245 25 3MB
English Pages 410 [411] Year 2005
This page intentionally left blank
!"# $%& '! & ()
*& *&+ , , % &-
. ) 11 12 1( 13 21 22 26 27 2) 2: 2( 23 6< 61 62 66 6. 67 6) 6: 6( 63 .< .1 .2 .6 .. .7 .) .: .( .3 7< 71 72 7. 77 7) 7: 7( 73 )< )1 )2 )6 ). )7 )) ): )( )3 :< :1 :2 :) :( (< (1 (2 (6 (. (7
/ & 0 Symmetry and separation of variables - Permanents / 0& / 0 * Continued fractions 0 / % Mathematical theory of entropy The Cauchy problem &4 5 0&& & &-*&& Birkhoff interpolation / !& Graph theory 0 Field extensions and Galois theory 0 The one-dimensional heat equation
Computation and automata /*& 8&9 Theory of matroids %* & 0 &!%& Regular variation &!*&; ' $; Rational approximation of real functions /*& 8&9 Combinatorial geometrics * =&*! Algorithmic algebraic number theory 0 -4& 0 * >& Functional equations containing several variables 5!-4 *4&"# & Iterative functional equations ' >4! Factorization calculus and geometric probability $&>&% & ,, Volterra integral and functional equations $& * Basic hypergeometric series %&& Comparison of statistical experiments
&! & Intervals methods for systems of equations 5&-*!# Exact constants in approximation theory ! 0 +& Combinatorial matrix theory /*& 8&9 Matroid applications # Operator algebras in dynamical systems / %& Model theory * ' # General orthogonal polynomials -*&& Convex bodies 0 =>-4+# Stochastic equations in in®nite dimensions
?& '&% ! ,& /*& =&%& Oriented matroids % !-*& Stopping times and directed processes Computation with ®nitely presented groups
& Banach algebras and the general theory of -algebras -&!@ Handbook of categorical algebra I -&!@ Handbook of categorical algebra II -&!@ Handbook of categorical algebra III
5# &> Introduction to the modern theory of dynamical systems ' -*#; Combinatorial methods in discrete mathematics ' -*#; Probabilistic methods in discrete mathematics * Skew Fields -* 0 & Geometric tomography &%& #& 0 && ;& Pade approximants 0 5?- Bounded arithmetic, propositional logic, and complex theory & Geometric applications of Fourier series and spherical harmonics In®nite dimensional optimization and control theory
* $ Minkowski geometry $ %*; Nonnegative matrices and applications 5 %& Sperner theory ;&#;- " - Eigenspaces of graphs &%& >&& &!@ Combinatorial species and tree-like structures /-* Representations of the classical groups
&* 0!%-#& &4 Design Theory volume I 2 ed
&-* 0 /&4& Orthonormal systems and Banach space geometry &%& &" -* #&+ ? + Special Functions -- Quantum ®eld theory for mathematicians
;; Geometry of sporadic groups I
&* 0!%-#& &4 Design Theory volume II 2 ed # Lie's Structural Approach to PDE Systems !# A! Orthogonal polynomials of several variables 0 +>&+ The foundations of mathematics in the theory of sets & &+ ; Navier±Stokes equations and turbulence & &#& Geometries on Surfaces 5 # Asymptotics and Mellin±Barnes integrals
The Theory of Information and Coding Second Edition
0 - California Institute of Technology
The Pitt Building, Trumpington Street, Cambridge, United Kingdom The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 2004 First published in printed format 2002 ISBN 0-511-03714-7 eBook (Adobe Reader) ISBN 0-521-00095-5 hardback
Contents
Editor's statement
page ;
Section editor's foreword
@
Preface to the ®rst edition
@
Preface to the second edition
@
Introduction >& &
1 12 16
Part one: Information theory 1
Entropy and mutual information 11 -&& ;>& 12 -&& ;&- 16 -&& ;>& ;&- >& &
1: 1: 66 6: .. .3
2
Discrete memoryless channels and their capacity±cost functions 21 *& -$-+B- ,!- 22 *& -*& -% *&& >& &
7< 7< 7( )( :6
3
Discrete memoryless sources and their rate-distortion functions 61 *& & ,!- 62 *& !-& -% *&& >& &
:7 :7 (. 31 36
;
;
Contents
4
The Gaussian channel and source .1 *& ! -*& .2 *& ! !-& >& &
37 37 33 1& &
112 12< 122
6
Survey of advanced topics for part one )1 !- )2 *& -*& -% *&& )6 *& !-& -% *&&
126 126 126 161
Part two: Coding theory 7
Linear codes :1 !-D *& %&& $+-*&-# -& :2 + & &-% q+ + &- -*& :6 % %& &+ -& $&, -& :. % -& :7 + & &-% %&& q+ -*& :) /&%* &! & *& -/ && >& &
163 163 1.6 1.) 1.( 1.3 176 17( 1)7
8
Cyclic codes (1 !- (2 *,&%& &-& , -+-- -& (6 +-- % -& (. !& -&- (7 &-% >!& -&-% -+-- -& >& &
1): 1): 1(1 137 133 217 22< 22(
9
BCH, Reed±Solomon, and related codes 31 !- 32 -& -+-- -& 36 &-% -& &D *& #&+ &H! 3. !-I %* , $+ 37 &-% -& "D *& %* 3) &&B -& 3: &-% "*& &!& & $&&
26< 26< 26. 26) 2.. 2.3 276 2))
Preface 3(
*& 826129 + -& >& &
; 2:: 2(2 232
10
Convolutional codes 1& %4& &- &-* & - $% &-%4>& >-* , $&&+ *& - ! >& , ;! & &- " >& &-&& & && -*%& *$& * * &&$& " #& *& - & "&+ !& "*&& &&& & --&>& J& "*-* - >& $$& >! "*&& * +& $&&& >&-!& , !,J-& , , *&+ !--& + -& $+ *& - ! , ;&+ & &%&&% $>& * &, $ !-* ,K!% &&; *& $$@ , ,!- *& -& *&& , $>>+ & "*& & * - & *& - - ,, %& *& >- &! * J& & >&-!& , *& & ! !$!% , &&-* ,J-! , +& "* $&- %& ! *& >- &! *& &&; & >& -&-& * !--&&& %;% $&& * -*&;& * >?&-;& $&*$ *& J , # ianarlo ota
;
&"
, , *& *& , "* "& - - !-
& , --& ; !-* !$ *& $&--!$ , $*$*& %;& & *;% &-*%+ /& "& *& %&! , !& * *& &-% * %& - , $>& && &-% % &-% , - >& $$-*& +& - -$& "+D * -- $$& , 13.( # *& >* , &" -*$& , *& - *& $ *+ +& *&& * %" %%&% &!& * K&%% J& & , & %+ &;& * >&- & $ , ! + %!%&
*& $&& %$* 8-!+ " %$* &9 &@-&& !- *& " $&- , - !-D -%
*& J 8"*-* *& !>?&- , "9 &&% ! , *& $"& >&!+ , %&>L *& &- >&% >>+ *&+ "*-* *& -*$& >&%! >+ * &-*& ;& !&@$&-& "+ ark 5ac General Editor &- >>+
* *& - *&+ , !- Bell System Tech. J. 27 813.(9 !-D 6:3B6(2L &D -&& && +& 6(2B.& $ . O9 *" * Pe O1 p9Q pO1 Q9 "*&& 1 2n Q 2 O2 n19 : n 2
0.5 0.6 0.7 0.8 0.9 0.10
0.11
O>9 *" * *& $&, -& , *& %! R 2n -*& & +& &@-+ *& & ;!& , Pe
! % R > 1 R *" *" -;& *& ;%!& NN- K$$%II &%+ $ . On k9 -& *& && , % >+ &-& *& ,"% ;&- ! % *&+ & NN+II ;& , -& " , *& R .=: % -&D 11&% #& J& ->! , *& " "+ J *& & $+ *& !>?&- %&" ! " *!& , &&-* $$& , *&+ & $!>*& &-* +&
*! * !;&+ -#"&%& *& !H!& ,*& , , *&+ &+ *& > , * 13.( $$& ! *& !;&+ -#"&%& *& $ $13.( ->! *& !>?&-M &+ &;&+ & , * $$& -& NN *& - *&+ , - !-II * $;& >& $-&& !-& , &&-* & , && O &@ $& 13:6 -&- , *& #&+ $$& *& &;&$ & , , *&+ F27G * " *& !* -!* , 12 , *& .3 $$& -& *& !* $$&& & * *&& &9 2 O$ 19 *& %&& , & -*& 72 O59 *& >+ + &- -*& 6 O$ 19 & & p -& *& transition $>>+ *& crossover $>>+ , *& . O$ 69 *& & *& binomial &; , * , ! , Pe &&;& ,!*& - coef®cient NK ONNN -*& KII9 && *& ! >& , "+ , -*% K >?&- "*! &$& ! , & , N >?&- ! &-+ &H! N ON 19 ON 29 . . . ON K 19=KOK 19 . . . 2 . 1 O ,!*& $$&& , > -&,J -& && 5!* F:G ' 19 *&& & 2k n1 ,,&& "+ *& -*& -! -!& &@-+ k & % *& 2n 1 & > -* !-* $& --! "* 2 n1 $>>+ pk O1 p92 n1 k *& & pk O1 p92 n1 k &H! *& k $>>+ * &@-+ k , *& 2n 1 -$& , *& !-& > & &-&;& & 7 O$ 79 &- $-& + & $& , + $ * *& % , && && *& NN&&II *& & $& NN+ $ II $+-*&-# ,!& * ,&-! -%& !& %&>%&
Part one , *&+
$+
1 !! ,
1.1 Discrete random variables !$$& X -&& ;>& * & "*& %& R fx1 x2 . . .g J& -!>& & pi PfX xi g O $>> - & %+ -! $$&@ 9 *& entropy , X &J& >+ 1 HOX 9 pi % : O1:19 p i i>1
* &J && &> *& >& , *& %* $!$&+ &, !$&-J& , &-&+ *"&;& "& * && *& >&b &$+ >+ H b OX 9 + * *& &$+ , X >&% &!& >&b ! & 2 ! & -& bits O>+ %9 >&e ! & -& nats O! %9 &- , pi + & >+L && > 119 + , R J& *& ! O119 + -;&%&L * -& "& & HOX 9 1 Example 1.1 & X &$&& *& !- & , %& , , & *& R f1 2 6 . 7 )g pi 1) , &-* i && HOX 9 % ) 2:7( > 1::3 h Example 1.2 & R f+ PfX + &$+ ,!- H 2 O p9 "*-* " &J& H O H *&& %*+ ,,&& "+D HOX 9 *& &$+ , *& ;>& X L HO p9 p % p O1 p9 %O1 p9 , < < p < 1L HO p1 p2 . . . pr 9 pi % pi 1 , p $>>+ ;&-9 h 1 2 1 Example 1.3 , *& ! && >+ A , *& n2 On % n9 ;>& X &J& >+ PfX ng OAn %2 n9 1 , n 2 6 . . . *& HOX 9 1 O&& > 129 h ! ! * HOX 9 - >& *!%* , >! X D
&!& , *& ,"% *%
O9 *& ! , NN, II $;& >+ >&; , X O>9 ! NN!-&+II >! X O-9 *& NN &II , X *& &@ ,&" $%$* "& " -! *&& $$&& , + >! *& && *! >& &&+ * HOX 9 & ,- &!& *&& *% &&$ *& - && "& && *&& & + $>& ,!- , ;>& X * *& *& $$&& >& -!& >&" >! + HOX 9 " , *& !+ , - !- $>& &-* x 2 R &J& IOx9 % PfX xg *& I &" ;>& HOX 9 ;&%& *& ,!- IOx9 O&& % 129 - >& &$&& *& ! , , $;& >+ *& &;& fX xg
--% * &$& *& & $>>& &;& *& & , "& &-&;& "*& --! -& &;& O& * --! "* $>>+ 19 $;& , "*&& !#&+ &;& $;& ;&+ %& ! , , &@ $& !$$& +! ;& -&
1.1 Discrete random variables
13
Figure 1.2 *& ,!- IOx9
"* -! "& + NN+& II H!& , +! #& NN/ ;& >& 127PII % NNII "& +! "! *;& %& ;&+ & , -& !-* &@& & %&;+ &@-&&%+ $>>& ;&&+ , +! % NN+&II +! "! *;& && !-* , " , $&$& ;& *& -& #& *& & H!& "! %& NNII ,&" "! %& NN+&II *& ;&%& ! , , $;& "! >& HO p9 "*&& p P f%& &* > 127g &;& ?! >&,& &-&;% *& -&I &$+ +! "! $>>+ >& %*+ @!L * &K&- *& ,- * ! , !-&+ &@ >! *& "& HO p9 &H!+ &!& , * !-&+1 + , $& -&! "#& "&& %& &- *& -&I "& *& "! >&- & &@& &+ >& %* >&% !$&- *& -& , >&% -*& * "+ + NNII * &K&- *& ,- * *& ;>& X &$&&% *& -&I &$+ ;&+ && HO p9 &!& *& & , X
& -&& &@ $& &J& X >+ PfX &; , *& NN>II X $;& & NN>II , , ! J *&& --& *& @ ! $>& ;!& , HOX 9 & , *& 4& , R Theorem 1.1 Let X assume values in R fx1 x2 . . . xr g Then < < HOX 9 < % r Furthermore HOX 9 < iff pi 1 for some i and HOX 9 % r iff pi 1=r for all i Proof -& &-* pi < 1 &-* & pi % p i 1 O119 > !& ;>& *& NN II # , ;>& + & * *& @ ! ;!& , *& ,!- HO p1 p2 . . . pr 9 p O p1 . . . pr 9 %& ;& *& r 1 & $&@ f pi > & X Y H!+ HOX jY 9 -& *& conditional entropy 2 , X %;& Y & * &+ "& !-& & & & x *& %& , X y *& %& , Y &J&D pOx9 PfX xg pO y9 PfY yg pOx y9 PfX x Y yg
O1:29
pOxj y9 PfX xjY yg pOx y9= pO y9 pO yjx9 PfY yjX xg pOx y9= pOx9: O * --+ >%!! , >!&+ &-&+ $$ $& !>-$ " >& & , &@ $& pX Ox9 pY j X O y x9 * && " & *"&;& + "*& -! ! >& & !>!& , *& && x yL && @ $& 1)9 ! &J D 1 HOX jY 9 E % pOxj y9
x y
pOx y9 %
1 : pOxj y9
O1:69
O O169 "& >&;& *& & -;& "& , ! O119D < % < 1 &*; %;&& >+ r 3 s @ , transition probabilities O pO yjx99 *& ! >& pO yjx9 &$&& *& $>>+ * y " >& *& !$! %;& * x *& $! &+ *& ! >& pO yjx9 ! ,+
pO yjx9 >
& pO yjx9 Example 1.4 O*& >+ + &- -*& &+ -!& *& !-9 && r s 2 *& %$* # #& *D
22
Entropy and mutual information
Example 1.5 O *& >+ &!& -*&9 && r 2 s 6 *& $! & >&& NN&& NN& !-* & #&+ * < ! ? 1 ! ? *&
1.1 Discrete random variables ! $ PfY 1jX & &>& h
!$$& " * *& $! & &&-& --% $>>+ >! pOx9 f+ PfX xg pOx9
x 2 f& Y "*-* " &$&& *& output , *& -*& *& ? >! , X Y %;& >+ pOx y9 PfX x Y yg PfX xgPfY yjX xg pOx9 pO yjx9 *&
% >! , Y pO y9 PfY yg PfY yjX xgPfX xg x
pO yjx9 pOx9:
x
+
pOxj y9 pOx y9= pO y9 pO yjx9 pOx9= pO yjx99 pOx99: x9
&-& -&$% &;&+ $! >! *&& $ , ;>&D X *& NN$!II Y *& NN!$!II , *& -*& ;&&+ %;& + $ OX Y 9 , -&& ;>& *&& &@ $! >! !-* * X *& $! Y *& !$!D $+ &J& *& -*&I $>>& >+ pO yjx9 PfY yjX xg *& " %;& + && $ OX Y 9 , ;>& $>& *# , Y NN+II ;& , X * *& &! , % X *!%* -& Example 1.6 & X ! & *& ;!& 1 2 &-* "* $>>+ 1. & Y X 2 *& -&$% # #& *D
2.
Entropy and mutual information
* &@ $& X Y & !-&& +& -& * Y $;& -&>& ! , NN, II >! X O&& > 11&;& * Y y *& -& *& ! >& pOxj y9 PfX xjY yg , J@& y &$&& *& - >! , X %;& * Y y "& &J& *& conditional entropy , X %;& Y yD 1 HOX jY y9 : pOxj y9 % pOxj y9 x
* H!+ &, ;>& &J& *& %& , Y L & ! &J& *& conditional entropy HOX jY 9 &@$&-D HOX jY 9 pO y9 HOX jY y9 y
y
x y
pO y9
pOxj y9 %
x
pOx y9 %
1 pOxj y9
1 pOxj y9
%&& & "* H O169 *! , %;& $ X Y , ;>& HOX jY 9 represents the amount of uncertainty remaining about X after Y has been observed Example 1.7 & *& ,"% "*-* $-! -& , *& >+ &!& -*& , @ $& 17D
1.1 Discrete random variables
27
&& pX O&; , Y &!-& ! !-&+ >! X h /& " $&& &-*- &
HOX jY 9 * " >& !&,! &
Theorem 1.2 Let X Y Z be discrete random variables. Using obvious notation Osee Eqs. O1299 de®ne, for each z AOz9 x y pO y9 pOzjx y9 Then HOX jY 9 < HO Z9 EO% A9: Proof
HOX jY 9 E %
1 pOxj y9
pOx y z9 %
x yz
z
pOz9
1 : pOxj y9
pOx y z9 1 % : pOz9 pOxj y9 x y
2)
Entropy and mutual information
J@& z pOx y z9= pOz9 pOx yjz9 $>>+ >! "& - $$+ 0&&I &H!+ *& & ! *& &! 1 pOx y z9 HOX jY 9 < : pOz9 % pOz9 x y pOxj y9 z
z
pOz9 %
pOx y z9 1 : pOz9 % pOz9 pOxj y9 z x y
! pOx y z9= pOxj y9 pOx y z9 pO y9= pOx y9 pO y9 pOzjx y9:
h
Corollary ONNFano's inequalityII9 Let X and Y be random variables, each taking values in the set fx1 x2 . . . xr g Let Pe PfX 6 Y g Then HOX jY 9 < HOPe 9 Pe %Or
19:
Proof *&& 12 &J& Z < , X Y Z 1 , X 6 Y *& AO& ,&!&L && > 111G I &H!+ * &&% *&!- &$& *# , HOX jY 9 *& ! , , &&& && & X -& Y #" & "+ && & X J && & "*&*& X Y L , X Y "& & & , *"&;& X 6 Y *&& & r 1 & % $>& , X && % "*&*& X Y &H!;& && % *& ;>& Z &J& *& $,L -& HO Z9 HOPe 9 #& HOPe 9 > * , X 6 Y O* *$$& "* $>>+ Pe 9 *& ! , , &&& J ! "*-* , *& & % r 1 ;!& X * >+ *&& 11 %Or 19 Example 1.8 /& $$+ I &H!+ *& -*& , @ $& 1: && r PfX Y g 26 Pe 16 I >! *! HOX jY 9 < 1 6 1 H 6 6 % 2 16 % 6 26 % 62 16 % 2 % 6 16 % 2 1:272< > O &@ $& "*&& I &H!+ & >&& && >1119 h " -& HOX 9 &$&& ! !-&+ >! X >&,& "& #" Y HOX jY 9 &$&& ! !-&+ ,& *& ,,&&-& HOX 9 HOX jY 9 ! &$&& *& ! , , $;& >! X >+ Y * $ H!+ -& *& mutual information >&"&& X Y && >+ IOX L Y 9D
1.1 Discrete random variables IOX L Y 9 HOX 9
HOX jY 9:
2: O1:.9
O @ $& 1: I 2 OX L Y 9 & &*& $;& &%;& O&% @ $& 1: IO& & O *& ;&%&9 >+ >&;% *& !$! , *& -*& Theorem 1.3 For any discrete random variables X and Y IOX L Y 9 > && , &@ $& * *& -;-& ;OX L Y 9 , &@ $& &- @ $& 1) *&& &+ ;&J& ;OX L Y 9 < >! I 2 OX L Y 9 1 >9 % H O1.9BO1:9 $>& $;& &&+ &;& $ ,- >! !! , D IOX L Y 9 IOY L X 9 IOX L Y 9 HOY 9
O1:(9 HOY jX 9
IOX L Y 9 HOX 9 HOY 9
O1:39 HOX Y 9
O1:1+ HOX Y 9
pOx y9 %
x y
1 : pOx y9
O1:119
*& $, , *&& &*$ & &, > 11. *&+ - >& &+ & & >&& >+ & , *& '& % *" % 17 ,!,! &@&-& %;& , &$& , &-* , *& & $& >+ % 17 &@ $& H O1(9 &@$&& *& NN !!+II , !! , L HOX Y 9 HOX 9 HOY jX 9 >&- & NN! !-&+ >! X Y *& ! , ! !-&+ >! X ! !-&+ >! Y -& X #"II " , "& & %;& *&& ;>& X Y Z "& &J& *& !! , IOX Y L Z9 ONN*& ! , , X Y $;& >! ZII9 %!+ "* H O1:9 >+
Figure 1.5
& - '& %
, H O1.9 O1(9BO11+ *& $>>& pO yjx9 2 >+ *& $>>& pOzj y9 pOzjx y9 /& *;& &+ >&;& * %;& + $ , ;>& OX Y 9 $>& &;& "* X *& $! Y *& !$! "&;& !& * ,
6
& *&& &@ $ , I !-* * X Y Z *;& *& &*$ , % 1) && -& * &-&+ !,J-& - , * * OX Y Z9 , #; -* * pOzj y9 pOzjx y9 O& Z &$& X + *!%* Y 9 " &I ! & * OX Y Z9 #; -* % 1) *& >+
*&& 1. IOX L Z9 < IOX Y L Z9 -& OX Y Z9 #; -* IOX Y L Z9 IOY L Z9 &-& IOX L Z9 < IOY L Z9 " , OX Y Z9 #; -* O Z Y X 9 O&& > 1179 *&-& IOX L Z9 < IOX L Y 9 -& * &@& &+ $ , *&&- $$ &+ , #; -* "& $+ *&& Theorem 1.5 If OX Y Z9 is a Markov chain, then IOX L Y 9 IOX L Z9 < IOY L Z9:
h
&,&% % % 1) "& J * I & NN&#II , , *& I & && - O& , Y &J& ,!- , X Z &J& ,!- , Y 9 "& - *# , *& -& % 1) # , $-&% -J%! @-+ *&& 17 + * $-&% - + &+ , M O $ %&&4 , * && H O11799 Example 1.9 & X 1 X 2 X 6 >& &$&& ;>&L *& OX 1 X 1 X 2 X 1 X 2 X 6 9 #; -* IOX 1 L X 1 X 2 X 6 9 < IOX 1 L X 1 X 2 9 O&& > 11) 1639 h Example 1.10 % 1) ! & * X &->& >+ PfX * I & >+ + &- -*& "* & $>>+ p *& IOX L Y 9 1
H 2 O p9
IOX L Z9 1
H 2 F2 pO1
> p9G
>:
*&& " ,!- & $& ,"D O &@& , *
Figure 1.6 , *&I ;&" , #; -*
1.1 Discrete random variables
61
&@ $& && > 11( 12! *& -;&@+ , IOX L Y 9 "*& ;&"& ,!- &*& , *& $! $>>& pOx9 , *& $>>& pO yjx9 Theorem 1.6 IOX L Y 9 is a convex \ function of the input probabilities pOx9 Proof /& *# , *& $>>& pO yjx9 >&% J@& -& " $! ;>& X 1 X 2 "* $>>+ >! p1 Ox9 p2 Ox9 , X I $>>+ >! -;&@ - > pOx9 á p1 Ox9 â p2 Ox9 "& ! *" * áIOX 1 L Y1 9 âIOX 2 L Y2 9 < IOX L Y 9 "*&& Y1 Y2 Y & *& -*& !$! -&$% X 1 X 2 X &$&-;&+ * -& *& ,"% $! "*-* !& >;! **D áIOX 1 L Y1 9 âIOX 2 L Y2 9 IOX L Y 9 pO yjx9 pO yjx9 á p1 Ox y9 % â p2 Ox y9 % p1 O y9 p2 O y9 x y x y
O&& H:O1::99
pO yjx9 Fá p1 Ox y9 â p2 Ox y9G % pO y9 x y á
x y
p1 Ox y9 %
pO y9 pO y9 p2 Ox y9 % â : p1 O y9 p2 O y9 x y
O1:129
/& " $$+ 0&&I &H!+ &-* , *& >;& ! &@ $& pO y9 pO y9 p1 Ox y9 % p1 Ox y9 < % : p p O y9 1 1 O y9 x y x y
62
Entropy and mutual information
!
x y
p1 Ox y9
pO y9 pO y9 p1 Ox y9 p1 O y9 p1 O y9 x y
pO y9 . p1 O y9 p1 O y9 y
1: &-& *& J !
O1129 < & ;>& >!& --% PfX ig pi
*& IOX L X 9 HOX 9 HO p1 p2 . . . pr 9 *& &! " ," ,
*&& 1) h Theorem 1.7 IOX L Y 9 is convex [ in the transition probabilities pO yjx9 Proof && *& $! $>>& pOx9 & J@& >! "& & %;& " & , $>>& p1 O yjx9 p2 O yjx9 -;&@ - > pO yjx9 á p1 O yjx9 â p2 O yjx9 &H!& *" * IOX L Y 9 < áIOX L Y1 9 âIOX L Y2 9
O1:169
"*&& Y Y1 Y2 & *& -*& !$! -&$% *& $>>& pO yjx9 p1 O yjx9 p2 O yjx9 % !% >;! *& ,,&&-& >&"&& *& &, %* & , O1169 O&& H O1799 pOxj y9 Fá p1 Ox y9 â p2 Ox y9G % pOx9 x y x y
á
x y
*& J !
á p1 Ox y9 % p1 Ox y9 %
p1 Oxj y9 pOx9
x y
â p2 Ox y9 %
p2 Oxj y9 pOx9
pOxj y9 pOxj y9 p2 Ox y9 % â : O1:1.9 p1 Oxj y9 p 2 Oxj y9 x y
O11.9 >+ 0&&I &H!+
1.2 Discrete random vectors pOxj y9 < á % p1 Ox y9 p1 Oxj y9 x y á %
x y
á %
y
+ *& &- !
66
pOxj y9 p1 O y9
p1 O y9 &"&& $ , ;>& * ;>& * &- "& " %&& 4& *& &J &J& HOX9 HOXjY9 IOXL Y9 "*&& X Y & >+ ;&- ! $ , ;&" * ;&- X OX 1 X 2 . . . X n 9 ?! J& , ;>& X i *& >! , X O*& ? >! , X 1 X 2 . . . X n 9 *& ,!- pOx1 x2 . . . xn 9 PfX 1 x1 X 2 x2 . . . X n xn g "*&& &-* xi *& %& , X i %-& *& &J &- 11 *! -;-& *& && * HOX 9 HOX jY 9 IOX L Y 9 &$& + *& >! ,!- pOx9 pO yjx9 &- + "+ *& ,- * *& ;!& ! & >+ X Y & & ! >& &-& "& - &&+ &@& *&& &J >+ ;&-L , &@ $& *& &$+ , X OX 1 . . . X n 9 &J& 1 HOX9 pOx9 % pOx9 x "*&& *& ! &@&& ;& ;&- x *& %& , X >;!+ *&& 11B1: & !&
*& %&&4 , *&& 17 >+ ;&- * $-!+ $ $$- "*-* "& " -! & *& & , - !- +& *" % 1: O-, % ! - !- +& 9 $$+% *&& 17 *& !> #; -* OU X V9 "& %& IOUL V9 < IOXL V9 + IOXL V9 < IOXL Y9 &-& , *& ;>& , % 1: IOUL V9 < IOXL Y9:
O1:179
* &! -& *& data-processing theorem & >!+ + * *& , $-&% O*& "# & >+ *& &-& &-& , % 1:9 - + &+ , M + , &@ $& * *& + -*& !$! Y % 1: - & , >! *& !-& &H!&-& U * & *& &-&I & & V O/*& * !& *&&-+ *& $-&% , *& &-& &;&*&& &H!& && * , !>&9 /& " - & $ , &H!& ;;% IOXL Y9 n i1 IOX i L Yi 9 "*&& X OX 1 X 2 . . . X n 9 Y OY1 Y2 . . . Yn 9 & $ , n & ;&-
Theorem 1.8 If the components OX 1 X 2 . . . X n 9 of X are independent, then IOXL Y9 >
n
IOX i L Yi 9:
i1
Figure 1.7 %&& -
!- +&
1.2 Discrete random vectors
67
Proof &% E && &@$&- *& ? $& $-& , X Y "& *;& pOxjy9 IOXL Y9 E % Osee Eq: O1:799 pOx9 pOxjy9 E % pOx1 9 pOx2 9 . . . pOxn 9 -& X 1 X 2 . . . X n & ! & &$&& *& *& * n n pOxi j yi 9 IOX i Yi 9 E % pOxi 9 i1 i1
pOx1 j y1 9 . . . pOxn j yn 9 E % : pOx1 9 . . . pOxn 9
&-& n
IOX i Yi 9
IOXL Y9
i1
pOx1 j y1 9 . . . pOxn j yn 9 E % pOxjy9 pOx1 j y1 9 . . . pOxn j yn 9 < % E < pOxjy9
>+ 0&&I &H!+ -& * &@$&- pOx y9f g pOx1 j y1 9 . . . pOxn j yn 9 pOy9 xy
xy
1:
h
Example 1.11 & X 1 X 2 . . . X n >& &$&& &-+ >!& ;>& "* - &$+ H & ð >& $& ! , *& & f1 2 . . . ng & Yi X ðOi9 *& IOXL Y9 nH >! IOX i L Yi 9 kH "*&& k *& ! >& , J@& $ , ð * *& ! >& , &%& i "* ðOi9 i $-! , ð * J@& $ , &@ $& , ðOi9 i 1 O n9 *& IOX i L Yi 9 < O&& > 1269 h , "& *# , OY1 Y2 . . . Yn 9 *& n !$! , + -*& "*& *& $! & X 1 X 2 . . . X n *&& 1( & ! * , *& $! & &$&& Y $;& & , >! X * *& ! ,
6)
Entropy and mutual information
, $;& >! &-* X i >+ *& -&$% Yi *& &@ *&& " & ! * , "& $ *& ! $ , &$&&-& >! *& X i ! & & * *& OX Y9 -*& & +& * pO y1 . . . yn jx1 . . . xn 9
n
pO yi jxi 9
O1:1)9
i1
*& ! H!& ,,&&M Theorem 1.9 If X OX 1 . . . X n 9 and Y OY1 . . . Yn 9 are random vectors and the channel is memoryless, that is, if O11)9 holds, then IOXL Y9
1269 h Corollary If X OX 1 X 2 . . . X n 9 then HOX9
& ;&- "*-* - ! & !-!>& ! >& , ;!& - $&&+ %! & & , * !>?&- $;& >& ;&+ ,J-! "& * -& !&;& "* ,&" && &+ ,- &,& *& &&& && &&"*&&7 , &
"& * && *& &$+ HOX 9 - >& &J& , -&& ;>& >! "+ ! ! >& J&M "&;& *& &J , *& !! , >&"&& $ X Y , ;>& O ;&-9 - >& %&&4& *& -&& -& !-* & &&% !&,! "+ *& #&+ * %&&4 *& , discrete quantization , ;>& X , X ;>& "* >! ,!- FOx9 PfX < xg , fSi i 1 2 . . .g P $) , *& & & R J& -!>& ! >& , &>&%!& &!>& !>& *& quantization of X >+
6(
Entropy and mutual information
P && >+ FX G p >+
&&+ >+ FX G *& -&&
;>& &J&
PfFX G ig PfX 2 Si g dFOx9: Si
, X Y & $ , ;>& "& &J& *& IOX L Y 9 IOX L Y 9 !$ IOFX G P L FY G Q 9 PQ
!! , O1:1:9
"*&& *& NN!$II #& ;& $ , $ P Q , *& & & + , X OX 1 . . . X r 9 Y OY1 . . . Ys 9 & $ , ;&- IOXL Y9 !$ IOFXGL FYG9 O1:1:99 "*&& *& !$& ! #& ;& $ FXG OFX 1 G . . . FX r G9 FYG OFY1 . . . FYs G9 , *& - $& ;>&
$ P1 >& &J& & , P2 , &;&+ & P1 !>& , & & P2 -& * , P1 &J& & , P2 FX G P 2 && - ,!- , FX G P 1 >+ *&& 17 O && > 1229 IOFX G P 2 L Y 9 < IOFX G P 1 L Y 9 , + ;>& Y * >&; *" * *& NN!$II &J O11:9 ,- # , *& $ P Q >&- & -&%+ J& && &+ *" * , P1 P2 Q1 Q2 & $ FX G1 FX G2 FY G1 FY G2 & *& -&$% -&& ;>& *&& &@ $ P Q -&$% ;>& FX G FY G !-* * IOFX GL FY G9 > IOFX G i L FY G i 9
i 1 2:
O1:1(9
" , X Y & &+ -&& "* %& fx1 x2 . . .g f y1 y2 . . .g >+ &&-% X $ * & - & * & xi Y $ * & - & * & yj -&+ IOFX GL FY G9 IOX L Y 9 H!+ -&+ &J& & -! -&& IOFX GL FY G9 &J O11:9 &!-& ! && &J &J O11:9 , IOX Y 9 ,+ $& >! -;&& , -!+ - $!% IOX Y 9 , %;& $ , ;>& &+ "& "! #& *;& , ! , IOX Y 9 %! H O179 O1)9 O1:9 ;;% &% *& * ! >! !,!&+ %&& !-* , ! &@: "&;& , X Y & !,J-&+ * !-* , ! &@ "& * " && & ! ! & * X Y *;& -!! ? &+ & * *&&
1.3 Nondiscrete random variables and vectors
63
&@ -!! &%;& ,!- pOx y9 &J& , $ Ox y9 , & ! >& !-* * , A B & &; *& & & PfX 2 A Y 2 Bg pOx y9 dx dy: B A
* ! *& ;! && , X Y & %;& >+ 1 1 pOx9 pOx y9 dy qO y9 pOx y9 dx 1
1
*& - && >+ pOx y9 pOxj y9 qO y9
pO yjx9
& ! " ! & * *& &% 1 1 hOX 9 dx pOx9 % pOx9 1 1 1 hOX jY 9 pOx y9 % >* &@
1
1
pOx y9 : pOx9
O1:139 1 dx dy pOxj y9
O1:2+ & , x 1 , x< , x1 , >& -!>& & , $ !-* * Äxi xi x 1 J& å1 , Äxi , å2 , i + -*& O yj 9 !-* * å1 , Ä yj , å2 & FX G && *& H!4 , X >& , *& $ , *& & & -% , *& *, $& &; Fxi 1 xi 9 & FY G && *& H!4 , Y -&$ % *& $ -% , *& &; F y j 1 yj 9 /& " !-& *& -& D xi pOi9 PfFX G ig pOx9 dx qO j9 PfFY G jg
xi
1
yj
1
yj
qO y9 dy
pOi j9 PfFX G i FY G jg
yj xi yj
1
xi
pOx y9 dx dy 1
pOij j9 PfFX G ijFY G jg pOi j9=qO j9:
.
& -!! >+ *& ;!& *&& , &%(
&
pOi9 Äxi pOsi 9 qO j9 Ä yj qOtj 9
O1:219
, & si 2 Fxi 1 xi G tj 2 F y j 1 yj G + >+ ;#% " & &;!& *&& ( "& *;& pOi j9
yj xi yj
1
xi
pOxj y9qO y9 dx dy 1
pOsij jtij 9
yj xi yj
1
xi
qO y9 dx dy 1
pOsij jtij 9Äxi Ä yj qOtj 9
O1:229
, & $ Osij tij 9 Fxi 1 xi G 3 F y j 1 yj G &-& pOij j9 Äxi pOsij jtij 9:
O1:269
" >+ H O1.9 IOFX GL FY G9 H OFX G9 HOFX GjFY G9 1 i j pOi j9 % pOij j9 + O1219 "& *;& HOFX G9
Äxi pOsi 9 %
i
i pOi9 % pOi9
1 1 Äxi pOsi 9 % : pOsi 9 ÄOx i9 i
1
O1:2.9
O12.9 *& J ! $$@ *& &% , hOX 9 O&& O11399 , &!%* å2 " -;&%& *& &- ! -;&%& O ! & * % å1 1 9 >&-!& Äxi . å1 + HOFX GjFY G9
Äxi Ä yj pOsij jtij 9qOtj 9 %
i j
i
Äxi %
1 pOsij jtij 9
1 Ä yj pOsij jtij 9qOtj 9: Äxi j
O1:279
*& J ! O1279 *& &% , &$,!- $$@ pOx y9 % pOxj y9 1 , å2 &!%* " $$@ & hOX jY 9
*& &- ! &- *& &- ! O12.9 -& >+ O1229
1.3 Nondiscrete random variables and vectors 1 yj xi Ä yj pOsij jtij 9qOtj 9 pOx y9 dx dy Äxi j y j 1 xi 1 j
.1
1 . Äxi pOsi 9: Äxi
*! "& J+ > IOFX GL FY G9
Äxi pOsi 9 %
i
i j
1 pOsi 9
Äxi Ä yj pOsij jtij 9qOtj 9 %
1 : pOsij jtij 9
O1:2)9
! "& *;& &+ >&;& *& J ! O12)9 $$@ hOx9 *& &- hOX jY 9 >+ #% *& X Y $ -&%+ J& & å2 ! 1669 * & hOX 9 !!+ -& *& differential entropy , X %!* , *& + absolute entropy
*& -&& -& "& - &+ &@& *& &J , IOX L Y 9 hOX 9 ;&- &J& IOXL Y9 %&& ?! #& -&& H!4 , &-* - $& &$&+ hOX9 ! & *& &@&-& , n & -!! &+ pOx9 &J& hOX9 pOx9 % pOx9 dx Example 1.13 & X OX 1 X 2 . . . X n 9 "*&& *& X i & &$&&
.2
Entropy and mutual information
! O 9 ;>& "* *& &+ , X *& ,!- gOx9
n i1
O2ðó 2i 9
1=2
& ì i ;-& ó 2i *&
&@$
Oxi
ì i 92
2ó 2i
*& ,,&& &$+ , X &+ - $!&D 1 hOX9 gOx9 % dx gOx9 n Oxi 2 1=2 gOx9 % O2ðó i 9 &@$ i1
n i1
O"*&& gi Oxi 9 O1= O-&
g i Oxi 9
1 2
%O2ðó 2i 9
2ðó 2i 9 &@$F Oxi
n i1
2 1 2F %O2ðó i 9
Oxi
:
ì i 92
O1:2:9
2ó 2i
ì i 92
dx
2ó 2i
dxi
ì i 92 =2ó 2i G9
1G
gi Oxi 9 dxi 1 g i Oxi 9Oxi ì i 92 dxi ó 2i 9 n % 2ðeOó 21 . . . ó 2n 91= n : 2
*& $&- -& n 1 "& *;& hOX 9 12 % 2ðeó 2 :
h
&&% $ ,- * % n & ;>& "* %;& ;-& &$&& ! ;>& *;& *& %& ,,&& &$+ Theorem 1.11 If X OX 1 X 2 . . . X n 9 has density pOx9 and if EFOX i ì i 92 G ó 2i i 1 2 . . . n then hOX9 < On=29 % 2ðeOó 21 ó 22 . . . ó 2n 91= n with equality iff pOx9 gOx9 Osee De®nition O12:99 almost everywhere *& % &+ pi Ox9 , X i J& pi Ox9 dx 1 Proof + *+$*& pi Ox9Ox ì i 92 dx ó 2i &-& ," , *& - $! , @ $& 116 *
1.3 Nondiscrete random variables and vectors 1 n pOx9 % dx % 2ðeOó 21 . . . ó 2n 91= n : gOx9 2
.6
*! , Y && n & ;&- >!& --% *& ! &+ gOx9 gOx9 hOX9 hOY9 pOx9 % dx: pOx9 + 0&&I &H!+ *"&;& *& & &% < % gOx9 dx 16. 1679 h ;% &!& >&K+ *!%* *& &&% $- , ,,&& &$+ "& &! ! --& !! , ! *" "* & &!& , -&>+ * *&& 16 1. 17 1( 13 & !& *& %&& -& *&& 16 1( 13 $&& &! ,J-!&L *&& & & & # *& $, Theorem 1.3. *& ,- * IOXL Y9 > < ," &&+ , *& ,- * IOFXGL FYG9 > < , + -&& H!4 FXG FYG &;& , FXG FYG & &$&& & FXG FYG IOFXGL FYG9 < , H!4L *&-& IOXL Y9 < >+ H O11:9 + , X Y & &$&& $>& J H!4 FXG FYG "*-* & &$&& O&& > 16)9 IOXL Y9 > IOFXGL FYG9 . &; & >;& "& *;& * , X 1 . . . X n & &$&& & FX 1 G FX 2 G . . . FX n G >+
*&& 1( IOFXGL FYG9 >
n
IOFX i GL FYi G9:
O1:2(9
i1
! *& H!4 , *& FX i G FYi G >&- & -&%+ J& *& &, & , O12(9 $$-*& IOXL Y9 *& %* & $$-*& n i1 IOX i L Yi 9 Theorem 1.9. && *& $>& $$$&+ %&&4& *& *+$*& pOyjx9
n i1
pO yi jxi 9
O1:239
..
Entropy and mutual information
O&& H O11)99 * $$&+ "! & ! , J& !+ , - $>>+ >! O&& &% && F.G ' }'1& >+ de®ning -*& >& & +& , O1239 * , &;&+ H!4 , *& $! !$! , *& -*& * - !!+ &+ ;&,+ O&& > .2:9 * *& ;%& * *&& 13 &&+ $& IOFXGL FYG9
& $;% * IOX Y L Z9 > IOY L Z9 %&& -& , &;&+ H!4 , X Y Z "& %& IOFX G FY GL F ZG9 > IOFY GL F ZG9 &-+ , *&& 1. "&;& &+ $;& *& &- $ , *&& 1. & * IOX Y L Z9 IOY L Z9 ,, OX Y Z9 , #; -* *& $>& * , OX Y Z9 #; -* , FX G F ZG & $ , X Z + >& $>& J $ FY G , Y !-* * OFX G FY G F ZG9 #; -* O&& > 16:B1639 /& $&,& >!& *& && "* && $, >! &,& & #& F2.G *$& 6 "*&& *& -& &! $;& "* ,! %3
Problems 1.1 *" * *& -;& < % 1=< < $& &J O119 , HOX 9 ,-& , "& #& &*& , *& ,"% " ! $D O9 HOX 9 -!! ,!- , *& $>>+ ;&- p O p1 p2 . . .9 O>9 , X Y & ;>& &J& *& & $& $-& , X Y & *& HOX 9 HOY 9 1.2 , X &J& @ $& 16 *" * HOX 9 1 1.3 & X >& -&& ;>& & f >& &;!& ,!- &J& *& %& , X *" * HOX 9 > HF f OX 9G "* &H!+ ,, f & & *& & fxD PfX xg . >+ >! O p1 p2 . . . pn 9 &%& m < < m < n
Problems
.7
m &J& qm 1 j1 pj *" * HO p1 . . . pn 9 < HO p1 . . . pm qm 9 qm %On m9 /*& & &H!+ *P 1.7 & f Ox9 >& + ,!- &J& , x > 1 , X -&& ;>& "* n %& R fx1 . . . xn g &J& *& f entropy , X >+ H f OX 9 i1 pi f O1= pi 9 "*&& pi PfX xi g O+ &$+D f Ox9 % x:9 O9 , f Ox9 -;&@ \ J *& >& $>& !$$& >! HOX 9 * &$& + n *" >+ &@ $& * *& $>>+ >! * -*&;& * @ ! + >& !H!& O>9 , f Ox9 % x=x *" * H f OX 9 , %Oe9=e F f Ox9 -;&@ \G O-9 /# *& $ O>9 *" * ,- H f OX 9 < %O69=6 "* &H!+ ,, &@-+ *&& , *& pi I &H! 16 *& & & & &H!&-& , &%;& & ! >& !-* * *& ! ZOs9 n e a n s -;&%& , !,J-&+ %& s O &@ $& , *&& & + J&+ + aI * - J&9 &-* á . < &J& ÖOá9 !$ f HOp9D pn an ág *" * ÖOá9 %;& $ & -+ >+ ÖOá9 % ZOs9 sZ9Os9= ZOs9 "*&& Z9Os9= ZOs9 á F HintD , an s pn an á &J& &" $>>+ = ZOs9 >! >+ qn e $$+ 0&&I &H!+ *& ! pn %Oqn = pn 9G , a Oa1 a2 . . . aN 9 * + J&+ + - $& *" * %$* , ÖOá9 ;&! á # #& *D
;& *& -& , *& $ A B C 1.9 & p O p1 p2 . . .9>& -!>& $>>+ >! * pn > < , 1 n 1 2 . . . 1 n1 pn 1 *" * , n1 pn % n -;&%& *& HOp9 J& ;&&+, HOp9 J& p & O& p1 > p2 > 9 *" * pn % n , 1 *" >+ &@ $& * *& & & !& , *& ! $ , -+ $$& 1.10 & X Y >& *& ;>& &J& @ $& 1) *" * ;OX Y 9 *& , "*-* X + ;& , Y 1.11 &-&+ !,J-& - *& ? $>>+ >! pOx y z9 , &H!+ * *&& 12 % * &! , + r > 2 + ;!& < < Pe < 1 -!- ;>& X Y "* %& f1 2 . . . rg , "*-* I &H!+ O*& -+ *&& 129 *$
.)
