722 113 18MB
English Pages 1152 [436]
BASIC TECHNICAL
MATHEMATICS WITN
CaICUIUS
si version
ve
ALLYN
J. WASHINGTON
* MICHELLE
BOUE
Digitized by the Internet Archive in 2022 with funding from Kahle/Austin Foundation
| https://archive.org/details/basictechnicalma0000wash_g9e3
STUDENT'S SOLUTIONS MANUAL John R. Martin Tarrant County College
Michelle Boueé
“ BASIC TECHNICAL MATHEMATICS WITH CALCULUS SI Version Tenth Edition
Allyn J. Washington Dutchess Community College
Michelle Boué
PEARSON Toronto
Editor-in-Chief: Michelle Sartor Acquisitions Editor: Cathleen Sullivan Marketing Manager: Michelle Bish Developmental Editor: Mary Wat Project Manager: Kim Blakey Production Editor: Lila Campbell Compositor: Cenveo Cover Designer: Alex Li Interior Designer: Cenveo Cover Image: Gencho Petkov/Shutterstock Credits and acknowledgments for material borrowed from other sources permission, in this textbook appear on the appropriate page within the text.
and
reproduced,
with
Original edition published by Pearson Education, Inc., Upper Saddle River, New Jersey, USA. Copyright © 2012 Pearson Education, Inc. This edition is authorized for sale only in Canada. If you purchased this book outside the United States or Canada, you'should be aware that it has been imported without the approval of the publisher or the author. Copyright © 2015 Pearson Canada Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Canada Inc., Permissions Department, 26 Prince Andrew Place, Don Mills, Ontario, M3C 2T8, or fax your request to 416-447-3126, or submit a request to Permissions Requests at www.pearsoncanada.ca.
1098765432
RRD-H
1817 1615
Library and Archives Canada Cataloguing in Publication Boue, Michelle, author Basic technical mathematics with calculus : SI version, tenth edition. Student's solutions manual, Allyn J. Washington, Dutchess Community College / Michelle Boué. Supplement to: Basic technical mathematics with calculus. ISBN 978-0-13-398276-3 (pbk.) 1. Mathematics--Handiooks, manuals, etc.
QA37.2.W372 2014 Suppl.
PEARSON J
510.76
2. Calculus--Handbooks, manuals, etc.
|. Title.
C2014-905639-7
)
ISBN 978-0-13-398276-3
CONTENTS CHAPTER 1 BASIC ALGEBRAIC OPERATIONS a b2 3 1.4 1.5 ir Ly 1.8 19 1.10 1.11 edi?
BE ee ER est cos ese Vas ciasicUetad te bade fas duo sdeko6ivossuace odpnsnsneceasteodnava’ctoavels 1 Hundamentl Operations of Algebra iy Ni1..608 Wi AGRA dl dase te kcal dedhie 2 Measurement, Calculation, and Approximate NUMbE?S..........c.ccscccssssssssssessssessceseescsesesesesess 2: PRY ONNesate ee
CHAPTER2 Zk ee ee 2.4 Zo 2.6
WRT REI
SN
ck ooo
sacra co oc ecca vaeeaietinszies & Meswtitisesk ot Re aalasune Neco
ee 3}
MeCN OEM ULOTS See tyecs eet S, ces cc BN sy acsovns eaebiw oh enced pve do caval Led Ses Vanpsaendie Ro chuandeboeath nods ade debs a HSEDDLIS DLOUE DT SUVATRSS, MET 1 a 2 ne ne ey YY 5 Addition and Subtraction of Algebraic Expressions..........cccscsccssesescsssssscsesesessssesssescscseseeress 5 Dae pucadon Of Algebraic EXPressions sscjayercsstessesyis dscaneued Lochca. ndwpeentaselesnuapvocnaeiodeeonaba hed6 Dic om oli GO DTIC EXIT ESSLONG |g;isspasel ysieesoc mes div)sodvcddseodila Peon desnwepnacp @osbcenayeotincsvarnldaRin7 SEL CE SHOTS GIS a ale BA San oc ae a ei SCAN CVEaE SL ee CWE RIMES, BRAIN 8 Beigeae ea eE PE AULAAS 3a 25 4d Ses. Aeh Ci roses una adeco dandtahdvevsxbeceuidsnahe davedeades LEO 9 AppliedaWord Problemsan.s een e hs Sk. de Arrrrreseeeeeeneeeecessnneeccssnnanecceccnssnnascee 10 Bee ee OTC SES oko cr scc wucnsov arses adhaete Ws sie ours soacussSuehvtnmlatas th dccaepughoce ocd |e.
GEOMETRY
Bite EAMG ARE yt Ate Ys obs, FoF as cae doeaalted vSatoeeaghign ss dnt & coven agit du ah ebay 15 MAReesteem ee ate ee re ett, 22 Ste Tals 0" Sava adadea techs sols chd ved asiends cab Saeota tye daceamadedipeasug sarees ROM 15 RN
CNA
Spe
eee
Sse c0 oes aoc gh oncks ERS TH LT Heo Mica TSA
Gund Vans Tayesb SS lege A osdacecloms Wy
te Cg Ue Oe ei ce i feet bane neath Aon eee 18 Beles ior GHEP COULGT AATCAS 05 detehetunasnays-aventhtCt ees vennceyt) 156 iy: Ouadratic. P Orr secihs .cxstes getsanreadnipdasaey deamasoarh sme taeyaienrs Maen desde ier eee 158 With Radicals c.. csc; cxe.siacesnsesascy sds sokeoceqeneeplensdv kepemiunete atetveets tee plereaiet ec taias eames 160 42RENIEW. EXCCCISES sucky s-cecssinessanxnsdedpsneasgoatilehsokocdatat emt daraae treecragsestancera mee 162
CHAPTER 15 EQUATIONS OF HIGHER DEGREE Lak 1SiZ 13:3
The Remainder and Factor Theorems; Synthetic D1ViSION............:ccescescssssesscessssereeeonees The Roots of an Equation: sis, sass sesckette eaisasl ieee SRE, A veh ota eee Rae eo aaeae Rational-anc lirational Roots sei cits i yiaacosisonecosidegadesivssab weasian aacSeiwa patentee ee eae meee Chapter 15 “Review Exercises vac h sie cietesdcceeneccts se tede ateth seven taba ahey ae eeee oc tee ae
CHAPTER 16 16.1 16.2 16.3 16.4 16.5 16.6
Vi
MATRICES; SYSTEMS OF LINEAR EQUATIONS
Matrices’ Definitions and Basic Operations cise nts uttcs cesetertces ance ee eee ere 175 PUUMIDHCatOM OP NIAIICES iii i csaetteyerncceevacesieelacoheeeneaa en ean tataTerect eee 176 Minding the Inverseof a Matrix: sik ciiscecs ree tosdencvetes ot cece co ieaeareeetyncs te cette a eee 178 Matrices and Linear Equations ................6 {ken otsausucpeanbn ceten tt Meadamiet tanec act te iNesat ast aa 179 HAUS SLAIN EeTIVACTOT 137.445.5005 e soe hese toyaeveapensan crake dckaas cence coher Cannes ast aren eee 182 Higher-order Determinants iiss ccijecccavereristetioesaectidoteeteciaa net eRe ceneter eee 183 C@haprer’16 “Review Exercises (...3c5 ree re ee 186
CHAPTER 17 apa Leps ibe: 17.4 is 17.6
167 168 169 172
INEQUALITIES
PrOperties Of INEQUALITIES .i.:..ccasesavessczeceqvoncessocdesssaeq snovetectnest teen Omeceria ean coeeae BOlvinie Lincar Me qualities 5 .cccssccctxscsccsfoscassusiaas Ceaetoatansecdese cette Maree ahaxsrcresy serena solving NomlinGar Tequalities ccicoc,seis.ccsceyvi tcvaresontaaceacte ci saes gtetao atte eeetene ete eee ee Inequalities Involving ABSOnte Vales... 2.)sccucsstvnedtacctystevercessvcareat canes tnceee eae ea Graphical Solution of Inequalities with Two Variables ...........cc:ccccccsssscsssssecseceseceesearcaees Lin€ar. Programming... n..sis->iatipsccstesedadanaaaususie eae Chapterl7 Review EXercises ...)....:cacuausatecrntteee ntact ce ee
19] 191 193 196 198 200 201
CHAPTER 18 VARIATION 18.1, 18.2
Hd Coed C1 701TT sary oe a AWOL SUACI(lps boicatiine ae eels hae ae Ea SE SUISSE ED, CSUISOIIN B05) 16)KS. he ato RRR i ee
CHAPTER 19 Be Loy 19.3 19.4
ADDITIONAL TOPICS IN TRIGONOMETRY
Double-angle Formulas.::0iiii.:.ccccc.cctdedscccsssscevesasecsoag \aha apie Md Rotated dre ALY inset BUM ec ee atts cere Bee Ud elSONORA? EACHUAULONIS 2 Cece cht oa ee et RIS OMOIICUIIC FEUNUUIONSc nis. eRe EY OWARUTCISCS Str ME eet
le 201
Pe ines debddsskdvss cv ness scunroa tia igus sa dohsadedelechesetageaenet 223 aienacata enstecteen caries ctsenc sat tvecsonecescsinencttistamneetralovenes 224 istetetmtiresccctacesccidoveactiotetsisterereuetesatlorsetrelcazentee 226 sets goth cieoatectsccsec esti cuirateselactssabnarvsacoreesathoeagie pie |
PLANE ANALYTIC GEOMETRY
Eee PETEOa ree etre ace ices Feed ts er centwor ne tear id YS LW 8 ASNT I eae 231 Weaseli!GAVE A aialaetee hy Rerekple bade abet aptiea og abtbare AeS 2 ales Aeleae ipl eats ta he ah ERE 232 eee ie ee eee eee re as urtarcsediabwsrentestisdlencteossteok? thorciesecns ore eee 230 Tit ioPiaat!Bian pg Ae RA ot On Bee pera aan cet da 1 tl tdi ated coher oop BONE oe Pn Be 238
UFR FOS oceania oeneta
any. an ep ape erba pein BRE Es Csbhdr aba ein Sy obsGemt amy AGL nieSatan A Oks 240
JUNTA BeytayFe at aeOe
SRS e deer er ontc ences etice ee uae Loci aenedac pee ee hee est nes 242
ae ey UA or Nes te ho ots ta cheat cvs ah Su etc scdcr ea the Srias Mesa es tockot Soaeak caeaboeateeehtnngecty oak crete 245 aN eA ECL CECE CUALIONN ett riece nas Sati rasa et tacis otatsaceedcos onstontsscnets fadiwes Cagtrneeda lesen cvvcpeaeene 248 CT ao i bee BRET EE OtBERET Ee ERNE RCM Ref a 2 249 RPT aI Ure othe iee es rrten Li caastesrtccsy carnateteorelet ent esters te ceauaetteainincdiecantesy Ul 250 eG AOLALC Saat Ma ie alti nie tiscciitacsicachtcettetacde cau sostusosnecteaceacncersasmeniensaeel 2352
Dei
CHAPTER 22 22 22.2 Zoo 22.4
210 Ut 213 214 215
RTE ere LA OL EIDIC LOCTIUILICR 0c iitonsh teciseesesostetcce Recess verte tecteeec eee uaaarsesbynrtinns 218 HUG Sueieee telaloBy beor Cos 00)0101 9 ESL ane RE e * eas bee ie BoARRON iti et tn 219
CHAPTER 21 Bagte aise zZh3 21.4 Zio 21.6 PT 21.8 pape) Pal agAe 21st
SEQUENCES AND THE BINOMIAL THEOREM
LOCIOIVESLESho) Sic[ERIE CGS 3d aie ae Re Ee Be a eg DE Oe SVT SOEs SY ye SS |e A aang to et Pe Le aLRR ata be PEIIABTIEE MOCOLINC ICES LoS ermtr ety roti (ntsc s crit neers bay adntanaye tire yO MEOW BER IRE Se PUES (WteCTTESL,LEI 06ot ee see Baty lls lh ir Re re BL a lite ca I ied POS OU le ROME terme Me er PEACICISCS Cerne ete ee Teo eksattin
CHAPTER 20 20.1 20.2 20.3 20.4 Z0,> 20.6
206 206 208
er
EEL LSC Sci sch oats eses eves sassucttoncenga rows secret roche Peanedaesesontetes SorataneaTohs 254
INTRODUCTION TO STATISTICS
iat BIRO LAD MICAl FePPescMPAtION Of Data. resi suvcscencersuncpasapeapnesohile drosvesogabeyrnogeapbayatens 260 | ease ge eee iac eo cave resrgivaads tures Sata.ebersen vassaassinunancaaincey¥edeneivadssqoge 261 Te ee eee ere eT tO ay eh iWness ih dsstieusdes oieLonserdsvenefusvancoanssvacosecdudoanes 262 era ANON TLE Aa ne Teepe MIC Te ee tse cer eet te dacitsnauatncartoncns tclaengy ta casnvetsosaesderloetasnausaneddscsasone 263 vii
D2a0 22.6 22.7
Statistical Process Control sicicsalscescdeciicecads esaddceensa ts cenuesetge hae
eh
nt a
aerate
ees 264
Linear Regression. ci ccs closacs ssscchededsacevacalavacys odearttacehastsceRhhedipn tan tnhe tat aestuea caiia aiaasunteetege os 266 eensdibes Nonlitiear [email protected] ckeatnes teetoehoeetabendl saris Rueataaaaees rsmeget268 neapapines 269 babsEteBancabacnattiearesstahas Chapter 22 Review Exercises oii cccjcssieseccsiesaccencecopasnpbagesueoe
CHAPTER 23 THE DERIVATIVE ee Sa re 272 23.1 IGTINYARGS silo c cos suaavel vesanic cada ested van bss cen task Geet aes oscar ature ies a eis cea 23.2 ‘The Slopeofa Tangent tora Gurvie isc i cessor conus tts apnasesl peurroy epbpnnaentieleat Fete atetaaae caer fas 274 sce Ginctunipnd nalbaeabidekard wei dallecuca Menace iad agen eee eae Pari) 23.3 PHC IDEiVaLVeR.g ri.cheexEWU), 23.4 The Derivative.as an Instantaneous Rate of Change ..........ssccssscnsdseersseeresandabennosienesenduass 279 sdaEhcpsleab tpg let ioeacoanealtietes aaa 281 23.5 POLL ALVES OPE OLYMONMAISA ya sihiccssyadeQubtvcscevalevincoaentstbvate er EP et 8 Sa 283 23.6 Derivatives of Products and Quotients of Functions ...............4: nA 2307 The:Derivative of aPoweriof akunction 3: .a95 Cys. Pale ten se ELS epescene Gb ea aie 285 caine ae e ee eee 288 23.8 Differentiation Gf Dnplicit FUnctiOns ss:.acveosneheieeehetiectiseaanns 23.9 TAP IMeT DCH VAthV CSsiccchccccseatis
“
9a*b*
9a°b?
6ab®
ipl eg 9a’*h?——
= 9a*b’
—2x? +0x
9a’hb’
—2x? —4x 4x+8
4x +8 0
x +8 x+2
=x°-2x+4
3 2x-3
Chapter 1: Basic Algebraic Operations
8
sald
41. x+y—z)x
@)
—y? + Oxy +Oxz + 292-2"
oe
==-12
-3
oF
+ xy — Xz
3( 2)=3-12)
—y -xytxzt2yz—-2° 2
ee wean
|
Nee ae
ae
(d) 3x=-12
xz+yz—-2°
3x
-12
xz+yz—2"
3
3
0 |
xy 2
2
+2yz-2
2
ey
aaa
5,
ciel
x-2=7 Yai x=9
x -x° +x-1 45, x+1)x' +0x° +0x? +0x-+1
6
xi +x
es
t = 2(-5)
=x? +0x’
Peiott
=x— x2
13. 3¢+5=-4
2 gy
3t =-4-5
4x
Pons
—-x+l1
=x Pea x+1
ae ie
t=-3;
;
17) 3x+7=x
a
x+1
X¥-3x=7
GMn[(R+r)—(R-r)] __ GMm[R+r-R+r]
49.
2rR
2rR
_ GMn{2r] +h
_GMm
R ar
1
(a)
Solving Equations x-3=-12 x-34+3=-12+3 x=-9
(b)
x+3=-12 x+3-3=-12-3 x=-15
7
eer
SR
_ GMmTx| KR
1.10
—2x=7
21. 6—(r=4) =2r 2r=6-r+4 2r+r=10
3r =10 10
aa
25. 0.1x-0.5(x-2)=2 x—5(x—2) = 2(10) x-5x+10=20
=20-10 —4x .
LO 4
5
Section 1.11: Formulas and Literal Equations
4x+=2(x—4) .
29. pears
8
4x—2x+8 =3(8) 2x =24-8
1.11
Formulas and Literal Equations
1.
v=v,
V=V
tat
=at
v-y a=—
33.
5.8-0.3(x-6.0) = 0.5x 0.5x =5.8-0.3x+1.8 0.5x+0.3x = 7.6
0.8x = 7:6
13.
oe;
x = 5.6666666... red
17. 41. (a)
2x+3=3+2x 2x+3=2x+3
Is an identity, since it is true for all values of x. (b) 2x-3=3-2x
21. a(M +2m)=2gm
aM +2am=2gm
Is conditional as x has one answer only. 45.
aM =2gm-2am
2.0v+ 40 =2.5(v+5.0)
M
_ 2gm-—2am a
2.0v+40 =2.5v+12.5 40-12.5=2.5v—2.0v
25.
27.5 = 0.5v Vv
N=r(A-s) N=Ar-rs
ants rane:
rs+ N= Ar rs = Ar—N
vy=55 km/h
49. 0.14 +0.06(2000 —n) -0.14n +120—-0.06n 0.14n-0.06n 0.08n
= = = =
n=
0.09(2000) 180 180-120 60 60
0.08 n=750L
|
Ar—N
r
29.
QD, = PQ,
-Q)
QO, =PQ,-PQ,
PQ, =Q,+PQ,
oO -AtPO, = Pp
Chapter 1: Basic Algebraic Operations
10
33...
L=£(4 +7) + 2x, 42x,
1.5x+2.5(34-—x) =56
L=fr,+ fr, +2x, +2x,
1.5x+85-2.5x =56
Rt = Lt,
—x = 56-85
- 2X, 42x,
—-x =-29
_ L-ar, ~ 2x, - 2x, 1
S77.
x= 29
a
_
There are 29 of the 1.5 Q resistors and (34 — 29) =5 of the 2.5 Q resistors.
2eAkk, |
d(k, +k,) Cd(k, + k,) = 2eAk,k,
Check: 29(1.5 Q)+5(2.5 Q) =56 QO
_ Cd(k, +k,) 2Ak,k, 41.
43.5 O+12.5 Q=56Q 56 Q=56 2
ip =— 7, +7, nn, +T,) =T,
Let x = the cost of the car 6 years ago. Let x + $5000 = the cost of the car model today.
x+(x+$5000) = $49 000 2x = $44 000
nT, + nT, =T, nT, =T, -nT, ny, 2 T, pee?) it 875 K—0.450(875 K) ; 0.450 _ 875 K-393.75 K : 0.450 _ 481,25K
he
0450)
Check: $22 000+($22 000+$5000) = $49 000
$22 000+$27 000 = $49 000 $49 000 = $49 000
T, =1069.444444 K T, =1070K
Let x = the number hectares of land leased for $200 per hectare. Let 140 — x = the number of hectares of land leased
VR R,+R,
45, Vi =——-
for $300 per hectare.
V(R, +R) =VR,
$200 / hectare x + $300 / hectare(140 hectares — x)
nor, 2%V, Ree
—$100 / hectare x = —$5 000
_ (12.0 V)(3.56 Q) R, ~ (3.56 6.30 V R, = 6.780952381 Q-3.56 Q
x = 50 hectares There are 50 hectares leased at $200 per hectare and (140 hectares — 50 hectares) = 90 hectares leased for
= $37 000 Ss
1.12
—$5000
~ =$100 / hectare Q)
R, =3.220952381 Q R, =3.22.9
1.
$44 000 x =———— 2 x = $22 000 The cost of the car 6 years ago was $22 000, and the cost of the today’s model is ($22 000 + 5000) = $27 000.
Applied Word Problems
Letx =the number of 1.5 Q resistors. Let 34 — x =the number of 2.5 Q resistors.
$300 per hectare. Check: $200/hectare (50 hectares) + $300/hectare
(140 hectares — (50 hectares)) = $37 000 $10 000 + $27 000 = $37 000 $37 000 = $37 000
Section 1.12: Applied Word Problems
13. Let x = the number of 18-m girders needed. Let x + 4 = the number of 15-m girders needed. (18 m)x =(15 m)\(x+ 4) (18 m)x =(15 m)x+60m
(3 m)x =60m
11
25. Let x — 30.0 s = time since the first car started moving in the race in seconds. Let x = time since the second car started the race in seconds. The distance travelled by each car will be the same at the point where the first car overtakes the second car. Distance = speed x time. 79.0 m/s(x —30.0 s) = 73.0 m/s(x)
x = 20 girders
(79.0 m/s) x —(79.0 m/s)(30.0 s) = (73.0 m/s)
There would be 20 18-m girders needed or (20 girders + 4 girders) = 24 15-m girders needed.
(79.0 m/s)x— 2370 m = (73.0 m/s)x (6.0 m/s) x= 2370 m
_ 2370 m
Check: (18 m)20 = (15 m)( 20+ 4)
6.0 m/s x=395s
360 m = 360 m
The first car will overtake the second car after 395 s. The first car travels 79 m/s x (395 s — 30 s) = 28 835 m by this point. 8 laps around the track is 4.36 km/lap. 8 laps x 1000 m/km = 34 880 m, so the first car will already be in the lead at the end of the 8th lap.
17. Let x = the length of the first pipeline in km. Let x + 2.6 km = the length of the 3 other pipelines. x+3(x+2.6 km) =35.4 km x+3x+7.8 km =35.4 km
4x = 27.6 km
Check: 79.0 m/s(395 s—30.0 s) = 73.0 m/s(395 s)
_ 27.6 km
x =6.9 km The first pipeline is 6.9 km long, and the other three pipelines are each (6.9 km + 2.6 km) = 9.5 km long.
79.0 m/s(365 s) = 73.0 m/s(395 s) 28 835 m = 28 835m 29.
Pen eer
Check: 6.9 km + 3(6.9 km + 2.6 km) = 35.4 km
(x) L of 25% antifreeze
6.9 km +3(9.5 km) =35.4 km 6.9 km + 28.5 km =35.4 km
100% Antifreeze
12.0 L radiator (needs to be filled with 50% mixture)
35.4.km =35.4 km 21. Let x = the amount of time the skier spends.on the ski lift in minutes.
Let 24 minutes —x = the amount of time the skier spends skiing down the hill in minutes. (50 m/min)x = (150 m/min)(24 min — x)
(50 m/min)x= 3600 m—(150 m/min)x
Let x = the amount in L of 25% antifreeze left in radiator Let 12.0 L—x = the amount of 100% antifreeze added in L. 0.25(x)+1.00(12.0 L—x) = 0.5(12.0 L)
0.25(x)+12.0
—0.75(x) = -6.0 L
(200 m/min) x= 3600 m
_
L-1.00(x) = 6.0 L 6.0L
3600m
~ 200 m/min
—0.75 x=8.0L There needs to be 8L of 25% antifreeze left in
x =18 min The length of the slope is 18 minutes x 50 m/minute = 900 m.
radiator, so (12.0 L — 8.0 L) = 4.0 L must be drained.
Check:
Check:
(50 m/min)18 min= (150 m/min)(24 min —18 min) 900 m = 3600 m—(150 m/min)(18 min)
0.25(8.0 L)+1.00(12.0
900 m = 3600 m—2700 m 900 m = 900 m
L—8.0 L) =0,.5(12.0 L)
2 .0L +1.00(4.0 L) = 6.0 L 2.0 L+4.0 L=6.0 L 6.0
L=6.0 L
Chapter 1: Basic Algebraic Operations
12
_12p'q° are_4p'q i,6pq’
p'q+6pq ee tee 49, 12p'q?-4
‘ Exercis: es Review 1.
(-2)4+(-5)-3=-2-5-3=-10
5.
-5-[2(-6)|+=> =-5~—|-12|+(-5) =-5-12-5=-22 = EyDoct,
9, \i6-V6E =(D-H =4-8=-4
re
2
13. (2rt?)? = (-2)?r7t?”? = 4772! “
SIGNS CVE)
53. 3x-1)3x° me crete
SNe Tr" a 8N'T? ts8T°
-2N°T™
(1)
(1)
3x° — x?
N
—6x? +11x
21, 8840 has 3 significant digits. Rounded to 2
=6x" +2x
significant digits, it is 8800.
9x —3
25. 37.3—-16.92(1.067)? =37.3-16.92(1.138489) = 37.3—19.26323388 = 18.03676612
ox—3 : 57, -3{(r+s—t)—2[(3r —2s)—(t-2s)]}
' which rounds to 18.0.
=—3{r +s -t—2[3r -2s-t+2s)]}
29. a-—3ab-—2a+ab=-2ab-a
=—3{r+s-t—2[3r-t}}
33. (2x—1\x+5) = (2x)(x) + (2x)(5) + (I(x) + (-1)(5)
=—-3{r+s—t—6r+2t]}
ities
= 2x* +10x-—x-5
le
ei Speas oe
= 2x? +9x-5 ce
Wk? —6h'kS Wk? ote erences a nik? eee 2h’k
Wk
= fy?!
Qh k
—342-2 4
= —3h’k* + hk Al. 2xy-(3z-[Sxy-(7z-6xy)}}
= 2xy —(32 —[Sxy-72z + 6xy)}} = 2xy - 32 -[llxy-7z]}}
Se
ae 2x=-9
9
ae
65. 6x-5=3(x—4) Fer Pr POE |
3x =-7 ae
= 2xy — {3z-11xy +72}
Soy CE ys =toa Ga Sash
reas
45, -3y(x—4y)? =-3y(x—4y\(x—4y)
= -3yf(x)(x)+(x(-4y)
+ (—Ay)(x) + (-4y\(—4y)]
= -3y[x? — 4xy—4xyt 16y"]
= —3y[x? —8xy +16y"] ll
-3x° y+ 24xy’ - 48y°
69. 3t-2(7-1) =5(2t+1). 34-144 2t=10r+5
5t-14=10r+5 ra
eae
:
73. (a) 60 000 000 000 bytes = 6x10" bytes
(b) 60 000 000 000 bytes = 60x10" bytes = 60 gigabytes
Chapter 1: Review Exercises
77. (a) 4.05x10" km = 40 500 000 000 000 km
13
105. 4(t+h)—2(t+hy
(b) 4.05x10° km = 40.5102 km
= 4¢+4h—-2(t+h)\(t+h)
= 40.5x10'° m
= 4t + 4h—2[(t)(t) + (A) + (AYO) + (AAD)
= 40.5 Pm
= 4t+4h—-2t? +2ht+h’]
(Note that the symbol P stands for peta, which is the
= 4t+4h—-2¢ —4ht-2h° =-2¢° —2h’ —4ht+4t+4h
SI prefix associated with the multiple 10’”.)
81. (a) 1.5x107 Bq/L =0.15 Bq/L
(b) 1.5x107' Bq/L =150x10° mBq/L 85.
109. x-(3-x)=2x-3 x-3+x=2x-3 2x-3=2x-3 The equation is valid for all values of the unknown, so the equation is an identity.
Ee
PP=7' EI
guLP
113.
d=(n-l)A
d=An-A
d+A=An n
a3:
a7.
R
ge
4x107
x
aay &
89.
8x107
117, Let 2x = the amount of oxygen produced in cm’ by the first reaction.
aE
Let x = the amount of oxygen produced in cm? by
mata
the second reaction.
any.
Let 4x = the amount of oxygen produced in cm’ by the third reaction.
_AT,-T)
H HR = AT, - AT, AT, = HR+ AT, — AR+ AT, ee” 5.25x10"° bytes = 82 0312.5 6.4x10' bytes which rounds to 8.2 x 10°. The newer computer’s memory is 8.2 x 10° larger.
2x+x+4x = 560 cm’
7x = 560 cm*
560 cm’ x=-—--~_—
3
x=80 cm The first reaction produces (2 x 80 cm’) = 160 cm? of oxygen, the second reaction produces 80 cm? of oxygen, and the third reaction produces (4 x 80 cm’)
= 320 cm’ of oxygen. Check: 160 cm? + 80 cm? + 320 cm? = 560 cm®*” 121. Let x = the time taken in hours for the crew to build
101.
R,R, _ (0.0275 2)(0.0590 Q) R+R, 0.0275 2+0.0590 Q _ 0.0016225 Q?
0.0865 Q = 0,018757225 2
which rounds to 0.0188 Q. The combined electric resistance is 0.0188 Q.
250 m of road.
The crew works at a rate of 450 m/12 h, which is
37.5 m/h. Time = distance/speed. 250 m
x = ———-_
37.5 m/h X = 6.666666667 h which rounds to 6.7 h.
Chapter 1: Basic Algebraic Operations
125. Let x = the number of litres of 0.50% grade oil used. Let 1000L — x the number of litres of 0.75% grade oil used.
0.005(x) + 0.0075(1000 L—x) = 0.0065(1000 L) 0.005(x)+ 7.5 L—0.0075(x) = 6.5 L ~0.0025(x) =-1.0 L —-1.0L —0.0025 x= 400 L v=
It will take 400 L of the 0.50% grade oil and (1000 L — 400 L) = 600 L of the 0.75% grade oil to make 1000 L of 0.65% grade oil. Check:
0.005(400 L)+0.0075(1000 L—400 L) = 0.0065(1000 L) 2L+4.5 L=6.5L 6.5
L=6.5.L
129.
P=P,+Art
P-P=Rrt
Prk
r=— Pit ote
$7625 — $6250
$6250(4.000 years) pa
ee)
25 000 r=0.055 The rate is equal to 5.500%.
On the calculator type: (7625 — 6250) / (6250x 4.000)
CHAPTER 2 GEOMETRY
2.1
Lines and Angles
29. Using Eq. (2.1),
petal alia 4.75
ZABE = 90° because it is a vertically opposite
angle to ZCBD which is also a right angle.
a= Nei esis 3,20 a=453m
ZEBD and ZDBC are acute angles (i.e.,< 90 ).
The complement of ZCBD ZCBD + ZDBE 65 +ZDBE ZDBE ZDBE 13.
= 65 is ZDBE = 90 =90 =90 -65 = 25
3.20
33.
ZBCE = 47 since those angles are alternate interior angles. ZBCD and ZBCE are supplementary angles
ZBCD + ZBCE = 180 cae
ZBCD =180 —47
ZAOB = ZAOE + ZEOB
ZBCD = 133
but ZAOE = 90 because it is vertically opposite
to ZDOF a given right angle,
37. Z1+ 22+ 2Z3=180, because Z1, 22, and 23 form a straight angle.
and ZEOB = 50 because it is vertically opposite
to ZCOF a given angle of 50’,
so ZAOB =90 +50 =140
2.2
Triangles
17. Z| is supplementary to 145°, so
Z1=180 -145 =35° Z2= Z1= 35,
i
Z3=45° since Z3 and Z5 are alternate interior angles.
