Advanced Engineering for Processes and Technologies II (Advanced Structured Materials, 147) [1st ed. 2021] 3030673065, 9783030673062

This book “Advanced Engineering for Processes and Technologies II” provides a good platform for participating researcher

128 34 13MB

English Pages 365 [349] Year 2021

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Preface
Contents
About the Editors
List of Figures
List of Tables
1 The Potential of Using Unmanned Aerial Vehicles for Sea Patrol: Case Study at Royal Malaysian Navy, Lumut Base
1.1 Introduction
1.2 Literature Review
1.2.1 Drones Versus UAVs
1.2.2 Functions of UAVs
1.2.3 Benefits of UAVs
1.2.4 Challenges/Risks of UAVs
1.3 Methodology
1.3.1 Research Design
1.3.2 The Interview Method
1.3.3 Sampling
1.3.4 Content Analysis
1.4 Result and Discussion
1.4.1 Data Analysis
1.4.2 Data Analysis on Research Team
1.4.3 Function of UAVs
1.4.4 Benefits of UAVs
1.4.5 Challenges of UAVs
1.5 Conclusion
References
2 The Determinants for Successful Ferry Operation: A Delphi Study at Penang Port, Malaysia
2.1 Introduction
2.1.1 Problem Statement
2.1.2 Objectives of the Study
2.1.3 Significance of Study
2.1.4 Limitations and Scope of Study
2.2 Literature Review
2.2.1 Definition of Delphi Study
2.2.2 Ferry Operation
2.3 Research Methodology
2.3.1 Population and Sampling
2.3.2 Primary Data
2.3.3 Secondary Data
2.4 Finding and Discussion
2.4.1 Reliability Statistics
2.4.2 Result of First-Round Survey
2.4.3 Result of Second-Round Survey
2.5 Discussion
2.6 Conclusion
References
3 The Commercial Success Factor Towards Ro-Ro Operation at Port Klang, Malaysia
3.1 Introduction
3.1.1 Problem Statement
3.1.2 Objectives of the Study
3.1.3 Significance of Study
3.1.4 Limitations and Scope of Study
3.2 Literature Review
3.2.1 Definition of Delphi Study
3.2.2 Definition of Ro/Ro Vessel
3.2.3 Ro-Ro Service
3.3 Research Methodology
3.3.1 Population and Sampling
3.3.2 Primary Data
3.3.3 Secondary Data
3.4 Finding and Discussion
3.4.1 Reliability Statistics
3.4.2 Result of First-Round Survey
3.4.3 Pearson Correlation Analysis
3.5 Discussion
3.6 Conclusion
References
4 Hybrid Composite Fiberglass Structure with Embedded Aluminum Phosphate New Fire Retardants Additive: Effect of Fiberglass Types
4.1 Introduction
4.2 Methodology
4.3 Results and Discussion
4.4 Conclusion
References
5 The Effective Elements in Responding on the Oil Spill Occurrences by Selected Marine Companies in Lumut, Perak
5.1 Introduction
5.2 Literature Review
5.2.1 Overview of Oil Spill
5.2.2 Effects of the Oil Spill
5.2.3 Effect to the Fisheries
5.2.4 Effect on the Social and Economy
5.2.5 Preparation and Response Towards Oil Spill Incident
5.3 Methodology
5.3.1 Questionnaire Survey Method
5.3.2 Population, Sample and Respondents
5.3.3 Analysis of Data
5.3.4 The Background of Respondents
5.3.5 The Cronbach’s Alpha
5.3.6 Pilot Test
5.3.7 The Reliability Test and the Cronbach’s Alpha
5.3.8 Normality Test
5.3.9 The Correlation Theoretical Framework
5.3.10 The Rule of Thumb Guideline for Interpretation of Correlation Coefficient
5.3.11 The Analysis of the Correlation
5.4 Conclusion
References
6 A Study on Tool Directions of an Underwater Friction Stir Welded AA5083 Plate Butt Joint
6.1 Introduction
6.2 Experimental Procedure
6.3 Result and Discussion
6.4 Conclusion
References
7 The Challenges of the Oil Spill Preparedness and Responses
7.1 Introduction
7.2 Sources and Consequences of Oil Spill
7.3 Data for Oil Spill Incidents
7.4 Challenges of Oil Spill Incidents
7.5 Collaboration Efforts
7.6 Response Time
7.7 Conclusion
References
8 Ship Crash Prevention Toward Oil Spill Incidents
8.1 Introduction
8.2 Literature Review
8.3 Methodology
8.4 Data Analysis and Discussion
8.5 Conclusion
References
9 Analysis on Wave Generation and Hull: Modification for Fishing Vessels
9.1 Introduction
9.2 Literature Review
9.3 Methodology
9.4 Results and Discussion
9.5 Conclusion
9.6 Recommendations
References
10 Technical Vocational Education Training Pathway for Post-secondary Autistic Students in Malaysia
10.1 Introduction
10.2 Literature Review
10.3 Challenges in the Implementation of TVET for the Autistics
10.4 Relevance of TVET for the Autistics in Malaysia
10.5 Conclusion
References
11 Maritime Students’ Perception of Mental Wellness
11.1 Introduction
11.2 Literature Review
11.3 Methodology
11.4 Results and Discussion
11.5 Discussion of Findings
11.6 Conclusion
References
12 Optimization of Route Selection and Carbon Emission Release for Waste Collection Systems
12.1 Introduction
12.2 Literature Review
12.2.1 Transportation Management
12.2.2 Green Vehicle Routing Problem
12.2.3 Carbon Emission and Fuel Consumption
12.2.4 Waste Collection System
12.3 Methodology
12.3.1 Traveling Salesman Problem
12.4 Result and Discussion
12.4.1 Actual Route
12.4.2 Route Suggestion by TSP
12.4.3 Result of Carbon Emission
12.5 Conclusion
12.6 Recommendation
References
13 A Design of a Dielectric Resonator Antenna for Higher-Order Mode in the Shape of Rectangle for 5G Application
13.1 Introduction
13.2 Literature Review
13.2.1 Shape of Dielectric Resonator Antennas
13.2.2 Type of Feeder
13.2.3 Basic Antenna Parameters
13.3 Methodology
13.3.1 MATLAB Software
13.3.2 CST Microwave Studio Software
13.3.3 Antenna Geometry
13.4 Result and Discussion
13.5 Conclusion
13.6 Recommendation
References
14 Development of a Solar Tracker Using Servo Motor and Light Dependent Resistor for Electrical Boats
