Surgical Treatment of Chronic Constrictive Pericarditis 9819958075, 9789819958078

This book provides comprehensive information and clarity on all aspects of diagnosing and managing constrictive pericard

138 82 27MB

English Pages 435 [420] Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Foreword
Preface
Acknowledgements
Contents
About the Author
Chapter 1: Anatomy, Histology, Applied Anatomy, and Physiology of the Human Pericardium
1.1 Anatomy
1.2 Fibrous Pericardium
1.3 Serous Pericardium
1.4 Pericardial Recesses and Sinuses
1.5 The Pericardial Lines of Reflection Localized Around the Aorta and Pulmonary Trunk
1.6 The Pericardial Reflection Line Around the Venous Pole of the Heart
1.7 The Superior Aortic Recess
1.8 Transverse Pericardial Sinus
1.9 The Oblique Pericardial Sinus
1.10 Number of Pulmonary Veins
1.11 Postcaval Recess (PCR)
1.12 Pulmonary Venous Recesses (Left and Right Pulmonary Venous Recesses)
1.13 Vascular Supply, Lymphatic Drainage, and Innervation
1.14 Innervation
1.15 Histology and Ultrastructural Features of Normal Pericardium
1.16 Physiology of Pericardium
1.17 Mechanical Effects of Pericardium
1.18 Reflex Effects
1.19 Membranous Effects of Pericardium
1.20 Metabolic Effects of Pericardium
1.21 Epicardial Fat
1.22 Ligamentous Effects of Pericardium
1.23 Imaging Techniques of the Pericardium, Pericardial Sinuses and Recesses
1.24 Applied Anatomy of Autologous Pericardium
References
Chapter 2: History
References
Chapter 3: Definition
3.1 Chronic Constrictive Pericarditis with Normal Thickness of the Pericardium
References
Chapter 4: Aetiological Search
References
Chapter 5: Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis
5.1 Salient Hemodynamic Features of Chronic Constrictive Pericarditis
References
Chapter 6: Pathophysiology of Chronic Constrictive Pericarditis
6.1 Dissociation of Intrapericardial and Intrathoracic Pressures
6.2 Exaggerated Ventricular Interdependence
6.3 Fluid Retention in Chronic Constrictive Pericarditis
References
Chapter 7: Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy
7.1 Clinical Challenges and Diagnostic Dilemma
7.2 Physical Examination
7.3 Laboratory Investigation
7.4 Electrocardiogram
7.5 Chest Radiography, Echocardiography, Multimodality Imaging, Cardiac Catheterization Studies
7.6 Endomyocardial Biopsy
References
Chapter 8: Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis
8.1 Chest Radiography
8.1.1 Overview of Specific Imaging Modalities
8.2 Echocardiography
8.3 Computed Tomography
8.3.1 Pericardial Structural Evaluation
8.3.2 Cardiac Magnetic Resonance Imaging in Chronic Constrictive Pericarditis
8.3.3 Scout Images
8.3.4 Real Time Cine Steady-State Free Precision Imaging
8.3.5 Myocardial Tagging with Spatial Modulation of Magnetization
8.3.6 T1 and T2 Weighted Images
8.3.7 T2-Weighted Triple Inversion Fast Spin-Echo and STIR Imaging
8.3.8 Early Post Contrast T1-Weighted Fast Spin-Echo Imaging
8.3.9 Delayed Enhancement Imaging
8.3.10 Velocity-Encoded Phase-Contrast Imaging
8.4 Cardiac Catheterization Haemodynamics
8.5 Radionuclide Ventriculography
References
Chapter 9: Diseases Mimicking Constrictive Pericarditis: Salient Features and Novel Strategies of Management
9.1 Introduction
9.1.1 Clinical Features
9.1.2 Echo Doppler Signs of Constriction
9.1.3 Cardiac Computed Tomography
9.1.4 Cardiac Magnetic Resonance
9.1.5 Cardiac Catheterization Data
9.2 Endomyocardial Fibrosis
9.2.1 Definition
9.2.2 Epidemiology
9.2.3 Causation: Evolving Concepts
9.2.4 Cardiac Lesions
9.2.5 Clinical Presentation
9.2.6 Right Ventricular Endomyocardial Fibrosis
9.2.7 Left Ventricular Endomyocardial Fibrosis
9.3 Investigations
9.3.1 Chest Radiography and Fluoroscopy
9.3.2 Electrocardiogram
9.3.3 Echocardiogram
9.3.4 Cardiac Magnetic Resonance Imaging
9.3.5 Haemodynamics and Angiographic Studies
9.3.6 Endomyocardial Biopsy
9.3.7 Treatment
9.3.8 Results
9.4 Cardiac Amyloidosis
9.4.1 Definition
9.4.2 Classification
9.4.3 Incidence
9.4.4 Pathophysiology
9.4.5 Primary AL Amyloidosis
9.4.6 Familial Amyloidosis
9.4.7 Senile Systemic Amyloidosis
9.4.8 Clinical Presentation
9.4.9 Diagnosis
9.4.9.1 Electrocardiogram
9.4.9.2 Echocardiography
9.4.9.3 Cardiac Magnetic Resonance Imaging and Radionuclide Study
9.4.9.4 Cardiac Biomarkers
9.4.9.5 Serologic Testing
9.4.9.6 Endomyocardial Biopsy
9.4.10 Treatment
9.4.10.1 Reduction in Production of Amyloid
Cardiac Amyloidosis
9.4.10.2 Transthyretin-Related Amyloidosis
9.4.10.3 Novel Strategies
9.4.10.4 Cardiac Transplantation
9.4.11 Results
9.5 Restrictive Cardiomyopathy
9.5.1 Definition
9.5.2 Aetiology
9.5.3 Clinical Presentation
9.5.4 Diagnosis
9.5.4.1 Electrocardiogram
9.5.4.2 Echocardiography
9.5.4.3 Hemodynamics
9.5.4.4 Endomyocardial Biopsy
9.5.5 Treatment
9.6 Sarcoidosis
9.6.1 Clinical Features and Diagnosis
9.6.2 Investigations
9.6.3 Treatment
9.7 Cardiac Hemochromatosis
9.8 Budd-Chiari Syndrome
9.8.1 Definition
9.8.2 Epidemiology
9.8.3 Aetiology
9.8.4 Secondary Budd-Chiari Syndrome
9.8.5 Primary Budd-Chiari Syndrome
9.8.6 Clinical Manifestations
9.8.7 Natural History
9.9 Diagnostic Procedures
9.9.1 Sonography
9.9.2 Computed Tomography
9.9.3 Magnetic Resonance Imaging
9.9.4 Angiography
9.9.5 Percutaneous Liver Biopsy
9.10 Therapeutic Procedures
9.10.1 Underlying Risk Factors for Thrombosis
9.10.2 Anticoagulation Therapy
9.10.3 Thrombolysis
9.10.4 Percutaneous Transluminal Angioplasty
9.10.5 Surgery
9.10.6 Surgical Factors
9.10.7 Current Treatment Strategy
9.10.8 Current Outcomes
References
Chapter 10: Definitions of The Extent of Pericardiectomy, Echocardiographic Variables, Outcome Variables, Haemodynamic Studies, and Normal Acceptable Values
10.1 Echocardiographic and Tissue Doppler Imaging Studies
10.2 Strain by Speckle Tracking
10.3 Low Cardiac Output Syndrome: Definition and Recognition
10.4 Monitoring and Diagnostics
10.5 Haemodynamics Variables
10.6 Serial Semi-Invasive Haemodynamic Monitoring
10.7 FloTrac™ Sensor, Vigileo™ Monitor: Edwards Lifesciences, Irvine, CA, USA
References
Chapter 11: Management of Chronic Constrictive Pericarditis
References
Chapter 12: Decision-Making on the Timings of Pericardiectomy, Selection of the Optimal Surgical Approach, Adequacy of Pericardiectomy and Requirement of Cardiopulmonary Bypass
12.1 Anatomical Basis of the Adequacy of Pericardiectomy
12.2 Criteria for Decision-Making on the Indications and Timings for Pericardiectomy, Selection of the Optimal Surgical Approach, Adequacy of Surgical Resection, and Their Relationship to Mortality and Low Cardiac Output Syndrome
12.3 Should Cardiopulmonary Bypass Be Used Routinely while Performing Pericardiectomy?
References
Chapter 13: Radical Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification): Criteria for Decision-Making and Selection of the Optimal Surgical Approach
13.1 Theoretical Basis
References
Chapter 14: The Operation: Total Pericardiectomy via Median Sternotomy Without Cardiopulmonary Bypass (Holman and Willett’s Approach)
14.1 Total Pericardiectomy for Chronic Constrictive Pericarditis Via Median Sternotomy: Surgical Steps [1–4]
14.1.1 The Operation
14.1.1.1 Step I: Median Sternotomy, Subtotal Thymectomy, Mobilization of the Pleural Reflection
14.1.1.2 Step II: Identification of Right and Left Phrenic Pedicles
14.1.1.3 Step III: I-Shaped Midline Incision over the Pericardium
14.1.1.4 Step IV: Development of a Dissection Plane Between the Pericardium and the Heart
14.1.1.5 Step V: Creation of Anterior Pericardial Flap on the Left Side and Its Division in Two Halves
14.1.1.6 Step VI: Mobilisation of Diaphragmatic Pericardium and Release of Left Ventricular Apex
14.1.1.7 Step VII: Excision of Diaphragmatic Pericardium
14.1.1.8 Step VIII: Creation of Pericardial Flap on Right Side, and Division in Two Halves
References
Chapter 15: The Operation: Radical Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification)
15.1 Technical Details to Facilitate Radical Pericardiectomy Via Anterolateral Thoracotomy [1–5]
15.1.1 The Operation
15.1.1.1 Step I: Operative Approach
15.1.1.2 Step II: Excision of the Thymus and Excessive Fat Overlying the Left Phrenovascular Pedicle and Apex of the Left Ventricle
15.1.1.3 Step III: Development of a New Cleavage Plane Between the Anterior Surface of the Pericardium and Posterior Surface of the Sternum
15.1.1.4 Step IV: Extension of the Dissection Plane beyond the Mid Sternum to the Right Phrenic Neurovascular Pedicle
15.1.1.5 Step V: Dissection of the Diaphragmatic Pericardium and Development of a New Cleavage Plane Between the Diaphragm and Diaphragmatic Pericardium
15.1.1.6 Step VI: Isolation and Mobilization of the Left Phrenic Neuromuscular Pedicle
15.1.1.7 Step VII: Pericardial Dissection Posterior to the Left Phrenic Neurovascular Pedicle
15.1.1.8 Step VIII: Creation of the Anterior Pericardial Flap
15.1.1.9 Step IX: Development of a New Dissection Plane Between the Diaphragm and Diaphragmatic Pericardium
15.2 Useful Maneuvers to Facilitate Pericardiectomy Via Left Anterolateral Thoracotomy
References
Chapter 16: Calcific Constrictive Pericarditis
16.1 Incidence
16.2 Pathogenesis and Disease Progression
16.3 Diagnosis
References
Chapter 17: The Operation: Total Pericardiectomy for Calcific Constrictive Pericarditis via Median Sternotomy Without Cardiopulmonary Bypass
17.1 Surgical Management
17.1.1 Total Pericardiectomy for Calcific Chronic Constrictive Pericarditis Via Median Sternotomy [1–4]
17.1.1.1 The Operation
References
Chapter 18: Incidence and Management of Postoperative Low Cardiac Output Syndrome After Pericardiectomy
18.1 Unresolved Issues and Controversies
18.2 Low Cardiac Output Syndrome: Definition and Recognition
18.2.1 Monitoring and Diagnostics
18.2.2 Management of Low Cardiac Output Syndrome
18.2.3 Optimizing Preload
18.2.4 Manipulating Systolic Function
18.2.5 Manipulating Afterload
18.2.6 Vasopressor Therapy
18.2.7 Role of Positive Pressure Ventilation in Treatment of Low Cardiac Output Syndrome
18.2.8 Mechanical Circulatory Support
18.3 The Timing of Pericardiectomy, Surgical Approaches, Adequacy of Pericardial Resection, and their Relationship to Low Cardiac Output Syndrome
18.4 Conclusions
References
Chapter 19: Cardiopulmonary Bypass and Mechanical Circulatory Assistance in the Management of Pericardiectomy
19.1 Role of Cardiopulmonary Bypass in the Management of Pericardiectomy
19.2 Mechanical Circulatory Support
References
Chapter 20: Specific Disease Entities
20.1 Purulent/Bacterial Pericarditis
20.1.1 Definition
20.1.2 Incidence, Aetiology and Pathophysiology
20.1.3 Clinical Features
20.1.4 Investigations
20.1.5 Management
20.2 Tuberculous Pericarditis
20.2.1 Epidemiology
20.2.2 Pathogenesis
20.2.3 Clinical Characteristics
20.2.4 Tuberculous Pericardial Effusion
20.2.5 Non-calcific and Calcific Constrictive Pericarditis
20.2.6 Effusive-Constrictive Pericarditis
20.2.7 A Systematic Approach to the Diagnosis of Tuberculous Pericardial Effusion
20.2.8 Tuberculous Constrictive Pericarditis
20.3 Treatment
20.3.1 Tuberculous Pericardial Effusion
20.3.2 Tuberculous Constrictive Pericarditis
20.3.3 Effusive-Constrictive Pericarditis
20.3.4 Anti-Tubercular Drugs: Optimal Drug Regimen, Dosing Frequency and Treatment Duration
20.3.5 Role of Corticosteroids
20.3.6 Tuberculous Pericarditis with Concomitant HIV
20.3.7 Effusive-Constrictive Pericarditis
20.3.8 Management
20.3.9 Treatment Based on Aetiology
20.3.10 Treatment Based on Timing of Presentation and Response to Medication
20.3.11 Specific Surgical Manoeuvers in Effusive-Constrictive Pericarditis
20.3.12 Relapsing / Recurrent Pericarditis
20.3.13 Treatment
20.3.14 Occult Constrictive Pericarditis
20.3.15 Evolution and Patterns of Constriction According to Aetiology
References
Chapter 21: Short- and Long-Term Results
21.1 Part 1
21.2 Perioperative Mortality and Low Cardiac Output Syndrome, Long-Term Survival Following Pericardiectomy in the Current Era
21.3 Surgical Approach, Extent of Pericardiectomy and Use of Extracorporeal Circulation
21.4 Constrictive Pericarditis Following Cardiac Transplantation
21.5 Calcific Constrictive Pericarditis and Survival
21.6 Re-Operations Following Pericardiectomy
21.7 Part 2
21.8 Mayo Clinic Series
21.9 Cleveland Clinic Foundation Series
21.10 Stanford Series
21.11 German Series
21.12 Spanish Series
21.13 Chinese Series
21.14 All India Institute of Medical Sciences Series
21.15 Japanese Nationwide Outcome Study
21.16 German Series
21.17 Emory University, Atlanta, Georgia, USA
21.18 The Johns Hopkins Medical Institution, Baltimore, Maryland, USA
21.19 US Nationwide Outcomes Study Following Pericardiectomy
21.20 German Series (Second German Series)
21.21 The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA (Second Johns Hopkins Study)
21.22 Swedish Series
21.23 Christian Medical College and Hospital, Vellore Series, India
21.24 Turkish Series
21.25 Series from Tehran, Iran
21.26 New York Medical Center, USA
21.27 South-African Series
References
Chapter 22: Total Pericardiectomy via Median Sternotomy Without Cardiopulmonary Bypass (Holman and Willett): A Video Presentation
22.1 The Operation (Video 22.1) [1, 2]
22.1.1 Median Sternotomy, Subtotal Thymectomy, Mobilization of Pleural Reflection
22.2 Exposure of Right and Left Phrenic Pedicles
22.3 I-Shaped Midline Incision over the Pericardium
22.4 Development of a Dissection Plane Between Pericardium and Heart
22.5 Development of Pericardial Flap on Left Side
22.6 Mobilization of Diaphragmatic Pericardium and Release of Left Ventricular Apex
22.7 Creation of Pericardial Flap on Right Side
References
Chapter 23: Total Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification): A Video Presentation
23.1 Surgical Steps (Video 23.1) [1–3]
23.1.1 Step I: Patient Positioning and Incision
23.1.2 Step II: Dissection of the Thymus and Removal of Excessive Fat Overlying the Left Phrenovascular Pedicle and Left Ventricular Apex
23.1.3 Step III: Developing a New Dissection Plane Between Anterior Surface of Pericardium and Sternum
23.1.4 Step IV: Extension of Dissection Plane beyond Midsternum to Right Phrenovascular Pedicle
23.1.5 Step V: Mobilization and Isolation of Left Phrenovascular Pedicle
23.1.6 Step VI: Dissection of Pericardium Posterior to Left Phrenovascular Pedicle and Division of the Posterior Pericardium in Two Halves
23.1.7 Step VII: Developing a Dissection Plane Between the Diaphragmatic Pericardium and Diaphragm
23.1.8 Step VIII: Dissection of Pericardium Anterior to Phrenovascular Pedicle
References
Chapter 24: Modified Left Anterolateral Thoracotomy Approach Without Cardiopulmonary Bypass (UKC’s Modification): A Video Presentation on Total Pericardiectomy for Chronic Calcific Constrictive Pericarditis
24.1 Surgical Steps (Videos 24.1 and 24.2) [1–6]
24.1.1 Patient Position and Surgical Incision
24.1.2 Removing Excessive Fat Overlying Left Phrenovascular Pedicle and Left Ventricular Apex
24.1.3 Developing a Dissection Plane Between Anterior Surface of the Pericardium and Sternum
24.1.4 Extending the Dissection Plane Beyond the Sternum
24.1.5 Developing Dissection Plane Between Diaphragm and Diaphragmatic Pericardium
24.1.6 Mobilisation and Isolation of the Left Phrenovascular Pedicle
24.1.7 Dissecting the Pericardium Posterior to the Left Phrenovascular Pedicle
24.1.8 Dissecting the Pericardium Anterior to the Left Phrenovascular Pedicle
24.1.9 Developing a Dissection Plane Between Diaphragm and Diaphragmatic Pericardium
References
Chapter 25: Total Pericardiectomy for Calcific Constrictive Pericarditis via Median Sternotomy Without Cardiopulmonary Bypass: A Video Presentation
25.1 The Operation (Video 25.1) [1–5]
25.1.1 Median Sternotomy, Subtotal Thymectomy, Mobilization of Pleural Reflection
25.2 I-Shaped Midline Incision over the Pericardium
25.3 Piecemeal Removal of Calcific Pericardium and Development of a Dissection Plane Between Pericardium and Heart
25.4 Development of a Pericardial Flap on the Left Side
25.5 Division of the Left-Sided Pericardial Flap in Two Halves
25.6 Excision of the Left Superior Half of the Calcific Pericardium Using a Bone Cutter
25.7 Mobilization of the Diaphragmatic Pericardium and Excision of the Left Inferior Half of the Calcific Pericardium Using a Bone Cutter
25.8 Mobilization of Diaphragmatic Pericardium
25.9 Creation of Pericardial Flap on Right Side
25.10 Irrigation of the Middle Mediastinum and Placement of the Pacing Wires
References
Chapter 26: Unresolved Problems in Chronic Constrictive Pericarditis
References
Index
Recommend Papers

Surgical Treatment of Chronic Constrictive Pericarditis
 9819958075, 9789819958078

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Surgical Treatment of Chronic Constrictive Pericarditis Ujjwal K. Chowdhury Lakshmi Kumari Sankhyan

123

Surgical Treatment of Chronic Constrictive Pericarditis

Ujjwal K. Chowdhury • Lakshmi Kumari Sankhyan

Surgical Treatment of Chronic Constrictive Pericarditis

Ujjwal K. Chowdhury Dept. of Cardiothoracic Surgery All India Institute of Medical Sciences New Delhi, Delhi, India

Lakshmi Kumari Sankhyan Department of Cardiothoracic Surgery All India Institute of Medical Sciences New Delhi, Delhi, India

ISBN 978-981-99-5807-8    ISBN 978-981-99-5808-5 (eBook) https://doi.org/10.1007/978-981-99-5808-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Paper in this product is recyclable.

Dedicated to my mentors in Cardiac Surgery The late Dr. Stanley John, MS, MCh, FIACS, FACS, who educated me in the science and art of the surgical profession, and taught me much about surgical operations. He gifted me unrestricted opportunities to practise and develop my skills and abilities. Prof. Robert H. Anderson, BSc, MD, PhD (Hons), FRCPath, FRCS Edin. (Hons), who continues to provide his unrestricted guidance in my scientific writing. Prof. Panangipalli Venugopal, MS, MCh, who invited me to work in an environment where honesty and doing the right thing are the principles that guide all personal and professional relationships. and The surgeons and staff of All India Institute of Medical Sciences, New Delhi, upon whom its future depends.

Foreword

Pericardiectomy—not a procedure to be taken lightly. “There is a pericardiectomy on the schedule tomorrow. The cardiologist told me that he was reasonably convinced that the patient had constriction by haemodynamics”, the resident said reassuringly to his attending. The attending thought about it and decided not to check the haemodynamic tracings himself. He would leave the decision to the cardiologist, and furthermore he really wasn’t facile with haemodynamic tracings to distinguish pericardial constriction from restrictive cardiomyopathy. What could go wrong with that plan? In fact, a lot could go wrong. Pericardial constriction is a very uncommon condition in developed countries, and apart from surgeons in centres with a specific interest and matching referrals with pericardial disease, pericardiectomy for constriction will, for most surgeons, be a rare procedure. The little narrative above is not meant to be pejorative but to express the concern that a case of “stripping the pericardium for constriction” could be interpreted as unexacting both diagnostically and surgically. This can be far from reality for several reasons and the following are important considerations for cardiac surgeons, and are outlined to provide a knowledge acquisition “checklist” for reading this book which I hope, at a minimum, will give surgeons a much greater degree of confidence dealing with pericardial disease: • while tuberculosis is the commonest cause of pericardial constriction worldwide, that would be an extremely rare cause in developed countries where the mechanisms are increasingly dominated by iatrogenic causes that can make the diagnosis and management even more difficult—post-mediastinal irradiation, following cardiac surgery, cardiac transplantation, and lung transplantation, uraemia, trauma, neoplasms, connective tissue disorders, infection, and idiopathic. • the surgeon must be aware of the pathology and natural history of the three sub-­ types of pericardial constriction—transient constriction, chronic constriction, and effusive constriction, and this distinction is important as it predicates which patients require pericardiectomy and which patients can be placed on medical treatment to reduce inflammation with the possibility of resolution of the process and proceed with surgery if this strategy proves unsuccessful. vii

viii

Foreword

• making the distinction between pericardial constriction and restrictive cardiomyopathy is vitally important as the therapeutic directions are very different. A pericardiectomy performed in a patient with restriction misdiagnosed as constriction may well have a fatal outcome, or a challenging postoperative course with no prospect of improvement. • multimodal imaging of the pericardium and the heart provides important clues to the distinction between constriction and restriction as well as sub-typing the type of constriction. • it is very important that surgeons can independently identify the haemodynamic phenomena characteristic of constriction—exaggerated ventricular interdependence and dissociation of intracardiac and intrathoracic pressures—and understand the precision with which these hemodynamic measurements must be made at catheterization to deliver the most sensitive and specific markers of constriction. It is important to be aware that these haemodynamic phenomena can at times be quite subtle and the final diagnosis will depend on the interpretation of all available clinical and investigational information. • the distinction between constriction and restriction becomes particularly tricky when features of both coexist, which is a situation that may be seen particularly after cardiac transplantation and mediastinal radiation. • the arguments for the surgical approach (median sternotomy versus anterolateral thoracotomy), the extent of pericardial removal (“phrenic to phrenic” pericardiectomy versus total pericardiectomy), and the reasons for occasionally requiring cardiopulmonary bypass must be appreciated by surgeons undertaking this procedure. • the postoperative management of patients after pericardiectomy is usually quite straightforward but on occasions can be very challenging, especially when there is coexisting cardiac disease and some degree of underlying restrictive cardiomyopathy. • the long-term outcome after pericardiectomy is usually determined by the underlying cause of the constriction. Every so often, the cardiac surgical community is fortunate to have a genuine expert in a particular disease and its surgical management wrap up what is known about the subject, underpinned by a unique surgical experience and make this available to us all in a book from which all cardiac surgeons, and cardiologists for that matter, can benefit. That is what Dr. Chowdhury and his co-authors have done. The book covers all aspects of the disease and its management and will be an invaluable, authoritative reference, particularly for surgeons faced with some of the diagnostic and surgical conundrums outlined above (all addressed in this book), which can make this disease challenging. Having surgical videos as part of the book is especially useful, not only for surgeons facing an unfamiliar procedure but particularly for cardiac surgical trainees. We should be very grateful that Dr. Chowdhury has gone to considerable trouble to write this book. David McGiffin, MBBS, FRACS, DMedHS Cardiothoracic Surgery & Transplantation Professor of Cardiothoracic Surgery Monash University, Australia

Preface

First described 300 years ago as concertio cordis, chronic constrictive pericarditis commands substantial clinical interest because the disease continues to elude clinicians, mimicking restrictive cardiomyopathy, endomyocardial fibrosis, and chronic liver disease. Unlike other diseases linked to underdevelopment and inflammation, such as rheumatic heart disease, aortoarteritis, and endomyocardial fibrosis, which have shown a decrease in the prevalence with socio-economic development, constrictive pericarditis has not shown a declining trend. This condition has posed a diagnostic dilemma since it was first recognized clinically. Although many diagnostic approaches have become available subsequently, the diagnostic challenge remains. Now, with two-dimensional and Doppler echocardiography, other causes of right heart failure can be diagnosed or excluded. Imaging methods such as computed tomography and magnetic resonance imaging can measure pericardial thickness, which is usually increased in patients with constrictive pericarditis. Constrictive pericarditis can, however, occur in a substantial percentage of patients with normal pericardial thickness as well. The evolving aetiology of chronic constrictive pericarditis in the past few decades has led to diagnostic uncertainties. Specific major causes to be ruled out are tubercular pericarditis, neoplastic pericarditis, and pericarditis associated with a systemic disease including autoimmune disease. Tuberculosis continues to be the leading cause of chronic constrictive pericarditis in developing countries, with a reported incidence of 38–83%. Due to the emergence of drug-resistant strains of tuberculosis in association with AIDS, the prevalence has increased to more than 90%. Tubercular pericarditis may present with dense fibrosis without direct evidence of tuberculosis, similar to other aetiologies of chronic constrictive pericarditis. The advent of antitubercular chemotherapy brought down the mortality from 90% to 40%. While proven tubercular pericarditis may present with dense fibrosis without direct evidence of tuberculosis, such fibrosis may follow other aetiologies of chronic constrictive pericarditis as well. In developed countries, other causes such as mediastinal radiation and previous open heart surgery continue to dominate. Emerging additional causes include iatrogenic origins such as percutaneous coronary interventions, pacemaker insertion, ix

x

Preface

catheter ablation, and following cardiac transplantation. The prevalence of idiopathic chronic constrictive pericarditis varied from 24% to 61% in Indian studies, depending on the criteria used to diagnose chronic constrictive pericarditis. Thus, patients today have symptoms and signs of right-sided heart failure that are disproportionate to left ventricular dysfunction or valvular heart disease. The challenge is to determine whether abnormalities are caused by pericardial restraint, myocardial restriction, or both. The precise pathogenesis of chronic constrictive pericarditis remains debatable and is scantly investigated. Limited evidence-based data are available to guide the management of pericardial diseases. Diagnostic efforts are worthy if they affect subsequent treatments and prognosis. A targeted aetiology search directed to the commonest causes on the basis of clinical background, epidemiological issues, or specific presentations will prove beneficial. The diagnosis and management of pericardial diseases in general, and chronic constrictive pericarditis in particular, remain challenging because of the vast spectrum of clinical manifestations, coupled with inadequate numbers of patients and clinical data. The American College of Cardiology and the American Heart Association have been silent on the management of pericardial diseases. In 2004, and subsequently in 2015, the European Society of Cardiology published guidelines for the diagnosis and management of pericardial diseases. This condition has posed a diagnostic dilemma since it was first recognized. Misdiagnosis with other disease entities has also not been adequately addressed. No single approach can be used to diagnose all cases of constrictive pericarditis. The diagnostic approach taken should be individualized for every patient. Diagnosis may be made on the basis of history, physical examination, chest radiograph, echocardiography, computed tomography, cardiac magnetic resonance imaging, cardiac catheterization, and visualization of the pericardium. The key diagnostic tool is the clinical suspicion of constrictive pericarditis in a patient with signs and symptoms of right-sided heart failure that are disproportionate to pulmonary or left-sided heart disease. Clinically it is necessary to differentiate constrictive pericarditis from other causes of right-sided heart failure, such as pulmonary embolism, pulmonary hypertension, right ventricular infarction, mitral stenosis, and left ventricular systolic dysfunction. Kussmaul’s sign may be positive but it lacks specificity, as it is also seen in patients with restrictive cardiomyopathy, endomyocardial fibrosis, right ventricular failure, and tricuspid stenosis. In constrictive pericarditis, ascites appears first followed by pedal oedema, known as “ascites precox”. This sequence is among the cardinal features in chronic constrictive pericarditis. Despite improved accuracy of diagnosis with echocardiography, Doppler colour flow mapping, cardiac catheterization, aggressive preoperative stabilization, improvements in cardiac anaesthesia, and intensive care, the surgical mortality of pericardiectomy continues to be high, with reports ranging from 6% to 19%. In 2005, we reported worse outcomes of pericardiectomy in patients with preoperative high right atrial pressure higher than 24 mmHg, hyperbilirubinemia, renal dysfunction, atrial fibrillation, and pericardial calcification.

Preface

xi

The idea of resecting the pericardium for constrictive pericarditis dates back to 1898, when Delorme first suggested it. The German group Rehn and Sauerbruch in 1913 performed successful pericardial resection for constrictive pericarditis through a left anterolateral thoracotomy approach. The operative approaches used by Churchill, and later by Harrington, are now of historical interest. Surgical approaches for pericardiectomy include left anterolateral thoracotomy, median sternotomy, a U-incision with the base of “U” at the left sternal border (Harrington’s approach), and bilateral anterolateral thoracotomy. Despite experience spanning over 100 years, there is no foolproof formula in the published literature that can be used in selecting an optimal approach for a given patient. The literature is rife with examples of patients with constrictive pericarditis having been treated by pericardiectomy by either left anterolateral thoracotomy or median sternotomy. Despite the effectiveness of surgical therapy for the treatment of constrictive pericarditis, there are disparate opinions regarding the role of corticosteroids in the treatment of tubercular pericarditis, the timing of the operation, the issue of a surgical approach, extent of decortication, and the requirement of cardiopulmonary bypass. The operative tactics and techniques applied to pericardial excision do not as yet match the pleomorphic pathology and pathophysiology presented by individual patients. This is illustrated by the variety of surgical approaches advanced, suggesting a degree of inconsistency in surgical management. The efficacy of pericardiocentesis in preventing chronic constrictive pericarditis in pericardial effusion (serous or haemorrhagic) has been inadequately investigated. The problems of perioperative diagnostic error have also not been adequately addressed in the surgical literature, despite known difficulties in differentiating patients with restrictive cardiomyopathy from those with constriction. Reports addressing the issue of surgical approach, the extent of pericardiectomy, and postoperative haemodynamics are limited and controversial. The terms “radical”, “total”, “extensive”, “complete”, “subtotal”, “adequate”, “near-total”, and “partial” pericardiectomy also have been variably used in the literature to describe the procedure to be performed, often without precise definition of the limits of pericardial resection. Published reports attest to the unpredictable and variable pattern of constrictive pericarditis, and lend support to radical decortication. In view of the multitude of surgical approaches and strategies, it first seemed attractive to ask for contributions from authorities in the field. We prefer, however, to present a unified concept for the non-operative, operative, and perioperative management of pericardial constriction. The decision to create this monograph was based on the belief that surgery for chronic constrictive pericarditis is safe and reproducible. It is, therefore, teachable. We recognize that the techniques and concepts of others may be different from ours and may give results that are as good. Yet we are confident that the concepts and techniques reflected in this monograph, learned carefully and followed meticulously, will deliver excellent results from the surgical treatment of chronic constrictive pericarditis in the hands of any surgeon who wishes to apply them.

xii

Preface

No single laboratory test or diagnostic finding should be considered pathognomonic of chronic constrictive pericarditis. A combination of clinical and investigative results should be thoughtfully analysed to diagnose this disease entity. Surgical treatment of chronic constrictive pericarditis commences with the pericardial anatomy, terminology, and history of pericardiectomy. This is followed by multiple sections dealing with the essentials for the surgeon-scholar who wishes for a basic understanding of this fascinating and multifaceted problem. It includes chapters on the incidence and varied country-specific aetiologic spectrum, as well as the morphologic and pathogenetic aspects of the disease. The series of chapters devoted to surgery are introduced by a discussion on decision-making on the timing of pericardiectomy, extent of surgical resection with or without extracorporeal support, and valid justifications of different surgical approaches. The techniques of pericardiectomy are described in detail, with operative photographs and surgical videos, framed by recommendations for perioperative management. State-of-the-art technology and the latest in surgical techniques are also discussed. In the final chapters, we present the results of pericardiectomy emanating from major surgical centres across the globe, and what we consider adequate long-­ term patient follow-up. A note of caution: diagrams do not bleed. There exist a substantial difference between conceptualization of an operation and its expeditious accomplishment. On reading this monograph, he astute reader will appreciate that a direct and unswerving attack on the surgical pathology and judicious surgical dissection are paramount for a successful surgical outcome. The extent of contribution by researchers dealing with this disease is reflected in the large bibliography of this monograph. Through the usual scientific channels, all of us have pooled our knowledge in such a way that we have stood upon each other’s shoulders in preparing this manuscript. We have taken utmost precautions to confirm the accuracy of the information presented and to describe generally accepted practices. The authors, editors, and publisher are not, however, responsible for errors or omissions in, or for any consequences from application of, the information in this book, and make no warranty, expressed or implied, with respect to the currency, completeness, or accuracy of the contents of the publication. Application of this information in a particular situation remains the professional responsibility of the practitioner. The authors, editors, and publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accordance with current recommendations and practice at the time of publication. In view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage, and for added warnings and precautions. This is particularly important when the recommended agent is a new or infrequently employed drug. Some drugs and medical devices presented in this manuscript have Food and Drug Administration (FDA) clearance for limited use in restricted research settings. It is the responsibility of the health care provider to ascertain the FDA status of each drug or device planned for use in their clinical practice.

Preface

xiii

We have sought to maintain a standard style throughout the text avoiding abbreviations, introducing colour illustrations throughout the text, and closing each of the chapters with a complete list of references. We hope that you, the reader, share our own enthusiasm as you make your way through its pages. This book is humbly submitted to all members of the medical profession as a summary of conclusions which we have drawn from the greatest of teachers—the personal experience. New Delhi, India New Delhi, India 

Ujjwal K. Chowdhury Lakshmi Kumari Sankhyan

Acknowledgements

Ujjwal Kumar Chowdhury thanks his wife Sanjukta, his two daughters Priyanka and Sreenita, and his son Abhishek, for their constant unwavering support and their gift of many hours labour spent in preparing the book for publication. After they achieve advanced professional education, I encourage them to pursue a lifetime scholarship. Lakshmi Kumari Sankhyan acknowledges her parents (Shri Rakesh Kishore and Smt. Chinta Devi) and her daughter Anayesha, whose support served as a constant reminder of life’s most important attributes. Ujjwal Kumar Chowdhury is greatly indebted to Associate Editor, Lakshmi Kumari Sankhyan, for putting in the time, energy, and effort that were required for the preparation of this textbook. Most grateful thanks go to Prof. Robert H. Anderson, a long-time colleague and long-term friend who piloted, provided unwavering support, and stirred this project to its worthy end. Special appreciation is given to Mr. Shubroto Bhattacharjee, BTech (Hons), IIT Bombay (an Audio Engineer), for his attention to detail, editing skills, and the extra effort to bring it to completion. We wish to express our sincere thanks and gratitude to Dr. Niraj Nirmal Pandey DM (Cardiac Radiology) for providing us detailed information with computed tomography and magnetic resonance images. We are especially indebted to all the cardiologists in the Department of Cardiology, All India Institute of Medical Sciences, New Delhi, in particular Prof. Sundeep Mishra, Prof. Rajeev Narang, Prof. Sandeep Seth, Prof. S. Ramakrishnan, Prof. Nitish Naik, and Prof. Gautam Sharma, for providing unstinting support in the diagnostic evaluation of the patients in this study. We would like to thank Dr. Niwin George, Dr. Suruchi Hasija, and Dr. Shikha Goja for their skilful contributions to this beautifully crafted book. We also express a huge debt of gratitude to Mr. Sanjay Kumar and the Centre for Medical Education and Technology, All India Institute of Medical Sciences, New Delhi, for preparing the video and photographic illustrations.

xv

xvi

Acknowledgements

We are grateful to the Editorial Staff at Springer, in particular Mr. Grant Weston, who were instrumental in the editing process, providing excellent, valuable recommendations. The unique talent of Mr. Shankar Sharma is gratefully acknowledged. He worked endless hours over a 4-year period to prepare the manuscript.

