0 ˜ I

Ra

2

=

I ˜ Ra 2



I ˜ Ra  Ri



=

Ra

: Ri

Ra  Ri

η=

Ri

Ra Ri

η = f ( x) =

x x 1

Ri

Ri

Ri

I = f ( x) =

Ra

U0

: Ri

Ra  Ri

U0 ˜ x

lim

x=

1

Ri U = f ( x) =

Substitution:

lim

x

xo∞ x 1

o1

Seite 53

1

Asymptote bei K = 1

Grenzwert einer reellen Funktion und Stetigkeit

(4) Leistungsfunktion: 2

2 2 U0 ˜ Ra §¨ U0 ·¸ Pab = U ˜ I = I ˜ Ra = ˜ Ra = ¨© Ra  Ri ¸¹ Ra  Ri 2 2

2

U0 Pab = f ( x) =

Ri

: Ri2

U0

˜x

Ri

lim

2

x o ∞ ( x  1)

o0

2

angelegte Spannung

Ri  10 ˜ Ω

Innenwiderstand

x  0 0.01  30

x = Ra /Ri Bereichsvariable

I ( x) 

200

=

˜x

( x  1)

2

Asymptote bei Pab = 0

2

U0

U0

x 1

2

Ri

˜x

U0  85 ˜ V

U ( x) 

R ¨§ a  1·¸ ¨© Ri ¸¹

2

( x  1)

U0 ˜ x

U0 ˜ Ri ˜ Ri

Pab =

2

U0

Ra

Ri

η ( x) 

x 1

x x 1

Pab ( x) 

Ri

˜x

( x  1)

2

Funktionen

1 Ra = Ri

U0 V U ( x)

150

V I( x) A

100

Pab( x) W η( x) %

50

100

0

10

20

30

x

Abb. 2.2.22 Beispiel 2.2.21: Untersuchen Sie den (verlustfreien) Reihenschwingkreis (Resonanzkreis) auf Asymptoten und Nullstellen, und stellen Sie die Blindwiderstände X, X L und XC in einem Koordinatensystem grafisch dar.

Seite 54

Grenzwert einer reellen Funktion und Stetigkeit

L = 3 ˜ mH gegebene Daten C = 5 ˜ nF Abb. 2.2.23 XL = ω ˜ L

XC =

1 Blindwiderstände

ω˜ C 1

X = XL  XC = ω ˜ L  ω˜ C ω˜ L 

1

lim

ω o ∞ ω˜ C

o0

Asymptote bei XC = 0, Polstelle bei Z = 0 und Asymptote bei Z = 0

Gesamtblindwiderstand 2

1

ω ˜ L˜ C  1

vereinfacht auf

ω˜ C

ω˜ C

ω

ωo∞

1 ω˜ C

1

ω˜ L  lim

ω˜ C

ω˜ L 

in Partialbrüche zerlegt, ergibt

oL

und

=k

lim ωo∞

§ ω ˜ L  1  L ˜ ω· ¨ ¸ o0 ω˜ C © ¹

=d

Asymptote bei XL = Z L, Polstelle bei Z = 0 und Asymptote bei Z = 0 Nullstellen X = 0, d. h. X L = XC: ω˜ L 

1 ω˜ C

=0

Ÿ

2

ω ˜ L˜ C = 1

Ÿ

1

ωr =

L˜ C

Resonanzfrequenz

L  3 ˜ mH gegebene Daten C  5 ˜ nF XL ( f )  2 ˜ π ˜ f ˜ L

XC ( f ) 

1

X ( f)  2 ˜ π ˜ f ˜ L 

2˜ π˜ f˜ C

f  1 ˜ kHz 1 ˜ kHz  0.01kHz  300 ˜ kHz

0

fr

Ω

kHz

3

4u 10 XL ( f ) Ω

2˜ π˜ f˜ C

Bereichsvariable

fr

0 0

Ω

100

200

3

 2u 10

Ω 3

 4u 10

fr 

1 2˜ π˜

L˜ C

41.094 ˜ kHz

überwiegend induktiv

3

2u 10

XC ( f )

X( f )

1

Ω300

Saugkreis, bevorzugt durchlässig für Ströme der Frequenz fr (Spannungsresonanz)

überwiegend kapazitiv

f kHz

Abb. 2.2.24

Seite 55

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.2.22: Untersuchen Sie den (verlustfreien) Parallelschwingkreis (Resonanzkreis) auf Asymptoten und Nullstellen, und stellen Sie die Blindleitwerte B, B L und BC in einem Koordinatensystem grafisch dar. L L

C C

Redefinitionen

L = 5 ˜ mH gegebene Daten C = 4 ˜ nF Abb. 2.2.25 1

BL =

XL

BC =

1

=

1 XC

induktiver Blindleitwert

ω˜ L

= ω˜ C

o0

ω o ∞ ω˜ L

Asymptote bei BL = 0, Polstelle bei Z = 0 und Asymptote bei Z = 0

kapazitiver Blindleitwert

1 B = BC  BL = ω ˜ C  ω˜ L

Gesamtblindleitwert 2

1

ω˜ C 

1

lim

vereinfacht auf

ω˜ L

ω ˜ L˜ C  1

in Partialbrüche zerlegt, ergibt

ω˜ L

C˜ ω 

1 L˜ ω

2

ω ˜L˜C 1 ω˜L

lim

oC

ω

ωo∞

=k

und

lim ωo∞

§ ω ˜ C  1  ω ˜ C· o 0 ¨ ¸ ω˜ L © ¹

=d

Asymptote bei BC = Z C, Polstelle bei Z = 0 und Asymptote bei Z = 0 Nullstellen B = 0, d. h. B C = BL : ω˜ C 

X=

1 B

1 ω˜ L

2

ω ˜ L˜ C = 1

=0

1

=

ω˜ C 

1

ω o ∞ ω2 ˜ L ˜ C  1

L  5 ˜ mH BL ( f )  fr 

o0

C  4 ˜ nF 1

2˜ π˜ f˜ L 1

2˜ π˜

ω˜ L 2

L˜ C

1

Resonanzfrequenz

L˜ C

Gesamtblindwiderstand

ω ˜ L˜ C  1

ω˜ L

ω˜ L

lim

=

ωr =

BC ( f )  2 ˜ π ˜ f ˜ C fr

35.588 ˜ kHz

f  1 ˜ kHz 1 ˜ kHz  0.01kHz  300 ˜ kHz

Asymptote bei X = 0 Polstelle bei Zr und damit Asymptote bei Zr gegebene Daten B ( f)  2 ˜ π ˜ f ˜ C 

1 2˜ π˜ f˜ L

Resonanzfrequenz

Bereichsvariable

Seite 56

Blindleitwertfunktionen

Grenzwert einer reellen Funktion und Stetigkeit

0.01

fr kHz

BL ( f )

3

5u 10

S

überwiegend kapazitiv

BC ( f ) 0

S

100

200

300

Sperrkreis, sperrt Ströme der Frequenz f r (Stromresonanz)

B( f ) S

3

 5u 10

überwiegend induktiv

 0.01 f kHz

Abb. 2.2.26 X ( f) 

2˜ π˜ f˜ L 2

Blindwiderstand

( 2 ˜ π ˜ f) ˜ L ˜ C  1 fr

3

4u 10

kHz 3

2u 10 X( f ) Ω

0

100

200

300

3

 2u 10

3

 4u 10

f kHz

Abb. 2.2.27 Beispiel 2.2.23: Untersuchen Sie den (verlustfreien) Filter auf Asymptoten und Nullstellen, und stellen Sie den Blindwiderstand X in einem Koordinatensystem grafisch dar. C1 = 5 ˜ nF C2 = 8 ˜ nF

gegebene Daten

L = 2 ˜ mH R=0 Abb. 2.2.28

Seite 57

Grenzwert einer reellen Funktion und Stetigkeit





1 Z1 = j ˜ XC = j ˜ ω ˜ C1 1

Z2 =

1

=

Y

j˜B

1



=

komplexer Widerstand



j ˜ BC  BL

=

1 1 · § j ˜ ¨ ω ˜ C2  ¸ ω ˜ L¹ ©

=

ω˜ L

Z2 = j ˜

1

§¨ ω2 ˜ L ˜ C  2 j˜¨ ω˜ L ©

1 ·¸ ¸ ¹

=

ω˜ L 2 j ˜ § ω ˜ L ˜ C2  1· © ¹

erweitern mit j / j

komplexer Widerstand

2

1  ω ˜ L ˜ C2

1 · ω˜ L §  ¸ ¨ 1  ω2 ˜ L ˜ C2 ω ˜ C1 ¸ © ¹

Z = Z2  Z1 = j ˜ ¨

ω˜ L

X=

2

2



1  ω ˜ L ˜ C2

1

vereinfacht auf

ω ˜ C1

L L

C1 ˜ ω  C1 ˜ C2 ˜ L ˜ ω

ω1 = 0

§ 1  ω2 ˜ L ˜ C · ˜ ω ˜ C = 0 2¹ 1 ©

ωr =

3

ωo∞

3

C1 ˜ ω  C1 ˜ C2 ˜ L ˜ ω

Polstellen:

lim

X=

2

C1 ˜ L ˜ ω  C2 ˜ L ˜ ω  1

Polstelle und Asymptote bei Z1 = 0 1 L ˜ C2

ω˜ L 1 · §¨  ¸ o0 ¨ 1  ω2 ˜ L ˜ C2 ω ˜ C1 ¸ © ¹

Polstelle und Asymptote bei Zr

Asymptote bei X = 0

Nullstellen:

ª L ˜ C1  C2 º « » C1 ˜ L  C2 ˜ L » « 2 2 C1 ˜ L ˜ ω  C2 ˜ L ˜ ω  1 = 0 auflösen ω o « » « L ˜ C1  C2 » « C ˜ L  C ˜ L » 2 ¬ 1 ¼

ω0 =

1 L ˜ C1  L ˜ C2

L  2 ˜ mH C1  5 ˜ nF

gegebene Daten

C2  8 ˜ nF 2˜ π˜ f˜ L

X ( f) 



2

1  ( 2 ˜ π ˜ f) ˜ L ˜ C2 fr 

1 2˜ π˜

L ˜ C2

fr

1 2 ˜ π ˜ f ˜ C1

39.789 ˜ kHz

Blindwidwerstand

f0 

1 2˜ π

Seite 58

˜

1 L ˜ C1  L ˜ C2

f0

31.213 ˜ kHz

Grenzwert einer reellen Funktion und Stetigkeit

f  1 ˜ kHz 1 ˜ kHz  0.01kHz  200 ˜ kHz

3

f0 fr

3

kHzkHz

4u 10 2u 10

Bereichsvariable

überwiegend induktiv

X( f ) Ω

0

50

100

150

200

3

Bei f0 widerstandsloser

3

Filter. Der Filter sperrt Ströme der Frequenz fr.

 2u 10  4u 10

überwiegend kapazitiv f kHz

Abb. 2.2.29 Beispiel 2.2.24: Eine Kugel der Masse m0 und der Geschwindigkeit v stößt zentral und elastisch auf eine zweite Kugel der Masse M0 . Aus dem Impuls- und Energieerhaltungssatz lässt sich die Geschwindigkeit v n der ersten Kugel nach dem Stoß herleiten. Wie groß ist v n , wenn der Stoß gegen ein festes Hindernis erfolgt? Stellen Sie den Zusammenhang grafisch dar.

lim

m0  M0 ˜ v

o v

m0  M0

M0 o ∞

gleich große Geschwindigkeit in entgegengesetzter Richtung

Abb. 2.2.30 m0  10 ˜ kg

v  20 ˜

m

gegebene Werte

s

M0  0 ˜ kg 1 ˜ kg  100 ˜ kg



vn M0 



vn M0

m0  M0 ˜ v

Geschwindigkeit nach dem Stoß

m0  M0 25 20 15 10 5

m s

Bereichsvariable

5  10  15  20  25

0

20

40

60

80

100

Abb. 2.2.31 v m s

M0 kg

Seite 59

Grenzwert einer reellen Funktion und Stetigkeit

Beispiel 2.2.25: Regen wir ein schwingungsfähiges mechanisches oder elektrisches System (Oszillator) mit einer sinusförmigen Kraft bzw. Spannung der Kreisfrequenz Ze an, so schwingt auch das System nach Abklingen des Einschwingvorganges sinusförmig mit der gleichen Frequenz ( y = y0 (Ze ) sin( Ze t + M)). Die Amplitude ist von der Erregerfrequenz Ze abhängig. Für die Amplitude und die Phasenverschiebung lassen sich folgende Beziehungen herleiten, wenn ein mechanisches System angenommen wird, das mit der Kraft F(t) = F0 sin(Ze t) angetrieben wird:



F0

y0 ωe =



φ ωe =

m0 ˜

ω0  ωe

2

§ 2 ˜ δ ˜ ωe · ¸ if ω  ω e 0 ¨ ω 2  ω 2¸ e ¹ © 0

2

Redefinition

 4 ˜ δ ˜ ωe

artan ¨ π

m0  m 0

Frequenzgang der Amplitude 2

Phasengang der Amplitude

if ωe = ω0

§ 2 ˜ δ ˜ ωe · ¸  π if ωe ! ω0 ¨ ω 2  ω 2¸ e ¹ © 0

artan ¨

Z0 ist die Eigenfrequenz des Oszillators im ungedämpften Fall. G ist der Dämpfungsfaktor. a) Wie verhalten sich die Amplitude y0 und die Phasenverschiebung bei sehr kleinen sowie bei großen Erregerfrequenzen Ze ? b) Skizzieren Sie die Funktionen für Z0 und G = 0.3 s -1 und untersuchen Sie sie auf Stetigkeit. a)

F0

lim ωe o 0

2

2 2 2 2 m0 ˜ § ω0  ωe ·  4 ˜ δ ˜ ωe © ¹

annehmen ω0 ! 0 o

F0 2

m0 ˜ ω0

Bei sehr kleinen Frequenzen schwingen Erreger und Oszillator nahezu phasengleich. Der Oszillator wirkt wie starr verbunden und schwingt mit der Amplitude F0 /(Z0 2 m0 ). F0

lim

ω0  ωe

ωe o ∞ m ˜ 0

lim ωe o 0

lim ωe o ∞

o0 2

2

die Ze Achse ist Asymptote

 4 ˜ δ ˜ ωe

§ 2 ˜ δ ˜ ωe · ¸ o artan ( 0) ¨ ω 2  ω 2¸ e ¹ © 0

artan ¨

M(Ze ) = 0 ist Asymptote

§ · § 2 ˜ δ ˜ ωe · ¨ artan ¨ ¸  π¸ o artan ( 0)  π ¨ ¨ ω 2  ω 2¸ ¸ e ¹ © © 0 ¹

Seite 60

M(Ze ) = - S ist Asymptote

Grenzwert einer reellen Funktion und Stetigkeit

b)

ω0  1 ˜ s

1

δ  0.3 ˜ s

1

F0  100 ˜ N Eigenfrequenz, Dämpfungsfaktor und Kraftamplitude

F0



y0 ωe 

Amplitudengang oder Frequenzgang der Amplitude

2

§ ω 2  ω 2·  4 ˜ δ2 ˜ ω 2 e ¹ e © 0

m0 ˜

§ 2 ˜ δ ˜ ωe · ¸ if ωe  ω0 ¨ ω 2  ω 2¸ e ¹ © 0



atan ¨

φ ωe 

π 2

if ωe = ω0

Phasengang der Amplitude

§ 2 ˜ δ ˜ ωe · ¸  π if ω ! ω e 0 ¨ ω 2  ω 2¸ e ¹ © 0

atan ¨

ωe  0 ˜ s

1

0.01 ˜ s

1

 10 ˜ s

1

Bereichsvariable Amplitudengang

20

ω0

10

y0 ω e

15

m

Abb. 2.2.32

5 0

2

4

6

8

10

8

10

ωe s

1

Phasengang  18  36  54 φ ω e  72  90 Grad  108  126  144  162  180

0

ω0

2

4

6



π 2

Grad

Abb. 2.2.33 π Grad ωe 1

s

Bei hohen Frequenzen kann der Erreger nicht mehr folgen und hinkt ihm um fast die halbe Periode nach. Dazwischen erreicht die Amplitude einen Höchstwert (Resonanz). lim ωe o ω0





φ ωe

=

lim ωe o ω0





φ ωe

π = φ ω0 = 2



Seite 61

Die Funktion ist stetig.

Grenzwert einer reellen Funktion und Stetigkeit

Logarithmische Darstellung von Amplituden- und Phasengang: ORIGIN  0

ORIGIN festlegen

ωmin  0.01 ˜ s ωmax  10 ˜ s

1

gewählte unterste Erregerfrequenz

1

gewählte oberste Erregerfrequenz

n  500

Anzahl der Schritte

§ ωmax ¸· ¨© ωmin ¸¹

log ¨ Δω 

Schrittweite

n

k  0  n

Bereichsvariable

ω e  ωmin ˜ 10 k

k˜Δω

Vektor der Erregerfrequenzwerte Amplitudengang

20

ω0 1

s

15 y0§ω e

©

·



Bodediagramm 10

m 5

0 0.01

Abb. 2.2.34 0.1

1 ωe

10

k

1

s

Erregerfrequenz

Phasengang 0  18  36  54 φ§ω e ·  72 © k¹  90 Grad  108  126  144  162  180 0.01

ω0 s

1

Bodediagramm  90

0.1

1 ωe

k

1

s

Erregerfrequenz

Seite 62

 180 10

Abb. 2.2.35

Differentialrechnung Steigung der Tangente - Der Differentialquotient 3. Differentialrechnung Die Differentialrechnung und Integralrechnung, zusammengefasst auch Infinitesimalrechnung genannt, stellen die Grundlage für die höhere Analysis dar. Sie wurden in der zweiten Hälfte des 17. Jahrhunderts etwa gleichzeitig und unabhängig voneinander von Gottfried Wilhelm Leibniz (1646- 1716) und Isaac Newton (1643-1727) entwickelt. Während Leibniz vom Tangentenproblem ausging, gelangte Newton durch die Untersuchung physikalischer Probleme zur Differentialrechnung. Newton erkannte auch, dass die Integration als Umkehrung der Differentiation aufgefasst werden kann. Die Infinitesimalrechnung wurde zu einem wichtigen Hilfsmittel bei der Beschreibung und Erforschung der Natur. Zusammen mit anderen Gebieten der Mathematik konnte die theoretische und praktische Leistungsfähigkeit bis zum heutigen Tag entscheidend verbessert werden, sowohl bei der Verbindung von Mathematik und Naturwissenschaft als auch bei den direkten Anwendungsmöglichkeiten der Mathematik in Technik und Produktion. In der Technik treten oft zwei wesentliche Probleme auf: x Die Untersuchung des Änderungsverhalten einer physikalischen Größe führt auf eine neue physikalische Größe (Tangentenproblem). Zum Beispiel die Änderung des zurückgelegten Weges pro Zeit führt zur Geschwindigkeitsänderung. x Die Untersuchung der Fläche unter einer Kurve als Maß einer neuen physikalischen Größe (Flächenproblem). Zum Beispiel die Fläche unter der Geschwindigkeitskurve im v-t-Diagramm ist ein Maß für den zurückgelegten Weg.

3.1 Die Steigung der Tangente - Der Differentialquotient Mithilfe des Differenzenquotienten kann die Steigung der Sekante s zwischen zwei Kurvenpunkten P1 und P2 von y = f(x) berechnet werden. Wir berechnen damit den mittleren Anstieg der Kurve (mittlere Änderungsrate von y) im Intervall [ x1 , x1 + 'x ] bzw. [ x1 , x1 + h]. Dieser mittlere Anstieg ändert sich jedoch von Intervall zu Intervall (ausgenommen bei der linearen Funktion). 2

f ( x)  ( x  5)  50

gegebene Funktion

x  0 0.001  8

Bereichsvariable







ys x1 x2 x  f x1  x1  1



f x2  f x1

x2  7 

x2  x1 FRAME 5

Δx  x2  x1 Δy  f x2  f x1

y2  y  y1 = x2 

x  x1

y1 x1

x  x1

Sekantengleichung

Intervallrandpunkte (FRAME von 0 bis 20) x-Werte-Differenz



Funktionswertdifferenz Sekante x1

x2

y-Achse

f ( x)



s



ys x1 x2 x 40

f x2





Steigung der Sekante:



f x1 Δx

P2



ks 

f x1  Δx  f x1

αs



f x1

f x1

P1

30

ks

Δx = h

0

1

2

3

4

5

x x x1 x2 x-Achse

Seite 63

Δx 2



αs  atan k s αs

20

Δy

6

7

8

63.435 ˜ Grad

9

Abb. 3.1.1

Differentialrechnung Steigung der Tangente - Der Differentialquotient Differenzenquotient: Δy

y2  y1

=

x2  x1 bzw. mit 'x = h Δx

Δy Δx



= f x1  Δx  f x1 = k

f x2  f x1

=

x2  x1

x2  x1



s = tan αs

(3-1)



f x1  h  f x1

=

(3-2)

h

Beispiel 3.1.1: Geben Sie den Differenzenquotienten der Funktion y = f(x) = 2 x + 1 an der Stelle x0 an. Δy Δx

=



= 2 ˜ x0  Δx  1  2 ˜ x0  1 = 2 = k

f x0  Δx  f x0 Δx

Δx

s=k

Beispiel 3.1.2: Geben Sie den Differenzenquotienten der Funktion y = 3 x2 + 1 an der Stelle x0 an und berechnen Sie ihn für P0 (x0 | y0 ) = P0 (1 | y0 ) und 'x = 0.1. Δy Δx Δy Δx

=



= 3 ˜ x0  Δx 2  1  3 ˜ x02  1 = 3 ˜ x02  6 ˜ x0 ˜ Δx  3 ˜ Δx2  1  3 ˜ x02  1

f x0  Δx  f x0 Δx

Δx

Δx

= 6 ˜ x0  3 ˜ Δx

ks =

Δy Δx

= 6 ˜ 1  3 ˜ 0.1 = 6.3

Steigung der Sekante in den Punkten P 0 (1 | y0 ) und P( 1.1 | y)

Gelangt die Sekante s bei der Annäherung von P2 an P1 in die Grenzlage t, so ist aus ihr eine Tangente geworden, die wir rechnerisch dadurch festlegen können, dass wir ihren Anstieg kT = tan(DT) ermitteln. Dieser ergibt sich aber als der Grenzwert des Sekantenanstiegs, wenn 'x gegen null strebt. Also

lim

Δy

Δx o 0 Δx

=

lim

y2  y1 Δx

Δx o 0

=

lim





f x1  Δx  f x1 Δx

Δx o 0



= k T = tan αT

(3-3)

bzw. mit 'x = h

lim





f x1  h  f x1 h

ho0



= k T = tan αT

(3-4)

Durch geeignete Umformungen lässt sich dieser Grenzwert, wenn er überhaupt vorhanden ist, berechnen. Wir nennen diesen Grenzwert den Differentialquotienten oder auch die 1. Ableitung der Funktion f an der Stelle x1 . Das Bilden dieses Grenzwertes nennen wir Differenzieren oder Ableiten. Wir schreiben die 1. Ableitung der Funktion f: y = f(x) an der Stelle x1 , den genannten Grenzwert, mit verschiedenen Abkürzungen:







y' x1 = f ' x1 = fx x1 =

dx d

f x1 =

d dx



y x1 =

lim

Δy

Δx o 0 Δx

Seite 64

(3-5)

Differentialrechnung Steigung der Tangente - Der Differentialquotient Für das oben angeführte Beispiel mit f(x) = - (x - 5)2 + 50 gilt: kT 





f x1  Δx  f x1

lim

Δx

Δx o 0









o8

Steigung der Tangente







yT x1 x  f x1  k T ˜ x  x1

y  y1 = k T ˜ x  x1

xT  0 0.001  4

Bereichsvariable

x1

1

x2

Δx

6

ks 

Δy Δx

7 Daten, wie weiter oben angegeben

Δy

12

ks

2

Steigung der Sekante

x3  1

Stelle x 3





c x3  yT x3 x3

c x3  yT x3 x3  1 k

Tangentengleichung

x4  x3  1  x3

Steigungsdreieck (Tangente) Gegenkathete des Steigungsdreiecks

Sekante und Tangente x1  Δx

x1 f ( x)

FRAME von 0 bis 30

t

50 ys x1 x2 x f x1 40 f x2 c x3

y-Achse

yT x1 xT



s



ks

2

kT

8

αT  atan k T

dy

αT

6



f x1

30

k



f x1 Δx

Δx

αT

82.875 ˜ Grad

Δx = dx 20 0

Abb. 3.1.2 1

2

3

4

5

6

7

x xT x x1 x2 x4 x3 x-Achse

Beispiel 3.1.3: Bilden Sie die 1. Ableitung der Funktion f: y = x2 - 1 an der Stelle x0 = 2. Δy Δx

=



Δx



f ' x0  f ' ( 2)

= x0  Δx 2  1  x02  1 = 2 ˜ x

f x0  Δx  f x0

lim Δx o 0

4

0  Δx

Δx

2 ˜ x0  Δx

o 2 ˜ x0

= kT

Seite 65

8

9

Differentialrechnung Steigung der Tangente - Der Differentialquotient Beispiel 3.1.4: Bilden Sie die 1. Ableitung der Funktion f: y = x3 an der Stelle x 0 = 1. Δy Δx



= x0  Δx 3  x03

f x0  Δx  f x0

=

Δx

Δx

x0  Δx 3  x03

2

Δx



f ' x0  f ' ( 1)

lim Δx o 0

2

3 ˜ x0  3 ˜ x0 ˜ Δx  Δx

vereinfacht auf

§ 3 ˜ x 2  3 ˜ x ˜ Δx  Δx2· o 3 ˜ x 2 0 0 © 0 ¹

= kT

3

Beim Grenzwertübergang kann die Annäherung an eine Stelle x0 von der rechten oder von der linken Seite her erfolgen, also 'x positive und negative Werte annehmen. Die Funktion f besitzt an der Stelle x0 eine linksseitige Ableitung fl'(x0 ) bzw. eine rechtsseitige Ableitung fr'(x0 ) (eine links- bzw. rechtsseitige Tangente), wenn folgender Grenzwert existiert:



f 'l x0 =

lim Δx o 0

Δy  Δx



bzw. f 'r x0 =

Δy

lim Δx o 0

(3-6)

 Δx

Ist die Funktion f in einer Umgebung von x1 stetig und ist fl'(x0 ) = fr'(x0 ), so gilt: f '(x0 ) = fl'(x0 ) = fr'(x0 ).

Beispiel 3.1.5: Bilden Sie die 1. Ableitung der Funktion f: y = | x | an der Stelle x0 = 0. y ( x) 

Funktionsgleichung

x

x1  4 4  0.1  4

Bereichsvariable 5

Die Funktion ist an der Stelle x 0 = 0 stetig!

4 3

y( x1 )

2 1 4

2

0

2

4

6

Abb. 3.1.3

x1

Δy Δx

=





= x0  Δx  x0 = 1

f x0  Δx  f x0

f 'r x0 =

Δx lim

Δx o 0

Δx



1 =1

Δy Δx

=





=  x0  Δx  x0 = 1

f x0  Δx  f x0

f 'l x0 =

Δx lim

Δx o 0

Δx



1 = 1

Die Grenzwerte stimmen nicht überein, daher ist die Funktion an der Stelle x 0 = 0 nicht differenzierbar!

Seite 66

Differentialrechnung Steigung der Tangente - Der Differentialquotient Definition: a) Eine Funktion f: y = f(x) ( D Ž  und W Ž  ) heißt an der Stelle x 0 ∈ D differenzierbar, wenn der folgende Grenzwert existiert:



f ' x0 =

dx d

f x0 =

Δy

lim

Δx o 0 Δx

=





f x0  Δx  f x0

lim

Δx

Δx o 0

(3-7)

b) Eine Funktion f: y = f(x) heißt an jeder Stelle x ∈ D differenzierbar, wenn in ganz D die Grenzwerte existieren. Wir schreiben dann: d

y ' = f ' ( x) =

f ( x) =

dx

lim

Δy

Δx o 0 Δx

=

lim

f ( x  Δx)  f ( x)

Δx o 0

Δx

(3-8)

Die Ableitungen von Funktionen sind wiederum Funktionen derselben Argumentwerte. Satz: Ist eine Funktion f: y = f(x) an der Stelle x0 differenzierbar, dann ist sie dort auch stetig.

2

f ( x)  ( x  5)  50 f x ( x) 



d

die bereits oben angeführte Funktion

Ableitungsfunktion

f ( x)

dx









yT x1 x  f x1  f x x1 ˜ x  x1 x1  1 

FRAME

FRAME von 0 bis 35 mit 2 Bilder/s

5



k T  fx x1

kT

8

x2  x1  1  x1











k  c x1  yT x1 x1



k 1  0  fx x1

Steigung der Tangente Bereichsvariable für die Ankathete des Steigungsdreiecks

c x2  yT x1 x1  1



Tangente

Ankathete des Steigungsdreiecks Gegenkathete des Steigungsdreiecks

Funktionswert der Ableitungsfunktion

Seite 67

Differentialrechnung Steigung der Tangente - Der Differentialquotient Funktion- und Ableitungsfunktion 60 f ( x)



51.25



f(x)

yT x1 x



42.5

fx( x)

33.75

y-Achse

f x1

c x2 fx x1

Tangentensteigung: kT

Funktionswert der Ableitungsfunktion:

25

x1

16.25

k

1



f x x1

7.5

k1

8

8

f ' (x)  1 1.25 0

1

2

3

4

5

6

 10

7

8

9

Abb. 3.1.4 x x x1 x x1 x2 x1 x1 x-Achse

Beispiel 3.1.6: Bilden Sie die 1. Ableitung der Funktion f: y = c mit c . Δy Δx

=

f ( x  Δx)  f ( x) Δx

f ' ( x) 

lim

=

cc Δx

=

0 Δx

=0

0 o0

Die 1. Ableitung einer konstanten Funktion ist an jeder Stelle 0 (waagrechte Tangente!).

Δx o 0

Beispiel 3.1.7: Bilden Sie die 1. Ableitung der Funktion f: y = x3 . Δy Δx

=

f ( x  Δx)  f ( x) Δx 3

=

3

Δx

3

( x  Δx)  x

vereinfacht auf

Δx f ' ( x) 

3

( x  Δx)  x

lim

2

2

3 ˜ x  3 ˜ x ˜ Δx  Δx

3 ˜ x2  3 ˜ x ˜ Δx  Δx2

2

o 3˜ x

Die Ableitungsfunktion der Funktion y = x3 .

Δx o 0

Es gilt offensichtlich für die Ableitung von y = x r mit r   und r z 0: y ' = r x r-1

(3-9)

Seite 68

Differentialrechnung Steigung der Tangente - Der Differentialquotient Ist eine Funktion f: y = f(x) an der Stelle x differenzierbar, so gilt: dy

= f ' ( x)

dx

(3-10)

Der Differentialquotient (dies rechtfertigt auch diese Bezeichnung) kann in die Differentiale dy und dx aufgespalten werden: dy = f '(x) dx

(3-11)

dy heißt Differential einer Funktion f: y = f(x) an der Stelle x. Es bedeutet den Zuwachs der Tangentenordinate, wenn sich x um 'x = dx ändert. Außer der 1. Ableitung einer Funktion lassen sich, falls sie existieren, auch höhere Ableitungen bilden. Sie werden (rekursiv) folgendermaßen definiert: 2

f "(x) = (f '(x))' =

3

d

2

f ( x) , f '''(x) = (f "(x))' =

dx (n)

3

f ( x) , ... ,

(3-12)

dx

n

(n-1)

f (x) = (f

d

d

(x))' =

n

f ( x)

dx

Wir nennen die Ableitung der 1. Ableitung die zweite Ableitung, die Ableitung der zweiten Ableitung die dritte Ableitung usw.

3.1.1 Die physikalische Bedeutung des Differentialquotienten Differentialrechnung Mathematik Physik z. B. --------------------------------------------------------------------------------------------------------------------unabhängige Variable x Abszisse x Zeit t unabhängige Variable y Ordinate y Weg s Funktionsgleichung y = f(x) Kurve y = f(x) Weg-Zeit-Gesetz s = f(t) Differenzenquotient 'y/'x Anstieg der Sekante Mittlere Geschwindigkeit vm Differentialquotient dy/dx (Ableitung)

Anstieg der Tangente Augenblicksgeschwindigkeit v(t) (Leibniz) (Newton)

Beispiel 3.1.8: Für den freien Fall eines Körpers (ungleichförmige Bewegung) unter Vernachlässigung des Luftwiderstandes gilt für den zurückgelegten Weg: s = g/2 t 2 . In der Zeit t + 't legt der Körper den Weg s + 's zurück, also s  Δs =

Δs =

g 2

g 2

2

( t  Δt) =

2

˜t 

g 2

g 2

2

˜ t  2 ˜ t ˜ Δt  Δt

2

˜ t  2 ˜ t ˜ Δt  Δt

Δs g § 2 ˜ t ˜ Δt  Δt = ˜¨ vm = Δt Δt 2 ©

2

2



= g2 ˜ 2 ˜ t ˜ Δt  Δt2



¸ = g ˜ t  g ˜ Δt 2 ¹

oder:

Seite 69

Differentialrechnung Steigung der Tangente - Der Differentialquotient g 2 Δs s ( t  Δt)  s ( t) vm = = = Δt Δt v( t) =

Δs

lim

Δt o 0 Δt

=

d

2

˜ ( t  Δt) 

s ( t) v( t) 

lim

dt

Δt o 0

t2  2 ˜ s 

Δt  t2  t1

Δt

g

s 1' ( t) 

d

˜t

2

2

= g˜ t 

FRAME 10

˜s

2

mittlere Geschwindigkeit

˜ Δt

Momentangeschwindigkeit

Zeitpunkte

FRAME von 1 bis 10

Zeitdifferenz

1s

Weg-Zeit-Gesetz



v1  s 1' t 1

v1

g vm  g ˜ t1  ˜ Δt 2



vm



s 1 t2  s 1 t1 

s T t1 t  s 1 t1  s 1' t1 ˜ t  t1



g

§ g ˜ t  g ˜ Δt· o g ˜ t ¨ ¸ 2 © ¹

2

s 1 ( t)

dt

2

˜t

Δt

t1  1 ˜ s

s1 ( t) 

g





s s t1 t 2 t  s 1 t1

t2  t1

9.807

14.71

m

Steigung der Tangente an der Stelle t 1 (Geschwindigkeit v1 )

s m

Steigung der Sekante

s

Tangente

t  t1

Sekante

t  0 ˜ s 0.01 ˜ s  3 ˜ s

Bereichsvariable s-t- und v-t-Diagramm t1

t2

s

s

Weg und Geschwindigkeit

s1 ( t)

ss t1 t2 t s1 t1 s1 t2 sT t1 t

Δt

1s

vm

14.71

20

10

v1



s1 t1 m

v( t)

0

1

2

3

 10

Abb. 3.1.5 t t t t1 t2 t Zeit

Bahnbeschleunigung beim freien Fall: v = g t Δv v ( t  Δt)  v ( t ) g ˜ ( t  Δt)  g ˜ t am = = = =g Δt Δt Δt a ( t) =

lim

9.807

Δv

Δt o 0 Δt

=

lim

g =g

mittlere Bahnbeschleunigung

Momentanbeschleunigung

Δt o 0

Seite 70

m s m s

Differentialrechnung Steigung der Tangente - Der Differentialquotient Beispiel 3.1.9: Gleichmäßig beschleunigte Bewegung ohne Luftwiderstand mit Anfangsgeschwindigkeit: s = v0 t + g/2 t2 . m v0  30 ˜ s

t t

Redefinition und Anfangsgeschwindigkeit

g 2 s1 ( t )  v0 ˜ t  ˜ t 2 d

v( t) 

Weg-Zeit-Gesetz

v( t) o

s1 ( t )

dt

30 ˜ m s

Geschwindigkeit-Zeit-Gesetz

 g˜ t

t  0 ˜ s 0.001 ˜ s  8 ˜ s



Bereichsvariable für die Zeit





s t t 1 t  s1 t 1  v t1 ˜ t  t1 t1  3 ˜ s 

FRAME 5

Tangentengleichung im Punkt P(t 1 | s 1 )

˜s

Animation: FRAME von 0 bis 20 mit 1 Bild/s

t t  t 1  2 ˜ s t1  2 ˜ s  0.001 ˜ s  t 1  1 ˜ s



Bereichsvariable für die Tangente

t 2  t 1  1 ˜ s t1  t1 Δt t1 Δt t1  1 ˜ m  s t t 1 t1

Δt t2  s t t 1 t 1  1 ˜ s

't = 1 im Steigungsdreieck

Δs 

k = 's im Steigungsdreieck



m m v1  0 ˜ 1 ˜  v t1 s s

v1 = k ... Ableitungswert an der Stelle t 1 Tangente und Ableitung

600

s ( t)

Weg s und Geschwindigkeit v

s1 ( t)





st t1 tt



s1 t1

400

v( t)

Δt t2 v t1

Δs

200

v( t)

v1

0

0

1

2

3

4 t tt t1 t t1 t2 t1 t1 Zeit t

Abb. 3.1.6

Seite 71

5

6

7

8

Differentialrechnung Steigung der Tangente - Der Differentialquotient Eine kleine Übersicht über wichtige Differentialquotienten aus Physik und Technik: Translation s = s(t) Weg-Zeit-Gesetz v = v(t) Geschwindigkeit a = a(t) Beschleunigung

Rotation M = M t) Winkel-Zeit-Gesetz Z = Z(t) Winkelgeschwindigkeit D = D(t) Winkelbeschleunigung

mittlere Geschwindigkeit: Δs vm = Δt

mittlere Winkelgeschwindigkeit: Δφ ωm = Δt

Momentangeschwindigkeit: Δs d = s ( t) v( t) = lim dt Δt o 0 Δt

Momentanwinkelgeschwindigkeit: Δφ d = φ ( t) ω ( t) = lim dt Δt o 0 Δt

mittlere Beschleunigung: Δv am =  Δt

mittlere Winkelbeschleunigung: Δω αm = Δt

Momentanbeschleunigung: Δv d = v( t) a ( t) = lim dt Δt o 0 Δt

Momentanwinkelbeschleunigung: Δω d = ω ( t) α ( t) = lim dt Δt o 0 Δt

Dynamische Grundgesetze:

F= m˜

d

v ( t) = m ˜

dt F=

d

2

d

dt

2

s ( t) Kraftgesetz

M=J˜

M=

p ( t)

ΔW

F ( s) =

lim

ΔW

Δs o 0 Δs

d

dt

2

φ ( t)

Drehmoment

L ( t)

dt

mittlere Kraft

Δs

2

d

ω ( t) = J ˜

dt

dt Arbeit und Leistung: Fm =

d

=

d

W ( s ) Kraft

ΔW

Pm =

mittlere Leistung

Δt

P ( t) =

lim

ΔW

=

Δt o 0 Δt

ds

d

W ( t)

Leistung

P ( A)

Intensität

dt

Intensität: Im =

ΔP ΔA

mittlere Intensität

I ( A) =

lim

ΔP

=

ΔA o 0 ΔA

d dA

Energiedichte: ΔW wm = ΔV

mittlere Energiedichte

w ( V) =

ΔW

lim

=

ΔV o 0 ΔV

d

W ( V)

Energiedichte

dV

Strom und Stromdichte: im = Jm =

Δq Δt ΔI ΔA

mittlerer Wechselstrom

mittlere Stromdichte

i ( t) =

J ( A) =

lim

Δq

Δt o 0 Δt

lim

ΔI

ΔA o 0 ΔA

Seite 72

=

d

q ( t)

Wechselstrom

dt =

d dA

I ( A)

Stromdichte

Differentialrechnung Ableitungsregeln 3.2 Ableitungsregeln für reelle Funktionen 3.2.1 Ableitung der linearen Funktion Lineare Funktion f: y = k x + d, D =  und W = . y ' ( x) =

d

( k ˜ x  d) = k, D' =  und W' = { k }

(3-13)

dx

Beispiel 3.2.1: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1) y = 3

(2) y =

y' = 0

1 2

˜x

(3) y = x  2

y' = 1/2

y ' ( x) 

y' = 1

y ' ( x) 

§ 1 ˜ x· o 1 ¨ ¸ 2 dx © 2 ¹ d

d

( x  2) o 1

dx 1

y' = 6

y ' ( x) 

(5) s = v ˜ t  s 0

s' = v

s ' ( t) =

(6) v = a ˜ t  v0

v' = a

(4) y = 6 ˜ x 

2

§6 ˜ x  ¨ dx © d

d dt

v ' ( t) =

d dt



¸ o6



v ˜ t  s0

vereinfacht auf

s ' ( t) = v

a ˜ t  v0

vereinfacht auf

v ' ( t) = a

(7) Vergrößern wir bei konstant gehaltener Ladung Q eines Plattenkondensators den Plattenabstand s um ds, so vergrößert sich die Energie auf Grund der geleisteten Arbeit. Wie groß ist dann die Kraftwirkung zwischen den beiden Kondensatorplatten? W=

1 2

2

˜

Q

C

2

=

Q

2

˜

s ε 0. ˜ ε r ˜ A

W = f ( s) = k ˜ s

F=

d

W

ds

§ Q2 · s ¨ ¸ vereinfacht auf F= ˜ ds ¨© 2 ε 0. ˜ ε r ˜ A ¸¹ d

und 2

F=

Q

2 ˜ A ˜ ε r ˜ ε 0.

2

=

Q

2

˜

1 C˜ s

2

=

C˜ U

2˜ s

mit

3.2.2 Potenzregel Potenzfunktion: f: y = x r, D Ž  und W Ž , r \ { 0 , 1 }. Potenzregel: y ' ( x) =

d r r 1 x = r ˜ x , D' Ž  und W' Ž (Ableitungsfunktion) dx

Seite 73

(3-14)

Q = C˜ U

Differentialrechnung Ableitungsregeln Beispiel 3.2.2: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: 2

(1)

y=x

(2)

y= 2˜ x

3

y' = 2 x

y ' ( x) =

y' = 6 x2

y ' ( x) =

d 2 x dx

d dx

2 ˜ x3

1

(3)

y=x

vereinfacht auf

y ' ( x) = 2 ˜ x

vereinfacht auf

y ' ( x) = 6 ˜ x

vereinfacht auf

y ' ( x) =

2

1

3

y' = 1/3 x - 2/3

y ' ( x) =

d

x

3

1 2

dx 3˜ x

3

1

(4)

y=

x=x

2

y' = 1/ 2 x - 1/2

y ' ( x) =

d

x

vereinfacht auf

y ' ( x) =

1 1

dx 2˜ x

2

Beispiel 3.2.3: Wie groß ist die Steigung und der Steigungswinkel der Tangente von y =

x an der Stelle x = 2?

1

y=

x=x

2

y ' ( x) 

d

x

y ' ( 2)

0.354

Steigung k der Tangente

dx α  atan ( y ' ( 2) )

α

19.471 ˜ Grad

Steigungswinkel der Tangente

Beispiel 3.2.4: An welchen Stellen besitzt die Funktion y = 1/x die Tangentensteigung -1/2? y=

1

1

y ' ( x) =

=x

x

d 1 x dx

vereinfacht auf

y ' ( x) = 

1 2

x

Es gilt: y'(x) = k 

1 2

=

x

1

hat als Lösung(en)

2

§ 2 · ¨ ¸ © 2 ¹

oder: ORIGIN  1

x

1 2

x

=

1 2

ORIGIN festlegen

auflösen x o

§ 2 · ¨ ¸ © 2 ¹

x1

1.414

x2

1.414

Die Funktion besitzt an den Stellen x 1 und x 2 die Tangentensteigung -1/2.

Seite 74

Differentialrechnung Ableitungsregeln Beispiel 3.2.5: Berechnen Sie den Schnittwinkel M zwischen den Grafen der Funktion f: y =

1

x und g: y = x

.

Schnittpunkt der Grafen: x=

1

hat als Lösung(en)



x0  1

1

x



tan ( α) = f ' x0

Steigungen der Tangenten

tan ( β) = g ' x0

φ=α β

Winkel zwischen den Tangenten





tan ( φ) = tan α  β =







Summensatz 1. Art

1  tan ( α) ˜ tan ( β)



g ' x0 

x0

α  atan f ' x0

1

Steigungen der Tangenten

2

x0 α



26.565 ˜ Grad

β  atan g ' x0

1  f ' x0 ˜ g ' x0 § f ' x0  g ' x0 ·¸ atan ¨ ¨© 1  f ' x0 ˜ g ' x0 ¸¹ f ' x0  g ' x0

tan ( φ) =

φ

tan ( α)  tan ( β)

1

f ' x0 

f ( x) 

x-Wert des Schnittpunktes

x

g ( x) 









β

45 ˜ Grad Steigungswinkel der Tangenten

Winkelberechnung mit dem Summensatz 1. Art

φ

1

71.565 ˜ Grad

Winkel zwischen den Tangenten

gegebene Funktionen

x



t 1 ( x)  f x0  f ' x0 ˜ x  x0

Tangente von f(x) an der Stelle x0



t 2 ( x)  g x0  g ' x0 ˜ x  x0

Tangente von g(x) an der Stelle x0

x  0 0.001  5

Bereichsvariable

3

x0

f ( x) 2 g ( x) t1 ( x)

Abb. 3.2.1

t2 ( x) 1

0



f x0

φ=α β

0

1

2

3

4

x

Seite 75

5

Differentialrechnung Ableitungsregeln Beispiel 3.2.6: Bestimmen Sie im Punkt P(1 | 1) des Grafen y = x2 die Normale auf den Grafen. Zwei Geraden stehen normal aufeinander, wenn k kN = - 1 gilt. x0  1

x-Wert des Punktes P





f ' x0  2 ˜ x0

f ' x0

1 k

kN 

y = kN ˜ x  d

1=

kN =

2 1

Steigung der Normalen

2 1 2

˜1 d

2

f ( x)  x



Steigung der Tangente im Punkt P

hat als Lösung(en)

3

Achsenabschnitt

2 gegebene Funktion





t 1 ( x)  f x0  f ' x0 ˜ x  x0

Tangente im Punkt P

3 t N ( x)  k N ˜ x  2

Normale im Punkt P

x  0 0.001  3

Bereichsvariable

3

x0

f ( x) 2 t1 ( x) tN ( x)

0

Abb. 3.2.2



f x0

1

0

1

2

3

x

3.2.3 Konstanter Faktor und Summenregel Konstanter Faktor und Summenregel: Ein konstanter Produktfaktor c bleibt beim Differenzieren erhalten: y(x) = c f(x)

y'(x) = c f '(x)

(c )

(3-15)

Die Summe oder Differenz von Funktionen kann gliedweise differenziert werden: y(x) = f1 (x) r f 2 (x) r f3 (x) r... rfn(x)

y'(x) = f1 '(x) r f 2 '(x) r f3 '(x) r... rfn'(x)

Seite 76

(3-16)

Differentialrechnung Ableitungsregeln Beispiel 3.2.7: Die Strahlungsintensität eines schwarzen Körpers bei der absoluten Temperatur T ist gegeben durch I(T) = V T4 . Die Strahlungskonstante beträgt V = 5.67 10 - 8 W/(m2 K4 ). Wie groß ist die Änderung der Strahlungsintensität bei der Temperatur T = 285 K? I ( T) = σ ˜ T

d

4

I ( T) = 4 ˜ σ ˜ T

3

Funktion und Ableitungsfunktion

dT σ  5.67 ˜ 10

8

W

˜

2

m ˜K IT  4 ˜ σ ˜ T

T  285 ˜ K

4

3

5.25 ˜

IT

Strahlungskonstante und Temperaturwert T W

Ableitungswert bei der Temperatur T = 285 K

2

m ˜K

Beispiel 3.2.8: Bewegt sich ein Körper der Masse m, so besitzt er die kinetische Energie E k. Wie groß ist die Änderung der kinetischen Energie bezüglich der Geschwindigkeit? 2

Ek ( v) = d dv

m˜v

d

2

dv

Ek ( v) = m ˜ v = p

Ek ( v) = m ˜ v

Funktion und Ableitungsfunktion

Die Änderung der kinetischen Energie nach der Geschwindigkeit ist gleich dem Impuls!

Beispiel 3.2.9: Bilden Sie die 1. Ableitung der folgenden Funktionen: 2

(1) y = x  x

y' = 2 x+1 y ' ( x) =

d dx

5

(2) y = 7 ˜ x 

1 2

3

˜x

2

vereinfacht auf

y ' ( x) = 2 ˜ x  1

vereinfacht auf

y ' ( x) = 35 ˜ x 

y' = 35 x4 + 3/2 x2 y ' ( x) =

3

x2  x

(3) y = 8 ˜ x  7 ˜ x  x  15

§ 5 1 3· ¨7 ˜ x  ˜ x ¸ 2 dx © ¹ d

4

2

3˜ x 2

y' = 24 x2 - 14 x + 1

y ' ( x) =

d dx

8 ˜ x3  7 ˜ x2  x  15

2

y ' ( x) = 24 ˜ x  14 ˜ x  1

ergibt

Beispiel 3.2.10: Wie groß ist die Steigung der Kurve y = 1/3 x3 + 1 im Punkt P(1 | 4/3)? Wie groß ist der Steigungswinkel der Tangente im Punkt P und wie lautet die Tangentengleichung? y=

1 3

3

˜x  1

y' = x2

hat als Lösung(en)

k = tan ( α) = y ' ( 1)

tan ( α) = 1

y=k˜x d

Gleichung der Tangente

4 3

=1d

Ÿ d=

1

Steigung der Tangente

y ' ( 1) = 1 π

Steigungswinkel der Tangente

4

Achsenabschnitt der Tangente

3

Seite 77

y=x

1 3

Gleichung der Tangente

Differentialrechnung Ableitungsregeln Beispiel 3.2.11: Für den senkrechten Wurf nach unten (ohne Luftwiderstand) gilt s = v0 t + g/2 t2 . Wie groß ist die Momentangeschwindigkeit in jedem Zeitpunkt und wie groß ist die Momentanbeschleunigung in jedem Zeitpunkt? v( t) =

d

s ( t) =

dt a ( t) =

d

v( t) =

dt

g 2· § ¨ v0 ˜ t  ˜ t ¸ 2 dt © ¹

vereinfacht auf

v0  g ˜ t dt

vereinfacht auf

d

d

v( t) =

d dt

a ( t) =

d

s ( t ) = v0  g ˜ t v( t) = g

dt

Beispiel 3.2.12: In welchen Punkten der Parabel y = (x2 /2) - 3 x + 4 ist die Steigung der Tangente 1 bzw. -1? y=

1 2

2

˜ x  3˜ x 4

y ' ( x) =

x 3=1

Ÿ

x  3 = 1

Ÿ

§ 1 ˜ x2  3 ˜ x  4· ¨ ¸ dx © 2 ¹ d

x1 = 4

y1 = 0

x2 = 2

y2 = 0

vereinfacht auf

y ' ( x) = x  3

Koordinaten der gesuchten Punkte

3.2.4 Produktregel Produktregel: y(x) = u(x) . v(x)

y'(x) = u'(x) . v(x) + v'(x) . u(x)

(3-17)

Beispiel 3.2.13: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1)

y = 2 ˜ x ˜ ( x  1)

y ' = 2 (x - 1) + 1 2 x = 4 x - 2 y ' ( x) =

d

[ 2 ˜ x ˜ ( x  1) ]

vereinfacht auf

y ' ( x) = 4 ˜ x  2

vereinfacht auf

y ' ( x) = 2 ˜ x

vereinfacht auf

y ' ( x) = 3 ˜ x

dx (2)

y = ( 2  x) ˜ ( 2  x)

y ' = -1 (2 + x) + 1 (2 - x) = - 2 x y ' ( x) =

d

[ ( 2  x) ˜ ( 2  x) ]

dx (3)

2



y = x  x  1 ˜ ( x  1)

y ' = (2 x + 1) (x - 1) + 1 (x2 + x + 1) y ' ( x) =

d dx

(4)

2

§

1

©

x

y = x ˜ ¨x 



1

·

x

¹







ª¬ x2  x  1 ˜ ( x  1)º¼

2

y ' = 2 x (x - 1/x - 1/x2 ) + (1 + x -2 + 2 x -3 ) x2 y ' ( x) =

ªx2 ˜ § x  1  1 ·º « ¨ 2 ¸» x dx x ¹¼ ¬ © d

Seite 78

vereinfacht auf

2

y ' ( x) = 3 ˜ x  1

Differentialrechnung Ableitungsregeln 3.2.5 Quotientenregel Quotientenregel: Sei y ( x) =

u ( x) v ( x)

mit v(x) z0.

Aus der Produktregel folgt: y = u/v Ÿu = v y Ÿu' = v' y+ y' v Ÿ y' v = u' - v' y Ÿ y' = (u' - v' y)/v y' = (u' - v' (u/v))/v . Durch Vereinfachung des Bruches erhalten wir schließlich die Quotientenregel: y ' ( x) =

u ' ( x) ˜ v ( x)  v ' ( x) ˜ u ( x) ( v ( x) )

(v(x) z0)

2

Ÿ

(3-18)

Beispiel 3.2.14: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: 2

(1) y =

4˜ x  1 2˜ x

y ' ( x) =





2

8˜ x˜ 2˜ x  2˜ 4˜ x  1 2

vereinfacht auf

1

y ' ( x) =

4˜ x

2

2

y ' ( x) =

2

(2) y =

x 1

y ' ( x) =

2

d 4˜ x  1 dx 2 ˜ x

vereinfacht auf

1

y ' ( x) =

2 2 x2  1 2

vereinfacht auf

y ' ( x) = 

vereinfacht auf

y ' ( x) = 

2

y ' ( x) =

2

(3) y =

x  5˜ x 6 x 3

y ' ( x) =

2

2

2˜ x

2˜ x˜ x  1  2˜ x˜ x  1

x 1

2

2˜ x

d x 1 dx x2  1

2



( 2 ˜ x  5) ˜ ( x  3)  1 ˜ x  5 ˜ x  6 ( x  3)

2

vereinfacht auf

4˜ x

x2  1 2 4˜ x

x2  1 2 y ' ( x) = 1

2

y ' ( x) =

d x  5˜ x 6 x 3 dx

vereinfacht auf

y ' ( x) = 1

Beispiel 3.2.15: Wie groß ist die Steigung der Tangente der Funktion y = (x+1)/(x-1) an der Stelle x1 = 0 bzw. x2 = 2?

y=

x 1

y ' ( x) =

x 1

x1  0 y ' ( x)  

x2  2 2 ( x  1)

2

d x 1 dx x  1

vereinfacht auf

y ' ( x) = 

2 ( x  1)

2

Stelle 0 und 2



y ' x1

2



y ' x2

Seite 79

2

Steigungen der Tangenten

Differentialrechnung Ableitungsregeln Beispiel 3.2.16: Unter welchem Winkel schneidet der Graf der Funktion y = (x2 - 4)/(x+1) die x-Achse? 2

y=

x 4

gegebene Funktion

x 1

2

x 4 x 1

Gleichung zur Nullstellenbestimmung

=0

x1  2

x2  2

Nullstellen der Funktion

2

y ' ( x) =

d x 4 dx x  1 3

y ' ( x) 

( x  1)

2



k 1  y ' x1

vereinfacht auf

3

y ' ( x) =

( x  1) 1

k1

2

1

Ableitungsfunktion

Ableitungsfunktion



k 2  y ' x2

1.333

k2

4

Steigungen der Tangenten



φ1

53.13 ˜ Grad

Winkel zwischen x-Achse und gegebener Kurve



φ2

75.964 ˜ Grad

Winkel zwischen x-Achse und gegebener Kurve

φ1  atan k 1 φ2  atan k 2

Beispiel 3.2.17: Nach dem Boyle-Mariote'schen-Gesetz gilt V = c/p. Wie groß ist die Volumsänderung beim Druck p? V ( p) =

c

d c dp p

p

vereinfacht auf



c 2

p

Beispiel 3.2.18: Bestimmen Sie den Verlauf der Wellen- und Gruppengeschwindigkeit in der Umgebung einer Absorptionslinie: k ( ω) =

d

B · ¨A  ¸ 2 2¸ c¨ ω0  ω © ¹

ω§

k ( ω) =



ω B ·¸»º «ª §¨ A  2 2 c dω « ¨ ω0  ω ¸» ¬ © ¹¼ d

4

d dω

Wellenzahl

k ( ω) =

2

vereinfacht auf

2

2

4

2

A ˜ ω  2 ˜ A ˜ ω ˜ ω0  B ˜ ω  A ˜ ω0  B ˜ ω0 c ˜ § ω  ω0 © 2



2

¹

Seite 80

Wellengeschwindigkeit

Differentialrechnung Ableitungsregeln

vgr ( ω) =

d

1

ω ( k) =

dk

d

Gruppengeschwindigkeit

k ( ω)

dω vgr ( ω) =

1

ª A ˜ ω4  2 ˜ A ˜ ω2 ˜ ω 2  B ˜ ω2  A ˜ ω 4  B ˜ ω 2º « 0 0 0 » « » 2 2 2· § « » c ˜ ω  ω0 ¬ © ¹ ¼ c ˜ § ω  ω0 ©



2

vgr ( ω) =

4

2

2

ergibt

2

¹

2

4

2

A ˜ ω  2 ˜ A ˜ ω ˜ ω0  B ˜ ω  A ˜ ω0  B ˜ ω0

3.2.6 Kettenregel Kettenregel: 2

2

Eine Funktion wie z. B. y = x  1 nennen wir verkettete Funktion, wobei x + 1 als "innere Funktion" und die Wurzel als "äußere Funktion" bezeichnet wird.

h ... äußere Funktion g ... innere Funktion y = h(g(x))

Abb. 3.2.3 Sei y = h(g(x)) = h(z) mit z = g(x). Dann gilt: y' = h'(z) g'(x) bzw.

d

y=

dx

d



dz

d

z

(3-19)

dx

Wenn die innere Funktion wieder eine Funktion von einer Funktion ist, lässt sich die Kettenregel analog anwenden. Sei also y = f(g(h(x))) mit y = f(z), z = g(w) und w = h(x). Dann gilt: y' = f'(z) . g'(w) . h'(x) bzw.

d dx

y=

d dz



d



dw

Seite 81

d dx

w

(3-20)

Differentialrechnung Ableitungsregeln Beispiel 3.2.19: Bilden Sie die 1. Ableitung händisch und mit Mathcad der folgenden Funktionen:

(1)

y = ( 2 ˜ x  1)

3

h = z 3 und z = g(x) = 2 x + 1 2

bzw.

y ' ( x) = 6 ˜ ( 2 ˜ x  1)

2

händisch auswerten

3

vereinfacht auf

y ' ( x) = 6 ˜ ( 2 ˜ x  1)

2

mit Mathcad auswerten durch vereinfachen

y ' ( x) = 3 ˜ ( 2 ˜ x  1) ˜ 2

y ' ( x) =

d

( 2 ˜ x  1)

gegebene Funktion

dx

(2)

y=

2

x  2˜ x 3

h = z 1/2 und z = g(x) = x2 + 2 x - 3 1

y ' ( x) =

y ' ( x) =

2

1

2

˜ x  2˜ x 3

2 d

2

x  2˜ x 3

˜ ( 2 ˜ x  2)

vereinfacht auf

Ableitungsfunktion x 1

y ' ( x) =

dx

(3)

y=

3˜ x 1

2

x  2˜ x 3

h = z 1/2 und z = g(x) = 3 x + 1

gegebene Funktion

1

y ' ( x) =

y ' ( x) =

1 2

( 3 ˜ x  1)

d

2

˜3

3˜ x 1

Ableitungsfunktion

vereinfacht auf y ' ( x) =

dx

3 2˜

3˜ x 1

Damit gilt offensichtlich bei Verkettung mit einer Quadratwurzel: y=

(4)

f ( x)

2

x 1

y ' ( x) = 2 ˜ x ˜

x  1

y ' ( x) =

dx

(3-21)

f ( x)

gegebene Funktion 2

3˜ x

3







3

y= x  1 ˜

d

f ' ( x)

y' =



ª x2  1 ˜ x3  1º ¬ ¼

2

˜ x 1

Ableitungsfunktion

3

x 1

vereinfacht auf

Seite 82

y ' ( x) =





3

x˜ 7˜ x  3˜ x  4 2˜

3

x 1

Differentialrechnung Ableitungsregeln

(5)

3 ˜ x2  1 y= ( x  1)

y ' ( x) =

3

gegebene Funktion

2





2

3˜ 3˜ x  1

2

ª¬( x  1) 2º¼

y ' ( x) =

3 ˜ x2  1

d dx

( x  1)



2

2



˜ 6 ˜ x ˜ ( x  1)  2 ˜ ( x  1) ˜ 3 ˜ x  1

Ableitungsfunktion

2

3

vereinfacht auf

2

3

y ' ( x) =



˜ 6 ˜ x2  9 ˜ x  1

2

2

2˜ 3˜ x  1

( x  1)

3

1

(6)

2

x

y=

2

= x˜ x  1

gegebene Funktion

2

x 1 1

2

y ' ( x) = 1 ˜ x  1

2

3

1



2

2

˜ x 1

2

3

˜ 2˜ x˜ x

vereinfacht auf

2

y ' ( x) = x  1

2

3

y ' ( x) =

x

d dx

(7)

y=

vereinfacht auf

2

y ' ( x) = x  1

2

2

x 1

( 2 ˜ x  3) ˜ ( x  2)

gegebene Funktion 1

y ' ( x) =

1

˜ [ ( 2 ˜ x  3) ˜ ( x  2) ]

2

2

˜ [ 2 ˜ ( x  2)  1 ˜ ( 2 ˜ x  3) ]

Ableitungsfunktion 1

2˜ x y ' ( x) =

d

( 2 ˜ x  3) ˜ ( x  2)

vereinfacht auf

y ' ( x) =

dx

(8)

y=

( 2 ˜ x  3)

3

2

( x  2) ˜ ( 2 ˜ x  3)

f(z) = (z)1/2 mit z = g(w) = w3 und w = h(x) = 2 x - 3

gegebene Funktion

1

y ' ( x) =

y ' ( x) =

1 2 d

˜ ª¬( 2 ˜ x  3)

( 2 ˜ x  3)



¼

3

2

2

˜ 3 ˜ ( 2 ˜ x  3) ˜ 2

vereinfacht auf

dx

Ableitungsfunktion

y ' ( x) =

3 ˜ ( 2 ˜ x  3) ( 2 ˜ x  3)

Seite 83

2

3

Differentialrechnung Ableitungsregeln Beispiel 3.2.20: Aus einem kugelförmigen Ballon entweicht Gas mit einer Geschwindigkeit von 54 l/min. Wie schnell nimmt die Oberfläche des Ballons ab, wenn der Radius am Anfang 3.6 m beträgt? V ( t) =

4˜ π

3

3

Volumen und Oberfläche

2

˜ r ( t) = f ( r ( t) )

AM ( t ) = 4 ˜ π ˜ r ( t ) = g ( r ( t ) )

54 l = 54 dm3 Abb. 3.2.4 V ( t) =

4˜ π 3

˜ r ( t)

dt

d

2

dt

8 ˜ π ˜ r ( t) ˜

AM ( t )

d

V ( t) =

dt

AM ( t ) = 4 ˜ π ˜ r ( t ) d

d

3

AM ( t ) =

d

dt

dt

4 ˜ π ˜ r ( t ) 2

vereinfacht auf

d dt

2

˜

d

r ( t ) dt

V ( t) =

AM ( t )

d

dt

AM ( t ) =

AM ( t ) = 8 ˜ π ˜ r ( t ) ˜

dt

r ( t)

Volumenr ( t ) strom dt (theoretisch)

2 d

V ( t) = 4 ˜ π ˜ r ( t) ˜

d vereinfacht auf

2 d

d dt

r ( t)

4 ˜ π ˜ r ( t) ˜

dt d

d

vereinfacht auf

dt

= V ( t)

§ 4 ˜ π ˜ r ( t ) 3· ¨ ¸ dt © 3 ¹ d

= V ( t)

d

r ( t)

dt

2 r ( t)

dt

§

2 36 ˜ dm

˜ ¨ 54 ˜

©



2 2 d dm ¸ vereinfacht auf d AM ( t) = ˜ V ( t) = 3 ˜ min ¹ min r ( t ) dt dt

dm

Die Oberfläche verkleinert sich um 3 dm2 pro Minute. Beispiel 3.2.21: Aus einem konischen Trichter läuft Wasser mit der Geschwindigkeit von 8 cm3 /s aus. Der Radius der Öffnung des Trichters sei R = 8 cm und die Höhe des Trichters H = 16 cm. Bestimmen Sie die Geschwindigkeit, mit der der Wasserspiegel sinkt, wenn er h = 4 cm über der Trichterspitze steht. r ( t) R

=

V ( t) =

h ( t)

ähnliche Dreiecke

H 1 3

2

˜ π ˜ r ( t) ˜ h ( t) =

A1 ˜ v1 = A2 ˜ v2

1 3

r ( t) 8 ˜ cm

=

h ( t) 16 ˜ cm

Ÿ

r ( t) =

Volumen

Kontinuitätsgleichung

Volumenstrom (theoretisch): V ( t) = d dt

12

h ( t) =

˜ π ˜ h ( t) 4 2

π˜h

˜

d

2 d

§ 1 ˜ π ˜ h ( t ) 3· V ( t) = ¨ ¸ dt dt © 12 ¹ d

3

V ( t)

d

π ˜ h ( t) ˜ vereinfacht auf

h  16 ˜ cm  4 ˜ cm

d

V ( t) =

dt

Sinkgeschwindigkeit des Wasserspiegels (theoretisch)

dt Höhe des Wasserspiegels

Seite 84

2

2

§ h ( t) · ˜ h ( t) = 1 ˜ π ˜ h ( t) 3 ¸ 12 © 2 ¹

˜π˜¨

Abb. 3.2.5

1

h ( t)

dt 4

h ( t)

Differentialrechnung Ableitungsregeln

d

3

V ( t) = 8 ˜

cm

Auslaufgeschwindigkeit (Volumenstrom)

s

dt

3 § 2 ˜ cm cm · ¨ ¸ o d h ( t) =  h ( t) = ˜ 8 ˜ 2 9˜ π˜ s s ¹ dt dt π˜h ©

4

d



2 9˜ π

˜

cm

0.071 ˜

s

cm s

Die Sinkgeschwindigkeit beträgt in 4 cm Höhe 0.071 cm pro Sekunde.

3.2.7 Ableitungen von Funktionen und Relationen in impliziter Darstellung Ableitungen von Funktionen und Relationen in impliziter Darstellung: y = 3 x2 - 2 x + 1

y = f(x)

explizite Funktionsgleichung

(3-22)

3 x2 - 2 x - y = - 1

F(x,y) = c

implizite Funktionsgleichung

(3-23)

x2 + y2 = r2

F(x,y) = c

implizite Gleichung (Relation)

(3-24)

Wenn x die unabhängige und y die abhängige Variable bezeichnet, so differenzieren wir gliedweise jeden Term der Gleichung nach x. Jeder Term, der y enthält, ist mit der Kettenregel abzuleiten, da y von x abhängig ist. Danach lösen wir die erhaltene Gleichung nach y' auf.

Beispiel 3.2.22: Bilden Sie die 1. Ableitung der folgenden Funktionen und Relationen händisch und mithilfe von Mathcad: 2

(1)

3

2

y x =0

y=x

2

3˜ y ˜ y '  2˜ x= 0

y x =0

2

y=

2˜ y˜ y '  2˜ x = 0

F( x, y, y' ) = 0

y(x)2  x2 = 0

vereinfacht auf

d dx

2

3

2

y  x ˜y x=0 2

x

2

2

2 3

x

˜

2

y' = f(x,y)

y

2 d

3 ˜ y ( x) ˜

y= x

y ( x)  2 ˜ x = 0

implizite und explizite Form

Ÿ

y'=

x

y' = f(x,y)

y

2 ˜ y ( x) ˜

d dx

implizite Form 2

1  2˜ x˜ y

y'=

dx

3˜ y ˜ y '  2˜ x˜ y  y ' ˜ x  1 = 0 y'=

Ÿ

F( x, y, y' ) = 0

vereinfacht auf

dx

(3)

implizite und explizite Form

y(x)3  x2 = 0

d

(2)

3

F( x, y, y' ) = 0

y' = f(x,y)

3 ˜ y  x

Seite 85

y ( x)  2 ˜ x = 0

Differentialrechnung Ableitungsregeln d dx

y(x)3  x2 ˜ y(x)  x = 0

2 d

3 ˜ y ( x) ˜

vereinfacht auf

2 d

y ( x)  2 ˜ x ˜ y ( x)  x ˜

dx

y ( x)  1 = 0

dx

Beispiel 3.2.23: Bilden Sie die 1. Ableitung der Kreisgleichung: 2

2

2

x y =r

Kreis in Hauptlage

2˜ x  2˜ y˜ y ' = 0

F( x, y, y' ) = 0

2

2

2

Ÿ

y'=

( x  m)  ( y  n) = r

Kreis in allgemeiner Lage mit M(m|n)

2 ˜ ( x  m)  2 ˜ ( y  n) ˜ y ' = 0

F( x, y, y' ) = 0

Ÿ

y'=

Ÿ

y'=

x

y' = f(x,y)

y

( x  m) y n

y' = f(x,y)

Beispiel 3.2.24: Bilden Sie die 1. Ableitung der Ellipsengleichung: 2

x

2

2

y



2

a

Ellipse in Hauptlage

=1

b

2˜ x

2˜ y˜ y '



2

2

a

F( x, y, y' ) = 0

=0

2

2

( y  n)



2

y' = f(x,y)

2

Ellipse in allgemeiner Lage mit M(m|n)

=1

2

a

2

a ˜y

b

( x  m)

b ˜ x

b

2 ˜ ( x  m) 2



2 ˜ ( y  n) ˜ y ' 2

a

=0

F( x, y, y' ) = 0

Ÿ

2

y'=

b ˜ ( x  m) 2

y' = f(x,y)

a ˜ ( y  n)

b

Beispiel 3.2.25: Bilden Sie die 1. Ableitung der Hyperbelgleichung: 2

x

2

2

y



2

a

Hyperbel in Hauptlage

=1

b

2˜ x



2

2˜ y˜ y ' 2

a

F( x, y, y' ) = 0

=0

Ÿ

2

a

2



b ˜x 2

a ˜y

b

( x  m)

2

y'=

( y  n) 2

2

=1

Hyperbel in allgemeiner Lage mit M(m|n)

b

Seite 86

y' = f(x,y)

Differentialrechnung Ableitungsregeln 2 ˜ ( x  m) 2

2 ˜ ( y  n) ˜ y '



2

a

2

Ÿ

F( x, y, y' ) = 0

=0

y'=

b ˜ ( x  m) 2

y' = f(x,y)

a ˜ ( y  n)

b

Beispiel 3.2.26: Bilden Sie die 1. Ableitung der Parabel: 2

y  2˜ p˜ x= 0 d dx

Scheitelgleichung der Parabel (symmetrisch zu x-Achse und Brennpunkt F(p/2|0))

y(x)2  2 ˜ p ˜ x = 0

y'=

p

vereinfacht auf

2 ˜ y ( x) ˜

d

y ( x)  2 ˜ p = 0

F( y, y' ) = 0

dx y' = f(y)

y

Beispiel 3.2.27: Bilden Sie die 1. Ableitung der Astroide (Sternkurve): 2

x

3

2

y

3

2

=a

3

implizite Form

2· 2 § 2 d ¨ 3 d 3 3¸ © x  y( x) ¹ = a

dx

2˜ vereinfacht auf

d

y ( x)

dx



1

dx

3 ˜ y ( x)

3

2 1

3˜ x

F( x, y, y' ) = 0

=0

3

1

2 1

3˜ x



3

2 1

3˜ y

˜ y' = 0

y

hat als Lösung(en)

3

1

3

x

3

1

y'=

y

3

y' = f(x,y)

1

x

3

2 2· § 2 d ¨ 3 3 3¸ f ' ( x y)  © x  y ( x)  a ¹

dx

1

d auflösen  y ( x) dx

3

y o 1 ersetzen y ( x) = y x

3

Seite 87

f ' ( 1 1)

1

implizite Ableitung mithilfe von Symboloperatoren

Differentialrechnung Ableitungsregeln Beispiel 3.2.28: Bestimmen Sie die Steigung des Grafen im Punkt P 1 (1| y1 > 0), den Steigungswinkel der Tangente im P 1 und die Tangentengleichung durch P 1 der folgenden Relation: 2

2

y  x ˜y=3

implizite Gleichung

§ 13 1 · ¨  ¸ 2¸ 2 2 ¨ y  y1  1 ˜ y1 = 3 auflösen y1 o ¨1 13 ¸ ¨  ¸ 2 ¹ ©2

2˜ x˜ y



y ' x1 y1



α

2˜ y x



hat als Lösung(en)

2

α  atan y ' x1 y1

ORIGIN festlegen

x1  1

x-Wert des Punktes P1

y1

y2

2.303

1.303

2˜ x˜ y

2

2˜ y˜ y '  2˜ x˜ y  y ' ˜ x = 0 y ' ( x y) 

ORIGIN  1



1.277

51.944 ˜ Grad

y  2.303 = 1.277 ˜ ( x  1)

hat als Lösung(en)

y = 1.277 ˜ x  1.026

Tangentengleichung in P 1

2

2˜ y x

Steigung der Tangente in P1 Steigungswinkel der Tangente in P 1 1.277 ˜ x  1.026

Beispiel 3.2.29: Gegeben ist die folgende Relation p.V = c. Bestimmen Sie die 1. Ableitung von p nach V (p = f(V)): p˜ V = c

implizite Gleichung

p '˜ V  p = 0

p'=

Setzen wir p = c/V ein, dann folgt:

p'=

p

p' = f(p,V)

V c V

p' = f(V)

2

Ableitungen der Umkehrfunktionen: Beispiel: y = 2 x +3 y' = 2 x = 1/2 y - 3/2 (x = 1/2 y - 3/2)'

y = f(x) explizite Funktionsgleichung y' = f (x)' x = fu(y) Umkehrfunktion von y = f(x) 1 = 1/2 y' implizite Differentiation

Ÿ

Für die Ableitung der Umkehrfunktion gilt demnach: Ÿ

(x = fu(y))' f ( x) ' =

1

fu (y) '

bzw.

1 = fu'(y) . y' d dx

y=

1 d

x

dy

Seite 88

(3-25)

(3-26)

Differentialrechnung Ableitungsregeln Beispiel 3.2.30: Bilden Sie die 1. Ableitung der folgenden Funktionen: (1)

x

a)

y'=

(3)

(4)



x=y

2

y ' = 2˜ x

b)

x=

y

y = ( x  5)

implizite Ableitung

1=

2

a)

y ' = 2 ˜ ( x  5)

b)

x=5

2

1 = 2˜ y˜ y '

x=

a)

g

Funktion und Umkehrfunktion

x

y=x

s=

x=y 1

2

b)

(2)

2

y=

˜t

y

1

˜y'



y

x=5

y

1=

2

bzw.

y

1

bzw.

˜y'



1 2˜ y

=

1 2˜

x

x= y

Funktion und Umkehrfunktion

implizite Ableitung

y ' = 2˜

x=5

Funktion und Umkehrfunktion

y

implizite Ableitung

y ' = 2˜

y= 2˜ x

y = 2 ˜ ( x  5)

y

2˜ s

t=

y'=

bzw.

g

t=

2˜ s

Funktion und Umkehrfunktion

g

s ' = g˜ t

a)

2

b)

2˜ s

t=

g

1=

g



2˜ s

˜s'

implizite Ableitung

bzw.

y=

s ' = g˜

2˜ s g

= g˜ t

g 1

(5)

2

x˜ y = 1

1

y=

x

=x

2

1 x

implizite und explizite Darstellung der Funktion

3

a)

b)

y'=

1 2

˜x

2

2

1˜ y  2˜ y˜ y ' ˜ x = 0

hat als Lösung(en)

1

y'=

y 2˜ x

=

1 2

˜

x

3

2

x

=

1 2

˜x

2

Seite 89



y 2˜ x

Differentialrechnung Ableitungsregeln 3.2.8 Ableitung der Exponential- und Logarithmusfunktion Exponentialfunktion: f: y = ax , D Ž  und W Ž +, a +\ { 1 } y ' ( x) =

d

x

+

x

+

a = a ˜ ln ( a) , D' Ž  und W' Ž  , a  \ { 1 }

(3-27)

dx Sonderfälle: y = ex

y = 10 x x

y' ( x) = e

y = 2x x

x

y' ( x) = 10 ˜ ln ( 10 )

y' ( x) = 2 ˜ ln ( 2)

(3-28)

Logarithmusfunktion: f: y = loga (x) = ln(x)/ln(a), D Ž + und W Ž , a +\ { 1 } ln ( x) lg ( x) lb ( x) y = loga ( x) = = = ln ( a) lg ( a) lb ( a) y ' ( x) =

(3-29)

1 1 + loga ( x) = ˜ , D' Ž  \ { 0 } und W' Ž  \ { 0 }, a  \ { 1 } ln ( a) x dx d

(3-30)

Sonderfälle: y = ln(x)

y = lg(x)

1

y' ( x) =

x

y' ( x) =

y = lb(x) 1

ln ( 10 )

˜

1

y' ( x) =

x

1

1 

˜

ln ( 2)

x

Beispiel 3.2.31: Bilden Sie die 1. Ableitung händisch und mithilfe von Mathcad der folgenden Funktionen: (1)

x

y ' ( x) =

d dx

(2)

y ' ( x) = 3 ˜ e

3 ˜ ex x

y= 1  2˜ e y ' ( x) =

d dx

(3)

x

y= 3˜ e

1  2 ˜ ex

x

y= e  2˜ x y ' ( x) =

d dx

ex  2 ˜ x

vereinfacht auf

x

y ' ( x) = 3 ˜ e

x

y ' ( x) = 2 ˜ e

vereinfacht auf

x

y ' ( x) = 2 ˜ e

x

y ' ( x) = e  2 vereinfacht auf

x

y ' ( x) = e  2

Seite 90

(3-31)

Differentialrechnung Ableitungsregeln (4)

λ˜x

d

y ' ( x) =

dx (5)

λ˜x

y=c˜e

y ' ( x) = c ˜ λ ˜ e

c ˜ eλ˜x

λ˜x

y ' ( x) = λ ˜ c ˜ e

vereinfacht auf

5˜x

5˜x

y ' ( x) = 5 ˜ e

y=e

5˜x

d

y ' ( x) =

5˜x

y ' ( x) = 5 ˜ e

vereinfacht auf

e

dx (6)

 2˜x

 2˜x

y ' ( x) = 2 ˜ e

y=e

 2˜x

d

y ' ( x) =

 2˜x

y ' ( x) = 2 ˜ e

vereinfacht auf

e

dx (7)

3˜x

x

3˜x

 3˜ e

y=e

d

y ' ( x) =

dx

e3˜x  3 ˜ e x

 3˜ e

x

3˜x

y ' ( x) = 3 ˜ e

vereinfacht auf

2

(8)

x

y ' ( x) = 3 ˜ e

 3˜ e

2

x

x

y ' ( x) = 2 ˜ x ˜ e

y=e

2

d

y ' ( x) =

2

x

x

y ' ( x) = 2 ˜ x ˜ e

vereinfacht auf

e

dx 1

2

ln ( y) = x ˜ ln ( e)

2

y=e

2

˜ y ' = 2˜ x

2

x

(9)

y

2

2

2· §  x2 x ¸ ¨ d ¨ 2 2 ¸ y ' ( x) = © e  2˜ x˜ e ¹

2

x

x

 2˜ x˜ e

Implizite Differentiation nach dem Logarithmieren!

y ' ( x) = x ˜ e

2

2

x

 2˜ e

2

x

 x˜ e

2

2

§ 1· ¨ ¸ © 2¹

y ' ( x) = 4 ˜ x ˜ e

vereinfacht auf

x

§ 1· y ' ( x) = ¨ ¸ dx © 2 ¹ 2

x

d dx



§x  1 · ¸  x˜ e © 2 2 ˜ x¹

˜¨

§ 1· § 1· ¨ ¸ ˜ ln ¨ ¸ © 2¹ © 2¹

x

y ' ( x) = 

vereinfacht auf

ln ( 2) x

2 x

(11) y = x ˜ 3

y ' ( x) =

2

x

y ' ( x) =

d

2

x

dx

(10) y =

˜ 2˜ x

x

2

y ' ( x) = 2 ˜ x ˜ 3  3 ˜ ln ( 3) ˜ x

x2 ˜ 3x

vereinfacht auf

Seite 91

x

y ' ( x) = 3 ˜ x ˜ ( x ˜ ln ( 3)  2)

x

2

Differentialrechnung Ableitungsregeln Beispiel 3.2.32: Berechnen Sie die Zerfallsgeschwindigkeit beim radioaktiven Zerfall. t  λ˜t

N ( t ) = N0 ˜ e

= N0 ˜ e

τ

Zerfallsgesetz

Zerfallsgeschwindigkeit:  λ˜t

d

N ( t ) = N0 ˜ e

N ( t) =

dt

λ  0.0002 ˜ s

1

§ N ˜ e λ˜t· 0 ¹ dt © d

d

vereinfacht auf

dt

 λ˜t

N ( t ) = N0 ˜ λ ˜ e

Zerfallskonstante

N0  1000

Anzahl der Kerne zur Zeit t = 0 s  λ˜t

 λ˜t

N ( t )  N0 ˜ e

vN ( t)  N0 ˜ λ ˜ e

t  0 ˜ min 0.01 ˜ min  500 ˜ min

Bereichsvariable

Zerfallsgesetz und Zerfallsgeschwindigkeit

0 800

100

200

300

400

500

 0.05 vN( t)  0.1

N( t) 400

 0.15 0

100

200

300

400

 0.2

500

t

t

min

min

Abb. 3.2.6

Abb. 3.2.7

Beispiel 3.2.33: Berechnen Sie die Abkühlungsgeschwindigkeit eines Körpers der Anfangstemperatur -a und der Umgebungstemperatur -u (konstant). t





ϑ = ϑa  ϑu ˜ e

τ

 ϑu

Abkühlungsgesetz von Newton

t





ϑ ( t ) = ϑa  ϑu ˜ e 

d

ϑ ( 0) = 

e

0=

 ϑu

τ



= k =  ϑa  ϑu

˜ ϑa  ϑu τ



τ

˜tϑ

˜tϑ

 ϑa  ϑu τ

d

ϑ ( t) = 

dt

Steigung der Anlauftangente

τ

 ϑa  ϑu





0

dt ϑT ( t ) =

τ

t ª« »º d d« τ ϑ ( t) = ϑa  ϑu ˜ e  ϑu»¼ vereinfacht auf dt dt ¬

a

Tangentengleichung a hat als Lösung(en)

τ ˜ ϑa ϑa  ϑu

Seite 92

Schnittstelle mit der t-Achse

e

t τ





˜ ϑa  ϑu τ

Differentialrechnung Ableitungsregeln Gleichung zur Bestimmung der Schnittstelle der Tangente und -u -Geraden

ϑu = ϑT ( t ) ϑu =



˜tϑ

 ϑa  ϑu τ

hat als Lösung(en)

a

τ

τ  0.2 ˜ min

Zeitkonstante

°C  1

Grad-Definition

ϑa  100 ˜ °C

Anfangstemperatur

ϑu  25 ˜ °C

Umgebungstemperatur

Schnittstelle mit der -u -Geraden

t

ϑa  ϑu ˜ e τ  ϑu  ϑa  ϑu ( t)  ˜t ϑ

ϑ ( t) 

ϑT

ta 

Abkühlungsgesetz

Tangentengleichung

a

τ

τ ˜ ϑa

Schnittstelle mit der t-Achse

ϑa  ϑu 

vϑ ( t)  

e

t τ





˜ ϑa  ϑu

Abkühlungsgeschwindigkeit

τ

t  0 ˜ min 0.001 ˜ min  1 ˜ min

Bereichsvariable Abkühlungsgesetz

τ

100

ϑa

min min

ϑ( t) ϑT( t)

ta

50

Abb. 3.2.8

ϑu 0

0.2

0.4

0.6

0.8

1

0.8

1

t min

Abkühlungsgeschwindigkeit 0

0.2

0.4

0.6

2 vϑ( t)  4

Abb. 3.2.9

6 8 t min

Seite 93

Differentialrechnung Ableitungsregeln Beispiel 3.2.34: Ein- und Ausschaltvorgang eines R-L-Serienkreises an Gleichspannung. Zeigen Sie, dass i(t) = I (1 - e-t/W) für den Einschaltvorgang und i(t) = I e-t/Wfür den Ausschaltvorgang die zugehörige Differentialgleichung erfüllt. uR ( t) = i ( t) ˜ R uL ( t) = L ˜ τ=

d

Spannung am Widerstand

Spannung an der Spule

i ( t)

dt

L

Zeitkonstante

R

Abb. 3.2.10 Einschaltvorgang: U = uR ( t)  uL ( t)

2. Kirchhoff'sche Gesetz

d

U = i ( t) ˜ R  L ˜

i ( t)

dt R · § ˜t ¨ U L ¸ i ( t) = ˜ ©1  e ¹

R

R˜t



L

U˜ e

d

i ( t) 

dt

R L

˜ i ( t) =

U

d

L

dt

i ( t) 

 R ·º ª § ˜t » « ¨ d d U L ¸ i ( t) = « ˜ © 1  e ¹» dt dt ¬ R ¼

τ

˜ i ( t) =

U L

inhomogene lineare Differentialgleichung 1. Ordnung R˜t



vereinfacht auf

d

i ( t) =

 R ·º ª § ˜t » «U ¨ U L ¸  ˜ « ˜ ©1  e ¹» = L ¬R ¼ L

vereinfacht auf

U L

=

L

U˜ e

dt

R

L

1

U

L

Probe

L

Ausschaltvorgang: 0 = uR ( t)  uL ( t) 0 = i ( t) ˜ R  L ˜

d dt

R

U

i ( t) =

R 



U˜ e L

˜e R˜t L

L

˜t

2. Kirchhoff'sche Gesetz i ( t)

d

i ( t) 

dt

L

˜ i ( t) = 0

R · § ˜t¸ ¨ d d U L i ( t) = ¨ ˜ e ¸ dt dt © R ¹

R · § ˜t¸ ¨U L  ˜¨ ˜e ¸=0 L ©R ¹

R

R

d

i ( t) 

dt

1 τ

˜ i ( t) = 0

homogene lineare Differentialgleichung 1. Ordnung 

vereinfacht auf

d dt

i ( t) = 

U˜ e

R˜t L

L

Probe

Beispiel 3.2.35: Ein- und Ausschaltvorgang eines R-C-Serienkreises an Gleichspannung. Zeigen Sie, dass u C(t) = U (1 - e-t/W) für den Einschaltvorgang und uC(t) = U e-t/Wfür den Ausschaltvorgang die zugehörige Differentialgleichung erfüllt.

Seite 94

Differentialrechnung Ableitungsregeln uR = i ( t ) ˜ R 1 ´ µ ˜ uC ( t) = C µ ¶ d

i ( t) = C ˜

dt

Spannung am Ohm'schen Widerstand Spannung am Kondensator

i ( t ) dt

Strom im Stromkreis

uc ( t )

τ = R˜ C

Zeitkonstante

Abb. 3.2.11 Einschaltvorgang: U = uR ( t)  uC ( t) 1 ´ µ ˜ C µ ¶

U = i ( t) ˜ R 

U = R˜ C˜

d dt

2. Kirchhoff'sche Gesetz i ( t ) dt

U R

˜e

uC ( t )  uC ( t)

R˜C

t



C˜R

U ˜ e

2

C˜ R 

U˜ e

t



i ( t) 

1 C

i ( t ) bzw.

d

i ( t) 

dt

homogene lineare ˜ i ( t ) = 0 Differentialgleichung R˜ C 1. Ordnung 1

inhomogene lineare Differentialgleichung 1. Ordnung

1 U uC ( t)  ˜ uC ( t) = R ˜ C R ˜C dt d



i ( t) = 

dt

 t ·º ª § d d« ¨ R˜C ¸» uc ( t) = ¬U ˜ © 1  e ¹¼ dt dt

t · § ¨ ¸ 1 U R˜C  ¨ ˜e ¸=0 C© R ¹

R˜ C

d

vereinfacht auf

U˜ e

d dt

C˜R 2

C˜ R 

vereinfacht auf

t

uc ( t) =

U˜ e

t C˜R

C˜ R

Probe

t · § ¨ 1 U R˜C ¸ ˜ U ˜ ©1  e ¹=

C˜R

C˜ R

d

t · § ¨ ¸ d d U R˜C i ( t) = ¨ ˜ e ¸ dt dt © R ¹

t · § ¨ R˜C ¸ uc ( t) = U ˜ © 1  e ¹

0 = R˜

0 = R˜

dt

t

i ( t) =

/d/dt

vereinfacht auf

R˜ C

U R˜ C

=

U R˜ C

Probe

Ausschaltvorgang: 0 = uR ( t)  uC ( t)

0 = i ( t) ˜ R 

0 = R˜ C˜

d dt

1 ´ µ ˜ C µ ¶

2. Kirchhoff'sche Gesetz

i ( t ) dt

uC ( t)  uC ( t)

/d/dt

0 = R˜

d

i ( t) 

dt

U R

˜e

R˜C

C

i ( t ) bzw.

1 uC ( t)  ˜ u ( t) = 0 R˜ C C dt d

t

i ( t) = 

1

t

uC ( t) = U ˜ e

R˜C

Seite 95

d dt

i ( t) 

homogene lineare ˜ i ( t ) = 0 Differentialgleichung R˜ C 1. Ordnung 1

homogene lineare Differentialgleichung 1. Ordnung

Differentialrechnung Ableitungsregeln t · § ¨ ¸ U d d R˜C i ( t) = ¨  ˜ e ¸ dt dt © R ¹

t

U

i ( t) = 

R

˜e

R˜C

t



2

C˜ R 



U˜ e

R˜C

d

i ( t) =

dt



C˜ R

§ R˜ C © 1

vereinfacht auf

d dt

uC ( t) = 

Probe

§ t · · = 0 ¸¸ © R ˜ C ¹¹

˜ ¨ U ˜ exp ¨

Probe

Beispiel 3.2.36: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1)

y = 3 ˜ ln ( x) y ' ( x) =

d

y ' ( x) = 3 ˜

( 3 ˜ ln ( x) )

1 x

vereinfacht auf

y ' ( x) =

dx

(2)

y = x ˜ ln ( x)

y ' ( x) =

d

y ' ( x) = 1 ˜ ln ( x) 

( x ˜ ln ( x) )

1 x

3 x

˜x y ' ( x) = ln ( x)  1

vereinfacht auf

dx 1 (3)

y=

ln ( x)

y ' ( x) =

(4)

y ' ( x) =

x

x

˜ x  1 ˜ ln ( x) 2

x d ln ( x) dx x

2

y = ln x

y ' ( x) = 

vereinfacht auf

ln ( x)  1 2

x y ' ( x) =

1 2

˜ 2˜ x

x y ' ( x) =

d dx

(5)

y = ln ( x)

y ' ( x) =

2

ln x

2

d

vereinfacht auf

y ' ( x) = 2 ˜ ( ln ( x) ) ˜

ln ( x)

2

vereinfacht auf

2

C˜ R

t C˜R

U˜ e

t C˜R



t · § ¨ ¸ 1 U R˜C  ˜ ¨ ˜ e ¸=0 R˜ C © R ¹

C˜R

U˜ e

vereinfacht auf

t · § ¨ d d R˜C ¸ uC ( t) = © U ˜ e ¹ dt dt

t

uC ( t) = U ˜ e



y ' ( x) =

2 x

1 x y ' ( x) =

dx

Seite 96

2 ˜ ln ( x) x

U˜ e

t C˜R

C˜ R

Differentialrechnung Ableitungsregeln

(6)

§



·

2

y = ln © x 

ª « 1 1 2 y ' ( x) = ˜ «1  ˜ x  1 2 2 ¬ x x  1

x  1¹

1



2

º » ˜ 2 ˜ x» ¼ 1

y ' ( x) =

d dx

§

ln © x 

2

·

x  1¹

2

2

y ' ( x) = x  1

vereinfacht auf

Beispiel 3.2.37: Bilden Sie die 1. Ableitung der folgenden Funktionen über die Umkehrfunktion bzw. durch Logarithmieren händisch: d y ( x) dx x x implizite Ableitung (1) y = e x = ln ( y ( x) ) 1= y ' ( x) = 1 ˜ y ( x) = e y ( x) d (2)

x

y=a

ln ( y ( x) ) = x ˜ ln ( a)

y ( x)

dx

implizite Ableitung

= ln ( a)

y ( x)

x

y ' ( x) = ln ( a) ˜ y ( x) = ln ( a) ˜ a

(3)

y = ln ( x)

y( x)

e

=x

d

implizite Ableitung

y( x)

y ( x) ˜ e

=1

dx 1

y ' ( x) =

y( x)

=

e (4)

y = loga ( x)

y( x)

a

y( x) d

=x

a

˜

y = u ( x) ˜ v ( x)

x

y ( x) ˜ ln ( a) = 1

dx y ' ( x) =

(5)

1

ln ( y ( x) ) = ln ( u ( x) )  ln ( v ( x) )

d

d

y ( x)

dx y ( x)

=

d

u ( x)

dx u ( x)



1 ln ( a)

˜

1 y( x)

a

=

1 ln ( a)

˜

1 x

implizite Ableitung

v ( x)

dx v ( x)

Ÿ

§d · d ¨ d u ( x) dxv ( x) ¸ x ¸ = u ' ( x) ˜ v( x)  v ' ( x) ˜ u ( x) y ' ( x) = u ( x) ˜ v ( x) ˜ ¨  v ( x) ¹ © u ( x) Produktregel

Seite 97

Differentialrechnung Ableitungsregeln

(6)

y = u ( x)

v( x)

ln ( y ( x) ) = v ( x) ˜ ln ( u ( x) ) implizite Ableitung d

d

y ( x)

dx y ( x)

d

=

v ( x) ˜ ln ( u ( x) )  v ( x) ˜

dx

y ' ( x) = u ( x)

v( x)

u ( x)

dx u ( x)

§ ©

˜ ¨ v ' ( x) ˜ ln ( u ( x) )  u ' ( x) ˜

Ÿ

v ( x) ·

¸

u ( x) ¹

1

(7)

y = ( a  b ˜ x)

x

ln ( y ( x) ) =

1 x

˜ ln ( a  b ˜ x)

implizite Ableitung d

y ( x)

dx y ( x)

=

1 2

˜ ln ( a  b ˜ x) 

x

1 x

˜

b a  b˜ x

Ÿ

1

y ' ( x) = ( a  b ˜ x)

(8)

 c˜x

b § 1 ˜ ln ( a  b ˜ x)  1 ˜ · ¸ 2 x a  b˜ x ©x ¹

x

˜¨

ln ( y ( x) ) = c ˜ x ˜ ln ( a)

y=a

implizite Ableitung d

y ( x)

dx y ( x)

Ÿ

= c ˜ ln ( a)  c˜x

y ' ( x) = c ˜ ln ( a) ˜ a

(9)

s = c p ˜ ln ( T)  C

Entropie bei isobarer Zustandsänderung

Ges.: T(s) und dT/ds? s C

ln ( T) =

sC cp s C

T ( s) = e

cp

Ÿ

T ( s) = e

cp

§ s C · ¨ c ¸ 1 p ¹ d ˜ e© T (s) = ds

cp

Seite 98

Differentialrechnung Ableitungsregeln 3.2.9 Ableitung von Kreis- und Arkusfunktionen Ableitungen der Kreisfunktionen: Sinusfunktion: f: y = sin(x), D =  und W = [-1 , +1]. y ' ( x) =

d

sin ( x) = cos ( x), D' =  und W' = [-1 , +1]

(3-32)

dx Kosinusfunktion: f: y = cos(x), D =  und W = [-1 , +1]. y ' ( x) =

d

cos ( x) = sin ( x), D' =  und W' = [-1 , +1]

(3-33)

dx Tangensfunktion: f: y = tan(x) = sin(x)/cos(x), D = \ {(2k+1) S/2} und W = . y ' ( x) =

d dx

1

tan ( x) =

2

( cos ( x) )

= 1  ( tan ( x) ) , D' = \ {(2k+1) S/2 } und W' = 

2

(3-34)

Kotangensfunktion: f: y = cot(x) = cos(x)/sin(x), D = \ {k S} und W = . y ' ( x) =

d dx

= ª¬1  ( cot ( x) )

1

cot ( x) = 

( sin ( x) )

2



¼ , D' = \ {k S} und W' = 

(3-35)

Ableitungen der Arkusfunktionen: Arkussinusfunktion: f: y = arcsin(x), D = [-1 , +1] und W = [-S/2 , +S/2] usw. y ' ( x) =

d

1

arcsin ( x) =

dx

, D' = ]-1 , +1[

(3-36)

2

1x

Arkuskosinusfunktion: f: y = arccos(x), D = [-1 , +1] und W = [0 , S] usw. y ' ( x) =

d

1

arccos ( x) = 

dx

, D' = ]-1 , +1[

(3-37)

2

1 x

Arkustangensfunktion: f: y = arctan(x), D = und W = ]-S/2 , +S/2[ usw. y ' ( x) =

d dx

1

arctan ( x) =

, D' = 

2

(3-38)

1x

Arkuskotangensfunktion: f: y = arccot(x), D =  und W = ]0 , S[ usw. y ' ( x) =

d dx

arccot ( x) = 

1 2

, D' = 

1x



Seite 99

(3-39)

Differentialrechnung Ableitungsregeln Beispiel 3.2.38: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1)

y = a ˜ sin ( x) y ' ( x) =

d

y ' ( x) = a ˜ cos ( x)

( a ˜ sin ( x) )

y ' ( x) = a ˜ cos ( x)

vereinfacht auf

dx (2)

y = sin ( a ˜ x) y ' ( x) =

d

y ' ( x) = a ˜ cos ( a ˜ x)

sin ( a ˜ x)

y ' ( x) = a ˜ cos ( a ˜ x)

vereinfacht auf

dx (3)

y = sin ( 2 ˜ x  c ) y ' ( x) =

d

y ' ( x) = 2 ˜ cos ( 2 ˜ x  c )

sin ( 2 ˜ x  c )

y ' ( x) = 2 ˜ cos ( 2 ˜ x  c )

vereinfacht auf

dx (4)

y = r ˜ sin ( ω ˜ t  φ) y ' ( t) =

d

y ' ( t) = r ˜ ω ˜ cos ( ω ˜ t  φ)

( r ˜ sin ( ω ˜ t  φ) )

vereinfacht auf

§x· ¸ ©c¹

y ' ( x) = cos ¨

y ' ( t) = ω ˜ r ˜ cos ( φ  ω ˜ t)

dt (5)

y ' ( x) =

(6)

§ ˜ § x ·· ¨ c sin ¨ ¸ ¸ dx © © c ¹¹

vereinfacht auf

§x· ¸ © 2¹

y ' ( x) =

d

y = cos ¨

y ' ( x) =

d dx

(7)

§x· ¸ ©c¹

y = c ˜ sin ¨

d

2

§x· ¸ © 2¹

sin ¨

§x· ¸ © 2¹

sin ¨

§x· ¸ © 2¹

cos ¨

vereinfacht auf

y = cos ( 4 ˜ x  1)

y ' ( x) =

1

§x· ¸ ©c¹

y ' ( x) = cos ¨

y ' ( x) = 

2

y ' ( x) = 4 sin ( 4 ˜ x  1)

cos ( 4 ˜ x  1)

vereinfacht auf

y ' ( x) = 4 ˜ sin ( 4 ˜ x  1)

dx (8)

y = r ˜ cos ( ω ˜ t  φ)

y ' ( t) =

d

( r ˜ cos ( ω ˜ t  φ) )

y ' ( t) = r ˜ ω sin ( ω ˜ t  φ)

vereinfacht auf

y ' ( t) = ω ˜ r ˜ sin ( φ  ω ˜ t)

dt (9)

y = cos ( c ˜ x)

y ' ( x) =

d

2

cos ( c ˜ x)

y ' ( x) = 2 ˜ cos ( c ˜ x) ˜ ( 1) ˜ sin ( c ˜ x) ˜ c = c ˜ sin ( 2 ˜ c ˜ x) 2

vereinfacht auf

y ' ( x) = c ˜ sin ( 2 ˜ c ˜ x)

dx

Seite 100

Differentialrechnung Ableitungsregeln

2

2

(10) y = x ˜ cos ( x) y ' ( x) =

d dx

y ' ( x) = 2 ˜ x ˜ cos ( x)  sin ( x) ˜ x

x2 ˜ cos(x)

(11) y = cos ( x) ˜ sin ( x) y ' ( x) =

d

2

y ' ( x) = 2 ˜ x ˜ cos ( x)  x ˜ sin ( x)

vereinfacht auf

y ' ( x) = sin ( x) ˜ sin ( x)  cos ( x) ˜ cos ( x)

( cos ( x) ˜ sin ( x) )

y ' ( x) = cos ( 2 ˜ x)

vereinfacht auf

dx (12) y =

1 cos ( x)

y ' ( x) =

(13) y =

y ' ( x) =

sin ( x) cos ( x)

1

d

2

sin ( x)

y ' ( x) = 

vereinfacht auf

dx cos ( x)

2

sin ( x)  1

sin ( x)  cos ( x)

y ' ( x) =

sin ( x)  1

( cos ( x)  sin ( x) ) ˜ ( sin ( x)  1)  cos ( x) ˜ ( sin ( x)  cos ( x) ) ( sin ( x)  1)

2

2

y ' ( x) =

d sin ( x)  cos ( x) dx sin ( x)  1

(14) y = x ˜ tan ( x)

vereinfacht auf

y ' ( x) =

d

1

y ' ( x) = 1 ˜ tan ( x) 

( x ˜ tan ( x) )

2

sin ( x)  2 ˜ sin ( x)  1

cos ( x) y ' ( x) =

§ x ·  sin ( x)  2 ¸ © 2¹

2 ˜ sin ¨

2



˜ x = tan ( x)  1  tan ( x)

2

y ' ( x) = x ˜ tan ( x)  tan ( x)  x

vereinfacht auf

dx

2

(15) y = tan x

y ' ( x) =

1

2

˜ 2˜ x

2

cos x y ' ( x) =

d

2

dx

(16) y = cot ( 3 ˜ x)  tan ( 3 ˜ x)

y ' ( x) =

1 sin ( 3 ˜ x)

y ' ( x) =

d

( cot ( 3 ˜ x)  tan ( 3 ˜ x) )

2

§

y ' ( x) = 2 ˜ x ˜ © tan x

vereinfacht auf

tan x

2

vereinfacht auf

1

˜3

cos ( 3 ˜ x) y ' ( x) =

dx

2

2

˜3

24 cos ( 12 ˜ x)  1 1

(17) y = ln



cos ( x)



y ' ( x) =

1

˜

cos ( x) y ' ( x) =

d dx

ln



cos ( x)



vereinfacht auf

Seite 101

1 2

˜ cos ( x)

y ' ( x) = 

2

˜ ( sin ( x) )

tan ( x) 2

·

 1¹

2

˜x

Differentialrechnung Ableitungsregeln Beispiel 3.2.39: Für einen gedämpften Schwingkreis gilt:  δ˜t

uC ( t) = U0 ˜ e

§ ©

· ¹

δ

˜ ¨ cos ( ω ˜ t) 

˜ sin ( ω ˜ t) ¸

ω

Kondensatorspannung

Bestimmen Sie den Strom i = C du C/dt. i ( t) = C ˜

δ ·º ª  δ˜t § «U0 ˜ e ˜ ¨ cos ( ω ˜ t)  ˜ sin ( ω ˜ t)¸» ω dt ¬ © ¹¼ d



 δ˜t

i ( t) = 

C ˜ U0 ˜ e

2

2

δ ω

=

ω i ( t) =

2



ω 2

mit

2

˜ sin ( ω ˜ t ) ˜ ω  δ

vereinfacht auf

U0 ω˜ L

2

2

δ  ω0  δ ω

(  δ˜t)

˜e

=

1

folgt

ω˜ L˜ C

˜ sin ( ω ˜ t)

Stromfunktion

Beispiel 3.2.40: Leiten Sie die Ableitungsregeln für die Arkusfunktionen mithilfe der impliziten Differentiation bzw. der Umkehrfunktionen händisch her: (1)

y = arcsin ( x)

1 = cos ( y ( x) ) ˜

implizite Differentiation

x = sin ( y ( x) )

d

y ( x)

dx y' =

1 dx

=

1 cos ( y)

1

=

1  sin ( y)

dy

1

= 2

mit

2

2

1x

d

Differentiation

y ( x) = asin ( x)

2

sin ( y)  cos ( y) = 1

1

y ( x) =

1

dx

1  x2 (2)

y = arccos ( x)

x = cos ( y ( x) )

asin(x) = arcsin(x)

2

1 = sin ( y ( x) ) ˜

implizite Differentiation

d

y ( x)

dx y' =

1 dx

=

1 sin ( y)

dy

y ( x) = acos ( x)

=

1 1  cos ( y)

= 2

Differentiation

1 2

d

1

y ( x) =

1

1  x2 y = arctan ( x)

x = tan ( y ( x) )

2

1 x

dx

(3)

2

sin ( y)  cos ( y) = 1

mit

implizite Differentiation

Seite 102

acos(x) = arccos(x)

2



1 = 1  tan ( y ( x) )

2

˜ d y(x) dx

Differentialrechnung Ableitungsregeln

y' =

1

1

=

dx

1  tan ( y)

2

1

=

2

1x

dy

d

Differentiation

y ( x) = atan ( x)

dx (4)

y = arccot ( x)

y' =

1

1

dx

1  cot ( y ( x) )

2

atan(x) = arctan(x)

2

x 1

implizite Differentiation

x = cot ( y ( x) )

=

1

y ( x) =



1 = 1  cot ( y ( x) )

2

1

=

2

1x

dy

d

Differentiation

y ( x) = acot ( x)

1

y ( x) =

dx

acot(x) = arccot(x)

2

x 1

Beispiel 3.2.41: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1)

y = arcsin ( 2 ˜ x)

2

y ' ( x) =

1  ( 2 ˜ x) y ' ( x) =

d

asin ( 2 ˜ x)

2

vereinfacht auf

dx

2

1  4˜ x

1 (2)

y = arcsin

y ' ( x) =

x

d

asin

y ' ( x) =

x

2



˜x

1 2

1x

vereinfacht auf

y ' ( x) =

dx

(3)

2

y ' ( x) =

y = arcsin ( x)

2

y ' ( x) = 2 ˜ arcsin ( x) ˜

1 2˜



1x

1 2

1x y ' ( x) =

d

asin ( x)

2

vereinfacht auf

y ' ( x) =

dx

2 ˜ asin ( x) 2

1x

Seite 103

˜ d y(x) dx

Differentialrechnung Ableitungsregeln

(4)

y = x ˜ arcsin ( x)

x

y ' ( x) = 1 ˜ arcsin ( x) 

2

1x

y ' ( x) =

d

( x ˜ asin ( x) )

vereinfacht auf

x

y ' ( x) = asin ( x) 

dx

(5)

2

1x

§x· ¸ © a¹

y = arccos ¨

y ' ( x) = 

1 a

1

˜

§x· ¨ ¸ © a¹

1

y ' ( x) =

d dx

§x· ¸ © a¹

acos ¨

vereinfacht auf

2

1

y ' ( x) = 

2



1

x

2

a

(6)

§

y ' ( x) =

§ 1· ¸ ©x¹

y ' ( x) =

dx

(9)

§ 1· ¸ ©x¹

atan ¨





x

d



dx

x

2

1x

1 2

vereinfacht auf

Seite 104

§x· 1 ¨ ¸ © a¹

2

˜x

a 2

1

˜

x

2

˜e

y ' ( x) = 

2

2

a x

§x· ¸ © a¹

1

x

1

y ' ( x) = atan ¨

vereinfacht auf

y ' ( x) =

acot e



§ 1 · = 1 2 2¸ ©x ¹ x  1

§x·  1 ˜ ¸ © a¹ a

1 e

y ' ( x) =

2

1 x

˜¨

y ' ( x) = 

y ' ( x) = 1 ˜ arctan ¨

§ x atan § x ·  a ˜ ln a2  x2 · ¨ ˜ ¨ ¸ ¸ dx © © a¹ 2 ¹

y = arccot e

2˜ x

˜

x 1



d

§ 1· ¨ ¸ ©x¹

2

vereinfacht auf

§ x ·  a ˜ ln a2  x2 ¸ © a¹ 2

y ' ( x) =

1



y ' ( x) = atan ( x)

1 1

y = x ˜ arctan ¨

2

1x vereinfacht auf

d

x

y ' ( x) = 1 ˜ arctan ( x) 

y = arctan ¨

y ' ( x) =

(8)

¹

§ x ˜ atan ( x)  ln § 1  x2· · © © ¹¹

d dx

(7)



y = x ˜ arctan ( x)  ln © 1  x

1 2 ˜ cosh ( x)

˜ 2˜ x

Differentialrechnung Ableitungsregeln 3.2.10 Ableitung von Hyperbel- und Areafunktionen Ableitungen der Hyperbelfunktionen: Hyperbelsinus - sinus hyperbolicus: f: y = sinh(x) = (ex - e-x )/2, D =  und W = . y ' ( x) =

d

sinh ( x) = cosh ( x), D' =  und W' = [1 , f[.