14.1 Introduction
14.2 Methodology
14.3 Design Specification
14.4 Result and Discussion
14.5 Conclusion
References
15 Barnacles Growth Monitoring at KL Paus Hull Using Scilab Programming
15.1 Introduction
15.2 Methodology
15.2.1 Selection Area at Hull
15.2.2 Data Processing and Analysis
15.3 Results and Discussion
15.4 Conclusion
References
16 Mitigating Engine Exhaust Emission Using Solenoid as Replacement for the Engine’s Block
16.1 Introduction
16.2 Experimental Setup
16.2.1 Engine Design
16.2.2 Schematic Design
16.2.3 Fabrication of the Prototype
16.2.4 The Procedure and Data Collection
16.3 Results and Discussion
16.3.1 Collected Data
16.3.2 Analysis of Gain Vs Power Consumption
16.3.3 Analysis of Gain vs Engine Speed
16.4 Conclusion and Recommendation
16.5 Funding
References
17 Underwater Noise Study Toward Propeller Rotation
17.1 Introduction
17.2 Methods
17.2.1 Experiment Planning
17.2.2 Implementation of the Experiment
17.2.3 Method to Collect Data
17.3 Conclusion
References
18 A Water Hyacinth Harvester
18.1 Introduction
18.2 Literature Review
18.2.1 What Is Water Hyacinth
18.2.2 History of Water Hyacinth
18.2.3 Description of Water Hyacinth
18.2.4 Effects of Water Hyacinth
18.2.5 Several Ways of Controlling/Eliminating Water Hyacinth
18.3 Methodology
18.3.1 Materials Used for Production of a Water Hyacinth Harvester Model
18.3.2 Fabrication
18.4 Results and Discussion
18.4.1 Draft Analysis
18.4.2 Sprocket Analysis
18.4.3 Propeller Analysis
18.5 Conclusion
References
19 On the Hydropower Energy Generation from Pipelines
19.1 Introduction
19.2 Literature Review
19.2.1 An Overview of Power Generation
19.2.2 Renewable Energy
19.2.3 Hydropower
19.2.4 Crossflow Turbine
19.2.5 Liquid Flow
19.3 Methodology
19.3.1 Parameter of Experiment
19.3.2 Experiment Design
19.4 Data Analysis
19.4.1 Sources of Data
19.4.2 Free Fall Power Output Data
19.4.3 Actual Experiment
19.4.4 Comparison Between 1.5 m Free Fall and Actual Experiment
19.5 Conclusion
References
20 Anti-fouling: Affection and Efficiency
20.1 Introduction
20.2 Anti-fouling Paint Concept
20.2.1 Marine Bio-fouling
20.2.2 Economic and Mother Nature Impact
20.2.3 Marine Bio-fouling Phase
20.2.4 Algae as Organisms That Foul
20.2.5 Climate Change Projected to Have an Effect on Bio-fouling
20.2.6 Marine Domain
20.2.7 Anti-fouling Paint Development
20.2.8 Self-polishing Paint
20.3 Methodology
20.3.1 Binders
20.3.2 Thickness of Paint
20.3.3 Underwater Depth
20.3.4 Sun-Orientation
20.3.5 ASTM A36 Mild Steel
20.3.6 Sandblasting
20.3.7 Data Table
20.4 Result and Discussion
20.5 Conclusion
References
21 Green Port Indicators: A Review
21.1 Introduction
21.2 Aim
21.3 Identification of Important Green Port Indications
21.4 Most Research Green Port Indications
21.5 Conclusion
References
22 Experimental Study of Friction Stir Welding on Dissimilar Thickness of Aluminum Plate Butt Joints
22.1 Introduction
22.2 Experimental Procedure
22.3 Results and Discussion
22.4 Conclusions
References
23 An Improved Simple Sweep Line Algorithm for Delaunay Refinement Triangulation
23.1 Introduction
23.1.1 2D Delaunay Triangulation
23.1.2 2D Delaunay Refinement
23.1.3 Simple Sweep Line Algorithm
23.2 Methodology
23.2.1 Creating Initial Triangulation
23.3 Analysis of the Results
23.3.1 The Efficiency of the Improved Simple Sweep Line Algorithm
23.3.2 The Quality of the Triangles
23.4 Conclusion
References
24 The Effect of Increasing Travel Speed at Constant Rotational Speed on the Formation of Friction Stir Welded AA5083 Butt Joints
24.1 Introduction
24.2 Experimental Setup
24.3 Result and Discussion
24.4 Conclusion
References
25 An Experimental Study on Friction Stir Welding of AA5083 Tee Lap Joints
25.1 Introduction
25.2 Materials
25.3 Experimental Procedure
25.4 Results and Discussion
25.4.1 Surface Appearance of Welded Joints
25.4.2 Cross-Section Inspection of the Weld Zone
25.5 Conclusion
References
26 Experimental Study on Mechanical Characterisation of Hybrid Material Lamination (HML) Subjected to Flexural Strength
26.1 Introduction
26.2 Materials and Methods
26.2.1 Materials
26.2.2 Fabrication and Testing of Composites
26.3 Results and Discussion
26.4 Conclusion
References
27 Experimental Study on Self-Supported Friction Stir Welding on AA5083 Plate Butt Joints
27.1 Introduction
27.2 Experimental Setup
27.3 Result and Discussion
27.4 Conclusion
References
28 Optimization of Welding Parameters for Self-Support Friction Stir Welding (SS-FSW) on AA6063 Pipe Joints
28.1 Introduction
28.2 Experimental Procedure
28.3 Result and Discussion
28.4 Conclusion
References
29 Experimental Study of Friction Stir Welding on AA5052 (1.5 mm) Thin Plate Butt Joints
29.1 Introduction
29.2 Experimental Setup
29.2.1 Friction Stir Welding Tool
29.2.2 Friction Stir Welding Process
29.2.3 Tensile Testing
29.2.4 Macro Structure Testing
29.3 Result and Discussion
29.4 Conclusion
References
30 5G: Performance on the Enhancement of the Asymmetric Arithmetic Coding with Space Time Frequency Block Coding MIMO
30.1 Introduction
30.2 Design Methodology
30.3 Results and Discussion
30.4 Conclusion
References
31 Lane Detection Using Image Processing for Driving Assistance
31.1 Introduction
31.2 Related Works
31.3 Methodology
31.3.1 Image Capture
31.3.2 Image Enhancement
31.3.3 Grayscale Image
31.3.4 Filtering
31.3.5 Binary Image
31.3.6 Hough Transform
31.4 Experimental Results
31.5 Conclusion and Recommendation
References
Recommend Papers