Contents

1

Anatomy, Histology, Applied Anatomy, and Physiology of the Human Pericardium��������������������������������������������   1 1.1 Anatomy����������������������������������������������������������������������������������������������   1 1.2 Fibrous Pericardium����������������������������������������������������������������������������   1 1.3 Serous Pericardium ����������������������������������������������������������������������������   2 1.4 Pericardial Recesses and Sinuses��������������������������������������������������������   5 1.5 The Pericardial Lines of Reflection Localized Around the Aorta and Pulmonary Trunk����������������������������������������������������������   5 1.6 The Pericardial Reflection Line Around the Venous Pole of the Heart ��������������������������������������������������������������������������������   5 1.7 The Superior Aortic Recess����������������������������������������������������������������   5 1.8 Transverse Pericardial Sinus ��������������������������������������������������������������   6 1.9 The Oblique Pericardial Sinus������������������������������������������������������������   6 1.10 Number of Pulmonary Veins��������������������������������������������������������������   6 1.11 Postcaval Recess (PCR)����������������������������������������������������������������������   6 1.12 Pulmonary Venous Recesses (Left and Right Pulmonary Venous Recesses)��������������������������������������������������������������������������������   7 1.13 Vascular Supply, Lymphatic Drainage, and Innervation��������������������   7 1.14 Innervation������������������������������������������������������������������������������������������   8 1.15 Histology and Ultrastructural Features of Normal Pericardium ��������   8 1.16 Physiology of Pericardium������������������������������������������������������������������  11 1.17 Mechanical Effects of Pericardium����������������������������������������������������  11 1.18 Reflex Effects��������������������������������������������������������������������������������������  12 1.19 Membranous Effects of Pericardium��������������������������������������������������  12 1.20 Metabolic Effects of Pericardium ������������������������������������������������������  12 1.21 Epicardial Fat��������������������������������������������������������������������������������������  12 1.22 Ligamentous Effects of Pericardium��������������������������������������������������  13 1.23 Imaging Techniques of the Pericardium, Pericardial Sinuses and Recesses��������������������������������������������������������������������������  13 1.24 Applied Anatomy of Autologous Pericardium������������������������������������  15 References����������������������������������������������������������������������������������������������������  16 xvii

xviii

Contents

2

History��������������������������������������������������������������������������������������������������������  23 References����������������������������������������������������������������������������������������������������  25

3

Definition����������������������������������������������������������������������������������������������������  29 3.1 Chronic Constrictive Pericarditis with Normal Thickness of the Pericardium������������������������������������������������������������������������������  29 References����������������������������������������������������������������������������������������������������  30

4

Aetiological Search������������������������������������������������������������������������������������  35 References����������������������������������������������������������������������������������������������������  37

5

Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis����������������������������������������������������������������������������  45 5.1 Salient Hemodynamic Features of Chronic Constrictive Pericarditis����������������������������������������������������������������������  59 References����������������������������������������������������������������������������������������������������  61

6

 Pathophysiology of Chronic Constrictive Pericarditis ��������������������������  69 6.1 Dissociation of Intrapericardial and Intrathoracic Pressures��������������  70 6.2 Exaggerated Ventricular Interdependence������������������������������������������  70 6.3 Fluid Retention in Chronic Constrictive Pericarditis��������������������������  76 References����������������������������������������������������������������������������������������������������  77

7

Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy ��������������������������������������������������������������������  81 7.1 Clinical Challenges and Diagnostic Dilemma������������������������������������  81 7.2 Physical Examination��������������������������������������������������������������������������  82 7.3 Laboratory Investigation ��������������������������������������������������������������������  83 7.4 Electrocardiogram������������������������������������������������������������������������������  83 7.5 Chest Radiography, Echocardiography, Multimodality Imaging, Cardiac Catheterization Studies������������������������������������������  84 7.6 Endomyocardial Biopsy����������������������������������������������������������������������  84 References����������������������������������������������������������������������������������������������������  84

8

Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis����������������������������������������������������������������������������  89 8.1 Chest Radiography������������������������������������������������������������������������������  89 8.1.1 Overview of Specific Imaging Modalities������������������������������  92 8.2 Echocardiography ������������������������������������������������������������������������������  93 8.3 Computed Tomography���������������������������������������������������������������������� 108 8.3.1 Pericardial Structural Evaluation�������������������������������������������� 109 8.3.2 Cardiac Magnetic Resonance Imaging in Chronic Constrictive Pericarditis���������������������������������������������������������� 112 8.3.3 Scout Images�������������������������������������������������������������������������� 117 8.3.4 Real Time Cine Steady-State Free Precision Imaging������������ 117 8.3.5 Myocardial Tagging with Spatial Modulation of Magnetization ������������������������������������������������������������������������ 120 8.3.6 T1 and T2 Weighted Images �������������������������������������������������� 120

Contents

xix

8.3.7 T2-Weighted Triple Inversion Fast Spin-Echo and STIR Imaging������������������������������������������������������������������������� 120 8.3.8 Early Post Contrast T1-Weighted Fast Spin-Echo Imaging ���������������������������������������������������������������������������������� 120 8.3.9 Delayed Enhancement Imaging���������������������������������������������� 120 8.3.10 Velocity-Encoded Phase-Contrast Imaging���������������������������� 121 8.4 Cardiac Catheterization Haemodynamics������������������������������������������ 127 8.5 Radionuclide Ventriculography���������������������������������������������������������� 129 References���������������������������������������������������������������������������������������������������� 130 9

Diseases Mimicking Constrictive Pericarditis: Salient Features and Novel Strategies of Management �������������������������������������� 143 9.1 Introduction���������������������������������������������������������������������������������������� 143 9.1.1 Clinical Features �������������������������������������������������������������������� 143 9.1.2 Echo Doppler Signs of Constriction �������������������������������������� 144 9.1.3 Cardiac Computed Tomography �������������������������������������������� 145 9.1.4 Cardiac Magnetic Resonance�������������������������������������������������� 145 9.1.5 Cardiac Catheterization Data�������������������������������������������������� 146 9.2 Endomyocardial Fibrosis�������������������������������������������������������������������� 146 9.2.1 Definition�������������������������������������������������������������������������������� 146 9.2.2 Epidemiology�������������������������������������������������������������������������� 146 9.2.3 Causation: Evolving Concepts������������������������������������������������ 146 9.2.4 Cardiac Lesions���������������������������������������������������������������������� 148 9.2.5 Clinical Presentation �������������������������������������������������������������� 149 9.2.6 Right Ventricular Endomyocardial Fibrosis���������������������������� 149 9.2.7 Left Ventricular Endomyocardial Fibrosis������������������������������ 149 9.3 Investigations�������������������������������������������������������������������������������������� 150 9.3.1 Chest Radiography and Fluoroscopy�������������������������������������� 150 9.3.2 Electrocardiogram������������������������������������������������������������������ 150 9.3.3 Echocardiogram���������������������������������������������������������������������� 150 9.3.4 Cardiac Magnetic Resonance Imaging ���������������������������������� 150 9.3.5 Haemodynamics and Angiographic Studies �������������������������� 151 9.3.6 Endomyocardial Biopsy���������������������������������������������������������� 151 9.3.7 Treatment�������������������������������������������������������������������������������� 151 9.3.8 Results������������������������������������������������������������������������������������ 152 9.4 Cardiac Amyloidosis�������������������������������������������������������������������������� 152 9.4.1 Definition�������������������������������������������������������������������������������� 152 9.4.2 Classification�������������������������������������������������������������������������� 152 9.4.3 Incidence �������������������������������������������������������������������������������� 152 9.4.4 Pathophysiology���������������������������������������������������������������������� 152 9.4.5 Primary AL Amyloidosis�������������������������������������������������������� 153 9.4.6 Familial Amyloidosis�������������������������������������������������������������� 153 9.4.7 Senile Systemic Amyloidosis�������������������������������������������������� 153 9.4.8 Clinical Presentation �������������������������������������������������������������� 154 9.4.9 Diagnosis�������������������������������������������������������������������������������� 154

xx

Contents

9.4.10 Treatment�������������������������������������������������������������������������������� 156 9.4.11 Results������������������������������������������������������������������������������������ 157 9.5 Restrictive Cardiomyopathy��������������������������������������������������������������� 158 9.5.1 Definition�������������������������������������������������������������������������������� 158 9.5.2 Aetiology�������������������������������������������������������������������������������� 158 9.5.3 Clinical Presentation �������������������������������������������������������������� 158 9.5.4 Diagnosis�������������������������������������������������������������������������������� 158 9.5.5 Treatment�������������������������������������������������������������������������������� 162 9.6 Sarcoidosis������������������������������������������������������������������������������������������ 162 9.6.1 Clinical Features and Diagnosis��������������������������������������������� 162 9.6.2 Investigations�������������������������������������������������������������������������� 163 9.6.3 Treatment�������������������������������������������������������������������������������� 163 9.7 Cardiac Hemochromatosis������������������������������������������������������������������ 164 9.8 Budd-Chiari Syndrome ���������������������������������������������������������������������� 164 9.8.1 Definition�������������������������������������������������������������������������������� 164 9.8.2 Epidemiology�������������������������������������������������������������������������� 165 9.8.3 Aetiology�������������������������������������������������������������������������������� 165 9.8.4 Secondary Budd-Chiari Syndrome ���������������������������������������� 165 9.8.5 Primary Budd-Chiari Syndrome �������������������������������������������� 166 9.8.6 Clinical Manifestations ���������������������������������������������������������� 166 9.8.7 Natural History����������������������������������������������������������������������� 166 9.9 Diagnostic Procedures������������������������������������������������������������������������ 167 9.9.1 Sonography ���������������������������������������������������������������������������� 167 9.9.2 Computed Tomography���������������������������������������������������������� 167 9.9.3 Magnetic Resonance Imaging������������������������������������������������ 167 9.9.4 Angiography �������������������������������������������������������������������������� 168 9.9.5 Percutaneous Liver Biopsy ���������������������������������������������������� 168 9.10 Therapeutic Procedures���������������������������������������������������������������������� 168 9.10.1 Underlying Risk Factors for Thrombosis������������������������������� 168 9.10.2 Anticoagulation Therapy�������������������������������������������������������� 169 9.10.3 Thrombolysis�������������������������������������������������������������������������� 169 9.10.4 Percutaneous Transluminal Angioplasty�������������������������������� 169 9.10.5 Surgery������������������������������������������������������������������������������������ 169 9.10.6 Surgical Factors���������������������������������������������������������������������� 170 9.10.7 Current Treatment Strategy���������������������������������������������������� 170 9.10.8 Current Outcomes ������������������������������������������������������������������ 170 References���������������������������������������������������������������������������������������������������� 171 10 D  efinitions of The Extent of Pericardiectomy, Echocardiographic Variables, Outcome Variables, Haemodynamic Studies, and Normal Acceptable Values ��������������������������������������������������������������  187 10.1 Echocardiographic and Tissue Doppler Imaging Studies ���������������� 188 10.2 Strain by Speckle Tracking �������������������������������������������������������������� 189 10.3 Low Cardiac Output Syndrome: Definition and Recognition���������� 190 10.4 Monitoring and Diagnostics�������������������������������������������������������������� 190

Contents

xxi

10.5 Haemodynamics Variables���������������������������������������������������������������� 191 10.6 Serial Semi-Invasive Haemodynamic Monitoring���������������������������� 191 10.7 FloTrac™ Sensor, Vigileo™ Monitor: Edwards Lifesciences, Irvine, CA, USA �������������������������������������������������������� 191 References���������������������������������������������������������������������������������������������������� 192 11 Management  of Chronic Constrictive Pericarditis �������������������������������� 199 References���������������������������������������������������������������������������������������������������� 206 12 Decision-Making  on the Timings of Pericardiectomy, Selection of the Optimal Surgical Approach, Adequacy of Pericardiectomy and Requirement of Cardiopulmonary Bypass��������������������������������������������������������������������������������������������������������� 217 12.1 Anatomical Basis of the Adequacy of Pericardiectomy������������������� 218 12.2 Criteria for Decision-Making on the Indications and Timings for Pericardiectomy, Selection of the Optimal Surgical Approach, Adequacy of Surgical Resection, and Their Relationship to Mortality and Low Cardiac Output Syndrome �������������������������������� 219 12.3 Should Cardiopulmonary Bypass Be Used Routinely while Performing Pericardiectomy? ������������������������������������������������ 223 References���������������������������������������������������������������������������������������������������� 224 13 Radical  Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification): Criteria for Decision-­Making and Selection of the Optimal Surgical Approach ������������������������������������������ 231 13.1 Theoretical Basis������������������������������������������������������������������������������ 231 References���������������������������������������������������������������������������������������������������� 244 14 The  Operation: Total Pericardiectomy via Median Sternotomy Without Cardiopulmonary Bypass (Holman and Willett’s Approach)������������������������������������������������������������������������������������ 247 14.1 Total Pericardiectomy for Chronic Constrictive Pericarditis Via Median Sternotomy: Surgical Steps [1–3] �������������������������������� 247 14.1.1 The Operation ���������������������������������������������������������������������� 247 References���������������������������������������������������������������������������������������������������� 254 15 The  Operation: Radical Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification) ������������������������������������������������������������������ 255 15.1 Technical Details to Facilitate Radical Pericardiectomy Via Anterolateral Thoracotomy [1–5] ���������������������������������������������� 255 15.1.1 The Operation ���������������������������������������������������������������������� 255 15.2 Useful Maneuvers to Facilitate Pericardiectomy Via Left Anterolateral Thoracotomy������������������������������������������������������� 263 References���������������������������������������������������������������������������������������������������� 264

xxii

Contents

16 Calcific Constrictive Pericarditis�������������������������������������������������������������� 265 16.1 Incidence ������������������������������������������������������������������������������������������ 265 16.2 Pathogenesis and Disease Progression���������������������������������������������� 266 16.3 Diagnosis������������������������������������������������������������������������������������������ 268 References���������������������������������������������������������������������������������������������������� 273 17 The  Operation: Total Pericardiectomy for Calcific Constrictive Pericarditis via Median Sternotomy Without Cardiopulmonary Bypass��������������������������������������������������������������������������������������������������������� 281 17.1 Surgical Management ���������������������������������������������������������������������� 281 17.1.1 Total Pericardiectomy for Calcific Chronic Constrictive Pericarditis Via Median Sternotomy [1–4] ������ 281 References���������������������������������������������������������������������������������������������������� 299 18 Incidence  and Management of Postoperative Low Cardiac Output Syndrome After Pericardiectomy������������������������������������������������ 301 18.1 Unresolved Issues and Controversies����������������������������������������������� 301 18.2 Low Cardiac Output Syndrome: Definition and Recognition���������� 304 18.2.1 Monitoring and Diagnostics�������������������������������������������������� 304 18.2.2 Management of Low Cardiac Output Syndrome������������������ 305 18.2.3 Optimizing Preload �������������������������������������������������������������� 306 18.2.4 Manipulating Systolic Function�������������������������������������������� 308 18.2.5 Manipulating Afterload�������������������������������������������������������� 308 18.2.6 Vasopressor Therapy ������������������������������������������������������������ 309 18.2.7 Role of Positive Pressure Ventilation in Treatment of Low Cardiac Output Syndrome���������������������������������������� 310 18.2.8 Mechanical Circulatory Support ������������������������������������������ 310 18.3 The Timing of Pericardiectomy, Surgical Approaches, Adequacy of Pericardial Resection, and their Relationship to Low Cardiac Output Syndrome���������������������������������������������������� 310 18.4 Conclusions�������������������������������������������������������������������������������������� 313 References���������������������������������������������������������������������������������������������������� 314 19 Cardiopulmonary  Bypass and Mechanical Circulatory Assistance in the Management of Pericardiectomy�������������������������������� 321 19.1 Role of Cardiopulmonary Bypass in the Management of Pericardiectomy�������������������������������������������������������������������������������� 321 19.2 Mechanical Circulatory Support ������������������������������������������������������ 324 References���������������������������������������������������������������������������������������������������� 326 20 Specific Disease Entities���������������������������������������������������������������������������� 329 20.1 Purulent/Bacterial Pericarditis���������������������������������������������������������� 329 20.1.1 Definition������������������������������������������������������������������������������ 329 20.1.2 Incidence, Aetiology and Pathophysiology�������������������������� 329 20.1.3 Clinical Features ������������������������������������������������������������������ 330 20.1.4 Investigations������������������������������������������������������������������������ 330 20.1.5 Management�������������������������������������������������������������������������� 330

Contents

xxiii

20.2 Tuberculous Pericarditis������������������������������������������������������������������� 330 20.2.1 Epidemiology������������������������������������������������������������������������ 330 20.2.2 Pathogenesis�������������������������������������������������������������������������� 331 20.2.3 Clinical Characteristics �������������������������������������������������������� 332 20.2.4 Tuberculous Pericardial Effusion������������������������������������������ 332 20.2.5 Non-calcific and Calcific Constrictive Pericarditis�������������� 332 20.2.6 Effusive-Constrictive Pericarditis ���������������������������������������� 333 20.2.7 A Systematic Approach to the Diagnosis of Tuberculous Pericardial Effusion������������������������������������������ 333 20.2.8 Tuberculous Constrictive Pericarditis ���������������������������������� 335 20.3 Treatment������������������������������������������������������������������������������������������ 336 20.3.1 Tuberculous Pericardial Effusion������������������������������������������ 336 20.3.2 Tuberculous Constrictive Pericarditis ���������������������������������� 336 20.3.3 Effusive-Constrictive Pericarditis ���������������������������������������� 338 20.3.4 Anti-Tubercular Drugs: Optimal Drug Regimen, Dosing Frequency and Treatment Duration�������������������������� 338 20.3.5 Role of Corticosteroids �������������������������������������������������������� 339 20.3.6 Tuberculous Pericarditis with Concomitant HIV������������������ 339 20.3.7 Effusive-Constrictive Pericarditis ���������������������������������������� 340 20.3.8 Management�������������������������������������������������������������������������� 341 20.3.9 Treatment Based on Aetiology���������������������������������������������� 342 20.3.10 Treatment Based on Timing of Presentation and Response to Medication�������������������������������������������������������� 342 20.3.11 Specific Surgical Manoeuvers in Effusive-Constrictive Pericarditis���������������������������������������������������������������������������� 342 20.3.12 Relapsing / Recurrent Pericarditis���������������������������������������� 343 20.3.13 Treatment������������������������������������������������������������������������������ 344 20.3.14 Occult Constrictive Pericarditis�������������������������������������������� 344 20.3.15 Evolution and Patterns of Constriction According to Aetiology������������������������������������������������������������������������������ 345 References���������������������������������������������������������������������������������������������������� 345 21 Short and Long-Term Results ���������������������������������������������������������������� 355 21.1 Part 1 ������������������������������������������������������������������������������������������������ 355 21.2 Perioperative Mortality and Low Cardiac Output Syndrome, Long-Term Survival Following Pericardiectomy in the Current Era���������������������������������������������������������������������������������������� 355 21.3 Surgical Approach, Extent of Pericardiectomy and Use of Extracorporeal Circulation���������������������������������������������������������������� 358 21.4 Constrictive Pericarditis Following Cardiac Transplantation ���������� 359 21.5 Calcific Constrictive Pericarditis and Survival �������������������������������� 360 21.6 Re-Operations Following Pericardiectomy�������������������������������������� 361 21.7 Part 2 ������������������������������������������������������������������������������������������������ 362 21.8 Mayo Clinic Series���������������������������������������������������������������������������� 362 21.9 Cleveland Clinic Foundation Series�������������������������������������������������� 362 21.10 Stanford Series���������������������������������������������������������������������������������� 363

xxiv

Contents

21.11 German Series���������������������������������������������������������������������������������� 363 21.12 Spanish Series ���������������������������������������������������������������������������������� 364 21.13 Chinese Series���������������������������������������������������������������������������������� 364 21.14 All India Institute of Medical Sciences Series���������������������������������� 364 21.15 Japanese Nationwide Outcome Study���������������������������������������������� 368 21.16 German Series���������������������������������������������������������������������������������� 368 21.17 Emory University, Atlanta, Georgia, USA���������������������������������������� 369 21.18 The Johns Hopkins Medical Institution, Baltimore, Maryland, USA �������������������������������������������������������������������������������� 369 21.19 US Nationwide Outcomes Study Following Pericardiectomy���������� 370 21.20 German Series (Second German Series)������������������������������������������ 370 21.21 The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA (Second Johns Hopkins Study)������������������������������ 371 21.22 Swedish Series���������������������������������������������������������������������������������� 371 21.23 Christian Medical College and Hospital, Vellore Series, India�������� 372 21.24 Turkish Series����������������������������������������������������������������������������������� 372 21.25 Series from Tehran, Iran�������������������������������������������������������������������� 373 21.26 New York Medical Center, USA ������������������������������������������������������ 373 21.27 South-African Series������������������������������������������������������������������������ 374 References���������������������������������������������������������������������������������������������������� 374 22 T  otal Pericardiectomy via Median Sternotomy Without Cardiopulmonary Bypass (Holman and Willett): A Video Presentation����������������������������������������������������������������������������������������������  381 22.1 The Operation (Video 22.1) [1, 2]��������������������������������������������������  381 22.1.1 Median Sternotomy, Subtotal Thymectomy, Mobilization of Pleural Reflection��������������������������������������  381 22.2 Exposure of Right and Left Phrenic Pedicles ��������������������������������  381 22.3 I-Shaped Midline Incision over the Pericardium����������������������������  382 22.4 Development of a Dissection Plane Between Pericardium and Heart����������������������������������������������������������������������������������������  382 22.5 Development of Pericardial Flap on Left Side��������������������������������  382 22.6 Mobilization of Diaphragmatic Pericardium and Release of Left Ventricular Apex����������������������������������������������������  382 22.7 Creation of Pericardial Flap on Right Side ������������������������������������  383 References��������������������������������������������������������������������������������������������������  383 23 T  otal Pericardiectomy via Modified Left Anterolateral Thoracotomy Without Cardiopulmonary Bypass (UKC’s Modification): A Video Presentation����������������������������������������  385 23.1 Surgical Steps (Video 23.1) [1–3]��������������������������������������������������  385 23.1.1 Step I: Patient Positioning and Incision������������������������������  385 23.1.2 Step II: Dissection of the Thymus and Removal of Excessive Fat Overlying the Left Phrenovascular Pedicle and Left Ventricular Apex��������������������������������������  385

Contents

xxv

23.1.3 Step III: Developing a New Dissection Plane Between Anterior Surface of Pericardium and Sternum��������������������  386 23.1.4 Step IV: Extension of Dissection Plane beyond Midsternum to Right Phrenovascular Pedicle ����������������������������������������  386 23.1.5 Step V: Mobilization and Isolation of Left Phrenovascular Pedicle ������������������������������������������������������  386 23.1.6 Step VI: Dissection of Pericardium Posterior to Left Phrenovascular Pedicle and Division of the Posterior Pericardium in Two Halves ��������������������������������  386 23.1.7 Step VII: Developing a Dissection Plane Between the Diaphragmatic Pericardium and Diaphragm����������������������  387 23.1.8 Step VIII: Dissection of Pericardium Anterior to Phrenovascular Pedicle ������������������������������������������������������  387 References��������������������������������������������������������������������������������������������������  388 24 M  odified Left Anterolateral Thoracotomy Approach Without Cardiopulmonary Bypass (UKC’s Modification): A Video Presentation on Total Pericardiectomy for Chronic Calcific Constrictive Pericarditis�������������������������������������������������������������� 389 24.1 Surgical Steps (Videos 24.1 and 24.2) [1–6]������������������������������������ 389 24.1.1 Patient Position and Surgical Incision���������������������������������� 389 24.1.2 Removing Excessive Fat Overlying Left Phrenovascular Pedicle and Left Ventricular Apex�������������� 389 24.1.3 Developing a Dissection Plane Between Anterior Surface of the Pericardium and Sternum������������������������������ 390 24.1.4 Extending the Dissection Plane Beyond the Sternum���������� 390 24.1.5 Developing Dissection Plane Between Diaphragm and Diaphragmatic Pericardium�������������������������������������������������� 390 24.1.6 Mobilisation and Isolation of the Left Phrenovascular Pedicle���������������������������������������������������������������������������������� 390 24.1.7 Dissecting the Pericardium Posterior to the Left Phrenovascular Pedicle �������������������������������������������������������� 391 24.1.8 Dissecting the Pericardium Anterior to the Left Phrenovascular Pedicle �������������������������������������������������������� 391 24.1.9 Developing a Dissection Plane Between Diaphragm and Diaphragmatic Pericardium ������������������������������������������ 391 References���������������������������������������������������������������������������������������������������� 392 25 T  otal Pericardiectomy for Calcific Constrictive Pericarditis via Median Sternotomy Without Cardiopulmonary Bypass: A Video Presentation�������������������������������������������������������������������������������  393 25.1 The Operation (Video 25.1) [1–5]��������������������������������������������������  393 25.1.1 Median Sternotomy, Subtotal Thymectomy, Mobilization of Pleural Reflection��������������������������������������  393 25.2 I-Shaped Midline Incision over the Pericardium����������������������������  393

xxvi

Contents

25.3 Piecemeal Removal of Calcific Pericardium and Development of a Dissection Plane Between Pericardium and Heart����������������������������������������������������������������������������������������  394 25.4 Development of a Pericardial Flap on the Left Side����������������������  394 25.5 Division of the Left-Sided Pericardial Flap in Two Halves������������  394 25.6 Excision of the Left Superior Half of the Calcific Pericardium Using a Bone Cutter������������������������������������������������������������������������  394 25.7 Mobilization of the Diaphragmatic Pericardium and Excision of the Left Inferior Half of the Calcific Pericardium Using a Bone Cutter������������������������������������������������������������������������  395 25.8 Mobilization of Diaphragmatic Pericardium����������������������������������  395 25.9 Creation of Pericardial Flap on Right Side ������������������������������������  395 25.10 Irrigation of the Middle Mediastinum and Placement of the Pacing Wires ������������������������������������������������������������������������  395 References��������������������������������������������������������������������������������������������������  396 26 Unresolved  Problems in Chronic Constrictive Pericarditis ������������������ 397 References���������������������������������������������������������������������������������������������������� 399 Index�������������������������������������������������������������������������������������������������������������������� 401

About the Author

Ujjwal Kumar Chowdhury  I, Dr. Ujjwal Kumar Chowdhury, have been a practising academic cardiothoracic surgeon for over 35 years, presently working as Professor and Consultant in the Department of Cardiothoracic and Vascular Surgery at the All India Institute of Medical Sciences, New Delhi, India. AIIMS, New Delhi, is the India’s top most premier quaternary care institute of medical education, training, and research and one of the busiest cardiothoracic centres of South East Asia performing around 4000–4500 open heart surgeries annually. I have performed cardiac surgery from neonatal switches to CABG, Fontan procedures, Bentall procedures, and aortic aneurysm surgeries with equal precision. As a cardiac surgeon, I have performed about 40,000 operations, out of which about 90% cases were open heart operations. The diseases for which open heart surgeries were performed included coronary artery disease in 30% of cases, valvular heart disease in 30% of cases, congenital heart disease including complex lesions in 30%, and miscellaneous including aortic aneurysm repairs in 10%. I perform all cardiac surgeries from neonates to adulthood with an equal precision. I have performed pericardiectomy for chronic constrictive pericarditis in over 300 individuals and have introduced several technical modifications to facilitate surgical resection. I have performed robotic assisted myocardial revascularization on 12 patients with coronary artery disease. After graduating from AFMC, Pune, I have been trained at the very best teaching hospitals in India, namely IPGMER, Kolkata, and Christian Medical College and Hospitals, Vellore. I acquired advanced specialized cardiovascular surgical training at three of Australian finest teaching institutions (Prince Charles Hospital, Brisbane, Australia; Royal Alexandra Hospital for Children, Sydney; and Royal Prince Alfred Hospital, Sydney, Australia). My relentless insistence on uncompromised quality of theatre practices and surgical skills has steered me to my current leadership position. I have described 15 novel operations and laid down 76 new guidelines and new classification of several cardiac disease entities.

xxvii

xxviii

About the Author

My ongoing research into methods, technologies, and surgical techniques was the basis for my 425 research projects including 80 surgical videos and 3506 citations. Five original articles have been selected for journal CME, 1 article has been awarded as the best journal CME activity for Journal of Thoracic and Cardiovascular Surgery and 10 articles have received invited commentary by various world leaders. I am an Editorial Board Member and Guest/Peer reviewer of 278 various indexed international journals. •  MBBS, Armed Forces Medical College, Poona, Maharashtra, India, 1979 • MS in General Surgery with 1st class, Inst. Postgraduate Medical Education and Research, Kolkata, 1984 •  MCh, Christian Medical College, Vellore, Tamil Nadu, India, 1991 •  Diplomate National Board Examinations, New Delhi, 1990 •  Professor, Department of Cardiac Surgery, All India Institute of Medical Sciences, New Delhi, 1996–2022 • Director Professor, Department of Cardiothoracic and Vascular Surgery, National Institute of Medical Sciences and Research, Jaipur, Rajasthan 2022— continuing • Senior Cardiac Surgical Fellow, active member, allograft team, special training in implantation of left ventricular assist devices, Prince Charles Hospital, Brisbane, Australia, 1991–93 • Senior Cardiac Surgical Fellow, Royal Alexandra Hospital for Children, Sydney, 1993–94, Royal Prince Alfred Hospital, Sydney, 1994 • Trained in robotic cardiac surgery, Intuitive Surgical® Da Vinci Surgical System Training Workshop, Sunnyvale, California, 2003. To date • Contributed 475 original articles and 80 surgical videos to numerous indexed cardiac surgical journals • Fellow of Australasian Society of Cardiac and Thoracic Surgeons (Sydney), Indian Association of Cardiothoracic Surgeons (New Delhi), Indian Association of Cardiovascular and Thoracic Surgeons (Life member) • International Member—Society of Thoracic Surgeons (USA) •  Biography Who’s who in Medicine and Health Care, 2009–2010, Iconic Achiever •  Editorial Board Member/Guest/Peer Reviewer in 278 indexed scientific journals Teaching/Research Experience Institution 1. SSKM Hospital and IPGMER, Calcutta 2. SSKM Hospital and IPGMER, Calcutta

Post Held Postgraduate Trainee MS (General Surgery)

From 15.9.1981

To 31.12.1983

Honorary Resident House Officer, Dept. of Cardiothoracic Surgery

1.1.1984

31.12.1984

xxix

About the Author

3. Medical College Research Officer and Medical Hospitals, Calcutta Officer Incharge, Cardiac Cath Lab, Dept of Cardiothoracic Surgery (Teaching post) 4. Christian Medical Non-PG Registrar (Teaching College, Vellore post) 5. Christian Medical MCh trainee (CTVS) College, Vellore After Diplomate National Board CTVS 6. Christian Medical MCh Trainee College, Vellore 7. The Prince Charles Fellow Cardiac Surgery Hospital, Brisbane, (Teaching post) Australia 8. The Royal Fellow Cardiac Surgery Alexandra Hospital (Teaching post) for Children, Sydney, Australia 9. Royal Prince Alfred Fellow Cardiac Surgery Hospital, Sydney, (Teaching post) Australia 10. All India Institute Assistant Professor (Teaching of Medical post), Dept of CTVS Sciences, New Delhi 11. All India Institute Associate Professor (Teaching of Medical post), Dept of CTVS Sciences, New Delhi 12. All India Institute Additional Professor of Medical (Teaching post), Dept of Sciences, New CTVS Delhi 13. All India Institute Professor (Teaching post), of Medical Dept of CTVS Sciences, New Delhi 14. National Institute Director, Professor (Teaching of Medical post), Dept of CTVS Sciences, Jaipur (Including Perfusion (Rajasthan) Technology)

15.1.1985

15.1.1988

16.1.1988

15.1.1989

16.1.1989

15.1.1991

16.5.1990

15.1.1991

1.2.1991

3.1.1993

12.7.1993

10.1.1994

10.1.1994

10.8.1994

17.10.1996 30.06.2003

01.07.2003 23.09.2005

23.09.2005 30.06.2010

01.07.2010 11.11.2022

12.11.2022 Continuing

Chapter 1

Anatomy, Histology, Applied Anatomy, and Physiology of the Human Pericardium

1.1 Anatomy Pericardium is a fibroserous flask-shaped sac that encases the heart and great arteries and veins as they leave or enter the heart [1, 8, 9, 64, 71, 74, 75, 107–109, 114– 116]. The pericardial sac separates the heart from the surrounding mediastinal structures, provides mechanical protection, and also has a hemodynamic effect on the atria and ventricles. The description of “pericardial anatomy” as far as we can establish entered the lexicon of anatomy and physiology in 1835 by RB Todd [121]. It is intriguing to note that the description is still relevant more than 180 years after it was described. Macroscopically, this thin flask-shaped membrane is composed of two interconnected structures: the fibrous, and the serous pericardia, arranged in 3 layers with fluid lining between them [1, 64, 75, 115, 116]. Its development occurs through a process of cavitation of the embryonic body wall by expansion of the secondary pleural cavity, its lateral walls are thus covered by the mediastinal parietal pleura [61, 71].

1.2 Fibrous Pericardium The fibrous pericardium is a roughly conical, closed sac composed of dense interlacing connective tissue, completely surrounding but not attached to the heart. The covering is made of 3 layers of collagen, cross-woven at 120° to each other, thus limiting stretch and ensuring a physical barrier to disease [101, 115, 116]. The fibrous pericardium is anchored to the mediastinum and helps maintain the normal cardiac position. The fibrous pericardium is continuous superiorly with the adventitial covering of great vessels and pretracheal fascia. The neck of the pericardium superiorly is closed by extensions around the great vessels. Inferiorly, it is

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_1

1

2

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

attached through the pericardiophrenic ligaments to central tendon of the diaphragm. Although, diaphragmatic attachment of pericardium mostly consists of fibrous tissue that can be easily isolated or separated, a portion of the pericardium overlying the central tendon is completely fused. Anteriorly, it attaches to the posterior surface of sternum through sternopericardial ligaments that run cephalocaudally from manubrium sterni to sterno-xiphoid junction. Posteriorly, the pericardium lies in contact with major bronchi caudal to carina and close to fibrous fasciae of esophagus and the descending thoracic aorta [1, 8, 9, 64, 71, 74, 75, 107–109, 114–116]. With the descent of the diaphragm during inspiration, the pericardial sac is pulled downward and becomes elongated; thus forcing the heart assume a more vertical position. During expiration, the ascent of the diaphragm relaxes the heart to become more horizontal. The pericardium with its contents comprises the middle mediastinum. The anterior mediastinum is in front of the pericardial sac and posterior mediastinum lies behind it. The mediastinal portion of the parietal pleura invests the lateral surfaces. Pericardium is overlapped and largely obscured anteriorly by bilateral pleural sacs and anterior edges of both lungs, which occupy the sternocostal recesses. Before adolescence, the thymus intervenes between the pericardium and the sternum, but in adults, there is little demonstrable thymic tissue in the anterior mediastinum and the pericardium is in contact with the posterior sternal surface at the level of 4th and 5th left costal cartilages. The pericardiophrenic vessels and phrenic nerves run in a cephalocaudal direction in the form of two bundles along the lateral surface of the heart. These bundles lie anterior to the pulmonary hilum between mediastinal pleura and the fibrous pericardium. Occasionally, a small infracardiac bursa is present behind the pericardium just above the diaphragm. The bursa is a remnant of the embryonic pneumoenteric recess. The ascending aorta, superior caval vein and the pulmonary arteries and veins, receive extensions of the fibrous pericardium; the inferior caval vein traverses the central tendon of the diaphragm, thus has no covering. According to the modalities of assessment, the pericardial thickness varies (~ 0.8–1.0  mm on anatomic specimens, 0.7–1.2 mm on cardiac computed tomography, and 1.5–2.0 mm on cardiac magnetic resonance imaging) [10–14, 65, 128].

1.3 Serous Pericardium The serous pericardium is a continuous sac with a large infold containing the heart. An appropriate analogy for this would be a fist (representing the heart) which is pushed into the side of a deflated balloon (representing the serous pericardium), thus being encased by two individual layers of material. The exterior lining of the serous pericardium is known as the parietal pericardium which is fused with the thick layer of the fibrous pericardium (Fig. 1.1) [17, 18].

1.3  Serous Pericardium

3

Fig. 1.1  Parietal and visceral pericardium. This diagram shows the two components of pericardium: parietal and visceral pericardium. The parietal pericardium comprises of two layers: a serosal layer (thin red line) and a fibrous layer (thicker yellow line). The epicardium or visceral pericardium is a single layer of serosal lining which covers the entire heart (thin red line overlying the myocardium in blue colour). The serosal lining of the visceral and parietal pericardium is a continuous layer of mesothelial cells. The potential space between parietal and visceral pericardium is the pericardial cavity

The visceral pericardium or the epicardium is a thin, transparent, smooth and glossy lamina. It is attached closely to the epicardial surface of the heart and covers coronary tissue containing fat and coronary vessels present in the subepicardial layer. The pericardium completely covers the epicardial surface of both atria and ventricles, except for the left atrial roof, where a sine epicardio area lies corresponding to the atrial venous mesocardium. It also covers the atrial appendages, the intrapericardial part of both caval veins except the superior and inferior postcaval mesocardium. External to serous pericardium lies the parietal pericardium which is fused to the thick layer of fibrous pericardium (Fig. 1.1). The pericardial reflection at some areas, generates recesses and sinuses that are characteristically related with the aortopulmonary great vessels and venous pole of the heart (Figs. 1.2 and 1.3). The pericardial cavity contains pericardial fluid [89, 117, 118]. Ligament of the left superior caval vein or vestigial fold of Marshall is a triangular fold of the visceral pericardium, which descends obliquely from the left pulmonary artery between the left atrial appendage and left superior pulmonary vein. It is a serous layer formed over remnant of the lower part of the left superior caval vein (duct of Cuvier) that remains as a fibrous band between the highest left superior caval vein and left atrium, where it aligns with a small vein known as the vein to the left atrium (or oblique vein of Marshall) which eventually opens into the coronary

4

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

Fig. 1.2 Schematic representation of the pericardial recesses and sinuses (venous side of the heart- Dorsal view. (a) postcaval recess; (b) oblique sinus; (c) left pulmonary venous recess; (d) right pulmonary venous recess; (e) vestigial fold of left superior caval vein; (f) left inferior pulmonary vein)

a

b

c

Fig. 1.3  Volume rendered images: Images (a, b) depicts the areas that are covered by visceral pericardium (area highlighted in green). Volume rendered image (c) depicts the pericardial sinuses and recesses on the venous side of the heart [AA: ascending aorta; LA: left atrium; LAA: left atrial appendage; LBCV: left brachiocephalic vein; LIPV: left inferior pulmonary vein; LPA: left pulmonary artery; LSPV: left superior pulmonary vein; PT: pulmonary trunk; RA: right atrium; RAA: right atrial appendage; RBCA: right brachiocephalic artery; RIPV: right inferior pulmonary vein; RPA: right pulmonary artery; RSPV: right superior pulmonary vein; SCV: superior caval vein]

sinus. Investigators have demonstrated the presence of myocardial and nerve tissue within the ligament of Marshall which have implications in development of supraventricular arrhythmias [84]. On necropsy examination, the vestigial fold of Marshall is absent in 7% of hearts while a patent oblique vein could be identified in about 13% of cases [76].

1.7  The Superior Aortic Recess

5

1.4 Pericardial Recesses and Sinuses The pericardial recesses and sinuses are pericardial cavity dilations present along the lines of reflection between the parietal and visceral pericardium around the aortopulmonary vascular pedicle and venous pole of the heart [9–15, 72, 85, 86, 102– 105]. Several anatomists have described these structures as enunciated under (Figs. 1.2 and 1.3):

1.5 The Pericardial Lines of Reflection Localized Around the Aorta and Pulmonary Trunk The line of reflection around the aortopulmonary vascular pedicle embraces these vessels without penetration and extends from the origin of the brachiocephalic artery. The line of reflection around the aortopulmonary vascular pedicle is shared by these two vessels but is not complete; in fact, the left posterolateral surface of the ascending aorta and the first part of the aortic arch lack the visceral pericardial coating (Fig. 1.3).

1.6 The Pericardial Reflection Line Around the Venous Pole of the Heart The venous pole of the heart is embraced by a single continuous line of reflection, but only the lower third of the superior caval vein is surrounded by the visceral pericardium, while upper two-thirds are extrapericardial.

1.7 The Superior Aortic Recess The visceral-parietal reflection present at the origin of brachiocephalic artery is the highest point of pericardium. The superior aortic recess is a well-defined cavity created by pericardial reflection, situated anterior to trachea and posterior to cranial portion of the ascending aorta. Mediastinal fibrous-fatty tissue in the pre-tracheal location has some subcarinal and inferior para-tracheal lymph nodes [92, 93, 99, 122].

6

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

1.8 Transverse Pericardial Sinus The transverse pericardial sinus is a “narrow horseshoe tunnel” with walls consisting of visceral epicardial mesothelium that embraces the posterior surface of the aortopulmonary vascular pedicle forming the anterior wall and the surface of the anterosuperior part of the left atrium, and the superior caval vein forms the posterior wall of transverse pericardial sinus. The floor of the transverse sinus is formed by the roof of the left atrium. The transverse pericardial sinus has direct communications with other pericardial sinuses and recesses (Figs.  1.2 and 1.3) [79, 121, 126, 130].

1.9 The Oblique Pericardial Sinus The oblique pericardial sinus is located posterior to the left atrium. Its opening is bounded by the two inferior pulmonary veins as described by Gardner, Milhiet, Paturet and Testut [73, 94, 103, 123]. There is variable depth of pulmonary venous recesses based on the extent to which the visceral pericardium invaginates around the superior and inferior pulmonary veins between individual hearts (Figs.  1.2 and 1.3).

1.10 Number of Pulmonary Veins Since different studies give discordant results, incidence of pulmonary venous anomalies remains uncertain. The reported incidence of common left and right pulmonary veins varies between 5.5–25.4% and 1.8–5.5% of cases respectively [17, 18]. The frequent occurrence of variations of pulmonary veins may be explained by the embryology of streeters 19th horizon (embryo 18–20 mm) [71]. At this stage, the atrial wall absorbs the pulmonary venous trunk and its 1st and 2nd order branches. A defect with absorption explains the occurence of a common pulmonary vein or an atrial diverticula. Supernumerary pulmonary veins result from an excess absorption. The pericardial reflection line thus gets altered depending on the degree of absorption [71, 76].

1.11 Postcaval Recess (PCR) The postcaval recess is a cavity behind the superior caval vein which was first described by Allison [3]. It has a triangular opening on the right as described by Milhiet. The dorsal edge of the superior caval vein forms the anterior margin, the

1.13  Vascular Supply, Lymphatic Drainage, and Innervation

7

superior edge of right superior pulmonary vein forms the inferior margin and the superior margin comprises of a fibrous roof between inferior and anterior margins (Figs. 1.2 and 1.3) [94].