Z4 is vertically opposite to 22, so
Z1, 22, and 23 make a stright
Z4= 22
angle, so
Lae 35: 21.
Z1+ 22+ Z3=180 70° +224+45 =180
Z6=90-—62 since they are complementary angles
26 =28 Z3 is an alternate-interior angle to 26, so 23 = 26
23=28 25.
ce 45
£2265
5
SAK LB ELC = 180° ZA+40 +84 =180
ZCBE = ZBAD = 44 because they are
ZA=56
corresponding angles ZDEB and ZCBE are alternate interior angles, so
ZDEB = ZCBE
ZDEB = 44 15
Chapter 2: Geometry
16
13. One leg can represent the base,
33.
z
the other leg the height.
D
Sony) 2
= 5 (3.46)(2.55)
xae
Ne
A=4.41 cm’ 17. We add the lengths of the sides to get
£A+ ZB =90
p =205+322+415
41+ 2B =90
p=942 cm
Py
4A= £1 redraw ABDC as
ee ed c=Va +b c = 13.8" +22.77
c= 26.6 mm
25. All interior angles in a triangle add to 180°
23° + ZB+90 =180
Z1+ 22 =90°
ZB =180 -—90 —23°
Lis ZR = 90
ZB = 67
Z2= 2B and AADC as Cc 2
de
AADC ~ AA'DC'
ABDC and AADC are similar.
ZLDA'C'=Ai.2
37
ZBA'D = Z between bisectors From ABA'C', and all angles in a triangle must sum to 180° B
2
(ZBA'D+ A/2)+90" =180"
ZBA'D =90° -($+4) ZBA'D=90
»
—-
{A+B
()
But AABC is a right triangle, and all angles in a triangle must sum to 180°,
soA+B=90 90
;
AAO H Re KM =15-9 KM =6 Since
aid
ZBA'D=45°
D
AMKL ~ AMNO
Lt _oM sheeginaty LM
te
6
9
py (002) 2 LM=8
Section 2.3: Quadrilaterals
41.
2(76.6)+30.6
=
BAO) H8 a1
17
cm
AAPD is
By Hero’s formula,
A= ,s(s—a)(s—b)(s—c) A= /91.9(91.9-76.6)(91.9-76.6)(91.6—30.6) A=1150 cm? since ABCP ~ AADP
45.
6.00
_ 10.0
120 5FD. PD 6PD =120-10PD
Wall
16PD =120 PD =7.50 km PC =12.0-PD PC = 4.50 km
1=PB+PA
b=vVc* —a’
1
=V4.50° +6.007 +V7.50° +10.07
1=7.50+12.5
b=5.7m
/=20.0 km 49,
2.3
Quadrilaterals
i
b, trapezoid
p=4s =4(65) =260 m
p =21+2w=2(3.7)+2(2.7)=12.8m x= 756.25 m
x=7.5m
Ass? =2.7 =7.3 mm’
y? =(1.2+6) +5.4 A=bh=3.7(2.5)=9.2 m’
x=v81.0 m y=9.0m 53.
. p=2bt+4a
Redraw ABCP as
25. The parallelogram is a rectangle.
B
29. 6.00
The diagonal always divides the rhombus into two congruent triangles. All outer sides are always equal.
1210)-2D
Chapter 2: Geometry
18
2.4
Circles ZOAB + OBA+ ZAOB =180
1.
ZOAB+90 +72 =180° ZOAB =18
If width increases by 1500 mm and length decreases by 4500 mm the dimensions will be equal (a square).
(a) AD is a secant line.
w+1500 = 4w-— 4500
(b) AF is a tangent line.
6000 = 3w
c = 2ar = 2m(275) =1730 cm
w = 2000 mm 4w = 8000 mm
A= mr? = (0.0952) = 0.0285 km?
cans 1.74 km
1.46 km
. ZCBT =90 —ZABC =90 -65 =25
. BC =2(60°)=120
Eat ae
2.27 km
d=V2.27 +1.86°
d =2.934706 km For the right triangle,
A= bh
25.
022.5° =022.5° ( ies = 0,393 rad 180
29.
Perimeter = =(2ar)+2r=
CRE All are on the same diameter. 37,
A= =(2.27)(1.86)
41.
C = 2ar = 22(6375) = 40 060 km c=112
A=2.1111 km’
c=2d
For obtuse triangle,
d=c/n
ie 1.464+1.74+d
=112/z
2 _ 1.46+1.74+2.934706
—
2
s =3.06735 km
+2r
= 35.7cm 45.
A of room = A of rectangle += 4 of circle
A=,}s(s—1.46)(s—d)(s-1.74)
A=8100(12 000) +=1 (320)
gq.
A=9,7x10’ mm?
[3:96735(3.06735 -146)(3.06735 - 2.934706) (3.06735 —1.74)
A=0.931707 km’ Paessadeiatorsi
= Sum of areas of two triangles
A=2.1111 km’ +0.931707 km? A=3.04 km?
49. s=6r
:
s= a
450
s = 630km
um]
Section 2.6: Solid Geometric Figures '
2.5 1.
\
V =
Measurement of Irregular Areas
:
3
V =(7.15 cm)
The use of smaller intervals improves the
Vis 366m
approximation since the total omitted area or the
total extra area is smaller. Also, since the number of intervals would be 10 (an even number) Simpson's
9%
Rule could be employed to achieve a more accurate estimate.
2:
: Avay = s[¥o + 2Y +2Y2 tot 2Yp1 + Yn |
V =2.83 m 13.
Avan = =910.0+2(6.4)+2(7.4)+2(7.0) :
Avay =
0
+2, + 2Yy +--+ 2p
V = 250 293 cm?
V = 215x100 «cm"
+ Yq |
1(4
7. v=3( 2) ere
Avan => [0.6+2(2.2)+ 2(4.7)+2(3.1)
4
+2(3.6)+2(1.6) +2(2.2)+2(1.5)+0.8] Ava = 9-8 km?
de 2n(2) a ( a
h
AN
By Ay oale +2y,+2y, +..+2y,, +),|
V = 0.14969 cm? Ve015 om
AS. = =2f0+2(5.2)+2(14.1)+2(19.9)+2(22.0)
4
+2(23.4)+2(23.6)+2(22.5)42(17.9),
21: Y= jar
+2(16.5)+2(13.5)+2(9.1)+0]
out
Aq, = 375.4 km? = 380 km? . ane =U +2y,+2y, So
PA ae +y,|
sg
V =—7—
3.458
;
I
V =—nd°
= 25%[0.04+2(1.732)+2(2.000)+2(1.732)+0.0] Aja = 2.73 cm? This value is less than 3.14 cm? because all of the
trapezoids are inscribed.
can
Pass.
h
17.
3 Bh
V =—(76 cm)? (130 cm) 3
Aap = 84.4 = 84 m’ to two significant digits 9,
Ve
;
4 +2(6.1)+2(5.2)+2(5.0)+2(5.1)+0.0]
h[Vo
Ve 4 me 3 Vas hl(0.877 m) 3
a
ys,
Aina
4n(2r)
A original
Arr?
A pnal . 16zr° A, saint
2.6
Solid Geometric Figures V, a lwh
V, = (2/)(w)(2A) V, = 4lwh
V, = 4Y, The volume increases by a factor of 4.
4a if:
4
Ana Aooriginal
29. V=arh ae
n(2) h
: em bh A= 5b(asinC) = absinC (b) The area of the tract is
= 5(31.96 m)(47.25 m)sin 64.09"
Sat
A= 679.2 m’
Let x = length of window through which sun does
73
not shine.
goes
0.75 0.6
x = 0.6 tan 65 —0.75 (50m
x = 0.53670 m
0 ae
To find the fraction f of the window shaded, fa 0.53670 m
cos 42.5 = sake be
0.96 m
sae
ioe
l
A=lw
f = 0.55907
85.
I. Line of sight perpendicular to end of span
ss d = distance from helicopter to end of span tan 2.2
e230
any
_ 230m ~ tan 2.2°
. 1.85 ap hse eam LBS tan 28.3 6=90.0° —28.3° 0=61.7
d = 5987.1m d= 6.0 km
Chapter 4: The Trigonometric Functions
II. Line of sight perpendicular to middle of span
etn
ey
d
d = distance from helicopter to middle of span
tanl.l =
230 m 2
Each of the six triangles in the hexagon has 89.
a central angle Bal or 60. Radii drawn from the center of the pentagon through adjacent vertices of the pentagon form an equilateral triangle with sides 45.0 mm.
22.5 mm
030
Each of the five triangles in the pentagon has a
central angle rl or 72. Radii drawn from the center of the pentagon through adjacent vertices of the pentagon form an isosceles triangle with
base 45.0 mm. A perpendicular bisector from the center of the pentagon to the base of this isosceles
h ees)
tan30 h=38.971 mm The area of each triangle in the pentagon is
A= bh A= (45.0 mm)(38.971 mm) A = 876.85 mm?
triangle forms a right triangle with height / and base 22.5 mm. The central angle of this right
are 20 hexagons on the ball, so the surface
triangle is 5 or 36. Thus,
area of all the hexagons is
es
Ipee h
$3225 tan36 h = 30.969 mm The area of each triangle in the pentagon is
A=~bh = =(45.0 mm)(30.969 mm) A= 696.79 mm? Each pentagon has five triangles, and there
Each hexagon has six triangles, and there
hexagons
= (20)(6)(876.85 mm’)
hexagons
= 105222 mm? Total surface area of ball
A= 41 808 mm’ +105 222 mm?” A=147 000 mm? Since this is the area of a flat surface it approximates the area of the spherical soccer
ball which is given by
A=4ar°
are 12 pentagons on the ball, so the surface area of all the pentagons is
A vcnagons = (12)(5)(696.79 mm”) A pentagons = 41808 mm?
A=155 000 mm? The flat surface approximation does not account for the curved surface of the soccer ball.
Chapter 4: Review Exercises
93.
45
20+90 +22.5 =180 20= 67,5 6= 33.75
tan33.75 = al
5.0 cm
d =5.0 cm-tan33.75 d =3.3409 cm
1=5.0 cm+65.0 cm +3.3409 cm L=/33 mM
CHAPTER 5
SYSTEMS OF LINEAR EQUATIONS; DETERMINANTS 2.4y-4.5(2.0)
Linear Equations x-242-4w=7 6 l ee, : ; x= 5 y+z-4w=7 is linear, since all terms contain
=-3.0
2.4y—9.0 =-3.0 2.4y = 6.0 y=25
i,
-30x+5y=1 6x-3y =-4
only one variable to the first power (or are constant).
If the values x =
and y= 2
5Sx+2y=1
satisfy both equations, they are a solution.
The coordinates of the point (0.2, —1)
-30(1}+5(2)=-10+10=041 6(1}-3(2)=2-6=-4
do not satisfy the equation since
5(0.2)+2(-1)=1-2=-1#1
The first equation is not satisfied, therefore the
The coordinates of the point (1, —2)
given values are not a solution.
do satisfy the equation since
5(1)+2(-2)=5-4=1
21.
s—7t=-3.2
2s+t=2.5
—5x+6y = 60
If the values s =—1.1 and t = 0.3 satisfy both equations, they are a solution.
Ifx =-10
~1,1-7(0.3) =-1.1-2.1=-3.2 2(-1.1)+0.3 =-2.24+0.3=-1.9 42.5 The second equation is not satisfied, so they are not a solution.
25. —5(8)+6y = 60
If x = —2 is a root,
6y = 60+40
3(-2)+b=0
6y =100
b=6 29.
2.4y-4.5x =-3.0 Ifx = -0.4
2.4y —4.5(-0.4) = -3.0 2.4y+1.8=-3.0
2.4y=-4.8 y=-2.0
Ifx = 2:0
3x+b=0
If F, = 45 N and F, = 28 N are solutions, then both equations should be satisfied.
0.80F, + 0.50F, = 0.80(45) +0.50(28) =36+14 =50 0.60F, -0.87F, =0.60(45)—0.87 (28) = 27 -— 24.36 = 2.64 #12 The second equation is not satisfied, so the given forces are not a solution.
Section 5.2: Graphs of Linear Functions
5.2
47
Since the slope is 1/2, from this point go right
Graphs of Linear Functions
2 units and up | unit, and plot a second point.
Sketch a line passing through these two points.
1. Bytaking (x,, y,) =(3, -1) and (x,, y,)=(-1, -2) pre
x,
—%,
pass ~ 3-(-1) ihe
-1+2
=—
3+1
1
4
The line rises 1 unit for each 4 unitsin going from
left to right. 5.
: Bytaking (x,, y,) =(3, 8) and (x, y,) =(1, 0) Bas
21. y=-2x+l1, compare toy=mx+b m=—2,b=1
Plot the y-intercept point (0, 1).
mee
x, —%;
ph 9.
8-0 =———
=
Since the slope is— 2/1, from this point go right
8 —
OES:
= 4
=
1 unit and down 2 units, and plota second point. Sketch a line passing through these two points.
Bytaking (x,, y,)=(-2, -5) and (x, »,) =(5, -3) ae Va
x, —%
-5-(-3) m= -2-5
-5+3 2 == ae NT
13. m=2,b=-1
Plot the y-intercept point (0, -1). Since the slope is 2/1, from this point go | unit to the right and up 2 units, and plot a second point.
Sketch a line passing through these two points.
25.
S5x-2y =40 2y =5x-40
y =>x—20, compare to y= mx+b m= 4 b=-20
Plot the y-intercept point (0, - 20). Since the slopeis 5/2, from this point go right 2 units and up 5S units, and plot a second point.
Sketch a line passing through these two points.
17.
m=—, (0,0 (0,0) m=, 1
Plot the y-intercept point (0, 0).
Chapter 5: Systems of Linear Equations; Determinants
48
29.
Therefore the point (—1, 3) should lie on the line.
x+2y=4
For y-int, set x=0 0+2y=4 2y=4
y=2
y-int is (0, 2)
For x-int, set y=0 x+0=4
x=4 x-int is (4, 0)
Plot the x-intercept point (4, 0) and the y-intercept point (0, 2). Sketch a line passing through these two points.
37. kx-2y=9 2y=kx-9
A third point is found as a check. Letx=2
fem) iy easy
2+2y=4
compare to y= mx+b
k
m ae but slope = 3, so
2y=2 y=l.
ve2
Therefore the point (2, 1) should lie on the line.
k=6 41.
47,-5I, =2 51, = 41, -2
Plot the /, -intercept point (0, -+). 333
Since the slopeis {, from this point go right
y=3x+6
1 units and up < units, and plot a second point.
For y-int, set x =0
Sketch a linepassing through these two points.
y=0+6 y=6
y-int is (0, 6)
For x-int, set y =0
0=3x+6 x=-2
x-int is (—2, 0)
Plot the x-intercept point (—2,0) and the
y-intercept point (0,6). Sketch a line passing through these two points. A third point is found as a check. Let x =-1 y=3(-1)+6
y=3
Section 5.3: Solving Systems of Two Linear Equations in Two Unknowns Graphically
5.3.
1.
Solving Systems of Two Linear Equations in Two Unknowns Graphically Let x = 0 to find the y-int 5y=10
y=2_
y-intis (0, 2)
Let y = 0 to find the x-int
2x =10
x=5
The slope of the second line is —1/3 and the
y-intercept is 1.
From the graph, the point of intersection is (3, 0). Therefore, the solution of the system of equations is
x=3.0,
For the line 2x+5y =10
49
y=0.0.
Check:
y=2x-6
y=-zx4l
0.0 = 2(3.0)-6 0.0 = 0.0
0.0 =-+(3.0)+1 0.0 = 0.0
x-int is (5, 0)
Let x = 1 to find a third point
2(1)+5y =10 Sy =8
== A third point is (1,f) For the line 3x+
y=6
Let x = 0 to find the y-int
y=6
y-int is (0, 6)
Let y = 0 to find the x-int 3x =6
x=2
x-int is (2, 0)
Let x = 1 to find a third point
For line 2x -—Sy = 10 Let x = 0 to find the y-int
-—5y=10
y= 2° y-int is (0, —2)
3(I)+y =6 y=3 A third point is (1, 3) From the graph the solution is approximately
x=1.5, y=1.4 Checking both equations, 2x+5y=10
3x+ y=6
2(1.5)+5(1.4) =10 10=10
3(1.5)+1.4=6 5.9=6
Let
y=0 to find the x-int
2x =10
x=5
x-int is (5, 0)
Let x = 2.5 to find a third point
2(2.5)-—Sy =10 —Sy=5
y=-l A third point is (2.5, -1) For line 3x+4y = -12
Let x = 0 to find the y-int
4y=-12
y=-3 (1,3)
point of intersection (1.5,1.4)
Let y = 0 to find the x-int 3x =-12
x=-4 -X
y-int is (0, -3)
x-int is (-4, 0)
Let x = —2 to find a third point
3(-2) + 4y =-12
5.
y=2x-6and y=-7x+1 The slope of the first line is 2, and the y-intercept is —6.
4y=-6
y=-,; s) A third point is (-2, re4 H]
Chapter 5: Systems of Linear Equations; Determinants
50
From the graph the solution is approximately
(-0.9, -2.3) x=-0.9,
17. For the line —27,+27, =7 Let 7, = 0 to find the r, -int
y=-2.3
ffa
mh=5
Checking both equations, 2x-S5y=10
3(-0.9)+4(—2.3) =-12
9.7 =10
r-intis (0, uy
Let r, = 0 to find the ,-int
3x+4y=~12
2(-0.9) —5(-2.3)=10
caw
—2r =7
-11.9=~12
r=-4
4-intis (-4, 0)
Let 7, =1 to find a third point
—2(1)+2r, =7
o)
=> A third point is (1,P
For the line 47, -27, =1 Let 7, = 0 to find the , -int —2r, =1 nad
hens
(-0.9, -2.3)
1
r,-int is (0, -;)
Let r, = 0 to find the y,-int 13.
y=-x+3
and
4r =1
y=-2x+3
r=+
The slope of the first line is —1, and the y-intercept is 3. The slope of the second line is — 2, and the
y-intercept is 3.
Let 7, =1 to find a third point 4(1)- 27, =1 —2r, =-3
From the graph, the point of intersection is (0, 3).
r, =; A third point is (1,a
Therefore, the solution of the system of equations is x=0,
1-intis (+, 0)
From the graph the solution is
y=3
approximately (4, 7.5)
Check
7, = 4.0, 7, =7.5
y=-x+3
y=-2x4+3
3=0+3
3=0+3
3=3
3=3
Checking both equations, 2h + ln ay —2(4.0) + 2(7.5) =7 7.0=7 r2
(0, 7/2)
4r 27, =1 4(4.0)-2(7.5) =1 1.0=1
Section 5.3: Solving Systems of Two Linear Equations in Two Unknowns Graphically 21. x=4y+2
and
3y=2x4+3
_x-2
gar
51
Saas)
4
ed
3
On a graphing calculator let Avis
x-2
andy, =
2x+3
Using the intersect feature, the point of
intersection is (—3.6, -1.4), and the
33.
0.87, -0.67, =12
solution of the system of equations is
and
0.67, + 0.87, = 68
0.87, —12 rs 0.6 On a graphing calculator use
T, =
x = -3.600 y =-1.400
0.8
x=T, andy =T, and let y, == 0.8x-12 =~ and y, — 68-0,6 =
Using the intersect feature, the point of
intersection is (50, 47). The tensions (to the nearest | N) are
25. x-Sy=10
and
= 2x-10y=20
ex=10
T,
=50N
T,
=47N
ne
Les
seu:
On a graphing calculator let x-10
y=
and y=
x-10 Intersection #S50.4
From the graph the lines are the same.
120 PE47.2
The system is dependent.
1
SHE
-3
13
Let x = mass of Alloy 1 (70% lead, 30% zinc) Let y = mass of Alloy 2 (40% lead, 60% zinc)
x+y=120
and
=0.7x+0.4y =0.5(120)
y=-x+120
y=—-7xt150
The slope of the first line is -1, and the
y-intercept is 120.
ZA 29. 5x-y=3 ane
and
4x=2y-3 ae 4 aa
The slope of the second line is —7/ 4, and the
y-intercept is 150. From the graph, the point of intersection is
On a graphing calculator let
approximately (40,80).
y,
Therefore, the solution of the system of equations is
=5x-3 andy, =2x+1.5
Using the intersect feature, the point of
x = 40 kg, mass of Alloy |
intersection is (1.5, 4.5), and the solution
y = 80 kg, mass of Alloy 2
to the system of equations is x =1.500
y =4.500
Check: x+y=120
0.7x+0.4y = 60
Chapter 5: Systems of Linear Equations; Determinants
52 80+ 40 =120
0.7(40) + 0.4(80) = 60
120 = 120
60 = 60
2x-(-x-5)=2
substitute y from (A) into (B)
pee,
c= 1 y =-(-1)-5
Y
substitute —1 for x into (A)
yo The solution to the system is x=-l,
13.
y=-4
33x+2y =34 yo 34-33x
5.4
40y =9x+11 40y—-9x=11
Solving Systems of Two Linear Equations in Two
Algebraically
Unknowns
2
680-—660x —9x =11
Note to students: For all questions, substitution of the
—669x =—669
solutions into both equations serves as a check. 1.
x=1
x-3y =6 x=3y+6(A)
2x-3y =3
y= aD ,
(B)
2(3y+6)-3y=3 6y+12—-3y =3
The solution to the system is gm aie: ae
17.
2x-3y=4
ales ; x =3(-3)+6 substitute —3 for y into(A)
gles
+t:
2x-3y= 4
copie wv UVsee x=y+3 x-2y=5
(y+3)-2y=5
= A _ 4y =8
Equation (A) Equation (B)
y=-2 2x +(-2)=-4
substitute x from (A) into (B)
oo
yn?
ad
The solution to the system is substitute —2 fory into (A)
.
The solution to the system is = i
Soe 9.
=—2
2x-y=2
ar
Aas
21, v+2t =7 ne
Equation (A)
ane
Equation (B)
If we subtract 2x Eq. (A) — Eq. (B) 2v+4t=14
x+y=-5
y=-x-5
substitute —2 for y into (B)
2x=—
—y=2
x=-~2+3
Equation (A)
2x+y=-4 Equation (B) If we subtract Eq. (A) Eq. (B)
The solution to the system is
5,
substitute | for x into (A)
A
substitute x from (A) into (B)
aie oa
le ear
Equation (B)
=11 substitute y from (A) into (B)
a
:
Equation)
Equation (A)
ne
Equation (B) The system of equations is inconsistent.
Section 5.4: Solving Systems of Two Linear Equations in Two Unknowns Algebraically
25.
2x-y=5.
Equation (A)
6x+2y=-5
Equation (B)
37. 0.3x-0.7y =0.4
4x-2y=
+
Equation (B)
If we subtract 2x Eq. (A)-—3x Eq. (B) —-
z 5
multiply every term by 10
2x+5y=7
6x+2y=-5
eines”
6x-l4y=
8
6x+15y=
21
-29y =-13
substitute + for x into (A)
Vis
1
3x-7 (28)=4
The solution to the system is
3x =
x=, y=-4
29.
Equation (A)
0.2x+0.5y=0.7
10
Equation (A)
20x-25y=7
Equation (B)
The solution to the system is 13
X= 359 Y = 35
4T-
75x +50y =55 +
TA5x
V.+V,=15 V, =15-V,
40x-S50y=14
= 69
V-V, =3
V,-(15-V,) =3 2V, =18 V=9
substitute = for x into (A)
V,=15-—9
45. Equation q
5B=22+7A
(A (A)
_
y=2x+4
substitute A from
ee | Eo 44
Let x = number of regular email messages x+y=79
Equation (B)
x+(2x+4)=79
(A) into (B)
eB 44
Equation (A)
Equation (B)
substitute y from (B) into (A)
3x =75
x=25
regular messages
y =2(25)+4 substitute 25 for x into (B)
44 44 _325B=975 B=3
y=54
49, substitute 3 for B into (A)
A=-l The solution to the system is
B=3
substitute 9 for V, into (A)
Let y = number of spam messages
220+105 bs 968+7
A=-l,
substitute V, from (A) into (B)
V.=9V,V,=6V
44A=1-15B 1-15B A= rh
A= —
Equation (B)
The solution to the system is
X=5,Y=3
Af oe
Equation (A)
V, =6
The solution to the system is
spore
substitute = for y into (A)
wae = bal
x=
15x+10y=11
If we add 5x Eq. (A) +2 Eq. (B)
33.
53
multiply every term by 10
3x-7Ty=4
If we add 2x Eq. (A) + Eq. (B)
|
spam messages
Let 7, = time of flight for rocket 1 Let t, = time of light for heat-seeking rocket 2 The rockets will meet at the same distance travelled by both, and distance is velocity x time,
Chapter 5: Systems of Linear Equations; Determinants
54
Ls
5.5 Solving Systems of Two Linear
Eauation (A)
na on
The time elapsed by the
e ° Equations in Two Unknowns by
first rocket will be larger
Determinants
1 =
2
t,=t,+12 ss Steere
7200 = 3604,
u
Equation (B) : eae ee on re
LD
t,=20s
time elapsed for heat-seeking rocket 2
t, =20+12
substitute 20 for¢, into (B)
t,=32s
time elapsed for rocket |
53. Let x = windmill power capacity (in kW)
Note to students: In all questions where solving a system of equations is required, substitution of the solutions into
both equations serves as a check. 4
-6
| 3) 7. J=4(17)-3(-6) =68+18=86
5
| i :=(2)(0)-(@)(4)=2-12=-10
Let y = gas generator power capacity (in kW) Energy produced = power x time
8
Ina 10-day period, there are 240 h. For the first 10-day period:
9.
(0.450x) 240+ (240) = 3010
-10
| ie
|=(8)(4)-(0)(-10)=32-0=32
0.75
108x+240y =3010
-1.32
he ae |=0.75(.18)-(015)
a
Equation (A)
For the second 10-day period:
(—1.32) = 0.885 + 0.198 = 1.083 17. x+2y=5
(0.720x) 240+ (240-60) = 2900
Pigel
172.8x+180y =2900 3010-108x 172.8x-+-180{ =) = 2900
Equation (B) oa | _|l_ 2) $(-2)-1(2) _ -12 |
substitute y from (A) into (B)
5
Ree! A ¥ 1(-2) -1(2) a
172.8x +2257.5 81x = 2900 91.8x = 642.5
i
x=7.00 kW substitute 7.00
Nea Ter16~ aoeEcoS ianeuy
for x into (A)
1
_ 3010—108(7.00)
-
2
—4
ee
240
y=9.39 kW
57.
—4 a
21.
Write both equations in standard form.
The windmill power capacity is 7.00 kW, and
12t+9y=14
the gas generator capacity is 9.39 kW.
6t-—7y =-16
14
ax+y=c
cre
TS aed In order to create a unique solution,
the
9
:
14-7) (169)
46
THe 29, 1A eG gas | 6 *
lines must have different slopes. Putting both
equations into slope-intercept form,
y=-axt+c y=-bx+d
has slope -a hasslope —b
To make the slopes different, a # b.
b
‘
LPS. 18) g 12-16) b | meee
eae mhee
ee
Section 5.5: Solving Systems of Two Linear Equations in Two Unknowns by Determinants
25. Rewrite both equations in standard form. 2x-3y=4
37.
Ifa=kb,
55
c=kd
‘ ix ‘ 4= kb(d) —kd(b) = kbd -kbd =0
mon isoie
Ai =3
41. x+y=144 0.250x-+0.375y = 44.8
Be eee eee) Ae 8) 4 ee Nea eS iS ee 24
ee
Wipes B-2)-34)Cope. Gs
~ 0375-0.250 ae | | Ce 0.250 0.375
16 8
Dard
29. 40s—30t = 60 20s — 40t = -50
Sagar
|
-50 BH
740 30) oes
*
573900:
39.
~ -1000
10
60(—40) — (-50)(-30)
|
40-40) - 20(-30)
a,
A
pee aL, 0.125 1 144 i | 0.250 44.8] _ 1(44.8)—0.250(144)
want
Hens e! |
0125
0.250 0.375
fs
_ 880 _ap4ar
45. x=number of phones y = number of detectors
Ct a [20-50] _ 40(-50)-20(60) ~1000 ~ {40 -30| — i 4 -3200 16
x+y =320 110x+160y = 40 700 21 330 _ 320(160)—40700 ns| 40700 160 | ira aad nee We eR Lnroa
|
| 110 160 |
)
~ 1000 5
33.
14 L448. 037 | _ 144(0.375)-44.8(1)
10500
sey
Write both equations in standard form.
hier =210
8.4x+1.2y =-10.8 3.5x+4.8y =-12.9
ese al110 40700 | _ 40700 -110(320)
“108 _|-12.9
GA
3.5
112
FS bad RED] Sng
4.8} -10.8(4.8)—(—12.9)(1.2)
50
4.8 49.
‘i
_ 2.5 -12.9| Cae
3.5 4.8 ~70.56 _
Let ¢, = time taken by drug boat
Let t, = time taken by Coast Guard
Ae
8.4 -10.8
36.12
| 110 160 |
Ss
12) > 8.4(4.8)—35(1.2)
Bs 36.36 aeaet
AGG
SS RLS SA
8.4(-12.9)-3.5(-10.8) ee
36.12
24 min = 24 min(= A) AU We know the drug boat had a 0.40 h head start
t, =t, +0.40 t,-t, =0.40
Chapter 5: Systems of Linear Equations; Determinants
56 1
Remember d = vt, and the total distance travelled
Deut)
(2) (3)
63t, —75t, =0
(4). Sx+6y 0.4
(5)
cy
rae
|eres | -75—(-63)
-12
~
34 =15 1
z=2
-x+2y+3z=-l -3x-3y+ z=0
=2 Subtract(1)-(3)
—-1
sgl
(1) by3 multiply
6x+9y+3z=6
(2)
—x+2y+3z=—-1
(6)
xtTy = =7
subtract
04
t sieclianaeynerrs: Ot
|ae
| =12
63-75
2
Be
9)
poe 5.6 Solving Systems of Three Linear ;
2x+3y+
by each boat is the same 63, = 75t,
5x+5y=5
(4)
5x+6y=2
(8)
Vane Ix+7(-3)=7
multiply (6) by 5/7
subtract
sey
Equations in Three Unknowns s
Substitute
ee
TiS
Algebraically
edo
We
Note to students: In all questions where solving a system
of equations is required, substitution of the solutions into all three equations serves as a check.
(9) -3(4)-3(-3)+z=0
l
The solution is x = 4, y=-3, z=3.
@
4xt+ y+3z=1
(2)
2x—-2y+6z=12
(3)
-6x+3y+12z=~-14
(4)
8x+2y+6z=2
2x-2y+6z=12
(2)
(5)
10x
(6)
12x+3y+9z =3
(3)
-6x+3y+12z=-14
(7)
18x
—32=17
(8)
72x
65) +- 10x (9)
82x
z=
9%
(1)
2x—-2y+3z= 5
(1) multiplied by 2
(2)
2x+
add
(3)
4x-— y-—3z=
+12z=14
y-—2z=-1
0
(4)
6x—5z=—1
subtract
(5)
4x+2y—4z=-2
multiply (2) by2
(I)
2x-2y+3z= 5
add
-—12z=68
(7) multiplied by 4
(6)
6x— z=
+12z=14
add
(4)
6x—5z=-—1 47=4
substituting
(7)
= 82
18(1)-32=17
add (2) and (3)
3 _ subtract
Fd | x =] into (7)
—3z=-]1
6x— 1=
substitute | forz into (6)
Commas
\°
Za
ames,
(8) 2(3)+ y—2(l)=—1
substitute > forx, and | for z into (2)
(12)
Wee
4()+y+3(4}=1
;
(1) multiplied by 3
x=] a)
Substitute 4 for x, and ~3 fory into (3)
:
substitute Seiad keer)
styh=-3
4+y+l=1
y=-4 The solution is x =1, y =—4, z =e
1
re The solution isx=+, y=—, z=1.