Advanced Engineering for Processes and Technologies II (Advanced Structured Materials, 147) [1st ed. 2021]
 3030673065, 9783030673062

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Advanced Structured Materials

Azman Ismail Wardiah Mohd Dahalan Andreas Öchsner   Editors

Advanced Engineering for Processes and Technologies II

Advanced Structured Materials Volume 147

Series Editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach , Faculty of Mechanical Engineering, Otto von Guericke University Magdeburg, Magdeburg, Sachsen-Anhalt, Germany

Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. The performance of materials can be increased by combining different materials to achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure may arise on different length scales, such as micro-, meso- or macroscale, and offers possible applications in quite diverse fields. This book series addresses the fundamental relationship between materials and their structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc.) and applications. The topics of Advanced Structured Materials include but are not limited to • classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced plastics) • metal matrix composites (MMCs) • micro porous composites • micro channel materials • multilayered materials • cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere structures) • porous materials • truss structures • nanocomposite materials • biomaterials • nanoporous metals • concrete • coated materials • smart materials Advanced Structured Materials is indexed in Google Scholar and Scopus.

More information about this series at http://www.springer.com/series/8611

Azman Ismail · Wardiah Mohd Dahalan · Andreas Öchsner Editors

Advanced Engineering for Processes and Technologies II

Editors Azman Ismail Malaysian Institute of Marine Engineering Technology Universiti Kuala Lumpur Lumut, Perak, Malaysia

Wardiah Mohd Dahalan Malaysian Institute of Marine Engineering Technology Universiti Kuala Lumpur Lumut, Perak, Malaysia

Andreas Öchsner Faculty of Mechanical Engineering Esslingen University Applied Sciences Esslingen am Neckar, Germany

ISSN 1869-8433 ISSN 1869-8441 (electronic) Advanced Structured Materials ISBN 978-3-030-67306-2 ISBN 978-3-030-67307-9 (eBook) https://doi.org/10.1007/978-3-030-67307-9 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book Advanced Engineering for Processes and Technologies II provides a good platform for participating researchers and academicians to share their latest innovation, technology and research findings in the areas of marine engineering technology and applications, sea management as well as engineering education. It offers an opportunity for academicians of the Universiti Kuala Lumpur, Malaysian Institute of Marine Engineering Technology (UniKL MIMET) to exchange ideas and establish a professional network. There are more than 30 papers covering a wide range of topics related to technologies and education including simulation, intellectual discussion, environmental awareness, enhancement of knowledge and skills. The aim of this book focuses more on the numerous technological methods used for the establishment of engineering innovation and productivity through their competitive research findings and the exposure of their relative merits and limitations. The papers shared in this issue will enable other researchers to generate interest and novel ideas that can lead to the discovery of new engineering knowledge. Lumut, Malaysia Lumut, Malaysia Esslingen am Neckar, Germany

Azman Ismail Wardiah Mohd Dahalan Andreas Öchsner

v

Contents

1

2

The Potential of Using Unmanned Aerial Vehicles for Sea Patrol: Case Study at Royal Malaysian Navy, Lumut Base . . . . . . . . Aizat Khairi and Ali ‘Izzat Sa’ari 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Drones Versus UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Functions of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Benefits of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Challenges/Risks of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 The Interview Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Data Analysis on Research Team . . . . . . . . . . . . . . . . . . . . 1.4.3 Function of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.4 Benefits of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.5 Challenges of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Determinants for Successful Ferry Operation: A Delphi Study at Penang Port, Malaysia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amayrol Zakaria, Aminuddin Md Arof, and Ain Nur Najwa Nor Sabinja 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Significance of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Limitations and Scope of Study . . . . . . . . . . . . . . . . . . . . . 2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 2 2 2 4 4 5 5 6 6 7 7 7 7 8 8 9 10 10 13 14 14 15 15 15 15 vii

viii

Contents

2.2.1 Definition of Delphi Study . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Ferry Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Population and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Primary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Secondary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Finding and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Reliability Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Result of First-Round Survey . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Result of Second-Round Survey . . . . . . . . . . . . . . . . . . . . 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4

The Commercial Success Factor Towards Ro-Ro Operation at Port Klang, Malaysia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amayrol Zakaria, Aminuddin Md Arof, and Bisiakri Mohamed Khalifa 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Significance of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Limitations and Scope of Study . . . . . . . . . . . . . . . . . . . . . 3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Definition of Delphi Study . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Definition of Ro/Ro Vessel . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Ro-Ro Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Population and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Primary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Secondary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Finding and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Reliability Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 Result of First-Round Survey . . . . . . . . . . . . . . . . . . . . . . . 3.4.3 Pearson Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid Composite Fiberglass Structure with Embedded Aluminum Phosphate New Fire Retardants Additive: Effect of Fiberglass Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asmalina Mohamed Saat, Syarmela Alaauldin, Asmawi Malik, Md Salim Kamil, and Abdul Latiff Mohd Zaini 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 16 16 16 16 17 17 17 17 18 19 20 21 23 23 24 24 24 25 25 25 25 26 26 26 26 26 27 27 27 28 29 30 30

31

32 34 34

Contents

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6

The Effective Elements in Responding on the Oil Spill Occurrences by Selected Marine Companies in Lumut, Perak . . . . . Ismila Che Ishak, Muhammad Khalil Aminudin Sulaiman, and Muhammad Kasffi Ramli 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Overview of Oil Spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Effects of the Oil Spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Effect to the Fisheries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Effect on the Social and Economy . . . . . . . . . . . . . . . . . . . 5.2.5 Preparation and Response Towards Oil Spill Incident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Questionnaire Survey Method . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Population, Sample and Respondents . . . . . . . . . . . . . . . . 5.3.3 Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4 The Background of Respondents . . . . . . . . . . . . . . . . . . . . 5.3.5 The Cronbach’s Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.6 Pilot Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.7 The Reliability Test and the Cronbach’s Alpha . . . . . . . . 5.3.8 Normality Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.9 The Correlation Theoretical Framework . . . . . . . . . . . . . . 5.3.10 The Rule of Thumb Guideline for Interpretation of Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.11 The Analysis of the Correlation . . . . . . . . . . . . . . . . . . . . . 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A Study on Tool Directions of an Underwater Friction Stir Welded AA5083 Plate Butt Joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iliani Mohd Ikram, Azman Ismail, Ahmad Zakaria, Muhammad Fadhli Makhtar, Fauziah Ab Rahman, and Bakhtiar Ariff Baharudin 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix

38 40 41

41 42 42 42 43 43 43 44 44 44 45 45 46 46 47 47 48 48 49 50 51 53

54 54 56 58 58

x

7

8

9

Contents

The Challenges of the Oil Spill Preparedness and Responses . . . . . . Ismila Che Ishak, Aminuddin Md Arof, Md Redzuan Zoolfakar, Ahmad Shahrul Nizam, and Nurain Jainal 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Sources and Consequences of Oil Spill . . . . . . . . . . . . . . . . . . . . . . 7.3 Data for Oil Spill Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Challenges of Oil Spill Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Collaboration Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ship Crash Prevention Toward Oil Spill Incidents . . . . . . . . . . . . . . . . Ismila Che Ishak, Shahlin Johan, Aminuddin Md Arof, and Md Redzuan Zoolfakar 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 Data Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis on Wave Generation and Hull: Modification for Fishing Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Norfadhlina Khalid, Aqil Azraie Che Shamshudin, and Megat Khalid Puteri Zarina 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

60 60 61 62 63 64 64 64 67

68 69 71 72 74 75 77

77 78 82 84 88 88 88

10 Technical Vocational Education Training Pathway for Post-secondary Autistic Students in Malaysia . . . . . . . . . . . . . . . . . 91 Megat Khalid Puteri Zarina, Sairul Izwan Safie, Mohd Yuzri Mohd Yusop, Cordelia Mason, and Wardiah Mohd Dahalan 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 10.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 10.3 Challenges in the Implementation of TVET for the Autistics . . . . 97 10.4 Relevance of TVET for the Autistics in Malaysia . . . . . . . . . . . . . 98 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Contents

11 Maritime Students’ Perception of Mental Wellness . . . . . . . . . . . . . . . Megat Khalid Puteri Zarina, Saramurni Haryanti Abdul Hamid, Wardiah Mohd. Dahalan, Nurain Jainal, and Aminatulhawa Yahaya 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5 Discussion of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Optimization of Route Selection and Carbon Emission Release for Waste Collection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . Shaiful Bakri Ismail and Dzulhaqeem b Dzulkifli 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 Transportation Management . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Green Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . 12.2.3 Carbon Emission and Fuel Consumption . . . . . . . . . . . . . 12.2.4 Waste Collection System . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3.1 Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . 12.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.1 Actual Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.2 Route Suggestion by TSP . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.3 Result of Carbon Emission . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 A Design of a Dielectric Resonator Antenna for Higher-Order Mode in the Shape of Rectangle for 5G Application . . . . . . . . . . . . . . . Shaiful Bakri Ismail, Muhammad Farihin b Abdul Aziz, and Mohd Najib Mohd Yasin 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Shape of Dielectric Resonator Antennas . . . . . . . . . . . . . . 13.2.2 Type of Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.3 Basic Antenna Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.1 MATLAB Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.2 CST Microwave Studio Software . . . . . . . . . . . . . . . . . . . . 13.3.3 Antenna Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi

103

104 105 107 107 116 117 117 119 120 121 121 121 121 122 122 122 123 123 125 127 127 128 129 131

132 133 133 133 134 135 135 135 135 136 138 139 140

xii

Contents

14 Development of a Solar Tracker Using Servo Motor and Light Dependent Resistor for Electrical Boats . . . . . . . . . . . . . . . . . . . . . . . . . Wardiah Mohd Dahalan, Arif Fikri Kamil Firdaus, Megat Khalid Puteri Zarina, and Noorazlina Mohamid Salleh 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Barnacles Growth Monitoring at KL Paus Hull Using Scilab Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zulzamri Salleh and Abdul Rahman Harun 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.1 Selection Area at Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.2 Data Processing and Analysis . . . . . . . . . . . . . . . . . . . . . . 15.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Mitigating Engine Exhaust Emission Using Solenoid as Replacement for the Engine’s Block . . . . . . . . . . . . . . . . . . . . . . . . . . Md Redzuan Zoolfakar and Muhamad Ammar Muhsin Din 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.1 Engine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.2 Schematic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.3 Fabrication of the Prototype . . . . . . . . . . . . . . . . . . . . . . . . 16.2.4 The Procedure and Data Collection . . . . . . . . . . . . . . . . . . 16.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.1 Collected Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3.2 Analysis of Gain Vs Power Consumption . . . . . . . . . . . . 16.3.3 Analysis of Gain vs Engine Speed . . . . . . . . . . . . . . . . . . . 16.4 Conclusion and Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Underwater Noise Study Toward Propeller Rotation . . . . . . . . . . . . . . Md Redzuan Zoolfakar and Mohammad Shafiq Mohammad Khairul 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.1 Experiment Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.2 Implementation of the Experiment . . . . . . . . . . . . . . . . . . 17.2.3 Method to Collect Data . . . . . . . . . . . . . . . . . . . . . . . . . . . .

141

142 143 145 146 153 154 155 155 157 157 157 158 165 166 167 167 168 168 169 170 170 171 171 171 173 175 176 176 177 177 178 179 180 180

Contents

xiii

17.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 18 A Water Hyacinth Harvester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Md Redzuan Zoolfakar and Ismail Ibrahim Chacha 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.1 What Is Water Hyacinth . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.2 History of Water Hyacinth . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.3 Description of Water Hyacinth . . . . . . . . . . . . . . . . . . . . . . 18.2.4 Effects of Water Hyacinth . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2.5 Several Ways of Controlling/Eliminating Water Hyacinth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.1 Materials Used for Production of a Water Hyacinth Harvester Model . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.1 Draft Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.2 Sprocket Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.3 Propeller Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 On the Hydropower Energy Generation from Pipelines . . . . . . . . . . . Md Redzuan Zoolfakar and Muhammad Haziq A. Majid 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.1 An Overview of Power Generation . . . . . . . . . . . . . . . . . . 19.2.2 Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.3 Hydropower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.4 Crossflow Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.5 Liquid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.1 Parameter of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.1 Sources of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.2 Free Fall Power Output Data . . . . . . . . . . . . . . . . . . . . . . . 19.4.3 Actual Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.4 Comparison Between 1.5 m Free Fall and Actual Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

193 193 194 194 194 194 195 196 198 198 199 200 200 202 203 206 206 209 209 210 210 211 211 212 212 213 213 214 216 216 216 217 220 220 221

xiv

Contents

20 Anti-fouling: Affection and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . Md Redzuan Zoolfakar and Muhammad Amirul Afiq Jesmin 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2 Anti-fouling Paint Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.1 Marine Bio-fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.2 Economic and Mother Nature Impact . . . . . . . . . . . . . . . . 20.2.3 Marine Bio-fouling Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.4 Algae as Organisms That Foul . . . . . . . . . . . . . . . . . . . . . . 20.2.5 Climate Change Projected to Have an Effect on Bio-fouling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.6 Marine Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.7 Anti-fouling Paint Development . . . . . . . . . . . . . . . . . . . . 20.2.8 Self-polishing Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.1 Binders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.2 Thickness of Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.3 Underwater Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.4 Sun-Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.5 ASTM A36 Mild Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.6 Sandblasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.7 Data Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.4 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Green Port Indicators: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aminuddin Md Arof, Amayrol Zakaria, and Noorul Shaiful Fitri Abdul Rahman 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Identification of Important Green Port Indications . . . . . . . . . . . . . 21.4 Most Research Green Port Indications . . . . . . . . . . . . . . . . . . . . . . . 21.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Experimental Study of Friction Stir Welding on Dissimilar Thickness of Aluminum Plate Butt Joints . . . . . . . . . . . . . . . . . . . . . . . . Achilles Enchangan Ulak Anak Mancha, Azman Ismail, Fauziah Ab Rahman, Megat Khalid Puteri Zarina, and Bakhtiar Ariff Baharudin 22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

223 223 224 224 225 225 227 228 228 229 229 230 230 230 230 231 231 231 231 232 233 235 237

238 239 239 254 255 255 257

257 258 259 261 262

Contents

23 An Improved Simple Sweep Line Algorithm for Delaunay Refinement Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normi binti Abdul Hadi, Anis Farhani, and Wardiah Mohd Dahalan 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1.1 2D Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 23.1.2 2D Delaunay Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1.3 Simple Sweep Line Algorithm . . . . . . . . . . . . . . . . . . . . . . 23.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.2.1 Creating Initial Triangulation . . . . . . . . . . . . . . . . . . . . . . . 23.3 Analysis of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.1 The Efficiency of the Improved Simple Sweep Line Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3.2 The Quality of the Triangles . . . . . . . . . . . . . . . . . . . . . . . . 23.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 The Effect of Increasing Travel Speed at Constant Rotational Speed on the Formation of Friction Stir Welded AA5083 Butt Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ahmad Fatihi Azhar, Azman Ismail, Darulihsan Abdul Hamid, Fauziah Ab Rahman, Bakhtiar Ariff Baharudin, Megat Khalid Puteri Zarina, and Achilles Enchangan Ulak Anak Mancha 24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 An Experimental Study on Friction Stir Welding of AA5083 Tee Lap Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Muhammad Fadhli Makhtar, Azman Ismail, Iliani Mohd Ikram, Fauziah Ab Rahman, Bakhtiar Ariff Baharuddin, Megat Khalid Puteri Zarina, Darulihsan Abdul Hamid, and Achilles Enchangan Ulak Anak Mancha 25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25.4.1 Surface Appearance of Welded Joints . . . . . . . . . . . . . . . . 25.4.2 Cross-Section Inspection of the Weld Zone . . . . . . . . . . . 25.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xv