1.12 Pulmonary Venous Recesses (Left and Right Pulmonary Venous Recesses) These are the cavities situated between the respective superior and inferior pulmonary veins. Milhiet proposed the terminology in 1956 and Vesely described in 1986 [94, 126]. Their shape changes based on their depth and base, which is the distance between the atrial ending of two pulmonary veins. These recesses may be absent, when there is a common pulmonary vein. It is directly related to carina and esophagus posteriorly. The shape of oblique sinus may vary from a square to triangular or an inverted shape based on the depth and symmetry of right and left pulmonary venous recesses (Figs. 1.2 and 1.3) [17, 104, 105].

1.13 Vascular Supply, Lymphatic Drainage, and Innervation Pericardiophrenic and musculophrenic branches of the right and left internal mammary artery and descending thoracic aorta provide approximately 80% of the arterial supply to the pericardium. Small mediastinal branches originating from the descending thoracic aorta or esophageal or bronchial branches supply the posterior aspect of the pericardium. Branches from superior phrenic and intercostal arteries supply the pericardium inferiorly.. The venous drainage of the pericardium is by pericardiophrenic veins directly or via internal thoracic veins or superior intercostal veins into the brachiocephalic veins. Pericardiophrenic veins may alternately drain into the connections with the inferior phrenic veins which drain into the inferior caval vein [90]. An average of 20–25 ml of pericardial fluid (ranging from 20–60 ml) is present in the pericardial cavity [75]. When lying supine, most of the pericardial fluid gets collected in the transverse sinus and superior aortic recess [89]. Pericardial fluid is formed by the ultrafiltration of plasma by parietal pericardial and epicardial capillaries. The pericardial fluid contains prostaglandins secreted by mesothelial and endothelial cells that modulate cardiac reflexes, myocardial contractile function, and epicardial coronary tone [58, 95, 96]. Lymphatic system present in the parietal pericardium and on the epicardial surface of heart drain the pericardial fluid. Alternate path for pericardial fluid drainage includes anastomosis of pericardial lymphatics with the lymphatics of the epipericardial fat, diaphragm and mediastinal pleura [62]. Cardiac lymphatics play a

8

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

crucial role in cardiac function, such as maintaining fluid balance, removal of extravasated proteins and transport of immune cells [129]. There are two layers of pericardial lymphatic vessels around the parietal pericardium and also within the fat and loose areolar tissue [62]. The anterior sternocostal part of the diaphragm drains laterally towards the phrenic nerves into the diaphragmatic or superior phrenic nodes or at the prepericardial nodes located at the pericardio-­diaphragmatic junction. Inferolateral portion of the pericardium drains into the lateral pericardial nodes, superior portion drains into the tracheobronchial or paratracheal lymph nodes. The posterior pericardium drains into the superior and inferior tracheobronchial lymph nodes. The diaphragmatic pericardium drains via short channels to the lymph nodes at the right border of the caval foramen. Overall, most of the lymphatic drainage of the pericardium is to the right lymphatic and thoracic ducts. Lymphangiogenesis, i.e. the formation of neolymphatic vessels is beneficial in delaying atherosclerotic plaque formation [62, 71, 110]. The pericardial sac acts as a physical barrier which protects against the contiguous spread of neoplasm or infection within the mediastinum. It also provides space for potential targeted drug delivery hence limiting the action and concentration of the drug to the heart [2, 109].

1.14 Innervation The pericardium is well innervated. Pain from the fibrous layer of pericardium and parietal pericardium is mainly mediated by somatic afferents of the left and right phrenic nerves. Pain from the visceral layer of serous pericardium is transmitted along visceral afferent fibres that travel through sympathetic nerves arising from the cervical, upper thoracic and stellate ganglia and traveling to cardiac and aortic plexuses. The pericardium is also innervated by left recurrent laryngeal nerve and vagal fibres via the esophageal plexus. Pericardial pain is characteristically sharp, severe and retrosternal, often increased on lying supine or in left lateral position and relieved on leaning forward, it sometimes radiates to superior border of trapezius muscle. Pericardial inflammation may produce severe somatic pain and may also trigger vagally mediated reflexes.

1.15 Histology and Ultrastructural Features of Normal Pericardium There are three layers identified in pericardial sac: the serosal layer, the fibrosa and an external layer of epipericardial connective tissue. Histologically, the fibrosa of the parietal pericardium comprises predominantly of compact layers of collagen

1.15  Histology and Ultrastructural Features of Normal Pericardium

9

(primarily type 1 and type 3 collagen) interspersed with scant elastin fibres. It is the orientation and abundance of the collagen fibres responsible for the viscoelastic mechanical properties of the pericardium, like stress relaxation, hysteresis and creep. The external bundles tend to have a weaved organization, whereas the fibrous tissue bundles present subjacent to the mesothelium are arranged cephalocaudally, allowing pericardial fibrosa to have some distensibility. The fibrosa contain small vessels which penetrate in an oblique plane and extend for approximately 8  μm (Figs. 1.4a–d and 1.5). Interestingly, bovine pericardium possess only thick fibrous layer and no elastic tissue(Fig. 1.4c, d) [78, 80, 125]. The collagen fibres in humans, are straight at birth, progressively become wavy until young adulthood and with increasing age they progressively straighten. Elastin fibres are highly numerous early in life and become less densely distributed later in life. Although these findings suggest that pericardium becomes less compliant in the elderly, but altered diastolic function in the elderly resulting from increased stiffness of pericardium is unclear [119].

a

b

c

d

Fig. 1.4  Microscopic examination of pericardium: From the human pericardium (a and b) shows outer mesothelial lining, inner thin fibrous layer with presence of congested blood vessels (Arrow). Special stain (MT and VVG [inset]) highlighting the collagen with minimal elastic tissue within it. From the bovine pericardium (c and d) shows only thick fibrous layer with lack of elastic tissue within it. (* represents hyalinization) Special stain highlighting the pericardial collagen (MT and VVG [inset]). H &E: Hematoxylin and eosin stain, MT: Masson trichrome stain (collagen:- Blue colour), VVG: Verhoeff van Gieson stain (Elastic tissue :-Black colour)

10

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

Fig. 1.5  Ultrastructural features of parietal pericardium showing serosal layer of mesothelial cells lining the fibrous layer and pericardial cavity. The fibrous layer comprises of dense wavy collagen fibres seen as thick eosinophilic layer (in left image) and yellow layer (in right image). The arrows represent a few small blood vessels in the parietal pericardium and faint black lines in the fibrosa represent minimal amount of elastic lamellae. Note the layer of epipericardial fat interposed between the fibrosa and mediastinal parietal pleura. The serosal layer of the pleura comprises of a layer of mesothelial cells (×50, H&E and Movat pentachrome)

Pericardial mechanics works on the model of two sets of springs which are arranged in parallels representing thin elastic fibres and thick collagen respectively [111]. Although the elastic springs are compressed by small low pressure effusions, cardiac tamponade compresses the heavier collagen springs, thus resulting in typical steep part of the J-shaped pericardial pressure volume relaxation [75]. The ultrastructural features of visceral pericardium includes a thin layer of loose fibrous tissue that overlies the myocardium. The mesothelial cells cover the adipose tissue in areas with epicardial tissue, while in areas where adipose tissue is absent, the mesothelial cells are in close contact with the myocardium. A narrow submesothelial space about 2 μm thick separates the mesothelium from fibrosa (Fig. 1.5). The outer epipericardial layers have abundant elastic fibres, neural elements, adipose tissue and blood vessels. Rarely, mast cells and mononuclear cells are seen. Electron microscopically, the highly interdigitated mesothelial cells show cell junctions and overlapping desmosomes which allow mesothelium to stretch in diastole and allows changes in surface configuration. There are no anchoring cell junctions such as hemidesmosomes between the basal lamina and mesothelial cells. It is

1.17  Mechanical Effects of Pericardium

11

the cytoskeleton made from fine filamentous bundles which assures mechanical stability [116]. Numerous microvilli and cilia in smaller numbers, protrude from serosal layers, and provide friction bearing surfaces and also increase the surface area for fluid transport. These microvilli measures upto 0.1 μm in width and 3 μm in length. The surface facing the pericardial cavity has pinocytic vesicles. Pericardial fluid is distributed by the sweeping motion of microvilli and cilia so that pericardium is able to accommodate the changes in shape and size of the heart that occurs in a cardiac cycle [75]. In response to an acute injury, the pericardial inflammation is characterised by fluid exudation due to increased vascular permeability, desquamation of mesothelial cells, fibrin and/or inflammatory cells [91]. Inflammatory aggregates and fibrin strands form a layer of granulation tissue, fibroblastic proliferation and neovascularization and on cardiac magnetic resonance imaging presents as pericardial late gadolinium enhancement [131].

1.16 Physiology of Pericardium Although, following pericardiectomy or in instances of congenital agenesis of pericardium, no adverse consequences have been noted, the pericardium indeed serves important functions.

1.17 Mechanical Effects of Pericardium The total pericardial volume comprises of the cardiac volume, the intrapericardial great vessels, and pericardial fluid. The pericardial reserve volume is mainly due to the recesses and sinuses. Due to its inelastic physical properties, cardiac filling particularly of the thin walled right atria and ventricle is constrained by pericardium, and while coupling and interaction and of atria and ventricles is facilitated [77, 111]. Although the right and left ventricular interaction is due to common interventricular septum, pericardium also “couples” the ventricles, tightening their interaction. Cardiac chambers interact normally during diastole, although interactions during systole can also be seen [4]. Pressure volume relations of cardiac chambers is maintained by ventricular interaction thus assuring balance in right and left ventricular output. The relation between pressure and volume of pericardium is non-linear, i.e., initially this relation is flat and develops a “bend” or “knee” when reserve volume of pericardium is outstripped, and assumes a steep slope at termination [75].

12

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

1.18 Reflex Effects Investigators have demonstrated that mechanoreceptors, chemoreceptors, and neuroreceptors present in pericardium alter blood pressure and heart rate in response to distension of ventricles, constituents of pericardial fluid, and pulmonary inflation respectively. These different reflexes provide “pericardial servo mechanisms” thus modulating mechanical properties of pericardium [19, 115].

1.19 Membranous Effects of Pericardium The pericardial fluid equalizes hydrostatic, inertial and gravitational forces on the cardiac surface, so that there are no changes in transmural cardiac pressures during acceleration as well as no difference regionally within each cardiac chamber. Surfactant phospholipids and pericardial fluid help decreasing the epicardial friction. The pericardium prevents the spread of infection from surrounding structures by acting as anatomical barrier [75].

1.20 Metabolic Effects of Pericardium The pericardial mesothelium is metabolically active and in response to pericardial stretching produces prostacyclin, prostaglandin E2, bradykinin, endothelin, eicosanoids and angiotensin II.  These metabolic products modulate cardiac function, arterial tone of coronaries, and sympathetic neurotransmission by inhibitory effect on sympathetic efferent pathway [96, 115, 124]. Additionally, prostacyclin inhibits platelet aggregation; thus preventing clotting of the intrapericardial blood and coronary thrombosis. Pericardial fluid contains higher levels of brain natriuretic peptide and atrial natriuretic peptide than in the plasma. Brain natriuretic peptide is an accurate and sensitive indicator of ventricular pressure and volume and may act in an autocrine-paracrine manner to modify cardiac failure-induced ventricular remodeling [124]. Complement factors and other immune-related products are normally present in pericardium, and increased in immune mediated pericarditis. [58, 96, 114, 115, 124, 129]

1.21 Epicardial Fat Investigators have demonstrated epicardial fat as a cardiovascular risk marker associated with various cardiovascular risk factors, namely, age, obesity, diabetes and hypertension [10]. Its molecular and biochemical properties are different from

1.23  Imaging Techniques of the Pericardium, Pericardial Sinuses and Recesses

13

pericardial fat located outside parietal pericardium also known as mediastinal, paracardial or intrathoracic fat. Epicardial fat is nourished from the coronary arteries while pericardiophrenic artery supplies pericardial fat. The functions of epicardial fat include regulation and local distribution of vascular flow; mechanical and inflammatory protection of coronary arteries and myocardium; acts as an immune barrier and provides fatty acids for myocardium during high demand; and exerts thermogenic effects. It helps in metabolism of glucose-insulin and triglyceride, acts as source of anti-inflammatory and proinflammatory cytokines, and low-grade chronic inflammation. Epicardial fat may accelerate process of atherosclerosis by enhancing smooth muscle cell proliferation, endothelial dysfunction, plaque instability and increased oxidative stress [10, 58, 96, 114, 115, 124, 129].

1.22 Ligamentous Effects of Pericardium Diaphragmatic and pericardiosternal ligaments act by preventing excessive torsion and limiting displacement of pericardium and its contents within the thorax and neutralize the effects change of body position and respiration [87]. These attachments also contribute to the compliance of pericardial pressure volume relation [65].

1.23 Imaging Techniques of the Pericardium, Pericardial Sinuses and Recesses Pericardial imaging modalities provide information on morphological features of pericardium and cardiac structures and cardiac functional assessment secondary to pericardial involvement, particularly cardiac filling. Although cardiac magnetic resonance in conjunction with computed tomography imaging are the preferred modalities for demonstration of pericardial morphology and pericardial sinuses and recesses, cardiac magnetic resonance alone can substantially aid in assessment of pericardial morphology and functional assessments [11–16]. Cardiac computed tomography has good spatial and temporal resolution, a wide field of view, and multiplanar reconstructive abilities. On computed tomography, pericardium is seen as thin hypodense, curvilinear line covering the heart [89, 93, 97, 112, 117, 118]. Computed tomography is highly accurate in estimating pericardial thickness, pericardial calcification, localized pericardial effusion, pericardial collection and mass and asymmetric pericardial thickening. However, computed tomography is associated with radiation-induced complications and iodinated contrast usage. Additionally, functional evaluation is limited unless a ECG-gated study is performed. Furthermore, computed tomographic imaging may be challenging in arrhythmia and patients with poor breath holding [112, 127].

14

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

Cardiac magnetic resonance has the advantages of being non-invasive and avoidance of radiation or iodinated contrast agents. Additionally, it has good spatial resolution, high inherent soft-tissue contrast, a wide field of view and ease of multiplanar imaging. Thus, magnetic resonance imaging is a second line imaging modality for evaluation of the pericardial inflammation, small or loculated pericardial effusion, characterization of pericardial mass and assessment of functional abnormalities. The wide field of view enables assessment of surrounding structures. However, use of magnetic resonance is contraindicated in patients with mediastinal metallic clips/ coils, devices or cardiac implants, claustrophobia, patients with severe renal dysfunction, and haemodynamically unstable patients. Magnetic resonance imaging is also not suitable for the detection of pericardial calcifications [12–14, 65–68, 98, 99, 106, 113]. Black-blood T1-weighted spin echo cardiac magnetic resonance, using a fast, segmented sequence is the best imaging modality to visualize pericardium, heart, and mediastinal structures [12–14, 98]. Entire pericardium can be optimally visualised by obtaining images in two perpendicularly oriented planes through the heart. T2-weighted spin-echo cardiac magnetic resonance, preferably using a short tau inversion-recovery (STIR) sequence also called “triple-inversion” spin-echo provides information on myocardial edema, pericardial fluid, and post inflammatory edematous pericardium [5, 68]. Cine-cardiac magnetic resonance using balanced steady state free precession (SSFP) gradient echo sequences, is the reference technique to quantify regional and global cardiac systolic function. The high spatial and temporal resolution of cine-­ cardiac magnetic resonance can be applied for assessment of pericardial mobility [65]. Cardiac magnetic resonance tagging techniques are useful to diagnose myocardial involvement in cases of constrictive pericarditis and in detecting fibrotic adhesion of pericardial layers [88]. Velocity-encoded or phase-contrast cardiac magnetic resonance modalities are helpful in assessment of diastolic cardiac function [12–14, 106, 113]. Thus, improved cardiac magnetic resonance-technology are helpful for assessment of static morphology as well as integrated dynamic morphological functional approach [12–14, 106, 113]. On spin-echo cardiac magnetic resonance, pericardium is normally seen as a smooth thin, curvilinear structure of low-intensity which is surrounded by medium-­ intensity myocardium or high-intensity epicardial and mediastinal fat [120]. Pericardial visualization of left ventricular free wall may be hampered by adjacent lung parenchyma of low intensity and paucity of surrounding fat [120]. Retroaortic and preaortic recesses and transverse pericardial sinus can be seen in majority of cases [72, 79, 99, 120]. The superior pericardial recesses should not be mistaken for enlarged lymph nodes or focal aortic dissection [72, 79, 99, 120]. On cardiac magnetic resonance, the normal pericardium measures 1.7 mm in systole to 1.2 mm in diastole which is more than anatomical necropsy specimens i.e. 0.4–1 mm [12–14, 20, 120]. The over estimation of the pericardial thickness on cardiac magnetic resonance is attributed to lack of sufficient resolution, motion of pericardial layers, and chemical shift artifacts at the fat fluid interface on cine sequences.

1.24  Applied Anatomy of Autologous Pericardium

15

1.24 Applied Anatomy of Autologous Pericardium Literature documents extensive usage of either autologous or glutaraldehyde-treated fixed pericardial patches in several clinical settings as enumerated under: • Congenital heart diseases such as atrial septal patch in the setting of ostium secundum atrial septal defect, sinus venosus septal defect, scimitar syndrome, partial, intermediate and complete atrioventricular septal defects, intra-atrial tunnelling of persistent unroofed left superior caval vein, rechaneling of primary and redo totally anomalous pulmonary venous connections, ventricular septal defect patch, superior cavoplasty, coronary artery transfer in cases of single coronary artery, intramural coronary arteries during arterial switch operation, right ventricular outflow tract reconstruction during arterial switch operation, creation of valved partitioning patches in atrial, ventricular septal defects, aortopulmonary window, patch closure in recurrent ductus, transfer of anomalous left coronary artery from the pulmonary artery using aortic and pulmonary arterial flap, reconstruction of left brachiocephalic vein in patients with mediastinal venous aneurysm, aortic arch reconstruction in neonates with univentricular and biventricular morphology, Mustard’s procedure, modified Senning’s procedure, lateral tunnel Fontan, extracardiac Fontan using in situ viable pericardial tunnel, right ventricular outflow tract reconstruction in patients undergoing intracardiac repair for tetralogy of Fallot, pulmonary arterioplasty for hypoplastic pulmonary arteries, stenosed pulmonary artery, transannular patching, pulmonary valvular reconstruction in patients with tetralogy of Fallot, hypoplastic pulmonary valve and annulus in cases of Noonan’s syndrome as part of Nick’s procedure, Konno’s procedure, and pulmonary valvular reconstruction using either monocusp, or bicusp or Graham Nunn’s procedure [21–48]. • Acquired heart diseases such as aortic valvular reconstruction (cuspal augmentation, Ozaki’s procedure), aortic cuspal reconstruction in perforated aortic cusps, aortoplasty during Nick’s procedure, Doty’s procedure, mitral leaflet augmentation, neochordal implantation, posterior collar autologous pericardial mitral annuloplasty, segmental mitral annuloplasty, tricuspid valvular reconstruction in the setting of tricuspid valvular infective endocarditis, reconstruction of free right atrial wall following right atriectomy in cases of tumor excision, reconstruction of left ventricle in the setting of ischemic ventricular rupture, surgical ventricular reconstruction during Dor’s procedure, Cabrol fistula in Bentall’s procedure, repair of congenital left atrial aneurysm, artificial mitral chordae, tracheoplasty for tracheal stenosis, ventricular septal rupture, as a buttress material for coronary artery anastomosis in the setting of Bentall’s procedure, distal aortic suture line reinforcement during Bentall’s procedure, small and medium sized arterial reconstruction, cardiac immobilization during off-pump coronary artery bypass grafting, and left main osteoplasty [6, 7, 49–57, 59, 60, 63, 69, 70, 81–83, 100].

16

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

References 1. Akhter SA. The heart and pericardium. Thorac Surg Clin. 2011;21:205–17. 2. Ayers GM, Rho TH, Ben-David J, Besch HR Jr, Zipes DP.  Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7(8):713–21. 3. Allison PR. Intrapericardial approach to the lung root in the treatment of bronchial carcinoma by dissection pneumonectomy. J Thorac Surg. 1946;15:99–117. 4. Assanelli D, Lew WYW, Shabetai R, et al. Influence of the pericardium on right and left filling in the dog. J Appl Physiol. 1987;63:1025–32. 5. Aletras AH, Tilak GS, Natanzon A, Hsu L-Y, Gonzalez FM, Hoyt RF, Arai AE. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging. Circulation. 2006;113:1865–70. 6. Acar C, Acar C, deIbarra JS, Lansac E. Anterior leaflet augmentation with autologous pericardium for mitral repair in rheumatic valve insufficiency. J Heart Valve Dis. 2004;13(5):714–6. 7. Alpagut U, Ugurlucan M, Kafali E, et al. Endoluminal stenting of mycoticsaccular aneurysm at the aortic arch. Tex Heart Inst J. 2006;33:371–5. 8. Broderick LS, Brooks GN, Kuhlman JE.  Anatomic pitfalls of the heart and pericardium. RadioGraphics. 2005;25:441–53. 9. Bannister LH, Berry MM, Collins P, et  al. Gray’s Anatomy  – section 10: cardiovascular system, pericardium. 38th ed. New York Edinburgh: Churchill Livingstone; 1995. p. 1471–2. 10. Bertaso AG, Bertol D, Duncan BB, et al. Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol. 2013;101:18–28. 11. Black CM, Hedges LK, Javitt MC.  The superior pericardial sinus: normal appearance on gradient-echo MR images. AJR Am J Roentgenol. 1993;160:749–51. 12. Bogaert J, Dymarkowski S, Taylor AM. Clinical cardiac MRI. 1st ed. Berlin/Heidelberg/New York: Springer; 2005. 13. Bogaert J, Francone M.  Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson. 2009;11:14. 14. Bogaert J, Taylor AM.  Cardiac anatomy. In: Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V, editors. Clinical cardiac MRI. 2nd ed. Springer; 2012. 15. Budoff MJ, Lu B, Mao S, Bakhsheshi H, Zhuang N, Liu SC, et al. Evaluation of fluid collection in the pericardial sinuses and recesses: noncontrast-enhanced electron beam tomography. Invest Radiol. 2000;35:359–65. 16. Bull RK, Edwards PD, Dixon AK. CT dimensions of the normal pericardium. Br J Radiol. 1998;71:923–5. 17. Chaffanjon P, Brichon PY, Faure C, Favre JJ. Pericardial reflection around the venous aspect of the heart. Surg Radiol Anat. 1997;19(1):17–21. 18. Choe YH, Im JG, Park JH, Han MC, Kim CW. The anatomy of the pericardial space: a study in cadavers and patients. AJR Am J Roentgenol. 1987;149:693–7. 19. Cinca J, Rodriguez-Sinovas A. Cardiovascular reflex responses induced by epicardial chemoreceptor stimulation. Cardiovasc Res. 2000;45:63–71. 20. Chako AC, Tempany CM, Zerhouni EA. Effect of slice acquisition direction on image quality in thoracic MRI. J Comput Assist Tomogr. 1995;19:936–40. 21. Chowdhury UK, Airan B, Sharma R, Bhan A, Choudhary SK, Bisoi A, Vaijyanath P, Durairaj M, Kothari SS, Saxena A, Venugopal P.  Evolutionary trends in Univentricular repair : Experience with over 500 cases. Ind J Thorac Cardiovasc Surg (Abstract). 2001;17(30):9. 22. Chowdhury UK, Agarwal S, Kothari SS, Airan B. An alternative approach for angioplasty of stenosed left pulmonary artery following intracardiac repair of tetralogy of Fallot. Heart, Lung and Circulation. 2002;11:121–5. 23. Chowdhury UK, Kothari SS, Saxena A, Airan B. Viable extracardiac total cavopulmonary connection: early and mid-term results. Heart, Lung and Circulation. 2004;13:56–63.

References

17

24. Chowdhury UK, Subramanian G, Singh R, Kothari SS, Saxena A, Venugopal P. Criterions for selection of patients for, and results of a new technique for construction of the modified Blalock-Taussig shunt. Card Young. 2006;16:463–73. 25. Chowdhury UK, Pradeep KK, Kothari SS.  Anomalous origin of the right coronary artery from the left anterior interventricular coronary artery in the setting of tetralogy of Fallot. Card Young. 2006;16(5):501–3. 26. Chowdhury UK, Sathia S, Ray R, Singh R, Pradeep KK, Venugopal P. Histopathology of the right ventricular outflow tract and its relationship to clinical outcomes and arrhythmias in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2006;132:270–7. 27. Chowdhury UK, Subramaniam G, Joshi K, Varshney S, Kumar G, Singh R, Venugopal P.  Rechaneling of totally anomalous pulmonary venous connection with or without vertical vein ligation: results and guidelines for candidate selection. J Thorac Cardiovasc Surg. 2007;133:286–94. 28. Chowdhury UK, Kothari SS, Patel C, Malhotra P, Mishra AK, Venugopal P.  An alternative technique for transfer of anomalous left coronary artery from the pulmonary artery in children and adults using autogenous aortic and pulmonary arterial flaps. Cardiol Young. 2008;18:165–76. 29. Chowdhury UK, Airan B, Malhotra A, Bisoi AK, Saxena A, Kothari SS, Mishra AK, Kalaivani M, Venogopal P. Mixed totally anomalous pulmonary venous connection: anatomical variations, surgical approach, techniques and results. J Thorac Cardiovasc Surg. 2008;135:106–16. 30. Chowdhury UK, Mishra AK, Ray R, Kalaivani M, Reddy SK, Venugopal P. Histopathological changes in ascending aorta and the risk factors related to histopathological conditions and aortic dilatation in patients with tetralogy of Fallot. J Thorac Cardiovasc Surg. 2008;135:69–77. 31. Chowdhury UK, Bishnoi A, Ray R, Malhotra P, Saxena A, Kothari SS, Mishra AK, Raghu MG, Reddy SK, Mishra A. Central pulmonary artery histopathology in patients with cyanotic congenital heart diseases. Ann Thorac Surg. 2009;87:589–96. 32. Chowdhury UK, Seth S, Malhotra PK, Mishra AK, Raghu MG. Congenital left atrial appendage aneurysm: a case report and brief review of literature. Heart, Lung and Circulation. 2009;18(6):412–6. 33. Chowdhury UK, Rao K, Narang R, Kapoor PM, Choudhury M, Choudhury A, Ramakrishnan P. An alternative technique of coronary button implantation in patients undergoing modified Bentall’s procedure. J Cardic Crit Care TSS. 2017;1(1):51–4. 34. Chowdhury UK, Jha A, Kumari L, Hasija S. Relationship of tissue Doppler-derived myocardial velocities to peak systolic right-to-left ventricular pressure ratio in repaired tetralogy of Fallot. Arch Ped. (JPED 106). 2018;3:1–17. 35. Chowdhury UK, Avneesh S, Ray R, Reddy SM, Kalaivani M, Hasija S, Kumari L. A comparative study of histopathological changes in ascending aorta and the risk factors related to histopathological conditions and aortic dilatation in patients with tetralogy of Fallot and a functionally univentricular heart. Heart, Lung and Circulation. 2018;27:1004–10. 36. Chowdhury UK, Sankhyan LK, Chauhan AS, Jagia P. The unligated vertical vein in obstructive supracardiac totally anomalous pulmonary venous connection: concept, concerns and future directions. J Cardiol Diag Res. 2019;2(2):94–108. 37. Chowdhury UK, George N, Gudala V, Gupta A, Avneesh S, Kumari LS, Malik V, Kumar P. Bentall’s procedure for annuloaortic ectasia and severe aortic regurgitation in a patient with repaired tetralogy of Fallot and aortic valvular reconstruction. World J Ped Cong Heart Surg. https://doi.org/10.1177/2150135119865162. 38. Chowdhury UK, Singh S, George N, Hasija S, Sankhyan LK, Pandey NN, Sengupta S, Kalaivani M. Early evaluation of the aortic root after Nick’s procedure. JTCVS Techniques. 2020;4:85–96. 39. Chowdhury UK, Anderson RH, Pandey NN, Sharma S, Sankhyan LK, George N, Goja S, Arvind B.  A reappraisal of the sinus venosus defect. European J Card Surg. 2022:1–12. https://doi.org/10.1093/ejcts/ezab556.

18

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

40. Chowdhury UK, George N, Kumari LS, Singh S, Chauhan AS, Gupta A, Chowdhury P. A novel technique for transfer of anomalous origin of left coronary artery from the pulmonary trunk in a child using autogenous aortic and pulmonary arterial flaps (UKC’s modification): a video presentation. J Neonat Care and Ped Res. 2019;1(1003):19–20. 41. Chowdhury UK, George N, Singh S, Chauhan AS, Sankhyan LK, Chowdhury P. Completion extracardiac, non-fenestrated, total cavo-pulmonary connection using a polytetrafluoroethylene conduit: a video presentation. Int Med. 2019;1(5) 42. Chowdhury UK, George N, Singh S, Sankhyan LK, Jha A, Sushamagayatri B, Gharde P, Chowdhury P. Intracardiac repair of intermediate atrioventricular canal by Nunn’s technique: a video presentation. J Cardiovasc Surg and Heart Dis. 2019:64–8. 43. Chowdhury UK, Jha A, Ray R, Kalaivani M, Hasija S, Kumari LS, Chauhan AS et  al. Histopathology of the right ventricular outflow tract and the relation to hemodynamics in patients with repaired tetralogy of Fallot: a video presentation. J Thorac Cardiovasc Surg, 2019: 1–11 Available online (in press). https://doi.org/10.1016/j.jtcvs.2019.05.013. 44. Chowdhury UK, George N, Singh S, Sankhyan LK, Sushamagayatri B, Avneesh S, Gharde P, Chowdhury P. Two-patch repair of Rastelli’s type-A complete atrioventricular septal defect, under mild hypothermic extracorporeal circulation and cardioplegic arrest: a video presentation. J Cardiovasc Surg and Heart Dis. 2019:69–75. 45. Chowdhury UK, George N, Jha A, Patel K, Sankhyan LK, Chauhan AS, Sushmagayatri B, Chowdhury S. Arterial switch operation with concomitant Dacron patch closure of ventricular septal defect in a patient with transposition of great arteries and ventricular septal defect: a video presentation. Global Card and Cardiovasc Res. 2020;2(1):1002–4. 46. Chowdhury UK, Jha A, Hasija S, Kumari L, Kalaivani M, Malik V. Relationship of tissue Doppler-derived myocardial velocities to peak systolic right-to-left ventricular pressure ratio in repaired tetralogy of Fallot. J Arc Ped 2018; Issue 2: JPED 156. 47. Chowdhury UK, Anderson RH, George N, Singh S, Sankhyan LK, Pradeep D, Chauhan A, Sengupta S, Vaswani P. A review of the surgical management of aorto-ventricular tunnels. World J Ped Cong Heart Surg. 2020:1–13. https://doi.org/10.1177/2150135120954809. 48. Chowdhury UK, George N, Kumari LS, Singh S, Chauhan AS, Chowdhury P. A novel technique of repair of congenital left atrial appendage aneurysm using bovine pericardial patch: a video presentation. J Cardiovasc Surg and Heart Dis. 2019:62–3. 49. Chowdhury UK, Kumari LS, George N, Chauhan AS, Kapoor PM. Intracardiac repair of the tetralogy of Fallot using trans right atrial and trans pulmonary approach: a video presentation. J Card Crit Care. 2018;2:91–2. 50. Chowdhury UK, Mishra A, Seth A, Dogra PN, Hannakere JKV, Subramaniam GK, Venugopal P.  Novel techniques for tumour thrombectomy for renal cell carcinoma with intra-atrial tumour thrombus. Ann Thorac Surg. 2007;83:1731–6. 51. Chowdhury UK, Chauhan AS, Kapoor PM, Hasija S, Jagia P, Ramakrishnan P. Successful surgical ostioplasty of the left main coronary artery with concomitant mitral valve replacement and tricuspid annuloplasty. Ann Card Anaesth. 2017;20(2):262–4. 52. Chowdhury UK, Rizvi A, Narang R, Seth S, Kalaivani M, Hasija S, Kumari L. Mitral valve replacement using Carpentier-Edwards pericardial bioprosthesis in patients with rheumatic heart disease aged below 40 years: 17-year results. Heart, Lung and Circulation. 2018;27:864–71. 53. Chowdhury UK, George N, Kumari LS, Hasija S, Chauhan AS, Kalaivani M, Gudala VV, Jena J. Intermittent antegrade and continuous retrograde coronary sinus cardioplegia to prevent, avoid and reverse ischemic and reperfusion damage in patients undergoing Bentall’s procedure: a clinical report of 130 patients. Int J Clin Case Stud Rep. 2019;1(2):23–32. 54. Chowdhury UK, Singh S, George N, Hasija S, Sankhyan LK, Pandey NN, Sengupta S, Kalaivani M. Early evaluation of the aortic root after Nick’s procedure. Invited commentary “Aortic Root Enlargement – when and How?” by Antunes MJ. JTCVS Technique 2020;4: 85–96; https://doi.org/10.1016/j.xjtc.2020.08.017.

References

19

55. Chowdhury UK, George N, Singh S, Hasija S, Sankhyan LK, Sharma S, Pandey NN, Sengupta S, Kalaivani M. Fate of the Coronary Ostial and Distal Aortic Anastomoses after Modified Bentall’s Operation (UKC’s Modification). J Surg and Surgical Tech. 2020;2(1):11–20. 56. Chowdhury UK, George N, Sankhyan LK, Singh S, Chauhan AS, Sushamagayatri B, Gharde P, Malik V, Chowdhury P. A novel technique for tumor thrombectomy for right-sided renal cell carcinoma with level IV intraatrial tumor thrombus under mild hypothermic cardiopulmonary bypass, intermittent supraceliac abdominal aortic occlusion without circulatory arrest (UKC’s modification): a video presentation. J Surg and Surgical Tech. 2019;1(1):3–7. 57. Chowdhury UK, George N, Singh S, Sankhyan LK, Chauhan AS, Gharde P, Malik V, Chowdhury P. Repair of post-infarction multiple anterior muscular ventricular septal defects by endocardial Dacron patch and left ventricular aneurysmectomy: a video presentation. Int Med. 2020;2(1) 58. Dusting GJ, Nolan RD, Woodman OL, Martin TJ. Prostacyclin produced by the pericardium and its influence on coronary vascular tone. Am J Cardiol. 1983;52(2):28A–35A. 59. David TE, Feindel CM, Ropchan GV. Reconstruction of the left ventricle with autologous pericardium. J Thorac Cardiovasc Surg. 1987;94:710–4. 60. David TE. The use of pericardium in acquired heart disease: a review article. J Heart Valve Dis. 1998;7:13–8. 61. Elias H, Boyd L. Notes on the anatomy, embryology and histology of the pericardium. N Y Med Coll News Notes. 1960;2:50–75. 62. Eliskova M, Eliska O, Miller AJ. The lymphatic drainage of the parietal pericardium in man. Lymphology. 1995;28(4):208–17. 63. Elmadbouh I, Chen Y, Louedec L, Silberman S, Pouzet B, Meilhac O, et al. Mesothelial cell transplantation in the infarct scar induces neovascularization and improves heart function. Cardiovasc Res. 2005;68:307–17. 64. Ferrans VJIT, Roberts WC. Anatomy of the pericardium. In: Reddy PSLD, Shaver JA, editors. Pericardial disease. New York: Raven Press; 1982. p. 15–29. 65. Freeman GL, LeWinter MM. Pericardial adaptations during chronic cardiac dilation in dogs. Circ Res. 1984;54:294–300. 66. Frank H, Globits S. Magnetic resonance imaging evaluation of myocardial and pericardial disease. J Magn Reson Imaging. 1999;10(5):617–26. 67. Francone M, Dymarkowski S, Kalantzi M, Bogaert J.  Magnetic resonance imaging in the evaluation of the pericardium. A pictorial essay. Radiol Med. 2005;109:64–74. 68. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51:1581–7. 69. Faous N, Husain A, Ruzmetov M, Rodefeld MD, Turrentine MW, Brown JW.  Anterior pericardial tracheoplasty for long-segment tracheal stenosis: long-term outcomes. J Thorac Cardiovasc Surg. 2010;139:18–25. 70. Fukunaga N, Sakata R, Koyama T, et  al. Reoperative analysis after mitral valve repair with glutaraldehyde-treated autologous pericardium. Interact Cardiovasc Thorac Surg. 2017;25(6):912–7. 71. Gray H.  The anatomical basis of clinical practice, 42nd edition (Standring S, ed). Elsevier, 2020. 72. Groell R, Schaffler GJ, Rienmueller R. Pericardial sinuses and recesses: findings at electrocardiographically triggered electronbeam CT. Radiology. 1999;212:69–73. 73. Gardner E, Gray DJ, O’Rahilly R.  Anatomy. A regional study of human structure. Philadelphia: WB Sannders; 1975. p. 290–1. 74. Holt JP. The normal pericardium. Am J Cardiol. 1970;26(5):455–65. 75. Hoit BD. Anatomy and physiology of the pericardium. Cardiol Clin. 2017;35:481–90. 76. Healey JE, Gibbon JH. Intrapericardial anatomy in relation to pneumonectomy for pulmonary carcinoma. J Thorac Surg. 1950;19:864–73.

20

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

77. Hoit BD, Dalton N, Bhargava V, et al. Pericardial influences on right and left ventricular filling dynamics. Circ Res. 1991;68:197–208. 78. Hruska KA. Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res. 2009;104(6):710–1. 79. Im JG, Rosen A, Webb WR, Gamsu G. MR imaging of the transverse sinus of the pericardium. AJR Am J Roentgenol. 1988;150:79–84. 80. Ishihara T, Ferrans VJ, Jones M, Boyce SW, Kawanami O, Roberts WC. Histologic and ultrastructural features of normal human parietal pericardium. Am J Cardiol. 1980;46(5):744–53. 81. Ito T, Mackawa A, Sawaki S, Fujii G, Hashino S, Hayashi Y. Reconstruction of mitral valve chordae and leaflets with one piece of autologous pericardium in extensively destructed mitral valve due to active infective endocarditis. Gen Thorac Cardiovasc Surg. 2013;61:571–3. 82. Ito T, Maekawa A, Aoki M, Hoshino S, Hayashi Y, Sawaki S, Yanagisawa J, Tokoro M. Seamless reconstruction of mitral leaflet and chordae with one piece of pericardium. Eur J Cardiothorac Surg. 2014;45(6):e227–32. 83. Jones JM, Sarsam MA. Partial mitral valve replacement for acute endocarditis. Ann Thorac Surg. 2001;72:255–7. 84. Kim DT, Lai AC, Hwang C, et al. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J Am Coll Cardiol. 2000;36(4):1324–7. 85. Kodama F, Fultz PJ, Wandtke JC. Comparing thin-section and thick-section CT of pericardial sinuses and recesses. Am J Roentgenol. 2003;181:1101–8. 86. Kubota H, Sato C, Ohgushi M, Haku T, Sasaki K, Yamaguchi K. Fluid collection in the pericardial sinuses and recesses. Thin-section helical computed tomography observations and hypothesis. Invest Radiol. 1996;31:603–10. 87. Klein AL, Abbara S, Agler DA, et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease. J Am Soc Echocardiogr. 2013;26:965–1012. 88. Kojima S, Yamada N, Goto Y. Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med. 1999;341:373–4. 89. Levy-Ravetch M, Auh YH, Rubenstein WA, Whalen JP, Kazam E.  CT of the pericardial recesses. Am J Roentgenol. 1985;144:707–14. 90. Lawler LP, Corl FM, Fishman EK. Multi-detector row and volume-rendered CT of the normal and accessory flow pathways of the thoracic systemic and pulmonary veins. Radiographics. 2002;22:S45–60. 91. Leak LV, Ferrans VJ, Cohen SR, Eidbo EE, Jones M.  Animal model of acute pericarditis and its progression to pericardial fibrosis and adhesions: ultrastructural studies. Am J Anat. 1987;180(4):373–90. 92. Mori S, Izawa Y, Nishii T. Simple stereoscopic display of 3-dimensional living heart anatomy relevant to electrophysiological practice. J Am Coll Cardiol EP. 2020;6:1473–7. 93. Mori S, Hanna P, Dacey MJ, Temma T, Hadaya J, Zhu C, Chang G, Peacock WJ, Fishbein MC, Shivkumar K. Comprehensive anatomy of the pericardial space and the cardiac hilum: anatomical dissections with intact pericardium. JACC Cardiovasc Imaging. 2022;15(5):927–42. 94. Milhiet H, Jager P. Anatomie et chirurgie du pericarde. Paris: Masson; 1956. p. 53–66. 95. Mebazaa A, Wetzel RC, Dodd-o JM, et al. Potential paracrine role of the pericardium in the regulation of cardiac function. Cardiovasc Res. 1998;40(2):332–42. 96. Miyazaki T, Pride HP, Zipes DP. Prostaglandins in the pericardial fluid modulate neural regulation of cardiac electrophysiological properties. Circ Res. 1990;66(1):163–75. 97. Mantini C, Mastrodicasa D, Bianco F, Bucciarelli V, Scarano M, Mannetta G, et al. Prevalence and clinical relevance of extracardiac findings in cardiovascular magnetic resonance imaging. J Thorac Imaging. 2019;34:48–55. 98. Misselt AJ, Harris SR, Glockner J, Feng D, Syed IS, Araoz PA. MR imaging of the pericardium. Magn Reson Imaging Clin N Am. 2008;16:185–99. 99. McMurdo KK, Webb WR, von Schulthess GK, Gamsu G. Magnetic resonance imaging of the superior pericardial recesses. AJR Am J Roentgenol. 1985;145:985–8.

