120 53 21MB
English Pages 319 [314] Year 2023
Zhongfu Xiang Wei Xu Anshuang Liu Fanchao Meng
70 Years of China’s Bridges
70 Years of China’s Bridges
Zhongfu Xiang · Wei Xu · Anshuang Liu · Fanchao Meng
70 Years of China’s Bridges
Zhongfu Xiang School of Civil Engineering Chongqing Jiaotong University Chongqing, China Anshuang Liu Bridge Business Department TYLin International Engineering Consulting (China) Company Limited Chongqing, China
Wei Xu Technology Center China Railway Major Bridge Reconnaissance and Design Institute Company Limited. Beijing, China Fanchao Meng Technology Center Communications Construction Company Limited Beijing, China
Translated by Nan Xiang School of Civil Engineering Chongqing Jiaotong University Chongqing, China
ISBN 978-981-99-2877-4 ISBN 978-981-99-2878-1 (eBook) https://doi.org/10.1007/978-981-99-2878-1 Jointly published with Chongqing University Press Co., Ltd. The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the print book from: Chongqing University Press Co., Ltd. Funded by China Classics International © Chongqing University Press Co., Ltd. 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publishers, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publishers nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore
Preface
A bridge is one of the most important structures in transportation infrastructure and plays an irreplaceable role in national economic construction. Up to now, the total number of highway, railway, and urban bridges in China has exceeded 1.2 million. China’s bridges are not only leading the world in numbers, but also in bridge technology. More than half of the bridges with top ten spans in the world are located in China. 2019 is the 70th anniversary of the founding of the People’s Republic of China. In the past 70 years, China has undergone tremendous changes in all aspects, and the people’s political status and living standards have been unprecedentedly improved, of which the bridge construction to support the development of road traffic has played an important role. China has been transformed from a weak country in bridge construction into a world power in the number of bridges, and is entering the ranks of the world powers in bridge technology. In Chap. 1, the book presents objective information on the origin, function, classification, components, and development of bridges in China in an effort to address a more general audience. China’s bridges are large in numbers and come in various types, and it is impossible to illustrate the 70-year development of Chinese bridges through a book. From Chaps. 2–7 different developing periods of bridges are summarised, and these are discussed below. . 1950s—Using foreign experience for reference and laying a foundation for further bridge development. . 1960s to 1970s—Taking full advantage of local materials and innovating in bridge technology. . 1980s—Learning advanced technology and starting rising. . 1990s—Rapidly development and becoming a world power in the number of bridges. . 21st century—Making technological breakthroughs and becoming a world power in bridge technology. . Currently, entering foreign lands and becoming established on the world stage.
v
vi
Preface
In these different development periods, the representative bridges (or bridge groups) are selected and briefly introduced in chronological order of their completion time. The selection of representative bridges focuses on factors such as the level of construction technology, domestic and foreign influences and more. This book introduces 98 bridges (or groups of bridges) located in Mainland, Hong Kong, Macao and Taiwan of China, as well as the 7 representative bridges built in foreign lands involving Asia, Africa, Europe and America. The introduction of representative bridges mainly includes bridge types, structural characteristics, construction methods, technical level, technological innovation, bridge culture and more. The national construction development demand provides opportunities for China’s bridge development, the improvement of national strength provides conditions for China’s bridge construction and the rapid development of Chinese bridges has played a supporting role in the construction of national transportation. In Chap. 8 of this book, the achievements of China’s bridge construction and development in the past 70 years are summarised, and the future development of bridges is envisioned. Through the collection of data related to existing bridges, the basic information index of various large-span bridges has been formed, providing reference for academics, students and engineers. The purpose of writing this book is to let the general public know the arduous process of China’s bridge construction, and to understand that China’s bridge development is inseparable from the attention of the Chinese Communist Party and the country, as well as the country’s reform and opening up and economic development. More importantly, to realise that the improvement of national strength can promote the progress of bridge construction and development. This book is mainly based on selected materials, and some older bridges have very limited information, and omissions are inevitable. The description of each bridge comes from benchmark introductory materials, and references from Internet sources, which are difficult to enumerate. This book has many pictures of which a small number of them were used without the authors’ consent, so the authors can contact the publisher directly for compensation (contact number: 023-88617110). If the copyright is incorrectly cited, please contact the authors of this book. We would like to express sincere appreciation to Mr. Mingfu Zuo, the former Chief Engineer of the CCCC Second Harbour Engineering Company Ltd., who provided a lot of materials and guidance for the completion of the book, and also we are particularly grateful to Chongqing University Press, and in the end, we would like to thank the relevant departments that supported our efforts for the publication of this book. Chongqing, China September 2019
Zhongfu Xiang
About This Book
A bridge is one of the most important artificial structures in transportation infrastructure, and its construction reflects the level of technological, economic and social development of a country. Within 70 years, since the founding of New China, bridge construction made brilliant achievements. China has been transformed from a weak country in bridge construction into a world power in the number of bridges, and it is entering the ranks of the world powers in bridge technology. This book introduces 98 bridges (or bridge groups) built throughout the country, and another 7 representative bridges built overseas with the participation of Chinese enterprises, which reflect the progress and development of China’s bridge construction in design theory, building materials and construction technology. The book aims to let the general public know the arduous process of China’s bridge construction, and realise that the bridge development is inseparable from the national economic and technological development. This book can be used as a reading material for the general public to understand the development of bridge construction in China, and it can also be used as a reference book for academics, students and engineers.