263 263 264 264 265 265 265 267 267 268 269 269

271

272 273 275 276 277 279

280 281 281 283 283 283 283 286

xvi

Contents

26 Experimental Study on Mechanical Characterisation of Hybrid Material Lamination (HML) Subjected to Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Muhammad Afiq Mohd Shuhaimi, Azman Ismail, Fauziah Ab Rahman, Bakhtiar Ariff Baharudin, Megat Khalid Puteri Zarina, Darulihsan Abdul Hamid, and Achilles Enchangan Ulak Anak Mancha 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.2.2 Fabrication and Testing of Composites . . . . . . . . . . . . . . . 26.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Experimental Study on Self-Supported Friction Stir Welding on AA5083 Plate Butt Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mohamad Aidil Azrul Abdul Razak, Azman Ismail, Fauziah Ab Rahman, Bakhtiar Ariff Baharudin, Mohamad Azlan Khalili, Mohd Yusri Mohd Rahim, and Mokhtar Awang 27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Optimization of Welding Parameters for Self-Support Friction Stir Welding (SS-FSW) on AA6063 Pipe Joints . . . . . . . . . . . Mohammad Azhan Mohd Najib Lotpy, Azman Ismail, Fauziah Ab Rahman, Megat Khalid Puteri Zarina, Bakhtiar Ariff Baharudin, Mokhtar Awang, and Darulihsan Abdul Hamid 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Experimental Study of Friction Stir Welding on AA5052 (1.5 mm) Thin Plate Butt Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tuan Muhammad Nurkholish Tuan Anuwa, Azman Ismail, Bakhtiar Ariff Baharudin, and Fauziah Ab Rahman 29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.1 Friction Stir Welding Tool . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.2 Friction Stir Welding Process . . . . . . . . . . . . . . . . . . . . . . .

287

288 288 288 288 289 290 291 293

294 294 295 297 298 299

300 301 302 306 306 307

307 308 309 309

Contents

29.2.3 Tensile Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.4 Macro Structure Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5G: Performance on the Enhancement of the Asymmetric Arithmetic Coding with Space Time Frequency Block Coding MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mohamad Zuhairi Saleh, Noorazlina Mohamid Salih, Hazwani Mohd Radzi, Mohd Shahrizan Mohd Said, Izanoordina Ahmad, and Azlina Idris 30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Lane Detection Using Image Processing for Driving Assistance . . . . Atzroulnizam Abu, Mohd Rohaimi Mohd Dahalan, Ahmad Zawawi Jamaluddin, and Dzul Fadhli Hisyam Mat Daut 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.1 Image Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.2 Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.3 Grayscale Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.5 Binary Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3.6 Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5 Conclusion and Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xvii

309 310 310 312 313

315

316 317 318 319 321 323

323 324 325 325 327 327 328 329 329 331 332 334

About the Editors

Azman Ismail is a Senior Lecturer at the Universiti Kuala Lumpur, Malaysian Institute of Marine Engineering Technology, Malaysia. He is also a registered Professional Technologist with the Malaysia Board of Technologist, Malaysia. He obtained his doctorate degree in mechanical engineering specializing in friction stir welding for pipeline joining at the Universiti Teknologi PETRONAS, Malaysia. He continuously seeks and managed to secure several reputable international funding opportunities in relation to his research interest. He also owns a series of patents in friction stir welding and actively published his research findings in high reputable publications. He won several reputable awards in regard of his research excellence. He is an active researcher in his field of expertise. Apart of his academic and research excellent, he has actively served many conservation works and as part of committee members with the World Wide Fund for Nature of Malaysia (WWF-Malaysia).

xix

xx

About the Editors

Wardiah Mohd Dahalan had received her B.Eng. (Hons.) in Electrical & Electronics Engineering from University of Dundee, Scotland, UK and Master in Decision Science from Universiti Utara Malaysia. She had obtained her Ph.D. in Power System from the University of Malaya, Kuala Lumpur, Malaysia in 2014. She is currently appointed as a Senior Lecturer at the Department of Marine Electrical and Electronics Engineering of University of Kuala Lumpur (UniKL-MIMET). As the Head of Research & Innovation Department, she actively administers all research activities in UniKLMIMET. Supervision of internal and external research grants and organization of all activities related to innovation such as exhibitions, competition and conferences are her core activities at UniKL-MIMET. She participates in research as a principle or co-principle in many research grants. At the same time, she also shares her expertise by becoming either the author or co-author of the publications of local as well as international journals, books and proceedings especially in the area of power system and energy. Besides, she has also successfully supervised postgraduate and undergraduate students of several universities. Such track record has led her to be appointed as a reviewer for various international journal such as IEEE Transaction on Power Systems, IET Generation, Transmission & Distribution, International Journal of Electrical Power & Energy Systems. Her deep research interest includes network reconfiguration, optimization techniques and renewable energy. She is also a member of IEEE, Rina-IMARest, Malaysian Society for Engineering & Technology (MySET) and Malaysia Board of Technologist (MBOT). Andreas Öchsner is a Full Professor of Lightweight Design and Structural Simulation at Esslingen University of Applied Sciences, Germany. Having obtained a Dipl.-Ing. degree in Aeronautical Engineering at the University of Stuttgart (1997), Germany, he served as a research and teaching assistant at the University of Erlangen-Nuremberg from 1997 to 2003, while working to complete his Doctor of Engineering Sciences (Dr.Ing.) degree. From 2003 to 2006, he was an Assistant Professor at the Department of Mechanical Engineering and Head of the Cellular Metals Group affiliated with the University of Aveiro, Portugal. He spent seven

About the Editors

xxi

years (2007–2013) as a Full Professor at the Department of Applied Mechanics, Technical University of Malaysia, where he was also Head of the Advanced Materials and Structure Lab. From 2014 to 2017, he was a Full Professor at the School of Engineering, Griffith University, Australia, and Leader of the Mechanical Engineering Program (Head of Discipline and Program Director).

List of Figures

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 5.1 Fig. 5.2 Fig. 6.1 Fig. 6.2 Fig. 6.3 Fig. 6.4 Fig. 6.5 Fig. 6.6 Fig. 6.7 Fig. 6.8 Fig. 8.1 Fig. 8.2 Fig. 9.1 Fig. 9.2 Fig. 9.3

Hybrid composite fiberglass samples A (3-layer CSM), B (3-layer WR) and C (CSM, WR, CSM) with various percentage of aluminum phosphate (0, 5, 10wt%) (a) Image of Tensile specimen after testing; (b) Image of Flexural specimen after testing; (c) Tensile and Flexural strength; (d) Tensile and Flexural Modulus . . . . . . Hybrid composite fiberglass samples A (3 layers CSM), B (3 layers WR) and C (CSM, WR, CSM) with various percentage of aluminum phosphate (0, 5, 10%) (a) Image of impact specimen after testing; (b) Impact and Brinell hardness testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hybrid composite fiberglass with various percentage of aluminum phosphate (0, 5, 10%) in samples A (3-layer CSM), B (3-layer WR) and C (CSM, WR, CSM) (a) Image of vertical burning sample; Vertical burning at (b) 10 s, (b) 20 s and (c) 30 s vertical burning test . . . . . . . . . . . . . . Correlation theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . Correlation Coefficient Guideline: (Montgomery & Runger, 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UFSW setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UFSW plate setup on Milko 37 . . . . . . . . . . . . . . . . . . . . . . . . . . Milling machine and tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tilt angle and weld direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specimen No. 1—1600 RPM and 16 mm/min (backward) . . . . Specimen No. 2—1600 RPM and 16 mm/min (forward) . . . . . . Specimen No. 3—910 RPM and 16 mm/min (backward) . . . . . Specimen No. 4—910 RPM and 16 mm/min (forward) . . . . . . . The EEZ geographical coverage in NOSCP [DOE, 2014] . . . . . Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flat bottom hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deep V hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Round bottom hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

