288 12 15MB
English Pages [491] Year 2020
Stochastics, Control and Robotics
Stochastics, Control and Robotics
Harish Parthasarathy Professor Electronics & Communication Engineering H. Parthasarathy Netaji Subhas Institute of Technology (NSIT) New Delhi, Delhi-110078
First published 2021 by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN and by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 © 2021 Manakin Press Pvt. Ltd. CRC Press is an imprint of Informa UK Limited The right of Harish Parthasarathy to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan or Bhutan). British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record has been requested ISBN: 978-1-032-05585-5 (hbk) ISBN: 978-1-003-19822-2 (ebk)
Brief Contents
1.
Classical Robotics and Quantum Stochastics
1–128
2.
Electromagnetus and Related Partial Differential Equation
129–149
3.
Radon and Group Theoretic Transforms with Robotics Applications
151–175
4.
Stochastic Filtering and Control, Interacting Particles
177–221
5.
Classical and Quantum Robotics
223–253
6.
Large Deviations, Classical and Quantum General Relativity with GPS Application
255–338
7.
Quantum Signal Processing
339–476
Detailed Contents
1.
Classical Robotics and Quantum Stochastics
1–128
[1] A Problem in Robotics with Current Carrying Links
1
[2] Quantum Filtering
4
[3] Evan’s Hudson Flow
8
[4] Quantum Version of a Gauss-Markov Process
10
[5] Problems on the δ-Function
13
[6] Conditional Expectation in Quantum Filtering
16
[7] K.R. Parthasarathy Quantum Markov Processes
18
[8] Quantum Stochastic Lyapunov Theory
20
[9] Let P be a Solution to the Martingale Problem π(x, a, b), i.e.
27
[10] Problem from Revuz and Yor
28
[11] Gough and Kostler Paper on Quantum Filtering Some Remarks
28
[12] Quantization of Master. Slave Robot Motion Using Evans-Hudson Flows
33
[13] Problem From KRP QSC
37
[14] Moment Generating Function for Certain Quantum Random Variables
41
[15] Belavkin Filtering Contd.
42
[16] Modelling Noise in Quantum Mechanical Systems
43
[17] Belavkin has Derived a Quantum Stochastic Differential Equation (qsde) for X (t t )
48
[18] Waveguide Modes
50
[19] Estimating the Initial State from Measurements of an Observable after the State Passes through a Sequence of Quantum Channels
56
[20] Quantum Poisson Random Variable
57
viii
Detailed Contents
[21] Quantum Relative Entropy Evolution
59
[22] Gauge Group Invariance of a Wave Eqn.
60
[23] Problem
61
[24] Quantum Oscillator Perturbed by an Electromagnetic Field
61
[25] Quantization of Mechanical Systems
64
[26] Quantum Filtering
66
[27] Perspective Projection by Camera Attached to a Robot
71
[28] Proof of The Positivity of Quantum Relative Entropy
72
[29] Entropy of a Quantum System
73
[30] Dirac Eqn. Based Temperature Estimation of Black-Body Temperature Field
76
[31] Quantum Image Processing on a C - Manifold
81
[32] Belavkin Contd. (Quantum Non-Linear Filtering)
82
[33] Remarks on Theorems from V. Kac. Infinite Dimensional Lic Algebra. P.87
83
[34] Quantum Mutual Information
84
[35] Scattering Theory Applied to Quantum Gate Design
86
[36] Quantization of the Simple Exclusion Model
93
[37] Quantum Version of Nearest Neighbour Interactions
96
∞
2.
[38] Remarks and Comments on “Collected Papers of S.R.S Varadhan” Vol. 4, Particle System and Their Large Deviations
101
[39] Quantum String Theory
103
[40] Quantum Shannon Theory Contd.
108
[41] Basics of Cq-Information Theory
111
[42] Typical Sequences and Error Probability in Classical and Quantum Coding
114
[43] Quantum Image Processing Some Basic Problems
125
Electromagnetus and Related Partial Differential Equation [1] Computation of the Perturbe Characteristics Frequencies in a Cavity Resonator with in Homogeneous Dielectric and Permittivity
129–149
129
[2] Numerical Methods for pde
133
[3] Tracking of Moving Targets Using a Camera Attached to the Tip of a 2 = Link Robot
137
[4] Problem
140
Detailed Contents
3.
4.
ix
[5] n-Dimensional Helmholtz Green’s Funtion
140
[6] Edge Diffusion
141
[7] Waves in Metamaterials
141
[8] Stroock Partial Differential Equations for Probabilities ϕ Function, u Sobolev Distribution
148
Radon and Group Theoretic Transforms with Robotics Applications [1] Modern Trends in Signal Processing by Harish Parthasarathy, NSIT
151–175 151
[2] Radon-Transform Based Image Processing
152
[3] Image Processing Using Invariants of the Permutation Group
155
[4] Radon Transform of Rotated and Translated Image Field
157
[5] Estimating the Rotation Applied to the 3-D Robot Links from Electromagnetic Field Pattern
158
[6] Kinetic Energy of a Two Link Robot
159
[7] Vector Potential Generated by a 2-Link Robot
164
[8] Group Associated with Robot Motion
166
[9] Radon Transform
168
[10] Campbelt Baker-Hausdorff Formula
169
[11] Problem on Rigid Body Motion
171
[12] Remarks on Theorems from V. Kac. Infinite Dimensional Lic Algebra. P.87
171
[13] Theta a Function From Group Theory P 252 (V.Kac)
172
[14] Iwasava Decomposition
175
Stochastic Filtering and Control, Interacting Particles [1] Bernoulli Filters
177–221 177
[2] A Problem in Large Deviation Theory
179
[3] Large Deviations in Image Trajectory on a Screen Taken by a Robot Camera in Motion
180
[4] P406 Revuz and Yor
184
[5] Problem from “Continuous Martingales and Brownian Motion” by Revuz and Yor
188
[6] Problem from Revuz and Yor
189
[7] Collected Papers of Varadhan-Interacting Particle System, Vol. 4. Hamiltonian System and Hydrodynamical Equations
191
x
5.
6.
Detailed Contents
[8] (Ph.D. Problem of Rohit) For Rohit and Dr. Vijayant. Skorohod Optional Stochastic Control. Optimal Stochastic Control of Master and Slave Robot
195
[9] English-Chapter-1
198
[10] Markov Processes-Some Application
199
[11] Comments and Proofs on “Particle System” Collected Papers of S.R.S. Varadhan Vol. 4
206
[12] Interacting Diffusions
209
[13] This is Independent of s. It is Reasonable to Expert that at Equilibrium
209
[14] Wong Zakai Filtering Equation
211
[15] Stochastic Control of Finance Market
216
[16] Wong-Zokai Equation
218
[17] Filtering Theory with State and Measurement Noises Having Correlation
219
Classical and Quantum Robotics [1] Mathematical Pre-Requisites for Robotics
223–253 223
[2] Belavkin Filtering Contd.
242
[3] Dirac Eqn., for Rigid Body Robot (Single Link)
243
[4] Quantum Robot Dynamics
249
[5] Hamiltonian Based Quantum Robot Tracking
252
[6] Robot Interacting with a Klein-Gordon Field
253
Large Deviations, Classical and Quantum General Relativity with GPS Application [1] Intuitive Derivation of the Gartner Ellis LDP
255–338 255
[2] LDP in Robotic Vision
256
[3] LMS Algorithm for Non-Linear Disturbance Observer in a Two-Link Robot System
260
[4] Disturbance Observer Design in Robotics
261
[5] Disturbance Observer Continuation
262
[6] Results in the LMS’ Iteration
262
[7] Notation for y(t) in the LMS Disturbance Observer
263
[8] Approximate Convergence Analysis
263
[9] Statistical Model for Disturbance Estimation Error Based on LMS
264
[10] Statistics of LMS Coefficients for the Disturbance Observer
264
Detailed Contents
7.
xi
[11] B (t ) ∈ d d-Vector Valued Standard Brownian Motion
265
[12] General Relativistic Correction to GPS
267
[13] Thiemann Modern QGTR
269
[14] Generalization of General Relativistic String Theory
273
[15] Symmetric Space-Times in General Relativity and Cosmology
276
[16] Selected Topics in General Relativity
298
[17] Perturbations in the Tetrad Caused by Metric Perturbation
300
[18] Geodesic Equation in Tetra Formalism
301
[19] Quantum General Relativistic Scattering
302
[20] Derive Dirac Equation in Curved Space-Time Using the Newman Penrose Formalism: Special-Relativity
308
[21] Proofs of Identities from S. Chandra Sekhar, “The Mathematical Theory of Blackholes”. Cartain’s Second Equation of Structure
313
[22] Mathematical Preliminaries for Cartan’s Eqn. of Structure
316
[23] Reflection and Refraction at a Metamaterial Surface
318
[24] Maxwell’s Equations in an Unhomogeneous Medium with Background Gravitation Taken into Account
321
[25] Relativistic Kinematics* Motions of a Rigid Body in a Gravitational Field a General Relativistic Calculation
323
[26] Random Fluctuation in the Gravitational Field Produced by Random Fluctuation in the Energy-Momentum Tensor of the Matter Plus Radiation Field
326
[27] Special Relativistic Plasma Physics
330
Quantum Signal Processing
339–476
[1] Quantum Scattering of a Rigid Body
339
[2] Optimal Control of a Field
339
[3] Example from Quantum Mechanics
340
[4] Example from Quantum Field Theory
341
[5] Quantum Signal Processing (Contd.)
342
[6] em Field Theory Based Image Processing
344
[7] Derivation of the Kallianpur-Striebel Formula
346
[8] Slave Dynamics with Parametric Uncertainties Using Adaptive Controllers
348
xii
Detailed Contents
[9] Belavkin’s Theory of Quantum Non-Linear Filtering
367
[10] A Problem Related to the Generator of Brownian Motion
404
[11] A Problem Related to Poisson Random Fields
405
[12] Relativistic Kinematics of Rigid Bodies
412
[13] Quantum Robotics Disturbance Observer
417
[14] Quantum Field Theory in the Presence of Stochastic Disturbance
420
[15] Simultaneous Tracking, Parametric Uncertainties Estimation and Disturbance Observer in a Single Robot
422
[16] Quantum Filtering to Signal Estimation and Image Processing
430
[17] Image Transmission Through Quantum Channels
431
[18] Entanglement Theory in Quantum Mechanics
433
[19] Some Other Remarks Related to The Above Problem
447
[20] Image Processing from the Em Field View Point
454
[21] CAR
455
[22] An Identity Concerning Positive Definite Functions on a Group
455
[23] Example of Construction of a Spherical Function
456
[24] Spherical Functions in Image Processing
458
[25] CAR from CCR (KRP Quantum Stochastic Calculus)
459
[26] Spherical Function (Helgason Vol. II)
461
[27] Clarifications of Problems Related to the I to measure of Brownian motion
463
[28] Problem from Revuz and Yor
464
[29] Group Theory and Robotics
465
[30] Suppose ∇ f(x) = 0, x ∈ D
469
[31] Entropy Evolution in Sudarshan-Lindblad Equation
472
[32] Problem on Rigid Body Motion
476
[33] Problem from Revuz and Yor
476
2
Preface This is a book about electromagnetic, filtering & control of classical and quantum stochastic process including diverse topics such as scattering theory, quantum information, large deviation, classical and quantum general relativity etc. The topics are diverse but I have made some effort to unify them. Some parts of the text also includes classical and quantum robot dynamics with some remarks about how filtering and control can be applied to such systems. Lie group theory has been applied to robotics having 3D links and robotics carrying current interacting with external electromagnetic field having also being studied in this text. Some sections on electromagnetics deal with properties of the Dirac-delta functions and how Green functions for the Laplace and Helmholtz operations can be computed. Some of the high points of the book are the Hudson Parthasarathy (HP) quantum Ito calculus, Belkavin’s theory of quantum filtering point on the HP calculus, techniques for quantizing general relativity and application of general relativity to photon propagation for GPS purposes. I am sure that the material of this book would be useful to research scientists and engineers working on robotics, quantum mechanics, stochastic processes and to physicists working in general relativity. It will also be useful for research students in their fields who are looking for a research problem to solve. Author
1 Classical Robotics and Quantum Stochastics [1] A Problem in Robotics with Current Carrying Links: To determine the configuration of the two link Robot System i.e. the 3 Euler angles specifying the configuration of the lower arm and the 3 Euler angles specifying the relative configuration of the upper arm w.r.t. the lower arm. The two arms carry current and from the far field radiation pattern, the link configuration arc to be estimated. A point r 0 in the lower arm at time t = 0 moves to r (t) = R1(t) r 0
After time t. A point S 0 in the upper arm at time t = 0 moves to R1(t)p0 + R2(t)R1(t)( S 0 – p0)
after time t. Here
r
R1(t) = R(j1(t), q1(t), y1(t)),
R2(t) = R(j2(t), q2(t), y2(t)),
Where
R(j, q, y) = Rz(j)Rx(q)Rz(y)
P
Note that R1(t), R2(t) ∈ SO (Eq. 3), i.e.
T Det Rk = 1, Rk Rk = I, k = 1, 2. Let J1 (t, r ), r ∈ B1 be the current density in the lower arm in its unperturbed
position and J1 (w, r) its termporal Fourier transform. Let J 2 (t, r ), r ∈ B2 be the current density in the upper arm in its unperturbed position and J 2 (w, r) is Fourier transform.
Here B1 is the volume of the lower arm at time t = 0 and B2 the volume of the upper arm at time t = 0. Assume t is fixed so we can write Rk for Rk(t), k = 1, 2. The current density in space at time t is then (in the frequency domain)
J (w, r ) = J1 (w, R1–1 r ) + J 2 (wp0 + (R2R1)–1( r – R1p0))
Note that B1 ∩ B2 = f and
2
Stochastics, Control & Robotics
J1 (w, R1–1 r ) is non zero only when
r ∈ R1(B1) and J 2 (w1p0 + (R2R1)–1( r – R1p0))
is non zero only when r ∈ R2R1(B2 – p0) + R1p0
We ignore w and ∧, ~ and write R = R1, S = (R2R1)–1. Then
(
)
(
)
J ( r ) = J1 R −1 r + J 2 p0 + S ( r − Rp0 ) + W ( r ) R, S need to be estimated. Here W ( r ) is the Gaussian noise field. The far field Magnetic vector potential is proportional to A ( r ) =
=
∫ J ( r ′ ) exp ( jk r.r ′ )d r ′ −1 3 ∫ J1 ( R r ′ ) exp ( jk r .r ′ )d r′ 3
(
)
+ ∫ J 2 ( p0 + S ( r ′ − Rp0 )) exp jkr .r ′ d 3 r′
=
∫ J1 ( R r ′ ) exp ( jk r .r ′ )d r′ + ∫ J 2 ( r ′ ) exp ( jk (r , Rp0 + S −1 ( r ′ − p0 ))) d 3 r′ −1
3
( ( r ) + exp ( jk (( R
)) −1 − S ) r , p0 )) F2 ( S r )
= F1 ( RT r ) + exp jk r , ( R − S −1 ) p0 F2 ( S r ) where
= F1 ( R −1
F1 (r ) = F2 (r ) =
∫ J1 ( r ′ ) exp ( jk (r , r ′ )) d r ′ , 3 ∫ J 2 ( r ′ ) exp ( jk (r , r ′ )) d r ′ . 3
The ML estimators of R, S are
( R , S )
= arg min ∫ A ( r ) − F1 ( R −1 r )
( (
))
R, S ∈ SO(Eq. 3) S2 – exp jk ( R −1 − S ) r , p0 F2 ( S r ) 2 dS (r ) Can those estimates be carried out more efficiently then by search methods using group representation theory? Suppose S is known and we wish to estimate R. Note that
( ) { (( ) )} F2 ( R1−1R2−1 r ) F1 ( R1−1 r ) + exp { jk (( R1−1 ( I − R2 −1 )r , p0 )}.F2 ( R1−1R2 −1 r )
A ( r ) = F1 R1−1 r + exp jk R1−1 − R1−1R2 −1 r , p0 =
Let {Ylm ( r ) m |≤ l , l = 0, 1, 2, ...} be the spherical harmonic. Thus if �l(R) is the representation of SO (Eq. 3)
Classical Robotics & Quantum Stochastics
3
Vl = span{Ylm||m| ≤ l}, then
in the space
−1 ∫2 F1 ( R1 r )Ylm (r ) dS (r )
S
=
∫2 F1 (r )Ylm ( R1 r ) dS (r )
S
=
∫2 F1 (r ) ∑
|m ′|≤ l
S
=
F1 [lm ] =
where Further
∫2 exp { jk (
S
=
∑
|m ′|≤ l
)
π l ( R1 ) mm′ F [lm ′ ]
∫2 F1 (r )Ylm (r ) dS (r )
S
R1−1
( I − R2−1 ) r , p0 )} F2 ( R1−1R2−1 r )Ylm (r ) dS (r )
∫2 exp { jk (( R1
R2 − I r , p0
m′
S2
−1
)
S
=
(
−1 ( ) ( ) π ι R1 m′mYlm′ r dS r
)} F ( R r )Y ( R r ) dS (r ) 2
−1 1
lm
2
−1 −1 ( ) ( ) ∑ π l ( R2 ) mm′ ∫ exp ( jk (( R1 R2 − I ) r , p0 )) F2 ( R1 r ) Yιm′ r dS r
Where r is the unit vector in the direction of r .
( (
Now the function r → exp jk r , p0 hormonics, say
( (
exp jk r , p0 Then,
{ (
)) on S2 can be expanded using spherical
)) = ∑ C (lm)Ylm (r ) l ,m
exp jk R1−1R2 r , p0
)}
=
∑ C (lm)Ylm ( R1−1R2 r ) l ,m
=
∑ C (lm)∑ πl ( R2−1R1 ) m′mYlm′ (r ) l ,m
=
m′
∑ C (l , m) πl ( R2−1R1 ) m′m Ylm′ (r )
lmm′
Also,
F2 (r ) =
∑ d (lm)Ylm (r ) lm
(CClm ) =
∫2 exp { jk (r , p0 )}Ylm (r )dS (r ) ,
S
d ( lm ) =
∫2 F2 (r )Ylm (r )dS (r )
S
4
Then,
Stochastics, Control & Robotics
∫ exp { jk (( R1
)} F2 ( R1−1 r )Ylm ( R2r ) dS (r ) ( ) ( ) = ∑ π l ( R2 ) mm′ ∫ Ylm′ r dS r exp ( − jk ( r , p0 )) −1
)
R2 − I r , P0
m′
S2
∑ C (l1, m1m2 ) πl1 ( R1−1R1 ) m2m1 Yl1m2 (r ) ∑ d (l3m3 )Yl3m3 ( R1−1 r )
l1m1m2
=
l3m3
∑
l1m1m2l3m3m ′
(
)
( (
))
−1 π l ( R2 ) mm′ πl1 R2 R1 m2 m1 π l3 ( R1 ) m4 m3
C (l1m1m2 ) d (l3 m3 ) ∫ exp − jk r , p0 Yl1m2 ( r ) Yl3m4 ( r ) dS ( r ) S2
These formulae can be used to derive the least squares estimator for R1, R2 (which is the same as the ML estimates in the presence of white Gaussian noise.
[2] Quantum Filtering: jt(c) = Vt* × Vt . X εL ( h )
dVt = (– iH dt + L1dAt + L2dAt* + SdΛt)Vt
where H, L1, L2, S ε L (h) are chosen so that
Vt*Vt = I ∀ t ≥ 0. (X ∆ X ⊕ I)
Then
djt(χ) = jt(L0)dt + jt(L1χ)dAt + jt(L2χ)dAt* + jt(L3χ)dΛt
L0, L1, L2, L3 are the Evan-Hudson structure map. Computation of L0, L2, L3: djt(X) = dVt*XVt + Vt*XdVt + dVt*XdVt
= Vt*(i(H*X – XH*)dt + (L2*X + XL1)dAt + (L1*X + XL2*)αAt*+(S*X + XS)dΛt
+ L2*XL1dt + S*XL2dAt* + L1XSdAt + S*XSdΛt)Vt
= jt(i(H*X – XH*) + L2*XL1)dt + jt(L2*X + XL1 + L1XS)dAt + jt(L1*X + XL2 + S*XL2)dAt* + jt(S*X + XS + S*XS)dΛt
Thus, L0(X) = i(H*X – XH*) + L2*XL1,
L1(X) = L2*X + XL1 + L1XS,
L2(X) = L1*X + XL2 + S*XL2,
L3(X) = S*X + XS + X*XS. {jt(X), t ≥ 0} in the state process. Measurement process
Classical Robotics & Quantum Stochastics
5
Yout(t) = Vt*(I ⊗ Yin(t))Vt
dYin(t) = P1(t)dAt + P1 *(t)dAt* + P2(t)dΛt
P1(t), P2(t) ∈ L(Γs(Ht)), P2*(t) = P2(t)
where
Clearly VT*(I ⊗ Yin(t))VT = Yout(t)∀T ≥ t t
in
Y (t) =
∫ ( P1 ( S ) dAs + ( P1 ( S )) dAs + ( P2 ( S )) d Λ s ) *
*
0
dYout(t) = dYin(t) + dVt*(I ⊗ dYin(t))Vt + Vt*(I ⊗ dYin(t))dVt = P1(t)dAt + P1*(t)dAt* + P2(t)dΛt + Vt*(L1 ⊗ P1*(t))Vtdt + Vt*(L1 ⊗ P2(t))VtdAt + Vt*(S* ⊗ P2(t))VtdΛt + Vt*(L2 ⊗ P1(t))Vt*dt + Vt*(L2 ⊗ P2(t))Vt*dAt* + Vt*(S ⊗ P2(t))Vt*dΛt
Yout(t) ≡ jt(Yin(t) = jt(Yin(t)) ∀ T ≥ t
Thus,
dYout(t) = jt(L1P1*(t) + L2P1(t))dt + jt(L1P2(t))dAt
and
+ jt(L2P2(t))dAt* + jt(SP2(t))dΛt
For T ≥ t,
[jT(X), Yout(t)] = [VT*(χ ⊗ I)VT, VT*(I ⊗ Yin(t))VT] = [VT*(χ ⊗ I, I ⊗ Yin(t))]VT = 0.
This is the non-demolition property. Assume that the measurement observables {Yout(t) : t ≥ 0} are commutative i.e. [Yout(t), Yout(S)] = 0 ∀ t, S ≥ 0. This is equivalent to saying that [Yin(t), Yin(S)] = 0 ∀ t, S ≥ 0 Since and
Yout(t) = Vtvs*Yin(t)Vtvs
Yout(S) = Vtvs*Yin(S)Vtvs ∀ t, S ≥ 0
where tvs = max (t, S)
{Yout(t) ; t ≥ 0} will be commutative if [P1(t), AS] = 0, [P1(t), AS*] = 0,
[P1(t), AS] = 0, [P2(t), AS] = 0,
[P2(t), AS] = 0, [P2(t), AS*] = 0,
[P1(t), P1(S)] = 0, [P1(t), P2(S)] = 0, [P2(t), P1(S)] = 0, ∀ t > S.
These condition hold if for example P1(t), P2(t) are scalar valued functions of time i.e. P1(t) = C1(t)I, P2(t) = C2(t)I,
6
Stochastics, Control & Robotics
C1(t), C2(t) ∈ ⊄, C2 (t ) = C2(t)(i.e. C2(t) ∈ ). Let ηt]in be the Von-Neumann algebra generated by {Yin(S) : S ≤ t} and ηt]out the Von-Neumann algebra generated by {Yout(S) : S ≤ t}. ηt]out = Vt*ηt]in Vt
Then,
Non-Commutative Girsanov Trick πt(χ) = [jt(χ) |ηt]out] t [j (Χ)|η π (χ) = V *
Let Then
t
t
t
t [ξ] = t (V *ξV ) t t
Where Remark:
out
t]
]Vt
( X ) = (U*XU)
Let
and m = U*mU where U is unitary and m is an Abelian Algebra. Then, for * ξ ∈ m , we have ξ = U ξU for some ξ ∈ m and then
(
(
)
U * XU − U * XU | m ξ = 0
U * X ξU − U * XU | m ξ U * XU
i.e.
)
=0
Note that
[U*XU | m ] U*ξU = [U*XU| m ] ξ = [U*XU ξ | m ] = [U*XξU| m ]
[U*XξU| m ] = [U*XξU] [X|m]U∈ m and [(U*XU – U* [X|m]U) ξ ] On the other hand, U2 [X|m]ξU] = [U*χξU – U* and so
This proves that
[X|m]ξ)U] = [(U*Xξ – [Xξ – [X|m]ξ] = 0 =
[X|m]U [U*XU| m ] = U*
Suppose that for some adopted process
F(t) ∈ ηt]in,we have t [X] = [F(t)*(X ⊗ I)F(t)]
∀ X ∈ α(h). This means that ∀ X ∈ L(h)
(Vt*XVt) = [F(t)*XF(t)]
Classical Robotics & Quantum Stochastics
Example: Suppose (ξ) = Tr((rs ⊗ re)ξ) where rs ∈ L(h) and re ∈ L (Γs(H).
(Vt*XVt) = Tr((rs ⊗ re)Vt*XVt)
Then,
= Tr1[(Tr2(Vt(rs ⊗ re)Vt*))X]
rs(t) = Tr2(Vt(rs ⊗ re)Vt*) ∈ L(h)
Now,
and it follows that, (Vt*XVt) = Tr(rs(t)X) We want to write
Tr( rs(t)X) = Tr((rs ⊗ re)(F(t)*XF(t))
i.e.
where F(t) ∈ ηt]in.
rs(t) = Tr2(F(t)rs ⊗ reF*(t)) ∀ t
If we assume that F(t) ∈ L(h) then automatically F(t) ∈ ηt]in and the above condition reduces to rs(t) = F(t)rsF*(t)
Which corresponds to involves evolution. rt(X) = Vt*(F(t)*(X ⊗ I)F(t)| ηt]in]Vt*
Let
(jt(X)| ηt]out) =
Then
σt ( X ) σt (1)
(Quantum Kalliapur Striebel). Gough and Kostle have shown that d(F*(t)XF(t)) = F*(t)(X Lt + Lt *X)F(t)dYin(t) + F*(t)( Lt *X Lt + X K t + K t X)F(t)dt For Z ε ηt]in,
[F*(t)χF(t)| ηt]in)Z] = [F*(t)XF(t)Z]
[(d(F*(t)XF(t)| ηt]in)Z] = [(d(F*(t)XF(t)|Z] [F*(t + dt)XF(t + dt)| ηt + dt]in)]
= – [(F*(t)XF(t)|ηt]in]
Where Z1, Z2 ∈ ηt]in We write Thus from*,
= d[F*(t)XF(t)|ηt]in] = Z1dt + Z2dYin(t) say
d(F*(t)X(t)) = F*(t)ψ1(t)F(t)dYin(t) + F*(t)ψ2(t)F(t)dt
[F*(t)ψ1(t)F(t)dYin(t) + F*(t)ψ2(t)F(t)dt|ηint + dt]] + [F*(t)XF(t)|ηint + dt]] – [F*(t)XF(t)|ηt]in] = Z1dt + Z2dYin(t)
7
8
Stochastics, Control & Robotics
= [F*(t)ψ1(t)F(t)| ηint + dt]]dYint + [F*(t)ψ2(t)F(t) |ηint +dt]]dt
(since F*(t)XF(t) is independent of dYin(t) and so [F*(t)XF(t)|ηint + dt]] = [F*(t)XF(t)|ηt]in]
and likewise F*(t) ψk(t)F(t) is independent of dYin(t)
and hence [F*(t)ψk(t)F(t)| ηint + dt]] = [F*(t)ψk(t)F(t)|ηt]in] Thus, d π t (X) = Z dt + Z dYin(t) 1
2
where Z1 = [F*(t)ψ2(t)F(t)|ηt]in] = πt(ψ2(t))
Z2 = [F*(t)ψ1(t)F(t)|ηt]in] = πt(ψ1(t)).
and
Thus our quantum nonlinear fitting eqn. is d π t (X) = π t (ψ1(t))dt + π t (ψ2(t))dYin(t) t + K t X Where ψ (t) = L *X L + X K 1
Where Now,
t
t
ψ2(t) = X Lt + Lt *X π t (X) = [F*(t)XF(t)|η σt(X) = Vt* π t (X)Vt.
in
t]
].
Now that π t (X) ∈ L(Γs(Ht])).
dσt(X) = dVt*d π t (X)Vt + Vt*d π t (X)dVt + Vt*d π t (X)Vt = Vt*(L1*dA* + L2*dA + S*dΛ) π t (ψ2)dYinVt + Vt* π t (ψ2)dYin(L1dA + L2dA* + SdΛ)Vt+Vt* π t (ψ1)Vtdt + Vt* π t (ψ2)VtdYin(t) = V *L * π t (ψ )V ( C (t)dt + C (t)dΛ) Thus,
t
2
2
t
1
2
[3] Evan's Hidson Flow: Classical Markov flow: jt: C0∞(n) → L2(Ω, F, P)
jt(f) = f(Xt) where {Xt: t ≥ 0} t. Then
jt(C1f1 + C2f2) = C1jt(f1) + C2jt(f2), i.e.
jt(f1f2) = jt(f1)jt(f2).
jt(1) = 1, jt(f*) = jt(f)*
jt is a * unital homomorphism. Let Then
dXt = µ ( X t ) dt + σ ( X t ) dBt
djt(f) = df(Xt) = Lf ( X t ) dt + dBtT σT ( X t ) f ′ ( X t )
Classical Robotics & Quantum Stochastics
9
(
1 T T Lf(x) = µ ( x ) ∇ x f ( x ) + Tr a ( x ) ∇∇ f ( x ) 2 T ( ) ) ( ) ( a x = σ x , σ x
where With
)
Define the structure maps θD : C0∞ (n) → C0∞ (n),
θk : C0∞ (n) → C0∞ (n)
θ0(f) = L(f),
by
θk(f) = σT(x)fَ(x))k =
∑ σ jk ( x) j
θk = (σT(x)∇x)k
Thus,
=
∂f ( x ) ∂x j ∂
∑ σ jk ( x) ∂x j
j n
djt(f) = jt (θ0 ( f )) dt + ∑ jt (θk ( f )) dBk
Then
k =1
Gauss-Markov process in the classical case are characterized by the side dX (t ) = A (t ) X (t ) dt + G (t ) dB (t )
(
1 T T T T Thus, df(X(t)) = X (t ) A (t ) ∇ X f ( X (t )) + Tr G (t ) G (t ) ∇ X ∇ X f ( X (t )) 2
) dt
+ dB (t ) G (t ) ∇ X f ( X (t )) T
So and
T
1 T T T T θ0t(f)(x) = x A (t ) ∇ x f ( x ) + Tr (G (t )G (t ) ∇ x ∇ x f ( x )) 2 ∂f ( x ) θkt ( f ) ( x ) = ∑ G jk (t ) ∂x j j
q Now consider the quantum case. Let be the position (vector)-momentum p (vector) operators with classical Hamiltonian 1 1 T p Ap + qT Kq 2 2 ∂H dq = = Ap , ∂p dt dp ∂H = − = −Kq dt ∂q
H ( q, p ) = A, K > 0 . Then
10
Stochastics, Control & Robotics
Adding noise to this system (classical) gives O d q = dt p − K
A q dt + GdB (t ) O p
df ( q, p ) = qT , pT C T
Then
∂ ∂q ∂ ∂ ∂qT ∂p
∂ ∂q f q, p + 1 T (GGT ) 2 r ∂ ( ∂p ∂ f ∂pT
q , p ( ) dt + dBT GT
∂f ∂q ∂f . ∂p
= Λ or for f = f ( q , p ) , 2n n ∂f θ dt + j f ) ( ( ) djt(f) = t 0 ∑ ∑ G jk ∂q + j k =1 j=1
2n
∑
j = n+1
G jk
∂f . dBk ∂p1
2n
= j (θ0 ( f )) dt + ∑ jt (θk ( f )) dBk k =1
where θ0 ( f ) ( q, p )
∂ ∂q 1 = qT , pT C T f ( q , p ) + Tr GGT ∂ 2 ∂p and
θ k ( f ) ( q, p ) =
n
∂f
∑ G jk ∂q j=1
j
+ G j + nk
∂ ∂q ∂ ∂ ∂qT ∂p
∂ f ∂pT
∂f ∂p j
[4] Quantum Version of a Gauss-Markov Process: d
(
(
)
djt(X) = jt (θ0 ( X )) dt + ∑ jt (θk ( X )) dAk (t ) + jt θk ( X * ) dAk* (t ) k =1
where X ∈ (h) Ak(t), A*k(t)
θk : (h) → (h)
∈ L(Γs(H)) is linear 0 ≤ k ≤ d.
)
( q, p )
Classical Robotics & Quantum Stochastics
11
The structure maps θ0 and θk must be chosen to ensure Gaussianity of {jt(X) : 0 ≤ t ≤ T} in a given state, [j] i.e. if {Lt : 0 ≤ t ≤ T} is any scalar function, then T < ϕ | exp ∫ α t ( X ) dt | ϕ > 0 Must be a quadratic functional of {αt}0 ≤ t ≤ T djt(X) = jt(θ0(X))dt + jt(θ1(X))dAt + jt(θ2(X))dA*t
Let
eλdjt(X) = I + λdjt ( X ) +
Then
λ2 (djt ( X ))2 + 0 (dt ) 2
= I + λjt (θ0 ( X )) dt + λjt (θ1 ( X ) ) dA + λjt (θ2 ( X ) ) dA* + < fe(u), eλdjt
(X )
λ2 jt (θ1 ( X )) jt (θ2 ( X )) dt + 0 ( dt ) 2
fe(u) > = ||f||2 exp (||u||2) + dt{λ < fe(u), jt(θ0(X))fe(u) > λ2 < fe(u), jt(θ1(X))jt(θ2(X))fe(u) > 2 + λu(t) < fe(u), jt(θ1(X))fe(u) >
+
+ λ u (t) < fe(u), jt(θ2(X))fe(u) >} eλjt
(X )
eλdjt
(X )
= e(λjt + dt(X) + α1λ2[jt(X), djt(X)] + α2λ3[[jt(X), djt(X)], djt(X)]+ α3λ3[jt(X), [jt(X), djt(X)]
We require
+ ...]
[[jt(X), djt(X)], jt(X)] = 0,
[[jt(X), djt(X)], djt(X)] = 0
...(1)
upto O(dt). Then Gaussianity of jt(X) will imply that the jt + dt(X) Moment generating function of is e4th degree polynomial in λ.
[jt(X), djt(X)] = [jt(X), jt(θ0(X))]dt + [jt(X), jt(θ1(X))]dAt + [jt(X), jt(θ2(X))]dAt*
= jt([X, θ0(X)])dt + jt([X, θ1(X)]dAt + jt([X, θ2(X)])dAt*
So that condition (1) hold if [[X, θ0(X)], X] = 0, [[X, θ0(X)], X] = 0,
[[X, θm(X)], θk(X)] = 0, k = 0, 1 m = 0, 1.
∀ X ∈ (h)
djt(X) = jt(θ0(X))dt + jt(θ1(X))dAt + jt(θ2(X))dAt*
12
Stochastics, Control & Robotics
jt(XY) = jt(X)jt(Y)
djt(XY) = djt(X).jt(Y) + jt(X)djt(Y) + djt(X).djt(Y)
θ0(XY) = θ0(X)Y + Xθ0(Y) + θ1(X)θ2(Y), (Coeff. of dt)
⇒
θ1(XY) = θ1(X)Y + Xθ1(Y) (Coeff of dAt) θ2(XY) = θ2(X)Y + Xθ2(Y)
θ1 and θ2 are thus derivations of (h). So, θ1 = ad Z1 for some Z1 ∈ (h)
θ2 = ad Z2 for some Z2 ∈ (h). [[X, [Zk, X]], X] = 0, k = 1, 2.
If [[X, θk(X)], X] = 0
and [[X, θk(X)], θn(X)] = 0
k = 0, 1 then [jt(X), djt(X)] commutes with both jt(X) and djt(X) and hence the above Baker-Campbell Hausd orff formula implies eλ1 jt
( X )+ λ 2 djt ( X )
λ j = e 1t
( X ) λ 2 djt ( X ) − α1λ1λ 2 [ jt , djt ( X )]
e
e
Let {ek} be an ONB for h ⊗ Γs(H) Then < ek, eλ1 jt ( X )+ λ 2 djt ( X ) em > =
j ( X )djt ( X )
∑ < ek , eλ1 jt ( X ) er >< er , eλ2djt ( X ) es >< es , e−α1λ1λ2 t
em >
r
[jt(X), djt(X)] = jt([X, θ0(X)]dt + jt([X, θ1(X)])dAt + jt([X, θ2(X)]]dAt* < fe (u ) , e
λ jt ( X ),djt ( X ) ge(v) >
= < fe(u), ge(v) > + dt{< fe(u), {jt([X, θ0(X)]) λ2 + j (X, θ1(X)].[X, θ2(X)])}ge(v) > 2 t + λ < fe(u), jt([X, θ, (X)]) ge(v) > v(t) + λ < fe(u), jt([X, θ2(X)]ge(v) > u (t ) For joint Gaussainty of jt(X) and djt(X), we thus require [X, θ1(X)].[X, θ2(X)] = 0. λj ψ(t, λ) = < fe(u ), e t
Let
(X )
ψ(t + dt, λ) = < fDe(u ), e λ ( jt = < fe(u ), eλjt
ge(v) > ( X )+djt ( X )
( X ) λdjt ( X ) −αλ 2 [ jt ( X ), djt ( X )]
e
Instead we define ψkm(t, λ) = < ek , eλjt
(X )
ge(v) >
em >
e
ge(v) >
Classical Robotics & Quantum Stochastics
13
where {ek }k =1 is an onb for h ⊗ Γs(H). ∞
Then dψkm(t, λ) + ψkm(t, λ) ∞
( )
∑ < ek , eλjt ( X ) er >< er , eλdjt X es >< es , e−αλ
=
r , s =1 ∞
( )
∑ ψ kr (t , λ ) < er , eλdjt X es >< es , e−αλ
2
r , s =1
2
jt ( X ), djt ( X ) em
jt ( X ), djt ( X ) e m
>
>
< er , eλdjt (χ)es >
{
= δ rs + λ < er , jt (θ0 ( X )) es > dt + ∑ < er , jt (θ1 ( X )) e p > a ( p, s ) dt p
∑ a ( p, r ) < e p , jt (θ2 ( X )) es > dt
p
+
where
λ2 < er , jt (θ1 ( X )) (θ2 ( X )) es > dt + 0 ( dt ) 2
a(p, s)dt = < ep, dAt es >
[5] Problems on the δ-Function: [1] X denotes the space of rapidly decreasing function on n, i.e. n
n
χ = C∞(n) and f ∈ χ ⇒ ∏ | x j |mj j =1
As ||c|| → ∞ for all mj, m′j ≥ 0 (non-negative integers).
If F denotes the Fourier transform on X, then show that F(X) = X. n mj n mj ′ Hint: F ∏ X j ∏ D j f = j=1 j=1
n n mj mj D ∑ ∏ j ∏ χmjj ′ f ( x) i
1
1
( f = F ( f )) mj mj ′ Now, ΠD j Πχ j f ( x ) ≤
Cp || χ ||2 p
For all sufficiently large p and sufficiently large ||X||.
∑ m′j f ( x )
∂1
∂X1 1 ...∂X nm′n m′
→0
14
Stochastics, Control & Robotics
Provided that we assume that f is rapidly decreasing. Then m ′j mj m ′j ( ) n ) ∏ χ mj j ∏ D j f ( x ≤ C ′ ∫ ∏ D j ∏ Xj n f X d X d X
≤ C′′
∫
n
d χ
+ C ( R ) < ∞
2p ||X ||> R || χ ||
For sufficiently large R. Thus, if f is rapidly decreasing, then sup m ′j ( ) ∏ X mj j ∏ D j f X < ∞∀m j , m ′j ≥ 0. n X ∈ If then readily follows by replacing mj by mj + 1 ∀j that m ′j ( ) ∏ X mj j ∏ Dj f X ≤
K
for all sufficiently large |Xj|
n
∏ Xj j=1
Proving the claim. [2] Let (Dn + a1Dn – 1 + ... + an – 1 D + an) f(X) = δ(X), X ∈ Solve for f without using Laplace transforms.
[3] Let p(ξ1, ..., ξn) be a polynomial in n variables. Solve
p(D1, ..., Dn) f(X) = δ(X). 1 Hint: f ( ξ ) = p ξ ( )
f(X) =
Hence
1
f (ξ )
( 2π )n ∫n p ( ξ )
exp (i < ξ , X > ) d n ξ
the set of its irreducible (unitary) [2] Let G be a compact group and G representation. By the Peter-Weyl theorem. f(g) = f (X ) =
where
∑ dπTr ( f (π ) π ( g ))
π∈G
∫ f ( x)π
*(
x ) dx
G
δ g ( x) =
Thus,
∑ d π X π ( x −1g ) = ∑ dπ χπ ( g −1x)
π∈G
is the Dirac δ-function on G where
∫ f ( x) δ g ( x) dx
G
= f(g) defines δg(x).
π∈G
Classical Robotics & Quantum Stochastics
15
[3] Let (∇2 + k 2 ) G ( r | r ′ ) = δ ( r − r ′ ) r , r ′ ∈v G ( r | r ′ ) = 0, r ∈ ∂v
Assume (∇2 + k 2 ) ψ ( r ) = S ( r ) , r ∈ ∂v, ψ ( r ) = ψ 0 ( r ) , r ∈ ∂v Then, by Green 's theorem,
∫ {ψ ( r ) (∇
2
}
+ k 2 ) G ( r | r ′ ) − G ( r | r ′ ) (∇ 2 + k 2 ) ψ ( r ) d 3r
v
=
∫ ψ ( r ) S
or equivalently,
∫ {ψ ( r ) δ ( r − r ′ ) − G ( r | r ′ ) S ( r )} d v
∂G ( r | r ′ ) ∂ψ ( r ) − G ( r | r ′ ) dS ( r ) ∂n ∂n
3
r = ∫ ψ0 (r ) v
∂G ( r | r ′ ) dS ( r ) ∂n
3 ψ ( r ′) = ∫ G ( r − r ′) S ( r ) d r + ∫ ψ 0 ( r )
i.e.
v
S
∂G ( r | r ′ ) dS ( r ) ∂n
[4] Generalization to n: n
2
∇ = 2
∂2
∑ ∂X 2
α=1
α
2
j∇ y – y∇ j = div(j∇y – y∇j) Thus it (∇2 + k 2 ) G ( X | X ′ ) = δ ( X | X ′ ) , X , X ′ ∈ v ⊂ n G ( X | X ′ ) = 0, X ∈ ∂v then consider
(∇ 2 + k 2 ) ψ ( X )
= S ( X ) , X ∈v
ψ ( X ) = ψ 0 ( X ) , X ∈∂v , Then the same formula is valid: ψ ( X ′) = Problem: Solve Let
∫ G ( X | X ′ )S ( X ′ ) d v
n
X ′ + ∫ ψ0 ( X ) S
∂G ( X | X ′ ) dS ( χ ) ∂n
(∇2 + k 2 ) G (r ) = δ ( r ) , r ∈ n. d Ω ( r ) be the n – 1 dimensional solid angle measure in n. Then 1/ 2
n
d r =r
n dr d Ω ( r ) r = ∑ X α2 1
n–1
16
Stochastics, Control & Robotics
n
∇G ( r ) =
Xα eα G ′ ( r ) α=1 r
∇2G(r) =
∑ ∂X
∑ n
∂ Xα G ′ ( r ) r α
α=1
1 X 2 X α2 n − 1 α ( ) G r + G ′′ ( r ) = − ′ = ∑ G ′ ( r ) + G ′′ ( r ) 3 2 r r r r α=1 n
Let S
∫n−1 d Ω (r ) ∫n−1 d
Then
n
= C(n).
r = C(n)rn – 1 dr (radial volume measure).
r ∈S
Thus ∫ δ ( r ) − f ( r ) r n−1drd Ω ( r ) = ⇒ S
∫ δ ( r ) d Ω (r ) n −1
=
1
r
n −1
∫ f (r )δ ( r ) d
n
r = f(0)
δ (r )
So the green's function G(r) satisfies δ (r ) n −1 ( ) 2 G ′ r + G ′′ ( r ) + k G (r ) = ( ) n −1 C n r r
...(1)
To solve this, we assume its validity for r ∈ i.e. also admilt –ve values of r. For r > 0, rG′′ ( r ) + ( n − 1) G ′ ( r ) + k 2 rG (r ) = 0 Let r = λξ. Then So λ −1ξ
d2 dξ
2
1 d 1 d2 d d2 = , = 2 2. λ d ξ dr 2 dr λ dξ
G ( λξ ) +
( n −1) dG (λξ ) λ
dξ
+ λkξ2G ( λξ ) = 0, ξ > 0.
Let λ = n – 1. Then 1 d d2 ξ 2+ + k 2 ( n − 1) ξ G ( λξ ) = 0, ξ > 0. ( dξ n − 1) d ξ Solve it by power series.
[6] Conditional Expectation in Quantum Filtering: Let m be an algebra of observables. Assume that m is Abelian. Let m ⊂ ∞. Where ∞ is another algebra (non-commutative in general). Consider the commutant m′ of m:
Classical Robotics & Quantum Stochastics
17
m′ = {X ∈ ∞ |[X, Y] = 0 ∀ Y ∈ m}. Then m ⊂ m′. Let r be a state on ∞. For example, we may take ∞ as the algebra of linear operators in a Hilbert space H and r is a +ve define operator in H having unit trace. For X ∈ ∞,
(X) = Tr(pX).
Define [.|m] : m′ → m
so that (1) [.|m] is linear, (2)
[[X |m]Y] = [XY]
∀ X ∈ m′, Y ∈ m. Suppose for example, m = {Xα|α ∈ I} and let µY be a measure on I, for Y ∈ m′.
For Y ∈ m′, we let [Y|m] =
∫ X α d µY ( α ) I
Then ∫ X α dµY (α ) Z = ∫ ( X α Z ) dµY (α ) = [YZ] ∀ Z ∈ m I I Take Z = Xβ and get
∫ ( X α X β ) dµY (α )
= [YXβ], β ∈ I.
Solving this equation gives µY. We can attempt to generalize this as follows. Suppose we can find a set { Ak }k =1 in m′ such that every X ∈ m′ can be expressed as ∞
X=
∞
∑ Ak X k
for some Xk ∈ m, k = 1, 2, ...
k =1
Then, for Y ∈ m
(XY) = (X|m) =
and so
{(X|m)Y} =
∑ ( Ak X k Y ) k
∑ ( Ak | m) X k k
∑ ( ( Ak | m) X k Y ) k
In particular taking Xk = X0δk, k0 for some X0 ∈ m gives
(
Ak0 X 0Y
( (
= Ak0 | m X 0Y ∀ ∈ m
)
= ( ( Ak | m ) Y ) ∀Y ∈m .
or equivalently since m is an algebra,
(
Ak0 Y
)
)
)
18
Stochastics, Control & Robotics
This condition holding ∀ k0 ≥ 1 is a n. s. Condition that defines (.|m).
Let F ∈ m′ and define assuming (F*F) = 1,
F(X) = (F*XF) = (F*FX).
F(F(X|m)Y) = F(XY), Y ∈ m.
Then
Gives (F*F F(X|m)Y) = (F*FXY), Y ∈ m, X ∈ m′,
⇒((F*F|m)F(X|m|Y) = (F*FX|m)Y)Y ∈ m, X ∈ m′ ⇒
[F*F|m]F(X|m) = (F*FX|m)
* F(X|m) = ( F FX | m ) .
or
(
F *F | m
)
[7] Quantum Markov Processes: [Reference: K.R. Parthasarathy Quantum Markov Processes.] Quantum probability and Strong quantum Markov processes. Consider first a classical Markov processes {Xt : t ≥ 0}. Let {FtX}t ≥ 0 be the underlying filtration, i.e. Xt is FtX measurably. FtX = σ{XS : S ≤ t}.
Let 0 < t1 < t2 < ... < tN and let Yk ∈ Ft X , 1 ≤ k ≤ N, i.e. Yk is a functional of k {XS : S ≤ tk}. We write λ(tN, tN – 1, ..., t1, XN, YN – 1, ..., Y1, u) for YNYN – 1. . Y1u where u is F0X -measurable.
Then for ti < t < ti + 1 for some i = 1, 2, ..., N – 1 we have if Ft denotes (.|Ft), and Y ∈ Ft, FtYλ(tN, tN – 1, ...,t1, YN, YN – 1, ..., Y1, u) = [YYN YN – 1 ... Y1u|Ft]
( ( ( ( = T (T (...T
)
)
)
)
= . YN | Ft YN −1 | FN − 2 ...Yi +1 | Ft Y | Fi YiYi −1...Y1u N −1
(Tt t (YN )YN −1 )YN −2 )Y )YiYi−11...Y1u = F0 λ (t , ti , ..., t1 (Tt ,t (Tt ,t (...(Tt ,t (Tt ,t (YN )YN −1 )YN −2 )...)Y ) , Yi ,Yi−1,..., Y1u ) t ,ti
ti +1,t
t N −1,t N − 2
i
i +1
N N −1
We define the operator
jt (Y ) = F (Y.) t
i.e.
jt (Y ) (Z) = [YZ|F ] t
N , N −1
N −1 N −2
Classical Robotics & Quantum Stochastics
19
Thus we have jt (Y ) λ(t , t N N – 1, ..., t1, XN, XN – 1, ..., X1, u) = λ(t, ti, ..., t1, Yt, Yi, Yi – 1 ..., Y1, u) Yt = [YNYN – 1 ... Yi + 1Y|Fi](ti < t < ti + 1)
where
(
(
(
))
)
= Tt ,ti Tti +1 ,t ...Tt N − 2 ,t N −1 Tt N ,t N −1 (YN ) YN −1 Y ...t ∈£t . Also for t < ti < ti + 1, Y ∈ Ft, Define jt(Y) by its action on λ(tN, ..., t1, YN, ..., Y1, u) where Yk ∈ Ftk , by
jt(Y)λ(tN, ..., t1, YN, ..., Y1, u)
= λ(tN, ..., ti + 1, t, ti, ..., t1, YN, ..., Yi + 1, Y, Yi – 1, ..., Y1, u)
Then
jt(cY + Z) = cjt(Y) + jt(Z) jt(YZ) = jt(Y) + jt(Z)
and
where jt(Y)λ(tN, ..., ti + 1, t, ti, ...,t1, YN, ..., Yi + 1, Z, Yi – 1, ..., Y1, u)
= λ(tN, ..., ti + 1, t, ti, ..., t1, YN, ..., Yi + 1, YZ, Yi – 1, Y1, u)
Y, Z ∈ Ft, c ∈ ⊄.
Thus jt is a unital homomorphism from
L2(Ω, Ft, P) into (£(L2(Ω, L, P))
This method of introducing the Markov property for classical stochastic processes can be generalized to quantum stochastic processes. First note that in the classical case, {λ(tN, ..., t1, YN, ..., Y1,)u λ(tN, ... , t1, ZN, ..., Z1,)u}
= F0{λ(tN, ..., t1, YN, ..., Y1,) λ(tN, ..., t1, ZN, ...., Z1)} = {YN...Y, ZN...Z1}(where Yk, Zk ∈ Ftk , 1 ≤ k ≤ N,
{YNZNYN – 1ZN – 1 ... Y2Z2.uvY1Z1}tN > tN – 1 > ... > t1 > a u, v ∈ F0) = {((...((YNZN| Ft N −1 )YN – 1ZN – 1| Ft N −2 )| Ft1 )Y1Z1|F0)uv}
(
(
))
(
)
= F0 λ Tt2 ,t1 ... Tt N −1 ,t N − 2 Tt N ,t N −1 (YN Z N )YN −1Z N −1 ... Y1Z1, uv In the non-commutative case, we cannot couple (YN, ZN), ..., (Y1, Z1) etc. We thus get in the non-commutative case, < λ(tN, ..., t1, YN, ..., Y1, u), λ(tN, ..., t1, ZN, ..., Z1, v) >
(
(
(
= Tu ,t1 ,0 Y1...Tt N − 2 ,t N −3 YN − 2Tt N −1 ,t N − 2 YN −1Tt N ,t N −1
(YN Z N | Z N −1 ) Z N − 2 ) Z1 ) v
20
Stochastics, Control & Robotics
Here Tt, s t ≥ s are stochastic operators Tt, s (1) = 1,
Tt2 ,t1 .Tt3 ,t2 = Tt3 ,t1 , t3 ≥ t2 ≥ t1 and finally Tt, s is completely positive, i.e.
if Xα, α = 1, 2, ..., N are operators in the algebra ∞ on which Tt, s its, then N
(( (
⊕ uα , Tt , s X α* X β
α=1
))) | α⊕=1uα N
≥0
Here ∞ = (H) and uα, ∈ H. Equivalently, N
∑
α ,β =1
uα , Tt , s ( X α X β ) vβ ≥ 0.
This property is satisfied in the classical case: Tt, s (X) = (X|Fs), X ∈ L2(Ft)
Tt, s : L2(Ft) → L2(Fs).
Then, if Xα ∈ L2(Ft)1 ≤ α ≤ N,
(
Tt , s X α X β
)
= X α X β | Fs
N and ∑ uα uβ X α X β | Fs = ∑ uα X α α ,β =1 α=1 N
2
Fs ≥ 0.
for all uα ∈ ⊄, 1 ≤ α ≤ N.
[8] Quantum Stochastic Lyapunov Theory: p p (1) ( 2) * j k Let dX (t ) = ∑ L j dA j (t ) + L j dA j (t ) + ∑ Sk d Λ j (t ) X (t ) + MX (t ) dt j=1 k , j =1
()
( )
j where M , L 1j , L j2 , Sk ∈ L ( h ) (system space operators) and Aj(t), Aj*(t), Λjk(t) ∈
L(Γs(H)) where
H = ⊄p ⊗ L2(+)
{|ej > : 1 ≤ j ≤ p} is an ONB for ⊄p and
Aj(t) = a(|ej > ⊗ χ[0, t]),
Λjk(t) = λ(|ej > < ek| ⊗ χ[0, t])
Thus,
dΛjkdΛsr = δskdΛjk,
dAj(t)dAk*(t) = δjkdt
dAj(t)dΛmk(t) = δjmdAk(t)
Classical Robotics & Quantum Stochastics
21
dΛmk(t)dAj*(t) = δkjdAm*(t) Let V ∈ L(h), V > 0. Consider fv(t) = Tr(X*(t)VX(t)) ≡ Tr1(VTr2(X(t)X*(t))) v≥ 0 and is = 0 iff Tr2(X(t)X*(t)) = 0 iff X(t) = 0.
fv(t) is a non-negative real valued function of time. Now for asymptotic stability we required that fv′(t) < 0 ∀ t. But d(X*VX) =dX*.V.X + X*.V.dX + dX*.V.dX
u ≡ ((uj(t))j = 1p, t ≥ 0)
Now, < fe(u), dX*.VX.ge(v) > fe (u ) , X *
=
(
( )* ( ) L 1 dA*j + L j2 dA j ∑ j j
)
)
*
+ ∑ Skj d Λ kj VXge (v ) + fe(u ), X * M *VXge (u ) dt j ,k
)
*
( ) ( ) * (1) ( ) = ∑ u j t fe u , X L j VXge v j ( )*
+ ∑ v j (t ) fe (u ) , X * L j2 VXge (v ) j
*
+ ∑ uk (t ) v j (t ) fe (u ) , X * Skj VXge (v ) j ,k
}
+ fe (u ) , X * M *VXge (v ) dt *
...(1)
Secondly, < fe(u), X VdXge(v) > = Conjugate of (1) with fe(u) and ge(v) interchanged * (1) () ( ) = ∑ v j t fe(u ), X VL j Xge v j
+ ∑ u j (t ) fe(u ), X *VL j2 Xge (v ) ( )
j
+ ∑ u j (t )vk (t ) fe(u ), X *VSkj Xge (v ) j ,k
}
+ fe(u ), X *VMXge (v ) dt *
*
(X = X(t), X = X (t))
...(2)
22
Stochastics, Control & Robotics
Finally, < fe(u), dX*V dX ge(v) > =
)
(
() ( ) fe (u ) , X * ∑ L 1j dA j + L j2 dA*j + ∑ Skj d Λ kj V . j j ,k
∑ ( L 1j dA j + L j2 dA* ) + ∑ Skj d Λ kj )Xge (u ) ()
( )
j
j
=
∑
( )*
j ,k
( )
fe (u ) , X * L j2 VL j2 Xge (v ) dt
j
*
+ ∑ fe (u ) , X * Skj VSnm Xge (v ) δ nj vm (t ) uk (t )dt jkmn
( )*
+ ∑ fe (u ) , X * Lk2 VSnm Xge (v ) δ jn vm (t ) dt jmn
*
+ ∑ fe (u ) , X * Skj VLm2 Xge (v ) δ jm uk (t )dt ( )
jkm
=
∑
( )*
( )
fe (u ) , X * L j2 VL j2 Xge (v )
j
*
+ ∑ fe (u ) , X * Skj VS mj Xge (v ) vm (t ) uk (t ) jkm
( )*
+ ∑ fe (u ) , X * L j2 VS mj Xge (v ) vm (t ) km
}
+ ∑ fe (u ) , X * Skm VLm2 Xge (v ) uk (t ) dt *
( )
km
Using these formulas, find conditions for which d Tr pX * (t )VX (t ) ≤ 0∀t dt N
where
r=
∑
α ,β =1 N
where
Tr(r) =
∑
α ,β =1
f α e (uα ) aαβ fβ e (uβ )
(
aαβ fβ f α exp uβ , uα
)
Classical Robotics & Quantum Stochastics
and
23
((aαβ ))α,β=1 ≥ 0 , i.e. r is a state (density matrix) in h⊗Γs(H) N
Combining all these gives d fe (u ) , X *VXge (v ) = dt Stochastic Lyapunov Theorem. Consider the side A B ( X ) X X d = dt + GdB (t ) Y C ( X ) D ( X ) Y A is a constant square matrix. B ( X ) is a rectangular matrix dependent on X but not on Y and so are C ( X ) and D ( X ) . B is known and C ( X ) and D ( X ) are to be determined by the condition that d T T X ( X Y ) Q ≤ 0 Y dt When G = 0 (no noise) and Q is a given +ve definite matrix. We have (assuming G = 0) X X d ( X T ,Y T )Q = 2 X T ,Y T Q Y dt Y
(
)
(
)
A B X = 2 X TYT Q C D Y
(
T
= X Y
T
)
Q12 Q Let Q = 11 Q21 Q22 We required
A B AT Q + C D BT
CT X Q DT Y
dV ≤0 dt
(
)
X where V ( X ,Y ) = X T , Y T Q . Y T A B A + and hence we require Q C D BT
i.e.