vii
Contents
1 The Origin and Development of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . Origin of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bridge Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bridge Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bridge Classification by Mechanical Characteristics . . . . . . . . . . . . . . . Bridge Classification by Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . Bridge Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Superstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Substructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bridge Development in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 2 3 3 8 8 9 9 10
2 Using Foreign Experience for Reference and Laying a Foundation for Further Bridge Development . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lanxin Railway Yellow River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wuhan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tuotuo River Bridge Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Huanghugang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Baishatuo Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 19 20 22 26 28 32
3 Taking Full Advantage of Local Materials and Innovating in Bridge Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nanpan River Changhong Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Donggong Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Niujiaotuo Jialing River Bridge Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nanjing Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Liujiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beibei Chaoyang Bridge Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuxingmen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yun’an Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 35 37 39 42 45 49 50 54 57
ix
x
Contents
4 Learning Advanced Technology and Starting Rising . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chongqing Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Santai Fujiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jinan Yellow River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ankang Han River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shengli Yellow River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shimen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Luoxi Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 59 61 63 64 65 67 68 69
5 Rapidly Developing and Becoming a World Power in the Number of Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Wangcang East River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Yibin Nanmen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Nanpu Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Jiujiang Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Second Wuhan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Jiangjiehe Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Pumiao Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Wanzhou Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Tsing Ma Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Humen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Ting Kau Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Jiangyin Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Haicang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Egongyan Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Making Technological Breakthrough and Becoming a World Power in Bridge Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Danhe Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yajisha Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wuhu Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Second Nanjing Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beipan River Shuibai Railway Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beipan River Guanxing Highway Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . Lupu Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dagu Bridge Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wushan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuxing Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sai Van Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yitong River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Runyang Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Donghai Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Third Nanjing Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
103 103 106 107 109 110 112 115 116 117 121 123 124 126 127 129 131
Contents
Lhasa River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chongqing Yangtze River Bridge Double-Line Bridge . . . . . . . . . . . . . . . . Yangluo Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Caiyuanba Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sutong Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tongtai Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hangzhou Bay Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sanhao Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tianxingzhou Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xihoumen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chaotianmen Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dashengguan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Danyang-Kunshan Grand Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Guozigou Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jiaozhou Bay Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ganhaizi Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Taizhou Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aizhai Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nanjing Qixiashan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . Ma’anshan Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jiashao Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bosideng Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shuipan Expressway Beipan River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . Taohuayu Yellow River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chongqing Liangjiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yingwuzhou Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qinglong Railway Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Qingshui River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xinyue Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nanpan River Railway Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chishi Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Beipan River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yuntiandu Glass Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Longjiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wuhaihu Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yibin Jinsha River Road-Rail Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yachihe Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shapotou Suspension Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hong Kong-Zhuhai-Macao Bridge Project . . . . . . . . . . . . . . . . . . . . . . . . . . Xingkang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . New Baishatuo Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Haiwen Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nansha Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yangsigang Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Egongyan Rail Transit Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