References

21

100. Mihos CG, Pineda AM, Capoulade R, Santana O. A systemic review of mitral valve repair with autologous pericardial leaflet augmentation for rheumatic mitral regurgitation. Ann Thorac Surg. 2016;102(4):1400–5. 101. Netter FH, editor. Atlas of human anatomy. 3rd ed. Teterboro: ICON Learning Systems; 2003. 102. Ozmen CA, Akpinar MG, Akay HO, Demirkazik FB, Ariyurek M.  Evaluation of pericardial sinuses and recesses with 2-, 4-, 16-, and 64-row multidetector CT.  Radiol Med. 2010;115:1038–46. 103. Paturet G. Veines, tome III. Traits d’Anatomie Humaine. Paris: Masson; 1958. p. 892–900. 104. Poirier P, Charpy A.  Prricarde, tome 2, fascicnle II.  Traite d’Anatomie humaine. Paris: Masson; 1912. p. 162–5. 105. Poirier P, Charpy A.  Systeme veineux, tome 2, fascicule III.  Traite d’Anatomie humaine. Paris: Masson; 1903. p. 881–6. 106. Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A. Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J. 2002;144:198–205. 107. Rouvibre H Pdricarde. Anatomie humaine descriptive et topographique. Paris: Masson; 1970. p. 133–7. 108. Runge MS, Ohman EM. Netter’s cardiology. Teterboro: MediMedia; 2004. 109. Rodriguez ER, Tan CD. Structure and anatomy of the human pericardium. Prof Cardiovasc Dis. 2017;59:327–40. 110. Riquet M, Le Pimpec-Barthes F, Hidden G. Lymphatic drainage of the pericardium to the mediastinal lymph nodes. Surg Radiol Anat. 2001;23(5):317–9. 111. Rabkin SW, Ping HH. Mathematical and mechanical modeling of stress strain relationship of pericardium. Am J Physiol. 1975;229:896–900. 112. Rajiah P, Kanne JP.  Computed tomography of the pericardium and pericardial disease. J Cardiovasc Comput Tomogr. 2010;4:3–18. 113. Rademakers FE, Bogaert J. Cardiac dysfunction in heart failure with normal ejection fraction: MRI measurements. Prog Cardiovasc Dis. 2006;49:215–27. 114. Shabetai R, Mangiardi L, Bhargava V, Ross J Jr, Higgins CB. The pericardium and cardiac function. Prog Cardiovasc Dis. 1979;22:107–34. 115. Spodick DH, editor. The pericardium: a comprehensive textbook. New  York: Marcel Dekker; 1997. 116. Spodick DH. Macrophysiology, microphysiology, and anatomy of the pericardium: a synopsis. Am Heart J. 1992;124:1046–51. 117. Shroff GS, Boonsirikamchai P, Viswanathan C, Godoy MC, Marom EM, Truong MT.  Differentiating pericardial recesses from mediastinal adenopathy: potential pitfalls in oncological imaging. Clin Radiol. 2014;69:307–14. 118. Shroff GS, Viswanathan C, Godoy MC, Marom EM, Sabloff BS, Truong MT.  Pitfalls in oncologic imaging: pericardial recesses mimicking adenopathy. Semin Roentgenol. 2015;50:235–40. 119. Shabetai R. The pericardium. Boston: Kluwer Academic; 2003. p. 191–251. 120. Sechtem U, Tscholakoff D, Higgins CB. MRI of the normal pericardium. Am J Roentgenol. 1986;147:239–44. 121. Todd RB, editor. Heart. In: Cyclopaedia of anatomy and physiology, vol 2. London: Sherwood, Gilbert, and Piper; 1835. p. 597–598. 122. Truong MT, Erasmus JJ, Gladish GW, Sabloff BS, Marom EM, Madewell JE, et al. Anatomy of pericardial recesses on multidetector CT: implications for oncologic imaging. Am J Roentgenol. 2003;181:1109–13. 123. Testut L, Latarjet A.  Pericarde. Traite d’Anatomie humaine, tome 2. Doin, Paris, 1948; pp. 141–162. 124. Tanaka T, Hasegawa K, Fujita M, et al. Marked elevation of brain natriuretic peptide levels in pericardial fluid is closely associated with left ventricular dysfunction. J Am Coll Cardiol. 1998;31:399–403.

22

1  Anatomy, Histology, Applied Anatomy, and Physiology of the Human…

125. Tintut Y, Alfonso Z, Saini T, et  al. Multilineage potential of cells from the artery wall. Circulation. 2003;108(20):2505–10. 126. Vesely TM, Cahill DR.  Cross-sectional anatomy of the pericardial sinuses, recesses, and adjacent structures. Surg Radiol Anat. 1986;8:221–7. 127. Verhaert D, Gabriel RS, Johnston D, Lytle BW, Desai MY, Klein AL. The role of multimodality imaging in the management of pericardial disease. Circ Cardiovasc Imag. 2010;3(3):333–43. 128. White CS. MR evaluation of the pericardium. Top Magn Reson Imaging. 1995;7:258–66. 129. Whitaker D, Papadimitriou JM, Walters M.  The mesothelium: its fibrinolytic properties. J Pathol. 1982;136:291–300. 130. Zurada A, Ustymowicz A, Loukas M, Michalak M, Czyzewska D, Gielecki J. Computerized tomography of the transverse pericardial sinus: normal or pathologic? Clin Anat. 2017;30:61–70. 131. Zurick AO, Bolen MA, Kwon DH, et al. Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging. 2011;4(11):1180–91.

Chapter 2

History

The earliest descriptions of the pericardium date back to Hippocrates (460–377 BC). Galen (129–210 AD) described the protective function of the pericardium and also reported pericardial effusion in animals [1, 2, 21]. Serofibrinous pericarditis was described by Avenzoar (1113–1162), and clinical outcome of pericardial adhesions was noted by Lancisi (1654–1720) [1, 2, 38]. Pulsus paradoxus and cardiac tamponade in patients with dyspnea was first reported by Richard Lower in 1669 and John Mayow in 1674 [38, 40]. Morgagni in 1756 described pathophysiology of constrictive pericarditis [41]. Lancisi in 1828 explained the characteristic syndrome associated with constrictive pericarditis [1, 39]. Chever in 1842 described a treatise on the pathophysiology of constrictive pericarditis based on his observations made on diseased aortic valves and orifice, where he noted that compression of muscle tissue by adhesive pericarditis surrounding the heart resulted in dangerous symptoms [9]. Corrigan described the buit de frappement (pericardial knock) in the same year [9–11]. In 1873, Kussmaul described the association between constrictive pericarditis and pulsus paradoxus [34, 35]. He also described jugular venous distension during inspiration, known as Kussmaul’s sign. Pick in 1896 reported progressive or recurrent ascites with little or no pedal oedema, and hepatomegaly (“pseudo cirrhosis”- a condition known as Pick’s disease) in three patients [42].Postmortem showed presence of atypical hepatic fibrosis (pseudo-cirrhosis) and adhesive pericarditis. Polyserositis was seen in Concato’s patients [38]. The main difference in cases of constrictive pericarditis mentioned by Concato was that cardiac compression resulted in effusion in serous cavities, with no inflammation of serous membrane or occurring secondarily. There were thick cartilaginous deposits on normal valves with small sized heart in patients presenting with adhesive pericarditis [38]. St. Cyre’s Lecture by Paul Dudley White’s in 1935 introduced the modern era of diagnosis and treatment of constrictive pericarditis [53, 54]. Bloomfield and associates, Hansen and associates, Hetzel, and Hancock independently reported elevated right ventricular end-diastolic pressure, right atrial pressure, right ventricular dip © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_2

23

24

2 History

and plateau pressure-pulse to diagnose constrictive pericarditis [3, 22–24]. Hancock popularized effusive-constrictive pericarditis as another variant of constrictive pericarditis [25, 26]. Occult constrictive pericarditis was first reported by Bush and associates in 1977 [4]. Constrictive pericarditis following cardiac surgery was first described in 1972 by Kendall [36]. Isner and associates in 1982 described the diagnostic usefulness of computed tomography in constrictive pericarditis, and Soulen and associates described the role of magnetic resonance imaging in evaluation of patients with constrictive pericarditis [33, 44]. Sengupta and associates in 2008, for the first time, measured the extent of myocardial deformation (contraction or stretching) using speckle tracking echocardiography by strain-rate and strain imaging [45–52]. The first successful pericardiotomy was performed by Rowero in 1819, and the first pericardiocentesis was performed by Franz Schub in 1843. The idea of resecting the pericardium for constrictive pericarditis dates back to 1895 and 1898 when Wells and DeLorme respectively suggested pericardial excision [20, 55]. Brauer reported resection of ribs and costal cartilages for surgical treatment of constrictive pericarditis [5, 20, 55]. Subsequently, Rehn in 1913 and Sauerbruch in 1925, successfully performed the first pericardiectomy for chronic constrictive pericarditis via left anterolateral thoracotomy [43]. In 1929, Churchill performed the first successful pericardiectomy [10]. Among the 15 patients of chronic constrictive pericarditis described by White in his St. Cyre’s Lecture, 7 patients underwent successful pericardiectomy [53, 54]. After this landmark history of thoracic surgery, this incision remains the standard approach. It was used by Beck and Griswald; Blalock and Burwell; Harrington and Barnes; and Heuer and Stewart [5–8, 27–29]. By 1945 a total of 256 patients treated by this approach had been reported in the literature, collectively reviewed by Heuer and Stewart [27–29]. In 1944, Harrington employed a U- shaped incision, with left sternal border forming the base of incision, and bilateral anterolateral thoracotomy for performing pericardiectomy constrictive pericarditis [27]. In 1955, Holman and Willett performed the first successful pericardiectomy via median sternotomy, and presented their experience in the Hunterian lecture [30–32]. In 1965, Kloster demonstrated that normalization of pressure volume loop can be used as an indicator of successful pericardiectomy [37]. Chronic constrictive pericarditis following open heart surgery was reported first in 1972 by Kendall [36]. In 1975, Copeland and Culliford from the Stanford group advocated radical pericardiectomy utilizing cardiopulmonary bypass as a routine [12–14]. In 1944, Harrington described the significance of constricting epicardial peel. For pericardiectomy to be successful, all the constricting layers including the ventricular epicardium are to be removed [27, 28]. Chronic constrictive pericarditis following cardiac transplantation was reported first in 1986 by Copeland from Stanford University [13]. In 2008, the author developed techniques to perform radical pericardiectomy using left anterolateral thoracotomy without employing cardiopulmonary bypass [15–19, 52].

References

25

References 1. Brockington GM, Zebede J, Pandian NG.  Constrictive pericarditis. In: Diseases of the Pericardium (Ed. Shabetai R). W.B.  Saunders, Philadelphia. Cardiology Clinics. 1990;8(4):645–61. 2. Brockington GM, Zebede J, Pandian NG.  Constrictive pericarditis. Cardiol Clin. 1990;8:645–66. 3. Bloomfield RA, Lauson HD, Coumand A, Breed ES, Richards DW. Recording of right heart. Pressures in normal subjects and in patients with chronic pulmonary disease and various types of cardio circulatory diseases. J Clin Invest. 1946;25:639–64. 4. Bush CA, Stang JM, Wooley CF, Kilman JW. Occult constrictive pericardial disease: diagnosis by rapid volume expansion as a correction by pericardiectomy. Circulation. 1977;56:924–30. 5. Beck CS, Griswald RA. Pericardiectomy in the treatment of the Pick syndrome: experimental and clinical observations. Arch Surg. 1930;21:1064. 6. Beck CS. Acute and chronic compression of the heart. Am Heart J. 1937;14:515–25. 7. Beck W, Schrire V, Vogelpoel L. Splitting of the second heart sound in constrictive pericarditis, with observations on the mechanism of pulsus paradoxus. Am Heart J. 1962;64:765–78. 8. Blalock A, Burwell CD. Chronic constrictive pericarditis. J Am Med Assoc. 1938;110:265. 9. Chevers N. Observations on diseases of the orifice and valves of the aorta. Guy’s Hosp Rep. 1842;7:387–92. 10. Churchill ED.  Decortication of the heart (Delorme) for adhesive pericarditis. Arch Surg. 1929;19:1457–69. 11. Corrigan. Cited in Connolly DC, Mann RJ, Cominic J. Corrigan (1802–1880) and his description of the pericardial knock. Mayo Clin Proc. 1980;55:771–3. 12. Copeland JG, Stinson EB, Griepp RB, Shumway NE. Surgical treatment of chronic constrictive pericarditis using cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1975;69:236–8. 13. Copeland JG, Riley JE, Fuller J.  Pericardiectomy for effusive constrictive pericarditis after heart transplantation. J Heart Transplant. 1986;5:171–2. 14. Culliford AT, Lipton M, Spencer FC. Operation for chronic constrictive pericarditis: do the surgical approach and degree of pericardial resection influence the outcome significantly? Ann Thorac Surg. 1980;29:146–52. 15. Chowdhury UK, Seth S, Reddy SM. Pericardiectomy for chronic constrictive pericarditis. J Op Tech Thorac Cardiovasc Surg. 2008;13:14–25. 16. Chowdhury UK, Narang R, Malhotra P, Choudhury M, Choudhury A, Singh SP. Indications, timing and techniques of radical pericardiectomy via modified left anterolateral thoracotomy (UKC’s modification) and total pericardiectomy via median sternotomy (Holman and Willett) without cardiopulmonary bypass. J Prac Cardiovasc Sci. 2016;2:17–27. 17. Chowdhury UK, George N, Kumari LS, Singh S, Chauhan AS. Radical pericardiectomy via left anterolateral thoracotomy (UKC’s modification): a video presentation. Intern Med. 2019;1(4) 18. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, et al. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass: a video presentation. Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 19. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, Kalaivani M. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass. Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 20. Delorme E. Sur un traitement chirurgical: De la symphyse cardo-pericardique. Gaz des hop. 1898;71:1150–1. 21. Fowler NO.  Constrictive pericarditis: its history and current status. Clin Cardiol. 1995;18:341–50. 22. Hansen AT, Eskildsen P, Göotzsche H.  Pressure curves from the right auricle and the right ventricle in chronic constrictive pericarditis. Circulation. 1961;3:881–8.

26

2 History

23. Hetzel PS, Wood EH, Burchell HB.  Pressure pulses in the right side of the heart in a case of amyloid disease and in a case of idiopathic heart failure. Proc Staff Meet Mayo Clin. 1953;28:107–12. 24. Hancock EW.  On elastic and rigid forms of constrictive pericarditis. Am Heart J. 1980;100:917–23. 25. Hancock EW. Subacute effusive constrictive pericarditis. Circulation. 1971;43:183–92. 26. Hancock EW.  A clearer view of effusive-constrictive pericarditis. N Engl J Med. 2004;350:435–7. 27. Harrington SW. Chronic constrictive pericarditis: partial pericardiectomy and epicardiolysis in twenty-four cases. Ann Surg. 1944;120:468–85. 28. Harrington SW, Barnes AR. Diagnoses and surgical treatment of chronic constrictive pericarditis. South Surg. 1940;9:459. 29. Heuer GT, Stewart HJ. The surgical treatment of chronic constrictive pericarditis. NY State J Med. 1945;45:993. 30. Holman E, Willett F. The surgical correction of constrictive pericarditis. Surg Gynecol Obstet. 1949;89:129. 31. Holman E, Willet F. Treatment of active tuberculous pericardial pericardiectomy. J Am Med Assoc. 1951;146:1–7. 32. Holman E, Willet F. Results of radical pericardiectomy for constrictive pericarditis. J Am Med Assoc. 1955;157:789–94. 33. Isner JM, Carter BL, Bankoff MS, Kostam MA, Salem DN.  Computed tomography in the diagnosis of pericardial heart disease. Ann Intern Med. 1982;97:473–9. 34. Kussmaul A, Stern M. Pericarditis and the paradox pulse, vol. 38. Berl Klin Wochenschr; 1873. 35. Kussmaul A.  Ueber schwielige Mediastino-Pericarditis und den Parodoxen Puls. Bed Klin Wochenschr. 1873;10:433–5. 36. Kendall ME, Rhodes GR, Wolfe W. Cardiac constriction following aorta-to-coronary bypass surgery. J Thorac Cardiovasc Surg. 1972;64:142–53. 37. Kloster FR, Crislip RL, Bristow JD, Herr RH, Ritzmann LW, et al. Haemodynamic studies following pericardiectomy for constrictive pericarditis. Circulation. 1962;25:484. 38. Lower R: cited by Straehley CJ. Discussion. J Thorac Cardiovasc Surg. 1985;89:348–9. 39. Lancisi. Cited in Chevers N. Observations on diseases of the orifice and valves of the aorta. Guy’s Hosp Rep. 1842;7:387–92. 40. McCaughan BC, Schaff HV, Piehler JM, Danielson GK, Orszulak TA, Puga FJ, Pluth JR, Connolly DC, McGoon DC. Early and late results of pericardiectomy for constrictive pericarditis. J Thorac Cardiovasc Surg. 1985;89(3):340–50. 41. Morgagni JB. De Sedibus et Causis Morborum per Anatomen Indigatis, especially Epistles 16, 22, 53 (3), 63 (4, 5). Louvain, Typographica Academica; 1756. 42. Pick F. Ueber chronische, unter dem Bilde der Lebercirrhose verlaufende Pericarditis (pericarditische Pseudolebercirrhose) nebst Bemerkungen über die Zuckergussleber (Curschmann). Ztschr f klin Med. 1896;29:385. 43. Rehn, Sauerbruch. Chronic constrictive pericarditis (Pick’s disease) treated by pericardial resection. Lancet. 1935;2:539–97. 44. Soulen RL, Stark DD, Higgins CB. Magnetic resonance imaging of constrictive pericardial disease. Am J Cardiol. 1985;55:480–4. 45. Sengupta PP, Eleid MF, Sundt TM.  Regional variability of pericardial thickness influences left ventricular diastolic recoil mechanics in constrictive pericarditis. J Am Soc Echocardiogr. 2008;21:518. 46. Sengupta PP, Eleid MF, Khandheria BK. Constrictive pericarditis. Circ J. 2008;72:1555–62. 47. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et  al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.

References

27

48. Sengupta PP, Khandheria BK, Korinek J, Wang J, Jahangir A, Seward JB, et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol. 2006;47:163–72. 49. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1:366–76. 50. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008;1(1):29–38. 51. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive machine-­ learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9:e004330. 52. Sankhyan LK, Yadav V, Sharma S, Choubey M, George N, Sushamagayatri B, Malik V, Chowdhury UK. Assessment of myocardial mechanics in patients undergoing pericardiectomy for chronic constrictive pericarditis by tissue doppler imaging and 2D speckled tracking echocardiography: a prospective observational (Cohort) study. J Clin Cardiol Cardiovasc Interv. 4(3) https://doi.org/10.31579/2641-­0419/115. 53. White PD. Chronic constrictive pericarditis (Pick’s disease) treated by pericardial resection. Lancet. 1935;2:539–48; 597–603. 54. White PD. Chronic constrictive pericarditis. Circulation. 1951;4(2):288–94. 55. Wells WJ, Lindesmith GG. Ventricular septal defect. In: Arciniegas E, editor. Pediatric cardiac surgery. Chicago: Year Book Medical Publishers; 1985.

Chapter 3

Definition

Chronic constrictive pericarditis is a unique clinical haemodynamic syndrome of multifactorial aetiology. It is the end stage of a chronic inflammatory or non-­ inflammatory disease process, causing scarring, thickening, shrinkage or calcification of one or both layers of the periepicardium, that leads to constriction and frequently to compression of the underlying cardiac chambers [2, 10–20, 25–30, 32, 34, 35, 39, 40, 60, 61, 63–68, 77, 87–90]. As a consequence of these morphologic changes, the normal physiologic compliance is lost; there is impaired diastolic filling of the cardiac chambers leading to cardiac failure, that manifests usually as systemic venous congestion without pulmonary congestion [46]. It is an elusive disease entity. It mimics endomyocardial fibrosis, restrictive cardiomyopathy, chronic liver disease, Budd-Chiari syndrome, and unexplained heart failure [3, 22, 23, 33, 36, 37, 47, 48, 56–59, 67, 69–71, 78, 81–86, 91, 93]. Localised chronic constrictive pericarditis secondary to constricting pericardial bands; transient constrictive pericarditis; large pericardial calcific patches; occult constrictive pericarditis and effusive-­constrictive pericarditis are clinically documented variants of constrictive pericarditis [1, 10–18, 21, 24–30, 34, 35, 38–45, 49–53, 55, 56, 63– 76, 87–90].

3.1 Chronic Constrictive Pericarditis with Normal Thickness of the Pericardium According to the modalities of assessment, the thickness of the pericardium varies (~0.8–1.0  mm thick on anatomic specimens, 0.7–1.2  mm by cardiac computed tomography, and 1.5–2.0 mm by cardiac magnetic resonance [4–9, 31, 54, 60–66, 92]. Pericardial thickness greater than 4 mm suggests pericardial constriction, and one greater than 6 mm has a high specificity for constriction [63–66]. With respect

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_3

29

30

3 Definition

to the extent of periepicardial changes, several forms of pericardial constriction may be distinguished [42, 93]. In the global form, both chambers are equally affected. The focal form may be classified as (i) annular (narrowing of the atrioventricular grooves); (ii) right-sided (compression of the right ventricle), or left-sided (compression of the left ventricle); (iii) surrounding the root of the great vessels; (iv) epicardial (mainly the epicardial layer is affected); or (v) effusive (epicardial constriction with effusion) [44, 45, 50, 60, 61]. However, the Mayo Clinic group in their series of 143 patients identified a subset of patients (18%) with normal pericardial thickness on imaging, with clinical and haemodynamic features for chronic constrictive pericarditis, in whom pericardiectomy was effective in relieving the symptoms [76, 79, 80]. These patients were mostly post-surgical and post-irradiation, wherein microscopic examination revealed inflammation, focal non-caseating granulomas, focal fibrosis, and focal calcification. Microscopically, although the pericardium consists primarily of extracellular collagen (with little elastic tissue), it is still living tissue, with fibroblasts to replenish collagen that degenerates over time. Ling and associates from the Mayo Clinic pointed out that if the rate of collagen production is less than that of degradation, the pericardial volume decreases. Thus a thin pathologic pericardium may underlie a similar pathophysiological process in a subset of patients with haemodynamic features of constrictive pericarditis. Rather than being like a suit of armour encasing the heart, the constriction is analogous to a thin wet-suit worn by a diver [44, 79, 80]. Therefore, in patients with clinical and haemodynamic features of chronic constrictive pericarditis and normal pericardial thickness on imaging, total or radical pericardiectomy remains the treatment of choice.

References 1. Aagaard MT, Haraldsted VY. Chronic constrictive pericarditis treated with total pericardiectomy. Thorac Cardiovasc Surg. 1984;32:311–4. 2. Bashi VV, John S, Ravikumar E, Jairaj PS, Shyamsunder K, Krishnaswami S. Early and late results of pericardiectomy in 118 cases of constrictive pericarditis. Thorax. 1988;43:637–41. 3. Benson MD, Dasgupta NR. Amyloid cardiomyopathy. J Am Coll Cardiol. 2016;68(1):25–8. 4. Bush CA, Stang JM, Wooley CF, Kilman JW. Occult constrictive pericardial disease: diagnosis by rapid volume expansion as a correction by pericardiectomy. Circulation. 1977;56:924–30. 5. Broderick LS, Brooks GN, Kuhlman JE.  Anatomic pitfalls of the heart and pericardium. RadioGraphics. 2005;25:441–53. 6. Bannister LH, Berry MM, Collins P, et al. Gray’s Anatomy – section 10: cardiovascular system, pericardium. 38th ed. New York/Edinburgh: Churchill Livingstone; 1995. p. 1471–2. 7. Bogaert J, Francone M.  Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson. 2009;11:14. 8. Bogaert J, Taylor AM.  Cardiac anatomy. In: Bogaert J, Dymarkowski S, Taylor AM, Muthurangu V, editors. Clinical cardiac MRI. 2nd ed. Berlin: Springer; 2012.

References

31

9. Bull RK, Edwards PD, Dixon AK. CT dimensions of the normal pericardium. Br J Radiol. 1998;71:923–5. 10. Chowdhury UK, Subramaniam G, Kumar AS, Airan B, Singh R, Talwar S, et al. Pericardiectomy for constrictive pericarditis: clinical, echocardiographic and haemodynamic evaluation of two surgical techniques. Ann Thorac Surg. 2006;81:522–30. 11. Chowdhury UK, Seth S, Reddy SM. Pericardiectomy for chronic constrictive pericarditis. J Operative Tech Thorac Cardiovasc Surg. 2008;13:14–25. 12. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, Kalaivani M. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass. Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 13. Chowdhury UK, Narang R, Malhotra P, Choudhury M, Choudhury A, Singh SP. Indications, timing and techniques of radical pericardiectomy via modified left anterolateral thoracotomy (UKC’s modification) and total pericardiectomy via median sternotomy (Holman and Willett) without cardiopulmonary bypass. J Prac Cardiovasc Sci. 2016;2:17–27. 14. Chowdhury UK, Sankhyan LK, Malik V, George N, Gudala V, Chowdhury P.  Low cardiac output syndrome following pericardiostomy and pericardiectomy for massive pericardial effusion and chronic constrictive pericarditis: myths and realities at 100 years. Int J Clin Case Stud Rep. 2019;2(1):46–60. 15. Chowdhury UK, Kumari L. Surgery for chronic constrictive pericarditis, tuberculous pericarditis and effusive-constrictive pericarditis. Invited Chapter: Cardiological Society of India, 2018 (Invited chapter 64), pp. 1–10. 16. Chowdhury UK, Kumari L. Pericardiectomy for chronic constrictive pericarditis: where are we after 100 years? World J Surg Surg Res. 2018;1:1027–30. 17. Chowdhury UK, Kapoor PM, Rizvi A, Malik V, Seth S, Narang R, et al. Serial semi-invasive haemodynamic assessment following pericardiectomy for chronic constrictive pericarditis. Ann Card Anaesth. 2017;20:169–77. 18. Chambliss JR, Jaruszewski EJ, Brofman BL, Martin JF, Feil H. Chronic cardiac compression (chronic constrictive pericarditis): a critical study of sixty-one operated cases with follow-up. Circulation. 1951;4:816–35. 19. Chowdhury UK, Jena JK, Hasija S, Kumari LS. Successful use of intra-aortic balloon counterpulsation for systemic ventricular failure following total pericardiectomy for calcific chronic constrictive pericarditis. World J Ped Cong Heart Surg. 2020;11(4):NP203–6. 20. Chevers N. Observations on diseases of the orifice and valves of the aorta. Guy’s Hosp Rep. 1842;7:387–92. 21. Chesler E, Mitha AS, Matisonn RE. The ECG of constrictive pericarditis: pattern resembling right ventricular hypertrophy. Am Heart J. 1976;95:420–4. 22. Davies JNP. Endomyocardial fibrosis in Uganda. East Afr Med J. 1948;25:225–35. 23. Davies JNP, Ball JD.  The pathology of endomyocardial fibrosis in Uganda. Br Heart J. 1955;17:337–59. 24. D’Cruz IA, Pallas CW, Heck A. Echocardiographic diagnosis of effusive-constrictive pericarditis due to staphylococcal pericarditis after cardiac surgery. South Med J. 1991;84:1375–7. 25. Fowler NO. Tuberculous pericarditis. J Am Med Assoc. 1991;266:99–103. 26. Fowler NO. Constrictive pericarditis: new aspects. Am J Cardiol. 1982;50:1014–7. 27. Fowler NO.  Constrictive pericarditis: its history and current status. Clin Cardiol. 1995;18:341–50. 28. Fowler NO, Manitsas GT. Infectious pericarditis. Prog Cardiovasc Dis. 1973;16:323–36. 29. Fowler NO, Bove KE, Dunbar S, Meyer R.  Fatigue, dyspnea, and abdominal swelling in a 13-year-old boy. Am Heart J. 1978;96:533–42. 30. Fowler NO, Harbin AD III. Recurrent acute pericarditis: follow-up study of 31 patients. J Am Coll Cardiol. 1986;7(2):300–5. 31. Francone M, Dymarkowski S, Kalantzi M, Bogaert J.  Magnetic resonance imaging in the evaluation of the pericardium. A pictorial essay. Radiol Med. 2005;109:64–74; quiz 5-6. 32. Gimlette TMD. Constrictive pericarditis. Br Heart J. 1959;21:9–16.

32

3 Definition

33. Gopi CK. Endomyocardial fibrosis in idiopathic cardiomegaly. Bull WHO. 1968;38:979–91. 34. Hancock EW.  A clearer view of effusive-constrictive pericarditis. N Engl J Med. 2004;350:435–7. 35. Hancock EW.  On elastic and rigid forms of constrictive pericarditis. Am Heart J. 1980;100:917–23. 36. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32(1):45–59. 37. Kyle RA, Bayrd ED.  Amyloidosis: review of 236 cases. Medicine (Baltimore). 1975;54(4):271–99. 38. Khandaker MH, Espinosa RE, Nishimura RA, Sinak LJ, Hayes SN, Melduni RM, Oh JK, et al. Pericardial disease: diagnosis and management. Mayo Clin Proc. 2010;85(6):572–93. 39. Ling LH, Oh JK, Schaff HV, Danielson GK, Mahoney OW, Seward JB, Tajik JA. Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation. 1999;100:1380–6. 40. Ling LH, Oh JK, Breen JF, Schaff JV, Danielson GK, Mahoney DW, Seward JB, Tajik AJ. Calcific constrictive pericarditis: is it still with us? Ann Intern Med. 2000;132:444–50. 41. Levine HD. Myocardial fibrosis in constrictive pericarditis: electrocardiographic and pathologic observations. Circulation. 1973;48:1268–81. 42. Lange RA, Hillis LD. Clinical practice. Acute pericarditis. N Engl J Med. 2004;351:2195–202. 43. Lorell BH, Braunwald E. Pericardial diseases. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. Philadelphia: WB Saunders; 1988. p. 1465–516. 44. Ling LH, Oh JK, Tei C, Click RL, Breen JF, Seward JB, Tajik AJ. Pericardial thickness measured with transesophageal echocardiography: feasibility and potential clinical usefulness. J Am Coll Cardiol. 1997;29:1317–23. 45. Lorell BH.  Pericardial diseases. In: Braunwald E, editor. Heart disease. Philadelphia: W.B. Saunders Company; 1997. p. 1496–505. 46. Myers RB, Spodick DH. Constrictive pericarditis: clinical and pathophysiologic characteristics. Am Heart J. 1999;138:219–32. 47. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37. 48. Makuuchi M, Hasegawa H, Yamazaki S, et  al. Primary Budd-Chiari syndrome: ultrasonic demonstration. Radiology. 1984;1(52):775–9. 49. Maisch B, Seferović PM, Ristić AD, Erbel R, Rienmüller R, Adler Y, Tomkowski WZ, Thiene G, Yacoub MH, Priori SG, Alonso Garcia MA. Guidelines on the diagnosis and management of pericardial diseases -executive summary: the task force on the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur Heart J. 2004;25(7):587–610. 50. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. 2011;12:167–205. 51. Nigri A, Mangieri E, Martuscelli E, Ruvolo G, Papalia U, Toscano M, Marino B, Attilio R.  Pulmonary trunk stenosis due to constriction by a pericardial band. Am Heart J. 1987;114(2):448–50. 52. Nishimura RA, Kazmier FJ, Smith HC, Danielson GK. Right ventricular outflow obstruction caused by constrictive pericardial disease. Am J Cardiol. 1985;55(11):1447–8. 53. Nishimura RA.  Constrictive pericarditis in the modern era: a diagnostic dilemma. Heart. 2001;86(6):619–23. 54. Netter FH, editor. Atlas of human anatomy. 3rd ed. Teterboro: ICON Learning Systems; 2003. 55. Potwar SA, Arsiwala SS, Bhosle KN, Mehta VI. Surgical treatment for chronic constrictive pericarditis. Indian Heart J. 1989;41(1):30–3. 56. Plessier A, Sibert A, Consigny Y, et al. Aiming at minimal invasiveness as a therapeutic strategy for Budd-Chiari syndrome. Hepatology. 2006;44(5):1308–16.

References

33

57. Picardi JL, Kauffman CA, Schwarz J, Holmes JC, Phair JP, Fowler NO. Pericarditis caused by Histoplasma capsulatum. Am J Cardiol. 1976;37(1):82–8. 58. Plessier A, Valla DC. Budd-Chiari syndrome. Semin Liver Dis. 2008;28(3):259–69. 59. Qiao T, Liu CJ, Liu C, Chen K, Zhang XB, Zu MH. Interventional endovascular treatment for Budd-Chiari syndrome with long-term follow-up. Swiss Med Wkly. 2005;135:318–26. 60. Rienmuller R, Groll R, Lipton MJ. CT and MR imaging of pericardial disease. Radiol Clin N Am. 2004;42:587–601. 61. Rienmuller R, Gurgan M, Erdmann E, Kemkes BM, Kreutzer E, Weinhold C.  CT and MR evaluation of pericardial constriction: a new diagnostic and therapeutic concept. J Thorac Imaging. 1993;8:108–21. 62. Rajiah P, Kanne JP.  Computed tomography of the pericardium and pericardial disease. J Cardiovasc Comput Tomogr. 2010;4:3–18. 63. Shabetai R, Fowler NO, Guntheroth WG. The haemodynamics of cardiac tamponade and constrictive pericarditis. Am J Cardiol. 1970;26:480–9. 64. Somerville W. Constrictive pericarditis: with special reference to the change in natural history brought about by surgical intervention. Circulation. 1968;38:V102. 65. Spodick DH. Pericardial macro- and micro-anatomy: a synopsis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. New York: Marcel Dekker; 1997. p. 7–14. 66. Spodick DH.  Pericardial diseases. In: Braunwald E, Zipes DP, Libby P, editors. Heart disease: a textbook of cardiovascular medicine, vol. 6. Philadelphia, PA: WB Saunders Co; 2001. p. 1823–70. 67. Shrestha SM, Okuda K, Uchida T, et al. Endemicity and clinical picture of liver disease due to obstruction of the hepatic portion of the inferior vena cava in Nepal. J Gastroenterol Hepatol. 1996;11:170–9. 68. Sagrista-Sauleda J. Pericardial constriction: uncommon patterns. Heart. 2004;90:257–8. 69. Shaper AG.  Cardiovascular disease in the tropics. II.  Endomyocardial fibrosis. BMJ. 1972;3:743–6. 70. Schoenfeld MH, Edwards WS, William GD Jr, et al. Restrictive cardiomyopathy versus constrictive pericarditis – role of endomyocardial biopsy in avoiding unnecessary thoracotomy. Circulation. 1987;75:1012–7. 71. Safka V, Hulek P, Krajina A, et al. Budd-Chiari syndrome and TIPS – twelve years’ experience. Cas Lek Cesk. 2005;144(Suppl 3):38–42. 72. Sagrista-Sauleda J, Almenar Bonet L, Angel Ferrer J, Bardají Ruiz A, Bosch Genover X, Guindo Soldevila J, et  al. The clinical practice guidelines of the Sociedad Espanola de Cardiologia on pericardial pathology. Rev Esp Cardiol. 2000;53:394–412. 73. Sagrista-Sauleda J, Angel J, Sanchez A, Permanyer-Miralda G, Soler-Soler J.  Effusive-­ constrictive pericarditis. N Engl J Med. 2004;350:469–75. 74. Sagrista-Sauleda J, Permanyer-Miralda G, Candell-Riera J, Angel J, Soler-Soler J. Transient cardiac constriction: an unrecognized pattern in effusive acute idiopathic pericarditis. Am J Cardiol. 1987;59:961–6. 75. Salami MA, Adeoye PO, Adegboye VO, Adebo OA. Presentation pattern and management of effusive-constrictive pericarditis in Ibadan. Cardiovasc J Afr. 2012;23:206–11. 76. Seifert FC, Miller DC, Oesterle SN, Oyer PE, Stinson EB, Shumway NE.  Surgical treatment of constrictive pericarditis: analysis of outcome and diagnostic error. Circulation. 1985;72:264–73. 77. Sagrista-Sauleda J, Permanyer-Miralda G, Soler-Soler J.  Tuberculous pericarditis: ten year experience with a prospective protocol for diagnosis and treatment. J Am Coll Cardiol. 1988;11:724–8. 78. Tharakan J, Bohora S.  Current perspective on endomyocardial fibrosis. Curr Sci. 2009;97:405–10. 79. Talreja DP, Nishimura RA, Oh JK, Holmes DR.  Constrictive pericarditis in the modern era – novel criteria for diagnosis in the cardiac catheterization laboratory. J Am Coll Cardiol. 2008;51:315–9.

34

3 Definition

80. Talreja DR, Edwards WD, Danielson GK, Schaff HV, Tajik AJ, Tazelaar HD, Breen JF, Oh JK.  Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation. 2003;108:1852–7. 81. Valiathan MS, Balakrishnan KG, Kartha CC. Endomyocardial fibrosis. In: Ahuja MMS, editor. Advances in clinical medicine. New Delhi: Churchill Livingstone; 1991. p. 125–43. 82. Valiathan MS, Kartha CC. Endomyocardial fibrosis – the possible connexion with myocardial levels of magnesium and cerium. Int J Cardiol. 1990;28:1–5. 83. Valiathan MS, Shyamkrishnan KG.  Surgical treatment of endomyocardial fibrosis: Kerala experience. In: Valiathan MS, Somers K, Kartha CC, editors. Endomyocardial fibrosis. New Delhi: Oxford University Press; 1993. p. 220–7. 84. Valiathan MS, Kartha CC, Eapen JT, Dang HS, Sunta CM. A geochemical basis for endomyocardial fibrosis. Cardiovasc Res. 1989;23:647–8. 85. Valla DC. Hepatic venous outflow tract obstruction etipathogenesis: Asia versus the West. J Gastroenterol Hepatol. 2004;19:S204–11. 86. Valla DC. Hepatic vein thrombosis (Budd-Chiari syndrome). Semin Liver Dis. 2002;22:5–14. 87. White PD. Chronic constrictive pericarditis. Circulation. 1951;4(2):288–94. 88. Wood P. Chronic constrictive pericarditis. Am J Cardiol. 1961;7:48–61. 89. Wychulis AR, Connolly DC, McGoon DC.  Surgical treatment of pericarditis. J Thorac Cardiovasc Surg. 1971;62:608–17. 90. White PD. Chronic constrictive pericarditis (Pick’s disease) – treated by pericardial resection. Lancet. 1935;2:539–48; 597–603. 91. Westermark P, Benson MD, Buxbaum IN, et al. A primer of amyloid nomenclature. Amyloid Int J Exp Clin lnvestig. 2007;14(3):179–83. 92. White CS. MR evaluation of the pericardium. Top Magn Reson Imaging. 1995;7:258–66. 93. Yang XL, Cheng TO, Chen CR.  Successful treatment by percutaneous balloon angioplasty of Budd-Chiari syndrome caused by membranous obstruction of inferior vena cava: 8-year follow-up study. J Am Coll Cardiol. 1996;28:1720–4.

