The Internet of Materials 9780367457389, 9781003043805


200 24 2MB

English Pages [359] Year 2020

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover
Half Title
Title Page
Copyright Page
Contents
Chapter 1: Preface
Chapter 2: Introduction
Chapter 3: Electromagnetic Specifications and Prototype Designs of Software Defined Surfaces
3.1 ELECTROMAGNETIC MODELING OF METASURFACES
3.1.1 Unit Cell, Polarizability, and Interaction Constant
3.1.2 Impedance Boundary Condition
3.1.3 Sheet Impedance
3.2 METASURFACES AND THEIR FUNCTIONALITIES COM PARED WITH OTHER SHEET MATERIALS AND PHASED ARRAY ANTENNAS
3.2.1 Sheets of Usual Materials
3.2.2 Antenna Arrays
3.2.3 Metasurfaces
3.2.4 Comparison of Possible Functionalities and Advantages of Meta surfaces
3.3 TUNABLE METASURFACES: FROM GLOBAL TUNING TO SOFTWARE DEFINED METASURFACES
3.3.1 Global Tuning
3.3.1.1 Electric Tuning
3.3.1.2 Magnetic Tuning
3.3.1.3 Tuning by Light
3.3.1.4 Thermal Tuning
3.3.2 Local Tuning
3.3.2.1 Switch Diode
3.3.2.2 Continuous Tuning Varactors
3.3.2.3 Coding Metasurfaces
3.3.3 Software Defined Metasurfaces
3.4 DESIGN WORKFLOW OF THE SWITCH FABRIC PROTOTYPE
3.4.1 Design Principles per Functionality
3.4.1.1 Tunable Perfect Absorption
3.4.1.2 Tunable Anomalous Reflection
3.4.2 Proof of Concept Design and Its Performance
3.4.2.1 Tunable Perfect Absorption
3.4.2.2 Tunable Anomalous Reflection
3.4.3 Practical Considerations and Restrictions
3.4.3.1 Electronic Package Considerations from the EM Aspect
3.4.3.2 Where Should We Position the Package Vertically?
3.4.3.3 Linking Electromagnetic and Package Designs
3.4.3.4 Basic Unit Cell Parameters
3.4.3.5 Advanced Design Considerations
3.4.4 Overview of the Switch Fabric Tunable Absorber Design
3.5 ELECTROMAGNETIC PERFORMANCE OF THE SWITCH FABRIC DESIGN
3.5.1 Tunable Perfect Absorption
3.5.2 Anomalous Reflection
3.5.3 Polarization Conversion
3.5.4 Electromagnetic Characterization Procedures
3.5.4.1 Experimental Setup
3.5.4.2 Demonstration Procedure
3.5.4.3 Spatial Modulation of Load Configuration for Better Performance
3.6 DESIGN OF THE GRAPHENE BASED PROTOTYPE
3.6.1 Practical Considerations and Design Constraints
3.6.2 Graphene Combined with Metallic Patches
3.6.3 Frequency Tunable Perfect Absorber
3.6.4 Switchable Absorber
3.6.5 All Angle Perfect Absorber
3.7 SUMMARY
Chapter 4: Designing the Internet of Materials Interaction Software
4.1 SOFTWARE DESIGN CONSIDERATIONS
4.2 THE INTERNET OF MATERIALS SOFTWARE ARCHITECTURE
4.3 THE INTERNET OF MATERIALS APPLICATION PROGRAM MING INTERFACE
4.3.1 General Use Case Diagram
4.3.2 The Database Diagram
4.3.2.1 Table “DoA”
4.3.2.2 Table “Polarities”
4.3.2.3 Table “SwitchStates”
4.3.2.4 Table “Physical Setup”
4.3.2.5 Table “Function Electromagnetic Profiles”
4.3.3 The Class Diagram
4.4 A NOVEL SOFTWARE CLASS: THE ELECTROMAGNETIC COMPILER