Entropy and mutual information
1.12 *" * I &H!+ $& >* !$$& >! "& >! Pe & , HOX jY 9 &$& *& !$$& >! *&!-+ 1.13 !$$& X Y & ;>& "*-* >* ! & ;!& J& %!$ &J& Z Y X !% *&& 12 *" * HOX jY 9 < HO Z9 , X Z & &$&& *" * HOX jY 9 HO Z9 1.14 '&,+ H O179BO11& ;>& !, + >!& f& Y ! % *& ;!& f>+ p &H!;& %& "* & $>>+ 12F1 O1 2 p9 n G *&-& * n!1 IOX < L X n 9 &"&& X Y %;& ZII9 &J& >+ IOX L Y j Z9
x yz
pOx y z9 %
pOx yjz9 pOxjz9 pO yjz9
"*&& "& $ *& !! -;& >! *& ! ;&D O9 IOX L Y j Z9 IOY L X j Z9 O>9 IOX L Y Z9 IOX L Z9 IOX L Y j Z9 O-9 IOX L Y j Z9 > < "* &H!+ ,, OX Z Y 9 #; -* 1.20 O& #; & A Oaij 9 >& r 3 r -*- @ * r -*9 1 aij > < a 1 , i >& , & PfY jjX ig aij & & J& --& , -$& , * -*&D
" & O p< p1 . . . p r 1 9 p >& $>>+ ;&- "*-* >& "* r 1 pi aij j ;& #&-* >!& --% p O9 *" * X < X 1 X 2 . . . & &-+ >!& ;>& & "* - & *&+ &$&&P O *& &H!&-&
Problems
.:
X < X 1 X 2 . . . -& J& #; -*L && && F.G ' 1 *$& A' A' 9 O>9 *& O$& + >9 entropy , *& #; -* X < X 1 . . . &J& H
n!1
1 HOX < X 1 . . . X n 1 9: n
*" * H
i j
pi aij %
1 : aij
O-9 $!& *& >& $>>+ >! *& &$+ , *& #; -* "*& $>>+ -& & %;& >+
q q1 . . . q r 1 < < < < 1 q1 q2 . . . q< á 1 á < < < 1 .. : 1 1 â 1 â < < . 2 2 < < 1 < q r 1 q< . . . q r 2 O *& &@ $& &-* " &, -+-- *, , *& $&-&% &9 1.21 IOX L Y 9 -+ -;&@ \ pOx9P -+ -;&@ [ pO yjx9P 1.22 & X OX 1 . . . X n 9 Y OY1 . . . Ym 9 >& -&& ;&- & f g >& &;!& ,!- , n m & ;>& &$&-;&+ *" * IF f OX9L gOY9G < IOXL Y9 1.23 !$$+ *& % & @ $& 111 112 n 1.24 *" * &H!+ * *&& 1( ,, pOxjy9 i1 pOxi j yi 9 , Ox y9 1.25 *" * &H!+ * *&& 13 ,, Y1 Y2 . . . Yn & &$&& *&-& * &H!+ * *& -+ *&& 13 ,, X 1 . . . X n & &$&& 1.26 ;& $;&D , X Y OY1 Y2 . . . Yn 9 & -&& ;&- n IOXL Y9 < i1 IOXL Yi 9 1.27 & X Z >& &$&& ;>& "* -!! &+ ,!- & Y X Z , hOY 9 hO Z9 &@ *" * IOX L Y 9 hOY 9 hO Z9 *" * *& & , ! * , X Z & ;&- 1.28 O!9 & X Z >& &$&& ;>& X -&& Z "* -!! &+ & Y X Z *" * Y * -!! &+ * , hOY 9 hO Z9 &@ *& IOX L Y 9 hOY 9 hO Z9 *" * *& & &! * , X Z & ;&- 1.29 , X OX 1 . . . X n 9 & &$&& ! ;>& "* & ì i ;-& ó 2i X9 OX 19 . . . X 9n 9 & "* & ì9i ;-& ó 9i 2 *" * X X9 OX 1 X 19 . . . X n X 9n 9 & "* & ì i ì9i ;-& ó 2i ó 9i 2 1.30 , X 1 X 2 . . . X n & &$&& ;>& "* ,,&& &$& hOX i 9 hi *" *
.(
Entropy and mutual information hOX 1 X n 9 >
1 2 %
n
!
e
2 hi
i1
"* &H!+ ,, *& X i & ! "* ;-& ó 2i e 2 hi =2ðe 1.31 , X * -!! &+ *" * !$ HOFX G9 1 "*&& *& !$& ! #& ;& -&& H!4 , X 1.32 !- ;>& "*& &+ pOx9 -!! , & x !-* * hOX 9 1 1.33 & X >& n & ;&- "* -!! n & &+ pOx9 ,,&& &$+ hOX9 & f >& -!!+ ,,&& >& && $$% , !-& n$-& En &, *" * hF f OX9G hOX 9 pOx9 %jJ j dx "*&& J J Ox1 . . . xn 9 *& 0-> , *& , f 1.34 & X OX 1 . . . X n 9 >& ;>& "* &+ !$$& EFOX i ì i 9OX j ì j 9G r? , i j ;& * hOX9
& "*& -;-& @ O r? 9 O&& && F.G ' 2 &- )9 1.35 & f Ox9 >& -!! &;!& ,!- &J& &; I *& >?&- , * $>& J ! *" %& *& ,,&& &$+ hOX 9 - = I >& , X * &+ ,!- * J& pOx9 < , x 2 I pOx9 f Ox9 dx A "*&& ,O f 9 , A , !$O f 9 O &@ $& , I O 1 19 f Ox9 Ox ì92 "& " ;& >+ &" !& *& & & -& , *&& 1119 &J& GOs9 I e sf Ox9 dx *" * *&& &@ s< "* G9Os< 9=GOs< 9 A &J& qOx9 e s< f Ox9 =GOs< 9 , x 2 I qOx9 < , x 2 = I *" * hOX 9 < % GOs< 9 s< A "* &H!+ ,, X I &+ qOx9 &;&+"*&& F HintD && > 1(G $$+ * %&& &-*H!& *&& -&D O9 f Ox9 % x I O1 19 O>9 f Ox9 x I O& *" * *&& &@ -&& H!4 FX G FY G "*-* & &$&&
*& &@ *&& $>& & , && "* & #"&%& , %&& #; -*L && , &@ $& && F.G ' 2 &- ' 1.37 & OX Y Z9 >& #; -* !-* * , + H!4 FX G F ZG *&& &@ H!4 FY G !-* * OFX G FY G F ZG9 -&& #; -* ;& * IOX L Y Z9 IOX L Y 9 1.38 & #; -* , *& , OX f OX 9 Z9 OX Y f OY 99 *" * !-* -* *;& *& $$&+ &->& > 16: *&-& * *&& 1. * , *& F HintD *& OX f OX 9 Z9 -& , fSi g *& X $ & f OSi 9 >& *& Y $G
Notes
.3
1.39 & X 1 X 2 X 6 >& &$&& &-+ >!& ! ; >& "* & < ;-& 1 *" * *& &H!&-& OX Y Z9 "*&& X X 1 Y X 1 X 2 Z X 1 X 2 X 6 #; -* O&& @ $& 139 ! *" * , FX G F ZG & H!4 , X Z "*-* >* ! & & * " ;!& OFX G FY G F ZG9 &;& #; -* , + H!4 FY G , Y
Notes 1 O$ 139 !$$& +! -! # H!& Qn D NN/ ;& >& nPII *# >! *" +! !-&+ O@&+M9 "! -&& n &-&& 2 O$ 2! X 9 6 O$ 219 *@ *& - ?% NN-&&II & J& countable
*&& "! >& $>& &% ! I *;& -!>& $! !$! $*>& >! & -K- "* --&$& , *&&- !%& "& * !!+ . O$ 2:9 *&& &J #& && + "*& pOx9 pO y9 6 ?&- %;& *& J *&& -*$& , #&I ># F2.G ) O$ 6:9 $ , *& & & R -&- , !>& OSi 9 "* [ Si R Si \ Sj ö , i 6 j : O$ 6(9 * & & -+ !& #& F2.G *" * IOX L Y 9 &*& J& &H! *& &@$&-& ;!& *& ? $& $-& , X Y , *& %* , *& #+ &;;& dì xy =dì x 3 ì y "*&& ì xy *& ? $>>+ &!& , OX Y 9 ì x 3 ì y *& $!- , *& % X Y &!& *! + >-+ dì xy IOX L Y 9 % dì xy : dì x 3 ì y ( O$ .&% $$& *&& * , f Ox9 -!! f Ox9 gOx9 dx f Ox 9 < S gOx9 dx , & x< 2 S O&& $ F2G *&& 1.1) , S &@ $&9 3 O$ ..9 &*$ >&, %!& #&I $, & *& && &! * IOX Y L Z9 IOY L Z9 ,, OX Y Z9 #; -* *! , *& conditional mutual information IOX L ZjY 9 &J& >+ IOX L ZjY 9 IOX Y L Z9 IOY L Z9 *& &H!& &! IOX L ZjY 9 < ,, OX Y Z9 #; -* *$& 6 #& "*+ &;& *& $$&& , - !! , & J %;& >- &!&*&&- &J , IOX L ZjY 9 *& & %;& >;& *& $;& ;! && &+ $$&& #& IOX L ZjY 9 > < O&H!;& *&& 1.9 IOX L ZjY 9 IO ZL X jY 9 O&& > 1139 J+ $;& * IOX L ZjY 9 < ,, OX Y Z9 #; + &- 6) *& $;& * IOX L ZjY 9 IOX Y L Z9 IOY L Z9 >!& *& &! 5 %;
2 -&& & +& -*& *& -$-+B- ,!-
2.1 The capacity±cost function
discrete memoryless channel O L && $ 2< ,,9 -*-&4& >+ " J& &D AX *& input alphabet AY *& output alphabet & , transition probabilities pO yjx9 &J& , &-* x 2 AX y 2 AY "*-* ,+ pO yjx9 > >& & -;&&+ $+& r 3 s -*- @1 Q Oqxy 9 "*& " & &@& >+ AX -! >+ AY !*& & -& "* &-* $! x *&& &%;& ! >& bOx9 *& NN-II2 , x !+ AX " >& #& f>+ * y1 . . . yn *& !$! %;& * x1 . . . xn n *& $! *& $!- i1 pOxi jxi 9 *& - , &% x1 . . . xn &J& bOx9
n
bOxi 9:
O2:19
i1
, *& n $! & &->& $>>-+ >+ *& ;>& X OX 1 X 2 . . . X n 9 "* ? >! ,!- pOx9 pOx1 . . . xn 9 *& average cost &J& >+ EFbOX9G
n
EFbOX i 9G
i1
pOx9bOx9:
O2:29
x
&-* n 1 2 . . . "& &J& *& n* capacity±cost function Cn O â9 , *& -*& >+ Cn O â9
@fIOXL Y9 D EFbOX9G < nâg
O2:69
"*&& *& @ ! O269 &@&& ;& $ OX Y9 OOX 1 . . . X n 9 OY1 . . . Y n 99 , n & ;&- , "*-* O9 *& - $>>& PfYjXg & -& "* *& %;&
72
Discrete memoryless channels and their capacity±cost functions
-*& $>>& & PfY1 y1 . . . Y n yn jX 1 x1 . . . n X n xn g i1 pO yi jxi 9 O9 *& $! ;&- X J& EFbOX9G < nâ /& * - $! ;&- X test sourceL , J& EFbOX9G < nâ "& * - âadmissible &-& *& @ 4 O269 #& ;& n dimensional âadmissible test sources &;& & # >! *& ,!- Cn O â9 & & & * , %;& @ , $>>& O pO yjx99 *& ,!- IOXL Y9 -!! ,!- , *& $! >! pOx9 *& & , !-* >! ,+% pOx9bOx9 EFbOX9G < nâ - $- !>& , r n & !-& $-& *& ,!- IOXL Y9 -!+ -*&;& @ ! ;!&6 * *& & NN @II *& * NN!$II $$& O269 &- -& * , "& &J& â >+ â
bOx9
O2:.9
x2 AX
*& EFbOX9G > n:â Cn O â9 &J& + , â > â + >&;& * , â1 . â2 *& & , & !-& ,+% EFbOX9G < nâ2 !>& , *& & , & !-& ,+% EFbOX9G < nâ1 Cn O â1 9 > Cn O â2 9 & Cn O â9 -&% ,!- , â > â
*& capacity±cost ,!-. , *& -*& " &J& >+ 1 CO â9 !$ Cn O â9: n n
O2:79
*& ! >& CO â9 " ! ! &$&& *& @ ! ! , , * - >& & &>+ ;& *& -*& $& ! , & , *& -*& ! >& !& !-* "+ * *& ;&%& - < â $& ! , & *& $&-& & & , * &! *I channel coding theorem " >& $;& &- 22 ! >?&- * &- &;&$ &-*H!& , - $!% CO â9 , %;& - ,!- /& >&% >+ *"% * *& ,!- Cn O â9 & convex Theorem 2.1 Cn O â9 is a convex \ function of â > â Proof & á1 á2 > ! p1 Ox9 p2 Ox9 "*-* -*&;& Cn O â1 9 Cn O â2 9 &$&-;&+ * , Y1 Y2 && *& !$! -&$% X1 X2 *&
2.1 The capacity±cost function EFbOX i 9G < nâ i i 1 2: IOX i L Yi 9 Cn O â i 9
76 O2:)9 O2::9
&J& ,!*& & !-& X "* >! pOx9 á1 p1 Ox9 á2 p2 Ox9 & Y >& *& -&$% !$! *& EFbOX9G x pOx9bOx9 á1 x p1 Ox9bOx9 á2 x p2 Ox9bOx9 á1 EFbOX1 9G á2 EFbOX2 9G < nOá1 â1 á2 â2 9 O&& O2)99 X Oá1 â1 á2 â2 9 >& *! IOXL Y9 < Cn Oá1 â1 á2 â2 9 ! -& IOXL Y9 -;&@ \ ,!- , *& $! $>>+ >! pOx9 O *&& 1)9 IOXL Y9 > á1 IOX1 L Y1 9 á2 IOX2 L Y2 9 á1 Cn O â1 9 á2 Cn O â2 9 O&& H O2:99 h ! &@ &! *" * *& $$&+ , >& &J O279 > ,& 7 Theorem 2.2 For any Cn O â9 nC1 O â9 for all n 1 2 . . . and all â > â Proof & X OX 1 . . . X n 9 >& â >& & !-& * -*&;& Cn O â9 * EFbOX9G < nâ
O2:(9
IOXL Y9 Cn O â9
O2:39
"*&& Y OY1 . . . Y n 9 *& -&$% -*& !$! + *&& 13 IOXL Y9
%% O239 O21! ,!- *& & X & Y1 Y2 . . . Y n >& *& -&$% -*& !$! *& EFbOX9G EFbOX i 9G < nâ >+ O21.9 n IOXL Y9 i1 IOX i L Y i 9 O *&& 1( 139 nC1 O â9 *! h Cn O â9 > nC1 O â9 "& Corollary For a memoryless channel CO â9 C1 O â9 Osee de®nition O2799 FN.B. This result is not true for channels with memory; see Prob. 21 â -;&@+ $& * -!! , â . â L &&
$$&@ O -!! â â L && > 279 /& * " %!& * CO â9 -!+ - , !,J-&+ %& â & ! &J& C @ @fCO â9 D â > â g * C
@
@fIOX L Y 9g
O2:1)9
"*&& *& @ ! #& ;& O& &9 & !-& X "* >! EFbOX 9G C @ -& *& capacity , *& -*& , "& &J& â
@
fEFbOX 9G D IOX L Y 9 C
@ g
O2:1:9
*& -&+ CO â9 C @ , â > â @ CO â9 , C @ , â , â @ ," , *& ,- * CO â9 -&% -;&@ \ , â > â
2.1 The capacity±cost function
77
- , â > â @ * CO â9 -!+ -+ -&% , â â < â @ O&& > 2)9 &-& * &; CO â9 -! >& &J& >+ CO â9
@fIOX L Y 9 D EFbOX 9G âg
â
% *&& ,- "& && * +$- CO â9 -!;& %* # *" % 21 Example 2.1 O-!&9
Q
q p
p q
bO& & ;& *& -*& & %&&+ , >+ â > â CO â9 !%* &$&& *& @ ! & "*-* , - >& & ;& *& -*& , *& ;&%& $! - ! >& < â ! >?&- * &- #& *&& ;%!& &% $&-& & *& ,"% *!%* &@$& & /& & , !-& &H!&-& U OU1 U2 . . . U k 9 , &$&& &-+ >!& ;>& "* - >! ,!- PfU ?&- *&& k NN>II , , ;& *& -*& !% *& -*& n & "* ;&%& - < â & X OX 1 . . . X n 9 >& *& -&$% -*& $! Y OY1 Y2 . . . Y n 9 ^ OU ^1 . . . U ^ k 9 *& &-&;&I & & , U "*-* *& -*& !$! U "& ! & &$& + Y O% 279 ^ i 6 Ui g , å , i /& ! & * $&+ % +& + Pf U ^ > "*&& å & ! >& *& >+ *&& 1( IOUL U9 k ^ ^ i 9 HOU i 9 HOUi j U ^ i 9 % 2 HOUi j U ^ i9 IOUi L U u1 IOU L U i 9 > % 2 HOå9 >+ I &H!+ O-+ *&& 129 *! ^ > kF1 H 2 Oå9G >+ *& $-&% *&& "& *;& IOUL U9 OH O11799 IOUL V9 < IOXL Y9 + >+ H O269 IOXL Y9 < Cn O â9 nCO â9 >% *&& *&& &H!& "& *;& O $& % & >& 29D k CO â9 < : n 1 H 2 Oå9
O2:139
*& k=n "*-* "& * - *& rate , *& +& &$&& *& ! >& , bits per channel use >&% & >+ ! %+ - ! - +& *& >! O2139 -&% ,!- , *& > & $>>+ åL * !$%D + &&+ * *& & &>+ "& " - !-& *& "& "& ! - !-& R!;&+ H O2139 + * , *& -*& >&% !& * *& ;&%& $! - < â , "& "* &% +& "* & r . CO â9 *& *& &!% & $>>+ å >!& >&" >+ å > H 1 F1 CO â9=rG . H 2 1 O1 C @ =r9 . R PfUi 6 Ui g , å , iM * !% &! !& !& * -& *& channel coding theorem *& #&+ * &! *& --&$ , -& "*-* "& " &->& ;& &%& n O-*&9 code of length n ;& AX !>& C fx1 x2 . . . x M g , A nX ( *& & , *& -& &J& r O1=n9 % MQ, % & >& 2 *& & ! , bits per O-*& $!9 symbol *& -& â-admissible , bOx i 9 nj1 bOxij 9 < nâ , i "*&& x i Oxi1 . . . xin 9 *& &@$ , x i - $&
decoding rule , *& -& C $$% f D A Yn ! C [ f?g *& $&- + > NNPII && &-& ,!&L %J--& " & &%& >&"
-& - >& !& &% - !- +& *& && , % 27 ," & k >& &%& !-* * k < %2 M *& " >& $>& % distinct -&" x i &-* , *& 2 k $>& !-& &H!&-&3 && $$% , *& & , $>& !-& &H!&-& *& -& C -& encoding rule , *& !-& &H!&-& >& & u Ou1 . . . uk 9 *& & encode u & , *& -&" x i ; *& &-% !& x i ;& *& -*& *& *& & , *& -*& $$& + ;& , x i L - y *& &-&;& &-& y -&" x j O NNPII9 ; *& &-% !& f L *& & & u^ , u *& *& !H!& !-& &H!&-& u^ O, *&& &9 * -&$ *& -&" x j *& & $>>+ , *& +& %;& * x i & && >+ POi9 E *& %;& >+ POi9 E Pf f Oy9 6 x i g
f pOyjx i 9 D f Oy9 6 x i g
O2:2?&- , " %;& $ ;& &@ $&M9
2.2 The channel coding theorem Example 2.4 AX AY f>+ p , p , 2 !-* & , p ;&+ O&& H O 2119 Example 2.6 AX f! O2139 &- * "& & ! &% , %;& ;!& , â R , CO â9 å . 2d Rne POi9 E , å , å *& ,"% *&& & * $>& * Theorem 2.4 Let a with capacity±cost function CO â9 be given. Then, for any â< > â and real numbers â . â< , R , CO â< 9, å . 9 M > 2d Rne O-9 POi9 E , å for all i 1 2 . . . M Corollary (the channel coding theorem for DMC's 10 ). For any R , C @ and å . 2d Rne O>9 POi9 E , å for all i 1 2 . . . M Proof of corollary & â< â
@
*&&
2.
h
Proof of Theorem 2.4 *!%*! *& $, *# , n %& &%& " >& $&-J& & $&-&+ & & *& & Ù , $ Ox y9 -% , & -*& $! &H!&-& x Ox1 . . . xn 9 & -*& !$! &H!&-& y O y1 . . . yn 9 >* , &%* n + > Ù A nX 3 A Yn /& #& Ù $& $-& >+ &J% pOx y9 pOx9 pOyjx9L
O2:219
pOx9 pOx1 9 . . . pOxn 9 "*&& pOx9 $>>+ >! AX * -*&;& CO â< 9L pOyjx9 pO y1 jx1 9 . . . pO yn jxn 9 "*&& pO yjx9 & *& -*& $>>& & ! " -*& R9 ,+ R , R9 , CO â< 9 &J& !>& T Ù ,"D T fOx y9 D IOxL y9 > nR9g
O2:229
2.2 The channel coding theorem
)6
"*&& IOxL y9 %2 F pOyjx9= pOy9G *& & T - >& *!%* , *& & , $ "*-* & -& %&*& O&& > 21:9 -& && "& &J& !>& B A nX D B fx D bOx9 < âng:
O2:269
&& B *& & , â >& -&" + "& &J& *& & T T >+ T fOx y9 D Ox y9 2 T x 2 Bg:
O2:2.9
" & C fx1 x2 . . . x M g >& + -& % > , &%* n /& &J& &-% !& ," , y &-&;& "& &@ & *& & SOy9 fx D Ox y9 2 T g B O"*-* -! >& *!%* , NN$*&&II ! y9 , SOy9 - exactly one -&" x i "& & f Oy9 x i *&"& &*& >&-!& SOy9 - -&" & * & -&" "& & f Oy9 ? * "& &>&&+ #& &11 * &-% !& &$-& % 2)
Figure 2.6 *& &-% !& !& *& $, , *&&
2.
).
Discrete memoryless channels and their capacity±cost functions
, "& !& *& -& C "* *& &-% !& ?! &->& , x i & , y &-&;& & - --! ,, &*& x i 2 = SOy9 x j 2 SOy9 , & j 6 i &-& O&& H O22& &"& POi9 ÄOx i y9 pOyjx i 9 ÄOx j y9 pOyjx i 9 E < y
y
j6 i
Qi Ox1 . . . x M 9:
O2:2:9
! % &*" J -& fx1 . . . x M g , "*-* Qi ;&+ , i !&!+ ,!&+ *"&;& Qi &@& &+ - $-& ,!- - >& &;!& &@$-+ O &;& -&+ & &9 &@-&$ , *& $& $>& -&Q-&+ , >% - $&@ -& "* %& n *!%& MM "* *& $ !-% *& >! POi9 E < Qi *& J $-&P *& $ * *!%* $>& & & Qi , $-! -& $>& & & *& ;&%& ;!& , Qi fx1 . . . x M g %& ;& *& & , $>& -&M
*%+12 * ;&%& " ! ! $$-* < , M 2 Rn n ! 1M * & #>& $, &-*H!& -& random coding >&-!& "& -*& *& -& fx1 . . . x M g NN II --% -& $>>+ >! & ! " && *" "# &
*& J &$ &->& *& $$$& $>>+ >! *& & , $>& -& pOx1 . . . x M 9
M
pOx i 9
i1
"*&& , x i Oxi1 xi2 . . . xin 9 pOx i 9
n
k1
pOxik 9 * $>>+
2.2 The channel coding theorem
)7
>! -&$ *& &@$& & , -*% *& -& NN +II >+ $-#% *& ;! -&" -& &$&&+ --% *& $>>+ >! pOx9 * -*&;& CO â< 9 /& " ;&" Qi Ox1 . . . x M 9 ;>& *& $& $-& , $>& -&L &@$&-& ;!& O&& H O22:99
EOQi 9 E
y
E1
ÄOx i y9 pOyjx i 9 E ÄOx j y9 pOyjx i 9 y
j6 i
j6 i
E2O j9 :
O2:2(9
"& >! E1 D
E1
x1 :::x M
x i y
pOx1 9 . . . pOx M 9
y
ÄOx i y9 pOyjx i 9
pOx i 9 pOyjx i 9ÄOx i y9 pOx y9ÄOx y9
O&& O2:2199
xy
PfOx y9 2 = T g
O&& O2:2)99
PfOx y9 2 = T x 2 = Bg
O&& O2:2.99
< PfOx y9 2 = T g Pfx 2 = Bg:
O2:239
&-&
E1 < PfIOxL y9 , nR9g PfbOx9 . âng
!
O&& O2:229 O2:269 O2:2399
))
Discrete memoryless channels and their capacity±cost functions IOxL y9 % %
n
pOyjx9 pOy9 n pO yk jxk 9 pO yk 9 k1
pO yk jxk 9 pO yk 9
%
k1
n
IOxk L yk 9:
k1
&-& IOxL y9 *& ! , n &$&& &-+ >!& ;>& IOxk L yk 9 + &J EFIOxk L yk 9G IOX L Y 9 CO â< 9 * &-* IOxk L yk 9 * & CO â< 9 -& R9 , CO â< 9 ," , *& "&# " , %& ! >& O&& $$&@ 9 *
n!1
PfIOxL y9 , nR9g & "* & < â< -& â . â< ," *
n!1
PfbOx9 . nâg % O2239 O26& -!&D
R9 n
O&& O22299 &-& *& >!
2.2 The channel coding theorem E2O j9 < pOx9 pOy9
):
Oxy92T
% O22(9 O2239 O2669 "& %& EOQi 9 < PfIOxL y9 , nR9g PfbOX9 . nâg M :2
R9 n
:
O2:6.9
, M 2:2d Rne *& & O26.9 < .:2 nO R9 R9 -& R9 . R ," * , !,J-&+ %& n * & - >& & && /& *;& &+ >&;& O&& O26& &J& *& $& $-& , $>& -& *& , O22:9 O2679 "& *;& , M 2:2d Rne n %& &!%* EOPE 9 , å=2:
*! *& ;&%& ;!& , PE , å=2 *&& ! >& $-! -& Ox1 . . . x M 9 "* PE Ox1 . . . x M 9 , å=2 * -& + ,+ *& --! , *&& 2. >&-!& + - -&" x i , "*-* bOx i 9 . nâ E POi9 & * *, , *& -&" x i * E . å ! , POi9 > å , O26)9 "& "! *;& PE > å=2 -- , "& E Oi9 &&& *& -&" "* P E > å , *& -& "& > -& "* 16 > 2d Rne -&" , "*-* POi9
* -& *&&,& J& E , å , i --! O>9 O-9 , *&& 2. + -& * , bOx i 9 . nâ *& &-% $*&& SOy9 fx D Ox y9 2 T bOx9 < nâg - - x i * POi9 E 1 &-& * &" -& - - + -&" "*-* & â >& O9 J& h
)(
Discrete memoryless channels and their capacity±cost functions Problems 2.1 $!& *& - $&& -$-+B- ,!- , *& ,"% -*&D
1 < < O9 Q < q p bO - >& &-&;& -&-+ erased * &-&;& NNPII9 2.2 & ! - -*& weakly symmetric , *& -! , @ Q - >& $& !>& Ci !-* * , &-* i *& @ Qi , & >+ *& -! Ci &-* " $& ! , &;&+ *& " *& & !& , -! O &@ $& Q9 $%& 7: "&#+ + &- >! + &-9 *" * *& -$-+ , "&#+ + &- -*& -*&;& "* &H!$>>& $! 2.3 & ! &J& strongly symmetric -*& , & r & "*& @ Q * *& , !& >&" , r .D
q p p p p q p p p p q p p p p q "*&& p < 1=r Or 19 p q 1 *& >?&- , * &@&-& , +! - $!& CO â9 , * -*& , >+ $! - bOx9 >+ !$$+% *& & *& ,"% %! & O ! & â 2.9 , X & !-& -*&;% CO â9 & f Ox9 PfX xg gOx9 PfY xg , x 2 f 1( > *& $ &- !D
Problems CO â9 % AOë9 â
2.4
2.5
2.6 2.7 2.8
ëA9Oë9=AOë9 1 q
p
HOq9
)3 O1
q9%Or
19
OA9Oë9=AOë9 BP 9
ë %& ;& *& &; ë 2 Fë< ?&- , * &@&-& *" * *&& && , %&&+ ! % â ?&- , * &@&-& $;& * CO â9 -!! â â * !$$+ *& & *& ,"% %! & & Op1 p2 . . .9 >& &H!&-& , $>>+ ;&- &$&&% *& $! >! , & !-& -*&;% CO â1 9 CO â2 9 . . . "*&& n!1 â n â *& *&& !>&H!&-& Op n1 p n2 . . . 9 "*-* -;&%& $>>+ ;&- p , X & !-& "* $! >! p *& EFbOX 9G â IOX L Y 9 â!â CO â9 &-& CO â 9 > â!â CO â9 -& CO â9 -&% ,!- , â > â * $;& *& &H!& -!+ & f Ox9 >& -&% -;&@ \ ,!- , x > x1 ! & f Ox9 - , x > x2 "*&& x1 , x2 *" * f Ox9 -+ -&% , x1 < x < x2 *-&4& ,!+ +! - *& I "* C @ & AO19 X 3 A X !$! $*>& A Y O29 O19 O29 : 3 A Y $>>& pOO y1 y2 9j Ox1 x2 99 p O y1 jx1 9 p O y2 jx2 9
:
&% !& $&9 *" * *& -$-+B- ,!- , *& $!- -*& %;& >+ CO â9
@fC1 Ot9 C2 O â t
t9g:
*! *" * *& %$* , CO â9 >& >+ % >* -& , *& -!;& C1 O â9 C2 O â9 $ *& " -!;& *;% *& & $& 2.10 O *& -$-+ , $& -*& "* & +9 & Z 1 Z 2 . . . >& &-+ >!& ;>& #; -* #% ;!& f 12& !& &J& ;& -*& "* AX AY f+ *& !& Yi X i Z i O r9 "*&& X i Yi & *& $! !$! , *& -*& & i *& ndimensional capacity &J& C O n9@ @fIOXL Y9g X %& ;& n & & !-& *& capacity C @ !$O1=n9C On9@ *" * C O n9@ n % r HO Z 1 . . . Z n 9 n % r HOp9 On 19 H "*&& p $>>+ ;&- &->% *& - >! , *& Z i I H *& &$+ , *& -* -!& * C @ % r H $$+ * &! *& -& "*&& r 2 *& -*I $>>& & %;& >+ *& -*- @ q p Q : p q 2.11 *& -*& - ,!- @ $& 27 *" &@$-+ *" -*&;& "* $ & >+ *& -% *&& * %;& $&-& &-$ , -& C * * $$&& O9 O>9 O-9 , *&& 2. 2.12 $&& *& & , @ $& 2) *" *" *& &-% ,!- 1 -! >& $;& -*&;& POi9 E 6 , i 1 2 2.13 *& $, , *&& 2. "& %;& &@$- &-% !& , %;& -& C fx1 . . . x M g O&& $$ )69 * !& "*& &H!& , ! $!$& $ &+ !& $--& * &@&-& "& * !-& !+ " *& &-% !& "*-* & >&& * *& & *&& 2. >! & & ,J-! +4& *! !$$& *& $>>+ * x i " >& & pi i 1 2 . . . M ;& *& &-&;& ;&- y minimum error probability decoding O 9 -*& *& -&" , "*-* *& - $>>+ pOx i jy9 %& Maximum likelihood decoding O 9 -*& *& & , "*-* pOyjx i 9 %& O9 *" * ;& !$ & * *& $>>+ , &-& & %;& * y &-&;& 4& >+ *&-& * M *& ;&%& & $>>+ PE i1 pi POi9 E 4& O>9 *" * , pi 1=M , i *& $&, &-+ O-9 &J& *& Hamming distance d H Ox y9 >&"&& x y *& ! >& , - $& "*-* *&+ %&& *" * &-& "+ $-# -&" x i "*-* -& y "* &$&- * -& O&& > 21: &- :69 2.14 O!9 & *& ,"% -& , &%* . ;& f& < â "& -! &H!& * *& @ ! ">& - >& < â * &J& CO â9 !$fIOX L Y 9 D bOX 9 < â "* $>>+ 1g $!& CO â9 , *& -*& , @ $& 21 22 26 O$$ 77B7)9 & *& -% *&& & ; , CO â9P *" * *& & T &J& H O2229 , *& , T fOxL y9 D d H OxL y9 < rg "*&& d H Ox y9 *& Hamming distance >&"&& x y O& *& ! >& , - $& "*-* x y ,,&9 J r & , n R9 å *& -;& $>>+ , *& -*& O ! & pOx & J& & & f >& ,!- $$% Ù *& & ! >& ;& * *&& &@ && & ù 2 Ù !-* * f Où9 , y ,, $>& &J& $>>+ >! Ù !-* * EF f Où9G , y & *& "*& @ , $>>&
1 1 < < < 2 2 < 12 12 < < Q < < 12 12 < : < < < 1 1 2 2 1 < < < 12 2
O *&& - - & bOx9 < , x9 O9 $!& C @ O>9 -& , &%* 1 "* & % 2 POi9 E < , i O-9 -& , &%* 2 "* & 12 % 7 POi9 E < , i O9 , fx1 . . . x M g + -& , &%* n , * -*& "* POi9 E < , i *" * *& -&I & , % 721. 2.20 *& >+ &!& -*& * @ , $>>& < ? 1 Q < q p < 1 < p q "*&& < < p < 12 p q 1 O ! & $! - & bOx9 < , x9 -$-+ C @ 1 p O&& > 21>9 ! & * * -*& &H!$$& "* noiseless, delayless feedback * *& &-&;& >& - !-& >-# *& && *& + > *& * &-&;& *& && $ *& ,"% NN-%II &%+ , - !-% *& !$! , >+ + &- !-& ;& * -*&D *& &&+ &$& &-* + > ! J+ &-&;& -&-+
:2
Discrete memoryless channels and their capacity±cost functions O9 -!& *& ;&%& ! >& , -*& + > &H!& $& !-& + > , * &%+ !& O>9 % *& &! , $ O9 &% , + R , C @ å . 2d Rne POi9 E , å , &-* i O&& -+ *&& 2.917 *& &@ @ $>& "& " #&-* $, , -% *&& , "*! - - * & "+ %& *& "+ "&#& * *& -*& -% *&& O-+ *&& 2.9 "& ! #& & &J &-* $ x1 x2 2 AX "& &J& J Ox1 x2 9 pO yjx1 9 pO yjx2 9 y2 AY
J<
fEOJ OX 1 X 2 99g
"*&& *& 4 #& ;& &$&& &-+ >!& ;>& ! % ;!& AX + *& $ H!+ R< &J& >+ R<
%2 J < :
*& *&& >& $;& *D R< theorem for a + R , R< *&& &@ -& fx1 x2 . . . x M g "* & M d2 Rn e -&" M Oi9 , &%* n $$$& &-% !& !-* * , PE O i1 P E 9=M && *& ;&%& &-% & $>>+ *& PE , 2 nO R< R9 O * *&& %& * *& -*& -% *&& * %;& &@$- & & , *" PE - >& & ,!- , n "&#& * R< , C @ * , & R< , R , C @ & $+ * PE ! < $>& 9 2.21 & -& , &%* n -% + " -&" x1 Ox11 x12 . . . x1 n 9 x2 Ox21 x22 . . . x2 n 9 ! & * %;& &-&;& n!$& y *& &-& !$! x1 , pOyjx1 9 . pOyjx2 9 x2 , pOyjx2 9 . pOyjx1 9 & Y1 fy D pOyjx1 9 . pOyjx2 9g Y2 fyD pOyjx2 9 . pOyjx1 9g , POi9 E && *& $>>+ , &-& & %;& * x i & *" * n POi9 J Ox1 k x2 k 9 i 1 2 E < k1
>+ ;&,+% *& ,"% &$D POi9 pOyjx i 9 E < y2Yi
+ POi9 E *& $>>+ , &-& & %;& * x i & *" * POi9 E
& > 222 ;& -& "*&& *& ;! -&" & -*& &$&&+ --% *& $>>+ >! * -*&;& J < > *& & & : EFPOi9 E G, M 2
R< n
:
2.24 " - $&& *& $, , *& R< -% *&& 2.25 *" * , " # R< 1 %2 1 2 pO1 p9 "*&&
p *& " > & $>>+ !*& & *" * , R< , C @ "*&& C @ 1 H 2 O p9 *& -$-+ , *& 2.26 $!& R< , *& >+ &!& -*& O&& > 21>9 1 2 C @
Notes 1 O$ 7& "* *& $$&+ * *& ! , *& && &-* " 1 O-, > 12>+ @ *;& - " &$+ -! ! : O$ 7(9 ! % *& $& %* & >& 2 ( O$ ) A n && *& & fOa1 a2 . . . a n 9D a i 2 Ag , && n!$& , A 3 O$ )& !& - !-& *& !$! , + !-& >+ & +& *&"& $;& *& ! >& , $>& !-&
:.
Discrete memoryless channels and their capacity±cost functions
!$! < M * >!& #& *& -% *&& O *&& 2.9 !-* & ;!>& * ! -! -& -& ,&" & !-& & --!&+ && >+ >+ + &- !-& 1< O$ )29 * -+ "*-* & * we can communicate arbitrarily reliably at rates below channel capacity -& *& channel coding theorem -& && & 2 *& - - !!+ >& *& & %&& &! , *&& 2. &;&+ ! $ 11 O$ )69 * &-% !& *& >& $>& &L && > 216 21. "&;& &;&+ &+ +4& !,J-&+ -& $ " ! $;& *& -% *&& 12 O$ ).9 ! && > 21( 16 O$ ):9 & * &&% -&" , C - -*%& POi9 E , *& & % Oi9 -&" -& P E f pOyjx i 9D y 2 = f 1 Ox i 9g 1. O$ :19 * , ! &@ $& , -*& "* 4& zero-error capacity #" * -& &@ , * -*& "* PE < & . 12 % 7L && *& $$& >+ * F27G $$ 112B116 ;C4 F71G 17 O$ :29 * &! >&- & & &&% %* , *& *&& !& * * ,&&>-# - -&& *& -$-+ , M O&& * F27G $ 12-#L && F27G $$ 6:6B.6)
3 -&& & +& !-& *& & ,!-
3.1 The rate-distortion function & , !-& * $!-& &;&+ ! , & + > u , J& & AU -& *& source alphabet !$$& * *& &H!&-& , + > $!-& >+ *& !-& - >& && >+ &H!&-& U 1 U 2 . . . , &$&& &-+ >!& ;>& "* - >! ,!- PfU ug pOu9 !-* , !-& -& discrete memoryless source O 9 *& ! >& pOu9 & -& *& source statistics " !$$& * "& & &H!& *& !-&I !$! ;& -*& -& & /& ! & * & !-& + > u 2 AU " >& &$!-& *& & + > v "*-* && & , *& J& & AV -& *& destination alphabet OAV " !!+ >! "+ - AU !>&9 !$$& * , &-* $ Ou v9 *&& &%;& ! >& dOu v9 "*-* &!& *& & distortion -!& "*& *& !-& + > u &$!-& *& & + > v *& ,!- d -& distortion measure1 + !$$& * *& ,!- d &@&& $ Ou v9 Ou1 u2 . . . uk L v1 v2 . . . v k 9 , A Uk 3 A Vk >+ dOu v9
k
dOui v i 9:
O6:19
i1
!!+ >! "+ -;&& #& AU f & & >+ *& !-& & V1 V2 . . . Vk >& any -&- , k ;>& #% ;!& *& & $*>& AV &J& *& & $& $-& *& Ui I /& - --!& *& !! , IOUL V9 >&"&& *& ;&- U OU1 . . . U k 9 V OV1 . . . Vk 9 *& average distortion EOd9 EFdOU V9G &J& >+ EOd9 pOu v9dOu v9 uv
pOu9 pOvju9dOu v9:
O6:29
uv
O O629 *& ! &@&& ;& *& r k s k $ Ou v9 Ou1 . . . uk v1 . . . v k 9 "*&& ui 2 AU v i 2 AV pOu v9 PfU u V vg pOvju9 PfV vjU ug9 /& " &J&6 *& ,!- Rk Oä9 "*-* ,!- , *& !-& - O pOu99 *& @ D *& & ! >& ä >+ Rk Oä9
fIOUL V9D EOd9 < käg:
O6:69
O669 *& 4 &@&& ;& $ OU V9 OOU1 . . . Uk 9 OV1 . . . Vk 99 , k & ;&- ! % ;!& A Uk 3 A Vk , "*-* U1 . . . U k & &$&& "* - >! ,!- PfU ug pOu9 "*&& O pOu99 & *& %;& !-& - *& ;&%& EOd9 &J& O629 < kä -& *& !-& - O pOu99 & J@& - $!% Rk Oä9 , J@& ä "& ! ;+ *& - $>>& pOvju9 * &J& V *&& $>>& - >& *!%* , $>>& &J% -*& "* U $! V !$! *& $&& -&@ * -*& !!+ -& k &
3.1 The rate-distortion function
::
test channel *& 4 O669 #& $-& ;& & -*& "*& ;&%& < kä &;& $& + & # >! *& ,!- Rk Oä9 & & & * , J@& O pOu99 *& ,!- IOUL V9 -!! ,!- , *& r k s k $>>& pOvju9 *& !>& , *& & , $>>& "*&& EOd9 < kä - $- &% , r k s k & !-& $-& *& ,!- IOUL V9 -!+ -*&;& ! ;!& * &%. * *& & "& "& NN II *& * NN,II H O669 &- -& * *& ! $>& ;!& , EOd9 %;& >+ k ä "*&& ä pOu9 dOu v9 O6:.9 v
u2 AU
+ >& && , O629 -& EOd9 > Ouv9 pOu v9 v dOu v9 kä
*! Rk Oä9 &J& + , ä > ä + >&;& * , ä1 . ä2 *& & , k & & -*& ,+% EOd9 < ä2 !>& , *& , "*-* EOd9 < ä1 Rk Oä1 9 < Rk Oä2 9 * Rk Oä9 &-&% ,!- , ä > ä
*& rate-distortion ,!- , *& !-& " &J& ROä9 , k
1 Rk Oä9: k
O6:79
*& ! >& ROä9 ! ! &$&& *& ! ! >& , > O! % %* & >& 29 &&& &$&& !-& + > , "& & "% && ;&%& , ä *& $&-& & & , * &! *I source coding theorem " >& & $;& &- 62 ! >?&- *& & , * &- &;&$ &-*H!& , - $!% ROä9 , %;& &!& ! J &! * *& ,!- Rk Oä9 & -;&@ Theorem 3.1 Rk Oä9 is a convex [ function of ä > ä Proof !$$& á1 á2 > ä @
! *" * , ä1
Rk Oá1 ä1 á2 ä2 9 < á1 Rk Oä1 9 á2 Rk Oä2 9:
O6:)9
* & pi Oujv9 >& *& $>>& , & -*& -*&;% Rk Oä i 9 i 1 2 *& , V1 V2 && *& & -*& !$! IOUL Vi 9 Rk Oä i 9
O6::9
:(
Discrete memoryless sources and their rate-distortion functions EOd i 9 < kä i
i 1 2
O6:(9
"*&& d i dOU Vi 9 && *& ;&%& *& i* & -*& " &J& &" & -*& "* $>>& pOvju9 á1 p1 Ovju9 á2 p2 Ovju9 , V && *& !$! , * & -*& *& , O629 O6(9 EFdOUL V9G á1 EFdOUL V1 9G á2 EFdOUL V2 9G < Oá1 ä1 á2 ä2 9 &-& * & -*& >& , *& --! , Rk Oá1 ä1 á2 ä2 9 IOUL V9 > Rk Oá1 ä1 á2 ä2 9 *& *& * -& IOUL V9 -;&@ [ ,!- , *& $>>& pOvju9 O *&& 1:9 IOUL V9 < á1 IOUL V1 9 á2 IOUL V2 9 á1 Rk Oä1 9 á2 Rk Oä2 9 *& " &H!& - >& %;& O6)9 $;& *&& 61 h
*& &@ &! *" * , *& - $! , ROä9 -& >+ && * "! $$& , &J O679 Theorem 3.27 For a DMS, Rk Oä9 kR1 Oä9 for all k and ä > ä
Proof & pOvju9 >& *& $>>& , k & & -*& -*&;% Rk Oä9 *& IOUL V9 Rk Oä9
O6:39
EFdOU V9G < kä:
O6:1+ *&& IOUL V9 >
k
1( "& *;&
IOUi L Vi 9:
O6:119
i1
, "& &J& äi EFdOUi Vi 9 "& *;& IOU i L Vi 9 > R1 Oäi 9 EFdOU V9G
i 1 2 . . . k k i1
äi < kä:
O6:129 O6:169
k >% O6119 O6129 "& *;& IOUL V9 > i1 R1 Oä i 9 ! -& R1 -;&@ [ k ä1 ä k R1 Oäi 9 > k R1 k i1 > kR1 Oä9
3.1 The rate-distortion function
:3
>+ O6169 *& ,- * R1 &-&% ,!- , ä &-& Rk Oä9 IOUL V9 > kR1 Oä9 $;& *& $$& &H!+ & pOvju9 >& & & & -*& * -*&;& R1 Oä9 &J& pOvju9 k & +& & -*& &J& i1 pOv i jui 9 &+ ;&,+ * *& * EOd9 < kä IOUL V9 kR1 Oä9 O&& > 669 *! Rk Oä9 < kR1 Oä9 "& *&& 62 $;& h Corollary ROä9 R1 Oä9 Proof * ," O679
fIOU L V 9D EOd9 < äg:
&&+ ,
*&&
62 &J O669 h
& ! " $!& , %&& &-$ , *& ,!- ROä9 /& &+ #" * ROä9 &-&% -;&@ [ ,!- , ä > ä *& -;&@+ $& &&+ O&& $$&@ 9 * ROä9 -!! , ä . ä ROä9 -!! ä ä >! "& &;& *& $, , * ,- > 6. !*& & "& * " *" * ROä9 < , !,J-&+ %& ä && , "& &J& ä @ >+ ä @ pOu9dOu v9 O6:1.9 v
u
*& ROä9 < ,, ä > ä @ && * >&;& * & -*& "*-* $ &;&+ $! u && -+ v , "*-* pOu9dOu v9 ä @ " *;& IOU L V 9 < EOd9 ä @ * *" * ROä9 < , ä > ä @ ;&&+ , ROä9
v
pOv9 ä
@
ä
u
@
>+ O61.9 *! , ROä9 ä @ -& ROä9 &-&% -;&@ [ , ä > ä - , ä > ä @ ," * ROä9 -+ &-&% , ä < ä < ä @ O&& > 2)9 * %& ROä9 %;& >+
(
6( *"&;& *" * *&& && , %&&+ ! % * ä u *&& &@ & & & + > , "*-* dOu v9 6:9 "&;& , ! % * &-* " , *& @ D * & & HO p9 HOä9 * "& >! ! ! >& *& ;!& , ROä9 , < < ä < p $;& * "& ! $!-& & -*& "* EOd9 ä IOU L V 9 HO p9 HOä9 *& >& "+ * &J& NN>-#"II & -*& * %;& *& $>> & pOujv9 >+ pOujv9 ä , u 6 v 1 ä , u v *& >-#" & -*& *" % 6. &+ !-* & -*& " *;& EOd9 ä HOU jV 9 HOä9 "&;& "& ! #& !& * $>& -*& á PfV & 1 1 1 P V 2jU < P V 2jU < d & & &-D AU AV f+ I &H! + O-+ *&& 129 HOU jV 9 < ä %Or 19 HOä9 &-& ROä9 > % r ä %Or 19 HOä9 *" *& $$& &H!+ ! & < < ä < 1 1=r &J& & -*& >+ 1 ä , v u ä pOvju9 , v 6 u: r 1
*& $& --! %;& EOd9 ä IOU L V 9 HOV 9 % r HF1 ä ä=Or 19 . . . ä=Or 19G % r ä %Or 19 HOä9
HOV jU 9 h
(.