(3-40)

dx Hyberbelkosinus - cosinus hyperbolicus: f: y = cosh(x) = (ex + e-x )/2, D =  und W = [1 , f[. y ' ( x) =

d

cosh ( x) = sinh ( x) , D' =  und W' = .

(3-41)

dx Hyberbeltangens - tangens hyperbolicus: f: y = tanh(x) = sinh(x)/cosh(x), D = und W = ]-1 ,+1[. y ' ( x) =

d

1

tanh ( x) =

dx

( cosh ( x) )

2

2

= 1  ( tanh ( x) ) , D' = und W' Ž .

(3-42)

Hyberbelkotangens - cotangens hyperbolicus: f: y = coth(x) = cosh(x)/sinh(x), D = \ {0} und W = \ [-1 , +1]. y ' ( x) =

d

coth ( x) = 

dx

1 ( sinh ( x) )

2

2

= 1  ( coth ( x) ) , D' = \ {0}.

(3-43)

 Einige wichtige Beziehungen zwischen Kreis- bzw. Hyperbelfunktionen: cos 2 x + sin2 x = 1

cosh2 x - sinh2 x = 1

(3-44)

sin(2x) =2 sin(x)cos(x)

sinh(2x) = 2 sinh(x) cosh(x)

(3-45)

cos(2x) = cos 2 x - sin2 x

cosh(2x) = cosh2 x + sinh2 x

(3-46)

sin2 x = 1/2 (1 - cos(2x))

sinh2 x = 1/2 (cosh(2x) -1)

(3-47)

cos 2 x = 1/2 (1 + cos(2x))

cosh2 x = 1/2 (cosh(2x) + 1)

(3-48)

1/sin2 x = 1 + cot 2 (x)

1/sinh2 x = - 1 + coth2 (x)

(3-49)

1/cos 2 x = 1 + tan2 (x)

1/cosh2 x = 1 - tanh2 (x)

(3-50)

Seite 105

Differentialrechnung Ableitungsregeln x  3 3  0.01  3

Bereichsvariable 20

5 3

10 sinh( x)

1

tanh( x) 4

cosh( x)

0

2

0

2

coth( x)  4

4

2

 10

1

1 0

2

1

4

3

 20

5 x

x

Abb. 3.2.12

Abb. 3.2.13

Beispiel 3.2.42: Bilden Sie die 1. Ableitung der folgenden Funktionen händisch und mithilfe von Mathcad: (1)

y = sinh ( k ˜ x) y ' ( x) =

d

y ' ( x) = k ˜ cosh ( k ˜ x)

sinh ( k ˜ x)

y ' ( x) = k ˜ cosh ( k ˜ x)

vereinfacht auf

dx (2)



y = sinh k ˜

y ' ( x) =

d



x



sinh k ˜

y ' ( x) =



x



k 2˜



˜ cosh k ˜

x

x

vereinfacht auf

y ' ( x) =



k ˜ cosh k ˜ 2˜

dx

(3)

1

y=

y ' ( x) =

sinh ( x)

y ' ( x) =

d

cosh ( x) sinh ( x)

1

vereinfacht auf

dx sinh ( x)

2

§

x

y=

2

y ' ( x) =



· = cosh ( x) ˜ 1  coth ( x) 2 ¸ 2 © sinh ( x) ¹ cosh ( x)

y ' ( x) = 

2

· § 2 ¨ x  ln ( sinh ( x) )  x ˜ coth ( x) ¸ dx © 2 ¹

y ' ( x) = x 

1 sinh ( x)

vereinfacht auf

ª

˜ cosh ( x)  «1 ˜ coth ( x) 

¬

y ' ( x) = x 

x sinh ( x)

2

Beispiel 3.2.43: Das Weg- Zeit-Gesetz für den zurückgelegten Weg s des freien Falls unter Berücksichtigung des Luftwiderstandes lautet:

s ( t) =

vs

2

g

§

§ g ˜ t ·· ¸¸ © vs ¹ ¹

˜ ln ¨ cosh ¨

©



cosh ( x)  1

 ln ( sinh ( x) )  x ˜ coth ( x)

d

x 1

= cosh ( x) ˜ ¨

2

(4)



x

g ... Erdbeschleunigung vs ... stationäre Geschwindigkeit

Seite 106

§ 1 · ˜ xº ¨ 2¸ » © sinh ( x) ¹ ¼

Differentialrechnung Ableitungsregeln Bestimmen Sie die Geschwindigkeit und Beschleunigung.

§v 2 · g ˜ t ··¸ d d¨ s § § v( t) = s ( t) = ¨ ˜ ln ¨ cosh ¨ ¸¸¸ dt dt © g © © vs ¹ ¹ ¹

vereinfacht auf

v( t) =

d dt

s ( t) =

§g˜ t· vs ˜ sinh ¨ ¸ © vs ¹ §g˜ t· ¸ © vs ¹

cosh ¨

§g˜ t· v ( t) = vs ˜ tanh ¨ ¸ © vs ¹

2 2 § g ˜ t ·· g˜ t· § § d d § ¨ vereinfacht auf s ( t) = v ( t) = ¨ vs ˜ tanh ¨ s ( t) = v ( t) = g ˜ tanh ¨ a ( t) = a ( t) = ¸¸ ¸  2 2 ¨ dt dt © dt dt dt © vs ¹ ¹ © © vs ¹ 2

d

d

d

Ableitungen der Areafunktionen:

§

y ' ( x) =

d

1

arsinh ( x) =

dx

x  1¹

D =  und W = 

, D' = 

(3-51)

2

x 1

§

Areakosinushyperbolicus: f: y = arcosh ( x) = ln © x 

§

y = arcosh ( x) = ln © x 

y ' ( x) = r

·

2

Areasinushyperbolicus: f: y = arsinh ( x) = ln © x 

d

1

arcosh ( x)  r

dx

·

2

x  1¹

·

2

artan ( x) =

dx

x 1

1 2

, D' = \ {-1, 1}

§ x © x

d dx

D = ]-1 , +1[ und W = 

(3-53)

1 x

Areakotangenshyperbolicus: f: y = arcoth ( x) = ln ¨

y ' ( x) =

(3-52)

2

§ 1  x· ¸ © 1  x¹

d

D = [1 , f[ und W =  

D' = \ [-1 , +1]





D = [1 , f[ und W =  ‰ {0} bzw.

x  1¹

Areatangenshyperbolicus: f: y = artanh ( x) = ln ¨

y ' ( x) =

+

arcoth ( x) =



¸



1

D = \ [- 1 , 1[ und W =  \ {0}

D' = \ [-1, 1]

2

1x

Seite 107

(3-54)

· ¸ ¸ ¹

1

Differentialrechnung Ableitungsregeln x  3 3  0.01  3

Bereichsvariable 2

1

5

1

3

1 arsinh( x)

1

artanh( x) arcosh( x)  arcosh( x)

4

2

0

2

4

4

acoth( x)

2

1

1

0

2

0

4

3

2

5 x

x

Abb. 3.2.14

Abb. 3.2.15

Beispiel 3.2.44: Leiten Sie den Zusammenhang zwischen arsinh(x) und ln(x) her. y

y

y = arsinh ( x) y

y

2˜ x= e  e y

e =x

Ÿ

x = sinh ( y) =

/.ey

Ÿ

2

x 1

2˜y

e

e e 2

y

 2˜ x˜ e  1 = 0

Ÿ

ey 2  2 ˜ x ˜ ey  1 = 0

Die negative Lösung entfällt, weil ey für alle y positiv ist!

Logarithmieren auf beiden Seiten liefert schließlich:

§

y = ln © x 

·

2

x  1¹

Beispiel 3.2.45: Leiten Sie die Ableitungsfunktion für die Areasinushyperbolicus-Funktionen her:

§

y = arsinh ( x) = ln © x  (1)

x (2)

§ 2 x  1 ¨©

1

y ' ( x) =

1 dx

˜ ¨1 

Ÿ

y = arsinh ( x) y ' ( x) =

·

2

x  1¹

=

1 cosh ( y)

dy

·¸ 2 2 ˜ x  1 ¸¹ 2˜ x

händisch (kann noch vereinfacht werden)

x = sinh ( y) =

1 1  sinh ( y)

= 2

1

mit

2

2

cosh ( y)  sinh ( y) = 1

2

1x

1

(3)

y ' ( x) =

d dx

arsinh ( x)

vereinfacht auf

2 2

y ' ( x) = x  1

Seite 108

mithilfe von Mathcad

mithilfe der Umkehrfunktion

Differentialrechnung Ableitungsregeln Beispiel 3.2.46: Bilden Sie die 1. Ableitung von folgenden Funktionen händisch und mithilfe von Mathcad: (1)

§x· ¸ © 3¹

y = 3 ˜ arsinh ¨

y ' ( x) =

(2)

(3)

§ x ·· § ¨ 3 ˜ arsinh ¨ ¸ ¸ dx © © 3 ¹¹ d



vereinfacht auf

· 2¸ ©1  x ¹

y ' ( x) =





§

d dx

1

§

y ' ( x) =

· 2¸ ©1  x ¹

arcosh ¨

1

3

y ' ( x) =

2

§x·  ¸ © a¹

y ' ( x) = 1 ˜ artanh ¨



§ §x· a 2 2 · ¨ x ˜ artanh ¨ ¸  ˜ ln a  x ¸ dx © © a¹ 2 ¹

y = arcosh ¨

3

2

x 9

§ x ·  a ˜ ln a2  x2 ¸ © a¹ 2

d

1

˜

§x· 1¨ ¸ © 3¹

y = x ˜ artanh ¨

y ' ( x) =

1

y ' ( x) = 3 ˜

vereinfacht auf

ª

1

§x· 1 ¨ ¸ © a¹

˜ «

vereinfacht auf

a



a 2

˜

1 2

2

˜ ( 2 ˜ x)

a x

§x· ¸ © a¹

2 ˜ x



x

y ' ( x) = artanh ¨

º= » 2 2 2 « § 1 ·  1 ¬ 1  x »¼ ¨ 2¸ ©1  x ¹ 1

2

˜

2˜ x



1  x2  1  x2 2

2˜ x

y ' ( x) =

x2  1 2 ˜

4

2 2 x2  1

2



x ˜ x 2

Beispiel 3.2.47: Ein Seil ist zwischen den Punkten A und B aufgehängt, und die Mittellinie hat die Gleichung y = a cosh(x/a) (Kettenlinie). Die Spannweite beträgt 2 L = 200 m. Im Punkt B hat das Seil eine Steigung k = 1. Bestimmen Sie den Durchhang f, und vergleichen Sie den Durchhang von einer Näherungsparabel y = b x2 + a.

Abb. 3.2.16

Seite 109

Differentialrechnung Ableitungsregeln §x· ¸ © a¹

§x· ¸ © a¹

y = a ˜ cosh ¨

y ' ( x) = sinh ¨

y ' ( L) = k

y ' ( L) = sinh ¨

Funktion und deren Ableitung

§ L· = k ¸ © a¹

§ L· = k ¸ © a¹

Ÿ

sinh ¨

L a

Ableitung an der Stelle L

§

2

= arsinh ( k ) = ln © k 

·

k  1¹

Ÿ

a=

L

§

ln © k 

2

·

k  1¹

Für den Punkt B(L | a+f) gilt:

§ L· ¸ © a¹

Ÿ

a  f = a ˜ cosh ¨

2

§ L ·  1· ¸ ¸ © a¹ ¹

§ ©

f = a ˜ ¨ cosh ¨

2

Mit cosh ( x)  sinh ( x) = 1 folgt: cosh ( x) =

Durchhang der Kettenlinie

§ L· sinh ( x)  1 bzw. cosh ¨ ¸ = © a¹ 2

2

§ L· sinh ¨ ¸  1 = © a¹

2

k 1

Damit lässt sich der Durchhang wie folgt berechnen:

§ L ·  1· = a ˜ § k2  1  1· = L ˜ ¸ ¸ © ¹ © a¹ ¹

§ ©

f = a ˜ ¨ cosh ¨

2

k  1 1

§ ln © k 

· k  1¹

Durchhang der Kettenlinie

2

Näherungsparabel: 2

y= b˜ x  a

y ' ( x) = 2 ˜ b ˜ x

Funktion und deren Ableitung

y ' ( L) = k

y ' ( L) = 2 ˜ b ˜ L = k

Ableitung an der Stelle L

Ÿ

2˜ b˜ L = k

b=

k

Koeffizient b

2˜ L

Für den Punkt B(L | a+f) gilt:

Ÿ

2

a  f = b˜ L  a 2

f = b˜ L =

k

2

2˜ L

˜L =

2

f = b˜ L

k˜L

Durchhang der Parabel

2

2

f K ( k L)  L ˜

f P ( k L) 

k  1 1

§ ln © k 

k˜L 2

· k  1¹ 2

f K ( 1 100 ˜ m)

46.996 m

Durchhang der Kettenlinie

f P ( 1 100 ˜ m)

50 m

Durchhang der Parabel

Seite 110

Differentialrechnung Ableitungsregeln 3.2.11 Höhere Ableitungen Gegeben sei eine beliebig oft differenzierbare Funktion f: y = f(x). Mit f lassen sich dann rekursiv folgende Ableitungen bilden:

y ' ( x) = f ' ( x) =

d

2

y , y '' ( x) =

dx

d

2

3

y , y ''' ( x) =

dx

d

3

( 4)

y, y

dx

4

=

d

( n)

4

y , ... , y

dx

n

=

d

n

y , ... (3-55)

dx

Beispiel 3.2.48: Bilden Sie die ersten 6 Ableitungen der folgenden Funktion: 5

2

y ( x) = x  3 ˜ x  5 ˜ x  6

durch Differentiation, ergibt

d

4

y ( x) = 5 ˜ x  6 ˜ x  5

dx 4

y ' ( x) = 5 ˜ x  6 ˜ x  5 d dx

5 ˜ x4  6 ˜ x  5 3

y '' ( x) = 20 ˜ x  6 d dx

20 ˜ x3  6 2

erste Ableitung

vereinfacht auf

zweite Ableitung

vereinfacht auf

y ''' ( x) = 60 ˜ x

dritte Ableitung

60 ˜ x2

vereinfacht auf

d dx 4

y = 120 ˜ x d

( 120 ˜ x)

3

20 ˜ x  6

2

60 ˜ x

120 ˜ x

vierte Ableitung

vereinfacht auf

120

dx 5

y = 120 d

120

fünfte Ableitung

vereinfacht auf

dx 6

y =0

sechste Ableitung

Seite 111

0

Differentialrechnung Ableitungsregeln Beispiel 3.2.49: Bilden Sie die ersten 3 Ableitungen der folgenden Funktion: d

x

y ( x) = x ˜ e

d

y ( x) =

dx x

x

x

x

x

y ( x) = e ˜ ( x  1)

dx

x

x

x

zweite Ableitung

x

y ''' ( x) = e ˜ ( 2  x)  e = e ˜ ( 3  x)

dritte Ableitung

x x

10

d

erste Ableitung

y '' ( x) = e ˜ ( 1  x)  e = e ˜ ( 2  x)

d

vereinfacht auf

x

y ' ( x) = e  e ˜ x = e ˜ ( 1  x)

10

dx

x ˜ ex

Redefinition

x ˜ ex o 10 ˜ ex  x ˜ ex

zehnte Ableitung

dx

Beweis für die n-te Ableitung durch vollständige Induktion: x

x

x

A(1):

y ' ( x) = e  e ˜ x = e ˜ ( 1  x)

A(2):

y '' ( x) = e ˜ ( 1  x)  e = e ˜ ( 2  x)

x

x

x

Annahme ist auch für A(n) gültig: Daraus folgt, dass auch A(n+1) gültig sein muss: n 1

A(n+1):

y

x

( x) = e ˜ ( n  1  x)

Beispiel 3.2.50: Bilden Sie die ersten n-Ableitungen der folgenden Funktion: y ( x) = sin ( x)

§ ©

n

y = sin ¨ x  n ˜

y ' ( x) = cos ( x) π·

¸



y '' ( x) = sin ( x)

y ''' ( x) = cos ( x)

4

y = sin ( x)

n-te Ableitung der Funktion y = sin(x) mit n ²

Beispiel 3.2.51: Zeigen Sie, dass y = sinh ( x) der folgenden Differentialgleichung genügt. 2

d

2

y y=0

homogene lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

dx

y ( x) = sinh ( x)

d dx

sinh ( x)  sinh ( x) = 0

sinh ( x) o cosh ( x)

2

d

2

sinh ( x) o sinh ( x)

dx

y = sinh(x) ist Lösung der gegebenen Differentialgleichung

Seite 112

Differentialrechnung Ableitungsregeln Beispiel 3.2.52: Höhere Ableitungen mit dem Symboloperatoren: x x

Redefinition

f ( x)  2 ˜ x  3  sin ( x)

3

die zu differenzierende Funktion

Erste Ableitung: d

2

f ( x) o 3 ˜ cos ( x) ˜ sin ( x)  2

dx f x ( x) 

d

2

f x ( x) o 3 ˜ cos ( x) ˜ sin ( x)  2

f ( x)

dx

Ableitung n-ter Ordnung: n 5 n

d

2

n

f ( x) o 183 ˜ cos ( x) ˜ sin ( x)  60 ˜ cos ( x)

3

dx

n

d

f n ( x) 

n

2

f n ( x) o 183 ˜ cos ( x) ˜ sin ( x)  60 ˜ cos ( x)

f ( x)

dx

3

Beispiel 3.2.53: Gegeben ist eine Parabel y = a x2 + b x + c. Bestimmen Sie den Scheitel der Parabel, wenn f(2) = 3, f '(2) =2 und die zweite Ableitung der Parabel -1 ist. 2

f ( x) = a ˜ x  b ˜ x  c

f ' ( x) = 2 ˜ a ˜ x  b

f '' ( x) = 2 ˜ a

Funktion und Ableitungen

Durch Einsetzen der Werte ergibt sich ein lineares Gleichungssystem: a 1

b 1

c 1

Startwerte (Schätzwerte)

Vorgabe 2

a˜ 2  b˜ 2  c = 3

2˜ a˜ 2  b = 2

a ¨§ ·¸ ¨ b ¸  Suchen ( a b c) ¨c ¸ © ¹

§¨ a ¸· ¨b ¸ ¨c ¸ © ¹

2

f ( x)  a ˜ x  b ˜ x  c 6

2 ˜ a = 1

§¨ 0.5 ¸· ¨ 4 ¸ ¨ 3 ¸ © ¹

x  0 0.01  8 4

Funktionsgleichung und Bereichsvariable

f ' ( x) = 1 ˜ x  4 = 0

5

3 f ( x)

f ( 4) 0

1

2

3

4

3

5

6

7

5

8

Abb. 3.2.17 x

Seite 113

waagrechte Tangente im Punkt S(4|5)

Differentialrechnung Ableitungsregeln 3.2.12 Ableitungen von Funktionen in Parameterdarstellung Neben der expliziten Darstellung einer Funktion f: y = f(x) wird auch häufig die Parameterdarstellung verwendet: f: DŽ  o W Ž2

(3-56)

t |o f(t) = (x(t), y(t)) x = x(t) und y = y(t) heißen Parametergleichungen und t heißt Parameter. Häufig werden die Buchstaben t, M, O, D, T usw. als Parameter verwendet. Für jede Kurve gibt es unter bestimmten Voraussetzungen unendlich viele Parameterdarstellungen. Wenn eine Funktion durch eine Gleichung r = r(M) (Polarkoordinatendarstellung; siehe nächsten Abschnitt) gegeben ist, so erhalten wir durch x = r(M) cos(M) und y = r(M) sin(M) eine beliebige Parameterdarstellung. Ableitungen von Funktionen in Parameterdarstellung: Mit xt =

d dt

d

x , yt =

dt

d

y ' ( x) = f ' ( x) =

y und y' =

y=

dx y'=

yt

d

y erhalten wir die erste Ableitung durch:

dx d dt



d

t =

dx

yt xt

mit xt z 0

xt

(3-57)

Die zweite Ableitung ergibt sich dann aus: ytt ˜ xt  xtt ˜ yt 1 § d · § d · d yt d ˜ t = ˜ ¨ y' ¸ ˜ ¨ t ¸ = 2 xt © dt ¹ © dx ¹ dt xt dx xt

2

y '' ( x) =

d

2

y=

dx

2

y '' =

d

2

dx

y=

ytt ˜ xt  xtt ˜ yt xt

3

=

1 xt

3

˜

§ xt yt · ¨ ¸ ¨ xtt ytt ¸ © ¹

mit xt z 0

(3-58)

Beispiel 3.2.54: Geben Sie für einen Kreis in Hauptlage eine Parameterdarstellung an. Leiten Sie aus der Parameterform die implizite Form der Kreisgleichung her. Bestimmen Sie die waagrechten und senkrechten Tangenten am Kreis. r 1

Kreisradius

x ( φ)  r ˜ cos ( φ) y ( φ)  r ˜ sin ( φ) 2

2

2

2

2

2

x = r ˜ cos ( φ) y = r ˜ sin ( φ)

Parameterdarstellung des Kreises in Hauptlage mit M [0, 2 S[

Durch Addition folgt:

2

2

2



2

x  y = r ˜ cos ( φ)  sin ( φ)

1

Seite 114

2



Differentialrechnung Ableitungsregeln d dφ

d

x = xφ = r ˜ sin ( φ)



y = yφ = r ˜ cos ( φ) Ableitungen

xφ ( φ)  r ˜ sin ( φ)

y'=

yφ xφ

=

yφ ( φ)  r ˜ cos ( φ)

r ˜ cos ( φ)

φz0

r ˜ sin ( φ)

und

φzπ φ  0 0.01  2 ˜ π

Waagrechte Tangenten: y' = 

r ˜ cos ( φ) r ˜ sin ( φ)

r ˜ cos ( φ) = 0

1

=0 hat als Lösung(en)

1 2

0.5

˜π yφ( φ)

0

Numerische Lösung:

π

3˜π

2

2

2

4

6

8

6

8

 0.5

ORIGIN  1 TOL  10

Bereichsvariable

1

 15

φ

wurzel yφ φ2 φ2

φ1  2

φ1  wurzel yφ φ1 φ1

φ2  4

φ2 

Abb. 3.2.18

i  1  2



yφ φi

φi ˜ Grad

90 270

0 0

L = {(0, 1); (0, -1)} x φi



y φi



0 0

1 -1

Punkte mit Tangenten parallel zur Abszisse

1

Senkrechte Tangenten: 1 y'

=

r ˜ sin ( φ) r ˜ cos ( φ)

r ˜ sin ( φ) = 0

=0

φz

π 2

hat als Lösung(en)

und φ z

3˜ π 2

0.5 xφ( φ)

0

2

4

 0.5

0

1

Numerische Lösung: ORIGIN  1 TOL  10

π

φ

 15

Abb. 3.2.19

wurzel xφ φ4 φ4

φ3  0

φ3  wurzel xφ φ3 φ3

φ4  3

φ4 

Seite 115

Differentialrechnung Ableitungsregeln i  3  4



xφ φi

φi ˜ Grad

0 180

0 0

x φi



y φi



1 -1

0 0

L = {(1, 0); (-1, 0)} Punkte mit Tangenten parallel zur Ordinate

2

1

1

Parameterdarstellung eines Kreises in allgemeiner Lage mit M(m | n):

1

1

x ( φ) = m  r ˜ cos ( φ) y( φ)

2

1

0

1

2

y ( φ) = n  r ˜ sin ( φ)

1

1 2

Abb. 3.2.20

x( φ)

Beispiel 3.2.55: Leiten Sie aus der gegebenen Parameterform die explizite Form der Funktionsgleichung her. Bestimmen Sie die erste und zweite Ableitung der Funktion. x( t) 

t

y( t)  4  t

2

2

Parameterdarstellung einer Funktion mit t  2

t = 2˜ x

2

y = 4  ( 2 ˜ x) = 4  4 ˜ x

t aus der ersten Gleichung in die zweite Gleichung eingesetzt, liefert die explizite Funktionsgleichung.

y ( x)  4  4 ˜ x

2

explizite Funktionsgleichung

t  3 3  0.01  3

x1  3 3  0.01  3

10 2

1

Bereichsvariable

10 0

1

4

2

 10 y( t)

2

0  10

y( x1 )  20

 20

 30

 30

 40

 40

x( t)

x1

Abb. 3.2.21

Abb. 3.2.22

Seite 116

2

4

Differentialrechnung Ableitungsregeln 1 xt = 2

yt = 2 ˜ t

xtt = 0

ytt = 2

y'=

Ableitungen der Parametergleichungen

yt

=

xt

2 ˜ t 1

= 4 ˜ t

y '' =

ytt ˜ xt  xtt ˜ yt xt

2

3

2 ˜ =

§ 1· ¨ ¸ © 2¹

1 2 3

= 8

Beispiel 3.2.56: Leiten Sie aus der gegebenen Parameterform die explizite Form der Funktionsgleichung her. Bestimmen Sie die erste und zweite Ableitung der Funktion. x1 ( t )  3 ˜ ln ( t )

y1 ( t ) 

§ 2 © 3

˜ ¨t 

1· t

¸ ¹

Parameterdarstellung einer Funktion mit t +

Elimination des Parameters t: x

x 3

= ln ( t )

Ÿ

t=e

3

Ÿ

x· § x  ¨ 3 §x· 3 3¸ y = ˜ ©e  e ¹ = 3 ˜ cosh ¨ ¸ 2 © 3¹

§x· ¸ © 3¹

explizite Darstellung (Kettenlinie)

y ( x)  3 ˜ cosh ¨

explizite Funktionsgleichung

t  1 1  0.01  3

x  3 3  0.01  3

Bereichsvariable

4 4

3

y1( t)

y( x) 2

2

1 0

1

2

3

4

4

2

x1( t)

x

Abb. 3.2.23

3

ytt = 3 t 3

y'=

xt

Ableitungen

3

xtt = 2 t

yt

Abb. 3.2.24

3 § 1· yt = ˜ ¨ 1  2¸ 2 t ¹ ©

3 xt = t

2 =

§



©

t

˜ ¨1  3



¹

0

vereinfacht auf

y'=

yt xt

2

=

t

Seite 117

t 1 2˜ t

2

4

Differentialrechnung Ableitungsregeln 3 y '' =

ytt ˜ xt  xtt ˜ yt xt

3

=

t

3

˜

3 t



1 ·º ª3 § ˜ « ˜ ¨1  2 2 ¸» 2 t ¬ t ¹¼ © 3

§ 3· ¨ ¸ ©t¹

vereinfacht auf

3

y '' =

ytt ˜ xt  xtt ˜ yt xt

3

2

=

t 1 6˜ t

Beispiel 3.2.57: Leiten Sie aus der gegebenen Parameterform die explizite Form der Funktionsgleichung her. Bestimmen Sie die erste und zweite Ableitung der Funktion. x ( φ)  3 ˜ cos ( φ) 2

x

2

= cos ( φ)

Parameterdarstellung einer Ellipse mit M [0, 2S[

y ( φ)  2 ˜ sin ( φ)

2

3

Umgeformte Parametergleichungen 2

y

2

= sin ( φ)

2

2

Durch Addition der beiden Gleichungen erhalten wir die implizite Darstellung der Ellipse in Hauptlage: 2

x

2

2



3

y

2

implizite Darstellung der Ellipse

=1

2

φ  4 4  0.01  4

Bereichsvariable

2 1 y( φ)

4

2

0

2

4

1 2 x( φ)

Abb. 3.2.25

xφ = 3 ˜ sin ( φ)

yφ = 2 ˜ cos ( φ)

xφφ = 3 ˜ cos ( φ)

yφφ = 2 ˜ sin ( φ)

y'=

yφ xφ

=

2 ˜ cos ( φ) 3 ˜ sin ( φ)

=

2 3

˜ cot ( φ)

Ableitungen der Parametergleichungen

erste Ableitung

Seite 118

Differentialrechnung Ableitungsregeln

yφφ ˜ xφ  xφφ ˜ yφ

y '' =

3

2 ˜ sin ( φ) ˜ ( 3 ˜ sin ( φ) )  ( 3 ˜ cos ( φ) ) ˜ ( 2 ˜ cos ( φ) )

=

( 3 ˜ sin ( φ) )



yφφ ˜ xφ  xφφ ˜ yφ

y '' =

3

2

=

9 ˜ sin ( φ)



3

vereinfacht auf

zweite Ableitung

3

Beispiel 3.2.58: Geben Sie für eine archimedische Spirale in Polarkoordinatenform r = r(M) = M eine Parameterdarstellung an und bestimmen Sie die waagrechten und senkrechten Tangenten an der Spirale. x ( φ)  φ ˜ cos ( φ)

y ( φ)  φ ˜ sin ( φ)

Parametergleichungen für die archimedische Spirale

xφ ( φ)  cos ( φ)  φ ˜ sin ( φ)

yφ ( φ)  sin ( φ)  φ ˜ cos ( φ)

Ableitungen der Parametergleichungen

Tangenten parallel zur Abszisse: yφ ( φ)

y' =

xφ ( φ)

=

sin ( φ)  φ ˜ cos ( φ) cos ( φ)  φ ˜ sin ( φ)

Ableitung in Parameterform

=0

sin ( φ)  φ ˜ cos ( φ) = 0

hat als Lösung(en)

ORIGIN  1

ORIGIN festlegen

φ1  0

erste Lösung

0

Die weiteren Lösungen numerisch ermittelt:

wurzel yφ φ3 φ3

φ2  2

φ2  wurzel yφ φ2 φ2

φ3  5

φ3 

i  1  3

Bereichsvariable



yφ φi

φi 0 2.029

0 0

4.913

0

t  0 0.02  2 ˜ π

Bereichsvariable

6 5 4 3 2 yφ( t) 1 10 2 3 4

2

4

6

t





x φi

y φi

0 -0.897

0 1.82

0.98

-4.814

Abb. 3.2.26 L = {(0, 0); (- 0.897, 1.82); (0.98, - 4.814)} Punkte mit Tangenten parallel zur Abszisse

Tangenten parallel zur Ordinate: 1 y'

=

cos ( φ)  φ ˜ sin ( φ) sin ( φ)  φ ˜ cos ( φ)

=0

Seite 119

Differentialrechnung Ableitungsregeln Die weiteren Lösungen numerisch ermittelt:









φ4  0.5

φ4  wurzel xφ φ4 φ4

φ5  3.5

φ5  wurzel xφ φ5 φ5

i  4  5

Bereichsvariable

φi

xφ φi

6 5 4 3 xφ( t) 2 1 10 2 3



0.86 3.426

2

4

6

t

0 0

Abb. 3.2.27





x φi

y φi

0.561 -3.288

φ  0 0.01  2 ˜ π y' ( φ) 

L = {(0.561, 0.652); (- 3.288, - 0.96)}

0.652 -0.96

Punkte mit Tangenten parallel zur Ordinate

i  1  5

t 1  5  5

yφ ( φ)

t 2  0  6

Bereichsvariablen

Ableitung in Parameterform

xφ ( φ)

d ( φ)  y ( φ)  y' ( φ) ˜ x ( φ)

Achsenabschnitt (y = k x + d )

T ( t φ)  y' ( φ) ˜ t  d ( φ)

Tangentengleichung für die Spiralle

TN ( t φ)  y ( t)

Normale archimedische Spiralle 2

y( φ)



y φi

T t1 φ 2 T t1 φ 3 TN t2 φ 4 TN t2 φ 5 T t1 φ 1

5

0

5

2

10

Abb. 3.2.28

4

6





x( φ) x φ i t1 t1 t1 x φ 4 x φ 5

Beispiel 3.2.59: Eine gespitzte Zykloide ist durch folgende Parameterdarstellung gegeben: x(t) = r (t - sin(t)), y(t) = r (1 - cos(t)). Ermitteln Sie, falls vorhanden, die waagrechten Tangenten für t [0, 2S[. Zeigen Sie, dass die Zykloide für t = 0 eine senkrechte Tangente besitzt. r 2

gewählter Abrollkreisradius

Seite 120

Differentialrechnung Ableitungsregeln x ( t)  r ˜ ( t  sin ( t) )

y ( t)  r ˜ ( 1  cos ( t ) )

Parameterdarstellung einer Funktion mit t 

xt = r ˜ ( 1  cos ( t ) )

yt = r ˜ sin ( t )

Ableitungen der Parametergleichungen

y'=

yt xt

=

r ˜ sin ( t )

=0

r ˜ ( 1  cos ( t ) )

Ableitung in Parameterform

t1  π

sin ( t ) = 0



eine Lösung derGleichung



x t1 o 2 ˜ π

y t1 o 4

x- und y-Werte

t  2 2  0.01  8

Bereichsvariable



5 4 3 2 1

y( t)

5

2˜π˜r

x t1

0

5



y t1

10

15

x( t)

Abb. 3.2.29 Für t = 0 kann die Ableitungsformel nicht angewendet werden. sin ( t )

lim

t o 0 1  cos ( t )

lim to0

=

0 0

§ ©

sin ¨ 2 ˜

sin ( t )

=

 1  cos ( t )

§ t · ˜ cos § t · ¸ ¨ ¸ © 2¹ © 2¹ §t

2 ˜ sin ¨

· ¸

2

© 2¹

§ t · ˜ cos § t · ¸ ¨ ¸ © 2¹ © 2¹

2 ˜ sin ¨

lim  § t· to0 1  cos ¨ 2 ˜ ¸ © 2¹

2 ˜ sin ¨ lim  to0

· ¸ 2¹ t

=

lim  to0

§

©

§t· ¸ 2¹ © = lim =∞  t· § to0 sin ¨ ¸ © 2¹

2 2 §t· § t · ¸·  sin ¸ ¨ ¸ © 2¹ © 2¹ ¹

1  ¨ cos ¨

cos ¨

Die Tangente verläuft senkrecht!

Beispiel 3.2.60: Eine Kugel wird in der Höhe h = 10 m über dem Boden waagrecht mit konstanter Geschwindigkeit v0 = 10 m/s (ohne Luftwiderstand) in Bewegung gesetzt. Mit welcher Geschwindigkeit trifft sie am Boden auf? Wie groß ist der Winkel unter dem die Kugel am Boden auftrifft? Welche Beschleunigung hat die Kugel?

§ v0 ˜ t ¸· § x( t) · ¨ r ( t) = ¨ ¸=¨ ¸ g © y( t) ¹ ¨ h  ˜ t2 ¸ 2 © ¹

Ortsvektor

§d · ¨ x( t) ¸ d ¨ dt ¸ = § v0 · = r ( t) = v ( t) = ¨d ¸ ¨g ˜ t ¸ ¨ v ( t ) ¸ dt ¹ © y ¹ ¨ y( t) ¸ © t d © ¹

Geschwindigkeitsvektor

§¨ vx( t) ¸·

Seite 121

Differentialrechnung Ableitungsregeln 2

a ( t) =

d

2

2

v0  g ˜ t

s ( t) =

dt

Betrag des Geschwindigkeitsvektors

2

§ 2 · §d · ¨ d x ( t) ¸ ¨ vx ( t) ¸ ¨ 2 ¸ §0 · d ¨ dt ¸ = ¨ dt = v ( t) = ¸=¨ ¸ ¨d ¸ ¨ 2 dt ©g ¹ ¨ vy ( t) ¸ ¨ d y ( t) ¸¸ © dt ¹ 2 © dt ¹

§¨ ax ( t) ·¸ ¨ a ( t) ¸ © y ¹

2

2

ax  ay =

a= a =

t=

2

vx  vy =

v= v =

d dt

x

2

v( t) =

d

dt

2

Betrag des Beschleunigungsvektors

s ( t) = g

y=h

v0

g 2

2

x

˜

parameterfreie Bahnkurve

2

v0

m v0  10 s

Anfangsgeschwindigkeit

h  10 ˜ m

Anfangshöhe

x ( t)  v0 ˜ t

y( t)  h 

vx ( t)  v0

vy ( t)  g ˜ t 2

v( t) 

vx ( t)  vy ( t)

Beschleunigungsvektor

g 2

˜t

2

Parametergleichungen für die Bahnkurve Parametergleichungen für die Geschwindigkeitskomponenten

2

Geschwindigkeitsfunktion

y = 0 am Auftreffpunkt: h

g 2

Ÿ

2

˜t =0



v t0

17.209

t0 

2˜ h

t0

g

1.428 s

m

Auftreffzeit am Boden

Auftreffgeschwindigkeit am Boden

s

Auftreffwinkel: y'=

yt xt

=

tan ( α) =

g ˜ t v0 g ˜ t 0 v0



tan ( α) = y ' t0

§ g ˜ t0 ¸· ¨© v0 ¸¹

α  atan ¨

α0  α  180 ˜ Grad

α0

125.528 ˜ Grad

φ0  180 ˜ Grad  α0

φ0

54.472 ˜ Grad

t  0 ˜ s 0.01 ˜ s  1.5 ˜ s

Bereichsvariable

Seite 122

α

54.472 ˜ Grad

Differentialrechnung Ableitungsregeln





xT ( λ)  x t0  λ ˜ cos α0

Parameterdarstellung der Tangente im Punkt P(x(t 0 )|0)



yT ( λ)  λ ˜ sin α0

λ  1 ˜ m 1 ˜ m  0.1 ˜ m  10m 11 10 9 8 y( t) 7 m 6 5 yT( λ) 4 3 m 2 1

Bereichsvariable

t0

1.428 s



W  x t0

α0

W

φ0

Wurfweite

14.281 m

 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Abb. 3.2.30

x( t) xT( λ)  m m

3.2.13 Ableitungen von Funktionen in Polarkoordinatendarstellung Die Lage eines Punktes in der Ebene kann durch kartesische Koordinaten P(x|y) oder durch die Angabe des Winkels M und der Entfernung r vom Ursprung, also durch P(M| r), festgelegt werden. Ein funktioneller Zusammenhang zwischen r und M ist durch eine Polarkoordinatendarstellung gegeben: f: D Ž o W Ž M

(3-59)

|o r = f(M)

Umrechnung von kartesischen Koordinaten in Polarkoordinaten und umgekehrt: 2

2

2

x y =r

2

2

x y y tan ( φ) = x r=

x = r ˜ cos ( φ)

(3-61)

§ y· ¸ © x¹

φ = arctan ¨

y = r ˜ sin ( φ)

(3-60)

(3-62)

Ableitungen von Funktionen in Polarkoordinatendarstellung: r ' ( φ) =

d

r ( φ) =



d

f ( φ)

(3-63)



r' bedeutet nicht die Steigung der Tangente! tan ( Ψ) =

r ( φ) r ' ( φ)

= r ( φ) ˜

d

φ ( r)

tan ( α) =

dr

r ' ( φ) ˜ tan ( φ)  r ( φ) r ' ( φ)  r ( φ) ˜ tan ( φ)

(3-64)

Der Winkel < zwischen Leitstrahl und Tangente spielt bei Polarkoordinaten eine wesentliche Rolle, ähnlich der der Steigung einer Tangente bei kartesischen Koordinaten (siehe Abb. 3.2.31). tan(\) wird auch polare Steigung genannt.

Seite 123

Differentialrechnung Ableitungsregeln

Abb. 3.2.31

Beispiel 3.2.61: Gegeben ist ein Kreis in Hauptlage. Geben Sie die Kreisgleichung in Polarkoordinaten an. 2

2

2

x y =r y=

2

implizite Form der Kreisgleichung (Relation)

2

r x 2

explizite Form der Kreisgleichung 2

y= r  x

x = ρ ˜ cos ( φ) Parametergleichungen des Kreises y = ρ ˜ sin ( φ) Setzen wir die Parametergleichungen in die implizite Form ein, so erhalten wir die Polarkoordinatenform: 2

2

2

2

2

ρ ˜ cos ( φ)  ρ ˜ sin ( φ) = r

daraus folgt:

ρ = r = konstant

φ  0 0.01  2 ˜ π

Bereichsvariable

r ( φ)  3

Kreisgleichung in Polarkoordinatenform

120

60

3.002

140

40

3

160 r( φ)

100 80

20

2.998

180

0

200

Abb. 3.2.32

340

220

320 240

260 280

300

φ

Seite 124

Differentialrechnung Ableitungsregeln Beispiel 3.2.62 Gegeben ist eine Lemniskate in Polarkoordinaten r2 = a2 cos(2 M). Geben Sie die Gleichung in kartesischen Koordinaten an. 2

2

r = a ˜ cos ( 2 ˜ φ)

Gleichung der Lemniskate

Es gelten folgende Beziehungen: 2

2

2

2

r =x y

2

2

2 2 ˜ cos ( φ)  sin ( φ)

2

x y =a

x2  y2

2

2

cos ( 2 ˜ φ) = cos ( φ)  sin ( φ)

2

2

2

=a ˜ x y

x r

x

=

2

sin ( φ) = 2

x y

2 · § x2 y ¨ ¸ x y =a ˜  ¨ x2  y2 x2  y2 ¸ © ¹

Ÿ



cos ( φ) =

2

2

2

y r

y

=

2

2

x y

Ÿ

implizite Form der Gleichung für die Lemniskate

φ  0 0.01  2 ˜ π

Bereichsvariable

r ( φ)  3 ˜

Lemniskate in Polarkoordinatenform (D = [0, 2 S[

cos ( 2 ˜ φ)

100 120

80 60

4

140

40

3 2

160

20

1 r( φ)

180

0

200

Abb. 3.2.33

340

220

320 240

300 260

280 φ

Beispiel 3.2.63: Stellen Sie die archimedische Spirale r = a M grafisch dar und bestimmen Sie den Winkel zwischen Tangente und Leitstrahl. Geben Sie eine Parameterdarstellung für die Spirale an. Die archimedische Spirale ist dadurch gekennzeichnet, dass der Radius linear mit dem Winkel zunimmt, d. h. es entstehen Spiralen, deren Abstände konstant sind. Anwendungen finden sich z.B. bei einer Laufkatze eines Drehkrans (die Laufkatze fährt mit konstanter Geschwindigkeit nach innen oder außen und gleichzeitig dreht sich der Arm des Drehkrans) oder bei einer spiralförmigen Speicherung von Daten auf Langspielplatten oder CDs. r ( φ) = a ˜ φ

d

Funktion

r ( φ) = a

dφ r ( φ)

tan ( Ψ) = d

r ( φ)

=

a˜ φ a



tan ( Ψ) = φ

Ÿ



Seite 125

Ψ = arctan ( φ)

Ableitungsfunktion

Differentialrechnung Ableitungsregeln φ  0 0.001  4 ˜ π

Bereichsvariable

a 1

Konstante

r ( φ)  a ˜ φ

archimedische Spirale in Polarkoordinatenform 90 120

60 Eine Parameterdarstellung für die archimedische Spirale:

10 150

30

x = a ˜ φ ˜ cos ( φ)

5 r( φ)

180

0

y = a ˜ φ ˜ sin ( φ)

0

210

330 240

300

Abb. 3.2.34

270 φ

Beispiel 3.2.64: Stellen Sie die logarithmische Spirale r = a eM grafisch dar und bestimmen Sie den Winkel zwischen Tangente und Leitstrahl. Geben Sie eine Parameterdarstellung für die Spirale an. Bei einer logarithmischen Spirale ist die polare Steigung tan(\) stets konstant! Logarithmische Spiralen finden wir z. B. bei Radialturbinenschaufeln, Fräserformen, winkelkonstante Spirallantennen u. a. m. φ

r ( φ) = a ˜ e

d

=

r ( φ)

a˜ e

φ

φ

r ( φ) = a ˜ e

Ableitungsfunktion



φ

r ( φ)

tan ( Ψ) =

d

Funktion = 1 = konstant

hat als Lösung(en)

tan ( Ψ) = 1

1 4

a˜ e

˜π

Die logarithmische Spirale hat überall den gleichen Schnittwinkel!

dφ φ  0 0.01  2 ˜ π

Bereichsvariable

a  0.1

Konstante φ

r ( φ)  a ˜ e

Kreisgleichung in Polarkoordinatenform 90 120

60 40

150

Eine Parameterdarstellung für die logarithmische Spirale: 30

φ

x = a ˜ e ˜ cos ( φ)

20 r( φ)

180

0

210

φ

y = a ˜ e ˜ sin ( φ)

330 240

300 270

Abb. 3.2.35

φ

Seite 126

also

Ψ=

π 4

Differentialrechnung Ableitungsregeln

Beispiel 3.2.65: Stellen Sie die hyperbolische Spirale r = a /M grafisch dar und bestimmen Sie den Winkel zwischen Tangente und Leitstrahl. Geben Sie eine Parameterdarstellung für die Spirale an. r ( φ) =

a

d

Funktion

φ

r ( φ) =



tan ( Ψ) = d

=

r ( φ)

φ a

= φ

Ÿ

tan ( Ψ) = φ

2

Ableitungsfunktion

φ

a

r ( φ)

a

Ψ = arctan ( φ)

2



φ

φ  0.5 0.5  0.001  π

Bereichsvariable

a 1 r ( φ) 

a

hyperbolische Spirale in Polarkoordinatenform

φ Eine Parameterdarstellung für die hyperbolische Spirale:

90 120

60

150

r( φ)

30

180

x= 0

0.5 1 1.5 2 210

y=

a φ a φ

˜ cos ( φ) ˜ sin ( φ)

330 240

300 270

Abb. 3.2.36

φ

Beispiel 3.2.66: Stellen Sie die Kardioide (Herzkurve) r = 2 a (1 + cos(M grafisch dar und bestimmen Sie den Winkel zwischen Tangente und Leitstrahl. r ( φ) = 2 ˜ a ˜ ( 1  cos ( φ) )

d

Funktion

r ( φ) = 2 ˜ a ˜ sin ( φ)

Ableitungsfunktion



r ( φ)

tan ( Ψ) = d

=

r ( φ)

2 ˜ a ˜ ( 1  cos ( φ) ) 2 ˜ a ˜ sin ( φ)



§ φ· ¸ © 2¹

2

2 ˜ cos ¨ =

§ φ· § φ· ¸ ˜ cos ¨ ¸ © 2¹ © 2¹

2 ˜ sin ¨

§ φ · = tan § φ  π · Ÿ Ψ = φ  π ¸ ¨ ¸ 2 2 © 2¹ © 2 2¹

= cot ¨

φ  0 0.001  2 ˜ π

Bereichsvariable

a 2

Konstante

r ( φ)  2 ˜ a ˜ ( 1  cos ( φ) )

Kreisgleichung in Polarkoordinatenform

Seite 127

Differentialrechnung Ableitungsregeln

90 120

60

150

r( φ)

30

180

0

Abb. 3.2.37

2 4 6 8 210

330 240

300 270 φ

3.2.14 Krümmung ebener Kurven Die Änderung des Steigungswinkels 'D, bezogen auf die Änderung der Bogenlänge 's, ist ein Maß für die Stärke der mittleren Krümmung der Kurve zwischen zwei Punkten P und P1 . Die Krümmung im Punkt P wird dementsprechend als Grenzwert dieses Differenzenquotienten definiert: κ=

lim

Δα

Δs o 0 Δs

=

d

α

(3-65)

ds

Der Kehrwert U der Krümmung in P ρ =

1 κ

ist der Krümmungsradius des Krümmungskreises

in P.

Abb. 3.2.38

Näherungsweise gilt nach Abb. 3.2.39 für die Bogenlänge: Δs =

2

2

Δx  Δy

Δs

bzw.

Δx

=

§ Δy · 1 ¨ ¸ © Δx ¹

2

Durch den Grenzübergang, wenn y = f(x) differenzierbar ist, ergibt sich dann für die Bogenlänge: Abb. 3.2.39 lim

Δs

Δx o 0 Δx

=

d

s =

dx

Seite 128

1  y' ( x)

2

Differentialrechnung Ableitungsregeln

Mit tan(D) = y '(x) und damit D = arctan(y '(x)) erhalten wir mit der Kettenregel die Krümmung: κ=

d

α=

ds

1 § d · d § d · ˜ y'' ( x) ˜ ¨ α ˜ x¸ = ¨ arctan ( y' ( x) ) ˜ x¸ = 2 dx © ds ¹ dx © ds ¹ 1  y' ( x) d

1

y'' ( x)

=

1  y' ( x)

3

2

1  y' (x)2 2

---------------------------------------------------------------------------------------------------------------------------------------------------Funktionsdarstellungen: y = f(x) , P(x | y) x = x(t) , y = y(t) , P(x | y) r = r(M) , P(M| r) ---------------------------------------------------------------------------------------------------------------------------------------------------Krümmung: y'' ( x)

κ=

κ=

3

1  y' (x)2

2

xt ˜ ytt  yt ˜ xtt

2

κ=

3

2

 r ˜ r'' 3

r2  r' 2

2

§ x 2  y 2· t ¹ © t

r  2 ˜ r'

(3-66)

2

Krümmungsmittelpunkt:

xm = x 

1  y' ( x) y'' ( x)

ym = y ( x) 

2

xt  yt

2

˜ y' ( x)

1  y' ( x) y'' ( x)

2

xm = x  ˜y xt ˜ ytt  yt ˜ xtt t 2

xt  yt

2

(3-67)

2

ym = y  ˜x xt ˜ ytt  yt ˜ xtt t

Bei waagrechter Tangente (Extremstellen x0 ) gilt: y'(x0 ) = 0. Für die Krümmung vereinfacht sich dann die erste Beziehung in (3-66) zu: κ=

1 ρ



= y'' x0

(3-68)

Damit kann mit der zweiten Ableitung eine qualitative Aussage gemacht werden, ob eine Kurve links- (N positiv) oder rechtsgekrümmt (N negativ) ist. Die alle Mittelpunkte der Krümmungskreise verbindende Kurve heißt Evolute (entwickeln, entfalten) der Ausgangsfunktion y = f(x). Der Graf von y = f(x) heißt in diesem Zusammenhang Evolvente (hervorwälzen, herauswickeln) der betreffenden Evolute.

Krümmung und Krümmungsradius für eine Funktion y = f(x): 3

2

d

2

κ ( f x) 

f ( x)

dx

3 2 «ª § d · º» 1  ¨ f ( x) ¸ «¬ © dx ¹ »¼

2

ρ ( f x) 

ª« «¬1 

§d · ¨ f ( x) ¸ © dx ¹ 2

d

2

dx

Seite 129

f ( x)



» »¼

2

Differentialrechnung Ableitungsregeln Beispiel 3.2.67: Bestimmen Sie die Krümmung und Krümmungsmittelpunkte in einem beliebigen Kurvenpunkt und die Krümmung und den Krümmungsmittelpunkt sowie auch den Krümmungsradius im Punkt P(0|0) der Funktion y = x2 . 2

f ( x)  x

y' ( x) = 2 ˜ x

y'' ( x)

κ=

3

1  y' (x)2

2

=

3

1  4 ˜ x2

2

y'' ( x) = 2

gegebene Funktion und deren Ableitungen

x x

κ ( f x) o

2

4 ˜ x2  1

2

Krümmungsfunktion

3 2

Krümmungsmittelpunkte: xm = x 

1  y' ( x)

2

y'' ( x)

ym = y ( x) 

2

˜ y' ( x) = x 

1  y' ( x)

2

y'' ( x)

2

=x 

1  4˜ x 2

˜ 2˜ x

vereinfacht auf

xm = x 

1  y' ( x)

2

1  4˜ x

vereinfacht auf

2

ym = y ( x) 

2

y'' ( x)

3

˜ y' ( x) = 4 ˜ x

1  y' ( x)

2

y'' ( x)

2

= 3˜ x 

3

xm ( x)  4 ˜ x

Parametergleichungen der Krümmungsmittelpunkte (Semikubische Parabel - Neil'sche-Parabel)

1 2 ym ( x)  3 ˜ x  2 κ ( f 0)

Mit P(0|0) gilt: xm ( 0)

0

ym ( 0)

0.5

2

Krümmung

ρ

1 κ ( f 0)

ρo

1

Krümmungsradius

2

Koordinaten des Krümmungsmittelpunktes im Punkt P

x  5 5  0.01  5

Bereichsvariable

x1 ( φ)  ρ ˜ cos ( φ)

Parameterdarstellung für den Krümmungskreis

y1 ( φ)  ρ ˜ sin ( φ)  ρ φ  0 0.01  2 ˜ π

Bereichsvariable Evolvente, Krümmung und Evolute 3

f ( x) κ( f x)

2

ym( x) ym( 0 ) 1 y1( φ)

4

2

0 x x xm( x) xm( 0) x1( φ)

Abb. 3.2.40

Seite 130

2

4

1 2

Differentialrechnung Ableitungsregeln Beispiel 3.2.68: Bestimmen Sie die Krümmung und Krümmungsmittelpunkte in einem beliebigen Kurvenpunkt und die Krümmung und den Krümmungsmittelpunkt sowie auch den Krümmungsradius im Punkt P(S/2|1) der Funktion y = sin(x). y = sin ( x) y'' ( x)

κ=

y'' ( x) = sin ( x)

y' ( x) = cos ( x)

3

gegebene Funktion und deren Ableitungen

sin ( x)

=

Krümmungsfunktion

3

1  y' (x)2 2 1  cos (x)2 2 Krümmungsmittelpunkte: xm = x 

1  y' ( x)

2

˜ y' ( x) = x 

y'' ( x)

ym = y ( x) 

1  y' ( x) y'' ( x)

1  cos ( x)

2

= sin ( x) 

2

˜ cos ( x) =

sin ( x) 1  cos ( x)

2

= 2 ˜

sin ( x)

Für P(S/2|1) gilt:

x ˜ sin ( x)  cos ( x)  cos ( x) sin ( x)

cos ( x)

2

sin ( x) κ = 1

und

π xm = 2

und

x  2 ˜ π 2 ˜ π  0.01  2 ˜ π

Bereichsvariable

f ( x)  sin ( x)

gegebene Funktion

xm ( x) 

x ˜ sin ( x)  cos ( x)  cos ( x)

3

ρ=

1 κ

= 1

ym = 0

3

sin ( x) cos ( x)

Parametergleichungen der Krümmungsmittelpunkte

2

ym ( x)  2 ˜ sin ( x) Evolvente, Krümmung und Evolute 3

π 2

2 f ( x)

1

κ( f x) ym( x)

Abb. 3.2.41 4

2

0

2

1

2 x x xm( x)

Seite 131

4

Differentialrechnung Ableitungsregeln

Beispiel 3.2.69: Bestimmen Sie die Krümmung und Krümmungsmittelpunkte in einem beliebigen Kurvenpunkt der Funktion x = r (t - sin(t)) und y = r (1 - cos(t)) (spitze Zykloide). x = r ( t  sin ( t ) )

y = r ˜ ( 1  cos ( t ) )

Parametergleichungen der Zykloide

xt = r ( 1  cos ( t ) )

yt = r ˜ sin ( t )

Ableitungen der Parametergleichungen

y' =

yt xt

=

y'' =

d

§t· ¸ © 2¹

˜

2

=

§t

x

2 ˜ r ˜ sin ¨

2

1

=

§t

4 ˜ r ˜ sin ¨

· ¸

© 2¹

§ t· ¸ © 2¹

1 4

§ t· ¸ © 2¹

4˜r˜sin¨

y'' 3

1  y'2 2

=

zweite Ableitung

4

1

κ=

erste Ableitung

§t· §t· ¸ ˜ cos ¨ ¸ 2 © ¹ © 2¹

2

· ¸

2

sin ( t ) = 2 ˜ sin ¨

© 2¹

dt

§t· ¸ © 2¹

1  cos ( t ) = 2 ˜ sin ¨

wegen

1

sin ¨

y'

dt

= cot ¨

r ˜ ( 1  cos ( t ) ) 1

d

§t· ¸ © 2¹

r ˜ sin ( t )

4

4˜r˜sin¨ 3

2· § ¨ 1  cot §¨ t ¸· ¸ © © 2¹ ¹

2

=

3

§¨ 1 ¸· ¨ § t ·2 ¸ ¨ sin ¨ 2 ¸ ¸ © © ¹ ¹

=

2

1

§t· 4 ˜ r ˜ sin ¨ ¸ © 2¹

§ t· ¸ © 2¹

Krümmungsfunktion in Parameterform

cot¨





1

y' 2 xm = x  ˜ 1  y' = r ˜ t  r ˜ sin ( t )  y''

§t· ¸ © 2¹

4

§t· ¸ © 2¹

˜ sin ¨

4 ˜ r ˜ sin ¨

2

x(t) und die Ableitungen in (3-67) eingesetzt

§t· ¸ 4 © 2 ¹ ˜ 4 ˜ r sin § t · ˜ ¨ ¸ §t· © 2¹ sin ¨ ¸ © 2¹ §t· §t· = r ˜ t  r ˜ sin ( t )  4 ˜ r ˜ cos ¨ ¸ ˜ sin ¨ ¸ xm = r ˜ t  r ˜ sin ( t )  2 © 2¹ © 2¹ §t· sin ¨ ¸ © 2¹ cos ¨

§t· §t· xm = r ˜ t  r ˜ sin ( t )  4 ˜ r ˜ cos ¨ ¸ ˜ sin ¨ ¸ = r ˜ t  r ˜ sin ( t )  2 ˜ r ˜ sin ( t ) = r ˜ ( t  sin ( t ) ) 2 2 © ¹

© ¹

Seite 132

x-Werte für den Krümmungsmittelpunkt

Differentialrechnung Ableitungsregeln

2

ym = y 

1  y' y''

= r  r ˜ cos ( t ) 

1

§ t· ¸ © 2¹

4˜r˜sin¨

§t· = r  r ˜ cos ( t )  4 ˜ r ˜ sin ¨ ¸ ˜ 2 © 2¹ §t· sin ¨ ¸ © 2¹ 1

1 4

2

2

2

y(t) und die Ableitungen in (3-67) eingesetzt

2

§t· §t· §t· §t· ym = r  r ˜ cos ( t )  4 ˜ r ˜ sin ¨ ¸ = r ˜ ( 1  cos ( t ) )  4 ˜ r ˜ sin ¨ ¸ = r ˜ 2 ˜ sin ¨ ¸  4 ˜ r ˜ sin ¨ ¸ 2 2 2 2 © ¹

© ¹

© ¹

2

© ¹

2

§t· ym = 2 ˜ r ˜ sin ¨ ¸ = r ˜ ( 1  cos ( t ) ) 2 © ¹

t  0 0.01  15

Bereichsvariable

r 2

gewählter Abrollkreisradius

x ( t)  r ˜ ( t  sin ( t) ) Funktion in Parameterdarstellung y ( t)  r ˜ ( 1  cos ( t ) ) 1

κ ( t) 

Krümmungsfunktion

§t· 4 ˜ r ˜ sin ¨ ¸ © 2¹

xm ( t)  r ˜ ( t  sin ( t ) )

Parametergleichungen der Krümmungsmittelpunkte (Evolute-verschobene Zykloide)

ym ( t)  r ˜ ( 1  cos ( t ) )

Evolvente und Evolute π˜r

4

2˜π˜r

2

y( t) ym( t)

0

10

20

2 4 x( t) xm( t)

Abb. 3.2.42

Seite 133

30

40

Differentialrechnung Ableitungsregeln

Krümmungsfunktion 4

2

κ( t)

0

5

10

15

2

4 t

Abb. 3.2.43

3.2.15 Grenzwerte von unbestimmten Ausdrücken Öfters ergeben sich bei der Anwendung der bekannten Grenzwertsätze (siehe Abschnitt 2.1) unbestimmte Ausdrücke (unbestimmte Formen) der folgender Form: 0 ∞ 0 0 ∞  0 ˜ ∞ ∞  ∞ 0 ∞ 1 . 0 ∞ Mithilfe eines Satzes von Johann Bernoulli (von De l'Hospital veröffentlicht-daher auch Regel von l'Hospital genannt) ist es unter bestimmten Voraussetzungen möglich, diese Grenzwerte zu finden. Satz (Regel von l'Hospital):

(3-69)

Eine Funktion f sei durch f ( x) =

Z ( x)

in [a, b] definiert, Z(x) und N(x) stetig in [a, b] und N ( x) differenzierbar in ]a, b[. Ferner seien N(x) und N'(x) in ]a, b[ von null verschieden und lim

Z ( x) = 0 ,

x o x0

lim

Wenn nun der Grenzwert

lim x o x0

N ( x) = 0.

x o x0

f ( x) =

lim

lim

Z ' ( x)

x o x0 N ' ( x)

Z ( x)

x o x0 N ( x)

=

lim

existiert, dann ist Z ' ( x)

x o x0 N ' ( x)

.

Seite 134

Differentialrechnung Ableitungsregeln Beispiel 3.2.70: 0

Bestimmen Sie folgende Grenzwerte, die auf Ausdrücke der Form

(1)

y=

sin ( x)



führen:

gegebene Funktion

sin ( x)

=

x

xo0

sin ( x)

lim

0

Ÿ

0

lim

l'Hospital

o1

x

xo0

y=



x

lim

(2)

0

,

cos ( x)

=1

1

xo0

Damit gilt:

lim

sin ( x) x

xo0

=1

Berechnung mit Mathcad

1  cos ( x)

gegebene Funktion

2

x

1  cos ( x)

lim

=

2

xo0

x

Damit gilt:

0

Ÿ

0

l'Hospital

1  cos ( x)

lim

2

xo0

(3)

y=

lim

x

ln ( x)

=

1

xo0

sin ( x)

=

2˜ x

0

Ÿ

0

lim

Oder mit Mathcad:

1  cos ( x) 2

xo0

2

2

xo0

l'Hospital lim

cos ( x)

x

o

1 2

gegebene Funktion

n

x

ln ( x)

lim

=

n

xo∞

x

Damit gilt:



Ÿ



lim

l'Hospital ln ( x) n

xo∞

=0

y=

=

x

xo∞

n˜x

n1

Oder mit Mathcad:

1

lim

=0

x o ∞ n ˜ xn

ln ( x)

lim

n

xo∞

x

2

(4)

1

lim

x

o0

x

gegebene Funktion

x

e

2

lim

x

x o ∞ ex

=



Ÿ



l'Hospital

lim xo∞

2˜ x x

e

=

∞ ∞

Ÿ l'Hospital

2

Damit gilt:

lim

x

x o ∞ ex

lim

x o ∞ ex

2

=0

Oder mit Mathcad:

Seite 135

lim

x

x o ∞ ex

2

o0

=0

=

1 2

Differentialrechnung Ableitungsregeln Beispiel 3.2.71: Bestimmen Sie folgende Grenzwerte, die auf unbestimmte Ausdrücke der Form 0 ˜ ∞ , ∞  ∞ führen. 0 ∞ oder umgeformt. 0 ˜ ∞ wird auf 0 ∞ 0 umgeformt. ∞  ∞ wird auf 0 (1)

y = x ˜ ln ( x)

gegebene Funktion

Ÿ

( x ˜ ln ( x) ) = 0 ˜ ( ∞)

lim xo0

lim xo0

l'Hospital

1 1 ln ( x)

Umformung auf ln ( x)

lim

1

xo0

=

∞ ∞

2

˜

1

=

lim

x ˜ ln (x)2

= 0˜ ∞

führt zu keinem Ergebnis

x

:



Ÿ



lim

1

lim xo0

l'Hospital

( x ˜ ln ( x) ) = 0

=

x 1 2

Oder mit Mathcad:

lim

§x· ¸ © 2¹

gegebene Funktion

ª( π  x) ˜ tan § x ·º = 0 ˜ ∞ « ¨ ¸» © 2 ¹¼ xoπ¬

Ÿ

lim

x o π 1 ˜

2

(3)

y=

1 x



lim xo0

lim

Umformung

1

§x· sin ¨ ¸ © 2¹

x o π cot § x · ¨ ¸

=

0 0

2

ª § x ·º «( π  x) ˜ tan ¨ ¸» = 2 © 2 ¹¼ xoπ¬

Oder mit Mathcad:

lim

1

πx

© 2¹ 2 § x· · § ¨ 2 ˜ sin ¨ ¸ ¸ = 2 = lim © © 2¹ ¹ xoπ

1

lim

Damit gilt:

( x ˜ ln ( x) ) o 0

xo0

y = ( π  x) ˜ tan ¨

l'Hospital

x = 0

lim xo0

xo0

Ÿ

0

ln( x)

x

(2)

0

xo0

x

Damit gilt:

=

1

xo0

Umformung

Ÿ

x

lim

ª § x ·º «( π  x) ˜ tan ¨ ¸» o 2 © 2 ¹¼ xoπ¬ lim

gegebene Funktion

sin ( x)

§1  1 · = ∞  ∞ ¨ ¸ © x sin ( x) ¹

Ÿ

lim

sin ( x)  x

x o 0 x ˜ sin ( x)

Umformung

Seite 136

=

0 0

Ÿ

lim

cos ( x)  1

x o 0 sin ( x)  x ˜ cos ( x)

l'Hospital

=

0 0

Differentialrechnung Ableitungsregeln sin ( x)

lim

Ÿ

Damit gilt:

=0

x o 0 cos ( x)  cos ( x)  x ˜ sin ( x)

lim xo0

§1  1 · = 0 ¨ ¸ © x sin ( x) ¹

l'Hospital Beispiel 3.2.72: 0

0



Bestimmen Sie folgende Grenzwerte, die auf unbestimmte Ausdrücke der Form 0 ∞ 1

führen.

Wir schreiben statt u(x)v(x) : (eln(u(x)) )v(x) = e v(x) ln(u(x)) (1)

x

gegebene Funktion

y=x

x

lim

x

=

e

x

ln( x)

lim

Ÿ

xo0

xo0

Damit gilt:

x

lim

lim

Umformung x

e

=e

( x˜ln( x) )

xo0

0

=e =1

xo0

Oder mit Mathcad:

=1

lim

x˜ln( x)

xo0

x

lim

siehe Beispiel 3.2.71 (1)

o1

x

xo0

1

(2)

y=x

x

gegebene Funktion 1

lim

x

x

=∞

0

Ÿ

xo∞

lim

§ 1· ¨ x¸ ln x e © ¹ =

lim

1

Damit gilt:

lim

x

x

§ ©

y = ¨1 

lim xo∞

lim xo∞



= 1 Oder mit Mathcad:



x

x

o1

lim

Ÿ

lim

=

1

xo∞

x

lim xo∞

x

§1  k · ¨ ¸ x¹ ©

§x˜ln§1 k ·· ¨ ¨ ¸¸ xo∞ © © x ¹¹ lim



¸



=

0 0

x

˜¨

2

lim

¸ x¹ =e

1

xo∞

Umformung

x

xo∞

§ ©

ln ¨ 1 

§ k · 2¸ k ©x ¹ 1 lim

e



xo∞

Umformung

1

§ ©

x˜ln¨1

Ÿ

=1

k ·· § ˜ § ¨ x ln ¨ 1  ¸ ¸ = ∞ ˜ 0 x ¹¹ © ©

Damit gilt:

lim

gegebene Funktion x

k

=e

0

=e =1

siehe Beispiel 3.2.70 (3)

x

§1  k · ¨ ¸ x¹ ©

l'Hospital

=e

xo∞

¸ x¹

Ÿ

x

§1 · ¨ ˜ln( x)¸ x o ∞ ©x ¹ lim

1

xo∞

(3)

e

˜ln( x)

xo∞

xo∞

Umformung

1

§ k · =k ¨ ¸ k ¨1  ¸ x¹ ©

Oder mit Mathcad:

lim xo∞

Seite 137

§1  k · ¨ ¸ x¹ ©

x

k

oe

Differentialrechnung Kurvenuntersuchungen 3.3 Kurvenuntersuchungen Mithilfe der Differentialrechnung können für eine Funktion f: y = f(x) nicht nur die Tangenten in den einzelnen Kurvenpunkten ermittelt werden, sondern es können auch für den Kurvenverlauf wichtige Punkte (Hoch- und Tiefpunkte; Wendepunkte) bestimmt werden. Die Untersuchung der Monotonie und des Krümmungsverhaltens von f gibt weitere wichtige Hinweise für den Kurvenverlauf. Die Anwendung der Differentialrechnung in diesem Sinne auf die Behandlung von Kurven wird als Kurvendiskussion bezeichnet. Bei einer Kurvendiskussion wollen wir folgende Punkte berücksichtigen: a) Von welcher Art ist die zu untersuchende Funktion? b) Bestimmung der Definitionsmenge (Sprungstellen, Lücken, Pole). c) Untersuchung der Funktion auf Nullstellen (siehe dazu Nullstellensatz, Abschnitt 2.2.1), d) Symmetrieeigenschaften (Axialsymmetrie (f(- x) = f(x)) und Zentralsymmetrie (f(- x) = - f(x)). e) Untersuchung der Funktion auf Asymptoten. f) Extremwerte (Hoch- und Tiefpunkte): Wenn eine Funktion f innerhalb eines bestimmten Intervalls I = [a, b] der Stelle x 0 einen größten bzw. kleinsten Wert besitzt, so hat die Funktion f an dieser Stelle ein absolutes Maximum bzw. Minimum. Befinden sich innerhalb des Intervalls I mehrere größte und kleinste Werte, so hat die Funktion f ein relatives Maximum (oder mehrere Maxima) bzw. ein relatives Minimum (oder mehrere Minima). Maxima und Minima heißen Extrema. x0 heißt Extremstelle. Über den Extremstellen befinden sich die Hochpunkte H(xk |yk ) bzw. Tiefpunkte Ti(xk |yk ). Siehe dazu Extremwertsatz, Abschnitt 2.2.1. Notwendige Bedingung für ein relatives (lokales) Extremum: Ist f(x) an der Stelle x0 differenzierbar, dann ist x0 eine relative Extremstelle, wenn f '(x0 ) = 0 gilt. Hinreichende Bedingung für ein relatives (lokales) Extremum: f '(x0 ) = 0 und f ''(x0 ) > 0 Ÿ Minimum an der Stelle x0 f '(x0 ) = 0 und f ''(x0 ) < 0 ŸMaximum an der Stelle x0

x  1 1  0.01  5

Bereichsvariable

2

f ( x)  ( x  2)  1 2

g ( x)  ( x  2)  1

f x ( x)  4 ˜ ( x  2)

f xx ( x)  4

Funktion und Ableitungen

gx ( x)  4 ˜ ( x  2)

gxx ( x)  4

Funktion und Ableitungen

20

20

10

f ( x) fx( x) fxx( x)

10

g ( x) gx( x)

2

0

2

4

6

 10

Abb. 3.3.1

gxx( x)

2

 20

0

0.4

4

6

 10  20

x

f x ( 1.9)

2

f x ( 2.1)

x

0.4

gx ( 1.9)

Seite 138

0.4

gx ( 2.1)

0.4

Abb. 3.3.2

Differentialrechnung Kurvenuntersuchungen g) Wendepunkte: Punkte, in denen der "Tangentendrehsinn" wechselt, also die Kurve von einer Linkskurve zu einer Rechtskurve (oder umgekehrt) wird, nennen wir Wendepunkte und bezeichnen sie mit W(xk |yk ). Wendepunkte mit waagrechter Wendetangente nennen wir Terrassenpunkte oder Sattelpunkte und bezeichnen sie mit T(xk |yk ) oder S(xk |yk ). Notwendige und hinreichende Bedingung für einen Wendepunkt: f ''(x0 ) = 0 und f '''(x0 ) z 0 Ÿ x0 ist Wendestelle mit W(x0 |y0 ) Notwendige und hinreichende Bedingung für einen Terrassenpunkt oder Sattelpunkt: f '(x0 ) = 0, f ''(x0 ) = 0 und f '''(x0 ) z 0 Ÿ Terrassenpunkt T(x0 |y0 ) bzw. Sattelpunkt S(x0 |y0 ) x  3 3  0.01  5 3

Bereichsvariable

2

f ( x)  x  6 ˜ x  9 ˜ x

Funktion und Ableitungen

2

f x ( x)  3 ˜ x  12 ˜ x  9 4

f xx ( x)  6 ˜ x  12

3

g ( x)  x  4 ˜ x

x0  2

gxxx ( x)  24 ˜ x  24

x01  0

Funktion und Ableitungen

3

2

2

gx ( x)  4 ˜ x  12 ˜ x

gxx ( x)  12 ˜ x  24 ˜ x

10 f ( x)

40 x01

x0 g ( x)

5

fx( x) fxx( x)

f xxx ( x)  6

20

gx( x) 4

fxxx( x)

2

0

2

4

6

gxx( x) gxxx( x)

5

4

2

0

2

4

6

 20  10 x

x

Abb. 3.3.3



f xx x0

0



f xxx x0

6

Abb. 3.3.4



gx x01

0



gxx x01

0



gxxx x01

24

h) Krümmungsverhalten: Die zweite Ableitung gibt einen Hinweis darauf, wie stark sich eine Kurve krümmt. Siehe dazu Abschnitt 3.2.14. (1) Ist f bei x0 zweimal differenzierbar und f ''(x0 ) < 0, dann ist die Kurve bei x0 eine Rechtskurve. (2) Ist f bei x0 zweimal differenzierbar und f ''(x0 ) > 0, dann ist die Kurve bei x0 eine Linkskurve.

Seite 139

Differentialrechnung Kurvenuntersuchungen f ''(x0 ) < 0

Rechtskrümmung (von oben konvex)

Abb. 3.3.5

f ''(x0 ) > 0

Linkskrümmung (von oben konkav)

Abb. 3.3.6

i) Monotonie (Steigen und Fallen einer Funktion): Ist f an der Stelle x0 differenzierbar und f '(x0 ) > 0 bzw. f '(x0 ) < 0, so ist die Funktion bei x 0 streng monoton wachsend bzw. streng monoton fallend (es gilt auch die Umkehrung).

x  5 5  0.01  5

Bereichsvariable

3

2

f ( x)  x

f x ( x)  3 ˜ x

Funktion und Ableitung

10

f x ( 1)

5 f ( x) fx( x)

6 4 2

f x ( 1) 0

2

4

3 >0 3

6

5

Abb. 3.3.7

 10 x

Seite 140

>0

Differentialrechnung Kurvenuntersuchungen Polynomfunktionen (ganzrationale Funktionen): Eine Polynomfunktion n-ten Grades (Parabel n-ter Ordnung) hat die Form n

n 1

y = Pn ( x) = an ˜ x  an1 ˜ x

n2

 an 2 ˜ x

2

 ....  a2 ˜ x  a1 ˜ x  a0

D 

(3-70)

an z 0; ak ; k = 0, 1, 2, ..., n   ak bezeichnen wir als Koeffizienten und a0 als Absolutglied oder konstantes Glied. Nach dem Fundamentalsatz der Algebra hat die Polynomfunktion in  genau n-Nullstellen (x1 , x2 , ..., xn), die einfach oder mehrfach, reell oder komplex sein können. Damit kann eine Polynomfunktion n-ten Grades in folgender Form geschrieben werden: y = an (x - x1 ) (x - x2 ) (x - x3 ) ... (x - xn)

(3-71)

Beispiel 3.3.1: Untersuchen Sie folgende Funktion auf Nullstellen, Extremstellen und Wendepunkte und stellen Sie die Funktion grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

3

2

f ( x)  2 ˜ x  4 ˜ x  2

Polynomfunktion 3. Grades (nicht symmetrisch wegen x3 und x 2 )

Ableitungen: f x ( x) 

d

2

f ( x) o 6 ˜ x  8 ˜ x

dx

f xx ( x)  f xxx ( x) 

d dx

f x ( x) o 12 ˜ x  8

d dx

fxx ( x) o 12

f x ( x) Faktor o 2 ˜ x ˜ ( 3 ˜ x  4)

erste Ableitung

f xx ( x) Faktor o 4 ˜ ( 3 ˜ x  2)

zweite Ableitung

2

f xxx ( x) Faktor o 2 ˜ 3

dritte Ableitiung

Nullstellen: 1 ·¸ ¨§ ¨ 5 1¸ ¨ 2  2¸ xN  f ( x) = 0 auflösen x o ¨ ¸ ¨1 5¸ ¨2  2 ¸ © ¹



f xN

§¨ 0 ·¸ ¨0 ¸ ¨0 ¸ © ¹

1 ·¸ ¨§ xN ¨ 1.618 ¸ ¨ 0.618 ¸ © ¹

Probe

Seite 141

drei reelle Nullstellen

Differentialrechnung Kurvenuntersuchungen §¨ xN f § xN · ·¸ 1 © 1¹ ¨ ¸ N  ¨ xN2 f § xN2· ¸ © ¹ ¨ ¸ ¨ xN3 f § xN3· ¸ © © ¹¹

0· §¨ 1 ¸ N ¨ 1.618 0 ¸ ¨ 0.618 0 ¸ © ¹

die Koordinaten der Nullstellen zu einer Matrix zusammengefasst

Extremstellen: notwendige Bedingung:

§0· xE  fx ( x) = 0 auflösen x o ¨ 4 ¸ ¨ ¸ ©3¹ 2 · § Ergebnisformat "Bruch" f xE ¨ 10 ¸ ¨ ¸ © 27 ¹ hinreichende Bedingung:



f xx xE

§ 8 · ¨ ¸ ©8 ¹

§ xE f § xE · · ¨ 1 © 1¹ ¸ E ¨ xE f § xE · ¸ © 2 © 2¹ ¹

E

2 · § 0 ¨ ¸ © 1.333 0.37 ¹

Hochpunkt wegen f xx(xE2 ) < 0 Tiefpunkt wegen

f xx(xE1 ) > 0

Extremwerte zu einer Matrix zusammengefasst

oder

§0 2 Eo¨4 10 ¨  © 3 27

· ¸ ¸ ¹

Hochpunkt H Tiefpunkt Ti

Wendestellen: notwendige Bedingung:

2 xW  f xx ( x) = 0 auflösen x o 3 hinreichende Bedingung:



f xxx xW

fxxx(xW ) z0

12

W

xW f xW

W

( 0.667 0.815 )

oder

Wo

§ 2 22 · ¨ ¸ © 3 27 ¹

Wendepunkt

Seite 142

Differentialrechnung Kurvenuntersuchungen a  2

b 4

N  400

Anzahl der Schritte

b a

Δx 

Intervallrandpunkte

Schrittweite

N

x  a a  Δx  b

Bereichsvariable

10

xW

f ( x) 5

fx( x) fxx( x) fxxx( x)

2

0



f xW

2

Abb. 3.3.8

5

 10 x x x x xW

10

f ( x) f §xN

©

f §xN

©

f §xN

©

·



5

·

H



· 3¹

f §xE

©

· 1¹

f §xE

©

N1

N2

W

2

0

2

Ti

·





N3

5

f xW

 10 x x N x N x N x E xE xW 1 2 3 1 2

Seite 143

4

Abb. 3.3.9

Differentialrechnung Kurvenuntersuchungen Beispiel 3.3.2: Untersuchen Sie folgende Funktion auf Nullstellen, Extremstellen und Wendepunkte und stellen Sie die Funktion grafisch dar. Falls Extremstellen vorliegen, bestimmen Sie den Krümmungsradius und stellen Sie die Krümmungskreise ebenfalls grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

1

f ( x) 

3

˜x 

27

1

2

˜x  4

3

Polynomfunktion 3. Grades (nicht symmetrisch wegen x3 und x 2 )

Ableitungen: 2

d

f x ( x) 

f ( x) o

x

dx

9

d

f x ( x) o

f xx ( x) 

dx d

f xxx ( x) 

dx



2˜ x

2˜ x

fxx ( x) o

9

f x ( x) Faktor o

3 

2

x ˜ ( x  6)

f xx ( x) Faktor o

3

2 ˜ ( x  3)

f xxx ( x) Faktor o 2 ˜ 3

9

zweite Ableitung

9 2

2

erste Ableitung

9

dritte Ableitung

Nullstellen: 3 ¨§ ·¸ xN ¨ 6 ¸ ¨6 ¸ © ¹

§¨ 3 ·¸ xN  f ( x) = 0 auflösen x o ¨ 6 ¸ ¨6 ¸ © ¹ 1 27

3

˜x 



f xN

1 3

0 ¨§ ·¸ ¨0 ¸ ¨0 ¸ © ¹

2

˜ x  4 Faktor o

( x  3) ˜ ( x  6)

drei reelle Nullstellen (eine Doppelnullstelle)

2

27

Probe

§¨ xN f § xN · ·¸ 1 © 1¹ ¨ ¸ N  ¨ xN1 f § xN1· ¸ © ¹ ¨ ¸ ¨ xN2 f § xN2· ¸ © © ¹¹

§¨ 3 0 ¸· N ¨ 3 0 ¸ ¨ 6 0¸ © ¹

Extremstellen und Krümmungsradius: notwendige Bedingung:

xE  fx ( x) = 0 auflösen x o

§0 · ¨ ¸ ©6 ¹



f xE

§4 · ¨ ¸ ©0 ¹

Seite 144

die Koordinaten der Nullstellen zu einer Matrix zusammengefasst

Differentialrechnung Kurvenuntersuchungen hinreichende Bedingung:

§ 0.667 · ¨ ¸ © 0.667 ¹



f xx xE

Hochpunkt wegen f xx(xE2 ) < 0 Tiefpunkt wegen

§ xE f § xE · · ¨ 1 © 1¹ ¸ E ¨x f §x · ¸ © E 2 © E 2¹ ¹ E

ρ1 

§0 4 · ¨ ¸ ©6 0 ¹

Extremwerte zu einer Matrix zusammengefasst

oder

1 fxx § xE

©

f xx(xE1 ) > 0

· 1¹

Eo

Hochpunkt H

§0 4 · ¨ ¸ ©6 0 ¹

Tiefpunkt Ti

3 ρ1 o  2 Krümmungsradien

ρ2 

1 fxx § xE

©

· 2¹

3 ρ2 o 2

Wendestellen: notwendige Bedingung: xW  f xx ( x) = 0 auflösen x o 3

hinreichende Bedingung:



f xxx xW W

0.222

xW f xW

a  4

b 9

N  400 Δx 

b a

fxxx(xW ) z0 W

oder

(3 2 )

W o (3 2 )

Intervallrandpunkte Anzahl der Schritte Schrittweite

N

x  a a  Δx  b

Bereichsvariable

φ  0 0.01  2 ˜ π

Bereichsvariable

x1 ( φ)  ρ1 ˜ cos ( φ)

y1 ( φ)  ρ1 ˜ sin ( φ)  f § xE ·  ρ1 1

x2 ( φ)  ρ2 ˜ cos ( φ)  xE 2

y2 ( φ)  ρ2 ˜ sin ( φ)  § f § xE ·  ρ2· 2

©

©©

Seite 145

¹

¹

¹

Krümmungskreise in Parameterdarstellung

Differentialrechnung Kurvenuntersuchungen

H f ( x)

4

f §xN

©

f §xN

©

f §xN

©

·



·



2

W

· 2¹

N3

f §xE

©

· 1¹

f §xE

©

0

5

N1 = N2 = Ti

·





f xW

2

y1( φ) y2( φ) 4

x xN xN xN xE x E xW x1 ( φ) x2( φ) 1

1

2

1

2

Abb. 3.3.10 Beispiel 3.3.3: Der Graf einer Polynomfunktion 3. Grades besitzt den Hochpunkt H(1|7) und den Wendepunkt W(2|4). Wie lautet die Funktion? x x

Redefinition 3

2

y ( x) = a ˜ x  b ˜ x  c ˜ x  d

d

2

y ( x) = 3 ˜ a ˜ x  2 ˜ b ˜ x  c

Funktion 2

d

1. Ableitung

2

dx

y ( x) = 6 ˜ a ˜ x  2 ˜ b

dx

Aus den gegebenen Bedingungen erhalten wir folgendes lineare Gleichungssystem: 3

2

3

2

H(1|7) ist ein Punkt des Grafen:

7 = a˜ 1  b˜ 1  c˜ 1  d

W(2|4) ist ein Punkt des Grafen:

4 = a˜ 2  b˜ 2  c˜ 2  d

H(1|7): y' (1) = 0

0 = 3˜ a˜ 1  2˜ b˜ 1  c

W(2|4): y ''(2) = 0

0 = 6˜ a˜ 2  2˜ b

2

Seite 146

2. Ableitung

Differentialrechnung Kurvenuntersuchungen a 1

b 1

c 1

d 1

Startwerte (Schätzwerte; nur für eine numerische Lösung erforderlich)

Vorgabe 3

2

3

2

7 = a˜ 1  b˜ 1  c˜ 1  d 4 = a˜ 2  b˜ 2  c˜ 2  d 2

0 = 3˜ a˜ 1  2˜ b˜ 1  c 0 = 6˜ a˜ 2  2˜ b

§¨ 3 ¨ 2 ¨ 9 x  Suchen ( a b c d) o ¨ ¨ 27 ¨ 2 ¨ 1 © 3

· ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¹

§a · ¨ ¸ ¨b ¸  x ¨c ¸ ¨ ¸ ©d ¹ 3

2

y ( x) = a ˜ x  b ˜ x  c ˜ x  d o y ( x) =

3˜ x

2

 9˜ x 

2

Lösungen des linearen Gleichungssystems

27 ˜ x

1

2

gesuchte Polynomfunktion

Beispiel 3.3.4: Ein beidseitig eingespannter Träger der Länge L wird mit einer konstanten Streckenlast q belastet. Die Biegelinie (elastische Linie) bezüglich des Koordinatensystems wird durch die nachfolgend angegebene Polynomfunktion beschrieben. Diskutieren Sie diese Funktion und stellen Sie die Biegelinie grafisch dar. 4

2

x· § ˜ ¨1  ¸ y = w ( x) = ˜ 2 24 ˜ E ˜ I L¹ L © q˜ L

x

2

Biegelinie ( 0 ˜ m d x d L)

E ... Elastizitätsmodul I ... Flächenträgheitsmoment

Abb. 3.3.11 4

y = w ( x) =

q˜ L

24 ˜ E ˜ I

2

˜

x

2

§ ©

˜ ¨1 

L

2

y = w ( x) =

q ˜ x ˜ ( L  x)



¸



y = w ( x) =

erweitert auf

y = w ( x) =

2

ORIGIN festlegen

24

gegebene Größen

q ˜ x ˜ ( L  x)

2

3

4

˜ 0.006 ˜ m ˜ x ˜ L  2 ˜ x ˜ L  x



2

24 ˜ E ˜ I 4

ORIGIN  1

2

4

2

24 ˜ E ˜ I

4

= 0.006 ˜ m

vereinfacht auf

Redefinition

1

E˜I

2

x x

f ( x) 

q

L 4˜ m

q˜ x

24 ˜ E ˜ I

3



L˜ q˜ x

12 ˜ E ˜ I

2



24 ˜ E ˜ I

Polynomfunktion 4. Grades (nicht symmetrisch wegen x3 und x 2 )

Seite 147

2

L ˜ q˜ x

Differentialrechnung Kurvenuntersuchungen Ableitungen: f x ( x) 

4

d

f x ( x) Faktor o

f ( x)

dx d

f xx ( x) 

dx

1000 4

f xx ( x) Faktor o

f x ( x)



2

2

m ˜ 8.0 ˜ m  12.0 ˜ m ˜ x  3.0 ˜ x 1000 4

d

f xxx ( x) 

m ˜ x ˜ ( 2.0 ˜ m  1.0 ˜ x) ˜ ( 4.0 ˜ m  1.0 ˜ x)

dx

f xxx ( x) Faktor o 

fxx ( x)

3 ˜ m ˜ ( 2.0 ˜ m  1.0 ˜ x) 500

Nullstellen:

§ 0 · ¨ ¸ 0 ¸ ¨ xN1  f ( x) = 0 auflösen x o ¨4 ˜ m ¸ ¨ ¸ ©4 ˜ m ¹ · §x ¨ N11 ¸ ¨x ¸ ¨ N12 ¸ xN  ¨ ¸ ¨ xN13 ¸ ¨ ¸ ¨ xN1 ¸ 4¹ ©



f xN

xN1

§0 · ¨ ¸ ¨0 ¸ m ¨4 ¸ ¨ ¸ ©4 ¹



§¨ 0 ¸· 8 ¨ 0.004 ¸ m ¨ 0 ¸ © ¹

§0 · ¨ ¸ ¨0 ¸ m xN ¨4 ¸ ¨ ¸ ©4 ¹

§0 · ¨ ¸ ¨ 0 ¸ m8 ¨0 ¸ ¨ ¸ ©0 ¹

Probe

Extremstellen und Krümmungsradius: notwendige Bedingung:

§¨ 0 ·¸ xE  fx ( x) = 0 auflösen x o ¨ 2 ˜ m ¸ ¨4 ˜ m ¸ © ¹

f xE

hinreichende Bedingung: f xx § xE

©

f xx § xE

©

f xx § xE

©

3 2

·

8 u 10 L

·

4 u 10 L

·

8 u 10 L

1¹ 2¹ 3¹

3 2

3 2

Tiefpunkt wegen

f xx(xE1 ) > 0

Hochpunkt wegen f xx(xE3 ) < 0 Tiefpunkt wegen

f xx(xE2 ) > 0

Seite 148

zwei reelle Doppelnullstellen



Differentialrechnung Kurvenuntersuchungen Wendestellen: notwendige Bedingung:

auflösen x

§ 3.1547 ˜ m · o¨ ¸ Gleitkommazahl 5 © 0.8453 ˜ m ¹

xW  f xx ( x) = 0

hinreichende Bedingung:

· 1¹

3

f xxx § xW

6.928 u 10

f xxx § xW

6.928 u 10

a 0˜ m

b 4˜ m

©

· 2¹

©

m

3

5

m

fxxx(xW1 ) z0 5

fxxx(xW2 ) z0 Intervallrandpunkte

N  400

Anzahl der Schritte

b a

Δx 

Schrittweite

N

x  a a  Δx  b

Bereichsvariable

N1 = N2 = Ti1

N3 = N4 = Ti2

 f ( x) f §xN

©

f §xN

©

0

· 1¹ · ·



 f §xW

·

 f §xW

·

© ©

4



 f §xE

©

2

3

 2u 10

W1

W2

1¹ 2¹

3

 4u 10

H

x x N x N x E xW xW 1

3

2

1

2

Abb. 3.3.12 Es ist üblich, die y-Achse nach unten zeigen zu lassen! Daher wird der Hochpunkt zum Tiefpunkt und umgekehrt!

Seite 149

Differentialrechnung Kurvenuntersuchungen Beispiel 3.3.5: Ein einseitig eingespannter Träger der Länge L = 2 m wird durch eine konstante Streckenlast q(x) = q0 = 115 N/m und zusätzlich am freien Ende durch die Kraft F = 1000 N belastet. Die Gleichung der Biegelinie lautet dann (Biegelinie bei Einzelbelastung durch das Eigengewicht + Biegelinie bei Einzelbelastung durch die Kraft F): 4

4 3 3 § § 4 x 1 x ¸· F˜L 3 x 1 x ¸· ¨ ¨ y ( x) = y1 ( x)  y2 ( x) = ˜ 1 ˜  ˜  ˜ 1 ˜  ˜ 4¸ 3¸ 3 ˜ E ˜ Iy ¨ 3 L 3 2 L 2 8 ˜ E ˜ Iy ¨ L L ¹ © ¹ ©

q0 ˜ L

0dxdL

Stellen Sie die Biegelinie (Biegeverlauf) dar, wenn der Träger a) nur durch das Eigengewicht belastet b) nur mit einer Kraft F belastet und c) durch Doppelbelastung von F und q0 belastet wird. Ermitteln Sie das Biegemoment Mb (x) = - E Iy y''(x) und die Querkraft Q(x) = M'b (x) und stellen Sie diese ebenfalls grafisch dar. Für das Elastizitätsmodul wird E = 2.1 1011 N/m2 und für das Flächenträgheitsmoment Iy = 1.7 10-6 m4 angenommen.