4.4.1 A Qualitative View of the Compiling Process
4.4.2 Metasurface Functions
4.4.3 Formal Definition of a Metasurface Configuration
4.4.4 Definition of Fitness Function
4.4.5 Methods
4.5 THEORETICAL FOUNDATIONS OF THE ELECTROMAGNETIC COMPILER
4.5.1 Definitions
4.5.2 Floquet (Unit Cell) Analysis
4.5.3 ABSORB Functionality
4.5.4 REFLECT Functionality
4.5.5 POLARIZE Functionality
4.5.6 STEER Functionality
4.5.7 SPLIT Functionality
4.5.8 Far Field Scattering/Radiation Pattern
4.5.9 Formal Definition
4.5.10 Semi Analytical Calculation
4.5.11 Polarization
4.5.12 Scattered Power in a Lobe (Solid Angle Cone)
4.5.13 Fitness Functions per Functionality
4.5.13.1 ABSORB Functionality
4.5.13.2 STEER Functionality
4.5.13.3 REFLECT Functionality
4.5.13.4 SPLIT Functionality
4.5.13.5 POLARIZE Functionality
4.5.13.6 FOCUS and COLLIMATE Functionalities
4.5.13.7 SCATTER Functionality
4.5.13.8 ARBITRARY Functionality
4.5.14 The Configuration Optimization Process
4.6 SOFTWARE ASPECTS OF THE ELECTROMAGNETIC COM PILER
4.6.1 General Use Cases
4.6.2 Validating the Compilation Outcomes with Measurements
4.7 CONCLUSION
Chapter 5: Design of the HyperSurface Networking Aspects
5.1 DESIGN REQUIREMENTS OF THE HYPERSURFACE CON TROLLER NETWORK
5.2 HYPERSURFACE NETWORKING COMPONENTS: THE HYPER SURFACE NETWORK CONTROLLER
5.2.1 HyperSurface Controller Communication
5.3 THE HYPERSURFACE CONTROLLER NETWORK TOPOLOGY
5.3.1 HyperSurface Network Controller Addressing
5.3.2 HyperSurface Network Controller Channel Mapping
5.4 HYPERSURFACE CONTROLLER NETWORK COMMUNICA TION PROTOCOLS
5.4.1 Routing and Reporting Protocol
5.4.2 Fault Adaptive Routing
5.4.3 Workload Characterization
5.5 EVALUATION OF THE CONTROLLER NETWORK DESIGN AND PERFORMANCE VIA SIMULATIONS
5.5.1 Custom Built Simulations
5.5.2 HyperSurface Controller Network Simulator
5.5.2.1 The HyperSurface Controller Network Simulation
5.5.3 Formal Evaluation of the HSF CN
5.5.4 HyperSurface Emulator
5.6 THE CONTROLLER GATEWAY COMMUNICATION PERSPEC TIVE
5.6.1 Gateway Functionality
5.6.1.1 Software/Firmware Design and Development
5.6.1.2 Tile Gateway Communication Interface Firmware
5.6.1.3 Error/Fault Detection
5.6.1.4 Bluetooth Mesh Firmware
5.7 THE HYPERSURFACE WITHIN CONTROL LOOPS
5.7.1 System Model
5.7.2 The Considered Model
5.7.3 Control Algorithm
5.7.4 Estimation Algorithm
5.7.5 Performance Evaluation
5.8 SUMMARY
Chapter 6: Internet of Things Compliant Platforms for Inter Networking Metamaterials
6.1 OVERVIEW
6.2 HARDWARE ACTUATION APPROACHES
6.2.1 RF Switching Elements
6.2.1.1 PIN Diodes
6.2.2 Controller to PIN Interface
6.2.2.1 DAC
6.3 CONTROLLER COMMUNICATION
6.3.1 Controller to Controller Communication
6.3.1.1 SPI
6.3.1.2 I2C
6.3.1.3 UART
6.3.1.4 CAN
6.3.2 Controller to Server Communication
6.3.2.1 Bluetooth
6.3.2.2 802.15.4
6.3.2.3 Zigbee