Section 5.6: Solving Systems of Three Linear Equations in Three Unknowns Algebraically
13. (1)
10x +15y —25z =35
(2)
40x -30y —20z =10
(3)
l6x-— 2y+
(4) (2) (5)
20x+30y—50z=70 multiply (1) by 2 40x-30y-20z=10 add 60x — 70z = 80
57
(8) (9)
22B + 26C = 48 11B+13C =24
divide (8) by 2
(10)
55B +44C = 99
multiply (6) by 11
(11)
55B +65C =120
multiply (9) by 5, subtract from (10)
8z=6
~21C ==21
(6) (2)
240x-30y+120z =90 40x-30y- 20z=10
multiply (3) by 15 subtract
(7)
200x + 140z = 80
(8)
120x —140z = 160 multiply (5) by 2,
C=1
(12)
substitute 1 for C into (6)
5B =5
then add to (7)
(9)
5B+4(1) =9 B=1
320x= 240 RE
(13)
substitute 1 for C
-—A+8()+6(1) =12
and B into (3)
eae
Az=2 (10)
60( :)—70z =80
substitute 5 for x into (5)
The solution is A= 2,
my
Z=>5
substitute : for x,and -5 forz into (3)
12-2y-4=6 —2y =-2 y=l
21. (1) 0.707F, — 0.800F, =0 (2) 0.707F,+0.600F,FF, =10.0 (3) 3.00F, —3.00F; = 20.0
(4)
-1.400F,+
(5)
-4.200F,+
(3) (6)
Ax + By +Cz=D
(1)
2A+4B+4C =12
(2)
3A-—2B+8C =12
(3)
—-A+8B+6C =12
(4)
-2A+16B+12C =24
(1)
2A+
4B+
4C=12
(5)
20B + 16C = 36
(6)
5B+4C =9
he
F, =—10.0 Subtract (1)-@) 3F, =-30.0 multiply (4) by i)
The solution is x =3, y=l,z =e!
17.
C=1.
2x+y+z=12
—70z = 35
(11) 16(3)-2y+8(-5] =6
B=1,
(7)
3.00F, -3.00F,=20.0 add -1.200F, =-10.0 F, = 8.33 3.00(8.33) —3.00F; = 20.0
substitute 8.33 for F, into (3)
—3.00F, = —-5.00 F, = 1.67
multiply (3) by 2 add
(9)
0.707F, — 0.800(8.33) = 0
substitute 8 33 for F, into (1)
divide (5) by 4
0.707F, = 6.67 (7) -34+24B+18C =36 (2)
3A-
2B+
8C=12
multiply (3) by 3 add
F =9.43
The solution is F, = 9.43 N, F, =8.33 N,
F, =1.67 N.
Chapter 5: Systems of Linear Equations; Determinants
58
25. O=at?+bt? +ct
(1) (2) (3) (4) (2) (5)
1.00a+1.00b +1.00c 27.0a+9.00b +3.00c 125a+25.0b+5.00c 3.00a+3.006 +3.00c 27.0a+9.00b +3.00c —24.0a—6.00b
=19.0 = 30.9 =19.8 =57.0 = 30.9 = 26.1
(3) 125a+25.0b+5.00c =19.8 (7) —120a— 20.06 = 75.2 (8)
120a +30.0b = -130.5
(9)
Note to students: In all questions where solving a system of equations is required, substitution of the solutions into
all equations serves as a check. whys 1.
~24.0a =-7.08 a =0.295
by —5, add to (7)
(2) (3)
(5)
x-2y-
for b into (5)
This is the same determinant as that of Example 1. Interchanging a single pair of rows alters the
determinant in sign only.
b =—5.53, c = 24.2.
go
Sites
3x-6y—-9z =6
(3)
-3x+5y+4z=0
i 7) (8)
—y-5z=6 a y+5z=-6
(5)
y+5z=-6
add
— subtract
The system is dependent, there are an
Were,
di tke, eh tho et RO) eared > (hee ogee) Sree
0.1,-0.2. 13.
|-0.5 2.
es. divide (7) by -1
0=0
0} 0.1
0.8
2]
Substituting intoEq. Eq.(1),(1 ubstituting into x=-10
A possible solution is x =-10, y=-6, z=0
Qi
] oFOS
= 0.2+0.16+0-—0-0.032 —0.2 = 0.128 17,
x+y+z=2 x
--z=l
moa
el dat
oe
One possible solution, if we letz = 0,
x-2(-6)-0=2
.-02
1 0.4|-0.5
infinite number of solutions. y =-6 from Eq. (8) or Eq. (5).
49
=—40+0+99—0—(-8)—(-13=5)202
divide (4) by 2 multiply (1) by 3
Leite.
Ae a ares = 280 + 72 + (-36) — (168) — (-32) -(-135) = 651 9.
4z=0
(6)
-l
= —38
3z=2
y+5z=-6
5|2
substitute — 5.53
x-4y-13z=14 -3x+Sy+
-1
octet
= —2(5)(5) + 3(4)(2) + (-DA)(-D) - 26) (-1)-(-I(4)(-2) - SQ)
6 =0.2950 —5.53t? + 24.21 29. (1)
ealea |ia
=—50+24+1+10-—8-15
c = 24,235 The solution is a = 0.295,
ie
substitute a and b into (1)
0.295 —5.53+¢ =19.0
Sauer
2
multiply (5)
10.06 =—55.3 b=-5,53 ~24.0a—6.00(-5.53) = 26.1
(10)
multiply (1) by 3
subtract
multiply (1) by 5 subtract
(6) 5.00a+5.00b+5.00c = 95.0
Solving Systems of Three Linear Equations in Three Unknowns by Determinants
5.7
Rae Fg : ¥:
x=
:
saat es ie le aS
Orel
_ 0+(-1)+1-0-(-2)-0 ‘i 0+(-1)+1-0-(-1)-0
a
tiaa
1
Section 5.7: Solving Systems of Three Linear Equations in Three Unknowns by Determinants
ea itee
ai 2 aeOn aeot
“ha Re
Janay 4 bre
5x—5y+2z=5
_ 0+(-2)+1-1-(-1)-0
1
lps
A oP Fa
Leoni.
-1
Gre) 7A0. Col
oy] Yat X=
©
13 51025
3 -7
-7
33
6303
Ce
1 4 Fae So eo!
Ee
_ 36+ (-210)+(-15)—45—(-180)-(-14) 18 +(—210)+(—45) 45—(—90) (42)
Solution: x =2, y=-1, z=1.
5/+6w-3h=
Poser Seth
Ree
oie bollt
21.
59
25, 3x-7y+3z=6
aa
sax
_
ge a
a
-150
15
6
4] —7Tw-2h=-3
3.6
33 6
ral oo
a Th=
bb 36
7
6
Sots Gy
ma
Dian ~150
Mitial ee Came A in la) 7 Be
©
BOTS,
3
ii eShat
et
sel
ne
15007049
2944(-12)+9321=C10)-126 45 ++(-36) (-36) ++(-12) —63—(—-10) 245 (-12) -63 —-(—10) —(-168 —(—168)
“ Ahxiaie sa
Plo ik Te
5 -5 5/5 -5 a 45 +(-35)+(-90)-90—(-15) —(—105) = ae ne ELSON 3
z=+
eg was 6 A babe’ (4b)
=(4- x") (16 +.4x° 42°)
-= where a,b,c #0
=(2+x)(2-x)(16+4x? +x*)
Riera A
em
eee BRE) D(D-d)(D’? +Dd+d’
=
;
xi +x ytx2y? + xy? + y! 33.
ee.
x-—y)x°
3) 4da4
‘
oleeeaeoad
(x+3)(x-2)
(x+3)
x +x-6
71
x‘y
(R-1 st ae
xiy-xy? TE
(R=1(R+1)
xy
2(R-1)
Ga)
oe
Rai
R #1 where
xy? —x?y?
21. eae
xa
2y Sy Oy, Ay Brox
xy — xy! ;
ay
6y by"
iS”
A=9xy :
(x°-y*) +(x pax txytx+x ry+y ie
yer?
25
;
= =(=-3)[x' tayay tay y')
(x -y'|+ x-yla=xtxytxty+xy try tay ty
x) -y' =(x-y)(x° tx ytxty try try ty t+y*)
_ 2x +2x
A
aia A
2x(x? +1)
x1
(x? +1)(x? -1) +1) 2x(x? ieaG
;
37. n+1=(n+l)(n? -n+1)
Ce.
n = 1, this becomes For
Pb+1=(1+1)(1 -1+1) 29, bla
2 = 2-1 which is prime
Oa ean
For n= 2,3,4,...
n+1=(n+1)\(n? -n+1 f (
~ means that(”+1) is a factor of n +1son’ +1 is not prime. For example
ifn = 4
4° +1=(44+1)(4?-4+1) 65 =(5)(13) which is not a prime number.
scl
.
33. BA SSSA
Sa’ +5ab ; a7, Axtl__
a +0 where b aadIe
Sa(at+b)
5a
where a+b #0
4x +1
4x°-1 (2x+1)(2x-1)
Since no cancellations can be made the fraction cannot be reduced further.
Chapter 6: Factoring and Fractions
70
41.
3+2y
-———
4y°+6y?
=
(2y+3) 2y?(2y+3)
1
=
3
h
2y’ ilies
~-—
2
_(utv)(u-v) 45.
—_
jeccmaapeteintes
(u-v)
__
=u+v
49,
N*-16 i (N? +4)(N? -4)
8N -16
8(N —2) _ (A? +4)(N +2)(N -2)
1.
_(N? +4)(N +2) 8
Multiplication and Division of Fractions
6.6
8(N —2)
53.
where NV # 2
4x+6y (x?-y’) ae (x-y) Ox+9y
(3-x)(l1-x)
2(2x+3y)(x+y)(x-y) (x-y)(x-y)-3(2x+3y)
=A pk
(x-1)(3+ x) __(x-1)(3+2)
3(x-y)
where x # y,-+
-(3-x)(x-1) Beers
ees
where x # 1
-(3-x)
x—=
WS eee
Sy
A
iF
28
(divide out a common factor of 2)
x+3
9, Ss
ray ee ye: S4+oeak—= 7 GA
9(2)(2)
9(2)
18
(divide out a common factor of 2)
13.
4x+12 5. =
x+l1 =——
61.
whereu #v
t=a1
where x # —-3
(divide out common factors of 5(3)(x + 3))
wherex4+l Lis
x+y _(x+y)(x?-xy +9’) 2x+2y
St _ 4(x+3)(5)(3)t = 3x49 5(3)(x+3)
2a+8
a’ +8at16_ 2(a+4)
ee
15
ae 125
mes
3x5
2(x+y) oer =
50
2
3(a+4)
where x # —y
SIeb)p 43)
(a+4)(a+4) where a # —4
(divide out a common factor of 5(a+4)) 65. (a)
(xo), -
x +4
:
will not reduce further since
x’ +4 does not factor.
x* +4x?
x°(x? +4)
@ 2. x -16 (x +4)(x
~4)
x
AK
x -4
ee (x+2)(x-2) will not reduce further since there are no more common factors.
21.
3ax*-9ax
2x? +x
10x? +5x
a’x—-3a’?
_ 3ax(x-3)
x(2x+1)
~Sx(2x+1)a?(x=3) 3
=
where x#0,3,-5 anda #0 a
(divide out a common factor of ax (2x +1)(x-3))
\
Section 6.7: Addition and Subtraction of Fractions
sta
x(x+a)_
x(2b-cx)
ERE Gina) atta _
45
d vdtv,d _ de
oO
Avy
Kony Rape.)
x°(a+x)(2b-cx)
arp vy,+¥,
~ (2b-ex)(a+ x\(at x) at+x
wherex #-a,
b¥ >
(divide out a common factor of
6.7.
Addition and Subtraction of Fractions
(a+x)(2b-cx)) x? —6x+5 J 6x+21 4x? =17x-15- 2x7 +5x-7 (x—5)(x-1)(3)(2x+7)
29.
1.
4a°b? =2-2-a:a-b-b
LOD =
wherex # 5,1,-+
4x+3
5.
(divide out common factor
(x-5)(x-1)(2x+7))
fab =2-2-a-a-b 6ab’ =2:3-a:b-b-b
~ (4x+3)(x—5)(2x+7)(x-1) ee
—
1
3
1(2)4+3
aesbes
a
4
4
Page
2
fo
13.
a b _ a(x)-b_ ax-—b —-— = ————_ = ——_
x
21.
ae
x
x?
1
San
= wes where x #0 3a
(divide out a common factor of x)
2)23.a hb = Qab’
3 6 3+6 9 —+-=—=-— SS 5 5
VV. 2
x-y : 2x? 2
=
2x-1
a) +
x?
Ya
a _2@)+100) al0
4x-2
=
:
(2x-1)
¥*)(xty) (x+y)
Ax+ y(x-y)(x? +xy+y") Sethe
PO
(divide out common factors of (x - y),(x+,),
(x?+xy+y"))
Pierre
10a +
4 _ x(%+2)(¥=2)
xt 1 2 (x4 2)(3x2 x
gee 6x
.
2(2x-1)
2(2x-1)
ne, eet Ue ce AEE jee OL nay saree
2s+s—3—3s i
4(s—3)
-3
and x’ +xy+y’#0
eX
2
J
ae
x
a
2(2x-1)
2(x? -y*)(x? ++")
iy,
Er
3(2) +1
_(x=y)(x2?+3949 )(y+x)(y +2} _(x-y)(x? t+
a(a) _ 14
10a
ea sha x+xyty
sox#+y
where d #0
(divide out a common factor 2d)
x?
=
4vv,
where x # —2,0
4(s—3)
iar a
Chapter 6: Factoring and Fractions
72
3 7 alee esa
A2
3 00 AC
i2
45.
e4
Gea
4-x
x°—-8x+16
x piesa x+l1
f(x)
3+2(x—-4) a
Hy
xth+1
e
Pia
(x-4)
i aor
Gd
yerey
Fieeieg
ee
a
role
ie
—xh-x
h fotos
_ Gxt)
igs.
(x+1)(x+h+1)
(x-4)
(3x-1)(x-4) #14
oe
(x+1)(x+A+1)
or eerae al)
4-x
ay
+x+hx+h-x°
~ (x— 4)
© 3x°-13x+4
x+1
anx+h)(x+l)—x(x+h+1) (x+h+1)(x+1)
hye
3+2x-8
h lea ahx
ape
GBx4)GCx-1)
49.
(tan @)(cot @)+(sin 6) ~coso=%-24(2)
sae de, _ Ur?) +y?=x(r)
_ x-1+9x?-1 (3x-1)(x-4) 9x? +x-2
r?
ASfoe
(3x-1)(x-4)
r’
37.
l
1
+- —
————
w+l
w+
- 2 =
l
1
(w+i)(w—w-i)
aE)
w+
53.
_1+1 (Ww?-w+1)-2(w+l)(w* -w+l) re RCE Lie, Sala | (w+1)(w? -w+1)
-
iia.
ws
f(a+1)=a+1-— : tag
_l+w—w+l-20W +1)
a
(w+1)(w*—w+)
Thea
aie toni?
_W-w+2-2w -2
a+l
(w+1)(w? - w+)
iTi7s
__
eGR OE
2
—2w+w -w
= ww? =)
(w+1)(w? _ -w+1)
xy
_@ +2a-1
AURCV
(w+1)(w* -w+l)
aie 57,
one
Vs
e (4)
re ey (m=-n)? (m+n)?
ae
_ mn’ (mtn) —m'n?(m-ny
pp ©
xy
P ees
mn? (m+n) +m?n®(m—n)° _ mn? (m+n) — (=n)
mn’ (m+n)? +(m—n)’)
_ x(x+y)(x-y) xy (x+y) ae
= (=)?
mn? (m+n)? —m? n? (m=n?? Etta ate at
xx) yy)
41. ae
where x #0,-y
an
ane
.
(3x-1)(x-4)
_ mm?+2mn+n° —(m’ —2mn+n’) mt? +2mntn? +(m? —2mn+n’) _
4mn
2m? +2n? 2mn
m +n
Section 6.8: Equations Involving Fractions
2n —-n—A
._ >
tt
2n-+2n-4
1
n-1
2n’ —n—-4
1
2(n°+n-2)
n-1
ES tt
9,
3
6
4
nee)
een 4 Me
2(n+2)(n—-1)
t-
ieee
n-l
6
_ 2n?—n—441(2)(n+2)
12-2(t-5) =9
2(n—1)(n+2)
Satur
_ 2n’ -n-4+2n+4
ae
2(n—-1)(n+2)
$52
ae
+n
2(n-1)(n+2)
|
13.
n(2n+1)
je SS Aa £4
sL+R+4
9+67
Ls+R
R
—c—_ 0.
1/=w+12.8 = 23.8 m.
—(2c)+4f(2c) — 4(1)(-1) 2(1)
mt
+
The dimensions of the rectangle are /=23.8mandw=11.0m
ce ~2¢ + 4c? -(-4)
v = truck speed
2
v+20 = car speed
ae —2ct2vc? +1
From d = vt
2
120 =(v+ 20), for the car, or
x=-ctvVc’+1
: - 120
~ y+20
2x? -7x =-8
37.
2x? ~7x+8=0;
2(1)
a=2;b=-7:c=8
D= \(-7)' - 4(2)(8) =\=15, unequal imaginary roots
120= v8) , truck 60
120={ zi +25] v+20 60 now multiply by LCD
41.
x’ +4x+k =0
will have a double root if 6? —4ac = 0
(60)(v + 20)120 = v(60)(120) + 18v(v + 20) 7200v + 144000 = 7200v + 18v" +360v
4’ —4(1)(k) =0 k=4
18v? + 360v — 144000 = 0 18(v? + 20v — 8000) = 0
For D = 3.625
45.
a=1, b=20, c=-8000
D; - DD, -0.250D? = 0
-20+ (400 — 4(1)(-8000)
D? —3.625D, —0.25(3.625) =0
2(1)
D; -3.625D, —3.28515625 = 0
a=1,
_ —20+180
b=-3.625, c = -3.28515625
Dealt v=-100, 80
2 D, = 4.38 cm or D, = —0.751 cm, reject since D, > 0.
(use positive solution) The truck speed is 80.0 km/h and the car
speed is 100.0 km/h.
49.
Ci
Rin ts 20
G
dS
Le
Roe
C
- Section 7.4: The Graph of the Quadratic Function
7.4
The Graph of the Quadratic Function
83
y=x’ -4=7? +0x-4; a=1,b=0,c=-4 The x-coordinate of the extreme point is
oe = ital = 0, and the y-coordinate is
1.
y=2x?+8x+6;a=2,b=8,c=6
laare(i)
c —b x-coordinate of vertex = oa
y=0 -4=-4,
The extreme point is (0, - 4).
a
t 4
y-coordinate of vertex = 2(-2)” +8(-2)+6
=-2
(-2,0)
(2,0) mx
The vertex is (-2, —2) and since a > 0, it is a’ minimum.
Since c = 6, the y-intercept is (0, 6)
and the check is:
.
(0,4)
Since a > 0, it is a minimum point.
y
Since c = —4, the y-intercept is (0, — 4).
x’ -4=0, x? = 4, x = +2 are the x-intercepts. Use the minimum points and intercepts to sketch the graph.
(0,6) +3= 2x° +0743; c= 13. p=2x
2,b=0,¢23
The x-coordinate of the extreme point is
silyl
(2,-2)
OR
5.
y=-3x’+10x—4, witha=-3,
b=10, c=-4.
This means that the x-coordinate of the extreme is
piety
10) 2
Ce Et
oe
NSAP(2)
= 0), and the y-coordinate is
y=2(0) +3=3. The extreme point is (0, 3). Since a>0
itis a
minimum point. Ve A
and the y-coordinate is 2
y=-3(2] +10{2) ph ats
3
RNAS Thus the extreme point is
eS
(-1,5)
(1,5)
3
EE 33)"
(0,3) x
Since c = 3, the y-intercept is (0, 3) there are no
x-intercepts, b” —4ac = -24. (-1, 5) and (I, 5) are on the graph. Use the three points to sketch the graph. Since a < 0, it is a maximum point. Since c = —4, the y-intercept is (0, — 4). Use the
maximum point (4, 4), and the y-intercept (0, —4), and the fact that the graph is a parabola, to sketch the graph.
Chapter 7: Quadratic Equations
84
17.
U5
2) Bove hems 35103
29,
(a) ysx?
(b) Me
3x
(c) Y
] ig
Graph y = 2x —3 and use the zero feature to find the roots. x= — 122 andv='1.22: 10
The graph of y = 3x’ is the graph of y = x° narrowed. The graph of y = +x” is the graph of
y =x" broadened. 33. y=2x’ —4x-c
will have two real roots if
b? —4ac>0
(-4)’ —4(2)(-c) 20 16+8c 20
c2-2 —2 is the smallest integral value of c such that
y = 2x? —4x—c
21. x(2x-1)=-3 Graph y, = x(2x-—1)+3 and use the zero feature. 10
37.
has two real roots.
4=w(8-w) for 0>w>8. w-intercepts occur at
ne
!
w=0
or
w=8
since
-3
A=8w-w’,a 0)
x= 9.88 cm
h’ +2(14.5)h+14.5° +h? = 68.67
2h? + 29h - 4495.71 = 0 a=2, b= 29, c=—4495,71 h
2 —bt+vb* —4ac 2a
_ —(29)+4f(29)° - 4(2)(-4495.71) 2(2) h=
-29 + 136806.68 4
h=40.7
p= 0.001 74(10+ 24h—-h’) p= -0.00174h" + 0.04176/ + 0.0174 If p = 0.205 ppm
0.205 = —0.00174h7 + 0.04176h + 0.0174 0 = -0.00174h? + 0.04176/ — 0.1876 a = -0.00174, b = 0.04176, c = 0.1876
~b+ —4ac v0? 2a
~0.04176+ [0.041767 — 4(—-0.00174)(—0.1876)
5
2(-0.00174)
h=5.98 and h=18.0 From the graphp = 0.205 at 6 h and 18 h.
p 0.268 0.205
0.01
(h+14.5) +h? = 68.67
Tae
81.
or h=-55.2 (reject since h > 0)
h= 40.7 cm h+14.5=55.2 cm The dimensions of the screen are 40.7 cm x 55.2 cm.
i
ions
I
h
CHAPTER 8
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE 8.1
Sign gns
of the
13. cot(—2') is negative since —2° is in Quadrant IV,
i i Trigonometric
where cot@ is negative.
Functions
cos 710 is positive since 710° is coterminal with
1. (a) sin(150° +90’) = sin 240°
710-360 =350 which is in Quadrant IV,
which is in Quandrant III is —
where cos 0 is positive.
cos(290 +90) = cos380° which . in ee lis + tan(190 +990 ) = tan 280
17. Point (-2,-3), x=-2, y=-3 peat ty, p= (a? +ay
which : in pupa IV is —
cot(260 +90 )=cot350 which is in Quandrant IV is — sec(350 +90 )= sec 440°
Hoi
sin =
vie eo = ae V3 x —2
which is in Quandrant I is +
ike r zi V3
csc(100° +90°) = csc190°
tang =%=— =>
which is in Quandrant III is —
s r
(b) sin(300° +90")=sin390° which is in Quandrant I is +
eee
cos(150 +90 )=cos 240°
2
ee 21.
Point (20, —8), x=20,
y=-8
cot(300 +90)= cot390
uae ie+y®
which is in Quandrant I is +
r=
sec(200 +90 )= sec 290°
r= J464 = /16(29)
which is in Quandrant IV is +
ee 4a
esc(250 +90) = csc340° which is in Quandrant IV is —
9.
m2
cotg=—= ie = =
tan(100° + 90°) = tan 190°
5,
is
wB
vi3 ek vi3
xi
which is in Quandrant III is — which is in Quandrant III is +
13
ceo =h aM
(20? + (-8)
yiet
QOL
ie
ee Bar 4/29 ~ 9
csc98 is positive since 98 is in Quadrant II, where csc @ is positive.
cos0 = 7= uw = =
cot82° is positive since 82° is in Quadrant I, where cot 0 is positive.
Te eg ts ployee tne 429 no N29
wre hac 2
cos348 is positive since 348 is in Quadrant IV,
{ iB
2
where cos @ is positive.
secO = z = EAS
csc 238° is negative since 238 is in Quadrant III,
hei See
where csc@ is negative.
ee Or ye
7B
2
Chapter 8: Trigonometric Functions of any Angle
90
Pee
tan 8 =1.50
5:
tan@
=~. Since tand is positive, x and y must x have the same sign, and the terminal side of the
sin160° =sin(180° -160°) = sin 20° cos 220° =—cos(220° -180") = —cos 40"
angle must lie in either Quadrant I or Quadrant III.
29. sin @ is positive and cos @ is negative
400°
sin @ is positive in Quadrant I and Quadrant II.
cos @ is negative in Quadrant II and Quadrant III.
cos400° = cos (400° ~360 )=cos 40
The terminal side of @ must lie in Quadrant II to meet both conditions.
400°
30. csc@ is negative and tan @ is negative csc @ is negative in Quadrant III and Quadrant IV.
tan @ is negative in Quadrant II and Quadrant IV.
tan(—400’)= tan(—400° +360") = tan(-40°) =-tan 40
The terminal side of @ must lie in Quadrant IV
to meet both conditions.
13.
37. sin @ is positive and cot 8 is negative sin @ is positive in Quadrant I and Quadrant II. cot @ is negative in Quadrant II and Quadrant IV.
The terminal side of @ must lie in Quadrant II
to meet both conditions.
6 oe a(t
x
17. tan (-31.5') =-tan31.5° =-0.613 21. sin 310.36 =—0.76199 25.
41. For (x, y) in Quadrant IV,x is (+) andy is(-)
cos106.3' =—cos(180' -106.3°) = -cos(73.7) = ~0.2807
cos(-72.61')= 0.2989
29. cos@ = 0.4003
8... = cos 0.4003 0, = 66.40
(4) ah
Since cos@ is positive, 9 must lie in Quadrant I
8.2
or Quadrant IV.
Trigonometric Functions of Any Angle
( ))=-—sin20 =—tan(180 ( "-150°)=—tan30°
sin200 =—sin(200 —180
=-0.342
=-0.577 cos 265 =—cos(265' -180° )=-cos85° = -0,0872 tan150
(
cot 300 =—cot(360 —300
=
tan 60°
WR)=-cot60
RRB
sin @ = 0.870 8. = sin” 0.870
6. = 60.5" Since sin @ is positive, @ must lie in Quadrant I or Quadrant II.
= —0.577
sec344’ = sec(360° -344) =secl6’
Therefore, 0, = 66.40 or 6, = 360 —66.40 A, = 293.60
If cos @ is negative, @ must lie in Quadrant II cosl6
sin397' = sin(397 -360° )= sin37' = 0.602
=. = 1.04
or Quadrant III.
To satisfy both conditions, @ must lie in Quadrant II.
0, =180 —60.5°
6, =119.5
- Section 8.3: Radians ' 37. tan? =-1.366
33. i=i, sin@
6.,. = tan”'1.366
i= (0.0259 A)sin 495.2
@
1=0.0183 A
2 53,79
Since tan @ is negative, @ must lie in Quadrant II or Quadrant IV,
8.3
If cos @ is positive, 6 must lie in peas
Radians
I
or Quadrant IV. To satisfy both conditions, @ must lie in Quadrant IV.
1,
2.80=(2.go) SOJ160 oi
6, =360° -53.79° 6, =306.21 41. sin 8 = —0.5736
6... =sin”' 0.5736 6 = 35.00) Since sin @ is negative, 6 must lie in Quadrant III or Quadrant IV. If cos@ is positive, 9 must lie in Quadrant I
i
or Quadrant IV.
To satisfy both conditions, @ must lie in Quadrant IV.
@, =360 —35.00
13.
@, = 325.00
5
1
3% _ 3% 180_ =270 2 y) Wa
In general, the angle could be any solution
@=325.00 +kx360 where k =0, +1, +2, --but all evaluations of the trigonometric functions
will be identical for any integer number of
5
1m _1%
17, —
189s
lS
180
=70°
7
rotations from the Quadrant I'V solution. 5a _ 5a 180_ = 300 3 3 1
tan 6 = tan325.00 tan 8 = —0.7002 45.
sin90 =1, and 2sin 45°2x
"21. 23.0 = 23.0° [4so 180°
)-0.401 rad
Bav
al pl
25.
8335 333'5" (4rad |-5.821 180°
rad
sin90 A, =85.85° A, =94.15
sinA
B,=1 80° -(27.5 +4) = 66.65 B, =180° -(27.5 + 4,) = 58.35
_a sinB 2sin A
45.
short length
= ./2.70? +1.25? —2(2.70)(1.25)cos58.35° =2.30m
as
aia
long length
= ,/2.70? +1.25? —2(2.70)(1.25)cos 66.651 = 2.49 m
v, = 670sin 71.3" = 630 m/s We can also obtain v, if we find its direction in
61.
standard position, so that @ = 90° —71.3° =18.7.. Then
d
v, =670cos18.7°
30 100 km
= 630 m/s 36 200 km
49, vector |x-component | y-component 1300 | -1300cos54 | 1300sin54°
d =,[30 100? +36 200° —2(30 100)(36 200)cos105.4 = 52 900 km
3200sin32 | 3200cos32. —2100cos35 | —2100sin35 —788.6
2561
R=,(-788.6) 2 +(2561) =2700 N 6. = tan”
el
~788.6
a
6=180-6., ref =107
65. a
a
springs
Aa aN
So
OS” arose q Plane 100.S° 0
i ((14)
Ifx 0)
= 303.55182 7
es = (2.262584) = 303.55182
11.2
Fractional Exponents
1. 3? =(8”)' = (3/8) =2' =16
Therefore,
(2576) , (8.091 ) 8.091 3.576
61. 2° =27 (2) Ose = ay Le)
on ae mtrae
5x=7+4x all
65.
1 J=1kg-m’-s™,so
kg-s'(m-s?) =kg-s'-m?-s~*
=kg-m?-s*(s*) = J/s°
5,
25? =/95=5
9. 100% =(100")" =(Vi00) =10*
124
Chapter 11: Exponents and Radicals
a
152/3
ks 1 52/3+1/3
* §7.45718 25,
125
2/3
15!
5
-—100
=3/
3
DSS 1
ie
1
rac
1
]
(vias) (vioo) -|atte
29.
17.984 =2.059
33.
Bs
. Bi
xit0 37.
a Be3tt2
—
=
B4/6+3/6 es BY
+3/10—(-1/5)-2
ise
ER ae
WX,
38
6 On atveanre yl0 3 424 6 9
3/10+2/10-20/10
= x75/0 = x32 1 x
41. (16a*b’)
3/2
-3/4 =16-4 t-3/4) 43(-3/4)
61.
(x"" #3 \ feGrp
=
me (416) ap?" = (xr
l Baip4 ea B Bah
1 -1/2 45. —(4x7+1) (8x). =
2
65. 4x
(4x? + 1)
49, (T* +277)” -(-+3)
i
| Section 11.4: Addition and Subtraction of Radicals
11.3. Simplest Radical Form °
C
125
{
49. 28u'v? =(2?-7u?uv*v) %
;
1.
vVa'b* Shee (2 i -a=ab’Ja
5.
/24=V4.6=V4-J6 =2V6
=
prlai2,
1/2
2/2), V2, 6/2, 12
_ 2uv7uv = v
ajc
(eee es B ON
Bch INGE
ala
as 3272 472 13.
8)
VI8R°TV* = J9R*V*(2RT)
, J6x
= J9R*V* .J2RT
3°
=3R°V?J2RT
57,
inv ex
y=
17. 4/96 = 432-3 =J2' .43 = 283 21.
xy
eal
JOR,
=
= 42! fst fe dart = 2stV4r°t
:
Bg) a
eee
5
Oise
lea 34.5 — 4,474.3 V64r's*t? = 4/16s*t* (4r°t)
25. VPVP*V = PV = PAV
ais
\pee
Vy
fy
xt
Hy xy(x ae oy
,
by
)
ig 61.
Va’ +b° cannot be simplified any further.
jt
i
Oe
2.
65:
r 2/3(2)
Na =a
“sae a>
3h =p? =h2 = Sfp
V2?
ees
fe
_ 6 2
69.
33, 4/400 = 4/2".5?
ae =a
6
— 74/452/4
28 va
ava
= 2.512
na 2ag a
= 2/5
= i V 2ag
a
=./2ag
37. V4x10' =/4-V10' =2x10? = 200 LGWade
(ide
ee lie 2 41. V4a =(2 a’)Vue=2'? al? = 2a
Peta
oat a= 772
ie
33
11.4
Addition and Subtraction *
of Radicals ae
1. 3V125 -V20 + /45 = 3,/25(5) -,/4(5) +./9(5) ia 3(5)¥5 - 2/5Bs35
= 1575-25 +3V5 = 165
Chapter 11; Exponents and Radicals
126
5, /28+V5-3V7 = (474 V5 -3V7 = 2/7 +5 -3V7 = 5-7
9, 2937 3127? = 21/3 -31,/(4)3 = 2tV3 -3(2)tv3 _ aac
= 213 -6tv3 = 41/3
—c Vac
13. 228 +3V175 =2,/4(7) +3,/25(7) = 2(2)V7 +3(5)V7 = 4/7 +157
= 19/7 17. 3V75R +2V48R —2V18R
= 3,25 (3R)+2./16(3R) -2,/9(2R) = 3(5)V3R +2(4)V3R -2(3)V2R =15/3R +8V3R —6/2R
= 23V3R -6V2R = VR (23V3 -6,2) yA
fy
ee
Poy eeSea POND OeSND 8 pee i i leatcue oA: (9)2 ond
Sea Thue
2 Z _ ¥24+5v2-24V2 2 -18V2 Pataca =-9,/2
Vis
41. 2
! -— _2N6 | 4 g_5v6 -(3+2-3}vé
[ea
v6 6 = 0.40 824 829...
By Lie
= 42(2-1) = 42
29. 653 - 40a? = /90 4a’ (10) = (910 -2avi0
= 3/10 -2aV10
=(3-2a)V10
6
6
oe Date ue Dalen
AG-sBcR
vas P28
2s. 432-44 = 4/25 -Y2* =
2
22af
onacalculator
a sf = 0.40 824 829... onacalculator
45. x’? —2x-—2=0
has roots
ie—b+Vb? —4ac 2a
2(1)
Section 11.5: Multiplication and Division of Radicals
pa eeNl2
127
11.5
2 24 Ae
Multiplication and Division of Radicals
NGS:
2 2493/3 erea
1. V2(3V5 -4V8) =3V10 -4Vi6 = 310 -4(4)
x=1+3
= 310-16
so x=1++3 is the positive root
x’ +2x—-11=0
5. V3V10 =/3(10) = 30
has roots
i —btVb? -—4ac
9. V4.2 =3f4(2) = 98 =2
2a
ee ~2+,/2? -4(1)(-11)
"
13. eeSURG 88)«Ja oe = Ja = 208
2(1)
ng 24/48 2
17. (2-V5)(2+V5)=2? -V5" =4-5=-1
_ 2+, /063 =
erm
2 -2+4/3 A x=—-1+2V3 so
mers
21. (3Vi1-Vx)(2vi1 +5vx) = 6(11)+15V1 1x —2V1 1x —5(x) = 66+13VI1 1x —5x
x=—1+2V3 is the positive root
sum of positive roots = 1+ Ae: (-1+ 23 )
25.
See
sum of positive roots = 33 49.
‘
26
29.
V23/3 Me q231/3 == 271026
=
(2'37)"
=
$/9°3?
2/2
Using Pythagoras’ theorem,
= 972
x? = (22) +(2V6) i
x’ =8+24
_
v2-1
7 +32
WI aad? [Alt ss ce La)
ye oe
_ ¥144+3(2)-V7 -3V2
x = 32 Perimeter = 32 + 2V2 + 2V6
= /16(2) +2v2 +2V6 = 4/2 +22 +2V6 = 6/2 +26
v2-1
units
Bs
7-9(2)
_Vi4+6-V7-3V2
a
7=18
__vi4+6-V7 -3V2
be
11
Chapter 11: Exponents and Radicals
128
rx
37, Wa ae
pile Ne+v5
x?
eee ae ae ae
53. Ape
x+
x+
Joan =
a
_ 2x4 Wx a7,
tea De HW 2e HI
Si lae SER
x
_ x) +2x2x+)
x-5
2(x+
very ae
V2x+1
5x]
_ x +4x' +2x
Sarr ar raat
J2x+1
6x8 42x, ys
41.
mi
Se
2
iF
OR oo R
V2x+1
ato
ie Moe
es
V2x+1 == -2+1- R
ye
57
Sia
vx+h—-Vx vxes Nae Nxt+htvx h+x
ee
ard
_2-R-R Cae
eee
eR
wu he
Taga vxth+vx
hdx+h+hvx
R=2 : : ee
h(Vx+h+vx)
ut
LOS
Vxth+Vx
45. Va +a 5a
wth va+Va-2
wa 2 _vat+va-2
61.
Cpstt ees sects:
ne
The quadratic equation ax’ +bxt+c=0
ea
has two solutions
a-(a-2)
ew
_2a+2VaVa-2-2
i
=a-1+,/a(a-2)
or
2V6-V5 _ 2v6-V5 _ 3V6 +4V5 ad
Nbaheoan
sa) a Evet aay aN 20s Ate)) _ 16+5V30 6s.
- 4/5
ie as ¥ 2a
beh
2a
1 —b-Vb° —4ac
Oa
Agel
a
cross multiply
~b- Vb? —4ac da? = (-0+ vb" -4ac)(-b- Vb" — 4ac
4a? =b?-8°+ 4ac onacalculator
PCENS |2.7 cacidenia doihateallude
376
2a
4a? = b? + bVb? — dac —byb*— 4ac -(b* — 4ac)
_ _16+5v30 26 =-1.6 686972...
—Aac
If the two solutions are reciprocals of each other, then
sapvadee ol
0. 69. t= N+log,N where, N
29. lo
l
2
1s
oe =10
B2\ 39)
(3s)
82 |93
=log2
4
WD HD Kis
8
_——
Solve y=10*” for x by changing into logarithmic form. We get x = 2log,,y. Interchange x and y
to get y = 2log,,x, which is the inverse function.
=—Slog,2
Kp, 33.
6log,V7 = 6log, 7” = 3log,7
=3
3/2
Chapter 13: Exponential and Logarithmic Functions
146
ots log,18= log, (9-2) = log,9+log,2
61. log, yx’y* = log, (x7y* y"
= log,3’ + log,2
= log, (xy’)
= 2log,3+log,2 =2+log,2
= log,x +2log,y
41. log, V6 = log; (3-2) 1
=2+2(3)=8 65.
1/2
= 708: (3-2)
log,D =log,a—br+cr? log, D-log,a = cr? —br log, ae cr’ —br
-[log,3+ log,2]
a D _
[1+ log,2]
a
nwmle mle
D=
45. log,y= log,2+ log,x
13.4
log,y= log, (2x) y=2x
49.
er —br
log.)¥= 2log,, 7 —3log,,x
aenor
Logarithms to the Base 10
1.
log 0.3654 = -0.4372
5.
log 9.24x10° = 6.966
9.
log ¥274 =1.219
= log,.7° — logiox"
= log, 49 -log,.x° 49 x
logoY = 10819
13. 107°” = 0.049 60
49
ye aa
174
53. log,x+log,y =1
21. log I(¥7:32)(2470)" |= log 197.32 + log 2470
log, (xy) =1 2
ay
= 0.1 log 7.32+30l0g2470
2 sas
=101.867 36 Therefore,
x
aH
("/7.32)(2470)" = 10"
log, (x+3) = log,.x+log,.3 Then
= 10!°! (roe |
= log,, (3x) x+3=3x x
= 10" (7.36)
y, = log x + log 3
=3
x=
1077""*='0 005-788 2
y, = log(x + 3)
3
= 7.36x10'"
3
25.
2 t
Ys.65321251
log81 =1.908485019
4log3 = 1.908485019
This means that x = isthe only value for which
log, (x+3) = log,,x+log,,3 is true. For any other x-value, log,, (x +3) # log,,x + log,,3 and thus the statement is not true in general. This can be also be seen from the following graph.
log 81=4log3
29.
D3xiO tee awa log 1.3x107'° = log 1.3 + log 107° 0.11-16
= —15.89
Section 13.5: Natural Logarithms 23.
log v = 7.423 y=
147
25.
10°
log (log 10") = log (100 log 10) = log(10°)
In10
= —0.164 13
v= 2.6510’ m/s
oy.
In 0.685 28
log 0.685 28 =
29, 33:
er
4210
es 1 0085
£5 = 6.2010"
= 2log 10
371
=2
ir R= log} —|; 1 =79 000 000/ (7) :
41.
Reto 79 000 000/, 0
We had shown algebraically in Example 9 of Section 13.2 that the functions are inverses of each other. To verify this using a graphing calculator, we graph y, = 2*, y, =Inx/In2, and y, =x. We use the key sequence ZOOM Zsquare and note that y, =2* and y, =Inx/In2 are indeed mirror images
\
of each other—and therefore inverses.
= log 79 000 000
3
=7.9
The 2007 Peruvian earthquake had magnitude 7.9 on the Richter scale.
13.5 Ws
-3
Natural Logarithms In 200 =
41.
log 200
41n3 = 4.394449155
log e
In81= 4.394449155
= 5,298 In 1.562 =
log 1.562
45.
og e
LOS
4in3 = In81
In{log x) =0 in(logs) _.50 é =]
7,"
logx =1
~ 0.4343 = 0.4460 log, 42
10'°2* =
x=10
_ log 42 i, log7
49.
In f = 21.619 fiers? 45610" Hz
_ 1.6232
~ 0.8451
tin)
= 1.92 13.
10g49750 =
log 750 log40
2.875
~ 1.6021 = 1,795 17.
In 1.394 = 0.3322
21.
In 0.012 937° =-17.390 66
10!
53,. 1
Chapter 13: Exponential and Logarithmic Functions
148
13.6
Exponential and Logarithmic Equations
1.
,
logx=0
logx =2
or
x =107
Rell
x =100
3°? = 5 log3**? = log5
(x+2)log 3 = log5
_ logs
25. 3in2+In(x—- l
log 5* = log 0.3 xlog5 = log 0.3 a log 0.3
In 2’ +In(x- l
In8+In(x—-
log5
In[8(x-1)
-0.5 0.69897 = -0.7 9.
]
G78
In 6**' = In 78
29. log(2x-1)+log(x+4)=1
(x+1)-In6= In78
log| (2x-1)(x+4)]=1 (2x-1)(x+4)=10
2x° +7x-4=10 2x°+7x-14=0 Use the quadratic formula to solve for x :
13.
_-74,/49-4(2)(-14) : 2(2) _-7+161
0.6" = 2"
In(0.6") = In2" x-In0.6 = x -In2
4
_ -7+12.689
x’ -In2-—xIn0.6=0 x(x-In2-1n0.6) =0
x=0
4
or x-In2-In0.6=0
c= in0.6
x= 1.42 orx=— 4.92 Since logarithms of negative numbers are undefined, the unique solution is x = 1.42,
In2
=-0,7
17. logx’ =(log x)’ 2 log x = (log x)’ (log x)” -2logx =0 log x(logx-2)=0
33, 4(3°) =5. Graphy, = 4(3")—5 and use the zero 2
feature to solve. x =0.203
Zero . R=.20311404
[y=0
Section 13.7: Graphs on Logarithmic and Semilogarithmic Paper
37. 2In2—Inx=-1.
Graphy, =2In2-—Inx+1 and
57)
149
2° 350,
use the zero feature to solve.
Graph y, = 2*+3* —50 and use the
x =10.9
zero feature to solve. x =3.35
etre
H=LGBrsiz?
T=0
-l
fer or
Has.2hebes
at. yal.se™* Substituting x = 7.1: y= 1.527097)
= 0.0025 45.
Vat
-100
13.7
Graphs on Logarithmic and Semilogarithmic Paper
y=
2 (34)
Wied:
Hol y|067
ZGX10"= 2°
Or eased S 2 18 54 162 486
log 2* = log 2.6x10° 1000
x-log2 = log2.6x10° aa log 2.6x10° log2 = 27.95393638
Bl
x = 28.0
49,
pH = —log(H* )
4.764 —4.764 H H* Ds
= —log(H"*) = log(H") =407"" =1.72x10° mol/L
B= 54 ran a ian 0-2) St y|5 20 80 320 1280 5120 1000
I
Inc =In15—0.20¢
0
Inc—In15 =—0.20t
In— = -0.20t 15 ie = e700
15 c=
ise"
Lv
9
Nn
y=2x' +6x i ih8 ore tee
y|0
8
28
Se:
6
8
152
468
1072
yf esBa
Chapter 13: Exponential and Logarithmic Functions
150
29. N=N,e°*, N, =1000 t | ON SR 60 nh Poise N|1000 496.6 246.6 122.5
17. xy = 25
100 60.81
He
28 age ae: a”
107?
xr.
05°31
10°
50
y|50
10 5 05 O1
107!
10?
21. y =3x°, log—log paper Mell)
an
3
4
yips
192
2187)
12288
Taking logarithms on both sides of the equation, we have log y = log 3 + 6log x, so we need logarithmic scales along both axes.
@.1 0.063" R
4
1
0.19
Ula
>0.38
100
72°
2°46
1600-190
d
10.50)
O73
Re
2S
eri.
8
,
0:13:
1102.45 AO.
ae
R
F
|
10
, 7 aa d 10° 10
25. xy =4, y= as log—log paper x ep 25 50 75
y|16
0.0256
0.0064
0.00284
100 0.0016
Review Exercises 1.
Taking logarithms on both sides of the equation, we have log y = log 16 — 2log x, so we need logarithmic scales along both axes. 10
Base is 10, exponent is 4, and number is x: log,, x =4
x=10* = 10000
5.
Base is 2, exponent is x, and number is 87: 2log, 8 =x 2° = 64
= 72° |
100
avail,
Chapter 13: Review Exercises
9.
151
Base isx, exponent is 2, and number is 36:
log, 36=2
13. log, 2x = log,
2+log, x
17. log, 28 = log, (27-7) = log, 2° + log, 7 = 2log, 2+ log, 7 =2-1+log, 7 =2+log,7
21. log, (2)= log, 9—log, x x
45. In 8.86 =
log, 8.86
OB 10 © = 2-182
49, log,, 65.89 =
= log, 3° —log, x = 2log, 3—log, x = 2-log, x 25. log,
53.
log,
Ep)
Ine** =In5 2x-Ine=In5
4 log, y = log, — x
29.
In10
= 1.8188
y= log, 4—log, x
an
In 65.89
2x-1=In5
x
1 1 y= ore 7+ 7 08s x
Shs log, z+log, 6 = log, 12
log, y = log, ke log, Vx
log, (z-6) =log, 12
log, y = log, V7x
y=7x 33. 2(log, y—3log, x) =
6z=12 z=2 61.
y=8
x
yee eas aed y [8 |64] 512 | 4096
log, y—log, x° =
65. 69.
10°** = 4 2log3 —log 6 = log1.5
0.1760912591 =0.1760912591
10
4
Chapter 13: Exponential and Logarithmic Functions
152
73. Iff(x) = 2log,x and f(8) = 3 we have
D3,
9,
aoe >
3 = 2log,8
i.
-1.4-6.0=2.5log— og 5
3=log,8° 3 = log,
me
64
-2.96 = log
3 = log, 4°
b b
Using the exponential form
- et 1
3 el
b
gis
¥
4
ua = 107°
b=4 Therefore, f(x) = 2log4x and
‘
f (2) = 2log ,2
b, =912b,
=912
= log, 52
Hence Sirius is 912 times brighter than the faintest
stars.
= log,4
=]
97, x=k(InJ, -In/) We substitute
77. Graph y, = _ —2x+7 n
= 5.00 and J = 0.850/, to get
and use the zero feature
x = 5.00(In/, —In0.850/,)
to solve.
x = 5.00In
x = 3.92, 1.28x10~
uf
0.850/,
x = 0.813 cm 101.
iZena HEs.52477H?
81.
¥=0
5
Inn =—0,.04t + In20
Inn—1In20 =-0.04t a In— = —-0.04t 20
I In—=-f£h
de
n Fe
u
gam
20
vA Lar
n=
1, ei ee
902-0
105. We manipulate the second equation algebraically to obtain the first one.
a
y = (2Inx)/3+ In 4—In(Ine’) requires x > 0
85. P=937e"""
Graph y,;=9372"°3™
89. 2In@=In3g+Insin@—-In/ In@’ = Insane
2 _ 3gsind y sin@ = wl
y= =inx+ In 4 —In(2 Ine)
:
y=lnx?? +In4—-In2
paneer y=lnx™
2/3
:
+1n2
y = In(2x””) which only requires x # 0 since 2x2? > 0 for all x # 0. (a) The two equations are equivalent for x > 0.
Chapter 13: Review Exercises
153
(b) The graph of y=(2Inx)/3+In4- In(Ine’) contains only the right-hand branch of the
graph of y= In(2x”).
\ =i y =(2Inx)/3+In4—In(Ine )
CHAPTER 14
ADDITIONAL TYPES OF EQUATIONS AND SYSTEMS OF EQUATIONS 14.1 1.
Graphical Solution of Systems of Equations
13,
y=-x' +4 vr+y =9> y=tv9-x’ Graphy, = V9-x", y) =-V9-x", y, =—x° +4.
Graph y, = 3x? + 6x. 10
Use the intersect feature to solve. Solutions:
x=1.10, y= 2.79 =-1.10,
x =-2.41, x=2.41, Ss.
y=2.79
y=-1.80 y=—1.80
p= 2x
x+y =16> y=tvl6-x. Graphy, = 2x, y, =V16-x", andy, =-V16-x’. Use the intersect feature to solve.
Intersection R= "2.406509
Solutions: x=1,79, x=-1.79,
y=3.58 y=-3.58
Intersection R=2. 405095
|¥=°1.791c88
Intersection = "1.099414
¥=2.7912878
17, 2x? +3y? =19=> y=+,/(19-2x7)/3 9
= y=x —2
x+y =9> y=+tV9-x’.
4y=12x-7>y=
12x-7
Graphy,= /(19-2x?)/3, y, = -,/(19-2x7)/3,
4
Graphy,= x° -2 andy,=(12x-7)/4.
y; =V9-x°; y,
Use the intersect feature to solve. Solution:
x =1.50,
intersect feature to solve.
Solutions:
y=0.25
x = —2.83,
x = 2.83,
x = —2.83, x = 2.83, Intersection
821. 4999999
=-V9-x7 and use the
a¥=.c4aggg?
y=1.00
y=1.00
y= 1.00 y=-—1.00
SY
UN
, Section 14.1: Graphical Solution of Systems of Equations
155
Graphy,= Vx’ -7, y,
4]
=-vx? -7, andy, = ea
Use the intersect feature to solve.
Solution: x= 16.34,
29.
y=16.12
106 e150
(x+ y)log10 = log150 y =log150-x
yex mon
Graph y, = log150—x, y, = x” and use the intersect feature to solve.
3
Solutions: x = —2.06, y = 4.23 x=1.06,
y=1.12
=4.2336828
ah. y=x y =sinx
33.
Graph y, = x’ and y, = sin x and use the
Let x = distance east
y = distance north
intersect feature to solve.
Then y = 3x,
Solutions:
x+y? =$,2?
x= 0.00, y = 0.00
= 27.04,
x= 0.88, y =0.77
y>0
x>0, y>0.
Graph y, = 3x, x > 0 and
y, = V27.04-x’, x > 0 and use the intersect feature to solve.
.
7
rll br
i
weBrerceee |Y=.76B64RH6
$6. x -y? =T > y=tvx' -7, y=4log,x>y=
4inx
In2
Solution:
x=1.64KmE, y =4.96 kmN.
Chapter 14: Additional Types of Equations and Systems of Equations |
156
37. x+y =41> ystV4i—x?
Solutions:
y? =20x+140=> y=+V20x+140
ae
Graph y, = V41-x’, y, =-V41-2x’,
y, = V20x +140, y, = V20x +140
ie
9,
From the graph, there is no intersection. No,
xt+y=l>y=l-x Substitute into: x7 — y* =1
the meteorite will not strike the earth.
x’ -(I- xy aii
x? -1+2x-x? =1 —-1+2x=1
2x=2 x=1
yei-(1)=0 Solution: x=1,
14.2 Ll
Algebraic Solution of Systems of
13.
Equations 2x+y=4> y=4-2x.
wth=2>h=2-w
Substitute into: wh = 1 w(2-w)=1
Substitute into second equation: x* — y” = 4
PO Tae |
x -(4-2x) =4
w? -2w+1=0
x? -(16-16x+ 4x") =4
(w-1)=0
x’ -16+16x—4x? =4
w-1=0
3x* -16x+20=0 (x -2)(3x-10)=0
ae ()+h=2
x-2=0
or
3x-10=0
h=1 10
oie
y=4-2(\=-§
Solutions: x=2,
wei,h=1 17,
psx
Substitute into: y = 3x” —50
y=0
x” = 3x" —50
eleheetams 3
Solution:
ie
y=4-2(2)
5.
y=0
2x2
5)
S60
x” = 25
yaork
x=+5
Substitute into: y = x? +1
ye (ts)
xtl=x7 +1
yen
x7 -x=0
Solutions:
x=5, y=25
x(x-1)=0
x=0
or
y=(0)+1 ne
—1=0 Rent Pie
x= —-5, y= 25 Alternatively, subtracting the second equation from the first also results in 2x? = 50.
“Section 14.2: Algebraic Solution of Systems of Equations
21. D?-1=R=>D*
=1+R
157
29. x-y=a-b>y=x-(a-b)
Substitute into: D? —2R? =]
Substituting into: x* -— y* = a’ —b°
1+ R-2R’=1
x —(x=(a—b)) =a’ -b’
R-2R’ =0
x? (x? -2(a-b)x+(a-b)')=a? 8
R(1-2R)=0 R=0
or
x’ —x° +2(a-b)x-a’ +2ab-b’ =a’ -b°
1-2R=0 2R=1
2(a—b)x+2ab 2a” =0 (a-—b)x-a(a-b)=0
ail 2
D? =1+(0)
x=a
y=x-(a-5)
p =1+(4)
=a-atb
_6
y=b
4
Solution:
+
D=+1
pat 2
x=a,y=b
_ Solutions:
R=0, D=1 R=0, D=-1
——
BRS
padre06. 2
2
ESS ‘)
pach ied 9
Alternatively, subtracting the first equation from
the second also results in
R—2R? = 0. Let 7, = inner radius, 7, = outer radius.
25.
x’ +3y" =37 2x? -9y" =14
r, =r, —2.00
Tr, — mr? = 37.7 Substituting 7, = 7, —2.00 into ar, — ar? =37.7
Multiplying the first equation by 3:
3x7 +9y? =111
mr? —n(r, —2.00) = 37.7
2x7 -9y? = 14
5x°
nr, — mr, + 4,00z2r, — 4.007 = 37.7
=25
ah 37.7+ 4.002 ‘ 4.002 r, = 4.00
x= 25 x=+5
(45) +3y? =37
Then 7, = 7, — 2.00
25+3y? =37 3y° =12
tes y=
Solutions:
= 2.00 The radii are 2.00 cm and 4.00 cm.
Dis N NRO
x=5,y=2
x=5,y=-2 x=-5,y=2
x=-5,y=-2
xt yt+2.2=46>
y=24-x
- Substitute into: x? + y? = 2.2?
Chapter 14: Additional Types of Equations and Systems of Equations |
158
2y+1=0
or
x? +(2.4—x) =4.84
y-4=0
x7 4+5.76—4.8x+x? = 4.84
ye
ae -;
x =4
x == 5
x=22
x=+t,/-—
2x” —4.8x+ 0.92 =0
x -2.4x+0.46 = 0 Using the quadratic formula:
4(1)(0.46) ~(-2.4)+,/(--2.4)°
1 1
2
=+j 5
2(1)
BB
2.4+ 3.92 eras ata
v2
;
or
x=2.19
(2.19)+y=2.40
(0.21)+y=2.40
y=0.21
y=2.19
Giiag
seeie
¥x=0.21
ih
2(+2)' -7(+2) =32-28=4
The lengths of the sides of the truss are 2.19 m
Miss V2)"
Ae moa
jp—| ) ~7/+j—| \Ya) [a
and 0.21 m.
Ne,
=—+-—= aes
41.
y -2y-8=0
(y-4)(y+2)=0
216
Le
ee TU tear
y-420
Substitute into: 2(w— 4.00) (/- 4.00) = 224
y+2=0
tA des ie
ee 4.00](/- 4.00) = 112 ]
ae
3
x =-2
1
|
aa
864 Sr
or.
oa
an ad re
Fae
Check:
120/ 41° - 864 = 20/ -4/° —-864=0 P? -301/+216=0
(4)%: -2(4]Ps Wig a eeeg egg 4 4
1-18)(1-12)=0 (/-18)(/-12)
(-4)of~3{=)f a Pay ae
/-18=0
or
/-12=0
1=18 216 w=—— (18) = 12
/=12 216 w=— (12) =18
The dimensions of the sheet are
18.0 cm. by 12.0 cm. 14.3
: ; : Equations in Quadratic Form
i
2x! 7x? = 4 2x*-7x°-4=0, lety=x°
2y'-7y-4=0 (y-4)(2y+1)=0
2
9,
2
2x-7Vx+5=0 Lety =Vx, y? =x 2y° -7y+5=0
2y-5)(y-1)=0 (2»-5)(y-1) 2y-5=0
2y=5
or
5
y-l1=0
‘dig
our’ are.
: 25
Apia
Up at xe]
i!
Section 14.3: Equations in Quadratic Form
159
Check:
:
es
Oho e535 10 —45=2—----4+—=0 4 ped 1D 2(1)-7V1+5=2-7+5=0
i
18-3V18—2 =18-3v16 =6 25.
e* —e* =0
Let y =e”
13. x??-2x!? -15=0 Let
y=
ue
iy =
y-y=0
xs
Wee
y? -2y-15=0
y-1=0
3
or
e =]
y+3=0
y=5 = 5
2) _2° =1-1=0
x=-27
Lety=Vx,y? =x,y20, x20
(y-2)(y-1)=0
Lety=Vx-1, y =x-1 y -y-20=0
y-2=0
yrt4=0
y=s
-y=-4
Vx-1=5
Vx-1=-4
or
y=2 Vx =2
(y-5)(y+4)=0
x-1=25
=
29. x+2=3Vx x-3Vx+2=0 y -3y+2=0
(x-1)-Vx-1 = 20
or
(not possible)
Check:
125** —2(125)"° -15 =25-10-15 =0 2/3 1/3 (-27)° -2(-27)" -15=9+6-15=0
y-5=0
e =0
x=0
y=-3 x8 =
y'+2=x
33. log (x* +4)- log 5x? =
y +2-3y=6 topes i =0
y -3y-4=0
x xi+4 _ 5x7 xi +4-5x" =
(y-4)(y+1)=0 y-4=0
or
yrtl=0
y=4
y=-l
Vx-2=4
vx-2=-1
x-2=16 x=18
y=0
y=
(y-5)(y+3)=0 y-5=0
or
(not possible)
Let y=x°
yi —5y+4=0
a
aye)
Chapter 14: Additional Types of Equations and Systems of Equations
160
y-4=0
or
y-1=0
A
nih
x =4
x=
edt
5,
Vx-8 =2; square both sides x-8=4 x=12
Check:
x=!
Check:
Vi2=8 = V4 =2
log((+2)* + 4)- log(5(+2)°) =log 20-—log 20=0
x = 12 is the solution.
log((+1)* + 4) — log(5(+1)*) = log 5 — log 5 = 0
3x +2 = 3x; square both sides
3x+2 = 9x?
(p= 2NP
37.
9x” —3x-2=0
~ (1-p)
(3x+1)(3x-2)=0
Wie = 2?
a+= 0"
t= p
4(1p)=2yp 2(1- p)=/p
y20,
3)
2 x=—
3
3)
Check
ep hee 3
p20
V¥-1+2 =-1
2y°+y-2=0
14-1
_ -1t JP -4(2)(-2)
ie
oe?= 0
x=---
2-2p=,/p 2p+Jp-2=0 Lety=,/p,
(0h
3x=-1
en . aS ig is not a solution.
MET)
_-1+i7 4 The negative root is discarded.
wt
—l+V17
p=0.610 x= :is the only solution.
14.4 1.
Equations with Radicals
13.
3/y—5 = 3; cube both sides
2V3x-1=3; square both sides 4(3x-1)=9
432-5 = V27=3 y = 32 is the solution. Check:
13 ? 2 3(8)-123 12
3=3 ea ; tie 76) is the solution.
17.
x’ —9 = 4; square both sides x -9=16
~ Section 14.4: Equations with Radicals
{
161
Check:
t
29.
2
v(45) P=
,
:
V6x-5-Vx+4 =2 V6x-5 = Vx+4+2; square both sides
NL
= J/16
6x-5=x+44+4Vx+44+4
=)
;
5x-13= 4 /x+4; square both sides
The solutions are x = +5.
25x” -130x+169 =16x+64
25x" -146x +105 =0
21. V5+Vx =Vx- 1; square both sides
Using the quadratic formula:
5+ Vx =x-2Vx +1 x-3Vx-4=0 Lety =Vx,y =x,y20
~(-146) + .|(-146)? - 4(25)(105) 2(25) _ 146+104
x = WO
y’-3y-4=0
y-4=0
or
5 02@5) ytl=0 Check
y=-l
y=4
x= 4
(not possible)
(6(5)-5 -V5+4 = 25-9=2
Taw
=y
Check
DS ?
25
25
250k
|5955
The only solution is x = 5.
5+V16= V16-1 ‘Serer
a3,
eo aisle oD
3=3
Vx-2-12=/x-2;
The only solution is x = 16.
Ke PHI
x — D4 144
al
square both sides
2
25V¥x—2 = x+142; square both sides 25.
2Vx+2-—V3x+4=1
625(x—2)=x? +284x+ 20164 So ae
2Vx+2 =1+~3x+4; square both sides
4(x+2)=(1+3x+4)
4x+8=1+2V3x+44+3x+4 x+3=2V3x+4;square both sides 2
(x+3) =4(3x+4)
G
tae
(x—258)(x-83)=0
as
or x—83=0
x-258=0
x = 83
x= 258 Check:
:
x? +6x4+9 = 12x +16
NP aime qo
x -6x-7=0 (x-7)(x+1)=0 x=7orx=-l
1256 =4/256 +12 16=16
Check:
2V-1+2 -—/3(- +4 =2v1-Vi=1 27+ 2 — f3(7) +4 = 2V9 —V25 = 1 The solutions are x = —1 and x =7.
—
et
—_
/83-2 =4/83-2 412 ?
V31=4/81412
ghia
The only solution is x = 258.
Chapter 14: Additional Types of Equations and Systems of Equations
162
37.
V2x+1+3Vx =9
roar =(kc+4-/R-R)
fDi tt =9~ 3x ; square both sides
2x+1=81—-54Vx +9x 54./x = 7x +80; square both sides
.
7
r= (kc+4—JR? =F] +h 49,
Freighter
2916x = 49x” +1120x +6400 49x”? —1796x +6400 = 0 (x- 4)(49x - 1600) =i () x-4=0 x=
or
49x=1600
4
x= 1600
Station
A
49 y=xts.2
Check:
Substitute into: y = Vx? + 8.3
2(4)+1+ 3/4 =9 paw ee
x+5.2 =x" +8.3"; square both sides x’ +10.4x + 27.04 = x” + 68.89 10.4x x = 41.85
9=9 5 (S00 6? 49
x=4.0
y=4.0+5.2
37 1202 7
7
=92
1
—
41.
9
Check:
x = 4 is the only solution. We see from the graph
V4.0? +8337 =92
that there is only one point of intersection at x = 4.
The station is 9.2 km from the freighter.
Vx-1+x=3
° ° Review Exercises
a
Vvx-—1=3-.x; square both sides
x-1=9-6x+x°
1.
x’ -7x+10=0
feature to solve.
isne=2)=0 oh
x-5= reas
or
Solutions:
x-2= we 5
x = —0.93, y =3.47
Check:
x=0.81,
V5-14+5=V44+5=743 J2-14+2=v14+2=3 The only solution is x = 2. To compare this solution with that of Example 4, we write Vx
-l=x-3 vs. Vx-1=3-xas
x-l=x-3 vs. —Vx-1=x-3. We see that one represents the positive square root and the other one the negative root. Squaring both sides gives the same quadratic equation for both problems, but the extraneous root for one is the solution for the other and viceversa.
45.
Graphy= —. y, = 4x’, and use the intersect
kC =./R? — R? + 1,
—A
nm —1ry, =kC+A- JR; —R;; square both sides
y=2.60
°
4
Chapter 14: Review Exercises
a
5.
163
a
na
2,
Graphy, =x*+l,y, =| ait ys --|-—* and use the intersect feature to solve. Solutions:
x=-0.56, x= 0.56,
Multiply (1) by 4, (2) by 7 and add:
(1)
8x?-14y? = 42
(2)
7x? +14y? = 693
5x3
y=1.32
135 x’ =49
y=1.32
Saal
(2) (£7) +2y? =99 49+2y? =99 2y° = 50 iy
eo
y=sds
Solutions: x=7,
9.
Graph y, =x? —2x, y, =1-e™, and use the intersect feature to solve.
x=-7,
y=45
21. x* —20x? +64=0
Solutions:
x=0,
y=45
Lety=x7) y? =x'
y’—20y+64=0 (y-16)(y-4)=0
y=0
¥=2,38;-p = 0.91
at
y-16=0
or
y-4=0
y=16
y=4
x16
x ad
x= t4
x= +2
Check: on
er
(+4)' —20(+4) +64=0 (+2)* — 20(+2)' +64=0
I¥W=.907EEE1z
—5
13. Substitute 2 =2R into R° +L’? =3
R?+2R=3
Let xeD
R?+2R-3=0 (R+3)(R-1)=0 R+3=0
or
(x+7)(x-3)=0
R-1=0
x+7=0
R=1
LP = 2(-3)
LP = 2(1)
Solutions:
L=+ 2, R=1 17. (1). 4x? -7y? =21
(2) x? +2)? =99
yey ap
x’ +4x-21=0
R=-3 no solution
25. D* +4D'-21=0
L=+
or
x-3=0
x=-7
x=3
D' =-7
D" =3
2 pee
jae
i
3
Check
Us | =)
| =1
e@ va(4) -~21=9-12-21=0 3 3
Chapter 14: Additional Types of Equations and Systems of Equations
164
4 7 err e r-+l 2r° +i
29.
37. Vn+4+2Vnt+2 =3 Vn+4=3-2Vn+2; square both sides
4(2r + 1)+7(r? +1) = 2(r? +1)(2r? +1)
nt+4=9-12Vn+2+4n+8
Br? +4477? +7 = 2(2r4 +37? +1)
12Vn+2 =13+3n; square both sides
15r? +11=4r* +67? +2
144n +288 = 169+78n+9n° 9n° -66n-119=0
4r* —9r? -9 =0 Lever. =r
Use the quadratic formula
4y? -9y-9=0
—(-66)+,4)(-66)° — 4(9)(-119)
(4y+3)(y-3)=0 4y+3=0
or
|
y-3=0
a
2(9)
a
_ 66+ 18640
3
18 Capi r
3
wae
Check:
_1145¥15
7 33
4
Check:
= +3
-
4 Cae
‘
OE)
7 LO 3s\
ay der een
er
cy
jienaalENy poy amsleye a rear 3 as
em
i124
: + 3 -=16-14=2 -—+1 {3} 41 4
INE 2d ean (tV3Y+1 2(V3)+1
pte 3+1
32.
n= dee is the only solution. 41.
y?-2y-48=0 y-8)(y+6)=0
V5x+9+1l=x
y-8=0
V5x+9 =x-—1; square both sides
oie
x’ -7x-8=0
y+6=0
va not possible
Pa
(x-8)(x+1)=0 or
or
eae
5x+9= x? —-2x4+]
x-8=0
x° -2x°?-48=0
Let y=x'",y' =x ,y20
yeee)
6+1
ears
=4
x+1=0
x=8
x=-l
Check:
J5(8)+9 +1=8 J49 +1=8 8=8
GeDEIris1 Radia: 3#-1 The only solution is x = 8.
45.
Vx° —7 = x-1; cube both sides x -7=x' —3x? +3x-1 3x? —3x-6=0 x? -x-2=0
2
Chapter 14: Review Exercises
165
ee = a
x-2=0
or
x+1=0
2
t, =0.40s
=—]
t, = 2-1,
There are two intersections, at x = 2 andx =-1.
=2(0.40)
t, = 0.80s 61.
49. JVx-1=2; square both sides
Vx-1=4 Vx = 5; square both sides
perimeter:x+2y=72=> y= Uri 1 area: Ly
x=25
Ge
2
oes x
2
2
x
y =—t+h 4
x
2
2
x
FZ
480
>y y =—+— mn
Graph y, = 72 -2x, ersection
25
cain
Yee
Ve
SA
4
bg x
3
(only the positive root matters here).
53.
je = /(1+1); square both sides 1
i =
An
Use the intersect feature to solve.
(741)
2
“et =P +]
P+l-
4rL
7
Inkersecti 1OTt Hee SHELA
YSSE,20e04L
=0
Using the quadratic formula,
a“ -1+,/P -4-1(-42£) i 2(1) =1+./1+ 167 L?
—1+,/1+ 24
| = ——_————_
The lengths of the sides the banner can be 27.6 dm, 22.2 dm and 22.2 dm, with height 17.4 dm; or 20 dm, 26 dm and 26 dm, with height 24 dm. Since the height must be longer than the base, the lengths of the sides are 20 dm, 26 dm, and 26 dm, with height 24 dm.
65. Area: eg is the only solution since / > 0.
57, Substitute 4, = 2s, into 4907; + 4907; = 392, where Gino U
4901? + 490(2r,) = 392 490t? + 19602? = 392
24501? = 392 oe 392 T2450
710Soe
Substitute into: /* + w* = 62? +
1770°
Dike 62? l
Chapter 14: Additional Types of Equations and Systems of Equations
166
5.7v) -162.24v, + 230.4 = 0
I* — 6271? +1770? =0 Lety=/?
Using the quadratic formula
y? —627 y+1770? =0
162.242 162.24? — 4(5.7)(230.4)
62? + 4|(-62°) — 4(1770")
vy,
y =
P = 2269
or y=1175
v,
eed 175
1=52 1=34 w=34 w=52 The dimensions of the rectangle are / = 52 mm and w = 34 mm.
j
2
69. Digby to St. John: 72 =v, -t, >t, = fe yi
St. John to Digby: 72 = (v, -3.20)-1, > 72 v, -3.20 Substitute into: ¢, +4, =5.7 72 72 aot ePfl t=
vt
—3.20 R
2(5.7)
v,=27.0
p)
y=2269
or
=27.0-3.20 = 23.8
vy, =1.50
v, =1.50-3.20 =-1.70
Solution v = 27.0 km/h from Digby to St. John v = 23.8 km/h from St. John to Digby
CHAPTER 15
EQUATIONS OF HIGHER DEGREE 15.1
1.
The Remainder and Factor Theorems; Synthetic Division
21
x1, x+l;r=-1
x +1 is a not factor since f(—1) =-2 #0.
Using the remainder theorem find the remainder,
for [ar — x? —20x+5)+(x+3).
R= f (-3)=3(-3) —(-3)' -20(-3)+5 =-25
25.
(x° +2x° —3x+4)+(x+1) 1
5.
x’ —x+3 x+l)x°+ 2x+3
1
x+x?
—x°-
Ss
4
-1
-1
4
|
-4
8
{+1
and the remainder is 8.
x 29. (x’ -128)+(x-2)
3x+3
1) Oe Oh086
3x+3 0
eae
The remainder is R = 0.
le 2
oy
4S
lene: Wiebiog ele
l6mes2
6408
12S
“167232;
64
0
The quotient is x° + 2x° +4x* +8x° +16x7 +32x+ 64
-_ x -x-9 2x-3)2x* —3x? —2x? -15x-16 2x* —3x°
and the remainder is 0.
aS. 2x° —x° +3x? —4; x+1 2x"
2. a, Sea
—15x
—2x°+ 3x
a
—18x-16
2
-18x+27
The remainder is R = —43.
(2x* —7x’ — x? +8)+(x-3); r=3
DN
37.
OF m7
es el
bef
ee
2
2
2
'-2
—2°°t
R=-2#0,
~43 13.
-3
The quotient is x” +x-4
—x’ +2x
9.
2
sox+l is nota
AZ
factor.
1 22,1
We write 2Z -1 -2(z-3)
f (3) =2-3* -7-3° -37 +8 2-1-4 0 1b
LAG iaeg >
17. 4x° +x? -16x-4, x-2;r=2
f (2) =4(2) +2? -16(2)-4 =32+4-32-4=0
Dc
eke ee oD
Since R =0, Z - is a factor. Therefore, 2Z —1 is also a factor.
x—2 isa factor since f(2) = R =0.
167
Chapter 15: Equations of Higher Degree
168
41. x* —5x°? —15x? +5x+14;7
Geese eis
1
45.
45
vital te
7
14
—-7
-14
2
-1
-2
0
15.2
The Roots of an Equation
f (x) =(x-1)' (x?+2x+1)=0
R=0, 7 is a zero.
(x-1))=0 ees
f (x) = 2x° +3x" -19x-4
A triple root
or
x’?+2x+1=0 (x+1) =0 x+1=0 x =-1, a double root
f(x)=(x+4) g(x) Bizislex +3x? —19x-4)+(x+4)
the five roots are I, 1, 1, —1, -1
r=-—4
(x +6x+9)(x? +4) =0
2):
3
lO
=H
-8
20
—4
Pe ee|
—8
tt
2:
g(x)=2x
|-4
(x+3) (x? + 4) = 0, by inspection x =-3 double root, x = +27
eee
Res
=2x? +h? —x4+14; x-2 49. f (x)
We want f(2)=R=0
f (2) =2(2) +k(2) ~2414 =16+4k-24+14
= 28+ 4k
"
2x° +11x? +20x+12=0
2.
-3 -12 -12 ee Sh eke 2x° +1 1x? + 20x+12 = [x5 (ae+8x +8)
3 = 2x4(2 +4x+4) 2
4k =-28 k=-7
=o
If k =—7 then x —2 will be a factor.
Bas Suppose r is a zero off(x), then f(r) =0. But
f (r)=-g(r)=0=> g(r)=0, sor is also a zero of g(x). Therefore, if f(x) =—g(x) then f(x) and g(x) have the same zeros.
V’ -6V’ +12V =8 V’>-6V’ +12V -8=0 Let r =2
1 -6 2 1-4
12 -8 4
Ye 2
=0
role
o.B0-
C --3)
-8 8 0
|2
R=0, so V =2 cm’ is indeed a solution.
+3 \(042)(x42)
The three roots are 7, = -=,r, =-2, 4, =-2
oa: +f -20°+4t-24=0 (7, =2,r, =-3)
1
12) AS 282 2 6 8) 4 1.3 2.4 eee ies -3 0 -10 a ee oe —2t? +4t-24 =(t-2)(t+3)(? +4) 2)
=(t-2)(t+3)(t-2j)(t+2/) The four roots are 4 = 2, 7, =-3, 7, =-2j, 7, =27
Section 15.3: Rational and Irrational Roots
17.
169
6x" + 5x° -15x7 +4=0 C=-54h ==)
x° + 2x” —4x4410x° — 41x? —72x-36
Geom
The six roots are —1, --1, 27, —2/, —3, 3.
ets
a 6
2
2
a -16
Rae 6.
eg ay ee 8
0
29. A polynomial of degree 3 has 3 roots, so
2
Ff(x) =(x-(1+/))(x-(1-/))(x-7) is a polynomial,
Bu
“600-127
SOF
=(x+1) (x-2j)(x+27)(x* -9)
degree 3 with root 1+ / (and therefore root 1-7). To
acd
find r, we use the fact that f(2) = 4.
6x* +5x°? -15x7? +4
4= f(2) =(2-(1+/))(2-(1- /))(2-7)
= a(+5 ][x-2}l° +x-2)
=(1-s)(1+/) (2-1)
= 6{x+5 }[x-Z](042)(-1)
=2(2-r)
ft The four roots are7, Betz? Te ==,Ip 21.
x° —3x* +4x° — 4x7 +3x-1=0 eee er. Wie. Mere eee 1D ee 0K
21,1
(1 is a triple root)
=4-2r
Therefore r = 0 and the required polynomial is
f(x) =(x-(14/))(x=(1-/)) = =x -2x? +2x
15.3.
Puts deol RS as tami Geto 4 LAD 0
Rational and Irrational Roots
f (x) =4x° +x" +4x° - x7 +5x+6=0 has two sign
[1
changes and thus no more than two positive roots.
f (-x) =-42° + x4 - 42° - x’ -5x+6=0 has three sign changes and thus no more than three
x° —3x* +4x° —4x? +3x-1
negative roots.
=(x-1) (x +1) x° +2x* —5x-—6 =0; there are 3 roots.
The five roots are 1, 1, 1, — /, /.
f (x) =x’ +x’ -5x—6; there is exactly one 25. x® +2x° —4x* —10x’ — 41x? —72x-36=0
positive root.
(-1 is a double root; 27 is a root)
f (-x)
The complex conjugate 7, = —2,7 must also
two negative roots.
be a root.
Possible rational roots are +1,
ee
waa epee ies Pati,
Dk0
a)
A SAT 290 36:~|[-1 5) | 1.60436" ° 36 es 236 36 0S Sh On 36." 0
mim
ea ET Ove 00 rislage
Dealers = 0" a cf eeeets | C0 20» SDy OMA Toye a0) MeO Fal. bhOL Oa,
O's 10R1+ R2
| I
pala
-2
s 4 i
Ls
Fev
R1— RI-2R2/ 1 0|-4 -1
OQ9jsOQie)> nNA
Rl >i 1 pe
1 1 0 ROR fa |
na
16.3
0
~0.2)
a
-0.5
Ris L2R2+ Ri) ee | a 0 02-05
ay -0.2
Interchange the elements of the principal diagonal
abe -0.5}
7
|-+ -4
and change the signs of the off-diagonal elements.
eee
Wiens
wis
21; }2 SHEL pike
eee
4 }eat aoe
ahinhgck Gxee eeeoe
Divide each element of the second matrix by —30.
1f10 -5] f-+ 4 Ty es Paae
Find the determinant of the original matrix.
-50 | 26
-45 = —2830 #0 ~=80
Interchange the elements of the principal diagonal and change the signs of the off-diagonal elements. 80
38645
-26
-—50
i 05 jb
a bea BO caNenG eA hen cola
R1 > -3R2+ Rl ee
1:0 4R3 ia aa Ro 1. Oo eR) $ "S35. G 04 athe cas pL ae RTD eee R1 > 7R3+Rl 12 B OY 4% 2 ae 01 O/-1 2 2);4¢=/-1 -2 aR ls i 2s A
ae 2 aa"
179
Section 16.4: Matrices and Linear Equations
41.
0.8 0.0 -0.6/1 0 0 Q:0-) 1£0°|2°0:0, |:0i- 1.0) 0.6 0.0 0810 0 1 ee Uhh ee Po liera KONO 0.0 TOM ts 0.6 0.0 08 | 0 O Om-0,75'
—
29.
0.0
0
0
ae!)
1.25
|-0.75
-0.751
1.25
0
Ueda
0
1.0 OF
1
0
0
Dy OF OI
(Al ee a
2
2a
4
AO.S oi
Oa
sity er
00
"aa]
a3 os)
Ree =|
0
1]
0
-0|
R3-0.8R3 Rl—
R1+0:75R3
igre8)
0.6
fF i=. 1lt i
ao.
an 0 1]R3->R3-0.6R1
1625.
Dix? 0
Rb2 RI
0
1
= 0:6
oO)
tO
ee)
1;-06
0
08
0.8
0.0
0.6
0.05
0"
00
0.6
0.0
0.8
1.
2.538 -0.950 _, |70.213 0.687 ~|-1.006 0.870 0.113) 0.128 37.
1
.
ad-be *
re
fas
d
-b
|\c
d||-c
a
:
The solution is x = 2,
ce
ad-—bc
-ab+ab
x+2y=7
~ ad—be
|\cd-cd
-be+ad
2x+3y=11
ad —bc
0
0
ad-be
1
~ ad—-be
ha
0
sta
A=
23 ie
BG
il
y=-3.
nN
ha ll
~][|ae —= ee ee oe
ae
ae The solution is x =1, y =3.
cereI ry
ST a
a
Chapter 16: Matrices; Systems of Linear Equations
180
9%
bs Bake 5 2.4 ¢ A=!l-2 -5 -1|;C=/-1]; 47 =]-1 -2 -4 E
4
0
2
Ls
Yas
DA ot AAS A'C=|-1 -2 \-3|\-1 a
=
=\20
1 0 4/-4 -1 0} RI 0°10} + 250 00
1}-1
10 01.
0j/0 -+ -4+ 0105:.05400
00
1{-1
A'c=|
:
The solution isx =—-1,
13,
A=
~3.0:) 9.6
eee
|-16
-2.8
RSS 3a
bas
1
>
iia aiiesly: -1.6 196350
:
[2:52 2.8 |'13.5 -1.6
-2.8 ||-3.0 DScil 96
oehade 2G 5 2 1 EC=| 364. =) rye u ss 0 4
Il
0 0}
see
gcte
OO
1
2
44
—2
—2
-1/0
-1
2
1/0
12
4
0 0
De iN
4
Bustos
ak
§}
;
1 -3 21. A=13 2
-2 9 -2 6);C=|20|;4'=/-4%
-1
3
-2 A'C=|-8 ie 5
25
Ze
0
Gv ead)
1] R3—>R3+R1
-] Kf 9 -1 #2|| 20 thei OS
25... A=|1
“ES
og
6
ers st
21
3u.-4
92
8
Ween)
Eas
Ce!
eos:
0 2 O|1 1 O|R2>4R2 04 3h 011
seb
ASI
0
2/2
*
]
0 pO
sl
' 4
3+
0
2
2
0
R1-—2R2
0
1281
1281
2 0
1
4/-+
-1
Ot
Ol bas -2
R3
aN R3 re 4R2
0 1/32R3
5
“a Ue ara ee er err Ta Sn)
10
0 0 3/-2
R173
oS Ca
Ce.tale
Aol at eee a 1
1
The solution is uw= 2,v =—5,w =4.
a 1 0|R2—>R2+4+2R1
O
0}||-6
Chal |
RI>5RI
1.0
0
4
s1=) 2008
=-13.8;
4
2
2
The solution is x=2, y= nee z=3.
28 The solution is x = 1.6, y =—2.5.
apie
-4
2
ie
17 Aa
-4+ 2
oF ails
y=0, z=3. Be,
Pale wa Par BSmn-1.6
RI-FR3
2562
3 33
Be 854
eee 2562
183
de8 |: SS
2562
854
2562
183
__ 703
190
Rie
ate
41
1281
1281
427
1281
183
-] -1
# #2
1
-1
Section 16.4: Matrices and Linear Equations
-177 AC
ors 107 427 427 358166 1281 1281 46 79 1281 2562 STAN ees 1281 2362 _ 703 190
__
1281
1281
Baa NAS 40 427 427 19° 86 427 1281 117 257 854 2562 135 G25 854 2562 16. 83 427
1281
8 61 ae 183 1 183 esos 183 AL 183
181
6
ST
x+y+z=10
Dy a 5 a
4y=x
1 Az=|-
0 0
—] =
G3 3 2
1
il
—|
The solution is v= 2,w=-l,x=4,y=4,z = -3. 2x-y=4 3x+y=l
A=
S oi Tela apaPe te) \3°4 geal
RL I}
| ee: erat
0.06
|SEES
4
010 0:06
0
5
0
0.05
1
1
WP
0
0.05
0.06/0
0.06;
0O 0
0)
0
1{|R3—4 R3-0.05R2
alee
-0.01
PA 0 1 AReRY 1
O
O} 0.96
0
1
0
0
Rl => R1-R2
-4 0
0.05|-0.01
for the other two pairs:
equations intersect at the same point, namely (1,—2).
R2+R1
1
+
1/-0.2
Graphically, this means that the graphs of all three
0} R25
alee
0
Be ae
0
Lo 4/4
0
Every pair of equations indeed have the same solution.
1
0|R2>4R2
O: ia 0
0,
)10- 0
1
The solution is x = 1, y = —2. The solution is valid
fee
Ue
1
0
iis Fae
ufo aljp ale Pages |S| Se cigar | Se
1
005
meee =y
RN
0.05
To find A”:
a
OFF
29.
0 2)
eae ee
0 1] R3—20R3
ee! OF Ries Riera Si 0 bR2 > RoseRs -0.2
20
-0.04
-16
YO).0:24
(024
=4)
1} -02
-0.22
20
0.96
-0.04
-16]|
|:
10
A'C=|0.24
0.24
-4 |] 0
-0.2
-0.2
20 || 0.2
6.4 =11.6 2.0 The mixture should have 6.4 L of gasoline without additive, 1.6 L of gasoline with 5.0% additive and 2.0 L of gasoline with 6.0% additive.
The voltages of the batteries are 10 V and 8 V.
Chapter 16: Matrices; Systems of Linear Equations
182
16.5 1.
x+3y+3z=-3
Gaussian Elimination
-2x+y=4
yrez ag
ize 3 z=4
RI>-$RI
~3x-2y=3 x-ty=-2
yt+#()=-t Jimk
R2—3R1+R2
=3x-2y=3
43(-4)+3(4)=-3
x-ty=-2
—ty=-3
R--2R2
x=-2 The solution is x = -2, x-4y+z=
13.
y=—4, z=+
2 R2—-3R1+R2
3x-y+4z=-4
x-4y+z=
2
lly+z=-10
=-Hatz
The value of z can be chosen arbitrarily, so
there is an unlimited number of solutions. For example, ifz =1, then y= —1 andx = -3.
Ifz=-10, then y=0 and x =12. 17,
X+3y+
z=
4
2x-6y-3z=10 4x-9y+3z= x+3y+
z=
R2—>-2R1+R2
4 R3—>-4R1+R3 4
-12y-5z } j eet he The solution isx=?, y=md
9
x+3yt+3z=-3
x+3y+
—4y-
—2ly- z=-12 zs:
x+3y+
R3—>2R1+R3
—2ly-
x+
6
z=
4
y+hz=-t
R2—>-2R1+R2
2x+2y+z=-5
—2x-—y+4z=
2‘'R2Z—>-$R2
3y+
R3—> R3+21R2
z=-12
z=
4
3z=-3
5z=
sSy+l0z=
y+ 4z=-1
1 R2--+R2 0
R3>-5R2+R3
“S5y+l0z= 0 The solution is x = 4,
y=2, z=—2.
We
a _ Section 16.6: Higher-order Determinants
Ng #? i
241
4k
°
3x+
183
Sy=-2
24x-18y=
13 R2—-8R1+R2
15x-33y=
19 R3—>-5R1+R3
a,x +b, : AC, — aC, =¢, a,b, — a,b,
a —b, (a,c, 50, ) C, (a,b, — a,b.)
6x+68y =-33 R4—>-2R1+R4 3x+5y=
-2
—S8y=
29
R2>-FR2
-S8y=
29
R3—
R3-R2
58y =-29
R4—
R4+R2
3x+Sy=
a,b, — a,b,
a; (a,b, asa,b.)
SA (b,c, —b,) ay (a,b, —a,b,)
-2
c
33. .
4 The solution isx ae = R3+4R2
650
0=0
y
0=-1
-z =-180
=
220
x+220+180 = 650 x = 250 The production rates are 250 parts/h, 220 parts/h,
ax+by=c,
a,x+b,y=c,
R2->4R2
=-400
xX+ yt+z=
3u= 2
and 180 parts/h.
R2>-R1+R2 q;
ax+by=c,
R2—-R1+R2
650
-y-z
R3—>-7R1+R3
The system is inconsistent. 29.
y+z=650
3x+2y+2z =1550 R3— —-3R1+ R3
9u= 6 R2—>-3R1+R2
7s +14¢-—21u=13 S+
x+
5,
—x+2y-z=10
y=-4.1 a
s+ 2t-— 3u= 2 3s+6t—
a; (a,b, 5 a,b,)
pee —a,D,c,.+ a,b,c, +.a,b,¢, - a,0,¢,
16.6
Higher-order Determinants Bp OO
1.
{1
1
2
0}=9, switch first and third column
3
Oy) One 0
1
ce
Ij=-9 My
Ba) ) ome 5.
5
-1
2
2 -1l
ae a eat
Ge)
0
0
3
-6
=()
Row | and Row 3 are identical, so the determinant is zero.
Chapter 16: Matrices; Systems of Linear Equations
184
gee aaahcA age” [oat ee es
ave: 0-4 hee
40
Column 3 has been multiplied by —1, so the value
Orne
of the determinant was multiplied by —1.
Aveo
ON =e
13. Expand by first row,
sa ra
Pegi ; y bP EN Pip pep eis =(1) +0 R135 Ai. 48 re Maa
is 4(-$
fea0 ee Oe
=-13
3",
& ee. benches I a a Poe Tk do | es 9
Bayh Sha WS rg-30° 5 site ce BCG orld Peel We 2. 2
=1(12)-4(12)+3(-12) 20D 2
a 32)
—2
sStytd
1 4=/--%
SIPING.
1
ah ba ree he
—1}| R3 > —R1+R3 SS TE ROE
1]
R45 2R1+ R4
—2}
RS > -—R1+R5 0
Oring =|0 -2 0 4
—l}
0 -2
—2|
49
#8 0
Oe =|0
2G
(7) =39
25.
0 2
R3—
R2+ R3
1] R46-2R2+R4 RS5—> R2+ RS
eRe
13
6 0 1 1
= aay ol — —_—_ ——
——~
0
:
Bead.
43 30 5 0 21
49.
=— Co
ee
1 4 R2>=2R3+R2
Os Oil
rio
eae
ous
21.
a
AhieO
Expand by first column,
R3+R4
|
Slane
=57
ei
R4—
0.0 oS) ia
= 3(3(5)-2(-1))-(-2(5)-4(-1)) 17.
0 4 | 2| R3 > -2R2+R3 7| R4—-2R2+R4
0 4/R2--2R1+R2 2}R35-£R1+R3 7|R4—-1 R14 R4
-2 0
a?
:
0.3
ee Sg MS:
—2
Expanding by minors using the third row results in the determinant being 0 (without having to calculate the minors).
o N
BN
ll
Ee
a
©
2
Q
s
5)
S
‘ (sa) re) in en ee ee
aisReyie fe
ro)
8 i¢p)
= c
—
OQ® ~~oO Le= = © S ~—”
185
nN
y-2z-3t=-5 3x-2y 2x+ y+ z—-
t=
.o
So
=5
=3
=2
—2
Rey
=)
=2
0
61
ca
a:
N
3
61
3}:
—2
=2
ee
=3
Sto
61 —5
=
=e)
a8,
61
—2
=|0
-13
—23 -10
=3
I
0
=o
=)
The solution is x =1, y
3
=—2
ai
D+E
+2F
2D-—E+
61
6 =—2
=5
G=-2
D-E-F-2G= 2D-E+2F-G=
4 0
-16
Cake
BS Il
|cofen —
Sis
NIN
Ears |
I I
=
d]o nia
ol(S
els _
_—
4
0
ied aN|
open
]
-4
i
Se
PIM,SG SO
an
ols
—3 61° —2 ,-3
ae
oie!
ll
2,z7=-1, ¢=3.
/
| 00 |—
| N
as -_— fae)
eee
(=e
ll
_—
—
he Mat
N
|
KS
}| _—N
ll
N|
=~ ae)
so aL
ar
| 7 oo lou —~—
oo cojen CO
=e)
Chapter 16 ‘ Matrices: Systems of Linear Equations
186
Ie e220 Pe Yaa ea | ee sas Maes, Ope itee en 3 -18 1 2 Oak gud Re ee vee ed ae aol
=
et
ee
ob
0-4-4
yee
ciney OS
CHS
A
ea
#1
Pan ae
ae -4
#1
G0 wee jo 0 0 -3 OWE Rte Fie ae
_ OMA V Geary
_ D-AYC6)(-3)
18
fecie-t PORES cae eae pay bm a -18 futile i ee pee ic e1003 pe2
0 aie eee,
Coie ds Gteared
6
See DOP
ee
Oy.)
ase akeiea:
US RUN 0
a factor of 8.
OL: Bim, =I
f
tne)
Bai
es
05
cated
Pekan
5 ae
vane
Nir,
me 0 -# 8
Mik ats
0) 0c pares PAD 0 Qe _ D3)
-18 =-—]
=
D=1,
=18
eso : By 4 ea ON
2
E=2,
—2 F=-1,
Ae
5
ile a ee dus
ate
4. Come
ene
C
-1l
O;
J-l
O
O -l
=Cl-l1
C
-l/+l-l1C
0.
1.
CO}
yey Mae
HCC
+0.
-1.°¢C
24 EC eh)
=C*-3C?+1 Ei) There are four roots, at most two of which are
positive. +1 are not roots, so the roots are irrational. We solve graphically to get C = 0.618 or C =1.618.
Lo aS apo 2 PWeck, Seal 4 ee ne one i fe -18 {Synth eoa be k ie a Sa hee mois 4, od 10 33 = 22
do
The solution is
rin a
The value of the determinant is changed by
010-1143 _[o 0 0 -# a ee Cia -18
f V2t
a 2(2)(2)jd e f
bes faV3
04
e 2h
eke Wlaytete
_|o -2 -2. -1
a
esr
Rd BAS PA
2g
eh
Re.
6 0
PM
“18
eG.) . eaee
ae
TE:
2jod) Je
i
Bae ede an pn ee Tog ae eee ee pas be
a
oa
Lay)
a
lof jt
lien
Wao =
“18
41.
2a 2b 2c |2d 26 Lf 2g 2h 2i
-18
7)GB6)
-18 G=-2.
5
Y=0
: re }-{5} Shs at son a=4;
ohele
Esa The ae isa=4,b=-1.
A
|Chapter 16: Review Exercises
Ay
i
iy .
ne |
;
LEH
[x+y x-y| La 6 | he ante
RORU SRO
Lege
-4-1 saan
A'=|-4
eet LQ
—
fs i als 3 ne na 5 2. 2 % V220)4 10) 2141-2)
En
nae
vile
ee
2
=a
-4
Interchange elements of principal diagonal
Bp ,
The solution is x = -3, y= 1.
|
Divide each element of second matrix by 2.
2)
29.
Oy
40
Pd
LR 2
R3|/0 -1
PA
-13
te OO
-3}0 Ae TOE
-1/1
Rl
0
1 0 Dae |
de 0" 0 1
J) UC Sart a Beais
0
SSRI MRI -RI+R2
-2
1/4
00
3° weeg hoy P70 12
-1 -1]1 1 ; decal OO of Bee ra
3R2+R3—
7
1
Poteet
R1+R2R2/0
24:
te)
S38 'E=|-6
Dosa
iene Ba I Ff 0
1
far 3
1/0
= 3
Azl3
[-2 4
{
aE
-|4
and change signs of off-diagonal elements. -4 5
24. |-F'-2)
oe
10
rc-|
P sie
a
oe
[ves 10
le
earcke
“ahh
|
17. Find the determinant ofthe original matrix.
fe ae
el
eae aera
‘l
5]
4:1
0/4
Oh R2)0
; 6 va. |
1/20 1 00)
Kel. TNL On RON Gad
stag
y=sin=
3"
han!
Oe One
jee ales eee R210 ho hee ho [0 #2 O]-41 01
188
Chapter 16: Matrices; Systems of Linear Equations
Pe Ream
2R2-> Rl
0
| eee). -?)/-2( 2
1
Oo as
ROY RI
-t/4+ 1G) pc
1 -2)-2
RIO ON ead
L
2R3+RI>R1 13
6
OF)
eae
20 it
ar3)
2 9
toc =b ok
00
66
iil,
i
0
2/|-6
DEAL
i
a
ane
Via
2h
= —3
66
Ge
Cad
_ -198
3
ale g
1
ei
ae aa Ea
=-|
8666 6 || 7
Boog
2ihon3
u=
2
pe ee:
is eee
nate
Scat
hs dee 66 66
0
CLE
Lene
ae -2 ree4
e100)
A'C=|-4+
dae
{Neate Be
1}]4
|0 1 O}-4
Rar Reiko
0
2u-—3v+2w= 7 3u+ v-—3w=-6 wipe aha
eka 19 AE nm 0
fae 00
+R3 > R3
41.
WOO Es ai eas
lo 3R2+R1>RI |0)
ag
66
_ 0 a
eae
i
The solution is
s
u=—1,
v=-3,
w=0.
=| -3 0
45.
The solution is uv =—-l,v=-—3,w=0.
3x-2y+
axt Oyt3z93 4x- y+5z=6
33. 2x-3y=-9
3 =2 1
4x-— y=-13 R2—--2R1+R2
A=|2
0
2x-3y=-9
Avail
a gauibe.
La
aa
A'C=|2
2x -—3(1) =-9
6
b
48
-2
5
-i
4
6
-2
3s edie
2 -2)/3 3
ee
3
Sms
as
R24 -3R1+R2 R3—>-7R1+R3
x+2y+ 3z7= 1 -~10y—12z=-1
~20y-15z=-5
Lik SSRs x+ 2y+. 3z= |
The solution is x =3, y=1,z =-1.
49. 3x- y+6z-2t= 2x+Sy+) z+2¢=
R3->-2R2+R3
9z=-
a -10y-12(-4) =-1
3x+5y—-3z+
5dBe Alas
y=t
*+2(3)+3(—4)=1 bee The solution isx =1, y=4, z=-4+
8 7
4x—3y +82+3t=—-17
-10y-12z=-1
f=
8
Pgs ad ee
8 =
re aes So | oS a eee
At =|
7
=H 8 199
w% tell Tig 74 74 222 eae Se 222
Vanes
3|;C=|3;;4¢=/2
;
x+2y+3z=1
3x—-4y-3z=2 7x-6y+6z=2
=)
a 3
x=-3 The solution is x = -3, y=1.
37,
z=6
ae u
74
5 222
:
Chapter 16: Review Exercises
7 ee
a
eT
189
al
8
222
d
Ty ate it Seek hah Re
A'C =|
iar
74
Ri74
666
om
We
50
74
a
7
iar ||_ 47 666 oo
Tito
:
1
N=
Govt
eae
|
ieee!
c0
Ste
i
aN .
The solution isx =-4, y=3,z=4, t=—4.
l/!
°
4113
4
ts 3
v=lt i
8
4
53, 2-|!
65
ag i a
69. rea
-2
Be
aes
Rome
2 -l
(A+ B)(A-B)
:a
igoaod
totals als 4 aa 1255 256
57.
Expanding by the first row:
aie
hala
es
Ah
x -5(-3)—4-2) 2-3-3) +304} (3)-8)
ae
61. | 1 -5 -2|-4R1+R2—R2 e 3 4 =f} -1| 44R1+R3— R R3 acy R3 eee La
{Nasi 0
ae
= 4(-4)(-4)
=77
ENev B?
_j2°3
Al26leFe
aeaesarb a ' “h spi=
won|) Slee —2
a
Or
(A+B)(A
3
-(§]
The solution is R, = 4Q, R, = 6Q. 77. 2R,+3R, =26 3R,+2R,=24 -2R1+R2—R2 2R, +3R, = 26
-$R,=-15 R,=6
2R, +3(6) = 26
ly
The solution is R, = 4Q, R, =6Q.
Chapter 16: Matrices; Systems of Linear Equations
190
81. 180¢-—d =0, suspect
25:
225 (3.0)
;
225t -d = ————,,
Pei
a
on
225. -1) :
=
45
0
a
batt +44
| Bay
SL Gy a) ACO
89. | 3
police
-5
4
9a
45
es Abe
F025 1 le PONS hid t=0.25, 1-22=0.20 The police overtake the suspect 0.20 h, or 12 minutes, after passing the intersection.
85. —0.3x+0.5y+0.32z=0
RIO R4
0.2x-0.8y + 0.3z =0 0.1x+0.3y -—0.62z =0 xtyt+z=1
x+yt+z=1
-0,2R1+ R2—> R2
0.2x-0.8y+0.3z=0
-0.1R1+ R3—- R3
0.1x+0.3y—-0.62z=0
0.3R1+ R4— R4
—0.3x + 0.5y + 0.322 =0 xt+y+z=1
0.2R2 + R3 > R3
-y+0.1z=-0.2
0.8R2+R4—R4
0.2y -0.72z =-0.1 0.8y + 0.62z = 0.3 x+tyt+z=1
—y+0.1z =-0.2 -0.7z =-0.14
+ R3 > R3
0.7z=0.14
R3+R4—R4
xty+z=1 —y+0.1z=-0,2 z=0.2 0=0 —y+0.1(0.2) =-0.2 y=0.22
x+0.22+0.2=1 x= 0.58 The solution is x = 0.58, y= 0.22,z = 0.2. That is, in
the long run the first brand will have 58% of the market, the second brand will have 22%, and the third one will have 20%.
2
ia
10
104/16
ey
Wie
(ot
[375 |=] 581
beef stew
1575 kJ
coleslaw
581 kJ
icecream
741 kJ
741
CHAPTER 17
INEQUALITIES 17.1 7.1 1.
°
41.
iti Properties of Inequalities
The inequality x+1< 0 is true for all values of x
¢-0.3
(ian) sees}
Gene)
less than —1. Therefore, the values of x that satisfy
——_ie~
t
-0.3
this inequality are written as x < —1, or as the
interval (—-0,—1). 5.
45. Suppose 0
2) 2
= (cot 6) =cot?@
45.
sec x 1 sinx sinx ——-secxsin x =————__ - —_: —_ sin x cosxsinx cosx sinx
xsi
— 0.819 =-0.819
sin xcosx
17. sinacos B+cosasin B =sin(@+8) where ~@=2x, B=3x
oe
sin 2x cos3x + cos 2x sin 3x :
BOsay sin xCOS x
= skal sinx
= sin(2x+3x)
2a
= sin 5x
; 21.
2-—4sin
: 6x = 2(1-2sin
49 6x)
sinxcotx+cosx _ sinx | cosx :
=2c0s12x
cot x
9
_ sinx
2
25. sin” (-1)=-5 since sin
2)=
ee ee 2
Deon
29. tan|sin” (-0.5) |= tn{-2
33. secy tany
cosy
coty
= sec” 2
*
y—tan
2
z
=1+tan’? y—tan’ y =1
and
= sinx
2 2082
~siny
Z
_ Chapter 20: Review Exercises
229
ST.
cosx(2sinx-cos2x+sin? x) = 0 MOY, A cosx=0>x=—,— or Ngo o)
VA=SinNCHIeLL AsintkI-Letant_
2sinx—(1—2sin’ x)+2sin? x =0 4sin? x+2sinx-1=0
OtVe Ali) sin x =
V=L.E403023
E61.
ah
y=2cos2x
—0 é
sin x > 1, no solution
Lae pe 2 II
cosx),
ee Sy+4x=1> y, wos a7
6x+3y+2=0 3y =-6x-2
=Sx+5
Lea
ea
-
Bn i
a
Z
showing the lines form a parallelogram. y
ng
4x-—ky=6 —ky=-4x+6
remus -k —-k ee p eis —k y And k ote ke:
Since the lines are parallel, the slopes are equal.
ntBe k k=-2
. If we let Celsius temperature be a function of Réaumur temperature, the function will go through the two points (0,0) and (80,100).
- Section 21.3: The Circle
235
_ Therefore, b = 0 and
65). y= at sy =x a=3,n='4
100-0 n=
80-0
Le
4
Therefore, from the slope-intercept form,
G=2R 4 53. The line goes through two points: bao) 7 (0,3)3(35,2,) < (15,23)
The 7-intercept is b = 3. The slope is
23-3 m=——
15-0
1
_4 3
DB» Bo dh
From the table above we see that the slope is
The equation of the line is
~~
T=-—x+3. 3
2.9-0.48
0.60
= 4.0
The slope is the increase in temperature (in °C) as the distance from the outside increases in 1 cm.
The log y-intercept is found where x = 1, so that log x= 0 and b= log3
For every cm further inside the wall, the
= 0.48
temperature is increased by (4) C.
The line is log y= 4.0 log x + 0.48
57, m= tan(180 0.0032)
This verifies the fact that the equation is
m=-5.6x10~
log y=loga+nlogx
48
log y= log3+ 4logx
b=—ym 7
= 0.48+ 4logx
= 24x10°m
=2.4x10° m
21.3.
The Circle
y=mx+b
1. (x-1) +(y+1) =16 (x-1) +(y-(-1)) =16
=-5.6x10°x+2.4x10°
y = (-5.6x+2.4)10~
has centre at (1, -1) andr =4
61.
n=1200V1+0
M= 1200
0
¥
n
b=0
(4, 2400)
Ne:
ey ee
Chapter 21:° Plane Analytic Geometry
236
29, x°+y?-2x-8=0
5. (x-2) +(y-1) =25
x’ —-2x+l+y? =8+1
C(2, 1), radius is 5.
2
9
(x-h) +(y-k) =r?; C(0, 0), 7 =3
aides
ea
(2 Therefore, the point is outside the circle.
53. The thickness is the difference in the radii of
The centre of circle is at the midpoint between
(100x10*,0) and (900 x10~,0), or at (100x10~* +900x10~ 2
0)=(500%10° 0)
The radius of the circle is half the distance between
(100x10,0) and (900x10,0), or _ 90010
-100x 10% 2
the circles.
r=400x10°
2.00x* + 2.00” = 5.73
The equation is
(x-500x10°) +(y—0) =
Chapter 21: Plane Analytic Geometry
238
21.4
1.
The Parabola
13.
y? =20x 4p =20 p=5
F (5, 0); directrix x = —5
r(2,0); directrixx = oe. 8 8 y
x=-5/8
F(5,0)
F (5/8,0) V(0,0)
5
pe Ax 4p=4
17.
F (3, 0);V (0,0) directrix x = —3, p=3
p=1
y =Apx
F (1, 0); directrix x= -1
y? = 4(3)x sued Pe 21.
V (0, 0), directrix y = -0.16
F(0, 0.16), p =0.16 x’ = 4(0.16)y x’ =0.64y
25.
Gf
V (0, 0), axis x=0
Substitute (-1,8) into x* = 4py:
tay 4p=72
(-1)" = 4p(8)
p=18
1=32p 1
F (0, 18); directrixy= -18
P= 35
Therefore, 1
hae hie y x= :y. 29.
Passes through (3,3),(12,6) Axis is the x-axis.
Substitute (3,3) into y? = 4px:
Section 21.4: The Parabola
239
2
3° = 4p(3)
at (p, 2p) and at (p,-2p).
ap= 3
The length of latus rectum is
ORS 2
=
2p -(-2p)|=4la1.
F
33. y= 2x
45. Let the vertex of the parabola be at the origin. x’ =4py. A point on the parabola will be
x= pa 2
1
Substitute intox? = -l6y:
(236.5, 55.0). Substitute this into the equation and
solve for p.
ta es 2
236.5 = 4p(55.0)
2
pie
2
4p =1017
y'+64y=0 y(y’ +64) =0 ¢
=0
‘
or
x? =1020y ,
eae
+
f
A
64=
of the parabola is
Pai
:
ae
0
y’ =4px
;
Substitute (0.00625,1.20) into the equation:
—4)
Jaen
el
x= ae
(1.20) = 4p (0.00625)
rag x=8 The points of intersection are (0, 0) and (8, —4). 37. y’ +2x+8y+13 =0; solve for y
eae he foe glchara te ai:8ms 53.
Liam
Ka
ie 15)
ubstitute
y’ +8y+(2x+13)=0
(6.5,
7.5):
7.5° = 4p(6.5)
-§+,/g? —4(2x +13)
y= Si
|
49. Place the vertex-at the origin. Then the equation
eae cea
p=2.16 cm
The filament should be placed 2.16 cm from
_ ~8tvi2—8x ==
the vertex.
y, =-44+V3-2x, y, =-4-V3—-2x
AY
(6.5, 7.5) 2 -10
6
(3/2,-4) v
-10
41.
y’ =4px,
F(p,0
: eta When x = p, ” 4
Ei bogs
y=L2p Therefore, the latus rectum intersects the parabola
57. The path of the ship channel is a parabola with
focus at (0, 2) and vertex (0, 0) and directrix y =-2. Therefore,p = 2. : The parabola is of the type
en
PY:
eae therefore, x" = By.
Chapter 21: Plane Analytic Geometry
240
21.5
The Ellipse ;
1
RL
:
Ax? +9y? = 324
al
ee at
gre
Wa Icy. —+—=l, SRG
re a Me =81,a=9
a’ =36,a=6,
b? =36,b=6
b= 5b
|
* = 81-36
V (0, +6), minor axis: (+5, 0)
= 45,
c= 3V5
a’ =b' +e"
y (+9, 0), F(£3V5, 0),
36=25+"
y-intercepts (0, +6)
c=Vil
F(0, + vil)
13. y’ =8(2-x’] 8x°+y" =16
Sy
2
2
2
2
Sai
el
16
16
25° 144
a’ =144, a=12, b? = 25,b=5
ae '
V (0, +12), minor axis: (+5, 0)
2
yx
16
erent
a=b +c 144=25+¢"
y
c= 119 =10.9 F(0, +119)
i 12
—
ag ez
-4
-5
5
we
a =16,a=4
12
b? =2,b=V2 c? =16-2=14,c=Vl4
V(0,+4), F(0, +14), x-intercepts (+2, 0 V (0, +12), F(0,'4 V1 19), x-intercepts (+5, 0).
|
|
)
Pa
Section 21.5: The Ellipse
17.
241
V (15, 0); F(9, 0) d=15,a° 2225;
The equation is Me el PL Desa)
or: Sy? +20x” =100 4x? + y’ = 20 29.
4x°+9y? =40,
y? =4x
4x? +9(4x) = 40 x? +9x-10=0 (x+10)(x-1)=0
144x° +225y* = 32 400 21.
x=-10
or,
x=]
F (8, 0) => c =8 and the major axis is the x — axis. end of minor axis: (0,12) > 6=12
Y= 410)
a=b+c
Graphs intersect at (1, 2), (1,-2)
a =12? +8 a=~208
—~
y =4(I)
y’ =—40, nosolution
y=+2
33. 4x? +3y? +16x—18y+31 = 0; solve fory
3y° -18y+(4x7 +16x+31)=0 18+,|(-18) —4(3)(4x? +16x +31)
2(3) _ 18+ V—48x" -192x - 48 25.
(55 94)= (2,2) (225 2)= (14) Substitute:
ke
aoe
FOE Ae fade
2 =n —4su—-12 y, = 34+4-— 3
V3) ea
one ae
1
Therefore, 4a? + 4b* = a*b*
ite reysie a3 =|
Therefore, a? +16b? = a°b’ 16h? =a°b? -a’ =a’ (2° -1)
ie a=
GB" 3 b? -1
37, thy?=1 2
Substitute: 2
Z
oe +4b* = pd b? b? =1 b? -1 64b7 + 4b* — 4b? = 16d" —12b* + 60b° = 0
ke
The vertices will be on the y-axis if the denominator of y” is greater than that of x”, so
1267 (-b? +5) =0 B= 5
Z
Therefore, i + oa =]
k? er
‘ ea?
“~
—=
ag tees OLE Ral
BY
aa =.
ae
—~t-7-
'
'
Pe
eS pe Oe \
N
3 =
~~ 2
Poke oe t + SN
/
-
ee
¥
aybX
ae i]
JA FS
\ Ne
t.
x
Pe
r
r=cos26-2 i
for n even.
Review Exercises =)
5)
2
1.
Given straight line; (x,, y,) is (1, -7);m=4
y-y, =m(x-x,) 4
45.
y-(-7)
From the calculator screen the curves intersect at
0, 0) and (1,1), where the tangent lines are ( ) ( ) ‘ horizontal and vertical, showing the curves intersect
at right angles.
=4(x-1)
y+7=4x-4
y=4x-4-7 y=4x-11 or 4x-y-11=0
y
x
4.5
4.5
: (0,-11)
cae
Chapter 21: Review Exercises
255
ar
i \ >.
x+y? =6x
(x+3) +(y+0) =16
x? —6x+9+y? =9
[x-(-3)] +(y-0) =4’ C(h, k)=(~3, 0); r=4
(x 3)’ +y’ =3°; circle, centre (3, 0), r =3 The concentric circle has equation
(x-3) +y? =r? and passes through (4, -3)
Substitute (4,-3):
(4-3) +(-3) =r? r= 10
(x-3)' +y? =10 x’ -6x+9+y" =10 x -6xt+y -1=0 y
vertices (0, 1), (0, -1)
Cee) foci:
(4,-3)
| oy ; \o re,
Vi
V (10,0), F(8,0), tangent to x = -10
1
The major axis is the x-axis. Since the ellipse has
(0,0)
vertex V (10,0) and is tangent to x = -10, the other vertex is (-10,0), a =10 and the centre
ti x
1/2
is the origin. Therefore, c =8 a =b' +c?
-]
100=b° +8 b’ =36 p)
z
ran Aaa g ares 9x? +25y’ = 900 100
36
21.
Given x* -8x-4y-16=0 x? —8x = 4y+16;x° -8x+16 = 4y+16+16
(x-4)' = 4y+32;(x-4) =4(y+8) 4p=4;p=1 vertex (h, k) is (4, -8); focus is (4, -7) y \
yh
13. Given x? + y? +6x-7=0
(x? +6x)+(y?)=7
(x? +6x+9)+y° =7+9
(4,-8)
x
Chapter 21: Plane Analytic Geometry
256
25. x -2xyty’+4x4+4y=0
B’ —4AC =(-2) -4(1)(1)=0, parabola A=C, so 0=45
-2[e Ey)
(sev)
ar Pear mics = ye] 44x ty == 0
37. x? +xy+y’ =2 vty +xy=2
r? +(rcos 9)(r sin @) =
2 = —2V2x"'
V (0, 0)
pie
£ r* 1+sin @cos@ 4
41.
r=
2-cos0 2r—rcos@=4
2r=4+rcosO0=4+x
4r? =16+8x+x 4(x? + y?) =x? +8x+16 4x? +4y> =x’ +8x+16
3x? +4y* -8x-16=0 29. r=4cos3@
45. x+y’ -4y-5=0
Let 0=0 to zin steps of mn
y? -4x? -4=0 From the graph, two real solutions. be
_
Int"
pee
harap
——
Ses
RO |
any
Nees
ATE. wees dona 3
3%
3
2
49. x? +3y+2-(I1+x) =0 3y =(1+x) -x?-2 EER
r= 2sin—
(l+x) —x°-2
2 y=
Let @= 0 to 47 in steps of rk
3 lt 2xee
3
See
—
Chapter 21: Review Exercises
257
SIRT 3
61 1
———
3 1,-3
Graph y, ==x-—
7,-3
oie
gs
d, +d, =8
>
describes an ellipse with centre (4, —3),
2a=8 a=4,a’ =16
aie 5
c=3,c’ =9. 5
a=
+c
16=b°+9 Bb? =7
ahdAl ea (y43)°
-5
53. x? —4y?+4x+24y—48=0. Solve foryby
He
completing the square.
y’ —6y =0.25x? +x-12
i
65. The slopes between every pair of points must
ad
be the same:
y —6yt+9=0.25x7 +x-3
vele3)
er le)
(y-3) =0.25x? +x-3
pie x=
3—(-2)
y= +V0.25x? +x-3 43 Graphy, = ¥0.25x* +x-3+3 yy =~-V 025x° +x —-3+3
y (13,x)
(e255)
aC
(3, -3)
69. a? +b? =(-3-2) +(11+1) +(14-2) +(4+1) a’ +b” = 338
c? =(14+3) +(4-11) = 338, points form a right triangle m
Sf
= 2—3CSO = jee sin@ oo hr =2—-——
Ce
aitO ]
-6
ease —, 2 ae Ur ers.
mm, =
at. l4=2
8 =
12
2
Chapter 21: Plane Analytic Geometry
258
89.
73. (x+ jy) +(x-jy) =2 x +2jxy-y
+x -2jxy-y =2
.
40° = 4p(50)
x’ — y’? -1=0, hyperbola
4p = 32
; 77.
y? =4px
Viieo an
From definition,
:
x -6x+9+y> -2y+l=y x’ -6x-8y+1=0
(50, 40)
1
(x=3) +(y-1) =(y+3) +6yt9
From translation of axes,
(A, k)=(3,-1),
wes:
p=2>4p=8
(x-hy = 4p(y-k) (50, -40)
(x-3) =8(y+1) jee x°#4 -6x+9=8y+8
93. P=12.0i-0.500/7
x’ -6x-8y+1=0
i? —24i=-2P i? —241+144 = -2(P-72)
(i-12) =-2(P-72) This is a parabola with vertex at (12,72), with axis parallel to the P-axis and opening downward. P 72
81.
v=v, +at
6.20 = 1.92+ a(5.50)
i
a=0.778 v =1.92+0.778t
97. If the pins are on the x-axis and centred, the
equation of the ellipse has a = > = 5 and 2
ee: 2
2
sO Sela Ae
a=b’ +e
[
5° = 3° +07 e=4
5.5 85. The intersection of the cone and the highway is
a circle. Its radius is r
=170 tan 7
A= nr? = n(170 tan 7°) A=1400 m?
The coordinates of the pins are (+4, 0) so they ae are 8 cm apart. The length of the string is
1 = 2a+2c =2(3)+2(4) 7=18
cm
Chapter 21: Review Exercises
:
101. Let Pie, y) be the coordinates of the recorder in
a coordinate system with origin at the target. Let
the rifle be at (0, 7). Using the distance from the
259
“N6aex® + 4(you 4a’) gee 4r(y= 4a’)y +(rr? —4q y =0
which has the form 4x?+Cy’ + Ey+F =0 Since the bullet travels faster than the speed
recorder to the rifle, we have
of sound (at speed v,),
yx’ +(y—r) =v, (t) +¢,) where f, is the time
r= Vpl) >V,ty = 2a, andr’ —4a’ >0.
for the bullet to reach the target and ¢, is the time
Therefore, A and C differ in sign, with B= 0,
for sound to reach the detector from the target.
so the equation represents a hyperbola.
Using the distance from the recorder to the target,
Summary:
Vx t+y =v,
The difference of distances from P to the rifle
Subtracting
and from P to the target is a constant, so the locus is a hyperbola. Moreover, in the second-
yx +(y-r) x’ +’ =v,t, = constant = 2a
degree equation obtained A and C differ in sign
By definition, if the difference of distances from
with
B= 0.
two points is constant, the locus is a hyperbola. We now obtain its second-degree equation.
105. r= 200 (sec 6+ tan 6)” /cos@A,
de +(y-r) =2a+,x? + y’; square botfTSides
VY +y-IWtr =4a +4ajxr ty +x ty -2ry+(r? — 4a") = 4a,/x? + y?; square both sides
ary? —4r(r? ~4a7) y+(r? ~4q°) = 16a’ (x? +y?)
200
0 )-f Ss oes
(x) _ 3x? -3-3x" -6xh-3h?+3
3)
x(x+h)
f (xt+h)—f (x) _
~6xh —3h’
f(x+h)- f(x) _
—6x —3h
(4x3 + 6x7h+ 4xh?|
soe
Vin
—6x —3h
Tes, me (x? +2xh+h? —1)(x? -1)
29.
v=
Point (3, 1) 1]
1]
Ade bcra ryucray
This function is differentiable for all x? -1#0 or x’ #1 whichis x #41.
Section 23.4: The Derivative as an Instantaneous Rate of Change y= 2x? +16x
f.37.
= 14,0-9.80(2) = -5.60 m/s
f (x+h)— f(x) = 2(x+h) -16(x+h)-(2x? -16x)
t=2
f (x+h)— f(x) = 2x? + 4xh+ 2h? -16x dt
—16h-2x" +16x f (xt+h)— f(x) = 4xh+2h? -16h RVG
pos) : L() «axa 2h-16 f=
= 14.0-9.80(4) = -25.2 m/s t=4
16
i i
‘
279
Point (-3, — 2)
3x+1
tet
lim (4x + 2h - 16)
A-fO
h0
h
16):
h0
f'(x)= 4-4) If the slope of the tangent line is horizontal, i.e. a
0=4(x-4) 0=x-4
h
m 18% +16 = 48x — 48h -16 rae 90
Ah(3x+3h+1)3x+1)
—48h
x=4
= im —-—__
h0 h(3x+3h+1)3x +1)
y =2(4’)-16(4) = -32
S/S Fl[S §/S &l/F & , — = in
—48 dx ='>0 (3x+3h4+1)3x+1)
Point (4, —32) 41. For the function y = x* + x° + x? +x, the derivative
dy
dy _
thatif y= x”, when n> 0 then oO= mx
—————
48
dx = (3x+1)
= 4x? +3x? +2x+1. It seems like there is a
pattern that has developed, where in the derivative, the power over the x in each term is multiplied by that term, and then the power is decreased by one. So
23.4
h
hoo
Ul
3x41
16(3x+1)—-16(3x+3h+1) (3x+3h+1)(3x+1)
ll a=
slope of 0, then
was
216
3(xth)+1
f'(x)=4x-16
v3
penis a (3(-3)+1)
n-1
The Derivative as an Instantaneous Rate of Change s(t) = 14.0t — 4.9027 s(t+h)—s(t) =14.0(t+ A) —4.90(t +h)’
—(14.0¢ — 4.9027) s(t+h)—s(t) =14.0t+14.0h- 4.90
—9.80ht —4.90h? —14.0t + 4.9077 s(t+h)—s(t) = 14.0h —9.80ht — 4.90h°
a
= 14.0-9.801 — 4.90h ds dt
= lim (14.0 —9.80r - 4.90h) h>0
a = 14.0—9.80t dt
s=3
—44,t=2
s =3(2) -4(2)=4 1,999 199, t(s) EOS Boeri s(m) |-1.0 0.75 3.23 3.9203 3.9092003 4-s(m) | 5.0 3.25 0.77 0.0797 0.007997 0.001 0.01 h=2-t(s)| 1.0 05 0.1 7.997 v=+*(m/s) |5.00 6.50 7.70 Toe 2
v= 8.00 m/s when t =2 8
Chapter 23: The Derivative
280
bee 2n(r+h)—2ar =lin—
13. s = 3? -4t v= lim
—
s(t+h)-s(t)
de!
h
h>0
dr
Pete 3 (t+h) i -4(t+h)-30 -3¢ +4¢ h>0
ve [im
_ 6th+3h° —4h v = lim —————_ h
29. q = 30-21
v= lim(6t+3h—-4) h>0
t+h)-—g(t ping, A)
v=6t-4
dt
v = 2(3t-2) v|-. = 2(3(2)-2) = 8.00 m/s
_.,
h
30-2(t+h)-30+42¢
h->0
o ate alt i= lim——h0
h
i= Him(=2
tt )- 380
h>0
h
i=-—2
-120 +1 12(t+h)y(t+h) — -(t+h) haere h-0
33:
h
P = 500+250m’
dP...
120? + 24th+12h? --(t° +30°?h+3th’ +h’)
—
dm
Shp) Ges ho>0
y=
h0
ih
|W s=12°?-#
HE
h->0
ae = 27 = 6.28 cm/cm dr
h
y= lim
h
2. ah = lim-— 0 fh
dr
_ 3t° + 6th+3h’ —4t-4h—-30 +4t
h—0
————————
h>0
cae lim 277
h
h>0
m
dr
h
.
24th+12h? -30?h-—- 3th’ —h?
km h>0
h
P(m+h)-P(m)
== lim ————— h-0
h
AP
ign 300+ 250(m+hy -500- 250m
dm
'0
h
dP = lie 250m? +500mh + 250h? — 250m?
v= lim (24t+12h-3¢ -3:h—h’)
dm
ho0
h>0
dP...
v = 24t -37"
—
dm
v = 3t(8-1)
h
500mh+250h?
== lim ———_ h>0
GP
he
pat lim(500m + 250h) 21. v= 61? —4¢+2
dv.
v(t+h)-v(0)
ae == 500m dm
h
|
6(t+h) —4(t+h)+2-6 +41-2 h0
a=li
h
oot 112th + 6h? — 4t- 4h+ 2-61" +4t~2
h0
_
oe
a= lim(12t+ 6h —4) h>0
a=12t-4
== 460 W = 0.460 kW
AM \20920
h
12th+ 6h’ — 4h
=500(0.920)
| =0,920
_ 48;
SEA
t+3
LER, dt
(t+h)-V(t)
hoo
h
igAS.
av = lim thats
25.
dt
de_,,_c(r+h)-c(r) h
h>0
ads
EES
h 48(t+3)—48(t+h+
Section 23.5: Derivatives of Polynomials
281
aV_,, 48¢+144~-48r—48h-144 dt
'0
= A(t+h+3\t+3)
Age
—48h
dt
'0h(t+h+3)(t+3)
AV
ut,
—48
— = lim ——————_
dt = 90(t+h+3)\(t+3)
ay. %
48
aes aV
48
—|
at
(t+3)
=-—-=-1.33 t=3
(thousands of $/year)
(3aC 3)"
y
wy le’) an y=5x" -32
V
a ty = -$1330/year
dx r=kVa
41.
dx
dx
®
Ifr =3.72x107 m when 2 =592x10” m then k =
eee
ge
= ——————————
VA
/592x10°m
= 48.3484 Jm
1aaya, r(A+ = r(A) da
— 13.
eas 22 —kVA kVAth+kva da dr
dr
me oH eee yee) rs Ath)(A),
dp =
da = AlkJAth + kVA) dr
kh
Gh
Wein n{kJA+h+kVA} ees)
ET
dA
et
17.
PO
Abede 23.5
Derivatives of Polynomials
5(37")=2(1)+0
prattte f (x) = 6x" +5x° +2"
f (x) =—3x? (14x* -5) 21.
y = 6x" —8xt1
a 0
BY) 0a) cae = 12(2)-8
DN 216 dx x=2
d(w#
Chapter 23: The Derivative
282
25. y=2x°
— 4x?
® ~ 2(6x5)-4(2x) —— =12x° -8x
= 12(-1)° -8(-1)
This line has slope 1/3. Perpendicular lines have negative reciprocal slopes, so any curve perpendicular to this one at this location will have instantaneous slope —3. So, for the parabola to be perpendicular to the given line:
ca dx —3=4x-7 4=4x Xie
= 29. s= 60 —5t+2 ds
:
=—=6(5r'
dt
4
(
}—5(1)+0
(1
vy=30r*—5 v= 5(6¢* —1)
33. s=2°-4¢7
equivalent, h =r, SO
V =2r'r = ar’ Taking the derivative with respect to a change in variable r yields
d 2(31?) —4(2r) v= ==
cn
v=6f —8t
—= 137’
Viana ‘i 6(4)° -8(4)
oe ae
v|._, = 64.0 m/s a.
45. In general, the volume of a cylinder is V = zr7h, where ¢ is the radius and h is the height of the cylinder. In the particular case where the radius and height are
y = 3x’ -6x
“ = 3(2x) —6(1) ad= 6x-6 dx
dy
a = 6(x—1) if slope is parallel to x-axis, slope is 0,
A ‘)
>
dr
ieeees:
ar")
h
dr
49, R =16.0+ 0.4507+ 0.012577
° = 0+0.450(1) +0.0125(27) AR _ 9.450+0.0250T aT aR = 0,450 +0.0250(115) dT
T=115°C
factor the derivative 0 = 6(x-1)
Gx
yal
aE) iY Saeea ee
41. Parabola y=2x° -7x
r
dr dr dV
aT
aT
oe Wane ue T=115°C
T=115°C
C
C
53. h=0.000104x* —0.0417x° + 4.21x? —8.33x dh a = 0.000104(4x°) — 0.0417(3x7,) + 4.21(2x) —8.33(1)
dh oe 0.000 416x* —0.1251x? + 8.42x —8.33
dh
= 0.000416(125)’ —0.1251(125)’
AX |.-125 km
+ 8.42(125)—8.33
—3y=-x+16
Ba 3 3
=—x-—
Ca AX| 2125 km
= -98.0 —— km
q
Section 23.6:
57. Given g=9.81 m/s’ and K = 0.500,
eS dt
h, = Mo
2g
&
dh, K a> We
dt
ave
FE
Soe
wi
_ (0.500)(3.25) m/s 981
piso
du _»
ms
m/s
u=5—3x°
v=3-2x dv a
3(2x) ae= eel -6x
—
=
—2
=
Uu
dx
.
_dy —
dx
OL avu iao~ 4 dx
+
dx
@ = (4-3) y =(2x-7)(5-2x) y =10x—4x? —35+14x
y=—4x? +24x-35
The product rule derivative is d(u-v)
du
dx
dx
Identify this as a product of two functions wu affd v, where
=
dv
dx
WY = _9x404
p(x) = (5-3x7)(3-2x)
du r
dx
®dx = (2~7).(-2)+(5=23)-(2)
Derivatives of Products and
—_—
anes
dx d(u-v)
Sn Ef 0 mn oY me
—
Quotients of Functions Ii
14
ie
GV is ase
23.6
19h
gees
y =(2x-7)(5—-2x)
dh, _ Kv
dh,
283
Derivatives of Products and Quotients of Functions
Vv
!
.
du
—_—
dx
lee —8x+24 dx
ne
dy
(x-3)
Hee) aa = (5—3x):(-2)+ 3-22): (-6x) p’ =-10+ 6x? -18x+12x° p’ =18x" -18x-10 p’ = 29x" -9x—-5) s = (3t+2)(2t—5) Identify this as a product of two functions w and v, where u=3t+2
and
du _» dt
au-v) _ 4,dt dt
v=2t-5
ee
de
dt
dt
AS = (34-422) + (2t-5)(3) dt
1X
and
dy _ (2x+3)-(1)-x-(2)
Ge
(ayes)
dy 2x+32%x oe
yv=2x+3
Chapter 23: The Derivative
284
17.
Mee and
vy=3-2x
29.
(3-2x)-(12x) —(6x")-(-2)
(3-2x)° _ 36x -24x? +12x°
he
eee 36x —12x?
* ele ale aie (3—2x)" dy
dx
dy_ Cara Gr eG)
12x(3'-x)
dx
de (3—2x)’
(2x+3)'
dy _6x+9-6x+10
de dy dx
3x+8
a. FI)eae? u=3x+8
and
df (x) _ (2° +4x+2)-(3)-(3x+8)-(2x+4)
dx
Vv
(e453) 19
RRS
(x? +4x+2)°
df (x) _ 3x? +12x+6-6x° -12x-16x -32 dx
(x +4x+2)
df (x)
—3x? —16x—26
dx
(x? +4x+ 2)
25.
y =(3x-1)(4—7x) u=3x-1
and
du _;
v=4-7x
This is Eq. (23.10), the derivative of a constant multiplied by a function.
WwW __4
dx
dx
y=x'- f(x)
at, ANY) Eg
dx
dx
EC
dx
ady 7 Be 1): (-7) + (4-7%)-@)
dy =
—21x+7+12-21x
“sx?
and
a d(u-v)
dx
v= f(x)
av_ f(s) dx
peat
ee
dx
dx
dk
Section 23.7: The Derivative of a Power of a Function
Y ee
o
a +(x) 2x
ee PO) dx
coe
41.
285
.
9,Ga
dr,
6(R+r)(2R+r)-6(R? +Rr+r)
dR
9(R + ry
dr, _\2R* +6Rr +12Rr + 6r? — 6R? — 6Rr -6r
x
dR dr, _ OR’ +12Rr
y=(4x+1)(x* -1)
9(R+r)
dR 9(R+r)
dy ae oe 7 (4x +1)-(4x3 )+(x 4 -1)-4
dr, _ 6R(R+2r) @ = 16x! +4x +4x*-—4
dR 9(R+r) dr, | 2R(R+2r)
igs 20x* +4x? —4 dx
dR
3(R+r)
we 4(5x* +.x° -1) dx |
_ 9800h?
Sis
dy =| rae =4(5-1-1)=12.0 ( )
Phe
dp _(h+1)-(19600h) —9800A? - (1)
45.
dh
P=VI
= (0.048 - 1.2077 )(2.00 - 0.8001)
dp _ 19600h* + 19600h — 9800h" dh
aP
)-(—0.800 ) = 2s(0.048 —1.2077 )-(
dh dp
4.80¢ + 1.922
= 2.88(0.150)’
— 4.80(0.150) —0.0384
23.7
= 0.694 wy t=0.150
s
S
A = (84). (40+1) +(20
ds
y= —=(t
—8t)-(4¢4+1)+(2¢
2
+141)(2r-8)
+¢41)-(2t-8
y=4 +f —32¢ —84+40 —1617 + 2t*? —81+ 21-8
vy= 8? — 457? -14¢-8
2(R?+Rr+r?)
1, =———__—_ 3(R+r)
ar, 3(R+r)-2(2R+r)—2(R? + Rr+r’)-(3)
dR
= 9795.9 Pa/m = 9.80x10° 3 Pa/m
dh h=48.0 m
2
49. s=(t? —81)(20? +1+1)
53.0
(49)
1=0.150s
os dt
_ 9800(48)(50)
dp
dt
dt
(h+1p
Alatom
a = 2.881? — 4.80t — 0.0384
ae
FP ey
dp _ 9800h(h +2)
“ = —0.0384+ 0.9607? — 4.80 +1.927?
dP
(h+1)y
dp _ 9800h +19600h
gh
+(2.00 - 0.800r): (-2.407)
= =-0, 0384+ 0.9601? —
(h+1)
9(R+r)
1.
The Derivative of a Power of a Function
p(x) =(24+3x) Identify this as a power of function ww and v, where n=4 u=2+3x° and
286
5,
Chapter 23: The Derivative
y=vx
25,
yex?
u = vV8v+5
|
u=v(8v+5)
Recognize formy= u” with n = 1/2
a
du
2
1/2
(4)(8v+5) 2
(8) +(8v+5). (1)
= = 4v(8v+5)” +(8v+5) 1/2 Vv
2
~1/2 & = (8045) *[4v+ (8v+ 5)]
i , ie 1
=)
du
dv 29. y
xr
yt)QxVx+2
eet
a x+4 The numerator contains a product rule,
i] 2 = LoS)
(8v+5)""
S2e(n+ 2).
SJe Jue 3
Hl
AQvr5
to a whole function is a quotient rule. |
te
£ oO ue
Wile
( ¥ (x? + ti If the derivative is zero,
xa
+2)
ae
0 = x(x? +2) x=0orx=+V-2 (imaginary). Therefore, eStore dx
20.
5
A
REN
-x° ie + es + 2x(x? + ie
dy _ x(x? +2)
ie
Sos
1BTB605) =6.25)"
4
Name
(+. @)-ar"]
a
Chapter 23: The Derivative
288
13.
y =x
-l
een (2a) t= 2af? (4a® - a2)” +2a(4a? — 2?)
23.8
17.
yt+3xy-4=0
Differentiation of Implicit Functions
2
zl,
yl
ait Beg dehy el
(9? +1)6x—3x? (2y)
(y° +1)
_
dy +1-—=34+40 dx
_6x___6xt'y bd y
+1
(y?+1)
&
dx
3(9” +1) -6x
dy
y +1
dx
6x? y+(y? +1)
(y? +1)
Section 23.8: Differentiation of Implicit Functions
—
289
(y' +1)
=
0=2-x x= 2
-6x°y+(y? +1)
2? +? = 4(2)
dy _3(y? +1-2x)(y? +1) CSR 25.
y 6
(y +1) -6x°y
y= i2 The function will have a horizontal tangent at (2, 2) and (2, —2).
2(x?+1) +(y? +1) =17 Sas
“2 : +1) +(y” +) ]=£07)
xyty?+2=0 S(y+y +2) = “(0)
6(x? +1)(2x)+2(y? +1) 2y2=0
x24 +22 40= 0
2
= =12x(x? +1)
dy tt we) ae
& Fe S|
Ce dx
oe x+2y
a) UEas a dx|\4,
29.
—3+2—
had ae aria 1. BBG486
® (20y"+3) = 4x" dy ¥
dx
41.
4x°
PV = n(RT+ap—*) where a,b,n,R,V
20y'+3 are constant
Bie
dr|y2
ee
4Cee
20(-2)+3
os 108
157
PV =nRT +naP —nbPT™
4 (py) = aT
aos
dT
(nT +naP—nbPT*)
ye = nR+na=- nbP(-T*) + rT (-no =)
dT
dT
dT
ly ~ nas) = nR+ sed aT ie nr
eo) aT
_ ORE, moe
T
T?
ae nRT* dale agen
Bey If tangent is horizontal, slope is zero
p= 2-x y
itis ere
2
VT —naT +nb
nRT* +nbP
aT ‘A T (VT -naT + nb)
Chapter 23: The Derivative
290
f(r) =1536r +2592
.
r? =2rR+2R-2r
45,
f'"(r) =96(16r + 27)
= 4 (ork 4+2R~ 24) HW”
ae
len dR
f\ (r)=1536
dR
70)(r)=0 forn2s
one rap. a
(2r + 2)
2r-2R+2=
y=2x+x!?
aR _2(r -R+1)
dr
—-.2(r +1)
aR
r-R+
dr
r+1
june
Rete: -=4(1) vr rh
23.9 x
Nays
wes =
Higher Derivatives
+
y = 5x° — 2x"
17.
y'=15x’ -—4x
y"=30x-4 yn =30 y =0
f(p)=
8 Ji+2p
f (p)=4.82(1+2p)
-1/2
f'(p)=-2.4a(1+2p)” (2) f'(p) ie -4.872(1+2p)°”
y”) =0 forn>4
f"(p)=-4 ar =)(1+2p)
(x) (x)
°° (2)
Ve
f'"(x) = 6x -72x’
f(x) =6-144x f® (x) an [4d
f(x)
21.
=0 for n>5
y= (3x? -1)
y'= 5(3x? -1) (6x)
~1) y'= 30x(3x*
Or), fr srl4n45)
y"=30x(4)(3x? =1)' (6x) +(3x" -1)' (30)
f'(r)=r-3(4r+9) (4)+(4r +9)
f'(r)=12r(4r-+9)+(4r+9)
y" = 720x? (3x? -1) +30(3x? -1)"
f'(r)=(4r+9) (127+ (4r+9))
y" = 30(3x? -1) (24x? + 3x? -1))
f(r)=(4r+9)' (16r-+9)
x? (27x? =1) 30(3 =1)'
y=
f'"(r)=(4r+9) (16) +(16r +9)(2)(4r+9)(4)
f'"(r) =16(4r
+9) +8(167 +9) (4r +9)
1"(r)=8(4r-+9)(2(4r +9)+16r +9)
25.
u=
sa
f"(r)=8(4r +9) (24r + 27)
u ome 2
f(r)=24(4r +9)(8r+9) f(r) =24(4r +9)(8) + (87 +9) (24)(4) f'"(r) = 7687 +1728 + 768r +864
ieee puree
Section 23.9: Higher Derivatives
i
ine
,__(-6y? + 6xy- 6x")
(v+15)
(2y-x)'
u = (v? +30v)(v+15) '
—2
A ~6(x? -xy+y’)
u"=(v? +30v)(-2)(v+15)° (1) +(v+15) (2v+30)
Sr
u"=(v eisy [(-2)(v? +30v) +(v+15)(2v +30)
Look at original function
, __(-2¥? - 600+ 2v? + 30v+30v+ 450) u= (v+15)°
: ars ee ae i Dye 3
ris aise
OM)
450 15)" -
ib
re
33.
29, x -xy=1-y’ d
(2y-x)"
|
acai
ae
suka O WS agile os 3x %
;
Madea y ~ Qy-x
" Cee? nee AS nh |x=-8 3(-8)? (-8¥
» _ (29) (y'-2)-(y-2x)(2y'-]) 2y-
yl
y-2x =2)—(y=2z)| ( 2 y~2x -
23
ei
z
ae
Fi aS veal ae gi
Qy—x}
(y
RAB SHH DAR HOR _-16+3 13
pene,
37.
u 2 y-25-20 x) 2 te y (2y-x)
Peo
s = 26.0t — 4.902 =—ds = 26.0-9.80
~»)
de
5
dt
Afrmoanh
|.sop, = 9-80 m/s” a
yr=
d(u vy (2y—x)
41,
yn ap— 27-29)
oe
2
(2y-x)’
dv eee
du aa
dx?
de
:
2
de de) de
a Day Shy IX
__ (2v-20@y-9)-2(y-2%)'] (2y—x)’ : (4)? + 2xy—4xy + 2x” -2y? + 8xy-8x")
a
d°(u-y) 4 @v avdu.) du, dudy
(2y-x)
(2y—x)'
j
pee BP os
tn— 22
F
camer
2y-x
(2y—x)
y-2s-ty ara
y"=
4x3
; mele
y" =
(1) =—2y- y'
2x— xy'— y= —2yy' at 2yy'—xy'= y—2x
ae
2
yates
shame ipa
ee
x
y =3x"? 2x7
d
2x-(x-y'+
2
yaar =
45.
dk dk
2
By Ee X xX
P(t) =8000(1+ 0.02r + 0.00577) P'(t) = 8000(0.02+ 0.012) P"(t) = 8000(0.01) = 80.0 people/year?
Chapter 23: The Derivative
292
13.
dt?
(2t+1)°"
y=.
ied) (2¢+ |
1.60
(2t+1) 53.
3/2
satplg 27 43 6
6
ds
1
17.
7
v =—=—(47°)—— oP ral aoe* Br) =-20% 2624)
a = 2 =26r)-Lean-4 a=2t?-7t-4 a=2t? -8t+t-—4
dy
ee 2x? —2x? —4xh—2h?
de 90
a= 2t(t-4)+(t-4)
dy
a=(t—4)(2t+1)
Rada
hy? (xh)
|, —4xh-2h?
PEPE EPEC)
dx ='>0 hy? (x +h)
If acceleration is zero,
0 = (t—4)(2r +1) t=4.00s or t=-0.500s But since t > 0 t = 4.00 s is the solution
21.
Review Exercises iy
y= 2x’ -3x7+5
o. (7x°)-3(2x)+0
lim(8—3x) =8-3(4) =-4 aM dx
AS Sage
@ = 2x(0x°
3)
Chapter 23: Review Exercises
293
fl ya3y
PST
0)
d 1 Sap4 fall
I-Sy
di|..,
af (y) _(1=5y)(3)-3y(-5) dy
Gclvel
f(y) _3-15y+15y dy (1-5y)" 3
dy
(1-5y)’
64" (4)
Oe Mee liners 768 Vos
(1-Sy)°
d ie
.
41.
oO. 48
y=3x
448%48
es aes re x ee
wie Voges
e
y" =36x? — 2x" Ms
ee
2 alta
(5-2x")
bbe
(18x° -1)
_ -2(18x* 0,a, -2
x>-l; f(x) increasing. 2x+2 0 for all x. The graph is concave up
6x +6 0 for x > —1 and the graph is concave up.
33. y=x -12x
Therefore (—1, 1) is an inflection point.
y'= 3x? -12
Since there is no change in slope from positive to
y"= 6x.
negative or vice versa, there are no maximum or
On a graphing calculator with x,,,, = 5,Bo x4 ole =O,
minimum points.
Vein = 20, Vex = 20, enter y, = x° —12x, y, = 3x’ -12,y, = 6x. From the graph it is observed
ta
that the maximum and minimum values of y occur
when y' is zero. A maximum value for y occurs when x = --2,and a minimum value occurs when
x= 2. An inflection point (change in curvature) occurs when y" is zero. x is also zero at this point.
Where y'> 0, y inc.; y'< 0, y dec. y">0, 29. y= 4x’ -3x' +6
y concave up;
y'=12x? -12x° = 12x? (1-x) =0
y"0 fori0 atx=1, so the graph is concave up
and (1, 3) is a relative minimum.
x =—lis an
asymptote.
or the x-axis or the origin. Derivatives:
Oe
,_, (x+1)(2x)—x? (1)
ee
_ x(x+2)
(x+1) y'=0 atx=-2, x=0.
a
Section 24.6: More on Curve Sketching
307
(-2, - 4) and (0, 0) are critical points. Checking
Derivatives:
the derivative at x = -3, the slope is positive, and
(7) y'=—4x7 + 8x7
at x = —1.5 the slope is negative. (-2, —4) isa
=Oatx=2
relative maximum point. Checking the derivative at x = —0.5, the slope is negative and at x = 1 the © slope is positive, so (0, 0) is a relative minimum
(8). y" = 8x0 247 =0Oatx=3
point.
y" 0 for all x # +3, so the graph is always increasing.
fo
MoS
uae ane
9-2" +2x7 +18| rt 9(9-x?)(2x)[ (9-x ts18x(x* +27) (9ee Le
ee
|
Chapter 24: Applications of the Derivative
308
Concavity changes at x = 0,x = +3:
R” (0) 0 for x < -3 and 0 < x 0. Therefore,
isa rel. max.
2%
Vi? +40 000
approaches zero, so
R= 0 is a horizontal asymptote.
y = 0 is an asymptote.
R
t
29.
V =a2rh=20 . 20 Write height as a function of radius: h =
~ Jf? +40 000
Intercepts:
There are no intercepts.
(1) iff =0, R=1;R-intercept at (0, 1)
As r > 0, A, grows without bound, and
(2) No f-intercept since & is never 0
it grows as the curve 27’ (since
Symmetry:
approaches 0).
(3) The function is symmetric with respect to the
Vertical asymptote at r = 0.
R-axis. However, R has no physical significance
for t < 0 so we have no symmetry. Derivatives:
ay
Ir
F
-3/2
= -200r(1? + 40,000) = 0 for t=0
r
= 0forr= flOa.47 a
(4) R=200(r? +40 000)"” R'=-100(t? +40 000) ~ (22)
eee
d’A 3 rr
.
80 = 42+ A
=0Oforr= -— (reject) a
f"(1.47)>0 min. at (1.47, 40.8)
(5)
(? +40 000)” (-200) - (-2007)($)(7°+40 000) (21) R"= (?+40 000)" ]
d’A > 0 forr>0 Ir 2 Therefore, 4, is concave up for r > 0. A
_ 200 (7?+40 000) [-1? - 40 000+ 31° | (? +40 000) _ 400 (:?- 20 000)
(*°+40 000) = 0 for t= ¥20 000 = 141
40} 20};
Section 24.7: Applied Maximum and Minimum Problems
24.7
309
Applied Maximum and Minimum Problems
A= xy, 2x+2y = 2400 => x+
y=1200
A=(1200-y)y =1200y-y” A'=1200-2y
LV =1252 14 L"| _, 90, x = 1.87 is a rel. minimum
x + 600 = 1200 x = 600
L" _ 7 2 0,x =—1.87 is a rel. minimum
y=35.-4=-0.5
Annex = 600 (600) = 360 000 m?
1=./3.5+ (-0.5)° = 1.94 units is the closest that
P= EI -RI’
oF dl
the particle comes to the origin. i.
ORT
Ag
eee 2R
d’P = -—2R 0, so P is amaximum for
x=y=VA, a square.
Chapter 24: Applications of the Derivative
310
25.
12:07 =x" +’ y? =144-x?
33. y =(10-2x)( 2 V = 2x? —25x? + 75x
Substitute y= 4144—x" into 4 = sy ;
V'= 6x" —50x+75=0 x = 1.96, 6:37 >5,’ reject
A=—xv144—- x?
2 BAS
Jx0 0, sox =0 is a minimum. y” |ose, 0, so the area is minimized
ifw=16.0 cm Dimensions: w+8.00 = 24.0 cm
1+12.0 = 36.0 cm 6.00
y” = 24x? -30Lx+ 6 te
41.
Letx be the distance from factory A.
n(x)=—5+
8k (8-x ;
s Te eaABE ee Stan! sates ini n'(x)=—3 x (8-—x)
Section 24.8: Differentials and Linear Approximations
311
x * =625(3) - 4.00 39 x = 2.00 km; 10-—x= 8.00 km
n (2)> 0 => n(x) is min atx => km fromA. "
8
=
4
8
The pipeline should turn 8.00 km downstream from the refinery.
45. 2x+ 7d = 400
53. L(p)=1140p’ (1- p)”,0< p0 for0
wl
ml
9.
I[s+Sae= face
(Sot
= [Sax+ [ox7dx
= (5x) +(-Sx") +C eae
x
Chapter 25: Review Exercises
. 13. eS
325
eae
J
(9-Sn)
95. o=3apri
7 = {(9-5n) *dn
Substitute (—1,3) :
9-S5n)° F ANOS 5
=—
—2 1
10 (9—5n)°
-1)° 3=3(-1)- Vic 3
17,
teks:
C=—
3 un)
Hig Ca =+C
ne iat ey
10(9—S5n)
17.
2
-1/3
3x dx
| J1+2x?
3
zs
oy!
“5= {(9- Sn) (—S dn)
1
x
Lacs
1
= [( (1+ 2x"
be (3x) dx 1
[ F()av-[ FQ) av=[ Fv) av The area under F' from 3 to 8 minus the area under F from 4 to 8 leaves the area under F' from 3 to 4.
u=1+2x°; du =4xdx; ne 33.
16 Le 8
(2x-x)
y=(x-1)’ isy=>° shifted right one unit, so the areas are the same.
_
|
326
37. Since f(x) >0, the graph is above the x-axis.
[x2
la ifA, 42y, 43y, 4] re
Since f"(x)0, min; £"(4.07) 0 for @> 0.853, deé so A is aminimum at 0= 0.853.
‘ (-sin(z@’ ))-20
cos(7@ ) Caine)
ee
oh < 0 for 0< 0.853 dé
27.5
r= 0.5 In [cos(z@)]
(=
lin
y+2
= Inv’ —In(v+ 2)
(-—sin 4x)(4)
= 2Inv—In(v+2)
&d = —4tan4x dx
ar
2
1
y = 4log, (3-x)
dv v(v+2)
fesse
33. y=x-In’* (x+y) y
=2In tan2x
oi) am
tan 2x
—— = 1-2
sec” x(2) 2x(2
In(eay ) a net i beara
2In(x+y)
dx
2In(x+ y) dy
ewdee 2x ~
tan 2x
i emer) x+y—2In(x+ y)
_ Asec? 2x ~ sec2x
x+y
x+y
pretamine
Cse2x
x+y
= 4sec2xcsc2x
&-|S
|x+y—2In(x+ y)
x+y
_ xt y=2hteey)
dx x+y+2In(x+y) 13.
y=In(x-x?)
dy _
1
Serpe
mye elk
ks
y=(1+x)"”
) (1-2x)
Ont yee
‘Spo 17.
y =3xIn(6—-x)
eeBhi ae
dx ~ 6-x
SRULaU x-6
+3In(6~-x) t
yy ee
(b)
0.1
0.01
0.001 | 0.0001
y | 2.5937 | 2.7048 | 2.7169 | 2.71815
Section 27.6: Derivative of the Exponential Function
Al.
349
y =sin™ 2x+Inv1—4x?; x = 0.250; = sin”! 2x+In(1- 42°)
2
2 eee oe de
-(2x)?
sae
2(1-4x’)
f-{o# “afer” —(1+V1+x? a
dete
stage
hs 2v1—4x? — 4x
x
Tsay? ad
2
2V1-x?
1-4(0.25)°
AX), 0.250 ‘i
ike
= 0.976 45.
de
j4vtex?
ad
x —vV1+x? -1-»?
y=tan'2x+In(4x? +1);
1
PE
Big
ae
gree. L2H
dy _
-1=V1+x?
CA
4x? 41
OR
~ 14 4x?
¥
1-x
ie eae oye
Pe
Sak vi-x?
dy _ eee
-1-Vi+x? |
dx
TEA Tee), ee
Ge x(x?
be
dy _P-(+ieVler?)
When x = 0.625,
_ 2+8(0.625)
dx
“ 1+.4(0.625)°
x(x? oie
x WEE x
feAL ee XY Plevies: 6%) wiley
= 2.73 yy, =
Beast
de xlevite Wier sae
be
8x
~144x?
Oy eivanan
yx | vite?
oe “
49.
—2x
_ 2y1-4(0.25)’ - 4(0.25)
In(x7), xt #0
27.6 1...
Derivative of the Exponential Function y=Insine®
dy_
| N
dx
a
is not defined since x=-1
-1limy=1 lasx
oo. 0.1
Applications
yoesinx,0sxs2z
-0.1
y = 0 for x = 0, 2, 27. Intercepts: (0, 0),
(7,0), (27, 0) No symmetry to the axes or the origin, and no
vertical asymptotes. wy=e dx =0
y=3xe*=— & = (3x)(
*cosx—e™ sinx
)+3e
= (3-3x)e™ #2 (3)(e*)+(3-3x)(-e™*)
sin x = cosx
plat pel 4’ 4
d’y
re =e
= (3x-6)e™
*(-sin x —cos x) --e* (cos x —sin x)
(1) Intercept: x = 0, y = 0 (origin) (2) Symmetry: None (3) Asx -> +00, y=0, horizontal asymptote y = 0
a
oe = e*(—2cos x)
AS X —> —090, y — —oo
(4) Vertical asymptote: none
= 0 forx = cage
p
(5) Domain: allx,range to be determined
ae
a
=
-2e°""* cos—
=-0.644 [ 0.322] is max 2
q =
Ceoa Ue
Je*!4 ogg 2 4
=0:03
|
0 => (22,-0, 014) is amin
(6) set = ieee
for x=1
f"(1) +00, y > +00, x — —00, y + —00 (4) No vertical asymptote.
(5) Domain: all x; range: all y. (6) ay wedSS> 0 for all x, so the function dx 2 is always increasing and there are no maxima or minima. 9,
Se
4e*
d’y
2
-
=a
ihe=4e"* (-2x)= zee dx e
ee d’
x
dx
ax
4.
2
= 0
(~8) aes ) aan" (2x? -1) £2)
Ess e*
aS
a
e“
,
er
=e
Pie
pet
x=-x
(1) Intercepts: x = 0, y = 4, (0,4) intercept.
x = 0, therefore inflection point at (0,0)
(2) Symmetry: yes, with respect to y-axis. (3) As x
+e0, y > 0 positively; x-axis is a
y
horizontal asymptote. (4) No vertical asymptote. (5) Domain: all x; range to be determined.
ee for x =0
Gy =
aes
d’y
in +r°)+C
Chapter 28: Methods of Integration
374
25. Formula 11; u = 2x; du = 2dx;a =1 f
dx
ue f
xv 4x7 +1
y=x
2, dy
2x
aan
2dx
s=
2x/(2x)? +77
(in PRS ty, leper
1+ (2x)de
G :fJQx)? +1(2dx)
2k
Formula 14;u = 2x; du = 2 dx,a=1
29.
1
Formula 40; a=1; u=x; du = dx; b =5
s= 5 eae +1 + Ine V4x7 |
m/i2
{Ue sin Ocos 50 dd= MSoUHe) Edy feos? ee 0 2(-4) my te 1
1
=—cos 49@——cos6 8 12
0
1 [05+51 12+ 5)iin] 1 4 3|
0
m2
5
= 7[2N5+ In(2+¥5)]=1.48
= 0.0208 33. u=x",du
= 2xdx, ;=x"
49. Fe y [thdh = y[-x3-y)ay= Drei
(ees 2xdx DeRha (i- x ag
(i= u 73
Power rule and formula #6 witha =1,b=lu=y
Formula 25; a =1
2xdx
3-y
_ a)
Po (1-x")
37:
ydy
Nacewnte =3[
u
Gorge
(ty)? |
Se
2
A=
1-x*
+C
3(1)
2
Formula 46; u= x7; du = 2x dx;n=1
[x Inx*dx = ;ee In x? (2x dx)
41.
10(9800) 3 = 32.7 kN
Let u=??, du =3t’dt, formula 19, a=1 fe (esi) ae
(
zie ae
= 5] Ee a
+ iP al4 Zine
1)
=< (+1)? ++o t“1 +2In( + f+1)+C
Review Exercises 1,
u=—8x,
Jord == Jo oxy
45.
From Exercise 35 of Section 26.6;
s= ik ea
dx;
du =-8dx =
|
-8x
eee me 8
—~8dx
(-84)
| Chapter 28: Review Exercises
5.
jigtated dé Bs
375
‘yetal Be)
1+sin@
1+sin0
u=1+sin@,du =cos@
= 4In(1+sin a) 277
9.
Jycos? 26 do = [ cos* 26cos26 dO ={
/2
—
(1-sin 26) cos 20 d@ (2 e* dx
= [cos 20 do- [O six? 20cos20 de
=;[cos 20(2d0)—— ['“sin? 20cos20(2d6) n/2
= 5 in 26- ue 20 2)
3
=Ve*+1+C
l
(1- =
7/6
Buh sine sin | -{ sind=5 sin’ 0 2
3
6
29. [es3sin? 3¢d¢= f 3.
ey
7! 6 3
=
ate cos 69(6d¢)
3
n/6
n/6
- sin69),
=34,
13. {(sine +cost) -sintdt
-3|3- 0 |-Asinsind] =7 4 4 2| 6
= {(sin? t+ 2sinf cost + cos’ t)-sin tdt = {a + 2sint cost): sin tdt
= [(sine + 2sin’ cost)dt
33.
3u° -6u-2 _ Au+B u? u? (3u +1)
= sin tdt+2 jen:t(costdt)
G 3u +1
_ (Aut B)(3u+1)+ Cu? u? (3u +1)
2s =—cost+ sin t +C
3u? —6u—2=3Au? + Au+3Bu+Bt+Cu? (u = sint,du = costdt)
17.
3u? —6u-2 =(34+C)u’ +(A+3B)u+B
(1) 34+C =3, 3(0)+C=3,C=3
fsec’ 3xdx = [sec 3x sec? 3xdx
(2) A+3B=-6; A+3( ~2)=-6, A=0
= \ (1+ tan” 3x) sec” 3xdx
(3)
===[sec’3x(3dx)+5Jtan*3xsec” 3x (3dr) eae.
3
B= —2
pee? —6u—2 (3u +1)
yk Se 3X6
du = [=
la
eet
Bets
Uu
= Lee NE, 9
3
37. u=Inx,du=
21.
u=x*,du=2xdx 3xdx
l
Panay Seca se +(x?) is
|& x ax
[ 3cos(In x): —
x
; =3sin
(In x)}
Chapter 28: Methods of Integration
376
= 3sin (Ine) —3sin(In1)
53. (a)
u=x +4
= 3sin(1)—3sin(0)
du = 2xdx 1
= 3sinl=2.52
ca aaah ee 7 du
IT +4 41. u=cosx, du =—sinxdx
pane
2 apes “dus
ae aed
5 -- fips}
jane cine i 2 dé
5 I = —u +—= tan —=+C
Vx’? +4 =secO
5 27 COSX% =-—cos x +-—= tan +C
V5
Vx +4
= [2tan @sec d0 = 2sec0+C
fede = [4xde = 2x7 +C
¢:
[Inede = [4xde = 2x? +C
_
The integrals are the same because the
:
x +4 +c
5
=Vx°+4+C
functions are the same.
(a) is simpler
49. Use the general power forraula. Letu'=e" +1du=e'dx, ,
57,
n=2.
A= I yds Siu =f 4e**dx
fe (e" +1) a= [urdu . Uu =—+C, 3 fe? (2dr) l
3x
1
on
61. fan” 2xdx
+ [evar
u = tan” 2x, Pe ae
3x a
re
2x ae
aie
l C,=C,+ 3
dv = dx
x TEVay
ae
;
The two integrals differ by a constant, with
du =—+_.(2dx)
-
2
6dé) ite 2 sec” AU tan 0( mjpep
po
NG
4/5
45.
Jvu =u? +C
vax
ah
[tan (2x)dx = x tan" 2x- fo 1+ 4x?
Chapter 28: Review Exercises
z
377
1
= xtan 2x7 |
8xdx
f=—
+27"
)
= 2) In(1+21))” =1.01N's 0
= xtan” 2x-+In(1+4x°) 4
A= [tan" ee
ern
2
1+ 4x?
2
en 2x——In(1+4x*)
0
yee
y=16.0(e"" +e"), x =-25.0 tox =25.0
A=2tan"! 4-
z=3xy- x?
Ue= 50(1.5)\(e, + 5e,)°5(5)
a =3y-2x
= 375(e, + 5e,)” For e, = 200 V ande, = -20 V
@ ae
= 3(-2) - 2(1) = -8
di, oa 375(200 — 100) 0.5
= 3750 WA/V = 3.7510 °1V/Q
29. z= 2xy? eo)
- eo ee = 6xy” —3x?
45.
ou
a
ox)
ay
Laplace's equation is —~ + a = 0,
Let u(x, y) =e
* sin y. Then
Section 29.4: Double Integrals cca —e *sin
ax
ou
—z =e ox
=e
ee
eaaee
Ou
ray
siny
— z=-e oy
383 cos
= -sin=+—
4
6 12
= EAS= I
Sas
siny
Ler m-6
Substituting into Laplace's equation:
ie
ou du —+—=e"siny-e*siny=0, ax? oy? y if
:
13.
so the equation is satisfied.
1
Pd e” ae dydx Peg5 [As ihe fate, (2xyex layed [ [ox
A, ias ov ign. 2
29.4
Double Integrals
1 Pe
:
. 1. [Lierrarac e ffoe)
ce [8 (e* -1)de pe [3x72 de—= ° xd
dx
6
x4
poe ifx
TO
A INC
: me
Es 2
6
+—_ |dx
ox
a
8
= 495
2 i
17. The trace of the surface in thexy plane is
20
y=4-x, soy goes from 0 to 4—x. The x-intercept |
2
5
a ee xy dx dy Penge [> ofr eeiee
]
-f(p9')o 1
=5
y°dy
po Ey ap
ian dA mle
py
[ [sin x dxdy
=[
/6
(—cosx)|
dy
2
aoe ee
S NG fe +e) a = i || -—-x 5
0
eis
of the trace is x = 4, so x goes from to 0to 4:
Chapter 29: Partial Derivatives and Double Integrals
384
21. y varies between x and 2, and x
varies between 0 and 2.
V=[
[zdyax
Review Exercises 1.
FG, y)=3x°y-y’
f(-1, 4)=3(-lY (4)-4 = -52
= ie[(2427 +y*)dy de 5.
2
= Plrsrredy’] dx
x-y+2z-4=0,
plane
intercepts: (0, 0, 2), (0, -4, 0), (4, 0, 0)
= (4429 +S-2r—y
Le Jas
3
3
= (2-220 ~=x' ax a.
3
2
=U Fae ae,
3 eg
Ae ah eee.28
3
Bt
mets
eS
9,
z=5x°y? —2xy*
Zz
Oz _ 553(2y)-2x(4y°) = 10x°y - 8xy" oy
x
13. gee x y+]
2=2+ x2 + y2
25. Set up the origin in the left-hand back corner of the wedge. Then the volume of interest is the volume under the plane z =10-—2y. (This is the trace on
ox
i 2-2x’y+6xy"
(x*y+1)
the zy-plane, and it is a cylindrical surface.) It is bounded by x = 0, x = 12, y=0, y= 5. We have
iE[ zaeay = [ [ @0-2y)ardy = [(Qo-2y)s{ay 5
= 12 (10-2y)dy =12(10y~y’)
az (x°y+1)(-3)-(2x-3y)(2x") oy
(x? +1) cs—(3+2x°)
".(x*y+1)
5 0
= 12(50-25) = 300 cm?
(x*y+1)
17. z=sin" Jx+y
o aS: G)G+
Chapter 29: Review Exercises
385
2. [ [(3y+2xy)drdy=[(7+2°y)f dy = [(6y+4y-3y-y)dy
= [ord =a" 12 25. { [Pe avar = { [x(e?xay) ae
For V, =2 V,
a=1-—e~ =0.982
4. L=L +k F+kT+k,FT’
1 Sita —3)=1.10~0
ae
k, +2k,FT
L, +k F+k,T+k,FT 29.
z= Jx°+4y’ Intercepts: (0, 0, 0)
45. The region is bounded by the vertical plane y=0, _ the vertical plane x = 0, the cylinder
Traces: z20 forallx andy
x + y =16,
(defined by positive square root)
V= { [
16—x?
In yz-plane: z= +2y
In xz-plane: z = +x
In xy-plane: (0, 0, 0) Section: For z =2
x’ +4y’ = 4 (ellipse) The surface is an elliptical cone.
16-x?
= ik[
and is under the plane z =8- x.
zdydz
(8-x)dy dz
= [(8-~x) yf0
ax
= ['(8-x)Vi6-xad =8[ Vi6—x*de— ['xVi6— x de (formula 15 and the power rule)
Zz
x
= 8]—V16-x°
E
2
Re
16
re
+—sin™
pe
x
—
1
|+—(16-
2
;| 316-2")
3/2
4 0
= 8[ sin” 1]-=(16)3/2 ay yey es 3
x
33.
(a) 0=3
-4( 2) isa
B
vertical half-plane
(b) z=r? =x’ +y’
= 79.2
3
-39/2-2)
,
x+z=8
Intercepts: (0, 0, 0) Traces are parabolas, sections are circles
The surface is a circular paraboloid.
x2 + y2 = 16
CHAPTER 30 EXPANSION
OF FUNCTIONS
= 29166667
S, =1454+5+7 =
Infinite Series
30.1
IN SERIES
a
1922
1. 510.5" = 0,540.5? +0.5° +0.5'++-+0.5" +
53!" Ao
es
SoS lhe tga miter 7a
os
Geey
The partial sums do not seem to converge, so the
S, = 0.5,S, = 0.75, S, = 0.875,S, = 0.9375.
series uppieats to be dieteent!
The series now converges 5,
H
Be
ae
pe Oo
1
1
1
By
21.
2
Spee
ag eee
3
as ae py
Soe
First five terms:
1
Sa!
Risen og 1
a, el
EA
Se
S, =
= Us ria ea= -1 a, rer=00s" 3-2
— =0
ea
(1+1)(1+2)
ee
4 ie
ose
:
2x3
os
(2+1)(2+2) re
Re
See
aes |
lim Sn = lim(2”*' —1)=©, divergent
3x4
eA ee Aes Wee Also, it is a geometric series with
r = 2 > 1,
so the series is divergent.
ee ty 2 a SAAS Ate
10+9+8.1+7.29+6.561+-:-+10(0.9)" ++;
n= 0,1, 2,3,... a=10,r=0.9 +12m-8=0
c,=Oand
(m—2)(m? —4m+4)=0 (m—2)(m—2)(m—-2)=0
31.9
m= 2,2,2 repeated root
y=e"(c,to,xt+0,x°) D’y+2Dy+10y=0 m +2m+10=0
1.
Solutions of Nonhomogeneous Equations
b: x°+2x+e™
5.
=-1-3/,
a@=-1,B=3;
D’y-Dy-2y=4
m —m-2=0
y=e“(c,sin3x+c, cos3x) Substituting y = 0 when x =0:
(m—2)(m+1)=0
0=e°(c, sin0+c, cos0);c, =0 ae 1 Substituting y =e°"°,x ==:
y, =e" +c,e"
6 = e See
e
-7/6
= _ e oa C sin 5)
=e
-71/6
G
is the solution.
y, = A+ Bx+Cx’ + Ee™
Ee!
2 m, = -1+3);m,
y=0
We choose the particular solution to be of the form
By the quadratic formula,
Re
from which
ax
Substitute y = 0,x =0: .
29. D*?y-6D*y+12Dy-8y=0
RK
has
m, = 2,m, =-1
Assume a particular solution of the form y,, = A
Dy, =0;D*y, =0 Substituting in the differential equation:
0-0-24=4
¢, =1
y=e sin3x
Therefore, y, = —2 and the complete solution is y=ce"4 c,e*—2
Section 31.9: Solutions of Nonhomogeneous Equations
9.
\y"—3y'= 2e” + xe"
7
411
= (2C —-2B+ A)+sin3x(6F -8E)+ cos3x(-8F —6E)
D? y -3Dy = 2e* + xe"
+x(B-4)+ Cx’ =2x+x° +sin3x
m —3m=0 m(m —3) = 0;m, = 0,m, =3
y, =e +c,e*% =c,+c,e"
Equating the coefficients of similar terms:
Let y, = Ae* + Bxe*
2C -2B+ A=0;6F -8E =1;-8F -6E B-4=2;C=1
Then Dy, = Ae* + B(xe* +e") = Ae* + Bxe* + Be* Dy, = Ae* + Be® + B(xe* +e") Ae
Be eB
2 Aire
& Be
=0;
te
LBs
Oi AN
et
3
aoa,
The complete solution is
D’y, = Ae’ +2Be* + Bxe*
y=er(c, +x) +10+6x+x° ~ =sin3x+
0531
Substituting in the differential equation:
Ae* + 2Be* + Bxe* —3(Ae* + Bre’ + Be’)
D’ y-Dy-30y =10
= Ae* +2Be* + Bxe* —3.Ae* —3Bxe* -3Be*
m —m-30=0
= —2 Ae* — Be* —2Bxe*
(m—6)(m+5)=0
=e’ (-2A—B)+ xe" (-2B)
—-
= 2e* + xe” Equating coefficients of similar terms: -2A-—B=2 and -2B=1
2
13. ye
ie
4
2
y= xs x + sine
dx
Ek
ets. lea
Lety, =A
Then Dy, =0,D’y, =0
3
eer ees bit 8
y, =ce +¢,e"
Substituting in the differential equation: 0-0-30A =10 1
joie and A=-2 2 4 The complete solution is
porns
m, =—5,m, =6
+ sin3x
m eras 2
The complete solution is Poe
tee as!
21. D’y-4y=sinx+2cosx
D’y-4y=0 ely Cea
m, = 2;m, = -2
(m-1) =0
ede ee
m = | (double root)
Lety, = Asinx+ Bcosx
y, =e" (¢, +¢,X)
Then Dy, = Acosx— Bsin x
Lety,= A+ Bx+Cx’ + Esin3x+ F cos3x
D’y, =—Asinx — Bcosx
Then Dy, = B+2Cx+3E cos3x —3F sin 3x
Substituting into the differential equation: —Asinx—Bcosx-—4Asinx—4Bcosx =—-5Asinx-—SBcosx = sinx+2cosx Equating the coefficients of similar terms:
D’y, = 2C -9E sin 3x —9F cos3x Substituting in the differential equation: 2C —9Esin3x —9F cos3x
-2(B + 2Cx+3£ cos3x —3F sin x)
soA=
ay,
+A+Bx+Cx’ + Esin3x+ F cos3x
—-5A=1,
= 2C —9Esin3x —9F cos3x —2B—4Cx -—6E cos3x
The complete solution is
A+ Bx+Cx’ + Esin3x+ F cos3x +6F sinx+
yrce
2x
5
. amex l . +C,é€ aa
SOM oof
o2 PSecitk
2
5
Chapter 31: Differential Equations
412
25. D’y+5Dy+4y=xe*+4
33. D’y—Dy-6y =5-e
D’y+5Dy+4y=0
m +5m+4=0
D’y—Dy—-6y=0 m —m-6=0
(m+1)(m+4)=0
(m—3)(m+2)=0
m, =—l,m, =—4
m, =3,m, =—-2
y, =e" +c,e
y, = ce" +c,¢"
Lety, = Ae’ + Bre* +C
Let y, = A+ Be*
Dy ,= Ae” + Bxe* + Be*
Then Dy, = Be* and D’y, = Be*
D’y, = Ae* + B(xe* +e")+ Be"
Substituting in the differential equation:
= Ae* +2Be* + Bxe’ Substituting in the differential equation:
Be* — Be“ —6(A+ Be’) =5-e
—64-6Be* =5-e*
Ae* + 2Be™ + Bxe* + 5(Ae* + Bxe* + Be*)
-64=5,
+ 4(Ae* + Bxe* +C)
=(10A+7B)e* +10Bxe* +4C
so
5 soA=-=6
-6B =-1so
= xe" +4
ate
10A+7B=0;10B=1;4C =4
Substituting x =0,y =2: hye | Ben in ete
7 Therefore, B = ae; =1,A4=-— 10 100
The complete solution is yl
1
100
10
é
8 C, 7
y=ce*+c,e* —-—e* +—xe* +1
he
1
D, = 3c,e" -2¢,e Pee
29. D’y+y=cosx D’y+y=0 m +1=0
Substituting Dy = 4,x =0:
1
4=3¢,-2¢,+= C 2 6
m=ti
Substituting c, :
y, =¢, sinx+c, cosx
4=8-3c, Be
Lety, = x(Asinx+ Bcos x)
1 eit
Then Dy, = x(Acosx— Bsinx)+ Asinx+Bcosx
D’y, = x(-Asin x- Bcosx)+ Acosx Fhe solution is
— Bsinx+ Acosx—Bsinx
y =e" ine ree
Substituting in the differential equation: -—x(Asinx+ Bcosx)+2Acosx—2Bsinx
= 0 L(f)= [e* de =e cle §
tes (-s dt)
d‘
25.
sade
= oe lime”
ak
gs cos
EID* y = 0 m' = 0 and m= 0 is a quadruple root Ve = Cc 37 Cy 4° cx? + c4x°
Let y ss Ax’, then
a %
= OANA
Substituting in the differential equation,
>.
f(t) =e"; from Transform 3 of the table, with
24AEI = w, so A= ae 5
The complete solution is oy yaa
t+cy + 03x" + 04x ig yee
ae Substituting x = 0, y = 0 we get c, = 0 x
YHQxtex? +04x° Seyi
Aw y "= 0) +20,x+ 3c4x" + aR
=-3:L(e")= ha
s—3
f(t) = cos 2t —sin 2t
L(f) = L(cos 2t) — L(sin 2¢) By Transforms 5.and 6 with a= 2:
L(f)=
a s—2
Lp) = +4
: s’+4
Chapter 31: Differential Equations
416
13.
f"+ f'£(0) = 9; £'(0) = 0 L[f"+ f'] SL tL)
31.12 Solving Differential Equations by Laplace Transforms
= s°L(f)— sf (0)f'(0)+ sL(f)— f(0) =s°L(f)—s:0-0+sL(f)—-0
=s'L(f)+sL(f) 17. F(s)=— s
0)
2
L'(F)= a = ¢? (Transform 2) 1
(s+ )L(y) =1
(s +1)’
Ly)=—— s+] Transform 3 witha=-l1
ha
4s°
2_
-8
(st+1)(s—2)(§-3)
s+1
+
L"(F) (—.) ~£r'f
3 Jt
S43 yet
3 29. Take f(t)
ge
=e”. Then l
ee)
=
[s2(y)-D]+30(y) = — LGN
Vy
eee s+3
1 leat 1 pean Pay es
The inverse is found from Transforms 11 and 3
oo
ice)
. 4y"+4y'+5y =0, y(0)=1, y'(0) =-= 4L(y")+4L(y')+5L(y) =0
d
fa
-s—2
+
y=te* +e" = (1+ pe
-
d
=e
L(y')+LGBy)= Lie)
SEEEEPaEEEEEaaEEETEED
= li
y=e
y't+3y =e"; y(0)=1
2 (Transform 12) F(s)=
See
sL(y)-1+ L(y) =0
1
ape 2° | (s+)) 25.
eo
aS
y't y=0;9(0) =1 L(y')+ L(y) = L(0) L(y')+ L(y) =0 sL(y)— y(0)+ L(y) =0
gs +35? =3541
L(F)=0
=
From Transform 3, y = 2e”
S
F(s)=
2y'—y =0; (0) =2 L(2y')- L(y) = L(0) 2L(y')- L(y) =0 2sL(y)- 2(2)- L(y) =0 L(y)
L'(F)=L' (2) 3 = 21 (-
21.
Te
1
tf
: taser) Fe (sta)
4(s°L(y)—sy(0)-y'(0))+4(sL(»)-»(0)) +5Z(y) =0 4s°L(y)-4s+2+4sL(y)—4+5L(y) =0
(457 +45+5)L(y)=4s+2 ie %
From Transform 11, Z {if(t)} = L( Therefore, Lito (0)} = -< F(s) Is
4s+2 . — 4(s+3) 4s? +4s+5 4(s?+5+1)+4 s+t
(s+4)'41 Use Transform
y=
é
-1/2t
20, a= =:b=1
cost
Section 31.12: Solving Differential Equations by Laplace Transforms
17. y"+y=1;y(0)=1 y'(0)=1 L(y") + L(y) = L()
29.
1
s°L(y)-s-1+ L(y) =— s 1
bs
1
dG),
9 ea)
Pe
= 0
Ofer ya Sg eee een AG Me are
(s° +DLQ)=— +541 ne
417
50q'4 4 gq =40
Ss
1
10°
s(s° +P) stl e s+P
SC
rere CP L(40)
40
By Transforms 7, 5, and 6:
y=l+sint
21.
é
L(g) 50“ ee wie
y"—4y=10e", y(0) =5, y'(0) =0 "
Si)
L(y")-4L(y) =10-L(e”)
Use Transform 3 with a = -3:
10°
10 =
aj wes Ore eOOR Os
£ L(y) - 5s-—0-4L(y)= ean
_
50(5000)
10
s(s +5000)
10
gt
(s+2)(s—2\s—3)
Write in partial fractions,
coe
5 R st2
=
oly
ore
ene
s+2
s-2
s-3
(from Transform 4, with a = 5000)
;
y"+9y = 18sin3¢
an
2
m=-l1,m=8
s,=¢e' +¢,e°?
y, =ce* +c,e*
8 cap ae Let s, == A, then s,pay= 0; s,=0
Lety, = Axe™
Substituting into the differential equation,
Then y/ = Ae*(1-x), yy = Ae™*(x—-2)
2(0)+0-34=6 A=-2
Substituting in the differential equation:
S,=-2
Ae™ (x-2)-7Ae™ (1-x)-8Axe™ = 2e*
The complete solution is s = ce’ +c,e°"”? —2
A(x-2)-7A(1-x)-8Ax = 2
25. 9D*y-18Dy+8y =16+4x 9
-9A=2
9
A=—9.
ae a
m
—-2m+—=
m= m,
pe
2+,/4-4(8) 2
ee 30
eae
y=y.ty, :
a
23
3y'=2ycotx
33. Ve =e"
+0,€
Let y, = A+ Bx. Then y? = B; yy
OR Seat ax a
=0
Substituting into the differential equation.
SEE ie yo 3
0-28 4+2(4+Br)=1045x 9
9°
-2B+8.4 A 9 9
°"9
EOE
eae 9 9 9
9 9
Fe
Ze Ritts ncaa
Iny—Insin?” x = Inc; 9
Poey) y= csin?” x 2) ae
pe
9
8
4
ha
a
Substituting y = 2,x= :;
n 2=csin**? —
ie
C=
The complete solution is
Therefore,
y=coe
y = 2sin*? x = 2Wsin’ x
+c,e"" +
ree
y® =8sin’ x
420
Chapter 31: Differential Equations
Bim
ea
49, @ =14y?, x=0tox=04, Ax=0.1, (0, 0)
m +m+4=0
dx
-1+V-15
*
ear Sa V15
1
part: 7 v=e"*|
15
“ecards balers
Me
IS
ike
2
2
c, sin-—tf+c, cos—t
(
Dyee"” B. ips
2
(
Hfbesin visiC; cos 2
#4
0
0.1
0+(1+07)(0.1)
0.2}
0.1+(1+0.17)(0.1)
ea RS
0.201
2
)
0.4 | 0.305+(1+0.305°)(0.1) | 0.4143450463
oe Tg sin 15,
2 \
0
0.3 |0.201+(1+0.2017)(0.1) | 0.3050401
)
2
0
oe)
[ser] 2
|
dx
53. — = 21 S 3
cle baie Substitute x = 0,¢ = 0:
Substituting v= 0 when t=0: 0=e°(c,-0+c,)
1=0’ +c c=l1
¢, =0
Therefore, x in terms of ¢ is given by
Substituting Dv = V15,1=0:
(Jas.
x=t
\
+1
Taking derivatives with respect to ¢ on both
V15 =e° arts
sides of xy =1:
sar
yon dt > dt
Therefore, y = 2e*” sin ( Vis||
Substituting tt = 2t andx= ce
(2 )
dt
BE (2:00
41. 4y’-y=0;y(0)=1
y dt
L(4y')-L(y)=0
Multiplying by dt/y,
4L(y')-L(y) =0
dy +2
4sL(y)-1-L(y) =0
4
(4s—1)L(y)=1 1
Liy)=
4s-1
=
y:
by Eq. (30.24)
Ree
y
\
Substituting y = 0,t=0:
vite =c
By Transform3 with a=—4, y=2e"
c=-
Vii
y’(0)+ L(y) =0 s*L(y)+—sy(0)-
9 L(y)+4+L(y)=0
By Transform 6 with a = 1, y =—4sint.
;
--+P=-
45, y”+y=0,y(0)=0,y'(0) =-4 L(y”)+L(y)=0
Ly)=-4(4,] s+
|
tage
4(s—t)
(s?+1)L(y)=-
0
sap
y(P +1)=1 2
—
ane .
t +1
In terms of ¢, x =7? +1 and y=——.
ores
Chapter 31: Review Exercises
421
dm
In 0.5
57. —-=km at Solve by separation of variables:
Find ¢for N= 0.75N, :0.75N, = N,e!28
, = 0.75)(.28x10")
Be oy
In 0.5
m
t=5.31x10°
Inm=kt+e
years
‘
Substituting t= 0,m =m, :Inm, =k(0)+c
69. See Example 2, Section 31.6.
c=Inm,
yok,‘ k=2 x
Inm = kt+Inm,
Take the derivative with respect tox: y'=5kx*
eee
Substitute the expresion for k : vi. =5 &
x* = SY
x x The slope of the orthogonal trajectories 61.
dy
will be the negative reciprocal of y', therefore,
y
rong aes epeeae (-1,=1, 2 2),ry y>
Sebo
bid Si aeee:
0
ydy = ydx + xdy = d(xy)
AX or
—,
y
5
eer
Sy
Solve by separating variables: ee
Sydy =-xdx
xy
»+-C
Substituting x =—-l,y=2:
= y= ee 2
2
2
sy tx =e The orthogonal trajectories areellipses. 1s
y —2xy-8=0 To find y explicitly, we use the quadratic formula with
a=1,b=-2x,c=-8:
2xtV4x" +32
aoe Sal Speke)
=xtVx7 +8
ee at
ee
of 840i = 20 at 001 at
= 10
dit+20idt =10dt P=20,0=10 jer a foe
The path is a hyperbola that consists of the two functions:
ie = fi0e" +c
y=xt+vx’ +8 and y=x-vx' +8
65.
=0.5e" +c Substituting
i= 0,¢=0: 0=0.5+¢e
N =N,e“
Substituting N = N, /2,t=1.28x10" : No.
ie
N ofl 2ea0")
In 0,5
= ~1,28x10° N=N,e
t
c=-0.5
ie = 0.5e" —0.5
= 0.5(e% -1) i= 0.5(1-e7")
Chapter 31: Differential Equations
422
Use Transform 4, a=+:
Ap LD*q+RDq+4 = L=0.5 H,
i=12(1-e*”)
R=6Q, C=.02 F, F = 24sin10¢
0.5D°q + 6Dq +50q = 24sin 10¢
Evaluate 7 fort =0.3: j=12(1-e°*”)
D?q+12Dq+100g= 48sin 10¢
i=1.67A
D?q+12Dq+100g =0
m +12m+100=0 Bk
-12+ 144-400 2648) y3
85. m = 0.25 kg, k=16N/m
0.25D°>y+l6y=cos8&
(D=d/dt)
q. =e" (c, sin 8t + c, cos 8r)
D’ y+ 64y = 4cos8r, y(0) =0,Dy(0)=
Let q, = Asin10¢+ Bcos10r, then
L(y”) + 64L(y) = 4L(cos8r)
Dq, =10Acos10t—-10B sin10¢
Use Transform 5:
D*q, =—100Asin10t-100B cos 10r°
s°L(y)-s:0-0+64L(y)= {5 +.)
Substituting in the differential equation: —100Asin10¢—100B cos 10¢+
12(10Acos10¢-10Bsin 102) +100(
4s
i
a eSer
Asin 10¢+ Bcos10r) = 48sin 10¢
_ 1}
—120Bsin10¢+120Acos10t = 48sin 10¢
4 (s? +8? y
Equating the coefficients of similar terms:
—120B = 48;1204 =0 Therefore,
B = -0.4,
2(8s)
Using Transform 16,
y = 0.25tsin 8¢
A4=0
The complete solution is
q =e
(c, sin8¢+c, cos8r) — 0.4cos10¢
Substituting g =0,
0=c,-0.4, so c, =0.4
q=e" (c, sin8t + 0.4cos 81) — 0.4.cos 10¢ Dq =e“ (6c, sin 8t — 2.4 cos 8r + 8c, cos 8¢ — 3.2 sin 8¢) + 4sin10¢ Substituting Dg = 0,t = 0:0 The solution is
=-2. bore: soc, = 0.3
oe kre 12, i(0) =0 dt
2L(i') +L(i) =12L(1) Use Transform 1: 2[sL(i)-i(0)]+L(i) = Me s
Ceenrie— Ss
D*y= = (2000s — 40x?) by=
q =e" (0.3sin 8t + 0.4.cos 81) — 0.4cos 108 a
89. EI —>; = M, M = 2000x- 40x?
dx EID’ y = 2000x — 40x?
t=0:
{100% Ss »)+6
1 (ie 9 00 ‘ =—| ——x -—x" |+¢x+0, BIN3 3 y=0 forx=0andx=L
== (0- 0)+0+c,,¢,=0
v(t valea Bet he
0
Bale
=a [ts 3
pe 3]
1
1000 a
rou
|
EI
1000 lune 3 3
-x'+Lx-100Lx )
r
www.pearsoncanada.ca