Abb. 3.3.13

F  1000 ˜ N

angreifende Kraft F

L  2000 ˜ mm

Länge L des Trägers

E  2.1 ˜ 10

11

˜

N m

I y  1.7 ˜ 10

6

Elastizitätsmodul

2

˜m

4

Flächenträgheitsmoment

N q0  115 ˜ m 4

q0 ˜ L

y ( x) =

8 ˜ E ˜ Iy

Streckenlast

§

˜ ¨1 

¨ ©

4 3

˜

x L



3 3· § ¸  F ˜ L ˜ ¨1  3 ˜ x  1 ˜ x ¸ 4¸ 3¸ 3 ˜ E ˜ Iy ¨ 3 2 L 2 L ¹ L ¹ ©

1

˜



x

Biegelinie

4

4 3 3 § § 4 x 1 x ·¸ F˜L 3 x 1 x ·¸ ¨ ¨ ˜ 1 ˜  ˜  ˜ 1 ˜  ˜ 4¸ 3¸ 3 ˜ E ˜ Iy ¨ 3 L 3 2 L 2 8 ˜ E ˜ Iy ¨ L L ¹ © ¹ ©

q0 ˜ L

Seite 150

durch Differenzierung, ergibt

Differentialrechnung Kurvenuntersuchungen 2 3 § 3 § 4 3 ˜ x ·¸ 4 ˜ x ¸· 4 ¨ ¨ L ˜ q0 ˜ F˜L ˜   ¨2˜ L ¨3˜ L 3¸ 4¸ ˜ 2 L 3˜ L ¹ © ¹  ©  3

3 ˜ E ˜ Iy

durch Differenzierung, ergibt

8 ˜ E ˜ Iy

2 § q0 ˜ x ·¸ ¨ F˜x E ˜ Iy ˜ ¨  ¸ © E ˜ Iy 2 ˜ E ˜ Iy ¹

F˜x E ˜ Iy

2



q0 ˜ x

2 ˜ E ˜ Iy

Biegemoment: Mb(x) = - E Iy y''(x)

vereinfacht auf 2



q0 ˜ x 2

 F˜x

Biegemoment

durch Differenzierung, ergibt F  q0 ˜ x

Querkraft: Q(x) = M'b(x) 4

y1 ( x) 

q0 ˜ L

8 ˜ E ˜ Iy 3

y2 ( x) 

F˜L

3 ˜ E ˜ Iy

§

˜ ¨1 

¨ © §

˜ ¨1 

¨ ©

4 3 3 2

˜

˜

x L x L





1 3

˜



x

¸



L

¹



¸ 3¸ 2 L ¹ 1

˜

x

Funktionsgleichung für Biegelinie bei Einzelbelastung durch das Eigengewicht Funktionsgleichung für Biegelinie bei Einzelbelastung durch Kraft F

4

4 3 3 § § 4 x 1 x ·¸ F˜L 3 x 1 x ·¸ ¨ ¨ y ( x)  ˜ 1 ˜  ˜  ˜ 1 ˜  ˜ 4¸ 3¸ 3 ˜ E ˜ Iy ¨ 8 ˜ E ˜ Iy ¨ 3 L 3 2 L 2 L ¹ L ¹ © © 2 · ¨§ q0 ˜ x ¸ Biegemoment Mb ( x)  ¨   F ˜ x¸ 2 © ¹

q0 ˜ L

Q ( x)  F  q0 ˜ x

Biegelinie bei Doppelbelastung

Querkraft

Maximale Biegung bei Einzelbelastung durch das Eigengewicht: x0  0 ˜ m



y1 x0

0.644 ˜ mm

Maximale Biegung bei Einzelbelastung durch die Kraft F:



y2 x0

7.47 ˜ mm

Maximale Biegung, maximales Biegemoment und maximale Querkraft bei Doppelbelastung:



y x0

8.114 ˜ mm

Mb ( L)



Q x0

2230 ˜ N ˜ m 1000 ˜ N

Δx  0.2 ˜ mm

Schrittweite

x  0 ˜ mm 0 ˜ mm  Δx  L

Bereichsvariable

Seite 151

Q ( L)

1230 ˜ N

Differentialrechnung Kurvenuntersuchungen Biegelinien 0

L

 0.9

mm

 y1( x) 1.8 mm  2.7  y2( x) 3.6  4.5 mm  5.4  y( x)  6.3 mm

 7.2  8.1 9 0

500

3

1u 10

3

1.5u 10

3

2u 10

x mm

Abb. 3.3.14 Biegemoment 0  250 Mb( x)  500 N˜m  750  1000 0  1250 Mb( x)  1500 N˜m  1750  2000  2250  2500 0

L mm

500

1000

1500

2000

x mm

Abb. 3.3.15 Querkraft  1000  1025  1050  1075  1100 Q( x)  1125 N  1150  1175  1200  1225  1250

L mm

0

500

1000 x mm

Abb. 3.3.16

Seite 152

1500

2000

Differentialrechnung Kurvenuntersuchungen Gebrochenrationale Funktionen: Eine gebrochenrationale Funktion, falls Pn(x) nicht durch Pm(x) ohne Rest teilbar ist, hat folgende Form: y=

Pn ( x) Pm ( x)

n1

n

=

an ˜ x  an 1 ˜ x m

bm ˜ x

m 1

 bm1 ˜ x

n 2

 an2 ˜ x

2

 ....  a2 ˜ x  a1 ˜ x  a0

m 2

 bm 2 ˜ x

2

(3-72)

 ....  b2 ˜ x  b1 ˜ x  b0

D = {x | x šPm(x) z0} und an, bn z 0; ak mit k = 0, 1, 2, ..., n; bl mit l = 0, 1, 2, ..., m ak , bk bezeichnen wir als Koeffizienten und a0 , b0 als Absolutglieder oder konstante Glieder. Wenn n < m gilt, dann sprechen wir von einer echt gebrochenrationalen Funktion. Wenn n tm gilt, dann sprechen wir von einer unecht gebrochenrationalen Funktion. x0 ist eine Nullstelle, wenn gilt: Pn(x0 ) = 0 und Pm(x0 ) z 0

(3-73)

x1 ist eine Polstelle, wenn gilt: Pn(x1 ) z 0 und Pm(x1 ) = 0

(3-74)

Gemeinsame Nullstellen x0 heißen Lücken, wenn gilt: Pn(x0 ) = 0 und Pm(x0 ) = 0

(3-75)

Beispiel 3.3.6: Untersuchen Sie folgende Funktion auf Nullstellen, Polstellen, Lücken, Extremstellen und Wendepunkte, und stellen Sie die Funktion grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

2

f ( x) 

x 4 2

unecht gebrochenrationale Funktion

x  2˜ x 3 Ableitungen:

2 dx x2  2 ˜ x  3 3 2 2 2 ˜ 2 ˜ x  3 ˜ x  24 ˜ x  19 d f ( x) vereinfachen o  f xx ( x)  2 3 dx x2  2 ˜ x  3 4 3 2 3 12 ˜ x  2 ˜ x  24 ˜ x  38 ˜ x  31 d f ( x) vereinfachen o f xxx ( x)  3 4 dx x2  2 ˜ x  3 f x ( x) 

d

f ( x) vereinfachen o

2

2˜ x  x 4

Seite 153

Differentialrechnung Kurvenuntersuchungen Nullstellen: xN  f ( x) = 0 auflösen x o

xN

§2 · ¨ ¸ © 2 ¹

§2 · ¨ ¸ © 2 ¹

einfache reelle Nullstelle bei 2 und -2

f § xN

©

·

f § xN

0



©

·



0

Probe

Polstellen (Nullstellen des Nenners) und Asymptoten: 2

xP  x  2 ˜ x  3 = 0 auflösen x o xP

§1 · ¨ ¸ © 3 ¹

§1 · ¨ ¸ © 3 ¹

D =  \ {- 3, 1}

x = - 3 und x = 1 sind vertikale Asymptoten

2

x 4

lim

o1

x o ∞ x2  2 ˜ x  3

y = 1 ist eine horizontale Asymptote

2

x 4

lim

x o  ∞ x2  2 ˜ x  3

o1

Extremstellen:

xE 

auflösen x

d

f ( x) = 0

dx

§ 0.5  1.936i · o¨ ¸ Gleitkommazahl 4 © 0.5  1.936i ¹

keine reellen Extremstellen

Wendepunkte:

xW 

2

dx

0.83014 §¨ ¸· o ¨ 0.33493  3.3663i ¸ Gleitkommazahl 5 ¨ 0.33493  3.3663i ¸ © ¹ auflösen x

2

d

f ( x) = 0

0.83 ·¸ ¨§ xW ¨ 0.335  3.366i ¸ ¨ 0.335  3.366i ¸ © ¹ W

§ xW f § xW · · © 1 © 1¹ ¹

f xxx § xW

©

W

·



0.739

( 0.83 0.834 )

Seite 154

fxxx(xW1 ) z0

Wendepunkt

Differentialrechnung Kurvenuntersuchungen

2

x 4

f ( x) 

if x z 3 › x z 1

2

x  2˜ x 3

gegebene unecht gebrochenrationale Funktion

0 otherwise g ( x)  1

Asymptote

x  4 4  0.001  4

Bereichsvariable

xN

10

xN

2

1

6

W

f ( x)

2

g ( x) f §xW

©

·

4



3

2

1

2

0

1

2

3

4

Abb. 3.3.17

6  10 x x x W

1

Beispiel 3.3.7: Untersuchen Sie folgende Funktion auf Nullstellen, Polstellen, Lücken, Extremstellen und Wendepunkte, und stellen Sie die Funktion grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

4

f ( x) =

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2

unecht gebrochenrationale Funktion

2

2˜ x  x 4

f ( x) =

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2

vereinfacht auf

2

f ( x) =

( x  1) ˜ ( x  2) ˜ ( 2 ˜ x  1)

2˜ x  x 4

f ( x) 

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2

unecht gebrochenrationale Funktion

2

2˜ x  x Ableitungen: f x ( x) 

f xx ( x) 

d

f ( x) vereinfachen o 4 ˜ x 

dx

2 2

3

x 2

d

2

dx

f ( x) vereinfachen o 4 

4 3

x

Seite 155

x

Differentialrechnung Kurvenuntersuchungen 3

d

f xxx ( x) 

3

f ( x) vereinfachen o

12 4

dx

x

Nullstellen:

§ 1 · ¨ ¸ 2 ¸ xN  f ( x) = 0 auflösen x o ¨ ¨ 1¸ ¨ ¸ © 2¹ §¨ 1 ¸· xN ¨ 2 ¸ ¨ 0.5 ¸ © ¹

f § xN

©

einfache reelle Nullstellen

·



f § xN

0

©

·



0

f § xN

©

·



0

Probe

Polstellen (Nullstellen des Nenners) und Asymptoten:

§ 0 · xP  2 ˜ x  x = 0 auflösen x o ¨ 1 ¸ ¨ ¸ © 2¹ 2

D =  \ {0, -1/2}

§ 0 · ¨ ¸ © 0.5 ¹

xP

x = 0 ist eine vertikale Asymptote Bei x = -1/2 hat die Funktion eine Lücke!

Grenzwertuntersuchungen: 4

lim xo

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2 2

1

o0

2˜ x  x

Die Lücke kann stetig ergänzt werden! Damit ist D = R \ {0}.

2 4

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2

lim

2

xo∞

2˜ x  x 4

3

2

4˜ x  8˜ x  3˜ x  7˜ x 2

lim

2

xo∞ 4

o∞

o∞

2˜ x  x 3

2

4˜ x  8˜ x  3˜ x  7˜ x 2 2

in Partialbrüche zerlegt, ergibt

2˜ x  x 2

f g ( x)  2 ˜ x  3 ˜ x  3

asymptotische Grenzkurve

Extremstellen:

xE 

d dx

1.137 §¨ ¸· o ¨ 0.1934  0.6343i ¸ Gleitkommazahl 4 ¨ 0.1934  0.6343i ¸ eine reelle Extremstelle © ¹ auflösen x

f ( x) = 0

Seite 156

3˜ x

2 x

2

 2˜ x  3

Differentialrechnung Kurvenuntersuchungen

xE

§¨ 1.137 ·¸ ¨ 0.193  0.634i ¸ ¨ 0.193  0.634i ¸ © ¹

f xx § xE

Ti 

§ xE f § xE · · © 1 © 1¹ ¹

Ti

©

·

fxx(xE1 ) > 0, daher ein Minimum

6.721



( 1.137 2.066 )

Tiefpunkt

Wendepunkte: 1 §¨ ¸· ¨ 1 3˜ i ¸ 2   d ¨ ¸ 2 f ( x) = 0 auflösen x o 2 2 ¨ ¸ dx ¨ 1 3˜ i ¸ ¨2  2 ¸ © ¹

xW 

1 ·¸ ¨§ xW ¨ 0.5  0.866i ¸ ¨ 0.5  0.866i ¸ © ¹

f xxx § xW

©

§ xW f § xW · · © 1 © 1¹ ¹

W

W

x  4 4  0.001  4

·

f xxx(xW1 ) z0

12



Wendepunkt

(1 0 )

Bereichsvariable

10 f ( x) fg ( x)

6

f §xW

·

f §xN

·

©



©

f §xN

©

f §xN

©

f §xE

©



·



·



·



N2 4

3

2

N3

2

1

0

Ti

2

1 W=N 2 1

6

 10 x x x W x N x N x N x E 1 1 2 3 1

Seite 157

3

4

Abb. 3.3.18

Differentialrechnung Kurvenuntersuchungen Beispiel 3.3.8: Berechnen Sie die kritischen Größen Tc, pc und Vc mithilfe der Van-der-Waals-Gleichung. Der kritische Punkt ist ein Wendepunkt (Terrassenpunkt). Das heißt, dass die erste und die zweite Ableitung des Drucks p nach dem Volumen Vm gleich null sind. Simulieren Sie die Isothermen von CO2 mithilfe der Van-der-Waals-Gleichung für verschiedene Temperaturen: 0, 20, 30.85, 40, 80 °C. ORIGIN  1 R R

ORIGIN festlegen

T T



a a

b b

R˜ T



p Vm T R a b 

Vm  b

Redefinitionen

a



Vm

Van-der-Waals-Gleichung

2

R bedeutet die Gaskonstante, T die Temperatur, V m das molare Volumen und a, b sind spezifische gasabhängige Konstanten. Berechnung der ersten Ableitung und auflösen nach T:





pV Vm T R a b 





d dV m







p Vm T R a b

2˜ a



pV Vm T R a b o

Vm





T Vm T R a b  pV Vm T R a b = 0 auflösen T o



3



R˜ T

Vm  b 2

2

2 ˜ a ˜ Vm  b R ˜ Vm

3

Berechnung der zweiten Ableitung, T ersetzen und auflösen nach Vm:





pVV Vm T R a b 

d dV m





pV Vm T R a b

ersetzen T = 2 ˜









Vc Vm T R a b  pVV Vm T R a b = 0

a 3

Vm ˜ R

¬



˜ ª Vm  bº

¼

2

o 3˜ b

auflösen Vm

Vc = 3 ˜ b









Tc Vm T R a b  pV Vm T R a b = 0 Tc =

8 27

˜

ersetzen Vm = 3 ˜ b 8˜ a o 27 ˜ R ˜ b auflösen T

a b˜ R

R ˜ Tc a pc =  2 Vc  b Vc R ˜ TC

a pc =  2 VC  b VC

Van-der-Waals-Gleichung im kritischen Punkt

ersetzen V C = 3 ˜ b a a op = c ersetzen TC = ˜ 2 27 ˜ b 27 b ˜ R 8

vereinfachen

Seite 158

Differentialrechnung Kurvenuntersuchungen Zusammenfassung: a 1 pc = ˜ 2 27 b

Vc = 3 ˜ b

Tc =

8 27

pc

a

˜

R˜ b

V c Tc



Simulation der Isothermen von CO2 mithilfe der Van-der-Waals-Gleichung: 5

bar  10 ˜ Pa

l

bar ˜ l

a  3.639 ˜

Mol

1 27

˜

2

a 2



8 27

2

˜

l Mol

Konstanten für CO2

Gaskonstante

K ˜ Mol

pc

74.024 ˜ bar

Vc

0.128 ˜

Tc

304.444 K

b

Vc  3 ˜ b Tc 

b  4.267 ˜ 10

2

bar ˜ l

R  0.083 ˜

pc 

Einheiten

1L

˜



p T Vm 

a R˜ b R˜ T

Vm  b



l

a Vm

Daten des kritischen Punktes

Mol

Van-der-Waals-Gleichung

2

Np  800

Anzahl der Bildpunkte

i  1  Np

Bereichsvariable

ϑ  ( 0 20 30.85 40 80 )

Temperaturen in °C

T

T  ( ϑ  273.15) ˜ K

Vm  0.065 ˜ i

l Mol

j  1  5

l

Molvolumina in l/Mol

Mol Bereichsvariable

pj i  p § Tj Vm ·

©

 i ˜ 0.001 ˜

T

273.15 · ¨§ ¸ ¨ 293.15 ¸ ¨ 304 ¸ K ¨ ¸ ¨ 313.15 ¸ ¨ 353.15 ¸ © ¹



Druckmatrix

Seite 159

Temperaturen in Kelvin

Differentialrechnung Kurvenuntersuchungen

Isothermen für CO2 150

Vc l Mol

T = 353.15 ˜ K pj i bar p§Tc Vm ·

©

100



T = 313.15 ˜ K T = 304 ˜ K

bar pc

pc bar

K

bar

T = 293.15 ˜ K 50

T = 273.15 ˜ K

0.1

0.2 Vm l

i

Vm 

i

l

Mol



Mol

Vc l Mol

Abb. 3.3.19 Oberhalb der kritischen Temperatur Tc ist eine Verflüssigung allein durch Druck nicht möglich. Nur bei Unterschreiten der kritischen Temperatur lassen sich Gase durch Druck verflüssigen. Nachfolgend sollen noch weitere Beispiele aus verschiedenen Anwendungsgebieten betrachtet werden:

Beispiel 3.3.9: Untersuchen Sie folgende Funktion auf Nullstellen, Extremstellen und Wendepunkte und stellen Sie die Funktion grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

2

x

f ( x)  4x ˜ e

gegebene Funktion

Ableitungen: f x ( x) 

f ( x)

dx

f xx ( x)  f xxx ( x) 



2

d

d dx

x

f x ( x) Faktor o 4 ˜ e

2

f x ( x)

d dx

x

f xx ( x) Faktor o 8 ˜ e

x

f xxx ( x) Faktor o 8 ˜ e



2



4



˜ x˜ 2˜ x  3 2

fxx ( x)



2

˜ 2˜ x  1

2



˜ 4 ˜ x  12 ˜ x  3

Seite 160

Differentialrechnung Kurvenuntersuchungen Nullstellen: xN  f ( x) = 0 auflösen x o 0

xN f xN o ( 0

N

0)

Extremstellen: notwendige Bedingung:

§ 2 · ¨ ¸ 2 ¸ ¨ xE  fx ( x) = 0 auflösen x o ¨ 2¸ ¨ ¸ © 2 ¹

§ xE f § xE · · ¨ 1 © 1¹ ¸ E ¨x f §x · ¸ © E 2 © E 2¹ ¹

E

§ 0.707 1.716 · ¨ ¸ © 0.707 1.716 ¹

hinreichende Bedingung: f xx § xE

©

f xx § xE

©

·

6.862

fxx(xE2 ) < 0, daher ein Maximum (Hochpunkt)

·

6.862

fxx(xE1 ) > 0, daher ein Minimum (Tiefpunkt)

1¹ 2¹

H

§ xE f § xE · · © 1 © 1¹ ¹

H

( 0.707 1.716 )

Hochpunkt

Ti 

§ xE f § xE · · © 2 © 2¹ ¹

Ti

( 0.707 1.716 )

Tiefpunkt

Wendestellen: notwendige Bedingung:

§¨ 0 ·¸ ¨ 6 ¸ ¨ 2 ¸ xW  f xx ( x) = 0 auflösen x o ¨ ¸ ¨ 6¸ ¨ 2 ¸ © ¹

§¨ xW f § xW · ¸· 1¹ 1 © ¨ ¸ W  ¨ xW2 f § xW2· ¸ © ¹ ¨ ¸ ¨ xW3 f § xW3· ¸ © © ¹¹

0 0 ¨§ ¸· W ¨ 1.225 1.093 ¸ ¨ 1.225 1.093 ¸ © ¹

hinreichende Bedingung: f xxx § xW

©

·



24

f xxx § xW

©

·



10.71

f xxx § xW

©

·



10.71

W1 

§ xW f § xW · · © 1 © 1¹ ¹

W1

(0 0 )

Wendepunkt 1

W2 

§ xW f § xW · · © 2 © 2¹ ¹

W2

( 1.225 1.093 )

Wendepunkt 2

W3 

§ xW f § xW · · © 3 © 3¹ ¹

W3

( 1.225 1.093 )

Wendepunkt 3

Seite 161

fxxx(xW) z0

Differentialrechnung Kurvenuntersuchungen Verhalten im Unendlichen: lim xo∞

2 § x · © 4x ˜ e ¹ o 0

lim xo∞

2 § x · © 4x ˜ e ¹ o 0

y = 0 ist Asymptote

grafische Darstellung: x  4 4  0.01  4

Bereichsvariable

2

H

f ( x)

W2



f xN

1

f §xE

·

f §xE

·

© ©

1¹ 2¹

2

f §xW

©

· 1¹

f §xW

·

f §xW

·

© ©

0



2

N = W1

0

1



W3

Ti

2

x xN xE x E xW xW xW 1

2

1

2

3

Abb. 3.3.20

Beispiel 3.3.10: Untersuchen Sie folgende Funktion auf Nullstellen, Extremstellen und Wendepunkte, und stellen Sie die Funktion grafisch dar. x x

ORIGIN  1

Redefinition 1

g ( x μ σ) 

1 σ˜

2˜ π

e

2

§ x μ · ¸ © σ ¹

˜¨

2

ORIGIN festlegen

Gegebene Funktion (Gauß'sche Normalverteilung; Wahrscheinlichkeitsdichtefunktion). g(x) dx ist die Wahrscheinlichkeit, dass x einen Wert zwischen x und x+dx annimmt. P ... Mittelwert (Erwartungswert) V ... Standardabweichung (V > 0)

Seite 162

Differentialrechnung Kurvenuntersuchungen Ableitungen: gx ( x μ σ) 

d

g ( x μ σ)

dx



( μ x)

2˜ e

gx ( x μ σ) o

2˜σ

2

2

˜ ( 2 ˜ μ  2 ˜ x) 3

4˜ d

gxx ( x μ σ) 

dx

π˜σ

gx ( x μ σ) 2



gxx ( x μ σ) Faktor o

gxxx ( x μ σ) 

d dx

μ  2˜μ˜x x 2˜σ

e

2

2

˜



2˜ μ 

2˜ σ 



2 ˜ x ˜ ( μ  σ  x)

5



π˜σ

gxx ( x μ σ) 2



gxxx ( x μ σ) Faktor o

e

μ  2˜μ˜x x 2˜σ

2

2

˜ ( μ  x) ˜



2

2˜ μ  2˜ 2˜

2˜ μ˜ x 3˜

2

2˜ σ 

2

2˜ x



7

π˜σ

Nullstellen: Wegen g(x) > 0 (für alle x  D) gibt es keine Nullstellen. Extremstellen: notwendige Bedingung: xE ( μ)  gx ( x μ σ) = 0 auflösen x o μ hinreichende Bedingung:





gxx xE ( μ) μ σ Gleitkommazahl 4 o 

0.3989 3

gxx(xE) < 0, daher ein Maximum (Hochpunkt)

σ





g xE ( μ) μ σ Gleitkommazahl 5 o

0.39894 σ

Hochpunkt: H( P| 0.399/V)

Seite 163

Differentialrechnung Kurvenuntersuchungen

Wendestellen: notwendige Bedingung: xW ( σ μ)  gxx ( x μ σ) = 0 auflösen x o xW ( σ μ) o μ  σ 1

§μ  ¨ ©μ 

σ·

¸

σ¹

xW ( σ μ) o μ  σ 2

hinreichende Bedingung: gxxx § xW ( σ μ) μ σ· Gleitkommazahl 4 o 1

©

0.4839

¹

4

gxxx § xW ( σ μ) μ σ· Gleitkommazahl 4 o  2

©

¹

g ( σ  μ μ σ) Gleitkommazahl 4 o W1 (P+ V| 0.242/V)

fxxx(xW) z0

σ

0.4839 4

σ

0.242

g ( σ  μ μ σ) Gleitkommazahl 4 o

σ

0.242

Wendepunkte

W2 (PV| 0.242/V) Verhalten im Unendlichen: μ 3

σ 1

lim xo∞

Vorgaben (Erwartungswert und Streuung)

2  1 § x μ · º «ª » ˜¨ ¸ 1 « 2 © σ ¹ » «¬ σ ˜ 2 ˜ π e »¼ o 0

xE  μ

y = 0 ist Asymptote

Erwartungswert

xW  μ  σ 1

Wendestellen

xW  μ  σ 2 xW

§4 · ¨ ¸ ©2 ¹





g xW μ σ





§ 0.242 · ¨ ¸ © 0.242 ¹



PW  erweitern xW g xW μ σ

Koordinaten der Wendepunkte

PW

§ 4 0.242 · ¨ ¸ © 2 0.242 ¹

Matrix mit Wendepunkten

Wendetangenten:







g ( x)  g x1 = k ˜ x  x1

Tangentengleichung (Punkt-Richtungsform)

Seite 164

σ

Differentialrechnung Kurvenuntersuchungen k 1  gx § xW μ σ· 1

© ¹ k 2  gx § xW μ σ· © 2 ¹

k1

0.242

k2

0.242

Steigungen der Wendetangenten

g1 ( x)  g § xW μ σ·  k 1 ˜ § x  xW · 1¹ © 1 ¹ ©

Wendetangentengleichungen

g2 ( x)  g § xW μ σ·  k 2 ˜ § x  xW · 2¹ © 2 ¹ © μ μ

σ σ

Redefinitionen

Schnittpunkt der Tangenten mit der x-Achse: g § xW μ σ·

©

0.242

¹

1

g ( μ  σ μ σ) Gleitkommazahl 4 o

g ( μ  σ μ σ)  k 1 ˜ ( x  μ  σ) = 0

g1 ( x) = 0

x1 

x1

k1 hat als Lösung(en)

σ ˜ k 2  μ ˜ k 2  g ( μ  σ μ σ)

(= P + 2 V)

σ ˜ k 2  μ ˜ k 2  g ( μ  σ μ σ) k2

1

(= P - 2 V)

Bereichsvariable

μ σ

μ σ

t2

g( x μ σ)





5

x2

k2

x  0 0.01  7



k 1 ˜ ( μ  σ)  g ( μ  σ μ σ) k1

k 1 ˜ ( μ  σ)  g ( μ  σ μ σ)

x2  

g xE μ σ

σ

hat als Lösung(en)

g ( μ  σ μ σ)  k 2 ˜ ( x  μ  σ) = 0

g2 ( x) = 0

0.242

H

t1

0.4

g§x W μ σ·

©

1

¹ 0.3

g§x W μ σ·

©

g 1 ( x) g 2 ( x)

2

W2

¹

W1

0.2

0.1

0

2

4 x xE xW xW x x 1 2

Abb. 3.3.21

Seite 165

6

0

8

Differentialrechnung Kurvenuntersuchungen Beispiel 3.3.11: Untersuchen Sie folgende Funktion auf Nullstellen, Extremstellen und Wendepunkte, und stellen Sie die Funktion grafisch dar. t t

ORIGIN  0

Redefinition





 δ˜t

y t y0 δ ω  y0 ˜ e

˜ sin ( ω ˜ t )

v0 y0 = ω 2

2

ω0  δ

ω=

ORIGIN festlegen gegebene Funktion (gedämpfte Schwingung)

Amplitude

v0 ... Anfangsgeschwindigkeit

Kreisfrequenz

Z0 ... Eigenfrequenz (Kreisfrequenz der ungedämpften Schwingung) G ... Dämpfungsfaktor

Ableitungen:

















yt t y0 δ ω 

d dt





y t y0 δ ω  δ˜t

yt t y0 δ ω Faktor o e ytt t y0 δ ω 

˜ y0 ˜ ( ω ˜ cos ( ω ˜ t)  δ ˜ sin ( ω ˜ t) )

§d · ¨ yt t y0 δ ω ¸ © dt ¹  δ˜t

ytt t y0 δ ω Faktor o e



2

2

˜ y0 ˜ ω ˜ sin ( ω ˜ t)  δ ˜ sin ( ω ˜ t)  2 ˜ ω ˜ δ ˜ cos ( ω ˜ t )



Nullstellen und Berührungspunkte mit den Dämpfungskurven:  δ˜t

y0 ˜ e

˜ sin ( ω ˜ t) = 0

sin ( ω ˜ t) = 0

hat als Lösung(en)

0

ω˜ t = k˜ π

tk = k ˜

Hier wird nur eine Nullstelle gefunden! π ω

k ²

Berührungspunkte:  δ˜t

y0 ˜ e

˜ sin ( ω ˜ t)

ω ˜ tbk = ( 2 ˜ k  1) ˜

Mit ω =

2˜ π T

=r

 δ˜t

y0 ˜ e

π 2

Ÿ

sin ( ω ˜ t) = 1

Ÿ

tbk = ( 2 ˜ k  1) ˜

bzw.

sin ( ω ˜ t) = 1

π 2˜ ω

erhalten wir:

tbk = ( 2 ˜ k  1) ˜

T 4

k  ²

Die Berührungsstellen liegen zwischen den Nullstellen!

Seite 166

Differentialrechnung Kurvenuntersuchungen Extremstellen: notwendige Bedingung: Vorgabe





yt t y0 δ ω = 0

§¨ §¨  δ ¨ 2 ˜ atan ¨© ¨ ω T ¨ Suchen ( t ) o ¨ § ¨ 2 ˜ atan ¨ δ  ¨© ¨  ¨ ω ©

2



ω δ ω

2

¸ ¸¹



ω δ ω

¸ ¸¹

·¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¹

tE = 

§¨  δ 2 ˜ atan ¨ ©

2



ω δ ω

ω

¸ § ω· ¸¹ atan ¨© δ ¸¹ = ω

Wegen der Periodizität gilt dann: 1 § · § ω· ˜ ¨ arctan ¨ ¸  k ˜ π¸ tEx = k ω © δ © ¹ ¹

k ²

k ... ungerade ... Maxima k ... gerade ... Minima

Wendestellen: notwendige Bedingung: Vorgabe





ytt t y0 δ ω = 0

§ ω· §δ· § ¨ 2 ˜ atan ¨ δ ¸ 2 ˜ atan ¨ ω ¸ © ¹  © ¹ Suchen ( t ) o ¨ ω ω © § ω· ¸  k˜π ©δ¹

2 ˜ atan ¨ tWe = k

· ¸ ¸ ¹

§ ω· ¸ ©δ¹

2 ˜ atan ¨ tW =

ω

k ²

ω

Verhalten im Unendlichen: lim to∞

§ y ˜ e δ˜t ˜ sin ( ω ˜ t) · © 0 ¹

y = 0 ist Asymptote

Amplitudenverhältnis:  δ˜t

y ( t) = y0 ˜ e

 δ˜t

y( t) y ( t  T)

=

 δ˜( t T)

˜ sin ( ω ˜ t )

y0 ˜ e

 δ˜( t T)

y0 ˜ e



y ( t  T) = y0 ˜ e ˜ sin ( ω ˜ t)

Dämpfungsverhältnis, das Verhältnis bleibt konstant.

˜ sin [ ω ˜ ( t  T) ]

§ y( t) · = δ˜T ¸ ln e = δ ˜ T = Λ y ( t  T ) © ¹

ln ¨

δ˜T

=e

˜ sin [ ω ˜ ( t  T) ]

Logarithmisches Dekrement, daraus kann G ermittelt werden.

Seite 167

Differentialrechnung Kurvenuntersuchungen t  0 ˜ s 0.01 ˜ s  16 ˜ s

Bereichsvariable

y0  0.3 ˜ m

Amplitude

δ  0.2 ˜ s ω 1˜ s T

1

Dämpfungsfaktor

1

Kreisfrequenz

2˜ π

Schwingungsdauer

ω

k  0  4 tk  k ˜

Bereichsvariable

π

Nullstellen

ω T

tbk  ( 2 ˜ k  1) ˜

Berührungsstellen

4

§ ω· · ¨ atan ¨ ¸  k ˜ π¸ δ © ¹ ¹

Extremstellen

§ ω·  k ˜ π ¸ ©δ¹

Wendestellen



tEx  k

ω©

2 ˜ atan ¨ tWe  k

ω  δ˜t

y1 ( t)  y0 ˜ e

Dämpfungskurven  δ˜t

y2 ( t)  y0 ˜ e

2˜T

T



y t y0 δ ω



H B

y1( t)

0.2

y2( t)

W

y tbk y0 δ ω y tk y0 δ ω

0

N

5

10

15

y§tEx y0 δ ω·

©

k

¹

y§tWe y0 δ ω· 0.2

©

k

¹

 0.4 t t t tk tbk tEx tWe k

Abb. 3.3.22

Seite 168

k

0 20

Differentialrechnung Kurvenuntersuchungen Kosten und Preistheorie (Betriebswirtschaftliche Berechnungen): K(x) ... Kostenfunktion eines Betriebes (Gesamtkosten) Ks (x) = K(x)/x ... Stückkostenfunktion (Gesamtkosten/Stück) Gesucht ist jene Menge x, für die die Kosten pro Stück am geringsten sind. Diese Produktionsmenge heißt Betriebsoptimum. Wir suchen also das Minimum der Stückkostenfunktion Ks (x). Beispiel 3.3.12: Bestimmen Sie bei gegebener Kostenfunktion K(x) das Betriebsoptimum und stellen Sie die Kostenfunktion und die Stückkostenfunktion grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

ME  1

Mengeneinheiten

GE  1

Geldeinheiten

3

2

K ( x)  0.05 ˜ x  3 ˜ x  100 ˜ x  1000 Ks ( x) 

K ( x)

Stückkostenfunktion in GE/ME

x 2

Ks ( x) o

Gegebene Kostenfunktion in GE (Geldeinheiten)

3

100 ˜ x  3 ˜ x  0.05 ˜ x  1000 x

Ableitungen: Ksx ( x) 

Ksxx ( x) 

d dx

3

Ksx ( x) Faktor o

Ks ( x)

d dx

2

x  30.0 ˜ x  10000.0 2

10 ˜ x 3

Ksxx ( x) Faktor o

Ksx ( x)

x  20000.0 3

10 ˜ x

Extremstellen: notwendige Bedingung: Vorgabe Ksx ( x) = 0 37.22 §¨ ·¸ xE  Suchen ( x) Gleitkommazahl 4 o ¨ 3.609  15.99i ¸ ¨ 3.609  15.99i ¸ © ¹

eine reelle Extremstelle

T

hinreichende Bedingung: Ksxx § xE

©

xE 1

· Gleitkommazahl 4 o 0.1388



37.22 ˜ ME

Ksxx(xE3 ) !0, daher ein Minimum

Kostengünstigste Produktionsmenge: 37 Mengeneinheiten

Seite 169

Differentialrechnung Kurvenuntersuchungen Grafische Darstellung: x  0 0.001  100

Bereichsvariable

3

3.5u 10

xE

K§x E

©

1

·



ME

3

2.625u10 K( x )

3

Ks( x)

1.75u10

Abb. 3.3.23 875

0

0

10

20

30

40

50

60

70

80

90

100

x ME

Unter Betriebsminimum verstehen wir jene Produktionsmenge, bei der die variablen Kosten pro Stück Ksv(x) den kleinsten Wert annehmen. Während die Stückzahlen im Betriebsoptimum zugleich die langfristige Kostenuntergrenze darstellen, geben die variablen Stückkosten Ksv(x) im Betriebsminimum die kurzfristige Kostenuntergrenze an.

Beispiel 3.3.13: Bestimmen Sie bei gegebener Kostenfunktion K(x) das Betriebsminimum und stellen Sie die variablen Kosten und die variablen Stückkosten grafisch dar. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

ME  1

Mengeneinheiten

GE  1

Geldeinheiten

3

2

K ( x)  0.05 ˜ x  3 ˜ x  100 ˜ x  1000 3

2

Kv ( x)  0.05 ˜ x  3 ˜ x  100 ˜ x Ksv ( x) =

Kv ( x)

gegebene Kostenfunktion in GE (Geldeinheiten) variable Kosten variable Stückkostenfunktion

x 2

Ksv ( x)  0.05 ˜ x  3 ˜ x  100 Ableitungen: Ksvx ( x) 

Ksvxx ( x) 

d dx

Ksv ( x)

· §d ¨ Ksvx ( x) ¸ © dx ¹

Ksvx ( x) Faktor o

x  30.0 10

Ksvxx ( x) Faktor o 0.1

Seite 170

Differentialrechnung Kurvenuntersuchungen Extremstellen: notwendige Bedingung: Vorgabe Ksvx ( x) = 0 xE  Suchen ( x) o 30.0 hinreichende Bedingung:



Ksvxx(xE) !0, daher ein Minimum

Ksvxx xE ! 0 30 ˜ ME

xE



55 ˜

Ksv xE

Das Betriebsminimum liegt bei 30 Mengeneinheiten GE ME

x  0 0.01  50

Kurzfristige Kostenuntergrenze beträgt 55 GE/ME

Bereichsvariable

200

xE ME

150 Kv( x) 10

100



Ksv( x)

Abb. 3.3.24

Ksv xE GE

50

ME

0

0

10

20

30

40

50

x ME

Eine wichtige Größe in der Betriebswirtschaft ist der Gewinn bzw. Verlust, allgemein der Erfolg eines Unternehmens. Zur Ermittlung des Erfolges Erf(x) bei einer bestimmten Ausbringungsmenge x müssen vom Erlös E(x) die Kosten K(x) abgezogen werden. Erf(x) ... Erfolgsfunktion E(x) ... Erlösfunktion Erf(x) = E(x) - K(x) Wird ein Produkt von vielen angeboten, so ist meist der Preis p eine konstante Größe und E(x) = p x. Ein einziger Anbieter (Monopolist) kann den Preis bestimmen, muss aber berücksichtigen, dass zwischen Preis p und Absatz (Nachfrage) ein funktioneller Zusammenhang besteht: E(x) = n(x) x p = n(x) ... (nichtlineare) Nachfragefunktion Es gilt: Erf(x) > 0 ... weist auf einen Gewinn hin. Erf(x) < 0 ... weist auf einen Verlust hin. Erf(x) = 0 ... das Unternehmen arbeitet gerade kostendeckend, die Nullstellen x1 , x2 nennen wir Gewinnschwellen.

Seite 171

Differentialrechnung Kurvenuntersuchungen Beispiel 3.3.14: Die Gesamtkosten K(x) lassen sich annähernd durch die nachfolgende Gleichung beschreiben. Berechnen Sie die Gewinnschwellen und den maximalen Gewinn bei einem Marktpreis p = 30 GE. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

ME  1

Mengeneinheiten

GE  1

Geldeinheiten

3

2

K ( x)  0.01 ˜ x  x  40 ˜ x  500

gegebene Kostenfunktion in GE (Geldeinheiten)

E ( x)  30 ˜ x

Erlösfunktion

Erf ( x)  E ( x)  K ( x)

Erfolgsfunktion

Ableitungen: Erfx ( x) 

Erfx ( x) Faktor o 

Erf ( x)

dx d

Erfxx ( x) 

dx

Erfxx ( x) Faktor o 

Erfx ( x)

Kx ( x) Faktor o

K ( x)

dx

Kxx ( x) 

d dx

100 3.0 ˜ x  100.0 50

dx

3.0 ˜ x  200.0 ˜ x  4000.0

Kxx ( x) Faktor o

Kx ( x)

d

Kxxx ( x) 

3.0 ˜ x  200.0 ˜ x  1000.0

2

d

Kx ( x) 

2

d

100 3.0 ˜ x  100.0 50

Kxxx ( x) Faktor o 0.06

Kxx ( x)

Nullstellen: Vorgabe Erf ( x) = 0

§¨ 16.84 ¸· xN  Suchen ( x) Gleitkommazahl 4 o ¨ 37.33 ¸ Nur die positiven reellen Nullstellen sind brauchbar! ¨ 79.52 ¸ © ¹ T

xu  ceil § xN · 2

©

xu

38 ˜ ME

¹

xo  floor § xN · 3

©

xo

79 ˜ ME

¹ untere und obere Gewinnschwelle (die untere wird aufgerundet, die obere abgrundet)

Seite 172

Differentialrechnung Kurvenuntersuchungen

Extremstellen (Gewinnmaximum): notwendige Bedingung: Vorgabe Erfx ( x) = 0 T

xE  Suchen ( x) o

Erf § xE

©

Erf § xE

©

§ 5.4446657821974817341 · ¨ ¸ © 61.222000884469184933 ¹

·

526.416 ˜ GE Verlust

·

341.231 ˜ GE

1¹ 2¹

xE 1

5.445 ˜ ME

61.222 ˜ ME

xE 2

maximaler Gewinn

Der maximale Gewinn liegt bei 61 Mengeneinheiten und beträgt 341 Geldeinheiten.

Wendestellen der Kostenfunktion: notwendige Bedingung: Vorgabe Kxx ( x) = 0 xW  Suchen ( x) Gleitkommazahl 4 o 33.33 x  0 0.01  100

Bereichsvariable

3000

K( x )

xW

xE

ME

ME

2

2000

fallende_Kosten

steigende_Kosten

Verlust

E( x )

Verlust

Erf ( x) 1000

Gewinn Erf §x E

xu 0

20

xo

40

60 x

Abb. 3.3.25

Seite 173

80

©

·



GE 100

Differentialrechnung Kurvenuntersuchungen

Beispiel 3.3.15: Für die Herstellung eines Produktes entstehen einem Betrieb Fixkosten in der Höhe von 1000 GE. Die variablen Kosten lassen sich annähernd durch die Gleichung K v(x) = x3 - 25 x2 + 250 x beschreiben. Der mengenmäßige Umsatz x ändert sich mit dem Preis p nach der Gleichung x = (500 - p)1/2 . Wie lautet die Funktionsgleichung für die Gesamtkosten, für den Erlös und für den Erfolg? Wie lauten die Gewinnschwellen und der maximale Gewinn? Wie groß ist die langfristige und kurzfristige Kostenuntergrenze? x x

Redefinition

ORIGIN  1

ORIGIN festlegen

ME  1

Mengeneinheiten

GE  1

Geldeinheiten

3

2

Kv ( x)  x  25 ˜ x  250 ˜ x

variable Kosten

K ( x) = Kv ( x)  Fixkosten

Kostenfunktion in GE (Geldeinheiten)

3

2

K ( x)  x  25 ˜ x  250 ˜ x  1000 Ks ( x) 

K ( x)

Stückkostenfunktion

x 3

Ks ( x) o

Ksv ( x) =

2

x  25 ˜ x  250 ˜ x  1000

variable Stückkostenfunktion

x Kv ( x) x

3

2

x  25 ˜ x  250 ˜ x

=

x

2

Ksv ( x)  x  25 ˜ x  250 Nachfrage: x=

500  p

hat als Lösung(en)

2

500  x

2

n ( x)  500  x

2

p = 500  x = n ( x) Nachfragefunktion



2

E ( x) = n ( x) ˜ x = 500  x

˜x

Erlösfunktion

3

E ( x)  500 ˜ x  x

Erf ( x)  E ( x)  K ( x) 2

Erfolgsfunktion 3

Erf ( x) o 25 ˜ x  2 ˜ x  250 ˜ x  1000

Seite 174

Differentialrechnung Kurvenuntersuchungen

Ableitungen: d

Ksvx ( x) 

dx d

Ksvxx ( x) 

dx

dx

Ksxx ( x) 

Ksx ( x) Faktor o

Ks ( x)

dx

Ksxx ( x) Faktor o

Ksx ( x)

2

dx



3



2

Erfx ( x) Faktor o 2 ˜ 3 ˜ x  25 ˜ x  125

Erf ( x)

d

2

2 ˜ ( x  10 ) ˜ x  10 ˜ x  100 x

dx

Erfxx ( x) 

2

2 ˜ x  25 ˜ x  1000 x

d

d

Erfx ( x) 

Ksvxx ( x) Faktor o 2

Ksvx ( x)

3

d

Ksx ( x) 

Ksvx ( x) Faktor o 2 ˜ x  25

Ksv ( x)



Erfxx ( x) Faktor o 2 ˜ ( 6 ˜ x  25 )

Erfx ( x)

Nullstellen (Gewinnschwellen):

floor xo

xu  wurzel ( Erf ( x) x 0 10 )

xu1  ceil xu

xu1

4 ˜ ME

xo  wurzel ( Erf ( x) x 10 20 )

xo1 

xo1

17 ˜ ME

untere und obere Gewinnschwelle

Extremstellen (Gewinnmaximum): notwendige Bedingung: Vorgabe Erfx ( x) = 0

§ 5 ˜ 85 25 ¨  6 6 T ¨ xE  Suchen ( x) o ¨ 25 5 ˜ 85 ¨  6 © 6 Erf § xE

©

Erf § xE

©

· ¸ ¸ ¸ ¸ ¹

xE 1

11.85 ˜ ME

·

2145.049 ˜ GE

maximaler Gewinn

·

1483.012 ˜ GE

Verlust

1¹ 2¹

xE 2

3.516 ˜ ME

Der Gewinnbereich liegt zwischen 4 ME und 17 ME. Der maximale Gewinn liegt bei 12 ME und beträgt 2145 GE.

Seite 175

Differentialrechnung Kurvenuntersuchungen Betriebsoptimum und Betriebsminimum:

xopt  Ksx ( x) = 0

xopt





©

166.667 ˜

GE

langfristige Kostenuntergrenze

ME auflösen x



o 12.5 Gleitkommazahl 3

xmin  ceil xmin

13 ˜ ME

Ksv xmin



94 ˜

¹

Betriebsoptimum

xmin  Ksvx ( x) = 0



xopt  ceil § xopt · 1

15 ˜ ME

Ks xopt

xmin

§¨ 14.8 ¸· o ¨ 1.14  5.7i ¸ Gleitkommazahl 3 ¨ 1.14  5.7i ¸ © ¹ auflösen x



Betriebsminimum GE

kurzfristige Kostenuntergrenze

ME

x  0 0.01  30

Bereichsvariable

xE

xo

ME

ME

1

4000 K( x ) E( x )

Erf §x E

©

Erf ( x) n ( x)

2000

·



GE

Gewinn

0

xu

10

xo x

Abb. 3.3.26

Seite 176

20

30

Differentialrechnung Extremwertaufgaben 3.4 Extremwertaufgaben Bei angewandten Aufgaben stellt sich öfters die Frage, ob in einem gewissen Intervall I = [a, b] einer vorgegebenen Funktion y = f(x1 , x2 , ...) (Zielfunktion) ein Extremwert (Maximum oder Minimum) vorliegt. Die Zielfunktion ist für das vorliegende Problem zu bestimmen und weist oft die Abhängigkeit von mehr als einer Variablen auf. Für diese Fälle können Nebenbedingungen aufgestellt werden (ergeben sich oft aus geometrischen Überlegungen wie dem pythagoräischen Lehrsatz, den Strahlensätzen usw.), um die Zielfunktion auf die Abhängigkeit von einer Variablen y = f(x) überzuführen (siehe dazu auch Abschnitt 3.8.2). Eine Funktion f, die auf einem Intervall I definiert ist, kann an einem Randpunkt oder im Inneren von I = [a, b] einen absoluten Extremwert annehmen (siehe Abschnitt 2.2.1 Extremwertsatz). Folgende Funktionen besitzen dieselben Extremstellen: y = f ( x)  c

und

y = a ˜ f ( x) y= y=

n

f ( x) 1

f ( x)

(3-76)

und

y1 = f ( x) y1 = f ( x)

und

y1 = f ( x) n gerade und f(x)t0 in [a, b]

(3-78)

und

y1 = f ( x) Maximum wird zum Minimum

(3-79)

(3-77)

und Minimum zum Maximum! Vorgangsweise: a) Aufstellen der Zielfunktion y = f(x1 ,x2 ,...) b) Aufsuchen von Nebenbedingungen c) Extremwerte aufsuchen:

(3-80) (3-81)

f '(x0 ) = 0 und f ''(x0 ) > 0 ... Minimum f '(x0 ) = 0 und f ''(x0 ) < 0 ... Maximum

(3-82)

Beispiel 3.4.1: Von einem quadratischen Blechstück mit den Seitenlängen a = 50.0 cm werden die markierten Quadrate weggeschnitten. Wie lang muss die Seite x dieser Quadrate sein, damit das Volumen V der Schachtel, die aus dem so entstehenden Netz gebildet werden kann, möglichst groß wird? 2

V ( x) = ( a  2 ˜ x) ˜ x

Zielfunktion aus der Geometrie

V(x) soll ein Maximum werden für x  [0 cm, 25 cm] ORIGIN  1 dm  10

1

˜m

ORIGIN festlegen Einheiten definieren

Abb. 3.4.1 2

V ( x a)  ( a  2 ˜ x) ˜ x Vx ( x a)  Vxx ( x a) 

d

V ( x a)

dx d dx

Vx ( x a)

Zielfunktion

Vx ( x a) Faktor o ( a  6 ˜ x) ˜ ( a  2 ˜ x) Vxx ( x a) Faktor o 8 ˜ ( a  3 ˜ x)

Seite 177

Ableitungen

Differentialrechnung Extremwertaufgaben a  50 ˜ cm

Seitenlänge des Quadrates

§ 25 ˜ cm · x  Vx ( x a) = 0 auflösen x o ¨ 25 ˜ cm ¸ ¨ ¸ © 3 ¹





Vxx x2 a x2

2 m

Vxx(x1) < 0, daher ein Maximum





3

8.333 ˜ cm

V x2 a



Minimum



Vxx x1 a

2m

x  0 ˜ cm 0.01 ˜ cm  30 ˜ cm 15

9.259 ˜ dm

Bereichsvariable

x2 cm

V( x a ) dm

Ausschnitte (nur der zweite Wert ist brauchbar)



V x2 a

10

dm

3



3

Abb. 3.4.2

5

0

10

20

30

x cm 2

V1 ( x)  ( 50 ˜ cm  2 ˜ x) ˜ x

Zielfunktion

x  5 ˜ cm

Startwert

x1  Maximieren ( V1 x)

x1

8.333 ˜ cm

Bestimmung der Extremstelle mithilfe der Mathcad-Funktion Maximieren

Beispiel 3.4.2: Aus einer gegebenen Kreisfläche ist ein Sektor von solcher Größe auszuschneiden, dass ein kegelförmiger Filter mit größtmöglichem Fassungsvermögen hergestellt werden kann.

x x

Redefinition

ORIGIN  1

ORIGIN festlegen

dm  10

1

˜m

Abb. 3.4.3 V ( r h) = 2

2

π 3 2

h =a r

2

˜r ˜h

Zielfunktion: V(r,h) soll ein Maximum werden

Nebenbedingung (Abb. 3.4.3)

Seite 178

Einheitendefinition

Differentialrechnung Extremwertaufgaben 2˜ π˜ r = a˜ φ

V ( φ) =

π 3

π

˜r ˜h=

3

V ( φ) =

f 1 ( φ) = V ( φ)

2

˜

4˜ π

d

2

2

˜

a 

2

2

a ˜φ 4˜ π

2

˜φ ˜

2

4˜ π  φ

d. h.

π

π 3

2

˜

2

a ˜φ 4˜ π

2

1

r=

˜

2

a 2˜ π

˜ a˜

φ

Radius des Trichters

π

2

˜

Volumsfunktion mit einer Variablen

2

4˜ π  φ

Zielfunktion: V(M) soll ein Maximum werden

2

2



Nach (3-77) können konstante Faktoren weggelassen werden.



3

2

2

f φ ( φ) Faktor o 2 ˜ φ ˜ 8 ˜ π  3 ˜ φ

f ( φ)



f φφ ( φ) 

2

=

φ

Nach (3-78) kann die Zielfunktion vereinfacht werden.

f ( φ)  φ ˜ 4 ˜ π  φ f φ ( φ) 

2

2



4

3

2

a ˜φ

2

24 ˜ π

˜ a˜

2

2

a

1

hat als Lösung(en)

Ableitungen

d dφ

2



2

2

f φφ ( φ) Faktor o 6 ˜ φ ˜ 8 ˜ π  5 ˜ φ

f φ ( φ)



0 §¨ ¸· 0 ¨ ¸ ¨ ¸ 0 ¨ ¸ φ  f φ ( φ) auflösen φ o ¨ 2 ˜ π ˜ 6 ¸ Nur der Wert M4 ist brauchbar! ¨ ¸ 3 ¨ ¸ ¨ 2˜ π˜ 6 ¸ ¨ ¸ 3 © ¹



f φφ φ4 o 

256 ˜ π

4

fMM(M4 ) < 0, daher liegt ein Maximum vor

3

φ  0 0.01  2 ˜ π

φ4

Bereichsvariable (Winkel in Radiant)



10000

f φ5

8000 f ( φ)

6000 4000

Abb. 3.4.4

2000 0

2

4

6

8

φ

a  20 ˜ cm

Radius des gewählten Kreises

Seite 179

5.13



f φ4

9115.394

Differentialrechnung Extremwertaufgaben 3

a

V1 ( φ) 

2

24 ˜ π

2

φ = 360°  α

˜φ ˜

2



2

4˜ π  φ

V1 φ4

293.9 ˜ Grad

φ4

3

3.225 ˜ dm

maximales Volumen

Mittenwinkel des Sektors (in Grad), der auszuschneiden ist.

α  360Grad  φ4

α

φ 4

Startwert

φ  Maximieren ( V1 φ)

φ

66.1 ˜ Grad

gesuchter Winkel in Grad

Berechnung mithilfe des Näherungsverfahrens "Maximieren"

293.939 ˜ Grad

Beispiel 3.4.3: Ein zylindrischer Behälter aus Blech mit kreisförmiger Grundfläche fasst 1000 cm3 . Bestimmen Sie die Abmessungen, für die der Metallverbrauch (Oberfläche) am kleinsten ist, wenn der Behälter oben geschlossen ist. x x

Redefinition

ORIGIN  1

ORIGIN festlegen

dm  10

1

˜m

Einheitendefinition

Abb. 3.4.5 2

Ao ( r h)  2 ˜ π ˜ r  2 ˜ π ˜ r ˜ h

Zielfunktion (soll ein Minimum werden)

Ÿ

2

V ( r h)  π ˜ r ˜ h

3

h=

1000 ˜ cm

Nebenbedingung

2

π˜r

3

V1  1000 ˜ cm

§ r · §0 · ¨ ¸  ¨ ¸ ˜ cm ©h ¹ ©0 ¹

Startwerte für das Näherungsverfahren

Vorgabe

Lösungsblock V ( r h) = V1

§r · ¨ ¸  Minimieren Ao r h ©h ¹ oder:

r r 2

2

Ao ( r)  2 ˜ π ˜ r  2 ˜

Aorr ( r) 

d dr

Ao ( r)

d dr

0.5 ˜ h

h

10.833 ˜ cm Maße für die minimale Oberfläche

Redefinition 3

Ao ( r) = 2 ˜ π ˜ r  2 ˜ π ˜ r ˜

Aor ( r) 

r

Aor ( r)

1000 ˜ cm 2

vereinfachte Zielfunktion (mit eingesetzter Nebenbedingung)

π˜r 3

1000 ˜ cm r

Ao(r) soll ein Minimum werden Aor ( r) Faktor o

Aorr ( r) Faktor o



3

3

4 ˜ π ˜ r  500 ˜ cm 2



Ableitungen

r

3

3

4 ˜ 1000 ˜ cm  π ˜ r 3

r

Seite 180



Differentialrechnung Extremwertaufgaben

1 ª « 3 3 « 159.15 ˜ cm « « auflösen r1 o« Gleitkommazahl 5 «( 0.5  0.86603j) ˜ 159.15 ˜ cm3 « « « 3 ¬( 0.5  0.86603j) ˜ 159.15 ˜ cm



r  Aor ( r1 ) = 0



Aorr r1 o 37.69989244910626689











º » » » 1» 3» » » 1 » 3» ¼

Nur der reelle Wert ist brauchbar!

Die zweite Ableitung ist größer null, daher liegt eine Minimum vor.

3

5.419 ˜ cm

r1

h

1000 ˜ cm



π ˜ r1



r1

2

2

5.536 ˜ dm

Ao r1

0.5 ˜ h h

10.839 ˜ cm Maße für die minimale Oberfläche

minimale Oberfläche

r  0 ˜ cm 0.01 ˜ cm  10 ˜ cm

Bereichsvariable

r1 cm

9 Ao ( r ) 8 2

dm 7

Abb. 3.4.6



6

Ao r 1

5

dm 0

2

4

6

8

2

10

r cm

Eine andere Berechnungsvariante: r r

h h 2

O ( r h)  2 ˜ r ˜ π  2 ˜ r ˜ π ˜ h 2

V = r ˜π˜h

h=

Redefinitionen Zielfunktion (soll ein Minimum werden) Nebenbedingung (Zusammenhang zwischen den Parametern r und h des Zylinders)

V

die Höhe h aus der Nebenbedingung

2

r ˜π V V

r r

Redefinitionen

Seite 181

Differentialrechnung Extremwertaufgaben

d dr

2 ˜ r2 ˜ π  2 ˜ r ˜ π ˜ h1 (r)

d auflösen  h1 ( r) dr ersetzen h1 ( r) =

V

V o

3

2

π˜r

2

r ˜π vereinfachen 3

V  1000 ˜ cm

V

r 

3

π˜r

r

2

vorgegebenes Volumen

ª«( 2.7096  4.6932j) ˜ cm º» 5.4193 ˜ cm o« » Gleitkommazahl 5 «( 2.7096  4.6932j) ˜ cm » ¬ ¼ auflösen r

r2 V

h

2

Lösungsvektor

r

5.419 ˜ cm

optimaler Radius

h

10.838 ˜ cm

optimale Höhe und Radius

r

0.5 ˜ h

r ˜π 2

O ( r h)

5.536 ˜ dm

minimale Oberfläche

h umbenennen, weil auf h bereits ein Wert zugewiesen wurde: O ( r)  O ( r h1 ) ersetzen h1 =

V 2



3



r

r ˜π r1  0 ˜ cm 0.01 ˜ cm  10 ˜ cm

3

2 ˜ 1000 ˜ cm  π ˜ r

o

Bereichsvariable

r cm

9



O r1 8 2

dm 7

Abb. 3.4.7

6

O( r)

5

dm 0

2

4

6

8

r1 cm

Seite 182

2

10

Differentialrechnung Extremwertaufgaben Beispiel 3.4.4: Es soll ein Viereck mit b = 3/4 dm und l = 3 dm in ein Dreieck so eingeschrieben werden, dass die Hypothenuse L minimal wird.

x x

Redefinition

ORIGIN  1

ORIGIN festlegen

Abb. 3.4.8

2

§ ©

( y  3)  ¨ x 

L ( x y) 



2

¸

Zielfunktion (soll ein Minimum werden)



Nebenbedingung: Für ähnliche Dreiecke gilt der Strahlensatz: y 3

=

3

9

hat als Lösung(en)

4˜ y

x

x ist also:

x=

9 4˜ y

4

16 ˜ y2  9 ˜ (y  3)2 L ( y)  L ( x y) ersetzen x =

y

d

L ( y) = 0

dy

y2

1.191



L y2

4.953

y  0 0.01  3

9 4˜ y

2

y

o

Zielfunktion auf die Abhängigkeit von einer Variablen reduzieren

4

§ 3 ¨ auflösen y 1 ¨ o annehmen y = reell ¨ 3 ˜ 4 3 ¨ © 4

· ¸ ¸ ¸ ¸ ¹

Nur die positive Lösung ist brauchbar.

minimaler y-Wert minimale Länge in dm Bereichsvariable

Seite 183

Differentialrechnung Extremwertaufgaben

y2

12 10 L ( y)

8

Abb. 3.4.9

6



L y2 4

0

1

2

3

y

§ 9  3· ( y  3)  ¨ ¸ © 4 ˜ y 4¹ 2

L ( y) 

2

Zielfunktion

y 1

Startwert

y1  Minimieren ( L y)

y1

1.191

Berechnung mithilfe des Näherungsverfahrens

Beispiel 3.4.5: Es soll ein Kegel mit maximalem Volumen in eine Kugel eingeschrieben werden:

r r

h h

ORIGIN  1 dm  10

1

˜m

x x

Redefinitionen ORIGIN festlegen Einheitendefinition

Abb. 3.4.10 Volumen: VKegel( r h) =

1 3

2

˜π˜r ˜h

Zielfunktion (soll ein Maximum werden)

Aus der Abbildung 3.4.10: h=R x Nebenbedingungen 2

2

2

R =x r

Nach dem Einsetzen der Nebenbedingungen ist die Zielfunktion nur mehr von einer Variablen abhängig: VKegel ( r h) 

1 3

2

˜π˜r ˜h

Seite 184

Differentialrechnung Extremwertaufgaben

2

2

2

VKegel ( x)  VKegel ( r h) ersetzen h = R  x r = R  x

§ R · x VKegel ( x) = 0 auflösen x o ¨ R ¸ ¨ ¸ dx ©3 ¹

o



2

2

π˜ R  x

˜ (R  x)

3

d

Nur der positive Radius ist von Bedeutung.

R xmax  x2 o 3

§r ¨ max ·¸  ¨ hmax ¸ © ¹

rmax o

optimaler x-Wert

ersetzen x = xmax annehmen R ! 0 o

§¨ R2  x2 ¸· ¨ R x ¸ © ¹



vereinfachen

2˜ R

hmax o

3

R  ( 1  FRAME ) ˜ dm VKegel ( x) 

π 3



3

4˜ R 3

2

˜ (R  x)

Kegelvolumen

hmax  R  xmax

rmax 

hmax

rmax

0.133 m

x  0 ˜ dm 0.01 ˜ dm  xmax  1 ˜ dm 2

dm

2

R  xmax

2

0.094 m

optimale Höhe und optimaler Radius

Bereichsvariable

xmax



VKegel xmax

dm 1

VKegel( x)

optimaler Radius und optimale Höhe

Änderung des Kugelradius für weitere Simulationen

˜ R x

R

xmax 

2

§ 2˜ 2˜ R · ¨ ¸ 3 ¨ ¸ ¨ 4˜ R ¸ ¨ ¸ 3 © ¹

dm



3

3



VKegel xmax dm



R 0

0.5

1

1 ˜ dm

1.5

xmax

3

1

0.333 ˜ dm



VKegel xmax 2 x dm



xmax dm

Abb. 3.4.11

Seite 185



3

1.241 ˜ dm

Differentialrechnung Extremwertaufgaben

Näherungsweise Lösung mit der Funktion "wurzel": x  0 ˜ dm

Startwert

· §d VKegel ( x) x¸ © dx ¹

xmax1  wurzel ¨

xmax1

0.333 ˜ dm



VKegel xmax1



3

1.241 ˜ dm

Beispiel 3.4.6: Schubkurbel mit bzw. ohne Exzentrizität: Die Schubkurbel dreht sich mit konstanter Winkelgeschwindigkeit Z. Der Kreuzkopf bewegt sich geradlinig hin und her und erreicht im Punkt K max den oberen Totpunkt. Bestimmen Sie neben der Position des Kreuzkopfes auch dessen Geschwindigkeit und die Beschleunigung in Abhängigkeit von der Zeit und stellen Sie diese grafisch dar. Bestimmen Sie auch den oberen und unteren Totpunkt, den Kolbenhub und die Maxima der Kreuzkopf- geschwindigkeit.

Abb. 3.4.12

dm  10 ω 1˜ s T

1

˜m

Einheitendefinition

1

Kreisfrequenz

2˜ π

T

ω

6.283 ˜ s

Periodendauer für eine Kurbelumdrehung

r  4 ˜ dm

Kurbelradius

l  12 ˜ dm

Schubstangenlänge

λ

r

λ

l

Schubstangenverhältnis

0.333

e1  2 ˜ dm L

Exzentrizität oder Versetzung 2

2

( r  l)  e1 L

xp ( t)  r ˜ cos ( ω ˜ t) yp ( t)  r ˜ sin ( ω ˜ t)

1.587 m

größter x-Abstand Kreuzkopf-Kurbelachse

Kurbelkoordinaten

Seite 186

Differentialrechnung Extremwertaufgaben

2

xpk ( t) 



l  yp ( t)  e1

2

Abstand

xk ( t)  xp ( t)  xpk ( t) vk ( t)  ak ( t) 

d dt

Kreuzkopfposition Geschwindigkeit des Kreuzkopfes

xk ( t) 2

d

dt

Beschleunigung des Kreuzkopfes

x ( t) 2 k

h ( t)  L  xk ( t)

Hub, bezogen auf oberen Totpunkt

Bestimmung des oberen und unteren Totpunkts aus den Nullstellen der Kreuzkopfgeschwindigkeit:



ω ˜ to

7.181 ˜ Grad



ω ˜ tu

194.478 ˜ Grad

to  0 ˜ s

t o  wurzel vk t o t o

t u  T ˜ 0.5

t u  wurzel vk t u t u

ω ˜ to  ω ˜ tu

187.297 ˜ Grad

Durch die Exzentrizität ist der Abstand zwischen dem oberen und unteren Totpunkt nicht mehr 180 Grad. Je größer die Exzentrizität, desto größer die Abweichung von 180 Grad. Kolbenhub:



Hub  h t u

Hub

0.813 m

Bestimmung der absoluten Maxima der Kreuzkopfgeschwindigkeit:



ω ˜ t max1

81.107 ˜ Grad

vk t max1



ω ˜ t max2

294.032 ˜ Grad

vk t max2

t m  0.25 ˜ T

t max1  wurzel ak t m t m

t m  0.75 ˜ T

t max2  wurzel ak t m t m

t  0 ˜ s 0.01 ˜ T  T

Bereichsvariable

Seite 187





0.405





0.452

m s

m s

Differentialrechnung Extremwertaufgaben

xk( t)

ω˜to

ω˜tu

Grad

Grad

L

m

m

vk( t) m

1

s

ak( t) m s

2





vk tmax1 m

0

s



100

200

300

400



vk tmax2 m s

1 ω˜tmax1 ω˜tmax2  Grad Grad Grad Grad Grad ω˜t



ω˜t



ω˜t



Abb. 3.4.13 Beispiel 3.4.7: Ein Zylinderkondensator soll bei gegebenem Außendurchmesser 2 r2 = 2 cm die Spannung U = 10 kV aufnehmen. Zu bestimmen ist die am Innenleiter (r1 ) auftretende elektrische Feldstärke E1 bei Radien zwischen r1 = 0.1 cm und r 2 = 0.7 cm. Bei welchem Radienverhältnis x = r2 /r1 ist die Feldstärke E1 an der Oberfläche des Innenleiters minimal?

x x

Redefinition

ORIGIN  1

ORIGIN festlegen

Abb. 3.4.14 U˜ E1 =



U

§ r2 · r1 ˜ ln ¨ ¸ ¨© r1 ¸¹



E1 x r2 U 

=

r2 r1

§ r2 · r1 ˜ ˜ ln ¨ ¸ ¨© r1 ¸¹ r1 r2

=

U˜ x r2 ˜ ln ( x)

Feldstärke mit x = r2 /r1

U˜ x r2 ˜ ln ( x)

Seite 188

Differentialrechnung Extremwertaufgaben





d

E1x x r2 U 



dx



d

E1xx x r2 U 

dx









E1 x r2 U







E1x x r2 U

1



U˜ e

U ˜ ( ln ( x)  2) r2 ˜ x ˜ ln ( x)

3

Ist positiv, daher liegt ein Minimum vor!

r2  1 ˜ cm

Außenleiterradius

r1min 

Ableitungen

r2 Spannung



2

optimales Radiusverhältnis

U  10 ˜ kV

E1 r1 

r2 ˜ ln ( x)



r2 x1 = =e r1



E1xx x1 r2 U vereinfachen o

U ˜ ( ln ( x)  1)

E1xx x r2 U Faktor o 

x1  E1x x r2 U auflösen x o e





E1x x r2 U Faktor o

U

elektrische Feldstärke

§ r2 · r1 ˜ ln ¨ ¸ ¨© r1 ¸¹ r2

r1min

1

0.368 ˜ cm

minimaler Radius

e

r1  0.1 ˜ cm 0.1 ˜ cm  0.001 ˜ cm  0.7 ˜ cm 45

Bereichsvariable

r1min cm

40



E1 r1 kV

35

Abb. 3.4.15

cm



30

E1 r1min



kV

25

cm

0

0.2

0.4

0.6

0.8

r1 cm

Berechnung mithilfe des Näherungsverfahrens "Minimieren":



E1 r1 

U

§ r2 · r1 ˜ ln ¨ ¸ ¨© r1 ¸¹

Zielfunktion

r1  0.3 ˜ cm

Startwert





r1  Minimieren E1 r1

r1

0.368 ˜ cm

optimaler Radius

r2 r1

Seite 189

2.718

Radiusverhältnis e

Differentialrechnung Das Differential einer Funktion 3.5 Das Differential einer Funktion Ist eine Funktion f: y = f(x) an der Stelle x1 differenzierbar, so gilt: dy dx



= f ' x1

(3-83)

Der Differentialquotient kann in die Differentiale dy und dx aufgespalten werden: dy = f '(x1 ) dx

(3-84)

dy heißt Differential einer Funktion y = f(x) an der Stelle x1 . Es bedeutet den Zuwachs der Tangentenordinate, wenn sich x1 um 'x = dx ändert.

Abb. 3.5.1

Beispiel 3.5.1: Bestimmen Sie das Differential an einer beliebigen Stelle x von folgenden Funktionen: 2˜x

2˜x = 2 ˜ e2˜x ˜ dx

y=e

gegebene Funktion

dy = d e

y = ln ( x)

gegebene Funktion

dy = d ( ln ( x) ) =

2



2

1 x

˜ dx

= 2 ˜ sin (x) ˜ cos(x) ˜ dx

gegebene Funktion

dy = d sin ( x)

4

gegebene Funktion

dy = d x

2

gegebene Funktion

dy = d x  4 = 2 ˜ x ˜ dx

y = sin ( x)

y=x

y=x  4

zugehöriges Differential zugehöriges Differential

zugehöriges Differential

4 = 4 ˜ x3 ˜ dx

zugehöriges Differential

2

zugehöriges Differential

Seite 190

Differentialrechnung Das Differential einer Funktion 3.5.1 Angenäherte Funktionswertberechnung a) Funktionswertdifferenz: dy ist Näherungswert für die tatsächliche Funktionswertdifferenz 'y, wenn 'x hinreichend klein ist. Die Näherung ist von 1. Ordnung, d. h. die Kurve wird im betrachteten Intervall [x, x+'x] durch die Tangente ersetzt. 'y | dy = y' dx bzw. f(x+'x) - f(x) | dy = f '(x) dx

(3-85)

Beispiel 3.5.2: Geg.: y = x4 , P1 (2|y1 ), 'x = dx = 0.5. Ges.: 'y |dy

4 = 4 ˜ x3 ˜ dx = 4 ˜ 23 ˜ 0.5 = 24 = 16

Differential

dy = d x





4

4

Δy = y2  y1 = f x1  Δx  f x1 = f ( 2  0.5)  f ( 2) = 2.5  2 = 23.0625

Funktionswertdifferenz

dy < 'y, weil 'x = dx = 0.5 zu groß gewählt wurde! Beispiel 3.5.3: Geg.: y = sin(x), P1 (S/4|y1 ), 'x = dx = 0.1047. Ges.: 'y |dy

§ π · ˜ 0.1047 = 0.0740 ¸ © 4¹

dy = d ( sin ( x) ) = cos ( x) ˜ dx = cos ¨

Differential

· § π· §π Δy = y2  y1 = f x1  Δx  f x1 = f ¨  0.1047¸  f ¨ ¸ = 0.0700 ©4 ¹ © 4¹

Funktionswertdifferenz ('y |dy)





b) Funktionswertberechnung aus einem benachbarten Wert x0 : Aus f(x0 +'x) - f(x0 ) | dy = f '(x0 ) dx folgt: f(x0 +'x) | f(x0 ) + f '(x0 ) dx bzw.

(3-86)

f(x0 +'x) | f(x0 ) + 'x f '(x0 ) bzw. mit 'x = h

(3-87)

f(x0 +h) | f(x0 ) + h f '(x0 )

(3-88)

Beispiel 3.5.4: Geg.: y = x3 - 4 x2 + 5 x - 6 Ges.: Funktionswert näherungsweise für x = 4.03 3

2

f ( x)  x  4 ˜ x  5 ˜ x  6

gegebene Funktion x0 = 4

2

f ' ( x) = 3 ˜ x  8 ˜ x  5





|

14  0.03 ˜ 21

Stelle x 0 und Schrittweite h

Ableitung

f x0  h = f ( 4  0.03) = f ( 4.03) f ( 4.03)

h = 0.03

|

14.63

f ( 4)  0.03 ˜ f ' ( 4)

nach (3-88)

f ( 4.03)

Näherungswert und "exakter" Wert

14.637

Seite 191

Differentialrechnung Das Differential einer Funktion Beispiel 3.5.5: Geg.: y = cos(x) Ges.: Funktionswert näherungsweise für x = 0.005 f ( x)  cos ( x)

gegebene Funktion

f ' ( x) = sin ( x)

Ableitung





f x0  h = f ( 0  0.005 ) = f ( 0.005 ) f ( 0.005 )

|

cos ( 0)  0.005 ˜ sin ( 0)

x0 = 0

Stelle x 0 und Schrittweite h

h = 0.005

|

f ( 0)  0.005 ˜ f ' ( 0)

nach (3-88)

1

f ( 0.005 )

Näherungswert und "exakter" Wert

1

Eine genauere Berechnung erlaubt der Mittelwertsatz (Verschärfung der Linearisierungsformel). Mittelwertsatz: Sei f in [x1 , x2 ] stetig und in ]x1 , x2 [ differenzierbar, dann existiert mindestens eine Zahl [ ]x1 , x2 [ , sodass gilt:

f ' ( ξ) =



f x2  f x1

(3-89)

x2  x1

Das heißt, es gibt mindestens einen Punkt P zwischen P1 und P2 , in dem die Tangente parallel zur Sekante ist.

Setzen wir x 1 = x0 , x2 = x0 + h, x2 - x1 = h und [ = x0 + - h, dann folgt:





f ' x0  ϑ ˜ h =





f x0  h  f x0

(3-90)

h

Damit erhalten wir durch Umformung:









f x0  h = f x0  h ˜ f ' x0  ϑ ˜ h

(3-91)

- ein positiver echter Bruch mit - ]0, 1[. Abb. 3.5.2 Beispiel 3.5.6: Geg.: y = cos(x) Ges.: Funktionswert näherungsweise für x = 0.005 mithilfe des Mittelwertsatzes f ( x)  cos ( x)

gegebene Funktion

f ' ( x) = sin ( x)

Ableitung

x0 = 0

h = 0.005

ϑ=

1 2

Stelle x 0 , Schrittweite h und gewähltem -

1 § · f x0  h = f ( 0  0.005 ) = f ( 0.005 ) = f ( 0)  0.005 ˜ f ' ¨ 0  ˜ 0.005¸ 2 © ¹





§ 1 ˜ 0.005· ¸ ©2 ¹

f ( 0.005 ) = cos ( 0)  0.005 ˜ sin ¨

0.9999875

Seite 192

f ( 0.005 )

0.9999875

Näherungswert und "exakter" Wert

Differentialrechnung Das Differential einer Funktion c) Näherungsformeln für kleine Größen x: Wegen f(x0 +h) | f(x0 ) + h f '(x0 ) gilt für x0 = 0 und h = x: f(x) |f(0) + f '(0) x , für |x| 0 auf drei Dezimalstellen genau. x

f ( x)  e



x 5

1

Funktion ORIGIN  1

2 1.5

f ( 3)

0.35

f ( 6)

0.202

ORIGIN festlegen

1

f ( x)

Funktionswerte

0.5 1  0.5

1

3

5

7

( f ( 3) ˜ f ( 6)  0)

x

Abb. 3.6.7

x1  3 n  1  10

x2  6

Startwerte Bereichsvariable

Seite 204

1

Logische Auswertung! Im Intervall [3, 6] liegt eine Nullstelle.

Differentialrechnung Näherungsverfahren zum Lösen von Gleichungen



xn2  xn  f xn ˜



xn 1  xn



iterative Berechnung



f xn1  f xn

1 1

x

3

2

6

3

4.9009491651

4

4.9642305688

5

4.9651152804

6

4.9651142317

7

4.9651142317

8

4.9651142317

9

4.9651142317

10

4.9651142317

11

4.9651142317

12

4.9651142317

ε  10

Die Folge konvergiert ebenfalls sehr rasch.

 10

Genauigkeit

a 3

b 6

NS ( f a b ε )

Intervallgrenzen Näherungslösung mit einem Unterprogramm

4.9651142317

wurzel ( f ( x) x a b)

4.9651142317

Näherungslösung mithilfe der Mathcad-Funktion "wurzel"

Beispiel 3.6.6: Eine Bank bietet dem Kunden folgende Sparmöglichkeit: Der Kunde zahlt fünfmal jeweils zu Jahresbeginn je 1000 € ein und er erhält am Ende des fünften Jahres ein Guthaben von 6000 €. Wie groß müsste der Zinssatz p sein, dass ein Kunde bei den gleichen Einzahlungen nach fünf Jahren den gleichen Endstand erzielt? q=1p 5

Endwert der ersten Einzahlung

4

Endwert der zweiten Einzahlung

1000 ˜ q 1000 ˜ q

---------------------------------------------------------------------------------------------------------1000 ˜ q

Endwert der fünften Einzahlung

Wir erhalten damit: 5

4

3

2

1000 ˜ q  1000 ˜ q  1000 ˜ q  1000 ˜ q  1000 ˜ q = 6000 5

4

3

2

q  q  q  q  q=6

§ q5  1 · ¸6 f ( q)  q ˜ ¨ © q 1 ¹

4

3

2



q˜ q  q  q  q  1 = 6

Funktion

Seite 205

bzw.

§ q5  1 · ¸ = 6 geometrische Folge © q1 ¹

q˜ ¨

Differentialrechnung Näherungsverfahren zum Lösen von Gleichungen

60

ORIGIN  1

ORIGIN festlegen

40

f ( 0.8) f ( q)

3.311 Funktionswerte

20

f ( 1.5) 0

0.5

1

1.5

 20

13.781

2

( f ( 0.8) ˜ f ( 1.5)  0) q

1

Logische Auswertung! Im Intervall [0.8, 1.5] liegt eine Nullstelle.

Abb. 3.6.8 q1  0.8

q2  1.5

Startwert

n  1  10

Bereichsvariable



qn  2  qn  f qn ˜



qn  1  qn





f qn  1  f qn

iterative Berechnung

1

q

1

0.8

2

1.5

3

0.936

4

1.004

5

1.072

6

1.061

7

1.061

8

1.061

9

1.061

10

1.061

11

1.061

12

1.061

ε  10

Die Folge konvergiert sehr rasch.

6

Genauigkeit

q1  0.8

q2  1.5



NS f q1 q2 ε





Intervallgrenzen Näherungslösung mit einem Unterprogramm

1.061



q  wurzel f ( q) q q1 q2 p q  1

p

6.14 ˜ %

q

1.061

Näherungslösung mithilfe der Mathcad-Funktion "wurzel" gesuchter Zinssatz

Seite 206

Differentialrechnung Interpolationskurven 3.7 Interpolationskurven Wir sprechen von einer Interpolation, wenn eine Funktion ermittelt werden soll, die an vorgegebenen n+1 Stützstellen x0 , x1 , x2 , ..., xn die gegebenen Stützwerte y0 , y1 , y2 , ..., yn annimmt. Die gesuchte Funktion soll ein einfaches Interpolieren ermöglichen, wie die Berechnung der Zwischenwerte genannt wird. Dabei soll sie zwischen den Stützstellen von der gegebenen Funktion (falls diese bekannt ist) möglichst wenig abweichen. Bei allen möglichen Interpolationsfunktionen sind die Polynomfunktionen n-ten Grades von großer Bedeutung: n 1

n

y = Pn ( x) = an ˜ x  an1 ˜ x n

y = Pn ( x) = a0 

¦ k

n2

 an 2 ˜ x

2

 ....  a2 ˜ x  a1 ˜ x  a0 bzw. (3-97)

§ a ˜ xk· © k ¹

(3-98)

1

Es kann Folgendes ausgesagt werden: Sind alle n+1 Stützstellen x0 , x1 , x2 , ..., xn paarweise verschieden, so gibt es dazu genau ein Interpolationspolynom vom Grad n. Bei zunehmender Stützstellenanzahl wird jedoch bei der Verwendung einer einzigen Polynomfunktion der Graf sehr wellig. Häufig verlangen wir aber bei Anwendungen (z. B. Autokarosserien, Flugzeugtragflächen usw.) eine möglichst glatte Kurve durch die Stützpunkte. Die Lösung sind stückweise aus Polynomfunktionen des gleichen niedrigen Grades zusammengesetzte Splines ("biegsames Lineal"). Der einfachste Spline ist ein linearer Spline, der aber nur einen Streckenzug durch die Stützpunkte darstellt. Die häufig gestellten Forderungen, dass der Graf beim Übergang an der Stelle xi keinen Sprung im Funktionswert (Sprungstelle), keinen Sprung in der Steigung (Knick) und keinen Sprung in der Krümmung haben soll, erfüllen am besten kubische Polynome, d. h. die erste und die zweite Ableitung der Kurve soll in jedem Punkt stetig sein. Diese Splines werden kubische Splines genannt. Kubische Splines zeichnen sich geometrisch dadurch aus, dass deren Krümmung, über das Interpolationsintervall betrachtet, minimal ist.

Beispiel 3.7.1: Gegeben ist die Funktion y = x2 - 2.5 x + 1.8. Ersetzen Sie die Funktion an den Stützstellen x 0 = 1 und x 1 = 2 durch eine lineare Funktion und Berechnen Sie damit den interpolierten Wert an der Stelle x = 1.6. Wie groß ist dabei der Interpolationsfehler? An welcher Stelle zwischen x 0 und x 1 ist der bei der linearen Interpolation entstehende maximale absolute Fehler am größten? 2

f ( x)  x  2.5 ˜ x  1.8

gegebene Funktion

ORIGIN  0

ORIGIN festlegen

x

§1 · ¨ ¸ ©2 ¹

y

§ f ( 1) · ¨ ¸ © f ( 2) ¹

y=k˜x d

0

y

0

0.3

1

0.8

Stützpunkte

Interpolationskurve

Durch sukzessives Einsetzen der Werte für xi und yi erhalten wir daraus ein lineares Gleichungssystem aus 2 Gleichungen mit 2 Unbekannten k und d. 0.3 = d  k ˜ 1 0.8 = d  k ˜ 2

bzw. als Matrixgleichung

y=

§1 1 · §d · ¨ ¸ ˜ ¨ ¸ = A˜ a ©1 2 ¹ ©k ¹

Seite 207

Differentialrechnung Interpolationskurven y = A˜ a

Wir erhalten daraus den Lösungsvektor a durch Multiplikation mit A-1 von links, also a = A -1 y (wegen A-1 A = E).

Die Koeffizientenmatrix A dieses lineares Gleichungssystem: i  0  1

Bereichsvariable

o ¢i² i A  x

Ÿ

1

a A

§1 1 · ¨ ¸ ©1 2 ¹

A

A

§d · ¨ ¸ a ©k ¹

˜y

Die Matrix A ist regulär, daher

1

§d · ¨ ¸ ©k ¹

existiert die Matrix A-1 . 0 0

-0.2

1

0.5

P ( x)  k ˜ x  d

gesuchtes Interpolationspolynom

x1  1.6

Zwischenstelle x 1

f x1 P x1

Näherungswert (Polynomwert)

0.6

exakter Funktionswert

0.36

z  0.5 0.5  0.01  3

Bereichsvariable

x1

f ( z)

1

P( z )

Interpolationsfehler

x1 x1

P f

y

Abb. 3.7.1

wahrer Wert 1

0

1

2

3

4

1 z z x

Interpolationsfehler (Istwert-Sollwert):



P x1  f x1

0.24

Maximaler absoluter Fehler (interpolierter Wert; wahrer Wert)

2



F ( x) = P ( x)  f ( x) = 0.5 ˜ x  0.2  x  2.5 ˜ x  1.8 2

F ( x) = P ( x)  f ( x) = 3. ˜ x  2.  1. ˜ x 2

F ( x)  3. ˜ x  2.  1. ˜ x

vereinfacht auf Fehlerfunktion nach unten geöffnete Parabel mit Hochpunkt (Maximum)

Seite 208

Differentialrechnung Interpolationskurven Fx ( x) 

d

Fxx ( x) 

F ( x)

dx

xmax  Fx ( x) = 0



Fxx xmax



2

d

2

Ableitungen

F ( x)

dx

auflösen x

o 1.5 Gleitkommazahl 2

berechneter x-Wert

2



Fxx(xmax) < 0, daher liegt ein Maximum vor

Fmax  F xmax



Fmax

maximaler absoluter Fehler

0.25

Beispiel 3.7.2: Durch n gegebene Punkte Pk(xk, yk) (k = 1, 2, ... n) ist ein Polynom möglichst niedrigen Grades zu legen. Gesucht sind Zwischenwerte für x = -1, 0.5, 4.

§ 2.8 · ¨ ¸ ¨ 0 ¸ ¨ 1 ¸ x ¨ ¸ ¨ 3.2 ¸ ¨ 5.5 ¸ ¨ ¸ © 6.1 ¹

§ 5 · ¨ ¸ ¨ 2.2 ¸ ¨ 2 ¸ y ¨ ¸ ¨ 4 ¸ ¨ 12.2 ¸ ¨ ¸ © 18.4 ¹

ORIGIN  0

ORIGIN festlegen 2

Koordinaten der Punkte P k

3

4

5

y = a0  a1 ˜ x  a2 ˜ x  a3 ˜ x  a4 ˜ x  a5 ˜ x

6 Punkte, daher Polynom 5. Grades

Durch sukzessives Einsetzen der Werte für xi und yi erhalten wir daraus ein lineares Gleichungssystem aus 6 Gleichungen mit 6 Unbekannten a 1 , ..., a6 . n 6

Anzahl der Punkte

i  0  n  1

oder

i = 0  ( länge ( x)  1)

j  0  n  1

oder

i = 0  ( länge ( y)  1)

Bereichsvariable (Indexlaufbereiche)

Koeffizintenmatrix:

ª «1 « «1 « «1 A « «1 « «1 « «1 ¬ A

x0

x0 2 x0 3 x0 4 x0 5 º»

x1

x1 2 x1 3 x1 4 x1 5 »

x2

x2 2 x2 3 x2 4

x3

x3 2 x3 3 x3 4

x4

x4 2 x4 3 x4 4

x5

x5 2 x5 3 x5 4

»

1.023 u 10

8

» 5 x 2 » » 5» x3 » 5» x4 » 5» x5 ¼

§1 ¨ ¨1 ¨1 A ¨ ¨1 ¨1 ¨ ©1

2.8

7.84

21.952

61.466

0

0

0

0

¸ ¸ ¸ 1 1 1 1 1 ¸ 3.2 10.24 32.768 104.858 335.544 ¸ 5.5 30.25 166.375 915.063 5032.844 ¸ ¸ 6.1 37.21 226.981 1384.584 8445.963 ¹

reguläre Matrix

Seite 209

172.104 · 0

Differentialrechnung Interpolationskurven oder:

xi j

Ai j 

oder:

o ¢i² i A  x

1

a A

˜y

T 0

1 2.2

n 1

¦

P ( x)  a0 

i

§¨ 1 ·¸ x1  ¨ 0.5 ¸ ¨ 4 ¸ © ¹



2.8

7.84

21.952

61.466

0

0

0

0

§1 ¨ ¨1 ¨1 A ¨ ¨1 ¨1 ¨ ©1

2.8

7.84

21.952

61.466

0

0

0

0

172.104 ·

¸ ¸ ¸ 1 1 1 1 1 ¸ 3.2 10.24 32.768 104.858 335.544 ¸ 5.5 30.25 166.375 915.063 5032.844 ¸ ¸ 6.1 37.21 226.981 1384.584 8445.963 ¹ 0

172.104 ·

¸ ¸ ¸ 1 1 1 1 1 ¸ 3.2 10.24 32.768 104.858 335.544 ¸ 5.5 30.25 166.375 915.063 5032.844 ¸ ¸ 6.1 37.21 226.981 1384.584 8445.963 ¹ 0

Koeffizienten des Polynoms 0

a

§1 ¨ ¨1 ¨1 A ¨ ¨1 ¨1 ¨ ©1

2 2.407

§ a ˜ xi· © i ¹

oder



4

0.624

5

-0.283

P ( x) =

0.026

¦ §© ai ˜ x ·¹ i

Interpolationspolynom

i

1

k  0  2

y1k  P x1 k

3

-6.974

y1

0 1 2

gewählte Zwischenwerte und Bereichsvariable

0

0 10.647 -0.624 6.868

oder

P ( x1 )

x  floor ( min ( x) ) floor ( min ( x) )  0.1  ceil ( max ( x) )

0

10.647

1

-0.624

2

6.868

Bereichsvariable

50

P( x ) yi

35

20

Abb. 3.7.2

y1k 5  10 3

2

1

0

1

2

3

4

x x i x1k

Seite 210

5

6

7

Differentialrechnung Interpolationskurven Beispiel 3.7.3: Durch die gegebenen Messdaten soll eine ganzrationale Funktion gelegt werden. Zum Vergleich soll mittels kubischer Spline-Interpolation eine Ausgleichskurve gefunden werden. T

I  ( 0.1 0.2 0.3 0.4 0.5 0.6 )

Messdaten T

U  ( 29 51 101 174 288 446 ) ORIGIN  0

ORIGIN festlegen 2

3

4

Up ( I) = a0  a1 ˜ I  a2 ˜ I  a3 ˜ I  a4 ˜ I  a5 ˜ I

5

Näherungspolynom

Durch Einsetzen der Messdaten in das Näherungspolynom ergibt sich ein lineares Gleichungssystem, das in Matrixform U = A ˜ a geschrieben werden kann. n 6

Anzahl der Messwerte

i  0  n  1

Bereichsvariable

§1 ¨ ¨1 ¨1 A ¨ ¨1 ¨1 ¨ ©1

o

¢i² i A  I

Koeffizientenmatrix

3.456 u 10

A

1

a A T

a

 11

˜U

0.1 0.01 0.001

0

0.2 0.04 0.008 0.002 0.3 0.09 0.027 0.008 0.4 0.16 0.064 0.026 0.5 0.25 0.125 0.063 0.6 0.36 0.216

0.13

· ¸ 0 ¸ 0.002 ¸ ¸ 0.01 ¸ 0.031 ¸ ¸ 0.078 ¹ 0

reguläre Matrix gesuchter Koeffizientenvektor

( 101 1638.5 12379.167 37333.333 57083.333 31666.667 ) 5

Up ( I)  a0 

¦ k

§ ak ˜ Ik· © ¹

Up ( 0.1)

Näherungspolynom

29

1

I  0.1 0.1  0.001  0.7

Bereichsvariable Interpolationspolynom

U

400

Abb. 3.7.3

Up ( I) 200

0 0.1

0.2

0.3

0.4

0.5 I I

Seite 211

0.6

0.7

0.8

Differentialrechnung Interpolationskurven Zum Vergleich Interpolation mit kubischer Splinefunktion: vc  kspline ( I U)

kspline(vx ,vy) gibt einen Vektor aus den zweiten Ableitungen für die



Upk ( I)  interp vc I U I

Datenvektoren vx (I) und vy (U) zurück. Dieser Vektor wird als das erste



Argument der Funktion interp verwendet. Die sich dabei ergebende Spline-Kurve ist an den Endpunkten kubisch. interp(vc ,vx ,vy,x) führt eine Spline-Interpolation von vy (U) am Punkt x aus und gibt den sich dabei ergebenden Wert zurück.

I  0.1 0.1  0.001  0.7

Bereichsvariable Spline-Interpolationspolynom

U

400

Upk ( I) Up ( I)

Abb. 3.7.4 200

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I I I

Beispiel 3.7.4: Durch fünf Punkte soll die Kurve einer ganzrationalen Funktion 4. Grades gelegt werden. Zum Vergleich soll mittels kubischer Spline-Interpolation eine Interpolationskurve gefunden werden. Die Ableitungsfunktion soll ebenfalls dargestellt werden. ORIGIN  0

ORIGIN festlegen T

x  (1 2 4 6 9 )

T

y  ( 1 2.1 2.8 2 1.8 )

Koordinaten der gegebenen Punkte Gegebene Stützpunkte

4 3 2

y

Abb. 3.7.5

1 1

1

0

1

2

3

4

5

6

7

8

9

10

x 2

3

4

y = a0  a1 ˜ x  a2 ˜ x  a3 ˜ x  a4 ˜ x

ganzrationale Funktion 4. Grades (Näherungspolynom)

Durch sukzessives Einsetzen der Werte für xi und yi erhalten wir daraus ein lineares Gleichungssystem aus 5 Gleichungen mit 5 Unbekannten a 1 , ..., a5 . Die Koeffizientenmatrix A dieses linearen Gleichungssystems enthält in der i-ten Zeile die i-ten Potenzen von xi . i  0  4

Bereichsvariable

Seite 212

Differentialrechnung Interpolationskurven 1 ¨§ ¨1 ¨1 ¨ ¨1 ¨1 ©

·¸ 16 ¸ 8 2 4 ¸ 4 16 64 256 ¸ 6 36 216 1296 ¸ ¸ 9 81 729 6561 ¹ 1

1

1

1

o ¢i² i A1  x

A1

y = A1 ˜ a

Wir erhalten daraus den Lösungsvektor a durch Multiplikation mit A-1 von links.

a  A1

1

T

˜y

§ ai ˜ xi· © ¹

¦

P ( x)  a0 

i

5

reguläre Matrix

( 0.557 1.751 0.171 0.026 0.003 )

a 4

2.016 u 10

A1

gesuchtes Interpolationspolynom

1

Bei der kubischen Spline-Interpolation wird durch drei benachbarte Punkte (in aufsteigender Reihenfolge) jeweils ein kubisches Polynom gelegt. Diese kubischen Polynome werden dann zur eigentlichen Kurve verbunden. Dadurch wird erreicht, dass die erste und zweite Ableitung der Interpolationskurve in jedem Punkt stetig ist. vc  kspline ( x y)

kubischer Spline-Vektor vc





Ps ( x)  interp vc x y x Psx ( x) 

d dx



kubische Interpolationskurve



interp vc x y x

Ableitungsfunktion

x  floor ( min ( x) ) floor ( min ( x) )  0.1  ceil ( max ( x) )

Bereichsvariable

5 y

3.6

P( x )

2.2

Ps( x) Psx( x)

Abb. 3.7.6

0.8 2

 1 0.6 0

1

2

3

4

5

2 x x x x

Seite 213

6

7

8

9

10

Differentialrechnung Interpolationskurven Ein Wertevergleich für t  2  10: Ps ( t )

P ( t)

-5.678

-4.486

-2.858

-2.45

-0.642

-0.557

1

1

2.1

2.1

2.689

2.693

2.8

2.8

2.499

2.514

2

2

1.551

1.493

1.401

1.3

1.8

1.8

2.996

3.443

Der Vergleich zeigt, dass die Unterschiede der Spline-Kurve von der Kurve des oben gefundenen Polynoms sich in den Randbereichen stärker bemerkbar machen.

Beispiel 3.7.5: Durch die gegebenen Messdaten soll mittels kubischer Spline-Interpolation eine Ausgleichskurve gefunden werden. ORIGIN  0

§¨ 1 ¨3 ¨5 ¨ ¨4 ¨6 ¨ ¨8 ¨ 11 D ¨ ¨ 12 ¨ 13 ¨ ¨ 14 ¨ 16 ¨ ¨ 17 ¨ 19 ©

·¸ 23.16 ¸ ¸ 24.26 ¸ 27.57 ¸ ¸ 16.63 ¸ 30.41 ¸ ¸ 47.2 ¸ 50.03 ¸ ¸ 60.33 ¸ 59.89 ¸ ¸ 71.18 ¸ 84.27 ¸ ¸ 77.69 ¹

ORIGIN festlegen

2.6

0

D  spsort ( D 0) Sortieren der Messdaten

D

¢0² x D ¢1² y D

Extrahierung der Spalten

vc  kspline ( x y)

Spline-Koeffizienten

f A ( x)  interp ( vc x y x)

Anpassungsfunktion (Interpolationsfunktion)

i  0  länge ( x)  1

Bereichsvariable

n  500

Anzahl der Punkte

Seite 214

1

0

1

2.6

1

3

23.16

2

4

27.57

3

5

24.26

4

6

16.63

5

8

30.41

6

11

47.2

7

12

50.03

8

13

60.33

9

14

59.89

10

16

71.18

11

17

84.27

12

19

77.69

Differentialrechnung Interpolationskurven j  0  n

Bereichsvariable max ( x)  min ( x)

x1 j  min ( x)  j ˜

Bereichsvariable in Vektorform

n

100

yi



fA x1j

80

Interpolierte Werte:

60

f A ( 2)

13.775

40

f A ( 7.71)

20 1 0 1

2

3

4

5

6

7

8

27.299

9 10 11 12 13 14 15 16 17 18 19 20

Abb. 3.7.7

xi x1j x-y-Daten kubische Spline-Interpolation

Beispiel 3.7.6: Durch die erzeugten Messdaten soll mittels linearer und kubischer Spline-Interpolation eine Ausgleichskurve gefunden werden. 

f ( x)  e

x 4

n 4 x2 i  i ˜

˜ sin ( x)

gedämpfte Schwingung

i  0  n

Bereichsvariable

2˜ π n



y2i  f x2 i

erzeugte Messdaten

Lineare Interpolation: f L ( x)  linterp ( x2 y2 x)

lineare Interpolationsfunktion

x  x2 0 x2 0  0.01  x2 n

Bereichsvariable für Zwischenwerte

1

y2i

0.5

f ( x)

Abb. 3.7.8

fL ( x) 0

1

2

3

4

 0.5 x2i x x

Seite 215

5

6

7

Differentialrechnung Interpolationskurven Kubische Spline-Interpolation: Je nachdem, ob das Spline-Ende linear, parabolisch oder kubisch sein soll, verwenden wir lspline, pspline, oder kspline. vl  lspline ( x2 y2)

vp  pspline ( x2 y2)

vc  kspline ( x2 y2)

Spline-Koeffizienten

f l ( x)  interp ( vl x2 y2 x) f p ( x)  interp ( vp x2 y2 x)

Interpolationsfunktionen

f c ( x)  interp ( vc x2 y2 x) 1

y2i 0.5

f ( x) fl ( x) fp ( x)

Abb. 3.7.9

fc( x)

0

1

2

3

4

5

6

 0.5 x2i x x x x

Quadratische Fehler im Vergleich: x2

´ n 2 µ f ( x)  fL ( x) dx µ ¶x2





0.0624

lineare Interpolation

0

x2

´ n 2 µ f ( x)  fl ( x) dx µ ¶x2





0.0096

Spline mit linearem Ende

f (x)  fp (x) 2 dx

0.0023

Spline mit parabolischem Ende

´ n 2 µ f ( x)  fc ( x) dx µ ¶x2

0.0056

Spline mit kubischem Ende

0

x

´ n µ µ ¶x2

0

x2





0

Seite 216

7

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen 3.8 Funktionen mit mehreren unabhängigen Variablen 3.8.1 Allgemeines Viele Zusammenhänge lassen sich nicht alleine durch Funktionen y = f(x) mit einer Variablen x beschreiben und in der Ebene 2 darstellen. Kurve im Raum 3 (Parameterdarstellung): f: D Ž oW (Žx x ) 

(3-99)

t ~of(x(t),y(t),z(t))

Beispiel 3.8.1: N  36

Anzahl der Parameterwerte

i  0  N  1

Bereichsvariable

§ i ˜ 6 ˜ π· ¸ ©N 1 ¹

xi  cos ¨

§ i ˜ 6 ˜ π· ¸ ©N 1 ¹

yi  sin ¨ zi 

i N 1

Koordinatenvektoren x, y, z definieren, die vom Parameter i abhängen. Die gewählten Koordinatenvektoren beschreiben eine Schraubenlinie.

˜3

Schraubenlinie

Die Raumkurve wird mit dem Befehl "3D-Streuungsdiagramm erstellen" aus dem Grafik-Menü erzeugt. In den Platzhalter sind die Vektoren x,y,z einzutragen.

( x y z ) Abb. 3.8.1 Eine Zuordnung f, die jedem n-Tupel (x1 , x2 , ..., xn) einer Definitionsmenge D ein Element y einer Wertemenge W zuordnet, heißt Funktion mit n-Variablen. Wir schreiben für die Funktionsgleichung: y = f(x1 , x2 , ... , xn). Funktionen mit zwei unabhängigen Variablen x und y werden im räumlichen Koordinatensystem (3D) dargestellt. Flächen im Raum 3 (explizite Darstellung): f: D Ž(x ) oW (Ž)

(3-100)

(x,y) ~of(x,y) = z

Seite 217

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.2: Ebene im Raum A x + B y + C z + D = 0 bzw. in kanonischer Form x/a + y/b + z/c = 1. z 1 ( x y)  x  2 ˜ y  8

z 2 ( x y)  8

explizite Ebenengleichungen im Raum

Abb. 3.8.2

z 1 z 2 Beispiel 3.8.3: Darstellung eines Paraboloids. z c

2

=

x

2

a

a 2

2



y

kanonische Form oder Normalform der Gleichung für das Paraboloid

2

b

b 2

§ x2 y2 · ¨ ¸ z Pa ( x y)  c ˜  ¨ a2 b2 ¸ © ¹

c 2

Konstanten

explizite Form der Gleichung für das Paraboloid

Abb. 3.8.3

z Pa

Seite 218

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.4: Darstellung eines hyperbolischen Paraboloids. 2

z

=

c

2

x



2

a

y

kanonische Form oder Normalform der Gleichung für das hyperbolische Paraboloid

2

b

a 2

b 2

c 2

§ x2 y2 · ¨ ¸ z Pa ( x y)  c ˜  ¨ a2 b2 ¸ © ¹

Konstanten explizite Form der Gleichung für das hyperbolische Paraboloid

Abb. 3.8.4

z Pa Zylinderkoordinaten und rechtwinkelige Koordinaten: M [0, 2 S[ x = r ˜ cos ( φ) y = r ˜ sin ( φ)

œ

z=z

2

2

x y y x sin ( φ) = cos ( φ) = r r y tan ( φ) = x r=

Beispiel 3.8.5: Darstellung eines geraden Zylinders. 2

x

2

2



a

a 1

y

2

kanonische Form oder Normalform der Gleichung für den Zylinder

=1

b

b 1

§¨ a ˜ cos ( φ) ¸· z zy ( φ z )  ¨ b ˜ sin ( φ) ¸ ¨ ¸ z © ¹

Konstanten

Zylinderkoordinatendarstellung

Seite 219

(3-101)

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen

Abb. 3.8.5

z zy

Beispiel 3.8.6: Darstellung eines Hyperpoloids. 2

x

2

2



a

a 2

y

2

b



z c

2 2

kanonische Form oder Normalform der Gleichung für das Hyperboloid

=1 b 2

c 1

§ 2 2 · ¨ a  z ˜ cos ( φ) ¸ ¨ ¸ z hy ( φ z )  ¨ b2  z2 ˜ sin ( φ) ¸ ¨ ¸ c˜z © ¹

Konstanten

Zylinderkoordinatendarstellung

Abb. 3.8.6

z hy

Seite 220

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Kugelkoordinaten und rechtwinkelige Koordinaten: M [0, 2 S[ , -  [0, S@ x = r ˜ sin ( ϑ) ˜ cos ( φ) y = r ˜ sin ( ϑ) ˜ sin ( φ)

œ

2

2

x y z y sin ( φ) = r=

2

2

x

cos ( φ) = 2

2

x y z = r ˜ cos ( ϑ)

cos ( ϑ) =

z r

2

tan ( ϑ) =

2

x y z

Beispiel 3.8.7: Darstellung einer Kugel. 2

x

2

2



r

y

2



r

z

2

2

=1

r

kanonische Form oder Normalform der Gleichung für die Kugel

r 1

Kugelradius

§¨ r ˜ sin ( ϑ) ˜ cos ( φ) ·¸ z Ku ( φ ϑ)  ¨ r ˜ sin ( ϑ) ˜ sin ( φ) ¸ ¨ ¸ r ˜ cos ( ϑ) © ¹

Kugelkoordinaten

Abb. 3.8.7

z Ku

Beispiel 3.8.8: Darstellung eines Ellipsoids. 2

x

2

a

2



y

2

b



z c

2 2

=1

kanonische Form oder Normalform der Gleichung für das Ellipsoid

Seite 221

(3-102) 2

x y

tan ( φ) =

y x

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen a 1

b 1

c 2

§¨ a ˜ sin ( ϑ) ˜ cos ( φ) ¸· z Ell ( φ ϑ)  ¨ b ˜ sin ( ϑ) ˜ sin ( φ) ¸ ¨ ¸ c ˜ cos ( ϑ) © ¹

Konstanten

Parameterdarstellung

Abb. 3.8.8

z Ell

3.8.2 Partielle Ableitungen Gegeben sei eine Funktion in expliziter Form f: z = f(x,y) ( D Ž (x ) und W Ž  ). Da es sich bei der geometrischen Veranschaulichung von Funktionen in zwei Veränderlichen um Flächen handelt, ist es einsichtig, dass die Tangentensteigungen in den verschiedenen Richtungen verschieden sind. Deshalb führen wir sogenannte Richtungsableitungen ein. Differenzierbar in einer Richtung heißt nicht, dass die Funktion an dieser Stelle differenzierbar ist! Wir nehmen an, dass f(x,y) in einer offenen Umgebung um (x ; y) definiert ist und dort stetige partielle Ableitungen existieren. Wir bezeichnen den bei festgehaltenem y bzw. x gebildeten Grenzwert z x = z x ( x y) =

w wx

f ( x y) = f x ( x y) =

lim Δx o 0

f ( x  Δx y)  f ( x y) Δx

(3-103)

als partielle Ableitung 1. Ordnung nach x bzw. z y = z y ( x y) =

w wy

f ( x y) = f y ( x y) =

lim Δx o 0

f ( x y  Δy)  f ( x y) Δy

(3-104)

als partielle Ableitung 1. Ordnung nach y. Es ist klar, dass die Existenz der beiden Ableitungen nicht die Existenz der Ableitungen in einer beliebigen Richtung garantiert. Die Fläche könnte z. B. in irgendeiner anderen Richtung geknickt sein. Eine Funktion mehrerer Variablen wird also nach einer dieser Variablen partiell abgeleitet, indem wir die restlichen Variablen als Konstante betrachten und nach den bekannten Differentiationsregeln differenzieren.