6.3.2.4 UWB
6.3.2.5 LORA
6.4 CONTROLLER HARDWARE
6.4.1 The ESP8266/ESP32
6.4.2 Arduino
6.4.3 Raspberry Pi
6.4.4 BeagleBone
6.4.5 Libelium Waspmote
6.4.6 OpenMote
6.5 IOT OPERATING SYSTEMS
6.5.1 TinyOS
6.5.2 Contiki/Contiki NG
6.5.3 FreeRTOS
6.5.4 Android Things
6.5.5 OpenWrt
6.5.6 Raspbian
6.5.7 OpenWSN
6.6 IOT BROKER
6.6.1 MQTT Brokers
6.6.1.1 Mosquitto
6.6.1.2 RabbitMQ
6.6.1.3 EMQ
6.6.1.4 VerneMQ
6.7 CONCLUSIONS
Chapter 7: Interim: Drafting a Stack
Chapter 8: The Scaling Laws of HyperSurfaces
8.1 THE HYPERSURFACE SCALABILITY VERSUS MANUFACTUR ING TECHNOLOGIES
8.1.1 Scaling Model
8.1.1.1 Dimensional Factors
8.1.1.2 Programming Parameters
8.1.2 Methodology
8.1.2.1 Unit Cell Model
8.1.2.2 Metasurface Model
8.1.2.3 Metasurface Coding
8.1.2.4 Performance Metrics
8.1.2.5 Validation
8.1.3 Performance Scalability
8.1.3.1 Directivity
8.1.3.2 Target Deviation
8.1.3.3 Half Power Beam Width
8.1.3.4 Side Lobe Level
8.1.4 The HyperSurface Energy Footprint, Cost, and Performance
8.1.4.1 Cost and Power Models
8.1.4.2 Application Specific Figures of Merit
8.1.4.3 Performance Cost Analysis
8.2 THE HYPERSURFACE DATA TRAFFIC AS A SCALING CON CERN
8.2.1 System Model
8.2.1.1 Mobility Model
8.2.1.2 Gateway Model
8.2.1.3 Embedded Controller Network
8.2.2 Evaluation Methodology
8.2.2.1 Relevant Inputs
8.2.2.2 Traffic Analysis Metrics
8.2.2.3 Walkthrough Example
8.2.3 Workload Characterization
8.2.3.1 Spatio Temporal Intensity
8.2.3.2 Reconfiguration Delay
8.2.3.3 Sensitivity Analysis
8.2.4 Indoor Mobility Scenario
8.3 CONCLUSIONS
Chapter 9: Applications of the Internet of Materials: Programmable Wireless Environments
9.1 DETERMINISTIC WIRELESS PROPAGATION CONTROL AS A CONCEPT
9.2 MODELING, SIMULATING, AND CONFIGURING PWEs—A RAY ROUTING APPROACH BASED ON GRAPH THEORY
9.2.1 General Modeling and Properties of HyperSurface Functions
9.2.2 Specialized Modeling of Function Inputs/Outputs
9.2.3 Modeling Core HyperSurface Functions
9.2.4 A Graph Model for Simulating and Optimizing Programmable Wireless Environments
9.2.5 Modeling Connectivity Objectives
9.2.5.1 Power Transfer Maximization
9.2.5.2 QoS Optimization
9.2.5.3 Eavesdropping Mitigation
9.2.5.4 Doppler Effect Mitigation
9.2.5.5 User Blocking
9.3 A K PATHS APPROACH FOR MULTI USER MULTI OBJECTIVE ENVIRONMENT CONFIGURATION
9.4 ARTIFICIAL INTELLIGENCE BASED CONFIGURATION OF PWEs
9.4.1 Feed Forward
9.4.2 Back Propagation
9.5 THE NOVEL PWE POTENTIAL IN COMMUNICATION QUAL ITY, CYBERSECURITY, AND WIRELESS POWER TRANSFER
9.5.1 Multi User Multi Objective Showcase
9.5.2 Doppler Effect Mitigation Showcase
9.5.3 User Capacity and Stress Test
9.5.4 Evaluation of Neural Network Based PWE Heuristics
9.6 CONCLUSION
Chapter 10: Epilogue
References
Index

The Internet of Materials
 9780367457389, 9781003043805

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers