Transcendental Numbers. (AM-16) 9781400882359

The description for this book, Transcendental Numbers. (AM-16), will be forthcoming.

136 21 3MB

English Pages 102 [115] Year 2016

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
CONTENTS
Preface
CHAPTER I. THE EXPONENTIAL FUNCTION
§1. The irrationality of e
§2. The operator f(D)
§3. Approximation to e^x by rational functions
§4. The irrationality of e^a for rational a ≠ 0
§5. The irrationality of π
§6. The isrrationality of tg a for rational a ≠ 0
§7. The function P1e^ρ1X+...+Pme^ρmX
§8. Estimation of R(1)
§9. Estimation of Pk(1) and its denominator
§10. The transcendency of e^a for real algebraic a ≠ 0
§11. The determinant of m approximation forms
§12. Algebraic independence
§13. Another expression for the remainder term
§14. The interpolation formula
§15. Concluding remarks
CHAPTER II. SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS
§1. Functions of type E
§2. Arithmetical lemmas
§3. Approximation forms
§4. Normal systems
§5. The coefficient matrix of the approximation forms
§6. Estimation of Rk and Pkl
§7. The rank of E1(α), . . . ,Em(α)
§8. Algebraic independence
§9. Hypergeometric E-functions
§10. The Bessel differential equation
§11. Determination of the exceptional case
§12. Algebraic relations involving different Bessel functions
§13. The normality condition for Bessel functions
§14. Additional remarks
CHAPTER III. THE TRANSCENDENCY OF a^b FOR IRRATIONAL ALGEBRAIC b AND ALGEBRAIC a ≠ 0, 1
§1. Schneider's proof
§2. Gelfond's proof
§3. Additional remarks
CHAPTER IV. ELLIPTIC FUNCTIONS
§1. Abelian differentials
§2. Elliptic integrals
§3. The approximation form
§4. Conclusion of the proof
§5. Some other results
Bibliography
Recommend Papers

Transcendental Numbers. (AM-16)
 9781400882359

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

ANNALS OF MATHEMATICS STUDIES 0 NUMBER 16

ANNALS OF MATHEMATICS STUDIES Edited by Emil Artin and Marston Morse 1. Algebraic Theory of Numbers, by H e r m a n n W e y l 3. Consistency of the Continuum Hypothesis, by K u r t G o d e l 6. The Calculi of Lambda-Conversion, by A lo nzo C hurch

7. Finite Dimensional Vector Spaces, by P a u l R. H a lm o s 10. Topics in Topology, by S o lo m o n L e f s c h e t z

11. Introduction to Nonlinear Mechanics, by N. K r y l o f f and N. B o g o l i u b o f f 14. Lectures on Differential Equations, by S o lo m o n L e f s c h e t z 15. Topological Methods in the Theory of Functions of a Complex Variable, by M arston M o rse 16. Transcendental Numbers, by C a r l L udwig S ie g e l 17. Probleme General de la Stabilite du Mouvement, by M. A. L ia p o u n o ff 19. Fourier Transforms, by S. B o ch n er and K. C ha n d ra sek h a ra n

20.

Contributions to the Theory of Nonlinear Oscillations, Vol. I, edited by S. L e f s c h e t z

21.

Functional Operators, Vol. I, by J ohn

von

22. Functional Operators, Vol. II, by J ohn

Neum ann von

N eu m a n n

23. Existence Theorems in Partial Differential Equations, by D orothy L B e r n st e in

24. Contributions to the Theory of Games, Vol. I, edited by H. W. A. W. T u c k e r

Kuhn

and

25. Contributions to Fourier Analysis, by A. Zyg m un d , W. T r a n su e , M. M o r se , A. P. C a ld e r o n , and S. B o c h n e r 26. A Theory of Cross-Spaces, by R o b e r t S c h a t t en

27. Isoperimetric Inequalities in Mathematical Physics, by G. G. S z e g o 28. Contributions to the Theory of Games, Vol. II, edited by H. A. W. T u c k er

P olya

and

Kuhn

and

29. Contributions to the Theory of Nonlinear Oscillations, Vol. II, edited by S. L e f s c h e t z 30.

Contributions to the Theory of Riemann Surfaces, edited by L. A h l fo r s et al.