Seite 222

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen w wx





f x0 y0

bedeutet die Steigung der Tangente ty0 der Schnittkurve sy0 an der Stelle (x0 ,y0 ) w wy





f x0 y0

bedeutet die Steigung der Tangente tx0 der Schnittkurve sx0 an der Stelle (x0 ,y0 ) Abb. 3.8.9 Höhere Ableitungen (Ableitungen 2. Ordnung) erhalten wir durch fortgesetzte partielle Differentiation:

z xx =

z yy = z xy = z yx =

w w wxwx w w wywy w w wxwy w w wywx

f ( x y) =

2

w

2

f ( x y) = fxx ( x y)

zweite partielle Ableitung nach x

(3-105)

2

f ( x y) = fyy ( x y)

zweite partielle Ableitung nach y

(3-106)

wx f ( x y) =

2

w

wy

f ( x y) = f xy ( x y) f ( x y) = f yx ( x y)

gemischte partielle Ableitungen

(3-107)

Satz von Schwarz: Ist z = f(x,y) eine stetige Funktion, so stimmen die gemischten Ableitungen zweiter Ordnung überein: f yx = fxy bzw.

w w wywx

f ( x y) =

w w wxwy

f ( x y)

(3-108)

Beispiel 3.8.9: Bilden Sie die ersten und zweiten partiellen Ableitungen an der Stelle x0 = 1 und y 0 = 0: 2

2

f ( x y)  4 ˜ x  5 ˜ x ˜ y  2 ˜ y

gegebene Funktion

x0  1

Koordinaten eines Punktes in der Ebene

f x ( x y) 

f y ( x y) 

y0  1 w wx w wy





3





1

f ( x y)

f x ( x y) o 8 ˜ x  5 ˜ y

f x x0 y0

f ( x y)

f y ( x y) o 4 ˜ y  5 ˜ x

f y x0 y0

Seite 223

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen 2

w

f xx ( x y) 

2

f ( x y)

wx

w w

f yx ( x y) 

wywx

f ( x y)

f xx ( x y) o 8

f yy ( x y) 

f yx ( x y) o 5

f xy ( x y) 

2

w

2

f ( x y)

f yy ( x y) o 4

f ( x y)

f xy ( x y) o 5

wy

w w wxwy

Beispiel 3.8.10: Bilden Sie die ersten partiellen Ableitungen an der Stelle x 0 = 2 und y 0 = 3: f ( x y)  x ˜ y

gegebene Funktion

x0  2 f x ( x y) 

f y ( x y) 

y0  3 w wx w wy



3





2

f x ( x y) o y

f x x0 y0

f ( x y)

f y ( x y) o x

f y x0 y0

f xx ( x y) o 0

f yy ( x y) 

f yx ( x y) o 1

f xy ( x y) 

2 2

f ( x y)

wx

w w

f yx ( x y) 



f ( x y)

w

f xx ( x y) 

Koordinaten eines Punktes in der Ebene

wywx

f ( x y)

2

w

2

w w wxwy

Beispiel 3.8.11: Bilden Sie alle partiellen Ableitungen: f ( x y)  f x ( x y) 

f y ( x y) 

f xx ( x y) 

2

2

x y w wx

w wy

f ( x y)

gegebene Funktion f x ( x y) o

x 2

2

x y

f ( x y)

f y ( x y) o

y 2

2

x y

2

2

w

2

wx

f ( x y)

y

f xx ( x y) vereinfachen o

3

x2  y2 Seite 224

f ( x y)

f yy ( x y) o 0

f ( x y)

f xy ( x y) o 1

wy

2

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen 2

2

w

f yy ( x y) 

2

f ( x y)

f yy ( x y) vereinfachen o

wy

w w

f yx ( x y) 

wywx

x

3

x2  y2 2 f ( x y)

x˜ y

f yx ( x y) vereinfachen o 

3

x2  y2 2 w w

f xy ( x y) 

wxwy

f ( x y)

x˜ y

f xy ( x y) vereinfachen o 

3

x2  y2 2 Beispiel 3.8.12: Zeigen Sie, dass T = f ( l g) = 2 ˜ π ˜

w wl

g

die partielle Differentialgleichung l ˜

w wl

T  g˜

w wg

T = 0 erfüllt.

l

f ( l g)  2 ˜ π ˜

f l ( l g) 

l

Funktion

g

f ( l g)

π

f l ( l g) o

l



g Ableitungen

f g ( l g) 

w wg

f ( l g)

π˜l

f g ( l g) o 

2

g ˜

l ˜ f l ( l g)  g ˜ fg ( l g) o 0

l g

Die Funktion f(l,g) erfüllt die partielle Differentialgleichung.

Beispiel 3.8.13: Bilden Sie die ersten partiellen Ableitungen:



R1 ˜ R2



R R1 R2 

gegebene Funktion

R1  R2









RR1 R1 R2 

RR2 R1 R2 

w wR1 w wR2





R R1 R2





R R1 R2





RR1 R1 R2 vereinfachen o





RR2 R1 R2 vereinfachen o

Seite 225

2

R2

R1  R2 2 2

R1

R1  R2 2

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Differentiation von impliziten Funktionen: Wenn für F(x,y) = 0 (bzw. y = f(x)) F stetig und Fx stetig in einer Umgebung von (x0 ,y0 ) ist, dann gilt: w y'=

d

y=

dx

wx w wy

F mit F

w wy

Fz0

(3-109)

Wenn für F(x,y,z) = 0 (bzw. z = f(x,y)) F stetig, Fx und Fy stetig in einer Umgebung von (x0 ,y0 ) ist, dann gilt:

w w wx

z =

wx w wz

w

F und F

w wy

wy

z =

w wz

F

w

mit

wz

F

Fz0

(3-110)

Beispiel 3.8.14: Bilden Sie die Ableitung y' der gegebenen Relation an der Stelle (2, 3): 2

2

2

x y =r

gegebene Relation 2

2

F1 ( x y)  x  y  1

2

2

2

implizite Darstellung ( F ( x y) = x  y  r = 0)

konzentrische Kreise w wx

w

F = 2˜ x

w d dx

y=

wx w wy

d dx

wy

F = F

y ( 2 3) =

F = 2˜ y

2 ˜ x 2˜ y

2 3

F1 Abb. 3.8.10

Seite 226

=

x

partielle Ableitungen

Ableitung der Funktion y = f(x)

y

Ableitung der Funktion y = f(x)

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.15: Bilden Sie die Ableitung y' der gegebenen impliziten Funktion: 3

F ( x y) = y  x ˜ y  12 = 0

implizite Darstellung der Funktion

3

F1 ( x y)  y  x ˜ y  12

w wx

w

F=y

wy w

d

y=

dx

wx w wy

2

F = 3˜ y  x

partielle Funktionen

F y

=

Ableitung der Funktion y = f(x)

2

3˜ y  x

F

F1 Abb. 3.8.11 Beispiel 3.8.16: Bilden Sie die Ableitung y' der gegebenen impliziten Funktion: x

y

F ( x y) = e ˜ sin ( y)  e ˜ sin ( x)  1 = 0 x

implizite Darstellung der Funktion

y

F1 ( x y)  e ˜ sin ( y)  e ˜ sin ( x)  1

w wx

x

y

F = e ˜ sin ( y)  e ˜ cos ( x) partielle Ableitungen

w wy

x

y

F = e ˜ cos ( y)  e ˜ sin ( x)

w d dx

y=

wx w wy

F = F

F1 Abb. 3.8.12

Seite 227

x

y

x

y

e ˜ sin ( y)  e ˜ cos ( x) e ˜ cos ( y)  e ˜ sin ( x)

Ableitung der Funktion y = f(x)

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.17: Bilden Sie die partiellen Ableitungen

2

w wx

z und

2

w wy

z:

2

F ( x y z ) = x  3 ˜ x ˜ y  2 ˜ y  3 ˜ x ˜ z  z = 0 w wx

w w wx

w

F = 2˜ x 3˜ y 3˜ z

z =

wx wz

w

F = 3˜ x 4˜ y

wz w

F

w

wy

gegebene implizite Funktionsgleichung

=

2˜ x 3˜ y 3˜ z

w

3˜ x 2˜ z

wy

F

z =

wy w wz

F = 3˜ x 2˜ z

F = F

3˜ x 4˜ y 3˜ x 2˜ z

partielle Ableitungen

partielle Ableitungen der Funktion z = f(x,y)

Differentiation von Funktionen, die noch von einem Parameter abhängen (totale Ableitungen): Ist z = f(x,y), x = x(t) und y = y(t) und sind diese Funktionen differenzierbar, so gilt für die Ableitung: d

z =

dt

§w · §d · §w · §d · ¨ z ¸ ˜ ¨ x¸  ¨ z ¸ ˜ ¨ y¸ ©wx ¹ © dt ¹ ©wy ¹ © dt ¹

(3-111)

Ist z = f(x,y), wobei x = x(u,v) und y = y(u,v) und sind diese Funktionen differenzierbar, so gilt für die Ableitungen: z =

§w · §w · §w · §w · ¨ z ¸ ˜ ¨ x ¸  ¨ z ¸ ˜ ¨ y ¸, © wx ¹ ©wu ¹ © wy ¹ ©wu ¹

(3-112)

z =

§w · §w · §w · §w · ¨ z ¸ ˜ ¨ x ¸  ¨ z ¸ ˜ ¨ y ¸. ©wx ¹ © wv ¹ © wy ¹ ©wv ¹

(3-113)

d du d dv

Beispiel 3.8.18: Die Höhe h eines geraden Kreiskegels ist 150 cm und wächst mit 0.2 cm/s. Der Radius x der Grundfläche ist 100 cm und nimmt mit 0.3 cm/s ab. Wie schnell ändert sich sein Volumen? V = f ( x ( t) y ( t) ) = d

V =

dt d dt

V =

1 3

2

˜ π ˜ x( t) ˜ y( t)

Volumenfunktion (parameterabhängige Funktion)

1 π § §w · §d · §w · §d · 2 d 2 d d 2 d · ¨ V ¸ ˜ ¨ x¸  ¨ V ¸ ˜ ¨ y¸ = ˜ π ˜ x ˜ y ˜ x  ˜ π ˜ x ˜ y = ˜ ¨ 2 ˜ x ˜ y ˜ x  x ˜ y¸ 3 3 © dt dt dt dt ¹ ©wx ¹ © dt ¹ ©wy ¹ © dt ¹ 3

ª 3 ¬

π

§ ©

˜ «2 ˜ 100 ˜ cm ˜ 150 ˜ cm ˜ ¨ 0.3 ˜

Gleitkommaauswertung ergibt

d dt

cm ·

cmº 2 2 ¸  100 ˜ cm ˜ 0.2 ˜ » s ¹ s ¼ 3

V =

7330.4 ˜ cm s

Seite 228

totale Ableitung

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.19: Bilden Sie die totale Ableitung der gegebenen Funktion.

2

2

z = ln x  y d

z =

dt w wx d

z =



t

dt

y=e

§w · §d · §w · §d · ¨ z ¸ ˜ ¨ x¸  ¨ z ¸ ˜ ¨ y¸ ©wx ¹ © dt ¹ ©wy ¹ © dt ¹ 2˜ x

w

2

wy

2

x y

z =

t

x=e

2˜ x 2

2





t

˜ e

x y

2

d 2

x y

2˜ y 2

totale Ableitung

2˜ y

z =

Funktion und Parametergleichungen

t

x = e

dt

d

t

y=e

Ableitungen

dt

t

2

˜e

x y

totale Ableitung der gegebenen Funktion

Beispiel 3.8.20: Bilden Sie die totale Ableitung der gegebenen Funktion: 2

2

z = x  x˜ y  y d

z =

dr

x= 2˜ r  s

§w · §w · §w · §w · ¨ z ¸ ˜ ¨ x¸  ¨ z ¸ ˜ ¨ y¸ ©wx ¹ © wr ¹ © wy ¹ ©wr ¹

§d · §w w · §w · y ¸ ¨ z¸ ¨ z¸ ¨ x ¨ dr ¸ = ¨ wr wr ¸ ˜ ¨ wx ¸ ¨d ¸ ¨w w ¸ ¨w ¸ y¸ ¨ z ¸ ¨ z¸ ¨ x © ds ¹ © ws ws ¹ © wy ¹ d

z = ( 2 ˜ x  y) ˜ 2  ( x  2 ˜ y) ˜ 1

y= r  2˜ s d ds

z =

§w · §w · §w · §w · ¨ z ¸ ˜ ¨ x¸  ¨ z ¸ ˜ ¨ y¸ © wx ¹ ©ws ¹ © wy ¹ ©ws ¹

totale Ableitungen

In Matrixform als Gleichungssystem geschrieben! Die Matrix wird auch Funktionalmatrix genannt!

vereinfacht auf

dr d

Funktion und Parametergleichungen

d

z = 5˜ x 4˜ y

dr z = ( 2 ˜ x  y) ˜ 1  ( x  2 ˜ y) ˜ ( 2)

vereinfacht auf

ds

d

totale Ableitungen z = 3 ˜ y

ds

Das vollständige Differential oder totales Differential: Die Funktionen dxz = z x (x,y) dx und dy z = z y(x,y) dy

(3-114)

heißen Differentiale. Die Funktion dz = z x (x,y) dx + z y(x,y) dy

(3-115)

heißt vollständiges oder totales Differential. Die Differentiale sind wie im eindimensionalen Fall lineare Näherungen von Funktionswertdifferenzen.

Seite 229

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Wenn die bei Messungen auftretenden Ungenauigkeiten 'x und 'y einer Messgröße x und y hinreichend klein sind, können wir das totale Differential benutzen, um den Gesamtfehler zu ermitteln. Jedenfalls erhalten wir den ungünstigsten Fall, also die größte Gesamtungenauigkeit der Funktion z = f(x,y) (Messgrößen x und y mit x = x0 ± 'x und y = y0 ± 'y), wenn statt dem totalen Differential dz Δz =

r^ zx x0 y0 ˜ Δx  z y x0 y0 ˜ Δy }

(3-116)

benutzt wird (siehe dazu Abschnitt 3.8.3). Ein Term P ( x y) ˜ dx  Q ( x y) ˜ dy ist genau dann ein vollständiges Differential, wenn gilt: w wy

P ( x y) =

w wx

Q ( x y) (Integrabilitätsbedingung)

(3-117)

Das totale Differential dz = z x (x0 ,y0 ) dx + z y(x0 ,y0 ) dy einer Funktion mit zwei Variablen gibt die Höhenänderung auf der Tangentialebene an der Stelle (x0 ,y0 ) an, wenn wir zur Stelle (x0 +dx,y0 +dy) fortschreiten (siehe Abb. 3.8.13). Das totale Differential gibt daher näherungsweise an, wie sich der Funktionswert z bei kleinen Änderungen der unabhängigen Variablen um dx = 'x bzw. dy = 'y ändert: 'z = f(x0 +dx,y0 +dy) - f(x0 ,y0 ) | dz

(3-118)

Abb. 3.8.13

Beispiel 3.8.21: Bilden Sie das totale Differential von folgender Funktion: z = a˜ x b˜ y c dz =

w wx

z ˜ dx 

w wy

z ˜ dy = a ˜ dx  b ˜ dy

gegebene Funktion totales Differential

Beispiel 3.8.22: Bilden Sie das totale Differential von folgender Funktion: z=

2

2

2

r x y

gegebene Funktion

Seite 230

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen w wx

x

z = 2

w

2

wy

2

r x y

dz =

w wx

w

z ˜ dx 

wy

y

z = 2

2

2

r x y

x

z ˜ dy =

partielle Ableitungen

2

y

˜ dx 

2

2

2

r x y

2

˜ dy

totales Differential

2

r x y

Beispiel 3.8.23: Zeigen Sie, dass die Entropie ds = dq/T ein vollständiges Differential ist. Für dq gilt: R1 ˜ T

dq = c v ˜ dT  dq T w

=

cv

wv T

cv T

˜ dv

v

˜ dT 

R1 v

˜ dv

v bedeutet das Volumen/kg des Gases, T die Temperatur und R1 die Gaskonstante für ein ideales Gas Division durch T

w R1 o0 wT v

o0

ds ist ein vollständiges Differential (Integrabilitätsbedingung)

Extremwerte von Funktionen z = f(x,y): Eine Funktion z = f(x,y) hat an einer Stelle (x0 ,y0 ) ein relatives Maximum bzw. ein relatives Minimum, wenn gilt: Notwendige Bedingungen für ein Extremum:

wx w



f x0 y0 = 0 und

w wy





f x0 y0 = 0

(3-119)

Gelten diese Gleichungen für (x0 ,y0 ), so ist das totale Differential dz = 0, d. h. die Tangentialebene ist an der Stelle (x0 ,y0 ) parallel zur x-y-Ebene. Hinreichende Bedingung für ein Extremum:

§f ¨ xx ¨ fxy ©

f xy ·

2

¸ = w2 f x y ˜ w2 f x y  § w w f x y · ! 0 2 0 0 ¨ wxwy 0 0 ¸ 2 0 0 f yy ¸ © ¹ wx wy ¹

(3-120)

(Gleich null liefert keine Entscheidung für ein Extremum, bei kleiner null liegt sicher kein Extremum , aber ein Sattelpunkt vor). 2

w





2



2





(3-121)





(3-122)

w f x y  0 (oder f x y  0 ) Maximum 2 0 0 2 0 0 wx wy 2

w



w f x y ! 0 (oder f x y ! 0 ) Minimum 2 0 0 2 0 0 wx wy

Seite 231

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Beispiel 3.8.24: Gesucht ist das globale Maximum einer Halbkugel. 2

f ( x y) 

16  ( x  3)  ( y  2)

2

gegebene Kugelgleichung

Abb. 3.8.14

Notwendige Bedingungen: x0 

y0 

w wx w wy

f ( x y) = 0 auflösen x o 3

Stelle x 0

f ( x y) = 0 auflösen y o 2

Stelle y 0





z 0  f x0 y0

z0

Stelle z 0

4

oder

§w · ¨ f ( x y) = 0 ¸ ¨ wx ¸ auflösen §¨ x ·¸ o ( 3 0 ) x ¨w ¸ ©y¹ ¨ f ( x y) = 0 ¸ © wx ¹

x

(3 0 )

Hinreichende Bedingungen:

· §w w f ( x y)  ¨ f ( x y) ˜ f ( x y) ¸ 2 2 © wxwy ¹ wx wy 2

Δ ( x y) 





Δ x0 y0

z xx ( x y) 

H

x0

2

w

w

0.062 2

w

2

f ( x y)

wx

y0 z 0

Δ x0 y0 ! 0



z xx x0 y0

2

1

0.25

ist größer null (3-120)

z xx(x0 ,y0 ) < 0, d. h., es liegt ein absolutes Maximum vor



H

(3 2 4 )

Hochpunkt

Seite 232

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen Das Maximum kann hier auch mithilfe der Mathcad-Funktion "Maximieren" bestimmt werden: 2

f ( x y) 

16  ( x  3)  ( y  2)

x 1

y 1

Startwerte

§ xmax · ¨ ¸  Maximieren ( f x y) ¨ ymax ¸ © ¹



z max  f xmax ymax H

xmax

2



§ xmax · ¨ ¸ ¨ ymax ¸ © ¹ z max

ymax z max



H

§3 · ¨ ¸ ©2 ¹ 4

(3 2 4 )

Beispiel 3.8.25: Gesucht sind die Extremstellen (Abb. 3.8.15) der nachfolgend gegebenen Funktion.



2

2

g ( x y)  sin ( x) ˜ exp x  y ORIGIN  0 i  0  20 x1 i j 



gegebene Flächenfunktion ORIGIN festlegen

j  0  20

i  10 5

y1i j 

Bereichsvariable

j  10 5

x und y Variable als Matrix

o  z1  g ( x1 y1)

z Variable als Matrix

§¨ x1 ¸· M  ¨ y1 ¸ ¨ z1 ¸ © ¹

Gesamtmatrix

Abb. 3.8.15

M

Seite 233

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen x x

y y

Redefinitionen

ORIGIN  1

ORIGIN festlegen

notwendige Bedingungen: w wx w wy w wx

2

 x y

2

g ( x y) o e

2

 x y

2

 x y

partielle Ableitungen ˜ sin ( x)

2

 x y

2

2

 x y

˜ cos ( x)  2 ˜ x ˜ e

g ( x y) = e

˜ sin ( x)

2

g ( x y) o 2 ˜ y ˜ e 2

2

˜ cos ( x)  2 ˜ x ˜ e

˜ sin ( x) = 0

Die Exponentialfunktion kann nicht null werden!

cos ( x)  2 ˜ sin ( x) ˜ x = 0

goniometrische Gleichung

f ( x)  cos ( x)  2 ˜ sin ( x) ˜ x

linker Term der Gleichung als Funktion dargestellt

x  1 0.99  4

Bereichsvariable 6 4 2

f ( x)

2

 0.4 2

1.2

2.8

4.4

6

4

Die Lösungen der goniometrischen Gleichung können aus der Grafik näherungsweise gut abgelesen werden. Hier sind nur Hauptwerte der Lösung von Interesse.

6 x

Abb. 3.8.16 x1  wurzel ( f ( x) x 0.8 0)

x1

0.653

x2  wurzel ( f ( x) x 0.4 1)

x2

0.653

w wy

2

2

 x y

g ( x y) = 2 ˜ y ˜ e

zwei Lösungen (Hauptwerte) der goniometrischen Gleichung

˜ sin ( x) = 0

Diese Gleichung hat nur die triviale Lösung y = 0!

y 0

y-Wert





z1

0.397





z2

0.397

z 1  g x1 y z 2  g x2 y

zugehörige z-Werte

Seite 234

Differentialrechnung Funktionen mit mehreren unabhängigen Variablen hinreichende Bedingungen:

§w w · g ( x y)  ¨ g ( x y) ˜ g ( x y) ¸ 2 2 © wxwy ¹ wx wy 2

Δ ( x y) 



2

w



Δ x1 y

w



2

w

z xx ( x y) 

2



Δ x2 y

1.481

Δ x1 y ! 0

2

1.481

1

Δ x2 y ! 0

g ( x y)

zweite partielle Ableitung

1

ist größer null logische Auswertung

wx

z xx x2 y z xx x1 y

es liegt ein Minimum vor

1.867 1.867

Ti 

x1

y z1

H

x2

y z2

es liegt ein Maximum vor



Ti

( 0.653 0 0.397 )

Tiefpunkt



H

( 0.653 0 0.397 )

Hochpunkt

Das Maximum und Minimum kann auch mithilfe der Mathcad-Funktion "Maximieren" bzw. "Minimieren" bestimmt werden:

 x2y2

f ( x y)  sin ( x) ˜ e

gegebene Funktion

x  1

Startwerte

y 0

§ xmin · ¨ ¸  Minimieren ( f x y) ¨ ymin ¸ © ¹



z min  f xmin ymin Ti 

xmin

x 1



§ xmin · ¨ ¸ ¨ ymin ¸ © ¹

0.397

z min

ymin z min



Ti

§ 0.653 · ¨ ¸ © 0 ¹

( 0.653 0 0.397 )

y 0

Startwerte

§ xmax · ¨ ¸  Maximieren ( f x y) ¨ ymax ¸ © ¹

§ xmax · ¨ ¸ ¨ ymax ¸ © ¹



z max  f xmax ymax H

xmax



ymax z max

z max



H

Tiefpunkt

§ 0.653 · ¨ ¸ © 0 ¹ 0.397

( 0.653 0 0.397 )

Seite 235

Hochpunkt

Differentialrechnung Fehlerrechnung 3.9 Fehlerrechnung Eine Anwendung der partiellen Ableitungen liegt in der Fehlerrechnung. Dabei geht es um die Berechnung von Funktionen, deren Variable selbst Messgrößen und daher nur mit begrenzter Genauigkeit bekannt sind (siehe Abschnitt 3.5.2). Weil die Messfehler dx und dy betragsmäßig höchstens gleich |'x| bzw. |'y| sind, gilt: Für die Funktion z = f(x,y) der Messgrößen x und y, mit x = x0 r 'x und y = y0 r 'y, lässt sich der absolute Maximalfehler 'z max abschätzen durch: a) Lineares Fehlerfortpflanzungsgesetz (totales Differential):

| fx x0 y0 ˜ Δx  fy x0 y0 ˜ Δy 

'z max

(3-123)

b) Fehlerfortpflanzungsgesetz von Gauß: 'z

max

2 2 2 2 | fx x0 y0 ˜ Δx  fy x0 y0 ˜ Δy 

(3-124)

Die gemessenen Werte x0 und y0 sind meistens Mittelwerte und die Messunsicherheiten 'x und 'y sind meistens Standardabweichungen.

Beispiel 3.9.1: Die Widerstände R 1 = R01r 'R1 = (100 r 1) : und R2 = R02 r 'R2 = (500 r 3) : sind parallel geschaltet. Berechnen Sie den Ersatzwiderstand R unter Angabe des Maximalfehlers a) mittels Differential, b) mittels Fehlerfortpflanzungsgesetz und c) mithilfe der Wertschranken.



R1 ˜ R2



R R1 R2 

Funktion des Ersatzwiderstandes

R1  R2

R01  100 ˜ Ω

ΔR1  1 ˜ Ω

gemessener Wert und Messunsicherheit

R02  500 ˜ Ω

ΔR2  3 ˜ Ω

gemessener Wert und Messunsicherheit

R0

errechneter Wert



R0  R R01 R02





RR1 R1 R2 



w wR1



83.333 Ω



R R1 R2





RR2 R1 R2 

w wR2





R R1 R2

partielle Ableitungen

a) Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des totalen Differentials): ΔRmax  ΔRmax









RR1 R01 R02 ˜ ΔR1  RR2 R01 R02 ˜ ΔR2 absoluter Maximalfehler

0.8 Ω

b) Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des Fehlerfortpflanzungsgesetzes): ΔRmax  ΔRmax



RR1 R01 R02

2 ˜ ΔR12  RR2 R01 R02 2 ˜ ΔR22

0.7 Ω

Seite 236

Differentialrechnung Fehlerrechnung c) Absoluter Maximalfehler (Berechnung mithilfe der Wertschranken):





Run

84.111 Ω





Rob

82.555 Ω

Run  R R01  ΔR1 R02  ΔR2 Rob  R R01  ΔR1 R02  ΔR2 R0 

1 2

Rob  Run

1

ΔR 

2

R0

Run  Rob

Wertschranken

absoluter Maximalfehler

0.8 Ω

ΔR

Damit gilt für den Ersatzwiderstand:

errechneter Wert

83.333 Ω

R = (83.3 r0.8) :

Beispiel 3.9.2: Von einem allgemeinen Dreieck wurden die Seitenlängen a = (322.4 r 0.2) mm und b = (125.3 r 0.3) mm sowie der eingeschlossene Winkel J = (42.62 r 0.09)° gemessen. Bestimmen Sie den absoluten und relativen Fehler für die Fläche des Dreiecks. A1 ( a b γ) 

a˜ b

˜ sin ( γ)

2

Funktion der Dreiecksfläche

a0  322.4 ˜ mm

b0  125.3 ˜ mm

γ0 

Δa  0.2 ˜ mm

Δb  0.3 ˜ mm

Δγ 





A0  A1 a0 b0 γ0 Aa ( a b γ) 

w wa

180 π 180

˜ 42.62

gemessene Werte

˜ 0.09

Messunsicherheiten

2

errechneter Wert für die Fläche

A1 ( a b γ)

Aγ ( a b γ) 

136.77 ˜ cm

A0

A1 ( a b γ)

π

w

Ab ( a b γ) 

wb

w wγ

A1 ( a b γ) Ableitungen

Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des totalen Differentials): ΔAmax  ΔAmax





Aa a0 b0 γ0 2

0.65 ˜ cm

A = (136.77 r 0.65) cm 2

ΔARel  ΔARel

ΔAmax





˜ Δa  Ab a0 b0 γ0





˜ Δb  Aγ a0 b0 γ0

(positive) Abweichung des maximalen absoluten Fehlers errechneter Wert der Fläche

relativer Fehler

A0 0.5 ˜ %

˜ Δγ

Wert für den relativen Fehler in Prozent

Seite 237

Differentialrechnung Fehlerrechnung Beispiel 3.9.3: Das Widerstandsmoment W t eines Rohres mit einem kreisförmigen Querschnitt gegen Torsion lässt sich berechnen nach: 4

4

D d

π

Wt = Wt ( d D) = ˜ D 16 d und D sind der Innen- bzw. Außendurchmesser des Rohres. Eine Messung dieser Größen ergab dabei folgende Werte: d = ( 60.5 ± 0.4 ) mm, D = ( 75.2 ± 0.5 ) mm . Wie groß ist das Widerstandsmoment des Rohres, und mit welchem absoluten und prozentuellen Maximalfehler ist es behaftet? 4

π

Wt ( d D) 

˜

16

4

D d

D0  75.2 ˜ mm d0  60.5 ˜ mm





Wt d0 D0

Widerstandsmoment

D Δd  0.4 ˜ mm

Mittelwert vom Außendurchmesser und Abweichung

ΔD  0.5 ˜ mm

48518.304 ˜ mm

Mittelwert vom Innendurchmesser und Abweichung

3

berechnetes Widerstandsmoment

Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des totalen Differentials):

§w §w · · ¨ Wt d0 D0 ¸ ˜ Δd  ¨ Wt d0 D0 ¸ ˜ ΔD ©wd ¹ ©wD ¹

ΔWtmax d

3

w wd

Wt ( d D)

w wD



π˜d

4˜ D

partielle Ableitungen

Wt ( d D) vereinfachen o

1

ΔWtmax 

ΔWtmax ΔWtmax



4



4

4

˜π˜

D0



2

16 ˜ D

3

d0

4

˜ Δd 

2823.254 ˜ mm

Wt d0 D0



π˜ 3˜ D  d

3

5.819 ˜ %

1 16

˜π˜

4

3 ˜ D0  d0 2

˜ ΔD

D0

absoluter Maximalfehler

prozentueller Maximalfehler

Für das Widerstandsmoment ergibt sich dann folgende (indirekte) Messgröße: Wt = ( 48.52 ± 2.82 ) 10 3 mm 3

Seite 238

Differentialrechnung Fehlerrechnung Beispiel 3.9.4: Die Wirkleistung eines sinusförmigen Wechselstromes lässt sich berechnen aus: P = U I cos(M). Dabei sind U und I Effektivwerte und M der Phasenwinkel zwischen Strom und Spannung. Berechnen Sie zunächst den Leistungsfaktor O = cos(M) und dessen absoluten Maximalfehler 'Omax für einen Wechselstrom, dessen Größen U, I und P wie folgt gemessen wurden: U = (200 ± 2 ) V, I = (5 ± 0.1 ) A, P = (800 ± 20 ) W. Bestimmen Sie aus der vorangegangenen Lösung den zugehörigen Phasenwinkel M und dessen absoluten Maximalfehler 'Mmax. U0  200 ˜ V

ΔU  2 ˜ V

U = U0 r 'U

I0  5 ˜ A

ΔI  0.1 ˜ A

I = I0 r ',

P0  800 ˜ W

ΔP  20 ˜ W

P = P0 r 'P

P = U ˜ I ˜ cos ( φ) = U ˜ I ˜ λ P

λ ( U I P) 

λ0 

w wU

Wirkleistung eines sinusförmigen Wechselstromes Funktion des Leistungsfaktors

U˜ I

λU ( U I P) 

gemessene Werte (Mittelwerte) und Abweichungen

λ ( U I P)

P0

λ0

U0 ˜ I 0

0.8

λI ( U I P) 

w wI

λ ( U I P) λP ( U I P) 

w wP

λ ( U I P) partielle Ableitungen

Mittelwert des Leistungsfaktors

Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des totalen Differentials):



Δλmax  Δλmax











λU U0 I 0 P0 ˜ ΔU  λI U0 I 0 P0 ˜ ΔI  λP U0 I 0 P0 ˜ ΔP 0.044

Für den Leistungsfaktor ergibt sich dann folgende (indirekte) Messgröße: O = 0.8 ± 0.044 Zusammenhang zwischen Leistungsfaktor und Phasenwinkel: Zum Leistungsfaktor O0 = 0.8 gehört der Phasenwinkel M0 = arccos(0.8).

Ÿ

λ = cos ( φ)



φ0 λ0



absoluter Maximalfehler

φ0 λ0  acos λ0 Δφmax  Δφmax

und

φλ ( λ) 

Leistungsfaktor O0

λ0  0.8



φ ( λ)  acos ( λ)

φλ λ0 ˜ Δλmax



36.87 ˜ Grad

4.202 ˜ Grad

Für den Phasenwinkel ergibt sich dann folgende (indirekte) Messgröße: M = 36.87° ± 4.20°

Seite 239

d dλ

φ ( λ)

Differentialrechnung Fehlerrechnung Beispiel 3.9.5: Das Massenträgheitsmoment J eines dünnen homogenen Stabes der Länge L und der Masse M bezüglich einer durch den Schwerpunkt S und senkrecht zur Stabachse verlaufenden Bezugsachse errechnet sich aus: J = 1/12 m L 2 . In einem Experiment wurden dabei die nachfolgend gegebenen Messwerte (m in g und L in cm) ermittelt (jeweils 10 Einzelmessungen gleicher Genauigkeit). Bestimmen Sie jeweils den Mittelwert und den zugehörigen Fehler des Mittelwertes. Welcher Mittelwert ergibt sich daraus für das Massenträgheitsmoment J, und wie groß ist der mittlere maximale Fehler dieser Größe? ORIGIN  1 m/g

ORIGIN festlegen L/cm

§ 119.5 ¨ ¨ 119.2 ¨ 121.0 ¨ ¨ 119.7 ¨ 120.3 M ¨ ¨ 120.4 ¨ 119.8 ¨ ¨ 120.4 ¨ 119.2 ¨ © 120.5

20.2 ·

¸

19.9 ¸ 19.7 ¸

¸

19.7 ¸ 20.0 ¸

Messwerte

¸ 19.6 ¸ 20.2 ¸ ¸ 20.5 ¸ 19.8 ¸ ¸ 20.4 ¹

¢1² m  M ˜ gm T

Extrahierung der Massen

1

m

1

2

119.5

3

119.2

121

4 119.7

¢2² L  M ˜ cm T

L

1

6

120.3

120.4

7 119.8

8

9

10

120.4

119.2

120.5

10

˜ gm

Extrahierung der Längen

1

2

3

4

20.2

19.9

19.7

19.7

n  länge ( m )

5

n

5 20

6

7

8

9

19.6

20.2

20.5

19.8

Bereichsvariable

10

m0  mittelwert ( m )

m0

L0  mittelwert ( L)

L0

120 ˜ gm Mittelwerte 20 ˜ cm

Seite 240

20.4

˜ cm

Differentialrechnung Fehlerrechnung n

Δm  stdev ( m ) ˜

ΔL  stdev ( L) ˜

n1

n n1

m = m 0 ± 'm = (120 ± 0.6) g 1

J ( m L) 

12

J m ( m L) 



Δm

0.607 ˜ gm

Stdev ( m )

mittlere Fehler der Mittelwerte (Standardabweichungen der Mittelwerte) ΔL

0.313 ˜ cm

Stdev ( L)

L = L0 ± 'L = (20 ± 0.3) cm

2

˜m˜L

w wm

J ( m L)



J 0  J m0 L0

0.607 gm

0.313 cm Mittelwert und Messunsicherheit der beiden Größen

Funktion des Massenträgheitsmomentes

J L ( m L) 

J0

w wL

J ( m L)

2

4 ˜ kg ˜ cm

partielle Ableitungen des Massenträgheitsmomentes

Mittelwert des Massenträgkeitsmomentes

Absoluter Maximalfehler (Abschätzung der Genauigkeit mithilfe des Fehlerfortpflanzungsgesetzes):

Jm m0 L0 ˜ Δm 2  JL m0 L0 ˜ ΔL 2

ΔJ 

ΔJ



2

0.127 ˜ kg ˜ cm ΔJ



J m0 L0

3.168 ˜ %

prozentueller Maximalfehler

Für das Massenträgheitsmoment ergibt sich dann folgende (indirekte) Messgröße: J = J0 ± 'J = (4 ± 0.13) kg cm 2

Seite 241

Differentialrechnung Ausgleichsrechnung 3.10 Ausgleichsrechnung Mit den Methoden der Ausgleichsrechnung soll aus n gemessenen Wertepaaren (Messpunkten) (xi ; yi) ( i = 1, 2, ..., n ) ein möglichst funktionaler Zusammenhang zwischen den Messgrößen X und Y hergeleitet werden. Als Ergebnis wird eine Funktion y = f(x), die sich den Messpunkten "möglichst optimal" anpasst, erwartet. In diesem Zusammenhang bezeichnen wir die Funktion y = f(x) als Ausgleichs- oder Regressionskurve. Zuerst ist eine Entscheidung darüber zu treffen, welcher Funktionstyp der Ausgleichsrechnung zugrunde gelegt werden soll (Gerade, Parabel, Potenz- oder Exponentialfunktion usw.). Eine Entscheidungshilfe liefert dabei das Streuungsdiagramm, in dem die n Messpunkte durch eine Punktwolke dargestellt werden. Als Maß für die Abweichung zwischen Messpunkt und Ausgleichskurve wählen wir die Ordinatendifferenz. Der Abstand des Messpunktes (xi ; yi) von der gesuchten, aber noch unbekannten Ausgleichskurve y = f(x) beträgt damit yi - f(xi). Eine objektive Methode zur Bestimmung der "optimalen" Kurve liefert die Gauß'sche Methode der kleinsten Quadrate. Danach passt sich diejenige Kurve mit den enthaltenen Parametern a, b, ... den vorgegebenen Messpunkten am besten an, für die die Summe S der Abstandsquadrate aller n-Messpunkte ein Minimum annimmt: n

S ( a b ....) =

2 ¦ yi  f xi i

(3-125)

1

Eine notwendige Bedingung (jedoch keinesfalls hinreichend) zur Bestimmung eines Minimums lautet nach den Regeln der Differentialrechnung: Die partiellen Ableitungen 1. Ordnung von S(a, b, ...) müssen verschwinden, also w wa

S = 0,

w wb

S = 0 , ...

(3-126)

Aus diesem Gleichungssystem (von Fall zu Fall muss jedoch entschieden werden, ob tatsächlich ein Minimum vorliegt) lassen sich dann die Parameter a, b, ... und damit die Ausgleichskurve eindeutig bestimmen. Für Ausgleichskurven (Regressions-, Glättungs- oder Fitfunktionen) stehen in Mathcad zahlreiche Funktionen wie achsenabschn, neigung, regress, loess, linie, linanp, genanp, expanp, potanp, loganp, lgsanp, lnanp, sinanp, medgltt, kgltt, strgltt, stdfehl u. a. m. zur Verfügung.

Beispiel 3.10.1: Nachfolgend sollen zuerst Messdaten mit Messfehlern simuliert werden, die um eine gegebene Gerade streuen. Für diese Messdaten soll dann mithilfe der Methode der kleinsten Quadrate eine Ausgleichskurve gefunden werden. ORIGIN  1 f ( x) 

1 2

˜x 1

ORIGIN festlegen gegebene Gerade

N  10

Anzahl der Messdaten

i  1  N

Bereichsvariable

Δxi  rnd ( 0.2)

'xi ... Fehler der x-Werte

xi  i  Δxi

fehlerbehaftete x-Werte

Seite 242

Differentialrechnung Ausgleichsrechnung

Δyi  ( 1)

floor( rnd( 2) )

'yi Fehler der y-Werte (mit "zufälligem" Vorzeichen)

˜ rnd ( 0.4)



yi  f xi

fehlerbehaftete y-Werte

x  0 0.02  11

Bereichsvariable

f ( x)

6

yi Δy i 4 yi Δy i

Abb. 3.10.1

2 0

0

5

10 x xi x i



yi  f xi  Δyi

fehlerbehaftete y-Werte



xi

f xi

yi

Δyi

1

1.5

-0.048

1.452

2.039

2.019

0.213

2.232

3.117

2.559

-0.066

2.492

4.07

3.035

0.023

3.058

5.165

3.582

-0.208

3.374

6.035

4.017

-0.382

3.635

7.142

4.571

-0.185

4.386

8.061

5.03

-0.312

4.719

9.018

5.509

-0.245

5.265

10.029

6.015

0.336

6.351

6 yi

4

Abb. 3.10.2 2 5

10 xi

Bestimmtheitsmaße für lineare Regression: Kovarianz:

¦ ª¬ yi  mittelwert (y) ˜ xi  mittelwert (x) º¼ Kov 

i

Kov

zeilen ( x)

Seite 243

4.031

bzw.

kvar ( x y)

4.031

Differentialrechnung Ausgleichsrechnung Pearson' scher Korrelationskoeffizient: kvar ( x y)

0.989

stdev ( y) ˜ stdev ( x)

bzw.

korr ( x y)

Hohe Korrelation. Der Korrelationskoeffizient ist ein Maß für die Korrektheit der Hypothese, dass ein linearer Zusammenhang vorliegt.

0.989

Allgemeine symbolische Lösung: n  letzte ( x)

n

n

i n

w

wk ¦ i

w wd

2 ª¬yi  k ˜ xi  d ¼º

¦

S ( k d) 

Bereichsvariable

10

S(k,d) muss ein Minimum werden, d. h., die ersten partiellen Ableitungen müssen verschwinden.

1

ª¬yi  k ˜ xi  d º¼ = 0 2

n

vereinfacht auf

n

i

¦ i

1

¦





2=0

ª¬yi  k ˜ xi  d º¼

vereinfacht auf

ªyi ˜ xi  k ˜ xi 2  xi ˜ dº = 0 ¬ ¼

1 n

2˜ n˜ d  2˜

¦ i

1

yi  k ˜ xi = 0

1

Dieses inhomogene lineare Gleichungssystem lässt sich in Mathcad auf verschiedene Art und Weise lösen: k 1

d 1

Startwerte

Vorgabe n

¦



i

ªyi ˜ xi  k ˜ xi 2  xi ˜ dº = 0 ¬ ¼

1 n

2˜ n˜ d  2˜

¦ i

yi  k ˜ xi = 0

1

§k · ¨ ¸  Suchen ( k d) ©d ¹ k

0.4889

Steigung der Ausgleichsgeraden

d

0.9742

Achsenabschnitt der Ausgleichsgeraden

oder: Vorgabe S ( k d) = 0

§k · ¨ ¸  Minfehl ( k d) ©d ¹ k

0.4889

Steigung der Ausgleichsgeraden

d

0.9742

Achsenabschnitt der Ausgleichsgeraden

Seite 244

Differentialrechnung Ausgleichsrechnung oder: k  neigung ( x y)

d  achsenabschn ( x y)

k

d

0.4889

f ( x)  k ˜ x  d

Steigung und Achsenabschnitt

0.9742

lineare Ausgleichskurve

Fehler bei der linearen Regression:



Δi 

yi  f xi

max ( Δ)

Abweichungen maximaler Fehler der Einzelwerte

0.473

m 2

Anzahl der gesuchten Parameter 1

Fm 

Fm

länge ( x)  m

˜ ª«

Δi »º ¦ « » ¬

2

stdfehl ( x y)

oder

¼

i

0.24

mittlerer quadratischer Fehler der Einzelwerte (Standardfehler oder "Reststreuung")

0.24

6 yi f ( x)

4

Abb. 3.10.3 2

5

10 xi x

Beispiel 3.10.2: Bei einem Heißleiter (Halbleiter) nimmt der elektrische Widerstand R mit zunehmender absoluter Temperatur T nach der Gleichung R(T) = A e B/T stark ab. Bestimmen Sie mit den Methoden der Ausgleichsrechnung die Parameter A und B für einen Heißleiter, bei dem die nachfolgenden Messwerte (Temperatur in °C und Widerstand R in :) gefunden wurden. Gesucht ist auch eine Ausgleichskurve im Bereich 10 °C d - d 110 °C. ORIGIN  1

ORIGIN festlegen

°C  1

Einheitendefinition

-/°C R/:

§¨ 20 ¨ 40 ¨ 60 M ¨ ¨ 80 ¨ 100 ©

510 ·

¸

290 ¸

¸ ¸ 120 ¸ ¸ 80 ¹ 178

T  ( ϑ  273.15) ˜ K

¢1² ϑ  M ˜ °C

Temperaturwerte

¢2² R M ˜ Ω

T

( 20 40 60 80 100 ) ˜ °C

T

( 293.15 313.15 333.15 353.15 373.15 ) ˜ K Temperaturwerte in Kelvin

ϑ

T

Seite 245

T

Widerstandswerte

R

( 510 290 178 120 80 ) ˜ Ω

Differentialrechnung Ausgleichsrechnung n 5

i  1  n

Bereichsvariable

3

1u 10

Ri

100

Ω

Abb. 3.10.4 10 280

300

320

340

360

380

Ti K Messpunkte

Der Punktgraf zeigt bei logarithmierter y-Achse, dass die Punkte auf einer Geraden liegen. Sie sind also Punkte einer Exponentialfunktion. Logarithmieren wir die Exponentialfunktion, dann erhalten wir mit den nachfolgend gegebenen Abkürzungen die Geradengleichung: B1 · § ¨ 1 T ¸ ln ( R) = ln © A1 ˜ e ¹ = B1  ln ( A1)

T

Mit

und

R1 = ln ( R)

o § 1  R ·· § korr ¨ ln ¨ ¸ ¸ © T © Ω ¹¹

T1 =

d

A1  e ˜ Ω

k = B1

und

d = ln ( A1)

o § 1  R ·· § d  achsenabschn ¨ ln ¨ ¸ ¸ © T © Ω ¹¹ d

2.3542

B1

2515.3535 ˜ K

A1

0.09497 ˜ Ω

Konstante bestimmen

2515.4

R ( ϑ)  0.095 ˜ e

ϑ 273.15

Funktionsgleichungen 2515.4˜K



Ÿ

R1 = k ˜ T1  d

Korrelationskoeffizient

2515.3535 ˜ K

B1  k

und

T

1

o § 1  R ·· § k  neigung ¨ ln ¨ ¸ ¸ © T © Ω ¹¹ k

1

Ra T1  0.095 ˜ Ω ˜ e

T1

ϑ  10 ˜ °C 10 ˜ °C  0.1 ˜ °C  110 ˜ °C Bereichsvariable T1  280 ˜ K 280 ˜ K  0.1 ˜ K  380 ˜ K

Seite 246

Steigung und Achsenabschnitt

Differentialrechnung Ausgleichsrechnung

800



640

Ω

480

Ra T1

Ri

800 R( ϑ) 600 Ω Ri

320

Ω

Ω 160 0 250

280

310

340

370

400 200 0

400

0

24

48

T1 Ti  K K

ϑ

72 

96

120

ϑi

°C °C

Abb. 3.10.5

Abb. 3.10.6

Beispiel 3.10.3: Die Spannungs-Stromkennlinie einer Glühlampe ist in guter Näherung gegeben durch: U(I) = c 1 I3 + c 2 I. Bestimmen Sie die Koeffizienten c1 und c 2 aus n vorliegenden Messpunkten (I k ; Uk) (k = 1, 2, ..., n) mit einer geeigneten Fitfunktion und stellen Sie die Ausgleichskurve grafisch dar. Für eine spezielle Glühlampe wurden folgende Werte ermittelt: ORIGIN  1

ORIGIN festlegen

,/A U/V

§¨ 0.2 ¨ 0.3 ¨ 0.4 M ¨ ¨ 0.5 ¨ 0.6 ©

·¸ 100 ¸ ¸ 170 ¸ 285 ¸ ¸ 442 ¹

¢1² I M ˜A

n 5

i  1  n

Bereichsvariable

53

T

I

Stromwerte

( 0.2 0.3 0.4 0.5 0.6 ) A

¢2² U M ˜ V T

U

Spannungswerte

( 53 100 170 285 442 ) V

Geeignete Fitfunktionen U(I) = c1 f1 (I) + c2 f2 (I) als Vektorfunktion definieren: f ( I) 

3 ¨§ I ·¸ ¨© I ¸¹

Die Koeffizienten für den bestmöglichen Fit U(I) = c1 f1 (I) + c2 f2 (I) werden mittels der Funktion linanp bestimmt:

§ I  U f · ¸ ©A V ¹

c  linanp ¨

U ( I )  c1 ˜

V A

3

3

˜ I  c2 ˜

§ 1508.112 · ¨ ¸ © 192.617 ¹

c

V A

˜I

U(I) = c1 f1 (I) + c2 f2 (I) ... Fitfunktion

Seite 247

Differentialrechnung Ausgleichsrechnung I  min ( I) min ( I)  0.01 ˜ A  max ( I)

Bereichsvariable

Konstruktion von Fehlerbalken: ai  15 ˜ V Uplus  U  a

Uminus  U  a

Vektoren zur Darstellung von Fehlerbalken

Messpunkte und Fitfunktion 500

Spannung in V

400 U Uplus 300 Uminus U ( I) 200

Abb. 3.10.7

100

0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

I I I I Strom in A

Beispiel 3.10.4: Bestimmen Sie aus n vorliegenden simulierten Messpunkten (t k ; Ik) (k = 1, 2, ... n) eine geeignete Fitfunktion, und stellen Sie die Ausgleichskurve grafisch dar. n  50

Anzahl der Daten

k  1  n

Bereichsvariable

tk 

k

˜s

20

c 2˜ s

Zeitpunkte

1

Parameter  c˜tk

Ik  100 ˜ A ˜ e

 rnd ( 5) ˜ A

simulierte Funktionswerte

100 80 Ik

60 40

Abb. 3.10.8

20 0

0

1

2 tk

Seite 248

3

Differentialrechnung Ausgleichsrechnung c1  1 ˜ s

1

Startwert

Vorgabe 2

 c1˜tk· § © Ik  100 ˜ A ˜ e ¹ =0

¦

Gesucht wird jener Parameter c1 , bei dem die Summe der Abstandsquadrate nach Gauß verschwindet!

k



c neu  Minfehl c 1

c neu

 c˜t

f ( c t)  100 ˜ A ˜ e

1.808 ˜ s

1

optimale Fitfunktion

Strom in Ampere

100 80 I 60  o f cneu t 40





Abb. 3.10.9

20 0

0

1

2

3

t Zeit in Sekunden

Fehler bei der nichtlinearen Regression: Δk 

Ik A

Fm 





f c neu tk



max ( Δ)

A 1

länge ( t)  1

˜ ª«

Δi º» ¦ « » ¬

2

i

Fm

¼

0.46

4.269

Abweichungen und maximaler Fehler der Einzelwerte

mittlerer quadratischer Fehler der Einzelwerte (Standardfehler oder "Reststreuung")

Beispiel 3.10.5: ORIGIN  1

ORIGIN festlegen

Für folgende Daten soll eine optimale Ausgleichskurve gefunden werden. Daten  1

2

1

1

4.18

2

2

4.67

3

3

5.3

4

4

5.37

5

5

5.45

6

6

5.74

7

7

5.65

8

8

5.84

9

9

6.36

10

10

6.38

¢1² x  Daten

Seite 249

¢2² y  Daten

Differentialrechnung Ausgleichsrechnung

6 y

Abb. 3.10.10 5

4

0

2

4

6

8

10

x

Wir versuchen eine logarithmische Regressionsfunktion der Form y = a ln(x+b) + c: 1 ¨§ ¸· S  ¨0 ¸ ¨4 ¸ © ¹

Schätzvektor

§¨ 1.126 ¸· a ¨ 0.734 ¸ ¨ 3.586 ¸ © ¹

a  loganp ( x y S)





f ( x)  a1 ˜ ln x  a2  a3

Fitfunktion

x  1 1  0.1  länge ( x)

Bereichsvariable

6 y f ( x)

Abb. 3.10.11 5

4

1

2

3

4

5

6

7

8

9

10

11

x x

Beispiel 3.10.6: Für folgende Daten soll eine optimale Ausgleichskurve gefunden werden. ORIGIN  0

x x

a a

ORIGIN festlegen und Redefinitionen T

x  ( 100 250 300 360 450 500 550 )

T

y  ( .03 .34 .67 1 0.67 .34 0.1 )

Seite 250

Differentialrechnung Ausgleichsrechnung

1

y

0.5

0

Abb. 3.10.12

0

200

400 x

Wir versuchen einen Ansatz mit folgenden Regressionsfunktionen: Fall  f(x) = a3 . x^3 + a2 . x^2 + a1 . x + a0 f(x) = (a0 + a1) . e^(a2.(a3-x)^2)

Listenfeld (Funktion durch Doppelklick auf einen Namen auswählbar)

Polynom 3. Grades Dieses Textfeld zeigt den Namen der ausgewählten Funktion. Fall Fall

1

Funktion zur Auswahl der beiden Regressionsfunktionen: f ( a0 a1 a2 a3 x) 

3

2

a3 ˜ x  a2 ˜ x  a1 ˜ x  a0 if Fall = 1 a2˜( a3x)

2

( a0  a1 ) ˜ e

if Fall = 2

Partielle Ableitungen der gewählten Regressionsfunktion: f0 ( a0 a1 a2 a3 x) 

f2 ( a0 a1 a2 a3 x) 

w wa0 w wa2

f ( a0 a1 a2 a3 x)

f1 ( a0 a1 a2 a3 x) 

f ( a0 a1 a2 a3 x)

f3 ( a0 a1 a2 a3 x) 

Seite 251

w wa1 w wa3

f ( a0 a1 a2 a3 x)

f ( a0 a1 a2 a3 x)

Differentialrechnung Ausgleichsrechnung

Aus diesen Ableitungen und der eigentlichen Regressionsfunktion wird ein Vektor gebildet:

3 2 §¨ f u0 u1 u2 u3 x ·¸ §¨ u3 ˜ x  u2 ˜ x  u1 ˜ x  u0 ·¸ ¸ ¨ f0 u0 u1 u2 u3 x ¸ ¨ 1 ¸ ¨ ¸ ¨ x F ( x u)  ¨ f1 u0 u1 u2 u3 x ¸ o ¨ ¸ ¸ ¨ f2 u u u u x ¸ ¨ 2 x ¸ ¨ 0 1 2 3 ¸ ¨ ¸ ¨© f3 u0 u1 u2 u3 x ¸¹ ¨ 3 x © ¹

Für die genanp-Funktion müssen Sie eine Vektorfunktion F(x,u) definieren, deren 1. Komponente die Regressionsfunktion selbst ist und die weiteren Komponenten die partiellen Ableitungen nach den a0, a1, a2 und a3darstellen. Die Parameter a0, ..., a3 müssen als Komponenten eines Parametervektors u = (u1 , ..., u4 ) = (a0, ..., a3) geschrieben werden. T

S  ( 1 0 0.0002 200 )

Schätzvektor S

u  genanp ( x y S F)

Δx 

u

max ( x)  min ( y)

0.168 · § ¨ ¸ 3 ¨ 4.77 u 10 ¸ ¨ ¸ 5 ¨ 3.702 u 10 ¸ ¨ 8¸ © 5.25 u 10 ¹

"genanp" übergibt einen Vektor mit den Parametern, mit denen sich eine Funktion f von x und n Parametern u1 , ..., un am ehesten den Daten in x und y annähert. Schrittweite

200

x  min ( x)  20 min ( x)  20  Δx  max ( x)  20



Bereichsvariable



Aus ( f x)  f u0 u1 u2 u3 x

Ausgleichs- oder Regressionskurve

m 4

Anzahl der gesuchten Parameter 1

Fm 

länge ( x)  m

6

˜

¦ i

yi  Aus f xi 2

Fm

0.172

mittlerer quadratischer Fehler der Einzelwerte (Standardfehler oder "Reststreuung")

0

1

0.5

y Aus( f x)

200

400

 0.5 x x

Abb. 3.10.13

Seite 252

600

Integralrechnung Das unbestimmte und bestimmte Integral 4. Integralrechnung Die Integralrechnung hat zwei völlig verschiedene Ausgangspunkte und daher auch ganz verschiedene Anwendungsgebiete, die aber eng miteinander zusammenhängen. Die eine Aufgabe ist die: Die Ableitung einer Funktion sei gegeben. Wie lautet die ursprüngliche Funktion? Das Aufsuchen der ursprünglichen Funktion heißt Integrieren (Wiederherstellen). Das Integrieren in diesem Sinne ist also die Umkehrung des Differenzierens. In diesem Zusammenhang sprechen wir von einem unbestimmten Integral. Die andere Aufgabe ist folgende: Eine Funktion sei gegeben. Wie groß ist z. B. der Flächeninhalt eines begrenzten Bereiches zwischen Kurve und x-Achse? In diesem Zusammenhang sprechen wir von einem bestimmten Integral.

4.1 Das unbestimmte Integral Es sei f mit y = f(x) eine auf einem Intervall I gegebene Funktion. Unter einer Stammfunktion von f mit y = f(x) verstehen wir eine Funktion F mit y = F(x) auf I = [a, b], für die F'(x) = f(x) gilt. Das Aufsuchen einer Stammfunktion heißt Integrieren (lat.: Integer > ganz, unversehrt). Integrieren ist also in diesem Sinne die Umkehraufgabe des Differenzierens.

Beispiel 4.1.1: Ermitteln Sie die Stammfunktion von f(x) = 3 x2 + 1. Gesucht ist also eine Funktion F1 (x), deren Ableitung F1 '(x) = 3 x2 + 1 ist. d dx

x3  x = 3 ˜ x2  1

also

3

F1 ( x) = x  x

ist eine Stammfunktion von f(x)

F2 ( x) = x  x  2

F2 ist aber auch eine Stammfunktion von f(x), denn

C  1 3  15

verschiedene Konstanten (Bereichsvariable)

3

die Ableitung ergibt ebenfalls 3 x2 + 1.

3

F ( x C)  x  x  C

Stammfunktionen von f(x)

x  3 3  0.01  3

Bereichsvariable

20 10 F( x C)

4

2

Alle Funktionen F(x) + C sind Stammfunktionen von f(x)! 0

2

4

 10

Format: Punkte  20 x

Abb. 4.1.1

Seite 253

Integralrechnung Das unbestimmte und bestimmte Integral Für Stammfunktionen gilt: Ist F(x) eine Stammfunktion von f(x), so ist jede weitere Stammfunktion G(x) von f(x) in der Form G(x) = F(x) + C darstellbar. Es gilt nämlich für alle x: (G(x) - F(x))' = G'(x) - F'(x) = f(x) - f(x) = 0

(4-1)

Die Ableitung einer konstanten Funktion ist null. Umgekehrt gilt aber auch: (G(x) - F(x))' = 0 ŸG(x) - F(x) = konstant, also G(x) = F(x) + C

(4-2)

Eine stetige Funktion f besitzt unendlich viele Stammfunktionen. Unsere Hauptaufgabe besteht in der Suche nach den Stammfunktionen gegebener stetiger Funktionen. Im Gegensatz zur Differenzierbarkeit einer Funktion reicht bei der Integrierbarkeit die Stetigkeit bzw. stückweise Stetigkeit auf I = [a, b] aus. Wir definieren: a) Die Menge aller Stammfunktionen F einer stetigen Funktion f heißt unbestimmtes Integral. ´ µ µ ¶

Wir schreiben:

Das Zeichen

´ µ µ ¶

f ( x) dx = F ( x)  C , C .

d (stilisiertes S-Zeichen) heißt Integralzeichen (Integraloperator), f(x) heißt

Integrand, x die Integrationsvariable und C die Integrationskonstante. b) Das Lösen eines (unbestimmten) Integrals ist das Aufsuchen der Stammfunktionen. Grafisch wird ein unbestimmtes Integral durch eine Kurvenschar dargestellt. Bei der Wahl eines speziellen Wertes für die Integrationskonstante C, auch Anfangsbedingung genannt, wird daraus eine Kurve als Graf einer speziellen Stammfunktion ausgewählt. Beispiel 4.1.2: Ermitteln Sie die Stammfunktion für den Wurf eines Körpers nach oben (ohne Luftwiderstand) mit a =

d

v = g.

dt Zum Zeitpunkt t = 0 s soll der Körper eine Anfangsgeschwindigkeit v0 haben. v=

´ µ µ ¶

g dt = g ˜ t  C

Dies gilt nämlich, weil (- g t + C)' = - g ist ((F(t) +C)' = f(t)).

v ( 0 ˜ s ) = g ˜ 0 ˜ s  C = v0 m v0  30 ˜ s C  1 ˜

m s

3 ˜

Ÿ

C = v0

Die spezielle Lösung lautet damit: v = - g t + v0 . Anfangsgeschwindigkeit

m s

 27 ˜

m

verschiedene Konstanten

s

v ( t C)  g ˜ t  C

Stammfunktionen von f(t)

v1 ( t)  g ˜ t  v0

spezielle Lösung

t  0 ˜ s 0.01 ˜ s  3 ˜ s

Bereichsvariable

Seite 254

Integralrechnung Das unbestimmte und bestimmte Integral

40

Alle Funktionen v(t) = - g t + C (F(t) + C) sind Stammfunktionen von a(t) = - g (f(t) = - g).

20

v( t C) v1( t)

0

1

2

3

Format: Punkte  20 t

Abb. 4.1.2 Für die Umkehrung des Integrierens gilt in diesem Fall: d

v( t) =

dt

d

( g ˜ t  C) = g

dt

Beispiel 4.1.3: Ermitteln Sie die Stammfunktion nachfolgender Funktionen. C C a)

x x

f ( x)  x  2

gegebene Funktion

x 2

durch Integration, ergibt

´ µ µ ¶

vereinfacht auf

´ µ µ ¶ b)

Redefinition

2

x  2 dx  C

x

2

 2˜ x C 2

2

f ( x) dx  C vereinfachen o

3

x

2

 2˜ x C 2

gegebene Funktion 4

3

durch Integration, ergibt

x

´ µ µ ¶

2

2

f ( x)  x

´ µ µ ¶

( x  2)

x

4 4

3

x dx  C

ergibt

x

4

C

4

f ( x) dx  C o

x

4

C

Seite 255

Integralrechnung Das unbestimmte und bestimmte Integral 4.2 Das bestimmte Integral Das Riemann-Integral: Wir betrachten zuerst eine in einem Intervall I = [a, b] monoton steigende stetige Funktion y = f(x). Gesucht ist der Inhalt A der Fläche zwischen dem Funktionsgrafen und der x-Achse zwischen a und b. b a . Die dadurch entstehenden Dazu zerlegen wir zuerst das Intervall I in n Teilintervalle Δx = n Randpunkte der Teilintervalle sind a = x0 , x1 , x2 , ..., xn-1 , xn = b. Über den Teilintervallen werden Rechtecke gebildet, die einerseits unterhalb der Kurve liegen (eingeschriebene Rechtecke) und andererseits über die Kurve hinausgehen (umgeschriebene Rechtecke). Der Flächeninhalt der eingeschriebenen Rechtecke über dem Intervall [a, b] ist eine untere Schranke des gesuchten Flächeninhalts und heißt Untersumme su der Funktion y = f(x) bezüglich der gegebenen Intervallzerlegung. Entsprechend ist der Flächeninhalt aller umgeschriebenen Rechtecke eine obere Schranke des gesuchten Flächeninhalts, die Obersumme s o genannt wird.

Beispiel 4.2.1: a 0 Intervall [a,b] b 1 n 5 Δx 

Anzahl der Subintervalle ba n  FRAME 2

Intervallbreite (mit Animationsparameter)

f ( x)  x

Funktionsgleichung

x  a a  0.001  b

Bereichsvariable

Funktionen zur grafischen Veranschaulichung: tp  0  1 yp  0  1 Z  0.001 f u ( x)  f ( x  mod ( x  a Δx) ) f o ( x)  f ( x  mod ( x  a Δx)  Δx) X  a  Z ( a  Δx)  Z  b  Z Lv_in_Vektor ( a b sw) 

km0 for i  a a  sw  b vk m i kmk1

Funktion zur Umwandlung einer Bereichsvariablen in einen Vektor

v

Seite 256

Integralrechnung Das unbestimmte und bestimmte Integral Animation: FRAME von 0 bis 60 mit 5 Bilder/s. In die Animation soll auch die nachfolgende Berechnung einbezogen werden. Untersumme

Obersumme

1

1

0.8

0.8

fu ( x)˜tp

fo ( x)˜tp 0.6

0.6

f ( x)

f ( x)

0.4 fu ( X)˜yp

0.4 fo ( X)˜yp

0.2

0.2

0

0

0.2

0.4

0.6

0.8

0

1

0

0.2

0.4

x x X

¦© ©

i  0  länge ( Lv_in_Vektor ( a b  Δx Δx) )  1

i

su T

xu

´ µ ¶

¹

xo = a  Δx a  2 ˜ Δx  b xo  Lv_in_Vektor ( a  Δx b Δx)

Exakte Lösung:

§ f § xu · ˜ Δx· i¹

1

Abb. 4.2.2

xu  Lv_in_Vektor ( a b  Δx Δx) su 

0.8

x x X

Abb. 4.2.1 xu = a a  Δx  b  Δx

0.6

1 2

x dx

so 

0.333

0

i

Untersumme und Obersumme

0.24

¦ §©f §©xoi·¹ ˜ Δx·¹

so T

( 0 0.2 0.4 0.6 0.8 )

xo

Für die Untersumme gilt: Die Höhen der Rechtecke sind gleich den Funktionswerten am linken Rand der Teilintervalle.

0.44 ( 0.2 0.4 0.6 0.8 1 )

Für die Obersumme gilt: Die Höhen der Rechtecke sind gleich den Funktionswerten am linken Rand der Teilintervalle.

Es gilt: su d A d so Existiert nun unter den oben genannten Voraussetzungen der Grenzwert der Folgen der Untersummen und der Grenzwert der Obersummen und stimmen diese Grenzwerte überein, so heißt die Funktion integrierbar auf [a, b]. Der gemeinsame Grenzwert wird bestimmtes Integral von y = f(x) auf [a, b] genannt. Wir schreiben: ´ µ ¶

n 1

b

a

f ( x) dx =

lim no∞

¦ i

0





f xi ˜ Δx

n

=

lim no∞

¦ i

f xi ˜ Δx

(4-3)

0

f(x) heißt Integrand; x Integrationsvariable; a, b untere bzw. obere Integrationsgrenze und [a, b] wird Integrationsintervall genannt. Wie schon erwähnt, ist jede "stückweise" stetige Funktion (die Funktionswerte weisen nur endliche Sprünge auf) integrierbar. Für die Integrierbarkeit einer Funktion bestehen also weniger strenge Forderungen als für die Differenzierbarkeit.

Seite 257

Integralrechnung Das unbestimmte und bestimmte Integral Betrachten wir nun das oben besprochene Flächenproblem zwischen a und x bei einer stetigen Funktion, wobei also die obere Grenze variabel sein soll. Die Integrationsvariable bezeichnen wir mit t. Wir definieren: x

´ a) Die Funktion F mit F(x) = µ f ( t) dt heißt Integralfunktion von f. ¶ a

Das heißt, dass die Integralfunktion F(x) eine Stammfunktion von F(t) ist. Da Integralfunktionen bei stetigen Funktionen y = f(t) sinnvoll gebildet werden können, besitzt jedenfalls eine auf einem Intervall stetige Funktion eine Stammfunktion. ´ b) Stellt x einen bestimmten Wert b dar, so heißt µ ¶

b

f ( x) dx bestimmtes Integral.

a

Die bisherigen Überlegungen fasst der folgende fundamentale Satz zusammen: Hauptsatz der Differential- und Integralrechnung: Ist F:[a,b] o  eine beliebige Stammfunktion der stetigen Funktion f:[a,b] o , x |o F(x) x |o f(x) dann ist F differenzierbar mit F'(x) = f(x) und es gilt: ´ µ ¶

b

f ( x) dx = F ( b)  F ( a)

(4-4)

a

Der Wert eines bestimmten Integrals ist von der Stammfunktion unabhängig; er errechnet sich als Differenz des Stammfunktionswertes der oberen und der unteren Grenze (siehe dazu (4-2)). Bemerkung: Die Integralfunktion F ist diejenige Stammfunktion, für die gilt: F(a) = 0

(4-5)

Beispiel 4.2.2: Berechnen Sie folgende bestimmte Integrale mit einer Stammfunktion: f ( x)  x

Funktionsgleichung

x  0 0.01  5

Bereichsvariable

5

1

´ µ ¶

4

4 f ( x)

4

2

x dx =

1

x

2

4 |= 1

2

4

2

2



1

2

o

15 2

3

Interpretieren wir das bestimmte Integral als Fläche, so stellt das Ergebnis die Maßzahl des Flächeninhalts zwischen Kurve und x-Achse von 1 bis 4 dar.

f ( x)˜( 1  x 4)2 1 0

1

2

3

4

5

Abb. 4.2.3

x

Seite 258

Integralrechnung Das unbestimmte und bestimmte Integral 2

f ( x)  x  1

Funktionsgleichung

x  0 0.01  5

Bereichsvariable

10

´ µ ¶

2

8 f ( x)

2

0

x2  1 dx = x3

3

2  x |= 0

3

2

3

3

 2

0

3

0o

14 3

6

Interpretieren wir das bestimmte Integral als Fläche, so stellt das Ergebnis die Maßzahl des Flächeninhalts zwischen Kurve und x-Achse von 0 bis 2 dar.

f ( x)˜( 0  x 2) 4 2 0

1

2

3

Abb. 4.2.4

x

Ein weiterer wichtiger Satz der Integralrechnung: Mittelwertsatz der Integralrechnung: Wenn f eine stetige Funktion auf ]a, x[ ist, dann gibt es mindestens ein t 0  ]a, x[, für das gilt: x

´ µ f ( t) dt = ( x  a) ˜ f t0 ¶



a

(4-6)

Der Satz besagt, dass die ebene Figur, begrenzt durch die Funktionskurve y = f(x), der x-Achse und den beiden Grenzen a und x, durch ein flächengleiches Rechteck ersetzt werden kann.

Beispiel 4.2.3: Berechnen Sie den Mittelwert der Funktion y = x2 zwischen 1 und 4. 2

f ( x)  x

Funktionsgleichung

x  0 0.01  5

Bereichsvariable

a 1

Grenzen

b 4

§ x3 · ´ 2 1 1 ˜ µ x dx = f xm = ˜¨ ¸ b  a ¶a b a © 3¹ b



1

ym 

b a

xm 

ym

§ b3

˜¨

©3



b |= a

1 b a

§ b3

˜¨

©3





a

3

¸ ¹



a

3

¸ ¹

ym

7

Mittelwert (Funktionswert an der Stelle xm)

xm

2.646

Stelle x m

Seite 259

Integralrechnung Das unbestimmte und bestimmte Integral

20 ym˜( a dxd b)

a

´ µ ¶

b

15

f ( x) dx

Fläche zwischen Kurve und x-Achse

21

a

10

f ( x)

b

( b  a) ˜ ym

ym

5 0

1

2

3

4

5

21

Rechtecksfläche

Abb. 4.2.5

x

Mit dem Mittelwertsatz und den Grenzwertsätzen folgen nun einige Gesetzmäßigkeiten für integrierbare Funktionen f und g: a) Ein konstanter Faktor kann vor das Integral geschrieben werden: x

x

a

a

´ ´ µ k ˜ f ( t) dt = k ˜ µ f ( t) dt , k  ¶ ¶

(4-7)

b) Das Integral einer Summe bzw. einer Differenz ist gleich der Summe bzw. Differenz der Integrale. x

x

x

a

a

a

´ ´ ´ µ ( f ( t )  g ( t ) ) dt = µ f ( t ) d t  µ g ( t ) d t ¶ ¶ ¶

(4-8)

c) Gilt für alle t  ]a, x[: f(t) > g(t) bzw. f(t) = g(t) bzw. f(t) < g(t), dann gilt für die Integrale: x

x

x

x

x

x

a

a

a

a

a

a

´ ´ ´ ´ ´ ´ µ f ( t) dt ! µ g ( t ) dt bzw. µ f ( t) dt = µ g ( t) dt bzw. µ f ( t) dt  µ g ( t) dt ¶ ¶ ¶ ¶ ¶ ¶

(4-9)

d) Die Umkehrung der Grenzen ändert das Vorzeichen des Integrals: x

a

a

x

´ ´ µ f ( t) dt = µ ¶ ¶

f ( t ) dt

(4-10)

e) Das Integral kann in Teilintervalle (mit gleichen Integranden) zerlegt werden: x x x ´ 0 ´ ´ µ f ( t) dt = µ f ( t) dt  µ f ( t) dt , x0  ]a, x[ ¶ ¶ ¶x a a

(4-11)

0

Beispiel 4.2.4: Berechnen Sie folgende bestimmte Integrale unter Ausnützung der vorher genannten Gesetzmäßigkeiten: ´ µ ¶

3

1

2

3 ˜ x dx o 26

´ 3˜ µ ¶

3 2

x dx o 26

1

Seite 260

Integralrechnung Das unbestimmte und bestimmte Integral ´ µ ¶

2

´ µ ¶

2

´ µ ¶

4

´ µ ¶

4

( x  1) dx o

1

( x  2) dx o

1

3

x dx o

1

4

x dx o

´ µ ¶

5 2

´ x dx  µ ¶

´ µ ¶

7 2

2

1 dx o

1

1

1

( x  2) dx o

2

255 4

´ µ ¶

1

´ µ ¶

2

3

x dx o 

5

1

´ x dx  µ ¶

5 2

7 2

255

4

1023

1

2

Bei vertauschten Grenzen ist das Ergebnis negativ!

4

4

4

4

x dx o

1023

2

5

Einige weitere Eigenschaften von bestimmten Integralen: a) Eine Fläche, die oberhalb der x-Achse liegt, ist positiv; eine Fläche, die unterhalb der x-Achse liegt, ist negativ, wenn entlang der positiven x-Achse integriert wird. Über Nullstellen darf daher nicht beliebig hinweg integriert werden! b) Ist eine Funktion zentralsymmetrisch bzw. achsialsymmetrisch, so kann beim Integrieren diese Eigenschaft genützt werden.

Beispiel 4.2.5: Bestimmen Sie die Maßzahl der Fläche zwischen Kurve und x-Achse im Bereich von a = 0 und b = 2 S: f ( x)  sin ( x)

Funktionsgleichung

x  0 0.01  2 ˜ π

Bereichsvariable

1

2˜π

π

+ f ( x)

0

2

4

6

-

8

Abb. 4.2.6

1 x

´ µ ¶

2˜π

´ µ ¶

f ( x) dx o 0

0

f ( x) dx o 2

0

´ µ ¶

A

π

0

A

π

´ f ( x) dx  µ ¶

f ( x) dx

2˜π

f ( x) dx o 2

π

2˜π

π

´ µ ¶

Oder durch Austausch der Integrationsgrenzen:

4

´ A1  µ ¶

0

A1

Seite 261

π

4

´ f ( x) dx  µ ¶

π

2˜π

f ( x) dx

Integralrechnung Das unbestimmte und bestimmte Integral Beispiel 4.2.6: Bestimmen Sie die Maßzahl der Fläche zwischen Kurve und x-Achse im Bereich a = - 2 und b = 2: 3

2

f ( x)  x  3 ˜ x  3 ˜ x  5

Funktionsgleichung

x  3 3  0.001  4

Bereichsvariable 2

2

10

f ( x) f ( x)˜(  2  x 2)

Abb. 4.2.7 4

2

0

2

4

 10 x

TOL  10

 10

Toleranzwert für das Näherungsverfahren

x1  1

Startwert (Näherungswert)





x1  wurzel f x1 x1

x1

x2  1

Startwert (Näherungswert)



x2  wurzel f x2 x2

x2

1.449

f x1



1

f x2

x1

1.776 u 10

 15

0

x2 10

f ( x)

Abb. 4.2.8

f ( x)˜(  2  x 2) 4

2

0

2

4

 10 x

A

x x 2 ´ 1 ´ 2 ´ µ µ f ( x) dx  f ( x) dx  µ f ( x) dx µ ¶ ¶x ¶x 2

A

14

2

1

oder:

Maßzahl der Fläche

x ´ 1 f ( x) dx  A µ ¶ 2

x 2 ´ 1 ´ µ f ( x) dx  µ f ( x) dx µ ¶x ¶x 2

A

2

Seite 262

14

Integralrechnung Das unbestimmte und bestimmte Integral Beispiel 4.2.7: Berechnen Sie das bestimmte Integral im Bereich von a = - S und b = S unter Ausnützung der Symmetrie: f ( x)  sin ( x)

gegebene Funktionsgleichung

x  π π  0.01  π

Bereichsvariable



f ( x)

1

4

2

π

0

2

4

Abb. 4.2.9

1 x

´ 2˜ µ ¶

π

f ( x) dx o 4

Maßzahl der Fläche

0

Beispiel 4.2.8: Berechnen Sie das bestimmte Integral im Bereich a = -2 und b = 2 mit und ohne Ausnützung der Symmetrie. 2

f ( x)  x

gegebene Funktion

x  2 2  0.01  2

Bereichsvariable

5 4 3

f ( x)

2

Abb. 4.2.10

1 2

1

0

1

2

3

x

´ µ ¶

2

f ( x) dx o

16

2

Maßzahl der Fläche

3

Oder unter Ausnützung der Symmetrie: ´ 2˜ µ ¶

2

0

f ( x) dx o

16

Maßzahl der Fläche

3

Seite 263

Integralrechnung Integrationsmethoden 4.3 Integrationsmethoden Weil das Integrieren stetiger Funktionen, also das Aufsuchen von Stammfunktionen, die Umkehrung des Differenzierens ist, lassen sich manche Differentiationsregeln unmittelbar in Integrationsregeln umwandeln. Ausgangspunkt seien aber zuerst die sogenannten Grundintegrale, deren Richtigkeit sofort durch Ableitungen bestätigt werden können. Neben den Grundintegralen sind noch die Substitution (Umkehrung der Kettenregel), die partielle Integration (Umkehrung der Produktregel) und die Partialbruchzerlegung (Umkehrung der Quotientenregel) von Bedeutung.

4.3.1 Grundintegrale Nachfolgend werden die wichstigsten Grundintegrale zusammengefasst. Wir setzen voraus, dass f und g stetige Funktionen sind. ============================================================================= y = k . f(x) ´ µ µ ¶

y' = k . f '(x)

k ˜ f ( x) dx = k ˜

´ µ µ ¶

f ( x) dx , k  

(4-12)

Ein konstanter Faktor kann vor das Integral geschrieben werden. ============================================================================= y = f(x) ± g(x) ´ µ µ ¶

y' = f '(x) ± g '(x)

( f ( x)  g ( x) ) dx =

´ µ µ ¶

f ( x) dx 

´ µ µ ¶

g ( x) dx

(4-13)

Das Integral einer Summe (gilt auch für die Differenz) ist gleich der Summe bzw. Differenz der Integrale. ============================================================================= y=x ´ µ µ ¶

y' = 1

1 dx = x  C

(4-14)

============================================================================= y=kx ´ µ µ ¶

y' = k

k dx = k ˜ x  C

(4-15)

============================================================================= y = xr, r  ´ µ µ ¶

r

x dx =

y' = r xr-1

r 1

x

r 1

 C , r z-1

(4-16)

=============================================================================

Seite 264

Integralrechnung Integrationsmethoden ================================================================================ y = ex ´ µ µ ¶

y' = ex

x

x

e dx = e  C

y = ax ´ µ µ ¶

(4-17)

y' = ax ln(a) x

x

a dx =

a

ln ( a)

 C , a > 0, a z 1

(4-18)

================================================================================ y = ln(x) ´ µ µ µ ¶

1 x

dx = ln x

y' = 1/x

 C, x z 0

(4-19)

================================================================================ y = sin(x) ´ µ µ ¶

cos ( x) dx = sin ( x)  C

y = cos(x) ´ µ µ ¶

´ µ dx = µ 2 ¶ cos ( x) 1

y = cot(x) ´ µ µ µ ¶

(4-20)

y' = - sin(x)

sin ( x) dx = cos ( x)  C

y = tan(x) ´ µ µ µ ¶

y' = cos(x)

´ µ dx = µ 2 ¶ sin ( x) 1

(4-21)

y' = 1/cos 2 (x) = 1 + tan2 (x)

1  tan (x)2 dx = tan (x)  C , x z (2n + 1) S/2 , n 

(4-22)

y' = -1/sin2 (x) = - (1 + cot 2 (x))

1  cot(x)2 dx = cot(x)  C , x z n Sn 

(4-23)

================================================================================

Seite 265

Integralrechnung Integrationsmethoden ================================================================================ y = arcsin ( x)

1

y'=

, x 1 2

1x ´ µ µ µ ¶

1

dx = arcsin ( x)  C

(4-24)

2

1 x

y = arccos ( x)

1

y'=

, x 1 2

1x ´ µ µ µ ¶

1



dx = arccos ( x)  C

(4-25)

2

1x

y = arctan ( x)

1

y'=

2

1x ´ µ µ µ ¶

1

dx = arctan ( x)  C

2

(4-26)

1 x

y = arccot ( x)

y'=

1 2

1 x ´ µ µ µ ¶



1 2

dx = arccot ( x)  C

(4-27)

1x

================================================================================ y = sinh ( x) ´ µ µ ¶

cosh ( x) dx = sinh ( x)  C

y = cosh ( x) ´ µ µ ¶

y ' = cosh ( x)

(4-28)

y ' = sinh ( x)

sinh ( x) dx = cosh ( x)  C

(4-29)

Seite 266

Integralrechnung Integrationsmethoden

y = tanh ( x)

1

y'=

cosh ( x) ´ µ µ µ ¶

´ µ dx = µ 2 ¶ cosh ( x)

1

y'=

sinh ( x)



= 1  tanh ( x)

2

1  tanh(x)2 dx = tanh(x)  C

1

y = coth ( x)

´ µ µ µ ¶

2

´ µ dx = µ 2 ¶ sinh ( x)

2

= 1  coth ( x)

(4-30)

2

1  coth (x)2 dx = coth (x)  C

1

(4-31)

===============================================================================

§

y = arsinh ( x) = ln © x 

·

2

x  1¹

1

y'=

2

1x ´ µ µ µ ¶

§

1 2

2

dx = arsinh ( x)  C = ln © x 

x 1

·C ¹

(4-32)

1 x

§

y = arcosh ( x) = ln © x 

·

2

x  1¹

1

y'=

, x !1

2

x 1

§

y = arcosh ( x) = ln © x 

2

·

x  1¹

y'=

1

, x !1

2

x 1 ´ µ µ µ ¶

§

1

dx = arcosh ( x)  C = ln © x 

2

·C x !1 , ¹

(4-33)

x 1

y = artanh ( x) =

´ µ µ µ ¶

2

x 1

1 2

1 x

1 2

§1  ©1 

˜ ln ¨



¸ x¹

dx = artanh ( x)  C =

y'=

1 2

, x 1

1x

1 2

§ 1x · ¸  C ,xz1 © 1x ¹

˜ ln ¨

Seite 267

(4-34)

Integralrechnung Integrationsmethoden

1

y = arcoth ( x) =

´ µ µ µ ¶

1 2

2

§ x  1· ¸ © x  1¹

˜ ln ¨

1

y'=

2

x !1

,

1x

§ x 1 · ¸  C ,xz1 © x 1 ¹

1

dx = arcoth ( x)  C =

˜ ln ¨

2

1 x

(4-35)

===============================================================================

Beispiel 4.3.1: Berechnen Sie folgende Grundintegrale:

(1)

(2)

(3)

(4)

´ µ µ ¶

x dx =

´ µ µ ¶

´ µ 2 12 ˜ x dx = 12 ˜ µ ¶

´ µ µ µ ¶ ´ µ µ µ ¶

3

2

15 4

˜

x

3

C

(4-16)

3

x

2

x dx = 12 ˜

´ µ 15 µ ˜µ x dx = 4 ¶

3

 C= 4˜ x  C

3

3

1

x

(4-12) und (4-16)

2

dx =

15 4

x

˜

3

2

3

30

 C=

12

˜x

3

2

 C=

5 2

˜x

2

C

(4-12) und (4-16)

2 1

3 4

x

dx =

x

1

4

 C = 4˜ x

1

4

C

(4-16)

4

(5)

(6)

(7)

(8)

´ µ µ ¶

´ µ x  6 ˜ x  5 dx = µ ¶

´ µ µ µ ¶

´ µ dx = µ 2 ¶ x

´ µ µ µ ¶

´ µ dx = µ 2 ¶ x

´ µ µ µ ¶

´ µ 3 1 dx = 3 ˜ µ 1 x x µ ¶

2

1

1

2

x

2

1

dx = x

x dx =

´ µ x dx  µ ¶

´ µ x dx  6 ˜ µ ¶ 2

 C=

1 x

3

5 dx =

x

3

2

 6˜

x

2

 5˜ x C

(4-13) bis (4-16)

C

(4-16)

3

x

3

C

´ µ dx  µ x ¶ 1

(4-16)

´ µ µ 1 dx  µ ¶



x

Seite 268

1 2

1

dx = 3 ˜ ln x

 x 2˜ x

2

C

(4-13) (4-19), (4-14), (4-16)

Integralrechnung Integrationsmethoden

(9)

´ µ µ ¶

e  sin ( x)  1 dx = e  cos ( x)  x  C

(10)

´ µ µ ¶

e e

(11)

´ µ µ ¶

(12)

´ µ µ µ ¶

(13)

´ µ µ ¶

(14)

´ µ µ µ ¶

x

x

x

x

x

x

dx = e  e

´ 2 µ x  1 dx = µ ¶



x 2˜

´ µ dx = µ µ ¶

2

x

C

x

x  1 dx =

2

1  2˜ x x x

3

2

´ µ dx = µ µ ¶



1 x

4 3

˜x

2

 x C

(4-13), (4-16), (4-14)

 2  x dx = ln x

 2˜ x

a ˜ cos ( x)  b ˜ sin ( x) dx = a ˜ sin ( x)  b ˜ cos ( x)  C

6 cos ( x)

5



2

x

sin ( x)

2

x

3  10 dx =

(16)

´ µ µ ¶

3 ˜ 1  tan ( x)

(17)

´ µ µ ¶

1  cot ( x) dx = cot ( x)  C

(18)

´ µ µ µ ¶

cos ¨

(19

´ µ µ µ ¶

sin ¨

(20)

´ µ µ µ ¶

x

x

3

x



ln ( 3)

2



10

2

x

2

C

(4-13), (4-19), (4-14), (4-16)

(4-13), (4-12), (4-20), (4-21)

 3 ˜ e dx = 6 ˜ tan ( x)  5 ˜ cot ( x)  3 ˜ e  C

´ µ µ ¶

(15)

(4-13), (4-17)

2



( 1  x)

(4-13), (4-17), (4-21), (4-14)

(4-13), (4-22), (4-23), (4-17)

x

ln ( 10 )

C

(4-13), (4-18)

dx = 3 ˜ tan (x)  C

(4-12), (4-22)

2

(4-23)

2 1 § x · dx = 1 ˜ ´ µ 1  cos ( x) dx = ˜ ( x  sin ( x) )  C ¸ µ 2 2 ¶ © 2¹

(3-48), (4-13), (4-14), (4-20)

1 §x· x = 1 ˜ ´ µ 1  cos ( x) dx = ˜ ( x  sin ( x) )  C ¸ d µ 2 2 ¶ © 2¹

(3-47), (4-13), (4-14), (4-20)

2

1 2

2  2˜ x

dx =

´ 1 µ ˜µ 2 µ ¶

1 2

1x

dx =

1 2

˜ arctan ( x)  C

Seite 269

(4-12), (4-26)

Integralrechnung Integrationsmethoden ´ µ µ µ ¶

(21)

(22)

(23)

1 2

dx =

3  3˜ x

´ 1 µ ˜µ 3 µ ¶

1 2

dx =

1x

´ µ µ µ ¶

´ 1 µ dx = ˜ 2 µ 2 µ 4  4˜ x ¶

´ µ µ µ ¶

´ 1 µ dx = ˜ 3 µ 2 µ 9  9˜ x ¶

1

1

1 3

˜ artanh ( x)  C =

dx = 2

1x

1

1

dx = 2

1x

1 2

1 3

1 3

˜

1 2

§ 1 x · ¸C © 1 x ¹

˜ ln ¨

˜ arcsin ( x)  C

oder: 

˜ arsinh ( x)  C =

1 3

1 2

§

˜ ln © x 

(4-12), (4-34)

˜ arccos ( x)  C (4-12), (4-24)

·

2

x  1¹  C

(4-12), (4-32)

Beispiel 4.3.2: Ein Körper wird mit einer konstanten Anfangsgeschwindigkeit v 0 zum Zeitpunkt t = 0 s nach oben geworfen. Berechnen Sie v und s. Die Reibung wird vernachlässigt.

v=

d

a=

s

dt

d

Geschwindigkeit und Beschleunigung

v

dt

ds = v ˜ dt

dv = a ˜ dt ´ µ µ ¶

s=

´ µ µ ¶

1 ds =

v=

´ µ µ ¶

g dt = g ˜ t  C1

´ s=µ µ ¶

Differentiale

zurückgelegter Weg

v dt

v=

´ µ µ ¶

1 dv =

´ µ µ ¶

a dt

Geschwindigkeit

Geschwindigkeits-Zeit-Gesetz (Stammfunktionen) 2

t g ˜ t  C1 dt = g ˜  C1 ˜ t  C2 2

Weg-Zeit-Gesetz (Stammfunktionen)

Um zwei unbestimmte Konstanten berechnen zu können, sind 2 Anfangsbedingungen notwendig: v ( 0) = v0

v = g ˜ t  C1

s ( 0) = 0

s = g ˜

g 2 s = v0 ˜ t  ˜ t 2

Geschwindigkeits-Zeit-Gesetz

v = v0  g ˜ t

Weg-Zeit-Gesetz

t

v0 = g ˜ 0  C1

2

Ÿ

C1 = v0

Ÿ

C2 = 0

2

 C1 ˜ t  C2 2

0 = g ˜

Seite 270

0

2

 v0 ˜ 0  C2

Integralrechnung Integrationsmethoden Beispiel 4.3.3: Die Ableitung einer Funktion ist gegeben durch y' = 2 x + 3. Wie lautet die Funktionsgleichung y = f(x), die den Punkt P(1 | 2) enthält? d

Ÿ

y = 2˜ x 3

dy = ( 2 ˜ x  3) ˜ dx

Differential

dx ´ µ 1 dy = µ ¶

´ µ µ ¶

2

2 ˜ x  3 dx

y= 2˜

Koordinaten von P(1 | 2) einsetzen: 2

y= x  3˜ x 2

x

2

 3˜ x C

2

auf beiden Seiten integrieren

Ÿ

2 = 1  3˜ 1  C

C = 2

gesuchte Funktion

Beispiel 4.3.4: Die Steigung einer Kurve ist in jedem Punkte gleich dem Werte der Ordinate. Wie lautet die Funktionsgleichung der Kurve? d

y = y. Der Differentialquotient lässt sich aufspalten in

dy

= dx. y dx Dies wird auch Trennung der Variablen genannt. Nun kann auf beiden Seiten der Gleichung integriert werden: Es muss folgende Differentialgleichung gelten:

´ µ µ µ ¶

1 y

ln( y)

e

ln( y)

e

dy =

´ µ µ ¶

ln ( y) = x  ln ( C)

1 dx

x ln( C)

Ÿ

=e

oder

ln ( y) = x  C1

x

y = C˜ e

gesuchte Lösungen

x C1

Ÿ

=e

C1

y=e

x

x

˜ e = C˜ e

Beispiel 4.3.5: Welche konstante Kraft muss auf einen Eisenbahnwagon von 10 t Masse wirken, damit seine Anfangsgeschwindigkeit v0 = 2 m/s im Laufe von W = 40 s umgekehrt wird, d. h. in v1 = - 2 m/s umgewandelt wird? Die Reibung wird vernachlässigt. F= m˜

d

dynamisches Grundgesetz

v

dt Nach der Aufspaltung des Differentialquotienten in F dt = m dv kann auf beiden Seiten integriert werden. ´ µ ¶

τ

v ´ 1 µ m dv F dt = µ ¶

Ÿ





F ˜ τ = m ˜ v1  v0

Kraftstoß = Impulsänderung

m v0  2 ˜ s

m v1  2 ˜ s

Geschwindigkeiten

τ  40 ˜ s

m0  10 ˜ 10 ˜ kg

0

F

v0

m0

3





˜ v1  v0 τ

F

3

1 u 10 N

Seite 271

Zeit und Masse

gesuchte Kraft

Integralrechnung Integrationsmethoden 4.3.2 Integration durch Substitution Das Ziel der Substitution (Umkehrung der Kettenregel) ist es, das vorgegebene Integral auf ein Grundintegral zurückzuführen. Wir gehen von einer integrierbaren verketteten Funktion y = f(g(x)) aus. Zuerst führen wir eine neue Integrationsvariable u ein, die mit x über g(x) zusammenhängt, also u = g(x). Das Differential von u ergibt sich dann zu: du = g'(x) dx. Das unbestimmte Integral lässt sich dann wie folgt umformen: ´ µ f ( g ( x) ) dx = µ µ ¶

´ µ µ ¶

f ( u) g' ( x)

du

(4-36)

Bei der Substitution am bestimmten Integral müssen auch die Integrationsgrenzen geändert werden: ´ f ( g ( x) ) dx = µ µ a ¶

´ µ ¶

b

u( b)

f ( u)

du

g' ( x)

(4-37)

u( a)

Spezialfälle der Substitution: a) Die innere Funktion ist linear. Für Integrale der Form ´ µ µ ¶

´ µ µ ¶

f ( a ˜ x  b) dx =

f ( a ˜ x  b) dx gilt dann mit u = a x + b und du = a dx: 1 ´ µ ˜ a µ ¶

1

f ( u) du =

a

˜ F ( u)  C =

1 a

˜ F ( a ˜ x  b)  C

(4-38)

b) Im Integranden steht die Ableitung der inneren Funktion g(x) als Produkt ( u = g(x) und du = g'(x) dx ): ´ µ µ ¶

f ( g ( x) ) ˜ g' ( x) dx =

´ µ Für Integrale der Form µ ¶ ´ µ µ ¶

f ( u) du = F ( u)  C = F ( g ( x) )  C

(4-39)

n

( g ( x) ) ˜ g ' ( x) dx gilt dann mit u = g(x) und du = g '(x) dx:

´ µ n ( g ( x) ) ˜ g ' ( x) dx = µ ¶

´ µ µ Für Integrale der Form µ ¶ ´ µ µ µ ¶

´ µ µ ¶

n

n 1

u du =

u

n 1

 C=

1 n1

˜ ( g ( x) )

n1

C

(4-40)

1

( g ( x) )

´ µ µ 2 ( g ( x) ) ˜ g ' ( x) dx = µ ¶

2

˜ g ' ( x) dx gilt dann mit u = g(x) und du = g '(x) dx: 3

1

1

u

2

du =

u

3

2

3

 C=

2

Seite 272

2 3

˜ ( g ( x) )

2

C

(4-41)

Integralrechnung Integrationsmethoden ´ µ µ g ' ( x) dx = µ 2 ˜ g ( x) µ ¶

´ µ µ µ ¶

´ µ 1 µ 1 d( g ( x) ) = ˜ µ 2 ¶ 2 ˜ g ( x)

 1· § ¨ 2 ¸ © g ( x) ¹ dg ( x) =

g ( x)  C

(4-42)

c) Im Zähler des Integranden steht die Ableitung des Nenners ( u = g(x) und du = g '(x) dx ): ´ µ µ µ ¶

´ µ dx = µ g ( x) µ ¶

1

g ' ( x)

u

du = ln u

 C = ln

g ( x)

C

(4-43)

Bemerkung: Die Umkehrung der Kettenregel kann nicht immer bei Integralen, in denen der Integrand eine verkettete Funktion darstellt, angewendet werden. Hier helfen manchmal spezielle Substitutionen, wie am Ende dieses Abschnittes gezeigt wird. Beispiel 4.3.6:

(1)

´ µ µ µ ¶

´ µ 1 µ 2 ( 1  2 ˜ x) dx = ˜ µ 2 ¶ 3

5

3

u

2

du =

1 2

u

˜

5

2

5

 C=

1 5

˜u

2

5

 C=

1 5

˜ ( 1  2 ˜ x)

2

C

(4-38), (4-16)

2

u = 1  2˜ x

(2)

´ µ µ ¶

du = 2 ˜ dx

sin ( 2 ˜ x) dx =

1 ´ µ ˜ 2 µ ¶

u = 2˜ x

(3)

´ µ µ ¶

´ µ µ ¶

cos ( 3 ˜ x  1) dx =

3˜x

e

(5)

u=



e t 2

t 2

2

˜ cos ( u)  C = 

1 2

˜ cos ( 2 ˜ x)  C

(4-38), (4-21)

dx =

1 ´ µ ˜ 3 µ ¶

cos ( u) du =

1 3

˜ sin ( u)  C =

1 3

˜ sin ( 3 ˜ x  1)  C

(4-38), (4-20)

du = 3 ˜ dx 1 ´ µ ˜ 3 µ ¶

u = 3˜ x ´ µ µ µ ¶

1

du = 2 ˜ dx

u = 3˜ x 1

(4)

sin ( u) du =

u

e du =

1 3

u

˜e  C=

1 3

3˜x

˜e

C

(4-38), (4-17)

du = 3 ˜ dx

´ µ dt = 2 ˜ µ ¶

t u

u

e du = 2 ˜ e  C = 2 ˜ e

du =

1 2

˜ dt

2

C

dt = 2 ˜ du

Seite 273

(4-38), (4-17)

Integralrechnung Integrationsmethoden

(6)

´ µ µ µ ¶

´ 5 µ dx =  ˜ µ 2 3 ( 4  3 ˜ x) µ ¶

u = 4  3˜ x

(7)

5 ´ µ ˜µ du = 2 3 ¶ u

5

u

5

du =

3

1

˜

u

1

 C=

5 3

˜

1 u

 C=

5 3

˜

1 4  3˜ x

du = 3 ˜ dx

´ µ µ 2 ˜ x  3 dx = µ ¶

´ µ µ ¶

2

1

C

(4-38), (4-16) 3

1

( 2 ˜ x  3)

2

dx =

1 2

( 2 ˜ x  3)

˜

3

2

 C=

3

1 3

˜ ( 2 ˜ x  3)

2

C

(4-38), (4-16)

2

(8)

´ µ µ ¶

7

( 5 ˜ x  3) dx =

1 5

˜

( 5 ˜ x  3)

8

 C=

8

1 40

16

(9)

´ µ ¶

´ µ 1 µ 3 ˜ x  1 dx = ˜ µ 3 ¶1

5

0

u = 3˜ x 1

3

1

u

2

du =

du = 3 ˜ dx

2 9

˜u

(4-38), (4-16)

8

˜ ( 5 ˜ x  3)  C

3· § 3 ¨ 2 2 2 2¸ ˜ © 16  1 ¹ = ˜ ( 64  1) = 14

16 | = 1

2

9

u ( 0) = 1

9

(4-37), (4-41)

u ( 5) = 16

Wir könnten aber auch zuerst unbestimmt integrieren und hinterher erst das bestimmte Integral auswerten. Damit müssen die Grenzen nicht geändert werden!

(10)

´ µ µ µ ¶

u=

´ µ dx = ˜µ 2 2 2 a µ a x µ µ ¶

´ 1 µ dx = ˜ µ 2 a µ §x· 1 ¨ ¸ ¶ © a¹

x

1

1

(12)

´ µ µ ¶

´ µ µ µ ¶

a

´ 1 µ dx = ˜ µ a 2 2 µ a x µ µ ¶ x

a

´ µ 4 sin ( x) ˜ cos ( x) dx = µ ¶

´ µ dx = µ 4 cos ( x) µ ¶ 1

2

1 a

˜ arctan ( u)  C =

1 a

§x· ¸C © a¹

˜ arctan ¨

(4-38), (4-26)

´ µ dx = µ 2 µ x· § 1¨ ¸ ¶ © a¹ 1

du =

1u

1

1

du =

a

1

˜ dx

1

u = sin ( x)

(13)

1

du =

a

´ (11) µ µ µ ¶

u=

1

2

§x· ¸C © a¹

du  C = arcsin ( u)  C = arcsin ¨

1u

˜ dx

(4-38), (4-24)

4

sin ( x) dsin ( x) =

sin ( x) 5

5

C

(4-40)

du = d ( sin ( x) ) = cos ( x) ˜ dx 1 cos ( x)

2

˜

´ µ dx = µ 2 ¶ cos ( x) 1

2

1  tan ( x) dtan ( x) = tan ( x) 

Seite 274

1 3

3

˜ tan ( x)  C

Integralrechnung Integrationsmethoden ´ µ µ µ ¶

´ µ dx = µ 4 cos ( x) µ ¶ 1

u = tan ( x)

´ µ dx = µ 2 ¶ cos ( x)

1  tan (x)2 ˜

1

1

du = d ( tan ( x) ) =

cos ( x)

(14)

´ µ µ ¶

´ 3 µ sin ( x) dx = µ ¶

u = cos ( x)

´ µ (15) µ ¶

´ 2 µ sin ( x) ˜ sin ( x) dx = µ ¶

du = sin ( x) ˜ dx

´ 1 µ x  1 dx = ˜ µ 2 ¶



u

3

C

(4-39), (4-14), (4-16)

˜ dx

2

§

cos ( x)

©

3

1  cos ( x) dcos ( x) = ¨ cos ( x)  2

du = d ( cos ( x) ) = sin ( x) ˜ dx

´ µ µ 1 µ 2 x  1 ˜ ( 2 ˜ x) dx = ˜ 2 µ ¶

2

3

2

1  u du = u 

x



1

2

¸C ¹

(4-39), (4-14), (4-16) 3

1 2



2

dx  1 =

1 2

˜

x2  1 2 3

C

2 2

u=x  1 ´ µ (16) µ µ ¶ ´ µ (17) µ µ ¶

2

du = d x  1 = 2 ˜ x ˜ dx

´ µ dx = µ 3˜ x 2 µ ¶

1

3



1 x 2

dx = ln x  2

C

´ µ (18) µ µ ¶

´ 1 µ dx = ˜ µ 2 µ 2˜ x 3 ¶

´ µ (19) µ µ µ ¶

´ µ 1 µ dx = ˜ 3 6 µ 1  2˜ x µ ¶

´ (20) µ µ ¶

´ µ cot ( x) dx = µ µ ¶

´ µ (21) µ µ ¶ ´ (22) µ µ ¶

1

2 2˜ x 3

2

´ µ tanh ( x) dx = µ µ ¶

cos ( x) sin ( x)

d3 ˜ x  2 =

u=x 2

dx =

1 2

3

dx =

1  2˜ x

3˜ x 2  C

1 6

C



3

˜ ln 1  2 ˜ x

(4-42)

(4-43), (4-19)

du = dx

˜ ln 2 ˜ x  3

2

6 ˜ x

x

´ µ µ 1 dx = µ x ˜ ln ( x) µ ¶

3˜ x 2



(4-41)

(4-43), (4-19)

C

(4-43), (4-19)

dx = ln sin ( x)

C

(4-43), (4-19)

dx = ln ln ( x)

C

(4-43), (4-19)

1 x

ln ( x)

sinh ( x) cosh ( x)

dx = ln cosh ( x)

C

Seite 275

(4-43), (4-19)

Integralrechnung Integrationsmethoden Spezielle Substitutionen: ´ µ (23) µ ¶

2

2

a  x dx

a 3 ´ µ µ ¶

´ µ ¶

2

2

x ˜

2

2

2

x ˜

´ µ (26) µ ¶ ´ µ µ ¶ ´ µ (27) µ ¶

2

2

2

a  x dx o

§x· 3 ¸ 2 2 © 3¹  x ˜  x  9  9 ˜ x ˜ 9  x



8



4

8

81 ˜ π 16

2

x  a dx

Substitution:

x=

a

oder:

cos ( t )

x = a ˜ cosh ( t )

Konstante

2

§

2

x  a dx  C o C 

´ µ 2 x  4 ˜ x  3 dx = µ ¶

2

2



2



x 9 2

2

( x  2)  1 dx

x  4 ˜ x  3 dx  C o C 

2

x  9¹

§

x  a dx

·

2

9 ˜ ln © x 

2

a a ´ µ µ ¶

2

81 ˜ asin ¨

a 3 ´ µ µ ¶

2

a  x dx  C o C 

0

2

§x· ¸ 2 © 3¹  x ˜ 9  x

9 ˜ asin ¨

a

´ µ (25) µ ¶

x = a ˜ tanh ( t )

oder:

Konstante

a  x dx  C o C 

´ µ (24) µ ¶

x = a ˜ sin ( t )

Substitution:

ln © x 

·

2

x  4 ˜ x  3  2¹ 2

§ x  1· ˜ 2 ¨ ¸ x  4˜ x 3 ©2 ¹



x = a ˜ tanh ( t )

Substitution:

oder:

Redefinition

2

2

x  a dx  C o C 



2

2

a x 2

2



§

a ˜ ln © x  2

Seite 276

2



a x

¹

x = a ˜ sinh ( t )

Integralrechnung Integrationsmethoden 4.3.3 Partielle Integration Partielle (teilweise) Integration oder Produktintegration (Umkehrung der Produktregel). Gegeben seien zwei differenzierbare Funktionen u(x) und v(x). Aus der Produktregel (u(x) . v(x)) ' = u'(x) . v(x) + v'(x) . u(x) folgt durch Umformung: u(x) . v'(x) = (u(x) . v(x)) ' - v(x) . u'(x)

(4-44)

Durch Multiplikation der Gleichung (4-44) mit dx und anschließender Integration erhalten wir die Regel für die partielle Integration: ´ µ µ ¶

´ µ µ ¶

u ( x) ˜ v ' ( x) dx = u ( x) ˜ v ( x) 

v ( x) ˜ u ' ( x) dx

(4-45)

bzw. mit dv = v'(x) dx und du = u'(x) dx ´ µ µ ¶

u dv = u ˜ v 

´ µ µ ¶

v du

(4-46)

Beispiel 4.3.7:

(1)

´ µ µ ¶

´ x x µ x ˜ e dx = x ˜ e  µ ¶

u=x

Ÿ

x

x

x

x

e dx = x ˜ e  e  C = e ˜ ( x  1)  C x

x

Ÿ

dv = e ˜ dx

du = dx

(keine Integrationskonstante!)

v=e

Bei falschem Ansatz kann sich ein schwierigeres Integral als zuvor ergeben (z. B. u = ex )

(2)

´ µ µ ¶

´ µ 2 x 2 x x ˜ e dx = x ˜ e  2 ˜ µ ¶ 2

u=x

(3)

´ µ µ ¶

Ÿ

2

x

dv = e ˜ dx

x ˜ cos ( x) dx = x ˜ sin ( x) 

2

u=x

Ÿ

x

x

du = 2 ˜ x ˜ dx

2

2

x

x

´ µ µ ¶

Ÿ

´ µ µ ¶

´ µ 1 dv = µ ¶

2

sin ( x) ˜ 2 ˜ x dx = x ˜ sin ( x)  2 ˜

dv = cos ( x) ˜ dx Ÿ

du = 2 ˜ x ˜ dx

v=

v = sin ( x)

Für das letzte Integral muss noch einmal partiell integriert werden: ´ µ µ ¶

x ˜ sin ( x) dx = x ˜ cos ( x) 

u=x

Ÿ

du = 1 ˜ dx

2



x ˜ e dx = x ˜ e  2 ˜ e ( x  1)  C = e ˜ x  2 ˜ x  2  C

´ µ µ ¶

cos ( x) dx = x ˜ cos ( x)  sin ( x) dv = sin ( x) ˜ dx

Seite 277

Ÿ

v = cos ( x)

´ µ µ ¶

x

x

e dx = e

x ˜ sin ( x) dx

Integralrechnung Integrationsmethoden

(4)

´ µ µ ¶

x ˜ cos ( x) dx = x ˜ sin ( x)  2 ˜ ( x ˜ cos ( x)  sin ( x) )  C = x ˜ sin ( x)  2 ˜ x ˜ cos ( x)  2 ˜ sin ( x)  C

´ µ µ ¶

´ µ ln ( x) ˜ 1 dx = x ˜ ln ( x)  µ µ ¶

2

2

Ÿ

u = ln ( x)

(5)

´ µ µ ¶

2

1

du =

x

1



x

˜ dx

dv = 1 ˜ dx

´ µ arctan ( x) dx = x ˜ arctan ( x)  µ µ ¶

u = arctan ( x) Ÿ

1

du =

dx = x ˜ ln ( x)  x  C = x ˜ ( ln ( x)  1)  C

2

Ÿ

v=x

´ 1 µ x˜ dx = x ˜ arctan ( x)  ˜ µ 2 2 1x µ ¶

2˜ x

1

˜ dx

dv = 1 ˜ dx

Ÿ

2

dx

1x

v=x

1x

(6)

´ µ µ ¶

arctan ( x) dx = x ˜ arctan ( x) 

´ µ µ ¶

´ µ x ˜ ln ( x) dx = ˜ x ˜ ln ( x)  µ 3 µ ¶ 1

2

(7)

´ µ µ ¶

x ˜ ln ( x) dx =

(8)

x

˜x

n1

du =

1 x

3

´ µ In = µ ¶

´ n µ sin ( x) dx = µ ¶

sin ( x)

Ÿ

x

˜

1 x

1

dx =

3

˜ x ˜ ln ( x) 

3

n 1

x

n1

1

˜

x

1 3

3

˜

x

3

 C=

1 3

3

§ ©

˜ x ˜ ¨ ln ( x) 



¸C



3

2

dx =

n

dv = x ˜ dx

˜ ¨ ln ( x) 

n1

C

dv = x ˜ dx

n1

§ n 1 ©

n1

3

x

˜ dx

x ˜ ln ( x) dx =

n

2

´ µ ˜ ln ( x)  µ µ ¶

´ µ In = µ ¶

u = sin ( x)



˜ ln 1  x

˜ dx

n1

1

Ÿ

u = ln ( x)

1

du =

n

2

3

Ÿ

u = ln ( x)

1

Ÿ

1 n1

v=

n1

˜x

x

3

˜ ln ( x) 

1 n1

n 1

˜

x

n1

C

n1

Ÿ

v=

x

n 1

· ¸C n  1¹ 1

˜ sin ( x) dx

du = ( n  1) ˜ sin ( x)

n2

˜ cos ( x) ˜ dx

Seite 278

dv = sin ( x) ˜ dx

Ÿ

v = cos ( x)

Integralrechnung Integrationsmethoden ´ µ In = µ ¶

sin ( x) dx = sin ( x)

´ µ In = µ ¶

sin ( x) dx = sin ( x)

I n = sin ( x)

n

n 1

n

n 1

´ µ ˜ cos ( x)  ( n  1) ˜ µ ¶

sin ( x)

´ µ ˜ cos ( x)  ( n  1) ˜ µ ¶

sin ( x)

§´ ¨µ n2 dx  ˜ cos ( x)  ( n  1) ˜ µ sin ( x) ¨¶ ©

n 1

n 2

n 2

2

˜ cos ( x) dx



˜ 1  sin ( x)

2

dx

· ¸ sin ( x) dx ¸ ¹

´ µ µ ¶

n

Die letzte Gleichung kann wie folgt vereinfacht werden: I n = sin ( x)

n 1

˜ cos ( x)  ( n  1) ˜ In 2  ( n  1) ˜ I n

I n  ( n  1) ˜ I n = sin ( x) n ˜ In = sin ( x)

n1

n1

˜ cos ( x)  ( n  1) ˜ I n2

˜ cos ( x)  ( n  1) ˜ I n2

Daraus ergibt sich die Rekursionsformel für n t 2: In =

1 n

´ µ (9) I 1 = µ ¶

˜ sin ( x)

k˜t

e

n1

˜ cos ( x) 

n1 n

˜ In2 ´ µ I2 = µ ¶

˜ cos ( ω ˜ t) dt

k˜t

˜ sin ( ω ˜ t) dt

e

Diese Integrale lösen wir einfacher mithilfe der Komplexrechnung (siehe dazu Band 2 und Literatur über Funktionalanalysis) durch folgenden Ansatz: ´ µ I1  j ˜ I2 = µ ¶

e

´ µ I1  j ˜ I2 = µ ¶

e

´ µ I1  j ˜ I2 = µ ¶

e

I1  j ˜ I2 =

´ µ ˜ cos ( ω ˜ t) dt  j ˜ µ ¶

k˜t

k˜t

˜ sin ( ω ˜ t) dt

˜ ( cos ( ω ˜ t)  j ˜ sin ( ω ˜ t) ) dt

k˜t

j ˜ω˜t

˜e

k j˜ω 2

k˜t

e

2

k˜t

˜e

´ µ dt = µ ¶

( k j ˜ω )˜t

e

dt =

Kann nach Euler vereinfacht werden!

( k  j ˜ ω )˜ t

1 kj˜ω

˜e

1 kj˜ω

k˜t

˜ e ( cos ( ω ˜ t)  j ˜ sin ( ω ˜ t ) )

˜ ( cos ( ω ˜ t)  j ˜ sin ( ω ˜ t) )

k ω k˜t

I1  j ˜ I2 =

=

k˜t

e 2

2

k ω

˜ ( k ˜ cos ( ω ˜ t)  ω ˜ sin ( ω ˜ t) )  j ˜

e 2

2

k ω

Aus dem Realteil ergibt sich I 1 und aus dem Imaginärteil I2 .

Seite 279

˜ ( k ˜ sin ( ω ˜ t)  ω ˜ cos ( ω ˜ t) )

Integralrechnung Integrationsmethoden 4.3.4 Integration durch Partialbruchzerlegung Das Ziel dieses Abschnittes ist, gebrochenrationale Funktionen in eine Summe von Brüchen (Partialbrüche oder Teilbrüche) zu zerlegen, damit sie integriert werden können.

m

y=

Pm ( x) Pn ( x)

¦ =

i

0 n

¦ i

§ a ˜ xi· © i ¹ ( ai, bi, x ; m, n ²)

(4-47)

§ b ˜ xi· © i ¹

0

Wir beschränken uns auf echt gebrochenrationale Funktionen (m < n), weil jede unecht gebrochenrationale Funktion in die Summe eines ganzrationalen Terms und eines echt gebrochenrationalen Terms (durch Division der Polynome) zerlegt werden kann. Zur Erinnerung sei hier noch der Fundamentalsatz der Algebra (von C. F. Gauß) angeführt: Jedes Polynom y = bn xn + bn-1 xn-1 + ... + b2 x2 + b1 x + b0 hat genau n-Nullstellen, die einfach oder mehrfach, reell oder komplex sein können. Sind x1 , x2 , ..., xn reelle Nullstellen mit der Vielfachheit D1 , D2 , ..., Dr sowie xr+1 , xr+2 , ..., xs komplexe Nullstellen, zu denen jeweils noch eine konjugiert komplexe gehört, mit den Vielfachheiten Er+1 , Er+2 , ..., Es , so gilt: y = bn (x - x1 )D1 (x - x2 )D2 ... (x - xr)Dr (x2 + pr+1 x + qr+1 )Er+1 ... ( x2 + ps x + qs )Es mit D1 +D2 + ...+ Dr + 2 Er+1 + 2 Er+2 + ... + 2 Es = n

a) Das Nennerpolynom Qn(x) hat nur einfache reelle Nullstellen: ´ µ µ µ ¶

´ µ dx = µ Pn ( x) µ ¶

Pm ( x)

´ µ = µ µ ¶

Pm ( x)

x  x1 ˜ x  x2 ... x  xn ´ µ dx  µ x  x1 µ ¶ A1

dx

´ µ dx  ...  µ x  x2 µ ¶ A2

(4-48)

An x  xn

dx

Die Koeffizienten A1 , A2 , ..., An erhalten wir mit unterschiedlichen Methoden: D) durch Koeffizientenvergleich E) durch Einsetzen bestimmter Werte



P xi , mit Q'( xi ) z 0. J) durch die Ableitung des Nenners und Ai = Q ' xi

Seite 280

Integralrechnung Integrationsmethoden Beispiel 4.3.8: ´ µ dx = µ 2 µ x 4 ¶

´ µ µ µ ¶

1

´ µ dx  µ x 2 µ ¶ A1

A2 x 2

gegebenes Integral, zerlegt in zwei Teilbrüche

dx

2

Q ( x) = x  4

P ( x) = 1

Zähler- und Nennerpolynom

Nullstellen des Nennerpolynoms: x1 = 2, x2 = - 2 Koeffizientenvergleich (Methode D): 1

=

2

x 4

A1 x 2



A2

Integrand, zerlegt in drei Partialbrüche

x 2

1 = A1 ˜ ( x  2)  A2 ˜ ( x  2)

bruchfrei gemachte Gleichung ausmultiplizieren und x herausheben

1 = A 1 ˜ x  2 ˜ A1  A2 ˜ x  2 ˜ A 2









1 = x ˜ A1  A2  2 ˜ A 1  A2 A1  A2 = 0



Ÿ

Koeffizientenvergleich auf beiden Seiten der Gleichung

A2 = A1





2 ˜ A1  A2 = 1 Ÿ



Ÿ

2 ˜ A1  A1 = 1

A1 =

1

und

4

A2 =

1 4

Einsetzen bestimmter Werte für x (Methode E): 1 = A1 ˜ ( x  2)  A2 ˜ ( x  2) Wir wählen x = 2 und x = -2: 1

1 = A1 ˜ ( 2  2)  A2 ˜ ( 2  2)

Ÿ

A1 =

1 = A1 ˜ ( 2  2)  A2 ˜ ( 2  2)

Ÿ

A2 = 

4 1 4

Durch die Ableitung des Nenners (Methode J): Zählerpolynom

P ( x) = 1 2

Q ( x) = x  4 = ( x  2) ˜ ( x  2)

Nennerpolynom mit den reellen Wurzeln x1 = 2 und x 2 = -2

Q ' ( x) = 2 ˜ x

Ableitung des Nennerpolynoms

A1 =

´ µ µ µ ¶

= 1 = 1 =1 Q ' x1 2 ˜ x1 2˜ 2 4 P x1

´ µ µ 1 dx = µ 2 µ x 4 ¶

´ µ µ 4 dx  µ x 2 µ ¶ 1

A2 =

= 1 = 1 = 1 Q ' x2 2 ˜ x2 2 ˜ ( 2) 4 P x2

1 4

x 2

dx =

1 4

˜ ln x  2

Seite 281



1 4

˜ ln x  2

 C=

1 4

§ x 2 · ¸C © x 2 ¹

˜ ln ¨

Integralrechnung Integrationsmethoden Beispiel 4.3.9: ´ µ µ µ ¶

x 1 3

x  x  6˜ x

3

P ( x) = x  1

3

gegebenes Integral

dx

2

2

2



Q ( x) = x  x  6 ˜ x = x ˜ x  x  6

2

x  x  6˜ x= 0

0 ¨§ ·¸ ¨ 3 ¸ ¨2 ¸ © ¹

hat als Lösung(en)

Koeffizientenvergleich (Methode D): x 1 x ˜ ( x  2) ˜ ( x  3)

=

A1 x



A2 x 2

Zähler- und Nennerpolynom

drei reelle Nullstellen: x1 = 0, x2 = 2, x3 = -3

A3



Integrand, zerlegt in drei Partialbrüche

x 3

x  1 = A1 ˜ ( x  2) ˜ ( x  3)  A2 ˜ x ˜ ( x  3)  A3 ˜ x ˜ ( x  2)

bruchfrei gemachte Gleichung

vereinfacht auf 2

2

2

x  1 = A1 ˜ x  A1 ˜ x  6 ˜ A 1  A2 ˜ x  3 ˜ A 2 ˜ x  A 3 ˜ x  2 ˜ A 3 ˜ x durch Zusammenfassen von Termen, ergibt





2





x  1 = A2  A1  A3 ˜ x  3 ˜ A2  A1  2 ˜ A 3 ˜ x  6 ˜ A 1 A1  A2  A3 = 0 A1  3 ˜ A 2  2 ˜ A3 = 1

zu lösendes Gleichungssystem

6 ˜ A1 = 1 Vorgabe A1  A2  A3 = 0 A1  3 ˜ A 2  2 ˜ A3 = 1 6 ˜ A1 = 1

§¨  1 ¨ 6 ¨ 3 A  Suchen A1 A2 A3 o ¨ ¨ 10 ¨ 2 ¨©  15

·¸ ¸ ¸ ¸ ¸ ¸ ¸¹

§¨ A1 ¸· ¨A ¸  A ¨ 2¸ ¨© A3 ¸¹

Seite 282

Lösungen des Gleichungssystems

Integralrechnung Integrationsmethoden

A1 o 

1 6

A2 o

3

A3 o 

10

2

gesuchte Koeffizienten

15

Einsetzen bestimmter Werte für x (Methode E): x  1 = A1 ˜ ( x  2) ˜ ( x  3)  A2 ˜ x ˜ ( x  3)  A3 ˜ x ˜ ( x  2) Wir wählen die Polstellen: x = 0 und x = 2 und x = - 3 1

0  1 = A1 ˜ ( 0  2) ˜ ( 0  3)  A2 ˜ 0 ˜ ( 0  3)  A3 ˜ 0 ˜ ( 0  2)

Ÿ

A1 =

2  1 = A1 ˜ ( 2  2) ˜ ( 2  3)  A2 ˜ 2 ˜ ( 2  3)  A3 ˜ 2 ˜ ( 2  2)

Ÿ

A2 =

3  1 = A1 ˜ ( 3  2) ˜ ( 3  3)  A2 ˜ ( 3) ˜ ( 3  3)  A3 ˜ ( 3) ˜ ( 3  2)

Ÿ

A3 = 

6 3 10 2 15

Durch die Ableitung des Nenners (Methode J): P ( x) = x  1

3

2

2

Q ( x) = x  x  6 ˜ x

Q ' ( x) = 3 ˜ x  2 ˜ x  6

A1 =

x1  1 = 1 = 2 Q ' x1 6 3 ˜ x1  2 ˜ x1  6

A2 =

x2  1 = 2 1 3 = = 2 2 Q ' x2 10 3 ˜ x2  2 ˜ x2  6 3˜ 2  2˜ 2  6

A3 =

x3  1 = 3  1 2 = = 2 2 Q ' x3 15 3 ˜ x3  2 ˜ x3  6 3 ˜ ( 3)  2 ˜ ( 3)  6

´ µ µ µ ¶

P x1

Zähler- und Nennerpolynom und Ableitung des Nennerpolynoms

x1 = 0

P x2

x2 = 2

P x3

´ µ µ x 1 dx = µ 3 2 µ x  x  6˜ x ¶

1 6

x

1 = =

=

6 5 30 1 30

´ µ µ dx  µ µ ¶

˜ ln x



˜ ln x



´ µ µ 10 dx  µ x 2 µ ¶ 3

3 10 9 30



2 15

x 3

˜ ln x  2



˜ ln x  2



ª ( x  2) 9 º »C « ( x  3) 4 ˜ x5» ¬ ¼

˜ ln «

Seite 283

x3 = 3

2 15 4 30

dx

˜ ln x  3

C

˜ ln x  3

C

Integralrechnung Integrationsmethoden

b) Das Nennerpolynom Qn(x) hat mehrfache reelle Nullstellen: ´ µ µ µ ¶

´ µ dx = µ Pn ( x) µ µ ¶

Pm ( x)

Pm ( x)

x  x1

α1





˜ x  x2

´ µ = µ µ ¶

´ µ dx  µ x  x1 µ µ ¶

´ µ + µ µ ¶

´ µ dx  µ x  xr µ µ ¶

α2





... x  xn

αr

dx

´ µ µ dx  ...  µ 2 x  x1 µ ¶ A1 2

A1 1





´ µ dx  ...  µ 2 µ x  xr ¶ Ar 2

Ar 1





(4-49)

A

1 α1

x  x1 α1 Ar α1

x  xr αr

dx + ... +

dx

Für Vielfachheiten gilt: D1 + D2 + ... + Dr = n. Beispiel 4.3.10: ´ µ µ µ ¶

3˜ x 2 ( x  1)

2

gegebenes Integral

dx

2

P ( x) = 3 ˜ x  2

Q ( x) = ( x  1) = ( x  1) ˜ ( x  1)

Zähler- und Nennerpolynome

Zweifache Nullstelle des Nennerpolynoms: x1 = x2 = 1 3˜ x 2 ( x  1)

2

=

A x 1



B ( x  1)

Integrand, zerlegt in zwei Partialbrüche

2

Einsetzen bestimmter Werte für x (Methode E): 3 ˜ x  2 = A ˜ ( x  1)  B

bruchfrei gemachte Gleichung

Wir wählen x = 1 und x = 0: 3 ˜ 1  2 = A ˜ ( 1  1)  B

Ÿ

B=1

3 ˜ 0  2 = A ˜ ( 0  1)  1

Ÿ

A=3

´ µ µ µ ¶

´ µ dx = µ 2 µ ( x  1) ¶ 3˜ x 2

´ µ dx  µ x 1 µ ¶ 3

1 ( x  1)

2

dx = 3 ˜ ln x  1

Seite 284



( x  1) 1

1

C

Lösung des gegebenen Integrals

Integralrechnung Integrationsmethoden Beispiel 4.3.11: ´ µ µ µ ¶

P ( x) = 1

1 3

2

Zähler- und Nennerpolynom

gegebenes Integral

dx

x x

3

2

2

Q ( x) = x  x = x ˜ ( x  1)

Nullstellen des Nennerpolynoms: x1,2 = 0, x3 = 1 1 3

=

2

x x

A x

B



2

x



C

Integrand, zerlegt in drei Partialbrüche

x 1

Einsetzen bestimmter Werte für x (Methode E ; (Methode J ist hier wegen Q'(0) = 0 nicht anwendbar!) 2

1 = A ˜ x ˜ ( x  1)  B ˜ ( x  1)  C ˜ x

bruchfrei gemachte Gleichung

Wir wählen x = 0 und x = 1 und x = 2: 2

Ÿ

B = 1

2

Ÿ

C=1

Ÿ

A = 1

1 = A ˜ 0 ˜ ( 0  1)  B ˜ ( 0  1)  C ˜ 0 1 = A ˜ 1 ˜ ( 1  1)  B ˜ ( 1  1)  C ˜ 1

2

1 = A ˜ 2 ˜ ( 2  1)  ( 1) ˜ ( 2  1)  1 ˜ 2 ´ µ µ µ ¶

´ µ dx = µ 3 2 µ x x ¶ 1

´ µ dx  µ x µ ¶

´ µ dx  µ 2 µ x ¶ 1

1

1 x 1

dx = ln



x

=

ln ¨

1

x

1

 ln x  1

§ x 1 ·  1  C ¸ © x ¹ x

C Lösung des gegebenen Integrals

c) Das Nennerpolynom Qn(x) hat mehrfache reelle und komplexe Nullstellen: ´ µ µ µ ¶

´ µ dx = µ Pn ( x) µ µ µ ¶

Pm ( x)

Pm ( x)

x  x1

α1





... x  xn

αr

˜ §© x  pr1 ˜ x  qr 1·¹ 2

β r 1

˜ ... ˜ §© x  ps ˜ x  qs·¹ 2

βs

dx (4-50)

Für Vielfachheiten gilt: a1 +a2 + ... + ar + 2 br+1 + 2 br+2 + ... + 2 bs = n. Zum Beispiel der Integrand besitzt folgende Funktion mit einfachen konjugiert komplexen Polstellen s1 und s2: 1 2

2

=

s ω

A1 s  s1



A2 s  s2

=

A˜s  B 2

2

s ω

=

A˜s 2

2

s ω



B 2

2

s ω

Beispiel 4.3.12: ´ µ µ µ µ ¶

2

x 4

4

dx

gegebenes Integral

a x

Seite 285

Integralrechnung Integrationsmethoden 2

4

2

4

Nullstellen des Nennerpolynoms: x = a, x = -a, x3 = 1 2 2

x 4

A

=

4

2

Q ( x) = a  x = ( a  x) ˜ ( a  x) ˜ a  x

P ( x) = x

ax

a x

B



Zähler- und Nennerpolynom

2

2

a ˜ j = a ˜ j, x4 =  a ˜ j = a ˜ j

C˜ x  D



a x



2

Integrand, zerlegt in drei Partialbrüche

2

a x

Methode E) Einsetzen bestimmter Werte:

2

2

2

x = A ˜ ( a  x) ˜ a  x

 B ˜ (a  x) ˜ a2  x2  (C ˜ x  D) ˜ (a  x) ˜ (a  x)

bruchfrei gemachte Gleichung

Wählen: x = a und x = -a und x = 0 und x = 2 a

2

2

2

a = A ˜ ( a  a) ˜ a  a 2

 B ˜ (a  a) ˜ a2  a2  (C ˜ a  D) ˜ (a  a) ˜ (a  a)

2

Ÿ

a = 2˜ a˜ 2˜ a ˜ A

2

2

2

a = A ˜ ( a  a) ˜ a  a 2

2

Ÿ

2

1

2

2

˜ ( a  0) ˜ a  0

4˜ a

B=

1

2

4˜ a

2

D= 2

˜ ( a  2 ˜ a) ˜ a  4 ˜ a

´ µ µ µ µ ¶

´ µ µ µ µ ¶

´ µ 2 µ x dx = µ 4 4 µ a x ¶

1 2 2

2

dx =

a x

2

x 4

4

a x

dx = 

´ µ µ 4˜a dx  µ ax µ ¶ 1

´ µ ˜µ 2 2˜ a µ µ µ ¶ 1

1 4˜ a

4˜ a

1 2

 41˜ a ˜ (a  2 ˜ a) ˜ a2  4 ˜ a2  §¨ C ˜ 2 ˜ a  12 ¸· ˜ (a  2 ˜ a) ˜ (a  2 ˜ a) ©

Ÿ ´ µ µ µ µ ¶

1

 41˜ a ˜ (a  0) ˜ a2  02  (C ˜ 0  D) ˜ (a  0) ˜ (a  0) Ÿ

4˜ a =

1 4˜ a

 B ˜ (a  a) ˜ a2  a2  [ C ˜ (a)  D] ˜ (a  a) ˜ (a  a)

a = 2˜ a˜ 2˜ a ˜ B

0 =

A=

¹

C=0 ´ µ µ 4˜a dx  µ ax µ ¶

1 1

§x· ¨ ¸ © a¹

˜ ln a  x



1

1

2

dx =

1 2

2˜ a

1 4˜ a

2 2

dx

2

a x

§x· ¸ © a¹

˜ a ˜ arctan ¨

˜ ln a  x



Seite 286

1 2˜ a

letztes Teilintegral

§x·  C ¸ © a¹

˜ arctan ¨

Lösung des gegebenen Integrals

Integralrechnung Uneigentliche Integrale 4.4 Uneigentliche Integrale Die Voraussetzungen der Integration waren bisher, dass das Integrationsintervall und auch der Integrand beschränkt sind. Die Integration kann aber auch auf unbeschränkte Intervalle oder unbeschränkte Funktionen ausgedehnt werden. Die Integrationsaufgabe mit unbeschränktem Integrationsintervall oder unbeschränktem Integranden kann als Grenzwertaufgabe angesehen werden. Das bestimmte Integral heißt uneigentliches Integral, wenn mindestens eine der Integrationsgrenzen unendlich ist oder der Integrand f(x) im Intervall [a , b] nicht beschränkt ist, d. h. eine oder mehrere Polstellen hat.

4.4.1 Uneigentliche Integrale 1. Art Uneigentliche Integrale 1. Art (unendliche Integrationsgrenzen): Ist f(x) im Intervall [a , f[ stetig, so definieren wir ´ µ ¶

+∞

a

x ´ 1 lim µ f ( x) dx , f ( x) dx = ¶ x1 o ∞ a

(4-51)

falls der Grenzwert existiert. Ist f(x) im Intervall ]f , b ] stetig, so definieren wir b

b

´ lim f ( x) dx = µ f ( x) dx , x0 o  ∞ ¶x0 ∞

´ µ ¶

(4-52)

falls der Grenzwert existiert. Ist f(x) im Intervall ]- f , f[ stetig, so definieren wir +∞

a

´ lim lim f ( x) dx = µ f ( x) dx  x1 o ∞ x0 o  ∞ ¶x0 ∞

´ µ ¶

x ´ 1 µ f ( x) dx , ¶

(4-53)

a

falls beide Grenzwerte existieren.

Abb. 4.4.1

Seite 287

Integralrechnung Uneigentliche Integrale Beispiel 4.4.1: f ( x) 

1

gegebene Funktion

2

x

x  1 1  0.01  10

Bereichsvariable

´ µ ¶

0.8 f ( x)

b



´ f ( x) dx = lim µ f ( x) dx ¶ bo∞ 1 1

1

nach (4-51)

0.6

´ µ lim µ bo∞ µ ¶

0.4 0.2

b

1 2

dx =

lim bo∞

x

§  ¨1 ©



¸ =1



Maßzahl der Fläche

1

0

2

4

6

8

10

12 b

´ µ f ( x) dx o 1 ¶ bo∞ 1

x

´ µ ¶

lim

Abb. 4.4.2



f ( x) dx o 1

1

Beispiel 4.4.2: f ( x) 

1

gegebene Funktion

x

x  1 1  0.01  10

Bereichsvariable

´ µ ¶

1 0.8 f ( x)

b



f ( x) dx =

1

0.6

´ lim µ µ bo∞ ¶

0.4 0.2 2

4

6

8

10

12

x

1 x

dx =

lim

b

´ lim µ f ( x) dx o ∞ ¶ bo∞ 1

Der Grenzwert existiert nicht, das heißt, das Integral ist divergent.

Beispiel 4.4.3: 1 2

gegebene Funktion

x 4 x  0 0.01  10

Bereichsvariable

Seite 288

( ln ( b)  ln ( 1) ) = ∞

bo∞

Abb. 4.4.3

f ( x) 

nach (4-51)

b

1

0

´ µ f ( x) dx ¶ bo∞ 1 lim

´ µ ¶



1

f ( x) dx o ∞

Integralrechnung Uneigentliche Integrale 0.3

´ µ ¶

b



´ µ f ( x) dx ¶ bo∞ 0

f ( x) dx =

0

0.2 f ( x)

´ µ lim µ bo∞ µ ¶ 0

2

4

6

8

b

1 ´ dx = ˜ µ 2 4 µ x 4 µ 0 µ ¶

0.1

10

nach (4-51)

lim

b

1

1

§x· 1¨ ¸ © 2¹

2

dx

0

x

Abb. 4.4.4 ´ µ lim µ bo∞ µ ¶

b

b

1

dx =

2

lim bo∞

x 4

§ 1 ˜ 2 ˜ arctan § x · · | = ¨ ¨ ¸¸ ©4 © 2 ¹¹ 0

1 2

˜

lim bo∞

§ arctan § b ·  arctan ( 0)· ¨ ¨ ¸ ¸ © © 2¹ ¹

0

= 1/2 (S/2 - 0) = S/4

1.5

Maßzahl der Fläche

Auswertung mit Mathcad:

§x· ¸ © 2¹

1 b

´ π µ f ( x) dx o ¶ 4 bo∞ 0

atan¨

lim

0.5

0

2

4

6

8

´ µ ¶

10



f ( x) dx o

0

x

π 4

Abb. 4.4.5 Beispiel 4.4.4: 2˜x

f ( x)  e

gegebene Funktion

x  3 3  0.01  0

Bereichsvariable

´ µ ¶

1

0

0

f ( x) dx =

∞

0.8

´ µ f ( x) dx ¶ ao∞ a

nach (4-52)

lim

0.6

Maßzahl der Fläche:

0.4

´ ª 1 e0  e2˜a º = 1 2˜x µ e dx = lim lim « » ¶ 2 ¼ a o  ∞ ¬2 ao∞ a

f ( x) 0

0.2 3

2

1 x

Abb. 4.4.6

0





Maßzahl der Fläche mit Mathcad ausgewertet: 0

´ 1 µ f ( x) dx o lim ¶ 2 ao∞ a

Seite 289

´ µ ¶

0

∞

f ( x) dx o

1 2

Integralrechnung Uneigentliche Integrale Beispiel 4.4.5: 1

f ( x) 

gegebene Funktion

x

x

e e

x  5 5  0.01  5

Bereichsvariable

Nach (4-53) gilt:

0.5

0.3 0.2 0.1 6

4



´ µ µ µ ¶



0

f ( x) dx =

∞

0.4 f ( x)

´ µ ¶

´ µ 1 dx = µ x x µ e e ¶

∞

2

0

2

4

6



1 x

x

dx =

lim

x

arctan (1)  arctan ea



ao∞

e e

x

du = e ˜ dx

lim

x

e 2x

e

dx

bo∞

Nach Auswertung der Grenzwerte ergibt sich die Maßzahl der Fläche zu: ∞

1 x

x

dx = ( arctan ( 1)  0) 

e e

§ π  arctan ( 1)· = π ¨ ¸ ©2 ¹ 2

∞

Mit Mathcad ausgewertet: ´ µ µ µ ¶



1 x

x

e e

dx o

π 2

∞

x x ´ µ µ µ ¶

Redefinition

1 x

x

x

dx o atan e

e e

Seite 290

f ( x) dx

0

1

Zähler und Nenner erweitern mit ex

Substitution

arctan eb  arctan (1)

∞

´ µ µ µ ¶

b



Abb. 4.4.7 ´ µ µ µ ¶

´ µ ¶

∞

u=e

x

´ µ f ( x) dx  lim ¶ ao∞ a bo∞ lim

Integralrechnung Uneigentliche Integrale 4.4.2 Uneigentliche Integrale 2. Art Uneigentliche Integrale 2. Art (Polstellen von f(x)): Ist f(x) im Intervall [a, b[ stetig, aber in x = b nicht beschränkt, so definieren wir bε

b

´ f ( x) dx = lim µ ¶ εo0 a a

´ µ ¶

f ( x) dx ,

(4-54)

falls der Grenzwert existiert ( H > 0). Ist f(x) im Intervall ]a, b] stetig, aber in x = a nicht beschränkt, so definieren wir ´ µ ¶

b

b

f ( x) dx =

a

´ µ f ( x) dx , ¶ δ o 0 aδ lim

(4-55)

falls der Grenzwert existiert (G > 0). Ist f(x) im Intervall [a, b] bis auf x = c, a < c < b, stetig, aber in c nicht beschränkt, so definieren wir ´ µ ¶

b

c ε

´ f ( x) dx = lim µ ¶ εo0 a a

b

´ f ( x) dx  lim µ f ( x) dx , ¶ δ o 0 c δ

(4-56)

falls beide Grenzwerte existieren.

Abb. 4.4.8

Seite 291

Integralrechnung Uneigentliche Integrale Beispiel 4.4.6: 1

f ( x) 

gegebene Funktion 2

1 x b 1

Polstelle

x  0 0.001  1

Bereichsvariable

5

´ µ ¶

bε

b

´ f ( x) dx = lim µ ¶ εo0 0 0

0.9 b

4

f ( x) dx

Maßzahl der Fläche:

f ( x) 3

´ µ lim µ εo0 µ ¶

2 1

Nach (4-54) gilt:

0

0.2

0.4

0.6

0.8

1

1ε

1

dx =

lim

( arcsin ( 1  ε )  arcsin ( 0) )

εo0

2

1 x

0

x

Maßzahl der Fläche mit Mathcad ausgewertet:

Abb. 4.4.9

1ε

´ lim µ ¶ εo0 0

f ( x) dx o

´ µ ¶

π 2

1

π

f ( x) dx o

2

0

Beispiel 4.4.7: f ( x) 

1

gegebene Funktion

2

x a 0

Polstelle

x  0.1 0.1  0.01  3

Bereichsvariable

a

Nach (4-55) gilt: ´ µ ¶

2

2

´ f ( x) dx = lim µ f ( x) dx ¶ δ o 0 a δ a

2

20

Maßzahl der Fläche:

f ( x) 10

0

1

2

3

´ µ lim µ δo0 µ ¶

1 2

x

dx =

lim δo0



§ 1  1 · ¨ ¸ © 2 δ¹

existiert nicht

0 δ

x

Abb. 4.4.10

2

Maßzahl der Fläche mit Mathcad ausgewertet: 2

´ µ f ( x) dx annehmen δ ! 0 o ∞ ¶ δo0 δ lim

Seite 292

´ µ ¶

2

0

f ( x) dx o ∞

Integralrechnung Uneigentliche Integrale Beispiel 4.4.8: 1

f ( x) 

3

gegebene Funktion

x 1

c 1

Polstelle

x  0 0.01  4

Bereichsvariable

Nach (4-56) gilt:

4 2 f ( x) 2

0

c ε

4

´ f ( x) dx = lim µ ¶ εo0 a 0

´ µ ¶

c

1

2

3

1ε

´ µ µ lim µ ¶ εo0 0

4

4

4

1

( x  1)

3

b

´ f ( x) dx f ( x) dx  lim µ ¶ δ o 0 c δ

dx

´ 1 µ µ 3 dx ( x  1)  lim µ ¶ δ o 0 1δ

x

Abb. 4.4.11 Auswertung der Grenzwerte: 2º ª «3 » 3 lim « ˜ ( x  1) » ¼ ε o 0 ¬2

1- H | + 0

2º ª «3 » 3 lim « ˜ ( x  1) » ¼ δ o 0 ¬2

2 2ºº ª ª «3 « » 3 3» lim « ˜ ¬( 1  ε  1)  ( 1) ¼» ¼ ε o 0 ¬2

4 | 1+G

2 2ºº ª ª «3 « » 3 3 3»  lim « ˜ ¬( 4  1)  ( 1  δ  1) ¼» = ˜ 2 ¼ δ o 0 ¬2

3 9  1

Maßzahl der Fläche: ´ µ µ µ ¶

4

1 3

dx

3

=

2

x 1

˜

3 9  1

4.62

0 1

´ µ µ µ ¶

1

0

´ µ dx  µ 3 x 1 µ ¶

4

1

1 3

dx o

x 1

3˜ 9 2

3



3 2

4.62

Auswertung mit Mathcad

1 1

´ µ µ µ ¶

4

1 3

x 1

dx o

3˜ 9 2

3



3

Achtung, nicht über Polstellen hinwegintegrieren!

2

0

Seite 293

Integralrechnung Numerische Integration 4.5 Numerische Integration Numerische Methoden sind im Allgemeinen Näherungsverfahren. Im Gegensatz zu den bisher besprochenen bestimmten Integralen gibt es aber viele Integrale, die nicht geschlossen darstellbar sind, d. h., sie besitzen Stammfunktionen, die nicht durch elementare Funktionen darstellbar sind. Oft ist die Integration zwar in geschlossener Form möglich, aber zu aufwendig. In diesen Fällen verwenden wir numerische Integrationsverfahren. Führen wir das jeweilige Verfahren hinreichend weit und rechnen mit hinreichend vielen Stellen, um Rundungsfehler klein zu halten oder gar auszuschließen, so können Fehler der Lösung unter eine gewünschte Grenze gebracht werden. Nachfolgend werden einige dieser Näherungsverfahren besprochen.

4.5.1 Mittelpunkts- und Trapezregel Wir zerlegen das Integrationsintervall [a, b] in n Teilintervalle der Breite (Schrittweite) 'x = h = (b - a)/n und summieren dann die Rechtecksflächen, deren Höhe mit dem Funktionswert in der Mitte der Teilintervalle übereinstimmt.

Abb. 4.5.1

Als Näherung gilt dann für die Maßzahl der Fläche zwischen Kurve und x-Achse: ´ µ ¶

b

f ( x) dx

a

§§ | Mn = h ˜ ¨ f ¨ a  ©©

n

Mn = h ˜

¦ i

ª ¬

§ ©

f «a  ¨ i 

1



º ¸ ˜ h» Mittelpunktsregel bei n-Rechtecken ¼



Wählen wir die Schrittweite 2 ˜ h =

´ µ ¶

b

a

f ( x) dx

3 ˜ h· § · ¸  f ¨a  ¸  ....¸ 2¹ 2 ¹ © ¹ h·

ba n

M2n = 2 ˜ h ˜

¦ i

1

ª ¬

§ ©

f «a  ¨ i 

(4-58)

, also 2n-Rechtecksflächen, so gilt:

3 ˜ h· h· §§ § · | M2n = 2 ˜ h ˜ ¨ f ¨ a  ¸  f ¨ a  ¸  ....¸ 2 ¹ 2¹ ©© © ¹ 2˜n

(4-57)



(4-59)

º ¸ ˜ 2 ˜ h» Mittelpunktsregel bei 2n-Rechtecken (4-60) ¼



 Seite 294

Integralrechnung Numerische Integration Wir zerlegen das Integrationsintervall [a, b] in n Teilintervalle der Breite (Schrittweite) 'x = h = (b - a)/n und summieren dann die Trapezflächen, deren Höhe jeweils 'x = h ist. Die Parallelseiten sind die Funktionswerte an der linken und rechten Grenze der Teilintervalle.

Abb. 4.5.2

Als Näherung gilt dann für die Maßzahl der Fläche zwischen Kurve und x-Achse: ´ µ ¶

b

| Tn =

f ( x) dx

a

Tn =

h 2

h 2

˜ [ ( f ( a)  f ( a  h) )  ( f ( a  h)  f ( a  2 ˜ h) )  ....]

(4-61)

n

¦

˜

i

[ f [ a  ( i  1) ˜ h]  f ( a  i ˜ h) ]

Trapezregel bei n-Trapezen

(4-62)

1

Die Trapezsumme ist gerade der Mittelwert von der unteren und oberen Riemann-Summe. Wählen wir die Schrittweite 2 ˜ h =

´ µ ¶

ba n

, also 2n-Trapeze, so gilt:

b

| T2n = h ˜ [ [ ( f ( a)  f ( a  2 ˜ h) )  ( f ( a  2 ˜ h)  f ( a  4 ˜ h) )  ....] ]

f ( x) dx

(4-63)

a 2˜n

T2n = h ˜

¦ i

[ f [ a  ( i  1) ˜ 2 ˜ h]  f ( a  i ˜ 2 ˜ h) ]Trapezregel bei 2n-Trapezen

(4-64)

1

 Die Trapezregel Tn (4-62) erhalten wir auch aus dem Mittelwert von T2n und M2n:

Tn =

T2n  M2n

(4-65)

2



Seite 295

Integralrechnung Numerische Integration Beispiel 4.5.1: Berechnen Sie die Fläche zwischen x-Achse und der Funktion y = f(x) = x2 im Bereich a = 0 und b = 1 exakt und mithilfe der Mittelpunkts- und Trapezregel. a 0 Intervallrandpunkte des Intervalls [a,b] b 1 n 2 Δx 

Anzahl der Subintervalle ba

Intervallbreite

n  FRAME 2

f ( x)  x

Funktionsgleichung

x  a a  0.0001  b

Bereichsvariable

Funktionen zur grafischen Veranschaulichung:

Funktion zur Umwandlung einer Bereichsvariablen in einen Vektor:

tp  0  1 Lv_in_Vektor ( a b sw)  yp  0  1

Bereichsvariablen

km0 for i  a a  sw  b

v  0 0.001  1

vk m i

Z  0.0001

kmk1

Konstante v

ª ¬

f m ( x)  f «( x  mod ( x  a Δx) ) 

Δxº 2

» ¼

Linearisierung der Kurve (Rechtecke)

f u ( x)  f ( x  mod ( x  a Δx) ) Hilfsfunktionen f o ( x)  f ( x  mod ( x  a Δx)  Δx)





f t ( x)  fu ( x)  fo ( x)  fu ( x) ˜

mod ( x  a Δx)

Linearisierung der Kurve (Trapeze)

Δx

X  a  Z ( a  Δx)  Z  b  Z

§ ©

§ ©

i  0  länge ¨ Lv_in_Vektor ¨ a  Δx Δx xm = a  a  3 ˜  b 2 2

Bereichsvariable Δx 2

·· ¹¹

b Δx¸ ¸  1

Summationsvariable

xu = a a  Δx  b  Δx

Bereichsvariable

Δx § · xm  Lv_in_Vektor ¨ a  b Δx¸ 2 © ¹ T

xm

( 0.25 0.75 )

Bereichsvariable

xu  Lv_in_Vektor ( a b  Δx Δx)

Vektor der Mittelpunkte der Rechtecke

Seite 296

T

xu

( 0 0.5 )

Vektor der Anfangspunkte der Trapeze

Integralrechnung Numerische Integration

Animation: FRAME von 0 bis 10 mit 1 Bild/s Mittelpunktsregel n  FRAME

0.8 fm( x)˜yp 0.6

2

¦ §©f §©xmi·¹ ˜ Δx·¹

Mn 

i

f ( x) 0.4 fm( X)˜tp

Mn

0.3125

0.2

Abb. 4.5.3 0

0.2

0.4

0.6

0.8

´ µ ¶

x x X

1 2

x dx

Trapezregel

Tn 

ft( x)˜yp0.8

¦ i

f ( x)

0.6

ft( x)

0.4

0.33333

0

Tn

· §¨ f § xu ·  f § xu  Δx· © i¹ © i ¹ ˜ Δx¸ ¨ ¸ 2 © ¹

0.375

ft( X)˜v 0.2

Abb. 4.5.4 0

0.5

1

x x x X

Beispiel 4.5.2: Berechnen Sie die Fläche zwischen x-Achse und der Funktion y = f(x) = e-x im Bereich a = 0 und b = 4 exakt und mithilfe der Mittelpunkts- und Trapezregel. a 0 Intervallrandpunkte des Intervalls [a,b] b 4 n  50 h

Anzahl der Subintervalle

b a 2˜ n x

Intervallbreite

f ( x)  e

Funktionsgleichung

x  a a  0.0001  b

Bereichsvariable

Seite 297

Integralrechnung Numerische Integration

1 0.8 0.6 f ( x)

Abb. 4.5.5

0.4 0.2 0

0

1

2

3

4

x

´ µ ¶

b

f ( x) dx

exakte Lösung (auf fünf Nachkommastellen)

0.98168

a 2˜n

¦

M2n  2 ˜ h ˜

i

1

ª ¬

§ ©

f «a  ¨ i 



º ¸ ˜ 2 ˜ h» 2¹ ¼

M2n

0.9994

Näherungslösung (4-60)

T2n

1.0002

Näherungslösung (4-64)

2˜n

T2n  h ˜

¦ i

Tn 

[ f [ a  ( i  1) ˜ 2 ˜ h]  f ( a  i ˜ 2 ˜ h) ]

1

T2n  M2n

Tn

2

0.9998

Näherungslösung (4-65)

4.5.2 Kepler- und Simpsonregel Wir zerlegen das Integrationsintervall [a, b] in zwei gleiche Teile mit dem Teilungspunkt xm = (a + b)/2 und der Länge 'x = h = (b - a)/2.

Abb. 4.5.6

Seite 298

Integralrechnung Numerische Integration Die Näherungsformel, die wir für das bestimmte Integral erhalten, wenn wir die Funktion y = f(x) durch eine Parabel p(x) = a0 + a1 x + a2 x2 ersetzen, welche durch die Punkte P0 (a | f(a)), P1 (xm | f(xm)) und P2 (b | f(b)) hindurchgeht, lautet: ´ µ ¶

b

f ( x) dx

´

b

| Kn = µ p ( x) dx =

b a



a

a

6



 f (b)º¼Keplerregel

˜ ª f ( a)  4 ˜ f xm ¬

(4-66)

Es ist leicht einzusehen, dass der ermittelte Näherungswert umso besser sein wird, je näher die Stellen a und b auf der x-Achse beieinander liegen. Demnach ist es naheliegend, größere Intervalle [a , b] in eine Summe kleinerer Intervalle zu zerlegen und über jedem Teilintervall die Näherungswerte zu berechnen. Eine methodische Zusammenfassung dieses Gedankens führt zur Näherungsformel von Simpson. Wird das Integrationsintervall [a , b] in 2n gleich breite Teilintervalle zerlegt, dann lässt sich n-mal die Keplerregel anwenden, indem immer zwei Teilintervalle zu einem Doppelintervall (n Doppelstreifen) zusammengefasst werden. Für das bestimmte Integral gilt dann folgende Näherungsformel (Simpsonregel): ´ µ ¶

b

f ( x) dx

| S2n

a

S2n =

b a 6˜ n

Mit der Schrittweite 2 ˜ h = S2n =

h 3







˜ ªf ( a)  4 ˜ f x1  f x3  ....  f x2˜n 1  « 2 ˜ f x  f x  ....  f x 2˜n 2  f ( b) 4 2 ¬ b a n





º » ¼

(4-67)

kann dann die Simpsonregel wie folgt geschrieben werden:

˜ ªf ( a)  4 ˜ [ f ( a  h)  f ( a  3 ˜ h)  ....  f [ a  ( n  1) ˜ h] ]  ¬ [ 2 ˜ [ f ( a  2 ˜ h)  f ( a  4 ˜ h)  ....  f [ a  ( n  2) ˜ h] ]  f ( a  n ˜ h) ]

º ¼

(4-68)



Mit n = 1 Doppelstreifen und b a 2˜ h = n erhalten wir aus der Simpsonregel die Keplerregel: A=

Abb. 4.5.7

Seite 299

h 3





˜ y0  4 ˜ y1  y2

Integralrechnung Numerische Integration Die Simpsonregel kann für n/2 Doppelstreifen ba h= , m = 1 3  n  1 und k = 2 4  n  2 (n t 4) n in folgender Form geschrieben werden: S2n =

h 3

˜ § f ( a)  4 ˜

¨ ©

¦ f (a  m ˜ h)  2 ˜ ¦ f (a  k ˜ h)  f (a  n ˜ h)·¸ m

(4-69)

¹

k

Die Simpsonregel kann für n Doppelstreifen auch als Unterprogramm ausgeführt werden: Simpson ( f a b n) 

hm

b a

(4-70)

n

S m f ( a)  f ( b) for i  0  n  1

§ ©

S m S  4 ˜ f ¨a  i ˜ h 



¸



for i  1  n  1 S m S  2 ˜ f ( a  i ˜ h) h 6

˜S

In vielen Fällen liefert die Simpsonregel recht gute Ergebnisse. Bei manchen Fällen kann dies jedoch auch zu Problemen führen. Es sei daher nachfolgend noch eine bessere Methode angeführt. Die Funktion Adapt(f,a,b) benutzt die Simpsonregel in einer rekursiven Form zur Berechnung eines Näherungswertes für das bestimmte Integral: Adapt ( f a b) 

ε m 10

8

(4-71)

S1 m Simpson ( f a b 5) S2 m Simpson ( f a b 10 ) S1  S2  ε

S2 if

§ ©

Adapt ¨ f a 

§ a  b b· ¸  Adapt ¨ f  ¸ otherwise 2 ¹ 2 © ¹

a  b·

Die Arbeitsweise von Adapt nennen wir adaptive Quadratur, da sie sich selbstständig einer gegebenen Situation anpasst und nur so viele Rechnungen ausführt als nötig sind. In Mathcad können zur numerischen Berechnung eines bestimmten Integrals zwei Methoden eingesetzt werden: 1. Romberg-Methode (Intervall-Bisektionsmethode): Nach jedem Schritt wird jedes Subintervall geteilt und ein neues Trapez angenähert. Diese Näherung wird einer Liste von vorhergehenden Näherungen hinzugefügt. Aus diesen Daten wird ein Polynom als Näherung gewonnen. Dieses Polynom an der Stelle 0 ist die neue RombergNäherung. 2. Eine Adaptive-Quadratur-Methode. Adaptive Methoden benutzen immer mehr als eine Methode. In Mathcad wird zuerst für jedes Subintervall eine Gauß-Methode mit 10 Punkten und eine Methode von Konrad mit 21 Punkten verwendet. Wenn die Näherung nicht gut genug ist, wird jedes Subintervall weiter unterteilt.

Seite 300

Integralrechnung Numerische Integration

Beispiel 4.5.3: Berechnen Sie die Fläche zwischen x-Achse und der Funktion y = f(x) im Bereich a und b exakt, mithilfe der Keplerregel, der Simpsonregel und der adaptiven Methode. a  0.5 Randpunkte des Integrationsintervalls b  2.5 xm  Δx 

a b

Teilungspunkt

2 b a

Schrittweite

100

x  a  2 a  2  Δx  b  2

Bereichsvariable

f ( x)  sin ( x)

Funktion

Zur Illustration des Verfahrens bestimmen wir auch das quadratische Polynom p(x) = a0 + a1 x + a2 x2 durch die Punkte P 0 (a | f(a)), P1 (b | f(b)), P2 (xm | f(xm)). Aus den drei Bestimmungsgleichungen für die Koeffizienten von p(x) erhalten wir mit der Koeffizientenmatrix K und dem Vektor y den Lösungsvektor a: 2

a0  a1 ˜ a  a2 ˜ a = f ( a)

lineares Gleichungssystem zur Bestimmung der Polynomkoeffizienten

2

a0  a1 ˜ b  a2 ˜ b = f ( b)

(in Matrizenform: K a = y mit dem Lösungsvektor a = K-1 y)



2

a0  a1 ˜ xm  a2 ˜ xm = f xm 2 · § ¨1 a a ¸ ¨ 2 ¸ K ¨1 b b ¸ ¨1 x x 2 ¸ m m ¹ ©

§ f ( a) · ¨ ¸ y  ¨ f ( b) ¸ ¨ f x ¸ © m ¹ 2

p ( x)  a0  a1 ˜ x  a2 ˜ x

1

a K

§¨ 0.124 ¸· a ¨ 1.435 ¸ ¨ 0.459 ¸ © ¹

˜y

Näherungspolynom Exakter Wert des Integrals (5 Gleitkommastellen):

Funktion und Näherungspolynom a

´ µ ¶

b

4



Kepler-Näherung:

2

f xm f ( x) p ( x)

f ( x) dx Gleitkommazahl 5 o 1.6787

a

f ( a) f ( b)

b

0

2

Kn 

4

Kn

2

ba 6

§ ©

§ a  b· · ¸  p ( b)¸ 2 © ¹ ¹

˜ ¨ p ( a)  4 ˜ p ¨

1.6893

Direkt berechnetes Integral über p(x):

4

´ µ ¶

a b xm x

b

a

Abb. 4.5.8

Seite 301

p ( x) dx o 1.6892925430414590727

Integralrechnung Numerische Integration n 4

n/2 Doppelstreifen

b a

h

Schrittweite

n

m  1 3  n  1 h

S2n  S2n

3

k  2 4  n  2

˜ § f ( a)  4 ˜

¨ ©

Bereichsvariablen

¦ f (a  m ˜ h)  2 ˜ ¦ f (a  k ˜ h)  f (a  n ˜ h)¸· m

Simpsonformel

¹

k

Simpsonnäherung

1.6793

n  2 6  30

Bereichsvariable für die Doppelstreifen 2, 6, 10, ..., 30

Simpson ( f a b n)

Adapt ( f a b)

1.6787

Simpson- und adaptiven Methode

1.6793 1.6787 1.6787 1.6787 1.6787 1.6787 1.6787 1.6787

Beispiel 4.5.4: Berechnen Sie die Fläche zwischen x-Achse und der Funktion y = f(x) im Bereich a und b exakt, mithilfe der numerischen Berechnung von Mathcad, der Simpsonregel und der adaptiven Methode. a  1 Randpunkte des Integrationsintervalls b 1 Δx 

b a

Schrittweite

400

x  a  2 a  2  Δx  b  2 f ( x) 

2

Bereichsvariable

1 x

Funktion

a

1

f ( x)

b

0.5

1

 0.5

Abb. 4.5.9

0

0.5

x

Seite 302

1

Integralrechnung Numerische Integration

TOL  10 A

 10

Berechnungstoleranz für das bestimmte Integral

π

A

2

´ ARA  µ ¶

exakter Wert und auf 6 Nachkommastellen ausgewertet

1.570796

b

f ( x) dx

ARA

1.570796

a

Romberg- und adaptive Methode (mit rechter Maustaste auf das Integral klicken)

AS  Simpson ( f a b 4)

AS

1.541798

Simpson mit 4 Doppelstreifen (4-70)

AA  Adapt ( f a b)

AA

1.570796

Adaptive Methode (4-71)

Relativer Fehler: A  AS

1.846 ˜ %

A

Beispiel 4.5.5: Berechnen Sie die Fläche zwischen x-Achse und der Funktion y = f(x) im Bereich a und b exakt, mithilfe der numerischen Berechnung von Mathcad, der Simpsonregel und der adaptiven Methode. a 0 Randpunkte des Integrationsintervalls b 2˜ π Δx 

b a

Schrittweite

1000

x  0 Δx  2 ˜ π f ( x)  sin ( 4 ˜ x)

2

Bereichsvariable Funktion

1a

f ( x)

b

0.5

0

2

4

6

8

x

Abb. 4.5.10 ´ ARA  µ ¶

b

f ( x) dx

ARA

3.141593

Romberg- und adaptive Methode ARA o π

a

AS  Simpson ( f a b 5)

AS

3.141593

Simpson mit 5 Doppelstreifen (4-70)

AA  Adapt ( f a b)

AA

3.141593

Adaptive Methode (4-71)

Seite 303

exakter Wert

Integralrechnung Numerische Integration

Beispiel 4.5.6: Berechnen Sie die Fläche zwischen x-Achse und der Folge von diskreten Punkten im Bereich a und b exakt, mithilfe der numerischen Berechnung von Mathcad, der Simpsonregel und der adaptiven Methode. a 0 Randpunkte des Integrationsintervalls b  20 Δx 

b a

Schrittweite

300

x  0 Δx  21

Bereichsvariable

f ( x)  x ˜ sin ( x)  x

Funktion

i  0  20

Bereichsvariable für die Punkte



xi  i

yi  f xi

Folge diskreter Punkte

50 a

b

40 f ( x) y

30 20 10 0

10

20

30

x x

Abb. 4.5.11 Wir lösen die Aufgabe, indem wir durch die Punktfolge mithilfe einer kubischen Spline-Interpolation eine Interpolationskurve legen und die Fläche unter dieser bestimmen: v  kspline ( x y)

Mit dem Vektor v bilden wir die Interpolationskurve g(x).

g ( x)  interp ( v x y x) 45 a 39 33 27 g( x) 21 15 f ( x) 9 3 30 9  15

b

2

4

6

8

10

x

Abb. 4.5.12

Seite 304

12

14

16

18

20

Integralrechnung Numerische Integration

Die Grafik zeigt, dass die interpolierte Kurve und die Kurve von f(x) im betrachteten Bereich recht gut übereinstimmen. ´ ARA  µ ¶

b

g ( x) dx

ARA

192.737549

Romberg- und adaptive Methode (die gesuchte Fläche)

a

´ A µ ¶

b

f ( x) dx

2

A o sin ( 20 )  40 ˜ sin ( 10 )  180

192.751304

a

Vergleich mit der Fläche unter der Kurve f(x)

AS  Simpson ( g a b 4)

AS

183.301808

Simpson mit 4 Doppelstreifen (4-70)

AA  Adapt ( g a b)

AA

192.737549

Adaptive Methode (4-71)

Relativer Fehler: A  AA A

0.007 ˜ %

Seite 305

Integralrechnung Bogenlänge einer ebenen Kurve 4.6 Anwendungen der Integralrechnung 4.6.1 Bogenlänge einer ebenen Kurve Wir denken uns die Länge eines beliebig herausgegriffenen Kurvenstückes zwischen P1 und P2 durch das differentiell kleine Linienelemente ds ersetzt. Die Integration über alle Linienelemente bedeutet, dass wir für unbegrenzt feiner werdende Zerlegungen den Grenzwert der Summe aller Linienelemente bilden. Wir setzen voraus, dass die Funktion y = f(x) und deren Ableitung im Intervall [a, b] stetig sind. Nach dem pythagoräischen Lehrsatz gilt:

ª

ds = dx  dy = «1  2

2

2

¬

2 § dy · »º 2 ¨ ¸ ˜ dx dx © ¹¼

(4-72)

Damit gilt für das Linienelement: ds =

2

1  ( y' ) ˜ dx

(4-73)

Abb. 4.6.1.1 Für die Summe aller Linienelemente zwischen a und b, also für die Bogenlänge s, gilt dann: ´ s=µ ¶

b

a

´ 1 ds = µ ¶

b 2

1  ( y' ) dx für a d x d b

(4-74)

a

Liegt die Funktion in Parameterdarstellung x = x(t), y = y(t) vor und ist diese im Intervall [t1 , t2 ] differenzierbar, so gilt mit yt a = x t 1 , b = x t 2 , dx = xt ˜ dt und y' = ( x z 0): xt t





t ´2 µ µ s= µ µ ¶

t

2

´2 § yt · 1  ¨ ¸ ˜ xt dt = µ µ ¨© xt ¸¹ ¶

2

2

für t 1 d t d t 2

xt  yt dt

(4-75)

t1

t1

Liegt die Funktion in Polarkoordinatendarstellung r = r(M) vor, so hat diese Funktion eine Parameterdarstellung der Form x = r(M) cos(M) und y = r(M) sin(M): ds2 = dx2 + dy2 = (xM dM)2 + (yM dM)2 = [(r' cos(M) - r sin(M)) 2 + (r' sin(M) + r cos(M)) 2 ] dM2 = = [r' 2 cos(M)2 - 2 r' r sin(M) cos(M) + r2 sin(M)2 + r' =

[r2

(sin(M)2 φ ´ 2 µ s= µ ¶

+

cos(M)2 )

2

+ r'

2

2

(sin(M)2

r ( φ)  r' ( φ) dφ

+

cos(M)2 ]

2

sin(M)2 + 2 r' r sin(M) cos(M) + r2 cos(M)2 ] dM2 =

dM2

für φ1 d φ d φ2

φ1

Seite 306

= [ r2 + r' 2 ] dM2

(4-76)

Integralrechnung Bogenlänge einer ebenen Kurve Beispiel 4.6.1.1: Sekantenannäherung der Bogenlänge. Funktion zur Umwandlung einer Bereichsvariablen in einen Vektor:

a 1 Intervall b 2 

Lv_in_Vektor ( a b sw) 

3

km0 for i  a a  sw  b

2

f ( x) 

4˜ x x

n  1  FRAME Δx 

vk m i

gegebene Funktion

kmk1

Anzahl der Intervalle (FRAME von 0 bis 10, 1 Bild/s)

b a

v

Intervalllänge

n

x  0 0.01  4

Bereichsvariable

x1  a a  Δx  b

Bereichsvariable

a

b

2 f ( a) f ( x)



f x1

1

f ( b) n 1

lim no∞ 0

0

¦ i

0

´ 2 ª« »º µ § Δyi · ¸ ˜ Δx» = µ « 1 ¨ ¬ © Δx ¹ ¼ µ ¶

b 2

1

· §d ¨ f ( x) ¸ dx © dx ¹

a

1

2

3

4

x x1

Abb. 4.6.1.2 xb = a a  Δx  b  Δx

xb  Lv_in_Vektor ( a b  Δx Δx)

i  0  länge ( Lv_in_Vektor ( a b  Δx Δx) )  1 sb 

¦ i

´ µ µ µ ¶

2

Δx  § f § xb  Δx·  f § xb · ·

©©

i

¹

©

i¹ ¹

2

sb

Bereichsvariable in einem Vektor umwandeln Bereichsvariable

2.8284271247

Näherung der Bogenlänge

b 2

1

exakte Lösung der Bogenlänge (auf 10 Dezimalstellen)

§d · ¨ f ( x) ¸ dx 3.1415926536 © dx ¹

a

Seite 307

Integralrechnung Bogenlänge einer ebenen Kurve Beispiel 4.6.1.2: Berechnen Sie die Bogenlänge der Funktion y = sin(x + 2 sin(x)) zwischen a = 0 und b = 2 S. f ( x)  sin ( x  2 ˜ sin ( x) ) d

f x ( x) 

gegebene Funktion Ableitung

f ( x)

dx

a 0 Randpunkte des Integrationsintervalls b 2˜ π n  200 Δx 

Anzahl der Punkte

b a

Schrittweite

n

x  a a  Δx  b 1

Bereichsvariable

a

b

0.5 f ( x)

0

2

4

6

Abb. 4.6.1.3

 0.5 1 x

Bogenlänge nach (4-74): ´ µ s1  µ µ ¶

b 2

§d · 1  ¨ f ( x) ¸ dx © dx ¹

s1

oder

9.593

´ µ µ ¶

b 2

1  f x ( x) dx

9.593

a

a

Beispiel 4.6.1.3: Berechnen Sie die Länge der Durchhängekurve einer Freileitung (Kettenlinie) und den Durchhang f b . Dabei wird die Form der Kettenlinie von der horizontalen Spannkraft S h = 1000 kN, dem Gewicht der Leitung pro Längeneinheit GL = 2 kN/m, der Mastenhöhe h = 20 m und dem Mastenabstand b = 200 m beeinflusst: x x



b b



f x Sh GL b h 

h h

§ GL ¨ © Sh

Redefinitionen

§ GL ¸· § GL ˜ x  cosh ¨ ˜ ¨© Sh ¸¹ ¨© Sh

˜ ¨ cosh ¨

b ·¸ ¸· 2 ¸¸

¹¹

h

Seite 308

Kettenlinie

Integralrechnung Bogenlänge einer ebenen Kurve

Integrand und Integral zur Berechnung der Seillänge nach (4-74):



· §d ¨ f x Sh GL b h ¸ © dx ¹



1



§ GL ˜ x ¸· sinh ¨ 1 ¨© Sh ¸¹

g x Sh GL b h 

2

2

g x Sh GL b h o

cosh2 x - sinh2 x = 1

b

´2 µ § GL ˜ x ¸· dx o s F Sh GL b h = s F Sh GL b h = 2 ˜ µ cosh ¨ ¨© Sh ¸¹ µ ¶









§ GL ˜ b ¸· ¨© 2 ˜ Sh ¸¹

2 ˜ Sh ˜ sinh ¨ GL

0

Spezielle Werte für die Freileitung: b  200 ˜ m

Mastabstand

h  20 ˜ m

Masthöhe

Sh  1000 ˜ kN

Spannkraft

kN GL  2 ˜ m

Gewicht pro Länge

b b b b x      2 2 800 2

Bereichsvariable





f d  h  f 0 ˜ m Sh GL b h









s F Sh GL b h 

s F Sh GL b h

fd

10.033 m

§ GL ˜ b ·¸ ¨© 2 ˜ Sh ¸¹

Durchhang fd

2 ˜ Sh ˜ sinh ¨

Berechnung der Seillänge der Freileitung

GL

201.336 m

Freileitungslänge

Seite 309

Integralrechnung Bogenlänge einer ebenen Kurve

Freileitung-Kettenlinie 



f x Sh GL b h

30

b

b 2˜m

2˜m 20



h fd

m 10

m

 100

0

100

x m

Abb. 4.6.1.4 Beispiel 4.6.1.4: Berechnen Sie den Kreisumfang. 2

y ( x r) 

2

r x

kartesische Darstellung der Funktionsgleichung (oberer Halbkreis)

r 2

Kreisradius

x  r r  0.01  r

Bereichsvariable 2

r

r

1

y( x 2 )

x

y' =

2

 y( x 2 )  2

Ableitung der Funktion (oberer Halbkreis)

2

r x

1

0

1

2

1

2

2

x

2

1  y' = 1 

2

2

r x

2

=

r 2

2

Ausdruck unter der Wurzel

r x

x

Abb. 4.6.1.5 Berechnung in kartesischen Koordinanten nach (4-74): ´ u = 2˜ µ ¶

r

´ µ 1  y' dx = 2 ˜ 2 ˜ µ µ ¶

r

2

r

0

´ dx = 4 ˜ µ µ 2 2 r x µ µ ¶

r

r

1

´ µ dx = 4 ˜ r ˜ µ 2 µ § x· ¶ 1 ¨ ¸ 0 © r¹ 1

1

du1

1  u1

2

0

Substitution: u1 =

x

Differential du:

r

du1 =

1 r

˜ dx Austausch der Grenzen:

1 §π · u = 4 ˜ r ˜ arcsin ( u1 ) | = 4 ˜ r ˜ ( arcsin ( 1)  arcsin ( 0) ) = 4 ˜ r ˜ ¨  0¸ = 2 ˜ r ˜ π 2 © ¹ 0 x x

r r

Redefinitionen

Seite 310

x=0

Ÿ

u1 = 0

x=r

Ÿ

u1 = 1

Kreisumfang

Integralrechnung Bogenlänge einer ebenen Kurve ´ µ u = 4˜ µ µ ¶

r

´ µ u = 4˜ µ µ ¶

r

annehmen r ! 0

2

· §d 1  ¨ y ( x r) ¸ dx © dx ¹

annehmen x = ReellerBereich ( r r)o u = 2 ˜ π ˜ r vereinfachen

0

´ · §d µ 1  ¨ y ( x r) ¸ dx = 4 ˜ r ˜ µ © dx ¹ µ 2

1

1

´ µ u = 4˜ r˜ µ µ ¶

du 2

1u



0

Kreisumfang

1

1

du o u = 2 ˜ π ˜ r 2

1 u

0

0

Berechnung in Parameterdarstellung nach (4-75): x ( φ r)  r ˜ cos ( φ) Parameterdarstellung des Kreises y ( φ r)  r ˜ sin ( φ) xϕ ( φ r)  r ˜ sin ( φ)

Ableitungen

yϕ ( φ r)  r ˜ cos ( φ) π

´2 µ 2 2 xϕ  yϕ dφ = 4 ˜ µ ¶

φ ´ 2

u=µ µ ¶φ

0

1

´ µ u = 2˜ µ µ ¶

π

´2 µ 2 2 2 2 r ˜ sin ( φ)  r ˜ cos ( φ) dφ = 4 ˜ µ r dφ = 4 ˜ r ˜ φ ¶ 0

S/2 |= 0

2˜ r˜ π

π 2

2

· · §d §d ¨ x ( φ r) ¸  ¨ y( φ r) ¸ dφ © dφ ¹ © dφ ¹

annehmen r ! 0 o u = 2˜ π˜ r vereinfachen

Kreisumfang

0

Berechnung in Polarkoordinatendarstellung (r = konstant) nach (4-76): π

π

´2 µ u = 4˜ µ ¶ 0

´2 S/2 µ 2 2 r  r' dφ = 4 ˜ µ r dφ = 4 ˜ r ˜ φ | = ¶ 0 0

oder: ds = r ˜ dφ ´ u=µ ¶



0

´ 1 ds = µ ¶

Abb. 4.6.1.6 ´ u=µ ¶

2˜π

r dφ vereinfachen o u = 2 ˜ π ˜ r

Kreisumfang

0

Seite 311

2˜π

0

2S | r dφ = r ˜ φ = 0

2˜ r˜ π

2˜ r˜ π

Integralrechnung Bogenlänge einer ebenen Kurve Beispiel 4.6.1.5: Berechnen Sie die Länge des ersten spitzen Zykloidenbogens. r 1

angenommener Radius des Abrollkreises

x ( t r)  r ˜ ( t  sin ( t ) ) Parameterdarstellung der spitzen Zykloide y ( t r)  r ˜ ( 1  cos ( t ) ) x1 ( t )  r ˜ sin ( t ) Parameterdarstellung des Abrollkreises y1 ( t )  r ˜ cos ( t )  1 t1  0 0.01  2π

Bereichsvariable für den Parameter spitze Zykloide 2

y( t1 r)

2˜π˜r

1

y1( t1) 0

2

0

2

4

6

8

1 x( t1 r) x1 ( t1) 0

Abb. 4.6.1.7

x x

y y

t t

r r

Redefinitionen

x ( t r)  r ˜ ( t  sin ( t ) ) Parameterdarstellung der Zykloide y ( t r)  r ˜ ( 1  cos ( t ) )

xt ( t r) 

´ µ s1 = µ ¶

d

yt ( t r) 

x ( t r)

dt



0

2

2

xt ( t r)  yt ( t r) dt

d

y ( t r)

Ableitungen der Parametergleichungen

dt annehmen r ! 0 o s1 = 8 ˜ r vereinfachen

Seite 312

achtfacher Radius des Abrollkreises

Integralrechnung Bogenlänge einer ebenen Kurve Beispiel 4.6.1.6: Berechnen Sie den Umfang der Ellipse mit den Ellipsenhalbachsen a = 10 und b = 5. a  10

b 5

Ellipsenhalbachsen

x ( t)  a ˜ cos ( t )

y ( t)  b ˜ sin ( t )

Parameterdarstellung der Ellipse

xt ( t)  a ˜ sin ( t )

yt ( t)  b ˜ cos ( t )

Ableitungen

t  0 0.01  2 ˜ π

Bereichsvariable für den Parameter

6

a

ba

Die Berechnung des Umfanges führt auf ein elliptisches Integral:

4 2 y( t)

 10

5

2

0

5

10

´ µ u µ ¶

2˜π 2

2

xt ( t)  yt ( t) dt

0

4

b

6

u

48.442

x( t)

Abb. 4.6.1.8 Beispiel 4.6.1.7: Berechnen Sie die Bogenlänge der logarithmischen Spirale r = c e M1 = 0 und M2 = S/2. c 1

k  0.5

kM

mit c = 1 und k = 0.5 im Bereich

Konstanten

k˜φ

r ( φ c k )  c ˜ e

Polarkoordinatengleichung

φ  0 0.01  π

Bereichsvariable für den Winkel 90 120

60

150

30

r( φ c k) 180

0 1 2 3 4

210

330 240

300 270 φ

Abb. 4.6.1.9

Seite 313

Integralrechnung Bogenlänge einer ebenen Kurve

k˜φ

r' = c ˜ k ˜ e φ ´ 2 µ s1 = µ ¶

=k˜r

φ ´ 2 µ r  r' dφ = µ ¶ 2

φ1

2

2

1  k dφ = c ˜

φ1

s1 =

s1 =

c

2

Bogenlänge in Polarkoordinaten nach (4-76)

φ ´ 2 k˜φ e dφ 1 k ˜ µ ¶

vereinfachtes Integral

2 µ

φ1

2

1k ˜

˜

k

2

φ1

φ ´ 2 µ r˜ s1 = µ ¶

s1 = c ˜

2

r  k ˜ r dφ

1 k

2

§

k˜φ

˜e

k˜φ2

1  k ˜ ©e

M2 | M1 k˜φ1·

e

Bogenlänge nach Auswertung des Integrals

¹

· § k˜ π ¨ ¸ 2 2 ˜ 1  k ˜ ©e  1¹

c k

Bogenlänge mit eingesetzten gegebenen Grenzen

Berechnung mit Mathcad: c c

k k

f ( φ c k ) 

Redefinitionen

§d · r ( φ c k )  ¨ r ( φ c k ) ¸ © dφ ¹ 2

2

Integrand

§ π˜k · ¨ ¸ 2 2 annehmen c ! 0 k ! 0  1¹ ˜ k  1 c ˜ ©e o s1 =

π

´2 µ s1 = µ f ( φ c k ) dφ ¶

vereinfachen

0

§ π˜k · ¨ 2 ¸ 2  1¹ ˜ k  1 c ˜ ©e s1 ( c k ) 

k

Bogenlänge der logarithmischen Spirale

k

s1 ( c k )

2.668

s1 ( 5 3)

581.426

Bogenlänge für verschiedene c und k

Seite 314

Integralrechnung Berechnung von Flächeninhalten 4.6.2 Berechnung von Flächeninhalten 4.6.2.1 Berechnung von Flächeninhalten unter einer Kurve Wir setzen voraus, dass die Funktion y = f(x), x  [a, b] und deren Ableitung im Intervall [a, b] stetig sind. Summieren wir über alle differentiellen Flächenelemente dA = y dx, so erhalten wir den Flächeninhalt aus: P b ´ 2 ´ µ 1 dA = µ y dx A= µ ¶ ¶

(4-77)

a

P1

Abb. 4.6.2.1 Liegt die Funktion in Parameterdarstellung x = x(t), y = y(t) vor und ist diese im Intervall [t1 , t2 ]





differenzierbar, so erhält man den Flächeninhalt A mit a = x t 1 , b = x t 2 und dx = xt ˜ dt durch Aufsummieren der Flächenelemente dA = y dx = y xt dt:

t

´2 A = µ y ( t) ˜ xt ( t) dt µ ¶t

(4-78)

1

Abb. 4.6.2.2 Sektorformel von Leibniz, wenn die Funktion in Parameterdarstellung gegeben ist. Es gilt: tan ( φ ( t) ) =

y ( t) x ( t)

( x ( t) z 0)

(4-79)

Differenzieren wir diese Gleichung auf beiden Seiten nach dem Parameter t, so erhalten wir: 1 cos ( φ)

˜

2

d

φ=

x ˜ yt  xt ˜ y 2

dt

(4-80)

x

Im Nenner auf der rechten Seite der Gleichung (4-80) kann die Parametergleichung eingesetzt werden: 1 cos ( φ) Abb. 4.6.2.3

Seite 315

2

˜

d dt

φ=

x ˜ yt  xt ˜ y 2

r cos ( φ)

2

(4-81)

Integralrechnung Berechnung von Flächeninhalten

Durch Multiplikation der Gleichung (4-81) mit dem Faktor 1/2 und durch Aufspaltung des Differentialquotienten erhalten wir schließlich aus (4-81): 2

r ˜ dφ

=

2

1 2

x ˜ yt  xt ˜ y ˜ dt

(4-82)

Auf der linken Seite der Gleichung (4-82) ist das Differential der Kreissektorformel A = 1/2 r2 M erkennbar. Damit lautet das differentielle Flächenelement in Parameterdarstellung: 1

dA =

2

x ˜ yt  xt ˜ y ˜ dt

(4-83)

Summieren wir wieder über alle differentiellen Flächenelemente dA, so erhalten wir den Flächeninhalt mit der Sektorformel von Leibniz: t2 t ´2 1 ´ µ µ 1 dA = ˜ A= x ˜ yt  xt ˜ y dt µ 2 µ ¶t ¶ t 1





(4-84)

1

Sektorformel von Leibniz, wenn die Funktion in Polarkoordinatendarstellung (r = r(M), M  [M1 ,M2 ]) gegeben ist. Nach (4-82) gilt für das differentielle Flächenelement: 1

dA =

2

2

˜ r ( φ) ˜ dφ

(4-85)

Summieren wir auch hier über alle differentiellen Flächenelemente dA, so erhalten wir den Flächeninhalt mit der folgenden Sektorformel von Leibniz: ´ µ A= µ ¶

OP2

φ2 1 ´ 2 µ 1 dA = ˜ r ( φ) dφ µ 2 ¶

OP1

(4-86)

φ1

Beispiel 4.6.2.1: Wie groß ist der Flächeninhalt der Kreisfläche?

2

2

2

x y =r

Kreisgleichung

Abb. 4.6.2.4 a) Kartesische Darstellung der Kreisgleichung (4-77): 2

y ( x r) 

2

r x r

´ A = 4 ˜ µ y ( x r) dx ¶ 0

oberer Halbkreis in kartesischer Darstellung annehmen r ! 0 2 o A = π˜r vereinfachen

Seite 316

Integralrechnung Berechnung von Flächeninhalten b) Parameterdarstellung des Kreises (4-78): x ( φ r)  r ˜ cos ( φ) Parametergleichungen y ( φ r)  r ˜ sin ( φ) 0

´ 2 d µ A = 4˜ y ( φ r) ˜ x ( φ r) dφ vereinfachen o A = π ˜ r µ dφ µ ¶π 2

Sektorfläche von Leibniz (4-84): ´ 1 A= ˜µ 2 µ ¶



§ · d d ¨ x ( φ r) ˜ y( φ r)  y ( φ r) ˜ x( φ r) ¸ dφ dφ dφ © ¹

annehmen r ! 0 2 o A = π˜r vereinfachen

0

c) Polarkoordinatendarstellung (4-86) r ( φ r)  r 1 ´ A= ˜µ 2 ¶

Polarkoordinatengleichung

2˜π 2

r ( φ r1 ) dφ o A = π ˜ r1

2

0

Beispiel 4.6.2.2: Wie groß ist der Flächeninhalt zwischen x-Achse und der Funktion y = sin 2 (x) zwischen 0 und S? f ( x)  sin ( x)

2

gegebene Funktion

x  0 0.01  π

Bereichsvariable

0

1

f ( x)

´ A=µ ¶

π

π 2

sin ( x) dx =

0

A=

0.5

0 1

0

1

2

x

´ A=µ ¶

3

S ˜ sin ( 2 ˜ x) | = 4 0 1

π

0

x

π

( 1  cos ( 2 ˜ x) ) dx

0



2

1 ´ ˜µ 2 ¶

2

sin ( x) dx o A =

π

Flächeneinheiten

2

π 2

Abb. 4.6.2.5 Mit T =

1 f ´ µ ¶

= L

0

2˜ π ω

und L = k ˜

´ sin ( ω ˜ t) dt = µ ¶

T 2

bzw. L = k ˜

π ω

L

2

0

2

cos ( ω ˜ t) dt =

(k  ) gilt nämlich: 

L 2

Seite 317

(4-87)

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.3: Wie groß ist der Flächeninhalt der Ellipse und des Ellipsensektors zwischen M1 und M2 ? x ( φ a)  a ˜ cos ( φ) Parameterdarstellung der Ellipse in Hauptlage y ( φ b)  b ˜ sin ( φ) xϕ ( φ a)  a ˜ sin ( φ)

Ableitungen

yϕ ( φ b)  b ˜ cos ( φ) a 4

b 2

Halbachsen

φ  0 0.001  2 ˜ π

Bereichsvariable

2

π φ1 = 2

1 y( φ b ) 0

φ2 = 0

1 2 4

2

0

2

4

x( φ a)

Abb. 4.6.2.6 π

´2 Beim Vertauschen µ ´ 2 µ µ b ˜ sin ( φ) ˜ ( 1) ˜ a ˜ sin ( φ) dφ = 4 ˜ a ˜ b ˜ µ sin ( φ) dφ der Grenzen ändert y ˜ xϕ dφ = 4 ˜ A = 4˜ µ ¶ µπ sich das Vorzeichen! ¶φ 0 ¶ 1 φ ´ 2

0

2 π

´2 S/2 1 µ · §φ 1 A = 4 ˜ a ˜ b ˜ ˜ µ ( 1  cos ( 2 ˜ φ) ) dφ = 4 ˜ a ˜ b ˜ ¨  ˜ sin ( 2 ˜ φ) ¸ | = 2 ¶0 ©2 4 ¹ 0 a a

b b 0

4˜ a˜ b˜

Redefinitionen

´ y ( φ b) ˜ xϕ ( φ a) dφ o A = π ˜ a ˜ b A = 4˜ µ µ ¶π





2

Sektorformel (Ellipsensektor):





φ2 a ˜ b ˜ φ1  φ2 1 ´ µ A= ˜ ( a ˜ cos ( φ) ˜ b ˜ cos ( φ)  b ˜ sin ( φ) ˜ a ˜ sin ( φ) ) dφ o A =  2 2 µ ¶φ 1

Mit M1 = 0 und M2 = 2 S ist A = S a b!

Seite 318

π 4

= π˜ a˜ b

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.4: Flächeninhalt unter einem Zykloidenbogen. r 1

angenommener Abrollradius

x ( t)  r ˜ ( t  sin ( t) ) Parameterdarstellung der spitzen Zykloide y ( t)  r ˜ ( 1  cos ( t ) ) x1 ( t)  r ˜ sin ( t )

Parameterdarstellung des Abrollkreises

y1 ( t)  r ˜ cos ( t )  1 t 1  0 0.001  2π

Bereichsvariable für den Parameter spitze Zykloide 2

y1 t1 y t1

1

0 2

0

2

4

6

8

1



x t1 x1 t1 0

Abb. 4.6.2.7

a a

b b

r r

Redefinitionen

φ φ

x ( t r)  r ˜ ( t  sin ( t ) ) Parametergleichungen y ( t r)  r ˜ ( 1  cos ( t ) ) ´ A=µ µ ¶

0

y ( φ r) ˜

d dφ

2˜π

´ 1 A= ˜µ 2 µ ¶

0

x ( φ r) dφ

annehmen r ! 0 2 o A = 3˜ π˜ r vereinfachen

· § d d ¨ x( φ r) ˜ y ( φ r)  y( φ r) ˜ x ( φ r) ¸ dφ dφ dφ © ¹



Seite 319

annehmen r ! 0 2 o A = 3˜ π˜ r vereinfachen

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.5: Sektorfläche einer archimedischen Spirale. a 3

gewählte Konstante

r ( φ)  a ˜ φ

Polarkoordinatendarstellung einer archimedischen Spirale

φ  0 0.002  2 ˜ π

Bereichsvariable

90 120

60 15

150

30

10 5

r( φ)

180

0

0

210

Abb. 4.6.2.8

330 240

300 270 φ

Sektorformel von Leibniz: φ





A φ1 φ2 a1 

2 1 ´ 2 µ ˜ a1 ˜ φ dφ µ 2 ¶ φ





vereinfachen o sammeln a1

1

a 3



φ1  0



A φ1 φ2 a

§¨ φ 3 φ 3 ¸· 2 1 2 ¨ 6  6 ¸ ˜ a1 © ¹

φ2  2 ˜ π

372.075

Flächeneinheiten

Seite 320

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.6: Flächeninhalt zwischen Kurve und x-Achse im Bereich von a = -2 bis b = 1. 3

2

f ( x)  x  2 ˜ x  x  2

Funktionsgleichung

a  3

Intervallanfang

b 2

Intervallende

N  800

Anzahl der Schritte

Δx 

b a

Schrittweite

N

x  a a  Δx  b

Bereichsvariable 2

1

5

f ( x)

+ 4

2

0-

2

5

 10 x

Nullstellenbestimmung: a) Durch Faktorisierung: x x

Redefinition

3

2

x  2 ˜ x  x  2 Faktor o ( x  1) ˜ ( x  2) ˜ ( x  1) b) Symbolische Lösung der Gleichung: 3

2

x  2˜ x  x 2 = 0

hat als Lösung(en)

2 ¨§ ·¸ ¨1 ¸ ¨ 1 ¸ © ¹

§¨ 1 ·¸ x  2x  x  2 = 0 auflösen x o ¨ 1 ¸ ¨ 2 ¸ © ¹ 3

2

Seite 321

4

Abb. 4.6.2.9

Integralrechnung Berechnung von Flächeninhalten c ) Mit der Funktion nullstellen (nur für Polynome):

§ 2 · ¨ ¸ ¨ 1 ¸ a  f ( x) Koeffizienten x o ¨2 ¸ ¨ ¸ ©1 ¹ ´ (1) A1 = µ ¶

1

´ (2) A1 = µ ¶

1

´ (3) A1 = µ ¶

1

f ( x) dx o A1 = 

2

2

´ f ( x) dx  µ ¶

x  nullstellen ( a)

9

f ( x) dx o A1 =

1

2

0

gesetzter ORIGIN

2 ¨§ ·¸ x ¨ 1 ¸ ¨1 ¸ © ¹

x0

37

Variante 1: Integrationsgrenzen vertauschen

12

37

Variante 2: Betrag setzen

12

FE  1

Flächeneinheiten x

´ 2 (4) A1  µ f ( x) dx ¶x

A1

3.083 ˜ FE

Variante 3: numerische Lösung

0

4.6.2.2 Berechnung von Flächeninhalten zwischen zwei Kurven Wir betrachten zwei Funktionen y1 = f(x) und y2 = g(x), deren Grafen eine Fläche im Integrationsintervall [a, b] einschließen.

Abb. 4.6.2.10 Für die Fläche zwischen den beiden Kurven gilt nach Abbildung 4.54: ´ A=µ ¶

b

a

´ 1 dA = µ ¶

2

Nicht über Nullstellen hinweg Integrieren!

4

1

f ( x) dx o A1 =

ORIGIN

b

( f ( x)  g ( x) ) dx

(4-88)

a

Seite 322

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.7: Gesucht ist die Fläche zwischen den Schnittpunkten der Kurvenbögen y = f(x) und y = g(x). 2

f ( x)  

x

6

 3˜

x

 x

5

2

x

g ( x) 

3

a 0

2



1

obere Kurve

3

untere Kurve

4

b 5

Intervallanfang und Intervallende

x  a a  0.01  b

Bereichsvariable

4 3 f ( x) g ( x)

2

Abb. 4.6.2.11 1

0

1

2

3

4

5

x x

Bestimmung der Schnittpunkte von f(x) und g(x):

§ 111 5 · ¨  ¸ 2¸ 6 ¨ x  f ( x1) = g ( x1) auflösen x1 o ¨5 111 ¸ ¨  ¸ 6 ¹ ©2

x

§ 4.256 · ¨ ¸ © 0.744 ¹

x0

4.256

x1

x-Werte der Schnittpunkte

0.744

Seite 323

Integralrechnung Berechnung von Flächeninhalten Eingeschlossene Fläche schattieren: 4

x1

x0

g( x)˜ x1  x x 0

f ( x)˜ x 1  x x0 3 f ( x)

2

Abb. 4.6.2.12 g ( x) 1

0

1

2

3

4

5

x x

´ 0 A  µ ( f ( x)  g ( x) ) dx ¶x

A

3.609

numerische Auswertung der Maßzahl des Flächeninhalts

1

Ao

37 ˜

111

symbolische Auswertung der Maßzahl des Flächeninhalts

108

Beispiel 4.6.2.8: Berechnen Sie den Flächeninhalt der von der Relation y 2 = 4 x und der Funktion y = 2 x - 4 eingeschlossen wird. a 0

Intervallanfang

b 5

Intervallende

N  400

Anzahl der Schritte

Δx 

b a

Schrittweite

N

x  a a  Δx  b f 1 ( x)  2 ˜ f 2 ( x)  2 ˜

Bereichsvariable

x x

Funktionsgleichungen

g ( x)  2 ˜ x  4

Seite 324

Integralrechnung Berechnung von Flächeninhalten

10

5

f1 ( x) f2 ( x)

Abb. 4.6.2.13

g ( x) 0

1

2

3

4

5

5 x

Bestimmung der Schnittpunkte: x1  f2 ( x2) = g ( x2) auflösen x2 o 1 x2  f1 ( x2) = g ( x2) auflösen x2 o 4

g x2

y1  g x1 y2 

y1 y2

2

P1 (1 | -2)

4

P2 (4 | 4)

Schnittpunkte

Eingeschlossene Fläche mit Punkten schattieren: I  20000

Anzahl der zu erzeugenden Zufallszahlen

x1

1

y1

2

x2

4

y2

4

Schnittpunkte

runif I y1 y2

u  runif I 0 x2 v w

gleichmäßig verteilte Zufallszahlen für x- und y-Werte

jm0 for i  0  I  1 if

g ui  vi ˜ vi  f1 ui ˜ f2 ui  vi § ui · wj m ¨ ¸ © vi ¹

Auswahl der Punkte, die in den Begrenzungslinien liegen.

jmj1 w

Seite 325

Integralrechnung Berechnung von Flächeninhalten T

w

0

0

1

2

3

4

5

6

[2, 1]

[2, 1]

[2, 1]

[2, 1]

[2, 1]

[2, 1]

[2, 1]

§ 0.773 · ¨ ¸ © 1.285 ¹

w0

zeilen ( w)

§ 1.401 · ¨ ¸ © 0.698 ¹

w1

7 ...

ausgewählte Punkte

Anzahl der darzustellenden Punkte

7406

j  0  zeilen ( w)  1

10

Bereichsvariable

x1

x2

f1 ( x) 5 f2 ( x) g ( x)

w j 1

0

1

2

3

4

5

5

0

x x x  w j

Abb. 4.6.2.14 FE  1

Einheitendefinition

x x ´ 1 ´ 2 µ f 1 ( x)  g ( x) dx f 1 ( x) dx  µ A 2˜ µ µ ¶ ¶ 0 x





A

9 ˜ FE

1

Variante: Integration entlang der y-Achse: 2

x= y1

y

x=

4 2 y

´ 2 µ A µ µ ¶y

y 2

y2

2 4

2º ª «§¨ y  2¸·  y » dy ¬© 2 ¹ 4¼

Nach x aufgelöste Funktionsgleichungen neue Grenzen

A

9 ˜ FE

1

Seite 326

Feld von Feldern

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.9: Berechnen Sie die Teilkreisfläche unter der Kurve (x + m)2 + (y + n)2 = r2 sowie den Flächeninhalt zwischen den Kurven (x - m)2 + (y - n)2 = r2 und (x + m)2 + (y + n)2 = r2 im 1. Quadranten mit r = 1, m = 0.6 und n = 0. r 1

Radius der Kreise

m  0.6 f 1 ( x) 

Mittelpunktverschiebung 2

r  ( x  m)

2

2

f 2 ( x)   r  ( x  m)

g1 ( x) 

2

r  ( x  m) 2

oberer Halbkreis 2

unterer Halbkreis

2

g2 ( x)   r  ( x  m)

oberer Halbkreis 2

unterer Halbkreis

x  2 ˜ r 2 ˜ r  0.001  2 ˜ r

m

f1 ( x)

2

Bereichsvariable

m

1

f2 ( x) g 1 ( x)  2

1

0

1

2

Abb. 4.6.2.15

g 2 ( x) 1

2 x

X  m  r m  0.95  r  m

Bereichsvariable für die X-Werte

h ( x y)  g1 ( x)  y

Funktion zur Markierung der Fläche

y  0 0.05  1

Bereichsvariable für die y-Werte

Seite 327

Integralrechnung Berechnung von Flächeninhalten

2

1.5 f1 ( x) g 1 ( x)

1

Abb. 4.6.2.16

h( X y) 0.5

A3 A1 0

0.5

1

1.5

2

x x X

Berechnung der schraffierten Fläche und der nichtschraffierten Fläche im 1. Quadranten: ´ A1  µ ¶

r m

´ A2  µ ¶

r m

2

r  ( x  m ) dx

A1

0.224

schraffierte Fläche

A2

1.347

Fläche unter verschobenem Kreis

A3

1.124

nichtschraffierte Fläche

0 2

r  ( x  m ) dx

0

A3  A2  A1

Seite 328

Integralrechnung Berechnung von Flächeninhalten 4.6.2.3 Mantelflächen von Rotationskörpern Das Kurvenstück y = f(x) zwischen A(a | c) und B(b | d) überstreicht bei Drehung um die x-Achse bzw. y-Achse den Mantel des Rotationskörpers. Summieren wir hier alle differentiellen Kegelstumpfmantelflächen dA = 2 S y ds, so erhalten wir die Mantelfläche des Rotationskörpers.

Abb. 4.6.2.17

Rotation der Funktion y = f(x) um die x-Achse mit ds =

1  y'

2

˜ dx:

s b b B ´ ´ B ´ ´ µ µ y˜ 1 d A = µ 2 ˜ π ˜ y ds = 2 ˜ π ˜ µ y d s = 2 ˜ π ˜ AM = µ ¶ ¶ ¶ ¶ sA

(4-89)

a

a

A

2

1  y' dx

Rotation der Funktion in Parameterdarstellung um die x-Achse mit ds =

2

2

xt  yt ˜ dt:

t

´B AM = 2 ˜ π ˜ µ y ˜ µ ¶t

2

2

xt  yt dt

(4-90)

A

Rotation der Funktion y = f(x) um die y-Achse mit ds = ´ AM = µ ¶

B

A

´ 2 ˜ π ˜ x ds = 2 ˜ π ˜ µ ¶

d

c

´ x ds = 2 ˜ π ˜ µ ¶

1  x'

2

˜ dx:

d



2

1  x' dx

(4-91)

c

Rotation der Funktion in Parameterdarstellung um die x-Achse mit ds =

2

2

xt  yt ˜ dt:

t

´B AM = 2 ˜ π ˜ µ x ˜ µ ¶t

2

2

xt  yt dt

(4-92)

A

Seite 329

Integralrechnung Berechnung von Flächeninhalten Beispiel 4.6.2.10: Berechnen Sie die Oberfläche einer Kugel, die durch Rotation des Halbkreises um die x-Achse bzw. y-Achse entsteht. r 1

Radius des Kreises 2

2

oberer Halbkreis

x  2 ˜ r 2 ˜ r  0.001  2 ˜ r

Bereichsvariable

f ( x) 

r x

d

r

rr

1

f ( x)

0.5

Abb. 4.6.2.18

a

c

1

b

0

1

x

r r

x x 2

f ( x) 

Redefinitionen

2

r x

Funktionsgleichung des oberen Halbkreises r

´ µ AM = 2 ˜ π ˜ 2 ˜ µ f ( x) ˜ µ ¶

2

· §d 1  ¨ f ( x) ¸ dx © dx ¹

annehmen r ! 0 2 o AM = 4 ˜ π ˜ r vereinfachen

Rotation um die x-Achse (4-89)

0

2

g ( y) 

2

r y

Umkehrfunktion des oberen Halbkreises r

´ µ AM = 2 ˜ π ˜ 2 ˜ µ g ( y) ˜ µ ¶

2

1

· §d ¨ g ( y) ¸ dy © dy ¹

annehmen r ! 0 2 o AM = 4 ˜ π ˜ r vereinfachen

Rotation um die y-Achse (4-91)

0

3D-Darstellung der Kugel (oder Ellipsoid) 2

x

2

2



a

a 1

y

2

b



z c

2 2

Kugelgleichung mit Radius 1 (implizite Darstellung)

=1 b 1

c 1

a ˜ sin ( φ) ˜ cos ( ϑ) · ¨§ ¸ Kugel ( φ ϑ)  ¨ b ˜ sin ( φ) ˜ sin ( ϑ) ¸ ¨ ¸ c ˜ cos ( φ) © ¹

Parameter (Kugel: a = b = c = 1)

Parametergleichungen der Kugel (Vektorfunktion)

Seite 330

Integralrechnung Berechnung von Flächeninhalten

Abb. 4.6.2.19

Kugel Beispiel 4.6.2.11: Berechnen Sie die Mantelfläche der durch Rotation der Parabel y2 = x um die x-Achse entstehenden Drehparaboloids im Bereich x = 0 und x = 3. f ( x) 

x Parabelbögen

f 1 ( x)   x 1

f x ( x) 



Ableitungsfunktion x

x  0 0.01  3

Bereichsvariable Drehparaboloid

0

3

1 f ( x) f1 ( x)

0

1

2

3

1

x

x x a 0 FE  1

Redefinition b 3

Integrationsgrenzen Flächeneinheiten

Seite 331

Abb. 4.6.2.20

Integralrechnung Berechnung von Flächeninhalten ´ µ AM = 2 ˜ π ˜ µ µ ¶

b

π ˜ 13 ˜ 13  1 · §d f ( x) ˜ 1  ¨ f ( x) ¸ dx vereinfachen o A M = 6 © dx ¹ 2

a

´ µ AM ( a b)  2 ˜ π ˜ µ ¶

b

f ( x) ˜

2

1  fx ( x) dx

a

AM ( a b)

24.019 ˜ FE

Mantelfläche des Drehparaboloids

3D-Darstellung: rn  40

ri  a 

n  25 b a rn

X1i j  ri tationsfläche:

i  0  rn

˜i

φj 



2˜ π n



Y1i j  f 1 ri ˜ cos φj

j  0  ( FRAME  25 )

˜j

Anzahl der Schritte und Bereichsvariable (FRAME von 0 bis 25. Die Zahl 25 bei der Bereichsvariable j löschen!) Bereichsvariable (Vektoren)





Z1i j  f 1 ri ˜ sin φj

Matrizen der x-, y- und z-Werte

Abb. 4.6.2.21

( X1 Y1 Z1) Beispiel 4.6.2.12: Berechnen Sie die Mantelfläche der durch Rotation der gleichseitigen Hyperbel y = 1/x um die y-Achse entstehenden Drehfläche im Bereich y = 1 und y = 3. f ( x) 

1

Funktion

x

x  0.1 0.1  0.01  4

Bereichsvariable

c 1

y-Bereichsgrenzen

d 3

Seite 332

Integralrechnung Berechnung von Flächeninhalten

4 d

3 f ( x)

Abb. 4.6.2.22

2 c

1 0

0

1

2

3

4

x

f 1 ( y) 

1

Umkehrfunktion

y

´ µ AM1 = 2 ˜ π ˜ µ µ ¶

d 2

§d · f 1 ( y) ˜ 1  ¨ f1 ( y) ¸ dy © dy ¹

vereinfachen

o AM1 = 7.6031 Gleitkommazahl 5

gesuchte Maßzahl der Mantelfläche

c

3D-Darstellung: a

1

b 1

3

m  40

ri  a 

n  25

b a m

˜i



X11i k  ri ˜ sin φk

x-Bereichsgrenzen (x = 1/y)

i  0  m

φk  π 

2˜ π n

k  0  ( FRAME  25 ) Anzahl der Schritte und Bereichsvariable (FRAME von 0 bis 25. Die Zahl 25 bei der Bereichsvariable k löschen!) ˜k



Bereichsvariable (Vektoren)



Y11i k  ri ˜ cos φk Z11 i k  f ri

Matrizen der x-, y- und z-Werte

Abb. 4.6.2.23

( X11 Y11 Z11 )

Seite 333

Integralrechnung Volumsberechnung 4.6.3 Volumsberechnung a) Berechnung des Volumens eines Körpers aus der Querschnittsfläche: Betrachten wir an einer Stelle x eines Körpers die Querschnittsfläche A(x) der Stärke dx, so ergibt sich ein Volumselement dV = A(x) dx. Integrieren wir alle Volumselemente von der Querschnittsfläche A a bis A b, dann erhalten wir das Gesamtvolumen.

Abb. 4.6.3.1

A b ´ b ´ µ 1 dV = µ A ( x) dx Vx = µ ¶ ¶ a

Aa

´ Vy = µ ¶

A(x) ... Querschnittsfläche zur x-Achse (4-93)

d

A ( y) dy

A(y) ... Querschnittsfläche zur y-Achse

(4-94)

c

Beispiel 4.6.3.1: Berechnen Sie das Kugelvolumen.

2

2

2

x y =r

Kreisgleichung

dV = A ( y) ˜ dy differentielles Volumselement 2

2

2

dV = x ˜ π ˜ dy = r  y

Abb. 4.6.3.2 ´ Vy = π ˜ µ ¶

r

r

r2  y2 dy vereinfachen

3

o Vy =

4˜ π˜ r 3

Seite 334

Kugelvolumen

˜ π ˜ dy

Integralrechnung Volumsberechnung Beispiel 4.6.3.2: Berechnen Sie das Volumen eines Ellipsoids (Rotation der Ellipse um die x-Achse). 2

x

2

a

2



y

2

2

=1

y =

b

2

b

2

2

2

˜ a x



Ellipsengleichung

a

2

dV = y ˜ π ˜ dx ´ µ Vx = π ˜ µ µ ¶

a

differentielles Volumselement

2 ª b2 º « ˜ a2  x2 » dx vereinfachen o V = 4 ˜ π ˜ a ˜ b x « a2 » 3 ¬ ¼



a



Volumen des Ellipsoids

Beispiel 4.6.3.3: Berechnen Sie das Volumen einer quadratischen Pyramide. Ähnliche Figuren: A ( x) AG

2

2

x

=

Ÿ

2

a

A ( x) =

2

h

2

˜x

h

dV = A ( x) ˜ dx

differentielles Volumselement

h

2 ´ 2 a ˜h Vx = ˜ µ x dx vereinfachen o Vx = 2 ¶ 3 0 h 2

a

Abb. 4.6.3.3 Beispiel 4.6.3.4: Berechnen Sie das Volumen eines Zylinderhufes. Für die schraffierte Dreiecksfläche gilt: 1

A=

2

˜ y˜ z =

tan ( α) =

h

1 2

˜ y ˜ y ˜ tan ( α)

damit ist

r

A=

h 2˜ r

2

˜y

Mit dem Höhensatz folgt für die Fläche A: 2

y = x ˜ ( 2 ˜ r  x) A ( x) =

2˜r

´ ˜µ 2 ˜ r ¶0 h

2˜ r

˜ x ˜ ( 2 ˜ r  x)

Querschnittsfläche

dV = A ( x) ˜ dx differentielles Volumenelement

Abb. 4.6.3.4

V=

h

2

x ˜ ( 2 ˜ r  x) dx vereinfachen o V =

2˜ h˜ r 3

Seite 335

Ist gleich groß wie das Volumen der Pyramide ABCDS (A = G . h /3)!

Integralrechnung Volumsberechnung Beispiel 4.6.3.5: Berechnen Sie das Volumen einer Pyramide mit beliebiger Grundfläche. A ( x) AG

2

=

A ( x) =

x

Ähnliche Figuren

2

h

AG 2

2

˜x

Querschnittsfläche

h

dV = A ( x) ˜ dx

differentielles Volumenelement

Abb. 4.6.3.5 AG ˜ h AG ´ h 2 ˜ µ x dx vereinfachen o V = V= 2 ¶ 3 0 h Mithilfe dieser Integration zeigt man den Satz von Cavalieri: Alle Körper, bei denen alle in gleichen Abständen von der Grundfläche geführten Parallelschnitte gleiche Flächeninhalte haben, sind raumgleich.

Abb. 4.6.3.6

(z. B. Pyramide, Kegel, Kugel, Zylinderhuf, Ellipsoid, Paraboloid, Hyperboloid usw.) b) Berechnung des Volumens eines Drehkörpers: Die Querschnittsflächen A(x) bzw. A(y) sind Kreise mit dem Radius y = f(x) bzw. x = f(y). Daher folgt aus a): ´ Vx = π ˜ µ ¶

b 2

y dx

Rotation einer Kurve um die x-Achse (y = f(x)) (4-95)

a d

´ Vy = π ˜ µ ¶

2

x dy

Rotation einer Kurve um die y-Achse (x = f(y))

(4-96)

c

Liegt die Funktion in Parameterform (x(t), y(t)) vor, so gilt: t

´2 2 Vx = π ˜ µ y ˜ xt dt µ ¶t

Rotation einer Kurve um die x-Achse

(4-97)

´ Vy = π ˜ µ µ ¶t

Rotation einer Kurve um die y-Achse

(4-98)

1 t2

2

x ˜ yt dt

1

Seite 336

Integralrechnung Volumsberechnung Beispiel 4.6.3.6: Berechnen Sie das Volumen eines Drehkegels.

´ µ Vx ( r h)  π ˜ µ µ ¶

h 2

2

§ r ˜ x· dx ¨ ¸ ©h ¹

Vx ( r h) o

h 1˜ m

gewählte Größen

π˜ h˜ r 3

0

r 1˜ m Vx ( r h)

1.047 ˜ m

3

Vx ( r h) o

π˜m

3

3

Abb. 4.6.3.7 Beispiel 4.6.3.7: Berechnen Sie das Volumen eines Kugelabschnittes.

Mit dem Höhensatz gilt: 2

y = x ˜ ( 2 ˜ r  x) ´ Vx ( r h)  π ˜ µ ¶

h

2

x ˜ ( 2 ˜ r  x) dx Faktor o 

π ˜ h ˜ ( h  3 ˜ r) 3

0

Mit dem Pythagoras gilt: 2

2

r = ρ  ( r  h)

2

Ÿ

2

r=

Abb. 4.6.3.8 ´ µ Vx ( ρ h)  π ˜ µ µ ¶

h



2 2 º ª § ρ2 h· π˜ h˜ 3˜ ρ  h  ¸  x» dx Faktor o 6 ¬ © 2 ˜ h 2¹ ¼

x ˜ «2 ˜ ¨



0 2

´ Vx ( ρ h)  π ˜ µ ¶

ersetzen r =

h

0

x ˜ ( 2 ˜ r  x) dx

Faktor

ρ

2˜ h



h



2 π ˜ h ˜ 3 ˜ ρ2  h2 o 6

Seite 337



ρ

2˜ h



h 2

Integralrechnung Volumsberechnung Beispiel 4.6.3.8: Eine Parabel y = 1/4 x2 rotiert um die x-Achse bzw. y-Achse. Wie groß sind die Volumina der Drehkörper, wenn a = 0 und b = h ist? Vergleichen Sie diese Volumina mit dem Zylindervolumen. Vx  Vx

h h

´ µ Vx = π ˜ µ µ ¶

Redefinitionen

h 4

Volumen des Rotationskörpers Vorsicht beim Rechnen mit Einheiten!

5

x

dx o V x =

16

π˜h 80

0 2

2

Vz = r ˜ π ˜ h

h

r=

4

Zylindervolumen und Radius des Zylinders

2

5 § h2 · π˜h ¨ ¸ Vz = ˜ π ˜ h vereinfachen o Vz = 16 ©4¹

1 Abb. 4.6.3.9

Vx Vz

5

˜π˜h

80

=

Vx

vereinfacht auf

1

Vz

5

˜h ˜π

16 2

x = 4˜ y

y ( 0) = 0

´ Vy = π ˜ µ ¶

=

1 5

y ( b) = h

h

2

4 ˜ y dy o V y = 2 ˜ π ˜ h

0 2

2

Vz = r ˜ π ˜ h

h=

r

Zylindervolumen

4 2

Vz = ( 4 ˜ h) ˜ π ˜ h o Vz = 4 ˜ π ˜ h Abb. 4.6.3.10 Beispiel 4.6.3.9:

Vy Vz

2

=

2˜ h ˜ π

vereinfacht auf

2

Vy Vz

4˜ h ˜ π

=

1 2

Berechnen Sie das Volumen eines Drehellipsoids.

2

y =

2

b

2

2

2

˜ a x



Ellipsengleichung

a

2

dV = y ˜ π ˜ dx ´ µ Vx = π ˜ µ µ ¶

a

Volumenelement 4˜ π˜ a˜ b 2 2 ˜ a  x dx o V x = 2 3 2

b a

a

Mit a = b = r erhalten wir das Kugelvolumen Abb. 4.6.3.11

Seite 338

2

Integralrechnung Volumsberechnung

2

x =

2

2

a

2

˜ b y

2



Ellipsengleichung

b

2

dV = x ˜ π ˜ dy

´ µ Vy = π ˜ µ µ ¶

Volumenelement

b

2

2

a

2

˜ b y

2

dy o V y = 4 ˜ π ˜ a

2

˜b

3

b

b

Abb. 4.6.3.12 Beispiel 4.6.3.10: Die Funktion y = cosh(x) rotiert um die x-Achse. Wie groß ist das Volumen des Drehkörpers zwischen 0 und 2?

´ Vx = π µ ¶

b

2

π ´ ˜ µ ( cosh ( 2 ˜ x)  1) dx cosh ( x) dx = ¶ 2 0 a

Vx =

Vx =

2

§ 2 ©

π

˜ ¨ sinh ( 2 ˜ x) ˜

§ 2 ©

π

˜ ¨ sinh ( 4) ˜

´ Vx ( a b)  π ˜ µ ¶

1 2

1 2

2

· ~ ¹ 0

 x¸

· ¹

 2¸

b 2

cosh ( x) dx

a

Vx ( 0 2)

Abb. 4.6.3.13

Seite 339

24.575

Maßzahl des Volumens

Integralrechnung Volumsberechnung Beispiel 4.6.3.11: Bestimmen Sie das Volumen des Drehhyperboloids.

2

x

2

2

y



a

implizite Gleichung der Hyperbel

=1

2

b

2

2

a

2

x =

2

2

˜ b y



umgeformte Gleichung der Hyperbel

b

2

dV = x ˜ π ˜ dy

differentielles Volumenelement

Abb. 4.6.3.14

´ µ Vy = 2 ˜ π ˜ µ µ ¶

c 2

a

2

2

2

˜ b y

dy o V y = 2 ˜ π ˜ a

2

b



2

˜ c˜ 3˜ b  c

2



2

3˜ b

0

Beispiel 4.6.3.12: Bestimmen Sie das Volumen des Körpers, der entsteht, wenn die Fläche unter dem ersten spitzen Zykloidenbogen um die x-Achse gedreht wird. t  0 0.001  2 ˜ π

Bereichsvariable

x ( t)  t  sin ( t) Parametergleichungen y ( t)  1  cos ( t ) 2

2˜π

1.5 y( t)

1

Abb. 4.6.3.15 0.5 0

0

2

4

6

8

x( t)

´ V = 𘵠µ ¶

2˜π 2 d

y( t) ˜

x ( t ) dt o V = 5 ˜ π

2

Maßzahl des Volumens

dt

0

Seite 340

Integralrechnung Volumsberechnung Beispiel 4.6.3.13: Bestimmen Sie das Volumen des Körpers, der entsteht, wenn die Kurve y = x sin(x)2 im Bereich -2 S und 2 S um die x-Achse rotiert. 2

Funktion

a  2 ˜ π

b 2˜ π

obere und untere Intervallgrenze

n  60

m  35

i  0  n

˜i

φj 

f ( x)  x ˜ sin ( x)

ri  a 

b a n



Xi j  ri

j  0  m

Anzahl der Schritte und Bereichsvariable

2˜ π˜ j

Vektoren der Radien und Winkeln

m





Yi j  f ri ˜ cos φj



Zi j  f ri ˜ sin φj

Matrizen der X-, Y- und Z-Werte

6

a

b

4



f ri

2  10

5

2

0

5

10

Abb. 4.6.3.16

4 6 ri

Abb. 4.6.3.17

( X Y Z)

´ V 𘵠¶

b 2

4

x ˜ sin ( x) dx

V

185.565

Maßzahl des Volumens

a

Seite 341

Integralrechnung Berechnung von Schwerpunkten 4.6.4 Berechnung von Schwerpunkten Der Schwerpunkt S eines Körpers ist der Schnittpunkt aller Achsen, für die das resultierende Drehmoment aller Massenteilchen (in einem homogenen Schwerefeld) null ist, d. h., wir können uns die Masse in diesem Punkt konzentriert denken. Die Achsen heißen Schwereachsen. Für den Schwerpunkt einer Fläche bzw. eines Kurvenstückes denken wir uns die Fläche bzw. das Kurvenstück mit Masse belegt.

Abb. 4.6.4.1

Für das Drehmoment von Masseteilchen gilt: M=

¦ Mi = ¦ §© FGi ˜ ri·¹ = ¦ mi ˜ g ˜ ri = g ˜ ¦ mi ˜ ri = g ˜ Mst i

Mst =

i

i

¦ mi ˜ ri heißt statisches Moment

(4-99)

i

(4-100)

i

Einen starren Körper der Masse m können wir uns aus vielen Massenelementen zusammengesetzt denken. Betrachten wir von diesem Körper ein bestimmtes Massenelement dm, dann greift an diesem die Gewichtskraft dFG = g dm an. Die Resultierende der Gewichtskräfte aller Massenelemente ist die Gewichtskraft FG = m g des gesamten Körpers. Ihre Wirkungslinie geht durch den Schwerpunkt S(xs | ys | z s ). Seine Lage errechnet sich aus der Momentengleichung, d. h., die Summe der Momente der Einzelkräfte ist gleich dem Moment der resultierenden Kraft: ´ µ ¶

m

r ( m ) ˜ g dm = FG ˜ r = m ˜ g ˜ r .

0

Wenden wir nun die Momentengleichung für die z-Achse, y-Achse und x-Achse an und kürzen wir g aus der Gleichung, so erhalten wir die Schwerpunktskoordinaten: m

´ ˜ µ x dm , xs = m ¶0 1

m

m

´ 1 ´ ˜ µ y dm , z s = ˜ µ z dm ys = m ¶0 m ¶0 1

(4-101)

Die Masse pro Volumen, pro Fläche bzw. pro Länge hängt über der Dichte U zusammen: m ρ= m = ρ˜ V, dm = ρ ˜ dV , (4-102) V m ρ= m = ρ˜ A , dm = ρ ˜ dA , (4-103) A m ρ= m = ρ˜ s , dm = ρ ˜ ds , (4-104) s Ist ein Körper homogen, d. h. U konstant, so kann in den Gleichungen U gekürzt werden.

Seite 342

Integralrechnung Berechnung von Schwerpunkten 4.6.4.1 Schwerpunkt eines Kurvenstückes Die Koordinaten für den Schwerpunkt eines Kurvenstückes zwischen dem Punkt A und B der Kurve erhalten wir aus den oben angeführten Gleichungen: b

b ´ ´ 1 1 2 ˜ µ x ds = xs = ˜ Msty ˜ µ x ˜ 1  y' dx = s AB ¶a s AB ¶a s AB Msty ... statisches Moment bezüglich der y-Achse.

1

(4-105)

b

b ´ ´ 1 1 2 ˜ µ y ds = ys = ˜ Mstx ˜ µ y ˜ 1  y' dx = ¶ ¶ s AB a s AB a s AB Mstx ... statisches Moment bezüglich der y-Achse.

1

(4-106)

Beispiel 4.6.4.1: Bestimmen Sie die Schwerpunktskoordinanten der Kettenlinie y = cosh(x) zwischen a = 0 und b = 2. a 0 Integrationsgrenzen b 2 f ( x)  cosh ( x)

Kettenlinie

x  a a  0.01  b

Bereichsvariable

´ µ µ µ ¶ xs ( a b) 

b

´ µ µ µ ¶

2

· §d x ˜ 1  ¨ f ( x) ¸ dx © dx ¹

a

´ µ µ µ ¶

ys ( a b) 

b 2

1

· §d ¨ f ( x) ¸ dx © dx ¹

a

xs ( a b)

b 2

· §d f ( x) ˜ 1  ¨ f ( x) ¸ dx © dx ¹

a

´ µ µ µ ¶

b 2

1

· §d ¨ f ( x) ¸ dx © dx ¹

a

ys ( a b)

1.238

4

2.157

xs( a b)

3 f ( x)

S 2

1

0

0.5

1

Abb. 4.6.4.2

ys( a b )

1.5

x

Seite 343

2

Integralrechnung Berechnung von Schwerpunkten Beispiel 4.6.4.2: Bestimmen Sie die Schwerpunktskoordinanten eines Viertelkreisbogens mit Radius r. φ1  0 π φ2  2

Integrationsgrenzen

x ( φ r)  r ˜ cos ( φ) Parameterdarstellung des Kreises y ( φ r)  r ˜ sin ( φ) xϕ ( φ r)  yϕ ( φ r) 



d

x ( φ r)

dφ d

Ableitungen y ( φ r)

dφ φ ´ 2 µ x ( φ r) ˜ r dφ µ ¶ φ1



xs φ1 φ2 r 

φ ´ 2

µ µ ¶φ

Wegen der Symmetrie ist x s = ys ! 2

2

xϕ ( φ r)  yϕ ( φ r) dφ

1

φ

´ 2 µ µ ¶φ

2

annehmen r ! 0 π ˜ r o vereinfachen 2

2

xϕ ( φ r)  yϕ ( φ r) dφ

Viertelkreis

1





xs φ1 φ2 r

annehmen r ! 0 2 ˜ r o vereinfachen π

r  3 ˜ cm

gewählter Kreisradius

φ  φ1 φ1  0.01  φ2

Bereichsvariable





xs φ1 φ2 r 3









ys φ1 φ2 r  xs φ1 φ2 r

0.019 m

xs( a b r) cm

2 y( φ r)

ys( a b r)

cm

cm

S

1

0

1

2

Abb. 4.6.4.3

3

x( φ r) cm

Seite 344

Schwerpunktskoordinaten

Integralrechnung Berechnung von Schwerpunkten ´ Vergleichen wir die statischen Momente Mstx = µ ¶

B

A

´ AMx = 2 ˜ π ˜ µ ¶

B

A

´ y ds und AMy = 2 ˜ π ˜ µ ¶

´ y ds und Msty = µ ¶

B

x ds mit der Mantelfläche

A

B

x ds des Drehkörpers, der durch Rotation von s AB

A

entsteht, so erhalten wir die 2. Guldin-Regel: Der Inhalt einer Drehfläche ist gleich dem Produkt aus der Länge sAB des erzeugenden Bogenstücks (das die Drehachse nicht schneiden darf) und dem Weg seines Schwerpunktes bei einer Umdrehung. AMx = 2 ˜ π ˜ Mstx = 2 ˜ π ˜ ys ˜ s AB

Drehung um die x-Achse

(4-107)

AMy = 2 ˜ π ˜ Msty = 2 ˜ π ˜ xs ˜ s AB

Drehung um die y-Achse

(4-108)

Beispiel 4.6.4.3: Bestimmen Sie die Schwerpunktskoordinanten eines Viertelkreisbogens mithilfe der Guldin-Regel. 2

4˜π˜r

AMx ys = = 2 ˜ π ˜ s AB

2

2˜ π˜

π˜r

vereinfacht auf

AMx r ys = = 2˜ 2 ˜ π ˜ s AB π

Es gilt: xs = ys

2

4.6.4.2 Schwerpunkt einer Fläche Wir betrachten zuerst den Schwerpunkt eines differentiellen Flächenstücks dA:

Abb. 4.6.4.4

Seite 345

Integralrechnung Berechnung von Schwerpunkten Die Koordinaten für den Schwerpunkt eines Kurvenstückes zwischen dem Punkt A und B der Kurve erhalten wir hier auch aus den oben angeführten Gleichungen: 1 ´ ˜µ xs = A µ ¶

d

1 ´ ˜µ dA = A µ 2 ¶

d

x

c

b

1 ´ 1 ˜ µ x ˜ y dx = ˜ x dy = ˜ Msty A ¶a A 2 x

c

(4-109)

Msty ... statisches Moment bezüglich der y-Achse. 1 ´ ˜µ ys = A µ ¶

b

1 ´ ˜µ dA = A µ 2 ¶

b

y

a

a

b

1 ´ 2 1 ˜ y dx = ˜ ˜ µ y dx = ˜ Mstx ¶ A 2 a A 2 y

1

(4-110)

Mstx ... statisches Moment bezüglich der y-Achse. Wird eine Figur oben durch eine Kurve y1 = f1 (x) und unten durch eine Kurve mit y2 = f2 (x) begrenzt, so gilt wegen der Additivität der Momente: 1 ´ xs = ˜µ A ¶

b





(4-111)

§ y 2  y 2 · dx 2 ¹ © 1

(4-112)

x ˜ y1  y2 dx

a

1 1 ´ ys = ˜ ˜µ A 2 ¶

b

a

Beispiel 4.6.4.4: Bestimmen Sie die Schwerpunktskoordinanten der oberen Halbkreisfläche mit Radius r. r r

x x

f ( x r) 

r x

2

2

r

´ 2 ˜ 2 ˜ µ f ( x r) dx ¶ 2 0 1

ys ( r) 

oberer Halbkreis

r

´ 2 ˜ µ f ( x r) dx ¶

ys ( r)

annehmen r ! 0 4 ˜ r o vereinfachen 3˜ π

0

r  30 ˜ cm

gewählter Radius

x  r r  0.001 ˜ cm  r

Bereichsvariable

Seite 346

xs  0 ˜ cm

Integralrechnung Berechnung von Schwerpunkten

30 xs cm 20 f ( x r)

xs

ys( r)

cm

cm

10 S

 40

 20

0

20

ys ( r)

0 ˜ cm 12.732 ˜ cm

40

x cm

Abb. 4.6.4.5 Beispiel 4.6.4.5: Bestimmen Sie die Schwerpunktskoordinanten der halben Ellipse mit den Halbachsen a und b. a a

b b

x x

2

2

b

f ( x a b) 

2

2

˜ a x



obere Ellipse

a

a

´ 2 ˜ 2 ˜ µ f ( x a b) dx ¶ 2 0 1

ys ( a b) 

´ 2˜ µ ¶

a

xs  0

f ( x a b) dx Vergleiche a = b = r!

0

a 3

annehmen a ! 0 b ! 0 4 ˜ b o vereinfachen 3˜ π

ys ( a b)

b 2

gewählte Halbachsen

x  a a  0.01  a

Bereichsvariable

2 xs 1.5

xs

f ( x a b)

1

ys( a b )

ys ( a b)

0.5 S 4

2

0

2

x

Abb. 4.6.4.6

Seite 347

0

4

0.849

Integralrechnung Berechnung von Schwerpunkten Beispiel 4.6.4.6: Bestimmen Sie die Schwerpunktskoordinanten der von einem Zykloidenbogen und der x-Achse begrenzten Fläche. r r

x x

Redefinitionen

x ( t r)  r ˜ ( t  sin ( t ) )

Parameterdarstellung der Ellipse

y ( t r)  r ˜ ( 1  cos ( t ) ) d

xt ( t r) 

x ( t r)

dt d

yt ( t r) 

Ableitungen y ( t r)

dt

´ µ ¶

0

1 ´ ˜µ 2 ¶

x ( t r) ˜ y ( t r) ˜ xt ( t r) dt

2˜π

xs ( r) 

´ µ ¶

ys ( r) 

2˜π

x ( t r) ˜ yt ( t r) dt

0

2

y ( t r) ˜ xt ( t r) dt

2˜π

´ µ ¶

2˜π

x ( t r) ˜ yt ( t r) dt

0

annehmen r ! 0 o π˜r vereinfachen

xs ( r)

0

ys ( r)

annehmen r ! 0 5˜ r o vereinfachen 6

r 3

Radius des Abrollkeises

t  0 0.001  2 ˜ π

Bereichsvariable

6

xs( r)

4 y( t r)

ys( r)

2

S

0

5

10

15

x( t r)

Abb. 4.6.4.7 xs ( r)

9.425

ys ( r)

2.5

Schwerpunktskoordinaten

Seite 348

20

Integralrechnung Berechnung von Schwerpunkten Beispiel 4.6.4.7: Bestimmen Sie die Schwerpunktskoordinanten der Fläche, die durch den Viertelkreis im 1.Quadranten, der Kurve y 1 = r und x = r begrenzt wird. r r

x x

f ( x r) 

r x

2

Redefinitionen 2

oberer Halbkreis

f 1 ( r)  r

Gerade r

´ µ x ˜ §© r  ¶

2



r x

¹ dx

annehmen r ! 0

0

xs ( r) 

xs ( r)

r

2 ´ r  µ f ( x r) dx ¶

o 0.777 ˜ r

vereinfachen

ys ( r)  xs ( r)

Gleitkommazahl 3

0

r 3

gewählter Radius

x  0 0.001  r

Bereichsvariable

4

f ( x r)

3

f1 ( r)

S

ys( r) 2 x

xs ( r)

2.33

ys ( r)

2.33

1

0

1

2

3

x x xs( r) x

Abb. 4.6.4.8 Beispiel 4.6.4.8: Bestimmen Sie die Schwerpunktskoordinanten der Fläche, die durch y = x2 /2 + 2 und y = x2 im Bereich a = 0 und dem positiven Schnittpunkt der beiden Kurven eingeschlossen wird. x x 2

f ( x) 

x

2

2 2

gegebene Funktionen

f 1 ( x)  x

Seite 349

Integralrechnung Berechnung von Schwerpunkten

x1  f ( x) = f1 ( x) auflösen x o

´ µ µ ¶

x10

§2 · ¨ ¸ © 2 ¹

Schnittpunktberechnung

´ µ 1 µ ˜ 2 µ ¶

§ x2 · 2  2  x ¸ dx x˜ ¨ ©2 ¹

0

xs 

´ µ ¶

x10

ys 

f (x)  f1 (x) dx

0

x10

2 ª§ 2 · « x 2 «¨ 2  2¸  x ¬© ¹

» dx ¼

0

´ µ ¶

x10

f (x)  f1 (x) dx

0

3 xs vereinfachen o 4

8 ys vereinfachen o 5

x  0 0.001  x1 0

Bereichsvariable

5

x10



f x10

4

f ( x)

º





3

f1 ( x) ys

xs

0.75

ys

1.6

2

S 1

0

1

2

x x xs

Abb. 4.6.4.9

Seite 350

Integralrechnung Berechnung von Schwerpunkten 1 ´ Vergleichen wir auch hier die statischen Momente Mstx = ˜ µ 2 ¶

b 2

y dx und

a

´ Msty = µ ¶

b

x ˜ y dx =

1 ´ ˜µ 2 ¶

d 2

x dy mit dem Rauminhalt eines Drehkörpers

c

a

´ Vx = π ˜ µ ¶

b

a

´ 2 y dx und Vy = π ˜ µ ¶

b 2

x dy , so erhalten wir die 1. Guldin-Regel:

a

Der Rauminhalt V eines Drehkörpers ist gleich dem Produkt aus dem Inhalt A der erzeugenden Fläche (die die Drehachse nicht schneiden darf) und dem Weg seines Schwerpunktes S(xs | ys ) bei einer Umdrehung. Vx = 2 ˜ π ˜ Mstx = 2 ˜ π ˜ ys ˜ A

Drehung um die x-Achse

(4-113)

Vy = 2 ˜ π ˜ Msty = 2 ˜ π ˜ xs ˜ A

Drehung um die y-Achse

(4-114)

Beispiel 4.6.4.9: Bestimmen Sie den Schwerpunkt einer Viertelkreisfläche mithilfe der 1. Guldin-Regel. 3

4˜π˜r

Vx ys = = 2˜ π˜ A

3˜2

vereinfacht auf

2

2˜ π˜

r ˜π

Vx 4 r ys = = ˜ 2˜ π˜ A 3 π

xs = ys

4

Beispiel 4.6.4.10: Bestimmen Sie das Volumen und die Oberfläche eines Torus (Kreisringkörpers) mithilfe der 1. und 2. Guldin-Regel.

1. Guldin-Regel: Vx = 2 ˜ π ˜ ys ˜ A 2

2

2

Vx = 2 ˜ π ˜ R ˜ r ˜ π = 2 ˜ π ˜ r ˜ R 2. Guldin-Regel: AMx = 2 ˜ π ˜ ys ˜ s AB 2

AMx = 2 ˜ π ˜ R ˜ 2 ˜ r ˜ π ˜ π = 4 ˜ π ˜ r ˜ R

Abb. 4.6.4.10

Seite 351

Integralrechnung Berechnung von Schwerpunkten 4.6.4.3 Schwerpunkt einer Drehfläche Für die Schwerpunktbestimmung von Drehflächen (und Drehkörpern) betrachten wir nicht axiale (auf eine Achse bezogene), sondern planare statische Momente (auf eine Ebene bezogene).

Abb. 4.6.4.11

Der Schwerpunkt liegt auf der Drehachse x: s ´ b 1 µ ˜ x dA = xs = µ AM AM ¶s a

1

b

´ x ˜ 2 ˜ π ˜ y ds = ˜ µ 2˜ π˜ x˜ y˜ AM ¶a A

´ ˜µ ¶

B

1

2

1  y' dx =

1 AM

Mxy = 0, Mxz = 0. Das statische Moment bezüglich der Schwerachse ist immer null.

Beispiel 4.6.4.11: Bestimmen Sie den Schwerpunkt einer Halbkugelschale.

Abb. 4.6.4.12

Seite 352

˜ Myz (4-115)

Integralrechnung Berechnung von Schwerpunkten

Myz kann auf drei verschiedene Arten berechnet werden: ´ Myz = µ ¶

B

A

´ x dA = µ ¶

R

x ˜ 2 ˜ π ˜ r dx

´ Myz = µ ¶

vereinfacht auf

0

B

3

x dA = r ˜ π

A

π

´2 B µ ´ Myz = 2 ˜ π ˜ µ x ˜ y ds = 2 ˜ π ˜ µ r ˜ cos ( φ) ˜ r ˜ sin ( φ) ˜ r dφ ¶ ¶ 0

A

vereinfacht auf ´ Myz = 2 ˜ π ˜ µ ¶

B

§ 1 ˜ r3· ¸ ©2 ¹

x ˜ y ds = 2 ˜ π ˜ ¨

A

r

´ µ x˜ x ˜ y ds = 2 ˜ π ˜ µ A µ ¶

´ Myz = 2 ˜ π ˜ µ ¶

B

2

r

2

r x ˜ 2

dx 2

r x

0

vereinfacht auf ´ Myz = 2 ˜ π ˜ µ ¶

B

3

x ˜ y dx = π ˜ r

A

3 Myz π˜r xs = = 2 AM 4˜π˜r

vereinfacht auf

Myz r xs = = AM 2

S(r/2 | 0 | 0)

2

4.6.4.4 Schwerpunkt eines Drehkörpers Für die Schwerpunktbestimmung von Drehkörpern betrachten wir auch hier nicht axiale (auf eine Achse bezogene), sondern planare statische Momente (auf eine Ebene bezogene).

Abb. 4.6.4.13

Seite 353

Integralrechnung Berechnung von Schwerpunkten Der Schwerpunkt liegt auf der Drehachse x: Ab b 1 ´ 1 1 ´ 2 µ ˜ x dV = ˜ µ x ˜ y ˜ π dx = xs = ˜ Myz V ¶a V V µ ¶A

(4-116)

a

Mxy = 0, Mxz = 0. Das statische Moment bezüglich der Schwerachse ist immer null.

Beispiel 4.6.4.12: Bestimmen Sie den Schwerpunkt eines Drehkegelkörpers. y x

=

r

Strahlensatz

h r

f ( x) 

h

˜x

Funktion, die den Drehkörper erzeugt

´ 𘵠¶ xs ( h) 

h 2

x ˜ f ( x) dx

0

´ 𘵠¶

h 2

f ( x) dx

0

xs ( h) o

3˜ h

von der Spitze gemessen

4

Abb. 4.6.4.14 1 xs ( h)  xs ( h)  ˜ h 2

h xs ( h) o 4

von der Grundfläche gemessen

h 2˜ m xs ( h)

0.5 m

Beispiel 4.6.4.13: Bestimmen Sie den Schwerpunkt eines Halbkugelkörpers. 2

2

2

y =r x f ( x) 

oberer Halbkreis

2

2

r x r

0

r

´ 2 π ˜ µ f ( x) dx ¶ 0

xs ( r) o Abb. 4.6.4.15

Seite 354

3˜ r 8

Redefinition

Funktion, die den Drehkörper erzeugt

´ 2 π ˜ µ x ˜ f ( x) dx ¶ xs ( r) 

r r

Integralrechnung Berechnung von Schwerpunkten Beispiel 4.6.4.14: Bestimmen Sie den Schwerpunkt eines zylindrisch durchbohrten Halbkugelkörpers. 2

2

2

y =R x

oberer Halbkreis

r r

Redefinition 2

2

´ R r µ 2 2 2 𘵠x ˜ R  x  r dx ¶ xs ( r R) 





0

2

´ R r µ 𘵠¶

2

R2  x2  r2 dx

Momente sind additiv!

0

2

2

3˜ D  d § d D· xs ¨  ¸ vereinfachen o 16 ©2 2¹

Abb. 4.6.4.16

Beispiel 4.6.4.15: Bestimmen Sie den Schwerpunkt eines Drehparaboloids. h h

Redefinition 2

y= a˜ x

1 ´ µ ˜ ys = V µ ¶

2

x =

y

Funktionsgleichung

a

´ y dV = π ˜ µ ¶

h 2

y ˜ x dy

0

Abb. 4.6.4.17 h

ys ( h) 

π ´ 2 ˜ µ y dy a ¶0 ´ 𘵠µ ¶

h

y a

ys ( h) o

2˜ h

Schwerpunktskoordinate

3

dy

0

ys ( 1 ˜ m) o

2˜ m

Schwerpunktskoordinate für h = 1 m

3

Seite 355

Integralrechnung Berechnung von Trägheitsmomenten 4.6.5 Berechnung von Trägheitsmomenten 4.6.5.1 Das Massenträgheitsmoment Für die kinetische Energie eines Körpers der Masse m und der Geschwindigkeit v gilt: 2

Ek =

m˜v

(4-117) 2 Führt dieser Körper dabei eine Drehbewegung mit der Winkelgeschwindigkeit Z aus, so gilt wegen v = r Z: 2

ER =

2

m˜r ˜ω 2

2

=

J˜ω 2

2

mit J = m ˜ r

(4-118)

J heißt dynamisches Trägheitsmoment oder Massenträgheitsmoment. Im Gegensatz zum statischen Moment stehen beim Trägheitsmoment die Abstände zum Bezugspol bzw. von der Bezugsachse im Quadrat (Moment zweiten Grades). Das Massenträgheitsmoment hat für die Drehbewegung die gleiche Bedeutung wie die Masse für die geradlinige Bewegung, entsprechend den dynamischen Grundgesetzen:

F= m˜

d

v ( t) = m ˜

dt M=J˜

d

2

d

dt ω ( t) = J ˜

dt

s ( t) Translation

(4-119)

φ ( t ) Rotation

(4-120)

2

2

d

dt

2

n

2

Da für einen Massenpunkt J = m ˜ r und für n Massenpunkte J =

¦ i

§ m ˜ r 2· gilt, errechnet © i i ¹

1

sich das Massenträgheitsmoment bei kontinuierlicher Massenverteilung über alle differentiellen Masseteilchen integriert durch: ´ µ J=µ ¶

2

r ( m ) dm

(4-121)

Ist der Körper homogen, dann gilt mit dm = U dV: ´ µ J = ρ˜ µ ¶

2

r ( V ) dV

(4-122)

1 2 2 Aus dER = ω ˜ r ˜ dm folgt auch: 2

ER =

´ 2 µ ˜ω ˜µ 2 ¶ 1

2

r dm =

1 2

2

˜ω ˜J

Seite 356

(4-123)

Integralrechnung Berechnung von Trägheitsmomenten Beispiel 4.6.5.1: Berechnen Sie das Massenträgheitsmoment eines Zylinders, der um die x-Achse rotiert.

dV = 2 ˜ π ˜ y ˜ h ˜ dy ´ µ Jx = ρ ˜ µ ¶

Volumselement r

´ 3 2 y dV = 2 ˜ π ˜ h ˜ ρ ˜ µ y d y ¶ 0

r

´ 3 J x ( r h ρ)  2 ˜ π ˜ h ˜ ρ ˜ µ y dy ¶ 0

4

π˜ ρ˜ h˜ r

J x ( r h ρ) o

2

Abb. 4.6.5.1

Ÿ

2

m = r ˜ π˜ h˜ ρ

m

h=

2

r ˜π˜ρ 2

m m˜r J = J x ( r h ρ) ersetzen h = oJ= 2 2 r ˜π˜ρ Beispiel 4.6.5.2:

Berechnen Sie das Massenträgheitsmoment eines Hohlzylinders, der um die x-Achse rotiert. dV = h ˜ dA = h ˜ 2 ˜ π ˜ y ˜ dy ´ µ Jx = ρ ˜ µ ¶

Volumselement

r ´1 3 µ y dy y dV = 2 ˜ π ˜ h ˜ ρ ˜ µ ¶ 2

r2

r ´1 3 µ y dy J x r h ρ r1 r2  2 ˜ π ˜ h ˜ ρ ˜ µ ¶



m = m1  m2 = π ˜ h ˜ ρ ˜ § r1  r2 ©



¹

ersetzen h =



r2

4 4 r2 ·¸ ¨§ r1 J x r h ρ r1 r2 o 2 ˜ π ˜ ρ ˜ h ˜ ¨  ¸ 4 ¹ © 4

Abb. 4.6.5.2 2





J = J x r h ρ r1 r2

Ÿ

h=

m π ˜ ρ ˜ § r1  r2 © 2



¹o J =

vereinfachen

Seite 357

m π ˜ ρ ˜ § r1  r2 ©



2

m ˜ § r1  r2 © 2

2



¹

¹

Integralrechnung Berechnung von Trägheitsmomenten Mit den oben angeführten Beispielen lässt sich nun eine allgemeine Beziehung zur Berechnung des Massenträgheitsmoments eines Drehkörpers bezüglich seiner Symmetrieachse (Schwerachse) aufstellen:

Differentieller Vollzylinder dVx bzw. dVy mit dem Trägheitsmoment dJx und dJy: dJx =

dJy =

1 2 1 2

4

˜ π ˜ ρ ˜ y ˜ dx

4

˜ π ˜ ρ ˜ x ˜ dy

Abb. 4.6.5.3 Mit U = m/V und den differentiellen Trägheitsmomenten erhalten wir dann: b

b

´ 4 1 m ´ 4 ˜ µ y dx J x = ˜ π ˜ ρ ˜ µ y dx = ˜ π ˜ ¶ 2 2 Vx ¶a a

(4-124)

y b ´ b 4 1 m ´ 4 µ x dy = ˜ π ˜ ˜ µ x ˜ y' dx (dy = y' dx) Jy = ˜ π ˜ ρ ˜ µ 2 2 Vy ¶a ¶y a

(4-125)

1

1

Beispiel 4.6.5.3: Berechnen Sie das Massenträgheitsmoment eines Drehkegels, der um die x-Achse rotiert. y=

r h

˜x

J x ( r h ρ) 

Funktionsgleichung 4

h

´ 4 ˜ µ x dx ˜ π˜ ρ˜ 4 ¶ 2 0 h 1

r

4

J x ( r h ρ) o

π˜ ρ˜ h˜ r 10 2

Abb. 4.6.5.4

m = ρ ˜ Vx = ρ ˜ 2

3˜ m 3˜ m˜ r J = J x ( r h ρ) ersetzen h = oJ= 2 10 r ˜π˜ρ

Seite 358

r ˜π˜h 3

Ÿ

h=

3˜ m 2

r ˜π˜ρ

Integralrechnung Berechnung von Trägheitsmomenten Beispiel 4.6.5.4: Berechnen Sie das Massenträgheitsmoment eines Kreisringkörpers (Torus), der um die x-Achse rotiert.

2

2

2

x  ( y  R) = r

Kreisgleichung des oberen Kreises 2

2

oberer Halbkreis

2

2

unterer Halbkreis

yo ( x R r)  R 

r x

yu ( x R r)  R 

r x

Jx  Jx

Redefinition

Abb. 4.6.5.5

2



4

2



2

§R  ©

r x

§R  ©

r x

¹

´ π˜m˜µ ¶

§

2



4

2



2

 ©R 

r x

§ ¹  ©R 

r x

r



2 2 2 2 2 ¹ vereinfachen o 8 ˜ R ˜ r  x ˜ R  r  x 2 2 ¹ vereinfachen o 4 ˜ R ˜ r  x





ª 2 2 2º 2 2 ¬8 ˜ R ˜ r  x ˜ R  r  x ¼ dx

0

Jx =

´ 2˜ 𘠵 ¶

r



§ 4 ˜ R ˜ r2  x2· x © ¹d



2 2 annehmen R ! 0 r ! 0 m˜ 4˜ R  3˜ r o Jx = vereinfachen 4

0

Ist die Drehachse keine Schwerachse, so lässt sich mittels Satz von Steiner das Massenträgheitsmoment berechnen: Das Massenträgheitsmoment Jg eines Körpers bezüglich irgendeiner Achse g ist gleich der Summe aus dem Trägheitsmoment Js bezüglich der zu g parallelen Schwerachse s und dem Produkt Masse mal dem Quadrat des Abstandes a der beiden Achsen. 2

Jg = Js  m ˜ a

(4-126)

Beweis: ´ J1 = µ µ ¶

x1 dm

´ J2 = µ µ ¶



2



x1  a

2

´ dm = µ µ ¶

´ 2 x1 dm  2 ˜ a ˜ µ µ ¶

´ 2 µ x1 dm  a ˜ µ ¶

Statisches Moment M1 = 0 2

J2 = J1  a ˜ m

w. z. b. w.

Abb. 4.6.5.6

Seite 359

bezüglich der Schwerachse

1 dm



Integralrechnung Berechnung von Trägheitsmomenten Beispiel 4.6.5.5: Berechnen Sie das Massenträgheitsmoment einer Kugel, die sich um die Achse g im Abstand a = r/2 dreht.

2

Jg = Js  m ˜ a

Jg =

2 5

2

˜m˜r  m˜

Satz von Steiner

2

2

r

o Jg = 4

13 ˜ m ˜ r 20

Abb. 4.6.5.7

Beispiel 4.6.5.6: Berechnen Sie das Massenträgheitsmoment eines stabförmigen Körpers, der sich um die Achse s und g dreht. ´ µ Js = ρ ˜ µ ¶

2

x dV l

´2 µ 2 J s = 2 ˜ ρ ˜ µ x ˜ A dx ¶ 0

l

´2 µ 2 J s1 ( A l ρ)  2 ˜ ρ ˜ µ x ˜ A dx ¶ 0

Abb. 4.6.5.8

Ÿ

m = ρ˜ A˜ l

A=

m l˜ρ 2

m

J s = J s1 ( A l ρ) ersetzen A = o Js = l˜ρ 2

Jg = Js  m ˜ a

Jg =

1 12

2

˜l ˜m  m˜

l ˜m 12

Satz von Steiner

l

2

o Jg = 4

2

l ˜m 3

Seite 360

J s1 ( A l ρ) o

A˜ ρ˜ l 12

3

Integralrechnung Berechnung von Trägheitsmomenten 4.6.5.2 Das Flächenträgheitsmoment Die Flächenträgheitsmomente I (auch als Flächenmomente bezeichnet) einer Querschnittsfläche A und das von diesem hergeleitete Widerstandsmoment W und der Trägheitsradius i sind bei Untersuchungen der Festigkeitslehre erforderlich (bei der Biegebeanspruchung gerader Balken kommt es nicht nur auf die Querschnittsgröße, sondern auch auf die Gestalt des Querschnittes an). Flächenträgheitsmomente sind auch Momente zweiten Grades. Sie sind eigentlich geometrische Größen. Mathematisch gelangen wir jedoch von einem Massenträgheitsmoment in ähnlicher Weise zu einem (axialen) Flächenträgheitsmoment wie vom Massenpunkt zum Flächenschwerpunkt. Bei einer in der x-y-Ebene liegenden Fläche A sprechen wir von einem axialen oder äquatorialen Flächenträgheitsmoment, wenn die Bezugsachse in der Ebene der Fläche liegt. Analog zu den Massenträgheitsmomenten definieren wir die Flächenträgheitsmomente: ´ µ I=µ ¶

2

r ( A ) dA

(4-127)

Abb. 4.6.5.9

´ µ Ix = µ ¶

y dA heißt axiales Flächenträgheitsmoment bez. der x-Achse

´ µ Iy = µ ¶

x dA heißt axiales Flächenträgheitsmoment bez. der y-Achse

2

2

(4-128)

(4-129)

Die Summe der beiden Flächenträgheitsmomente ´ µ Ip = µ ¶

´ µ 2 r dA = µ ¶

´

y2  x2 dA = µµ ¶

´ µ 2 y dA  µ ¶

2

x dA = Ix  Iy

(4-130)

heißt polares Trägheitsmoment. Die Bezugsachse, hier die z-Achse, steht senkrecht zur Flächenebene. Ähnlich wie beim Massenträgheitsmoment lässt sich ein analoger Zusammenhang zwischen Flächenträgheitsmoment bezüglich einer Schwerachse und einer dazu parallelen Achse angeben. Satz von Steiner: Das Flächenträgheitsmoment Ig einer Fläche bezüglich einer Achse g ist gleich der Summe aus dem Flächenträgheitsmoment Is bezüglich der zu g parallelen Schwerachse s und dem Produkt Flächeninhalt mal dem Quadrat des Abstandes a der beiden Achsen: 2

Ig = Is  A ˜ a

(4-131)

Seite 361

Integralrechnung Berechnung von Trägheitsmomenten Beispiel 4.6.5.7: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der x- und y-Achse sowie der Schwerachsen und das polare Flächenträgheitsmoment einer Rechteckfläche.

´ Ix = µ ¶

h

´ Iy = µ ¶

b

3

2

y ˜ b dy o Ix =

b˜ h 3

0

3

2

x ˜ h dx o Iy =

b ˜h 3

0

Abb. 4.6.5.10 3



3

1 3 b ˜h b˜ h 1 3 Ip = ˜ h ˜ b  ˜ b ˜ h Faktor o Ip =  3 3 3 3



1 1 2 2 2 Ip = ˜ b ˜ h ˜ h  b = ˜ A ˜ d 3 3

Flächenträgheitsmoment bezüglich der Schwerachsen (Satz von Steiner): 2

Ix = Isx  A ˜ a

2

2

Isx = Ix  A ˜ a = 2

3

b˜ h 3

2

 b˜ h˜

h

 b˜ h˜

b

3

b ˜h

2

Isx = Ix  A ˜ a =

vereinfacht auf

4 2

2

Iy = Isy  A ˜ a

Isy = Iy  A ˜ a =

IpSp = Isx  Isy

1 b ˜h b˜ h 1 3 3 IppS = ˜h ˜b ˜ b ˜ h Faktor o IppS =  12 12 12 12

3

Isy = Iy  A ˜ a =

vereinfacht auf

4 3

3

3

b˜ h 12 3

b ˜h 12

1 2 IpSp = ˜A˜d 12

Beispiel 4.6.5.8: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der x- und y-Achse sowie der Schwerachse s x und einer parallelen Achse zur Schwerachse im Abstand a einer Dreiecksfläche. g h

=

l

Ÿ

hy

dA = l ˜ dy =

g h

l=

g h

˜ ( h  y)

˜ ( h  y) ˜ dy

h

3 g ´ 2 g˜ h Ix = ˜ µ y ˜ ( h  y) dy o Ix = h ¶0 12 2

Abb. 4.6.5.11

Isx = Ix  A ˜ a =

Seite 362

3

g˜ h 12



g˜ h 2

§ h· ¸ © 3¹

˜¨

2

Integralrechnung Berechnung von Trägheitsmomenten 3

Isx =

g˜ h 12

g˜ h



2

3

2

§ h· o I = g ˜ h ¸ sx 36 © 3¹

˜¨

2

3

§ 2 ˜ h· o I = g ˜ h ˜¨ Ia = ˜ g˜ h  ¸ a 4 36 2 © 3 ¹ 1

2

Ia = Isx  A ˜ a

3

g˜ h

Beispiel 4.6.5.9: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der x- und y-Achse und das polare Flächenträgheitsmoment einer Kreisringfläche und einer Kreisfläche mit Radius r.

dA = 2 ˜ π ˜ r ˜ dr r 4 4 π ˜ § r1  r2 · ´1 2 © ¹ µ r ˜ 2 ˜ π ˜ r dr o Ip = Ip = µ 2 ¶ r2

Abb. 4.6.5.12 Kreisring: r 4 4 ´1 2 d π˜d D π˜D µ r ˜ 2 ˜ π ˜ r dr ersetzen r2 = r1 = Ip = o Ip =  µ 32 32 2 2 ¶r 2

Kreis (r1 =r D/2, r1 = 0): r ´1 2 µ r ˜ 2 ˜ π ˜ r dr Ip = µ ¶ r2

D ersetzen r2 = 0 r1 = 4 2 π˜D o Ip = 32 Faktor

Wegen der Symmetrie des Kreises ergibt sich: Ip 1 4 Ix = Iy = = ˜D ˜π 2 64

Seite 363

Integralrechnung Berechnung von Trägheitsmomenten Axiales Flächenträgheitsmoment einer Fläche zwischen einer Funktion y = f(x) und der x-Achse:

Für die Rechtecksfläche gilt: dIx =

dIy =

1 3 1 3

3

˜ y ˜ dx =

3

˜ x ˜ dy =

1 3 1 3

2

˜ y ˜ y ˜ dx =

2

˜ x ˜ x ˜ dy =

1 3 1 3

2

˜ y ˜ dA

2

˜ x ˜ dA

Abb. 4.6.5.13 1 ´ Ix = ˜ µ 3 ¶

y2 y2 1 ´ 1 ´ 3 2 µ µ Iy = ˜ x dy = ˜ x ˜ x dy = µ µ 3 ¶y 3 ¶y

b 3

y dx

a

1

´ µ ¶

b 2

x ˜ y dx

(4-132)

a

1

Axiales Flächenträgheitsmoment bezüglich einer beliebigen Schwerachse:

v = y cos(D) - x sin(D)

´ µ Iu = µ ¶

2

v dA

(4-133)

Abb. 4.6.5.14 ´ µ Iu = µ ¶

sin (α)2 y2 ˜ cos(α)2  2 ˜ x ˜ y ˜ sin (α) ˜ cos (α)  x2 ˜ sin (α)2 dA

´ 2 µ Iu = cos ( α) ˜ µ ¶

2

y dA  sin ( 2 ˜ α) ˜

2

´ µ µ ¶

´ 2 µ x ˜ y dA  sin ( α) ˜ µ ¶

Iu = I x ˜ cos ( α)  Ixy ˜ sin ( 2 ˜ α)  Iy ˜ sin ( α) ´ µ Ixy = µ ¶

2

x ˜ y dA

2

x dA

(4-134)

(4-135)

(4-136)

(4-137)

Ixy heißt Deviationsmoment (Zentrifugal- oder Fliehmoment) und bezieht sich auf zwei zueinander senkrecht stehende Achsen. Ist die x- oder y-Achse eine Symmetrieachse, so ist Ixy = 0 und es gilt: 2

Iu = I x ˜ cos ( α)  Iy ˜ sin ( α)

2

(4-138)

Seite 364

Integralrechnung Berechnung von Trägheitsmomenten Beispiel 4.6.5.10: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der x- und y-Achse und die axialen Flächenträgheitsmomente bezüglich der Schwerachsen eines Parabelsegments (y2 = 4 x) im ersten Quadranten im Bereich a = 0 und b = 4. a 0

b 4

Integrationsbereich

x  a a  0.01  b

Bereichsvariable

f ( x) 

4˜ x

Funktion

f ( x) dx

A

10.667

Ix

34.133

´ A µ ¶

b

a

Ix 

1 ´ ˜µ 3 ¶

b 3

f ( x) dx

´ Iy  µ ¶

1 ´ ˜µ A ¶

2

x ˜ f ( x) dx

Iy

73.143

ys

1.5

a

a

xs 

b

b

x ˜ f ( x) dx

xs

1

ys 

2.4

A

a

4

xs

˜

1 ´ ˜µ 2 ¶

b 2

f ( x) dx

a

Ix = Isx  A ˜ ys

2

Iy = Isy  A ˜ xs

2

3 f ( x) 2

Ÿ

Isx  Ix  A ˜ ys

2

Isy  Iy  A ˜ xs

2

ys 1 0

0

1

2

3

4

Isx

10.133

Isy

11.703

x

Abb. 4.6.5.15 Beispiel 4.6.5.11: Berechnen Sie das axiale Flächenträgheitsmoment eines Quadrates bezüglich der Diagonale. 4

a

Vergleichen Sie das Flächenträgheitsmoment eines Rechtecks!

Ix = Iy = 12

Wegen der Symmetrie gilt: 2

§ π· § π· Iu = Ix ˜ cos ¨ ¸  Iy ˜ sin ¨ ¸ 4 4 © ¹

4

2

© ¹

2

4

a § π· § 𷠘 cos ¨ ¸  ˜ sin ¨ ¸ Iu ( a)  12 12 © 4¹ © 4¹ a

a a

Redefinition 4

a

Abb. 4.6.5.16

Iu ( a) o 12

Seite 365

Ix = Iy = Iu

2

Integralrechnung Berechnung von Biegelinien 4.6.6 Berechnung von Biegelinien Für die Berechnung von Trägern betrachten wir zuerst eine dem Träger belastende Streckenlast q(x) in kN/m. Die Gesamtlast ergibt sich als Inhalt der Fläche unter dem Grafen q(x):

Die Querkraft Q(x) im Abstand x vom Festlager FA berechnet sich aus allen senkrechten Kräften von A bis zur betrachteten Stelle x: x

´ Q ( x) = FA  µ q ( x) dx ¶

(4-139)

0

Abb. 4.6.6.1

Mithilfe des Hauptsatzes der Differential- und Integralrechnung folgt: d

Q' ( x) =

Q ( x) = q ( x)

(4-140)

dx Die Summe der Momente aller links von x angreifenden Kräfte heißt Biegemoment Mb(x) an der Stelle x. Es gilt folgender Zusammenhang mit der Querkraft: M'b ( x) =

d dx

Mb ( x) = Q ( x)

(4-141)

Die Linie, welche die im unbelasteten Zustand waagrecht liegenden Trägerachse bei der Biegung annimmt, heißt Biegelinie y(x). Für kleine Durchbiegungen kann diese aus der Differentialgleichung 2. Ordnung der Biegelinie hergeleitet werden (siehe dazu Näheres Band 4): 2

y'' =

d

2

dx

y ( x) = 

Mb ( x)

(4-142)

E˜I

E ist der Elastizitätsmodul des Trägermaterials und I das Flächenträgheitsmoment bezogen auf die y-Achse. Es ist üblich, positive Werte von Mb(x) und y(x) nach unten aufzutragen (auf der negativen y-Achse). Damit gelten mit den oben angeführten Beziehungen folgende Differentialgleichungen: E ˜ I ˜ y'''' = q ( x) ; E ˜ I ˜ y''' = Q ( x) ; E ˜ I ˜ y'' = Mb ( x)

(4-143)

Bemerkung: Treten Einzelkräfte auf, so hat der Graf der Querkraft Q(x) Sprungstellen und der Graf des Biegemoments Mb(x) Knicke. Trotzdem bleibt die Biegelinie y(x) stetig und auch differenzierbar.

Seite 366

Integralrechnung Berechnung von Biegelinien Beispiel 4.6.6.1: Ein zweifach gestützter Träger der Länge L = 4 m besitzt eine konstante Trägerlast q0 = 10.0 kN/m und eine Biegesteifigkeit E . I = 7.10 6 Nm2 . Berechnen Sie die Biegelinie y(x). Stellen Sie die Streckenlast q(x), die Querkraft Q(x), das Biegemoment Mb (x) und die Biegelinie y(x) grafisch dar. Es gelten die Randbedingungen Mb (0) = Mb (L) = 0 und y(0) = y(L) = 0.

Abb. 4.6.6.2

Q' ( x) = q ( x) = q0

Streckenlast

´ Q ( x) = µ µ ¶

Querkraft

q0 dx  C1 o Q ( x) = C1  q0 ˜ x

Aus M'b ( x) = Q ( x) = q0 ˜ x  C1 folgt: ´ Mb ( x) = µ µ ¶

q0 ˜ x  C1 dx  C2 =

1

2

˜ q0 ˜ x  C1 ˜ x  C2 2

Die Konstanten C1 und C2 bestimmen wir aus den Randbedingungen: Mb ( 0) = C2 = 0 Mb ( L) =

1

q0 C1 = ˜L 2

2

˜ q0 ˜ L  C1 ˜ L = 0 2

Damit lautet die Querkraft und der Biegemomentenverlauf: q0 §L · Q ( x) = q0 ˜ x  ˜ L = q0 ˜ ¨  x¸ 2 ©2 ¹ Mb ( x) =

1 2

2

˜ q0 ˜ x 

q0 2

˜ L˜ x=

q0 2



2

˜ L˜ x x



Aus der Differentialgleichung der Biegelinie folgt durch zweimaliges Integrieren von y:



q0 y'' ( x) =

Mb ( x) E˜I q0

y'' ( x)  

2

=



2

˜ L˜ x x

2



E˜I 2

˜ L˜ x x



die zweite Ableitung als Funktion definiert

E˜I

Seite 367

Integralrechnung Berechnung von Biegelinien 2

3

´ µ y' ( x)  µ ¶

q0 ˜ x

y'' ( x) dx  C3 o C3   6˜ E˜ I

L ˜ q0 ˜ x 4˜ E˜ I

3

4

´ µ y ( x)  µ ¶

L ˜ q0 ˜ x

q0 ˜ x

y' ( x) dx  C4 o C4  C3 ˜ x   12 ˜ E ˜ I 24 ˜ E ˜ I

Die Konstanten C3 und C4 bestimmen wir aus den Randbedingungen: Vorgabe 1 2 1 2

q0

§ 1 ˜ L ˜ 03  1 ˜ 04· ¸  C3 ˜ 0  C4 = 0 12 E˜I ©6 ¹

˜

q0

˜¨

y(0) = 0

§ 1 ˜ L ˜ L3  1 ˜ L4· ¸  C3 ˜ L  C4 = 0 12 E˜I ©6 ¹

˜

˜¨

y(L) = 0

§ L3 ˜ q · 0 ¸ ¨ Suchen C3 C4 o ¨ 24 ˜ E ˜ I ¸ ¨ ¸ © 0 ¹ y ( x) =

3

q0

3

4

˜ L ˜ x 2˜ L˜ x  x

24 ˜ E ˜ I



kN q0  10 ˜ m

Streckenlast

L 4˜ m

Länge des Trägers 6

B  8 ˜ 10 ˜ N ˜ m

2

E * I ... Biegesteifigkeit

§L · Q ( x)  q0 ˜ ¨  x¸ 2 ©

Mb ( x) 

y ( x) 

q0 2



2

˜ L˜ x x

q0 24 ˜ B





Biegemoment

3

3

4

˜ L ˜ x 2˜ L˜ x  x

x0  0 ˜ m Q x0

Querkraft

¹

xL  L



20 ˜ kN

xsb  150 ˜ mm

Biegelinie

Randpunkte 20 ˜ kN

Q xL



maximale Querkraft Startwert



xb  Maximieren Mb xsb xsy  150 ˜ mm



xb

2000 ˜ mm



Mb xb

20000 ˜ N ˜ m

maximales Biegemoment

Startwert





xy  Maximieren y xsy

xy

2000 ˜ mm



y xy

Seite 368

4.167 ˜ mm

maximale Biegung

Integralrechnung Berechnung von Biegelinien Δx  0.2 ˜ mm

Schrittweite

x  0 ˜ mm 0 ˜ mm  Δx  L

Bereichsvariable Streckenlast

q0 kN m

11 10 9 8 7 6 5 4 3 2 1

L mm

0

1000

2000

3000

4000

x mm

Abb. 4.6.6.3 Querkraft 25

L

20 Q( x)

15

kN

10



Q x0

5

kN



mm

5

0

1000

2000

3000

4000

Q xL  10 kN  15  20  25 x mm

Abb. 4.6.6.4 Biegemomentenverlauf 0  2000

 Mb( x)  4000  6000 N˜m  8000 0  10000  Mb( x)  12000 N˜m  14000  16000  18000  20000 0

xb

L

mm

mm



 Mb xb 1000

2000 x mm

Abb. 4.6.6.5

Seite 369

3000

N˜m 4000

Integralrechnung Berechnung von Biegelinien Biegelinie 0

xy 2000

1000

 0.6

L 4000 mm

3000

mm

 1.2  y( x) 1.8 mm  2.4 3  3.6 

 4.2



y xy

mm

x mm

Abb. 4.6.6.6 Beispiel 4.6.6.2: Ein halbseitig eingespannter Träger der Länge L = 3 m wird mit einer Dreieckslast q(x) = (q0 /L) . x belastet (q0 = 5.0 kN/m). Der Elastizitätsmodul E beträgt E = 2.1 1011 N/m2 und das Flächenträgheitsmoment I = 1.688 106 mm4 . Berechnen Sie die Biegelinie y(x). Stellen Sie die Streckenlast q(x), die Querkraft Q(x), das Biegemoment Mb (x) und die Biegelinie y(x) grafisch dar. Es gelten die Randbedingungen M b (L) = 0, y(0) = y(L) = 0 und y'(0) = 0.

Abb. 4.6.6.7

x x

y y q0

Q' ( x) = q ( x) = ´ µ Q ( x) = µ µ ¶

q0  q0

L

Q Q

Mb  M b

˜x

L q0

L L

Redefinitionen Streckenlast

2

q0 ˜ x

˜ x dx  C1 o Q ( x) = C1  2˜ L

Querkraft

1 q0 2 Aus M'b ( x) = Q ( x) = ˜ ˜ x  C1 folgt: L 2 ´ µ Mb ( x) = µ µ ¶

MbC ( x) 

1 2

1 6

˜

˜

q0 L

q0 L

3

q0 ˜ x

2

˜ x  C1 dx  C2 o Mb ( x) = C2  C1 ˜ x  6˜ L

3

˜ x  C1 ˜ x  C2

Seite 370

Integralrechnung Berechnung von Biegelinien

Aus der Differentialgleichung der Biegelinie folgt durch zweimaliges Integrieren y: y'' =

Mb E˜I 4

2

C1 ˜ x ´ ˜µ y'C ( x) =  E˜I µ ¶ 1

MbC ( x) dx  C3 o y'C ( x) = C3 

2

q0 ˜ x

 C2 ˜ x  24 ˜ L E˜I

· § 1 q0 4 1 1 2 ˜¨ y'C ( x)   ˜ ˜ x  ˜ C1 ˜ x  C2 ˜ x¸  C3 E ˜ I © 24 L 2 ¹ ´ y=µ µ ¶

2

3

C2 ˜ x

C1 ˜ x

5

q0 ˜ x

y'C ( x) dx  C4 o y = C4  C3 ˜ x    2˜ E˜ I 120 ˜ E ˜ L ˜ I 6˜ E˜ I

Damit ist die Funktion der Biegelinie bis auf die Konstanten bestimmt.

yC ( x) 

§ 1 q0 5 1 1 3 2· ˜ ˜ x  ˜ C1 ˜ x  ˜ C2 ˜ x ¸  C3 ˜ x  C4 E ˜ I © 120 L 6 2 ¹ 1

˜¨

Wenn x = 0 ist, so gilt yC(0) = 0: yC ( 0) = 0 auflösen C4 o 0 C4 = 0 Wenn x = 0 ist, so gilt y'C(0) = 0: y'C ( 0) = 0 auflösen C3 o 0 C3 = 0 Wenn x = L ist, dann ist das Moment Mb(L) = 0: 1 6

2

˜ q0 ˜ L  C1 ˜ L  C2 = 0

Wenn x = L ist, so gilt für die Durchbiegung y(L) = 0 (unter Berücksichtigung C 3 = 0 und C4 = 0):

§ 1 ˜ q ˜ L4  1 ˜ C ˜ L3  1 ˜ C ˜ L2· ¸=0 1 2 E ˜ I © 120 0 6 2 ¹ 1

˜¨

Seite 371

Integralrechnung Berechnung von Biegelinien Berechnen von C1 und C 2 : Vorgabe 1

2

˜ q0 ˜ L  C1 ˜ L  C2 = 0 6

§ 1 ˜ q ˜ L4  1 ˜ C ˜ L3  1 ˜ C ˜ L2· ¸=0 1 2 E ˜ I © 120 0 6 2 ¹ 1

˜¨

§ 9 ˜ L ˜ q0 · ¨ ¸ 40 ¨ ¸ Suchen C1 C2 o ¨ ¸ 2 ¨ 7 ˜ L ˜ q0 ¸ ¨  120 ¸ © ¹ Nun können die Funktionen Q(x), M(x) und y(x) angegeben werden. 3

kN  10 ˜ N kN q0  5 ˜ m

Streckenlast

L 3˜ m

Länge des Trägers

E  2.1 ˜ 10

11

N

˜

m

Elastizitätsmodul

2

6

I  1.688 u 10 ˜ mm q ( x)  Q ( x) 

q0 L

y ( x)  

Streckenlast

˜

2

1 6

q0 L ˜

q0 L



9

2

˜x 

˜ q0 ˜ L

40 9

3

˜x 

40

Querkraft

˜ q0 ˜ L ˜ x 

7 120

2

˜ q0 ˜ L

Biegemoment

ª 1 q0 5 1 § 9 · 3 1 7 ˜ q ˜ L2 ˜ x2»º ˜ ˜x  ˜¨ ˜ q0 ˜ L¸ ˜ x  ˜ E ˜ I ¬ 120 L 6 © 40 2 120 0 ¹ ¼ 1

˜ «

x0  0 ˜ m Q x0

Flächenträgheitsmoment

˜x

1

Mb ( x)  

4

xL  L



3.375 ˜ kN Q xL

Biegelinie

Randpunkte 4.125 ˜ kN maximale Querkraft

xsb  150 ˜ mm

Startwert



xb  Maximieren Mb xsb



xb

xsy  150 ˜ mm



2012.461 ˜ mm Mb xb

1903.038 ˜ N ˜ m maximales Biegemoment

Startwert





xy  Maximieren y xsy

xy

1792.613 ˜ mm



y xy

Seite 372

3.483 ˜ mm

maximale Biegung

Integralrechnung Berechnung von Biegelinien fl.x := 0.2 . mm

8ch rittweile

X := O· mm , O· mm + fl.x .. L

Bereichsvariable 8 lrec kenlasl

q( x) kN .D..

Abb.

m

4.6.6.8

o

1000

2000

3000

x mm Querkraft ____________________________________________________________________L

Q(x) kN

3.

mm

2.

1.

Q(xol o. 1 - - - - - - - - + - - - - - - - -""""'-,-------------1 セ

1000

M ッ

3000

Abb.

4.6.6.9

••••• - 1.

Q(xLl- 2 kN - 3.

_._.- - 4 .

x mm Biegem omenl enverlauf

300 250 - Mb(x) 200 150 , Nrn 100 0 50

L

mm

- Mb( x)

Nrn

Abb.

4.6.6.10

- 50 - 100 - 150 - 200

. --=-- - - - - .:--.---...,......_.N·m

x mm 8eite 373

Integralrechnung Berechnung von Biegelinien Biegelinie  0.35 0  0.7  1.05  y( x)  1.4  1.75 mm  2.1  2.45  2.8  3.15  3.5

xy

1000

L 3000 mm

2000

mm

Abb. 4.6.6.11





y xy

mm

x mm

Beispiel 4.6.6.3: Auf einen halbseitig eingespannten Träger der Länge L wirken an den Stellen Lk Punktkräfte (Punktlast) Fk und unterschiedliche Streckenlasten q(x), die nicht notwendigerweise konstant sein müssen. Bei der Bestimmung der Biegelinie soll ein von x abhängiges Flächenträgheitsmoment I(x) ausgewählt werden können. Zwei einfache Situationen des einseitig eingespannten Trägers sind nachfolgend für die Fälle einer Punktlast F am Trägerende und einer Gleichlast q(x) = q0 dargestellt.

Abb. 4.6.6.12

Streckenlast  Konstante Streckenlast q0 Dreieckslast q0/L * x Sinusförmige Streckenlast q0*sin(pi*x/L) Trapezlast (q2-q1)/L

Listenfeld zur Auswahl verschiedener Streckenlasten

Skript für das Listenfeld: Sub ListBoxEvent_Start() If ListBox.Count = 0 Then ListBox.AddString("Konstante Streckenlast q0") ListBox.AddString("Dreieckslast q0/L * x") ListBox.AddString("Sinusförmige Streckenlast q0*sin(pi*x/L)") ListBox.AddString("Trapezlast (q2-q1)/L") Rem Add more strings here as needed End If End Sub Sub ListBoxEvent_Exec(Inputs,Outputs) Outputs(0).Value = ListBox.CurSel + 1 End Sub

Seite 374

Sub ListBoxEvent_Stop() Rem TODO: Add your code here End Sub Sub ListBox_SelChanged() ListBox.Recalculate() End Sub Sub ListBox_DblClick() ListBox.Recalculate() End Sub

Integralrechnung Berechnung von Biegelinien Streckenlast: Konstante_Streckenlast 

Mathsoft Slider Control-Objekt Eigenschaften: Minimum 0, Maximum 10, Teilstrichfähigkeit 1

Trägerlänge:

Kräfteanzahl:

Maximalkraft:

Trägerlänge 

Kräfteanzahl 

Kraft 

Mathsoft Slider Control-Objekt Eigenschaften: Minimum 1, Maximum 10, Teilstrichfähigkeit 1 kN q0  Konstante_Streckenlast ˜ m q0



2

1 m

˜ kN



q x q0 L q1 q2 

L  Trägerlänge ˜ m

K  Kräfteanzahl

Fmax  Kraft ˜ kN

L

K

Fmax

3m

3

q0 if Streckenlast = 1

Konstante Streckenlast

q0

Dreieckslast

L

˜ x if Streckenlast = 2

§ x· q0 ˜ sin ¨ π ˜ ¸ if Streckenlast = 3 © L¹ q2  q1 L

Kraft_Angriffspunkte ( K L) 

˜ x  q1 if Streckenlast = 4

Lk m

k1 K

sinusförmige Steckenlast

Trapezlast



for k  0  K  1

6 ˜ kN



Kraft Fmax 

for k  0  K  1 Fk m Fmax ˜ rnd ( 1)

˜L

return F

return L

Seite 375

Integralrechnung Berechnung von Biegelinien T

L  Kraft_Angriffspunkte ( K L)



F  Kraft Fmax

L



Angriffspunkte der Kräfte

(1 2 3 ) m

T

( 2.102 4.937 1.045 ) ˜ kN mit dem Zufallsgenerator erzeugte Kraft bzw. Kräfte kN Kräfte der Trapezlast q2  5 ˜ m F

kN q1  8 ˜ m





q ( x)  q x q0 L q1 q2

Funktion der Streckenlast

Biegemomentenverlauf und Querkraftverlauf: Wenn ein Träger an der Stelle x freigemacht werden soll, muss zur Erhaltung des Gleichgewichts ein links-/rechtsdrehendes Biegemoment M b (x) und eine nach unten bzw. oben wirkende Querkraft Q(x) im linken bzw. rechten Trägerrest angesetzt werden. Weil im rechten Trägerrest nur Kräfte mit Lk > x (wir verwenden zur Auswahl die Heavisidefunktion )( Lk - x)) bzw. Streckenlasten q(xi) mit xi > x wirksam sind (Integration von x bis L), ergibt sich das Drehmomentengleichgewicht und Kräftegleichgewicht aus folgenden Gleichungen. Ein positives Mb (x) bedeutet links- bzw. rechtsdrehendes Biegemoment im linken bzw. rechten Trägerrest. Aufgrund dieser Vorzeichenkonvention erhalten wir hier ein negatives Biegemoment:

ª K 1

Mb ( x)  «

¦

« ¬k

0

´ ª¬Φ Lk  x ˜ Fk ˜ Lk  x º¼  µ ¶









L



º



q xi ˜ xi  x dxi»

» ¼

x

xi Integrationsvariable

Ein positives Q(x) bedeutet, dass die Querkraft im linken bzw. rechten Trägerteil nach unten bzw. oben wirkt: K 1

Q ( x) 

¦ k

x  0 ˜ m 

´ Φ Lk  x ˜ Fk  µ ¶



0

L 200





L



q xi dxi

x

 L

Bereichsvariable

Streckenlast 2 0 kN m

1.5

q ( x) kN m

1

Abb. 4.6.6.13

q ( x) kN m

0.5

0

0

1

2 x m

Seite 376

3

Integralrechnung Berechnung von Biegelinien Querkraft 15 0 kN

10

Q( x) kN Q( x) kN

Abb. 4.6.6.14 5

0

0

1

2

3

x m

Biegemoment 0 Mb( x) kN˜m

 10

0 kN˜m Mb( x) kN˜m

Abb. 4.6.6.15  20

 30 0

1

2

3

x m

Numerische Lösung der Differentialgleichung der Biegelinie: 2

d

2

dx

y=

1 E ˜ I ( x)

˜ Mb ( x)

Differentialgleichung der Biegelinie

Das axiale Flächenträgheitsmoment I(x) kann von x abhängig angenommen werden, z. B., wenn sich der Trägerquerschnitt ändert. Wir beschränken uns auf konstante Querschnitte und somit auf konstante axiale Flächenträgheitsmomente. Elastizitätsmodul 

Flächenmoment  Websteuerelement (Kombinationsfeld)

Seite 377

Integralrechnung Berechnung von Biegelinien

E

2.1 ˜ 10

N

5

mm 1.2 ˜ 10 ˜

mm N

4

2 ˜ 10 ˜

mm

2

10

4

4 ˜ 10

N

5

I0 

if Elastizitätsmodul = 1

2

2

if Elastizitätsmodul = 2

2 ˜ 10

˜m

4

if Flächenmoment = 1

4 4

m

4

˜m

if Flächenmoment = 2 4

if Flächenmoment = 3

if Elastizitätsmodul = 3

I ( x)  I0

Verlauf des axialen Flächenträgheitsmoments

y ( 0) = 0

Auslenkung an der Einspannstelle x = 0

y' ( 0) = 0

Trägerneigung an der Einspannstelle x = 0

´ y' ( x)  µ µ ¶

x

1



E ˜ I xi

0˜m

´ y ( x)  µ ¶

x



˜ Mb xi dxi

y'(0) = 0 ist im Integral bereits berücksichtigt



y(0) = 0 ist im Integral bereits berücksichtigt

y' xi dxi

0˜m

f  y ( L)

f

x  0 ˜ m 

L 20

2.643 ˜ mm

Durchbiegung

 L

Bereichsvariable Biegelinie

0

1

2

3

1 y( x) mm

Abb. 4.6.6.16

2 f mm

3 x m

Seite 378

Integralrechnung Berechnung von Arbeitsintegralen 4.6.7 Berechnung von Arbeitsintegralen Eine physikalische Größe u = f(x, y, z) (stetig differenzierbare Funktion der Raumkoordinaten) heißt ein skalares Feld. Die Flächen im Raum, auf denen u = konstant ist, heißen Niveauflächen. Zur grafischen Darstellung eines skalaren Feldes werden oft Schnittkurven der Niveauflächen mit einer geeigneten Ebene gezeichnet (z. B. Isobaren oder Isothermen auf einer Wetterkarte; Höhenschnittlinie auf einer Landkarte). Siehe Näheres dazu Band 2, Vektoranalysis. Beispiel: Gravitationskraft eines Massenpunktes oder elektrostatische Anziehungskraft: c

F ( x y z ) =

2

=

c 2

2

x y z

r

(c = Jm M bzw. c = k q Q)

2

(4-144)

Potentialfunktion:

u ( x y z ) =

1 F ( x y z )

2

=

2

x y z

2

(4-145)

c

o Ist eine beliebige vektorielle Größe v ( r) eine Funktion der Raumkoordinaten (z. B. Gravitationskraft eines Massenpunktes; Stromdichte in einer Strömung; elektrische oder magnetische Feldstärke etc.), so sprechen wir von einem vektoriellen Feld. Beispiel: Gravitationskraft eines Massenpunktes oder elektrostatische Anziehungskraft: c˜x ª « « « 2 2 2 « x y z « §¨ Fx ¸· c˜y oo o « c F r = ¨ Fy ¸ = ˜r =« ¨ ¸ 3 « 2 2 2 r ¨© Fz ¸¹ « x y z « c˜y « « « 2 2 2 ¬ x y z







3

2 3



2

3

2

º » » » » » » o » ; F =F= » » » » » » ¼

c 2 2 2 Fx  Fy  Fz = (4-146) 2 r



oo In einem Vektorfeld F r können verschiedene Integraloperationen definiert werden. Wir unterscheiden zwischen Linien- (oder Kurven-), Flächen- und Volumsintegralen. Die mechanische Arbeit lässt sich damit als Kurvenintegral entlang einer Kurve C definieren:

W=



´ oo o ´ µ F r dr = µ µ µ ¶ ¶

C Gilt Fx =

w wx

u , Fy =

Fx ( x y z ) ˜ dx  Fy ( x y z ) ˜ dy  Fz ( x y z ) dz

(4-147)

C w wy

u , Fz =

w wz

u , so ist das Kurvenintegral unabhängig vom Integrationsweg.



oo u(x,y,z) ist die Potentialfunktion und F r das Potentialfeld.

Seite 379

Integralrechnung Berechnung von Arbeitsintegralen Für die Ebene gilt: o § Fx · o § dx · ¨ ¸ , dr = ¨ ¸ , u ( x y). F= ¨ Fy ¸ © dy ¹ © ¹ ´ µ W=µ µ ¶ C

´ µ w w Fx ˜ dx  Fy dy = µ u ˜ dx  u dy = wy µ wx ¶ C

´ µ µ ¶

P ( x y) ˜ dx  Q ( x y) dy

(4-148)

C w

w

Q ( x y) . wy wx Diese Bedingung heißt Integrabilitätsbedingung. Die Integrabilitätsbedingung ist eine notwendige und hinreichende Bedingung zur Prüfung eines Feldes auf Potentialeigenschaft. Ist dz = P(x,y) dx + Q(x,y) dy ein vollständiges Differential, so gilt:

P ( x y) =

Ist die Kraft F = konstant und wirkt sie entlang des Weges s, so gilt:

W= F˜s

(4-149)

Abb. 4.6.7.1

Ist die Kraft F = konstant und haben F und s verschiedene Richtungen, so gilt:

W = Fs ˜ s = F ˜ s ˜ cos ( φ)

(4-150)

Abb. 4.6.7.2

Ist die Kraft entlang des Weges abgängig von s, so gilt: s ´ 2 µ F ( s ) ˜ cos ( φ) ds W= µ ¶

(4-151)

s ´ 2 µ F ( s ) ds (für M = 0) W= µ ¶

(4-152)

s1

s1

Abb. 4.6.7.3

Seite 380

Integralrechnung Berechnung von Arbeitsintegralen Beispiel 4.6.7.1: Innerhalb gewisser Grenzen ist die Kraft, die benötigt wird, um eine Feder zu dehnen, zur Dehnung proportional, wobei die Proportionalitätskonstante die Federkonstante k genannt wird. Um eine gegebene Feder der Normallänge von 25 cm um 0.5 cm zu dehnen, wird eine Kraft von 100 N benötigt. Wie groß ist die Arbeit, die verrichtet werden muss, wenn wir die Feder von 27 cm auf 30 cm dehnen? F ( x) = k ˜ x

Hooke'sches Gesetz

Die Federkonstante ergibt sich aus: F ( 0.5 ˜ cm) = k ˜ 0.5 ˜ cm = 100 ˜ N ´ W µ µ ¶

k = 200 ˜

5˜cm

200 ˜

N cm

˜ x dx

W

N

Federkonstante

cm verrichtete Arbeit

21 J

2˜cm

Beispiel 4.6.7.2: Die Federkonstante der Feder an einem Prellbock beträgt 4 MN/m. Wie groß ist die Arbeit, die verrichtet werden muss, wenn wir die Feder um 0.025 m zusammendrücken? F ( x) = k ˜ x

Hooke'sches Gesetz

6

MN  10 ˜ N MN

k 4˜ ´ W µ ¶

Einheitendefinition Federkonstante

m 0.025˜m

k ˜ x dx

W

verrichtete Arbeit

1250 J

0˜cm

Beispiel 4.6.7.3: Wie in der Mechanik gezeigt wird, ist die partielle Ableitung der Formänderungsarbeit W eines linearen elastischen Systems nach der Kraft gleich der Durchbiegung (Verschiebung) f des Kraftangriffspunktes in Richtung der Kraft. Damit können Verformungen mithilfe der Formänderungsarbeit berechnet werden. Mit dem Biegemoment Mb , der konstanten Biegesteifigkeit E I und der Trägerlänge L erhalten wir: ´ ˜µ W= 2˜ E˜ I ¶ 1

L 2

Mb ( F x) dx

0

´ ˜µ f= W= E˜I µ wF ¶ w

L

1

Mb ( F x) ˜

w wF

Mb ( F x) dx

0

Für einen einseitig eingespannten Träger mit einer Einzelkraft am Trägerende ist Mb = F x. Berechnen Sie die Formänderungsarbeit W und die Durchbiegung f. W W

Redefinition L

2 3 ´ F ˜L 2 2 ˜ µ F x dx o W ( F L) = W ( F L) = 6˜ E˜ I 2 ˜ E ˜ I ¶0

1

w wF

( F ˜ x) o x

f=

Ableitung des Biegemoments Mb

L

3 ´ F˜L ˜ µ F ˜ x ˜ x dx o f = 3˜ E˜ I E ˜ I ¶0

1

Formänderungsarbeit

oder:

f=

w wF

Seite 381

W ( F L)

Durchbiegung

Integralrechnung Berechnung von Arbeitsintegralen Beispiel 4.6.7.4: Wie groß ist die aufgewendete Arbeit W, um einen Körper der Masse m von der Geschwindigkeit v1 auf v 2 zu beschleunigen? F= m˜

d

v ( t) = m ˜

dt

2

d

dt

2

dynamisches Kraftgesetz

s ( t)

s s v ´ 2 ´ 2 ´ 2 d d µ F ds = µ m ˜ v ds = µ m ˜ s dv = W= µ µ µ ¶s dt dt 1 ¶s ¶v 1

1

v 2 2 m ˜ § v1  v2 · ´ 2 © ¹ µ m ˜ v dv o W =  W= µ 2 ¶

v ´ 2 µ m ˜ v dv µ ¶ v1

Die aufgewendete Arbeit entspricht der Änderung der kinetischen Energie!

v1

Beispiel 4.6.7.5: Welche Arbeit W gegen die Erdanziehungskraft muss aufgebracht werden, um einen Nachrichtensatelliten der Masse m2 = 1400 kg auf eine geostationäre Bahn in der Höhe h = 36 000 km über der Erdoberfläche zu bringen? Die Gravitationskonstante beträgt J = 6.67 10 -11 Nm2 /kg2 , die Erdmasse m1 = 5.98 10 24 kg und der Erdradius rE = 6.37 10 6 m. Wie groß ist die Arbeit, wenn der Satellit für eine Planetenerkundungsmission das Gravitationsfeld der Erde völlig verlässt? Stellen Sie die Arbeit (das Gravitationspotential) u(R) = - Wv /m1 als Funktion von R vom Erdmittelpunkt grafisch dar. F ( r) = 㠘

m1 ˜ m2

Gravitationsgesetz

2

r

r h r h ´E ´E 1 µ µ dr F ( r) dr = 㠘 m1 ˜ m2 ˜ Wp = µ µ 2 ¶r r E µ ¶r

Die verrichtete Arbeit oder potentielle Energie, um den Satelliten auf die geostationäre Bahn zu bringen.

E

r h

´E Wp rE h γ m1 m2  㠘 m1 ˜ m2 ˜ µ µ µ ¶r





1 2

dr

r

E

㠘 h ˜ m1 ˜ m2 Wp rE h γ m1 m2 annehmen r ! 0 rE ! 0 h ! 0 o rE ˜ h  rE









´ µ W1 rE γ m1 m2  㠘 m1 ˜ m2 ˜ µ µ ¶r







1 2

dr

r E

W1 rE γ m1 m2 annehmen r ! 0 rE ! 0 o

Die verrichtete Arbeit oder potentielle Energie, um den Satelliten aus dem Gravitationsfeld der Erde zu bringen. 㠘 m1 ˜ m2 rE

Seite 382

Integralrechnung Berechnung von Arbeitsintegralen

γ  6.67 ˜ 10

 11 N ˜ m

˜

kg m1  5.98 ˜ 10

24

2

Gravitationskonstante

2

˜ kg

Erdmasse

m2  1400 ˜ kg

Satellitenmasse

6

rE  6.37 ˜ 10 ˜ m

Erdradius

h  36000 ˜ km

Höhe der geostationären Bahn

6

MJ  10 ˜ J

Einheitendefinition





Wp rE h γ m1 m2

74483.428 ˜ MJ

Die verrichtete Arbeit oder potentielle Energie, um den Satelliten auf die geostationäre Bahn zu bringen.

m2 W1 rE γ m1 m2  㠘 m1 ˜ rE









W1 rE γ m1 m2





87662.857 ˜ MJ

u R γ m1 m2  



Die verrichtete Arbeit oder potentielle Energie, um den Satelliten aus dem Gravitationsfeld der Erde zu bringen.



W1 R γ m1 m2

Gravitationspotential

m1 2

R  1 ˜ km 2 ˜ km  10 ˜ km

Bereichsvariable (für den Abstand vom Erdmittelpunkt) Gravitationspotential 0

20

40

60

80

100

 11



u R γ m1 m2 J



 2.5u 10

 11

 5u 10

kg

Abb. 4.6.7.4

 11

 7.5u 10

 10

 1u 10

R km

Seite 383

Integralrechnung Berechnung von Arbeitsintegralen Beispiel 4.6.7.6: Industrieabgase werden heute häufig mittels elektrostatischer Filter gereinigt. Das verunreinigte Gas tritt in einen Behälter ein, in dem ein elektrostatisches Feld mit hoher Spannung aufgebaut wird. Die Staubteilchen werden durch die Spitzenwirkung und Influenz entsprechend hoch aufgeladen und lagern sich an der Behälterwand ab. Der Abstand von der zylindrischen Behälterwand zu einem in der Mitte angebrachten Metallrohr beträgt r = 2 m und die Ladung am Metallrohr Q2 = 1.3 10-6 C. Das Metallrohr hat einen Durchmesser von 20 cm. Die Dielektrizitätskonstante beträgt H0 = 8.8542 10-12 As/(V m). Berechnen Sie mithilfe des Coulomb'schen Gesetzes das Potential u(r) = WEl/Q1 der Behälterwand gegenüber dem r entfernten Metallrohr. Wie würde das Potential lauten, wenn das Staubteilchen in großer Entfernung (gegen die Größe des Staubteilchens kann die Wegstrecke aus dem Rauchgasrohr als unendlich angenommen werden) von der Behälterwand aufgeladen wird? F ( r) =

1 4 ˜ π ˜ ε0

˜

Q1 ˜ Q2

Coulomb'sches Gesetz

2

r

r Q1 ˜ Q2 ´2 µ F ( r) dr = WEl = µ 4 ˜ π ˜ ε0 ¶r 1

r

´2 1 ˜µ dr µ 2 r µ ¶r

Die verrichtete elektrische Arbeit zwischen Metallrohr und Behälterwand.

1





WEl r1 r2 ε 0 Q1 Q2 

r

Q1 ˜ Q2

´2 1 ˜µ dr 2 4 ˜ π ˜ ε0 µ r µ ¶r

Die verrichtete elektrische Arbeit als Funktion definiert.

1

annehmen r ! 0 r1 ! 0 r2 ! 0





WEl r1 r2 ε 0 Q1 Q2

erweitern sammeln 







Q1 ˜ Q2

symbolische Auswertung

4 ˜ π ˜ ε0 ∞

´ µ ˜ 4 ˜ π ˜ ε0 µ µ ¶r Q1 ˜ Q2

WEl1 r1 ε 0 Q1 Q2 

§ 1  1 · ˜ Q1 ˜ Q2 o¨ ¸ © r1 r2 ¹ 4 ˜ π ˜ ε 0

1 2

Die verrichtete Arbeit bei einem Staubteilchen, das aus dem Rauchgasrohr tritt.

dr

r 1

Q1 ˜ Q2



symbolische Auswertung

WEl1 r1 ε 0 Q1 Q2 annehmen r ! 0 r1 ! 0 o 4 ˜ π ˜ r1 ˜ ε 0 ε 0  8.8542 ˜ 10 Q2  1.3 ˜ 10

6

 12

˜

A˜s

elektrische Feldkonstante (Dielektrizitätskonstante)

V˜m

˜C

Ladung des Metallrohres

r 2˜ m

Entfernung der Behälterwand zum Metallrohr

r1  0.2 ˜ m

Radius des Metallrohres

r2  r

Entfernung der Behälterwand zum Metallrohr





WEl r1 r2 ε 0 Q1 Q2 

§¨ Q1 ˜ Q2 ·¸ § 1 1 · ˜  ¨© 4 ˜ π ˜ ε 0 ¸¹ ¨© r1 r2 ¸¹

Die verrichtete elektrische Arbeit zwischen Metallrohr und Behälterwand.

Seite 384

Integralrechnung Berechnung von Arbeitsintegralen









§¨ Q2 ·¸ § 1 1 · ˜  ¨© 4 ˜ π ˜ ε 0 ¸¹ ¨© r1 r2 ¸¹

u r1 r2 ε 0 Q2  u r1 r2 ε 0 Q2

Das elektrische Potential (Potentialdifferenz oder Spannung) der Behälterwand gegenüber dem r entfernten Metallrohr.

52.577 ˜ kV

Q2 WEl1 r1 ε 0 Q1 Q2  Q1 ˜ 4 ˜ π ˜ ε 0 ˜ r1













u1 r1 ε 0 Q2  u1 r2 ε 0 Q2

Die verrichtete Arbeit bei einem Staubteilchen, das aus dem Rauchgasrohr tritt.

Q2

Das elektrische Potential bei einem Staubteilchen, das von der Behälterwand aufgeladen wird.

4 ˜ π ˜ ε 0 ˜ r1

Das elektrische Potential bei einem Staubteilchen, das von der Behälterwand im Abstand r2 aufgeladen

5.842 ˜ kV

wird. Beispiel 4.6.7.7: Berechnen Sie die Arbeit W eines idealen Gases bei isothermer (T = konstant) Expansion (Expansionsarbeit) von Volumen V1 auf V2 . Es gilt das Boyle-Mariotte-Gesetz p V = konstant. Die Gasarbeit W ist die Fläche gegen die Abszisse, die technische Arbeit Wt (entspricht besser der Arbeitsweise der technischen Maschine) die Fläche gegen die Ordinate. k k p˜ V = k p ( V) =

oder

k

= f ( V)

V

dW = p ˜ dV

bzw.

Boyle-Mariotte-Gesetz k

V ( p) =

p

Funktionsgleichungen

= f u ( p)

dW t = V ˜ dp V ´ 2

V ´ 2

W=

p1 ˜ V1 = p2 ˜ V2

µ µ ¶

p dV = k ˜ µ µ V1 ¶V V

´ 2 1 W=k˜µ dV V µ ¶V

1 V

differentielle Arbeit p p ´ 2 ´ 2 1 µ V dp = k ˜ µ Wt = dp µ p µ ¶p ¶p 1

dV

1

1

annehmen V ! 0 V1 ! 0 V2 ! 0 o W = V1 ˜ p1 ˜ ln V 1  ln V2 ersetzen k = p1 ˜ V1





1

p

´ 1 1 Wt = k ˜ µ dp p µ ¶p

annehmen p ! 0 p1 ! 0 p2 ! 0 o Wt = V1 ˜ p1 ˜ ln p1  ln p2 ersetzen k = p1 ˜ V1





2

Für diesen Fall gilt:

W = Wt

Beispiel 4.6.7.8: Wird bei einem abgeschlossenen System keine Wärme zugeführt oder entzogen, so heißen die Zustandsänderungen eines idealen Gases adiabatisch (z. B. näherungsweise bei sehr rascher Kompression). Bestimmen Sie die Arbeit W und Wt der adiabatischen Expansion (Expansionsarbeit) eines idealen Gases, wenn p1 = 12.07 bar, p2 = 2.06 bar, V1 = 9.4 cm3 und der Adiabatenexponent N = 1.3 ist. Es gelten die Adiabatengleichungen p V N = k bzw. p1 V1 N = p2 V2 N. κ

p˜ V = k

oder

κ

κ

p1 ˜ V1 = p2 ˜ V2

Adiabatengleichungen

Seite 385

Integralrechnung Berechnung von Arbeitsintegralen annehmen V ! 0 κ ! 1

V2 1 κ ´ µ

W = p1 ˜ V1 ˜ µ µ ¶V

V

annehmen V1 ! 0

dV

κ

oW=

κ

κ

V2 ˜ ( κ  1)

vereinfachen

1

κ

V1 ˜ V2 ˜ p1  V1 ˜ V2 ˜ p1

1

1 ª« κ1 º ˜( κ 1)» κ κ κ » ˜ § V1κ ˜ p1· κ ˜ «p1  p2 annehmen p ! 0 κ ! 1 ¬ ¼ © ¹ o Wt = vereinfachen κ1

1

p κ ´ 1

κ Wt = § p1 ˜ V1 · ˜ µ © ¹ µ

µ µ ¶p

1

dp

1

p

κ

2

κ  1.3

Adiabatenexponent N

5

p1  12.07 ˜ 10 ˜

m

Anfangsdruck

2

N

5

p2  2.06 ˜ 10 ˜

m

Enddruck

2

3

V1  9.4 ˜ cm

Anfangsvolumen 1

§ p1 · V2  V1 ˜ ¨ ¸ ¨© p2 ¸¹

κ



36.625 ˜ cm

κ

κ

Endvolumen

V1 ˜ V2 ˜ p1  V1 ˜ V2 ˜ p1



W V1 V2 p1 p2 

κ

V2 ˜ ( κ  1)

§ V1 V2 p1 p2 ·¸    ˜J ¨ cm3 cm3 Pa Pa ¸ © ¹





3

V2



Expansionsarbeit

12.67 ˜ MJ





˜J

16.471 ˜ MJ

Wt V1 V2 p1 p2  κ ˜ W V1 V2 p1 p2

§ V1

Wt ¨ ¨

3

© cm



V2 3

cm



p1

p2 · ¸

Pa Pa ¸

§ V1 · ¸ p ( V)  p1 ˜ ¨ ©V¹ 3



technische Expansionsarbeit

¹

κ

Funktionsgleichung

3

3

V  5 ˜ cm 5.01 ˜ cm  50 ˜ cm

Bereichsvariable

Seite 386

Integralrechnung Berechnung von Arbeitsintegralen p-V-Diagramm V1 cm

V2

3

3

cm

6

2u 10

p ( V) Pa p ( V) Pa



˜ V1d Vd V2

p1



6

Abb. 4.6.7.5

Pa

1u 10

Wt p2

W

Pa 0

10

20

30

40

V cm

3

Beispiel 4.6.7.9: Wie groß ist der Energieinhalt W einer Spule ohne Eisenkern der Induktivität L = konstant, die von einem Gleichstrom I durchflossen wird? W W d

u = L˜

Redefinition Induktionsgesetz

i ( t)

dt dW = p ( t ) ˜ dt = u ( t ) ˜ i ( t) ˜ dt = L ˜

d

i ( t ) ˜ i ( t ) ˜ dt = L ˜ i ( t ) ˜ di

differentielle Arbeit bzw. Energie

dt ´ W=µ ¶

W

I 2 ´ I ˜L W = L ˜ µ i di o W = ¶ 2 0

1 dW1

0

Beispiel 4.6.7.10: Wie groß ist der Energieinhalt W eines Kondensators der Kapazität C, der an einer konstanten Spannung U angeschlossen ist? W W i=

d

Redefinition und

q

dt

C=

d

Ÿ

q

i ˜ dt = C ˜ du

du

dW = p ( t ) ˜ dt = u ( t ) ˜ i ( t) ˜ dt = u ˜ C ˜ du ´ W = C˜ µ ¶

U

0

differentielle Arbeit bzw. Energie

2

u du o W =

C˜ U

oder

2 bzw.

W=

W=

1 2 1 2

Seite 387

2

˜ C ˜ U ersetzen U =

2

˜ C ˜ U ersetzen C =

Q C Q U

2

oW=

oW=

Q

2˜ C Q˜U 2

Integralrechnung Berechnungen aus der Hydromechanik 4.6.8 Berechnungen aus der Hydromechanik Aus der Bernoulligleichung (Strömungsgleichung) ergibt sich die theoretische Ausflussgeschwindigkeit von Flüssigkeiten aus einem Gefäß zu: vth = 2 ˜ g ˜ h (Torricelli-Formel). Kontinuierliche Strömungen werden mithilfe der Kontinuitätsgleichung beschrieben:

Abb. 4.6.8.1

mt =

d

m ... Massenstrom Vt =

dt

d

V ... Volumenstrom

(4-153)

dt

Strömende Flüssigkeiten bei konstantem Massenstrom: ρ=

m V

= konstant

mt = ρ ˜ V t = ρ ˜

(4-154)

A1 ˜ s 1 t

= ρ˜

A2 ˜ s 2 t

= ρ˜

A3 ˜ s 3 t

= konstant

(4-155)

mt = ρ ˜ A1 ˜ v1 = ρ ˜ A2 ˜ v2 = ρ ˜ A3 ˜ v3 = konstant Vt =

mt ρ

(4-156)

= A ˜ v = konstant

(4-157)

Strömende Gase: U ist nicht konstant. mt = ρ1 ˜ A1 ˜ v1 = ρ2 ˜ A2 ˜ v2 = ρ2 ˜ A3 ˜ v3 = .... = konstant

(4-158)

mt = ρ ˜ A ˜ v = konstant

(4-159)

Beispiel 4.6.8.1: Ein mit Wasser gefüllter Behälter besitze im Abstand h von der Wasseroberfläche einen horizontalen rechteckigen Spalt. Ermitteln Sie das pro Sekunde ausströmende Volumen, wenn der Flüssigkeitsstand im Behälter gleich bleibt.

dA = b ˜ dy

differentielles Flächenelement

theoretischer differentieller Volumenstrom: dVtth = vth ˜ dA = vth ˜ b ˜ dy =

Abb. 4.6.8.2

Seite 388

2 ˜ g ˜ y ˜ b ˜ dy

Integralrechnung Berechnungen aus der Hydromechanik

Vtth =

h ´ 2 µ 2˜ g˜ b˜ µ ¶

y dy vereinfachen o V tth

3· §¨ 3 ¸ 2¸ 2 ¨ 2 ˜ b ˜ h1  h2 © ¹ ˜ 2˜ g =

3

h1

Die wirkliche Ausflussmenge ist wegen der Reibung und der Zusammenschnürung des Flüssigkeitsstrahls kleiner. P < 1 ... Kontraktionszahl, M < 1 ... Geschwindigkeitszahl, D = P M < 1 ... Ausflusszahl 3· §¨ 3 ¸ 2 2¸ ¨ Vt = α ˜ Vtth = ˜ α ˜ 2 ˜ g ˜ b ˜ h2  h1 © ¹ 3

2

tatsächlicher Volumenstrom

Beispiel 4.6.8.2: Ein zylindrischer Behälter mit dem Querschnitt A 1 sei bis zur Höhe h0 mit Flüssigkeit gefüllt und oben offen. Eine Öffnung auf dem Boden des Behälters habe den Querschnitt A 2 . Berechnen Sie die theoretische Auslaufzeit T bei abnehmendem Flüssigkeitsstand. v1 ... Sinkgeschwindigkeit v2 ... Ausflussgeschwindigkeit v2th =

2 ˜ g ˜ h ... theoretische Ausflussgeschwindigkeit

ρ ˜ A1 ˜ v1 = ρ ˜ A2 ˜ v2

Kontinuitätsgleichung

A2 v1 = ˜v A1 2 A2 v1 ( h) = ˜ A1

Abb. 4.6.8.3 A2 d  h= ˜ A1 dt

2˜ g˜ h

bzw.

dt =

A1 A2

˜

1 2˜ g˜ h

˜ dh

2˜ g˜ h

und

d v1 ( h) =  h dt

Differentialgleichung 1. Ordnung

Nach der Integration auf beiden Seiten erhalten wir die theoretische Ausflusszeit von h0 bis h1 : h

A1 ´ 1 1 dt =  ˜µ A µ 2 0 ¶h

´ T=µ ¶

T

1 2˜ g˜ h

dh

0

h

A1 ´ 1 T h0 h1 A1 A2 g   ˜µ A2 µ ¶h





1 2˜ g˜ h

theoretische Ausflusszeit von h0 bis h1

dh

als Funktion definiert

0





T h0 h1 A1 A2 g o

A1 ˜



2 ˜ g ˜ h0 



2 ˜ g ˜ h1

A2 ˜ g

Seite 389

symbolische Auswertung

Integralrechnung Berechnungen aus der Hydromechanik





T h0 0 A1 A2 g o



A1 ˜

2 ˜ g ˜ h0

symbolische Auswertung für die theoretische Ausflusszeit des Gesamtbehälters

A2 ˜ g

2



2

T 5 ˜ m 0 ˜ m 3 ˜ m 0.2 ˜ m g

numerische Auswertung für die theoretische Ausflusszeit des Gesamtbehälters mit gewählten Daten

15.147 s

Beispiel 4.6.8.3: Berechnen Sie die Gesamtkraft und die Kraft, die auf die obere und untere Hälfte eines halbkreisförmigen Schleusentors wirken. Der Durchmesser an der Wasseroberfläche beträgt d = 2 r = 20 m.

Abb. 4.6.8.4 2

dA = 2 ˜

2

r  y ˜ dy

differentielles Flächenelement

dFy = py ˜ dA = 2 ˜ ρ ˜ g ˜ y ˜

2

r ´2 µ F ρ g r1 r2 r  2˜ ρ˜ g˜ y˜ µ ¶





2

r  y ˜ dy

2

differentielle Kraft auf das Schleusentor in der Tiefe y

2

r  y dy

Kraft auf das Schleusentor in Abhängigkeit von r1 und r2

r1

3



2



F ρ g r1 r2 r annehmen r1  r  r2 r ! 0 r1 ! 0 r2 ! 0 o

ρ  1000 ˜

kg m

r  10 ˜ m 3

F ( ρ g 5 ˜ m 10 ˜ m r)

¹

2

2 ˜ ρ ˜ g ˜ § r  r2 © 2





3

Radius des Tors

kN  10 ˜ N

F ( ρ g 0 ˜ m 5 ˜ m r)

3



Dichte des Wassers

3

F ( ρ g 0 ˜ m 10 ˜ m r)

2 ˜ ρ ˜ g ˜ § r  r1 ©

3

Einheitendefinition 6537.769 ˜ kN 2291.363 ˜ kN 4246.406 ˜ kN

Gesamtkraft in 10 m Tiefe Gesamtkraft in der Mitte des Schleusentors Gesamtkraft auf die untere Hälfte des Schleusentors

Seite 390

¹

2

Integralrechnung Berechnung von Mittelwerten 4.6.9 Berechnung von Mittelwerten Die Mittelwertbildung von Funktionen mithilfe des bestimmten Integrals gehört beispielsweise in der Elektrotechnik, Nachrichtentechnik und Mechanik ebenfalls zu den Standardaufgaben. Wir unterscheiden mehrere Arten von Mittelwerten. a) arithmetischer Mittelwert (linearer Mittelwert oder Gleichwert): Für eine Funktion f: y = f(x) ist im Intervall [a, b] wegen ´ µ ¶

b



f ( x) dx = f xm ˜ ( b  a)

a

(4-160)

der Inhalt der Fläche zwischen dem Grafen von y = f(x) und der x-Achse im Intervall [a, b] gleich dem Flächeninhalt eines Rechtecks mit den Seiten f(xm) und (b - a). Siehe dazu Abschnitt 4.2, Mittelwertsatz der Integralrechnung. Die Integrationsgrenzen können auch unendlich sein. Beispiel 4.6.9.1: Eine Kraft F, die längs eines Weges x 1 = 1 m bis x2 = 8 m wirkt, sei in der Form F = x2 /2 N/m2 wegabhängig. Wie groß ist die mittlere Kraft, also jene konstante Kraft, die längs des Weges die gleiche Arbeit verrichtet? 2

F ( x) 



x

˜

2

N m

x ´ 2 µ ˜ F ( x) dx x2  x1 µ ¶x 1



1

Fm x1 x2 





N ˜ § x1  x2 ©

¹



2

arithmetischer Mittelwert der Kraft



3

Fm x1 x2 o



Kraft

2

3

3

2

2

b  a = ( b  a) ˜ b  a ˜ b  a





6 ˜ m ˜ x1  x2

N ˜ § x1  x1 ˜ x2  x2 ©



2



Fm x1 x2 vereinfachen o

6˜ m

¹

2

x1  1 ˜ m

mittlere Kraft

Wegbereich

x2  8 ˜ m





Fm x1 x2

xm 

mittlere Kraft

12.167 N





2

m 2 ˜ Fm x1 x2 ˜ N

xm

4.933 m

zum Mittelwert Fm gehöriger x m-Wert

x  0 ˜ m 0.1 ˜ m  10 ˜ m Bereichsvariablen xm  0 ˜ m 0.001 ˜ m  10 ˜ m

Seite 391

Integralrechnung Berechnung von Mittelwerten

40





x1

x2



Fm x1 x2 ˜ x1d xmd x2 30

Die Fläche zwischen Kurve und x-Achse ist gleich der Rechtecksfläche Fm . (x2 - x1 )

N F( x) N



˜ x1d xd x2

20





10

0

2

4

Fm x1 x2



8

10

6 xm m



Abb. 4.6.9.1

x m

Beispiel 4.6.9.2: Ein Gleichstrom wird von einem Wechselstrom überlagert und ist gegeben durch i(t) = 15 mA + 4 mA sin(Z t). Die Frequenz des Wechselstromes beträgt 50 Hz. Bestimmen Sie den arithmetischen Mittelwert des Stromes über eine Periode T. i ( t ω)  15 ˜ mA  4 ˜ mA ˜ sin ( ω ˜ t) im ( T ω) 

1 ´ ˜µ T ¶

Mischstrom

T

i ( t ω) dt

arithmetischer Mittelwert des Stromes

0

§ T ˜ ω· ¸ © 2 ¹

2

8 ˜ mA ˜ sin ¨ im ( T ω) vereinfachen o 15 ˜ mA 

§ ©

im ¨ T 

T˜ω

2 ˜ π· T

¸ vereinfachen o 15 ˜ mA ¹

Gleichanteil des Mischstromes

f  50 ˜ Hz T

Frequenz des Wechselstromes

1

Periodendauer

T

0.02 s

ω 2˜ π˜ f

ω

314.159 ˜ s

t  0 ˜ s 0.00001 ˜ s  T

t 1  0 ˜ s 0.0001 ˜ s  T

f

1

Kreisfrequenz des Wechselstromes Bereichsvariable n

20

T

i( t ω )

18

mA

16

im( T ω )

14

mA

im( T ω )

Die Fläche zwischen Kurve und 15 mA-Achse wird null. Es bleibt nur der Gleichanteil übrig.

mA 12 10 0

3

5u 10

Abb. 4.6.9.2 0.01

0.015

t t1  s s

Seite 392

0.02

Integralrechnung Berechnung von Mittelwerten Beispiel 4.6.9.3: Ein Strom i = f(t) transportiert in der Zeit dt die Ladungsmenge dq = i dt. t ´2 µ i ( t ) dt ist dann die in der Zeit t 2  t 1 beförderte Ladungsmenge. Welche gedachte Stromstärke q= µ ¶



t1



im ist erforderlich, um in der gleichen Zeit die gleiche Ladungsmenge zu transportieren? Sei i = I max sin(Z t) und t2 - t1 = T/2. T



´2 1 µ § 2 ˜ π ˜ t · dt ˜ µ I max ˜ sin ¨ ¸ T µ © T ¹ ¶



im Imax 

0

2





im Imax o

mittlere Stromstärke

2 ˜ Imax π

Beispiel 4.6.9.4: Bei einem idealen Wechselstrom sind Spannung und Strom in Phase. Bestimmen Sie die Wirkleistung P über eine Periode T.





u t ω Umax  Umax ˜ sin ( ω ˜ t )





i t ω I max  I max ˜ sin ( ω ˜ t) 1 ´ P= ˜µ T ¶

T

0



1 ´ p ( t ) dt = ˜ µ T ¶

Wechselspannung Wechselstrom

T

u ( t ) ˜ i ( t ) dt

Wirkleistung (Mittelwert über die Momentanleistung p(t))

0



P Umax I max 

1 ´ ˜µ T µ ¶

T

§ 2 ˜ π U · ˜ i § t  2 ˜ π I · ¸ ¨ ¸ dt max max © T ¹ © T ¹

u ¨ t 

0





P Umax I max o P



I max ˜ Umax 2



2 ˜ Ueff  2 ˜ I eff o I eff ˜ Ueff

Umax =

2 ˜ Ueff

I max =

2 ˜ I eff

Wirkleistung, ausgedrückt durch die Effektivwerte

Beispiel 4.6.9.5: Bei einem Wechselstrom sind Spannung u = Umax sin(Z t) und Strom i = Imax sin(Z t - M) phasenverschoben. Bestimmen Sie die Leistung P über eine Periode T. Bestimmen Sie auch die Wirkleistung bei einer Phasenverschiebung zwischen U und I von M = S2über eine Periode. Hier liegt eine reine induktive Belastung vor. Stellen Sie weiters dieses Problem grafisch dar, wenn Umax = 6 V, Imax = 4 A und f = 1/2S Hz gegeben sind.

Seite 393

Integralrechnung Berechnung von Mittelwerten



´ ˜µ 2˜ π ¶



1

P Umax I max φ 

Substitution:



Umax ˜ sin ( α) ˜ I max ˜ sin ( α  φ) dα

α = ω˜ t

Ÿ

t=0

Ÿ

α = ω˜ 0 = 0

t=T

Ÿ

α = ω˜ T = 2˜ π

0





P Umax I max φ o P



P=

I max ˜ Umax ˜ cos ( φ) 2



2 ˜ Ueff  2 ˜ I eff φ o I eff ˜ Ueff ˜ cos ( φ) 1

˜ Umax ˜ I max ˜ cos ( φ)

2

dα = ω ˜ dt

Wirkleistung (bei Phasenverschiebung)

ersetzen Umax = Ueff ˜ ersetzen I max = Ieff ˜

2

2 o P = Ieff ˜ Ueff ˜ cos ( φ)

Herleitung der Wirkleistung: 2π

P=

´ ˜ Umax ˜ I max ˜ µ ¶ 2π 0

P=

´ ˜ Umax ˜ I max ˜ µ ¶ 2π 0

P=

´ ˜ Umax ˜ I max ˜ cos ( φ) ˜ µ ¶ 2π 0

P=

P=

1

sin ( α) ˜ sin ( α  φ) dα



1

sin ( α) ˜ ( sin ( α) ˜ cos ( φ)  cos ( α) ˜ sin ( φ) ) dα 2π

1

1 2˜ π 1 2

2

sin ( α) dα 

˜ Umax ˜ I max ˜ cos ( φ) ˜ π 

1 2π

˜ Umax ˜ I max ˜ cos ( φ)

I max  4A

Scheitelstrom

1 2π

φ

π

Frequenz

Hz

ω 2˜ π˜ f 1

sin ( α) ˜ cos ( α) dα

˜ Umax ˜ I max ˜ sin ( φ) ˜ 0

Scheitelspannung

T



´ ˜ Umax ˜ I max ˜ sin ( φ) ˜ µ ¶ 2˜ π 0 1

Umax  6V

f

Anwendung Summensatz 1. Art

f

1

ω

1

T

6.283 s

Kreisfrequenz

s Periodendauer

Phasenverschiebung zwischen u und i

3

φ = φu  φi

Phasenverschiebung zwischen Spannung und Strom

φu = 0

Phasenverschiebung der Spannung bei t = 0 s

φi  φ

Phasenverschiebung des Stromes bei t = 0 s

Seite 394

Integralrechnung Berechnung von Mittelwerten u ( t)  Umax ˜ sin ( ω ˜ t)



i ( t )  Imax ˜ sin ω ˜ t  φi

Momentanwert der Spannung



Momentanwert des Stromes

p ( t)  u ( t) ˜ i ( t)

Momentanwert der Leistung

t  0 ˜ s 0.001 ˜ s  2π ˜ s

Bereichsvariable Spannungs- und Stromverlauf

10

T

φ

s

Umax

6

V u( t) V i( t) A

2 2

0

2

4

6

6  10 t s

Abb. 4.6.9.3





P Umax I max φ o 6 ˜ A ˜ V





P Umax I max φ

6W

Die Leistung über die Periode gesehen ist 6 W.

zeitabhängige Leistung 20

T

´ µ ¶

s

p ( t ) dt

0

+

10

T

+

p( t)





P U max Imax φ

P˜T 0

-

2

-

 10 t

Abb. 4.6.9.4

Seite 395

4

6

Integralrechnung Berechnung von Mittelwerten Beispiel 4.6.9.6: Sestimmen Sie die Leistung eines Transistors bei Selastung , wenn folgende Grofsen gegeben sind: i(t) = I

Us

t

t

= -.max T R T s L s .-

Ts

Schaltzeit

RL

Lastwiderstand

Us

Setriebsspann ung

Schaltspan nung

Ts

P =-

1

.

Ts

I o

Us t t - . - . Us . ( 1- - ) dt RL

Ts

Ts

U 2 vereinfachen







S





6 · RL

ar thrnefischer Mittelwert der zeitabhanqiqen Leistung p(t) = itt ) us(t) wahrend der Zeit T s

Beispiel 4.6.9.7: Der Strom beim Ausschaltvorgang einer Spule an Gleichspannung ist gegeben durch itt) = 10 e -t/r Stellen Sie den Ausschaltstrom fur R = 1000 n, L = 1 mH und Uo = 10 V und der Zeitkonstante T = L/R grafisch dar. Serechnen Sie die Hache zwischen Stromkurve und t-Achse und interpretieren Sie das Ergebnis. R := 1000 . !!

L

T =1 x10

T: = -

R

U

o

10 := R

vorgegebene Daten

L:= 1 . mH

- 6

s

Zeilko nstan te

Strom vor dem Ausschalten

10 = 0.01 A - t

i(I):= 10 , e

us := 10

-6

Ausschallslrom

T

Einheitendefinition

s

1 := O· us , 0.0001 . u.s .. 6 . T Sereichsvariablen fur die Zejt

11 := O· us , 0 .1 . us .. 6 . T

Ausschaltvorgang einer Spule 5'T

flS

Abb.4.6.9.5

2

3 t

4

t1

fls flS Zeit

Seite 396

5

6

Integralrechnung Berechnung von Mittelwerten t t ´ µ µ µ ¶



´ µ µ µ ¶



τ τ

I0  I0

t τ

I0 ˜ e

Redefinitionen

annehmen τ ! 0 o I0 ˜ τ vereinfachen

dt

0

t

I0 ˜ e

τ

´ µ 1 µ I0 = ˜ µ τ ¶



I0 W ist die gespeicherte Ladung in der Spule. Die Fläche zwischen Kurve und

dt = τ ˜ I 0

t-Achse ist genauso groß wie die Rechtecksfläche I 0 W

0

t

I0 ˜ e

τ

dt

bedeutet den Mittelwert des konstanten Anfangsstromes

0

b) arithmetischer Mittelwert - Gleichrichtwert: Für eine Funktion f: y = f(x) ist im Intervall [a, b] wegen ´ µ ¶

b

f ( x) dx = ym ˜ ( b  a)

(4-161)

a

der Inhalt der Fläche zwischen dem Grafen von y = | f(x) | und der x-Achse im Intervall [a, b] gleich dem Flächeninhalt eines Rechtecks mit den Seiten |ym| und (b - a).

Beispiel 4.6.9.8: Bestimmen Sie den Gleichrichtwert eines sinusförmigen Wechselstroms i = I max sin(Z t) bei Zweiweggleichrichtung über eine Periode T. Stellen Sie das Problem grafisch für I max = 2 A und Z = 2 S s-1 dar. T

1 ´ , = Im = i = ˜ µ T ¶0 I max  I max α = ω˜ t =

,=

´ ˜µ 2˜ π ¶ 2

Gleichrichtwert des Stromes

Redefinition

2˜ π T

i ( t ) dt

˜t

dα =

2˜ π T

Grenzen: für t = 0 ist D = 0 und für t = T ist D = 2 S

˜ dt

π

0

I max ˜ sin ( α) dα vereinfachen o , =

2 ˜ Imax π

Der Gleichrichtwert ist gleich dem linearen Mittelwert über eine halbe Periode!

Wir erhalten als Gleichrichtwert des Wechselstromes einen Wert, der über eine halbe Periode gleichmäßig wirkend dieselbe Ladungsmenge durch den Leiter treibt wie der Wechselstrom.

Seite 397

Integralrechnung Berechnung von Mittelwerten I max  2 ˜ A ω 2˜ π˜ s T

maximale Amplitude

1

2˜ π

Kreisfrequenz T

ω

Periodendauer

1s

i ( t )  Imax ˜ sin ( ω ˜ t) ,

2

gegebener Strom

˜ I max

π

Gleichrichtwert

t  0 ˜ s 0.001 ˜ s  T

Bereichsvariablen

t 1  0 ˜ s 0.01 ˜ s  T Gleichrichtwert 2

T s

i( t) 1

Strom

A ,

0

A i ( t) A

Abb. 4.6.9.6

1 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t t1 t   s s s Zeit

Beispiel 4.6.9.9: Bestimmen Sie den Gleichrichtwert eines sinusförmigen Wechselstroms i = I max sin(Z t) für 0 d t d T/2 und i = 0 für T/2 < t d T bei Einweggleichrichtung über eine Periode T. Stellen Sie das Problem grafisch für I max = 2 A und Z = 2 S s-1 dar. I max  I max α = ω˜ t =

,=

2˜ π T

´ ˜µ 2˜ π ¶ 1

, , ˜t

Redefinitionen

dα =

2˜ π T

Grenzen: mit t = 0 ist D = 0 und mit t = T/2 ist D = S

˜ dt

π

I max ˜ sin ( α) dα vereinfachen o , =

0

Imax π

T

´2 Imax 1 µ , = ˜ µ I max ˜ sin ( ω ˜ t) dt o , = 2˜ π T ¶ 0

Seite 398

Der Gleichrichtwert ist gleich dem linearen Mittelwert über eine halbe Periode!

Integralrechnung Berechnung von Mittelwerten

I max  2 ˜ A ω 2˜ π˜ s

1

2˜ π

T

Kreisfrequenz T

ω

i ( t) 

maximale Amplitude

Periodendauer

1s

Imax ˜ sin ( ω ˜ t ) if 0 d t d

T

gegebener Strom

2

0 otherwise ,

1

˜ I max

π

Gleichrichtwert

t  0 ˜ s 0.001 ˜ s  T

t 1  0 ˜ s 0.01 ˜ s  T

Bereichsvariablen

Gleichrichtwert 2

i( t)

T

T

2˜s

s

1

Strom

A , A

0

Abb. 4.6.9.7

i ( t) A

1

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t t1 t   s s s Zeit

c) quadratischer Mittelwert (Effektivwert): Für eine Funktion f: y = f(x) ist im Intervall [a, b] wegen ´ µ ¶

b 2

2

( f ( x) ) dx = ym ˜ ( b  a)

(4-162)

a

der Inhalt der Fläche zwischen dem Grafen von y = (f(x)) 2 und der x-Achse im Intervall [a, b] gleich dem Flächeninhalt eines Rechtecks mit den Seiten ym2 und (b - a).

Seite 399

Integralrechnung Berechnung von Mittelwerten Beispiel 4.6.9.10: Bestimmen Sie den Effektivwert eines sinusförmigen Wechselstroms i = I max sin(Z t) über eine Periode T. Stellen Sie das Problem grafisch für I max = 1 A und Z = 2 S s-1 dar. 1 ´ ˜µ T ¶

2

I eff =

T 2

quadratischer Mittelwert

i ( t ) dt

0

I max  I max

Redefinition

2˜ π

α = ω˜ t =

T

´ I eff = ˜µ 2˜ π ¶ 1

2

˜t

2˜ π

dα =

T

dt =

˜ dt

T 2˜ π

2˜π 2

2

2

I max ˜ sin ( α) dα vereinfachen o I eff =

0

I max  1 ˜ A ω 2˜ π˜ s

1

T

2

˜ I max

I max

I eff 

quadratischer Mittelwert

2

Periodendauer

1s

i ( t )  Imax ˜ sin ( ω ˜ t) 1

2

Kreisfrequenz

ω

I Qu 

I max

Grenzen: mit t = 0 ist D = 0 und mit t = T ist D = 2 S

maximale Amplitude

2˜ π

T

˜ dα

2

quadratischer Mittelwert (I QU = Ieff2 )

I eff

2

gegebener Strom

0.707 A

Effektivwert des Stromes

t  0 ˜ s 0.001 ˜ s  T

Bereichsvariable

t 1  0 ˜ s 0.01 ˜ s  T

Bereichsvariable quadratischer Mittelwert

1 i ( t)

2

Strom

A

T

T

2˜s

s

0.5

IQu A

0

i ( t) A

Abb. 4.6.9.8  0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t t1 t   s s s Zeit

Seite 400

0.9

1

1.1

Integralrechnung Berechnung von Mittelwerten Beispiel 4.6.9.11: Bestimmen Sie den Effektivwert der nachfolgend angegebenen Dreieckspannung u über eine Periode T. Stellen Sie das Problem grafisch für U max = 5 V und T = 8 s dar.



Umax



u t T Umax 

T

˜ t if 0 ˜ s d t d

T 4

4

1 § · Umax ˜ ¨ 2  ˜ t¸ if T

¨ 4 © § 1 ˜t Umax ˜ ¨ T ¨ © 4

T 4

 t d 3˜

T Dreieckspannung

4

¸ ¹ T · 4¸ if 3 ˜ tdT 4 ¸ ¹

Umax  Umax

Redefinition

ª T «´ Umax «µ 4 2 Ueff = ˜ µ «µ T «µ «¶0 « ¬ 2



§ 1 ˜ t· ¨ T ¸ ¨ ¸ © 4 ¹

T 8˜ s

Umax

Ueff

3

2

Ueff

8.333 V

´ 4 µ dt  µ µ µ µT ¶

T

1 § · ¨ 2  T ˜ t¸ ¨ ¸ 4 © ¹

4

Umax  5 ˜ V Ueff 

2

T 2

´ µ dt  µ µ µ µ T ¶3˜

§ 1 ˜t ¨ T ¨ © 4

·



¸ ¹

4

T

2

º » 2 Umax » 2 dt o Ueff = » 3 » » » ¼

maximale Amplitude und Periodendauer

8s

Effektivwert der Spannung

2.887 V

quadratischer Mittelwert

2

t  0 ˜ s 0.001 ˜ s  T

t 1  0 ˜ s 0.1 ˜ s  T

Bereichsvariablen quadratischer Mittelwert

25



u t T U max



Spannung

s 17.5

2

V U eff

T

2

2

10

2

V



u t T U max V



Umax

Abb. 4.6.9.9

V

2.5 0

2

4

6

5 t t1 t   s s s Zeit

Seite 401

8

10

Integralrechnung Berechnung von Mittelwerten Beispiel 4.6.9.12: Bestimmen Sie den Effektivwert der nachfolgend angegebenen Spannung u über eine Periode T. Stellen Sie das Problem grafisch für U max = 230 2 V und T = 1/50 s dar. Umax  230 ˜ T

1 50

˜s

Periodendauer

2˜ π

ω

maximale Amplitude

2V

ωo

T

100 ˜ π

Kreisfrequenz

s

§ t · ¸ T ¨ ¸ © 2 ¹ § T· § T  p· 0 ˜ V if ¨ z ˜ ¸  t  ¨ z ˜ ¸ © 2¹ © 2 ¹

u ( t p φ) 

z m floor ¨

gegebene Funktion

Umax ˜ sin ( ω ˜ t  φ) otherwise t  0 ˜ s 0.0001 ˜ s  0.1 ˜ s

Bereichsvariable

2T˜T u( t 0˜s 0)

s

V 2˜π · § u¨t 0˜s  ¸ 3 ¹ ©

200

V

§ ©

u¨t 0˜s 

4˜π · 3

§ T · u¨t  0¸ © 4 ¹

¸ ¹

0

20

40

60

80

 200

V

t ms

Abb. 4.6.9.10

Ueff 

§´ T · 2 ¸ µ ¨ 1 T · § ˜ ¨ µ u ¨ t  0¸ dt¸ T ¨µ © 4 ¹ ¸ ¶ © 0 ¹

Ueff

162.635 V

Seite 402

Effektivwert der Spannung

100

Integralrechnung Mehrfachintegrale 4.7 Mehrfachintegrale Bisher wurde ausführlich auf die Integration einer Funktion von einer unabhängigen Variablen eingegangen. Wir sprechen in diesem Zusammenhang von einem gewöhnlichen Integral. Hier soll noch kurz auf die Integration einer Funktion mit zwei bzw. drei Variablen eingegangen werden. Diese Erweiterung des Integrationsbegriffes führt auf Doppel- und Dreifachintegrale, die bei vielen Anwendungen, wie z. B. Flächeninhalt, Schwerpunkt einer Fläche, Flächenträgheitsmomenten, Volumen und Masse eines Körpers, Schwerpunkt eines Körpers und Massenträgheitsmomenten, auftreten. Im vorhergehenden Abschnitt wurden diese Themen bereits behandelt. Hier wurden Mehrfachintegrale unter Berücksichtigung von gewissen Symmetrieeigenschaften auf gewöhnliche Integrale zurückgeführt.

4.7.1 Doppelintegrale Doppelintegrale (auch zweifaches Integral oder Gebietsintegral genannt) werden von Funktionen zweier Veränderlicher in kartesischen Koordinaten z = f(x,y) bzw. in Polarkoordinaten z = F(r,M), erstreckt über einen Bereich A in der x-y-Ebene bzw. r-M-Ebene, gebildet. Dazu betrachten wir anschaulicherweise zuerst einen zylindrischen Körper, also ein geometrisches Problem. z = f(x,y) sei eine im Bereich A definierte und stetige Funktion mit f(x,y) t0.

Das Doppelintegral ist die Maßzahl des Rauminhaltes für den zylindrischen Körper, der vom Bereich A in der x-y-Ebene, den auf dem Rand von A errichteten Loten und einem Teil der Fläche z = f(x,y) begrenzt wird. Der Integrationsbereich lässt sich durch die Ungleichungen fu(x) d y d fo(x) und a d x d b beschreiben, wobei yu = fu(x) die untere und yo = fo(x) die obere Randkurve ist und die seitlichen Begrenzungen aus zwei Parallelen zur y-Achse mit den Funktionsgleichungen x = a und x = b bestehen. Das infinitesimale Flächenelement dA mit dA = dx dy ist ein Rechteck. Über diesem Rechteck liegt eine quaderförmige Säule mit dem infinitesimalen Rauminhalt dV = z dA = f(x,y) dx dy = f(x,y) dy dx. Abb. 4.7.1 1. Fall (Abb. 4.7.1): ´ µ µ ¶

´ µ z dA = µ ¶

A

A

´ µ f ( x y) dA = µ ¶

x=b

x=a

f ( x) ´o µ f ( x y) dy dx Doppelintegral µ ¶

(4-163)

fu ( x)

Bei diesem Doppelintegral wird von innen nach außen integriert, d. h. zuerst bezüglich der Variablen y (x wird dabei zunächst als Konstante angesehen) und dann erst nach der Variablen x. Die Integrationsgrenzen des inneren Integrals sind dabei von x abhängige Funktionen, die Grenzen des äußeren Integrals dagegen Konstanten.

Seite 403

Integralrechnung Mehrfachintegrale 2. Fall: Der Integrationsbereich lässt sich durch die Ungleichungen fu(y) d x d fo(y) und a d y d b beschreiben, wobei xu = fu(y) die untere und xo = fo(y) die obere Randkurve ist und die seitlichen Begrenzungen aus zwei Parallelen zur x-Achse mit den Funktionsgleichungen y = a und y = b bestehen. ´ µ µ ¶

´ µ z dA = µ ¶

A

A

´ µ f ( x y) dA = µ ¶

y=b

y=a

x =f ( y) ´ o o µ f ( x y) dx dy Doppelintegral µ ¶

(4-164)

xu=fu ( y)

Bei diesem Doppelintegral wird ebenfalls von innen nach außen integriert, d. h. zuerst bezüglich der Variablen x (y wird dabei zunächst als Konstante angesehen) und dann erst nach der Variablen y. Die Integrationsgrenzen des inneren Integrals sind dabei von y abhängige Funktionen, die Grenzen des äußeren Integrals dagegen Konstanten. 3. Vertauschbarkeit der Reihenfolge der Integration: Die Reihenfolge der Integration ist eindeutig durch die Reihenfolge der Differentiale dy und dx im Doppelintegral festgelegt! Sie ist nur dann vertauschbar, wenn sämtliche Integrationsgrenzen konstant sind, d. h., wenn ein rechteckiger Integrationsbereich A vorliegt! 4. Die Funktion f(x,y) = 1: In diesem Fall erhalten wir einen über dem Bereich A liegenden Zylinder der Höhe z = 1. Sein Volumen ist gegeben durch: ´ µ µ ¶

x=b

x=a

f ( x) ´o µ 1 dy dx = µ ¶ fu ( x)

´ µ µ ¶

x=b

x=a

f ( x) ´o µ 1 dx dy µ ¶

(4-165)

fu( x)

Zahlenmäßig beschreibt dieses Doppelintegral zugleich auch den Flächeninhalt des Bereichs A! 5. Die Funktion liegt in Polarkoordinaten z = F(r,M) vor: In vielen Fällen vereinfacht sich das Doppelintegral, wenn wir an Stelle der kartesischen Koordinaten x und y Polarkoordinaten r und M verwenden. Durch Koordinatentransformation geht die Funktion z = f(x,y) in die von r und M abhängige Funktion über: z = f(x,y) = f(r cos(M), r sin(M)) = F(r,M). Der Integrationsbereich lässt sich durch zwei Strahlen M = M1 und M = M2 sowie einer inneren Kurve r = ri(M) und einer äußeren Kurve r = ra (M) begrenzen und durch die Ungleichungen ri(M) dr dra (M) und M1 dM dM2 beschreiben. Das Flächenelement dA ist gegeben durch dA = (r dM) dr = r dr dM. r ( φ) φ ´ 2 ´a µ µ f ( r ˜ cos ( φ) r ˜ sin ( φ) ) ˜ r dr dφ (Doppelintegral in Polarkoordinaten) µ ¶φ µ ¶r ( φ) 1

(4-166)

i

Die Integralberechnung erfolgt wieder von innen nach außen, d. h., es wird zuerst nach der Variablen r zwischen den beiden Kurven r = ri(M) und r = ra (M) integriert und anschließend nach der Winkelkoordinate M zwischen den Strahlen M = M1 und M = M2 .

Seite 404

Integralrechnung Mehrfachintegrale Beispiel 4.7.1: Berechnen Sie den Flächeninhalt einer Ellipse in Mittelpunktslage mithilfe eines Doppelintegrals. Stellen Sie das Problem grafisch dar. a 3

b 2 b

y ( x) 

a

2

˜

angenommene Halbachsen 2

a x

obere Ellipsenkurve

x  0 0.001  a

Bereichsvariable

a a

2 1.5 y( x)

b b

´ µ A ( a b)  4 ˜ µ ¶

1

a

0

Redefinitionen b

´a µ µ ¶

2

2

˜ a x

1 dy dx

0

0.5

A ( a b) annehmen a ! 0 o π ˜ a ˜ b 0

0

1

2

3

A ( 2 ˜ m 1 ˜ m)

x

6.283 m

2

Flächeninhalt der Ellipse

Abb. 4.7.2 Beispiel 4.7.2: Berechnen Sie den Flächeninhalt zwischen der Kreislinie x 2 + y2 = 25 und der Geraden y = -x + 5 mithilfe eines Doppelintegrals. Stellen Sie das Problem grafisch dar. r 5

Kreisradius

y1 ( x)  x  5

Gerade

2

y2 ( x) 

2

r x

oberer Halbkreis

x  0 0.001  r

Bereichsvariable

6

´ µ ¶

5

´ µ ¶

5

0

4 y1( x) y2( x) 2

´ µ ¶

y2( x)

1 dy dx vereinfachen o

y1( x)

1

2

3

4

5

´ A µ ¶

5

0

´ µ ¶

y2( x)

1 dy dx

y1( x)

x

Abb. 4.7.3

A

4

( y2 ( x)  y1 ( x) ) dx vereinfachen o

0

0

25 ˜ π

7.135

Seite 405

Maßzahl der Fläche



25

25 ˜ π 4

7.135

2



25 2

7.135

Integralrechnung Mehrfachintegrale Beispiel 4.7.3: Berechnen Sie den Flächeninhalt einer Kardioide r(M) = 1 + cos(M) im Intervall 0 d M < 2 S mithilfe eines Doppelintegrals. Stellen Sie das Problem grafisch dar. r ( φ)  1  cos ( φ)

Polarkoordinatendarstellung der Kardioide

φ  0 0.001  2 ˜ π

Bereichsvariable 90

120

60

150

r( φ)

30

180

0

ri ( φ) = 0

ra ( φ) = 1  cos ( φ)

A A

Redefinition

0 0.5 1 1.5 2 210

330

´ A=µ ¶

2˜π

0

240

´ µ ¶

1 cos ( φ)

r dr dφ o A =

0

Randkurven

3˜ π 2

300 270 φ

Abb. 4.7.4 Beispiel 4.7.4: Berechnen Sie die Schwerpunktskoordinaten eines Halbkreises und das Flächenträgheitsmoment bezüglich der Schwerachse s mithilfe eines Doppelintegrals. Stellen Sie das Problem grafisch dar. b

1 ´ µ ˜ xs = A µ ¶

´ 1 µ ˜µ x dA = A ¶a

1 ´ µ ˜ ys = A µ ¶

b

y dA =

f ( x) ´o µ x dy dx µ ¶ fu ( x)

f ( x) ´o

´ 1 µ µ ˜µ y dy dx A ¶a µ ¶f ( x) u

in kartesischen Koordinaten

φ2 ra( φ) ´ 1 ´ 2 µ µ ˜ r ˜ cos ( φ) dr dφ xs = µ µ A ¶φ ¶r ( φ) i

1

Abb. 4.7.5 1 ys = A

´ µ Ix = µ ¶ ´ µ Iy = µ ¶

´ µ y dA = µ ¶

b

2

a

´ µ 2 x dA = µ ¶

b

a

f ( x) ´o

µ µ ¶

fu( x)

kartesische Koordinaten 2

x dy dx

µ µ ¶

φ1

µ µ ¶

in Polarkoordinaten 2

r ˜ sin ( φ) dr dφ

ri ( φ)

r ( φ) φ ´ 2 ´a 3 2 µ µ r ˜ sin ( φ) dr dφ Ix = µ µ ¶φ ¶r ( φ)

f ( x) ´o 2 µ y dy dx µ ¶ fu( x)

˜

r ( φ) φ ´ 2 ´a

i

1

r ( φ) φ ´ 2 ´a

µ Iy = µ ¶φ

1

Seite 406

µ µ ¶

ri( φ)

in Polarkoordinaten 3

2

r ˜ cos ( φ) dr dφ

Integralrechnung Mehrfachintegrale 0drdR

0dφdπ

Bereich

2

A=

R ˜π

Halbkreisfläche

2

xs = 0 ´ Ix = µ ¶

2

ys = π

0

´ µ ¶

2

R ˜π

´ ˜µ ¶

π

0

´ µ ¶

R 3

0

1

4˜ R 2 r ˜ sin ( φ) dr dφ o ys = 3˜ π 0

Schwerpunktskoordinaten (Die Integrationsreihenfolge kann hier vertauscht werden!)

4

2

r ˜ sin ( φ) dr dφ o Ix =

Is = Ix  A ˜ ys

R

π˜R

Flächenträgheitsmoment bezüglich der x-Achse

8

2

nach Satz von Steiner 2

4

Is = ˜ π ˜ R  8

R ˜π 2

4 4 2 § 4 ˜ R· o = π ˜ R  8 ˜ R ˜¨ Is ¸ 9˜ π 8 © 3 π¹

Flächenträgheitsmoment bezüglich der Schwerachse

Beispiel 4.7.5: Berechnen Sie die Oberfläche der Funktion f(x,y) = 6 - x2 - y2 über einem kreisförmigen Integralbereich x2 + y2 d r2 mithilfe eines Doppelintegrals. Stellen Sie das Problem grafisch dar. f ( x y)  6  x  y

2

2

Flächenfunktion

i  1 2  20

j  1 2  20

Bereichsvariablen

§ i  10  j  10 · ¸ 5 ¹ © 5

z i j  f ¨

Matrix der Funktionswerte

r 2

Radius des kreisförmigen Integralbereichs

´ µ Ao  µ µ µ ¶

2

r

Ao

2

r ´ r x

µ µ µ µ ¶

2

1 2

2

r x



Maßzahl der Oberfläche

36.177

´ Ao  µ ¶

2˜π

0

2

§d §d · · ¨ f ( x y) ¸  ¨ f ( x y) ¸ dy dx © dx ¹ © dy ¹

´ µ ¶

r 2

1  4 ˜ ρ ˜ ρ dρ dφ

Polarkoordinaten

0

z z Abb. 4.7.6

Ao

36.177

Seite 407

Maßzahl der Oberfläche

Integralrechnung Mehrfachintegrale Beispiel 4.7.6: Über dem durch die Gleichung x2 + y2 = 16 gegebenen Kreis der x-y-Ebene steht ein gerader Zylinder. Er wird durch die Ebene z = f(x,y) = x + y + 2 schief abgeschnitten. Wie groß ist das Volumen zwischen den Ebenen z = 0 und z = x + y + 2? Stellen Sie das Problem grafisch dar. 4 ˜ cos ( φ) · ¨§ ¸ f ( z φ)  ¨ 4 ˜ sin ( φ) ¸ ¨ ¸ z © ¹ g ( x y)  x  y  2

Zylinder in Zylinderkoordinaten Ebene

r 4

Radius 2

2

r r x ´ ´ V µ µ ( x  y  2) dy dx ¶ ¶ 0

0

128

V o 8˜ π 

Maßzahl des Volumens

3

f g Abb. 4.7.7 Beispiel 4.7.7: Durch Rotation der Parabel z = 4 - x2 um die z-Achse entsteht ein Rotationsparaboloid, dessen Bodenfläche in die x-y-Ebene fällt. Wie groß ist sein Volumen? Stellen Sie das Problem grafisch dar.

2

2

f ( x y)  4  x  y



g ( x y)  0

Rotationsfläche Ebene

In Polarkoordinaten:

2

2

2

2

2

z = 4  r ˜ cos ( φ)  r ˜ sin ( φ) = 4  r Integrationsbereich: 0drd2 ´ V µ ¶

2˜π

0

V o 8˜ π

f g Abb. 4.7.8

Seite 408

0 d φ  2˜ π ´ µ ¶

2

4  r2 ˜ r dr dφ

0

Maßzahl des Volumens

Integralrechnung Mehrfachintegrale 4.7.2 Dreifachintegrale Dreifachintegrale (auch dreifaches Integral, 3-dimensionales Bereichs- oder Gebietsintegral genannt) werden von Funktionen dreier Veränderlicher in kartesischen Koordinaten u = f(x,y,z) bzw. in Zylinderkoordinaten u = F(r,M,z) bzw. in Kugelkoordinaten u = f(r,M,T) gebildet, über einen räumlichen Bereich V. Hier sei jedoch im Gegensatz zu Zweifachintegralen darauf hingewiesen, dass Dreifachintegrale nur im Speziellen eine geometrische Interpretation zulassen. Dazu betrachten wir anschaulicherweise zuerst einen zylindrischen Körper, also ein geometrisches Problem. u = f(x,y,z) sei eine in einem zylindrischen Integrationsbereich V definierte und stetige Funktion, die durch eine Bodenfläche und eine Deckfläche begrenzt wird. Die Projektion dieser Begrenzungsflächen in die x-y-Ebene führt zu einem Bereich A, der durch die Kurven y = fu(x) und y = fo(x) sowie die Parallelen x = a und x = b berandet wird. Der zylindrische Integrationsbereich V kann dann durch die Ungleichungen zu(x,y) dz d zo(x,y), fu(x) dy d f0 (x) und a d x d b beschrieben werden. Das infinitesimale Volumselement dV hat die Form eines Quaders und ist damit gegeben durch dV = dx dy dz = dz dy dx.

Abb. 4.7.9 1. Das Dreifachintegral kann dann über einem zylindrischen Integrationsbereich V beschrieben werden durch: ´ µ µ ¶

´ µ f ( x y y) dV = µ ¶

x=b

x=a

f ( x) ´o µ µ ¶ fu( x)

´ µ µ ¶

z=zo( x y)

f ( x y z ) dz dy dx

(4-167)

z=zu ( x y)

V Bei diesem Dreifachintegral wird auch von innen nach außen integriert, d. h. zuerst bezüglich der Variablen z (x und y werden dabei zunächst als Konstante angesehen), dann nach der Variablen y (x wird dabei zunächst als Konstante angesehen) und dann erst nach x. Nach der Ausführung des ersten Integrationsschrittes, der z-Integration, ist aus dem Dreifachintegral ein Doppelintegral geworden. Der Integrationsbereich ist jetzt der flächenhafte Bereich A, der durch die Projektion des zylindrischen Körpers in die x-y-Ebene entsteht.

Seite 409

Integralrechnung Mehrfachintegrale 2. Vertauschbarkeit der Reihenfolge der Integration: Die Reihenfolge der Integration ist nur dann vertauschbar, wenn sämtliche Integrationsgrenzen konstant sind. Bei einer Vertauschung der Integrationsreihenfolge in einem Dreifachintegral müssen die Integrationsgrenzen jeweils neu berechnet werden. 3. Die Funktion f(x,y,z) = 1: In diesem Fall beschreibt das Dreifachintegral das Volumen V des zylindrischen Körpers: ´ µ V=µ ¶

x=b

x=a

f ( x) ´o µ µ ¶ fu( x)

´ µ µ ¶

z=zo( x y)

1 dz dy dx

(4-168)

z=zu ( x y)

4. Die Funktion liegt in Zylinderkoordinaten u = F(r,M,z) vor: In vielen Anwendungen treten Körper mit Rotationssymmetrie auf. Zu ihrer Beschreibung werden zweckmäßigerweise Zylinderkoordinaten (r, M, z) verwendet. Die Berechnung des Dreifachintegrals wird dadurch ebenfalls erheblich vereinfacht. Durch Koordinatentransformation geht die Funktion u = f(x,y,z) in die von r, M und z abhängige Funktion über: u = f(x,y,z) = f(r cos(M), r sin(M), z) = F(r, M, z). Die z-Koordinate bleibt dabei unverändert erhalten. Die Integrationsgrenzen müssen neu bestimmt und in Zylinderkoordinaten ausgedrückt werden. Das infinitesimale Volumselement dV lässt sich durch (siehe Abbildung 4.7.10) dV = r dz dr dM ausdrücken. ´ µ µ ¶

f ( φ) φ ´ 2 ´o µ µ F ( r φ z ) dV = µ ¶φ µ ¶f ( φ) 1

u

´ µ µ ¶

z=zo ( r φ)

F ( r φ z ) ˜ r dz dr dφ

(4-169)

z=zu( r φ)

V Die Integration erfolgt dabei in drei nacheinander auszuführenden gewöhnlichen Integrationsschritten in der Reihenfolge z, r und M.

Transformationsgleichungen: Zylinderkoordinaten und rechtwinkelige Koordinaten x = r ˜ cos ( φ) y = r ˜ cos ( φ) z=z 2

2

x y y tan ( φ) = x z=z r=

Abb. 4.7.10

Seite 410

(4-170)

(4-171)

Integralrechnung Mehrfachintegrale

5. Die Funktion liegt in Kugelkoordinaten u = F(r,-,M) vor: Für kugelsymmetrische Probleme werden zweckmäßigerweise Kugelkoordinaten (r, T, M) verwendet. Die Berechnung des Dreifachintegrals wird dadurch ebenfalls erheblich vereinfacht. Durch Koordinatentransformation geht die Funktion u = f(x,y,z) in die von r, - und M abhängige Funktion über: u = f(x,y,z) = f(r sin(-) cos M), r sin(-) sin(M), r cos(-)) = F(r, -, M). Die Integrationsgrenzen müssen neu bestimmt und in Kugelkoordinaten ausgedrückt werden. Das infinitesimale Volumselement dV lässt sich durch (siehe Abbildung 4.7.11) dV = r2 sin(-) dr d- dM ausdrücken. ´ µ µ ¶

f ( φ) φ ´ 2 ´o µ µ F ( r ϑ φ) dV = µ ¶f ( φ) ¶φ µ 1

u

´ µ µ ¶

z=zo( ϑ φ)

2

F ( r ϑ φ) ˜ r ˜ sin ( ϑ) dr dϑ dφ

(4-172)

z=zu ( ϑ φ)

V Die Integration erfolgt dabei in drei nacheinander auszuführenden gewöhnlichen Integrationsschritten in der Reihenfolge r, - und M.

Abb. 4.7.11

Transformationsgleichungen: Kugelkoordinaten und rechtwinkelige Koordinaten M [0, 2 S[ , -  [0, S] x = r ˜ sin ( ϑ) ˜ cos ( φ) ; y = r ˜ sin ( ϑ) ˜ sin ( φ) ; z = r ˜ cos ( ϑ)

r=

2

2

x y z

2

y

sin ( φ) =

2

cos ( ϑ) =

r

x

cos ( φ) = 2

x y z

(4-173)

tan ( φ) =

2

2

2

2

x y tan ( ϑ) =

x y z

Seite 411

y x

(4-174)

Integralrechnung Mehrfachintegrale Beispiel 4.7.8: Bestimmen Sie das Volumen eines Drehzylinders mit dem Radius r und der Höhe h, der entsteht, wenn eine Gerade x = r parallel zur z-Achse um die z-Achse rotiert. Berechnen Sie das Volumen in kartesischen Koordinaten und Zylinderkoordinaten. r r

Redefinition

Die Projektion des Zylinders in die x-y-Ebene ist ein kreisförmiger Bereich A mit Radius r 2

2

´ Vz ( r h)  µ µ ¶

r ´ r x

´ Vz ( r h)  µ ¶

2˜π

r

0

µ µ ¶

2

r x r

´ ´ µ µ ¶ ¶ 0

r  30 ˜ cm Vz ( r h)

2



´ µ ¶

h

2

Vz ( r h) annehmen r ! 0 h ! 0 o π ˜ h ˜ r

1 dz dy dx

0

h

2

Vz ( r h) o π ˜ h ˜ r

r1 dz dr1 dφ

0

h  200 ˜ cm

gewählter Radius und gewählte Höhe

565.487 L

Beispiel 4.7.9: Bestimmen Sie die Masse eines homogenen Kreiskegels mit dem Radius R, der Höhe H und der Dichte U, der dadurch entsteht, wenn die Gerade z = - R/H (x - R) (0 dx dR) um die z-Achse rotiert. Berechnen Sie das Volumen in Zylinderkoordinaten. m = ρ˜ V

Masse des Körpers

Die Mantelfläche wird durch die Funktionsgleichung z = - R/H (r - R) (0 dr dR) beschrieben und bildet die obere Begrenzungsfläche des Kegels. Die Bodenfläche ist Teil der x-y-Ebene z = 0. Die Projektion des Kegels in diese Ebene führt zu der Kreisfläche 0 dr dR, 0 dM d2 S. Damit ergeben sich folgende Integrationsgrenzen: z=

H

˜ ( r  R)

z=0

bis

r=0

bis

r=R

φ=0

bis

φ = 2˜ π

R

r r

Redefinition

´ µ VK ( R H)  µ ¶

2˜π

0

R  30 ˜ cm

´ µ µ ¶

R

0

´ µ µ ¶



H R

˜( r R ) 2

0

H  100 ˜ cm

ρ  1000 ˜

94.248 L

kg m

m  ρ ˜ VK ( R H) VK ( R H)

VK ( R H) o

r dz dr dφ

π˜ H˜ R

3

3

gewählte Daten Masse des Körpers

m

94.248 kg

Volumen und Masse

Seite 412

Integralrechnung Mehrfachintegrale Beispiel 4.7.10: Eine Parabel mit der Gleichung z = y2 rotiere um die z-Achse. Das Volumen des entstehenden Paraboloides soll berechnet werden, wenn die Höhe des Paraboloides h ist. Dieser parabolische Behälter soll von einem Wasserreservoire aus, das sich in der x-y-Ebene befindet, bis zur Höhe z = h mit Wasser gefüllt werden. Welche Arbeit ist dabei mindestens aufzuwenden? h h

Redefinition

h x ´ h ´ µ VP ( h)  µ µ µ ¶ ¶

´ h µ µ µ VP ( h) annehmen h ! 0 o µ µ ¶





h

2

hx

2

´ µ ¶

h

1 dz dy d x 2

2

x y



3



2

4˜ h  x



2

dx

3 h

In Zylinderkoordinaten: ´ VP ( h)  µ µ ¶

2˜π

0

´ h ´h µ µ r dz dr dφ µ ¶2 ¶ 0

2

π˜h

VP ( h) o

2

r

W = m ˜ g ˜ h = m ˜ g ˜ zs

Die Wassermenge wird von z = 0 um die Stecke h = z s angehoben.

Für den Schwerpunkt eines homogenen Rotationskörpers gilt unter Verwendung von Zylinderkoordinaten (Rotation um die z-Achse): 1 ´ µ ˜ xs = 0 , ys = 0 , z s = V µ ¶

´ µ µ ¶

´ µ µ ¶

z ˜ r dz dr dφ

(4-175)

V V ist das Rotationsvolumen.

z s ( h) 

´ ˜µ VP ( h) µ ¶ 1

2˜π

0

´ h ´h µ µ z ˜ r dz dr dφ µ ¶2 ¶

z s ( h) o

2˜ h 3

r

0

m = ρ ˜ VP ( h)

Masse des Körpers

ρ ρ

Redefinitionen

g g

3

Wmin ( ρ g h)  ρ ˜ VP ( h) ˜ g ˜ z s ( h)

Wmin ( ρ g h) o

π˜ ρ˜ g˜ h 3

Beispiel 4.7.11: Berechnen Sie das Volumen einer Kugel (x2 + y2 + z 2 = r2 ) mithilfe eines Dreifachintegrals in kartesischen Koordinaten und in Kugelkoordinaten. x x

y y

´ VK ( r)  µ µ ¶

r

r

z z

2

2

´ r x µ µ ¶ 2 

2

2

r x

r r 2

x ( r ϑ φ)  r ˜ sin ( ϑ) cos ( φ)

φ φ

Redefinitionen

2

´ r x y µ µ ¶ 2 2 

ϑ ϑ

VK ( 2) o

1 dz dy dx 2

32 ˜ π 3

r x y

y ( r ϑ φ)  r ˜ sin ( ϑ) ˜ sin ( φ)

Seite 413

z ( r ϑ φ)  r ˜ cos ( ϑ)

Kugelkoordinaten

Integralrechnung Mehrfachintegrale §w ¨ x ( r ϑ φ) ¨ wr ¨w ¨ y ( r ϑ φ) ¨ wr ¨w ¨ z ( r ϑ φ) © wr

D ( r ϑ φ) 

· ¸ wϑ wφ ¸ ¸ w w y ( r ϑ φ) y ( r ϑ φ) ¸ wϑ wφ ¸ ¸ w w z ( r ϑ φ) z ( r ϑ φ) ¸ wϑ wφ ¹ w

w

x ( r ϑ φ)

x ( r ϑ φ)

Funktionaldeterminante 2

D ( r ϑ φ) vereinfachen o r ˜ sin ( ϑ)

2

dV = D ( r ϑ φ) ˜ dr ˜ dϑ ˜ dφ vereinfachen o dV = dr ˜ r ˜ dϑ ˜ dφ ˜ sin ( ϑ) VK ( r) =

´ µ µ ¶

´ VK ( r)  µ ¶

1 dV

2˜π

0

´ µ ¶

π

0

Volumselement

r

´ 2 µ ρ ˜ sin ( ϑ) dρ dϑ dφ ¶

3

VK ( r) o

0

4˜ π˜ r 3

Beispiel 4.7.12: Berechnen Sie das Massenträgheitsmoment Jz eines homogenen Würfels der Kantenlänge a (0 dx da, 0 dy da, 0 dz d a) und der konstanten Dichte U bezüglich einer Kante und bezüglich einer kantenparallelen Schwerpunktachse. Massenträgheitsmoment eines homogenen Körpers in kartesischen Koordinaten: ´ Jz = ρ ˜ µ µ ¶

´ µ rg dV = ρ ˜ µ ¶

b

2

a

f ( x) ´o µ µ ¶ fu( x)

z ( x y) ´ o 2 2 µ x  y dz dy d x µ ¶





(4-176)

zu( x y)

V rg ist der Abstand des Volumselementes dV von der Bezugsachse g parallel zur Schwerachse, und Uist die konstante Dichte des Körpers. Die Bezugsachse ist die z-Achse. Massenträgheitsmoment eines homogenen Körpers in Zylinderkoordinaten: ´ µ Jz = ρ ˜ µ ¶

´ µ µ ¶

´ µ µ ¶

3

r d z dr dφ

(4-177)

V

´ Jz = ρ ˜ µ ¶

a

0

m m

´ µ ¶

a

´ µ ¶

0

a

x2  y2 dz dy dx o Jz = 2 ˜ a

5

˜ρ

Massenträgheitsmoment bezogen auf eine Kante

3

0

Redefinition

´ Jz = ρ ˜ µ ¶

a

0

´ µ ¶

a

´ µ ¶

0

a

0

x2  y2 dz dy dx ersetzen ρ = m3

2

o Jz =

a

Die Schwerpunktachse ist von der z-Achse d =

a 2

˜

2

2 3

2

3

2 entfernt:

Js = Jz  m ˜ d Js =

2˜ a ˜ m

nach dem Satz von Steiner 2

2

§ a ˜ 2· o = a ˜ m Js ¸ 6 ©2 ¹

˜m˜a  m˜¨

Seite 414

Übungsbeispiele

1. Folgen, Reihen und Grenzwerte 1.1 Folgen Beispiel 1: Geben Sie das allgemeine Bildungsgesetz für die nachfolgenden Folgen an, und stellen Sie die ersten 10 Folgeglieder grafisch dar. a) 1; 1/3; 1/5; 1/7, ... ! b) 1; 1/4; 1/9; 1/16, ... c) 1; 4; 9; 16, ...

!

!

Beispiel 2: Zeigen Sie, dass die Folge a) 2n !streng monoton steigt, b) 1/2n !streng monoton fällt, c) (3 n - 2)/(2 n - 1) !streng monoton steigt. Beispiel 3: Untersuchen Sie, ob 1 bzw. 2 eine obere Schranke der Folge (3 n - 2)/(2 n - 1) !ist. Beispiel 4: Ermitteln Sie eine obere und eine untere Schranke für die Folge (4 n + 1)/(2 n - 1) !. Beispiel 5: Geben Sie für die nachfolgenden Folgen die ersten 10 Glieder an, und stellen Sie die ersten 10 Folgeglieder grafisch dar. Untersuchen Sie die Folgen auch auf Monotonie und Beschränktheit. a) yn !

(-1)n (1/n) !

b) xn !

sin(n S/2) !

c) z n !

2. 2-n !

d) hn !

1 - 1/n !

Beispiel 6: Geben Sie für die nachfolgenden rekursiv dargestellten Folgen die ersten 10 Glieder an, und stellen Sie die ersten 10 Folgeglieder grafisch dar. a) xn+1 = 1/2 . (1- xn) , x1 = 1 b) xn = xn-1 2 + 1 , x1 = 1 c) un+1 = un + 1 , u1 = 0,2 d) an+2 = 1/2 . (an+1 + an) , a0 = 0 , a1 = 1

Seite 415

Übungsbeispiele

1.1.1 Arithmetische Folgen Beispiel 1: Wie heißen die ersten 5 Glieder der folgenden arithmetischen Folgen: a) a1 = - 7 , d = 2 b) a3 = 17 , d = - 4 Beispiel 2: Am Beginn eines Geschäftsjahres (einer Rechnungsperiode) kauft eine Firma einen PKW um 15 000 Euro (Anschaffungspreis). Am Ende eines jeden Jahres wird für die Buchhaltung der Buchwert des Wagens ermittelt, indem wir jedesmal 20 % des Anschaffungspreises abziehen (Abschreibung mit gleichbleibender Quote). Auf Grund welcher Funktion kann der Buchwert zu Beginn jedes beliebigen Jahres berechnet werden? Nach wie viel Jahren ist der Buchwert null? Stellen Sie die Abschreibung grafisch dar. Beispiel 3: Messungen ergeben, dass die Temperatur zum Erdinneren hin um ca. 3 °C je 100 m zunimmt, wobei in unseren Breiten eine Temperatur von 10 °C in 25 m Tiefe zugrunde zu legen ist. Welche Temperatur herrscht in 2300 m Tiefe (78,3 °C).

1.1.2 Geometrische Folgen Beispiel 1: Wie heißen die ersten 5 Glieder der folgenden geometrischen Folge: a) a1 = - 7 , q = 3 b) a1 = -1 , q = 2 c) a1 = 4 , q = - 1/2 Beispiel 2: Bei einer Torsionsschwingung zeigen die Amplituden A 4 = 12,8 ° und A 6 = 9,8 °. Bestimmen Sie die geometrische Amplitudenfolge, und geben Sie die Glieder bis n = 6 an. Beispiel 3: Es sollen 6 Rohre mit den Durchmessern von d1 = 50 mm bis d6 = 500 mm hergestellt werden. Wie sind d2 , d3 , d4 und d5 zu wählen, damit sich eine geometrische Stufung ergibt? Stellen Sie die Folge der Durchmesser grafisch dar. Beispiel 4: Ein Lichtstrahl verliert beim Durchgang durch eine planparallele Glasplatte 1/10 seiner Intensität I. Wie groß ist die Restlichtstärke beim Durchgang durch sechs gleich beschaffene Glasplatten? (I = 0.53 I0 ) Beispiel 5: An dem Saugstutzen einer Rotationskapselpumpe wird der Rezipient mit einem Volumen von 3000 cm 3 angeschlossen. Durch den exzentrischen Vollzylinder können je Drehung 200 cm 3 Luft zum Druckstutzen befördert werden. a) Wie groß ist der Druck im Rezipienten nach 5 und nach 10 Umdrehungen, wenn der ursprüngliche Druck 1000 mbar beträgt (p1 V1 = p2 V2 Boyle-Mariotte'sche Gesetz bei konstanter Temperatur)? (p5 = 724 mbar; p10 = 525 mbar) b) Wie viel Minuten muss die Pumpe bei 50 Umdrehungen je Minute laufen, um einen Druck von 10-6 mbar zu erreichen? (t = n/50 = 6,4 min)

Seite 416

Übungsbeispiele

Beispiel 6: Ein Körper beginnt zum Zeitpunkt t = 0 s ohne Luftwiderstand frei zu fallen. Für den Fallweg gilt daher näherungsweise s = 1/2 . 10 . m/s2 . t2 . a) Zeigen Sie, dass der zurückgelegte Weg nach 1 s, 2 s, 3 s usw., also s1 , s2 , s3 usw. eine arithmetische Folge bildet. b) Berechnen Sie den zurückgelegten Weg nach 10 s. c) Addieren Sie die Teilwege bis zum Ende der 10. Sekunde, und zeigen Sie, dass die Summe gleich dem Ergebnis von b) ist. Beispiel 7: Ermitteln Sie jene Zahlenfolge < a1 , a2 , ..., a21 > mit a1 = 1 und a21 = 10, aus der die Hauptwerte der Normzahlen E20 bestimmt werden. Beispiel 8: Gesucht ist die geometrische Folge < a1 , a2 , ..., a9 > mit a1 = 1, bei der jedes 2. Glied eine Verdoppelung ergibt. Vergleichen Sie auch die Zahlenreihe < 1 ; 1,4 ; 2 ; 2,8 ; 4 ; 5,6 ; 8 ; 11 ; 16 > der Blendenzahlen eines Kameraobjektivs.

1.2 Reihen 1.2.1 Arithmetische endliche Reihen Beispiel 1: Berechnen Sie die Summe folgender Reihen: 20

a)

20

¦ k

b)

k

1

¦ k

20

( 2 ˜ k  1)

1

c)

¦ i

i 2

20

d)

1

¦

 10

n

§1  ¨ ©



¸



Beispiel 2: 220 m Papier der Stärke 0,2 mm werden auf eine Rolle mit dem Radius 7,5 cm gewickelt. a) Wie viele Lagen ergeben sich? b) Wie groß ist der Durchmesser der Rolle zum Schluss? (Umfang der 1. Schicht u1 = 2 S (r1 +d/2) usw., n = 325 Lagen und d = 28 cm) Beispiel 3: Für eine Tiefensonde soll ein 100 m tiefes Loch gebohrt werden. Der erste Bohrmeter kostet € 40. Wie groß sind die Bohrkosten, wenn die Kosten pro Bohrmeter um € 5 linear steigen?

1.2.2 Geometrische endliche Reihen Beispiel 1: Berechnen Sie die Summe folgender Reihen: n

a)

¦ k

1 k

0 2

n

b)

¦ k

1

ª( 1) k1 ˜ 1 º « k» 2 ¼ ¬

c)

4

6

8

16

x  x  x  ....  x

Seite 417

mit x = 1.3 und x = - 0.5.

Übungsbeispiele

Beispiel 2: In einer "idealen Atmosphäre" fällt der Luftdruck von 0 m Höhe auf 1000 m Höhe von 1013 mbar auf 890 mbar. Bestimmen Sie den Luftdruck in 2000 m, 3000 m, 4000 m und 5000 m, wenn dieser exponentiell abklingt. Beispiel 3: Sie schreiben einen Brief an 5 Personen mit der Aufforderung, innerhalb einer Woche einen Brief gleichen Inhalts an weitere 5 Personen zu schreiben usw. (Kettenbrief!). Wie viele Personen bekommen in 8 Wochen einen Brief dieser Art, wenn jede angeschriebene Person mitmacht und keine Person zweimal angeschrieben wird? Wie groß sind die Portokosten, wenn eine Briefmarke € 0,6 kostet? Beispiel 4: Zu jedem Monatsbeginn wird ein Betrag R = € 100 auf ein Rentenkonto eingezahlt (vorschüssige Monatsrente) und dort mit p12 = 3 % verzinst. Wie groß ist der Wert der unterjährigen Rente am Ende des 15. Jahres? Hinweis: Häufig wird in der Praxis statt mit dem Jahreszinssatz p mit dem Monatszinssatz p12 gearbeitet, der bei monatlicher Kapitalisierung nach einem Jahr die gleichen Zinsen erbringt wie der Jahreseinsatz. Wir sprechen vom äquivalenten monatlichen Zinssatz p12. Beispiel 5: Zu jedem Monatsende wird ein Betrag R = € 100 auf ein Rentenkonto eingezahlt (nachschüssige Monatsrente) und dort mit p12 = 3 % verzinst. Wie groß ist der Wert der unterjährigen Rente am Ende des 15. Jahres? Hinweis: Häufig wird in der Praxis statt mit dem Jahreszinssatz p mit dem Monatszinssatz p12 gearbeitet, der bei monatlicher Kapitalisierung nach einem Jahr die gleichen Zinsen erbringt wie der Jahreseinsatz. Wir sprechen vom äquivalenten monatlichen Zinssatz p12. Beispiel 6: Eine Schuld von € 50 000 soll bei 6 % in 10 Jahren durch gleich bleibende Annuität getilgt werden. Erstellen Sie einen Tilgungsplan. Beispiel 7: Kann eine Schuld von € 1000 bei 7,5 % mit einer Annuität A = € 50 jemals getilgt werden? Wie groß muss die Annuität mindestens sein, damit wir wenigstens die in jedem Jahr anfallenden Zinsen abdecken können?

1.3 Grenzwerte von unendlichen Folgen Beispiel 1: Berechnen Sie folgende Grenzwerte der gegebenen Folgen mit n gegen unendlich: a)

d)

lim

4˜ n  1

n o ∞ 5˜ n  2

lim

3˜ n  1

n o ∞ 5˜ n  2

b)

lim no∞

e)

lim no∞

§1  n  1 · ¨ ¸ © n 2 ˜ n  3¹ § 1· ¨ ¸ © 7¹

2

c)

n o ∞ 3 ˜ n2  7 ˜ n  2

n

f)

lim no∞

Seite 418

n  5˜ n  3

lim

n

2

Übungsbeispiele

Beispiel 2: Werten Sie für die Fallgeschwindigkeit mit Luftwiderstand folgenden Grenzwert mit k gegen 0 aus:

§ ¨ ¨ lim ¨ m ˜ g ˜ ko0 ©

 2˜k˜s

1 e

m

k

· ¸ ¸ ¸ ¹

Beispiel 3: Für die erzwungene Schwingung ist für den Resonanzfall folgender Grenzwert mit G gegen 0 auszuwerten:

ª e δ˜t § δ ·º « lim ˜ sin ( ω ˜ t) ¸» ˜ ¨ ω ˜ t  sin ( ω ˜ t)  δ ˜ t ˜ cos ( ω ˜ t)  2 ω © ¹»¼ δo0 « ¬ ω 1.4 Grenzwerte von unendlichen Reihen Beispiel 1: Bestimmen Sie den Summenwert folgender Reihen:

¦ 0.3 ˜ 0.1 ∞

a)

k

¦ 0.35 ˜ 0.01 ∞

k 1

b)

1

k

k 1



c)

1

¦ k

1

k 1 5

Beispiel 2: Prüfen Sie mithilfe von Satz 6 für unendliche Reihen die folgenden Reihen auf Konvergenz: ∞

a)

¦ n



n

b)

2˜ n  1

1

¦ k

1

k

2 1 k

2

Beispiel 3: Bestimmen Sie die Summe der folgenden Reihen und gegebenenfalls die Werte der Variablen, für die die Reihe konvergiert: a)

1

3

b)

1

2

c)

a

a

d)

1  3 ˜ x  9 ˜ x  27 ˜ x  ....

5

5

 

9 25 4 25

2

3

27



125 6



125

3



a

9

 ....

(5/2)

 ....

(5/7)

 ....

(3a/(a+3) für |a| < 3)

4

 2

a

27

3

(1/(1-3x) für |x| < 1/3)

Seite 419

Übungsbeispiele

2. Grenzwerte einer reellen Funktion und Stetigkeit 2.1 Grenzwerte einer reellen Funktion Beispiel 1: Bestimmen Sie folgende Grenzwerte, falls sie existieren: a)

d)

( 2 ˜ x)

lim

b)

( 2 ˜ x  3)

lim

xo2

c)

xo2

x 2

lim

e)

xo3 x 2

x2  4 ˜ x  1

lim xo2

2

25  x

lim xo4

Beispiel 2: Berechnen Sie folgende Grenzwerte nach geeigneter Umformung, falls sie existieren:

a)

3

x 4

lim

b)

x o 4 x2  x  12

xo2 3

e)

xo1

2

x 5

2

x  x 2

lim

( x  1)

h

ho0

x 9

2

( x  h)  x

lim

2

4 x

lim

c)

2

xo3

2

d)

2

x  27

lim

f)

2

x 4

lim

x o  2 x2  4

Beispiel 3: Die folgenden Funktionen besitzen eine Definitionslücke. Stellen Sie anhand einer Skizze des Grafen fest, von welcher Art die Definitionslücke (Lücke im Funktionsgrafen, Sprungstelle, Polstelle) ist. Geben Sie dort auch, falls vorhanden, den Grenzwert bzw. die einseitigen Grenzwerte an. a)

y=

x 

e)

2

x

y=e

b)

y=

f)

y=

3

x 2 x 2

2

x x

c)

y=

g)

y = arctan ¨

x 1

2

d)

y=

h)

y=

x  2˜ x x

1 x

2

sin ( x) x

§ 1 · ¸ © 1  x¹

1 x 1

Beispiel 4: Zeichnen Sie die Signumfunktion sign(x) = -1 für x < 0 und 0 für x = 0 und +1 für x > 0 und geben Sie die beiden einseitigen Grenzwerte an der Stelle x0 = 0 an: a)

y = sign ( x)

b)

y = sign ª¬( x  1)



¼

Seite 420

Übungsbeispiele

2.2. Stetigkeit von reellen Funktionen Beispiel 1: Skizzieren Sie den Funktionsgrafen und stellen Sie etwaige Unstetigkeitsstellen der Funktion fest. Existieren die Grenzwerte an den Unstetigkeitsstellen? a)

y=x 1

für x d 1

und

y=x

für x > 0

b)

y = sin ( x)

für x d S/2

und

y = cos ( x)

für x > S/2

c)

y= 4 x

d)

y = x ˜ sign ( x  1)

e)

y = ( 1  x) ˜ Φ ( x)

2

Beispiel 2: Bestimmen Sie die Konstante c so, dass die folgenden Funktionen stetig sind: a)

y=x c

für x d 1

und

y = x

b)

y = 2x  c

für x d 0

und

y=e

für x > 1

x

für x > 0

2.2.1 Eigenschaften stetiger Funktionen Beispiel 1: Bestimmen Sie alle Nullstellen der Funktion y = x3 - 4 x2 + x + 6 im Intervall [- 5 , 5]. Beispiel 2: Bestimmen Sie alle Extremwerte der Funktion y = x4 - 2 x - 2 (absolute und relative) im Intervall [-10 , 10]. Beispiel 3: Suchen Sie jeweils ein Intervall [a , b] auf, in dem mindestens eine Nullstelle liegt, und bestimmen Sie die Nullstellen.

2.2.2 Verhalten von reellen Funktionen im Unendlichen Beispiel 1: Skizzieren Sie folgende Funktionen und geben Sie an, ob und an welchen Stellen Unstetigkeiten vorliegen und von welcher Art diese sind. Geben Sie ferner an, an welchen Stellen Asymptoten auftreten. a)

e)

y=

1 x 2 x

y=2

b)

y=

2

1 2

1x f)

y=

1 cos ( x)

c)

y=

x 4 x 2

3

d)

y=

g)

y=

x  27 x 3 3

im Intervall [-S/2 , 3 S/2]

2

x 1

Seite 421

2

4˜ x  x

Übungsbeispiele x

h)

y=

x  sin ( x) x

i)

y=

x

e e x

x

j)

50

y=

1

e e

1e

10

˜( t 40)

Beispiel 2: Die Kapazität C eines aus zwei konzentrischen Kugelschalen mit den Radien r und r+x bestehenden Kugelkondensators beträgt: C = 4 ˜ π ˜ ε0 ˜

r ˜ ( r  x) x

Daraus wird im Grenzfall x ofeine einzige Kugelschale. Berechnen Sie die Kapazität. Beispiel 3: Wird eine Masse m von der Erdoberfläche in eine Höhe h gehoben, so beträgt die Hubarbeit W = JM m (1/r - 1/h). J = 6.67 10 -11 m3 kg-1 s-1 ist die Gravitationskonstante, M = 5.97 10 24 kg die Erdmasse und r = 6370 km der Erdradius. a) Berechnen Sie die Arbeit, um eine Masse von m = 10 kg ins "Unendliche" zu heben (h of). b) Berechnen Sie aus W = m v2 /2 die dazu nötige Abschussgeschwindigkeit von der Erde (Fluchtgeschwindigkeit): Beispiel 4: Für den Einschaltstrom eines Gleichstromkreises gilt für den Strom i = 5 A (1 - e-t/W) mit der Zeitkonstante W = 7.5 ms. Welcher Endwert wird sich für t ofeinstellen Beispiel 5: Für die Erwärmung einer zum Zeitpunkt t = 0 s in Betrieb gesetzten Maschine gilt: - = 5 -0 (1 - 0.8 e-t/W). -0 ist die Anfangstemperatur, W die Zeitkonstante und - die Temperatur zum Zeitpunkt t. Auf welche Betriebstemperatur wird sich die Maschine schließlich erwärmen?

3. Differentialrechnung 3.1 Die Steigung der Tangente - Der Differentialquotient Beispiel 1: Untersuchen Sie, ob der Graf der Funktion y = |x2 - 1| an der Stelle x0 = -1 bzw. x0 = 1 eine Tangente besitzt. Stellen Sie die Funktion grafisch dar. Beispiel 2: Untersuchen Sie, ob der Graf der Funktion y = |x| an der Stelle x0 = 0 eine Tangente besitzt. Stellen Sie die Funktion grafisch dar. Beispiel 3: Berechnen Sie die Ableitung als Grenzwert des Differenzenquotienten der Funktion y = - x2 + 2 x + 1 an der Stelle x0 . Ermitteln Sie die Gleichung der Tangente an der Stelle x0 = 2. Gibt es einen Punkt am Grafen mit waagrechter Tangente? Stellen Sie die Funktion und die Tangente an der Stelle x0 grafisch dar.

Seite 422

Übungsbeispiele

Beispiel 4: Berechnen Sie die Ableitung als Grenzwert des Differenzenquotienten sowie die Gleichung der Tangente an der Stelle x0 : 2

a)

f ( x) = x  2

c)

f ( x) = ( 2 ˜ x  1)

2

3

x0 = 2

b)

f ( x) = 2 ˜ x  1

x0 = 1

d)

f ( x) =

1

x0 = 1 x0 = 2

x

Beispiel 5: Untersuchen Sie, ob der Graf der gegebenen Funktionen eine waagrechte Tangente besitzt. Ermitteln Sie bei vorhandener waagrechter Tangente die Koordinaten dieses Punktes und stellen Sie die Tangentengleichung auf. a)

y ( x) = ( x  2)

2

2

f ( x) = x  x  4

b)

c)

3

2

f ( x) = x  x  1

Beispiel 6: Besitzt bei den nachfolgenden Funktionen der Funktionsgraph eine Tangente mit der Steigung k? Ermitteln Sie bei vorhandener Tangente die Koordinaten dieses Punktes, und stellen Sie die Tangentengleichung auf. a)

f ( x) =

§ 3 ˜ x  1· ¨ ¸ ©4 ¹

2

k=

1

b)

2

3

2

f ( x) = 2 ˜ x  x 

1 2

x0 = 2

Beispiel 7: Untersuchen Sie die nachfolgenden Funktionen auf Stellen, wo sie nicht differenzierbar sind. Stellen Sie die Funktion grafisch dar, und geben Sie die Stellen in der grafischen Darstellung an. a)

f ( x) = x  1

für

xd1

und

f ( x) = x  3

für

x!1

b)

f ( x) = x  1

für

xd2

und

f ( x) = 2 ˜ x  3 für

x!2

c)

f ( x) = x  3

für

xd1

und

f ( x) = x  1

2

2

für

x!1

3.1.1 Die physikalische Bedeutung des Differentialquotienten Beispiel 1: Ein Körper hat gerade den Weg s = 2 m im freien Fall zurückgelegt. Berechnen Sie die mittlere Änderungsrate der Fallgeschwindigkeit, wenn der Fallweg a) um 0.5 m und b) um 0.1 m zunimmt. v=

2˜ g˜ s

Beispiel 2: Ein Körper wird zur Zeit t = 0 s aus einer Höhe s0 = 2 m mit der Geschwindigkeit v0 = 30 m/s senkrecht nach oben geworfen. Für den zurückgelegten Weg gilt: s(t) = s0 + v0 t - 1/2 g t2 . Berechnen Sie die mittlere Geschwindigkeit (mittlere Änderungsrate des Weges nach der Zeit) für die Zeitintervalle [2s, 2.5s], [2s, 2.01s] und die Momentangeschwindigkeit zur Zeit t = 2 s nach dem Abwurf. Wann erreicht der Körper seine maximale Höhe? Der Luftwiderstand wird vernachlässigt.

Seite 423

Übungsbeispiele

Beispiel 3: Das Volumen eines Würfels nimmt mit einer Rate von 1 dm 3 pro Minute zu (Volumenstrom). Wie groß ist die mittlere Änderungsrate der Seitenkante, wenn diese gerade 10 dm beträgt?

3.2 Ableitungsregeln für Funktionen 3.2.1 Ableitung der linearen Funktion Beispiel 1: Bilden Sie die 1. Ableitung der Funktion an der Stelle x0 . Stellen Sie die Funktion und die Ableitungsfunktion grafisch dar. a)

1

y=

˜x 2

2

b)

f ( x) = x  1

c)

f ( x) = 2  6 ˜ x

Beispiel 2: Bilden Sie die 1. Ableitung der Funktion an der Stelle t 0 . Stellen Sie die Funktion und die Ableitungsfunktion grafisch dar. d)

s ( t) = v0 ˜ t

e)

v ( t) = v0  g ˜ t

f)

ω ( t ) = ω0  α ˜ t

c)

f ( t) = t

g)

§ 1 · g ( x) = ¨  3¸ ©x ¹

3.2.2 Potenzregel Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

e)

3˜a

b)

y=x

2

y=x ˜

f)

x

2˜r

f ( x) = x

f ( x) =

x 3

x

4˜a 3

d)

h (z) =

h)

h (z) =

3

Ermitteln Sie an der Stelle x 0 die Steigung und den Steigungswinkel der Tangente an den Grafen der Funktion. y=

3

x

x0 = 2

b)

f ( x) =

1

x0 = 1

x

c)

5

f ( x) = x

x0 = 3

Beispiel 3: An welcher Stelle besitzt der Steigungswinkel der Tangente an den Funktionsgrafen den Wert D? a)

2

y=x

α = 30°

b)

f ( x) =

4

x

α = 20°

c)

f ( x) =

1 2

x

Seite 424

4



3

2

Beispiel 2:

a)



α = 30 °

z

z

Übungsbeispiele

Beispiel 4: Ermitteln Sie den Schnittwinkel zwischen den Grafen von: a)

2

y=x

y=

b)

x

1

f ( x) =

y=

x

c)

x

g ( x) = x

1

h ( x) =

2

x

Beispiel 5: An welcher Stelle besitzt der Graf von y = 1/x eine Tangente, die parallel zur Geraden y = - x/2 + 2 verläuft?

3.2.3 Konstanter Faktor und Summenregel Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

2

y = x ˜ ln ( 10 )

b)

2˜ p˜ x

f ( x) =

g ( t) = π ˜ t

c)

2

d)

h (s) =

1 3 ˜ s 5

Beispiel 2: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

3

2

y=x  x  x

b)

f ( x) =

5 4



6 3

 2˜ x

2

x

x

2

4



2

c)

f ( t) =

x

x

3

3

x

Beispiel 3: Ermitteln Sie an der Stelle x 0 die Normale auf den Grafen und stellen Sie den Grafen, die Tangente und die Normale grafisch dar. a)

2

y=x  x

b)

x0 = 1

y=

2

2

10

˜x 

1 2

˜x 1

x0 = 2

Beispiel 4: An welchen Stellen und unter welchen Winkeln schneidet der Graf mit y = x2 - 4 x + 1 die x-Achse?

3.2.4 Produktregel Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

3 3

y= x  1 ˜ x  1 1

d)

y=x

3

b)

2

x˜ x  2

f ( x) =

2



c)

g ( x) = x  x  1 ˜ ( x  1)

f)

g ( x) = x  2

.4 2 ˜ x  x

5

e)

f ( x) =

x

x

3

5

x

Seite 425

2

2

Übungsbeispiele

3.2.5 Quotientenregel Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

d)

2

x 1

y=

b)

x 1

y=

e)

1 x

f ( x) =

f ( t) =

x 1

c)

2˜ x 1t

f)

1t

g ( x) =

g (s) =

x 3

x x

1s

3

1s

3

3.2.6 Kettenregel Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen:

5 3

a)

y= x  x

d)

y = ¨ x

§

1

· ¸ 2 x ¹ 2



©

2

b)

f ( x) =

x ˜ ( x  2)

c)

g ( x) =

e)

f ( t) =

t2  4 3

f)

g (s) =

3

2 x 2 x

2˜ g˜ s

Beispiel 2: Wird Sand von einem Förderband geschüttet, so entsteht ein konischer Sandhaufen (Kegel), dessen Höhe h immer gleich 4/3 des Radius r der Grundfläche ist. a) Wie schnell wächst das Volumen, wenn der Radius r der Basis 1 m ist und mit einer Geschwindigkeit von 1/8 cm/s wächst? b) Wie schnell wächst der Radius, wenn er 2 m ist und das Volumen mit einer Geschwindigkeit von 10 4 cm3 /s wächst?

3.2.7 Ableitungen von Funktionen und Relationen in impliziter Darstellung Beispiel 1: Differenzieren Sie implizit und bestimmen Sie die Ableitung an der Stelle x0 : a)

c)

2

3

x  2˜ x y = 1 3

2˜ y 1  x= 1

x0 = 3

b)

x0 = 0

d)

3

1 x0 = 2

 x=1

x0 = 1

x˜ y = x  2 x 3

y

Seite 426

Übungsbeispiele

Beispiel 2: Geben Sie Gleichung der Tangente im Punkt P(x0 |y0 >0) an: a)

2

2

2

x  y = 36

x0 = 2

b)

x

2



9

y

4

2

c)

2

3

y =x

d)

x0 = 1

x

3

=1

x0 = 2

=1

1 x0 = 2

2

y

3

Beispiel 3: Berechnen Sie die Steigung der Tangente im Punkt P1 : a)

2

y  2˜ x= 0

P1 (3.12 | - 2.498)

b)

2

( y  3)  8 ˜ ( x  2) = 0

P1 (6 | - 2.657)

Beispiel 4: Bilden Sie die 1. Ableitung der gegebenen Funktion über die Umkehrfunktion: 1

a)

y=

3

b)

x

y=x

c)

2

s ( t) =

g 2

˜t

2

3.2.8 Ableitung der Exponential- und Logarithmusfunktion Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: 2

x

a)

3˜x

y=

 4˜x

f ( x) = 4 ˜ e

t

t

e)

b)

y=e

e e 2

c)

f ( u) =

e u

2

d)

x 1

h ( x) = 2

2˜t 1

u

f)

2

g ( x) = e

u

g)

3

g ( t) = 4

x 1

h)

h ( x) = e

x

e e

Beispiel 2: Bilden Sie die 1. Ableitung der folgenden Funktionen:

a)

y = ln ( 2 ˜ x  1)

e)

y = lg ¨

§ 10 · ¸ © x¹

x

b)

f ( x) = ln

f)

f ( u) = ln ( ln ( u) )

2

2

c)

g ( x) = ln x  1

d)

h ( x) = lg x  1

g)

g ( t) = ln ¨

§1  t· ¸ ©1  t¹

h)

h ( x) = ln ( 3 ˜ x  4)

Seite 427

2

Übungsbeispiele

i)

x

2

y=x ˜e

j)

f ( u) =

2

ln u

u

 2˜z

2˜t

k)

g ( z ) = z ˜ ( z  3) ˜ e

l)

h ( t) = ( 3  t) ˜ e

o)

g ( t) = A ˜ 1  e



p)

h ( t) = ( A  B ˜ t) ˜ e

t)

§ t· ¸ T¹ © R ( t) = e

w)

y = ln © x 

d)

h ( x) = x

e m)

q)

u)

 B˜t

y= A˜e

 B˜( x C)

2

y= A˜e

φ ( t) =

1 k

 B˜t

f ( t) = A ˜ e

n)

C

 μ˜x

s)

g ( r) =

v ( s ) = vs ˜

v)

b



t ˜3

1  r˜ s˜ t  2˜k˜

˜ ln ( k ˜ ω ˜ t  1)

 C˜t

r˜s

2

I ( x) = I0 ˜ e

r)



 B˜t

1e

s m

§

2

2

·

x  1¹

Beispiel 3: Bilden Sie die 1. Ableitung an der Stelle x0 = 2: a)

2˜x

x

b)

y=x

g ( x) = ( 1  3 ˜ x)

c)

f ( x) = x

x

2˜x 1

Beispiel 4: Zeigen Sie durch Logarithmusbildung und Differenzieren, dass für die Funktion y = xn gilt: y' = n xn-1 .

3.2.9 Ableitung von Kreis- und Arkusfunktionen Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

y = sin ( 5 ˜ x)

e)

y = t ˜ sin ( t )

2

§x· ¸ © 2¹

b)

f ( x) = 2 ˜ cos ¨

f)

f ( x) = e ˜ sin ( x)

x

c)

f ( t) = sin ( t )

g)

g ( x) =

2

sin ( x  cos ( x) ) x

2

d)

h ( z ) = tan ( z )

h)

h ( x) = x  sin ( x)

l)

x ( t) = sin ¨

p)

y=

t)

y=

2˜ e sin ( x)

i)

y = cos ( x)  3 ˜ tan ( x) j)

f ( x) =

m)

y = cos ( x) ˜ sin ( x)

n)

y = x ˜ tan ( x)

q)

y=

r)

y=

u)

y=

1 tan ( x)

 tan ( x)

2 ˜ tan ( x) 1  tan ( x)

2

v)

2 ˜ cos ( x)

3

y=

x 1  cos ( x) cot ( 3 ˜ x) tan ( x)

sin ( x)

k)

g ( x) =

o)

y = cos ( x)  sin ( x)

s)

y=

w)

Seite 428

x 2

y=

sin ( x) ˜ cos ( x) sin ( x)  cos ( x)

§ 1·

2

§ t  π· ¸ ©2 4¹

1 sin ( x) cos ( x) ˜ cos ( x) t

x

¨ ¸ ˜ sin ( x) © 2¹

tan ( x)

x)

y= 3˜ e

2

˜ sin ( 2 ˜ t )

Übungsbeispiele

y)

3

y = x ˜ sin ( x)

2

D)

z)

y ( t) = r ˜ sin ( ω ˜ t)

J)

y = cot ( t )  2 ˜ tan ( t )

i ( t ) = I0 ˜ sin ( ω ˜ t  φ)

t

E)

y= 3˜ e

2

˜ sin ( 2 ˜ t )

2

2

Beispiel 2: Bilden Sie die 1. Ableitung der Funktion an der Stelle x0 . Stellen Sie die Funktion und die Ableitungsfunktion grafisch dar. π a) b) y = sin ( x) x0 = f ( x) = sin ( 2 ˜ t ) 2

x0 = π

c)

§x· ¸ © 2¹

π x0 = 4

f ( x) = 3 ˜ sin ¨

Beispiel 3: In welchem Punkt bzw. in welchen Punkten des Grafen hat in [0, 2 S] die Tangente die Steigung k? a)

y = sin ( x)

k=

1 2

b)

f ( x) = sin ( 2 ˜ t )

k = 0.8

c)

f ( x) = 2 ˜ x  cos ( x)

k=1

Beispiel 4: Beim schrägen Wurf gelten folgende Beziehungen: g 2 y = v0 ˜ sin ( α) ˜ t  ˜ t  y0 2

x = vo ˜ cos ( α) ˜ t  x0

Wie groß sind die Geschwindigkeiten in der x- und y-Richtung? Beispiel 5: Ermitteln Sie an der Stelle x 0 die Steigung und den Steigungswinkel der Tangente an den Grafen der Funktion. a)

y = cos ( x)

x0 = 0

b)

f ( x) = tan ( x)

x0 = 0

c)

f ( x) = cot ( x)

x0 = 1

Beispiel 6: An welcher Stelle besitzt der Steigungswinkel der Tangente an den Funktionsgrafen den Wert D? a)

y = sin ( 2 ˜ x)

α = 30° b)

f ( x) = tan ( 2 ˜ x)

α = 20°

Beispiel 7: Ermitteln Sie den Schnittwinkel zwischen den Grafen von: a)

y = sin ( x)

y = cos ( x)

für 0 < x S

b)

f ( x) = cos ( x)

y = tan ( x)

für 0 < x S/2

Seite 429

c)

§x· ¸ © 2¹

f ( x) = cot ¨

α = 10°

Übungsbeispiele

Beispiel 8: Ermitteln Sie an der Stelle x 0 die Normale auf den Grafen und stellen Sie die Funktion, die Tangente in x0 und die Normale in x0 grafisch dar. a)

y = sin ( x)

b)

x0 = π

π x0 = 2

y = cos ( x)

Beispiel 9: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

d)

g)

y = arcsin ( 2 ˜ x)

y=

b)

arctan ( x)

e)

x

2

f ( x) = arccos x

arcsin ( x)

f ( x) =

x

g ( x) = arctan x  x

f)

§ x3 · g ( x) = ˜ arctan ¨ ¸ x ©2¹

i)

g ( x) = arctan © x  1¹

e

y = x ˜ arccot ( x)

h)

f ( x) = tan ( x) ˜ arcsin ( x)

2

c)

1

§

2

Beispiel 10: Ermitteln Sie die Steigung im Punkt P1 : a)

sin ( x ˜ y)  1 = 0

b)

y=x

x˜sin( x)

P1 (1/2 | S) P1 (3 | y1 )

3.2.10 Ableitung von Hyperbel- und Areafunktionen Beispiel 1: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

y = sinh ( 2 ˜ x)

b)

f ( x) = 3 ˜ cosh ( 5 ˜ x)

d)

y = tanh e

k˜x

e)

f ( x) =

g)

y = x ˜ coth x

h)

f ( x) = ln ( x) ˜ cosh ¨

2

sinh ( 4 ˜ x) 2˜ x

§ x · ¸ © x  1¹

§x· ¸ © 2¹

c)

g ( x) = tanh ¨

f)

g ( x) = cosh ( x)  sinh ( x)

i)

g ( x) = cos ¨ sinh ¨

2

§ x ·· ¸¸ © 2 ¹¹

§ ©

Beispiel 2: Bilden Sie die 1. Ableitung der folgenden Funktionen: a)

§x· ¸ © 4¹

y = arsinh ¨

b)

f ( x) =

3

arcosh x 2

x

Seite 430

c)

§ 2  x· ¸ © 2  x¹

g ( x) = artanh ¨

2

·

Übungsbeispiele

d)

y = arcoth ( 3 ˜ x)

g)

y = x  e ˜ arsinh ( x)

2

x

§ 1 · 2¸ ©1 t ¹

e)

f ( t) = arcosh ¨

h)

f ( x) = ln ¨



§x· ˜ 4 ¸ artanh x © 2¹

§ s ·¸ ¨© 1  s 2 ¸¹

f)

g ( s ) = artanh ¨

i)

g ( x) =

c)

y = 3 ˜ x  4 ˜ x  x  1

arcoth ( x  2) sin ( x)

3.2.11 Höhere Ableitungen Beispiel 1: Berechnen Sie alle Ableitungen bis zu jener, die identisch null ist: a)

2

y= x  6˜ x 3

b)

4

3

y= x  3˜ x  2˜ x 2

5

3

Beispiel 2: Geben Sie die 2. Ableitung an der Stelle x0 = 2 an: a)

y=

1 2

b)

y=

f)

y=

2˜ x 1

 3˜x

c)

y=e

g)

y = sin ( x)

1  2˜ x

d)

y=

h)

y=e

1 x

x e)

y=

x ˜ sin ( x) x

1 2˜ x

˜ cos ( 3 ˜ x)

3

 0.5˜x

˜ sin ( 4 ˜ x)

Beispiel 3: Für welche Polynomfunktion 3. Grades ist f(a) = - 1, f '(a) = 0, f ''(a) = 2 und f '''(a) = 6? Beispiel 4: Die Steigung der Tangente einer Polynomfunktion 2. Grades ist an der Stelle x = 2 gleich 5. Der Punkt P(2|4) liegt auf dem Grafen und die zweite Ableitung ist identisch gleich 4. Wie lautet die Gleichung der Polynomfunktion? An welcher Stelle besitzt der Graf eine waagrechte Tangente? Beispiel 5: Zeigen Sie, dass y = e - 3x sin(4 x) und y = e - 3x cos(4 x) die Differentialgleichung y'' + 6 y' + 25 y = 0 erfüllen? Beispiel 6: Untersuchen Sie, ob y = sin(x), y = cos(x), y = sinh(x) bzw. y = cosh(x) die Differentialgleichung y'' - y = 0 erfüllt?

Seite 431

Übungsbeispiele

Beispiel 7: Das Weg-Zeit-Gesetz während des Abbremsens eines Kraftfahrzeuges lautet: s = 40 ˜

m s

m

˜ t  1.5 ˜

s

2

˜t

2

a) Wie lautet das Geschwindigkeits-Zeit-Gesetz? b) Wie groß sind Geschwindigkeit und Beschleunigung bei Bremsbeginn? c) Wie lang ist der Bremsweg bis zum Stillstand?

3.2.12 Ableitungen von Funktionen in Parameterdarstellung Beispiel 1: Bilden Sie die Ableitungen y' und y'' der folgenden gegebenen Funktionen in Parameterdarstellung. Führen Sie auch die Parametergleichungen in eine kartesische Form über. Stellen Sie diese Funktionen grafisch dar. 2

a)

x( t) = t  1

y( t) = t  1

c)

x( t) = e

e)

x( t) = e

g)

x( t) = e  e

t

y( t) = 1  t

 a˜t

a˜t

y( t) = e t

t

2

t

t

y( t) = e  e

1

2

b)

x( t) =

d)

x ( t) = cos ( t )

y ( t) = sin ( t )

f)

x ( t) = ln ( t )

y( t) =

h)

x( t) = 2  t

y( t) = t ˜ e

2t

y( t) = t

2

§ 2 © 1

˜ ¨t 

1· t

¸ ¹

t

Beispiel 2: Stellen Sie die Gleichung der Tangente im Kurvenpunkt P mit dem Parameter t auf. Stellen Sie diese Funktionen und Tangenten grafisch dar. a)

t

x( t) = 2 ˜ e

t

y( t) = e

t=0

b)

x ( t) = 2 ˜ cosh ( t )

y ( t) = sinh ( t )

t=2

Beispiel 3: Bestimmen Sie die waagrechten und senkrechten Tangenten der gegebenen Funktion. Stellen Sie diese Funktionen und Tangenten grafisch dar. a)

x ( t) = 2 ˜ cos ( t )

y ( t) = 2 ˜ sin ( t )

b)

x ( t) = 2  5 ˜ cos ( t )

y ( t) = 1  3 ˜ sin ( t )

Beispiel 4: Bestimmen Sie die Tangenten und die Steigungswinkel der gegebenen Funktion im Ursprung des Koordinatensystems. Stellen Sie diese Funktionen und Tangenten grafisch dar. x ( t) = sin ( t )

y ( t) = sin ( 2 ˜ t )

0 dt Z0 : Kriechfall (aperiodischer Fall)

i ( t) =

U0 L˜ ω U0 L

 δ˜t

˜e

˜ sin ( ω ˜ t )

2

2

ω0  δ

 δ˜t

˜t˜e U0



ω=

2

 δ˜t

˜e 2

δ  ω0

˜ sin

§ δ2  ω 2 ˜ t· 0 © ¹

Beispiel 19: Untersuchen Sie den Stromverlauf für R = 50 :, R = 200 : sowie für R = 250 :eines elektrischen Reihenschwingkreises mit L = 1 H und C = 100 PF. Zum Zeitpunkt t = 0 s beginnt sich der mit U0 = 100 V aufgeladene Kondensator zu entladen. Beispiel 20: Die Festigkeit eines Stoffes ist durch seinen kristallinen Aufbau bedingt, wobei bei einem idealen Festkörper die Atome an genau definierten Punkten des Kristallgitters sitzen. Diese regelmäßige Anordnung verleiht dem Festkörper die charakteristischen Eigenschaften wie Härte und Festigkeit. Laborversuche zur Ermittlung der Materialeigenschaften sind bei der Prüfung eines Werkstoffes und bei der Qualitätskontrolle unerlässlich. Mit der Beugung von Röntgenstrahlen an Kristallgittern (1912 Max von Laue) kann der Werkstoff zerstörungsfrei geprüft werden. Dabei lässt sich die Strahlungsintensität nach der Formel I()) = Imax (sin())) 2 /)2 berechnen. Zur Abschätzung der Werkstoffgüte (Auffinden etwaiger Störstellen) ist die Kenntnis des genauen Kurvenverlaufes unumgänglich. a) Zeigen Sie I(0) = Imax b) Nullstellen c) Beugungsmaxima d) Wie groß ist die Halbwertsbreite E, d. h. der Abstand der Wendepunkte e) Stellen Sie die Intensität im Bereich [- 4 S, 4 S] grafisch dar.

Seite 438

Übungsbeispiele

3.4 Extremwertaufgaben Beispiel 1: Ein Rechteck hat einen Umfang von 20 cm. Welches dieser Rechtecke ergibt bei Rotation um die Seite b = x einen Zylinder mit maximalem Volumen? Beispiel 2: Einer Kugel mit Radius r soll axial ein Zylinder mit maximalem Volumen eingeschrieben werden. Wie lauten die Maße dieses Zylinders? Beispiel 3: Welcher Punkt P0 des Funktionsgrafen y = x2 - 9/2 hat vom Ursprung minimalen Abstand d? Beispiel 4: Einem Kegel mit der kreisförmigen Grundfläche (r = 5 dm und H = 12 dm) soll ein Zylinder mit maximalem Volumen (Radius x und Höhe y) eingeschrieben werden. Welche Maße hat der Zylinder, und in welchem Verhältnis stehen Kegelvolumen und Zylindervolumen? Beispiel 5: Ein Potentiometer mit R = R1 + R2 ist an eine konstante Spannung U angeschlossen. Wie ist R3 zu wählen, sodass die von R3 aufgenommene Leistung P3 ein Maximum wird ?



2

2

p ˜ R3 ˜ U

u1



P3 R3 = = 2 R3 R3  R1  R2 ˜ p  p



R1 = 120 ˜ Ω

R2 = 480 ˜ Ω



p=

R1 R1  R2

U = 300 ˜ V

Beispiel 6: Gegeben ist ein Spannungsteiler. Wie ist der Widerstand Ra zu wählen, sodass die von R a aufgenommene Leistung P ein Maximum wird?



2

2

P Ra = U ˜ I = I ˜ Ra =

U0 = 6 ˜ V

U0 ˜ Ra

Ra  Ri 2

Ri = 1 ˜ Ω

Seite 439

Übungsbeispiele

Beispiel 7: Durch zwei parallele Drähte im Abstand a = 5 cm fließen die gegensinnigen Ströme I1 = 2 A und I2 = 2.5 A. In welchem Punkt ist die magnetische Feldstärke H = H1 + H2 minimal? I

H=

2˜ π˜ r

magnetische Feldstärke für einen Leiter

Beispiel 8: In einem Wechselstromkreis sind ein Ohm'scher Widerstand R, eine Induktivität L und eine Kapazität C in Serie geschaltet. Beim Anlegen einer Wechselspannung mit dem Effektivwert U und der Kreisfrequenz Z fließt ein Wechselstrom mit dem Effektivwert U I= . Bei welcher Kreisfrequenz Z ist I am größten? 1 · 2 § R  ¨ω ˜ L  ¸ ω ˜ C¹ © Beispiel 9: Der Wirkungsgrad eines Transformators ist gegeben durch: P φ ( P) = (Pt 0 W). 5 1 2 ˜W ˜P 250 ˜ W  P  6 ˜ 10 Bei welcher vom Transformator abgegebenen Leistung P ist der Wirkungsgrad am größten? Beispiel 10: Eine Lampe mit der Lichtstärke I befindet sich in einer Höhe h über dem Punkt A auf einem Schreibtisch. Die Beleuchtungsstärke E im Punkt P auf dem Schreibtisch soll möglichst groß sein. Bestimmen Sie die optimale Höhe h, für die die Beleuchtungsstärke möglichst groß ist.

E=I˜

sin ( φ) 2

r

a = 50 ˜ cm

Beispiel 11: Ein durch eine Düse austretender Wasserstrahl trifft mit einer Geschwindigkeit w auf das Schaufelrad einer Pelton-Turbine und gibt dabei seine kinetische Energie an das Schaufelrad ab. Das Laufrad hat im Schaufelbereich eine Umfangsgeschwindigkeit u. Für die abgegebene Leistung des Wasserstrahls gilt: P ( u) = ρ ˜ A ˜ ( 1  cos ( α) ) ˜ w ˜ ( w  u) ˜ u . Dabei ist U die Dichte des Wassers, A der Austrittsquerschnitt der Düse und D der Umlenkungswinkel des Wasserstrahls. Für welche Umfangsgeschwindigkeit u ist P am größten?

Seite 440

Übungsbeispiele

Beispiel 12: Für die Dimensionierung eines Heißwasserspeichers ist die Temperaturabhängigkeit der spezifischen Wärme c(t) von Wasser erforderlich: J J J 2 c ( ϑ) = 4212.5 ˜  2.117 ˜ ˜ ϑ  0.0311 ˜ ˜ ϑ , 0 °C d - d 50 °C. 2 3 kg ˜ °C kg ˜ °C kg ˜ °C Wo hat c(t) einen Extremwert? Beispiel 13: Für den Bau von Sonnenkollektoren ist die Kenntnis der Energieverteilung E der Sonnenstrahlung in Abhängigkeit der Wellenlänge O des Sonnenlichts von Bedeutung. Den Zusammenhang zwischen der Wellenlänge intensivster Sonnenstrahlung Omax und der dazugehörigen Temperatur T beschreibt das sogenannte Wien'sche Verschiebungsgesetz: Omax T = b. Die Konstante b ist zu bestimmen. Das Emissionsvermögen E(O) eines schwarzen Körpers ergibt sich aus dem Planck'schen Strahlungsgesetz:

§ c˜h · ¸ c ˜ h ¨ k˜λ˜T E ( λ) = ˜ ©e  1¹

1

2

λ

5

.

c = 3.10 8 m/s ... Vakuumlichtgeschwindigkeit ; h = 6.626 . 10 - 34 Js ... Planck'sches Wirkungsquantum k = 1.387 . 10 - 23 JK-1 ... Boltzmann-Konstante. a) Bestimmen Sie Omax , d. h. jenes O für das E maximal wird; Hinweis: eventuell Substitution x =

c˜h

. k˜λ˜T b) Berechnen Sie die Konstante b im Wien'schen Verschiebungsgesetz. c) Berechnen Sie die Wellenlänge intensivster Sonnenstrahlung (T = 6000 K). d) Stellen Sie E(O) für T = 3000K, 4000K, 5000K und 6000K in einem Koordinatensystem dar (O = 0 nm ... 2000 nm).

Beispiel 14: Eine Eisenschraube mit der Reibungszahl P = tan(M) = 0.2 und dem Steigungswinkel D besitzt den Wirkungsgrad η=

tan ( α) tan ( α  φ)

.

Bestimmen Sie den Steigungswinkel, bei dem der Wirkungsgrad maximal wird. Stellen Sie das Problem im Bereich 0° d D d 60° grafisch dar.

Seite 441

Übungsbeispiele

Beispiel 15: Wie muss ein Balken mit rechtwinkeligem Querschnitt der Länge L und dem Durchmesser d sein, damit seine Tragfähigkeit F ein Maximum wird? Die Tragkraft ist vom Widerstandsmoment W abhängig: 2

F ˜ L = W ˜ σb

F ( b h) =

σb ˜ W L

und

W=

b˜ h 6

2

=

σb ˜ b ˜ h 6˜ L

Beispiel 16: An welcher Stelle x  [0, L] ist das Biegemoment M(x) eines Balkens mit zwei Stützen im Abstand L am größten, wenn a) M(x) = q/2 (L - x) x (kostante Streckenlast q), b) M(x) = q/6 x (L - x2 /L) (Dreieckslast, die von 0 auf den Wert q linear steigt; x ist der Abstand vom linken Auflager). Beispiel 17: Eine Sammellinse mit der Brennweite f erzeugt von einem Gegenstand G ein reelles Bild B. Es gilt: 1/f = -1/g +1/b (g ... Gegenstandsweite, b ... Bildweite). Wo müssen G und B liegen, damit e = - g + b möglichst klein wird? Beispiel 18: In der kinetischen Gastheorie spielt die Maxwell-Verteilung M(c) eine wichtige Rolle. Berechnen Sie das Maximum der Funktion für die Konstante D = 1. 2

c

φ (c) =

4 π

˜

c

2 3

˜e

α

2

α

3.5 Das Differential einer Funktion Beispiel 1: Berechnen Sie das Differential der Funktion an der Stelle x0 : 3

1

a)

f ( x) = 2 ˜ x  x

x0 = 2

b)

y=

c)

g ( x) = cos ( x)

π x0 = 3

d)

y=e

x0 = 1

e)

g ( x) = x ˜ ln ( x

x0 = 1

f)

y = sinh ( x)

x0 = 2

1  2˜ x 2˜x

Seite 442

x0 = 2

Übungsbeispiele

3.5.1 Angenäherte Funktionswertberechnung Beispiel 1: Berechnen Sie 'y und dy für: 2

x 3

a)

f ( x) =

b)

y=

c)

y = cos ¨ 2 ˜ x 

2

x 1 x 1

§ ©

π·

¸



x0 = 1

dx = 0.01

und

dx = 2

x0 = 2

dx = 0.05

und

dx = 0.1

x0 = 0

dx = 0.02

und

dx = 0.2

Beispiel 2: Berechnen Sie mit der Linearisierungsformel: 3

2

a)

f ( x) = x  2 ˜ x  4

b)

y = sin ( 30.2°)

für

x = 2.05

Beispiel 3: Berechnen Sie mit dem Mittelwertsatz: a)

f ( x) = lg ( 9.92)

b)

y = sin ( 10.1°)

Beispiel 4: Berechnen Sie näherungsweise: 2

a)

0.95

f)

e

0.07

3

b) g)

2

1.09

c)

5.1

d)

sin ( 0.01)

e)

cos ( 87.9°)

tan ( 3.94°)

Beispiel 5: Beim Erwärmen einer Kugel mit einem Durchmesser von 20.0 cm vergrößert sich dieser um 1 mm. Berechnen Sie die Volumszunahme exakt und in der Näherung durch das Differential. Beispiel 6: Der elektrische Widerstand eines Heizkörpers, der an eine Spannung von U = 230 V angeschlossen ist, beträgt R = 75 :. Um wie viel Prozent ändert sich der durchfließende Strom I = U/R, um wie viel die Leistung P = U2 /R, wenn die Spannung um 5 V abfällt? Beantworten Sie die Fragestellung exakt und in der Näherung durch das Differential. Beispiel 7: Ein ungedämpfter elektrischer Schwingkreis besteht aus Kondensator der Kapazität C = 5 PF und einer Spule der Induktivität L = 0.2 H. Die Schwingungsdauer T für die Stromstärke i(t) wie auch für die Kondensatorspannung uC beträgt nach der Thomson-Formel T = 2 ˜ π ˜

L ˜ C . Berechnen Sie exakt

und in der Näherung durch das Differential die Änderung von T, wenn sich C um 0.1 PF sowie um 0.5 PF ändert (L bleibt konstant).

Seite 443

Übungsbeispiele

3.5.2 Angenäherte Fehlerbestimmung Beispiel 1: Die Kante eines Würfels misst a = 13.60 cm r0.5 mm. Wie groß sind der absolute und der relative Maximalfehler des Volumens? Bestimmen Sie die Fehler auch exakt mithilfe der Wertschranken. Beispiel 2: Für die Fallhöhe h eines Körpers wurde 50.0 m gemessen, wobei ein Fehler von r0.5 m für möglich gehalten wird. Wie groß sind der absolute und der relative Maximalfehler für die Aufschlagsgeschwindigkeit v, wenn v =

2 ˜ g ˜ h gilt?

Beispiel 3: Für kleine Ausschläge eines mathematischen Pendels mit der Pendellänge l gilt für die Schwingungsdauer: l

T = 2˜ π˜

g

. Berechnen Sie den relativen Maximalfehler von T, wenn 'l der Messfehler von l ist.

Beispiel 4: Wie groß ist die Kapazität einer geladenen Kugel vom Radius r = 10.00 cm r0.05 cm, wenn C = 4 S H0 r gilt und H0 = 8.86 10 -14 As/Vcm ist? Beispiel 5: Wie groß ist der Leitwert G, wenn der Widerstand mit R = (650 r5) : gemessen wird ? Beispiel 6: Das Volumen eines Würfels soll durch Messung seiner Seitenkante auf 3 % genau bestimmt werden. Wie groß darf in diesem Fall die prozentuelle Messunsicherheit der Seitenkante höchstens sein ?

3.6 Näherungsverfahren zum Lösen von Gleichungen 3.6.1 Das Newton-Verfahren Beispiel 1: Bestimmen Sie die Lösungen der folgenden Gleichungen auf drei Nachkommastellen: 3

3

a)

x  x 1=0

b)

x  3˜ x 3 = 0

d)

x  ln ( x) = 0

e)

x=e

g)

x  ln ( x) = 2

h)

e

j)

x ˜e

k)

2  x=2

2

2

x

=1

x

x

=

x 3

 0.8

x

2

x  3˜ x  1 = 0

f)

x = 1  sin ( x)

i)

2

l)

Seite 444

4

c)

x

1 x

§x· ¸=3 © 2¹

 sin ¨

˜ lg ( x) 

x 1=2

Übungsbeispiele

Beispiel 2: Bestimmen Sie alle Lösungen der folgenden Gleichungen auf drei Nachkommastellen genau und faktorisieren Sie danach das Polynom: a)

3

2

x  4˜ x  x 5 = 0

3

2

x  x  10 ˜ x  5 = 0

b)

c)

3

2

0.5 ˜ x  x  3 ˜ x  1 = 0

Beispiel 3: Auf ein Sparbuch werden zu Beginn jeden Jahres K0 = 1000 € eingezahlt. Wie groß ist die Verzinsung p (in % auf zwei Nachkommastellen genau), wenn das Endkapital beträgt: a) K3 = 3215 € nach 3 Jahren, b) K9 = 9085 € nach 9 Jahren. n

q 1 Kn = K0 ˜ q ˜ mit q = 1 - p/100. q 1 Beispiel 4: Gegeben ist die Kostenfunktion eines Betriebes mit K(x) = x3 - 14 x2 + 90 x + 145. a) Bei welcher Stückzahl sind die Durchschnittskosten K(x)/x am geringsten (Betriebsoptimum)? b) Bestimmen Sie die Gewinnschwellen, wenn zwischen Preis und abgesetzter Warenmenge x die Beziehung p = 155 - 9 x angenommen wird. Beispiel 5: Ein liegender zylindrischer Öltank fasst V = 2500 l Öl. Wie hoch steht das Öl, wenn V1 = 1500 l eingefüllt sind? Beispiel 6: Ein halbkugelförmiger Behälter mit dem Radius r = 50 cm wird mit Wasser gefüllt. Wie hoch ist der Wasserstand im Behälter, wenn 50 % des Gesamtvolumens eingefüllt werden.

3.6.2 Das Sekantenverfahren (Regula Falsi) Beispiel 1: Bestimmen Sie die Lösungen der folgenden Gleichungen auf drei Nachkommastellen: 3

a)

x  x 1=0

d)

g)

2

b)

x  ln ( x) = 2

sin ( 2 ˜ x) = 1  x

e)

cos ( 2 ˜ x) = x  1

2 ˜ x = tan ( x)

x [1, 2]

2

2

2

c)

x 

f)

2 =1x

h)

tan ( α)  0.25 = 0.5 ˜ sin ( α)

x=4

x

D [0°, 60°]

Beispiel 2: Ein Leitungsseil ist in einer Höhe h = 8.0 m auf zwei Masten befestigt, die voneinander einen Abstand von 50.0 m haben. Die Seilkurve ist durch y = a cosh(x/a) + b gegeben. Berechnen Sie a, wenn der größte Seildurchhang 1.5 m beträgt.

Seite 445

Übungsbeispiele

Beispiel 3: Der Rauminhalt eines geraden Zylinders beträgt V = 2065 cm 3 , die Oberfläche O = 1364 cm 2 . Berechnen Sie den Durchmesser d und die Höhe h des Zylinders. Beispiel 4: Von einem Kugelabschnitt sind V = 305 cm3 und r = 8.5 cm gegeben. Berechnen Sie die Höhe h des Kugelabschnittes. Beispiel 5: Ein Ball wird in 2.00 m Höhe über dem Erdboden mit einer Anfangsgeschwindigkeit v0 = 20.0 m/s unter einem Winkel D schräg nach oben geworfen. Welcher Abwurfwinkel D muss gewählt werden, um einen Punkt P(14.0 m | 8.0 m) zu treffen? 2

y = h  x ˜ tan ( α) 

g˜ x 2

2 ˜ v0 ˜ cos ( α)

2

. Wie viele Lösungen gibt es und welche davon sind relevant?

Der Koordinatenursprung befindet sich unter dem Abwurfpunkt. Beispiel 6: Eine Siliziumschaltdiode wird an eine Gleichspannungsquelle U 0 = 2 V angeschlossen. Für die Driftspannung der Diode gilt der Zusammenhang U ( I ) =

k˜T e

§

˜ ln ¨ 1 

©

· ¸ . Für eine bestimmte Diode I0 ¹ I

k˜T

= 0.02424 ˜ V und I 0 = 20 ˜ μA . Mithilfe des Vorwiderstandes R = 10 : lässt sich nun der e sogenannte Arbeitspunkt A(UD|ID) der Diode einstellen. Dieser kann ausgehend von der Maschenregel U0 = I R + U bestimmt werden. Stellen Sie die Driftspannung I = f(U) und die Gerade gilt:

U U0



I U0

= 1 grafisch dar und bestimmen Sie den Arbeitspunkt A (Schnittpunkt beider Kurven).

R

3.7 Interpolationskurven Beispiel 1: Interpolieren Sie die Funktion y =

x zwischen den Stützstellen x 0 = 1 und x2 = 2 durch eine

lineare Funktion und berechnen Sie damit näherungsweise 1.45 . An welcher Stelle zwischen 1 und 2 ist der absolute Fehler betragsmäßig am größten? Beispiel 2: Berechnen Sie aus der Kenntnis von ln(1.2) und ln(2) durch lineare Interpolation näherungsweise ln(1.5) und berechnen Sie den absoluten Fehler. An welcher Stelle zwischen 1.2 und 2 ist der absolute Fehler betragsmäßig am größten? Beispiel 3: Bestimmen Sie ein geeignetes Interpolationspolynom, wenn folgende Stützpunkte gegeben sind: a) P0 (0.4|8.16), P1 (1.2|8.56), P2 (2.8|11.28) b) P0 (0.8|1.00), P1 (1.2|5.76), P2 (2.6|10.66), P3 (2.8|12.20)

Seite 446

Übungsbeispiele

Beispiel 4: Der Kraftstoffverbrauch eines PKW pro 100 km wurde für drei Geschwindigkeiten gemessen: 6.0 l bei 70 km/h, 7.1 l bei 90 km/h und 9.9 l bei 120 km/h. Berechnen Sie durch quadratische Interpolation näherungsweise den Treibstoffverbrauch für eine Geschwindigkeit von 100 km/h. Beispiel 5: Nähern Sie die Funktion y = sin(x) im Intervall [0, S/2] zu den Stützstellen 0, S/4, S/2 durch ein geeignetes Interpolationspolynom und vergleichen Sie den interpolierten Wert und den wahren Wert zu x = S/3. Beispiel 6: Ermitteln Sie den kubischen Spline zu den Stützpunkten: a) P0 (0|1), P1 (1|0), P2 (2|0) b) P0 (0|0), P1 (1|1), P2 (2|2), P3 (3|2) c) P0 (0|0), P1 (2|1), P2 (3|2), P3 (5|0) Beispiel 7: Im CAD werden sogenannte Bezier-Kurven verwendet, die eine schnelle Beeinflussung ihrer Form durch wenige Punkte erlauben. Es handelt sich dabei um eine Parameterdarstellung von Kurven, die analog zur Spline-Interpolation stückweise durch Polynome etwa vom Grad 3 erfolgt. Gegeben sei das folgende Bezier-Kurvenstück: o §4 · 3 §5 · 3 §1 · 2 §2 · 2 x = ( 1  t) ˜ ¨ ¸  3 ˜ t ˜ ( 1  t) ˜ ¨ ¸  3 ˜ t ˜ ( 1  t) ˜ ¨ ¸  t ˜ ¨ ¸ , 0 d t d 1. ©1 ¹ ©3 ¹ ©5 ¹ ©1 ¹ Die Kurve ist durch die Punkte P0 (1|1), P1 (2|3), P2 (4|5) und P3 (5|1) gesteuert. Zeigen Sie: a) Die Punkte P0 und P3 sind Punkte der Kurve. b) Die Tangente in P0 ist die Gerade durch P0 und P1 , in P3 die Gerade durch P2 und P3 . c) Stellen Sie die Kurve grafisch dar. Wie liegt die Kurve im Viereck P0 , P1 , P3 , P4 ?

3.8 Funktionen mit mehreren unabhängigen Variablen 3.8.1 Allgemeines Beispiel 1: Stellen Sie folgende Funktionen grafisch dar: 2

a)

z = 4 ˜ x  y  5 2

d)

z=

x

2˜ 3



2˜ 4

2

4x y

b)

z=

e)

z=x y

2

y

2

2

2

x c)

f)

Seite 447

2

a

2



y

2



b

z c

2 2

§ x· ¸ © y¹

z = x ˜ sin ¨

a=2

b=4

c=1

a=1

b=1

c=1

=1

Übungsbeispiele

3.8.2 Partielle Ableitungen Beispiel 1: Bilden Sie die ersten und zweiten partiellen Ableitungen: 3

3

2

2

a)

z=x y

b)

z = x  3˜ x˜ y  y

d)

z = x ˜ cos ( y)  y ˜ cos ( x)

e)

z=e

x˜y

4

3

c)

f ( u v) = 4 ˜ u  5 ˜ u ˜ v  7 ˜ v  2

f)

z = arctan ¨

§ y· ¸ © x¹

Beispiel 2: Bestimmen Sie y ' = dy/dx aus folgenden impliziten Funktionen: 2 2

2

3

3

a)

x  y  4˜ x 6˜ y= 0

c)

x  y  2˜ a˜ x˜ y = 0

im Punkt P(a|a)

3

2

y

3

2 3

b)

x

d)

x ˜ y  e ˜ sin ( y) = 0

=a

x

Beispiel 3: Bestimmen Sie 2

w wx

2

z und

w wy

z aus folgenden impliziten Funktionen:

2

a)

x  y  z  6˜ x= 0

c)

3 ˜ x  4 ˜ y  5 ˜ z = 60

2

2

2

2

b)

z = x˜ y

d)

x˜ y˜ z = a

3

Beispiel 4: Bestimmen Sie

d

z aus folgenden Funktionen:

dt 2

2

a)

z = x  x˜ y  y

c)

z=

y

x=t

y=t 2˜t

t

y=1 e

x=e

x

2

2

2

x y

b)

z=

d)

u=x ˜y

2

2

x = sin ( t ) x= 2˜ t

3

y = cos ( t ) y= 3˜ t

2

Beispiel 5: Bei Deformation eines geraden Zylinders vergrößerte sich dessen Radius r = 2 dm auf 2.05 dm, und die Höhe h verringerte sich von 10 dm auf 9.8 dm. Ermitteln Sie näherungsweise die Änderung des Volumens V nach 'V | dV. Beispiel 6: Bestimmen Sie

w wu

z und

w wv

z aus folgenden Funktionen:

2

x

a)

z=

c)

z=e

y x˜y

x= u  2˜ v 2

x= s  2˜ s˜ t

y= v 2˜ u

2

y= 2˜ s˜ t  t

2

z = x  2˜ y

b) 2

Seite 448

x= 3˜ u  2˜ v

y= 3˜ u  2˜ v

Übungsbeispiele

Beispiel 7: Bestimmen Sie die vollständigen Differentiale von: 2

z=x ˜y

a)

b)

z=

d)

z=

x˜ y x y

s

c)

u=e

t

2

2

x y

Beispiel 8: Bestimmen Sie den Wert des vollständigen Differentials: z=

y

x=2

x

y=1

Δx = 0.1

Δy = 0.1

Beispiel 9: Berechnen Sie dz und 'z = f(x+'x,y+'y) - f(x,y) für: z = x˜ y

x=5

y=4

Δy = 0.2

Δx = 0.1

Beispiel 10: Ein Hohlzylinder besitzt die Radien r = 6.00 cm und R = 8.00 cm sowie die Höhe h = 18 cm. Wie ändert sich sein Volumen, wenn wir den Innenradius um 0.20 cm vergrößern, den Außenradius um 0.10 mm verkleinern und die Höhe um 0.30 cm vergrößern? Berechnen Sie die Änderung exakt und mithilfe des totalen Differentials. Beispiel 11: Berechnen Sie die prozentuelle Änderung der Schwingungsdauer T = 2 ˜ π ˜ L ˜ C einer ungedämpften elektromagnetischen Schwingung, wenn wir die Induktivität L um 4 % vergrößern und die Kapazität C um 2 % verkleinern. Beispiel 12: Die Leistung P, die in einem elektrischen Widerstand R verbraucht wird, ist durch P = U2 /R in W gegeben. Die Spannung beträgt U = 220 V und der Widerstand R = 8 :. Wie stark ändert sich die Leistung, wenn U um 5 V und R um 0.2 : abnehmen? Beispiel 13: Bestimmen Sie die Extremstellen der folgenden Funktionen: 2

2

2

2

a)

z = f ( x y) = x  x ˜ y  y  10 ˜ x  5 ˜ y

b)

z = f ( x y) = x  x ˜ y  y  9 ˜ x  6 ˜ y  20

c)

z = f ( x y) = x  8 ˜ y  6 ˜ x ˜ y  1

3

x

d)

z = f ( x y) = e

2

3



2

˜ x y

Seite 449

Übungsbeispiele

Beispiel 14: Einer Ellipse ist ein Rechteck größten Flächeninhalts einzuschreiben. Bestimmen Sie diesen Flächeninhalt. 2

x

2

a

2



y

2

Ellipsengleichung

=1

b

3.9 Fehlerrechnung Beispiel 1: Berechnen Sie z bzw. f unter Angabe des absoluten und des relativen Maximalfehlers a) mittels Differentials, b) mittels Fehlerfortpflanzungsgesetz und c) mithilfe der Wertschranken: a) b)

2

z = π˜r ˜h

r = (5 r 0.05) dm, h = (12 r 0.1) dm

1

g = (3.92 r 0.01) cm, b = ( 2.41r 0.02) cm

f

=

1 g



1 b

Beispiel 2: Der Durchmesser einer Kugel wurde mit d = (13.2 r 0.1) cm und die Dichte mit U = (7.8 r 0.1) g cm-3 gemessen. Berechnen Sie die Masse m unter Angabe des absoluten und des relativen Maximalfehlers a) mittels Differential, b) mittels Fehlerfortpflanzungsgesetz und c) mithilfe der Wertschranken. Beispiel 3: Wie groß ist der Flächeninhalt A unter Angabe des absoluten und des relativen Maximalfehlers eines Kreisausschnittes, wenn r = (72.5 r 0.1) cm und D = (152 r 1)° gemessen wurden? Beispiel 4: Wie groß ist der Flächeninhalt A unter Angabe des absoluten und des relativen Maximalfehlers eines Kreisabschnittes, wenn r = (8.2 r 0.05) cm und D = (126 r 1)° gemessen wurden? Beispiel 5: 2

π˜h

˜ ( 3 ˜ r  h). Berechnen Sie das Volumen V mit 3 Angabe des maximalen Fehlers, wenn h = (54.0 r 0.5) mm und r = (48.0 r 0.5) mm ist. Für das Volumen eines Kugelabschnittes gilt V =

Beispiel 6: Für die Brechzahl n einer Glassorte gilt n = sin(D)/sin(E). Berechnen Sie den relativen Maximalfehler der Brechzahl, wenn der Einfallswinkel D = (35 r 1)° und der Brechungswinkel E = (23 r 1)° gemessen wurde. Beispiel 7: In einem Gleichstromkreis wurden U = (220 r 1.5) V und I = (1.23 r 0.01) A gemessen. Wie groß ist der Widerstand R und dessen relativer Maximalfehler?

Seite 450

Übungsbeispiele

Beispiel 8: Bei der Widerstandsmessung mit der Wheatstone'schen Messbrücke ergibt sich der zu bestimmende x , wobei R = (1000 r 1) : der bekannte Widerstand und Widerstand aus Rx = R ˜ 1000  x x = (765.8 r 0.3) die Maßzahl der am Maßstab abgelesenen Länge in mm sind. Wie groß ist der Widerstand Rx und dessen relativer Maximalfehler? Beispiel 9: Bei einem Plattenkondensator wurden A = (83.2 r 0.1) cm 2 und d = (0.15 r 0.01) cm gemessen. Wie groß ist die Kapazität C und dessen relativer Maximalfehler, wenn C durch C = 0.0866 A/d in pF gegeben ist? Beispiel 10: Bei einer Serienschaltung von zwei Widerständen in einem Gleichstromkreis wurden R 1 = (78 r 1) :, R2 = (54 r 1) : und U = (220 r 3) gemessen. Wie groß ist die Stromstärke I und deren relativer Maximalfehler?

3.10 Ausgleichsrechnung Beispiel 1: Wir haben Messdaten (Temperatur Ti, Spannung Ui) eines linearen Temperaturmessfühlers aufgenommen und suchen eine lineare Funktion U(T) = k T+ d, die diesen Zusammenhang bestmöglich beschreibt. Messdaten: T

θ  ( 23.4 17 0 15.4 28 40.1 56.6 70.1 90 )

T

U  ( 2.808 2.869 3.057 3.243 3.398 3.555 3.788 3.985 4.307 )

Die Messwerte verlaufen nur annähernd linear und haben einen leicht parabolischen Anteil. Aus diesem Grund wählen Sie drei Ausgleichsfunktionen F0(-)=1, F1(-)=-, F2(-)=- 2 als Fitfunktionen und versuchen Sie, jene Linearkombination u(-)=a0F0(-) + a1 F1(-) + a2 F2(-) zu finden, die am besten zu den Messpunkten passt (optimale Parabel). Stellen Sie die Messpunkte, die lineare und die parabolische Ausgleichskurve zum Vergleich in einem Koordinatensystem dar. Bestimmen Sie die Fehler bei linearer und bei polynomialer Regression. Beispiel 2: λ˜t

Die Vermehrung von Bakterien erfolgt nach dem Gesetz P ( t) = P0 ˜ e Messreihe vor:

§ 1.336 · ¨ ¸ ¨ 0.63 ¸ ¨ 0.612 ¸ t ¨ ¸ ¨ 0.217 ¸ ¨ 1.702 ¸ ¨ ¸ © 0.31 ¹

§ 23.042 · ¨ ¸ ¨ 8.02 ¸ ¨ 8.406 ¸ P ¨ ¸ ¨ 3.413 ¸ ¨ 37.837 ¸ ¨ ¸ © 6.552 ¹

. Für P und t liegt folgende

Stellen Sie zuerst die Messpunkte in einem ordinatenlogarithmischen Papier dar.

Seite 451

Übungsbeispiele

Logarithmieren Sie das Gesetz P = P0 e O.t. Dieses ist nun mit linearer Regression p = p0 + O.t bearbeitbar. Bestimmen Sie den Korrelationskoeffizienten. Stellen Sie die optimale Gerade und die Originalfunktion jeweils in einem Koordinatensystem dar. Beispiel 3: Die Abkühlung einer Probe bei einer Umgebungstemperatur von 20 °C beginnt zur Zeit t = 0 min. Danach messen wir folgende Temperaturen zu den angegebenen Zeitpunkten: T

t  ( 12 20 40 60 80 )

min T

ϑ  ( 141 120 89 65 50 )

°C

Stellen Sie zuerst die Messpunkte in einem ordinatenlogarithmischen Papier dar.

Für die zeitliche Temperaturabnahme der Probe wird das Newton'sche Abkühlungsgesetz







t τ

ϑ = 20 ˜ °C  ϑ0  20 ˜ °C ˜ e angenommen. Ermitteln Sie durch eine geeignete Ausgleichsrechnung die Anfangstemperatur -0 und die Zeitkonstante W. Beispiel 4: Nachfolgende Messdaten (xi,yi) wurden aufgenommen, die zuerst fast linear ansteigen und dann eine Sättigung zeigen. Aus diesem Grund wählen wir zwei Ausgleichsfunktionen F1 (x) = x/(1 + x), F2 (x) = 1 - e-2x mit demselben Verhalten als Fitfunktionen. Suchen Sie jene Linearkombination f(x)=a1 F1 (x) + a2 F2 (x), die am besten zu den Messpunkten passt und stellen Sie die Messdaten und die Fitfunktion grafisch dar.

§0 · ¨ ¸ ¨1 ¸ ¨2 ¸ x ¨ ¸ ¨3 ¸ ¨4 ¸ ¨ ¸ ©5 ¹

§ 0 · ¨ ¸ ¨ 0.52 ¸ ¨ 0.75 ¸ y ¨ ¸ ¨ 0.88 ¸ ¨ 0.92 ¸ ¨ ¸ © 0.98 ¹

Messdaten

Beispiel 5: Nachfolgende Messdaten (xi,yi) wurden aufgenommen. Gesucht ist der beste lineare Ausgleich, der mit den Funktionen z, z2 und ln(z) gefunden werden kann. Also: g(z) = a.z + b.z 2 + c . ln(z) mit unbestimmten Koeffizienten a, b, c! 3.113 · ¨§ ¸ ¨ 3.433 ¸ ¨ 4.219 ¸ ¨ ¸ ¨ 4.253 ¸ ¨ 4.533 ¸ x ¨ ¸ ¨ 4.709 ¸ ¨ 5.235 ¸ ¨ ¸ ¨ 5.515 ¸ ¨ 6.865 ¸ © ¹

§¨ 6 ¸· ¨ 8 ¸ ¨ 12.5 ¸ ¨ ¸ ¨ 13 ¸ ¨ 14 ¸ y ¨ ¸ ¨ 15.5 ¸ ¨ 20 ¸ ¨ ¸ ¨ 22.5 ¸ ¨ 36 ¸ © ¹

Messdaten

Seite 452

Übungsbeispiele

Beispiel 6: Nachfolgende Messdaten (xi,yi) liegen annähernd auf einer Hyperbel. Gesucht ist die beste Fitfunktion mit x y = b bzw. zum Vergleich b x y + d x + f y = 1 D 0

1

0

0.01

0.99

1

0.01

0.94

2

0.01

0.9

3

0.01

...

Messdaten

Beispiel 7: β1

Nachfolgende Messdaten (xi,yi) liegen annähernd auf der Funktion F1 ( x α β) = α ˜ ⠘ x



Gesucht sind die Parameter D und E in der Form, dass sich F1 optimal den Messpunkten anpasst.

§ 0.132 · ¨ ¸ ¨ .322 ¸ ¨ .511 ¸ ¨ ¸ ¨ .701 ¸ ¨ .891 ¸ ¨ ¸ ¨ 1.081 ¸ ¨ 1.27 ¸ ¨ ¸ ¨ 1.46 ¸ ¨ 1.65 ¸ ¨ ¸ 1.839 ¸ ¨ x ¨ 2.029 ¸ ¨ ¸ ¨ 2.219 ¸ ¨ 2.409 ¸ ¨ ¸ ¨ 2.598 ¸ ¨ 2.788 ¸ ¨ ¸ ¨ 2.978 ¸ ¨ 3.167 ¸ ¨ ¸ ¨ 3.357 ¸ ¨ 3.547 ¸ ¨ ¸ © 3.737 ¹

§ .1 · ¨ ¸ ¨ .258 ¸ ¨ .543 ¸ ¨ ¸ ¨ .506 ¸ ¨ .606 ¸ ¨ ¸ ¨ .622 ¸ ¨ .569 ¸ ¨ ¸ ¨ .453 ¸ ¨ .438 ¸ ¨ ¸ .316 ¸ ¨ y ¨ .29 ¸ ¨ ¸ ¨ .195 ¸ ¨ .137 ¸ ¨ ¸ ¨ .09 ¸ ¨ .026 ¸ ¨ ¸ ¨ .032 ¸ ¨ .032 ¸ ¨ ¸ ¨ .021 ¸ ¨ .016 ¸ ¨ ¸ © .021 ¹

Messdaten

Seite 453

β

˜ exp α ˜ x



Übungsbeispiele

Beispiel 8: Bei einem Motor wurde die Leistung in kW in Abhängigkeit von der Drehzahl pro Minute (U/min) gemessen. Es ergaben sich folgende Messpaare: T

n  ( 1400 2000 2600 3200 3600 ) T

P  ( 17.6 30.8 39.2 46.5 50.1 )

U/min kW

Wie lautet die Ausgleichsgerade? Welche Leistung ist bei einer Drehzahl von 3000 U/min zu erwarten? Bei welcher Drehzahl ist eine Leistung von 34 kW zu erwarten? Beispiel 9: Für die Temperaturabhängigkeit des elektrischen Widerstandes R in : eines Metalles gilt in guter Näherung R = R20 + D R20 '-, wobei R20 der Widerstand bei 20 °C, D der Temperaturkoeffizient und '- = - - 20 °C die Temperaturänderung bezogen auf 20 °C ist. Folgende Messpaare liegen vor:

§0 · ¨ ¸ ¨1 ¸ ¨2 ¸ ϑ ¨ ¸ ¨3 ¸ ¨4 ¸ ¨ ¸ ©5 ¹

§ 0 · ¨ ¸ ¨ 0.52 ¸ ¨ 0.75 ¸ R ¨ ¸ ¨ 0.88 ¸ ¨ 0.92 ¸ ¨ ¸ © 0.98 ¹

Ermitteln Sie die Ausgleichsgerade und daraus den Temperaturkoeffizienten D

Beispiel 10: Der Spannungsverlauf bei der Kondensatorentladung folgt dem Gesetz u(t) = U0 e -t/W , wobei U0 die Anfangsspannung und W = R C die Zeitkonstante ist. Zur Bestimmung der Zeitkonstanten W wurden folgende Daten gemessen:

§ 0.09 · ¨ ¸ ¨ 0.21 ¸ ¨ 0.36 ¸ t ¨ ¸˜s ¨ 0.65 ¸ ¨ 0.90 ¸ ¨ ¸ © 1.15 ¹

§ 4.27 · ¨ ¸ ¨ 3.21 ¸ ¨ 2.58 ¸ u ¨ ¸˜V ¨ 1.32 ¸ ¨ 0.85 ¸ ¨ ¸ © 0.54 ¹

Ermitteln Sie durch eine Ausgleichsrechnung die Zeitkonstante W.

Beispiel 11: Ein Unternehmen stellt Fahrräder her. Die Gesamtkosten K(x) für eine tägliche Produktionsmenge x betragen: T

x  ( 10 20 30 40 50 )

T

K  ( 11 20 28 38 43 )

Stück in 1000 €

Stellen Sie die Wertepaare grafisch dar und ermitteln Sie die Gleichung einer linearen Kostenfunktion. Welche Kosten können bei einer Produktionsmenge von 35 Stück erwartet werden? Wie würde eine quadratische oder eine kubische Kostenfunktion aussehen?

Seite 454

Übungsbeispiele

4. Integralrechnung 4.1 Das unbestimmte Integral Beispiel 1: Ermitteln Sie die Stammfunktionen von: a)

f ( x) = 1

d)

f ( x) = x

2

b)

f ( x) = x

e)

f ( x) = x  4

2

c)

f ( x) = x  5

f)

f ( x) = x  x  1

4

Beispiel 2: Ermitteln Sie die Stammfunktionen der gegebenen Funktionen. Geben Sie jeweils eine spezielle Lösung an, wenn die Kurve durch den angegebenen Punkt gehen soll. Stellen Sie das Problem auch grafisch dar. a)

f ( x) = x  1

P(0 | 1)

b)

3

f ( x) = x  3

P(1 | - 2)

4.2 Das bestimmte Integral Beispiel 1: Berechnen Sie folgende bestimmte Integrale mit einer Stammfunktion:

a)

´ µ ¶

5

´ µ ¶

5

b)

1 dx

0

d)

´ µ ¶

3

´ µ ¶

6

c)

x dx

1

3

e)

x dx

2

´ µ ¶

3

´ µ ¶

2

2

x dx

0

( x  2) dx

f)

1

x2  1 dx

1

Beispiel 2:

ªx

Berechnen Sie die mittlere Ordinate und den zugehörigen x-Wert für die Funktion y = 4 ˜ «

¬π



2 § x · »º ¨ ¸ im © π¹ ¼

Intervall zwischen den Nullstellen. Stellen Sie das Problem auch grafisch dar. Beispiel 3: Berechnen Sie folgende bestimmte Integrale unter Ausnützung des Satzes 4.4:

a)

´ µ ¶

2

´ µ ¶

2

2

5 ˜ x dx

b)

1

d)

1

´ µ ¶

3

´ µ ¶

1

( x  1) dx

c) vergleiche

1

3

x dx

und

2

´ µ ¶

2

( x  3) dx

´ µ ¶

und

1

3

x dx

d) Zerlegen Sie das Integral in zwei Teilintegrale:

Seite 455

2

( x  5) dx

1

´ µ ¶

3

1

6

x dx

Übungsbeispiele

Beispiel 4: Bestimmen Sie die Maßzahl der Fläche zwischen der Kurve y = x2 - 3 x +1 und der x-Achse im Bereich von a = - 1 und b = 1.5. Stellen Sie das Problem auch grafisch dar. Beispiel 5: Berechnen Sie das bestimmte Integral im Bereich von a und b unter Ausnützung der Symmetrie. Stellen Sie das Problem auch grafisch dar.

a)

´ µ ¶

2 4

´ µ ¶

b)

x dx

2

1 5

x dx

1

4.3 Integrationsmethoden 4.3.1 Grundintegrale Beispiel 1: Bestimmen Sie die Lösung der folgenden Integrale:

a)

´ µ µ µ ¶

d)

´ µ µ ¶

g)

´ µ µ µ ¶

j)

m)

p)

´ µ µ µ ¶ ´ µ µ µ ¶

´ µ µ µ ¶

1

3

˜ x dx

2

b)

x

2 dx

1 x

dx

2

du

2

h)

´ µ µ ¶

4

k)

´ µ µ µ ¶

4  4˜ x

1

dx 2

25  25 ˜ x

2

§ 1 · dx ¨ ¸ © 3¹

n)

dx

t

c)

dt

e)

1 u

1

1

´ µ µ µ ¶

e

1

´ µ µ µ ¶

q)

´ µ µ µ ¶ ´ µ µ µ µ ¶

dx

1

dt

1 t

5  5˜ t

2

dt

1  cos ( x) cos ( x)

2

i)

´ µ µ ¶

cos ( x)

l)

´ µ µ µ ¶

§ u· sin ¨ ¸ du © 2¹

o)

´ µ µ µ ¶

2

dx

Seite 456

dv

v

´ µ µ µ ¶

2

1

1

f)

x

x

´ µ µ µ ¶

r)

´ µ µ µ µ ¶

1 t

dt

2

dx

2

1

dx 2

9  9˜ x

x3  x 2 dx 4˜ x

Übungsbeispiele

s)

´ µ µ µ ¶

t

( u  2) ˜ e

du

1a

t)

´ µ µ ¶

x 1

u)

dx

e

´ µ µ µ ¶

1 2 ˜ s ˜ sin ( x)

2

ds

Beispiel 2: Bestimmen Sie die Lösung der folgenden Integrale und stellen Sie das Problem grafisch dar:

a)

´ µ ¶

2

( 2 ˜ x  2) dx

b)

0

d)

´ µ µ ¶

2

´ µ ¶

4

( 4  3 ˜ x) dx

c)

0

§ x  1 · dx ¨ ¸ © x ¹

e)

´ µ ¶

1

´ µ ¶

π

1

1 x

2 ˜ e dx

f)

2

1

´ µ µ µ ¶

§ x2 · ¨  2¸ dx ©2 ¹

( 1  sin ( t ) ) dt

0

Beispiel 3: Die Ableitung einer Funktion ist gegeben durch y' = 2 x - 1. Wie lautet die Funktionsgleichung der Kurve, wenn sie den Punkt P(1 | 2) enthält? Stellen Sie das Problem auch grafisch dar. Beispiel 4: Die Ableitung einer Funktion ist gegeben durch y' = x2 - x. Wie lautet die Funktionsgleichung der Kurve, wenn sie den Punkt P(2 | 2) enthält? Stellen Sie das Problem auch grafisch dar.

4.3.2 Integration durch Substitution Beispiel 1: Bestimmen Sie die Lösung der folgenden Integrale:

a)

d)

´ µ µ ¶

2

( 2  3 ˜ x) dx

´ µ µ µ ¶

g)

´ µ µ µ ¶

j)

´ µ µ ¶

m)

´ µ µ µ ¶

3 1  2˜ x

1 3 t

x

e

dx

dt

dx

arcsin ( x) 2

1 x

dx

b)

e)

´ µ µ µ ¶ ´ µ µ µ ¶

1 ( a ˜ x  b)

n

4 3

dx

dx

c)

´ µ µ ¶

5 ˜ x  2 dx

f)

´ µ µ ¶

( 2  5 ˜ x) dx

i)

´ µ µ ¶

e

l)

´ µ µ ¶

cos ( ω ˜ t  φ) dt

o)

´ µ µ ¶

e

6˜ x 5

h)

´ µ µ µ ¶

k)

´ µ µ ¶

sin ( ω ˜ t  φ) dt

n)

´ µ µ µ ¶

sin ¨ 2 ˜ x 

1 1  3˜ u

§ ©

du

π·

¸



dx

Seite 457

3

2˜v 1

dv

0.9˜t 1.2

dt

Übungsbeispiele

p)

s)

v)

y)

E)

´ µ µ µ ¶

1

dx

q)

´ µ µ ¶

t)

´ µ µ µ ¶

2

2 x

´ µ µ µ µ ¶

2

3˜ x  2

dx

3

x  2˜ x

´ µ µ µ ¶

x 2

w)

dx

2

a x

´ µ µ µ µ ¶

dx

z)

2 dx

J)

´ µ µ µ ¶

4

1 x

´ µ µ ¶

x ˜ cot x

cos ( x) ˜ sin ( x) dx

sin ( x) 5˜

´ µ µ µ ¶ ´ µ µ ¶

3

x

3

dx

r)

´ µ µ ¶

e

u)

´ µ µ ¶

e

x)

´ µ µ µ µ ¶

cos ( x)

5˜ x

dx

2

2  3˜ x

tan ( x) dx

D)

´ µ µ µ ¶

ln ( x)

H)

´ µ µ µ ¶

x

dx

2

x

˜ x dx

3

x

2

˜ x dx

2

3˜ x  2 3

dx

x  2˜ x

§ x · dx ¸ © 2¹

tan ¨

ln ( 2 ˜ x) x

dx

Beispiel 2: Bestimmen Sie die Lösung der folgenden Integrale mithilfe von Mathcad:

a)

d)

g)

´ µ µ µ ¶

1

b)

dx 2

9 x

´ µ µ µ ¶

1 x˜

´ µ µ µ ¶

e)

dx

2

x 4

1 sin ( x) ˜ cos ( x)

dx

h)

´ µ µ µ ¶

2

16  x

dx

x

´ µ µ µ µ ¶

c)

f)

´ µ µ µ ¶

i)

´ µ µ µ ¶

2

x

dx

2

x 1

´ µ µ µ ¶

1 sin ( x)

4

dx

´ µ µ µ ¶

1 2

x ˜

dx 2

5x

1 cos ( x)

dx

1 1  2 ˜ cos ( x)

2

dx

Beispiel 3: Bestimmen Sie die Lösung der folgenden Integrale und stellen Sie das Problem grafisch dar:

a)

´ µ µ µ ¶

4

0

2

§x · ¨  3¸ dx ©2 ¹

b)

´ µ ¶

1 3

( 5  4 ˜ x) dx

2

c)

´ µ µ ¶

1

3

Seite 458

4 3 dx

2˜ x  5

Übungsbeispiele

d)

´ µ ¶

4

4˜x 2

e)

dx

e

2

´ µ ¶

4

2˜x 2

dx

3

f)

0

´ µ µ ¶

π

§ sin § t ·  cos § t · · dx ¨ ¨ ¸ ¨ ¸¸ © © 2¹ © 2 ¹¹

0

4.3.3 Partielle Integration Beispiel 1: Bestimmen Sie die Lösung der folgenden Integrale:

a)

´ µ µ ¶

d)

´ µ µ µ ¶

g)

x ˜ cos ( x) dx

x sin ( x)

´ µ µ ¶

2

dx

3

x ˜ lg ( x) dx

b)

´ µ µ ¶

e)

´ µ µ µ ¶

h)

x

x˜ e

ln ( x)

dx

dx

2

c)

´ µ µ ¶

arccos ( x) dx

f)

´ µ µ ¶

x ˜e

i)

´ µ µ ¶

e

x

´ µ µ ¶

2

x

x ˜2

dx

2

2˜t

 3˜x

dx

˜ sin ( t ) dt

Beispiel 2: Bestimmen Sie die Lösung der folgenden Integrale und stellen Sie das Problem grafisch dar: π

a)

´ µ ¶

1

 2˜x

( 3  x) ˜ e

0

dx

b)

1

´ 2 µ x ˜ sin ( x) dx µ π ¶

c)

0

2

Beispiel 3:

´2 2 µ t· § µ sin ¨ ¸ dt µ © 2¹ ¶

Bestimmen Sie eine Rekursionsformel für folgende Integrale:

a)

´ µ In = µ ¶

x ˜ e dx

d)

´ µ In = µ ¶

ln ( x) dx

n

x

n

b)

´ µ In = µ ¶

e)

´ µ µ ¶

n

x ˜ sin ( x) dx

n

tan ( x) dx

Seite 459

c)

´ µ In = µ ¶

n

x ˜ cos ( x) dx

Übungsbeispiele

4.3.4 Integration durch Partialbruchzerlegung Beispiel 1: Bestimmen Sie die Lösung der folgenden Integrale:

a)

d)

g)

´ µ µ µ ¶ ´ µ µ µ ¶ ´ µ µ µ ¶

1

b)

dx

2

x 9

2

3˜ x  2˜ x 1 x ˜ ( x  5) ˜ ( x  7)

1 2˜x

e

dx

x

 3˜ e

dx

Substitution: ex

e)

h)

=u

´ µ µ µ µ ¶

2

x  3˜ x 4

c)

dx

2

x  2˜ x 8

´ µ µ µ µ ¶

2

5˜ x  3˜ x 2 ( x  1)

´ µ µ µ ¶

3

f)

dx

sin ( x)



cos ( x) ˜ 1  cos ( x)

2



´ µ µ µ ¶

x ( x  2)

´ µ µ µ ¶

dx

2

2˜ x 1 ( x  1)

2

dx

Substitution: cos(x) = u

dx

Beispiel 2: Bestimmen Sie die Lösung der folgenden Integrale:

a)

´ µ µ µ ¶

1

b)

dx

3

x x

´ µ µ µ ¶

7˜ x 5

dx

2

x  2˜ x 4

4.4 Uneigentliche Integrale 4.4.1 Uneigentliche Integrale 1. Art Beispiel 1: Bestimmen Sie die Lösungen der folgenden Integrale, falls möglich. Stellen Sie das Problem auch grafisch dar.

a)

´ µ µ µ ¶



´ µ ¶

0

1 3

b)

dx

x

2

d)

´ µ µ µ ¶



´ µ µ µ ¶

1

´ µ µ µ ¶



2

c)

dx

4

x

e)

e dx

∞

1 2

f)

dx

x

g)



∞

1 2

1  4˜ x

dx

h)

´ µ µ ¶

2

´ µ µ µ ¶



2

dx

x

1 cosh ( x)

∞

Seite 460

1 x 1

dx

∞

∞

´ µ µ µ ¶



1

1

x

´ µ µ ¶

2

dx

i)

∞

1 2

x  4˜ x 5

dx

Übungsbeispiele

4.4.2 Uneigentliche Integrale 2. Art Beispiel 1: Bestimmen Sie die Lösungen der folgenden Integrale, falls möglich. Stellen Sie das Problem auch grafisch dar.

a)

´ µ µ µ ¶

3

´ µ µ µ ¶

1

´ µ µ µ ¶

3

1

b)

dx 2

9 x

3 3

e)

dx

x

0

g)

1

´ µ µ µ ¶

2

´ µ ¶

1

1

c)

dx 2

1x

x

f)

dx

2

x 1

3

h)

dx

x 2

3

´ µ µ ¶

3

´ µ ¶

1

1 2

dx

x

1 x 1

dx

1

1

1

´ µ µ µ ¶

2

1

0

d)

´ µ µ µ ¶

i)

ln ( x) dx

0

x ˜ ln ( x) dx

0

2

4.5 Numerische Integration 4.5.1 Mittelpunkts- und Trapezregel Beispiel 1: Berechnen Sie die folgenden Integrale numerisch mit Mathcad und vergleichen Sie die Lösung mit den Näherungswerten der Mittelpunktsformel Mn und M2n und der Trapezformel Tn und T2n, wenn wir das Integrationsintervall in n = 4 bzw. n = 10 gleich breite Teilintervalle zerlegen. Geben Sie dazu den relativen Fehler (Mathcad-Näherung und Mittelpunksformelwert bzw. Trapezformelwert) an. Stellen Sie die Funktion und die Integrationsfläche zuerst grafisch dar. π

a)

´ µ ¶

2

´ µ ¶

3

2

x dx

b)

0

d)

0

´2 µ µ sin ( x) dx ¶

c)

0

3

x dx

e)

´ µ µ ¶

2˜ x 1

1

´ µ ¶

2

2

1  x dx

0

3

1

´ µ ¶

dx

0

Seite 461

f)

1

ln ( x) dx

Übungsbeispiele

4.5.2 Kepler- und Simpsonregel Beispiel 1: Berechnen Sie die folgenden Integrale numerisch mit Mathcad und vergleichen Sie die Lösung mit den Näherungswerten der Keplerregel (n = 1), der Simpsonregel und der adaptiven Methode, wenn wir das Integrationsintervall in n Doppelintervalle zerlegen. Geben Sie dazu den relativen Fehler (Mathcad-Näherung und Simpsonformelwert) an. Stellen Sie die Funktion und die Integrationsfläche zuerst grafisch dar. π

a)

´ µ ¶

1

´ µ µ µ ¶

2

3

1  x dx

n=2

b)

0

d)

´ µ µ ¶

3

´ µ µ ¶

3

´ µ ¶

2

1

dx

ln ( x)

n=8

c)

n=4

dx

n=2

2

x 2

e

dx

n=4

e)

1 2˜ x 1

dx

n=6

f)

2

1 2

dx

n=2

h)

1  2˜ x

´ µ µ ¶

3

´ µ ¶

2

1 x

1

0

g)

cos ( x) dx

0

2

0

´ µ µ µ ¶

´2 µ µ ¶



3

1  x dx

n=8

i)

x

e dx

n = 10

1

0

0

Beispiel 2: Berechnen Sie die Fläche zwischen x-Achse und der Folge von diskreten Punkten im Bereich a und b mithilfe der numerischen Berechnung von Mathcad, der Simpsonregel und der adaptiven Methode. Geben Sie dazu den relativen Fehler (Mathcad-Näherung und Simpsonformelwert) an. Stellen Sie das Problem zuerst grafisch dar.

x f(x)

0 1

0,5 1,1

1 1,5

1,5 2,5

2 3,9

x f(x)

3 1.098

5 1,509

7 1,955

9 2,185

11 2,411

4.6.1 Bogenlänge einer ebenen Kurve Beispiel 1: Berechnen Sie die Bogenlänge von: a)

b)

2

y=x

a=0

Werten Sie das Integral numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

b=1

Kettenlinie:

§x· ¸ © 2¹

y = 2 ˜ cosh ¨

a=0

b=2

Werten Sie das Integral analytisch und numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

Seite 462

Übungsbeispiele

c)

Umfang der gleichseitigen Astroide: 2

x d)

3

2

y

3

Werten Sie das Integral analytisch aus. Stellen Sie das Problem auch grafisch dar.

2

=r

3

Umfang der Ellipse:

Werten Sie das Integral numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

x = 10 ˜ cos ( t ) y = 5 ˜ sin ( t ) e)

Länge des Hyperbelbogens:

Werten Sie das Integral numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

x = 2 ˜ cosh ( t ) 3 ˜ sinh ( t )

y=

t1 = 0

t 2 = arcosh ( 2)

f)

y = sin ( x)

g)

Archimedische Spirale:

r = a˜ φ

h)

x=t y=t

a=0

φ1 = 0

φ2 = 2 ˜ π

2 3

t1 = 0

Werten Sie das Integral numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

b=π

t2 = 4

Werten Sie das Integral analytisch und numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar. Werten Sie das Integral analytisch und numerisch aus, und vergleichen Sie den Wert auf 4 Nachkommastellen mit dem Wert, der sich mit der Simpsonregel für n = 10 Doppelstreifen ergibt. Stellen Sie das Problem auch grafisch dar.

4.6.2 Berechnung von Flächeninhalten 4.6.2.1 Berechnung von Flächeninhalten unter einer Kurve Beispiel 1: Berechnen Sie den Flächeninhalt zwischen Kurve und x-Achse im Bereich a und b und stellen Sie das Problem grafisch dar: a)

2

y = ( x  3) ˜ x  4

a = 1

b=5

a=0

b = 2.8

a = 5

b=5

a = 2

b=1

3 5

b)

y=x

c)

y = sinh ( x)

d)

y = ( x  2) ˜ x  1

2

Seite 463

Übungsbeispiele

Beispiel 2: Berechnen Sie den Flächeninhalt eines Sektors der Hyperbel mit x = 3 cosh(t) und y = 2 cosh(t) im Bereich t = 0 und t = t1 . Stellen Sie das Problem im Bereich t  [-3 , 3] grafisch dar. Beispiel 3: Berechnen Sie den Flächeninhalt der Kardioide mit r = a (1 + sin(M) und M  [0 , 2S]. Stellen Sie das Problem für a = 2 grafisch dar. Beispiel 4: Berechnen Sie den Flächeninhalt der Lemniskate mit r2 = a2 cos(2M) und M  [0 , 2S]. Stellen Sie das Problem für a = 2 grafisch dar. Beispiel 5: Berechnen Sie den Flächeninhalt der Spirale mit r = aM im Bereich M1 = S und M2 = 2 S. Stellen Sie das Problem für a = 3 grafisch dar. Beispiel 6: ´ Berechnen Sie jene Stelle a > 0, sodass µ ¶

2

ln ( x) dx = 0 gilt. Stellen Sie das Problem grafisch dar.

a

Beispiel 7: Wie lautet die Gleichung der Waagrechten, die den Flächeninhalt zwischen y = cos(x) und der x-Achse im Intervall [0, S/2] halbiert? Stellen Sie das Problem grafisch dar.

4.6.2.2 Berechnung von Flächeninhalten zwischen zwei Kurven Beispiel 1: Berechnen Sie die Flächeninhalte zwischen den Kurven und stellen Sie das Problem grafisch dar: 2

a)

y=x

y= 6˜ x 3

b)

y = ln ( x)

y=x 2

c)

y = tan ( x)

y = cot ( x)

d)

y = ( x  1) ˜ x  2 ˜ x  11

e)

2

y=

x



y=0 2

y=x  1

a = 3

b=3

2

y=x

Beispiel 2: Wie groß ist der kleinere Teil der Fläche, der durch die Gerade y = x + 3 vom Kreis x 2 + y2 = 25 abgeschnitten wird? Stellen Sie das Problem auch grafisch dar.

Seite 464

Übungsbeispiele

Beispiel 3: Wie groß ist die gemeinsame Fläche der Kreise x2 + y2 = 4 und x2 + y2 = 4 x? Stellen Sie das Problem auch grafisch dar. Beispiel 4: Beim Betrieb von Maschinen ist die Erwärmungskurve durch - = -max ( 1 - e - t/W ) gegeben. Dabei ist - die Übertemperatur (Temperaturdifferenz auf die Umgebungstemperatur), -max der sich nach langem Betrieb einstellende Beharrungswert, t die Betriebsdauer und W die Zeitkonstante. Ermitteln Sie die Fläche Zwischen -max und der Kurve -. Wählen Sie geeignete Größen und stellen Sie das Problem auch grafisch dar. Stellen Sie in dieser Grafik auch die Anlauftangente im Punkt P(0|0) dar.

Beispiel 5: Gegeben ist die Funktion y = (x+2) e - x/2 . Stellen Sie die Funktion im Bereich [-3, 7] grafisch dar. Bestimmen Sie Nullstelle, Extremwert und Wendepunkt. Berechnen Sie die Fläche zwischen Kurve und x-Achse. Berechnen Sie die Fläche zwischen Kurve und jener Geraden, die durch die Nullstelle und den Wendepunkt geht.

4.6.2.3 Mantelflächen von Rotationskörpern Beispiel 1: Wie groß ist die Mantelfläche, wenn folgende Kurve um die x-Achse rotiert. Stellen Sie das Problem auch grafisch dar: 3

a)

y=x

a=0

b=2

b)

y = cosh ( x)

a=0

b=2

2

c)

2

x



16

y

4

=1

Beispiel 2: Wie groß ist die Mantelfläche, wenn folgende Kurve um die y-Achse rotiert. Stellen Sie das Problem auch grafisch dar: 3

a)

x=y

c=0

d=1

b)

x = ln ( x)

c=0

d=4

Beispiel 3: Wie groß ist die Mantelfläche einer Kalotte (Kugelkappe) mit der Höhe h = h2 - h1 , die durch die Rotation eines Kreises x2 + y2 = r2 um die y-Achse entsteht. Stellen Sie das Problem auch grafisch dar.

Seite 465

Übungsbeispiele

4.6.3 Volumsberechnung Beispiel 1: Berechnen Sie das Volumen des Kegelstumpfes mit den Endflächenradien R und r und der Höhe h (y = (R - r)/h . x + r). Beispiel 2: Wie groß ist das Volumen eines Drehkörpers, der durch Drehung der Kurve um die x-Achse entsteht? Stellen Sie das Problem auch grafisch dar. 2

x

a)

y=x

a=0

b=3

b)

y=e

a=0

c)

y = sin ( x)

a=0

b=π

d)

x˜ y = 4

a=

e)

x = 2 ˜ ( t  sin ( t ) )

1 2

b=2 b=2

t  [0 , 2S]

y = 2( 1  cos ( t ) ) Beispiel 3: Die Parabel y2 = 4 x schneide den Kreis y 2 = 5 - (x - 2.5)2 in den Punkten P1 und P2 . Bei Rotation um die x-Achse beschreibt die Fläche einen parabolischen Kugelring mit der Höhe h = x2 - x1 . Wie groß ist das Volumen des Kugelrings?

Beispiel 4: Der Hohlraum eines Zylinders aus Stahl wird durch Rotation der Kurve y = e 2x - 1 um die y-Achse beschrieben. Wie groß ist dieses Volumen zwischen y 1 = 1 und y2 = 10?

Seite 466

Übungsbeispiele

4.6.4 Berechnung von Schwerpunkten 4.6.4.1 Schwerpunkt eines Kurvenstückes Beispiel 1: Bestimmen Sie die Koordinaten des Schwerpunktes S(0|ys ) eines Kreisbogens von der Länge b. Hinweis: Polarkoordinaten. Der Schwerpunkt soll von r, s und b abhängen.

b = r˜ φ

db = r ˜ dφ

Beispiel 2: Bestimmen Sie die Koordinaten des Schwerpunktes des Parabelbogens y = x2 zwischen a = 0 und b = 1. Beispiel 3: Bestimmen Sie die Koordinaten des Schwerpunktes eines Zykloidenbogens mit der Parameterdarstellung x = r (t - sin(t)) und y = r (1 - cos(t)) zwischen a = 0 und b = 2 S r. Beispiel 4: Bestimmen Sie die Koordinaten des Schwerpunktes eines 1/4 Ellipsenbogens (Rotation um die x-Achse) mit der Parameterdarstellung x = a cos(M)) und y = b sin(M) mithilfe der 2. Guldin-Regel zwischen x = 0 und x = a.

Seite 467

Übungsbeispiele

4.6.4.2 Schwerpunkt einer Fläche Beispiel 1: Bestimmen Sie die Koordinaten des Schwerpunktes der gegebenen Fläche.

Beispiel 2: Bestimmen Sie die Koordinaten des Schwerpunktes eines Kreisausschnittes.

Beispiel 3: Bestimmen Sie die Koordinaten des Schwerpunktes der Dreiecksfläche.

Seite 468

Übungsbeispiele

Beispiel 4: Bestimmen Sie die Koordinaten des Schwerpunktes der gegebenen Fläche.

Beispiel 5: Bestimmen Sie die Koordinaten des Schwerpunktes eines dünnen offenen Hohlprofils.

Beispiel 6: Bestimmen Sie den Schwerpunkt einer halben Ellipsenfläche zwischen x = 0 und x = a mithilfe der 1. Guldin-Regel. Beispiel 7: Gegeben ist die Funktion f: y = ex (- x2 + b x +c) und deren Nullstellen f(0) = 0 und f(b)= 0. a) Bestimmen Sie die Extremstellen und die Wendepunkte von f und stellen Sie die Funktion im Bereich - 3.5 d x d 2.2 grafisch dar. b) Bestimmen Sie jene Grenze x = c, durch die das vom Graf und von der x-Achse begrenzte Flächenstück in zwei gleiche Teile zerlegt wird. c) Berechnen Sie die Koordinaten des Schwerpunktes des vom Grafen und von der x-Achse begrenzten Flächenstücks.

Seite 469

Übungsbeispiele

4.6.4.3 Schwerpunkt einer Drehfläche Beispiel 1: Bestimmen Sie den Schwerpunkt eines Kegelmantels (Rotation einer geeigneten Kurve um die x-Achse) mit Radius r und Höhe h. Beispiel 2: Bestimmen Sie den Schwerpunkt eines Drehparaboloidmantels (Rotation der Parabel y = a x2 um die y-Achse) mit Radius r und Höhe h.

4.6.4.4 Schwerpunkt eines Drehkörpers Beispiel 1: Bestimmen Sie die Koordinaten des Schwerpunktes eines zylinderisch durchbohrten Kegelkörpers. Anleitung:

H=

h˜ R

y=

R h

R r h

˜x R

Beispiel 2: Bestimmen Sie die Koordinaten des Schwerpunktes eines halben Ellipsenkörpers, wenn eine Ellipse um die x-Achse rotiert (im Bereich x = 0 und x = a). Veranschaulichen Sie das Problem grafisch. Beispiel 3: Bestimmen Sie die Koordinaten des Schwerpunktes eines Hyperboloids, das durch Drehung der Hyperbel x2 /9 - y2 /16 = 1 um die y-Achse im Intervall [-3,4] entsteht. Veranschaulichen Sie das Problem grafisch. Beispiel 4: Bestimmen Sie mithilfe der 1. Guldin-Regel das Volumen eines Kegels mit dem Radius r = 10 dm und der Höhe h = 20 dm. Beispiel 5: Bestimmen Sie mithilfe der 1. Guldin-Regel das Volumen des Rotationskörpers der durch Rotation des Flächenstücks zwischen dem Funktionsgrafen y = f(x) und der x-Achse im Intervall [0,a] um die y-Achse entsteht. Veranschaulichen Sie das Problem grafisch. a)

y=x 2

a=4

b)

x

y=e

a=2

Seite 470

c)

y = sin ( x)

a=

π

2

Übungsbeispiele

Beispiel 6: Bestimmen Sie mithilfe der Guldin-Regeln die Oberfläche und das Volumen eines Zylinders mit Radius r und Höhe h.

4.6.5 Berechnung von Trägheitsmomenten 4.6.5.1 Das Massenträgheitsmoment Beispiel 1: Berechnen Sie das Massenträgheitsmoment einer Kugel mit Radius r, die um die x-Achse rotiert (Zeichnung!). Beispiel 2: Berechnen Sie das Massenträgheitsmoment eines Schwungrades.

kg

3

ρ = 7.3 ˜ 10 ˜

m

3

Anleitung: J = JKranz + JSteg + JNabe

Beispiel 3: Berechnen Sie das Massenträgheitsmoment eines Drehparaboloidkörpers. Berechnen Sie das Massenträgheitsmoment auf zwei Arten, wie im Bild angegeben.

Seite 471

Übungsbeispiele

Beispiel 4: Berechnen Sie das Massenträgheitsmoment eines Vollzylinders, der sich um die Achse g dreht.

Beispiel 5: Berechnen Sie das Massenträgheitsmoment eines Drehkegelstumpfes mit den Radien R bzw. r und der Höhe h, der sich um die Symmetrieachse dreht (Zeichnung!). Beispiel 6: Berechnen Sie das Massenträgheitsmoment einer Zylinderscheibe mit Radius R und Dicke h in Bezug auf die Achse durch einen Durchmesser (Zeichnung!).

4.6.5.2 Das Flächenträgheitsmoment Beispiel 1: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der x-Achse.

Beispiel 2: Berechnen Sie das axiale Flächenträgheitsmoment eines Rechtecks bezogen auf die Diagonale.

Seite 472

Übungsbeispiele

Beispiel 3: Aus einer Tabelle für Walzprofile entnehmen wir ( |_ 200. 200.20 ) folgende Angaben: 4

I x = I y = 2850cm 4

Iξ = 4540 ˜ cm

Haupträgheitsmomente 4

Iη = 1160 ˜ cm

Überprüfen Sie : 2

2

I u = I x = Iξ ˜ cos ( α)  Iη ˜ sin α Beispiel 4:

Berechnen Sie die axialen Flächenträgheitsmomente Ix und Iy des vom Grafen der Funktion

y=

3  x und den Koordinatenachsen eingeschlossenen Flächenstücks (grafische Darstellung!).

Beispiel 5: Berechnen Sie die axialen Flächenträgheitsmomente bezüglich der Koordinatenachsen sowie der dazu parallelen Schwerpunktsachsen für die Fläche unter dem Grafen von a) y = x2 , a =0 und b = 2; b) y = e x/2 , a =0 und b = 2. (grafische Darstellung!).

4.6.6 Berechnung von Biegelinien Beispiel 1: Ein beidseitig eingespannter Träger der Länge L = 4 m besitzt eine konstante Trägerlast q0 = 10.0 kN/m und eine Biegesteifigkeit E * I = 7*10 6 Nm 2 . Berechnen Sie die Biegelinie y(x). Stellen Sie die Streckenlast q(x), die Querkraft Q(x), das Biegemoment Mb(x) und die Biegelinie y(x) grafisch dar. Es gelten die Randbedingungen y(0) = y(L) = 0, y'(0) = y'(L) = 0. Beispiel 2: Ein einseitig eingespannter Träger der Länge L = 3 m besitzt eine konstante Trägerlast q0 = 10.0 kN/m und eine Biegesteifigkeit E * I = 3*10 6 Nm 2 . Berechnen Sie die Biegelinie y(x). Stellen Sie die Streckenlast q(x), die Querkraft Q(x), das Biegemoment Mb(x) und die Biegelinie y(x) grafisch dar. Es gelten die Randbedingungen Q(0) = q0 * L, Mb(L) = 0, y(0) = 0, und y'(0) = 0. Beispiel 3: Ein Träger, der am linken Ende fest eingespannt ist und am rechten Ende ein freies Lager besitzt, hat eine Länge von L = 3 m und wird mit einer konstanten Trägerlast q0 = 10.0 kN/m belastet. Der Elastizitätsmodul beträgt E = 2*10 5 N/mm2 und das Flächenträgheitsmoment I = 10 -4 m4 . Berechnen Sie die Biegelinie y(x). Stellen Sie die Streckenlast q(x), die Querkraft Q(x), das Biegemoment Mb(x) und die Biegelinie y(x) grafisch dar. Es gelten die Randbedingungen Mb(L) = 0, y(0) = y(L) = 0, und y'(0) = 0.

Seite 473

Übungsbeispiele

4.6.7 Berechnung von Arbeitsintegralen Beispiel 1: Für eine besondere Feder gilt das Kraftgesetz F = 200*N/m*s3 . Wie viel Arbeit W ist notwendig, wenn die Feder um 5 cm gedehnt wird? Beispiel 2: Berechnen Sie die Arbeit W eines idealen Gases bei isothermer Kompression (Kompressionsarbeit). Beispiel 3: Berechnen Sie die Arbeit W eines idealen Gases bei adiabatischer Kompression (Kompressionsarbeit). Beispiel 4: Durch ein sich ausdehnendes Gas in einem Zylinder wird ein Kolben so bewegt, dass das Volumen des eingeschlossenen Gases von 250 cm 3 auf 400 cm 3 wächst. Bestimmen Sie die geleistete Arbeit, wenn zwischen dem Druck p (N/cm 2 ) und dem Volumen V (cm3 ) die Gleichung p*V = 3000 besteht.

4.6.8 Berechnungen aus der Hydromechanik Beispiel 1: Innerhalb welcher Zeit fließt das Wasser, das ein zylindrisches Gefäß der Grundfläche A = 420 cm 2 und der Höhe h = 40 cm füllt, durch eine Öffnung im Boden des Gefäßes ab, wenn diese Öffnung einen Querschnitt von A 1 = 2 cm 2 hat? Die Ausflusszahl beträgt D = 0.6.

4.6.9 Berechnung von Mittelwerten Beispiel 1: Bestimmen Sie den linearen Mittelwert der Funktion y = x2 /2 über dem Intervall [1,3]. Beispiel 2: Bestimmen Sie den linearen Mittelwert und den Gleichrichtwert der nachfolgend gegebenen Funktion. Stellen Sie weiters dieses Problem grafisch dar, wenn Imax = 20 mA und T = 3 ms gegeben sind.

i ( t) =

I max if 0 ˜ ms d t d 

I max

if

2

T 3

T 3

tdT

Beispiel 3: Bestimmen Sie die Wirkleistung P aus der nachfolgend gegebenen zeitabhängigen Leistung p(t) im Bereich einer Periode T. 2

2

2

p = u ˜ i = R ˜ I 0 ˜ cos ( ω ˜ t)  ω ˜ L ˜ I 0 ˜ sin ( ω ˜ t) ˜ cos ( ω ˜ t)

Seite 474

ω = 2˜ π˜ f =

2˜ π T

Übungsbeispiele

Beispiel 4: Die Spannung beim Entladevorgang eines Kondensators an Gleichspannung ist gegeben durch uC(t) = U0 e -t/W. Stellen Sie die Kondensatorspannung uC für R = 1000 :, C = 0.1 PF und U 0 = 10 V und der Zeitkonstante W = R*C grafisch dar. Berechnen Sie die Fläche zwischen Spannungskurve und t-Achse und interpretieren Sie das Ergebnis. Beispiel 5: Bestimmen Sie den Gleichrichtwert des Stromes i = 4 A sin(Zt) - 1.4 A cos(2 Z t) + 0.9 A cos(3 Z t) über eine Periode T. Stellen Sie das Problem für T = 5 ms grafisch dar. Beispiel 6: Bestimmen Sie den arithmetischen Mittelwert und den Effektivwert der Spannung u(t) = (Umax / T) * t. Stellen Sie das Problem für Umax = 20 V und T = 10 ms grafisch dar. Beispiel 7: Bestimmen Sie den arithmetischen Mittelwert, den Gleichrichtwert und den Effektivwert der nachfolgend gegebenen Spannung. Stellen Sie das Problem für Umax = 10 V und T = 3 ms grafisch dar.

u ( t) =

T Umax if 0 ˜ ms d t d 3 

Umax 3

T

if

3

tdT

Beispiel 8: Bestimmen Sie den Effektivwert der nachfolgend gegebenen Spannung. Stellen Sie das Problem grafisch dar.

u ( t) =

 t· ª § º « ¨ » τ ¸ ¬11 © 1  e ¹  5¼ ˜ V if 0 ˜ μs d t d 40 ˜ μs

§ ¨ © 121 ˜ e

t τ

τ=

· ¸  6¹ ˜ V if 40 ˜ μs d t d 80 ˜ μs

40 ˜ μs ln ( 11 )

Beispiel 9: Um eine Lampe stufenlos und energiesparend regeln zu können, wird eine Phasenanschnittsteuerung (Dimmer) eingesetzt. Das Prinzip besteht darin, die sinusförmige Netzspannung u = U0 sin(Z t) während jeder Halbwelle erst nach einer Verzögerungszeit W bzw. erst nach einem Zündwinkel D = Z*W an den Verbraucherwiderstand durchzuschalten, sodass kein Energieverbrauch stattfinden kann. Bestimmen Sie den Effektivwert der nachfolgend gegebenen Spannung. Stellen Sie das Problem für T = 3 Ps und W = 0.2 Ps grafisch dar.

u ( t) =

0 ˜ V if k ˜

T 2

dtdk˜

T 2

240 ˜ V ˜ sin ( ω ˜ t) if k ˜



T 2

k  , T = 2S/Z

 τ d t d ( k  1) ˜

T 2

Seite 475

Übungsbeispiele

4.7 Mehrfachintegrale 4.7.1 Doppelintegrale Beispiel 1: Berechnen Sie folgendes Doppelintegral und zeigen Sie, dass die Reihenfolge der Integration beliebig ist. ´ µ ¶

2

2

´ µ ¶

1

x2  x ˜ y dx dy

0

Beispiel 2: Berechnen Sie folgendes Doppelintegral und zeigen Sie, dass die Reihenfolge der Integration nicht beliebig ist. ´ µ µ ¶

x

1

π

´2 µ µ x ˜ cos ( y) dx dy ¶ 0

Beispiel 3: Wie groß ist der Flächeninhalt der Fläche, die von den Kurven y = 2 x und y = x2 und x = 1 eingeschlossen wird? Lösen Sie das Problem mithilfe eines Doppelintegrals und stellen Sie den Sachverhalt grafisch dar. Beispiel 4: Wie groß ist der Flächeninhalt der Fläche, die von den Kurven y = cos(x) und y = x2 - 2 eingeschlossen wird? Lösen Sie das Problem mithilfe eines Doppelintegrals und stellen Sie den Sachverhalt grafisch dar. Beispiel 5: Berechnen Sie mithilfe eines Doppelintegrals den Flächeninhalt, der von der logarithmischen Spirale r(M) = e 0.2 M und den Strahlen M1 = S/3 und M2 = 3/2 S eingeschlossen wird. Stellen Sie den Sachverhalt grafisch dar. Beispiel 6: Wo liegt der Schwerpunkt S der Fläche, die von der Parabel y = - x2 + 4 und der Geraden y = x + 2 begrenzt wird? Lösen Sie das Problem mithilfe eines Doppelintegrals und stellen Sie den Sachverhalt grafisch dar. Beispiel 7: Wo liegt der Schwerpunkt S einer Viertelkreisfläche? Lösen Sie das Problem mithilfe eines Doppelintegrals und stellen Sie den Sachverhalt grafisch dar.

Seite 476

Übungsbeispiele

Beispiel 8: Wie groß ist der Flächeninhalt der von der Kurve y = cos(x) und y = 0.5 im Bereich [-S/2 , S/2] eingeschlossenen Fläche. Wo liegt der Schwerpunkt auf dieser Fläche? Wie groß sind die Flächenträgheitsmomente Ix und Iy? Lösen Sie die Aufgaben mithilfe von Doppelintegralen und stellen Sie den Sachverhalt grafisch dar. Beispiel 9: Berechnen Sie die Flächenträgheitsmomente Ix und Iy eines Kreises mit der Gleichung (x - R)2 + y2 = R2 . Lösen Sie die Aufgaben mithilfe von Doppelintegralen und stellen Sie den Sachverhalt grafisch dar. Beispiel 10: Berechnen Sie das Volumen eines schräg abgeschnittenen Zylinders mithilfe eines Doppelintegrals. Die Schnittebene liegt parallel zur x-Achse, d. h., z ist nur von y abhängig: z = a y + b. z(-r) = H = a (-r) + b z(r) = h = a r + b Daraus lässt sich a und b berechnen.

Beispiel 11: Berechnen Sie das Massenträgheitsmoment Jz eines geraden Prismas mit den Grundseiten a und b und der Höhe h bezüglich der Schwerachse z. Lösen Sie das Problem mithilfe eines Doppelintegrals und stellen Sie den Sachverhalt grafisch dar.

4.7.2 Dreifachintegrale Beispiel 1: Durch Rotation eines Kurvenstücks z = x (0 dx d4) entsteht ein trichterförmiger Drehkörper. Bestimmen Sie das Volumen dieses Drehkörpers. Lösen Sie das Problem mithilfe eines Dreifachintegrals und stellen Sie den Sachverhalt grafisch dar. Beispiel 2: Durch Rotation einer Ellipse um die z-Achse mit den Halbachsen a und b entsteht ein Rotationsellipsoid. Bestimmen Sie das Volumen dieses Drehkörpers. Lösen Sie das Problem mithilfe eines Dreifachintegrals und stellen Sie den Sachverhalt grafisch dar.

Seite 477

Übungsbeispiele

Beispiel 3: Zur Bestimmung des Volumens einer dreiseitigen Pyramide ist nachfolgendes Dreifachintegral in kartesischen Koordinaten zu lösen. Stellen Sie den Sachverhalt auch grafisch dar.

V=

´ µ µ ¶

´ 1 dV = µ ¶

a

0

´ µ ¶

 x a

0

´ µ ¶

 x y a

1 dz dy dx

0

Beispiel 4: Zur Bestimmung des Volumens eines elliptischen Querschnittes mit zylindrischer Bohrung ist nachfolgendes Dreifachintegral in Zylinderkoordinaten zu lösen. Stellen Sie den Sachverhalt auch grafisch dar. ´ µ V=µ ¶

2˜π

0

´ µ µ ¶

a

c

b

´a µ µ ¶

2

˜ a r

2

r dz dr dφ

0

Beispiel 5: Bestimmen Sie das Volumen und den Schwerpunkt eines homogenen Kugelabschnitts. Lösen Sie die Aufgaben mithilfe von Dreifachintegralen.

Beispiel 6: Wo liegt der Schwerpunkt einer homogenen Halbkugel mit dem Radius R? Lösen Sie das Problem mithilfe eines Dreifachintegrals und stellen Sie den Sachverhalt grafisch dar. Beispiel 7: Ein kugelförmiger Behälter mit Radius R = 4 m soll von einem h = 15 m unter seinem tiefsten Punkt liegenden Wasserreservoire bis zur Hälfte gefüllt werden. Welche Mindestarbeit muss dafür aufgewendet werden? Die Dichte des Wassers beträgt U = 1000 kg/m 3 .

Seite 478

Übungsbeispiele

Beispiel 8: Bestimmen Sie das Massenträgheitsmoment Jz eines Flügels der Dicke d = 0.05 m bezogen auf die zur Querschnittsfläche senkrechte z-Achse. Die Dichte des Flügels beträgt U = 4500 kg/m 3 .

Beispiel 9: Bestimmen Sie das Massenträgheitsmoment Jz eines Drehzylinders mit Radius R und Höhe h, der durch die Rotation einer zu z parallelen Geraden um die z-Achse entsteht. Stellen Sie den Sachverhalt auch grafisch dar.

Seite 479

Literaturverzeichnis

Literaturverzeichnis

Dieses Literaturverzeichnis enthält einige deutsche Werke über Mathcad, Algebra, Analysis sowie Differentialund Integralrechnung. Es sollte dem Leser zu den Ausführungen dieses Buches bei der Suche nach vertiefender Literatur eine Orientierungshilfe geben. ANSORGE, R., OBERLE, H.J. (2000). Mathematik für Ingenieure. Band 1. Weinheim: Wiley-VCH. BARNER, M., FLOHR, F. (1987). Analysis 1. Berlin: Walter de Gruyter. BLATTER, C. (1991). Analysis 1. Berlin: Springer. BLATTER, C. (1992). Analysis 2. Berlin: Springer. BRÖCKER, T. (1999). Analysis 1. Heidelberg: Spektrum. ERWE, F. (1973). Differential- und Integralrechnung. Mannheim: Wissenschaftsverlag. FORSTER, O. (2001). Analysis 1. Braunschweig: Vieweg. FORSTER, O., WESSOLY, R. (1995). Übungsbuch zur Analysis 1. Braunschweig: Vieweg. FICHTENHOLZ, G. M. (1978). Differential- und Integralrechnung I. Berlin: VEB. FICHTENHOLZ, G. M. (1978). Differential- und Integralrechnung II. Berlin: VEB. FISCHER, G. (1995). Lineare Algebra. Braunschweig: Vieweg. GRAUERT, H., LIEB, I. (1976). Differential- und Integralrechnung I. Heidelberg: Springer. GRAUERT, H., FISCHER, I. (1978). Differential- und Integralrechnung II. Heidelberg: Springer. HEUSER, H. (2000). Lehrbuch der Analysis. Stuttgart: Teubner. HILDEBRANDT, S. (2002). Analysis 1. Berlin: Springer. KABALLO, W. (1996). Einführung in die Analysis. Heidelberg: Spektrum. KÖNIGSBERGER, K. (2001). Analysis 1. Berlin: Springer. LEUPOLD, W. (1982). Mathematik Band III. Thun und Frankfurt/Main: Harri Deutsch. LEUPOLD, W. (1987). Analysis für Ingenieure. Thun und Frankfurt/Main: Harri Deutsch. MEYBERG, K., VACHENAUER, P. (1998). Höhere Mathematik 1. Berlin: Springer. MEYBERG, K., VACHENAUER, P. (1997). Höhere Mathematik 2. Berlin: Springer. OEVEL, W. (1996). Einführung in die numerische Mathematik. Heidelberg: Spektrum. PAPULA, L. (2001). Mathematik für Ingenieure und Naturwissenschaftler. Band 1. Wiesbaden: Vieweg. PAPULA, L. (2001). Mathematik für Ingenieure und Naturwissenschaftler. Band 2. Wiesbaden: Vieweg.

Seite 480

Literaturverzeichnis

REIFFEN, H.J., TRAPP, H.W. (1996). Differentialrechnung. Heidelberg: Spektrum. RUDIN, W. (1998). Grundlagen der Analysis. München: Oldenbourg. SCHIROTZEK, W., SCHOLZ, S. (2001). Starthilfe Mathematik. Stuttgart: Teubner. STORCH, U., WIEBE, H. (1996). Lehrbuch der Mathematik. Band 1. Heidelberg: Spektrum. TRÖLSS, J. (2002). Einführung in die Statistik und Wahrscheinlichkeitsrechnung und in die Qualitätssicherung mithilfe von Mathcad. Linz: Trauner. TRÖLSS, J. (2008). Angewandte Mathematik mit Mathcad (Lehr- und Arbeitsbuch). Band 1: Einführung in Mathcad. Wien: Springer. TRÖLSS, J. (2008). Angewandte Mathematik mit Mathcad (Lehr- und Arbeitsbuch). Band 2: Komplexe Zahlen und Funktionen, Vektoralgebra und analytische Geometrie, Matrizenrechnung, Vektoranalysis. Wien: Springer. TRÖLSS, J. (2008). Angewandte Mathematik mit Mathcad (Lehr- und Arbeitsbuch). Band 4: Reihen, Transformationen, Differential- und Differenzengleichungen. Wien: Springer. WALTER, W. (1997). Analysis 1. Berlin: Springer. WALTER, W. (1995). Analysis 2. Berlin: Springer. WOLFF, M., GLOOR, O., RICHARD, C. (1998). Analysis Alive. Basel: Birkhäuser. WÜST, R. (1995). Höhere Mathematik für Physiker. Berlin: Walter de Gruyter.

Seite 481

Sachwortverzeichnis

Sachwortverzeichnis

A abhängige Variable 69 Abkühlungsgeschwindigkeit 92 Abkühlungsgesetz 92 Ableitung 64 Ableitungen der Areafunktionen 105, 107 Ableitung der Exponentialfunktion 90 Ableitung der Logarithmusfunktion 90 Ableitung der Umkehrfunktion 88 Ableitungen in Parameterdarstellung 114 Ableitungen in Polarkoordinatendarstellung 123 Ableitung von Arkusfunktionen 99 Ableitung von Hyperbelfunktionen 105 Ableitung von Kreisfunktionen 99 Ableitungsfunktionen 67 Ableitungsregeln 73 Abschreibung 18, 19 absoluter Fehler 194 absolutes Maximum 45 absolutes Minimum 45 Abszissenfolge 35, 36 abzinsen 24 adaptive Quadratur 300 adiabatisch 384 alternierend 13 Amplituden 16 Amplitudengang 61, 62 Analysis 63 Anfangskapital 18, 28 angenäherte Funktionswertberechnung 191 angenäherte Fehlerbestimmung 194 Annuität 25 Anschaffungskosten 12, 19 äquidistante Punkte 10 Äquivalenzprinzip 24 Arbeitsintegrale 378 archimedische Spirale 119, 125, 320 Arkuskosinusfunktion 99 Arkuskotangensfunktion 99 Arkussinusfunktion 99 Arkustangensfunktion 99 Areakosinushyperbolicus 107 Areakotangenshyperbolicus 107 Areasinushyperbolicus 107 Areatangenshyperbolicus 107 arithmetische endliche Reihe 20 arithmetische Folgen 9, 10 arithmetisches Mittel 10, 391, 397 Asymptote 46 asymptotisch 47, 48, 49

asymptotische Grenzkurve 156 Augenblicksgeschwindigkeit 69 Ausgangsamplitude 16 Ausgleichsrechnung 242 Ausschaltvorgang 94, 95 Außenwiderstand 53 axiales Flächenträgheitsmoment 361 axialsymmetrisch 261 B Bahnbeschleunigung 70 Ballon 84 Bernoulligleichung 388 beschränkt 2, 5, 6, 27 bestimmtes Integral 256 Bestimmtheitsmaße 243 Betriebsminimum 170 Betriebsoptimum 169 Biegelinie 147, 150, 366 Biegemoment 150, 366 Biegemomentverlauf 367 Biegesteifigkeit 381 Bisektionsmethode 300 Blindwiderstände 54, 55 Bodediagramm 62 Bogenlänge 128, 306 Boyle-Mariotte 80, 385 Buchwert 12 C Cavalieri 336 Coulomb'sches Gesetz 384

D Dachfläche 22 Dämpfungsfaktor 16, 61 Dämpfungskurven 166 Definitionslücke 41 degressive Abschreibung 18 Deviationsmoment 364 Differential 69, 190 Differentialgleichung 94, 95, 112, 271 Differentialquotient 64, 69 Differentialrechnung 63 Differentiation von impliziten Funktionen 226 differentielle Arbeit 387 differentieller Volumenstrom 388

Seite 482

Sachwortverzeichnis

differentielles Flächenelement 390 Differenzengleichung 7 differenzierbar 67, 69 divergent 27, 29 Drehellipsoid 338 Drehfläche 352 Drehkegel 337, 358 Drehkegelkörper 354 Drehkörper 336 Drehmaschine 14 Drehmoment 72, 342 Drehparaboloid 331, 340, 355 Drehzylinder 412 Dreieck 237 Dreieckslast 374 Dreiecksspannung 401 Dreifachintegrale 409 Doppelintegral 403 Drehzahl 14 Durchhang 109 dynamisches Grundgesetz 271 E Effektivwert 399 Einschaltvorgang 94, 95 Einweggleichrichter 202, 398 Elastizitätsmodul 150, 366 elektrische Feldkonstante 51, 384 elektrische Feldstärke 52, 188 elektrostatischer Filter 384 Elemente 1 Ellipsenbogen 347 Ellipse 118, 318, 347, 405 Ellipsoid 221, 330, 335 endliche Folge 1, 20 endliche Reihe 20 endliche geometrische Reihe 34 Energiedichte 72 Energieinhalt 387 Entropie 98 Erfolg 171 Erlös 171 Erregerfrequenz 60, 62 Erwartungswert 162 Eurozeichen 12 Evolute 129 Evolvente 129 Expansionsarbeit 385 Exponentialfunktion 90 Extremstellen 129 Extremwertaufgaben 177 Extremwerte 138, 231

Extremwertsatz 44 F Fallgeschwindigkeit 40 Fehlerbestimmung 194 Fehlerfortpflanzung 194 Fehlerfortpflanzungsgesetz von Gauß 236 Fehlerrechnung 236 Feld von Feldern 326 Feldstärke 50, 51 Fensterfunktion 43 Fibonacci-Folge 7 Flächen im Raum 217 Flächeninhalt 315 Flächeninhalt zwischen zwei Kurven 322 Flächenträgheitsmoment 150, 361 Fliehmoment 364 floor 8 Folgen 1 Formänderungsarbeit 381 freier Fall 69, 107 Freileitung 308 FRAME 29, 32, 33, 41, 63, 65, 67, 70, 71, 185, 232, 233, 297, 307 Frequenzgang 61 Fundamentalsatz der Algebra 141, 280 Funktionen in mehreren unabhängigen Variablen 217 G ganzrationale Funktion 141 Gauß'sche Methode 242 Gauß'sche Normalverteilung 162 Gebietsintegral 40, 409 gebrochenrationale Funktion 153, 280 gedämpfte Schwingung 16, 166 geometrische endliche Reihe 22 geometrische Folge 13 geometrisches Mittel 13 geometrische Stufung 14 geometrische unendliche Reihe 32 Gesamtblindleitwert 56 gespitzte Zykloide 120 Gewichtskraft 342 Gewinn 171 Gewinnschwellen 171 Gleichrichtwert 397 Gleichstrom 195, 392 Gleichstromquelle 53 Gleichungssystem 21 Gleichwert 391 Glühlampe 247 Gravitationsgesetz 382

Seite 483

Sachwortverzeichnis

Gravitationskonstante 382 Gravitationskraft 379 Grenzwerte 26, 29, 35, 134 Grenzwertberechnung 26 Grenzwertsätze 38 Grundintegrale 264 Gruppengeschwindigkeit 80 Guldin-Regel 345, 351

Integrationsvariable 254, 257 Integrieren 253 Intensität 72 Iterationsbeginn 30 Interpolieren 207 Interpolationskurven 207 Intervall 35 isobare Zustandsänderung 98 isotherme Expansion 385 Isothermen 158 Iterationsfolge 198, 204

H Halbkreis 330 Halbkugel 232 Halbkugelkörper 354 Halbkugelschale Halbleiter 245 Hauptsatz der Differential- und Integralrechnung 258 Heavisidefunktion 42, 375 hebbare Unstetigkeitsstelle 41 Heißleiter 245 Herzkurve 127 Hochpunkte 138 höhere Ableitungen 69, 111, 223 Hohlzylinder 357 Hydromechanik 388 Hyperbelfunktion 105 Hyperbelkosinus 105 Hyperbelkotangens 105 Hyperbelsinus 105 Hyperbeltangens 105 hyperbolische Spirale 127 hyperbolisches Paraboloid 219 Hyperboloid 220 I ideales Gas 385 implizite Darstellung 85 implizite Differentiation 88 Impulsänderung 271 Induktionsbeweis 23 induktiver Blindleitwert 56 infinitesimaler Rauminhalt 403 Infinitesimalrechnung 63 Innenwiderstand 54 int 8 Integrabilitätsbedingung 230, 380 Integralfunktion 258 Integralrechnung 253 Integralzeichen 254 Integrand 254, 257 Integration durch Substitution 272 Integrationsgrenze 257 Integrationsintervall 257 Integrationskonstante 254 Integrationsmethoden 264

J Jahreszinsfuß 28 K kapazitiver Blindleitwert 56 Kapitalfolge 18 Kardioide 127, 406 Kegel 184 kegelförmiger Filter 178 Kegelstumpfmantelfläche 329 Keplerregel 298 Kettenlinie 109, 308 Kettenregel 81, 272 kinetische Energie Kirchhoff'sche Gesetz 94, 95 Koeffizientenvergleich 280 komplexer Widerstand 58 Kondensatorspannung 102 konischer Trichter 84 konstanter Faktor 76 konstante Folge 2, 4 Kontinuitätsgleichung 84, 388 konvergent 26, 27, 29 konvergierende Folge 35 Konvergenzbedingung 198 Korrelation 244 Kosinusfunktion 99 Kostenfunktion 169 Kotangensfunktion 99 Kovarianz 243 Kraftgesetz 72 Kraftstoß 271 Kredit 24 Kreis 124 Kreisfläche 316 Kreisfunktionen 99 Kreiskegel 228, 411 Kreisringkörper 351, 359 Kreisumfang 310 Kreuzkopf 186 kritischeTemperatur 160 kritischer Punkt 160

Seite 484

Sachwortverzeichnis

Krümmung 128, 129 Krümmungsmittelpunkt 129 Krümmungskreis 128, 129 Krümmungsradius 128 Krümmungsverhalten 139 Kugel 184, 196, 221, 330, 360 Kugelabschnitt 337 Kugelkondensator 50 Kugelkoordinaten 221, 410 Kugelvolumen 334 Kurve im Raum 217 Kurvendiskussion 138 Kurvenintegral 379 Kurvenstück 343 Kurvenuntersuchungen 138 L Ladungsmenge 393 Lagerbestand 11 l'Hospital 38 Leistung 72 Leiterquerschnitt 51 Leitstrahl 124 Lemniskate 125 limes 26 lineare Funktionen 73 linearer Mittelwert 391 Linearisierungsformel 192 lineares Fehlerfortpflanzungsgesetz 236 lineares Gleichungssystem 113, 146 Linienelemente 306 Linkskrümmung 140 linksseitige Ableitung 66 linksseitiger Grenzwert 35, 39, 41 logarithmische Spirale 126, 313 Logarithmusfunktion 90 Lücke 41, 153

mittlere Leistung 72 mittlere Winkelbeschleunigung 72 mittlerer Wechselstrom 72 Mittelpunktsregel 294 Mittelwerte 391 Mittelwertsatz 192 mod 8, 9 monoton 2 monoton fallend 2, 5 monotone Folge 2, 27 monoton steigend 2 Modulo 8 N Näherungsformeln 193 Näherungsverfahren 198, 294 Näherungswert 45 Newton-Verfahren 198 Niveauflächen 379 numerische Integration 294 Nebenbedingungen 177 Nullfolgen 26 Nullstelle 45, 80, 153 Nullstellensatz 44 Nutzungsdauer 12 Normale 76 Normzahlen 13 Normzahlenreihen 14 O obere Schranke 2, 256 Obersumme 256, 257 Ohm'sches Gesetz 195 Ordinatenfolge 35, 36 Oszillationsstelle 39 Oszillator 60

M

P

magnetische Feldstärke 51 Mantelflächen 329 Massenträgheitsmoment 240, 356, 414 Maximieren 233 Maximum 138, 177 Mehrfachintegrale 403 Messunsicherheit 194 Methode der kleinsten Quadrate 242 Minimum 138, 177 mittlere Bahnbeschleunigung 70 mittlere Beschleunigung 72 mittlere Energiedichte 72 mittlere Geschwindigkeit 69, 70 mittlere Intensität 72 mittlere Kraft 72

Parabel n-ter Ordnung 141 Paraboloid 218 Parallelschwingkreis 56 Parameterdarstellung 114 Partialsumme 20 Partialsummenfolge 20, 29, 33 partielle Ableitungen 222 partielle Integration 277 Phasengang 61 planares statisches Moment 353 Plattenkondensator 73 Platzhalter 1 Polarachse 124 polares Flächenträgheitsmoment 361 Polarkoordinatendarstellung 114, 404

Seite 485

Sachwortverzeichnis

Polstellen 47, 48, 50, 153, 291 Polynomfunktionen 141, 207 Potentialfeld 379 potentielle Energie 382 Potenzregel 73 Produktintegration 277 Produktregel 78 Pseudozufallszahlen 9 Pulsfunktion 43 Pyramide 336 Q Quadrat 195 quadratische Pyramide 335 quadratischer Mittelwert 399 Querkraft 150, 366 Querschnittsfläche 234, 336 Quotientenregel 79 R radioaktiver Zerfall 92 Rechtskrümmung 140 rechtsseitige Ableitung 66 rechtsseitiger Grenzwert 35, 39, 41 rechtwinkelige Koordinaten 219, 220 reelle Folge 1 reelle Funktionen 35 Regel von De l'Hospital 134 Reihen 20 Reihenschwingkreis 54 Rekursionsformel 6, 79 rekursiv 30, 111 Relationen 85 relativer Fehler 194 relativer Zinsfuß 18 relatives Maximum 45, 231 relatives Minimum 45, 231 relatives Extremum 138 Rentenbarwert 23, 24 Rentenendwert 23, 24 Rentenkonto 23 Resonanz 61 Resonanzfrequenz 56 Resonanzkreis 54, 56 Restschuld 25 Restschuldmilderung 24 Restwert 12, 18 Riemann-Integral 256 Riemann-Summe 295 Romberg-Methode 300 Rotationskörper 329 Rückzahlung 25

S Sattelpunkt 139 Satz von Cavalieri 336 Satz von Schwarz 223 Satz von Steiner 359, 361 Schieberegler 3 Schleusentor 390 Schnittwinkel 75 Schranke 2, 4 Schrottwert 18 Schubkurbeltrieb 186, 199 Schuld 25 Schwerachsen 362 Schwerefeld 342 Schwerpunkte 342, 413 Schwerpunktskoordinaten 406 Schwingungsdauer 16 Schwingungsgleichung 16 Seillänge 309 Sekante 64 Sekantenverfahren 203 senkrechter Wurf 78 Sektorformel von Leibniz 315, 316 Serienkreis 94 sign 42 Simpsonregel 298 sinusförmiger Wechselstrom 239 Sinusfunktion 99 Slider 3 Spannkraft 308 Spannungsabfall 195 Spannungsfunktion 53 Spannungskennlinie 247 Sperrkreis 57 Splines 207 Stammfunktion 253, 254, 258 Startwert 45 Steigungsdreieck 67 statisches Moment 342 stetig 40, 67 stetige Funktion 40 Stetigkeit 35, 40, 254 Stoß 59 Strahlungsintensität 76 Strahlungskonstante 77 Streckenlast 147, 366, 374 streng monoton 2, 4, 10 Stromdichte 72 Stromflusswinkel 202 Stromfunktion 53, 102 Stromkennlinie 247 Stromresonanz 57

Seite 486

Sachwortverzeichnis

Stromverteilung 51 Strömungsgleichung 388 Stückkostenfunktion 169 stückweise Stetigkeit 254, 257 Stützstellen 207 Stützwerte 207 Substitution 272 Summe der Reihe 29 Summenregel 76 Summensatz 1. Art 75 Symmetrieeigenschaften 138 systematische Messfehler 194

V

T

Wahrscheinlichkeitsdichtefunktion 162 Wärmestrahlung 201 Wechselstrom 72, 239, 392 Wellengeschwindigkeit 80 Wellenzahl 80 Wendepunkte 138, 139 Wertschranken 195, 196, 197, 237 Widerstandsmoment 238 Widerstände 14 Wirkleistung 239, 393 Wirkungsgradfunktion 53 Wirtschaftsgüter 12 Wurfweite 123

Tangensfunktion 99 Tangente und Ableitung 71 Tangentengleichung 65 Tangentensteigung 68 Teilkreisfläche 327 Teilsumme 20 Terrassenpunkt 139 Tiefpunkte 138 Tilgung 24, 25 Toleranzwert 262 Torricelli-Formel 388 Torus 351, 359 totale Ableitungen 228 totales Differential 229 Träger 147, 150, 366 Trägheitsmomente 356 Transistor 396 trapezförmig 22 Trapezlast 374 Trapezregel 294 U unabhängige Variable 69 unbestimmte Ausdrücke 27, 134 unbestimmtes Integral 253 uneigentliche Integrale 287, 291 uneigentlicher Grenzwert 26, 134 unendliche Folge 1 unendliche geometrische Reihe 34 unendliche Reihe 29 unendliche Zahlenfolge 20 Ungleichung 17 untere Schranke 2, 256 Untersumme 256, 257

Van der Waals 158 variable Kosten 170 Verkettung 82 Verlust 171 vollständiges Differential 229 Volumsberechnung 234 Vorzeichenfunktion 42 Vorzugszahlen 13 W

Z Zahlenfolgen 1 zeitabhängige Amplitude 16 zentralsymmetrisch 261 Zentrifugalmoment 364 Zerfallsgeschwindigkeit 92 Ziegel 22 Zielfunktion 177 Zinseszinsen 18 Zinsfuß 18 Zweiweggleichrichtung 397 Zwischenwertsatz 44 Zykloide 120 Zykloidenbogen 313, 319, 340, 348 Zylinder 219, 357 Zylinderhuf 335 Zylinderkondensator 188 Zylinderkoordinaten 219, 410 zylindrischer Behälter 180, 389

Seite 487