CT Q≤0 DT
Q11 A + Q12C Q11B + Q12 D T + (11) ≤ 0 = Q21 A + Q22C Q21B + Q22 D
Suppose we take Q12 = 0 (and hence Q12 = Q12T = 0). Then
24
Stochastics, Control & Robotics T Q11 A Q11B A Q11 dV + = Q22C Q22 D BT Q11 dt
C T Q22 DT Q22
Q11 A + AT Q11 Q11B + C T Q22 = ≤0 Q22C + BT Q11 Q22 D + DT Q22 This can be satisfied by taking Q11 so that Q11 > 0, Q11A + ATQ11 < 0, −1 C(X) = −Q22 B( X )T Q11 , −1 −1 1/ 2 R Q22 R (or D(X) = −Q22 D(X) = −Q22
)
where R < 0 is any matrix (even X dependent) −1 R (R < 0 constant) This D(X) = −Q22
we get dV = dt
Q11 A + AT Q11 0 ∆
Then,
lim d (Vt ) t → ∞ dt
Q A + AT Q 11 = Tr GG Q + Tr ∑ Tr 11 0 k , j =1
(
T
)
27
r
T 0 Pk GG Pj −2R λ k + λ j
(
)
This must be made ≤ 0 by an appropriate choice of Q11, Q22, R > 0.
[9] Let P be a Solution to the Martingale Problem π(x, a, b), i.e.: t
f ( X t ) − ∫ αf ( X s ) ds, t ≥ 0 is a P-Martingale where 0
∂f ( x ) 1 ∂2 f ( x) + Tr a ( x ) ∂x 2 ∂x∂xT
αf (x) = b ( x )
T
ty t t 1 exp , dX > − < c, ac > ( X s ) , ds , ≡ Mt t ≥ 0. < c X = ∫ ( s ) s ∫ 20 Ft 0 Then Q is a solution to the Martingale problem π(x, a, b + ac), where
dQ dP
t
X t = X t − ∫ b ( X s ) ds 0
dMt = M t < c ( X t ) , dX t >
Proof:
{
}
Hence P d ( X t M t )
(\ M is a P- Martingale)
= P { X t dM t + M t dX t + d < M , X >t } = P M t b ( X t ) dt + M t a ( X t ) c ( X t ) dt
Thus,
Q {dX t } = dt ⋅ Q {(b + ac ) ( X t )}
More generally,
{
}
P d ( f ( X t ) M t ) = P {( Lf ( X t ))M t } dt + P { f ( X t )dM t }
{
}
+ P (d < M , X > t )T f ′ ( X t )
{ } T Q { Lf ( X t )} = Q { Lf ( X t )} dt + Q {ac( X t ) f ′( X t )} dt
= Q { Lf ( X t )} dt + P M t (ac)( X t )T f ′( X t ) dt
i.e.
( X t )} dt = Q { Lf
28
Stochastics, Control & Robotics
∂ 1 ∂2 T ∂ (⋅) = L + (ac)T where L = (b ( x ) + ac ( x )) + Tr a ∂χ ∂x 2 ∂x∂xT
[10] Problem from Revuz and Yor: Still more generally, suppose Zt∈Ft. Then P
{(d ( f ( X ) M )) ⋅ Z } = t
t
t
P
{ Lf ( X t ) ⋅ M t Zt } dt
{ (
) }
+ P M t ac ( X t ) f ′ ( X t ) Z t dt T
Q Z t df ( X t ) = Q Z t ⋅ Lf ( X t ) dt Taking Zt = Z∈Ft for a fixed t, we deduce that for all T > t,
i.e
T Q Z ⋅ f ( X T ) − f ( X t ) − ∫ L f ( X s )ds = 0 t
and hence T
M t f = f ( X t ) − ∫ £ f ( X s ) ds , t ≥ 0 is a Q-Martingale. 0
[11] Gough and Kostler Paper on Quantum Filtering Some Remarks: β β β (⋅) = < ψ , ..ψ >
β 2 | ψ β > = φ > e (β ) > exp − 2 , 2 ϕ >∈h, < φ φ > = 1, β ∈L ( + ) ,
< e(β1 ), e(β 2 ) > = exp (< β1 , β 2 >| . dAt | ψ β > = λ | φ > dAt | e(β) > β 2 β . = β(t )λ φ > e(β) > = β(t ) | ψ > , λ = exp − 2 < φ′e(v) d Λt ψ > = λ < φ ′e( ν) d Λ t φe(β) > = λ < φ ′ | φ > ν(t )β(t ) < e( ν) | e(β) > dt
Classical Robotics & Quantum Stochastics
29
= λ < φ ′ | φ > β(t ) < e(ν) | eAt* | e(β) > Thus,
dΛ t | ψ β > = β(t )dAt* | ψ β >
Compute β [ djt ( X )] = < ψ β djt ( X ) ψ β >
djt ( X ) = jt ( L0 X )dt + jt ( L1 X )dAt + jt ( L2 X )dAt* + jt ( L3 X )d Λ t
So, β { jt ( X )} = β [ jt ( L0 X )] dt + β(t ) β [ jt ( L1 X )] dt + β(t ) β [ jt ( L2 X )] dt + β(t ) E β [ jt ( L3 X )] dt 2
Note: If ξt is an adapted process i.e. ξt ∈ L ( h0 ⊗ Γ s ( H t ])) , then Thus
{
}
β { jt ( X )} = β jt ( Lβ(t ) X ) dt 2
Lβ (t ) = L0 + β(t ) L1 + β (t ) L2 + β(t ) L3 .
where Let
t
Ytin
=
∫ (c1 (ξ)dAs + c1 (s)dAs + c2 (s)d Λ s ) *
0
Then for t1 ≥ t2
Ytin , Ytin = 0 1 2 * in Moreover since Vt Yt Vt = VT*YtinVT* = Ytout ∀ T ≥ t, we get if follows that Ytout , jT ( X ) = 0∀T ≥ t, X∈£(h)
where
jt(X) = Vt*Vt
This is because Ytin , X = 0 ∀t ≥ 0 since X ∈£(h) while Ytin ∈£ (Γ s ( H t ])) and Let
[ h , Γs ( H )]
= 0.
y(t) = Vt.
Ytout = Vt*VtinVt so
* * in in in d Ytout = dYt + dVt dYt Vt + Vt dYt dVt
= c1 (t )dAt + c1 (t )dAt* + c2 (t )d Λt + Vt* ( L*2 dAt + S *d Λ t )
30
Stochastics, Control & Robotics
(c, (t )dAt* + c2 (t ) d Λt )Vt + Vt* (c1(t )dAt + c2 (t )d Λt ). ( L2 dAt* + Sd Λ t )Vt * * * = c1 (t ) dAt + c1 (t )dAt + c2 (t ) d Λ t + c1 (t )Vt L2Vt dt
+ c1 (t )Vt* S *Vt dAt* + c2 (t )Vt* S *Vt d Λ t + c2 (t )Vt* L*2Vt dAt + c1 (t )Vt* L2Vt dt + c2 (t )Vt* L2Vt dAt* + c1 (t )Vt* SVt dAt + c2 (t )Vt* SVt d Λ t dYtin | ψ β > = c1 (t )dAt | ψ β > +c1 (t)dAt* | ψ β > +c2 (t )d Λ t | ψ β > * * β = β(t )c1 (t )dt + c1 (t )dAt + β(t )c2 (t )dAt | ψ >
So
{
β dYtin
}
= < ψ β dYtin ψ β > 2
= β(t )c1 (t )dt + c1 (t )β (t )dt + β(t ) c2 (t )dt
{
}
= 2 Re {β(t )c1 (t )} + β(t ) c2 (t ) dt Likewise
{
β dYtout
}
2
{
= dt 2Re {β(t )c1 (t )} + β(t ) c2 (t ) 2
{ }} { + 2Re {c1 (t )β(t ) β {Vt* SVt }} 2 + 2c2 (t ) Re { β {Vt* SVt } β(t ) + 2c2 (t ) Re { β {Vt* L2Vt } β(t )}} + 2Re c1 (t ) R Vt* L2Vt
= dt {2 Re {β(t )c1 (t )} + β(t ) c2 (t ) 2
+ 2 Re β { jt (c1 (t ) L2 + c1 (t )β(t ) S 2
+ c2 (t ) β(t ) S + C2 (t )β (t ) L2 Recall that
)}}
dVt = (– iHdt + L1dAt + L2dA*t + SdΛt)Vt
where the system operators (∈ £ (h)) = H, L1, L2, S have been chosen to make Vt unitary, i.e., d(Vt* Vt) = 0 and this has been achieved using the quantum I to formulae: dAt dA*t = dt, dΛt dA*t = dA*t,
dAt dΛt = dAt, dΛt dΛt = dΛt,
Classical Robotics & Quantum Stochastics
31
all the other products being zero.
{
β jt (χ) | ηtout ]
}
out is the filtered estimate of the state jt(X) given the measurements σ - algebra ηt] upto time t.
We note that jt(X) = Vt* XVt , X∈£(h) * in in out ηt] = Vt ηt ] Vt , ηt] ⊂
(
)
* in s out ηt] = VT ηt ] VT , £ Γ ( H t] ) T ≥ t
and since and it follows using
X , ηin t] = 0
jT ( X ) , ηtout ] = 0
that
∀T ≥ t.
(
)
* in Now, β jt ( X ) | ηtout ] = Vt t X | ηt ] Vt
t (ξ) = β Vt*ξVt
where
This follows because,
(
) )
(
β jt ( X ) − Vt*t X | ηtin] Vt ηtout ]
{( = {V ( X η
) )
(
β in * * * in = Vt XVt − Vt t X | ηt ] Vt Vt ηt] Vt β
* t
in t]
(
) )
in − t X | ηin t ] ηt ] Vt
(
)
}
}
in in in = t X ηt − t X | ηt ] ηt ] in in = t X ηin t ] − t t X ηt ] | ηt ] = 0.
Now,
Suppose F(t) is an adapted process such that
{
in β * F(t)∈ ηt] i.e. [F(t), ηin t] ] = 0 ∀t, and E Vt X tVt
{
}
}
= β F * (t ) X t F ( H ) ∀t Then and
β
{
jt ( X ) | ηtout ]
{
t X | ηtin}
This follows from
{ {
}
= Vt* t X | ηin t ] Vt
}
=
{
(Xt being any adapted process)
}
{ } β {F * (t ) F (t ) | ηin t] }
β F * (t ) XF (t ) | ηin t]
} {
} }
in β t X | ηtin] β F * (t ) F (t) | ηin t ] ηt ]
32
Stochastics, Control & Robotics
{ {
}
{
} }
β β in β in in * * = Vt XVt | ηt ] X F (t ) F (t) | ηt ] ηt ] in = β F * (t ) t X ηin t ] F (t ) ηt ]
in = β Vt* t X ηin t ] ηt ] Vt in in = t X ηt ηt = t X ηin t
On the other hand,
{ {
} }
in β β F * (t ) XF (t ) ηin t ] ηt ]
β in * = F (t ) XF (t ) ηt]
= β F * (t ) X ηin t] F (t ) β * in = Vt X ηt ] Vt
= t X ηin t]
Proving the claim. Now let Then
|y(t) > = Vt|yβ >
d |y(t) > = dVt|yβ >
( ) (−iHdt + β(t ) L1dt + (S β(t ) + L2 ) dAt* ) ψβ >
= −iHdt + L1dAt + L2 dAt* + Sd Λ t ψβ > =
S β(t ) + L2 = −iHdt + β(t ) L1dt + c1 (t ) × c1 (t )dAt* + c1 (t )dAt ψ β > dtc (t ) − 1 ( S β (t ) + L2 ) β(t ) ψ β > c1 (t )
(
Assume c2(t) = 0, i.e.
)
* dYtin = c1 (t )dAt + c1 (t )dAt
Then we get d|y(t) > = dVt|yβ > i.e.
= dFt|yβ >
Vt|yβ > = Ft | yβ >
/ and Ft ∈ηin t] .
Classical Robotics & Quantum Stochastics
33
[12] Quantization of Master. Slave Robot Motion Using EvansHudson Flows: M m ( qm )qm + N m ( qm , qm ) = τm (t ) + Fm ( qm , qm ) ( K mp ( qs − qm )
+ K md ( qs − qm )) + d m (t )
M s ( qs )qs + N s ( qs , qs ) = τs (t ) + Fs ( qs , qs ) ( K sp ( qm − qs )
+ K sd ( qm − qs )) + d s (t ) dm(t), ds(t) are white noise processes. Thus, qm qm ψ1 ( qm , qs , qm , qs ) d qm d (t ) q = q + ψ 3 ( qm , qs , qm , qs ) d m(t ) s dt s s qs ψ 2 ( qm , qs , qm , qs ) τ (t ) + ψ 3 ( qm , qs , qm , qs ) m τs (t ) where y1 = − M m ( qm) −1 N m (qm , qm ) + K mp M m ( qm ) −1 Fm ( qm , qm )(qs − qm ) + K md M m ( qm ) −1 Fm ( qm , qm )(qs − qm ) ∆ ψ10 ( qm , qm ) + K mp ψ11 ( qm , qs , qm , qs ) + K md ψ12 ( qm , qs , qm , qs ) and likewise for y2. dBm (t ) Σ m dt d m (t ) = Here d (t ) = Σ dBs (t ) s s dt Σ m O B= Σ = O Σ s B is a 4-dimensional Brownian motion. Defining we get
Σ
dB dt
Bm 4 B ∈ s
q q = m ∈4, q s q (t ) d = q (t )
{F0 (q(t ), q (t ), t ) + Kmp F1 (q(t ), q (t ))
34
Stochastics, Control & Robotics
+ K md F2 ( q (t ), q (t ) ) + K sp G1 ( q (t ), q (t ) )
}
+ K sd G2 ( q (t ), q (t ) ) dt + H ( q (t ), q (t ) ) dB(t) ξ 8 q q = ε . Then
Let
dξ = {F0(ξ, t) + KmpE1(ξ) + KmdF2(ξ) + KspG1(ξ) + KsdG2(ξ)}dt + H (ξ)dB Let f: 8 → be C2. Then, 4
df(ξt) = L1t f ( ξt )dt + Σ L2k f ( ξt )dBk k =1
(
where
1 T T T L1tf(ξ) = P( ξ , t ) ∇ξ f ( ξ ) + Tr H ( ξ ) H ( ξ ) ∇ξ ∇ξ f ( ξ ) 2
and
L2kf(ξ) = Σ H mk ( ξ )
8
∂f ( ξ )
m=1
∂ξ m
)
T = H ( ξ ) ∇ξ f ( ξ ) k
Here P(ξ, t) = F0(ξ, t) + KmpF1(ξ) + KmdF2(ξ) + KspG1(ξ) + KsdG2(ξ)
In the quantum context, f(ξt) → jt(f)
jt being a homomorphism of an "initial algebra" 0 into t] and f is replaced by X∈0 where 0 can be non-Abelian. We get
djt(X) = jt (£ 0 t ( X ) + K mp £1 ( X ) + K md £ 2 ( X ) 4
+ K sp £3 ( X ) + K sd £ 4 ( X ) ) dt + Σ jt (£5k ( X ) ) dAk (t) k =1
4
4
k =1
j , k =1
(
)
j + Σ jt (£ 6 k ( X )) dAk* (t) + Σ jt S kj ( X ) d Λ k (t )
The aim is to choose {Kmp, Kmd, Ksp, Ksd} T
so that
∫ < fe(u ), jt ( X ) fe(u) > dt
is a minimum, where f∈h (initial Hilbert
0
space and c is a fixed observable in L(h). In this classical context, jt(f) = f(ξt) 2 2 = α || qm (t ) − qs (t ) || + β || qm (t ) − qs (t ) ||
Classical Robotics & Quantum Stochastics
35
Or more precisely writing qm qs 2 ||2 ξ = , f(ξ) = α || qm − qs || + β || qm − qs qm qs Note that 1 < fe(u ), djt ( X ) fe(u) > = < fe(u), jt(L0t X) fe(u) > dt + Kmp< fe(u), jt(L1X) fe(u) >
+ Kmd < fe(u), jt(L2X)fe(u) >
+ Ksp < fe(u), jt (L3X) fe(u) > + Ksd < fe(u), jt(L4X) fe(u) >
4 ` +2 Re ∑ fe(u ), jt ( Lsk X ) f e (u ) uk (t ) k =1
fe(u ), jt ( S kj X ) fe(u ) uk (t )u j (t)
+ Σ
k, j
Here, we are assuming Skj ( X )* = S kj ( X )
(X* = X). T
Thus
< fe(u), jT(X)fe(u)> =
∫
fe(u ), jt ( L0t X ) fe(u) dt
0 T
4
+ Σ K α ∫ fe(u ), jt ( Lα X ) fe(u ) dt α=1
0 4 T
+ 2 Re Σ
k =1
T
+ Σ
k, j
Perturbative approximations.
∫
∫
fe(u ), jt ( L5k X ) fe(u) uk (t )dt
0
fe(u ), jt ( S kj X ) fe(u ) uk (t )uj (t)dt
0
Consider first the following simplified problem djt(X) = (jt(L0X) + Kjt(L1X))dt + jt(L2X)dA(t) + jt(L3X)dA*(t) + jt(L4X)dΛ(t) Where L3(X) = L2(X)* ≡ L+2 (X) i.e. L+2 = L3,
and L4(X)* = L4(X), i.e. L+4 = L4 Where c* = c.
36
Stochastics, Control & Robotics
Also, L+0 = L0, L+1= L1.
K is a real constant chosen so that T
∫ < fe(u ), jt (χ) fe(u ) > dt 0
is a minimum. For example we could choose jt(X) = V*t X Vt ≡ V*t (X⊗I)Vt where with
* dVt = −iHdt + L1dAt + L2 dAt + Sd Λ t Vt H = H0 + KH1
Then, djt(X) = d(V*tXVt)
= dV*tXVt + V*tXdVt + dV*tXdVt
= V*t [i(H*X – XH)dt + (L*2X + XL1)dAt + (S*X + XS)dΛt + (L*1X + XL2)dA*t + L2* X L2 dt + L*2 X SdAt + S*XSdΛt + S*XL2dA*t]Vt = [jt(L0X) + Kj1(L1X)]dt + jt(L2X)dAt + jt(L3X)dA*t + jt(L4X)dΛt Where L0(X) = i(H*0X – XH0),
L1(X) = i(H*1X – XH1),
L2(X) = L*2X + XL1 + L*2XS
L3(X) = L*1X + XL2 + S*XL2
L4(X) = S*X + XS + S*XS
The approximate solution to jt is obtained from an approximate solution to Vt. We can also incorporate parameters like K into L1, L2 and S. That takes care of pd controllers. Feedback K p ( qm − qs ) can be achieved by adding a harmonic oscillator potential to H0. The feedback K d ( qm − qs ) however, is like a velocity damping term and must be taken care of by parameters incorporated in the Sudarshan-Lindblad generator or equivalently in L1, L2, S. Thus we write H = H0 + K0H1, L2 = L20 + K2L21, L1 = L10 + K1L11 S = S0 + K3S1.
Classical Robotics & Quantum Stochastics
37
[13] Problem From KRP QSC: Let A, B be operators such that [A, B] commutes with both A and B. X(t) = et(A + B). Then
Let
X´(t) = (A + B) X(t). X(t) = etA F(t). Then,
Put
X´(t) = etA(AF(t) + F´(t)) = (A + B) etAF(t) F´(t) = e–tABetAF(t)
So,
= e–t ad A(B)F(t) = (B – t[A, B]) F(t) n
(ad A) (B) = 0 for n ≥ 2. Then,
Since
F(t) =
tB−
t2 [ A, B] 2
e form a commuting family of operators.
since B – t[A, B], t∈
It follows that tA
X(t) = e e
tB−
tA tB
= e e e
t2 [ A, B] 2 −
t2 [ A, B] 2
Now apply this result to the operators a(u), a+(v). we get e
λa (u ) µa + ( v )
e
e
−
λµ
2
λa (u )+ µa = e
+
(v )
Since [a(u), a+(v)] = commutes with both a(u) and a+(v). Likewise e
λa (u )+ µa + ( v )
µa = e
+
( v ) λa (u )
e
Then < e( w1 ), eλa (u ) + µa
+
(v )
e
−
λµ
2
e( w2 ) >
= e = e = e
−
λµ
2
−
λµ
2
−
λµ
2 eλ eµ < w1 , v >
< e( w1 ), eµa
+
( v ) λa (u )
e
e( w2 ) >
< eµa (v ) e( w1 ), eλa (u ) e(w2 ) >
e< w1 , w2 >
In particular, < e( w1 ), eλa (u ) − λa
+
(u )
e( w2 ) >
= e
−
λ 2
2
u
2
eλ e − λ < w1 , u> × e< w1 , w2 >
38
Stochastics, Control & Robotics
On the other hand, ∞
1 n £ W (u , I ) n e(w2 ) > n
< e( w1 ), eαW (u , I ) e( w2 ) > = < e( w1 ), Σ
Now,
n=0
{ {
}
1 2 u − < u, w2 > e( w2 + u) . 2 1 2 1 2 W(u, I)2 e(w2) = exp − u − < u , w2 > − u − < u , w2 + u > 2 2 e( w2 + 2u ) W(u, I) e(w2) = exp −
{
= exp −2 u
}
2
− 2 < u , w2 > e( w2 + 2u )
{
W(u, I)3 e(w2) = exp − 1 u 2 − < u , w2 + 2u > −2 u 2 e( w2 + 3u )
{
= exp − In general let
9 u 2
(
Then
2
− 2 < u , w2 >
}
}
2
W(u, I)n e(w2) = exp − α n u
}
− 3 < u , w2 > e( w2 + 3u ) 2
W(u, I)n+1 e(w2) = exp − α n u
)
− β n < u , w2 > e( w2 + nu ) 2
− β n < u , w2 > −
1 u 2
2
− < u , w2 + nu > ) e ( w2 + (n + 1)u )
= exp − α n + 1 + n u 2
2
− (β + 1) < u , w2 >
e ( w2 + (n + 1)u )
1 , α = 0, 2 0 = βn + 1, β0 = 0.
αn + 1 = αn + n +
So
βn + 1
n−1 n2 n(n −1) 1 1 + n = αn = Σ r + = 2 n=0 2 2 2
Thus
βn = n. Thus 2 W(u, I)n e(w2) = exp − n 2 u − n < u , w2 > e(w2+nu)
In particular,
2 u = exp − n 2 − n < u , w2 > + n < w2 , u >+< w1 , w2 > 2
{
= exp −
1 2 u − < u , w2 > + < w1, u > + < w1, w2 > 2
}
Classical Robotics & Quantum Stochastics
39
{
= exp −
1 2 α u 2
2
− α < u , w2 >
+ α < w1 , u > + < w1 , w2 >
= Then,
{
}
e ( w1 ) , exp αa + (u ) − αa(u ) e( w2 )
{
}
W(αu, I) = exp αa + (u ) − αa (u ) . KRP QSC. t Vf(t) = exp i Im ∫ eiφ( s ) F ( s) 2 ds × W (eiφ − 1) ft , eiφt 0
(
)
ft = f.c[o, t], ft = f. X[O, t].
t = exp i Im ∫ eiφ( s ) f ( s) 2 ds 0
{
× e (u ) exp −
1 iφ (e − 1) ft 2
(
e eiφt v + (eiφ − 1) ft
2
− (eiφ − 1) ft , eiφ t v
}
)
t 2 = exp i ∫ f ( s ) sin {φ( s )} ds 0 1 × exp − 2 ft 2
2
t 2 − 2∫ f ( s ) cos (φ( s ) ) ds 0
− (eiφ − 1) ft , eiφt v + u , eiφt v + (eiφ − 1) ft
)
t t t 2 2 = exp ∫ f ( s) eiφ( s ) ds − ∫ f ( s ) ds − ∫ (1 − eiφ( s ) ) f ( s)v( s)dss 0 0 0 t
∞
0
0
+ ∫ (eiφ( s ) − 1)u ( s )v( s )ds + ∫ u ( s )v( s )ds + ∫ (eiφ( s ) − 1)u ( s ) f ( s )ds 0 t
40
Stochastics, Control & Robotics
Thus, d < e(u), Vf(t)e(v) > = < e(u), dVf(t)e(v) >
{
}
iφ(t ) − 1) f (t ) + f (t )v(t ) + u (t )v(t ) + u (t ) f (t ) = (e 2
e(u ), Vφ (t )e(v) iφ u , eiφt v = u , (e t − 1)v + u , v
Note:
t
∫ (e
=
iφ( s )
− 1)u ( s )v( s )ds + u, v .
0
∞
∫ u (s)v(s)ds .
=
0
It follows that
{
}
dVf(t) = (eiφ(t ) − 1) f (t ) dt + f (t )dA* (t ) + f (t )dA+ (t ) + d Λ (t ) Vφ (t ) *
2
M(t, f, X) = 0{U(t) XVf(t)U(t)}
d(U*XVfU) = dU*XVfU + U*cVfdU + U*XdVfU + dU*XVfdU + dU*XdVfU + U*XdVfdU
Now,
0 [dU*XVfU] = < e(o), dU*XVfU e(o) > 1 = 0 U * iH − L* L XVφU dt 2
1
= dt M t, φ, iH − L* L X , 2
1 0 [U*XVfdU] = dt M t , φ, X ( −iH − L* L) 2
0 [U*XdVfU] = dt(eiφ − 1) f 2 0 U * XVφU = dt (eif – 1) |f|2 M (t, f, c)
0 [dU*XVfdU] = 0[U*L*XVfLU]dt = 0[U*L*XLVfU]dt *
= M(t, f, L XL)
(0 picks only the coefficient of dt)
(ΓVf, T) = 0 ∀T∈£(h) since i.e. V(t)f∈£(Γs(H))
0[dU*XdVfU] = 0[U*LXf(eif – 1)VfU]dt
= (eif – 1)f 0[U*LXVfU]dt
= (eif – 1)FM(t, f, LX)dt
0[U*XdVfU]dt = (eiφ − 1) f 0 U * XVφ LU dt
Classical Robotics & Quantum Stochastics
41
= (eiφ −1) f dt M (t, φ, χL) ([V , L] = 0 ∵ [V , h] = 0 ∵ [Γ (H), h] = 0) f
f
s
Then, d M (t , φ, X ) = dt–1. 0{d(U*XVfU)] dt
1 1 = M t , φ, iH − L* L X − X iH + L* L 2 2 +X f
2
(eiφ − 1) + L * XL + (eiφ − 1)( fLX + fXL))
iφ = M (t , φ, θ(χ) ) + (e − 1) M (t , φ, f χ + fLχ + f χL) 2
Note that f
2
X + fLX + fXL = fX ( f + L) + fLX .
Remark: An additional term also has to be considered in the evaluation of d M (t , φ, χ) . dt It is dU* X dVf dU The coefficient of dt in this triple differential product comes from dA . dΛ . dA+ = dA dA+ = dt The corresponding coefficient is (eif – 1) U*LX(eif – 1) VfLU = (U*LXLVfU) and so, taking into account this correction, we get d iφ M (t , φ, X ) = M (t , φ, θ(χ) ) + (e − 1) M dt 2 t , φ f X + fLX + fXL + LXL
(
)
= M (t , φ, θ( X )) + (eiφ − 1) M (t , φ, ( f + L) X ( f + L)) .
[14] Moment Generating Function for Certain Quantum Random Variables: h system space, H Bath space for 1 Boson Γs(H) bath Boson Fock space for indefinite number of Bosons. L∈£(h), a(u)∈L(Γs(H1))
a(u), a*(u) are the annihilation and creation operators [a(u), a(v)] = f∈h.e(u)∈Γs(H) is the exponential vector.
Let [L, L*] = 0. i.e. L is a normal operator.
42
Stochastics, Control & Robotics
We wish to find
(
)
fe(v) exp La(u) + L*a* (u ) He(v) Suppose A, B are operator such that [A, [A. B]] = [B.[A, B]] = 0. Let
F (t) = exp (t (A + B)) F' (t) = (A + B) F (t).
Let
F (t) = exp (tA) G(t). Then G' (t) = [exp(– t al A) (B)] G(t) = (B – t [A, B]) G (t)
and so,
t2 G (t) = exp tB − [ A, B ] 2 t2 exp(tB) ⋅ e xp − [ A, B ] . = 2
t2 exp (tA + B) = exp(tA) ⋅ exp(tB) ⋅ exp − [ A, B ] 2 or equivalently
Thus,
1 exp(A + B) = exp (A). exp (B) . exp − [ A, B ] . 2
Thus since [L a(u), L*a*(u)] = ||u||2 LL* Commutes with both La(u) and L* a* (u), it follows that
[15] Belavkin Filtering Contd.: * in d σt(X) = F (t + dt ) XF (t + dt ) | ηt + dt]
* in − F (t ) XF (t ) | ηt] in * = F * (t ) XF (t ) | ηin t + dt ] − F (t ) XF (t) | ηt]
* in + d ( F (t ) XF (t) | ηt + dt]
Now and since
in F * (t ) XF (t ) ∈ σ{Y ( S ), S < t , δ (h)} in in ηin t + dt] = σ{ηt], dY (t)}
it follows two in the state if
(
2
)
e(u) > fe(u ) exp − u 2 ,
Classical Robotics & Quantum Stochastics
43
in * F * (t ) XF (t ) | ηin t + dt] = F (t ) XF (t ) | ηt]
Thus,
dσt(X) = d ( F * (t ) XF (t )) | ηin t + dt]
{
(
)
F * (t ) P* (t ) X + XP(t ) F (t ) | ηin t] dYin (t ) + F * (t )P* (t ) XP(t ) F (t ) ηin t] dZ in (t )
(
)
+ F * (t ) Q* (t ) X + XQ(t ) F (t ) ηin t] dt
= σt ( P* X + XP)dYin + σt ( P* XP)dZin + σt (Q* X + XQ)dt
d σt ( X ) σt ( X )d σt (1) σt ( X ) d σt ( X ) d σt (1) σ (X ) 2 ( ( 1)) − + dσ − d t t = σt (1) σt (1)2 σt (1)3 σt (1)2 σt (1) σ (X ) . Then we get Let vt(X) = t σt (1) d vt(X) = vt(P*X + XP) d Yin + vt(P*XP) d Zin + vt(Q*X + XQ) dt – vt (X) (vt(P* + P) d Zin + vt(P*P) d Zin + vt(Q*Q) dt + vt(X) vt (P* + P) d Zin + vt(P*X P)2 d Vin
+ 2 vt (P* + P) vt(P*P) dWin) – vt(P*X + XP) vt(P* + P) dZin – vt (P*X + XP ) vt (P*P) + vt(P* + P) vt(P*XP)) d Win – vt(P*XP) d Vin
where
(dYin)2 = dZin
(dYin)3 = dWin = dYindZin (dYin)4 = dVin = (dZin)2 We can express there as dvt(X) = At(X) dt + Bt(X) dYin(t) + Ct(X) dZin(t) + Dt(X)dWin(t) + Et(X) dVin(t)
where At(X), Bt(X), Ct(X), Dt(X) and Et(X) are linear functions of X with values in the Abelian algebra
{
}
in ηin t] = σ Y ( s ) s < t ,
[16] Modelling Noise in Quantum Mechanical Systems: [a] Dyson series: Let ξ(t), t ≥ 0 be a random process
44
Stochastics, Control & Robotics
Consider the perturbed quantum Hamiltonian H(t) = H0+eξ(t)V Let U0(t) = exp(–itH0) then unitary evolution operator of the unperturbed system. Them if U (t, s), t ≥ s is the perturbed unitary evolution from time s to time t, i
∂U (t , s) = H (t) U (t, s), t ≥ s, ∂t U(s, s) = I U(t, s) = U0(t) W(t, s)
The solution is where
i
∂W (t , s) = εξ(t ) V (t ) W (t , s), t ≥ s , ∂t W(s, s) = U0 (– s), V (t ) = U0(– t)VU.(t).
Then the solution is
∞
−iε n U (t, s) = U 0 (t − s ) + U 0 (t ) ∑ n =1 h
∫
ξ(t1 ) ... ξ(tn ) V (t1 )...V (tn ) dt1....dtn ) U 0 ( − s )
s < tn 0, ∑ pi =
∑ qi
=1
D(ρ σ) = Tr (r (log r – log σ)) =
∑ pi log pi − ∑ pi i, j
i
(where Sij = Note that
pi j
=
∑ pi Sij log q
=
∑ Sij
2
i, j
ei fi i .
∑ Sij i
j
= 1.)
ei f j
2
log q j
Classical Robotics & Quantum Stochastics
Thus,
D(r|σ) =
73
pi Sij ≥0 i ij
∑ pi Sij log q S i, j
since {pi Sij}i, j and {qi Sij}i, j are both probability distributions on {1, 2, ..., N}2.
[29] Entropy of a Quantum System: ρ′(t ) = − i [ H , ρ(t )] + ε θ(ρ(t ))
(
1 * L Lρ + ρL* L − 2LρL* 2 S(t) = – Tr(r(t) log r(t)).
q (r) = −
)
S ′(t ) = Tr (ρ′(t ) log ρ(t)) = − ε Tr (θ (ρ(t )) log ρ (t) )
( ) = εT ( L Lρ log ρ − LρL * log ρ)
=
ε Tr 2 L* L ρ log ρ − 2 LρL * log ρ 2 *
r
)
(
= ε Tr L* , Lρ log ρ r(t) = exp (–it ad H) (r (0)) t
+ ε ∫ exp ( −i (t − S ) ad H ) (θ(ρ ( S )) ds 0
= exp (–it ad H)(r(0)) t
2 + ε ∫ exp ( −i (t − S ) ad H ) θ (exp ( −is ad H ) (ρ (0)) ds + O(ε ) 0
Let
Tt
(0)
= exp (– it ad H) t
Then, Thus,
( = ε T ( L , LT
0
* S ′(t ) = ε Tr L , Lρ(t) log ρ (t ) r
Let
(
)
0 2 (0) 0 r(t) = Tt (ρ (0)) + ε ∫ Tt − S θ TS (ρ (0) ds + O(ε )
r(t) =
*
t
( 0)
∑ λ k (t ) ek (t )
)
(ρ(0)) logTt(0) (ρ(0)) ek (t )
k
Then
S ′(t ) = ε ∑ log(λ k ) ek L* , Lρ ek k
) + O(ε ) 2
(spectral representation)
74
Stochastics, Control & Robotics
∑ log λ k
= ε
k
ek L* , L ek λ k + ε ∑ log (λ k ) ek L L* , ρ ek k
* = ε ∑ λ k log λ k ek L L , L ek k
= ε
∑ log (λ k ) k
ek L, L* ek
+ ε ∑ log (λ k ) ek LL* ek λ k k
−ε ∑ log λ k ek L*ρ L ek k
* = ε ∑ λ k log λ k ek L , L ek + ε ∑ λ k log λ k ek LL * ek
k
k
+ε
∑ λ k log λ k
ek L ek
∑ λ k log λ k
ek L em
2
k, m
−ε
− ε ∑ λ k log λ k ek L* L ek k
2
k, m
* = ε ∑ λ k log λ k ek L L ek − ε ∑ λ m log λ k ek L em k ,m
k
= ε ∑ λ k log λ k em L ek
2
k ,m
= ε
∑
ek L em
m, k
2
∑
Let
− ε ∑ λ m log λ k ek L em k ,m
λ λ m log m λk
So S ′(t ) ≥ 0 iff 2
ek L em
m, k
Remark:
λ λ m log m ≥ 0 ∀ t. λk
log r (t) = Z(t) r(t) = eZ(t) z (t ) 1 − exp ( − ad Z (t) ) ρ′(t ) = e ( Z ′(t ) ) ad Z (t )
Z ′(t ) =
2
(
ad Z (t ) ρ(t ) −1 ρ′(t ) 1 − exp ( − ad Z (t ) )
)
2
Classical Robotics & Quantum Stochastics
75
∞ 1 + ∑ Cm ad Z (t )m = m =1
(
d Tr ρ log ρ dt
=
−1 ρ ρ′
)(
)
Tr [ρZ ′ ]
= Tr (ρ′ ) +
∑ CmTr ρ (ad log p )
m
m ≥1
(ρ ρ′)
m Tr (ρ′ ) = 0, Tr[r (ad log r) (X)]
(X =ρ
−1
p ′, Y = ( ad log ρ)
m−1
(X )
−1
)
= Tr[r ad log r(Y)] = Tr[r[log r,Y]] = Tr[[log r, rY]] = 0 Rate of entropy change of a quantum system ρ′(t ) = T(r(t)), T (T(r)) = 0 r
(
1 * L Lρ(t ) + ρ(t ) L* L − 2Lρ(t )L* 2 S(r(t)) = – Tr(r(t)log e(t)) d d S (e (t )) = Tr (ρ′ (t ) log e(t) ) − Tr ρ(t ) log ρ(t ) dt dt = i [ H , e(t)] −
log r(t) = Z(t)
Let
r(t) = rZ(t)
Then
−ad Z (t ) ρ′(t ) = ρZ (t ) 1 − e ( Z ′ (t )) ad ( Z (t ))
− Z (t ) ad Z (t ) Z ′(t ) = e ρ′ (t ) 1 − exp ( − ad Z (t) )
(
ad log ρ(t) = e(t ) −1 ρ′ (t ) 1 − exp ( − ad ρ(t) )
(
Let So,
x 1 − e− x
)
)
∞
=
∑ Cn xn . Then C0 = 1
n=0
∞ ad log ρ n 1 + ∑ Cn ( ad log ρ) = 1 − exp ( − ad log ρ) n =1
Z ′(t ) = ρ−1 ρ′ +
∞
∑ Cn (ad log ρ)
n =1
n
(ρ ρ′) −1
)
76
Stochastics, Control & Robotics
d Tr ρ log ρ = Tr (ρZ ′ ) dt = Tr (ρ′ ) +
∑ CnTr (ρ (ad log ρ) ∞
n =1
∑ CnTr (ρ (ad log ρ) ∞
= Tr (ρ′ ) =
since
n =1
n
n
(ρ ρ′)) −1
(ρ ρ′)) −1
d Tr ρ = 0 dt
(Tr(r′) = Tr(T(r)) = 0)
Now r (ad log r)(X) = r[log r, X] = [log r, rX] = (ad log r)(rX) Thus r(ad log r)n (r–1r′) = r (ad log r)n and so Tr(r (ad log r)n(r–1r′)) = 0. Thus,
d log ρ Tr ρ = 0 and we get dt d S (ρ (t )) = – Tr(r′(t) log r(t)) dt = – Tr(T(r(t)) log r(t)) = – Tr[(i[H, r] + q(r) log r] = – Tr[(i[H log r, r] + q(r) log r]
where
= – Tr(q(r) log r) 1 q(r) = − (L*Lr + rL*L – 2 LrL*) 2 1 dS (ρ (t )) = {Tr(L*L r log r) + Tr(r L*L log r) 2 dt – 2 Tr(LrL* log r)} = Tr (L*L r log r) – Tr (LrL* log r)
[30] Dirac Eqn. Based Temperature Estimation of Black-Body Temperature Field: Dirac eqn. γ µ (i∂µ + eAµ ) − m Ψ = 0. I 0 r 0 γ0 = ,γ = 0 −I iσ r
iσ r ,1 ≤ r ≤ 3, 0
Classical Robotics & Quantum Stochastics
77
0 −i 0 1 1 σ2 = i 0 ,σ1 = 1 0 , σ3 = 0 σ r σ s + σ s σ r = 2δ rs ,
γr
0 , −1
*
0 = −γ r , γ 0 = γ .
*
µ v v µ µv Thus, γ γ + γ γ = 2g
((2g µv )) = diag[1, −1, −1,1]. Other choices: 0 0 I r γ0 = , γ = I 0 −σ r Then
σr ,1 ≤ r ≤ 3 0
r * 0 r* γ 0 = γ , γ = −γ ,
γ µ γ v + γ v γ µ = 2g µv
(
)
Let
ψ = ψ *γ 0 ≡ ψ −T γ 0 .
Let
µ ψ = ψ *γ 0 γ µ ψ Jµ = ψγ
Then J 0 = y*y is real, Jr = y*g0gty ⇒
* t 0 * r * 0* J r* = ψ γ γ ψ = –y g y y
= y*g0gr y = J r Hence J r is also real , 1 ≤ r ≤ 3. Now
(
* 0 µ i∂µ J µ = i∂µ ψ γ γ ψ
(
)
)
i ∂ µ ψ * γ 0 γ µ ψ + iψ *γ 0 γ µ ∂ µ ψ Now So Now
igµ∂µy = −eγ µ Arµ ψ + mψ * µ*
i ∂µ ψ * γ µ* = − eAµ ψ γ
(1)
+ mψ *
0 I 0 g 0 gr = I 0 −σ r
σ r −σ r 0 0
(2) 0 −σ r
µ* 0* and hence g0 gµ is Hermitian, i.e. γ γ = gµ* g0 = g0 gµ
So
−i∂µ ψ *γ µ*γ o = −eAµ ψ * γ µ* γ o + mψ * γ 0
⇒
−i∂µ ψ *γ 0 γ µ = −eAµ ψ * γ 0 γ µ + mψ * γ 0
78
Stochastics, Control & Robotics
and hence (1) iψ *γ 0 γ µ ∂µ ψ = −eψ * γ 0 γ µ ψAµ + mψ * γ 0 ψ
⇒
while (2) ⇒ −i∂ µ ψ *γ 0 γ µ ψ = −eAµ ψ * γ 0 γ µ ψ + mψ * γ 0 ψ Subtracting, we get
(
∂ µ ψ *γ 0 γ µ ψ i.e. ∂µ J
µ
)
=0
= 0 which is the charge conservation equation; provided we define the
current density as µψ −eψ *γ 0 γ µ ψ ≡ −eψγ Now put Aµ(X) be a random Gaussian field with zero mean and correlations Aµ (t + τ, r1 ) ⋅ Ar (t , r 2 ) = Rµr ( τ, r1 − r 2 )
Aµ (t + τ, r 0 − r ) Ar (t , r 0 ) = Rµr (τ, r )
i.e.,
y(X) = y(0) (X) + ey(X) + O(e2).
Let
Then by first order perturbation theory,
(γ (γ
) − m) ψ
µ
i ∂µ − m ψ (0) = 0,
µ
i ∂µ
(
(0)
µ (0) = − Aµ γ ψ
ψ (α0) =
0 where p = pµ = p , p
)
(4) (5)
∫ aα ( p)exp (i. p.X ) + bα ( p)exp (i.p − X ) d
( )
( )
0 0 0 p.X = pµXµ = pµXµ = p X − p, r = p t − p, r
(6) satisfies (4) provided
(γ (γ
) + m) b ( p)
µ
pµ − m a ( p) = 0
µ
pµ
=0
( )
2
2 These eqn. imply pµ pµ = m2 i.e. P02 = p + m or p0 = F p 2
2 = + m + p .
Now a ( p) can be determined as follows: 0 I r 0 ,g= g0 = I 0 − σr
σr 0
3
p
(6)
Classical Robotics & Quantum Stochastics
79
( ) ( )
0, E ( p) + σ, p g 0 pµ = E ( p) − σ p 0
So,
(γ
So ⇔
µ
)
pµ − m a ( p) = 0
(
( )) ( )
ma1 ( p) = E ( p) + σ, p a, p a1 ( p) a ( p) = a 2 ( p)
( ( ) ( )) ( )
1 E p + σ, p a 2 p a ( p) = m a p 2
Thus
()
()
Normalizing so that a p
()
a2 p ,
()
()
1 E p m2
()
a2 p , 2E p
2
2
2
= 1 gives
( )(
) ()
+ p 2 + 2 E p σ, p a 2 p
( )(
+ a ( p)
2
=1
) ()
− m 2 + 2 E p σ, p a 2 p
() () 2E ( p ) a 2 ( p ) , ( E ( p ) + (σ, p )) a 2 ( p )
= m2
( ) ( )(
) ()
= m2
() () (
) ()
= m2
+ m2 a 2 p , a 2 p
or
()
a2 p
()
b2 p
2E p
2
()
2
+ 2 E p a 2 p , σ, p a 2 p
= m2
Likewise, 2E p
2
()
2
(Simply replace m by – m)
()
+ 2 E p b 2 p , σ, p b 2 p
() ()
a2 p = λ p χ p
Let where
()
()
()
λ p ∈C, χ p ∈C2 , χ p
( ) λ ( p)
Then 2 E p
2
2
2
=1
() ()
+ 2E p λ p
2
( ) ( ( ) ( ))
χ p , σ, p χ p
= m2
80
Stochastics, Control & Robotics
()
i.e. λ p
2
=
m2
( ) ( E ( p ) + χ ( p ) , ( σ, p ) χ ( p ) )
2E p
2
In particular a(p) and b ( p ) ∈C 4 both have two complex degrees of freedom ∀ p ∈ 3 . We now solve the O(Aµ) eqn i.e. (5) Aµ ( X ) =
Let
Aµ ( p ) exp ( −i p ⋅ X ) + Aµ ( p ) exp (i p ⋅ X ) d ∫
where p.X = pµXµ and Aµ = ∂α∂αAµ = 0
3
p
()
p2 = 0, i.e. pµpµ = 0, i.e. p0 = +E p = p
⇒
()
So we have writing E0 p = p that Aµ ( X ) =
∫ Aµ ( p) exp ( −i ( E0 ( p)t − ( p, r ))) + A p exp i E0 p t exp ( p, r ) d 3 p
(( ( ))
()
)
Then Aµ ( X ) ψ α(0) ( X ) =
∫ Aµ ( p) exp (−iE0 ( p)t ) exp (i ( p, r ))
+ Aµ p exp i E0 p t exp ( −i ( p, r )) d 3 p
(( ( ))
()
)
( ) ( ( )) ( ) +bα ( p ) exp ( −iE ( p ) t ) exp ( −i p. r ) d 3 p
× ∫ aα p exp −iE p t exp i p ⋅ r
=
∫ { Aµ ( p ′ ) aα ( p ) exp (−i ( E ( p ) + E0 ( p ′ )) t ) exp (i ( p + p ′, r ))
)) ( ( ( ) ( )) ) ( ( + A ( p ′ ) a ( p ) exp ( −i ( E ( p ) − E ( p ′ )) t ) exp (i ( p − p ′, r )) = + A ( p ′ ) b ( p) exp ( −i ( E ( p ) + E ( p ′ )) t ) exp ( −i ( p − p ′, r ))} d pd p′ + Aµ ( p ′ ) bα ( p) exp i E p − E0 p ′ t exp −i p + p ′, r µ
α
0
µ
α
0
3
(1) Writing ψ α ( X ) =
3
∫ ψ α (k ) exp (−i k. X ) d (1)
4
k
Classical Robotics & Quantum Stochastics
81
0 where k. X = kµ Xµ = kµXµ = k t − ( k , r )
we get from (5)
∫4 (kµ γ
µ
(
)
(1) ( k ) exp ( −i k . X ) d 4 k = − γ µ Aµ( X ) ψ (0) ( X ) −m ψ
= where
( )
∫ −γ
µ
X
µ
)
(t, p) exp (i p. r ) d 3 p
χµ t , p
=
∫ Aµ ( p ′ ) a ( p − p ′ ) exp (−i ( E ( p + p ′ ) + E0 ( p ′ )) t ) d
3
p′
+ 3 other similar terms. The correlation of correlation in {Aµ}.
{ψ } can be computed from this expression in terms of (1) 0
Reference: Rohit Rana, temperature measurement using Klein -Gordon field, M. Tech Thesis, NSIT, 2014, Under supervision of H. Parthasarathy and T. K. Rawat.
[31] Quantum Image Processing on a C∞- Manifold: The image field on the manifold is diffused using the Diffusion equation. 1 1 ∂u (t , x) 1 − = g 2 g 2 g αβu, α (t , X ) , β ∂t 2 1
=
1
1 αβ 1 − g u , αβ + g 2 ( g 2 g αβ ), βu , α 2 2
We can express thus as u, t(t , x) = D1αβ ( X )u ,αβ (t , X ) + D2α ( X )u, α (t , X ) where
D1αβ ( X ) =
1 αβ g (X ) , 2
1 1 1 − 2 2 αβ = g g g ,β 2 1 αβ 1 = g , β + g , β g αβ g −1 2 4 The image field at time t is then u(t, X), X∈n.
D2α ( X )
To quantize this image field, we must first derive (1) from an action principle.
(1)
82
Stochastics, Control & Robotics
Diffusion of an edge: An edge is a line in 2 having the equation lX + mY = C The corresponding intensity pattern is f(X, Y) = δ(lX + mY – C) If the image field consists of only edges, then the intensity field in f(X, Y) =
∑ δ (lα X + mαY − cα ) α
Under the diffusion equation defined by ∂u (t , x, y ) 1 ∂ 2u ∂ 2u = D 2 + 2 , 2 ∂x ∂t ∂y u(0, X, Y) = f(X, Y), this field of edges evolves to u(t, X, Y) = ( Kt * f ) ( X , Y ) ≡
∫ Kt ( X − X ′, Y − Y ′ ) f ( X ′, Y ′ ) dX ′dY ′
[32] Belavkin Contd. (Quantum Non-Linear Filtering): ν µ − X (t ) δ µν d Aµ d X = F ν
(
)
− X ⊗ δ d A ≡ F − X ⊗ δ . Then = F C
Let
(
d X
*
A ≡ C µν d Aµν = Cd
d X
*
µ* ν* bν µ b = C ν d Aµ = C µ d Aν = C d A
d X * X
) = d X *.X + X * d X + d X * .d X
b d A + C b Cd A.d A X d A + X *C = C Note:
dA−j dAk+ = δ kj dt dA+j dA−k = δ +− dAkj = 0 dAkj dAml = δ mj dAkl . So dAνµ dAσρ = δ µσ dAνρ +C C , t X+ X *C = d A C b
b
)
Classical Robotics & Quantum Stochastics
83
Now,
(
)
(
b − − b +C bC ≡ F X ⊗δ + X * ⊗δ F X ⊗ δ X ⊗δ C X+ X *C
(
b − − + F X *⊗δ F X ⊗δ
(
)
)
)
b F X * X ⊗δ + F = −
So
(
d X * X
) = F
b
− F X * X ⊗ δ d A µ
v b F − ≡ F X * X ⊗ δ d Aµ v
b µ µ v = F F − X * X δ v d Aµ v It ⇒
(
b F = I, then X * X (t) = I F
X d X *
) = 0 ⇒ X (t )
is unitary ∀t if it is unitary at t = 0.
[33] Remarks on Theorems from V. Kac. Infinite Dimensional Lic Algebra. P.87: 1 tw(α ) (λ ) = λ + λ, k w(α ) − ( λ / w(α )) + | α |2 λ, k δ 2 wtα w−1 (λ ) = λ + w−1 (λ ), k w(α)
((
)
− w−1 (λ ) | α +
1 | α |2 < w−1 (λ ) , K >| w (δ ) 2
−1 w (δ) = δ, w (λ ), k = λ, w(k) = λ, k
(w so
−1
) (
)
( λ ) | α = λ w (α )
wtα w−1 (λ ) = λ + λ, k w(α) 1 2 ( λ | w (α )) + | α | λ, k δ = tw (α ) (λ ) . 2 P249 n ∈ N Z ⇒ z n = (α, β, u ), n, v
(α, β, u )(v) = tβ (v) + 2πiα + (u − iπ(α | β)) δ
84
Stochastics, Control & Robotics
1 tρ (λ ) (n ⋅v) = (λ + (λ | δ )ρ + | n, v ) − λ ρ + (ρ | ρ) (λ | δ) (δ | n ⋅ v) 2
( ) = (tρ − β (λ ) | v ) + ((λ | δ ) + (λ | δ)(ρ | δ ))
= tρ (λ ) | tβ (v) + 2πiα + (u − iπ(α | β))δ
(u − iπ(α | β)) + 2πi (λ | α ) (λ | δ) = k ∈Z + ρ2 (ρ | δ) = 0.
So,
(
)
tρ (λ ) (n ⋅v) = tρ − β (λ ) | v + k (u − iπ(α | β)) δ (n · v) = (δ|n · v) = (δ|tβ (v)) = (δ|v).
[34] Quantum Mutual Information: [Reference: Remark from Mark, M. Wilde "Quantum Information Theory. (P. 303.)] Holevo information: { px ( x), ρ x } ensemble prepared by Alice. ρ xA′ =
∑ px ( x) x
x
X
⊗ ρ xA′
x
X
⊗ ρBx
x
N
A′
→ B = channel.
ρ XB =
∑ px ( x) x x
where
( )
ρBx = N A′→ B ρ xA′
I ( X ; B )ρ X (N) = max XA′ ρ
I ( X ; B)ρ = − ∑ px ( x)H ρBx + H ∑ px ( x)ρBx x
( )
Note:
( )
XB rB = Trx ρ =
H (B | X ) =
∑ px ( x)ρBx x
∑ px ( x)ρBx x
Classical Robotics & Quantum Stochastics
Hence
85
I ( X : B)ρ = H ( B) − H ( B | X ) = H (ρB) − H ( B | X ) = H ∑ px (u )ρBx − ∑ px ( x) H ρBx X x
( )
P. 307 Let Let
γ
∑ p( y | x) p(x) x
x1X ⊗ y y ⊗ ρ xA, y = σ
∑ p ( y | x) p(x) x
x
x, y
Then Tryσ = =
X
⊗ ρ xA, y
x, y
∑ p ( x) x
x
X
⊗ ρ xA, y
x
Where
ρ xA
=
∑ p( y | x)ρxA, y y
\
I ( X ; A)σ = H
(∑ p( x) ρ ) − ∑ p( x) H (ρ ) = H ( X : A) A x
A x
ρ
Data processing inequality; Let X → Y → Z be a Markov chain. Then I (X; Y) ≥ I (X; Z) I ( X ; Y ) = H (Y ) − H (Y | X ) , I ( X ; Z ) = H (Z ) − H (Z | X ) H ( Z X ) ≥ H(Z | Y, X) = H(Z | Y)(by Markov property), So.
I ( X ; Z ) ≤ H (Z ) − H (Z | Y )
If the Markov chain X → Y → Z is stationary i.e, pZ | Y = pY | X and pX = pY = pZ. the H (Z) – H (Z|Y) = H (Y) – H (Y|X) and we are done. Let
r=
∑ p ( x) x
x ⊗ ρx
x
Let Then
rx = r=
∑ p( y | x) yx
yx
y
∑ p ( x) p ( y | x) x
x ⊗ yx
yx
xy
Since
x ′ | x = δ x ′ x , δ yx , y′x= δ yx , y x′ ∀x
it flows that (1) is a spectral representation. Hence,
H (r) = − ∑ p( x) p( y | x)log( p( x) p( y | x)) x, y
(1)
86
Stochastics, Control & Robotics
=
− ∑ p ( x ) log p ( x ) − ∑ p ( y, x ) log p ( y | x ) x, y
x
= H (X) + H (y|X) = H (Y, X) Where p (y, x) = p (y|x) p (x) i the joint probability distribution of r.v’s (Y, X).
[35] Scattering Theory Applied to Quantum Gate Design:
(
)
ψ i ( r ) = C.exp jk ni ⋅ r Incident projectile state. E = 2 k 2 / 2m Projectile energy. ni Incident projectile direction.
− 2 ∆ψ i = Eyi is clearly satisfied. 2m
Final state (scattered) ψ f ( r ) = ψ i ( r ) + εψ s1 (r ) + ε 2 ψ s2 (r ) + O(ε3 ) . Interaction potential energy εV ( r ) . 2 ∆ + εV yf = Eyf − 2m 2 ∆ + εV ψ f = εψ s1 + ε 2 ψ s2 − 2m
or
= E [yi = e ys1 + e2ys2] + O (e3)
Coeffi. of e0, e1, e2, respectively give − 2 ∆ s1 + V ψ i = Eys1, 2m − 2 ∆ψ s 2 + V ψ s1 = Eys2 2m Thus,
(∆ + k ) ψ
s1
=
(∆ + k ) ψ
s2
=
2
2
2m 2 2m 2
ψ s1 ( r ) = − =
V ψi , V ψ s1 m
2π
2
∫
exp ( jk | r − r ′ |) V ( r ′ ) ψ i ( r ′ ) d 3r′ | r − r′ |
∫ Gk ( r − r ′)V ( r ′) ψ i ( r ′) d
3
r′
Classical Robotics & Quantum Stochastics
Gk ( r ) = ψ s2 ( r ) = =
−m 2π 2 r
87
exp( jkr)
∫ Gk ( r − r ′)V ( r ′) ψ i ( r ′) d
3
r′
∫ Gk ( r − r ′)V ( r ′) Gk ( r ′ − r ′′)V ( r ′′) ψ i ( r ′′) d
ψ sm ( r ) = (GkV )m ψ i , m = 1, 2...
Formally,
yf = ψ i + exact solution.
∞
∑ ε m (GkV )m ψ i
m =1
( )
2 3 Let ψ ∈L . Then
|| Gk V ψ ||2 =
∫ d r ∫ Gk ( r − r ′)V ( r ′) ψ( r ′) d 3
3
r′
2
≤ ∫ | Gk ( r − r ′ )V (r ′ ) |2 d 3rd 3r′ | ψ ( r ′ ) |2 d 3r ′ ∫ Hence || GkV || < ∞ iff
∫ Gk ( r − r ′)
2
V ( r ′ ) 2 d 3rd 3r′ < ∞
iff ∫ | V ( r ′ ) |2 d 3r ′ < ∞ and ∫ | Gk ( r ) |2 d 3r < ∞ The latter in false since d 3r
∫
=
∞
∫0 4πdr
=∞ r with box normalization however, ||GkV||this can be made finite. 2
Now formally, yf = ψ i +
εGkV ψi I − εGkV
= [ I − ε GkV ] ψ i −1
Now formally, Gk =
2m
2
( ∆ + k 2 ) −1
2 2k 2 ∆− = − − 2m 2m −1 = − (H0 − E)
−1
3
r ′d 3r ′′
88
So,
Stochastics, Control & Robotics
[ I − ε GkV ]−1
−1 = I + ε (H0 − E ) V
−1
−1 = [ H 0 − E + εV ] [ H 0 − E ] −1 = [ H1 − E ] [ H 0 − E ]
H1 = H 0 + εV
where This formula implies
−1 = [ H1 − E ] [ H 0 − E ] ψ i
ψf
or
= [H0 − E] ψi
[ H1 − E ] ψ f
Both sides one zero and hence no information is gained from then equation. However, we can also write ∞
∑ ε m (GkV )
m
m =1
= Gk
∞
∑ ε m (V Gk )
m −1
−1 V = ε Gk [ I − ε V Gk ] V
m =1
I − ε V Gk = I + ε V ( H 0 − E ) −1
and
−1 = [ H 0 + εV − E ] [ H 0 − E ] −1 = [ H1 − E ] [ H 0 − E ]
so
∞
∑ ε m (GkV )
m
m =1
thus,
ψf
= ε Gk ([ H1 − E ] [ H 0 − E ]) V −1
−1 = εGk ( H 0 − E ) ( H1 − E ) V
= − ε ( H1 − E ) −1V
So, ψf
(
)
−1 = I − E ( H1 − E ) V ψ i
Check: Multiply both sides of this equation by H1 – E to get
( H1 − E ) ψ i
=
( H1 − E − εV ) ψ i
= (H0 − E) ψi and both sides evaluate to zero. We write H1 − E = ( H 0 − E + ε V ) −1
( = (I + ε (H
) V)
= I + ε ( H 0 − E ) −1V 0
− E ) −1
−1
( H 0 − E ) −1
−1
( H 0 − E ) −1 + O(ε 2 )
Classical Robotics & Quantum Stochastics
89
and hence ψf
= ψ i − ε ( H 0 − E )V ψ i + ε 2 ( H 0 − E ) −1 V ( H 0 − E ) −1V ψ i + O(ε3 ) . 2 2 3 = I + ε GkV + ε (GkV ) ψ i + O(ε ) .
ψ i output state evolving according to H0. Alternate way of deriving the operator ψ 0 → ψ f H0 white ψ f
ψ 0 evolves according to
evolves according to H1. As t → ∞ ψ f
t
ψ0
t
since as t → ∞
the effect of the scaterer interaction becomes negligible. Note that ψ 0 , the out put state, is evolving as a force partible while ψ f
the scattered state, evolves
according to H1. Thus lim e −it H , ψ f − eit H 0 ψ 0
=0
t→∞
So
ψf
− it H 0 , − it H 0 e ψ0 = lim e t→∞
Now d it H , it H 0 it H , ( H1 − H 0 ) e −it H 0 = i ε eit H ,V e −it H 0 e e = ie dt So Let Then
∞
it H −it H 0 Ω (t) = lim e 1 e = I + i ε ∫ eit H , Ve −it H1 dt t→∞
H0 =
0
+∞
∫− ∞ λ dE(λ)
be the spectral rep’n of H0.
∞
it( H −λ ) Ω (t) = I + i ε ∫0 dt ∫ e 1 V dE(λ )
∞
∆ I + i ε lim ∫ dt e −it δ→0 0
( H1 − λ + iδ )
V dE (λ )
∞
I − ε ∫ ( H1 − λ + iδ ) −1V dE(λ ) . 0
i.e.
ψf
∞
−1 = ψ 0 − ε ∫0 ( H1 − λ + iδ ) V dE(λ ) ψ 0
If the output state ψ 0 has energy E, then dE(λ ) ψ i = δ E , λ ψ i ψf
= ψ 0 − ε ( H1 − E + iδ ) −1 V ψ 0
and we get
90
Stochastics, Control & Robotics
Now consider the input state ψ i . At time t → −∞ ψ i evolves according to H0 while ψ f
evolves according to H1. In the remote part, these two states must
coincide. Thus lim e −it H1 ψ f − e −itH 0 ψ i
t→−∞
or
ψf
where
it H − it H 0 Ω (–) = lim e 0 e
= Ω( −) ψ i t→−∞
Ω (–) = I − ∫
d
0
− ∞ dt
= I − i∫
0
−∞
= I − i ε∫ = I −iε =
(e
itH1 −itH 0 e
) dt
eitH1 ( H1 − H 0 ) e −it H 0 dt
0
−∞
So
=0
eit H1 V e −it H 0 dt it H −λ e ( 1 )V dE(λ ) dt
∫
× ( − ∞ , 0)
I − i ε lim
δ→ 0 +
∫
eit ( H1 − λ − iδ )V dE (λ ) dt
× ( − ∞ , 0)
= I − i ε ∫ ( H1 − λ − iδ ) −1 V dE(λ )
ψf
= ψ i − ε ( H1 − E − iδ ) −1 V ψ i
Ω + ( E ) = I − ε ( H1 − E + iδ ) −1V
Ω − ( E ) = I − ε ( H1 − E − iδ ) −1V ψf
= Ω+ ( E ) ψ 0 ,
ψf
= Ω – (E) ψ i
Born scattering is an first order approximation of ψ f = Ω− ( E ) ψ i Scattering matrix/operator: Since Ω + (E) is an isometry, we have Ω+ ( E ) * Ω+ ( E ) = I
and hence, ψ0
= Ω+ ( E ) * ψ f
Classical Robotics & Quantum Stochastics
91
= Ω+ ( E ) *Ω− ( E ) ψ i S (E) = Ω + ( E ) * Ω − ( E ) is the scattering matrix at energy E. ψ0
= S (E) ψi
S (E) is unitary on the space of definite energy states i.e. states defined on the unit sphere i.e. L2 (S2) S (E) = I − ε ( H1 − E + iδ ) −1 V
*
× I − ε ( H1 − E + iδ ) −1V = I − ε V ( H 0 − E − iδ ) −1 − ε ( H 0 − E − iδ ) −1V + O(ε 2 )
{
}
−1 −1 2 = I − ε V ( H 0 − E − iδ ) ( H 0 − E − i δ ) V + O ( ε )
ψ0
Thus,
(H0 − E) ψi
and
−1 2 = S ( E ) ψ i = ψ i − ε( H 0 − E ) V ψ i + O(ε )
= 0−
Note that ( H 0 − E − iδ ) −1V ψ i So ψ0
iε V ψi δ
−1 = ( − iδ ) ψ i =
(
i ψi δ
)
−1 = I − iδ ε V ψ i
− ε ( H 0 − E ) −1V ψ i + O(ε 2 ) i V ψ i in ψ 0 shown that a blind application of perturbation δ theory w.r.t. e is incorrect. However, if we still persist,then The infinite factor
ψ 0 | ψ i = ψ 0 | δ( E ) | ψ i ψi | ψi −
iε ψi | V | ψi δ
( )
− ε ψi (H 0 − E ) V ψi + O ε2 −1
Where the inner product is w.r.t. L2 (S2) in momentum space. More generally, ψ i 2 | S ( E) | ψ i1 = ψ i 2 | ψ i1 −
iε ψ i 2 | V | ψ i1 δ
− ε ψ i 2 ( H 0 − E ) −1V ψ i1 + O(ε 2 ) Where ψ i1 and ψ i2 are two incident states.
92
Stochastics, Control & Robotics
and
ψ i1 ( r ) = Ci exp( jk ni r ) ψ ( r ) = C exp( jk n2 r )
Then
(k ) = ψ i1
Let
i2
2
1 (2π)3/ 2
∫ ψ i1( r ) exp(− ik ′r ) d
3
r
3/ 2 n1 ) = (2π) C1δ ( k ′ − k
and likewise
( r ) = (2π)3/ 2 C δ ( k ′ − k ψ n2 ) i2 2 ≡ (2π)3 C 2C1 ∫ δ ( k ′ − k n 2 )δ ( k ′ − k n1 )d Ω ( k ′ )
ψ i 2 | ψ i1
If we instent take (1) over where of 3, then formally ψ i 2 | ψ i1
=
∫ ψ i 2 ( r ) ψ i1( r ) d
=
∫ ψ i 2 (k ′) ψ i1(k ′) d
=
(2π)3/ 2 C 2C1 δ n 2 − n1 , k
ψ i 2 | V | ψ i1 =
3
r 3
(
k ′ = (2π)3 C 2 C1 δ k ( n2 − n1 )
(
)
)
∫ ψ i2 ( r )V ( r ) ψ i1( r ) d
3
r
(
)
n2 − n1, r ) d 3r = C 2C1 ∫ V ( r )exp − jk (
(
3/ 2 n2 − n1 ) = (2π) C 2C1 V k (
By the Riemann-Lebesgue Lemma,
(
)
)
n2 − n1 ) = 0 lim V k (
k→∞
So for high energies, ψ i 2 | V | ψ i1 may be neglected. Now, the Born term is ψ i 2 | (H 0 − E ) −1 | ψ i1
= =
−2m h
2
m 2π
2
ψ i 2 | (∆ + k 2 ) −1V | ψ i1
∫
exp( jk | r − r ′ |) ψ i 2 ( r )V ( r ′ ) ψ i1 ( r ′ ) d 3r d 3r ′ | r − r′ |
Before evaluating this, we make a remark: yi1 and yi2 are concentrated at r → ∞ where V ( r ) is concentrated around the origin. So ψ i1 yi2 has zero overlap with
V which is another justification for taking the overlap integral ψ i 2 | V | ψ i1 = 0. With the assumption, ψ i 2 | S ( E) | ψ i1 ≡ ψ i 2 | S (k) | ψ i1
Classical Robotics & Quantum Stochastics
≈
93
(2π)3/ 2 C 2C1 δ (n 2 − n1 ) k
m ε exp( jk | r − r ′ |) − C 2C1 V ( r ′ ) 2π 2 ∫ |r−r|
( (
) (
n1, r ′ − n2 , r ′ × exp jk
))) d r ′ d r 3
3
Now if we assume that r > > r′ i.e. the final state is concentrated at ∞ while the potential V (r′) is concentrated near the origin, then we can make the field approximation to get exp ( jk | r − r ′|) e jkr exp(− jk( r − r ′ )) ≈ r | r − r ′| and then ψ i 2 | S ( E) | ψ i1 ≈
(2π)3/ 2 C 2C1 δ n 2 − n1 k
(
−
mε 2π 2
{ ( ) ( ) (
r , r ′ + n2 , r − n1, r ′ C 2C1 ∫ exp − jk
(2π)3/ 2 C 2C1 exp( jkr) δ n 2 − n1 V ( r ′ ) d 3r ′ d 3r = k r
(
−
m ε C 2C1 2π
)
2
)
((
(2π)3/ 2 ∫ V k r − n1
))
( ( ( ))) d r
n2 , r exp jk r −
3
r
If we don’t make the far-field approximation, then ψ i 2 | S (k) | ψ i1 ≈
(2π)3/ 2 C 2C1 δ n 2 − n1 k
(
)
exp ( jk | r − r ′ |) mε − C 2C1 ∫ 2π 2 | r − r′ |
[36] Quantization of the Simple Exclusion Model:
ZN = {0, 1, 2, ..., N – 1}. |X〉 = X o X1...X N −1 >∈(C 2 )⊗ X R ∈{0, 1} .
N
≅C 2
N
)}
94
Stochastics, Control & Robotics N a ( X , r, s), X = ( X 0, X1...X N −1 ) ∈{0, 1} 0 ≠ r, s ≠ N – 1
Transition probability amplitudes. − i X r (1 − X s ) a( X , r , s ) transition probability amplitude per unit time from X → X
(r , s)
Where |X〉(r, s) is obtained from | X 〉 by interchanging Xr and Xs. So |yt +δt〉 = ψ t − iδt or
i
d ψt dt
=
∑
∑
X r (1 − X s ) a( X , r , s ) X
( r , s)
X | ψt
X , r, s
X r (1 − X s ) a( X , r , s ) X
( r , s)
X | ψt
X r (1 − X s ) a ( X , r , s ) X
( r , s)
X
X , r, s
= H ψt H=
∑
X , r, s
H* =
∑
X r (1 − X s ) X
X
∑
X r (1 − X r ) X
( r , s)
( r , s)
a( X , r , s)
X rs
=
X a( X ( r , s) , r , s )
X rs
For H* = H, we requires X r (1 − X s ) a( X , r , s ) X
( r , s)
+ X s (1 − X r ) a( X , s, r ) X
X
( s , r)
= X s (1 − X r ) a ( X ( r , s ) , r , s ) X
(r , s)
+ X r (1 − X s ) a ( X ( r , s) , r , s ) X ( r , s)
X
( s , r)
X X
( s , r)
, X ( r , s) = X ( s , r) and hence the condition for = X ∀ r ≠ s. Now X Hermitian of H reduces to X r (1 − X s ) a( X , r , s ) + X s (1 − X s ) a( X , s, r ) ( r , s) , s, r ) + X s (1 − X r ) a( X ( r , s ) , r , s ) ∀ r ≠ s ∀ X = X r (1 − X s ) a( X
This can be achieved, for example, by taking a ( X , r, s) = a (r , s) ∈ = a (s, r) independent of X . Another way to achieve this is to take a ( X , r , s ) = a (r , s ) a (s, r )∀ r ≠ s i.e. ((a (r , s)))0 ≠ r , s ≠ N −1 is a Hermitian. N × N matrix independent of X.
Classical Robotics & Quantum Stochastics
95
A still more general way is to choose a such that
(
)
( r , s) , s, r ∀ X ∈{0, 1}N , a ≤ r , s ≤ N −1 . a(X , r, s) = a X
Consider now −
d ψt dt
= H ψt =
∑
X r (1 − X s ) a(r , s ) X
( r , s)
X | ψt
r , s, X
a (r, s) = a ( s, r) . Thus, i
d Y | ψt dt
=
∑
X r (1 − X s ) a(r , s )δ Y − X ( r , s) < X ψ t
∑
X r (1 − X s ) a(r , s )δ Y ( r , s) − X < X ψ t
r , s, X
=
r , s, X
=
∑ X s (1 − Yr ) a(r , s) < Y (r , s) ψ t r, s
Let X | ψ t
= ψ t ( X ) . Then we can express the above eqn. as i
d ψt ( X ) = dt
∑ ψ t ( X (r , s) ) X s (1 − X r ) a(r , s)
(1)
r, s
Probability density and probability current: −i
d ψi ( X ) = dt
∑ ψ t ( X (r , s ) ) X s (1 − X r ) a(s, r)(a(s, r ) = a(r , s))
(2)
r, s
From (1) and (2), d ψt ( X ) d ψt ( X ) d 2 ψt ( X ) = ψt ( X ) + ψt ( X ) dt dt dt or, d ( r , s) 2 ) X s (1 − X r ) a(r , s) i ψt ( X ) = ψt ( X ) ∑ ψt ( X dt r, s
(
)
− ψ t ( X )∑ ψ t X ( r , s) X s (1 − X r ) a (r , s) r, s
=
∑ X s (1 − X r ) 2i I m (a (r , s) ψ t ( X ) ψ t ( X (r , s) )) r, s
Suppose a (r, r + 1) = a (r + 1, r) = α ∈ and a (r, s) = 0 for |r – s| > 1. Then we get
(
d 2 ψ t ( X ) = 2α ∑ X r +1 (1 − X r ) I m ψ t ( X ) ψ t( r , r +1) ( X ) dt r
(
)
+ 2α ∑ X r +1 (1 − X r ) I m ψ t ( X ) ψ t( r −1, r ) ( X ) r
)
96
Stochastics, Control & Robotics
(
( r , r+1) (X ) = 2α ∑ ( X r + X r +1 − 2 X r X r +1 ) I m ψ t ( X ) ψ t r
(
( r , r +1) (X ) = 2α ∑ I m ψ t ( X ) ψ t r:
)
)
(Xr, Xr + 1) = (1, 0) or (0, 1)
[37] Quantum Version of Nearest Neighbour Interactions: ψ t ( X1, ..., X N ) state of the N-particle system at time t. The classical equation dX i (t ) = ( ψ ( X i −1 (t )) − 2ψ ( X i (t)) + ψ( X i +1 (t )) ) dt + dBi −1, i (t ) − dBi , i +1 (t ) (*) Needs to be quantized. We write X1,..., X N | ψ t
= ψ t ( X1, ..., X N )
One method to start quantity appears to be ψ t + dt ( X ) = αψ t ( X − ϕ( X ) dt − σ( X ) d B (t)) where |α| = 1 α ∈C . We write α = 1 + iβ dt so
|α| =
1+ β 2 dt 2 = 1 + O (dt2), β = β (X).
Comments and remarks on Volume 4. of collected papers of S.R.S. Varadhan: dXi (t) = dZi – 1, i (t) – dZi , i + 1 (t)
dZi , i + 1 (t) = (y (Xi (t)) – y (Xi +1) (t)) dt + dBi, i + 1 (t), i ∈ Z. XN (t) =
∑
i ∈Z N
i J X i (t ) N
Forward Kolmogorov operator:
(
)
dXi (t) = ψ ( X i −1 (t )) − 2ψ ( X i (t)) + ψ( X i +1 (t )) dt + dBi −1, i (t ) − dBi , i +1 (t ) . ∂ 1 ∂ ∂ + ∑ − L = ∑ ( ψ ( X i −1 ) − 2ψ ( X i ) + ψ( X i +1 )) ∂X i 2 i ∂X i ∂X i+1 i Note: d f ( X 0 , ..., X N −1 ) =
∂f 1 ∂2 f dX + ∑ ∂X i 2 ∑ ∂X ∂X dX i dX j i i i i i, j
dX i dX i +1 = − (d Bi , i +1 )2 = – dt, dX i −1 dX i = – (d Bi – 1, i)2 = – dt, dXi2 = 2dt
2
Classical Robotics & Quantum Stochastics
97
A stationary density p ( X ) should L*p = 0. Now let p ( X ) = C ∏ exp(λX i − φ ( X i )) i
£*p = − ∑ i
((
) )
∂ ψ ( X i −1 ) − 2ψ ( X i ) + ψ( X i +1 ) p ∂X i 2
∂ 1 ∂ + ∑ − p 2 i ∂X i ∂X i +1
(
= 2 ∑ ψ ′ ( X i ) p − ∑ ψ ( X i −1 ) − 2τ ( X i ) + ψ ( X i + 1 ) i
i
) ∂X∂pi
2
1 ∂ ∂ + ∑ − p 2 i ∂X i ∂X i +1 ∂p = (λ − φ′ ( X i )) p . ∂X i ∂ ∂ − p = (φ′ ( X i +1 ) − φ′ ( X i )) p ∂X i ∂X i +1 2
∂ ∂ − p = φ′( X i +1 ) − φ′( X i ) ∂X i ∂X i +1
(
)
2
(
)
p − φ′′( X i +1 ) + φ′′ ( X i ) p
So L*p/p = 2∑ ψ ′( X i ) − ∑ (λ − φ′ ( X i ))(ψ ( X i −1 ) − 2ψ ( X i ) + ψ ( X i +1 )) i
i
+∑ i
1 1 (φ′( X i +1) − φ′( X i ))2 − 2 ∑ (φ′′( X i +1) + φ′′( X i )) 2 i
For this to be zero, we require 2ψ ′( X i ) − φ′( X i ) ψ ( X i ) + φ12 ( X i ) − φ′′( X i ) = 0
and
φ′( X i ) ψ ( X i −1 ) + (φ′( X i −1 )) ψ ( X i ) − φ′ ( X i −1 ) φ′ ( X i ) = 0
Let y (X) = αφ′ ( X ) . Then these conditions reduce to 2αφ′′( X ) + ( −2α − φ′ ( X ))φ′ ( X ) + φ′ 2 ( X ) − φ′′( X ) = 0 There are satisfied provided (2α − 1) φ′ ( X ) φ′ (Y ) = 0 Thus α =
1 . It follows that 2
(2α − 1) φ′′( X )
=
(2α − 1) φ′ 2 ( X )
and
98
Stochastics, Control & Robotics
p (X) = C ⋅ ∏ exp(λX i − φ ( X i )) i
is a stationary density provided y (X) =
1 φ′( X ) , 2
X
i.e.
f (X) = 2 ∫ ψ (ξ) dξ . o
Now,
dXN (t) =
i
∑ J N dX i (t ) i
N −1
=
i
∑ J N (Ψ( X i −1(t )) − 2ψ ( X i (t )) + ψ ( X i +1(t )) dt
i=0
+
N −1
i
∑ J N (dBi −1, i − dBi, i +1(t ))
i=0
=
i + 1 i −1 i ψ( X i (t )) dt − 2J + J N N N
∑ J i
i + ∑ J (dBi −1, i (t ) − dBi , i +1 ) N i ≈
1 N
2
i
i
∑ J ′′ N ψ( X i (t )) + ∑ J N (dBi −1, i − dBi, i +1) i
i
i ∑ J ( Bi −1, i (t ) − Bi , i +1 (t)) i N
2
i i −1 Bi −1, i (t ) = ∑ J − J N i N i i −1 = t ∑ J − J N N i ≈
2
2
t
2
t i J ′ ≈ ∫ J ′ (θ) 2 d θ → 0 N → ∞ . 2∑ N No N i t
So for N → ∞, dXN (t) ≈
i
t N
2
∑ J ′′ N ψ( X i (t )) dt i
Now consider r.v’s ξ1, ξ2, ... which are iid and have logarithmic moment generating function
Classical Robotics & Quantum Stochastics
(
99
)
Λ (λ) = log eλξ1 . Then ξ + ... + ξ n ψ (ξ1 ) 1 = a = n Where p (ξ1 |n, a) is the pdf of ξ1 given
Now,
∫ p (ξ1 | n, a) ψ (ξ1) d ξ1
ξ1 + ... + ξ n =a n
ξ + ... + ξ n = a | ξ1 p(ξ1 ) p 1 n p (ξ1 | n, a) = ξ + ... + ξ n = a p 1 n ξ + ... + ξ n na − ξ1 p 1 ξ p(ξ1 ) = n −1 n − 1 1 = ξ + ... + ξ n = a p 1 n ξ exp −(n − 1) I a − 1 p(ξ1 ) n − 1 ≈C exp(−n I (a)) ≈ C ⋅ exp( I (a) + I ′(a) ξ1 ) p(ξ1 )
Where I (a) = supλ (λa – Λ (λ)) by large deviation theory. Thus a n → ∞ ξ + ... + ξ n E ψ (ξ1 ) 1 = a ≈ C ⋅ ∫ exp( I (a) + I ′(a) ξ) p(ξ) ψ (ξ) dξ n Note
∫ exp(I ′(a)ξ) p(ξ) d ξ Now where Also where
= exp(Λ( I ′ (a)))
I (a) = sup(λa − Λ(λ )) = λ o a − Λ(λ o ) λ
a = Λ′(λ o ) λ (λ) = sup(λa − I (a)) = λao − I (ao ) a
λ = I ′(ao ) . Thus,
Λ( I ′ (ao )) = I ′(ao ) ao − I (ao )
So, ∫ exp(I ′(a)ξ) p(ξ) d ξ = exp ( I ′ (a) a − I (a) ) Thus,
∫ exp(I (a) + I ′(a)(ξ)) d ξ
= exp(aI ′(a)) .
(n → ∞)
100
Stochastics, Control & Robotics
So,
C = exp (– a I′ (a))
ξ + ... + ξ n = a and lim ψ (ξ1 ) 1 x→∞ n =
∫
ψ (ξ)exp( I ′(a)ξ) p(ξ) d ξ exp(a I ′(a) − I (a))
=
∫
ψ (ξ)exp(I ′ (a )ξ) p(ξ) d ξ exp(Λ( I ′ (a)))
Now if a N → ∞ the Xi (t)′ s converge to the stationary Gibbs distribution C ⋅ ∏ exp(σ X i − φ( X i )) = ∏ p ( X i ) i
i
Then
exp((λ + σ) X − φ( X )) dX ∫ Λ (λ) = log ∫ exp(σ X − φ( X )) dX
We define
F (σ) = log ∫ exp(σ X − φ( X )) dX
and so
Λ (λ) = F (λ + σ) − F (σ) I (a) = sup(λa − F (λ + σ) + F (σ)) λ
= sup ((λ + σ ) a − F (λ + σ )) + F (σ) − σa) λ
= I F (a ) + F (σ) − σa. Where
IF (a) = sup(λa − F (λ )) .
Now,
I′ (a) = q satisfies
λ
Λ (q) = sup(θx − I ( x)) = qa – I (a) λ
At equilibrium,
X + ... + X N lim ψ ( X1 ) 1 = a x→∞ N =
∫ ψ (ξ) exp ( I ′ (a ) ξ + I (a ) − a I ′ (a ) + P (ξ) dξ)
=
∫ ψ (ξ)exp(I F′ (a)ξ − σξ + I F (a) + F (σ) − aI F′ (a) + σa) × exp(σξ − φ(ξ)) d ξ / exp( F (σ))
ψ (ξ)exp(I F′ (a)ξ + I F (a) − φ(ξ)) d ξ ∫ = exp(a I F′ (a ))
Classical Robotics & Quantum Stochastics
101
ψ (ξ)exp(I F′ (a)ξ − φ(ξ)) d ξ ∫ ≡ Ψ ( A) say. = exp ( I F′ (a ) a − I F (a ))
[38] Remarks and Comments on “Collected Papers of S.R.S Varadhan” Vol. 4, Particle System and Their Large Deviations: Quantization of the simple exclusion process: a (r , s ) X r (1 − X s ) X ∑ r≠s
H=
( r , s)
X
X
a (r, s) = a ( s, r ) ⋅ X | ψ t = ψ t ( X ) . i
d ψt ( X ) = (H ψt )( X ) dt = =
∑ a (r , s) Yr (1 − Ys ) δ X − Y (r , s) ψ t (Y )
r≠s
∑ a (r , s) X s (1 − X r ) ψ t ( X (r , s) )
r≠s
ψ t :{0, 1}N → C N → ∞
∑
X1 ,..., X N −1 ∈{0, 1}
| ψ t ( X ) |2 = pt (X0)
t distribution of particle at 0th site. i
i d ψt ( X ) d d ψt ( X ) | ψ t ( X ) |2 = i ψt ( X ) − ψt ( X ) dt dt dt
∑ a (r , s )X s (1 − X r ) ψ.( X (r ,s) ) ψ t ( X ) r ,s
(
− ∑ a(r , s )X s (1 − X r )ψ t ( X ) ψ t X ( r , s ) r ,s
More generally, i
{
)
a(r , s ) X s (1 − X r ) ψ t ( X ( r , s) ) ψ t (Y ) }=∑ r ,s
d ψ t ( X )ψ t (Y ) dt
− ∑ a(r , s ) Ys (1 − Yr ) ψ t ( X )ψ (Y ( r , s ) ) r ,s
So if rt (X, Y) denotes the density matrix of a mixed state, its Von-Neumann equation of evolution is
102
Stochastics, Control & Robotics
i
∂ ρt ( X , Y ) ∂t
=
∑ a (r , s) X s (1 − X r ) ρt ( X (r , s) , Y ) − a (s, r) Ys (1 − Yr ) ρt ( X , Y (r , s ) ) r,, s
Define
Hrs =
Then
Hrs* =
∑
a (r , s ) X s (1 − X r ) X
( r , s)
∑
a (r , s ) X s (1 − X r ) X
X
∑
a (r , s ) X r (1 − X s ) X
( r , s)
X ∈{0, 1}N
X ∈{0, 1}N
=
N
X r ≠ s.
( r , s)
X ∈{0, 1}
X = Hsr
This we can define * = H rs + H sr , 0 ≤ r < s ≤ N – 1 H rs = H rs + H rs
and then
∑ H rs
H= Let
∑
=
r≠s
a ≤ r < s ≤ N −1
H rs
j (Yo, X) = (Yo, X1 X2 ..., XN – 1) ≡ (Yo , X o )
Then X o = (X1, X2, ..., XN–1).
ρt ( X , (Yo , X o ) ) ∑
(1) = ρt ( X o , Yo )
Xo
is the density matrix of the zeroth particle. We write the density evolution as i
∂ρt ( X , Y ) = ∑ H rs , ρt ( X , Y ) ∂t r < s
Consider the term H rs , ρt ( X , Y ) for 0 < r < s ≤ N – 1 This equals
( ) ( ) − a( s, r ) Y (1 − Y ) ρ ( X , Y ) − a (r, s)Y (1 − Y ) ρ ( X , Y ) , Y ) − Y (1 − Y ) ρ ( X , Y )} = a (r , s ) { X (1 − X ) ρ ( X , Y ) − Y (1 − Y ) ρ ( X , Y ) + a ( s, r ) { X (1 − X ) ρ ( X } We have (o < r < s) ∑ H , ρ ( X , (Y , X )) a(r , s ) X s (1 − X r ) ρt X ( r , s) , Y + a( s, r ) X r (1 − X s ) ρt X ( r , s) , Y r
s
s
Xo
( r , s)
t
r
r
(r , s)
t
s
rs
r
r
( r , s)
t
t
(r , s)
s
s
o
r
o
(r , s)
t
r
(r , s)
t
t
(r , s)
Classical Robotics & Quantum Stochastics
103
{
( r , s) , (Yo , X o )) = a(r , s )∑ X s (1 − X r ) ρt ( X Xo
}
− X r (1 − X s ) ρt ( X , (Yo , X o( r , s ) ))
{
+ a( s, r )∑ X s (1 − X s ) ρt ( X ( r , s) , (Yo , X o )) Xo
}
− X s (1 − X r ) ρt ( X , (Yo , X o( r , s ) )) = 0 Consider now the case r = 0 s > r. We’ve to evaluate
Xo s > o
∑ H os, ρt ( X ,((Y, X 0 )) ∑ [ H 0 s , ρt ] ( X ,(Y0, X 0, )) ∑
For s > 0, we get
Xo
( 0, s) ,(Y 0, X 0 )) = a (0, s ) (1 − X 0 ) ∑ X s ρt ( X X 0,
−Yo ∑ (1 − xs ) ρt X ,( X s , ( X1,..,Y0 , .., X N −1 ) Xo
(
5th position. This we can define
[39] Quantum String Theory: [Reference: Lectures for EC-COE-2012 course.] µ ν µ ν L = a1gµν ( X ) X ,τ X ,τ + a2 gµν ( X ) X ,σ X ,σ
+ a3 gµν ( X ) X ,µτ X ,νσ First consider the special relativistic case: The gµn = ηµn. The Euler - Lagrange eqns.-are ∂r
∂L ∂X ,µτ
we find that
+ ∂σ
∂L
∂X ,µσ ∂L ∂X ,τµ ∂L µ ∂X ,σ
=
∂L ∂X µ
ν ν = 2a1 ηµν X ,τ + a3 zµν X ,σ
ν ν = 2a2 ηµν X ,σ + a3 zµν X , τ
)
104
Stochastics, Control & Robotics
∂L ∂X µ
= 0 so the string equations are 2a1 X ,µττ + a3 X ,µτσ + 2a2 X ,µσσ + a3 X ,µτσ = 0 a1 X ,µττ + a2 X ,µσσ + a3 X ,µτσ = 0
If a3 = 0 and a2 = – a1, we get the standard form of the string equations: X ,µττ − X ,µσσ = 0. Path integral approach to quantum string theory: 1 1 ( X1τ , X1τ ) − ( X , σ , X , σ ) 2 2 ∆ 1 zµν X ,µτ X ,ντ − X ,µσ X ,νσ 2
L ( X ,µτ , X ,µσ ) =
Let
{
X µ (τ, σ) =
}
∑ ξµn (τ)exp (i 2∏ nσ)
n∈Z
ξ µn (τ) = ξ µ−n( τ ) . 1
∫o
L dσ =
∑
n1 m ∈Z
1
1 (ξ m (τ), ξ m(τ))∫ exp (i 2π (n + m) σ ) dσ 2 o 1
2
+ Z π ∑ (ξ m (τ), ξ m (τ)) nm ∫ exp (i 2π (n + m) σ ) d σ o
=
∑ 2 ( ξ n , ξ n ) − 2π 2n2 (ξn , ξ − n ) 1
n, m
(
= L ξ µn , ξ µn , n ∈Z , 0 ≤ µ ≤ d
{(
)
}
)
=
1 2 (ξ o ξ o ) + ∑ ξ n, ξn − 2π 2 n 2 (ξ n , ξ n ) 2 n ≥1
=
1 ξ 0 , ξ 0 + ∑ ξ Rn , ξ Rn + (ξ In , ξ In ) 2 n ≥1
(
)
{(
)
}
−2π 2 n 2 (ξ Rn , ξ Rn ) + (ξ In , ξ In ) where
µ µ ξnµ = ξ Rn + iξ In .
To quantize this, we first revise to quantize a 1-D harmonic oscillator L (q, q ) = 1 q 2 − 1 w02 q 2 0 ≤ t ≤ T 2 2
Classical Robotics & Quantum Stochastics
q (t) = + q0
w=
T
1 2 q dt = 2 ∫o
105
∞
∑ (qRn cos(n wt) + qIn sin (n wt ))1
n =1
2π . T q0, qRn, qIn ∈ , ∞
(
n 2 w2 2 2 qRn + qIn 4 n =1
∑
T
)
1 2 1 ∞ 2 1 t q d = ∑ qRn + qIn2 + 2 qo2T 2 ∫o 4 n =1
(
T
∫ L dt
\
=
o
)
−1 2 1 qo T + ∑ n 2 w2 − w02 qR2 n + qI2n 2 4 n ≥1
(
)(
)
This expansion, however, does not take care of the boundary condition q (0) = a, q (T) = b. So we use the half wave Fourier expansion: q (t) =
∞
nπt + αt + β T
∑ qn sin
n =1
b − β b − a q (0) = a ⇒ β = a, q (T) b ⇒ L = = αT T T
2 ∫ q dt = o
T
2 ∫ q dt = o
nπ
∑ T
2
×
n ≥1
T 2 qn + α 2T 2
T
T qn2 + ∫ (αt + β) 2 dt ∑ 2 n ≥1 o T
+
T nπt ∑ 2αqn ∫ t sin T dt + 2β∑ qn nπ (1 − (−1)n ) n ≥1 o T
T
T
−t 1 ∫ t sin (γt ) dt = γ cos ( γt ) + y 2 sin ( γt ) 0 o 0 =
−T cos(γT ) γ
=
T T2 ( −1) n+1 = ( −1) n+1 y nπ
nT γ = T
106
Stochastics, Control & Robotics
The Jacobian for the transformation {q (t) : 0 ≤ t ≤ T} to {qn}n ≥ 1 is not easy to evaluate since the map {q(t)}0 ≤ 0 ≤ T → {qn} is such that T
2 ∫ q (t ) dt = ||q||2 = o
Its follows that the map q(.) →
T
I ∞ 2 ∑ qn + ∫ (αt + β)2 dt − 2 ∑ 2α ηn qn 2 n =1 n ≥1 o
T {qn } 2
i.e. this map is not unitary We have ≈
−1 2 1 N qo + ∑ λ n qR + qI2n 2 4 h =1
T
∫ Ldt = − o
T
T 2 1 2 w0 ∑ qn2 − ∫ (αt + β ) dt 4 2 n ≥1 o
+ ∑ α ηn qn − n ≥1
(
+ π 2 4T
βT π
)∑ n q
1 − ( −1)n) qn n n ≥1
∑
2 2 n
+ α 2T / 2
T2 ( −1) n = Where η n π n = −
(
)
T 2 wo ∑ qn2 + (αT + β)3 − β3 3α + α ∑ ηn qn 4 n ≥1 h ≥1
2 T − β ∑ (1 − ( −1)n ) qn + π 4T ∑ n 2 qn2 + α 2T / 2 nπ n ≥1 n ≥1
Let and
gn = αηn −
(
Where
)
ξ = (αT + β)3 − β3 3α λn =
Then
Tβ (1 − ( −1)n ) , nπ
ST [{qn }]a , b =
π 2 n 2 wo2T , n ≥1, − αT 2 1 ∑ λ n qn2 + ∑ γ n qn + δ 2 n ≥1 n ≥1
(
)
2 3 3 δ = α T / 2 + (αT + β) − β 3α
The path integral is then
Classical Robotics & Quantum Stochastics
107
(
KT (b|a) = C ∫ exp iST [{qn }]a , b ST [{qn }]a , b =
)∏ dq n ≥1
n
γ n2 1 2 + δ − λ ( q + γ ) ∑ 8λ ∑ n n n /2λn 2 n ≥1 n n ≥1
Now the path integral can be evaluated as an elementary Gaussian integral. The Jacobian: ∞ nπt + αt + β, 0 ≤ b ≤ T . q (t) = ∑ qn sin T n =1 The term αt + β is independent of {qn} and hence can be neglected in the evaluation of the Jacobian. Consider t = lD*. The writing q(t ) = q (t) – αt – β, we get
q(l ∆ ) ≈
nπl ∆ N large. T
n =1
Choose D = T/M. Then
N
q[l ]∆ q(l ∆ ) = Let
N
∑ qn sin
πnl
∑ qn sin M , 1 ≤ l ≤ N .
h =1
M = N,
N
Then
q[l ] =
πnl ,1≤ l ≤ N N
∑ qn sin
h =1 N
πnl πml sin N N
∑ sin
Now,
h =1
1 N π ( n − m) l π ( n + m) l − cos = ∑ cos 2 l =1 N N Let n ≠ 0. i π n l iπn exp(iπn) −1 πnl Re exp Re exp cos = = ∑ N ∑ N N iπn l =1 l =1 exp N −1 N
N
iπ nN n sin (πn / 2) − = Re exp n + N 2 2 sin (πn / 2 N )
πn sin[πn / 2] ( N + 1) = cos 2N sin[πn / 2 N ] In the Limit N → ∞, this is close to
108
Stochastics, Control & Robotics
cos(πn / 2) sin (πn / 2)
2N πn
N sin (nπ) = 0. πn Note that for finite N, we have exactly =
πn πn sin πn + − sin 2 N 2n πnl cos ∑ N = πn l =1 sin 2n = (– 1)n – 1 Since ( −1) n − m − ( −1) n + m = 0 N
We set exactly for all n ≠ m, n, m ≥ 1, N πml πnl ∑ sin N sin N = 0. l =1
[40] Quantum Shannon Theory Contd.: Heisenberg-Weyl operators
{ j } j∈{0,1,2,...,d −1} is an ONB for ad dimensional Hilbert space H. 2πi j z j Z ( z ) j = exp d X ( x) j = j ⊗ x Heisenbrg-Weyl operators are X (x) Z (z) – 0 ≤ x, z ≤ d – 1 only on H. Consider Φ
AB
=
1 d d −1
X (x) = Z (z) = X ( x) y =
∑
∑i
A
i
B
i=0
x ⊕ x′ x ′
x′ = 0 d −1
2πi x x′ x′ x′ . d
∑ exp
x′ = 0
∑ x ⊕ x′ x′
X ( x) Z ( z ) y =
d −1
∑
x′, z ′
x′ | y =
∑ x ⊕ x′
δ x′ y = x ⊕ y .
x′
2πi z z′ x ⊕ x ′ x ′ exp z′ z′ | y d
Classical Robotics & Quantum Stochastics
=
109
2πi z z′ x ⊕ x′ δ x′, z ′ , δ z ′, y ′ d
∑ exp
x′, z ′
2πi z z′ x⊕ y = exp d 2πi z( y + x) Z ( z ) X ( x) y = Z ( z ) y ⊕ x = exp y ⊕ x d 2πi xz X ( x) Z ( z) y = exp d So we deduce the Weyl Commutation relations 2πi xz X ( x) Z ( z) . Z (z) X (x) = exp d Φ x, t
AB
(
= = Φ x′, z ′ | Φ x, z
)
A A ≡ X ( x) Z ( z ) ⊗ I Φ
=
1 d 1 d 1 d
d −1
∑ X A ( x) Z A ( z ) y
=
1 d
{
y
2πi yz y⊕x d
∑ exp y
A
AB
y
B
2πi ( yz − y ′ z ′) d
y, y′
A
y ′ ⊕ x′ | y ⊕ x
A
y
2πi ∑ exp d ( yz − y ′ z ′) y, y′
B
B
y′ | y
BA
y ′ ⊕ x′ | y ⊕ x
2π i ( yz − y ′ z1′ | δ y ′, y ) δy ′ ⊕ x ′, y ⊕ x d
∑ exp
y ′, y
1 2πi exp y ( z − z′) ∑ d d y
= δ x′, x δ z ′, z φ x, z
B
∑ exp
= δ x′, x
Hence
A
y=0
×B y′ 1 = d
AB
}
| 0 ≤ x, z ≤ d − 1 .
Form an ONB for H A ⊗ H B (dim HA = din HB = d) Alice and Bob share the entangled state
A
110
Stochastics, Control & Robotics
AB
Φ
d −1
1 d
=
∑
A
x
x
B
x=0
Alice applies the operator X (x) Z (z) to her side giving Φ x, t
A, B
for the state
shared by herself and Bob. She them Gravimits her system. A over a noisy quantum channel U A→ B ′ to Bob. Bob this has an ensuable of state
(U
A→ B ′
)( Φ
⊗ IB
)
AB x, z
, Φ xAB , t x, z ∈{0, 1,..., d − 1}
Bob can now prepare the state ρXZB ′B =
1
∑ d2
x x
N
z
⊗ z z
x, z
(
(
⊗ N A→ B ′ ⊗ I B Φ xAB ,z
))
Φ xAB ,z
Holevo information of the state: I ( XZ ; BB′) = H ( BB ′ ) − H ( BB′ | XZ ) AB ρB ′B = TrXZ ρ XZB ′B = N A→ B ′ ⊗ I B 1 ∑ Φ xAB Φ ,z x, z d 2 x, z
(
Now
{Φ
hence
AB x, z
}
∑ Φ xAB, z
AB Φ xAB , z = I d2
πAB =
Thus, with
Also,
)
| 0 ≤ x, z ≤ d − 1 is an ONB and
x, z
We get and
) (
1
I AB 2 d2 d
ρB ′B = πAB H ( B ′ B) = log (d 2 ) = 2 log (d). H ( B ′ B | XZ ) =
∑ d 2 H (N A→ B′ ⊗ I B ) ( Φ xAB, z 1
x, z
Now
(
)
Φ xAB ,z
)
(
A A B Φ Φ Z A* ( z ) X A*( x ) ⊗ I B Φ xAB , z = X ( x) Z ( z ) ⊗ I
Φ xAB ,z
=
1 d
2
∑
(X y
A
A
) y′ (Z
( x) Z A ( z ) ⊗ I B y
BA
y′
B
y, y′
=
1 d
2
∑ ( X A ( x) Z A ( z ) )
y, y′
y
A
y
BA
A*
( z ) X A* ( x) ⊗ I B
)
y ′ Z A* ( z ) X A* ( x) B y ′
)
Classical Robotics & Quantum Stochastics
= = =
1 d
2
1 d
2
1 d
2
111
2πi z ( y − y ′ ) y⊕x d
∑ exp
y, y′
2πi z ( y − y′ ) y d
∑ exp
y, y′
∑
y
AA
AA
AA
y′ ⊕ x ⊗ y
y′ | ⊗ | y − x
y ′ ⊗ Z B ( z ) X B ( − x) y
BB
BB
BB
y′
y′ − x
y′ X B* ( − x) Z B* ( z )
y, y′
(
)
(
)
A B B A B B = I ⊗ Z ( z ) X ( −x) ( Φ Φ ) I ⊗ X ( − x) * Z ( x) *
X ( x) y = y ⊕ x .
Now,
z | X (x) | y = δ z , y ⊕x = δ z , y ⊕x = y X ( −x) z Hence relative to the basis
{ x } , X (x)T = X (– x). Also
2πiyz y Z ( z ) y = exp d So Z (z) is diagonal relative to the basis
{ x }.
Hence relative to this basis, Z (z)T = Z (z). Thus, we can write the above identity as
(X
A
( x) Z A ( z ) ⊗ I B
)( Φ ⊗ (X
(
Φ ) X A ( x ) Z A ( z ) ⊗ I B*
)
(
)
)
T B = IA x) Z B ( z ) ( Φ Φ ) I A ⊗ X B ( x) Z B ( z ) ( Sphere packing Lamma (as a point step towards Shannon’s noisy codiny theorem in the quantum setting).
[41] Basics of Cq (Classical Quantum) Information Theory Cq. Codes x → rx m message that Alice wishes to transmits to Bob. Cm Code ward used to transmit m. m = 1, 2, ..., |µ|. (|µ| message to be transmitted) C = Cm|m = 1, 2, .., |µ| are |µ| independent r.v.s, (random code) p (C) =
|µ.|
∏ p X (Cm ) probability of random code. When Alice transmits m1 Bob
m =1
receives that state σCm and he applies that meaurement operate Λm. Let M be
112
Stochastics, Control & Robotics
the message transmitted by Alice using the random code Cm and M′ the message received by Bob. Then P {M′ = m| M = m} = Tr (Λm σCm) Alice’s codeward Cm ∈ c
{pX (x), σx|x ∈ X}
Cm = (Cm (1), ..., Cm (n1)), than σCm = ⊗
σCm( j )
j =1
Packing Lemma: Assumption
Tr ( Πσ x | ≥ | −ε
Tr ( Π x σ x | ≥ | −ε
Tr ( Π x ) ≤ d ΠσΠ
N (δ )) ξ ≠ exp (n (4δ – I (X, Y))) Typical sequence xn ∈ An x ∈ A has probability distribution p (x), x ∈ A. N (x|xn) is the number of the x appears in xn. pn (xn) = txn (x) = So,
where
x ∈A
n
)
n = exp ∑ N ( x | x ) log p(x) x ∈A
N ( x | xn ) , txn is a probability distribution on A. n
1 p n ( x n ) = exp n ∑ t n ( x)log p( x) log p n ( x n ) x ∈A x n =
or
∏ p( x) N ( x|x
∑ t xn ( x)log p( x)
x ∈A
1 − log p n ( x n ) = D (t n | p) + H (t n ) x x n D (q | p) =
q( x)
∑ q( x)log p( x)
x ∈A
= − D(t x n | p) − H (t x n )
Classical Robotics & Quantum Stochastics
121
is the Killback distance between the pdf’s q and p. Let t be a type on An i.e. a pdf on A of the form t (x) =
N ( x) n ∀ x ∈A N ( x){0, 1, 2, ..., n} ∀ x ∈A .
Where Let
Then
n n n N (x | x ) = t ( x)∀ x ∈A Ttn = x ∈ A n
t n (Ttn ) =
x ∈Tt
=
x ∈Tt
n
x ∈A
x ∈A
exp ∑ N ( x | x n | log t (x) ∑ n n
x ∈Tt
=
t n ( x n ) = ∑ ∏ t ( x) N ( x|x ) ∑ n n n n
∑ n exp n ∑ t ( x) log t ( x) n
x ∈Tt
x ∈A
n = | Tt | exp(− n H (t ))
Note that tn is a pdf on An and hence we derive the inequality TTN ≤ exp(n H (t )) 1 log TTN ≤ H (t). n Let t′ be another type. Then
or
( )
t ′ n Ttn =
∑ n t m ( xn ) = ∑ ∏ t ′( x)nt( x) n n
n
x ∈Tt
x ∈Tt x ∈ A
n = | Tt | exp n ∑ t ( x)logt ′( x) x ∈A = | Tnt | exp(n( −D(t | t ′ ) − H (t))) i.e.
n n | Ttn | = t ′ (Tt ) exp(n( D(t | t ′ ) + H (t )))
* Problem: Find a lower bound on tn (Tnt) for large n. Consider
1=
∑ t ′(Ttn ) t
Now the number of types t is the number of ways in which n can be expressed as n = r1 + r2 + ... + rc
c = |A|.
122
Stochastics, Control & Robotics
rj ≥ 0. n + χ − 1 n
This number is Thus,
1=
∑ t ′ (Ttn )
( )
n n + χ − 1 ≤ max t ′ Tt n t
t
|Tnt | ≥ t ′ n (Ttn ) exp(n( D(t | t ′ ) + H (t ))) ∀t ′
and hence implies
n + χ − 1 max | Ttn | ≥ max exp(n H (t )) n t t
−1
n
Channel capacity theorem of Shannon. X alphabet (finite) TδX δ typical sequences. n n n 1 x ∈ X log p ( x + ) H ( p) < δ TXn = ∑ j δ n j =1 xn = ( x j )nj =1 { p(x), x ∈X } is the source alphabet pdf.
Here Let
pn (xn) = n
p ′ ( xn ) =
n
∏ p( x j ) , j =1
x n ∈T X n δ , pn ( xn ) xn ∈ X n \ T X n δ
pn ( xn )
∑n
x n ∈TδX 0
∑n n
x ∈X
p ′n ( xn ) − pn ( xn )
pn ( xn )
∑n
x n ∈TδX
ξ
n
∑n
p n (ξ n )
=
ξ n ∈TδX
∑n
p n (ξ n )
ξ n ∈TδX
=
( ) ( ( )
p n TδX
nc
p n TδX
( )
∑ n pn ( xn ) +
x n ∈TδX
p n X δn n
n nc = 2 p Xδ ≤
)
∑ x n ∈X n \TδX
( )
+ p n TδX
nc
2Var (log p( x)) nδ 2
pn ( xn )
x n ∈ X n \TδX
∈TδX
∑ nc p n (ξn )
∑
− pn ( xn ) +
≡ e.
n
pn ( xn ) n
Classical Robotics & Quantum Stochastics
123
By Chebyshev’s theorem.
∑n n
Thus,
x ∈X
→0 p ′ n ( xn ) − p n ( xn ) n →∞
n
Let X′ be a r.v. (with values in Xn) having pdf p′n. We’ve proved that
∑n P { X ′ n
} {
}
n n n n n = x − P X = x < ε x ( m) ε X
x
Let Alice selects |µ| codewords m = 1, 2, ..., |µ| having pdf n q (m) = p ′ ( xn (m)), m = 1, 2, ..., |µ|
|µ| = TδX
so that
n
+1
For each m are encoded into the quantum states n
ρ x n ( m) = ⊗ ρ x ( m) , m = 1, 2, ..., |µ| k k =1
She transmits this state to Bob along the product channel N ⊗ ⊗ so N
m
(ρ
x1 ( m )
n
(
)
k =1
k =1
σx = N (ρ x ), x ∈ χ [σ
X ′n
] =
p ′ n ( x n )σ n ∑ x n n
x ∈χ
∑ n p n ( x n ) σ xn
=
∑ n pn ( xn )
x n ∈TδX
Let
n
ρn ⊗ ... ⊗ ρ xn ( m) = ⊗ N ρ x ( m ) = ⊗ ρ xk ( m ) = x ( m ) k
where we have
)
m
σ=
∑ p( x)σ x
x ∈χ
(
σX
x n ∈TδX ′n
)−σ
∑ n p ′ n ( x n ) σ x n − σ⊗ n
=
n
x ∈χ
x ∈χ
1
x ∈χ
∑n ( p ′ n ( xn ) − p n ( xn ) ) σ xn x
≤
1
p ′ n ( x n )σ n − ∑ p n ( x n ) σ n ∑ x x n n n n
=
=
⊗n
∑n p′ n ( xn ) − p n ( xn ) < ε x
1
1
124
Note:
Stochastics, Control & Robotics
∑n p n ( xn )σ xn
n
=
x
n
∑n ∏ p( x j ) j⊗=1 σ x j j =1
x
n n⊗ n . = ⊗ ∑ p ( x) σ x = σ j=1 x ∈χ Let Bobs Hilbert space by HB.
σ ≡ σB n
n
σ Bx n = ⊗ σ x j . j=1
∏ δB where and
n
xn
B
xn
= x1 x2 ...xn
B
= ⊗ xk
∑B n
=
x ∈Tδ
n
xn
B
σx
B
= qB ( x ) x
x
B
= x1 (m)...xn (m)
∑ qB ( x )
x ∈χ
B
B
k =1
B
=1
n n n 1 log q ( x + σ ) H ( ) < δ TBδ = x ∈ χ ∑ B k n k =1
H (σ) = − ∑ qB ( x) log(qB ( x)) x ∈χ
σ⊗
n
∏ δB
n
B = σ
qBn ( x n ) = So,
{
n
Tr σ B Π δB
n
}
=
n
∏ δB
n
n
=
B
xn
x ∈Tδ
n
∏ qBn ( xi ) . i =1
∑ B qBn ( xn )
n
x ∈Tδ
n B = qB (Tδ ) ≥ 1 −
where
qBn ( x n ) x n ∑ n B
Var log qB (x) =
Var log qB ( x) nδ 2
=1–e
∑ qB ( x)(log qB ( x))2 − H (qB )2
x∈χ
2 2 = Tr (σ(log σ) ) − H (σ)
B
Classical Robotics & Quantum Stochastics
∏ δB / x
n
125
= typical projection n
σ xn = ⊗ σ x = σ xn B n k
for the state
k =1
[43] Quantum Image Processing Some Basic Problems: [1] f (X, Y) is a classical image; F (X, Y) of a quantum image i.e. a quantum field f (X, Y) evolves according to a diffusion equation so that sharp edges get smoothed out: ∂f (t , X , Y ) ∂ ∂f (t , X , Y ) + ∂ D ( X , Y ) ∂f (t , X , Y ) DXX ( X , Y ) = YY ∂X ∂Y ∂t ∂X ∂X
+
∂f (t , X , Y ) ∂ ∂f (t , X , Y ) ∂ + DXX ( X , Y ) DXX ( X ,Y ) ∂Y ∂Y ∂X ∂Y
∂f = div ( D ( X , Y ) ∇ f (t , X , Y )) ∂t For quantizing this evolution, we use the Lagrangian approach. Introduce an auxiliary field g (t, X, Y) and let.
or
S[ f , g] =
∫ g ( f , t − div ( D ∇ f )) dt dx dy
Then
δS = 0 ⇒ f, t = div(D ∇ f ) δg
Also
δS T = 0 ⇒ − g,t − div D ∇ g = 0 δf
or
(
(
g,t − div DT ∇ g
)
Now for the quantization. Let f (t , X , Y ) =
)
=0 ( X , Y ) ∈[0, 1] X [0, 1] .
∑ f nm (t )enm ( X , Y ) nm
g (t , X , Y ) =
∑ gnm (t )enm ( X , Y ) nm
enm ( X , Y ) = exp(2πi (nX + mY )) D( X , Y ) =
∑ D nm enm ( X , Y ) . nm
D∇ f =
2πi n′ D nm f nm (t )en + n′ m + m′ ( X , Y ) 2πi m′ n m n′ m′
∑
126
Stochastics, Control & Robotics
div ( D ∇ f ) = − 4π 2
n′ (n + n′, m + m′) D nm f nm (t ) en + n′ m + m′ ( X , Y ) m′ n m n′ m′
∑
∫ 2 g div ( D ∇ f ) dX dY
[ 0, 1]
n′ 2 = − 4π ∑ g kr (t ) f nm (t )(n + n′, m + m′) Dnm m′
∫
en + n′ + k , m + m′ + r ( X , Y ) dXdY
[ 0, 1]2
n′ = − 4π 2 ∑ g n + n′, m + m′ (t ) f nm (t )(n + n′, m + m′) D nm m′ n, n′
∫ 2 g f,t dX dY
=
nm
[ 0, 1]
\
∑ gnm (t ) f nm′ (t )
L( f nm (t ), g nm (t ), f nm ′ (t)) =
r g nm (t ) f n − r , m − s (t )(n, m) D n − r , m − s s nmr s
∑ gnm (t ) f nm′ (t ) + 4π 2 ∑ nm
=
n −r g nm (t ) f r s (t )(n, m) D r s m − s nmr s
∑ gnm (t ) f nm′ (t ) + 4π 2 ∑ nm
*****
Appendix Problems [1]
t
(
X (t) = X − ∫ C (r ) dr − D * (r ) dAr − D(r ) dAr* o
)
Calculate d ( X (t ) * X (t )) . Using the quantum I. to formula Hint: d ( X (t ) * X (t )) = (dX (t )*) X (t ) + X (t ) * X (t ) * dX (t) + dX (t ) * dX (t )
(
)
* * * = − C(t ) dt − D(t ) dAt − D * (t )dAt X (t)
(
)
− X * (t ) C (t) dt − D * (t ) dAt − D(t ) dAt* + D * (t ) D(t)dt = − (C * (t ) X (t ) + X * (t ) C (t) − D * (t ) D(t )) dt + ( D(t) X (t) + X * (t ) D(t )) dAt* + ( D * (t ) X (t) + X * (t ) D * (t ) ) dAt C (t) = g(t, X) X* = X (o)
Classical Robotics & Quantum Stochastics
127
D (t) = δ (t, X) δ* (t, X) = D*(t) δ (t, X*) = δ * (t , X )*, γ (t , X *) = γ (t , X ) * Then, let
i (t, X) = X (t)
d ( X (t ) * X (t )) = di (t , X * X ) t d X * X − ( γ (r , X * X )dr − δ (r , X * X )) dAr = ∫ o * = − γ (t , X * X ) dt + δ * (t , X * X ) dAt + δ (r , X * X ) dAr +δ(t , X * X ) dAt* On the other hand and on the other, by quantum Ito’s formula, d ( X (t ) * X (t )) = dX (t ) * X (t ) + X (t ) * dX (t ) + dX (t ) * dX (t) = − [ γ (t , X *) i (t , X ) + i (t , X ) * γ (t , X ) − δ * (t , X ) δ (t , X )] dt + [δ (t , X ) i (t, X ) + i(t , X ) * δ (t , X )] dAt*
+ [δ * (t , X )i (t , X ) + i (t , X ) * δ * (t , X )] dAt
So, the condition for i (t , X * X ) = i (t , X *) i (t , X ) is γ (t , X * X ) = γ (t , X *) * i (t, X ) + i (t , X ) * γ (t , X ) − δ * (t , X | δ (t , X )) γ (t , X * X ) = γ (t , X *) *i (t, X ) + i (t , X ) * δ (t , X ) *δ(t , X ) , δ * (t , X * X ) = δ * (t , X )i (t , X ) + i (t , X ) * δ * (t , X ) δ * (t , X * X ) * = i (t , X ) *δ (t , X ) + δ (t , X *) i (t , X ) i (t ,⋅)
→ X (t ) to be a * representation. Conditions for X * dX (t) = C (t ) dt − D * (t ) dAt − D(t) dAt * dY (t) = C (t ) dt − F * (t ) dAt * F (t ) dAt
Non-demolition conditions: [ X (t), Y ( s )] = 0, ∀ t ≥ s . Observations do not affect the future values of the state. ≡ [dX (t ), Y ( s )] = 0 ∀ t ≥ s ≡ [C (t) dt − D * (t ) dAt − D(t ) dAt* , Y ( s)] = 0 ∀ t ≥ s ≡ [C (t), Y ( s )] = [ D * (t ), Y ( s)] = [ D(t), Y ( s )] = 0 ∀t ≥ s . [ X (t), Y (t )] = 0, [dX (t ), Y (t )] = 0
128
Stochastics, Control & Robotics
⇒
[ X (t), dY (t )] + [dX (t ), Y (t)] = 0
⇒
X (t ), G (t) dt + F * (t )dAt + F (t ) dAt* + D * (t ) dAt + D(t ) dAt* , F * (t ) dAt + F (t ) dAt* = 0
⇒
[ X (t), G (t )] + D * (t ) F (t ) − F * (t ) D(t) dt + [ X (t ), F * (t )] dAt + [ X (t), F (t )]dAt* = 0.
⇒
[ X (t), F * (t )] = 0 = [ X (t), F (t )], D * (t ) F (t) − F * (t ) D(t ) = [G (t), X (t )] .
2 Electromagnetus and Related Partial Differential Equation [1] Computation of the Perturbe Characteristics Frequencies in a Cavity Resonator with in Homogeneous Dielectric and Permittivity: ∇ × E = − jwµ ( w, r ) H ,
∇ × H = jwε ( w, r ) E
ε ( w, r ) = eo (1 + δχe ( w, r )) div (1 + δ.χe ) E = 0, µ ( w, r ) = µ 0 (1 + δχ m ( w, r )) div (1 + µ.χ m ) H = 0.
Side walls X = 0, a and Y = 0, b are perfect magnetic conductors. Top and bottom surfaces z = 0, d are perfect electric conductors. Boundary conditions HZ = 0, Z = 0, d, X = 0, a, Y = 0, b. EX = EY = 0, Z = 0, d,
EX = 0, X = 0, a, EY = 0, Y = 0, b.
we get
div E = −δ (∇χe , E ) + O (δ 2 )
div H = −δ (∇χ m , H ) + O (δ 2 ) ∇ (divE ) − ∇2 E = − jw {∇µ × H + µ∇ × H } = − jw {∇µ × H + jwεµE } or
∇ 2 E + w 2 ε 0 µ 0 E + δw 2 ε 0 µ 0 ( χ e + χ m ) E = δjw∇χ m + H − δ∇ (∇χe , E ) + O (δ 2 )
Likewise by duality E → H , H → – E , ce ↔ cm, e0 ↔ µ0, we get ∇ 2 H + w2 µ 0 ε 0 H + δw2 µ 0 ε 0 ( χ e + χ m ) H
...(1)
130
Stochastics, Control & Robotics
= −δjw∇χe × E − δ∇ (∇χ m , H ) + O (δ 2 )
...(2)
w = w(0) + δ.w(1) + O (δ 2 ) ,
We write
E = E (0) + δ.E (1) + O (δ 2 ) H = H (0) + δH (1) + O (δ 2 ) Then the O(d0) equation is ∇×E
(0)
( )
= − jw 0 µ 0 H
(0)
(0) (0) ( ) ∇ × H 0 = − jw ε 0 E The solution modes with the monitor boundary conditions is obtained using standard methods as 1/ 2 m2 n2 p 2 (0) (0) w = w (mnp) = + + π, a 2 b 2 c 2
Hz(0) = C(mnp)umnp ( r )
i.e. the complete solution in the time domain for Hz(0) is
( ) ∑ Re {C (mnp ) exp { jw 0 (mnp ) t} umnp ( r )}
mnp
Where Likewise Where
υmnp ( r ) =
mπx mπy mπz sin sin sin a b c abd
2 2
E–z(0) = d(mnp)υmnp ( r ) υmnp ( r ) =
mπx mπy mπz cos cos cos . a b c abd
2 2
∂ Note that the solutions are obtained by the wave guide method in which → jw, ∂t ∂ → – y, so the wave-guide equations ∂z − jwµ 0 Y ( ) ( ) ( ) ∇ ⊥ H z0 × z − 2 ∇ ⊥ Ez0 E⊥0 = 2 h h − jwε 0 Y (0) (0) ( ) H⊥ = ∇ ⊥ E z × z − 2 ∇ ⊥ H z0 2 h h give in the case of a responator ( ) E⊥0 = −
and
( ) H ⊥0 =
µ0
1 ∂ ∂ ( ) ( ) ∇⊥ H t 0 × z + ∇ ⊥ E z0 2 h ( mn ) ∂t h ( mn ) ∂z 2
ε0 ∂ 1 ∂ ( ) ( ) ∇ ⊥ Ez0 × z + 2 ∇ ⊥ H z0 2 ∂t h h ∂z
m2 n2 . h2 = h(mn)2 = π 2 + a 2 b 2
Electromagnetus & Related Partial Differential Equation
131
Thus, ( )
E⊥0 =
( )
− jw 0 ( mnp ) µ 0 2 h ( mn )
+ so (0)
E⊥
(∇ ⊥ umnp ( r ) × z ) C (mnp)
d ( mnp ) ∂ ∇ ⊥ υmnp ( r ) 2 h ( mn ) ∂t
− jw(0) ( mnp ) µ 0 = C ( mnp ) ∇⊥ umnp ( r ) × z 2 h ( mn )
(
)
1 ∂ ( ) + d ( mnp ) υmnp ( r ) z + ∇ υr 2 ∂z ⊥ mnp h ( mn ) E E = C ( mnp ) ψ mnp ( r ) + d (mnp ) ϕ mnp (r ) E where ψ mnp ( r ) is E ( r ) a 3 × 1 vectors.
Expressible as a linear combination of υmnp ( r ) ,
∂2 ∂2 υmnp ( r ) , υmnp ( r ) , ∂ x∂ z ∂y ∂z
E and ϕ mnp ( r ) is a 3 × 1 vector expressible as a
∂umnp
∂umnp
linear combination ∂X ∂Y of with constant 3 × 1 vector valued coefficients dependent on (m, n, p). Likewise, H
(0)
are orthogonal to For all (m′n′p′) ≠ (mnp)
,
H H = C ( mnp ) ψ mnp ( r ) + d ( mnp ) ϕ mnp ( r ) E H H , ψ mnp , ϕ mnp {ψ mnE p , ϕmnp } {ψ mE ′n′p′ , ϕmE ′n′p′ , ψ mH′n′p′ , ϕmH′n′p′ }
as ordered triplets. Equating coefficient of O(d) in (1) and (2) gives ( )2 ( )2 ( ) () w 0 (1) 2w 0 w 1 (0) w 0 ( ) ( ) 2 ∇ + 2 E + E + 2 χe0 + χ0m E 0 C C2 C
(
)
(
)
= jw(0)∇χ(e0) × H (0) − ∇ ∇χ(e0) , E (0) and
...(3)
( )2 ( )2 ( ) () w 0 (1) 2w 0 w 1 (0) w 0 ( ) ( ) 2 ∇ + 2 H + H + 2 χe0 + χ0m H 0 2 C C C
(
( ) ( )
= − jw 0 ∇e0 × E
(0)
(
)
( )
− ∇ ∇χ m0 , H
(0)
)
...(4)
132
Stochastics, Control & Robotics
( )
( ) ( ) χm ( w 0 , r )
χe0 = χe w(0) , r ,
where
( )
χ m0 =
w(0) = w(0)(mnp). We arrange (3) and (4) as a single 6 × 1 single vector (partial differential equation): (1) (0) ( )2 ( ) () ( )2 (0) w 0 E 2w 0 w 1 E w 0 (0) E 2 ∇ + 2 χ + + ( ) ( ) C2 C H (1) C2 H 0 H 0
(0) (0) ( ) ( ) ∇(∇χe0 × E 0 ) ( ) ∇χ m × H − = jw 0 ( ) ( ) ( ) ( ) −∇χe0 × E 0 ∇(∇χ m0 × H 0 ) (0)
w
where
2 2 2 = w (mnp) = π m + n + p 2 a b2 c2 (0)
(
( )
χe0 = χe w(0) , r
1/ 2
,
)
( ) ( ) ( ) χe0 + χ m0 = χ 0
(
...(5)
( ) χ m0 = χ m w(0) , r
)
E E ϕ mnp ψ mn E (0) p C m + d mnp np = ( ) H ( ) H ( ) ψ mnp ϕ mnp H 0
Now,
E E ψ mnp ϕ mn p and note that So (Eq. 5) gives on taking inner products with and H H ϕ mnp ψ mnp (0)2 2 annihilates both of there functions ∇ + w
( ) ()
2w 0 w 1 C +
2
( )2
w0 C
2
{C (mnp) + ψ mnp 2 + d (mnp) < ψ mnp , ϕmnp >}
{C (mnp) < ψ
mnp , χ
(0)
( )
ψ mnp > d ( mnp ) < ψ mnp , χ 0 ϕ mnp >
}
H ∇χ(m0) × ψ mnp > ψ C m np < , ) ( mnp (0) E −∇χe × ψ mnp
(0)
= jw
H ∇χ(m0) × ϕ mnp + d ( mnp ) < ψ mnp , E −∇χ(e0) × ϕ mnp
and
>
...(6)
Electromagnetus & Related Partial Differential Equation
( ) ()
2w 0 w 1 C +
2
( )2
w0 C
2
133
{< ϕmnp , ψ mnp > C (mnp) + d (mnp) ϕmnp 2 }
{C (mnp) < ϕ
mnp , χ
(0)
( )
ψ mnp > +d ( mnp ) < ϕ mnp , χ 0 ψ mnp >
}
H ∇χ(m0) × ψ mnp (0) > np < C m jw ϕ , = ) mnp ( E ∇χ(e0) × ψ mnp H ∇χ(m0) × ϕ m np +d ( mnp ) < ϕ mnp , ( ) 0 E ∇χe × ϕ mnp
where
>
...(7)
E E ϕ mnp ψ mnp ψ mnp = , ϕ mnp = H H ψ mnp ϕ mnp
(6) and (7) can be expressed as A11 ( mnp ) A12 ( mnp ) ( ) B ( mnp ) B12 ( mnp ) C ( mnp ) − w 1 11 = 0 B21 ( mnp ) B22 ( mnp ) d ( mnp ) A21 ( mnp ) A22 ( mnp ) and have w(1) takes two values for each (mnp), namely the roots of
(
)
() det A ( mnp ) − w 1 B ( mnp ) = 0.
[2] Numerical Methods for pde: (a) Variation principles FEM. Action Integral: S[f] =
∫n L(φv , φψµ , x)d
n
x
D
fv: R n → R n , v = 1, 2, ..., p. dS[f] = 0 ⇒
⇒
∂L
∂L
∫ ∂φν δφν + ∂φv, µ δφv, µ d
D
∂L
∂L
∫ ∂φv − ∂µ ∂φv,µ δφv d
D
n
n
x =0
x =0
Assuming Direchlet conditions dfn= 0 on the boundary i.e. fn is prescribed on ∂D. ∂L ∂L − ∂µ Thus = 0. ∂φ ν, µ ∂φ ν
134
Stochastics, Control & Robotics
Euler-Lagrange eqns. for fields. Numerical implementation: Divide D into polyhedron
etc.
Express fn(x) for X ∈ ∆ k (kth polyhedron) as a linear combination of its values at the vertices fn(x) =
q
∑ Cνk [m]ψ km ( x), X ∈∆ k
m=1
ψ km = basis function chosen so that ykm(nk,r) = δm, r ,1 ≤ m, r ≤ q where nk, r,= 1, 2, ..., q are the vertices of ∆ k . Thus
φν (ν k , r ) = Cνk [r ] . N
then
S[f] ≈
∑∫
k =1 ∆ k
q q L ∑ Cνk [m]ψ km ( X ), ∑ Cνk [m]ψ k m, µ ( X )d n X m =1 m =1
≡ S [{Cνk [m]:1 ≤ m ≤ q, 1 ≤ k ≤ N , 1 ≤ ν ≤ p}] Minimize S w.r.t. {Cνk [m]} . Example of application (a) Solving the Einstein field equations of gravitation S=
∫R
−gd 4 X
R = Curvature scalar = g µν Rµν . Equivalent action α α Γβµβ − Γµβ − Γβνα d 4 X S1 = ∫ g µν − g Γµν
(
)
α is a tensor and hence Equivalent of S and S1is proved using the fact that δΓµν
{
α β δRµν = δ Γ αµα, v − Γ αµν, α − Γ αµν Γ βαβ + Γ µβ Γ να
( ) − ( δΓ ) −g ) − (g = ( g δΓ α = δΓ µα
So
g µν − g δRµν
µν
:ν
α µv
β µα
:α
µν
ν
α − g δΓ µv
}
)
,α
is a perfect divergence and hence had a vanishing integral. (b) Solving the Einstein-Maxwell equation in the presence of charged fluid. S = S1+S2+S3 S1 = C1 ∫ R −gd 4 X , µν − gd 4 X , S2 = C2 ∫ Fµν F
Electromagnetus & Related Partial Differential Equation
135
µ ν 4 S3 = C3 ∫ ρv v g µν − gd X ,
≡ C3 ∫ ρ − g d 4 X Energy-momentum tensor of a fluid with presence taken into account: µ ν µv Tµn = (ρ + p)v v − pg Einstein-Maxwell eqns.
1 Run − Rg µν = K1T µν + K 2 S µν 2 1 where Sµn = − Fαβ F αβ g µν + Fαµ F να 4 is the energy-momentum tensor of the em field. From the Einstein Field equations, we can derive the MHD eqns. in general relativity: µ ν µν K 2 S:µν ν + K1 ((ρ + p ) v v − p g ):ν = 0
Which can be brought to the generalized Navier-Stokes form used in non relativistic MHD:
∂v ρ ( v , ∇ ) v + = − ∇p + J × B ∂t ∂E where ∇× H = J + ε ∂t The Einstein Field eqns. 1 Rµν − R g µν = K1T µν + K 2 S µν 2 are a consequence of setting the variation of S w.r.t. gµn to zero. Setting the variation of S w.r.t. Aµ ( Fµν − Aν,µ − Aµν ) to zero gives the Maxwell eqns. F:νµν = K3 Jµ Provided that we add to the action an interaction term ∫ J µ Aµ −gd 4 X represents
the interaction between the charged fluid and the em field.
Here, in MHD we usually assume Ohms law that gives the relation between the current density and the em field as J = σ (E + v × B) In the special relativistic case. In teh general relativistic case, Ohm's law becomes a tensor equation µv Jµ = σF vv
and hence the charge – em field interaction term in the action amines the form
∫j
µ
µν 4 Aµ −gd 4 X = σ ∫ F vν Aµ − g d X
136
Stochastics, Control & Robotics
The finite element method can be applied to MHD in a given metric gµn by taking as our action. µν − g d 4 X + K2 S[v µ , Aµ ] = K1 ∫ Fµν F
∫ ρ gµνv
∫F
µν
µ µ
− g d 4 X + K3
v
vν Aµ − g d 4 X
µ
Here we should that v µ − dX and carry out the variation w.r.t. Xµ rather than vµ. dτ The complete non-relativistic MHD eqns. are ∂v ρ ( v , ∇) v + = − ∇p + η∇2 v + σ( E + v × B) × B, ∂t div E = 0, div B = 0, Curl E = −
and
∂B 1 ∂E , Curl B = µ 0 J + . ∂t c 2 ∂t
The last example of a pde that can be solved using the FEM is the Klein-Gordon field with Higgs potential. ∂ µ ∂ µ φ + m 2 φ2 + ε V '(φ) = 0 ∂ µ ∂ µ = = ∂ t2 − ∇ 2 .
where
This pde can be derived from the action 1 S [f] = ∫ ∂ µ φ∂ µ φ − m 2 φ2 − 2 ε V (φ) d 4 X 2 and it can be solved using the FEM.
(
)
The final example is from quantum field theory where we start with the Lagrangian
(
)
density L φµ , φµ , ν , X with fµ: R 4 → R and construct the Hamiltonian via the Lagrangian expressed in terms of function that depend only on time. fµ(X) = φµ (t , r ) =
N
∑ ξµk (t )ψk( r )
k =1
where {ψ k }kN=1 are basis functions depending only on the spatial coordinates r: S ξµk = =
∫ L (φµ , φµν , X ) d
4
X
∫ L ∑ ξµk (t )ψ k ( r ), ∑ ξµk (t )∇ψ k (r ), k
k
∑ ξµ’ k (t )ψ k (r ), t , r d 3r dt k
=
∫ L ({ξµk (t ), ξµk } , t ) dt '
Electromagnetus & Related Partial Differential Equation
with
137
} )
({
L ξµk (t ), ξµ' k (t ) , t =
∫ L ∑ ξµk (t )ψ k ( r ), ∑ ξµk (t )∇ψ k ( r ), ∑ ξµk (t )ψ k ( r ) , t , r d ’
k
k
3
r
k
is the Lagrangian. The Hamiltonian is constructed using the Legendre transformation: ∂L pµk = ' , ∂ξµk H
pµk ξµk − L ({ξµk , pµk } , t ) = ∑ µk
Then the Schrödinger eqn. is formulated: i
( { })
∂ ψ t, ξ µk ∂t
∂ = H ξ µk , −i , t ψ t , ξ µk ∂ξ µk
( { })
This Schrödinger eqn. is solved using the finite difference scheme. In some cases, we can also derive the Schrödinger eqn. from an action principle and solve it using the FEM. For example, for a single particle, the Schrödinger eqn. i
∂ψ(t , r ) ic A(t , r ) 2 = − ∇ + ψ (t , r ) + V (t, r ) ψ (t , r ) ∂t 2m
can be derived from the "complex" variational principle δS [ ψ, ψ ] = 0 where S [ ψ, ψ ] =
∫ L(ψ , ψ, t , r ) dt d
L(ψ , ψ, t , r ) =
i (ψ ψ , t − ψ ψ , t) 2 −
3
r,
2 ieA ieA ∇ + ψ − V ψψ ψ, ∇ − 2m
[3] Tracking of Moving Targets Using a Camera Attached to the Tip of a 2 = Link Robot: Let the screen eqn. be r = R(u , ν) = X (u , ν) x + y (u , ν) y + z (u , ν)z The object moves along the trajectory t → r 0 (t ) At time t, the link angles are
138
Stochastics, Control & Robotics
q (t ) = qo (t ) + ε δ q (t ) , φ(t ) = φ0 (t ) + ε δ φ(t ) where
3 F (q, q , q, φ , φ) = τ0 (t ) + ε ω (t ) ∈R
Thus, F (q0 , q0 , q0 , φ 0 , φ0 ) = τ0 (t ) F can be derived from the Lagrangian L=
(
)
q 1 T q , φ J ( q) − V ( q) 2 φ
M (q ) 0 2× 2 J (q) = ∈R3×3 M ( q ) ∈R T J 3 ( q ) 0 Position of the camera: where
r 2 (t ) = r1 + ψ( q , φ) r 2 (t ) = r 20 (t ) + ε δ r 2 (t )
( q0 (t ), φ0 (t )) r 20 (t ) = r1 + ψ δr 2 (t ) =
∂ψ ∂ψ ( q0 (t ) φ0 (t ))δq(t ) + ( q0 (t ) φ0 (t ), δφ(t )) ∂q ∂ψ
= A (t ) ξ(t ) ∂ψ ∂ψ q0 (t ), φ0 ( t ) ) ( q0 (t ), φ0 (t )) ( where A (t ) ∂φ ∂q Object moves along a trajectory r 0 (t ) . At time t, the ray. equation joining the object and the camera is λ → r0 (t ) + λ( r2 (t) − r0 (t )) . Assume the parametric equation of the surface as f (x, y, z) = 0, i.e.
f (r ) = 0
Then the λ = λ (t) corresponding to the image point on the surface is f (r0 + λ( r2 − r0 )) = 0. r (t ) → r 0 (t ) + δr0 (t ) . When r 2 → r20 + δr2 , thus λ → λ10 0 + δ λ (t ) and 0 Thus, f (r 0 + δ r 0 + δλ (r 20 − r 0 ) + λ 0δ r 2 ) + λ 0 (r 20 − r 0 ) = 0
or
(∇f (r 0 − λ 0 (r 20 − r 0 )), δ r 0 + δλ (r 20 − r 0 ) + λ 0 δ r 2 )
= 0.
or, (δ r (t), ψ (t )) + δ λ (t ) (r 20 − r 0 , ψ (t )) + λ 0 (δ r2 (t ), ψ (t )) = 0
Electromagnetus & Related Partial Differential Equation
139
where
ψ (t ) = ∇ f (r 0 (t ) + λ 0 (t )(r20 (t ) − r0 (t )))
Thus,
dλ (t) =
− (δ r 0 (t ), ψ (t )) + λ 0 (t ) (δ r 2 (t ), ψ (t ))
(r20 (t ) − r 0 (t ), ψ (t))
Here r0 (t) is the non random component of the objects motion and δr 0 (t ) is its random component. Likewise r 20 (t ) is the non-random component of the camera's motion and δr 2 (t ) is the random component
(
)
1 2 * * * exp (La (u) + L* a*(u)) = exp L a ( u ) ⋅ exp( L a (u )) ⋅ exp u LL 2 1 2 * = exp (L*a*(u)) exp u L L exp ( La (u)) 2 exp (L a (u)) f |e (v)〉 =
=
∞
( Ln f ) ∑ n a (u )n e (v) n=0 ∞
( Ln f ) ∑ n u, v n=0
(
n
e (v) = exp ( u , v L ) f e(v)
)
= exp ( u , v L ) f e(v) ≡ |exp 〈u, v〉 L) f e (v)〉 and 〈fe (v)| exp (L a (u) + L*a (u)) |f e(n)〉
( )
1 2 = f exp u LL* + u , v L + u, v L* f . exp v 2
2
We have thus proved.
ν 2 e ( ν) and let f∈h be such that f Theorem: Let |j (v)〉 = exp − 2 Then the moment generating function of the quantum random variable X = La(u) + L* a*(u) In the state (puv)|f j (n)〉 is given by MX(t) = 〈fj(v) |exp (tX)|fj(v)〉 =
=
=
(
)
1 2 f exp t 2 u LL* + t u , v L + v, u L* f 2 ∞
(
)
1 1 2 ∑ n f t u, v L + v, u L* + 2 t 2 u LL* n=0 ∞
∑
r, s = 0
(
)
r
f t r u , v L + v, u L* ⋅
t 2s 2
s
u
2s
(L L )
n
* s
f
f ⋅
1 rs
2
= 1.
140
Stochastics, Control & Robotics
= Thus,
∞
∑
t 2s + r
r, s = 0 2
s
rs
f
( u, v
)
r
L + v, u L* ( LL* ) s f
u
2s
f ϕ (v ) X n f ϕ (v ) =
∑
n 0≤ s ≤ 2
n f s n − 2s
( u, v
L + v, u L*
)n−2s ( LL* )s
f
u
2s
These are the moments of the quantum random variable X in the pure state f ϕ(v) of h ⊗ Γ s ( H ) . [4] Problem: Design MATLAB programmes for calculating the pressure field, the density field and the external potential field from velocity measurements using the NavierStokes equation for a gas: ρ (( v , ∇ ) v + v , t ) = −∇p + η∇2 v − ρ∇φ , p = Kρr div(ρ v) +
∂ρ = 0. ∂t
[5] n-Dimensional Helmholtz Green’s Funtion: n ∂2 ∑ 2 + k 2 ψ( x) = δ ( x) α =1 ∂xa Let Then
ψ ( x) =
1 (2π) n
∫n ψ (ξ)exp(i (ξ, x)) d
n
ξ
R
2 2 k − ξ ψ (ξ) = 1
(ξ ) = ψ
ψ( x) =
1 k2 − ξ
exp(i ξ, x)
1 ( 2π )
2
n
∫
2
2
k − ξ
ξ) , d n ξ = r n −1drdΩ(
dnξ
r = ξ , Let
Electromagnetus & Related Partial Differential Equation
ξ = ψ( x) =
Then Let
∫n dΩ(ξ)
141
ξ r 1 (2π)
n
∫
exp(ir || x ||)
(k
2
−r
2
)
r n −1drdΩ( ξ)
= Sn (a constant)
S
When
{
}
ξ ∈R n ξ =1 Sn = Then ψ( x) =
Sn
(2π) n
∞
∫
0
(k
r n −1 2
− r2
)
exp (ir || x ||) dr
[6] Edge Diffusion: f0 (x, y) = δ ( px + qy − 1)
(
x2 + y 2 1 exp − ft (x, y) = 4πDt 4 Dt
)
*
f 0 ( x, y )
= Kt ( x, y ) * f 0 ( x, y) = =
1 q
p
∫2 δ q ξ + η − 1 Kt ( x − ξ, y − η) d ξd η
R
pξ 1 dξ kt x − ξ, y − 1+ ∫ q q
Diffused edge.
[7] Waves in Metamaterials: ε o | − ε o (1 − δχ(r1 )) = ε(r ) z=0
(
)
Z < 0 : ∇2 + k 2 E (r) = 0 Z < 0 : div ((1 + δχ) E ) = 0 div E = − δ (∇χ, E ) + O(δ 2 ) . ∇ × E = − jwµH , ∇ × H = jwε E
142
Stochastics, Control & Robotics
∇(div E ) − ∇E = ( − jwµ ) ( jw ε) E
⇒ ⇒
∆ + w2µε E − ∇(dw E ) = 0
⇒
( ∆ − k 2 − δ ⋅ k 2 ) E − δ ∇ (∇χ, E ) = 0
{
}
( ∆ − K 2 ) E = δ ⋅ k 2 E + ∇(∇χ, E) (o) (1) E = E + δ⋅E
( ∆ − k 2 ) E (o) = 0
(
( ∆ − k 2 ) E (t ) = k 2 E (o ) + ∇ ∇χ, E (o ) We can thus write for z > 0,
)
E ( r ) = E (o ) ( r ) + δ ⋅ E (1) ( r ) =
∫ F (n) + δ ⋅ H (r , n) F (n) exp(−k n . r ) d w (n) + O(δ
2
)
(1)
1 exp(k n ⋅ ( r − r ′ ))exp(− k ( r − r′ )) where H ( r , n) = − 4π ∫
{
}
3 n(∇ χ ( r ′ ))T d r ′ × k 2 I + ∇∇T χ( r ′ ) − k | r − r′ |
n) ∈ 3 ×1 H (r, n) ∈ 3 × 3 , F ( (o) n, F ( n)) = 0. Now, div(E ) = 0 ⇒ (
further, ( E X , EY ) Z = o+ = ( E X , EY ) Z = o − Z 0 and ∫ (1+ | ξ | )
) | u (ξ) |2 d ξ < ∞
∫ (1+ | ξ |
2 s
⇒
(since for s < 0, (1+ | ξ |2 ) s ≤ (1+ | ξ |2 ) −2 ∀ξ ∈R N ) ⇒
φ, u
2
2 −s ϕ(ξ) |2 d ξ ≤ C ′ ∫ (1 + | ξ | ) |
≤ C
∑
∂α φ
||α||≤ 2|s|
2 2
These discussion imply that H −∞ = u ϕ, u ≤ H −∞ =
∪ Hs
s ∈R
{
∑
||α||≤ n
2 ∂α ϕ ∀ ϕ for some n ≥ 0 2
= u | lim
δ→−−∞
∫ (1+ | ξ |
}
u (ξ) |2 dξ < ∞ . ) |
2 s
3 Radon and Group Theoretic Transforms With Robotic Applications [1] Modern Trends in Signal Processing by Harish Parthasarathy, NSIT: [Reference: Radon Transform-Some Basic Properties.] [1] Radon transform based computer tomography. [2] Numerical methods for solving partial differential equation with applications to waveguides and Cavity resonators. [3] Modelling noise in quantum systems. [1] Image field f : R n → C is an image Hyperplane is
, r ) = ∈ S n−1 , p ∈R . (m p, m
Sn–1 is the n–1 dimensional sphere in Rn. Sn–1 =
{r ∈R
n
}
| r =1
Projection of f on the hyperplane: n , p) = (Rf) (m ∫ f ( r )δ p − m , r d r Rf Radon transform of f. Example: n = 2 (Rf) (I, m, p) =
( ( ))
Rn
∫
f ( x, y ) δ( p − lx − my) dx dy
R2
Inversion formula: , w) = (FpRf) (m =
∫ ( Rf ) (m, p) exp (− jwp) dp
R
∫ f ( r ) exp (− jw(m, r ))d
n
r
152
Stochastics, Control & Robotics
f (r ) =
So
ξ
1 (2π)
n
∫n ( Fp Rf ) || ξ || , || ξ || exp( j (ξ, r )) d
n
ξ
R
Behaviour of Radon transform under rotations and translation SO(n) = {k ∈ R n×n | K T K = I , det( K ) =1} Translates and rotated image field: Tk , a f ( r ) = f ( K r + a ), a ∈ R n , K ∈ SO(n) . ( RTk , a f ) (m, p) = F p RTk , a f (m, w) =
∫n f ( K r + a ) δ( p − (m, r ))d
r
R
∫ ( RTk ,a f ) (m, p) exp(− j wp) dp
R
=
n
n
∫ f ( Kr + a) exp(− jw(m, r ))d r −1 n ∫ f ( x ) exp(− jw(m, K ( x − a))d x
(x = Kr + a) since det K = 1. , a)) ( Ff ) ( w k m ) , w) = exp( jw( K m Thus ( F RT f ) (m p
k, a
, a )) ( Ff Rf ) ( K m , w) = exp( jw( K m , w) | = | ( Ff ) ( w K m) | | ( F p RTk ,a f ) (m
K can be recovered from this using Fourier transform on SO(n).
[2] Randon-Transform Based Image Processing: Let f : R 2 → * C an image field. Its projection on the plane lx + my – p = 0 2
2
where l + m = 1 is given by (Rf) (l, m, p) =
∫ f ( x, y) δ ( p − lx − my) d x d y
If f (x, y) is a random Gaussian field, then
( ) (l ', m ', p ')
( Rf ) ( l , m, p ) Rf =
∫ R ff ( x; y; x ' y ') δ ( p − lx − my) δ ( p '− l ' x '− m ' y ') dx dy dx ' dy '
Suppose f is a WSS (Wide-sense-stationary) field. Then Rff (x, y; x′ y′) ≡ Rff (x – x′, y – y′)
( ) (l ', m ', p ')
Then ( Rf ) ( l , m, p ) Rf
Radon & Group Theoretic Transforms with Robotic Applications
=
153
∫4 R ff ( x − x ′, y − y ′) δ ( p − lx − my) δ ( p ′ − l ′x ′ − m′y ′) dx dy dx ′ dy ′
R
∫4 R ff (ξ, η) δ ( p − lx − my) δ ( p ′ − l ′( x − ξ) − m′( y − η)) dx dy dξ d η
R
= Let
∫ R ff (ξ, η)d ξd η ∫ δ( p − lx − my) δ( p ′ − l ′)(x − ξ) − m′( y − η))dx dy f (p, p', l, m, l', m') =
Let
∫ δ ( p − lx − my) δ ( p ’− l ’( x − ξ) − m ’( y − η)) dx dy
lx + xy = u l'x+m'y = v
−1
Then
x l m u y = l ' m ' v m ′ − m u (lm′ − l ′m) = −l ′ l v m ’u = lv
So F (p, p′, l, m, 1′, m′) =
−mv (lm ’− l ’m) −l ’u
∫ δ( p − u ) δ ( p ′ + l ′ξ + m′η − v) (lm′ − l ′m)
= (lm′ – l′m)–1.
( ) (l ′, m′, p′)
Thus, ( Rf ) (l , m, p ) Rf
= (lm′ − l ′m ) Inversion formulas:
∫ ( Rf )(l , m, p ) e
R
− j ωp
dp =
∫ f ( x, y )e
−1
∫
R ff (ξ, η) d ξ d η
R2
− jω (lX + mY )
dxdy
= f (l ω,mω )
where f denote 2-D Fourier transform of f. Thus, writing ξ=lw, η=mw, we get ξ η f ( ξ, η) = ( Rf ) , , p ∫ 2 2 2 2 ξ +η R ξ +η
(
)
exp − jp ξ 2 + η2 dp and thus
ξ η −1 , ,p f(x, y) = (2π) ∫ ( Rf ) 2 2 2 2 ξ +η ξ +η
−1
du dv
154
Stochastics, Control & Robotics
(
)
exp − jp ξ 2 + η2 exp ( j (ξX + ηY )) dpdξd η Generalization to n-dimensional images: f : R n → C.
∫n f ( x) δ ( p − (m , x)) d
( Rf ) (m , p ) ( Rf ) (m , − p )
∫ ( Rf ( m , p ) exp ( − ) ωp ) dp
R
=
R
) ∫ ( f ( x) exp (− j (ω m , x)) d x n
=
∫n f ( x ) exp ( − j ( ξ, x ) ) d n x, ξ ∈ R n
R
ξ n ∫ n (2n) ( Rf ) ξ , p
f (x) =
So
(
Rn
Equivalently, ξ
x
, p . = ( Rf ) −m
R
∫ ( Rf ) ξ , p exp ( − j | ξ | p | dp
n
R×R
{
}
exp j ((ξ, x ) − ξ p ) d p d n ξ Radon transform of a moving image: ψ ( X , Y , t ) = f ( X − VX t ,Y − VY t ) . ≡ ψt ( X ,Y ) .
( Rψt ) ( l , m, p )
=
∫2 f ( X − VX t ,Y − VY t ) ξ ( p − lX − mY ) dXdY
R
=
∫ f ( X ′, Y ′) δ ( p − lX ′ − mY ′ − (lVX + mVY ) t ) dX ′dY ′
= ( Rf ) (l , m, p − (lVX + mVY ) t )
∫ ( Rψt ) ( l , m, p ) e
R
− jωp
dp
{
}
− jωp dp = exp − jω (lVx + mV y )t × ∫ ( Rf ) (l , m, p ) e
(
)
R
i.e. F p R ψ t (l , m, ω )
{ (
) } ( Fp Rf ) (l, m, ω)
= exp − jω lVx + mV y t
(
)
≡ F p R ψ 0 (l , m, ω )
Radon & Group Theoretic Transforms with Robotic Applications
Thus,
{(
}
)
{(
155
}
)
Arg F p R ψ t1 (l , m, ω ) − Arg F p R ψ t 2 (l , m, ω ) = ω (t2 − t1 ) (lVx + mV y )
ψ( X , Y ) = 0 eqn. of a curve in the plane. Project the image field f(x, y) on this Rψ(f) =
curve: e.g.:
∫ f ( x, y) δ (ψ ( x, y))dxdy
y = j(x) i.e. ψ(x, y) = y – j(x).
Then Rψ(f) =
∫ f ( x, y) δ ( y − ϕ( x)) dxdy = R∫ f ( x, ϕ ( x)) dx
f (x, y) = s(x, y) + w(x, y) Rψ (f) = Rψ(s) + Rψ(w). NSR =
{
Rψ ( w)2 Rψ ( s )
2
} = (SNR)
–1
X → X cos θ + Y sin θ Y → − X sin θ + Y cos θ
f (X, Y) → f (X cos q + Y sin q – sin q + Y cos q) = f ( X , Y ) Rotation image.
Rf (l , m, p ) =
∫ Rf k , x (n , p ) e
R
( Fp Rfk ,x
∫ f ( X , Y ) δ
( ( )) ∫ (R f ) (k n, p) = exp ( − jωp ) dp ) (n , ω) = exp ( jω ( x, K n ))( F R f )( K n, ω) − j ωp
dp = exp jω x, k n
R
p
If K ∈O (n) is knows, x can be determined using
(
)
ω x, K n = Arg
{( F R f ) (n , ω)} − Arg {( F R f ) (K n , ω)} p
k ,s
p
( ) = ( F R f )( K n , ω)
F p Rf k , x n, ω
p
[3] Image Processing Using Invariants of the Permutation Group: Sources are located at r1, r 2 , ..,r N .
(
)
Signal field emitted by source at r k is f k t − r − r k c , 1 ≤ k ≤ N. Total signal field generated is
156
Stochastics, Control & Robotics
f (t , r ) =
N
∑ f k (t − r − r k c )
k =1
If a permutation s (∈SN) is applied to the sources, the generated signal field is N
U σ f (t , r ) =
∑ f k (t − r − r σ k c )
k =1 N
=
∑
k =1
(
f σ −1k t − r − r k c
)
Us Us f (t, r) = Usr f (t, r). Let
f (t , r , r1 ...., r N ) =
N
∑ f k (t − r − r k c )
≡ f (t , r )
k =1
Us f (t, r) = f (t, r , r σ1, ....,r σN ) .
Then Group algebra:
∑
σ ∈S N
a (σ ) U σ
p Let s → p(s) be a unitary representation on SN in C . Then consider
f π (t , r ) = We get
(U σ f )π (t , r ) = =
(
∑
π(σ)U σ f (t , r )
∑
π(σ)U σρ f (t , r )
∑
π(σρ−1 ) U σ f (t , r ) = f π (t , r )π* (ρ)
σ∈S N σ∈S N
σ ∈S N
So, (U σ f )π (t , r ) (U σ f )π (t , r )
)
*
* = f π (t , x ) f π (t , r )
Thus, f π (t , r )* f π (t , r ) is an SN invariant matrix field in space-time.
Young's Tableaux, primitive idempotents and the irreducible rep'm of SN.
Let N = 3, and consider the tableaux T=
1
2
3
eT =
∑
Sqn(q) pq
p ∈RT , q ∈CT
in the group algebra. s0 = Id Let
1 2 3 s1 = 2 3 1
Radon & Group Theoretic Transforms with Robotic Applications
157
1 2 3 s2 = 3 1 2 1 2 3 s3 = 2 1 3 1 2 3 s4 = 3 2 1 1 2 3 s5 = 1 3 2
= Id – (13) – (2 3) (1 3) + (2 1) = Id – s4 – s5 s4 + s3
Now
s5s4 = (2 3) (13) = s1 eT = s0–s4–s1+s3
ReT is an irreducible representation. s0eT = e.eT = eT, s1eT = s1
[4] Radon Transform of Rotated and Translated Image Field: f : n → C
{
}
O(n) = K ∈ n × n K T K = I ,det = ( K ) = 1 .
( )
Rf K , x n , p
(n , y )
n = ∫ f ( x + K . y) δ ( p − ( y,n )) d y
= p.
n1y1+...+nnyn = p, n –1 dimensional plane in Rn . n1x+n2y+n3z = p 2 – D plane in R3.
Computer Tomography.
( )
Rf K , x n , p = =
( )
Rf n , p given.
( )
∫ f ( x + y) δ ( p − ( y, K n ) ) d y n ∫ f ( y)δ ( p + ( x, K n ) − ( y, K n ) ) d y n
(
)
p + ( x, K n ) Rf K , x n , p = Rf K n,
K rotator x = translation.
158
Stochastics, Control & Robotics
[5] Estimating the Rotation Applied to the Two 3-D Robot Links from Electromagnetic Field Pattern: At time t the rotation suffered by the bottom link is R1(t) and that by the top link is RzR1. A point r in the bottom link moves to R1 (t ) r = R (φ1 (t ), θ1 (t ), ψ1 (t )) r 1
and third in the top link to R1 p0 + R2 R1 ( r − p0 ) . R1(t) = R1 (φ2 (t ), θ 2 (t ), ψ 2 (t ))
Where
(
The correct density in the bottom link is J R1−1 r 1 −1 J p0 + ( R2 R1 ) ( r − R1 p0 ) . 2
)
(
) and that in the top link is
Assuming infinite speed of light, the magnetic vector potential at time t is A (t , r ) =
∫
1
+∫ =
(
J R1 (t ) −1 r 1
∫
J
1
r − r′
) d r′ 3
( p + (R (t ) R (t ) ) ( r ′ − R (t ) p )) d r ′ 0
2
−1
1
0
3
r − r′
J 1 ( r ′) r − R (t ) r ′
d 3r ′ + ∫
1
Let
1
J 2 ( r ′ ) d 3r ′
r − R1θ p0 − R2 (t ) R1 (t ) ( r ′ − p0 )
.
R2(t)R1(t) = S (t), R1(t) = R (t). Then, A (t , r ) =
∫
J 1 ( r ′) J 2 ( r ′ ) d 3 r′ d 3r ′ + ∫ . r − R(t ) r ′ r − R(t ) p0 − S (t ) ( r ′ − p0 )
By taking measurements of A (t , r ) of different r ′s, R(t), S (t ) ∈SO (3) can be estimated. For r >> r ′ , r − R(t ) r ′
−1
(
)
= r 2 + r ′ 2 − 2 r , R (t ) r ′
≈ r −1 1 +
(
( r , R(t ) r ′ ) r2
−1 2
(
r , R (t ) r ′ = 1+ r r2
)
)
r , Rp0 + S ( r ′ − p0 ) ≈ 1+ r r2 So the non constant part of the magnetic vector potential at r >> r ′ is approximates r − Rp0 − S (r ′ − p0 )
−1
A (t , r ) =
∫ J1 (r ′ ) (r , R(t ) r ′ ) d r ′ r + ∫ J 2 (r ′ ) ( r ) , R (pt ) + S (t ) + (r ′ − p0 ))d 3 r ′ 0 3
2
r2
Radon & Group Theoretic Transforms with Robotic Applications
Let l be a constant unit vector. Then T l , A (t , r ) = R(t ) r ,
) (
(
∫ ( J1 ( r ′), l ) r ′d
3
159
r′
)
r2
(R(t ) r , p ∫ ( J ( r ′), l )d r ′ r ) + ( S (t ) r , ∫ ( J ( r ′), l ) ( r ′ − p ) d 3r ′ r ) T
0
3
1
2
T
2
0
This is a linear equation for R(t ), S (t) and The rotations R(t ), S (t) can be estimated by least squares techniques.
[6] Kinetic Energy of a Two Link Robot: r → R1 (t ) r ( r ∈ second link). r → R1 (t ) p0 + R2 (t ) R1 (t )( r − p0 ) (r∈ second link). Let B1 denote the volume of the bottom link at time t = 0 and B2 that of two second
link. Then the kinetic energy is T=
1 ρ R1′(t )r 2 B∫ 1
2
1 d 3 r + ρ2 2
∫
(
R1′(t ) p0 + ( R2 R1 )′ (t ) r − p0
B2
R1(t) = R(t), R2(t) R1(t) = S(t). Then
Let
T=
1 ρ1 R ′ (t )r 2 B∫
2
1
∫
1 d 3 r + ρ2 2
(
R ′(t ) p0 + S ′(t ) r − p0
B2
Let
T1 =
1 R ′ (t ) r 2 B∫
2
d3r =
1
ρ2
∫
2
d 3r
{
}
1 Tr I R ′T (t )R ′ (t ) 1 2 2
R ′(t ) p0 + S ′(t ) ( r − p0 ) d 3 r
B2
= µ ( B2 ) R ′(t ) p0
2
m(B2) ≡ m2 = ρ2
∫d
B2
3
r,
{
}
+ Tr I S ′T (t )S ′ (t )
+2Tr {R ′ (t ) I 3 S ′ (t )} where
)
ρ1 ∫ r r T d 3 r = I , 1 B1
Then
2
)
2
d3r
160
Stochastics, Control & Robotics
I I where
2
3
= ρ2
∫ ( r − p0 ) ( r − p0 )
T
d 3r ,
B2
= ρ2
∫
(
p0 r − p0
B2
R2 =
∫ rd
3
)
T
(
d 3 r = µ 2 p0 R2 − p0
)
T
r
B2
Group theoretic analysis of the motion of a two-link Robot with the link being 3-D rigid bodies: Each link of the Robot is a 3-D rigid Top. The first link has its base point attached to the origin and the second link has its base point attached to some fixed point p on the top surface of the first link. The group of motions is shown to be a representation of SO (3) × SO (3). We assume that each link carries a d.c. current density an then computer the magnetic field produced by this current field after both links have undergone rotations around their respective base points. r
p
At time t = 0, the point p at the joint of the two links is at p0 and the point r at a fixed location in the second link is r 0 . q0 = r 0 − p0 is the position of r relative to p at time t = 0. The final configuration is arrived at by first applying a rotation R1 to the entire system about the origin O, taking p0 → R p0 , r 0 → R r0 1
1
So that q0 → R1q0. We then apply a rotation R2 to the second link around p = R1p0 taking R1q0 → R2R1q0. The magnetic field produced by the Robot after the application of the two rotations is computed using the Biot-Savart law (non- relative) calculation. The final position of r is thus r = R1p0 + R2R1q0 = R1p0 + R2R1 (r0 – p0) = R2R1r0+ (R1 – R2R1) p0 and
p =Rp 1 0
Radon & Group Theoretic Transforms with Robotic Applications
161
The group action is then r 0 R2 R1 r 0 + ( R1 − R2 R1 ) p0 R2 R1 = p → R1 p0 0 0
R1 − R2 R1 r 0 R1 p0
The group G is this given by R2 R1 G = 0
R1 − R2 R1 : R1 , R2 ∈SO (3) R1
R S − R : R, S ∈SO (3) G = S 0
or equivalently, Composition law:
R S − R T (R, S) = S 0
Let Then
S2 − R2 R1 ⋅ S2 0
R2 T ( R2 , S2 ) ⋅ T ( R1 , S1 ) = 0 R2 R1 0
S1 − R1 S1
S2 R1 − R2 R1 = T(R2R1, S2S1). S2 S1
This shows that ( R, S ) → T ( R, S ) is a representation of SO (3) × SO (3) in R6. Now suppose that lower link carries an initial current density (t = 0) J1 ( r ) and the top link J 2 ( r ) . Then after time t, the current density in space is given by J (t , r ) = J R −1 (t ) r + J R −1 (t ) R −1 (t ) r − R (t ) p 1
(
1
)
2
(
1
Writing R(t) = R1(t) and S(t) = R2(t) R1(t), we get
(
)
(
2
(
J (t , r ) = J1 R −1 (t ) r + J 2 S (t ) −1 r − R (t ) p0
where
R (t ) = R1(t) –R2 R1(t)
0
)
))
Note that J1 ( r ) is zero for r ∈ B1 and J 2 ( r ) is zero for r ∈ B2 where B1 and B2 are respectively the volumes of the first and the second link. Note that B1 ∩ B2 =
f. The magnetic field produced by this current density in space B (t, r ) =
∫3
R
J (t , r ′ ) × ( r − r ′ ) 3 d r′ 3 r−r
(By Biot Savart's law): Assuming that x , y, z are the column vectors 1 0 0 0 , 1 and 0 0 0 1
162
Stochastics, Control & Robotics
X X ′ r = Y , r′ = Y ′ , Z Z ′
respectively and
B (t , r ) =
we have
∫ G ( r − r ′ ) J (t , r ′ ) d
3
r′
x × r y × r z × r 1 G( r ) = 3 , 3 , 3 = r r r r3
where
0 −z y
− z − y 0 x − x 0
Here, J (t , r ) is a 3 × 1 column vector and G ( r ) is a 3 × 3 matrix B(t, r) is a 3 × 1 column vector. We can simplify the above to B (t , r ) =
∫ G ( r − R(t )r ′ ) J1 (r ′) d
B1
(
3
r′
)
+ ∫ G r − R (t ) p0 − S (t ) r ′ J 2 (r ′ ) d 3 r ′ B2
= R–S R
Note that
(1)
The problems are (1) estimate the matrices R(t), S(t) ∈ SO (3) for a fixed t, from
measurements, of B(t, r) at different r = r1 r2, ..., rN. (2) Estimate the square R (tk ) , S (tk ) , k = 1, 2, ..., N at a square of time points t1 t2, ...., tN from measurements of
B(t, r) at times t1, ..., tN, r∈{r1, ..., rM}. Here relativistic effects are not being taken
into account i.e. we are not using related potentials . Taking the spatial Fourier Transform of (1) gives (t , k ) = B =
∫ B (t , r ) exp (i k ⋅ r ) d
3
r
R3
∫ exp (i (k , R(t ) r ′ )) G (k ) J1 ( r ′) d
B1
((
3
r′
))
( k ) J ( r ′) d 3r ′ + ∫ exp i k , R (t ) p0 + S (t ) r ′ G 2
Or equivalently, (k ) −1 B (k ) = G
B2
∫ exp (i ( k , R(t ) r ′ )) J1 ( r ) d
3
r
B1
∫ exp (i ( k , R (t ) p0 + S (t ) r )) J 2 ( r ) d
B2
Consider the function
exp (i ( k , r ))
3
r
Radon & Group Theoretic Transforms with Robotic Applications
163
We can express it as exp (i ( k , r )) =
{ ( )}
where Ylm r property
m ≤l , l ≥ 0
(
∑ C (l , m, k, r ) Ylm (r )
l, m
are the spherical harmonics. They satisfy the transformation
)
Ylm R −1 r = th
∑
m′ ≤ l
π l ( R ) m′m Ylm′ (r ) , R ∈ SO (3)
Where pl is the l irreducible representation of SO (3). They coefficients (l, m, k, r) are given by
C (l , m, k, r ) = =
∫2 exp (i ( k , r ))Ylm (r ) dS (r )
S π 2π
∫ ∫ exp (ikr (sin α sin θ cos (φ − β) + cos α cos θ)) 0 0
Ylm (θ, φ) sin θ d θ dφ Where k = k (cos b sin a, sin b sin a, cos a) Then
exp (i ( k , Rr )) =
∑ C (l , m, k, r ) Ylm ( Rr )
l, m
= and hence we get ( k ) −1 B (k ) G =
∑
l , m, m′
( )
C (l , m, k, r ) πl R −1 Y (r ) m′m lm′
∑ (∫ C (l , m, k, r )Ylm′ (r ) J1 (r ) d 3r ) πl ( R −1 ) m′m
lmm′
((
+ exp i k , Rp 0
( )
π S −1 l m ′m =
)) ∑ (∫ C (l, m, k, r ) Ylm′ (r ) J 2 (r )d 3r ) lmm′
∑ ψ k [lmm′] πl ( R) mm′ + exp (i ( k , R p0 ))
lmm ′
∑ χ k [lmm′] πl ( R) mm′
lmm′
where ψ k [lmm′ ] =
∫ C (l m k, r ) Ylm (r ) J1 ( r )d
3
r and χ k [lmm′ ]
B1
= Now,
((
exp i k , R p0
∫ C (l m k, r ) Ylm (r ) J 2 (r ) d
B2
)) = ∑ C (l, m, k, p0 )Ylm ( R p0 ) lm
3
r
164
Stochastics, Control & Robotics
=
∑ C (l , m, k, p0 ) πl ( R) mm′ Ylm ( p0 )
lmm ′
( k ) −1 B (k ) = G
So
∑ ψ k [lmm′] πl ( R) mm′
∑
+
lmm′
C (l1 , m1 , k, p0 )
l1m1m′1 l2 m2 m′2 l3m3m′3
( )
π (S ) χ k [l2 m2 m2′ ] πl1 ( R) m2 m′ 2 − p 0 m1m ′ 1 l2
(Y
l1 m1′
)
Yl3 m3′ × C (l3 , m3 , k , p0 ) πl3 ( S )
m3m3′
[7] Vector Potential Generated by a 2-Link Robot: r 0 → R1 r 0 , r 0 ∈ B1 (lower link) r1 → R1 p0 + R2 R1 ( r1 − p0 ) , r1 ∈ B2
R1 = R, R2 R1 = S (upper link) J1 ( r ) current density in lower link. J 2 ( r ) current density in upper link at time t = 0 Current density at time t,
(
(
−1 −1 J ( r ) = J1 ( R r ) + J 2 p0 + S r − Rp0
))
For field magnetic vector potential A (r ) = =
∫ J ( r ′ ) | exp ( j k r ⋅ r ′ ) d ∫ J ( r ′ ) | exp ( j k ( R
−1
3
r′
r ⋅ r′
( (
) ) d r′ 3
))
+ ∫ J 2 ( r ′ ) exp jk r , Rp0 + S ( r ′ − p0 ) d 3 r ′ −1 −1 −1 −1 = A1 ( R r ) + A2 ( S r ) × exp( jk( R − S )r , p0 )
A1 (r ) =
∑ C1 (lm)Ylm (r ),
exp − jk r , p0 A2 ( r ) =
∑ C2 (lm)Ylm (r ).
Let
( (
Then,
))
A1 ( R −1 r ) =
l ,m
l ,m
∑ C1 (lm) [πl ( R)]m′m Ylm′(r )
lmm′
( (
A 2 (r ) = exp jk R −1 r , p0
)) ∑ C2 (lm) [πl (S )]m′m Ylm′(r ) l , mm′
Radon & Group Theoretic Transforms with Robotic Applications
165
≡ A2 ( S −1 r ) exp( jk ( R −1 − S −1 )r , p0 ) exp( jk(r , p0 )) =
Let
∑ d (lm)Ylm (r ) l ,m
∫2 A2 (r )Yl o mo (r )dS(r )
So,
s
=
−1 ∫ ∑ C2 (lm)d (l ′′m′′)Yl ′′m′′ ( R r )[πl (S )]m′m Ylm′ (r )Ylomo (r )dS((r ) lmm′ l ′′, m ′′
A (r ) = A1 ( R −1 r ) =
∑ C1(lm)Ylm ( R −1 r )
=
lm
So
∑ C1(lm)[π1( R)]m′m Ylm′ (r )
lmm′
∫ A1 (r )Ylm (r ) dS(r )
=
∑ C1 (lm′)[πl ( R)]mm′
∫2 A1(r )Ylomo (r )dS (r )
=
∫2 ( A1 (r ) + A2 (r ))Ylomo (r )dS(r )
S
m′
S
=
∑ πl0 ( R) m0m C1(lm) m
+
∑
l1l2 m1m2 m3m4
n-link Robot
C2 (l1m1 )d (l2 m2 )[πl2 ( R)]m3m2 [πl1 ( S )]m4 m1
∫ Yl1m4 (r )Yl0m0 (r )Yl2m3 (r )dS(r )
First link is attached to ground at its base point. Second link is attached to the first link at p1. kth link is attached to the (k – 1)th link at pk – 1. nth link is attached to the (n – 1)th link at pn – 1. All links first suffer a rotation R1 around O. 2nd to nth links suffer a rotation R2 around R1p1. nth link suffers a rotation Rn around
166
Stochastics, Control & Robotics
R1p1+R2R1(p2–p1)+R3R2R1(p3–p2) +…+ Rn–1…R1(pn–1– pn–2) So let r k be an initial point in the kth link, k = 1,2,…,n. Then after the sequence of rotations R1, …, Rn, r k → R1p1 + R2R1(p2–p1) + … + Rk–1 … R1(pk–1 – pk–2) + RkRk–1 … R1(rk – pk–1)
k = 1, 2, …, n.
Writing R1= S1, R2R1 = S2, … Rk … R1 = Sk , k = 1, 2, …, n, we get r k → S1p1 + S2(p2–p1) + … + Sk–1(pk-1 – pk–2) + Sk (r k − pk −1 ),1 ≤ k ≤ n. If J k ( r ) is the initial current density in the kth link, then after the sequence of rotation, its current density is Jk ( r ) = J k (Tr −1 r ) where Tk (r) = S1p1 + S2 ( p2 – p1) +… + Sk–1( pk–1 – pk–2 ) + Sk ( r − pk −1 ). k −1 −1 −1 p S + r − S ( p − p T ( r ) = k −1 Thus, k ∑ j j j −1 p0 = 0 k j=1
and the total current density in the find state is given by J ( r ) = =
n
∑ Jk ( r )
k =1 n
k −1
k =1
j=1
∑ J k pk −1 + Sk−1 r − ∑ S j ( p j − p j−1 )
[8] Group Associated with Robot Motion: ( x, y, θ1 , θ2 ) → ( x + a, y + b, θ1 + α1 , θ 2 + α 2 ) A belian group of transformation. When the rigid rods have breadth and width dimension, i.e. they are like tops. Euler angles for the first top (j1, q1, ψ1). q
p
Eular angles for the second top (j2, q2, ψ2). The second top is attached to a point p 0 = (x0, y0, l) on the first top at time t = 0. At time t, this point moves to
Radon & Group Theoretic Transforms with Robotic Applications
167
R (ϕ1, θ1, ψ1 ) p 0 = p 0 ≡ pt . where j1 = q1(t), q1 = q1(t), ψ1 = ψ1(t). The point Q on the second top was at time t = 0 located at p0 + q0 = r 0 =
=
∞
∞
0
0
t ∫ P0 dt ∫ n(Y0ku ∩ {u < R}) du
Y z k d u ∫ ∫ 0 u dt 0 0
∞ R
∞
=
∫
0
R
=
r
∫ ∫R 0
∞
=
∞
pk (r ) dr ∫
∫ r
∞
p(r ) dr ∫ r
r
Qu du ∫ Y0ku du 2πu 0
r
du ∫ {Y0 ku du | R = v} 2πu 0
and at time, it is located at pt + q = r t = R (ϕ1 , θ1 , ψ1 ) p + R (ϕ 2 , θ2 , ψ 2 ) q t 0 0
Thus defines a transformation by
r0 → rt
r t = R (ϕ1, θ1, ψ1 ) p0 + R (ϕ 2 , θ 2 , ψ 2 ) (r 0 − p ) 0
(
)
= R 2 r 0 + R1 − R 2 p 0 With p 0 fixed, the transformation group action is T (ϕ1, θ1, ψ1, ϕ 2 , θ 2 , ψ 2 ) r 0
(
)
= R 2 r 0 + R1 − R 2 p0 Or equivalently r 0 R2 p → 0 0
R2 − R1 r 0 I 3 p0
Find generators for lie algebra of the lie group generated by all 6 × 6 matrix of the form R2 R2 − R1 R1, R2 ∈SO(3) . , 0 I 3
168
Stochastics, Control & Robotics
[9] Radon Transform: f (α, p) =
∫n f ( x)δ ( α, x
− p ) dx
R
|| α || −1, α ∈R n , p ∈R . Then f (α, − p) = f ( −α, p) ,
∫ f (α, p)exp(−iwp) dp
=
R
∫n f ( x)exp ( −iw α, x ) dx
R
≡ f (α, w) say. Thus,
f (x) =
∫ w≥0
(
)
f (α, w)exp iw α, x wn −1d Ω(α ) dw (2π) n
α ∈ S n−1
where Thus,
n wn−1d Ω(α ) dw ≡ d ( w x) (Lebesgue measure on Rn) f (x) = f (α, p) exp(−iwp ) exp (iw α, x )
∫
α ∈ S n −1, w ≥ 0, p ∈R wn −1 d Ω(α ) dwdp / (2π) n
( ) ( exp (i ξ, x )
ξ , p exp −i ξ p = (2π) −n ∫ f
ξ
)
n−1
()
dΩ ξ d || ξ ||dp n −1 − n n −1 d = (2π) ∫ i n −1 exp ( −i || ξ || p ) dp
( ) ( ) d Ω ( ξ ) d || ξ ||dp f ξ , p exp i ξ , x
= (2π) − n ( −i ) n −1 ∫ exp( −i || ξ || p) ∂ n−1 n −1 f (ξ, p) ∂p
( ) d Ω ( ξ ) d || ξ ||dp
exp i ξ, x
Radon & Group Theoretic Transforms with Robotic Applications
ξ α = ξ = || ξ || Let
(
)
ψ n x , p, ξ =
∫0 exp {iw ( ξ, x ∞
169
)}
− p dw
∂n f ( x ) = Cn ∫ ψ n ( x , p , ξ, p ξ) S n−1 × R n−1 f ∂p
( )
Then,
()
ξ dp Cn = (2π) − n ( −2)n −1, d Ω
where Equivalently,
f (x) = (2π )
−n
( −2)
n −1
n−1 x 2
{(
{∫ f (ξ, p)
× exp i ξ, x − || ξ || p
()
)}
dΩ ξ d || ξ ||dp n−1
= Cn x 2
∫ f (ξ, p)
(
)
ξ S n−1 × R ψ n x, p,
()
dΩ ξ dp
n−1 ξ, p x 2 ψ n x, p, ξ = Cn ∫ f S n−1 × R d Ω ξ dp
( )
(
)
()
[10] Campbelt Baker-Hausdorff Formula:
(
X tY X tY ez (t) = e e ⋅ z (t ) = log e ⋅ e
)
d z (t ) z (t ) ( I − exp( − ad z (t ))) dz(t ) e = e dt dt ad ( z (t)) e − z (t )
d z (t ) = ez(t)Y. e dt
But So
( I − exp ( − ad z (t))) dz(t ) d z (t ) e = ad ( z (t)) dt dt
e − z (t )
I − exp ( −odz(t )) dz(t ) d z (t ) e = Y = ad ( z (t)) dt dt
170
Stochastics, Control & Robotics
(
adz(t ) d (Y ) = adz(t) = log e adX etadY z (t ) = I − exp( − adz( t ) ) dt
or
(
)
log eadX etadY dz (t ) (Y ) = dt 1 − eadX etadY
So,
(
)
adX tadY e (Y ) = g e
where
g(ξ) =
log(ξ) 1− ξ
(
(
)
)
1 z (1) – z (0) = log e X eY − X = ∫ g eadX etadY dt (Y ) 0
Thus,
∞
Suppose
g(ξ) =
∑ Cr (1 − ξ)r g (ξ)
r=0
=
log(1 − (1 − ξ)) (1 − ξ)
∞
(1 − ξ) r −1 r r =1
= −∑ = − Cr = −
Thus, Then
g(ξ) = =
∞
(1 − ξ) r (r + 1) r=0
∑
1 ,r ≥0. (1+ r )
r
r
r=0
k =0
r
∑ Cr ∑ k (−1)k ξk ∞
∑ dk ξk
k =0
where dk =
∞
r
∑ Cr k (−1)k
r=k
Not a convergent services. So g(ξ) =
(
g eadX ⋅ etadY
(e
adX
⋅ etadY
)
k
)
=
r Cr ( −1) k ξ k k 0≤k ≤r≤∞
∑
(
r Cr ( −1)k eadX ⋅ etadY k 0≤k ≤r≤∞
∑
)
adX ⋅ etadY eadX etadY ⋅ e adX etadY (W ) (W ) = e k
∞ m t adX m ( adY ) = e (W ) ∑ m m=0
k
)
Radon & Group Theoretic Transforms with Robotic Applications
171
[11] Problem on Rigid Body Motion: [1] Consider the two link Robot with each link being a 3-D top. We've seen that the group of motion is defined by R2 R1 G = 0
Show that if we define
R1 − R2 R1 : R1, R2 ∈SO(3) R1
R S − R = : R1, S ∈SO(3) S 0
R S − R T (R, S) = S 0
Then
R2 T (R1, S2). T (R1, S1) = 0
S2 − R2 R1 S1 − R1 ⋅ S2 0 S1
R2 R1 S2 S1 − R2 R1 = S2 S1 0 = T (R2R1, S2S1)
and hence ( R, S) → T ( R, S )
is a representation of SO(3) × SO(3) in R6.
[12] Remarks on Theorems from V. Kac. Infinite Dimensional Lic Algebra. P.87 1 tw(α ) (λ ) = λ + λ, k w(α ) − ( λ / w(α )) + | α |2 λ, k δ 2 wtα w−1 (λ ) = λ + w−1 (λ ), k w(α)
((
)
− w−1 ( λ ) | α +
1 | α |2 < w−1 ( λ ) , K >| w (δ ) 2
−1 w (d) = δ, w (λ ), k = λ, w(k) = λ, k
(w so
−1
) (
)
( λ ) | α = λ w (α )
wtα w−1 (λ ) = λ + λ, k w(α) 1 2 ( λ | w (α )) + | α | λ, k δ = tw (α ) (λ ) . 2
172
Stochastics, Control & Robotics
P249 n ∈ N Z ⇒ z n = (α, β, u ), n, v
(α, β, u )(v) = tβ (v) + 2πiα + (u − iπ(α | β)) δ 1 tρ (λ ) (n ⋅v) = (λ + (λ | δ )ρ + | n, v ) − λ ρ + (ρ | ρ)(λ | δ) (δ | n ⋅ v) 2
( ) = (tρ − β (λ ) | v ) + ((λ | δ ) + (λ | δ)(ρ | δ ))
= tρ (λ ) | tβ (v) + 2πiα + (u − iπ(α | β))δ
(u − iπ(α | β)) + 2πi (λ | α ) (λ | δ) = k ∈Z + ρ2 (ρ | δ) = 0.
So,
(
)
tρ (λ ) (n ⋅v) = tρ − β (λ ) | v + k (u − iπ(α | β)) d (n · v) = (d|n · v) = (d|tb (v)) = (d|v).
[13] Theta a Function From Group Theory P 252 (V.Kac): F (n.v) = F (v)∀ n ∈ N Z .
Let
n = (a, b, u)
n.u = tβ (u ) + 2πiα + (u − iπ(α | β)) δ 1 = v + (v | δ ) β − (v | β ) + (β | β ) (v | δ ) δ 2 + 2πiα + (u − iπ(α | β)) δ u ∈ 2πiZ , u + iπ(α | β) ∈ 2πiZ u ∈iπ(α | β) ∈ 2u − 2πiZ ∈ 2πiZ
⇒
pa (v) = v + 2πiα . ⇒ (taking b = 0) ⇒ ⇒ So
F (n.v) = F (u )∀n ∈ N Z F (v + 2πiα + (u − iπ (α | β) δ )) = F (v) F (v + 2πiα ) exp{k (u − iπ(α | β)) δ} = F (v)
F (v + 2pia) = F (v) since u –ip (a|b) ← 2piZ. F (v + ad) = eka F (v), F (v + 2pia) = F (v) a ∈ M , a ∈C
Radon & Group Theoretic Transforms with Robotic Applications
173
In term of co-ordination l v = 2πi ∑ zs us − τΛ 0 + uδ s =1
∑
aτ ( γ )e γ
Consider
kΛ F= e 0
Then
k F = (v + ad) = e (Λ 0 (v) + aΛ 0 (δ ))
∑
γ ∈M *
γ ∈M *
(sec (13.24))
aτ ( γ ) e γ (v )+ a ( γ |δ )
ka = e F (v )
Since
L0 (d| = (L0|d) = 1, (g|d) = 0 (M⊥d)
Also,
F (v + 2pia) = e
k Λ 0 (v )
∑
γ ∈M *
aτ ( γ )e( γ (v ) +2 πi ( γ |α ))
= F (v), α ∈M Since ( γ | α)eZ for γ ∈ M *, α ∈ M by definition of M* F (n.v) = F (v) ⇒
F (tB (v)) = F (v) (take a = 0, u = 0) ∀β ∈ M
⇒
)∑
exp ( k (Λ 0 | tβ (v ))
= exp(k (Λ 0 (v)))
γ ∈M *
∑
γ ∈M *
(
aτ ( γ ) exp γ | tβ (v )
))
aτ ( γ ) exp(( γ | v))
ρ (Λ 0 | τβ (v)) = (t−β (Λ 0 | v)) 1 = Λ 0 − (Λ 0 | δ )β + (Λ 0 | β) − (β | β)(Λ 0 | δ ) δ | v 2
1 = (Λ 0 | u ) − (β | v) + − (β | β)(v | δ ) 2 (\ (L0|d) = 1, (L0|b) = 0) ( γ | tβ (v)) = (t−β ( γ ) | v)
1 2
= γ + ( γ | β) − (β | β) ( γ | δ ) δ | v = ( γ | v ) + ( γ | β ) (δ | v )
174
Stochastics, Control & Robotics
(g|d) = 0 ( M ⊥ δ )
\
\ k (Λ 0 | tβ (v)) + ( γ | tβ (v)) = k (Λ 0 | v) + ( γ | v) + ( γ | β) − k (β | β) δ − k (β | v) 2 Fºtb = exp(eΛ 0 )
So,
k aτ (τ)exp γ + ( γ | β) − (β | β) δ 2 γ ∈M *
∑
exp(−kβ) = exp(k Λ 0 )
∑
γ ∈M *
aτ ( γ ).exp( γ − kβ)
k exp ( γ | β) − (β | β) δ 2 (Note that g – kb ∈ M*) (Let g – kb = ξ) = exp(k Λ 0 )
∑
ξ∈M *
aτ (kβ + ξ)exp(ξ)
k × exp (β | β) + (ξ | β) δ 2 Fºtb = F
So ⇒
k aτ (kβ + ξ) exp (β | β) + (ξ | β) δ − aτ (ξ)].exp(ξ) 2 ξ∈M *
∑
=0 Now
l δ | 2 π i (d|v) = ∑ zs vs − τΛ 0 + δ = – 2pit 1
Hence
Fºtb = F ⇒
k aτ (kβ + ξ) exp − (β | β) + (ξ | β) 2πiτ 2 ξ∈M *
∑
− aτ (ξ)] exp((ξ | v)) = 0 ∀β ∈ M Thus, aτ (kβ + ξ).exp {−ikπ (β | β) τ}.exp {−2πi (ξ | β)τ} = at (ξ) ∀ξ ∈ M * ∀β ∈ M . Now, it follows that
{
aτ (kβ + ξ)exp iπk −1 (kβ + ξ | kβ + ξ) τ
}
= aτ (kβ + ξ).exp {iπk (iπk (β | β) τ} .exp {− 2πi(β | ξ) τ}
{
× exp − iπk −1 (ξ | ξ)τ
}
Radon & Group Theoretic Transforms with Robotic Applications
{ a ( γ ) exp {− iπk
175
} ( γ | γ ) τ}
−1 = aτ (ξ) exp − iπk (ξ | ξ)τ
i.e.,
τ
depends only on g mod kM.
−1
[14] Remark about Iwasawa decomposition [Remark from Helgason’s Book] G = KMAN M centralizes A, M ⊂ K H ∈ a, X ∈ H, [H, X] = a (H) X. Z ∈ H ⇒ [H, [Z, X]] = – {[Z, [X, H]] + [X, [H, Z]]} = [Z, a (H) X] = a (H) [Z, X] So [Z, X] ∈ N. Actually, we’ve proved that [M, ga] ⊂ ga g (ga) ⊂ g – a Since
[H, X] = a (H) X
[q (H), q (X)] = a (H) q (X) ⇒ – [H, q (X)] = a (H) q (X) Since H ∈ a ⊂ p ⇒ q (H) = – H. m * n1 = n (m * n1 ) m(m * n1 )exp(B(m * n1 ) nB (m * n1 )) ∈NMAN m *2 n1 = n1 = m * n (m * n1 ) m(m * n1 )exp( B(m * n1 )) nB (m * n2 )
\
= n (m * n (m * n1 )) m(m * n (m * n1 )) exp(B (m * n (m * n1 )) nB (m * n (m * n1 )) × m (m * n1 )exp( B (m * n1 )) nB (m * n2 ) Since m (m * n1 ) commutes with exp(B (m * n (m * n1 ))) it follows that exp(B (m * n (m * n1 ))) + B (m * n1 ) =1 Hence
B (m * n (m * n1 )) = B (m * n (m * n1 )) − B(m * n1 )
4 Stochastic Filtering and Control, Interacting Partials [1] Bernoulli Filters: Generalization of Bernoulli filters to K state filter. At each time n, one of {0, 1, 2, ...., k–1} particles (targets) is present. φn +1 n ( X r , r X s , S ) is the probability density at time n + 1 of the state specified by X r ∈ R r and r ∈{0, 1, 2, .... k − 1} given that at time n, there were S particles located at X s ∈ R s , s ∈{0,1, 2, .... k − 1} X0 = f (empty ) and so
Note that
φn +1|n ( X 0 , 0 X s , s ) ≡ qs ( X s ) φn +1|n ( X r , r X 0 , 0 ) ≡ pr ( X r )
q0(X0) = q0 are + ve constants
where
= p0(X0) = p0
φn +1|n is the transition probability density of a K-particle filter. if K = 2, we get the Bernoulli filter. φn +1|n describes a Markov process whose state space is random being either one of R r , 0 ≤ r ≤ K −1 at the each time instant. The state at any time n is (Xr, r) ∈ R r × {0,1, .... k − 1}. k −1
We have
∑ ∫ φn+1|n ( X r r X s , s) d r X r + qs ( X s ) r
r =1 R
∀ s = 0, 1, 2, ...., k – 1. Note that for s = 0, this condition becomes
= 1.
178
Stochastics, Control & Robotics k −1
∑ ∫ pr ( X r ) d r X r + qo r
R =1 R
=1
The measurement model is Z n = h ( X n , n) + V n , n = 0, 1, 2, ...
(1)
where {V n } is iid with pdf pv ( v ) .
h ( X n , n ) = h ( X rn , rn , n ) = hn ( X rn , rn )
where k −1
∪ (R r × {r}) → R 6
where hn:
r=0
(Xr , n, rn) is the state of the system at time n, X r , n ∈ R rn conditional pdf given n n observations.
(
)
Let ξn = X rn , n, rn be the state at time n. Let Yn = { zk : k ≤ n} be the collection of observation upto time n. Then p ( ξn +1 Yn + 1) = =
=
p ( Z n +1 , Y n , ξ n+1 ) p( Z n+1 , Y n )
) (
(
p Z n+1 ξn +1 p ξn +1 Y n
)
∫ p ( Z n+1 ξn+1 ) p ( ξn+1 Y n ) d ξn+1 ∫ pv ( Z n+1 − hn+1 (ξn+1 )) p (ξn+1 | ξn ) d (ξn | Yn ) d ξn ∫ pv ( Z n+1 − hn+1 (ξn+1 )) p (ξn+1 | ξn ) p (ξn | Yn ) d ξn dξn+1
By this we mean that
(
p X rn+1 ,n +1rn +1 | Yn +1
(2)
)
k −1
∑ ∫ pv ( Z n+1 − hn+1 ( X rn+1,n+1, rn+1 )) p ( X rn+1, n+1, rn+1 | X rn , n, rn )
rn== 0
=
(
)
p X rn , n | Yn d rn X rn , n k −1
, r | X rn , n, rn ) ∑ ∫ pv ( Z n+1 − hn+1 ( X rn+1, n+1, rn+1 )) p ( X rn+1 n , n +1 n +1
rn , rn +1= 0
(
)
p X rn , n , n | yn d rn X n r, n d rn +1 X rn+1 , n +1
Stochastic Filtering & Control, Interacting Partials
179
Or equivalently,
(
p X rn+1 ,n +1rn +1 | Yn +1
)
∑ ∫ φn+1|n ( X rn+1, n+1 , rn+1 | Xrn,n, rn ) × pv ( Z n+1 − hn+1 ( X rn+1, n+1, rn+1 )) rn
=
)
(
p X rn, n , rn | Yn d rn X
∑ ∫ φn+1|n ( X rn+1, n+1 , rn+1 | Xrn,n, rn ) × pv ( Z n+1 − hn+1 ( X rn+1, n+1, rn+1 ))
rn , rn +1
)
(
p X rn, n , rn | Yn d rn X d rn+1 X
or equivalently, pn +1 ( X r , r | Yn +1 )
=
∑ ∫ φn+1 |n ( X r , r | X s , s ) pν ( Z n+1 − hn+1 ( X r , r ) ) pn ( X s , s | Yn ) d s X s s
∑ ∫ ndr Xr d s Xs
= pv ( Z n +1 − h n+1 ( X r , r )) ×
r, s
∑ ∫ φn+1|n ( X r , r | X s , s ) pν ( X s , s | Yn ) d s X s s
∑ ∫ pν ( Z n+1 − hn+1 ( X r , r )) φn+1|n ( X r , r | X s , s ) pn ( X s , s | Yn ) d r X r d s X s r, s
[2] A Problem in Large Deviation Theory: m
−1 ∞ L′n = n ∑ X i δ yi { X i }i =1 iid r.v.'s. i=i
n = n(m), n/m b → ∈ (0, ∞). i.e. where
n( m) = b Lym → m m→∞ m 1 m Lym = ∑ δ yi m i =1 lim
∫
(
m
−1 fdLn′ = n ∑ X i f ( yi )
E exp n ∫ f d Ln′
i =1
exp ( Λ X ( f ( yi ) ) ) = E exp i∑= 1 X i f ( yi ) = ∏ i =1
m
m
180
Stochastics, Control & Robotics
(
1 log E exp n∫ fdLn′ n
) = 1n ∑ Λ ( f ( y )) m
X
i
i=1
1 ∫ Λ X ( f ( y )) d µ ( y ) m→∞ β →
(Gartner-Ellis limiting logarithmic moment generating function) Rate function of {L′n}: IX(v) = Verification of the formulas.
[3] Large Deviations in Image Trajectory on a Screen Taken by a Robot Camera in Motion: Abstract: We consider a camera attached to the end of single and double link Robot arms. The Robot link moves by virtue of motors attached to its base-point. There is a flat screen separating the object from the Robot. Noise in the motors (assumed to be weak) causes random fluctuation in the Robot motion result resulting in random motion of the image of the object taken by the Robot Camera on the screen. We compute the large-deviation rate function of the image trajectory and use it to determine the (small) probability that the image escapes away from the field of vision on the screen. Camera is located at r2(t) = r1(t ) + l1 n1 (t ) + l2 n 2 (t ) where r1 (t ) is the base-point of the robot and l1 is the length of the first link while n 2 (t ) are respectively unit vectors n (t ) and l is the length of the second link. 2
along the first and second links.
1
If w1(t) is the angular velocity of the first link relative to its base point at r1 (t ) and w2 (t ) is the angular velocity of the second link relatives to its base point at r1 (t ) + l1 n1 (t ) . Then
r 2 (t ) = r1 (t ) + l1w1 (t ) × n 2 (t ) n1 (t ) + l2 w2 (t ) ×
n 2 (t ) = (q2(t), f2(t)), we In spherical polar co-ordinates n1 (t ) = (q1(t), f1(t)) and have n1 (t ) = X cos φ1 sin θ1 + Y sin φ1 sin θ1 + Z cos θ1 , n 2 (t ) = X cos φ sin θ + Y sin φ sin θ + Z cos θ 2
Thus,
d n1 dt
=
2
θ 1 θ1 + sin θ1 φ 1 φ1
2
2
2
Stochastic Filtering & Control, Interacting Partials
Let
d n2 dt w1
=
w2
=
w1 × n w × n
Then,
2
=
= =
181
θ 2 θ2 + sin θ2 φ 2 φ2
w1θ θ1 + w1φ φ1 θ2 + w φ w
2φ 2
2θ
− w1θ φ1 + w1φ θ1 −w φ +w θ2 2φ
2θ 2
w1q = − sin θ1φ 1 , w2q = − sin θ 2 φ 2 w1q = θ 1 , w2φ = θ 2
Thus,
The Camera at r2 (t) takes a picture of the object at r0 = and the image is recorded on the screen placed on the X-Z plane. Let (ξx(t),ξz(t)) denote the coordinates (X and Z) of the image on the screen. Then writing r 2 (t ) = (X2(t), Y2(t), Z2(t)) and r 0 = (X0, Y0, Z0), we have for some l∈ R, r 0 + λ (r 2 − r 0 ) = (ξx, 0, ξz) Thus equality the Y-component, we get Y0 + l (Y2 – Y0) = 0, or l =
Y0 Y0 −Y2
ξX = X0 + l (X2 – X0)
Then,
= X0 −
Y0 ( X 2 − X 0 )
(Y2 − Y0 )
=
ξX = Z0 + l (Z2 – Z0) = Z 0 −
( X 0Y2 − X 2Y0 ) Y2 − Y0
Y0 ( Z 2 − Z 0 )
(Y0 − Y2 )
=
( Z0Y2 − Z 2Y0 ) Y2 − Y0
Assuming r 2 (t ) = (X2(t), Y2(t), Z2(t)) to be differentiable, we have ξ z =
{(Y Z =
2 0
((Y2 − Y0 (Z0Y2 − Y0 Z 2 ) − (Z0Y2 − Z 2Y0 )Y2 )
)(
(Y2 − Y0 ) 2
Y2 − Y2Y0 Z 2 − Y0 Z 0Y2 + Y02 Z 2 Z 0Y2Y2 − Z 0Y2Y2
(Y2 − Y0 )2 2 2 = {Y2 ( Z 2Y0 − Y0 Z 0 ) + Z 2 (Y0 − Y2Y0 )} (Y2 − Y0 ) =
and likewise
)}
{(Z 2 − Z0 )Y0Y2 + Y0 Z 2 (Y0Y2 )} (Y2 − Y0 )2
{( X 2 − X 0 )Y0Y2 + Y2 X (Y2 − Y2 )} (Y2 − Y0 )2 .
Large deviations for the image of an object on a screen taken by a Robot Camera in the presence of machine noise
182
Stochastics, Control & Robotics
Problem Formulation The Camera attached to the tip of a single link Robot arm is located at = r + l n (t ) ≡ r 2 (t ) 1
where r1 ∈R is fixed and n (t ) is a unit vector 3
n (t ) = cos φ(t )sin θ(t )x + sin φ(t )sin θ(t ) y + cos θ(t ) z d n (t ) d r 2 (t ) =l = lw(t ) × n (t ) = w(t ) × r 2 (t ) − r1 dt dt w(t) can be found using
(
We have
)
(1)
d n (t ) = θ (t )θ (t ) + φ (t ) sin θ(t )φ (t) dt On the one hand while on the other.
(2a)
ω (t ) = ωθ (t )θ (t ) + ω φ (t ) θ φ (t )
Writing
we get ω(t ) × n (t ) = ωθ θ × n + ω φ φ × n = − ω φ φ + ω φ θ wq = − φ sin θ ,
Thus,
wf = θ Lagragian for the link:
(
)
mgL 1 2 2 2 2 cos θ L θ, ϕ, θ , ϕ = mL θ + sin θφ − 2 2
(
)
Two motors are attached at the base providing tq(t) and tf(t) torques. Thus the equations of motion of the links are Z r0 = (X0, Y0, Z0)
(X, Z)
Y
Camera r2(t)
Screen
L
r1 = (X1, Y1, Z1)
Eqns. of motion d ∂α ∂α − = tq(t), dt ∂θ ∂θ
X
Stochastic Filtering & Control, Interacting Partials
183
d ∂α ∂α − dt ∂φ ∂φ = tf(t)
These give
mL2 θ − mL2 sin θ cos θφ 2 − mgL sin θ = tq (t), mL2
(
)
d sin 2 θ φ = tf(t) dt
τ φ (t ) g , i.e. θ − sin θ cos θ φ 2 − sin θ = L mL2 τ φ (t )
+ 2 sin θ cos θθ φ = sin 2 θφ
mL2 Steady state (equilibrium position of the link): φ = 0, θ = 0, φ = 0. θ = 0, τ φ0 tf(t) = 0, q = q0 = − sin −1 mgL Assuming τθ (t ) = Constant τ θ0 Thus
Let f = f0.
Small deviations from equilibrium: q(t) = q0 + ed q (t), f(t) = f0+ edq(t) tq(t) = τθ + e w1(t)
Let
0
tf(t) = ew2(t) where w1(t) and w2(t) are independent zero mean Gaussian random processes. Then the O(e) terms in the dynamical eqn. give − g cosθ δθ = w1 (t ) , δθ 0 L mL2 w2 (t )
sin 2 θ0δ φ = So,
L dq(t) = sec θ0 g df(t) =
Thus,
mL2 12
1 mL sin 2 θ0
E {(δθ(t + τ) δθ(t ))} =
(mL )
2 −1
t
g cos θ0 (t − τ) w1 (τ) d τ L
∫ sinh 0
t
2
{(δθ(t ), δφ(t ))}t≥0
.
∫ (t − τ ) w2 (τ) d τ 0
is zero mean Gaussian random process with correlations 1 2
mL g cos θ0
t+τ t
g cos θ0 (t + τ − t1 ) L
∫ ∫ sinh 0 0
184
Stochastics, Control & Robotics
g × sinh cos θ0 (t − t2 ) Rw1w1 (t1, t2 ) dt1 dt2 L ≡ Rq(t + t, t)
E {δθ (t + τ ) ⋅ δφ(t )} = 0, t+τ t
1
E {δφ (t + τ ) ⋅ δφ(t )} =
∫ ∫ (t + τ − t1 ) (t − t2 ) Rw2w2 (t ,t2 ) dt1dt2
(mL2 sin 2 θ0 ) 2
0 0
= Rφφ (t + τ, t)
The rate function for (δθ(⋅), δφ(⋅)) over the interval [0, T] is then TT
1 IT (δθ(⋅), δφ(⋅)) = ∫ ∫ ( Rθθ (t1 , t2 ) δθ(t1 ) δθ(t2 ) 200
)
+Rφφ (t1 , t2 ) δφ (t1 ) δφ(t2 ) dt1 dt2
[4] P406 Revuz and Yor: u (a) a–2Ct = inf u : a2∫ exp 2aβ s ds > t 0
(
is to be proved
)
−1 β(sa ) = a β a 2t
sr = inf {t ≥ 0 logρs = r } Ct = logρ
t
=
t
ds
0
s
∫ ρ2
t = C–1
Bt = logρτt τt
ds
∫ ρ2 0
s
= t
d τt ρ2τt
= dt
βt( a ) = a −1β 2 = a −1 logρ a t ρτt = exp(b ) t
(
)
(
exp 2aβt( a ) = exp 2β a 2t 2 = ρτ
a 2t
)
τa 2t
Stochastic Filtering & Control, Interacting Partials
ut
(a) ∫ exp (2aβs ) ds
t
=
a2
0
ut
∫ ρτa2s ds
⇒
2
t
=
a2
0
a 2ut
∫
⇒
0
ρ2τ s
a 2ut
∫
⇒
0
⇒
τut a 2
∫
a
2
t
=
a2
ρ2τ s ds = t
(τ = C −1 )
ρτ2C dCs = t s
0
τut a 2
∫
⇒
ds
185
ρ2s dCs = t
0
⇒
ρ2τa 2u dCτa 2u = dt t t
⇒
ρ2
⇒
τa 2ut
(
)
= dt
(
)
=
d a 2ut d a 2ut
Comparing this with dCt = gives i.e.
dt ρ2 2 τa ut dt ρt2
=
dt ρ2τCt
a2ut = Ct
ut = a–2Ct
Q.E.D.
Problems from Revuz and Yor (Continuous Marketing and BM). Let B(t) = B1(t) + iB2(t) ≈ Conformal planer BM. log B = log B + i Arg B is a Martingale (local) since its Laplacian Vanishes. Let
B = rt ≡
B12 + B22 ,
−1 B2 (t ) qt = Arg B = tan B1 (t )
186
Stochastics, Control & Robotics
log r and q are Martingales (local). dρ (d log rt) = t ρt 2
=
logρ
t
=
dt
B1dB1 + B2 dB2 = ρt2
= (dqt)2.
ρt2 t
ds
0
s
∫ ρ2
2
(property of conformal Martingales)
= Ct
say.
tt = (C–1)t
Let τt
ds
∫ ρ2
i.e.
0
s
dτt
Then
ρt2
= Ctt = t = dt,
2 dtt = ρt dt
i.e.
t
tt =
(logρ)τt
2
∫ ρs ds 2
0
= logρτt is a B.M. and θτt is also a BM and there two B.M.'s are
independent since d log r. dq = 0.(property of conformal Martingales. bt = log ρτt , Yt = θτt
Let
sr = min {t ≥ 0 ρt = r }
Let
ρτt = eβt
Then
rt = eβCt and hence
{ β = min {t ≥ 0 βC
sr = min t ≥ 0 e
Ct
t
=r
}
= log r
}
= τTlog r or equivalently where
Tlog r = Cσr Ta = min {t ≥ 0 βt = a}
By optional stopping theorem λ 2Ct λβ0 = ρ0λ E exp λβCt − = e 2
(r0 ≈ non randomly)
Stochastic Filtering & Control, Interacting Partials
187
λ 2Ct λ E ρtλ exp − = ρ0 2 Now let r1 < r2. Then assuming r(0)∈(r1, r2),
i.e.
σ r1 Λσ r2 = min {t ≥ 0 ρt (r1, r2 )} .
and since
λ 2Ct λ 2Ct ρtλ exp − exp λβCt − = 2 2
is a Martingale, to follows that λ2 λ E ρσλ r Λσr exp − C σ r1 Λσ r2 = ρ0 2 1 2
(
)
λ2 λ λ2 Thus E r1 exp − 2 C σ r1 χσr < σr + r2λ exp − C σ r2 χσr < σr 1 2 2 2 1 λ = ρ0
Equivalently
λ2 E exp − Tlog r1 ΛTlog r2 r1λ − r2λ χσr < σr 2 1 2 λ2 λ λ = ρ0 − r2 E exp − (Tlog r2 ΛTlog r1 ) 2
(
Now
)(
)
σ r1 < σ r2 ⇒ Cσr ≤ Cσr 1
2
Tlog r 1 ≤ Tlog r .
⇒
2
Thus,
λ2 E exp − Tlog r1 χ{σ < σ } r1 r2 2 λ2 ρ0λ − r2λ E exp − Tlog r2 ΛTlog r1 2 = r1λ − r2λ
(
Now Thus
)
λ 2Ta = ρ0λ = eλβ0 E exp λβTa − 2 −λ 2Ta = ρλ e − λa 0 E exp 2
λ 2Tlog r λ2 1 Cσr χ σ < σ E exp − χ σ < σ = E exp − r2 } 1 { r1 2 2 { r1 r2 }
188
Stochastics, Control & Robotics
λ2 ρ0λ − r2λ E exp − Tlog r1 ΛTlog r2 2 = λ λ r1 − r2
( )
β λ2 E exp λβTa ΛTb − Ta ΛTb = exp λ 0 2 where a < b0 < b, b0 non random.
Now
Thus, a + b λ2 a + b − Ta ΛTb = exp λ β0 − E exp λ βTa ΛTb − 2 2 2 Changing l to – l, adding and using
λ (b − a ) a + b cosh λ βTa ΛTb − = cosh 2 2
(since βT ΛT a
b
)
∈{a, b} , it follows that
a + b cosh λ β0 − λ2 2 E exp − Ta ΛTb = 2 λ(b − a) cosh 2
{
λ2 Cσr χ σ < σ r2 } 2 1 { r1
}
Thus, E exp −
{(
cosh λ log ρ0 − log r1r2 ρ0λ − r2λ λ r cosh log 2 r1 2 = λ λ r1 − r2
(
)
)}
[5] Problem from "Continuous Martingales and Brownian Motion" by Revuz and Yor: Consider the filteration
{ } σ { FSBU {Bt }} , S ≥ 0
FSt = σ FSB , Bt ≡
A process of the form S → f(BS, Bt), S ≥ 0 is adapted to { FSt }S ≥0 (t is fixed) With respect fo this "augmented filteration", we defite the process
Stochastic Filtering & Control, Interacting Partials
189
Z S = Z St = (Bs – Bt) q(Bs – Bt). t Then {Z St }S ≥0 is adapted to { FS }S ≥0 . We can define stochastic integrals w.r.t. dBS
for process s → f(Bs, Bt) relative to this augmented filteration. Then 1 dZS = θ ( BS − Bt ) dBS + δ ( BS − Bt ) dS 2 t
and hence
Z t – Z0 =
t
1
∫ θ ( BS − Bt ) dBS + 2 ∫ δ ( BS − Bt ) dS 0
0
or equivalently, t
Bt q(–Bt) =
1
∫ θ ( BS − Bt ) dBS + 2 Lt t B
0
t
1 Bt Lt = Bt θ ( − Bt ) − ∫ θ ( BS − Bt ) dBS . 2 0
i.e. Note that
1 x ≥ 0 q(x) = 0 x < 0
[6] Problem from Revuz and Yor: t x + a x n ∫ δ Bs − − δ Bs − ds 0 n n = Xn (t, x)
∫ f ( x) X n (t , x) dx
R
Let
t
(
)
= n n ∫0 f (nBs − a ) − f (nBs ) ds = Mn (t) say.
gαµ ( x ) = f ( x − a) − f ( x) .
n2 u g a (nBt ) dt 2 t n M n (t ) Thus, g a (nBt ) − g a (O) = n∫0 g a′ (nBt ) dBt + 2 1 ( g a (nBt ) − g a (0)) = n t 1 = n ∫0 g a′ (nBt ) dBt + M n (t ) 2 dga (nBt) = ng′a (nBt ) dBt +
190
Stochastics, Control & Robotics
It follows that lim
1
x→∞ 2
t
M n (t ) = lim n ∫ g a′ (nBt ) dBt 0
x→∞
Consider the Martingale t
n ∫ ψ(nBs ) dBs
Mn(t) =
0
We have Mn
t
t
2 = n∫0 ψ (nBs ) ds
∫
= n
ψ 2 ( x) δ ( x − nBs ) ds dx
[ 0, t]× R
∫
=
[ 0, t]× R
x ψ 2 ( x) δ − Bs ds dx n
→ ∫ ψ 2 ( x) dx R
t
∫0 δ ( Bs ) ds
2 = || ψ || Lt
It follows that these exists a BM Y(.) independent of B(.) such that 1 lim M n (t ) = Y (|| ψ || Lt )∀t n→∞ 2 where Lt is the local time of B(.) at zero Thus, 1 lim M n (t ) = Y (|| g a′ || Lt ) n→∞ 2 Now take Then
f (x) = d (x – x0) x0 ∈ R fixed. Mn (t) = Xn (t, x0) t
= Then
x + a x − δ Bs − ds n ∫ δ Bs − n n 0
g a′′( x) = f (x – a) – f (x) = d (x – a – x0) – d (x – x0)
so
g a′′( x) = q (x – a – x0) – q (x – x0)
Thus,
|| g a′ || =
and we decline that
a + x0
∫
x0
dx = a
Stochastic Filtering & Control, Interacting Partials
191
t 1 n x + a x M n (t ) = lim − δ Bs − ds δ Bs − ∫ n→∞ 2 n→∞ 2 n n 0
lim
[7] Collected Papers of Varadhan-Interacting Particle System, Vol. 4. Hamiltonian System and Hydrodynamical Equations:
(
N
)
H X, p =
∑ p−2α / 2m + ∑
α =1
1≤ α < β ≤ N
(
V X α − Xβ
( )
3N pα ; X α ∈R 3 , X = ( X α )α =1 ∈R , p = p α N
N
α =1
)
∈R 3N
Initial configuration is random (random configuration envolving under determination dynamics). Let ft ( X , p) be the pdf of ( X (t ), p(t)) . Liowvilles equation implies dpα ∂ft ∂ft ∂f dX , + ∑ α , t + ∑ =0 dt ∂X α α dt ∂pα ∂t α or
∂f ∂ft 1 ∂f + ∑ pα , t − ∑ V ′ X α − X β , t = 0 ∂t m α ∂X α α ≠ β ∂pα
(
)
V ( X ) = V ( − X ), X ∈R 3 .
(1) Assuming
More generally for any Hamiltonian H ( X , p) , we have
∂H dpα dX α ∂H , = = − dt ∂X α ∂pα dt and therefore ∂ft ∂t
∂H
∑ ∂p α
Empirical density
ρ( t , x) =
α
,
∂ft ∂H ∂ft − , =0 ∂X α ∂X α ∂pα
N
∑ δ ( X − X α (t )) ∈R
α =1
Emprical momentum density π(t , µ ) = Empirical momentum flux π(t , x) =
N
∑ pα (t )δ ( x − xα (t )) ∈R 3
α =1
1 N ∑ p (t ) pβ (t )T δ ( x − xα (t )) m α =1 α
192
Stochastics, Control & Robotics
Empirical energy density N
e(t , x) = When ea (t) =
∑ eα (t )δ( x − xα (t))
α =1
p α2 (t ) αm
+
∑
β :β ≠ α
(
V x (αt ) − xβ(t )
(
)
)
is the energy of the ath particle. X ∈R 3 , p ∈R 3 . In general for any of observable ψ( x , p) we define its empirical density as
ρψ (t , x) = Its average value is ρψ t , x =
∑ ψ ( xα (t ), pα (t )) δ ( x − xα (t)) N
α −1
∫ ft ({ X α }, { pα }) ∑ ψ ( xβ , p β ) δ ( x − xβ ) N
=
β =1 N
∏ d 3 xα d 3 pα
α =1
where ftα
∑ ∫ ψ ( x, p ) ftα ( x, p ) d 3 p N
=
β =1
x, x is the Martingale density of xα (t ) , p α (t ) :
( ) f (x tα
α,
)
pα =
∫
{
f t xβ , p β
}
(
)
N
1
∏ d 3 xβ d 3 p β
β≠α
We get from (1), by integrating over xβ , p , β ≠ a β =
∂f ∂ftα 1 ( x α , p α ) + p α , tα ( x α , p α ) ∂t m ∂x −
(
)
∂ftαβ x x p p V x − ) x , , , , ′( ∑ ∫ α β ∂ pα α β α β β:β ≠ α
d 3 xβ d 3 p β = 0
Stochastic Filtering & Control, Interacting Partials
193
where ftab is the joint (marginal) density of
(
ftαβ x α , xβ , p α , pβ
(x , x , p , p ) : α
β
) = ∫ f ( x, p) ∏ d x d p 3
t
γ ≠ α ,β
γ
α
β
3
γ
If we assume that all first and second order marginal densities are the same and we denote there marginals by f t(1) and f t(2) respectively, then ∂ft(1) 1 ∂f (1) ( x1, p1 ) + p, t ( x1, p1 ) ∂t ∂x m ∂f ( 2) − ( N − 1)∫ V ′( x1 − x 2 ). t ( x1, x 2 , p1, p 2 ) ∂ p1 d 3 x2d 3 p 2 = 0 The BBGKY can be continued further. (p[q] Vol. 4. S.R.S Varadhan collected 1 = papers) We’ve to prove ∫ ∑ Aµj λ µj dx = 0. From (2.25) (assuming l4 = 4 µ, j constant)
( ) ( + (−λ q + λ P) λ
)
j 0 0 j i i λ 4 .Aµj λ µj = − λ q λ j − λ q + Pδ ij λ , j j 4
j
4 ,j
= – λ j q 0 λ ,0j − λ j qi λ i, j − ψλ i,i ∂ψ ∂ψ (y = P) = − λ j 0 λ ,0j + λ j λ i, j i + ψλ i,i ∂λ λ
(λq
µ
= ∂ψ / ∂λ µ
)
∂ψ i j ∂ψ 0 i = − λ 0 λ , j + i λ , j + λ ψ ,i ∂λ ∂λ (after neglecting a total divergence (ψλ i ),i ) Using this becomes
y,i =
∂ψ ∂λ
0
λ ,0i +
∂ψ ∂λ j
λ i,i
j j l4Amj lmj = − λ ψ , j + λ ψ , j = 0.
Current in a simple exclusion model on Z3N.
X Y , ∈[0, 1]3 . N N If ηt ( X ) = 1, ηt (Y ) = 0 and in time dt, the particle of X jumps to the site Y, then
3 Each particle has a charge q. X ,Y ∈Z N ,
194
Stochastics, Control & Robotics
Y−X (Y − X ) or after scaling . The outward current density at dt N dt
its velocity is
X X ≡ is times taken to be proportional to N
∑
Y :Y ≠ x
ηt ( X ) (1 − ηt. (Y ))
dNt( X ,Y ) (Y − X ) dt
We write this as (after time scaling) J (N1) (t , X ) =
α( N ) N2
∑
Y :Y ≠ X
(
ηN 2t ( X ) 1 − ηN 2t (Y )
)
d ( X ,Y ) − N 2 (Y − X ) N t dt
and so
{
}
E J N(1) (t , x) =
α (N ) N2
∑
Y :Y ≠ X
{
(
E ηN 2t ( X ) 1 − ηN 2t (Y )
)}
d N2 λ (Y − X )tp(Y − X ) dt
{ {
}
}
= λα ( N ) ∑ E ηN 2t ( X ) (1 − ηN 2t ( X + Z )) zp ( Z ) X ,Y
Likewise the **and current into X is after rescaling J N( 2) (t , X ) =
α( N ) N2
∑
Y :Y ≠ X
(
ηN 2t (Y ) 1 − ηN 2t ( X )
)
d (Y , X ) N 2 (X − Y) dt N t The total current density it X is J N (t , X ) = J N(1) (t , X ) + J N( 2) (t , X ) . We get
E { J N (t , X )} = λα ( N )
∑
Y :Y ≠ X
{E η (
N 2t
(
(X ) 1− η
)
N 2t
)
(Y ) p(Y − X )
}
− E ηN 2t (Y ) 1 − ηN 2t ( X ) p ( X − Y )
Y X p (Y − X ) ρ N t, 1 − ρ N t , N N Y :Y ≠ X
≈λα( N )
∑
X Y − p ( X − Y ) ρ N t , 1 − ρ N t , (Y − X ) N N
Stochastic Filtering & Control, Interacting Partials
195
X + Z X = λα( N ) ∑ z p( z )ρ N t, 1 − ρ N t , N N z ≠0 x x + z − p( − z )ρ N t, 1 − ρ N t , N N 3 Note that X , Y , Z ∈Z N .
[8] (Ph.D. Problem of Rohit) For Rohit and Dr. Vijayant. Skorohod Optional Stochastic Control. Optional Stochastic Control of Master and Slave Robot:
(
)(
(
)
+ N θ , θ F m θm , θ f n (t ) + wm (t ) M m (θ m ) θ m m m m =
(
M s (θ s ) θ s + N s θ s , θ s
(
= F s θ s , θ s Aim: E
{∫
Let
T
0
{ f (t )} n
)
)
)( f e (t ) + we (t )) + K (t)ψ (θm , θ m , θs , θ s )
choose the feedback controller matrix
}
{K (t )}
so that
L (θm , θm , θ s , θ s ) dt is a minimum. wm (t ) = σ m
d Bs d Bm , we (t ) = σ e dt dt
When B m (.) and B s (.) are independent 3-D Brownian motion processes. In stochastic differential form, the above equation. Assume the form dθm = wm dt dθ s = ws dt d wm = G m (θm , wm ) dt + H m = (θm , wm ) f (t ) dt n + σH m = (θm , wm ) dBm (t )
d ws = G s (θ s , ws ) dt + H s (θ s , ws ) f e (t ) dt + σ e H s (θ s , ws ) d + B s (t) + K (t )ψ (θm , wm , θ s ws ) dt
We assume + K (t ) is a function of t and
(θ
T m (t ),
)
wm (t ),T θ s (t )T ws (t )T ∈R 8
196
Stochastics, Control & Robotics
(two link robot arm). Here, −1 Gm = − M m N m , G s = − M −s 1 N s , −1 −1 F m, H s = M s F s , H sm = M m
Let min E k (s)
t < s ≤T
{∫
T
t
}
L (θ m ( τ ) , wm ( τ ) , θ s ( τ ) , ws ( τ )) d τ | θm (t ), wm (t ), θ s (t ), ws (t ) = V (t , θm (t ), wm (t ), θ s (t ), ws (t ))
Then, V (t , θms , wm0 , θ s 0 , ws0 ) = L (θms , wm0 , θ s 0 , ws0 ) dt
{
+ min E V (t + dt , θ m (t + dt ) , wm (t + dt ) , K (t )
θ s (t + dt ), ws (t + dt )) | θm (t ) = θm0 ,
wm (t ) = wm 0 , θ s (t ) = θ s 0 , ws (t) = ww0 } Or equivalently, −
∂V (t , θ m 0 , w m 0 , θ s 0 , w s 0 ) ∂(t ) = L (θ m 0 , w m 0 , θ s 0 , w s 0 ) T ∂V 1 + min (t , θm0 , wm0 , θs0 , ws0 ) dt E {d θm (t ) | θm (t ) K (t ) ∂θ m
= θms ....ws = ws 0 } T
∂V 1 + (t , θ m0 , wm0 , θ s 0 , ws 0 ) E {d wm (t ) | θ m (t ) ∂wm dt = θ m0 ....ws (t ) = ws 0 } T 2 1 ∂ V (t , θm0 , wm0 , θ s 0 , ws 0 ) 1 E d wm (t ) | .d wm (t )T + Tr 2 dt ∂ wm ∂ wTm
{
| θm (t) = θm0 ....ws (t ) = ws 0 } T
1 ∂ 2V + t , θ m 0 , w m 0 , θ s 0 , w s 0 ) E {d ws (t ) | ( dt ∂ws
θm (t ) = θm0 , ....ws (t ) = ws 0 }
Stochastic Filtering & Control, Interacting Partials
∂V + t , θm 0 , wm0 , θs 0 ws 0 ) ( ∂ws
197
T
{
1 E dws (t ) θm (t ) = θm0 ,..., ws (t ) = ws 0 dt
}
1 ∂ 2V + Tr (t , θ m 0 , w m 0 , θ s 0 , w s 0 ) 2 ∂ ws ∂ wTs
{
1 T E d ws (t )d ws (t ) | θm (t )= θm0 , ...ws (t ) = ws 0 } dt Now, E {d wm (t ) | θm 0 , ..., ws 0 } = wm0 dt
{ } E {dwm (t ) θm 0 ,..., ws 0 } E d θs (t ) θm0 ,..., ws 0
= ws0 dt = G m (θm0 , wm0 ) + H m (θ m0 , wm0 ) f n (t ) dt ,
E {d ws (t ) | θm0 , ..., ws 0 } = G m (θ s 0 , ws 0 ) + H s (θ s 0 , ws 0 ) f (t ) e + K (t )ψ (θm0 , wm0 , θ s 0 , ws 0 ) dt
{
E d wm (t )d wm (t )T = | θm0 , ..., ws 0
}
σ 2 H m ( θm0 , wm0 ) ⋅ H m ( θm 0 , wm 0 ) dt T
{
E dws (t ) dws (t ) θm 0 ,.., ws 0 T
}
= σ 2 H s (θ s 0 , ws 0 ) H s (θ s 0 , ws 0 ) dt , T
So V satisfies the pde ∂V (t , θ m , w m , θ s , w s ) = L (θ m , w m , θ s , w s ) ∂t T ∂V T ∂V + min wm + G m + H m f n (t) K (t ) ∂θ m ∂ wm
(
+
σ 2 ∂ 2V T H H Tr 2 ∂ wm ∂ wTm m m
)
198
Stochastics, Control & Robotics
[9] English-Chapter-1: + a ( s, 0) x0 ∑ (1 − xs ) ρt (( xs , x1, −, x0 , −, xn −1 ), ( y0 , x0 )) x 0 − (1 − y0 ) ∑ xs ρt ( x , ( xs , ( x1, .., y0 ,.., xN −1 ))) x0 th 5 position molecular (choose) xs ρt ( x (0, s), ( y0 , x0 ) ) ∑
=
x0
xs ρt (( xs , x1., x0 ,.., xN −1 ) ( y0 . x1, .., xN −1 )) ∑ x0
∑ ( xs ) ρ(t 0, s) (( xs , x0 ) , ( y0 , xs )) xs
(1 − xs ) ρt ( x , ( xs , x1,.., x0 ,., xN −1 )) ∑ x0
=
(1 − xs ) ρt (( x0 ,., xN −1 ), ( xs , x1, .., y0 ,., xN −1 )) ∑ x0
=
(1 − xs ) ρt(0, s ) (( x0 , xs ), ( xs , y0 )) ∑ x0
(1 − xs ) ρt (( xs , x1, ., x0 ,., xN −1 ), ( y0 , x1, ., xN −1 )) ∑ x0
=
∑ (1 − xs ) ρt(0, s) (( xs , x0 ), ( y0 , xs )) xs
And finally,
xs ρt ( x , ( xs , x1,., y0 , ., xN −1 )) ∑ x0
( 0, s ) (( x0 , xs ), ( xs , y0 )) = − ∑ xs ρt xs
b) Where r(a, is the joint marginal density of the ath and bth particle obtained by t tracing out rt over the other particles. We thus get
i
∂ (0) ρt ( x0 , y0 ) = ∂t
∑ a (0, s) (1 − x0 ) ∑ ρt(0, s) (( xs , x0 ), ( y0 , xs )) xs
s ≥1
xs
− y0 ∑ (1 − xs ) ρt(0, s ) ((x0 , xs ), (xs , x0 )) xs
Stochastic Filtering & Control, Interacting Partials
+
199
( 0, s) a ( s , 0 ) (( xs , x0 ), ( y0 , xs ))(1 − xs ) x0 ∑ ρt ∑ xs s ≥1
− (1 − y0 ) ∑ xs ρt(0, s) ((x0 , xs ), (xs , y0 )) xs
or i
∂ (0) ρt ( x0 , y0 ) = ∂t
∑ {(a (0, s)(1 − x0 ) xs + a (s, 0) x0 (1 − xs ))
s ≥1, xs
}
ρt(0, s) ((x0 , xs ), (xs , y0 ))
Note that this is a special case of the quantum Botzmann equation. Continuation of remarks on volume iv collated papers of S.R.S. Varadhan. “particle system their large deviation.” Linear response theory in quantum system H (t) = H 0 + ε V (t ) Equilibrium state is
r0 =
1 −βH 0 e z ( B)
(
−βH Z (b) = Tr e 0
)
2 r (t) = ρ0 + ε ρ1 (t ) + O(ε )
Note that [H0, r0] = 0, so r0 satisfies the stationary Von. Neumann equation. iρ1′(t ) = [ H 0 , ρ1 (t )] + [V (t ), ρ0 ] t
r1 (t) = − i ∫0 exp( − i (t − τ) adH 0 ) ([V (τ), ρ0 ]) d τ
X any system observable
X (t ) = Tr ((ρ0 + ε ρ1 (t ))) ( X ) = X (t ) − X
X
0
+ ε Tr (ρ1 (t ) X ) t
0
( (
= − i ε ∫0 tr exp − i (t − τadH 0 )
)) ([V (τ), ρ0 ] X ) d τ
[10] Markov Processes-Some Application: (1) Simple exclusion models in Markov process theory. (2) Transmission lines, waveguides and Antennas excited by Markov chains. (1) Consider
ZN = {0, 1, 2, ..., N – 1}. h (x) = 1
200
Stochastics, Control & Robotics
If site x ∈ ZN is occupied by a particle and h (x) = 0 otherwise p (x), x = 0, 1, 2,.., N – 1 is a probability distribution on ZN. p (y – x) ≡ p (y – x mod N),
N −1
∑ p ( x)
= 1.
x=0
If site x is occupied and site y ≠ x is unoccupied, then with a probability lp (y – x)dt, the particle at x jumps to the site y in time [t, t + dt]. The different jumps processes are independent and here up to O (dt), at must only one jump takes place in ZN in time dt. Let X = {h : ZN → {0, 1}} Thus X is the state space of the above Markov Process {ht(x)} and ht satisfies the side dht (x) = Where
{dN
ηt ( y ) (1 − ηt ( x )) dNt ( y, x ) − ηt ( x) (1 − ηt ( y )) dNt( x, y ) } { ∑ y ∈Z N y≠ x
( x , y) t
: x, y ∈ Z N , x ≠ y
}
are independent Poison processes with the
rate of Nt(x, y) being lp (y – x). More generally for f : X → R , df (ht) =
∑N
x , y ∈Z x≠ y
( f (η ) − f (η )) η ( x) (1 − η ( y)) dN ( x , y) t
,
t
t
t
( x, y ) t
Generator Lf (h) = E [ df ( ηt ) | ηt = η] dt = λ = λ Here,
∑ ( f ( η( x, y)) − f (η)) η( x)(1 − η( y)) p( y − x)
x , y ∈Z N , x≠ y
∑ N ( f (η( x, x + z )) − f ( η)) η( x)(1 − η( x + z )) p( z)
x , z ∈Z z≠0
,
η( x) z = y η ( z ) = η( y ) z = x η( z ), z ≠ x, y Exponential Martingale: Let N (t, dx) be a space-time Poisson random field with E (N (t, dx)) = t . dF (x), x ∈ Y. Then d exp ∫ f ( x) N (t , dx) = ∫ (exp( f ( x)) −1) N (dt , dx) exp ∫ f ( z ) N (t , dz ) Y Y x ∈Y ( x , y)
i.e if
ξf (t) = exp ∫ f ( x) N (t, dx) , Y
Stochastic Filtering & Control, Interacting Partials
d ξ f (t ) = ξ f (t )
then
∫
201
(exp( f (x)) −1) N (dt, dx)
x ∈Y
E [ d ξt (t ) | ξt (t)] = ξt (t ) ∫ (exp( f (x)) −1) dF ( x) dt
\
Y
Mf (t) = exp ∫ F ( x) N (t, dx) ϕ(t ) Y
Let
When Q (t) is a differentiable function. Then, ϕ′(t ) dt dMf (t) = ξt (t ) dt ∫ (exp( f (x)) − 1) dF ( x) + ϕ(t ) Y Thus choosing log j (t) = t ∫ (exp( f (x)) −1) dF ( x) Y
gives a Martingale Mf (t):
Mf (t) = exp ∫ f ( x) N (t, dx) − t ∫ (exp( f (x)) − 1) dF ( x) Y Y
This is the exponential Martingale associated to f for the Possion measure {N (t, dx)}. Note that it t
f ( ηt ) − ∫ L f ( ηs ) ds = Mt, then 0 dMt =
∑ ( f (ηt( x, y) ) − f (ηt )) ηt ( x) (1 − ηt ( y))
x≠ y
(dN
( x , y) t
− λp( y − x) dt
and Mt is a Martingale. Let J : [0, 1] → R. Then define the process 1 x J ηt ( x) Xt = ∑ N N N
)
x∈Z
Suppose ηt [ N θ] N → ∞ρ (t , θ), θ ∈[0, 1] Then
1 X t N → ∞ ∫ J (θ) ρ(t , θ) d θ 0
Now,
E [ d ηt ( x)| ηt ] = λ
∑ [ ηt ( y) (1 − ηt ( x)) p( x − y)
y: y ≠ x
− ηt ( x)(1 − ηt ( y )) p( y − x)] dt
202
Stochastics, Control & Robotics
E [ dxt | ηt ] =
so
λ N
x
∑ J N (ηt ( y) (1 − ηt ( x)) p( x − y)
x≠ y
(
)
− ηt ( x) 1 − ηt ( y )) p ( y − x ) dt dx1 − E [ dxt | ηt ] =
So
1 N
∑ J N {ηt ( y) (1 − ηt ( x)) dM t( x, y ) x
x≠ y
− ηt ( x) (1 − ηt ( y )) dM t( x, y ) where
}
y) = Nt( x, y) − λp ( y − x)t M(x, t
is a Martingale. This can also be expressed as dXt = E [ dX t | ηt ] =
1 N
x
y
∑ J N − J N ηt ( y) (1 − ηt ( x)) dM t( y, x)
x≠ y
Thus, Assume that p has finite rage, i.e. p (z) = 0 if |z| > q when is q a finite positive integer. 2
x z Var {dxt | ηt } = J ′ ηt ( x) 2 (1 − ηt ( x + z )) 2 p( z ) 2 ∑ N x, z N N λdt
Then
1 + dt.O 4 . N N →0 →∞ In fact, we have a stronger convergence result:
{
2 η2Nt Var dX Nt
=
≤
} (time scaling)
x 2 2 ∑ J ′ z p ( z ) ηtN ( x)2 1 − ηtN ( x + z ) N 2 x, z N
(
λdt
λdt
x
2
)
2
→0 ∑ J ′ N ∑ z 2 p( z ) N →∞ N2 x
z
2
1 x J ′ N → ∞ ∫ J ′ (0) 2 dθ < ∞ ∑ N x N 0
Since and
∑ z 2 p( z ) < ∞
since p (.) has finite range. We note that Var {dX Nt | ηNt }
x
= E
{(dX
Nt
)2 | ηNt } − (E {dX Nt | ηNt })
2
Stochastic Filtering & Control, Interacting Partials
and hence we have proved that E
{(dX
E
{(dX
Or equivalently,
Nt
Nt
203
)2 | ηNt } − E (E {dX Nt | ηNt })
N →∞ L
Now, Xt = = where Thus,
1 N
∑
x∈Z N
1
mN, t =
1 N
XNt =
∫0 J (θ) d µ N , Nt (θ)
ηt ( x) δ x / N
x∈Z N
1
mN, Nt ≡ VN, t =
where
x J ηt ( x) N
∫0 J (θ) d µ N , t (0) ∑
1 N
∑
ηNt ( x) δ x / N
x∈Z N
We have Xt =
x + z 1 x J − J ∑ N N x, z Nt t
∫0 ηs ( x) (1 − ηs ( x + z )) dN x E Xt =
So,
( x , x+ z)
1 x ∑ J E {ηt ( x)} N x N
{
}
We define
rN (t, 0) = E ηN 2t ([ N θ]) – q ∈ [0, 1]
So
2 E xNt
Thus,
{ }=
{ }=
d 2 E X Nt dt
1 x x ∑ J ρN t, N N x N 1 x x ∂ρ J N (t , θ) ∑ N x N ∂t N 1
≈ ∫ J (θ)
On the other hand,
0
∂ρ N (t , θ) d θ ∂t
( ) = ∑ J x N+ z − J Nx
2 Var X Nt
x, z
N →0 →∞
→0 )2 } N →∞
− E {dX Nt | ηNt }
dX Nt − E {dX Nt | ηNt } 2 →0
So
2
2
p( z )
204
Stochastics, Control & Robotics
t
∫0 E =
{
(
)
2
η2 2 ( x) 1 − η2Ns ( x + z ) ds N s
x
∑ J ′ N
2
z2 N
x, z
2
p( z )
}
∫0 E ηN 2s ( x) (1 − ηN 2s ( x + z )) t
2
2
ds
1 + O 2 N ≤ It follows that
1 λt 1 →0 z 2 p( z ) ∫ J ′ 2 (θ) d θ + O 2 N ∑ →∞ N N z 0 X
N 2t
i.e. 1 N
∑
x ∈Z N
{
− E X N 2t
} → 0
1 x J ηN 2t ( x ) − N N
N →∞
x x J ρN t , N N
∑
x∈Z N
N →0 →∞ Talking differential w.r.t. t, it is natural to expect that 1 N
∑
x ∈Z N
dt x ∂ρ x J d ηN 2t ( x ) − ∑ J N N N x∈Z N ∂t N
x t, N
N →0 →∞ Since the “ Martingale part” of 1 x J η 2 ( x) ∑ N x N N t tends to zero, it follows that
N2 −
(
x λdt y J − J ηN 2t ( y ) 1 − ηN 2t ( x) ∑ N N x, y ∈Z N N
dt x ∂ρ ∑ J N N x ∈Z N ∂t N
x →0 t, N →∞ N
(
)
x + z x λN ∑ J − J ηN 2t ( x) 1 − ηN 2t ( x + z ) p( z ) N N x, z
Thus,
− Assume that
)
∑ zp( z ) z
1 x ∂ρ J N ∑ N x N ∂t
x → 0 t, N →∞ N
= 0. Then we get from the above, by replacing ηN 2t ( x)
Stochastic Filtering & Control, Interacting Partials
x with ρ N t, , N
205
x 1 x z 2 λN ∑ J ′ + J ′′ 2 N 2 N N x, z x + z x p ( z ) ρ N t, 1 − ρ N t , N N 1
− ∫ J (θ) 0
∂ρ N (t , θ) d θ → 0 ∂t
x 1 x λ ∑ J ′ z + J ′′ z 2 N ∂N N x, t
or
x ∂ρ x ρ N t, 1 − ρ N t , − N N ∂θ N 1
− ∫ J (θ) 0
or equivalently with
D=
x z t, p ( z) N N
∂ρ N (t , θ) d θ → 0 ∂t
∑ z 2 p( z ) , z
λD x x x J ′′ ρ N t, 1 − ρ N t , ∑ N N N ∂N x −
λD x x ∂ρ x J ′′ N t, ρ N t , ∑ N x N ∂θ N N 1
− ∫ J (θ) 0
or
∂ρ N →0 (t , θ) d θ N →∞ ∂θ
λD 1 J ′′(θ) ρ N (t , θ)(1 − ρ N (t , θ)) d θ 2 ∫0 1 ∂ρ − λD ∫ J ′(θ)ρ N (t , θ) N (t , θ) d θ 0 ∂θ
∂ρ N →0 (t , θ) d θ N →∞ ∂θ Integrated by parts gives assuming ρ N (t , θ) → ρ(t , θ), N → ∞ 1
− ∫ J (θ) 0
λD ∂ 2 λD ∂ 2 (ρ2 ) ∂ρ ( ρ (1 − ρ )) + − =0 2 ∂θ2 2 ∂θ2 ∂t
{
}
x We are justified in replacing hN2t (x) by ρ N t, ≡ E ηN 2t ( x) because taking N J.
206
Stochastics, Control & Robotics
[11] Comments and Proofs on “Particle System” Collected Papers of S.R.S. Varadhan Vol. 4: (1) Simple exclusion: dht (x) =
∑ {ηt ( x) (1 − ηt ( x)) dNt( y, x) y
− ηt ( x) (1 − ηt ( y )) dNt( x, y )
}
Nt( x, y) = Poisson process with mean p (y – x) dt. df (ht) =
∑ ( f (ηt( x, y) ) − f (ηt )) x, y
ηt ( y ) (1 − ηt x) − dNt( y , x) = ( L f ) ( ηt ) dt + dM t
where
Lf (h) =
∑ ( f (η( x, y ) ) − f (η)) x, y
( η( y ) (1 − η( x)) p( x − y )) and
dMt =
∑ ( f (ηt( x, y) ) − f (η)) x, y
ηt ( y ) (1 − ηt ( x)) dM t( x, y ) ( x , y) − p ( y − x)t M t( x, y) = Nt
Where is a Martingale
( ) d E ( M ) = d E M , M d M , M = ∑ ( F (η ) − f (η ) η ( y) (1 − η ( x)) d M t2 = 2M t dM t + d M , M 2 t
t
t
t
( x , y) t
t
2
t
2
2
t
x, y
d M t( x, y) , M ( x, y )
t
)
(
2 ( x, y ) E d M ( x, y) , M ( x, y ) = E d N − p( y − x)dt t = p (y – x) dt
So,
d 2 E Mt = dt
∑ E ηt( y ) x, y
p (y – x)
2
((
)
)
2 (1 − ηt ( x)) 2 f ηt( x, y) − f ( ηt )
Stochastic Filtering & Control, Interacting Partials
207
Now, But latence by Z and consider XN (t) =
1 N
∑
xt Z N
x J ηt ( x) N
We define the empirical measures on [0.1] 1 mt, N = ∑ ηt ( x) δ x / N N x∈Z N
Then
XN (t) =
We have dXN (t) =
1 N
=
1 N
∑
x∈Z N
∫
J ( x) d µ t , N ( x) .
[ 0, 1]
x J d ηt ( x) N
∑
x , y ∈Z N
x J ηt ( y ) (1 − ηt ( x)) dNt( x, y ) N
− ηt ( x) (1 − ηt ( y )) dNt( x, y ) = =
1 N
∑
x , y ∈Z N
x y ( y, x) J N − J N ηt ( y ) (1 − ηt ( x)) dNt
x 1 y ∑ J − J N ηt ( y) (1 − ηt ( x)) p( x − y) dt N x, y N
+
x 1 y J − J ηt ( y ) (1 − ηt ( x)) dM t( y , x) ∑ N x, y N N
We estimate the Martingale part Mt(N) where Mt(N) =
1 N
∑
2
x , y ∈Z N
x y ( y, x) J N − J N ηt ( y ) (1 − ηt ( x)) dM t
as N → ∞. We have d E dt
M ( N )z = 1 t N2
∑
x , y ∈Z N
x y J N − J N
2
E ( ηt ( y ))(1 − ηt ( x)) p( x − y ) Consider finite range interaction only i.e.
Then,
(
p (z) = 0 for |z| > R, where R < ∞.
2 d E M t( N ) dt
)
=
1
∑ N 2 | z| ≠ R
x ∈Z N
(
2 x + z x J − J N N
)
}
× E ηt ( x + z ) (1 − ηt ( x)) p ( − z )
208
Stochastics, Control & Robotics
We have since |z| < R. 2 x x + z 1 x z 1 x z − J J + O 3 J J + ′′ ′ = 2 N N N N 2 N N N
assuming J to be bounded on [0, 1]. Thus, 2
X +Z X J N − J N
2
2 1 X Z + O 3 = J′ N N2 N
(
2 d E M t( N ) N →∞ dt
and hence
lim
∑
≤ lim
N →∞ x ∈Z N
2
X J′ N
(Z
2
)
)
p ( −Z ) / N 2 E ( ηt ( X + Z ) (1 − ηt ( X )) )
|Z | ≤ R
We also have 2 d lim E M t( N ) N →∞ dt
(
)
1
2D 2 ∫ J ′ (θ) d θ = 0 x→∞ N 0
≤ lim
Here D= We have,
(
2 d E M t( N ) dt
)
∑
Z 2 p( −Z ) =
1
∑
|Z | ≤ R
=
N2
X ∈Z N
∑
Z 2 p(Z )
|Z | ≤ R
X +Z X J N − J N
2
|Z| ≤ R E ( ηt ( X + Z )(1 − ηt ( X ))) p ( − Z ) Exponential Martingale: XN (t) = dXN (t) =
X
∑ ηt ( X ) J N X
X
∑ J N (ηt (Y )(1 − ηt ( X ))) dNt(Y , X )
X,Y
(
− ηt ( X ) 1 − ηt (Y )) dNt( X , Y ) =
X
)
Y
∑ J N − J N ηt (Y ) (1 − ηt ( X )) dNt(Y , X )
X ,Y
d exp (XN (t)) =
X
Y
∑ exp J N − J N − 1 dNt(Y , X ) ηt (Y )(1 − ηt ( X ))
X ,Y
t t d exp X N (t ) + ∫ f ( s ) ds = exp X N (t ) + ∫ f ( s) ds o 0
× (exp(dX N (t ) + f (t ) dt) −1)
Stochastic Filtering & Control, Interacting Partials
209
t = exp X N (t ) + ∫ f ( s) ds (exp dX N (t )) ⋅ (1 + f (t ) dt − 1) o
X Y = ξ(t ) 1 + ∑ exp J − J − 1 dNt(Y , X ) N N X , Y × (1 + f (t) dt ) ηt (Y ) (1 − ηt ( X )) − 1) X Y = ξ(t ) f (t ) dt + ∑ exp J − J −1 N N X ,Y × ηt (Y ) (1 − ηt ( X )) dNt(Y , X ) where
XN (t) =
}
X
∑ J N ηt ( X ) , X
t ξ (t) = exp X N (t ) + ∫ f ( s) ds o
Taking
f (t) = −
X
Y
∑ exp J N − J N −1 ηt (Y )(1 − ηt ( X )) p( X − Y )
X,Y
we get
X Y (Y , X ) dξ (t) = ξ(t ) ⋅ ∑ exp J − J −1 ηt (Y )(1 − ηt ( X )) dM t N N X ,Y (Y , X )
Where M t Martingale
(Y − X ) − p(Y − X ) t is a Martingale. Thus, {ξ(t)}t≥0 is a = Nt
[12] Interacting Diffusions: dXi (t) = – dZi, i + 1(t) + dZi – 1, i(t)
dZi, i + 1(t) = (ψ ( X i (t )) − ψ ( X i +1 (t )) ) dt + dBi , i +1 (t ) Bi , i +1 (⋅), i ∈Z are independent Brownian motion processes
[13] This is Independent of s. It is Reasonable to Expert that at Equilibrium: Nε E ψ( Xi ) − ψ X i + m 2 N ε + 1 → 0, N → ∞, ∀ ε > 0 ∑ m = − N ε
210
Stochastics, Control & Robotics
Note that
Nε
1 ∑ Xi+ m = x→∞ ( 2 N ε + 1) m= −N ε lim
∫ X p ( X ) dX
=
∫ X exp(σX − φ( X )) dX ∫ exp(σX − φ( X )) dX
= F ′(σ)
fN,t = N ⋅ ∑ X i (t ) χ i
Thus, writing
i +1 N , N
(i + 2) N
fN,t is a random function on [0, 1]. We have 1
∫ J (θ) f N , t (θ) dθ
∑ X i (t ) N ∫
=
i
0
i/ N
i J (θ) d θ ≈ ∑ J X i (t ) = XN (t) N i
1 i i We get ∫ J (θ) f N , t (θ) dθ ≈ ∑ J dX i (t ) ≈ 2 ∑ J ′′ ψ ( X i (t)) dt N N N i I ≈
N
Xi+ m dt [ m] ≠ N ∈ (2 N ε + 1)
i
1 2
∑ J ′′ N ψ ∑ i
Writing
∑
Xi+ m
(2 N ε + 1) [ m] ≠ N ∈
≈
i + m f N ,t N [ m] ≠ N ∈
∑
i (2 N ε + 1) ≈ ρt N
ε→o N →∞. (i + N ) / N
∫
Now,
i/ N
f N , t (θ) d θ = Xi (t)
We this get
∑
| k − i| ≠ N ε
i + N ∈ ( k +1) / N
X k (t ) =
∑
∫
k =i −N∈ k /N∈
i/ N + ε
f N , t (θ) d θ =
∫
f N , t (θ) d θ
i/ N − ε
ξ exp(I F′ (a) ξ − φ(ξ)) dξ E X i (t ) ∑ X k (t ) (2N ε + V ) = a ≈ ∫ exp( I F′ (a ) a − I f (a)) | k − i| ≤ N ε F (s) = supx (sx –IF (x)) = sa – IF (a) Where
IF′ (a) = s
Stochastic Filtering & Control, Interacting Partials
211
E X i (t ) ∑ X k (t ) (2 N ε + 1) = a ≈ F ′(σ) = F ′ ( I F′ (a)) | k − i| ≤ N ε
So So,
d 1 E X N (t ) X k (t ) = a ∑ dt (2 N ε + 1) |k − i| ≤ N ε ≈
i
1
Writing
1
i
≈
X k (t ) = a | k − i| ≤ N ε
∑ J ′′ N E ψ( X i (t )) (2 N ε + 1) ∑ N2 1 N
2
i
∑ J ′′ N ψ (a) i
i a = ρt , we get N 1 d i i i i ⋅ ∑ J F ′ I F′ ρt ≈ 2 ∑ J ′′ ψ ρ N N t N dt i N N i
Now
F′ (s) = a, I′F (a) = s so
i F ′ ( I F′ (a)) = F ′(σ) = a = ρt . N and hence, d 1 i i i i ρ J ρt ≈ 2 ∑ J ′′ ψ ∑ N τ N dt i N N N i Now change the time scale: N2t = t. Then let t (θ) = ρ We get d i i ∑ J ρτ ≈ dτ i N N
ρt
N2
(θ) . i
i
∑ J ′′ N ψ ρτ N i
[14] Wong Zakai Filtering Equation: dz = – Ct (z) dt + at (z) dvt dy = gt (z) dt – dvt p t , T | Y1 +dt +dt
212
Stochastics, Control & Robotics
p (dyt | zt = z)
∫ p( z (t + dt ) | z (t ), Yt dy(t)) =
∫
p( z (t ) | Yt , dy (t )) dz (t )
p( z (t ) dz (t), Yt , dy (t )) p (dy (t) | z (t ), y (t)) p ( z (t ), Yt , dy (t))
p( z (t ), Yt ) dt (z) p(Yt , dy(t )) =
∫
p(dy (t), dz(t ) | y (t ), z (t )) p(dy (t) | z (t ), y (t)) p(dy (t) | z (t ), Yt )
dz(t ) p( z (t) | Yt ) p(dy (t) | Yt ) =
∫ p(dy(t), dz(t ) | y(t ), z (t )) p(z (t ) | Yt ) dz (t )
∫ p(dy(t), dz(t ) | y(t), z (t )) p( z(t ) | Yt ) dz(t ) d dz(t )
−Ct ( z ) at ( z ) dz dy = g ( z ) dt + −1 dvt t p (dy, dz, y |, z) = E [ϕ ( z (t + dt)) | Yt + dt ] = E [ϕ ( z (t), dy(t )) | Yt + dt ] at ( z ) −1 (ab (z) – 1) + e I2 = Bt (z): 1 p (dy, dz | y, z) = (2π) −1 | Bt ( z) |−1/2 exp − dt (dz + Ct ( z ) dt,dy 2 − gt (t ) dt) Bt ( z) −1 (dz + Ct ( z) dt dy − gt ( z) dt )} ε + at2 ( z ) −at ( z ) Bt (z) = 1+ t − at ( z ) |Bt (z)| = (1+ ε) (ε + at2 ( z )) − at2 ( z ) 2 2 2 2 = ε + ε + ε at ( z ) = ε (1+ at ( z )) + O(ε )
(
| Bt ( z) |−1/ 2 ≈ ε −1/ 2 1+ at2 ( z )
)
1/ 2
at ( z ) 1+ ε Bt (z)–1 = at ( z ) ε + at2 ( z ) at ( z ) 1 = 2 at ( z ) at ( z )
(
ε 1 + at2 ( z )
(
ε 1 + at2 ( z )
)
)
Stochastic Filtering & Control, Interacting Partials
213
(
p (dy, dz | y, z) = (2π) −1 ε −1/2 1 + at2 ( z )
)
−1/ 2
1 ⋅ exp − 2 (dz + Ct (t ) dt , dy − gt ( z ) dt) 2 dt ε (1+ at ( z)) at ( z ) dz + Ct dt 1 at ( z ) at2 ( z ) dy − gt dt
(
L t + at2
)
−1/ 2
−1 exp ((dz + Ct dt ) 2 + at2 (dy − gt dt )2 2 2 ε 1 + at dt
(
)
+ 2 at (dz + Ct dt ) (dy − gt dt )
(
1 + at2
(
= 1+
)
−1/ 2
1 exp 1 − 8Ct dz − at2 gt dy − at gt dz + Ct at dy 2 ε 1 + at
(
)
−1 2 exp at2
)
−1/ 2
(
)
−1/ 2
= 1 + at2
−1
ε 1 + at2
(
2 = 1+ at
(
)
)(
(
(Ct − at gt ) dz + (
Ct at − at2 gt
C −a g ( t t) exp − t (dz + at dy) 2 ε 1+ at
(
)
(C − at gt ) exp 1 − t (dz + at dy) 2 ε 1+ at
(
)
2 ( 1+ a ) d t t 2 ε 2 (1 + at2 ) 2 p (dy | z, y) = p (dy | z) +
=
(Ct − at gt )
1 1 exp − (dy − gt dt ) 2 2dt 2π dt g2 α exp gt dy − t dt 2
g2 gt2 dt + t dt 2 2 = 1+ gt (z) dy.
= 1+ gt dy −
dy
) )
)
214
Stochastics, Control & Robotics
∫ (1 + at ( z )
Numerator =
2 −1/ 2
)
1 −
(Ct − at gt ) (dz + at dy ) ε (1+ at2 )
2 Ct − at gt ) ( + dt {1+ g ( z ) dy} p ( z | Y ) dz
(
2 ε 2 1 + at2
)
e (1 + at2) → e
Let The numerator is
t
t
t
(Ct − at gt ) (dz + at dy ) ε
∫ 1 − +
(
1 + at2
)
(Ct − at gt )2 dt + g 2ε 2
Numerator of
t
dy pt ( z | Yt ) dz
pt + dt ( z ′ | Yt + dt ) = 1 − 1 Ψt ( z ) ( z ′ − z ) pt ( z | Yt ) dz ε∫ − +
dy at ( z ) Ψt ( z ) pt ( z | Yt ) dz ε ∫ dt
∫ Ψt ( z ) pt ( z | Yt ) dz (1 + at ( z )) 2
2
2
2ε Yt (z) = Ct (z) – at (z) gt (z).
∫ Ψt ( z ) ( z ′ − z ) pt ( z | Yt ) dz = E Ψt ( z (t )) ( z ′ − z (t )) | Yt = E Ψt d ( z ′ − dz (t )) dz (t ) | Yt
Doemo Work. Alternately Writing Numerator =
+ =
Ψt ( z ) ( z ′ − z + at ( z )dy ) ε
∫ 1 −
Ψt2 ( z ) 2ε
2
∫ 1 − +
( z ′ − z + at ( z ) dy )2 pt ( z Yt )dz
Ψt ( z ′ − δz ) (δz + at ( z ′ − δz ) dy ) ε
Ψt2 ( z ′ − dz ) 2ε
2
(δz + at ( z ′ − δz )dy ) 2 pt ( z ′ − δz Yt )d δz
Stochastic Filtering & Control, Interacting Partials
=
215
(δz )2 p ′′ z ′ Y p z Y − δ z p z − Y + ′ ′ ′ ( ) t t t t ∫ t t 2
(
)
(
)
1 × 1 − (ψ t ( z ′) − δ z ψ t′ ( z ′ ))(δz + at ( z ′) dy − at′ ( z ′) δz dy ) ε +
Ψt2 ( z ′ ) 2ε
2
dt 1+ at2 ( z ′ ) d δz
(
)
∆ ∆ Let the range of dz be − , . Then 2 2 ∆ at2 ( z ′ ) p ′′( z ′ | Yt ) ∆ + Ψt ( z ′ ) p ′ ( z ′ | Yt ) Numerator = pt ( z ′ | Yt ) ∆ + dt ε 2 ∆ − Ψt ( z ′ ) pt ( z ′ | Yt ) at ( z ′ ) dy at2 ( z ′) dt − at2 ( z′) dt ε Ψ2 ( z′ ) + pt ( z ′ | Yt ) t 2 dt (1+ at2 ( z ′)) ∆ 2ε ∆ Ψt ( z ′ ) pt ( z ′ | Yt ) at′( z ′) at ( z ′) dt ε Cancelling out the factor D gives the numerator as −
a 2 ( z ′ ) pt′′( z ′ | Yt ) pt ( z ′ | Yt ) + t 2 1 − a1′ ( z ′ ) at ( z ′ ) Ψt ( z ′ ) pt ( z ′ | Yt ) ε + pt ( z ′ | Yt )
Ψt2 ( z′ ) 2ε 2
(1+ at2 ( z ′)) dt
1 − Ψt ( z ′ ) pt ( z ′ | Yt ) at ( z′ ) dy (t ) ε The denominator is the integral of the numerator w.r.t. z. Hence pt + dt ( z ′ | Yt + dt ) =
pt ( z ′ | Yt ) + Λ tε ( z ′ | Yt ) dt + M tε ( z ′ | Yt ) dy
(1 + dt ∫ Λ ( z ′ | Y ) dz ′ + dy∫ M ε t
t
ε t ( z ′ | Yt ) dz ′
)
ε ε = pt ( z ′ | Yt ) + dt Λ t ( z ′ / Yt ) − dt pt ( z ′ | Yt )∫ Λ t ( z ′ | Yt ) dz′
− M tε ( z ′ | Yt ) − pt ( z ′ | Yt )
(∫ M
(∫ M
ε t ( z ′ | Yt ) dz′
ε t ( z ′ | Yt ) dz′
) dt
) dy(t )
216
Stochastics, Control & Robotics
Thus, a 2 ( z ′ ) 1 dpt ( z ′ | Yt ) = t pt′′( z ′ | Yt ) − at′ ( z ′ ) at (z ′ ) Ψt ( z ′ ) pt ( z′ | Yt ) ε 2 +
Ψt2 ( z′ ) 2ε
2
(1 + a ( z ′)) p( z ′ | Y ) − p (z ′ | Y ) 2 t
t
t
t
[15] Stochastic Control of Finance Market: Pk (t), k = 1, 2, ..., d are the share prices. They evolve according to random rates: dPk (t) = (rk (t ) dt + σ k dBk (t )) Pk , 1 ≤ k ≤ d
s
where rk (t)′ are non random rates. At time t, the share holds has Nk (t) shares of type k, k = 1, 2, ..., d. His gain in Wealth in time [t, t + dt] is
d
∑ N k (t ) dPk (t )
and his consumption in time
k =1
[t, t + dt] is C (t) dt. His total Wealth at time T is then T d
N ( t ) dP ( t ) C( t ) dt ∫ ∑ k k 0 k =1
X (T) =
The quantity Nk (.) and C (.) satisfy certain constants like N′ks must not be too large etc. We write there constrants as E fr (N1(t), .,Nd (t), C(t), – lo, r = 1, 2, ..., M. P1 (t), ..., Pd (t) d Dr = dias {rk (t )}k =1 .
Let
E [ X (t)] is to be maximized subject to these constaints. We consider maximizing M T
E X (T ) − ∑ ∫ λ r (t ) E f r (N (t ), P(t ), C (t )) dt r =1 0 T
{
}
= E ∫ N (t )T D r P(t ) − C (t ) − λ(t )T f ( N (t ), P(t ), C (t )) dt o
The optimum N (t ) , C (t) are obtained as functions of P(t ) that maximize (1) Let T
max
x ≠ N (t ), C (t ) ≠ T
∫ E N (t) S
T
D r P(t ) − C (t ) − λ (t )T f ( N (t ), P(t ), C (t ))
(1)
Stochastic Filtering & Control, Interacting Partials
217
= V* ( P(s ), λ s ) | P( s )] dt Where λ s = {λ(t ) : s ≤ t ≤ T } Then, V* ( P(s), λ s ) =
{( N (s) D P(s) − C (s) − λ (s) f ( N (s), P(s), C (s)) ds T
max
N ( s ), C ( s)
T
r
+ E V* ( P( s + ds ), λ s + ds ) | P( s )
}
V* ( P( s ), λ s ) = V* ( P( s ), s )
we write
Note that l is non-random. Then V* ( P(s ), s ) =
{( N (s)
T
max
N ( s ), C ( s)
)
D r P( s ) − C ( s ) − λ ( s )T f ( N ( s ), P(s ), C ( s ) ds T
∂V ( P(s ), s ) + V* ( P (s ), s ) + * D r P( s ) ds ∂P 1 + Tr 2
max
or
T 2 ∂V* ( P(s), s ) ∂ V* ( P(s ), s ) + D s ds ds ( ) T σ ∂s ∂ P ∂ P
T
N ( s ), C ( s)
+
{N (s)
}
D r P( s ) − C ( s ) − λ ( s )T f ( N ( s ), P(s ), C ( s ))
(
∂V* ( P( s ), s ) + Dr PT( s ) ∂s
)
∂V* ( P( s ), s ) ∂P
T
1 ∂ 2V* ( P( s ), s ) + Tr D σ ( s ) =0 2 ∂ P ∂ PT We thus get the following partial differential equation for V* ( P(s)) :
{
}
max N T D r P − C − λ ( s )T f ( N , P, C) N, P
+
∂ 2V* ( P, s) ∂V ( P, s) 1 ∂V* ( P, s) + Tr Dσ ( s ) + r ( s )T * =0 ∂P ∂s 2 ∂ P ∂ PT
{
}
d Ds (s) = diag σ 2k Pk2 ( s ) k =1 The optimal scheme of choosing N, C at each stage is thus given by
Where
( N (t ), C (t )) = arg max {N D P − C − λ(t ) ( P, λ (t )), C ( P, λ (t )) = {N } T
N, P
r
T
}
f ( N , P, C )
Finally {λ (t)}t ∈[o,T ] is obtained using this equation combined with
218
Stochastics, Control & Robotics
{
}
( P(t ), λ (t )), P(t ), C ( P(t ), λ (t))) E fr ( N
= 0, 1 ≤ r ≤ d. The expectation is to be taken w.r.t. the random vector P(t ) .
[16] Wong-Zokai Equation: dz = − Ct ( z ) dt + at ( z ) dvt
(State model)
dy = gt ( z ) dt − dvt
(Measurement model)
p( Z (t + dt ) | Yt + dt ) = p( Z (t + dt ) | Yt , dy (t )) =
p( Z (t + dt ) | Yt , dy (t)) p(Yt , dy(t ))
=
p( Z (t + dt ), dy (t ) | Yt ) p(dy (t) | Yt )
=
∫ p(Z (t + dt ), dy(t ) | Yt Z (t )) p (Z (t) | Yt ) dZ (t)
=
∫ p(Z (t + dt ), dy(t ) | Z (t), y(t )) p(Z (t ) | Yt ) dZ (t )
≡
Let
p(dy (t) | Yt )
p (dy (t) | Yt )
χ( Z (t + dt), dy(t ) | Yt )
∫ χ(Z (t + dt, dy(t ) | Yt ) dZ (t + dt)
−ct ( z ) dv1 (t ) dz dy = g ( z ) dt + Bt ( Z ) dv (t ) 2 t E [ ψ( Z (t + dt), dy(t ) | Z (t ), y (t ))] = ψ( Z (t), 0) −
∂ψ ( Z (t ), 0)ct ( Z (t )) dt ∂Z
+
∂ψ 1 ∂2 ψ ( Z (t ), 0) gt ( Z (t ))dt ( Z (t), 0) at 2 ( Z )dt + 2 2 ∂Z ∂y
+
1 ∂2 ψ ( Z (t), 0) dt 2 ∂y 2
=
∫ ψ (Z (t + dt), dy(t )) χ(Z (t + dt ), dy(t) | Yt ) dz (t + dt) d dy(t)
=
∫ ψ (Z , o) − ψ , z (Z , o)ct (Z ) dt + 2 ψ , zz (Z , o) at (Z ) dt
1
2
1 + ψ , Y ( Z , o) gt ( z)dt + ψ , YY ( Z , o) dt pt ( Z | Yt ) dZ 2
Stochastic Filtering & Control, Interacting Partials
=
219
∫ ψ (Z , dy) χ(Z , dy | Yt ) dz d dy
Hence, χ( Z , dy | Yt ) = δ(dy ) pt ( Z | Yt ) ∂ 1 ∂2 2 + (Ct ( Z ) pt ( Z | Yt )) δ (dy) + at ( Z ) pt ( Z | Yt ) δ (dy ) 2 ∂Z 2 ∂Z
(
)
1 − δ ′(dy ) gt ( Z ) pt ( Z | Yt ) + δ ′′ (dy ) pt (Z | Yt ) dt 2
[17] Filtering Theory with State and Measurement Noises Having Correlation: State mode: d X (t ) = f ( X (t )) dt + g ( X (t)) dB(t ) dZ (t ) = h ( X (t )) dt + K ( X (t)) dB(t ) n n n×q , K (X (t )) ∈R p × q , B(t ) standard where X (t ) ∈R , Z (t) ∈R , g ( X (t )) ∈R
q dimensional Brownain motion: Z t = {dZ ( s ), s ≠ t} We need an equation for p( X (t ) | Zt ) p( X (t + dt ) | Z t + dt ) =
∫ p( X (t + dt ) | X (t ), Z t , d z(t )) p( X (t ) | Z t , d z (t )) d X (t)
=
∫ p( X (t + dt ) | X (t ), Zt , dZ (t ))
=
∫ [ p( X (t + dt ), Z (t + dt ) | X (t ), Z (t )) × p( X (t ), Z t ) / p ( Z t , dZ (t ))] dX (t)
=
p( X (t ), Z t ) p( X (t ) | Z t ,dZ (t )) p ( X (t ), Z t , dZ (t ) dX (t))
∫ [ p( X (t + dt ), Z (t + dt ) | X (t ), Z (t )) × p( X (t ), Zt ) dX (t )] ∫ dX (t + dt )
We write X (t + dt ) = X ′ Z (t + dt ) = Z ′ , X (t) = X, Z (t) = Z
220
Stochastics, Control & Robotics
and p( X (t + dt ), Z (t + dt ) | X (t ), Z (t )) = p(t + dt , X ′, Z | t , X , Z ) = δ ( X ′ − X ) δ ( Z ′ − Z ) + dt L *′ (δ ( X ′ − X ) δ ( Z ′ − Z )) Where L* is the formed Kolmogorov operator for the state plus observable process: Lψ *′ = − ∇TX ′ ( f ( X ′ ) ψ ( X ′, Z ′ )) = − ∇TZ ′ ( h ( X ′ ) ψ ( X ′, Z ′ )) g ( X ′) 1 ∇X ′ T ∇ X ′ , ∇TZ ′ + Tr g ( X ′ )1T K ( X ′ )T ψ ( X ′, Z ′ ) K ( X ′ ) 2 ∇Z ′
(
)
= − div ′X ( f ( X ′ ) ψ ( X ′, Z ′ )) − div ’Z ( h ( X ′ ) ψ ( X ′, Z ′ ))
( ( ( (
We than get = = Now,
) ) ) )
1 + Tr ∇ X ′ ∇TX ′ g ( X ′ ) g ( X ′ )T ψ( X ′, Z ′ ) 2 1 + Tr ∇ X ′ ∇TX ′ K ( X ′ ) g ( X ′ )T ψ( X ′, Z ′ ) 2 1 + Tr ∇ Z ′ ∇TX ′ g ( X ′ ) K ( X ′ )T ψ( X ′, Z ′ ) 2 1 + Tr ∇ Z ′ ∇TZ ′ K ( X ′ ) K ( X ′ )T ψ( X ′, Z ′ ) 2 p(t + dt , X ′ | Zt + dt )
∫ (δ( X ′ − X ) δ(Z ′ − Z ) + dt L *′ (δ( X ′ − X ) δ(Z ′ − Z )) p(t, X | Zt ) dX )
∫ (δ( X ′ − X ) δ(Z ′ − Z ) + dt L *′ (δ( X ′ − X ) δ(Z ′ − Z )) p(t, X | Zt ) dX dX ′ ) [ p(t , X ′ | Zt ) δ(Z ′ − Z ) + dt L *′ ( p(t , X ′ | Zt ) δ(Z ′ − Z ))] p t , X ′ | Zt ) δ( Z ′ − Z )) dX ′ δ( Z ′ − Z ) + dt ∫ L *′ ( p(
∫ L *′ ( p(t , X ′ | Zt ) δ(Z ′ − Z )) dX = − ∫ div Z ′ ( h ( X ′ ) p(t, X ′ | Z t ) δ ( Z ′ − Z )) dX ′
(
))
(
1 Tr ∇ Z ′ ∇TZ ′ K ( X ′ ) K ( X ′ )T p(t , X ′ | Z t ) δ( Z ′ − Z ) dX ′ 2∫ 1 h t ∇ Z ′ δ ( Z ′ − Z ) + Tr ∇ Z ′ ∇TZ ′ Kt KtT δ ( Z ′ − Z ) = − div Z ′ 2 +
(
Where
)
T 1 − h t ∇ Z ′ δ ( Z ′ − Z ) + Tr Kt KtT ∇ Z ′ ∇T , δ ( Z ′ − Z ) 2 h t = E [ h ( X (t )) | Zt ] ,
Kt KtT = E K ( X (t )) K ( X (t))T | Zt
Stochastic Filtering & Control, Interacting Partials
221
This we get p(t + dt , X ′ | Zt + dt ) = where
[δ(Z ′ − Z ) ⋅ p(t , X ′ | Zt ) + dt L *′ ( p(t , X ′ | Zt ) δ(Z ′ − Z ))]
1 δ( Z ′ − Z ) + dt − h ∇ Z ′ δ ( Z ′ − Z ) + Tr Kt KtT ∇ Z ′ ∇TZ ′ δ ( Z ′ − Z ) 2
Z = Z (t ), Z ′ = Z (t + dt ) = Z (t ) + dZ (t) .
L *′ ( p(t , X ′ | Z t ) δ( Z ′ − Z )) T = Lo *′ ( p(t , X ′ | Zt )) δ ( Z ′ − Z ) − h ( X ′) ∇ Z ′ (δ ( Z ′ − Z )) p (t , X ′ | Zt )
References: [1] Research Papers of V. Belavkin on quantum filter. [2] Technical Report on Wave propagation in Metamaterial by Karishma Sharma, D.K. Upadhyay and H. Parthasarthy, NSIT, 2014. [3] Technical Reports on Robotics by Vijayant Agrawal and Harish Parthasarathy, NSIT, 2014.
5 Classical and Quantum Robotics [1] Mathematical Pre-Requisites for Robotics: [1] Kinetic and potential energies of an n-link system. [2] Relativistic kinetic energies. [3] Variational calculus. [4] Perturbation theory for algebraic and differential equations. [5] Brownian motion, Poinon process, Levy process (processes with independent increments. [6] Ito stochastic calculus for Brownian motion and Poinon processes. [7] Stochastic differential equations driven by Levy processes. [8] Forward and Backward Kolmogorov equations. [9] Markov chains. [10] Approximate mean and variance propagation in stochastic differential equations. [11] The maximum likelihood method for parameter estimation. [12] The Cramer-Rao lower bound (CRLB). [13] Optimal control theory. [14] Stochastic optimal control. [15] The n-link Robot differential equations. [16] Optimal control applied to master-slave Robot tracking. [17] Leaso mean square (LMS) algorithm applied to tracking problem in Robotics. (adaptive) [18] Recursive leaso squares (RLS) algorithm applied to tracking problem in Robotics (adaptive). [19] Maximum likelihood estimation of Pd controller for master-slave Robot system.
224
Stochastics, Control & Robotics
[20] Design of feedback and operator force process for optimal control of LTI systems with feedback noise – an application of algebraic perturbation theory. [21] The rotation group SO(3). [22] The kinetic energy of a rigid body. [23] Quantization of rigid body motion. [24] Feynman path integral approach to quantum Robotics. [1] The lengths of the links are L1, L2, .. , Ln. The first link has its free end at (X(t), Y(t)) and the angles of the ith link relative to the X-axis is qi(t). Let si be the mass pen unit length of the ith link. Then the position of a point P on the ith link at a distance x from its joint with the (i – 1)th links is Y given by * Maximum likelihood estimation of parameters in dynamical systems. ∞
Let {W [n]}n=0 be iid random vectors with values in Rp having pdf Fw(W). Consider the dynamical system. Z[n + 1] = f ( Z [n]) + G ( Z [n])W [n + 1] , n ≥ 0 Then {Z[n]}n ≥ 0 is a Markov process provided Z[0] is independent of {W[n]}n ≥ 1. The conditional pdf of Z[n + 1] gives Z[n] is p(Z[n + 1]|Z[n]) = G ( Z [n])
−1
(
(
ΦW G ( Z [n]) −1 Z [n + 1] − f ( Z [n]
))
G ( Z ) = det(G ( Z ))
where
Hence if f and G depend on an unknown parameter vector q, i.e. f(Z, q), G(Z, q) then the joint pdf of {Z[n]}0 ≤ n ≤ N given q is
p({Z[n]}p ≤ n ≤ N|Z[0], q)
=
N
∏
n=0
{ G(Z[n], θ (
−1
ΦW G ( Z [n], θ )
−1
or equivalently, the log-likelihood function is
( Z [n + 1] − f ( Z [n], θ )))}
L({Z[n]}1 ≤ n ≤ N | Z(0), q) = log p(Z | Z(0), q) N
{
− ∑ log G ( Z [n], θ ) n=0
N
(
}
+ ∑ log ΦW G ( Z [n], θ ) n=0
−1
(Z [n + 1] − f ( z[n], θ)))
The ml of q based on Z = {Z[n]}P ≤ n ≤ N is θ ( N ) = arg max L ( Z Z (0) , θ ) θ
Classical & Quantum Robotics
225
Example: Z[n + 1] = We wish to estimate q =
p
∑
θk f k ( Z [n]) + G ( Z [n])W [n + 1] k =1 (qk)pk=1 when {W(n)}n ≥ 1 is iid N (0, RW
).
i−1 i−1 P = X (t ) + ∑ Lk cos θk + ξ cos θi , Y (t ) + ∑ Lk sin θk + ξ sin θi , 1 ≤ i ≤ n k =1 k =1
and its velocity is therefore given by i −1 i−1 dP = X ′(t ) − ∑ Lk θk′ sin θk − ξθi′ sin θi , Y ′(t ) + ∑ Lk θk′ cos θk + ξθi′ cos θi dt k =1 k =1
The kinetic energy of the ith link is then for i > 1, L
Ti =
2
i 1 dp dξ σi ∫ 2 0 dt
Li i−1 2 1 2 2 2 2 2 = σi ∫ X ′ + Y ′ + ξ θi′ + ∑ L k θ k′ 2 0 k =1
i −1
i −1
1
k =1
−2 X ′ ∑ Lk θk′ sin θk + 2Y ′ ∑ Lk θk′ cos θk
∑
+2
1≤ k < m≤ i −1
+ 2ξ
∑
1≤ k ≤ i−1
Lk Lm θk′ θm ′ cos(θk − θm )
θi′θk′ Lk cos(θ k − θi )
+ 2θi′ξ(Y ′ cosθi − X ′ sin θi ) dξ 1 i− 1 = σi X ′ 2 + Y ′ 2 + ∑ Lk θk′ 2 2 k =1 i −1
i −1
1
1
− 2 X ′ ∑ Lk θk′ sin θk + 2Y ′ ∑ Lk θk′ cos θk
+2 +
σi 2
∑
l ≤ k < m ≤i −1 θ′ 2 σi L3i i
Lk Lm θk′ θm ′ cos θk − θm Li
6 σ ∑ L2i Lk θi′θk′ cos(θk − θi ) + 2i L2i θi′ (Y ′ cos θi − X ′ sin θi ) l ≤ k ≤i−1
226
Stochastics, Control & Robotics
For i = 1, we have 2 T1 = 1 σ1 ( X ′ 2 + Y ′ 2 ) + σ1L13 θi 2 6 1 + σ1L12θ1′ (Y ′ cos θ1 − X ′ sin θ1 ) 2 The relationship between the kinetic energy T and velocity v of a point mars having rest mars m0 is
m0 c 2
T =
1−
v2
.
c2
Hence the kinetic energy of the ith link is Li
2 Ti = σi c ∫ ( Fi X ′ (t ), Y ′ (t ), θ ′j (t ), θ j (t ), 1 ≤ j ≤ i, ξ)dξ 0
v2 where Fi(X′, Y′, q′j, qj, 1 ≤ j ≤ i, x) = 1 − c2
−1 2
with
i−1
v2 = X ′ 2 + Y ′ 2 + ∑ L2k θ′k2 k =1
+2
∑
l ≤ k 0 a small parameter. Assume that we've solved f0(X) = 0
getting the solution X = X0. We wish then to approximately solve f0(X) + eg0(X) = 0
(a)
X = X0 + eX1 + e X2+ ... = X 0 + 2
Let
∞
∑ εm X m
(b)
m=1
Equating substitutively (b) into (a) and equality coeffs of em, m = 0, 1, 2, ... gives successively. f0(X0) = 0, O(e0) N
∑ f0 , j ( X 0 ) X1j + g0 ( X 0 )
= 0, O (∈0),
j=1
1 ∑ f0 , jk ( X 0 ) X1 j X1k 2 jk + ∑ f 0 , j ( X 0 ) X 2j + ∑ g0, j ( X 0 ) X1 j = 0, O (e2) j
j
Df 0 ( X 0 ) = f 0,1 ( X 0 ), f 0, N ( X 0 ) we get on solving the above,
etc. Writing
X1 = − Df 0 ( X 0 ) X2 = − Df 0 ( X 0 )
−1
g0 ( X 0 ) ,
1 −1
∑ f 0, 2 j ,k
+ ∑ g 0, j ( X 0 ) X 1 j j
etc.
jk ( X 0 ) X 1 j
X1k
}
Thus in general, Xm can be solved in terms of Xm–1, ..., X0 by inverting the matrix Df 0 ( X 0 ) . This complete the problem of algebraic perturbation theory: For differential equations: dX (t ) = f 0 (t , X (t )) + εf1 (t , X (t )) dt Let X0(t) be a solution to the unperturbed problem: dX 0 (t ) = f0(t, X0(t)) dt
(b)
230
Let
Stochastics, Control & Robotics
X(t) = X 0 (t ) +
∞
∑ ε m X m (t )
m=1 2
Equating coeffs. of e, e , ... in (b) given O (e):
dX1 = dt
∑ f0,k (t , X 0 (t )) X1k (t ) + f1 (t, X 0 (t ))
O (e2):
dX 2 = dt
∑ f0,k (t , X 0 (t )) X 2k (t )
k
k
+
1 ∑ f0, km (t , X 0 (t )) X1k (t ) X1m (t) 2 k ,m
+ ∑ f1, k (t , X 0 (t )) X1k (t ) k
Let
Then if
i.e.
Df (t , X 0 (t )) = f 0,1 (t , X 0 (t )), .., f 0, N (t , X 0 (t )) = A(t ) . ∂Φ(t , τ) = A(t )Φ (t , τ), t ≥ τ, ∂t F(t, t) = I ∞
F(t, t) = I + ∑
∫
A(t1 )... A(tn )dt1 , ...dtn
n=1 τ< tn d > t
(EtEt = Et, EtEs = Et for t > t, s < t) t
t
−
b λ v b ∫ Es ( Z FZ )+ ξds + M t ξ = Et ∫ (Z FZ )v dAλ ξ 0
0
−
b since Es ( Z b FZ ) dAλv ξ = Es ( Z FZ )+ ξds λ v
Observation processes Di(t)∈Dt
λ
dB(t) = ( Z b DZ )v dAv λ D = D0 + λ is D i t
et(X(t)) =
∫ εs (Z
b
−
FZ )+ ds + M t
0
To get the filtering eqn, we need Mt in term of the observation processes B(t). Let t
Mt =
∫ (Z 0
b
t
D i Z
(
)vλ (s)K si dAλv (s)Kti ∈∞t′Yi (t )
− ∫ ε s Z b Di Z =
t
(
∫ (Z
b
λ Di Z )vλ ( s )d Av ( s ) − ε s Z b Di Z
∫ (Z
b
Di Z )+− − ε s ( Z b Di Z )+− ds
0 t
=
0
)+− (s)ds
0
)+− (s)ds
Large deviations, Classical & Quantum General Relativity with GPS Applications t
+∫
281
λ ∑ (Z b Di Z )λ (s)d Av (s) v
0 ( v , λ) ≠ ( −+)
D0− Z +0 + D+− D00 Z +0 + D+0 0
(
)
D0− Z +0 + D+− + Z +0* D00 Z +0 + D+0 Z 00* D00 Z +0 + D+0 0
0 D0− Z 00 = 0 Z 00* D00 Z 00 0 0
−
0 D0− Z 00 0 0 0 D0 Z 0 0 0
Z +−* Z 0−* I
I Z +0* 0* ZbDZ = 0 Z 0 0 0
(
(
0 − 0* 0 0 − ε s ( Z b DZ )+ = D0 ε s ( Z + ) + D+ + ε s Z + D0 Z +
)
)
( ) ( )+− − ε s (Z b Di Z )+− D0− ( Z +0 − ε s ( Z +0 )) + ( Z 0−* − ε s ( Z 0−* )) D+0 + ( Z +0* D00 Z +0 − ε s ( Z +0* D00 Z +0 )) + ε s Z 0−* D+0 Z b Di Z
=
Z +−* Z 0−* I
I Z +0* Z b D Z = 0 Z 00* 0 0
Compute
(
(
)
)
0 D 0− Z 00 0 0 0 D 0 Z 0 0 0
D 0− Z +0 + D +− D 00 Z +0 + D +0 0
(
)
A Z b DZ , ds = D − Z 0 d A0− + D − Z 0 + D − + Z 0* D 0 Z 0 + Z 0* D 0 ds 0 0 + 0 + 0 + + + +
(
)
0
(
)
+
+ Z 00* D 00 Z 00 d A0 + Z 00* D 00 Z +0 + Z 00* D +0 d A0 Coeff. of ds in this is D +− + D 0− Z +0 + Z +0* D 00 Z +0 + Z +0* D +0
−
= D+− − ε s ( Z b DZ )+ + D0− Z +0 + Z +0* D00 Z +0 + Z +0* D+0
If we operate on this by es, we get
(
)
( )
( )
D+− + ε s Z +0* D00 Z +0 + ε s Z +0* D+0 + D0− ε s Z +0 − ε s ( Z b DZ ) − +
−
= ε s ( Z b DZ ) − ε s ( Z b DZ )+ = 0.
t b ,ds ) is a Martingale. Hence ∫ A ( Z DZ 0
t
−
Also Y (t ) − ∫ ε s ( Z b DZ )+ ds 0
∫ (( Z t
=
0
b
)
− v µ DZ )µ ( s )d Av ( s ) − ε s ( Z b DZ )+ ( s )ds = x(t) say
282
Stochastics, Control & Robotics −
b d x(t) = dY (t ) − εt ( Z DZ )+ dt
(
0 − 0 − 0 − 0* 0 0 = D0 Z 0 d A− + D0 Z + + D+ + Z + D0 Z + −
)
+ Z +0* D+0 − εt ( Z b DZ )+ dt
(
)
+ 0 + Z 00* D00 Z 00 d A0 + Z 00* D00 Z +0 + Z 00* D+0 d A0
(
)
0 = D 0− Z 00 d A− + D 0− Z +0 + D +− + Z +0* D 00 Z +0 + Z +0* D+0 dt
(
)
0 0 + Z 00* D 00 Z 00 d A0 + Z 00* D 00 Z +0 + Z 00* D +0 d A0
D vµ = Dvµ if (m, v) ≠ (– +),
since
− D +− = D+− − εt ( Z b DZ )+
Quantum Filtering − µ v dX = Cv dAµ A+ = t
A+j* = A−j , A−j * = A+j , Akj* creation operators Akj* = Akj A−j annilutation operators j j − dA+j dAk− = δ kj dt = δ k dA+ Ak conservation operators
dAkj dAl− = δ lj dAk− dA+j dAlk = δ lj dA+k {∞t, t ≥ 0} increasing family of von-Neumann algebras. Bt ⊂ ∞t ∩ ∩ ∞′s i.e. Y∈Bt ⇒ Y∈∞t and [Y, X] =0 ∀X ∈ ∞s > t.
s ≥t
Conditional expectation: Let X∈∞s,s > t.
Assume {∞s}t ≥ 0 operate on H a Hilbert space. et(X)∈Bt is such that et(X)x = Et(Xx) where Et is the orthogonal projection of ∞∞ onto Bt ξ . (X – et(X))x = Xx – Et(Xx) ⊥ Bt ξ . Let A, B∈Bt, X∈∞s, s > t
et (AX)x = Et(AXx)
AXx – Et(AXx) ⊥ Btx Xx – Et(Xx) ⊥ Btx
Second one implies UXx – UEt(Xx) ⊥ UBtx = Btx
Large deviations, Classical & Quantum General Relativity with GPS Applications
283
Unitary U∈Bt
AXx – A Et(Xx) ⊥ Btx
⇒
Et(AXx) – A Et(Xx) ⊥ Btx
Thus
Et(AXx) – A Et(Xx) ⊂ Btx
But
Et(AXx) = A Et(Xx)
Hence
et(AX)x = A et(X)x
or
It fixed et exists x, then it follows that
et(AX) = Aet(X)
Let the measurement model be µ v dY = Dv dAµ t
i.e.
Y(t) =
0 t
X(t) =
µ
v
µ
v
∫ Dv (s)dAµ (s) , ∫ Cv (s)dAµ (s) 0
For unitary evolution of X, we require
0 = d(X*X) = dX*.X + X*.dX + dX*.dX = Cvµ*Cβα dAµv*dAαβ + Cvµ* XdAµv* + X *Cvµ dAµv bµ v Cvµ*dAµv* = Cv dAµ
(Belavkin-Quantum non-linear filtering)
So for unitarity, we require * µ bµ α v β bµ v v 0 = Cv Cβ δ α dAµ + Cv XdAµ + X Cv dAµ
i.e.
µ
µ
Cβb Cvβ + Cvb X + X *Cvµ = 0.
Let x = f ⊗e(0) f∈h (System Hilbert space and e(0) = Vacuum exponential vector in Gs (H). t
X(t) =
µ
∫ Cv (s)dAµ (s) v
0
dAµv (t )ξ = C+− (t )ξdt Non-demolition condition: [Y(t), X(s)] = 0 s ≥ t. s t Thus ∫ Dvµ (t1 )dAµv (t1 ), ∫ Cvµ (t2 )dAµv (t2 ) = 0 s ≥ t 0 0
This condition is satisfied if
284
Stochastics, Control & Robotics
Dvµ (t )dAµv (t ), Cβα (t )dAαβ (t ) = 0
(a) or
Dvµ (t )Cβα (t ) δ αv dAµβ (t ) − Cβα (t ) Dvµ (t ) δβµ dAαv (t ) = 0
or
Dvµ (t )Cβv (t ) dAµβ (t ) − Cµα (t ) Dvµ (t ) dAαv (t ) = 0
or
Dvµ (t )Cβv (t ) − Cαµ (t )Dβα (t ) = 0
or
Dvµ Cβv − Cvµ Dβv = 0 v α β µ Dv (t )dAµ (t ), Cβ (s )dAα ( s ) = 0, s > t.
(b) or
e(u ), Dvµ (t ), dAµv (t ), Cβα (s )dAαβ ( s ) e(v)
or
dAµv* (t )e(u ) Dvµ (t )Cβα ( s ) dAαβ ( s )e(v)
= 0 s > t, u, v∈H.
− dAαβ ( s )* e(u ) Cβα ( s ) Dvµ (t ) dAµv (t )e(v)
= 0, s > t, u, v∈H.
(b) requires Dvµ (t )dAµv (t )Cβα ( s )dAαβ ( s ) − Cβα ( s )dAαβ ( s ) Dvµ (t )dAµv (t ) = 0 s > t This is satisfied if α v dAµ (t ), Cβ (s) = 0s > t
and
Dvµ (t ), Cβα ( s ) = 0.
Assume that the non-demolition condition is satisfied. Consider the algebra Bt generated by the operators {Y(s): s ≤ t}. t
X(t) = X ( s ) + ∫ Cvµ (τ)dAµv (τ) s
t
Y(t) = Y ( s ) + ∫ Dvµ (τ)dAµv (τ) , t ≥ s st
Then
s
+ D−j (τ)dA−j (τ) + Now,
t
(
Y(t) = Y ( s ) + ∫ D+− (τ)d τ + ∫ D +j (τ)dA+j (τ) . s Dkj (τ)dAkj (τ)
dA−j (τ)ξ = dA−j (τ) f ⊗ e(0) = f ⊗ dA−j (τ) e(0) = 0 k dAkj (τ)ξ = dA j (τ) f ⊗ e(0) k = f ⊗ dA j (τ) e(0) = 0 − e(u ) dA+j (τ) e(0) = dA j (τ)e(u ) e(0)
)
Large deviations, Classical & Quantum General Relativity with GPS Applications
285
= u j (τ)d τ e(u ) e(0) = uj(t)dt M1(t) =
Now, consider
(
ε s D−j ( s )dA−j ( s )
)ξ
t
0
j
(
)
= Es D−j ( s )dA−j ( s )ξ = 0
Since x = f ⊗ e(0) . Thus
(
−
∫ D− (τ)dA j (τ)
)
ε s D−j ( s )dA−j ( s ) = 0 when acting on vectors of the form f ⊗ e(0) , f∈h. Thus, et(M1(t + dt)) = M1(t) j − when acting on Btx since D− (t )dA j (t )Bt ξ
Commutes with Bt.
∵dA−j (t )
= D−j (t )Bt dA−j (t )ξ = 0
Likewise define t
M2(t) =
∫ Dk (τ)dA j (τ) j
k
0
et(M2(t + dt))x = M 2 (t )ξ + εt ( Dkj (t )dAkj (t))ξ = M2(t)x
More generally, j k et(M2(t + dt))Bx = M 2 (t )Bξ + εt ( Dk (t )dA j (t ) B)ξ j = M 2 (t )Bξ + Et ( Dk (t ) BdAkj (t )ξ)
= M2(t)Bx, B∈Bt Note that
{
µ v Bt = Clspan Dv ( s )dAµ ( s ) : s < t
}
s = Clspan ∫ Dvµ (τ)dAµv (τ) : s ≤ t 0 Thus M21.1 is also a Martingale. Belavkin contd. (Nonlinear filtering) − d X = (F X ⊗ δ ) d A ⇒ d X = Unitary iff
( X * X ) = ( F b F − X * X ⊗ δ ) d A −1 b = F F
286
Stochastics, Control & Robotics
Measurement (output) process dY = ( Z bGZ − Y ⊗ δ ) d A µ µ Let X = U, Fv = UZ v . Then,
(
) v v = U ( Z vµ − I δ µv ) d Aµ
dU = UZ vµ − U δ µv d Aµ U = Unitary iff (U ( Z ⊗ δ )) = (U ( Z ⊗ δ )) b
(U ( Z ⊗ δ ))b− −
−1
= Z −−U *
Z −− Z⊕d = Z −0 + Z−
Z 0−
Z +− Z +0 Z ++
Z 00 Z 0+
UZ −− UZ 0− UZ +− 0 0 0 U(Z⊕d) = UZ − UZ 0 UZ + + UZ − UZ 0+ UZ ++ Z ++*U * (U(Z⊗d))b = Z 0+*U * +* * Z− U U * = 0 0
Z +0*U * Z 00*U * Z −0*U *
Z +0*U * Z 00*U * 0
Z +−*U * Z 0−*U * Z −−*U *
Z +−*U * Z 0−*U * U*
U* = U–1 (U(Z⊗d))–1 = (Z⊗d)–1U* −1
I Z 0− Z +− = 0 Z 00 Z +0 U * 0 0 U* −1 , i.e., b = F For U to be unitary, we require F I Z +0* 0* 0 Z0 0 0
I Z 0− Z +−* Z 0−* = 0 Z 00 0 0 I
Z +− Z +0 I
−1
Large deviations, Classical & Quantum General Relativity with GPS Applications
or
I Z 0− 0 0 Z0 0 0
Z +− I Z +0* Z +0 0 Z 00* I 0 0
287
Z +−* I 0 0 0* = 0 I 0 Z+ 0 0 I I
Z +0* + Z 0− Z 00* = 0,
or
Z +−* + Z 0− Z 0−* + Z +− = 0, Z 00 Z 00* = I, Z 00 Z 0−* + Z +0 = 0, These are equivalent to − 0* 0* 0 −1 Z 00* = Z 0 , Z + = − Z 0 Z 0
Z +0 = − Z 00 Z 0−* , 0 −1 0 0 −1 0 −* −* Z 00* = Z 00 −1 , Z 0 = − Z 0 Z + = Z 0 Z 0 Z 0 consistent,
Let Then
− −* Z +− + Z +−* = − Z 0 Z 0 Y = UYU* dY = dU.Y.U* + U.dY.U* + U.Y.dU*
+ dUdY.U* + UdYdU* + dUYdU*.
(
)
v dU.Y.U* = U Z vµ − I δ µv YU *d Aµ µ v U.dY.U* = U ( Z bGZ − Y ⊗ δ )v U *d Aµ
(
)
µ v = U ( Z bGZ )v − Y δ vµ U *d Aµ
(
)
µ
U.Y.dU* = U .Y . Z vµ*U * − U *δ µv d Av
( )((Z bGZ )ρσ − Y δρσ )U *d Aµv d Aρσ ρ σ = (UZ vµ − U δ vµ ) (( Z b GZ )σ − Y δ ρσ ) δ ρvU *d Aµ v σ = (UZ vµ − U δ µv ) (( Z bGZ )σ − Y δ vσ )U *d Aµ
dU.Y.U* = UZ vµ − U δ vµ
µ = U ( ZZ bGZ )σ U * − UZ σµYU * µ σ − U ( Z bGZ )σ U * + UYU *δ µσ d Aµ .
Remarks from "Quantum Stochastic Calculus and Quantum Nonlinear Filtering" by V.P. Belavkin (1992).
288
Stochastics, Control & Robotics
0 C0− C = 0 C0 0 0 0
C+− b C+0 , C = 0
0 C+0* C+−* −* 0* 0 C0 C0 0 0 0
0 0 1 g = 0 1 0 1 0 0 0 0 0 C+ = C0−* C00* 0 C −* C 0* 0 + + 0 0 0 0 1 0 0 1 0 − * 0* gC+g = 0 1 0 C0 C0 0 0 1 0 1 0 0 C −* C 0* 0 1 0 0 0 0 C+−* C+0* 0 0 0 1 −* 0* = C0 C0 0 0 1 0 0 0 0 1 0 0 0 C+0* C+−* = 0 C00* C0−* = Cb 0 0 0 A(C, t) = C+−t + C0− A− (t ) + C+0 A+ (t ) + C00 N (t )
dA–(t)dA+(t) = dt
So
[A–(t), A+ (t′)] = tLt′
It a(u), a+(u) are the annihilation and creation operator fields, then we know that [a(u), a+(v)] =
(1)
e(u) is the exponential vector, so a(u)e(v) = e(v). d e(v + tu ) t=0 dt ∂2 e( w1 + t1u ), e( w2 + t2v) = ∂t1∂t2
a+(u)e(v) = e( w1 ), a(u)a + (v)e( w2 )
t1 = t2 =0
=
∂2 exp ( w1 + t1u , w2 + t2v ∂t1∂t2
=
∂ u , w2 + t2v exp ( w1, w2 + t2v ∂t 2
) t1 =t2 =0 ) t2 = 0
Large deviations, Classical & Quantum General Relativity with GPS Applications
= e( w1 ), a + (v)a(u)e( w2 )
( u, v
+ u , w2 w1, v
289
) e(w1), e(w2 )
= u , w2 w1, v e( w1 ), e( w2 )
e( w1 ), [a (u), a(v)] e( w2 ) = u , v e( w1 ), e( w2 )
So
This proves (1). Let u,v∈L2(R+). Then
+ + A–(t) = a ( χ[0, t ] ) , A (t ) = a (χ[0, t] ) ,
+ A− (t ), A (t′) = χ[0, t ] , χ[0, t ′ ] = tLt′
Conservation process H∈L(L2(R+)) LH(t) (L(X) linear operator in the vector space X). W(0, exp(ilHc[0, t])) = exp(ilLH(t)).
[c[0, t], H} = 0 t is assumed.
e( w1 ), Λ H (t )e(w2 ) = w1, H χ[0, t}w2 e( w1 ), e( w2 ) e( w1 ), [ Λ H (t ), a(u )] e( w2 )
= e( w1 ), Λ H (t )a(u )e(w2 ) − e( w1 ), a (u )Λ H (t )e( w2 ) = w1, H χ[0, t]w2 u , w2 e( w1 ), e(w2 )
d e( w1 + εu ), Λ H (t )e( w2 ) t=0 dε = w1, H t w2 u , w2 e( w1 ), e(w2 ) −
−
(
d w1 + εu, H t w2 e ( w1 + εu ) , e ( w2 ) dε
= w1, H t w2 u , w2 − ( u , H t w2 + w1, H t w2 u , w2 e( w1 ), e(w2 ) = − u , H t w2 e( w1 ), e( w2 ) Hence e( w1 ), [ Λ H (t ), A− (t ′ )] e( w2 ) = e( w1 ), Λ H (t ), a(χ[0, t ′] ) e( w2 ) = − χ[0, t ′] , H t w2 e( w1 ), e( w2 ) = − χ[0, t Λt ′] , Hw2 e( w1 ), e( w2 ) t Λt ′ = − ∫ ( Hw2 )(τ)d τ e( w1 ), e(w2 ) 0
) ε=0
290
Stochastics, Control & Robotics
On the other hand, e( w1 ), a(χ[0, t Λt ′] )e(w2 ) = χ[0, t Λt ′] , w2 e( w1 ), e( w2 ) t Λt ′ = ∫ w2 (τ)d τ e( w1 ), e( w2 ) 0 So if H = I, the identity operator, then we get e( w1 ), [ Λ I (t ), A− (t ′ )] e( w2 ) = − e( w1 ), A− (t Λt ′)e(w2 ) i.e.
[A–(t), LI(t′)] = A–(tLt′)
We define
N(t) = LI(t).
e( w1 ), a + (u), Λ H (t ) e( w2 ) = a(u )e( w1 ), Λ H (t )e(w2 ) − e( w1 ), Λ H (t )a + (u )e( w2 ) = w1, u w1, H t w2 e( w1 ), e(w2 )
−
d e( w1 ), Λ H (t )e(w2 + εu dε
ε=0
= w1, u w1, H t w2 e( w1 ), e(w2 ) −
(
d w1 , H t ( w2 + εu ) exp ( w1 , w2 + εu dε
= w1, u w1, H t w2 − ( w1H t u + w1, H t w2 w1, u ) e( w1 ), e(w2 ) = − w1, H t u e( w1 ), e( w2 ) Thus, putting u = c[0,t′], e( w1 ), A+ (t′), Λ H (t ) e( w2 )
( (
)
)
= − ∫ H t*Λt ′ w1 (τ)d τ e( w1 ), e(w2 )
t Λt ′
0
= − e( w1 ), A+ (t)e( w2 ) =
* ∫ ( H w1 ) (τ)d τ
e( w1 ), e(w2 )
A(t )e( w1 ), e( w2 )
= χ[0, t] , w1 e( w1 ), e( w2 ) t = ∫ w1 (τ)d τ e( w1 ), e( w2 ) 0 N (t ), A+ (t′) = Λ I (t ), A+ (t′) = A+ (t Λt′ )
)) ε=0
Large deviations, Classical & Quantum General Relativity with GPS Applications
291
To summarize + A− (t ), A (t′) = tLt′, [ A− (t ), N (t′)] = A− (t Λt′ ) , + + N (t ), A (t′) = A (tLt′).
(
Here, the noise Hilbert space is Γ s L2 ( R + ) 2
2
)
Now L (R+) = L (R+ → C). More generally, we can consider L2(R+ → K) where K = C m. 0 − Regard c0 as a row vector row ( c0− (j): j = 1, 2, ., m), c+0 = column ( c+ (j): j = 1, 0 as an m × m complex matrix, 2, .., m) as a column vector, c0 = c00 (i, j )
c+−
))1≤i, j≤m
((
∈C is a scalar (complex). Then
0 c0− c = 0 c00 0 0
c+− ( ) ( ) c+0 ∈C m + 2 × m + 2 0 m
m
j=1
j=1
− j − + 0 A(c, t) Ic+ t + ∑ A− (t )c0 ( j ) + ∑ A j (t )c+ ( j )
Let
+
m
∑
k , j =1
c00 (k , t ) N kj (t)
A−j (t ) = a(ϕ j χ[0,t ] ) ,
Here
+ A+j (t ) = a (ϕ j χ[0, t ] )
where
{ ϕ j }1
m
Nkj(t) = Λ ϕk
Pj
(t )
is an ONB for Cm.
Belavkin quantum filtering P. 187 (Remarks). Et orthoprojector on Bt ξ , Bt = ∞t′ . Et commutes with ∞t′ .
Proof: Let B∈ ∞t′ , x∈H. fixed. Bt ξ = ∞t′ξ . et = ∞t′ξ is ∞t′ -invariant. Bh – EtBh ⊥ et h – Eth ⊥ et h∈H. * B + B* , B − B ∈ ∞ ′ . t 2i 2
Let
is( B + B* ) Us = exp , 2 is( B − B* ) . Vs = exp 2i
292
Stochastics, Control & Robotics
Then Us, Vs ∈ ∞t′ , Us, Vs are unitary. Hence
(∵ et is ∞t′ invariant)
h – Eth ⊥ et ⇒ Ush – UsEth ⊥ et,
Vsh – VsEth ⊥ xt s∈R. Taking Thus
d at s = 0 ⇒ Bh – BEth ⊥ xt ds EtBh – BEth ⊥ xt
But EtBh∈xt, BEth∈xt.
Hence EtBh – BEth∈xt ⇒ ⇒
[Et, B]h = 0 h∈H [Et, B] = 0. 0 Z +0* (ZbDZ) = 0 Z 0* 0 0 0
Z +−* 0 D0− Z +0* 0 D00 0 0 0
0 Z +0* D00 = 0 Z 00* D00 0 0
Z +0* D+0 0 Z 0− Z 00* D+0 0 Z 00 0 0 0
0 Z +0* D00 Z 00 = 0 Z 0* D 0 Z 0 0 0 0 0 0
(Z b D0b FZ )+−
(
X 0 0
0 X 0
)+−
Z +−* 0 ( D+0* )0 Z +0* 0 ( D00* )0 0 0 0 − 0 0 Z0 0 0 Z 00 X 0 0
0 Z +0* ( D00* )0 0* 0* 0 Z 0 ( D0 )0 0 0
Z +− Z +0 0
Z +− Z +0 0
Z +0* D00 Z +0 Z 00* D00 Z +0 0
= Z b D0b ( X ⊗ δ + C ′Z )
0 Z +0* 0* Z b D0b ( X ⊗ δ ) Z = 0 Z 0 0 0
0 Z 0− D+− D+0 × 0 Z 00 0 0 0
( D+−* )0 ( D+0* )0 0
Z +− Z +0 0
0 Z +0* ( D+0* )0 Z 00* ( D+0* )0 × 0 0 0
0 Z +0* ( D00 )*0 XZ 00 = 0 Z 00* ( D00* )0 XZ 00 0 0
XZ 0− XZ 00 0
Z +0* ( D00* )0 XZ +0 Z 00* ( D00* )0 XZ X +0 0
XZ +− XZ +0 0
Large deviations, Classical & Quantum General Relativity with GPS Applications
0 0 0 0 = 0 0 1 ZbDZ ≡ 0 0
D0−
Z +− D00 Z +0 0 1 D0− Z 00 D0− Z +0 + D+− D00 Z 00 D00 Z +0 + D+0 0 1 Z +0* Z +−* 0 D0− D+− Z 00* Z 0−* 0 D00 D+0 0 1 0 0 0
D+− 1 Z 0− D+0 0 Z 00 0 0 0
( Z b DZ )+−
(
1 Z 0− 0 0 Z0 0 0
)
− − 0* 0 0* 0 0 = D0 + Z + D0 Z + + D+ + Z + D+
= D+− + D0− Z +0 + Z +0* D+0 + Z +0* D00 Z +0 0 C0− C = F – X⊗d = 0 C 0 0 0 0 X F = X⊗d + C = 0 0 Z b D0bCZ = (D ≡ D0)
Z +− Z +0 1
1 Z 0− D+− + Z +0* D+0 0 Z 00* D+0 × 0 Z 0 0 0 0
0 D0− + Z +0* D00 Z 00* D00 = 0 0 0 \
293
C+− C+0 0 C0−
X + C00 0
1 Z +0* 0* 0 Z0 0 0
Z +−* 0 D+0* Z +0* 0 D00* 1 0 0
0 C0− 0 0 C0 0 0
C+− 1 Z 0− C+0 0 Z 00 0 0 0
0 D+0* + Z +0* D00* Z 00* D00* = 0 0 0
C+− C+0 X D+−* D+0* 0 Z +− Z +0 1
D+−* + Z +0* D+0* Z 00* D+0* 0
Z +− Z +0 1
294
Stochastics, Control & Robotics
0 C0− Z 00 × 0 C00 Z 00 0 0
C0− Z +0 + C+− C00 Z +0 + C+0 0
( ) ( = ( D Z D ) (C Z + C )
0 0 0* 0* 0* 0 ( Z b D0bCZ ) +− = D+ + Z + D0 × C0 Z + + C+
Hence
0 0 0 +
* eqn. (2.2)
0 * +
(
0 0 0 +
)
0 +
)
− X ⊗ δ d A d X = F F vλ (t ) −
v vλ (t )d Avλ (t ) X (t )δ vλ d Aλ (t ) = C = − − j 0+ ( j )d A+j (t ) d A(c, t) = C + dt + C 0 ( j ) A− (t ) + C
00 ( j , m)d N mj (t ) C +− (t ) is the coeff. of d A+− (t ) = dt in d A(c, t) . A+− (t ) = t, C 0+ ( j ) , +j (t ) = C 0− ( j ) , C −j (t ) = C C Amj (t ) = N mj (t ) = C mj (t ) , C 00 ( j , m) . j + + d A− (t )d Ak (t ) = δ kj dt = δ kj d A− (t ) ,
(δ
+ −
=0
)
+ k k d A j (t )d A− (t ) = 0 = δ +− d A j (t )
j k d A− (t )dN mk (t ) = δ mj d A− (t ) + kj (t ) d A j (t )dN mk (t ) = 0 = δ +m d N
(δ
+ m
=0
k = δ +m d A j (t )
)
dN mk (t )dA+j (t ) = δ kj dAm+ (t ) These quantum Ito formula of Hudson and Parthasarthy can be summarized as µ ρ ρ d Av (t )d Aσ (t ) = δ µσ d Av (t )
where m, v ρ, σ = {+, -, 1, 2, 3, ...} vλ d Avλ = dA(C, t) d X = C d X
*
vλ*d Avλ* = C
Large deviations, Classical & Quantum General Relativity with GPS Applications +*
d A j
j
295
+
j*
= d A− , d A− = d A j , j
k*
j
k*
k (i.e. d A j = d Ak ) j = dN dN so,
d X
*
kj *d Akj + C +−*dt + C −* j * j * +* = C j d A− + C + d A j kj d Akj + C −j *dt + C −j *d A+j + C +j *d A−j = C
Now
So
0 C+0* C+−* Cb = 0 C00* C0−* 0 0 0 k * * (k , j ) d A j + C +−*dt + C 0− ( j )* d A−j * + C 0+ ( j )* d A+j * d X = C b (k , j )dA j + C +−*dt + C 0− ( j )* d A+j + C 0+ ( j )* d A−j = C k b ( j , k )dA j + C b − dt + C b 0 ( j )d A+j + C − ( j )d A−j = C 0 + + k = d A(C b , t )
Thus if Now
* b X (t ) = A(C, t), then X (t ) = d A(C , t ) .
, t) , vλ ( t )d Avλ (t ) = d A(C dX = C bv λ (t )d Avλ (t ) = d A(C b , t) dX * = C
So using the quantum Ito formula, bλ λ′ v v′ dX*.dX = C v C v′ d Aλ d Aλ ′ v′ λ′ v bv λ C v′ δ λ′ d Aλ = C
bλ v v′ = C v C v′ d Aλ λ
bC d Avλ′ = C v′ b C, t = d A C j + A t ( ), A ( t′) We have − k = ϕ j χ[0, t ] , ϕ k χ[0, t ′ ] = δ jk t Λt ′
(
)
a ϕ χ j j [ 0, t ] , Λ ϕ k A− (t ), N km (t ′) =
(
ϕm
(t ′ )
= a ϕ m ϕ k ϕ j χ[0, t Λt′]
(
= δ kj a ϕ m χ[0, t Λt′]
)
)
296
Stochastics, Control & Robotics
= δ kj A−m (t Λt′ ) It is better to denote Nkm(t) by N km (t ) : N km (t ) = Λ ϕk Then,
ϕm
(t )
m j δ j Am (t Λt′ ) A− (t ), N k (t ′) = k −
Rough Calculation: e ( w1 ) , Λ H (t ) , a (u ) e ( w2 )
(
)
* = − u , H t w2 e ( w1 ) , e ( w2 ) e ( w1 ) , a H t u e ( w2 )
= H t*u , w2 e ( w1 ) , e ( w2 ) = u , H t w2 e ( w1 ) , e ( w2 ) so Also,
(
)
* a (u ) , Λ H (t ) = a H t u N km (t ), A+j (t ′ ) = Λ ϕ ϕ (t ), a* ϕ j χ[0, t′ ] k m
(
(
)
* = a ϕ k ϕ m ϕ j χ[0, t Λt′]
(
= δ mj a* ϕ k χ[0, t Λt′ ]
)
)
= δ mj Ak+ (t Λt′ ) Finally, e( w1 ), Λ H1 (t ), Λ H 2 (t ′ ) e( w2 )
= e( w1 ), Λ H1 (t )Λ H 2 (t ′ )e( w2 ) − e( w1 ), Λ H 2 (t ′)Λ H1 (t )e( w2 )
e( w1 ), Λ H1 (t )Λ H 2 (t ′ )e( w2 ) = −
−
∂2 e( w1 ), e exp (iε1H1t ) .exp (iε 2 H 2t ′ ) w2 ∂ε1∂ε 2
(
∂2 exp w1 , w2 + i (ε1H1t + ε 2 H 2t ′ ) w2 ∂ε1∂ε 2
(
− ε1ε 2 H1t H 2t′ w2
) ε = ε =0 1
2
)
ε1 = ε 2 = 0
Large deviations, Classical & Quantum General Relativity with GPS Applications
Rough Calculation:
(
[a(u), LH(t)] = a H t*u
)
( ) a* ( H t*u )
* * * * Λ H (t ) , a (u ) = a H t u
⇒
Λ * (t ) , a* ( u ) = H H commuting with c[0, t] ⇒
[LH(t), a*(u)] = a*(Htu)
⇒ ∂ ∂ε 2
{(i w1, H1t w2 − exp ( w1 , w2 + iε 2 H 2t′ w2 )} ε =0 = −
)
w1 , ε 2 H1t H 2t′ w2
2
=
{ w1, H1t w2
w1, H 2t ′ w2 + w1, H1t H 2t ′ w2
e( w1 ), e( w2 ) Thus, e( w1 ), Λ H (t ), Λ H (t ′ ) e( w2 ) 1 2 = w1, [ H1, H 2 ]t Λt ′ w2 e( w1 ), e( w2 ) and hence
Λ H (t ), Λ H (t ′ ) = Λ H , H (t Λt ′ ) [ 1 2] 1 2
m m′ Thus, N k (t ), N k ′ (t ′) = Λ ϕk
( = (δ
ϕm
(t ), Λ ϕ
k′
ϕ m′
(t ′ )
= δ km′ Λ ϕ k ϕ m′ − δ m′ k Λ ϕk ′ ϕm
Thus
297
[ A(c, t ), A(d , t′)]
=
m m′ k ′ Nk
∑ j, k
)
) (t Λ t ′ )
′ m − δm k N k ′ (t Λt ′ )
C0− ( j )d +0 (k ) A−j (t ),
Ak+ (t ′)
+ ∑ C+0 ( j )d 0− (k ) A+j (t ), A−k (t ′) j, k
+ ∑ C0− ( j )d 00 (k , r ) A−j (t ), N kr (t ′ ) jkr
+ ∑ C00 (k , r )d 0− ( j ) N kr (t ), A−j (t′ ) jkr
+
∑ C00 (k , r )d00 ( p, q) N kr (t ), N qp (t ′)
krpq
+ ∑ C+0 ( j )d 00 (k , r ) A+j (t ), N kr (t′ ) jkr
}
298
Stochastics, Control & Robotics
+ ∑ C00 (k , r )d +0 ( j ) N kr (t ), A+j (t′ ) jkr
=
∑ C0− ( j )d+0 (k )δ kj t Λt′ j, r
− ∑ C+0 ( j )d 0− (k )δ kj t Λt′ j, k
+ ∑ C0− ( j )d 00 (k , r )δ kj A−r (t Λt′) jkr
− ∑ C00 (k , r )d 0− ( j )δ kj A−r (t Λt′) jkr
− ∑ C+0 ( j )d 00 (k , r )δ rj Ak+ (t Λt′) jkr
+ ∑ C00 (k , r )d +0 ( j )δ rj Ak+ (t Λt′) jkr
+
∑ C00 (k , r )d00 ( p, q)δ rp N kq (t Λt ′) − δ qk N rp (t Λt′)
krpq
(
)
( + ∑ (C ( k , j ) d
) (k , j )C ( j ) )A (t Λt′ )
= t Λt ′ ∑ C0− ( j )d +0 ( j ) − C+0 ( j )d 0− ( j ) j
+ ∑ C0− ( j )d 00 ( j , r ) − C00 ( j , r )d 0− ( j ) A−r (t Λt′ ) jr
0 0
0 0 + ( j ) − d0
jr
0 +
+ k
+ ∑ C00 (k , p)d 00 ( p, q) − d 00 (k , p)C00 ( p, q) kpq N kq (t Λt′ ) .
The above calculation may be referral to while reading Belavkin's original paper to make the reading easier.
[16] Selected Topics in General Relativity: 1. Tetrad formulation of field equations. gmn (x) is the metric; ema (x), a = 0, 1, 2, 3 is a tetrad basis in the sense that for each a, (ema)3m = 0. is a contravarient vector field and hab = gmnema enb are scalar constraints.
We have
dt2 = gmndxmdxn = habeam ebn dxmdxn. = hab (eam dxm) (ebn dxn)
ema dxm is a one form. Here ((ema )) is the matrix of ((ema )) : ema ena = dmn, ema ebm = dba.
Large deviations, Classical & Quantum General Relativity with GPS Applications
ea = eaµ
299
∂
, a = 0, 1, 2, 3 form a local basic for the tangent space at x. ea is a ∂x µ vector field. Likewise, eam dxm, a = 0, 1, 2, 3 form a local basis for the dual to the b ν tangent space at x. Here, eam = ηab eµ = gµνea .
Example: The perturbed Kerr metric has the form dt2 = e2 ν dt 2 − e2µ dr 2 − e2µ 2 d θ2 − e2ψ (d ϕ − wdt − q1dr − q2 d θ − q3d ϕ )
2
Where n, m1, m2, ψ, w, q1, q2, q3 are functions of t, r, θ, j. We define
e0 = ev dt , e1 = eµ1 dr , e2 = eµ 2 dθ , e3 = eψ ( d ϕ − wdt − q1dr − q2 d θ − q3d ϕ ) h00 = 1, h11 = – 1, h22 = – 1, h33 = – 1.
Then
ηab ea eb = dt2.
Note eam dxam = 0, 1, 2, 3 are also one for and the from a basis for the co-tangent space at x. Co-varient derivative:
(
A:vµ = Aa eaµ
)
:ν
(Aa = ema Am are scalar fields)
= A,an eam + Aaema:n. µ b ν b a µ b ν a µ b ν = A:ν eµ ec ∆ A / c = A,ν ea eµ ec + A ea:ν eµ ec b ν a b b b a = A,ν ec + A τ ac = A,c + τ ac A
where the ec direction),
b (directional derivatives along A,cb = ea (Ab) = enc ∂n Ab = ecnA,n b µ ν tbac = eµ ea;ν ec (Spin coefficients. They are scalar).
Maxwell equation in tetrad notation. F;νµν = KJm (Four vector notation) ab µ ν F µν = F ea eb
(
Fab = scalars:
F;νµν = F;νab eaµ ebν Fab = F µν eµa eνb + F ab eaµ;ν ebν + eνµ ebν;ν
(
ab µ ab µ ν a ν = F,b ea + F ea:ν eb + eµ eb:µ
(
ν eµa F:νµν = F,bab + F cb eµa ecµ:ν ebν + δ ea eb:ν ab cb a ab ν = F ,b + F τ cb + F eb:ν
) )
)
300
Stochastics, Control & Robotics a µ ν a enb:m = eµ eb:ν ea = tba .
Now,
So the Maxwell equation, can be expressed as c a F,bab + F cb τ cb + F ab τbc = kJa
[17] Perturbations in the Tetrad Caused by Metric Perturbation: a b gmn = ηab eµ eν
(
b a a b dgmn = ηab eµ δeν + eν δeµ
)
b a = ebµ δeν + eaνδeµ
So
ebµ δgµν = δeνb + ebµ eaνδeµa We note that
(
)
ebµ δeµa = δ ebµ eµa − eµa δebµ a bµ = −eµ + δe .Thus,
So,
ebµ eaνδeµa = − eaνeµa δebµ = − gµνδebµ δeνb − gµνδebµ = ebµ δgµν
Now, so and hence or
b µρ ebm = eρ g µρ b b µρ debm = g δeρ + eρ δg ρ b µρ b bµ debn = g ν δeρ − gµνδg eρ = e δgµν
ebµ δgµν + δgµνeρb δg µρ = 0 µα ρβ dgmρ = − g g δgαβ . So the above reduces to
ebµ δ gµν − gµν g µα g ρβ eρb δ gαβ = 0
or
ebµ δgµν − δg νβ ebβ = 0 Which is a trivial identity. This shows consistency. Let
((δ g )), ∆E = ((δe )) = (( e ) )
∆G = E
a µ
µν
aµ
a,µ
a, µ
Large deviations, Classical & Quantum General Relativity with GPS Applications
The equation for ∆E be solved is E T , ∆E + ( ∆E ) . E = ∆G T
[18] Geodesic Equation in Tetra Formalism: νa (τ) = νa (τ)eµa ( x (τ)) a µ nm = ν ea
=
d νµ d νµ µ ea + νa eaµ.ν νν = dτ dτ
d νa µ ea + νa νb eaµ.ν ebν dτ
µα 1 µα Γ µvσ = g Γ ανσ = g ( gαν,σ + gασ, ν − g νσ,α )
Express
Γ µνσ
is terms of
(ema)
2 and simplify.
Alternate Method: The geodesic equation can be expressed as v v µ:vµ = 0
(
νν νa eaµ
Thus or or or or
)
(
:ν
νν eaµ ν,aν + νa eaµ:ν
)
=0 =0
d νa + νa νb ebν eaµ:ν = 0 dτ d νa + νc νb ebν eµa ecµ:ν = 0 dτ
eaµ
d νa a + νb νc τ cb =0 dτ
Riemann tensor in tetrad basis: β eµa:ν:ρ − eµa:ρ:ν = Rµνρ eβa a β α µ ν ρ Rbcd = Rµνρ eβ eb ec ed
Now,
(
µ ν ρ a a = eb ec ed eµ:ν:ρ − eµ:ρ:ν
(
a b O = gµν:σ ηab eµ eν
(
)
:σ
a b a b = ηab eµ:σ eν + eµ eν:σ a b = eaν eµ:σ + ebµ eν:σ
)
)
301
302
Stochastics, Control & Robotics
So νa aν b O = eµ:σ + e ebµ eν:σ
Now
(
µ ν a ebµ ecν eµa:ν:ρ = eb ec eµ:ν
)
)
(
:ρ
(
ν − eµa:ν eb:µρ ecν + ebµ ec:ρ
(
µ v µ v µ v a a = eb ec eµ:v ,ρ −eµ:v eb:ρec + eb ec:ρ
=
a τbc ,ρ
− eµa:ν
(
eb:µρ ecν
ν + ebµ ec:ρ
(
)
µ ν µ ν af a = η τbfc,ρ − eµ:ν eb:ρ ec + eb ec:ρ
Now,
)
)
)
a ebµ eµa:ν ecν = τbc = ηaf τbfc
eµa:ν ecν = haf eb t m bfc
So
af g µ µ = η eµ eb:ρ τ gfc eµa:ν ecν eb:ρ af g h h g a = η τbh eρ τ gfc = eρ τbh τ fc
Likewise the other terms are simplified. a in terms of the spin coefficients tabc and their first order Exercise: Express Racd partial derivatires.
[19] Quantum General Relativistic Scattering: The 3-metric of spaces times has the form trs = −
τ rs gor gos + 2 goo goo
This 3-metric is obtained by considering the time taken by a photon to propagate from xr to xr + dxr back and forth. Let t = det (trs). The Laplace Beltamic operator in 3D curved space is them
) (( )) = ((τ ))
(
∆B = τ −1/ 2 ∂ r τ1/ 2 τ rs ∂ s , τ rs Summation over r, s = 1, 2, 3.
Approximation: Let trs = δ rs + ε X rs Then
trs = δ rs + ε X rs + O(ε 2 ) .
(((χrs ))) .
Let
c = χ rr = t r
Then,
t = 1+ ε χ + O ε 2 .
( )
1 2 t1/2 = 1+ εξ + O(ε ) . 2
rs
−1
Large deviations, Classical & Quantum General Relativity with GPS Applications
303
1 2 t–1/2 = 1 − ε χ + O(ε ) 2 1 1 ∆ B ψ = 1 − ε χ ∂ r 1 + ε χ (δ rs − ε χ rs ) ψ , s + O(ε 2 ) 2 2 1 ψ ε = 1 − ε χ ∆ f + (χ ψ , r ),r − ε χ rs ψ ,s 2 2
(
1 = ∆ f ψ + ε χψ ,r 2
(
Where ∆f =
),r + O(ε2 )
),r − (χrs ψ ,s ),r − 12 χ∆ f ψ + O(ε2 )
3
∑ ∂2r is the Laplacian of flat space. Schrödinger Hamiltonian of 1
an electron board to the makes in the presence of the gravitational field. The Hamiltonian after interaction with gravitational field assumed to be concentration around the nuclear is − 2 ∆f + ε V1 H1 = 2m Where
i.e.
V1 =
Z e2 − 2 1 S χ,r ∂ s − χ rs ∂ r ∂ s − χ rs ∂ r ∂ s − 12 2m 2 3 2 ∑ xr r =1
X+X* . We find 2 −2mV1 1 1 = χ,r ∂ r + ∂ r χ, s − χ rs , r ∂ s − ∂ s χ rs ,r 4 2 2 S {X} =
) (
(
−
)
1 ze2 χ rs, ∂ r ∂ s + ∂ r ∂ s χ rs − 12 2 3 r2 ∑ x 1
(
)
1 1 − χ,rr + χ rs , rs 4 2 − χ rs ∂ r ∂ s −
1 ze2 ∂ r χ rs ) ∂ s − ( 12 2 3 r2 ∑ x 1
Scattering theory can be developed taking H0 = −
2 2 ∆f + ε V1. ∆f and H1 = − 2m 2m
304
Stochastics, Control & Robotics
Time dependent quantum scattering theory: H1 (t) = H 0 + ε V1 (t ), t ∈R . scattered ψ i input state. Let
{ {
t
U (t, s) = T exp −i ∫ H1 (τ) d τ s
∞
n = I + ∑ ( −i ) n =1
ψ 0 output state
ψ+
}}
∫
H1 (τ1 ) H1 (τ 2 )...H1 (τ n ) d τ1...dτ n
s < τ n < ..< τ1 < t ∞
n n = U 0 (t − s ) + ∑ ( −i ) ∈ n =11
∫
U 0 (t − τ1 )V1 (τ1 )U 0 (τ1 − τ 2 )V1 (τ 2 )
s < τ n < .. τ1 < t
U 0 (τ n −1 − τ n )V1 (τ n ) U 0 (τ n − s ) d τ1...d τ n where U0 (t) = exp(−itH 0 ) . Maxwell equation in cosmology. The Robertson-Walker metric Evolution of the universe assuming homogeneity and isotropivity. 2 dt2 = dt −
R 2 (t ) dr 2 1 − kr 2
(
− R 2 (t ) r 2 d θ2 + sin 2 θdϕ 2
)
X0 = t, X1 = r, X2 = 0, X3 = j. g00 = 1, g11 = −
R 2 (t )
2
, g 22 = − R 2 (t )r 2 , g33 = − R 2 (t ) r sin 2 θ 2
1 − kr 1 Rµν − Rgµν = k (Tmr) 2 Tmn = ( p + ρ) vµ vν − pg µν
(1)
The frame (t, r, θ, j) is comoving i.e. Geodesic are r = constant, θ = constant, j = constant. It can be verified that these satisfy the geodesic equation. d 2 xµ dτ 2
+ Γ µνσ
dx ν dx σ =0 dτ d τ
r = 0, r = 1, 2, 3). Thus (vm) = (1, 0, 0, 0) = (vm). (Since G00
(1) ⇒
– R = kT = k (p + ρ – 4p) = k (ρ – 3p) R = K (3p – ρ).
(1). can be expressed as Rmn =
1 Rgµν + kTµν 2
Large deviations, Classical & Quantum General Relativity with GPS Applications
305
K (3 p − ρ) g µν + K (( p + ρ)vµ vν − pgµν ) 2 p ρ = K ( p + ρ)vνvν + kg µν − 2 2
=
i.e.
p − ρ Rmn = K ( p + ρ)vµ vν + gµν 2 p − ρ R00 = K p + ρ + 2 K {3 p + ρ} = 2 K ( p − ρ) g kk, 1 ≤ k ≤ 3. Rkk = 2
i.e.
R00 =
K (3 p + ρ) 2
(2a) (2b)
p : p (t), ρ = ρ (t) (\ of homogeniety)
K ( p − ρ) R 2 (t ) , 2 1 − kr 2 K 2 2 = − ( p − ρ) R (t ) r , 2 K 2 2 2 = − ( p − ρ) R (t ) r sin θ 2
R11 = − R22 R23
α α α β α β Rmn = Γ µα , ν − Γ µν,α − Γ µνΓ αβ + Γ µβ Γ να α α β α β R00 = Γ α0α, 0 − Γ 00 , α − Γ 00 Γ αβ + Γ 0β Γ 0α 0 2 a + Γ101 + Γ 02 + Γ 303 G0a = Γ 00
1 00 1 1 R ′ (t ) 1 g g00, 0 = 0, G01 = g ′′( g11,0 ) = (log g11 )10 = , 2 2 2 R(t ) R ′ (t ) 1 R ′(t ) 3 1 2 , Γ 03 = (log g33 ),0 = G02 = g (log g 22 ),0 = . R(t ) 2 R(t ) 2 R ′(t ) a = . G0a R(t ) 0 G00 =
\
α Ga00 = 0, Γ α00 Γ βαβ = 0, Γ 0β Γ β0α
( ) ( ) ( )
= Γ101 So,
2
2 + Γ 02
R00 =
2
+ Γ 303
3R′ R′ 2 +3 2 R R
2
2
R′ = 3 . R
306
Stochastics, Control & Robotics α α β α β R11 = Γ1αα ,1 − Γ11 , α − Γ11 Γ αβ + Γ1β Γ1α 2 3 a + Γ13 = Γ111 + Γ12 G1a
G′11 =
−Kr 1 1 11 g g11,1 = (log g11 ),1 = 2 2 ( −Kr 2 )
1 1 22 1 g g 22,1 = (log g 22 ),1 = , 2 r 2 1 1 = (log g33 ),1 = 2 r −kr 2 = + 1 − kr 2 r ,1
2 = G12 3 G13
So,
Γ11α,1
=
−k 1 − kr
2k 2 r 2
−
2
2 2
(1 − kr )
−
(k + k r ) − 2 (1 − kr ) r
2 r2
2 2
=
2
2
0 1 α = Γ11, Γ11,α 0 + Γ11,1
1 00 g g11, 0 2 −kr 1 R(t ) R ′(t ) 1 = − g11, 0 , Γ111,1 , Γ11 = 2 2 1 − kr 2 1 − kr
0 = G11
(
=
α β Γ11 Γ αβ
−k
)
2k 2 r 2
−
(1 − kr ) = Γ Γ = Γ (Γ + Γ + Γ Γ + Γ (Γ + Γ 1 − kr 2 0 11
2 2
β 0β
1 11
0 11
β αβ
1 11
1 01
1 11
2 02
) +Γ )
+ Γ 303
2 12
3 13
RR ′ 1 1 G01 = − g 00 g11,0 = − g11,0 = 2 2 1 − kr′ 2 2 Γ101 + Γ 02 + Γ 303 = 3R ′ / R . −kr −kr 2 2 3 1 = = , Γ111 + Γ12 + . + Γ13 Γ11 2 2 r 1 − kr 1 − kr
So
α β Γ11 Γ αβ =
RR ′
(1 − kr ) 2
2 kr − kr 3R ′ R − 1 − kr 2 1 − kr 2 + r
Large deviations, Classical & Quantum General Relativity with GPS Applications
3R′ 2
= α β Γ1β Γ1α
2k
−
(1 − kr ) (1 − kr ) (1 − kr ) = (Γ ) + (Γ ) + (Γ ) + 2Γ Γ 2
1 2 11
= So
k 2r 2
+
2 2
2 2 12
k 2r 2
(1 − kr )
2 2
2
3 2 13
1 10
0 11
2 R′ RR′ + k 1 − kr 2 r 2
+
2
(k + k r ) − 2 − (RR′) + k + 2k r = − (1 − kr ) r (1 − kr ) 1 − kr (1 − kr ) 2 2
R11
307
2 2
2 2
= −
= +
3R / 2
2
k 2r 2
−
2
2
2 2
2k
+
(1 − kr ) (1 − kr ) (1 − kr ) 2
k 2r 2
2 2
+
2
+
2
2R / 2
(1 − kr ) r (1 − kr ) (2R′ + RR′′) + 2k (1 − kr ) = − (1 − kr ) (1 − kr ) = ( − ( 2 R ′ + RR ′′ ) + 2k / (1 / 2r )) 2 2
2
2
2
2
2 2
2
2
The R00 and R11 equation are therefore
R′ R′ 2 k 3 + 2 = (3 p + ρ) , 2 R R
(
2k − RR ′′ + 2 R ′ 2
(a)
) = − k2 (ρ − ρ) R
2
(b)
If we set p = 0 then there equation become R′ R′ 2 kρ −K 2 3 + 2 = ρR , − 2k + RR ′′ + 2 R 2 = R 2 2 R
(
So we get in this case, −
2k R2
R′′ 2 R′ 2 + 2 R R
+
)
308
Stochastics, Control & Robotics
[20] Derive Dirac Equation in Curved Space-Time Using the Newman Penrose Formalism: Special-Relativity: σ µAB X ,µA + im ηB = 0
(1a)
A
σ µAB A1 η,µ + im χ B = 0
(1b)
B AB B A cA = ε AB χ , hA = ε AB η , χ = ε χ B ,
0 1 AB hA = ε ηB , ((ε AB η)) = =e −1 0
(( ε ) ) AB
0 −1 0
((ε AB ))−1 = 1
= (1) Can be expressed as (2)
3
σ 0T ∂0 χ + ∑ σ rT ∂ r χ + im ε η = 0 r =1
(3)
0 1 2 0 − i 3 1 0 ,σ = ,σ = σ0 = I2, σ1 = 1 0 i 0 0 −1 3
σ 0T ∂0 η + ∑ σ rT ∂ r η + im ε χ = 0 r =1
Thus
3
∂0 χ + ∑ σ rT ∂ r χ + im ε η = 0 r =1
(2a)
3
∂0 η + ∑ σ r ∂ r η − im ε χ = 0 r =1
( )
χ = χA
Where Note:
σ
rT
2
( )
, η = ηA A=1
2 A=1
= σr* = σr
(2) Gives on multiplying by i and using p0 = i∂0, pr = – i∂r, 3
p 0 χ − ∑ σ rT p r χ − m ε η = 0 r =1 3
p 0 η − ∑ σ r p r η − m ε χ = 0, r =1
Or
(
σT , p p0 − 0
)
0 0 ε χ =0 −m − ε 0 η (σ, p)
(2b)
Large deviations, Classical & Quantum General Relativity with GPS Applications
The Dirac Hamiltonian operator
(
σT , p H0 = 0 T is clearly Hermitian a e = – e. o rT 0
)
309
0 0 ε +m − ε 0 (σ, p)
0 0 ε 0 ε σ rT + σ r − ε 0 − ε 0 0
0 σ rT ε 0 = + 0 − ε σr T − σr ε 0 = − σ r ε + ε σ rT
(
)
0 σr
ε σr 0
σ rT ε + ε σ r 0
0 1 0 1 0 1 0 1 + σ1T ε + ε σ1 = 1 0 −1 0 −1 0 1 0 −1 0 1 0 + = = 0. 0 1 0 −1 0 i 0 1 0 1 0 −i σ 2T ε + ε σ 2 = + −i 0 −1 0 −1 0 i 0 −i 0 i 0 + = =0 0 −i 0 i 1 0 0 1 0 1 1 0 σ3T ε + ε σ3 = + 0 −1 −1 0 −1 0 0 −1 0 1 0 −1 + = =0 1 0 −1 0 σ rT ε + ε σ r = 0 Thus, and likewise premultiplying this equation by e and postmultiplying by e, we get ε σ rT + σ r ε = 0 Thus rT 0 0 ε σ , = 0, r = 1, 2, 3 r 0 σ − ε 0 (1) Thus implies on pre multiplying by
(
σT , p p0 + 0
)
0 0 ε + m − ε 0 (σ, p)
310
Stochastics, Control & Robotics
and using
The Klein-Gordon equation
In gtr we set
σ rT 0
0 σ sT , σr 0
0 = 2drsI σ s
3 χ p 02 − ∑ p r 2 − m 2 = 0 η r=1 µ σ µ( ab ) = e( ab ) = σ µAB ζ aA ζb
B
with zaA a dyad. We set
B AB zaA = ε AB ζ a and so ζ aA = ε ζ aB
ζ aA = ε ab ζbA ,ζ aA = ε ab ζbA ,
Also
0 1 ((ε ab )) = −1 0
When We write
e(µ00) = l µ , eµ = mm, ( 01) µ
µ µ e(µ10) = m , e(11) = n
Just as a tetrad basis is str transforms 4 vectors into 4-scalars, the dyad basis in str transforms 2-spinors into 2-scalars. lµ = µ m m σAB transform bispinors into 4-vectors: σ µAB p AB = P µ
(( ) ) (( ) ) e(µab )
Thus,
=
σ µab
mµ nµ
m and if ((σAB m )) denotes the inverse of ((σAB)) in the trade that n = dmn, σmABσAB
µ σ µAB σCD = δ CA δ BD . ν σ µAB = ε AC ε BD yµν σCD
Where We verify:
σ µAB σ νAB = ε AC ε BD gµρσρCD σ νAB
ν ε AC ε BD σρCD σ νAB = ε ac εbd σρcd σ ab 01 01 ρ ν 01 10 ρ ν = ε ε σ11σ 00 + ε ε σ10σ 01 10 01 ρ ν 10 10 ρ ν = ε ε σ11σ10 + ε ε σ 00σ11
Large deviations, Classical & Quantum General Relativity with GPS Applications ρ
311
ν
ρ ν ν ρ ρ ν = n l −m m −m m +l n
= gnρ = gρn Now comes Friedman’s lemma. F
(
ε kf ζ aE ζ f ζbE ζ kF
):µ
(
F
= ε kf ζ aE ζ f ζbE:µ ζ kF + ζbE ζ kF:µ
)
F
kf E kf = ε ε afk ζ a ζbE:µ + ε ε ab ζ f ζ kF:µ
= 2ζ aE ζbE:µ + ε ab ζ Since
ζ kF ζ kF:µ =
(
1 kF ζ ζ kF 2
)
:µ
kF
ζ kF:µ = 2ζ aE ζbE:µ
=0
Since
ζ kF ζ kF = dkk = 2 a scalar constant field.
Note:
0 1 ζ aE ζbE = ε ab ≡ −1 0
Now consider σ µAB χ:µA . We have
(
χ:µA = ζ aA χ a Since \ Now
)
A a A a = ζ a:µ χ + ζ a χ,µ
:µ
ca = ζ aA χ A is a scalar for a = 0. σ µAB χ:Aµ = σ µAB ζ aA χ,aµ + σ µAB ζ aA:µ χc
(
AB A = ε ζ aB ζ a:µ
)
:µ
AB AB = ε ζ aB:µ since ε:µ = 0
So,
µ µ a A bc a AC A σ µAB ζ a:µ χ a = σ AB χ ε ζ ac:µ = σ Ab χ ζb ζ ζ ac:µ
a bA AB A aB ab AB a b a AB b a bA (Note that eab = ζ A ζ , ε = ζ a ζ ε = ε ζ A ζ B = ζ A ε ζ B = ζ A ζ )
Using Friedman’s lemma, we thus get A σ µAB ζ a:µ χ a = σ µAB χ a ζbA ζbc ζ ac:µ µ a bA c = σ AB χ ζ ζb ζ ac:µ
(
1 µ a bA kf E F σ χ ζ ε ζb ζ f ζ aE ζ kF 2 AB 1 µ a AE kF = σ AB χ ε ζ ζ aE ζ kF :µ 2 =
(
)
):µ
312
Stochastics, Control & Robotics
( (
)
1 µ a kF AE σ χ ζ ε ζ aE ζ kF :µ 2 AB 1 µ a kF A = σ AB χ ζ ε a ζ kF :µ 2 kF 1 µ ap bq = e( pq ) ζ A ζ B χ a ζ ζ aA ζ kF 2 =
No:
ζ Ap ζ
kF
(ζ
A a ζ kF
)
:µ
pA = ζ ζ
kF
) (
)
:µ
(ζaA ζkF ):µ
(ζ aAζ kF ):µ = (σνAF eν (ak )):µ
Now,
(σ
ν AF
F
n ζ aA ζ k = e(ak) F
ζ aA ζ k = σ νAF e(νak )
So
ν ζ aA ζ kF = σ νAF e(νak ) = σ AF eν( ak )
or
)
ν = σ AF eν( ak ):µ A χa = σ µAB ζ a:µ
Thus
= Thus and thus,
q kF 1 µ e( pq ) ζ B χ a ζ pA ζ σ νAF eν( ak ):µ 2
q 1 µ e( pq ) eν( ak ):µ σ ν( pk ) ζ B χ a 2
(Note: sn(pk) = en(pk))
q 1 σ µAB χ:µA = σ µAB ζ:Aa χ,aµ + e(µpq ) eν( ak ):µ e ν( pk ) ζ B χ a 2 B µ 1 a ζbr σ AB χ:µA = e(µar ) χ,µ + e(µpq )eν( ak ):µ e ν( pk ) = ζ qB ζ rB χ a 2 1 µ µ a ν( pk ) a χ = e( ar ) χ,µ + e( pr ) eν( ak ):µ e 2 (zqB zBr = dqr)
The general relativistic Dirac equation are σ µAB χ:µA + im ηB = 0, A
σ µAB η:µ + im χ B = 0 B and hence we get from these on premultiplying by ζr ,
and
1 e(µar ) χ,aµ + e(µpr )eν( ak ):µ e ν( pk ) χ a + im ηr = 0 2 1 a e(µar ) η,µ + e(µpr )eν( ak ):µ e ν( pk ) ηa + im χ r = 0 2
(a) (b)
Large deviations, Classical & Quantum General Relativity with GPS Applications
313
(a) and (b) constitute the Dirac equation in gtr. Note: ν ν( pk ) pa kb ν em(pk) = gµνe( ak ) , e = ε ε e( ab )
where
0 ((ε )) = 1 ab
−1 , 0
lµ = µ m
(( ) ) e(µab )
mµ , nµ
[21] Proofs of Identities from S. Chandra Sekhar, “ The Mathematical Theory of Blackholes”. Cartain’s Second Equation of Structure: R (X, Y) Z = ∇X Z – ∇Y ∇X Z – ∇[X, Y] Z R (X, Y) = [∇X ∇Y] – ∇[X, Y].
i.e.
∇eα eβ = Γ σαβ eσ . σ β σ β β ∇ X eα = ∇ σ eα = X ∇eσ eα = X Γ σα eβ = ω α ( X ) eβ , ω α ( X ) X e σ
β σ = Γ αα X .
ωβα = Γ βσα eσ d ωβα = d Γ βσα Λ eσ + Γ βσα deσ R ( X , Y )eα = ∇ X ∇Y eα − ∇Y ∇ X eα − ∇[ X , Y ] eα
( = ( X (ω
)
(
)
= ∇ X ωβα (Y ) eβ − ∇Y ωβα ( X ) eβ − ωβα ([ X , Y ])eβ β α (Y )
)) − Y ( ω
β α(X )
)−ω
β α ([ X , Y ])eβ
+ ωβα (Y ) ∇ X eβ − ωβα ( X ) ∇Y eβ
(
)
= d ωβα ([ X , Y ]) eβ + ωβα (Y ) ωβσ ( X ) − ωβσ ( X ) ωβσ (Y ) eσ
(
)
σ σ β = d ω α ([ X , Y ]) + ωβ Λ ω α ([ X , Y ]) eσ
Thus,
(
)
eσ ( R ( X , Y )eα ) = d ω σα + ωβσ Λ ωβα ([ X , Y ]) Now,
(
∇ X ∇Y eα = ∇ X Y σ Γ βσα eβ
)
314
Stochastics, Control & Robotics
(
)
)
( e (Γ )) e
β = X ρ ∇eρ Y σ Γ βσα eβ eβ X ρeρ Y σ Γ σd eβ + X ρY σ Γ βρα ∇eρ eβ
(
= X ρ eρ (Y σ ) Γ βσα + Y σ \
(∇ X ∇Y − ∇Y ∇ X ) eα
β ρα
ρ
µ + X ρT σ Γ βρα Γ ρβ eµ
β
β ρ σ ρ σ = Γ σα ( X eρ (Y ) − Y eρ ( X ))eβ
(
( ( ) ( ))
)
µ + X ρY σ Γ βρα Γ ρβ − Γ βσα Γ µσβ eµ + X ρY σ eρ Γ βσα − eα Γ βρα eβ
(
( ) ( )) + e ( Γ ) − e ( Γ )) e
µ µ = Γ βσα eσ ([ X , Y ]) eβ + X ρY σ Γ βσα Γ ρβ − Γ βσα Γ σβ + eρ Γ µσα − eσ Γ ρµα eµ
(
µ = ∇[ X , Y ] eα + X ρY σ Γ βσα Γ ρβ − Γ βσα Γ µσβ
Thus,
(
µ σα
ρ
)
σ
µ ρα
µ
R (X, Y) ea = ∇ X ∇Y − ∇Y ∇ X − ∇[ X , Y ] eα
(
( ) ( ))
µ µ = X ρY σ Γ βσα Γ σβ − Γ βρα Γ σβ + eρ Γ µσα − eσ Γ ρµα eµ ρ σ µ ≡ X Y Rρσα eµ
1 σ ρ µ Rρµα e Λ e ( X , Y ) 2 Thus we get Cartan’s second equation of structure:
So
σ eσ ( R( X , Y ))eα = X ρY µ Rρµα =
1 σ ρ µ Rρµα e δ e = dω σα + ωβσ Λ ωβα . 2 Verification of identities from S. Chandrasekhar’s book Mathematical theory of Blackholes. d ( F ω′ ) = F dω ′ + F, AdX AΛ d ω ′ + F ,1 dX ′ Λ d ω ′
(
ω′ = eψ dX ′ − ∑ q A dX A
(
)
)
(
ψ ψ A B A dω′ = e ψ ,1 dX ′ Λ dX ′ − q AdX + e ψ , B dX Λ dX ′ − q A dX
)
− eψ q A, B dX B Λ dX A − eψ q A,1 dX ′ Λ dX A = − eψ (ψ ,1 q A + q A,1 ) dX ′Λ dX A + eψ ψ , AdX A L dX ′
(
− eψ ψ, B q A dX B Λ dX A + q A, B
)
ψ ψ A B A = e (ψ ,1 q A + q A,1 ) dX Λ dX ′ + ψ , A + e (ψ , B q A + q A, B ) dX Λ dX
ψ ,1 q A + ψ , A = ψ1;A qB:A = qB, A + q A qB,1
Large deviations, Classical & Quantum General Relativity with GPS Applications
315
dXA = e −µA w A ,dX 1 = e −ψ w1 + q AdX A −ψ 1 − µA A = e w + q Ae w .
So,
(
(
)
−µ ψ − µA A −ψ 1 B dw′ = e ψ: A + q A,1 e w Λ e w + qB e B w
)
( ) e −µA ( ψ: A + q A,1 ) w AΛw1
− µ +µ + eψ ψ , B + q A + q A, B e ( A B ) w AΛwB
=
( (
+ eψ − µA−µB qB ψ: A + q A,1w A X wB + ψ , B q A + q A, B
(
)
)
−µA ψ: A + q A,1 w A Λ w1 = e
+ eψ − µ A −µ B (q A:B + qB ψ: A + ψ , B q A ) w A X wB Now
e ψ − µ A − µ B ( qB + ψ : A + ψ , B q A ) w A Λ w B
( (
)
)
ψ −µ A −µ B qB ψ , A + q A ψ ,1 + ψ , B q A w A Λ wB = 0 = e
Since qB ψ , A + ψ , B q A and qB q Aψ , 1 are symmetric in the indices (A, B) while wA L wB is antisymmetric in (A, B). Thus,
dω′ = e − µA (ψ: A + q A,1 ) ω A Λω ′ + eψ − µA − µB q A: B ω AΛω B
Thus, d ( F ω′ ) = F e − µA ψ: A + q A,1 ω AΛ ω ′ + Fe ψ − µA− µB q A: B ω AΛω B
(
)
(
)
+ F, A e −µA ω A Λ ω ′ + F ,1 e −ψ ω ′ + q A dX A Λω ′ Now, Thus, Now,
−µA A ω Λ ω′ dX A Λ ω′ = e
(
(
)
)
d ( F ω′ ) = Fe − µA ψ: A + q A,1 + F, A e − µA + F,1 e −µA q A ω AΛ ω′ + F eψ − µA− µB q A: B ω A Λ ω B DA(Feψ) = ( Fe ψ ): A + q A, 1Fe ψ = ( Feψ ), A + q A ( Feψ ), 1 + Fqa, 1eψ
(
ψ = e F, A + F ψ , A + F,1q A + Fq A ψ ,1 + Fq A,1
(
= Feψ ψ: A + Feψ q A,1 + eψ F,1q A + F, A
)
)
316
Stochastics, Control & Robotics
Thus, d ( Fw′ ) = Feψ − µA−µB q A:B w A ΛwB + ρ A ( Feψ ) ⋅ e − ψ − µA w A Λw′ wA = emA dX4, A = 2, 3, 4
(
dwA = eµA µ A, 1dX ′Λ dX A + µ A, B dX B ΛdX 4 (Summation over B only)
(
µA B −ψ = e µ A,1 e w′ + qB dX A
µA
)
)
B
Λ dX + e µ A, B dX Λ dX A
(
µA − ψ µ A, 1µ ′Λe −µA w A + eµAµ A, 1qB + eµAµ A, B = e
e − µA− µB wB Λw A
(
)
)
−ψ µB B A A = e µ A, 1w′Λw − e µ A, B µ A,1 qB w Λ w
(Formula in eqn., (48)). −ψ µB A B A = −e µ A, 1w Λ w′ − e µ A:B w Λw
[22] Mathematical Preliminaries for Cartan’s Eqn. of Structure: w ∈Ω′(µ ), X , Y ∈ X (µ ) α w = wα dX α , X = X ∂ α, Y = Y α ∂α
Then,
(
β β α β (dW) (X, Y) = wα β dX β ΛdX α ( X , Y ) = wα , β X Y − X Y
(
)
)
α β α β α β X(w(Y)) = X ∂ α wβY = wβ, α X Y + wβ X Y, α
Y(w(Y)) = wβ, αY α X β + wβY α X ,βα X ( w (Y )) − Y ( w ( X ))
(
)
α β α β = wβ, α X Y + Y X + wβ [ X , Y ]
β
dw ( X , Y ) + w ([ X , Y ])
or
dw(X, Y) = X ( w (Y )) − Y ( w ( X )) − w ([ X , Y ])
Let {ea} be a local basis for X(m) (vector fields). Then, β σ ∇Xea = ∇Xbebea = Xb∇ebea ≡ X Γ β α e σ By definition,
∇eb ea = Gσba eσ.
Large deviations, Classical & Quantum General Relativity with GPS Applications
Torsion:
317
T(X, Y) = ∇XY – ∇YX – [X, Y] σ a X = Gσba ea (X) wσb (X) = Gba
Define
{ea} is the dual of {ea}
σ a e . wσb = Gba
i.e.
Ta (X, Y) = ea (T (X, Y)) = ea (∇X Y) – ea (∇Y X) – ea ([X, Y]) ∇X Y = ∇X (Ya ea) = X (Ya) ea + Ya ∇X ea = X (Ya) ea + YaXb∇eb ea = X (Ya) ea + YaXb Gσba ea = (X (Yσ) + wσb (Y) Xb) eσ So
ea (∇X Y – ∇Y X) = (X (Yσ) – Y (Xσ) + σσb (Y) Xb – wσb (X) Yb) eσ ea ([X, Y]) = ea (XY – YX) = ea (X (Yb eb) – Y (Xb eb)) eσ (T (X, Y)) = eσ (∇X Y – ∇Y X) – eσ ([X, Y]) = X (Yσ) – Y (Xσ) + wσb (Y) Xb – wσb (X) Yb – eσ ([X, Y]) dea (X, Y) = X (ea (Y)) – Y (ea (X)) – eσ ([X, Y]) = X (Ya) – Y (Xa) – ea ([X, Y]) ea (T (X, Y)) = dea (X, Y) = wab (Y) Xb – wab (X) Yb
So
= wab (Y) eb (X) – wab (X) eb (Y) = (eb L wab) (X, Y) Ta = dea + eb L wab
or
This is Cartan’s first eqn. of structure. so in the limit N → ∞ (scaling limit), we get 1
d τ (θ) d θ = J (θ) ρ dτ ∫o
1
∫ J ′′(θ) ψ (ρτ (θ)) d θ o
τ (θ) ∂ρ ∂2 τ (θ)) = ψ (ρ ∂τ ∂θ2 which is the generalized Burgen’s equation.
318
Stochastics, Control & Robotics
[23] Reflection and Refraction at a Metamaterial Surface: Z ε1,µ1
θi
θr Y θt
ε2,µ2
X
X exp{−i k i , r} E i = Eio k i = k1{Y sin θi − Z cos θi } X exp{−ik r , r} E r = Ero k r = k1 (Y sin θr + Z cos θr ) E t = Eto X exp{− j k t .r} k t = ki (Y sin θt − Z cos θt ) Hi = =
k × Ei ∇ × Ei = i wµ1 − jwµ1 1 ( − Z sin θi − Y cos θi ) Eio exp( − j k i . r ) η1
Hr =
1 ∇ × Ei ( − Z sin θr − Y cos θr ) Ero exp(− j k r . r ) = η − jwµ1 1
Ht =
1 ∇ × Et ( − Z sin θt − Y cos θt ) Eto exp(− j k t . r ) = η2 − jwµ 2
h1 =
µ1 , η2 = ε1
Surface charge density = σs (Y)
X Surface charge density = J s (Y ) Continuity of E tan gives
µ2 . ε2
Large deviations, Classical & Quantum General Relativity with GPS Applications
319
F−io exp(− j k1 Y sin θi ) + Ero exp(− j k1 Y sin θ r ) = Eto exp(− j k2 Y sin θt ) \
(1)
Eio + Ero = Eto, θr = θi, k1 sin θi = k2 sin θt.
Discontinuity of normal component of D: No equation. Continuity of normal component of m H = B: −
k1 sin θi Eio + ki sin θr Ero = k2 sin θt Eto
Or So
µ1 µ µ sin θi Eio − 1 sin θr Ero = − 2 sin θi Eto η1 η1 η2
Eio + Ero = Eto
no new equation. Discontinuity of tangential component of H: cosθi cosθt cosθr Eio − Ero − = Jso. η1 η2 η1 Provided Js (Y) = Jso exp (– j k1 sin θi Y) (By Fourier analysis, we Pick the Fourier Componenets of Js (Y) at the spatial frequency k1 sin θi. Ero E Let = R, to = T. Then, Eio Eto η 1 + R = T1 cos θi − R. cos θ r − 1 cosθtT = h1 Tso η2 Suppose m2 > 0, e2 = – j|e2| (perfect conductor) Then
h1 > 0, h2 =
µ2 = ε2
j | η2 | =
(i + j ) | η1 | . 2
k1 sin θi = k2 sin θt ⇒
ε1µ1 sin θi =
⇒
sin θt =
ε 2µ 2 sin θt
C2 j sin θi C1 C (i + j ) where C2 = = 2 sin θi C1 2
C1 =
| ε2 |µ2
ε1 µ1 cos θi − R cos θi −
η1 (1 − j ) cos θt (1+ R) = h1 Jso | η2 | 2 1/ 2
cos θt =
k2 1 − sin θt = 1 − 12 sin 2 θi k2 2
320
Stochastics, Control & Robotics
1/ 2
2 1+ α sin θi
where a = −
k12
k22
=
ε1µ1 >0 | ε2 |µ2
χ(1 − j ) R cosθi + (1+ α sin 2 θi )1/2 2
So,
= cosθi −
χ(1 − j ) (1+ α sin 2 θi )1/ 2 − η1 J so 2
χ(1 − j ) (1+ α sin 2 θi )1/2 − η1J so cosθi − 2 R= χ(1 − j ) 2 1/2 (1+ α sin θi ) cosθi − 2 η1 > 0 . Reflectivity for a metamaterial with X= | η2 |
Or
Where
e2 < 0, m2 > 0, When the interface carries a surface current density St = max Bs . 0≤ S ≤ t
−1 Xt = ( St − Bt + α ) exp(− α St )
is a Martingale (local) Proof:
`dXt = (dSt − dBt ) exp( −αSt ) − α ( St − Bt + α −1 ) ex ( − αSt ) dSt ((dSt)2 = 0 since St ↑⇒ St is of bounded variation). = − exp( −αSt ) dBt
Since ( St − Bt ) dSt = 0 \ dSt > 0 ⇒ St = Bt t
−1 Corollary: (| Bt | + α ) exp( −α Lt ) is a local Martingale where Lt = ∫ δ ( Bs ) ds 0
Proof: From Skorchod’s theorem the bivariate processes {(St − Bt , St )}t ≥ 0 and {(| Bt |, | Lt |)}t ≥ 0 have the same law. × {(Bt , Lat )}t ≥ 0 and
{(
BCt , LaCt C Lat =
Proof: 1 C
a C
= Ct
) C}
t ≥0
have to same law.
t
∫ δ ( Bs − a) dS 0
1 C
Ct
∫ δ ( Bs − a 0
C ) dS
Large deviations, Classical & Quantum General Relativity with GPS Applications
Charge variables:
321
S = Ca, dS = Cda. Then t
(
)
(
)
1 ∫ δ BCα − a C Cd α C0
1 a C LCt = C
t
C ∫ δ BCα − a C d α
=
0
t
1 BCα − a d α C 0 1 BCt , t ≥ 0 is Brownian motion, say Wt, The proof is completed by noting that C t ≥ 0, and thus =
1 a C LCt = C
∫ δ t
∫ δ(Wα − a) d α
is the local time of W.
0
[24] Maxwell’s Equations in an Unhomogeneous Medium with Background Gravitation Taken into Account: µν χρσ ( x) is the permittivity permeability tensor. Maxwell’s eqns: Wave propagation equation:
(χ
Thus,
µν ρσ ( x )
F ρσ −g
)
ν
=0
νµ µν χρσ = χσρ .
Fµν = Aν, µ − Aµ , ν So or Where
(χ (χ
µν ρσ
g ρσ g σβ −g Fαβ
µναβ
)
ν
− g ( Aβ, α − Aα , β )
=0
)
,ν
=0
µν αρ βσ χµναβ = χρσ g g
Example: In special relativity, {– For, r = 1, 2, 3} is the electric field E in a 23 31 12 Cartesian system and {− F , − F , − F } is the magnetic field B . The electric displacement vector D = ε ⋅ E Where ε is a 3 × 3 matrix. Thus, D1 = DX = ε11E1 + ε12 E2 + ε13 E3 D2 = DY = ε 21E1 + ε 22 E2 + ε 23 E3 D3 = DZ = ε31E1 + ε32 E2 + ε33 E3 Thus, Dr = − ε rs F os (summation over s = 1, 2, 3) Likewise the magnetic field intensity is
322
Stochastics, Control & Robotics −1 −1 −1 H1 = HX = (µ )11 B1 + (µ )12 B2 + (µ )13 B3 etc. −1 −1 23 −1 31 −1 12 Hr = (µ )rs Bs = − (µ ) r1 F − (µ ) r 2 F − (µ ) r3 F
(
)
µν µρ νσ ηµνρσ χµναβ = g αρ g σβ δ ρµ δ σµ + δ ⋅ ηρσ = g g +δ
Let
d being a small perturbation parameter. In our case, oν ρσ Db = χρσ F
))
((
= − ε r1F provided
01
3 r =1
− ε r 2 F 02 − ε r3 F 03
or or er1 = χo1 − χ1o ,
or or er2 = χo2 − χ3o ,
or or er3 = χo3 − χ 2o
or or and χαβ = 0 if a ≠ 0, b ≠ 0, i.e. χ km = 0
( = (−χ
1 ≤ k, m ≤ 3.
H = −(µ −1 )r1 F 23 − (µ −1 ) r 2 F 31 − (µ −1 ) r3 F 12
so
23 ρσ
31 ρσ ρσ F ρσ , − χρσ F , − χ12 ρσ F
)
)
3 r =1
23 –1 23 23 –1 23 23 –1 c23 23 – c 32 = (m )11, c 12 – c 21 = (m )13, c 31 – c 13 = (m )12, 31 –1 31 31 –1 31 31 –1 c31 23 – c 32 = (m )21, c 12 – c 21 = (m )23, c 31 – c 13 = (m )22, 12 –1 12 12 –1 12 12 –1 c12 23 – c 32 = (m )31, c 31 – c 13 = (m )32, c 12 – c 21 = (m )33, rs rs = cko = 0 cok
and
The Maxwell eqns. are
(
1 ≤ k ≤ 3 1 ≤ r, s ≤ 3.
)
= 0. g µρ g νσ + δ ⋅ ηµνρσ F ρσ − g ,ν
or
(F
µν
−g
)
,ν
(
+ δ ηµνρσ −g Fρσ
)
,ν
= 0.
Propagation of em waves in a inhomogeneous metamaterial. 2 ∂2 ∇ + ε µ ψ(t , r) = 0 ∂t 2 Solution:
ψ(t , r) = ≡
em=
∫ f (w, n) exp iw t +
i ( n, r) dwd Ω(n) c
i ( n, r ) F ∫ t + c , n d Ω(n)
1 C2
>0
Large deviations, Classical & Quantum General Relativity with GPS Applications
323
Inhomogeneous metamaterial ∇ × E = − jwµH ∇ × H = − jwε ( X , Y , Z ) E
e, m > 0.
div (ε E) = 0, div (H ) = 0. So or
∇ (div E ) − ∆ E = − jwµ ( − jw ε) E ( ∆ − w2 µ ε ) E = ∇ (div E ) (∇ ε, E ) + ε div E = 0. div E = − (∇ log ε, E )
(∆ − k
2 o (1+ δ ⋅ χ( r ))
) E (r ) + δ(∇ χ(r ), E ( r )) = 0
2 ko2 = w µ ε o
[25] Relativistic Kinematics* Motions of a Rigid Body in a Gravitational Field a General Relativistic Calculation: L = − ρo c 2 ∫ g oo (t , R(r )) + 2 gok (t , R(t ) r ) Rk′j (t ) X n B
1/ 2
+ g km (t , R(t ) r ) Rkj′ (t ) Rml ′ (t ) X j X l
dX ′ dX 2 dX 3
r = ( X j )3j =1 .
Where
B is the volume of the body at t = 0. We shall approximate that integral using the binomial theorem:
(g
oo
+ 2 gok ξ k + g km ξ k ξ m
≈
g1oo/ 2 1+
)
1/ 2
2 gok ξ k g km ξ k ξ m 1 2g ok ξ k g km ξ k ξ m + − + goo 2g oo 8 g oo g oo
In this approximation, gok is regarded to be O (||x||) and then the expansion is valid upto O (||x||4). Then g (t , R(t ) r ) ( ) X j d 3r R′kj (t L ≈ − ρo c 2 ∫ g oo (t , R(t ) r )1/2 d 3r − ρo c 2 ∫ oo g ( t , R ( t ) r ) oo B B −
ρo c 2 g km (t , R(t ) r ) Rkj′ (t ) Rml ′ (t ) X j X l d 3r 2 ∫B goo (t , R(t ) r )
324
Stochastics, Control & Robotics
−
ρo c 2 gok (t , R(t ) r ) Rkj′ (t ) X j d 3r 4 ∫B goo (t , R(t ) r )
+
ρo c 2 g km (t , R(t ) r ) Rkj′ (t ) Rml ′ (t ) X j X l d 3r 8 ∫B goo (t , R(t ) r )
Example: Spherically symmetric state metrics like the Schwarzchild metric. dt2 = A(r ) dt 2 − B(r ) dr 2 − C (r )r 2 (d θ2 + sin 2 θ dϕ 2 ) In terms of a Cartesian system. r2 = x2 + y2 + z2 rdr = xdx + ydy + zdz 2
2
2
2
r (dθ + sin θ dj ) = dx2 + dy2 + dz2 – dr2 Robots perturbed by quantum noise in a gravitational field. H o Hamiltonian of the Robot Derivation of Ho = R (t) = R(ϕ(t ), θ(t ), ψ (t )) = Rz (ϕ(t )) RX (θ(t ) RZ (ψ(t ))) Lagrangian 3 £(ϕ, θ, ψ , ϕ =, θ =, ψ = ) = ∫ ( R(t) ξ , R ′(t ) ξ) d ξ B
=
∫ L( R(ϕ, θ, ψ ) ξ, (ϕ R, ϕ (ϕ, θ, ψ) + θ R, θ (ϕ, θ, ψ) B
+ψ R, ψ (ϕ, θ, ψ )) ξ ) d 3ξ Where L( x , v) Lagrangian for a single point particle Canonical momenta: pj =
∂L T ∂L 3 d ξ = ∫ ( R, ϕ ξ ) ∂v ∂ϕ
pθ =
∂L T ∂L 3 d ξ = ∫ ( R,θ ξ ) ∂v ∂θ
∂L ∂L 3 d ξ = ∫ ( R, ψ ξ )T ∂v ∂ψ Chapter 4 (Continued) Relativistic kinematics of rigid bodies. Rigid body motion in the Schwarzchild metric. 2m GM g oo ( r ) = a (r) = 1 − ,m= 2 . r c –1 g11 ( r ) = a (r) , pψ =
g22 (r) = r2, g33 = r2 sin2 θ.
Large deviations, Classical & Quantum General Relativity with GPS Applications
325
At time t = 0 r is f the position of a point on the body. At time t, this point moves to R(t ) r . dτ −1 2 (r ) = α (|| R(t) r ||) − α (|| R(t ) r ||)|| R ′(t ) r || dt
So
1/ 2
−|| R(t ) r ||2 (θ ′ (t , r ) 2 + sin 2 (θ ′ (t , r )) ϕ ′ 2 (t , r)) θ′(t , r ) =
where
∂θ(t , r) ∂ϕ(t , r) , ϕ′ (t , r ) = ∂t ∂t
Where θ(t , r ) and ϕ(t , r ) are respectively the elevation angle and agimute angle relative to the centre of the blockhole. Here we are assuming that the top’s fixed point is at the centre of the blackhole. This is too unrealised. Assume therefore that the fixed point of the top is at r o > 2m. Let p : ξ be a point in the top relative to r o . Then the position of P after time t is r o + R(t ) ξ ≡ r (t ) Then for any metric, gµν (t , r (t )) = gµν (t , r o + R(t ) ξ ) ≈ gµν (t , ro ) + gµν, n (t , r o )( R ′(t ) ξ)n µ ν dX µ dX ν n dX dX g ( t , r g ) + ( t , r ) ( R ( t) ξ ) ′ gµν (t , r (t )) ≈ µν µν, n o o dt dt dt dt
dX dX o = 1, dt dt So
k
n = ( R ′ (t ) ξ) , k = 1, 2, 3.
n m gµν dX µ dX ν ≈ goo (t , r o ) + goo, n (t , r o ) R ′(t )m ξ n m + 2 g ok (t , r o ) + gok, n (t , r o ) R ′(t )m ξ × R ′(t )ks ξ s
Upto O (||x||2), we have gµν
n m + g kl (t , ro ) + g kl , n (t , ro ) R ′ (t )m ξ × R ′ (t )ks R ′ (t )lp ξ s ξ p
dX µ dX ν n m = goo (t , r o ) + goo, n (t , r o ) R ′(t )m ξ dt dt + 2g ok (t , r o ) R ′ (t ) ks ξ s + g oo, nm (t , r o ) R ′ (t )np R ′ (t )np R ′ (r )qm ξ p ξ q + 2gok, n (t , r o ) R ′ (t ) nm R ′ (t ) ks ξ m ξ s + g kl (t , ro ) R ′ (t ) ks R ′ (t )lp ξ s ξ p
(
)
n n m = g oo (t , r o ) + g oo, n (t , r o ) R ′ (t )m + 2g on (t , ro ) R ′ (t)m ξ
(
)
+ goo, nm (t ,r o ) + R′ (t ) np R ′ (t )m q + 2 g om, n (t , ro ) n m s b + R ′ (t )np R ′ (t )m q + g nm (t , r o ) + R ′ (t ) p R ′ (t) q ξ ξ
326
Stochastics, Control & Robotics
[26] Random Fluctuation in the Gravitational Field Produced by Random Fluctuation in the Energy-Momentum Tensor of the Matter Plus Radiation Field: (a) gµν ( x) = gµν ( x) + δ ⋅ hµν ( x)
Where
g µν = g µν(0) − δhµν + 0(δ 2 )
(( g )) = (( g )) νµ( 0)
(a) µν
T µν = Pνµ µ ν
−1
⋅ hµν + g µα ( a ) g ν(µ 0) hαβ
νµ = V µ + δ ⋅ µ µ
µ ν gµν νµ νν = 1 ⇒ g µν V V = 0
g µνV µ µ ν = 0 ⇔ Vµ µ µ = 0 αβ α( 0) δΓ µd α = g Γ βµα = (0)Γ µα
1 + δ ⋅ − hαβ Γ βµd (0) + g αβ(0) hβµ , α + hβα , µ − hµα , β 2 + 0 (d2) (0) (1) Rmn = Rµν + δ ⋅ Rµν + O (δ 2 ) ( x) (1) αβρσ (1) (3) Rmn = kµν ( x) hαβ , ρσ + K µ( 2ν)αβρ ( x) hαβ,ρ (x) + K µν αβhαβ ( x) (0) K(1), K(2), K(3) are expressible completely in term of g µν and its first and second order partial derivatives. The linearized Einstein field equation is then (3) αβ 1) αβρσ ( 2) αβρ K ((µν ( x) hαβ, ρσ ( x) + K µν ( x)hαβ,ρ ( x) + K µν ( x)hαβ ( x) )
1 ( 0) = C ⋅ ρ1 ( x) (Vµ ( x)) Vν ( x) − g µν ( x) 2
⇒
1 Rµν − Rδµν = C ⋅ ρνµ νν + ρ0 ( x)(Vµ ( x) µ ν ( x)) + Vν ( x)µ µ ( x) 2 – R = Cρ 1 − hµν ( x) 2
⇒
1 Rµν = C ⋅ ρ νµ ννq − gµν 2
Large deviations, Classical & Quantum General Relativity with GPS Applications
327
2 ρ = ρ0 + δρ1 + O(δ ) ,
Where
(0) ν δ . µ µ ( x) = νν ( x) − Vµ ( x) = gµν νν − g µν V
(
)(
)
(0) (0) ν ν ν = gµν + δ . hµν V + δ . u − gµν V
(
)
(0) ν u + hµνV ν + O(δ 2 ) = δ . g µν (0) ν ν um = gµν u + hµνV
or Consider the equation
(ρν ν ) µ ν
:ν
=0
implied by the Einstein field equation. We get
(ρν ) ν
iν
µ νµ + ρµν ν:ν =0
(ρν ) ν
so or
(ρν
)
µ
:ν
= 0 and νν ν:µν = 0
(
) ))
µ −g ,µ = 0, νν ν:ν + Γ µνρ νρ = 0
((
(0) + δ . hµν g = det g µν
(
)
(0) 2 µ = g 1 + δ . hµ + 0(δ )
∆ g (0) (1 + δ . h ) + 0(δ 2 ) µα ( 0) hνα , h = hµµ . hνµ = g
Where
The perturbed fluid dynamical eqn. (without viscosity) are
(
(
)
)
ν µ µ (0) ρ µ V ν µ ,νρ + Γ µν (0) u ρ + Γ µνρ(1) V ρ + µ Vν + Γ νρ V = 0 µ µ (0) ρ Or since V , ν +Γ νρ V = 0,
It follows that Note that
V νµ ,µν + Γ µνρ(0) V νµ ρ + Γ µνρ(1) V νV ρ = 0, Γ µαβ = g µρ Γ ραβ
(
)(
)
µρ 0 µρ 0 0 1 ( 2 ) Γ αβ − δ ⋅ hµρ Γ ρα = g β + δ ⋅ Γ ραβ + O δ
( )
(
( )
()
)
(1) (0) + δ g µρ(0) Γ αρβ − hµρΓ αρβ + O(δ 2 )
Where
0) Γ (αρβ =
(
)
1 hρα,β + hρβ,α − hα , βρ , 2
( )
328
Stochastics, Control & Robotics µρ( 0) ( 0) 0) Γ αρβ Γ µ( = g αβ
Explicit form for K(1), K(2), K(3):
(
(1) 1) α( 0) β(1) α(1) β( 0) Rµν = Γ αµα(1,)v − Γ α( µv , α − Γ µν Γ αβ + Γ µv Γ αβ
(
α(1) β( 0) 0) β(1) + Γ α( µβ Γ να + Γ µβ Γ να
)
(1) µρ( 0) (1) µ(1) Γ ραβ − hµρ Γ ραβ Γ αβ = g
Where
(
)
1 µρ(0) g hρα, g + hρβ, α − hα,βρ 2 1 ( 0) ( 0) ( 0) − hµρ gρα , β + gρβ, α − g α , β, ρ 2 The equation to be solved for hab (x), and un (x), ρ1 (x) are the following pde’s =
)
(
(1) αβρσ ( 2) αβρ K µν ( x) hαβ,ρσ ( x) + K µν ( x) hαβ,ρ ( x) + K µ(3ν) αβ ( x) hαβ ( x)
1 (0) 1 = C ⋅ ρ1 ( ν) VµVν − g µν + ρ0 ( x) Vµ uν + Vνuµ − hµν ( x) 2 2
(1),
V ν ( x)u,µν ( x) + Γ µνρ(0) V νu ρ
(
0) ( x) ) − hµσ Γ (σνρ
1 + V νV ρ g µσ (0) hσν, ρ + hσρ, ν − hνρ, σ 2 And finally the man conservation equation ( 0)u µ ρ Vµ − 0 ρ1 V µ − g (0) + ρ(0) − g 2 − g ( 0) Where
=0
(2)
h = 0 ,µ
(3)
µν( 0) hµν h = hmm = g
Random fluctuation in the energy-momentum tensor of the em field LEM = Fµν F µν − g
(
δ g LEM = − Fµν F µν δg / 2 − g + Fµν − g Fαβ δ g µα g νβ µν αβ g = − Fµν F gg δgαβ 2 − g
± 2 − g Fµν Fαβ g µα g νρ g βσ δgρσ Coeff. of dgρσ is 1 − g Fµν F µν g ρσ − 2F αρ Fασ 2
)
Large deviations, Classical & Quantum General Relativity with GPS Applications
329
αS ρσ − g the energy momentum tensor of the em field. 1 Fµν F µν g ρσ − F αρ Fασ 4 Motion of charged matter in an em field and em grav. Field-linearized version: Exact equation is Sρσ =
(ρν ν ) µ ν
:ν
+ K1S:νµν = 0 µν S:ν =
(
1 Fαβ F αβ 4
)
g µν
:ν
(
− F αµ Faν
)
:ν
1 αβ F Fαβ:ν g µν − F:ναµ Fαν − F αµ Fαν:ν 2 In the absence of charged matter. In the presence of charged matter, the extra term is comes from the interaction Lagrangian between the em field and four caurraso density. =
Rough:
(
δ g J µ Aµ −g
) = δ (ρ ν A = δ (ρ ν A g
q
g
q
µ
µ
µ
µ
) −g ) = − ρ ν −g
q
ν
Aµ δg / 2 − g
µ αβ = − ρq ν Aµ gg δg αβ / 2 − g
= ρq νµ Aµ − gg δgαβ / 2 ρq ρq where ρ matter density and q charge per unit man. Thus the eqn. get modified to
(ρν ν ) + K S (ρν ) + (ρν ) ν µ
ν
:ν
ν νµ :ν
or
(
)
µν 1 :ν
+ K 2 ρνα Aα g µν
ν
+ K 2 ρνα Aα + K1S:µν ν
µ :ν
(
:ν
=0
)
:ν
g µν = 0.
(1)
The coefficient of dAm gives the Maxwell eqn. ν F:αν = K3′ J α = K3ρνα µν
So
1 αβ F Fαβ:ν g µν − F:ναµ Fαν − ρK3 F αµ να 2 1 = F αβ Fαβ:ν νν − F:ναµ Fαν νµ − ρK3 F αµ vµ vα 2
v S:ν =
νµ S;µν ν
=
(∵ F
αµ
)
1 αβ F Fαβ:ν v ν + F:νµα Fανu µ 2
vµ vα = 0 . So we get from (1) and (2),
(2)
330
Stochastics, Control & Robotics
(ρv ) ν
:ν
+
(
K1 αβ F Fαβ:ν v ν + K1Fνµα Fαν vµ + K 2 ρv α Aα 2
)
:ν
vν
=0 Now,
(ρv
α
Aα
)
:ν
(3)
( ) + (ρv )
v ν = ρv α v ν Aα:ν + ρv α α ν = ρv v Aν:α
:ν
Aα v ν
:ν
v ν Aα .
α
(4)
Taking (1), (2), (3) into account, (1) can be expressed as
(
µ K1 αβ ρv ν v:νµ F Fαβ:ν v ν K 2 ραν Aα ν −v 2
(
+ K1 F:νρα Fαν vρ + K 2 ρv α Aα
)
ν
)ν v ν
(
v ν + K 2 g µν ρv α Aα
)
:ν
1 + K1 F αβ Fαβ:ν g µν + F:νµα Fαν + ρK3 F µα να = 0 2
(5)
This can be rearranged as
ρv ν v:νµ + K1K3 ρF µα vα +
(
K1 αβ F Fαβ:ν g µν − v µ v ν 2
(
1 + K1 F:νµα Fαν − F:νρα Fαν vρv µ + K 2 ρv α Aα 2
(
)
) − (g
F αβ Fαβ:ν =
µν
:ν
( )
1 αβ 1 2 F Fαβ , ν = F , 2 2 We thus express that above equation as
Note that
) )
− vµ v ν = 0
ν
K
ρv ν v:µν + K1K3 ρF µd vα + 1 ( F 2 ),ν + K 2 (ρvα Aα ), ν g µν − v µ v ν 4 1 + K1 F:νµa Fαν − F:νρα Fαν vρν = 0 2
[27] Special Relativistic Plasma Physics: (a) Dynamical problem, how does an initial random velocity and field evolve with time? (b) In a non-relativistic plasma problem, how does an initial random velocity, density and e-m field evolve with time? The special relativistic plasma (MHD) T µν = (ρ + p) v µ v ν − p ηµν In the rest frame,
Large deviations, Classical & Quantum General Relativity with GPS Applications
((T )) µν
331
O ρ −p = −p O − p
Which is correct since ρ (= ρc2) is the rest frame energy density and – p is the force per unit area along any spatial direction which by Newton’s second law is the momentum flux (momentum flowing per unit area per unit time, the momentum being, in the rest frame, ⊥ to the area element) 1 µ ν µν µν αµ ν T µν + S µν = (ρ + p) v v − pg + K Fαβ Fαβ g − F Fα 4 is the combined energy momentum tensor of matter plus radiation. Here gmn = hmn
(T
µν
+ S µν
)
= 0 Conservation on the total energy-momentum tensor of the
,ν
matter plus radiation field. Thus,
((ρ + p ) v v ) µ ν
,ν
1 ν αµ ν − p,µ + K ηµν F αβ Fαβ, ν − F, αµ ν Fα − F Fα , ν = 0 2
Fαν, ν = K1J α
Now,
((ρ + p ) v v ) µ ν
and so
,ν
− p,µ +
K αβ ,µ F Fαβ 2
+ K F,νµα Fαν − KK1J α F αµ = 0 For mhd analysis, we must find the 4-vector-tensor equivalent od Ohm’s law J = σ( E + v × B) µν The natural candidate appears to be Jm = σ F vν and the above mhd equation assume the form
((ρ + p ) v v ) µ ν
,ν
K αβ ,µ ν µα ν Fα vν F Fαβ + K F, µα ν Fα + K 2 F 2 = 0
− p ,µ +
(1)
k2 = KK1σ
where
These are coupled to the maxwell equation in the form F,νµν = K1σ F µν v ν (1) and (2) are the basic equation of a special-realtivistic plasma. (1) gives
((ρ + p ) v ) , ,ν
µ
νv
µ
+ (ρ + p)v ν v,µν − p,µ
(2)
332
Stochastics, Control & Robotics
+
K αβ ,µ F Fαβ + K F,νµα Fα, ν + K 2 F µα Fαν vν = 0 2 k ,µ vµ (ρ + p ) v ν ,ν − vµ pµ + F αβ Fαβ 2
(
So,
(3a)
)
ν ,µα ν + K F, µα Fα vν vµ = 0 ν Fα vµ + K 2 F
(3b)
Non-relativistic case: MHD equation are
(ρ(v, ∇) v + v , t ) Linearization
= − ∇p + η∆ v + σ( v + B) × B
v (t , r ) = V0 (t , r ) + δ v (t , r ) B(t , r ) = B0 (t , r ) + δ B(t , r )
Assume ρ = constant,
σ η = v, = a, ρ ρ
(V , ∇) δ v + (δ v , ∇)V
Then,
0
0
+ δv,t
1 = − ∇δp + η∆ v + α (δ v + B 0 ) × B 0 ρ + α (V 0 + δ B ) × B 0 + α (V 0 + B 0 ) × δ B div v = 0 ⇒ divV 0 = 0, div (δ, v ) = 0. Fourier expansion: V 0 (t , r ) =
∫ V 0 (t , k )exp(ik .r ) d
3
k
δv (t , r) =
∫ δv (t , k ) exp(ik .r ) d
3
k
(V 0 , ∇) δ v
=
∫ i (k ′, V 0 (t, k )) δv (t , k ′) exp (i ( k + k ′, r )) d 3 kd 3 k ′
Coff.’ of exp (i ( k , r )) in (V 0 , ∇) δv is given by
(
)
i ∫ k ′ − k ′, V 0 (t , k ′ ) δ v (t , k − k ′ ) d 3 k ′
( ) v (t , k ) )V (t , k ′ ) exp(i ( k + k ′.r )) d kd k ′ = ∫ i ( k ′δ 3 = i ∫ k ′, V 0 (t , k − k ′ ) δv (t , k ′ ) d k ′
(δv , ∇)V 0
Coff. of exp (i ( k .r )) in (δ v , ∇)V 0 is
(
)
v (t , k ′ ) V 0 (t , k − k ′ ) d 3 k ′ i ∫ k , k ′ , δ
0
3
3
Large deviations, Classical & Quantum General Relativity with GPS Applications
(
333
)
(t, k ′ − k ′ ) V 0 (t , k ′ ) d 3 k ′ = i ∫ k , δv δv , t =
∫ δv, t (t , k ) exp (i(k , r )) d
3
k
∇δp =
∫ ikδ p,(t , k ) exp(i(k , r )) d
3
k,
v (t , k) exp (i ( k, r )) d 3 k ∆δv = − ∫ k 2 δ (δv × B 0 ) × B 0 =
∫ (δv (t , k ) × B 0 (t , k )) × B 0 (t , k ′′) exp(i ( k + k ′ + k ′′, r )) d 3kd 3k ′d 3k ′′
(V 0 × δB ) × B0
=
Coff. of exp(i ( k , r )) in
∫ (V 0 (t , k ) × δ B (t , k ′)) × B 0 (t , k′′) exp {i ( k + k ′ + k ′′, r )} d 3kd 3k′d 3k ′′
(a) δ v ,t is δ v,t (t , k) , (b) ∇δp is ik δ p(t , k ) , (c) (V 0 × δ B) × B 0 is (d) (δv × B 0 ) × B 0 is
∫ (V 0 (t , k − k ′ − k ′′) × δ B (t , k ′)) × B 0 (t , k ′′) d
3
k ′d 3k ′′
∫ (δv (t , k ′) × B 0 (t , k ′′)) × B 0 (t , k − k ′ − k ′′) d
3
k ′d 3k ′′
The linearized MHD eqn. in the spatial frequency domain thus assume the form
(
)
∂ v (t , k ′ ) d 3 k ′ δ v (t , k ) + i ∫ k ′V 0 (t , k − k ′ ) δ ∂t i v (t, k ) + i ∫ ( k − k ′ , δ v (t , k ′ )) V 0 (t , k − k ′ ) d 3 k ′ + k δ p(t , k) + vk 2 δ ρ = α
{∫ (δv (t, k ′) × B (t, k ′′)) × B (t, k − k ′ − k ′′) d k ′d k ′′ 0
3
0
3
( ) (t , k ′ ) × δ B + ∫ (V (t , k − k′ − k ′′) × B ) (t, k ′′) d k ′d k ′′} (t , k ′ ) × B 0 (t , k ′′) d 3k ′d 3k ′′ + ∫ V 0 (t , k − k ′ − k ′′) × δ B 0
3
0
3
(a)
The equation of continuity div (δv) = 0
becomes
(k , δv (t, k )) = 0
(b)
At each k , we construct an orthogonal set of 3 victors
(e1(k ), e2 ( k), k ) so that (e1(k ), e2 (k))
= 0,
334
Stochastics, Control & Robotics
(e1(k ), k ) (e1(k ), e1 (k))
and
= (e2 ( k ), k ) = 0 = (e2 (k ), e2 (k) ) = 1.
1 (t , k )e ( k ) + δν 2 (t , k )e (k ) δ v (t , k) = δν 1 2
(b) ⇒
for some complex scalar fields δ v1 and δ v 2 . Substituting into (a) this expression, after taking k × gives using k × e ( k) = e1 (k ) and so k × e ( k ) = e ( k ), 2
1
2
(
)
∂ v1 (t , k ′ ) d 3 k ′ δ v (t , k ) + i ∫ k ′, V 0 (t , k − k ′) δ ∂t 1 e ( k ′ ) δ v1 (t , k ′ )V 02 (t , k − k ′ ) d 3 k ′ + i k − k ′,
∫ ((
1
(
)
)
2 (t, k ′ ) + vk 2 δ + k − k ′, e2 ( k ′ ) δv v1 (t , k) = α {T1 + T2 + T3 } When
T1 =
∫ k × ((δν(t , k ′) × B 0 (t , k′′ ) ) × B 0 (t , k − k′ − k′′) ) 2 d 3k ′d 3k ′′
=
∫ k × ( B 01(t , k − k ′ − k ′′)δν1(t , k ′)
) (t , k − k ′ − k ′′), B (t , k ′′ ) δ − (B ) v (t, k ′)
02 (t , k − k ′ − k ′′), δ (t , k ′ ) +B v 2 (t , k ′ ) B 0 0
3
0
1
2
3
d k ′d k ′′
=
∫ {( B 01 (t , k − k ′ − k ′′), δv1 (t , k ′)
} (t , k − k ′ − k ′′), B (t , k ′′) δ − (B ) v (t, k ′) d k ′d k ′′ , = (e ( k ), B ) (t, k ′ ) × B = ∫ k × ((V (t , k − k ′ − k ′′) × δ B ) (t, k′′)) 02 (t , k − k ′ − k ′′), δ (t , k ′′ ) +B v 2 (t , k ′ ) B 01
where
(e (k ), B ), B 1
0
0
02
T2
0
2
3
1
0
0
3
3
0
2
3
d k ′d k ′′
=
∫ (k × ( B 0 (t , k ′′), V 0 (t , k − k ′ − k ′′)) δ B (t , k ′)
(
)
(t , k ′′), δ B (t , k′) V 0 (t , k − k ′ − k′′ ) − B
)
2
d 3k ′d 3k ′′
Large deviations, Classical & Quantum General Relativity with GPS Applications
=
335
∫ {( B 0 (t , k ′′), V 0 (t , k − k ′ − k ′′)) δ B (t, k′)
(
}
)
(t , k ′′), δ B (t , k′) V 0 (t , k − k ′ − k′′ ) d 3k ′d 3k ′′ − B 0 and T3 =
∫ k × ((V 0 (t , k − k ′ − k ′′) × B 0 (t , k ′)) × δ B (t , k ′′)) 2 d 3k ′d 3k ′′
=
∫ {(V 0 (t , k − k ′ − k ′′), δ B1 (t , k ′′))B1 (t , k ′ )
(
)
}
(t , k ′ ), δ B (t , k ′′) V 01 (t , k − k ′ − k′′ ) − B 0 0 d 3k ′d 3k ′′
∂ δv 2 (t , k ) ∂t on the L.H.S. These form a pair of linear intergo-differential equations for (t , k) . δ v(t , k ), m = 1, 2, δ B
Likewise by connecting the (1)th component, We get another involving
{
}
Consider the special can when V 0 and B 0 are constant vectors. Then the mhd equation (linearized) for δv(t. r ) for becomes ∇δp + v∆δ v (t , r ) δv,t (t , r ) + α (δ v (t , r ) × B 0 ) × B 0 ρ + (V 0 × δ B(t , r ) ) × B 0 + (V 0 × B 0 ) × δ B(t , r ))
(V 0 , ∇) δ v (t , r ) = −
The moncomeater equation (linearized) is ∇(δν(t , r )) = 0 and finally the linearized Maxwell eqn. are ∂ ∇ × δE = − δB , ∂t ∇ × δB = − µσ(δ E + δν × B 0 + V 0 × δB) + µεδE,t This latter equation gives on taking ∇ × and using the previous one along with ∇ .δB = 0, ∇2 δB − µσδB,t − µεδB,tt + µσδ v × B 0 + µσV 0 × δB = 0 In the spatial frequency domain, there read
(V 0 , k ) δv (t, k ) + δv ,t (t , k ) −
k v (t , k ) δ p (t , k ) − vk 2 δ ρ
336
Stochastics, Control & Robotics
((
)
(
)
(t, k ) × B + α δ v (t , k ) × B 0 × B 0 + V 0 × δ B 0
)
(t , k) , + (V 0 × B 0 ) × δ B
(a)
(k , δv (t, k )) = 0
(b)
(t , k ) − µσδB , (t , k ) − µεδ B , (t , k) − k 2δ B t tt + µσV × δ B (t , k ) = 0 v (t , k ) × B + µσδ 0 0
(g)
(t , k ) , we get Assuming a time dependence of ejwt for δ v (t , k ) and δ B ( k , V ) + jw + vk 2 − α B 0 BT0 + αβo2 δ v 0
(
)
T T T = α (V 0 , B 0 ) I − V 0 B 0 + B0 V 0 − V 0 B 0 δ B
− (g) becomes
k δp = 0 ρ
(a)
− µσΩ δ k 2 + jwµσ − µtw2 + µσΩv δ B B0 v = 0 0
(g′)
(
T ∈R 3 When for any vector X = X1, X 2 , X 3x
0 WX = X 3 −X2
− X3 0 X1
X2 − X1 0
This matrix has the defining property Ω x ξ = X × ξ ∀ ξ ∈R 3 (α ′ ) (β), (γ ′ ) can be cast in matrix form (block) as
(
)
( k , V ) + jw + vk 2 + αB 2 I − α B BT 0 0 0 0 3 T k −µσΩB0
(
α (V 0 , B 0 ) I 3 − 2V 0 BT0 + B 0 V T0
(k
OT 2
)
+ jwµσ − µεw2 I + µσΩ 3
V0
)
k p 0 0
−
δ v =0 δ B δ p
Large deviations, Classical & Quantum General Relativity with GPS Applications
337
For a non-zero solution to exist, we require that the determinant of the above 7 × 7 matrix vanish. This gives us for given B 0 , V 0 a dispersion relation between w and k . Now we analyze the special-relativistic mhd equation (3a) and (3b). Substituting for
(( ρ + p ) v ) ν
1ν
from (3b) into (3a) gives
k ,α ν ρα ν v ν v α p ′ α − F ρσ Fρσ vα − kF,1ρα ν Fα vρ − k2 F Fα vν vρ 2 k αβ ,µ F Fαβ + kF,νµα Fαν + k2 F µα Fαν vν = 0 (4) 2 We note from (4) that when there is no em field, i.e. Fmn = 0, we get the standard special relativistic fluid dynamical equation without viscosity. µ − p ,µ + + (ρ + p) v ν v,ν
µ (ρ + p)v ν v,ν − p,µ + v µ vα p α = 0
(5)
and the man conservation equation (3b) becomes
((ρ + p ) v ) µ
,µ
− vµ p,µ = 0
(6)
Suppose we combine (5) and (6) with the equation of state p = p (ρ).
(7)
These are to be combined with
ηµν v µ v ν = 1
(8)
vµ v µ = 1.
or
(6) can be exprenal as
(ρv ) µ
µ + pv,µ =0
,µ
( )
Let v r
3 r =1
be the spatial component of vm. We note that (8) is the same as 3
2
v 02 − ∑ v r = 1 r =1
(
g (u) = 1 − u 2
Define
ur =
when Then (10) implies
)
−1/ 2
d τr dx r r 0 = = v v dζ dτ
v 02 − v 02u 2 = 1 or
(9)
(
2 v0 = 1 − u
)
−1/ 2
r r = γ (u ), v = γu1 1 ≤ r ≤ 3 .
(10)
338
Stochastics, Control & Robotics
So (9) can be exprinced as and (5) as
( γρ),0 + ( γρu r ),r + p ( γ ,0 + (γu r ), r ) = 0
(
(10)
)
γ (ρ + p) γ ,0 + γ (ρ + p)u rs ( γu r ), s − p r + γu r γp s 0 + γu s p, s = 0 or
( )
γγ ,0 + γu s γu r
,s
+
2 r
γ u p ,0 p, r + = 0 ( p + ρ) ( p + ρ)
(11)
+ γ 2u r u s p, s / ( p + ρ) Perturbed version of (10) and (11). r ρ = ρ0 + δρ(t , r ), u = U 0r + δ u r (t , r ) p = p(ρ0 ) + p ′(ρ0 )δP(t , r ) r The unperturbed versions of (10) and (11) are consistent with p(ρ0 ), U 0 , ρ0 as constants. We look at the perturbed versions of (10) and (11):
δγ ,0 ρ0 + γ 0δρ,0 +ρ0U 0r δγ ,r + γ 0U 0r δρ,r + γ 0ρ0 δu,rr + p0 (δγ ,0 + U 0r δγ ,r + γ 0 δu,rr ) = 0
(12)
7 Quantum Signal Processing [1] Quantum Scattering of a Rigid Body:
where
∂2 m ∂2 ∂2 + k 2 ψ s ( X , Y , θ) 2+ 2+ 2 I ∂θ ∂Y ∂X 2m = 2 χψ i ( X , Y , θ) £ 2mE m k2 = = k X2 + kY2 + n 2 . 2 I
By the Green's function for the Helmholtz equation, this has the solution Ys(X, Y, q) =
−m
∑ 2π2
r∈Z
1
∫
2 I 2 2 2 (θ − θ ′ + 2r π ) exp ik ( X − X ′) + (Y − Y ′) + m
X ′ ,Y ′ ∈R , θ ′ ∈[ 0, 2 π ]
1
2 2 2 2 I ( X − X ′) + (Y − Y ′) + (θ − θ′ + 2rπ) m
× (χψ i )( X ′, Y ′, θ′ )dX ′dY ′ ×
I d θ′ m
[2] Optimal Control of a Field: The filed j: Rn → Rp j = (j1, .., jp) satisfies the field equation
Lj(X) = J(X) where L is a linear partial differential operator.
340
Stochastics, Control & Robotics
J: Rn → Rq is a source (input) signal field. We wish to select J so that the cost functional
∫ C (ϕk ( X ), ϕk ,m ( X ), J ( X )) d
n
X
is a minimum. Incorporating the equations as constraints using a Lagrange multiplier field L: Rn → Rq (Note L: C∞(Rn, Rp) → C∞(Rn, Rq)) the functional to be minimized is S[j, J, L] =
∫ C (ϕk , ϕk ,m , J ) d
δϕ S = 0 ⇒ k
n
X − ∫ ( Λ, Lϕ − J )d n X
∂C ∂ ∂C −∑ − ( L * Λ )k = 0 ∂ϕ k m ∂X m ∂ϕ k ,m
∂C + Λk = 0 ∂J k dLS = 0 ⇒ Lj – J = 0
δ Jk S = 0 ⇒ Eliminating L gives
∂C ∂ ∂C ∂C −∑ + L* = 0, ∂ϕ k m ∂X m ∂ϕ k ,m ∂J k
Lj – J = 0
[3] Example from Quantum Mechanics: Calculate {f(t), 0 ≤ t ≤ T} so that T
∫
2
ψ d (t ) − ψ (t ) dt is a minimum
0
where y(.) satisfies 1 ∆ψ(t ) + f (t )V ψ(t ) = iy′(t) 2m Here y(t) = y(t, r) and yd(t) = yd(t, r), −
||yd(t) – y(t)||2 =
∫ ψ d (t , r ) − ψ (t , r )
(1) 2 3
d r.
and V = V(r) (multiplication operator). Incorporating the eqns. of motion (Schrödinger's equation) using the complex Lagrange multiplier L(t, r), we have to minimize S{y, f, L] =
∫ ψ d (t , r ) − ψ (t , r )
2
dtd 3r
1 ∆ψ (t , r ) − f (t )V ( r )ψ(t , r ) )) dtd 3r + ∫ Re Λ (t , r ) iψ ,t (t , r ) + 2m
Quantum Signal Processing
341
y, ψ , f, L, Λ are independent functions. δψ S = 0 i 1 ∆Λ(t , r ) ⇒ − (ψ d (t , r) − ψ (t , r ) ) + Λ ,t (t , r ) + 2 4m − ⇒
1 f (t )V ( r )Λ(t , r ) = 0 2 dfS = 0
∫ Re (Λ(t , r )V ( r )ψ (t , r ))d
3
r
(2)
=0
(3)
Equations (1), (2) and (3) are to be solved for y, L and f. Note that f(t) is real.
[4] Example from Quantum Field Theory: The field f (t, r) = f (X) is coupled to an external source J(t, r) = J(X) via the interaction action ∫ J ( X )φ( X )d 4 X . The Lagrangian density is thus
(
£ J φ, φ,*µ
)=
The propagator is 〈 Vac |T{f(X) f(Y)}|Vac 〉 =
1 1 ∂ µ φ∂ µ φ − m 2φ2 + J φ 2 2
∫ exp (i∫ £ J (φ(ξ), φ, µ(ξ), ξ) d φ( X )φ(Y )
∏
4
ξ
)
dφ( η)
η∈R 4
=
(
) )
−δ 2 exp i ∫ £ J φ (ξ ) , φ,µ (ξ ) , ξ df ξ δJ ( X )δJ (Y ) ∫
∏
(
dφ( η)
η∈R 4
We wish to make this as close to a given function K(X, Y) on R4 × R4 as possible. The propagator 〈Vac|T{f(X). f(Y)}|Vac〉 controls the scattering probability amplitude between times tX and tY when X = (tX, rX), Y = (tY, rY). Thus, we must select the function {J ( X )} X ∈R 4 so that
∫
2
Vac T {φ( X )φ(Y )} Vac − K ( X , Y ) d 4 Xd 4Y
is a minimum. The optimal minimizing equations for the current density J(.) are (J is real and f is also real)
342
Stochastics, Control & Robotics
∫
{
δ Vac T {φ( X ).φ(Y )} Vac δJ ( Z )
( Vac T {φ( X )φ(Y )} Vac
)
− K ( X , Y ) d 4 Xd 4Y = 0
or equivalently, δ3 ∫ δJ ( X )δJ (Y )δJ (Z ) ∫ exp ( −iS J (φ)) ∏ d φ(ξ) ξ δ2 . exp(iS J (φ))∏ d φ(ξ ′ ) − K ( X , Y ) d 4 Xd 4Y = 0 ∫ δJ ( X )δJ (Y ) ξ′
[5] Quantum Signal Processing (Contd.): n
d ×d Typical subspace: Let ρn ∈C where r∈Cd×d is a density matrix.
Let p(x) ≥ 0
r=
n
be a density matrix. Assume that rn = r⊗n
∑ p ( x) x > < x
x∈A
A = {1, 2, .., d}.
∑ p( x) = 1, {(x): x∈A} an ONB for Cd.
x∈A
rn = r⊗n =
Then
∑
x1 ,.., xn ∈A
p( x1 )...p( xn ) x1...xn > < x1...xn .
H(r) = –Tr(r log r) ≡ − ∑ p( x)log p ( x) .
Let
x∈A
Tnd
Let
n n 1 x .., x ∈ A , log p ( xi ) + H (ρ) < δ = ( 1 ∑ n) n i=1
By Chebrshev's inequality P(Tnd) ≡
∑
( x1 ,.., xn )∈Tδn
where
Var (log p(x)) =
p( x1 )...p( xn ) ≥ 1 −
∑ p( x) (log p( x))
2
+ H (ρ)2
x∈A
=
∑ p( x) (log p( x) + H (ρ))
x∈A
Thus, lim P(Tδn ) = 1, ∀ d > 0.
n→∞
2
Var (log p( x)) nδ 2
Quantum Signal Processing
343
Now for (x1, .., xn)∈Td, – d– H(r) ≤
1 n ∑ log p( xi ) ≤ d – H(r) n i=1
and so exp(– h(d + H(r))) ≤ p(x1) ...p(xn) ≤ exp(n(d – H(p))) 1 ≥ P(Tdn) ≥ # T(dn). exp(– n(d + H(r)))
Thus
# (Tdn) ≤ exp(n(d + H(r)))
or Also, 1 −
Var (log p( x)) nδ 2
≤ P(Tdn) ≤ exp (n(d – H(r))) # (Tdn)
Thus, v 1 − 2 exp(n(H(r) – d)) nδ ≤ # (Tdn) ≤ exp(n(d + H(r)))
(1)
v = Var(log p(x)).
where
Choose any d > 0 and encode the elements of Tdn (n-length sequences) into k length binary sequences where 2k ≤ exp(n(d+H(r))). This encoding can be performed in a 1 – 1 way. The original product source consisted of dn sequences from the alphabet A. Encode all the elements of Tdnc ≡ An \ Tc into a single k length binary sequence.
The compression achieved in this system of encoding is smaller than dn → exp(n(d + H(r))) or in terms of bits n log2 d → n(d + H(r))log2 e
i.e. the bits rate reduction is by the fraction
(δ + H (ρ)) (δ + H (ρ)) log 2 e = log e d log 2 d The error of decoding probability is P(Tdnc) = 1 – P(Tdn) ≤
v
nδ 2 By choosing n sufficiently large, the decoding error probability can be made (δ + H (ρ)) arbitrarily small while retaining the bit compression rate as ≤ . log e d
344
Stochastics, Control & Robotics
Thus choosing d sufficiently small, we can achieve a compression rate arbitrarily H (ρ) clone to and making n large enough the corresponding error probability log 2 d can be made arbitrarily small. This is the Shannon nóiselen coding theorem.
[6] em Field Theory Based Image Processing: ( w, r ) E is the electric field incident on the object H0(w, r) describes the filter i ( w, r ) . The structure of the object at r. The e-field signal at this pixel is H(w, r) E i
surface magnetic current density at r (r∈S, S is the object surface) is
υ( w, r ) MS(w, r) = H 0 ( w, r ) n ( r ) × E
where n ( r ) is the unit normal to S at r. The electric vector potented at r is then
jw r − r′ M S ( w, r ′) exp − ε c F(w, r) = dS( r ′ ) 4π ∫S r − r′ ε = 4π ∫S
υ( w, r ′ ) exp − jw r − r ′ H 0 ( w, r ′ ) n ( r ′ ) × E c dS ( r ′ ) r − r′
{H0(w, r′), r′∈S} describes the object pattern and {E(w, r), r∈R3\S} the recorded image. The above equation tells us how to recover the function {H0(w, r′), r′∈S} from em i ( w, r ) in the incident wave is given by field measurements. The magnetic field H i ∇E i ( w, r ) wµ and the surface electric current density is then i ( w, r ) = H
JS(w, r) = −
(
j ( w, r ) n( r ) × ∇ × E i wµ
)
Note: Assuming ( w, r ) = E i
∫ Ei (w, m ) exp − j c (m , r ) d Ω(m )
satisfies the wave equation so that E i 2 w2 ∇ + 2 E i ( w, r ) = 0 c we get
w
Quantum Signal Processing
345
(
)
i ( w, r ) = 1 m × E ( w, m ) exp − jw ( m , r ) d Ω(m ) H i ∫ c µc JS(w, r) = −
and thus
{
(
1 × E ( w, m ) n ( r ) × m i µc ∫
)}
w ) exp − j (m , r ) d Ω(m c Problem from Revuz and Yor "Continuous Martingales and Brownian Motion" P.185 Zt = Bt + f(t)∈R2. t
∫
Zs
1 n
−1
df ( s ) =
nt
−1
∫ Zsn 1
{
E Zs
−1 n
}
s df n
( )
= E Bs + f s n n
−1
s = E Z0 + f s n n
( )
Z0 =
where
{
E Zs
Thus
−1 n
}
≤
Bs
n
n K s
{
m∈R 2
t
{
Thus, E Z s ∫ 1 n
−1
df ( s )
}
∼ N (0, I2 ) .
s n
K = sup E m + G
where
−1
nt
≤ K n∫ 1
−1
} < ∞ (G ∼ N (0, I2 ))
1 s df n s
( )
df s n ≤ K n sup ds 1≤ s ≤ nt
nt
∫1
1 ds s
( )
( ) ( )
s s 1 df ( s ) 2 nt df n 2K 1 df n sup = s | = n d s ds 1 ds n1 ≤ s ≤t n n
346
Stochastics, Control & Robotics
df ( s ) 1 = 2K t − sup ds n 1 n
≤ s ≤t
→ df ( s ) 2K t sup t Pf dT {U * (T ) ( I ⊗ Yin (t ))U (T )}
= dU *(T ) ( I ⊗ Yin (t ))U (T ) + U * (T ) (I ⊗ Yin (t )) dU (T ) + dU * (T )( I ⊗ Yin (t )) dU (T ) = 0, T > t Since
dU (T) =
∑ Pk dWk (T ) k
Quantum Signal Processing
475
(
Where Pk is a system operator, i.e., Pk ∈ L( L2 ( h )) and Wk (T ) ∈L2 Γs ( L2 (0, T )) So
)
dT {U * (T ) ( I ⊗Yin (t ))U (t )} =
∑ U * (T ) {Pj* ⊗ Yin (t )}U (t )dWk* (T ) k
+ ∑ U * (T ) {Pk ⊗ Yin (t )}U (t )dWk (T ) k
+
∑ U * (T ) {Pk* Pm ⊗ Yin (t )}U (t)dWk* (T ) dWm (T )
k ,m
and since dT (U* (T) U(T)) = 0, we have
∑ ( Pk*dWk* (T ) + Pk dWk (T )) + ∑ Pk*Pm dWk* (T ) dWm (T )
=0
k, m
k
Note: dWk (T), dW*k (T)
Commute with U (T), U* (t), Yin (t) 2 Now, put X ∈ L ( h ) (system observable) and X (t) = U * (t )( X ⊗ I )U (t), t ≥ 0
Then for t ≥ s ,
[X (t) = Yout (s)] = [U * (t )( X ⊗ I ) U (t),U * (t ) (I ⊗ Yin ( s )) U (t)] = U * (t )[ X ⊗ I , I ⊗ Yin ( s )]U (t ) = 0
i.e.
Hence {Yout (t ), t ≥ 0} is a non-demolition measurement for { X (t), t ≥ 0} in the sense of Belavkin, Now, dYout (t ) = dYin (t ) + dU * (t ) dYin (t )U (t) + U * (t ) dYin (t ) dU (t) =
∑ λ j dA j + λ j d A j + ∑ Ckj d Λ kj
(
)
+ U * ∑ L(j1)*dA*j + L(j2)*dA j + ∑ Skj*d Λ kj j ∑ λ r dAr + λ r dAr* + C.C. U r
Problem: (a) Find
Tr {( A + ε B)log ( A + ε B)} − Tr ( A log A)
Up to O (e) when A, B > 0.
476
Stochastics, Control & Robotics
(b) Find Tr { A (log ( A + ε B ) − log A)} Up to O(e) where A, B > 0. Remark: The first formula can be used in finding the rate of change of the entropy (Von-Neumann) of a quantum system whose density matrix satisfies the Sudarshan-Lindblad equation. dρt 1 = − i [ H , ρt ] − {L * Lρt + ρt L * L − 2 Lρt L*} dt 2 and the second can be used to find the relative entropy of rt per unit time.
[32] Problem on Rigid Body Motion: Consider the two link Robot with each link being a 3-D top. We have seen that the group of motions is defines by R2 R1
G = 0
Show that if we define
Then
R1 − R2 R1 : R1, R2 ∈SO(3) R1
R S − R : R, S ∈SO(3) = S 0 R S − R S
T (R, S) = 0
R2
T (R2, S2).T (R1, S1) = 0
S2 − R2 R1 S1 − R1 S1 S2 0
R2 R1 S2 S1 − R2 R1 = = T ( R2 R1, S2 S1 ) S2 S1 0
[33] Problem from Revuz and Yor: lim
x→∞
x + a x n t − δ Bs − ds δ Bs − ∫ 0 2 n n = γ (aLt ), t ≥ 0
in distribution, i.e.
= lim
x→∞
n Lt 2
( x+ a) n
− Ltx / n = γ (aLt ), t ≥ 0
In distribution, where g is a Brownian motion.