TRANSCENDENTAL NUMBERS B y Carl Ludw ig Siegel

PRINCETON PRINCETON UNIVERSITY PRESS 1949

C O P Y R IG H T

1949,

B Y P R IN C E T O N U N IV E R S IT Y PR ESS

L O N D O N : G E O F F R E Y C U M B E R L E G E , O X FO R D U N IV E R S IT Y PRESS

P R IN T E D IN T H E U N IT E D S T A T E S O F A M E R I C A

PREFACE T h is b o o k le t r e p ro d u c e s w it h s l i g h t ch an ges a co u rse o f le c tu r e s d e liv e r e d S p r in g term 19^6.

i n P r in c e t o n d u r in g th e

I t w ould be m is le a d in g t o c a l l i t a

t h e o r y o f t r a n s c e n d e n t a l num bers, o u r kn ow led ge c o n ­ c e r n in g t r a n s c e n d e n t a l numbers b e in g n a r r o w ly r e s t r i c t e d . The t e x t d e a ls w it h a few s p e c i a l tr a n s c e n d e n c y p roblem s o f some i n t e r e s t , b u t i t

i s more th a n a mere c o l l e c t i o n

o f s c a t t e r e d e x a m p le s , s in c e i t

i n v o lv e s a method w h ich

m igh t be u s e f u l i n th e s e a r c h o f more g e n e r a l r e s u l t s . C a r l Ludwig S i e g e l .

A p r il,

19^9

P r in c e t o n , New J e r s e y .

CONTENTS

Preface

v

CHAPTER I .

THE EXPONENTIAL FUNCTION............................

1

§1 . The I r r a t i o n a l i t y o f e ......................................................... 1 §2. The o p e r a t o r fTD)

..........................................k

§ 3 . A p p r o x im a tio n t o ex b y r a t i o n a l f u n c t i o n s

.

. 6

§4. The i r r a t i o n a l i t y o f e a f o r r a t i o n a l a ^ o .

. . 8

§5. The i r r a t i o n a l i t y o f t t .........................................................9 §6. The i r r a t i o n a l i t y o f t g a f o r r a t i o n a l a^O. 10 § 7 . The f u n c t i o n P e

P1X

+ .

. . + Pme

Pmx

. . . .

12

§8. E s t im a t io n o f R( 1 ) ....................................................

.

16

§9 . E s t im a t io n o f R ( 1 ) and i t s d en o m in a to r . a §10. The tr a n s c e n d e n c y o f e f o r r e a l

.

16

a l g e b r a i c a ^ 0 ..................................................................... 1 7 §11 . The d e te rm in a n t o f m a p p r o x im a tio n fo rm s .

.

18

.

2k

§ 1 2. A lg e b r a i c in d e p e n d e n c e ..................................... § 1 3 . A n o th e r e x p r e s s i o n f o r th e re m a in d e r t e r m §lt.

20

The i n t e r p o l a t i o n f o r m u l a ............................................27

§ 1 5 . C o n c lu d in g r e m a r k s ...............................................................30 CHAPTER I I .

SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS........................................................................ 51

§1 . F u n c tio n s o f ty p e E .......................................................... 33 § 2 . A r i t h m e t i c a l le m m a s .......................................................... 35 §3 . A p p r o x im a tio n f o r m s .................................

38

§ 4 . Normal s y s t e m s ........................................................................ ^0 § 5 . The c o e f f i c i e n t m a tr ix o f th e a p p r o x im a tio n f o r m s .......................................................... ^

v ii

viii

CONTENTS

§6. E s tim a tio n o f R^. and P ^ ..............................................^7 §7 . The rank o f E1 (

. . . ,Em( a ) ............................... §8. A lg e b r a ic in depen den ce.................................................. 52 a ),

§9. H ypergeom etric E - f u n c t io n s ......................................... 5 k §10. The B e s s e l d i f f e r e n t i a l e q u a tio n .............................. 59 §1 1 . D e term in atio n o f th e e x c e p tio n a l ca se . . .

63

§12. A lg e b r a ic r e la t i o n s in v o lv in g d i f f e r e n t B e s s e l f u n c t i o n s ............................................................... 65 § 13 - The n o rm a lity c o n d itio n f o r B e s s e l fu n c tio n s 68 § l t . A d d itio n a l rem arks...........................................................72 CHAPTER I I I .