Discrete memoryless sources and their rate-distortion functions 3.2 The source coding theorem
*& & ,!- "*-* " !& , $!&+ *& - $ , ;&" &- 61 * >&!,! - !-*&&%J--& "*-* *D ROä9 is the number of bits needed to represent a source symbol, if a distortion ä is allowable *! !-& + > - >& NN- $&&II ROä9 >L -& ROä9 &-&& ä -&& & - $& $>& ä -&& * & NN& *&+II & & -& NN- $& *&+II
&& "*+ ROä9 %* *;& * %J--& -& *& ,"% ! & OU1 U2 . . . U k 9 U &$&& *& J k + > & & >+ -& & ! !$$& * *&& k + > & NN- $&&II n > OX 1 X 2 . . . X n 9 X * &*" $>& & -;& , X k & + > OV1 . . . Vk 9 V !-* * k EFdOU V i i 9G < kä & *&& --! -& &>& & i1 * *& n > X 1 . . . X n &$&& *& k !-& + > U 1 . . . Uk "* ;&%& < ä *& &*$ >&"&& U X V - >& #&-*& *" % 6) " "& #" , H O669 O679 * IOUL V9 > Rk Oä9 > kROä9L , *&& 17 * IOUL V9 < IOXL V9L , *& &J , IOXL V9 O&& H O1.99 * IOXL V9 < HOX9L , *&& 11 * HOX9 < n > >% *&& &! "& *;& kROä9 < IOUL V9 < IOXL V9 < HOX9 < n * O $& % & >& 29 n > ROä9: O6:1)9 k
*& n=k O61)9 &$&& *& ! >& , > $& !-& + > *& >;& - $& -*& & *! "& && &&+ * & ROä9 > & &&& &$&& !-& + > , *& ;&%& ! >& < ä *& source coding theorem >& $;& >&" & * -& && & * ROä9 > & &&& "& ! &J& !-& -& !-& -& , &%* k !>& , A Vk * & C fv1 v2 . . . v M g , destination &H!&-& , &%* k rate &J& >& R k 1 %2 M &-* !-& &H!&-& u Ou1 . . . uk 9 , &%* k & f Ou9 >& -&" v i "*-* NN-&II u *& && * dOu f Ou99 < dOu v j 9
j 1 2 . . . M:
Figure 3.6 %&& - $& -*& &
O6:1:9
3.2 The source coding theorem
*& average distortion , *& -& C &J& >& 1 dOC9 pOu9dOu f Ou99 k k
(7
O6:1(9
u2 A U
"*&& O61(9 pOu9 pOu1 9 pOu2 9 . . . pOuk 9 *& $>>+ * *& J k + > & & >+ *& !-& " >& u1 . . . uk , M < 2 n !-* !-& -& - >& !& &;& - $& -*& & , *& &$-& % 6) ," &-* , *& M !-& -&" v i % - >+ n!$& xOv i 9 Ox1 Ov i 9 . . . xn Ov i 99 -& M < 2 n * " >& $>& *& !-& &H!&-& u Ou1 . . . uk 9 *& &$&&& >+ *& n > x xF f Ou9G *& & &H!&-& v #& >& *& -&" f Ou9 O-& *& $$% v ! xOv9 & & f Ou9 - >& !H!&+ &-;&& , xF f Ou9G9 -& * *& ;&%& , *& -*& & &@-+ dOC9 &J& O61(9 *& - $& n=k ?! d%2 M e=k Example 3.1 O-!&9 ;&+*% *& & *& $&;! $$& -& , @ $& 61 O$$ :7 (19 &@-&$ * " "& $&-4& *& !-& - p q 12 /& -& !-& -& , &%* : "* 1) -&" &+ *& 1) " , *& O: .9 % -& &->& *& !- O&& $ . ,,9 " *" *&& * &-* , *& 12( >+ ;&- , &%* : ,,&& & $ , & -&" &-& 1 12( 1) 1 dOC9 : : 12( (
*& - $& n=k .=: 61.9 %;& 1+ CL T *& & $+ &$&&& *& >+ &J O61(9 , dOC9 1 dOC9 pOu9dOu f Ou99 k u
1 1 pOu9dOu f Ou99 pOu9dOu f Ou99: k u2S k u2T
O6:2+ * *& !-& &H!&-& " >& $+ &$&&& >+ C * PfdOu f Ou99 . kä0g " dOu f Ou99 " >& %&& * kä0 ,, dOu v i 9 . kä0 , &-* i 1 2 . . . M O&& O61:99 &-& , "& &J& *&* ,!- 1 , dOu v9 < kä0 ÄOu v9 O6:229 < , dOu v9 . kä0 *& &-& ! O6219 >&- & *& !&-& ! u pOu9 F1 ÄOu v1 9G . . . F1 ÄOu v M 9G , "& &J& KOC9
u
pOu9
M
F1
ÄOu v i 9G
O6:269
i1
*& & & O6219 >&- & dOC9 < ä0 B KOC9:
O6:2.9
;&" , O62.9 ! $, " >& - $&& , "& - J !-& -& C , &%* k "* 2bkR9c -&" , "*-* KOC9 , Oä9 ä0 9=B /& " >& >& J !-* -& &-+ >! "& " >& >& &!-& *& &@&-& , !-* -& &-+ >+ & , random coding *& " "& " ;&%& KOC9 "* &$&- -& $>>+ >! ;& *& & , $>& !-& -& , &%* k "* 2b kR9c -&"L * ;&%& " >& *" $$-* < k ! 1 *! , !,J-&+ %& k *& ;&%& " >& ,Oä ä0 9=B , "*-* ," * & & $-! !-& -& * KOC9 , Oä ä0 9=BL * -& " ,+ *& --! , *&& 6. " ! # *& ;&%& KOC9 ;& !-& -& , &%* k "* M 2b kR9c -&" , -!& "& ! $&-,+ *& $>>+ >! "& & ;&%% "* &$&- *& %* -*-& ! ! >& -&+ && *& >! , *& ;>& V & -*& * -*&;& ROä9 *! , *& & , *& $, & pOu v9 && $>>+ >! AU 3 AV -*&;% ROä9 * IOU L V 9 ROä9 EFdOU L V 9G < ä:
*&
% >! AU AV & %;& >+
O6:279 O6:27>9
((
Discrete memoryless sources and their rate-distortion functions pOu9 pOu v9 O!-& -9 v
pOv9
pOu v9:
u
/& &@& * $>>+ >! $ Ou v9 Ou1 . . . uk v1 . . . v k 9 , A Uk 3 A Vk >+ ! % * *& !-& & -*& & & +& * >+ &J% pOu9
k
pOui 9
i1
pOvju9
k
pOv i jui 9
O6:2)9
i1
,
"*-* ," pOu v9
k
pOui v i 9
i1
pOv9
k
pOv i 9:
O6:2)>9
i1
*& $>>+ % & *& & , !-& -& , &%* k "* M -&" * "& " *& & * % *& -& C fv1 . . . v M g *& $>>+ pOC9
M
pOv i 9
i1
"*&& pOv i 9 %;& >+ O62)>9 O * $>>+ % & & & &->& >+ +% *& !-& -& -*& NN II --% *& $>>+ >! pOv9:9 &-% *& &J , KOC9 O&& O62699 "& >&% - $!& ;&%& EOK9D
3.2 The source coding theorem EOK9
v1 :::v M
pOv1 9 . . . pOv M 9
u
M
pOu9
v1 :::v M i1
pOu9
u
pOu9 pOv9F1
u
v2 A Vk
F1
ÄOu v i 9G
i1
pOv i 9F1
M
(3
ÄOu v i 9G
ÄOu v9G
M
:
O6:2:9
O *& &$ >;& && *& ,- "*-* >;! , >-!& >+ * , f Ox9 ,!- &J& J& & A *& M f Ox9 ... f Ox1 9 . . . f OxM 9:9 x2 A
*& & !
x1 2 A
O62:9 pOv9F1
xM 2 A
ÄOu v9G 1
v
pOv9ÄOu v9
v
O62:9 >&- & EOK9
u
pOu9 1
M pOv9ÄOu v9
:
O6:2(9
v
O * $ *& && *! >& >& && &-+ * O62(9 &$&& *& $>>+ * !-& &H!&-& " >& NN$+ &$&&&II >+ !-& -& v1 . . . v M -*& NN II9 *& &@ &$ *& $, *& & , *& & ! O62(9 * & &J& 1 , dOu v9 < kä 0 IOuL v9 < kR 0 Ä< Ou v9 < *&"& "*&& IOu v9 %2 F pOvju9= pOv9G *& , O6229 Ä< Ou v9 < ÄOu v9 pOv9Ä< Ou v9 < pOv9ÄOu v9: O6:239 v
v
, Ä< Ou v9 1 *& IOu v9 %2 F pOvju9= pOv9G < kR0 pOv9 > 2 kR 0 pOvju9 &-& pOv9Ä< Ou v9 > 2 kR 0 pOvju9Ä< Ou v9: O6:6% O6239 O66* & O66.9 $$-* < k $$-*& J+ & * -& M 2b kR9c R9 . R0 O&& O61399 &@$O 2 kR 0 M9 , &@$F 2 kO R9 R 0 9 1 G $$-*& < ;&+ $+ &- -& * 1 Ä< Ou v9 1 ,, &*& dOu v9 . kä 0 IOuL v9 . kR0 pOu v9F1 Ä< Ou v9G uv
< PfdOU V9 . kä0g POIOUL V9 . kR 0g
O6:679
*& $>>& O6679 >&% #& ;& *& OU V9 $-& "*& $>>+ >! &->& O62)9 ! dOU V9
k
dOUi Vi 9
i1
*& ! , &$&& &-+ >!& ;>& &-* , "*-* * & EFdOU V 9G < ä , ä0 >+ O627>9 O6139 >+ *&
Problems
31
"&# " , %& ! >& O&& $$&@ 9 *& J $>>+ O6679 $$-*& < k -&& + IOUL V9
k
IOUi L Vi 9
i1
O&& & $ 6:9 ! , &$&& &-+ >!& ;>& &-* "* & IOU V9 ROä9 , R0 O&& O6279 O61399 >+ *& $$- , *& "&# " *& &- $>>+ O6679 $$-*& < k -&& >% *&& ,- "& && * *& !$$& >! EOK9 %;& >+ O66.9 $$-*& & !& *& ,- * ROä9 && >& -+ -;&@9 *" * *& k & & -*& &J& *& & , *& $, ,
*&& 62 * EFdOU9G < kä IOUL V9 kR1 Oä9
*& >?&- , * $>& , +! $;& * ROä9 -!! ä ä * >+ !$$+% *& & *& ,"% %! & & Q1 Q2 . . . >& &H!&-& , -*- -& &->% *& $>>& , & -*& -*&;% ROä1 9 ROä2 9 . . . "*&& n!1 ä n ä *& *&& !>&H!&-& Q n1 Q n2 . . . "*-* -;&%& -*@ Q *& & -*& -&$% Q * EFdOU V 9G ä IOU L V 9 k!1 ROä n k 9 *! ROä 9 < ä!ä ROä9 R -!! ä ä $ (< "& *"& * !,J-& - , RO ä *&& &@ & -*& pOvju9 -*&;% ROä9 !-* * *& -*- @ QOu v9 pOvju9 * *& & + &+ D & QOðOu9 rOv99 QOu v9 , u 2 U v 2 V F HintD , Q< Ou v9 &->& & -*& -*&;% ROä9 &J& Qi Ou v9 Q< Oð i Ou9 r i Ov99 *" * Qi &->& -*& -*&;% ROä9 , i 1 2 6 . . . *& &J& n & 1 QOu v9 n 1 i< Qi Ou v9 "*&& n *& & - !$& , *& & , ð rG 3.7 *& %&& ! *& - $! , ROä 9 $& &
*& ,"% &! ,& *&$,! *"&;& '&,+ * -&- &-* u 2 AU & BOu9 && *& & , NN>& & &$&& ;& , uII * BOu9 fv 2 AV D dOu v9 < dOu v99 , v9 2 AV g *& *&& &@ >-#" & -*& pOujv9 -*&;% ROä 9 !-* * pOujv1 9 pOujv2 9 "*&&;& v1 v2 2 BOu9
$$+ * &! *& $>& &;& *& @
< D 1 1
, J% ROä < 1 1
9
, *& !-&
1 1 1 6 6 6
1 < : 1
3.8 & J@& !-& p O p1 p2 . . . pr 9 @ D "* ^ "*-* & ,!- ROä9 & &" @ D , & , D >+ % - wi *& i* " * ^ j9 dOi j9 wi *" * *& &" & ,!- dOi ^ ROä9 ROä w9 "*&& w i wi pi & * &! *" * *&& && , %&&+ ! % * ä ! ROä99 !$$& *& @ D * *& $$&+ * &-* -! r $& ! , Od 1 d 2 . . . d r 9 &J& á i d i äg O&& > 1(9 ;& * ÖOä9 @f HOá1 . . . á n 9D i1 ROä9 > HOU 9 ÖOä9 "*&& HOU9 *& !-& &$+ >+ ;&,+% *& ,"% &$D O9 , OU V 9 & -*& -*&;% ROä9 ROä9 HOU 9 v pOv9 HOU jV v9 O>9 , äOv9 u pOujv9dOu v9 *& HOU jV v9 < ÖOäOv99 O-9 v pOv9ÖOäOv99 < ÖO v pOv9äOv99 < ÖOä9 3.11 O!9 , " D * *& ,!*& $$&+ * &-* row $& !
Notes
3.12
3.13
3.14 3.15 3.16 3.17
36
, &;&+ *& " *" * ROä9 HOU 9 ÖOä9 , ä < ä < ä @ , *& !-& + &- Oi9 & " I "* $! $*>& AOi9 U !$! $*>& A V i ,!- d Ou v9 i 1 2 *& product * !-& $*>& O29 O19 O29 AO19 @ "* && U 3 A U & $*>& A V 3 A V O19 O29 dFOu1 u2 9 Ov1 v2 9G d Ou1 v1 9 d Ou2 v2 9 O*+-+ * -&$ " &$&& $& !-&9 *" * *& & ,!- , *& $!- !-& ROä9 fRO19 Ot9 RO29 Oä t9g "*&& RO19 RO29 & *& & ,!- , !-& 1 2 &$&-;&+ *! *" * *& ROä9 -!;& >& >+ % >* -& , *& -!;& RO19 RO29 $ *& " -!;& *;% *& & $& O&! !& *9 O&,&- -& *& && &-: 9 , q ! >& , AU AV f+ dOu v9 fju vj jq u vjg , q 2t 2 2t 1 -& * !-& -& , &%* k 2 "* M q -&"D C fOv1 v2 9D v2 O2t 19v1 O q9g *" * *& $*&& , ! t ! *&& -& " - $&&+ -;& *& & , q 2 $ Ou1 u2 9 "*! ;&$ O $*&& , ! t ! Ov1 v2 9 *& & fOu1 u2 9D dOu1 v1 9 dOu2 v2 9 < tg:9 *" * *& ;&%& , * -& 16 O2t 6 6t t9=O2t 2 2t 19 '&,+ * dOC9 1< 3 , *& !-& -& , @ $& 62 O $ (79 *" * *&& 6. & !& , --! O9 &$-& >+ NNM < 2,b kROä9c IIL , ä . ä * & !& , O9 !-*%& >! O>9 &$-& >+ NNdOC9 < äII ;& * , < < x y < 1 M > & *" +! -! &@$-+ -*&;& "* $ & >+ *& !-& -% *&& O *&& 6.9 ä ä @
Notes 1 O $ :79 &-*-+ dOu v9 -& single-letter &!& %!* , &!& * & &J& -& k!$& Ou v9 OOu1 . . . uk 9 Ov1 . . . v k 99 &-+ *& * >+ H O619 2 O $ :)9 * &@ $& !& * O&& F27G $$ 2.)B2.: % 2 $ 2)29 &->% * *& $&-! !-& *& "& NN. . . *& F!-&G $*>& - , *&& $>& &% 1 & , " && 12 12 & %* *& *;& *& @ * *" F@ $& 62GII 6 O $ :)9 *& &J * ," OH O669 O6799 - >& %;& , >+ + !-&L && H O769 O7.9 . O $ ::9 && & 6 *$& 2 7 O $ :(9 ;&" , *&& 62 *& && + "& "*+ *& ,!- Rk Oä9 "&& !-& *& J $-& *& & ", , + !-& "* & + &J O669 O679 #& && +$-+ Rk Oä9 &-&%
3.
Discrete memoryless sources and their rate-distortion functions
,!- , k , J@& ä O"&;& "& * !+ !-& "* & + * >#9 &- O & $ , ! $!$&9 *& &J %;& $,+ *& $, , *& -;&& , *& !-&-*& -% *&& O&& *$& 7 &$&-+ H O71 + "* % k," , *& !-& $>>& & &&D p1 < p2 < pr &J& Sk i1 pi ä k S k 1 Or k9 pk H k HO p k1 =O1 Sk 9 . . . pr =O1 Sk 99 *& , ä k 1 < ä < ä k ROä9 O1 S k 1 9 O H k 1 HOOä S k 1 9=O1 Sk 99 Oä Sk 9=O1 Sk 9%Or k 199 , k ?&- && & $ F1.G $$ 6!& ;>& "* & < ;-& ó 2 * -*& ,& &$-& % .1 !*& & *&& NN-II -& "* &-* $! xL bOx9 x 2 * &- "& * *" * *& -$-+B- ,!- , * -*& %;& >+ CO â9 12 %O1 â=ó 2 9:
O.:19
0! , *& -&& -*& , *$& 2 "& * *" * CO â9 &$&& *& @ ! & "*-* *& -*& - &,&& , , *& ;&%& $! - &-& >& < â
Figure 4.1 *& ! -*&
37
3)
The Gaussian channel and source
&,& &;% , ! O.19 *"&;& "& $!& %;& >&, , &-$ , *" !-* -*& %* & $--& !$$& "& "* &H!&-& , n & ! >& x1 x2 . . . xn , & $ *& T &- & &H!& * >+ -;&% *& xi I -!! ,!- , & xOt9 O &J&& &I ! & xOt9 &$&& *& ;%& - 1* 9 & "+ * J n ,!- ö i Ot9 i 1 2 . . . n "*-* & * *& &; F& xi & &-;&>& , xOt9D T xi xOt9ö i Ot9dt:
O.:.9
i1
&-!& , * + O.29 i1 x i &-& "& ! *;& n 1 PT x2 < n i1 i n
O.:79
"*-* + * *& $! ;&- x Oxp . . . xn 9 - >& >+L 1 ! & "* !-& $*&& , ! PT
*& - $- * "*& xOt9 & *& &-&;& % " ,& >& , *& , x^Ot9 xOt9 zOt9 "*&& zOt9 & # , & $-& - +$& , & 0* O*& 9 & "*-* -!& >+ *& *& % , *& &&- *& &-&;& * -& &>& & zOt9 "*& ! & $-&L , ! $!$& * & * *&& ! >& N & T O-, O..99 < x^Ot9ö i Ot9dt *& " > *& & & x^i xi zi ! +D "& x Ox1 . . . xn 9 "*&& x ! ,+ O.79 &-&;& ^x Ox1 z1 . . . xn zn 9 "*&& z1 . . . zn & &$&& &
4.1 The Gaussian channel
3:
& ! , -!& * ?! *& ! && >+ *& ! -*& !-& *& >&%% , * &- "* & ;-& ó 2 N < =2 $! - â PT =n
--% O.19 *& -$-+ , * -*& 12 %2 O1 2PT =nN < 9 > $& + > , " "& &J& *& NN>"*II2 >+ W n=2T >&;& * "& & % n=T 2W + > $& &- *& -$-+ >&- & C W %2 O1 P=N < W 9 > $& &-
O.:)9
! O.)9 *I , ! &@$& , *& -$-+ , > & $"& & ! -*& & * , W P=N< *& &! % NN"&>II ! -*& * -$-+ C
1 P 2 N
$& &-
O.::9
& ! " &! *& --& , * &- *& &; , , ! O.19
%!+ "* H O269 & ! &J& *& n* -$-+B- ,!- Cn O â9 , *& ! -*& >+ n 2 Cn O â9 !$ IOXL Y9 D EOX i 9 < nâ O.:(9 i1
"*&& *& !$& ! #& ;& $ X OX 1 . . . X n 9 Y OY1 . . . Yn 9 , n & ;&- !-* *D X * -!! &+ ,!- pOx9 n i1
EOX 2i 9 < nâ
Yi X i Z i
i 1 2 . . . n
O.:39 O.:3>9 O.:3-9
"*&& Z 1 Z 2 . . . Z n & &$&& O, &-* *& , *& X i I9 & & *& ;& -$-+B- ,!- , *& ! -*& " &J& CO â9 !$ n
/&
1 Cn O â9: n
&&+ $;& *& ,"% *&&
O.:1& + & !-& ,+% O.39 O.3>9
*& >+ O.3-9 *& ? &+ , X Y %;& >+ pOx y9 pOx9 gOz9 "*&& z O y1 *
x1 . . . yn
xn 9 gOz9 *& ? &+ , Z 1 . . . Z n
1 gOz1 . . . zn 9 &@$ O2ðó 2 9 n=2
z2i 2ó 2
O-, H O12:99 & Ai EOX 2i 9 -& X i Z i & &$&& EOY 2i 9 EOX 2i 9 EO Z 2i 9 Ai ó 2 >+ *&& 111 n 1=n n 2 hOY9 < % 2ðe OAi ó 9 : O.:119 2 i1 n 2 2 " >+ O.3>9 i1 OAi ó 9 < nO â ó 9 >+ *& *& &-B %& &- & &H!+ *& $!- O.119 %& * O â ó 2 9 n &-& n hOY9 < % 2ðeO â ó 2 9: O.:129 2 + *&& 11! hOYjX9 hOZ9 On=29% 2ðeó 2 O&& @ $& 116 > 12:9 *! IOXL Y9 hOY9
hOZ9
n â < % 1 2 2 ó
O.:169
"*-* $;& * Cn O â9 < On=29%O1 â=ó 2 9 $;& *& $$& &H!+ & X 1 X 2 . . . X n >& &$&& & & *& O.39 O.3>9 " >& J& Y1 Y2 . . . Yn " >& &$&& & & O-, > 1239 IOXL Y9 hOY9 hOZ9 On=29%O1 â=ó 2 9
* - $&& *& $, , *&& .1 h Note Another way to de®ne Cn O â9 is to replace condition (4.9a) with X ! & + ,&+
+ ;!&
In Prob. 4.11 it is shown that these two de®nitions are equivalent.
O.:399
4.2 The Gaussian source
33
*& J &! * &- *& -% *&& , *& ! -*& - $&&+ %! *& -&& -% *&& 2.D
O-*&9 -& , &%* n ?! & , M n & ;&- fx1 . . . x M g , -&" x Ox1 . . . xn 9 & ;& *& -*& &-&;& y x z "*&& *& - $& , z & &$&& ! ;>& "* & < ;-& ó 2 &-% !& , !-* -& $$% f , *& & , n & ;&- y *& -& *& & $>>& POi9 E &$&& *& $>>& , &-& & %;& * *& i* -&" " & * POi9 E Pf f O y9 6 x i jx i &S "*&& y x i z >;& Theorem 4.2 Ocoding theorem for Gaussian channels9 Fix â > 2 O-9 POi9 , å for all i 1 2 . . . M E Proof --% *& $&-&% & $>& -*& J&+ >& ;>& X "* EOX 2 9 < â !-* * IOX L Y 9 >+ -& CO â9 *& -&$% Y " >& -&& >! -& IOX L Y 9 IOX L FY G9 *& H!4 FY G >&- & J& J& O&& H O11:99L " >& $>& J -&& ;>& FY G !-* * IOX L FY G9 . R *& -&& & +& -*& "*-* * $! *& ;!& ! & >+ X !$! *& ;!& ! & >+ FY G "* $! -& ,+ EOX 2 9 < â *! * -$-+ %&& * R *& &@&-& , -& ,+% O9 O>9 O-9 ," &&+ ,
*&& 2. h 4.2 The Gaussian source
* !-& "*& ,! & *& NN-&& & & +& ! !-&II * !-& $*>& AU *& & , & ! >& *& !-& !$! && >+ &H!&-& U 1 U 2 . . . , &$&& &-+ >!& ;>& "* & < ;-& ó 2 ! >?&- * &- - $!& *& & ,!- , * !-& &;& *& NNH!&&II -& "*-* *& & $*>& AV % *& & , & ! >& *& >&"&& !-& + > u & + > v %;& >+
1& & 2 ' 1 % ó , ä < ó 2 2 ROä9 ä ( < , ä > ó 2 :
O.:1.9
O.:179
$& O ! , >9 % .2 , -!& ! !-& #&+ >& &-!&& + # , %*&% &@$& & -& J& ! >& , > & &H!& &$&& >+ & ! >& u "* $&,&- J&+ , && #" *& &,, >&"&& *& ! >& , > !& &$&& *& &@$& & !- & *& &!% &J& O.179 ROä9 & ,- &$&& *& ! $>& ! >& , > !,J-& &$&& ! O;-& ó 2 9 ;>& , *& @ ! $& >& & H!& & ä * ,- " >& ;&J& >+ *& !-& -% *&&
*&& .7 >+ *& &! , *$& 7
&>* O.179 "& J &J& *& k* & ,!- Rk Oä9 , *& ! !-& "* &$&- *& &H!& & -& >+ O&& H O6699 Rk Oä9 , fIOUL V9 D EOkU
Vk2 9 < käg
"*&& *& J ! #& ;& $ , k & U OU 1 . . . Uk 9 V OV1 . . . Vk 9 !-* *D U1 U2 . . . Uk & &$&& ;>&
O.:1)9 ;&-
& ! , U V %;& >+ -!! &+ ,!- pOuv9
O.1:-9
*& ;& & ,!- ROä9 *& &J& O-, H O6799 >+ ROä9 , k
1 Rk Oä9: k
O.:1(9
*$$&& , -&& & +& !-& *$& 6 " ! ! * *& J ! O.1(9 &+ -*&;& k 1 &,& $;% * ,- *"&;& "& %;& -& , &@$& , R1 Oä9 "*-* , -!& *& ;!& , ROä9 "& Theorem 4.3
& 2 ' 1 % ó 2 R1 Oä9 ä (
ó 2 :
Proof -# ä å . & !-* *D
IOU L V 9 , R1 Oä9 å U ! "* EFOU
& 9 O.:13-9 O.:139
* * $>& ," , &J O.1)9 *& - O.1:9 + O.13-9 O.139 ä> pOu v9Ou v92 u v
pOv9 pOujv9Ou
v92 u v
O.:2+ O.2 12 % ó 2 =äL >! -& * !& , å . & ! "* ;-& ó 2 å *& % O.1:9 J& R1 Oä9 < IOU L V 9 hOU 9 hOG9 12 % 2ðeó 2 1 2 å9 12 %F1 å=Oó 2 å9G -& * !& , å . & *& $ , *& $, , *&& .6 ,& -& *& NN>-#"II & -*& , - $!% ROä9 >&-!& - >& &$-& % .6 $& , *& ,- * U *& !-& V *& &M NN,"II ;& , * & -*& && > .1(9
4.2 The Gaussian source
1-#" & -*& , ! !-&
/& - " - $!& ROä9 Theorem 4.4 Rk Oä9 kR1 Oä9 @ 12 % ó 2 =ä <
for
all
k,
and
so
ROä9 R1 Oä9
Proof -# å . & $ , ;&- ,+% O.1:9 IOUL V9 , Rk Oä9 å: O.:279 k
*& >+ *&& 1( IOUL V9 > i1 IOUi L Vi 9 , "& &J& ä i EFOUi Vi 92 G *& >+ *& &J , R1 Oä9 IOUi L Vi 9 > R1 Oä i 9 >+ k k O.1:>9 i1 ä i < kä !*& & i1 R1 Oä i 9 > kR1 Oä9 > kR1 Oä9 "*&& k ä k 1 i1 ä i -& R1 Oä9 -;&@ [ -+ &-&% >+
*&& .6 &-& Rk Oä9 å . IOUL V9 >
k
IOUi L Vi 9
i1
>
k
R1 Oä i 9
i1
> kR1 Oä9 > kR1 Oä9: -& * !& , å . ó 2 *& $, &, > .2& $&-J& "* d%2 M e > *& &!% $&+ > &H!& dOC9 Theorem 4.5 Let ROä9 @ 12 % ó 2 =ä < denote the rate-distortion function of the Gaussian source with respect to the mean-squared error distortion criterion. Fix ä > 9 dOC9 , ä9 Proof , ä > ó 2 *& >+ -*% *& %& -&" < , &%* 1 "& " -*&;& "* $ & , *& *& * ä , ó 2 & OU V 9 >& *& >-#" & -*& -*&;% ROä9 &->& *& $, , *&& .6L && % .6 *& ä1 ä2 * ä , ä1 , ä2 , ä9: &@ $-# ,!- á â &-* ! % + J&+ * EfFáOU 9 EfFU "*&&
âOV 9G2 g , ä1 áOU 9G2 g å
O.:2:9 + ;!& !-* O.:2(9 O.:239
Problems å 2 åä2 ä2 , ä9:
1 .229 /& " -& *& -&& & +& !-& áOU 9 "* & $*>& &H! *& %& , â ,!- dOu v9 Ou v92 -& >+ *&& 17 IFáOU 9L âOV 9G < IOU L V 9 R1 Oä9 , "& && *& & ,!- , * !-& >+ R ," , O.2(9 * ROä1 9 < ROä9 , R9:
O.:619
*! >+ *& !-& -% *&& , -&& & +& !-& O *&& 6.9 *&& &@ !-& -& , &%* k , *& !-& áOU 9 ,+%D M < 2b kR9c
O.:629
dOC9 , ä2 :
O.:669
/& " -& !% * -& , *& % !-& U , u Ou1 . . . uk 9 >+ ;&- , &%* k , v i *& !-& -&" -& áOu9 OáOu1 9 . . . áOuk 99 *& ku v i k kFu áOu9G FáOu9 v i Gk >+ -*"4I &H!+6 EOkU
Vi k2 9 < EFkU
áOU9k2 G EFkáOU9
2EFkU
Vi k2 G
áOU9k2 G1=2 EFkáOU9
Vi k2 G1=2
O.:6.9
"*&& Vi && *& -&" -& *& ;&- U ! , O.239 EFkU áOU9k2 G kå , O.669 EFkáOU9 Vi k2 9 , kä2 &-& - >% O.6& "* O.629 $;& *& *&&
h
EFkU
Problems 4.1 & -*& "* AX AY *& & & , "*-* *& !$! Y *& ! , *& $! X $ &$&& & ;>& Z "*-* % !, + >!& 12 12 !$$& *& $! X -& ,+ jX j < â , â &%& *" * *& -$-+ O&J& %!+ H O.(9 O.39 O.1>+ PE , 2 nO R< R9 O * %& * *&& .2 * %;& &@$- & & , *" PE - >& & ,!- , n "&#& * R< , CO â9 * , & R< , R , CO â9 & *" * PE ! < $>&9 4.3 *" * , -& fx1 x2 g "* + " -&" , *& &-& -*& *& & && O!-& -&9 *& &-&;& ;&- y *& & $>>+ %;& >+ P2 Fx1 x2 G QOkx1 x2 k=2ó 9 p 1 s 2 =2 "*&& QOá9 O1= 2ð9 á e ds 4.4 &@ *" * %&& , *& -& fx1 . . . x M g &-& >+ *& && -&" &%+ , POi9 E && *& $>>+ , &-% & , x i & *& POi9 E
.. > *& ,"% & & , *& ;&%& ;!& EFPOi9 -& & &&-& &$&&+ E G "*&& *& -&" --% *& >! Pfx âg Pfx âg 12D n 1ã Oi9 EFP E G , M : 2
Problems 4.8 " - $&& *& $, , *& R< *&& 4.9 + *" *D O9
R< O â9 % 2
O>9
R< O â9 1 : CO â9 2
â!1
â!& "& * !+ *& &,,&- , H!4 *& ! -*& && >+ C O rs9 O â9 *& -$-+ , *& ! -*& , "& * *& $! X ! & r - ;!& * *& !$! Y * >&& H!4& & , s ,,&& ;!& + "& &J& , &-* n C Onrs9 O â9 !$fIOX 1 . . . X n L f OY1 9 . . . f OYn 99g "*&& &-* X i n - ! & r - ;!& i1 EOX 2i 9 < nâ Yi X i Z i "*&& 2 *& Z i I & &$&& & & f + ,!- "*-* ! & s ,,&& ;!& *& C O rs9 O â9 !$ n n 1 C Onrs9 O â9 4.10 *" * C Ors9 O â9 C 1O rs9 O â9 4.11 *" * rs!1 C O rs9 O â9 12 %O1 â=ó 2 9 F#&-* , $,D *" * , J@& ;!& , r s!1 C O rs9 O â9 C O r19 O â9 %;& >+ *& , ! C O r19 O â9 !$fIOX L Y 9g "*&& *& !$& ! #& ;& ;>& X ! % r ,,&& ;!& EOX 2 9 < â Y X Z "* Z &$&& & & % *& , ! IOX L Y 9 hOY 9 hO Z9 O-, > 12:9 *" * C O r19 O â9 < 12 %O1 â=ó 2 9 &@ & X >& & & & I 1 . . . I r >& $ , *& & & r &; , &-* i 1 2 . . . r -*& xi 2 I i "* jxi j $>& &J& *& &" ;>& X 9 >+ PfX 9 xi g PfX 2 I i g i 1 2 . . . r *& C O r19 O â9 > IOX 9L X 9 Z9 " r ! 1 *& $ >&- & -&%+ J& hOX 9 Z9 ! hOX Z9 12 %Oó 2 â9 >+ &>&%!&I & -;&%&-& *&& &-&
r!1
C O r19 O â9 12 %O1 â=ó 2 9:
4.12 J@& r s *" * â=ó 2 !1 C O rs9 O â9 O% r % s9 4.13 *" * , r > s *& C O rs9 O â9 C Oss9 O â9 F&! 1 !& ! 2&+ 0G 4.14 , â=ó 2 á2 *" * C O219 O â9 á2 1 gO y9% -*Oá á y9 dy 2 "*&& gO y9 O2ð9 1=2 e y =2 *" * , á C O219 O â9 á2 =2 á. =. &;& * * ;!+ *& & *& !H!4& -$-+ CO â9 12 %O1 á2 9 &-& *& ,# *&& NN %& >+ $! H!4 &I *!II O>! && > .3>9 && , á < 1 *& C O219 O â9=CO â9 "+ > & ó 2 %& , i ó 2i â 4.18 *& >?&- , * &@&-& , +! &;& NN,"II & -*& * -*&;& ROä9 , *& ! !-& &H!& & -& &- "* &&&D U & & ä < ó 2 V ! >& ,! * EFOU V 92 G ä IOU L V 9 12 % ó 2 =ä *" * $>& #& V áU Z "*&& á - Z ! "* ;-& ó 2 >+ -*% ä ó 2 $$&+L #& V âOU Z9 "*&& â - Z !
*&& " NN,"II & -*& - >& &$-& #& *D
4.19 & !-& U 1 U2 . . . "*&& *& Ui I & &$&& ;>& "* - &+ ,!- pOu9 ;-& ó 2 *" * *& & ,!- , * !-& O&& $ 1 ó 2 O&& $, , *&& .. & & >& * OU V9 ! *;& -!! ? &+ &J% V < " 9
Problems
1?&- , * &@&-& *" * , - O.1:-9 "&& &$-& >+ - O.1:-99 *& ;!& , Rk Oä9 "! >& !-*%& *& ,"% #&-* , $, ! & * k 1 ä , ó 2 O *& %&&4 %& k ä H!& &+ * " >& %;&9 ! ?> !$$+ *& & *! & R91 Oä9 && *& ! $>& ;!& , IOU L V 9 !>?&- O.1:9 O.1:>9 O.1:-99 *" * R91 Oä9 < 12 % ó 2 =ä & OU V 9 >& & -*& -*&;% R1 Oä å9 &->& *& $, , *&& .6 *& å . & && - ,!- , V ! % + J&+ + ;!& !-* * EFOU V 992 G , ä *& IOUL V 99 < IOUL V 9 R1 Oä å9 R91 Oä9 < 12 % ó 2 =Oä å9 -& * !& , å . 12 % ó 2 =ä & OU V 9 >& & -*& ,+% O.1:9 O.1:>9 O.1:-99 , "*-* IOU L V 9 , R91 Oä9 å & V 9 V G "*&& G & & &$&& , V *& *& OU V 9 & -*& J& O.1:9 O.1:-9 EFOU V 992 G < ä å -& IOU L V 99 < IOUL V 9 ," * R91 Oä9 å . 12 % ó 2 =Oä å9 -& * !& , å R91 Oä9 > 12 % ó 2 =ä 4.22 *" * *&& & ,!- áOu9 âOv9 "*-* ,+ H O.2(9 O.239 O.6!& ;>& "* - &+ ,!- pOu9 - ,,&& &$+ hOU 9 & f Ox9 >& >+ &%;& &;& ,!- , & ;>& x &J& *& & ,!- , *& !-& "* &$&- *& &!& dOu v9 f Ou v9 ROä9 ,fIOU L V 9g *& J ! >&% #& ;& $ , ;>& OU V 9 "*&& U >!& --% *& &+ pOu9 OU V 9 *;& ? &+ ,!- EF f OU V 9G < ä O -!+ >& -& "* *& $&& , *$& . "& *! &J& Rk Oä9 %!+ "* H O.1)9 ROä9 , k k 1 Rk Oä9 "&;& "! ! ! * Rk Oä9 k R1 Oä9 * *& &J , * $>& &+ *& &9 &J& öOä9 !$fhOX 9 D EF f OX 9G < äg ;& * ROä9 > RL Oä9 hOU 9 öOä9 HintD *" * öOä9 -;&@ \ ä *& , äOv9 f Ou v9 pOujv9du IOUL V 9 hOU9 hOU jV 9 hOU jV 9 qOv9 pOujv9% < qOv9öFäOv9G dv
1 du dv pOujv9
< ö qOv9äOv9 dv < öOä9: 4.24 O!9 /* *& , > 167 &;!& *& * "& >! RL Oä9 *& ,"% -&D
11
9 pOu9 e juj= A f Ox9 jxj: 2A 2 O-9 pOu9 O1 u 2 9 2 f Ox9 jxj: ð 4.25 + -!-% $$$& & -*& *" * ROä9 RL Oä9 , *& !-& , > .2.> 4.26 FNoteD *& &! , * $>& - >& !& % $ *& !+ , *& & ,!- , ! !-& "* & + && &%& F16G *$& .G & k NN$&II ! !-& U1 U 2 . . . Uk * *& Ui & &$&& & & &J& ROä9 , f OUL J ! ;& *& $ OUL V9 "* ? k V9g "*&& *& &+ i1 EFOUi Vi 92 G < kä *" * ROä9 %;& $ &-+ >+ k 1 ó2 ROä9 % 2i 2 ó i1 ä
k i1
Oó 2 ó 2i 9
"*&& *& $ && ó 2 %& , < @ i ó 2i 4.27 '&,+ * *& ! -*& & +& *& && , *& &J $ ..
Notes 1 O$ 3)9 0* & *& $&- &+ N< kT "*&& k 4 0 - 1:6( 3 1< 26 ?!&=85 T *& &,,&-;& & & $&!& -!+ *& $&- &+ &$&& *& ,&H!&-+ %;& >+ 0 PO f 9 hf =Oe hf =kT 19 "E*&4 "*&& f *& ,&H!&-+ *&4 h -# - ):) 3 1< 6. ?!&&- *& & * zOt9ö i Ot9dt ! ;>& , ;-& N< =2 !& + , *& % ö i Ot9 * , &&%+ -J& ,&H!&-& "*&& *& $$@ PO f 9 N< ; O&& & 29 "&;& * $$@ +$-+ ; !$ ;&+ *%* ,&H!&-& &&L , &@ $& , f , & , - !-% *& !$! , , !-& ;& + -*& *!%*! * -*$& "& * #& *& >-# % *" % 71 ! $% '!+ + & - !- +& - >& !>! & !& *& & , % 71 *& &-& >-# &$&& *& $-&% O"*-* + -!& H!4 ! &- "& -% , & -9 $&, & *& !-& !$! >&,& ! & * *&& &@ &%& k n !-* * *& +& $-&& !--&;& >-# , k !-& + > &$&&+ -;& *& !--&;& >-# , n -*& $! + > O &@ $& k -! >& #& *& ! >& , !-& + > & & !% *& ,& & , *& +& >! , +& k !-* & * *9 *& -*& ! & --&$ -*& $! + > -&& &; &$& & -*& !$! + > && -&$&-& *& $!1 *& ! $ * *& -*& NN-&& &II &-;& >! ;&+ -& NN-!! &II -*& - >& ;&"& NN-&& &II "* ;&+ & O-, $$ 3)B3:9 *& NN&-&II >-# &$&& *& $-&%
Figure 5.1 %&& -
112
!- +&
The source±channel coding theorem
116
$&, & *& -*& !$! >&,& &;&+ *& & ! & * *& &-& $-&& !--&;& >-# , n -*& !$! + > &$&&+ -;& *& >-# , k & + > *& & &H!&-& V OV1 V2 . . . Vk 9 >&% *& +& I & & , *& !-& &H!&-& U OU1 U2 . . . Uk 9 /& " $!& &;&" *& >- --&$ , & *&+ $$+ *& >-# % , % 71 *& ,"% -! "& * &,& ;&+ ;%!& %&& -*& !-& &L *& && *! >& "& *"&;& * "& *;& $;& *& &H!& -% *&& + , -& $&- -& "& -& *& -*& /& & %;& *& -*&I $! $*>& AX *& !$! $*>& AY L "* &-* $! + > x 2 AX *&& -& &%;& & ! >& bOx9 *& NN- , &% xII & %&&+ , &-* x Ox1 . . . xn 9 2 A nX bOx9 *& - , &% x "& & %;& *& -*& - * , &-* n "& & %;& - $>>+ >!2 * " ! - $!& *& >! , *& !$! Y OY1 . . . Yn 9 -& "& #" *& $! X OX 1 . . . X n 9 &-* $;& &%& n â > + Cn O â9 !$fIOXL Y9D EFbOX9G < nâg:
O7:19
O719 *& !$& ! #& ;& n & ;&- X OX 1 . . . X n 9 #% ;!& A nX ,+% EFbOX9G < nâ Y *& n & ;&- #% ;!& A Yn "*-* &->& *& -*&I !$! , X !& *& $! * -&@ X -& n & â >& test source *& -$-+B- ,!- CO â9 , *& -*& &J& >+ 1 CO â9 !$ Cn O â9D n 1 2 . . . : O7:29 n %&& CO â9 -!! -;&@ \ -+ -&% ,!- , â > â , fbOx9D x 2 AX g *& -!- ,- >! CO â9 *& ,"% O !! $& % & >& 29 Channel Coding TheoremD @ â< > â *& , + $& O â C9 å9 "* â . â< C9 , CO â< 9 å . & AU & $*>& AV , &-* $ Ou v9 2 AU 3 AV &%;& & ! >& dOu v9 *& NNII * &! , *& !-& + > u ;& *& & v & %&&+ , &-* $;& &%& k &-* $ Ou v9 2 A Uk 3 A Vk dOu v9 &!& *& , *& !-& &H!&-& u Ou1 . . . uk 9 ;& *& & &H!&-& v Ov1 . . . v k 9 "& & %;& *& !-& - * , &-* k "& & %;& *& >! , U OU 1 . . . Uk 9 *& ;&- * &->& k !--&;& !-& !$!2 &-* $;& &%& k ä > ä &J& Rk Oä9 >+ Rk Oä9 , fIOU V9D EFdOU V9G < käg
O7:69
"*&& *& J ! #& ;& $ OUL V9 OU1 . . . U k L V1 . . . Vk 9 , k & ;&- #% ;!& A Uk 3 A Vk !-* * *& % >! , U * %;& >+ *& !-& - EFdOUL V9G < kä *! "* "& & &+ ;+% O769 *& - >! , V %;& U * - >! -& k & test channel *& J ! O769 #& $-& ;& k & ä >& & -*& *& rate-distortion function , *& !-& &J& >+ 1 ROä9 , Rk Oä9D k 1 2 . . . : O7:.9 k %&& ROä9 -!! -;&@ [ -+ &-&% ,!- , ä . ä *& -!- ,- >! ROä9 *& ,"% *&& Source Coding TheoremD @ ä . ä *& , + $ Oä9 R99 "* ä9 . ä R9 . ROä9 , !,J-&+ %& k *&& &@ !-& -& C fv1 v2 . . . v M g , &%* k !-* *D O9 M < 2b R9 kc O>9 dOC9 , ä9 O&- * dOC9 *& ;&%& , *& !-& -& C &J& >+ dOC9 k 1 EFd OU9G "*&& , &-* u 2 A Uk d Ou9 fdOu v j 9D j 1 2 . . . Mg:9 /& " &! *& >-# % , % 71 >&;& * -& *& &-& *& &-& *;& >&& $&-J& "& - ;&" U X Y V ;&- , U &J& >& ;&- *& J $-&
The source±channel coding theorem
117
*& - $>>& , X %;& U , Y %;& X , V %;& Y & &$&-;&+ %;& >+ *& &-&I &% *& -*& - *& &-&I &% /& " &J& *&& $ && * " & ! !-* >! *" "& *& +& $&, The average costD 1 EFbOX9G: n
O7:79
1 EFdOUL V9G: k
O7:)9
k : n
O7::9
â The average distortionD ä The rate of transmissionD
r
*& $*+- %J--& , *&& $ && *! >& >;!D â & ! *" !-* *& +& - ! O $&-*& $! >9L ä -& *" &>+ *& +& *& !-& !$!L r &!& *" , O ! , !-& + > $& -*& + >9 *& +& % , %;& !-& -*& "& "! #& &% +& "* â ä %& r >! , -!& *&& & -K-% %
*& ,"% *&& "*-* *& -& &! , , *&+ & ! &@-+ "* $>& Theorem 5.1 (the source±channel coding theorem). For a given source and channel: O9 The parameters â ä r must satisfy r
9 Conversely, given numbers â . â ä . ä and r , CO â9=ROä9 it is possible to design a system of the type depicted in Fig. 5.1 such that â < â ä < ä and r > r Proof /& * J $;& O9 >&% >+ & #% * *& $, " &$& + &J O729 O7.9 *& -% *&&
*! *& J $ , *& *&& O & & -& *& NN-;&&II NN"&# -;&&II , *& -% *&& 9 " >& && >& !& &@& &+ %&& --! -&
11)
The source±channel coding theorem
*! !$$& "& & %;& +& , *& +$& &$-& % 71 ! J >&; * *& &H!&-& OU X Y V9 , ;&- #; -* OY &$& U + *!%* X V &$& X + *!%* Y9 >+ *& $-&% *&& OH O11799 IOUL V9 < IOXL Y9:
O7:(9
&@ >&;& * -& EFbOX9G nâ O&& O7799 ," , O719 * IOXL Y9 < Cn O â9 *& *& * , O729 Cn O â9 < nCO â9 IOXL Y9 < nCO â9:
-& EFdOUL V9G kä O&& O7)99 ," , > Rk Oä9 , O7.9 * Rk Oä9 > kROä9 &-& IOUL V9 > kROä9:
O7:39 O769 * IOUL V9 O7:1% O7(9 O739 O719 *L >! "* *& *&$ , *& -*& -% *&& *& !-& -% *&& * $;& , " "& ! & * â . â ä . ä r , CO â9=ROä9 & %;& ! ?> &% &-& &-& * *& &!% â ä r ,+ â < â ä < ä r > r *& &-*- $& & &&- ! >& â< ä< ä1 C9 R9 ,+%D â
< â< , â
O7:119
ä
< ä< , ä1 , ä
O7:129
C9 , CO â< 9
O7:169
R9 . ROä< 9
O7:1.9
r , C9=R9:
O7:179
O * * - "+ >& & *& -& , > 729 ! &-& " >& &%& " %& !-& &-& -*& &-& *" % 72 /& " &->& *& !-& &-& , % 72 --% *& !-& -% *&& , !,J-&+ %& k < *&& &@ !-& -& C , &%* k < "* M 1 -&" "*&&
The source±channel coding theorem
11:
Figure 5.2 *& %&& &% , *& &-&.