132 133 135 138 140 143 145 147 149 150 152 154 156 159 161 163 164 165 168 170 173 176 179 180 182 185 187 188 190 191 193 194 195 198 200 202 203 206 207 216 218 220 222 223 225
xii
Contents
China-Russia Heilongjiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pingtan Strait Road-Rail Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hutong Yangtze River Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Danjiang Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
226 228 231 233
7 Entering Foreign Lands and Becoming Established on the World Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8 Looking Back at the Past Whilst Looking Forward to the Future . . . Looking Back at the Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prestressed Concrete Girder Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steel Box Girder Bridge and Steel Truss Girder Bridge . . . . . . . . . . . . . Concrete-Filled Steel Tube Arch Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . Reinforced Concrete Arch Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steel Box Arch Bridge and Steel Truss Arch Bridge . . . . . . . . . . . . . . . Double-Tower and Double Cable Planes Cable-Stayed Bridges with Steel Box, Steel Truss, or Steel-Concrete Composite Main Girder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double-Tower and Double Cable Planes Cable-Stayed Bridge with Concrete Main Girder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double-Tower and Single Cable Plane Cable-Stayed Bridge . . . . . . . . Multi-tower Cable-Stayed Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Tower Cable-Stayed Bridge and Low-Tower Cable-Stayed Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Suspension Bridges with Steel Box, Steel Truss, or Steel-Concrete Composite Stiffening Girder . . . . . . . . . . . . . . . . . . . . Self-Anchored Suspension Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Composite System Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sea-Crossing Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
251 251 253 253 254 256 256
257 257 258 259 261 261 262 262 263 266 269
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Chapter 1
The Origin and Development of Bridges
Origin of Bridges Human needs depend on food, clothing, shelter, and transportation. Human society needs the exchange of material goods, information, and culture, and transportation is one of the prerequisites for exchange. The earth has many mountains and rivers that prevent the formation of roads, to achieve transportation, one needs to cross them. Due to the limitations of social development, there was no concept of bridges at first, and of course, vehicle-based transportation was beyond imagination. People can only reach their destination by hiking through mountains, wading through water, or crossing rivers with the help of rafts. When, where, and why bridges were built is difficult to prove. Based on existing research, bridges appeared in the middle and late of the Neolithic period, which has a history of more than 7000 years. It is generally believed that the appearance of bridges is related to nature. For example, with the help of a tree trunk lying across a stream, it is possible to cross this stream and reach the shore. This is one type of a bridge that was formed naturally. According to the understanding and research practice of bridges, they are generally divided into: beam bridges, arch bridges, and cable load-carrying bridges (also known as suspension bridges and cable-stayed bridges). Beam bridge: A beam bridge is a structure that relies on its bending resistance ability to sustain vertical loads (Fig. 1.1). Arch bridge: An arch ring is the main load-carrying structure of an arch bridge, and it is mainly subjected to compression force under the action of loads (Fig. 1.2). Cable load-carrying bridge: A cable load-carrying bridge is a structure that mainly relies on the cables to carry the self-weight and the load generated by pedestrian and vehicle traffic. Suspension bridges adopt cables as the main load-carrying components, and cable-stayed bridges adopt stay cables as the main load-carrying components (Fig. 1.3).
© Chongqing University Press Co., Ltd. 2023 Z. Xiang et al., 70 Years of China’s Bridges, https://doi.org/10.1007/978-981-99-2878-1_1
1
2
1 The Origin and Development of Bridges
Fig. 1.1 Beam bridge
Fig. 1.2 Arch bridge
Fig. 1.3 Cable load-carrying bridge
Bridge Function A bridge is an artificial construction, from the perspective of its existence and development, which is made for carrying the moving loads in order to smoothly and safely cross obstacles. Those can be rivers, lakes, valleys, straits, existing roads and more. The passage may be for vehicles, pedestrians, railways, canals, pipelines and more. Bridges play a controlling role in highways, railways, and urban roads, generally being called “road throats”. A bridge is not only a functional structure, the key to the land transportation, but also a three-dimensional artwork. Bridges often become symbols of a country or a city (region).
Bridge Classification
3
Bridges are an important part of civil engineering, a product of human civilization, as well as an important symbol of the progress and development of human society. Bridges are made to realise transportation, and they are also inextricably linked to war, religion, folklore and more.
Bridge Classification Bridges are always classified in terms of mechanical characteristics, building materials, applicable spans, and construction conditions.
Bridge Classification by Mechanical Characteristics Bearing components in structural engineering are mainly subjected to tensile force, compression force, and bending moment. Structures consisting of basic bearing components can be mechanically boiled down to three basic systems: beam type, arch type, and suspension type, as well as their combinations.
Beam Bridges A beam bridge is mainly subjected to bending moment and no horizontal reaction force under the action of vertical loads, so it needs to be built by materials with bending resistance. Beam bridges include simply supported girder bridges, continuous girder bridges, continuous rigid-frame bridges and more. According to the different carriageway locations, beam bridges are classified as deck bridges and through bridges (Figs. 1.4 and 1.5).