THE TRANSCENDENCY OF ab FOR IRRATIONAL

ALGEBRAIC b AND ALGEBRAIC a ^0, 1 .......................... 75 § 1 . S c h n e id e r 's p r o o f .........................................................'7 6 §2. G e lfo n d 's p r o o f ............................................................... 80 §3. A d d itio n a l rem arks........................................................... 83 CHAPTER §1 . §2. §3.

IV . ELLIPTIC FU N C T IO N S..............................................83 A b e lia n d i f f e r e n t i a l s .................................................. 85 E l l i p t i c i n t e g r a l s ...........................................................87 The a p p roxim ation form .................................................. 90

§ij-. C o n clu sio n o f th e p r o o f ..............................................92 §5. Some o th e r r e s u l t s ........................................................... 95 B ib lio g r a p h y ........................................................................................1 01 1

CHAPTER I THE EXPONENTIAL FUNCTION The most w id e ly known r e s u l t on t r a n s c e n d e n t a l numbers i s th e tr a n s c e n d e n c y o f x p ro ved b y Lindemann i n 1882.

H is method i s b ased on H e rm ite f s p r e v io u s w ork

who d is c o v e r e d th e tr a n s c e n d e n c y o f e i n 1 873.

B oth

r e s u l t s a r e c o n ta in e d i n th e g e n e r a l Lindem annW e ie r s t r a s s th eo rem w h ich w i l l be p ro ved i n §1 2.

We

s h a l l s t a r t w it h some s im p le r p r o b le m s , n am ely th e i r r a t i o n a l i t y o f e and * and r e l a t e d q u e s t i o n s . § 1 . The i r r a t i o n a l i t y o f e The u s u a l p r o o f o f th e i r r a t i o n a l i t y o f e run s a s fo llo w s .

From th e s e r i e s

we g e t th e d e c o m p o s itio n e

k! (n = i, 2 , .

S in c e

1

2 we f in d t h a t

I . THE EXPONENTIAL FUNCTION

th e r e fo r e

0 < r n < ( n + 1 )! Put n! Rn = a n , th e n th e number a n i s

n! r n = bQ,

i n t e g r a l and

n fo r n = 1 , 2 , . . . . a fo r t io r i,n e is

T h is p r o v e s t h a t n! e = a n + bn a n d , i s n e v e r an in t e g e r .

ir r a tio n a l. The p r o o f i s

still

f o r e ” 1 in s te a d o f e . -i



" n * »n'

In o t h e r w o rd s , e

s im p le r , i f we u se th e s e r i e s

Then

lzl Lk

k!

.

-

' ' n ' fesT

k!

(n=l, 2 , . . . ) and ( 2 |a| + | c | .

On th e o t h e r hand we h ave th e

r e c u r s io n fo rm u la “V i

" Rn = a (n b n - i

-

V

+

CV 0 n -1 '

3 n>

= a + (-1 )n c . I t f o ll o w s t h a t a t l e a s t one o f th e t h r e e numbers ^ 1 ,

Rn+1 i s d i f f e r e n t fro m 0 , s in c e o th e r w is e

a+ c= o, a - c =0 and a= 0 , c= 0 .

T h is .shows th e e x i s t e n c e o f

a p o s i t i v e i n t e g e r v su ch t h a t E^ i s n o t i n t e g r a l , and t h e r e f o r e th e number

I.

THE EXPONENTIAL FUNCTION b + tj ! = ae + b + ce 1

i s d i f f e r e n t from 0, f o r a l l i n t e g r a l b .

T h is means

th a t ae

2

+ be + c + 0

f o r a r b i t r a r y i n t e g e r s a , b , c , n o t a l l 0.

In o t h e r

w o rd s , e i s n o t a q u a d r a t ic i r r a t i o n a l i t y . §2.

The o p e r a t o r f ( D )

We d e n o te b y D th e d i f f e r e n t i a t i o n w it h r e s p e c t t o th e v a r i a b l e x .

If

f(t) = aQ + a t

+ a 2t

2

+ ...

i s a pow er s e r i e s w it h r e a l o r com plex c o e f f i c i e n t s a Q, a 1 ,

...

and