M 1 < 2b R9 k < c
O7:1)9
dOC9 , ä1 :
O7:1:9
-& &%& m O >& $&-J& &9 "& #& k k < m *& !-& &-& , % 72 $ *& !-& &H!&-& U , &%* k m >-# , &%* k < !$! *& m !-& -&" -&$% * &H!&-& , !-& >-# *! *& & && ;&- W OW 1 . . . W k 9 " "+ >& &H!&-& , m -&" , *& %;& !-& -& C $-! W ! & M 1m < 2 mk < R9 - ;!& * - $&& *& &-$ , *& !-& &-& O&@-&$ , *& $&-J- , m9
&->& *& -*& &-& "& J && &J& *& worst-case distortion , *& !-& -& C &-* !-& &H!&-& u 2 A Uk < & d @ Ou9 @fdOu v i 9D v i 2 Cg *! , *& !-& & u *& !-& &-% $-& &*" %& *+"& d @ OU9 &$&& *& " $>& &!% *& "-& , *& -& C &J& >& *& ;&%& ;!& , * 4& $&+ > >D DOC9
1 EFd k
&;& && *&& & 2 mk < R9 - WI >+ O7229 & * + - -&" ;% - $&&+ &->& *& &-& % 71 "& *;& &&+ , O72.9 * r k=n k < m=nm > r , O7219 * nâ EFbOX9G < nâ & *" * *& ;&%& ä < ä * "& ! , -!& &% *& &-& % 71 %&& &% &$-& % 76 *& -*& &-& !& *& &-& "*& &@&-& $ & >+ *& -*& -% *&& L $ *& + -&" Y OY1 . . . Yn 9 & , *& -*& -&" + Z O Z 1 . . . Z n 9 + *& !-& &-& % 76 --&$ $! *& -*& -&" Z !$! *& &H!&-& V OV1 . . . Vk 9 , m !-& -&" -&$% Z , *&& & O * -&$&-& *& & %;& >+ *& !-& &-& , % 729 , &H!&-& , m !-& -&" -! *;& %;& & Z & ! ! & *& !-& &-& !$! J@& NN! &H!&-&II v< Ov& AV ;% - $&&+ &->& *& - !- +& , % 71B76 ! & % # - $!& *& ;&%& ä k 1 EFdOUL V9G
* "& !-& &" ;>& B "*-* & ! "*&*& *& -*& &-& % 76 !--&& *! < , &-& !--&&L ZX B 1 , &-& ,L Z 6 X:
Figure 5.3 *& %&& &% , *& &-&.
The source±channel coding theorem
113
*&D EFdOUL V9G EFdOUL V9jB % O7279 O72)9 O72:9 "& > ä k $ &
O7:2:9 1
EFdOUL V9G , ä h
Discussion /& ! & *& ;&%& - â J@& O * *& - ,!- bOx9 &-+ 4& "*-* -& *& -$-+ ,!- CO â9 - C @ *& -*& -$-+9 !+ *& &,, >&"&& *& & r *& ;&%& ä , *& - !- +& , % 71 *& & , *& !-&B-*& -% *&& & ! 4& % 7. & O9 , *& !-&B-*& -% *&& * , + &4>& +& *&
12
& J& "* & *;% $ && Or äO1 1< 7< 99M
Problems 5.1 &@$& && "*& &% +& , - !-% >&; , ! $-& ; >+ + &- -*& "*-*D --&$ 1 1+ $% *& $-& & , R $& $& &- O*& $& & & &9 &-% *& $& >&,& !$$& *& - && ;&%& &H!& & , ä - $& ;&%& , B $& + *& -*& /*-* , *& ,"% *&& & , OB ä R9 & $-$& &4>&P B T (). 2732 .62
+ + &- -*& "* " > & $>>+ p &,&% % 7. *" * &;&+ $ *& >!+ ,+% ä p &4>& O& * , p < * $ , *& >!+ -!! 9 *" * *& - â . â $ O>9 , *& !-&B-*& -% *&& - >& & ;& *" * *& H!+ DOC9 &J& , !-& -& H O71(9 J& $;& * , &-* v 2 A Vk < *& &@$&- EFdOUL v9G J& *& *" * * - J& , *& ! !-& , *$& . O &9 * $>& !& *& $>& $, ;;& >!% NN,-&II - !- +& -*&;& "* $ & >+ *& !-&B -*& -% *&& !$$& "& " - !-& *& !$! , >+ + &- !-& ;& >+ + &- -*& "*& " & 1 $>>+ 1< O ! & *&& - -& "* -*& !&9 !*& ! & * &H!& *;& ä < + J &%% !-& -& , *& "* dOC9 & $&-& -& *& ,"% J%!&D
&& U & & "*-* $& *!%* &;-& O $J&9 "*-* !$& >+ - ë *& & & Z &$&& , U & J+ *& &! $& *!%* &;-& O&!9 "*-* !$& >+ *& - ì *& $! X *& -*& ! ,+ EOX 2 9 < â *" * *&& &@ ä - ë ì !-* *D O9 ROä9 CO â9 O>9 EFOU V 92 G ä "*&& ROä9 *& & ,!- , *& !-& CO â9 *&
122
The source±channel coding theorem -$-+B- ,!- , *& -*& &-& *" * *& &H!+ k=n < CO â9=ROä9 - >& -*&;& "* &H!+ "* k n 1
Notes 1 O$ 1129 -& * -*& "*-* -*&;!+ & &&& + > *& & & & *! >&+ ! $% 2 O$$ 116 11.9 & , *& %;& &J , CO â9 ROä9 >& ! >%!! "& ! ! & * *& -*& !-& & stationary * *& - &$& "*& "& >&% *& !-&I !$! "*& "& >&% !& *& -*& 6 O$ 11)9 -!+ &-&+ ! & * *& &-& *& &-& & && - &;-& & $;& *& &H!+ k=n < CO â9=ROä9 * &H!& * *& &-& &-& >& !-* * *& &H!&-& OU X Y V9 , #; -*L , &@ $& &-& !-* * X &$& + U >! & -+ %&&& ;>& "& "! >& --&$>& . O$$ 11: 11(9 *& $&-! -!- "& !& *& $, , *& !-&B -*& -% *&& "*-* *& &-& &-& "&& ,-& !-& -*& &-& &-& &&;& - & - &>+ >& %!& * >+ % *& !-& -*& -% &$&+ "& + & !$ "* +& & - $&@ * &-&+ O&& > 7: 7( &%9 "&;& , *& $ , O â ä r9 *% -& &;&+ !-* $& -*&;>& >+ + & -*&;>& >+ ,-& +&
6 !;&+ , ;-& $- , &
6.1 Introduction * -*$& "& >&K+ ! 4& & , *& $ &! , *&+ "*-* "& *;& >&& >& & & /& * %;& $, >! & &,& *& &&& && &&"*&& !!+ &@># & & % $$& , & /& -*& &- ! & &+ %&&4 &@& , *& " $& , , *&+ *I channel coding theorem O *&& 2. -+9 * source coding theorem O *&& 6.9 /& & &-* &$& &- 6.2 The channel coding theorem /& && *& *&&
, &,&&-& O&& + *&&
2.9
Associated with each discrete memoryless channel, there is a nonnegative number C (called channel capacity) with the following property. For any å . < and R , C, for large enough n, there exists a code of length n and rate > R (i.e., with at least 2 Rn distinct codewords), and an appropriate decoding algorithm, such that, when the code is used on the given channel, the probability of decoder error is , å /& * " -!- %!& ! *!%* *& *&& $% ! "& % $-& "*&& *& *+$*&& - >& "&#&& *& --! &%*&& *& $ , && " >& *& $*& discrete memoryless channel, a nonnegative number C, for large enough n there exists a code . . . and . . . decoding algorithm /& * >&K+ -! ;! - ;&& *& -% *&& 126
12.
Survey of advanced topics for Part one
· Discrete memoryless channel *& *&& * >&& $;& , + *& -*& & &*$ *& $& &@ $& , !-* -*& & , "*-* *& $! $*>& AX *& !$! $*>& AY & >* &H! J& >& %!$ A "*&& *& i* -*& !$! Yi && *& i* -*& $! X i >+ *& &H! Yi X i Z i "*&& Z 1 Z 2 . . . , &%- $-& #% ;!& *& %!$ A *& -*& -$-+ - >& &J& >+ 1 @ IOXL Y9 C !$ O):19 n X n "*&& *& & @ ! #& ;& n & ;&- X #% ;!& A n Y OY1 . . . Yn 9 *& ;&- * &->& *& -*& !$! , X *& $! * Y X Z "*&& Z O Z 1 . . . Z n 9 - , *& J n - $& , *& & $-& &+ && * *& & @ ! -*&;& "*& X !, + >!& A n -& IOXL Y9 HOY9 HOZ9 O&& > 1169 C % q
, n
1 HO Z 1 Z 2 . . . Z n 9 n
"*&& q *& ! >& , && & A ! ! * , n
1 1 HO Z 1 . . . Z n 9 HO Z 1 . . . Z n 9 H < : n!1 n n
* H!+ -& *& entropy , *& $-& Z 1 Z 2 . . . :
$, , *& -% *&& , * ;& &%- & -*& - >& %;& % *& & , *& $, "& %;& , *&& 2. *& + ,J-!+ & "*& "& + & * , &-* å . >+ 1 P IOxL y9 C . å n $$-*& < , n %& !&+ *&& *&& - I asymptotic equipartition property "*-* & * , &-* å . >+ 1 P HOz1 . . . zn 9 H < . å n $$-*& < , n %& -& IOxL y9 % q "* &&&
HOz1 . . . zn 9 * ?!
6.2 The channel coding theorem
127
*&& & + *& -&& -*& "* & + , "*-* *& -% *&& * >&& $;&L -! %& F1:G /,"4 F2:G , &
*& ! -*& , *$& . - >& %&&4& ," & AX AY *& & ! >& & Yi X i Z i "*&& " Z 1 Z 2 . . . &;!& $-& "*&& *&& + >& & # , $! - *& !--&,! *&& , * # --! "*& *& Z i I & &$&& O& *& -*& & +& >! -&&9 "*& *& Z i I , ! $-&L && %& F1:G *$& : (
*& -*& "& *;& -!& , *;& >&& *& & *& && * %& & , , K" & &- + & , *& &&% &@& , *& -% *&& *"&;& *;& >&& multiterminal -*& *& && !-* &! !& * * &, --& -*& "* ,&&>-# * -*& "*-* *& & - J ! *& !$! yi -&$% * $! xi * O&& F27G $$ 113B12-# -&& & +& -*& & -*%& -$-+ /* & #& - !- & & * -$-+ !-* && O&& *& &%* $$& $$ 6:6B.6) F27G > 22 , f&D x1 < < 1 1
x2 < 1 < 1
y < ? ? 1
O&& NNPII $&- &!& + >9 ,!$! *&&!$! -*& * -*& && * -$-+ % 6 "&;& , *& " && & $ &$&& , & !&!+ ;& *& -*& *&+ " &,&& "* &-* *& *! $ H!& D %;& $ OR1 R2 9 , & $>& , && 1 J -& , & R1 , && 2 J -& , & R2 , *& &-&;& J &-% !& !-* * *& - -&-+ &-& >* &%& "*
12)
Survey of advanced topics for Part one
& $>>+ &&P *& "& ! ! >& NN&II ,, *& $ OR1 R2 9 & *& capacity region , *& -*& "*-* * -& *" % )1 & %&& & +& "$! &!$! -*& *& ! &&+ *& & *&& -;&@ &% *& J H! % -& *& -$-+ &% !-* * >+ &>& - !- >& , + $ , & *& &% + broadcast channel & "* & $! & * & !!+ " !$! % $>& $;& *& &@&-& , -$-+ &% O! /+& F.3G , & && --! , *&& !& -*&9 · A nonnegative number C ;& , -&& & +& -*& "& " *$& 2 * *& --! , -*& -$-+ - >& ;&+ ,J-! !& *& -*& &?+ *%* &%&& , + &+ &- * C %;& >+ C
@ IOX L Y 9
X
*& @ ! >&% #& ;& O& &9 & !-& X * ;& $>& $>>+ >! *& -*& $! $*>& AX
* ; $>& ; >! &"* && * %* J $$& -& IOX L Y 9 -;&@ \ ,!- , X *&-& + - @ ! %> @ ! % * ,- % $ %& F1:G &;& " &- *& $>& , J% -*& -$-+ , & &-&+ F23G *! F62G *;& %;& &,J-& ! &- $-&!& , - $!% C -*& *& * I *& --! , -$-+ !!+ !-* & ,J-! , *& &J H O729 %&& &;& &,,&-;& -*& "* ;& &%- & *& --! , C "& *;& && &H!;& *& --! , *& & &$+ , *& & $-&
Figure 6.1 *& -$-+ &% , $&
!$&--& -*&
6.2 The channel coding theorem
12:
#; &+ - $!& *& &$+ O&& > 12! %&& ;&+ & #" !& -*& *& -&$% $>& * *& --! , *& -$-+ &% * "% ;!+ !!-*& · For large enough n -&& & +& -*& *& $>& , && % *& &*$ >&"&& å *& && &-& & $>>+ R *& && & *& & n !-* * *&& &@ -& , &%* n * & *& ?> * >&& *& !>?&- , & &@& &+ &;& &&-* !%*+ $&#% * >&& -;&& * , &-* < < R , C *& >& -& , &%* n & R * &-& & $>>+ %;& $$@ &+ >+ PE 2
nEO R9
"*&& EOR9 *& -*&I reliability exponent -;&@ [ ,!- , R * # &*% #& *& -!;& *" % )2 >& & $&-& && >+ PE OR n9 *& & $>>+ , *& >& -& , &%* n & > R &J& EOr9
n!1
1 % PE OR n9: n
O -!+ >+ * &;& $;& * * &@ >! *& ,"% -! "& " %& * &-*-+ >&% !& * !$$& >! EOr9 & &+ !$$& >! EOR9 !$ n 1 % PE OR n9 &-9 *!%* EOR9 #" &@-+ , + ; *&& &@ % !$$& "& >! EOR9 "*-* %&& # *" % )6 *! *&& NN-- &II R- >;& "*-* *& !$$& "& >! EOR9 %&& >! , < , R , R- *&& %$ &@ $& -& "* " & $>>+ p :& #" !$$& "& >! EOR9 & $& % ). O& *& %* & !$$% *& "& >! % ). * -&$ *& R< -% *&& > 221B22)9
Figure 6.2 *& $$@ & *$& , *& &>+ &@$& ,
12(
Survey of advanced topics for Part one
Figure 6.3 *& $$@ & *$& , *& #" >! EOR9
Figure 6.4 *& >& #" >! EOR9 , "* p :?&- "& *;& -& NN-% *&+II O &;& *& &- $ , * ># 9 - >& ;&"& &-* , -!-;& $-- -*& -% *&& "&;& & , *& &@$- -% -*& & " #" - >& !& -*&;& ;&+ " & $>>& & ;&+ -& -*& -$-+ *& -% *& *& " * >&& "% -J-& *& NNPE ! < ,
6.2 The channel coding theorem
123
R , CII --! , *& -% *&& , *& #& , -!-;&& , *& *"&;& * --! -& -& >& ! , &,, * >&& &;& *& $>& , &% "*& *& & & &%*&% *& NN*&& &@ -& &-% %* II $ , *& --! & ! &->& & , *& &,, *& J $-& $>& &- & &;&+ - , -& $;& *& -% *&& &@ $& *& - , linear codes O&& *$& :9 - -& * & % *& && , *& -% *&& O&& &% %& F1:G &- )29 -& & -& & ;&+ &+ &-& * *" * &-% %* , % -& && >& $--+ - $&@ *& -% *&& * >&& $;& , timevarying convolutional codesL && &+ F21G &- ) : &*& , *&& -& , -& *"&;& * $-- &-% %* /* &@-+ "& & >+ NN$--II %* P & ! $ *& ;&" "&+ --&$& >+ - $!& -& O&& &% * $-, F1G *$& 1 R, such that: O9 PE n , 2 nE c O R9 (here PE n is the error probability of the nth code and Ec OR9 is a monotonically decreasing function of R which is positive for all R , C), O>9 The complexity of encoding and decoding Cn is -# % #& *& & *" % )7 + -*% & -& + #% $-! # , !& -& O &&B
16
;& &+I &! %&+ *& *& %$ >&"&& , *&+ O"*-* *" "* *! >& $>& 9 -% *&+ O"*-* *" "* $-- 9 ,!&+ "*& &+I *&& NN$--II NN-!-;&II *& && * & & ! *" J *& $$$& & -& *! *& $>& , J% &@$-+ -!->& $-- &H!&-& , -& , "*-* PE $$-*& < &@$&+ , R , C & $& , && &;& $!-& !-* *&& " !& *& !>?&- , , *&+ -% *&+ O $>>+ $! >* ! , >!&9 · Converses to the coding theorem + -;&& *& -% *&& *;& >&& -J& NN"&# -;&&II NN% -;&&II >! * &-!& &% -& *& % -;&& $+ *& "&# & /& *;& &+ && O$ 1179 *& "&# -;&& + * , "& & $ - !-& *& !$! , + >+ + &- !-& ;& -*& & &@-&&% *& -*&I -$-+ *& &!% > & $>>+ >!& "+ , 9 *& k=n &!& *& & , L -&+ , k=n &@-&& C *& ROä9 , 1 "*-* ,-& ä *& > & $>>+ "+ , 1
2
nE A O R9
161
R . C
"*&& EA OR9 Arimoto's error exponent "*-* * *& %&& *$& *" % )) *& $&- -& , "* " & $>>+ p &"&& -*& -% !-& -% * "& *;& & $*4& *& !>?&- , !-& -% rate-distortion theory >+ "& % & ,J-! &-& *& !>?&- -&>+ & ;-& * &
Figure 6.6 *& %&& *$& , I &@$& EA OR9
Figure 6.7 EA OR9 , "* p &K+ -! converses *& !-& -% *&& · Discrete memoryless source *& ! "+ &@& *& !-& -% *&& $;& , "& - , !-& * *& -&& & +& & *& *&& * ,- >&& &@&& * "+ ; ! >& , !-& && $--+ + !-& "*-* - >& && + $-& . . . x 1 x< x1 x2 . . . * >&& !& ,! &+ *"&;& *& & ,!- ROä9 - >& --!& &,,&-;&+ , &;&+ ,&" , *&& !-& & O&& &%& F16G $ 6.9 /& " &- )2 * H!& #" >! *& -$-+ &% , -& !& -*& !-* & #" >! !-& -% , !$& !& >! & &! *& &$B/, *&& && -% , -&& !-& "* &% &->& *& &$B/, *&& "& ! $!& $ ! $ $- , *& !-& -% *&& O "*-* -&+ *$& 11 &&+ &;&M9 & X 1 X 2 . . . >& &$&& &-+ >!& &H!&-& , ;>& #% ;!& & A *# , * &H!&-& , !-& &;& *& % ,!- * #& *& & $*>& A &J& dOx y9 1 , x 6 y < , x y *& "& " $ (& &&+ $&,&-+ &$&&& !% + >! HOX 9 > $& $& * !-* , -!& $& -&H!&-& , *& !-& -% *&& *$& 11 "& " %;& &@$- &-*H!& , % * noiseless coding -& " & ! ! *& &! , &$ /, & OX i Yi 9 i 1 2 6 . . . >& $&& &-+ >!& &H!&-& , $ , -&& ;>& "* - >! ,!- pOx y9 -
6.3 The source coding theorem
166
&$& HOX 9 HOX Y 9 HOX jY 9 &- *& $>& J &$&& !-& -& , *& X Y &H!&-& !-* * *& &!% &%%>& $&-J-+ "& " -J%! !-* *& & &$-& % )( *& ;&- X &-& *& -&" f OX9 "*-* - ! & + & , M X ;!& + gOY9 - ! & + & , M Y ;!& *& rates & &J& RX
1 % M X k
RY
1 % M Y k
*& error probability ^ 6 X Y ^ PE PfX 6 Yg:
$ , & ORX RY 9 >& admissible ,, , &;&+ å . < *&& &@ -J%! , *& &$-& % )( "* PE , å &$ /, O&& F27G $$ .7& & *& $>& "! &!-& *& &,&& &-% , &H!&-& , &$&& ;&- "* &$+ HOX Y 9 *& >& &% "! >& *& *,$& >!& >+ *& & RX RY HOX Y 9 , *& &-& & *& -&-& *& 4& , *& >& &% - -&& *& B/ >& &% ! & &&+ >;& * & & * , , &@ $& Y #" $&,&-+ *& &-& *& & % !-&+ >! X HOX jY 9 &;&+ $ *& >& &% ! ,+ RX > HOX jY 9 + RY > HOY jX 9 *! *& >& &% ! >& !>& , *& &% -& % )3 *& & #>& ,- * * %& & &-&+ /+& =; F7& $>&
Figure 6.8 -# %
, *& &$B/, *&&
16.
Survey of advanced topics for Part one
Figure 6.9 *& & , >& &
$&, -& , *& -J%! % )( "*& *& & RX RY & *& &% #& NN/B= &%II % )3 /B= &% X - >& &$!-& &@-+ -& RX > HO Z9 ! -& RY , HOY jX 9 &;>+ *&& " >& *& &-&$ , Y /+& =; *;& && & *& ! $>&
*& &$B/, /+&B=; &! ! >& &&$ !!& %&&4 , & *&+ · A functon ROä9 /& *;& &+ && *$& 6 * &;& , -&& & +& !-& !& ;&+ %& ! , + &+ $&& H!& ,J-! - $!& *& & ,!- ROä9 "&;& *! F62G O&& '&> ! F2)G $$&@ : 9 * -;&& $+ -;&%& %* , - $!% ROä9 ! &-+ *& $>& , - $!% ROä9 * -& "&+ &%& ;& & %&& !-& &!& *"&;& *& $>& , - $!% ROä9 !-* & ,J-! &*$ *& $&;& %&& - , !-& , "*-* ->& , ! , ROä9 #" *& - , disccrete-time stationary Gaussian !-& &;& *& &H!& & -& && *& !-& && + ! &H!&-& , ;>& . . . X 1 X < X 1 X 2 . . . : *& & ,!- ROä9 %;& $ &-+ >+ 1 ð äOè9 Oè SOù99 dù 2ð ð 1 ð SOù9 ROè9 @ + H O7.99 &@ $& *&& $$&+ #" -&& !-& "* & + , "*-* ROä9 - >& - $!& &@-+ "&;& *&& &@ + &-*H!& , >!% ROä9 "& % &,& *& &&& && &%& F16G · For large enough k /& " &- 2 * , *& -*& & $>>+ PE - >& & $$-* < &@$&+ "* -&% >-# &%* *& %! H!& , *& !-& -% *&& " H!-#+ & *& , $ ! !-& -& , &%* k & < ROä9 $$-* äP * &- - F.6G O&& %& F1:G &- 369 * *" , * , d Ok9 && *& ! $>& ;&%& , !-& -& , &%* k & < ROä9 *& % k d Ok9 ä < : k
*! *& -;&%&-& , ä Ok9 ä !-* & $ * *& -;&%&-& , PE & ! , &&-* * >&& &;& *& $>& , J% - , &+ $& &>& !-& -& , "*-* *& !-& -% *&& - >& $;& * &&-* * & !-& -% *&& , *& , NN + å . < ä > ä *&& &@ !-& -& , +$& T "* & < ROä9 å ;&%& < ä åII !-* *&& *;& >&& $;& "*&& +$& T *& & , linear codes O&& *$& :9 tree codes O&& *$& 1& - $&&+ &->& >+ + & , k &+ &$&& -&" x1 x2 . . . x k , k &;&+ -&" & , *& q k & - > i1 á i x i á i 2 Fq , "& %& *& -&" k 3 n @ G G -& generator matrix , C & %&&+D De®nition Let C be an On k9 linear code over Fq. A matrix G whose rowspace equals C is called a generator matrix for C. Conversely, if G is a matrix with entries from Fq , its rowspace is called the code generated by G. + $&-,+% %&& @ &+ $>& %;& - $- &-$ , & &&% -& *& *&& &@ $& * ," O "* q 2L *&+ & binary -&9 " >& !& , !;& $!$& *!%*! * -*$& Example 7.1 O7 19 & -& C1 "* %&&
@
G1 F1 1 1 1 1 1G: Example 7.2 O7 69 & -& C2 "* %&& @
1 1 1 < < G 2 < < 1 1 < : 1 1 1 1 1 Example 7.3 O: .9 & -& C6 "* %&& @
1 < < < < 1 1 < 1 < < 1 < 1 G6 < < 1 < 1 1 < : < < < 1 1 1 1
h
h
h
OC1 - + *& " -&" ! G2 *& !H!& %&& @ , C2 ,-
1 1 < < 1 G92 < < 1 < 1 < < < 1 1 "*&& , -+ "& *;& --& *& &, 1 &-* " % G92 *& * G2 *& &-% O:19 , C2 >&- &D Ou1 u2 u6 9 ! O u1 u1 u2 u6 u1 u2 u6 9:
* &-% , C2 * *& &>& ,&!& * *& , + > u1 u2 u6 $$& *& -& *& -&"L %&& *& + > u i " $$& *& t i * - $& , *& -&" x uG , *& &, &+ , *& i* " , G --! -! t i + -& & "*-* * *&
1.2
Linear codes
$$&+ * *&& &@ &-% !& !-* * *& , + > $$& *& -& >& systematic /& *;& *! & & * every linear code is systematic -& &@ * *& %&& -& , C1 C6 *;& *& , G FI k AG "*&& I k *& k 3 k &+ @ &+ &;&+ & -& &?+ * $$&+ O&% C2 9L >! , *& -& , !& & +& -*& *& $&, % -! $& ! G " & *& -&I $&, -& "& - "+ ! & G FI k AG * -& &@ $& >+ &&% *& -! , G92 *& & O16.279 "& >
1 < < 1 1 G 20 < 1 < < 1 < < 1 < 1 "*-* %&&& -& "*& $&, -& *& & * , C2 + & +& -*& !-* , "*& , *& %&& @ *&& *& $&*$ &;& & !&,! @ -& "* &;&+ & -& -& *& paritycheck matrix "*-* "& " &->& , C On k9 & -& ;& Fq parity check ) , C &H! , *& , a1 x1 a2 x2 a n x n $-& , V n OFq 9 && >+ C ? OC NN$&$II9 -& *& dual code , C + &! & %&> C ? * & n OC9 * C ? is an On n k9 linear code over Fq $+-*&-# @ , C " &J& %&& @ , C ? & &-+D De®nition Let C be an On k9 linear code over Fq. A matrix H with the property that Hx T 0 iff x 2 C is called a parity-check matrix for C.: , -!& >+ *& %! & >;& ," * &;&+ On k9 & -& * !H!& On k9 3 n $+-*&-# @ ! & - !& %*+ ,,&& -- , , H &@ $& , G FI k AG ," * H - >& #& H F AT I n
k G:
O::69
, G , * , H - >& >& >+ J $&, % -!
7.2 Syndrome decoding on q-ary symmetric channels
1.6
$& ! $! G *& , FI k AG *& $&, % *& ;&& $& ! F A T I n k G( &@ $& *& $+-*&-# -& , & * "+ , G1 G2 G6 O$ 16.9 &
1 1 < < < 1 < 1 < & & &- O>! -, > :11 :2! *& + & * &$& + *& & $& z *& & -&"D s Hy T HOx z9 T Hx T Hz T Hz T -& Hx T 0 , -!& *& &-&;& &-+ &&& zL *& " #" x ! -& *& #" y x y z *& - ,&+ ,-! *& $>& , J% z
*& + & $;& & , >! z >! &!%* * >&-!& , J@& s 2 V n k OFq 9 *& & , ! Hz T s , coset 1< , *& -& C * !>& , V n OFq 9 , *& , C z< fx z< D x 2 Cg:
O::.9
*&& & q n k -& , C -&$% *& q n k $>& + & sL &-* -& - &@-+ q k && & *! -& *& &-&;& - $!& s *& * &!-& * &-* , z , q n q k $>& &+ *& && & , *& -& -&$% s & %!* >&"&& *&& q k -& , z *"&;& &-&+ #" &*% & >! *& -*& * &- "& * ! & * *& -*& q-ary symmetric channel OH9 * , X ;&- &% *& -*& $! Y ;&- &% *& -*& !$! *& Y X Z "*&& Z O Z 1 Z 2 . . . Z n 9 ;&- "*& - $& & &$&& &-+ >!& ;>& "* - >! Pf Z & *& ! >& , 4& - $& , z &;&+ w H Oz9 *& ! >& , & --!% z , å < 1=q *& %* & , O:)9 &-&% ,!- , w H Oz9 *& $>>& z *& & , & "&%* O *& -& 1=q , å , 1=Oq 19 && > :69 %!& :1 *" *" *& + & &-& "# & $-$& , -!& &$ 2 * %* &$&& , >& ! , "#L && *& >?&- , *$& ( 3 *& &% , & & -& , *& H , "*-* &$ 2 ->& "&;& , k n k & >* &;&+ $>& $& & &$ 2 ; NN>& #!$II $-&!& "*-* "& " &->& & % -& C2 $+-*&-# @ %;& $ 1.6 1 1 < < < H : 1 < 1 1 1 * $& -& *&& & + ,! $>& + &D &"&& " ;&- x y d Ox y9 *& ! >& , - $& , "*-* xi 6 yi w Oy
x9Ocf: $: 1.79:
O * -& J& *& , $$&& &H!& , &-L && > :.9 *&& &&% &*$ >&"&& *& % %& &+ , -& >+ -&- & H "*-* "& " ;&%&
*! & C fx1 x2 . . . x M g >& -& , &%* n &-&+ & , !& H !$$& * "& " C >& -$>& , -&-% & $& , % "&%* < eL * , x i & y x i z &-&;& w Oz9 < e "& " ! &-&I !$! >& x^ x i &+ && * , &-* -&" & "* $>>+ 1=M *& *& &-&;&I >& &%+ , %!&% "*-* -&" " & $-# *& -&" -& y * *& & , "*-* d Ox i y9 & O&& > 2169 FNoteD -& d Ox i y9 w Oz9 ," * *& + & &-% , & -& &->& % :1 &H!;& NNJ *& -& -&"II &-%G -& * , * %& &- &-% &%+ !& *& -& " >& -$>& , -&-% $& , "&%* < e ,, *& -& >&"&& &-* $ , -&" > 2e 1 O% :69 , d Ox i x j 9 > 2e 1 * , *& % $*&& , ! e ! x i x j & ? *& , x i & d Ox i y9 < e y - >& -&
7.3 Hamming geometry and code performance
Figure 7.3
1.:
% $*&& , ! e ! ?-& -&"
x j * x i %& &- &-& " $&,& x j x i ;&&+ , d Ox i x j 9 < 2e * , *& % $*&& , ! e &&- O% :6>9 *& -& * , x i & *&& &@ y * * d Ox i y9 < e >! & -& x j x i "& & & &J& *& minimum distance , *& -& C d
OC9
fd Ox x99D x x9 2 C x 6 x9g
"& *;& $;& *& ,"% *&& Theorem 7.2 A code C fx1 x2 . . . x M g is capable of correcting all error patterns of weight < e iff d OC9 > 2e 1 &@ $& -& "* d : - -&- & $& , "&%* < 6L , d 22 $& , "&%* < 1&; * -& d Ox x99 w Ox x99 x x9 ! >& O4&9 -&" , C & O x 6 x99 *& ! -& , & -& *& & minimum weight w OC9 "*&& w
OC9
fw Ox9D x 2 C x 6 & &$&& >! *& ! , -! 0L d OC1 9 7 H 2 -& * d OC2 9 2 -& , &@ $& *& * ,!* -! , H 2 & &- *& !+ , H 6 $ "& * &;& ! &@ &- 7.4 Hamming codes &,&&-& "& % $+ *& $+-*&-# @ , C6 D
< 1 1 1 1 < < H 6 1 < 1 1 < 1 < : 1 1 < 1 < < 1 /& " $$+ *&& :6 *& $>& , && % d + *& & ,"% *& & & , *& *&& d *& & ! >& , -! , H "*-* ! 0 &+ d 6 1 2 -& *& -! , H 6 & 4& - "&;& *&& & + !>& , *&& -! , H 6 ! % 0 , &@ $& -! 1 2 6 *! d 6 C6 singleerror-correcting -& * -$>& , -&-% & $& , "&%* < 1 + >&;& * , C + On n 69 %&&-&-% -& *& n < : -& , *& 6 3 n $+-*&-# @ H * n > ( "! &*& *;& 4& -! Od 19 $ , &- -! Od 29
*& %&& &J , >+ % -& ,"
7.5 Syndrome decoding on general q-ary channels
1.3
De®nition Let H be an m 3 O2 m 19 binary matrix such that the columns of H are the 2 m 1 nonzero vectors from V m OF2 9 in some order. Then the n 2 m 1, k 2 m 1 m linear code over F2 whose parity-check matrix is H is called a (binary) Hamming code of length 2 m 111 /& #& " & # >! % -& -& * + & &-% &$&-+ &+ , *& & $& z ! , w Oz9 1 + z i 1 *& s c i *& i* -! , H &-& *& + & &-+ &J& *& & - *& %&& &-% %* , % :1 >&- & *& $&- %* , % :. &- &- * -& C - -&- $& , "&%* < 1 ,, *& % $*&& , ! 1 ! *& -&" & ? ! % $*&& , ! 1 V n OF2 9 - n 1 ;&- * %&&-&-% -& - *;& 2 n =On 19 -&" $-! , n 2 m 1 m m *&& - >& 22 1 =2 m 22 1 m -&" *& &@- ! >& *& % -&M *! *& % -& *;& *& >&!,! %& &$$&+ * *& $*&& , ! 1 ! *& -&" &@-+ J V n OF2 9 "*! ;&$ * & * *& % -& >&% &@& &+ &@-!;& - , -& *& perfect codes *& + *& >+ & $&,&- -& & *& &$& -& O&& > :1(9 *& O26 129 + -& O&& &- 3(9 O && *& -! , $&,&- -& *$& 129 &;& ; , % -& -!% >+ % -& & %;& > :1: :13 "&;& *& & &&% !&,! %&&4 , % -& - , -& "*-* -&- e & , e . 1L * %&&4 *& $- && *$& 3 7.5 Syndrome decoding on general q-ary channels &- :2 "& &->& % &-% %* , & -& >&% !& q+ + &- -*& "&;& ,&" q$! q!$! -*& & "& && >+ H * &- "& * >&K+ -& *& $>& , &-% & -& & - $-& -*&
Figure 7.4 + & &-% ,
% -&
17
& On k9 & -& ;& Fq "*-* %% >& !& -*& "*& $! !$! $*>& & >* &H! Fq /& ! & * *& -*& & ;& * , x Ox1 . . . x n 9 *& & -&" *& &-&;& ;&- y %;& >+ y x Z "*&& Z O Z 1 . . . Z n 9 & ;&- "* >! %;& >+ PfZ zg pOz9 z 2 V n OFq 9 O& * *& H , &- :2 J * &-$ "* pOz9 %;& >+ H O:799 " "& &-& C * -*&P >&,& *& J &$ - $!& *& + & s Hy T L * " &,+ *& -& * *& & $& z >&% ! " *& #&+ & $& "* *& -& -*-&4& >+ *& + & s *& & "* *& %& ;!& pOz9 *& * *& & "&%* &-& *& &-% %* * %&& ! O-, % :19 %;& % :7 &@ $& -& !% -& C2 -*& , "*-* *& &%* 7 & $& *;& $>>& %;& >+ *& ,"% >&D z ! " &&- + & $& z !& z 4& -&" *& &-&I & $>>+ *& ?! *& $>>+ * z 4& -&" , C , "& ! & *& -*& H *& *& $>>+ * z &H! $-! -&" , "&%* w FO1 Oq 19åG n w å w O&& H O:)99 &-& , "& && >+ A i *& ! >& , -&" C , "&%* i *& & $>>+ , * &&-+ -*& &
7.6 Weight enumerators and the MacWilliams identities PE
n
A i å i F1
19åG n
Oq
176
i
i1
F1
Oq
19åG n FAOä9
1G
O:::9
"*&& ä å=F1 Oq 19åG AOz9 A< A1 z A n z n O& * A< 1 , + -&9 *& %&&% ,!- AOz9 -& *& weight enumerator , C /& * !+ ,!*& *& &@ &- h 7.6 Weight enumerators and the MacWilliams identities
&$&D , C On k9 & -& "&%* &! & *& $+ AOz9 A< A1 z A n z n "*&& A i && *& ! >& , -&" C , % "&%* i k &+ A< 1 AO19 q "& *;& && OH O::99 AOz9 - >& !& --!& *& & $>>+ "*& C !& , & &&- +
*& ,"% *&& *" * AOz9 - >& !& >! *& & $>>+ !-* & &&% ! &+ "*& *& -& >&% !& -&& & +& -*& "* @ ! #&* &-% !& F& + & &-% @ ! #&*L && $ 1.)G $-+ "& * & + >+ -& >! && > :1& " !$$& x< & *& &-& " &J&+
17.
Linear codes
!$! x i , pOyjx< 9 . pOyjx i 9 , Y i fyD pOyjx i 9 > pOyjx< 9g ," * PO Qi
>+ < AOã9 1 $ & , x< & , & *& -&" + x j & &% &- * ?!
7.6 Weight enumerators and the MacWilliams identities 177 n %;& *" * *& &!% & $>>+ POEj9 < i1 AOi j9 ã i "*&& O j9 A i *& ! >& , -&" 6 x j "* % -& i , x j ! -& *& -& & AOi j9 AO :129 *& *&& $;& h Example 7.6 & C1 , * -*$& * + " -&" & ; $& & , , *& "&%* &! & , *& ! -& C ? O&& $ 1.29 Theorem 7.6 Othe MacWilliams identities9 Let AOz9 be the weight enumerator of an On k9 linear code C, and let BOz9 be the weight enumerator of the dual code C ? , that is, BOz9
n
B j z j
j
:2:9 "& &>* & -;& , x Ox1 . . . x m 9 ;&- , + &%* &;& m 1 ;& J& F wOx9 && % "&%* * *& ! >& , 4& - $& $-! , x - O& x 2 F9 *& < , x + &J *& ! >& , - $& xi , x &H! 1 h
7.6 Weight enumerators and the MacWilliams identities
17:
/& " $-&& $;& *&& :) *& & - $!& *& ! z wOy9 hy x x9i O::1:9 xx92C y2V
" "+ , "& --!& *& & ! & 2
O1
z9 wOx
x99
O1 z9 n
wOx x99
O:1:9 J "& > >+ n
A i O1
z9 i O1 z9 n i
i
+ "&%* %* && *$&& ! *& ! -& * + 2 m -&" * ;&+ $& "&%*
17(
Linear codes
&! & >+ *&& :) AOz9 , *& % -& - >& - $!& %&& O&& *& ,"% &@ $& > :23 :6+ *&& :) $ % : 1 z9. O1 z96 1 :z 6 :z . z : : h ( O1 z9 :O1
Problems 7.1 & C >& & -& ;& *& J& F6 f+ & -& C O9 "&!-& &-*& %&& @ , C O>9 $+-*&-# @ H , C O-9 ! "&%* -& && , &-* , *& ( -& , C O9 & A i Oi & , ;&- , "&%* i C *& A i O&9 &-& *& ,"% &-&;& ;&-D 111& & "* d OC9 2 !H!&P $&& *& $, , *&& :. & C >& q+ & -& >&% !& H "* @ ! #& * &-% *" * *& &!% & $>>+ >!& >+p AOã9 1 "*&& A *& -&I "&%* &! & ã 2 åF1 Oq 19åG åOq 29 O *& &J , H && H O:799
q+ erasure channel -&& & +& -*& "* $! $*>& A X Fq *& J& J& "* q && & A Y Fq [ f?g "*&& NNPII $&- &!& + > , x Ox1 . . . x n 9 & y O y1 . . . y n 9 &-&;& error --! *& i* $ , yi 2 Fq >! yi 6 xi erasure , yi ? O9 & C >& On k9 & -& ;& Fq "* ! -& d *" * C - -&- - > , e & f &!& ,, d > 2e f 1
1)
9 !$$& *& -*& pure erasure channel * pO yjx9 < !& y x y ? * -& *" * *& - Hx T 0 , x >& -&" - >& !& > n k & &H! *& !#" && -&" - $& O-9 $$+ *& &-*H!& !%%&& $ O>9 &-& *& ,"% -& " , *& O: .9 % -& O$+-*&-# @ H 6 $ 1.)9 "*-* *;& !,,&& &!& >! &D 19 *" * I , & , C ,, -! i1 . . . i k , *& %&& @ & &+ &$&& O-9 " + , & -& C1 C2 C6 , * -*$& *;&P O9 & C >& binary & -& !-* * &;&+ k&& & !>& , f1 2 . . . ng , & *" * k + -& "* * $$&+ O&% *& &&B -& , &- 3)9G O!9 *& , , & !-& > :16 - >& !& &% &-% %* , & -& * ,,& #&+ , + & &-% & & -& error trapping decoding with multipliers12 !$$& * C On k9 & -& * "& "* -&- $& , e ,&"& & "* C & I 1 I 2 . . . I r >& , & "* *& $$&+ * , + e&& & !>& J f1 2 . . . ng *&& &@ & & & I i !-* * I i \ J ö O9 !$$& * y *& &-&;& -&" * - < e & &-* i 1 2 . . . r & x i *& !H!& -&" , C * %&& "* y *& $ $&-J& >+ I i *" * & & , *& x i I %&&& *& -! & -&" O>9 ! % * d OC9 > 2e 1 *" * >+ - $% *& x i I y & >+ & *& & -&" - >& !H!&+ &J& O-9 $$+ * &-*H!& *& O: .9 % -& /* *& & ! >& , , & * " !,J-& -&- 1 &P !$$& +! "&& $$-*& >+ - !- &%&& "* +! * * O>+9 -*& --&$ " , &%* n * *& + # , & $& &;& >&;& & , *& n 1 $& O& %&&-&-% -& ,, -! , H 9 *" * , J@& ;!& , m , H * *& $$&& $ O9 *&
1)2
Linear codes n < Oq m 19=Oq 19 * * >! *$ , n Oq m 19=Oq 19 *& &!% -& -& q-ary Hamming code &+ * n Oq m 19=Oq 19 k n m O-9 !- $+-*&-# -& , *& ,"% % -&D q 6 6 7
n . 16 )
k 2 1< .
7.20 *& >?&- , * $>& !+ *& $&, -& , >+ & -& ! -*& O&& &- .19 "* &&%+ - EOX 2 9 < â & ;-& ó 2 $-! "& * > %!& , *&& :7 , * -*& & C >& On k9 >+ & -&L "& ,+ , !& *&! -*& >+ $$% &-* NN! *& &*$ >&"&& d k , *& >& -& $-+ "& * &- ! & binary linear codes J@& n d & M L On d9 && *& @ ! $>& ! >& , -&" & -& "* &%* n ! -& > d
Problems
1)6
7.21 O *& >&B'* ; >!9 *" * M L On d9 > 2 n =1
1n
dn 1 F HintD , *& >& & -& * ,&"& * * + " & & , -& "! *;& " , "&%* > d ! *& ! , & -& "* & , -& & -&G 7.22 O *& % >!9 *" * , >+ -& , &%* $ n & % -$>& , -&-% e & - 2 n = 1
1n
en -&" 7.23 O!9 *" * *& % -& -*&;& *& >! , > :22 7.24 O *& # >!9 & ð i D Ox1 . . . x n 9 ! xi >& *& $$% * $?&- >+ ;&- i* - $& *" * , x %& *!%* On k9 -& C ð i Ox9 < * &*& 2 k 2 k 1 ! & * ,- $;& * w Ox9 < n 2 k 1 : x2C
-!& * d OC9 < n 2 k 1 =O2 k 19 7.25 O!9 !$$& n > 2d 2 & C< >& *& -& >& >+ &&-% -&" , C * & < *& J n 2d 2 -& &&% *&& -& $$+% *& &! , > :2. C< --!& * M L On d9 < 2 n
2d2
d:
7.26 *& ,"% &! O& ' & &&>&%9 *" *" &%*& *&& :7 , O9 *" * >! O:169 - >& $;& Qi < ã d Ox< x i 91 , d H Ox< x i 9 F Hint: > >+ , &$& -& , &%* 2n *& & , & , &%* 2n 1G O>9 &-& *" * *&& :7 - >& $;& PE < 12FO1 ã9 AOã9 O1 ã9AO ã9G 1 O-9 $$+ *& >! >& $ O>9 -& C1 , * -*$& - $& *& &! * >& @ $& :)
*& &@ " $>& & "* %&&4 , *&& :) *& -/ && *& J &! &&+ !$$& *& & , *& $, , *&& :) "*& q 6 2 *& &- & "* & -& 7.27 ;& *&& :) , %&& q F Hint: *& $, %;& *& &@ " "# -& *& H!+ hx yi O&& H O:1)99 !>+ %&&4& * & hx yi ëOx y9 "*&& ë + ; * $* , *& ;& %!$ , Fq *& - $&@ p* , !+ "*&& q p j p $ &G 7.28 ;& *& & -/ &&D , C fx1 . . . x M g !>& , V n OFq 9 &J& A i M 1 *& ! >& , $ Ox x99 , C "* d Ox x99 i , *& B j I & &J& >+ *& , ! n 1 A i O1 M i
+ % -& , &%* n 2 m 1 * "&%* 2 m 1 O>9 &-& *" * , >+ % -&
AOz9
1 $ O1 z9 n nO1 2m
z 2 9O n
19=2
% O1 z9 :
O-9 &&4& >+ % -& O&& > :139 7.30 * $>& "& " &J& ;&%& *& $ Reed±Muller codes & POm d9 && *& & , $+ , &%&& < d m ;>& ;& F2 & Ov< v1 . . . v M 1 9 M 2 m && , *& 2 m >+ ;&- Ox1 x2 . . . x m 9 & & *& , &-* f 2 POm d9 "& %& >+ ;&- , &%* 2 m ; *& $$% f ! O f Ov< 9 f Ov1 9 . . . f Ov M 1 99 *& & , ;&- >& * "+ , $+ POm d9 -& *& d* order Reed±Muller code of length 2 m Om d9 , * O9 *" * Om d9 >+ On k9 & -& "* n 2 m k 1
1m
dm O>9 *" * *& ! -& , Om d9 2 m d F Hint: *" * d > 2 m d & f f Ox1 x2 . . . x m 9 2 POm d9 -& f O :1:> O&9 $!& *& "&%* &! & , Om d9 , d & On k9 & -& "* $+-*&-# @ , *& , H FBI n k G "*&& B On k9 3 k I n k On k9 3 On k9 &+ @ , 1 < t < k *& -& C t "*& $+ -*&-# @ H t FB t I n k G "*&& B t *& On k9 3 Ok t9 @ >& >+ &&% *& J t -! , B -& a shortened version of C O&& > :279 O9 *" * C t - , -&" , C "*& J t -& & &H! ;& - >& *!%* , 2 >! , &%* . " & H >& m 3 n $+-*&-# @ , On k9 >+ & -& C *& b-fold interleaving , C *& Onb kb9 -& C Ob9 "* mb 3 nb $+ -*&-# @
H
Ob9
Notes c1
c1
c2 ..
.
cn ..
c1
.
.. c2
.
1)7
cn
"*&& Fc1 . . . c n G & *& -! , H ># && ! , &%* b &&- $& , f >! , &%* b O-9 !- $+-*&-# -& , O9 O21 129 -& * -&- %& >! , &%* 6L O9 O27 2! , &%* 7 ;& &,J-& &-% %* , >* -&
Notes 1 O$ 1639 /& $!& *&& > &! *L , *& !>?&- , &@$- -& * "* * -% *&& $ & *& * >&& & 2 O$ 1639 & $&-&+ & block -& %!* *& , *& & convolutional -& , *$& 1& $ & $"& "& - -& $! $*>& "* ) 1 !-* - >& ,! , &@ $& #*,, -& F6G *$& : 7 O$ 1.19 !+ @ $& & *;& & " * & & , " *& @ & -*%& *& , /& * ! & *"&;& * , 4& " $$& *& &!- *&+ & &&& ) O$ 1.29 *& & - & , *& ,- * *& >+ -& $+-*&-# + * &-* -&" * &;& ! >& , 1I -& J@& !>& , *& -& $ : O$ 1.29 && &&"*&& T *& $& $& ( O$ 1.69 *& $-+ , * O, G H9 , -!& --&L *& , &%& * &@ $& ;& *& +& , & * %&&! &H! &$&&& >+ G2 O$ 1.& % -& -& *&+ & $& 12 O$ 1)+ &-% ! & & -& O*& * >+ !!-!& -&9 "& -! *$& J & % -& "*-* & &>+ &+ $& & !& * O; + & &-% , &@ $&9 NN II & -& + "* & &!-+ 2& $& && *"& "*! !-* ,J-!+ "&;& & > *& $&, -& $ & >+ *I *&& &-&+ !& %& -& %&& %& -& &;& , & " >& ,J-! $& & * & >-# -& !& $--& & ,- cyclic codesL -+-- -& , ;&+ *%*+ !-!& !>& , *& & , & -& * -*$& "& " %;& %&& !- -+-- -& -!% >* *& !&+% *& - *&+ O&- (19 *& >- *"& --! !& $& & -+-- -& O&- (29 &- (6 "& " *" * % -& - >& $& && -+--& &- (. (7 "& " && *" -+-- -& & !& - > burst errors ! + " >& -!& *$& 3 "*&& "& " !+ *& $ , + , -+-- -& +& -;&&D *& E &&B , + /& >&% ! !& "* *& -!!$$&% &J , *& - , -+-- -& De®nition An On k9 linear code over a ®eld F is said to be a cyclic code if, for every codeword C OC< C1 . . . C n 1 9 the right cyclic shift of C viz. C R OC n 1 C< . . . C n 2 9 is also a codeword.
"& * && *&& &
+ -+-- -& >! - $& & -& 1):
1)(
Cyclic codes
*&+ & H!& --& &@ $& *&& & 11(11 & O: 69 -& ;& GFO29 >! + " & -+--M Example 8.1 , F + J& n &%& > 6 *&& & "+ & ,! -+-- -& , &%* n ;& F !!+ -& *& ,! trivial -+--&D · On + *& < 1
+ C1 C2 C6 *& 4& -&" &D C1 1& "*& POx9 ;& >+ gOx9 & POx9 QOx9 gOx9 ROx9
O(:19
"* &% R , &% g &!-% &-* , *&& $+ x n 1 !% *& ,- * &% R , &% g < n 1 O*& & &H!+ -& gOx9 -&"9 "& > ROx9 FPOx9G n
FQOx9 gOx9G n :
! FPOx9G n -&" >+ ! $ FQOx9 gOx9G n -&" >+
*&& (2 *! -& C & ROx9 -&" ! &% R , &% g gOx9 4& -&" , & &%&& ROx9 &- & POx9 QOx9 gOx9 "*-* *" * gOx9 ;& POx9
h
/& - " & $;& *& *&& >! -+-- -& &>*& && -&$&-& >&"&& -+-- -& , &%* n - ; , x n 1 Theorem 8.3 O9 If C is an On k9 cyclic code over F then its generator polynomial is a divisor of x n 1 Futhermore, the vector C OC< C1 . . . C n 1 9 is in the code if and only if the corresponding generating function COx9 C< C1 x C n 1 x n 1 is divisible by gOx9 If k denotes the dimension of C then k n &% gOx9 O>9 Conversely, if gOx9 is a divisor of x n 1 then there is an On k9 cyclic code with gOx9 as its generator polynomial and k n &% gOx9 namely, the set of all vectors OC< C1 . . . C n 1 9 whose generating functions are divisible by gOx9 Proof of (a) & POx9 x n 1 & 2O>9L FPOx9G n + *&& (2 + ;&- , &%* n "*& %&&% ,!- !$& , gOx9 -&" ;&&+ , COx9 C< C1 x Cn x n 1 -&" *& FCOx9G n COx9 & 2 $& * gOx9 ;& COx9 +
8.1 Introduction
1:7
*& & >! *& &%&& , gOx9 ," -& COx9 C< C1 x C n 1 x n 1 !$& , gOx9 , + , COx9 gOx9IOx9 "*&& &% I < n 1 &% g Proof of (b) !$$& * gOx9 ; , x n 1 *& COx9 OC< C1 . . . C n 1 9 !$& , gOx9 , + , COx9 gOx9IOx9 "*&& &% g &% I < n 1 *! *& & , !-* " On k9 & -& "*&& k n &% g *" * * -& -+-- "& ! *" * *& %* -+-- *, , + -&" -&" *! & IOx9 gOx9 >& + -&"L >+ *&& (1 %* -+-- *, FxIOx9 gOx9G n ! -& gOx9 ;& x n 1 "& *;& FxIOx9 gOx9G n gOx9 FxIOx9 gOx9G gOx9
+ &
"*-* $;& * FxIOx9 gOx9G n -+-- -&
O>+ &
1O&99
1O>99
!$& , gOx9 *& -& && h
*&& (6 *" *& $-& , *& %&& $+ , -+--& -&+ && &H!+ $ $+ *& parity-check $+ , -+-- -& "*-* && >+ hOx9 &J& >+ hOx9
xn 1 : gOx9
*& ,"% -& *&& (6 %;& &@$- &-$ , %&& $+-*&-# -& , -+-- -& & , gOx9 hOx9 Corollary 1 If C is an On k9 cyclic code with generator polynomial gOx9 g< g 1 x g r x r (with r n k), and parity-check polynomial hOx9 h< h1 x hk x k , then the following matrices are generator and parity-check matrices for CD
g< g1 . . . . . . gr < . . . . . . < gOx9 < g g1 . . . . . . gr < . . . < < x gOx9 G1 .. .. .. . . .
+ *& &J &- :. * && % -& /& &;& *& ;&% , *& *& NN- &II >& (26 h
8.2 Shift-register encoders for cyclic codes
1(1
@ $& (3 "& " * gOx9 x 6 x 1 %&&& O: .9 % : -& ! --% >& (1 gOx9 ;& + x 1 >! x 1. 1L ,- x 6 x 1jx n 1 , + n "*-* !$& , : O&& >& (2.9 *! >+ *&& (6O>9 gOx9 %&&& "*& , + , -+-- -& "* $ && O: .9 O1. 119 O21 1(9 . . . : "&;& , *&& -& &@-&$ *& J - ;&- "*& %&&% ,!- x : 1 *;& ! "&%* &H! 2 &-& *&& -& & &&% , & -&-L "& * - *& improper -+-- -& O&& >& (2)9 *& & , * -*$& "*& "& &,& On k9 -+-- -& "* %&& $+ gOx9 "& * ! & proper -+-- -& & & , "*-* n *& smallest $;& &%& !-* * gOx9jx n 1 * &%& & & -& *& period , gOx9 -& *& $& , *& &H!&-& Fx i gOx9G i>< && >& (2: , -! , -+-- -& , "*-* *& parity-check $+ * $& & * n9 /* * -;& &>*& "& & &+ -!& ! !+ , -+--&
8.2 Shift-register encoders for cyclic codes " * "& #" >+ *&& (6 * &;&+ -+-- -& -*-&4& >+ %&& $+ "& - >&% && "*+ -+-- -& & !-* && $& & * >+ & -& * &- "& * *" ,- * &;&+ -+-- -& - >& &-& "* $& J&& -*& -& shift-register encoder &- * &-% %* , On k9 & -& -+-- !& , $$% *& & , &%*k , &H!&-& OI < I 1 . . . I k 1 9 *& & , &%*n -&" OC< C1 . . . C n 1 9 &H!;&+ , $$% *& , $+ IOx9 OI < I 1 x I k 1 x k 1 *& & , -& $+ COx9 C< C1 x C n 1 x n 1 , *& -& -+-- *&& (6 & ! * COx9 -&" , + , COx9 !$& , gOx9 "& " + 1 *&& (6 & "+ -*%& , $+ IOx9 -& $+ $+ !$+ IOx9 >+ gOx9D IOx9 ! IOx9 gOx9:
O(:29
! ! * $+ !$- &+ $& & !% & *% -& shift-register logic "& * " #& >&, !+ , * !>?&-2 %!& (1 >- &$&& , -*& -$>& , !$+%
xn 1
Ox 19 Ox 192 Ox 19Ox 2 x 19 Ox 19. Ox 19Ox . x 6 x 2 x 19 Ox 192 Ox 2 x 192 Ox 19Ox 6 x 19Ox 6 x 2 19 Ox 19( Ox 19Ox 2 x 19Ox ) x 6 19 Ox 192 Ox . x 6 x 2 x 192 Ox 19Ox 1< x 3 x ( x : x ) x 7 x . x 6 x 2 x 19 Ox 19. Ox 2 x 19. Ox 19Ox 12 x 11 x 1< x 3 x ( x : x ) x 7 x . x 6 x 2 x 19 Ox 192 Ox 6 x 192 Ox 6 x 2 192
1 2 6 . 7 ) : ( 3 1< 11 12 16 1.
1O x n 19 $"& , &!->& $+ ;& GFO29 , 1 < n < 61
n
Table 8.1 -4 , x n
17 1) 1: 1( 13 2< 21 22 26 2. 27 2) 2: 2( 23 6< 61
Ox 19Ox 2 x 19Ox . x 19Ox . x 6 19Ox . x 6 x 2 x 19 Ox 191) Ox 19Ox ( x 7 x . x 6 19Ox ( x : x ) x . x 2 x 19 Ox 192 Ox 2 x 192 Ox ) x 6 192 Ox 19Ox 1( x 1: x 1) x 19 Ox 19. Ox . x 6 x 2 x 19. Ox 19Ox 2 x 19Ox 6 x 19Ox 6 x 2 19Ox ) x . x 2 x 19Ox ) x 7 x . x 2 19 Ox 192 Ox 1< x 3 x ( x : x ) x 7 x . x 6 x 2 x 192 Ox 19Ox 11 x 3 x : x ) x 7 x 19Ox 11 x 1< x ) x 7 x . x 2 19 Ox 19( Ox 2 x 19( Ox 19Ox . x 6 x 2 x 19Ox 2< x 17 x 1< x 7 19 Ox 192 Ox 12 x 11 x 1< x 3 x ( x : x ) x 7 x . x 6 x 2 x 192 Ox 19Ox 2 x 19Ox ) x 6 19Ox 1( x 3 19 Ox 19. Ox 6 x 19. Ox 6 x 2 19. Ox 19Ox 2( x 2: x 19 Ox 192 Ox 2 x 192 Ox . x 192 Ox . x 6 192 Ox . x 6 x 2 x 192 Ox 19Ox 7 x 2 19Ox 7 x 6 19Ox 7 x 6 x 2 x 19Ox 7 x . x 2 x 19Ox 7 x . x 6 x 19Ox 7 x . x 6 x 2 19
1(.
Cyclic codes output g0
g1
g2
gr⫺1
gr
input
Figure 8.1 *,&%& --! , !$+% >+ gOx9 g < g1 x g r x r
&;&+ * &-& , On k9 -+-- -& "* %&& $+ gOx9 "* r n k
arbitrary $+ IOx9 >+ ®xed $+ gOx9 &,& $;% * *& --! "# "& * >&& &@$ ;! - $&
*& --! %!& (1 >! >+ -&-% %&*& *&& +$& , - $&D ¯ip-¯ops, adders constant multipliers *& $ , *&& *& K$K$ & & -& delay && &D
a flip-flop
K$K$ &;-& "*-* - & & && & , *& J& F $-!& ! $J& --! % >! $ $ , *& &@& --# "*-* %&&& % % ONN-#II9 &;&+ t< &-6 /*& *& --# -# *& -& , *& K$K$ & *,& ! , *& K$ K$ *& &- , *& " *!%* *& --! ! *& &@ K$K$ &-*& && *& % $ ! *& &@ -# *& -& , *& *, &%& - >& J& >+ *& --! >&"&& !--&;& K$K$ "*-* "*&& *& *& " %- && & - & *& "$! adder "*-* # #& *
an adder
B &;-& * - $!& *& ! , " $! % O *& --! "+ %& !-* "+ * ,& &;&+ -# &-* $! *& & &-&;& &@-+ & % * *& &I !$! "+ ! >%!!9 + "& - & *& $& --! && & *& constant multiplier: a constant multiplier
8.2 Shift-register encoders for cyclic codes
1(7
* &;-& $+ !$& $! >+ *& - a "* &+ " &I && , "& - !& "*+ *& --! , %!& (1 - >& !& , $+ !$- /& J "& ! & *& , ! , *& -&,J-& , *& $!- COx9 C< C1 x C n 1 x n 1 "*&& COx9 IOx9 gOx9D C< I < g< C1 I < g1 I 1 g< C2 I < g2 I 1 g1 I 2 g< .. .
O(:69
Cj I < gj I 1 g
1
I j g<
.. . Cn
1
Ik
1 gr :
*& K$K$ , % (1 & + J& "* & OC< C1 . . . C n 1 9 "*&& *& Cj I & &J& >+ H O(69 * --! - >& !& &-& , *& On k9 -+--& "* %&& $+ gOx9 Comment The preceeding description is for a ``generic'' shift-register circuit, capable of performing arithmetic in an arbitrary ®eld F The required devices (¯ip-¯op, adders, multipliers) are not ``off-the-shelf'' items, except when the ®eld is GFO29 In this case, however, these devices are very simple indeed: ,$,$ & >& &-& *& ,! K$K$ *! >& 4& OI < I 1 I 2 & *"&;& &% +& - *,&%& &-& , + -+-- -& "*-* + %*+ & - $&@ * *& +& - &
Out
In
1
2
3
4
Figure 8.2 +& - &-& , *& O: 69 -+-- -& "* %&& $+ gOx9 1 x 2 x 6 x .
8.2 Shift-register encoders for cyclic codes
*& & !& *& &! , *&& IOx9 , $+ *& IOx9 ! x r IOx9
1(:
(6 + 2 "*-* + * ,
Fx r IOx9G gOx9
O(:.9
+& - &-% !& , -+-- -& "* %&& $+ gOx9 *& -& - $& !-* &-& " >& NN gOx9II --! "*&& gOx9 * & -&I %&& $+ %!& (6O9 *" !-* --! , gOx9 x r g r 1 x r 1 g < & && "*+ *& --! , %!& (6O9 >& $&, NN gOx9II --! "& ,-! *& *,&%& -& Fs< s1 . . . s r 1 G "*-* "& - *& state vector , *& -*& *& -&$% %&&% ,!- SOx9 s< s1 s r 1 x r 1 "*-* "& - *& state polynomial /& >&% "* & "*-* &@$ *" *& & -*%& &$& $! Lemma 3 If the circuit in Figure 8.3(a) has state polynomial SOx9 and the input is s, then the next state polynomial will be S9Ox9 Os xSOx99 gOx9:
⫺g0
In
⫺g1
s0
⫺gr⫺1
s1
sr⫺1
(a)
In
(b)
Figure 8.3 O9 %&& NN gOx9II *,&%& --! "*&& gOx9 x r g r 1 x r 1 g < O>9 $&-J- NN x . x 6 x 2 1II *, &%& "*&& * &- 2
1((
Cyclic codes
Proof , *& $&& & ;&- S Fs< . . . sr 1 G *& $! s *& >+ ! !& &->% *& >!% >-# , *& --! *& &@ & ;&- " >& >+ &J S9 Fs
g < sr 1 s
+ & 1O-9 h Theorem 8.4 If the circuit of Figure 8.3(a) is initialized by setting s< s1 s r 1 !-*%& -# < *!%* k 1 "! #& !$!% *& $+-*&-# & *& -&,J-& , Fx r IOx9G gOx9 *& k* -# >! " *;& " , r & -# >&,& Fx r IOx9G gOx9 &+ ! &+ $>& ; * r-# NN" &II >+ !% *& --! *" %!& (.O9 *& --! , %!& (.O9 *& $! > & ,& *& right & , *& *, &%& *& * *& &, %!& (6 *& &! * , *& $! & a< a1 . . . ,& *& t* -# *& *, &%&I & $+ " >& tj< aj x r t j gOx9 *& * tj< aj x t j gOx9 O ;&,+ * & >& (619 *! , *& &-& $! *& k , + > I k 1 I k 2 . . . I < *& *, &%& , %!& (. *& -&,J-& , Fx r IOx9G gOx9 " >& &+ % "* *& k* -# && - $&& +& - &-& >& *& *, &%& , %!& (.O9 *" %!& (7O9 & * - $& *& +& &-& , %!& (1 *& &-& , %!& (7O9 *& , + > & & *& &-& *& reverse & ;4 I k 1 . . . I < *& -&" - $& & & *& -*& *& &;&& & ;4 C n 1 C n 2 . . . C1 C< Example 8.11 , "& $$+ *& %&& -!- &->& %!& (7O9 *& $&- -& , gOx9 x . x 6 x 2 1 ;& *& J& GFO29 "& %& *& &-& &$-& %!& (7O>9 , , &@ $& *& , &H!&-& OI 2 I 1 I < 9 O1 1 & O1 1 9 $&- -& gOx9 x . x 6 x 2 1
-# < 1 2 6 . 7 )
$!
-&
!$!
1 1 < < < <
+ J& GFO29 *! >& -& *" !& *& *,&%& --! , %!& ()O9 >! +& - &-& , -+-- -& "* $+-*&-# $+
⫺h1
st⫺1
⫺h2
st⫺2
⫺hk⫺1
⫺hk
st⫺k
(a)
(b)
Figure 8.6 O9 *,&%& --! * $& & *& k*& & &-! k St j1 hj S t j O>9 *& $&- -& St S t 2 S t 6 -&$% hOx9 1 x 2 x 6
13.
Cyclic codes
hOx9 1 h1 x hk x k O&& %!& (:O99 !% *& J k -# *& "-* *& NN"II $ *& k , + > & !&!+ & ! *& -*& & *& k%& &%&
*& *& "-* $! *& NN!$II $ !% *& & % r -# *& *,&%& --! --!& *& & % r -&" - $& ; k *& &-! Ci j1 hj C i j -& * *& +& - NNhOx9 &-&II , %!& (: ,,& , *& +& - NN gOx9 &-&II , %!& (7 " $ "+D *& gOx9 &-& *& , + > OI < I 1 . . . I k 1 9 --!$+ -&" - $& Cr C r1 . . . C n 1 *& -&" + > & & *& -*& *& &;&& & C n 1 C n 2 . . . C< "*&& *& hOx9 &-& *& , + > --!$+ -&" - $& C< C1 . . . C k 1 *& -&" + > & & *& -*& *& ! & C< C1 . . . C n 1 Example 8.12 , "& $$+ *& %&& -!- , %!& (:O9 *& $-! O: 69 >+ -+-- -& "* gOx9 x . x 6 x 2 1
first k ticks: down last r ticks: up
⫺h1
⫺h2
⫺hk⫺1
⫺hk
Out
In (a)
first 3 ticks: down last 4 ticks: up
Out
In (b)
Figure 8.7 O9 +& - *,&%& &-& , On k9 -+-- -& "* $+ -*&-# $+ hOx9 1 h1 Ox9 hk x k O>9 $&- -& hOx9 1 x 2 x 6
8.3 Cyclic Hamming codes
137
hOx9 x 6 x 2 1 "& %& *& &-& *" %!& (:O>9 *! , &@ $& , *& , + > & OI < I 1 I 2 9 O1 1 9 $& & *& &-! Ci C i 2 C i 6 $!-& *& -&" O1 1 & $& "*& k , r & k , n=2 h
8.3 Cyclic Hamming codes4 &- :. "& &J& >+ % -& , &%* 2 m 1 >& + & -& "*& $+-*&-# @ * -! *& 2 m 1 4& >+ ;&- , &%* m arranged in any order &@ $& *& ,"% $+-*&-# @ &J& O: .9 % -& O-, *& @ H 6 &- :.9D
< 1 1 1 1 < < H 1 < 1 1 < 1 < : 1 1 < 1 < < 1
*&& & , -!& O2 m 19M "+ & *&& -! *!%* + & , *&& &% $!-& $&,&- %&&-&-% -& & &% & >&& * *& , $& & $ ,- "& * && * &- * $>& -*& &% * $!-& cyclic ;& , *& % -& "*-* & $& *, &%& $& & , >* *& &-& *& &-& &->& *& $$$& &% "& ! ! & *& && >& , "* *& J& J& GFO2 m 9 "*-* &-* && & &$&&& >+ >+ ;&- , &%* m O $$&@ "& %;& ! + , *& &&& ,-9
> -+-- % -& , &%* 2 m 1 >&% "* $ ;& m á 2 GFO2 9 !& &J& & -& C ," ;&- C OC< C1 . . . C n 1 97 "* - $& GFO29 C , + , C < C 1 á Cn 1 á n
1
+ & -& &J& >+ *& 1 3 n $+-*&-# @ H F1
á
á2
...
á n 1 G:
O(:39
/& * $;& * *& -& &J& >+ O((9 O(39 -+- % -& " *& $ *% -& >! * &J
13)
Cyclic codes Table 8.2 *& $"& , á GFO(9 "*&& á6 á 1 i
ái
< 1 2 6 . 7 )
+ &$&& m> -! ;&- &@ $& "* m 6 , á $ ;& GFO26 9 ,+% á6 á 1 *& >& (2 *" *& $"& , á &$&&& *&& & ;&- *! *& 1 3 : GFO(9 @ H O(39 &J& *& & >+ -& *& ,"% 6 3 : >+ @ H9D
< < 1 < 1 1 1 H9 < 1 < 1 1 1 < : 1 < < 1 < 1 1
*& ,"% *&&
*&
&! , * &-
Theorem 8.6 The code de®ned above (i.e., by (8.8) or (8.9)) is an On n m9 binary cyclic code with generator polynomial gOx9 the minimal polynomial of á Furthermore, its minimum distance is 6 so that it is a Hamming code Proof -& * *& -& >+ & -& , &%* n /& && *" * -+-- * gOx9 *& %&& $+ *" * -+-- & * , "& !$+ &H! O((9 >+ á !& *& ,- * á n 1 "& %& Cn
1
C< á C n 2 á n
2
+ *&& (6 gOx9 *& -&I %&& $+
- $&& *& $, "& && *" * *& -&I ! -& d 6 -& *& -& & d w /& !& *& &J O((9L , *&& "&& -&" , "&%* 1 *& á i < , & i "*-* $>& + " , "&%* 2 -! &@ , + , á i á j < , & i j "* < < i , j < n 1 ;% >+ á i * >&- & 1 á j i & >! $& *,&%& &-& , % -& >& *& %&& $+ -& *& %&& $+ , % -& ! >& $ ;& $+ & $& & -+-- % -& , &%* 2 m 1 &-&+ *;& $ ;& $+ , &%&& m >& (6 "& & $ ;& $+ , &%&& m , 1 < m < 12 %;& ;!& , m *&& " %&& >& + $ ;& $+ , &%&& m >! *& & >& (6 & -*& *;& *& ,&"& $>& 4& -&,J-& "*-* " & *,&%& &-& "* *& ,&"& $>& 2 & & $ * *& &-% $-+ , % -& *"&;& *& ,- $>& >! $& decoders , *& /& !& !-* &-& , *& O: .9 % -& "* %&& $+ gOx9 x 6 x 1 %!& (( *& &-& - , *&& $ " *, &%& --! AND %& *& !$$& *, &%& NN gOx9II --! *& "& *, &%& NN x n 1II --!
*& %& !$! 1 , *& !$$& *, &%& - *& $& 1< . . . & %&& $+ , % -& m
;& $+ , &%&& m
1 2 6 . 7 ) : ( 3 1< 11 12
x1 x2 x 1 x6 x 1 x. x 1 x7 x2 1 x) x 1 x: x 1 x( x: x2 x 1 x3 x. 1 x 1< x 6 1 x 11 x 2 1 x 12 x ) x . x 1
mod g(x) circuit
Switch A: closed for first n ticks open for next n ticks
AND gate: 10…0 recognizer Switch B: open for first n ticks Switch B: closed for next n ticks mod (xn ⫹ 1) circuit
Figure 8.8 &-% --! , *& O: .9 % -& "* %&& $+ gOx9 x 6 x 1
OR< R1 . . . Rn 1 9 -& ROx9 COx9 EOx9 COx9 gOx9 & x t EOx9 gOx9 *& "& *, &%& " - x t ROx9 x n 1 & *& t* %* -+-- *, ORn t . . . Rn t 1 9 , *& &-&;& " *& " *, &%& & -&-& ; "-* *& AND %& "*-* !$! 1 , + , *& !$$& *, &%& - 1< . . . & -&-& *& ,& Oe 19 n ,!*& -# *& &-&;& " " *;& - $&& --! ?!&+ ! *& "& *, &%& " $$& "* & -&-& *& "& *, &%& &- (7 "& " && *" %&&4& *& --! , %!& (( & >! &-& , -+-- burst&-&-% -& *& !& +% *&+ , >!& -&- " >& $&&& &- (. O -&+ *& dual -& , -+-- % -& & &&% $ *&+ & -;&& >&K+ >& (.19
8.4 Burst-error correction + -*& , $-- $-& & "*& *&+ --! & --! bursts *+-+ >! , & --! "*& , & & *& -*& & &;&+ -&& , >&, & *& &! * &- "& " && *" -+-- -& - >& !& &&- -&- & >! /& >&% "* $!&+ *& - &J , & >! , -&" C & &-&;& R C E *& *& & ;&- E -& burst of length b , *& 4& - $& , E & -J& b -&-!;& - $& &@ $& E O E &% "* *& 4& + > *& >!I location *& &@ , *& J 4& + > *& >! &@ $& *& ;&- E O! &-$ , w < 1 *&&,& *&& *% $;& "& ! & w > 2
8.4 Burst-error correction
2! &-$ , E *& $& " - , EI 4& - $& *& - $& , E not -!& *& $& " , -+-- ! , &%% ?! ,& *& 4& - $& *& $& -!% ! ?! >&,& *& J 4& - $& *& $& *& & , -& -&$% * ! , ! &-$ &@ $& , E O+ % , &%* b "*-* >&% "* 1 *! *&& & 2 b 1 $>& $& , n 2 b 1 4& >! , &%* < b
% 1 * ! >& --! , *& 4& >! "& %& n2 b 1 1 && h
*& &@ " *&& %;& !&,! >! *& 4& , -& "*-* -&- >! & $-+ "& * - -& -$>& , -&-% >!& $& , &%* < b burst-b-error-correcting code Theorem 8.9 OThe Hamming bound for burst-error correction9 If 1 < b < On 19=2 a binary burst-b-error-correcting code has at most 2 n = On2 b 1 19 codewords Proof + *&& (( *&& & n2 b 1 1 >!& $& , &%* < b , *&& & M -&" *&& & *& MOn2 b 1 19 " "*-* ,,& , -&" >+ >! , &%* < b *&& " ! >& - MOn2 b 1 19 < 2 n h Corollary (the Abramson bounds). If 1 < b < On 19=2 a binary linear On k9 linear burst-b-error-correcting code must satisfy n < 2r where r n
b1
1 Ostrong Abramson bound9
k is the code's redundancy. An alternative formulation is
r > d%2 On 19e Ob
19 Oweak Abramson bound9:
Proof & On k9 -& *&& & M 2 k -&" >+
*&& (3 2 k < 2 n =On2 b 1 19 &%% * "& %& n < 2 r b1 2 b1 -& n ! >& &%& * >! - >& $;& n < 2 r b1 1 *& % > >! &%% this > >! r "& %& *& "&# > >! h
8.4 Burst-error correction
2+ *& $%&*& $-$& *&& ! >& " - -&" "*-* %&& *& J n 2b -& *&& " -&" - *& >& &$&&& -*& -+ ,"D 2b
n 2b )****************+,****************- )***********+,***********X A A A A A A
Y B B B B B B "*&& NNII && %&& & *& AI BI & >+ ! *& *& " Z A A A B B B ,,& ,
>* X Y >+ >! , &%* < b a --
h
Corollary (the Reiger bound). If < < b < n=2 a binary On k9 linear burstb-error-correcting code must satisfy r > 2b where r n
k is the code's redundancy
Proof *& ! >& , -&" On k9 >+ & -& 2 k "*-* >+ *&& (1< ! >& < 2 n 2b * &H!;& *& & & , *& -+ h /& & " $ -! && , &@ $& , >!& -&-% -& &-* -& *& -& " >& -+-- && &*& *& % > &%& >! O"*-* $$+ & -& ?! -+-- -&9 * -! "*& "& + * $-! >! O&*& *& > >! *& &%& >!9 tight "& & * *&& &@ -& "*& &!-+ &H! *& ;!& , *& >! , !-* -& &@ "& " + * *& >! loose Example 8.13 *& On 19 >+ &$& -& "* gOx9 x n 1 x n 2 x 1 "*&& n - -&- & $& , "&%* < On 19=2 >!OOn 19=29&-&-% -& -& r n 1 *& &%& >! %* h
2& -&" , &%* n -+-- -& "* gOx9 1 O;+9 b < >!&-&-% -& -& r < *& &%& >! % %* h Example 8.15 + >+ % -& "* n 2 m 1 r m gOx9 $ ;& $+ , &%&& m b 1 >!&-&-% -& O + & ;&- , "&%* 1 $ ,- >! , &%* 19 *& % > >! %* , *&& -& h Example 8.16{ + -+-- % -& , "*-* *& -&" , "&%* *;& >&& & ;& b 2 >!&-&-% -& -& Abramson code *&& -& & -+-- -& "* %&& $+ , *& , gOx9 Ox 19 pOx9 "*&& pOx9 $ ;& $+ O&& >& (779 *& & > -& *& O: 69 -+-- -& "* gOx9 Ox 19Ox 6 x 19 $+-*&-# @ 1 á á2 á6 á. á7 á) H 1 1 1 1 1 1 1 "*&& á $ ;& ,+% *& &H! á6 á 1 < O(9
;&,+ * * -& && b 2 >!&-&-% -& "& && -*&-# * *& + & , >! , &%* < b < 2 & - b < O*& 4& & $&9 + & < b 1 >! "* á*& i &-$ O1 i9 * + & b 2 >! &-$ O11 i9 * 1 i + & á< Oá19 *&& 1 2n + & & - *& -& && b 2 >!&-&-% -& & J+ * , gOx9 Ox 19 pOx9 "*&& pOx9 $ ;& $+ , &%&& m *& n 2 m 1 r m 1 b 2 * *& % > >! %* O m 6 & *& O: 69 b 2 -& *& &%& >! %* >! , %& ;!& , m *& &%& >! &9 h Example 8.17) *& O17 39 >+ -+-- -& "* %&& $+ gOx9 Ox . x 19Ox 2 x 19 x ) x 7 x . x 6 1 ! ! >& b 6 >!&-&-% -& , "*-* *&&,& >* *& %
> &%& >! & %* $;& * * "& !& *& $+-*&-# @ 1 á á2 . . . á1. H 1 ù ù2 . . . ù1. "*&& á $ ;& GFO1)9 ,+% á. á 1 &-!& , *& NN&"&& *& $& 1 11 1& , *& , ù t L %!* >&"&& *& "& # Os t9 6 , *& $& 1 *& s i t i Os t9 6 ! &-$ 11 &@ $& *& + & á1 * s 11 t ! &-$ O11 :9 & *& & $& O& + *&& " , * -& "*-* "& - $+ 6 3 : +D A< B< C
! >+ &% *& >;& + >+ -! -& *& interleaving , A B CD A< B< C< A1 B1 C1 A2 B2 C2 A6 B6 C6 A. B. C. A7 B7 C7 A) B) C) : & ! !$$& * * % -&" & ;& >!+ -*& !,,& >! , &%* ) -& >+ ID A< B< C< A1 B1 C1 A2 B2 C2 A6 B7 C7 A) B) C) : $>& -&- * >! , & $+ >+ NN&&&;%II * % -&" - $& -&" >&-!& ,& &&&;% & , *& *&& -&" " *;& !,,&& >! %& * "D A< B< C
& &&;% , *&& -&" , *& O: 69 > -& -& *& depth6 interleaving , *& % -& O21 39 & -&L *& %! & >;& *" * ,- b ) >!&-&-% -& & %&&+ , + $;& &%& j *& &$* j &&;% , *& O: 69 > -& O: j 6 j9 b 2 j >!&-&-% -& & * &-* & , *&& -& J& *& &%& >! "* &H!+ O-& r . j b 2 j9 * -& && , &,J-&-+ &! "*& -& &&;& h
%*," %&&4 , *& %! & %;& @ $& (1( & *& ,"% $ *&& Theorem 8.11 If C is an On k9 linear burst-b-error correcting code, then the depth-j interleaving of C is a Onj kj9 burst-bj-error-correcting code
2;! >! &;&*&& !& * , "& &&;& cyclic -& &$* j *& &!% -& -+-- *& &@ *&& $& * ! Theorem 8.12 If C is an On k9 cyclic code with generator polynomial gOx9 then the depth-j interleaving of C is an Onj kj9 cyclic code with generator polynomial gOx j 9
C
+ C< C1 C j 1 &+ & "*& $, "& &;& >& ()7 *" *" - $!& *& %* -+-*, , &&;& -&"D O(:1 -& "* %&& $+ gOx9 x . x 6 x 2 1 !% *& &&;% &-*H!& "& - $!-& J& , + , -+-- >!&-&-% -& ;4 *& O: j 6 j9 b 2 j -& "* %&& $+ g j Ox9 x . j x 6 j x 2 j 1 + % "* *& -+-- O17 139 b 6 -& , @ $& (1: "& > *& J& , + ;4 *& O17 j 3 j9 b 6 j -+-- -& "* %&& $+ gOx9 x ) j x 7 j x . j x 6 j 1 & * &;&+ -& &-* , *& , & && *& &%& >! O+ *&& (1+ -+-- n 17 >! &-&-% -& , b 1 2 . . . : &-* !-* ;!& , b "& *& "& >! *& &&& &!-+ !% *& O"	 > >! OrA 9 *& &%& >! OrR 9 + -*-& ! ! * &;&+ -& *&& -+-- -& "*& &!-+ @OrA rR 9 "& *;& & *& %&& $+ gOx9 , !-* -& &-* -& *& -& b 1 2 6 "& *;& &+ -
8.4 Burst-error correction b 1 2 6 . 7 ) :
rA rR gOx9 . 7
2 x. x 1 . Ox . x 19Ox 19
) ) Ox . x 19Ox 2 x 19 : ( Ox . x 19Ox . x 6 x 2 x 19 ( 1< Ox . x 19Ox 2 x 19Ox . x 6 19 x 1< x 7 1 3 12 Ox . x 19Ox . x 6 x 2 x 19 Ox . x 6 19 x 12 x 3 x ) x6 1 1. 1< 1. x x 16 x 1
2 -& O@ $& (1)9 @ $& (1: >& (7( O6 19 &&;& 3 7 >&
()
& , "+ , *& *& -+-- >!& -&-% -& "& *;& !& *& $ ,,&&-& *& %!&& >+ detect + & >! * & % correct && -& & strong >!&-&-% -& *& && , *& ,"% &J De®nition An On k9 cyclic code with generator polynomial gOx9 is said to be a strong burst-b-error-correcting code, if, whenever Z1 and Z2 are burst-error vectors with the same syndrome, and with burst descriptions O$&1 -1 9 and O$&2 -2 9 such that &%*O$&1 9 &%*O$&2 9 < 2b then Z1 Z2
21
!&-&-% -& & -$>& , !&! >!& -&- &&- Theorem 8.13 If C is a strong burst-b-error-correcting code, then for any pair of nonnegative integers b1 and b2 such that b1 < b2 and b1 b2 2b it is possible to design a decoder for C that will correct all bursts of length < b1 while at the same time detecting all burst of length < b2 Proof * ," , *&& :. *& &J , % >! -&- && * & E && *& & , & >! , &%* < b1 & F && *& & , & >! , &%* < b2 *& , Z1 2 E Z2 2 F "& #" * Z1 Z2 *;& >! &-$ !-* * &%*O$&1 9 < b1 &%*O$&2 9 < b2 ! b1 b2 2b >+ *& &J , % >!b&-&-% -& Z1 Z2 *;& ,,&& + & *! >+ *&& :. C * *& ;&& -$>+ h Example 8.21{ >!b&-&-% -& -!% , *& -& >& (6 & not % &@ $& -& *& O: 69 b 2
> -& $+-*&-# @ - >& #& >& 1 á á2 á6 á. á7 á) H 1 1 1 1 1 1 1 "*&& á6 á 1 < GFO(9 "& + @ $& (1) * -& -&- >! , &%* < 2L >! - -&- >! , &%* < 1 "*& &&-% >! , &%* < 6 -& &% *& & $& 7 O111 m and ®nally that g 1 Ox9 and g2 Ox9 are relatively prime. Then gOx9 g 1 Ox9 g 2 Ox9 is the generator polynomial for an On k9 cyclic code which is a (strong) burst-b-error-correcting code, whereD n - On1 n2 9 kn b
&%O g 1 9
&%O g 2 9
Ob1 m On1 19=29:
Proof + *&& (6O9 g 1 Ox9jx n1 1 g 2 Ox9jx n2 1 *! -& >* x n1 1 x n2 1 ;& x n 1 "*&& n - On1 n2 9 -& g 1 Ox9 g2 Ox9 & &;&+ $ & ," * gOx9 g 1 Ox9 g 2 Ox9jx n 1 >+ *&& (6O>9 gOx9 %&&& On k9 -+-- -& "*&& k n &%O g9 n &%O g 1 9 &%O g 2 9 * !-* &+ *& *& , *& $, & "* *& & >! *& >!&-&-% -$>+ , *& -& /& " ! & * *& -& %&&& >+ g 1 Ox9 % *" * *& &!% %& -& % *& $, , NN"&#II g1 Ox9 &, >& ()3
*! & Z1 Z2 >& " & ;&- , &%* n "* *& & + & &;& *& -+-- -& "* %&& $+ gOx9 "* >! &-$ OP1 i9 OP2 j9 !-* * &%*OP1 9 &%*OP2 9 < 2b /& && *" * Z1 Z2 &I && *& %&&% ,!- , *& " >! patterns >+ P1 Ox9 P2 Ox9 ," * *& %&&% ,!- , *& & ;&- Z1 Z2 & Fx i P1 Ox9G n Fx j P2 Ox9G n &$&-;&+ *& & & + & & Fx i P1 Ox9G n gOx9 Fx j P2 Ox9G n gOx9 ! -& gOx9jx n 1 & 1O&9 $& * *& " + & - ,- >& "& S1 Ox9 x i P1 Ox9 gOx9 S2 Ox9 x j P2 Ox9 gOx9: -& Z1 Z2 & ! & *;& *& & + & "& *&&,& *;& x i P1 Ox9 x j P2 Ox9 O gOx99: -& gOx9 g1 Ox9 g 2 Ox9 *& x i P1 Ox9 x j P2 Ox9 O g 1 Ox99:
O(:119
212
Cyclic codes
! &%*OP1 9 &%*OP2 9 < 2b >+ ! $ 2b < 2b1 >+ *& &J , b *! -& g1 Ox9 %&&& % >!b1 &-&-% -& ," * , *& ;&"$ , *& -+-- -& %&&& >+ g 1 Ox9 *& & ;&- Z1 Z2 & &- & x i P1 Ox9 x j P2 Ox9 O x n1
19:
! &%*OP1 9 &%*OP2 9 < 2b < n1 1 >+ *&& P1 P2 i j
(: O(:129
O n1 9:
O(:169
;&" , * O(119 $& Ox i
x j 9P1 Ox9
% xi
xj
% * ,- "* O(169 !% *& ,- * n - On1 n2 9 "& *;& i j O n9L >! -& i j >* & *& %& b and period n< Then gOx9 is the generator polynomial for an On n 2b 1 m9 cyclic code which is a strong burst-b corrector, where n - O2b 1 n< 9 This code is called a Fire code, in honor of Philip Fire, its discoverer Proof * ," &&+ , *&& (1. >+ #% g 1 Ox9 Ox 2b 1 19 g 2 Ox9 f Ox9 O @ $& (22 "& " * *& g 1 Ox9 -& % >!b -&-9 h Example 8.23 --% *& -+ *&& (1. *& >+ -+--& "* gOx9 Ox 6 19Ox 6 x 19 x ) x . x 1 %&&& O21 179 % b 2 >!&-&-% & -& *! $>&
8.4 Burst-error correction
216
&;& &-& , * -& * -&- >! , &%* < 2L -&- >! , &%* < 1 &&- >! , &%* < 6L &&- >! , &%* < . & * * -& && &*& *& %
> >! *& &%& >!L *& *& * -& * && *&& >! & $$&+ &;& % >! -&- & * , "& #& g 1 Ox9 x . x 6 x 2 1 "*-* %&&& *& O"	 O: 69 b 2
> -& g 2 Ox9 x 2 x 1 *&& (1. $& * gOx9 g 1 Ox9 g 2 Ox9 %&&& O"	 O21 179 b 2 >!&-&-% -& ! g 1 Ox9 g 2 Ox9 x ) x . x 1 "& *;& &+ && * * $+ %M h
Example 8.24 *& $+ P67 Ox9 x 67 x 26 x ( x 2 1 $ ;& >+ $+ , &%&& 67 >+ *& -+ *&& (1. gOx9 Ox 16 19P67 Ox9 x .( x 6) x 67 x 26 x 21 x 17 x 16 x ( x 2 1 %&&& % -+-- O16O267 19 16O267 19 .(9 O..)):)73(::1 ..)):)73(:269 b : & -& * $-! & -& H!& , ! >&-!& * !& NN*&&II ;& , + , # ;& /* *&& -+-- -&P %&& , gOx9 * &%&& r %&&& On n r9 -+-- -& *& , + n< < n gOx9 %&&& On< n< r9 *&& -+-- -& * -& - , ;&- C , &%* n< "*& %&&% ,!- COx9 !$& , gOx9 *& -& , *& & -& n< 172772 *& -& !& -!+ O172772 1727! &-&-% -& *& &-& ;&+ -&;;& + & $ -&- >! , &%* < . -& *& -& % *&&>+ % *& >+ &&- >! , &%* < 1& >& (7 % & !&,! >+ & -& &-* , *&& -& gOx9 Ox 2b 1 19Pb Ox9 "*&& Pb Ox9 $ ;& $+ , &%&& b *& &!-+ *! r 6b 1 *!%* *& &!-+ &H!& >+ *& "&# > &%& >! +$-+ -&>+ & * * * NN&@II &!-+ $$&+ *& $-& * ! >& $ & * *& -& >& % >! -&-
b
O67 2:9 6 O1&% *& & $& , *& &-& - $!& *& & & + & SOx9 &J& >+ SOx9 ROx9 gOx9 *& *& ;&- >& >+ !>-% SOx9 , ^ ROx9 COx9
SOx9
ROx9 ;4 O(:1)9
^ %!&& >& -&" * >&-!& COx9 gOx9 ROx9 gOx9 SOx9 gOx9 + & $& E * !-* !& , + -+-- -& &I " -& *& $&- -& , -+-- burst&-&-% -& !$$& *& * C >!b&-&-% -& * *& + & SOx9 J& *& " - SO+ *& >;& -! *& &-& - ,&+ & * COx9 &J& O(1)9 *& -! & -&" &-% *&&,& &+ , O(1:9 J& ,!&+ *"&;& * + *$$& , *& & ;&- >! -& $ ! -& $ other * + #% ;%& , *& NN-+--&II , *& -& &&I *"D , *& & ;&- EOx9 4& >! , &%* < b *& EOx9 * !H!& >! &-$ , *& ,
21)
Cyclic codes
OPOx9 i< 9 "* PO! -& $ & -&-& &&+ , i< 6 9 *& ! >& , -+-- *, &H!& * *& !H!& &%& j< *& %& < < j< < n 1 !-* * i< j< < O n9 "*-* j< O i< 9 n: , " R j< Ox9 && *& j< * -+-- *, , ROx9 "& *;& R j< Ox9 C j< Ox9 E j< Ox9 "*&& C j< Ox9 Ej< Ox9 & *& j< * -+-- *, , COx9 EOx9 &$&-;&+ " C j< Ox9 -&" -& *& -& -+-- E j< Ox9 POx9 >+ *& &J , j< , S j< Ox9 && *& & & + & , R j< Ox9 "& *;& (a) P E(x):
1XXXX
S(x) ⫽ [xi0P(x)]n mod g(x).
i0 (b) P Ej0(x):
1XXXX
Sj0(x) ⫽ P(x).
0
Figure 8.9 O9 *& >!& ;&- EOx9 Fx i< POx9G n O>9 ,& *,% EOx9 j< ! *& %* "*&& j< On i< 9 n *& & $& NN$$&II - & NN$$&II - >& -&-& && *& >!& pattern " >& %;& >+ S j Ox9 *& >!& location " >& %;& >+ *& , ! i< O j< 9 n "*&& j< *& ! >& , *, &H!& $ *& & * $ "& -! &% ,+ $& &-& !% *&& & "&;& >&,& % "& "* & * *& --! , *& !--&;& S j Ox9I - >& -&>+ $J& >+ !% *& ,"% &! Theorem 8.15 OMeggitt's lemma9 For j > < de®ne Sj Ox9 Fx j ROx9G n gOx9 i.e., Sj Ox9 is the remainder syndrome of the jth cyclic shift of ROx9 Then for j > + &
1O&9
Sj Ox9 Fx j ROx9G gOx9 -& gOx9jx n
1 *&
FxSj Ox9G gOx9 FxOFx j ROx9G gOx99G gOx9 Fx j1 ROx9G gOx9 S j1 Ox9:
>+ &
1O9 h
Example 8.25 /& !& *&& & !% *& O: 69 b 2 > -& "* gOx9 x . x 6 x 2 1 !$$& *& &-&;& ;&- R
21(
Cyclic codes
F1!& $& !$! & 3 O *& %* "# , *&& & no &L && >& (:79
*& %* &->& %!& (1< & &, $& & >+ *,&%& %- /& !& * %!& (11 (12 , " ,,&& >!&-&-% -+-- -& *& O: 69 b 2 > -& , @ $& (1) *& O17 39 b 6 -& , @ $& (1: *& &-% --! %!& (11 (12 *&& & *&& - $&D gOx9 *, &%& x n 1 "& *, &%& NN1+ *&& (.9 *& "& *, " - ROx9 &@ "-* opened "-* closed *! "% *& !$$& *, &%& - !-& *& "& *, &%& ; *& 1& &!& *& % $ "* *& & >! -&-& %&& --! #& *&& %!& (11 (12 & -& NN,! $&--#!II &-& *&+ &H!& &@-+ 2n --# -# -&- + >! , &%* < b "* *"& - $&@+ * OOn9 *&+ & "&$& !& $--& "&;& , -+ *&& -+-- >! &-&-% -& O&% @ $& (2.9 J- , * --! + >& &H!&Q&& >& (:: Problems 8.1 *" * *& ! >& , k & !>$-& , n & ;&- $-& ;& *& J& GFOq9 &@-+ Oq n 19Oq n 1 Oq k 19Oq k
1
19 . . . Oq n k1 19 19 . . . Oq 19
!& * , ! ;&,+ * *&& & &@-+ 11(11 >+ O: 69 & -& 8.2 -!& *& ,"%D O9 19 x 1< Ox 12 19L O-9 Ox 17 19 x 1< 1 8.3 *& NN II $& -;& E - !;&P * & *& && OP Q9 R P OQ R9 P Q Q P !& %&&P
Problems
221
8.4 *" * , m 2 f9 ;& & 1 $ O>9 O-9 ;& & 1 $ O-9 O9 ;& & 1 $ O9 O&9 ;& & 1 $ O&9 8.6 ;& , $, * , C -+-- -& , COx9 2 C *& , i > 1 x i COx9 x n 1 2 C HintD & & 1O9G 8.7 *& G1 H 1 -& , *& O( .9 -+-- -& ;& GFO69 "* %&& $+ gOx9 Ox 2 19Ox 2 x 19 O&& + 1 *& & (69 8.8 *& G2 H 2 -& , *& O( .9 -+-- -& ;& GFO69 "* %&& $+ gOx9 Ox 2 19Ox 2 x 19 O&& + 2 *& & (69 8.9 O9 *" * *& ,"% -& & %&& $+-*&-# -& , On k9 -+-- -& "* $+-*&-# $+ hOx9 O NN&;&&II ~ $+-*&-# $+ hOx99D ~ n 1 G6 Fx j hOx9G j< H 6 Fx i k
O-! 9
~ r 1 x i k hOx9G i
& --& *& @ H 1 , + 1 *&& (6 O9 , *& + & S , *& ;&- R OR< R1 . . . Rn 1 9 --!& S T H 1 R T *" * *& %&&% ,!- ROx9 R< R1 x Rn 1 x n 1 SOx9 S< S1 x S r 1 x r 1 & && >+ SOx9
FROx9hOx9G x n
FROx9hOx9G x k xk
O"*-* ?! -! + "+ , +% * OS< S1 . . . S r 1 9 & *& -&,J-& , x k x k1 . . . x n 1 *& $!- ROx9hOx99 O>9 % *& &! , $ O9 J *& + & , *& ;&- R F1&-!& , *& 1) -&" *& -& + F11&K+ improper -+-- -& & *& , "*-* *& $& , *& %&& $+ gOx9 & * n * $>& "& " ;&%& -+-- -& , "*-* *& parity-check
Problems
226
$+ * $& & * n *! & C >& On k9 -+-- -& & x n 1 gOx9hOx9 "*&& gOx9 *& %&& $+ hOx9 *& $+-*&-# $+ , C !$$& ,!*& * *& $& , hOx9 n< , n * C< *& On< k9 -+-- -& "* %&& $+ gOx9 Ox n< 19=hOx9 O9 /* *& $+-*&-# $+ , C< P O>9 , d < *& ! -& , C< "* *& ! -& , CP O-9 *" * C On=n< 9C< "*&& NN jC< II && *& -& , &%* n >& , C< >+ &$&% &-* -&" j & 8.28 &-* j *& %& 1 < j < 1) J *& &%* & ! -& , *& O$$&9 >+ -+-- -& "* %&& $+ Ox 19 j F HintD *& &! , *& $&;! $>& " >& *&$,!G 8.29 , gOx9 * $& n &%&& r *& , + m > 1 gOx9jx mn 1 >+
*&& (6O>9 gOx9 %&&& Onm nm r9 -+-- -& O m > 2 * -& $$&9 O9 *" * ;&- C FC< C1 . . . C nm 1 G * -& , + , nm 1 i n < O gOx99 i< Ci x O>9 *" * *& - $ O9 &H!;& +% * FC< C1 . . . C n 1 G FCn C n1 . . . C2 n 1 G FCO m
19 n
COm
19 n1
. . . C mn 1 G
*& On n r9 $$& -+-- -& %&&& >+ gOx9 O-9 " + " , "&%* 2 & * -&P 8.30 %!& (6 "& && NN gOx9II --! , monic $+ gOx9 @$ *" ,+ * --! , - $+ gOx9 g < g 1 x gr x r "* gr 6 & St Ox9
t
aj x r t
j
gOx9:
j
9 , n && *& $& +! ,! $ O9 J $+-*&-# @ , *& -+-- -& , &%* n %&&& >+ gOx9 O-9 & * -& *;& + " , "&%* 2P , &@$ "*+ , &@$-+ !-* " O9 " +& - *,&%& &-& , * -&
22.
Cyclic codes
8.33 &% *&& ,,&& *,&%& &-& , *& O17 :9 >+ -+-- -& "* gOx9 x ( x : x ) x . 1 8.34 * $>& --& *& O61 2)9 -+-- % -& "* gOx9 x 7 x 2 1 O9 +& - O& , *& , FAjI 7 G9 $+-*&-# @ , * -& O>9 &% &-% --! , * -& O-9 & +! &-& , $ O>9 &-& *& &-&;& " R F111111111111& + 1 *&& (6 O9 *" * n 2 k 1 O>9 &->& &,J-& *,&%& &-& , C k
Problems
8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49 8.50 8.51
8.52
227
O-9 *" * *& & , 4& -&" , C &@-+ &H! *& & , -+-- *, , *& J " , G1 !& * &! , C. !% *& $ ;& $+ x . x 1 , >& (6 O9 *& "&%* &! & , C k , ! , *& ! >& , ordinary O& -+--9 >! , &%* b ;& "&& $*>& O-, *&& ((9 , 1 < b < n &&4& *&& (( q&& $*>& @& *&& (( -;& *& -& b . On 19=2 &&4& *&& (3 -+ q&& $*>& &&4& *&& (1< -+ -;& *& -& , q&& $*>& /*+ *& -& b < -;&& *&& (3P /*+ +! !$$& *& " ;& , *& > >! & -& NN%II NN"&#IIP
& *& > >! O-+ *&& (39 &;& %* , *& >+ &$& -&P *& &%& >! &;& %* , *& > -&P & >!&-&-% $$- !,J-& -&- >! * --! + -& $&- - *& $ &@ $& , * "* -& phased burst-error correction $*& >!& -&- *& >-# &%* n !$& , b >! , &%* b + --! + - "*-* & !$& , b -& -$>& , -&-% $*& >! , &%* b -& phased >!b&-&-% -& &@ $& $*& >!6&-&-% -& , &%* 12 ! >& >& -&- + >! , &%* 6 "*-* --! - & , -&-% t $*& >! , &%* b *& r > 2tb & O2+ & -& "*-* *& $+-*&-# & &->& >+ *& ,"% +D
C< C. C( C12 C1) C1: C1 C7 C3 C16 C1. C1( C2 C) C1< : C11 C17 C13 C6 C: %;& -&" FC< C1 . . . C13 G *& - $& --!$+% *& !$$& &, 6 3 . $ , *& + -+ *& , *& - $& , % *& %* -! > " , *& + & $+ $ *& $+ -*&-# !& & * *& ! , *& - $& &-* " -! , *& + 4& *! , &@ $& C< C. C( C12 C1) < OJ " ! 9 C. C1 C1( C17 < O&- -! ! 9 O9 *" * * -& - -&- $*& >! , &%* . O>9 *" * *& -&$% 6 3 . + -& not -$>& , -&-% $*& >! , &%* 6 O-9 &&4& *" * b 3 Ob 19 + -& - -&- $*& >! , &%* b , + , b 1 $ & ! >&
22)
Cyclic codes
8.53 O! -&9 O9 & gOx9 Ox b 19 pb Ox9 "*&& pb Ox9 &!->& $+ , &%&& b $& n1 *" * gOx9 %&&& On n 2b9 -+--& "* n - On1 b9 "*-* -$>& , -&-% b-phased bursts , &%* b O&& >& (719 O>9 & *& &H!&-& , Onj On 2b9 j9 -+-- -& >& >+ &&;% *& -& $ O9 & bj && *& -&$% O+ & !$*&9 >!&-&-% -$>+ *" * j!1 bj =2bj 12 * *&& -&+ $-+ && *& &%& >! 8.54 & >+ -+-- b 6 >!&-&-% -& , &%* 61 O9 & *& > *& &%& >! & & *& ! &&& &!-+ O>9 +! *# *&& !-* -& "* *& &!-+ $&-& $ O9P @$ ,!+ 8.55 *" * , gOx9 *& %&& $+ , On k9 -+-- -& , Ox 19 ; , gOx9 *& g9Ox9 Ox 19 gOx9 *& %&& $+ , On k 19 -& "*-* &H! *& % -& ! " , "&%* 8.56 &-& *& ,"% + -&" , *& O: 69 > -& , @ $& (1)D O9 F+ *& '& & && *&& O&& > 369 &-& *& -! , B9 & & *& , B - >& &+ &$&& *& -& & -&- & $& , "&%* < t ;&,+ *& >! k > n mt *& & >&;& * *& % $+-*&-# @ H ;&"& @ "* && , GFO29 *& * GFO2 m 9 * & mt 3 n
>+ *& &! , &- :1 * & * *& ! -& * & < mt *& -& &, * & > n mt h
*& -& &->& *&& 31 & -& BCH codes * , *& ;& & +*!*! -H!&%*& *&& -& & $ !-* >&-!& , *&& 31 &, O*& -& - *;& *%*& & %& ! -&9 >! *& >&-!& *&& & &,J-& &-% &$&-+ &-% %* , *& *&
26.
BCH, Reed±Solomon, and related codes
&@ &- "& " && * , "& -*& &@-+ *& %* &% Oá< á1 . . . á n 1 9 -& %-+ >&- & -+-- -& >+ *& &! , *$& ( *& &-% ! -+ >&- & $& + * NN-+--II ;&" , -& " " ! &J& ! & & , *& -&I & *& &- 36B37 "& " ,!+ &->& & ;& , & $I , ! &-% %* , -&
9.2 BCH codes as cyclic codes &- *& &J , t&-&-% -& , &%* n n 1 j 2 m 1D C OC< . . . C n 1 9 -&" ,, i< C i á i < , j 1 6 . . . 2t 1 O&H!;&+ , j 1 2 6 . . . 2t9 "*&& Oá< á1 . . . á n 1 9 , n - 4& && & , GFO2 m 9 , *& -*& $$&+ *& -& >&- & -+-- -& *&&>+ *& *& $& & -*&+ ;>& , -+-- -& *&& NN-+--II & *& , *& , O1 á . . . á n 1 9 "*&& n ; , 2 m 1 á && & , GFO2 m 9 , & n /* &$&- !-* *& &J >&- &D C OC< C1 . . . C n 1 9 -&" ,, n 1
C i á ij &- & cyclic code *& && , *$& ( && * * & COx9 C< C1 x C n 1 x n 1 >& *& %&&% ,!- , *& -&" CL *& O3:9 >&- & COá j 9 + *&& (1 C R Ox9 xCOx9 Ox n 19 "*-* & * R C Ox9 xCOx9 MOx9Ox n 19 , & $+ MOx9 *! , j 1 2 . . . 2t C R Oá j 9 á j COá j 9 MOá j 9Oá jn
19:
! COá j 9 < >+ O3(9 á jn 1 < -& á n 1 ," * C R Oá j 9 < , j 1 2 . . . 2t * C R *& -& &J& >+ O3:9 "*-* & * *& -& -+-- " ," , *&& (6 * &;&+ -& -*-&4& >+
9.2 BCH codes as cyclic codes
267
%&& $+ gOx9 ! *" - "& - $!& gOx9P --% *& &J gOx9 *& & &%&& $+ *& -& & *& & &%&& $+ ,+% gOá9 gOá6 9 gOá2 t 1 9 & A fá á6 . . . á2 t 1 g , GFO2 m 9 &-& , A &J& >& *& & , GFO29-?!%& , && & A & i A fâ2 D â 2 A i > &- & V^ j V Oá j 9
O3:179
Vi
1 ^ V Oá i 9: n
O3:1)9
*&& & + &&% !&,! &*$ >&"&& *& & ,&H!&-+ -& , %;& ;&- & , *& * NN$*& *,II *& & -&$ NN & *,II *& ,&H!&-+ *& ,"% && "& !$+ *& i* - $& , V >+ á ìi & , "& &J& &" ;&- Vì Vì OV< V1 á ì . . . V n 1 á ìO n
19
9
O3:1:9
*& ^ ì O V^ì V^ì1 . . . V^ì n 1 9 V
O3:1(9
"*&& O31(9 *& !>-$ & #& n /& &;& *& $, , O31(9 >& 31+ O3129 W i 1n W ^ Ox9 W ^< W ^1 x W ^ n m 1 x n m 1 -& W ^ Ox9 4& $+ W , &%&& < n m 1 ," * W i < , at most n m 1
9.3 Decoding BCH codes, Part one: the key equation
263
;!& , i W i 6 < , at least m 1 ;!& , i *! "OV9 "OW9 > m 1 h /& & &+ !-& *& #&+ &H! >! "& && ,&" & &J /* *& ;&- V J@& "& &J& support set I ,"D I fi D < < i < n
1 V i 6 & 31(9 Corollary 1 For each i 2 I, we have Vi
ái
ùV Oá i 9 : ó V9 Oá i 9
O3:279
Proof , "& ,,&&& *& #&+ &H! O3269 "& %& ó V Ox9 V^9Ox9 ó V9 Ox9 V^Ox9 ùV Ox9O nx n 1 9 ù9V Ox9O1
x n 9:
O3:2)9
& * , x á i "* i 2 I , O32& &-;&& , ó V Ox9 ùV Ox9 *& &@ -+ + * , *& J ,&" ,&H!&-+ -& , V & #" *& & - >& &-;&& , ó V Ox9 & ; $& &-! *& & & , *& -+ "& !$$& * *& -&,J-& , ó V Ox9 & %;& >+
9.3 Decoding BCH codes, Part one: the key equation
2.1
ó V Ox9 1 ó 1 x ó d x d :
Corollary 2 For all indices j, we have d
V^ j
ó i V^ j i
O3:2(9
i1
where all subscripts are to be interpreted mod n Proof *& #&+ &H! $& * ó V Ox9 V^Ox9
& #& n "& *;& &J& ó < 1 ! " &H! O36 , aOx9 bOx9 &H! dOx9 & &H! , *& , uOx9aOx9 vOx9bOx9 dOx9:
O3:6(9
*& %* ;;& ,! &H!&-& , $+ D Ou i Ox99 Ov i Ox99 Ori Ox99 Oq i Ox99 *& - & u 1 Ox9 1
v 1 Ox9 & *& quotient remainder &$&-;&+ "*& ri 2 Ox9 ;& >+ ri 1 Ox9D ri 2 Ox9 q i Ox9ri 1 Ox9 ri Ox9
&% ri , &% ri 1 :
O3:.+ u i Ox9 u i 2 Ox9
q i Ox9u i 1 Ox9
O3:.19
v i Ox9 v i 2 Ox9
q i Ox9v i 1 Ox9:
O3:.29
-& *& &%&& , *& & & ri & -+ &-&% *&& " >& 4& &L - r n Ox9 ! ! * r n Ox9 *& %- , aOx9 bOx9 ,!*& & * *& && &H! &@$&% *& %- & - > , *& % " $+ O-, H O36(99
9.4 Euclid's algorithm for polynomials
2.7
Table 9.2 $&& , !-I %*
v i ri 1 v i 1 ri O 19 i a u i ri 1 u i 1 ri O 19 i1 b u i v i 1 u i 1 v i O 19 i1 u i a v i b ri &%Ou i 9 &%Ori 19 &%Ob9 &%Ov i 9 &%Ori 19 &%Oa9
+ !- iL && > 313O9 Example 9.3 & F GFO29 aOx9 x ( bOx9 x ) x . x 2 x 1 *& >&*; , !-I %* %;& >& 36
*& i . & , >& 36 *" * %-OaOx9 bOx99 1 O"*-* >;! +"+9 "* $&+ , >& 32 +& *& &H! Ox 7 x . x 6 x 2 9aOx9 Ox : x ) x 6 x 19bOx9 1 * &@ $& -!& @ $& 3. h /& " ,-! ! & $&+ >& 32 "*-* - >& &"& v i Ox9bOx9 ri Ox9 O aOx99: % $&+ *& ,- * &% ri
1
. &% ri "& %& *& & &
&% v i &% ri , &% a:
*& &! , * &- O *&& O3.79 /& >&% "* &
O3:..9 O3:.79
379 # , -;&& O3..9
Lemma 2 Suppose Euclid's algorithm, as described above, is applied to the two polynomials aOx9 and bOx9 Given two integers ì > < and í > < with ì í &% a 1, there exists a unique index j, < < j < n, such that:
2.)
BCH, Reed±Solomon, and related codes
Table 9.3 &@ $& , !-I %* i
ui 1 < 1 2 6 . 7
vi
ri
qi
1 < x( ) . 2 < 1 x x x x1 1 x2 1 x6 x 1 x6 1 x7 x6 x2 x2 x. x 1 x) x. x6 x2 1 x1 x7 x. x6 x2 x: x) x6 x 1 1 ) x x. x2 x 1 x(
+ &H!% &% r j
1
> í 1
&% r j < í:
O3:.(9 O3:.39
*& >+ $&+ "& *;& &% vj < ì
O3:7 ì 1:
O3:719
H! O3.39 O37 ì 1 > &% v 1 &% r j 1 > í 1 &% r 1 &-& , *&& &@ !-* * O37.9 O3779 * ! >& !H!& " &"& $&+ H O3729 ,"D u j a vj b r j
O3:7)9
ua vb r
O3:7:9
"*&& u & !$&-J& $+ !$+ O37)9 >+ v O37:9 >+ vj D u j va vj vb r j v O3:7(9 uvj a vvj b rvj :
O3:739
%&*& O37(9 O3739 $+ r j v rvj O a9 ! >+ O3.:9 O3769 &%Or j v9 &% r j &% v < í ì , &% a + >+ O3.)9 O3769 &%Orvj 9 &% r &% vj < í ì , &% a ," * r j v rvj * ,- - >& "* O37(9 O3739 $& * u j v uvj ! -& $&+ %!&& * u j vj & &;&+ $ & * & * uOx9 ëOx9u j Ox9 vOx9 ëOx9vj Ox9 , & $+ ëOx9 *& H! O37:9 >&- & ëu j a ëvj b rL - $% * "* H O37(9 "& --!& * rOx9 ëOx9r j Ox9 h
*& &! , *&& 37 " >& !& -+ ! ,*- % -! , &-% %* , &&B -& ,-& *&& -! "& " !-& *& %* - $-&!& NNEuclidOaOx9 bOx9 ì í9II De®nition If OaOx9 bOx99 is a pair of nonzero polynomials with &% aOx9 > &% bOx9, and if Oì í9 is a pair of nonnegative integers such that ì í &% aOx9 1, EuclidOaOx9 bOx9 ì í9 is the procedure that returns the unique pair of polynomials Ovj Ox9 r j Ox99 with &% vj Ox9 < ì and &% r j Ox9 < í, when Euclid's algorithm is applied to the pair OaOx9 bOx99
2.(
BCH, Reed±Solomon, and related codes
*& ,"% *&&
!
4& *& &! , * &-
Theorem 9.6 Suppose vOx9 and rOx9 are nonzero polynomials satisfying vOx9bOx9 rOx9 O aOx99
O3:)+ O3)69 O3).9 &% vj Ox9 < &% vOx9 < ì &% r j Ox9 < &% rOx9 < í h Example 9.4 & aOx9 x ( bOx9 x ) x . x 2 x 1 F GFO29 @ $& 36 % >& 32 "& - >!& *& !$! , Euclid , *& &%* $>& $ Oì í9D Oì í9
EuclidOx 8 x 6 x 4 x 2 x 1 ì í9
O& ó Ox9 x 2 1 ùOx9 x 6 x 1 h
* $ *& $$- , *&& 3. *& $>& , ;% *& #&+ &H! , -& *! >& $$& + &;& "& $& ! *& &@ &- 9.5 Decoding BCH codes, Part two: the algorithms & ! &-$!& *& &-% $>& "*-* "& >& & $+ *& & , &- 36 /& & %;& &-&;& ;&- R OR< R1 . . . Rn 1 9 "*-* + ;& , !#" -&" C OC< C1 . . . C n 1 9 , *& t&-&-% -& &J& >+ O3:9 & R C E "*&& E *& & $& ! % &-;& C , R *& J &$ *& &-% $-& - $!& *& syndrome polynomial SOx9 &J& >+ n
SOx9 S1 S2 x S2 t x 2 t 1
O3:)79
1 ij i< Ri á
, j 1 2 . . . 2t /& " *& & , &- 36 "*&& S j * SOx9 V^Ox9 x 2 t "*&& V^Ox9 *& %&&% ,!- , *& !& , , *& ;&- V &J& O36)9 * *& #&+ &H! O36:9 >&- & ó Ox9SOx9 ùOx9 O x 2 t 9
O3:))9
"*&& ó Ox9 *& &- $+ ùOx9 *& &&;! $+
*& &@ &$ *& &-% $-& !& !-I %* $-! *& $-&!& EuclidOaOx9 bOx9 ì í9 &J& &- 3. ;& *& #&+ &H! , ó Ox9 ùOx9 * $>& -& , *& ! >& , & * -!+ --!& < t *& >+ O32+ & 1 %-Oó Ox9 ùOx99 1 *! *& *+$*&& , *&& 37 & & "* aOx9 x 2 t bOx9 SOx9 vOx9 ó Ox9 rOx9 ùOx9 ì t í t 1 * , *& $-&!& EuclidOx 2 t SOx9 t t 19 -&
27
& && & >+ *& ,- * ó O& 31 / ``Frequency-Domain'' BCH Decoding Algorithm / { for (j 1 to 2t) Sj in 1< Ri á ij L SOx9 S1 S2 x S2 t x 2 t 1 L if (SOx9 &"&& *& " -& , -& * -& & *& &;& !+ *& , , characters *& * bits * &- "& " &J& !+ &&B -&
*! & F >& + J& "*-* - && & á , & n) , r J@& &%& >&"&& 1 n *& & , ;&- C OC< C1 . . . C n 1 9 "* - $& F !-* * n 1
C i á ij &%% *& -& & -& codewords *& ,"% *&& %;& *& >- ,- >! -& Theorem 9.7 The code de®ned by (9.67) is an On n r9 cyclic code over F with generator polynomial gOx9 rj1 Ox á j 9, and minimum distance d r 1 Proof & C OC< C1 . . . C n 1 9 >& >+ ;&- , &%* n ;& F & COx9 C< C1 x C n 1 x n 1 >& *& -&$% %&&% ,!- *& O3):9 + * C -&" , + , COá j 9 + *&& (6O>9 *& -& On n r9 -+-- -& "* %&& $+ gOx9 $;& *& & >! d >&;& * O3):9 + * , C^ O C^< C^1 . . . C^ n 1 9 *& , -&" *& C^1 C^2 C^ r < O-, H O31199
*! >+ *& %! & O *&& 369 *& "&%* , + 4& -&" > r 1 *& *& * *& %&& $+ gOx9 x r g r 1 x r 1 g < "*& ;&"& -&" * "&%* < r 1 *! d r 1 && h Example 9.6 & *& O: 69 &&B -& ;& GFO(9 , á
9.6 Reed±Solomon codes
277
$ ;& GFO(9 ,+% á6 á 1 *& %&& $+ , *& -& gOx9 Ox á9Ox á2 9Ox á6 9Ox á. 9 x . á6 x 6 x 2 áx á6 , gOx9 ;&"& -&" Fá6 á 1 á6 1 ! -!-;&L *"&;& , -& *&& &,J-& interpolation algorithm "*-* -&+ && *& %%& &$ , ! , ! &- +
*& &@ *&& $& * ! Theorem 9.10 Consider the On de®ned by (9.67), where k n between the codewords C OC< all polynomials POx9 P< P1 x over F, given by
k9 Reed±Solomon code over the ®eld F r There is a one-to-one correspondence C1 . . . C n 1 9 of this code, and the set of Pk 1 x k 1 of degree k 1 or less
Ci á
iO r19
Thus apart from the scaling factors á codeword are the values of a certain Ok
POá i 9:
iO r19
, the components of a given RS 19st-degree polynomial
Proof & C FC1 . . . C n 1 G >& J@& -&" /& &J& NN"&II ;& , C -& D FD1 . . . D n 1 G >+ Di á
iO r19
Ci
, i + O3):9 "& *;& C^1 C^2 C^ r + O31)9 "& *;& Di POá i 9 , i % * "* O3)39 "& > C i á iO r19 POá i 9 "*-* "* "& "& h
*& ,"% &@ $& !& *&&
31& @ $& 3) -- % *&& 33 *&& !H!& -&" C !-* * C1 á6 C. á C) á. & ! -!- * -&" /& >&% >+ >&;% * , I f1 . )g *&& 33 %!&& &&-& *& &@&-& , 6 3 : %&& @ , C , *& , G1.)
.< 1 1 / <
+ J& GFO29 O>& 32:9Q*& *&& >- - $& OK$K$ & !$&9 " +$-+ >& NN,,*&*&,II & *!%* *& &% , *&& - $& ;& *& $ J& GFO2 m 9 $ &&% $- >&+ *& -$& , * ># "& " --!& ! -! , &-& "* %!& 36 "*-* *" +& *,&%& &-& , *& O: 69 -& ;& GFO(9 "* gOx9 x . á6 x 6 x 2 áx á6 O&& @ $& 3) 3:9 /& ! " *& $>& , decoding -& "*-* ! ! >& H!& *& &-% , -& ;&" , *& + , *& &J O- $& O3:99 "* O3):99 * *! >& !$% & ! >&% >+ , + % *& &-% $>& /& & %;& &-&;& ;&- R OR< R1 . . . Rn 1 9 "*-* + ;& ,
9.6 Reed±Solomon codes
273
first 3 ticks closed last 4 ticks open
a3
a
1
a3
first 3 ticks down last 4 ticks up
Out In
Figure 9.3 +& - *,&%& &-& , *& O: 69 -& ;& GFO(9 "* gOx9 x . á6 x 6 x 2 áx á6
!#" -&" C OC< C1 . . . C n 1 9 , *& On k9 -& &J& >+ O3):9 & R C E "*&& E *& & $& -& >+ *&& 3: d r 1 "& - *$& -&-+ &,+ C !& "OE9 < br=2c , *& & , *& -! "& * & t br=2c ! & * "OE9 < t
*& J &$ *& &-% $-& - $!& *& syndrome polynomial SOx9 S1 S2 x S r x r 1
O3::19
n 1 "*&& S j i< Ri á ij , j 1 2 . . . r + *& &! , &- 36 , "& &J& *& NN"& & $&II >+ V OE< E1 á E2 á2 . . . E n 1 á n 1 9 *& SOx9 V^Ox9 x r *& #&+ &H! O3269 &!-& >&- &
x r
ó Ox9SOx9 ùOx9 O x r 9 "*&& ó Ox9 *& - $+ ùOx9 *& &;! $+ , *& ;&- V
* $ *& &-% $>& &@-+ *& & " , -& &->& &- 37 $-! , *& $-&!& EuclidOx r SOx9 t t 19 -& " &! *& $ , $+ OvOx9 rOx99 "*&& vOx9 ëó Ox9 rOx9 ëùOx9 , & 4& - ë
*& J &$ *& &-% %* !& ó Ox9 ùOx9 && & *& & $& E OE< E1 . . . E n 1 9 *&-& *& % -&"
2)
&-!& -& & >+ * E i < 1 , i *! , *&& & $ i & E i 6 &- & *& inner channel9 &% -& , * &@ $& *& !& -*& "* 1) $!L *& &! , * &- !%%& * "& &% *&& $! !$! && & , GFO1)9 *& * ,! & ;&- ;& GFO29 & ! " -& !% O17 119 -& ;& GFO1)9 &!-& *& & *& !& -*& !& %!& 3:
*& &-& %!& 3: #& 11 , + > á Oá< . . . á1< 9 , GFO1)9 O"*-* & &+ .. > , *& % !-&9 $!-& -&" C OC< C1 . . . C1. 9 *& !& -*& *& %>& C &-&;& R OR< . . . R1. 9 *& &-& *& $!-& & & â Oâ< . . . â1< 9 , á "*-* " >& &H! á , *& !& -*& * -!& & * " + > & *! , E O + , &-& & %!& 3) *& 17 $>>+ , &-& & %!& 3: & * k6 17 k E917 k & H!$+ ;& GFO1)9
*& $&-&% &@ $& !& >* *& %&& & , --& *& & "*+ -& & !&,! --&& +& Any -& - !- +& - >& &%& + !& -*& %!& 3( "&;& , * $ , ;&" >& !&,! "& ! >& >& &% !& -& -$>& , -&-% , *& & -!& >+ *& !& -*& "*-* #&+ >& ;&+ - $&@ >& -& & & -!& >+ & &-& ,!& /*& *& & &-& , * "*& Ov1 . . . v k 9 6 Ou1 . . . u k 9 %!& 3( *& + > v1 . . . v k !!+ >& $--+ && >-& u1 . . . u k * & * & *& !& -*& & --! >! , &%* k "& *;& &+ && * -& & "& !& >!& -&- * *& & "*+ -& & "&$& !& !& -& --&& +& 9.7 Decoding when erasures are present /& *;& && * -& - -&- !$& & * &- "& " && * *&+ - -&- *& - , -*& K" -& erasures &!& $+ -*& + > "*-* &-&;& &%>+ &@ $& -& *& %* " BLOCK , *& * && -*%& , O A "& %& BLACKL * error *& * $ "&;& , *& & " !,,& erasure *& * $ *& &! BLCK "*&& NNII *& erasure symbol $--& &!& & H!& - *&+ - >& &@$&-& --! "*& *& -*& & >&- &
9.7 Decoding when erasures are present
2):
!!!+ &;&& , * & &@ $& , +! & +% # *& $ "K+% ?& $& ;&*& +! -;& erased ! && " #& "* +! & +% +L *&+ " $+ >& >& !& +! * &- "& " & &*% >! &!& -&- /& " && * $-$& &!& + *, * -&- & O *&& 3119L "& " && *" ,+ *& &-% %* & -&- >* &!& &
& -*& "*-* - $!-& &!& "& & "& $+ &%& *& !&+% + > & F F F [ fg "*&& NNII >;& $&- &!& + > *& + "& transmitted + > & *& && & , F >! + && & F - >& received *& *&&- &! >! !&! &!&& -&- ," O $& "* *&& :29 Theorem 9.11 Let C be a code over the alphabet F with minimum distance d. Then C is capable of correcting any pattern of e< erasures and e1 errors if e< 2e1 < d 1 Proof $;& *& *&& "& J !-& *& extended Hamming distance d H Ox y9 >&"&& + > FD & ' < , x y d H Ox y9 1 , x 6 y &*& x y NN II (1 , x 6 y & , x y NN II: 2
*! , &@ $& , F f& *& O: 69 -+-- -& , "
@ $& (2 "* -&
C< + *& %& $ &-&-% -& O *&& O11 )9 + -& ;& GFO69L && > 3).B3):9 /& >&% "* 4% ! >&*&&- ,- *& 26 & ;&- $-& ;& GFO29 "*-* "& - V26 % $*&& , ! 6 - 26 26 26 2& #& *& -&" O26 129 >+ -+-- -&M -%*&&- & *& "& && -!- >+ -+-O26 129 *&&&-&-% -& & & "* d > : /& >& *& -!- -& $$&& , *& J& GFO211 9 -& 211 1 2! "& " && * &@$- ,-4 *& & , * &- /& - " &J& *& + -& De®nition The O26 129 Golay code is the binary cyclic code whose generator polynomial is gOx9, as de®ned in (9.85) or (9.88). " OM9 "& *;& *" * *& -&I
*& J &$ * &- *& &+
!
"&%* > :
Lemma 3 Each nonzero Golay codeword has weight > 7 Proof ;&" , *& !-!& , *& & B , 4& , gOx9 O-, H O3(799 "& && * , &;&+ -&" C COâ9 COâ2 9 COâ6 9 COâ. 9 : Lemma 5 If C is a Golay codeword of even weight w, then w < O .9 Proof & *& %&&% ,!- , C >& && >+ COx9 & COx9 x e1 x e2 x e w
O3:319
"*&& < < e1 , e2 , , e w < 22 -& C >&% *& + -& COâ9 &-!& w &;& - $! #& $-& GFO299 *! ~ COx9 COx9
22
ìb x b
O x 26
19
b1
"*&& ì b *& ! >& , && $ Oi j9 "* e i , ! O33)9 &-* ì b &;&D ìb < " , e i
O 29
e j b *& e j
+ -& *&& & wOw
b 1 2 . . . 22:
e i 26
ì b ì26 b
O3:3(9
b O 269 *!
b 1 2 . . . 11:
19 & *& ! 22
e j b O 269 +
ì b wOw
O3:339
*& %* & , O33:9
19:
O3:1+ appending an overall parity check & >+ &J% 2.* - $& C26 ,"D C26 C< C1 C22 :3 , &;&+ + -&" &@&& * "+ *& &!% -& >+ & O>! %& -+--9 O2. 129 -& "*-* -& *& O2. 129 extended Golay code $& & *& $;& *& ,"% *&& O&& >& 3739
Theorem 9.14 The number of codewords of weight i in the O2. 129 extended Golay code is < unless i + O&& >& 373 3)29 /& --!& "* & & # >! *& $& & , *& + -& -& *& O26 129 -& -+-- -& * "& -! &% 11 %& *,&%& &-& , O&& &- (2 >& 3)- &-% %* &+L "& -! &+ ,+ *& &-% %* %!& 31 32 -&- &;&+ $& , " ,&"& & >! *& -& NN--&+II -$>& , -&-% *&&M !&+ *"&;& *& -& &!%* * *& + & NN>& #!$II %* -!& &- :2 !!+ $-- O&& > 3)69
2(2
BCH, Reed±Solomon, and related codes Problems
9.1 /& " &- 31 * *& ,!- fOV9 V6 #& *& @ H 2 , H O329 *& $+-*&-# @ , "&-&-% -& ;&%& "*&*& *& ,"% -& fI "#D O9 fOV9 TV "*&& T & , , V m O>9 fOV9 a< a1 V a2 V2 "*&& V &%& && & , GFO29 O-9 fOV9 V 1 "*&& V 2 GFO2 m 9 9.2 !$$& F J& J& "* q && & O9 , a >+ && & , F &J& *& Oq 19&%&& $+ f a Ox9 Ox a9 q 1 1 *& ;!& , f a Ox9 , &-* , *& q && & , F O>9 % *& &! , $ O9 *&"& *" * &;&+ ,!- f D F ! F - >& &$&&& $+ , &%&& q 1 9.3 O * $>& %;& %&&4 , *& '& & && *&& "*-* &&& *& $, , *&& 319 & Pi Ox9 >& - $+ , &%&& i , i & - && & *" * . 0 P< Ox1 9 . . . P< Ox n 9 6 7 P1 Ox n 9 7 n 1 n 6 P1 Ox1 9 . . . 6 7 &6 Ox j xi 9: 7 . . 6 7 i1 ji1 .. .. / 1 Pn 1 Ox1 9
...
Pn 1 Ox n 9
F HintD , xi x j *& &, & ;*&G *& '& & && *&& *& $&- -& Pi Ox9 x i 9.4 && $&!-& % , %* , - $!% *& & , *& t&-&-% -& , &%* 2 m 1D {
}
S f1 6 . . . 2t 1g; k 2 m 1; while (S is not empty) { u< least element in SL u u< ; do { delete u from SL k k 1; u 2u 2 m 1; } while (u 6 u< 9 }
O9 *" * "*& *& %* & & *& &%& k &H! *& & , *& t&-&-% -& , &%* 2 m 1
Problems
9.5
9.6
9.7
9.8 9.9
9.10 9.11
O>9 & *& %* - $!& *& & , *& t&-&-% -& , &%* )6 , 1 < t < 61 O9 ;& * *& & , *& "&-&-% -& , &%* n 2 m 1 n 2m , m > 6 O>9 & %&&+ *" * , + J@& t > 1 *& & , *& t& -&-% -& , &%* n 2 m 1 n mt , !,J-&+ %& m O-9 /* *& & ;!& , m< !-* * *& three&-&-% -& , &%* n 2 m 1 * & n 6m , n > m< P O9 &-* t *& %& 1 < t < : - $!& *& & , *& t& -&-% -& , &%* 17 O>9 &-* , *& -& $ O9 --!& *& %&& $+ ! % $ ;& á GFO1)9 * J& *& &H! á. á 1 O, @ $& 319 @ $& 31 "& - $!& *& %&& $+ , *& *&&& -&-% -& , &%* 17 !& *& ! $ * *& $ ;& á , GFO1)9 J& á. á 1 , "& * -*& $ ;& ,+% á. á6 1 & "* "! *& %&& $+ *;& !& ! >&P ;& *& ;&& , ! H O3129 & *& J& GFO:9 &$&&& >+ *& & , &%& f9 % 6 *& &&& $ ;& )* , !+ J *& , *& ;&- V1 O1 2 6 . 7 )9 V2 O1 6 2 ) . 79 O-9 /*+ +! !$$& *& , V2 !-* NN $&II * * , V1 P ;& * *& , *& $*&*,& ;&- Vì &H! O31:9 %;& >+ *& , ! O31(9 O&&4& -&9 & gOx9 >& $+ "* -&,J-& GFOq9 "*-* ;& x n 1 !*& ! & * á n* , !+ & &@& J& , GFOq9 * gOá i 9 & *& -+-- -& "* %&& $+ gOx9 *" * *& ! -& , C > d F HintD & *& %! &G *& -;&& , *& NN %! &II O *&& 369 !&P * , V ;&- , "&%* w & &-&+ ," * *& V^ ! *;& w 1 & -&-!;& 4& - $&P , +! "& yes %;& $, , +! "& no %;& &@$- -!&&@ $& ;& * %-O V^Ox9 1 x n 9 i=2 I O1 á i x9 "*&& V^Ox9 &J& O31.9 I &J& O3139 ^ & #" *& & - >& *" * , + d -&-!;& - $& , V --!& $;& "& #" ó V Ox9 O-, + 329
*& J& GFO1)9 &$&&& >& 31 - $ ;& 7* , !+ &+ á6 "*-* , *& & & , * $>& "& * && >+ â & V O1 â. â7 & $"& && ;& J& F , ì í & &%;& &%& Oì í9 Pade approximation AOx9 ,!- pOx9=qOx9 !-* * O9
qOx9AOx9 pOx9 O x ìí1 9
O>9
&% qOx9 < ì &% pOx9 < í:
% *&& 37 *" * , &-* Oì í9 *&& O$ , - ,-9 !H!& $ O p< Ox9 q< Ox99 !-* * , O9 O>9 * *& pOx9 ë p< Ox9 qOx9 ëq< Ox9 , 4& - ë *& $ O p< Ox9 q< Ox99 -& the Oì í9 Pade approximant AOx9 &,&% >& 36 - $!& *& &C $$@ AOx9 1 x x 2 x . x ) ;& GFO29 "* ì í : 9.22 /* *& & &!$ @ $& 37 &-& *& ,"% + -&" , *& O17 79 *&&&-&-% -&D
Problems
2(7
R FR< . . . R1. G F11& , Pr * "+ & -& ;& Fq m "* &%* n & r 1 ! -& n r 9.35 *& &!$ >&% *& & > 36. -&$% &-* f 2 Pr & C OC< C9< C1 C91 . . . C n 1 C9n 1 9 2 GFOq m 92 n >& &J& >+ C i f Oá i 9 C9i á i f Oá i 9 *" * *& & , ;&- *! >& & -& ;& GFOq m 9 "* &%* 2n & r 1 !-* * "* &-* 4& -&" *&& & & n r - $ OC i C9i 9 9.36 & ö D GFOq m 9 ! GFOq9 m >& && & $$% , GFOq m 9
Problems
2(:
GFOq9 m #& *& -& ;& GFOq m 9 &J& > 367 #& -& ;& GFOq9 >+ $$% *& -&" C OöOC< 9 öOC9< 9 . . . öOC n 1 9 öOC9n 1 99 *" * *& &!% GFOq9 & -& * &%* 2mn & mOr 19 * "* &-* 4& -&" % *& n !>;&- OöOC i 9 öOC9i 99 *&& & & n r - & 9.37 O * $>& ! , $-& &$& $$&-&9 & fx1 . . . x M g >& & , M - ;&- , VnOF 2 9 & w i w H Oxi 9 && *& % "&%* , xi & p Ow1 w M 9=nM ;& * % M < nH 2 O p9 "*&& H 2 *& >+ &$+ ,!- F HintD & X OX 1 X 2 . . . X n 9 >& ;&- "*-* &H!+ #&+ ! & + , *& ;!& xi & p j && *& ,- , *& M ;&- * *;& 1 *& j* -& " ;&,+ *& ,"% % , &H!& &H!&D % M HOX9
367 $&-4& q 2 n 2 m Oá< á1 . . . á n 1 9 + &% , *& && & , GFO2 m 9 & r=2 m r *" * *& &!% -& *;& O9 &%* m2 m1 O9 & 12 r 21m $ % O9 d n > O1 r9 H 2 1 12 %22O1m r9
*&& -& & *& Justesen codes && >;& F HintD $;& O9 !& *& &! , > 36:G 9.39 + *" * , + < < R < 12 *&& J& &H!&-& , 0!&& -& ;& GFO29 "* &%* n i & k i ! -& d i !-* *D
i!1
i!1
i!1
n i 1
k i =n i R
!$ d i =n i > H 2 1 O1=29 O1 & 9.42 %;& ;!& , d *" + $ , &%;& &%& Oe< e1 9 & *&& !-* * e< 2e1 < d 1P 9.43 , m n & $;& &%& !-* * m n &;& *" *
2((
BCH, Reed±Solomon, and related codes 2
3 4 5 m n m n : 2 2 2
O&& *& & # &&+ $&-&&% H O3(.99 9.44 & *& O: .9 % -& , @ $& :6 *& -& * d 6 >+ *&& 311 -$>& , -&-% + $& , e< &!& e1 & $;& e< 2e1 < 2 &% * &-& O, $>&9 &-* , *& " $ O9 O>9 O-9 O9 F1 1 1 < < 9 F< 1 1 1 < 1G O-9 F< 1 1 < 1G O9 , R + -*& ;&- , &%* : -% &@-+ & &!& "* *& $>>+ * " >& !H!&+ &-& >+ *& &-% %* !-& *& $, , *&& 311P 9.45 *" * , ó 1 Ox9 *& &- $+ ùOx9 *& & &!& &;! $+ , &&!& &-% O&& &H! O3::9 O3(199 *& %-Oó 1 ù9 1 9.46 ;&%& *& $>>+ , &-& & , &&B &-& !& *& ,"% --! -& O9 r &!& 1 & O>9 r 1 &!& 1 & O-9 r 1 &!& & 9.47 & *& O17 :9 -& ;& GFO1)9 O%&&& >+ $ ;& ,+% á. á 19 &-& *& ,"% &-&;& " R Fá16 1 á1< á12 á) á7 á16 á1 á( á: á2 á3 G: 9.48 % *& !%%& *& & , &- 3: &-& *& ,"% + ;&- , *& O17 79 -& "* %&& $+ gOx9 x 1< x ( x 7 x . x 2 x 2 1 O-, @ $& 319 R F1 1 < < < < < < 1 1 < 1G: O9 & *& & - $& O>9 & *& ,&H!&-+ - $& 9.49 & On k9 & -& "* d d , *&& & & *&& 311 %!&& * *& -& -$>& , -&-% + $& , !$ d 1 &!& *" * * &! - >& $;& >+ *"% * *&& & & & , d &!& * *& -& I -$>& , -&-% 9.50 &- (. "& -&& -& -$>& , -&-% %& >! , & ! ! * ;&+ !-* && -&- %& >! , erasures ,& % * $>& +! " %&& * * O9 , C On k9 & -& "*-* -$>& , -&-% + &!& >! , &%* b & *" * n k > b O, *& &%& >! -+ *&& (19 *" * + On k9 -+-- -& -$>& , -&-% + &!& >! , &%* n k & O-9 & *& O: 69 -+-- -& , @ $& (2 &- *& ,"%
Problems
9.51
9.52
9.53
9.54
2(3
-&" "*-* *;& !,,&& &!& >! , &%* .D O1< "* && & x y *! >% R O1 x 1 y 1 < 19 O9 & *& ,- * &;&+ -&" *& O: .9 % -& J& *& &H! HC T *&& &H! *& *&& && & &$&&% *& &!& /& -! *& ;& *&& &H! , *& && & *! -&-% *&& &!& & *&& 311 + %!&& * *& -& -$>& , -&-% " &!& /*I "% *&&P * $>& "& -& &;& $$-* -&-% &!& & "*-* ;;& *& & , NN%!&%II *& ;!& , *& &!& O9 ! & J * *& -& >+ & *& J& F *&& 311 GFO29 !$$& "& *;& -& C "* ! -& d * "& *;& &-&;& + -&" -% e< &!& e1 & "* e< 2e1 < d 1 !$$& * "& -*%& *& && $ & &% @ $& 33 * d . >+
*&& 31& +! & #& ;&%& *& : . 67 $>& &!& $& , 4& ,! && & "*-* *& & -&->& $-! $&& J *& number , "&%* ,! &!& $& * & -&->&
* $>& --& *& $>>+ * + &&-& ;&- , GFOq9 n " >& &-& >+ &-& , &&B -&
23
9 & *& , ! , $ O9 - $!& *& , J@& ;!& , t q ! 1 , *& $>>+ * + &&-& " , &%* q 1 " , "* % -& t & , & -&" t& -&-% -& , &%* q 1 ;& GFOq9 O ! & * *& -&I &!-+ r 2t9 & C >& On k9 >+ -+-- -& "* %&& $+ gOx9 $+-*&-# $+ hOx9 O9 *" * , hO19 6 9 *" * , *&& $ Oè1 è2 9 , , hOx9 !-* * è1 è2 1 *& &;&+ -&"I "&%* ;>& >+ ,! F HintD * %&& 4 , *& &! & 7G *& &@ "& $;& * *& O26 129 + -& * d > : *" * ,- d : , * -& * " "+D O9 + &@ % *& %&& $+ gOx9 O>9 + *"% * any O26 129 >+ & -& ! *;& d < : *" * *&& O3+ & -& "* d 7 & $&,&- "&-&-% -& , &%* 3& , 12> + & , 1 2 "&%* -&$% &> & *" * *& ! >& , "&%* + & -&$% "> & rO3< r9 & $ && & rG
*& O26 129 >+ + -& &J& &- 3( "*& - >& "* + & >& #!$ &-% * *& $$&+ * &;&+ & $& , "&%* < 6 " >& -&-& O9 &->& & "* *& &-& " , *& & $& * "&%* . O>9 /* , *& & $& * "&%* 7P O-9 &&4& *& &! , $ O9 O>9 &-* &%& t *& %& . < t < 26 "* " *& &-& , *& & $& * "&%* tP ;& *&& 31.
* $>& --& *& ! >& , -&" , "&%* ( *& O2. 129 &@&& + -& O9 *" * *& ! >& , -&" , "&%* ( 4& * " "+D O19 + &@ % *& %&& $+ gOx9 , *& % O26 129 + -&L O29 + *"% * any O2. 129 >+ & -& ! *;& d < ( O>9 ;& 1< * *& -& - &@-+ :73 " , "&%* ( *" * , + !>& fi1 . . . i7 g , J;& && & , f&% !& -&- & $& , "&%* *&& &9 O9 *" * *& -& - &&- & $& , "&%* . O>9 ;& * *& "&%* &! & , *& -& 1 :73x ( 27:)x 12 :73x 1) x 2. , &-* e *& %& . < e < 2. - $!& *& ! >& , & $& , "&%* e * *& -& " &&- O-9 " ! & *& &-& + & $ -&- & $& , "&%* two & &$& $ O>9 O9 " ! & *& &-& + & $ -&- & $& , "&%* one & &$& $ O>9 O&9 + ! & *& &-& !& detect-only mode & , *& + & 4& *& &-&;& " --&$& -&- >! *&"& &?&-& &$& $ O>9 9.62 * $>& "& " >&K+ -& &-& , *& O26 129 O2. 129 + -& O9 &% *,&%& &-& , *& O26 129 + -& O>9 + ,+% +! &% $ O9 *&"& - & !$ "* &% , &-& , *& O2. 129 &@&& + -& 9.63 -! *& 4& - $&@+ , + & >& #!$ &-& , *& O2. 129 + -& In Probs. 9.64±9.67 we will investigate the ternary Golay code. Observe that in the vector space GFO611 9 a Hamming sphere of radius 2 contains 11 11 12 . 2.6 67 1 2 vectors. This suggests that it might be possible to perfectly pack GFO611 9 with :23 6) spheres of radius 2 The ternary Golay code does this. It is an O11 )9 linear code over GFO69 whose codewords, when taken as sphere centers, produce such a packing. The code is de®ned as follows. Since 67 1 11 22, it follows that GFO67 9 contains a primitive 11th root of unity, which we shall call â Since over GFO69 the factorization of x 11 1 is x 11 1 Ox 19 gOx9 g~Ox9, where gOx9 x 7 x . x 6 x 2 1( and g~Ox9 x 7 x 6 x 2 x 1, we may assume that â is a zero of gOx9 The O11 )9 ternary Golay code is then de®ned to be the cyclic code with generator polynomial gOx9 To show that the spheres of radius 2 around the 729 codewords are disjoint, we must show that the minimum Hamming distance between codewords is > 7, that is, every nonzero codeword has weight > 7 The following problems contain a proof of this fact1< 9.64 *" * *& -&I ! "&%* > . F HintD & *& %! &
*&& 36G 9.65 *" * , C< C1 C1< & >+ 6 F HintD && & . &- 3(G 9.66 , *& *& * C< C1 C1< á 6 &&+ -;&& * ,- -H!&%*& * -$& & +*!*! *& -& "&& &-*&& &*!*! -H!&%*& BCH codes $ & & >& * + *& -& *& &-% %* "&& -;&& >+ *&& &+ "& *& *+ , *& &-% %* && $$ 67.B677 6 O$ 26:9 , *& -*-&- , F J& "& ! & * *& -*-&- & ;& n . O$ 2..9 + -;& *& &%&& , *& 4& $+ 1 * & * >- ,- #& &%Oab9 &%Oa9 &%Ob9 &%Oa b9 < @O&%Oa9 &%Ob99 &- " * &;& , & , a b *& 4& $+ 7 O$ 2.:9 * $, !& 0 *&& ) O$ 27.9 >! $$- *& J& F " >& GFO2 m 9 , & m > 1 "&;& *& !&+% *&+ %& *!%* &H!+ "& , + J& J& "& * #& !&-&+ &- F : O$ 2:19 & , -!& & , *& && - $& , C "&& -!+ & :1:O>9 1< O$ 23& !& , + ,,&& $ , ;&" * !-+ &- "& $&& *&& $$-*& "*-* "& *;& -& *& polynomial matrix $$-* *& scalar matrix $$-* *& shiftregister $$-* O *&& *& $$-*& *& state-diagram $$-* *& trellis $$-* *& tree $$-* " >& %;& & *& -*$&2 9 ·The polynomial matrix approach &- , *$& : * >+ On k9 & >-#6 -& - >& -*-&4& >+ k 3 n %&& @ G O g ij 9 ;& F2 On k9 convolutional code O9 -*-&4& >+ k 3 n %&& @ GL *& ,,&&-& * , -;! -& *& && g ij & polynomials ;& F2 &@ $& *& @ G Fx 2 1 x 2 x 1G *& %&& @ , O2 19 "*-* "& >& 1 , ,!!& &,&&-& + G
1 < < 1
x1 x
*& %&& @ , O6 29 "*-* "& - 2 /& " &J& *&& $ ! >& * & -& "* D
*& memoryD 236
23.
Convolutional codes M
@ F&%O g ij 9G:
O1-# -& - >& ;&"& "* M ! >& $$& *& -&,J-& , k!$& , $+ I OI < Ox9 . . . I k 1 Ox99 *& *& NN-&"II C OC< Ox9 . . . C n 1 Ox99 "*-* n!$& , $+ &J& >+ C I G
O1& &-& ; H O1& &-& ; H O1 $& & , * -&$&-& & !+ *& - @ $$-* I ·The scalar matrix approach *& ! >"& O-9 &$&& , $+ -&" C OC< Ox9 . . . C n 1 Ox99 >& >+ &&;% *& $+ I -&,J-& *! , *& j* $+ Cj Ox9 C j< C j1 x . . . *& - &$&& , C C OC-# 1 1 < 1 1 1
1 < 1
1 1 1
Example 10.6 , "& #& L 2 %&& @
1 < 1 < < 1 < < G2 1
I j >! *& $&-&% " > I j 1 I j 2 *& &-& ! & & >& " $! > *& -!& >L * "*+ *& -& *;& & + M 2 , &;&+ $! > *&& & " !$! >L *! *& -&I & 1=2 + & * *& &-& , % 1& , & >+ ! % *& j* !$! & , &-* , *& *, &%& Example 10.7 *,&%& &-& , 2 !& % 1& &D @& &$&& *& ,! &L , & & *& -&$% $! , NN+ &%& -&$% NN1II >+ *& &%& *& >& &%& &$&& *& &-&I !$! ;& , & & *& &@ $& -& *& &%& %% , & cO1&*; "*& *& *, &%& % 1+ "&% *!%* *& & % "& + ;& *& & &%& + &L * #& ,J-! #&&$ -# , "*&& "& *;& >&& >&- & &&>& ,+ *& & % >+ -!% *& & , & &*$ *& >& "+ * *;& ,,&& -$+ , *& & % , &-* -# ? *& %&*& trellis diagram *" % 1& -& *& depth *& &$* j $$&-& , & " >& && >+ !>-$ j &$* j & ?& >+ &%& &$* O j 19 & ,, *&& &%& ?% *& " & *& & % O &@-&$ --! , j < 1 >&-!& j < *& *, &%& , % 1+ -% *& $$$& $* *!%* *& & &@ $& *& !$! & O111 >+ > &-* , *& ). -&" R "&;& *&& !-* $& &* "*-* #& ;%& , *& ,- * *& ). -&" -&$ *& ). $* , a< a( *& & , % 1&"&& % 1& *& -&$% " > , R &@ $& *& b6 ! c. &%& %& *& >& d H O+ S *& & , & fa b c dg &@ , s t 2 S *&& &%& %% , s t *& & % "& &J&
Figure 10.8 *& ;& , *& & , % 1&"&& a< a(
6& < 1 --% "*&*& *& , s t -& < 1 $! , *&& !-* &%& BOs t9 &J& O&& % 1I %* %;& % 1 %* , % 1& * *& - $&@+ , *& %* &@$&+ -&% ,!- , M O*!%* + & L9 + $-- &* , &-% I "* &;&+ ;!& , M && "*
Figure 10.12 '&>I %* $$& *& & , % 1& *& &;& , -& "* k 1 " "& -& & %&& -*& &- !&;& " $! I O>! && > 1 216 * %&& @ ! #&* &-& ! -& -&" C i OC i< . . . C i n 1 9 , "*-* *& $>>+ PfRjCi g
n 1
pORj jCij 9
j
& "*&& R OR< . . . Rn 1 9 &-&;& *& pO yjx9I & *& -*&I $>>& -& *& %* -+ -&% ,!- , %! & *& &-& + &H!;&+ # , -&" C i , "*-* LOC i R9
n 1
% pORj jCij 9
O1& /* * & * *& '&> %* , % 1#& !$ L M n> ;&- , *&& &%& %% , & s & t *& & % && >+ C s t *& n> &-& !$! -&$% * * *& >& *& s ! t &%& O&& % 1 &-*H!& *& $>& , &! &% !-* $* $$+ *& &! > $&, -& & & , $&-J- -;! -& !! "& " !& *& --&$ "* 1 -! %&&4 & & % *& & % , % 1& , 1I *& >& , *& &%& - $% *& $* O &@ $& *& $* acbaacddba * "&%* 129 /& "! $&*$ #& -! *& ! >& , $* , a a , "&%* i , & J@& &%& i >! * ! >& " "+ >& &*& < J& >&-!& , *& $ , "&%* < a & "+ ! * $>& >&;& * &;&+ $* , a a - >& !H!&+ &- $& &H!&-& , $* , a a "* & && &! a O &@ $& *& $* acbaacddba - >& &- $& *& $* acba aa acddba9 & ! - $* O*& * *& ; $* aa9 >&%% &% a "* & && &! fundamental path , &-* i && >+ Ai *& ! >& , ,! & $* , "&%* i + & & - --!& A< A1 A2 A6 A. && & ;& * & * *&& && -&$&-& >&"&& *& & , ,! & $* *& % & % *& & , $*
6&% -;&& >##&&$% &;-& , &! &% $* , a< a1 >+ "&%* , , "& &J& *& >& , $* P >& *& $!- , *& >& , &%& *& -&+ *& &@$& *& >& , P " &H! *& "&%* , P &@ $& *& >& , *& $* P a< cbcdba1 x : *& "&%* , P : &-% * ! % *& - $! , *& ! >& Ai O"*&& " Ai &H! *& ! >& , $* , a< a1 , "&%* i9 "& &J& *& path weight enumerator ( , 1 *& %&&% ,!- AOx9 A< A1 x A2 x 2
O1& *& % "&%* , *& &-& !$! -&$% *& &%& *& &@$& , z &->& *& % "&%* , *& -&$% $! *& &@$& , y "+ 1 -&$ % *& ,- * *& &%* , &-* &%& 1 -& % "& &J& *& >& , $* >& *& $!- , *& >& , &%& &@ $& *& $* P a< cbcdba1 * >& x : y ) z 6 * & * *& % "&%* , *& -&$% &-& !$! O11>+ &-* ! >& *& %*+
Figure 10.15
& &>&+ >&& ;& , % 1&,& -!% &-*H!& , >!% *& & $>>+ "& * &->& "* "& & >+ NN&II !$$& "& & !% $-! On k9 -;! -& $-! -&& & +& -*& O>! && > 1+ & $+9 & , -&- $* &% & &$& >+ & , $* "*-* & &&+ >&" *& -&- $* &@-&$ , *& & $ *&& -&- $* &% & "& - error events O % 1& & &;& -&$ ,! & $* *& &-&I & % *& ;! &-& & $>>& "& * " -! & $>>& && & &;& & >;! *% "& -! + - $!& *& $>>+ * *&& & & &;& ! -& "& *;& ! & L >& ;&+ %& * $>>+ " >& & < !& *& -*& && O&& > 1>+ * *& J & &;& >&% &$* & * & * - -*& x- !& POy l jxl 9 > POy l j0 l 9 -& *&"& *& $* >&
Figure 10.16 & & $*
10.3 Path enumerators and error bounds
611
Figure 10.17 &$* < & &;&
, x- >+ &$-% *& & &;& E "* Ol " >& $&,&& x- + &% &- "* * %;& *& $, , *&& :7 O-, H O:1699 *& $>>+ * E " >& $&,&& 0 l >+ &-& >!& >+ ã wH O E9 "*&& ã %;& >+ H O:(9 wH OE9 *& % "&%* , E *! *& J & $>>+ PE1 >!& >+ PE1 < ã wH O E9 O1&;& *"&;& * *& & &;& & &- *& ,! & $* *!%* *& & % L AOx9 OH O1>+ * *& &-&I $* &$ , *& -&- $* &$* >+ * *& &-& ,, *& -&- $* &$* j %;& * *& -&- $* &$* j 1 * -% &"* !! "& " &J& *& error event probability PE *& $>>+ * *& &-& ,, *& -&- $* %;& &$* j * ?! *& $>>+ * *&& & &;& *%% >&" *& -&- $* &$* j O&& % 1! -&$% O1 " NN--&+II >& %* *! *& bit error probability Pe " %&& >& & * *& & &;& $>>+ % &% * &% H O1! Pe O&& > 1+ & ã7 & @ % *& &J , AOx9 AOx y z9 "& && * >&-!& 7 *& & "&%* , + ,! & $* %&& -;! -& *& free distance d f &J& >& *& & "&%* , + ,! & $* * *" O&& > 1& *& $ %& &!& , -;! -&I >+ - > & !-* &,, * >&& &@$&& *& $>& , J% -;! -& "* %& ,&& -& O&& &- 126 > 1 1 &-% "! >& *$&&+ - $&@ *! "& & ;& J &-% %* * " "# -;! -& "* ;&+ %& ;!& , M *&& - , !-* %* -& sequential decoding algorithms *&+ & H!& % %* , J@& -& >! * &,&- %&+ - $&& , >+ *& ,- * *&+ - >& !& &-& & -& "* ;&+ %& M
*& #&+ !&% &H!& &-% %* *& tree diagram *,&%& &-& , On 19 -;! -& & , > &&% *& &-& -!& n &-& > &;& O-, % 1& ;&" *& &-% $-& --&$!+ "# O- >P9 *!%* binary tree &$-& % 1&% *& ;&&@ ,& d $! " >& & ;&&@ *& && &$* d , *& &@ $! NN-* *& !$" &-L , NN1II *& "" &- &@ $& , *& $! *& &-& " !$! ;& *& >-*
*& && % 1! , -!& , + --&& &4 , -& *& && " >& J& , *& L* !- , *& -& >&% !& *& && " & & &$* L ML >&+
61.
Convolutional codes
Figure 10.19 >+ && , On 19 -;! -&
&$* L 1 *&& " >& >,!- , *& $* -& *& M $! *& &-& " "+ >& NN& + ;& , * $* *& &-&I ?> " >& %!& "*-* $* *& &-& -!+ # -& *&& " >& , 2 L $>& $* , L %& " %&& >& $>& - $& *& &-&;& &%& &-* , *&& $* *& $$-* #& * $>& >+ sequential decoding algorithms &@$& ;&+ !>& , *& $>& $* , %;& %& -& $+ &@$& $* # $ % &@$& ,!*&L , & >& *& $* & /& * " &->& *& " >& #" &H!& &-% %* *& stack algorithm Fano's algorithm !& *& & "& >&% "* NN*!%* &@$& &II
10.4 Sequential decoding
617
Figure 10.20 *& >+ && -&% *& L 6 !- , 1
Example 10.9 %& * "& & !% *& && % 1 &H!&-& y O y1 y2 . . . yn 9 $& , *& ,- * *& -&" & , ,,&& &%*
61)
Convolutional codes
& *&& ! $ , y &-&;& *& &-% & $>>+ " >& 4& , *& &-& &&- *& -&" x i , "*-* *& - $>>+ Pfx i &jy &-&;&g %& $>& O-, > 2169 ! -& y J@& Pfx i jyg Pfx i yg=Pfyg * &H!;& @ 4% Pfx i yg Pfx i gPfyjx i g "*-* %;& >+ *& ,"% , !D Pfx i & y &-&;&g pi
ni
pO yj jxij 9
j1
n
pO yj 9
O1+ *& $;& - nj1 pO yj 9 #& %* @ 4& *& &!% &@$& "*-* -& metricD ni pO yj jxij 9 1 1 ìOx i 9 : O1 ! *;& >&& 11L *& $ $>>+ , * &;& 12 ! % * NN "&& + 1. !% * "+ "& ;& *& ,"% >&D '&&@ A B C D
&" >>+ 11 &H!+ #&+ >& < 1 O&& > 1! %;&% *& pO&"&& *& ,! $* A B C D "& *! - $!& *& -&$% ,! &- !% H O1+ 2 d *& & n i 1 % p i 1 , H O1& &@& , &@-+ & , *& *& #&+ $* *& & , "*-* *& &- ì Ox i 9 %& F& H O1-* %& O , x< &@& &$* L >&+ + & &@& " >& $>&L && % 1&L *& $* &-* -# & &$&&& >+ *& & ;&-& *& -&$% &- & %;& $&*&&
&@ $& -# ) >& ,
-# 7 >+ &&% C &$-%
Figure 10.21 L 2 M 2 && , &H!& &-%
10.4 Sequential decoding
613
"* F G F %& *& $ , *& -# >&-!& &- O 19 %& * * , G I H *& &-&I J &- *& ;&&@ KL *& -&$% , > & 1&-!& , *& ;&+ " &- , $&&-& G $& -*-&4 , *& $* -*& >+ *& -# %* && > 1+ - $% *& &- ì , * ;&&@ O- $!& >+ H O1-* &% *& ;&&@
*& & , I %* & %;& *& K"-* , % 1+ !$& , Ä $&&&-& - & T " >& < *& &, *& -!& ;&&@ 6 & / O-&% &$*9 *& &&L & 5 / 5 - $!& *& &- ì , ;&&@ & >-* *& && ' ;& *& &-& ;&&@ & >-* 5 ' *;& -&$% &% , *& %* 5 , *& ;&&@ "& ! & *& &- ì >& 1 *&& * $&;& >-#" ;& , . ' , ' A %;& ' *& ' * ;&&@ & >-* &&$& *& && "* *& %& &-L *& / ' *& & "* *& & &- 7 *& *&* T tight %;& ;&&@ , -&% T >+ Ä "!
62
-* , *& &@ ì > P H!&+ * &! &!-% T 2L *! "& *;& ;& &$ : *& >& 12!16D &$ 12 *& &-& ;&&@ B "* T 2 *;% ?! ;& >-#" , E *& "& *& / 'P H!&+ -& E *& / ' &;& B >-#" # AO ì & *&$,! #" &*% , *& *&+ , !& ;& $-$ & %L -! &% % F3G *$& A' &- 29 & F >& J& & FFxG && *& % , $+ *& && & x ;& F & FFxG n && *& & , n!$& f O f 1 Ox9 . . . f n Ox99 , $+ , FFxG convolutional code C &J& >& !>& , FFxG n "*-* O9 -& !& - $&"& !>- O>9 -& !& !$- >+ && & , FFxGL * , f O f 1 . . . f n 9 2 C *& af Oaf 1 . . . af n 9 , a 2 FFxG basis , C & fg1 . . . g k g FFxG n !-* * &;&+ f 2 C - >& &@$&& !H!&+ k f i1 ai g i , & a1 . . . ak 2 FFxG *& ! >& k -& *& & O #9 , *& -& O9 *" * &;&+ -;! -& C * !-* > * &;&+ > , C * *& & ! >& , && &L J > , FFxG n &, O>9 *" * *& &-% &->& >+ H O1 fg1 . . . g k g , C > ff 1 . . . f n g , FFxG n $+ a1 . . . ak "* ai ja i1 i 1 2 . . . k 1 !-* * g i ai f i i 1 2 . . . k *& $+ ai & !H!& & -& *& invariant factors , *& -& !-* >& , I 1 2 O$ 2329 , *& O2 19 -& "* $+ %&& @ G Ox 1 x 2 19 n O9 &J& *& dot product f g i1 f i g i 2 FFxG >&"&& " && & , n FFxG *" * f g < , g 2 FFxG n ,, f 0 O&9 , ff 1 . . . f n g > , FFxG n dual basis > ff 1 . . . f n g !-* * f i f j < , i 6 j 1 , i j *" * ! > &@ !H!& O,9 , C -;! -& dual code C ? &J& C fh 2 FFxG n D h g < , g 2 Cg >&% $ O-9 O9 O&9 *" * ff k1 . . . f n g , > , C ? *&-& * C * & n k > , *& ! -& , &-* , *& *&& -& -& $ O-9 O%9 & C >& -;! -& "* k 3 n $+ %&& @ G C >& ;&>& , *&& &@ k 3 n $+ @ H !-* * GH T I k *& k 3 k &+ @ *" * C ;&>& ,, *& ; ,- a1 . . . ak O&& $ O-99 & &H! 1 &@$- ;&& , I 1 2 , * -*$& O*9 & %&&+ @ H -& øOx9 inverse , G , GH T øI k *" * G * øOx9 ;&& ,, ak jø øOx9 ;&& , G Fx 1 x 2 1G "* øOx9 x 1 /& && $ 236 * On k9 >-# -& -! >& ;&"& On k9 -;! -& "* M -# -&P $>& * %;& $ , & *& & % , -;! -& " >& ?& >+ & * & &%& /*& " * --!P & J@& On 19 -;! -& !-& &%* L *" * *& ! , "# ;;& &-% >+ *& >!&,-& NN- $& *& &-&;& &H!&-& &-* , *& 2 L $>& -&"II &* >! 2 L K & !-* * ;;& !% *& '&> %* O&& K *& -&I - &%*L && H O1& '&>I &-% %* *& &@ + , -& "* k 1 &&4& %&& k O/-* ! , !$& &%& >&"&& &Q&& > 1-# -& -& *&+ & M < -;! -&9 & C >& *& O6 29M 1 -;! -& &->& >+ *& %&& @ G
1x x
1 1x
1x :
! + *;& & && &! a9 ;& %&& , ! , Bi 10.9 & *& ,"% >&& &-& %$*D
$!& *& >&"&& ;&-& a b & , *& &%& >& A B C D O! $$&@ , &J9 10.10 $!& *& $* &! & AOx9 *& - $&& $* &! & AOx y z9 , 2 10.11 & C >& *& O6 19M 2 -;! -& &->& >+ *& %&& @ Ox 2 1 x 2 x 1 x 2 x 19 $!& AOx9 AOx y z9 , C " !$$& *& -& >& !& *& ,"% >+ &!& -*&D
;& !$$& >! *& J & $>>+ PE1 *& & &;& $>>+ PE *& > & $>>+ Pe 10.12 & !% >+ On k9 -;! -& J@& "$! "*-* && * "*& -$-+ & * % 2 & PO&L9 && *& $>>+ * & & & &;& " --! *& &-% , -&" , *& L* !- , *& -& *" * L!1 POL9 1 O&& $ 6! Pe %;& H O1! , &- 1 :2>+ J& PE áã d f OOã d f 1 9 , ã &,+ *& - a &;& %! &! , PE1 Pe O-, @ $& 1! O> :2.9 *& L* !- , On k9 -;! -& *" * ,&& -& O&& $ 6119 d f J& 2 df
& & "* -& %* *& & % , -;! -& *& %* !$! &%;& &%&L +! & !$$& J%!& ! "* *& &%& &$&& ! & * &-* &%& , *& & % >&& "* *& ! >& , 1I !$! >+ *& &-& "*& *& & -&$% * &%& & &@ $& , 1 *& & % "! # #& * O-, % 1+ V L O29 *& >& , &%& -&-% & v i & v j lOv i v j 9L O69 *& & &-*>& & &$ , & v & -& *& successors , vQ, &@ $& *& !--& , & d *& >;& & % & fd bgL O.9 *& 4& & && >+ v& D O9 /* & %* X P O>9 $$+ %* X *& -;! -& "* $+ %&& -& Fx 6 x 2 1 x 6 x 2 x 1G Fx 6 x 1 x 6 x 2 1 x 6 x 2 x 1G 1x 1 1x : x 1x
& & "* &! $>& * - & , *& "% # , -;! -& -*& catastrophic error propagation > 1 1* *& $! !$! &H!&-& & J& 10.18 & *& O2 19M 2 -;! -& "* $+ %&& @ G Fx 1 x 2 1G O9 " *& & % O>9 & $ --!& *& $* &! & AOx9 /*+ & *& & $ ,P O-9 ! & *& -& >&% !& "* " > & $>>+ < , p , 12 !$$& * *& $! & &;& * " -&-!;& > & & -& --! &;&!+G 10.19 > 1& , -*& & -! -!& J& ! >& , &-& & -& , "*-* * - *$$& -& catastrophic -& * $>& "& * %;& &;& &H!;& - , &% "*&*& %;& -& -$*-
*! & C >& On k9 -;! -& "* $+ %&& @ G *" * *& ,"% - & &H!;& O >&;& * *& -& , > 1& , 1I !-* * *& -&$% !$! & * + J& ! >& , 1I O>9 *&& &@ k ,!- I j Ox9 pj O@9=qi Ox9 j 1 2 . . . k O& , *& qj Ox9I >&% ;>& >+ Ox9 !-* * *& ;&-
Problems
10.20
10.21 10.22 10.23
62:
C OC1 Ox9 . . . Cn Ox99 OI 1 Ox9 . . . I k Ox99 G * $+ - $ & O-9 *&& -& $* *& & % O*& * *& & $ *& 4& &9 "*-* &;&+ &%& * >& & , &-& & F HintD & *& -*& & $& >& *& ;&- C , $ O>9G O9 *& k* ; ,- ak , *& -& not $"& , x O-, > 1&& , G $"& , x $-! , k 1 > 1& -*& >+ *& -# %* O *& -*-&4 , *& $* * " >& -*&9 ! & "& *;& && !-* *& & &$-& % 1& -*& >+ *& -# %* O&& > 1+ I %* 9 10.24 % &" &- *& && , % 19 *& $* -*& >+ *& -# %* O-9 *& $* -*& >+ I %* " >& ,,&&
62(
Convolutional codes
*& &@ : $>& "& " &;&$ &;& , *& $ $$&& , I %* O% 1 1&*; &->& >+ &H!&-& , $ Ov1 T1 9 Ov2 T2 9 . . . "*&& v i ;&&@ Ti *& ;!& , *& *&* v i >&% ;& *& &- , ;&&@ v && >+ ìOv9L "& ! & * *& &- *;& >&& !& ,, * *&+ & !$& , *& H!+ Ä , " ;&-& v v9 & *& & $* *!%* *& && *& &$* , v9 %&& * * , v "& + v9 successor , v v predecessor , v9 v9 immediate !--& , &$* ?! & & * *& &$* , v 10.25 !$$& *& %* &"*&& $& $!-& *& &H!&-& Ov T 9 Ov1 T1 9 . . . Ov n Tn 9 "*&& v1 !--& , v v n v >! v i 6 v , i 1 2 . . . n 1 *" * T n T 10.26 & *& & ! $ > 1& &H! *& &- , *& ;&&@ 10.28 *" * ,& !!--&,! ," # , ;&&@ v "* *&* T O& "*& *& >-* #& , *& !$$& ì > T P H!&+9 &;&+ $* ," , v ! - & ;&&@ "*& &- , T 10.29 , *& %* Ov T 9 *" * &;&+ $* ," , &;&+ $&&-& , v ! - ;&&@ "* &- < T -+ *" * &;&+ && !--& , v "* &- . T ! &+ *;& >&& ;& 10.30 &,& *& #&-* , > 1 1 1+ &!& -*& "* &!& $>>+ ED
&-& *& ,"% &-&;& &H!&-&D PPPPPP11 ! F2)G 7 O$ 23(9 % , % 1! $ - $& , $-- &-& !$&@% "-* * "! & && > , C< C1 " *& -*& ) O$ 6! -+ &-&+ , *& $& & , '&> &-& *& & % & - &+ &;& + - & , *& %* I >&*; : O$ 6>+ "& * - $!& & ,- &$&& , *& ! & & $* O&& *& " &&-& *& $, , *&& :7 $ 1779 1< O$ 6169 *& & * &- $&&& *& - $&& &;&& , *& *- & , -;&+ "*-* ,"D %* O13)69 -# %* O13)39 +- ?!J- , *& &- O13:29 *& $$-* #& *&& !& &+ F21G 11 O$ 61:9 -!+ *& NN-#II >&& ;&"& NN$+ H!&!&II !-!& &J& *$& . , * $-, F1G
11 '>&&%* !-& -%1
11.1 Introduction & -&& & +& !-& "* !-& - p O p< p1 . . . p r 1 9 * &H!&-& U 1 U 2 . . . , &$&& &-+ >!& ;>& "* - >! PfU ig pi i & &$&& * !-& ,*,!+ !% ;&%& , r 1 2 H 2 O p9 i< pi %2 pi > $& !-& + > * -*$& "& !+ -;& -!-;& $-&!& , % * -& variable-length source coding
%& *& %&& & O *& && "& * *& ,"% &@ $& &"* &&-!9 -& *& $-! !-& p 12 1. 1( 1( "*& &$+ H 2 O12 1. 1( 1(9 1::7 > *& !-& $*>& AU f& &-& + &-% &;&+*% & $$&+ &?+& >+ *& -& , >& 111 * uniquely decodable * *& !-& &H!&-& - >& &-!-& $&,&-+ , *& &-& & &@ $& *& > & 1& &$&&& ,*,!+ ;& >+ ?! >+ $*>& &- 112 "& !+ *& $!&+ - > $>& , !H!& &->+ &- 116 "& -* -& !-& &- 11. "& $&& !,, I , ! %* , -!-% $ ; >&&%* -& , %;& !-&
11.2 Uniquely decodable variable-length codes & S >& J& & -% s && &L !& *&"& $&-J& S f+ Æ *& % -% + > , ó s1 s2 . . . sk ô t1 t2 . . . tl & % *& concatenation ó ô *& % s1 s2 . . . sk t1 t2 . . . tl , ó ó 1 ó 2 ó 6 ó 1 -& pre®x ó 2 substring ó 6 suf®x , ó *! *& & $+ % Æ $&J@ !,J@ !>% , &;&+ % *& length , % ó && >+ jó j ," * jó ôj jó j jôj , + $ , % ó ô
O;>&&%*9 code 6 ;& S J& & , % ;& S *& % - $% -& C & -& *& codewords , C & C1 C2 >& " -& *& product && C1 C2 - , % , *& , ó 1 ó 2 ó 1 2 C1 ó 2 2 C2 *& $!- , -& "* &, k & " >& && >+ C k * C k C C . . . C Ok ,-9
*& -& C -& uniquely decodable O9 , &-* % &-* C k & + & "+ --& , -&" * & * , + ô1 ô2 ô k ó 1 ó 2 ó k &-* , *& ôI ó I -&
662
Variable-length source coding
" *& ô1 ó 1 ô2 ó 2 . . . ô k ó k *! &;&+ % C k - >& !H!&+ &-& --& , -&" O &H!;& &J , && > 1119 Example 11.1 & s 2 -& *& -& C1 f&-!& , *&& " &! * $&J@ -& & &+ -&&L $&J@ -& & H!& &+ $& & O&& > 1169 , -& &@ "* -& & , &%* $&J@ -& " &@ Theorem 11.1 OMcMillan9. If C fó < ó 1 . . . ó r 1 g is a UD code over r 1 ni S f& $;& &%& *& -& C !k !k k n @ r 1 ni jó j s s s jó j K l k s 1 i
O1119 h Example 11.2 #& s 6 *& -& "* &%* O1 2 2 2 2 2 6 6 6 69 -! &@ -& 6 ni 2(=2: * ,- "! >& &+ $;& &-+ h Theorem 11.2 OKraft9. If code with lengths ni
r
1 ni i< s
< 1, there exists a pre®x Oa fortiori UD9
Proof & ! && *& ni I * n< < n1 < < n r 1 &J& &%& j 1 nj ni w j + w< 1 -& j r 1 ni nj s < 1 ," * w < s 1 , j " &J& *& % ó j j i< >& *& s+ &$&& , *& &%& wj "* &!%* & %& >& 112 -& * , "& + $$+ * -!- *& @ $& 112 "& %& w3 2: 1 11) 11:9 h 11.3 Matching codes to sources ;% " && &*% >! *& $!&+ - > $$&& , -& "& & $&$& -* -& !-& , &,J-& - ! - &- O$ 6239 * %;& "* !-& $*>& A f+ *& $>>+ ;&- p O p< p1 . . . p r 1 9 s-ary code , *& !-& p &J& >& $$% , A -& fó < ó 1 . . . ó r 1 g ;& S f i *& -&" ó i ó i , , &@ $& "& !& * &%+ k !-& + > + i1 i2 . . . ik *& &-&;& " > *& % ó ó i1 ó i2 ó i k , "& " *& &-&;& >& >& &-;& i1 . . . ik , ó "& ! ! & * *& -&
*& average length , *& -& fó < ó 1 . . . ó r 1 g "* &$&- *& r 1 !-& p O p< . . . p r 1 9 &J& >& n i< pi jó i j $-- %J--& * *& ! >& , s+ + > O& + > , S9 &H!& &-& *& J k !-& + > #&+ >& >! k n , %& k *! n &!& , *& ;&%& % *& -*& $& >+ *& !& , *& -& *&& 116 O"*-* -!+ ," , &! &9 %;& &&% "& >! n /& ! & * ni && *& &%* , *& i* -&" C * ni jó i j Theorem 11.3 If the code C is UD, its average length must exceed the s-ary entropy of the source, that is, n > H s Op9
r 1 i
! *& -! ;!& , ns Op9 *& &@- --! ! >& &, &- 11. >! *& ,"% & & H!& !&,! Theorem 11.4 H s Op9 < ns Op9 , H s Op9 1: FNote. The lower bound of Theorem 11.3 is repeated here for aesthetic reasons.G Proof &J& ni d% s p i 1 e i + *&& 112 *&& &@ -& "* &%* i< s r 1 n< n1 . . . n r 1 *& ;&%& &%* , !-* -& i< pi ni >! -& r 1 ni , % s p i 1 1 * ! , i< pi O% s p i 1 19 H s Op9 1 h Example 11.4 & p O:1 :. :79 s 2 *& H s Op9 1:6)1 *& ni I !%%&& *& $, , *&& 11. & O. 2 19 &!% ;&%& &%* , 1: "&;& *& &%* O2 2 19 ,+ 2 nk < 1 ,- ns Op9 < 1:7 *& $ * *& !$$& >! , *&& 11. !!+ *$ O>! && > 1139L & & %& %&&+
66)
Variable-length source coding
&& $&;!+ "+ -!- $ -& , %;& !-& " >& %;& &- 11. h
* $ "& *;& $>& & * *& &! , *$& 6 & ! * *! >& $>& &-& *& !-& p ,*,!+ !% *& ;&%& + H s Op9 s+ + > $& !-& + > *& *& * "& *;& ?! && * $>& * "* s+ -& , p -& ns Op9 !!+ -+ %& * H s Op9
*& ! * $>& -& -& , *& extended !-& p m m 1 2 . . . *& !-& p m &J& >& *& !-& "* !-& $*>& Am O&- * A *& !-& $*>& , p9 "*-* *& !-& + > Ou1 u2 . . . um 9 %& *& $>>+ PfU1 u1 . . . U m um g pu1 pu2 . . . pu m &,,&- "*& "& -& *& !-& p m "& & >-#% *& !-& &H!&-& U 1 U 2 . . . -&-!;& >-# , m + > , A &%% &-* !-* >-# %& + > , *& $*>& Am " -& , p m "* ;&%& &%* nm " &H!& ;&%& , nm s+ + > &$&& & + > , Am & + > , Am &$&& m + > , *& % !-& * -& ,*,!+ &$&& *& % !-& p !% + nm =m s+ + > $& !-& + > *& ,"% *&& *" * >+ #% m %& &!%* !% * &-*H!& "& - #& *& ;&%& ! >& , + > &&& &$&& p ,*,!+ -& H s Op9 && Theorem 11.5
m!1
1 ns Op m 9 H s Op9: m
Proof &+ && * H s Op m 9 mH s Op9 O> 11129 &-& >+
*&& 11. mH s Op9 < ns Op m 9 , mH s Op9 1 *&& 117 ," >+ ;% >+ m #% h
*&& 117 ,+% *&&-+ -& & ! * *& !-& p - && >& &$&&& ,*,!+ !% O$&*$ %*+ & *9 H s Op9 s+ + > $& !-& + > &;& &*% >& && , -!- ;& ;&"$ *"&;& -& && *& "&# -!- , *&& 11. *& &@ &- "& * & &+ * ! >+ $&&% &-*H!& "*-* " &>& ! -!- *& >& $>& -& , *& !-& p m
11.4 The construction of optimal UD codes (Huffman's algorithm) 66: 11.4 The construction of optimal UD codes (Huffman's algorithm)
--% *&& 11. ns Op9 & &"*&& >&"&& H s Op9 H s Op9 1 * & & &H!& , & $!$& O&% *& $, ,
*&& 1179 ! ! "& >! *& &@- ;!& , ns Op9 , J@& s p * &- "& $&& %* !& ; !,, * *" + *" - $!& ns Op9 >! *" -!- O&& $&J@9 -& "* ;&%& &%* ns Op9 &,& %;% , &-$ , !,, I %* "& * "# &@ $& *!%*! * &- "& &,& s+ -& , p "*& ;&%& &%* ns Op9 optimal -& , p Example 11.5 & s . p O:2. :21 :1: :16 :1% *& *&& & $>>& p *! p9 O:2. :21 :1: :16 :1-#" -!- $ -& C9 C , p9 p >+ NN&@$%II *& -& C 0 $& "+ "& -!- $ -& , p9 -& * *&& , *& $>>& O;4 :2. :21 :1:9 "&& -*%& *& &!- , p9 p0 *& !& * -& * *& &@$ , C 0 C9 *&
Figure 11.1 *& !--&;& &!- , p
66(
Variable-length source coding
-&$% -&" -*%& &*& "&;& $>>+ 6( p 0 &@$ ,! $>>& O:16 :1& !,, I %* L ! & % #Q"*-* !$%+ -#+Q *" * "# & * $!-& s+ $&J@ -& , p "*& ;&%& &%* $>& *& ,"% *&& -!-L %!&& * *&& "+ $ $&J@ -& , p "*-* *& s9 " & , *& & &%* %&& &@-&$ , *& - $&
J@ ! & & ! " ! & * *& $>>& p< p1 . . . p r 1 & %& &-&% &D p< > p1 > > p r 1 /& -& $&J@ -& , p ;& *& $*>& f+ ó < ó 1 . . . ó r 1 "* &%* ni jó i j i 2, there exists an optimal s-ary pre®x code for p with the following two propertiesD O9 n< < n1 < < n r 1 O>9 The last s9 Osee Eqs. O1129 and O11699 codewords are identical except for their last component, that is, there exists a string ó of length n r 1 1 such thatD ór ór
s9
ó + *&& 112 *&& "! &@ $&J@ -& "* *&& &%* * &" -& ! >& $ O , -!& p r 1 ! * "! -- *& ! $ * ni /& --!& * < < Ä < s 2 "* *& & *% s
Ä 2 f2 6 . . . sg:
O11:79
&@ & r9 && *& ! >& , " , &%* n r 1 *& -& , r9 1 "& -! *& *& !H!& %& -&" >+ &&% - $& "*! ;% *& $&J@ - % -- &-& r9 > 2:
O11:)9
, "& &@ & H O11.9 ! s "& %& Ä r9 O s9 * r9 s Ä O s9 ! , H O1179 O11)9 ," * r9 ks Os
Ä9
, & k > s9 * *&& & & s9 %& -&" &@ >&;& * , ó 9 ó a & , *&& r9 -&" , &%* n r 1 "*&& ó % , &%* n r 1 1 a 2 f+ &$-% -& " , &%* n r 1 , *& , ó a "* & * & "& ;& $ -& "*-* * ó p1 > > p r 1 r > s *& s-ary Huffman reduction , p &J& >+ p9 O p< p1 . . . p r
s9 1
pr
s9
p r 1 9:
" p9 >& , p >+ - >% *& & s9 $>>& p "*&& s9 &J& >+ H O1129 O1169 *& ,"% *&& *" *" $ -& , p + >& -!-& , & , p9 -& p9 * ,&"& + > * p +& &-!;& $-&!& , -!-% $ -& , p
11.4 The construction of optimal UD codes (Huffman's algorithm) 6.1 Theorem 11.7 If C9 fô< ô1 . . . ô r then C fô< . . . ô r
s9 1
s9 1
ôg is an optimal code for p9
ô &% >+ $;% O1139 & On< n1 . . . n r s9 1 n9 && *& &%* , *& -&" C9 + &J p< n< p r s9 1 n r s9 1 pn ns Op99 "*&& p p r s9 p r 1 , C !& -& , p ;&%& &%* ns Op99 pL *&-& ns Op9 < ns Op99 p:
O11:1& $ -& , p * &?+ $$&& O9 O>9 , *&& 11) *& -& fó < . . . ó r s9 1 ó g !& , p9 * ;&%& &%* ns Op9 p * ns Op99 < ns Op9
p:
O11:119
>% H O111& , !-& &!- &H!& dOr s9=Os 19eL ,& * + &!- *& !-& " *;& &@-+ s + > f 11219 F&
*& >+ !-& &$+ H 2 Op9 1:32 >G Example 11.7 & s 2 r 2 p O:3 :19 *&& H 2 Op9 :.)3 "*& !,, I %* +& *& ,"% ;!&D n2 Op9 1:+ *& &&L && > 11139 *& $ *&& * *& -;&%&-& , m 1 ns Op m 9 H s Op9 O&& *&& 1179 !!+ H!& $ O>! && > 1129
*&& &@ &-$*&>& % "* &$&- C r 1 jó i j O-9 1 i< s 11.3 ;& * $&J@ -& C &-&+ &% &,J-& %* , &-% C * , ,-% J& --& , -&" , C - $& -&" 11.4 *" * *& $!- , $&J@ -& % $&J@ -& *& $!- , >+ $ , -& &-&+ P O&& &J $ 66& +! & + -!- -& ;& S f& "& ó r1 i r2 ô r1 j r6 "* i j 2 S i , j *" * &@-%$*- &% &% * , + $ Oó ô9 "* ó 6 ô &*& ó , ô ô , ó O!9 & *& ,"% && , ! , *& -!- *&& 112D *& ó < & &@-%$*-+ & % , &%* n k1 * * $&J@& *& & fó < ó 1 . . . ó k g *" * * -!- "+ +& *& & -& *& & %;& *&& 112 *" * ns Op9 H s Op9 ,, *&& &@ $;& &%& On< n1 . . . n r 1 9 !-* * pi s ni i $$& J@& ! >& n , -*& $! + > * $>& &%& *" *" ;>&&%* -& - >& J& J * & *!%*! *& !-& p O p< p1 . . . p r 1 9 " >& J@& *& -*& " >&
6..
Variable-length source coding && "* $! !$! $*>& >* &H! S f>& %;& >+ pO yjx9
11.11
11.12 11.13 11.14 11.15 11.16
1
& J@& &%& " -& *& ,"% &%+ , $$% k !-& + > U1 U 2 . . . Uk n + > , S $ &-* !-& + > *& -&$% -&" , C , *& --& ó , *&& -&" *& &%* , ó % ;& S ;>& >! "& ,+ ó * * &%* n ," , *& &%* , ó &@-&& n "& &&& *& jó j n + >L , & * n "& ? n jó j ;& * *&+ "&& erased >+ *& +& && >+ PE *& $>>+ * & & , *& k + > *& !-& >-# && & å . < >& >+ O9 *" * , + í . ns Op9 *&& &@ -*& & , *& >;& "* n=k < í PE , å O>9 % *& &! , $ O9 *&& 117 *" * , + r , b H s Op9c 1 å . >+ >! , U " !$$& OU 1 U 2 . . .9 J& #; -* O&& > 12 2 & ;&P *" * , r > s ,& dOr s9=Os 19e s+ &!- , p O p< p1 . . . p r 1 9 *& &!% !-& * &@-+ s + > & $$! "+ , ;% *& $>& * *& J !,, &!- , !-& p *& ! >& , + > - >& + >& & * s ? s s9 &@ NN! +II + > *& !-& $*>& &-* --!% "* $>>+ >& O &@ $& @ $& 117 s s9 1 *& !-& "! >&- & p O:2. :21 :1: :16 :1>+ ;&- O p1 p2 p6 p. 9 "* p1 > p2 > p6 > p. , "*-* *&& & " -& & $ *& -;&@ *! , *&& J@& $>>+ ;&-L J *&& *&& ;&- 11.22 & % & , NN"&+ H!&II "*-* +! & &H!& && & ,& #% -& ! >& , H!& * - >& "&& NN+&II NNII *& !- & , & , $ , -& O *& !- & *&&,& & , *& &%& 2 6 . . . 129 /* *& ! ! >& , H!& +! && # *& ;&%&P F HintD , +! #& NN 2PII NN 6PII &- +! "! ;&%& & !& @ H!& $>& >&& *"&;&G 11.23 *& >?&- , * $>& , +! & *" &% $ binary $&J@ -& , *& + &- r+ !-& p r O1=r 1=r . . . 1=r9 O9 !- !-* -& , p2 p6 p. p7 O>9 %&& "* & *& $>& &%* , *& " $ >+ $&J@ -& , p r P O-9 $!& n2 Op r 9 %&&
Notes 1 O $ 66?&- & , * -*$& >& $&&& & &@ , *&+ -& $-!+ &&$ &+ & &$& + , *& $&-&% & "&;& "& *;& -*& $-& *&& >&-!& &$&& -!-;& $$-* *& !-& -% $>& ?! *& & *$& :B1< &$&& -!-;& $$-* *& -*& -% $>& 2 O $ 66& & >* &H! f>+ , å , å9 *& &
6.)
Variable-length source coding
-& * -& *& & ,!- ROä9 &;!& *& && Oä &&%* -& - >& , & -& && >-# -& O&& > 111&"&& s+ $&J@ -& s-ary trees "*-* & $*& &@ "& *! & & >&K+ !& *& & -& *& $&J@ -& f-* && >+ NN+ -& &@ O&% > F12G %& F1:G9 $;& + *& s 2 -& &;& *& O;M9 %&&4 $>& O&& > 111)9
12 !;&+ , ;-& $- , "
12.1 Introduction
* -*$& &;& *& & ,!- , " *$& ) &;& , & * ! 4& & , *& $ &! -% *&+ "*-* *;& >&& && *$& :B11 &- 122 126 12. "& & -*& -% O>-# -& -;! -& - $ , *& "9 + &- 127 "& -! !-& -%
12.2 Block codes
*& *&+ , >-# -& & -*& * *& *&+ , -;! -& * &- !-* %& * &- 126 O * >-& & $$+ $-- $$- *"&;&L && &- 12.9 & %;& * &- & & >-& , %4 "& * -,+ *& &! >& -& --% & $I F17G , *& *&& ? $>& , -% *&+D 1 " % & *& >& -&P 2 " - "& &% % -&P 6 " - "& &-& !-* -&P · How good are the best codes? & , *& && $>& "*-* & -% *&+ " * , J% perfect codes , "& ;&" -& , &%* n ;& *& J& J& Fq !>& fx1 x2 . . . x M g , *& ;&- $-& Vn OFq 9 *& -& >& $&,&- O -& $-#&9 , , & &%& e *& % $*&& , ! e ! *& M -&" - $&&+ J Vn OFq 9 "*! ;&$ + 137< &;& # , $&,&- -& "&& #"D 6.:
6.(
Survey of advanced topics for Part two n
2e 1 Oq m 19=Oq 26 11
q
e
& #
2 O>+9 &$& -&L && > :1( 19 O>+ 1 % -&L && &- :. $ & > :13 $"&9 2 6 + + -&L && &- 3( 6 2
&+ + -&L && > 36& &-&-% $"& &&-*& !+ +&& &@& *& >;& >& "&;& ,& % && , &@& &+ ,J-! ;&% &% *& &+ 13:& & -/ & F13G *$& )
*&& &@ $&,&- -& "* *& & $ && *& % -& "*-* & &H!;& *& L *& *& *&& # *"&;& & !H!&
*& H!& , *& &@&-& , $&,&- -& ;& $*>& "* q + > "*&& q is not a prime power * "% - $&&+ && && !#&+ *"&;& * + &@ $$& >+ *& &@&-& , *& $&,&- -& &&-*& "&& *& &-* -& * & %D nearly perfect uniformly packed -& ;& J& J& !-* -& & " -J& , e > .L , e < 6 + $ &! & #"L && ; >% F.)G
*& &@&-& , *& O26 129 $&,&- + -& & ! * *& @ ! ! >& , ;&- , V26 OF2 9 "*-* - >& -*& * &-* $ , ;&- &$& >+ % -& > : &@-+ .+ n : &$-& >+ d "& &J&
AOn d9 *& %& &%& M !-* * *&& &@ M -&" fx1 . . . x M g , Vn OF2 9 !-* * d H Ox i x j 9 > d , i 6 j:
&;&+ O12:19 AOn d9 *& %& ! >& , -&" $>& -& , &%* n ! -& d:
12.2 Block codes
6.3
*& !+ , *& ! >& AOn d9 &%& >+ + *& -& $>& , -% *&+ *!%* AOn d9 &+ #" &@-+ !& n d & &;&+ 2d > n %& & , J& &&-* * %& *& $>& , J% % !$$& "& >! , AOn d9 *& &@ ,&" $%& "& " ! 4& & , * &&-* >! , *& "*& + *& && &,&& -/ & F13G *$& 1: &;&+ ;!& , n d &&+ *& + #" "+ , >% "& >! , *& , AOn d9 > M &@$-+ &@*> M ;&- , Vn OF2 9 ,+% *& - -& O1219 /& -! !-* -& -!- >&" O&& $ 6.3 ,,9 *& *& * & > !$$& >! , *& , AOn d9 , M &-&+ *" * &;&+ !>& fx1 . . . x M g , Vn OF2 9 - & & $ Oi j9 !-* * d Ox i x j 9 , d *&& & %& + $>& "+ , % * >! -!&+ *& $"&,! &-*H!& $$& >& *& linear programming $$-* "*-* "& " &->& , C fx1 . . . x M g >+ -& , &%* n * !>& , Vn OF2 9 , &-* i & *& ! >& , -&" C -& i , x *& distance distribution , C &J& >& *& On 19!$& OA< A1 . . . An 9 , &%;& & ! >& "*&& 1 Ai Ai Ox9: M x2C & && &+ $$&& , *& Ai &
, *& -& *
&&D
A< A1 An M:
O12:29
A< 1:
O12:69
!
-& d ," *
A1 A2 A d
1
! AOn d9 , &;&+ $ On d9 - & , *& & $% % >! J- , &@ $& *& >! AO16 )9 >& >+ - >% *& &H!& O1279 "* *& *- &H!+ A1< .A12 < . O"*-* &+ > - >+9 AO16 )9 < 62 &;& +& >&,& *& -;&+ , *& $$-* AO16 )9 " *& $& !#" ;!& , AOn d9 &&-*& * !%%& "* !% *&-+ - $-& - > %! & >! 62 < AO16 )9 < 67 " *& >& *&+ -! , -!& *& "& >!Q"*-* & >&-!& *&& #" -& *& & -& "* n 16 d ) M 62Q- >& "* *& &" !$$& >! && *& &D AO16 )9 62 &*$ *& >& #" ;& , *& AOn d9 $>& *& asymptotic problemD , Od n 91 n1 &H!&-& , &%& "* d n =n ! ä < < ä < 1 *" & AOn d n 9 >&*;& n ! 1P & , + -& *& & , -& , &%* n "* M -&" 1=n %2 M "& &J& 1 %2 AOn d n 9 n!1 n 1 %2 AOn d n 9 ROä9 , n!1 n
ROä9 !$
O12:)9 O12::9
"*&& *& NN!$II O12)9 *& NN, II O12:9 & >* #& ;& &H!&-& Od n 91 n1 ,+% d n =n ! ä +% * >* !$$& "& ;!& , ROä9 ! >& &J&L &;&+>+ >&&;& O>! >+ * $;&9 * ROä9 ROä9 , ä $-+ "* ," *"&;& "& * &,& + ROä9 >&% !& * !$$& >! ROä9 !$$& >! ROä9 "& >! "& >! ROä9 #" &;&+ &+ $;& * RO! ROä9 !#" , < , ä , 12 *& >& #" "& >! 2 , ROä9 * %& ROä9 > 1
H 2 Oä9
O12:(9
&! $;& >+ >& 1372 O * >! + $- , , *& >! >& > :219 & * !--&&& % >&I "& >! >! *&& * >&& "*& && , &+ &-&% !$$& >! ROä9 *& -!& &-*& >& >+ -&-& & -* ! &+ /&-* !% *& & $% % $$-* ROä9
! >&-!& *&+ $& $& &,J-& &-% %* , *& -& "& * &->& *"&;& % &-% %* +& #" /& * &->& & , *& &&-* * * >&& &;& *& &% , &-% %* *& &@ !>&- O&& $ 676 ,,9
Figure 12.1 *& >& #" !$$& "& >! ROä9
672
Survey of advanced topics for Part two
>>+ *& $&;& &! -!-;& -% *&+ & "* *& - , cyclic codes On k9 & -& C ;& Fq >& -+-- , "*&&;& c Oc< c1 . . . c n 1 9 C *& *& -+-- *, c9 Oc n 1 c< c1 . . . c n 2 9 + ;!& , q n > 6 *&& & "+ & ,! -+-- -& , &%* nD · · · ·
*& 4& -&" 0 O& 4& , x n 1 , n q & &;&+ $ & O -+-- -& , "*-* * *& -& & !!+ !&&%9 *& 4& , x n 1 & f1 â . . . â n 1 g "*&& â $ ;& n* , !+ ;& Fq L *! *& 4& , gOx9 & , *& , fâ a D a 2 Ag "*&& A f 2t 1 /& " & , *& $ &! #" >! -+-- -& O & , q 2 &;& *!%* %&&4 %& q & !!+ #"9 · , n 2 m 1 B f1 6 . . . 2t 1g *& d > 2 m 1 Ot 192 m=2 O&& ; F1(G *&& )6)9 · , n $ & -%!& 1 O .9 A fH!- &!& O n9S *& k On 19=2
d
& p ' n p > 1 .n 6 ( 2
, n 1 O (9 , n
1 O (9:
*&& & *& quadratic residue -&L && -/ & F13G *$& 1) · , *&& j!$& b1 b2 . . . bj 2 B !-* * b1 bj < O n9 *& &;&+ -&" * "&%* ;>& >+ 2 j O %!& ;& , *& $&- -& j 2 , * *&& $$& & 7 $ 2:( $, &@&;& %&&4 -! && -&-& F6.G9 · , B f1g *& -& & -& irreducible -+-- -& O>&-!& *& -*&-# $+ hOx9 &!->&9 minimal -+-- -& O>&-!& *&+ - ; -+-- !>-&9 *&& &>& *&+ , *& L && -/ & F13G *$& ( -&-& F63G · , n 2 m 1 B f< < b , 2 m 1 D b - >& "& ! , < d $"& , 2S *& &!% -& &&+ &H!;& *& &&B !& -& Om d9 , > :6! &"* $$% >&-!& *& >& -& & &+ -+-- + * "& & !%*+ * , + -*& $ On d9 H!& !#&+ * *&& " &@ -+-- -& "* AOn d9 -&" O&& &J O12199 ,- *& >& -& & ,& &;& & *&& >&%% >& H!& &$&->& -&- , % & -& & &@ $& O% -& *;& q 29 ,"D · *& >& -& "* n < 2d & $--+ & & && Hadamard matrices && -/ & F13G *$& 2
67.
Survey of advanced topics for Part two
· *& Kerdock & -& *;& $ && n 22 m M 2.m -& " d 22m 1 2O2 m 29=2 m > 2 *& $& &@ $& Om 29 -& , &%* 1) "* 27) -&" d ) *& >& & -& "* n 1) d ) * + 12( -&" && -/ & F13G *$& 17 2m · *& Preparata -& *;& $ && n 22m M 22 .m d ) m > 2 *&+ $$& >& ! *& 5&-# -&L && -/ & F13G *$& 17 + "& & * -/ & F13G $$&@ %;& >& , *& >& #" -& , d < 23 n < 712 + , *& -& & *&& & -&;& *- -!- * "& - &->& *&& · How can we decode such codes? *& $>& , J% *& %& $>& -& "* %;& n d $ -*&%% ! -!+ $! !-* -& && + -& !& + -*& &-&+ *;& $-- &-% %* , *& ! >& , -&" &!%* * ,&>& - $& &-* , *& *& &-&;& " *&& $>& , *& -& On k9 & -& q n k &!%* * *& + & >& $$-* , &- :2 :7 $>& % $>& "&;& $-- ! !#&+ * -& &!%* " & , *&& $ ;& &-% %* " >& $"&,! &!%* *& ?> * & -&>& &,, * >&& &;& J% % &-% %* , %& $"&,! -& * !>&- "& * &->& & , *&& %* $ *& B &-% %* * "& &->& & *$& 3 -& * !-* $ &! "& $!& *&& $+ >!& -;&& 1373 13)< - & *& % $$& >+ -H!&%*& OF17G $$ :2B :.9 & +*!*! OF17G $$ :7B:(9 $ & * *&& &+ $$& --&& *& &;& + "* *& -!- , *& -& *& &-% 13)< && OF17G $$ 1+ $& &-% %* "*-* ;;& *& ! , ! &! & &H! ;& -& J& J& & +& & && =&& OF17G $$ (:B(39 %&&4& *& $&;! "# >+ -& ,! * *& %&&4 -!& *& -& -;&& >+ && OF17G $$ :&,& *& & + *!*! $$& * >&& $!>*&M & >&#*!%* *& &-% , -& - & 13)( "*& & $ OF17G $$ 1.7B1.(9 O&& *$& : F1.G9 $!>*& * >&!,! &;& &-% %*
+& &%&& "* "*& 4& >!&+ *& - $&@+ ,
12.2 Block codes
677
&-& "& ;& !& & $I $-&!& ! -& $ --&$! ;-& "&& +& - & 13:< $$ OF17G $$ 1&!,! ! %&&4 , -& & *"& * *&& & % $$ -& * & + $-+ % *& && * *&+ & >;& *& >& "& >! , % 121 O * - "* *& ,- * -& $& , *& !&,!& & + $-+ NN>II *& && * + &H!&-& , -& "* & > R . < *& d =n ! $$-* &!,! ,- "*-* "& -!& &%* *$& 3 * & - !& !-I %* &-& &&B -& -!+ "*& $$& -& !-I % * ,& >+ - ,- & $I !-* && !& *"&;& *& -&>& %* & $I % * ,- "* *%* " $>& ;&" & $I %* $;& ;& , !-IM + 13:7 --& * >+ #&" " >&% , & " - $&& "*& && F66G *& *"& * $$I -& - >& >& >+ ,+% *& -& &&B -&M
*!%* *& %&>- &-% , B -& *& $ &! *& & &;& *& H!& !&,! &-% &* & ;>& /& * " &->& & , *&
*& && ; &-% %* -;&& " threshold decoding "*-* # , %&&4 , *& NN ?+ ;&II &-% && *& !- -;&& >+ && 137. , &-% &&B !& -& O-, > :6+ -&% *& O: 69 >+ & -& "* $+-*&-# @
1 1 H < 1
1 < 1 1
< 1 1 1
1 < <
&% "* *$& 16 , -/ & F13G "* &+ F2+ !$! H!4 + * "& & *& ,"% + >+ ;&- x Ox1 . . . xn 9 2 Vn OF2 9 - >& & 2 ;& ! -*& "* ;&%& $"& - EOX 9 + $$% xI 4& -& â xI & -& â , + x , -& & "*& !& *& &-% %* , *$& 3 *& &-&;& ;&- y & " *;& >&% >+ , % *& -& , yQ"*-* & & ! >&Q + $$%
12.3 Convolutional codes
67:
$;& -& < &%;& & 1 * "* "& & >+ >+ !$! H!4 ,!&+ * J &$ &-&& *& -* &I -$-+ O>+ >! 2L && > .179 , * & -& "* *&&+ >+ &-% %* & $--+ !&& + ! -*& "&;& "& *;& && &-% , J& &&B !& -& *&&+ >+ *&& -& & -;& , !& ! -*& *& &&$$-& - !- -*& "& && ! -*&L !$% * , 13)3 13:) , I Mariner - &&$$-& $>& "&& &H!$$& "* O62 )9 &&B !& -& O*& &&$$-& $>& *;& >&& &H!$$& "* -;! -&L && &- 12.9
12.3 Convolutional codes
*& *&+ , -;! -& !-* & "& &;&$& * *& *&+ , >-# -& $+ >&-!& *& !>?&- !-* +!%& >! + >&-!& -+ & ,J-! &@ $& 13:< &+ OF17G $$ 216B2629 "& & $$& * $;& &! , -;! -& %! *& $& &! &- :1 , >-# -&M * + * -;! -% *&+ * $!-& $ &&-* & &@$ *"&;& "*+ * &- !-* *& * *& $&-&% & O -;! -& & ,& !$& >-# -& $-- !L && &- 12.9
*& free distance , -;! -& O&& $ 6119 &;& *& & & & *& ! -& , >-# -&D % -& , J@& & *& & "* *& >%%& ,&& -& #&+ >& >& !-* &,, * >&& $& *& $>& , J% -;! -& "* *& %& $>& ,&& -& *!%* , + , -;! -& - $ >& + *& >-# -& * +& >&& ,! *&& &@ &@&;& -%!& , $&-J- % -& &@ $& & F6:G %;& >& , % O2 19 O6 19 O. 19 -;! -& "* & + M < 16L 0*& F6)G % O2 19 -& !$ M 67 -*-&- , *& !>?&- * *&& >& *! >& &-& On k9 O2 19 O6 19 O. 19 &$&-+ O2 19 *& &@ &%&& , ,&& $&& -;! -& &+ *& & + M #& *& !+ , O2 19 -;! -& &@& &+ -* !>?&- ! &, "*&& O2 19 >-# -& & , -!& ; *!%* *& $>+ , !+% -;! -& "* J@& M ;+% On k9 !%%& &, >+ * +& $!!& ;&+ ,
67(
Survey of advanced topics for Part two
*& -*& -% *&& 2. " $;& !% >-# -& ! "& "*&*& - >& $;& !% -;! -& *& "& , R!& - >& $;& !% tree codes O-& >& >+ %% >& && !-!& #& *& & % 1+ %% >& & !-!& #& *& & % 1-& , *& !-* -& - >& >& , *, &%& O&& % 1& , $* * *& &H!& &-& ! ;&%& >&,& &-& *& J L , > #" * PfC . xg Lx
á
"*&& á $;& - * &$& *& -*& *& -& & >! x ! ! * , *& -&I & -& -*& -$-+ *& ;!& , á & >&"&& 1 2 * ! $& * *!%* *& ;>& C * J& & ;-& J& * * !$& $-- $- & & >& * "*& *& &-& +% J "+ *!%* *& && & + > & >&% &-&;& *&& + > "% >& &-& ! >& & >!,,& , J& &%* , *& &-& &H!& + - $! * >!,,& " ;&K" , " >& , *& ;-& , C J& * >!,,& " >& ;&K"% *& & &H!& &-% !&&
*& & "*-* * !$& $*& & --! -& *& computational cutoff rateL ?! *& & R< "& *;& &+ &-!&& > 221B22) .6B.3L R< & & && >+ *& + > R- $ ;& & >&" R& ,& && & *& -&I $&, -& &@ $& >+ !% O2 19 -;! -& "* ;&+ %& & + ,&& -& "&> !
12.4 A comparison of block and convolutional codes
673
-*& & - &+ #& *& > & $>>+ &@& &+ >! ;&+ ,J-! &-&& *& erasure $>>+ O& *& $>>+ , *&& >&% & &-& %;& >9 >&" + 1< 6 *& ,! + , &H!& &-% - $! >! >+ '&> ! F2)G *$& ) '&> &-% &H!& &-% *&& * $ +$& , &-% , -;! -& -& threshold decoding %! *& *&* &-% , >-# -& "*-* "& &->& &- 122 " &;&$& 13)6 >+ &+ F2+ %& F1:G &- )(L ;&+ -&;& $$- , *&* &-% --&& -;! -% +& * &-&+ >&& %;& >+ /! F.(G + "& & * 13:) -*#"?# '-# F..G ;&& &-% %* * %!& , -;! -& , + & &-% O&& &- :29 , >-# -& * !-* - "* '&>I &-% %*
12.4 A comparison of block and convolutional codes * &- "& #& >&, & $ - $& *& &;& & , >-# -;! -& $-- $$- ,+ -& * *& &&$& $&;& *&&- &! -% *&+ O>-# -;!9 *& %&>- &-% , B -& "*-* "& &->& *$& 3 $ >& *"&;& * *&& -& "&& &%& , ;&+ $&- - , -*& *& q+ + &- -*& O $-! *& >+ + &- -*& *& -& , -&9 * *& &-% %* & &+ O, 9 $>& *& -*& *& *& * *& " $ &-% %* , -;! -& '&> &H!& &-% *!%* $&*$ *& -+ $,! & &@& &+ >! - *& &+ >& $& ;&+ "& - , -*& -& &;&+ ,- , *& - !- -*& * & $--& & "& && >+ H !$% * &;&+ %& ,- , $-- $$- , -% *&+ ;;& -;! >-# -& /& " !& * $ "* " $&-J- &@ $& & J >+ + &- -*& "* " > & $>>+ p < , p , 12 %!& 122 "& %;& %$* , *& $&, -& , " $-- -% +& , * -*& O12: ).9 1-# -;! -&
"* *& &-% %* &->& % 31 O2 19M ) -;! -& "* %&& @ G Ox ) x . x 6 x 1 ) 7 . 6 x x x x 19 ;!& , p %&& * >! p :&& >! , & p *& -& >&&L , &@ $& p :& H!& ,J-! $& & & 1=2 -;! -& "* $&, -& #&+ !$& * *" % 122 -& *& + "+ %& >&& $&, -& !& -& "* & & +L >! , *& '&> %* -&% M >&+ : ( &@& &+ ,J-! , &H!& &-% !& -& "* %& M *& &!& $>>+ O& *& $>>+ * *& %* " , #& &-
12.4 A comparison of block and convolutional codes
6)1
>&-!& , *& - $! $>& &->& &- 1269 " & *& -&I $&, -& *& *& * "! >& ,J-! % -& , & $$@ &+ 1=2 &%* 277 711 %& $&, -& #&+ !$& * % 122 & - -&& - $&@+ /& --!& *& * , >+ + &- -*& !& *& -*& &@& &+ + >-# -& $-! -& " $>>+ >& $&,&>& -;! -&
&- &@ $& -& *& "&> ! -*& &->& *$& . O$ 379 % 126 "& %;& $&, -& -!;& , *& & " -& >&,&L *& H!+ Eb *& P=R "*&& P *& & $"& O "9 R *& !-& & O > $& &-9 *! Eb * & ?!& $& >L !!+ -& *& energy per bit Eb =N < -& *& bit signal-to-noise ratio *& NNII & * "*
Figure 12.3 $ , >-# -;! -& "&> ! -*&
6)2
Survey of advanced topics for Part two
$& Eb =N < &-+ >! 1< %1< Eb =N < * 4 *& & , * -*&L && , &@ $& && 0-> F67G % 126 *& -& + * !$&+L " #&+ ,& *& -;! -& * >&-!& & $$+ *& %&>- &-% %* , *$& 3 *& -& &-&+ !& >+ !$! H!4 O-, $ 6679 "*&& *& '&> %* - >& $& --&$ !H!4& & ! >& $! "* &;& && O-, &- 1+ >+ !$! H!4 $+ %& >& - $&& , >+ *& ,- * *& -& *&&+ & $"&,! * *& -;! -&
*& $ *% #" >! *&& " &@ $& * *& "&> ! -*& & "& ;&+ , $-- - !- ! "*&& *+ &;& --! $!& , *! >& !$% * -;! -& *;& >&& !& ?+ , $-- $$- , &-&-% -& O &&% &@ $& , $-- $$-D *& - !- # >&"&& $-& ;&*-& *& &* !!+ H!& "& && "&> ! -*& &;& $*-& -% -*& & *;& >&& !& &&$$-& $$- -& *& & 13)! 13:: * +& " -$$& ,; , *& O2 19M ) -;! -& &->& * &- *& $-& O&% I Pioneer /& & +I Helios9 *;& !& &H!& &-% % OM > 2.9 O2 19 -;! -&9 & ! & * 13:) &;& , ! I 0& $! >+ &;& &-% %* , $"&,! >-# -& *& O.( 2.9 H!- &!& -& * & &H!& >+ !$! H!4
*& $&, -& , * -& * >&& $& *& *& -!;& % 126 *!%* $&, -& !$& * , *& -;! -& !%%& *& ,"% $&-!D -& *& O12: ).9 -& >&& -& * *& O.( 2.9 -& Od 21 ;: d 129 , % >+ &-% %* -! >& ,! , *& -& %* "& ! ! >& %J-+ !$& *& -;! -& + "& & * *& $&, -& , *& -;! -& % 126 *& & , *& + , ;!& , Pe , >! 1< 6 & &@& &+ ;!& , Pe *& >& #" $-- +& --& -*& & O&& &- )2 3)9 "*-* *& & -& -;! -& *& !& & &&B O>-#9 -& O&,&&-&D &"& F.1G9
12.5 Source codes
6)6
12.5 Source codes *I !-& -% *&& 6. !,,& , *& & ? K" * -*& -% *&& D -!-;& O&& !-+ & # *$& :9 *&&,& ! !$$& * &&-*& + *;& &;&$& -!-;& *&+ , !-& -% %! *& -!- ;& *&+ , -*& -% $&&& *$& :B19 *& --&$>& $--& & * &;&+ & - >& %&L O-9 + !-& * & $--& & &@& &+ ,J-! & *& -+ & *& -&$% & !& , *& -- &@ $& , *& $*& & *& -& , ;! , &@ $& $*%$* , $& /& " &->& & , *& & $ &! * *;& >&& >& -!-;& !-& -% /& >&% "* *& & +& ! !-& "* &H!& & J&+ -& O-, &- .29 $ *;& &@$- !-& -% &-*H!& , * !-& >* >&-!& & ,&H!&+ $--& >&-!& $&,&- $>& -& RO& L1 , , Ln O-& H!4 levels9 T1 , , T n 1 O-& H!4 thresholds9 !-* * f Ou9 Lk ,, T k 1 , u < Tk "*&& T< 1 Tn 1 * $$% , *& -!! & +& !-& U O & &9 -&& & +& !-& f OU 9 * ! & *& ;!& Lk "* $>>+ pk PfT k 1 , U < Tk g *& ;&%& * &! , &$&&% U >+ f OU 9 , -!& ä EFU f OU 9G2 !*& & "& && *$& 11 *& ;&%& ! >& , > &H!& &$&& + > , *& !-& f OU 9 HF f OU 9G *! O&,&% % .29 *& $ R HF f OU 9G ä EFU f OU 9G2 -*&;>& >+ * H!4 -*& & !$%+ @ *& *;& *" >+ ! &- &-*H!& * , *& &;& *&* & $$&+ -*& $>& * "+ -*&;& $&, -& * H!& -& O"* & >9 *& ROä9 -!;& O @I $$& $$ 2):B2:) F27G &%& F16G &- 71
6).
Survey of advanced topics for Part two
$;& & && ! + , H!4 &-*H!& -!% -! , *& $$->+ ! !-& "* & + && $$& 13B27 F1)G9 & &->& & , *& & $*-& !-& -% &-* H!& * & #" "& $!& -! *& % + >&"&& !-& -% -*& &-% -+ "& * &- !&;& *& >+ + &- !-& &;& *& % O&& $$ (2B(69 &- * !-& -& , &%* k & Rs !>& Cs fv1 v2 . . . vM s g Vk OF2 9 Vk "* k 1 %2 M s Rs %;& >+ äOCs 9
1 d Fu f s Ou9G 2 k k u2Vk
"*&& , &-* u 2 Vk *& &-% ,!- f s Ou9 &J& >& *& !-& -&" , Cs -& u "* &$&- *& % -& d O-, H O61(99 " &- * -*& -& , &%* n "* & Rc !>& Cc fx1 x2 . . . x M c g Vn "* Rc n 1 %2 M c + *& -&" x i & & >! >&-!& , -*& & x i - >& &-&;& + y 2 Vn *& &-% ,!- f c ! *& $ Vn *& -& Cc L &+ f c $ *& &-&;& y *& -&" -& y "* &$&- *& % -& d >* -& *& ,!- f $ ;&- , *& "*& $-& *& -& -&" * !%%& * %;& % -*& -& &-% %* *& & -& - >& !& !-& -& "*&& " *& -*& &-% %* !& !-& &-% %* O -& + *& -*& &-% %* *! >& !& *& !-& &-% %* +! && "*+P9 * & ,- % & >! & "* $, "& * " &@$ /& *;& &+ && &@ $& , !% -*& -& >-#" %& !-& -& *& !-D *&& "& *& &$& -& >-#" & $ "& *& O: .9 % -& >-#" %& R & !& + -*& , "*-* & * *&& & &@& & + $>>& &;& ! , !-& -% "*-* &-* , *& ;&- V61 &H!+ #&+ >& & & &L , (7V , *& & *& &-&E&-& " > > !M O *& !! ,!& & " >& * *& &- $+ ó Ox9 " *;& &%&& 6 >! " *;& ,&"& * 6 4&& *& J& F62 9
*& >;& -& *;& & &&-*& + &% $-- &-% %* , -& * " $!-& *& && -&" & "* *& &-& $! %&&-&-% -& *&& $>& D *& &-% %* &+ - $&& & $ F1.G *$& 1) * %;& - $&& %* , *& "&-&-% -& J+ '&* &%& F.:G *;& !& *& *&&& -&-% -&
*!%* "& *;& !& *& --&$ , & $+% -*& -& !-& -& !% >-# -& & -! ?! "& !& -;! -& && &;& &&-*& *;& & &@ $& &%& F16G *$& ) -!& -& J- , &H!& &-% * %;& % &! & &-& $$& , & F2(G %;& $ , *& -# %* !-& -% *& *%+ F1)G && >+ ; + - &;& & $$& *& & & -!% &&% $$- $&&-* - $&
Appendix A >>+ *&+
/& & $*4& -& * ! >?&- *&& &-* *& && $>>+ *&+ * $!$& "& &- & &*& *& * ># >+ $& F(G *& ";! & !+ >+ && F.G ! >?&- &+ ?! && -& -;& & *& "&# " , %& ! >& "*-* *& >- !& *& $, , *& -% *&& , *$& 2 6
*& >- --&$ * , probability space 8Ù B P9 "*&& Ù & $+ & -& *& sample space B & J& , !>& , Ù P &%;& ,!- &J& , A 2 B "* *& $$&+ * PfÙg 1 91 1 8 P An PfA n g n1
n1
$;& &-* A n 2 B *& A n I & ? P -& *& probability measure &@ $& , Ù fù1 ù2 . . .g J& -!>& B *& -&- , !>& , Ù 8 p1 p2 . . .9 &H!&-& , &%;& ! >& "*& ! 1 *& *& &J PfAg f p n D ù n 2 Ag #& 8Ù B P9 $>>+ $-&L -& discrete $>>+ $-&
random variable X ,!- $$% Ù & & R -& *& range of X 8/& * && ;>& >+ !$$& -& && , & *& & , *& $*>&9 + "& ! & R !>& , *& & ! >& >! & & R " >& *& # , & &@ $& , R !>& , n & !-& $-& X " >& -& random vector >& $& >,-&D X *& - $& , X " >& && >+ X 1 X 2 . . . X n L *! ;&- X 8X 1 . . . X n 9 - >& ;&"& , 8& &9 ;>&
" ;>& X Y &J& *& & $>>+ $-& & 6))
Appendix A
6):
>& &H! almost everywhere , *& & fùD X 8ù9 6 Y 8ù9g * P &!& X Y :&: ,, PfX 6 Y g & "* %& R &H! *& & & expectation ;&%& &J& >+ E8X 9 X 8ù9 dPL Ù
" E8X 9 *& &>&%!& &% , *& ,!- X "* &$&- *& &!& P
*&& *& &H!;& &J , &@$&- * ,& & -;&& , - $! *& &!& P &J& Ù !-& $> >+ &!& PX R ; *& &J PX 8S9 PfùD X 8ù9 2 Sg , + & & , & * &!& -& *& distribution of X *& ,!- S F X 8x9 PfùD X 8ù9 < xg -& *& distribution function of X *& &@$&- , X &H!+ %;& >+ 1 E8X 9 x dPX x dF X 8x9 8 :19 R
1
*& && , &>&%!&B&?& /& $!& - & " $&- -& , 8 19 , Ù -&& , , &-* x 2 R "& &J& p8x9 PX 8fxg9 PfùD X 8ù9 xg &J 8 19 >&- & E8X 9 p8x9 x x
"*&& *& %& , ! $!$&+ &, !$&-J&L - >& ;& + -&& !>& S , & !-* * PfX 2 Sg 1 & %&&+ , f + &;!& ,!- &J& S f 8X 9 &" ;>& &@$&- %;& >+ EF f 8X 9G p8x9 f 8x9: 8 :29 x
! , * # $$& *!%*! & , * ># ,& f 8x9 " ! & *& $$& ;!& 1 " >& !&J& , -& ;!& , x "&;& " "+ ! ! * f 8x9 " >&*;& + & ,
6)(
Appendix A
&!& & $>>+ $-& & A1 A2 . . . A n >& & , B *& NN&;&II A1 A2 . . . A n & >& independent , , &;&+ !>& , *& A i1 . . . A i m "& *;& PfA i1 \ A i2 \ \ A i m g PfA i1 g . . . PfA i m g: & $ -&- X 1 . . . X n , ;>& &J& *& & $& $-& >& &$&& , *& &;& A i fùD X i 8ù9 2 S i g & &$&& , + -*-& , S1 S2 . . . S n 2 B * &+ - ;&,+ &-+ "& %;& && , ! *& -& , + " ;>& , X Y & + $ , & ;>& &J& *& & $& $-& &$&& *& $$% ù ! 8X 8ù9 Y 8ù99 !-& &!& PXY *& J& , " & & & * -& *& joint distribution , X Y *& ,!- F XY 8x y9 PfùD X 8ù9 < x Y 8ù9 < yg -& *& joint distribution function + * X Y & &$&& + * *& &!& PXY $!- &!& * * , + $ S T , & & & & PXY 8S 3 T 9 PX 8S9PY 8T 9 "*&& PX PY & *& & & &!& !-& >+ X Y H!;&+ X Y & &$&& ,, F XY 8x y9 Fx 8x9FY 8 y9 "*&& F X FY & *& >! ,!- , X Y *& -&& -& , "& &J& , &-* x y 8%& , X %& , Y 9 _ p8x y9 PfùD X 8ù9 x Y 8ù9 yg X Y & &$&& ,, p8x y9 p8x9 p8 y9 "*&& p8x9 PfX 8ù9 xg p8 y9 PfY 8ù9 yg 8& *& &>&& !& , >%!! D *& & + > p8:9 !& , " - $&&+ ,,&& -&& >! ,!-L *&+ - >& %!*&
Appendix A
6)3
+ >+ *& ,- * && & *& %& , X & && >+ xI && & *& %& , Y >+ yI9 *& -!! -& , X Y >* *;& && p8x9 q8 y9 X Y & &$&& ,, x y F XY 8x y9 p8s9q8t9 ds dt 1
1
* X Y *;& joint density p8x y9 p8x9q8 y9 /& - " & *& "&# " , %& ! >& "*-* ; *& $, , *& -% *&& Weak Law of Large Numbers &-* n & X 1 X 2 . . . X n >& &$& & ;>& &-* "* J& &@$&- ìQ&& &-* "* *& & >! ,!- *& , &-* å . å & K E n O!-& n$-&9 -& convex , *& & &% & ?% + " $ , K -& KD
*& & &% & ?% x1 x2 , + &J& fx D x tx1 O1 t9x2 t 2 F& %;& & , convex combinations , + J& ! >& , $ ," $ x >& -;&@ - > , x1 x2 . . . x m , *&& &@ &%;& - á1 á2 . . . á m "* á i 1 á i xi x *& & , -;&@ - > , x1 x2 . . . x m -& *& convex hull O% 19 , x1 x2 . . . x m &+ *" * & K -;&@ ,, &;&+ -;&@ - > , $ K K
Figure B.1 ;&@ *! " &
6:
& -!! >!+ $ , K D & K F Information Theory and Coding &" #D -" # 13)6
* && &+ *%*+ &>& !- , *&+ -! % "* $, , *& -*& -% *&& , -&& & +& -*& 16 &%& >+ Rate Distortion Theory %&" ,, 0D &-& 13:1
;-& ># &% "*+ "* *& !-& -% *&& %&&4 $-- $$- 1. & $ "+ Algebraic Coding Theory &" #D -" # 13)(
6(.
References
6(7
&% "+ *& $+ --&&& *& ,!*& &-*& , *& *&+ , >-# -&
tour de force >+ !*&- $* %&! 17 & $ "+ & Key Papers in the Development of Coding Theory &" #D & 13:.
*%+ , .. $ $$& >& , *& &@&;& & - & $
& >+
1) ; && + >& & Data Compression !>&% D "& !-* 13:)
*%+ , .) $ $$& >! & *&+ !-& -% &-*H!& 1: %& >& Information Theory and Reliable Communication &" #D 0* /&+ 13)( & +& *& ;-& &@># *& !>?&- -!& &@&;& & & , >-# -% & &@$& ";&, -*& 1( ' 0->! Coding Theory &-!& & *& - 2&, !- !- *& *&+ $$- , -;! -& 22 && /&&+ Error-Correcting Codes >%& D & 13)1
*& -- &@ -% *&+ & & " >! >& , & & , *, &%& $& & >& , &!->& $+ 8&& &@ &+9 26 && /&&+ /& " Error-Correcting Codes 2 & >%& D & 13:2
- $&&+ &;& ;& , *& $&-&% &+ -% *& *&+ , $+ -&
!-* &" , >+
2. #& Information and Information Stability of Random Variables and Processes
& >+ && --D &+ 13).
6()
References
%* , *& -- ! &@ -% *& + ;>& - $&& & & , !! , , >+ ;>& 27 &$ ; & Key Papers in the Development of Information Theory &" #D & 13:.
*%+ , .3 $ $$& , *&+ 12 >+ * -!% * -- NN *& - *&+ , - !-II NN% *&& , -&& !-& "* J&+ -&II 2) '&> &" ! 0 Digital Communication and Coding &" #D -" # 13:( -+-$&- -;&%& , , *&+ &$&-+ &-& ;-& & &@$& & *&+ $* -;! -& *!%*! 2: /,"4 0-> The Coding Theorems of Information Theory 6 &D $%&'&% 13:( "& ;&+ , %&&4 , *& -*& -% *&&
-;&&
3. Original papers cited in the text FNote , *&& $$& $$&& *& IEEE Transactions on Information Theory "*-* "& *&&,& >>&;& ITG 2( & 0* NN -# %* , !-& &-% "* J&+ -&II IT 20 813:.9 211B22) 23 !%!! NN %* , - $!% *& -$-+ , >+ -&& & +& -*&II IT 18 813:29 1.B2+ &1E2 -;! -&II IEEE Trans. Commun. COM-24 813:)9 3::B3(7 .7 !%+ ! 5* " *%&-* " **# NN &* , ;% #&+ &H! , &-% $$ -&II Information and Control 27 813:79 (:B33 .) ' >% &-! NN, + $-#& -&II * & &-*-*& %&-* *;& *& &*& 13:) .: '&* 0& &%& >+ NN $&& &-% , $&&-&-% >+ -&II IT 22 813:)9 16(B1.: .( /! / NN&" -;! -&Q II IEEE Trans. Commun. COM-24 813:)9 3.)B377 .3 /+& NN&-& &! *& * *&+II IT 20 813:.9 2B1! &-$ ! >& , >! $& , &%* b % >! , >! & '! & >! , >! -&- &&;% *&& , >! -&- &&;% -+-- -& % >! & -&-
*& & -!- &%%I &
1:1 1:2 1:. 1(( 131 13) 2& &H!& &-% 67( !& -&- 133 ,, ! , & >&*; , &H!& &-% %* $&&-& , 62( 8> 1 :629 &&B -& , -&-% 2)6B2). $-+ - $! , 12) -! , %J--& 7(B73 , >+ + &- -*& 11 , -&& & +& -*& 7. :6 8& .9 , + &- 7: 8 * 269 $-+- ,!- -!+ , â â )3 8> 279 -;&@+ , 72 , 71 ,, , ! -*& 37 %&& &J 116 *& *& - $$&& 7. %J--& -!& 72
63
1 219 ): 8> 22 22)9 62( 8> 1+ + &- 1 16 8& 29 21 7< >- 12) -&& & +& 21 7< ! > & -$-+ , 3: &J& 37 %&&4& 127 $&, -& , & -& 1)2 "&> 3: 12< 8> 769 6)1B6)2 & --&& +& 2)7 #; :< 8> 21 :119 q+ + &- 1.. r+ + &- 7( %+ + &- )( 8> 269 + &- 7: "&#&+ + &- )( 8> 229 *& -& See & -*& *& -% *&& See -% *&& *-&- , J& 6:) &
> 2& )< 8*$& 3 &;& -& &-% %* , 26: ,,L *+ , 67.B677 &J& 262B266 %&&4& 2(6 8> 3119 %&& $+ , 267 $+-*&-# @ , 262 $>& !& ! -*& 6)1B6)2 >-# 8 -& *$& :B3 & >-# -&9 1)7 8& 29 - $& -;! -& 673B6)< --&& "* -;! -& 6)2 ! >-#" !-& -& 6).B6)7 -*& %&& &J , )< -K$$% . 12 8> - $$&& , 622 8> 1 1 :2.9 216 &&;& 1). 8> :629 2 36.B3639 5&-# 67. & 8*$& : &;& & -&9 -*& -% *&& - >& $;& , 123 -;! -& %&&4 , 236 &J& 1.< %&& $+-*&-# @ 1.6 8 * :19 !-& -% *&& - >& $;& , 167 & 67< &+ $&,&- 6.( & 676 ,, $&,&- 36 8> 6169 1.3 6.: ,, $&J@ 662
632
Index
$&$ 67. H!- &!& 676 6)2 &&B !& 1). 8> :6 :1(9 %&& -&-% 1.( %&& -&-% !>&& -&-% 172 8@ :.9 !-& %&& &J , (. !-& && 162 66< ,, +& - 1.2 && 167 67( See also & -;! !, + $-#& 6.( ;>& &%* 8*$& 11 &;& ;>&&%* -&9 ;&%& &%* , 66. &J& 661 !,, %* , -!-% 66) ,, -*& 66. $ + &J& 66: % *&& -*& , (B11 -;&& 117 16< , %&& )2 8 * 2.9 :. 8& 1 221B22)9 %&& 116 126 , ! -*& 33 8 * .29 R< , ! -*& 1& &!& >+ !! , 2( &+ , ;>& 6)( &;;& , 2. 31(9 Deus ex machina 3< & , -& %* , - $!% 2(2 8> 3.9 & , & -& 1.< -&& & +& -*& See *& -& >! , -& 6.3 ;&%& , %&& - !- +& 117 &!& 8, ,!-9 , :7 %&&4& 117 % (2 6.7 8& 29 H!&& , ! !-& 33 >! ,!- 6): ; --! *, &%& 1(: 8% (69 See *& -&& & +& d 1.: See !-& -&& & +& ! > , -;! -& 622 8> 1 1+ 1 + &H!& -% 673 !& + > 22 ) :629 133 &;! $+ 2.6 &;& 61< - 27< - $+ 2.6 $& 7 1.6 171 $>>+ > , 8: .9 % -& ( >-# , % -& : , -K$$% -& . 12 8> :1.9 217 ;!& 2)< !-I %* , $+ 2.. ,, 677 !&I ö,!- 6:) @$&- , ;>& 6): @$!% 1)1 8> :1:9 1)) 8& 169 @&& !-& 66)
E> = See %& $+ % 661 -% %*
*- $;% !-&-*& -% *&& 11: 8% 729 , -;! -& 233 8% 1& 1: 6:. , -&& ;&- 66 , &%- $-& 12. f&$+ .7 8> 1:9 , ! ;>& .1B.2 8@ 1169 ? 2( , #; -* .)B.: 8> 12>+ ;&- 1(
-& -& &-& - & 122 8& .9 n 1 ;& H 1(2 8 >& (19 6:( -% x %* 62< 8% 1 1 111 1129 !& , 67) &&>-# >+ &!& -*& &H!$$& "* :1 8> 22! :. 8& 179 127 & J& 6:7 ,, & $>>+ 611 $K$ 1(. &+ 123 623 8& .9 67: " & -*& , - $!% R8ä9 , ! !-& 1 .1(9 && -& , -;! -& %* , && % 627 8> 1 3.9 , %&& -+-- -& 1:6 , &&B -& 27. >&B'* ; >! 1)2 8> :219 67< + -& See & + $$ -& 677 && 67. $* &J , 6(< @ 676 %&>%& / 16 8& 79 % >! 1)6 8> :229 2 2169 :1 8> 21:9 1 .)9 1.) 173 8> :.9 % "&%* 1.7 &- 22 1 .179 See also R!4 && 0 6)2 Helios $-&-, 6)2 " 6)2 -H!&%*& 266 67. $-, 0 123 !,, I %* , -!-% $ -& 66) ,, &-$*&>& % 6.2 8> 1129 &$&&-& , ;>& &J 6)( , *& - &J 1( , !! See !! , , & 1)< 8> :169 , !-& See !-& $! $*>& See $*>& &&;% , -& , >!& $&- 1). 8> :629 2& (19 676 6:7 0-> 6)2 0&&I &H!+ 6:2B6:. 0*& 67: 0* & 3) 0!&& -& See & 0!&& 5* 677 5 16 8& 29 5&+ &H! , &-% E -& 263 8 * 3.9 5,B - &H!+ 662 5,I *&& -!-% $&J@ -& 666 8 * 1129 & 5 67: " , %& ! >& 6 )) 3 6169 &%* , & -& 1.< &@-%$*- &% 6.6 8> 11) 11:9 & -& See & & & $% % >! 6.3B67< ; 0 676 -&-& 0 12( 67+ 1)6 8> :2:9 & 1)6 8> :2(9 6.3 Mariner $-&-, 67: 6)2 #; -* &J& 23 &$+ , -&& .) 8> 12&&%* -& , 6.. 8> 11119 &+ 0 123 2(: 8> 36:9 623 8& .1 2169 &%%I & 21: 8 * (179 & + , -;! -& 236 233 & +& ! $ , 6) , %&&4& -*& .6B.. &&-! &@ $& 66< &- I %* 61: '&>I %* 6+ &-% :< 8> 216 21.9 ! "&%* , & -& 1.: W>! ,!- 6:7 g8x9 --! 1(: 8% (69 !& 1). 8> :6! 1)6 8> :2.9 627 8> 1 7:9 &J@ 661 See also & $&J@ ;& $+ 13:B13( 6:: ;& 6:) >>+ $-& 6)) >>+ ;&- 1:B1( !- , I )3 8> 239 R!4 &,,&- -$-+ , ! -*& 1 221B22)9 12( 8% ).9 , ! -*& 1& &J& 6)) ;&- &J& 6)) & , -;! -& 23. 23: 233 , %&& -*& -& 73 , %&& - !- +& 117 , & -& 1.< , !-& -& (. & ,!- , >+ &;& % 3. 8& )9 -!+ , ä ä 31 8> 6.9 &J , :)B:: &J %&& 11. &,J-& - $! , 16. , ! !-& 1 & $>>+ 2 +*!*! 5 266 67. &!-& -*& , - $!% C 77 &!- , !-& 6.< &! > See +-*&-# && 67.B67) &&B !& -& See & &&B !&
63)
Index
&&B -& See & &&B &>+ &@$& 12: &$& -& See & &$& & -* 67< 8" &!-& -*&9 @ 1.1 1)7 8& 79 ! &+ 0 1 .169 67< $& $-& 6)) -*#"?# 0 673 -*"4I &H!+ 1! R8ä99 32 8> 61 :619 *& $* $>& &&;-& &-% -;! -& 6 12< 8> 769 6)1 &$B/, *&& 162B166 & 0 6.3 676 67) !-& >+ + &- 1 -&& & +& :7 &@&& 67) ! 33 ,, 16. 6)6B6). && + 11. + &- (2B(6 See also & ,!- 1)) 8& 129 67. !-& -& See & !-&-*& -% *&& -! , 113B12< & & , 117 8 * 719 !-& -% *&& See % *&& $&&-* - $& 6)7 H!&& -& See &!& H!&";& 22 -# %* 61:B61( + , & -& 1.7 -*- @ .) 8> 12% 661 !,J@ 661
!%+ 677 ! , I )3 8> 2(9 !$&-*& 123 !;; '&>I %* 6-#" , - $!% R8ä9 , ! !-& 1+ !$! H!4 ! -*& 1 .1(9 0 123 -&+ See $+ H!& &->+ 66 1119 ' & &&>&% 1)6 8> :2)9 '&* 0 6)7 '& & && 266 2(2 8> 369 '>& &%* -& 617 ,, See also *$& 11 '* ; See >&B'* ; >! '& % , & & >&% >- ,- >! &$+ !! , 2( 8% 179 '-# 0 673 '&> 12( 16. 167 623 8& .9 67( '&> &-% See &-% %*
Index /&# -;&& -% *&& , I 16< /&%* &! & 176 ,, /&%* , & $& ) See also % "&%*L ! "&%* , & -& /&-* 67< /&> ! -*& See *& /,"4 0 127
63:
/-& 11: /! / 673 /+& 12) /+&B=; *&& , 166B16. =& & -$-+ :1 8> 2139 :. 8& 1.9 =&& 0 67.