Fig. 1.4 Deck bridge (beam bridge)
4
1 The Origin and Development of Bridges
Fig. 1.5 Through bridge (beam bridge)
Arch Bridges An arch ring is the main load-carrying structure of an arch bridge. Under the action of vertical loads, an arch springing is mainly subjected to vertical reaction force, bending moment (for fixed end arch), and horizontal thrust. Due to the presence of horizontal thrust, the bending moment of the arch ring is reduced significantly compared with the beam bridge with the same span, and the arch ring mainly in compression. Arch rings are usually made of materials with high compressive capacity (such as brick, stone, concrete, reinforced concrete, steel, and composite materials). According to the different carriageway locations, arch bridges can be classified into deck bridges, half-through bridges, and through bridges (Figs. 1.6, 1.7, and 1.8).
Fig. 1.6 Deck arch bridge
Fig. 1.7 Half-through arch bridge
Bridge Classification
5
Fig. 1.8 Through arch bridge
Cable-Stayed Bridges A cable-stayed bridge is a structural system consisting of main girders, stay cables, and bridge towers. A girder is supported upward by multiple inclined stay cables (made of high-strength steel wires) from the towers, and the dead load of the main girders and other effects are transmitted to the bridge towers through the stay cables, and then to the ground through the bridge tower foundations. From the mechanical point of view, the main girder is a continuous girder supported by multiple elastic supports, and the horizontal component of the cable force resembles the prestressing for the main girder. Therefore, the size of the main girder can be reduced greatly, and the self-weight of structure can be decreased significantly, which not only saves structural materials, but also increases the spanning capacity of the bridge greatly. The tower is made of concrete or steel structure, and the main girder is made of concrete, steel structure, or their combination structure (Fig. 1.9).
Fig. 1.9 Cable-staged bridge
6
1 The Origin and Development of Bridges
Suspension Bridges A suspension bridge is a structural system consisting of main towers, anchorages, main cables, suspenders, and stiffening girders. It is one of the oldest bridge forms and suitable for the construction of super-large span bridges. The main cable is made of high-strength steel wires, serving as the “lifeline” of the suspension bridge; the anchoring structure (including ground anchored and self-anchored) of the main cable is the “heart” of the suspension bridge. The tower is made of concrete or steel structure, and the stiffening girder is mainly made of steel structure (Figs. 1.10 and 1.11).
Fig. 1.10 Ground anchored suspension bridge
Fig. 1.11 Self-anchored suspension bridge
Rigid-Frame Bridges A rigid-frame bridge is a structure that is rigidly linked by girders (or slabs) and columns (or vertical walls). Due to the rigid connection, under the action of vertical loads, the girder is subjected to axial force and bending moment, and the column base is subjected to horizontal reaction force, the mechanical state of the rigid-frame bridge is between the beam bridge and the arch bridge. Therefore, under the same span and loads, the positive bending moment of a rigid-frame bridge is smaller than that of a beam bridge. The structural depth of rigid-frame bridges can be reduced greatly, and it is suitable for situations where a larger clearance under the bridge is required and the structural depth is limited (Fig. 1.12).
Bridge Classification
7
Fig. 1.12 Rigid-frame bridge
Composite System Bridges Composite system bridges refer to bridges composed of different structural systems, which include girder arch composite bridges, cable-stayed and rigid-frame composite bridges, cable-stayed and suspension composite bridges, cable-stayed and arch composite bridges and more (Figs. 1.13 and 1.14).
Fig. 1.13 Rigid-frame and arch composite bridge
Fig. 1.14 Cable-stayed and suspension composite bridge
8
1 The Origin and Development of Bridges
Bridge Classification by Other Methods (A) According to the usage, bridges can be classified into highway bridges, railway bridges, road-rail bridges, agricultural bridges, pedestrian bridges, aqueduct bridges, and other special bridges (such as pipeline bridges). (B) According to the total length and span, bridges are classified as grand (or superlarge) bridge, large bridge, medium bridge, minor bridge, and culvert. (C) According to the building materials, bridges can be classified into masonry bridges, reinforced concrete bridges, prestressed concrete bridges, steel bridges, steel–concrete composite bridges, wooden bridges and more. (D) According to the nature of crossed obstacles, bridges are classified as rivercrossing bridges, sea-crossing bridges, interchange bridges, viaducts, trestle bridges and more. (E) According to the carriageway locations, bridges can be classified into deck bridges (the deck is placed on the top of the main load-carrying structure), through bridges, and half-through bridges (Table 1.1). Table 1.1 Classification by total length and span
Bridge classification
Total length of multispan L/m
Single span l/m
Grand bridges
L > 1 000
l > 150
Large bridges
100 ≤ L ≤ 1 000 40 ≤ l ≤ 150
Medium bridges
30 < L < 100
20 ≤ l < 40
Minor bridges
8 ≤ L ≤ 30
5 ≤ l < 20
Culverts
l