Chapter 4

Aetiological Search

An extensive aetiological PubMed, MEDLINE, Google Scholar, Embase and Cochrane Database for systematic reviews, Cochrane central register of control trials, ovid EMBASE (1974 to 31/12/2019) search of hospital admission for all cases of pericardial effusion reveals varying causes of pericarditis; clinicians are required to identify causes that require targeted therapies [7–16, 18–32, 56–59, 65, 88–93, 114–122, 136]. Acute pericarditis of various etiologies may eventually result in constrictive pericarditis [7, 8]. Over the past few decades, the aetiological spectrum of chronic constrictive pericarditis also has changed resulting in diagnostic uncertainties and commensurate change in the indications and complexity of surgical pericardiectomy [17–24, 123– 128, 142, 148]. Certain high risk clinical features are proposed for triage of patients with pericarditis and for complete aetiologic search and hospital admission [60, 61, 80–83, 129–133]. Imazio and associates in 2007, prospectively studied more than 450 consecutive cases and validated the following major high-risk clinical features indicating possible non-viral, non-idiopathic origins of acute pericarditis which required hospital admission and a full aetiological search: fever more than 38 °C (hazard ratio [HR] 3.56), large pericardial effusion (diastolic echo-free space 20 mm in width), or cardiac tamponade (HR 2.15), subacute course (symptoms occurring over several days or weeks; HR 3.97), and failure of NSAIDs or aspirin (HR 2.50). During follow-up, increased risk of complications was noted with large pericardial effusion and tamponade and aspirin or NSAID failure. In absence of these negative predictors, patients were at a low-risk of complications, and managed on out-patient basis [56–63]. In developing countries, tuberculosis is the leading cause of chronic constrictive pericarditis with an incidence of 38–83% [18–20, 34, 35, 51, 61–63, 88–97, 106, 107, 114–119, 136, 137]. In patients with AIDS, with the emergence of drug-­ resistant strains of tuberculosis, the prevalence has become more than 90% [88–93]. Like other aetiologies of chronic constrictive pericarditis, tubercular pericarditis © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_4

35

36

4  Aetiological Search

also shows dense fibrosis and calcification without any direct evidence of the presence of tubercle bacilli. Mediastinal radiation and previous open heart surgery are the aetiological causes in developed countries [1, 6, 9, 25–35, 41–45, 47, 57, 59, 61, 69, 87–96, 100, 106, 107, 131, 132]. The specific causes that need to be ruled out are tubercular pericarditis, auto-immune etiology and neoplastic pericarditis, each having a frequency of around 5% [1, 6, 9, 25–33, 41–45, 47, 57, 59, 61, 69, 93– 96, 100]. Presently, staphylococcal, pneumococcal, streptococcal, hemophillus influenza, and legionella infections are the causative factors for 20–25% of purulent and adhesive pericarditis [10–12, 41–44, 48, 50, 52, 106, 107]. Constrictive pericarditis may occur following incomplete drainage of purulent pericarditis. In remaining ~80% cases, one or more predisposing factors- namely, malignancy, chronic renal failure, recent thoracic surgery, HIV infection and various other immunosuppressive disorders are responsible for this disease entity [10–12, 41–44, 48, 52, 106, 107]. With increasing hospital-acquired infections, fungal infections have become quite common (up to 20%) particularly in patients on hyperalimentation, prolonged antibiotic therapy, steroid administration, burns, immunosuppression, malignancy and following cardiac surgery [2, 18–20, 25–30, 59, 61, 64, 91–93, 96, 106, 107, 114–121]. Iatrogenic causes include pacemaker insertion, coronary interventions, and catheter ablation [122, 130, 132, 133]. The prevalence of idiopathic chronic constrictive pericarditis varies from 24% to 61% in India [3, 12, 36, 79, 82, 106, 107, 114–121]. Various rare and uncommon infectious causes of constrictive pericarditis are Legionella pneumonia, Lassa fever, meningococcal, nocardia asteroids, histoplasmosis, Whipple’s disease, actinomycosis, amoebic liver abscess, and salmonella infections [20, 26, 37, 70–72, 85, 101–103, 105, 142]. Immunosuppressed patients and children are vulnerable [10, 11]. Pericardium may be infiltrated by metastatic deposits from lung and breast cancer and lymphomas [10, 11, 26–48, 84]. Constrictive pericarditis may occur in 0.1–0.3% patients following cardiac surgical procedure [4, 5, 13, 18–27, 53, 66, 73–78, 80]. In 1989, Cimino traced 158 cases of chronic constrictive pericarditis post cardiac surgery, in the world literature [30]. In 1989, Killiam reported appearance of constrictive pericarditis between 1 and 204 months (mean of 24 months) following cardiac surgery in 45 patients [74]. In 1986, Schiavone and associates reported 19 patients with constrictive pericarditis following repair of atrial septal defect (1), valve replacement (5), coronary artery bypass grafting (4) and Beck’s procedure (1) [133]. Constrictive pericarditis appears after a period of 3–24 months time interval following cardiac surgery, although it may occur as early as 4 weeks [14]. Other causative factors implicated in development of postsurgical constrictive pericarditis are trauma during the surgery, residual blood elements in the pericardial cavity, low-grade infection and irrigation of pericardial cavity with povidone iodine solution. Nonpenetrating or penetrating pericardial injury like penetrating injury to the pericardium from pacing catheters, may result in constrictive pericarditis [133, 134]. In 1988, Keogh reported a case of traumatic hemopericardium following self mutilating injury to chest wall using sewing needles leading to constrictive pericarditis [49, 71, 132, 133].

References

37

In cardiac transplantation, constrictive pericarditis occurs rarely as a complication with an incidence ranging from 1.4% to 3.9% [15, 54]. The time period from cardiac transplantation to appearance of constrictive pericarditis varies between 3 weeks to as long as 11 years [15, 20–24, 27, 31, 32, 54, 73–77, 110, 111, 137]. Drugs like hydralazine, methysergide and procainamide may induce lupus erythematosus, resulting in recurrent episodes of pericarditis, pericardial adhesions, and constriction [1, 107–109, 112, 126–129, 135, 144, 149]. Radiation therapy for mediastinal tumor, breast carcinoma, and Hodgkin’s disease may cause constrictive pericarditis at varying time intervals [1, 6, 9, 21, 25, 29, 67, 85, 87, 97, 138, 139, 143–147]. “Dialysis pericarditis” is a specific form of pericarditis that develop in patients with end-stage kidney failure who receive dialysis or renal transplantation. It usually develops after 8 weeks of initiation of dialysis and may progress to stage of constriction [2]. Patient of Wagner’s granulomatosis in renal failure may develop constrictive pericarditis [133]. Rare and uncommon hereditary causes of constrictive pericarditis like mulibrey nanism have been reported from United States and Finland [138, 141]. The literature documents cases of rheumatoid arthritis, lupus erythematosus, and rheumatic fever causing either effusive-constrictive pericarditis or constrictive pericarditis [4, 16, 25, 68, 73, 86, 107, 109, 139, 140]. Other rare causes include myocardial infarction with anticoagulant related haemopericardium, sarcoidosis, Whipple’s disease, amyloidosis, dermatomyositis, asbestosis, implantable cardioverter defibrillator, primary chylopericardium, coxsackie virus, histoplasmosis, sclerosing mediastinitis, methysergide therapy and following cardiac transplantation [38–40, 45, 46, 55, 72, 78, 86, 98, 99, 104, 107–113, 140, 150].

References 1. Applefeld MM, Cole JF, Pollock SH, Sutton FJ, Slawson RG, Singleton RT, Wiernik PH. The late appearance of chronic pericardial disease in patients treated by radiotherapy for Hodgkin’s disease. Ann Intern Med. 1981;94:338–41. 2. Alpert MA, Ravenscraft MD. Pericardial involvement in end-stage renal disease. Am J Med Sci. 2003;325:228–36. 3. Anand SS, Saini VK, Wahi PL. Constrictive pericarditis. Dis Chest. 1965;47:291–5. 4. Arthur A, Oskvig R, Basta LL.  Calcific rheumatoid constrictive pericarditis with cardiac failure, treated by pericardicectomy. Chest. 1973;64:769–71. 5. Albers WH, Hugenholtz PG, Nadas AS.  Constrictive pericarditis and atrial septal defect, secundum type, with special reference to left ventricular volumes and related haemodynamic findings. Am J Cardiol. 1969;23:850–7. 6. Applefeld MM, Wiernik PH. Cardiac disease after radiation therapy for Hodgkin’s disease: analysis of 48 patients. Am J Cardiol. 1983;51:1679–81. 7. Bawa YS, Mehta MC, Wahi PL. Pericardial biopsy. Lancet. 1959 Dec 12;274(7111):1065–7. 8. Bawa YS, Wahi PL, Mehta MC. Pericarditis: a clinical survey of 35 cases. Ind J Med Soc. 1960;14:111–21.

38

4  Aetiological Search

9. Brosius FC III, Waller BF, Roberts WC. Radiation heart disease: analysis of 16 young (aged 15 to 33 years) necropsy patients who received over 3,500 rads to the heart. Am J Med. 1981;70:519–30. 10. Brockington GM, Zebede J, Pandian NG.  Constrictive pericarditis. Cardiol Clin. 1990;8:645–66. 11. Brockington GM, Zebede J, Pandian NG. Constrictive pericarditis. In: Diseases of the pericardium (Ed. Shabetai R). W.B. Saunders, Philadelphia. Cardiology Clinics. 1990;8(4):645–61. 12. Bashi VV, John S, Ravikumar E, Jairaj PS, Shyamsunder K, Krishnaswami S. Early and late results of pericardiectomy in 118 cases of constrictive pericarditis. Thorax. 1988;43:637–41. 13. Bertog SC, Thambidorai SK, Parakh K, Schoenhagen P, Ozduran V, Houghtaling PL, Lytle BW, Blackstone EH, Lauer MS, Klein AL.  Constrictive pericarditis: aetiology and cause-­ specific survival after pericardiectomy. J Am Coll Cardiol. 2004;43:1445–52. 14. Bergman M, Sahar G, Vitrai J, Salman H. Early development of severe constrictive pericarditis after coronary bypass grafting. Eur J Emerg Med. 2005;12:245–7. 15. Bansal R, Perez L, Razzouk A, Wang N, Bailey L. Pericardial constriction after cardiac transplantation. J Heart Lung Transplant. 2010;29:371–7. 16. Bergman M, Vitrai J, Salman H. Constrictive pericarditis: a reminder of a not so rare disease. Eur J Intern Med. 2006;17:457–64. 17. Beaufils P, Bardet J, Tembine J, Masquet C, Sebastian P, Zelasko Y. Syndrome de Dressler: pericardite constrictive post-infarctus opérée avec success. Arch Mal Coeur. 1975;68:651–6. 18. Chowdhury UK, Subramaniam G, Kumar AS, Airan B, Singh R, Talwar S, et  al. Pericardiectomy for constrictive pericarditis: clinical, echocardiographic and haemodynamic evaluation of two surgical techniques. Ann Thorac Surg. 2006;81:522–30. 19. Chowdhury UK, Seth S, Reddy SM. Pericardiectomy for chronic constrictive pericarditis. J Operative Tech Thorac Cardiovasc Surg. 2008;13:14–25. 20. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, Kalaivani M. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass. Ann Thorac Surg, 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 21. Chowdhury UK, Narang R, Malhotra P, Choudhury M, Choudhury A, Singh SP. Indications, timing and techniques of radical pericardiectomy via modified left anterolateral thoracotomy (UKC’s modification) and total pericardiectomy via median sternotomy (Holman and Willett) without cardiopulmonary bypass. J Prac Cardiovasc Sci. 2016;2:17–27. 22. Chowdhury UK, Sankhyan LK, Malik V, George N, Gudala V, Chowdhury P. Low cardiac output syndrome following pericardiostomy and pericardiectomy for massive pericardial effusion and chronic constrictive pericarditis: myths and realities at 100 years. Int J Clin Case Stud Rep. 2019;2(1):46–60. 23. Chowdhury UK, Kumari L. Surgery for chronic constrictive pericarditis, tuberculous pericarditis and effusive-constrictive pericarditis. Invited Chapter: Cardiological Society of India, 2018 (Invited chapter 64), pp. 1–10. 24. Chowdhury UK, Kumari L. Pericardiectomy for chronic constrictive pericarditis: where are we after 100 years? World J Surg Surg Res. 2018;1:1027–30. 25. Cameron J, Oesterle SN, Baldwin JC, Hancock EW. The etiologic spectrum of constrictive pencarditis. Am Heart J. 1987;113:354–60. 26. Cacoub P, Wechsler B, Chapelon C, Gandjbakch I, Bléetry O, Piette JC, Cabrol C, Godeau P. Chronic constrictive pericarditis, 27 cases. Presse Med. 1991;20:2185–90. 27. Carrier M, Hudon G, Paquet E, et al. Mediastinal and pericardial complications after heart transplantation: not-so-unusual postoperative problems? Cardiovasc Surg. 1994;2:395–7. 28. Chou TM, Jue J, Merrick SH, Schiller NB, Foster E. Effusive-constrictive pericarditis and atrial septal defect. Am Heart J. 1993;125:1193–5. 29. Coltart RS, Roberts JT, Thom CH, Petch MC. Severe constrictive pericarditis after single 16 Me V anterior mantle irradiation for Hodgkin’s disease. Lancet. 1985;1:488–9. 30. Cimino JJ, Kogan AD. Constrictive pericarditis after cardiac surgery: Report of 3 cases and review of the literature. Am Heart J. 1989;118:1292–301.

References

39

31. Copeland JG, Riley JE, Fuller J. Pericardiectomy for effusive constrictive pericarditis after heart transplantation. J Heart Transpl. 1986;5:171–2. 32. Copeland JG, Stinson EB, Griepp RB, Shumway NE. Surgical treatment of chronic constrictive pericarditis using cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1975;69:236–8. 33. Cheung PK, Myers ML, Arnold JMO.  Early constrictive pericarditis and anemia after Dressler’s syndrome and inferior wall myocardial infarction. Br Heart J. 1991;65:360–2. 34. Cegielski JP, Devlin BH, Morris AJ, Kitinya JN, Pulipaka UP, Lema LE, Lwakatare J, Reller LB. Comparison of PCR, culture, and histopathology for diagnosis of tuberculous pericarditis. J Clin Microbiol. 1997;35:3254–7. 35. Chaison RE, Schecter GF, Theuer CP, Rutherford GW, Echenberg DF, Hopewell PC.  Tuberculosis in patients with acquired immunodeficiency syndrome. Am Rev Respir Dis. 1987;136:570–4. 36. Dalvi B. Kussmaul’s sign: an artefact? (letter). Lancet. 1989;1:1937. 37. Diog JC, Hilton CJ, Reid DS. Salmonella: a rare cause of subacute effusiveconstrictive pericarditis. Br Heart J. 1991;65:296–7. 38. Daubert JP, Gaede J, Cohen WJ. A fatal case of constrictive pericarditis due to marked, selective pericardial accumulation of amyloid. Am J Med. 1993;94:335–40. 39. Davies JNP. Endomyocardial fibrosis in Uganda. East Afr Med J. 1948;25:228–35. 40. Dunn EJ, Ulicny KS, Wright CB, Gottesman L. Surgical implications of sclerosing mediastinitis. Chest. 1990;97:338–46. 41. Fowler NO, Manitsas GT. Infectious pericarditis. Prog Cardiovasc Dis. 1973;16:323–36. 42. Fowler NO.  Constrictive pericarditis: its history and current status. Clin Cardiol. 1995;18:341–50. 43. Fowler NO. Constrictive pericarditis: new aspects. Am J Cardiol. 1982;50:1014–7. 44. Fowler NO. Tuberculous pericarditis. J Am Med Assoc. 1991;266:99–103. 45. Freychet L, Duboc D, Guéerin F, Chomette G.  Péericardite constrictive et maladie de Whipple. Arch Mal Coeur. 1990;83:1729–32. 46. Fischbein L, Namade M, Sachs RN, Robineau M, Lanfranchi J. Chronic constrictive pericarditis associated with asbestosis. Chest. 1988;94:646–7. 47. Garrett J, O’Neill M, Blake S. Constrictive pericarditis associated with sarcoidosis. Am Heart J. 1984;107:394–7. 48. Greenwood RD, Rosenthal A, Cassady R, Jaffe N, Nadas AS.  Constrictive pericarditis in childhood due to mediastinal irradiation. Circulation. 1974;50:1033–9. 49. Goldstein S, Yu P. Constrictive pericarditis after blunt chest trauma. Am Heart J. 1965;69:544–9. 50. Gould K, Barnett JA, Sanford JP. Purulent pericarditis in the antibiotic era. Arch Intern Med. 1974;134:923–7. 51. Hakim JG, Manyemba J. Cardiac disease distribution among patients referred for echocardiography in Harare, Zimbabwe. Cent Afr J Med. 1998;44:140–4. 52. Hirata K, Asato H, Maeshiro M. A case of effusive-constrictive pericarditis caused by streptococcus milleri. Jpn Clin J. 1991;55:154–8. 53. Harada J, Seki I, Okuni M. Constrictive pericarditis with atrial septal defect in children. Jpn Heart J. 1978;19:531–43. 54. Hinkamp TJ, Sullivan HJ, Montoya A, Park S, Bartlett L, Pifarre R. Chronic cardiac rejection masking as constrictive pericarditis. Ann Thorac Surg. 1994;57:1579–83. 55. Howard EJ, Maier HC. Constrictive pericarditis following acute Coxsackie viral pericarditis. Am Heart J. 1968;75:247–50. 56. Imazio M, Trinchero R.  Triage and management of acute pericarditis. Int J Cardiol. 2007;118:286–94. 57. Imazio M, Spodick DH, Brucato A, Trinchero R, Adler Y. Controversial issues in the management of pericardial diseases. Circulation. 2010;121:916–28. 58. Imazio M, Cecchi E, Demichelis B, Chinaglia A, Ierna S, Demarie D, Ghisio A, Pomari F, Belli R, Trinchero R.  Myopericarditis versus viral or idiopathic acute pericarditis. Heart. 2008;94(4):498–501.

40

4  Aetiological Search

59. Imazio M, Brucato A, Trinchero R, Adler Y. Diagnosis and management of pericardial diseases. Nat Rev Cardiol. 2009;6:743–51. 60. Imazio M, Cecchi E, Correndo L, D’Oulx EA, Doronzo B, Trinchero R. Treatment of refractory recurrent pericarditis. J Cardiovasc Med. 2007;8:748–53. 61. Imazio M, Spodick DH, Brucato A, Trinchero R, Markel G, Adler Y. Diagnostic issues in the clinical management of pericarditis. Int J Clin Pract. 2010;64:1384–92. 62. Imazio M, Cecchi E, Demichelis B, Ierna S, Demarie D, Ghisio A, Pomari F, Coda L, Belli R, Trinchero R.  Indicators of poor prognosis of acute pericarditis. Circulation. 2007;115(21):2739–44. 63. Imazio M, Trinchero R, Shabetai R. Pathogenesis, management, and prevention of recurrent pericarditis. J Cardiovasc Med. 2007;8:404–10. 64. Imazio M, Brucato A, Maestroni S, Cumetti D, Belli R, Trinchero R, Adler Y. Risk of constrictive pericarditis after acute pericarditis. Circulation. 2011;124:1270–5. 65. Imazio M, Brucato A, Derosa FG, Lestuzzi C, Bombana E, Scipione F, Leuzzi S, Cecchi E, Trinchero R, Adler Y. Aetiological diagnosis in acute and recurrent pericarditis: when and how. J Cardiovasc Med. 2009;10:217–30. 66. Just H, Mattingly TW. Interatial septal defect and pericardial disease: coincindences or casual relationship? Am Heart J. 1968;76:157–67. 67. Jenzer HR, Graedel E, Blumberg A. Diagnosis and successful surgical treatment of chronic constrictive uremic pericarditis. Heart J. 1976;38:304–6. 68. John JT Jr, Hough A, Sergent JS.  Pericardial disease in rheumatoid arthritis. Am J Med. 1979;66:385–90. 69. Karram T, Rinkevitch D, Markiewicz W. Poor outcome in radiation-induced constrictive pericarditis. Int J Radiat Oncol Biol Phys. 1993;25:329–31. 70. Kessler R, Follis F, Daube D, Wernly J. Constrictive pericarditis from nocardia asteroides infection. Ann Thorac Surg. 1991;52:861–2. 71. Keogh BE, Oakley CM, Taylor KM.  Chronic constrictive pericarditis caused by self-­ mutilation with sewing needles: a case report and review of published reports. Br Heart J. 1988;59:77–80. 72. Kilbum CD, Mckinsey DS. Recurrent massive pleural effusion due to pleural, pericardial, and epicardial fibrosis in histoplasmosis. Chest. 1991;100:1715–9. 73. Karim AH, Salomon J.  Constrictive pericarditis after myocardial infarction: sequela of anticoagulant-­induced hemopericardium. Am J Med. 1985;79:389–90. 74. Killian DM, Furiasse JG, Scanlon PJ, Loeb HS, Sullivan HJ. Constrictive pericarditis after cardiac surgery. Am Heart J. 1989;118:563–8. 75. Kouvaras G, Goudevenos J, Chronopoulos G, Sofranos G, Reed P, Adams P, Cokkinos DV. Atrial septal defect and constrictive pericarditis: an unusual combination. Acta Cardiol. 1989;44:341–9. 76. Kumar R, Entrikin DW, Ntim WO, Carr JJ, Kincaid EH, Hines MH, Oaks TE, Thohan V, et al. Constrictive pericarditis after cardiac transplantation: a case report and literature review. J Heart Lung Transplant. 2008;27(10):1158–61. 77. Kumar S, Dispenzieil A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–95. 78. Kumar S, Szatkowski J, Thomas W. Atrial septal defect complicated by constrictive pericarditis. Chest. 1971;60:101–5. 79. Kassanoff AH, Levin CB, Wyndham CRC, Mills LJ. Implantable cardioverter defibrillator infection causing constrictive pericarditis. Chest. 1992;102:960–3. 80. Lange RA, Hillis LD. Clinical practice: acute pericarditis. N Engl J Med. 2004;351:2195–202. 81. Little WC, Freeman GL. Pericardial disease. Circulation. 2006;113:1622–32. 82. Lorbar M, Spodick DH. “Idiopathic” pericarditis: the clinician’s challenge (nothing is idiopathic). Int J Clin Pract. 2007;61:138–42.

References

41

83. Loire R, Tabib A, Roux N, Dureau G. Pericardium and heart transplantation. Arch Mal Coeur Vaiss. 1994;84:467–73. 84. Llewellyn MJ, Atkinson MW, Fabri B. Pericardial constriction caused by primary mesothelioma. Br Heart J. 1987;57:54–7. 85. Lindsay J Jr, Crawley IS, Callaway GM Jr. Chronic constrictive pericarditis following uremic hemopericardium. Am Heart J. 1970;79:390–5. 86. Liss JP, Bachmann VVT.  Rheumatoid constrictive pericarditis treated by pericardiectomy: report of a case and review of the literature. Arthritis Rheum. 1970;13:869–76. 87. Ling LH, Oh JK, Breen JF, Schaff JV, Danielson GK, Mahoney DW, Seward JB, Tajik AJ. Calcific constrictive pericarditis: is it still with us? Ann Intern Med. 2000;132:444–50. 88. Mayosi BM, Ntsekhe M, Volmink JA, Commerford PJ.  Interventions for treating tuberculous pericarditis. Cochrane Database Syst Rev. 2002;(4):CD000526. https://doi. org/10.1002/14651858.CD000526. 89. Mayosi BM, Burgess LJ, Doubell AF.  Tuberculous pericarditis. Circulation. 2005;112(23):3608–16. 90. Mayosi BM, Wiysonge CS, Ntsekhe M, et al. Clinical characteristics and initial management of patients with tuberculous pericarditis in the HIV era: the investigation of the management of pericarditis in Africa (IMPI Africa) registry. BMC Infect Dis. 2006;6:2. 91. Maisch B, Maisch S, Kochsiek K.  Immune reactions in tuberculous and chronic constrictive pericarditis: clinical data and diagnostic significance of antimyocardial antibodies. Am J Cardiol. 1982;50(5):1007–13. 92. Maisch B, Ristić AD, Rupp H, Spodick DH. Pericardial access using the PerDUCER and flexible percutaneous pericardioscopy. Am J Cardiol. 2001;88(11):1323–6. 93. Maisch B, Seferović PM, Ristić AD, Erbel R, Rienmüller R, Adler Y, Tomkowski WZ, Thiene G, Yacoub MH, Priori SG, Alonso Garcia MA.  Guidelines on the diagnosis and management of pericardial diseases executive summary: the Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2004;25(7):587–610. 94. Mayosi BM, Wiysonge CS, Ntsekhe M, Gumedze F, Volmink JA, Maartens G, Aje A, Thomas BM, Thomas KM, Awotedu AA, Thembela B. Mortality in patients treated for tuberculous pericarditis in sub-Saharan Africa. S Afr Med J. 2008;98(1):36–40. 95. McCaughan BC, Schaff HV, Piehler JM, Danielson GK, Orszulak TA, Puga FJ, Pluth JR, Connolly DC, McGoon DC. Early and late results of pericardiectomy for constrictive pericarditis. J Thorac Cardiovasc Surg. 1985;89(3):340–50. 96. Mehta A, Mehta M, Jain AC. Constrictive pericarditis. Clin Cardiol. 1999;22:334–44. 97. Miller JI, Mansour KA, Hatcher CR Jr. Pericardiectomy: current indications, concepts, and results in a university center. Ann Thorac Surg. 1982;34(1):40–5. 98. Maher D, Harries AD. Tuberculous pericardial effusion: a prospective clinical study in a low-­ resource setting-Blantyre, Malawi. Int J Tubercul Lung Dis. 1997;1(4):358–64. 99. Morishita Y, Taira A, Furoi A, Arima S, Tanaka H.  Constrictive pericarditis secondary to primary chylopericardium. Am Heart J. 1985;109(2):373–5. 100. Ni Y, Von Segesser LK, Turina M. Futility of pericardiectomy for postirradiation constrictive pericarditis? Ann Thorac Surg. 1990;49(3):445–8. 101. Nelson DP, Rensimer ER, Raffin TA. Legionella pneumophila pericarditis without pneumonia. Arch Intern Med. 1985;145(5):926. 102. Nichols DA, Peter RH.  Constrictive pericarditis as a late complication of meningococcal pericarditis. Am J Cardiol. 1985;55(11):1442–3. 103. O’Sullivan RA, Armstrong JG, Rivers JT, Mitchell CA. Pulmonary actinomycosis complicated by effusive constrictive pericarditis. Aust NZ J Med. 1991;21(6):879–80. 104. Orlando RC, Moyer P, Barnett TB. Methysergide therapy and constrictive pericarditis. Ann Intern Med. 1978;88(2):213–4. 105. Picardi JL, Kauffman CA, Schwarz J, Holmes JC, Phair JP, Fowler NO. Pericarditis caused by histoplasma capsulatum. Am J Cardiol. 1976;37(1):82–8.

42

4  Aetiological Search

106. Robertson R, Arnold CR.  Constrictive pericarditis with particular reference to aetiology. Circulation. 1962;26:525–9. 107. Roberts WI, Spray TL. Pericardial heart disease: a study of its causes, consequences and morphologic features. In: Spodick DH, editor. Cardiovascular Clinics, Vol 7, No 3. Philadelphia: F.A. Davis; 1976. p. 11–68. 108. Reuter H, Burgess L, van Vuuren W, Doubell A.  Diagnosing tuberculous pericarditis. Q J Med. 2006;99:827–39. 109. Reuter H, Burgess LJ, Carstens ME, Doubell AF. Adenosine deaminase activity: more than a diagnostic tool in tuberculous pericarditis. Cardiovasc J South Afr. 2005;16:143–7. 110. Ramana RK, Gudmundsson GS, Maszak GJ, Cho L, Lichtenberg R. Non-infectious constrictive pericarditis in a heart transplant recipient. J Heart Lung Transplant. 2005;24:95–8. 111. Rivinius R, Helmschrott M, Koch V, Sedaghat-Hamedani F, Fortner P, Darche FF, et  al. Constrictive pericarditis in the presence of remaining remnants of a left ventricular assist device in a heart transplanted patient. Case Rep Transpl. 2015;2015:1–5. 112. Roberts JT, Beck CS.  The effect of chronic cardiac compression on the size of the heart muscle fibers. Am Heart J. 1941;22:314–20. 113. Ramsdale DR, Epstein EJ, Coulshed N. Constrictive pericarditis after myocardial infarction. Br Heart J. 1986;556:476–8. 114. Sagrista-Sauleda J, Permanyer-Miralda G, Candell-Riera J, Angel J, Soler-Soler J. Transient cardiac constriction: an unrecognized pattern in effusive acute idiopathic pericarditis. Am J Cardiol. 1987;59:961–6. 115. Sagrista-Sauleda J, Permanyer-Miralda G, Soler-Soler J. Tuberculous pericarditis: ten year experience with a prospective protocol for diagnosis and treatment. J Am Coll Cardiol. 1988;11:724–8. 116. Sagrista-Sauleda J, Merce J, Permanyer-Miralda G, Soler-Soler J. Clinical clues to the causes of large pericardial effusions. Am J Med. 2000;109:95–101. 117. Sagrista-Sauleda J. Pericardial constriction: uncommon patterns. Heart. 2004;90:257–8. 118. Sagrista-Sauleda J, Angel J, Sänchez A, Permanyer-Miralda G, Soler-Soler J.  Effusive-­ constrictive pericarditis. N Engl J Med. 2004;350:469–75. 119. Sagrista-Sauleda J, Angel J, Sambola A, Permanyer-Miralda G.  Haemodynamic effects of volume expansion in patients with cardiac tamponade. Circulation. 2008;117:1545–9. 120. Sagrista-Sauleda J, Angel J, Permanyer-Miralda G, Soler-Soler J.  Long-term follow-up of idiopathic chronic pericardial effusion. N Engl J Med. 1999;341:2054–9. 121. Sagrista-Sauleda J, Almenar Bonet L, Angel Ferrer J, Bardají Ruiz A, Bosch Genover X, Guindo Soldevila J, et  al. The clinical practice guidelines of the Sociedad Espanola de Cardiologia on pericardial pathology. Rev Esp Cardiol. 2000;53:394–412. 122. Seferovic PM, Ristic AD, Imazio M, Maksimovic R, Simeunovic D, Trinchero R, et  al. Management strategies in pericardial emergencies. Herz. 2006;31:891–900. 123. Shabetai R. The pericardium. Boston: Kluwer Academic; 2003. p. 191–251. Shabetai R. The pericardium. New York: Grone & Stratton; 1981. 124. Shabetai R. Pericardial diseases. In: Hurst JW, editor. The heart, arteries and veins. New York: McGraw-Hill; 1990. p. 1348–74. 125. Shabetai R. Diseases of the pericardium. In: Hurst JW, Schlant RC, Alexander RW, editors. The heart: arteries and veins. 8th ed. New York: McGraw-Hill; 1994. p. 1654–62. 126. Spodick DH. Constrictive pericarditis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. 1st ed. New York: Marcel Dekker Inc; 1997. p. 214–59. 127. Spodick DH. Pericardial diseases. In: Braunwald E, Zipes DP, Libby P, editors. Heart disease: a textbook of cardiovascular medicine, vol. 6. Philadelphia: WB Saunders Co; 2001. p. 1823–70. 128. Szabo G, Schmack B, Bulut C, Soos P, Weymann A, Stadtfeld S, et al. Constrictive pericarditis: risks, aaetiologies and outcomes after total pericardiectomy: 24 years of experience. Eur J Cardiothorac Surg. 2013;44:1023–8.

References

43

129. Spodick DH. Pericardial macro-and micro-anatomy: a synopsis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. New York: Marcel Dekker; 1997. p. 7–14. 130. Seferovic PM, Ristic AD, Maksimovic R, Tatic V, Ostojic M, Kanjuh V. Diagnostic value of pericardial biopsy: improvement with extensive sampling enabled by pericardioscopy. Circulation. 2003;107:978–83. 131. Shabetai R.  Recurrent pericarditis: recent advances and remaining questions. Circulation. 2005;112:1921–3. 132. Stewart JR, Cohn KE, Fajardo LF, Hancock EW, Kaplan HS. Radiation-induced heart disease. Radiology. 1967;89:302–10. 133. Schiavone WA. The changing aetiology of constrictive pericarditis in a large referral center. Am J Cardiol. 1986;58:373–5. 134. Schwartz DJ, Thanavaro S, Kieiger RE, Krone RJ, Connors SP, Oliver CG. Epicardial pacemaker complicated by cardiac tamponade and constrictive pericarditis. Chest. 1979;76:226–7. 135. Sunder SK, Shah A. Constrictive pericarditis in procainamide induced lupus erythematosus syndrome. Am J Cardiol. 1975;36:960–7. 136. Tuna IC, Danielson GK.  Surgical management of pericardial diseases. Cardiol Clin. 1990;84:683–96. 137. Tchana-Sato V, Ancion A, Ansart F, Defraigne JO. Constrictive pericarditis after heart transplantation: a case report. Eur Heart J. 2020;4:1–6. 138. Tuuteri L, Perheentupa J, Rapola J. The cardiomyopathy of mulibrey nanism, a new inherited syndrome. Chest. 1975;65:628–31. 139. Thadani LT, Iveson JMI, Wright V. Cardiac tamponade, constrictive pericarditis and pericardial resection in rheumatoid arthritis. Medicine (Baltimore). 1975;54:261–70. 140. Tamir R, Pick AJ, Theodor E. Constrictive pericarditis complicating dermatomyositis. Ann Rheum Dis. 1988;47:961–3. 141. Voorhess ML, Husson GS, Blackman MS. Growth failure with pericardial constriction: the syndrome of mulibrey nanism. Am J Dis Child. 1976;130:1146–8. 142. Wychulis AR, Connolly DC, McGoon DC.  Surgical treatment of pericarditis. J Thorac Cardiovasc Surg. 1971;62:608–17. 143. Wolfe SA, Bailey GF, Collins JJ Jr. Constrictive pericarditis following uremic effusion. J Thorac Cardiovasc Surg. 1972;63:540–4. 144. Weiss SW, Tau FL, Hutchins GM. Constrictive uremic pericarditis following hemodialysis for acute renal failure. Johns Hopkins Med J. 1973;132:301–5. 145. Weiss JM, Spodick DH. Association of left pleural effusion with pericardial disease. N Engl J Med. 1983;308:696–7. 146. Warda M, Khan A, Massumi A, Mathur V, Klima T, Hall R. Radiation-induced valvular dysfunction. J Am Coll Cardiol. 1983;2:180–5. 147. Wolf RE, King JW, Brown TA. Antimyosin antibodies and constrictive pericarditis in lupus erythematosus. J Rheumatol. 1988;15:1284–7. 148. Yetkin U, Kestelli M, Yilik L, Ergunes K, Kanlioglu N, Emrecan B, et al. Recent surgical experience in chronic constrictive pericarditis. Tex Heart Inst J. 2003;30:27–30. 149. Yurchak PM, Levine SA, Corlin R. Constrictive pericarditis complicating disseminated lupus erythematosus. Circulation. 1965;31:113. 150. Yanase O, Motomiya T, Watanabe K, Tokuyasu Y, Sakurada H, Tejima T, Hiyoshi Y, Sugiura M, Yabata Y, Kitazumi H. Lassa fever associated with effusive-constrictive pericarditis and bilateral atrioventricular annular constriction: a case report. J Cardiol. 1989;19:1147–56.

Chapter 5

Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

This condition has posed a diagnostic dilemma since it was first recognized. All cases of constrictive pericarditis cannot be diagnosed using an isolated criterion. An individualized diagnostic approach is recommended for each patient. In some patients the diagnosis may be made on the basis of history, physical examination and chest radiography. However, in the majority, echocardiography, cardiac catheterization and visualization of pericardium may all be required. The most important diagnostic tool is the clinical suspicion of constrictive pericarditis in a patient with signs and symptoms of right-sided cardiac failure that are disproportionate to pulmonary or left-sided heart disease. Clinically it is necessary to differentiate constrictive pericarditis from other causes of right-sided heart failure such as mitral stenosis, pulmonary hypertension, pulmonary embolism, right ventricular infarction, restrictive cardiomyopathy, Budd-Chiari syndrome and tropical endomyocardial fibrosis [1, 7, 8, 10–16, 22, 23, 25, 29, 47–50, 53–56, 65, 71–74, 93–96, 103–106, 125, 133, 138–143, 149, 150]. Hepatosplenomegaly occurs early and may lead to an erroneous diagnosis of cirrhosis of the liver. Kussmaul’s sign may be positive but lacks specificity, as it is seen also in patients with restrictive cardiomyopathy, right ventricular failure, endomyocardial fibrosis and tricuspid stenosis [10–16, 47–50, 71, 72]. Ling and associates from the Mayo Clinic detected the presence of pulsus paradoxus and Kussmaul’s sign in 19% and 21% of patients with constrictive pericarditis referred for pericardiectomy [54, 55, 66]. Evidence of pulsus paradoxus is found in the majority of patients [124]. The published literature does not document the exact cause of ‘ascites precox’ i.e. the appearance of ascites followed by pedal oedema. Disproportionately high right atrial pressures, protein losing enteropathy causing hypoalbuminemia, increased capillary permeability, cardiac cirrhosis, impedance to lymph flow and disproportionately high atrial natriuretic peptide have been variously implicated as causative factors for ascites precox [53, 71, 72, 97, 98, 107]. A diastolic lift (pericardial knock) that coincides with a high-pitched early diastolic sound and sudden inspiratory splitting of second heart sound (Vogelpoel-Beck sign) © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_5

45

46

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

are specific clinical signs found in 21% and 36% of patients with chronic constrictive pericarditis respectively [10–16, 47–50, 75, 97, 98, 108, 109]. Among laboratory parameters, erythrocyte sedimentation rate may be raised. Plasma protein levels are reduced. Although the electrocardiographic findings of low voltage QRS complex, ST-T abnormalities, P-mitrale (19–37%), and atrial fibrillation (30%) are non-specific, a completely normal electrocardiogram is rare in constrictive pericarditis [7, 10, 18, 47–50, 66, 67, 97, 98]. Although chest radiography as a single non-invasive imaging modality is not helpful in the diagnosis of chronic constrictive pericarditis, certain findings suggest the existence of chronic constrictive pericarditis [1, 2, 10–16]. In a typical patient with chronic constrictive pericarditis, the cardiac silhouette is not enlarged except with co-existing pericardial effusion or extracardiac mass. “Eggshell calcifications”, “cocoon calcifications” or “amorphous calcification” in atrioventricular grooves strongly suggest constrictive pericarditis in patients with heart failure [10–16, 68, 69, 76]. Pericardial calcification may be revealed over the right atrium and ventricle and atrioventricular groove on lateral chest x-ray (Figs.  5.1 and 5.2) [10–14, 68, 69, 76]. Although no single pathognomonic echocardiographic finding exists for chronic constrictive pericarditis, a normal study virtually rules out the diagnosis of the same. M-mode echocardiography reveals pericardial calcification, pericardial thickening, rapid early diastolic filling, abnormal septal motion, flattening of left ventricular posterior wall endocardium, posterior left ventricular wall motion in mid-diastole and premature opening of the pulmonary valve [1, 12, 13, 19, 20, 24, 33, 34, 52, 77, 78, 88–91, 134, 135, 144, 145]. Talreja et al. demonstrated that 15–20% of constrictive pericarditis patients had a normal pericardium or mildly increased pericardial thickness [134]. Trappe and colleagues demonstrated abruptly reduced respirophasic early diastolic posterior motion of the interventricular septum due to underfilling of the left ventricle secondary to inspiratory pulmonary vein-left atrial gradient [136]. a

b

Fig. 5.1  Frontal (a) and left lateral (b) chest radiographs reveal thick, plaque- like calcifications (arrowheads) over the diaphragmatic surface and free walls of both ventricles and along the atrioventricular groove

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

47

Fig. 5.2  Lateral chest radiograph reveals extensive circumferential pericardial calcification (indicated by white arrows)

The role of 2D echocardiography in the introductory phase was to exclude other causes of right heart failure secondary to valvular heart diseases, pulmonary hypertension, right ventricular infarction and pulmonary thromboembolism [35, 36, 53, 59–63, 88–91, 110–114]. Individuals with constrictive percarditis usually have preserved ejection fraction with normal ventricular dimensions; however, it may be impaired in mixed constrictive restrictive disease. Annular constrictive pericarditis secondary to a constricting calcific or non-calcific fibrous band may produce left ventricular inflow or right ventricular outflow tract obstruction [17]. Two-dimensional echocardiographic findings suggestive of constrictive pericarditis include: (i) dilation and non-collapsible inferior caval vein and hepatic veins, (ii) abnormal septal motion, (iii) increased or preserved early diastolic e’ velocity of the medial mitral annulus, and (iv) increased expiratory hepatic flow reversal reflecting dissociation of intrathoracic and intracardiac pressures and ventriculo-­ventricular interaction (Fig. 5.3a and 5.4h) [3–6, 24, 35, 36, 71, 77–81, 88–91]. Several investigators including ourselves have demonstrated superior resolution of pericardial thickness using transesophageal echocardiography as compared with transthoracic echocardiography. A pericardial thickness of 3 mm or more on transoesophageal echocardiography was 95% sensitive and 86% specific for establishing the diagnosis of constrictive pericarditis [69, 70]. Transesophageal echocardiographic measurements correlates strongly with cardiac computed tomographic in evaluation of pericardial thickness [51]. However, the role of echocardiography is limited in the evaluation of

48

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

a

b

c

Fig. 5.3 (a) Preoperative echocardiographic images in a patient with chronic constrictive pericarditis. Apical four chamber view showing normal valvular, left and right ventricular morphology, (b) Apical five chamber view showing normal valvular, left and right ventricular morphology, (c) M-mode echocardiogram showing normal left ventricle with flattened interventricular septum, (d) Colour flow Doppler echocardiogram showing normal flow across the mitral valve, (e) Colour flow Doppler echocardiogram showing normal flow across the tricuspid valve, (f) Hepatic vein flow Doppler showing increased respiratory variations, (g) Inferior caval venous imaging showing dilated and non-collapsing inferior caval vein, (h) Pulse wave Doppler signals at the tricuspid valves showing increased respiratory variations, (i) Pulse wave Doppler signals at the mitral valve showing increased respiratory variations, (j, k) Doppler signals using tissue Doppler imaging in apical four chamber view with sample volume placed at the medial and lateral annulus respectively showing annulus reversus. Mitral valve inflow e/a > 1.5

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

d

e

f

g

Fig. 5.3 (continued)

49

50

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

h

i

j

k

Fig. 5.3 (continued)

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

51

a

b

Fig. 5.4 (a) Preoperative echocardiographic images in a patient with chronic constrictive pericarditis. Apical four chamber view showing normal valvular, left and right ventricular morphology. (b) Colour flow Doppler echocardiogram showing normal flow across the mitral valve. (c) Colour flow Doppler echocardiogram showing normal flow across the tricuspid valve. (d) Inferior caval venous imaging showing dilated and non-collapsing inferior caval vein. (e) Pulse wave Doppler signals at the tricuspid valves showing increased respiratory variations. (f) Pulse wave Doppler signals at the mitral valve showing increased respiratory variations. (g, h) Doppler signals using tissue Doppler imaging in apical four chamber view with sample volume placed at the medial and lateral annulus respectively showing annulus reversus. Mitral valve inflow e/a > 1.5

52

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

c

d

Fig. 5.4 (continued)

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

e

f

Fig. 5.4 (continued)

53

54

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

g

h

Fig. 5.4 (continued)

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

55

pericardial thickening anterior to the right ventricular and the juxta right atrioventricular groove [10–16, 29–32, 36, 60–63, 80, 81, 103–106, 139]. It is noteworthy that 25–30% of patients with constrictive pericarditis do not exhibit any respirophasic variations in blood flow velocities [88–91]. Additionally, respirophasic variations are also observed in other confounding conditions namely, right ventricular systolic dysfunction and chronic obstructive pulmonary disease [9, 29–32]. Some investigators have proposed other echocardiographic tests to reduce preload to unmask respirophasic variation on trans mitral Doppler flow velocity [92]. However, the diagnosis remains equivocal in isolated instances and other diagnostic modalities, namely multimodality imaging studies. Endomyocardial biopsy may all be required [10–16, 21, 105, 115, 140]. Over the period of years, the diagnostic accuracy of constrictive pericarditis has improved by taking into consideration the hemodynamic changes and mitral annular motion. In our previous investigation, Chronic constrictive pericarditis was considered to be hemodynamically significant when there was clinical evidence of constriction with supportive hemodynamic and echocardiographic criteria [10–16]. A constrictive pattern was defined as 25% or greater increase in mitral e’ velocity and expiratory hepatic venous flow reversal compared with inspiration [10–16, 29– 32, 36, 60–63, 80, 81, 103–106, 139]. Tissue Doppler imaging has made possible the acquisition of myocardial wall velocities and offers additional diagnostic information to M-mode, 2D-echocardiography and transmitral flow Doppler for detecting pericardial constriction, with a reported sensitivity and specificity of 88.8% and 94.8% respectively (Figs. 5.4g, H) [33–42, 68, 99, 116–122, 146, 147]. During systole, the mitral annulus descends towards apex, with no appreciable apical motion in relation to the imaging transducer. Therefore, the annular displacement reflects the extent or myocardial fiber shortening in the longitudinal plane, and has a strong linear correlation with global LV function [19]. Since the mechanoelastic properties of the myocardium are preserved in constrictive pericarditis, the longitudinal mitral annular velocities remain normal or can be exaggerated lateral expansion in constrictive pericarditis is limited [99, 110–114, 119, 120]. Several investigators have demonstrated that in patients with preserved mitral e’ velocity (>8 cm/s) and a low E/e’ ratio (10 mm with matting and hypodense centers on abdominal computed tomography is also supportive of the diagnosis of constrictive pericarditis. The septal bounce in constrictive pericarditis may also be detected by 4-dimensional computed tomography [1]. However, the limitations of computed tomography include the use of intravenously administered iodinated contrast agents, ionizing radiations, and inferior temporal resolution [1]. Cardiac magnetic resonance is a second-line imaging investigation of choice for both structural and functional evaluation in chronic constrictive pericarditis. Unlike non-gated computed tomography, which demonstrates only morphological changes, Cardiac magnetic resonance has the ability to demonstrate both morphological changes, namely dilation of the superior and inferior caval veins, left atrium, ventricular longation, myocardial atrophy and fibrosis and functional changes namely, constriction, septal bounce, ventriculo-ventricular interaction with evidence of a flattened interventricular septum or its convexity towards left ventricle in end-­ diastole, suggesting high right ventricle pressure [26–28, 43–45, 101, 102]. As stated by Hurrell, “a thickened and calcified pericardium does not necessarily cause constriction”. Similarly, patients with normal pericardial thickness on computed tomography and magnetic resonance imaging may still have constrictive physiology [44, 131]. Therefore, clinical evidence of impaired diastolic filling along with pericardial thickening and/or calcification and other associated morphological findings − such as dilated superior and inferior caval vein, dilated left atrium, flattened interventricular septum, elongated ventricles with or without pleural effusion on computed tomography/cardiac magnetic resonance imaging − should be used to diagnose chronic constrictive pericarditis [26–28, 43–45, 101, 102, 132]. Since pericardial constriction can occur in patients with histologically normal pericardial thickness, other ancillary findings on multimordality imaging need documentation, including dilated superior and inferior caval vein, biatrial enlargement, flattened interventricular septum, elongated ventricles with or without pleural effusion [26–28, 43–45, 101, 102, 132]. Before the advent of Doppler era of hemodynamics, invasive cardiac catheterization data remained the standard method of diagnosis of constriction.Traditionally, elevated atrial pressures, equalization of end-diastolic pressures in all cardiac chambers, and dip-and-plateau or square root sign of ventricular diastolic pressure have been considered as the hallmark hemodynamic features of chronic constrictive pericarditis [43]. It is noteworthy that despite the difference in pathophysiologic mechanisms of constriction and restriction, considerable overlap exists in the parameters of these entities.

5.1  Salient Hemodynamic Features of Chronic Constrictive Pericarditis

59

Vaitkus and Kussmaul analyzed the predictive accuracy of three catheterization -derived hemodynamic criterions to diagnose constriction. A difference between left- and right ventricular end-diastolic pressure of 5 mmHg or less, a right ventricular peak systolic pressure of 50 mmHg or less, and a ratio of right ventricular end- diastolic pressure to right ventricular systolic pressure of >1.3 carry 70%, 85% and 75% sensitivity respectively for diagnosis of constrictive pericarditis [148]. Several investigators have demonstrated that pressure of all three criterions is diagnostic or constrictive pericarditis in 90–95% of patients [43, 136, 148]. Talreja and associates analysed an alternative method of demonstrating ventricular interdependence by measuring the ratio of right-to-left ventricular systolic area during inspiration and expiration. This systolic area index had a sensitivity of 97% and specificity of 100% for the identification of patients with surgically proven constriction [134]. Presently, this is the most specific cardiac catheterization derived finding for differentiating constrictive and restrictive physiologies. Thus, patients with chronic constrictive pericarditis have symptoms and signs of right heart failure disproportionate to left ventricular dysfunction or valvular heart disease. The challenge remains to determine whether the symptomatology are secondary to pericardial restraint, myocardial restriction or both [44, 123, 126, 131, 137, 148]. If the diagnosis cannot be confirmed despite utilizing multimordality imaging with invasive hemodynamic studies, endomyocardial biopsy may be performed for diagnostic confirmation [21, 43, 105, 126–131, 137, 148].

5.1 Salient Hemodynamic Features of Chronic Constrictive Pericarditis Prior to the advent of the Doppler era of haemodynamics, invasive haemodynamic data remained the gold standard for confirmation of diagnosis of constriction. The catheterization derived -criterions are as follows: • Diastolic pressure plateau (equalization of end-diastolic pressure in all cardiac chambers). In constrictive pericarditis, there is failure of transmission of the intrathoracic pressure variation into the ventricles. Hence, the diastolic pressures are the same in the right and left ventricles within a 5 mm range. • Elevated right ventricular systolic pressure As the diastolic pressures are elevated, the systolic pressure of the right ventricle gets modestly elevated. In constrictive pericarditis, however, the right ventricular systolic pressure mostly remains below 45–50 mmHg. • Right ventricular end-diastolic to right ventricular systolic pressure ratio With severity of the disease progression, the right ventricular end-diastolic pressure gets elevated. The right ventricular end-diastolic to systolic pressure ratio of more than one-third in associated with 93% sensitivity. • Left ventricular rapid filling wave

60

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

In constrictive pericarditis, there is rapid filling of the left ventricle in early diastole. This is reflected in the filling wave of 7 mmHg or more. • Lack of respiratory variation of right atrial pressure In constrictive pericarditis, the right atrial pressure is elevated and does not vary with respiration. The variation is less than 3 mmHg. • Left ventricular and right ventricular interdependence With inspiration, the right ventricular systolic pressure increases and the left ventricular systolic pressure decreases. • The ratio of right ventricular to left ventricular systolic area index during inspiration and expiration This represents ventricular interdependence. As demonstrated by Talreja and associates, this systolic area index is associated with a sensitivity of 97% and specificity of 100% to diagnose constrictive pericarditis [134]. The diagnosis and management of pericardial diseases in general and chronic constrictive pericarditis in particular remain challenging because of the varied clinical manifestations, inadequate number of patients and volume of clinical data, and the absence of guidelines by the American heart association, American college of cardiology, Society Of Thoracic Surgeons, USA, and the European society of cardiology [1, 72]. Due to overlapping clinical manifestations, constrictive pericarditis and restrictive cardiomyopathy including endomyocardial fibrosis are difficult to diagnose [25]. Doppler derived transmitral flow velocity is an useful parameter to differentiate the two disease entities [35, 36]. Patients with constrictive pericarditis exhibit >25% respiratory variation of mitral inflow velocity, whereas this phenomenon is absent in restrictive cardiomyopathy [88–91]. In advanced cases of constrictive pericarditis with elevated right atrial pressures, the respiratory variation is manifested by filling up the head. On tissue Doppler imaging, the early diastolic mitral annular velocity (Ea) is reduced to less than 8 cm/s in restrictive cardiomyopathy, whereas it remains within normal range in constrictive pericarditis [29–35, 37, 42, 100]. In constrictive pericarditis, rapid progression of early diastolic flow is preserved, whereas in restrictive cardiomyopathy it is reduced on M-mode echocardiography. A slope greater than 100  cm/s also distinguishes the two disease entities [88– 91, 100]. Restrictive cardiomyopathy is frequently associated with pulmonary hypertension (i.e. systolic pulmonary artery pressure more than 50 mmHg), whereas it is less than 50 mmHg in cases of constrictive pericarditis. However, the above-mentioned diagnostic criterions have specificity ranging between 24% and 57% in differentiating constrictive from restrictive physiology [43]. In constrictive pericarditis, during inspiration there is inspiratory rise of right ventricular systolic pressure and fall of left ventricular systolic pressure. This phenomenon of dynamic respiratory variations indicating increased ventricular interdependence is associated with more than 90% sensitivity in cases of constrictive physiology compared to restrictive physiology [43].

References

61

Cardiac biomarkers, namely B-type natriuretic peptide more than 600 pg/ml is associated with restrictive cardiomyopathy whereas in constrictive pericarditis the level is below 200 pg/ml. Clinically, constrictive pericarditis is suspected in a patient with signs and symptoms of right-sided cardiac failure disproportionate to left-sided heart diseases. Analysis of the published series substantiates the notion that it is not possible to diagnose cases of constrictive pericarditis using single approach. Additionally, at least two studies are essential to distinguish the two disease entities in the majority of cases. A combination of Doppler echocardiography with either computed tomography, Magnetic resonance imaging and/or hemodynamic studies are essential to conclusively establish the diagnosis of constrictive pericarditis.

References 1. Adler Y, Charron P, Imazio M, Badano L, Barón-Esquivias G, Bogaert J, Brucato A, Gueret P, Klingel K, Lionis C, Maisch B, Mayosi B, Pavie A, Ristic AD, Sabaté Tenas M, Seferovic P, Swedberg K, Tomkowski W, ESC Scientific Document Group. ESC Guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;2015(36):2921–64. 2. Anand SS, Saini VK, Wahi PL. Constrictive pericarditis. Dis Chest. 1965;47:291–5. 3. Appleton CP, Hatle LK, Popp RL. Cardiac tamponade and pericardial effusion: Respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol. 1988;11:1020–30. 4. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: New insights from a combined haemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988;12:426–40. 5. Appleton CP, Hatle LK, Popp RL. Superior vena cava and hepatic vein Doppler echocardiography in healthy adults. J Am Coll Cardiol. 1987;10:1032–9. 6. Appleton CP, Hatle LK. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and Doppler echocardiography. Echocardiography. 1992;9:437–57. 7. Bashi VV, John S, Ravikumar E, Jairaj PS, Shyamsunder K, Krishnaswami S. Early and late results of pericardiectomy in 118 cases of constrictive pericarditis. Thorax. 1988;43:637–41. 8. Benson MD, Dasgupta NR. Amyloid Cardiomyopathy. J Am Coll Cardiol. 2016;68(1):25–8. 9. Boonyaratavej S, Oh JK, Tajik AJ, Appleton CP, Seward JB. Comparison of mitral inflow and superior vena cava Doppler velocities in chronic obstructive pulmonary disease and constrictive pericarditis. J Am Coll Cardiol. 1998;32:2043–8. 10. Chowdhury UK, Subramaniam G, Kumar AS, Airan B, Singh R, Talwar S, et  al. Pericardiectomy for constrictive pericarditis: clinical, echocardiographic and haemodynamic evaluation of two surgical techniques. Ann Thorac Surg. 2006;81:522–30. 11. Chowdhury UK, Seth S, Reddy SM. Pericardiectomy for chronic constrictive pericarditis. J Operative Tech Thorac Cardiovasc Surg. 2008;13:14–25. 12. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, Kalaivani M. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass. Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 13. Chowdhury UK, Narag R, Malhotra P, Choudhury M, Choudhury A, Singh SP. Indications, timing and techniques of radical pericardiectomy via modified left anterolateral thoracot-

62

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

omy (UKC’s modification) and total pericardiectomy via median sternotomy (Holman and Willett) without cardiopulmonary bypass. J Prac Cardiovasc Sci. 2016;2:17–27. 14. Chowdhury UK, Sankhyan LK, Malik V, George N, Gudala V, Chowdhury P. Low cardiac output syndrome following pericardiostomy and pericardiectomy for massive pericardial effusion and chronic constrictive pericarditis: Myths and realities at 100 Years. Int J Clin Case Studies and Reports. 2019;2(1):46–60. 15. Chowdhury UK, Kumari L. Surgery for chronic constrictive pericarditis, tuberculous pericarditis and effusive-constrictive pericarditis. Invited chapter: Cardiological Society of India, 2018 (Invited chapter 64), pp. 1–10. 16. Chowdhury UK, Kumari L. Pericardiectomy for chronic constrictive pericarditis: where are we after 100 years. World J Surgery and Surgical Res. 2018;1:1027–30. 17. Chesler E, Mitha AS, Matisonn RE, Rogers MNA. Subpulmonic stenosis as a result of noncalcific constrictive pericarditis. Chest. 1976;69:425–7. 18. Chesler E, Mitha AS, Matisonn RE. The ECG of constrictive pericarditis. Pattern resembling right ventricular hypertrophy. Am Heart J. 1976;95:420–4. 19. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, Douglas PS, Faxon DP, Gillam LD, Kimball TR, Kussmaul WG, Pearlman AS, Philbrick JT, Rakowski H, Thys DM.  ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography-­summary article: a report of the American College of Cardiology/ American Heart Association Task Force on Murray RD, Apperson-Hansen C, Stugaard MPractice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Coll Cardiol. 2003;42:954–70. 20. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108:1146–62. 21. Cheitlin MD, Serfas LJ, Sbar SS, Glasser SP. Tuberculous pericarditis: is limited pericardial biopsy sufficient for diagnosis? Report of two cases. Am Rev Respir Dis. 1968;98:287–91. 22. Davies JNP. Endomyocardial fibrosis in Uganda. East Afr Med J. 1948;25:225–35. 23. Davies JNP, Ball JD.  The pathology of endomyocardial fibrosis in Uganda. Br Heart J. 1955;17:337–59. 24. Engel PJ, Fowler NO, Tei CW, Shah PM, Driedger HJ, Shabetai R, Harbin AD, Franch RH. M-mode echocardiography in constrictive pericarditis. J Am Coll Cardiol. 1985;6:471–4. 25. Falk RH, Alexander KM, Liao R, et al. AL (Light-Chain) Cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68(12):1323–41. 26. Francone M, Dymarkowski S, Kalantzi M, Bogaert J.  Real-time cine MRI of ventricular septal motion. A novel approach to assess ventricular coupling. J Magn Reson Imaging. 2005;21:305–9. 27. Francone M, Dymarkowski S, Kalantzi M, Bogaert J.  Magnetic resonance imaging in the evaluation of the pericardium. A pictorial essay. Radiol Med. 2005;109:64–74. 28. Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J. Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol. 2006;16(4):944–51. 29. Gopi CK. Endomyocardial fibrosis in idiopathic cardiomegaly. Bull WHO. 1968;38:979–91. 30. Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol. 1998;32(4):865–75. 31. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Al K. Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol. 1996;27(1):108–14. 32. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Al K, Stewart WJ, Thomas JD.  Myocardial wall velocity assessment by pulsed Doppler tissue imaging: characteristic findings in normal subjects. Am Heart J. 1996;132(3):648–56.

References

63

33. Hoit B. Pericardial heart disease. Curr Probl Cardiol. 1997;22:353–400. 34. Hoit B, Sahn DJ, Shabetai R. Doppler-detected paradoxus of mitral and tricuspid valve flows in chronic lung disease. J Am Coll Cardiol. 1986;8:706. 35. Hatle LK, Appleton CP, Popp RL. Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation. 1989;79:357–70. 36. Hatle L, Sutherland GR.  Regional myocardial function-a new approach. Eur Heart J. 2000;21:1337–57. 37. Ha JW, Oh JK, Ling LH, Nishimura RA, Seward JB, Tajik AJ. Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation. 2001;104:976–8. 38. Ha CB, Huh JY, Shin YW, Shin YK. Doppler flow patterns of constrictive pericarditis. Korean Circ J. 1989;19:47–54. 39. Ha JW, Oh JK, Ommen SR, Ling LH, Tajik AJ. Diagnostic value of mitral annular velocity for constrictive pericarditis in the absence of respiratory variation in mitral inflow velocity. J Am Soc Echocardiogr. 2002;15:1468–71. 40. Ha JW, Ommen SR, Tajik AJ, Barnes ME, Ammash NM, Gertz MA, Seward JB, Oh JK. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol. 2004;94:316–9. 41. Ha JW, Oh JK, Schaff HV, Ling LH, Higano ST, Mahoney DW, Nishimura RA. Impact of left ventricular function on immediate and long-term outcomes after pericardiectomy in constrictive pericarditis. J Thorac Cardiovasc Surg. 2008;136:1136–41. 42. Hanneman K, Thavendiranathan P, Nguyen ET, Moshonov H, Paul NS, Wintersperger BJ, Crean AM. Cardiovascular CT in the diagnosis of pericardial constriction: predictive value of inferior vena cava crosssectional area. J Cardiovasc Comput Tomogr. 2014;8:149–57. 43. Hanneman K, Thavendiranathan P, Nguyen ET, Moshonov H, Wald R, Connelly KA, Paul NS, Wintersperger BJ, Crean AM. Use of cardiac magnetic resonance imaging based measurements of inferior vena cava cross-sectional area in the diagnosis of pericardial constriction. Can Assoc Radiol J. 2015;66:231–7. 44. Hurrell DG, Nishimura RA, Higano ST, Appleton CP, Danielson GK, Holmes DR Jr, Tajik AJ. Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation. 1996;93:2007–13. 45. Hoit BD.  Imaging the pericardium. In Diseases of the Pericardium (Ed. Shabetai R). W.B. Saunders, Philadelphia. Cardiology Clinics. 1990;8(4):587–600. 46. Ha JW, Ko YG, Choi BW. Images in cardiology. Delayed hyperenhancement of the pericardium by magnetic resonance imaging as a marker of pericardial inflammation in a patient with tuberculous effusive constrictive pericarditis. Heart. 92:494. 47. Imazio M, Brucato A, Derosa FG, Lestuzzi C, Bombana E, Scipione F, Leuzzi S, Cecchi E, Trinchero R, Adler Y. Aetiological diagnosis in acute and recurrent pericarditis: when and how. J Cardiovasc Med. 2009;10:217–30. 48. Imazio M, Brucato A, Trinchero R, Adler Y. Diagnosis and management of pericardial diseases. Nat Rev Cardiol. 2009;6:743–51. 49. Imazio M, Spodick DH, Brucato A, Trinchero R, Adler Y. Controversial issues in the management of pericardial diseases. Circulation. 2010;121:916–28. 50. Imazio M, Spodick DH, Brucato A, Trinchero R, Markel G, Adler Y. Diagnostic issues in the clinical management of pericarditis. Int J Clin Pract. 2010;64:1384–92. 51. Izumi C, Iga K, Sekiguchi K, Takahashi S, Konishi T. Usefulness of the transgastric view by transesophageal echocardiography in evaluating thickened pericardium in patients with constrictive pericarditis. J Am Soc Echocardiogr. 2002;15:1004–8. 52. Janos GG, Arjunan K, Meyer RA, Engel P, Kaplan S. Differentiation of constrictive pericarditis and restrictive cardiomyopathy using digitized echocardiography. J Am Coll Cardiol. 1983;1:541–9. 53. Klein AL, Oh JK, Miller FA, Seward JB, Tajik AJ. Two dimensional and Doppler echocardiographic assessment of infiltrative cardiomyopathy. J Am Soc Echo. 1988;1:48.

64

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

54. Kothari SS, Roy A, Bahl VK.  Chronic constrictive pericarditis: pending issues. Ind Heart J. 2003;55(4):1–8. 55. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32(1):45–59. 56. Kyle RA, Bayrd ED.  Amyloidosis: review of 236 cases. Medicine (Baltimore). 1975;54(4):271–99. 57. Kussmaul A, Stern M.  Pericarditis and the paradox pulse, vol. 38. Berl Klin Wochenschr; 1873. 58. Kussmaul A. Ueber schwielige Mediastino-Pericarditis und den parodoxen Puls. Bed Klin Wochenschr. 1873;10:433–5. 59. Klein AL, Hatle LK, Burstow DJ, Seward JB, Kyle RA, Bailey KR, Luscher TF, Gertz MA, Tajik AJ. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1989;13:1017–26. 60. Klein AL, Tajik AJ.  Doppler assessment of diastolic function in cardiac amyloidosis. Echocardiography. 1991;8:233–51. 61. Klein AL, Cohen GI, Pietrolungo JF, White RD, Bailey A, Pearce GL, Stewart WJ, Salcedo EE. Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J Am Coll Cardiol. 1993;22:1935–43. 62. Klein AL, Abbara S, Agler DA, Appleton CP, Asher CR, Hoit B, Hung J, Garcia MJ, Kronzon I, Oh JK, Rodriguez ER, Schaff HV, Schoenhagen P, Tan CD, White RD. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2013;26:965-1012.e15. 63. Klein AL, Cohen GI. Doppler echocardiographic assessment of constrictive pericarditis, cardiac amyloidosis, and cardiac tamponade. Cleve Clin J Med. 1992;59:278–90. 64. Klein C, Graf K, Fleck E, Nagel E. Acute fibrinous pericarditis assessed with magnetic resonance imaging. Images in cardiovascular medicine. Circulation. 2003;107:e82. 65. Kushwaha SS, Fallon JT, Fuster V.  Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–76. 66. Levine HD, Ford RV. Subendocardial infarction: Report of six cases and critical survey of the literature. Circulation. 1950;1:246. 67. Levine HD. Myocardial fibrosis in constrictive pericarditis electrocardiographic and pathologic observations. Circulation. 1973;48:1268–81. 68. Ling LH, Oh JK, Schaff HV, Danielson GK, Mahoney OW, Seward JB, Tajik JA. Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation. 1999;100:1380–6. 69. Ling LH, Oh JK, Tei C, Click RL, Breen JF, Seward JB, Tajik AJ. Pericardial thickness measured with transesophageal echocardiography: feasibility and potential clinical usefulness. J Am Coll Cardiol. 1997;29:1317–23. 70. Leya FS, Arab D, Joyal D, Shioura KM, Lewis BE, Steen LH, Cho L. The efficacy of brain natriuretic peptide levels in differentiating constrictive pericarditis from restrictive cardiomyopathy. J Am Coll Cardiol. 2005;45:1900–2. 71. Myers RB, Spodick DH. Constrictive pericarditis: clinical and pathophysiologic chararcteristics. Am Heart J. 1999;138:219–32. 72. Maisch B, Seferović PM, Ristić AD, Erbel R, Rienmüller R, Adler Y, Tomkowski WZ, Thiene G, Yacoub MH, Priori SG, Alonso Garcia MA.  Guidelines on the diagnosis and management of pericardial diseases executive summary: the Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2004;25(7):587–610. 73. Muchtar E, Blauwet LA, Gertz MA.  Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37.

References

65

74. Makuuchi M, Hasegawa H, Yamazaki S, et al. Primary Budd- Chiari syndrome: ultrasonic demonstration. Radiology. 1984;1(52):775–9. 75. Mayosi BM, Burgess LJ, Doubell AF.  Tuberculous pericarditis. Circulation. 2005;112(23):3608–16. 76. McCaughan BC, Schaff HV, Piehler JM, Danielson GK, Orszulak TA, Puga FJ, Pluth JR, Connolly DC, McGoon DC. Early and late results of pericardiectomy for constrictive pericarditis. J Thorac Cardiovasc Surg. 1985;89(3):340–50. 77. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiography. 2011;12(3):167–205. 78. Nagueh SF, Smiseth OA, Appleton CP, et  al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):277–314. 79. Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quiñones MA, Zoghbi WA. Doppler estimation of left ventricular filling pressure in sinus tachycardia: a new application of tissue Doppler imaging. Circulation. 1998;98(16):1644–50. 80. Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH III, Zoghbi WA, Quinones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99(2):254–61. 81. Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996;93(6):1160–9. 82. Notomi Y, Setser RM, Shiota T, Martin-Miklovic MG, Weaver JA, Popovic ZB, Yamada H, Greenberg NL, White RD, Thomas JD.  Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation. 2005;111(9):1141–7. 83. Notomi Y, Shiota T, Popović ZB, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD, Setser RM, Lysyansky P, Martin-Miklovic MG.  Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. Am Coll Cardiol. 2005;45(12):2034–41. 84. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30(13):1565–73. 85. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiography. 2009;10(2):165–93. 86. Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS.  Haemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol. 2001;37(1):278–85. 87. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30(6):1527–33. 88. Oh JK, Hatle LK, Mulvagh SL, Tajik AJ. Transient constrictive pericarditis: diagnosis by two-­ dimensional Doppler echocardiography. Mayo Clinic Proceedings. 1993;68(12):1158–64. 89. Oh JK, Hatle LK, Seward JB, Danielson GK, Schaff HV, Reeder GS, Tajik AJ. Diagnostic role of Doppler echocardiography in constrictive pericarditis. J Am Coll Cardiol. 1994;23(1):154–5. 90. Oh JK, Appleton CP, Hatle LK, Nishimura RA, Seward JB, Tajik AJ. The noninvasive assessment of left ventricular diastolic function with two-dimensional and Doppler echocardiography. J Am Soc Echocardiography. 1997;10(3):246–70.

66

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

91. Oh JK, Seward JB, Tajik AJ, editors. The echo manual. Lippincott Williams & Wilkins; 2006. 92. Oh JK, Tajik AJ, Appleton CP, Hatle LK, Nishimura RA, Seward JB. Preload reduction to unmask the characteristic Doppler features of constrictive pericarditis: a new observation. Circulation. 1997;95(4):796–9. 93. Plessier A, Sibert A, Consigny Y, et al. Aiming at minimal invasiveness as a therapeutic strategy for Budd-Chiari syndrome. Hepatology. 2006;44(5):1308–16. 94. Picardi JL, Kauffman CA, Schwarz J, Holmes JC, Phair JP, Fowler NO. Pericarditis caused by Histoplasma capsulatum. Am J Cardiol. 1976;37(1):82–8. 95. Plessier A, Valla DC. Budd-Chiari syndrome. Semin Liver Dis. 2008;28(3):259–69. 96. Qiao T, Liu CJ, Liu C, Chen K, Zhang XB, Zu MH. Interventional endovascular treatment for Budd-Chiari syndrome with long-term follow-up. Swiss Med Wkly. 2005;135:318–26. 97. Roberts JT, Beck CS.  The effect of chronic cardiac compression on the size of the heart muscle fibers. Am Heart J. 1941;22:314–20. 98. Roberts WI, Spray TL. Pericardial heart disease: a study of its causes, consequences and morphologic features. In: Spodick DH, editor. Cardiovascular clinics, Vol 7, No 3. Philadelphia: F.A. Davis; 1976. p. 11–68. 99. Reuss CS, Wilansky SM, Lester SJ, Lusk JL, Grill DE, Oh JK, et al. Using mitral ‘annulus reversus’ to diagnose constrictive pericarditis. Eur J Echocardiogr. 2009;10:372–5. 100. Rajagopalan N, Garcia MJ, Rodriguez L, Murray RD, Apperson-Hansen C, Stugaard M, Thomas JD, Klein AL.  Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol. 2001;87:86–94. 101. Rienmüller R, Doppman JL, Lissner J, Kemkes BM, Strauer BE.  Constrictive pericardial disease: prognostic significance of a nonvisualized left ventricular wall. Radiology. 1985;156:753–5. 102. Rienmuller R, Gurgan M, Erdmann E, Kemkes BM, Kreutzer E, Weinhold C. CT and MR evaluation of pericardial constriction: a new diagnostic and therapeutic concept. J Thorac Imaging. 1993;8:108–21. 103. Shrestha SM, Okuda K, Uchida T, et al. Endemicity and clinical picture of liver disease due to obstruction of the hepatic portion of the inferior vena cava in Nepal. J Gastroenterol Hepatol. 1996;11:170–9. 104. Shaper AG.  Cardiovascular disease in the tropics. II.  Endomyocardial fibrosis. BMJ. 1972;3:743–6. 105. Schoenfeld MH, Edwards WS, William GD Jr, et al. Restrictive cardiomyopathy versus constrictive pericarditis-Role of endomyocardial biopsy in avoiding unnecessary thoracotomy. Circulation. 1987;75:1012–7. 106. Safka V, Hulek P, Krajina A, et al. Budd-Chiari syndrome and TIPS-twelve years’ experience. Cas Lek Cesk. 2005;144(Suppl 3):38–42. 107. Sagrista-Sauleda J, Merce J, Permanyer-Miralda G, Soler-Soler J. Clinical clues to the causes of large pericardial effusions. Am J Med. 2000;109:95–101. 108. Seferovic PM, Ristic AD, Maksimovic R, Tatic V, Ostojic M, Kanjuh V. Diagnostic value of pericardial biopsy: improvement with extensive sampling enabled by pericardioscopy. Circulation. 2003;107:978–83. 109. Sagrista-Sauleda J, Angel J, Sanchez A, Permanyer-Miralda G, Soler-Soler J.  Effusive-­ constrictive pericarditis. N Engl J Med. 2004;350:469–75. 110. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns ofleft ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008;1(1):29–38. 111. Sengupta P, Eleid MF, Sundt TM. Regional variability of pericardial thickness influences left ventricular diastolic recoil mechanics in constrictive pericarditis. J Am Soc Echocardiogr. 2008;21:518. 112. Sengupta PP, Eleid MF, Khandheria BK. Constrictive pericarditis. Circ J. 2008;72:1555–62.

References

67

113. Sengupta PP, Mohan JC, Mehta V, Jain V, Arora R, Pandian NG, et al. Comparison of echocardiographic features of noncompaction of the left ventricle in adults versus idiopathic dilated cardiomyopathy in adults. Am J Cardiol. 2004;94:389–91. 114. Sengupta PP, Mohan JC, Pandian NG.  Tissue Doppler echocardiography: principles and applications. Indian Heart J. 2002;54:368–78. 115. Schoenfeld MH. The differentiation of restrictive cardiomyopathy from constrictive pericarditis. Cardiol Clin. 1990;8:663–71. 116. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et  al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9:e004330. 117. Sengupta PP, Khandheria BK, Korinek J, Wang J, Jahangir A, Seward JB, et  al. Apex-to-­ base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol. 2006;47:163–72. 118. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, et  al. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001. 119. Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, Korinek J, Belohlavek M, Sundt TM 3rd, et al. Comparison of usefulness of tissue Doppler imaging versus brain natriuretic peptide for differentiation of constrictive pericardial disease from restrictive cardiomyopathy. Am J Cardiol. 2008;102:357. 120. Sengupta PP, Mohan JC, Mehta V, Arora R, Khandheria BK, Pandian NG. Doppler tissue imaging improves assessment of abnormal interventricular septal and posterior wall motion in constrictive pericarditis. J Am Soc Echocardiogr. 2005;18:226–30. 121. Sengupta PP, Mohan JC, Mehta V, Arora R, Pandian NG, Khandheria BK.  Accuracy and pitfalls of early diastolic motion of the mitral annulus for diagnosing constrictive pericarditis by tissue Doppler imaging. Am J Cardiol. 2004;93:886–90. 122. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: principles and application. JACC Cardiovasc Imaging. 2008;1:366–76. 123. Sagrista-Sauleda J, Angel J, Sambola A, Permanyer-Miralda G.  Haemodynamic effects of volume expansion in patients with cardiac tamponade. Circulation. 2008;117:1545–9. 124. Shabetai R, Fowler NO, Fenton JC, Masangkay M.  Pulsus paradoxus. J Clin Invest. 1965;44:1882–98. 125. Shabetai R.  Pathophysiology and differential diagnosis of restrictive cardiomyopathy. Cardiovasc Clin. 1988;19:123–32. 126. Shabetai R, Fowler NO, Guntheroth WG.  The haemodynamics of cardiac tamponade and constrictive pericarditis. Am J Cardiol. 1970;26:480–9. 127. Shabetai R, Mangiardi L, Bhargava A, Ross J Jr, Higgins CB. The pericardium and cardiac function. Prog Cardiovasc Dis. 1979;22:107–34. 128. Shabetai R. Pericardial diseases. In: Hurst JW, editor. The heart, arteries and veins. New York: McGraw-Hill; 1990. p. 1348–74. 129. Shabetai R. The pathophysiology of constrictive pericarditis. In: Reddy PS, Leon DF, Shavers JA, editors. Pericardial disease. New York: Raven Press Books Ltd; 1982. p. 272. 130. Shabetai R. The pericardium. Boston: Kluwer Academic; 2003. p. 191–251. 131. Shabetai R. The pericardium. New York: Grone & Stratton; 1981. 132. Sechtem U, Tscholakoff D, Higgins CB. MRI of the abnormal pericardium. Am J Roentgenol. 1986;147:245–52. 133. Tharakan J, Bohora S.  Current perspective on endomyocardial fibrosis. Curr Sci. 2009;97:405–10. 134. Talreja DP, Nishimura RA, Oh JK, Holmes DR. Constrictive pericarditis in the modern era novel criteria for diagnosis in the cardiac catheterization laboratory. J Am Coll Cardiol. 2008;51:315–9.

68

5  Clinical Challenges and Diagnostic Dilemma of Chronic Constrictive Pericarditis

135. Tei C, Child JS, Tanaka H, Shah PM.  Atrial systolic notch on the interventricular septal echogram: an echocardiographic sign of constrictive pericarditis. J Am Coll Cardiol. 1983;1(3):907–12. 136. Trappe HJ, Herrmann G, Daniel WG, Frank G, Lichtlen PR. Reduced diastolic left ventricular posterior wall motion in patients with constrictive pericarditis–incidence, haemodynamic and clinical correlations. Int J Cardiol. 1988;20:53–63. 137. Talreja DP, Nishimura RA, Oh JK, Holmes DR. Constrictive pericarditis in the modern era novel criteria for diagnosis in the cardiac catheterization laboratory. J Am Coll Cardiol. 2008;51:315–9. 138. Valiathan MS, Balakrishnan KG, Kartha CC. Endomyocardial fibrosis. In: Ahuja MMS, editor. Advances in clinical medicine. New Delhi: Churchill Livingstone; 1991. p. 125–43. 139. Valiathan MS, Kartha CC. Endomyocardial fibrosis-The possible connexion with myocardial levels of magnesium and cerium. Int J Cardiol. 1990;28:1–5. 140. Valiathan MS, Shyamkrishnan KG.  Surgical treatment of endomyocardial fibrosis: Kerala experience. In: Valiathan MS, Somers K, Kartha CC, editors. Endomyocardial fibrosis. New Delhi: Oxford University Press; 1993. p. 220–7. 141. Valiathan MS, Kartha CC, Eapen JT, Dang HS, Sunta CM. A geochemical basis for endomyocardial fibrosis. Cardiovasc Res. 1989;23:647–8. 142. Valla D. Hepatic venous outflow tract obstruction etipathogenesis: Asia versus the West. J Gastroenterol Hepatol. 2004;19:S204–11. 143. Valla DC. Hepatic vein thrombosis (Budd-Chiari syndrome). Semin Liver Dis. 2002;22:5–14. 144. Voelkel AG, Pietro DA, Folland ED, Fisher ML, Parisi AF. Echocardiographic features of constrictive pericarditis. Circulation. 1978;58:871–5. 145. Von Bibra H, Schober K, Jenni R, Busch R, Sebening H, Blomer H. Diagnosis of constrictive pericarditis by pulsed Doppler echocardiography of the hepatic vein. Am J Cardiol. 1989;63:483–8. 146. Veress G, Ling LH, Kim KH, Dal-Bianco JP, Schaff HV, Espinosa RE, Melduni RM, Tajik JA, Sundt TM 3rd, Oh JK. Mitral and tricuspid annular velocities before and after pericardiectomy in patients with constrictive pericarditis. Circ Cardiovasc Imaging. 2011;4:399–407. 147. Veress G, Ling LH, Kim KHJ, Dal-Bianco JP, Schaff HV, Espinosa RE. Mitral and tricuspid annular velocities before and after pericardiectomy in patients with constrictive pericarditis. Circ Cardiovasc Imaging. 2011;110:959–619. 148. Vaitkus PT, Herrmann HC, LeWinter MM. Treatment of malignant pericardial effusion. J Am Med Assoc. 1994;272:59–64. 149. Westermark P, Benson MD, Buxbaum IN, et al. A primer of amyloid nomenclature. Amyloid Int J Exp Clin lnvestig. 2007;14(3):179–83. 150. Yang XL, Cheng TO, Chen CR. Successful treatment by percutaneous balloon angioplasty of Budd-Chiari syndrome caused by membranous obstruction of inferior vena cava: 8-year follow-up study. J Am Coll Cardiol. 1996;28:1720–4.

Chapter 6

Pathophysiology of Chronic Constrictive Pericarditis

The precise pathogenesis of chronic constrictive pericarditis remains conjectural. Much of the limited evidence gathered from small case series alludes to progression of an acute pericarditis from a dry stage through an effusive, absorptive, and constrictive phase sequentially, or it may result from a smouldering fibrosis with no previous history of acute pericarditis [9, 16–22, 36, 45–55, 66–70]. The factors responsible for resolution of inflammation or its progression to severe fibrosis remain conjectural. In large multicentric studies, tubercular pericardial effusion resolved without constriction in half of the patients, while the rest developed chronic constrictive pericarditis despite adequate anti-tubercular treatment and steroids [16, 23, 60]. The virtual absence of constrictive pericarditis following rheumatic fever and its low incidence in tubercular pericarditis in HIV positive patients are noteworthy [16, 19–26, 41, 52–54]. Little research has been done to unravel the inflammatory repertoire of pericardial tissue [31]. It appears that tubercular pericarditis is a hypersensitivity reaction to antigens such as tuberculoproteins. The increased production of interferon-gamma, tumor necrosis factor-alpha, interleukin-1 and interleukin-­2 in tubercular pericardial fluid suggests that the inflammation is orchestrated by T-helper-1 lymphocytes [10–12]. T-lymphocytes and activated macrophages probably play an important role in granuloma formation and fibrosis [29, 30, 38, 52]. Adenosine deaminase, a marker of leukocyte activation, has been associated with increased numbers of pericardial neutrophils and lymphocytes as well as granulomatous pericardial histology [31–34, 37, 42–44]. Patients presenting in effusive stage, increased duration of illness before presentation, clinical features of cardiac compression, pericardial thickening, and fibrous strand on echocardiography and biopsy have all been correlated with subsequent constriction [13–15, 19–25, 29, 31–33, 35, 45, 66–72]. The mechanisms of constriction in postoperative patients, in patients with collagen vascular disease, and those with rare hereditary mulbrey nanism, remain unresolved [63, 64].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_6

69

70

6  Pathophysiology of Chronic Constrictive Pericarditis

The heart with a normal pericardium can accommodate physiological changes in cardiac volume during respiration. For example, during inspiration there is a decrease in intrathoracic pressure which is reflected in cardiac chambers. In constrictive pericarditis, the pericardium is diseased, inelastic and scarred; hence total cardiac volume cannot change. The rigid, non-pliable pericardial shell encasing the heart sharply accentuates ventricular pressure-volume relationship through several mechanisms [27, 28]. As highlighted by Hurrell and colleagues, the tight ventricular interaction in conjunction with insulation of cardiac chambers from variations in intrathoracic pressure during respiratory cycle defines the two key mechanisms underlying the pathophysiology of chronic constrictive pericarditis, resulting in dissociation of intrathoracic and intracardiac pressures, and exaggerated ventricular interdependence [27, 28].

6.1 Dissociation of Intrapericardial and Intrathoracic Pressures In normal conditions during the respiratory cycle, the difference between left ventricular diastolic pressure and pulmonary capillary wedge pressure remains constant. In constrictive pericarditis, the reduction in intrathoracic pressure during inspiration is transmitted to the extracardiac pulmonary veins, but not to the left atrium and left ventricle encased by pericardium, resulting in reduced left ventricular diastolic filling during inspiration. As a result, there is underfilling of left ventricle and reciprocally increased right ventricular filling. Conversely, there is decrease in right ventricle filling and increase in left ventricle filling during expiration. This phenomenon of enhanced ventricular interaction is typical of constrictive pericarditis, and is absent in restrictive cardiomyopathy.

6.2 Exaggerated Ventricular Interdependence The second physiologic hallmark of constrictive pericarditis results from marked ventricular interdependence. Since the total cardiac volume is fixed by the non-­ pliable pericardium, the total volume entering the constricting heart does not vary significantly during the respiratory cycle, and there is interdependence of volume between right and left ventricles. During inspiration, with decrease in left ventricular diastolic volume and filling, there is compensatory increase in right ventricular filling [61]. Since the inferior caval vein is exposed to variations in intrathoracic pressure, distended right atrium receives most of the flow from the inferior caval vein during inspiration, accompanied by increase in inspiratory intraabdominal

6.2  Exaggerated Ventricular Interdependence

71

pressure. The ventricular septum is not directly affected by the pericardium and is free to bulge into the right ventricle, causing a reduction in flow velocity in the venae cavae and decreased trans-tricuspid flow velocity [56]. In restrictive cardiomyopathy, the variation in respiratory intrathoracic pressures is transmitted normally to all the cardiac chambers due to normal pericardial compliance. The third major effect of constrictive pericarditis on cardiac haemodynamics is elevated end-diastolic pressures of all cardiac chambers secondary to impaired diastolic filling [17, 18, 45–49, 57–60]. There is limited cardiac filling in cardiac tamponade from the beginning of diastole, while filling is not restricted in early diastole in constriction. Contracted, stiff and non-compliant pericardium prevent the normal distension of ventricles upon filling. Normally, almost three-fourth of ventricular filling happens during rapid filling phase of diastole, while atrial contraction contributes to 10–20% of ventricular filling. In constrictive pericarditis, because of elevated atrial pressures, first 25–30% of diastole contributes to 70–80% of diastolic filling [36, 54, 55]. Filling rapidly declines by mid-diastole, and is severely limited in late diastole. This sudden rise in diastolic pressure presents as “dip and plateau” sign or “square root” sign during cardiac catheterization [54, 55]. As the distended ventricles reach against non-pliable scarred pericardium, there is interruption in uninhibited diastolic filling, appearing as abrupt dip on tracing. During relaxation, the ventricles spring back and are limited by thickened and rigid fibrotic pericardial sac, resulting in a gentle elevation in diastolic pressure that appears as a plateau tracing. Similarly, tracing of right atrial pressure reveals a deep Y descent, correlating to the nadir of “square-root” sign. Under normal circumstances, right atrial pressure drops by 3–7 mmHg during inspiration, causing acceleration of venous return into the heart from neck veins. The right atrium is prevented by the pericardial constriction to accept inspiratory accelerated venous return from neck veins resulting in distention of neck veins. Prominent distened neck veins during inspiration is known as Kussmaul’s sign (Figs. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7) [54, 55]. Tachycardia would adversely affect ventricular filling during diastole in a normal patient. In patients with constrictive pericarditis, where nearly all ventricular filling occurs by mid-diastole, tachycardia becomes an important means of maintaining cardiac output. During cardiac catheterisation, the diagnosis of constrictive pericarditis is made based on the presence of various pathophysiological findings as enumerated under: (i) All cardiac chambers having equal end-diastolic pressure: The end-diastolic pressures of left and right ventricles are typically within 5  mmHg. But this criterion has 38% specificity and 60% sensitivity for chronic constrictive pericarditis; (ii) Elevated mean atrial pressure: Presence of mean atrial pressure of more than 10 mmHg suggests either constrictive pericarditis or cardiac tamponade; (iii) Tracing of left ventricular pressure shows square root sign; (iv) Tracing of right-atrial pressure shows prominent “Y” descent;

72

6  Pathophysiology of Chronic Constrictive Pericarditis

Fig. 6.1  Pressure tracing during cardiac catheterization in a patient with chronic constrictive pericarditis showing typical elevation and equalization of right and left ventricular end-diastolic pressure as well as the ‘dip and plateau’ or the ‘square root’ sign

Fig. 6.2  Pressure tracing during cardiac catheterization in a patient with chronic constrictive pericarditis showing rapid x and y descents, resembling a “w” pattern. Although this finding is classical of chronic constrictive pericarditis, it can also be seen in restrictive cardiomyopathy

(v) Raised end-diastolic pressure in right ventricle: Typically, there is raised end-­ diastolic pressure in right ventricle and typically more than one-third of systolic pressure in right ventricle. For constrictive pericarditis, this criterion has 93% sensitivity and 57% specificity; (vi) Ejection fraction of left ventricle: Ideally in chronic constrictive pericarditis the ejection fraction of left ventricle is 40% or more (Figs. 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7) [1]. Although the above haemodynamic findings in isolation may not be diagnostic of constrictive pericarditis, Vaitkus and Kussmaul demonstrated the predictive accuracy of three haemodynamic criteria.To diagnose constrictive pericarditis, the

6.2  Exaggerated Ventricular Interdependence

a

73

b

Fig. 6.3 (a) Hemodynamic tracing from a patient with constrictive pericarditis showing elevated mean right atrial (RA) pressure with rapid x and y descent, resembling a ‘w’ pattern. The y descent of right atrial pressure tracing corresponds to the rapid filling phase of right ventricular pressure tracing. (b) Right ventricular (RV) pressure tracing of the same patient with constrictive pericarditis which demonstrates the typical dip and plateau pattern (classical square root sign)

sensitivity of criterions like systolic pressure of right ventricle less than 50 mmHg, ratio of end-diastolic pressure of right ventricle to systolic pressure of right ventricle more than 1.3 and a difference between end-diastolic pressures of left and right ventricles of less than 5 mmHg is 85%, 75%, and 70% respectively. When all the three criterions are present, the likelihood of diagnosis of constrictive pericarditis is more than 90%. [28, 65] The diagnosis of restrictive cardiomyopathy is made based on following criterions: (i) a normal or small sized heart, (ii) raised jugular venous pressure with prominent X and Y descents, (iii) hepatic congestion, (iv) pulmonary congestion, (v) absence of ventricular dilation or hypertrophy, and (vi) decreased systolic ventricular function [1–5, 28, 32, 35, 39, 40, 57–60, 72]. But, none of these criterions are pathognomonic for diagnosing restrictive cardiomyopathy, although other non-specific findings which may provide clues to either diagnoses include thickened pericardium on echocardiography in constrictive pericarditis, depressed ejection fraction in restrictive cardiomyopathy, decreased early diastolic filling in restrictive cardiomyopathy, convergence in end-diastolic pressure of ventricles in constrictive pericarditis, divergence in end-diastolic pressure of ventricles in restrictive cardiomyopathy, and presence of normal histopathology in chronic constrictive pericarditis. Hurrell and colleagues studied the respiratory variation during rapid diastolic filling of the gradient between pulmonary capillary wedge pressure and end-­ diastolic pressure in left ventricle [5–8, 28, 59, 60, 65]. They assessed the dissociation of intracardiac and intrathoracic pressure in patients with chronic constrictive pericarditis. Presence of a difference of 5 mmHg in the gradient between inspiratory and expiratory values had sensitivity of 93% and specificity of 81% for diagnosing constrictive pericarditis [28, 60].

74

6  Pathophysiology of Chronic Constrictive Pericarditis

a

b

Fig. 6.4 (a) Hemodynamic tracing from a patient with chronic constrictive pericarditis showing the phenomenon of ventricular interdependence of the right ventricular (RV) and left ventricular (LV) pressures. In constrictive pericarditis, the total ventricular volume is fixed by the noncompliant pericardium. With inspiration, the right ventricular (RV) systolic pressure increases with a corresponding decrease left ventricular (LV) systolic pressure. Exactly reverse happens during expiration. (b) Ventricular pressure tracings from a patient with restrictive cardiomyopathy. The right ventricular (RV) and left ventricular (LV) pressure move concordantly with respiration

Systolic pressure of left and right ventricles were compared during respiration to assess the increase in ventricular interdependence. Although during inspiration there is expected concordant increase in systolic pressure of left ventricle and right ventricle, discordant pressures during inspiration in patients is seen in constrictive pericarditis. This particular finding had a sensitivity of 100% and specificity of 95% for diagnosing constrictive pericarditis [27, 61].

6.2  Exaggerated Ventricular Interdependence

a

75

b

Fig. 6.5 (a) High-fidelity simultaneous pressure tracings of both right and left ventricles during inspiration and expiration in a patient with constrictive pericarditis showing left and right ventricular interdependence. During inspiration, LV systolic pressure decreases while RV systolic pressure increases, and reverse happens during expiration. This respirophasic ventricular interdependence is absent in restrictive cardiomyopathy. (b) Showing dissociation of intracavitary and intrathoracic pressures in constrictive pericarditis. In constrictive pericarditis, there is greater fall in pulmonary capillary wedge pressure (PCWP) than left ventricular (LV) diastolic pressure during inspiration. Conversely, during expiration, positive intrathoracic pressure leads to an increase in ventricular filling

Fig. 6.6  Dissociation of intrapericardial and intrathoracic pressures in constrictive pericarditis. In patients with constrictive pericarditis, the reduction of intrathoracic pressure during inspiration is transmitted to the extracardiac pulmonary veins, but not to the left atrium and left ventricle resulting in underfilling of the left ventricle and reciprocally increased right ventricular filling. Conversely, there is decreased right ventricular filling and increased left ventricular filling during expiration. These respiratory effects are manifested by changes in the pressure gradient between the pulmonary capillary wedge pressure and ventricular early diastolic pressure (arrows)

76

a

6  Pathophysiology of Chronic Constrictive Pericarditis

b

Fig. 6.7  The systolic area index (SAI) differentiating constrictive pericarditis from restrictive cardiomyopathy as demonstrated by Talreja and associates in 2008. (a) Simultaneous left ventricle (LV) and right ventricle (RV) pressure tracing in a patient with constrictive pericarditis showing an increase in the area of RV pressure curve during inspiration as compared with expiration. However, the area of the LV pressure curve decreases during inspiration as compared with expiration. (b) Conversely, in a patient with restrictive cardiomyopathy, there is a decrease in the area of the RV pressure curve as compared with expiration. The area of the LV pressure curve remains unchanged during inspiration as compared with expiation

6.3 Fluid Retention in Chronic Constrictive Pericarditis As compared to other causes of congestive cardiac failure, the degree of ascites is disproportionate to pedal oedema in chronic constrictive pericarditis. The pathogenesis of ‘ascites precox’ remains conjectural. High right atrial pressure, increased venous pressure, increased capillary permeability, cardiac cirrhosis, hypoalbuminemia secondary to protein losing enteropathy and impedance to lymphatic flow are various factors causing ‘ascites precox’ [19–21, 26, 45–49, 56]. Patients with chronic constrictive pericarditis retain more sodium and water than patients with myocardial failure. Limited studies are available in the literature exploring the causative mechanisms of fluid retention in chronic constrictive pericarditis. Anand and associates noted in 16 patients having untreated chronic constrictive pericarditis that the mechanisms and magnitude of water and sodium retention in constrictive pericarditis was different from congestion secondary to low cardiac output due to failed myocardium. They noted higher volume retention and lower vascular resistance for a comparable reduction in cardiac output in constrictive pericarditis compared to patients having myocardial disease. They also noted similar renin-angiotensin-aldosterone activation status like other causes of congestive cardiac failure [6–8].

References

77

Patients having constrictive pericarditis had fivefold rise of atrial natriuretic peptide levels as compared to normal controls, but the rise was only one-third of that seen in patients with myocardial disease. However, the atrial natriuretic peptide levels in chronic constrictive pericarditis are disproportionately less than the degree of raised right atrial pressure [6–8]. Since atrial natriuretic peptide release is mediated by atrial stretch, the asynchrony between the relatively low atrial natriuretic peptide levels and raised right atrial pressure can be explained by less distensible atria caused by a constricting pericardium in chronic constrictive pericarditis. The atrial natriuretic peptide hypothesis has been suggested to explain the greater salt and water retention and lack of pulmonary oedema in chronic constrictive pericarditis despite high right atrial pressure [6, 8, 54, 55]. In chronic constrictive pericarditis, all segments of the autonomic nervous system have severe autonomic dysfunction as compared with restrictive cardiomyopathy and endomyocardial fibrosis [62].

References 1. Aroney CN, Ruddy TD, Dighero H, Fifer MA, Boucher CA, Palacios IF. Differentiation of restrictive cardiomyopathy from pericardial constriction: assessment of diastolic function by radionuclide angiography. J Am Coll Cardiol. 1989;13:1007–14. 2. Appleton CP, Hatle LK, Popp RL.  Cardiac tamponade and pericardial effusion: respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol. 1988a;11:1020–30. 3. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined haemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988b;12:426–40. 4. Appleton CP, Hatle LK, Popp RL. Superior vena cava and hepatic vein Doppler echocardiography in healthy adults. J Am Coll Cardiol. 1987;10:1032–9. 5. Appleton CP, Hatle LK. The natural history of left ventricular filling abnormalities: assessment by two-dimensional and Doppler echocardiography. Echocardiography. 1992;9:437–57. 6. Anand SS, Saini VK, Wahi PL. Constrictive pericarditis. Dis Chest. 1965;47:291–5. 7. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Oedema of cardiac origin. Studies of body water and sodium, renal function, haemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 1989;80:299–305. 8. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Pathogenesis of oedema in constrictive pericarditis. Studies of body water and sodium, renal function, haemodynamics, and plasma hormones before and after pericardiectomy. Circulation. 1991;83:1880–7. 9. Brockington GM, Zebede J, Pandian NG.  Constrictive pericarditis. In: Diseases of the Pericardium (Ed. Shabetai R). W.B.  Saunders, Philadelphia. Cardiology Clinics. 1990;8(4):645–61. 10. Burgess LJ, Reuter H, Carstens ME, Taljaard JJF, Doubell AF. The use of adenosine deaminase and interferon-gamma as diagnostic tools for tuberculous pericarditis. Chest. 2002a;122:900–5. 11. Burgess LJ, Reuter H, Carstens ME, Taljaard JJ, Doubell AF. Cytokine production in patients with tuberculous pericarditis. Int J Tuberc Lung Dis. 2002b;6:439–46. 12. Burgess LJ, Reuter H, Taljaard JJF, Doubell AF. Role of biochemical tests in the diagnosis of large pericardial effusions. Chest. 2002e;121:495–9.

78

6  Pathophysiology of Chronic Constrictive Pericarditis

13. Chen Y, Brennessel D, Walters J, et al. Human immunodeficiency virus-associated pericardial effusion: report of 40 cases and review of the literature. Am Heart J. 1999;137:516–21. 14. Chen RF, Lai CP. Clinical characteristics and treatment of constrictive pericarditis in Taiwan. Circ J. 2005;69:458–60. 15. Chen J, Liu W, Zhang H, Lacy L, Yang X, Song SK, Wickline SA, Yu X. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol. 2005;289:898–907. 16. Desai HN. Tuberculous pericarditis: a review of 100 cases. S Afr Med J. 1979;55:877–80. 17. Fowler NO. Tuberculous pericarditis. J Am Med Assoc. 1991;266:99–103. 18. Fowler NO. Constrictive pericarditis: new aspects. Am J Cardiol. 1982;50:1014–7. 19. Hancock EW.  On elastic and rigid forms of constrictive pericarditis. Am Heart J. 1980;100:917–23. 20. Hancock EW.  A clearer view of effusive-constrictive pericarditis. N Engl J Med. 2004;350:435–7. 21. Harvey AM, Whitehill MR. Tuberculous pericarditis. Medicine. 1937;16:45–94. 22. Hancock EW. Neoplastic pericardial disease. Cardiol Clin. 1990;8:673–82. 23. Hageman JH, d’Esopo ND, Glenn WWL. Tuberculosis of the pericardium: a long-term analysis of forty-four proved cases. N Engl J Med. 1964;270:327–32. 24. Harvey RM, Ferrer MI, Cathcart RT, Richards DW, Cournand A. Mechanical and myocardial factors in chronic constrictive pericarditis. Circulation. 1953;8:695–707. 25. Hakim JG, Temouth I, Mushangi E, Siziya S, Robertson V, Malin A. Double blind randomised placebo controlled trial of adjunctive prednisolone in the treatment of effusive tuberculous pericarditis in HIV seropositive patients. Heart. 2000;84:183–8. 26. Heimann HL, Binder S. Tuberculous pericarditis. Br Heart J. 1940;2:165–76. 27. Hatle LK, Appleton CP, Popp RL. Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation. 1989;79:357–70. 28. Hurrell DG, Nishimura RA, Higano ST, Appleton CP, Danielson GK, Holmes DR Jr, Tajik AJ. Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation. 1996;93:2007–13. 29. Komsuoglu B, Goldeli O, Kulan K. Tuberculous pericarditis in north-east Turkey. An echocardiographic study. Acta Cardiol. 1994;49:157–63. 30. Komsouglu B, Goldeli O, Kulan K, Komsouglu SS. The diagnostic and prognostic value of adenosine deaminase in tuberculous pericarditis. Eur Heart J. 1995;16:1126–30. 31. Leak LV, Ferrans VJ, Cohen SR, Eidbo EE, Jones M.  Animal model of acute pericarditis and its progression to pericardial fibrosis and adhesions: ultrastructural studies. Am J Anat. 1987;180:373–90. 32. Larrieu AJ, Tyers GF, Williams EH, Derrick JR. Recent experience with tuberculous pericarditis. Ann Thorac Surg. 1980;29:464–8. 33. Lee JH, Lee CW, Lee SG, Yang HS, Hong MK, Kim JJ, Park SW, Chi HS, Park SJ. Comparison of polymerase chain reaction with adenosine deaminase activity in pericardial fluid for the diagnosis of tuberculous pericarditis. Am J Med. 2002;113:519–21. 34. Liu S, Ma C, Ren W, Zhang J, Li N, Yang J, Zhang Y, Qiao W. Regional left atrial function differentiation in patients with constrictive pericarditis and restrictive cardiomyopathy: a study using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2015;31:1529–36. 35. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ.  Recommendations for chamber quantification: a report from the American Society of Echocardiographys Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63. 36. Myers RB, Spodick DH. Constrictive pericarditis: clinical and pathophysiologic chararcteristics. Am Heart J. 1999;138:219–32. 37. Martinez-Vazquez JM, Ribera E, Ocana I, Segura RM, Serrat R, Sagrista J. Adenosine deaminase activity in tuberculous pericarditis. Thorax. 1986;41(11):888.

References

79

38. Ng TT, Strang JI, Wilkins EG.  Serodiagnosis of pericardial tuberculosis. QJM.  Int J Med. 1995;88(5):317–20. 39. Oh JK, Hatle LK, Seward JB, Danielson GK, Schaff HV, Reeder GS, Tajik AJ. Diagnostic role of Doppler echocardiography in constrictive pericarditis. J Am Coll Cardiol. 1994;23(1):154–5. 40. Ommen SR, Nishimura RA, Hurrell DG, Klarich KW. Assessment of right atrial pressure with 2-dimensional and Doppler echocardiography: a simultaneous catheterization and echocardiographic study. Mayo Clinic Proceedings. 2000;75(1):24–9. 41. Przybojewski JZ. Rheumatic constrictive pericarditis. A case report and review of the literature. S Afr Med J. 1981;59(19):682–6. 42. Reuter H, Burgess L, van Vuuren W, Doubell A. Diagnosing tuberculous pericarditis. Q J Med. 2006a;99:827–39. 43. Reuter H, Burgess LJ, Carstens ME, Doubell AF. Adenosine deaminase activity: more than a diagnostic tool in tuberculous pericarditis. Cardiovasc J South Afr. 2005;16:143–7. 44. Reuter H, Burgess LJ, Schneider J, Van Vururen W, Doubell AF.  The role of histopathology in establishing the diagnosis of tuberculous pericardial effusions in the presence of HIV. Histopathology. 2006c;48:295–302. 45. Shabetai R. The pericardium. New York: Grone & Stratton; 1981. 46. Shabetai R.  The pathophysiology of constrictive pericarditis. In: Reddy PS, Leon DF, Shavers JA, editors. Pericardial disease. New York: Raven Press Books Ltd; 1982. p. 272. 47. Shabetai R. Diseases of the pericardium. In: Hurst JW, Schlant RC, Alexander RW, editors. The heart: arteries and veins. 8th ed. New York: McGraw-Hill; 1994. p. 1654–62. 48. Shabetai R. The pericardium. Boston: Kluwer Academic; 2003. p. 191–251. 49. Shabetai R.  Pericardial diseases. In: Hurst JW, editor. The heart, arteries and veins. New York: McGraw-Hill; 1990. p. 1348–74. 50. Shabetai R, Mangiardi L, Bhargava A, Ross J Jr, Higgins CB. The pericardium and cardiac function. Prog Cardiovasc Dis. 1979;22:107–34. 51. Sagrista-Sauleda J, Angel J, Sanchez A, Permanyer-Miralda G, Soler-Soler J.  Effusive-­ constrictive pericarditis. N Engl J Med. 2004;350:469–75. 52. Sheffield EA.  The pathology of tuberculosis. In: Davis PDO, editor. Clinical tuberculosis. London: Chapman and Hall Medical; 1994. p. 44–54. 53. Sagrista-Sauleda J. Pericardial constriction: uncommon patterns. Heart. 2004;90:257–8. 54. Spodick DH. Constrictive pericarditis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. 1st ed. New York: Marcel Dekker Inc; 1997a. p. 214–59. 55. Spodick DH. Pericardial macro-and microanatomy: a synopsis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. New York: Marcel Dekker; 1997b. p. 7–14. 56. Santamore WP, Bartlett R, Van Buren SJ, Dowd MK, Katcher MA. Ventricular coupling in constrictive pericarditis. Circulation. 1986;74:597–602. 57. Shabetai R, Fowler NO, Guntheroth WG. The haemodynamics of cardiac tamponade and constrictive pericarditis. Am J Cardiol. 1970;26:480–9. 58. Shabetai R.  Controversial issues in restrictive cardiomyopathy. Postgrad Med J. 1992;68:547–51. 59. Shabetai R.  Pathophysiology and differential diagnosis of restrictive cardiomyopathy. Cardiovasc Clin. 1988;19:123–32. 60. Shabetai R. Left ventricular function and myocardial contractility in chronic constrictive pericarditis. Chest. 1971;59:476–7. 61. Sun JP, Abdalla IA, Yang XS, Rajagopalan N, Stewart WJ, Garcia MJ, et al. Respiratory variation of mitral and pulmonary venous Doppler flow velocities in constrictive pericarditis before and after pericardiectomy. J Am Soc Echocardiogr. 2001;14:1119–26. 62. Singh M, Juneja R, Bali HK, Varma JS. Autonomic functions in restrictive cardiomyopathy and constrictive pericarditis: a comparison. Am Heart J. 1998;136:443–8. 63. Tuuteri L, Perheentupa J, Rapola J. The cardiomyopathy of mulibrey nanism, a new inherited syndrome. Chest. 1975;65:628–31.

80

6  Pathophysiology of Chronic Constrictive Pericarditis

64. Voorhess ML, Husson GS, Blackman MS. Growth failure with pericardial constriction. The syndrome of mulibrey nanism. Am J Dis Child. 1976;130:1146–8. 65. Vaitkus PT, Kussmaul WG. Constrictive pericarditis versus restrictive cardiomyopathy: a reappraisal and update of diagnostic criteria. Am Heart J. 1991;122(5):1431–40. 66. Williams IP, Hetzel MR. Tuberculous pericarditis in South-west London: an increasing problem. Thorax. 1978;33:816–7. 67. White PD. Chronic constrictive pericarditis. Circulation. 1951;4(2):288–94. 68. Wood JA. Tuberculous pericarditis; a study of fortyone cases with special reference to prognosis. Am Heart J. 1951;42:737–45. 69. Wise DE, Conti CR. Constrictive pericarditis. Cardiovasc Clin. 1976a;7:197–209. 70. Wise DE, Conti CR.  Constrictive pericarditis. In: Spodick DH, editor. Pericardial diseases. Philadelphia: F.A. Davis; 1976b. Cardiovasc Clin 1976; 7(3): 197–210. 71. Wood P. Chronic constrictive pericarditis. Am J Cardiol. 1961;7:48–61. 72. Yang HS, Song JK, Song JM, Kang DH, Lee CW, Nam GB, et al. Clinical characteristics of constrictive pericarditis diagnosed by echo-Doppler technique in Korea. J Korean Med Sci. 2001;16:558–66.

Chapter 7

Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy

7.1 Clinical Challenges and Diagnostic Dilemma Constrictive pericarditis is thrice as common in males. Although published literature cites an age range between 7 and 70 years, the great majority of affected patients are below 40 years of age [3, 10–17, 22–24, 71, 81–87]. The condition has posed a diagnostic dilemma since it was first recognized. All cases of constrictive pericarditis cannot be diagnosed using a single criterion. In the majority, the diagnosis may be established on the basis of the history, physical findings, chest radiography, and at least two positive multimordality imaging studies including cardiac catheterization. The hallmark diagnostic tool is the clinical suspicion of constrictive pericarditis in a patient with signs and symptoms of right-sided heart failure that are disproportionate to left sided, pulmonary or heart disease. Although non-specific, the clinical features of constrictive pericarditis are secondary to elevated systemic venous pressures, debilitating chronic right-sided cardiac failure, and low cardiac output. In the majority, symptoms develop over several years; however in cases of trauma, mediastinal irradiation, and cardiac surgery, symptoms may appear quicker [20]. The symptoms of tubercular pericarditis are usually non-specific and consists of fever, weight loss, and night sweats. The most common complaints described are exertional dyspnea (78%), ascites (70%), pedal oedema (55%), abdominal discomfort (35%) and fatigue (30%) [50–52, 84]. In chronic constrictive pericarditis, the degree of ascites is disproportionate to pedal oedema, a sequence opposite to that of other causes of congestive heart failure. The pathogenesis of ‘ascites precox’ in the appearance of ascites followed by pedal oedema remain conjectural. Disproportionately high right atrial pressure, protein losing enteropathy causing hypoalbuminemia, increased capillary permeability, impedance to lymph flow, disproportionately high atrial natriuretic peptide, and © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_7

81

82

7  Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy

cardiac cirrhosis have been variously implicated as the causative factors for ascites precox [13, 32, 41]. A mechanical constriction around the heart remain the causative factor for right-­ sided heart failure without severe dyspnoea, thus differentiating it from valvular heart disease, endomyocardial fibrosis, and cardiomyopathies. Because of elevation and equalization of end-diastolic pressure in all cardiac chambers, systemic congestion is more marked than pulmonary congestion. With progression of the disease due to aggravation of hepatic congestion, atrial fibrillation and tricuspid regurgitation, severe fatigue, muscle wasting, cachexia, generalized anasarca and jaundice develops. Symptoms and signs of left-sided heart failure namely dyspnoea, cough, and orthopnoea may also appear at a later stage.

7.2 Physical Examination Sinus tachycardia and normal arterial blood pressure are generally evident, except in advanced cases, where it may be low. In upto 86% of cases, a markedly elevated jugular venous pressure, presenting as a rapidly collapsing, negative wave of diastolic Y-descent combined with a normal X-decent, produces a ‘M’ or ‘W’ shaped contour of Bloomfield [9]. Physical examination reveals two prominent descent with each cardiac cycle. At times tachycardia, tachypnoea, dyspnoea and atrial fibrillation limits visualization of the typical jugular venous pulse. Depending on the chronicity of the disease, upto one-third of cases present with atrial fibrillation. White attributed this to compression scars in the right-atrium. In patients with at fibrillation,x-descent in lost and y-descent remains [85]. Kussmaul’s sign present an increase in jugular venous pressure during inspiration or the pressure may simply fail to decrease during inspiration. Basically, the Kussmaul’s sign reflects loss of normal increase in venous return to the right-side of the heart during inspiration [34, 35]. The Mayo Clinic group detected the presence of Kussmaul’s sign in 28 out of 135 patients with constrictive pericarditis undergoing pericardiectomy [28, 36, 37]. However, Kussmaul’s sign lack specificity as it is also seen in patients with restrictive cardiomyopathy, tricuspid stenosis, endomyocardial fibrosis, and right ventricular failure [2, 40, 45, 75]. Evidence of pulsus paradoxus is found in about one-third of patients with constriction, especially those with effusive-constrictive pericarditis [36, 37]. It has been termed paradoxus because of the absence of a radial pulse despite the presence of a corresponding heart beat [34, 35]. The pulse disappears during inspiration and becomes palpable during expiration [5, 30, 31]. A decrease in systolic blood pressure by more than 10  mmHg during inspiration suggests the presence of pulsus paradoxus. Physiologically, it is best explained by the lack of transmission of decreased intrathoracic pressure to left-sided cardiac chambers [42, 46]. Kussmaul’s paradoxical pulse is also seen in patients with massive pericardial effusion, cardiac tamponade, acute myocardial infraction, massive pulmonary

7.4 Electrocardiogram

83

thromboembolism, restrictive cardiomyopathy, severe chronic obstructive pulmonary disease and tension pneumothorax [29, 30]. Due to extensive pericardial adhesion and calcification, the apex beat is impalpable in the great majority of patients with constriction (90% in Woods series) [81]. The cardiac impulse may fail to change with change in body position and the heart sound appears distant and muffled [81]. Systolic retraction of apical impulse may be present. A diastolic lift (pericardial knock) that coincides with a high-pitched early diastolic sound and sudden inspiratory splitting of the second heart sound, heard best at the left sternal border or at the cardiac apex are specific clinical signs found in 21% and 36% of patients with constrictive pericarditis respectively [2]. Diastolic pericardial knock occurs 0.06–0.12 seconds after aortic component of second heart sound, has a higher frequency than third heart sound, and corresponds to abrupt cessation of ventricular filling. Dalton and colleagues reported hepatomegaly (89%), ascites (45%) and peripheral oedema (76%) in their series of patients. Advanced cases exhibit dusky facial hue, muscle wasting, cachexia of the extremities, huge ascites disproportionate to pedal oedema, and prominent hepatic pulsation [4, 19, 31, 33, 71].

7.3 Laboratory Investigation Among the laboratory parameters in constrictive pericarditis, the erythrocyte sedimentation rate may be raised. Hypoalbuminemia, hyperbilirubinemia, raised blood urea, and serum creatinine are important incremental risk factors following pericardiectomy [10–17, 22–27, 33].

7.4 Electrocardiogram Although electrocardiographic findings are non-specific, a completely normal electrocardiogram is rare in constrictive pericarditis. Low QRS voltage and non-specific S-T wave abnormalities are common [18, 33, 53]. Several investigators including ourselves have reported electrocardiographic findings of p-mitrale in 19–43% of individuals with constrictive pericarditis [10–18, 21, 38, 39, 72]. Atrial fibrillation and atrial flutter have been reported in upto one-third of cases of constrictive pericarditis. Other unusual electrocardiographic findings include right ventricular hypertrophy due to fibrous band narrowing the right ventricular outflow tract [10–12, 81–87]. In advanced cases of calcific constrictive pericarditis, Q wave may be noted as a result of myocardial penetration by the calcific specules. [20, 21, 38, 39, 53].

84

7  Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy

7.5 Chest Radiography, Echocardiography, Multimodality Imaging, Cardiac Catheterization Studies The role of the above-mentioned investigative modalities have been detailed in Chap. 8.

7.6 Endomyocardial Biopsy This investigative modality is helpful when echocardiographic, hemodynamic and multimodality imaging studies conclusively fails to establish the diagnosis of constrictive pericarditis [4–8]. The major role of endomyocardial biopsy is to distinguish constrictive pericarditis from disease entities like restrictive cardiomyopathy, tropical endomyocardial fibrosis, eosinophilic cardiomyopathy, amyloidosis, hemochromatosis or other varieties of infiltrative diseases [1, 5–8, 22–27, 41–44, 46–49, 53–70, 73, 74, 76–80, 88, 89].

References 1. Akinwusi PO, Odeyemi AO. The changing pattern of endomyocardial fibrosis in South-West Nigeria. Clin Med Insights Cardiol. 2012;6:163–8. 2. Ammash NM. Ventricular septal defect. In: Warnes CA, editor. Adult congenital heart disease. Wiley; 2009. https://doi.org/10.1002/9781444311846.ch4. 3. Bertog SC, Thambidorai SK, Parakh K, Schoenhagen P, Ozduran V, Houghtaling PL, Lytle BW, Blackstone EH, Lauer MS, Klein AL.  Constrictive pericarditis: aetiology and cause-­ specific survival after pericardiectomy. J Am Coll Cardiol. 2004;43:1445–52. 4. Bilchick KC, Wise RA. Paradoxical physical findings described by Kussmaul: pulsus paradoxus and Kussmaul’s sign. Lancet. 2002;359:1940–2. 5. Balakrishnan KG, Sapru RP, Venkitachalam CG, Sasidharan K. Endocardiographic features in endomyocardial fibrosis. In: Sapru RP, editor. Endomyocardial fibrosis in India. New Delhi: Indian Council of Medical Research; 1983. p. 121–8. 6. Balakrishnan KG, Sapru RP, Venkitachalam CG, Sasidharan K.  Haemodynamic features in endomyocardial fibrosis. In: Sapru RP, editor. Endomyocardial fibrosis in India. New Delhi: Indian Council of Medical Research; 1983. p. 57–63. 7. Balakrishnan KG, Jaiswal PK, Tharakan JM, Venkitachalam CG, Ghosh MK. Clinical course of patients in Kerala. In: Valiathan MS, Somers K, Kartha CC, editors. Endomyocardial fibrosis. New Delhi: Oxford University Press; 1993. p. 208. 8. Benson MD, Dasgupta NR. Amyloid cardiomyopathy. J Am Coll Cardiol. 2016;68(1):25–8. 9. Bloomfield RA, Lauson HD, Coumand A, Breed ES, Richards DW. Recording of right heart. Pressures in normal subjects and in patients with chronic pulmonary disease and various types of cardio circulatory diseases. J Clin Invest. 1946;25:639–64. 10. Clare GC, Troughton RW. Management of constrictive pericarditis in the 21st century. Curr Treat Options Cardiovasc Med. 2007;9:436–42.

References

85

11. Chesler E, Mitha AS, Matisonn RE, Rogers MNA. Subpulmonic stenosis as a result of noncalcific constrictive pericarditis. Chest. 1976;69:425–7. 12. Cameron J, Oesterle SN, Baldwin JC, Hancock EW. The etiologic spectrum of constrictive pencarditis. Am Heart J. 1987;113:354–60. 13. Chowdhury UK, Subramaniam G, Kumar AS, Airan B, Singh R, Talwar S, et al. Pericardiectomy for constrictive pericarditis: clinical, echocardiographic and haemodynamic evaluation of two surgical techniques. Ann Thorac Surg. 2006;81:522–30. 14. Chowdhury UK, Kumari L.  Surgery for Chronic Constrictive Pericarditis, Tuberculous Pericarditis and Effusive-Constrictive Pericarditis. Invited Chapter: Cardiological Society of India, 2018 (Invited chapter 64), pp. 1–10. 15. Chowdhury UK, Narag R, Malhotra P, Choudhury M, Choudhury A, Singh SP. Indications, timing and techniques of radical pericardiectomy via modified left anterolateral thoracotomy (UKC’s modification) and total pericardiectomy via median sternotomy (Holman and Willett) without cardiopulmonary bypass. J Prac Cardiovasc Sci. 2016;2:17–27. 16. Chowdhury UK, Seth S, Reddy SM. Pericardiectomy for chronic constrictive pericarditis. J Operative Tech Thorac Cardiovasc Surg. 2008;13:14–25. 17. Chowdhury UK, George N, Singh S, Sankhyan LK, Sengupta S, Ray R, Vaswani P, Kalaivani M. Total pericardiectomy via modified left anterolateral thoracotomy without cardiopulmonary bypass. Ann Thorac Surg. 2021; https://doi.org/10.1016/j.athoracsur.2020.10.045. 18. Chesler E, Mitha AS, Matisonn RE. The ECG of constrictive pericarditis. Pattern resembling right ventricular hypertrophy. Am Heart J. 1976;95:420–4. 19. Dalton JC, Pearson RJ Jr, White PD. Constrictive pericarditis: a review and long-term follow­up of 78 cases. Ann Intern Med. 1956;45:445–58. 20. Gimlette TMD. Constrictive pericarditis. Br Heart J. 1959;21:9–16. 21. Gregory MA, Whitton ID, Cameron EWJ. Myocardial ischaemia in constrictive pericarditis: a morphometric and electron microscopical study. Br J Exp Path. 1984;65:365–76. 22. Hancock EW.  On elastic and rigid forms of constrictive pericarditis. Am Heart J. 1980;100:917–23. 23. Hancock EW.  A clearer view of effusive-constrictive pericarditis. N Engl J Med. 2004;350:435–7. 24. Hancock EW. Subacute effusive constrictive pericarditis. Circulation. 1971;43:183–92. 25. Hancock EW. Differential diagnosis of restrictive cardiomyopathy and constrictive pericarditis. Heart. 2001;86:343–9. 26. Hoit BD.  Management of effusive and constrictive pericardial heart disease. Circulation. 2002;105:2939–42. 27. Hancock EW. Neoplastic pericardial disease. Cardiol Clin. 1990;8:673–82. 28. Kussmaul A, Stern M. Pericarditis and the paradox pulse, vol. 38. Berl Klin Wochenschr; 1873. 29. Kussmaul A.  Ueber schwielige Mediastino-Pericarditis und den parodoxen Puls. Bed Klin Wochenschr. 1873;10:433–5. 30. Khasnis A, Lokhandwala Y.  Clinical signs in medicine: pulsus paradoxus. J Postgrad Med. 2002;48:46–9. 31. Kabbani S. Pericardial diseases. In: Zipes D, editor. Braunwald’s heart disease: a textbook of cardiovascular medicine. Elsevier WB Saunders Company; 2004. p. 1757–79. 32. Kothari SS, Roy A, Bahl VK.  Chronic constrictive pericarditis: pending issues. Ind Heart J. 2003;55(4):1–8. 33. Lancisi. Cited in Chevers N. Observations on diseases of the orifice and valves of the aorta. Guys Hosp Rep. 1842;7:387–92. 34. Lorell BH.  Pericardial diseases. In: Braunwald E, editor. Heart disease. Philadelphia: W.B. Saunders Company; 1997. p. 1496–505. 35. Lorell BH, Braunwald E. Pericardial diseases. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. Philadelphia: WB Saunders; 1988. p. 1465–516.

86

7  Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy

36. Ling LH, Oh JK, Schaff HV, Danielson GK, Mahoney OW, Seward JB, Tajik JA. Constrictive pericarditis in the modern era: evolving clinical spectrum and impact on outcome after pericardiectomy. Circulation. 1999;100:1380–6. 37. Ling LH, Oh JK, Breen JF, Schaff JV, Danielson GK, Mahoney DW, Seward JB, Tajik AJ. Calcific constrictive pericarditis: is it still with us? Ann Intern Med. 2000;132:444–50. 38. Levine HD.  Myocardial fibrosis in constrictive pericarditis electrocardiographic and pathologic observations. Circulation. 1973;48:1268–81. 39. Levine HD, Ford RV. Subendocardial infarction: report of six cases and critical survey of the literature. Circulation. 1950;1:246. 40. Leya FS, Arab D, Joyal D, Shioura KM, Lewis BE, Steen LH, Cho L. The efficacy of brain natriuretic peptide levels in differentiating constrictive pericarditis from restrictive cardiomyopathy. J Am Coll Cardiol. 2005;45:1900–2. 41. Maisch B, Seferović PM, Ristić AD, Erbel R, Rienmüller R, Adler Y, Tomkowski WZ, Thiene G, Yacoub MH, Priori SG, Alonso Garcia MA. Guidelines on the diagnosis and management of pericardial diseases executive summary: the task force on the diagnosis and management of pericardial diseases of the European Society of Cardiology. Eur Heart J. 2004;25(7):587–610. 42. Mehta A, Mehta M, Jain AC. Constrictive pericarditis. Clin Cardiol. 1999;22:334–44. 43. Merlini G. AL amyloidosis: from molecular mechanisms to targeted therapies. Hematol Am Soc Hematol Educ Program. 2017;2017(1):1–12. 44. Mocumbi AO, Ferreira MB, Sidi D, et al. A population study of endomyocardial fibrosis in a rural area of Mozambique. N Engl J Med. 2008;359(1):43–9. 45. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37. 46. Olsen CO, Tyson GS, Maier GW, Davis JW, Rankin JS.  Diminished stroke volume during inspiration: a reverse thoracic pump. Circulation. 1985;72(3):668–79. 47. Olsen EGJ, CJF S. The pathogenesis of Loeffler’s endomyocardial disease and its relationship to endomyocardial fibrosis. In: Yu P, Goodwin JF, editors. Progress in cardiology, vol. 8. Philadelphia: Lea & Febiger; 1979. p. 281–303. 48. Olsen EGJ. Morphological overview and pathogenetic mechanism in endomyocardial fibrosis associated with eosinophilia. In: Olsen EGJ, Sekiguchi M, editors. Cardiomyopathy update 3. Tokyo: University of Tokyo Press; 1990. p. 1–8. 49. Ruberg FL, Berk JL.  Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–300. 50. Schiavone WA. The changing aetiology of constrictive pericarditis in a large referral center. Am J Cardiol. 1986;58:373–5. 51. Schiavone WA, Calafiore PA, Salcedo EE. Transesophageal Doppler echocardiographic demonstration of pulmonary venous flow velocity in restrictive cardiomyopathy and constrictive pericarditis. Am J Cardiol. 1989;63:1286–18. 52. Samuel I, Anklesaria X. Endomyocardial fibrosis in South India. Ind J Path Bact. 1960;3:157. 53. Smoedema JP, Katjitae I, Reuter H, Burgess L, Louw V, Pretorius M, et al. Twelve-lead electrocardiography in tuberculous pericarditis. Cardiovasc J South Afr. 2001;12:31–4. 54. Surawicz B, Lasseter KC. Electrocardiogram in pericarditis. Am J Cardiol. 1970;26:471–4. 55. Schoenfeld MH, Edwards WS, William GD Jr, et al. Restrictive cardiomyopathy versus constrictive pericarditis-role of endomyocardial biopsy in avoiding unnecessary thoracotomy. Circulation. 1987;75:1012–7. 56. Schoenfeld MH. The differentiation of restrictive cardiomyopathy from constrictive pericarditis. Cardiol Clin. 1990;8:663–71. 57. Shaper AG.  Cardiovascular disease in the tropics. II.  Endomyocardial fibrosis. BMJ. 1972;3:743–6. 58. Shaper AG. The aaetiology of endomyocardial fibrosis. In: Valiathan MS. Somers K, Kartha CC (eds). Endomyocardial fibrosis. New Delhi: Oxford University Press, 1993: 111–120. 59. Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000;130(2–3):88–98.

References

87

60. Sousa M, Monohan G, Rajagopalan N, et  al. Heart transplantation in cardiac amyloidosis. Heart Fail Rev. 2017;22(3):317–27. 61. Spodick D. Low atrial natriuretic factor levels and absent pulmonary oedema in pericardial compression of the heart. Am J Cardiol. 1989;63:1271–2. 62. Spodick DH.  Chronic and constrictive pericarditis. New  York: Grune and Stratton; 1964. p. 134–8. 63. Spodick DH. Constrictive pericarditis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. 1st ed. New York: Marcel Dekker, Inc; 1997. p. 214–59. 64. Spodick DH. Diagnostic electrocardiographic sequences in acute pericarditis: significance of PR segment and PR vector changes. Circulation. 1973;48:575–80. 65. Spodick DH.  Infective pericarditis. Etiologic and clinical spectra. In: Reddy PS, Leon DF, Shaver JA, editors. Pericardial disease. New York: Raven Press; 1982. p. 307–32. 66. Spodick DH. Pericardial rub: prospective, multiple observer investigation of pericardial friction in 100 patients. Am J Cardiol. 1975;35:357–62. 67. Spodick DH. The normal and diseased pericardium: current concepts of pericardial physiology, diagnosis and treatment. J Am Coll Cardiol. 1983;1:240–51. 68. Spodick DH.  The pericardium. A comprehensive textbook, vol. 233. New  York, NY: M. Dekker; 1997. p. 464. 69. Spodick DH.  Pericardial diseases. In: Braunwald E, Zipes DP, Libby P, editors. Heart disease: a textbook of cardiovascular medicine, vol. 6. Philadelphia, PA: WB Saunders Co; 2001. p. 1823–70. 70. Spodick DH. Pericardial macro-and microanatomy: a synopsis. In: Spodick DH, editor. The pericardium: a comprehensive textbook. New York: Marcel Dekker; 1997. p. 7–14. 71. Troughton RW, Asher CR, Klein AL. Pericarditis Lancet. 2004;363:717–27. 72. Tharakan JA. Electrocardiography in endomyocardial fibrosis. Indian Pacing Electrophysiol J. 2011;11:129–33. 73. Tharakan J, Bohora S.  Current p erspe ctive on endomyocardial fibrosis. Curr Sci. 2009;97:405–10. 74. Tharakan JM, Venkatachalam CG, Balakrishnan KG. Angiographic features of endomyocardial fibrosis. In: Valiathan MS, editor. Endomyocardial Fibrosis. New Delhi: Oxford University Press; 1993. p. 168–84. 75. Uemura H, Ho SY, Devine WA, Kilpatrick LL, Anderson RH. Atrial appendages and venoatrial connections in hearts with patients with visceral heterotaxy. Ann Thorac Surg. 1995;60:561–9. 76. Valiathan MS, Balakrishnan KG, Kartha CC. Endomyocardial fibrosis. In: Ahuja MMS, editor. Advances in clinical medicine. New Delhi: Churchill Livingstone; 1991. p. 125–43. 77. Valiathan MS, Kartha CC. Endomyocardial fibrosis-the possible connexion with myocardial levels of magnesium and cerium. Int J Cardiol. 1990;28:1–5. 78. Valiathan MS, Shyamkrishnan KG.  Surgical treatment of endomyocardial fibrosis: Kerala experience. In: Valiathan MS, Somers K, Kartha CC, editors. Endomyocardial fibrosis. New Delhi: Oxford University Press; 1993. p. 220–7. 79. Valiathan MS, Kartha CC, Eapen JT, Dang HS, Sunta CM. A geochemical basis for endomyocardial fibrosis. Cardiovasc Res. 1989;23:647–8. 80. Vrana JA, Theis JD, Dasari S, et  al. Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics. Haematologica. 2014;99(7):1239–47. 81. Wood P. Chronic constrictive pericarditis. Am J Cardiol. 1961;7:48–61. 82. Wood JA. Tuberculous pericarditis; a study of fortyone cases with special reference to prognosis. Am Heart J. 1951;42:737–45. 83. Wood DE, Crumbley AJ, Pereira NL.  Reversible left ventricular dysfunction simulating a myocardial infarction after pericardiectomy. Heart. 2002;88:183–4. 84. Wise DE, Conti CR.  Constrictive pericarditis. In Pericardial Diseases (Ed. Spodick DH). F.A. Davis, Philadelphia. Cardiovasc Clin. 1976;7(3):197–210. 85. White PD. Chronic constrictive pericarditis. Circulation. 1951;4(2):288–94.

88

7  Clinical Presentation, Lab Investigations, and Endomyocardial Biopsy

86. Wychulis AR, Connolly DC, McGoon DC.  Surgical treatment of pericarditis. J Thorac Cardiovasc Surg. 1971;62:608–17. 87. White PD. Chronic constrictive pericarditis (Pick’s disease) treated by pericardial resection. Lancet. 1935;2:597–603. 88. Westermark P, Benson MD, Buxbaum IN, et al. A primer of amyloid nomenclature. Amyloid Int J Exp Clin lnvestig. 2007;14(3):179–83. 89. World Health Organization. Idiopathic cardiomegaly. Bull World Health Organ. 1968;38(6):979–92.

Chapter 8

Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

8.1 Chest Radiography Chest radiography findings are often suggestive of chronic constrictive pericarditis and sometimes help to differentiate it from restrictive cardiomyopathy [112, 113]. Typically the cardiothoracic ratio is normal and lung fields are clear in patients with chronic constrictive pericarditis. However, enlarged cardiac silhouette can be seen in effusive-constrictive pericarditis, co-existing pericardial effusion, or in the presence of extracardiac masses [57–62, 113]. Pleural effusions are common and can be an initial sign in 40% to 60% of cases [41–43, 137, 159, 168–184]. Findings suggestive of pulmonary tuberculosis have been reported in 30% to 70% of cases on chest roentgenogram. Patients with pulmonary venous congestion due to elevated left-sided filling pressures exhibit signs of in the form of cephalization or equalization. In the published literature, 47% of cardiac silhouette are normal, 16% show mild, and 37% show moderate to massive enlargement (especially in cases of effusive-constrictive pericarditis) [57–62, 113]. In 2001, Breen and associates reported evidence of occasional right-atrial and superior caval venous dilation [8]. On fluoroscopic examination, the cardiac pulsation may be diminished or absent [104]. Presence of calcification over the right atrium, right ventricle, as well as atrioventricular grooves on lateral chest roentgenogram suggest tuberculosis [35]. Other features strongly suggestive of chronic constrictive pericarditis are presence of Egg shell calcification, Cocoon calcification, and amorphous calcification in the atrioventricular grooves (Figs. 8.1, 8.2, 8.3, 8.4, and 8.5) [18–25, 59, 63, 104, 105, 181, 185]. Although calcification along the cardiac silhouette suggest diagnosis of chronic constrictive pericarditis, its presence is not always confirmative since calcification can also occur without cardiac compression [114]. As stated by Lorell, “A calcified pericardium is not necessarily a constricted one” [106, 186].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 U. K. Chowdhury, L. K. Sankhyan, Surgical Treatment of Chronic Constrictive Pericarditis, https://doi.org/10.1007/978-981-99-5808-5_8

89

90

a

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

b

Fig. 8.1  Frontal (a) and left lateral (b) chest radiographs reveal thick, plaque- like calcifications (arrowheads) over the diaphragmatic surface and free walls of both ventricles and along the atrioventricular groove

a

b

Fig. 8.2  Frontal (a) and left lateral (b) chest radiographs reveal plaque like calcifications (arrowheads) over the diaphragmatic surface, anterior surface of the right ventricle and along atrioventricular groove

According to study by Ling and associates, among 135 patients undergoing surgery for chronic constrictive pericarditis, 36 had radiological signs of pericardial calcification [104, 105]. In their study, 97% had calcification over the inferior/diaphragmatic surface of the heart, 76% had calcification on the anterior surface of the heart over the right ventricle; and 62% had calcium deposits over the atrioventricular groove [104, 105]. McCaughan and associates reported 40% incidence of calcification in their study group [112]. Bertog and associates found pericardial calcification in 55% of patients with idiopathic chronic constrictive pericarditis, in 10% of patients who were surgically treated, and in 6.7% with radiation-induced chronic constrictive pericarditis. Patchy thin areas of calcification is suggestive of adhesive pericarditis [9].

8.1  Chest Radiography

91

Fig. 8.3  Frontal chest radiograph shows plaque like calcifications (arrowheads) over the diaphragmatic surface of the heart

Fig. 8.4  Lateral chest roentgenogram reveals extensive circumferential pericardial calcification (indicated by white arrows)

In our cumulative experience on 547 patients undergoing pericardiectomy for chronic constrictive pericarditis, chest roentgenograms revealed pericardial calcification in 37%, pleural effusion in 40%, and pulmonary infiltrates in 16.6% of

92

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

Fig. 8.5  Chest radiograph showing cardiac size within normal limits, pericardial calcification, biatrial enlargement and blunting of both CP angles

patients [18–25]. Among them, 22.2% had calcification distributed over the anterior and inferior surface of the heart, 10% had calcium around the atrioventricular groove and “calcium cocoon” in 14.8% of patients. However there were no cases of mitral annular calcification (Figs. 8.1, 8.2, 8.3, 8.4, and 8.5) [18–25].

8.1.1 Overview of Specific Imaging Modalities Pericardial non-invasive multimodality imaging can be performed using echocardiography, tissue Doppler imaging, computed tomography scan (CT), cardiac magnetic resonance (CMR), radionuclide ventriculography, and/or Positron Emission Tomography. Primary investigation for diagnosis is echocardiography. Further investigations are done when echocardiography is non-diagnostic, or if additional information is required such as the degree of pericardial thickness, inflammation, or calcification [2–6, 8–15, 18–35, 37, 40–56, 65–78, 80–103, 110, 111, 114–167, 179, 180, 186, 187, 190–194, 196–205, 213–218, 220–222, 232–237, 239, 240]. Although there exists no single echocardiographic finding to confirm the diagnosis, a normal study definitely rules out the diagnosis of chronic constrictive pericarditis. Echocardiography remains the initial investigation of choice because of its wide spread availability, portability, low risk, and comparatively high resolution [40, 115]. Several echocardiographic parameters have been proposed to differentiate chronic constrictive pericarditis from restrictive cardiomyopathy and endomyocardial fibrosis. These parameters are measured on M-mode, 2D images, and Doppler imaging [8–17, 85–92, 104–111, 145–147, 187, 188, 205–218, 232–239]. The findings on Doppler imaging include diastolic flow reversal in the hepatic veins accentuated with expiration, rapid early (E) diastolic filling (restrictive type of

8.2 Echocardiography

93

left ventricular filling pattern), increased tissue Doppler velocity of the medial mitral annulus and reciprocal respiratory variation of mitral and tricuspid inflow Doppler velocities. About 15% of patients with chronic constrictive pericarditis have a negative, equivocal or technically confirmed echocardiogram [239]. Limitation of echocardiography are inability to perform a comprehensive study due to various patient factors and limited ability to assess pericardial thickness and pericardial calcification. Multimodality imaging help to confirm diagnosis in challenging cases for echocardiography or suspected false negative cases on echocardiogram and acquire more information on morphological features [127–133]. Compared to cardiac magnetic resonance, computed tomography has higher spatial resolution, and is superior in visualizing pericardial thickness and calcification [80, 160, 189, 213]. Computed tomography is also useful for patients with magnetic resonance non-compatible implanted devices. Other advantages are ability to evaluate for pulmonary embolus and coronary artery disease.

8.2 Echocardiography (a) Evaluation of the pericardial morphology

1. Pericardial thickening and calcification

The characteristic feature of pericardial thickening on echocardiogram is parallel motion of the epicardium and parietal pericardium separated by approximately 1  mm wide relatively echo-free space [85–91, 93, 94]. The best view to assess motion between the pericardial layers is the four-chamber subcostal view. Although assessment of pericardial thickness and calcification using transthoracic echocardiography is inferior to computed tomography and cardiac magnetic resonance, assessment with transesophageal echocardiography (TEE) strongly correlates with cardiac tomography [26, 27, 79, 85–91, 93, 94, 104, 105, 190]. Several investigators have demonstrated a pericardial thickness of more than 3 mm obtained using transesophageal echocardiography having 95% sensitivity and 86% specificity for detection of the thickened pericardium [79, 104, 105]. The 2003 ACC/AHA/ASE Task Force recommends transesophageal echocardiography for assessment of pericardial thickness to support the diagnosis of chronic constrictive pericarditis (class IIB) [26, 27]. Echocardiography evaluation may be inadequate in assessing pericardial thickness anterior to the right ventricle and near the right atrioventricular groove [26, 27, 39, 85]. 2. Pericardial tethering In the presence of pericardial adhesions, normal relative motion of the visceral pericardium covering the heart inside the parietal pericardium is lost. It is difficult to demonstrate this pericardial tethering by two-dimensional echocardiography. However, tissue Doppler imaging and myocardial strain imaging offer diagnostic information with a reported sensitivity and specificity of 88.8% and 94.8% respectively [62–69, 107, 160, 191–203, 221, 222].

94

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

Unlike echo Doppler methods and tissue Doppler imaging which rely mostly on longitudinal motion data, speckle tracking echocardiography can examine several components or planes (i.e. radial, longitudinal and circumferential) in a single data set. It can assess the torsional deformation of the myocardium in addition to strain and strain rate. Speckle tracking echocardiography can also quantify the rocking or swinging motion of the heart by measuring septal-to-lateral rotation displacement (SLRD) [47–49, 70, 71, 85–91, 93, 94, 134, 135, 138–144, 148, 187–200, 220]. “Strain reversus” is a feature characterised by diminished negative peak systolic strain in the free walls of left and right ventricles when compared with septal peak systolic strain. It is seen when diseases affecting myocardial strain values are absent. The sensitivity and specificity of left ventricular lateral wall strain to left ventricular septal wall strain ratio  1.5

8.2 Echocardiography

97

d

e

Fig. 8.6 (continued)

(e) Mitral and tricuspid inflow pattern and mitral annular tissue Doppler velocities Diagnosis of constrictive pericarditis on echocardiogram to a large extent relies on Doppler evaluation. Mitral E/A ratio is usually >0.8 in constrictive pericarditis due to abnormal early rapid filling and high E velocities in both ventricles [120– 126]. The inspiratory decline in mitral and tricuspid E-wave velocities are typically, ≥25% and ≥ 40% respectively when compared with that during expiration [85–92]. The formula ([peak Eexpiration − peak Einspiration]/peak Eexpiration) × 100 is used to calculate the percentage of respiratory variations for the peak E-wave velocity across both the mitral and tricuspid valve [85]. The mitral valve E-wave respiratory variations result in positive values, while tricuspid valve E-wave respiratory variations result in negative values. This is explained by the discordant filling of ventricles [85]. Since significant respiratory variations are absent even in 30% to 50% of patients with definite post operative diagnosis of constrictive pericarditis, the demonstration of mitral and tricuspid respiratory variations ≥25% and ≥ 40% respectively is not considered essential for the diagnosis [120–126]. Usually respiratory variations are poor in patients with elevated filling pressures or reduced preload [1,

98

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

a

b

c

d

e

f

g

Fig. 8.7  Postoperative echo images of the same patient with chronic constrictive pericarditis showing (a) Normal sized inferior caval vein (ICV). (b) Apical 4-chamber view (2D image) showing normal chamber geometry. (c) Pulse wave Doppler signals at the mitral valve showing normal respiratory variations. (d) Pulse wave Doppler signals at the tricuspid valve showing normal respiratory variations. (e and f) Doppler signals using Tissue Doppler Imaging (TDI) in apical 4-­chamber view with sample volume placed at the medial and lateral annulus of mitral valve respectively showing normalization of annulus reversus. (g) Mitral valve inflow e/a normal

8.2 Echocardiography

99

a

b

c

d

e

f

g

h

i

j

k

Fig. 8.8 (a) Preoperative echocardiographic images in a patient with chronic constrictive pericarditis. Apical four chamber view showing normal valvular, left and right ventricular morphology, (b) Apical five chamber view showing normal valvular, left and right ventricular morphology, (c) M-mode echocardiogram showing normal left ventricle with flattened interventricular septum, (d) Colour flow Doppler echocardiogram showing normal flow across the mitral valve, (e) Colour flow Doppler echocardiogram showing normal flow across the tricuspid valve, (f) Hepatic vein flow Doppler showing increased respiratory variations, (g) Inferior caval venous imaging showing dilated and non-collapsing inferior caval vein, (h) Pulse wave Doppler signals at the tricuspid valve showing increased respiratory variations, (i) Pulse wave Doppler signals at the mitral valve showing increased respiratory variations, (j, k) Doppler signals using tissue Doppler imaging in apical four chamber view with sample volume placed at the medial and lateral annulus respectively showing annulus reversus. Mitral valve inflow e/a > 1.5

100

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

a

b

c

d

e

f

g

h

Fig. 8.9 (a) Preoperative echocardiographic images in a patient with chronic constrictive pericarditis. Apical four chamber view showing normal valvular, left and right ventricular morphology, (b) Apical five chamber view showing normal valvular, left and right ventricular morphology, (c) M-mode echocardiogram showing normal left ventricle with flattened interventricular septum, (d) Colour flow Doppler echocardiogram showing normal flow across the mitral valve, (e) Colour flow Doppler echocardiogram showing normal flow across the tricuspid valve, (f) Hepatic vein flow Doppler showing increased respiratory variations, (g) Inferior caval venous imaging showing dilated and non-collapsing inferior caval vein, (h) Pulse wave Doppler signals at the tricuspid valves showing increased respiratory variations, (i) Pulse wave Doppler signals at the mitral valve showing increased respiratory variations, (j, k) Doppler signals using tissue Doppler imaging in apical four chamber view with sample volume placed at the medial and lateral annulus respectively showing annulus reversus. Mitral valve inflow e/a > 1.5

8.2 Echocardiography

i

101

j

k

Fig. 8.9 (continued)

138–144]. Similar to variations in mitral and tricuspid inflow velocities, respiratory variations are present in pulmonary venous flow. Interpretation of respiratory variation in Doppler velocities are further difficult in presence of atrial fibrillation. Patients with advanced disease typically show increased early diastolic filling velocity (E) followed by rapid deceleration, leading to a short filling period with mitral E wave typically being  25%) may not occur in about 50% of patients with chronic constrictive pericarditis, the search for new variables and algorithms continues. Tissue Doppler imaging evaluates the myocardial wall velocities and provides additional diagnostic information. The sensitivity and specificity of tissue Doppler in diagnosing constrictive pericarditis are 88.8% and 94.8% respectively [47–49, 93, 95, 117, 138–144, 161, 168, 191–203]. However the effect of pericardiectomy on mitral and tricuspid annular velocities are not well established because of limited studies and restricted observations [47–49, 93, 95, 117, 138–144, 161, 168, 191–203]. Normally the e’ velocity of the lateral mitral annulus is higher than that of the medial mitral annulus. In constrictive pericarditis, although the mechanoelastic properties of the myocardium are preserved, the lateral expansion is restricted. Therefore the longitudinal mitral annular velocities remain normal or may be even exaggerated [95, 96, 160, 203]. The mitral annulus descends towards the apex during systole. However the apex of the heart appears stationary in relation to the echo transducer. This downward annular displacement of mitral valve is proportional to the shortening of myocardial

102

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

fibres in longitudinal plane. Therefore it has a good linear correlation with global left ventricular function [26, 27, 85, 89–91, 203]. Tissue Doppler imaging (TDI) is used to measure mitral or tricuspid annular motion in the long axis which in turn reflects ventricular systolic and diastolic motion [2, 3, 47–49, 62–69, 89, 138–144, 161, 174, 175, 191–203]. In constrictive pericarditis, early diastolic septal velocity (medial e’) is preserved or even increased as explained earlier. Normally early diastolic lateral mitral annular velocity (mitral lateral e’) is higher than medial e’. This relation is reversed in chronic constrictive pericarditis [2, 3, 47–49, 62–69, 89, 138– 144, 161, 174, 175, 191–203]. This mitral annular velocity pattern is relatively specific for constrictive pericarditis in patients with heart failure, since e’ velocity is usually reduced in patients with myocardial disease whether left ventricular ejection fraction is preserved or reduced [2, 3, 47–49, 62–69, 89, 138–144, 161, 174, 175, 191–203]. Another notable feature of constrictive pericarditis is reversal of the normal relationship of mitral lateral e’ and medial e’ velocities. Mitral lateral e’ velocity is lower than medial e’ velocity and therefore the lateral/medial e’ ratio is inverted. This is termed as “annulus reversus” [160, 161]. This is due to the tethering of the adjacent fibrotic and scarred pericardium, which restricts the lateral mitral annulus motion in constrictive pericarditis. In patients with preserved mitral e’ velocities (> 8 cm/sec) and a low E/e’ ratio (< 8 cm/sec) with high left ventricular filling pressures, “annulus reversus” is an indication of constrictive pericarditis [62–66, 93–96, 160, 161, 191–203, 240]. A cut-off value of e’ velocity ≥ 8 cm/sec for diagnosis of constrictive pericarditis was associated with 95% sensitivity and 96% specificity [62–66]. The postoperative changes in mitral annular velocities were evaluated and correlated with changes in clinical symptoms using tissue Doppler imaging in a prospective study of 54 patients undergoing pericardiectomy for chronic constrictive pericarditis by Chowdhury et al. They concluded that patients with congestive heart failure and normal left ventricular ejection fraction, preserved or increased mitral medial e’ velocity with annulus reversus was diagnostic of constrictive pericarditis. Although tissue Doppler imaging was useful in diagnostic evaluation, it was not helpful in postoperative evaluation of chronic constrictive pericarditis [25]. Several investigators have demonstrated normal or increased mitral medial annular early diastolic velocity (e’  ≥  9  cm/sec) in constrictive pericarditis [2, 93–96, 120–126]. Medial mitral annular e’  ≥  9  cm/sec when combined with respiratory shift is diagnostic of constrictive pericarditis with high sensitivity and specificity ≥90% respectively [160, 191–203]. However in the presence of associated myocardial disease, segmental non-uniform myocardial velocities, or extensive annular calcification, e’ should be used with caution [191–203]. Studies have shown that in normal circumstances E/e’ ratio correlates well with left ventricular filling pressure. E/e’  15 suggests increased left ventricular filling pressure [62–66]. Concept of annulus paradoxus was introduced by Ha et al., which describes the paradoxical behaviour of the mitral annular motion velocity in constrictive pericarditis. They demonstrated an inverse

103

8.2 Echocardiography

Table 8.1 Diagnostic sensitivity and specificity of the echocardiographic parameters in constrictive pericarditis (The Mayo Clinic Criterions) [232] S.No. 1 2 3 4 5 6 7 8

Echocardiographic features Septal shift Inspiratory change in mitral velocity Medial e’ ≥ 9 cm/sec Medial e’/ lateral e’ > 0.91 Hepatic vein diastolic reversal velocity/ forward 1and 3 1 with 3 or 5 1 with 3 and 5

Sensitivity (%) 93 84 83 75 76

Specificity (%) 69 73 81 85 88

PPV% 92 92 94 95 96

NPV% 74 55 57 50 49

80 87 64

92 91 97

97 97 99

56 65 42

Abbreviations: PPV positive predictive value, NPV negative predictive value

relationship between E/e’ and left ventricular filling pressure. This is explained by the exaggerated longitudinal motion of mitral annulus in cases of constrictive pericarditis leading to an increase in e’, despite high filling pressures (Figs. 8.8 and 8.9) [64–66]. A combination of echocardiographic variables as enunciated in Table 8.1 by Mayo Clinic Group has yielded higher sensitivity and specificity [232]. Left ventricle contains a right-handed helical arrangement of fibres in the subendocardial region that gradually changes into a left-handed geometry in this subepicardial region [28, 135]. Despite the change in orientations of myofibres, all layers of the left ventricular wall operate synergistically. The fibres in the subendocardial region is responsible for longitudinal shortening, while the fibres in the subepicardial region causes radial shortening and torsion [36, 37, 109, 191– 202, 214]. During systole, the apex moves counterclockwise and the base moves clockwise resulting in a wringing motion of the left ventricle. In 2006, Sengupta and associates demonstrated that helical orientation of the myofibres is the reason for this particular motion [192, 193]. This torsional motion during systole results in storage of potential energy. This stored energy is utilised for diastolic recoil. This results in ventricular suction and early diastolic filling [135, 192–196]. The stiffness of the pericardial layers modulates the extent of circumferential and longitudinal expansion of the left ventricle during early diastolic recoil and untwisting [52, 53, 107]. Translational motion can result in overestimation and tethering and causes underestimation in measurement of myocardial velocities. This limitation can overcome by Strain (E) and strain rate imaging which measure the actual extent of myocardial deformation (stretching or contraction). Strain can be measured utilizing either tissue Doppler imaging or by 2D echocardiographic speckle tracking derived parameters. Sengupta et al. employed speckle tracking echocardiography, an angleindependent technique and found close correlation with measurements obtained via MRI and sonomicrometry [193–197, 202].

104

8  Imaging Studies and Haemodynamics in Chronic Constrictive Pericarditis

(f) Speckle tracking echocardiography Recent studies have shown that Doppler tissue imaging-derived myocardial velocity gradient of the posterior left ventricular (LV) wall is relatively independent of the translational motion of the heart and/or preload alterations and can distinguish chronic constrictive pericarditis from restrictive cardiomyopathy. They had shown that myocardial velocity gradient was lower in patients with restrictive cardiomyopathy compared with both chronic constrictive pericarditis and normal [50, 52, 147–153, 202]. Strain is an index without dimension and reflects deformation of myocardium during cardiac cycle relative to its initial length. When all points within a moving object have the same velocity, the object would be described as having displacement. On the other hand, if different points within an object are moving at different velocities, then the object will exhibit deformation. This is defined as Langranian strain. Since myocardial deformation is caused by contraction, strain can be used as a measure of the contractile function of myocardium. By convention, a positive value for strain indicates lengthening and, a negative value indicates shortening. Strain allows differentiation of active versus passive movement within a myocardial segment. Strain rate is the rate of change in length, calculated as the difference between two velocities normalized to distance between them; it is expressed in seconds [193–197]. At lower left ventricular volumes, the pericardium expands, but after a certain volume further circumferential expansion is resisted by the increasing stiffness of the left ventricular wall. Normal pattern of circumferential and longitudinal diastolic recoil is altered by loss of compliance of the pericardial layers. Garcia and associates suggested that in chronic constrictive pericarditis the filling and expansion of left ventricle is more affected in the circumferential plane rather than in the longitudinal direction. Additionally, in chronic constrictive pericarditis the scarring and inflammation from pericardial layers might extend into the myocardial wall which also affect the circumferential recoil of the left ventricle. They investigated longitudinal, circumferential and radial mechanics of the left ventricle simultaneously in patients with chronic constrictive pericarditis and restrictive cardiomyopathy. They demonstrated for the first time in the literature that restrictive cardiomyopathy was characterized by abnormal longitudinal left ventricular mechanics with relative sparing of the left ventricular rotation, while patients with chronic constrictive pericarditis had relatively preserved longitudinal left ventricular mechanics and a markedly abnormal circumferential deformation, torsion and untwisting velocity [47]. In echocardiography, the term strain describes lengthening, shortening, or thickening, otherwise called as regional deformation [2, 36, 37, 116, 117, 133–135, 151–154]. The four principal types of myocardial strain are longitudinal, radial, circumferential, and rotational. The myocardial deformation occurs along these strain vectors in a three dimensional space. However for the ease of it, most studies have been done using individual strain assessments.

8.2 Echocardiography

105

Patients with constrictive pericarditis had higher global longitudinal scale than in those with restrictive cardiomyopathy [−18.5% (−20.1 to −15.2) vs −11.6% (−14.6 to −9.3); p 4 mm Strain: Longitudinal strain is preserved, and circumferential strain is reduced

Medial mitral annular e′ > 9 cm/sec combined with enhanced respiratory variation represents a robust combination for diagnosis of constrictive pericarditis with

9.1 Introduction

145

greater than 90% sensitivity [189]. An e′ velocity greater than 8 cm/sec excludes restrictive cardiomyopathy [36, 65, 106, 107, 139, 161–166, 176, 203–205, 239, 258]. However, respiratory variation is seen in only two-thirds of patients with constrictive pericarditis. Patients with restrictive cardiomyopathy usually have thickened ventricles [36, 65, 82–87, 106, 107, 138, 161–166, 176, 239, 258].

9.1.3 Cardiac Computed Tomography Cardiac computed tomography is a valuable tool for assessing pericardial thickness and calcification [2, 259]. A thickened pericardium (more than 4 mm) is suggestive of constriction, although constrictive pericarditis can be present without pericardial thickening in upto 20% of cases [240]. Computed tomography can give additional information on chamber size, inferior caval venous size and pericardial effusion. ECG-gated images can identify the septal bounce [75].

9.1.4 Cardiac Magnetic Resonance The following information can be obtained from cardiac magnetic resonance imaging: • Pericardial thickness: A thickness greater than 4 mm is abnormal. • Left atrial enlargement: The left atrium is enlarged more than right atrium (LA: RA >2.0) in constrictive pericarditis. Biatrial enlargement is common in restrictive cardiomyopathy [37, 38, 107]. • Cine magnetic resonance imaging: Increased ventricular coupling with inspiratory flattening of septum can be quantified in short axis cardiac magnetic resonance. A septal excursion greater than 12% is specific for constrictive pericarditis. • Tagged cine MR: Detects pericardial adhesion and immobility of pericardial-­ myocardial interface in constrictive pericarditis [86, 285]. • Delayed enhancement of pericardium is seen in constriction indicating pericardial inflammation.

146 9  Diseases Mimicking Constrictive Pericarditis: Salient Features and Novel Strategies…

9.1.5 Cardiac Catheterization Data Before the advent of echo Doppler, haemodynamic catheterization data remained the gold standard for confirming the diagnosis of constriction. Haemodynamic differentiation of constrictive pericarditis from restrictive cardiomyopathy may be difficult (Table 9.1).

9.2 Endomyocardial Fibrosis 9.2.1 Definition Endomyocardial fibrosis is also known as Davies disease. In this type of restrictive cardiomyopathy, there occurs scarring and deposition of fibrous tissue in the endocardium and subendocardial myocardium of right, left, or both ventricles that leads to restriction of ventricular filling and diastolic dysfunction [1, 9, 25, 141, 217, 241, 254, 255].

9.2.2 Epidemiology It is common in the poor inhabitants of the tropics with most of the 780 cases reported in the last 2 decades originating from Uganda, Nigeria, Ivory Coast, India (Kerala), and Brazil [1, 9, 25, 141, 217, 241, 254, 255]. It accounted for 15% of mortality due to heart failure in Uganda, 22% in Nigeria, 20% of heart failure patients aged below 40  years in Ivory Coast, and 2.5% of patients aged below 40 years attending cardiac referral services in Kerala [6, 7, 39, 99, 217, 241]. The average age of newly diagnosed cases among the 123 new cases at Sree Chitra Thirunal Institute of Medical Sciences and Technology in 1991–2001 was 33 years as compared to 25 years among the 295 new cases in the 1976–1990 series. Three percent were aged below 10 years, and 12% were between 11 and 20 years [200, 254, 255]. There is scanty evidence to suggest an ethnic or racial predisposition [107, 199, 200, 218].

9.2.3 Causation: Evolving Concepts Although the aetiopathogenesis of tropical endomyocardial fibrosis is unknown, the following hypotheses have been put forward as plausible explanations:

9.2  Endomyocardial Fibrosis

147

Table 9.1  Clinical, echocardiographic, biochemical, and haemodynamic criteria of constrictive pericarditis versus restrictive cardiomyopathy/tropical endomyocardial fibrosis Restrictive cardiomyopathy/ Variables Constrictive pericarditis endomyocardial fibrosis Physical examination Pulmonary congestion Usually absent Usually present Prominent Y descent in Present Variable jugular venous pulse Pulsus Paradoxus ~1/3rd of patients Absent Early diastolic sound Pericardial knock S3 (low pitched) Echocardiographic/Doppler echocardiographic/Speckle tracking echocardiographic findings Atrial size ±atrial enlargement Biatrial enlargement (LA > RA) Left ventricular myocardium Normal “Sparkling” in amyloidosis Respiratory variation in mitral >25%