38

39 48 48 54 55 55 56 56 57 57 57 68 72 80 81 81 xxiii

xxiv

Fig. 9.4 Fig. 9.5 Fig. 9.6 Fig. 9.7 Fig. 9.8 Fig. 9.9 Fig. 9.10 Fig. 9.11 Fig. 9.12 Fig. 9.13 Fig. 12.1 Fig. 12.2 Fig. 13.1 Fig. 13.2 Fig. 13.3 Fig. 13.4 Fig. 13.5 Fig. 14.1 Fig. 14.2 Fig. 14.3 Fig. 14.4 Fig. 14.5 Fig. 14.6 Fig. 14.7 Fig. 14.8 Fig. 14.9 Fig. 14.10 Fig. 14.11 Fig. 15.1 Fig. 15.2 Fig. 15.3 Fig. 15.4 Fig. 15.5

Fig. 15.6

Fig. 15.7

Fig. 15.8

List of Figures

Round bottom hull from perspective view . . . . . . . . . . . . . . . . . Round bottom hull from body plan view . . . . . . . . . . . . . . . . . . . Deep V hull from perspective view . . . . . . . . . . . . . . . . . . . . . . . Deep V hull from body plan view . . . . . . . . . . . . . . . . . . . . . . . . The grid dependent study result for both hulls . . . . . . . . . . . . . . Hull-generated wave altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meshing of 0.2 size cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meshing of 0.4 size cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Meshing of 0.6 size cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8 size cell meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Actual routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimization of the actual routes . . . . . . . . . . . . . . . . . . . . . . . . . Proposed antenna design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Parameter graph result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSWR graph result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain graph result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directivity graph results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Four-quadrant sensor system . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB circuit etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design circuit of solar tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . Design hardware of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Front view design of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Side view design of project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solar tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K.L PAUS vessel hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Barnacles growth at hull surface . . . . . . . . . . . . . . . . . . . . . . . . . Diver under taken the photo of barnacles . . . . . . . . . . . . . . . . . . a Blob analysis photo of 1st month. b Blob analysis photo of 2nd month. c Blob analysis photo of 3rd month . . . . . . . . . . . a Greyscale image detection of 1st month. b Greyscale image detection of 2nd month. c Greyscale image detection of 3rd month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Blue image detection of 1st month. b Blue image detection of 2nd month. c Blue image detection of 3rd month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Edge image detection mode of 1st month. b Edge image detection mode of 2nd month. c Edge image detection mode of 3rd month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Gradient image detection of 1st month. b Gradient image detection of 2nd month. c Gradient image detection of 3rd month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

83 83 83 84 85 87 87 87 87 88 125 126 136 137 137 138 139 143 144 144 145 146 146 147 147 149 150 152 156 156 158 159

160

161

162

163

List of Figures

Fig. 15.9 Fig. 15.10 Fig. 15.11 Fig. 16.1 Fig. 16.2 Fig. 16.3 Fig. 16.4 Fig. 16.5 Fig. 16.6 Fig. 16.7 Fig. 16.8 Fig. 16.9 Fig. 17.1 Fig. 17.2 Fig. 17.3 Fig. 17.4 Fig. 17.5 Fig. 17.6 Fig. 17.7 Fig. 17.8 Fig. 17.9

Fig. 17.10

Fig. 17.11

Fig. 17.12

Fig. 18.1 Fig. 18.2 Fig. 18.3 Fig. 18.4 Fig. 18.5 Fig. 18.6 Fig. 18.7 Fig. 18.8 Fig. 19.1

xxv

Total pixel captured at first month . . . . . . . . . . . . . . . . . . . . . . . . Total pixel captured at second month . . . . . . . . . . . . . . . . . . . . . Total pixel captured at third month . . . . . . . . . . . . . . . . . . . . . . . Designed solenoid engine’s prototype . . . . . . . . . . . . . . . . . . . . . Circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematic design depicting each component used within its block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finished fabrication with installation of the solenoid . . . . . . . . . Flowchart depicting the operation of the prototype . . . . . . . . . . Engine speed control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flowchart depicting the operation of the tachometer using Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graph of gain against power consumption . . . . . . . . . . . . . . . . . Graph of gain against engine speed . . . . . . . . . . . . . . . . . . . . . . . Flowchart of the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembling component flowchart . . . . . . . . . . . . . . . . . . . . . . . . Shaft mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motor mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shaft and motor in tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic component installation . . . . . . . . . . . . . . . . . . . . . . . . Electronic component testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Installation component in the tank . . . . . . . . . . . . . . . . . . . . . . . . Rpm of motor vs depth of the measuring device at 100 mm horizontal position of measuring device and 0 mm vertical center position of measuring device with 44 mm 3 blade propeller size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizontal position of measuring device vs rpm of motor at 90 mm depth of measuring device and 100 mm vertical left position of measuring device with 48 mm 3 blade propeller size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Depth of measuring device vs size of propeller at 900 rpm with 0 mm vertical center position of measuring device and 200 mm horizontal position of measuring device . . . . . . . . Rpm of motor vs size of propeller at 60 mm depth of measuring device and 0 mm vertical center position of measuring device with 100 mm horizontal position . . . . . . . . Water hyacinth harvester model before painting . . . . . . . . . . . . . Water hyacinth harvester model painted and left to dry . . . . . . . Draft analysis of the water hyacinth harvester model . . . . . . . . . Draft analysis graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sprockets used for sprocket analysis . . . . . . . . . . . . . . . . . . . . . . Sprocket analysis graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Different propeller blades used for propeller analysis . . . . . . . . Propeller analysis graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Free fall sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

164 164 165 168 169 169 171 172 172 173 174 175 179 181 181 182 182 182 183 183

187

188

189

190 199 200 201 202 202 204 204 205 215

xxvi

Fig. 19.2 Fig. 19.3 Fig. 19.4 Fig. 19.5 Fig. 19.6 Fig. 19.7 Fig. 19.8 Fig. 19.9 Fig. 19.10 Fig. 20.1 Fig. 20.2 Fig. 20.3 Fig. 22.1 Fig. 22.2 Fig. 23.1 Fig. 23.2 Fig. 24.1 Fig. 24.2 Fig. 24.3 Fig. 24.4 Fig. 25.1 Fig. 25.2 Fig. 25.3 Fig. 25.4 Fig. 25.5

Fig. 25.6

Fig. 26.1

List of Figures

Sketching of hydropower unit placed before pump experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sketching of hydropower unit placed after pump experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Height vs Number of blades at 1/4 diameter . . . . . . . . . . . . . . . Height vs Number of blades at 3/4 diameter . . . . . . . . . . . . . . . Diameter of pipe vs Power of after pump at 24 blade . . . . . . . . Position of pump vs power of pump at 3/4 diameter and 16 number of blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power of pump vs number of blades at after pump and 1/4 diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power of pump vs position of pump at 1/4 diameter and 24 blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Situation of experiment vs Number of blades at 1/4 diameter and 10 W pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binders vs days with one layered thickness of paint while facing sun at 0.5 m depth underwater . . . . . . . . . . . . . . . . Binders vs days with 0.5 m depth underwater while facing sun with three layered thickness of paint . . . . . . . . . . . . . . . . . . . Binders vs days at 0.5 m depth underwater with two layered thickness of paint with sun-orientation . . . . . . . . . . . . . . Non-stepped FSW setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tensile strength of FSWed specimens . . . . . . . . . . . . . . . . . . . . . The number of flipping process for SSL algorithm and ISSL algorithm with DR triangulation . . . . . . . . . . . . . . . . . The percentage quality of triangle for SSL algorithm and ISSL algorithm with DR triangulation . . . . . . . . . . . . . . . . . FSW process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MILKO 37 universal milling machine . . . . . . . . . . . . . . . . . . . . . FSW experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSW tool—threaded pin and flat shoulder . . . . . . . . . . . . . . . . . Schematic illustration of FSW process . . . . . . . . . . . . . . . . . . . . Schematic illustration of tool design . . . . . . . . . . . . . . . . . . . . . . Universal milling machine MILKO 37 . . . . . . . . . . . . . . . . . . . . Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison on the surface appearance of weld zone on different rotational and transverse speeds a. 490 rpm and 16 mm/min b. 910 rpm and 16 mm/min c. 1700 rpm and 16 mm/min d. 1700 rpm and 26 mm/min e. 1700 rpm and 44 mm/min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The cross sections on different rotational and transverse speeds a. 490 rpm and 16 mm/min b. 910 rpm and 16 mm/min c. 1700 rpm and16 mm/min d. 1700 rpm and 26 mm/min e. 1700 rpm and 44 mm/min . . . . . . . . . . . . . . . . . . . . . Ply layer arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

215 215 217 217 218 218 219 219 220 233 234 234 259 260 268 268 272 273 274 274 280 281 281 282

284

285 289

List of Figures

Fig. 26.2 Fig. 26.3 Fig. 27.1 Fig. 27.2 Fig. 28.1 Fig. 28.2 Fig. 28.3 Fig. 28.4 Fig. 28.5 Fig. 28.6 Fig. 29.1 Fig. 30.1 Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 31.1 Fig. 31.2 Fig. 31.3 Fig. 31.4 Fig. 31.5 Fig. 31.6 Fig. 31.7 Fig. 31.8 Fig. 31.9 Fig. 31.10 Fig. 31.11 Fig. 31.12 Fig. 31.13 Fig. 31.14 Fig. 31.15

xxvii

Fibre laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flexural strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Root deformation during FSW process . . . . . . . . . . . . . . . . . . . . Main effects plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross-section view of FSW setup for pipe joining with no internal support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Edge preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deformation measurement due to no internal mandrel provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement of deformation due to different welding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The optimum welding parameters . . . . . . . . . . . . . . . . . . . . . . . . Tensile strength result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . STFBC MIMO F-OFDM with EAAC technique . . . . . . . . . . . . BER measurements with digital modulator QC-LDPC . . . . . . . BER measurements for LDPC digital modulator . . . . . . . . . . . . PAPR measurements for the system . . . . . . . . . . . . . . . . . . . . . . Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Image enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grayscale image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filtering noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binary image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filtering noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parametric description of straight line . . . . . . . . . . . . . . . . . . . . . Detecting the peak pixel on the Hough Transform . . . . . . . . . . . Original image, pattern lane detection . . . . . . . . . . . . . . . . . . . . . Original image, straight lane detection . . . . . . . . . . . . . . . . . . . . Original image, curve lane detection . . . . . . . . . . . . . . . . . . . . . . Original image, yellow lane detection . . . . . . . . . . . . . . . . . . . . . Original image, dim light lane detection . . . . . . . . . . . . . . . . . . . Original image, daylight lane detection . . . . . . . . . . . . . . . . . . . .

290 290 296 297 301 302 302 303 304 305 311 317 319 320 320 326 327 327 328 328 329 329 330 330 331 331 332 332 332 333

List of Tables

Table 1.1 Table 1.2 Table 1.3 Table 1.4 Table 1.5 Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 5.1 Table 5.2 Table 5.3 Table 5.4 Table 5.5 Table 5.6 Table 5.7 Table 5.8 Table 5.9 Table 5.10 Table 5.11

Weight of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Range and endurance of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . Maximum altitude of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . The amount of respondents . . . . . . . . . . . . . . . . . . . . . . . . . . . . ScanEagle specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First-Round Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second-Round Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pearson Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First-Round Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second-Round Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pearson Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of various layer composite fiberglass fabricated by hand lay-up method . . . . . . . . . . . . . . . . . . . . . . . Design layer of hybrid fiberglass composite embedded with aluminum phosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical properties of hybrid fiberglass composite embedded with aluminum phosphate . . . . . . . . . . . . . . . . . . . . Vertical burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of oil spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of population, sample, and respondents . . . . . . . . . . . . . . . The respondents’ background . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of Cronbach’s Alpha . . . . . . . . . . . . . . . . . . . . . . . . . Cronbach’s alpha interpretation . . . . . . . . . . . . . . . . . . . . . . . . . Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of Reliability Statistic . . . . . . . . . . . . . . . . . . . . . . . . Summary of the normality test . . . . . . . . . . . . . . . . . . . . . . . . . The correlation between equipment and response . . . . . . . . . . The correlation between training and response . . . . . . . . . . . . The correlation between management practices and response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 3 7 8 17 17 18 19 27 27 28 28 33 34 37 39 42 44 45 46 46 47 47 47 49 50 50 xxix

xxx

Table 6.1 Table 7.1 Table 7.2 Table 7.3 Table 8.1 Table 8.2 Table 8.3 Table 8.4 Table 8.5 Table 8.6 Table 8.7 Table 8.8 Table 8.9 Table 8.10 Table 9.1 Table 9.2 Table 11.1 Table 11.2 Table 11.3 Table 11.4 Table 11.5 Table 11.6 Table 11.7 Table 11.8 Table 11.9 Table 11.10 Table 11.11 Table 11.12 Table 11.13 Table 11.14 Table 12.1 Table 12.2 Table 13.1 Table 13.2 Table 14.1

List of Tables

Welding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oil spill cases in Malaysia waters from 2012 to 2018 [12] . . . Number of oil spill cases in Malaysian water from 2014 to 2017 [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reported cases of joint effort toward oil spill incidents . . . . . . The oil spill cases in Malaysia waters form 2014 to 2017 [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of oil spill cases at Johor state form 2014 to 2017 [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The ship collision incidents for Malaysia from 2014 to 2017 [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Population, sample, and respondents . . . . . . . . . . . . . . . . . . . . Reliability statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of the respondent demographic . . . . . . . . . . . . . . . . The efficiency of ship operations . . . . . . . . . . . . . . . . . . . . . . . . Test statistics for ship operation . . . . . . . . . . . . . . . . . . . . . . . . The efficiency of ship design . . . . . . . . . . . . . . . . . . . . . . . . . . . Test statistics for ship design . . . . . . . . . . . . . . . . . . . . . . . . . . . Grid dependent study for hulls . . . . . . . . . . . . . . . . . . . . . . . . . Hull generated wave height . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical analysis for item “I am confident with myself” . . . . Statistical analysis for item “I feel satisfied….proud of myself” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical analysis for item “I feel loved and appreciated” . . . Statistical analysis for item “I feel useful” . . . . . . . . . . . . . . . . Statistical analysis for item “I have goals and ambitions” . . . . Statistical analysis for item “I find life exciting ….” . . . . . . . . Statistical analysis for item “I am true to myself” . . . . . . . . . . Statistical analysis for item “My life is well-balanced….” . . . Statistical analysis for item “I am quite calm and level-headed” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical analysis for item “I feel good and at peace with myself” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical analysis for item “I am able to face difficult….” . . Statistical analysis for item “I really enjoy my life now” . . . . Statistical analysis for item “I am able to easily find answers to my problems” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Statistical analysis for item “My morale is good” . . . . . . . . . . Nodes of actual routes by AFN 575 Truck . . . . . . . . . . . . . . . . New routes (nodes selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . Optimized dimensions of the proposed DR antenna . . . . . . . . Summarized results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average output voltage of solar tracker and fixed solar panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56 61 61 63 69 69 69 72 72 73 73 74 74 74 85 86 108 109 109 110 110 111 111 112 113 113 114 114 115 116 124 126 136 137 148

List of Tables

Table 14.2 Table 14.3 Table 14.4 Table 16.1 Table 17.1 Table 17.2 Table 17.3 Table 17.4 Table 18.1 Table 18.2 Table 18.3 Table 18.4 Table 19.1 Table 20.1 Table 21.1 Table 22.1 Table 22.2 Table 22.3 Table 24.1 Table 24.2 Table 24.3 Table 25.1 Table 26.1 Table 27.1 Table 27.2 Table 27.3 Table 27.4 Table 28.1 Table 28.2 Table 28.3 Table 28.4 Table 28.5 Table 29.1 Table 29.2 Table 29.3 Table 29.4 Table 29.5 Table 30.1 Table 30.2 Table 30.3

xxxi

Average output current of solar tracker and fixed solar panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Average output power of solar tracker and fixed solar panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output voltage, current, and power of day 1 . . . . . . . . . . . . . . . Obtained results from the table . . . . . . . . . . . . . . . . . . . . . . . . . Data table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Details for propeller size and numbers of blades . . . . . . . . . . . Variable list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Result table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draft analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions of sprockets used in sprocket analysis . . . . . . . . . Sprocket analysis result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Propeller analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Difference between pipe size and water flow . . . . . . . . . . . . . . Data table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary of greenport research . . . . . . . . . . . . . . . . . . . . . . . . . FSW parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Friction stir welded joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macrograph of specimens at mid-section . . . . . . . . . . . . . . . . . Welding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weld surface finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macro images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specimen specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tool pin profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Root deformation and SNR of each specimen . . . . . . . . . . . . . ANOVA Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Welding parameter and level . . . . . . . . . . . . . . . . . . . . . . . . . . . Design of experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANOVA table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Respond table for S/N ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . Chemical composition of AA5052 . . . . . . . . . . . . . . . . . . . . . . FSW parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSW tool design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Visual inspection result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Macrostructural result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BER measurements with QC-LDPC for both F-OFDM and OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BER Measurements with LDPC for both F-OFDM and OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PAPR measurements for the system . . . . . . . . . . . . . . . . . . . . .

150 151 152 174 184 185 185 186 201 203 203 205 213 232 246 258 260 261 275 275 276 282 289 295 295 296 296 301 303 304 305 305 308 308 309 310 312 319 319 321

Chapter 1

The Potential of Using Unmanned Aerial Vehicles for Sea Patrol: Case Study at Royal Malaysian Navy, Lumut Base Aizat Khairi and Ali ‘Izzat Sa’ari

Abstract This paper analyzes the potential of using unmanned aerial vehicles (UAVs) for sea patrol purposes at the Royal Malaysian Navy, Lumut base. Nowadays, there is a growing need for flying drones or unmanned aerial vehicles with diverse capabilities for both civilian and military applications. UAVs are utilized in carrying out a variety of operations including military tasks, search-and-rescue missions, reconnaissance, and load transportation. This study is using a qualitative approach by conducting an in-depth interview. Purposive sampling was applied by meeting with navy officers who are involved in UAV activities. The data is analyzed by the content analysis method based on the semi-structured question of the interview. As a result, there is a significant interest in the development of novel drones which can autonomously fly in different environments and locations and can perform various missions. In the past decade, the broad spectrum of applications of these drones has received the most attention which led to the invention of various types of drones with different sizes and weights. This study concluded that the potential of using unmanned aerial vehicles for sea patrol purposes, benefits in terms of the maritime sector, and challenges of the existing UAVs with various navigation and control approaches. Keywords Unmanned aerial vehicles (UAVs) · Royal malaysian navy (RMN) · Benefits and challenges

1.1 Introduction Malaysia has a very wide economy exclusive zone (EEZ) and a long cost line. Geographically, to make permanent patrolling or surveillance, always it requires A. Khairi (B) · A. ‘Izzat Sa’ari Malaysian Institute of Marine Engineering Technology Lumut, Universiti Kuala Lumpur, Lumut, Perak, Malaysia e-mail: [email protected] A. ‘Izzat Sa’ari e-mail: [email protected] © The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 A. Ismail et al. (eds.), Advanced Engineering for Processes and Technologies II, Advanced Structured Materials 147, https://doi.org/10.1007/978-3-030-67307-9_1

1

2

A. Khairi and A. ‘Izzat Sa’ari

many assets (vessel) [1]—meaning that it is very costly due to the use of assets all the time for the enforcement. To do patrolling and surveillance the enforcement agency needs something that can operate at minimum costs, requiring less manpower, and less work. So, by operating unmanned aerial vehicles, it seems to have the potential to reduce in terms of operating cost, manpower, and time. Thus, this study is to explore the function of UAVs, to identify the benefits of UAVs, and to analyze the challenges of UAVs for sea patrol activities by the navy. This study has the potential to give benefits for a government based on an in-depth analysis of current research. UAVs and drones have same characteristic that is that they are unmanned [2]. But an UAV is more advanced in terms of its function to use for military purposes. By using the UAV, it can help to save costs in the defense sector. Other than that, it also helps to reduce the risk of life. The most important things are that it helps to save more time and it provides faster information. Therefore, UAVs can contribute to the defense sectors. The use of an UAV is a smart investment as it can save money, energy, and time. This study focuses on the Malaysian water area. It involves the officers of the Royal Malaysian Navy (RMN) at the Lumut area on the purpose of studying the potential of using unmanned aerial vehicles for sea patrol activities at the Malaysian water border. The scope of the study is about the functions, benefits, and challenges of the potential toward the usage of the UAV for sea patrol purposes [3].

1.2 Literature Review 1.2.1 Drones Versus UAVs In a general sense, these two things are the same, but the terms are used in different ways. Generally, a drone is any aircraft that does not have a pilot in it, whether it is operated by software or by a remote pilot [4]. The term UAV generally refers to any military aircraft operated without a pilot that can be reused. These are the rules to follow to use the correct term [5]: 1. 2. 3. 4.

French-speaking: drones; US and UK: UAS; International and other national aviation agencies: RPAS; on the Internet: UAVs and drones;

1.2.2 Functions of UAVs There are various functions of UAVs used by people, core implementation fields as shown below [6]:

1 The Potential of Using Unmanned Aerial … Table 1.1 Weight of UAVs

3

Classification by weight Designation

Weight range

Example

Super Heavy

>2000 kg

Global Hawk

Heavy

200 − 2000 kg

A − 160

Medium

50 − 200 kg

Raven

Light

5 − 50 kg

RPO Midget

Micro

24 h

>1500 km

Predator B

Medium

5 − 24 h

100 − 400 km

Silver Fox

Low